1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH) 4 * 5 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com> 6 * 7 * Interactivity improvements by Mike Galbraith 8 * (C) 2007 Mike Galbraith <efault@gmx.de> 9 * 10 * Various enhancements by Dmitry Adamushko. 11 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com> 12 * 13 * Group scheduling enhancements by Srivatsa Vaddagiri 14 * Copyright IBM Corporation, 2007 15 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com> 16 * 17 * Scaled math optimizations by Thomas Gleixner 18 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de> 19 * 20 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra 21 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra 22 */ 23 #include "sched.h" 24 25 #include <trace/events/sched.h> 26 27 /* 28 * Targeted preemption latency for CPU-bound tasks: 29 * 30 * NOTE: this latency value is not the same as the concept of 31 * 'timeslice length' - timeslices in CFS are of variable length 32 * and have no persistent notion like in traditional, time-slice 33 * based scheduling concepts. 34 * 35 * (to see the precise effective timeslice length of your workload, 36 * run vmstat and monitor the context-switches (cs) field) 37 * 38 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds) 39 */ 40 unsigned int sysctl_sched_latency = 6000000ULL; 41 static unsigned int normalized_sysctl_sched_latency = 6000000ULL; 42 43 /* 44 * The initial- and re-scaling of tunables is configurable 45 * 46 * Options are: 47 * 48 * SCHED_TUNABLESCALING_NONE - unscaled, always *1 49 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus) 50 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus 51 * 52 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus)) 53 */ 54 enum sched_tunable_scaling sysctl_sched_tunable_scaling = SCHED_TUNABLESCALING_LOG; 55 56 /* 57 * Minimal preemption granularity for CPU-bound tasks: 58 * 59 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds) 60 */ 61 unsigned int sysctl_sched_min_granularity = 750000ULL; 62 static unsigned int normalized_sysctl_sched_min_granularity = 750000ULL; 63 64 /* 65 * This value is kept at sysctl_sched_latency/sysctl_sched_min_granularity 66 */ 67 static unsigned int sched_nr_latency = 8; 68 69 /* 70 * After fork, child runs first. If set to 0 (default) then 71 * parent will (try to) run first. 72 */ 73 unsigned int sysctl_sched_child_runs_first __read_mostly; 74 75 /* 76 * SCHED_OTHER wake-up granularity. 77 * 78 * This option delays the preemption effects of decoupled workloads 79 * and reduces their over-scheduling. Synchronous workloads will still 80 * have immediate wakeup/sleep latencies. 81 * 82 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds) 83 */ 84 unsigned int sysctl_sched_wakeup_granularity = 1000000UL; 85 static unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL; 86 87 const_debug unsigned int sysctl_sched_migration_cost = 500000UL; 88 89 #ifdef CONFIG_SMP 90 /* 91 * For asym packing, by default the lower numbered CPU has higher priority. 92 */ 93 int __weak arch_asym_cpu_priority(int cpu) 94 { 95 return -cpu; 96 } 97 98 /* 99 * The margin used when comparing utilization with CPU capacity. 100 * 101 * (default: ~20%) 102 */ 103 #define fits_capacity(cap, max) ((cap) * 1280 < (max) * 1024) 104 105 #endif 106 107 #ifdef CONFIG_CFS_BANDWIDTH 108 /* 109 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool 110 * each time a cfs_rq requests quota. 111 * 112 * Note: in the case that the slice exceeds the runtime remaining (either due 113 * to consumption or the quota being specified to be smaller than the slice) 114 * we will always only issue the remaining available time. 115 * 116 * (default: 5 msec, units: microseconds) 117 */ 118 unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL; 119 #endif 120 121 static inline void update_load_add(struct load_weight *lw, unsigned long inc) 122 { 123 lw->weight += inc; 124 lw->inv_weight = 0; 125 } 126 127 static inline void update_load_sub(struct load_weight *lw, unsigned long dec) 128 { 129 lw->weight -= dec; 130 lw->inv_weight = 0; 131 } 132 133 static inline void update_load_set(struct load_weight *lw, unsigned long w) 134 { 135 lw->weight = w; 136 lw->inv_weight = 0; 137 } 138 139 /* 140 * Increase the granularity value when there are more CPUs, 141 * because with more CPUs the 'effective latency' as visible 142 * to users decreases. But the relationship is not linear, 143 * so pick a second-best guess by going with the log2 of the 144 * number of CPUs. 145 * 146 * This idea comes from the SD scheduler of Con Kolivas: 147 */ 148 static unsigned int get_update_sysctl_factor(void) 149 { 150 unsigned int cpus = min_t(unsigned int, num_online_cpus(), 8); 151 unsigned int factor; 152 153 switch (sysctl_sched_tunable_scaling) { 154 case SCHED_TUNABLESCALING_NONE: 155 factor = 1; 156 break; 157 case SCHED_TUNABLESCALING_LINEAR: 158 factor = cpus; 159 break; 160 case SCHED_TUNABLESCALING_LOG: 161 default: 162 factor = 1 + ilog2(cpus); 163 break; 164 } 165 166 return factor; 167 } 168 169 static void update_sysctl(void) 170 { 171 unsigned int factor = get_update_sysctl_factor(); 172 173 #define SET_SYSCTL(name) \ 174 (sysctl_##name = (factor) * normalized_sysctl_##name) 175 SET_SYSCTL(sched_min_granularity); 176 SET_SYSCTL(sched_latency); 177 SET_SYSCTL(sched_wakeup_granularity); 178 #undef SET_SYSCTL 179 } 180 181 void sched_init_granularity(void) 182 { 183 update_sysctl(); 184 } 185 186 #define WMULT_CONST (~0U) 187 #define WMULT_SHIFT 32 188 189 static void __update_inv_weight(struct load_weight *lw) 190 { 191 unsigned long w; 192 193 if (likely(lw->inv_weight)) 194 return; 195 196 w = scale_load_down(lw->weight); 197 198 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST)) 199 lw->inv_weight = 1; 200 else if (unlikely(!w)) 201 lw->inv_weight = WMULT_CONST; 202 else 203 lw->inv_weight = WMULT_CONST / w; 204 } 205 206 /* 207 * delta_exec * weight / lw.weight 208 * OR 209 * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT 210 * 211 * Either weight := NICE_0_LOAD and lw \e sched_prio_to_wmult[], in which case 212 * we're guaranteed shift stays positive because inv_weight is guaranteed to 213 * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22. 214 * 215 * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus 216 * weight/lw.weight <= 1, and therefore our shift will also be positive. 217 */ 218 static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw) 219 { 220 u64 fact = scale_load_down(weight); 221 int shift = WMULT_SHIFT; 222 223 __update_inv_weight(lw); 224 225 if (unlikely(fact >> 32)) { 226 while (fact >> 32) { 227 fact >>= 1; 228 shift--; 229 } 230 } 231 232 /* hint to use a 32x32->64 mul */ 233 fact = (u64)(u32)fact * lw->inv_weight; 234 235 while (fact >> 32) { 236 fact >>= 1; 237 shift--; 238 } 239 240 return mul_u64_u32_shr(delta_exec, fact, shift); 241 } 242 243 244 const struct sched_class fair_sched_class; 245 246 /************************************************************** 247 * CFS operations on generic schedulable entities: 248 */ 249 250 #ifdef CONFIG_FAIR_GROUP_SCHED 251 static inline struct task_struct *task_of(struct sched_entity *se) 252 { 253 SCHED_WARN_ON(!entity_is_task(se)); 254 return container_of(se, struct task_struct, se); 255 } 256 257 /* Walk up scheduling entities hierarchy */ 258 #define for_each_sched_entity(se) \ 259 for (; se; se = se->parent) 260 261 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p) 262 { 263 return p->se.cfs_rq; 264 } 265 266 /* runqueue on which this entity is (to be) queued */ 267 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se) 268 { 269 return se->cfs_rq; 270 } 271 272 /* runqueue "owned" by this group */ 273 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp) 274 { 275 return grp->my_q; 276 } 277 278 static inline void cfs_rq_tg_path(struct cfs_rq *cfs_rq, char *path, int len) 279 { 280 if (!path) 281 return; 282 283 if (cfs_rq && task_group_is_autogroup(cfs_rq->tg)) 284 autogroup_path(cfs_rq->tg, path, len); 285 else if (cfs_rq && cfs_rq->tg->css.cgroup) 286 cgroup_path(cfs_rq->tg->css.cgroup, path, len); 287 else 288 strlcpy(path, "(null)", len); 289 } 290 291 static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq) 292 { 293 struct rq *rq = rq_of(cfs_rq); 294 int cpu = cpu_of(rq); 295 296 if (cfs_rq->on_list) 297 return rq->tmp_alone_branch == &rq->leaf_cfs_rq_list; 298 299 cfs_rq->on_list = 1; 300 301 /* 302 * Ensure we either appear before our parent (if already 303 * enqueued) or force our parent to appear after us when it is 304 * enqueued. The fact that we always enqueue bottom-up 305 * reduces this to two cases and a special case for the root 306 * cfs_rq. Furthermore, it also means that we will always reset 307 * tmp_alone_branch either when the branch is connected 308 * to a tree or when we reach the top of the tree 309 */ 310 if (cfs_rq->tg->parent && 311 cfs_rq->tg->parent->cfs_rq[cpu]->on_list) { 312 /* 313 * If parent is already on the list, we add the child 314 * just before. Thanks to circular linked property of 315 * the list, this means to put the child at the tail 316 * of the list that starts by parent. 317 */ 318 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list, 319 &(cfs_rq->tg->parent->cfs_rq[cpu]->leaf_cfs_rq_list)); 320 /* 321 * The branch is now connected to its tree so we can 322 * reset tmp_alone_branch to the beginning of the 323 * list. 324 */ 325 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list; 326 return true; 327 } 328 329 if (!cfs_rq->tg->parent) { 330 /* 331 * cfs rq without parent should be put 332 * at the tail of the list. 333 */ 334 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list, 335 &rq->leaf_cfs_rq_list); 336 /* 337 * We have reach the top of a tree so we can reset 338 * tmp_alone_branch to the beginning of the list. 339 */ 340 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list; 341 return true; 342 } 343 344 /* 345 * The parent has not already been added so we want to 346 * make sure that it will be put after us. 347 * tmp_alone_branch points to the begin of the branch 348 * where we will add parent. 349 */ 350 list_add_rcu(&cfs_rq->leaf_cfs_rq_list, rq->tmp_alone_branch); 351 /* 352 * update tmp_alone_branch to points to the new begin 353 * of the branch 354 */ 355 rq->tmp_alone_branch = &cfs_rq->leaf_cfs_rq_list; 356 return false; 357 } 358 359 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq) 360 { 361 if (cfs_rq->on_list) { 362 struct rq *rq = rq_of(cfs_rq); 363 364 /* 365 * With cfs_rq being unthrottled/throttled during an enqueue, 366 * it can happen the tmp_alone_branch points the a leaf that 367 * we finally want to del. In this case, tmp_alone_branch moves 368 * to the prev element but it will point to rq->leaf_cfs_rq_list 369 * at the end of the enqueue. 370 */ 371 if (rq->tmp_alone_branch == &cfs_rq->leaf_cfs_rq_list) 372 rq->tmp_alone_branch = cfs_rq->leaf_cfs_rq_list.prev; 373 374 list_del_rcu(&cfs_rq->leaf_cfs_rq_list); 375 cfs_rq->on_list = 0; 376 } 377 } 378 379 static inline void assert_list_leaf_cfs_rq(struct rq *rq) 380 { 381 SCHED_WARN_ON(rq->tmp_alone_branch != &rq->leaf_cfs_rq_list); 382 } 383 384 /* Iterate thr' all leaf cfs_rq's on a runqueue */ 385 #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) \ 386 list_for_each_entry_safe(cfs_rq, pos, &rq->leaf_cfs_rq_list, \ 387 leaf_cfs_rq_list) 388 389 /* Do the two (enqueued) entities belong to the same group ? */ 390 static inline struct cfs_rq * 391 is_same_group(struct sched_entity *se, struct sched_entity *pse) 392 { 393 if (se->cfs_rq == pse->cfs_rq) 394 return se->cfs_rq; 395 396 return NULL; 397 } 398 399 static inline struct sched_entity *parent_entity(struct sched_entity *se) 400 { 401 return se->parent; 402 } 403 404 static void 405 find_matching_se(struct sched_entity **se, struct sched_entity **pse) 406 { 407 int se_depth, pse_depth; 408 409 /* 410 * preemption test can be made between sibling entities who are in the 411 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of 412 * both tasks until we find their ancestors who are siblings of common 413 * parent. 414 */ 415 416 /* First walk up until both entities are at same depth */ 417 se_depth = (*se)->depth; 418 pse_depth = (*pse)->depth; 419 420 while (se_depth > pse_depth) { 421 se_depth--; 422 *se = parent_entity(*se); 423 } 424 425 while (pse_depth > se_depth) { 426 pse_depth--; 427 *pse = parent_entity(*pse); 428 } 429 430 while (!is_same_group(*se, *pse)) { 431 *se = parent_entity(*se); 432 *pse = parent_entity(*pse); 433 } 434 } 435 436 #else /* !CONFIG_FAIR_GROUP_SCHED */ 437 438 static inline struct task_struct *task_of(struct sched_entity *se) 439 { 440 return container_of(se, struct task_struct, se); 441 } 442 443 #define for_each_sched_entity(se) \ 444 for (; se; se = NULL) 445 446 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p) 447 { 448 return &task_rq(p)->cfs; 449 } 450 451 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se) 452 { 453 struct task_struct *p = task_of(se); 454 struct rq *rq = task_rq(p); 455 456 return &rq->cfs; 457 } 458 459 /* runqueue "owned" by this group */ 460 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp) 461 { 462 return NULL; 463 } 464 465 static inline void cfs_rq_tg_path(struct cfs_rq *cfs_rq, char *path, int len) 466 { 467 if (path) 468 strlcpy(path, "(null)", len); 469 } 470 471 static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq) 472 { 473 return true; 474 } 475 476 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq) 477 { 478 } 479 480 static inline void assert_list_leaf_cfs_rq(struct rq *rq) 481 { 482 } 483 484 #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) \ 485 for (cfs_rq = &rq->cfs, pos = NULL; cfs_rq; cfs_rq = pos) 486 487 static inline struct sched_entity *parent_entity(struct sched_entity *se) 488 { 489 return NULL; 490 } 491 492 static inline void 493 find_matching_se(struct sched_entity **se, struct sched_entity **pse) 494 { 495 } 496 497 #endif /* CONFIG_FAIR_GROUP_SCHED */ 498 499 static __always_inline 500 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec); 501 502 /************************************************************** 503 * Scheduling class tree data structure manipulation methods: 504 */ 505 506 static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime) 507 { 508 s64 delta = (s64)(vruntime - max_vruntime); 509 if (delta > 0) 510 max_vruntime = vruntime; 511 512 return max_vruntime; 513 } 514 515 static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime) 516 { 517 s64 delta = (s64)(vruntime - min_vruntime); 518 if (delta < 0) 519 min_vruntime = vruntime; 520 521 return min_vruntime; 522 } 523 524 static inline int entity_before(struct sched_entity *a, 525 struct sched_entity *b) 526 { 527 return (s64)(a->vruntime - b->vruntime) < 0; 528 } 529 530 static void update_min_vruntime(struct cfs_rq *cfs_rq) 531 { 532 struct sched_entity *curr = cfs_rq->curr; 533 struct rb_node *leftmost = rb_first_cached(&cfs_rq->tasks_timeline); 534 535 u64 vruntime = cfs_rq->min_vruntime; 536 537 if (curr) { 538 if (curr->on_rq) 539 vruntime = curr->vruntime; 540 else 541 curr = NULL; 542 } 543 544 if (leftmost) { /* non-empty tree */ 545 struct sched_entity *se; 546 se = rb_entry(leftmost, struct sched_entity, run_node); 547 548 if (!curr) 549 vruntime = se->vruntime; 550 else 551 vruntime = min_vruntime(vruntime, se->vruntime); 552 } 553 554 /* ensure we never gain time by being placed backwards. */ 555 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime); 556 #ifndef CONFIG_64BIT 557 smp_wmb(); 558 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime; 559 #endif 560 } 561 562 /* 563 * Enqueue an entity into the rb-tree: 564 */ 565 static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) 566 { 567 struct rb_node **link = &cfs_rq->tasks_timeline.rb_root.rb_node; 568 struct rb_node *parent = NULL; 569 struct sched_entity *entry; 570 bool leftmost = true; 571 572 /* 573 * Find the right place in the rbtree: 574 */ 575 while (*link) { 576 parent = *link; 577 entry = rb_entry(parent, struct sched_entity, run_node); 578 /* 579 * We dont care about collisions. Nodes with 580 * the same key stay together. 581 */ 582 if (entity_before(se, entry)) { 583 link = &parent->rb_left; 584 } else { 585 link = &parent->rb_right; 586 leftmost = false; 587 } 588 } 589 590 rb_link_node(&se->run_node, parent, link); 591 rb_insert_color_cached(&se->run_node, 592 &cfs_rq->tasks_timeline, leftmost); 593 } 594 595 static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) 596 { 597 rb_erase_cached(&se->run_node, &cfs_rq->tasks_timeline); 598 } 599 600 struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq) 601 { 602 struct rb_node *left = rb_first_cached(&cfs_rq->tasks_timeline); 603 604 if (!left) 605 return NULL; 606 607 return rb_entry(left, struct sched_entity, run_node); 608 } 609 610 static struct sched_entity *__pick_next_entity(struct sched_entity *se) 611 { 612 struct rb_node *next = rb_next(&se->run_node); 613 614 if (!next) 615 return NULL; 616 617 return rb_entry(next, struct sched_entity, run_node); 618 } 619 620 #ifdef CONFIG_SCHED_DEBUG 621 struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq) 622 { 623 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline.rb_root); 624 625 if (!last) 626 return NULL; 627 628 return rb_entry(last, struct sched_entity, run_node); 629 } 630 631 /************************************************************** 632 * Scheduling class statistics methods: 633 */ 634 635 int sched_proc_update_handler(struct ctl_table *table, int write, 636 void __user *buffer, size_t *lenp, 637 loff_t *ppos) 638 { 639 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 640 unsigned int factor = get_update_sysctl_factor(); 641 642 if (ret || !write) 643 return ret; 644 645 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency, 646 sysctl_sched_min_granularity); 647 648 #define WRT_SYSCTL(name) \ 649 (normalized_sysctl_##name = sysctl_##name / (factor)) 650 WRT_SYSCTL(sched_min_granularity); 651 WRT_SYSCTL(sched_latency); 652 WRT_SYSCTL(sched_wakeup_granularity); 653 #undef WRT_SYSCTL 654 655 return 0; 656 } 657 #endif 658 659 /* 660 * delta /= w 661 */ 662 static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se) 663 { 664 if (unlikely(se->load.weight != NICE_0_LOAD)) 665 delta = __calc_delta(delta, NICE_0_LOAD, &se->load); 666 667 return delta; 668 } 669 670 /* 671 * The idea is to set a period in which each task runs once. 672 * 673 * When there are too many tasks (sched_nr_latency) we have to stretch 674 * this period because otherwise the slices get too small. 675 * 676 * p = (nr <= nl) ? l : l*nr/nl 677 */ 678 static u64 __sched_period(unsigned long nr_running) 679 { 680 if (unlikely(nr_running > sched_nr_latency)) 681 return nr_running * sysctl_sched_min_granularity; 682 else 683 return sysctl_sched_latency; 684 } 685 686 /* 687 * We calculate the wall-time slice from the period by taking a part 688 * proportional to the weight. 689 * 690 * s = p*P[w/rw] 691 */ 692 static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se) 693 { 694 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq); 695 696 for_each_sched_entity(se) { 697 struct load_weight *load; 698 struct load_weight lw; 699 700 cfs_rq = cfs_rq_of(se); 701 load = &cfs_rq->load; 702 703 if (unlikely(!se->on_rq)) { 704 lw = cfs_rq->load; 705 706 update_load_add(&lw, se->load.weight); 707 load = &lw; 708 } 709 slice = __calc_delta(slice, se->load.weight, load); 710 } 711 return slice; 712 } 713 714 /* 715 * We calculate the vruntime slice of a to-be-inserted task. 716 * 717 * vs = s/w 718 */ 719 static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se) 720 { 721 return calc_delta_fair(sched_slice(cfs_rq, se), se); 722 } 723 724 #include "pelt.h" 725 #ifdef CONFIG_SMP 726 727 static int select_idle_sibling(struct task_struct *p, int prev_cpu, int cpu); 728 static unsigned long task_h_load(struct task_struct *p); 729 static unsigned long capacity_of(int cpu); 730 731 /* Give new sched_entity start runnable values to heavy its load in infant time */ 732 void init_entity_runnable_average(struct sched_entity *se) 733 { 734 struct sched_avg *sa = &se->avg; 735 736 memset(sa, 0, sizeof(*sa)); 737 738 /* 739 * Tasks are initialized with full load to be seen as heavy tasks until 740 * they get a chance to stabilize to their real load level. 741 * Group entities are initialized with zero load to reflect the fact that 742 * nothing has been attached to the task group yet. 743 */ 744 if (entity_is_task(se)) 745 sa->runnable_load_avg = sa->load_avg = scale_load_down(se->load.weight); 746 747 se->runnable_weight = se->load.weight; 748 749 /* when this task enqueue'ed, it will contribute to its cfs_rq's load_avg */ 750 } 751 752 static void attach_entity_cfs_rq(struct sched_entity *se); 753 754 /* 755 * With new tasks being created, their initial util_avgs are extrapolated 756 * based on the cfs_rq's current util_avg: 757 * 758 * util_avg = cfs_rq->util_avg / (cfs_rq->load_avg + 1) * se.load.weight 759 * 760 * However, in many cases, the above util_avg does not give a desired 761 * value. Moreover, the sum of the util_avgs may be divergent, such 762 * as when the series is a harmonic series. 763 * 764 * To solve this problem, we also cap the util_avg of successive tasks to 765 * only 1/2 of the left utilization budget: 766 * 767 * util_avg_cap = (cpu_scale - cfs_rq->avg.util_avg) / 2^n 768 * 769 * where n denotes the nth task and cpu_scale the CPU capacity. 770 * 771 * For example, for a CPU with 1024 of capacity, a simplest series from 772 * the beginning would be like: 773 * 774 * task util_avg: 512, 256, 128, 64, 32, 16, 8, ... 775 * cfs_rq util_avg: 512, 768, 896, 960, 992, 1008, 1016, ... 776 * 777 * Finally, that extrapolated util_avg is clamped to the cap (util_avg_cap) 778 * if util_avg > util_avg_cap. 779 */ 780 void post_init_entity_util_avg(struct task_struct *p) 781 { 782 struct sched_entity *se = &p->se; 783 struct cfs_rq *cfs_rq = cfs_rq_of(se); 784 struct sched_avg *sa = &se->avg; 785 long cpu_scale = arch_scale_cpu_capacity(cpu_of(rq_of(cfs_rq))); 786 long cap = (long)(cpu_scale - cfs_rq->avg.util_avg) / 2; 787 788 if (cap > 0) { 789 if (cfs_rq->avg.util_avg != 0) { 790 sa->util_avg = cfs_rq->avg.util_avg * se->load.weight; 791 sa->util_avg /= (cfs_rq->avg.load_avg + 1); 792 793 if (sa->util_avg > cap) 794 sa->util_avg = cap; 795 } else { 796 sa->util_avg = cap; 797 } 798 } 799 800 if (p->sched_class != &fair_sched_class) { 801 /* 802 * For !fair tasks do: 803 * 804 update_cfs_rq_load_avg(now, cfs_rq); 805 attach_entity_load_avg(cfs_rq, se, 0); 806 switched_from_fair(rq, p); 807 * 808 * such that the next switched_to_fair() has the 809 * expected state. 810 */ 811 se->avg.last_update_time = cfs_rq_clock_pelt(cfs_rq); 812 return; 813 } 814 815 attach_entity_cfs_rq(se); 816 } 817 818 #else /* !CONFIG_SMP */ 819 void init_entity_runnable_average(struct sched_entity *se) 820 { 821 } 822 void post_init_entity_util_avg(struct task_struct *p) 823 { 824 } 825 static void update_tg_load_avg(struct cfs_rq *cfs_rq, int force) 826 { 827 } 828 #endif /* CONFIG_SMP */ 829 830 /* 831 * Update the current task's runtime statistics. 832 */ 833 static void update_curr(struct cfs_rq *cfs_rq) 834 { 835 struct sched_entity *curr = cfs_rq->curr; 836 u64 now = rq_clock_task(rq_of(cfs_rq)); 837 u64 delta_exec; 838 839 if (unlikely(!curr)) 840 return; 841 842 delta_exec = now - curr->exec_start; 843 if (unlikely((s64)delta_exec <= 0)) 844 return; 845 846 curr->exec_start = now; 847 848 schedstat_set(curr->statistics.exec_max, 849 max(delta_exec, curr->statistics.exec_max)); 850 851 curr->sum_exec_runtime += delta_exec; 852 schedstat_add(cfs_rq->exec_clock, delta_exec); 853 854 curr->vruntime += calc_delta_fair(delta_exec, curr); 855 update_min_vruntime(cfs_rq); 856 857 if (entity_is_task(curr)) { 858 struct task_struct *curtask = task_of(curr); 859 860 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime); 861 cgroup_account_cputime(curtask, delta_exec); 862 account_group_exec_runtime(curtask, delta_exec); 863 } 864 865 account_cfs_rq_runtime(cfs_rq, delta_exec); 866 } 867 868 static void update_curr_fair(struct rq *rq) 869 { 870 update_curr(cfs_rq_of(&rq->curr->se)); 871 } 872 873 static inline void 874 update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se) 875 { 876 u64 wait_start, prev_wait_start; 877 878 if (!schedstat_enabled()) 879 return; 880 881 wait_start = rq_clock(rq_of(cfs_rq)); 882 prev_wait_start = schedstat_val(se->statistics.wait_start); 883 884 if (entity_is_task(se) && task_on_rq_migrating(task_of(se)) && 885 likely(wait_start > prev_wait_start)) 886 wait_start -= prev_wait_start; 887 888 __schedstat_set(se->statistics.wait_start, wait_start); 889 } 890 891 static inline void 892 update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se) 893 { 894 struct task_struct *p; 895 u64 delta; 896 897 if (!schedstat_enabled()) 898 return; 899 900 delta = rq_clock(rq_of(cfs_rq)) - schedstat_val(se->statistics.wait_start); 901 902 if (entity_is_task(se)) { 903 p = task_of(se); 904 if (task_on_rq_migrating(p)) { 905 /* 906 * Preserve migrating task's wait time so wait_start 907 * time stamp can be adjusted to accumulate wait time 908 * prior to migration. 909 */ 910 __schedstat_set(se->statistics.wait_start, delta); 911 return; 912 } 913 trace_sched_stat_wait(p, delta); 914 } 915 916 __schedstat_set(se->statistics.wait_max, 917 max(schedstat_val(se->statistics.wait_max), delta)); 918 __schedstat_inc(se->statistics.wait_count); 919 __schedstat_add(se->statistics.wait_sum, delta); 920 __schedstat_set(se->statistics.wait_start, 0); 921 } 922 923 static inline void 924 update_stats_enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se) 925 { 926 struct task_struct *tsk = NULL; 927 u64 sleep_start, block_start; 928 929 if (!schedstat_enabled()) 930 return; 931 932 sleep_start = schedstat_val(se->statistics.sleep_start); 933 block_start = schedstat_val(se->statistics.block_start); 934 935 if (entity_is_task(se)) 936 tsk = task_of(se); 937 938 if (sleep_start) { 939 u64 delta = rq_clock(rq_of(cfs_rq)) - sleep_start; 940 941 if ((s64)delta < 0) 942 delta = 0; 943 944 if (unlikely(delta > schedstat_val(se->statistics.sleep_max))) 945 __schedstat_set(se->statistics.sleep_max, delta); 946 947 __schedstat_set(se->statistics.sleep_start, 0); 948 __schedstat_add(se->statistics.sum_sleep_runtime, delta); 949 950 if (tsk) { 951 account_scheduler_latency(tsk, delta >> 10, 1); 952 trace_sched_stat_sleep(tsk, delta); 953 } 954 } 955 if (block_start) { 956 u64 delta = rq_clock(rq_of(cfs_rq)) - block_start; 957 958 if ((s64)delta < 0) 959 delta = 0; 960 961 if (unlikely(delta > schedstat_val(se->statistics.block_max))) 962 __schedstat_set(se->statistics.block_max, delta); 963 964 __schedstat_set(se->statistics.block_start, 0); 965 __schedstat_add(se->statistics.sum_sleep_runtime, delta); 966 967 if (tsk) { 968 if (tsk->in_iowait) { 969 __schedstat_add(se->statistics.iowait_sum, delta); 970 __schedstat_inc(se->statistics.iowait_count); 971 trace_sched_stat_iowait(tsk, delta); 972 } 973 974 trace_sched_stat_blocked(tsk, delta); 975 976 /* 977 * Blocking time is in units of nanosecs, so shift by 978 * 20 to get a milliseconds-range estimation of the 979 * amount of time that the task spent sleeping: 980 */ 981 if (unlikely(prof_on == SLEEP_PROFILING)) { 982 profile_hits(SLEEP_PROFILING, 983 (void *)get_wchan(tsk), 984 delta >> 20); 985 } 986 account_scheduler_latency(tsk, delta >> 10, 0); 987 } 988 } 989 } 990 991 /* 992 * Task is being enqueued - update stats: 993 */ 994 static inline void 995 update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 996 { 997 if (!schedstat_enabled()) 998 return; 999 1000 /* 1001 * Are we enqueueing a waiting task? (for current tasks 1002 * a dequeue/enqueue event is a NOP) 1003 */ 1004 if (se != cfs_rq->curr) 1005 update_stats_wait_start(cfs_rq, se); 1006 1007 if (flags & ENQUEUE_WAKEUP) 1008 update_stats_enqueue_sleeper(cfs_rq, se); 1009 } 1010 1011 static inline void 1012 update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 1013 { 1014 1015 if (!schedstat_enabled()) 1016 return; 1017 1018 /* 1019 * Mark the end of the wait period if dequeueing a 1020 * waiting task: 1021 */ 1022 if (se != cfs_rq->curr) 1023 update_stats_wait_end(cfs_rq, se); 1024 1025 if ((flags & DEQUEUE_SLEEP) && entity_is_task(se)) { 1026 struct task_struct *tsk = task_of(se); 1027 1028 if (tsk->state & TASK_INTERRUPTIBLE) 1029 __schedstat_set(se->statistics.sleep_start, 1030 rq_clock(rq_of(cfs_rq))); 1031 if (tsk->state & TASK_UNINTERRUPTIBLE) 1032 __schedstat_set(se->statistics.block_start, 1033 rq_clock(rq_of(cfs_rq))); 1034 } 1035 } 1036 1037 /* 1038 * We are picking a new current task - update its stats: 1039 */ 1040 static inline void 1041 update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se) 1042 { 1043 /* 1044 * We are starting a new run period: 1045 */ 1046 se->exec_start = rq_clock_task(rq_of(cfs_rq)); 1047 } 1048 1049 /************************************************** 1050 * Scheduling class queueing methods: 1051 */ 1052 1053 #ifdef CONFIG_NUMA_BALANCING 1054 /* 1055 * Approximate time to scan a full NUMA task in ms. The task scan period is 1056 * calculated based on the tasks virtual memory size and 1057 * numa_balancing_scan_size. 1058 */ 1059 unsigned int sysctl_numa_balancing_scan_period_min = 1000; 1060 unsigned int sysctl_numa_balancing_scan_period_max = 60000; 1061 1062 /* Portion of address space to scan in MB */ 1063 unsigned int sysctl_numa_balancing_scan_size = 256; 1064 1065 /* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */ 1066 unsigned int sysctl_numa_balancing_scan_delay = 1000; 1067 1068 struct numa_group { 1069 refcount_t refcount; 1070 1071 spinlock_t lock; /* nr_tasks, tasks */ 1072 int nr_tasks; 1073 pid_t gid; 1074 int active_nodes; 1075 1076 struct rcu_head rcu; 1077 unsigned long total_faults; 1078 unsigned long max_faults_cpu; 1079 /* 1080 * Faults_cpu is used to decide whether memory should move 1081 * towards the CPU. As a consequence, these stats are weighted 1082 * more by CPU use than by memory faults. 1083 */ 1084 unsigned long *faults_cpu; 1085 unsigned long faults[0]; 1086 }; 1087 1088 /* 1089 * For functions that can be called in multiple contexts that permit reading 1090 * ->numa_group (see struct task_struct for locking rules). 1091 */ 1092 static struct numa_group *deref_task_numa_group(struct task_struct *p) 1093 { 1094 return rcu_dereference_check(p->numa_group, p == current || 1095 (lockdep_is_held(&task_rq(p)->lock) && !READ_ONCE(p->on_cpu))); 1096 } 1097 1098 static struct numa_group *deref_curr_numa_group(struct task_struct *p) 1099 { 1100 return rcu_dereference_protected(p->numa_group, p == current); 1101 } 1102 1103 static inline unsigned long group_faults_priv(struct numa_group *ng); 1104 static inline unsigned long group_faults_shared(struct numa_group *ng); 1105 1106 static unsigned int task_nr_scan_windows(struct task_struct *p) 1107 { 1108 unsigned long rss = 0; 1109 unsigned long nr_scan_pages; 1110 1111 /* 1112 * Calculations based on RSS as non-present and empty pages are skipped 1113 * by the PTE scanner and NUMA hinting faults should be trapped based 1114 * on resident pages 1115 */ 1116 nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT); 1117 rss = get_mm_rss(p->mm); 1118 if (!rss) 1119 rss = nr_scan_pages; 1120 1121 rss = round_up(rss, nr_scan_pages); 1122 return rss / nr_scan_pages; 1123 } 1124 1125 /* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */ 1126 #define MAX_SCAN_WINDOW 2560 1127 1128 static unsigned int task_scan_min(struct task_struct *p) 1129 { 1130 unsigned int scan_size = READ_ONCE(sysctl_numa_balancing_scan_size); 1131 unsigned int scan, floor; 1132 unsigned int windows = 1; 1133 1134 if (scan_size < MAX_SCAN_WINDOW) 1135 windows = MAX_SCAN_WINDOW / scan_size; 1136 floor = 1000 / windows; 1137 1138 scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p); 1139 return max_t(unsigned int, floor, scan); 1140 } 1141 1142 static unsigned int task_scan_start(struct task_struct *p) 1143 { 1144 unsigned long smin = task_scan_min(p); 1145 unsigned long period = smin; 1146 struct numa_group *ng; 1147 1148 /* Scale the maximum scan period with the amount of shared memory. */ 1149 rcu_read_lock(); 1150 ng = rcu_dereference(p->numa_group); 1151 if (ng) { 1152 unsigned long shared = group_faults_shared(ng); 1153 unsigned long private = group_faults_priv(ng); 1154 1155 period *= refcount_read(&ng->refcount); 1156 period *= shared + 1; 1157 period /= private + shared + 1; 1158 } 1159 rcu_read_unlock(); 1160 1161 return max(smin, period); 1162 } 1163 1164 static unsigned int task_scan_max(struct task_struct *p) 1165 { 1166 unsigned long smin = task_scan_min(p); 1167 unsigned long smax; 1168 struct numa_group *ng; 1169 1170 /* Watch for min being lower than max due to floor calculations */ 1171 smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p); 1172 1173 /* Scale the maximum scan period with the amount of shared memory. */ 1174 ng = deref_curr_numa_group(p); 1175 if (ng) { 1176 unsigned long shared = group_faults_shared(ng); 1177 unsigned long private = group_faults_priv(ng); 1178 unsigned long period = smax; 1179 1180 period *= refcount_read(&ng->refcount); 1181 period *= shared + 1; 1182 period /= private + shared + 1; 1183 1184 smax = max(smax, period); 1185 } 1186 1187 return max(smin, smax); 1188 } 1189 1190 static void account_numa_enqueue(struct rq *rq, struct task_struct *p) 1191 { 1192 rq->nr_numa_running += (p->numa_preferred_nid != NUMA_NO_NODE); 1193 rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p)); 1194 } 1195 1196 static void account_numa_dequeue(struct rq *rq, struct task_struct *p) 1197 { 1198 rq->nr_numa_running -= (p->numa_preferred_nid != NUMA_NO_NODE); 1199 rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p)); 1200 } 1201 1202 /* Shared or private faults. */ 1203 #define NR_NUMA_HINT_FAULT_TYPES 2 1204 1205 /* Memory and CPU locality */ 1206 #define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2) 1207 1208 /* Averaged statistics, and temporary buffers. */ 1209 #define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2) 1210 1211 pid_t task_numa_group_id(struct task_struct *p) 1212 { 1213 struct numa_group *ng; 1214 pid_t gid = 0; 1215 1216 rcu_read_lock(); 1217 ng = rcu_dereference(p->numa_group); 1218 if (ng) 1219 gid = ng->gid; 1220 rcu_read_unlock(); 1221 1222 return gid; 1223 } 1224 1225 /* 1226 * The averaged statistics, shared & private, memory & CPU, 1227 * occupy the first half of the array. The second half of the 1228 * array is for current counters, which are averaged into the 1229 * first set by task_numa_placement. 1230 */ 1231 static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv) 1232 { 1233 return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv; 1234 } 1235 1236 static inline unsigned long task_faults(struct task_struct *p, int nid) 1237 { 1238 if (!p->numa_faults) 1239 return 0; 1240 1241 return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] + 1242 p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)]; 1243 } 1244 1245 static inline unsigned long group_faults(struct task_struct *p, int nid) 1246 { 1247 struct numa_group *ng = deref_task_numa_group(p); 1248 1249 if (!ng) 1250 return 0; 1251 1252 return ng->faults[task_faults_idx(NUMA_MEM, nid, 0)] + 1253 ng->faults[task_faults_idx(NUMA_MEM, nid, 1)]; 1254 } 1255 1256 static inline unsigned long group_faults_cpu(struct numa_group *group, int nid) 1257 { 1258 return group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 0)] + 1259 group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 1)]; 1260 } 1261 1262 static inline unsigned long group_faults_priv(struct numa_group *ng) 1263 { 1264 unsigned long faults = 0; 1265 int node; 1266 1267 for_each_online_node(node) { 1268 faults += ng->faults[task_faults_idx(NUMA_MEM, node, 1)]; 1269 } 1270 1271 return faults; 1272 } 1273 1274 static inline unsigned long group_faults_shared(struct numa_group *ng) 1275 { 1276 unsigned long faults = 0; 1277 int node; 1278 1279 for_each_online_node(node) { 1280 faults += ng->faults[task_faults_idx(NUMA_MEM, node, 0)]; 1281 } 1282 1283 return faults; 1284 } 1285 1286 /* 1287 * A node triggering more than 1/3 as many NUMA faults as the maximum is 1288 * considered part of a numa group's pseudo-interleaving set. Migrations 1289 * between these nodes are slowed down, to allow things to settle down. 1290 */ 1291 #define ACTIVE_NODE_FRACTION 3 1292 1293 static bool numa_is_active_node(int nid, struct numa_group *ng) 1294 { 1295 return group_faults_cpu(ng, nid) * ACTIVE_NODE_FRACTION > ng->max_faults_cpu; 1296 } 1297 1298 /* Handle placement on systems where not all nodes are directly connected. */ 1299 static unsigned long score_nearby_nodes(struct task_struct *p, int nid, 1300 int maxdist, bool task) 1301 { 1302 unsigned long score = 0; 1303 int node; 1304 1305 /* 1306 * All nodes are directly connected, and the same distance 1307 * from each other. No need for fancy placement algorithms. 1308 */ 1309 if (sched_numa_topology_type == NUMA_DIRECT) 1310 return 0; 1311 1312 /* 1313 * This code is called for each node, introducing N^2 complexity, 1314 * which should be ok given the number of nodes rarely exceeds 8. 1315 */ 1316 for_each_online_node(node) { 1317 unsigned long faults; 1318 int dist = node_distance(nid, node); 1319 1320 /* 1321 * The furthest away nodes in the system are not interesting 1322 * for placement; nid was already counted. 1323 */ 1324 if (dist == sched_max_numa_distance || node == nid) 1325 continue; 1326 1327 /* 1328 * On systems with a backplane NUMA topology, compare groups 1329 * of nodes, and move tasks towards the group with the most 1330 * memory accesses. When comparing two nodes at distance 1331 * "hoplimit", only nodes closer by than "hoplimit" are part 1332 * of each group. Skip other nodes. 1333 */ 1334 if (sched_numa_topology_type == NUMA_BACKPLANE && 1335 dist >= maxdist) 1336 continue; 1337 1338 /* Add up the faults from nearby nodes. */ 1339 if (task) 1340 faults = task_faults(p, node); 1341 else 1342 faults = group_faults(p, node); 1343 1344 /* 1345 * On systems with a glueless mesh NUMA topology, there are 1346 * no fixed "groups of nodes". Instead, nodes that are not 1347 * directly connected bounce traffic through intermediate 1348 * nodes; a numa_group can occupy any set of nodes. 1349 * The further away a node is, the less the faults count. 1350 * This seems to result in good task placement. 1351 */ 1352 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) { 1353 faults *= (sched_max_numa_distance - dist); 1354 faults /= (sched_max_numa_distance - LOCAL_DISTANCE); 1355 } 1356 1357 score += faults; 1358 } 1359 1360 return score; 1361 } 1362 1363 /* 1364 * These return the fraction of accesses done by a particular task, or 1365 * task group, on a particular numa node. The group weight is given a 1366 * larger multiplier, in order to group tasks together that are almost 1367 * evenly spread out between numa nodes. 1368 */ 1369 static inline unsigned long task_weight(struct task_struct *p, int nid, 1370 int dist) 1371 { 1372 unsigned long faults, total_faults; 1373 1374 if (!p->numa_faults) 1375 return 0; 1376 1377 total_faults = p->total_numa_faults; 1378 1379 if (!total_faults) 1380 return 0; 1381 1382 faults = task_faults(p, nid); 1383 faults += score_nearby_nodes(p, nid, dist, true); 1384 1385 return 1000 * faults / total_faults; 1386 } 1387 1388 static inline unsigned long group_weight(struct task_struct *p, int nid, 1389 int dist) 1390 { 1391 struct numa_group *ng = deref_task_numa_group(p); 1392 unsigned long faults, total_faults; 1393 1394 if (!ng) 1395 return 0; 1396 1397 total_faults = ng->total_faults; 1398 1399 if (!total_faults) 1400 return 0; 1401 1402 faults = group_faults(p, nid); 1403 faults += score_nearby_nodes(p, nid, dist, false); 1404 1405 return 1000 * faults / total_faults; 1406 } 1407 1408 bool should_numa_migrate_memory(struct task_struct *p, struct page * page, 1409 int src_nid, int dst_cpu) 1410 { 1411 struct numa_group *ng = deref_curr_numa_group(p); 1412 int dst_nid = cpu_to_node(dst_cpu); 1413 int last_cpupid, this_cpupid; 1414 1415 this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid); 1416 last_cpupid = page_cpupid_xchg_last(page, this_cpupid); 1417 1418 /* 1419 * Allow first faults or private faults to migrate immediately early in 1420 * the lifetime of a task. The magic number 4 is based on waiting for 1421 * two full passes of the "multi-stage node selection" test that is 1422 * executed below. 1423 */ 1424 if ((p->numa_preferred_nid == NUMA_NO_NODE || p->numa_scan_seq <= 4) && 1425 (cpupid_pid_unset(last_cpupid) || cpupid_match_pid(p, last_cpupid))) 1426 return true; 1427 1428 /* 1429 * Multi-stage node selection is used in conjunction with a periodic 1430 * migration fault to build a temporal task<->page relation. By using 1431 * a two-stage filter we remove short/unlikely relations. 1432 * 1433 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate 1434 * a task's usage of a particular page (n_p) per total usage of this 1435 * page (n_t) (in a given time-span) to a probability. 1436 * 1437 * Our periodic faults will sample this probability and getting the 1438 * same result twice in a row, given these samples are fully 1439 * independent, is then given by P(n)^2, provided our sample period 1440 * is sufficiently short compared to the usage pattern. 1441 * 1442 * This quadric squishes small probabilities, making it less likely we 1443 * act on an unlikely task<->page relation. 1444 */ 1445 if (!cpupid_pid_unset(last_cpupid) && 1446 cpupid_to_nid(last_cpupid) != dst_nid) 1447 return false; 1448 1449 /* Always allow migrate on private faults */ 1450 if (cpupid_match_pid(p, last_cpupid)) 1451 return true; 1452 1453 /* A shared fault, but p->numa_group has not been set up yet. */ 1454 if (!ng) 1455 return true; 1456 1457 /* 1458 * Destination node is much more heavily used than the source 1459 * node? Allow migration. 1460 */ 1461 if (group_faults_cpu(ng, dst_nid) > group_faults_cpu(ng, src_nid) * 1462 ACTIVE_NODE_FRACTION) 1463 return true; 1464 1465 /* 1466 * Distribute memory according to CPU & memory use on each node, 1467 * with 3/4 hysteresis to avoid unnecessary memory migrations: 1468 * 1469 * faults_cpu(dst) 3 faults_cpu(src) 1470 * --------------- * - > --------------- 1471 * faults_mem(dst) 4 faults_mem(src) 1472 */ 1473 return group_faults_cpu(ng, dst_nid) * group_faults(p, src_nid) * 3 > 1474 group_faults_cpu(ng, src_nid) * group_faults(p, dst_nid) * 4; 1475 } 1476 1477 static unsigned long cpu_runnable_load(struct rq *rq); 1478 1479 /* Cached statistics for all CPUs within a node */ 1480 struct numa_stats { 1481 unsigned long load; 1482 1483 /* Total compute capacity of CPUs on a node */ 1484 unsigned long compute_capacity; 1485 }; 1486 1487 /* 1488 * XXX borrowed from update_sg_lb_stats 1489 */ 1490 static void update_numa_stats(struct numa_stats *ns, int nid) 1491 { 1492 int cpu; 1493 1494 memset(ns, 0, sizeof(*ns)); 1495 for_each_cpu(cpu, cpumask_of_node(nid)) { 1496 struct rq *rq = cpu_rq(cpu); 1497 1498 ns->load += cpu_runnable_load(rq); 1499 ns->compute_capacity += capacity_of(cpu); 1500 } 1501 1502 } 1503 1504 struct task_numa_env { 1505 struct task_struct *p; 1506 1507 int src_cpu, src_nid; 1508 int dst_cpu, dst_nid; 1509 1510 struct numa_stats src_stats, dst_stats; 1511 1512 int imbalance_pct; 1513 int dist; 1514 1515 struct task_struct *best_task; 1516 long best_imp; 1517 int best_cpu; 1518 }; 1519 1520 static void task_numa_assign(struct task_numa_env *env, 1521 struct task_struct *p, long imp) 1522 { 1523 struct rq *rq = cpu_rq(env->dst_cpu); 1524 1525 /* Bail out if run-queue part of active NUMA balance. */ 1526 if (xchg(&rq->numa_migrate_on, 1)) 1527 return; 1528 1529 /* 1530 * Clear previous best_cpu/rq numa-migrate flag, since task now 1531 * found a better CPU to move/swap. 1532 */ 1533 if (env->best_cpu != -1) { 1534 rq = cpu_rq(env->best_cpu); 1535 WRITE_ONCE(rq->numa_migrate_on, 0); 1536 } 1537 1538 if (env->best_task) 1539 put_task_struct(env->best_task); 1540 if (p) 1541 get_task_struct(p); 1542 1543 env->best_task = p; 1544 env->best_imp = imp; 1545 env->best_cpu = env->dst_cpu; 1546 } 1547 1548 static bool load_too_imbalanced(long src_load, long dst_load, 1549 struct task_numa_env *env) 1550 { 1551 long imb, old_imb; 1552 long orig_src_load, orig_dst_load; 1553 long src_capacity, dst_capacity; 1554 1555 /* 1556 * The load is corrected for the CPU capacity available on each node. 1557 * 1558 * src_load dst_load 1559 * ------------ vs --------- 1560 * src_capacity dst_capacity 1561 */ 1562 src_capacity = env->src_stats.compute_capacity; 1563 dst_capacity = env->dst_stats.compute_capacity; 1564 1565 imb = abs(dst_load * src_capacity - src_load * dst_capacity); 1566 1567 orig_src_load = env->src_stats.load; 1568 orig_dst_load = env->dst_stats.load; 1569 1570 old_imb = abs(orig_dst_load * src_capacity - orig_src_load * dst_capacity); 1571 1572 /* Would this change make things worse? */ 1573 return (imb > old_imb); 1574 } 1575 1576 /* 1577 * Maximum NUMA importance can be 1998 (2*999); 1578 * SMALLIMP @ 30 would be close to 1998/64. 1579 * Used to deter task migration. 1580 */ 1581 #define SMALLIMP 30 1582 1583 /* 1584 * This checks if the overall compute and NUMA accesses of the system would 1585 * be improved if the source tasks was migrated to the target dst_cpu taking 1586 * into account that it might be best if task running on the dst_cpu should 1587 * be exchanged with the source task 1588 */ 1589 static void task_numa_compare(struct task_numa_env *env, 1590 long taskimp, long groupimp, bool maymove) 1591 { 1592 struct numa_group *cur_ng, *p_ng = deref_curr_numa_group(env->p); 1593 struct rq *dst_rq = cpu_rq(env->dst_cpu); 1594 long imp = p_ng ? groupimp : taskimp; 1595 struct task_struct *cur; 1596 long src_load, dst_load; 1597 int dist = env->dist; 1598 long moveimp = imp; 1599 long load; 1600 1601 if (READ_ONCE(dst_rq->numa_migrate_on)) 1602 return; 1603 1604 rcu_read_lock(); 1605 cur = rcu_dereference(dst_rq->curr); 1606 if (cur && ((cur->flags & PF_EXITING) || is_idle_task(cur))) 1607 cur = NULL; 1608 1609 /* 1610 * Because we have preemption enabled we can get migrated around and 1611 * end try selecting ourselves (current == env->p) as a swap candidate. 1612 */ 1613 if (cur == env->p) 1614 goto unlock; 1615 1616 if (!cur) { 1617 if (maymove && moveimp >= env->best_imp) 1618 goto assign; 1619 else 1620 goto unlock; 1621 } 1622 1623 /* 1624 * "imp" is the fault differential for the source task between the 1625 * source and destination node. Calculate the total differential for 1626 * the source task and potential destination task. The more negative 1627 * the value is, the more remote accesses that would be expected to 1628 * be incurred if the tasks were swapped. 1629 */ 1630 /* Skip this swap candidate if cannot move to the source cpu */ 1631 if (!cpumask_test_cpu(env->src_cpu, cur->cpus_ptr)) 1632 goto unlock; 1633 1634 /* 1635 * If dst and source tasks are in the same NUMA group, or not 1636 * in any group then look only at task weights. 1637 */ 1638 cur_ng = rcu_dereference(cur->numa_group); 1639 if (cur_ng == p_ng) { 1640 imp = taskimp + task_weight(cur, env->src_nid, dist) - 1641 task_weight(cur, env->dst_nid, dist); 1642 /* 1643 * Add some hysteresis to prevent swapping the 1644 * tasks within a group over tiny differences. 1645 */ 1646 if (cur_ng) 1647 imp -= imp / 16; 1648 } else { 1649 /* 1650 * Compare the group weights. If a task is all by itself 1651 * (not part of a group), use the task weight instead. 1652 */ 1653 if (cur_ng && p_ng) 1654 imp += group_weight(cur, env->src_nid, dist) - 1655 group_weight(cur, env->dst_nid, dist); 1656 else 1657 imp += task_weight(cur, env->src_nid, dist) - 1658 task_weight(cur, env->dst_nid, dist); 1659 } 1660 1661 if (maymove && moveimp > imp && moveimp > env->best_imp) { 1662 imp = moveimp; 1663 cur = NULL; 1664 goto assign; 1665 } 1666 1667 /* 1668 * If the NUMA importance is less than SMALLIMP, 1669 * task migration might only result in ping pong 1670 * of tasks and also hurt performance due to cache 1671 * misses. 1672 */ 1673 if (imp < SMALLIMP || imp <= env->best_imp + SMALLIMP / 2) 1674 goto unlock; 1675 1676 /* 1677 * In the overloaded case, try and keep the load balanced. 1678 */ 1679 load = task_h_load(env->p) - task_h_load(cur); 1680 if (!load) 1681 goto assign; 1682 1683 dst_load = env->dst_stats.load + load; 1684 src_load = env->src_stats.load - load; 1685 1686 if (load_too_imbalanced(src_load, dst_load, env)) 1687 goto unlock; 1688 1689 assign: 1690 /* 1691 * One idle CPU per node is evaluated for a task numa move. 1692 * Call select_idle_sibling to maybe find a better one. 1693 */ 1694 if (!cur) { 1695 /* 1696 * select_idle_siblings() uses an per-CPU cpumask that 1697 * can be used from IRQ context. 1698 */ 1699 local_irq_disable(); 1700 env->dst_cpu = select_idle_sibling(env->p, env->src_cpu, 1701 env->dst_cpu); 1702 local_irq_enable(); 1703 } 1704 1705 task_numa_assign(env, cur, imp); 1706 unlock: 1707 rcu_read_unlock(); 1708 } 1709 1710 static void task_numa_find_cpu(struct task_numa_env *env, 1711 long taskimp, long groupimp) 1712 { 1713 long src_load, dst_load, load; 1714 bool maymove = false; 1715 int cpu; 1716 1717 load = task_h_load(env->p); 1718 dst_load = env->dst_stats.load + load; 1719 src_load = env->src_stats.load - load; 1720 1721 /* 1722 * If the improvement from just moving env->p direction is better 1723 * than swapping tasks around, check if a move is possible. 1724 */ 1725 maymove = !load_too_imbalanced(src_load, dst_load, env); 1726 1727 for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) { 1728 /* Skip this CPU if the source task cannot migrate */ 1729 if (!cpumask_test_cpu(cpu, env->p->cpus_ptr)) 1730 continue; 1731 1732 env->dst_cpu = cpu; 1733 task_numa_compare(env, taskimp, groupimp, maymove); 1734 } 1735 } 1736 1737 static int task_numa_migrate(struct task_struct *p) 1738 { 1739 struct task_numa_env env = { 1740 .p = p, 1741 1742 .src_cpu = task_cpu(p), 1743 .src_nid = task_node(p), 1744 1745 .imbalance_pct = 112, 1746 1747 .best_task = NULL, 1748 .best_imp = 0, 1749 .best_cpu = -1, 1750 }; 1751 unsigned long taskweight, groupweight; 1752 struct sched_domain *sd; 1753 long taskimp, groupimp; 1754 struct numa_group *ng; 1755 struct rq *best_rq; 1756 int nid, ret, dist; 1757 1758 /* 1759 * Pick the lowest SD_NUMA domain, as that would have the smallest 1760 * imbalance and would be the first to start moving tasks about. 1761 * 1762 * And we want to avoid any moving of tasks about, as that would create 1763 * random movement of tasks -- counter the numa conditions we're trying 1764 * to satisfy here. 1765 */ 1766 rcu_read_lock(); 1767 sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu)); 1768 if (sd) 1769 env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2; 1770 rcu_read_unlock(); 1771 1772 /* 1773 * Cpusets can break the scheduler domain tree into smaller 1774 * balance domains, some of which do not cross NUMA boundaries. 1775 * Tasks that are "trapped" in such domains cannot be migrated 1776 * elsewhere, so there is no point in (re)trying. 1777 */ 1778 if (unlikely(!sd)) { 1779 sched_setnuma(p, task_node(p)); 1780 return -EINVAL; 1781 } 1782 1783 env.dst_nid = p->numa_preferred_nid; 1784 dist = env.dist = node_distance(env.src_nid, env.dst_nid); 1785 taskweight = task_weight(p, env.src_nid, dist); 1786 groupweight = group_weight(p, env.src_nid, dist); 1787 update_numa_stats(&env.src_stats, env.src_nid); 1788 taskimp = task_weight(p, env.dst_nid, dist) - taskweight; 1789 groupimp = group_weight(p, env.dst_nid, dist) - groupweight; 1790 update_numa_stats(&env.dst_stats, env.dst_nid); 1791 1792 /* Try to find a spot on the preferred nid. */ 1793 task_numa_find_cpu(&env, taskimp, groupimp); 1794 1795 /* 1796 * Look at other nodes in these cases: 1797 * - there is no space available on the preferred_nid 1798 * - the task is part of a numa_group that is interleaved across 1799 * multiple NUMA nodes; in order to better consolidate the group, 1800 * we need to check other locations. 1801 */ 1802 ng = deref_curr_numa_group(p); 1803 if (env.best_cpu == -1 || (ng && ng->active_nodes > 1)) { 1804 for_each_online_node(nid) { 1805 if (nid == env.src_nid || nid == p->numa_preferred_nid) 1806 continue; 1807 1808 dist = node_distance(env.src_nid, env.dst_nid); 1809 if (sched_numa_topology_type == NUMA_BACKPLANE && 1810 dist != env.dist) { 1811 taskweight = task_weight(p, env.src_nid, dist); 1812 groupweight = group_weight(p, env.src_nid, dist); 1813 } 1814 1815 /* Only consider nodes where both task and groups benefit */ 1816 taskimp = task_weight(p, nid, dist) - taskweight; 1817 groupimp = group_weight(p, nid, dist) - groupweight; 1818 if (taskimp < 0 && groupimp < 0) 1819 continue; 1820 1821 env.dist = dist; 1822 env.dst_nid = nid; 1823 update_numa_stats(&env.dst_stats, env.dst_nid); 1824 task_numa_find_cpu(&env, taskimp, groupimp); 1825 } 1826 } 1827 1828 /* 1829 * If the task is part of a workload that spans multiple NUMA nodes, 1830 * and is migrating into one of the workload's active nodes, remember 1831 * this node as the task's preferred numa node, so the workload can 1832 * settle down. 1833 * A task that migrated to a second choice node will be better off 1834 * trying for a better one later. Do not set the preferred node here. 1835 */ 1836 if (ng) { 1837 if (env.best_cpu == -1) 1838 nid = env.src_nid; 1839 else 1840 nid = cpu_to_node(env.best_cpu); 1841 1842 if (nid != p->numa_preferred_nid) 1843 sched_setnuma(p, nid); 1844 } 1845 1846 /* No better CPU than the current one was found. */ 1847 if (env.best_cpu == -1) 1848 return -EAGAIN; 1849 1850 best_rq = cpu_rq(env.best_cpu); 1851 if (env.best_task == NULL) { 1852 ret = migrate_task_to(p, env.best_cpu); 1853 WRITE_ONCE(best_rq->numa_migrate_on, 0); 1854 if (ret != 0) 1855 trace_sched_stick_numa(p, env.src_cpu, env.best_cpu); 1856 return ret; 1857 } 1858 1859 ret = migrate_swap(p, env.best_task, env.best_cpu, env.src_cpu); 1860 WRITE_ONCE(best_rq->numa_migrate_on, 0); 1861 1862 if (ret != 0) 1863 trace_sched_stick_numa(p, env.src_cpu, task_cpu(env.best_task)); 1864 put_task_struct(env.best_task); 1865 return ret; 1866 } 1867 1868 /* Attempt to migrate a task to a CPU on the preferred node. */ 1869 static void numa_migrate_preferred(struct task_struct *p) 1870 { 1871 unsigned long interval = HZ; 1872 1873 /* This task has no NUMA fault statistics yet */ 1874 if (unlikely(p->numa_preferred_nid == NUMA_NO_NODE || !p->numa_faults)) 1875 return; 1876 1877 /* Periodically retry migrating the task to the preferred node */ 1878 interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16); 1879 p->numa_migrate_retry = jiffies + interval; 1880 1881 /* Success if task is already running on preferred CPU */ 1882 if (task_node(p) == p->numa_preferred_nid) 1883 return; 1884 1885 /* Otherwise, try migrate to a CPU on the preferred node */ 1886 task_numa_migrate(p); 1887 } 1888 1889 /* 1890 * Find out how many nodes on the workload is actively running on. Do this by 1891 * tracking the nodes from which NUMA hinting faults are triggered. This can 1892 * be different from the set of nodes where the workload's memory is currently 1893 * located. 1894 */ 1895 static void numa_group_count_active_nodes(struct numa_group *numa_group) 1896 { 1897 unsigned long faults, max_faults = 0; 1898 int nid, active_nodes = 0; 1899 1900 for_each_online_node(nid) { 1901 faults = group_faults_cpu(numa_group, nid); 1902 if (faults > max_faults) 1903 max_faults = faults; 1904 } 1905 1906 for_each_online_node(nid) { 1907 faults = group_faults_cpu(numa_group, nid); 1908 if (faults * ACTIVE_NODE_FRACTION > max_faults) 1909 active_nodes++; 1910 } 1911 1912 numa_group->max_faults_cpu = max_faults; 1913 numa_group->active_nodes = active_nodes; 1914 } 1915 1916 /* 1917 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS 1918 * increments. The more local the fault statistics are, the higher the scan 1919 * period will be for the next scan window. If local/(local+remote) ratio is 1920 * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS) 1921 * the scan period will decrease. Aim for 70% local accesses. 1922 */ 1923 #define NUMA_PERIOD_SLOTS 10 1924 #define NUMA_PERIOD_THRESHOLD 7 1925 1926 /* 1927 * Increase the scan period (slow down scanning) if the majority of 1928 * our memory is already on our local node, or if the majority of 1929 * the page accesses are shared with other processes. 1930 * Otherwise, decrease the scan period. 1931 */ 1932 static void update_task_scan_period(struct task_struct *p, 1933 unsigned long shared, unsigned long private) 1934 { 1935 unsigned int period_slot; 1936 int lr_ratio, ps_ratio; 1937 int diff; 1938 1939 unsigned long remote = p->numa_faults_locality[0]; 1940 unsigned long local = p->numa_faults_locality[1]; 1941 1942 /* 1943 * If there were no record hinting faults then either the task is 1944 * completely idle or all activity is areas that are not of interest 1945 * to automatic numa balancing. Related to that, if there were failed 1946 * migration then it implies we are migrating too quickly or the local 1947 * node is overloaded. In either case, scan slower 1948 */ 1949 if (local + shared == 0 || p->numa_faults_locality[2]) { 1950 p->numa_scan_period = min(p->numa_scan_period_max, 1951 p->numa_scan_period << 1); 1952 1953 p->mm->numa_next_scan = jiffies + 1954 msecs_to_jiffies(p->numa_scan_period); 1955 1956 return; 1957 } 1958 1959 /* 1960 * Prepare to scale scan period relative to the current period. 1961 * == NUMA_PERIOD_THRESHOLD scan period stays the same 1962 * < NUMA_PERIOD_THRESHOLD scan period decreases (scan faster) 1963 * >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower) 1964 */ 1965 period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS); 1966 lr_ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote); 1967 ps_ratio = (private * NUMA_PERIOD_SLOTS) / (private + shared); 1968 1969 if (ps_ratio >= NUMA_PERIOD_THRESHOLD) { 1970 /* 1971 * Most memory accesses are local. There is no need to 1972 * do fast NUMA scanning, since memory is already local. 1973 */ 1974 int slot = ps_ratio - NUMA_PERIOD_THRESHOLD; 1975 if (!slot) 1976 slot = 1; 1977 diff = slot * period_slot; 1978 } else if (lr_ratio >= NUMA_PERIOD_THRESHOLD) { 1979 /* 1980 * Most memory accesses are shared with other tasks. 1981 * There is no point in continuing fast NUMA scanning, 1982 * since other tasks may just move the memory elsewhere. 1983 */ 1984 int slot = lr_ratio - NUMA_PERIOD_THRESHOLD; 1985 if (!slot) 1986 slot = 1; 1987 diff = slot * period_slot; 1988 } else { 1989 /* 1990 * Private memory faults exceed (SLOTS-THRESHOLD)/SLOTS, 1991 * yet they are not on the local NUMA node. Speed up 1992 * NUMA scanning to get the memory moved over. 1993 */ 1994 int ratio = max(lr_ratio, ps_ratio); 1995 diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot; 1996 } 1997 1998 p->numa_scan_period = clamp(p->numa_scan_period + diff, 1999 task_scan_min(p), task_scan_max(p)); 2000 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality)); 2001 } 2002 2003 /* 2004 * Get the fraction of time the task has been running since the last 2005 * NUMA placement cycle. The scheduler keeps similar statistics, but 2006 * decays those on a 32ms period, which is orders of magnitude off 2007 * from the dozens-of-seconds NUMA balancing period. Use the scheduler 2008 * stats only if the task is so new there are no NUMA statistics yet. 2009 */ 2010 static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period) 2011 { 2012 u64 runtime, delta, now; 2013 /* Use the start of this time slice to avoid calculations. */ 2014 now = p->se.exec_start; 2015 runtime = p->se.sum_exec_runtime; 2016 2017 if (p->last_task_numa_placement) { 2018 delta = runtime - p->last_sum_exec_runtime; 2019 *period = now - p->last_task_numa_placement; 2020 2021 /* Avoid time going backwards, prevent potential divide error: */ 2022 if (unlikely((s64)*period < 0)) 2023 *period = 0; 2024 } else { 2025 delta = p->se.avg.load_sum; 2026 *period = LOAD_AVG_MAX; 2027 } 2028 2029 p->last_sum_exec_runtime = runtime; 2030 p->last_task_numa_placement = now; 2031 2032 return delta; 2033 } 2034 2035 /* 2036 * Determine the preferred nid for a task in a numa_group. This needs to 2037 * be done in a way that produces consistent results with group_weight, 2038 * otherwise workloads might not converge. 2039 */ 2040 static int preferred_group_nid(struct task_struct *p, int nid) 2041 { 2042 nodemask_t nodes; 2043 int dist; 2044 2045 /* Direct connections between all NUMA nodes. */ 2046 if (sched_numa_topology_type == NUMA_DIRECT) 2047 return nid; 2048 2049 /* 2050 * On a system with glueless mesh NUMA topology, group_weight 2051 * scores nodes according to the number of NUMA hinting faults on 2052 * both the node itself, and on nearby nodes. 2053 */ 2054 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) { 2055 unsigned long score, max_score = 0; 2056 int node, max_node = nid; 2057 2058 dist = sched_max_numa_distance; 2059 2060 for_each_online_node(node) { 2061 score = group_weight(p, node, dist); 2062 if (score > max_score) { 2063 max_score = score; 2064 max_node = node; 2065 } 2066 } 2067 return max_node; 2068 } 2069 2070 /* 2071 * Finding the preferred nid in a system with NUMA backplane 2072 * interconnect topology is more involved. The goal is to locate 2073 * tasks from numa_groups near each other in the system, and 2074 * untangle workloads from different sides of the system. This requires 2075 * searching down the hierarchy of node groups, recursively searching 2076 * inside the highest scoring group of nodes. The nodemask tricks 2077 * keep the complexity of the search down. 2078 */ 2079 nodes = node_online_map; 2080 for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) { 2081 unsigned long max_faults = 0; 2082 nodemask_t max_group = NODE_MASK_NONE; 2083 int a, b; 2084 2085 /* Are there nodes at this distance from each other? */ 2086 if (!find_numa_distance(dist)) 2087 continue; 2088 2089 for_each_node_mask(a, nodes) { 2090 unsigned long faults = 0; 2091 nodemask_t this_group; 2092 nodes_clear(this_group); 2093 2094 /* Sum group's NUMA faults; includes a==b case. */ 2095 for_each_node_mask(b, nodes) { 2096 if (node_distance(a, b) < dist) { 2097 faults += group_faults(p, b); 2098 node_set(b, this_group); 2099 node_clear(b, nodes); 2100 } 2101 } 2102 2103 /* Remember the top group. */ 2104 if (faults > max_faults) { 2105 max_faults = faults; 2106 max_group = this_group; 2107 /* 2108 * subtle: at the smallest distance there is 2109 * just one node left in each "group", the 2110 * winner is the preferred nid. 2111 */ 2112 nid = a; 2113 } 2114 } 2115 /* Next round, evaluate the nodes within max_group. */ 2116 if (!max_faults) 2117 break; 2118 nodes = max_group; 2119 } 2120 return nid; 2121 } 2122 2123 static void task_numa_placement(struct task_struct *p) 2124 { 2125 int seq, nid, max_nid = NUMA_NO_NODE; 2126 unsigned long max_faults = 0; 2127 unsigned long fault_types[2] = { 0, 0 }; 2128 unsigned long total_faults; 2129 u64 runtime, period; 2130 spinlock_t *group_lock = NULL; 2131 struct numa_group *ng; 2132 2133 /* 2134 * The p->mm->numa_scan_seq field gets updated without 2135 * exclusive access. Use READ_ONCE() here to ensure 2136 * that the field is read in a single access: 2137 */ 2138 seq = READ_ONCE(p->mm->numa_scan_seq); 2139 if (p->numa_scan_seq == seq) 2140 return; 2141 p->numa_scan_seq = seq; 2142 p->numa_scan_period_max = task_scan_max(p); 2143 2144 total_faults = p->numa_faults_locality[0] + 2145 p->numa_faults_locality[1]; 2146 runtime = numa_get_avg_runtime(p, &period); 2147 2148 /* If the task is part of a group prevent parallel updates to group stats */ 2149 ng = deref_curr_numa_group(p); 2150 if (ng) { 2151 group_lock = &ng->lock; 2152 spin_lock_irq(group_lock); 2153 } 2154 2155 /* Find the node with the highest number of faults */ 2156 for_each_online_node(nid) { 2157 /* Keep track of the offsets in numa_faults array */ 2158 int mem_idx, membuf_idx, cpu_idx, cpubuf_idx; 2159 unsigned long faults = 0, group_faults = 0; 2160 int priv; 2161 2162 for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) { 2163 long diff, f_diff, f_weight; 2164 2165 mem_idx = task_faults_idx(NUMA_MEM, nid, priv); 2166 membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv); 2167 cpu_idx = task_faults_idx(NUMA_CPU, nid, priv); 2168 cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv); 2169 2170 /* Decay existing window, copy faults since last scan */ 2171 diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2; 2172 fault_types[priv] += p->numa_faults[membuf_idx]; 2173 p->numa_faults[membuf_idx] = 0; 2174 2175 /* 2176 * Normalize the faults_from, so all tasks in a group 2177 * count according to CPU use, instead of by the raw 2178 * number of faults. Tasks with little runtime have 2179 * little over-all impact on throughput, and thus their 2180 * faults are less important. 2181 */ 2182 f_weight = div64_u64(runtime << 16, period + 1); 2183 f_weight = (f_weight * p->numa_faults[cpubuf_idx]) / 2184 (total_faults + 1); 2185 f_diff = f_weight - p->numa_faults[cpu_idx] / 2; 2186 p->numa_faults[cpubuf_idx] = 0; 2187 2188 p->numa_faults[mem_idx] += diff; 2189 p->numa_faults[cpu_idx] += f_diff; 2190 faults += p->numa_faults[mem_idx]; 2191 p->total_numa_faults += diff; 2192 if (ng) { 2193 /* 2194 * safe because we can only change our own group 2195 * 2196 * mem_idx represents the offset for a given 2197 * nid and priv in a specific region because it 2198 * is at the beginning of the numa_faults array. 2199 */ 2200 ng->faults[mem_idx] += diff; 2201 ng->faults_cpu[mem_idx] += f_diff; 2202 ng->total_faults += diff; 2203 group_faults += ng->faults[mem_idx]; 2204 } 2205 } 2206 2207 if (!ng) { 2208 if (faults > max_faults) { 2209 max_faults = faults; 2210 max_nid = nid; 2211 } 2212 } else if (group_faults > max_faults) { 2213 max_faults = group_faults; 2214 max_nid = nid; 2215 } 2216 } 2217 2218 if (ng) { 2219 numa_group_count_active_nodes(ng); 2220 spin_unlock_irq(group_lock); 2221 max_nid = preferred_group_nid(p, max_nid); 2222 } 2223 2224 if (max_faults) { 2225 /* Set the new preferred node */ 2226 if (max_nid != p->numa_preferred_nid) 2227 sched_setnuma(p, max_nid); 2228 } 2229 2230 update_task_scan_period(p, fault_types[0], fault_types[1]); 2231 } 2232 2233 static inline int get_numa_group(struct numa_group *grp) 2234 { 2235 return refcount_inc_not_zero(&grp->refcount); 2236 } 2237 2238 static inline void put_numa_group(struct numa_group *grp) 2239 { 2240 if (refcount_dec_and_test(&grp->refcount)) 2241 kfree_rcu(grp, rcu); 2242 } 2243 2244 static void task_numa_group(struct task_struct *p, int cpupid, int flags, 2245 int *priv) 2246 { 2247 struct numa_group *grp, *my_grp; 2248 struct task_struct *tsk; 2249 bool join = false; 2250 int cpu = cpupid_to_cpu(cpupid); 2251 int i; 2252 2253 if (unlikely(!deref_curr_numa_group(p))) { 2254 unsigned int size = sizeof(struct numa_group) + 2255 4*nr_node_ids*sizeof(unsigned long); 2256 2257 grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN); 2258 if (!grp) 2259 return; 2260 2261 refcount_set(&grp->refcount, 1); 2262 grp->active_nodes = 1; 2263 grp->max_faults_cpu = 0; 2264 spin_lock_init(&grp->lock); 2265 grp->gid = p->pid; 2266 /* Second half of the array tracks nids where faults happen */ 2267 grp->faults_cpu = grp->faults + NR_NUMA_HINT_FAULT_TYPES * 2268 nr_node_ids; 2269 2270 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) 2271 grp->faults[i] = p->numa_faults[i]; 2272 2273 grp->total_faults = p->total_numa_faults; 2274 2275 grp->nr_tasks++; 2276 rcu_assign_pointer(p->numa_group, grp); 2277 } 2278 2279 rcu_read_lock(); 2280 tsk = READ_ONCE(cpu_rq(cpu)->curr); 2281 2282 if (!cpupid_match_pid(tsk, cpupid)) 2283 goto no_join; 2284 2285 grp = rcu_dereference(tsk->numa_group); 2286 if (!grp) 2287 goto no_join; 2288 2289 my_grp = deref_curr_numa_group(p); 2290 if (grp == my_grp) 2291 goto no_join; 2292 2293 /* 2294 * Only join the other group if its bigger; if we're the bigger group, 2295 * the other task will join us. 2296 */ 2297 if (my_grp->nr_tasks > grp->nr_tasks) 2298 goto no_join; 2299 2300 /* 2301 * Tie-break on the grp address. 2302 */ 2303 if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp) 2304 goto no_join; 2305 2306 /* Always join threads in the same process. */ 2307 if (tsk->mm == current->mm) 2308 join = true; 2309 2310 /* Simple filter to avoid false positives due to PID collisions */ 2311 if (flags & TNF_SHARED) 2312 join = true; 2313 2314 /* Update priv based on whether false sharing was detected */ 2315 *priv = !join; 2316 2317 if (join && !get_numa_group(grp)) 2318 goto no_join; 2319 2320 rcu_read_unlock(); 2321 2322 if (!join) 2323 return; 2324 2325 BUG_ON(irqs_disabled()); 2326 double_lock_irq(&my_grp->lock, &grp->lock); 2327 2328 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) { 2329 my_grp->faults[i] -= p->numa_faults[i]; 2330 grp->faults[i] += p->numa_faults[i]; 2331 } 2332 my_grp->total_faults -= p->total_numa_faults; 2333 grp->total_faults += p->total_numa_faults; 2334 2335 my_grp->nr_tasks--; 2336 grp->nr_tasks++; 2337 2338 spin_unlock(&my_grp->lock); 2339 spin_unlock_irq(&grp->lock); 2340 2341 rcu_assign_pointer(p->numa_group, grp); 2342 2343 put_numa_group(my_grp); 2344 return; 2345 2346 no_join: 2347 rcu_read_unlock(); 2348 return; 2349 } 2350 2351 /* 2352 * Get rid of NUMA staticstics associated with a task (either current or dead). 2353 * If @final is set, the task is dead and has reached refcount zero, so we can 2354 * safely free all relevant data structures. Otherwise, there might be 2355 * concurrent reads from places like load balancing and procfs, and we should 2356 * reset the data back to default state without freeing ->numa_faults. 2357 */ 2358 void task_numa_free(struct task_struct *p, bool final) 2359 { 2360 /* safe: p either is current or is being freed by current */ 2361 struct numa_group *grp = rcu_dereference_raw(p->numa_group); 2362 unsigned long *numa_faults = p->numa_faults; 2363 unsigned long flags; 2364 int i; 2365 2366 if (!numa_faults) 2367 return; 2368 2369 if (grp) { 2370 spin_lock_irqsave(&grp->lock, flags); 2371 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) 2372 grp->faults[i] -= p->numa_faults[i]; 2373 grp->total_faults -= p->total_numa_faults; 2374 2375 grp->nr_tasks--; 2376 spin_unlock_irqrestore(&grp->lock, flags); 2377 RCU_INIT_POINTER(p->numa_group, NULL); 2378 put_numa_group(grp); 2379 } 2380 2381 if (final) { 2382 p->numa_faults = NULL; 2383 kfree(numa_faults); 2384 } else { 2385 p->total_numa_faults = 0; 2386 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) 2387 numa_faults[i] = 0; 2388 } 2389 } 2390 2391 /* 2392 * Got a PROT_NONE fault for a page on @node. 2393 */ 2394 void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags) 2395 { 2396 struct task_struct *p = current; 2397 bool migrated = flags & TNF_MIGRATED; 2398 int cpu_node = task_node(current); 2399 int local = !!(flags & TNF_FAULT_LOCAL); 2400 struct numa_group *ng; 2401 int priv; 2402 2403 if (!static_branch_likely(&sched_numa_balancing)) 2404 return; 2405 2406 /* for example, ksmd faulting in a user's mm */ 2407 if (!p->mm) 2408 return; 2409 2410 /* Allocate buffer to track faults on a per-node basis */ 2411 if (unlikely(!p->numa_faults)) { 2412 int size = sizeof(*p->numa_faults) * 2413 NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids; 2414 2415 p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN); 2416 if (!p->numa_faults) 2417 return; 2418 2419 p->total_numa_faults = 0; 2420 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality)); 2421 } 2422 2423 /* 2424 * First accesses are treated as private, otherwise consider accesses 2425 * to be private if the accessing pid has not changed 2426 */ 2427 if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) { 2428 priv = 1; 2429 } else { 2430 priv = cpupid_match_pid(p, last_cpupid); 2431 if (!priv && !(flags & TNF_NO_GROUP)) 2432 task_numa_group(p, last_cpupid, flags, &priv); 2433 } 2434 2435 /* 2436 * If a workload spans multiple NUMA nodes, a shared fault that 2437 * occurs wholly within the set of nodes that the workload is 2438 * actively using should be counted as local. This allows the 2439 * scan rate to slow down when a workload has settled down. 2440 */ 2441 ng = deref_curr_numa_group(p); 2442 if (!priv && !local && ng && ng->active_nodes > 1 && 2443 numa_is_active_node(cpu_node, ng) && 2444 numa_is_active_node(mem_node, ng)) 2445 local = 1; 2446 2447 /* 2448 * Retry to migrate task to preferred node periodically, in case it 2449 * previously failed, or the scheduler moved us. 2450 */ 2451 if (time_after(jiffies, p->numa_migrate_retry)) { 2452 task_numa_placement(p); 2453 numa_migrate_preferred(p); 2454 } 2455 2456 if (migrated) 2457 p->numa_pages_migrated += pages; 2458 if (flags & TNF_MIGRATE_FAIL) 2459 p->numa_faults_locality[2] += pages; 2460 2461 p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages; 2462 p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages; 2463 p->numa_faults_locality[local] += pages; 2464 } 2465 2466 static void reset_ptenuma_scan(struct task_struct *p) 2467 { 2468 /* 2469 * We only did a read acquisition of the mmap sem, so 2470 * p->mm->numa_scan_seq is written to without exclusive access 2471 * and the update is not guaranteed to be atomic. That's not 2472 * much of an issue though, since this is just used for 2473 * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not 2474 * expensive, to avoid any form of compiler optimizations: 2475 */ 2476 WRITE_ONCE(p->mm->numa_scan_seq, READ_ONCE(p->mm->numa_scan_seq) + 1); 2477 p->mm->numa_scan_offset = 0; 2478 } 2479 2480 /* 2481 * The expensive part of numa migration is done from task_work context. 2482 * Triggered from task_tick_numa(). 2483 */ 2484 static void task_numa_work(struct callback_head *work) 2485 { 2486 unsigned long migrate, next_scan, now = jiffies; 2487 struct task_struct *p = current; 2488 struct mm_struct *mm = p->mm; 2489 u64 runtime = p->se.sum_exec_runtime; 2490 struct vm_area_struct *vma; 2491 unsigned long start, end; 2492 unsigned long nr_pte_updates = 0; 2493 long pages, virtpages; 2494 2495 SCHED_WARN_ON(p != container_of(work, struct task_struct, numa_work)); 2496 2497 work->next = work; 2498 /* 2499 * Who cares about NUMA placement when they're dying. 2500 * 2501 * NOTE: make sure not to dereference p->mm before this check, 2502 * exit_task_work() happens _after_ exit_mm() so we could be called 2503 * without p->mm even though we still had it when we enqueued this 2504 * work. 2505 */ 2506 if (p->flags & PF_EXITING) 2507 return; 2508 2509 if (!mm->numa_next_scan) { 2510 mm->numa_next_scan = now + 2511 msecs_to_jiffies(sysctl_numa_balancing_scan_delay); 2512 } 2513 2514 /* 2515 * Enforce maximal scan/migration frequency.. 2516 */ 2517 migrate = mm->numa_next_scan; 2518 if (time_before(now, migrate)) 2519 return; 2520 2521 if (p->numa_scan_period == 0) { 2522 p->numa_scan_period_max = task_scan_max(p); 2523 p->numa_scan_period = task_scan_start(p); 2524 } 2525 2526 next_scan = now + msecs_to_jiffies(p->numa_scan_period); 2527 if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate) 2528 return; 2529 2530 /* 2531 * Delay this task enough that another task of this mm will likely win 2532 * the next time around. 2533 */ 2534 p->node_stamp += 2 * TICK_NSEC; 2535 2536 start = mm->numa_scan_offset; 2537 pages = sysctl_numa_balancing_scan_size; 2538 pages <<= 20 - PAGE_SHIFT; /* MB in pages */ 2539 virtpages = pages * 8; /* Scan up to this much virtual space */ 2540 if (!pages) 2541 return; 2542 2543 2544 if (!down_read_trylock(&mm->mmap_sem)) 2545 return; 2546 vma = find_vma(mm, start); 2547 if (!vma) { 2548 reset_ptenuma_scan(p); 2549 start = 0; 2550 vma = mm->mmap; 2551 } 2552 for (; vma; vma = vma->vm_next) { 2553 if (!vma_migratable(vma) || !vma_policy_mof(vma) || 2554 is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_MIXEDMAP)) { 2555 continue; 2556 } 2557 2558 /* 2559 * Shared library pages mapped by multiple processes are not 2560 * migrated as it is expected they are cache replicated. Avoid 2561 * hinting faults in read-only file-backed mappings or the vdso 2562 * as migrating the pages will be of marginal benefit. 2563 */ 2564 if (!vma->vm_mm || 2565 (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ))) 2566 continue; 2567 2568 /* 2569 * Skip inaccessible VMAs to avoid any confusion between 2570 * PROT_NONE and NUMA hinting ptes 2571 */ 2572 if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE))) 2573 continue; 2574 2575 do { 2576 start = max(start, vma->vm_start); 2577 end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE); 2578 end = min(end, vma->vm_end); 2579 nr_pte_updates = change_prot_numa(vma, start, end); 2580 2581 /* 2582 * Try to scan sysctl_numa_balancing_size worth of 2583 * hpages that have at least one present PTE that 2584 * is not already pte-numa. If the VMA contains 2585 * areas that are unused or already full of prot_numa 2586 * PTEs, scan up to virtpages, to skip through those 2587 * areas faster. 2588 */ 2589 if (nr_pte_updates) 2590 pages -= (end - start) >> PAGE_SHIFT; 2591 virtpages -= (end - start) >> PAGE_SHIFT; 2592 2593 start = end; 2594 if (pages <= 0 || virtpages <= 0) 2595 goto out; 2596 2597 cond_resched(); 2598 } while (end != vma->vm_end); 2599 } 2600 2601 out: 2602 /* 2603 * It is possible to reach the end of the VMA list but the last few 2604 * VMAs are not guaranteed to the vma_migratable. If they are not, we 2605 * would find the !migratable VMA on the next scan but not reset the 2606 * scanner to the start so check it now. 2607 */ 2608 if (vma) 2609 mm->numa_scan_offset = start; 2610 else 2611 reset_ptenuma_scan(p); 2612 up_read(&mm->mmap_sem); 2613 2614 /* 2615 * Make sure tasks use at least 32x as much time to run other code 2616 * than they used here, to limit NUMA PTE scanning overhead to 3% max. 2617 * Usually update_task_scan_period slows down scanning enough; on an 2618 * overloaded system we need to limit overhead on a per task basis. 2619 */ 2620 if (unlikely(p->se.sum_exec_runtime != runtime)) { 2621 u64 diff = p->se.sum_exec_runtime - runtime; 2622 p->node_stamp += 32 * diff; 2623 } 2624 } 2625 2626 void init_numa_balancing(unsigned long clone_flags, struct task_struct *p) 2627 { 2628 int mm_users = 0; 2629 struct mm_struct *mm = p->mm; 2630 2631 if (mm) { 2632 mm_users = atomic_read(&mm->mm_users); 2633 if (mm_users == 1) { 2634 mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay); 2635 mm->numa_scan_seq = 0; 2636 } 2637 } 2638 p->node_stamp = 0; 2639 p->numa_scan_seq = mm ? mm->numa_scan_seq : 0; 2640 p->numa_scan_period = sysctl_numa_balancing_scan_delay; 2641 /* Protect against double add, see task_tick_numa and task_numa_work */ 2642 p->numa_work.next = &p->numa_work; 2643 p->numa_faults = NULL; 2644 RCU_INIT_POINTER(p->numa_group, NULL); 2645 p->last_task_numa_placement = 0; 2646 p->last_sum_exec_runtime = 0; 2647 2648 init_task_work(&p->numa_work, task_numa_work); 2649 2650 /* New address space, reset the preferred nid */ 2651 if (!(clone_flags & CLONE_VM)) { 2652 p->numa_preferred_nid = NUMA_NO_NODE; 2653 return; 2654 } 2655 2656 /* 2657 * New thread, keep existing numa_preferred_nid which should be copied 2658 * already by arch_dup_task_struct but stagger when scans start. 2659 */ 2660 if (mm) { 2661 unsigned int delay; 2662 2663 delay = min_t(unsigned int, task_scan_max(current), 2664 current->numa_scan_period * mm_users * NSEC_PER_MSEC); 2665 delay += 2 * TICK_NSEC; 2666 p->node_stamp = delay; 2667 } 2668 } 2669 2670 /* 2671 * Drive the periodic memory faults.. 2672 */ 2673 static void task_tick_numa(struct rq *rq, struct task_struct *curr) 2674 { 2675 struct callback_head *work = &curr->numa_work; 2676 u64 period, now; 2677 2678 /* 2679 * We don't care about NUMA placement if we don't have memory. 2680 */ 2681 if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work) 2682 return; 2683 2684 /* 2685 * Using runtime rather than walltime has the dual advantage that 2686 * we (mostly) drive the selection from busy threads and that the 2687 * task needs to have done some actual work before we bother with 2688 * NUMA placement. 2689 */ 2690 now = curr->se.sum_exec_runtime; 2691 period = (u64)curr->numa_scan_period * NSEC_PER_MSEC; 2692 2693 if (now > curr->node_stamp + period) { 2694 if (!curr->node_stamp) 2695 curr->numa_scan_period = task_scan_start(curr); 2696 curr->node_stamp += period; 2697 2698 if (!time_before(jiffies, curr->mm->numa_next_scan)) 2699 task_work_add(curr, work, true); 2700 } 2701 } 2702 2703 static void update_scan_period(struct task_struct *p, int new_cpu) 2704 { 2705 int src_nid = cpu_to_node(task_cpu(p)); 2706 int dst_nid = cpu_to_node(new_cpu); 2707 2708 if (!static_branch_likely(&sched_numa_balancing)) 2709 return; 2710 2711 if (!p->mm || !p->numa_faults || (p->flags & PF_EXITING)) 2712 return; 2713 2714 if (src_nid == dst_nid) 2715 return; 2716 2717 /* 2718 * Allow resets if faults have been trapped before one scan 2719 * has completed. This is most likely due to a new task that 2720 * is pulled cross-node due to wakeups or load balancing. 2721 */ 2722 if (p->numa_scan_seq) { 2723 /* 2724 * Avoid scan adjustments if moving to the preferred 2725 * node or if the task was not previously running on 2726 * the preferred node. 2727 */ 2728 if (dst_nid == p->numa_preferred_nid || 2729 (p->numa_preferred_nid != NUMA_NO_NODE && 2730 src_nid != p->numa_preferred_nid)) 2731 return; 2732 } 2733 2734 p->numa_scan_period = task_scan_start(p); 2735 } 2736 2737 #else 2738 static void task_tick_numa(struct rq *rq, struct task_struct *curr) 2739 { 2740 } 2741 2742 static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p) 2743 { 2744 } 2745 2746 static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p) 2747 { 2748 } 2749 2750 static inline void update_scan_period(struct task_struct *p, int new_cpu) 2751 { 2752 } 2753 2754 #endif /* CONFIG_NUMA_BALANCING */ 2755 2756 static void 2757 account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se) 2758 { 2759 update_load_add(&cfs_rq->load, se->load.weight); 2760 #ifdef CONFIG_SMP 2761 if (entity_is_task(se)) { 2762 struct rq *rq = rq_of(cfs_rq); 2763 2764 account_numa_enqueue(rq, task_of(se)); 2765 list_add(&se->group_node, &rq->cfs_tasks); 2766 } 2767 #endif 2768 cfs_rq->nr_running++; 2769 } 2770 2771 static void 2772 account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se) 2773 { 2774 update_load_sub(&cfs_rq->load, se->load.weight); 2775 #ifdef CONFIG_SMP 2776 if (entity_is_task(se)) { 2777 account_numa_dequeue(rq_of(cfs_rq), task_of(se)); 2778 list_del_init(&se->group_node); 2779 } 2780 #endif 2781 cfs_rq->nr_running--; 2782 } 2783 2784 /* 2785 * Signed add and clamp on underflow. 2786 * 2787 * Explicitly do a load-store to ensure the intermediate value never hits 2788 * memory. This allows lockless observations without ever seeing the negative 2789 * values. 2790 */ 2791 #define add_positive(_ptr, _val) do { \ 2792 typeof(_ptr) ptr = (_ptr); \ 2793 typeof(_val) val = (_val); \ 2794 typeof(*ptr) res, var = READ_ONCE(*ptr); \ 2795 \ 2796 res = var + val; \ 2797 \ 2798 if (val < 0 && res > var) \ 2799 res = 0; \ 2800 \ 2801 WRITE_ONCE(*ptr, res); \ 2802 } while (0) 2803 2804 /* 2805 * Unsigned subtract and clamp on underflow. 2806 * 2807 * Explicitly do a load-store to ensure the intermediate value never hits 2808 * memory. This allows lockless observations without ever seeing the negative 2809 * values. 2810 */ 2811 #define sub_positive(_ptr, _val) do { \ 2812 typeof(_ptr) ptr = (_ptr); \ 2813 typeof(*ptr) val = (_val); \ 2814 typeof(*ptr) res, var = READ_ONCE(*ptr); \ 2815 res = var - val; \ 2816 if (res > var) \ 2817 res = 0; \ 2818 WRITE_ONCE(*ptr, res); \ 2819 } while (0) 2820 2821 /* 2822 * Remove and clamp on negative, from a local variable. 2823 * 2824 * A variant of sub_positive(), which does not use explicit load-store 2825 * and is thus optimized for local variable updates. 2826 */ 2827 #define lsub_positive(_ptr, _val) do { \ 2828 typeof(_ptr) ptr = (_ptr); \ 2829 *ptr -= min_t(typeof(*ptr), *ptr, _val); \ 2830 } while (0) 2831 2832 #ifdef CONFIG_SMP 2833 static inline void 2834 enqueue_runnable_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) 2835 { 2836 cfs_rq->runnable_weight += se->runnable_weight; 2837 2838 cfs_rq->avg.runnable_load_avg += se->avg.runnable_load_avg; 2839 cfs_rq->avg.runnable_load_sum += se_runnable(se) * se->avg.runnable_load_sum; 2840 } 2841 2842 static inline void 2843 dequeue_runnable_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) 2844 { 2845 cfs_rq->runnable_weight -= se->runnable_weight; 2846 2847 sub_positive(&cfs_rq->avg.runnable_load_avg, se->avg.runnable_load_avg); 2848 sub_positive(&cfs_rq->avg.runnable_load_sum, 2849 se_runnable(se) * se->avg.runnable_load_sum); 2850 } 2851 2852 static inline void 2853 enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) 2854 { 2855 cfs_rq->avg.load_avg += se->avg.load_avg; 2856 cfs_rq->avg.load_sum += se_weight(se) * se->avg.load_sum; 2857 } 2858 2859 static inline void 2860 dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) 2861 { 2862 sub_positive(&cfs_rq->avg.load_avg, se->avg.load_avg); 2863 sub_positive(&cfs_rq->avg.load_sum, se_weight(se) * se->avg.load_sum); 2864 } 2865 #else 2866 static inline void 2867 enqueue_runnable_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { } 2868 static inline void 2869 dequeue_runnable_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { } 2870 static inline void 2871 enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { } 2872 static inline void 2873 dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { } 2874 #endif 2875 2876 static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, 2877 unsigned long weight, unsigned long runnable) 2878 { 2879 if (se->on_rq) { 2880 /* commit outstanding execution time */ 2881 if (cfs_rq->curr == se) 2882 update_curr(cfs_rq); 2883 account_entity_dequeue(cfs_rq, se); 2884 dequeue_runnable_load_avg(cfs_rq, se); 2885 } 2886 dequeue_load_avg(cfs_rq, se); 2887 2888 se->runnable_weight = runnable; 2889 update_load_set(&se->load, weight); 2890 2891 #ifdef CONFIG_SMP 2892 do { 2893 u32 divider = LOAD_AVG_MAX - 1024 + se->avg.period_contrib; 2894 2895 se->avg.load_avg = div_u64(se_weight(se) * se->avg.load_sum, divider); 2896 se->avg.runnable_load_avg = 2897 div_u64(se_runnable(se) * se->avg.runnable_load_sum, divider); 2898 } while (0); 2899 #endif 2900 2901 enqueue_load_avg(cfs_rq, se); 2902 if (se->on_rq) { 2903 account_entity_enqueue(cfs_rq, se); 2904 enqueue_runnable_load_avg(cfs_rq, se); 2905 } 2906 } 2907 2908 void reweight_task(struct task_struct *p, int prio) 2909 { 2910 struct sched_entity *se = &p->se; 2911 struct cfs_rq *cfs_rq = cfs_rq_of(se); 2912 struct load_weight *load = &se->load; 2913 unsigned long weight = scale_load(sched_prio_to_weight[prio]); 2914 2915 reweight_entity(cfs_rq, se, weight, weight); 2916 load->inv_weight = sched_prio_to_wmult[prio]; 2917 } 2918 2919 #ifdef CONFIG_FAIR_GROUP_SCHED 2920 #ifdef CONFIG_SMP 2921 /* 2922 * All this does is approximate the hierarchical proportion which includes that 2923 * global sum we all love to hate. 2924 * 2925 * That is, the weight of a group entity, is the proportional share of the 2926 * group weight based on the group runqueue weights. That is: 2927 * 2928 * tg->weight * grq->load.weight 2929 * ge->load.weight = ----------------------------- (1) 2930 * \Sum grq->load.weight 2931 * 2932 * Now, because computing that sum is prohibitively expensive to compute (been 2933 * there, done that) we approximate it with this average stuff. The average 2934 * moves slower and therefore the approximation is cheaper and more stable. 2935 * 2936 * So instead of the above, we substitute: 2937 * 2938 * grq->load.weight -> grq->avg.load_avg (2) 2939 * 2940 * which yields the following: 2941 * 2942 * tg->weight * grq->avg.load_avg 2943 * ge->load.weight = ------------------------------ (3) 2944 * tg->load_avg 2945 * 2946 * Where: tg->load_avg ~= \Sum grq->avg.load_avg 2947 * 2948 * That is shares_avg, and it is right (given the approximation (2)). 2949 * 2950 * The problem with it is that because the average is slow -- it was designed 2951 * to be exactly that of course -- this leads to transients in boundary 2952 * conditions. In specific, the case where the group was idle and we start the 2953 * one task. It takes time for our CPU's grq->avg.load_avg to build up, 2954 * yielding bad latency etc.. 2955 * 2956 * Now, in that special case (1) reduces to: 2957 * 2958 * tg->weight * grq->load.weight 2959 * ge->load.weight = ----------------------------- = tg->weight (4) 2960 * grp->load.weight 2961 * 2962 * That is, the sum collapses because all other CPUs are idle; the UP scenario. 2963 * 2964 * So what we do is modify our approximation (3) to approach (4) in the (near) 2965 * UP case, like: 2966 * 2967 * ge->load.weight = 2968 * 2969 * tg->weight * grq->load.weight 2970 * --------------------------------------------------- (5) 2971 * tg->load_avg - grq->avg.load_avg + grq->load.weight 2972 * 2973 * But because grq->load.weight can drop to 0, resulting in a divide by zero, 2974 * we need to use grq->avg.load_avg as its lower bound, which then gives: 2975 * 2976 * 2977 * tg->weight * grq->load.weight 2978 * ge->load.weight = ----------------------------- (6) 2979 * tg_load_avg' 2980 * 2981 * Where: 2982 * 2983 * tg_load_avg' = tg->load_avg - grq->avg.load_avg + 2984 * max(grq->load.weight, grq->avg.load_avg) 2985 * 2986 * And that is shares_weight and is icky. In the (near) UP case it approaches 2987 * (4) while in the normal case it approaches (3). It consistently 2988 * overestimates the ge->load.weight and therefore: 2989 * 2990 * \Sum ge->load.weight >= tg->weight 2991 * 2992 * hence icky! 2993 */ 2994 static long calc_group_shares(struct cfs_rq *cfs_rq) 2995 { 2996 long tg_weight, tg_shares, load, shares; 2997 struct task_group *tg = cfs_rq->tg; 2998 2999 tg_shares = READ_ONCE(tg->shares); 3000 3001 load = max(scale_load_down(cfs_rq->load.weight), cfs_rq->avg.load_avg); 3002 3003 tg_weight = atomic_long_read(&tg->load_avg); 3004 3005 /* Ensure tg_weight >= load */ 3006 tg_weight -= cfs_rq->tg_load_avg_contrib; 3007 tg_weight += load; 3008 3009 shares = (tg_shares * load); 3010 if (tg_weight) 3011 shares /= tg_weight; 3012 3013 /* 3014 * MIN_SHARES has to be unscaled here to support per-CPU partitioning 3015 * of a group with small tg->shares value. It is a floor value which is 3016 * assigned as a minimum load.weight to the sched_entity representing 3017 * the group on a CPU. 3018 * 3019 * E.g. on 64-bit for a group with tg->shares of scale_load(15)=15*1024 3020 * on an 8-core system with 8 tasks each runnable on one CPU shares has 3021 * to be 15*1024*1/8=1920 instead of scale_load(MIN_SHARES)=2*1024. In 3022 * case no task is runnable on a CPU MIN_SHARES=2 should be returned 3023 * instead of 0. 3024 */ 3025 return clamp_t(long, shares, MIN_SHARES, tg_shares); 3026 } 3027 3028 /* 3029 * This calculates the effective runnable weight for a group entity based on 3030 * the group entity weight calculated above. 3031 * 3032 * Because of the above approximation (2), our group entity weight is 3033 * an load_avg based ratio (3). This means that it includes blocked load and 3034 * does not represent the runnable weight. 3035 * 3036 * Approximate the group entity's runnable weight per ratio from the group 3037 * runqueue: 3038 * 3039 * grq->avg.runnable_load_avg 3040 * ge->runnable_weight = ge->load.weight * -------------------------- (7) 3041 * grq->avg.load_avg 3042 * 3043 * However, analogous to above, since the avg numbers are slow, this leads to 3044 * transients in the from-idle case. Instead we use: 3045 * 3046 * ge->runnable_weight = ge->load.weight * 3047 * 3048 * max(grq->avg.runnable_load_avg, grq->runnable_weight) 3049 * ----------------------------------------------------- (8) 3050 * max(grq->avg.load_avg, grq->load.weight) 3051 * 3052 * Where these max() serve both to use the 'instant' values to fix the slow 3053 * from-idle and avoid the /0 on to-idle, similar to (6). 3054 */ 3055 static long calc_group_runnable(struct cfs_rq *cfs_rq, long shares) 3056 { 3057 long runnable, load_avg; 3058 3059 load_avg = max(cfs_rq->avg.load_avg, 3060 scale_load_down(cfs_rq->load.weight)); 3061 3062 runnable = max(cfs_rq->avg.runnable_load_avg, 3063 scale_load_down(cfs_rq->runnable_weight)); 3064 3065 runnable *= shares; 3066 if (load_avg) 3067 runnable /= load_avg; 3068 3069 return clamp_t(long, runnable, MIN_SHARES, shares); 3070 } 3071 #endif /* CONFIG_SMP */ 3072 3073 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq); 3074 3075 /* 3076 * Recomputes the group entity based on the current state of its group 3077 * runqueue. 3078 */ 3079 static void update_cfs_group(struct sched_entity *se) 3080 { 3081 struct cfs_rq *gcfs_rq = group_cfs_rq(se); 3082 long shares, runnable; 3083 3084 if (!gcfs_rq) 3085 return; 3086 3087 if (throttled_hierarchy(gcfs_rq)) 3088 return; 3089 3090 #ifndef CONFIG_SMP 3091 runnable = shares = READ_ONCE(gcfs_rq->tg->shares); 3092 3093 if (likely(se->load.weight == shares)) 3094 return; 3095 #else 3096 shares = calc_group_shares(gcfs_rq); 3097 runnable = calc_group_runnable(gcfs_rq, shares); 3098 #endif 3099 3100 reweight_entity(cfs_rq_of(se), se, shares, runnable); 3101 } 3102 3103 #else /* CONFIG_FAIR_GROUP_SCHED */ 3104 static inline void update_cfs_group(struct sched_entity *se) 3105 { 3106 } 3107 #endif /* CONFIG_FAIR_GROUP_SCHED */ 3108 3109 static inline void cfs_rq_util_change(struct cfs_rq *cfs_rq, int flags) 3110 { 3111 struct rq *rq = rq_of(cfs_rq); 3112 3113 if (&rq->cfs == cfs_rq || (flags & SCHED_CPUFREQ_MIGRATION)) { 3114 /* 3115 * There are a few boundary cases this might miss but it should 3116 * get called often enough that that should (hopefully) not be 3117 * a real problem. 3118 * 3119 * It will not get called when we go idle, because the idle 3120 * thread is a different class (!fair), nor will the utilization 3121 * number include things like RT tasks. 3122 * 3123 * As is, the util number is not freq-invariant (we'd have to 3124 * implement arch_scale_freq_capacity() for that). 3125 * 3126 * See cpu_util(). 3127 */ 3128 cpufreq_update_util(rq, flags); 3129 } 3130 } 3131 3132 #ifdef CONFIG_SMP 3133 #ifdef CONFIG_FAIR_GROUP_SCHED 3134 /** 3135 * update_tg_load_avg - update the tg's load avg 3136 * @cfs_rq: the cfs_rq whose avg changed 3137 * @force: update regardless of how small the difference 3138 * 3139 * This function 'ensures': tg->load_avg := \Sum tg->cfs_rq[]->avg.load. 3140 * However, because tg->load_avg is a global value there are performance 3141 * considerations. 3142 * 3143 * In order to avoid having to look at the other cfs_rq's, we use a 3144 * differential update where we store the last value we propagated. This in 3145 * turn allows skipping updates if the differential is 'small'. 3146 * 3147 * Updating tg's load_avg is necessary before update_cfs_share(). 3148 */ 3149 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force) 3150 { 3151 long delta = cfs_rq->avg.load_avg - cfs_rq->tg_load_avg_contrib; 3152 3153 /* 3154 * No need to update load_avg for root_task_group as it is not used. 3155 */ 3156 if (cfs_rq->tg == &root_task_group) 3157 return; 3158 3159 if (force || abs(delta) > cfs_rq->tg_load_avg_contrib / 64) { 3160 atomic_long_add(delta, &cfs_rq->tg->load_avg); 3161 cfs_rq->tg_load_avg_contrib = cfs_rq->avg.load_avg; 3162 } 3163 } 3164 3165 /* 3166 * Called within set_task_rq() right before setting a task's CPU. The 3167 * caller only guarantees p->pi_lock is held; no other assumptions, 3168 * including the state of rq->lock, should be made. 3169 */ 3170 void set_task_rq_fair(struct sched_entity *se, 3171 struct cfs_rq *prev, struct cfs_rq *next) 3172 { 3173 u64 p_last_update_time; 3174 u64 n_last_update_time; 3175 3176 if (!sched_feat(ATTACH_AGE_LOAD)) 3177 return; 3178 3179 /* 3180 * We are supposed to update the task to "current" time, then its up to 3181 * date and ready to go to new CPU/cfs_rq. But we have difficulty in 3182 * getting what current time is, so simply throw away the out-of-date 3183 * time. This will result in the wakee task is less decayed, but giving 3184 * the wakee more load sounds not bad. 3185 */ 3186 if (!(se->avg.last_update_time && prev)) 3187 return; 3188 3189 #ifndef CONFIG_64BIT 3190 { 3191 u64 p_last_update_time_copy; 3192 u64 n_last_update_time_copy; 3193 3194 do { 3195 p_last_update_time_copy = prev->load_last_update_time_copy; 3196 n_last_update_time_copy = next->load_last_update_time_copy; 3197 3198 smp_rmb(); 3199 3200 p_last_update_time = prev->avg.last_update_time; 3201 n_last_update_time = next->avg.last_update_time; 3202 3203 } while (p_last_update_time != p_last_update_time_copy || 3204 n_last_update_time != n_last_update_time_copy); 3205 } 3206 #else 3207 p_last_update_time = prev->avg.last_update_time; 3208 n_last_update_time = next->avg.last_update_time; 3209 #endif 3210 __update_load_avg_blocked_se(p_last_update_time, se); 3211 se->avg.last_update_time = n_last_update_time; 3212 } 3213 3214 3215 /* 3216 * When on migration a sched_entity joins/leaves the PELT hierarchy, we need to 3217 * propagate its contribution. The key to this propagation is the invariant 3218 * that for each group: 3219 * 3220 * ge->avg == grq->avg (1) 3221 * 3222 * _IFF_ we look at the pure running and runnable sums. Because they 3223 * represent the very same entity, just at different points in the hierarchy. 3224 * 3225 * Per the above update_tg_cfs_util() is trivial and simply copies the running 3226 * sum over (but still wrong, because the group entity and group rq do not have 3227 * their PELT windows aligned). 3228 * 3229 * However, update_tg_cfs_runnable() is more complex. So we have: 3230 * 3231 * ge->avg.load_avg = ge->load.weight * ge->avg.runnable_avg (2) 3232 * 3233 * And since, like util, the runnable part should be directly transferable, 3234 * the following would _appear_ to be the straight forward approach: 3235 * 3236 * grq->avg.load_avg = grq->load.weight * grq->avg.runnable_avg (3) 3237 * 3238 * And per (1) we have: 3239 * 3240 * ge->avg.runnable_avg == grq->avg.runnable_avg 3241 * 3242 * Which gives: 3243 * 3244 * ge->load.weight * grq->avg.load_avg 3245 * ge->avg.load_avg = ----------------------------------- (4) 3246 * grq->load.weight 3247 * 3248 * Except that is wrong! 3249 * 3250 * Because while for entities historical weight is not important and we 3251 * really only care about our future and therefore can consider a pure 3252 * runnable sum, runqueues can NOT do this. 3253 * 3254 * We specifically want runqueues to have a load_avg that includes 3255 * historical weights. Those represent the blocked load, the load we expect 3256 * to (shortly) return to us. This only works by keeping the weights as 3257 * integral part of the sum. We therefore cannot decompose as per (3). 3258 * 3259 * Another reason this doesn't work is that runnable isn't a 0-sum entity. 3260 * Imagine a rq with 2 tasks that each are runnable 2/3 of the time. Then the 3261 * rq itself is runnable anywhere between 2/3 and 1 depending on how the 3262 * runnable section of these tasks overlap (or not). If they were to perfectly 3263 * align the rq as a whole would be runnable 2/3 of the time. If however we 3264 * always have at least 1 runnable task, the rq as a whole is always runnable. 3265 * 3266 * So we'll have to approximate.. :/ 3267 * 3268 * Given the constraint: 3269 * 3270 * ge->avg.running_sum <= ge->avg.runnable_sum <= LOAD_AVG_MAX 3271 * 3272 * We can construct a rule that adds runnable to a rq by assuming minimal 3273 * overlap. 3274 * 3275 * On removal, we'll assume each task is equally runnable; which yields: 3276 * 3277 * grq->avg.runnable_sum = grq->avg.load_sum / grq->load.weight 3278 * 3279 * XXX: only do this for the part of runnable > running ? 3280 * 3281 */ 3282 3283 static inline void 3284 update_tg_cfs_util(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq) 3285 { 3286 long delta = gcfs_rq->avg.util_avg - se->avg.util_avg; 3287 3288 /* Nothing to update */ 3289 if (!delta) 3290 return; 3291 3292 /* 3293 * The relation between sum and avg is: 3294 * 3295 * LOAD_AVG_MAX - 1024 + sa->period_contrib 3296 * 3297 * however, the PELT windows are not aligned between grq and gse. 3298 */ 3299 3300 /* Set new sched_entity's utilization */ 3301 se->avg.util_avg = gcfs_rq->avg.util_avg; 3302 se->avg.util_sum = se->avg.util_avg * LOAD_AVG_MAX; 3303 3304 /* Update parent cfs_rq utilization */ 3305 add_positive(&cfs_rq->avg.util_avg, delta); 3306 cfs_rq->avg.util_sum = cfs_rq->avg.util_avg * LOAD_AVG_MAX; 3307 } 3308 3309 static inline void 3310 update_tg_cfs_runnable(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq) 3311 { 3312 long delta_avg, running_sum, runnable_sum = gcfs_rq->prop_runnable_sum; 3313 unsigned long runnable_load_avg, load_avg; 3314 u64 runnable_load_sum, load_sum = 0; 3315 s64 delta_sum; 3316 3317 if (!runnable_sum) 3318 return; 3319 3320 gcfs_rq->prop_runnable_sum = 0; 3321 3322 if (runnable_sum >= 0) { 3323 /* 3324 * Add runnable; clip at LOAD_AVG_MAX. Reflects that until 3325 * the CPU is saturated running == runnable. 3326 */ 3327 runnable_sum += se->avg.load_sum; 3328 runnable_sum = min(runnable_sum, (long)LOAD_AVG_MAX); 3329 } else { 3330 /* 3331 * Estimate the new unweighted runnable_sum of the gcfs_rq by 3332 * assuming all tasks are equally runnable. 3333 */ 3334 if (scale_load_down(gcfs_rq->load.weight)) { 3335 load_sum = div_s64(gcfs_rq->avg.load_sum, 3336 scale_load_down(gcfs_rq->load.weight)); 3337 } 3338 3339 /* But make sure to not inflate se's runnable */ 3340 runnable_sum = min(se->avg.load_sum, load_sum); 3341 } 3342 3343 /* 3344 * runnable_sum can't be lower than running_sum 3345 * Rescale running sum to be in the same range as runnable sum 3346 * running_sum is in [0 : LOAD_AVG_MAX << SCHED_CAPACITY_SHIFT] 3347 * runnable_sum is in [0 : LOAD_AVG_MAX] 3348 */ 3349 running_sum = se->avg.util_sum >> SCHED_CAPACITY_SHIFT; 3350 runnable_sum = max(runnable_sum, running_sum); 3351 3352 load_sum = (s64)se_weight(se) * runnable_sum; 3353 load_avg = div_s64(load_sum, LOAD_AVG_MAX); 3354 3355 delta_sum = load_sum - (s64)se_weight(se) * se->avg.load_sum; 3356 delta_avg = load_avg - se->avg.load_avg; 3357 3358 se->avg.load_sum = runnable_sum; 3359 se->avg.load_avg = load_avg; 3360 add_positive(&cfs_rq->avg.load_avg, delta_avg); 3361 add_positive(&cfs_rq->avg.load_sum, delta_sum); 3362 3363 runnable_load_sum = (s64)se_runnable(se) * runnable_sum; 3364 runnable_load_avg = div_s64(runnable_load_sum, LOAD_AVG_MAX); 3365 delta_sum = runnable_load_sum - se_weight(se) * se->avg.runnable_load_sum; 3366 delta_avg = runnable_load_avg - se->avg.runnable_load_avg; 3367 3368 se->avg.runnable_load_sum = runnable_sum; 3369 se->avg.runnable_load_avg = runnable_load_avg; 3370 3371 if (se->on_rq) { 3372 add_positive(&cfs_rq->avg.runnable_load_avg, delta_avg); 3373 add_positive(&cfs_rq->avg.runnable_load_sum, delta_sum); 3374 } 3375 } 3376 3377 static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum) 3378 { 3379 cfs_rq->propagate = 1; 3380 cfs_rq->prop_runnable_sum += runnable_sum; 3381 } 3382 3383 /* Update task and its cfs_rq load average */ 3384 static inline int propagate_entity_load_avg(struct sched_entity *se) 3385 { 3386 struct cfs_rq *cfs_rq, *gcfs_rq; 3387 3388 if (entity_is_task(se)) 3389 return 0; 3390 3391 gcfs_rq = group_cfs_rq(se); 3392 if (!gcfs_rq->propagate) 3393 return 0; 3394 3395 gcfs_rq->propagate = 0; 3396 3397 cfs_rq = cfs_rq_of(se); 3398 3399 add_tg_cfs_propagate(cfs_rq, gcfs_rq->prop_runnable_sum); 3400 3401 update_tg_cfs_util(cfs_rq, se, gcfs_rq); 3402 update_tg_cfs_runnable(cfs_rq, se, gcfs_rq); 3403 3404 trace_pelt_cfs_tp(cfs_rq); 3405 trace_pelt_se_tp(se); 3406 3407 return 1; 3408 } 3409 3410 /* 3411 * Check if we need to update the load and the utilization of a blocked 3412 * group_entity: 3413 */ 3414 static inline bool skip_blocked_update(struct sched_entity *se) 3415 { 3416 struct cfs_rq *gcfs_rq = group_cfs_rq(se); 3417 3418 /* 3419 * If sched_entity still have not zero load or utilization, we have to 3420 * decay it: 3421 */ 3422 if (se->avg.load_avg || se->avg.util_avg) 3423 return false; 3424 3425 /* 3426 * If there is a pending propagation, we have to update the load and 3427 * the utilization of the sched_entity: 3428 */ 3429 if (gcfs_rq->propagate) 3430 return false; 3431 3432 /* 3433 * Otherwise, the load and the utilization of the sched_entity is 3434 * already zero and there is no pending propagation, so it will be a 3435 * waste of time to try to decay it: 3436 */ 3437 return true; 3438 } 3439 3440 #else /* CONFIG_FAIR_GROUP_SCHED */ 3441 3442 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force) {} 3443 3444 static inline int propagate_entity_load_avg(struct sched_entity *se) 3445 { 3446 return 0; 3447 } 3448 3449 static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum) {} 3450 3451 #endif /* CONFIG_FAIR_GROUP_SCHED */ 3452 3453 /** 3454 * update_cfs_rq_load_avg - update the cfs_rq's load/util averages 3455 * @now: current time, as per cfs_rq_clock_pelt() 3456 * @cfs_rq: cfs_rq to update 3457 * 3458 * The cfs_rq avg is the direct sum of all its entities (blocked and runnable) 3459 * avg. The immediate corollary is that all (fair) tasks must be attached, see 3460 * post_init_entity_util_avg(). 3461 * 3462 * cfs_rq->avg is used for task_h_load() and update_cfs_share() for example. 3463 * 3464 * Returns true if the load decayed or we removed load. 3465 * 3466 * Since both these conditions indicate a changed cfs_rq->avg.load we should 3467 * call update_tg_load_avg() when this function returns true. 3468 */ 3469 static inline int 3470 update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq) 3471 { 3472 unsigned long removed_load = 0, removed_util = 0, removed_runnable_sum = 0; 3473 struct sched_avg *sa = &cfs_rq->avg; 3474 int decayed = 0; 3475 3476 if (cfs_rq->removed.nr) { 3477 unsigned long r; 3478 u32 divider = LOAD_AVG_MAX - 1024 + sa->period_contrib; 3479 3480 raw_spin_lock(&cfs_rq->removed.lock); 3481 swap(cfs_rq->removed.util_avg, removed_util); 3482 swap(cfs_rq->removed.load_avg, removed_load); 3483 swap(cfs_rq->removed.runnable_sum, removed_runnable_sum); 3484 cfs_rq->removed.nr = 0; 3485 raw_spin_unlock(&cfs_rq->removed.lock); 3486 3487 r = removed_load; 3488 sub_positive(&sa->load_avg, r); 3489 sub_positive(&sa->load_sum, r * divider); 3490 3491 r = removed_util; 3492 sub_positive(&sa->util_avg, r); 3493 sub_positive(&sa->util_sum, r * divider); 3494 3495 add_tg_cfs_propagate(cfs_rq, -(long)removed_runnable_sum); 3496 3497 decayed = 1; 3498 } 3499 3500 decayed |= __update_load_avg_cfs_rq(now, cfs_rq); 3501 3502 #ifndef CONFIG_64BIT 3503 smp_wmb(); 3504 cfs_rq->load_last_update_time_copy = sa->last_update_time; 3505 #endif 3506 3507 if (decayed) 3508 cfs_rq_util_change(cfs_rq, 0); 3509 3510 return decayed; 3511 } 3512 3513 /** 3514 * attach_entity_load_avg - attach this entity to its cfs_rq load avg 3515 * @cfs_rq: cfs_rq to attach to 3516 * @se: sched_entity to attach 3517 * @flags: migration hints 3518 * 3519 * Must call update_cfs_rq_load_avg() before this, since we rely on 3520 * cfs_rq->avg.last_update_time being current. 3521 */ 3522 static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 3523 { 3524 u32 divider = LOAD_AVG_MAX - 1024 + cfs_rq->avg.period_contrib; 3525 3526 /* 3527 * When we attach the @se to the @cfs_rq, we must align the decay 3528 * window because without that, really weird and wonderful things can 3529 * happen. 3530 * 3531 * XXX illustrate 3532 */ 3533 se->avg.last_update_time = cfs_rq->avg.last_update_time; 3534 se->avg.period_contrib = cfs_rq->avg.period_contrib; 3535 3536 /* 3537 * Hell(o) Nasty stuff.. we need to recompute _sum based on the new 3538 * period_contrib. This isn't strictly correct, but since we're 3539 * entirely outside of the PELT hierarchy, nobody cares if we truncate 3540 * _sum a little. 3541 */ 3542 se->avg.util_sum = se->avg.util_avg * divider; 3543 3544 se->avg.load_sum = divider; 3545 if (se_weight(se)) { 3546 se->avg.load_sum = 3547 div_u64(se->avg.load_avg * se->avg.load_sum, se_weight(se)); 3548 } 3549 3550 se->avg.runnable_load_sum = se->avg.load_sum; 3551 3552 enqueue_load_avg(cfs_rq, se); 3553 cfs_rq->avg.util_avg += se->avg.util_avg; 3554 cfs_rq->avg.util_sum += se->avg.util_sum; 3555 3556 add_tg_cfs_propagate(cfs_rq, se->avg.load_sum); 3557 3558 cfs_rq_util_change(cfs_rq, flags); 3559 3560 trace_pelt_cfs_tp(cfs_rq); 3561 } 3562 3563 /** 3564 * detach_entity_load_avg - detach this entity from its cfs_rq load avg 3565 * @cfs_rq: cfs_rq to detach from 3566 * @se: sched_entity to detach 3567 * 3568 * Must call update_cfs_rq_load_avg() before this, since we rely on 3569 * cfs_rq->avg.last_update_time being current. 3570 */ 3571 static void detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) 3572 { 3573 dequeue_load_avg(cfs_rq, se); 3574 sub_positive(&cfs_rq->avg.util_avg, se->avg.util_avg); 3575 sub_positive(&cfs_rq->avg.util_sum, se->avg.util_sum); 3576 3577 add_tg_cfs_propagate(cfs_rq, -se->avg.load_sum); 3578 3579 cfs_rq_util_change(cfs_rq, 0); 3580 3581 trace_pelt_cfs_tp(cfs_rq); 3582 } 3583 3584 /* 3585 * Optional action to be done while updating the load average 3586 */ 3587 #define UPDATE_TG 0x1 3588 #define SKIP_AGE_LOAD 0x2 3589 #define DO_ATTACH 0x4 3590 3591 /* Update task and its cfs_rq load average */ 3592 static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 3593 { 3594 u64 now = cfs_rq_clock_pelt(cfs_rq); 3595 int decayed; 3596 3597 /* 3598 * Track task load average for carrying it to new CPU after migrated, and 3599 * track group sched_entity load average for task_h_load calc in migration 3600 */ 3601 if (se->avg.last_update_time && !(flags & SKIP_AGE_LOAD)) 3602 __update_load_avg_se(now, cfs_rq, se); 3603 3604 decayed = update_cfs_rq_load_avg(now, cfs_rq); 3605 decayed |= propagate_entity_load_avg(se); 3606 3607 if (!se->avg.last_update_time && (flags & DO_ATTACH)) { 3608 3609 /* 3610 * DO_ATTACH means we're here from enqueue_entity(). 3611 * !last_update_time means we've passed through 3612 * migrate_task_rq_fair() indicating we migrated. 3613 * 3614 * IOW we're enqueueing a task on a new CPU. 3615 */ 3616 attach_entity_load_avg(cfs_rq, se, SCHED_CPUFREQ_MIGRATION); 3617 update_tg_load_avg(cfs_rq, 0); 3618 3619 } else if (decayed && (flags & UPDATE_TG)) 3620 update_tg_load_avg(cfs_rq, 0); 3621 } 3622 3623 #ifndef CONFIG_64BIT 3624 static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq) 3625 { 3626 u64 last_update_time_copy; 3627 u64 last_update_time; 3628 3629 do { 3630 last_update_time_copy = cfs_rq->load_last_update_time_copy; 3631 smp_rmb(); 3632 last_update_time = cfs_rq->avg.last_update_time; 3633 } while (last_update_time != last_update_time_copy); 3634 3635 return last_update_time; 3636 } 3637 #else 3638 static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq) 3639 { 3640 return cfs_rq->avg.last_update_time; 3641 } 3642 #endif 3643 3644 /* 3645 * Synchronize entity load avg of dequeued entity without locking 3646 * the previous rq. 3647 */ 3648 static void sync_entity_load_avg(struct sched_entity *se) 3649 { 3650 struct cfs_rq *cfs_rq = cfs_rq_of(se); 3651 u64 last_update_time; 3652 3653 last_update_time = cfs_rq_last_update_time(cfs_rq); 3654 __update_load_avg_blocked_se(last_update_time, se); 3655 } 3656 3657 /* 3658 * Task first catches up with cfs_rq, and then subtract 3659 * itself from the cfs_rq (task must be off the queue now). 3660 */ 3661 static void remove_entity_load_avg(struct sched_entity *se) 3662 { 3663 struct cfs_rq *cfs_rq = cfs_rq_of(se); 3664 unsigned long flags; 3665 3666 /* 3667 * tasks cannot exit without having gone through wake_up_new_task() -> 3668 * post_init_entity_util_avg() which will have added things to the 3669 * cfs_rq, so we can remove unconditionally. 3670 */ 3671 3672 sync_entity_load_avg(se); 3673 3674 raw_spin_lock_irqsave(&cfs_rq->removed.lock, flags); 3675 ++cfs_rq->removed.nr; 3676 cfs_rq->removed.util_avg += se->avg.util_avg; 3677 cfs_rq->removed.load_avg += se->avg.load_avg; 3678 cfs_rq->removed.runnable_sum += se->avg.load_sum; /* == runnable_sum */ 3679 raw_spin_unlock_irqrestore(&cfs_rq->removed.lock, flags); 3680 } 3681 3682 static inline unsigned long cfs_rq_runnable_load_avg(struct cfs_rq *cfs_rq) 3683 { 3684 return cfs_rq->avg.runnable_load_avg; 3685 } 3686 3687 static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq) 3688 { 3689 return cfs_rq->avg.load_avg; 3690 } 3691 3692 static inline unsigned long task_util(struct task_struct *p) 3693 { 3694 return READ_ONCE(p->se.avg.util_avg); 3695 } 3696 3697 static inline unsigned long _task_util_est(struct task_struct *p) 3698 { 3699 struct util_est ue = READ_ONCE(p->se.avg.util_est); 3700 3701 return (max(ue.ewma, ue.enqueued) | UTIL_AVG_UNCHANGED); 3702 } 3703 3704 static inline unsigned long task_util_est(struct task_struct *p) 3705 { 3706 return max(task_util(p), _task_util_est(p)); 3707 } 3708 3709 static inline void util_est_enqueue(struct cfs_rq *cfs_rq, 3710 struct task_struct *p) 3711 { 3712 unsigned int enqueued; 3713 3714 if (!sched_feat(UTIL_EST)) 3715 return; 3716 3717 /* Update root cfs_rq's estimated utilization */ 3718 enqueued = cfs_rq->avg.util_est.enqueued; 3719 enqueued += _task_util_est(p); 3720 WRITE_ONCE(cfs_rq->avg.util_est.enqueued, enqueued); 3721 } 3722 3723 /* 3724 * Check if a (signed) value is within a specified (unsigned) margin, 3725 * based on the observation that: 3726 * 3727 * abs(x) < y := (unsigned)(x + y - 1) < (2 * y - 1) 3728 * 3729 * NOTE: this only works when value + maring < INT_MAX. 3730 */ 3731 static inline bool within_margin(int value, int margin) 3732 { 3733 return ((unsigned int)(value + margin - 1) < (2 * margin - 1)); 3734 } 3735 3736 static void 3737 util_est_dequeue(struct cfs_rq *cfs_rq, struct task_struct *p, bool task_sleep) 3738 { 3739 long last_ewma_diff; 3740 struct util_est ue; 3741 int cpu; 3742 3743 if (!sched_feat(UTIL_EST)) 3744 return; 3745 3746 /* Update root cfs_rq's estimated utilization */ 3747 ue.enqueued = cfs_rq->avg.util_est.enqueued; 3748 ue.enqueued -= min_t(unsigned int, ue.enqueued, _task_util_est(p)); 3749 WRITE_ONCE(cfs_rq->avg.util_est.enqueued, ue.enqueued); 3750 3751 /* 3752 * Skip update of task's estimated utilization when the task has not 3753 * yet completed an activation, e.g. being migrated. 3754 */ 3755 if (!task_sleep) 3756 return; 3757 3758 /* 3759 * If the PELT values haven't changed since enqueue time, 3760 * skip the util_est update. 3761 */ 3762 ue = p->se.avg.util_est; 3763 if (ue.enqueued & UTIL_AVG_UNCHANGED) 3764 return; 3765 3766 /* 3767 * Skip update of task's estimated utilization when its EWMA is 3768 * already ~1% close to its last activation value. 3769 */ 3770 ue.enqueued = (task_util(p) | UTIL_AVG_UNCHANGED); 3771 last_ewma_diff = ue.enqueued - ue.ewma; 3772 if (within_margin(last_ewma_diff, (SCHED_CAPACITY_SCALE / 100))) 3773 return; 3774 3775 /* 3776 * To avoid overestimation of actual task utilization, skip updates if 3777 * we cannot grant there is idle time in this CPU. 3778 */ 3779 cpu = cpu_of(rq_of(cfs_rq)); 3780 if (task_util(p) > capacity_orig_of(cpu)) 3781 return; 3782 3783 /* 3784 * Update Task's estimated utilization 3785 * 3786 * When *p completes an activation we can consolidate another sample 3787 * of the task size. This is done by storing the current PELT value 3788 * as ue.enqueued and by using this value to update the Exponential 3789 * Weighted Moving Average (EWMA): 3790 * 3791 * ewma(t) = w * task_util(p) + (1-w) * ewma(t-1) 3792 * = w * task_util(p) + ewma(t-1) - w * ewma(t-1) 3793 * = w * (task_util(p) - ewma(t-1)) + ewma(t-1) 3794 * = w * ( last_ewma_diff ) + ewma(t-1) 3795 * = w * (last_ewma_diff + ewma(t-1) / w) 3796 * 3797 * Where 'w' is the weight of new samples, which is configured to be 3798 * 0.25, thus making w=1/4 ( >>= UTIL_EST_WEIGHT_SHIFT) 3799 */ 3800 ue.ewma <<= UTIL_EST_WEIGHT_SHIFT; 3801 ue.ewma += last_ewma_diff; 3802 ue.ewma >>= UTIL_EST_WEIGHT_SHIFT; 3803 WRITE_ONCE(p->se.avg.util_est, ue); 3804 } 3805 3806 static inline int task_fits_capacity(struct task_struct *p, long capacity) 3807 { 3808 return fits_capacity(task_util_est(p), capacity); 3809 } 3810 3811 static inline void update_misfit_status(struct task_struct *p, struct rq *rq) 3812 { 3813 if (!static_branch_unlikely(&sched_asym_cpucapacity)) 3814 return; 3815 3816 if (!p) { 3817 rq->misfit_task_load = 0; 3818 return; 3819 } 3820 3821 if (task_fits_capacity(p, capacity_of(cpu_of(rq)))) { 3822 rq->misfit_task_load = 0; 3823 return; 3824 } 3825 3826 rq->misfit_task_load = task_h_load(p); 3827 } 3828 3829 #else /* CONFIG_SMP */ 3830 3831 #define UPDATE_TG 0x0 3832 #define SKIP_AGE_LOAD 0x0 3833 #define DO_ATTACH 0x0 3834 3835 static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int not_used1) 3836 { 3837 cfs_rq_util_change(cfs_rq, 0); 3838 } 3839 3840 static inline void remove_entity_load_avg(struct sched_entity *se) {} 3841 3842 static inline void 3843 attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) {} 3844 static inline void 3845 detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {} 3846 3847 static inline int idle_balance(struct rq *rq, struct rq_flags *rf) 3848 { 3849 return 0; 3850 } 3851 3852 static inline void 3853 util_est_enqueue(struct cfs_rq *cfs_rq, struct task_struct *p) {} 3854 3855 static inline void 3856 util_est_dequeue(struct cfs_rq *cfs_rq, struct task_struct *p, 3857 bool task_sleep) {} 3858 static inline void update_misfit_status(struct task_struct *p, struct rq *rq) {} 3859 3860 #endif /* CONFIG_SMP */ 3861 3862 static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se) 3863 { 3864 #ifdef CONFIG_SCHED_DEBUG 3865 s64 d = se->vruntime - cfs_rq->min_vruntime; 3866 3867 if (d < 0) 3868 d = -d; 3869 3870 if (d > 3*sysctl_sched_latency) 3871 schedstat_inc(cfs_rq->nr_spread_over); 3872 #endif 3873 } 3874 3875 static void 3876 place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial) 3877 { 3878 u64 vruntime = cfs_rq->min_vruntime; 3879 3880 /* 3881 * The 'current' period is already promised to the current tasks, 3882 * however the extra weight of the new task will slow them down a 3883 * little, place the new task so that it fits in the slot that 3884 * stays open at the end. 3885 */ 3886 if (initial && sched_feat(START_DEBIT)) 3887 vruntime += sched_vslice(cfs_rq, se); 3888 3889 /* sleeps up to a single latency don't count. */ 3890 if (!initial) { 3891 unsigned long thresh = sysctl_sched_latency; 3892 3893 /* 3894 * Halve their sleep time's effect, to allow 3895 * for a gentler effect of sleepers: 3896 */ 3897 if (sched_feat(GENTLE_FAIR_SLEEPERS)) 3898 thresh >>= 1; 3899 3900 vruntime -= thresh; 3901 } 3902 3903 /* ensure we never gain time by being placed backwards. */ 3904 se->vruntime = max_vruntime(se->vruntime, vruntime); 3905 } 3906 3907 static void check_enqueue_throttle(struct cfs_rq *cfs_rq); 3908 3909 static inline void check_schedstat_required(void) 3910 { 3911 #ifdef CONFIG_SCHEDSTATS 3912 if (schedstat_enabled()) 3913 return; 3914 3915 /* Force schedstat enabled if a dependent tracepoint is active */ 3916 if (trace_sched_stat_wait_enabled() || 3917 trace_sched_stat_sleep_enabled() || 3918 trace_sched_stat_iowait_enabled() || 3919 trace_sched_stat_blocked_enabled() || 3920 trace_sched_stat_runtime_enabled()) { 3921 printk_deferred_once("Scheduler tracepoints stat_sleep, stat_iowait, " 3922 "stat_blocked and stat_runtime require the " 3923 "kernel parameter schedstats=enable or " 3924 "kernel.sched_schedstats=1\n"); 3925 } 3926 #endif 3927 } 3928 3929 3930 /* 3931 * MIGRATION 3932 * 3933 * dequeue 3934 * update_curr() 3935 * update_min_vruntime() 3936 * vruntime -= min_vruntime 3937 * 3938 * enqueue 3939 * update_curr() 3940 * update_min_vruntime() 3941 * vruntime += min_vruntime 3942 * 3943 * this way the vruntime transition between RQs is done when both 3944 * min_vruntime are up-to-date. 3945 * 3946 * WAKEUP (remote) 3947 * 3948 * ->migrate_task_rq_fair() (p->state == TASK_WAKING) 3949 * vruntime -= min_vruntime 3950 * 3951 * enqueue 3952 * update_curr() 3953 * update_min_vruntime() 3954 * vruntime += min_vruntime 3955 * 3956 * this way we don't have the most up-to-date min_vruntime on the originating 3957 * CPU and an up-to-date min_vruntime on the destination CPU. 3958 */ 3959 3960 static void 3961 enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 3962 { 3963 bool renorm = !(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_MIGRATED); 3964 bool curr = cfs_rq->curr == se; 3965 3966 /* 3967 * If we're the current task, we must renormalise before calling 3968 * update_curr(). 3969 */ 3970 if (renorm && curr) 3971 se->vruntime += cfs_rq->min_vruntime; 3972 3973 update_curr(cfs_rq); 3974 3975 /* 3976 * Otherwise, renormalise after, such that we're placed at the current 3977 * moment in time, instead of some random moment in the past. Being 3978 * placed in the past could significantly boost this task to the 3979 * fairness detriment of existing tasks. 3980 */ 3981 if (renorm && !curr) 3982 se->vruntime += cfs_rq->min_vruntime; 3983 3984 /* 3985 * When enqueuing a sched_entity, we must: 3986 * - Update loads to have both entity and cfs_rq synced with now. 3987 * - Add its load to cfs_rq->runnable_avg 3988 * - For group_entity, update its weight to reflect the new share of 3989 * its group cfs_rq 3990 * - Add its new weight to cfs_rq->load.weight 3991 */ 3992 update_load_avg(cfs_rq, se, UPDATE_TG | DO_ATTACH); 3993 update_cfs_group(se); 3994 enqueue_runnable_load_avg(cfs_rq, se); 3995 account_entity_enqueue(cfs_rq, se); 3996 3997 if (flags & ENQUEUE_WAKEUP) 3998 place_entity(cfs_rq, se, 0); 3999 4000 check_schedstat_required(); 4001 update_stats_enqueue(cfs_rq, se, flags); 4002 check_spread(cfs_rq, se); 4003 if (!curr) 4004 __enqueue_entity(cfs_rq, se); 4005 se->on_rq = 1; 4006 4007 if (cfs_rq->nr_running == 1) { 4008 list_add_leaf_cfs_rq(cfs_rq); 4009 check_enqueue_throttle(cfs_rq); 4010 } 4011 } 4012 4013 static void __clear_buddies_last(struct sched_entity *se) 4014 { 4015 for_each_sched_entity(se) { 4016 struct cfs_rq *cfs_rq = cfs_rq_of(se); 4017 if (cfs_rq->last != se) 4018 break; 4019 4020 cfs_rq->last = NULL; 4021 } 4022 } 4023 4024 static void __clear_buddies_next(struct sched_entity *se) 4025 { 4026 for_each_sched_entity(se) { 4027 struct cfs_rq *cfs_rq = cfs_rq_of(se); 4028 if (cfs_rq->next != se) 4029 break; 4030 4031 cfs_rq->next = NULL; 4032 } 4033 } 4034 4035 static void __clear_buddies_skip(struct sched_entity *se) 4036 { 4037 for_each_sched_entity(se) { 4038 struct cfs_rq *cfs_rq = cfs_rq_of(se); 4039 if (cfs_rq->skip != se) 4040 break; 4041 4042 cfs_rq->skip = NULL; 4043 } 4044 } 4045 4046 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se) 4047 { 4048 if (cfs_rq->last == se) 4049 __clear_buddies_last(se); 4050 4051 if (cfs_rq->next == se) 4052 __clear_buddies_next(se); 4053 4054 if (cfs_rq->skip == se) 4055 __clear_buddies_skip(se); 4056 } 4057 4058 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq); 4059 4060 static void 4061 dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 4062 { 4063 /* 4064 * Update run-time statistics of the 'current'. 4065 */ 4066 update_curr(cfs_rq); 4067 4068 /* 4069 * When dequeuing a sched_entity, we must: 4070 * - Update loads to have both entity and cfs_rq synced with now. 4071 * - Subtract its load from the cfs_rq->runnable_avg. 4072 * - Subtract its previous weight from cfs_rq->load.weight. 4073 * - For group entity, update its weight to reflect the new share 4074 * of its group cfs_rq. 4075 */ 4076 update_load_avg(cfs_rq, se, UPDATE_TG); 4077 dequeue_runnable_load_avg(cfs_rq, se); 4078 4079 update_stats_dequeue(cfs_rq, se, flags); 4080 4081 clear_buddies(cfs_rq, se); 4082 4083 if (se != cfs_rq->curr) 4084 __dequeue_entity(cfs_rq, se); 4085 se->on_rq = 0; 4086 account_entity_dequeue(cfs_rq, se); 4087 4088 /* 4089 * Normalize after update_curr(); which will also have moved 4090 * min_vruntime if @se is the one holding it back. But before doing 4091 * update_min_vruntime() again, which will discount @se's position and 4092 * can move min_vruntime forward still more. 4093 */ 4094 if (!(flags & DEQUEUE_SLEEP)) 4095 se->vruntime -= cfs_rq->min_vruntime; 4096 4097 /* return excess runtime on last dequeue */ 4098 return_cfs_rq_runtime(cfs_rq); 4099 4100 update_cfs_group(se); 4101 4102 /* 4103 * Now advance min_vruntime if @se was the entity holding it back, 4104 * except when: DEQUEUE_SAVE && !DEQUEUE_MOVE, in this case we'll be 4105 * put back on, and if we advance min_vruntime, we'll be placed back 4106 * further than we started -- ie. we'll be penalized. 4107 */ 4108 if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) != DEQUEUE_SAVE) 4109 update_min_vruntime(cfs_rq); 4110 } 4111 4112 /* 4113 * Preempt the current task with a newly woken task if needed: 4114 */ 4115 static void 4116 check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr) 4117 { 4118 unsigned long ideal_runtime, delta_exec; 4119 struct sched_entity *se; 4120 s64 delta; 4121 4122 ideal_runtime = sched_slice(cfs_rq, curr); 4123 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime; 4124 if (delta_exec > ideal_runtime) { 4125 resched_curr(rq_of(cfs_rq)); 4126 /* 4127 * The current task ran long enough, ensure it doesn't get 4128 * re-elected due to buddy favours. 4129 */ 4130 clear_buddies(cfs_rq, curr); 4131 return; 4132 } 4133 4134 /* 4135 * Ensure that a task that missed wakeup preemption by a 4136 * narrow margin doesn't have to wait for a full slice. 4137 * This also mitigates buddy induced latencies under load. 4138 */ 4139 if (delta_exec < sysctl_sched_min_granularity) 4140 return; 4141 4142 se = __pick_first_entity(cfs_rq); 4143 delta = curr->vruntime - se->vruntime; 4144 4145 if (delta < 0) 4146 return; 4147 4148 if (delta > ideal_runtime) 4149 resched_curr(rq_of(cfs_rq)); 4150 } 4151 4152 static void 4153 set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) 4154 { 4155 /* 'current' is not kept within the tree. */ 4156 if (se->on_rq) { 4157 /* 4158 * Any task has to be enqueued before it get to execute on 4159 * a CPU. So account for the time it spent waiting on the 4160 * runqueue. 4161 */ 4162 update_stats_wait_end(cfs_rq, se); 4163 __dequeue_entity(cfs_rq, se); 4164 update_load_avg(cfs_rq, se, UPDATE_TG); 4165 } 4166 4167 update_stats_curr_start(cfs_rq, se); 4168 cfs_rq->curr = se; 4169 4170 /* 4171 * Track our maximum slice length, if the CPU's load is at 4172 * least twice that of our own weight (i.e. dont track it 4173 * when there are only lesser-weight tasks around): 4174 */ 4175 if (schedstat_enabled() && 4176 rq_of(cfs_rq)->cfs.load.weight >= 2*se->load.weight) { 4177 schedstat_set(se->statistics.slice_max, 4178 max((u64)schedstat_val(se->statistics.slice_max), 4179 se->sum_exec_runtime - se->prev_sum_exec_runtime)); 4180 } 4181 4182 se->prev_sum_exec_runtime = se->sum_exec_runtime; 4183 } 4184 4185 static int 4186 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se); 4187 4188 /* 4189 * Pick the next process, keeping these things in mind, in this order: 4190 * 1) keep things fair between processes/task groups 4191 * 2) pick the "next" process, since someone really wants that to run 4192 * 3) pick the "last" process, for cache locality 4193 * 4) do not run the "skip" process, if something else is available 4194 */ 4195 static struct sched_entity * 4196 pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr) 4197 { 4198 struct sched_entity *left = __pick_first_entity(cfs_rq); 4199 struct sched_entity *se; 4200 4201 /* 4202 * If curr is set we have to see if its left of the leftmost entity 4203 * still in the tree, provided there was anything in the tree at all. 4204 */ 4205 if (!left || (curr && entity_before(curr, left))) 4206 left = curr; 4207 4208 se = left; /* ideally we run the leftmost entity */ 4209 4210 /* 4211 * Avoid running the skip buddy, if running something else can 4212 * be done without getting too unfair. 4213 */ 4214 if (cfs_rq->skip == se) { 4215 struct sched_entity *second; 4216 4217 if (se == curr) { 4218 second = __pick_first_entity(cfs_rq); 4219 } else { 4220 second = __pick_next_entity(se); 4221 if (!second || (curr && entity_before(curr, second))) 4222 second = curr; 4223 } 4224 4225 if (second && wakeup_preempt_entity(second, left) < 1) 4226 se = second; 4227 } 4228 4229 /* 4230 * Prefer last buddy, try to return the CPU to a preempted task. 4231 */ 4232 if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1) 4233 se = cfs_rq->last; 4234 4235 /* 4236 * Someone really wants this to run. If it's not unfair, run it. 4237 */ 4238 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1) 4239 se = cfs_rq->next; 4240 4241 clear_buddies(cfs_rq, se); 4242 4243 return se; 4244 } 4245 4246 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq); 4247 4248 static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev) 4249 { 4250 /* 4251 * If still on the runqueue then deactivate_task() 4252 * was not called and update_curr() has to be done: 4253 */ 4254 if (prev->on_rq) 4255 update_curr(cfs_rq); 4256 4257 /* throttle cfs_rqs exceeding runtime */ 4258 check_cfs_rq_runtime(cfs_rq); 4259 4260 check_spread(cfs_rq, prev); 4261 4262 if (prev->on_rq) { 4263 update_stats_wait_start(cfs_rq, prev); 4264 /* Put 'current' back into the tree. */ 4265 __enqueue_entity(cfs_rq, prev); 4266 /* in !on_rq case, update occurred at dequeue */ 4267 update_load_avg(cfs_rq, prev, 0); 4268 } 4269 cfs_rq->curr = NULL; 4270 } 4271 4272 static void 4273 entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued) 4274 { 4275 /* 4276 * Update run-time statistics of the 'current'. 4277 */ 4278 update_curr(cfs_rq); 4279 4280 /* 4281 * Ensure that runnable average is periodically updated. 4282 */ 4283 update_load_avg(cfs_rq, curr, UPDATE_TG); 4284 update_cfs_group(curr); 4285 4286 #ifdef CONFIG_SCHED_HRTICK 4287 /* 4288 * queued ticks are scheduled to match the slice, so don't bother 4289 * validating it and just reschedule. 4290 */ 4291 if (queued) { 4292 resched_curr(rq_of(cfs_rq)); 4293 return; 4294 } 4295 /* 4296 * don't let the period tick interfere with the hrtick preemption 4297 */ 4298 if (!sched_feat(DOUBLE_TICK) && 4299 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer)) 4300 return; 4301 #endif 4302 4303 if (cfs_rq->nr_running > 1) 4304 check_preempt_tick(cfs_rq, curr); 4305 } 4306 4307 4308 /************************************************** 4309 * CFS bandwidth control machinery 4310 */ 4311 4312 #ifdef CONFIG_CFS_BANDWIDTH 4313 4314 #ifdef CONFIG_JUMP_LABEL 4315 static struct static_key __cfs_bandwidth_used; 4316 4317 static inline bool cfs_bandwidth_used(void) 4318 { 4319 return static_key_false(&__cfs_bandwidth_used); 4320 } 4321 4322 void cfs_bandwidth_usage_inc(void) 4323 { 4324 static_key_slow_inc_cpuslocked(&__cfs_bandwidth_used); 4325 } 4326 4327 void cfs_bandwidth_usage_dec(void) 4328 { 4329 static_key_slow_dec_cpuslocked(&__cfs_bandwidth_used); 4330 } 4331 #else /* CONFIG_JUMP_LABEL */ 4332 static bool cfs_bandwidth_used(void) 4333 { 4334 return true; 4335 } 4336 4337 void cfs_bandwidth_usage_inc(void) {} 4338 void cfs_bandwidth_usage_dec(void) {} 4339 #endif /* CONFIG_JUMP_LABEL */ 4340 4341 /* 4342 * default period for cfs group bandwidth. 4343 * default: 0.1s, units: nanoseconds 4344 */ 4345 static inline u64 default_cfs_period(void) 4346 { 4347 return 100000000ULL; 4348 } 4349 4350 static inline u64 sched_cfs_bandwidth_slice(void) 4351 { 4352 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC; 4353 } 4354 4355 /* 4356 * Replenish runtime according to assigned quota. We use sched_clock_cpu 4357 * directly instead of rq->clock to avoid adding additional synchronization 4358 * around rq->lock. 4359 * 4360 * requires cfs_b->lock 4361 */ 4362 void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b) 4363 { 4364 if (cfs_b->quota != RUNTIME_INF) 4365 cfs_b->runtime = cfs_b->quota; 4366 } 4367 4368 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg) 4369 { 4370 return &tg->cfs_bandwidth; 4371 } 4372 4373 /* returns 0 on failure to allocate runtime */ 4374 static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq) 4375 { 4376 struct task_group *tg = cfs_rq->tg; 4377 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg); 4378 u64 amount = 0, min_amount; 4379 4380 /* note: this is a positive sum as runtime_remaining <= 0 */ 4381 min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining; 4382 4383 raw_spin_lock(&cfs_b->lock); 4384 if (cfs_b->quota == RUNTIME_INF) 4385 amount = min_amount; 4386 else { 4387 start_cfs_bandwidth(cfs_b); 4388 4389 if (cfs_b->runtime > 0) { 4390 amount = min(cfs_b->runtime, min_amount); 4391 cfs_b->runtime -= amount; 4392 cfs_b->idle = 0; 4393 } 4394 } 4395 raw_spin_unlock(&cfs_b->lock); 4396 4397 cfs_rq->runtime_remaining += amount; 4398 4399 return cfs_rq->runtime_remaining > 0; 4400 } 4401 4402 static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) 4403 { 4404 /* dock delta_exec before expiring quota (as it could span periods) */ 4405 cfs_rq->runtime_remaining -= delta_exec; 4406 4407 if (likely(cfs_rq->runtime_remaining > 0)) 4408 return; 4409 4410 if (cfs_rq->throttled) 4411 return; 4412 /* 4413 * if we're unable to extend our runtime we resched so that the active 4414 * hierarchy can be throttled 4415 */ 4416 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr)) 4417 resched_curr(rq_of(cfs_rq)); 4418 } 4419 4420 static __always_inline 4421 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) 4422 { 4423 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled) 4424 return; 4425 4426 __account_cfs_rq_runtime(cfs_rq, delta_exec); 4427 } 4428 4429 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq) 4430 { 4431 return cfs_bandwidth_used() && cfs_rq->throttled; 4432 } 4433 4434 /* check whether cfs_rq, or any parent, is throttled */ 4435 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq) 4436 { 4437 return cfs_bandwidth_used() && cfs_rq->throttle_count; 4438 } 4439 4440 /* 4441 * Ensure that neither of the group entities corresponding to src_cpu or 4442 * dest_cpu are members of a throttled hierarchy when performing group 4443 * load-balance operations. 4444 */ 4445 static inline int throttled_lb_pair(struct task_group *tg, 4446 int src_cpu, int dest_cpu) 4447 { 4448 struct cfs_rq *src_cfs_rq, *dest_cfs_rq; 4449 4450 src_cfs_rq = tg->cfs_rq[src_cpu]; 4451 dest_cfs_rq = tg->cfs_rq[dest_cpu]; 4452 4453 return throttled_hierarchy(src_cfs_rq) || 4454 throttled_hierarchy(dest_cfs_rq); 4455 } 4456 4457 static int tg_unthrottle_up(struct task_group *tg, void *data) 4458 { 4459 struct rq *rq = data; 4460 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; 4461 4462 cfs_rq->throttle_count--; 4463 if (!cfs_rq->throttle_count) { 4464 cfs_rq->throttled_clock_task_time += rq_clock_task(rq) - 4465 cfs_rq->throttled_clock_task; 4466 4467 /* Add cfs_rq with already running entity in the list */ 4468 if (cfs_rq->nr_running >= 1) 4469 list_add_leaf_cfs_rq(cfs_rq); 4470 } 4471 4472 return 0; 4473 } 4474 4475 static int tg_throttle_down(struct task_group *tg, void *data) 4476 { 4477 struct rq *rq = data; 4478 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; 4479 4480 /* group is entering throttled state, stop time */ 4481 if (!cfs_rq->throttle_count) { 4482 cfs_rq->throttled_clock_task = rq_clock_task(rq); 4483 list_del_leaf_cfs_rq(cfs_rq); 4484 } 4485 cfs_rq->throttle_count++; 4486 4487 return 0; 4488 } 4489 4490 static void throttle_cfs_rq(struct cfs_rq *cfs_rq) 4491 { 4492 struct rq *rq = rq_of(cfs_rq); 4493 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 4494 struct sched_entity *se; 4495 long task_delta, idle_task_delta, dequeue = 1; 4496 bool empty; 4497 4498 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))]; 4499 4500 /* freeze hierarchy runnable averages while throttled */ 4501 rcu_read_lock(); 4502 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq); 4503 rcu_read_unlock(); 4504 4505 task_delta = cfs_rq->h_nr_running; 4506 idle_task_delta = cfs_rq->idle_h_nr_running; 4507 for_each_sched_entity(se) { 4508 struct cfs_rq *qcfs_rq = cfs_rq_of(se); 4509 /* throttled entity or throttle-on-deactivate */ 4510 if (!se->on_rq) 4511 break; 4512 4513 if (dequeue) 4514 dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP); 4515 qcfs_rq->h_nr_running -= task_delta; 4516 qcfs_rq->idle_h_nr_running -= idle_task_delta; 4517 4518 if (qcfs_rq->load.weight) 4519 dequeue = 0; 4520 } 4521 4522 if (!se) 4523 sub_nr_running(rq, task_delta); 4524 4525 cfs_rq->throttled = 1; 4526 cfs_rq->throttled_clock = rq_clock(rq); 4527 raw_spin_lock(&cfs_b->lock); 4528 empty = list_empty(&cfs_b->throttled_cfs_rq); 4529 4530 /* 4531 * Add to the _head_ of the list, so that an already-started 4532 * distribute_cfs_runtime will not see us. If disribute_cfs_runtime is 4533 * not running add to the tail so that later runqueues don't get starved. 4534 */ 4535 if (cfs_b->distribute_running) 4536 list_add_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq); 4537 else 4538 list_add_tail_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq); 4539 4540 /* 4541 * If we're the first throttled task, make sure the bandwidth 4542 * timer is running. 4543 */ 4544 if (empty) 4545 start_cfs_bandwidth(cfs_b); 4546 4547 raw_spin_unlock(&cfs_b->lock); 4548 } 4549 4550 void unthrottle_cfs_rq(struct cfs_rq *cfs_rq) 4551 { 4552 struct rq *rq = rq_of(cfs_rq); 4553 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 4554 struct sched_entity *se; 4555 int enqueue = 1; 4556 long task_delta, idle_task_delta; 4557 4558 se = cfs_rq->tg->se[cpu_of(rq)]; 4559 4560 cfs_rq->throttled = 0; 4561 4562 update_rq_clock(rq); 4563 4564 raw_spin_lock(&cfs_b->lock); 4565 cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock; 4566 list_del_rcu(&cfs_rq->throttled_list); 4567 raw_spin_unlock(&cfs_b->lock); 4568 4569 /* update hierarchical throttle state */ 4570 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq); 4571 4572 if (!cfs_rq->load.weight) 4573 return; 4574 4575 task_delta = cfs_rq->h_nr_running; 4576 idle_task_delta = cfs_rq->idle_h_nr_running; 4577 for_each_sched_entity(se) { 4578 if (se->on_rq) 4579 enqueue = 0; 4580 4581 cfs_rq = cfs_rq_of(se); 4582 if (enqueue) 4583 enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP); 4584 cfs_rq->h_nr_running += task_delta; 4585 cfs_rq->idle_h_nr_running += idle_task_delta; 4586 4587 if (cfs_rq_throttled(cfs_rq)) 4588 break; 4589 } 4590 4591 assert_list_leaf_cfs_rq(rq); 4592 4593 if (!se) 4594 add_nr_running(rq, task_delta); 4595 4596 /* Determine whether we need to wake up potentially idle CPU: */ 4597 if (rq->curr == rq->idle && rq->cfs.nr_running) 4598 resched_curr(rq); 4599 } 4600 4601 static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b, u64 remaining) 4602 { 4603 struct cfs_rq *cfs_rq; 4604 u64 runtime; 4605 u64 starting_runtime = remaining; 4606 4607 rcu_read_lock(); 4608 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq, 4609 throttled_list) { 4610 struct rq *rq = rq_of(cfs_rq); 4611 struct rq_flags rf; 4612 4613 rq_lock_irqsave(rq, &rf); 4614 if (!cfs_rq_throttled(cfs_rq)) 4615 goto next; 4616 4617 /* By the above check, this should never be true */ 4618 SCHED_WARN_ON(cfs_rq->runtime_remaining > 0); 4619 4620 runtime = -cfs_rq->runtime_remaining + 1; 4621 if (runtime > remaining) 4622 runtime = remaining; 4623 remaining -= runtime; 4624 4625 cfs_rq->runtime_remaining += runtime; 4626 4627 /* we check whether we're throttled above */ 4628 if (cfs_rq->runtime_remaining > 0) 4629 unthrottle_cfs_rq(cfs_rq); 4630 4631 next: 4632 rq_unlock_irqrestore(rq, &rf); 4633 4634 if (!remaining) 4635 break; 4636 } 4637 rcu_read_unlock(); 4638 4639 return starting_runtime - remaining; 4640 } 4641 4642 /* 4643 * Responsible for refilling a task_group's bandwidth and unthrottling its 4644 * cfs_rqs as appropriate. If there has been no activity within the last 4645 * period the timer is deactivated until scheduling resumes; cfs_b->idle is 4646 * used to track this state. 4647 */ 4648 static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun, unsigned long flags) 4649 { 4650 u64 runtime; 4651 int throttled; 4652 4653 /* no need to continue the timer with no bandwidth constraint */ 4654 if (cfs_b->quota == RUNTIME_INF) 4655 goto out_deactivate; 4656 4657 throttled = !list_empty(&cfs_b->throttled_cfs_rq); 4658 cfs_b->nr_periods += overrun; 4659 4660 /* 4661 * idle depends on !throttled (for the case of a large deficit), and if 4662 * we're going inactive then everything else can be deferred 4663 */ 4664 if (cfs_b->idle && !throttled) 4665 goto out_deactivate; 4666 4667 __refill_cfs_bandwidth_runtime(cfs_b); 4668 4669 if (!throttled) { 4670 /* mark as potentially idle for the upcoming period */ 4671 cfs_b->idle = 1; 4672 return 0; 4673 } 4674 4675 /* account preceding periods in which throttling occurred */ 4676 cfs_b->nr_throttled += overrun; 4677 4678 /* 4679 * This check is repeated as we are holding onto the new bandwidth while 4680 * we unthrottle. This can potentially race with an unthrottled group 4681 * trying to acquire new bandwidth from the global pool. This can result 4682 * in us over-using our runtime if it is all used during this loop, but 4683 * only by limited amounts in that extreme case. 4684 */ 4685 while (throttled && cfs_b->runtime > 0 && !cfs_b->distribute_running) { 4686 runtime = cfs_b->runtime; 4687 cfs_b->distribute_running = 1; 4688 raw_spin_unlock_irqrestore(&cfs_b->lock, flags); 4689 /* we can't nest cfs_b->lock while distributing bandwidth */ 4690 runtime = distribute_cfs_runtime(cfs_b, runtime); 4691 raw_spin_lock_irqsave(&cfs_b->lock, flags); 4692 4693 cfs_b->distribute_running = 0; 4694 throttled = !list_empty(&cfs_b->throttled_cfs_rq); 4695 4696 lsub_positive(&cfs_b->runtime, runtime); 4697 } 4698 4699 /* 4700 * While we are ensured activity in the period following an 4701 * unthrottle, this also covers the case in which the new bandwidth is 4702 * insufficient to cover the existing bandwidth deficit. (Forcing the 4703 * timer to remain active while there are any throttled entities.) 4704 */ 4705 cfs_b->idle = 0; 4706 4707 return 0; 4708 4709 out_deactivate: 4710 return 1; 4711 } 4712 4713 /* a cfs_rq won't donate quota below this amount */ 4714 static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC; 4715 /* minimum remaining period time to redistribute slack quota */ 4716 static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC; 4717 /* how long we wait to gather additional slack before distributing */ 4718 static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC; 4719 4720 /* 4721 * Are we near the end of the current quota period? 4722 * 4723 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the 4724 * hrtimer base being cleared by hrtimer_start. In the case of 4725 * migrate_hrtimers, base is never cleared, so we are fine. 4726 */ 4727 static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire) 4728 { 4729 struct hrtimer *refresh_timer = &cfs_b->period_timer; 4730 u64 remaining; 4731 4732 /* if the call-back is running a quota refresh is already occurring */ 4733 if (hrtimer_callback_running(refresh_timer)) 4734 return 1; 4735 4736 /* is a quota refresh about to occur? */ 4737 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer)); 4738 if (remaining < min_expire) 4739 return 1; 4740 4741 return 0; 4742 } 4743 4744 static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b) 4745 { 4746 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration; 4747 4748 /* if there's a quota refresh soon don't bother with slack */ 4749 if (runtime_refresh_within(cfs_b, min_left)) 4750 return; 4751 4752 /* don't push forwards an existing deferred unthrottle */ 4753 if (cfs_b->slack_started) 4754 return; 4755 cfs_b->slack_started = true; 4756 4757 hrtimer_start(&cfs_b->slack_timer, 4758 ns_to_ktime(cfs_bandwidth_slack_period), 4759 HRTIMER_MODE_REL); 4760 } 4761 4762 /* we know any runtime found here is valid as update_curr() precedes return */ 4763 static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq) 4764 { 4765 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 4766 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime; 4767 4768 if (slack_runtime <= 0) 4769 return; 4770 4771 raw_spin_lock(&cfs_b->lock); 4772 if (cfs_b->quota != RUNTIME_INF) { 4773 cfs_b->runtime += slack_runtime; 4774 4775 /* we are under rq->lock, defer unthrottling using a timer */ 4776 if (cfs_b->runtime > sched_cfs_bandwidth_slice() && 4777 !list_empty(&cfs_b->throttled_cfs_rq)) 4778 start_cfs_slack_bandwidth(cfs_b); 4779 } 4780 raw_spin_unlock(&cfs_b->lock); 4781 4782 /* even if it's not valid for return we don't want to try again */ 4783 cfs_rq->runtime_remaining -= slack_runtime; 4784 } 4785 4786 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) 4787 { 4788 if (!cfs_bandwidth_used()) 4789 return; 4790 4791 if (!cfs_rq->runtime_enabled || cfs_rq->nr_running) 4792 return; 4793 4794 __return_cfs_rq_runtime(cfs_rq); 4795 } 4796 4797 /* 4798 * This is done with a timer (instead of inline with bandwidth return) since 4799 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs. 4800 */ 4801 static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b) 4802 { 4803 u64 runtime = 0, slice = sched_cfs_bandwidth_slice(); 4804 unsigned long flags; 4805 4806 /* confirm we're still not at a refresh boundary */ 4807 raw_spin_lock_irqsave(&cfs_b->lock, flags); 4808 cfs_b->slack_started = false; 4809 if (cfs_b->distribute_running) { 4810 raw_spin_unlock_irqrestore(&cfs_b->lock, flags); 4811 return; 4812 } 4813 4814 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) { 4815 raw_spin_unlock_irqrestore(&cfs_b->lock, flags); 4816 return; 4817 } 4818 4819 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice) 4820 runtime = cfs_b->runtime; 4821 4822 if (runtime) 4823 cfs_b->distribute_running = 1; 4824 4825 raw_spin_unlock_irqrestore(&cfs_b->lock, flags); 4826 4827 if (!runtime) 4828 return; 4829 4830 runtime = distribute_cfs_runtime(cfs_b, runtime); 4831 4832 raw_spin_lock_irqsave(&cfs_b->lock, flags); 4833 lsub_positive(&cfs_b->runtime, runtime); 4834 cfs_b->distribute_running = 0; 4835 raw_spin_unlock_irqrestore(&cfs_b->lock, flags); 4836 } 4837 4838 /* 4839 * When a group wakes up we want to make sure that its quota is not already 4840 * expired/exceeded, otherwise it may be allowed to steal additional ticks of 4841 * runtime as update_curr() throttling can not not trigger until it's on-rq. 4842 */ 4843 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) 4844 { 4845 if (!cfs_bandwidth_used()) 4846 return; 4847 4848 /* an active group must be handled by the update_curr()->put() path */ 4849 if (!cfs_rq->runtime_enabled || cfs_rq->curr) 4850 return; 4851 4852 /* ensure the group is not already throttled */ 4853 if (cfs_rq_throttled(cfs_rq)) 4854 return; 4855 4856 /* update runtime allocation */ 4857 account_cfs_rq_runtime(cfs_rq, 0); 4858 if (cfs_rq->runtime_remaining <= 0) 4859 throttle_cfs_rq(cfs_rq); 4860 } 4861 4862 static void sync_throttle(struct task_group *tg, int cpu) 4863 { 4864 struct cfs_rq *pcfs_rq, *cfs_rq; 4865 4866 if (!cfs_bandwidth_used()) 4867 return; 4868 4869 if (!tg->parent) 4870 return; 4871 4872 cfs_rq = tg->cfs_rq[cpu]; 4873 pcfs_rq = tg->parent->cfs_rq[cpu]; 4874 4875 cfs_rq->throttle_count = pcfs_rq->throttle_count; 4876 cfs_rq->throttled_clock_task = rq_clock_task(cpu_rq(cpu)); 4877 } 4878 4879 /* conditionally throttle active cfs_rq's from put_prev_entity() */ 4880 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) 4881 { 4882 if (!cfs_bandwidth_used()) 4883 return false; 4884 4885 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0)) 4886 return false; 4887 4888 /* 4889 * it's possible for a throttled entity to be forced into a running 4890 * state (e.g. set_curr_task), in this case we're finished. 4891 */ 4892 if (cfs_rq_throttled(cfs_rq)) 4893 return true; 4894 4895 throttle_cfs_rq(cfs_rq); 4896 return true; 4897 } 4898 4899 static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer) 4900 { 4901 struct cfs_bandwidth *cfs_b = 4902 container_of(timer, struct cfs_bandwidth, slack_timer); 4903 4904 do_sched_cfs_slack_timer(cfs_b); 4905 4906 return HRTIMER_NORESTART; 4907 } 4908 4909 extern const u64 max_cfs_quota_period; 4910 4911 static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer) 4912 { 4913 struct cfs_bandwidth *cfs_b = 4914 container_of(timer, struct cfs_bandwidth, period_timer); 4915 unsigned long flags; 4916 int overrun; 4917 int idle = 0; 4918 int count = 0; 4919 4920 raw_spin_lock_irqsave(&cfs_b->lock, flags); 4921 for (;;) { 4922 overrun = hrtimer_forward_now(timer, cfs_b->period); 4923 if (!overrun) 4924 break; 4925 4926 if (++count > 3) { 4927 u64 new, old = ktime_to_ns(cfs_b->period); 4928 4929 /* 4930 * Grow period by a factor of 2 to avoid losing precision. 4931 * Precision loss in the quota/period ratio can cause __cfs_schedulable 4932 * to fail. 4933 */ 4934 new = old * 2; 4935 if (new < max_cfs_quota_period) { 4936 cfs_b->period = ns_to_ktime(new); 4937 cfs_b->quota *= 2; 4938 4939 pr_warn_ratelimited( 4940 "cfs_period_timer[cpu%d]: period too short, scaling up (new cfs_period_us = %lld, cfs_quota_us = %lld)\n", 4941 smp_processor_id(), 4942 div_u64(new, NSEC_PER_USEC), 4943 div_u64(cfs_b->quota, NSEC_PER_USEC)); 4944 } else { 4945 pr_warn_ratelimited( 4946 "cfs_period_timer[cpu%d]: period too short, but cannot scale up without losing precision (cfs_period_us = %lld, cfs_quota_us = %lld)\n", 4947 smp_processor_id(), 4948 div_u64(old, NSEC_PER_USEC), 4949 div_u64(cfs_b->quota, NSEC_PER_USEC)); 4950 } 4951 4952 /* reset count so we don't come right back in here */ 4953 count = 0; 4954 } 4955 4956 idle = do_sched_cfs_period_timer(cfs_b, overrun, flags); 4957 } 4958 if (idle) 4959 cfs_b->period_active = 0; 4960 raw_spin_unlock_irqrestore(&cfs_b->lock, flags); 4961 4962 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART; 4963 } 4964 4965 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) 4966 { 4967 raw_spin_lock_init(&cfs_b->lock); 4968 cfs_b->runtime = 0; 4969 cfs_b->quota = RUNTIME_INF; 4970 cfs_b->period = ns_to_ktime(default_cfs_period()); 4971 4972 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq); 4973 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED); 4974 cfs_b->period_timer.function = sched_cfs_period_timer; 4975 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 4976 cfs_b->slack_timer.function = sched_cfs_slack_timer; 4977 cfs_b->distribute_running = 0; 4978 cfs_b->slack_started = false; 4979 } 4980 4981 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) 4982 { 4983 cfs_rq->runtime_enabled = 0; 4984 INIT_LIST_HEAD(&cfs_rq->throttled_list); 4985 } 4986 4987 void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b) 4988 { 4989 lockdep_assert_held(&cfs_b->lock); 4990 4991 if (cfs_b->period_active) 4992 return; 4993 4994 cfs_b->period_active = 1; 4995 hrtimer_forward_now(&cfs_b->period_timer, cfs_b->period); 4996 hrtimer_start_expires(&cfs_b->period_timer, HRTIMER_MODE_ABS_PINNED); 4997 } 4998 4999 static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) 5000 { 5001 /* init_cfs_bandwidth() was not called */ 5002 if (!cfs_b->throttled_cfs_rq.next) 5003 return; 5004 5005 hrtimer_cancel(&cfs_b->period_timer); 5006 hrtimer_cancel(&cfs_b->slack_timer); 5007 } 5008 5009 /* 5010 * Both these CPU hotplug callbacks race against unregister_fair_sched_group() 5011 * 5012 * The race is harmless, since modifying bandwidth settings of unhooked group 5013 * bits doesn't do much. 5014 */ 5015 5016 /* cpu online calback */ 5017 static void __maybe_unused update_runtime_enabled(struct rq *rq) 5018 { 5019 struct task_group *tg; 5020 5021 lockdep_assert_held(&rq->lock); 5022 5023 rcu_read_lock(); 5024 list_for_each_entry_rcu(tg, &task_groups, list) { 5025 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 5026 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; 5027 5028 raw_spin_lock(&cfs_b->lock); 5029 cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF; 5030 raw_spin_unlock(&cfs_b->lock); 5031 } 5032 rcu_read_unlock(); 5033 } 5034 5035 /* cpu offline callback */ 5036 static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq) 5037 { 5038 struct task_group *tg; 5039 5040 lockdep_assert_held(&rq->lock); 5041 5042 rcu_read_lock(); 5043 list_for_each_entry_rcu(tg, &task_groups, list) { 5044 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; 5045 5046 if (!cfs_rq->runtime_enabled) 5047 continue; 5048 5049 /* 5050 * clock_task is not advancing so we just need to make sure 5051 * there's some valid quota amount 5052 */ 5053 cfs_rq->runtime_remaining = 1; 5054 /* 5055 * Offline rq is schedulable till CPU is completely disabled 5056 * in take_cpu_down(), so we prevent new cfs throttling here. 5057 */ 5058 cfs_rq->runtime_enabled = 0; 5059 5060 if (cfs_rq_throttled(cfs_rq)) 5061 unthrottle_cfs_rq(cfs_rq); 5062 } 5063 rcu_read_unlock(); 5064 } 5065 5066 #else /* CONFIG_CFS_BANDWIDTH */ 5067 5068 static inline bool cfs_bandwidth_used(void) 5069 { 5070 return false; 5071 } 5072 5073 static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {} 5074 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; } 5075 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {} 5076 static inline void sync_throttle(struct task_group *tg, int cpu) {} 5077 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {} 5078 5079 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq) 5080 { 5081 return 0; 5082 } 5083 5084 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq) 5085 { 5086 return 0; 5087 } 5088 5089 static inline int throttled_lb_pair(struct task_group *tg, 5090 int src_cpu, int dest_cpu) 5091 { 5092 return 0; 5093 } 5094 5095 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {} 5096 5097 #ifdef CONFIG_FAIR_GROUP_SCHED 5098 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {} 5099 #endif 5100 5101 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg) 5102 { 5103 return NULL; 5104 } 5105 static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {} 5106 static inline void update_runtime_enabled(struct rq *rq) {} 5107 static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {} 5108 5109 #endif /* CONFIG_CFS_BANDWIDTH */ 5110 5111 /************************************************** 5112 * CFS operations on tasks: 5113 */ 5114 5115 #ifdef CONFIG_SCHED_HRTICK 5116 static void hrtick_start_fair(struct rq *rq, struct task_struct *p) 5117 { 5118 struct sched_entity *se = &p->se; 5119 struct cfs_rq *cfs_rq = cfs_rq_of(se); 5120 5121 SCHED_WARN_ON(task_rq(p) != rq); 5122 5123 if (rq->cfs.h_nr_running > 1) { 5124 u64 slice = sched_slice(cfs_rq, se); 5125 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime; 5126 s64 delta = slice - ran; 5127 5128 if (delta < 0) { 5129 if (rq->curr == p) 5130 resched_curr(rq); 5131 return; 5132 } 5133 hrtick_start(rq, delta); 5134 } 5135 } 5136 5137 /* 5138 * called from enqueue/dequeue and updates the hrtick when the 5139 * current task is from our class and nr_running is low enough 5140 * to matter. 5141 */ 5142 static void hrtick_update(struct rq *rq) 5143 { 5144 struct task_struct *curr = rq->curr; 5145 5146 if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class) 5147 return; 5148 5149 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency) 5150 hrtick_start_fair(rq, curr); 5151 } 5152 #else /* !CONFIG_SCHED_HRTICK */ 5153 static inline void 5154 hrtick_start_fair(struct rq *rq, struct task_struct *p) 5155 { 5156 } 5157 5158 static inline void hrtick_update(struct rq *rq) 5159 { 5160 } 5161 #endif 5162 5163 #ifdef CONFIG_SMP 5164 static inline unsigned long cpu_util(int cpu); 5165 5166 static inline bool cpu_overutilized(int cpu) 5167 { 5168 return !fits_capacity(cpu_util(cpu), capacity_of(cpu)); 5169 } 5170 5171 static inline void update_overutilized_status(struct rq *rq) 5172 { 5173 if (!READ_ONCE(rq->rd->overutilized) && cpu_overutilized(rq->cpu)) { 5174 WRITE_ONCE(rq->rd->overutilized, SG_OVERUTILIZED); 5175 trace_sched_overutilized_tp(rq->rd, SG_OVERUTILIZED); 5176 } 5177 } 5178 #else 5179 static inline void update_overutilized_status(struct rq *rq) { } 5180 #endif 5181 5182 /* 5183 * The enqueue_task method is called before nr_running is 5184 * increased. Here we update the fair scheduling stats and 5185 * then put the task into the rbtree: 5186 */ 5187 static void 5188 enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags) 5189 { 5190 struct cfs_rq *cfs_rq; 5191 struct sched_entity *se = &p->se; 5192 int idle_h_nr_running = task_has_idle_policy(p); 5193 5194 /* 5195 * The code below (indirectly) updates schedutil which looks at 5196 * the cfs_rq utilization to select a frequency. 5197 * Let's add the task's estimated utilization to the cfs_rq's 5198 * estimated utilization, before we update schedutil. 5199 */ 5200 util_est_enqueue(&rq->cfs, p); 5201 5202 /* 5203 * If in_iowait is set, the code below may not trigger any cpufreq 5204 * utilization updates, so do it here explicitly with the IOWAIT flag 5205 * passed. 5206 */ 5207 if (p->in_iowait) 5208 cpufreq_update_util(rq, SCHED_CPUFREQ_IOWAIT); 5209 5210 for_each_sched_entity(se) { 5211 if (se->on_rq) 5212 break; 5213 cfs_rq = cfs_rq_of(se); 5214 enqueue_entity(cfs_rq, se, flags); 5215 5216 /* 5217 * end evaluation on encountering a throttled cfs_rq 5218 * 5219 * note: in the case of encountering a throttled cfs_rq we will 5220 * post the final h_nr_running increment below. 5221 */ 5222 if (cfs_rq_throttled(cfs_rq)) 5223 break; 5224 cfs_rq->h_nr_running++; 5225 cfs_rq->idle_h_nr_running += idle_h_nr_running; 5226 5227 flags = ENQUEUE_WAKEUP; 5228 } 5229 5230 for_each_sched_entity(se) { 5231 cfs_rq = cfs_rq_of(se); 5232 cfs_rq->h_nr_running++; 5233 cfs_rq->idle_h_nr_running += idle_h_nr_running; 5234 5235 if (cfs_rq_throttled(cfs_rq)) 5236 break; 5237 5238 update_load_avg(cfs_rq, se, UPDATE_TG); 5239 update_cfs_group(se); 5240 } 5241 5242 if (!se) { 5243 add_nr_running(rq, 1); 5244 /* 5245 * Since new tasks are assigned an initial util_avg equal to 5246 * half of the spare capacity of their CPU, tiny tasks have the 5247 * ability to cross the overutilized threshold, which will 5248 * result in the load balancer ruining all the task placement 5249 * done by EAS. As a way to mitigate that effect, do not account 5250 * for the first enqueue operation of new tasks during the 5251 * overutilized flag detection. 5252 * 5253 * A better way of solving this problem would be to wait for 5254 * the PELT signals of tasks to converge before taking them 5255 * into account, but that is not straightforward to implement, 5256 * and the following generally works well enough in practice. 5257 */ 5258 if (flags & ENQUEUE_WAKEUP) 5259 update_overutilized_status(rq); 5260 5261 } 5262 5263 if (cfs_bandwidth_used()) { 5264 /* 5265 * When bandwidth control is enabled; the cfs_rq_throttled() 5266 * breaks in the above iteration can result in incomplete 5267 * leaf list maintenance, resulting in triggering the assertion 5268 * below. 5269 */ 5270 for_each_sched_entity(se) { 5271 cfs_rq = cfs_rq_of(se); 5272 5273 if (list_add_leaf_cfs_rq(cfs_rq)) 5274 break; 5275 } 5276 } 5277 5278 assert_list_leaf_cfs_rq(rq); 5279 5280 hrtick_update(rq); 5281 } 5282 5283 static void set_next_buddy(struct sched_entity *se); 5284 5285 /* 5286 * The dequeue_task method is called before nr_running is 5287 * decreased. We remove the task from the rbtree and 5288 * update the fair scheduling stats: 5289 */ 5290 static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags) 5291 { 5292 struct cfs_rq *cfs_rq; 5293 struct sched_entity *se = &p->se; 5294 int task_sleep = flags & DEQUEUE_SLEEP; 5295 int idle_h_nr_running = task_has_idle_policy(p); 5296 5297 for_each_sched_entity(se) { 5298 cfs_rq = cfs_rq_of(se); 5299 dequeue_entity(cfs_rq, se, flags); 5300 5301 /* 5302 * end evaluation on encountering a throttled cfs_rq 5303 * 5304 * note: in the case of encountering a throttled cfs_rq we will 5305 * post the final h_nr_running decrement below. 5306 */ 5307 if (cfs_rq_throttled(cfs_rq)) 5308 break; 5309 cfs_rq->h_nr_running--; 5310 cfs_rq->idle_h_nr_running -= idle_h_nr_running; 5311 5312 /* Don't dequeue parent if it has other entities besides us */ 5313 if (cfs_rq->load.weight) { 5314 /* Avoid re-evaluating load for this entity: */ 5315 se = parent_entity(se); 5316 /* 5317 * Bias pick_next to pick a task from this cfs_rq, as 5318 * p is sleeping when it is within its sched_slice. 5319 */ 5320 if (task_sleep && se && !throttled_hierarchy(cfs_rq)) 5321 set_next_buddy(se); 5322 break; 5323 } 5324 flags |= DEQUEUE_SLEEP; 5325 } 5326 5327 for_each_sched_entity(se) { 5328 cfs_rq = cfs_rq_of(se); 5329 cfs_rq->h_nr_running--; 5330 cfs_rq->idle_h_nr_running -= idle_h_nr_running; 5331 5332 if (cfs_rq_throttled(cfs_rq)) 5333 break; 5334 5335 update_load_avg(cfs_rq, se, UPDATE_TG); 5336 update_cfs_group(se); 5337 } 5338 5339 if (!se) 5340 sub_nr_running(rq, 1); 5341 5342 util_est_dequeue(&rq->cfs, p, task_sleep); 5343 hrtick_update(rq); 5344 } 5345 5346 #ifdef CONFIG_SMP 5347 5348 /* Working cpumask for: load_balance, load_balance_newidle. */ 5349 DEFINE_PER_CPU(cpumask_var_t, load_balance_mask); 5350 DEFINE_PER_CPU(cpumask_var_t, select_idle_mask); 5351 5352 #ifdef CONFIG_NO_HZ_COMMON 5353 5354 static struct { 5355 cpumask_var_t idle_cpus_mask; 5356 atomic_t nr_cpus; 5357 int has_blocked; /* Idle CPUS has blocked load */ 5358 unsigned long next_balance; /* in jiffy units */ 5359 unsigned long next_blocked; /* Next update of blocked load in jiffies */ 5360 } nohz ____cacheline_aligned; 5361 5362 #endif /* CONFIG_NO_HZ_COMMON */ 5363 5364 /* CPU only has SCHED_IDLE tasks enqueued */ 5365 static int sched_idle_cpu(int cpu) 5366 { 5367 struct rq *rq = cpu_rq(cpu); 5368 5369 return unlikely(rq->nr_running == rq->cfs.idle_h_nr_running && 5370 rq->nr_running); 5371 } 5372 5373 static unsigned long cpu_runnable_load(struct rq *rq) 5374 { 5375 return cfs_rq_runnable_load_avg(&rq->cfs); 5376 } 5377 5378 static unsigned long capacity_of(int cpu) 5379 { 5380 return cpu_rq(cpu)->cpu_capacity; 5381 } 5382 5383 static unsigned long cpu_avg_load_per_task(int cpu) 5384 { 5385 struct rq *rq = cpu_rq(cpu); 5386 unsigned long nr_running = READ_ONCE(rq->cfs.h_nr_running); 5387 unsigned long load_avg = cpu_runnable_load(rq); 5388 5389 if (nr_running) 5390 return load_avg / nr_running; 5391 5392 return 0; 5393 } 5394 5395 static void record_wakee(struct task_struct *p) 5396 { 5397 /* 5398 * Only decay a single time; tasks that have less then 1 wakeup per 5399 * jiffy will not have built up many flips. 5400 */ 5401 if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) { 5402 current->wakee_flips >>= 1; 5403 current->wakee_flip_decay_ts = jiffies; 5404 } 5405 5406 if (current->last_wakee != p) { 5407 current->last_wakee = p; 5408 current->wakee_flips++; 5409 } 5410 } 5411 5412 /* 5413 * Detect M:N waker/wakee relationships via a switching-frequency heuristic. 5414 * 5415 * A waker of many should wake a different task than the one last awakened 5416 * at a frequency roughly N times higher than one of its wakees. 5417 * 5418 * In order to determine whether we should let the load spread vs consolidating 5419 * to shared cache, we look for a minimum 'flip' frequency of llc_size in one 5420 * partner, and a factor of lls_size higher frequency in the other. 5421 * 5422 * With both conditions met, we can be relatively sure that the relationship is 5423 * non-monogamous, with partner count exceeding socket size. 5424 * 5425 * Waker/wakee being client/server, worker/dispatcher, interrupt source or 5426 * whatever is irrelevant, spread criteria is apparent partner count exceeds 5427 * socket size. 5428 */ 5429 static int wake_wide(struct task_struct *p) 5430 { 5431 unsigned int master = current->wakee_flips; 5432 unsigned int slave = p->wakee_flips; 5433 int factor = this_cpu_read(sd_llc_size); 5434 5435 if (master < slave) 5436 swap(master, slave); 5437 if (slave < factor || master < slave * factor) 5438 return 0; 5439 return 1; 5440 } 5441 5442 /* 5443 * The purpose of wake_affine() is to quickly determine on which CPU we can run 5444 * soonest. For the purpose of speed we only consider the waking and previous 5445 * CPU. 5446 * 5447 * wake_affine_idle() - only considers 'now', it check if the waking CPU is 5448 * cache-affine and is (or will be) idle. 5449 * 5450 * wake_affine_weight() - considers the weight to reflect the average 5451 * scheduling latency of the CPUs. This seems to work 5452 * for the overloaded case. 5453 */ 5454 static int 5455 wake_affine_idle(int this_cpu, int prev_cpu, int sync) 5456 { 5457 /* 5458 * If this_cpu is idle, it implies the wakeup is from interrupt 5459 * context. Only allow the move if cache is shared. Otherwise an 5460 * interrupt intensive workload could force all tasks onto one 5461 * node depending on the IO topology or IRQ affinity settings. 5462 * 5463 * If the prev_cpu is idle and cache affine then avoid a migration. 5464 * There is no guarantee that the cache hot data from an interrupt 5465 * is more important than cache hot data on the prev_cpu and from 5466 * a cpufreq perspective, it's better to have higher utilisation 5467 * on one CPU. 5468 */ 5469 if (available_idle_cpu(this_cpu) && cpus_share_cache(this_cpu, prev_cpu)) 5470 return available_idle_cpu(prev_cpu) ? prev_cpu : this_cpu; 5471 5472 if (sync && cpu_rq(this_cpu)->nr_running == 1) 5473 return this_cpu; 5474 5475 return nr_cpumask_bits; 5476 } 5477 5478 static int 5479 wake_affine_weight(struct sched_domain *sd, struct task_struct *p, 5480 int this_cpu, int prev_cpu, int sync) 5481 { 5482 s64 this_eff_load, prev_eff_load; 5483 unsigned long task_load; 5484 5485 this_eff_load = cpu_runnable_load(cpu_rq(this_cpu)); 5486 5487 if (sync) { 5488 unsigned long current_load = task_h_load(current); 5489 5490 if (current_load > this_eff_load) 5491 return this_cpu; 5492 5493 this_eff_load -= current_load; 5494 } 5495 5496 task_load = task_h_load(p); 5497 5498 this_eff_load += task_load; 5499 if (sched_feat(WA_BIAS)) 5500 this_eff_load *= 100; 5501 this_eff_load *= capacity_of(prev_cpu); 5502 5503 prev_eff_load = cpu_runnable_load(cpu_rq(prev_cpu)); 5504 prev_eff_load -= task_load; 5505 if (sched_feat(WA_BIAS)) 5506 prev_eff_load *= 100 + (sd->imbalance_pct - 100) / 2; 5507 prev_eff_load *= capacity_of(this_cpu); 5508 5509 /* 5510 * If sync, adjust the weight of prev_eff_load such that if 5511 * prev_eff == this_eff that select_idle_sibling() will consider 5512 * stacking the wakee on top of the waker if no other CPU is 5513 * idle. 5514 */ 5515 if (sync) 5516 prev_eff_load += 1; 5517 5518 return this_eff_load < prev_eff_load ? this_cpu : nr_cpumask_bits; 5519 } 5520 5521 static int wake_affine(struct sched_domain *sd, struct task_struct *p, 5522 int this_cpu, int prev_cpu, int sync) 5523 { 5524 int target = nr_cpumask_bits; 5525 5526 if (sched_feat(WA_IDLE)) 5527 target = wake_affine_idle(this_cpu, prev_cpu, sync); 5528 5529 if (sched_feat(WA_WEIGHT) && target == nr_cpumask_bits) 5530 target = wake_affine_weight(sd, p, this_cpu, prev_cpu, sync); 5531 5532 schedstat_inc(p->se.statistics.nr_wakeups_affine_attempts); 5533 if (target == nr_cpumask_bits) 5534 return prev_cpu; 5535 5536 schedstat_inc(sd->ttwu_move_affine); 5537 schedstat_inc(p->se.statistics.nr_wakeups_affine); 5538 return target; 5539 } 5540 5541 static unsigned long cpu_util_without(int cpu, struct task_struct *p); 5542 5543 static unsigned long capacity_spare_without(int cpu, struct task_struct *p) 5544 { 5545 return max_t(long, capacity_of(cpu) - cpu_util_without(cpu, p), 0); 5546 } 5547 5548 /* 5549 * find_idlest_group finds and returns the least busy CPU group within the 5550 * domain. 5551 * 5552 * Assumes p is allowed on at least one CPU in sd. 5553 */ 5554 static struct sched_group * 5555 find_idlest_group(struct sched_domain *sd, struct task_struct *p, 5556 int this_cpu, int sd_flag) 5557 { 5558 struct sched_group *idlest = NULL, *group = sd->groups; 5559 struct sched_group *most_spare_sg = NULL; 5560 unsigned long min_runnable_load = ULONG_MAX; 5561 unsigned long this_runnable_load = ULONG_MAX; 5562 unsigned long min_avg_load = ULONG_MAX, this_avg_load = ULONG_MAX; 5563 unsigned long most_spare = 0, this_spare = 0; 5564 int imbalance_scale = 100 + (sd->imbalance_pct-100)/2; 5565 unsigned long imbalance = scale_load_down(NICE_0_LOAD) * 5566 (sd->imbalance_pct-100) / 100; 5567 5568 do { 5569 unsigned long load, avg_load, runnable_load; 5570 unsigned long spare_cap, max_spare_cap; 5571 int local_group; 5572 int i; 5573 5574 /* Skip over this group if it has no CPUs allowed */ 5575 if (!cpumask_intersects(sched_group_span(group), 5576 p->cpus_ptr)) 5577 continue; 5578 5579 local_group = cpumask_test_cpu(this_cpu, 5580 sched_group_span(group)); 5581 5582 /* 5583 * Tally up the load of all CPUs in the group and find 5584 * the group containing the CPU with most spare capacity. 5585 */ 5586 avg_load = 0; 5587 runnable_load = 0; 5588 max_spare_cap = 0; 5589 5590 for_each_cpu(i, sched_group_span(group)) { 5591 load = cpu_runnable_load(cpu_rq(i)); 5592 runnable_load += load; 5593 5594 avg_load += cfs_rq_load_avg(&cpu_rq(i)->cfs); 5595 5596 spare_cap = capacity_spare_without(i, p); 5597 5598 if (spare_cap > max_spare_cap) 5599 max_spare_cap = spare_cap; 5600 } 5601 5602 /* Adjust by relative CPU capacity of the group */ 5603 avg_load = (avg_load * SCHED_CAPACITY_SCALE) / 5604 group->sgc->capacity; 5605 runnable_load = (runnable_load * SCHED_CAPACITY_SCALE) / 5606 group->sgc->capacity; 5607 5608 if (local_group) { 5609 this_runnable_load = runnable_load; 5610 this_avg_load = avg_load; 5611 this_spare = max_spare_cap; 5612 } else { 5613 if (min_runnable_load > (runnable_load + imbalance)) { 5614 /* 5615 * The runnable load is significantly smaller 5616 * so we can pick this new CPU: 5617 */ 5618 min_runnable_load = runnable_load; 5619 min_avg_load = avg_load; 5620 idlest = group; 5621 } else if ((runnable_load < (min_runnable_load + imbalance)) && 5622 (100*min_avg_load > imbalance_scale*avg_load)) { 5623 /* 5624 * The runnable loads are close so take the 5625 * blocked load into account through avg_load: 5626 */ 5627 min_avg_load = avg_load; 5628 idlest = group; 5629 } 5630 5631 if (most_spare < max_spare_cap) { 5632 most_spare = max_spare_cap; 5633 most_spare_sg = group; 5634 } 5635 } 5636 } while (group = group->next, group != sd->groups); 5637 5638 /* 5639 * The cross-over point between using spare capacity or least load 5640 * is too conservative for high utilization tasks on partially 5641 * utilized systems if we require spare_capacity > task_util(p), 5642 * so we allow for some task stuffing by using 5643 * spare_capacity > task_util(p)/2. 5644 * 5645 * Spare capacity can't be used for fork because the utilization has 5646 * not been set yet, we must first select a rq to compute the initial 5647 * utilization. 5648 */ 5649 if (sd_flag & SD_BALANCE_FORK) 5650 goto skip_spare; 5651 5652 if (this_spare > task_util(p) / 2 && 5653 imbalance_scale*this_spare > 100*most_spare) 5654 return NULL; 5655 5656 if (most_spare > task_util(p) / 2) 5657 return most_spare_sg; 5658 5659 skip_spare: 5660 if (!idlest) 5661 return NULL; 5662 5663 /* 5664 * When comparing groups across NUMA domains, it's possible for the 5665 * local domain to be very lightly loaded relative to the remote 5666 * domains but "imbalance" skews the comparison making remote CPUs 5667 * look much more favourable. When considering cross-domain, add 5668 * imbalance to the runnable load on the remote node and consider 5669 * staying local. 5670 */ 5671 if ((sd->flags & SD_NUMA) && 5672 min_runnable_load + imbalance >= this_runnable_load) 5673 return NULL; 5674 5675 if (min_runnable_load > (this_runnable_load + imbalance)) 5676 return NULL; 5677 5678 if ((this_runnable_load < (min_runnable_load + imbalance)) && 5679 (100*this_avg_load < imbalance_scale*min_avg_load)) 5680 return NULL; 5681 5682 return idlest; 5683 } 5684 5685 /* 5686 * find_idlest_group_cpu - find the idlest CPU among the CPUs in the group. 5687 */ 5688 static int 5689 find_idlest_group_cpu(struct sched_group *group, struct task_struct *p, int this_cpu) 5690 { 5691 unsigned long load, min_load = ULONG_MAX; 5692 unsigned int min_exit_latency = UINT_MAX; 5693 u64 latest_idle_timestamp = 0; 5694 int least_loaded_cpu = this_cpu; 5695 int shallowest_idle_cpu = -1, si_cpu = -1; 5696 int i; 5697 5698 /* Check if we have any choice: */ 5699 if (group->group_weight == 1) 5700 return cpumask_first(sched_group_span(group)); 5701 5702 /* Traverse only the allowed CPUs */ 5703 for_each_cpu_and(i, sched_group_span(group), p->cpus_ptr) { 5704 if (available_idle_cpu(i)) { 5705 struct rq *rq = cpu_rq(i); 5706 struct cpuidle_state *idle = idle_get_state(rq); 5707 if (idle && idle->exit_latency < min_exit_latency) { 5708 /* 5709 * We give priority to a CPU whose idle state 5710 * has the smallest exit latency irrespective 5711 * of any idle timestamp. 5712 */ 5713 min_exit_latency = idle->exit_latency; 5714 latest_idle_timestamp = rq->idle_stamp; 5715 shallowest_idle_cpu = i; 5716 } else if ((!idle || idle->exit_latency == min_exit_latency) && 5717 rq->idle_stamp > latest_idle_timestamp) { 5718 /* 5719 * If equal or no active idle state, then 5720 * the most recently idled CPU might have 5721 * a warmer cache. 5722 */ 5723 latest_idle_timestamp = rq->idle_stamp; 5724 shallowest_idle_cpu = i; 5725 } 5726 } else if (shallowest_idle_cpu == -1 && si_cpu == -1) { 5727 if (sched_idle_cpu(i)) { 5728 si_cpu = i; 5729 continue; 5730 } 5731 5732 load = cpu_runnable_load(cpu_rq(i)); 5733 if (load < min_load) { 5734 min_load = load; 5735 least_loaded_cpu = i; 5736 } 5737 } 5738 } 5739 5740 if (shallowest_idle_cpu != -1) 5741 return shallowest_idle_cpu; 5742 if (si_cpu != -1) 5743 return si_cpu; 5744 return least_loaded_cpu; 5745 } 5746 5747 static inline int find_idlest_cpu(struct sched_domain *sd, struct task_struct *p, 5748 int cpu, int prev_cpu, int sd_flag) 5749 { 5750 int new_cpu = cpu; 5751 5752 if (!cpumask_intersects(sched_domain_span(sd), p->cpus_ptr)) 5753 return prev_cpu; 5754 5755 /* 5756 * We need task's util for capacity_spare_without, sync it up to 5757 * prev_cpu's last_update_time. 5758 */ 5759 if (!(sd_flag & SD_BALANCE_FORK)) 5760 sync_entity_load_avg(&p->se); 5761 5762 while (sd) { 5763 struct sched_group *group; 5764 struct sched_domain *tmp; 5765 int weight; 5766 5767 if (!(sd->flags & sd_flag)) { 5768 sd = sd->child; 5769 continue; 5770 } 5771 5772 group = find_idlest_group(sd, p, cpu, sd_flag); 5773 if (!group) { 5774 sd = sd->child; 5775 continue; 5776 } 5777 5778 new_cpu = find_idlest_group_cpu(group, p, cpu); 5779 if (new_cpu == cpu) { 5780 /* Now try balancing at a lower domain level of 'cpu': */ 5781 sd = sd->child; 5782 continue; 5783 } 5784 5785 /* Now try balancing at a lower domain level of 'new_cpu': */ 5786 cpu = new_cpu; 5787 weight = sd->span_weight; 5788 sd = NULL; 5789 for_each_domain(cpu, tmp) { 5790 if (weight <= tmp->span_weight) 5791 break; 5792 if (tmp->flags & sd_flag) 5793 sd = tmp; 5794 } 5795 } 5796 5797 return new_cpu; 5798 } 5799 5800 #ifdef CONFIG_SCHED_SMT 5801 DEFINE_STATIC_KEY_FALSE(sched_smt_present); 5802 EXPORT_SYMBOL_GPL(sched_smt_present); 5803 5804 static inline void set_idle_cores(int cpu, int val) 5805 { 5806 struct sched_domain_shared *sds; 5807 5808 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu)); 5809 if (sds) 5810 WRITE_ONCE(sds->has_idle_cores, val); 5811 } 5812 5813 static inline bool test_idle_cores(int cpu, bool def) 5814 { 5815 struct sched_domain_shared *sds; 5816 5817 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu)); 5818 if (sds) 5819 return READ_ONCE(sds->has_idle_cores); 5820 5821 return def; 5822 } 5823 5824 /* 5825 * Scans the local SMT mask to see if the entire core is idle, and records this 5826 * information in sd_llc_shared->has_idle_cores. 5827 * 5828 * Since SMT siblings share all cache levels, inspecting this limited remote 5829 * state should be fairly cheap. 5830 */ 5831 void __update_idle_core(struct rq *rq) 5832 { 5833 int core = cpu_of(rq); 5834 int cpu; 5835 5836 rcu_read_lock(); 5837 if (test_idle_cores(core, true)) 5838 goto unlock; 5839 5840 for_each_cpu(cpu, cpu_smt_mask(core)) { 5841 if (cpu == core) 5842 continue; 5843 5844 if (!available_idle_cpu(cpu)) 5845 goto unlock; 5846 } 5847 5848 set_idle_cores(core, 1); 5849 unlock: 5850 rcu_read_unlock(); 5851 } 5852 5853 /* 5854 * Scan the entire LLC domain for idle cores; this dynamically switches off if 5855 * there are no idle cores left in the system; tracked through 5856 * sd_llc->shared->has_idle_cores and enabled through update_idle_core() above. 5857 */ 5858 static int select_idle_core(struct task_struct *p, struct sched_domain *sd, int target) 5859 { 5860 struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_idle_mask); 5861 int core, cpu; 5862 5863 if (!static_branch_likely(&sched_smt_present)) 5864 return -1; 5865 5866 if (!test_idle_cores(target, false)) 5867 return -1; 5868 5869 cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr); 5870 5871 for_each_cpu_wrap(core, cpus, target) { 5872 bool idle = true; 5873 5874 for_each_cpu(cpu, cpu_smt_mask(core)) { 5875 __cpumask_clear_cpu(cpu, cpus); 5876 if (!available_idle_cpu(cpu)) 5877 idle = false; 5878 } 5879 5880 if (idle) 5881 return core; 5882 } 5883 5884 /* 5885 * Failed to find an idle core; stop looking for one. 5886 */ 5887 set_idle_cores(target, 0); 5888 5889 return -1; 5890 } 5891 5892 /* 5893 * Scan the local SMT mask for idle CPUs. 5894 */ 5895 static int select_idle_smt(struct task_struct *p, int target) 5896 { 5897 int cpu, si_cpu = -1; 5898 5899 if (!static_branch_likely(&sched_smt_present)) 5900 return -1; 5901 5902 for_each_cpu(cpu, cpu_smt_mask(target)) { 5903 if (!cpumask_test_cpu(cpu, p->cpus_ptr)) 5904 continue; 5905 if (available_idle_cpu(cpu)) 5906 return cpu; 5907 if (si_cpu == -1 && sched_idle_cpu(cpu)) 5908 si_cpu = cpu; 5909 } 5910 5911 return si_cpu; 5912 } 5913 5914 #else /* CONFIG_SCHED_SMT */ 5915 5916 static inline int select_idle_core(struct task_struct *p, struct sched_domain *sd, int target) 5917 { 5918 return -1; 5919 } 5920 5921 static inline int select_idle_smt(struct task_struct *p, int target) 5922 { 5923 return -1; 5924 } 5925 5926 #endif /* CONFIG_SCHED_SMT */ 5927 5928 /* 5929 * Scan the LLC domain for idle CPUs; this is dynamically regulated by 5930 * comparing the average scan cost (tracked in sd->avg_scan_cost) against the 5931 * average idle time for this rq (as found in rq->avg_idle). 5932 */ 5933 static int select_idle_cpu(struct task_struct *p, struct sched_domain *sd, int target) 5934 { 5935 struct sched_domain *this_sd; 5936 u64 avg_cost, avg_idle; 5937 u64 time, cost; 5938 s64 delta; 5939 int this = smp_processor_id(); 5940 int cpu, nr = INT_MAX, si_cpu = -1; 5941 5942 this_sd = rcu_dereference(*this_cpu_ptr(&sd_llc)); 5943 if (!this_sd) 5944 return -1; 5945 5946 /* 5947 * Due to large variance we need a large fuzz factor; hackbench in 5948 * particularly is sensitive here. 5949 */ 5950 avg_idle = this_rq()->avg_idle / 512; 5951 avg_cost = this_sd->avg_scan_cost + 1; 5952 5953 if (sched_feat(SIS_AVG_CPU) && avg_idle < avg_cost) 5954 return -1; 5955 5956 if (sched_feat(SIS_PROP)) { 5957 u64 span_avg = sd->span_weight * avg_idle; 5958 if (span_avg > 4*avg_cost) 5959 nr = div_u64(span_avg, avg_cost); 5960 else 5961 nr = 4; 5962 } 5963 5964 time = cpu_clock(this); 5965 5966 for_each_cpu_wrap(cpu, sched_domain_span(sd), target) { 5967 if (!--nr) 5968 return si_cpu; 5969 if (!cpumask_test_cpu(cpu, p->cpus_ptr)) 5970 continue; 5971 if (available_idle_cpu(cpu)) 5972 break; 5973 if (si_cpu == -1 && sched_idle_cpu(cpu)) 5974 si_cpu = cpu; 5975 } 5976 5977 time = cpu_clock(this) - time; 5978 cost = this_sd->avg_scan_cost; 5979 delta = (s64)(time - cost) / 8; 5980 this_sd->avg_scan_cost += delta; 5981 5982 return cpu; 5983 } 5984 5985 /* 5986 * Try and locate an idle core/thread in the LLC cache domain. 5987 */ 5988 static int select_idle_sibling(struct task_struct *p, int prev, int target) 5989 { 5990 struct sched_domain *sd; 5991 int i, recent_used_cpu; 5992 5993 if (available_idle_cpu(target) || sched_idle_cpu(target)) 5994 return target; 5995 5996 /* 5997 * If the previous CPU is cache affine and idle, don't be stupid: 5998 */ 5999 if (prev != target && cpus_share_cache(prev, target) && 6000 (available_idle_cpu(prev) || sched_idle_cpu(prev))) 6001 return prev; 6002 6003 /* Check a recently used CPU as a potential idle candidate: */ 6004 recent_used_cpu = p->recent_used_cpu; 6005 if (recent_used_cpu != prev && 6006 recent_used_cpu != target && 6007 cpus_share_cache(recent_used_cpu, target) && 6008 (available_idle_cpu(recent_used_cpu) || sched_idle_cpu(recent_used_cpu)) && 6009 cpumask_test_cpu(p->recent_used_cpu, p->cpus_ptr)) { 6010 /* 6011 * Replace recent_used_cpu with prev as it is a potential 6012 * candidate for the next wake: 6013 */ 6014 p->recent_used_cpu = prev; 6015 return recent_used_cpu; 6016 } 6017 6018 sd = rcu_dereference(per_cpu(sd_llc, target)); 6019 if (!sd) 6020 return target; 6021 6022 i = select_idle_core(p, sd, target); 6023 if ((unsigned)i < nr_cpumask_bits) 6024 return i; 6025 6026 i = select_idle_cpu(p, sd, target); 6027 if ((unsigned)i < nr_cpumask_bits) 6028 return i; 6029 6030 i = select_idle_smt(p, target); 6031 if ((unsigned)i < nr_cpumask_bits) 6032 return i; 6033 6034 return target; 6035 } 6036 6037 /** 6038 * Amount of capacity of a CPU that is (estimated to be) used by CFS tasks 6039 * @cpu: the CPU to get the utilization of 6040 * 6041 * The unit of the return value must be the one of capacity so we can compare 6042 * the utilization with the capacity of the CPU that is available for CFS task 6043 * (ie cpu_capacity). 6044 * 6045 * cfs_rq.avg.util_avg is the sum of running time of runnable tasks plus the 6046 * recent utilization of currently non-runnable tasks on a CPU. It represents 6047 * the amount of utilization of a CPU in the range [0..capacity_orig] where 6048 * capacity_orig is the cpu_capacity available at the highest frequency 6049 * (arch_scale_freq_capacity()). 6050 * The utilization of a CPU converges towards a sum equal to or less than the 6051 * current capacity (capacity_curr <= capacity_orig) of the CPU because it is 6052 * the running time on this CPU scaled by capacity_curr. 6053 * 6054 * The estimated utilization of a CPU is defined to be the maximum between its 6055 * cfs_rq.avg.util_avg and the sum of the estimated utilization of the tasks 6056 * currently RUNNABLE on that CPU. 6057 * This allows to properly represent the expected utilization of a CPU which 6058 * has just got a big task running since a long sleep period. At the same time 6059 * however it preserves the benefits of the "blocked utilization" in 6060 * describing the potential for other tasks waking up on the same CPU. 6061 * 6062 * Nevertheless, cfs_rq.avg.util_avg can be higher than capacity_curr or even 6063 * higher than capacity_orig because of unfortunate rounding in 6064 * cfs.avg.util_avg or just after migrating tasks and new task wakeups until 6065 * the average stabilizes with the new running time. We need to check that the 6066 * utilization stays within the range of [0..capacity_orig] and cap it if 6067 * necessary. Without utilization capping, a group could be seen as overloaded 6068 * (CPU0 utilization at 121% + CPU1 utilization at 80%) whereas CPU1 has 20% of 6069 * available capacity. We allow utilization to overshoot capacity_curr (but not 6070 * capacity_orig) as it useful for predicting the capacity required after task 6071 * migrations (scheduler-driven DVFS). 6072 * 6073 * Return: the (estimated) utilization for the specified CPU 6074 */ 6075 static inline unsigned long cpu_util(int cpu) 6076 { 6077 struct cfs_rq *cfs_rq; 6078 unsigned int util; 6079 6080 cfs_rq = &cpu_rq(cpu)->cfs; 6081 util = READ_ONCE(cfs_rq->avg.util_avg); 6082 6083 if (sched_feat(UTIL_EST)) 6084 util = max(util, READ_ONCE(cfs_rq->avg.util_est.enqueued)); 6085 6086 return min_t(unsigned long, util, capacity_orig_of(cpu)); 6087 } 6088 6089 /* 6090 * cpu_util_without: compute cpu utilization without any contributions from *p 6091 * @cpu: the CPU which utilization is requested 6092 * @p: the task which utilization should be discounted 6093 * 6094 * The utilization of a CPU is defined by the utilization of tasks currently 6095 * enqueued on that CPU as well as tasks which are currently sleeping after an 6096 * execution on that CPU. 6097 * 6098 * This method returns the utilization of the specified CPU by discounting the 6099 * utilization of the specified task, whenever the task is currently 6100 * contributing to the CPU utilization. 6101 */ 6102 static unsigned long cpu_util_without(int cpu, struct task_struct *p) 6103 { 6104 struct cfs_rq *cfs_rq; 6105 unsigned int util; 6106 6107 /* Task has no contribution or is new */ 6108 if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time)) 6109 return cpu_util(cpu); 6110 6111 cfs_rq = &cpu_rq(cpu)->cfs; 6112 util = READ_ONCE(cfs_rq->avg.util_avg); 6113 6114 /* Discount task's util from CPU's util */ 6115 lsub_positive(&util, task_util(p)); 6116 6117 /* 6118 * Covered cases: 6119 * 6120 * a) if *p is the only task sleeping on this CPU, then: 6121 * cpu_util (== task_util) > util_est (== 0) 6122 * and thus we return: 6123 * cpu_util_without = (cpu_util - task_util) = 0 6124 * 6125 * b) if other tasks are SLEEPING on this CPU, which is now exiting 6126 * IDLE, then: 6127 * cpu_util >= task_util 6128 * cpu_util > util_est (== 0) 6129 * and thus we discount *p's blocked utilization to return: 6130 * cpu_util_without = (cpu_util - task_util) >= 0 6131 * 6132 * c) if other tasks are RUNNABLE on that CPU and 6133 * util_est > cpu_util 6134 * then we use util_est since it returns a more restrictive 6135 * estimation of the spare capacity on that CPU, by just 6136 * considering the expected utilization of tasks already 6137 * runnable on that CPU. 6138 * 6139 * Cases a) and b) are covered by the above code, while case c) is 6140 * covered by the following code when estimated utilization is 6141 * enabled. 6142 */ 6143 if (sched_feat(UTIL_EST)) { 6144 unsigned int estimated = 6145 READ_ONCE(cfs_rq->avg.util_est.enqueued); 6146 6147 /* 6148 * Despite the following checks we still have a small window 6149 * for a possible race, when an execl's select_task_rq_fair() 6150 * races with LB's detach_task(): 6151 * 6152 * detach_task() 6153 * p->on_rq = TASK_ON_RQ_MIGRATING; 6154 * ---------------------------------- A 6155 * deactivate_task() \ 6156 * dequeue_task() + RaceTime 6157 * util_est_dequeue() / 6158 * ---------------------------------- B 6159 * 6160 * The additional check on "current == p" it's required to 6161 * properly fix the execl regression and it helps in further 6162 * reducing the chances for the above race. 6163 */ 6164 if (unlikely(task_on_rq_queued(p) || current == p)) 6165 lsub_positive(&estimated, _task_util_est(p)); 6166 6167 util = max(util, estimated); 6168 } 6169 6170 /* 6171 * Utilization (estimated) can exceed the CPU capacity, thus let's 6172 * clamp to the maximum CPU capacity to ensure consistency with 6173 * the cpu_util call. 6174 */ 6175 return min_t(unsigned long, util, capacity_orig_of(cpu)); 6176 } 6177 6178 /* 6179 * Disable WAKE_AFFINE in the case where task @p doesn't fit in the 6180 * capacity of either the waking CPU @cpu or the previous CPU @prev_cpu. 6181 * 6182 * In that case WAKE_AFFINE doesn't make sense and we'll let 6183 * BALANCE_WAKE sort things out. 6184 */ 6185 static int wake_cap(struct task_struct *p, int cpu, int prev_cpu) 6186 { 6187 long min_cap, max_cap; 6188 6189 if (!static_branch_unlikely(&sched_asym_cpucapacity)) 6190 return 0; 6191 6192 min_cap = min(capacity_orig_of(prev_cpu), capacity_orig_of(cpu)); 6193 max_cap = cpu_rq(cpu)->rd->max_cpu_capacity; 6194 6195 /* Minimum capacity is close to max, no need to abort wake_affine */ 6196 if (max_cap - min_cap < max_cap >> 3) 6197 return 0; 6198 6199 /* Bring task utilization in sync with prev_cpu */ 6200 sync_entity_load_avg(&p->se); 6201 6202 return !task_fits_capacity(p, min_cap); 6203 } 6204 6205 /* 6206 * Predicts what cpu_util(@cpu) would return if @p was migrated (and enqueued) 6207 * to @dst_cpu. 6208 */ 6209 static unsigned long cpu_util_next(int cpu, struct task_struct *p, int dst_cpu) 6210 { 6211 struct cfs_rq *cfs_rq = &cpu_rq(cpu)->cfs; 6212 unsigned long util_est, util = READ_ONCE(cfs_rq->avg.util_avg); 6213 6214 /* 6215 * If @p migrates from @cpu to another, remove its contribution. Or, 6216 * if @p migrates from another CPU to @cpu, add its contribution. In 6217 * the other cases, @cpu is not impacted by the migration, so the 6218 * util_avg should already be correct. 6219 */ 6220 if (task_cpu(p) == cpu && dst_cpu != cpu) 6221 sub_positive(&util, task_util(p)); 6222 else if (task_cpu(p) != cpu && dst_cpu == cpu) 6223 util += task_util(p); 6224 6225 if (sched_feat(UTIL_EST)) { 6226 util_est = READ_ONCE(cfs_rq->avg.util_est.enqueued); 6227 6228 /* 6229 * During wake-up, the task isn't enqueued yet and doesn't 6230 * appear in the cfs_rq->avg.util_est.enqueued of any rq, 6231 * so just add it (if needed) to "simulate" what will be 6232 * cpu_util() after the task has been enqueued. 6233 */ 6234 if (dst_cpu == cpu) 6235 util_est += _task_util_est(p); 6236 6237 util = max(util, util_est); 6238 } 6239 6240 return min(util, capacity_orig_of(cpu)); 6241 } 6242 6243 /* 6244 * compute_energy(): Estimates the energy that @pd would consume if @p was 6245 * migrated to @dst_cpu. compute_energy() predicts what will be the utilization 6246 * landscape of @pd's CPUs after the task migration, and uses the Energy Model 6247 * to compute what would be the energy if we decided to actually migrate that 6248 * task. 6249 */ 6250 static long 6251 compute_energy(struct task_struct *p, int dst_cpu, struct perf_domain *pd) 6252 { 6253 struct cpumask *pd_mask = perf_domain_span(pd); 6254 unsigned long cpu_cap = arch_scale_cpu_capacity(cpumask_first(pd_mask)); 6255 unsigned long max_util = 0, sum_util = 0; 6256 int cpu; 6257 6258 /* 6259 * The capacity state of CPUs of the current rd can be driven by CPUs 6260 * of another rd if they belong to the same pd. So, account for the 6261 * utilization of these CPUs too by masking pd with cpu_online_mask 6262 * instead of the rd span. 6263 * 6264 * If an entire pd is outside of the current rd, it will not appear in 6265 * its pd list and will not be accounted by compute_energy(). 6266 */ 6267 for_each_cpu_and(cpu, pd_mask, cpu_online_mask) { 6268 unsigned long cpu_util, util_cfs = cpu_util_next(cpu, p, dst_cpu); 6269 struct task_struct *tsk = cpu == dst_cpu ? p : NULL; 6270 6271 /* 6272 * Busy time computation: utilization clamping is not 6273 * required since the ratio (sum_util / cpu_capacity) 6274 * is already enough to scale the EM reported power 6275 * consumption at the (eventually clamped) cpu_capacity. 6276 */ 6277 sum_util += schedutil_cpu_util(cpu, util_cfs, cpu_cap, 6278 ENERGY_UTIL, NULL); 6279 6280 /* 6281 * Performance domain frequency: utilization clamping 6282 * must be considered since it affects the selection 6283 * of the performance domain frequency. 6284 * NOTE: in case RT tasks are running, by default the 6285 * FREQUENCY_UTIL's utilization can be max OPP. 6286 */ 6287 cpu_util = schedutil_cpu_util(cpu, util_cfs, cpu_cap, 6288 FREQUENCY_UTIL, tsk); 6289 max_util = max(max_util, cpu_util); 6290 } 6291 6292 return em_pd_energy(pd->em_pd, max_util, sum_util); 6293 } 6294 6295 /* 6296 * find_energy_efficient_cpu(): Find most energy-efficient target CPU for the 6297 * waking task. find_energy_efficient_cpu() looks for the CPU with maximum 6298 * spare capacity in each performance domain and uses it as a potential 6299 * candidate to execute the task. Then, it uses the Energy Model to figure 6300 * out which of the CPU candidates is the most energy-efficient. 6301 * 6302 * The rationale for this heuristic is as follows. In a performance domain, 6303 * all the most energy efficient CPU candidates (according to the Energy 6304 * Model) are those for which we'll request a low frequency. When there are 6305 * several CPUs for which the frequency request will be the same, we don't 6306 * have enough data to break the tie between them, because the Energy Model 6307 * only includes active power costs. With this model, if we assume that 6308 * frequency requests follow utilization (e.g. using schedutil), the CPU with 6309 * the maximum spare capacity in a performance domain is guaranteed to be among 6310 * the best candidates of the performance domain. 6311 * 6312 * In practice, it could be preferable from an energy standpoint to pack 6313 * small tasks on a CPU in order to let other CPUs go in deeper idle states, 6314 * but that could also hurt our chances to go cluster idle, and we have no 6315 * ways to tell with the current Energy Model if this is actually a good 6316 * idea or not. So, find_energy_efficient_cpu() basically favors 6317 * cluster-packing, and spreading inside a cluster. That should at least be 6318 * a good thing for latency, and this is consistent with the idea that most 6319 * of the energy savings of EAS come from the asymmetry of the system, and 6320 * not so much from breaking the tie between identical CPUs. That's also the 6321 * reason why EAS is enabled in the topology code only for systems where 6322 * SD_ASYM_CPUCAPACITY is set. 6323 * 6324 * NOTE: Forkees are not accepted in the energy-aware wake-up path because 6325 * they don't have any useful utilization data yet and it's not possible to 6326 * forecast their impact on energy consumption. Consequently, they will be 6327 * placed by find_idlest_cpu() on the least loaded CPU, which might turn out 6328 * to be energy-inefficient in some use-cases. The alternative would be to 6329 * bias new tasks towards specific types of CPUs first, or to try to infer 6330 * their util_avg from the parent task, but those heuristics could hurt 6331 * other use-cases too. So, until someone finds a better way to solve this, 6332 * let's keep things simple by re-using the existing slow path. 6333 */ 6334 static int find_energy_efficient_cpu(struct task_struct *p, int prev_cpu) 6335 { 6336 unsigned long prev_delta = ULONG_MAX, best_delta = ULONG_MAX; 6337 struct root_domain *rd = cpu_rq(smp_processor_id())->rd; 6338 unsigned long cpu_cap, util, base_energy = 0; 6339 int cpu, best_energy_cpu = prev_cpu; 6340 struct sched_domain *sd; 6341 struct perf_domain *pd; 6342 6343 rcu_read_lock(); 6344 pd = rcu_dereference(rd->pd); 6345 if (!pd || READ_ONCE(rd->overutilized)) 6346 goto fail; 6347 6348 /* 6349 * Energy-aware wake-up happens on the lowest sched_domain starting 6350 * from sd_asym_cpucapacity spanning over this_cpu and prev_cpu. 6351 */ 6352 sd = rcu_dereference(*this_cpu_ptr(&sd_asym_cpucapacity)); 6353 while (sd && !cpumask_test_cpu(prev_cpu, sched_domain_span(sd))) 6354 sd = sd->parent; 6355 if (!sd) 6356 goto fail; 6357 6358 sync_entity_load_avg(&p->se); 6359 if (!task_util_est(p)) 6360 goto unlock; 6361 6362 for (; pd; pd = pd->next) { 6363 unsigned long cur_delta, spare_cap, max_spare_cap = 0; 6364 unsigned long base_energy_pd; 6365 int max_spare_cap_cpu = -1; 6366 6367 /* Compute the 'base' energy of the pd, without @p */ 6368 base_energy_pd = compute_energy(p, -1, pd); 6369 base_energy += base_energy_pd; 6370 6371 for_each_cpu_and(cpu, perf_domain_span(pd), sched_domain_span(sd)) { 6372 if (!cpumask_test_cpu(cpu, p->cpus_ptr)) 6373 continue; 6374 6375 /* Skip CPUs that will be overutilized. */ 6376 util = cpu_util_next(cpu, p, cpu); 6377 cpu_cap = capacity_of(cpu); 6378 if (!fits_capacity(util, cpu_cap)) 6379 continue; 6380 6381 /* Always use prev_cpu as a candidate. */ 6382 if (cpu == prev_cpu) { 6383 prev_delta = compute_energy(p, prev_cpu, pd); 6384 prev_delta -= base_energy_pd; 6385 best_delta = min(best_delta, prev_delta); 6386 } 6387 6388 /* 6389 * Find the CPU with the maximum spare capacity in 6390 * the performance domain 6391 */ 6392 spare_cap = cpu_cap - util; 6393 if (spare_cap > max_spare_cap) { 6394 max_spare_cap = spare_cap; 6395 max_spare_cap_cpu = cpu; 6396 } 6397 } 6398 6399 /* Evaluate the energy impact of using this CPU. */ 6400 if (max_spare_cap_cpu >= 0 && max_spare_cap_cpu != prev_cpu) { 6401 cur_delta = compute_energy(p, max_spare_cap_cpu, pd); 6402 cur_delta -= base_energy_pd; 6403 if (cur_delta < best_delta) { 6404 best_delta = cur_delta; 6405 best_energy_cpu = max_spare_cap_cpu; 6406 } 6407 } 6408 } 6409 unlock: 6410 rcu_read_unlock(); 6411 6412 /* 6413 * Pick the best CPU if prev_cpu cannot be used, or if it saves at 6414 * least 6% of the energy used by prev_cpu. 6415 */ 6416 if (prev_delta == ULONG_MAX) 6417 return best_energy_cpu; 6418 6419 if ((prev_delta - best_delta) > ((prev_delta + base_energy) >> 4)) 6420 return best_energy_cpu; 6421 6422 return prev_cpu; 6423 6424 fail: 6425 rcu_read_unlock(); 6426 6427 return -1; 6428 } 6429 6430 /* 6431 * select_task_rq_fair: Select target runqueue for the waking task in domains 6432 * that have the 'sd_flag' flag set. In practice, this is SD_BALANCE_WAKE, 6433 * SD_BALANCE_FORK, or SD_BALANCE_EXEC. 6434 * 6435 * Balances load by selecting the idlest CPU in the idlest group, or under 6436 * certain conditions an idle sibling CPU if the domain has SD_WAKE_AFFINE set. 6437 * 6438 * Returns the target CPU number. 6439 * 6440 * preempt must be disabled. 6441 */ 6442 static int 6443 select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_flags) 6444 { 6445 struct sched_domain *tmp, *sd = NULL; 6446 int cpu = smp_processor_id(); 6447 int new_cpu = prev_cpu; 6448 int want_affine = 0; 6449 int sync = (wake_flags & WF_SYNC) && !(current->flags & PF_EXITING); 6450 6451 if (sd_flag & SD_BALANCE_WAKE) { 6452 record_wakee(p); 6453 6454 if (sched_energy_enabled()) { 6455 new_cpu = find_energy_efficient_cpu(p, prev_cpu); 6456 if (new_cpu >= 0) 6457 return new_cpu; 6458 new_cpu = prev_cpu; 6459 } 6460 6461 want_affine = !wake_wide(p) && !wake_cap(p, cpu, prev_cpu) && 6462 cpumask_test_cpu(cpu, p->cpus_ptr); 6463 } 6464 6465 rcu_read_lock(); 6466 for_each_domain(cpu, tmp) { 6467 if (!(tmp->flags & SD_LOAD_BALANCE)) 6468 break; 6469 6470 /* 6471 * If both 'cpu' and 'prev_cpu' are part of this domain, 6472 * cpu is a valid SD_WAKE_AFFINE target. 6473 */ 6474 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) && 6475 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) { 6476 if (cpu != prev_cpu) 6477 new_cpu = wake_affine(tmp, p, cpu, prev_cpu, sync); 6478 6479 sd = NULL; /* Prefer wake_affine over balance flags */ 6480 break; 6481 } 6482 6483 if (tmp->flags & sd_flag) 6484 sd = tmp; 6485 else if (!want_affine) 6486 break; 6487 } 6488 6489 if (unlikely(sd)) { 6490 /* Slow path */ 6491 new_cpu = find_idlest_cpu(sd, p, cpu, prev_cpu, sd_flag); 6492 } else if (sd_flag & SD_BALANCE_WAKE) { /* XXX always ? */ 6493 /* Fast path */ 6494 6495 new_cpu = select_idle_sibling(p, prev_cpu, new_cpu); 6496 6497 if (want_affine) 6498 current->recent_used_cpu = cpu; 6499 } 6500 rcu_read_unlock(); 6501 6502 return new_cpu; 6503 } 6504 6505 static void detach_entity_cfs_rq(struct sched_entity *se); 6506 6507 /* 6508 * Called immediately before a task is migrated to a new CPU; task_cpu(p) and 6509 * cfs_rq_of(p) references at time of call are still valid and identify the 6510 * previous CPU. The caller guarantees p->pi_lock or task_rq(p)->lock is held. 6511 */ 6512 static void migrate_task_rq_fair(struct task_struct *p, int new_cpu) 6513 { 6514 /* 6515 * As blocked tasks retain absolute vruntime the migration needs to 6516 * deal with this by subtracting the old and adding the new 6517 * min_vruntime -- the latter is done by enqueue_entity() when placing 6518 * the task on the new runqueue. 6519 */ 6520 if (p->state == TASK_WAKING) { 6521 struct sched_entity *se = &p->se; 6522 struct cfs_rq *cfs_rq = cfs_rq_of(se); 6523 u64 min_vruntime; 6524 6525 #ifndef CONFIG_64BIT 6526 u64 min_vruntime_copy; 6527 6528 do { 6529 min_vruntime_copy = cfs_rq->min_vruntime_copy; 6530 smp_rmb(); 6531 min_vruntime = cfs_rq->min_vruntime; 6532 } while (min_vruntime != min_vruntime_copy); 6533 #else 6534 min_vruntime = cfs_rq->min_vruntime; 6535 #endif 6536 6537 se->vruntime -= min_vruntime; 6538 } 6539 6540 if (p->on_rq == TASK_ON_RQ_MIGRATING) { 6541 /* 6542 * In case of TASK_ON_RQ_MIGRATING we in fact hold the 'old' 6543 * rq->lock and can modify state directly. 6544 */ 6545 lockdep_assert_held(&task_rq(p)->lock); 6546 detach_entity_cfs_rq(&p->se); 6547 6548 } else { 6549 /* 6550 * We are supposed to update the task to "current" time, then 6551 * its up to date and ready to go to new CPU/cfs_rq. But we 6552 * have difficulty in getting what current time is, so simply 6553 * throw away the out-of-date time. This will result in the 6554 * wakee task is less decayed, but giving the wakee more load 6555 * sounds not bad. 6556 */ 6557 remove_entity_load_avg(&p->se); 6558 } 6559 6560 /* Tell new CPU we are migrated */ 6561 p->se.avg.last_update_time = 0; 6562 6563 /* We have migrated, no longer consider this task hot */ 6564 p->se.exec_start = 0; 6565 6566 update_scan_period(p, new_cpu); 6567 } 6568 6569 static void task_dead_fair(struct task_struct *p) 6570 { 6571 remove_entity_load_avg(&p->se); 6572 } 6573 #endif /* CONFIG_SMP */ 6574 6575 static unsigned long wakeup_gran(struct sched_entity *se) 6576 { 6577 unsigned long gran = sysctl_sched_wakeup_granularity; 6578 6579 /* 6580 * Since its curr running now, convert the gran from real-time 6581 * to virtual-time in his units. 6582 * 6583 * By using 'se' instead of 'curr' we penalize light tasks, so 6584 * they get preempted easier. That is, if 'se' < 'curr' then 6585 * the resulting gran will be larger, therefore penalizing the 6586 * lighter, if otoh 'se' > 'curr' then the resulting gran will 6587 * be smaller, again penalizing the lighter task. 6588 * 6589 * This is especially important for buddies when the leftmost 6590 * task is higher priority than the buddy. 6591 */ 6592 return calc_delta_fair(gran, se); 6593 } 6594 6595 /* 6596 * Should 'se' preempt 'curr'. 6597 * 6598 * |s1 6599 * |s2 6600 * |s3 6601 * g 6602 * |<--->|c 6603 * 6604 * w(c, s1) = -1 6605 * w(c, s2) = 0 6606 * w(c, s3) = 1 6607 * 6608 */ 6609 static int 6610 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se) 6611 { 6612 s64 gran, vdiff = curr->vruntime - se->vruntime; 6613 6614 if (vdiff <= 0) 6615 return -1; 6616 6617 gran = wakeup_gran(se); 6618 if (vdiff > gran) 6619 return 1; 6620 6621 return 0; 6622 } 6623 6624 static void set_last_buddy(struct sched_entity *se) 6625 { 6626 if (entity_is_task(se) && unlikely(task_has_idle_policy(task_of(se)))) 6627 return; 6628 6629 for_each_sched_entity(se) { 6630 if (SCHED_WARN_ON(!se->on_rq)) 6631 return; 6632 cfs_rq_of(se)->last = se; 6633 } 6634 } 6635 6636 static void set_next_buddy(struct sched_entity *se) 6637 { 6638 if (entity_is_task(se) && unlikely(task_has_idle_policy(task_of(se)))) 6639 return; 6640 6641 for_each_sched_entity(se) { 6642 if (SCHED_WARN_ON(!se->on_rq)) 6643 return; 6644 cfs_rq_of(se)->next = se; 6645 } 6646 } 6647 6648 static void set_skip_buddy(struct sched_entity *se) 6649 { 6650 for_each_sched_entity(se) 6651 cfs_rq_of(se)->skip = se; 6652 } 6653 6654 /* 6655 * Preempt the current task with a newly woken task if needed: 6656 */ 6657 static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags) 6658 { 6659 struct task_struct *curr = rq->curr; 6660 struct sched_entity *se = &curr->se, *pse = &p->se; 6661 struct cfs_rq *cfs_rq = task_cfs_rq(curr); 6662 int scale = cfs_rq->nr_running >= sched_nr_latency; 6663 int next_buddy_marked = 0; 6664 6665 if (unlikely(se == pse)) 6666 return; 6667 6668 /* 6669 * This is possible from callers such as attach_tasks(), in which we 6670 * unconditionally check_prempt_curr() after an enqueue (which may have 6671 * lead to a throttle). This both saves work and prevents false 6672 * next-buddy nomination below. 6673 */ 6674 if (unlikely(throttled_hierarchy(cfs_rq_of(pse)))) 6675 return; 6676 6677 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) { 6678 set_next_buddy(pse); 6679 next_buddy_marked = 1; 6680 } 6681 6682 /* 6683 * We can come here with TIF_NEED_RESCHED already set from new task 6684 * wake up path. 6685 * 6686 * Note: this also catches the edge-case of curr being in a throttled 6687 * group (e.g. via set_curr_task), since update_curr() (in the 6688 * enqueue of curr) will have resulted in resched being set. This 6689 * prevents us from potentially nominating it as a false LAST_BUDDY 6690 * below. 6691 */ 6692 if (test_tsk_need_resched(curr)) 6693 return; 6694 6695 /* Idle tasks are by definition preempted by non-idle tasks. */ 6696 if (unlikely(task_has_idle_policy(curr)) && 6697 likely(!task_has_idle_policy(p))) 6698 goto preempt; 6699 6700 /* 6701 * Batch and idle tasks do not preempt non-idle tasks (their preemption 6702 * is driven by the tick): 6703 */ 6704 if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION)) 6705 return; 6706 6707 find_matching_se(&se, &pse); 6708 update_curr(cfs_rq_of(se)); 6709 BUG_ON(!pse); 6710 if (wakeup_preempt_entity(se, pse) == 1) { 6711 /* 6712 * Bias pick_next to pick the sched entity that is 6713 * triggering this preemption. 6714 */ 6715 if (!next_buddy_marked) 6716 set_next_buddy(pse); 6717 goto preempt; 6718 } 6719 6720 return; 6721 6722 preempt: 6723 resched_curr(rq); 6724 /* 6725 * Only set the backward buddy when the current task is still 6726 * on the rq. This can happen when a wakeup gets interleaved 6727 * with schedule on the ->pre_schedule() or idle_balance() 6728 * point, either of which can * drop the rq lock. 6729 * 6730 * Also, during early boot the idle thread is in the fair class, 6731 * for obvious reasons its a bad idea to schedule back to it. 6732 */ 6733 if (unlikely(!se->on_rq || curr == rq->idle)) 6734 return; 6735 6736 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se)) 6737 set_last_buddy(se); 6738 } 6739 6740 static struct task_struct * 6741 pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf) 6742 { 6743 struct cfs_rq *cfs_rq = &rq->cfs; 6744 struct sched_entity *se; 6745 struct task_struct *p; 6746 int new_tasks; 6747 6748 again: 6749 if (!cfs_rq->nr_running) 6750 goto idle; 6751 6752 #ifdef CONFIG_FAIR_GROUP_SCHED 6753 if (!prev || prev->sched_class != &fair_sched_class) 6754 goto simple; 6755 6756 /* 6757 * Because of the set_next_buddy() in dequeue_task_fair() it is rather 6758 * likely that a next task is from the same cgroup as the current. 6759 * 6760 * Therefore attempt to avoid putting and setting the entire cgroup 6761 * hierarchy, only change the part that actually changes. 6762 */ 6763 6764 do { 6765 struct sched_entity *curr = cfs_rq->curr; 6766 6767 /* 6768 * Since we got here without doing put_prev_entity() we also 6769 * have to consider cfs_rq->curr. If it is still a runnable 6770 * entity, update_curr() will update its vruntime, otherwise 6771 * forget we've ever seen it. 6772 */ 6773 if (curr) { 6774 if (curr->on_rq) 6775 update_curr(cfs_rq); 6776 else 6777 curr = NULL; 6778 6779 /* 6780 * This call to check_cfs_rq_runtime() will do the 6781 * throttle and dequeue its entity in the parent(s). 6782 * Therefore the nr_running test will indeed 6783 * be correct. 6784 */ 6785 if (unlikely(check_cfs_rq_runtime(cfs_rq))) { 6786 cfs_rq = &rq->cfs; 6787 6788 if (!cfs_rq->nr_running) 6789 goto idle; 6790 6791 goto simple; 6792 } 6793 } 6794 6795 se = pick_next_entity(cfs_rq, curr); 6796 cfs_rq = group_cfs_rq(se); 6797 } while (cfs_rq); 6798 6799 p = task_of(se); 6800 6801 /* 6802 * Since we haven't yet done put_prev_entity and if the selected task 6803 * is a different task than we started out with, try and touch the 6804 * least amount of cfs_rqs. 6805 */ 6806 if (prev != p) { 6807 struct sched_entity *pse = &prev->se; 6808 6809 while (!(cfs_rq = is_same_group(se, pse))) { 6810 int se_depth = se->depth; 6811 int pse_depth = pse->depth; 6812 6813 if (se_depth <= pse_depth) { 6814 put_prev_entity(cfs_rq_of(pse), pse); 6815 pse = parent_entity(pse); 6816 } 6817 if (se_depth >= pse_depth) { 6818 set_next_entity(cfs_rq_of(se), se); 6819 se = parent_entity(se); 6820 } 6821 } 6822 6823 put_prev_entity(cfs_rq, pse); 6824 set_next_entity(cfs_rq, se); 6825 } 6826 6827 goto done; 6828 simple: 6829 #endif 6830 if (prev) 6831 put_prev_task(rq, prev); 6832 6833 do { 6834 se = pick_next_entity(cfs_rq, NULL); 6835 set_next_entity(cfs_rq, se); 6836 cfs_rq = group_cfs_rq(se); 6837 } while (cfs_rq); 6838 6839 p = task_of(se); 6840 6841 done: __maybe_unused; 6842 #ifdef CONFIG_SMP 6843 /* 6844 * Move the next running task to the front of 6845 * the list, so our cfs_tasks list becomes MRU 6846 * one. 6847 */ 6848 list_move(&p->se.group_node, &rq->cfs_tasks); 6849 #endif 6850 6851 if (hrtick_enabled(rq)) 6852 hrtick_start_fair(rq, p); 6853 6854 update_misfit_status(p, rq); 6855 6856 return p; 6857 6858 idle: 6859 if (!rf) 6860 return NULL; 6861 6862 new_tasks = newidle_balance(rq, rf); 6863 6864 /* 6865 * Because newidle_balance() releases (and re-acquires) rq->lock, it is 6866 * possible for any higher priority task to appear. In that case we 6867 * must re-start the pick_next_entity() loop. 6868 */ 6869 if (new_tasks < 0) 6870 return RETRY_TASK; 6871 6872 if (new_tasks > 0) 6873 goto again; 6874 6875 /* 6876 * rq is about to be idle, check if we need to update the 6877 * lost_idle_time of clock_pelt 6878 */ 6879 update_idle_rq_clock_pelt(rq); 6880 6881 return NULL; 6882 } 6883 6884 /* 6885 * Account for a descheduled task: 6886 */ 6887 static void put_prev_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf) 6888 { 6889 struct sched_entity *se = &prev->se; 6890 struct cfs_rq *cfs_rq; 6891 6892 for_each_sched_entity(se) { 6893 cfs_rq = cfs_rq_of(se); 6894 put_prev_entity(cfs_rq, se); 6895 } 6896 } 6897 6898 /* 6899 * sched_yield() is very simple 6900 * 6901 * The magic of dealing with the ->skip buddy is in pick_next_entity. 6902 */ 6903 static void yield_task_fair(struct rq *rq) 6904 { 6905 struct task_struct *curr = rq->curr; 6906 struct cfs_rq *cfs_rq = task_cfs_rq(curr); 6907 struct sched_entity *se = &curr->se; 6908 6909 /* 6910 * Are we the only task in the tree? 6911 */ 6912 if (unlikely(rq->nr_running == 1)) 6913 return; 6914 6915 clear_buddies(cfs_rq, se); 6916 6917 if (curr->policy != SCHED_BATCH) { 6918 update_rq_clock(rq); 6919 /* 6920 * Update run-time statistics of the 'current'. 6921 */ 6922 update_curr(cfs_rq); 6923 /* 6924 * Tell update_rq_clock() that we've just updated, 6925 * so we don't do microscopic update in schedule() 6926 * and double the fastpath cost. 6927 */ 6928 rq_clock_skip_update(rq); 6929 } 6930 6931 set_skip_buddy(se); 6932 } 6933 6934 static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt) 6935 { 6936 struct sched_entity *se = &p->se; 6937 6938 /* throttled hierarchies are not runnable */ 6939 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se))) 6940 return false; 6941 6942 /* Tell the scheduler that we'd really like pse to run next. */ 6943 set_next_buddy(se); 6944 6945 yield_task_fair(rq); 6946 6947 return true; 6948 } 6949 6950 #ifdef CONFIG_SMP 6951 /************************************************** 6952 * Fair scheduling class load-balancing methods. 6953 * 6954 * BASICS 6955 * 6956 * The purpose of load-balancing is to achieve the same basic fairness the 6957 * per-CPU scheduler provides, namely provide a proportional amount of compute 6958 * time to each task. This is expressed in the following equation: 6959 * 6960 * W_i,n/P_i == W_j,n/P_j for all i,j (1) 6961 * 6962 * Where W_i,n is the n-th weight average for CPU i. The instantaneous weight 6963 * W_i,0 is defined as: 6964 * 6965 * W_i,0 = \Sum_j w_i,j (2) 6966 * 6967 * Where w_i,j is the weight of the j-th runnable task on CPU i. This weight 6968 * is derived from the nice value as per sched_prio_to_weight[]. 6969 * 6970 * The weight average is an exponential decay average of the instantaneous 6971 * weight: 6972 * 6973 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3) 6974 * 6975 * C_i is the compute capacity of CPU i, typically it is the 6976 * fraction of 'recent' time available for SCHED_OTHER task execution. But it 6977 * can also include other factors [XXX]. 6978 * 6979 * To achieve this balance we define a measure of imbalance which follows 6980 * directly from (1): 6981 * 6982 * imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j } (4) 6983 * 6984 * We them move tasks around to minimize the imbalance. In the continuous 6985 * function space it is obvious this converges, in the discrete case we get 6986 * a few fun cases generally called infeasible weight scenarios. 6987 * 6988 * [XXX expand on: 6989 * - infeasible weights; 6990 * - local vs global optima in the discrete case. ] 6991 * 6992 * 6993 * SCHED DOMAINS 6994 * 6995 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2) 6996 * for all i,j solution, we create a tree of CPUs that follows the hardware 6997 * topology where each level pairs two lower groups (or better). This results 6998 * in O(log n) layers. Furthermore we reduce the number of CPUs going up the 6999 * tree to only the first of the previous level and we decrease the frequency 7000 * of load-balance at each level inv. proportional to the number of CPUs in 7001 * the groups. 7002 * 7003 * This yields: 7004 * 7005 * log_2 n 1 n 7006 * \Sum { --- * --- * 2^i } = O(n) (5) 7007 * i = 0 2^i 2^i 7008 * `- size of each group 7009 * | | `- number of CPUs doing load-balance 7010 * | `- freq 7011 * `- sum over all levels 7012 * 7013 * Coupled with a limit on how many tasks we can migrate every balance pass, 7014 * this makes (5) the runtime complexity of the balancer. 7015 * 7016 * An important property here is that each CPU is still (indirectly) connected 7017 * to every other CPU in at most O(log n) steps: 7018 * 7019 * The adjacency matrix of the resulting graph is given by: 7020 * 7021 * log_2 n 7022 * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6) 7023 * k = 0 7024 * 7025 * And you'll find that: 7026 * 7027 * A^(log_2 n)_i,j != 0 for all i,j (7) 7028 * 7029 * Showing there's indeed a path between every CPU in at most O(log n) steps. 7030 * The task movement gives a factor of O(m), giving a convergence complexity 7031 * of: 7032 * 7033 * O(nm log n), n := nr_cpus, m := nr_tasks (8) 7034 * 7035 * 7036 * WORK CONSERVING 7037 * 7038 * In order to avoid CPUs going idle while there's still work to do, new idle 7039 * balancing is more aggressive and has the newly idle CPU iterate up the domain 7040 * tree itself instead of relying on other CPUs to bring it work. 7041 * 7042 * This adds some complexity to both (5) and (8) but it reduces the total idle 7043 * time. 7044 * 7045 * [XXX more?] 7046 * 7047 * 7048 * CGROUPS 7049 * 7050 * Cgroups make a horror show out of (2), instead of a simple sum we get: 7051 * 7052 * s_k,i 7053 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9) 7054 * S_k 7055 * 7056 * Where 7057 * 7058 * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10) 7059 * 7060 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on CPU i. 7061 * 7062 * The big problem is S_k, its a global sum needed to compute a local (W_i) 7063 * property. 7064 * 7065 * [XXX write more on how we solve this.. _after_ merging pjt's patches that 7066 * rewrite all of this once again.] 7067 */ 7068 7069 static unsigned long __read_mostly max_load_balance_interval = HZ/10; 7070 7071 enum fbq_type { regular, remote, all }; 7072 7073 enum group_type { 7074 group_other = 0, 7075 group_misfit_task, 7076 group_imbalanced, 7077 group_overloaded, 7078 }; 7079 7080 #define LBF_ALL_PINNED 0x01 7081 #define LBF_NEED_BREAK 0x02 7082 #define LBF_DST_PINNED 0x04 7083 #define LBF_SOME_PINNED 0x08 7084 #define LBF_NOHZ_STATS 0x10 7085 #define LBF_NOHZ_AGAIN 0x20 7086 7087 struct lb_env { 7088 struct sched_domain *sd; 7089 7090 struct rq *src_rq; 7091 int src_cpu; 7092 7093 int dst_cpu; 7094 struct rq *dst_rq; 7095 7096 struct cpumask *dst_grpmask; 7097 int new_dst_cpu; 7098 enum cpu_idle_type idle; 7099 long imbalance; 7100 /* The set of CPUs under consideration for load-balancing */ 7101 struct cpumask *cpus; 7102 7103 unsigned int flags; 7104 7105 unsigned int loop; 7106 unsigned int loop_break; 7107 unsigned int loop_max; 7108 7109 enum fbq_type fbq_type; 7110 enum group_type src_grp_type; 7111 struct list_head tasks; 7112 }; 7113 7114 /* 7115 * Is this task likely cache-hot: 7116 */ 7117 static int task_hot(struct task_struct *p, struct lb_env *env) 7118 { 7119 s64 delta; 7120 7121 lockdep_assert_held(&env->src_rq->lock); 7122 7123 if (p->sched_class != &fair_sched_class) 7124 return 0; 7125 7126 if (unlikely(task_has_idle_policy(p))) 7127 return 0; 7128 7129 /* 7130 * Buddy candidates are cache hot: 7131 */ 7132 if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running && 7133 (&p->se == cfs_rq_of(&p->se)->next || 7134 &p->se == cfs_rq_of(&p->se)->last)) 7135 return 1; 7136 7137 if (sysctl_sched_migration_cost == -1) 7138 return 1; 7139 if (sysctl_sched_migration_cost == 0) 7140 return 0; 7141 7142 delta = rq_clock_task(env->src_rq) - p->se.exec_start; 7143 7144 return delta < (s64)sysctl_sched_migration_cost; 7145 } 7146 7147 #ifdef CONFIG_NUMA_BALANCING 7148 /* 7149 * Returns 1, if task migration degrades locality 7150 * Returns 0, if task migration improves locality i.e migration preferred. 7151 * Returns -1, if task migration is not affected by locality. 7152 */ 7153 static int migrate_degrades_locality(struct task_struct *p, struct lb_env *env) 7154 { 7155 struct numa_group *numa_group = rcu_dereference(p->numa_group); 7156 unsigned long src_weight, dst_weight; 7157 int src_nid, dst_nid, dist; 7158 7159 if (!static_branch_likely(&sched_numa_balancing)) 7160 return -1; 7161 7162 if (!p->numa_faults || !(env->sd->flags & SD_NUMA)) 7163 return -1; 7164 7165 src_nid = cpu_to_node(env->src_cpu); 7166 dst_nid = cpu_to_node(env->dst_cpu); 7167 7168 if (src_nid == dst_nid) 7169 return -1; 7170 7171 /* Migrating away from the preferred node is always bad. */ 7172 if (src_nid == p->numa_preferred_nid) { 7173 if (env->src_rq->nr_running > env->src_rq->nr_preferred_running) 7174 return 1; 7175 else 7176 return -1; 7177 } 7178 7179 /* Encourage migration to the preferred node. */ 7180 if (dst_nid == p->numa_preferred_nid) 7181 return 0; 7182 7183 /* Leaving a core idle is often worse than degrading locality. */ 7184 if (env->idle == CPU_IDLE) 7185 return -1; 7186 7187 dist = node_distance(src_nid, dst_nid); 7188 if (numa_group) { 7189 src_weight = group_weight(p, src_nid, dist); 7190 dst_weight = group_weight(p, dst_nid, dist); 7191 } else { 7192 src_weight = task_weight(p, src_nid, dist); 7193 dst_weight = task_weight(p, dst_nid, dist); 7194 } 7195 7196 return dst_weight < src_weight; 7197 } 7198 7199 #else 7200 static inline int migrate_degrades_locality(struct task_struct *p, 7201 struct lb_env *env) 7202 { 7203 return -1; 7204 } 7205 #endif 7206 7207 /* 7208 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu? 7209 */ 7210 static 7211 int can_migrate_task(struct task_struct *p, struct lb_env *env) 7212 { 7213 int tsk_cache_hot; 7214 7215 lockdep_assert_held(&env->src_rq->lock); 7216 7217 /* 7218 * We do not migrate tasks that are: 7219 * 1) throttled_lb_pair, or 7220 * 2) cannot be migrated to this CPU due to cpus_ptr, or 7221 * 3) running (obviously), or 7222 * 4) are cache-hot on their current CPU. 7223 */ 7224 if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu)) 7225 return 0; 7226 7227 if (!cpumask_test_cpu(env->dst_cpu, p->cpus_ptr)) { 7228 int cpu; 7229 7230 schedstat_inc(p->se.statistics.nr_failed_migrations_affine); 7231 7232 env->flags |= LBF_SOME_PINNED; 7233 7234 /* 7235 * Remember if this task can be migrated to any other CPU in 7236 * our sched_group. We may want to revisit it if we couldn't 7237 * meet load balance goals by pulling other tasks on src_cpu. 7238 * 7239 * Avoid computing new_dst_cpu for NEWLY_IDLE or if we have 7240 * already computed one in current iteration. 7241 */ 7242 if (env->idle == CPU_NEWLY_IDLE || (env->flags & LBF_DST_PINNED)) 7243 return 0; 7244 7245 /* Prevent to re-select dst_cpu via env's CPUs: */ 7246 for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) { 7247 if (cpumask_test_cpu(cpu, p->cpus_ptr)) { 7248 env->flags |= LBF_DST_PINNED; 7249 env->new_dst_cpu = cpu; 7250 break; 7251 } 7252 } 7253 7254 return 0; 7255 } 7256 7257 /* Record that we found atleast one task that could run on dst_cpu */ 7258 env->flags &= ~LBF_ALL_PINNED; 7259 7260 if (task_running(env->src_rq, p)) { 7261 schedstat_inc(p->se.statistics.nr_failed_migrations_running); 7262 return 0; 7263 } 7264 7265 /* 7266 * Aggressive migration if: 7267 * 1) destination numa is preferred 7268 * 2) task is cache cold, or 7269 * 3) too many balance attempts have failed. 7270 */ 7271 tsk_cache_hot = migrate_degrades_locality(p, env); 7272 if (tsk_cache_hot == -1) 7273 tsk_cache_hot = task_hot(p, env); 7274 7275 if (tsk_cache_hot <= 0 || 7276 env->sd->nr_balance_failed > env->sd->cache_nice_tries) { 7277 if (tsk_cache_hot == 1) { 7278 schedstat_inc(env->sd->lb_hot_gained[env->idle]); 7279 schedstat_inc(p->se.statistics.nr_forced_migrations); 7280 } 7281 return 1; 7282 } 7283 7284 schedstat_inc(p->se.statistics.nr_failed_migrations_hot); 7285 return 0; 7286 } 7287 7288 /* 7289 * detach_task() -- detach the task for the migration specified in env 7290 */ 7291 static void detach_task(struct task_struct *p, struct lb_env *env) 7292 { 7293 lockdep_assert_held(&env->src_rq->lock); 7294 7295 deactivate_task(env->src_rq, p, DEQUEUE_NOCLOCK); 7296 set_task_cpu(p, env->dst_cpu); 7297 } 7298 7299 /* 7300 * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as 7301 * part of active balancing operations within "domain". 7302 * 7303 * Returns a task if successful and NULL otherwise. 7304 */ 7305 static struct task_struct *detach_one_task(struct lb_env *env) 7306 { 7307 struct task_struct *p; 7308 7309 lockdep_assert_held(&env->src_rq->lock); 7310 7311 list_for_each_entry_reverse(p, 7312 &env->src_rq->cfs_tasks, se.group_node) { 7313 if (!can_migrate_task(p, env)) 7314 continue; 7315 7316 detach_task(p, env); 7317 7318 /* 7319 * Right now, this is only the second place where 7320 * lb_gained[env->idle] is updated (other is detach_tasks) 7321 * so we can safely collect stats here rather than 7322 * inside detach_tasks(). 7323 */ 7324 schedstat_inc(env->sd->lb_gained[env->idle]); 7325 return p; 7326 } 7327 return NULL; 7328 } 7329 7330 static const unsigned int sched_nr_migrate_break = 32; 7331 7332 /* 7333 * detach_tasks() -- tries to detach up to imbalance runnable load from 7334 * busiest_rq, as part of a balancing operation within domain "sd". 7335 * 7336 * Returns number of detached tasks if successful and 0 otherwise. 7337 */ 7338 static int detach_tasks(struct lb_env *env) 7339 { 7340 struct list_head *tasks = &env->src_rq->cfs_tasks; 7341 struct task_struct *p; 7342 unsigned long load; 7343 int detached = 0; 7344 7345 lockdep_assert_held(&env->src_rq->lock); 7346 7347 if (env->imbalance <= 0) 7348 return 0; 7349 7350 while (!list_empty(tasks)) { 7351 /* 7352 * We don't want to steal all, otherwise we may be treated likewise, 7353 * which could at worst lead to a livelock crash. 7354 */ 7355 if (env->idle != CPU_NOT_IDLE && env->src_rq->nr_running <= 1) 7356 break; 7357 7358 p = list_last_entry(tasks, struct task_struct, se.group_node); 7359 7360 env->loop++; 7361 /* We've more or less seen every task there is, call it quits */ 7362 if (env->loop > env->loop_max) 7363 break; 7364 7365 /* take a breather every nr_migrate tasks */ 7366 if (env->loop > env->loop_break) { 7367 env->loop_break += sched_nr_migrate_break; 7368 env->flags |= LBF_NEED_BREAK; 7369 break; 7370 } 7371 7372 if (!can_migrate_task(p, env)) 7373 goto next; 7374 7375 load = task_h_load(p); 7376 7377 if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed) 7378 goto next; 7379 7380 if ((load / 2) > env->imbalance) 7381 goto next; 7382 7383 detach_task(p, env); 7384 list_add(&p->se.group_node, &env->tasks); 7385 7386 detached++; 7387 env->imbalance -= load; 7388 7389 #ifdef CONFIG_PREEMPTION 7390 /* 7391 * NEWIDLE balancing is a source of latency, so preemptible 7392 * kernels will stop after the first task is detached to minimize 7393 * the critical section. 7394 */ 7395 if (env->idle == CPU_NEWLY_IDLE) 7396 break; 7397 #endif 7398 7399 /* 7400 * We only want to steal up to the prescribed amount of 7401 * runnable load. 7402 */ 7403 if (env->imbalance <= 0) 7404 break; 7405 7406 continue; 7407 next: 7408 list_move(&p->se.group_node, tasks); 7409 } 7410 7411 /* 7412 * Right now, this is one of only two places we collect this stat 7413 * so we can safely collect detach_one_task() stats here rather 7414 * than inside detach_one_task(). 7415 */ 7416 schedstat_add(env->sd->lb_gained[env->idle], detached); 7417 7418 return detached; 7419 } 7420 7421 /* 7422 * attach_task() -- attach the task detached by detach_task() to its new rq. 7423 */ 7424 static void attach_task(struct rq *rq, struct task_struct *p) 7425 { 7426 lockdep_assert_held(&rq->lock); 7427 7428 BUG_ON(task_rq(p) != rq); 7429 activate_task(rq, p, ENQUEUE_NOCLOCK); 7430 check_preempt_curr(rq, p, 0); 7431 } 7432 7433 /* 7434 * attach_one_task() -- attaches the task returned from detach_one_task() to 7435 * its new rq. 7436 */ 7437 static void attach_one_task(struct rq *rq, struct task_struct *p) 7438 { 7439 struct rq_flags rf; 7440 7441 rq_lock(rq, &rf); 7442 update_rq_clock(rq); 7443 attach_task(rq, p); 7444 rq_unlock(rq, &rf); 7445 } 7446 7447 /* 7448 * attach_tasks() -- attaches all tasks detached by detach_tasks() to their 7449 * new rq. 7450 */ 7451 static void attach_tasks(struct lb_env *env) 7452 { 7453 struct list_head *tasks = &env->tasks; 7454 struct task_struct *p; 7455 struct rq_flags rf; 7456 7457 rq_lock(env->dst_rq, &rf); 7458 update_rq_clock(env->dst_rq); 7459 7460 while (!list_empty(tasks)) { 7461 p = list_first_entry(tasks, struct task_struct, se.group_node); 7462 list_del_init(&p->se.group_node); 7463 7464 attach_task(env->dst_rq, p); 7465 } 7466 7467 rq_unlock(env->dst_rq, &rf); 7468 } 7469 7470 #ifdef CONFIG_NO_HZ_COMMON 7471 static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq) 7472 { 7473 if (cfs_rq->avg.load_avg) 7474 return true; 7475 7476 if (cfs_rq->avg.util_avg) 7477 return true; 7478 7479 return false; 7480 } 7481 7482 static inline bool others_have_blocked(struct rq *rq) 7483 { 7484 if (READ_ONCE(rq->avg_rt.util_avg)) 7485 return true; 7486 7487 if (READ_ONCE(rq->avg_dl.util_avg)) 7488 return true; 7489 7490 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ 7491 if (READ_ONCE(rq->avg_irq.util_avg)) 7492 return true; 7493 #endif 7494 7495 return false; 7496 } 7497 7498 static inline void update_blocked_load_status(struct rq *rq, bool has_blocked) 7499 { 7500 rq->last_blocked_load_update_tick = jiffies; 7501 7502 if (!has_blocked) 7503 rq->has_blocked_load = 0; 7504 } 7505 #else 7506 static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq) { return false; } 7507 static inline bool others_have_blocked(struct rq *rq) { return false; } 7508 static inline void update_blocked_load_status(struct rq *rq, bool has_blocked) {} 7509 #endif 7510 7511 #ifdef CONFIG_FAIR_GROUP_SCHED 7512 7513 static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq) 7514 { 7515 if (cfs_rq->load.weight) 7516 return false; 7517 7518 if (cfs_rq->avg.load_sum) 7519 return false; 7520 7521 if (cfs_rq->avg.util_sum) 7522 return false; 7523 7524 if (cfs_rq->avg.runnable_load_sum) 7525 return false; 7526 7527 return true; 7528 } 7529 7530 static void update_blocked_averages(int cpu) 7531 { 7532 struct rq *rq = cpu_rq(cpu); 7533 struct cfs_rq *cfs_rq, *pos; 7534 const struct sched_class *curr_class; 7535 struct rq_flags rf; 7536 bool done = true; 7537 7538 rq_lock_irqsave(rq, &rf); 7539 update_rq_clock(rq); 7540 7541 /* 7542 * Iterates the task_group tree in a bottom up fashion, see 7543 * list_add_leaf_cfs_rq() for details. 7544 */ 7545 for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) { 7546 struct sched_entity *se; 7547 7548 if (update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq)) 7549 update_tg_load_avg(cfs_rq, 0); 7550 7551 /* Propagate pending load changes to the parent, if any: */ 7552 se = cfs_rq->tg->se[cpu]; 7553 if (se && !skip_blocked_update(se)) 7554 update_load_avg(cfs_rq_of(se), se, 0); 7555 7556 /* 7557 * There can be a lot of idle CPU cgroups. Don't let fully 7558 * decayed cfs_rqs linger on the list. 7559 */ 7560 if (cfs_rq_is_decayed(cfs_rq)) 7561 list_del_leaf_cfs_rq(cfs_rq); 7562 7563 /* Don't need periodic decay once load/util_avg are null */ 7564 if (cfs_rq_has_blocked(cfs_rq)) 7565 done = false; 7566 } 7567 7568 curr_class = rq->curr->sched_class; 7569 update_rt_rq_load_avg(rq_clock_pelt(rq), rq, curr_class == &rt_sched_class); 7570 update_dl_rq_load_avg(rq_clock_pelt(rq), rq, curr_class == &dl_sched_class); 7571 update_irq_load_avg(rq, 0); 7572 /* Don't need periodic decay once load/util_avg are null */ 7573 if (others_have_blocked(rq)) 7574 done = false; 7575 7576 update_blocked_load_status(rq, !done); 7577 rq_unlock_irqrestore(rq, &rf); 7578 } 7579 7580 /* 7581 * Compute the hierarchical load factor for cfs_rq and all its ascendants. 7582 * This needs to be done in a top-down fashion because the load of a child 7583 * group is a fraction of its parents load. 7584 */ 7585 static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq) 7586 { 7587 struct rq *rq = rq_of(cfs_rq); 7588 struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)]; 7589 unsigned long now = jiffies; 7590 unsigned long load; 7591 7592 if (cfs_rq->last_h_load_update == now) 7593 return; 7594 7595 WRITE_ONCE(cfs_rq->h_load_next, NULL); 7596 for_each_sched_entity(se) { 7597 cfs_rq = cfs_rq_of(se); 7598 WRITE_ONCE(cfs_rq->h_load_next, se); 7599 if (cfs_rq->last_h_load_update == now) 7600 break; 7601 } 7602 7603 if (!se) { 7604 cfs_rq->h_load = cfs_rq_load_avg(cfs_rq); 7605 cfs_rq->last_h_load_update = now; 7606 } 7607 7608 while ((se = READ_ONCE(cfs_rq->h_load_next)) != NULL) { 7609 load = cfs_rq->h_load; 7610 load = div64_ul(load * se->avg.load_avg, 7611 cfs_rq_load_avg(cfs_rq) + 1); 7612 cfs_rq = group_cfs_rq(se); 7613 cfs_rq->h_load = load; 7614 cfs_rq->last_h_load_update = now; 7615 } 7616 } 7617 7618 static unsigned long task_h_load(struct task_struct *p) 7619 { 7620 struct cfs_rq *cfs_rq = task_cfs_rq(p); 7621 7622 update_cfs_rq_h_load(cfs_rq); 7623 return div64_ul(p->se.avg.load_avg * cfs_rq->h_load, 7624 cfs_rq_load_avg(cfs_rq) + 1); 7625 } 7626 #else 7627 static inline void update_blocked_averages(int cpu) 7628 { 7629 struct rq *rq = cpu_rq(cpu); 7630 struct cfs_rq *cfs_rq = &rq->cfs; 7631 const struct sched_class *curr_class; 7632 struct rq_flags rf; 7633 7634 rq_lock_irqsave(rq, &rf); 7635 update_rq_clock(rq); 7636 update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq); 7637 7638 curr_class = rq->curr->sched_class; 7639 update_rt_rq_load_avg(rq_clock_pelt(rq), rq, curr_class == &rt_sched_class); 7640 update_dl_rq_load_avg(rq_clock_pelt(rq), rq, curr_class == &dl_sched_class); 7641 update_irq_load_avg(rq, 0); 7642 update_blocked_load_status(rq, cfs_rq_has_blocked(cfs_rq) || others_have_blocked(rq)); 7643 rq_unlock_irqrestore(rq, &rf); 7644 } 7645 7646 static unsigned long task_h_load(struct task_struct *p) 7647 { 7648 return p->se.avg.load_avg; 7649 } 7650 #endif 7651 7652 /********** Helpers for find_busiest_group ************************/ 7653 7654 /* 7655 * sg_lb_stats - stats of a sched_group required for load_balancing 7656 */ 7657 struct sg_lb_stats { 7658 unsigned long avg_load; /*Avg load across the CPUs of the group */ 7659 unsigned long group_load; /* Total load over the CPUs of the group */ 7660 unsigned long load_per_task; 7661 unsigned long group_capacity; 7662 unsigned long group_util; /* Total utilization of the group */ 7663 unsigned int sum_nr_running; /* Nr tasks running in the group */ 7664 unsigned int idle_cpus; 7665 unsigned int group_weight; 7666 enum group_type group_type; 7667 int group_no_capacity; 7668 unsigned long group_misfit_task_load; /* A CPU has a task too big for its capacity */ 7669 #ifdef CONFIG_NUMA_BALANCING 7670 unsigned int nr_numa_running; 7671 unsigned int nr_preferred_running; 7672 #endif 7673 }; 7674 7675 /* 7676 * sd_lb_stats - Structure to store the statistics of a sched_domain 7677 * during load balancing. 7678 */ 7679 struct sd_lb_stats { 7680 struct sched_group *busiest; /* Busiest group in this sd */ 7681 struct sched_group *local; /* Local group in this sd */ 7682 unsigned long total_running; 7683 unsigned long total_load; /* Total load of all groups in sd */ 7684 unsigned long total_capacity; /* Total capacity of all groups in sd */ 7685 unsigned long avg_load; /* Average load across all groups in sd */ 7686 7687 struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */ 7688 struct sg_lb_stats local_stat; /* Statistics of the local group */ 7689 }; 7690 7691 static inline void init_sd_lb_stats(struct sd_lb_stats *sds) 7692 { 7693 /* 7694 * Skimp on the clearing to avoid duplicate work. We can avoid clearing 7695 * local_stat because update_sg_lb_stats() does a full clear/assignment. 7696 * We must however clear busiest_stat::avg_load because 7697 * update_sd_pick_busiest() reads this before assignment. 7698 */ 7699 *sds = (struct sd_lb_stats){ 7700 .busiest = NULL, 7701 .local = NULL, 7702 .total_running = 0UL, 7703 .total_load = 0UL, 7704 .total_capacity = 0UL, 7705 .busiest_stat = { 7706 .avg_load = 0UL, 7707 .sum_nr_running = 0, 7708 .group_type = group_other, 7709 }, 7710 }; 7711 } 7712 7713 static unsigned long scale_rt_capacity(struct sched_domain *sd, int cpu) 7714 { 7715 struct rq *rq = cpu_rq(cpu); 7716 unsigned long max = arch_scale_cpu_capacity(cpu); 7717 unsigned long used, free; 7718 unsigned long irq; 7719 7720 irq = cpu_util_irq(rq); 7721 7722 if (unlikely(irq >= max)) 7723 return 1; 7724 7725 used = READ_ONCE(rq->avg_rt.util_avg); 7726 used += READ_ONCE(rq->avg_dl.util_avg); 7727 7728 if (unlikely(used >= max)) 7729 return 1; 7730 7731 free = max - used; 7732 7733 return scale_irq_capacity(free, irq, max); 7734 } 7735 7736 static void update_cpu_capacity(struct sched_domain *sd, int cpu) 7737 { 7738 unsigned long capacity = scale_rt_capacity(sd, cpu); 7739 struct sched_group *sdg = sd->groups; 7740 7741 cpu_rq(cpu)->cpu_capacity_orig = arch_scale_cpu_capacity(cpu); 7742 7743 if (!capacity) 7744 capacity = 1; 7745 7746 cpu_rq(cpu)->cpu_capacity = capacity; 7747 sdg->sgc->capacity = capacity; 7748 sdg->sgc->min_capacity = capacity; 7749 sdg->sgc->max_capacity = capacity; 7750 } 7751 7752 void update_group_capacity(struct sched_domain *sd, int cpu) 7753 { 7754 struct sched_domain *child = sd->child; 7755 struct sched_group *group, *sdg = sd->groups; 7756 unsigned long capacity, min_capacity, max_capacity; 7757 unsigned long interval; 7758 7759 interval = msecs_to_jiffies(sd->balance_interval); 7760 interval = clamp(interval, 1UL, max_load_balance_interval); 7761 sdg->sgc->next_update = jiffies + interval; 7762 7763 if (!child) { 7764 update_cpu_capacity(sd, cpu); 7765 return; 7766 } 7767 7768 capacity = 0; 7769 min_capacity = ULONG_MAX; 7770 max_capacity = 0; 7771 7772 if (child->flags & SD_OVERLAP) { 7773 /* 7774 * SD_OVERLAP domains cannot assume that child groups 7775 * span the current group. 7776 */ 7777 7778 for_each_cpu(cpu, sched_group_span(sdg)) { 7779 struct sched_group_capacity *sgc; 7780 struct rq *rq = cpu_rq(cpu); 7781 7782 /* 7783 * build_sched_domains() -> init_sched_groups_capacity() 7784 * gets here before we've attached the domains to the 7785 * runqueues. 7786 * 7787 * Use capacity_of(), which is set irrespective of domains 7788 * in update_cpu_capacity(). 7789 * 7790 * This avoids capacity from being 0 and 7791 * causing divide-by-zero issues on boot. 7792 */ 7793 if (unlikely(!rq->sd)) { 7794 capacity += capacity_of(cpu); 7795 } else { 7796 sgc = rq->sd->groups->sgc; 7797 capacity += sgc->capacity; 7798 } 7799 7800 min_capacity = min(capacity, min_capacity); 7801 max_capacity = max(capacity, max_capacity); 7802 } 7803 } else { 7804 /* 7805 * !SD_OVERLAP domains can assume that child groups 7806 * span the current group. 7807 */ 7808 7809 group = child->groups; 7810 do { 7811 struct sched_group_capacity *sgc = group->sgc; 7812 7813 capacity += sgc->capacity; 7814 min_capacity = min(sgc->min_capacity, min_capacity); 7815 max_capacity = max(sgc->max_capacity, max_capacity); 7816 group = group->next; 7817 } while (group != child->groups); 7818 } 7819 7820 sdg->sgc->capacity = capacity; 7821 sdg->sgc->min_capacity = min_capacity; 7822 sdg->sgc->max_capacity = max_capacity; 7823 } 7824 7825 /* 7826 * Check whether the capacity of the rq has been noticeably reduced by side 7827 * activity. The imbalance_pct is used for the threshold. 7828 * Return true is the capacity is reduced 7829 */ 7830 static inline int 7831 check_cpu_capacity(struct rq *rq, struct sched_domain *sd) 7832 { 7833 return ((rq->cpu_capacity * sd->imbalance_pct) < 7834 (rq->cpu_capacity_orig * 100)); 7835 } 7836 7837 /* 7838 * Check whether a rq has a misfit task and if it looks like we can actually 7839 * help that task: we can migrate the task to a CPU of higher capacity, or 7840 * the task's current CPU is heavily pressured. 7841 */ 7842 static inline int check_misfit_status(struct rq *rq, struct sched_domain *sd) 7843 { 7844 return rq->misfit_task_load && 7845 (rq->cpu_capacity_orig < rq->rd->max_cpu_capacity || 7846 check_cpu_capacity(rq, sd)); 7847 } 7848 7849 /* 7850 * Group imbalance indicates (and tries to solve) the problem where balancing 7851 * groups is inadequate due to ->cpus_ptr constraints. 7852 * 7853 * Imagine a situation of two groups of 4 CPUs each and 4 tasks each with a 7854 * cpumask covering 1 CPU of the first group and 3 CPUs of the second group. 7855 * Something like: 7856 * 7857 * { 0 1 2 3 } { 4 5 6 7 } 7858 * * * * * 7859 * 7860 * If we were to balance group-wise we'd place two tasks in the first group and 7861 * two tasks in the second group. Clearly this is undesired as it will overload 7862 * cpu 3 and leave one of the CPUs in the second group unused. 7863 * 7864 * The current solution to this issue is detecting the skew in the first group 7865 * by noticing the lower domain failed to reach balance and had difficulty 7866 * moving tasks due to affinity constraints. 7867 * 7868 * When this is so detected; this group becomes a candidate for busiest; see 7869 * update_sd_pick_busiest(). And calculate_imbalance() and 7870 * find_busiest_group() avoid some of the usual balance conditions to allow it 7871 * to create an effective group imbalance. 7872 * 7873 * This is a somewhat tricky proposition since the next run might not find the 7874 * group imbalance and decide the groups need to be balanced again. A most 7875 * subtle and fragile situation. 7876 */ 7877 7878 static inline int sg_imbalanced(struct sched_group *group) 7879 { 7880 return group->sgc->imbalance; 7881 } 7882 7883 /* 7884 * group_has_capacity returns true if the group has spare capacity that could 7885 * be used by some tasks. 7886 * We consider that a group has spare capacity if the * number of task is 7887 * smaller than the number of CPUs or if the utilization is lower than the 7888 * available capacity for CFS tasks. 7889 * For the latter, we use a threshold to stabilize the state, to take into 7890 * account the variance of the tasks' load and to return true if the available 7891 * capacity in meaningful for the load balancer. 7892 * As an example, an available capacity of 1% can appear but it doesn't make 7893 * any benefit for the load balance. 7894 */ 7895 static inline bool 7896 group_has_capacity(struct lb_env *env, struct sg_lb_stats *sgs) 7897 { 7898 if (sgs->sum_nr_running < sgs->group_weight) 7899 return true; 7900 7901 if ((sgs->group_capacity * 100) > 7902 (sgs->group_util * env->sd->imbalance_pct)) 7903 return true; 7904 7905 return false; 7906 } 7907 7908 /* 7909 * group_is_overloaded returns true if the group has more tasks than it can 7910 * handle. 7911 * group_is_overloaded is not equals to !group_has_capacity because a group 7912 * with the exact right number of tasks, has no more spare capacity but is not 7913 * overloaded so both group_has_capacity and group_is_overloaded return 7914 * false. 7915 */ 7916 static inline bool 7917 group_is_overloaded(struct lb_env *env, struct sg_lb_stats *sgs) 7918 { 7919 if (sgs->sum_nr_running <= sgs->group_weight) 7920 return false; 7921 7922 if ((sgs->group_capacity * 100) < 7923 (sgs->group_util * env->sd->imbalance_pct)) 7924 return true; 7925 7926 return false; 7927 } 7928 7929 /* 7930 * group_smaller_min_cpu_capacity: Returns true if sched_group sg has smaller 7931 * per-CPU capacity than sched_group ref. 7932 */ 7933 static inline bool 7934 group_smaller_min_cpu_capacity(struct sched_group *sg, struct sched_group *ref) 7935 { 7936 return fits_capacity(sg->sgc->min_capacity, ref->sgc->min_capacity); 7937 } 7938 7939 /* 7940 * group_smaller_max_cpu_capacity: Returns true if sched_group sg has smaller 7941 * per-CPU capacity_orig than sched_group ref. 7942 */ 7943 static inline bool 7944 group_smaller_max_cpu_capacity(struct sched_group *sg, struct sched_group *ref) 7945 { 7946 return fits_capacity(sg->sgc->max_capacity, ref->sgc->max_capacity); 7947 } 7948 7949 static inline enum 7950 group_type group_classify(struct sched_group *group, 7951 struct sg_lb_stats *sgs) 7952 { 7953 if (sgs->group_no_capacity) 7954 return group_overloaded; 7955 7956 if (sg_imbalanced(group)) 7957 return group_imbalanced; 7958 7959 if (sgs->group_misfit_task_load) 7960 return group_misfit_task; 7961 7962 return group_other; 7963 } 7964 7965 static bool update_nohz_stats(struct rq *rq, bool force) 7966 { 7967 #ifdef CONFIG_NO_HZ_COMMON 7968 unsigned int cpu = rq->cpu; 7969 7970 if (!rq->has_blocked_load) 7971 return false; 7972 7973 if (!cpumask_test_cpu(cpu, nohz.idle_cpus_mask)) 7974 return false; 7975 7976 if (!force && !time_after(jiffies, rq->last_blocked_load_update_tick)) 7977 return true; 7978 7979 update_blocked_averages(cpu); 7980 7981 return rq->has_blocked_load; 7982 #else 7983 return false; 7984 #endif 7985 } 7986 7987 /** 7988 * update_sg_lb_stats - Update sched_group's statistics for load balancing. 7989 * @env: The load balancing environment. 7990 * @group: sched_group whose statistics are to be updated. 7991 * @sgs: variable to hold the statistics for this group. 7992 * @sg_status: Holds flag indicating the status of the sched_group 7993 */ 7994 static inline void update_sg_lb_stats(struct lb_env *env, 7995 struct sched_group *group, 7996 struct sg_lb_stats *sgs, 7997 int *sg_status) 7998 { 7999 int i, nr_running; 8000 8001 memset(sgs, 0, sizeof(*sgs)); 8002 8003 for_each_cpu_and(i, sched_group_span(group), env->cpus) { 8004 struct rq *rq = cpu_rq(i); 8005 8006 if ((env->flags & LBF_NOHZ_STATS) && update_nohz_stats(rq, false)) 8007 env->flags |= LBF_NOHZ_AGAIN; 8008 8009 sgs->group_load += cpu_runnable_load(rq); 8010 sgs->group_util += cpu_util(i); 8011 sgs->sum_nr_running += rq->cfs.h_nr_running; 8012 8013 nr_running = rq->nr_running; 8014 if (nr_running > 1) 8015 *sg_status |= SG_OVERLOAD; 8016 8017 if (cpu_overutilized(i)) 8018 *sg_status |= SG_OVERUTILIZED; 8019 8020 #ifdef CONFIG_NUMA_BALANCING 8021 sgs->nr_numa_running += rq->nr_numa_running; 8022 sgs->nr_preferred_running += rq->nr_preferred_running; 8023 #endif 8024 /* 8025 * No need to call idle_cpu() if nr_running is not 0 8026 */ 8027 if (!nr_running && idle_cpu(i)) 8028 sgs->idle_cpus++; 8029 8030 if (env->sd->flags & SD_ASYM_CPUCAPACITY && 8031 sgs->group_misfit_task_load < rq->misfit_task_load) { 8032 sgs->group_misfit_task_load = rq->misfit_task_load; 8033 *sg_status |= SG_OVERLOAD; 8034 } 8035 } 8036 8037 /* Adjust by relative CPU capacity of the group */ 8038 sgs->group_capacity = group->sgc->capacity; 8039 sgs->avg_load = (sgs->group_load*SCHED_CAPACITY_SCALE) / sgs->group_capacity; 8040 8041 if (sgs->sum_nr_running) 8042 sgs->load_per_task = sgs->group_load / sgs->sum_nr_running; 8043 8044 sgs->group_weight = group->group_weight; 8045 8046 sgs->group_no_capacity = group_is_overloaded(env, sgs); 8047 sgs->group_type = group_classify(group, sgs); 8048 } 8049 8050 /** 8051 * update_sd_pick_busiest - return 1 on busiest group 8052 * @env: The load balancing environment. 8053 * @sds: sched_domain statistics 8054 * @sg: sched_group candidate to be checked for being the busiest 8055 * @sgs: sched_group statistics 8056 * 8057 * Determine if @sg is a busier group than the previously selected 8058 * busiest group. 8059 * 8060 * Return: %true if @sg is a busier group than the previously selected 8061 * busiest group. %false otherwise. 8062 */ 8063 static bool update_sd_pick_busiest(struct lb_env *env, 8064 struct sd_lb_stats *sds, 8065 struct sched_group *sg, 8066 struct sg_lb_stats *sgs) 8067 { 8068 struct sg_lb_stats *busiest = &sds->busiest_stat; 8069 8070 /* 8071 * Don't try to pull misfit tasks we can't help. 8072 * We can use max_capacity here as reduction in capacity on some 8073 * CPUs in the group should either be possible to resolve 8074 * internally or be covered by avg_load imbalance (eventually). 8075 */ 8076 if (sgs->group_type == group_misfit_task && 8077 (!group_smaller_max_cpu_capacity(sg, sds->local) || 8078 !group_has_capacity(env, &sds->local_stat))) 8079 return false; 8080 8081 if (sgs->group_type > busiest->group_type) 8082 return true; 8083 8084 if (sgs->group_type < busiest->group_type) 8085 return false; 8086 8087 if (sgs->avg_load <= busiest->avg_load) 8088 return false; 8089 8090 if (!(env->sd->flags & SD_ASYM_CPUCAPACITY)) 8091 goto asym_packing; 8092 8093 /* 8094 * Candidate sg has no more than one task per CPU and 8095 * has higher per-CPU capacity. Migrating tasks to less 8096 * capable CPUs may harm throughput. Maximize throughput, 8097 * power/energy consequences are not considered. 8098 */ 8099 if (sgs->sum_nr_running <= sgs->group_weight && 8100 group_smaller_min_cpu_capacity(sds->local, sg)) 8101 return false; 8102 8103 /* 8104 * If we have more than one misfit sg go with the biggest misfit. 8105 */ 8106 if (sgs->group_type == group_misfit_task && 8107 sgs->group_misfit_task_load < busiest->group_misfit_task_load) 8108 return false; 8109 8110 asym_packing: 8111 /* This is the busiest node in its class. */ 8112 if (!(env->sd->flags & SD_ASYM_PACKING)) 8113 return true; 8114 8115 /* No ASYM_PACKING if target CPU is already busy */ 8116 if (env->idle == CPU_NOT_IDLE) 8117 return true; 8118 /* 8119 * ASYM_PACKING needs to move all the work to the highest 8120 * prority CPUs in the group, therefore mark all groups 8121 * of lower priority than ourself as busy. 8122 */ 8123 if (sgs->sum_nr_running && 8124 sched_asym_prefer(env->dst_cpu, sg->asym_prefer_cpu)) { 8125 if (!sds->busiest) 8126 return true; 8127 8128 /* Prefer to move from lowest priority CPU's work */ 8129 if (sched_asym_prefer(sds->busiest->asym_prefer_cpu, 8130 sg->asym_prefer_cpu)) 8131 return true; 8132 } 8133 8134 return false; 8135 } 8136 8137 #ifdef CONFIG_NUMA_BALANCING 8138 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs) 8139 { 8140 if (sgs->sum_nr_running > sgs->nr_numa_running) 8141 return regular; 8142 if (sgs->sum_nr_running > sgs->nr_preferred_running) 8143 return remote; 8144 return all; 8145 } 8146 8147 static inline enum fbq_type fbq_classify_rq(struct rq *rq) 8148 { 8149 if (rq->nr_running > rq->nr_numa_running) 8150 return regular; 8151 if (rq->nr_running > rq->nr_preferred_running) 8152 return remote; 8153 return all; 8154 } 8155 #else 8156 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs) 8157 { 8158 return all; 8159 } 8160 8161 static inline enum fbq_type fbq_classify_rq(struct rq *rq) 8162 { 8163 return regular; 8164 } 8165 #endif /* CONFIG_NUMA_BALANCING */ 8166 8167 /** 8168 * update_sd_lb_stats - Update sched_domain's statistics for load balancing. 8169 * @env: The load balancing environment. 8170 * @sds: variable to hold the statistics for this sched_domain. 8171 */ 8172 static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds) 8173 { 8174 struct sched_domain *child = env->sd->child; 8175 struct sched_group *sg = env->sd->groups; 8176 struct sg_lb_stats *local = &sds->local_stat; 8177 struct sg_lb_stats tmp_sgs; 8178 bool prefer_sibling = child && child->flags & SD_PREFER_SIBLING; 8179 int sg_status = 0; 8180 8181 #ifdef CONFIG_NO_HZ_COMMON 8182 if (env->idle == CPU_NEWLY_IDLE && READ_ONCE(nohz.has_blocked)) 8183 env->flags |= LBF_NOHZ_STATS; 8184 #endif 8185 8186 do { 8187 struct sg_lb_stats *sgs = &tmp_sgs; 8188 int local_group; 8189 8190 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_span(sg)); 8191 if (local_group) { 8192 sds->local = sg; 8193 sgs = local; 8194 8195 if (env->idle != CPU_NEWLY_IDLE || 8196 time_after_eq(jiffies, sg->sgc->next_update)) 8197 update_group_capacity(env->sd, env->dst_cpu); 8198 } 8199 8200 update_sg_lb_stats(env, sg, sgs, &sg_status); 8201 8202 if (local_group) 8203 goto next_group; 8204 8205 /* 8206 * In case the child domain prefers tasks go to siblings 8207 * first, lower the sg capacity so that we'll try 8208 * and move all the excess tasks away. We lower the capacity 8209 * of a group only if the local group has the capacity to fit 8210 * these excess tasks. The extra check prevents the case where 8211 * you always pull from the heaviest group when it is already 8212 * under-utilized (possible with a large weight task outweighs 8213 * the tasks on the system). 8214 */ 8215 if (prefer_sibling && sds->local && 8216 group_has_capacity(env, local) && 8217 (sgs->sum_nr_running > local->sum_nr_running + 1)) { 8218 sgs->group_no_capacity = 1; 8219 sgs->group_type = group_classify(sg, sgs); 8220 } 8221 8222 if (update_sd_pick_busiest(env, sds, sg, sgs)) { 8223 sds->busiest = sg; 8224 sds->busiest_stat = *sgs; 8225 } 8226 8227 next_group: 8228 /* Now, start updating sd_lb_stats */ 8229 sds->total_running += sgs->sum_nr_running; 8230 sds->total_load += sgs->group_load; 8231 sds->total_capacity += sgs->group_capacity; 8232 8233 sg = sg->next; 8234 } while (sg != env->sd->groups); 8235 8236 #ifdef CONFIG_NO_HZ_COMMON 8237 if ((env->flags & LBF_NOHZ_AGAIN) && 8238 cpumask_subset(nohz.idle_cpus_mask, sched_domain_span(env->sd))) { 8239 8240 WRITE_ONCE(nohz.next_blocked, 8241 jiffies + msecs_to_jiffies(LOAD_AVG_PERIOD)); 8242 } 8243 #endif 8244 8245 if (env->sd->flags & SD_NUMA) 8246 env->fbq_type = fbq_classify_group(&sds->busiest_stat); 8247 8248 if (!env->sd->parent) { 8249 struct root_domain *rd = env->dst_rq->rd; 8250 8251 /* update overload indicator if we are at root domain */ 8252 WRITE_ONCE(rd->overload, sg_status & SG_OVERLOAD); 8253 8254 /* Update over-utilization (tipping point, U >= 0) indicator */ 8255 WRITE_ONCE(rd->overutilized, sg_status & SG_OVERUTILIZED); 8256 trace_sched_overutilized_tp(rd, sg_status & SG_OVERUTILIZED); 8257 } else if (sg_status & SG_OVERUTILIZED) { 8258 struct root_domain *rd = env->dst_rq->rd; 8259 8260 WRITE_ONCE(rd->overutilized, SG_OVERUTILIZED); 8261 trace_sched_overutilized_tp(rd, SG_OVERUTILIZED); 8262 } 8263 } 8264 8265 /** 8266 * check_asym_packing - Check to see if the group is packed into the 8267 * sched domain. 8268 * 8269 * This is primarily intended to used at the sibling level. Some 8270 * cores like POWER7 prefer to use lower numbered SMT threads. In the 8271 * case of POWER7, it can move to lower SMT modes only when higher 8272 * threads are idle. When in lower SMT modes, the threads will 8273 * perform better since they share less core resources. Hence when we 8274 * have idle threads, we want them to be the higher ones. 8275 * 8276 * This packing function is run on idle threads. It checks to see if 8277 * the busiest CPU in this domain (core in the P7 case) has a higher 8278 * CPU number than the packing function is being run on. Here we are 8279 * assuming lower CPU number will be equivalent to lower a SMT thread 8280 * number. 8281 * 8282 * Return: 1 when packing is required and a task should be moved to 8283 * this CPU. The amount of the imbalance is returned in env->imbalance. 8284 * 8285 * @env: The load balancing environment. 8286 * @sds: Statistics of the sched_domain which is to be packed 8287 */ 8288 static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds) 8289 { 8290 int busiest_cpu; 8291 8292 if (!(env->sd->flags & SD_ASYM_PACKING)) 8293 return 0; 8294 8295 if (env->idle == CPU_NOT_IDLE) 8296 return 0; 8297 8298 if (!sds->busiest) 8299 return 0; 8300 8301 busiest_cpu = sds->busiest->asym_prefer_cpu; 8302 if (sched_asym_prefer(busiest_cpu, env->dst_cpu)) 8303 return 0; 8304 8305 env->imbalance = sds->busiest_stat.group_load; 8306 8307 return 1; 8308 } 8309 8310 /** 8311 * fix_small_imbalance - Calculate the minor imbalance that exists 8312 * amongst the groups of a sched_domain, during 8313 * load balancing. 8314 * @env: The load balancing environment. 8315 * @sds: Statistics of the sched_domain whose imbalance is to be calculated. 8316 */ 8317 static inline 8318 void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds) 8319 { 8320 unsigned long tmp, capa_now = 0, capa_move = 0; 8321 unsigned int imbn = 2; 8322 unsigned long scaled_busy_load_per_task; 8323 struct sg_lb_stats *local, *busiest; 8324 8325 local = &sds->local_stat; 8326 busiest = &sds->busiest_stat; 8327 8328 if (!local->sum_nr_running) 8329 local->load_per_task = cpu_avg_load_per_task(env->dst_cpu); 8330 else if (busiest->load_per_task > local->load_per_task) 8331 imbn = 1; 8332 8333 scaled_busy_load_per_task = 8334 (busiest->load_per_task * SCHED_CAPACITY_SCALE) / 8335 busiest->group_capacity; 8336 8337 if (busiest->avg_load + scaled_busy_load_per_task >= 8338 local->avg_load + (scaled_busy_load_per_task * imbn)) { 8339 env->imbalance = busiest->load_per_task; 8340 return; 8341 } 8342 8343 /* 8344 * OK, we don't have enough imbalance to justify moving tasks, 8345 * however we may be able to increase total CPU capacity used by 8346 * moving them. 8347 */ 8348 8349 capa_now += busiest->group_capacity * 8350 min(busiest->load_per_task, busiest->avg_load); 8351 capa_now += local->group_capacity * 8352 min(local->load_per_task, local->avg_load); 8353 capa_now /= SCHED_CAPACITY_SCALE; 8354 8355 /* Amount of load we'd subtract */ 8356 if (busiest->avg_load > scaled_busy_load_per_task) { 8357 capa_move += busiest->group_capacity * 8358 min(busiest->load_per_task, 8359 busiest->avg_load - scaled_busy_load_per_task); 8360 } 8361 8362 /* Amount of load we'd add */ 8363 if (busiest->avg_load * busiest->group_capacity < 8364 busiest->load_per_task * SCHED_CAPACITY_SCALE) { 8365 tmp = (busiest->avg_load * busiest->group_capacity) / 8366 local->group_capacity; 8367 } else { 8368 tmp = (busiest->load_per_task * SCHED_CAPACITY_SCALE) / 8369 local->group_capacity; 8370 } 8371 capa_move += local->group_capacity * 8372 min(local->load_per_task, local->avg_load + tmp); 8373 capa_move /= SCHED_CAPACITY_SCALE; 8374 8375 /* Move if we gain throughput */ 8376 if (capa_move > capa_now) 8377 env->imbalance = busiest->load_per_task; 8378 } 8379 8380 /** 8381 * calculate_imbalance - Calculate the amount of imbalance present within the 8382 * groups of a given sched_domain during load balance. 8383 * @env: load balance environment 8384 * @sds: statistics of the sched_domain whose imbalance is to be calculated. 8385 */ 8386 static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds) 8387 { 8388 unsigned long max_pull, load_above_capacity = ~0UL; 8389 struct sg_lb_stats *local, *busiest; 8390 8391 local = &sds->local_stat; 8392 busiest = &sds->busiest_stat; 8393 8394 if (busiest->group_type == group_imbalanced) { 8395 /* 8396 * In the group_imb case we cannot rely on group-wide averages 8397 * to ensure CPU-load equilibrium, look at wider averages. XXX 8398 */ 8399 busiest->load_per_task = 8400 min(busiest->load_per_task, sds->avg_load); 8401 } 8402 8403 /* 8404 * Avg load of busiest sg can be less and avg load of local sg can 8405 * be greater than avg load across all sgs of sd because avg load 8406 * factors in sg capacity and sgs with smaller group_type are 8407 * skipped when updating the busiest sg: 8408 */ 8409 if (busiest->group_type != group_misfit_task && 8410 (busiest->avg_load <= sds->avg_load || 8411 local->avg_load >= sds->avg_load)) { 8412 env->imbalance = 0; 8413 return fix_small_imbalance(env, sds); 8414 } 8415 8416 /* 8417 * If there aren't any idle CPUs, avoid creating some. 8418 */ 8419 if (busiest->group_type == group_overloaded && 8420 local->group_type == group_overloaded) { 8421 load_above_capacity = busiest->sum_nr_running * SCHED_CAPACITY_SCALE; 8422 if (load_above_capacity > busiest->group_capacity) { 8423 load_above_capacity -= busiest->group_capacity; 8424 load_above_capacity *= scale_load_down(NICE_0_LOAD); 8425 load_above_capacity /= busiest->group_capacity; 8426 } else 8427 load_above_capacity = ~0UL; 8428 } 8429 8430 /* 8431 * We're trying to get all the CPUs to the average_load, so we don't 8432 * want to push ourselves above the average load, nor do we wish to 8433 * reduce the max loaded CPU below the average load. At the same time, 8434 * we also don't want to reduce the group load below the group 8435 * capacity. Thus we look for the minimum possible imbalance. 8436 */ 8437 max_pull = min(busiest->avg_load - sds->avg_load, load_above_capacity); 8438 8439 /* How much load to actually move to equalise the imbalance */ 8440 env->imbalance = min( 8441 max_pull * busiest->group_capacity, 8442 (sds->avg_load - local->avg_load) * local->group_capacity 8443 ) / SCHED_CAPACITY_SCALE; 8444 8445 /* Boost imbalance to allow misfit task to be balanced. */ 8446 if (busiest->group_type == group_misfit_task) { 8447 env->imbalance = max_t(long, env->imbalance, 8448 busiest->group_misfit_task_load); 8449 } 8450 8451 /* 8452 * if *imbalance is less than the average load per runnable task 8453 * there is no guarantee that any tasks will be moved so we'll have 8454 * a think about bumping its value to force at least one task to be 8455 * moved 8456 */ 8457 if (env->imbalance < busiest->load_per_task) 8458 return fix_small_imbalance(env, sds); 8459 } 8460 8461 /******* find_busiest_group() helpers end here *********************/ 8462 8463 /** 8464 * find_busiest_group - Returns the busiest group within the sched_domain 8465 * if there is an imbalance. 8466 * 8467 * Also calculates the amount of runnable load which should be moved 8468 * to restore balance. 8469 * 8470 * @env: The load balancing environment. 8471 * 8472 * Return: - The busiest group if imbalance exists. 8473 */ 8474 static struct sched_group *find_busiest_group(struct lb_env *env) 8475 { 8476 struct sg_lb_stats *local, *busiest; 8477 struct sd_lb_stats sds; 8478 8479 init_sd_lb_stats(&sds); 8480 8481 /* 8482 * Compute the various statistics relavent for load balancing at 8483 * this level. 8484 */ 8485 update_sd_lb_stats(env, &sds); 8486 8487 if (sched_energy_enabled()) { 8488 struct root_domain *rd = env->dst_rq->rd; 8489 8490 if (rcu_dereference(rd->pd) && !READ_ONCE(rd->overutilized)) 8491 goto out_balanced; 8492 } 8493 8494 local = &sds.local_stat; 8495 busiest = &sds.busiest_stat; 8496 8497 /* ASYM feature bypasses nice load balance check */ 8498 if (check_asym_packing(env, &sds)) 8499 return sds.busiest; 8500 8501 /* There is no busy sibling group to pull tasks from */ 8502 if (!sds.busiest || busiest->sum_nr_running == 0) 8503 goto out_balanced; 8504 8505 /* XXX broken for overlapping NUMA groups */ 8506 sds.avg_load = (SCHED_CAPACITY_SCALE * sds.total_load) 8507 / sds.total_capacity; 8508 8509 /* 8510 * If the busiest group is imbalanced the below checks don't 8511 * work because they assume all things are equal, which typically 8512 * isn't true due to cpus_ptr constraints and the like. 8513 */ 8514 if (busiest->group_type == group_imbalanced) 8515 goto force_balance; 8516 8517 /* 8518 * When dst_cpu is idle, prevent SMP nice and/or asymmetric group 8519 * capacities from resulting in underutilization due to avg_load. 8520 */ 8521 if (env->idle != CPU_NOT_IDLE && group_has_capacity(env, local) && 8522 busiest->group_no_capacity) 8523 goto force_balance; 8524 8525 /* Misfit tasks should be dealt with regardless of the avg load */ 8526 if (busiest->group_type == group_misfit_task) 8527 goto force_balance; 8528 8529 /* 8530 * If the local group is busier than the selected busiest group 8531 * don't try and pull any tasks. 8532 */ 8533 if (local->avg_load >= busiest->avg_load) 8534 goto out_balanced; 8535 8536 /* 8537 * Don't pull any tasks if this group is already above the domain 8538 * average load. 8539 */ 8540 if (local->avg_load >= sds.avg_load) 8541 goto out_balanced; 8542 8543 if (env->idle == CPU_IDLE) { 8544 /* 8545 * This CPU is idle. If the busiest group is not overloaded 8546 * and there is no imbalance between this and busiest group 8547 * wrt idle CPUs, it is balanced. The imbalance becomes 8548 * significant if the diff is greater than 1 otherwise we 8549 * might end up to just move the imbalance on another group 8550 */ 8551 if ((busiest->group_type != group_overloaded) && 8552 (local->idle_cpus <= (busiest->idle_cpus + 1))) 8553 goto out_balanced; 8554 } else { 8555 /* 8556 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use 8557 * imbalance_pct to be conservative. 8558 */ 8559 if (100 * busiest->avg_load <= 8560 env->sd->imbalance_pct * local->avg_load) 8561 goto out_balanced; 8562 } 8563 8564 force_balance: 8565 /* Looks like there is an imbalance. Compute it */ 8566 env->src_grp_type = busiest->group_type; 8567 calculate_imbalance(env, &sds); 8568 return env->imbalance ? sds.busiest : NULL; 8569 8570 out_balanced: 8571 env->imbalance = 0; 8572 return NULL; 8573 } 8574 8575 /* 8576 * find_busiest_queue - find the busiest runqueue among the CPUs in the group. 8577 */ 8578 static struct rq *find_busiest_queue(struct lb_env *env, 8579 struct sched_group *group) 8580 { 8581 struct rq *busiest = NULL, *rq; 8582 unsigned long busiest_load = 0, busiest_capacity = 1; 8583 int i; 8584 8585 for_each_cpu_and(i, sched_group_span(group), env->cpus) { 8586 unsigned long capacity, load; 8587 enum fbq_type rt; 8588 8589 rq = cpu_rq(i); 8590 rt = fbq_classify_rq(rq); 8591 8592 /* 8593 * We classify groups/runqueues into three groups: 8594 * - regular: there are !numa tasks 8595 * - remote: there are numa tasks that run on the 'wrong' node 8596 * - all: there is no distinction 8597 * 8598 * In order to avoid migrating ideally placed numa tasks, 8599 * ignore those when there's better options. 8600 * 8601 * If we ignore the actual busiest queue to migrate another 8602 * task, the next balance pass can still reduce the busiest 8603 * queue by moving tasks around inside the node. 8604 * 8605 * If we cannot move enough load due to this classification 8606 * the next pass will adjust the group classification and 8607 * allow migration of more tasks. 8608 * 8609 * Both cases only affect the total convergence complexity. 8610 */ 8611 if (rt > env->fbq_type) 8612 continue; 8613 8614 /* 8615 * For ASYM_CPUCAPACITY domains with misfit tasks we simply 8616 * seek the "biggest" misfit task. 8617 */ 8618 if (env->src_grp_type == group_misfit_task) { 8619 if (rq->misfit_task_load > busiest_load) { 8620 busiest_load = rq->misfit_task_load; 8621 busiest = rq; 8622 } 8623 8624 continue; 8625 } 8626 8627 capacity = capacity_of(i); 8628 8629 /* 8630 * For ASYM_CPUCAPACITY domains, don't pick a CPU that could 8631 * eventually lead to active_balancing high->low capacity. 8632 * Higher per-CPU capacity is considered better than balancing 8633 * average load. 8634 */ 8635 if (env->sd->flags & SD_ASYM_CPUCAPACITY && 8636 capacity_of(env->dst_cpu) < capacity && 8637 rq->nr_running == 1) 8638 continue; 8639 8640 load = cpu_runnable_load(rq); 8641 8642 /* 8643 * When comparing with imbalance, use cpu_runnable_load() 8644 * which is not scaled with the CPU capacity. 8645 */ 8646 8647 if (rq->nr_running == 1 && load > env->imbalance && 8648 !check_cpu_capacity(rq, env->sd)) 8649 continue; 8650 8651 /* 8652 * For the load comparisons with the other CPU's, consider 8653 * the cpu_runnable_load() scaled with the CPU capacity, so 8654 * that the load can be moved away from the CPU that is 8655 * potentially running at a lower capacity. 8656 * 8657 * Thus we're looking for max(load_i / capacity_i), crosswise 8658 * multiplication to rid ourselves of the division works out 8659 * to: load_i * capacity_j > load_j * capacity_i; where j is 8660 * our previous maximum. 8661 */ 8662 if (load * busiest_capacity > busiest_load * capacity) { 8663 busiest_load = load; 8664 busiest_capacity = capacity; 8665 busiest = rq; 8666 } 8667 } 8668 8669 return busiest; 8670 } 8671 8672 /* 8673 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but 8674 * so long as it is large enough. 8675 */ 8676 #define MAX_PINNED_INTERVAL 512 8677 8678 static inline bool 8679 asym_active_balance(struct lb_env *env) 8680 { 8681 /* 8682 * ASYM_PACKING needs to force migrate tasks from busy but 8683 * lower priority CPUs in order to pack all tasks in the 8684 * highest priority CPUs. 8685 */ 8686 return env->idle != CPU_NOT_IDLE && (env->sd->flags & SD_ASYM_PACKING) && 8687 sched_asym_prefer(env->dst_cpu, env->src_cpu); 8688 } 8689 8690 static inline bool 8691 voluntary_active_balance(struct lb_env *env) 8692 { 8693 struct sched_domain *sd = env->sd; 8694 8695 if (asym_active_balance(env)) 8696 return 1; 8697 8698 /* 8699 * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task. 8700 * It's worth migrating the task if the src_cpu's capacity is reduced 8701 * because of other sched_class or IRQs if more capacity stays 8702 * available on dst_cpu. 8703 */ 8704 if ((env->idle != CPU_NOT_IDLE) && 8705 (env->src_rq->cfs.h_nr_running == 1)) { 8706 if ((check_cpu_capacity(env->src_rq, sd)) && 8707 (capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100)) 8708 return 1; 8709 } 8710 8711 if (env->src_grp_type == group_misfit_task) 8712 return 1; 8713 8714 return 0; 8715 } 8716 8717 static int need_active_balance(struct lb_env *env) 8718 { 8719 struct sched_domain *sd = env->sd; 8720 8721 if (voluntary_active_balance(env)) 8722 return 1; 8723 8724 return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2); 8725 } 8726 8727 static int active_load_balance_cpu_stop(void *data); 8728 8729 static int should_we_balance(struct lb_env *env) 8730 { 8731 struct sched_group *sg = env->sd->groups; 8732 int cpu, balance_cpu = -1; 8733 8734 /* 8735 * Ensure the balancing environment is consistent; can happen 8736 * when the softirq triggers 'during' hotplug. 8737 */ 8738 if (!cpumask_test_cpu(env->dst_cpu, env->cpus)) 8739 return 0; 8740 8741 /* 8742 * In the newly idle case, we will allow all the CPUs 8743 * to do the newly idle load balance. 8744 */ 8745 if (env->idle == CPU_NEWLY_IDLE) 8746 return 1; 8747 8748 /* Try to find first idle CPU */ 8749 for_each_cpu_and(cpu, group_balance_mask(sg), env->cpus) { 8750 if (!idle_cpu(cpu)) 8751 continue; 8752 8753 balance_cpu = cpu; 8754 break; 8755 } 8756 8757 if (balance_cpu == -1) 8758 balance_cpu = group_balance_cpu(sg); 8759 8760 /* 8761 * First idle CPU or the first CPU(busiest) in this sched group 8762 * is eligible for doing load balancing at this and above domains. 8763 */ 8764 return balance_cpu == env->dst_cpu; 8765 } 8766 8767 /* 8768 * Check this_cpu to ensure it is balanced within domain. Attempt to move 8769 * tasks if there is an imbalance. 8770 */ 8771 static int load_balance(int this_cpu, struct rq *this_rq, 8772 struct sched_domain *sd, enum cpu_idle_type idle, 8773 int *continue_balancing) 8774 { 8775 int ld_moved, cur_ld_moved, active_balance = 0; 8776 struct sched_domain *sd_parent = sd->parent; 8777 struct sched_group *group; 8778 struct rq *busiest; 8779 struct rq_flags rf; 8780 struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask); 8781 8782 struct lb_env env = { 8783 .sd = sd, 8784 .dst_cpu = this_cpu, 8785 .dst_rq = this_rq, 8786 .dst_grpmask = sched_group_span(sd->groups), 8787 .idle = idle, 8788 .loop_break = sched_nr_migrate_break, 8789 .cpus = cpus, 8790 .fbq_type = all, 8791 .tasks = LIST_HEAD_INIT(env.tasks), 8792 }; 8793 8794 cpumask_and(cpus, sched_domain_span(sd), cpu_active_mask); 8795 8796 schedstat_inc(sd->lb_count[idle]); 8797 8798 redo: 8799 if (!should_we_balance(&env)) { 8800 *continue_balancing = 0; 8801 goto out_balanced; 8802 } 8803 8804 group = find_busiest_group(&env); 8805 if (!group) { 8806 schedstat_inc(sd->lb_nobusyg[idle]); 8807 goto out_balanced; 8808 } 8809 8810 busiest = find_busiest_queue(&env, group); 8811 if (!busiest) { 8812 schedstat_inc(sd->lb_nobusyq[idle]); 8813 goto out_balanced; 8814 } 8815 8816 BUG_ON(busiest == env.dst_rq); 8817 8818 schedstat_add(sd->lb_imbalance[idle], env.imbalance); 8819 8820 env.src_cpu = busiest->cpu; 8821 env.src_rq = busiest; 8822 8823 ld_moved = 0; 8824 if (busiest->nr_running > 1) { 8825 /* 8826 * Attempt to move tasks. If find_busiest_group has found 8827 * an imbalance but busiest->nr_running <= 1, the group is 8828 * still unbalanced. ld_moved simply stays zero, so it is 8829 * correctly treated as an imbalance. 8830 */ 8831 env.flags |= LBF_ALL_PINNED; 8832 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running); 8833 8834 more_balance: 8835 rq_lock_irqsave(busiest, &rf); 8836 update_rq_clock(busiest); 8837 8838 /* 8839 * cur_ld_moved - load moved in current iteration 8840 * ld_moved - cumulative load moved across iterations 8841 */ 8842 cur_ld_moved = detach_tasks(&env); 8843 8844 /* 8845 * We've detached some tasks from busiest_rq. Every 8846 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely 8847 * unlock busiest->lock, and we are able to be sure 8848 * that nobody can manipulate the tasks in parallel. 8849 * See task_rq_lock() family for the details. 8850 */ 8851 8852 rq_unlock(busiest, &rf); 8853 8854 if (cur_ld_moved) { 8855 attach_tasks(&env); 8856 ld_moved += cur_ld_moved; 8857 } 8858 8859 local_irq_restore(rf.flags); 8860 8861 if (env.flags & LBF_NEED_BREAK) { 8862 env.flags &= ~LBF_NEED_BREAK; 8863 goto more_balance; 8864 } 8865 8866 /* 8867 * Revisit (affine) tasks on src_cpu that couldn't be moved to 8868 * us and move them to an alternate dst_cpu in our sched_group 8869 * where they can run. The upper limit on how many times we 8870 * iterate on same src_cpu is dependent on number of CPUs in our 8871 * sched_group. 8872 * 8873 * This changes load balance semantics a bit on who can move 8874 * load to a given_cpu. In addition to the given_cpu itself 8875 * (or a ilb_cpu acting on its behalf where given_cpu is 8876 * nohz-idle), we now have balance_cpu in a position to move 8877 * load to given_cpu. In rare situations, this may cause 8878 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding 8879 * _independently_ and at _same_ time to move some load to 8880 * given_cpu) causing exceess load to be moved to given_cpu. 8881 * This however should not happen so much in practice and 8882 * moreover subsequent load balance cycles should correct the 8883 * excess load moved. 8884 */ 8885 if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) { 8886 8887 /* Prevent to re-select dst_cpu via env's CPUs */ 8888 __cpumask_clear_cpu(env.dst_cpu, env.cpus); 8889 8890 env.dst_rq = cpu_rq(env.new_dst_cpu); 8891 env.dst_cpu = env.new_dst_cpu; 8892 env.flags &= ~LBF_DST_PINNED; 8893 env.loop = 0; 8894 env.loop_break = sched_nr_migrate_break; 8895 8896 /* 8897 * Go back to "more_balance" rather than "redo" since we 8898 * need to continue with same src_cpu. 8899 */ 8900 goto more_balance; 8901 } 8902 8903 /* 8904 * We failed to reach balance because of affinity. 8905 */ 8906 if (sd_parent) { 8907 int *group_imbalance = &sd_parent->groups->sgc->imbalance; 8908 8909 if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0) 8910 *group_imbalance = 1; 8911 } 8912 8913 /* All tasks on this runqueue were pinned by CPU affinity */ 8914 if (unlikely(env.flags & LBF_ALL_PINNED)) { 8915 __cpumask_clear_cpu(cpu_of(busiest), cpus); 8916 /* 8917 * Attempting to continue load balancing at the current 8918 * sched_domain level only makes sense if there are 8919 * active CPUs remaining as possible busiest CPUs to 8920 * pull load from which are not contained within the 8921 * destination group that is receiving any migrated 8922 * load. 8923 */ 8924 if (!cpumask_subset(cpus, env.dst_grpmask)) { 8925 env.loop = 0; 8926 env.loop_break = sched_nr_migrate_break; 8927 goto redo; 8928 } 8929 goto out_all_pinned; 8930 } 8931 } 8932 8933 if (!ld_moved) { 8934 schedstat_inc(sd->lb_failed[idle]); 8935 /* 8936 * Increment the failure counter only on periodic balance. 8937 * We do not want newidle balance, which can be very 8938 * frequent, pollute the failure counter causing 8939 * excessive cache_hot migrations and active balances. 8940 */ 8941 if (idle != CPU_NEWLY_IDLE) 8942 sd->nr_balance_failed++; 8943 8944 if (need_active_balance(&env)) { 8945 unsigned long flags; 8946 8947 raw_spin_lock_irqsave(&busiest->lock, flags); 8948 8949 /* 8950 * Don't kick the active_load_balance_cpu_stop, 8951 * if the curr task on busiest CPU can't be 8952 * moved to this_cpu: 8953 */ 8954 if (!cpumask_test_cpu(this_cpu, busiest->curr->cpus_ptr)) { 8955 raw_spin_unlock_irqrestore(&busiest->lock, 8956 flags); 8957 env.flags |= LBF_ALL_PINNED; 8958 goto out_one_pinned; 8959 } 8960 8961 /* 8962 * ->active_balance synchronizes accesses to 8963 * ->active_balance_work. Once set, it's cleared 8964 * only after active load balance is finished. 8965 */ 8966 if (!busiest->active_balance) { 8967 busiest->active_balance = 1; 8968 busiest->push_cpu = this_cpu; 8969 active_balance = 1; 8970 } 8971 raw_spin_unlock_irqrestore(&busiest->lock, flags); 8972 8973 if (active_balance) { 8974 stop_one_cpu_nowait(cpu_of(busiest), 8975 active_load_balance_cpu_stop, busiest, 8976 &busiest->active_balance_work); 8977 } 8978 8979 /* We've kicked active balancing, force task migration. */ 8980 sd->nr_balance_failed = sd->cache_nice_tries+1; 8981 } 8982 } else 8983 sd->nr_balance_failed = 0; 8984 8985 if (likely(!active_balance) || voluntary_active_balance(&env)) { 8986 /* We were unbalanced, so reset the balancing interval */ 8987 sd->balance_interval = sd->min_interval; 8988 } else { 8989 /* 8990 * If we've begun active balancing, start to back off. This 8991 * case may not be covered by the all_pinned logic if there 8992 * is only 1 task on the busy runqueue (because we don't call 8993 * detach_tasks). 8994 */ 8995 if (sd->balance_interval < sd->max_interval) 8996 sd->balance_interval *= 2; 8997 } 8998 8999 goto out; 9000 9001 out_balanced: 9002 /* 9003 * We reach balance although we may have faced some affinity 9004 * constraints. Clear the imbalance flag only if other tasks got 9005 * a chance to move and fix the imbalance. 9006 */ 9007 if (sd_parent && !(env.flags & LBF_ALL_PINNED)) { 9008 int *group_imbalance = &sd_parent->groups->sgc->imbalance; 9009 9010 if (*group_imbalance) 9011 *group_imbalance = 0; 9012 } 9013 9014 out_all_pinned: 9015 /* 9016 * We reach balance because all tasks are pinned at this level so 9017 * we can't migrate them. Let the imbalance flag set so parent level 9018 * can try to migrate them. 9019 */ 9020 schedstat_inc(sd->lb_balanced[idle]); 9021 9022 sd->nr_balance_failed = 0; 9023 9024 out_one_pinned: 9025 ld_moved = 0; 9026 9027 /* 9028 * newidle_balance() disregards balance intervals, so we could 9029 * repeatedly reach this code, which would lead to balance_interval 9030 * skyrocketting in a short amount of time. Skip the balance_interval 9031 * increase logic to avoid that. 9032 */ 9033 if (env.idle == CPU_NEWLY_IDLE) 9034 goto out; 9035 9036 /* tune up the balancing interval */ 9037 if ((env.flags & LBF_ALL_PINNED && 9038 sd->balance_interval < MAX_PINNED_INTERVAL) || 9039 sd->balance_interval < sd->max_interval) 9040 sd->balance_interval *= 2; 9041 out: 9042 return ld_moved; 9043 } 9044 9045 static inline unsigned long 9046 get_sd_balance_interval(struct sched_domain *sd, int cpu_busy) 9047 { 9048 unsigned long interval = sd->balance_interval; 9049 9050 if (cpu_busy) 9051 interval *= sd->busy_factor; 9052 9053 /* scale ms to jiffies */ 9054 interval = msecs_to_jiffies(interval); 9055 interval = clamp(interval, 1UL, max_load_balance_interval); 9056 9057 return interval; 9058 } 9059 9060 static inline void 9061 update_next_balance(struct sched_domain *sd, unsigned long *next_balance) 9062 { 9063 unsigned long interval, next; 9064 9065 /* used by idle balance, so cpu_busy = 0 */ 9066 interval = get_sd_balance_interval(sd, 0); 9067 next = sd->last_balance + interval; 9068 9069 if (time_after(*next_balance, next)) 9070 *next_balance = next; 9071 } 9072 9073 /* 9074 * active_load_balance_cpu_stop is run by the CPU stopper. It pushes 9075 * running tasks off the busiest CPU onto idle CPUs. It requires at 9076 * least 1 task to be running on each physical CPU where possible, and 9077 * avoids physical / logical imbalances. 9078 */ 9079 static int active_load_balance_cpu_stop(void *data) 9080 { 9081 struct rq *busiest_rq = data; 9082 int busiest_cpu = cpu_of(busiest_rq); 9083 int target_cpu = busiest_rq->push_cpu; 9084 struct rq *target_rq = cpu_rq(target_cpu); 9085 struct sched_domain *sd; 9086 struct task_struct *p = NULL; 9087 struct rq_flags rf; 9088 9089 rq_lock_irq(busiest_rq, &rf); 9090 /* 9091 * Between queueing the stop-work and running it is a hole in which 9092 * CPUs can become inactive. We should not move tasks from or to 9093 * inactive CPUs. 9094 */ 9095 if (!cpu_active(busiest_cpu) || !cpu_active(target_cpu)) 9096 goto out_unlock; 9097 9098 /* Make sure the requested CPU hasn't gone down in the meantime: */ 9099 if (unlikely(busiest_cpu != smp_processor_id() || 9100 !busiest_rq->active_balance)) 9101 goto out_unlock; 9102 9103 /* Is there any task to move? */ 9104 if (busiest_rq->nr_running <= 1) 9105 goto out_unlock; 9106 9107 /* 9108 * This condition is "impossible", if it occurs 9109 * we need to fix it. Originally reported by 9110 * Bjorn Helgaas on a 128-CPU setup. 9111 */ 9112 BUG_ON(busiest_rq == target_rq); 9113 9114 /* Search for an sd spanning us and the target CPU. */ 9115 rcu_read_lock(); 9116 for_each_domain(target_cpu, sd) { 9117 if ((sd->flags & SD_LOAD_BALANCE) && 9118 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd))) 9119 break; 9120 } 9121 9122 if (likely(sd)) { 9123 struct lb_env env = { 9124 .sd = sd, 9125 .dst_cpu = target_cpu, 9126 .dst_rq = target_rq, 9127 .src_cpu = busiest_rq->cpu, 9128 .src_rq = busiest_rq, 9129 .idle = CPU_IDLE, 9130 /* 9131 * can_migrate_task() doesn't need to compute new_dst_cpu 9132 * for active balancing. Since we have CPU_IDLE, but no 9133 * @dst_grpmask we need to make that test go away with lying 9134 * about DST_PINNED. 9135 */ 9136 .flags = LBF_DST_PINNED, 9137 }; 9138 9139 schedstat_inc(sd->alb_count); 9140 update_rq_clock(busiest_rq); 9141 9142 p = detach_one_task(&env); 9143 if (p) { 9144 schedstat_inc(sd->alb_pushed); 9145 /* Active balancing done, reset the failure counter. */ 9146 sd->nr_balance_failed = 0; 9147 } else { 9148 schedstat_inc(sd->alb_failed); 9149 } 9150 } 9151 rcu_read_unlock(); 9152 out_unlock: 9153 busiest_rq->active_balance = 0; 9154 rq_unlock(busiest_rq, &rf); 9155 9156 if (p) 9157 attach_one_task(target_rq, p); 9158 9159 local_irq_enable(); 9160 9161 return 0; 9162 } 9163 9164 static DEFINE_SPINLOCK(balancing); 9165 9166 /* 9167 * Scale the max load_balance interval with the number of CPUs in the system. 9168 * This trades load-balance latency on larger machines for less cross talk. 9169 */ 9170 void update_max_interval(void) 9171 { 9172 max_load_balance_interval = HZ*num_online_cpus()/10; 9173 } 9174 9175 /* 9176 * It checks each scheduling domain to see if it is due to be balanced, 9177 * and initiates a balancing operation if so. 9178 * 9179 * Balancing parameters are set up in init_sched_domains. 9180 */ 9181 static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle) 9182 { 9183 int continue_balancing = 1; 9184 int cpu = rq->cpu; 9185 unsigned long interval; 9186 struct sched_domain *sd; 9187 /* Earliest time when we have to do rebalance again */ 9188 unsigned long next_balance = jiffies + 60*HZ; 9189 int update_next_balance = 0; 9190 int need_serialize, need_decay = 0; 9191 u64 max_cost = 0; 9192 9193 rcu_read_lock(); 9194 for_each_domain(cpu, sd) { 9195 /* 9196 * Decay the newidle max times here because this is a regular 9197 * visit to all the domains. Decay ~1% per second. 9198 */ 9199 if (time_after(jiffies, sd->next_decay_max_lb_cost)) { 9200 sd->max_newidle_lb_cost = 9201 (sd->max_newidle_lb_cost * 253) / 256; 9202 sd->next_decay_max_lb_cost = jiffies + HZ; 9203 need_decay = 1; 9204 } 9205 max_cost += sd->max_newidle_lb_cost; 9206 9207 if (!(sd->flags & SD_LOAD_BALANCE)) 9208 continue; 9209 9210 /* 9211 * Stop the load balance at this level. There is another 9212 * CPU in our sched group which is doing load balancing more 9213 * actively. 9214 */ 9215 if (!continue_balancing) { 9216 if (need_decay) 9217 continue; 9218 break; 9219 } 9220 9221 interval = get_sd_balance_interval(sd, idle != CPU_IDLE); 9222 9223 need_serialize = sd->flags & SD_SERIALIZE; 9224 if (need_serialize) { 9225 if (!spin_trylock(&balancing)) 9226 goto out; 9227 } 9228 9229 if (time_after_eq(jiffies, sd->last_balance + interval)) { 9230 if (load_balance(cpu, rq, sd, idle, &continue_balancing)) { 9231 /* 9232 * The LBF_DST_PINNED logic could have changed 9233 * env->dst_cpu, so we can't know our idle 9234 * state even if we migrated tasks. Update it. 9235 */ 9236 idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE; 9237 } 9238 sd->last_balance = jiffies; 9239 interval = get_sd_balance_interval(sd, idle != CPU_IDLE); 9240 } 9241 if (need_serialize) 9242 spin_unlock(&balancing); 9243 out: 9244 if (time_after(next_balance, sd->last_balance + interval)) { 9245 next_balance = sd->last_balance + interval; 9246 update_next_balance = 1; 9247 } 9248 } 9249 if (need_decay) { 9250 /* 9251 * Ensure the rq-wide value also decays but keep it at a 9252 * reasonable floor to avoid funnies with rq->avg_idle. 9253 */ 9254 rq->max_idle_balance_cost = 9255 max((u64)sysctl_sched_migration_cost, max_cost); 9256 } 9257 rcu_read_unlock(); 9258 9259 /* 9260 * next_balance will be updated only when there is a need. 9261 * When the cpu is attached to null domain for ex, it will not be 9262 * updated. 9263 */ 9264 if (likely(update_next_balance)) { 9265 rq->next_balance = next_balance; 9266 9267 #ifdef CONFIG_NO_HZ_COMMON 9268 /* 9269 * If this CPU has been elected to perform the nohz idle 9270 * balance. Other idle CPUs have already rebalanced with 9271 * nohz_idle_balance() and nohz.next_balance has been 9272 * updated accordingly. This CPU is now running the idle load 9273 * balance for itself and we need to update the 9274 * nohz.next_balance accordingly. 9275 */ 9276 if ((idle == CPU_IDLE) && time_after(nohz.next_balance, rq->next_balance)) 9277 nohz.next_balance = rq->next_balance; 9278 #endif 9279 } 9280 } 9281 9282 static inline int on_null_domain(struct rq *rq) 9283 { 9284 return unlikely(!rcu_dereference_sched(rq->sd)); 9285 } 9286 9287 #ifdef CONFIG_NO_HZ_COMMON 9288 /* 9289 * idle load balancing details 9290 * - When one of the busy CPUs notice that there may be an idle rebalancing 9291 * needed, they will kick the idle load balancer, which then does idle 9292 * load balancing for all the idle CPUs. 9293 * - HK_FLAG_MISC CPUs are used for this task, because HK_FLAG_SCHED not set 9294 * anywhere yet. 9295 */ 9296 9297 static inline int find_new_ilb(void) 9298 { 9299 int ilb; 9300 9301 for_each_cpu_and(ilb, nohz.idle_cpus_mask, 9302 housekeeping_cpumask(HK_FLAG_MISC)) { 9303 if (idle_cpu(ilb)) 9304 return ilb; 9305 } 9306 9307 return nr_cpu_ids; 9308 } 9309 9310 /* 9311 * Kick a CPU to do the nohz balancing, if it is time for it. We pick any 9312 * idle CPU in the HK_FLAG_MISC housekeeping set (if there is one). 9313 */ 9314 static void kick_ilb(unsigned int flags) 9315 { 9316 int ilb_cpu; 9317 9318 nohz.next_balance++; 9319 9320 ilb_cpu = find_new_ilb(); 9321 9322 if (ilb_cpu >= nr_cpu_ids) 9323 return; 9324 9325 flags = atomic_fetch_or(flags, nohz_flags(ilb_cpu)); 9326 if (flags & NOHZ_KICK_MASK) 9327 return; 9328 9329 /* 9330 * Use smp_send_reschedule() instead of resched_cpu(). 9331 * This way we generate a sched IPI on the target CPU which 9332 * is idle. And the softirq performing nohz idle load balance 9333 * will be run before returning from the IPI. 9334 */ 9335 smp_send_reschedule(ilb_cpu); 9336 } 9337 9338 /* 9339 * Current decision point for kicking the idle load balancer in the presence 9340 * of idle CPUs in the system. 9341 */ 9342 static void nohz_balancer_kick(struct rq *rq) 9343 { 9344 unsigned long now = jiffies; 9345 struct sched_domain_shared *sds; 9346 struct sched_domain *sd; 9347 int nr_busy, i, cpu = rq->cpu; 9348 unsigned int flags = 0; 9349 9350 if (unlikely(rq->idle_balance)) 9351 return; 9352 9353 /* 9354 * We may be recently in ticked or tickless idle mode. At the first 9355 * busy tick after returning from idle, we will update the busy stats. 9356 */ 9357 nohz_balance_exit_idle(rq); 9358 9359 /* 9360 * None are in tickless mode and hence no need for NOHZ idle load 9361 * balancing. 9362 */ 9363 if (likely(!atomic_read(&nohz.nr_cpus))) 9364 return; 9365 9366 if (READ_ONCE(nohz.has_blocked) && 9367 time_after(now, READ_ONCE(nohz.next_blocked))) 9368 flags = NOHZ_STATS_KICK; 9369 9370 if (time_before(now, nohz.next_balance)) 9371 goto out; 9372 9373 if (rq->nr_running >= 2) { 9374 flags = NOHZ_KICK_MASK; 9375 goto out; 9376 } 9377 9378 rcu_read_lock(); 9379 9380 sd = rcu_dereference(rq->sd); 9381 if (sd) { 9382 /* 9383 * If there's a CFS task and the current CPU has reduced 9384 * capacity; kick the ILB to see if there's a better CPU to run 9385 * on. 9386 */ 9387 if (rq->cfs.h_nr_running >= 1 && check_cpu_capacity(rq, sd)) { 9388 flags = NOHZ_KICK_MASK; 9389 goto unlock; 9390 } 9391 } 9392 9393 sd = rcu_dereference(per_cpu(sd_asym_packing, cpu)); 9394 if (sd) { 9395 /* 9396 * When ASYM_PACKING; see if there's a more preferred CPU 9397 * currently idle; in which case, kick the ILB to move tasks 9398 * around. 9399 */ 9400 for_each_cpu_and(i, sched_domain_span(sd), nohz.idle_cpus_mask) { 9401 if (sched_asym_prefer(i, cpu)) { 9402 flags = NOHZ_KICK_MASK; 9403 goto unlock; 9404 } 9405 } 9406 } 9407 9408 sd = rcu_dereference(per_cpu(sd_asym_cpucapacity, cpu)); 9409 if (sd) { 9410 /* 9411 * When ASYM_CPUCAPACITY; see if there's a higher capacity CPU 9412 * to run the misfit task on. 9413 */ 9414 if (check_misfit_status(rq, sd)) { 9415 flags = NOHZ_KICK_MASK; 9416 goto unlock; 9417 } 9418 9419 /* 9420 * For asymmetric systems, we do not want to nicely balance 9421 * cache use, instead we want to embrace asymmetry and only 9422 * ensure tasks have enough CPU capacity. 9423 * 9424 * Skip the LLC logic because it's not relevant in that case. 9425 */ 9426 goto unlock; 9427 } 9428 9429 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu)); 9430 if (sds) { 9431 /* 9432 * If there is an imbalance between LLC domains (IOW we could 9433 * increase the overall cache use), we need some less-loaded LLC 9434 * domain to pull some load. Likewise, we may need to spread 9435 * load within the current LLC domain (e.g. packed SMT cores but 9436 * other CPUs are idle). We can't really know from here how busy 9437 * the others are - so just get a nohz balance going if it looks 9438 * like this LLC domain has tasks we could move. 9439 */ 9440 nr_busy = atomic_read(&sds->nr_busy_cpus); 9441 if (nr_busy > 1) { 9442 flags = NOHZ_KICK_MASK; 9443 goto unlock; 9444 } 9445 } 9446 unlock: 9447 rcu_read_unlock(); 9448 out: 9449 if (flags) 9450 kick_ilb(flags); 9451 } 9452 9453 static void set_cpu_sd_state_busy(int cpu) 9454 { 9455 struct sched_domain *sd; 9456 9457 rcu_read_lock(); 9458 sd = rcu_dereference(per_cpu(sd_llc, cpu)); 9459 9460 if (!sd || !sd->nohz_idle) 9461 goto unlock; 9462 sd->nohz_idle = 0; 9463 9464 atomic_inc(&sd->shared->nr_busy_cpus); 9465 unlock: 9466 rcu_read_unlock(); 9467 } 9468 9469 void nohz_balance_exit_idle(struct rq *rq) 9470 { 9471 SCHED_WARN_ON(rq != this_rq()); 9472 9473 if (likely(!rq->nohz_tick_stopped)) 9474 return; 9475 9476 rq->nohz_tick_stopped = 0; 9477 cpumask_clear_cpu(rq->cpu, nohz.idle_cpus_mask); 9478 atomic_dec(&nohz.nr_cpus); 9479 9480 set_cpu_sd_state_busy(rq->cpu); 9481 } 9482 9483 static void set_cpu_sd_state_idle(int cpu) 9484 { 9485 struct sched_domain *sd; 9486 9487 rcu_read_lock(); 9488 sd = rcu_dereference(per_cpu(sd_llc, cpu)); 9489 9490 if (!sd || sd->nohz_idle) 9491 goto unlock; 9492 sd->nohz_idle = 1; 9493 9494 atomic_dec(&sd->shared->nr_busy_cpus); 9495 unlock: 9496 rcu_read_unlock(); 9497 } 9498 9499 /* 9500 * This routine will record that the CPU is going idle with tick stopped. 9501 * This info will be used in performing idle load balancing in the future. 9502 */ 9503 void nohz_balance_enter_idle(int cpu) 9504 { 9505 struct rq *rq = cpu_rq(cpu); 9506 9507 SCHED_WARN_ON(cpu != smp_processor_id()); 9508 9509 /* If this CPU is going down, then nothing needs to be done: */ 9510 if (!cpu_active(cpu)) 9511 return; 9512 9513 /* Spare idle load balancing on CPUs that don't want to be disturbed: */ 9514 if (!housekeeping_cpu(cpu, HK_FLAG_SCHED)) 9515 return; 9516 9517 /* 9518 * Can be set safely without rq->lock held 9519 * If a clear happens, it will have evaluated last additions because 9520 * rq->lock is held during the check and the clear 9521 */ 9522 rq->has_blocked_load = 1; 9523 9524 /* 9525 * The tick is still stopped but load could have been added in the 9526 * meantime. We set the nohz.has_blocked flag to trig a check of the 9527 * *_avg. The CPU is already part of nohz.idle_cpus_mask so the clear 9528 * of nohz.has_blocked can only happen after checking the new load 9529 */ 9530 if (rq->nohz_tick_stopped) 9531 goto out; 9532 9533 /* If we're a completely isolated CPU, we don't play: */ 9534 if (on_null_domain(rq)) 9535 return; 9536 9537 rq->nohz_tick_stopped = 1; 9538 9539 cpumask_set_cpu(cpu, nohz.idle_cpus_mask); 9540 atomic_inc(&nohz.nr_cpus); 9541 9542 /* 9543 * Ensures that if nohz_idle_balance() fails to observe our 9544 * @idle_cpus_mask store, it must observe the @has_blocked 9545 * store. 9546 */ 9547 smp_mb__after_atomic(); 9548 9549 set_cpu_sd_state_idle(cpu); 9550 9551 out: 9552 /* 9553 * Each time a cpu enter idle, we assume that it has blocked load and 9554 * enable the periodic update of the load of idle cpus 9555 */ 9556 WRITE_ONCE(nohz.has_blocked, 1); 9557 } 9558 9559 /* 9560 * Internal function that runs load balance for all idle cpus. The load balance 9561 * can be a simple update of blocked load or a complete load balance with 9562 * tasks movement depending of flags. 9563 * The function returns false if the loop has stopped before running 9564 * through all idle CPUs. 9565 */ 9566 static bool _nohz_idle_balance(struct rq *this_rq, unsigned int flags, 9567 enum cpu_idle_type idle) 9568 { 9569 /* Earliest time when we have to do rebalance again */ 9570 unsigned long now = jiffies; 9571 unsigned long next_balance = now + 60*HZ; 9572 bool has_blocked_load = false; 9573 int update_next_balance = 0; 9574 int this_cpu = this_rq->cpu; 9575 int balance_cpu; 9576 int ret = false; 9577 struct rq *rq; 9578 9579 SCHED_WARN_ON((flags & NOHZ_KICK_MASK) == NOHZ_BALANCE_KICK); 9580 9581 /* 9582 * We assume there will be no idle load after this update and clear 9583 * the has_blocked flag. If a cpu enters idle in the mean time, it will 9584 * set the has_blocked flag and trig another update of idle load. 9585 * Because a cpu that becomes idle, is added to idle_cpus_mask before 9586 * setting the flag, we are sure to not clear the state and not 9587 * check the load of an idle cpu. 9588 */ 9589 WRITE_ONCE(nohz.has_blocked, 0); 9590 9591 /* 9592 * Ensures that if we miss the CPU, we must see the has_blocked 9593 * store from nohz_balance_enter_idle(). 9594 */ 9595 smp_mb(); 9596 9597 for_each_cpu(balance_cpu, nohz.idle_cpus_mask) { 9598 if (balance_cpu == this_cpu || !idle_cpu(balance_cpu)) 9599 continue; 9600 9601 /* 9602 * If this CPU gets work to do, stop the load balancing 9603 * work being done for other CPUs. Next load 9604 * balancing owner will pick it up. 9605 */ 9606 if (need_resched()) { 9607 has_blocked_load = true; 9608 goto abort; 9609 } 9610 9611 rq = cpu_rq(balance_cpu); 9612 9613 has_blocked_load |= update_nohz_stats(rq, true); 9614 9615 /* 9616 * If time for next balance is due, 9617 * do the balance. 9618 */ 9619 if (time_after_eq(jiffies, rq->next_balance)) { 9620 struct rq_flags rf; 9621 9622 rq_lock_irqsave(rq, &rf); 9623 update_rq_clock(rq); 9624 rq_unlock_irqrestore(rq, &rf); 9625 9626 if (flags & NOHZ_BALANCE_KICK) 9627 rebalance_domains(rq, CPU_IDLE); 9628 } 9629 9630 if (time_after(next_balance, rq->next_balance)) { 9631 next_balance = rq->next_balance; 9632 update_next_balance = 1; 9633 } 9634 } 9635 9636 /* Newly idle CPU doesn't need an update */ 9637 if (idle != CPU_NEWLY_IDLE) { 9638 update_blocked_averages(this_cpu); 9639 has_blocked_load |= this_rq->has_blocked_load; 9640 } 9641 9642 if (flags & NOHZ_BALANCE_KICK) 9643 rebalance_domains(this_rq, CPU_IDLE); 9644 9645 WRITE_ONCE(nohz.next_blocked, 9646 now + msecs_to_jiffies(LOAD_AVG_PERIOD)); 9647 9648 /* The full idle balance loop has been done */ 9649 ret = true; 9650 9651 abort: 9652 /* There is still blocked load, enable periodic update */ 9653 if (has_blocked_load) 9654 WRITE_ONCE(nohz.has_blocked, 1); 9655 9656 /* 9657 * next_balance will be updated only when there is a need. 9658 * When the CPU is attached to null domain for ex, it will not be 9659 * updated. 9660 */ 9661 if (likely(update_next_balance)) 9662 nohz.next_balance = next_balance; 9663 9664 return ret; 9665 } 9666 9667 /* 9668 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the 9669 * rebalancing for all the cpus for whom scheduler ticks are stopped. 9670 */ 9671 static bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) 9672 { 9673 int this_cpu = this_rq->cpu; 9674 unsigned int flags; 9675 9676 if (!(atomic_read(nohz_flags(this_cpu)) & NOHZ_KICK_MASK)) 9677 return false; 9678 9679 if (idle != CPU_IDLE) { 9680 atomic_andnot(NOHZ_KICK_MASK, nohz_flags(this_cpu)); 9681 return false; 9682 } 9683 9684 /* could be _relaxed() */ 9685 flags = atomic_fetch_andnot(NOHZ_KICK_MASK, nohz_flags(this_cpu)); 9686 if (!(flags & NOHZ_KICK_MASK)) 9687 return false; 9688 9689 _nohz_idle_balance(this_rq, flags, idle); 9690 9691 return true; 9692 } 9693 9694 static void nohz_newidle_balance(struct rq *this_rq) 9695 { 9696 int this_cpu = this_rq->cpu; 9697 9698 /* 9699 * This CPU doesn't want to be disturbed by scheduler 9700 * housekeeping 9701 */ 9702 if (!housekeeping_cpu(this_cpu, HK_FLAG_SCHED)) 9703 return; 9704 9705 /* Will wake up very soon. No time for doing anything else*/ 9706 if (this_rq->avg_idle < sysctl_sched_migration_cost) 9707 return; 9708 9709 /* Don't need to update blocked load of idle CPUs*/ 9710 if (!READ_ONCE(nohz.has_blocked) || 9711 time_before(jiffies, READ_ONCE(nohz.next_blocked))) 9712 return; 9713 9714 raw_spin_unlock(&this_rq->lock); 9715 /* 9716 * This CPU is going to be idle and blocked load of idle CPUs 9717 * need to be updated. Run the ilb locally as it is a good 9718 * candidate for ilb instead of waking up another idle CPU. 9719 * Kick an normal ilb if we failed to do the update. 9720 */ 9721 if (!_nohz_idle_balance(this_rq, NOHZ_STATS_KICK, CPU_NEWLY_IDLE)) 9722 kick_ilb(NOHZ_STATS_KICK); 9723 raw_spin_lock(&this_rq->lock); 9724 } 9725 9726 #else /* !CONFIG_NO_HZ_COMMON */ 9727 static inline void nohz_balancer_kick(struct rq *rq) { } 9728 9729 static inline bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) 9730 { 9731 return false; 9732 } 9733 9734 static inline void nohz_newidle_balance(struct rq *this_rq) { } 9735 #endif /* CONFIG_NO_HZ_COMMON */ 9736 9737 /* 9738 * idle_balance is called by schedule() if this_cpu is about to become 9739 * idle. Attempts to pull tasks from other CPUs. 9740 */ 9741 int newidle_balance(struct rq *this_rq, struct rq_flags *rf) 9742 { 9743 unsigned long next_balance = jiffies + HZ; 9744 int this_cpu = this_rq->cpu; 9745 struct sched_domain *sd; 9746 int pulled_task = 0; 9747 u64 curr_cost = 0; 9748 9749 update_misfit_status(NULL, this_rq); 9750 /* 9751 * We must set idle_stamp _before_ calling idle_balance(), such that we 9752 * measure the duration of idle_balance() as idle time. 9753 */ 9754 this_rq->idle_stamp = rq_clock(this_rq); 9755 9756 /* 9757 * Do not pull tasks towards !active CPUs... 9758 */ 9759 if (!cpu_active(this_cpu)) 9760 return 0; 9761 9762 /* 9763 * This is OK, because current is on_cpu, which avoids it being picked 9764 * for load-balance and preemption/IRQs are still disabled avoiding 9765 * further scheduler activity on it and we're being very careful to 9766 * re-start the picking loop. 9767 */ 9768 rq_unpin_lock(this_rq, rf); 9769 9770 if (this_rq->avg_idle < sysctl_sched_migration_cost || 9771 !READ_ONCE(this_rq->rd->overload)) { 9772 9773 rcu_read_lock(); 9774 sd = rcu_dereference_check_sched_domain(this_rq->sd); 9775 if (sd) 9776 update_next_balance(sd, &next_balance); 9777 rcu_read_unlock(); 9778 9779 nohz_newidle_balance(this_rq); 9780 9781 goto out; 9782 } 9783 9784 raw_spin_unlock(&this_rq->lock); 9785 9786 update_blocked_averages(this_cpu); 9787 rcu_read_lock(); 9788 for_each_domain(this_cpu, sd) { 9789 int continue_balancing = 1; 9790 u64 t0, domain_cost; 9791 9792 if (!(sd->flags & SD_LOAD_BALANCE)) 9793 continue; 9794 9795 if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) { 9796 update_next_balance(sd, &next_balance); 9797 break; 9798 } 9799 9800 if (sd->flags & SD_BALANCE_NEWIDLE) { 9801 t0 = sched_clock_cpu(this_cpu); 9802 9803 pulled_task = load_balance(this_cpu, this_rq, 9804 sd, CPU_NEWLY_IDLE, 9805 &continue_balancing); 9806 9807 domain_cost = sched_clock_cpu(this_cpu) - t0; 9808 if (domain_cost > sd->max_newidle_lb_cost) 9809 sd->max_newidle_lb_cost = domain_cost; 9810 9811 curr_cost += domain_cost; 9812 } 9813 9814 update_next_balance(sd, &next_balance); 9815 9816 /* 9817 * Stop searching for tasks to pull if there are 9818 * now runnable tasks on this rq. 9819 */ 9820 if (pulled_task || this_rq->nr_running > 0) 9821 break; 9822 } 9823 rcu_read_unlock(); 9824 9825 raw_spin_lock(&this_rq->lock); 9826 9827 if (curr_cost > this_rq->max_idle_balance_cost) 9828 this_rq->max_idle_balance_cost = curr_cost; 9829 9830 out: 9831 /* 9832 * While browsing the domains, we released the rq lock, a task could 9833 * have been enqueued in the meantime. Since we're not going idle, 9834 * pretend we pulled a task. 9835 */ 9836 if (this_rq->cfs.h_nr_running && !pulled_task) 9837 pulled_task = 1; 9838 9839 /* Move the next balance forward */ 9840 if (time_after(this_rq->next_balance, next_balance)) 9841 this_rq->next_balance = next_balance; 9842 9843 /* Is there a task of a high priority class? */ 9844 if (this_rq->nr_running != this_rq->cfs.h_nr_running) 9845 pulled_task = -1; 9846 9847 if (pulled_task) 9848 this_rq->idle_stamp = 0; 9849 9850 rq_repin_lock(this_rq, rf); 9851 9852 return pulled_task; 9853 } 9854 9855 /* 9856 * run_rebalance_domains is triggered when needed from the scheduler tick. 9857 * Also triggered for nohz idle balancing (with nohz_balancing_kick set). 9858 */ 9859 static __latent_entropy void run_rebalance_domains(struct softirq_action *h) 9860 { 9861 struct rq *this_rq = this_rq(); 9862 enum cpu_idle_type idle = this_rq->idle_balance ? 9863 CPU_IDLE : CPU_NOT_IDLE; 9864 9865 /* 9866 * If this CPU has a pending nohz_balance_kick, then do the 9867 * balancing on behalf of the other idle CPUs whose ticks are 9868 * stopped. Do nohz_idle_balance *before* rebalance_domains to 9869 * give the idle CPUs a chance to load balance. Else we may 9870 * load balance only within the local sched_domain hierarchy 9871 * and abort nohz_idle_balance altogether if we pull some load. 9872 */ 9873 if (nohz_idle_balance(this_rq, idle)) 9874 return; 9875 9876 /* normal load balance */ 9877 update_blocked_averages(this_rq->cpu); 9878 rebalance_domains(this_rq, idle); 9879 } 9880 9881 /* 9882 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing. 9883 */ 9884 void trigger_load_balance(struct rq *rq) 9885 { 9886 /* Don't need to rebalance while attached to NULL domain */ 9887 if (unlikely(on_null_domain(rq))) 9888 return; 9889 9890 if (time_after_eq(jiffies, rq->next_balance)) 9891 raise_softirq(SCHED_SOFTIRQ); 9892 9893 nohz_balancer_kick(rq); 9894 } 9895 9896 static void rq_online_fair(struct rq *rq) 9897 { 9898 update_sysctl(); 9899 9900 update_runtime_enabled(rq); 9901 } 9902 9903 static void rq_offline_fair(struct rq *rq) 9904 { 9905 update_sysctl(); 9906 9907 /* Ensure any throttled groups are reachable by pick_next_task */ 9908 unthrottle_offline_cfs_rqs(rq); 9909 } 9910 9911 #endif /* CONFIG_SMP */ 9912 9913 /* 9914 * scheduler tick hitting a task of our scheduling class. 9915 * 9916 * NOTE: This function can be called remotely by the tick offload that 9917 * goes along full dynticks. Therefore no local assumption can be made 9918 * and everything must be accessed through the @rq and @curr passed in 9919 * parameters. 9920 */ 9921 static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued) 9922 { 9923 struct cfs_rq *cfs_rq; 9924 struct sched_entity *se = &curr->se; 9925 9926 for_each_sched_entity(se) { 9927 cfs_rq = cfs_rq_of(se); 9928 entity_tick(cfs_rq, se, queued); 9929 } 9930 9931 if (static_branch_unlikely(&sched_numa_balancing)) 9932 task_tick_numa(rq, curr); 9933 9934 update_misfit_status(curr, rq); 9935 update_overutilized_status(task_rq(curr)); 9936 } 9937 9938 /* 9939 * called on fork with the child task as argument from the parent's context 9940 * - child not yet on the tasklist 9941 * - preemption disabled 9942 */ 9943 static void task_fork_fair(struct task_struct *p) 9944 { 9945 struct cfs_rq *cfs_rq; 9946 struct sched_entity *se = &p->se, *curr; 9947 struct rq *rq = this_rq(); 9948 struct rq_flags rf; 9949 9950 rq_lock(rq, &rf); 9951 update_rq_clock(rq); 9952 9953 cfs_rq = task_cfs_rq(current); 9954 curr = cfs_rq->curr; 9955 if (curr) { 9956 update_curr(cfs_rq); 9957 se->vruntime = curr->vruntime; 9958 } 9959 place_entity(cfs_rq, se, 1); 9960 9961 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) { 9962 /* 9963 * Upon rescheduling, sched_class::put_prev_task() will place 9964 * 'current' within the tree based on its new key value. 9965 */ 9966 swap(curr->vruntime, se->vruntime); 9967 resched_curr(rq); 9968 } 9969 9970 se->vruntime -= cfs_rq->min_vruntime; 9971 rq_unlock(rq, &rf); 9972 } 9973 9974 /* 9975 * Priority of the task has changed. Check to see if we preempt 9976 * the current task. 9977 */ 9978 static void 9979 prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio) 9980 { 9981 if (!task_on_rq_queued(p)) 9982 return; 9983 9984 /* 9985 * Reschedule if we are currently running on this runqueue and 9986 * our priority decreased, or if we are not currently running on 9987 * this runqueue and our priority is higher than the current's 9988 */ 9989 if (rq->curr == p) { 9990 if (p->prio > oldprio) 9991 resched_curr(rq); 9992 } else 9993 check_preempt_curr(rq, p, 0); 9994 } 9995 9996 static inline bool vruntime_normalized(struct task_struct *p) 9997 { 9998 struct sched_entity *se = &p->se; 9999 10000 /* 10001 * In both the TASK_ON_RQ_QUEUED and TASK_ON_RQ_MIGRATING cases, 10002 * the dequeue_entity(.flags=0) will already have normalized the 10003 * vruntime. 10004 */ 10005 if (p->on_rq) 10006 return true; 10007 10008 /* 10009 * When !on_rq, vruntime of the task has usually NOT been normalized. 10010 * But there are some cases where it has already been normalized: 10011 * 10012 * - A forked child which is waiting for being woken up by 10013 * wake_up_new_task(). 10014 * - A task which has been woken up by try_to_wake_up() and 10015 * waiting for actually being woken up by sched_ttwu_pending(). 10016 */ 10017 if (!se->sum_exec_runtime || 10018 (p->state == TASK_WAKING && p->sched_remote_wakeup)) 10019 return true; 10020 10021 return false; 10022 } 10023 10024 #ifdef CONFIG_FAIR_GROUP_SCHED 10025 /* 10026 * Propagate the changes of the sched_entity across the tg tree to make it 10027 * visible to the root 10028 */ 10029 static void propagate_entity_cfs_rq(struct sched_entity *se) 10030 { 10031 struct cfs_rq *cfs_rq; 10032 10033 /* Start to propagate at parent */ 10034 se = se->parent; 10035 10036 for_each_sched_entity(se) { 10037 cfs_rq = cfs_rq_of(se); 10038 10039 if (cfs_rq_throttled(cfs_rq)) 10040 break; 10041 10042 update_load_avg(cfs_rq, se, UPDATE_TG); 10043 } 10044 } 10045 #else 10046 static void propagate_entity_cfs_rq(struct sched_entity *se) { } 10047 #endif 10048 10049 static void detach_entity_cfs_rq(struct sched_entity *se) 10050 { 10051 struct cfs_rq *cfs_rq = cfs_rq_of(se); 10052 10053 /* Catch up with the cfs_rq and remove our load when we leave */ 10054 update_load_avg(cfs_rq, se, 0); 10055 detach_entity_load_avg(cfs_rq, se); 10056 update_tg_load_avg(cfs_rq, false); 10057 propagate_entity_cfs_rq(se); 10058 } 10059 10060 static void attach_entity_cfs_rq(struct sched_entity *se) 10061 { 10062 struct cfs_rq *cfs_rq = cfs_rq_of(se); 10063 10064 #ifdef CONFIG_FAIR_GROUP_SCHED 10065 /* 10066 * Since the real-depth could have been changed (only FAIR 10067 * class maintain depth value), reset depth properly. 10068 */ 10069 se->depth = se->parent ? se->parent->depth + 1 : 0; 10070 #endif 10071 10072 /* Synchronize entity with its cfs_rq */ 10073 update_load_avg(cfs_rq, se, sched_feat(ATTACH_AGE_LOAD) ? 0 : SKIP_AGE_LOAD); 10074 attach_entity_load_avg(cfs_rq, se, 0); 10075 update_tg_load_avg(cfs_rq, false); 10076 propagate_entity_cfs_rq(se); 10077 } 10078 10079 static void detach_task_cfs_rq(struct task_struct *p) 10080 { 10081 struct sched_entity *se = &p->se; 10082 struct cfs_rq *cfs_rq = cfs_rq_of(se); 10083 10084 if (!vruntime_normalized(p)) { 10085 /* 10086 * Fix up our vruntime so that the current sleep doesn't 10087 * cause 'unlimited' sleep bonus. 10088 */ 10089 place_entity(cfs_rq, se, 0); 10090 se->vruntime -= cfs_rq->min_vruntime; 10091 } 10092 10093 detach_entity_cfs_rq(se); 10094 } 10095 10096 static void attach_task_cfs_rq(struct task_struct *p) 10097 { 10098 struct sched_entity *se = &p->se; 10099 struct cfs_rq *cfs_rq = cfs_rq_of(se); 10100 10101 attach_entity_cfs_rq(se); 10102 10103 if (!vruntime_normalized(p)) 10104 se->vruntime += cfs_rq->min_vruntime; 10105 } 10106 10107 static void switched_from_fair(struct rq *rq, struct task_struct *p) 10108 { 10109 detach_task_cfs_rq(p); 10110 } 10111 10112 static void switched_to_fair(struct rq *rq, struct task_struct *p) 10113 { 10114 attach_task_cfs_rq(p); 10115 10116 if (task_on_rq_queued(p)) { 10117 /* 10118 * We were most likely switched from sched_rt, so 10119 * kick off the schedule if running, otherwise just see 10120 * if we can still preempt the current task. 10121 */ 10122 if (rq->curr == p) 10123 resched_curr(rq); 10124 else 10125 check_preempt_curr(rq, p, 0); 10126 } 10127 } 10128 10129 /* Account for a task changing its policy or group. 10130 * 10131 * This routine is mostly called to set cfs_rq->curr field when a task 10132 * migrates between groups/classes. 10133 */ 10134 static void set_next_task_fair(struct rq *rq, struct task_struct *p) 10135 { 10136 struct sched_entity *se = &p->se; 10137 10138 #ifdef CONFIG_SMP 10139 if (task_on_rq_queued(p)) { 10140 /* 10141 * Move the next running task to the front of the list, so our 10142 * cfs_tasks list becomes MRU one. 10143 */ 10144 list_move(&se->group_node, &rq->cfs_tasks); 10145 } 10146 #endif 10147 10148 for_each_sched_entity(se) { 10149 struct cfs_rq *cfs_rq = cfs_rq_of(se); 10150 10151 set_next_entity(cfs_rq, se); 10152 /* ensure bandwidth has been allocated on our new cfs_rq */ 10153 account_cfs_rq_runtime(cfs_rq, 0); 10154 } 10155 } 10156 10157 void init_cfs_rq(struct cfs_rq *cfs_rq) 10158 { 10159 cfs_rq->tasks_timeline = RB_ROOT_CACHED; 10160 cfs_rq->min_vruntime = (u64)(-(1LL << 20)); 10161 #ifndef CONFIG_64BIT 10162 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime; 10163 #endif 10164 #ifdef CONFIG_SMP 10165 raw_spin_lock_init(&cfs_rq->removed.lock); 10166 #endif 10167 } 10168 10169 #ifdef CONFIG_FAIR_GROUP_SCHED 10170 static void task_set_group_fair(struct task_struct *p) 10171 { 10172 struct sched_entity *se = &p->se; 10173 10174 set_task_rq(p, task_cpu(p)); 10175 se->depth = se->parent ? se->parent->depth + 1 : 0; 10176 } 10177 10178 static void task_move_group_fair(struct task_struct *p) 10179 { 10180 detach_task_cfs_rq(p); 10181 set_task_rq(p, task_cpu(p)); 10182 10183 #ifdef CONFIG_SMP 10184 /* Tell se's cfs_rq has been changed -- migrated */ 10185 p->se.avg.last_update_time = 0; 10186 #endif 10187 attach_task_cfs_rq(p); 10188 } 10189 10190 static void task_change_group_fair(struct task_struct *p, int type) 10191 { 10192 switch (type) { 10193 case TASK_SET_GROUP: 10194 task_set_group_fair(p); 10195 break; 10196 10197 case TASK_MOVE_GROUP: 10198 task_move_group_fair(p); 10199 break; 10200 } 10201 } 10202 10203 void free_fair_sched_group(struct task_group *tg) 10204 { 10205 int i; 10206 10207 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg)); 10208 10209 for_each_possible_cpu(i) { 10210 if (tg->cfs_rq) 10211 kfree(tg->cfs_rq[i]); 10212 if (tg->se) 10213 kfree(tg->se[i]); 10214 } 10215 10216 kfree(tg->cfs_rq); 10217 kfree(tg->se); 10218 } 10219 10220 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent) 10221 { 10222 struct sched_entity *se; 10223 struct cfs_rq *cfs_rq; 10224 int i; 10225 10226 tg->cfs_rq = kcalloc(nr_cpu_ids, sizeof(cfs_rq), GFP_KERNEL); 10227 if (!tg->cfs_rq) 10228 goto err; 10229 tg->se = kcalloc(nr_cpu_ids, sizeof(se), GFP_KERNEL); 10230 if (!tg->se) 10231 goto err; 10232 10233 tg->shares = NICE_0_LOAD; 10234 10235 init_cfs_bandwidth(tg_cfs_bandwidth(tg)); 10236 10237 for_each_possible_cpu(i) { 10238 cfs_rq = kzalloc_node(sizeof(struct cfs_rq), 10239 GFP_KERNEL, cpu_to_node(i)); 10240 if (!cfs_rq) 10241 goto err; 10242 10243 se = kzalloc_node(sizeof(struct sched_entity), 10244 GFP_KERNEL, cpu_to_node(i)); 10245 if (!se) 10246 goto err_free_rq; 10247 10248 init_cfs_rq(cfs_rq); 10249 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]); 10250 init_entity_runnable_average(se); 10251 } 10252 10253 return 1; 10254 10255 err_free_rq: 10256 kfree(cfs_rq); 10257 err: 10258 return 0; 10259 } 10260 10261 void online_fair_sched_group(struct task_group *tg) 10262 { 10263 struct sched_entity *se; 10264 struct rq_flags rf; 10265 struct rq *rq; 10266 int i; 10267 10268 for_each_possible_cpu(i) { 10269 rq = cpu_rq(i); 10270 se = tg->se[i]; 10271 rq_lock_irq(rq, &rf); 10272 update_rq_clock(rq); 10273 attach_entity_cfs_rq(se); 10274 sync_throttle(tg, i); 10275 rq_unlock_irq(rq, &rf); 10276 } 10277 } 10278 10279 void unregister_fair_sched_group(struct task_group *tg) 10280 { 10281 unsigned long flags; 10282 struct rq *rq; 10283 int cpu; 10284 10285 for_each_possible_cpu(cpu) { 10286 if (tg->se[cpu]) 10287 remove_entity_load_avg(tg->se[cpu]); 10288 10289 /* 10290 * Only empty task groups can be destroyed; so we can speculatively 10291 * check on_list without danger of it being re-added. 10292 */ 10293 if (!tg->cfs_rq[cpu]->on_list) 10294 continue; 10295 10296 rq = cpu_rq(cpu); 10297 10298 raw_spin_lock_irqsave(&rq->lock, flags); 10299 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]); 10300 raw_spin_unlock_irqrestore(&rq->lock, flags); 10301 } 10302 } 10303 10304 void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq, 10305 struct sched_entity *se, int cpu, 10306 struct sched_entity *parent) 10307 { 10308 struct rq *rq = cpu_rq(cpu); 10309 10310 cfs_rq->tg = tg; 10311 cfs_rq->rq = rq; 10312 init_cfs_rq_runtime(cfs_rq); 10313 10314 tg->cfs_rq[cpu] = cfs_rq; 10315 tg->se[cpu] = se; 10316 10317 /* se could be NULL for root_task_group */ 10318 if (!se) 10319 return; 10320 10321 if (!parent) { 10322 se->cfs_rq = &rq->cfs; 10323 se->depth = 0; 10324 } else { 10325 se->cfs_rq = parent->my_q; 10326 se->depth = parent->depth + 1; 10327 } 10328 10329 se->my_q = cfs_rq; 10330 /* guarantee group entities always have weight */ 10331 update_load_set(&se->load, NICE_0_LOAD); 10332 se->parent = parent; 10333 } 10334 10335 static DEFINE_MUTEX(shares_mutex); 10336 10337 int sched_group_set_shares(struct task_group *tg, unsigned long shares) 10338 { 10339 int i; 10340 10341 /* 10342 * We can't change the weight of the root cgroup. 10343 */ 10344 if (!tg->se[0]) 10345 return -EINVAL; 10346 10347 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES)); 10348 10349 mutex_lock(&shares_mutex); 10350 if (tg->shares == shares) 10351 goto done; 10352 10353 tg->shares = shares; 10354 for_each_possible_cpu(i) { 10355 struct rq *rq = cpu_rq(i); 10356 struct sched_entity *se = tg->se[i]; 10357 struct rq_flags rf; 10358 10359 /* Propagate contribution to hierarchy */ 10360 rq_lock_irqsave(rq, &rf); 10361 update_rq_clock(rq); 10362 for_each_sched_entity(se) { 10363 update_load_avg(cfs_rq_of(se), se, UPDATE_TG); 10364 update_cfs_group(se); 10365 } 10366 rq_unlock_irqrestore(rq, &rf); 10367 } 10368 10369 done: 10370 mutex_unlock(&shares_mutex); 10371 return 0; 10372 } 10373 #else /* CONFIG_FAIR_GROUP_SCHED */ 10374 10375 void free_fair_sched_group(struct task_group *tg) { } 10376 10377 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent) 10378 { 10379 return 1; 10380 } 10381 10382 void online_fair_sched_group(struct task_group *tg) { } 10383 10384 void unregister_fair_sched_group(struct task_group *tg) { } 10385 10386 #endif /* CONFIG_FAIR_GROUP_SCHED */ 10387 10388 10389 static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task) 10390 { 10391 struct sched_entity *se = &task->se; 10392 unsigned int rr_interval = 0; 10393 10394 /* 10395 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise 10396 * idle runqueue: 10397 */ 10398 if (rq->cfs.load.weight) 10399 rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se)); 10400 10401 return rr_interval; 10402 } 10403 10404 /* 10405 * All the scheduling class methods: 10406 */ 10407 const struct sched_class fair_sched_class = { 10408 .next = &idle_sched_class, 10409 .enqueue_task = enqueue_task_fair, 10410 .dequeue_task = dequeue_task_fair, 10411 .yield_task = yield_task_fair, 10412 .yield_to_task = yield_to_task_fair, 10413 10414 .check_preempt_curr = check_preempt_wakeup, 10415 10416 .pick_next_task = pick_next_task_fair, 10417 10418 .put_prev_task = put_prev_task_fair, 10419 .set_next_task = set_next_task_fair, 10420 10421 #ifdef CONFIG_SMP 10422 .select_task_rq = select_task_rq_fair, 10423 .migrate_task_rq = migrate_task_rq_fair, 10424 10425 .rq_online = rq_online_fair, 10426 .rq_offline = rq_offline_fair, 10427 10428 .task_dead = task_dead_fair, 10429 .set_cpus_allowed = set_cpus_allowed_common, 10430 #endif 10431 10432 .task_tick = task_tick_fair, 10433 .task_fork = task_fork_fair, 10434 10435 .prio_changed = prio_changed_fair, 10436 .switched_from = switched_from_fair, 10437 .switched_to = switched_to_fair, 10438 10439 .get_rr_interval = get_rr_interval_fair, 10440 10441 .update_curr = update_curr_fair, 10442 10443 #ifdef CONFIG_FAIR_GROUP_SCHED 10444 .task_change_group = task_change_group_fair, 10445 #endif 10446 10447 #ifdef CONFIG_UCLAMP_TASK 10448 .uclamp_enabled = 1, 10449 #endif 10450 }; 10451 10452 #ifdef CONFIG_SCHED_DEBUG 10453 void print_cfs_stats(struct seq_file *m, int cpu) 10454 { 10455 struct cfs_rq *cfs_rq, *pos; 10456 10457 rcu_read_lock(); 10458 for_each_leaf_cfs_rq_safe(cpu_rq(cpu), cfs_rq, pos) 10459 print_cfs_rq(m, cpu, cfs_rq); 10460 rcu_read_unlock(); 10461 } 10462 10463 #ifdef CONFIG_NUMA_BALANCING 10464 void show_numa_stats(struct task_struct *p, struct seq_file *m) 10465 { 10466 int node; 10467 unsigned long tsf = 0, tpf = 0, gsf = 0, gpf = 0; 10468 struct numa_group *ng; 10469 10470 rcu_read_lock(); 10471 ng = rcu_dereference(p->numa_group); 10472 for_each_online_node(node) { 10473 if (p->numa_faults) { 10474 tsf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 0)]; 10475 tpf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 1)]; 10476 } 10477 if (ng) { 10478 gsf = ng->faults[task_faults_idx(NUMA_MEM, node, 0)], 10479 gpf = ng->faults[task_faults_idx(NUMA_MEM, node, 1)]; 10480 } 10481 print_numa_stats(m, node, tsf, tpf, gsf, gpf); 10482 } 10483 rcu_read_unlock(); 10484 } 10485 #endif /* CONFIG_NUMA_BALANCING */ 10486 #endif /* CONFIG_SCHED_DEBUG */ 10487 10488 __init void init_sched_fair_class(void) 10489 { 10490 #ifdef CONFIG_SMP 10491 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains); 10492 10493 #ifdef CONFIG_NO_HZ_COMMON 10494 nohz.next_balance = jiffies; 10495 nohz.next_blocked = jiffies; 10496 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT); 10497 #endif 10498 #endif /* SMP */ 10499 10500 } 10501 10502 /* 10503 * Helper functions to facilitate extracting info from tracepoints. 10504 */ 10505 10506 const struct sched_avg *sched_trace_cfs_rq_avg(struct cfs_rq *cfs_rq) 10507 { 10508 #ifdef CONFIG_SMP 10509 return cfs_rq ? &cfs_rq->avg : NULL; 10510 #else 10511 return NULL; 10512 #endif 10513 } 10514 EXPORT_SYMBOL_GPL(sched_trace_cfs_rq_avg); 10515 10516 char *sched_trace_cfs_rq_path(struct cfs_rq *cfs_rq, char *str, int len) 10517 { 10518 if (!cfs_rq) { 10519 if (str) 10520 strlcpy(str, "(null)", len); 10521 else 10522 return NULL; 10523 } 10524 10525 cfs_rq_tg_path(cfs_rq, str, len); 10526 return str; 10527 } 10528 EXPORT_SYMBOL_GPL(sched_trace_cfs_rq_path); 10529 10530 int sched_trace_cfs_rq_cpu(struct cfs_rq *cfs_rq) 10531 { 10532 return cfs_rq ? cpu_of(rq_of(cfs_rq)) : -1; 10533 } 10534 EXPORT_SYMBOL_GPL(sched_trace_cfs_rq_cpu); 10535 10536 const struct sched_avg *sched_trace_rq_avg_rt(struct rq *rq) 10537 { 10538 #ifdef CONFIG_SMP 10539 return rq ? &rq->avg_rt : NULL; 10540 #else 10541 return NULL; 10542 #endif 10543 } 10544 EXPORT_SYMBOL_GPL(sched_trace_rq_avg_rt); 10545 10546 const struct sched_avg *sched_trace_rq_avg_dl(struct rq *rq) 10547 { 10548 #ifdef CONFIG_SMP 10549 return rq ? &rq->avg_dl : NULL; 10550 #else 10551 return NULL; 10552 #endif 10553 } 10554 EXPORT_SYMBOL_GPL(sched_trace_rq_avg_dl); 10555 10556 const struct sched_avg *sched_trace_rq_avg_irq(struct rq *rq) 10557 { 10558 #if defined(CONFIG_SMP) && defined(CONFIG_HAVE_SCHED_AVG_IRQ) 10559 return rq ? &rq->avg_irq : NULL; 10560 #else 10561 return NULL; 10562 #endif 10563 } 10564 EXPORT_SYMBOL_GPL(sched_trace_rq_avg_irq); 10565 10566 int sched_trace_rq_cpu(struct rq *rq) 10567 { 10568 return rq ? cpu_of(rq) : -1; 10569 } 10570 EXPORT_SYMBOL_GPL(sched_trace_rq_cpu); 10571 10572 const struct cpumask *sched_trace_rd_span(struct root_domain *rd) 10573 { 10574 #ifdef CONFIG_SMP 10575 return rd ? rd->span : NULL; 10576 #else 10577 return NULL; 10578 #endif 10579 } 10580 EXPORT_SYMBOL_GPL(sched_trace_rd_span); 10581