1 /* 2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH) 3 * 4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com> 5 * 6 * Interactivity improvements by Mike Galbraith 7 * (C) 2007 Mike Galbraith <efault@gmx.de> 8 * 9 * Various enhancements by Dmitry Adamushko. 10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com> 11 * 12 * Group scheduling enhancements by Srivatsa Vaddagiri 13 * Copyright IBM Corporation, 2007 14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com> 15 * 16 * Scaled math optimizations by Thomas Gleixner 17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de> 18 * 19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra 20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com> 21 */ 22 23 #include <linux/latencytop.h> 24 #include <linux/sched.h> 25 #include <linux/cpumask.h> 26 #include <linux/slab.h> 27 #include <linux/profile.h> 28 #include <linux/interrupt.h> 29 #include <linux/mempolicy.h> 30 #include <linux/migrate.h> 31 #include <linux/task_work.h> 32 33 #include <trace/events/sched.h> 34 35 #include "sched.h" 36 37 /* 38 * Targeted preemption latency for CPU-bound tasks: 39 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds) 40 * 41 * NOTE: this latency value is not the same as the concept of 42 * 'timeslice length' - timeslices in CFS are of variable length 43 * and have no persistent notion like in traditional, time-slice 44 * based scheduling concepts. 45 * 46 * (to see the precise effective timeslice length of your workload, 47 * run vmstat and monitor the context-switches (cs) field) 48 */ 49 unsigned int sysctl_sched_latency = 6000000ULL; 50 unsigned int normalized_sysctl_sched_latency = 6000000ULL; 51 52 /* 53 * The initial- and re-scaling of tunables is configurable 54 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus)) 55 * 56 * Options are: 57 * SCHED_TUNABLESCALING_NONE - unscaled, always *1 58 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus) 59 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus 60 */ 61 enum sched_tunable_scaling sysctl_sched_tunable_scaling 62 = SCHED_TUNABLESCALING_LOG; 63 64 /* 65 * Minimal preemption granularity for CPU-bound tasks: 66 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds) 67 */ 68 unsigned int sysctl_sched_min_granularity = 750000ULL; 69 unsigned int normalized_sysctl_sched_min_granularity = 750000ULL; 70 71 /* 72 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity 73 */ 74 static unsigned int sched_nr_latency = 8; 75 76 /* 77 * After fork, child runs first. If set to 0 (default) then 78 * parent will (try to) run first. 79 */ 80 unsigned int sysctl_sched_child_runs_first __read_mostly; 81 82 /* 83 * SCHED_OTHER wake-up granularity. 84 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds) 85 * 86 * This option delays the preemption effects of decoupled workloads 87 * and reduces their over-scheduling. Synchronous workloads will still 88 * have immediate wakeup/sleep latencies. 89 */ 90 unsigned int sysctl_sched_wakeup_granularity = 1000000UL; 91 unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL; 92 93 const_debug unsigned int sysctl_sched_migration_cost = 500000UL; 94 95 /* 96 * The exponential sliding window over which load is averaged for shares 97 * distribution. 98 * (default: 10msec) 99 */ 100 unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL; 101 102 #ifdef CONFIG_CFS_BANDWIDTH 103 /* 104 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool 105 * each time a cfs_rq requests quota. 106 * 107 * Note: in the case that the slice exceeds the runtime remaining (either due 108 * to consumption or the quota being specified to be smaller than the slice) 109 * we will always only issue the remaining available time. 110 * 111 * default: 5 msec, units: microseconds 112 */ 113 unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL; 114 #endif 115 116 static inline void update_load_add(struct load_weight *lw, unsigned long inc) 117 { 118 lw->weight += inc; 119 lw->inv_weight = 0; 120 } 121 122 static inline void update_load_sub(struct load_weight *lw, unsigned long dec) 123 { 124 lw->weight -= dec; 125 lw->inv_weight = 0; 126 } 127 128 static inline void update_load_set(struct load_weight *lw, unsigned long w) 129 { 130 lw->weight = w; 131 lw->inv_weight = 0; 132 } 133 134 /* 135 * Increase the granularity value when there are more CPUs, 136 * because with more CPUs the 'effective latency' as visible 137 * to users decreases. But the relationship is not linear, 138 * so pick a second-best guess by going with the log2 of the 139 * number of CPUs. 140 * 141 * This idea comes from the SD scheduler of Con Kolivas: 142 */ 143 static int get_update_sysctl_factor(void) 144 { 145 unsigned int cpus = min_t(int, num_online_cpus(), 8); 146 unsigned int factor; 147 148 switch (sysctl_sched_tunable_scaling) { 149 case SCHED_TUNABLESCALING_NONE: 150 factor = 1; 151 break; 152 case SCHED_TUNABLESCALING_LINEAR: 153 factor = cpus; 154 break; 155 case SCHED_TUNABLESCALING_LOG: 156 default: 157 factor = 1 + ilog2(cpus); 158 break; 159 } 160 161 return factor; 162 } 163 164 static void update_sysctl(void) 165 { 166 unsigned int factor = get_update_sysctl_factor(); 167 168 #define SET_SYSCTL(name) \ 169 (sysctl_##name = (factor) * normalized_sysctl_##name) 170 SET_SYSCTL(sched_min_granularity); 171 SET_SYSCTL(sched_latency); 172 SET_SYSCTL(sched_wakeup_granularity); 173 #undef SET_SYSCTL 174 } 175 176 void sched_init_granularity(void) 177 { 178 update_sysctl(); 179 } 180 181 #define WMULT_CONST (~0U) 182 #define WMULT_SHIFT 32 183 184 static void __update_inv_weight(struct load_weight *lw) 185 { 186 unsigned long w; 187 188 if (likely(lw->inv_weight)) 189 return; 190 191 w = scale_load_down(lw->weight); 192 193 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST)) 194 lw->inv_weight = 1; 195 else if (unlikely(!w)) 196 lw->inv_weight = WMULT_CONST; 197 else 198 lw->inv_weight = WMULT_CONST / w; 199 } 200 201 /* 202 * delta_exec * weight / lw.weight 203 * OR 204 * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT 205 * 206 * Either weight := NICE_0_LOAD and lw \e prio_to_wmult[], in which case 207 * we're guaranteed shift stays positive because inv_weight is guaranteed to 208 * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22. 209 * 210 * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus 211 * weight/lw.weight <= 1, and therefore our shift will also be positive. 212 */ 213 static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw) 214 { 215 u64 fact = scale_load_down(weight); 216 int shift = WMULT_SHIFT; 217 218 __update_inv_weight(lw); 219 220 if (unlikely(fact >> 32)) { 221 while (fact >> 32) { 222 fact >>= 1; 223 shift--; 224 } 225 } 226 227 /* hint to use a 32x32->64 mul */ 228 fact = (u64)(u32)fact * lw->inv_weight; 229 230 while (fact >> 32) { 231 fact >>= 1; 232 shift--; 233 } 234 235 return mul_u64_u32_shr(delta_exec, fact, shift); 236 } 237 238 239 const struct sched_class fair_sched_class; 240 241 /************************************************************** 242 * CFS operations on generic schedulable entities: 243 */ 244 245 #ifdef CONFIG_FAIR_GROUP_SCHED 246 247 /* cpu runqueue to which this cfs_rq is attached */ 248 static inline struct rq *rq_of(struct cfs_rq *cfs_rq) 249 { 250 return cfs_rq->rq; 251 } 252 253 /* An entity is a task if it doesn't "own" a runqueue */ 254 #define entity_is_task(se) (!se->my_q) 255 256 static inline struct task_struct *task_of(struct sched_entity *se) 257 { 258 #ifdef CONFIG_SCHED_DEBUG 259 WARN_ON_ONCE(!entity_is_task(se)); 260 #endif 261 return container_of(se, struct task_struct, se); 262 } 263 264 /* Walk up scheduling entities hierarchy */ 265 #define for_each_sched_entity(se) \ 266 for (; se; se = se->parent) 267 268 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p) 269 { 270 return p->se.cfs_rq; 271 } 272 273 /* runqueue on which this entity is (to be) queued */ 274 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se) 275 { 276 return se->cfs_rq; 277 } 278 279 /* runqueue "owned" by this group */ 280 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp) 281 { 282 return grp->my_q; 283 } 284 285 static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq, 286 int force_update); 287 288 static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq) 289 { 290 if (!cfs_rq->on_list) { 291 /* 292 * Ensure we either appear before our parent (if already 293 * enqueued) or force our parent to appear after us when it is 294 * enqueued. The fact that we always enqueue bottom-up 295 * reduces this to two cases. 296 */ 297 if (cfs_rq->tg->parent && 298 cfs_rq->tg->parent->cfs_rq[cpu_of(rq_of(cfs_rq))]->on_list) { 299 list_add_rcu(&cfs_rq->leaf_cfs_rq_list, 300 &rq_of(cfs_rq)->leaf_cfs_rq_list); 301 } else { 302 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list, 303 &rq_of(cfs_rq)->leaf_cfs_rq_list); 304 } 305 306 cfs_rq->on_list = 1; 307 /* We should have no load, but we need to update last_decay. */ 308 update_cfs_rq_blocked_load(cfs_rq, 0); 309 } 310 } 311 312 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq) 313 { 314 if (cfs_rq->on_list) { 315 list_del_rcu(&cfs_rq->leaf_cfs_rq_list); 316 cfs_rq->on_list = 0; 317 } 318 } 319 320 /* Iterate thr' all leaf cfs_rq's on a runqueue */ 321 #define for_each_leaf_cfs_rq(rq, cfs_rq) \ 322 list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list) 323 324 /* Do the two (enqueued) entities belong to the same group ? */ 325 static inline struct cfs_rq * 326 is_same_group(struct sched_entity *se, struct sched_entity *pse) 327 { 328 if (se->cfs_rq == pse->cfs_rq) 329 return se->cfs_rq; 330 331 return NULL; 332 } 333 334 static inline struct sched_entity *parent_entity(struct sched_entity *se) 335 { 336 return se->parent; 337 } 338 339 static void 340 find_matching_se(struct sched_entity **se, struct sched_entity **pse) 341 { 342 int se_depth, pse_depth; 343 344 /* 345 * preemption test can be made between sibling entities who are in the 346 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of 347 * both tasks until we find their ancestors who are siblings of common 348 * parent. 349 */ 350 351 /* First walk up until both entities are at same depth */ 352 se_depth = (*se)->depth; 353 pse_depth = (*pse)->depth; 354 355 while (se_depth > pse_depth) { 356 se_depth--; 357 *se = parent_entity(*se); 358 } 359 360 while (pse_depth > se_depth) { 361 pse_depth--; 362 *pse = parent_entity(*pse); 363 } 364 365 while (!is_same_group(*se, *pse)) { 366 *se = parent_entity(*se); 367 *pse = parent_entity(*pse); 368 } 369 } 370 371 #else /* !CONFIG_FAIR_GROUP_SCHED */ 372 373 static inline struct task_struct *task_of(struct sched_entity *se) 374 { 375 return container_of(se, struct task_struct, se); 376 } 377 378 static inline struct rq *rq_of(struct cfs_rq *cfs_rq) 379 { 380 return container_of(cfs_rq, struct rq, cfs); 381 } 382 383 #define entity_is_task(se) 1 384 385 #define for_each_sched_entity(se) \ 386 for (; se; se = NULL) 387 388 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p) 389 { 390 return &task_rq(p)->cfs; 391 } 392 393 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se) 394 { 395 struct task_struct *p = task_of(se); 396 struct rq *rq = task_rq(p); 397 398 return &rq->cfs; 399 } 400 401 /* runqueue "owned" by this group */ 402 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp) 403 { 404 return NULL; 405 } 406 407 static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq) 408 { 409 } 410 411 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq) 412 { 413 } 414 415 #define for_each_leaf_cfs_rq(rq, cfs_rq) \ 416 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL) 417 418 static inline struct sched_entity *parent_entity(struct sched_entity *se) 419 { 420 return NULL; 421 } 422 423 static inline void 424 find_matching_se(struct sched_entity **se, struct sched_entity **pse) 425 { 426 } 427 428 #endif /* CONFIG_FAIR_GROUP_SCHED */ 429 430 static __always_inline 431 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec); 432 433 /************************************************************** 434 * Scheduling class tree data structure manipulation methods: 435 */ 436 437 static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime) 438 { 439 s64 delta = (s64)(vruntime - max_vruntime); 440 if (delta > 0) 441 max_vruntime = vruntime; 442 443 return max_vruntime; 444 } 445 446 static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime) 447 { 448 s64 delta = (s64)(vruntime - min_vruntime); 449 if (delta < 0) 450 min_vruntime = vruntime; 451 452 return min_vruntime; 453 } 454 455 static inline int entity_before(struct sched_entity *a, 456 struct sched_entity *b) 457 { 458 return (s64)(a->vruntime - b->vruntime) < 0; 459 } 460 461 static void update_min_vruntime(struct cfs_rq *cfs_rq) 462 { 463 u64 vruntime = cfs_rq->min_vruntime; 464 465 if (cfs_rq->curr) 466 vruntime = cfs_rq->curr->vruntime; 467 468 if (cfs_rq->rb_leftmost) { 469 struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost, 470 struct sched_entity, 471 run_node); 472 473 if (!cfs_rq->curr) 474 vruntime = se->vruntime; 475 else 476 vruntime = min_vruntime(vruntime, se->vruntime); 477 } 478 479 /* ensure we never gain time by being placed backwards. */ 480 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime); 481 #ifndef CONFIG_64BIT 482 smp_wmb(); 483 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime; 484 #endif 485 } 486 487 /* 488 * Enqueue an entity into the rb-tree: 489 */ 490 static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) 491 { 492 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node; 493 struct rb_node *parent = NULL; 494 struct sched_entity *entry; 495 int leftmost = 1; 496 497 /* 498 * Find the right place in the rbtree: 499 */ 500 while (*link) { 501 parent = *link; 502 entry = rb_entry(parent, struct sched_entity, run_node); 503 /* 504 * We dont care about collisions. Nodes with 505 * the same key stay together. 506 */ 507 if (entity_before(se, entry)) { 508 link = &parent->rb_left; 509 } else { 510 link = &parent->rb_right; 511 leftmost = 0; 512 } 513 } 514 515 /* 516 * Maintain a cache of leftmost tree entries (it is frequently 517 * used): 518 */ 519 if (leftmost) 520 cfs_rq->rb_leftmost = &se->run_node; 521 522 rb_link_node(&se->run_node, parent, link); 523 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline); 524 } 525 526 static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) 527 { 528 if (cfs_rq->rb_leftmost == &se->run_node) { 529 struct rb_node *next_node; 530 531 next_node = rb_next(&se->run_node); 532 cfs_rq->rb_leftmost = next_node; 533 } 534 535 rb_erase(&se->run_node, &cfs_rq->tasks_timeline); 536 } 537 538 struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq) 539 { 540 struct rb_node *left = cfs_rq->rb_leftmost; 541 542 if (!left) 543 return NULL; 544 545 return rb_entry(left, struct sched_entity, run_node); 546 } 547 548 static struct sched_entity *__pick_next_entity(struct sched_entity *se) 549 { 550 struct rb_node *next = rb_next(&se->run_node); 551 552 if (!next) 553 return NULL; 554 555 return rb_entry(next, struct sched_entity, run_node); 556 } 557 558 #ifdef CONFIG_SCHED_DEBUG 559 struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq) 560 { 561 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline); 562 563 if (!last) 564 return NULL; 565 566 return rb_entry(last, struct sched_entity, run_node); 567 } 568 569 /************************************************************** 570 * Scheduling class statistics methods: 571 */ 572 573 int sched_proc_update_handler(struct ctl_table *table, int write, 574 void __user *buffer, size_t *lenp, 575 loff_t *ppos) 576 { 577 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 578 int factor = get_update_sysctl_factor(); 579 580 if (ret || !write) 581 return ret; 582 583 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency, 584 sysctl_sched_min_granularity); 585 586 #define WRT_SYSCTL(name) \ 587 (normalized_sysctl_##name = sysctl_##name / (factor)) 588 WRT_SYSCTL(sched_min_granularity); 589 WRT_SYSCTL(sched_latency); 590 WRT_SYSCTL(sched_wakeup_granularity); 591 #undef WRT_SYSCTL 592 593 return 0; 594 } 595 #endif 596 597 /* 598 * delta /= w 599 */ 600 static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se) 601 { 602 if (unlikely(se->load.weight != NICE_0_LOAD)) 603 delta = __calc_delta(delta, NICE_0_LOAD, &se->load); 604 605 return delta; 606 } 607 608 /* 609 * The idea is to set a period in which each task runs once. 610 * 611 * When there are too many tasks (sched_nr_latency) we have to stretch 612 * this period because otherwise the slices get too small. 613 * 614 * p = (nr <= nl) ? l : l*nr/nl 615 */ 616 static u64 __sched_period(unsigned long nr_running) 617 { 618 u64 period = sysctl_sched_latency; 619 unsigned long nr_latency = sched_nr_latency; 620 621 if (unlikely(nr_running > nr_latency)) { 622 period = sysctl_sched_min_granularity; 623 period *= nr_running; 624 } 625 626 return period; 627 } 628 629 /* 630 * We calculate the wall-time slice from the period by taking a part 631 * proportional to the weight. 632 * 633 * s = p*P[w/rw] 634 */ 635 static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se) 636 { 637 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq); 638 639 for_each_sched_entity(se) { 640 struct load_weight *load; 641 struct load_weight lw; 642 643 cfs_rq = cfs_rq_of(se); 644 load = &cfs_rq->load; 645 646 if (unlikely(!se->on_rq)) { 647 lw = cfs_rq->load; 648 649 update_load_add(&lw, se->load.weight); 650 load = &lw; 651 } 652 slice = __calc_delta(slice, se->load.weight, load); 653 } 654 return slice; 655 } 656 657 /* 658 * We calculate the vruntime slice of a to-be-inserted task. 659 * 660 * vs = s/w 661 */ 662 static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se) 663 { 664 return calc_delta_fair(sched_slice(cfs_rq, se), se); 665 } 666 667 #ifdef CONFIG_SMP 668 static unsigned long task_h_load(struct task_struct *p); 669 670 static inline void __update_task_entity_contrib(struct sched_entity *se); 671 672 /* Give new task start runnable values to heavy its load in infant time */ 673 void init_task_runnable_average(struct task_struct *p) 674 { 675 u32 slice; 676 677 p->se.avg.decay_count = 0; 678 slice = sched_slice(task_cfs_rq(p), &p->se) >> 10; 679 p->se.avg.runnable_avg_sum = slice; 680 p->se.avg.runnable_avg_period = slice; 681 __update_task_entity_contrib(&p->se); 682 } 683 #else 684 void init_task_runnable_average(struct task_struct *p) 685 { 686 } 687 #endif 688 689 /* 690 * Update the current task's runtime statistics. 691 */ 692 static void update_curr(struct cfs_rq *cfs_rq) 693 { 694 struct sched_entity *curr = cfs_rq->curr; 695 u64 now = rq_clock_task(rq_of(cfs_rq)); 696 u64 delta_exec; 697 698 if (unlikely(!curr)) 699 return; 700 701 delta_exec = now - curr->exec_start; 702 if (unlikely((s64)delta_exec <= 0)) 703 return; 704 705 curr->exec_start = now; 706 707 schedstat_set(curr->statistics.exec_max, 708 max(delta_exec, curr->statistics.exec_max)); 709 710 curr->sum_exec_runtime += delta_exec; 711 schedstat_add(cfs_rq, exec_clock, delta_exec); 712 713 curr->vruntime += calc_delta_fair(delta_exec, curr); 714 update_min_vruntime(cfs_rq); 715 716 if (entity_is_task(curr)) { 717 struct task_struct *curtask = task_of(curr); 718 719 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime); 720 cpuacct_charge(curtask, delta_exec); 721 account_group_exec_runtime(curtask, delta_exec); 722 } 723 724 account_cfs_rq_runtime(cfs_rq, delta_exec); 725 } 726 727 static inline void 728 update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se) 729 { 730 schedstat_set(se->statistics.wait_start, rq_clock(rq_of(cfs_rq))); 731 } 732 733 /* 734 * Task is being enqueued - update stats: 735 */ 736 static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se) 737 { 738 /* 739 * Are we enqueueing a waiting task? (for current tasks 740 * a dequeue/enqueue event is a NOP) 741 */ 742 if (se != cfs_rq->curr) 743 update_stats_wait_start(cfs_rq, se); 744 } 745 746 static void 747 update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se) 748 { 749 schedstat_set(se->statistics.wait_max, max(se->statistics.wait_max, 750 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start)); 751 schedstat_set(se->statistics.wait_count, se->statistics.wait_count + 1); 752 schedstat_set(se->statistics.wait_sum, se->statistics.wait_sum + 753 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start); 754 #ifdef CONFIG_SCHEDSTATS 755 if (entity_is_task(se)) { 756 trace_sched_stat_wait(task_of(se), 757 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start); 758 } 759 #endif 760 schedstat_set(se->statistics.wait_start, 0); 761 } 762 763 static inline void 764 update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se) 765 { 766 /* 767 * Mark the end of the wait period if dequeueing a 768 * waiting task: 769 */ 770 if (se != cfs_rq->curr) 771 update_stats_wait_end(cfs_rq, se); 772 } 773 774 /* 775 * We are picking a new current task - update its stats: 776 */ 777 static inline void 778 update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se) 779 { 780 /* 781 * We are starting a new run period: 782 */ 783 se->exec_start = rq_clock_task(rq_of(cfs_rq)); 784 } 785 786 /************************************************** 787 * Scheduling class queueing methods: 788 */ 789 790 #ifdef CONFIG_NUMA_BALANCING 791 /* 792 * Approximate time to scan a full NUMA task in ms. The task scan period is 793 * calculated based on the tasks virtual memory size and 794 * numa_balancing_scan_size. 795 */ 796 unsigned int sysctl_numa_balancing_scan_period_min = 1000; 797 unsigned int sysctl_numa_balancing_scan_period_max = 60000; 798 799 /* Portion of address space to scan in MB */ 800 unsigned int sysctl_numa_balancing_scan_size = 256; 801 802 /* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */ 803 unsigned int sysctl_numa_balancing_scan_delay = 1000; 804 805 static unsigned int task_nr_scan_windows(struct task_struct *p) 806 { 807 unsigned long rss = 0; 808 unsigned long nr_scan_pages; 809 810 /* 811 * Calculations based on RSS as non-present and empty pages are skipped 812 * by the PTE scanner and NUMA hinting faults should be trapped based 813 * on resident pages 814 */ 815 nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT); 816 rss = get_mm_rss(p->mm); 817 if (!rss) 818 rss = nr_scan_pages; 819 820 rss = round_up(rss, nr_scan_pages); 821 return rss / nr_scan_pages; 822 } 823 824 /* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */ 825 #define MAX_SCAN_WINDOW 2560 826 827 static unsigned int task_scan_min(struct task_struct *p) 828 { 829 unsigned int scan, floor; 830 unsigned int windows = 1; 831 832 if (sysctl_numa_balancing_scan_size < MAX_SCAN_WINDOW) 833 windows = MAX_SCAN_WINDOW / sysctl_numa_balancing_scan_size; 834 floor = 1000 / windows; 835 836 scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p); 837 return max_t(unsigned int, floor, scan); 838 } 839 840 static unsigned int task_scan_max(struct task_struct *p) 841 { 842 unsigned int smin = task_scan_min(p); 843 unsigned int smax; 844 845 /* Watch for min being lower than max due to floor calculations */ 846 smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p); 847 return max(smin, smax); 848 } 849 850 static void account_numa_enqueue(struct rq *rq, struct task_struct *p) 851 { 852 rq->nr_numa_running += (p->numa_preferred_nid != -1); 853 rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p)); 854 } 855 856 static void account_numa_dequeue(struct rq *rq, struct task_struct *p) 857 { 858 rq->nr_numa_running -= (p->numa_preferred_nid != -1); 859 rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p)); 860 } 861 862 struct numa_group { 863 atomic_t refcount; 864 865 spinlock_t lock; /* nr_tasks, tasks */ 866 int nr_tasks; 867 pid_t gid; 868 struct list_head task_list; 869 870 struct rcu_head rcu; 871 nodemask_t active_nodes; 872 unsigned long total_faults; 873 /* 874 * Faults_cpu is used to decide whether memory should move 875 * towards the CPU. As a consequence, these stats are weighted 876 * more by CPU use than by memory faults. 877 */ 878 unsigned long *faults_cpu; 879 unsigned long faults[0]; 880 }; 881 882 /* Shared or private faults. */ 883 #define NR_NUMA_HINT_FAULT_TYPES 2 884 885 /* Memory and CPU locality */ 886 #define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2) 887 888 /* Averaged statistics, and temporary buffers. */ 889 #define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2) 890 891 pid_t task_numa_group_id(struct task_struct *p) 892 { 893 return p->numa_group ? p->numa_group->gid : 0; 894 } 895 896 static inline int task_faults_idx(int nid, int priv) 897 { 898 return NR_NUMA_HINT_FAULT_TYPES * nid + priv; 899 } 900 901 static inline unsigned long task_faults(struct task_struct *p, int nid) 902 { 903 if (!p->numa_faults_memory) 904 return 0; 905 906 return p->numa_faults_memory[task_faults_idx(nid, 0)] + 907 p->numa_faults_memory[task_faults_idx(nid, 1)]; 908 } 909 910 static inline unsigned long group_faults(struct task_struct *p, int nid) 911 { 912 if (!p->numa_group) 913 return 0; 914 915 return p->numa_group->faults[task_faults_idx(nid, 0)] + 916 p->numa_group->faults[task_faults_idx(nid, 1)]; 917 } 918 919 static inline unsigned long group_faults_cpu(struct numa_group *group, int nid) 920 { 921 return group->faults_cpu[task_faults_idx(nid, 0)] + 922 group->faults_cpu[task_faults_idx(nid, 1)]; 923 } 924 925 /* 926 * These return the fraction of accesses done by a particular task, or 927 * task group, on a particular numa node. The group weight is given a 928 * larger multiplier, in order to group tasks together that are almost 929 * evenly spread out between numa nodes. 930 */ 931 static inline unsigned long task_weight(struct task_struct *p, int nid) 932 { 933 unsigned long total_faults; 934 935 if (!p->numa_faults_memory) 936 return 0; 937 938 total_faults = p->total_numa_faults; 939 940 if (!total_faults) 941 return 0; 942 943 return 1000 * task_faults(p, nid) / total_faults; 944 } 945 946 static inline unsigned long group_weight(struct task_struct *p, int nid) 947 { 948 if (!p->numa_group || !p->numa_group->total_faults) 949 return 0; 950 951 return 1000 * group_faults(p, nid) / p->numa_group->total_faults; 952 } 953 954 bool should_numa_migrate_memory(struct task_struct *p, struct page * page, 955 int src_nid, int dst_cpu) 956 { 957 struct numa_group *ng = p->numa_group; 958 int dst_nid = cpu_to_node(dst_cpu); 959 int last_cpupid, this_cpupid; 960 961 this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid); 962 963 /* 964 * Multi-stage node selection is used in conjunction with a periodic 965 * migration fault to build a temporal task<->page relation. By using 966 * a two-stage filter we remove short/unlikely relations. 967 * 968 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate 969 * a task's usage of a particular page (n_p) per total usage of this 970 * page (n_t) (in a given time-span) to a probability. 971 * 972 * Our periodic faults will sample this probability and getting the 973 * same result twice in a row, given these samples are fully 974 * independent, is then given by P(n)^2, provided our sample period 975 * is sufficiently short compared to the usage pattern. 976 * 977 * This quadric squishes small probabilities, making it less likely we 978 * act on an unlikely task<->page relation. 979 */ 980 last_cpupid = page_cpupid_xchg_last(page, this_cpupid); 981 if (!cpupid_pid_unset(last_cpupid) && 982 cpupid_to_nid(last_cpupid) != dst_nid) 983 return false; 984 985 /* Always allow migrate on private faults */ 986 if (cpupid_match_pid(p, last_cpupid)) 987 return true; 988 989 /* A shared fault, but p->numa_group has not been set up yet. */ 990 if (!ng) 991 return true; 992 993 /* 994 * Do not migrate if the destination is not a node that 995 * is actively used by this numa group. 996 */ 997 if (!node_isset(dst_nid, ng->active_nodes)) 998 return false; 999 1000 /* 1001 * Source is a node that is not actively used by this 1002 * numa group, while the destination is. Migrate. 1003 */ 1004 if (!node_isset(src_nid, ng->active_nodes)) 1005 return true; 1006 1007 /* 1008 * Both source and destination are nodes in active 1009 * use by this numa group. Maximize memory bandwidth 1010 * by migrating from more heavily used groups, to less 1011 * heavily used ones, spreading the load around. 1012 * Use a 1/4 hysteresis to avoid spurious page movement. 1013 */ 1014 return group_faults(p, dst_nid) < (group_faults(p, src_nid) * 3 / 4); 1015 } 1016 1017 static unsigned long weighted_cpuload(const int cpu); 1018 static unsigned long source_load(int cpu, int type); 1019 static unsigned long target_load(int cpu, int type); 1020 static unsigned long power_of(int cpu); 1021 static long effective_load(struct task_group *tg, int cpu, long wl, long wg); 1022 1023 /* Cached statistics for all CPUs within a node */ 1024 struct numa_stats { 1025 unsigned long nr_running; 1026 unsigned long load; 1027 1028 /* Total compute capacity of CPUs on a node */ 1029 unsigned long power; 1030 1031 /* Approximate capacity in terms of runnable tasks on a node */ 1032 unsigned long capacity; 1033 int has_capacity; 1034 }; 1035 1036 /* 1037 * XXX borrowed from update_sg_lb_stats 1038 */ 1039 static void update_numa_stats(struct numa_stats *ns, int nid) 1040 { 1041 int cpu, cpus = 0; 1042 1043 memset(ns, 0, sizeof(*ns)); 1044 for_each_cpu(cpu, cpumask_of_node(nid)) { 1045 struct rq *rq = cpu_rq(cpu); 1046 1047 ns->nr_running += rq->nr_running; 1048 ns->load += weighted_cpuload(cpu); 1049 ns->power += power_of(cpu); 1050 1051 cpus++; 1052 } 1053 1054 /* 1055 * If we raced with hotplug and there are no CPUs left in our mask 1056 * the @ns structure is NULL'ed and task_numa_compare() will 1057 * not find this node attractive. 1058 * 1059 * We'll either bail at !has_capacity, or we'll detect a huge imbalance 1060 * and bail there. 1061 */ 1062 if (!cpus) 1063 return; 1064 1065 ns->load = (ns->load * SCHED_POWER_SCALE) / ns->power; 1066 ns->capacity = DIV_ROUND_CLOSEST(ns->power, SCHED_POWER_SCALE); 1067 ns->has_capacity = (ns->nr_running < ns->capacity); 1068 } 1069 1070 struct task_numa_env { 1071 struct task_struct *p; 1072 1073 int src_cpu, src_nid; 1074 int dst_cpu, dst_nid; 1075 1076 struct numa_stats src_stats, dst_stats; 1077 1078 int imbalance_pct; 1079 1080 struct task_struct *best_task; 1081 long best_imp; 1082 int best_cpu; 1083 }; 1084 1085 static void task_numa_assign(struct task_numa_env *env, 1086 struct task_struct *p, long imp) 1087 { 1088 if (env->best_task) 1089 put_task_struct(env->best_task); 1090 if (p) 1091 get_task_struct(p); 1092 1093 env->best_task = p; 1094 env->best_imp = imp; 1095 env->best_cpu = env->dst_cpu; 1096 } 1097 1098 static bool load_too_imbalanced(long orig_src_load, long orig_dst_load, 1099 long src_load, long dst_load, 1100 struct task_numa_env *env) 1101 { 1102 long imb, old_imb; 1103 1104 /* We care about the slope of the imbalance, not the direction. */ 1105 if (dst_load < src_load) 1106 swap(dst_load, src_load); 1107 1108 /* Is the difference below the threshold? */ 1109 imb = dst_load * 100 - src_load * env->imbalance_pct; 1110 if (imb <= 0) 1111 return false; 1112 1113 /* 1114 * The imbalance is above the allowed threshold. 1115 * Compare it with the old imbalance. 1116 */ 1117 if (orig_dst_load < orig_src_load) 1118 swap(orig_dst_load, orig_src_load); 1119 1120 old_imb = orig_dst_load * 100 - orig_src_load * env->imbalance_pct; 1121 1122 /* Would this change make things worse? */ 1123 return (old_imb > imb); 1124 } 1125 1126 /* 1127 * This checks if the overall compute and NUMA accesses of the system would 1128 * be improved if the source tasks was migrated to the target dst_cpu taking 1129 * into account that it might be best if task running on the dst_cpu should 1130 * be exchanged with the source task 1131 */ 1132 static void task_numa_compare(struct task_numa_env *env, 1133 long taskimp, long groupimp) 1134 { 1135 struct rq *src_rq = cpu_rq(env->src_cpu); 1136 struct rq *dst_rq = cpu_rq(env->dst_cpu); 1137 struct task_struct *cur; 1138 long orig_src_load, src_load; 1139 long orig_dst_load, dst_load; 1140 long load; 1141 long imp = (groupimp > 0) ? groupimp : taskimp; 1142 1143 rcu_read_lock(); 1144 cur = ACCESS_ONCE(dst_rq->curr); 1145 if (cur->pid == 0) /* idle */ 1146 cur = NULL; 1147 1148 /* 1149 * "imp" is the fault differential for the source task between the 1150 * source and destination node. Calculate the total differential for 1151 * the source task and potential destination task. The more negative 1152 * the value is, the more rmeote accesses that would be expected to 1153 * be incurred if the tasks were swapped. 1154 */ 1155 if (cur) { 1156 /* Skip this swap candidate if cannot move to the source cpu */ 1157 if (!cpumask_test_cpu(env->src_cpu, tsk_cpus_allowed(cur))) 1158 goto unlock; 1159 1160 /* 1161 * If dst and source tasks are in the same NUMA group, or not 1162 * in any group then look only at task weights. 1163 */ 1164 if (cur->numa_group == env->p->numa_group) { 1165 imp = taskimp + task_weight(cur, env->src_nid) - 1166 task_weight(cur, env->dst_nid); 1167 /* 1168 * Add some hysteresis to prevent swapping the 1169 * tasks within a group over tiny differences. 1170 */ 1171 if (cur->numa_group) 1172 imp -= imp/16; 1173 } else { 1174 /* 1175 * Compare the group weights. If a task is all by 1176 * itself (not part of a group), use the task weight 1177 * instead. 1178 */ 1179 if (env->p->numa_group) 1180 imp = groupimp; 1181 else 1182 imp = taskimp; 1183 1184 if (cur->numa_group) 1185 imp += group_weight(cur, env->src_nid) - 1186 group_weight(cur, env->dst_nid); 1187 else 1188 imp += task_weight(cur, env->src_nid) - 1189 task_weight(cur, env->dst_nid); 1190 } 1191 } 1192 1193 if (imp < env->best_imp) 1194 goto unlock; 1195 1196 if (!cur) { 1197 /* Is there capacity at our destination? */ 1198 if (env->src_stats.has_capacity && 1199 !env->dst_stats.has_capacity) 1200 goto unlock; 1201 1202 goto balance; 1203 } 1204 1205 /* Balance doesn't matter much if we're running a task per cpu */ 1206 if (src_rq->nr_running == 1 && dst_rq->nr_running == 1) 1207 goto assign; 1208 1209 /* 1210 * In the overloaded case, try and keep the load balanced. 1211 */ 1212 balance: 1213 orig_dst_load = env->dst_stats.load; 1214 orig_src_load = env->src_stats.load; 1215 1216 /* XXX missing power terms */ 1217 load = task_h_load(env->p); 1218 dst_load = orig_dst_load + load; 1219 src_load = orig_src_load - load; 1220 1221 if (cur) { 1222 load = task_h_load(cur); 1223 dst_load -= load; 1224 src_load += load; 1225 } 1226 1227 if (load_too_imbalanced(orig_src_load, orig_dst_load, 1228 src_load, dst_load, env)) 1229 goto unlock; 1230 1231 assign: 1232 task_numa_assign(env, cur, imp); 1233 unlock: 1234 rcu_read_unlock(); 1235 } 1236 1237 static void task_numa_find_cpu(struct task_numa_env *env, 1238 long taskimp, long groupimp) 1239 { 1240 int cpu; 1241 1242 for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) { 1243 /* Skip this CPU if the source task cannot migrate */ 1244 if (!cpumask_test_cpu(cpu, tsk_cpus_allowed(env->p))) 1245 continue; 1246 1247 env->dst_cpu = cpu; 1248 task_numa_compare(env, taskimp, groupimp); 1249 } 1250 } 1251 1252 static int task_numa_migrate(struct task_struct *p) 1253 { 1254 struct task_numa_env env = { 1255 .p = p, 1256 1257 .src_cpu = task_cpu(p), 1258 .src_nid = task_node(p), 1259 1260 .imbalance_pct = 112, 1261 1262 .best_task = NULL, 1263 .best_imp = 0, 1264 .best_cpu = -1 1265 }; 1266 struct sched_domain *sd; 1267 unsigned long taskweight, groupweight; 1268 int nid, ret; 1269 long taskimp, groupimp; 1270 1271 /* 1272 * Pick the lowest SD_NUMA domain, as that would have the smallest 1273 * imbalance and would be the first to start moving tasks about. 1274 * 1275 * And we want to avoid any moving of tasks about, as that would create 1276 * random movement of tasks -- counter the numa conditions we're trying 1277 * to satisfy here. 1278 */ 1279 rcu_read_lock(); 1280 sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu)); 1281 if (sd) 1282 env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2; 1283 rcu_read_unlock(); 1284 1285 /* 1286 * Cpusets can break the scheduler domain tree into smaller 1287 * balance domains, some of which do not cross NUMA boundaries. 1288 * Tasks that are "trapped" in such domains cannot be migrated 1289 * elsewhere, so there is no point in (re)trying. 1290 */ 1291 if (unlikely(!sd)) { 1292 p->numa_preferred_nid = task_node(p); 1293 return -EINVAL; 1294 } 1295 1296 taskweight = task_weight(p, env.src_nid); 1297 groupweight = group_weight(p, env.src_nid); 1298 update_numa_stats(&env.src_stats, env.src_nid); 1299 env.dst_nid = p->numa_preferred_nid; 1300 taskimp = task_weight(p, env.dst_nid) - taskweight; 1301 groupimp = group_weight(p, env.dst_nid) - groupweight; 1302 update_numa_stats(&env.dst_stats, env.dst_nid); 1303 1304 /* If the preferred nid has capacity, try to use it. */ 1305 if (env.dst_stats.has_capacity) 1306 task_numa_find_cpu(&env, taskimp, groupimp); 1307 1308 /* No space available on the preferred nid. Look elsewhere. */ 1309 if (env.best_cpu == -1) { 1310 for_each_online_node(nid) { 1311 if (nid == env.src_nid || nid == p->numa_preferred_nid) 1312 continue; 1313 1314 /* Only consider nodes where both task and groups benefit */ 1315 taskimp = task_weight(p, nid) - taskweight; 1316 groupimp = group_weight(p, nid) - groupweight; 1317 if (taskimp < 0 && groupimp < 0) 1318 continue; 1319 1320 env.dst_nid = nid; 1321 update_numa_stats(&env.dst_stats, env.dst_nid); 1322 task_numa_find_cpu(&env, taskimp, groupimp); 1323 } 1324 } 1325 1326 /* No better CPU than the current one was found. */ 1327 if (env.best_cpu == -1) 1328 return -EAGAIN; 1329 1330 /* 1331 * If the task is part of a workload that spans multiple NUMA nodes, 1332 * and is migrating into one of the workload's active nodes, remember 1333 * this node as the task's preferred numa node, so the workload can 1334 * settle down. 1335 * A task that migrated to a second choice node will be better off 1336 * trying for a better one later. Do not set the preferred node here. 1337 */ 1338 if (p->numa_group && node_isset(env.dst_nid, p->numa_group->active_nodes)) 1339 sched_setnuma(p, env.dst_nid); 1340 1341 /* 1342 * Reset the scan period if the task is being rescheduled on an 1343 * alternative node to recheck if the tasks is now properly placed. 1344 */ 1345 p->numa_scan_period = task_scan_min(p); 1346 1347 if (env.best_task == NULL) { 1348 ret = migrate_task_to(p, env.best_cpu); 1349 if (ret != 0) 1350 trace_sched_stick_numa(p, env.src_cpu, env.best_cpu); 1351 return ret; 1352 } 1353 1354 ret = migrate_swap(p, env.best_task); 1355 if (ret != 0) 1356 trace_sched_stick_numa(p, env.src_cpu, task_cpu(env.best_task)); 1357 put_task_struct(env.best_task); 1358 return ret; 1359 } 1360 1361 /* Attempt to migrate a task to a CPU on the preferred node. */ 1362 static void numa_migrate_preferred(struct task_struct *p) 1363 { 1364 unsigned long interval = HZ; 1365 1366 /* This task has no NUMA fault statistics yet */ 1367 if (unlikely(p->numa_preferred_nid == -1 || !p->numa_faults_memory)) 1368 return; 1369 1370 /* Periodically retry migrating the task to the preferred node */ 1371 interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16); 1372 p->numa_migrate_retry = jiffies + interval; 1373 1374 /* Success if task is already running on preferred CPU */ 1375 if (task_node(p) == p->numa_preferred_nid) 1376 return; 1377 1378 /* Otherwise, try migrate to a CPU on the preferred node */ 1379 task_numa_migrate(p); 1380 } 1381 1382 /* 1383 * Find the nodes on which the workload is actively running. We do this by 1384 * tracking the nodes from which NUMA hinting faults are triggered. This can 1385 * be different from the set of nodes where the workload's memory is currently 1386 * located. 1387 * 1388 * The bitmask is used to make smarter decisions on when to do NUMA page 1389 * migrations, To prevent flip-flopping, and excessive page migrations, nodes 1390 * are added when they cause over 6/16 of the maximum number of faults, but 1391 * only removed when they drop below 3/16. 1392 */ 1393 static void update_numa_active_node_mask(struct numa_group *numa_group) 1394 { 1395 unsigned long faults, max_faults = 0; 1396 int nid; 1397 1398 for_each_online_node(nid) { 1399 faults = group_faults_cpu(numa_group, nid); 1400 if (faults > max_faults) 1401 max_faults = faults; 1402 } 1403 1404 for_each_online_node(nid) { 1405 faults = group_faults_cpu(numa_group, nid); 1406 if (!node_isset(nid, numa_group->active_nodes)) { 1407 if (faults > max_faults * 6 / 16) 1408 node_set(nid, numa_group->active_nodes); 1409 } else if (faults < max_faults * 3 / 16) 1410 node_clear(nid, numa_group->active_nodes); 1411 } 1412 } 1413 1414 /* 1415 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS 1416 * increments. The more local the fault statistics are, the higher the scan 1417 * period will be for the next scan window. If local/remote ratio is below 1418 * NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS) the 1419 * scan period will decrease 1420 */ 1421 #define NUMA_PERIOD_SLOTS 10 1422 #define NUMA_PERIOD_THRESHOLD 3 1423 1424 /* 1425 * Increase the scan period (slow down scanning) if the majority of 1426 * our memory is already on our local node, or if the majority of 1427 * the page accesses are shared with other processes. 1428 * Otherwise, decrease the scan period. 1429 */ 1430 static void update_task_scan_period(struct task_struct *p, 1431 unsigned long shared, unsigned long private) 1432 { 1433 unsigned int period_slot; 1434 int ratio; 1435 int diff; 1436 1437 unsigned long remote = p->numa_faults_locality[0]; 1438 unsigned long local = p->numa_faults_locality[1]; 1439 1440 /* 1441 * If there were no record hinting faults then either the task is 1442 * completely idle or all activity is areas that are not of interest 1443 * to automatic numa balancing. Scan slower 1444 */ 1445 if (local + shared == 0) { 1446 p->numa_scan_period = min(p->numa_scan_period_max, 1447 p->numa_scan_period << 1); 1448 1449 p->mm->numa_next_scan = jiffies + 1450 msecs_to_jiffies(p->numa_scan_period); 1451 1452 return; 1453 } 1454 1455 /* 1456 * Prepare to scale scan period relative to the current period. 1457 * == NUMA_PERIOD_THRESHOLD scan period stays the same 1458 * < NUMA_PERIOD_THRESHOLD scan period decreases (scan faster) 1459 * >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower) 1460 */ 1461 period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS); 1462 ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote); 1463 if (ratio >= NUMA_PERIOD_THRESHOLD) { 1464 int slot = ratio - NUMA_PERIOD_THRESHOLD; 1465 if (!slot) 1466 slot = 1; 1467 diff = slot * period_slot; 1468 } else { 1469 diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot; 1470 1471 /* 1472 * Scale scan rate increases based on sharing. There is an 1473 * inverse relationship between the degree of sharing and 1474 * the adjustment made to the scanning period. Broadly 1475 * speaking the intent is that there is little point 1476 * scanning faster if shared accesses dominate as it may 1477 * simply bounce migrations uselessly 1478 */ 1479 ratio = DIV_ROUND_UP(private * NUMA_PERIOD_SLOTS, (private + shared)); 1480 diff = (diff * ratio) / NUMA_PERIOD_SLOTS; 1481 } 1482 1483 p->numa_scan_period = clamp(p->numa_scan_period + diff, 1484 task_scan_min(p), task_scan_max(p)); 1485 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality)); 1486 } 1487 1488 /* 1489 * Get the fraction of time the task has been running since the last 1490 * NUMA placement cycle. The scheduler keeps similar statistics, but 1491 * decays those on a 32ms period, which is orders of magnitude off 1492 * from the dozens-of-seconds NUMA balancing period. Use the scheduler 1493 * stats only if the task is so new there are no NUMA statistics yet. 1494 */ 1495 static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period) 1496 { 1497 u64 runtime, delta, now; 1498 /* Use the start of this time slice to avoid calculations. */ 1499 now = p->se.exec_start; 1500 runtime = p->se.sum_exec_runtime; 1501 1502 if (p->last_task_numa_placement) { 1503 delta = runtime - p->last_sum_exec_runtime; 1504 *period = now - p->last_task_numa_placement; 1505 } else { 1506 delta = p->se.avg.runnable_avg_sum; 1507 *period = p->se.avg.runnable_avg_period; 1508 } 1509 1510 p->last_sum_exec_runtime = runtime; 1511 p->last_task_numa_placement = now; 1512 1513 return delta; 1514 } 1515 1516 static void task_numa_placement(struct task_struct *p) 1517 { 1518 int seq, nid, max_nid = -1, max_group_nid = -1; 1519 unsigned long max_faults = 0, max_group_faults = 0; 1520 unsigned long fault_types[2] = { 0, 0 }; 1521 unsigned long total_faults; 1522 u64 runtime, period; 1523 spinlock_t *group_lock = NULL; 1524 1525 seq = ACCESS_ONCE(p->mm->numa_scan_seq); 1526 if (p->numa_scan_seq == seq) 1527 return; 1528 p->numa_scan_seq = seq; 1529 p->numa_scan_period_max = task_scan_max(p); 1530 1531 total_faults = p->numa_faults_locality[0] + 1532 p->numa_faults_locality[1]; 1533 runtime = numa_get_avg_runtime(p, &period); 1534 1535 /* If the task is part of a group prevent parallel updates to group stats */ 1536 if (p->numa_group) { 1537 group_lock = &p->numa_group->lock; 1538 spin_lock_irq(group_lock); 1539 } 1540 1541 /* Find the node with the highest number of faults */ 1542 for_each_online_node(nid) { 1543 unsigned long faults = 0, group_faults = 0; 1544 int priv, i; 1545 1546 for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) { 1547 long diff, f_diff, f_weight; 1548 1549 i = task_faults_idx(nid, priv); 1550 1551 /* Decay existing window, copy faults since last scan */ 1552 diff = p->numa_faults_buffer_memory[i] - p->numa_faults_memory[i] / 2; 1553 fault_types[priv] += p->numa_faults_buffer_memory[i]; 1554 p->numa_faults_buffer_memory[i] = 0; 1555 1556 /* 1557 * Normalize the faults_from, so all tasks in a group 1558 * count according to CPU use, instead of by the raw 1559 * number of faults. Tasks with little runtime have 1560 * little over-all impact on throughput, and thus their 1561 * faults are less important. 1562 */ 1563 f_weight = div64_u64(runtime << 16, period + 1); 1564 f_weight = (f_weight * p->numa_faults_buffer_cpu[i]) / 1565 (total_faults + 1); 1566 f_diff = f_weight - p->numa_faults_cpu[i] / 2; 1567 p->numa_faults_buffer_cpu[i] = 0; 1568 1569 p->numa_faults_memory[i] += diff; 1570 p->numa_faults_cpu[i] += f_diff; 1571 faults += p->numa_faults_memory[i]; 1572 p->total_numa_faults += diff; 1573 if (p->numa_group) { 1574 /* safe because we can only change our own group */ 1575 p->numa_group->faults[i] += diff; 1576 p->numa_group->faults_cpu[i] += f_diff; 1577 p->numa_group->total_faults += diff; 1578 group_faults += p->numa_group->faults[i]; 1579 } 1580 } 1581 1582 if (faults > max_faults) { 1583 max_faults = faults; 1584 max_nid = nid; 1585 } 1586 1587 if (group_faults > max_group_faults) { 1588 max_group_faults = group_faults; 1589 max_group_nid = nid; 1590 } 1591 } 1592 1593 update_task_scan_period(p, fault_types[0], fault_types[1]); 1594 1595 if (p->numa_group) { 1596 update_numa_active_node_mask(p->numa_group); 1597 /* 1598 * If the preferred task and group nids are different, 1599 * iterate over the nodes again to find the best place. 1600 */ 1601 if (max_nid != max_group_nid) { 1602 unsigned long weight, max_weight = 0; 1603 1604 for_each_online_node(nid) { 1605 weight = task_weight(p, nid) + group_weight(p, nid); 1606 if (weight > max_weight) { 1607 max_weight = weight; 1608 max_nid = nid; 1609 } 1610 } 1611 } 1612 1613 spin_unlock_irq(group_lock); 1614 } 1615 1616 /* Preferred node as the node with the most faults */ 1617 if (max_faults && max_nid != p->numa_preferred_nid) { 1618 /* Update the preferred nid and migrate task if possible */ 1619 sched_setnuma(p, max_nid); 1620 numa_migrate_preferred(p); 1621 } 1622 } 1623 1624 static inline int get_numa_group(struct numa_group *grp) 1625 { 1626 return atomic_inc_not_zero(&grp->refcount); 1627 } 1628 1629 static inline void put_numa_group(struct numa_group *grp) 1630 { 1631 if (atomic_dec_and_test(&grp->refcount)) 1632 kfree_rcu(grp, rcu); 1633 } 1634 1635 static void task_numa_group(struct task_struct *p, int cpupid, int flags, 1636 int *priv) 1637 { 1638 struct numa_group *grp, *my_grp; 1639 struct task_struct *tsk; 1640 bool join = false; 1641 int cpu = cpupid_to_cpu(cpupid); 1642 int i; 1643 1644 if (unlikely(!p->numa_group)) { 1645 unsigned int size = sizeof(struct numa_group) + 1646 4*nr_node_ids*sizeof(unsigned long); 1647 1648 grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN); 1649 if (!grp) 1650 return; 1651 1652 atomic_set(&grp->refcount, 1); 1653 spin_lock_init(&grp->lock); 1654 INIT_LIST_HEAD(&grp->task_list); 1655 grp->gid = p->pid; 1656 /* Second half of the array tracks nids where faults happen */ 1657 grp->faults_cpu = grp->faults + NR_NUMA_HINT_FAULT_TYPES * 1658 nr_node_ids; 1659 1660 node_set(task_node(current), grp->active_nodes); 1661 1662 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) 1663 grp->faults[i] = p->numa_faults_memory[i]; 1664 1665 grp->total_faults = p->total_numa_faults; 1666 1667 list_add(&p->numa_entry, &grp->task_list); 1668 grp->nr_tasks++; 1669 rcu_assign_pointer(p->numa_group, grp); 1670 } 1671 1672 rcu_read_lock(); 1673 tsk = ACCESS_ONCE(cpu_rq(cpu)->curr); 1674 1675 if (!cpupid_match_pid(tsk, cpupid)) 1676 goto no_join; 1677 1678 grp = rcu_dereference(tsk->numa_group); 1679 if (!grp) 1680 goto no_join; 1681 1682 my_grp = p->numa_group; 1683 if (grp == my_grp) 1684 goto no_join; 1685 1686 /* 1687 * Only join the other group if its bigger; if we're the bigger group, 1688 * the other task will join us. 1689 */ 1690 if (my_grp->nr_tasks > grp->nr_tasks) 1691 goto no_join; 1692 1693 /* 1694 * Tie-break on the grp address. 1695 */ 1696 if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp) 1697 goto no_join; 1698 1699 /* Always join threads in the same process. */ 1700 if (tsk->mm == current->mm) 1701 join = true; 1702 1703 /* Simple filter to avoid false positives due to PID collisions */ 1704 if (flags & TNF_SHARED) 1705 join = true; 1706 1707 /* Update priv based on whether false sharing was detected */ 1708 *priv = !join; 1709 1710 if (join && !get_numa_group(grp)) 1711 goto no_join; 1712 1713 rcu_read_unlock(); 1714 1715 if (!join) 1716 return; 1717 1718 BUG_ON(irqs_disabled()); 1719 double_lock_irq(&my_grp->lock, &grp->lock); 1720 1721 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) { 1722 my_grp->faults[i] -= p->numa_faults_memory[i]; 1723 grp->faults[i] += p->numa_faults_memory[i]; 1724 } 1725 my_grp->total_faults -= p->total_numa_faults; 1726 grp->total_faults += p->total_numa_faults; 1727 1728 list_move(&p->numa_entry, &grp->task_list); 1729 my_grp->nr_tasks--; 1730 grp->nr_tasks++; 1731 1732 spin_unlock(&my_grp->lock); 1733 spin_unlock_irq(&grp->lock); 1734 1735 rcu_assign_pointer(p->numa_group, grp); 1736 1737 put_numa_group(my_grp); 1738 return; 1739 1740 no_join: 1741 rcu_read_unlock(); 1742 return; 1743 } 1744 1745 void task_numa_free(struct task_struct *p) 1746 { 1747 struct numa_group *grp = p->numa_group; 1748 int i; 1749 void *numa_faults = p->numa_faults_memory; 1750 1751 if (grp) { 1752 spin_lock_irq(&grp->lock); 1753 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) 1754 grp->faults[i] -= p->numa_faults_memory[i]; 1755 grp->total_faults -= p->total_numa_faults; 1756 1757 list_del(&p->numa_entry); 1758 grp->nr_tasks--; 1759 spin_unlock_irq(&grp->lock); 1760 rcu_assign_pointer(p->numa_group, NULL); 1761 put_numa_group(grp); 1762 } 1763 1764 p->numa_faults_memory = NULL; 1765 p->numa_faults_buffer_memory = NULL; 1766 p->numa_faults_cpu= NULL; 1767 p->numa_faults_buffer_cpu = NULL; 1768 kfree(numa_faults); 1769 } 1770 1771 /* 1772 * Got a PROT_NONE fault for a page on @node. 1773 */ 1774 void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags) 1775 { 1776 struct task_struct *p = current; 1777 bool migrated = flags & TNF_MIGRATED; 1778 int cpu_node = task_node(current); 1779 int local = !!(flags & TNF_FAULT_LOCAL); 1780 int priv; 1781 1782 if (!numabalancing_enabled) 1783 return; 1784 1785 /* for example, ksmd faulting in a user's mm */ 1786 if (!p->mm) 1787 return; 1788 1789 /* Do not worry about placement if exiting */ 1790 if (p->state == TASK_DEAD) 1791 return; 1792 1793 /* Allocate buffer to track faults on a per-node basis */ 1794 if (unlikely(!p->numa_faults_memory)) { 1795 int size = sizeof(*p->numa_faults_memory) * 1796 NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids; 1797 1798 p->numa_faults_memory = kzalloc(size, GFP_KERNEL|__GFP_NOWARN); 1799 if (!p->numa_faults_memory) 1800 return; 1801 1802 BUG_ON(p->numa_faults_buffer_memory); 1803 /* 1804 * The averaged statistics, shared & private, memory & cpu, 1805 * occupy the first half of the array. The second half of the 1806 * array is for current counters, which are averaged into the 1807 * first set by task_numa_placement. 1808 */ 1809 p->numa_faults_cpu = p->numa_faults_memory + (2 * nr_node_ids); 1810 p->numa_faults_buffer_memory = p->numa_faults_memory + (4 * nr_node_ids); 1811 p->numa_faults_buffer_cpu = p->numa_faults_memory + (6 * nr_node_ids); 1812 p->total_numa_faults = 0; 1813 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality)); 1814 } 1815 1816 /* 1817 * First accesses are treated as private, otherwise consider accesses 1818 * to be private if the accessing pid has not changed 1819 */ 1820 if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) { 1821 priv = 1; 1822 } else { 1823 priv = cpupid_match_pid(p, last_cpupid); 1824 if (!priv && !(flags & TNF_NO_GROUP)) 1825 task_numa_group(p, last_cpupid, flags, &priv); 1826 } 1827 1828 /* 1829 * If a workload spans multiple NUMA nodes, a shared fault that 1830 * occurs wholly within the set of nodes that the workload is 1831 * actively using should be counted as local. This allows the 1832 * scan rate to slow down when a workload has settled down. 1833 */ 1834 if (!priv && !local && p->numa_group && 1835 node_isset(cpu_node, p->numa_group->active_nodes) && 1836 node_isset(mem_node, p->numa_group->active_nodes)) 1837 local = 1; 1838 1839 task_numa_placement(p); 1840 1841 /* 1842 * Retry task to preferred node migration periodically, in case it 1843 * case it previously failed, or the scheduler moved us. 1844 */ 1845 if (time_after(jiffies, p->numa_migrate_retry)) 1846 numa_migrate_preferred(p); 1847 1848 if (migrated) 1849 p->numa_pages_migrated += pages; 1850 1851 p->numa_faults_buffer_memory[task_faults_idx(mem_node, priv)] += pages; 1852 p->numa_faults_buffer_cpu[task_faults_idx(cpu_node, priv)] += pages; 1853 p->numa_faults_locality[local] += pages; 1854 } 1855 1856 static void reset_ptenuma_scan(struct task_struct *p) 1857 { 1858 ACCESS_ONCE(p->mm->numa_scan_seq)++; 1859 p->mm->numa_scan_offset = 0; 1860 } 1861 1862 /* 1863 * The expensive part of numa migration is done from task_work context. 1864 * Triggered from task_tick_numa(). 1865 */ 1866 void task_numa_work(struct callback_head *work) 1867 { 1868 unsigned long migrate, next_scan, now = jiffies; 1869 struct task_struct *p = current; 1870 struct mm_struct *mm = p->mm; 1871 struct vm_area_struct *vma; 1872 unsigned long start, end; 1873 unsigned long nr_pte_updates = 0; 1874 long pages; 1875 1876 WARN_ON_ONCE(p != container_of(work, struct task_struct, numa_work)); 1877 1878 work->next = work; /* protect against double add */ 1879 /* 1880 * Who cares about NUMA placement when they're dying. 1881 * 1882 * NOTE: make sure not to dereference p->mm before this check, 1883 * exit_task_work() happens _after_ exit_mm() so we could be called 1884 * without p->mm even though we still had it when we enqueued this 1885 * work. 1886 */ 1887 if (p->flags & PF_EXITING) 1888 return; 1889 1890 if (!mm->numa_next_scan) { 1891 mm->numa_next_scan = now + 1892 msecs_to_jiffies(sysctl_numa_balancing_scan_delay); 1893 } 1894 1895 /* 1896 * Enforce maximal scan/migration frequency.. 1897 */ 1898 migrate = mm->numa_next_scan; 1899 if (time_before(now, migrate)) 1900 return; 1901 1902 if (p->numa_scan_period == 0) { 1903 p->numa_scan_period_max = task_scan_max(p); 1904 p->numa_scan_period = task_scan_min(p); 1905 } 1906 1907 next_scan = now + msecs_to_jiffies(p->numa_scan_period); 1908 if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate) 1909 return; 1910 1911 /* 1912 * Delay this task enough that another task of this mm will likely win 1913 * the next time around. 1914 */ 1915 p->node_stamp += 2 * TICK_NSEC; 1916 1917 start = mm->numa_scan_offset; 1918 pages = sysctl_numa_balancing_scan_size; 1919 pages <<= 20 - PAGE_SHIFT; /* MB in pages */ 1920 if (!pages) 1921 return; 1922 1923 down_read(&mm->mmap_sem); 1924 vma = find_vma(mm, start); 1925 if (!vma) { 1926 reset_ptenuma_scan(p); 1927 start = 0; 1928 vma = mm->mmap; 1929 } 1930 for (; vma; vma = vma->vm_next) { 1931 if (!vma_migratable(vma) || !vma_policy_mof(p, vma)) 1932 continue; 1933 1934 /* 1935 * Shared library pages mapped by multiple processes are not 1936 * migrated as it is expected they are cache replicated. Avoid 1937 * hinting faults in read-only file-backed mappings or the vdso 1938 * as migrating the pages will be of marginal benefit. 1939 */ 1940 if (!vma->vm_mm || 1941 (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ))) 1942 continue; 1943 1944 /* 1945 * Skip inaccessible VMAs to avoid any confusion between 1946 * PROT_NONE and NUMA hinting ptes 1947 */ 1948 if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE))) 1949 continue; 1950 1951 do { 1952 start = max(start, vma->vm_start); 1953 end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE); 1954 end = min(end, vma->vm_end); 1955 nr_pte_updates += change_prot_numa(vma, start, end); 1956 1957 /* 1958 * Scan sysctl_numa_balancing_scan_size but ensure that 1959 * at least one PTE is updated so that unused virtual 1960 * address space is quickly skipped. 1961 */ 1962 if (nr_pte_updates) 1963 pages -= (end - start) >> PAGE_SHIFT; 1964 1965 start = end; 1966 if (pages <= 0) 1967 goto out; 1968 1969 cond_resched(); 1970 } while (end != vma->vm_end); 1971 } 1972 1973 out: 1974 /* 1975 * It is possible to reach the end of the VMA list but the last few 1976 * VMAs are not guaranteed to the vma_migratable. If they are not, we 1977 * would find the !migratable VMA on the next scan but not reset the 1978 * scanner to the start so check it now. 1979 */ 1980 if (vma) 1981 mm->numa_scan_offset = start; 1982 else 1983 reset_ptenuma_scan(p); 1984 up_read(&mm->mmap_sem); 1985 } 1986 1987 /* 1988 * Drive the periodic memory faults.. 1989 */ 1990 void task_tick_numa(struct rq *rq, struct task_struct *curr) 1991 { 1992 struct callback_head *work = &curr->numa_work; 1993 u64 period, now; 1994 1995 /* 1996 * We don't care about NUMA placement if we don't have memory. 1997 */ 1998 if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work) 1999 return; 2000 2001 /* 2002 * Using runtime rather than walltime has the dual advantage that 2003 * we (mostly) drive the selection from busy threads and that the 2004 * task needs to have done some actual work before we bother with 2005 * NUMA placement. 2006 */ 2007 now = curr->se.sum_exec_runtime; 2008 period = (u64)curr->numa_scan_period * NSEC_PER_MSEC; 2009 2010 if (now - curr->node_stamp > period) { 2011 if (!curr->node_stamp) 2012 curr->numa_scan_period = task_scan_min(curr); 2013 curr->node_stamp += period; 2014 2015 if (!time_before(jiffies, curr->mm->numa_next_scan)) { 2016 init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */ 2017 task_work_add(curr, work, true); 2018 } 2019 } 2020 } 2021 #else 2022 static void task_tick_numa(struct rq *rq, struct task_struct *curr) 2023 { 2024 } 2025 2026 static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p) 2027 { 2028 } 2029 2030 static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p) 2031 { 2032 } 2033 #endif /* CONFIG_NUMA_BALANCING */ 2034 2035 static void 2036 account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se) 2037 { 2038 update_load_add(&cfs_rq->load, se->load.weight); 2039 if (!parent_entity(se)) 2040 update_load_add(&rq_of(cfs_rq)->load, se->load.weight); 2041 #ifdef CONFIG_SMP 2042 if (entity_is_task(se)) { 2043 struct rq *rq = rq_of(cfs_rq); 2044 2045 account_numa_enqueue(rq, task_of(se)); 2046 list_add(&se->group_node, &rq->cfs_tasks); 2047 } 2048 #endif 2049 cfs_rq->nr_running++; 2050 } 2051 2052 static void 2053 account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se) 2054 { 2055 update_load_sub(&cfs_rq->load, se->load.weight); 2056 if (!parent_entity(se)) 2057 update_load_sub(&rq_of(cfs_rq)->load, se->load.weight); 2058 if (entity_is_task(se)) { 2059 account_numa_dequeue(rq_of(cfs_rq), task_of(se)); 2060 list_del_init(&se->group_node); 2061 } 2062 cfs_rq->nr_running--; 2063 } 2064 2065 #ifdef CONFIG_FAIR_GROUP_SCHED 2066 # ifdef CONFIG_SMP 2067 static inline long calc_tg_weight(struct task_group *tg, struct cfs_rq *cfs_rq) 2068 { 2069 long tg_weight; 2070 2071 /* 2072 * Use this CPU's actual weight instead of the last load_contribution 2073 * to gain a more accurate current total weight. See 2074 * update_cfs_rq_load_contribution(). 2075 */ 2076 tg_weight = atomic_long_read(&tg->load_avg); 2077 tg_weight -= cfs_rq->tg_load_contrib; 2078 tg_weight += cfs_rq->load.weight; 2079 2080 return tg_weight; 2081 } 2082 2083 static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg) 2084 { 2085 long tg_weight, load, shares; 2086 2087 tg_weight = calc_tg_weight(tg, cfs_rq); 2088 load = cfs_rq->load.weight; 2089 2090 shares = (tg->shares * load); 2091 if (tg_weight) 2092 shares /= tg_weight; 2093 2094 if (shares < MIN_SHARES) 2095 shares = MIN_SHARES; 2096 if (shares > tg->shares) 2097 shares = tg->shares; 2098 2099 return shares; 2100 } 2101 # else /* CONFIG_SMP */ 2102 static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg) 2103 { 2104 return tg->shares; 2105 } 2106 # endif /* CONFIG_SMP */ 2107 static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, 2108 unsigned long weight) 2109 { 2110 if (se->on_rq) { 2111 /* commit outstanding execution time */ 2112 if (cfs_rq->curr == se) 2113 update_curr(cfs_rq); 2114 account_entity_dequeue(cfs_rq, se); 2115 } 2116 2117 update_load_set(&se->load, weight); 2118 2119 if (se->on_rq) 2120 account_entity_enqueue(cfs_rq, se); 2121 } 2122 2123 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq); 2124 2125 static void update_cfs_shares(struct cfs_rq *cfs_rq) 2126 { 2127 struct task_group *tg; 2128 struct sched_entity *se; 2129 long shares; 2130 2131 tg = cfs_rq->tg; 2132 se = tg->se[cpu_of(rq_of(cfs_rq))]; 2133 if (!se || throttled_hierarchy(cfs_rq)) 2134 return; 2135 #ifndef CONFIG_SMP 2136 if (likely(se->load.weight == tg->shares)) 2137 return; 2138 #endif 2139 shares = calc_cfs_shares(cfs_rq, tg); 2140 2141 reweight_entity(cfs_rq_of(se), se, shares); 2142 } 2143 #else /* CONFIG_FAIR_GROUP_SCHED */ 2144 static inline void update_cfs_shares(struct cfs_rq *cfs_rq) 2145 { 2146 } 2147 #endif /* CONFIG_FAIR_GROUP_SCHED */ 2148 2149 #ifdef CONFIG_SMP 2150 /* 2151 * We choose a half-life close to 1 scheduling period. 2152 * Note: The tables below are dependent on this value. 2153 */ 2154 #define LOAD_AVG_PERIOD 32 2155 #define LOAD_AVG_MAX 47742 /* maximum possible load avg */ 2156 #define LOAD_AVG_MAX_N 345 /* number of full periods to produce LOAD_MAX_AVG */ 2157 2158 /* Precomputed fixed inverse multiplies for multiplication by y^n */ 2159 static const u32 runnable_avg_yN_inv[] = { 2160 0xffffffff, 0xfa83b2da, 0xf5257d14, 0xefe4b99a, 0xeac0c6e6, 0xe5b906e6, 2161 0xe0ccdeeb, 0xdbfbb796, 0xd744fcc9, 0xd2a81d91, 0xce248c14, 0xc9b9bd85, 2162 0xc5672a10, 0xc12c4cc9, 0xbd08a39e, 0xb8fbaf46, 0xb504f333, 0xb123f581, 2163 0xad583ee9, 0xa9a15ab4, 0xa5fed6a9, 0xa2704302, 0x9ef5325f, 0x9b8d39b9, 2164 0x9837f050, 0x94f4efa8, 0x91c3d373, 0x8ea4398a, 0x8b95c1e3, 0x88980e80, 2165 0x85aac367, 0x82cd8698, 2166 }; 2167 2168 /* 2169 * Precomputed \Sum y^k { 1<=k<=n }. These are floor(true_value) to prevent 2170 * over-estimates when re-combining. 2171 */ 2172 static const u32 runnable_avg_yN_sum[] = { 2173 0, 1002, 1982, 2941, 3880, 4798, 5697, 6576, 7437, 8279, 9103, 2174 9909,10698,11470,12226,12966,13690,14398,15091,15769,16433,17082, 2175 17718,18340,18949,19545,20128,20698,21256,21802,22336,22859,23371, 2176 }; 2177 2178 /* 2179 * Approximate: 2180 * val * y^n, where y^32 ~= 0.5 (~1 scheduling period) 2181 */ 2182 static __always_inline u64 decay_load(u64 val, u64 n) 2183 { 2184 unsigned int local_n; 2185 2186 if (!n) 2187 return val; 2188 else if (unlikely(n > LOAD_AVG_PERIOD * 63)) 2189 return 0; 2190 2191 /* after bounds checking we can collapse to 32-bit */ 2192 local_n = n; 2193 2194 /* 2195 * As y^PERIOD = 1/2, we can combine 2196 * y^n = 1/2^(n/PERIOD) * k^(n%PERIOD) 2197 * With a look-up table which covers k^n (n<PERIOD) 2198 * 2199 * To achieve constant time decay_load. 2200 */ 2201 if (unlikely(local_n >= LOAD_AVG_PERIOD)) { 2202 val >>= local_n / LOAD_AVG_PERIOD; 2203 local_n %= LOAD_AVG_PERIOD; 2204 } 2205 2206 val *= runnable_avg_yN_inv[local_n]; 2207 /* We don't use SRR here since we always want to round down. */ 2208 return val >> 32; 2209 } 2210 2211 /* 2212 * For updates fully spanning n periods, the contribution to runnable 2213 * average will be: \Sum 1024*y^n 2214 * 2215 * We can compute this reasonably efficiently by combining: 2216 * y^PERIOD = 1/2 with precomputed \Sum 1024*y^n {for n <PERIOD} 2217 */ 2218 static u32 __compute_runnable_contrib(u64 n) 2219 { 2220 u32 contrib = 0; 2221 2222 if (likely(n <= LOAD_AVG_PERIOD)) 2223 return runnable_avg_yN_sum[n]; 2224 else if (unlikely(n >= LOAD_AVG_MAX_N)) 2225 return LOAD_AVG_MAX; 2226 2227 /* Compute \Sum k^n combining precomputed values for k^i, \Sum k^j */ 2228 do { 2229 contrib /= 2; /* y^LOAD_AVG_PERIOD = 1/2 */ 2230 contrib += runnable_avg_yN_sum[LOAD_AVG_PERIOD]; 2231 2232 n -= LOAD_AVG_PERIOD; 2233 } while (n > LOAD_AVG_PERIOD); 2234 2235 contrib = decay_load(contrib, n); 2236 return contrib + runnable_avg_yN_sum[n]; 2237 } 2238 2239 /* 2240 * We can represent the historical contribution to runnable average as the 2241 * coefficients of a geometric series. To do this we sub-divide our runnable 2242 * history into segments of approximately 1ms (1024us); label the segment that 2243 * occurred N-ms ago p_N, with p_0 corresponding to the current period, e.g. 2244 * 2245 * [<- 1024us ->|<- 1024us ->|<- 1024us ->| ... 2246 * p0 p1 p2 2247 * (now) (~1ms ago) (~2ms ago) 2248 * 2249 * Let u_i denote the fraction of p_i that the entity was runnable. 2250 * 2251 * We then designate the fractions u_i as our co-efficients, yielding the 2252 * following representation of historical load: 2253 * u_0 + u_1*y + u_2*y^2 + u_3*y^3 + ... 2254 * 2255 * We choose y based on the with of a reasonably scheduling period, fixing: 2256 * y^32 = 0.5 2257 * 2258 * This means that the contribution to load ~32ms ago (u_32) will be weighted 2259 * approximately half as much as the contribution to load within the last ms 2260 * (u_0). 2261 * 2262 * When a period "rolls over" and we have new u_0`, multiplying the previous 2263 * sum again by y is sufficient to update: 2264 * load_avg = u_0` + y*(u_0 + u_1*y + u_2*y^2 + ... ) 2265 * = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1}] 2266 */ 2267 static __always_inline int __update_entity_runnable_avg(u64 now, 2268 struct sched_avg *sa, 2269 int runnable) 2270 { 2271 u64 delta, periods; 2272 u32 runnable_contrib; 2273 int delta_w, decayed = 0; 2274 2275 delta = now - sa->last_runnable_update; 2276 /* 2277 * This should only happen when time goes backwards, which it 2278 * unfortunately does during sched clock init when we swap over to TSC. 2279 */ 2280 if ((s64)delta < 0) { 2281 sa->last_runnable_update = now; 2282 return 0; 2283 } 2284 2285 /* 2286 * Use 1024ns as the unit of measurement since it's a reasonable 2287 * approximation of 1us and fast to compute. 2288 */ 2289 delta >>= 10; 2290 if (!delta) 2291 return 0; 2292 sa->last_runnable_update = now; 2293 2294 /* delta_w is the amount already accumulated against our next period */ 2295 delta_w = sa->runnable_avg_period % 1024; 2296 if (delta + delta_w >= 1024) { 2297 /* period roll-over */ 2298 decayed = 1; 2299 2300 /* 2301 * Now that we know we're crossing a period boundary, figure 2302 * out how much from delta we need to complete the current 2303 * period and accrue it. 2304 */ 2305 delta_w = 1024 - delta_w; 2306 if (runnable) 2307 sa->runnable_avg_sum += delta_w; 2308 sa->runnable_avg_period += delta_w; 2309 2310 delta -= delta_w; 2311 2312 /* Figure out how many additional periods this update spans */ 2313 periods = delta / 1024; 2314 delta %= 1024; 2315 2316 sa->runnable_avg_sum = decay_load(sa->runnable_avg_sum, 2317 periods + 1); 2318 sa->runnable_avg_period = decay_load(sa->runnable_avg_period, 2319 periods + 1); 2320 2321 /* Efficiently calculate \sum (1..n_period) 1024*y^i */ 2322 runnable_contrib = __compute_runnable_contrib(periods); 2323 if (runnable) 2324 sa->runnable_avg_sum += runnable_contrib; 2325 sa->runnable_avg_period += runnable_contrib; 2326 } 2327 2328 /* Remainder of delta accrued against u_0` */ 2329 if (runnable) 2330 sa->runnable_avg_sum += delta; 2331 sa->runnable_avg_period += delta; 2332 2333 return decayed; 2334 } 2335 2336 /* Synchronize an entity's decay with its parenting cfs_rq.*/ 2337 static inline u64 __synchronize_entity_decay(struct sched_entity *se) 2338 { 2339 struct cfs_rq *cfs_rq = cfs_rq_of(se); 2340 u64 decays = atomic64_read(&cfs_rq->decay_counter); 2341 2342 decays -= se->avg.decay_count; 2343 if (!decays) 2344 return 0; 2345 2346 se->avg.load_avg_contrib = decay_load(se->avg.load_avg_contrib, decays); 2347 se->avg.decay_count = 0; 2348 2349 return decays; 2350 } 2351 2352 #ifdef CONFIG_FAIR_GROUP_SCHED 2353 static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq, 2354 int force_update) 2355 { 2356 struct task_group *tg = cfs_rq->tg; 2357 long tg_contrib; 2358 2359 tg_contrib = cfs_rq->runnable_load_avg + cfs_rq->blocked_load_avg; 2360 tg_contrib -= cfs_rq->tg_load_contrib; 2361 2362 if (force_update || abs(tg_contrib) > cfs_rq->tg_load_contrib / 8) { 2363 atomic_long_add(tg_contrib, &tg->load_avg); 2364 cfs_rq->tg_load_contrib += tg_contrib; 2365 } 2366 } 2367 2368 /* 2369 * Aggregate cfs_rq runnable averages into an equivalent task_group 2370 * representation for computing load contributions. 2371 */ 2372 static inline void __update_tg_runnable_avg(struct sched_avg *sa, 2373 struct cfs_rq *cfs_rq) 2374 { 2375 struct task_group *tg = cfs_rq->tg; 2376 long contrib; 2377 2378 /* The fraction of a cpu used by this cfs_rq */ 2379 contrib = div_u64((u64)sa->runnable_avg_sum << NICE_0_SHIFT, 2380 sa->runnable_avg_period + 1); 2381 contrib -= cfs_rq->tg_runnable_contrib; 2382 2383 if (abs(contrib) > cfs_rq->tg_runnable_contrib / 64) { 2384 atomic_add(contrib, &tg->runnable_avg); 2385 cfs_rq->tg_runnable_contrib += contrib; 2386 } 2387 } 2388 2389 static inline void __update_group_entity_contrib(struct sched_entity *se) 2390 { 2391 struct cfs_rq *cfs_rq = group_cfs_rq(se); 2392 struct task_group *tg = cfs_rq->tg; 2393 int runnable_avg; 2394 2395 u64 contrib; 2396 2397 contrib = cfs_rq->tg_load_contrib * tg->shares; 2398 se->avg.load_avg_contrib = div_u64(contrib, 2399 atomic_long_read(&tg->load_avg) + 1); 2400 2401 /* 2402 * For group entities we need to compute a correction term in the case 2403 * that they are consuming <1 cpu so that we would contribute the same 2404 * load as a task of equal weight. 2405 * 2406 * Explicitly co-ordinating this measurement would be expensive, but 2407 * fortunately the sum of each cpus contribution forms a usable 2408 * lower-bound on the true value. 2409 * 2410 * Consider the aggregate of 2 contributions. Either they are disjoint 2411 * (and the sum represents true value) or they are disjoint and we are 2412 * understating by the aggregate of their overlap. 2413 * 2414 * Extending this to N cpus, for a given overlap, the maximum amount we 2415 * understand is then n_i(n_i+1)/2 * w_i where n_i is the number of 2416 * cpus that overlap for this interval and w_i is the interval width. 2417 * 2418 * On a small machine; the first term is well-bounded which bounds the 2419 * total error since w_i is a subset of the period. Whereas on a 2420 * larger machine, while this first term can be larger, if w_i is the 2421 * of consequential size guaranteed to see n_i*w_i quickly converge to 2422 * our upper bound of 1-cpu. 2423 */ 2424 runnable_avg = atomic_read(&tg->runnable_avg); 2425 if (runnable_avg < NICE_0_LOAD) { 2426 se->avg.load_avg_contrib *= runnable_avg; 2427 se->avg.load_avg_contrib >>= NICE_0_SHIFT; 2428 } 2429 } 2430 2431 static inline void update_rq_runnable_avg(struct rq *rq, int runnable) 2432 { 2433 __update_entity_runnable_avg(rq_clock_task(rq), &rq->avg, runnable); 2434 __update_tg_runnable_avg(&rq->avg, &rq->cfs); 2435 } 2436 #else /* CONFIG_FAIR_GROUP_SCHED */ 2437 static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq, 2438 int force_update) {} 2439 static inline void __update_tg_runnable_avg(struct sched_avg *sa, 2440 struct cfs_rq *cfs_rq) {} 2441 static inline void __update_group_entity_contrib(struct sched_entity *se) {} 2442 static inline void update_rq_runnable_avg(struct rq *rq, int runnable) {} 2443 #endif /* CONFIG_FAIR_GROUP_SCHED */ 2444 2445 static inline void __update_task_entity_contrib(struct sched_entity *se) 2446 { 2447 u32 contrib; 2448 2449 /* avoid overflowing a 32-bit type w/ SCHED_LOAD_SCALE */ 2450 contrib = se->avg.runnable_avg_sum * scale_load_down(se->load.weight); 2451 contrib /= (se->avg.runnable_avg_period + 1); 2452 se->avg.load_avg_contrib = scale_load(contrib); 2453 } 2454 2455 /* Compute the current contribution to load_avg by se, return any delta */ 2456 static long __update_entity_load_avg_contrib(struct sched_entity *se) 2457 { 2458 long old_contrib = se->avg.load_avg_contrib; 2459 2460 if (entity_is_task(se)) { 2461 __update_task_entity_contrib(se); 2462 } else { 2463 __update_tg_runnable_avg(&se->avg, group_cfs_rq(se)); 2464 __update_group_entity_contrib(se); 2465 } 2466 2467 return se->avg.load_avg_contrib - old_contrib; 2468 } 2469 2470 static inline void subtract_blocked_load_contrib(struct cfs_rq *cfs_rq, 2471 long load_contrib) 2472 { 2473 if (likely(load_contrib < cfs_rq->blocked_load_avg)) 2474 cfs_rq->blocked_load_avg -= load_contrib; 2475 else 2476 cfs_rq->blocked_load_avg = 0; 2477 } 2478 2479 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq); 2480 2481 /* Update a sched_entity's runnable average */ 2482 static inline void update_entity_load_avg(struct sched_entity *se, 2483 int update_cfs_rq) 2484 { 2485 struct cfs_rq *cfs_rq = cfs_rq_of(se); 2486 long contrib_delta; 2487 u64 now; 2488 2489 /* 2490 * For a group entity we need to use their owned cfs_rq_clock_task() in 2491 * case they are the parent of a throttled hierarchy. 2492 */ 2493 if (entity_is_task(se)) 2494 now = cfs_rq_clock_task(cfs_rq); 2495 else 2496 now = cfs_rq_clock_task(group_cfs_rq(se)); 2497 2498 if (!__update_entity_runnable_avg(now, &se->avg, se->on_rq)) 2499 return; 2500 2501 contrib_delta = __update_entity_load_avg_contrib(se); 2502 2503 if (!update_cfs_rq) 2504 return; 2505 2506 if (se->on_rq) 2507 cfs_rq->runnable_load_avg += contrib_delta; 2508 else 2509 subtract_blocked_load_contrib(cfs_rq, -contrib_delta); 2510 } 2511 2512 /* 2513 * Decay the load contributed by all blocked children and account this so that 2514 * their contribution may appropriately discounted when they wake up. 2515 */ 2516 static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq, int force_update) 2517 { 2518 u64 now = cfs_rq_clock_task(cfs_rq) >> 20; 2519 u64 decays; 2520 2521 decays = now - cfs_rq->last_decay; 2522 if (!decays && !force_update) 2523 return; 2524 2525 if (atomic_long_read(&cfs_rq->removed_load)) { 2526 unsigned long removed_load; 2527 removed_load = atomic_long_xchg(&cfs_rq->removed_load, 0); 2528 subtract_blocked_load_contrib(cfs_rq, removed_load); 2529 } 2530 2531 if (decays) { 2532 cfs_rq->blocked_load_avg = decay_load(cfs_rq->blocked_load_avg, 2533 decays); 2534 atomic64_add(decays, &cfs_rq->decay_counter); 2535 cfs_rq->last_decay = now; 2536 } 2537 2538 __update_cfs_rq_tg_load_contrib(cfs_rq, force_update); 2539 } 2540 2541 /* Add the load generated by se into cfs_rq's child load-average */ 2542 static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq, 2543 struct sched_entity *se, 2544 int wakeup) 2545 { 2546 /* 2547 * We track migrations using entity decay_count <= 0, on a wake-up 2548 * migration we use a negative decay count to track the remote decays 2549 * accumulated while sleeping. 2550 * 2551 * Newly forked tasks are enqueued with se->avg.decay_count == 0, they 2552 * are seen by enqueue_entity_load_avg() as a migration with an already 2553 * constructed load_avg_contrib. 2554 */ 2555 if (unlikely(se->avg.decay_count <= 0)) { 2556 se->avg.last_runnable_update = rq_clock_task(rq_of(cfs_rq)); 2557 if (se->avg.decay_count) { 2558 /* 2559 * In a wake-up migration we have to approximate the 2560 * time sleeping. This is because we can't synchronize 2561 * clock_task between the two cpus, and it is not 2562 * guaranteed to be read-safe. Instead, we can 2563 * approximate this using our carried decays, which are 2564 * explicitly atomically readable. 2565 */ 2566 se->avg.last_runnable_update -= (-se->avg.decay_count) 2567 << 20; 2568 update_entity_load_avg(se, 0); 2569 /* Indicate that we're now synchronized and on-rq */ 2570 se->avg.decay_count = 0; 2571 } 2572 wakeup = 0; 2573 } else { 2574 __synchronize_entity_decay(se); 2575 } 2576 2577 /* migrated tasks did not contribute to our blocked load */ 2578 if (wakeup) { 2579 subtract_blocked_load_contrib(cfs_rq, se->avg.load_avg_contrib); 2580 update_entity_load_avg(se, 0); 2581 } 2582 2583 cfs_rq->runnable_load_avg += se->avg.load_avg_contrib; 2584 /* we force update consideration on load-balancer moves */ 2585 update_cfs_rq_blocked_load(cfs_rq, !wakeup); 2586 } 2587 2588 /* 2589 * Remove se's load from this cfs_rq child load-average, if the entity is 2590 * transitioning to a blocked state we track its projected decay using 2591 * blocked_load_avg. 2592 */ 2593 static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq, 2594 struct sched_entity *se, 2595 int sleep) 2596 { 2597 update_entity_load_avg(se, 1); 2598 /* we force update consideration on load-balancer moves */ 2599 update_cfs_rq_blocked_load(cfs_rq, !sleep); 2600 2601 cfs_rq->runnable_load_avg -= se->avg.load_avg_contrib; 2602 if (sleep) { 2603 cfs_rq->blocked_load_avg += se->avg.load_avg_contrib; 2604 se->avg.decay_count = atomic64_read(&cfs_rq->decay_counter); 2605 } /* migrations, e.g. sleep=0 leave decay_count == 0 */ 2606 } 2607 2608 /* 2609 * Update the rq's load with the elapsed running time before entering 2610 * idle. if the last scheduled task is not a CFS task, idle_enter will 2611 * be the only way to update the runnable statistic. 2612 */ 2613 void idle_enter_fair(struct rq *this_rq) 2614 { 2615 update_rq_runnable_avg(this_rq, 1); 2616 } 2617 2618 /* 2619 * Update the rq's load with the elapsed idle time before a task is 2620 * scheduled. if the newly scheduled task is not a CFS task, idle_exit will 2621 * be the only way to update the runnable statistic. 2622 */ 2623 void idle_exit_fair(struct rq *this_rq) 2624 { 2625 update_rq_runnable_avg(this_rq, 0); 2626 } 2627 2628 static int idle_balance(struct rq *this_rq); 2629 2630 #else /* CONFIG_SMP */ 2631 2632 static inline void update_entity_load_avg(struct sched_entity *se, 2633 int update_cfs_rq) {} 2634 static inline void update_rq_runnable_avg(struct rq *rq, int runnable) {} 2635 static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq, 2636 struct sched_entity *se, 2637 int wakeup) {} 2638 static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq, 2639 struct sched_entity *se, 2640 int sleep) {} 2641 static inline void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq, 2642 int force_update) {} 2643 2644 static inline int idle_balance(struct rq *rq) 2645 { 2646 return 0; 2647 } 2648 2649 #endif /* CONFIG_SMP */ 2650 2651 static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se) 2652 { 2653 #ifdef CONFIG_SCHEDSTATS 2654 struct task_struct *tsk = NULL; 2655 2656 if (entity_is_task(se)) 2657 tsk = task_of(se); 2658 2659 if (se->statistics.sleep_start) { 2660 u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.sleep_start; 2661 2662 if ((s64)delta < 0) 2663 delta = 0; 2664 2665 if (unlikely(delta > se->statistics.sleep_max)) 2666 se->statistics.sleep_max = delta; 2667 2668 se->statistics.sleep_start = 0; 2669 se->statistics.sum_sleep_runtime += delta; 2670 2671 if (tsk) { 2672 account_scheduler_latency(tsk, delta >> 10, 1); 2673 trace_sched_stat_sleep(tsk, delta); 2674 } 2675 } 2676 if (se->statistics.block_start) { 2677 u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.block_start; 2678 2679 if ((s64)delta < 0) 2680 delta = 0; 2681 2682 if (unlikely(delta > se->statistics.block_max)) 2683 se->statistics.block_max = delta; 2684 2685 se->statistics.block_start = 0; 2686 se->statistics.sum_sleep_runtime += delta; 2687 2688 if (tsk) { 2689 if (tsk->in_iowait) { 2690 se->statistics.iowait_sum += delta; 2691 se->statistics.iowait_count++; 2692 trace_sched_stat_iowait(tsk, delta); 2693 } 2694 2695 trace_sched_stat_blocked(tsk, delta); 2696 2697 /* 2698 * Blocking time is in units of nanosecs, so shift by 2699 * 20 to get a milliseconds-range estimation of the 2700 * amount of time that the task spent sleeping: 2701 */ 2702 if (unlikely(prof_on == SLEEP_PROFILING)) { 2703 profile_hits(SLEEP_PROFILING, 2704 (void *)get_wchan(tsk), 2705 delta >> 20); 2706 } 2707 account_scheduler_latency(tsk, delta >> 10, 0); 2708 } 2709 } 2710 #endif 2711 } 2712 2713 static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se) 2714 { 2715 #ifdef CONFIG_SCHED_DEBUG 2716 s64 d = se->vruntime - cfs_rq->min_vruntime; 2717 2718 if (d < 0) 2719 d = -d; 2720 2721 if (d > 3*sysctl_sched_latency) 2722 schedstat_inc(cfs_rq, nr_spread_over); 2723 #endif 2724 } 2725 2726 static void 2727 place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial) 2728 { 2729 u64 vruntime = cfs_rq->min_vruntime; 2730 2731 /* 2732 * The 'current' period is already promised to the current tasks, 2733 * however the extra weight of the new task will slow them down a 2734 * little, place the new task so that it fits in the slot that 2735 * stays open at the end. 2736 */ 2737 if (initial && sched_feat(START_DEBIT)) 2738 vruntime += sched_vslice(cfs_rq, se); 2739 2740 /* sleeps up to a single latency don't count. */ 2741 if (!initial) { 2742 unsigned long thresh = sysctl_sched_latency; 2743 2744 /* 2745 * Halve their sleep time's effect, to allow 2746 * for a gentler effect of sleepers: 2747 */ 2748 if (sched_feat(GENTLE_FAIR_SLEEPERS)) 2749 thresh >>= 1; 2750 2751 vruntime -= thresh; 2752 } 2753 2754 /* ensure we never gain time by being placed backwards. */ 2755 se->vruntime = max_vruntime(se->vruntime, vruntime); 2756 } 2757 2758 static void check_enqueue_throttle(struct cfs_rq *cfs_rq); 2759 2760 static void 2761 enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 2762 { 2763 /* 2764 * Update the normalized vruntime before updating min_vruntime 2765 * through calling update_curr(). 2766 */ 2767 if (!(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_WAKING)) 2768 se->vruntime += cfs_rq->min_vruntime; 2769 2770 /* 2771 * Update run-time statistics of the 'current'. 2772 */ 2773 update_curr(cfs_rq); 2774 enqueue_entity_load_avg(cfs_rq, se, flags & ENQUEUE_WAKEUP); 2775 account_entity_enqueue(cfs_rq, se); 2776 update_cfs_shares(cfs_rq); 2777 2778 if (flags & ENQUEUE_WAKEUP) { 2779 place_entity(cfs_rq, se, 0); 2780 enqueue_sleeper(cfs_rq, se); 2781 } 2782 2783 update_stats_enqueue(cfs_rq, se); 2784 check_spread(cfs_rq, se); 2785 if (se != cfs_rq->curr) 2786 __enqueue_entity(cfs_rq, se); 2787 se->on_rq = 1; 2788 2789 if (cfs_rq->nr_running == 1) { 2790 list_add_leaf_cfs_rq(cfs_rq); 2791 check_enqueue_throttle(cfs_rq); 2792 } 2793 } 2794 2795 static void __clear_buddies_last(struct sched_entity *se) 2796 { 2797 for_each_sched_entity(se) { 2798 struct cfs_rq *cfs_rq = cfs_rq_of(se); 2799 if (cfs_rq->last != se) 2800 break; 2801 2802 cfs_rq->last = NULL; 2803 } 2804 } 2805 2806 static void __clear_buddies_next(struct sched_entity *se) 2807 { 2808 for_each_sched_entity(se) { 2809 struct cfs_rq *cfs_rq = cfs_rq_of(se); 2810 if (cfs_rq->next != se) 2811 break; 2812 2813 cfs_rq->next = NULL; 2814 } 2815 } 2816 2817 static void __clear_buddies_skip(struct sched_entity *se) 2818 { 2819 for_each_sched_entity(se) { 2820 struct cfs_rq *cfs_rq = cfs_rq_of(se); 2821 if (cfs_rq->skip != se) 2822 break; 2823 2824 cfs_rq->skip = NULL; 2825 } 2826 } 2827 2828 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se) 2829 { 2830 if (cfs_rq->last == se) 2831 __clear_buddies_last(se); 2832 2833 if (cfs_rq->next == se) 2834 __clear_buddies_next(se); 2835 2836 if (cfs_rq->skip == se) 2837 __clear_buddies_skip(se); 2838 } 2839 2840 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq); 2841 2842 static void 2843 dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 2844 { 2845 /* 2846 * Update run-time statistics of the 'current'. 2847 */ 2848 update_curr(cfs_rq); 2849 dequeue_entity_load_avg(cfs_rq, se, flags & DEQUEUE_SLEEP); 2850 2851 update_stats_dequeue(cfs_rq, se); 2852 if (flags & DEQUEUE_SLEEP) { 2853 #ifdef CONFIG_SCHEDSTATS 2854 if (entity_is_task(se)) { 2855 struct task_struct *tsk = task_of(se); 2856 2857 if (tsk->state & TASK_INTERRUPTIBLE) 2858 se->statistics.sleep_start = rq_clock(rq_of(cfs_rq)); 2859 if (tsk->state & TASK_UNINTERRUPTIBLE) 2860 se->statistics.block_start = rq_clock(rq_of(cfs_rq)); 2861 } 2862 #endif 2863 } 2864 2865 clear_buddies(cfs_rq, se); 2866 2867 if (se != cfs_rq->curr) 2868 __dequeue_entity(cfs_rq, se); 2869 se->on_rq = 0; 2870 account_entity_dequeue(cfs_rq, se); 2871 2872 /* 2873 * Normalize the entity after updating the min_vruntime because the 2874 * update can refer to the ->curr item and we need to reflect this 2875 * movement in our normalized position. 2876 */ 2877 if (!(flags & DEQUEUE_SLEEP)) 2878 se->vruntime -= cfs_rq->min_vruntime; 2879 2880 /* return excess runtime on last dequeue */ 2881 return_cfs_rq_runtime(cfs_rq); 2882 2883 update_min_vruntime(cfs_rq); 2884 update_cfs_shares(cfs_rq); 2885 } 2886 2887 /* 2888 * Preempt the current task with a newly woken task if needed: 2889 */ 2890 static void 2891 check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr) 2892 { 2893 unsigned long ideal_runtime, delta_exec; 2894 struct sched_entity *se; 2895 s64 delta; 2896 2897 ideal_runtime = sched_slice(cfs_rq, curr); 2898 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime; 2899 if (delta_exec > ideal_runtime) { 2900 resched_task(rq_of(cfs_rq)->curr); 2901 /* 2902 * The current task ran long enough, ensure it doesn't get 2903 * re-elected due to buddy favours. 2904 */ 2905 clear_buddies(cfs_rq, curr); 2906 return; 2907 } 2908 2909 /* 2910 * Ensure that a task that missed wakeup preemption by a 2911 * narrow margin doesn't have to wait for a full slice. 2912 * This also mitigates buddy induced latencies under load. 2913 */ 2914 if (delta_exec < sysctl_sched_min_granularity) 2915 return; 2916 2917 se = __pick_first_entity(cfs_rq); 2918 delta = curr->vruntime - se->vruntime; 2919 2920 if (delta < 0) 2921 return; 2922 2923 if (delta > ideal_runtime) 2924 resched_task(rq_of(cfs_rq)->curr); 2925 } 2926 2927 static void 2928 set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) 2929 { 2930 /* 'current' is not kept within the tree. */ 2931 if (se->on_rq) { 2932 /* 2933 * Any task has to be enqueued before it get to execute on 2934 * a CPU. So account for the time it spent waiting on the 2935 * runqueue. 2936 */ 2937 update_stats_wait_end(cfs_rq, se); 2938 __dequeue_entity(cfs_rq, se); 2939 } 2940 2941 update_stats_curr_start(cfs_rq, se); 2942 cfs_rq->curr = se; 2943 #ifdef CONFIG_SCHEDSTATS 2944 /* 2945 * Track our maximum slice length, if the CPU's load is at 2946 * least twice that of our own weight (i.e. dont track it 2947 * when there are only lesser-weight tasks around): 2948 */ 2949 if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) { 2950 se->statistics.slice_max = max(se->statistics.slice_max, 2951 se->sum_exec_runtime - se->prev_sum_exec_runtime); 2952 } 2953 #endif 2954 se->prev_sum_exec_runtime = se->sum_exec_runtime; 2955 } 2956 2957 static int 2958 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se); 2959 2960 /* 2961 * Pick the next process, keeping these things in mind, in this order: 2962 * 1) keep things fair between processes/task groups 2963 * 2) pick the "next" process, since someone really wants that to run 2964 * 3) pick the "last" process, for cache locality 2965 * 4) do not run the "skip" process, if something else is available 2966 */ 2967 static struct sched_entity * 2968 pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr) 2969 { 2970 struct sched_entity *left = __pick_first_entity(cfs_rq); 2971 struct sched_entity *se; 2972 2973 /* 2974 * If curr is set we have to see if its left of the leftmost entity 2975 * still in the tree, provided there was anything in the tree at all. 2976 */ 2977 if (!left || (curr && entity_before(curr, left))) 2978 left = curr; 2979 2980 se = left; /* ideally we run the leftmost entity */ 2981 2982 /* 2983 * Avoid running the skip buddy, if running something else can 2984 * be done without getting too unfair. 2985 */ 2986 if (cfs_rq->skip == se) { 2987 struct sched_entity *second; 2988 2989 if (se == curr) { 2990 second = __pick_first_entity(cfs_rq); 2991 } else { 2992 second = __pick_next_entity(se); 2993 if (!second || (curr && entity_before(curr, second))) 2994 second = curr; 2995 } 2996 2997 if (second && wakeup_preempt_entity(second, left) < 1) 2998 se = second; 2999 } 3000 3001 /* 3002 * Prefer last buddy, try to return the CPU to a preempted task. 3003 */ 3004 if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1) 3005 se = cfs_rq->last; 3006 3007 /* 3008 * Someone really wants this to run. If it's not unfair, run it. 3009 */ 3010 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1) 3011 se = cfs_rq->next; 3012 3013 clear_buddies(cfs_rq, se); 3014 3015 return se; 3016 } 3017 3018 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq); 3019 3020 static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev) 3021 { 3022 /* 3023 * If still on the runqueue then deactivate_task() 3024 * was not called and update_curr() has to be done: 3025 */ 3026 if (prev->on_rq) 3027 update_curr(cfs_rq); 3028 3029 /* throttle cfs_rqs exceeding runtime */ 3030 check_cfs_rq_runtime(cfs_rq); 3031 3032 check_spread(cfs_rq, prev); 3033 if (prev->on_rq) { 3034 update_stats_wait_start(cfs_rq, prev); 3035 /* Put 'current' back into the tree. */ 3036 __enqueue_entity(cfs_rq, prev); 3037 /* in !on_rq case, update occurred at dequeue */ 3038 update_entity_load_avg(prev, 1); 3039 } 3040 cfs_rq->curr = NULL; 3041 } 3042 3043 static void 3044 entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued) 3045 { 3046 /* 3047 * Update run-time statistics of the 'current'. 3048 */ 3049 update_curr(cfs_rq); 3050 3051 /* 3052 * Ensure that runnable average is periodically updated. 3053 */ 3054 update_entity_load_avg(curr, 1); 3055 update_cfs_rq_blocked_load(cfs_rq, 1); 3056 update_cfs_shares(cfs_rq); 3057 3058 #ifdef CONFIG_SCHED_HRTICK 3059 /* 3060 * queued ticks are scheduled to match the slice, so don't bother 3061 * validating it and just reschedule. 3062 */ 3063 if (queued) { 3064 resched_task(rq_of(cfs_rq)->curr); 3065 return; 3066 } 3067 /* 3068 * don't let the period tick interfere with the hrtick preemption 3069 */ 3070 if (!sched_feat(DOUBLE_TICK) && 3071 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer)) 3072 return; 3073 #endif 3074 3075 if (cfs_rq->nr_running > 1) 3076 check_preempt_tick(cfs_rq, curr); 3077 } 3078 3079 3080 /************************************************** 3081 * CFS bandwidth control machinery 3082 */ 3083 3084 #ifdef CONFIG_CFS_BANDWIDTH 3085 3086 #ifdef HAVE_JUMP_LABEL 3087 static struct static_key __cfs_bandwidth_used; 3088 3089 static inline bool cfs_bandwidth_used(void) 3090 { 3091 return static_key_false(&__cfs_bandwidth_used); 3092 } 3093 3094 void cfs_bandwidth_usage_inc(void) 3095 { 3096 static_key_slow_inc(&__cfs_bandwidth_used); 3097 } 3098 3099 void cfs_bandwidth_usage_dec(void) 3100 { 3101 static_key_slow_dec(&__cfs_bandwidth_used); 3102 } 3103 #else /* HAVE_JUMP_LABEL */ 3104 static bool cfs_bandwidth_used(void) 3105 { 3106 return true; 3107 } 3108 3109 void cfs_bandwidth_usage_inc(void) {} 3110 void cfs_bandwidth_usage_dec(void) {} 3111 #endif /* HAVE_JUMP_LABEL */ 3112 3113 /* 3114 * default period for cfs group bandwidth. 3115 * default: 0.1s, units: nanoseconds 3116 */ 3117 static inline u64 default_cfs_period(void) 3118 { 3119 return 100000000ULL; 3120 } 3121 3122 static inline u64 sched_cfs_bandwidth_slice(void) 3123 { 3124 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC; 3125 } 3126 3127 /* 3128 * Replenish runtime according to assigned quota and update expiration time. 3129 * We use sched_clock_cpu directly instead of rq->clock to avoid adding 3130 * additional synchronization around rq->lock. 3131 * 3132 * requires cfs_b->lock 3133 */ 3134 void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b) 3135 { 3136 u64 now; 3137 3138 if (cfs_b->quota == RUNTIME_INF) 3139 return; 3140 3141 now = sched_clock_cpu(smp_processor_id()); 3142 cfs_b->runtime = cfs_b->quota; 3143 cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period); 3144 } 3145 3146 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg) 3147 { 3148 return &tg->cfs_bandwidth; 3149 } 3150 3151 /* rq->task_clock normalized against any time this cfs_rq has spent throttled */ 3152 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq) 3153 { 3154 if (unlikely(cfs_rq->throttle_count)) 3155 return cfs_rq->throttled_clock_task; 3156 3157 return rq_clock_task(rq_of(cfs_rq)) - cfs_rq->throttled_clock_task_time; 3158 } 3159 3160 /* returns 0 on failure to allocate runtime */ 3161 static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq) 3162 { 3163 struct task_group *tg = cfs_rq->tg; 3164 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg); 3165 u64 amount = 0, min_amount, expires; 3166 3167 /* note: this is a positive sum as runtime_remaining <= 0 */ 3168 min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining; 3169 3170 raw_spin_lock(&cfs_b->lock); 3171 if (cfs_b->quota == RUNTIME_INF) 3172 amount = min_amount; 3173 else { 3174 /* 3175 * If the bandwidth pool has become inactive, then at least one 3176 * period must have elapsed since the last consumption. 3177 * Refresh the global state and ensure bandwidth timer becomes 3178 * active. 3179 */ 3180 if (!cfs_b->timer_active) { 3181 __refill_cfs_bandwidth_runtime(cfs_b); 3182 __start_cfs_bandwidth(cfs_b); 3183 } 3184 3185 if (cfs_b->runtime > 0) { 3186 amount = min(cfs_b->runtime, min_amount); 3187 cfs_b->runtime -= amount; 3188 cfs_b->idle = 0; 3189 } 3190 } 3191 expires = cfs_b->runtime_expires; 3192 raw_spin_unlock(&cfs_b->lock); 3193 3194 cfs_rq->runtime_remaining += amount; 3195 /* 3196 * we may have advanced our local expiration to account for allowed 3197 * spread between our sched_clock and the one on which runtime was 3198 * issued. 3199 */ 3200 if ((s64)(expires - cfs_rq->runtime_expires) > 0) 3201 cfs_rq->runtime_expires = expires; 3202 3203 return cfs_rq->runtime_remaining > 0; 3204 } 3205 3206 /* 3207 * Note: This depends on the synchronization provided by sched_clock and the 3208 * fact that rq->clock snapshots this value. 3209 */ 3210 static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq) 3211 { 3212 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 3213 3214 /* if the deadline is ahead of our clock, nothing to do */ 3215 if (likely((s64)(rq_clock(rq_of(cfs_rq)) - cfs_rq->runtime_expires) < 0)) 3216 return; 3217 3218 if (cfs_rq->runtime_remaining < 0) 3219 return; 3220 3221 /* 3222 * If the local deadline has passed we have to consider the 3223 * possibility that our sched_clock is 'fast' and the global deadline 3224 * has not truly expired. 3225 * 3226 * Fortunately we can check determine whether this the case by checking 3227 * whether the global deadline has advanced. 3228 */ 3229 3230 if ((s64)(cfs_rq->runtime_expires - cfs_b->runtime_expires) >= 0) { 3231 /* extend local deadline, drift is bounded above by 2 ticks */ 3232 cfs_rq->runtime_expires += TICK_NSEC; 3233 } else { 3234 /* global deadline is ahead, expiration has passed */ 3235 cfs_rq->runtime_remaining = 0; 3236 } 3237 } 3238 3239 static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) 3240 { 3241 /* dock delta_exec before expiring quota (as it could span periods) */ 3242 cfs_rq->runtime_remaining -= delta_exec; 3243 expire_cfs_rq_runtime(cfs_rq); 3244 3245 if (likely(cfs_rq->runtime_remaining > 0)) 3246 return; 3247 3248 /* 3249 * if we're unable to extend our runtime we resched so that the active 3250 * hierarchy can be throttled 3251 */ 3252 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr)) 3253 resched_task(rq_of(cfs_rq)->curr); 3254 } 3255 3256 static __always_inline 3257 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) 3258 { 3259 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled) 3260 return; 3261 3262 __account_cfs_rq_runtime(cfs_rq, delta_exec); 3263 } 3264 3265 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq) 3266 { 3267 return cfs_bandwidth_used() && cfs_rq->throttled; 3268 } 3269 3270 /* check whether cfs_rq, or any parent, is throttled */ 3271 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq) 3272 { 3273 return cfs_bandwidth_used() && cfs_rq->throttle_count; 3274 } 3275 3276 /* 3277 * Ensure that neither of the group entities corresponding to src_cpu or 3278 * dest_cpu are members of a throttled hierarchy when performing group 3279 * load-balance operations. 3280 */ 3281 static inline int throttled_lb_pair(struct task_group *tg, 3282 int src_cpu, int dest_cpu) 3283 { 3284 struct cfs_rq *src_cfs_rq, *dest_cfs_rq; 3285 3286 src_cfs_rq = tg->cfs_rq[src_cpu]; 3287 dest_cfs_rq = tg->cfs_rq[dest_cpu]; 3288 3289 return throttled_hierarchy(src_cfs_rq) || 3290 throttled_hierarchy(dest_cfs_rq); 3291 } 3292 3293 /* updated child weight may affect parent so we have to do this bottom up */ 3294 static int tg_unthrottle_up(struct task_group *tg, void *data) 3295 { 3296 struct rq *rq = data; 3297 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; 3298 3299 cfs_rq->throttle_count--; 3300 #ifdef CONFIG_SMP 3301 if (!cfs_rq->throttle_count) { 3302 /* adjust cfs_rq_clock_task() */ 3303 cfs_rq->throttled_clock_task_time += rq_clock_task(rq) - 3304 cfs_rq->throttled_clock_task; 3305 } 3306 #endif 3307 3308 return 0; 3309 } 3310 3311 static int tg_throttle_down(struct task_group *tg, void *data) 3312 { 3313 struct rq *rq = data; 3314 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; 3315 3316 /* group is entering throttled state, stop time */ 3317 if (!cfs_rq->throttle_count) 3318 cfs_rq->throttled_clock_task = rq_clock_task(rq); 3319 cfs_rq->throttle_count++; 3320 3321 return 0; 3322 } 3323 3324 static void throttle_cfs_rq(struct cfs_rq *cfs_rq) 3325 { 3326 struct rq *rq = rq_of(cfs_rq); 3327 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 3328 struct sched_entity *se; 3329 long task_delta, dequeue = 1; 3330 3331 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))]; 3332 3333 /* freeze hierarchy runnable averages while throttled */ 3334 rcu_read_lock(); 3335 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq); 3336 rcu_read_unlock(); 3337 3338 task_delta = cfs_rq->h_nr_running; 3339 for_each_sched_entity(se) { 3340 struct cfs_rq *qcfs_rq = cfs_rq_of(se); 3341 /* throttled entity or throttle-on-deactivate */ 3342 if (!se->on_rq) 3343 break; 3344 3345 if (dequeue) 3346 dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP); 3347 qcfs_rq->h_nr_running -= task_delta; 3348 3349 if (qcfs_rq->load.weight) 3350 dequeue = 0; 3351 } 3352 3353 if (!se) 3354 sub_nr_running(rq, task_delta); 3355 3356 cfs_rq->throttled = 1; 3357 cfs_rq->throttled_clock = rq_clock(rq); 3358 raw_spin_lock(&cfs_b->lock); 3359 list_add_tail_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq); 3360 if (!cfs_b->timer_active) 3361 __start_cfs_bandwidth(cfs_b); 3362 raw_spin_unlock(&cfs_b->lock); 3363 } 3364 3365 void unthrottle_cfs_rq(struct cfs_rq *cfs_rq) 3366 { 3367 struct rq *rq = rq_of(cfs_rq); 3368 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 3369 struct sched_entity *se; 3370 int enqueue = 1; 3371 long task_delta; 3372 3373 se = cfs_rq->tg->se[cpu_of(rq)]; 3374 3375 cfs_rq->throttled = 0; 3376 3377 update_rq_clock(rq); 3378 3379 raw_spin_lock(&cfs_b->lock); 3380 cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock; 3381 list_del_rcu(&cfs_rq->throttled_list); 3382 raw_spin_unlock(&cfs_b->lock); 3383 3384 /* update hierarchical throttle state */ 3385 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq); 3386 3387 if (!cfs_rq->load.weight) 3388 return; 3389 3390 task_delta = cfs_rq->h_nr_running; 3391 for_each_sched_entity(se) { 3392 if (se->on_rq) 3393 enqueue = 0; 3394 3395 cfs_rq = cfs_rq_of(se); 3396 if (enqueue) 3397 enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP); 3398 cfs_rq->h_nr_running += task_delta; 3399 3400 if (cfs_rq_throttled(cfs_rq)) 3401 break; 3402 } 3403 3404 if (!se) 3405 add_nr_running(rq, task_delta); 3406 3407 /* determine whether we need to wake up potentially idle cpu */ 3408 if (rq->curr == rq->idle && rq->cfs.nr_running) 3409 resched_task(rq->curr); 3410 } 3411 3412 static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b, 3413 u64 remaining, u64 expires) 3414 { 3415 struct cfs_rq *cfs_rq; 3416 u64 runtime = remaining; 3417 3418 rcu_read_lock(); 3419 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq, 3420 throttled_list) { 3421 struct rq *rq = rq_of(cfs_rq); 3422 3423 raw_spin_lock(&rq->lock); 3424 if (!cfs_rq_throttled(cfs_rq)) 3425 goto next; 3426 3427 runtime = -cfs_rq->runtime_remaining + 1; 3428 if (runtime > remaining) 3429 runtime = remaining; 3430 remaining -= runtime; 3431 3432 cfs_rq->runtime_remaining += runtime; 3433 cfs_rq->runtime_expires = expires; 3434 3435 /* we check whether we're throttled above */ 3436 if (cfs_rq->runtime_remaining > 0) 3437 unthrottle_cfs_rq(cfs_rq); 3438 3439 next: 3440 raw_spin_unlock(&rq->lock); 3441 3442 if (!remaining) 3443 break; 3444 } 3445 rcu_read_unlock(); 3446 3447 return remaining; 3448 } 3449 3450 /* 3451 * Responsible for refilling a task_group's bandwidth and unthrottling its 3452 * cfs_rqs as appropriate. If there has been no activity within the last 3453 * period the timer is deactivated until scheduling resumes; cfs_b->idle is 3454 * used to track this state. 3455 */ 3456 static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun) 3457 { 3458 u64 runtime, runtime_expires; 3459 int idle = 1, throttled; 3460 3461 raw_spin_lock(&cfs_b->lock); 3462 /* no need to continue the timer with no bandwidth constraint */ 3463 if (cfs_b->quota == RUNTIME_INF) 3464 goto out_unlock; 3465 3466 throttled = !list_empty(&cfs_b->throttled_cfs_rq); 3467 /* idle depends on !throttled (for the case of a large deficit) */ 3468 idle = cfs_b->idle && !throttled; 3469 cfs_b->nr_periods += overrun; 3470 3471 /* if we're going inactive then everything else can be deferred */ 3472 if (idle) 3473 goto out_unlock; 3474 3475 /* 3476 * if we have relooped after returning idle once, we need to update our 3477 * status as actually running, so that other cpus doing 3478 * __start_cfs_bandwidth will stop trying to cancel us. 3479 */ 3480 cfs_b->timer_active = 1; 3481 3482 __refill_cfs_bandwidth_runtime(cfs_b); 3483 3484 if (!throttled) { 3485 /* mark as potentially idle for the upcoming period */ 3486 cfs_b->idle = 1; 3487 goto out_unlock; 3488 } 3489 3490 /* account preceding periods in which throttling occurred */ 3491 cfs_b->nr_throttled += overrun; 3492 3493 /* 3494 * There are throttled entities so we must first use the new bandwidth 3495 * to unthrottle them before making it generally available. This 3496 * ensures that all existing debts will be paid before a new cfs_rq is 3497 * allowed to run. 3498 */ 3499 runtime = cfs_b->runtime; 3500 runtime_expires = cfs_b->runtime_expires; 3501 cfs_b->runtime = 0; 3502 3503 /* 3504 * This check is repeated as we are holding onto the new bandwidth 3505 * while we unthrottle. This can potentially race with an unthrottled 3506 * group trying to acquire new bandwidth from the global pool. 3507 */ 3508 while (throttled && runtime > 0) { 3509 raw_spin_unlock(&cfs_b->lock); 3510 /* we can't nest cfs_b->lock while distributing bandwidth */ 3511 runtime = distribute_cfs_runtime(cfs_b, runtime, 3512 runtime_expires); 3513 raw_spin_lock(&cfs_b->lock); 3514 3515 throttled = !list_empty(&cfs_b->throttled_cfs_rq); 3516 } 3517 3518 /* return (any) remaining runtime */ 3519 cfs_b->runtime = runtime; 3520 /* 3521 * While we are ensured activity in the period following an 3522 * unthrottle, this also covers the case in which the new bandwidth is 3523 * insufficient to cover the existing bandwidth deficit. (Forcing the 3524 * timer to remain active while there are any throttled entities.) 3525 */ 3526 cfs_b->idle = 0; 3527 out_unlock: 3528 if (idle) 3529 cfs_b->timer_active = 0; 3530 raw_spin_unlock(&cfs_b->lock); 3531 3532 return idle; 3533 } 3534 3535 /* a cfs_rq won't donate quota below this amount */ 3536 static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC; 3537 /* minimum remaining period time to redistribute slack quota */ 3538 static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC; 3539 /* how long we wait to gather additional slack before distributing */ 3540 static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC; 3541 3542 /* 3543 * Are we near the end of the current quota period? 3544 * 3545 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the 3546 * hrtimer base being cleared by __hrtimer_start_range_ns. In the case of 3547 * migrate_hrtimers, base is never cleared, so we are fine. 3548 */ 3549 static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire) 3550 { 3551 struct hrtimer *refresh_timer = &cfs_b->period_timer; 3552 u64 remaining; 3553 3554 /* if the call-back is running a quota refresh is already occurring */ 3555 if (hrtimer_callback_running(refresh_timer)) 3556 return 1; 3557 3558 /* is a quota refresh about to occur? */ 3559 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer)); 3560 if (remaining < min_expire) 3561 return 1; 3562 3563 return 0; 3564 } 3565 3566 static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b) 3567 { 3568 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration; 3569 3570 /* if there's a quota refresh soon don't bother with slack */ 3571 if (runtime_refresh_within(cfs_b, min_left)) 3572 return; 3573 3574 start_bandwidth_timer(&cfs_b->slack_timer, 3575 ns_to_ktime(cfs_bandwidth_slack_period)); 3576 } 3577 3578 /* we know any runtime found here is valid as update_curr() precedes return */ 3579 static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq) 3580 { 3581 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 3582 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime; 3583 3584 if (slack_runtime <= 0) 3585 return; 3586 3587 raw_spin_lock(&cfs_b->lock); 3588 if (cfs_b->quota != RUNTIME_INF && 3589 cfs_rq->runtime_expires == cfs_b->runtime_expires) { 3590 cfs_b->runtime += slack_runtime; 3591 3592 /* we are under rq->lock, defer unthrottling using a timer */ 3593 if (cfs_b->runtime > sched_cfs_bandwidth_slice() && 3594 !list_empty(&cfs_b->throttled_cfs_rq)) 3595 start_cfs_slack_bandwidth(cfs_b); 3596 } 3597 raw_spin_unlock(&cfs_b->lock); 3598 3599 /* even if it's not valid for return we don't want to try again */ 3600 cfs_rq->runtime_remaining -= slack_runtime; 3601 } 3602 3603 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) 3604 { 3605 if (!cfs_bandwidth_used()) 3606 return; 3607 3608 if (!cfs_rq->runtime_enabled || cfs_rq->nr_running) 3609 return; 3610 3611 __return_cfs_rq_runtime(cfs_rq); 3612 } 3613 3614 /* 3615 * This is done with a timer (instead of inline with bandwidth return) since 3616 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs. 3617 */ 3618 static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b) 3619 { 3620 u64 runtime = 0, slice = sched_cfs_bandwidth_slice(); 3621 u64 expires; 3622 3623 /* confirm we're still not at a refresh boundary */ 3624 raw_spin_lock(&cfs_b->lock); 3625 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) { 3626 raw_spin_unlock(&cfs_b->lock); 3627 return; 3628 } 3629 3630 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice) { 3631 runtime = cfs_b->runtime; 3632 cfs_b->runtime = 0; 3633 } 3634 expires = cfs_b->runtime_expires; 3635 raw_spin_unlock(&cfs_b->lock); 3636 3637 if (!runtime) 3638 return; 3639 3640 runtime = distribute_cfs_runtime(cfs_b, runtime, expires); 3641 3642 raw_spin_lock(&cfs_b->lock); 3643 if (expires == cfs_b->runtime_expires) 3644 cfs_b->runtime = runtime; 3645 raw_spin_unlock(&cfs_b->lock); 3646 } 3647 3648 /* 3649 * When a group wakes up we want to make sure that its quota is not already 3650 * expired/exceeded, otherwise it may be allowed to steal additional ticks of 3651 * runtime as update_curr() throttling can not not trigger until it's on-rq. 3652 */ 3653 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) 3654 { 3655 if (!cfs_bandwidth_used()) 3656 return; 3657 3658 /* an active group must be handled by the update_curr()->put() path */ 3659 if (!cfs_rq->runtime_enabled || cfs_rq->curr) 3660 return; 3661 3662 /* ensure the group is not already throttled */ 3663 if (cfs_rq_throttled(cfs_rq)) 3664 return; 3665 3666 /* update runtime allocation */ 3667 account_cfs_rq_runtime(cfs_rq, 0); 3668 if (cfs_rq->runtime_remaining <= 0) 3669 throttle_cfs_rq(cfs_rq); 3670 } 3671 3672 /* conditionally throttle active cfs_rq's from put_prev_entity() */ 3673 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) 3674 { 3675 if (!cfs_bandwidth_used()) 3676 return false; 3677 3678 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0)) 3679 return false; 3680 3681 /* 3682 * it's possible for a throttled entity to be forced into a running 3683 * state (e.g. set_curr_task), in this case we're finished. 3684 */ 3685 if (cfs_rq_throttled(cfs_rq)) 3686 return true; 3687 3688 throttle_cfs_rq(cfs_rq); 3689 return true; 3690 } 3691 3692 static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer) 3693 { 3694 struct cfs_bandwidth *cfs_b = 3695 container_of(timer, struct cfs_bandwidth, slack_timer); 3696 do_sched_cfs_slack_timer(cfs_b); 3697 3698 return HRTIMER_NORESTART; 3699 } 3700 3701 static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer) 3702 { 3703 struct cfs_bandwidth *cfs_b = 3704 container_of(timer, struct cfs_bandwidth, period_timer); 3705 ktime_t now; 3706 int overrun; 3707 int idle = 0; 3708 3709 for (;;) { 3710 now = hrtimer_cb_get_time(timer); 3711 overrun = hrtimer_forward(timer, now, cfs_b->period); 3712 3713 if (!overrun) 3714 break; 3715 3716 idle = do_sched_cfs_period_timer(cfs_b, overrun); 3717 } 3718 3719 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART; 3720 } 3721 3722 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) 3723 { 3724 raw_spin_lock_init(&cfs_b->lock); 3725 cfs_b->runtime = 0; 3726 cfs_b->quota = RUNTIME_INF; 3727 cfs_b->period = ns_to_ktime(default_cfs_period()); 3728 3729 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq); 3730 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 3731 cfs_b->period_timer.function = sched_cfs_period_timer; 3732 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 3733 cfs_b->slack_timer.function = sched_cfs_slack_timer; 3734 } 3735 3736 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) 3737 { 3738 cfs_rq->runtime_enabled = 0; 3739 INIT_LIST_HEAD(&cfs_rq->throttled_list); 3740 } 3741 3742 /* requires cfs_b->lock, may release to reprogram timer */ 3743 void __start_cfs_bandwidth(struct cfs_bandwidth *cfs_b) 3744 { 3745 /* 3746 * The timer may be active because we're trying to set a new bandwidth 3747 * period or because we're racing with the tear-down path 3748 * (timer_active==0 becomes visible before the hrtimer call-back 3749 * terminates). In either case we ensure that it's re-programmed 3750 */ 3751 while (unlikely(hrtimer_active(&cfs_b->period_timer)) && 3752 hrtimer_try_to_cancel(&cfs_b->period_timer) < 0) { 3753 /* bounce the lock to allow do_sched_cfs_period_timer to run */ 3754 raw_spin_unlock(&cfs_b->lock); 3755 cpu_relax(); 3756 raw_spin_lock(&cfs_b->lock); 3757 /* if someone else restarted the timer then we're done */ 3758 if (cfs_b->timer_active) 3759 return; 3760 } 3761 3762 cfs_b->timer_active = 1; 3763 start_bandwidth_timer(&cfs_b->period_timer, cfs_b->period); 3764 } 3765 3766 static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) 3767 { 3768 hrtimer_cancel(&cfs_b->period_timer); 3769 hrtimer_cancel(&cfs_b->slack_timer); 3770 } 3771 3772 static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq) 3773 { 3774 struct cfs_rq *cfs_rq; 3775 3776 for_each_leaf_cfs_rq(rq, cfs_rq) { 3777 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 3778 3779 if (!cfs_rq->runtime_enabled) 3780 continue; 3781 3782 /* 3783 * clock_task is not advancing so we just need to make sure 3784 * there's some valid quota amount 3785 */ 3786 cfs_rq->runtime_remaining = cfs_b->quota; 3787 if (cfs_rq_throttled(cfs_rq)) 3788 unthrottle_cfs_rq(cfs_rq); 3789 } 3790 } 3791 3792 #else /* CONFIG_CFS_BANDWIDTH */ 3793 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq) 3794 { 3795 return rq_clock_task(rq_of(cfs_rq)); 3796 } 3797 3798 static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {} 3799 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; } 3800 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {} 3801 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {} 3802 3803 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq) 3804 { 3805 return 0; 3806 } 3807 3808 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq) 3809 { 3810 return 0; 3811 } 3812 3813 static inline int throttled_lb_pair(struct task_group *tg, 3814 int src_cpu, int dest_cpu) 3815 { 3816 return 0; 3817 } 3818 3819 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {} 3820 3821 #ifdef CONFIG_FAIR_GROUP_SCHED 3822 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {} 3823 #endif 3824 3825 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg) 3826 { 3827 return NULL; 3828 } 3829 static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {} 3830 static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {} 3831 3832 #endif /* CONFIG_CFS_BANDWIDTH */ 3833 3834 /************************************************** 3835 * CFS operations on tasks: 3836 */ 3837 3838 #ifdef CONFIG_SCHED_HRTICK 3839 static void hrtick_start_fair(struct rq *rq, struct task_struct *p) 3840 { 3841 struct sched_entity *se = &p->se; 3842 struct cfs_rq *cfs_rq = cfs_rq_of(se); 3843 3844 WARN_ON(task_rq(p) != rq); 3845 3846 if (cfs_rq->nr_running > 1) { 3847 u64 slice = sched_slice(cfs_rq, se); 3848 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime; 3849 s64 delta = slice - ran; 3850 3851 if (delta < 0) { 3852 if (rq->curr == p) 3853 resched_task(p); 3854 return; 3855 } 3856 3857 /* 3858 * Don't schedule slices shorter than 10000ns, that just 3859 * doesn't make sense. Rely on vruntime for fairness. 3860 */ 3861 if (rq->curr != p) 3862 delta = max_t(s64, 10000LL, delta); 3863 3864 hrtick_start(rq, delta); 3865 } 3866 } 3867 3868 /* 3869 * called from enqueue/dequeue and updates the hrtick when the 3870 * current task is from our class and nr_running is low enough 3871 * to matter. 3872 */ 3873 static void hrtick_update(struct rq *rq) 3874 { 3875 struct task_struct *curr = rq->curr; 3876 3877 if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class) 3878 return; 3879 3880 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency) 3881 hrtick_start_fair(rq, curr); 3882 } 3883 #else /* !CONFIG_SCHED_HRTICK */ 3884 static inline void 3885 hrtick_start_fair(struct rq *rq, struct task_struct *p) 3886 { 3887 } 3888 3889 static inline void hrtick_update(struct rq *rq) 3890 { 3891 } 3892 #endif 3893 3894 /* 3895 * The enqueue_task method is called before nr_running is 3896 * increased. Here we update the fair scheduling stats and 3897 * then put the task into the rbtree: 3898 */ 3899 static void 3900 enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags) 3901 { 3902 struct cfs_rq *cfs_rq; 3903 struct sched_entity *se = &p->se; 3904 3905 for_each_sched_entity(se) { 3906 if (se->on_rq) 3907 break; 3908 cfs_rq = cfs_rq_of(se); 3909 enqueue_entity(cfs_rq, se, flags); 3910 3911 /* 3912 * end evaluation on encountering a throttled cfs_rq 3913 * 3914 * note: in the case of encountering a throttled cfs_rq we will 3915 * post the final h_nr_running increment below. 3916 */ 3917 if (cfs_rq_throttled(cfs_rq)) 3918 break; 3919 cfs_rq->h_nr_running++; 3920 3921 flags = ENQUEUE_WAKEUP; 3922 } 3923 3924 for_each_sched_entity(se) { 3925 cfs_rq = cfs_rq_of(se); 3926 cfs_rq->h_nr_running++; 3927 3928 if (cfs_rq_throttled(cfs_rq)) 3929 break; 3930 3931 update_cfs_shares(cfs_rq); 3932 update_entity_load_avg(se, 1); 3933 } 3934 3935 if (!se) { 3936 update_rq_runnable_avg(rq, rq->nr_running); 3937 add_nr_running(rq, 1); 3938 } 3939 hrtick_update(rq); 3940 } 3941 3942 static void set_next_buddy(struct sched_entity *se); 3943 3944 /* 3945 * The dequeue_task method is called before nr_running is 3946 * decreased. We remove the task from the rbtree and 3947 * update the fair scheduling stats: 3948 */ 3949 static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags) 3950 { 3951 struct cfs_rq *cfs_rq; 3952 struct sched_entity *se = &p->se; 3953 int task_sleep = flags & DEQUEUE_SLEEP; 3954 3955 for_each_sched_entity(se) { 3956 cfs_rq = cfs_rq_of(se); 3957 dequeue_entity(cfs_rq, se, flags); 3958 3959 /* 3960 * end evaluation on encountering a throttled cfs_rq 3961 * 3962 * note: in the case of encountering a throttled cfs_rq we will 3963 * post the final h_nr_running decrement below. 3964 */ 3965 if (cfs_rq_throttled(cfs_rq)) 3966 break; 3967 cfs_rq->h_nr_running--; 3968 3969 /* Don't dequeue parent if it has other entities besides us */ 3970 if (cfs_rq->load.weight) { 3971 /* 3972 * Bias pick_next to pick a task from this cfs_rq, as 3973 * p is sleeping when it is within its sched_slice. 3974 */ 3975 if (task_sleep && parent_entity(se)) 3976 set_next_buddy(parent_entity(se)); 3977 3978 /* avoid re-evaluating load for this entity */ 3979 se = parent_entity(se); 3980 break; 3981 } 3982 flags |= DEQUEUE_SLEEP; 3983 } 3984 3985 for_each_sched_entity(se) { 3986 cfs_rq = cfs_rq_of(se); 3987 cfs_rq->h_nr_running--; 3988 3989 if (cfs_rq_throttled(cfs_rq)) 3990 break; 3991 3992 update_cfs_shares(cfs_rq); 3993 update_entity_load_avg(se, 1); 3994 } 3995 3996 if (!se) { 3997 sub_nr_running(rq, 1); 3998 update_rq_runnable_avg(rq, 1); 3999 } 4000 hrtick_update(rq); 4001 } 4002 4003 #ifdef CONFIG_SMP 4004 /* Used instead of source_load when we know the type == 0 */ 4005 static unsigned long weighted_cpuload(const int cpu) 4006 { 4007 return cpu_rq(cpu)->cfs.runnable_load_avg; 4008 } 4009 4010 /* 4011 * Return a low guess at the load of a migration-source cpu weighted 4012 * according to the scheduling class and "nice" value. 4013 * 4014 * We want to under-estimate the load of migration sources, to 4015 * balance conservatively. 4016 */ 4017 static unsigned long source_load(int cpu, int type) 4018 { 4019 struct rq *rq = cpu_rq(cpu); 4020 unsigned long total = weighted_cpuload(cpu); 4021 4022 if (type == 0 || !sched_feat(LB_BIAS)) 4023 return total; 4024 4025 return min(rq->cpu_load[type-1], total); 4026 } 4027 4028 /* 4029 * Return a high guess at the load of a migration-target cpu weighted 4030 * according to the scheduling class and "nice" value. 4031 */ 4032 static unsigned long target_load(int cpu, int type) 4033 { 4034 struct rq *rq = cpu_rq(cpu); 4035 unsigned long total = weighted_cpuload(cpu); 4036 4037 if (type == 0 || !sched_feat(LB_BIAS)) 4038 return total; 4039 4040 return max(rq->cpu_load[type-1], total); 4041 } 4042 4043 static unsigned long power_of(int cpu) 4044 { 4045 return cpu_rq(cpu)->cpu_power; 4046 } 4047 4048 static unsigned long cpu_avg_load_per_task(int cpu) 4049 { 4050 struct rq *rq = cpu_rq(cpu); 4051 unsigned long nr_running = ACCESS_ONCE(rq->nr_running); 4052 unsigned long load_avg = rq->cfs.runnable_load_avg; 4053 4054 if (nr_running) 4055 return load_avg / nr_running; 4056 4057 return 0; 4058 } 4059 4060 static void record_wakee(struct task_struct *p) 4061 { 4062 /* 4063 * Rough decay (wiping) for cost saving, don't worry 4064 * about the boundary, really active task won't care 4065 * about the loss. 4066 */ 4067 if (jiffies > current->wakee_flip_decay_ts + HZ) { 4068 current->wakee_flips >>= 1; 4069 current->wakee_flip_decay_ts = jiffies; 4070 } 4071 4072 if (current->last_wakee != p) { 4073 current->last_wakee = p; 4074 current->wakee_flips++; 4075 } 4076 } 4077 4078 static void task_waking_fair(struct task_struct *p) 4079 { 4080 struct sched_entity *se = &p->se; 4081 struct cfs_rq *cfs_rq = cfs_rq_of(se); 4082 u64 min_vruntime; 4083 4084 #ifndef CONFIG_64BIT 4085 u64 min_vruntime_copy; 4086 4087 do { 4088 min_vruntime_copy = cfs_rq->min_vruntime_copy; 4089 smp_rmb(); 4090 min_vruntime = cfs_rq->min_vruntime; 4091 } while (min_vruntime != min_vruntime_copy); 4092 #else 4093 min_vruntime = cfs_rq->min_vruntime; 4094 #endif 4095 4096 se->vruntime -= min_vruntime; 4097 record_wakee(p); 4098 } 4099 4100 #ifdef CONFIG_FAIR_GROUP_SCHED 4101 /* 4102 * effective_load() calculates the load change as seen from the root_task_group 4103 * 4104 * Adding load to a group doesn't make a group heavier, but can cause movement 4105 * of group shares between cpus. Assuming the shares were perfectly aligned one 4106 * can calculate the shift in shares. 4107 * 4108 * Calculate the effective load difference if @wl is added (subtracted) to @tg 4109 * on this @cpu and results in a total addition (subtraction) of @wg to the 4110 * total group weight. 4111 * 4112 * Given a runqueue weight distribution (rw_i) we can compute a shares 4113 * distribution (s_i) using: 4114 * 4115 * s_i = rw_i / \Sum rw_j (1) 4116 * 4117 * Suppose we have 4 CPUs and our @tg is a direct child of the root group and 4118 * has 7 equal weight tasks, distributed as below (rw_i), with the resulting 4119 * shares distribution (s_i): 4120 * 4121 * rw_i = { 2, 4, 1, 0 } 4122 * s_i = { 2/7, 4/7, 1/7, 0 } 4123 * 4124 * As per wake_affine() we're interested in the load of two CPUs (the CPU the 4125 * task used to run on and the CPU the waker is running on), we need to 4126 * compute the effect of waking a task on either CPU and, in case of a sync 4127 * wakeup, compute the effect of the current task going to sleep. 4128 * 4129 * So for a change of @wl to the local @cpu with an overall group weight change 4130 * of @wl we can compute the new shares distribution (s'_i) using: 4131 * 4132 * s'_i = (rw_i + @wl) / (@wg + \Sum rw_j) (2) 4133 * 4134 * Suppose we're interested in CPUs 0 and 1, and want to compute the load 4135 * differences in waking a task to CPU 0. The additional task changes the 4136 * weight and shares distributions like: 4137 * 4138 * rw'_i = { 3, 4, 1, 0 } 4139 * s'_i = { 3/8, 4/8, 1/8, 0 } 4140 * 4141 * We can then compute the difference in effective weight by using: 4142 * 4143 * dw_i = S * (s'_i - s_i) (3) 4144 * 4145 * Where 'S' is the group weight as seen by its parent. 4146 * 4147 * Therefore the effective change in loads on CPU 0 would be 5/56 (3/8 - 2/7) 4148 * times the weight of the group. The effect on CPU 1 would be -4/56 (4/8 - 4149 * 4/7) times the weight of the group. 4150 */ 4151 static long effective_load(struct task_group *tg, int cpu, long wl, long wg) 4152 { 4153 struct sched_entity *se = tg->se[cpu]; 4154 4155 if (!tg->parent) /* the trivial, non-cgroup case */ 4156 return wl; 4157 4158 for_each_sched_entity(se) { 4159 long w, W; 4160 4161 tg = se->my_q->tg; 4162 4163 /* 4164 * W = @wg + \Sum rw_j 4165 */ 4166 W = wg + calc_tg_weight(tg, se->my_q); 4167 4168 /* 4169 * w = rw_i + @wl 4170 */ 4171 w = se->my_q->load.weight + wl; 4172 4173 /* 4174 * wl = S * s'_i; see (2) 4175 */ 4176 if (W > 0 && w < W) 4177 wl = (w * tg->shares) / W; 4178 else 4179 wl = tg->shares; 4180 4181 /* 4182 * Per the above, wl is the new se->load.weight value; since 4183 * those are clipped to [MIN_SHARES, ...) do so now. See 4184 * calc_cfs_shares(). 4185 */ 4186 if (wl < MIN_SHARES) 4187 wl = MIN_SHARES; 4188 4189 /* 4190 * wl = dw_i = S * (s'_i - s_i); see (3) 4191 */ 4192 wl -= se->load.weight; 4193 4194 /* 4195 * Recursively apply this logic to all parent groups to compute 4196 * the final effective load change on the root group. Since 4197 * only the @tg group gets extra weight, all parent groups can 4198 * only redistribute existing shares. @wl is the shift in shares 4199 * resulting from this level per the above. 4200 */ 4201 wg = 0; 4202 } 4203 4204 return wl; 4205 } 4206 #else 4207 4208 static long effective_load(struct task_group *tg, int cpu, long wl, long wg) 4209 { 4210 return wl; 4211 } 4212 4213 #endif 4214 4215 static int wake_wide(struct task_struct *p) 4216 { 4217 int factor = this_cpu_read(sd_llc_size); 4218 4219 /* 4220 * Yeah, it's the switching-frequency, could means many wakee or 4221 * rapidly switch, use factor here will just help to automatically 4222 * adjust the loose-degree, so bigger node will lead to more pull. 4223 */ 4224 if (p->wakee_flips > factor) { 4225 /* 4226 * wakee is somewhat hot, it needs certain amount of cpu 4227 * resource, so if waker is far more hot, prefer to leave 4228 * it alone. 4229 */ 4230 if (current->wakee_flips > (factor * p->wakee_flips)) 4231 return 1; 4232 } 4233 4234 return 0; 4235 } 4236 4237 static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync) 4238 { 4239 s64 this_load, load; 4240 int idx, this_cpu, prev_cpu; 4241 unsigned long tl_per_task; 4242 struct task_group *tg; 4243 unsigned long weight; 4244 int balanced; 4245 4246 /* 4247 * If we wake multiple tasks be careful to not bounce 4248 * ourselves around too much. 4249 */ 4250 if (wake_wide(p)) 4251 return 0; 4252 4253 idx = sd->wake_idx; 4254 this_cpu = smp_processor_id(); 4255 prev_cpu = task_cpu(p); 4256 load = source_load(prev_cpu, idx); 4257 this_load = target_load(this_cpu, idx); 4258 4259 /* 4260 * If sync wakeup then subtract the (maximum possible) 4261 * effect of the currently running task from the load 4262 * of the current CPU: 4263 */ 4264 if (sync) { 4265 tg = task_group(current); 4266 weight = current->se.load.weight; 4267 4268 this_load += effective_load(tg, this_cpu, -weight, -weight); 4269 load += effective_load(tg, prev_cpu, 0, -weight); 4270 } 4271 4272 tg = task_group(p); 4273 weight = p->se.load.weight; 4274 4275 /* 4276 * In low-load situations, where prev_cpu is idle and this_cpu is idle 4277 * due to the sync cause above having dropped this_load to 0, we'll 4278 * always have an imbalance, but there's really nothing you can do 4279 * about that, so that's good too. 4280 * 4281 * Otherwise check if either cpus are near enough in load to allow this 4282 * task to be woken on this_cpu. 4283 */ 4284 if (this_load > 0) { 4285 s64 this_eff_load, prev_eff_load; 4286 4287 this_eff_load = 100; 4288 this_eff_load *= power_of(prev_cpu); 4289 this_eff_load *= this_load + 4290 effective_load(tg, this_cpu, weight, weight); 4291 4292 prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2; 4293 prev_eff_load *= power_of(this_cpu); 4294 prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight); 4295 4296 balanced = this_eff_load <= prev_eff_load; 4297 } else 4298 balanced = true; 4299 4300 /* 4301 * If the currently running task will sleep within 4302 * a reasonable amount of time then attract this newly 4303 * woken task: 4304 */ 4305 if (sync && balanced) 4306 return 1; 4307 4308 schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts); 4309 tl_per_task = cpu_avg_load_per_task(this_cpu); 4310 4311 if (balanced || 4312 (this_load <= load && 4313 this_load + target_load(prev_cpu, idx) <= tl_per_task)) { 4314 /* 4315 * This domain has SD_WAKE_AFFINE and 4316 * p is cache cold in this domain, and 4317 * there is no bad imbalance. 4318 */ 4319 schedstat_inc(sd, ttwu_move_affine); 4320 schedstat_inc(p, se.statistics.nr_wakeups_affine); 4321 4322 return 1; 4323 } 4324 return 0; 4325 } 4326 4327 /* 4328 * find_idlest_group finds and returns the least busy CPU group within the 4329 * domain. 4330 */ 4331 static struct sched_group * 4332 find_idlest_group(struct sched_domain *sd, struct task_struct *p, 4333 int this_cpu, int sd_flag) 4334 { 4335 struct sched_group *idlest = NULL, *group = sd->groups; 4336 unsigned long min_load = ULONG_MAX, this_load = 0; 4337 int load_idx = sd->forkexec_idx; 4338 int imbalance = 100 + (sd->imbalance_pct-100)/2; 4339 4340 if (sd_flag & SD_BALANCE_WAKE) 4341 load_idx = sd->wake_idx; 4342 4343 do { 4344 unsigned long load, avg_load; 4345 int local_group; 4346 int i; 4347 4348 /* Skip over this group if it has no CPUs allowed */ 4349 if (!cpumask_intersects(sched_group_cpus(group), 4350 tsk_cpus_allowed(p))) 4351 continue; 4352 4353 local_group = cpumask_test_cpu(this_cpu, 4354 sched_group_cpus(group)); 4355 4356 /* Tally up the load of all CPUs in the group */ 4357 avg_load = 0; 4358 4359 for_each_cpu(i, sched_group_cpus(group)) { 4360 /* Bias balancing toward cpus of our domain */ 4361 if (local_group) 4362 load = source_load(i, load_idx); 4363 else 4364 load = target_load(i, load_idx); 4365 4366 avg_load += load; 4367 } 4368 4369 /* Adjust by relative CPU power of the group */ 4370 avg_load = (avg_load * SCHED_POWER_SCALE) / group->sgp->power; 4371 4372 if (local_group) { 4373 this_load = avg_load; 4374 } else if (avg_load < min_load) { 4375 min_load = avg_load; 4376 idlest = group; 4377 } 4378 } while (group = group->next, group != sd->groups); 4379 4380 if (!idlest || 100*this_load < imbalance*min_load) 4381 return NULL; 4382 return idlest; 4383 } 4384 4385 /* 4386 * find_idlest_cpu - find the idlest cpu among the cpus in group. 4387 */ 4388 static int 4389 find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu) 4390 { 4391 unsigned long load, min_load = ULONG_MAX; 4392 int idlest = -1; 4393 int i; 4394 4395 /* Traverse only the allowed CPUs */ 4396 for_each_cpu_and(i, sched_group_cpus(group), tsk_cpus_allowed(p)) { 4397 load = weighted_cpuload(i); 4398 4399 if (load < min_load || (load == min_load && i == this_cpu)) { 4400 min_load = load; 4401 idlest = i; 4402 } 4403 } 4404 4405 return idlest; 4406 } 4407 4408 /* 4409 * Try and locate an idle CPU in the sched_domain. 4410 */ 4411 static int select_idle_sibling(struct task_struct *p, int target) 4412 { 4413 struct sched_domain *sd; 4414 struct sched_group *sg; 4415 int i = task_cpu(p); 4416 4417 if (idle_cpu(target)) 4418 return target; 4419 4420 /* 4421 * If the prevous cpu is cache affine and idle, don't be stupid. 4422 */ 4423 if (i != target && cpus_share_cache(i, target) && idle_cpu(i)) 4424 return i; 4425 4426 /* 4427 * Otherwise, iterate the domains and find an elegible idle cpu. 4428 */ 4429 sd = rcu_dereference(per_cpu(sd_llc, target)); 4430 for_each_lower_domain(sd) { 4431 sg = sd->groups; 4432 do { 4433 if (!cpumask_intersects(sched_group_cpus(sg), 4434 tsk_cpus_allowed(p))) 4435 goto next; 4436 4437 for_each_cpu(i, sched_group_cpus(sg)) { 4438 if (i == target || !idle_cpu(i)) 4439 goto next; 4440 } 4441 4442 target = cpumask_first_and(sched_group_cpus(sg), 4443 tsk_cpus_allowed(p)); 4444 goto done; 4445 next: 4446 sg = sg->next; 4447 } while (sg != sd->groups); 4448 } 4449 done: 4450 return target; 4451 } 4452 4453 /* 4454 * select_task_rq_fair: Select target runqueue for the waking task in domains 4455 * that have the 'sd_flag' flag set. In practice, this is SD_BALANCE_WAKE, 4456 * SD_BALANCE_FORK, or SD_BALANCE_EXEC. 4457 * 4458 * Balances load by selecting the idlest cpu in the idlest group, or under 4459 * certain conditions an idle sibling cpu if the domain has SD_WAKE_AFFINE set. 4460 * 4461 * Returns the target cpu number. 4462 * 4463 * preempt must be disabled. 4464 */ 4465 static int 4466 select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_flags) 4467 { 4468 struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL; 4469 int cpu = smp_processor_id(); 4470 int new_cpu = cpu; 4471 int want_affine = 0; 4472 int sync = wake_flags & WF_SYNC; 4473 4474 if (p->nr_cpus_allowed == 1) 4475 return prev_cpu; 4476 4477 if (sd_flag & SD_BALANCE_WAKE) { 4478 if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p))) 4479 want_affine = 1; 4480 new_cpu = prev_cpu; 4481 } 4482 4483 rcu_read_lock(); 4484 for_each_domain(cpu, tmp) { 4485 if (!(tmp->flags & SD_LOAD_BALANCE)) 4486 continue; 4487 4488 /* 4489 * If both cpu and prev_cpu are part of this domain, 4490 * cpu is a valid SD_WAKE_AFFINE target. 4491 */ 4492 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) && 4493 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) { 4494 affine_sd = tmp; 4495 break; 4496 } 4497 4498 if (tmp->flags & sd_flag) 4499 sd = tmp; 4500 } 4501 4502 if (affine_sd && cpu != prev_cpu && wake_affine(affine_sd, p, sync)) 4503 prev_cpu = cpu; 4504 4505 if (sd_flag & SD_BALANCE_WAKE) { 4506 new_cpu = select_idle_sibling(p, prev_cpu); 4507 goto unlock; 4508 } 4509 4510 while (sd) { 4511 struct sched_group *group; 4512 int weight; 4513 4514 if (!(sd->flags & sd_flag)) { 4515 sd = sd->child; 4516 continue; 4517 } 4518 4519 group = find_idlest_group(sd, p, cpu, sd_flag); 4520 if (!group) { 4521 sd = sd->child; 4522 continue; 4523 } 4524 4525 new_cpu = find_idlest_cpu(group, p, cpu); 4526 if (new_cpu == -1 || new_cpu == cpu) { 4527 /* Now try balancing at a lower domain level of cpu */ 4528 sd = sd->child; 4529 continue; 4530 } 4531 4532 /* Now try balancing at a lower domain level of new_cpu */ 4533 cpu = new_cpu; 4534 weight = sd->span_weight; 4535 sd = NULL; 4536 for_each_domain(cpu, tmp) { 4537 if (weight <= tmp->span_weight) 4538 break; 4539 if (tmp->flags & sd_flag) 4540 sd = tmp; 4541 } 4542 /* while loop will break here if sd == NULL */ 4543 } 4544 unlock: 4545 rcu_read_unlock(); 4546 4547 return new_cpu; 4548 } 4549 4550 /* 4551 * Called immediately before a task is migrated to a new cpu; task_cpu(p) and 4552 * cfs_rq_of(p) references at time of call are still valid and identify the 4553 * previous cpu. However, the caller only guarantees p->pi_lock is held; no 4554 * other assumptions, including the state of rq->lock, should be made. 4555 */ 4556 static void 4557 migrate_task_rq_fair(struct task_struct *p, int next_cpu) 4558 { 4559 struct sched_entity *se = &p->se; 4560 struct cfs_rq *cfs_rq = cfs_rq_of(se); 4561 4562 /* 4563 * Load tracking: accumulate removed load so that it can be processed 4564 * when we next update owning cfs_rq under rq->lock. Tasks contribute 4565 * to blocked load iff they have a positive decay-count. It can never 4566 * be negative here since on-rq tasks have decay-count == 0. 4567 */ 4568 if (se->avg.decay_count) { 4569 se->avg.decay_count = -__synchronize_entity_decay(se); 4570 atomic_long_add(se->avg.load_avg_contrib, 4571 &cfs_rq->removed_load); 4572 } 4573 4574 /* We have migrated, no longer consider this task hot */ 4575 se->exec_start = 0; 4576 } 4577 #endif /* CONFIG_SMP */ 4578 4579 static unsigned long 4580 wakeup_gran(struct sched_entity *curr, struct sched_entity *se) 4581 { 4582 unsigned long gran = sysctl_sched_wakeup_granularity; 4583 4584 /* 4585 * Since its curr running now, convert the gran from real-time 4586 * to virtual-time in his units. 4587 * 4588 * By using 'se' instead of 'curr' we penalize light tasks, so 4589 * they get preempted easier. That is, if 'se' < 'curr' then 4590 * the resulting gran will be larger, therefore penalizing the 4591 * lighter, if otoh 'se' > 'curr' then the resulting gran will 4592 * be smaller, again penalizing the lighter task. 4593 * 4594 * This is especially important for buddies when the leftmost 4595 * task is higher priority than the buddy. 4596 */ 4597 return calc_delta_fair(gran, se); 4598 } 4599 4600 /* 4601 * Should 'se' preempt 'curr'. 4602 * 4603 * |s1 4604 * |s2 4605 * |s3 4606 * g 4607 * |<--->|c 4608 * 4609 * w(c, s1) = -1 4610 * w(c, s2) = 0 4611 * w(c, s3) = 1 4612 * 4613 */ 4614 static int 4615 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se) 4616 { 4617 s64 gran, vdiff = curr->vruntime - se->vruntime; 4618 4619 if (vdiff <= 0) 4620 return -1; 4621 4622 gran = wakeup_gran(curr, se); 4623 if (vdiff > gran) 4624 return 1; 4625 4626 return 0; 4627 } 4628 4629 static void set_last_buddy(struct sched_entity *se) 4630 { 4631 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE)) 4632 return; 4633 4634 for_each_sched_entity(se) 4635 cfs_rq_of(se)->last = se; 4636 } 4637 4638 static void set_next_buddy(struct sched_entity *se) 4639 { 4640 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE)) 4641 return; 4642 4643 for_each_sched_entity(se) 4644 cfs_rq_of(se)->next = se; 4645 } 4646 4647 static void set_skip_buddy(struct sched_entity *se) 4648 { 4649 for_each_sched_entity(se) 4650 cfs_rq_of(se)->skip = se; 4651 } 4652 4653 /* 4654 * Preempt the current task with a newly woken task if needed: 4655 */ 4656 static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags) 4657 { 4658 struct task_struct *curr = rq->curr; 4659 struct sched_entity *se = &curr->se, *pse = &p->se; 4660 struct cfs_rq *cfs_rq = task_cfs_rq(curr); 4661 int scale = cfs_rq->nr_running >= sched_nr_latency; 4662 int next_buddy_marked = 0; 4663 4664 if (unlikely(se == pse)) 4665 return; 4666 4667 /* 4668 * This is possible from callers such as move_task(), in which we 4669 * unconditionally check_prempt_curr() after an enqueue (which may have 4670 * lead to a throttle). This both saves work and prevents false 4671 * next-buddy nomination below. 4672 */ 4673 if (unlikely(throttled_hierarchy(cfs_rq_of(pse)))) 4674 return; 4675 4676 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) { 4677 set_next_buddy(pse); 4678 next_buddy_marked = 1; 4679 } 4680 4681 /* 4682 * We can come here with TIF_NEED_RESCHED already set from new task 4683 * wake up path. 4684 * 4685 * Note: this also catches the edge-case of curr being in a throttled 4686 * group (e.g. via set_curr_task), since update_curr() (in the 4687 * enqueue of curr) will have resulted in resched being set. This 4688 * prevents us from potentially nominating it as a false LAST_BUDDY 4689 * below. 4690 */ 4691 if (test_tsk_need_resched(curr)) 4692 return; 4693 4694 /* Idle tasks are by definition preempted by non-idle tasks. */ 4695 if (unlikely(curr->policy == SCHED_IDLE) && 4696 likely(p->policy != SCHED_IDLE)) 4697 goto preempt; 4698 4699 /* 4700 * Batch and idle tasks do not preempt non-idle tasks (their preemption 4701 * is driven by the tick): 4702 */ 4703 if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION)) 4704 return; 4705 4706 find_matching_se(&se, &pse); 4707 update_curr(cfs_rq_of(se)); 4708 BUG_ON(!pse); 4709 if (wakeup_preempt_entity(se, pse) == 1) { 4710 /* 4711 * Bias pick_next to pick the sched entity that is 4712 * triggering this preemption. 4713 */ 4714 if (!next_buddy_marked) 4715 set_next_buddy(pse); 4716 goto preempt; 4717 } 4718 4719 return; 4720 4721 preempt: 4722 resched_task(curr); 4723 /* 4724 * Only set the backward buddy when the current task is still 4725 * on the rq. This can happen when a wakeup gets interleaved 4726 * with schedule on the ->pre_schedule() or idle_balance() 4727 * point, either of which can * drop the rq lock. 4728 * 4729 * Also, during early boot the idle thread is in the fair class, 4730 * for obvious reasons its a bad idea to schedule back to it. 4731 */ 4732 if (unlikely(!se->on_rq || curr == rq->idle)) 4733 return; 4734 4735 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se)) 4736 set_last_buddy(se); 4737 } 4738 4739 static struct task_struct * 4740 pick_next_task_fair(struct rq *rq, struct task_struct *prev) 4741 { 4742 struct cfs_rq *cfs_rq = &rq->cfs; 4743 struct sched_entity *se; 4744 struct task_struct *p; 4745 int new_tasks; 4746 4747 again: 4748 #ifdef CONFIG_FAIR_GROUP_SCHED 4749 if (!cfs_rq->nr_running) 4750 goto idle; 4751 4752 if (prev->sched_class != &fair_sched_class) 4753 goto simple; 4754 4755 /* 4756 * Because of the set_next_buddy() in dequeue_task_fair() it is rather 4757 * likely that a next task is from the same cgroup as the current. 4758 * 4759 * Therefore attempt to avoid putting and setting the entire cgroup 4760 * hierarchy, only change the part that actually changes. 4761 */ 4762 4763 do { 4764 struct sched_entity *curr = cfs_rq->curr; 4765 4766 /* 4767 * Since we got here without doing put_prev_entity() we also 4768 * have to consider cfs_rq->curr. If it is still a runnable 4769 * entity, update_curr() will update its vruntime, otherwise 4770 * forget we've ever seen it. 4771 */ 4772 if (curr && curr->on_rq) 4773 update_curr(cfs_rq); 4774 else 4775 curr = NULL; 4776 4777 /* 4778 * This call to check_cfs_rq_runtime() will do the throttle and 4779 * dequeue its entity in the parent(s). Therefore the 'simple' 4780 * nr_running test will indeed be correct. 4781 */ 4782 if (unlikely(check_cfs_rq_runtime(cfs_rq))) 4783 goto simple; 4784 4785 se = pick_next_entity(cfs_rq, curr); 4786 cfs_rq = group_cfs_rq(se); 4787 } while (cfs_rq); 4788 4789 p = task_of(se); 4790 4791 /* 4792 * Since we haven't yet done put_prev_entity and if the selected task 4793 * is a different task than we started out with, try and touch the 4794 * least amount of cfs_rqs. 4795 */ 4796 if (prev != p) { 4797 struct sched_entity *pse = &prev->se; 4798 4799 while (!(cfs_rq = is_same_group(se, pse))) { 4800 int se_depth = se->depth; 4801 int pse_depth = pse->depth; 4802 4803 if (se_depth <= pse_depth) { 4804 put_prev_entity(cfs_rq_of(pse), pse); 4805 pse = parent_entity(pse); 4806 } 4807 if (se_depth >= pse_depth) { 4808 set_next_entity(cfs_rq_of(se), se); 4809 se = parent_entity(se); 4810 } 4811 } 4812 4813 put_prev_entity(cfs_rq, pse); 4814 set_next_entity(cfs_rq, se); 4815 } 4816 4817 if (hrtick_enabled(rq)) 4818 hrtick_start_fair(rq, p); 4819 4820 return p; 4821 simple: 4822 cfs_rq = &rq->cfs; 4823 #endif 4824 4825 if (!cfs_rq->nr_running) 4826 goto idle; 4827 4828 put_prev_task(rq, prev); 4829 4830 do { 4831 se = pick_next_entity(cfs_rq, NULL); 4832 set_next_entity(cfs_rq, se); 4833 cfs_rq = group_cfs_rq(se); 4834 } while (cfs_rq); 4835 4836 p = task_of(se); 4837 4838 if (hrtick_enabled(rq)) 4839 hrtick_start_fair(rq, p); 4840 4841 return p; 4842 4843 idle: 4844 new_tasks = idle_balance(rq); 4845 /* 4846 * Because idle_balance() releases (and re-acquires) rq->lock, it is 4847 * possible for any higher priority task to appear. In that case we 4848 * must re-start the pick_next_entity() loop. 4849 */ 4850 if (new_tasks < 0) 4851 return RETRY_TASK; 4852 4853 if (new_tasks > 0) 4854 goto again; 4855 4856 return NULL; 4857 } 4858 4859 /* 4860 * Account for a descheduled task: 4861 */ 4862 static void put_prev_task_fair(struct rq *rq, struct task_struct *prev) 4863 { 4864 struct sched_entity *se = &prev->se; 4865 struct cfs_rq *cfs_rq; 4866 4867 for_each_sched_entity(se) { 4868 cfs_rq = cfs_rq_of(se); 4869 put_prev_entity(cfs_rq, se); 4870 } 4871 } 4872 4873 /* 4874 * sched_yield() is very simple 4875 * 4876 * The magic of dealing with the ->skip buddy is in pick_next_entity. 4877 */ 4878 static void yield_task_fair(struct rq *rq) 4879 { 4880 struct task_struct *curr = rq->curr; 4881 struct cfs_rq *cfs_rq = task_cfs_rq(curr); 4882 struct sched_entity *se = &curr->se; 4883 4884 /* 4885 * Are we the only task in the tree? 4886 */ 4887 if (unlikely(rq->nr_running == 1)) 4888 return; 4889 4890 clear_buddies(cfs_rq, se); 4891 4892 if (curr->policy != SCHED_BATCH) { 4893 update_rq_clock(rq); 4894 /* 4895 * Update run-time statistics of the 'current'. 4896 */ 4897 update_curr(cfs_rq); 4898 /* 4899 * Tell update_rq_clock() that we've just updated, 4900 * so we don't do microscopic update in schedule() 4901 * and double the fastpath cost. 4902 */ 4903 rq->skip_clock_update = 1; 4904 } 4905 4906 set_skip_buddy(se); 4907 } 4908 4909 static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt) 4910 { 4911 struct sched_entity *se = &p->se; 4912 4913 /* throttled hierarchies are not runnable */ 4914 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se))) 4915 return false; 4916 4917 /* Tell the scheduler that we'd really like pse to run next. */ 4918 set_next_buddy(se); 4919 4920 yield_task_fair(rq); 4921 4922 return true; 4923 } 4924 4925 #ifdef CONFIG_SMP 4926 /************************************************** 4927 * Fair scheduling class load-balancing methods. 4928 * 4929 * BASICS 4930 * 4931 * The purpose of load-balancing is to achieve the same basic fairness the 4932 * per-cpu scheduler provides, namely provide a proportional amount of compute 4933 * time to each task. This is expressed in the following equation: 4934 * 4935 * W_i,n/P_i == W_j,n/P_j for all i,j (1) 4936 * 4937 * Where W_i,n is the n-th weight average for cpu i. The instantaneous weight 4938 * W_i,0 is defined as: 4939 * 4940 * W_i,0 = \Sum_j w_i,j (2) 4941 * 4942 * Where w_i,j is the weight of the j-th runnable task on cpu i. This weight 4943 * is derived from the nice value as per prio_to_weight[]. 4944 * 4945 * The weight average is an exponential decay average of the instantaneous 4946 * weight: 4947 * 4948 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3) 4949 * 4950 * P_i is the cpu power (or compute capacity) of cpu i, typically it is the 4951 * fraction of 'recent' time available for SCHED_OTHER task execution. But it 4952 * can also include other factors [XXX]. 4953 * 4954 * To achieve this balance we define a measure of imbalance which follows 4955 * directly from (1): 4956 * 4957 * imb_i,j = max{ avg(W/P), W_i/P_i } - min{ avg(W/P), W_j/P_j } (4) 4958 * 4959 * We them move tasks around to minimize the imbalance. In the continuous 4960 * function space it is obvious this converges, in the discrete case we get 4961 * a few fun cases generally called infeasible weight scenarios. 4962 * 4963 * [XXX expand on: 4964 * - infeasible weights; 4965 * - local vs global optima in the discrete case. ] 4966 * 4967 * 4968 * SCHED DOMAINS 4969 * 4970 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2) 4971 * for all i,j solution, we create a tree of cpus that follows the hardware 4972 * topology where each level pairs two lower groups (or better). This results 4973 * in O(log n) layers. Furthermore we reduce the number of cpus going up the 4974 * tree to only the first of the previous level and we decrease the frequency 4975 * of load-balance at each level inv. proportional to the number of cpus in 4976 * the groups. 4977 * 4978 * This yields: 4979 * 4980 * log_2 n 1 n 4981 * \Sum { --- * --- * 2^i } = O(n) (5) 4982 * i = 0 2^i 2^i 4983 * `- size of each group 4984 * | | `- number of cpus doing load-balance 4985 * | `- freq 4986 * `- sum over all levels 4987 * 4988 * Coupled with a limit on how many tasks we can migrate every balance pass, 4989 * this makes (5) the runtime complexity of the balancer. 4990 * 4991 * An important property here is that each CPU is still (indirectly) connected 4992 * to every other cpu in at most O(log n) steps: 4993 * 4994 * The adjacency matrix of the resulting graph is given by: 4995 * 4996 * log_2 n 4997 * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6) 4998 * k = 0 4999 * 5000 * And you'll find that: 5001 * 5002 * A^(log_2 n)_i,j != 0 for all i,j (7) 5003 * 5004 * Showing there's indeed a path between every cpu in at most O(log n) steps. 5005 * The task movement gives a factor of O(m), giving a convergence complexity 5006 * of: 5007 * 5008 * O(nm log n), n := nr_cpus, m := nr_tasks (8) 5009 * 5010 * 5011 * WORK CONSERVING 5012 * 5013 * In order to avoid CPUs going idle while there's still work to do, new idle 5014 * balancing is more aggressive and has the newly idle cpu iterate up the domain 5015 * tree itself instead of relying on other CPUs to bring it work. 5016 * 5017 * This adds some complexity to both (5) and (8) but it reduces the total idle 5018 * time. 5019 * 5020 * [XXX more?] 5021 * 5022 * 5023 * CGROUPS 5024 * 5025 * Cgroups make a horror show out of (2), instead of a simple sum we get: 5026 * 5027 * s_k,i 5028 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9) 5029 * S_k 5030 * 5031 * Where 5032 * 5033 * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10) 5034 * 5035 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on cpu i. 5036 * 5037 * The big problem is S_k, its a global sum needed to compute a local (W_i) 5038 * property. 5039 * 5040 * [XXX write more on how we solve this.. _after_ merging pjt's patches that 5041 * rewrite all of this once again.] 5042 */ 5043 5044 static unsigned long __read_mostly max_load_balance_interval = HZ/10; 5045 5046 enum fbq_type { regular, remote, all }; 5047 5048 #define LBF_ALL_PINNED 0x01 5049 #define LBF_NEED_BREAK 0x02 5050 #define LBF_DST_PINNED 0x04 5051 #define LBF_SOME_PINNED 0x08 5052 5053 struct lb_env { 5054 struct sched_domain *sd; 5055 5056 struct rq *src_rq; 5057 int src_cpu; 5058 5059 int dst_cpu; 5060 struct rq *dst_rq; 5061 5062 struct cpumask *dst_grpmask; 5063 int new_dst_cpu; 5064 enum cpu_idle_type idle; 5065 long imbalance; 5066 /* The set of CPUs under consideration for load-balancing */ 5067 struct cpumask *cpus; 5068 5069 unsigned int flags; 5070 5071 unsigned int loop; 5072 unsigned int loop_break; 5073 unsigned int loop_max; 5074 5075 enum fbq_type fbq_type; 5076 }; 5077 5078 /* 5079 * move_task - move a task from one runqueue to another runqueue. 5080 * Both runqueues must be locked. 5081 */ 5082 static void move_task(struct task_struct *p, struct lb_env *env) 5083 { 5084 deactivate_task(env->src_rq, p, 0); 5085 set_task_cpu(p, env->dst_cpu); 5086 activate_task(env->dst_rq, p, 0); 5087 check_preempt_curr(env->dst_rq, p, 0); 5088 } 5089 5090 /* 5091 * Is this task likely cache-hot: 5092 */ 5093 static int 5094 task_hot(struct task_struct *p, u64 now) 5095 { 5096 s64 delta; 5097 5098 if (p->sched_class != &fair_sched_class) 5099 return 0; 5100 5101 if (unlikely(p->policy == SCHED_IDLE)) 5102 return 0; 5103 5104 /* 5105 * Buddy candidates are cache hot: 5106 */ 5107 if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running && 5108 (&p->se == cfs_rq_of(&p->se)->next || 5109 &p->se == cfs_rq_of(&p->se)->last)) 5110 return 1; 5111 5112 if (sysctl_sched_migration_cost == -1) 5113 return 1; 5114 if (sysctl_sched_migration_cost == 0) 5115 return 0; 5116 5117 delta = now - p->se.exec_start; 5118 5119 return delta < (s64)sysctl_sched_migration_cost; 5120 } 5121 5122 #ifdef CONFIG_NUMA_BALANCING 5123 /* Returns true if the destination node has incurred more faults */ 5124 static bool migrate_improves_locality(struct task_struct *p, struct lb_env *env) 5125 { 5126 struct numa_group *numa_group = rcu_dereference(p->numa_group); 5127 int src_nid, dst_nid; 5128 5129 if (!sched_feat(NUMA_FAVOUR_HIGHER) || !p->numa_faults_memory || 5130 !(env->sd->flags & SD_NUMA)) { 5131 return false; 5132 } 5133 5134 src_nid = cpu_to_node(env->src_cpu); 5135 dst_nid = cpu_to_node(env->dst_cpu); 5136 5137 if (src_nid == dst_nid) 5138 return false; 5139 5140 if (numa_group) { 5141 /* Task is already in the group's interleave set. */ 5142 if (node_isset(src_nid, numa_group->active_nodes)) 5143 return false; 5144 5145 /* Task is moving into the group's interleave set. */ 5146 if (node_isset(dst_nid, numa_group->active_nodes)) 5147 return true; 5148 5149 return group_faults(p, dst_nid) > group_faults(p, src_nid); 5150 } 5151 5152 /* Encourage migration to the preferred node. */ 5153 if (dst_nid == p->numa_preferred_nid) 5154 return true; 5155 5156 return task_faults(p, dst_nid) > task_faults(p, src_nid); 5157 } 5158 5159 5160 static bool migrate_degrades_locality(struct task_struct *p, struct lb_env *env) 5161 { 5162 struct numa_group *numa_group = rcu_dereference(p->numa_group); 5163 int src_nid, dst_nid; 5164 5165 if (!sched_feat(NUMA) || !sched_feat(NUMA_RESIST_LOWER)) 5166 return false; 5167 5168 if (!p->numa_faults_memory || !(env->sd->flags & SD_NUMA)) 5169 return false; 5170 5171 src_nid = cpu_to_node(env->src_cpu); 5172 dst_nid = cpu_to_node(env->dst_cpu); 5173 5174 if (src_nid == dst_nid) 5175 return false; 5176 5177 if (numa_group) { 5178 /* Task is moving within/into the group's interleave set. */ 5179 if (node_isset(dst_nid, numa_group->active_nodes)) 5180 return false; 5181 5182 /* Task is moving out of the group's interleave set. */ 5183 if (node_isset(src_nid, numa_group->active_nodes)) 5184 return true; 5185 5186 return group_faults(p, dst_nid) < group_faults(p, src_nid); 5187 } 5188 5189 /* Migrating away from the preferred node is always bad. */ 5190 if (src_nid == p->numa_preferred_nid) 5191 return true; 5192 5193 return task_faults(p, dst_nid) < task_faults(p, src_nid); 5194 } 5195 5196 #else 5197 static inline bool migrate_improves_locality(struct task_struct *p, 5198 struct lb_env *env) 5199 { 5200 return false; 5201 } 5202 5203 static inline bool migrate_degrades_locality(struct task_struct *p, 5204 struct lb_env *env) 5205 { 5206 return false; 5207 } 5208 #endif 5209 5210 /* 5211 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu? 5212 */ 5213 static 5214 int can_migrate_task(struct task_struct *p, struct lb_env *env) 5215 { 5216 int tsk_cache_hot = 0; 5217 /* 5218 * We do not migrate tasks that are: 5219 * 1) throttled_lb_pair, or 5220 * 2) cannot be migrated to this CPU due to cpus_allowed, or 5221 * 3) running (obviously), or 5222 * 4) are cache-hot on their current CPU. 5223 */ 5224 if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu)) 5225 return 0; 5226 5227 if (!cpumask_test_cpu(env->dst_cpu, tsk_cpus_allowed(p))) { 5228 int cpu; 5229 5230 schedstat_inc(p, se.statistics.nr_failed_migrations_affine); 5231 5232 env->flags |= LBF_SOME_PINNED; 5233 5234 /* 5235 * Remember if this task can be migrated to any other cpu in 5236 * our sched_group. We may want to revisit it if we couldn't 5237 * meet load balance goals by pulling other tasks on src_cpu. 5238 * 5239 * Also avoid computing new_dst_cpu if we have already computed 5240 * one in current iteration. 5241 */ 5242 if (!env->dst_grpmask || (env->flags & LBF_DST_PINNED)) 5243 return 0; 5244 5245 /* Prevent to re-select dst_cpu via env's cpus */ 5246 for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) { 5247 if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p))) { 5248 env->flags |= LBF_DST_PINNED; 5249 env->new_dst_cpu = cpu; 5250 break; 5251 } 5252 } 5253 5254 return 0; 5255 } 5256 5257 /* Record that we found atleast one task that could run on dst_cpu */ 5258 env->flags &= ~LBF_ALL_PINNED; 5259 5260 if (task_running(env->src_rq, p)) { 5261 schedstat_inc(p, se.statistics.nr_failed_migrations_running); 5262 return 0; 5263 } 5264 5265 /* 5266 * Aggressive migration if: 5267 * 1) destination numa is preferred 5268 * 2) task is cache cold, or 5269 * 3) too many balance attempts have failed. 5270 */ 5271 tsk_cache_hot = task_hot(p, rq_clock_task(env->src_rq)); 5272 if (!tsk_cache_hot) 5273 tsk_cache_hot = migrate_degrades_locality(p, env); 5274 5275 if (migrate_improves_locality(p, env)) { 5276 #ifdef CONFIG_SCHEDSTATS 5277 if (tsk_cache_hot) { 5278 schedstat_inc(env->sd, lb_hot_gained[env->idle]); 5279 schedstat_inc(p, se.statistics.nr_forced_migrations); 5280 } 5281 #endif 5282 return 1; 5283 } 5284 5285 if (!tsk_cache_hot || 5286 env->sd->nr_balance_failed > env->sd->cache_nice_tries) { 5287 5288 if (tsk_cache_hot) { 5289 schedstat_inc(env->sd, lb_hot_gained[env->idle]); 5290 schedstat_inc(p, se.statistics.nr_forced_migrations); 5291 } 5292 5293 return 1; 5294 } 5295 5296 schedstat_inc(p, se.statistics.nr_failed_migrations_hot); 5297 return 0; 5298 } 5299 5300 /* 5301 * move_one_task tries to move exactly one task from busiest to this_rq, as 5302 * part of active balancing operations within "domain". 5303 * Returns 1 if successful and 0 otherwise. 5304 * 5305 * Called with both runqueues locked. 5306 */ 5307 static int move_one_task(struct lb_env *env) 5308 { 5309 struct task_struct *p, *n; 5310 5311 list_for_each_entry_safe(p, n, &env->src_rq->cfs_tasks, se.group_node) { 5312 if (!can_migrate_task(p, env)) 5313 continue; 5314 5315 move_task(p, env); 5316 /* 5317 * Right now, this is only the second place move_task() 5318 * is called, so we can safely collect move_task() 5319 * stats here rather than inside move_task(). 5320 */ 5321 schedstat_inc(env->sd, lb_gained[env->idle]); 5322 return 1; 5323 } 5324 return 0; 5325 } 5326 5327 static const unsigned int sched_nr_migrate_break = 32; 5328 5329 /* 5330 * move_tasks tries to move up to imbalance weighted load from busiest to 5331 * this_rq, as part of a balancing operation within domain "sd". 5332 * Returns 1 if successful and 0 otherwise. 5333 * 5334 * Called with both runqueues locked. 5335 */ 5336 static int move_tasks(struct lb_env *env) 5337 { 5338 struct list_head *tasks = &env->src_rq->cfs_tasks; 5339 struct task_struct *p; 5340 unsigned long load; 5341 int pulled = 0; 5342 5343 if (env->imbalance <= 0) 5344 return 0; 5345 5346 while (!list_empty(tasks)) { 5347 p = list_first_entry(tasks, struct task_struct, se.group_node); 5348 5349 env->loop++; 5350 /* We've more or less seen every task there is, call it quits */ 5351 if (env->loop > env->loop_max) 5352 break; 5353 5354 /* take a breather every nr_migrate tasks */ 5355 if (env->loop > env->loop_break) { 5356 env->loop_break += sched_nr_migrate_break; 5357 env->flags |= LBF_NEED_BREAK; 5358 break; 5359 } 5360 5361 if (!can_migrate_task(p, env)) 5362 goto next; 5363 5364 load = task_h_load(p); 5365 5366 if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed) 5367 goto next; 5368 5369 if ((load / 2) > env->imbalance) 5370 goto next; 5371 5372 move_task(p, env); 5373 pulled++; 5374 env->imbalance -= load; 5375 5376 #ifdef CONFIG_PREEMPT 5377 /* 5378 * NEWIDLE balancing is a source of latency, so preemptible 5379 * kernels will stop after the first task is pulled to minimize 5380 * the critical section. 5381 */ 5382 if (env->idle == CPU_NEWLY_IDLE) 5383 break; 5384 #endif 5385 5386 /* 5387 * We only want to steal up to the prescribed amount of 5388 * weighted load. 5389 */ 5390 if (env->imbalance <= 0) 5391 break; 5392 5393 continue; 5394 next: 5395 list_move_tail(&p->se.group_node, tasks); 5396 } 5397 5398 /* 5399 * Right now, this is one of only two places move_task() is called, 5400 * so we can safely collect move_task() stats here rather than 5401 * inside move_task(). 5402 */ 5403 schedstat_add(env->sd, lb_gained[env->idle], pulled); 5404 5405 return pulled; 5406 } 5407 5408 #ifdef CONFIG_FAIR_GROUP_SCHED 5409 /* 5410 * update tg->load_weight by folding this cpu's load_avg 5411 */ 5412 static void __update_blocked_averages_cpu(struct task_group *tg, int cpu) 5413 { 5414 struct sched_entity *se = tg->se[cpu]; 5415 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu]; 5416 5417 /* throttled entities do not contribute to load */ 5418 if (throttled_hierarchy(cfs_rq)) 5419 return; 5420 5421 update_cfs_rq_blocked_load(cfs_rq, 1); 5422 5423 if (se) { 5424 update_entity_load_avg(se, 1); 5425 /* 5426 * We pivot on our runnable average having decayed to zero for 5427 * list removal. This generally implies that all our children 5428 * have also been removed (modulo rounding error or bandwidth 5429 * control); however, such cases are rare and we can fix these 5430 * at enqueue. 5431 * 5432 * TODO: fix up out-of-order children on enqueue. 5433 */ 5434 if (!se->avg.runnable_avg_sum && !cfs_rq->nr_running) 5435 list_del_leaf_cfs_rq(cfs_rq); 5436 } else { 5437 struct rq *rq = rq_of(cfs_rq); 5438 update_rq_runnable_avg(rq, rq->nr_running); 5439 } 5440 } 5441 5442 static void update_blocked_averages(int cpu) 5443 { 5444 struct rq *rq = cpu_rq(cpu); 5445 struct cfs_rq *cfs_rq; 5446 unsigned long flags; 5447 5448 raw_spin_lock_irqsave(&rq->lock, flags); 5449 update_rq_clock(rq); 5450 /* 5451 * Iterates the task_group tree in a bottom up fashion, see 5452 * list_add_leaf_cfs_rq() for details. 5453 */ 5454 for_each_leaf_cfs_rq(rq, cfs_rq) { 5455 /* 5456 * Note: We may want to consider periodically releasing 5457 * rq->lock about these updates so that creating many task 5458 * groups does not result in continually extending hold time. 5459 */ 5460 __update_blocked_averages_cpu(cfs_rq->tg, rq->cpu); 5461 } 5462 5463 raw_spin_unlock_irqrestore(&rq->lock, flags); 5464 } 5465 5466 /* 5467 * Compute the hierarchical load factor for cfs_rq and all its ascendants. 5468 * This needs to be done in a top-down fashion because the load of a child 5469 * group is a fraction of its parents load. 5470 */ 5471 static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq) 5472 { 5473 struct rq *rq = rq_of(cfs_rq); 5474 struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)]; 5475 unsigned long now = jiffies; 5476 unsigned long load; 5477 5478 if (cfs_rq->last_h_load_update == now) 5479 return; 5480 5481 cfs_rq->h_load_next = NULL; 5482 for_each_sched_entity(se) { 5483 cfs_rq = cfs_rq_of(se); 5484 cfs_rq->h_load_next = se; 5485 if (cfs_rq->last_h_load_update == now) 5486 break; 5487 } 5488 5489 if (!se) { 5490 cfs_rq->h_load = cfs_rq->runnable_load_avg; 5491 cfs_rq->last_h_load_update = now; 5492 } 5493 5494 while ((se = cfs_rq->h_load_next) != NULL) { 5495 load = cfs_rq->h_load; 5496 load = div64_ul(load * se->avg.load_avg_contrib, 5497 cfs_rq->runnable_load_avg + 1); 5498 cfs_rq = group_cfs_rq(se); 5499 cfs_rq->h_load = load; 5500 cfs_rq->last_h_load_update = now; 5501 } 5502 } 5503 5504 static unsigned long task_h_load(struct task_struct *p) 5505 { 5506 struct cfs_rq *cfs_rq = task_cfs_rq(p); 5507 5508 update_cfs_rq_h_load(cfs_rq); 5509 return div64_ul(p->se.avg.load_avg_contrib * cfs_rq->h_load, 5510 cfs_rq->runnable_load_avg + 1); 5511 } 5512 #else 5513 static inline void update_blocked_averages(int cpu) 5514 { 5515 } 5516 5517 static unsigned long task_h_load(struct task_struct *p) 5518 { 5519 return p->se.avg.load_avg_contrib; 5520 } 5521 #endif 5522 5523 /********** Helpers for find_busiest_group ************************/ 5524 /* 5525 * sg_lb_stats - stats of a sched_group required for load_balancing 5526 */ 5527 struct sg_lb_stats { 5528 unsigned long avg_load; /*Avg load across the CPUs of the group */ 5529 unsigned long group_load; /* Total load over the CPUs of the group */ 5530 unsigned long sum_weighted_load; /* Weighted load of group's tasks */ 5531 unsigned long load_per_task; 5532 unsigned long group_power; 5533 unsigned int sum_nr_running; /* Nr tasks running in the group */ 5534 unsigned int group_capacity; 5535 unsigned int idle_cpus; 5536 unsigned int group_weight; 5537 int group_imb; /* Is there an imbalance in the group ? */ 5538 int group_has_capacity; /* Is there extra capacity in the group? */ 5539 #ifdef CONFIG_NUMA_BALANCING 5540 unsigned int nr_numa_running; 5541 unsigned int nr_preferred_running; 5542 #endif 5543 }; 5544 5545 /* 5546 * sd_lb_stats - Structure to store the statistics of a sched_domain 5547 * during load balancing. 5548 */ 5549 struct sd_lb_stats { 5550 struct sched_group *busiest; /* Busiest group in this sd */ 5551 struct sched_group *local; /* Local group in this sd */ 5552 unsigned long total_load; /* Total load of all groups in sd */ 5553 unsigned long total_pwr; /* Total power of all groups in sd */ 5554 unsigned long avg_load; /* Average load across all groups in sd */ 5555 5556 struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */ 5557 struct sg_lb_stats local_stat; /* Statistics of the local group */ 5558 }; 5559 5560 static inline void init_sd_lb_stats(struct sd_lb_stats *sds) 5561 { 5562 /* 5563 * Skimp on the clearing to avoid duplicate work. We can avoid clearing 5564 * local_stat because update_sg_lb_stats() does a full clear/assignment. 5565 * We must however clear busiest_stat::avg_load because 5566 * update_sd_pick_busiest() reads this before assignment. 5567 */ 5568 *sds = (struct sd_lb_stats){ 5569 .busiest = NULL, 5570 .local = NULL, 5571 .total_load = 0UL, 5572 .total_pwr = 0UL, 5573 .busiest_stat = { 5574 .avg_load = 0UL, 5575 }, 5576 }; 5577 } 5578 5579 /** 5580 * get_sd_load_idx - Obtain the load index for a given sched domain. 5581 * @sd: The sched_domain whose load_idx is to be obtained. 5582 * @idle: The idle status of the CPU for whose sd load_idx is obtained. 5583 * 5584 * Return: The load index. 5585 */ 5586 static inline int get_sd_load_idx(struct sched_domain *sd, 5587 enum cpu_idle_type idle) 5588 { 5589 int load_idx; 5590 5591 switch (idle) { 5592 case CPU_NOT_IDLE: 5593 load_idx = sd->busy_idx; 5594 break; 5595 5596 case CPU_NEWLY_IDLE: 5597 load_idx = sd->newidle_idx; 5598 break; 5599 default: 5600 load_idx = sd->idle_idx; 5601 break; 5602 } 5603 5604 return load_idx; 5605 } 5606 5607 static unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu) 5608 { 5609 return SCHED_POWER_SCALE; 5610 } 5611 5612 unsigned long __weak arch_scale_freq_power(struct sched_domain *sd, int cpu) 5613 { 5614 return default_scale_freq_power(sd, cpu); 5615 } 5616 5617 static unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu) 5618 { 5619 unsigned long weight = sd->span_weight; 5620 unsigned long smt_gain = sd->smt_gain; 5621 5622 smt_gain /= weight; 5623 5624 return smt_gain; 5625 } 5626 5627 unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu) 5628 { 5629 return default_scale_smt_power(sd, cpu); 5630 } 5631 5632 static unsigned long scale_rt_power(int cpu) 5633 { 5634 struct rq *rq = cpu_rq(cpu); 5635 u64 total, available, age_stamp, avg; 5636 s64 delta; 5637 5638 /* 5639 * Since we're reading these variables without serialization make sure 5640 * we read them once before doing sanity checks on them. 5641 */ 5642 age_stamp = ACCESS_ONCE(rq->age_stamp); 5643 avg = ACCESS_ONCE(rq->rt_avg); 5644 5645 delta = rq_clock(rq) - age_stamp; 5646 if (unlikely(delta < 0)) 5647 delta = 0; 5648 5649 total = sched_avg_period() + delta; 5650 5651 if (unlikely(total < avg)) { 5652 /* Ensures that power won't end up being negative */ 5653 available = 0; 5654 } else { 5655 available = total - avg; 5656 } 5657 5658 if (unlikely((s64)total < SCHED_POWER_SCALE)) 5659 total = SCHED_POWER_SCALE; 5660 5661 total >>= SCHED_POWER_SHIFT; 5662 5663 return div_u64(available, total); 5664 } 5665 5666 static void update_cpu_power(struct sched_domain *sd, int cpu) 5667 { 5668 unsigned long weight = sd->span_weight; 5669 unsigned long power = SCHED_POWER_SCALE; 5670 struct sched_group *sdg = sd->groups; 5671 5672 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) { 5673 if (sched_feat(ARCH_POWER)) 5674 power *= arch_scale_smt_power(sd, cpu); 5675 else 5676 power *= default_scale_smt_power(sd, cpu); 5677 5678 power >>= SCHED_POWER_SHIFT; 5679 } 5680 5681 sdg->sgp->power_orig = power; 5682 5683 if (sched_feat(ARCH_POWER)) 5684 power *= arch_scale_freq_power(sd, cpu); 5685 else 5686 power *= default_scale_freq_power(sd, cpu); 5687 5688 power >>= SCHED_POWER_SHIFT; 5689 5690 power *= scale_rt_power(cpu); 5691 power >>= SCHED_POWER_SHIFT; 5692 5693 if (!power) 5694 power = 1; 5695 5696 cpu_rq(cpu)->cpu_power = power; 5697 sdg->sgp->power = power; 5698 } 5699 5700 void update_group_power(struct sched_domain *sd, int cpu) 5701 { 5702 struct sched_domain *child = sd->child; 5703 struct sched_group *group, *sdg = sd->groups; 5704 unsigned long power, power_orig; 5705 unsigned long interval; 5706 5707 interval = msecs_to_jiffies(sd->balance_interval); 5708 interval = clamp(interval, 1UL, max_load_balance_interval); 5709 sdg->sgp->next_update = jiffies + interval; 5710 5711 if (!child) { 5712 update_cpu_power(sd, cpu); 5713 return; 5714 } 5715 5716 power_orig = power = 0; 5717 5718 if (child->flags & SD_OVERLAP) { 5719 /* 5720 * SD_OVERLAP domains cannot assume that child groups 5721 * span the current group. 5722 */ 5723 5724 for_each_cpu(cpu, sched_group_cpus(sdg)) { 5725 struct sched_group_power *sgp; 5726 struct rq *rq = cpu_rq(cpu); 5727 5728 /* 5729 * build_sched_domains() -> init_sched_groups_power() 5730 * gets here before we've attached the domains to the 5731 * runqueues. 5732 * 5733 * Use power_of(), which is set irrespective of domains 5734 * in update_cpu_power(). 5735 * 5736 * This avoids power/power_orig from being 0 and 5737 * causing divide-by-zero issues on boot. 5738 * 5739 * Runtime updates will correct power_orig. 5740 */ 5741 if (unlikely(!rq->sd)) { 5742 power_orig += power_of(cpu); 5743 power += power_of(cpu); 5744 continue; 5745 } 5746 5747 sgp = rq->sd->groups->sgp; 5748 power_orig += sgp->power_orig; 5749 power += sgp->power; 5750 } 5751 } else { 5752 /* 5753 * !SD_OVERLAP domains can assume that child groups 5754 * span the current group. 5755 */ 5756 5757 group = child->groups; 5758 do { 5759 power_orig += group->sgp->power_orig; 5760 power += group->sgp->power; 5761 group = group->next; 5762 } while (group != child->groups); 5763 } 5764 5765 sdg->sgp->power_orig = power_orig; 5766 sdg->sgp->power = power; 5767 } 5768 5769 /* 5770 * Try and fix up capacity for tiny siblings, this is needed when 5771 * things like SD_ASYM_PACKING need f_b_g to select another sibling 5772 * which on its own isn't powerful enough. 5773 * 5774 * See update_sd_pick_busiest() and check_asym_packing(). 5775 */ 5776 static inline int 5777 fix_small_capacity(struct sched_domain *sd, struct sched_group *group) 5778 { 5779 /* 5780 * Only siblings can have significantly less than SCHED_POWER_SCALE 5781 */ 5782 if (!(sd->flags & SD_SHARE_CPUPOWER)) 5783 return 0; 5784 5785 /* 5786 * If ~90% of the cpu_power is still there, we're good. 5787 */ 5788 if (group->sgp->power * 32 > group->sgp->power_orig * 29) 5789 return 1; 5790 5791 return 0; 5792 } 5793 5794 /* 5795 * Group imbalance indicates (and tries to solve) the problem where balancing 5796 * groups is inadequate due to tsk_cpus_allowed() constraints. 5797 * 5798 * Imagine a situation of two groups of 4 cpus each and 4 tasks each with a 5799 * cpumask covering 1 cpu of the first group and 3 cpus of the second group. 5800 * Something like: 5801 * 5802 * { 0 1 2 3 } { 4 5 6 7 } 5803 * * * * * 5804 * 5805 * If we were to balance group-wise we'd place two tasks in the first group and 5806 * two tasks in the second group. Clearly this is undesired as it will overload 5807 * cpu 3 and leave one of the cpus in the second group unused. 5808 * 5809 * The current solution to this issue is detecting the skew in the first group 5810 * by noticing the lower domain failed to reach balance and had difficulty 5811 * moving tasks due to affinity constraints. 5812 * 5813 * When this is so detected; this group becomes a candidate for busiest; see 5814 * update_sd_pick_busiest(). And calculate_imbalance() and 5815 * find_busiest_group() avoid some of the usual balance conditions to allow it 5816 * to create an effective group imbalance. 5817 * 5818 * This is a somewhat tricky proposition since the next run might not find the 5819 * group imbalance and decide the groups need to be balanced again. A most 5820 * subtle and fragile situation. 5821 */ 5822 5823 static inline int sg_imbalanced(struct sched_group *group) 5824 { 5825 return group->sgp->imbalance; 5826 } 5827 5828 /* 5829 * Compute the group capacity. 5830 * 5831 * Avoid the issue where N*frac(smt_power) >= 1 creates 'phantom' cores by 5832 * first dividing out the smt factor and computing the actual number of cores 5833 * and limit power unit capacity with that. 5834 */ 5835 static inline int sg_capacity(struct lb_env *env, struct sched_group *group) 5836 { 5837 unsigned int capacity, smt, cpus; 5838 unsigned int power, power_orig; 5839 5840 power = group->sgp->power; 5841 power_orig = group->sgp->power_orig; 5842 cpus = group->group_weight; 5843 5844 /* smt := ceil(cpus / power), assumes: 1 < smt_power < 2 */ 5845 smt = DIV_ROUND_UP(SCHED_POWER_SCALE * cpus, power_orig); 5846 capacity = cpus / smt; /* cores */ 5847 5848 capacity = min_t(unsigned, capacity, DIV_ROUND_CLOSEST(power, SCHED_POWER_SCALE)); 5849 if (!capacity) 5850 capacity = fix_small_capacity(env->sd, group); 5851 5852 return capacity; 5853 } 5854 5855 /** 5856 * update_sg_lb_stats - Update sched_group's statistics for load balancing. 5857 * @env: The load balancing environment. 5858 * @group: sched_group whose statistics are to be updated. 5859 * @load_idx: Load index of sched_domain of this_cpu for load calc. 5860 * @local_group: Does group contain this_cpu. 5861 * @sgs: variable to hold the statistics for this group. 5862 */ 5863 static inline void update_sg_lb_stats(struct lb_env *env, 5864 struct sched_group *group, int load_idx, 5865 int local_group, struct sg_lb_stats *sgs) 5866 { 5867 unsigned long load; 5868 int i; 5869 5870 memset(sgs, 0, sizeof(*sgs)); 5871 5872 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) { 5873 struct rq *rq = cpu_rq(i); 5874 5875 /* Bias balancing toward cpus of our domain */ 5876 if (local_group) 5877 load = target_load(i, load_idx); 5878 else 5879 load = source_load(i, load_idx); 5880 5881 sgs->group_load += load; 5882 sgs->sum_nr_running += rq->nr_running; 5883 #ifdef CONFIG_NUMA_BALANCING 5884 sgs->nr_numa_running += rq->nr_numa_running; 5885 sgs->nr_preferred_running += rq->nr_preferred_running; 5886 #endif 5887 sgs->sum_weighted_load += weighted_cpuload(i); 5888 if (idle_cpu(i)) 5889 sgs->idle_cpus++; 5890 } 5891 5892 /* Adjust by relative CPU power of the group */ 5893 sgs->group_power = group->sgp->power; 5894 sgs->avg_load = (sgs->group_load*SCHED_POWER_SCALE) / sgs->group_power; 5895 5896 if (sgs->sum_nr_running) 5897 sgs->load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running; 5898 5899 sgs->group_weight = group->group_weight; 5900 5901 sgs->group_imb = sg_imbalanced(group); 5902 sgs->group_capacity = sg_capacity(env, group); 5903 5904 if (sgs->group_capacity > sgs->sum_nr_running) 5905 sgs->group_has_capacity = 1; 5906 } 5907 5908 /** 5909 * update_sd_pick_busiest - return 1 on busiest group 5910 * @env: The load balancing environment. 5911 * @sds: sched_domain statistics 5912 * @sg: sched_group candidate to be checked for being the busiest 5913 * @sgs: sched_group statistics 5914 * 5915 * Determine if @sg is a busier group than the previously selected 5916 * busiest group. 5917 * 5918 * Return: %true if @sg is a busier group than the previously selected 5919 * busiest group. %false otherwise. 5920 */ 5921 static bool update_sd_pick_busiest(struct lb_env *env, 5922 struct sd_lb_stats *sds, 5923 struct sched_group *sg, 5924 struct sg_lb_stats *sgs) 5925 { 5926 if (sgs->avg_load <= sds->busiest_stat.avg_load) 5927 return false; 5928 5929 if (sgs->sum_nr_running > sgs->group_capacity) 5930 return true; 5931 5932 if (sgs->group_imb) 5933 return true; 5934 5935 /* 5936 * ASYM_PACKING needs to move all the work to the lowest 5937 * numbered CPUs in the group, therefore mark all groups 5938 * higher than ourself as busy. 5939 */ 5940 if ((env->sd->flags & SD_ASYM_PACKING) && sgs->sum_nr_running && 5941 env->dst_cpu < group_first_cpu(sg)) { 5942 if (!sds->busiest) 5943 return true; 5944 5945 if (group_first_cpu(sds->busiest) > group_first_cpu(sg)) 5946 return true; 5947 } 5948 5949 return false; 5950 } 5951 5952 #ifdef CONFIG_NUMA_BALANCING 5953 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs) 5954 { 5955 if (sgs->sum_nr_running > sgs->nr_numa_running) 5956 return regular; 5957 if (sgs->sum_nr_running > sgs->nr_preferred_running) 5958 return remote; 5959 return all; 5960 } 5961 5962 static inline enum fbq_type fbq_classify_rq(struct rq *rq) 5963 { 5964 if (rq->nr_running > rq->nr_numa_running) 5965 return regular; 5966 if (rq->nr_running > rq->nr_preferred_running) 5967 return remote; 5968 return all; 5969 } 5970 #else 5971 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs) 5972 { 5973 return all; 5974 } 5975 5976 static inline enum fbq_type fbq_classify_rq(struct rq *rq) 5977 { 5978 return regular; 5979 } 5980 #endif /* CONFIG_NUMA_BALANCING */ 5981 5982 /** 5983 * update_sd_lb_stats - Update sched_domain's statistics for load balancing. 5984 * @env: The load balancing environment. 5985 * @sds: variable to hold the statistics for this sched_domain. 5986 */ 5987 static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds) 5988 { 5989 struct sched_domain *child = env->sd->child; 5990 struct sched_group *sg = env->sd->groups; 5991 struct sg_lb_stats tmp_sgs; 5992 int load_idx, prefer_sibling = 0; 5993 5994 if (child && child->flags & SD_PREFER_SIBLING) 5995 prefer_sibling = 1; 5996 5997 load_idx = get_sd_load_idx(env->sd, env->idle); 5998 5999 do { 6000 struct sg_lb_stats *sgs = &tmp_sgs; 6001 int local_group; 6002 6003 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_cpus(sg)); 6004 if (local_group) { 6005 sds->local = sg; 6006 sgs = &sds->local_stat; 6007 6008 if (env->idle != CPU_NEWLY_IDLE || 6009 time_after_eq(jiffies, sg->sgp->next_update)) 6010 update_group_power(env->sd, env->dst_cpu); 6011 } 6012 6013 update_sg_lb_stats(env, sg, load_idx, local_group, sgs); 6014 6015 if (local_group) 6016 goto next_group; 6017 6018 /* 6019 * In case the child domain prefers tasks go to siblings 6020 * first, lower the sg capacity to one so that we'll try 6021 * and move all the excess tasks away. We lower the capacity 6022 * of a group only if the local group has the capacity to fit 6023 * these excess tasks, i.e. nr_running < group_capacity. The 6024 * extra check prevents the case where you always pull from the 6025 * heaviest group when it is already under-utilized (possible 6026 * with a large weight task outweighs the tasks on the system). 6027 */ 6028 if (prefer_sibling && sds->local && 6029 sds->local_stat.group_has_capacity) 6030 sgs->group_capacity = min(sgs->group_capacity, 1U); 6031 6032 if (update_sd_pick_busiest(env, sds, sg, sgs)) { 6033 sds->busiest = sg; 6034 sds->busiest_stat = *sgs; 6035 } 6036 6037 next_group: 6038 /* Now, start updating sd_lb_stats */ 6039 sds->total_load += sgs->group_load; 6040 sds->total_pwr += sgs->group_power; 6041 6042 sg = sg->next; 6043 } while (sg != env->sd->groups); 6044 6045 if (env->sd->flags & SD_NUMA) 6046 env->fbq_type = fbq_classify_group(&sds->busiest_stat); 6047 } 6048 6049 /** 6050 * check_asym_packing - Check to see if the group is packed into the 6051 * sched doman. 6052 * 6053 * This is primarily intended to used at the sibling level. Some 6054 * cores like POWER7 prefer to use lower numbered SMT threads. In the 6055 * case of POWER7, it can move to lower SMT modes only when higher 6056 * threads are idle. When in lower SMT modes, the threads will 6057 * perform better since they share less core resources. Hence when we 6058 * have idle threads, we want them to be the higher ones. 6059 * 6060 * This packing function is run on idle threads. It checks to see if 6061 * the busiest CPU in this domain (core in the P7 case) has a higher 6062 * CPU number than the packing function is being run on. Here we are 6063 * assuming lower CPU number will be equivalent to lower a SMT thread 6064 * number. 6065 * 6066 * Return: 1 when packing is required and a task should be moved to 6067 * this CPU. The amount of the imbalance is returned in *imbalance. 6068 * 6069 * @env: The load balancing environment. 6070 * @sds: Statistics of the sched_domain which is to be packed 6071 */ 6072 static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds) 6073 { 6074 int busiest_cpu; 6075 6076 if (!(env->sd->flags & SD_ASYM_PACKING)) 6077 return 0; 6078 6079 if (!sds->busiest) 6080 return 0; 6081 6082 busiest_cpu = group_first_cpu(sds->busiest); 6083 if (env->dst_cpu > busiest_cpu) 6084 return 0; 6085 6086 env->imbalance = DIV_ROUND_CLOSEST( 6087 sds->busiest_stat.avg_load * sds->busiest_stat.group_power, 6088 SCHED_POWER_SCALE); 6089 6090 return 1; 6091 } 6092 6093 /** 6094 * fix_small_imbalance - Calculate the minor imbalance that exists 6095 * amongst the groups of a sched_domain, during 6096 * load balancing. 6097 * @env: The load balancing environment. 6098 * @sds: Statistics of the sched_domain whose imbalance is to be calculated. 6099 */ 6100 static inline 6101 void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds) 6102 { 6103 unsigned long tmp, pwr_now = 0, pwr_move = 0; 6104 unsigned int imbn = 2; 6105 unsigned long scaled_busy_load_per_task; 6106 struct sg_lb_stats *local, *busiest; 6107 6108 local = &sds->local_stat; 6109 busiest = &sds->busiest_stat; 6110 6111 if (!local->sum_nr_running) 6112 local->load_per_task = cpu_avg_load_per_task(env->dst_cpu); 6113 else if (busiest->load_per_task > local->load_per_task) 6114 imbn = 1; 6115 6116 scaled_busy_load_per_task = 6117 (busiest->load_per_task * SCHED_POWER_SCALE) / 6118 busiest->group_power; 6119 6120 if (busiest->avg_load + scaled_busy_load_per_task >= 6121 local->avg_load + (scaled_busy_load_per_task * imbn)) { 6122 env->imbalance = busiest->load_per_task; 6123 return; 6124 } 6125 6126 /* 6127 * OK, we don't have enough imbalance to justify moving tasks, 6128 * however we may be able to increase total CPU power used by 6129 * moving them. 6130 */ 6131 6132 pwr_now += busiest->group_power * 6133 min(busiest->load_per_task, busiest->avg_load); 6134 pwr_now += local->group_power * 6135 min(local->load_per_task, local->avg_load); 6136 pwr_now /= SCHED_POWER_SCALE; 6137 6138 /* Amount of load we'd subtract */ 6139 if (busiest->avg_load > scaled_busy_load_per_task) { 6140 pwr_move += busiest->group_power * 6141 min(busiest->load_per_task, 6142 busiest->avg_load - scaled_busy_load_per_task); 6143 } 6144 6145 /* Amount of load we'd add */ 6146 if (busiest->avg_load * busiest->group_power < 6147 busiest->load_per_task * SCHED_POWER_SCALE) { 6148 tmp = (busiest->avg_load * busiest->group_power) / 6149 local->group_power; 6150 } else { 6151 tmp = (busiest->load_per_task * SCHED_POWER_SCALE) / 6152 local->group_power; 6153 } 6154 pwr_move += local->group_power * 6155 min(local->load_per_task, local->avg_load + tmp); 6156 pwr_move /= SCHED_POWER_SCALE; 6157 6158 /* Move if we gain throughput */ 6159 if (pwr_move > pwr_now) 6160 env->imbalance = busiest->load_per_task; 6161 } 6162 6163 /** 6164 * calculate_imbalance - Calculate the amount of imbalance present within the 6165 * groups of a given sched_domain during load balance. 6166 * @env: load balance environment 6167 * @sds: statistics of the sched_domain whose imbalance is to be calculated. 6168 */ 6169 static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds) 6170 { 6171 unsigned long max_pull, load_above_capacity = ~0UL; 6172 struct sg_lb_stats *local, *busiest; 6173 6174 local = &sds->local_stat; 6175 busiest = &sds->busiest_stat; 6176 6177 if (busiest->group_imb) { 6178 /* 6179 * In the group_imb case we cannot rely on group-wide averages 6180 * to ensure cpu-load equilibrium, look at wider averages. XXX 6181 */ 6182 busiest->load_per_task = 6183 min(busiest->load_per_task, sds->avg_load); 6184 } 6185 6186 /* 6187 * In the presence of smp nice balancing, certain scenarios can have 6188 * max load less than avg load(as we skip the groups at or below 6189 * its cpu_power, while calculating max_load..) 6190 */ 6191 if (busiest->avg_load <= sds->avg_load || 6192 local->avg_load >= sds->avg_load) { 6193 env->imbalance = 0; 6194 return fix_small_imbalance(env, sds); 6195 } 6196 6197 if (!busiest->group_imb) { 6198 /* 6199 * Don't want to pull so many tasks that a group would go idle. 6200 * Except of course for the group_imb case, since then we might 6201 * have to drop below capacity to reach cpu-load equilibrium. 6202 */ 6203 load_above_capacity = 6204 (busiest->sum_nr_running - busiest->group_capacity); 6205 6206 load_above_capacity *= (SCHED_LOAD_SCALE * SCHED_POWER_SCALE); 6207 load_above_capacity /= busiest->group_power; 6208 } 6209 6210 /* 6211 * We're trying to get all the cpus to the average_load, so we don't 6212 * want to push ourselves above the average load, nor do we wish to 6213 * reduce the max loaded cpu below the average load. At the same time, 6214 * we also don't want to reduce the group load below the group capacity 6215 * (so that we can implement power-savings policies etc). Thus we look 6216 * for the minimum possible imbalance. 6217 */ 6218 max_pull = min(busiest->avg_load - sds->avg_load, load_above_capacity); 6219 6220 /* How much load to actually move to equalise the imbalance */ 6221 env->imbalance = min( 6222 max_pull * busiest->group_power, 6223 (sds->avg_load - local->avg_load) * local->group_power 6224 ) / SCHED_POWER_SCALE; 6225 6226 /* 6227 * if *imbalance is less than the average load per runnable task 6228 * there is no guarantee that any tasks will be moved so we'll have 6229 * a think about bumping its value to force at least one task to be 6230 * moved 6231 */ 6232 if (env->imbalance < busiest->load_per_task) 6233 return fix_small_imbalance(env, sds); 6234 } 6235 6236 /******* find_busiest_group() helpers end here *********************/ 6237 6238 /** 6239 * find_busiest_group - Returns the busiest group within the sched_domain 6240 * if there is an imbalance. If there isn't an imbalance, and 6241 * the user has opted for power-savings, it returns a group whose 6242 * CPUs can be put to idle by rebalancing those tasks elsewhere, if 6243 * such a group exists. 6244 * 6245 * Also calculates the amount of weighted load which should be moved 6246 * to restore balance. 6247 * 6248 * @env: The load balancing environment. 6249 * 6250 * Return: - The busiest group if imbalance exists. 6251 * - If no imbalance and user has opted for power-savings balance, 6252 * return the least loaded group whose CPUs can be 6253 * put to idle by rebalancing its tasks onto our group. 6254 */ 6255 static struct sched_group *find_busiest_group(struct lb_env *env) 6256 { 6257 struct sg_lb_stats *local, *busiest; 6258 struct sd_lb_stats sds; 6259 6260 init_sd_lb_stats(&sds); 6261 6262 /* 6263 * Compute the various statistics relavent for load balancing at 6264 * this level. 6265 */ 6266 update_sd_lb_stats(env, &sds); 6267 local = &sds.local_stat; 6268 busiest = &sds.busiest_stat; 6269 6270 if ((env->idle == CPU_IDLE || env->idle == CPU_NEWLY_IDLE) && 6271 check_asym_packing(env, &sds)) 6272 return sds.busiest; 6273 6274 /* There is no busy sibling group to pull tasks from */ 6275 if (!sds.busiest || busiest->sum_nr_running == 0) 6276 goto out_balanced; 6277 6278 sds.avg_load = (SCHED_POWER_SCALE * sds.total_load) / sds.total_pwr; 6279 6280 /* 6281 * If the busiest group is imbalanced the below checks don't 6282 * work because they assume all things are equal, which typically 6283 * isn't true due to cpus_allowed constraints and the like. 6284 */ 6285 if (busiest->group_imb) 6286 goto force_balance; 6287 6288 /* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */ 6289 if (env->idle == CPU_NEWLY_IDLE && local->group_has_capacity && 6290 !busiest->group_has_capacity) 6291 goto force_balance; 6292 6293 /* 6294 * If the local group is more busy than the selected busiest group 6295 * don't try and pull any tasks. 6296 */ 6297 if (local->avg_load >= busiest->avg_load) 6298 goto out_balanced; 6299 6300 /* 6301 * Don't pull any tasks if this group is already above the domain 6302 * average load. 6303 */ 6304 if (local->avg_load >= sds.avg_load) 6305 goto out_balanced; 6306 6307 if (env->idle == CPU_IDLE) { 6308 /* 6309 * This cpu is idle. If the busiest group load doesn't 6310 * have more tasks than the number of available cpu's and 6311 * there is no imbalance between this and busiest group 6312 * wrt to idle cpu's, it is balanced. 6313 */ 6314 if ((local->idle_cpus < busiest->idle_cpus) && 6315 busiest->sum_nr_running <= busiest->group_weight) 6316 goto out_balanced; 6317 } else { 6318 /* 6319 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use 6320 * imbalance_pct to be conservative. 6321 */ 6322 if (100 * busiest->avg_load <= 6323 env->sd->imbalance_pct * local->avg_load) 6324 goto out_balanced; 6325 } 6326 6327 force_balance: 6328 /* Looks like there is an imbalance. Compute it */ 6329 calculate_imbalance(env, &sds); 6330 return sds.busiest; 6331 6332 out_balanced: 6333 env->imbalance = 0; 6334 return NULL; 6335 } 6336 6337 /* 6338 * find_busiest_queue - find the busiest runqueue among the cpus in group. 6339 */ 6340 static struct rq *find_busiest_queue(struct lb_env *env, 6341 struct sched_group *group) 6342 { 6343 struct rq *busiest = NULL, *rq; 6344 unsigned long busiest_load = 0, busiest_power = 1; 6345 int i; 6346 6347 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) { 6348 unsigned long power, capacity, wl; 6349 enum fbq_type rt; 6350 6351 rq = cpu_rq(i); 6352 rt = fbq_classify_rq(rq); 6353 6354 /* 6355 * We classify groups/runqueues into three groups: 6356 * - regular: there are !numa tasks 6357 * - remote: there are numa tasks that run on the 'wrong' node 6358 * - all: there is no distinction 6359 * 6360 * In order to avoid migrating ideally placed numa tasks, 6361 * ignore those when there's better options. 6362 * 6363 * If we ignore the actual busiest queue to migrate another 6364 * task, the next balance pass can still reduce the busiest 6365 * queue by moving tasks around inside the node. 6366 * 6367 * If we cannot move enough load due to this classification 6368 * the next pass will adjust the group classification and 6369 * allow migration of more tasks. 6370 * 6371 * Both cases only affect the total convergence complexity. 6372 */ 6373 if (rt > env->fbq_type) 6374 continue; 6375 6376 power = power_of(i); 6377 capacity = DIV_ROUND_CLOSEST(power, SCHED_POWER_SCALE); 6378 if (!capacity) 6379 capacity = fix_small_capacity(env->sd, group); 6380 6381 wl = weighted_cpuload(i); 6382 6383 /* 6384 * When comparing with imbalance, use weighted_cpuload() 6385 * which is not scaled with the cpu power. 6386 */ 6387 if (capacity && rq->nr_running == 1 && wl > env->imbalance) 6388 continue; 6389 6390 /* 6391 * For the load comparisons with the other cpu's, consider 6392 * the weighted_cpuload() scaled with the cpu power, so that 6393 * the load can be moved away from the cpu that is potentially 6394 * running at a lower capacity. 6395 * 6396 * Thus we're looking for max(wl_i / power_i), crosswise 6397 * multiplication to rid ourselves of the division works out 6398 * to: wl_i * power_j > wl_j * power_i; where j is our 6399 * previous maximum. 6400 */ 6401 if (wl * busiest_power > busiest_load * power) { 6402 busiest_load = wl; 6403 busiest_power = power; 6404 busiest = rq; 6405 } 6406 } 6407 6408 return busiest; 6409 } 6410 6411 /* 6412 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but 6413 * so long as it is large enough. 6414 */ 6415 #define MAX_PINNED_INTERVAL 512 6416 6417 /* Working cpumask for load_balance and load_balance_newidle. */ 6418 DEFINE_PER_CPU(cpumask_var_t, load_balance_mask); 6419 6420 static int need_active_balance(struct lb_env *env) 6421 { 6422 struct sched_domain *sd = env->sd; 6423 6424 if (env->idle == CPU_NEWLY_IDLE) { 6425 6426 /* 6427 * ASYM_PACKING needs to force migrate tasks from busy but 6428 * higher numbered CPUs in order to pack all tasks in the 6429 * lowest numbered CPUs. 6430 */ 6431 if ((sd->flags & SD_ASYM_PACKING) && env->src_cpu > env->dst_cpu) 6432 return 1; 6433 } 6434 6435 return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2); 6436 } 6437 6438 static int active_load_balance_cpu_stop(void *data); 6439 6440 static int should_we_balance(struct lb_env *env) 6441 { 6442 struct sched_group *sg = env->sd->groups; 6443 struct cpumask *sg_cpus, *sg_mask; 6444 int cpu, balance_cpu = -1; 6445 6446 /* 6447 * In the newly idle case, we will allow all the cpu's 6448 * to do the newly idle load balance. 6449 */ 6450 if (env->idle == CPU_NEWLY_IDLE) 6451 return 1; 6452 6453 sg_cpus = sched_group_cpus(sg); 6454 sg_mask = sched_group_mask(sg); 6455 /* Try to find first idle cpu */ 6456 for_each_cpu_and(cpu, sg_cpus, env->cpus) { 6457 if (!cpumask_test_cpu(cpu, sg_mask) || !idle_cpu(cpu)) 6458 continue; 6459 6460 balance_cpu = cpu; 6461 break; 6462 } 6463 6464 if (balance_cpu == -1) 6465 balance_cpu = group_balance_cpu(sg); 6466 6467 /* 6468 * First idle cpu or the first cpu(busiest) in this sched group 6469 * is eligible for doing load balancing at this and above domains. 6470 */ 6471 return balance_cpu == env->dst_cpu; 6472 } 6473 6474 /* 6475 * Check this_cpu to ensure it is balanced within domain. Attempt to move 6476 * tasks if there is an imbalance. 6477 */ 6478 static int load_balance(int this_cpu, struct rq *this_rq, 6479 struct sched_domain *sd, enum cpu_idle_type idle, 6480 int *continue_balancing) 6481 { 6482 int ld_moved, cur_ld_moved, active_balance = 0; 6483 struct sched_domain *sd_parent = sd->parent; 6484 struct sched_group *group; 6485 struct rq *busiest; 6486 unsigned long flags; 6487 struct cpumask *cpus = __get_cpu_var(load_balance_mask); 6488 6489 struct lb_env env = { 6490 .sd = sd, 6491 .dst_cpu = this_cpu, 6492 .dst_rq = this_rq, 6493 .dst_grpmask = sched_group_cpus(sd->groups), 6494 .idle = idle, 6495 .loop_break = sched_nr_migrate_break, 6496 .cpus = cpus, 6497 .fbq_type = all, 6498 }; 6499 6500 /* 6501 * For NEWLY_IDLE load_balancing, we don't need to consider 6502 * other cpus in our group 6503 */ 6504 if (idle == CPU_NEWLY_IDLE) 6505 env.dst_grpmask = NULL; 6506 6507 cpumask_copy(cpus, cpu_active_mask); 6508 6509 schedstat_inc(sd, lb_count[idle]); 6510 6511 redo: 6512 if (!should_we_balance(&env)) { 6513 *continue_balancing = 0; 6514 goto out_balanced; 6515 } 6516 6517 group = find_busiest_group(&env); 6518 if (!group) { 6519 schedstat_inc(sd, lb_nobusyg[idle]); 6520 goto out_balanced; 6521 } 6522 6523 busiest = find_busiest_queue(&env, group); 6524 if (!busiest) { 6525 schedstat_inc(sd, lb_nobusyq[idle]); 6526 goto out_balanced; 6527 } 6528 6529 BUG_ON(busiest == env.dst_rq); 6530 6531 schedstat_add(sd, lb_imbalance[idle], env.imbalance); 6532 6533 ld_moved = 0; 6534 if (busiest->nr_running > 1) { 6535 /* 6536 * Attempt to move tasks. If find_busiest_group has found 6537 * an imbalance but busiest->nr_running <= 1, the group is 6538 * still unbalanced. ld_moved simply stays zero, so it is 6539 * correctly treated as an imbalance. 6540 */ 6541 env.flags |= LBF_ALL_PINNED; 6542 env.src_cpu = busiest->cpu; 6543 env.src_rq = busiest; 6544 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running); 6545 6546 more_balance: 6547 local_irq_save(flags); 6548 double_rq_lock(env.dst_rq, busiest); 6549 6550 /* 6551 * cur_ld_moved - load moved in current iteration 6552 * ld_moved - cumulative load moved across iterations 6553 */ 6554 cur_ld_moved = move_tasks(&env); 6555 ld_moved += cur_ld_moved; 6556 double_rq_unlock(env.dst_rq, busiest); 6557 local_irq_restore(flags); 6558 6559 /* 6560 * some other cpu did the load balance for us. 6561 */ 6562 if (cur_ld_moved && env.dst_cpu != smp_processor_id()) 6563 resched_cpu(env.dst_cpu); 6564 6565 if (env.flags & LBF_NEED_BREAK) { 6566 env.flags &= ~LBF_NEED_BREAK; 6567 goto more_balance; 6568 } 6569 6570 /* 6571 * Revisit (affine) tasks on src_cpu that couldn't be moved to 6572 * us and move them to an alternate dst_cpu in our sched_group 6573 * where they can run. The upper limit on how many times we 6574 * iterate on same src_cpu is dependent on number of cpus in our 6575 * sched_group. 6576 * 6577 * This changes load balance semantics a bit on who can move 6578 * load to a given_cpu. In addition to the given_cpu itself 6579 * (or a ilb_cpu acting on its behalf where given_cpu is 6580 * nohz-idle), we now have balance_cpu in a position to move 6581 * load to given_cpu. In rare situations, this may cause 6582 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding 6583 * _independently_ and at _same_ time to move some load to 6584 * given_cpu) causing exceess load to be moved to given_cpu. 6585 * This however should not happen so much in practice and 6586 * moreover subsequent load balance cycles should correct the 6587 * excess load moved. 6588 */ 6589 if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) { 6590 6591 /* Prevent to re-select dst_cpu via env's cpus */ 6592 cpumask_clear_cpu(env.dst_cpu, env.cpus); 6593 6594 env.dst_rq = cpu_rq(env.new_dst_cpu); 6595 env.dst_cpu = env.new_dst_cpu; 6596 env.flags &= ~LBF_DST_PINNED; 6597 env.loop = 0; 6598 env.loop_break = sched_nr_migrate_break; 6599 6600 /* 6601 * Go back to "more_balance" rather than "redo" since we 6602 * need to continue with same src_cpu. 6603 */ 6604 goto more_balance; 6605 } 6606 6607 /* 6608 * We failed to reach balance because of affinity. 6609 */ 6610 if (sd_parent) { 6611 int *group_imbalance = &sd_parent->groups->sgp->imbalance; 6612 6613 if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0) { 6614 *group_imbalance = 1; 6615 } else if (*group_imbalance) 6616 *group_imbalance = 0; 6617 } 6618 6619 /* All tasks on this runqueue were pinned by CPU affinity */ 6620 if (unlikely(env.flags & LBF_ALL_PINNED)) { 6621 cpumask_clear_cpu(cpu_of(busiest), cpus); 6622 if (!cpumask_empty(cpus)) { 6623 env.loop = 0; 6624 env.loop_break = sched_nr_migrate_break; 6625 goto redo; 6626 } 6627 goto out_balanced; 6628 } 6629 } 6630 6631 if (!ld_moved) { 6632 schedstat_inc(sd, lb_failed[idle]); 6633 /* 6634 * Increment the failure counter only on periodic balance. 6635 * We do not want newidle balance, which can be very 6636 * frequent, pollute the failure counter causing 6637 * excessive cache_hot migrations and active balances. 6638 */ 6639 if (idle != CPU_NEWLY_IDLE) 6640 sd->nr_balance_failed++; 6641 6642 if (need_active_balance(&env)) { 6643 raw_spin_lock_irqsave(&busiest->lock, flags); 6644 6645 /* don't kick the active_load_balance_cpu_stop, 6646 * if the curr task on busiest cpu can't be 6647 * moved to this_cpu 6648 */ 6649 if (!cpumask_test_cpu(this_cpu, 6650 tsk_cpus_allowed(busiest->curr))) { 6651 raw_spin_unlock_irqrestore(&busiest->lock, 6652 flags); 6653 env.flags |= LBF_ALL_PINNED; 6654 goto out_one_pinned; 6655 } 6656 6657 /* 6658 * ->active_balance synchronizes accesses to 6659 * ->active_balance_work. Once set, it's cleared 6660 * only after active load balance is finished. 6661 */ 6662 if (!busiest->active_balance) { 6663 busiest->active_balance = 1; 6664 busiest->push_cpu = this_cpu; 6665 active_balance = 1; 6666 } 6667 raw_spin_unlock_irqrestore(&busiest->lock, flags); 6668 6669 if (active_balance) { 6670 stop_one_cpu_nowait(cpu_of(busiest), 6671 active_load_balance_cpu_stop, busiest, 6672 &busiest->active_balance_work); 6673 } 6674 6675 /* 6676 * We've kicked active balancing, reset the failure 6677 * counter. 6678 */ 6679 sd->nr_balance_failed = sd->cache_nice_tries+1; 6680 } 6681 } else 6682 sd->nr_balance_failed = 0; 6683 6684 if (likely(!active_balance)) { 6685 /* We were unbalanced, so reset the balancing interval */ 6686 sd->balance_interval = sd->min_interval; 6687 } else { 6688 /* 6689 * If we've begun active balancing, start to back off. This 6690 * case may not be covered by the all_pinned logic if there 6691 * is only 1 task on the busy runqueue (because we don't call 6692 * move_tasks). 6693 */ 6694 if (sd->balance_interval < sd->max_interval) 6695 sd->balance_interval *= 2; 6696 } 6697 6698 goto out; 6699 6700 out_balanced: 6701 schedstat_inc(sd, lb_balanced[idle]); 6702 6703 sd->nr_balance_failed = 0; 6704 6705 out_one_pinned: 6706 /* tune up the balancing interval */ 6707 if (((env.flags & LBF_ALL_PINNED) && 6708 sd->balance_interval < MAX_PINNED_INTERVAL) || 6709 (sd->balance_interval < sd->max_interval)) 6710 sd->balance_interval *= 2; 6711 6712 ld_moved = 0; 6713 out: 6714 return ld_moved; 6715 } 6716 6717 static inline unsigned long 6718 get_sd_balance_interval(struct sched_domain *sd, int cpu_busy) 6719 { 6720 unsigned long interval = sd->balance_interval; 6721 6722 if (cpu_busy) 6723 interval *= sd->busy_factor; 6724 6725 /* scale ms to jiffies */ 6726 interval = msecs_to_jiffies(interval); 6727 interval = clamp(interval, 1UL, max_load_balance_interval); 6728 6729 return interval; 6730 } 6731 6732 static inline void 6733 update_next_balance(struct sched_domain *sd, int cpu_busy, unsigned long *next_balance) 6734 { 6735 unsigned long interval, next; 6736 6737 interval = get_sd_balance_interval(sd, cpu_busy); 6738 next = sd->last_balance + interval; 6739 6740 if (time_after(*next_balance, next)) 6741 *next_balance = next; 6742 } 6743 6744 /* 6745 * idle_balance is called by schedule() if this_cpu is about to become 6746 * idle. Attempts to pull tasks from other CPUs. 6747 */ 6748 static int idle_balance(struct rq *this_rq) 6749 { 6750 unsigned long next_balance = jiffies + HZ; 6751 int this_cpu = this_rq->cpu; 6752 struct sched_domain *sd; 6753 int pulled_task = 0; 6754 u64 curr_cost = 0; 6755 6756 idle_enter_fair(this_rq); 6757 6758 /* 6759 * We must set idle_stamp _before_ calling idle_balance(), such that we 6760 * measure the duration of idle_balance() as idle time. 6761 */ 6762 this_rq->idle_stamp = rq_clock(this_rq); 6763 6764 if (this_rq->avg_idle < sysctl_sched_migration_cost) { 6765 rcu_read_lock(); 6766 sd = rcu_dereference_check_sched_domain(this_rq->sd); 6767 if (sd) 6768 update_next_balance(sd, 0, &next_balance); 6769 rcu_read_unlock(); 6770 6771 goto out; 6772 } 6773 6774 /* 6775 * Drop the rq->lock, but keep IRQ/preempt disabled. 6776 */ 6777 raw_spin_unlock(&this_rq->lock); 6778 6779 update_blocked_averages(this_cpu); 6780 rcu_read_lock(); 6781 for_each_domain(this_cpu, sd) { 6782 int continue_balancing = 1; 6783 u64 t0, domain_cost; 6784 6785 if (!(sd->flags & SD_LOAD_BALANCE)) 6786 continue; 6787 6788 if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) { 6789 update_next_balance(sd, 0, &next_balance); 6790 break; 6791 } 6792 6793 if (sd->flags & SD_BALANCE_NEWIDLE) { 6794 t0 = sched_clock_cpu(this_cpu); 6795 6796 pulled_task = load_balance(this_cpu, this_rq, 6797 sd, CPU_NEWLY_IDLE, 6798 &continue_balancing); 6799 6800 domain_cost = sched_clock_cpu(this_cpu) - t0; 6801 if (domain_cost > sd->max_newidle_lb_cost) 6802 sd->max_newidle_lb_cost = domain_cost; 6803 6804 curr_cost += domain_cost; 6805 } 6806 6807 update_next_balance(sd, 0, &next_balance); 6808 6809 /* 6810 * Stop searching for tasks to pull if there are 6811 * now runnable tasks on this rq. 6812 */ 6813 if (pulled_task || this_rq->nr_running > 0) 6814 break; 6815 } 6816 rcu_read_unlock(); 6817 6818 raw_spin_lock(&this_rq->lock); 6819 6820 if (curr_cost > this_rq->max_idle_balance_cost) 6821 this_rq->max_idle_balance_cost = curr_cost; 6822 6823 /* 6824 * While browsing the domains, we released the rq lock, a task could 6825 * have been enqueued in the meantime. Since we're not going idle, 6826 * pretend we pulled a task. 6827 */ 6828 if (this_rq->cfs.h_nr_running && !pulled_task) 6829 pulled_task = 1; 6830 6831 out: 6832 /* Move the next balance forward */ 6833 if (time_after(this_rq->next_balance, next_balance)) 6834 this_rq->next_balance = next_balance; 6835 6836 /* Is there a task of a high priority class? */ 6837 if (this_rq->nr_running != this_rq->cfs.h_nr_running) 6838 pulled_task = -1; 6839 6840 if (pulled_task) { 6841 idle_exit_fair(this_rq); 6842 this_rq->idle_stamp = 0; 6843 } 6844 6845 return pulled_task; 6846 } 6847 6848 /* 6849 * active_load_balance_cpu_stop is run by cpu stopper. It pushes 6850 * running tasks off the busiest CPU onto idle CPUs. It requires at 6851 * least 1 task to be running on each physical CPU where possible, and 6852 * avoids physical / logical imbalances. 6853 */ 6854 static int active_load_balance_cpu_stop(void *data) 6855 { 6856 struct rq *busiest_rq = data; 6857 int busiest_cpu = cpu_of(busiest_rq); 6858 int target_cpu = busiest_rq->push_cpu; 6859 struct rq *target_rq = cpu_rq(target_cpu); 6860 struct sched_domain *sd; 6861 6862 raw_spin_lock_irq(&busiest_rq->lock); 6863 6864 /* make sure the requested cpu hasn't gone down in the meantime */ 6865 if (unlikely(busiest_cpu != smp_processor_id() || 6866 !busiest_rq->active_balance)) 6867 goto out_unlock; 6868 6869 /* Is there any task to move? */ 6870 if (busiest_rq->nr_running <= 1) 6871 goto out_unlock; 6872 6873 /* 6874 * This condition is "impossible", if it occurs 6875 * we need to fix it. Originally reported by 6876 * Bjorn Helgaas on a 128-cpu setup. 6877 */ 6878 BUG_ON(busiest_rq == target_rq); 6879 6880 /* move a task from busiest_rq to target_rq */ 6881 double_lock_balance(busiest_rq, target_rq); 6882 6883 /* Search for an sd spanning us and the target CPU. */ 6884 rcu_read_lock(); 6885 for_each_domain(target_cpu, sd) { 6886 if ((sd->flags & SD_LOAD_BALANCE) && 6887 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd))) 6888 break; 6889 } 6890 6891 if (likely(sd)) { 6892 struct lb_env env = { 6893 .sd = sd, 6894 .dst_cpu = target_cpu, 6895 .dst_rq = target_rq, 6896 .src_cpu = busiest_rq->cpu, 6897 .src_rq = busiest_rq, 6898 .idle = CPU_IDLE, 6899 }; 6900 6901 schedstat_inc(sd, alb_count); 6902 6903 if (move_one_task(&env)) 6904 schedstat_inc(sd, alb_pushed); 6905 else 6906 schedstat_inc(sd, alb_failed); 6907 } 6908 rcu_read_unlock(); 6909 double_unlock_balance(busiest_rq, target_rq); 6910 out_unlock: 6911 busiest_rq->active_balance = 0; 6912 raw_spin_unlock_irq(&busiest_rq->lock); 6913 return 0; 6914 } 6915 6916 static inline int on_null_domain(struct rq *rq) 6917 { 6918 return unlikely(!rcu_dereference_sched(rq->sd)); 6919 } 6920 6921 #ifdef CONFIG_NO_HZ_COMMON 6922 /* 6923 * idle load balancing details 6924 * - When one of the busy CPUs notice that there may be an idle rebalancing 6925 * needed, they will kick the idle load balancer, which then does idle 6926 * load balancing for all the idle CPUs. 6927 */ 6928 static struct { 6929 cpumask_var_t idle_cpus_mask; 6930 atomic_t nr_cpus; 6931 unsigned long next_balance; /* in jiffy units */ 6932 } nohz ____cacheline_aligned; 6933 6934 static inline int find_new_ilb(void) 6935 { 6936 int ilb = cpumask_first(nohz.idle_cpus_mask); 6937 6938 if (ilb < nr_cpu_ids && idle_cpu(ilb)) 6939 return ilb; 6940 6941 return nr_cpu_ids; 6942 } 6943 6944 /* 6945 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the 6946 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle 6947 * CPU (if there is one). 6948 */ 6949 static void nohz_balancer_kick(void) 6950 { 6951 int ilb_cpu; 6952 6953 nohz.next_balance++; 6954 6955 ilb_cpu = find_new_ilb(); 6956 6957 if (ilb_cpu >= nr_cpu_ids) 6958 return; 6959 6960 if (test_and_set_bit(NOHZ_BALANCE_KICK, nohz_flags(ilb_cpu))) 6961 return; 6962 /* 6963 * Use smp_send_reschedule() instead of resched_cpu(). 6964 * This way we generate a sched IPI on the target cpu which 6965 * is idle. And the softirq performing nohz idle load balance 6966 * will be run before returning from the IPI. 6967 */ 6968 smp_send_reschedule(ilb_cpu); 6969 return; 6970 } 6971 6972 static inline void nohz_balance_exit_idle(int cpu) 6973 { 6974 if (unlikely(test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))) { 6975 /* 6976 * Completely isolated CPUs don't ever set, so we must test. 6977 */ 6978 if (likely(cpumask_test_cpu(cpu, nohz.idle_cpus_mask))) { 6979 cpumask_clear_cpu(cpu, nohz.idle_cpus_mask); 6980 atomic_dec(&nohz.nr_cpus); 6981 } 6982 clear_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)); 6983 } 6984 } 6985 6986 static inline void set_cpu_sd_state_busy(void) 6987 { 6988 struct sched_domain *sd; 6989 int cpu = smp_processor_id(); 6990 6991 rcu_read_lock(); 6992 sd = rcu_dereference(per_cpu(sd_busy, cpu)); 6993 6994 if (!sd || !sd->nohz_idle) 6995 goto unlock; 6996 sd->nohz_idle = 0; 6997 6998 atomic_inc(&sd->groups->sgp->nr_busy_cpus); 6999 unlock: 7000 rcu_read_unlock(); 7001 } 7002 7003 void set_cpu_sd_state_idle(void) 7004 { 7005 struct sched_domain *sd; 7006 int cpu = smp_processor_id(); 7007 7008 rcu_read_lock(); 7009 sd = rcu_dereference(per_cpu(sd_busy, cpu)); 7010 7011 if (!sd || sd->nohz_idle) 7012 goto unlock; 7013 sd->nohz_idle = 1; 7014 7015 atomic_dec(&sd->groups->sgp->nr_busy_cpus); 7016 unlock: 7017 rcu_read_unlock(); 7018 } 7019 7020 /* 7021 * This routine will record that the cpu is going idle with tick stopped. 7022 * This info will be used in performing idle load balancing in the future. 7023 */ 7024 void nohz_balance_enter_idle(int cpu) 7025 { 7026 /* 7027 * If this cpu is going down, then nothing needs to be done. 7028 */ 7029 if (!cpu_active(cpu)) 7030 return; 7031 7032 if (test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu))) 7033 return; 7034 7035 /* 7036 * If we're a completely isolated CPU, we don't play. 7037 */ 7038 if (on_null_domain(cpu_rq(cpu))) 7039 return; 7040 7041 cpumask_set_cpu(cpu, nohz.idle_cpus_mask); 7042 atomic_inc(&nohz.nr_cpus); 7043 set_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)); 7044 } 7045 7046 static int sched_ilb_notifier(struct notifier_block *nfb, 7047 unsigned long action, void *hcpu) 7048 { 7049 switch (action & ~CPU_TASKS_FROZEN) { 7050 case CPU_DYING: 7051 nohz_balance_exit_idle(smp_processor_id()); 7052 return NOTIFY_OK; 7053 default: 7054 return NOTIFY_DONE; 7055 } 7056 } 7057 #endif 7058 7059 static DEFINE_SPINLOCK(balancing); 7060 7061 /* 7062 * Scale the max load_balance interval with the number of CPUs in the system. 7063 * This trades load-balance latency on larger machines for less cross talk. 7064 */ 7065 void update_max_interval(void) 7066 { 7067 max_load_balance_interval = HZ*num_online_cpus()/10; 7068 } 7069 7070 /* 7071 * It checks each scheduling domain to see if it is due to be balanced, 7072 * and initiates a balancing operation if so. 7073 * 7074 * Balancing parameters are set up in init_sched_domains. 7075 */ 7076 static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle) 7077 { 7078 int continue_balancing = 1; 7079 int cpu = rq->cpu; 7080 unsigned long interval; 7081 struct sched_domain *sd; 7082 /* Earliest time when we have to do rebalance again */ 7083 unsigned long next_balance = jiffies + 60*HZ; 7084 int update_next_balance = 0; 7085 int need_serialize, need_decay = 0; 7086 u64 max_cost = 0; 7087 7088 update_blocked_averages(cpu); 7089 7090 rcu_read_lock(); 7091 for_each_domain(cpu, sd) { 7092 /* 7093 * Decay the newidle max times here because this is a regular 7094 * visit to all the domains. Decay ~1% per second. 7095 */ 7096 if (time_after(jiffies, sd->next_decay_max_lb_cost)) { 7097 sd->max_newidle_lb_cost = 7098 (sd->max_newidle_lb_cost * 253) / 256; 7099 sd->next_decay_max_lb_cost = jiffies + HZ; 7100 need_decay = 1; 7101 } 7102 max_cost += sd->max_newidle_lb_cost; 7103 7104 if (!(sd->flags & SD_LOAD_BALANCE)) 7105 continue; 7106 7107 /* 7108 * Stop the load balance at this level. There is another 7109 * CPU in our sched group which is doing load balancing more 7110 * actively. 7111 */ 7112 if (!continue_balancing) { 7113 if (need_decay) 7114 continue; 7115 break; 7116 } 7117 7118 interval = get_sd_balance_interval(sd, idle != CPU_IDLE); 7119 7120 need_serialize = sd->flags & SD_SERIALIZE; 7121 if (need_serialize) { 7122 if (!spin_trylock(&balancing)) 7123 goto out; 7124 } 7125 7126 if (time_after_eq(jiffies, sd->last_balance + interval)) { 7127 if (load_balance(cpu, rq, sd, idle, &continue_balancing)) { 7128 /* 7129 * The LBF_DST_PINNED logic could have changed 7130 * env->dst_cpu, so we can't know our idle 7131 * state even if we migrated tasks. Update it. 7132 */ 7133 idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE; 7134 } 7135 sd->last_balance = jiffies; 7136 interval = get_sd_balance_interval(sd, idle != CPU_IDLE); 7137 } 7138 if (need_serialize) 7139 spin_unlock(&balancing); 7140 out: 7141 if (time_after(next_balance, sd->last_balance + interval)) { 7142 next_balance = sd->last_balance + interval; 7143 update_next_balance = 1; 7144 } 7145 } 7146 if (need_decay) { 7147 /* 7148 * Ensure the rq-wide value also decays but keep it at a 7149 * reasonable floor to avoid funnies with rq->avg_idle. 7150 */ 7151 rq->max_idle_balance_cost = 7152 max((u64)sysctl_sched_migration_cost, max_cost); 7153 } 7154 rcu_read_unlock(); 7155 7156 /* 7157 * next_balance will be updated only when there is a need. 7158 * When the cpu is attached to null domain for ex, it will not be 7159 * updated. 7160 */ 7161 if (likely(update_next_balance)) 7162 rq->next_balance = next_balance; 7163 } 7164 7165 #ifdef CONFIG_NO_HZ_COMMON 7166 /* 7167 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the 7168 * rebalancing for all the cpus for whom scheduler ticks are stopped. 7169 */ 7170 static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) 7171 { 7172 int this_cpu = this_rq->cpu; 7173 struct rq *rq; 7174 int balance_cpu; 7175 7176 if (idle != CPU_IDLE || 7177 !test_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu))) 7178 goto end; 7179 7180 for_each_cpu(balance_cpu, nohz.idle_cpus_mask) { 7181 if (balance_cpu == this_cpu || !idle_cpu(balance_cpu)) 7182 continue; 7183 7184 /* 7185 * If this cpu gets work to do, stop the load balancing 7186 * work being done for other cpus. Next load 7187 * balancing owner will pick it up. 7188 */ 7189 if (need_resched()) 7190 break; 7191 7192 rq = cpu_rq(balance_cpu); 7193 7194 raw_spin_lock_irq(&rq->lock); 7195 update_rq_clock(rq); 7196 update_idle_cpu_load(rq); 7197 raw_spin_unlock_irq(&rq->lock); 7198 7199 rebalance_domains(rq, CPU_IDLE); 7200 7201 if (time_after(this_rq->next_balance, rq->next_balance)) 7202 this_rq->next_balance = rq->next_balance; 7203 } 7204 nohz.next_balance = this_rq->next_balance; 7205 end: 7206 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu)); 7207 } 7208 7209 /* 7210 * Current heuristic for kicking the idle load balancer in the presence 7211 * of an idle cpu is the system. 7212 * - This rq has more than one task. 7213 * - At any scheduler domain level, this cpu's scheduler group has multiple 7214 * busy cpu's exceeding the group's power. 7215 * - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler 7216 * domain span are idle. 7217 */ 7218 static inline int nohz_kick_needed(struct rq *rq) 7219 { 7220 unsigned long now = jiffies; 7221 struct sched_domain *sd; 7222 struct sched_group_power *sgp; 7223 int nr_busy, cpu = rq->cpu; 7224 7225 if (unlikely(rq->idle_balance)) 7226 return 0; 7227 7228 /* 7229 * We may be recently in ticked or tickless idle mode. At the first 7230 * busy tick after returning from idle, we will update the busy stats. 7231 */ 7232 set_cpu_sd_state_busy(); 7233 nohz_balance_exit_idle(cpu); 7234 7235 /* 7236 * None are in tickless mode and hence no need for NOHZ idle load 7237 * balancing. 7238 */ 7239 if (likely(!atomic_read(&nohz.nr_cpus))) 7240 return 0; 7241 7242 if (time_before(now, nohz.next_balance)) 7243 return 0; 7244 7245 if (rq->nr_running >= 2) 7246 goto need_kick; 7247 7248 rcu_read_lock(); 7249 sd = rcu_dereference(per_cpu(sd_busy, cpu)); 7250 7251 if (sd) { 7252 sgp = sd->groups->sgp; 7253 nr_busy = atomic_read(&sgp->nr_busy_cpus); 7254 7255 if (nr_busy > 1) 7256 goto need_kick_unlock; 7257 } 7258 7259 sd = rcu_dereference(per_cpu(sd_asym, cpu)); 7260 7261 if (sd && (cpumask_first_and(nohz.idle_cpus_mask, 7262 sched_domain_span(sd)) < cpu)) 7263 goto need_kick_unlock; 7264 7265 rcu_read_unlock(); 7266 return 0; 7267 7268 need_kick_unlock: 7269 rcu_read_unlock(); 7270 need_kick: 7271 return 1; 7272 } 7273 #else 7274 static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) { } 7275 #endif 7276 7277 /* 7278 * run_rebalance_domains is triggered when needed from the scheduler tick. 7279 * Also triggered for nohz idle balancing (with nohz_balancing_kick set). 7280 */ 7281 static void run_rebalance_domains(struct softirq_action *h) 7282 { 7283 struct rq *this_rq = this_rq(); 7284 enum cpu_idle_type idle = this_rq->idle_balance ? 7285 CPU_IDLE : CPU_NOT_IDLE; 7286 7287 rebalance_domains(this_rq, idle); 7288 7289 /* 7290 * If this cpu has a pending nohz_balance_kick, then do the 7291 * balancing on behalf of the other idle cpus whose ticks are 7292 * stopped. 7293 */ 7294 nohz_idle_balance(this_rq, idle); 7295 } 7296 7297 /* 7298 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing. 7299 */ 7300 void trigger_load_balance(struct rq *rq) 7301 { 7302 /* Don't need to rebalance while attached to NULL domain */ 7303 if (unlikely(on_null_domain(rq))) 7304 return; 7305 7306 if (time_after_eq(jiffies, rq->next_balance)) 7307 raise_softirq(SCHED_SOFTIRQ); 7308 #ifdef CONFIG_NO_HZ_COMMON 7309 if (nohz_kick_needed(rq)) 7310 nohz_balancer_kick(); 7311 #endif 7312 } 7313 7314 static void rq_online_fair(struct rq *rq) 7315 { 7316 update_sysctl(); 7317 } 7318 7319 static void rq_offline_fair(struct rq *rq) 7320 { 7321 update_sysctl(); 7322 7323 /* Ensure any throttled groups are reachable by pick_next_task */ 7324 unthrottle_offline_cfs_rqs(rq); 7325 } 7326 7327 #endif /* CONFIG_SMP */ 7328 7329 /* 7330 * scheduler tick hitting a task of our scheduling class: 7331 */ 7332 static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued) 7333 { 7334 struct cfs_rq *cfs_rq; 7335 struct sched_entity *se = &curr->se; 7336 7337 for_each_sched_entity(se) { 7338 cfs_rq = cfs_rq_of(se); 7339 entity_tick(cfs_rq, se, queued); 7340 } 7341 7342 if (numabalancing_enabled) 7343 task_tick_numa(rq, curr); 7344 7345 update_rq_runnable_avg(rq, 1); 7346 } 7347 7348 /* 7349 * called on fork with the child task as argument from the parent's context 7350 * - child not yet on the tasklist 7351 * - preemption disabled 7352 */ 7353 static void task_fork_fair(struct task_struct *p) 7354 { 7355 struct cfs_rq *cfs_rq; 7356 struct sched_entity *se = &p->se, *curr; 7357 int this_cpu = smp_processor_id(); 7358 struct rq *rq = this_rq(); 7359 unsigned long flags; 7360 7361 raw_spin_lock_irqsave(&rq->lock, flags); 7362 7363 update_rq_clock(rq); 7364 7365 cfs_rq = task_cfs_rq(current); 7366 curr = cfs_rq->curr; 7367 7368 /* 7369 * Not only the cpu but also the task_group of the parent might have 7370 * been changed after parent->se.parent,cfs_rq were copied to 7371 * child->se.parent,cfs_rq. So call __set_task_cpu() to make those 7372 * of child point to valid ones. 7373 */ 7374 rcu_read_lock(); 7375 __set_task_cpu(p, this_cpu); 7376 rcu_read_unlock(); 7377 7378 update_curr(cfs_rq); 7379 7380 if (curr) 7381 se->vruntime = curr->vruntime; 7382 place_entity(cfs_rq, se, 1); 7383 7384 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) { 7385 /* 7386 * Upon rescheduling, sched_class::put_prev_task() will place 7387 * 'current' within the tree based on its new key value. 7388 */ 7389 swap(curr->vruntime, se->vruntime); 7390 resched_task(rq->curr); 7391 } 7392 7393 se->vruntime -= cfs_rq->min_vruntime; 7394 7395 raw_spin_unlock_irqrestore(&rq->lock, flags); 7396 } 7397 7398 /* 7399 * Priority of the task has changed. Check to see if we preempt 7400 * the current task. 7401 */ 7402 static void 7403 prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio) 7404 { 7405 if (!p->se.on_rq) 7406 return; 7407 7408 /* 7409 * Reschedule if we are currently running on this runqueue and 7410 * our priority decreased, or if we are not currently running on 7411 * this runqueue and our priority is higher than the current's 7412 */ 7413 if (rq->curr == p) { 7414 if (p->prio > oldprio) 7415 resched_task(rq->curr); 7416 } else 7417 check_preempt_curr(rq, p, 0); 7418 } 7419 7420 static void switched_from_fair(struct rq *rq, struct task_struct *p) 7421 { 7422 struct sched_entity *se = &p->se; 7423 struct cfs_rq *cfs_rq = cfs_rq_of(se); 7424 7425 /* 7426 * Ensure the task's vruntime is normalized, so that when it's 7427 * switched back to the fair class the enqueue_entity(.flags=0) will 7428 * do the right thing. 7429 * 7430 * If it's on_rq, then the dequeue_entity(.flags=0) will already 7431 * have normalized the vruntime, if it's !on_rq, then only when 7432 * the task is sleeping will it still have non-normalized vruntime. 7433 */ 7434 if (!p->on_rq && p->state != TASK_RUNNING) { 7435 /* 7436 * Fix up our vruntime so that the current sleep doesn't 7437 * cause 'unlimited' sleep bonus. 7438 */ 7439 place_entity(cfs_rq, se, 0); 7440 se->vruntime -= cfs_rq->min_vruntime; 7441 } 7442 7443 #ifdef CONFIG_SMP 7444 /* 7445 * Remove our load from contribution when we leave sched_fair 7446 * and ensure we don't carry in an old decay_count if we 7447 * switch back. 7448 */ 7449 if (se->avg.decay_count) { 7450 __synchronize_entity_decay(se); 7451 subtract_blocked_load_contrib(cfs_rq, se->avg.load_avg_contrib); 7452 } 7453 #endif 7454 } 7455 7456 /* 7457 * We switched to the sched_fair class. 7458 */ 7459 static void switched_to_fair(struct rq *rq, struct task_struct *p) 7460 { 7461 struct sched_entity *se = &p->se; 7462 #ifdef CONFIG_FAIR_GROUP_SCHED 7463 /* 7464 * Since the real-depth could have been changed (only FAIR 7465 * class maintain depth value), reset depth properly. 7466 */ 7467 se->depth = se->parent ? se->parent->depth + 1 : 0; 7468 #endif 7469 if (!se->on_rq) 7470 return; 7471 7472 /* 7473 * We were most likely switched from sched_rt, so 7474 * kick off the schedule if running, otherwise just see 7475 * if we can still preempt the current task. 7476 */ 7477 if (rq->curr == p) 7478 resched_task(rq->curr); 7479 else 7480 check_preempt_curr(rq, p, 0); 7481 } 7482 7483 /* Account for a task changing its policy or group. 7484 * 7485 * This routine is mostly called to set cfs_rq->curr field when a task 7486 * migrates between groups/classes. 7487 */ 7488 static void set_curr_task_fair(struct rq *rq) 7489 { 7490 struct sched_entity *se = &rq->curr->se; 7491 7492 for_each_sched_entity(se) { 7493 struct cfs_rq *cfs_rq = cfs_rq_of(se); 7494 7495 set_next_entity(cfs_rq, se); 7496 /* ensure bandwidth has been allocated on our new cfs_rq */ 7497 account_cfs_rq_runtime(cfs_rq, 0); 7498 } 7499 } 7500 7501 void init_cfs_rq(struct cfs_rq *cfs_rq) 7502 { 7503 cfs_rq->tasks_timeline = RB_ROOT; 7504 cfs_rq->min_vruntime = (u64)(-(1LL << 20)); 7505 #ifndef CONFIG_64BIT 7506 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime; 7507 #endif 7508 #ifdef CONFIG_SMP 7509 atomic64_set(&cfs_rq->decay_counter, 1); 7510 atomic_long_set(&cfs_rq->removed_load, 0); 7511 #endif 7512 } 7513 7514 #ifdef CONFIG_FAIR_GROUP_SCHED 7515 static void task_move_group_fair(struct task_struct *p, int on_rq) 7516 { 7517 struct sched_entity *se = &p->se; 7518 struct cfs_rq *cfs_rq; 7519 7520 /* 7521 * If the task was not on the rq at the time of this cgroup movement 7522 * it must have been asleep, sleeping tasks keep their ->vruntime 7523 * absolute on their old rq until wakeup (needed for the fair sleeper 7524 * bonus in place_entity()). 7525 * 7526 * If it was on the rq, we've just 'preempted' it, which does convert 7527 * ->vruntime to a relative base. 7528 * 7529 * Make sure both cases convert their relative position when migrating 7530 * to another cgroup's rq. This does somewhat interfere with the 7531 * fair sleeper stuff for the first placement, but who cares. 7532 */ 7533 /* 7534 * When !on_rq, vruntime of the task has usually NOT been normalized. 7535 * But there are some cases where it has already been normalized: 7536 * 7537 * - Moving a forked child which is waiting for being woken up by 7538 * wake_up_new_task(). 7539 * - Moving a task which has been woken up by try_to_wake_up() and 7540 * waiting for actually being woken up by sched_ttwu_pending(). 7541 * 7542 * To prevent boost or penalty in the new cfs_rq caused by delta 7543 * min_vruntime between the two cfs_rqs, we skip vruntime adjustment. 7544 */ 7545 if (!on_rq && (!se->sum_exec_runtime || p->state == TASK_WAKING)) 7546 on_rq = 1; 7547 7548 if (!on_rq) 7549 se->vruntime -= cfs_rq_of(se)->min_vruntime; 7550 set_task_rq(p, task_cpu(p)); 7551 se->depth = se->parent ? se->parent->depth + 1 : 0; 7552 if (!on_rq) { 7553 cfs_rq = cfs_rq_of(se); 7554 se->vruntime += cfs_rq->min_vruntime; 7555 #ifdef CONFIG_SMP 7556 /* 7557 * migrate_task_rq_fair() will have removed our previous 7558 * contribution, but we must synchronize for ongoing future 7559 * decay. 7560 */ 7561 se->avg.decay_count = atomic64_read(&cfs_rq->decay_counter); 7562 cfs_rq->blocked_load_avg += se->avg.load_avg_contrib; 7563 #endif 7564 } 7565 } 7566 7567 void free_fair_sched_group(struct task_group *tg) 7568 { 7569 int i; 7570 7571 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg)); 7572 7573 for_each_possible_cpu(i) { 7574 if (tg->cfs_rq) 7575 kfree(tg->cfs_rq[i]); 7576 if (tg->se) 7577 kfree(tg->se[i]); 7578 } 7579 7580 kfree(tg->cfs_rq); 7581 kfree(tg->se); 7582 } 7583 7584 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent) 7585 { 7586 struct cfs_rq *cfs_rq; 7587 struct sched_entity *se; 7588 int i; 7589 7590 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL); 7591 if (!tg->cfs_rq) 7592 goto err; 7593 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL); 7594 if (!tg->se) 7595 goto err; 7596 7597 tg->shares = NICE_0_LOAD; 7598 7599 init_cfs_bandwidth(tg_cfs_bandwidth(tg)); 7600 7601 for_each_possible_cpu(i) { 7602 cfs_rq = kzalloc_node(sizeof(struct cfs_rq), 7603 GFP_KERNEL, cpu_to_node(i)); 7604 if (!cfs_rq) 7605 goto err; 7606 7607 se = kzalloc_node(sizeof(struct sched_entity), 7608 GFP_KERNEL, cpu_to_node(i)); 7609 if (!se) 7610 goto err_free_rq; 7611 7612 init_cfs_rq(cfs_rq); 7613 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]); 7614 } 7615 7616 return 1; 7617 7618 err_free_rq: 7619 kfree(cfs_rq); 7620 err: 7621 return 0; 7622 } 7623 7624 void unregister_fair_sched_group(struct task_group *tg, int cpu) 7625 { 7626 struct rq *rq = cpu_rq(cpu); 7627 unsigned long flags; 7628 7629 /* 7630 * Only empty task groups can be destroyed; so we can speculatively 7631 * check on_list without danger of it being re-added. 7632 */ 7633 if (!tg->cfs_rq[cpu]->on_list) 7634 return; 7635 7636 raw_spin_lock_irqsave(&rq->lock, flags); 7637 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]); 7638 raw_spin_unlock_irqrestore(&rq->lock, flags); 7639 } 7640 7641 void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq, 7642 struct sched_entity *se, int cpu, 7643 struct sched_entity *parent) 7644 { 7645 struct rq *rq = cpu_rq(cpu); 7646 7647 cfs_rq->tg = tg; 7648 cfs_rq->rq = rq; 7649 init_cfs_rq_runtime(cfs_rq); 7650 7651 tg->cfs_rq[cpu] = cfs_rq; 7652 tg->se[cpu] = se; 7653 7654 /* se could be NULL for root_task_group */ 7655 if (!se) 7656 return; 7657 7658 if (!parent) { 7659 se->cfs_rq = &rq->cfs; 7660 se->depth = 0; 7661 } else { 7662 se->cfs_rq = parent->my_q; 7663 se->depth = parent->depth + 1; 7664 } 7665 7666 se->my_q = cfs_rq; 7667 /* guarantee group entities always have weight */ 7668 update_load_set(&se->load, NICE_0_LOAD); 7669 se->parent = parent; 7670 } 7671 7672 static DEFINE_MUTEX(shares_mutex); 7673 7674 int sched_group_set_shares(struct task_group *tg, unsigned long shares) 7675 { 7676 int i; 7677 unsigned long flags; 7678 7679 /* 7680 * We can't change the weight of the root cgroup. 7681 */ 7682 if (!tg->se[0]) 7683 return -EINVAL; 7684 7685 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES)); 7686 7687 mutex_lock(&shares_mutex); 7688 if (tg->shares == shares) 7689 goto done; 7690 7691 tg->shares = shares; 7692 for_each_possible_cpu(i) { 7693 struct rq *rq = cpu_rq(i); 7694 struct sched_entity *se; 7695 7696 se = tg->se[i]; 7697 /* Propagate contribution to hierarchy */ 7698 raw_spin_lock_irqsave(&rq->lock, flags); 7699 7700 /* Possible calls to update_curr() need rq clock */ 7701 update_rq_clock(rq); 7702 for_each_sched_entity(se) 7703 update_cfs_shares(group_cfs_rq(se)); 7704 raw_spin_unlock_irqrestore(&rq->lock, flags); 7705 } 7706 7707 done: 7708 mutex_unlock(&shares_mutex); 7709 return 0; 7710 } 7711 #else /* CONFIG_FAIR_GROUP_SCHED */ 7712 7713 void free_fair_sched_group(struct task_group *tg) { } 7714 7715 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent) 7716 { 7717 return 1; 7718 } 7719 7720 void unregister_fair_sched_group(struct task_group *tg, int cpu) { } 7721 7722 #endif /* CONFIG_FAIR_GROUP_SCHED */ 7723 7724 7725 static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task) 7726 { 7727 struct sched_entity *se = &task->se; 7728 unsigned int rr_interval = 0; 7729 7730 /* 7731 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise 7732 * idle runqueue: 7733 */ 7734 if (rq->cfs.load.weight) 7735 rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se)); 7736 7737 return rr_interval; 7738 } 7739 7740 /* 7741 * All the scheduling class methods: 7742 */ 7743 const struct sched_class fair_sched_class = { 7744 .next = &idle_sched_class, 7745 .enqueue_task = enqueue_task_fair, 7746 .dequeue_task = dequeue_task_fair, 7747 .yield_task = yield_task_fair, 7748 .yield_to_task = yield_to_task_fair, 7749 7750 .check_preempt_curr = check_preempt_wakeup, 7751 7752 .pick_next_task = pick_next_task_fair, 7753 .put_prev_task = put_prev_task_fair, 7754 7755 #ifdef CONFIG_SMP 7756 .select_task_rq = select_task_rq_fair, 7757 .migrate_task_rq = migrate_task_rq_fair, 7758 7759 .rq_online = rq_online_fair, 7760 .rq_offline = rq_offline_fair, 7761 7762 .task_waking = task_waking_fair, 7763 #endif 7764 7765 .set_curr_task = set_curr_task_fair, 7766 .task_tick = task_tick_fair, 7767 .task_fork = task_fork_fair, 7768 7769 .prio_changed = prio_changed_fair, 7770 .switched_from = switched_from_fair, 7771 .switched_to = switched_to_fair, 7772 7773 .get_rr_interval = get_rr_interval_fair, 7774 7775 #ifdef CONFIG_FAIR_GROUP_SCHED 7776 .task_move_group = task_move_group_fair, 7777 #endif 7778 }; 7779 7780 #ifdef CONFIG_SCHED_DEBUG 7781 void print_cfs_stats(struct seq_file *m, int cpu) 7782 { 7783 struct cfs_rq *cfs_rq; 7784 7785 rcu_read_lock(); 7786 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq) 7787 print_cfs_rq(m, cpu, cfs_rq); 7788 rcu_read_unlock(); 7789 } 7790 #endif 7791 7792 __init void init_sched_fair_class(void) 7793 { 7794 #ifdef CONFIG_SMP 7795 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains); 7796 7797 #ifdef CONFIG_NO_HZ_COMMON 7798 nohz.next_balance = jiffies; 7799 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT); 7800 cpu_notifier(sched_ilb_notifier, 0); 7801 #endif 7802 #endif /* SMP */ 7803 7804 } 7805