xref: /openbmc/linux/kernel/sched/fair.c (revision 84d517f3)
1 /*
2  * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
3  *
4  *  Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
5  *
6  *  Interactivity improvements by Mike Galbraith
7  *  (C) 2007 Mike Galbraith <efault@gmx.de>
8  *
9  *  Various enhancements by Dmitry Adamushko.
10  *  (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
11  *
12  *  Group scheduling enhancements by Srivatsa Vaddagiri
13  *  Copyright IBM Corporation, 2007
14  *  Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
15  *
16  *  Scaled math optimizations by Thomas Gleixner
17  *  Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
18  *
19  *  Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20  *  Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
21  */
22 
23 #include <linux/latencytop.h>
24 #include <linux/sched.h>
25 #include <linux/cpumask.h>
26 #include <linux/slab.h>
27 #include <linux/profile.h>
28 #include <linux/interrupt.h>
29 #include <linux/mempolicy.h>
30 #include <linux/migrate.h>
31 #include <linux/task_work.h>
32 
33 #include <trace/events/sched.h>
34 
35 #include "sched.h"
36 
37 /*
38  * Targeted preemption latency for CPU-bound tasks:
39  * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
40  *
41  * NOTE: this latency value is not the same as the concept of
42  * 'timeslice length' - timeslices in CFS are of variable length
43  * and have no persistent notion like in traditional, time-slice
44  * based scheduling concepts.
45  *
46  * (to see the precise effective timeslice length of your workload,
47  *  run vmstat and monitor the context-switches (cs) field)
48  */
49 unsigned int sysctl_sched_latency = 6000000ULL;
50 unsigned int normalized_sysctl_sched_latency = 6000000ULL;
51 
52 /*
53  * The initial- and re-scaling of tunables is configurable
54  * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
55  *
56  * Options are:
57  * SCHED_TUNABLESCALING_NONE - unscaled, always *1
58  * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
59  * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
60  */
61 enum sched_tunable_scaling sysctl_sched_tunable_scaling
62 	= SCHED_TUNABLESCALING_LOG;
63 
64 /*
65  * Minimal preemption granularity for CPU-bound tasks:
66  * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
67  */
68 unsigned int sysctl_sched_min_granularity = 750000ULL;
69 unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
70 
71 /*
72  * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
73  */
74 static unsigned int sched_nr_latency = 8;
75 
76 /*
77  * After fork, child runs first. If set to 0 (default) then
78  * parent will (try to) run first.
79  */
80 unsigned int sysctl_sched_child_runs_first __read_mostly;
81 
82 /*
83  * SCHED_OTHER wake-up granularity.
84  * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
85  *
86  * This option delays the preemption effects of decoupled workloads
87  * and reduces their over-scheduling. Synchronous workloads will still
88  * have immediate wakeup/sleep latencies.
89  */
90 unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
91 unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
92 
93 const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
94 
95 /*
96  * The exponential sliding  window over which load is averaged for shares
97  * distribution.
98  * (default: 10msec)
99  */
100 unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL;
101 
102 #ifdef CONFIG_CFS_BANDWIDTH
103 /*
104  * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
105  * each time a cfs_rq requests quota.
106  *
107  * Note: in the case that the slice exceeds the runtime remaining (either due
108  * to consumption or the quota being specified to be smaller than the slice)
109  * we will always only issue the remaining available time.
110  *
111  * default: 5 msec, units: microseconds
112   */
113 unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
114 #endif
115 
116 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
117 {
118 	lw->weight += inc;
119 	lw->inv_weight = 0;
120 }
121 
122 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
123 {
124 	lw->weight -= dec;
125 	lw->inv_weight = 0;
126 }
127 
128 static inline void update_load_set(struct load_weight *lw, unsigned long w)
129 {
130 	lw->weight = w;
131 	lw->inv_weight = 0;
132 }
133 
134 /*
135  * Increase the granularity value when there are more CPUs,
136  * because with more CPUs the 'effective latency' as visible
137  * to users decreases. But the relationship is not linear,
138  * so pick a second-best guess by going with the log2 of the
139  * number of CPUs.
140  *
141  * This idea comes from the SD scheduler of Con Kolivas:
142  */
143 static int get_update_sysctl_factor(void)
144 {
145 	unsigned int cpus = min_t(int, num_online_cpus(), 8);
146 	unsigned int factor;
147 
148 	switch (sysctl_sched_tunable_scaling) {
149 	case SCHED_TUNABLESCALING_NONE:
150 		factor = 1;
151 		break;
152 	case SCHED_TUNABLESCALING_LINEAR:
153 		factor = cpus;
154 		break;
155 	case SCHED_TUNABLESCALING_LOG:
156 	default:
157 		factor = 1 + ilog2(cpus);
158 		break;
159 	}
160 
161 	return factor;
162 }
163 
164 static void update_sysctl(void)
165 {
166 	unsigned int factor = get_update_sysctl_factor();
167 
168 #define SET_SYSCTL(name) \
169 	(sysctl_##name = (factor) * normalized_sysctl_##name)
170 	SET_SYSCTL(sched_min_granularity);
171 	SET_SYSCTL(sched_latency);
172 	SET_SYSCTL(sched_wakeup_granularity);
173 #undef SET_SYSCTL
174 }
175 
176 void sched_init_granularity(void)
177 {
178 	update_sysctl();
179 }
180 
181 #define WMULT_CONST	(~0U)
182 #define WMULT_SHIFT	32
183 
184 static void __update_inv_weight(struct load_weight *lw)
185 {
186 	unsigned long w;
187 
188 	if (likely(lw->inv_weight))
189 		return;
190 
191 	w = scale_load_down(lw->weight);
192 
193 	if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
194 		lw->inv_weight = 1;
195 	else if (unlikely(!w))
196 		lw->inv_weight = WMULT_CONST;
197 	else
198 		lw->inv_weight = WMULT_CONST / w;
199 }
200 
201 /*
202  * delta_exec * weight / lw.weight
203  *   OR
204  * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
205  *
206  * Either weight := NICE_0_LOAD and lw \e prio_to_wmult[], in which case
207  * we're guaranteed shift stays positive because inv_weight is guaranteed to
208  * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
209  *
210  * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
211  * weight/lw.weight <= 1, and therefore our shift will also be positive.
212  */
213 static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw)
214 {
215 	u64 fact = scale_load_down(weight);
216 	int shift = WMULT_SHIFT;
217 
218 	__update_inv_weight(lw);
219 
220 	if (unlikely(fact >> 32)) {
221 		while (fact >> 32) {
222 			fact >>= 1;
223 			shift--;
224 		}
225 	}
226 
227 	/* hint to use a 32x32->64 mul */
228 	fact = (u64)(u32)fact * lw->inv_weight;
229 
230 	while (fact >> 32) {
231 		fact >>= 1;
232 		shift--;
233 	}
234 
235 	return mul_u64_u32_shr(delta_exec, fact, shift);
236 }
237 
238 
239 const struct sched_class fair_sched_class;
240 
241 /**************************************************************
242  * CFS operations on generic schedulable entities:
243  */
244 
245 #ifdef CONFIG_FAIR_GROUP_SCHED
246 
247 /* cpu runqueue to which this cfs_rq is attached */
248 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
249 {
250 	return cfs_rq->rq;
251 }
252 
253 /* An entity is a task if it doesn't "own" a runqueue */
254 #define entity_is_task(se)	(!se->my_q)
255 
256 static inline struct task_struct *task_of(struct sched_entity *se)
257 {
258 #ifdef CONFIG_SCHED_DEBUG
259 	WARN_ON_ONCE(!entity_is_task(se));
260 #endif
261 	return container_of(se, struct task_struct, se);
262 }
263 
264 /* Walk up scheduling entities hierarchy */
265 #define for_each_sched_entity(se) \
266 		for (; se; se = se->parent)
267 
268 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
269 {
270 	return p->se.cfs_rq;
271 }
272 
273 /* runqueue on which this entity is (to be) queued */
274 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
275 {
276 	return se->cfs_rq;
277 }
278 
279 /* runqueue "owned" by this group */
280 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
281 {
282 	return grp->my_q;
283 }
284 
285 static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq,
286 				       int force_update);
287 
288 static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
289 {
290 	if (!cfs_rq->on_list) {
291 		/*
292 		 * Ensure we either appear before our parent (if already
293 		 * enqueued) or force our parent to appear after us when it is
294 		 * enqueued.  The fact that we always enqueue bottom-up
295 		 * reduces this to two cases.
296 		 */
297 		if (cfs_rq->tg->parent &&
298 		    cfs_rq->tg->parent->cfs_rq[cpu_of(rq_of(cfs_rq))]->on_list) {
299 			list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
300 				&rq_of(cfs_rq)->leaf_cfs_rq_list);
301 		} else {
302 			list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
303 				&rq_of(cfs_rq)->leaf_cfs_rq_list);
304 		}
305 
306 		cfs_rq->on_list = 1;
307 		/* We should have no load, but we need to update last_decay. */
308 		update_cfs_rq_blocked_load(cfs_rq, 0);
309 	}
310 }
311 
312 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
313 {
314 	if (cfs_rq->on_list) {
315 		list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
316 		cfs_rq->on_list = 0;
317 	}
318 }
319 
320 /* Iterate thr' all leaf cfs_rq's on a runqueue */
321 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
322 	list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
323 
324 /* Do the two (enqueued) entities belong to the same group ? */
325 static inline struct cfs_rq *
326 is_same_group(struct sched_entity *se, struct sched_entity *pse)
327 {
328 	if (se->cfs_rq == pse->cfs_rq)
329 		return se->cfs_rq;
330 
331 	return NULL;
332 }
333 
334 static inline struct sched_entity *parent_entity(struct sched_entity *se)
335 {
336 	return se->parent;
337 }
338 
339 static void
340 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
341 {
342 	int se_depth, pse_depth;
343 
344 	/*
345 	 * preemption test can be made between sibling entities who are in the
346 	 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
347 	 * both tasks until we find their ancestors who are siblings of common
348 	 * parent.
349 	 */
350 
351 	/* First walk up until both entities are at same depth */
352 	se_depth = (*se)->depth;
353 	pse_depth = (*pse)->depth;
354 
355 	while (se_depth > pse_depth) {
356 		se_depth--;
357 		*se = parent_entity(*se);
358 	}
359 
360 	while (pse_depth > se_depth) {
361 		pse_depth--;
362 		*pse = parent_entity(*pse);
363 	}
364 
365 	while (!is_same_group(*se, *pse)) {
366 		*se = parent_entity(*se);
367 		*pse = parent_entity(*pse);
368 	}
369 }
370 
371 #else	/* !CONFIG_FAIR_GROUP_SCHED */
372 
373 static inline struct task_struct *task_of(struct sched_entity *se)
374 {
375 	return container_of(se, struct task_struct, se);
376 }
377 
378 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
379 {
380 	return container_of(cfs_rq, struct rq, cfs);
381 }
382 
383 #define entity_is_task(se)	1
384 
385 #define for_each_sched_entity(se) \
386 		for (; se; se = NULL)
387 
388 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
389 {
390 	return &task_rq(p)->cfs;
391 }
392 
393 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
394 {
395 	struct task_struct *p = task_of(se);
396 	struct rq *rq = task_rq(p);
397 
398 	return &rq->cfs;
399 }
400 
401 /* runqueue "owned" by this group */
402 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
403 {
404 	return NULL;
405 }
406 
407 static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
408 {
409 }
410 
411 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
412 {
413 }
414 
415 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
416 		for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
417 
418 static inline struct sched_entity *parent_entity(struct sched_entity *se)
419 {
420 	return NULL;
421 }
422 
423 static inline void
424 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
425 {
426 }
427 
428 #endif	/* CONFIG_FAIR_GROUP_SCHED */
429 
430 static __always_inline
431 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec);
432 
433 /**************************************************************
434  * Scheduling class tree data structure manipulation methods:
435  */
436 
437 static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
438 {
439 	s64 delta = (s64)(vruntime - max_vruntime);
440 	if (delta > 0)
441 		max_vruntime = vruntime;
442 
443 	return max_vruntime;
444 }
445 
446 static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
447 {
448 	s64 delta = (s64)(vruntime - min_vruntime);
449 	if (delta < 0)
450 		min_vruntime = vruntime;
451 
452 	return min_vruntime;
453 }
454 
455 static inline int entity_before(struct sched_entity *a,
456 				struct sched_entity *b)
457 {
458 	return (s64)(a->vruntime - b->vruntime) < 0;
459 }
460 
461 static void update_min_vruntime(struct cfs_rq *cfs_rq)
462 {
463 	u64 vruntime = cfs_rq->min_vruntime;
464 
465 	if (cfs_rq->curr)
466 		vruntime = cfs_rq->curr->vruntime;
467 
468 	if (cfs_rq->rb_leftmost) {
469 		struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
470 						   struct sched_entity,
471 						   run_node);
472 
473 		if (!cfs_rq->curr)
474 			vruntime = se->vruntime;
475 		else
476 			vruntime = min_vruntime(vruntime, se->vruntime);
477 	}
478 
479 	/* ensure we never gain time by being placed backwards. */
480 	cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
481 #ifndef CONFIG_64BIT
482 	smp_wmb();
483 	cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
484 #endif
485 }
486 
487 /*
488  * Enqueue an entity into the rb-tree:
489  */
490 static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
491 {
492 	struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
493 	struct rb_node *parent = NULL;
494 	struct sched_entity *entry;
495 	int leftmost = 1;
496 
497 	/*
498 	 * Find the right place in the rbtree:
499 	 */
500 	while (*link) {
501 		parent = *link;
502 		entry = rb_entry(parent, struct sched_entity, run_node);
503 		/*
504 		 * We dont care about collisions. Nodes with
505 		 * the same key stay together.
506 		 */
507 		if (entity_before(se, entry)) {
508 			link = &parent->rb_left;
509 		} else {
510 			link = &parent->rb_right;
511 			leftmost = 0;
512 		}
513 	}
514 
515 	/*
516 	 * Maintain a cache of leftmost tree entries (it is frequently
517 	 * used):
518 	 */
519 	if (leftmost)
520 		cfs_rq->rb_leftmost = &se->run_node;
521 
522 	rb_link_node(&se->run_node, parent, link);
523 	rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
524 }
525 
526 static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
527 {
528 	if (cfs_rq->rb_leftmost == &se->run_node) {
529 		struct rb_node *next_node;
530 
531 		next_node = rb_next(&se->run_node);
532 		cfs_rq->rb_leftmost = next_node;
533 	}
534 
535 	rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
536 }
537 
538 struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
539 {
540 	struct rb_node *left = cfs_rq->rb_leftmost;
541 
542 	if (!left)
543 		return NULL;
544 
545 	return rb_entry(left, struct sched_entity, run_node);
546 }
547 
548 static struct sched_entity *__pick_next_entity(struct sched_entity *se)
549 {
550 	struct rb_node *next = rb_next(&se->run_node);
551 
552 	if (!next)
553 		return NULL;
554 
555 	return rb_entry(next, struct sched_entity, run_node);
556 }
557 
558 #ifdef CONFIG_SCHED_DEBUG
559 struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
560 {
561 	struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
562 
563 	if (!last)
564 		return NULL;
565 
566 	return rb_entry(last, struct sched_entity, run_node);
567 }
568 
569 /**************************************************************
570  * Scheduling class statistics methods:
571  */
572 
573 int sched_proc_update_handler(struct ctl_table *table, int write,
574 		void __user *buffer, size_t *lenp,
575 		loff_t *ppos)
576 {
577 	int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
578 	int factor = get_update_sysctl_factor();
579 
580 	if (ret || !write)
581 		return ret;
582 
583 	sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
584 					sysctl_sched_min_granularity);
585 
586 #define WRT_SYSCTL(name) \
587 	(normalized_sysctl_##name = sysctl_##name / (factor))
588 	WRT_SYSCTL(sched_min_granularity);
589 	WRT_SYSCTL(sched_latency);
590 	WRT_SYSCTL(sched_wakeup_granularity);
591 #undef WRT_SYSCTL
592 
593 	return 0;
594 }
595 #endif
596 
597 /*
598  * delta /= w
599  */
600 static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
601 {
602 	if (unlikely(se->load.weight != NICE_0_LOAD))
603 		delta = __calc_delta(delta, NICE_0_LOAD, &se->load);
604 
605 	return delta;
606 }
607 
608 /*
609  * The idea is to set a period in which each task runs once.
610  *
611  * When there are too many tasks (sched_nr_latency) we have to stretch
612  * this period because otherwise the slices get too small.
613  *
614  * p = (nr <= nl) ? l : l*nr/nl
615  */
616 static u64 __sched_period(unsigned long nr_running)
617 {
618 	u64 period = sysctl_sched_latency;
619 	unsigned long nr_latency = sched_nr_latency;
620 
621 	if (unlikely(nr_running > nr_latency)) {
622 		period = sysctl_sched_min_granularity;
623 		period *= nr_running;
624 	}
625 
626 	return period;
627 }
628 
629 /*
630  * We calculate the wall-time slice from the period by taking a part
631  * proportional to the weight.
632  *
633  * s = p*P[w/rw]
634  */
635 static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
636 {
637 	u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
638 
639 	for_each_sched_entity(se) {
640 		struct load_weight *load;
641 		struct load_weight lw;
642 
643 		cfs_rq = cfs_rq_of(se);
644 		load = &cfs_rq->load;
645 
646 		if (unlikely(!se->on_rq)) {
647 			lw = cfs_rq->load;
648 
649 			update_load_add(&lw, se->load.weight);
650 			load = &lw;
651 		}
652 		slice = __calc_delta(slice, se->load.weight, load);
653 	}
654 	return slice;
655 }
656 
657 /*
658  * We calculate the vruntime slice of a to-be-inserted task.
659  *
660  * vs = s/w
661  */
662 static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
663 {
664 	return calc_delta_fair(sched_slice(cfs_rq, se), se);
665 }
666 
667 #ifdef CONFIG_SMP
668 static unsigned long task_h_load(struct task_struct *p);
669 
670 static inline void __update_task_entity_contrib(struct sched_entity *se);
671 
672 /* Give new task start runnable values to heavy its load in infant time */
673 void init_task_runnable_average(struct task_struct *p)
674 {
675 	u32 slice;
676 
677 	p->se.avg.decay_count = 0;
678 	slice = sched_slice(task_cfs_rq(p), &p->se) >> 10;
679 	p->se.avg.runnable_avg_sum = slice;
680 	p->se.avg.runnable_avg_period = slice;
681 	__update_task_entity_contrib(&p->se);
682 }
683 #else
684 void init_task_runnable_average(struct task_struct *p)
685 {
686 }
687 #endif
688 
689 /*
690  * Update the current task's runtime statistics.
691  */
692 static void update_curr(struct cfs_rq *cfs_rq)
693 {
694 	struct sched_entity *curr = cfs_rq->curr;
695 	u64 now = rq_clock_task(rq_of(cfs_rq));
696 	u64 delta_exec;
697 
698 	if (unlikely(!curr))
699 		return;
700 
701 	delta_exec = now - curr->exec_start;
702 	if (unlikely((s64)delta_exec <= 0))
703 		return;
704 
705 	curr->exec_start = now;
706 
707 	schedstat_set(curr->statistics.exec_max,
708 		      max(delta_exec, curr->statistics.exec_max));
709 
710 	curr->sum_exec_runtime += delta_exec;
711 	schedstat_add(cfs_rq, exec_clock, delta_exec);
712 
713 	curr->vruntime += calc_delta_fair(delta_exec, curr);
714 	update_min_vruntime(cfs_rq);
715 
716 	if (entity_is_task(curr)) {
717 		struct task_struct *curtask = task_of(curr);
718 
719 		trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
720 		cpuacct_charge(curtask, delta_exec);
721 		account_group_exec_runtime(curtask, delta_exec);
722 	}
723 
724 	account_cfs_rq_runtime(cfs_rq, delta_exec);
725 }
726 
727 static inline void
728 update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
729 {
730 	schedstat_set(se->statistics.wait_start, rq_clock(rq_of(cfs_rq)));
731 }
732 
733 /*
734  * Task is being enqueued - update stats:
735  */
736 static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
737 {
738 	/*
739 	 * Are we enqueueing a waiting task? (for current tasks
740 	 * a dequeue/enqueue event is a NOP)
741 	 */
742 	if (se != cfs_rq->curr)
743 		update_stats_wait_start(cfs_rq, se);
744 }
745 
746 static void
747 update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
748 {
749 	schedstat_set(se->statistics.wait_max, max(se->statistics.wait_max,
750 			rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start));
751 	schedstat_set(se->statistics.wait_count, se->statistics.wait_count + 1);
752 	schedstat_set(se->statistics.wait_sum, se->statistics.wait_sum +
753 			rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start);
754 #ifdef CONFIG_SCHEDSTATS
755 	if (entity_is_task(se)) {
756 		trace_sched_stat_wait(task_of(se),
757 			rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start);
758 	}
759 #endif
760 	schedstat_set(se->statistics.wait_start, 0);
761 }
762 
763 static inline void
764 update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
765 {
766 	/*
767 	 * Mark the end of the wait period if dequeueing a
768 	 * waiting task:
769 	 */
770 	if (se != cfs_rq->curr)
771 		update_stats_wait_end(cfs_rq, se);
772 }
773 
774 /*
775  * We are picking a new current task - update its stats:
776  */
777 static inline void
778 update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
779 {
780 	/*
781 	 * We are starting a new run period:
782 	 */
783 	se->exec_start = rq_clock_task(rq_of(cfs_rq));
784 }
785 
786 /**************************************************
787  * Scheduling class queueing methods:
788  */
789 
790 #ifdef CONFIG_NUMA_BALANCING
791 /*
792  * Approximate time to scan a full NUMA task in ms. The task scan period is
793  * calculated based on the tasks virtual memory size and
794  * numa_balancing_scan_size.
795  */
796 unsigned int sysctl_numa_balancing_scan_period_min = 1000;
797 unsigned int sysctl_numa_balancing_scan_period_max = 60000;
798 
799 /* Portion of address space to scan in MB */
800 unsigned int sysctl_numa_balancing_scan_size = 256;
801 
802 /* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
803 unsigned int sysctl_numa_balancing_scan_delay = 1000;
804 
805 static unsigned int task_nr_scan_windows(struct task_struct *p)
806 {
807 	unsigned long rss = 0;
808 	unsigned long nr_scan_pages;
809 
810 	/*
811 	 * Calculations based on RSS as non-present and empty pages are skipped
812 	 * by the PTE scanner and NUMA hinting faults should be trapped based
813 	 * on resident pages
814 	 */
815 	nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
816 	rss = get_mm_rss(p->mm);
817 	if (!rss)
818 		rss = nr_scan_pages;
819 
820 	rss = round_up(rss, nr_scan_pages);
821 	return rss / nr_scan_pages;
822 }
823 
824 /* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
825 #define MAX_SCAN_WINDOW 2560
826 
827 static unsigned int task_scan_min(struct task_struct *p)
828 {
829 	unsigned int scan, floor;
830 	unsigned int windows = 1;
831 
832 	if (sysctl_numa_balancing_scan_size < MAX_SCAN_WINDOW)
833 		windows = MAX_SCAN_WINDOW / sysctl_numa_balancing_scan_size;
834 	floor = 1000 / windows;
835 
836 	scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
837 	return max_t(unsigned int, floor, scan);
838 }
839 
840 static unsigned int task_scan_max(struct task_struct *p)
841 {
842 	unsigned int smin = task_scan_min(p);
843 	unsigned int smax;
844 
845 	/* Watch for min being lower than max due to floor calculations */
846 	smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
847 	return max(smin, smax);
848 }
849 
850 static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
851 {
852 	rq->nr_numa_running += (p->numa_preferred_nid != -1);
853 	rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
854 }
855 
856 static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
857 {
858 	rq->nr_numa_running -= (p->numa_preferred_nid != -1);
859 	rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
860 }
861 
862 struct numa_group {
863 	atomic_t refcount;
864 
865 	spinlock_t lock; /* nr_tasks, tasks */
866 	int nr_tasks;
867 	pid_t gid;
868 	struct list_head task_list;
869 
870 	struct rcu_head rcu;
871 	nodemask_t active_nodes;
872 	unsigned long total_faults;
873 	/*
874 	 * Faults_cpu is used to decide whether memory should move
875 	 * towards the CPU. As a consequence, these stats are weighted
876 	 * more by CPU use than by memory faults.
877 	 */
878 	unsigned long *faults_cpu;
879 	unsigned long faults[0];
880 };
881 
882 /* Shared or private faults. */
883 #define NR_NUMA_HINT_FAULT_TYPES 2
884 
885 /* Memory and CPU locality */
886 #define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2)
887 
888 /* Averaged statistics, and temporary buffers. */
889 #define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2)
890 
891 pid_t task_numa_group_id(struct task_struct *p)
892 {
893 	return p->numa_group ? p->numa_group->gid : 0;
894 }
895 
896 static inline int task_faults_idx(int nid, int priv)
897 {
898 	return NR_NUMA_HINT_FAULT_TYPES * nid + priv;
899 }
900 
901 static inline unsigned long task_faults(struct task_struct *p, int nid)
902 {
903 	if (!p->numa_faults_memory)
904 		return 0;
905 
906 	return p->numa_faults_memory[task_faults_idx(nid, 0)] +
907 		p->numa_faults_memory[task_faults_idx(nid, 1)];
908 }
909 
910 static inline unsigned long group_faults(struct task_struct *p, int nid)
911 {
912 	if (!p->numa_group)
913 		return 0;
914 
915 	return p->numa_group->faults[task_faults_idx(nid, 0)] +
916 		p->numa_group->faults[task_faults_idx(nid, 1)];
917 }
918 
919 static inline unsigned long group_faults_cpu(struct numa_group *group, int nid)
920 {
921 	return group->faults_cpu[task_faults_idx(nid, 0)] +
922 		group->faults_cpu[task_faults_idx(nid, 1)];
923 }
924 
925 /*
926  * These return the fraction of accesses done by a particular task, or
927  * task group, on a particular numa node.  The group weight is given a
928  * larger multiplier, in order to group tasks together that are almost
929  * evenly spread out between numa nodes.
930  */
931 static inline unsigned long task_weight(struct task_struct *p, int nid)
932 {
933 	unsigned long total_faults;
934 
935 	if (!p->numa_faults_memory)
936 		return 0;
937 
938 	total_faults = p->total_numa_faults;
939 
940 	if (!total_faults)
941 		return 0;
942 
943 	return 1000 * task_faults(p, nid) / total_faults;
944 }
945 
946 static inline unsigned long group_weight(struct task_struct *p, int nid)
947 {
948 	if (!p->numa_group || !p->numa_group->total_faults)
949 		return 0;
950 
951 	return 1000 * group_faults(p, nid) / p->numa_group->total_faults;
952 }
953 
954 bool should_numa_migrate_memory(struct task_struct *p, struct page * page,
955 				int src_nid, int dst_cpu)
956 {
957 	struct numa_group *ng = p->numa_group;
958 	int dst_nid = cpu_to_node(dst_cpu);
959 	int last_cpupid, this_cpupid;
960 
961 	this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid);
962 
963 	/*
964 	 * Multi-stage node selection is used in conjunction with a periodic
965 	 * migration fault to build a temporal task<->page relation. By using
966 	 * a two-stage filter we remove short/unlikely relations.
967 	 *
968 	 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate
969 	 * a task's usage of a particular page (n_p) per total usage of this
970 	 * page (n_t) (in a given time-span) to a probability.
971 	 *
972 	 * Our periodic faults will sample this probability and getting the
973 	 * same result twice in a row, given these samples are fully
974 	 * independent, is then given by P(n)^2, provided our sample period
975 	 * is sufficiently short compared to the usage pattern.
976 	 *
977 	 * This quadric squishes small probabilities, making it less likely we
978 	 * act on an unlikely task<->page relation.
979 	 */
980 	last_cpupid = page_cpupid_xchg_last(page, this_cpupid);
981 	if (!cpupid_pid_unset(last_cpupid) &&
982 				cpupid_to_nid(last_cpupid) != dst_nid)
983 		return false;
984 
985 	/* Always allow migrate on private faults */
986 	if (cpupid_match_pid(p, last_cpupid))
987 		return true;
988 
989 	/* A shared fault, but p->numa_group has not been set up yet. */
990 	if (!ng)
991 		return true;
992 
993 	/*
994 	 * Do not migrate if the destination is not a node that
995 	 * is actively used by this numa group.
996 	 */
997 	if (!node_isset(dst_nid, ng->active_nodes))
998 		return false;
999 
1000 	/*
1001 	 * Source is a node that is not actively used by this
1002 	 * numa group, while the destination is. Migrate.
1003 	 */
1004 	if (!node_isset(src_nid, ng->active_nodes))
1005 		return true;
1006 
1007 	/*
1008 	 * Both source and destination are nodes in active
1009 	 * use by this numa group. Maximize memory bandwidth
1010 	 * by migrating from more heavily used groups, to less
1011 	 * heavily used ones, spreading the load around.
1012 	 * Use a 1/4 hysteresis to avoid spurious page movement.
1013 	 */
1014 	return group_faults(p, dst_nid) < (group_faults(p, src_nid) * 3 / 4);
1015 }
1016 
1017 static unsigned long weighted_cpuload(const int cpu);
1018 static unsigned long source_load(int cpu, int type);
1019 static unsigned long target_load(int cpu, int type);
1020 static unsigned long power_of(int cpu);
1021 static long effective_load(struct task_group *tg, int cpu, long wl, long wg);
1022 
1023 /* Cached statistics for all CPUs within a node */
1024 struct numa_stats {
1025 	unsigned long nr_running;
1026 	unsigned long load;
1027 
1028 	/* Total compute capacity of CPUs on a node */
1029 	unsigned long power;
1030 
1031 	/* Approximate capacity in terms of runnable tasks on a node */
1032 	unsigned long capacity;
1033 	int has_capacity;
1034 };
1035 
1036 /*
1037  * XXX borrowed from update_sg_lb_stats
1038  */
1039 static void update_numa_stats(struct numa_stats *ns, int nid)
1040 {
1041 	int cpu, cpus = 0;
1042 
1043 	memset(ns, 0, sizeof(*ns));
1044 	for_each_cpu(cpu, cpumask_of_node(nid)) {
1045 		struct rq *rq = cpu_rq(cpu);
1046 
1047 		ns->nr_running += rq->nr_running;
1048 		ns->load += weighted_cpuload(cpu);
1049 		ns->power += power_of(cpu);
1050 
1051 		cpus++;
1052 	}
1053 
1054 	/*
1055 	 * If we raced with hotplug and there are no CPUs left in our mask
1056 	 * the @ns structure is NULL'ed and task_numa_compare() will
1057 	 * not find this node attractive.
1058 	 *
1059 	 * We'll either bail at !has_capacity, or we'll detect a huge imbalance
1060 	 * and bail there.
1061 	 */
1062 	if (!cpus)
1063 		return;
1064 
1065 	ns->load = (ns->load * SCHED_POWER_SCALE) / ns->power;
1066 	ns->capacity = DIV_ROUND_CLOSEST(ns->power, SCHED_POWER_SCALE);
1067 	ns->has_capacity = (ns->nr_running < ns->capacity);
1068 }
1069 
1070 struct task_numa_env {
1071 	struct task_struct *p;
1072 
1073 	int src_cpu, src_nid;
1074 	int dst_cpu, dst_nid;
1075 
1076 	struct numa_stats src_stats, dst_stats;
1077 
1078 	int imbalance_pct;
1079 
1080 	struct task_struct *best_task;
1081 	long best_imp;
1082 	int best_cpu;
1083 };
1084 
1085 static void task_numa_assign(struct task_numa_env *env,
1086 			     struct task_struct *p, long imp)
1087 {
1088 	if (env->best_task)
1089 		put_task_struct(env->best_task);
1090 	if (p)
1091 		get_task_struct(p);
1092 
1093 	env->best_task = p;
1094 	env->best_imp = imp;
1095 	env->best_cpu = env->dst_cpu;
1096 }
1097 
1098 static bool load_too_imbalanced(long orig_src_load, long orig_dst_load,
1099 				long src_load, long dst_load,
1100 				struct task_numa_env *env)
1101 {
1102 	long imb, old_imb;
1103 
1104 	/* We care about the slope of the imbalance, not the direction. */
1105 	if (dst_load < src_load)
1106 		swap(dst_load, src_load);
1107 
1108 	/* Is the difference below the threshold? */
1109 	imb = dst_load * 100 - src_load * env->imbalance_pct;
1110 	if (imb <= 0)
1111 		return false;
1112 
1113 	/*
1114 	 * The imbalance is above the allowed threshold.
1115 	 * Compare it with the old imbalance.
1116 	 */
1117 	if (orig_dst_load < orig_src_load)
1118 		swap(orig_dst_load, orig_src_load);
1119 
1120 	old_imb = orig_dst_load * 100 - orig_src_load * env->imbalance_pct;
1121 
1122 	/* Would this change make things worse? */
1123 	return (old_imb > imb);
1124 }
1125 
1126 /*
1127  * This checks if the overall compute and NUMA accesses of the system would
1128  * be improved if the source tasks was migrated to the target dst_cpu taking
1129  * into account that it might be best if task running on the dst_cpu should
1130  * be exchanged with the source task
1131  */
1132 static void task_numa_compare(struct task_numa_env *env,
1133 			      long taskimp, long groupimp)
1134 {
1135 	struct rq *src_rq = cpu_rq(env->src_cpu);
1136 	struct rq *dst_rq = cpu_rq(env->dst_cpu);
1137 	struct task_struct *cur;
1138 	long orig_src_load, src_load;
1139 	long orig_dst_load, dst_load;
1140 	long load;
1141 	long imp = (groupimp > 0) ? groupimp : taskimp;
1142 
1143 	rcu_read_lock();
1144 	cur = ACCESS_ONCE(dst_rq->curr);
1145 	if (cur->pid == 0) /* idle */
1146 		cur = NULL;
1147 
1148 	/*
1149 	 * "imp" is the fault differential for the source task between the
1150 	 * source and destination node. Calculate the total differential for
1151 	 * the source task and potential destination task. The more negative
1152 	 * the value is, the more rmeote accesses that would be expected to
1153 	 * be incurred if the tasks were swapped.
1154 	 */
1155 	if (cur) {
1156 		/* Skip this swap candidate if cannot move to the source cpu */
1157 		if (!cpumask_test_cpu(env->src_cpu, tsk_cpus_allowed(cur)))
1158 			goto unlock;
1159 
1160 		/*
1161 		 * If dst and source tasks are in the same NUMA group, or not
1162 		 * in any group then look only at task weights.
1163 		 */
1164 		if (cur->numa_group == env->p->numa_group) {
1165 			imp = taskimp + task_weight(cur, env->src_nid) -
1166 			      task_weight(cur, env->dst_nid);
1167 			/*
1168 			 * Add some hysteresis to prevent swapping the
1169 			 * tasks within a group over tiny differences.
1170 			 */
1171 			if (cur->numa_group)
1172 				imp -= imp/16;
1173 		} else {
1174 			/*
1175 			 * Compare the group weights. If a task is all by
1176 			 * itself (not part of a group), use the task weight
1177 			 * instead.
1178 			 */
1179 			if (env->p->numa_group)
1180 				imp = groupimp;
1181 			else
1182 				imp = taskimp;
1183 
1184 			if (cur->numa_group)
1185 				imp += group_weight(cur, env->src_nid) -
1186 				       group_weight(cur, env->dst_nid);
1187 			else
1188 				imp += task_weight(cur, env->src_nid) -
1189 				       task_weight(cur, env->dst_nid);
1190 		}
1191 	}
1192 
1193 	if (imp < env->best_imp)
1194 		goto unlock;
1195 
1196 	if (!cur) {
1197 		/* Is there capacity at our destination? */
1198 		if (env->src_stats.has_capacity &&
1199 		    !env->dst_stats.has_capacity)
1200 			goto unlock;
1201 
1202 		goto balance;
1203 	}
1204 
1205 	/* Balance doesn't matter much if we're running a task per cpu */
1206 	if (src_rq->nr_running == 1 && dst_rq->nr_running == 1)
1207 		goto assign;
1208 
1209 	/*
1210 	 * In the overloaded case, try and keep the load balanced.
1211 	 */
1212 balance:
1213 	orig_dst_load = env->dst_stats.load;
1214 	orig_src_load = env->src_stats.load;
1215 
1216 	/* XXX missing power terms */
1217 	load = task_h_load(env->p);
1218 	dst_load = orig_dst_load + load;
1219 	src_load = orig_src_load - load;
1220 
1221 	if (cur) {
1222 		load = task_h_load(cur);
1223 		dst_load -= load;
1224 		src_load += load;
1225 	}
1226 
1227 	if (load_too_imbalanced(orig_src_load, orig_dst_load,
1228 				src_load, dst_load, env))
1229 		goto unlock;
1230 
1231 assign:
1232 	task_numa_assign(env, cur, imp);
1233 unlock:
1234 	rcu_read_unlock();
1235 }
1236 
1237 static void task_numa_find_cpu(struct task_numa_env *env,
1238 				long taskimp, long groupimp)
1239 {
1240 	int cpu;
1241 
1242 	for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
1243 		/* Skip this CPU if the source task cannot migrate */
1244 		if (!cpumask_test_cpu(cpu, tsk_cpus_allowed(env->p)))
1245 			continue;
1246 
1247 		env->dst_cpu = cpu;
1248 		task_numa_compare(env, taskimp, groupimp);
1249 	}
1250 }
1251 
1252 static int task_numa_migrate(struct task_struct *p)
1253 {
1254 	struct task_numa_env env = {
1255 		.p = p,
1256 
1257 		.src_cpu = task_cpu(p),
1258 		.src_nid = task_node(p),
1259 
1260 		.imbalance_pct = 112,
1261 
1262 		.best_task = NULL,
1263 		.best_imp = 0,
1264 		.best_cpu = -1
1265 	};
1266 	struct sched_domain *sd;
1267 	unsigned long taskweight, groupweight;
1268 	int nid, ret;
1269 	long taskimp, groupimp;
1270 
1271 	/*
1272 	 * Pick the lowest SD_NUMA domain, as that would have the smallest
1273 	 * imbalance and would be the first to start moving tasks about.
1274 	 *
1275 	 * And we want to avoid any moving of tasks about, as that would create
1276 	 * random movement of tasks -- counter the numa conditions we're trying
1277 	 * to satisfy here.
1278 	 */
1279 	rcu_read_lock();
1280 	sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
1281 	if (sd)
1282 		env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
1283 	rcu_read_unlock();
1284 
1285 	/*
1286 	 * Cpusets can break the scheduler domain tree into smaller
1287 	 * balance domains, some of which do not cross NUMA boundaries.
1288 	 * Tasks that are "trapped" in such domains cannot be migrated
1289 	 * elsewhere, so there is no point in (re)trying.
1290 	 */
1291 	if (unlikely(!sd)) {
1292 		p->numa_preferred_nid = task_node(p);
1293 		return -EINVAL;
1294 	}
1295 
1296 	taskweight = task_weight(p, env.src_nid);
1297 	groupweight = group_weight(p, env.src_nid);
1298 	update_numa_stats(&env.src_stats, env.src_nid);
1299 	env.dst_nid = p->numa_preferred_nid;
1300 	taskimp = task_weight(p, env.dst_nid) - taskweight;
1301 	groupimp = group_weight(p, env.dst_nid) - groupweight;
1302 	update_numa_stats(&env.dst_stats, env.dst_nid);
1303 
1304 	/* If the preferred nid has capacity, try to use it. */
1305 	if (env.dst_stats.has_capacity)
1306 		task_numa_find_cpu(&env, taskimp, groupimp);
1307 
1308 	/* No space available on the preferred nid. Look elsewhere. */
1309 	if (env.best_cpu == -1) {
1310 		for_each_online_node(nid) {
1311 			if (nid == env.src_nid || nid == p->numa_preferred_nid)
1312 				continue;
1313 
1314 			/* Only consider nodes where both task and groups benefit */
1315 			taskimp = task_weight(p, nid) - taskweight;
1316 			groupimp = group_weight(p, nid) - groupweight;
1317 			if (taskimp < 0 && groupimp < 0)
1318 				continue;
1319 
1320 			env.dst_nid = nid;
1321 			update_numa_stats(&env.dst_stats, env.dst_nid);
1322 			task_numa_find_cpu(&env, taskimp, groupimp);
1323 		}
1324 	}
1325 
1326 	/* No better CPU than the current one was found. */
1327 	if (env.best_cpu == -1)
1328 		return -EAGAIN;
1329 
1330 	/*
1331 	 * If the task is part of a workload that spans multiple NUMA nodes,
1332 	 * and is migrating into one of the workload's active nodes, remember
1333 	 * this node as the task's preferred numa node, so the workload can
1334 	 * settle down.
1335 	 * A task that migrated to a second choice node will be better off
1336 	 * trying for a better one later. Do not set the preferred node here.
1337 	 */
1338 	if (p->numa_group && node_isset(env.dst_nid, p->numa_group->active_nodes))
1339 		sched_setnuma(p, env.dst_nid);
1340 
1341 	/*
1342 	 * Reset the scan period if the task is being rescheduled on an
1343 	 * alternative node to recheck if the tasks is now properly placed.
1344 	 */
1345 	p->numa_scan_period = task_scan_min(p);
1346 
1347 	if (env.best_task == NULL) {
1348 		ret = migrate_task_to(p, env.best_cpu);
1349 		if (ret != 0)
1350 			trace_sched_stick_numa(p, env.src_cpu, env.best_cpu);
1351 		return ret;
1352 	}
1353 
1354 	ret = migrate_swap(p, env.best_task);
1355 	if (ret != 0)
1356 		trace_sched_stick_numa(p, env.src_cpu, task_cpu(env.best_task));
1357 	put_task_struct(env.best_task);
1358 	return ret;
1359 }
1360 
1361 /* Attempt to migrate a task to a CPU on the preferred node. */
1362 static void numa_migrate_preferred(struct task_struct *p)
1363 {
1364 	unsigned long interval = HZ;
1365 
1366 	/* This task has no NUMA fault statistics yet */
1367 	if (unlikely(p->numa_preferred_nid == -1 || !p->numa_faults_memory))
1368 		return;
1369 
1370 	/* Periodically retry migrating the task to the preferred node */
1371 	interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16);
1372 	p->numa_migrate_retry = jiffies + interval;
1373 
1374 	/* Success if task is already running on preferred CPU */
1375 	if (task_node(p) == p->numa_preferred_nid)
1376 		return;
1377 
1378 	/* Otherwise, try migrate to a CPU on the preferred node */
1379 	task_numa_migrate(p);
1380 }
1381 
1382 /*
1383  * Find the nodes on which the workload is actively running. We do this by
1384  * tracking the nodes from which NUMA hinting faults are triggered. This can
1385  * be different from the set of nodes where the workload's memory is currently
1386  * located.
1387  *
1388  * The bitmask is used to make smarter decisions on when to do NUMA page
1389  * migrations, To prevent flip-flopping, and excessive page migrations, nodes
1390  * are added when they cause over 6/16 of the maximum number of faults, but
1391  * only removed when they drop below 3/16.
1392  */
1393 static void update_numa_active_node_mask(struct numa_group *numa_group)
1394 {
1395 	unsigned long faults, max_faults = 0;
1396 	int nid;
1397 
1398 	for_each_online_node(nid) {
1399 		faults = group_faults_cpu(numa_group, nid);
1400 		if (faults > max_faults)
1401 			max_faults = faults;
1402 	}
1403 
1404 	for_each_online_node(nid) {
1405 		faults = group_faults_cpu(numa_group, nid);
1406 		if (!node_isset(nid, numa_group->active_nodes)) {
1407 			if (faults > max_faults * 6 / 16)
1408 				node_set(nid, numa_group->active_nodes);
1409 		} else if (faults < max_faults * 3 / 16)
1410 			node_clear(nid, numa_group->active_nodes);
1411 	}
1412 }
1413 
1414 /*
1415  * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
1416  * increments. The more local the fault statistics are, the higher the scan
1417  * period will be for the next scan window. If local/remote ratio is below
1418  * NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS) the
1419  * scan period will decrease
1420  */
1421 #define NUMA_PERIOD_SLOTS 10
1422 #define NUMA_PERIOD_THRESHOLD 3
1423 
1424 /*
1425  * Increase the scan period (slow down scanning) if the majority of
1426  * our memory is already on our local node, or if the majority of
1427  * the page accesses are shared with other processes.
1428  * Otherwise, decrease the scan period.
1429  */
1430 static void update_task_scan_period(struct task_struct *p,
1431 			unsigned long shared, unsigned long private)
1432 {
1433 	unsigned int period_slot;
1434 	int ratio;
1435 	int diff;
1436 
1437 	unsigned long remote = p->numa_faults_locality[0];
1438 	unsigned long local = p->numa_faults_locality[1];
1439 
1440 	/*
1441 	 * If there were no record hinting faults then either the task is
1442 	 * completely idle or all activity is areas that are not of interest
1443 	 * to automatic numa balancing. Scan slower
1444 	 */
1445 	if (local + shared == 0) {
1446 		p->numa_scan_period = min(p->numa_scan_period_max,
1447 			p->numa_scan_period << 1);
1448 
1449 		p->mm->numa_next_scan = jiffies +
1450 			msecs_to_jiffies(p->numa_scan_period);
1451 
1452 		return;
1453 	}
1454 
1455 	/*
1456 	 * Prepare to scale scan period relative to the current period.
1457 	 *	 == NUMA_PERIOD_THRESHOLD scan period stays the same
1458 	 *       <  NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
1459 	 *	 >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
1460 	 */
1461 	period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
1462 	ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
1463 	if (ratio >= NUMA_PERIOD_THRESHOLD) {
1464 		int slot = ratio - NUMA_PERIOD_THRESHOLD;
1465 		if (!slot)
1466 			slot = 1;
1467 		diff = slot * period_slot;
1468 	} else {
1469 		diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;
1470 
1471 		/*
1472 		 * Scale scan rate increases based on sharing. There is an
1473 		 * inverse relationship between the degree of sharing and
1474 		 * the adjustment made to the scanning period. Broadly
1475 		 * speaking the intent is that there is little point
1476 		 * scanning faster if shared accesses dominate as it may
1477 		 * simply bounce migrations uselessly
1478 		 */
1479 		ratio = DIV_ROUND_UP(private * NUMA_PERIOD_SLOTS, (private + shared));
1480 		diff = (diff * ratio) / NUMA_PERIOD_SLOTS;
1481 	}
1482 
1483 	p->numa_scan_period = clamp(p->numa_scan_period + diff,
1484 			task_scan_min(p), task_scan_max(p));
1485 	memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
1486 }
1487 
1488 /*
1489  * Get the fraction of time the task has been running since the last
1490  * NUMA placement cycle. The scheduler keeps similar statistics, but
1491  * decays those on a 32ms period, which is orders of magnitude off
1492  * from the dozens-of-seconds NUMA balancing period. Use the scheduler
1493  * stats only if the task is so new there are no NUMA statistics yet.
1494  */
1495 static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period)
1496 {
1497 	u64 runtime, delta, now;
1498 	/* Use the start of this time slice to avoid calculations. */
1499 	now = p->se.exec_start;
1500 	runtime = p->se.sum_exec_runtime;
1501 
1502 	if (p->last_task_numa_placement) {
1503 		delta = runtime - p->last_sum_exec_runtime;
1504 		*period = now - p->last_task_numa_placement;
1505 	} else {
1506 		delta = p->se.avg.runnable_avg_sum;
1507 		*period = p->se.avg.runnable_avg_period;
1508 	}
1509 
1510 	p->last_sum_exec_runtime = runtime;
1511 	p->last_task_numa_placement = now;
1512 
1513 	return delta;
1514 }
1515 
1516 static void task_numa_placement(struct task_struct *p)
1517 {
1518 	int seq, nid, max_nid = -1, max_group_nid = -1;
1519 	unsigned long max_faults = 0, max_group_faults = 0;
1520 	unsigned long fault_types[2] = { 0, 0 };
1521 	unsigned long total_faults;
1522 	u64 runtime, period;
1523 	spinlock_t *group_lock = NULL;
1524 
1525 	seq = ACCESS_ONCE(p->mm->numa_scan_seq);
1526 	if (p->numa_scan_seq == seq)
1527 		return;
1528 	p->numa_scan_seq = seq;
1529 	p->numa_scan_period_max = task_scan_max(p);
1530 
1531 	total_faults = p->numa_faults_locality[0] +
1532 		       p->numa_faults_locality[1];
1533 	runtime = numa_get_avg_runtime(p, &period);
1534 
1535 	/* If the task is part of a group prevent parallel updates to group stats */
1536 	if (p->numa_group) {
1537 		group_lock = &p->numa_group->lock;
1538 		spin_lock_irq(group_lock);
1539 	}
1540 
1541 	/* Find the node with the highest number of faults */
1542 	for_each_online_node(nid) {
1543 		unsigned long faults = 0, group_faults = 0;
1544 		int priv, i;
1545 
1546 		for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) {
1547 			long diff, f_diff, f_weight;
1548 
1549 			i = task_faults_idx(nid, priv);
1550 
1551 			/* Decay existing window, copy faults since last scan */
1552 			diff = p->numa_faults_buffer_memory[i] - p->numa_faults_memory[i] / 2;
1553 			fault_types[priv] += p->numa_faults_buffer_memory[i];
1554 			p->numa_faults_buffer_memory[i] = 0;
1555 
1556 			/*
1557 			 * Normalize the faults_from, so all tasks in a group
1558 			 * count according to CPU use, instead of by the raw
1559 			 * number of faults. Tasks with little runtime have
1560 			 * little over-all impact on throughput, and thus their
1561 			 * faults are less important.
1562 			 */
1563 			f_weight = div64_u64(runtime << 16, period + 1);
1564 			f_weight = (f_weight * p->numa_faults_buffer_cpu[i]) /
1565 				   (total_faults + 1);
1566 			f_diff = f_weight - p->numa_faults_cpu[i] / 2;
1567 			p->numa_faults_buffer_cpu[i] = 0;
1568 
1569 			p->numa_faults_memory[i] += diff;
1570 			p->numa_faults_cpu[i] += f_diff;
1571 			faults += p->numa_faults_memory[i];
1572 			p->total_numa_faults += diff;
1573 			if (p->numa_group) {
1574 				/* safe because we can only change our own group */
1575 				p->numa_group->faults[i] += diff;
1576 				p->numa_group->faults_cpu[i] += f_diff;
1577 				p->numa_group->total_faults += diff;
1578 				group_faults += p->numa_group->faults[i];
1579 			}
1580 		}
1581 
1582 		if (faults > max_faults) {
1583 			max_faults = faults;
1584 			max_nid = nid;
1585 		}
1586 
1587 		if (group_faults > max_group_faults) {
1588 			max_group_faults = group_faults;
1589 			max_group_nid = nid;
1590 		}
1591 	}
1592 
1593 	update_task_scan_period(p, fault_types[0], fault_types[1]);
1594 
1595 	if (p->numa_group) {
1596 		update_numa_active_node_mask(p->numa_group);
1597 		/*
1598 		 * If the preferred task and group nids are different,
1599 		 * iterate over the nodes again to find the best place.
1600 		 */
1601 		if (max_nid != max_group_nid) {
1602 			unsigned long weight, max_weight = 0;
1603 
1604 			for_each_online_node(nid) {
1605 				weight = task_weight(p, nid) + group_weight(p, nid);
1606 				if (weight > max_weight) {
1607 					max_weight = weight;
1608 					max_nid = nid;
1609 				}
1610 			}
1611 		}
1612 
1613 		spin_unlock_irq(group_lock);
1614 	}
1615 
1616 	/* Preferred node as the node with the most faults */
1617 	if (max_faults && max_nid != p->numa_preferred_nid) {
1618 		/* Update the preferred nid and migrate task if possible */
1619 		sched_setnuma(p, max_nid);
1620 		numa_migrate_preferred(p);
1621 	}
1622 }
1623 
1624 static inline int get_numa_group(struct numa_group *grp)
1625 {
1626 	return atomic_inc_not_zero(&grp->refcount);
1627 }
1628 
1629 static inline void put_numa_group(struct numa_group *grp)
1630 {
1631 	if (atomic_dec_and_test(&grp->refcount))
1632 		kfree_rcu(grp, rcu);
1633 }
1634 
1635 static void task_numa_group(struct task_struct *p, int cpupid, int flags,
1636 			int *priv)
1637 {
1638 	struct numa_group *grp, *my_grp;
1639 	struct task_struct *tsk;
1640 	bool join = false;
1641 	int cpu = cpupid_to_cpu(cpupid);
1642 	int i;
1643 
1644 	if (unlikely(!p->numa_group)) {
1645 		unsigned int size = sizeof(struct numa_group) +
1646 				    4*nr_node_ids*sizeof(unsigned long);
1647 
1648 		grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
1649 		if (!grp)
1650 			return;
1651 
1652 		atomic_set(&grp->refcount, 1);
1653 		spin_lock_init(&grp->lock);
1654 		INIT_LIST_HEAD(&grp->task_list);
1655 		grp->gid = p->pid;
1656 		/* Second half of the array tracks nids where faults happen */
1657 		grp->faults_cpu = grp->faults + NR_NUMA_HINT_FAULT_TYPES *
1658 						nr_node_ids;
1659 
1660 		node_set(task_node(current), grp->active_nodes);
1661 
1662 		for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
1663 			grp->faults[i] = p->numa_faults_memory[i];
1664 
1665 		grp->total_faults = p->total_numa_faults;
1666 
1667 		list_add(&p->numa_entry, &grp->task_list);
1668 		grp->nr_tasks++;
1669 		rcu_assign_pointer(p->numa_group, grp);
1670 	}
1671 
1672 	rcu_read_lock();
1673 	tsk = ACCESS_ONCE(cpu_rq(cpu)->curr);
1674 
1675 	if (!cpupid_match_pid(tsk, cpupid))
1676 		goto no_join;
1677 
1678 	grp = rcu_dereference(tsk->numa_group);
1679 	if (!grp)
1680 		goto no_join;
1681 
1682 	my_grp = p->numa_group;
1683 	if (grp == my_grp)
1684 		goto no_join;
1685 
1686 	/*
1687 	 * Only join the other group if its bigger; if we're the bigger group,
1688 	 * the other task will join us.
1689 	 */
1690 	if (my_grp->nr_tasks > grp->nr_tasks)
1691 		goto no_join;
1692 
1693 	/*
1694 	 * Tie-break on the grp address.
1695 	 */
1696 	if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
1697 		goto no_join;
1698 
1699 	/* Always join threads in the same process. */
1700 	if (tsk->mm == current->mm)
1701 		join = true;
1702 
1703 	/* Simple filter to avoid false positives due to PID collisions */
1704 	if (flags & TNF_SHARED)
1705 		join = true;
1706 
1707 	/* Update priv based on whether false sharing was detected */
1708 	*priv = !join;
1709 
1710 	if (join && !get_numa_group(grp))
1711 		goto no_join;
1712 
1713 	rcu_read_unlock();
1714 
1715 	if (!join)
1716 		return;
1717 
1718 	BUG_ON(irqs_disabled());
1719 	double_lock_irq(&my_grp->lock, &grp->lock);
1720 
1721 	for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) {
1722 		my_grp->faults[i] -= p->numa_faults_memory[i];
1723 		grp->faults[i] += p->numa_faults_memory[i];
1724 	}
1725 	my_grp->total_faults -= p->total_numa_faults;
1726 	grp->total_faults += p->total_numa_faults;
1727 
1728 	list_move(&p->numa_entry, &grp->task_list);
1729 	my_grp->nr_tasks--;
1730 	grp->nr_tasks++;
1731 
1732 	spin_unlock(&my_grp->lock);
1733 	spin_unlock_irq(&grp->lock);
1734 
1735 	rcu_assign_pointer(p->numa_group, grp);
1736 
1737 	put_numa_group(my_grp);
1738 	return;
1739 
1740 no_join:
1741 	rcu_read_unlock();
1742 	return;
1743 }
1744 
1745 void task_numa_free(struct task_struct *p)
1746 {
1747 	struct numa_group *grp = p->numa_group;
1748 	int i;
1749 	void *numa_faults = p->numa_faults_memory;
1750 
1751 	if (grp) {
1752 		spin_lock_irq(&grp->lock);
1753 		for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
1754 			grp->faults[i] -= p->numa_faults_memory[i];
1755 		grp->total_faults -= p->total_numa_faults;
1756 
1757 		list_del(&p->numa_entry);
1758 		grp->nr_tasks--;
1759 		spin_unlock_irq(&grp->lock);
1760 		rcu_assign_pointer(p->numa_group, NULL);
1761 		put_numa_group(grp);
1762 	}
1763 
1764 	p->numa_faults_memory = NULL;
1765 	p->numa_faults_buffer_memory = NULL;
1766 	p->numa_faults_cpu= NULL;
1767 	p->numa_faults_buffer_cpu = NULL;
1768 	kfree(numa_faults);
1769 }
1770 
1771 /*
1772  * Got a PROT_NONE fault for a page on @node.
1773  */
1774 void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags)
1775 {
1776 	struct task_struct *p = current;
1777 	bool migrated = flags & TNF_MIGRATED;
1778 	int cpu_node = task_node(current);
1779 	int local = !!(flags & TNF_FAULT_LOCAL);
1780 	int priv;
1781 
1782 	if (!numabalancing_enabled)
1783 		return;
1784 
1785 	/* for example, ksmd faulting in a user's mm */
1786 	if (!p->mm)
1787 		return;
1788 
1789 	/* Do not worry about placement if exiting */
1790 	if (p->state == TASK_DEAD)
1791 		return;
1792 
1793 	/* Allocate buffer to track faults on a per-node basis */
1794 	if (unlikely(!p->numa_faults_memory)) {
1795 		int size = sizeof(*p->numa_faults_memory) *
1796 			   NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids;
1797 
1798 		p->numa_faults_memory = kzalloc(size, GFP_KERNEL|__GFP_NOWARN);
1799 		if (!p->numa_faults_memory)
1800 			return;
1801 
1802 		BUG_ON(p->numa_faults_buffer_memory);
1803 		/*
1804 		 * The averaged statistics, shared & private, memory & cpu,
1805 		 * occupy the first half of the array. The second half of the
1806 		 * array is for current counters, which are averaged into the
1807 		 * first set by task_numa_placement.
1808 		 */
1809 		p->numa_faults_cpu = p->numa_faults_memory + (2 * nr_node_ids);
1810 		p->numa_faults_buffer_memory = p->numa_faults_memory + (4 * nr_node_ids);
1811 		p->numa_faults_buffer_cpu = p->numa_faults_memory + (6 * nr_node_ids);
1812 		p->total_numa_faults = 0;
1813 		memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
1814 	}
1815 
1816 	/*
1817 	 * First accesses are treated as private, otherwise consider accesses
1818 	 * to be private if the accessing pid has not changed
1819 	 */
1820 	if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
1821 		priv = 1;
1822 	} else {
1823 		priv = cpupid_match_pid(p, last_cpupid);
1824 		if (!priv && !(flags & TNF_NO_GROUP))
1825 			task_numa_group(p, last_cpupid, flags, &priv);
1826 	}
1827 
1828 	/*
1829 	 * If a workload spans multiple NUMA nodes, a shared fault that
1830 	 * occurs wholly within the set of nodes that the workload is
1831 	 * actively using should be counted as local. This allows the
1832 	 * scan rate to slow down when a workload has settled down.
1833 	 */
1834 	if (!priv && !local && p->numa_group &&
1835 			node_isset(cpu_node, p->numa_group->active_nodes) &&
1836 			node_isset(mem_node, p->numa_group->active_nodes))
1837 		local = 1;
1838 
1839 	task_numa_placement(p);
1840 
1841 	/*
1842 	 * Retry task to preferred node migration periodically, in case it
1843 	 * case it previously failed, or the scheduler moved us.
1844 	 */
1845 	if (time_after(jiffies, p->numa_migrate_retry))
1846 		numa_migrate_preferred(p);
1847 
1848 	if (migrated)
1849 		p->numa_pages_migrated += pages;
1850 
1851 	p->numa_faults_buffer_memory[task_faults_idx(mem_node, priv)] += pages;
1852 	p->numa_faults_buffer_cpu[task_faults_idx(cpu_node, priv)] += pages;
1853 	p->numa_faults_locality[local] += pages;
1854 }
1855 
1856 static void reset_ptenuma_scan(struct task_struct *p)
1857 {
1858 	ACCESS_ONCE(p->mm->numa_scan_seq)++;
1859 	p->mm->numa_scan_offset = 0;
1860 }
1861 
1862 /*
1863  * The expensive part of numa migration is done from task_work context.
1864  * Triggered from task_tick_numa().
1865  */
1866 void task_numa_work(struct callback_head *work)
1867 {
1868 	unsigned long migrate, next_scan, now = jiffies;
1869 	struct task_struct *p = current;
1870 	struct mm_struct *mm = p->mm;
1871 	struct vm_area_struct *vma;
1872 	unsigned long start, end;
1873 	unsigned long nr_pte_updates = 0;
1874 	long pages;
1875 
1876 	WARN_ON_ONCE(p != container_of(work, struct task_struct, numa_work));
1877 
1878 	work->next = work; /* protect against double add */
1879 	/*
1880 	 * Who cares about NUMA placement when they're dying.
1881 	 *
1882 	 * NOTE: make sure not to dereference p->mm before this check,
1883 	 * exit_task_work() happens _after_ exit_mm() so we could be called
1884 	 * without p->mm even though we still had it when we enqueued this
1885 	 * work.
1886 	 */
1887 	if (p->flags & PF_EXITING)
1888 		return;
1889 
1890 	if (!mm->numa_next_scan) {
1891 		mm->numa_next_scan = now +
1892 			msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
1893 	}
1894 
1895 	/*
1896 	 * Enforce maximal scan/migration frequency..
1897 	 */
1898 	migrate = mm->numa_next_scan;
1899 	if (time_before(now, migrate))
1900 		return;
1901 
1902 	if (p->numa_scan_period == 0) {
1903 		p->numa_scan_period_max = task_scan_max(p);
1904 		p->numa_scan_period = task_scan_min(p);
1905 	}
1906 
1907 	next_scan = now + msecs_to_jiffies(p->numa_scan_period);
1908 	if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
1909 		return;
1910 
1911 	/*
1912 	 * Delay this task enough that another task of this mm will likely win
1913 	 * the next time around.
1914 	 */
1915 	p->node_stamp += 2 * TICK_NSEC;
1916 
1917 	start = mm->numa_scan_offset;
1918 	pages = sysctl_numa_balancing_scan_size;
1919 	pages <<= 20 - PAGE_SHIFT; /* MB in pages */
1920 	if (!pages)
1921 		return;
1922 
1923 	down_read(&mm->mmap_sem);
1924 	vma = find_vma(mm, start);
1925 	if (!vma) {
1926 		reset_ptenuma_scan(p);
1927 		start = 0;
1928 		vma = mm->mmap;
1929 	}
1930 	for (; vma; vma = vma->vm_next) {
1931 		if (!vma_migratable(vma) || !vma_policy_mof(p, vma))
1932 			continue;
1933 
1934 		/*
1935 		 * Shared library pages mapped by multiple processes are not
1936 		 * migrated as it is expected they are cache replicated. Avoid
1937 		 * hinting faults in read-only file-backed mappings or the vdso
1938 		 * as migrating the pages will be of marginal benefit.
1939 		 */
1940 		if (!vma->vm_mm ||
1941 		    (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ)))
1942 			continue;
1943 
1944 		/*
1945 		 * Skip inaccessible VMAs to avoid any confusion between
1946 		 * PROT_NONE and NUMA hinting ptes
1947 		 */
1948 		if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)))
1949 			continue;
1950 
1951 		do {
1952 			start = max(start, vma->vm_start);
1953 			end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
1954 			end = min(end, vma->vm_end);
1955 			nr_pte_updates += change_prot_numa(vma, start, end);
1956 
1957 			/*
1958 			 * Scan sysctl_numa_balancing_scan_size but ensure that
1959 			 * at least one PTE is updated so that unused virtual
1960 			 * address space is quickly skipped.
1961 			 */
1962 			if (nr_pte_updates)
1963 				pages -= (end - start) >> PAGE_SHIFT;
1964 
1965 			start = end;
1966 			if (pages <= 0)
1967 				goto out;
1968 
1969 			cond_resched();
1970 		} while (end != vma->vm_end);
1971 	}
1972 
1973 out:
1974 	/*
1975 	 * It is possible to reach the end of the VMA list but the last few
1976 	 * VMAs are not guaranteed to the vma_migratable. If they are not, we
1977 	 * would find the !migratable VMA on the next scan but not reset the
1978 	 * scanner to the start so check it now.
1979 	 */
1980 	if (vma)
1981 		mm->numa_scan_offset = start;
1982 	else
1983 		reset_ptenuma_scan(p);
1984 	up_read(&mm->mmap_sem);
1985 }
1986 
1987 /*
1988  * Drive the periodic memory faults..
1989  */
1990 void task_tick_numa(struct rq *rq, struct task_struct *curr)
1991 {
1992 	struct callback_head *work = &curr->numa_work;
1993 	u64 period, now;
1994 
1995 	/*
1996 	 * We don't care about NUMA placement if we don't have memory.
1997 	 */
1998 	if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work)
1999 		return;
2000 
2001 	/*
2002 	 * Using runtime rather than walltime has the dual advantage that
2003 	 * we (mostly) drive the selection from busy threads and that the
2004 	 * task needs to have done some actual work before we bother with
2005 	 * NUMA placement.
2006 	 */
2007 	now = curr->se.sum_exec_runtime;
2008 	period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
2009 
2010 	if (now - curr->node_stamp > period) {
2011 		if (!curr->node_stamp)
2012 			curr->numa_scan_period = task_scan_min(curr);
2013 		curr->node_stamp += period;
2014 
2015 		if (!time_before(jiffies, curr->mm->numa_next_scan)) {
2016 			init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */
2017 			task_work_add(curr, work, true);
2018 		}
2019 	}
2020 }
2021 #else
2022 static void task_tick_numa(struct rq *rq, struct task_struct *curr)
2023 {
2024 }
2025 
2026 static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
2027 {
2028 }
2029 
2030 static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
2031 {
2032 }
2033 #endif /* CONFIG_NUMA_BALANCING */
2034 
2035 static void
2036 account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2037 {
2038 	update_load_add(&cfs_rq->load, se->load.weight);
2039 	if (!parent_entity(se))
2040 		update_load_add(&rq_of(cfs_rq)->load, se->load.weight);
2041 #ifdef CONFIG_SMP
2042 	if (entity_is_task(se)) {
2043 		struct rq *rq = rq_of(cfs_rq);
2044 
2045 		account_numa_enqueue(rq, task_of(se));
2046 		list_add(&se->group_node, &rq->cfs_tasks);
2047 	}
2048 #endif
2049 	cfs_rq->nr_running++;
2050 }
2051 
2052 static void
2053 account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2054 {
2055 	update_load_sub(&cfs_rq->load, se->load.weight);
2056 	if (!parent_entity(se))
2057 		update_load_sub(&rq_of(cfs_rq)->load, se->load.weight);
2058 	if (entity_is_task(se)) {
2059 		account_numa_dequeue(rq_of(cfs_rq), task_of(se));
2060 		list_del_init(&se->group_node);
2061 	}
2062 	cfs_rq->nr_running--;
2063 }
2064 
2065 #ifdef CONFIG_FAIR_GROUP_SCHED
2066 # ifdef CONFIG_SMP
2067 static inline long calc_tg_weight(struct task_group *tg, struct cfs_rq *cfs_rq)
2068 {
2069 	long tg_weight;
2070 
2071 	/*
2072 	 * Use this CPU's actual weight instead of the last load_contribution
2073 	 * to gain a more accurate current total weight. See
2074 	 * update_cfs_rq_load_contribution().
2075 	 */
2076 	tg_weight = atomic_long_read(&tg->load_avg);
2077 	tg_weight -= cfs_rq->tg_load_contrib;
2078 	tg_weight += cfs_rq->load.weight;
2079 
2080 	return tg_weight;
2081 }
2082 
2083 static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
2084 {
2085 	long tg_weight, load, shares;
2086 
2087 	tg_weight = calc_tg_weight(tg, cfs_rq);
2088 	load = cfs_rq->load.weight;
2089 
2090 	shares = (tg->shares * load);
2091 	if (tg_weight)
2092 		shares /= tg_weight;
2093 
2094 	if (shares < MIN_SHARES)
2095 		shares = MIN_SHARES;
2096 	if (shares > tg->shares)
2097 		shares = tg->shares;
2098 
2099 	return shares;
2100 }
2101 # else /* CONFIG_SMP */
2102 static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
2103 {
2104 	return tg->shares;
2105 }
2106 # endif /* CONFIG_SMP */
2107 static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
2108 			    unsigned long weight)
2109 {
2110 	if (se->on_rq) {
2111 		/* commit outstanding execution time */
2112 		if (cfs_rq->curr == se)
2113 			update_curr(cfs_rq);
2114 		account_entity_dequeue(cfs_rq, se);
2115 	}
2116 
2117 	update_load_set(&se->load, weight);
2118 
2119 	if (se->on_rq)
2120 		account_entity_enqueue(cfs_rq, se);
2121 }
2122 
2123 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
2124 
2125 static void update_cfs_shares(struct cfs_rq *cfs_rq)
2126 {
2127 	struct task_group *tg;
2128 	struct sched_entity *se;
2129 	long shares;
2130 
2131 	tg = cfs_rq->tg;
2132 	se = tg->se[cpu_of(rq_of(cfs_rq))];
2133 	if (!se || throttled_hierarchy(cfs_rq))
2134 		return;
2135 #ifndef CONFIG_SMP
2136 	if (likely(se->load.weight == tg->shares))
2137 		return;
2138 #endif
2139 	shares = calc_cfs_shares(cfs_rq, tg);
2140 
2141 	reweight_entity(cfs_rq_of(se), se, shares);
2142 }
2143 #else /* CONFIG_FAIR_GROUP_SCHED */
2144 static inline void update_cfs_shares(struct cfs_rq *cfs_rq)
2145 {
2146 }
2147 #endif /* CONFIG_FAIR_GROUP_SCHED */
2148 
2149 #ifdef CONFIG_SMP
2150 /*
2151  * We choose a half-life close to 1 scheduling period.
2152  * Note: The tables below are dependent on this value.
2153  */
2154 #define LOAD_AVG_PERIOD 32
2155 #define LOAD_AVG_MAX 47742 /* maximum possible load avg */
2156 #define LOAD_AVG_MAX_N 345 /* number of full periods to produce LOAD_MAX_AVG */
2157 
2158 /* Precomputed fixed inverse multiplies for multiplication by y^n */
2159 static const u32 runnable_avg_yN_inv[] = {
2160 	0xffffffff, 0xfa83b2da, 0xf5257d14, 0xefe4b99a, 0xeac0c6e6, 0xe5b906e6,
2161 	0xe0ccdeeb, 0xdbfbb796, 0xd744fcc9, 0xd2a81d91, 0xce248c14, 0xc9b9bd85,
2162 	0xc5672a10, 0xc12c4cc9, 0xbd08a39e, 0xb8fbaf46, 0xb504f333, 0xb123f581,
2163 	0xad583ee9, 0xa9a15ab4, 0xa5fed6a9, 0xa2704302, 0x9ef5325f, 0x9b8d39b9,
2164 	0x9837f050, 0x94f4efa8, 0x91c3d373, 0x8ea4398a, 0x8b95c1e3, 0x88980e80,
2165 	0x85aac367, 0x82cd8698,
2166 };
2167 
2168 /*
2169  * Precomputed \Sum y^k { 1<=k<=n }.  These are floor(true_value) to prevent
2170  * over-estimates when re-combining.
2171  */
2172 static const u32 runnable_avg_yN_sum[] = {
2173 	    0, 1002, 1982, 2941, 3880, 4798, 5697, 6576, 7437, 8279, 9103,
2174 	 9909,10698,11470,12226,12966,13690,14398,15091,15769,16433,17082,
2175 	17718,18340,18949,19545,20128,20698,21256,21802,22336,22859,23371,
2176 };
2177 
2178 /*
2179  * Approximate:
2180  *   val * y^n,    where y^32 ~= 0.5 (~1 scheduling period)
2181  */
2182 static __always_inline u64 decay_load(u64 val, u64 n)
2183 {
2184 	unsigned int local_n;
2185 
2186 	if (!n)
2187 		return val;
2188 	else if (unlikely(n > LOAD_AVG_PERIOD * 63))
2189 		return 0;
2190 
2191 	/* after bounds checking we can collapse to 32-bit */
2192 	local_n = n;
2193 
2194 	/*
2195 	 * As y^PERIOD = 1/2, we can combine
2196 	 *    y^n = 1/2^(n/PERIOD) * k^(n%PERIOD)
2197 	 * With a look-up table which covers k^n (n<PERIOD)
2198 	 *
2199 	 * To achieve constant time decay_load.
2200 	 */
2201 	if (unlikely(local_n >= LOAD_AVG_PERIOD)) {
2202 		val >>= local_n / LOAD_AVG_PERIOD;
2203 		local_n %= LOAD_AVG_PERIOD;
2204 	}
2205 
2206 	val *= runnable_avg_yN_inv[local_n];
2207 	/* We don't use SRR here since we always want to round down. */
2208 	return val >> 32;
2209 }
2210 
2211 /*
2212  * For updates fully spanning n periods, the contribution to runnable
2213  * average will be: \Sum 1024*y^n
2214  *
2215  * We can compute this reasonably efficiently by combining:
2216  *   y^PERIOD = 1/2 with precomputed \Sum 1024*y^n {for  n <PERIOD}
2217  */
2218 static u32 __compute_runnable_contrib(u64 n)
2219 {
2220 	u32 contrib = 0;
2221 
2222 	if (likely(n <= LOAD_AVG_PERIOD))
2223 		return runnable_avg_yN_sum[n];
2224 	else if (unlikely(n >= LOAD_AVG_MAX_N))
2225 		return LOAD_AVG_MAX;
2226 
2227 	/* Compute \Sum k^n combining precomputed values for k^i, \Sum k^j */
2228 	do {
2229 		contrib /= 2; /* y^LOAD_AVG_PERIOD = 1/2 */
2230 		contrib += runnable_avg_yN_sum[LOAD_AVG_PERIOD];
2231 
2232 		n -= LOAD_AVG_PERIOD;
2233 	} while (n > LOAD_AVG_PERIOD);
2234 
2235 	contrib = decay_load(contrib, n);
2236 	return contrib + runnable_avg_yN_sum[n];
2237 }
2238 
2239 /*
2240  * We can represent the historical contribution to runnable average as the
2241  * coefficients of a geometric series.  To do this we sub-divide our runnable
2242  * history into segments of approximately 1ms (1024us); label the segment that
2243  * occurred N-ms ago p_N, with p_0 corresponding to the current period, e.g.
2244  *
2245  * [<- 1024us ->|<- 1024us ->|<- 1024us ->| ...
2246  *      p0            p1           p2
2247  *     (now)       (~1ms ago)  (~2ms ago)
2248  *
2249  * Let u_i denote the fraction of p_i that the entity was runnable.
2250  *
2251  * We then designate the fractions u_i as our co-efficients, yielding the
2252  * following representation of historical load:
2253  *   u_0 + u_1*y + u_2*y^2 + u_3*y^3 + ...
2254  *
2255  * We choose y based on the with of a reasonably scheduling period, fixing:
2256  *   y^32 = 0.5
2257  *
2258  * This means that the contribution to load ~32ms ago (u_32) will be weighted
2259  * approximately half as much as the contribution to load within the last ms
2260  * (u_0).
2261  *
2262  * When a period "rolls over" and we have new u_0`, multiplying the previous
2263  * sum again by y is sufficient to update:
2264  *   load_avg = u_0` + y*(u_0 + u_1*y + u_2*y^2 + ... )
2265  *            = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1}]
2266  */
2267 static __always_inline int __update_entity_runnable_avg(u64 now,
2268 							struct sched_avg *sa,
2269 							int runnable)
2270 {
2271 	u64 delta, periods;
2272 	u32 runnable_contrib;
2273 	int delta_w, decayed = 0;
2274 
2275 	delta = now - sa->last_runnable_update;
2276 	/*
2277 	 * This should only happen when time goes backwards, which it
2278 	 * unfortunately does during sched clock init when we swap over to TSC.
2279 	 */
2280 	if ((s64)delta < 0) {
2281 		sa->last_runnable_update = now;
2282 		return 0;
2283 	}
2284 
2285 	/*
2286 	 * Use 1024ns as the unit of measurement since it's a reasonable
2287 	 * approximation of 1us and fast to compute.
2288 	 */
2289 	delta >>= 10;
2290 	if (!delta)
2291 		return 0;
2292 	sa->last_runnable_update = now;
2293 
2294 	/* delta_w is the amount already accumulated against our next period */
2295 	delta_w = sa->runnable_avg_period % 1024;
2296 	if (delta + delta_w >= 1024) {
2297 		/* period roll-over */
2298 		decayed = 1;
2299 
2300 		/*
2301 		 * Now that we know we're crossing a period boundary, figure
2302 		 * out how much from delta we need to complete the current
2303 		 * period and accrue it.
2304 		 */
2305 		delta_w = 1024 - delta_w;
2306 		if (runnable)
2307 			sa->runnable_avg_sum += delta_w;
2308 		sa->runnable_avg_period += delta_w;
2309 
2310 		delta -= delta_w;
2311 
2312 		/* Figure out how many additional periods this update spans */
2313 		periods = delta / 1024;
2314 		delta %= 1024;
2315 
2316 		sa->runnable_avg_sum = decay_load(sa->runnable_avg_sum,
2317 						  periods + 1);
2318 		sa->runnable_avg_period = decay_load(sa->runnable_avg_period,
2319 						     periods + 1);
2320 
2321 		/* Efficiently calculate \sum (1..n_period) 1024*y^i */
2322 		runnable_contrib = __compute_runnable_contrib(periods);
2323 		if (runnable)
2324 			sa->runnable_avg_sum += runnable_contrib;
2325 		sa->runnable_avg_period += runnable_contrib;
2326 	}
2327 
2328 	/* Remainder of delta accrued against u_0` */
2329 	if (runnable)
2330 		sa->runnable_avg_sum += delta;
2331 	sa->runnable_avg_period += delta;
2332 
2333 	return decayed;
2334 }
2335 
2336 /* Synchronize an entity's decay with its parenting cfs_rq.*/
2337 static inline u64 __synchronize_entity_decay(struct sched_entity *se)
2338 {
2339 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
2340 	u64 decays = atomic64_read(&cfs_rq->decay_counter);
2341 
2342 	decays -= se->avg.decay_count;
2343 	if (!decays)
2344 		return 0;
2345 
2346 	se->avg.load_avg_contrib = decay_load(se->avg.load_avg_contrib, decays);
2347 	se->avg.decay_count = 0;
2348 
2349 	return decays;
2350 }
2351 
2352 #ifdef CONFIG_FAIR_GROUP_SCHED
2353 static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq,
2354 						 int force_update)
2355 {
2356 	struct task_group *tg = cfs_rq->tg;
2357 	long tg_contrib;
2358 
2359 	tg_contrib = cfs_rq->runnable_load_avg + cfs_rq->blocked_load_avg;
2360 	tg_contrib -= cfs_rq->tg_load_contrib;
2361 
2362 	if (force_update || abs(tg_contrib) > cfs_rq->tg_load_contrib / 8) {
2363 		atomic_long_add(tg_contrib, &tg->load_avg);
2364 		cfs_rq->tg_load_contrib += tg_contrib;
2365 	}
2366 }
2367 
2368 /*
2369  * Aggregate cfs_rq runnable averages into an equivalent task_group
2370  * representation for computing load contributions.
2371  */
2372 static inline void __update_tg_runnable_avg(struct sched_avg *sa,
2373 						  struct cfs_rq *cfs_rq)
2374 {
2375 	struct task_group *tg = cfs_rq->tg;
2376 	long contrib;
2377 
2378 	/* The fraction of a cpu used by this cfs_rq */
2379 	contrib = div_u64((u64)sa->runnable_avg_sum << NICE_0_SHIFT,
2380 			  sa->runnable_avg_period + 1);
2381 	contrib -= cfs_rq->tg_runnable_contrib;
2382 
2383 	if (abs(contrib) > cfs_rq->tg_runnable_contrib / 64) {
2384 		atomic_add(contrib, &tg->runnable_avg);
2385 		cfs_rq->tg_runnable_contrib += contrib;
2386 	}
2387 }
2388 
2389 static inline void __update_group_entity_contrib(struct sched_entity *se)
2390 {
2391 	struct cfs_rq *cfs_rq = group_cfs_rq(se);
2392 	struct task_group *tg = cfs_rq->tg;
2393 	int runnable_avg;
2394 
2395 	u64 contrib;
2396 
2397 	contrib = cfs_rq->tg_load_contrib * tg->shares;
2398 	se->avg.load_avg_contrib = div_u64(contrib,
2399 				     atomic_long_read(&tg->load_avg) + 1);
2400 
2401 	/*
2402 	 * For group entities we need to compute a correction term in the case
2403 	 * that they are consuming <1 cpu so that we would contribute the same
2404 	 * load as a task of equal weight.
2405 	 *
2406 	 * Explicitly co-ordinating this measurement would be expensive, but
2407 	 * fortunately the sum of each cpus contribution forms a usable
2408 	 * lower-bound on the true value.
2409 	 *
2410 	 * Consider the aggregate of 2 contributions.  Either they are disjoint
2411 	 * (and the sum represents true value) or they are disjoint and we are
2412 	 * understating by the aggregate of their overlap.
2413 	 *
2414 	 * Extending this to N cpus, for a given overlap, the maximum amount we
2415 	 * understand is then n_i(n_i+1)/2 * w_i where n_i is the number of
2416 	 * cpus that overlap for this interval and w_i is the interval width.
2417 	 *
2418 	 * On a small machine; the first term is well-bounded which bounds the
2419 	 * total error since w_i is a subset of the period.  Whereas on a
2420 	 * larger machine, while this first term can be larger, if w_i is the
2421 	 * of consequential size guaranteed to see n_i*w_i quickly converge to
2422 	 * our upper bound of 1-cpu.
2423 	 */
2424 	runnable_avg = atomic_read(&tg->runnable_avg);
2425 	if (runnable_avg < NICE_0_LOAD) {
2426 		se->avg.load_avg_contrib *= runnable_avg;
2427 		se->avg.load_avg_contrib >>= NICE_0_SHIFT;
2428 	}
2429 }
2430 
2431 static inline void update_rq_runnable_avg(struct rq *rq, int runnable)
2432 {
2433 	__update_entity_runnable_avg(rq_clock_task(rq), &rq->avg, runnable);
2434 	__update_tg_runnable_avg(&rq->avg, &rq->cfs);
2435 }
2436 #else /* CONFIG_FAIR_GROUP_SCHED */
2437 static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq,
2438 						 int force_update) {}
2439 static inline void __update_tg_runnable_avg(struct sched_avg *sa,
2440 						  struct cfs_rq *cfs_rq) {}
2441 static inline void __update_group_entity_contrib(struct sched_entity *se) {}
2442 static inline void update_rq_runnable_avg(struct rq *rq, int runnable) {}
2443 #endif /* CONFIG_FAIR_GROUP_SCHED */
2444 
2445 static inline void __update_task_entity_contrib(struct sched_entity *se)
2446 {
2447 	u32 contrib;
2448 
2449 	/* avoid overflowing a 32-bit type w/ SCHED_LOAD_SCALE */
2450 	contrib = se->avg.runnable_avg_sum * scale_load_down(se->load.weight);
2451 	contrib /= (se->avg.runnable_avg_period + 1);
2452 	se->avg.load_avg_contrib = scale_load(contrib);
2453 }
2454 
2455 /* Compute the current contribution to load_avg by se, return any delta */
2456 static long __update_entity_load_avg_contrib(struct sched_entity *se)
2457 {
2458 	long old_contrib = se->avg.load_avg_contrib;
2459 
2460 	if (entity_is_task(se)) {
2461 		__update_task_entity_contrib(se);
2462 	} else {
2463 		__update_tg_runnable_avg(&se->avg, group_cfs_rq(se));
2464 		__update_group_entity_contrib(se);
2465 	}
2466 
2467 	return se->avg.load_avg_contrib - old_contrib;
2468 }
2469 
2470 static inline void subtract_blocked_load_contrib(struct cfs_rq *cfs_rq,
2471 						 long load_contrib)
2472 {
2473 	if (likely(load_contrib < cfs_rq->blocked_load_avg))
2474 		cfs_rq->blocked_load_avg -= load_contrib;
2475 	else
2476 		cfs_rq->blocked_load_avg = 0;
2477 }
2478 
2479 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq);
2480 
2481 /* Update a sched_entity's runnable average */
2482 static inline void update_entity_load_avg(struct sched_entity *se,
2483 					  int update_cfs_rq)
2484 {
2485 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
2486 	long contrib_delta;
2487 	u64 now;
2488 
2489 	/*
2490 	 * For a group entity we need to use their owned cfs_rq_clock_task() in
2491 	 * case they are the parent of a throttled hierarchy.
2492 	 */
2493 	if (entity_is_task(se))
2494 		now = cfs_rq_clock_task(cfs_rq);
2495 	else
2496 		now = cfs_rq_clock_task(group_cfs_rq(se));
2497 
2498 	if (!__update_entity_runnable_avg(now, &se->avg, se->on_rq))
2499 		return;
2500 
2501 	contrib_delta = __update_entity_load_avg_contrib(se);
2502 
2503 	if (!update_cfs_rq)
2504 		return;
2505 
2506 	if (se->on_rq)
2507 		cfs_rq->runnable_load_avg += contrib_delta;
2508 	else
2509 		subtract_blocked_load_contrib(cfs_rq, -contrib_delta);
2510 }
2511 
2512 /*
2513  * Decay the load contributed by all blocked children and account this so that
2514  * their contribution may appropriately discounted when they wake up.
2515  */
2516 static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq, int force_update)
2517 {
2518 	u64 now = cfs_rq_clock_task(cfs_rq) >> 20;
2519 	u64 decays;
2520 
2521 	decays = now - cfs_rq->last_decay;
2522 	if (!decays && !force_update)
2523 		return;
2524 
2525 	if (atomic_long_read(&cfs_rq->removed_load)) {
2526 		unsigned long removed_load;
2527 		removed_load = atomic_long_xchg(&cfs_rq->removed_load, 0);
2528 		subtract_blocked_load_contrib(cfs_rq, removed_load);
2529 	}
2530 
2531 	if (decays) {
2532 		cfs_rq->blocked_load_avg = decay_load(cfs_rq->blocked_load_avg,
2533 						      decays);
2534 		atomic64_add(decays, &cfs_rq->decay_counter);
2535 		cfs_rq->last_decay = now;
2536 	}
2537 
2538 	__update_cfs_rq_tg_load_contrib(cfs_rq, force_update);
2539 }
2540 
2541 /* Add the load generated by se into cfs_rq's child load-average */
2542 static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq,
2543 						  struct sched_entity *se,
2544 						  int wakeup)
2545 {
2546 	/*
2547 	 * We track migrations using entity decay_count <= 0, on a wake-up
2548 	 * migration we use a negative decay count to track the remote decays
2549 	 * accumulated while sleeping.
2550 	 *
2551 	 * Newly forked tasks are enqueued with se->avg.decay_count == 0, they
2552 	 * are seen by enqueue_entity_load_avg() as a migration with an already
2553 	 * constructed load_avg_contrib.
2554 	 */
2555 	if (unlikely(se->avg.decay_count <= 0)) {
2556 		se->avg.last_runnable_update = rq_clock_task(rq_of(cfs_rq));
2557 		if (se->avg.decay_count) {
2558 			/*
2559 			 * In a wake-up migration we have to approximate the
2560 			 * time sleeping.  This is because we can't synchronize
2561 			 * clock_task between the two cpus, and it is not
2562 			 * guaranteed to be read-safe.  Instead, we can
2563 			 * approximate this using our carried decays, which are
2564 			 * explicitly atomically readable.
2565 			 */
2566 			se->avg.last_runnable_update -= (-se->avg.decay_count)
2567 							<< 20;
2568 			update_entity_load_avg(se, 0);
2569 			/* Indicate that we're now synchronized and on-rq */
2570 			se->avg.decay_count = 0;
2571 		}
2572 		wakeup = 0;
2573 	} else {
2574 		__synchronize_entity_decay(se);
2575 	}
2576 
2577 	/* migrated tasks did not contribute to our blocked load */
2578 	if (wakeup) {
2579 		subtract_blocked_load_contrib(cfs_rq, se->avg.load_avg_contrib);
2580 		update_entity_load_avg(se, 0);
2581 	}
2582 
2583 	cfs_rq->runnable_load_avg += se->avg.load_avg_contrib;
2584 	/* we force update consideration on load-balancer moves */
2585 	update_cfs_rq_blocked_load(cfs_rq, !wakeup);
2586 }
2587 
2588 /*
2589  * Remove se's load from this cfs_rq child load-average, if the entity is
2590  * transitioning to a blocked state we track its projected decay using
2591  * blocked_load_avg.
2592  */
2593 static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq,
2594 						  struct sched_entity *se,
2595 						  int sleep)
2596 {
2597 	update_entity_load_avg(se, 1);
2598 	/* we force update consideration on load-balancer moves */
2599 	update_cfs_rq_blocked_load(cfs_rq, !sleep);
2600 
2601 	cfs_rq->runnable_load_avg -= se->avg.load_avg_contrib;
2602 	if (sleep) {
2603 		cfs_rq->blocked_load_avg += se->avg.load_avg_contrib;
2604 		se->avg.decay_count = atomic64_read(&cfs_rq->decay_counter);
2605 	} /* migrations, e.g. sleep=0 leave decay_count == 0 */
2606 }
2607 
2608 /*
2609  * Update the rq's load with the elapsed running time before entering
2610  * idle. if the last scheduled task is not a CFS task, idle_enter will
2611  * be the only way to update the runnable statistic.
2612  */
2613 void idle_enter_fair(struct rq *this_rq)
2614 {
2615 	update_rq_runnable_avg(this_rq, 1);
2616 }
2617 
2618 /*
2619  * Update the rq's load with the elapsed idle time before a task is
2620  * scheduled. if the newly scheduled task is not a CFS task, idle_exit will
2621  * be the only way to update the runnable statistic.
2622  */
2623 void idle_exit_fair(struct rq *this_rq)
2624 {
2625 	update_rq_runnable_avg(this_rq, 0);
2626 }
2627 
2628 static int idle_balance(struct rq *this_rq);
2629 
2630 #else /* CONFIG_SMP */
2631 
2632 static inline void update_entity_load_avg(struct sched_entity *se,
2633 					  int update_cfs_rq) {}
2634 static inline void update_rq_runnable_avg(struct rq *rq, int runnable) {}
2635 static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq,
2636 					   struct sched_entity *se,
2637 					   int wakeup) {}
2638 static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq,
2639 					   struct sched_entity *se,
2640 					   int sleep) {}
2641 static inline void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq,
2642 					      int force_update) {}
2643 
2644 static inline int idle_balance(struct rq *rq)
2645 {
2646 	return 0;
2647 }
2648 
2649 #endif /* CONFIG_SMP */
2650 
2651 static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
2652 {
2653 #ifdef CONFIG_SCHEDSTATS
2654 	struct task_struct *tsk = NULL;
2655 
2656 	if (entity_is_task(se))
2657 		tsk = task_of(se);
2658 
2659 	if (se->statistics.sleep_start) {
2660 		u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.sleep_start;
2661 
2662 		if ((s64)delta < 0)
2663 			delta = 0;
2664 
2665 		if (unlikely(delta > se->statistics.sleep_max))
2666 			se->statistics.sleep_max = delta;
2667 
2668 		se->statistics.sleep_start = 0;
2669 		se->statistics.sum_sleep_runtime += delta;
2670 
2671 		if (tsk) {
2672 			account_scheduler_latency(tsk, delta >> 10, 1);
2673 			trace_sched_stat_sleep(tsk, delta);
2674 		}
2675 	}
2676 	if (se->statistics.block_start) {
2677 		u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.block_start;
2678 
2679 		if ((s64)delta < 0)
2680 			delta = 0;
2681 
2682 		if (unlikely(delta > se->statistics.block_max))
2683 			se->statistics.block_max = delta;
2684 
2685 		se->statistics.block_start = 0;
2686 		se->statistics.sum_sleep_runtime += delta;
2687 
2688 		if (tsk) {
2689 			if (tsk->in_iowait) {
2690 				se->statistics.iowait_sum += delta;
2691 				se->statistics.iowait_count++;
2692 				trace_sched_stat_iowait(tsk, delta);
2693 			}
2694 
2695 			trace_sched_stat_blocked(tsk, delta);
2696 
2697 			/*
2698 			 * Blocking time is in units of nanosecs, so shift by
2699 			 * 20 to get a milliseconds-range estimation of the
2700 			 * amount of time that the task spent sleeping:
2701 			 */
2702 			if (unlikely(prof_on == SLEEP_PROFILING)) {
2703 				profile_hits(SLEEP_PROFILING,
2704 						(void *)get_wchan(tsk),
2705 						delta >> 20);
2706 			}
2707 			account_scheduler_latency(tsk, delta >> 10, 0);
2708 		}
2709 	}
2710 #endif
2711 }
2712 
2713 static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
2714 {
2715 #ifdef CONFIG_SCHED_DEBUG
2716 	s64 d = se->vruntime - cfs_rq->min_vruntime;
2717 
2718 	if (d < 0)
2719 		d = -d;
2720 
2721 	if (d > 3*sysctl_sched_latency)
2722 		schedstat_inc(cfs_rq, nr_spread_over);
2723 #endif
2724 }
2725 
2726 static void
2727 place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
2728 {
2729 	u64 vruntime = cfs_rq->min_vruntime;
2730 
2731 	/*
2732 	 * The 'current' period is already promised to the current tasks,
2733 	 * however the extra weight of the new task will slow them down a
2734 	 * little, place the new task so that it fits in the slot that
2735 	 * stays open at the end.
2736 	 */
2737 	if (initial && sched_feat(START_DEBIT))
2738 		vruntime += sched_vslice(cfs_rq, se);
2739 
2740 	/* sleeps up to a single latency don't count. */
2741 	if (!initial) {
2742 		unsigned long thresh = sysctl_sched_latency;
2743 
2744 		/*
2745 		 * Halve their sleep time's effect, to allow
2746 		 * for a gentler effect of sleepers:
2747 		 */
2748 		if (sched_feat(GENTLE_FAIR_SLEEPERS))
2749 			thresh >>= 1;
2750 
2751 		vruntime -= thresh;
2752 	}
2753 
2754 	/* ensure we never gain time by being placed backwards. */
2755 	se->vruntime = max_vruntime(se->vruntime, vruntime);
2756 }
2757 
2758 static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
2759 
2760 static void
2761 enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
2762 {
2763 	/*
2764 	 * Update the normalized vruntime before updating min_vruntime
2765 	 * through calling update_curr().
2766 	 */
2767 	if (!(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_WAKING))
2768 		se->vruntime += cfs_rq->min_vruntime;
2769 
2770 	/*
2771 	 * Update run-time statistics of the 'current'.
2772 	 */
2773 	update_curr(cfs_rq);
2774 	enqueue_entity_load_avg(cfs_rq, se, flags & ENQUEUE_WAKEUP);
2775 	account_entity_enqueue(cfs_rq, se);
2776 	update_cfs_shares(cfs_rq);
2777 
2778 	if (flags & ENQUEUE_WAKEUP) {
2779 		place_entity(cfs_rq, se, 0);
2780 		enqueue_sleeper(cfs_rq, se);
2781 	}
2782 
2783 	update_stats_enqueue(cfs_rq, se);
2784 	check_spread(cfs_rq, se);
2785 	if (se != cfs_rq->curr)
2786 		__enqueue_entity(cfs_rq, se);
2787 	se->on_rq = 1;
2788 
2789 	if (cfs_rq->nr_running == 1) {
2790 		list_add_leaf_cfs_rq(cfs_rq);
2791 		check_enqueue_throttle(cfs_rq);
2792 	}
2793 }
2794 
2795 static void __clear_buddies_last(struct sched_entity *se)
2796 {
2797 	for_each_sched_entity(se) {
2798 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
2799 		if (cfs_rq->last != se)
2800 			break;
2801 
2802 		cfs_rq->last = NULL;
2803 	}
2804 }
2805 
2806 static void __clear_buddies_next(struct sched_entity *se)
2807 {
2808 	for_each_sched_entity(se) {
2809 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
2810 		if (cfs_rq->next != se)
2811 			break;
2812 
2813 		cfs_rq->next = NULL;
2814 	}
2815 }
2816 
2817 static void __clear_buddies_skip(struct sched_entity *se)
2818 {
2819 	for_each_sched_entity(se) {
2820 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
2821 		if (cfs_rq->skip != se)
2822 			break;
2823 
2824 		cfs_rq->skip = NULL;
2825 	}
2826 }
2827 
2828 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
2829 {
2830 	if (cfs_rq->last == se)
2831 		__clear_buddies_last(se);
2832 
2833 	if (cfs_rq->next == se)
2834 		__clear_buddies_next(se);
2835 
2836 	if (cfs_rq->skip == se)
2837 		__clear_buddies_skip(se);
2838 }
2839 
2840 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
2841 
2842 static void
2843 dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
2844 {
2845 	/*
2846 	 * Update run-time statistics of the 'current'.
2847 	 */
2848 	update_curr(cfs_rq);
2849 	dequeue_entity_load_avg(cfs_rq, se, flags & DEQUEUE_SLEEP);
2850 
2851 	update_stats_dequeue(cfs_rq, se);
2852 	if (flags & DEQUEUE_SLEEP) {
2853 #ifdef CONFIG_SCHEDSTATS
2854 		if (entity_is_task(se)) {
2855 			struct task_struct *tsk = task_of(se);
2856 
2857 			if (tsk->state & TASK_INTERRUPTIBLE)
2858 				se->statistics.sleep_start = rq_clock(rq_of(cfs_rq));
2859 			if (tsk->state & TASK_UNINTERRUPTIBLE)
2860 				se->statistics.block_start = rq_clock(rq_of(cfs_rq));
2861 		}
2862 #endif
2863 	}
2864 
2865 	clear_buddies(cfs_rq, se);
2866 
2867 	if (se != cfs_rq->curr)
2868 		__dequeue_entity(cfs_rq, se);
2869 	se->on_rq = 0;
2870 	account_entity_dequeue(cfs_rq, se);
2871 
2872 	/*
2873 	 * Normalize the entity after updating the min_vruntime because the
2874 	 * update can refer to the ->curr item and we need to reflect this
2875 	 * movement in our normalized position.
2876 	 */
2877 	if (!(flags & DEQUEUE_SLEEP))
2878 		se->vruntime -= cfs_rq->min_vruntime;
2879 
2880 	/* return excess runtime on last dequeue */
2881 	return_cfs_rq_runtime(cfs_rq);
2882 
2883 	update_min_vruntime(cfs_rq);
2884 	update_cfs_shares(cfs_rq);
2885 }
2886 
2887 /*
2888  * Preempt the current task with a newly woken task if needed:
2889  */
2890 static void
2891 check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
2892 {
2893 	unsigned long ideal_runtime, delta_exec;
2894 	struct sched_entity *se;
2895 	s64 delta;
2896 
2897 	ideal_runtime = sched_slice(cfs_rq, curr);
2898 	delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
2899 	if (delta_exec > ideal_runtime) {
2900 		resched_task(rq_of(cfs_rq)->curr);
2901 		/*
2902 		 * The current task ran long enough, ensure it doesn't get
2903 		 * re-elected due to buddy favours.
2904 		 */
2905 		clear_buddies(cfs_rq, curr);
2906 		return;
2907 	}
2908 
2909 	/*
2910 	 * Ensure that a task that missed wakeup preemption by a
2911 	 * narrow margin doesn't have to wait for a full slice.
2912 	 * This also mitigates buddy induced latencies under load.
2913 	 */
2914 	if (delta_exec < sysctl_sched_min_granularity)
2915 		return;
2916 
2917 	se = __pick_first_entity(cfs_rq);
2918 	delta = curr->vruntime - se->vruntime;
2919 
2920 	if (delta < 0)
2921 		return;
2922 
2923 	if (delta > ideal_runtime)
2924 		resched_task(rq_of(cfs_rq)->curr);
2925 }
2926 
2927 static void
2928 set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
2929 {
2930 	/* 'current' is not kept within the tree. */
2931 	if (se->on_rq) {
2932 		/*
2933 		 * Any task has to be enqueued before it get to execute on
2934 		 * a CPU. So account for the time it spent waiting on the
2935 		 * runqueue.
2936 		 */
2937 		update_stats_wait_end(cfs_rq, se);
2938 		__dequeue_entity(cfs_rq, se);
2939 	}
2940 
2941 	update_stats_curr_start(cfs_rq, se);
2942 	cfs_rq->curr = se;
2943 #ifdef CONFIG_SCHEDSTATS
2944 	/*
2945 	 * Track our maximum slice length, if the CPU's load is at
2946 	 * least twice that of our own weight (i.e. dont track it
2947 	 * when there are only lesser-weight tasks around):
2948 	 */
2949 	if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
2950 		se->statistics.slice_max = max(se->statistics.slice_max,
2951 			se->sum_exec_runtime - se->prev_sum_exec_runtime);
2952 	}
2953 #endif
2954 	se->prev_sum_exec_runtime = se->sum_exec_runtime;
2955 }
2956 
2957 static int
2958 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
2959 
2960 /*
2961  * Pick the next process, keeping these things in mind, in this order:
2962  * 1) keep things fair between processes/task groups
2963  * 2) pick the "next" process, since someone really wants that to run
2964  * 3) pick the "last" process, for cache locality
2965  * 4) do not run the "skip" process, if something else is available
2966  */
2967 static struct sched_entity *
2968 pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr)
2969 {
2970 	struct sched_entity *left = __pick_first_entity(cfs_rq);
2971 	struct sched_entity *se;
2972 
2973 	/*
2974 	 * If curr is set we have to see if its left of the leftmost entity
2975 	 * still in the tree, provided there was anything in the tree at all.
2976 	 */
2977 	if (!left || (curr && entity_before(curr, left)))
2978 		left = curr;
2979 
2980 	se = left; /* ideally we run the leftmost entity */
2981 
2982 	/*
2983 	 * Avoid running the skip buddy, if running something else can
2984 	 * be done without getting too unfair.
2985 	 */
2986 	if (cfs_rq->skip == se) {
2987 		struct sched_entity *second;
2988 
2989 		if (se == curr) {
2990 			second = __pick_first_entity(cfs_rq);
2991 		} else {
2992 			second = __pick_next_entity(se);
2993 			if (!second || (curr && entity_before(curr, second)))
2994 				second = curr;
2995 		}
2996 
2997 		if (second && wakeup_preempt_entity(second, left) < 1)
2998 			se = second;
2999 	}
3000 
3001 	/*
3002 	 * Prefer last buddy, try to return the CPU to a preempted task.
3003 	 */
3004 	if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
3005 		se = cfs_rq->last;
3006 
3007 	/*
3008 	 * Someone really wants this to run. If it's not unfair, run it.
3009 	 */
3010 	if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
3011 		se = cfs_rq->next;
3012 
3013 	clear_buddies(cfs_rq, se);
3014 
3015 	return se;
3016 }
3017 
3018 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
3019 
3020 static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
3021 {
3022 	/*
3023 	 * If still on the runqueue then deactivate_task()
3024 	 * was not called and update_curr() has to be done:
3025 	 */
3026 	if (prev->on_rq)
3027 		update_curr(cfs_rq);
3028 
3029 	/* throttle cfs_rqs exceeding runtime */
3030 	check_cfs_rq_runtime(cfs_rq);
3031 
3032 	check_spread(cfs_rq, prev);
3033 	if (prev->on_rq) {
3034 		update_stats_wait_start(cfs_rq, prev);
3035 		/* Put 'current' back into the tree. */
3036 		__enqueue_entity(cfs_rq, prev);
3037 		/* in !on_rq case, update occurred at dequeue */
3038 		update_entity_load_avg(prev, 1);
3039 	}
3040 	cfs_rq->curr = NULL;
3041 }
3042 
3043 static void
3044 entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
3045 {
3046 	/*
3047 	 * Update run-time statistics of the 'current'.
3048 	 */
3049 	update_curr(cfs_rq);
3050 
3051 	/*
3052 	 * Ensure that runnable average is periodically updated.
3053 	 */
3054 	update_entity_load_avg(curr, 1);
3055 	update_cfs_rq_blocked_load(cfs_rq, 1);
3056 	update_cfs_shares(cfs_rq);
3057 
3058 #ifdef CONFIG_SCHED_HRTICK
3059 	/*
3060 	 * queued ticks are scheduled to match the slice, so don't bother
3061 	 * validating it and just reschedule.
3062 	 */
3063 	if (queued) {
3064 		resched_task(rq_of(cfs_rq)->curr);
3065 		return;
3066 	}
3067 	/*
3068 	 * don't let the period tick interfere with the hrtick preemption
3069 	 */
3070 	if (!sched_feat(DOUBLE_TICK) &&
3071 			hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
3072 		return;
3073 #endif
3074 
3075 	if (cfs_rq->nr_running > 1)
3076 		check_preempt_tick(cfs_rq, curr);
3077 }
3078 
3079 
3080 /**************************************************
3081  * CFS bandwidth control machinery
3082  */
3083 
3084 #ifdef CONFIG_CFS_BANDWIDTH
3085 
3086 #ifdef HAVE_JUMP_LABEL
3087 static struct static_key __cfs_bandwidth_used;
3088 
3089 static inline bool cfs_bandwidth_used(void)
3090 {
3091 	return static_key_false(&__cfs_bandwidth_used);
3092 }
3093 
3094 void cfs_bandwidth_usage_inc(void)
3095 {
3096 	static_key_slow_inc(&__cfs_bandwidth_used);
3097 }
3098 
3099 void cfs_bandwidth_usage_dec(void)
3100 {
3101 	static_key_slow_dec(&__cfs_bandwidth_used);
3102 }
3103 #else /* HAVE_JUMP_LABEL */
3104 static bool cfs_bandwidth_used(void)
3105 {
3106 	return true;
3107 }
3108 
3109 void cfs_bandwidth_usage_inc(void) {}
3110 void cfs_bandwidth_usage_dec(void) {}
3111 #endif /* HAVE_JUMP_LABEL */
3112 
3113 /*
3114  * default period for cfs group bandwidth.
3115  * default: 0.1s, units: nanoseconds
3116  */
3117 static inline u64 default_cfs_period(void)
3118 {
3119 	return 100000000ULL;
3120 }
3121 
3122 static inline u64 sched_cfs_bandwidth_slice(void)
3123 {
3124 	return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
3125 }
3126 
3127 /*
3128  * Replenish runtime according to assigned quota and update expiration time.
3129  * We use sched_clock_cpu directly instead of rq->clock to avoid adding
3130  * additional synchronization around rq->lock.
3131  *
3132  * requires cfs_b->lock
3133  */
3134 void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
3135 {
3136 	u64 now;
3137 
3138 	if (cfs_b->quota == RUNTIME_INF)
3139 		return;
3140 
3141 	now = sched_clock_cpu(smp_processor_id());
3142 	cfs_b->runtime = cfs_b->quota;
3143 	cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
3144 }
3145 
3146 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
3147 {
3148 	return &tg->cfs_bandwidth;
3149 }
3150 
3151 /* rq->task_clock normalized against any time this cfs_rq has spent throttled */
3152 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
3153 {
3154 	if (unlikely(cfs_rq->throttle_count))
3155 		return cfs_rq->throttled_clock_task;
3156 
3157 	return rq_clock_task(rq_of(cfs_rq)) - cfs_rq->throttled_clock_task_time;
3158 }
3159 
3160 /* returns 0 on failure to allocate runtime */
3161 static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3162 {
3163 	struct task_group *tg = cfs_rq->tg;
3164 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
3165 	u64 amount = 0, min_amount, expires;
3166 
3167 	/* note: this is a positive sum as runtime_remaining <= 0 */
3168 	min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;
3169 
3170 	raw_spin_lock(&cfs_b->lock);
3171 	if (cfs_b->quota == RUNTIME_INF)
3172 		amount = min_amount;
3173 	else {
3174 		/*
3175 		 * If the bandwidth pool has become inactive, then at least one
3176 		 * period must have elapsed since the last consumption.
3177 		 * Refresh the global state and ensure bandwidth timer becomes
3178 		 * active.
3179 		 */
3180 		if (!cfs_b->timer_active) {
3181 			__refill_cfs_bandwidth_runtime(cfs_b);
3182 			__start_cfs_bandwidth(cfs_b);
3183 		}
3184 
3185 		if (cfs_b->runtime > 0) {
3186 			amount = min(cfs_b->runtime, min_amount);
3187 			cfs_b->runtime -= amount;
3188 			cfs_b->idle = 0;
3189 		}
3190 	}
3191 	expires = cfs_b->runtime_expires;
3192 	raw_spin_unlock(&cfs_b->lock);
3193 
3194 	cfs_rq->runtime_remaining += amount;
3195 	/*
3196 	 * we may have advanced our local expiration to account for allowed
3197 	 * spread between our sched_clock and the one on which runtime was
3198 	 * issued.
3199 	 */
3200 	if ((s64)(expires - cfs_rq->runtime_expires) > 0)
3201 		cfs_rq->runtime_expires = expires;
3202 
3203 	return cfs_rq->runtime_remaining > 0;
3204 }
3205 
3206 /*
3207  * Note: This depends on the synchronization provided by sched_clock and the
3208  * fact that rq->clock snapshots this value.
3209  */
3210 static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3211 {
3212 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3213 
3214 	/* if the deadline is ahead of our clock, nothing to do */
3215 	if (likely((s64)(rq_clock(rq_of(cfs_rq)) - cfs_rq->runtime_expires) < 0))
3216 		return;
3217 
3218 	if (cfs_rq->runtime_remaining < 0)
3219 		return;
3220 
3221 	/*
3222 	 * If the local deadline has passed we have to consider the
3223 	 * possibility that our sched_clock is 'fast' and the global deadline
3224 	 * has not truly expired.
3225 	 *
3226 	 * Fortunately we can check determine whether this the case by checking
3227 	 * whether the global deadline has advanced.
3228 	 */
3229 
3230 	if ((s64)(cfs_rq->runtime_expires - cfs_b->runtime_expires) >= 0) {
3231 		/* extend local deadline, drift is bounded above by 2 ticks */
3232 		cfs_rq->runtime_expires += TICK_NSEC;
3233 	} else {
3234 		/* global deadline is ahead, expiration has passed */
3235 		cfs_rq->runtime_remaining = 0;
3236 	}
3237 }
3238 
3239 static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
3240 {
3241 	/* dock delta_exec before expiring quota (as it could span periods) */
3242 	cfs_rq->runtime_remaining -= delta_exec;
3243 	expire_cfs_rq_runtime(cfs_rq);
3244 
3245 	if (likely(cfs_rq->runtime_remaining > 0))
3246 		return;
3247 
3248 	/*
3249 	 * if we're unable to extend our runtime we resched so that the active
3250 	 * hierarchy can be throttled
3251 	 */
3252 	if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
3253 		resched_task(rq_of(cfs_rq)->curr);
3254 }
3255 
3256 static __always_inline
3257 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
3258 {
3259 	if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
3260 		return;
3261 
3262 	__account_cfs_rq_runtime(cfs_rq, delta_exec);
3263 }
3264 
3265 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
3266 {
3267 	return cfs_bandwidth_used() && cfs_rq->throttled;
3268 }
3269 
3270 /* check whether cfs_rq, or any parent, is throttled */
3271 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
3272 {
3273 	return cfs_bandwidth_used() && cfs_rq->throttle_count;
3274 }
3275 
3276 /*
3277  * Ensure that neither of the group entities corresponding to src_cpu or
3278  * dest_cpu are members of a throttled hierarchy when performing group
3279  * load-balance operations.
3280  */
3281 static inline int throttled_lb_pair(struct task_group *tg,
3282 				    int src_cpu, int dest_cpu)
3283 {
3284 	struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
3285 
3286 	src_cfs_rq = tg->cfs_rq[src_cpu];
3287 	dest_cfs_rq = tg->cfs_rq[dest_cpu];
3288 
3289 	return throttled_hierarchy(src_cfs_rq) ||
3290 	       throttled_hierarchy(dest_cfs_rq);
3291 }
3292 
3293 /* updated child weight may affect parent so we have to do this bottom up */
3294 static int tg_unthrottle_up(struct task_group *tg, void *data)
3295 {
3296 	struct rq *rq = data;
3297 	struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
3298 
3299 	cfs_rq->throttle_count--;
3300 #ifdef CONFIG_SMP
3301 	if (!cfs_rq->throttle_count) {
3302 		/* adjust cfs_rq_clock_task() */
3303 		cfs_rq->throttled_clock_task_time += rq_clock_task(rq) -
3304 					     cfs_rq->throttled_clock_task;
3305 	}
3306 #endif
3307 
3308 	return 0;
3309 }
3310 
3311 static int tg_throttle_down(struct task_group *tg, void *data)
3312 {
3313 	struct rq *rq = data;
3314 	struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
3315 
3316 	/* group is entering throttled state, stop time */
3317 	if (!cfs_rq->throttle_count)
3318 		cfs_rq->throttled_clock_task = rq_clock_task(rq);
3319 	cfs_rq->throttle_count++;
3320 
3321 	return 0;
3322 }
3323 
3324 static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
3325 {
3326 	struct rq *rq = rq_of(cfs_rq);
3327 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3328 	struct sched_entity *se;
3329 	long task_delta, dequeue = 1;
3330 
3331 	se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
3332 
3333 	/* freeze hierarchy runnable averages while throttled */
3334 	rcu_read_lock();
3335 	walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
3336 	rcu_read_unlock();
3337 
3338 	task_delta = cfs_rq->h_nr_running;
3339 	for_each_sched_entity(se) {
3340 		struct cfs_rq *qcfs_rq = cfs_rq_of(se);
3341 		/* throttled entity or throttle-on-deactivate */
3342 		if (!se->on_rq)
3343 			break;
3344 
3345 		if (dequeue)
3346 			dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
3347 		qcfs_rq->h_nr_running -= task_delta;
3348 
3349 		if (qcfs_rq->load.weight)
3350 			dequeue = 0;
3351 	}
3352 
3353 	if (!se)
3354 		sub_nr_running(rq, task_delta);
3355 
3356 	cfs_rq->throttled = 1;
3357 	cfs_rq->throttled_clock = rq_clock(rq);
3358 	raw_spin_lock(&cfs_b->lock);
3359 	list_add_tail_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
3360 	if (!cfs_b->timer_active)
3361 		__start_cfs_bandwidth(cfs_b);
3362 	raw_spin_unlock(&cfs_b->lock);
3363 }
3364 
3365 void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
3366 {
3367 	struct rq *rq = rq_of(cfs_rq);
3368 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3369 	struct sched_entity *se;
3370 	int enqueue = 1;
3371 	long task_delta;
3372 
3373 	se = cfs_rq->tg->se[cpu_of(rq)];
3374 
3375 	cfs_rq->throttled = 0;
3376 
3377 	update_rq_clock(rq);
3378 
3379 	raw_spin_lock(&cfs_b->lock);
3380 	cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
3381 	list_del_rcu(&cfs_rq->throttled_list);
3382 	raw_spin_unlock(&cfs_b->lock);
3383 
3384 	/* update hierarchical throttle state */
3385 	walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
3386 
3387 	if (!cfs_rq->load.weight)
3388 		return;
3389 
3390 	task_delta = cfs_rq->h_nr_running;
3391 	for_each_sched_entity(se) {
3392 		if (se->on_rq)
3393 			enqueue = 0;
3394 
3395 		cfs_rq = cfs_rq_of(se);
3396 		if (enqueue)
3397 			enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
3398 		cfs_rq->h_nr_running += task_delta;
3399 
3400 		if (cfs_rq_throttled(cfs_rq))
3401 			break;
3402 	}
3403 
3404 	if (!se)
3405 		add_nr_running(rq, task_delta);
3406 
3407 	/* determine whether we need to wake up potentially idle cpu */
3408 	if (rq->curr == rq->idle && rq->cfs.nr_running)
3409 		resched_task(rq->curr);
3410 }
3411 
3412 static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
3413 		u64 remaining, u64 expires)
3414 {
3415 	struct cfs_rq *cfs_rq;
3416 	u64 runtime = remaining;
3417 
3418 	rcu_read_lock();
3419 	list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
3420 				throttled_list) {
3421 		struct rq *rq = rq_of(cfs_rq);
3422 
3423 		raw_spin_lock(&rq->lock);
3424 		if (!cfs_rq_throttled(cfs_rq))
3425 			goto next;
3426 
3427 		runtime = -cfs_rq->runtime_remaining + 1;
3428 		if (runtime > remaining)
3429 			runtime = remaining;
3430 		remaining -= runtime;
3431 
3432 		cfs_rq->runtime_remaining += runtime;
3433 		cfs_rq->runtime_expires = expires;
3434 
3435 		/* we check whether we're throttled above */
3436 		if (cfs_rq->runtime_remaining > 0)
3437 			unthrottle_cfs_rq(cfs_rq);
3438 
3439 next:
3440 		raw_spin_unlock(&rq->lock);
3441 
3442 		if (!remaining)
3443 			break;
3444 	}
3445 	rcu_read_unlock();
3446 
3447 	return remaining;
3448 }
3449 
3450 /*
3451  * Responsible for refilling a task_group's bandwidth and unthrottling its
3452  * cfs_rqs as appropriate. If there has been no activity within the last
3453  * period the timer is deactivated until scheduling resumes; cfs_b->idle is
3454  * used to track this state.
3455  */
3456 static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
3457 {
3458 	u64 runtime, runtime_expires;
3459 	int idle = 1, throttled;
3460 
3461 	raw_spin_lock(&cfs_b->lock);
3462 	/* no need to continue the timer with no bandwidth constraint */
3463 	if (cfs_b->quota == RUNTIME_INF)
3464 		goto out_unlock;
3465 
3466 	throttled = !list_empty(&cfs_b->throttled_cfs_rq);
3467 	/* idle depends on !throttled (for the case of a large deficit) */
3468 	idle = cfs_b->idle && !throttled;
3469 	cfs_b->nr_periods += overrun;
3470 
3471 	/* if we're going inactive then everything else can be deferred */
3472 	if (idle)
3473 		goto out_unlock;
3474 
3475 	/*
3476 	 * if we have relooped after returning idle once, we need to update our
3477 	 * status as actually running, so that other cpus doing
3478 	 * __start_cfs_bandwidth will stop trying to cancel us.
3479 	 */
3480 	cfs_b->timer_active = 1;
3481 
3482 	__refill_cfs_bandwidth_runtime(cfs_b);
3483 
3484 	if (!throttled) {
3485 		/* mark as potentially idle for the upcoming period */
3486 		cfs_b->idle = 1;
3487 		goto out_unlock;
3488 	}
3489 
3490 	/* account preceding periods in which throttling occurred */
3491 	cfs_b->nr_throttled += overrun;
3492 
3493 	/*
3494 	 * There are throttled entities so we must first use the new bandwidth
3495 	 * to unthrottle them before making it generally available.  This
3496 	 * ensures that all existing debts will be paid before a new cfs_rq is
3497 	 * allowed to run.
3498 	 */
3499 	runtime = cfs_b->runtime;
3500 	runtime_expires = cfs_b->runtime_expires;
3501 	cfs_b->runtime = 0;
3502 
3503 	/*
3504 	 * This check is repeated as we are holding onto the new bandwidth
3505 	 * while we unthrottle.  This can potentially race with an unthrottled
3506 	 * group trying to acquire new bandwidth from the global pool.
3507 	 */
3508 	while (throttled && runtime > 0) {
3509 		raw_spin_unlock(&cfs_b->lock);
3510 		/* we can't nest cfs_b->lock while distributing bandwidth */
3511 		runtime = distribute_cfs_runtime(cfs_b, runtime,
3512 						 runtime_expires);
3513 		raw_spin_lock(&cfs_b->lock);
3514 
3515 		throttled = !list_empty(&cfs_b->throttled_cfs_rq);
3516 	}
3517 
3518 	/* return (any) remaining runtime */
3519 	cfs_b->runtime = runtime;
3520 	/*
3521 	 * While we are ensured activity in the period following an
3522 	 * unthrottle, this also covers the case in which the new bandwidth is
3523 	 * insufficient to cover the existing bandwidth deficit.  (Forcing the
3524 	 * timer to remain active while there are any throttled entities.)
3525 	 */
3526 	cfs_b->idle = 0;
3527 out_unlock:
3528 	if (idle)
3529 		cfs_b->timer_active = 0;
3530 	raw_spin_unlock(&cfs_b->lock);
3531 
3532 	return idle;
3533 }
3534 
3535 /* a cfs_rq won't donate quota below this amount */
3536 static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
3537 /* minimum remaining period time to redistribute slack quota */
3538 static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
3539 /* how long we wait to gather additional slack before distributing */
3540 static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
3541 
3542 /*
3543  * Are we near the end of the current quota period?
3544  *
3545  * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
3546  * hrtimer base being cleared by __hrtimer_start_range_ns. In the case of
3547  * migrate_hrtimers, base is never cleared, so we are fine.
3548  */
3549 static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
3550 {
3551 	struct hrtimer *refresh_timer = &cfs_b->period_timer;
3552 	u64 remaining;
3553 
3554 	/* if the call-back is running a quota refresh is already occurring */
3555 	if (hrtimer_callback_running(refresh_timer))
3556 		return 1;
3557 
3558 	/* is a quota refresh about to occur? */
3559 	remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
3560 	if (remaining < min_expire)
3561 		return 1;
3562 
3563 	return 0;
3564 }
3565 
3566 static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
3567 {
3568 	u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
3569 
3570 	/* if there's a quota refresh soon don't bother with slack */
3571 	if (runtime_refresh_within(cfs_b, min_left))
3572 		return;
3573 
3574 	start_bandwidth_timer(&cfs_b->slack_timer,
3575 				ns_to_ktime(cfs_bandwidth_slack_period));
3576 }
3577 
3578 /* we know any runtime found here is valid as update_curr() precedes return */
3579 static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3580 {
3581 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3582 	s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
3583 
3584 	if (slack_runtime <= 0)
3585 		return;
3586 
3587 	raw_spin_lock(&cfs_b->lock);
3588 	if (cfs_b->quota != RUNTIME_INF &&
3589 	    cfs_rq->runtime_expires == cfs_b->runtime_expires) {
3590 		cfs_b->runtime += slack_runtime;
3591 
3592 		/* we are under rq->lock, defer unthrottling using a timer */
3593 		if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
3594 		    !list_empty(&cfs_b->throttled_cfs_rq))
3595 			start_cfs_slack_bandwidth(cfs_b);
3596 	}
3597 	raw_spin_unlock(&cfs_b->lock);
3598 
3599 	/* even if it's not valid for return we don't want to try again */
3600 	cfs_rq->runtime_remaining -= slack_runtime;
3601 }
3602 
3603 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3604 {
3605 	if (!cfs_bandwidth_used())
3606 		return;
3607 
3608 	if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
3609 		return;
3610 
3611 	__return_cfs_rq_runtime(cfs_rq);
3612 }
3613 
3614 /*
3615  * This is done with a timer (instead of inline with bandwidth return) since
3616  * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
3617  */
3618 static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
3619 {
3620 	u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
3621 	u64 expires;
3622 
3623 	/* confirm we're still not at a refresh boundary */
3624 	raw_spin_lock(&cfs_b->lock);
3625 	if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
3626 		raw_spin_unlock(&cfs_b->lock);
3627 		return;
3628 	}
3629 
3630 	if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice) {
3631 		runtime = cfs_b->runtime;
3632 		cfs_b->runtime = 0;
3633 	}
3634 	expires = cfs_b->runtime_expires;
3635 	raw_spin_unlock(&cfs_b->lock);
3636 
3637 	if (!runtime)
3638 		return;
3639 
3640 	runtime = distribute_cfs_runtime(cfs_b, runtime, expires);
3641 
3642 	raw_spin_lock(&cfs_b->lock);
3643 	if (expires == cfs_b->runtime_expires)
3644 		cfs_b->runtime = runtime;
3645 	raw_spin_unlock(&cfs_b->lock);
3646 }
3647 
3648 /*
3649  * When a group wakes up we want to make sure that its quota is not already
3650  * expired/exceeded, otherwise it may be allowed to steal additional ticks of
3651  * runtime as update_curr() throttling can not not trigger until it's on-rq.
3652  */
3653 static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
3654 {
3655 	if (!cfs_bandwidth_used())
3656 		return;
3657 
3658 	/* an active group must be handled by the update_curr()->put() path */
3659 	if (!cfs_rq->runtime_enabled || cfs_rq->curr)
3660 		return;
3661 
3662 	/* ensure the group is not already throttled */
3663 	if (cfs_rq_throttled(cfs_rq))
3664 		return;
3665 
3666 	/* update runtime allocation */
3667 	account_cfs_rq_runtime(cfs_rq, 0);
3668 	if (cfs_rq->runtime_remaining <= 0)
3669 		throttle_cfs_rq(cfs_rq);
3670 }
3671 
3672 /* conditionally throttle active cfs_rq's from put_prev_entity() */
3673 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3674 {
3675 	if (!cfs_bandwidth_used())
3676 		return false;
3677 
3678 	if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
3679 		return false;
3680 
3681 	/*
3682 	 * it's possible for a throttled entity to be forced into a running
3683 	 * state (e.g. set_curr_task), in this case we're finished.
3684 	 */
3685 	if (cfs_rq_throttled(cfs_rq))
3686 		return true;
3687 
3688 	throttle_cfs_rq(cfs_rq);
3689 	return true;
3690 }
3691 
3692 static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
3693 {
3694 	struct cfs_bandwidth *cfs_b =
3695 		container_of(timer, struct cfs_bandwidth, slack_timer);
3696 	do_sched_cfs_slack_timer(cfs_b);
3697 
3698 	return HRTIMER_NORESTART;
3699 }
3700 
3701 static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
3702 {
3703 	struct cfs_bandwidth *cfs_b =
3704 		container_of(timer, struct cfs_bandwidth, period_timer);
3705 	ktime_t now;
3706 	int overrun;
3707 	int idle = 0;
3708 
3709 	for (;;) {
3710 		now = hrtimer_cb_get_time(timer);
3711 		overrun = hrtimer_forward(timer, now, cfs_b->period);
3712 
3713 		if (!overrun)
3714 			break;
3715 
3716 		idle = do_sched_cfs_period_timer(cfs_b, overrun);
3717 	}
3718 
3719 	return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
3720 }
3721 
3722 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
3723 {
3724 	raw_spin_lock_init(&cfs_b->lock);
3725 	cfs_b->runtime = 0;
3726 	cfs_b->quota = RUNTIME_INF;
3727 	cfs_b->period = ns_to_ktime(default_cfs_period());
3728 
3729 	INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
3730 	hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3731 	cfs_b->period_timer.function = sched_cfs_period_timer;
3732 	hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3733 	cfs_b->slack_timer.function = sched_cfs_slack_timer;
3734 }
3735 
3736 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3737 {
3738 	cfs_rq->runtime_enabled = 0;
3739 	INIT_LIST_HEAD(&cfs_rq->throttled_list);
3740 }
3741 
3742 /* requires cfs_b->lock, may release to reprogram timer */
3743 void __start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
3744 {
3745 	/*
3746 	 * The timer may be active because we're trying to set a new bandwidth
3747 	 * period or because we're racing with the tear-down path
3748 	 * (timer_active==0 becomes visible before the hrtimer call-back
3749 	 * terminates).  In either case we ensure that it's re-programmed
3750 	 */
3751 	while (unlikely(hrtimer_active(&cfs_b->period_timer)) &&
3752 	       hrtimer_try_to_cancel(&cfs_b->period_timer) < 0) {
3753 		/* bounce the lock to allow do_sched_cfs_period_timer to run */
3754 		raw_spin_unlock(&cfs_b->lock);
3755 		cpu_relax();
3756 		raw_spin_lock(&cfs_b->lock);
3757 		/* if someone else restarted the timer then we're done */
3758 		if (cfs_b->timer_active)
3759 			return;
3760 	}
3761 
3762 	cfs_b->timer_active = 1;
3763 	start_bandwidth_timer(&cfs_b->period_timer, cfs_b->period);
3764 }
3765 
3766 static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
3767 {
3768 	hrtimer_cancel(&cfs_b->period_timer);
3769 	hrtimer_cancel(&cfs_b->slack_timer);
3770 }
3771 
3772 static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
3773 {
3774 	struct cfs_rq *cfs_rq;
3775 
3776 	for_each_leaf_cfs_rq(rq, cfs_rq) {
3777 		struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3778 
3779 		if (!cfs_rq->runtime_enabled)
3780 			continue;
3781 
3782 		/*
3783 		 * clock_task is not advancing so we just need to make sure
3784 		 * there's some valid quota amount
3785 		 */
3786 		cfs_rq->runtime_remaining = cfs_b->quota;
3787 		if (cfs_rq_throttled(cfs_rq))
3788 			unthrottle_cfs_rq(cfs_rq);
3789 	}
3790 }
3791 
3792 #else /* CONFIG_CFS_BANDWIDTH */
3793 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
3794 {
3795 	return rq_clock_task(rq_of(cfs_rq));
3796 }
3797 
3798 static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {}
3799 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; }
3800 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
3801 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
3802 
3803 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
3804 {
3805 	return 0;
3806 }
3807 
3808 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
3809 {
3810 	return 0;
3811 }
3812 
3813 static inline int throttled_lb_pair(struct task_group *tg,
3814 				    int src_cpu, int dest_cpu)
3815 {
3816 	return 0;
3817 }
3818 
3819 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
3820 
3821 #ifdef CONFIG_FAIR_GROUP_SCHED
3822 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
3823 #endif
3824 
3825 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
3826 {
3827 	return NULL;
3828 }
3829 static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
3830 static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
3831 
3832 #endif /* CONFIG_CFS_BANDWIDTH */
3833 
3834 /**************************************************
3835  * CFS operations on tasks:
3836  */
3837 
3838 #ifdef CONFIG_SCHED_HRTICK
3839 static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
3840 {
3841 	struct sched_entity *se = &p->se;
3842 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
3843 
3844 	WARN_ON(task_rq(p) != rq);
3845 
3846 	if (cfs_rq->nr_running > 1) {
3847 		u64 slice = sched_slice(cfs_rq, se);
3848 		u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
3849 		s64 delta = slice - ran;
3850 
3851 		if (delta < 0) {
3852 			if (rq->curr == p)
3853 				resched_task(p);
3854 			return;
3855 		}
3856 
3857 		/*
3858 		 * Don't schedule slices shorter than 10000ns, that just
3859 		 * doesn't make sense. Rely on vruntime for fairness.
3860 		 */
3861 		if (rq->curr != p)
3862 			delta = max_t(s64, 10000LL, delta);
3863 
3864 		hrtick_start(rq, delta);
3865 	}
3866 }
3867 
3868 /*
3869  * called from enqueue/dequeue and updates the hrtick when the
3870  * current task is from our class and nr_running is low enough
3871  * to matter.
3872  */
3873 static void hrtick_update(struct rq *rq)
3874 {
3875 	struct task_struct *curr = rq->curr;
3876 
3877 	if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
3878 		return;
3879 
3880 	if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
3881 		hrtick_start_fair(rq, curr);
3882 }
3883 #else /* !CONFIG_SCHED_HRTICK */
3884 static inline void
3885 hrtick_start_fair(struct rq *rq, struct task_struct *p)
3886 {
3887 }
3888 
3889 static inline void hrtick_update(struct rq *rq)
3890 {
3891 }
3892 #endif
3893 
3894 /*
3895  * The enqueue_task method is called before nr_running is
3896  * increased. Here we update the fair scheduling stats and
3897  * then put the task into the rbtree:
3898  */
3899 static void
3900 enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
3901 {
3902 	struct cfs_rq *cfs_rq;
3903 	struct sched_entity *se = &p->se;
3904 
3905 	for_each_sched_entity(se) {
3906 		if (se->on_rq)
3907 			break;
3908 		cfs_rq = cfs_rq_of(se);
3909 		enqueue_entity(cfs_rq, se, flags);
3910 
3911 		/*
3912 		 * end evaluation on encountering a throttled cfs_rq
3913 		 *
3914 		 * note: in the case of encountering a throttled cfs_rq we will
3915 		 * post the final h_nr_running increment below.
3916 		*/
3917 		if (cfs_rq_throttled(cfs_rq))
3918 			break;
3919 		cfs_rq->h_nr_running++;
3920 
3921 		flags = ENQUEUE_WAKEUP;
3922 	}
3923 
3924 	for_each_sched_entity(se) {
3925 		cfs_rq = cfs_rq_of(se);
3926 		cfs_rq->h_nr_running++;
3927 
3928 		if (cfs_rq_throttled(cfs_rq))
3929 			break;
3930 
3931 		update_cfs_shares(cfs_rq);
3932 		update_entity_load_avg(se, 1);
3933 	}
3934 
3935 	if (!se) {
3936 		update_rq_runnable_avg(rq, rq->nr_running);
3937 		add_nr_running(rq, 1);
3938 	}
3939 	hrtick_update(rq);
3940 }
3941 
3942 static void set_next_buddy(struct sched_entity *se);
3943 
3944 /*
3945  * The dequeue_task method is called before nr_running is
3946  * decreased. We remove the task from the rbtree and
3947  * update the fair scheduling stats:
3948  */
3949 static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
3950 {
3951 	struct cfs_rq *cfs_rq;
3952 	struct sched_entity *se = &p->se;
3953 	int task_sleep = flags & DEQUEUE_SLEEP;
3954 
3955 	for_each_sched_entity(se) {
3956 		cfs_rq = cfs_rq_of(se);
3957 		dequeue_entity(cfs_rq, se, flags);
3958 
3959 		/*
3960 		 * end evaluation on encountering a throttled cfs_rq
3961 		 *
3962 		 * note: in the case of encountering a throttled cfs_rq we will
3963 		 * post the final h_nr_running decrement below.
3964 		*/
3965 		if (cfs_rq_throttled(cfs_rq))
3966 			break;
3967 		cfs_rq->h_nr_running--;
3968 
3969 		/* Don't dequeue parent if it has other entities besides us */
3970 		if (cfs_rq->load.weight) {
3971 			/*
3972 			 * Bias pick_next to pick a task from this cfs_rq, as
3973 			 * p is sleeping when it is within its sched_slice.
3974 			 */
3975 			if (task_sleep && parent_entity(se))
3976 				set_next_buddy(parent_entity(se));
3977 
3978 			/* avoid re-evaluating load for this entity */
3979 			se = parent_entity(se);
3980 			break;
3981 		}
3982 		flags |= DEQUEUE_SLEEP;
3983 	}
3984 
3985 	for_each_sched_entity(se) {
3986 		cfs_rq = cfs_rq_of(se);
3987 		cfs_rq->h_nr_running--;
3988 
3989 		if (cfs_rq_throttled(cfs_rq))
3990 			break;
3991 
3992 		update_cfs_shares(cfs_rq);
3993 		update_entity_load_avg(se, 1);
3994 	}
3995 
3996 	if (!se) {
3997 		sub_nr_running(rq, 1);
3998 		update_rq_runnable_avg(rq, 1);
3999 	}
4000 	hrtick_update(rq);
4001 }
4002 
4003 #ifdef CONFIG_SMP
4004 /* Used instead of source_load when we know the type == 0 */
4005 static unsigned long weighted_cpuload(const int cpu)
4006 {
4007 	return cpu_rq(cpu)->cfs.runnable_load_avg;
4008 }
4009 
4010 /*
4011  * Return a low guess at the load of a migration-source cpu weighted
4012  * according to the scheduling class and "nice" value.
4013  *
4014  * We want to under-estimate the load of migration sources, to
4015  * balance conservatively.
4016  */
4017 static unsigned long source_load(int cpu, int type)
4018 {
4019 	struct rq *rq = cpu_rq(cpu);
4020 	unsigned long total = weighted_cpuload(cpu);
4021 
4022 	if (type == 0 || !sched_feat(LB_BIAS))
4023 		return total;
4024 
4025 	return min(rq->cpu_load[type-1], total);
4026 }
4027 
4028 /*
4029  * Return a high guess at the load of a migration-target cpu weighted
4030  * according to the scheduling class and "nice" value.
4031  */
4032 static unsigned long target_load(int cpu, int type)
4033 {
4034 	struct rq *rq = cpu_rq(cpu);
4035 	unsigned long total = weighted_cpuload(cpu);
4036 
4037 	if (type == 0 || !sched_feat(LB_BIAS))
4038 		return total;
4039 
4040 	return max(rq->cpu_load[type-1], total);
4041 }
4042 
4043 static unsigned long power_of(int cpu)
4044 {
4045 	return cpu_rq(cpu)->cpu_power;
4046 }
4047 
4048 static unsigned long cpu_avg_load_per_task(int cpu)
4049 {
4050 	struct rq *rq = cpu_rq(cpu);
4051 	unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
4052 	unsigned long load_avg = rq->cfs.runnable_load_avg;
4053 
4054 	if (nr_running)
4055 		return load_avg / nr_running;
4056 
4057 	return 0;
4058 }
4059 
4060 static void record_wakee(struct task_struct *p)
4061 {
4062 	/*
4063 	 * Rough decay (wiping) for cost saving, don't worry
4064 	 * about the boundary, really active task won't care
4065 	 * about the loss.
4066 	 */
4067 	if (jiffies > current->wakee_flip_decay_ts + HZ) {
4068 		current->wakee_flips >>= 1;
4069 		current->wakee_flip_decay_ts = jiffies;
4070 	}
4071 
4072 	if (current->last_wakee != p) {
4073 		current->last_wakee = p;
4074 		current->wakee_flips++;
4075 	}
4076 }
4077 
4078 static void task_waking_fair(struct task_struct *p)
4079 {
4080 	struct sched_entity *se = &p->se;
4081 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
4082 	u64 min_vruntime;
4083 
4084 #ifndef CONFIG_64BIT
4085 	u64 min_vruntime_copy;
4086 
4087 	do {
4088 		min_vruntime_copy = cfs_rq->min_vruntime_copy;
4089 		smp_rmb();
4090 		min_vruntime = cfs_rq->min_vruntime;
4091 	} while (min_vruntime != min_vruntime_copy);
4092 #else
4093 	min_vruntime = cfs_rq->min_vruntime;
4094 #endif
4095 
4096 	se->vruntime -= min_vruntime;
4097 	record_wakee(p);
4098 }
4099 
4100 #ifdef CONFIG_FAIR_GROUP_SCHED
4101 /*
4102  * effective_load() calculates the load change as seen from the root_task_group
4103  *
4104  * Adding load to a group doesn't make a group heavier, but can cause movement
4105  * of group shares between cpus. Assuming the shares were perfectly aligned one
4106  * can calculate the shift in shares.
4107  *
4108  * Calculate the effective load difference if @wl is added (subtracted) to @tg
4109  * on this @cpu and results in a total addition (subtraction) of @wg to the
4110  * total group weight.
4111  *
4112  * Given a runqueue weight distribution (rw_i) we can compute a shares
4113  * distribution (s_i) using:
4114  *
4115  *   s_i = rw_i / \Sum rw_j						(1)
4116  *
4117  * Suppose we have 4 CPUs and our @tg is a direct child of the root group and
4118  * has 7 equal weight tasks, distributed as below (rw_i), with the resulting
4119  * shares distribution (s_i):
4120  *
4121  *   rw_i = {   2,   4,   1,   0 }
4122  *   s_i  = { 2/7, 4/7, 1/7,   0 }
4123  *
4124  * As per wake_affine() we're interested in the load of two CPUs (the CPU the
4125  * task used to run on and the CPU the waker is running on), we need to
4126  * compute the effect of waking a task on either CPU and, in case of a sync
4127  * wakeup, compute the effect of the current task going to sleep.
4128  *
4129  * So for a change of @wl to the local @cpu with an overall group weight change
4130  * of @wl we can compute the new shares distribution (s'_i) using:
4131  *
4132  *   s'_i = (rw_i + @wl) / (@wg + \Sum rw_j)				(2)
4133  *
4134  * Suppose we're interested in CPUs 0 and 1, and want to compute the load
4135  * differences in waking a task to CPU 0. The additional task changes the
4136  * weight and shares distributions like:
4137  *
4138  *   rw'_i = {   3,   4,   1,   0 }
4139  *   s'_i  = { 3/8, 4/8, 1/8,   0 }
4140  *
4141  * We can then compute the difference in effective weight by using:
4142  *
4143  *   dw_i = S * (s'_i - s_i)						(3)
4144  *
4145  * Where 'S' is the group weight as seen by its parent.
4146  *
4147  * Therefore the effective change in loads on CPU 0 would be 5/56 (3/8 - 2/7)
4148  * times the weight of the group. The effect on CPU 1 would be -4/56 (4/8 -
4149  * 4/7) times the weight of the group.
4150  */
4151 static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
4152 {
4153 	struct sched_entity *se = tg->se[cpu];
4154 
4155 	if (!tg->parent)	/* the trivial, non-cgroup case */
4156 		return wl;
4157 
4158 	for_each_sched_entity(se) {
4159 		long w, W;
4160 
4161 		tg = se->my_q->tg;
4162 
4163 		/*
4164 		 * W = @wg + \Sum rw_j
4165 		 */
4166 		W = wg + calc_tg_weight(tg, se->my_q);
4167 
4168 		/*
4169 		 * w = rw_i + @wl
4170 		 */
4171 		w = se->my_q->load.weight + wl;
4172 
4173 		/*
4174 		 * wl = S * s'_i; see (2)
4175 		 */
4176 		if (W > 0 && w < W)
4177 			wl = (w * tg->shares) / W;
4178 		else
4179 			wl = tg->shares;
4180 
4181 		/*
4182 		 * Per the above, wl is the new se->load.weight value; since
4183 		 * those are clipped to [MIN_SHARES, ...) do so now. See
4184 		 * calc_cfs_shares().
4185 		 */
4186 		if (wl < MIN_SHARES)
4187 			wl = MIN_SHARES;
4188 
4189 		/*
4190 		 * wl = dw_i = S * (s'_i - s_i); see (3)
4191 		 */
4192 		wl -= se->load.weight;
4193 
4194 		/*
4195 		 * Recursively apply this logic to all parent groups to compute
4196 		 * the final effective load change on the root group. Since
4197 		 * only the @tg group gets extra weight, all parent groups can
4198 		 * only redistribute existing shares. @wl is the shift in shares
4199 		 * resulting from this level per the above.
4200 		 */
4201 		wg = 0;
4202 	}
4203 
4204 	return wl;
4205 }
4206 #else
4207 
4208 static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
4209 {
4210 	return wl;
4211 }
4212 
4213 #endif
4214 
4215 static int wake_wide(struct task_struct *p)
4216 {
4217 	int factor = this_cpu_read(sd_llc_size);
4218 
4219 	/*
4220 	 * Yeah, it's the switching-frequency, could means many wakee or
4221 	 * rapidly switch, use factor here will just help to automatically
4222 	 * adjust the loose-degree, so bigger node will lead to more pull.
4223 	 */
4224 	if (p->wakee_flips > factor) {
4225 		/*
4226 		 * wakee is somewhat hot, it needs certain amount of cpu
4227 		 * resource, so if waker is far more hot, prefer to leave
4228 		 * it alone.
4229 		 */
4230 		if (current->wakee_flips > (factor * p->wakee_flips))
4231 			return 1;
4232 	}
4233 
4234 	return 0;
4235 }
4236 
4237 static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
4238 {
4239 	s64 this_load, load;
4240 	int idx, this_cpu, prev_cpu;
4241 	unsigned long tl_per_task;
4242 	struct task_group *tg;
4243 	unsigned long weight;
4244 	int balanced;
4245 
4246 	/*
4247 	 * If we wake multiple tasks be careful to not bounce
4248 	 * ourselves around too much.
4249 	 */
4250 	if (wake_wide(p))
4251 		return 0;
4252 
4253 	idx	  = sd->wake_idx;
4254 	this_cpu  = smp_processor_id();
4255 	prev_cpu  = task_cpu(p);
4256 	load	  = source_load(prev_cpu, idx);
4257 	this_load = target_load(this_cpu, idx);
4258 
4259 	/*
4260 	 * If sync wakeup then subtract the (maximum possible)
4261 	 * effect of the currently running task from the load
4262 	 * of the current CPU:
4263 	 */
4264 	if (sync) {
4265 		tg = task_group(current);
4266 		weight = current->se.load.weight;
4267 
4268 		this_load += effective_load(tg, this_cpu, -weight, -weight);
4269 		load += effective_load(tg, prev_cpu, 0, -weight);
4270 	}
4271 
4272 	tg = task_group(p);
4273 	weight = p->se.load.weight;
4274 
4275 	/*
4276 	 * In low-load situations, where prev_cpu is idle and this_cpu is idle
4277 	 * due to the sync cause above having dropped this_load to 0, we'll
4278 	 * always have an imbalance, but there's really nothing you can do
4279 	 * about that, so that's good too.
4280 	 *
4281 	 * Otherwise check if either cpus are near enough in load to allow this
4282 	 * task to be woken on this_cpu.
4283 	 */
4284 	if (this_load > 0) {
4285 		s64 this_eff_load, prev_eff_load;
4286 
4287 		this_eff_load = 100;
4288 		this_eff_load *= power_of(prev_cpu);
4289 		this_eff_load *= this_load +
4290 			effective_load(tg, this_cpu, weight, weight);
4291 
4292 		prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
4293 		prev_eff_load *= power_of(this_cpu);
4294 		prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight);
4295 
4296 		balanced = this_eff_load <= prev_eff_load;
4297 	} else
4298 		balanced = true;
4299 
4300 	/*
4301 	 * If the currently running task will sleep within
4302 	 * a reasonable amount of time then attract this newly
4303 	 * woken task:
4304 	 */
4305 	if (sync && balanced)
4306 		return 1;
4307 
4308 	schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts);
4309 	tl_per_task = cpu_avg_load_per_task(this_cpu);
4310 
4311 	if (balanced ||
4312 	    (this_load <= load &&
4313 	     this_load + target_load(prev_cpu, idx) <= tl_per_task)) {
4314 		/*
4315 		 * This domain has SD_WAKE_AFFINE and
4316 		 * p is cache cold in this domain, and
4317 		 * there is no bad imbalance.
4318 		 */
4319 		schedstat_inc(sd, ttwu_move_affine);
4320 		schedstat_inc(p, se.statistics.nr_wakeups_affine);
4321 
4322 		return 1;
4323 	}
4324 	return 0;
4325 }
4326 
4327 /*
4328  * find_idlest_group finds and returns the least busy CPU group within the
4329  * domain.
4330  */
4331 static struct sched_group *
4332 find_idlest_group(struct sched_domain *sd, struct task_struct *p,
4333 		  int this_cpu, int sd_flag)
4334 {
4335 	struct sched_group *idlest = NULL, *group = sd->groups;
4336 	unsigned long min_load = ULONG_MAX, this_load = 0;
4337 	int load_idx = sd->forkexec_idx;
4338 	int imbalance = 100 + (sd->imbalance_pct-100)/2;
4339 
4340 	if (sd_flag & SD_BALANCE_WAKE)
4341 		load_idx = sd->wake_idx;
4342 
4343 	do {
4344 		unsigned long load, avg_load;
4345 		int local_group;
4346 		int i;
4347 
4348 		/* Skip over this group if it has no CPUs allowed */
4349 		if (!cpumask_intersects(sched_group_cpus(group),
4350 					tsk_cpus_allowed(p)))
4351 			continue;
4352 
4353 		local_group = cpumask_test_cpu(this_cpu,
4354 					       sched_group_cpus(group));
4355 
4356 		/* Tally up the load of all CPUs in the group */
4357 		avg_load = 0;
4358 
4359 		for_each_cpu(i, sched_group_cpus(group)) {
4360 			/* Bias balancing toward cpus of our domain */
4361 			if (local_group)
4362 				load = source_load(i, load_idx);
4363 			else
4364 				load = target_load(i, load_idx);
4365 
4366 			avg_load += load;
4367 		}
4368 
4369 		/* Adjust by relative CPU power of the group */
4370 		avg_load = (avg_load * SCHED_POWER_SCALE) / group->sgp->power;
4371 
4372 		if (local_group) {
4373 			this_load = avg_load;
4374 		} else if (avg_load < min_load) {
4375 			min_load = avg_load;
4376 			idlest = group;
4377 		}
4378 	} while (group = group->next, group != sd->groups);
4379 
4380 	if (!idlest || 100*this_load < imbalance*min_load)
4381 		return NULL;
4382 	return idlest;
4383 }
4384 
4385 /*
4386  * find_idlest_cpu - find the idlest cpu among the cpus in group.
4387  */
4388 static int
4389 find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
4390 {
4391 	unsigned long load, min_load = ULONG_MAX;
4392 	int idlest = -1;
4393 	int i;
4394 
4395 	/* Traverse only the allowed CPUs */
4396 	for_each_cpu_and(i, sched_group_cpus(group), tsk_cpus_allowed(p)) {
4397 		load = weighted_cpuload(i);
4398 
4399 		if (load < min_load || (load == min_load && i == this_cpu)) {
4400 			min_load = load;
4401 			idlest = i;
4402 		}
4403 	}
4404 
4405 	return idlest;
4406 }
4407 
4408 /*
4409  * Try and locate an idle CPU in the sched_domain.
4410  */
4411 static int select_idle_sibling(struct task_struct *p, int target)
4412 {
4413 	struct sched_domain *sd;
4414 	struct sched_group *sg;
4415 	int i = task_cpu(p);
4416 
4417 	if (idle_cpu(target))
4418 		return target;
4419 
4420 	/*
4421 	 * If the prevous cpu is cache affine and idle, don't be stupid.
4422 	 */
4423 	if (i != target && cpus_share_cache(i, target) && idle_cpu(i))
4424 		return i;
4425 
4426 	/*
4427 	 * Otherwise, iterate the domains and find an elegible idle cpu.
4428 	 */
4429 	sd = rcu_dereference(per_cpu(sd_llc, target));
4430 	for_each_lower_domain(sd) {
4431 		sg = sd->groups;
4432 		do {
4433 			if (!cpumask_intersects(sched_group_cpus(sg),
4434 						tsk_cpus_allowed(p)))
4435 				goto next;
4436 
4437 			for_each_cpu(i, sched_group_cpus(sg)) {
4438 				if (i == target || !idle_cpu(i))
4439 					goto next;
4440 			}
4441 
4442 			target = cpumask_first_and(sched_group_cpus(sg),
4443 					tsk_cpus_allowed(p));
4444 			goto done;
4445 next:
4446 			sg = sg->next;
4447 		} while (sg != sd->groups);
4448 	}
4449 done:
4450 	return target;
4451 }
4452 
4453 /*
4454  * select_task_rq_fair: Select target runqueue for the waking task in domains
4455  * that have the 'sd_flag' flag set. In practice, this is SD_BALANCE_WAKE,
4456  * SD_BALANCE_FORK, or SD_BALANCE_EXEC.
4457  *
4458  * Balances load by selecting the idlest cpu in the idlest group, or under
4459  * certain conditions an idle sibling cpu if the domain has SD_WAKE_AFFINE set.
4460  *
4461  * Returns the target cpu number.
4462  *
4463  * preempt must be disabled.
4464  */
4465 static int
4466 select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_flags)
4467 {
4468 	struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
4469 	int cpu = smp_processor_id();
4470 	int new_cpu = cpu;
4471 	int want_affine = 0;
4472 	int sync = wake_flags & WF_SYNC;
4473 
4474 	if (p->nr_cpus_allowed == 1)
4475 		return prev_cpu;
4476 
4477 	if (sd_flag & SD_BALANCE_WAKE) {
4478 		if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p)))
4479 			want_affine = 1;
4480 		new_cpu = prev_cpu;
4481 	}
4482 
4483 	rcu_read_lock();
4484 	for_each_domain(cpu, tmp) {
4485 		if (!(tmp->flags & SD_LOAD_BALANCE))
4486 			continue;
4487 
4488 		/*
4489 		 * If both cpu and prev_cpu are part of this domain,
4490 		 * cpu is a valid SD_WAKE_AFFINE target.
4491 		 */
4492 		if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
4493 		    cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
4494 			affine_sd = tmp;
4495 			break;
4496 		}
4497 
4498 		if (tmp->flags & sd_flag)
4499 			sd = tmp;
4500 	}
4501 
4502 	if (affine_sd && cpu != prev_cpu && wake_affine(affine_sd, p, sync))
4503 		prev_cpu = cpu;
4504 
4505 	if (sd_flag & SD_BALANCE_WAKE) {
4506 		new_cpu = select_idle_sibling(p, prev_cpu);
4507 		goto unlock;
4508 	}
4509 
4510 	while (sd) {
4511 		struct sched_group *group;
4512 		int weight;
4513 
4514 		if (!(sd->flags & sd_flag)) {
4515 			sd = sd->child;
4516 			continue;
4517 		}
4518 
4519 		group = find_idlest_group(sd, p, cpu, sd_flag);
4520 		if (!group) {
4521 			sd = sd->child;
4522 			continue;
4523 		}
4524 
4525 		new_cpu = find_idlest_cpu(group, p, cpu);
4526 		if (new_cpu == -1 || new_cpu == cpu) {
4527 			/* Now try balancing at a lower domain level of cpu */
4528 			sd = sd->child;
4529 			continue;
4530 		}
4531 
4532 		/* Now try balancing at a lower domain level of new_cpu */
4533 		cpu = new_cpu;
4534 		weight = sd->span_weight;
4535 		sd = NULL;
4536 		for_each_domain(cpu, tmp) {
4537 			if (weight <= tmp->span_weight)
4538 				break;
4539 			if (tmp->flags & sd_flag)
4540 				sd = tmp;
4541 		}
4542 		/* while loop will break here if sd == NULL */
4543 	}
4544 unlock:
4545 	rcu_read_unlock();
4546 
4547 	return new_cpu;
4548 }
4549 
4550 /*
4551  * Called immediately before a task is migrated to a new cpu; task_cpu(p) and
4552  * cfs_rq_of(p) references at time of call are still valid and identify the
4553  * previous cpu.  However, the caller only guarantees p->pi_lock is held; no
4554  * other assumptions, including the state of rq->lock, should be made.
4555  */
4556 static void
4557 migrate_task_rq_fair(struct task_struct *p, int next_cpu)
4558 {
4559 	struct sched_entity *se = &p->se;
4560 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
4561 
4562 	/*
4563 	 * Load tracking: accumulate removed load so that it can be processed
4564 	 * when we next update owning cfs_rq under rq->lock.  Tasks contribute
4565 	 * to blocked load iff they have a positive decay-count.  It can never
4566 	 * be negative here since on-rq tasks have decay-count == 0.
4567 	 */
4568 	if (se->avg.decay_count) {
4569 		se->avg.decay_count = -__synchronize_entity_decay(se);
4570 		atomic_long_add(se->avg.load_avg_contrib,
4571 						&cfs_rq->removed_load);
4572 	}
4573 
4574 	/* We have migrated, no longer consider this task hot */
4575 	se->exec_start = 0;
4576 }
4577 #endif /* CONFIG_SMP */
4578 
4579 static unsigned long
4580 wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
4581 {
4582 	unsigned long gran = sysctl_sched_wakeup_granularity;
4583 
4584 	/*
4585 	 * Since its curr running now, convert the gran from real-time
4586 	 * to virtual-time in his units.
4587 	 *
4588 	 * By using 'se' instead of 'curr' we penalize light tasks, so
4589 	 * they get preempted easier. That is, if 'se' < 'curr' then
4590 	 * the resulting gran will be larger, therefore penalizing the
4591 	 * lighter, if otoh 'se' > 'curr' then the resulting gran will
4592 	 * be smaller, again penalizing the lighter task.
4593 	 *
4594 	 * This is especially important for buddies when the leftmost
4595 	 * task is higher priority than the buddy.
4596 	 */
4597 	return calc_delta_fair(gran, se);
4598 }
4599 
4600 /*
4601  * Should 'se' preempt 'curr'.
4602  *
4603  *             |s1
4604  *        |s2
4605  *   |s3
4606  *         g
4607  *      |<--->|c
4608  *
4609  *  w(c, s1) = -1
4610  *  w(c, s2) =  0
4611  *  w(c, s3) =  1
4612  *
4613  */
4614 static int
4615 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
4616 {
4617 	s64 gran, vdiff = curr->vruntime - se->vruntime;
4618 
4619 	if (vdiff <= 0)
4620 		return -1;
4621 
4622 	gran = wakeup_gran(curr, se);
4623 	if (vdiff > gran)
4624 		return 1;
4625 
4626 	return 0;
4627 }
4628 
4629 static void set_last_buddy(struct sched_entity *se)
4630 {
4631 	if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
4632 		return;
4633 
4634 	for_each_sched_entity(se)
4635 		cfs_rq_of(se)->last = se;
4636 }
4637 
4638 static void set_next_buddy(struct sched_entity *se)
4639 {
4640 	if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
4641 		return;
4642 
4643 	for_each_sched_entity(se)
4644 		cfs_rq_of(se)->next = se;
4645 }
4646 
4647 static void set_skip_buddy(struct sched_entity *se)
4648 {
4649 	for_each_sched_entity(se)
4650 		cfs_rq_of(se)->skip = se;
4651 }
4652 
4653 /*
4654  * Preempt the current task with a newly woken task if needed:
4655  */
4656 static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
4657 {
4658 	struct task_struct *curr = rq->curr;
4659 	struct sched_entity *se = &curr->se, *pse = &p->se;
4660 	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
4661 	int scale = cfs_rq->nr_running >= sched_nr_latency;
4662 	int next_buddy_marked = 0;
4663 
4664 	if (unlikely(se == pse))
4665 		return;
4666 
4667 	/*
4668 	 * This is possible from callers such as move_task(), in which we
4669 	 * unconditionally check_prempt_curr() after an enqueue (which may have
4670 	 * lead to a throttle).  This both saves work and prevents false
4671 	 * next-buddy nomination below.
4672 	 */
4673 	if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
4674 		return;
4675 
4676 	if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
4677 		set_next_buddy(pse);
4678 		next_buddy_marked = 1;
4679 	}
4680 
4681 	/*
4682 	 * We can come here with TIF_NEED_RESCHED already set from new task
4683 	 * wake up path.
4684 	 *
4685 	 * Note: this also catches the edge-case of curr being in a throttled
4686 	 * group (e.g. via set_curr_task), since update_curr() (in the
4687 	 * enqueue of curr) will have resulted in resched being set.  This
4688 	 * prevents us from potentially nominating it as a false LAST_BUDDY
4689 	 * below.
4690 	 */
4691 	if (test_tsk_need_resched(curr))
4692 		return;
4693 
4694 	/* Idle tasks are by definition preempted by non-idle tasks. */
4695 	if (unlikely(curr->policy == SCHED_IDLE) &&
4696 	    likely(p->policy != SCHED_IDLE))
4697 		goto preempt;
4698 
4699 	/*
4700 	 * Batch and idle tasks do not preempt non-idle tasks (their preemption
4701 	 * is driven by the tick):
4702 	 */
4703 	if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
4704 		return;
4705 
4706 	find_matching_se(&se, &pse);
4707 	update_curr(cfs_rq_of(se));
4708 	BUG_ON(!pse);
4709 	if (wakeup_preempt_entity(se, pse) == 1) {
4710 		/*
4711 		 * Bias pick_next to pick the sched entity that is
4712 		 * triggering this preemption.
4713 		 */
4714 		if (!next_buddy_marked)
4715 			set_next_buddy(pse);
4716 		goto preempt;
4717 	}
4718 
4719 	return;
4720 
4721 preempt:
4722 	resched_task(curr);
4723 	/*
4724 	 * Only set the backward buddy when the current task is still
4725 	 * on the rq. This can happen when a wakeup gets interleaved
4726 	 * with schedule on the ->pre_schedule() or idle_balance()
4727 	 * point, either of which can * drop the rq lock.
4728 	 *
4729 	 * Also, during early boot the idle thread is in the fair class,
4730 	 * for obvious reasons its a bad idea to schedule back to it.
4731 	 */
4732 	if (unlikely(!se->on_rq || curr == rq->idle))
4733 		return;
4734 
4735 	if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
4736 		set_last_buddy(se);
4737 }
4738 
4739 static struct task_struct *
4740 pick_next_task_fair(struct rq *rq, struct task_struct *prev)
4741 {
4742 	struct cfs_rq *cfs_rq = &rq->cfs;
4743 	struct sched_entity *se;
4744 	struct task_struct *p;
4745 	int new_tasks;
4746 
4747 again:
4748 #ifdef CONFIG_FAIR_GROUP_SCHED
4749 	if (!cfs_rq->nr_running)
4750 		goto idle;
4751 
4752 	if (prev->sched_class != &fair_sched_class)
4753 		goto simple;
4754 
4755 	/*
4756 	 * Because of the set_next_buddy() in dequeue_task_fair() it is rather
4757 	 * likely that a next task is from the same cgroup as the current.
4758 	 *
4759 	 * Therefore attempt to avoid putting and setting the entire cgroup
4760 	 * hierarchy, only change the part that actually changes.
4761 	 */
4762 
4763 	do {
4764 		struct sched_entity *curr = cfs_rq->curr;
4765 
4766 		/*
4767 		 * Since we got here without doing put_prev_entity() we also
4768 		 * have to consider cfs_rq->curr. If it is still a runnable
4769 		 * entity, update_curr() will update its vruntime, otherwise
4770 		 * forget we've ever seen it.
4771 		 */
4772 		if (curr && curr->on_rq)
4773 			update_curr(cfs_rq);
4774 		else
4775 			curr = NULL;
4776 
4777 		/*
4778 		 * This call to check_cfs_rq_runtime() will do the throttle and
4779 		 * dequeue its entity in the parent(s). Therefore the 'simple'
4780 		 * nr_running test will indeed be correct.
4781 		 */
4782 		if (unlikely(check_cfs_rq_runtime(cfs_rq)))
4783 			goto simple;
4784 
4785 		se = pick_next_entity(cfs_rq, curr);
4786 		cfs_rq = group_cfs_rq(se);
4787 	} while (cfs_rq);
4788 
4789 	p = task_of(se);
4790 
4791 	/*
4792 	 * Since we haven't yet done put_prev_entity and if the selected task
4793 	 * is a different task than we started out with, try and touch the
4794 	 * least amount of cfs_rqs.
4795 	 */
4796 	if (prev != p) {
4797 		struct sched_entity *pse = &prev->se;
4798 
4799 		while (!(cfs_rq = is_same_group(se, pse))) {
4800 			int se_depth = se->depth;
4801 			int pse_depth = pse->depth;
4802 
4803 			if (se_depth <= pse_depth) {
4804 				put_prev_entity(cfs_rq_of(pse), pse);
4805 				pse = parent_entity(pse);
4806 			}
4807 			if (se_depth >= pse_depth) {
4808 				set_next_entity(cfs_rq_of(se), se);
4809 				se = parent_entity(se);
4810 			}
4811 		}
4812 
4813 		put_prev_entity(cfs_rq, pse);
4814 		set_next_entity(cfs_rq, se);
4815 	}
4816 
4817 	if (hrtick_enabled(rq))
4818 		hrtick_start_fair(rq, p);
4819 
4820 	return p;
4821 simple:
4822 	cfs_rq = &rq->cfs;
4823 #endif
4824 
4825 	if (!cfs_rq->nr_running)
4826 		goto idle;
4827 
4828 	put_prev_task(rq, prev);
4829 
4830 	do {
4831 		se = pick_next_entity(cfs_rq, NULL);
4832 		set_next_entity(cfs_rq, se);
4833 		cfs_rq = group_cfs_rq(se);
4834 	} while (cfs_rq);
4835 
4836 	p = task_of(se);
4837 
4838 	if (hrtick_enabled(rq))
4839 		hrtick_start_fair(rq, p);
4840 
4841 	return p;
4842 
4843 idle:
4844 	new_tasks = idle_balance(rq);
4845 	/*
4846 	 * Because idle_balance() releases (and re-acquires) rq->lock, it is
4847 	 * possible for any higher priority task to appear. In that case we
4848 	 * must re-start the pick_next_entity() loop.
4849 	 */
4850 	if (new_tasks < 0)
4851 		return RETRY_TASK;
4852 
4853 	if (new_tasks > 0)
4854 		goto again;
4855 
4856 	return NULL;
4857 }
4858 
4859 /*
4860  * Account for a descheduled task:
4861  */
4862 static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
4863 {
4864 	struct sched_entity *se = &prev->se;
4865 	struct cfs_rq *cfs_rq;
4866 
4867 	for_each_sched_entity(se) {
4868 		cfs_rq = cfs_rq_of(se);
4869 		put_prev_entity(cfs_rq, se);
4870 	}
4871 }
4872 
4873 /*
4874  * sched_yield() is very simple
4875  *
4876  * The magic of dealing with the ->skip buddy is in pick_next_entity.
4877  */
4878 static void yield_task_fair(struct rq *rq)
4879 {
4880 	struct task_struct *curr = rq->curr;
4881 	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
4882 	struct sched_entity *se = &curr->se;
4883 
4884 	/*
4885 	 * Are we the only task in the tree?
4886 	 */
4887 	if (unlikely(rq->nr_running == 1))
4888 		return;
4889 
4890 	clear_buddies(cfs_rq, se);
4891 
4892 	if (curr->policy != SCHED_BATCH) {
4893 		update_rq_clock(rq);
4894 		/*
4895 		 * Update run-time statistics of the 'current'.
4896 		 */
4897 		update_curr(cfs_rq);
4898 		/*
4899 		 * Tell update_rq_clock() that we've just updated,
4900 		 * so we don't do microscopic update in schedule()
4901 		 * and double the fastpath cost.
4902 		 */
4903 		 rq->skip_clock_update = 1;
4904 	}
4905 
4906 	set_skip_buddy(se);
4907 }
4908 
4909 static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
4910 {
4911 	struct sched_entity *se = &p->se;
4912 
4913 	/* throttled hierarchies are not runnable */
4914 	if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
4915 		return false;
4916 
4917 	/* Tell the scheduler that we'd really like pse to run next. */
4918 	set_next_buddy(se);
4919 
4920 	yield_task_fair(rq);
4921 
4922 	return true;
4923 }
4924 
4925 #ifdef CONFIG_SMP
4926 /**************************************************
4927  * Fair scheduling class load-balancing methods.
4928  *
4929  * BASICS
4930  *
4931  * The purpose of load-balancing is to achieve the same basic fairness the
4932  * per-cpu scheduler provides, namely provide a proportional amount of compute
4933  * time to each task. This is expressed in the following equation:
4934  *
4935  *   W_i,n/P_i == W_j,n/P_j for all i,j                               (1)
4936  *
4937  * Where W_i,n is the n-th weight average for cpu i. The instantaneous weight
4938  * W_i,0 is defined as:
4939  *
4940  *   W_i,0 = \Sum_j w_i,j                                             (2)
4941  *
4942  * Where w_i,j is the weight of the j-th runnable task on cpu i. This weight
4943  * is derived from the nice value as per prio_to_weight[].
4944  *
4945  * The weight average is an exponential decay average of the instantaneous
4946  * weight:
4947  *
4948  *   W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0               (3)
4949  *
4950  * P_i is the cpu power (or compute capacity) of cpu i, typically it is the
4951  * fraction of 'recent' time available for SCHED_OTHER task execution. But it
4952  * can also include other factors [XXX].
4953  *
4954  * To achieve this balance we define a measure of imbalance which follows
4955  * directly from (1):
4956  *
4957  *   imb_i,j = max{ avg(W/P), W_i/P_i } - min{ avg(W/P), W_j/P_j }    (4)
4958  *
4959  * We them move tasks around to minimize the imbalance. In the continuous
4960  * function space it is obvious this converges, in the discrete case we get
4961  * a few fun cases generally called infeasible weight scenarios.
4962  *
4963  * [XXX expand on:
4964  *     - infeasible weights;
4965  *     - local vs global optima in the discrete case. ]
4966  *
4967  *
4968  * SCHED DOMAINS
4969  *
4970  * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
4971  * for all i,j solution, we create a tree of cpus that follows the hardware
4972  * topology where each level pairs two lower groups (or better). This results
4973  * in O(log n) layers. Furthermore we reduce the number of cpus going up the
4974  * tree to only the first of the previous level and we decrease the frequency
4975  * of load-balance at each level inv. proportional to the number of cpus in
4976  * the groups.
4977  *
4978  * This yields:
4979  *
4980  *     log_2 n     1     n
4981  *   \Sum       { --- * --- * 2^i } = O(n)                            (5)
4982  *     i = 0      2^i   2^i
4983  *                               `- size of each group
4984  *         |         |     `- number of cpus doing load-balance
4985  *         |         `- freq
4986  *         `- sum over all levels
4987  *
4988  * Coupled with a limit on how many tasks we can migrate every balance pass,
4989  * this makes (5) the runtime complexity of the balancer.
4990  *
4991  * An important property here is that each CPU is still (indirectly) connected
4992  * to every other cpu in at most O(log n) steps:
4993  *
4994  * The adjacency matrix of the resulting graph is given by:
4995  *
4996  *             log_2 n
4997  *   A_i,j = \Union     (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1)  (6)
4998  *             k = 0
4999  *
5000  * And you'll find that:
5001  *
5002  *   A^(log_2 n)_i,j != 0  for all i,j                                (7)
5003  *
5004  * Showing there's indeed a path between every cpu in at most O(log n) steps.
5005  * The task movement gives a factor of O(m), giving a convergence complexity
5006  * of:
5007  *
5008  *   O(nm log n),  n := nr_cpus, m := nr_tasks                        (8)
5009  *
5010  *
5011  * WORK CONSERVING
5012  *
5013  * In order to avoid CPUs going idle while there's still work to do, new idle
5014  * balancing is more aggressive and has the newly idle cpu iterate up the domain
5015  * tree itself instead of relying on other CPUs to bring it work.
5016  *
5017  * This adds some complexity to both (5) and (8) but it reduces the total idle
5018  * time.
5019  *
5020  * [XXX more?]
5021  *
5022  *
5023  * CGROUPS
5024  *
5025  * Cgroups make a horror show out of (2), instead of a simple sum we get:
5026  *
5027  *                                s_k,i
5028  *   W_i,0 = \Sum_j \Prod_k w_k * -----                               (9)
5029  *                                 S_k
5030  *
5031  * Where
5032  *
5033  *   s_k,i = \Sum_j w_i,j,k  and  S_k = \Sum_i s_k,i                 (10)
5034  *
5035  * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on cpu i.
5036  *
5037  * The big problem is S_k, its a global sum needed to compute a local (W_i)
5038  * property.
5039  *
5040  * [XXX write more on how we solve this.. _after_ merging pjt's patches that
5041  *      rewrite all of this once again.]
5042  */
5043 
5044 static unsigned long __read_mostly max_load_balance_interval = HZ/10;
5045 
5046 enum fbq_type { regular, remote, all };
5047 
5048 #define LBF_ALL_PINNED	0x01
5049 #define LBF_NEED_BREAK	0x02
5050 #define LBF_DST_PINNED  0x04
5051 #define LBF_SOME_PINNED	0x08
5052 
5053 struct lb_env {
5054 	struct sched_domain	*sd;
5055 
5056 	struct rq		*src_rq;
5057 	int			src_cpu;
5058 
5059 	int			dst_cpu;
5060 	struct rq		*dst_rq;
5061 
5062 	struct cpumask		*dst_grpmask;
5063 	int			new_dst_cpu;
5064 	enum cpu_idle_type	idle;
5065 	long			imbalance;
5066 	/* The set of CPUs under consideration for load-balancing */
5067 	struct cpumask		*cpus;
5068 
5069 	unsigned int		flags;
5070 
5071 	unsigned int		loop;
5072 	unsigned int		loop_break;
5073 	unsigned int		loop_max;
5074 
5075 	enum fbq_type		fbq_type;
5076 };
5077 
5078 /*
5079  * move_task - move a task from one runqueue to another runqueue.
5080  * Both runqueues must be locked.
5081  */
5082 static void move_task(struct task_struct *p, struct lb_env *env)
5083 {
5084 	deactivate_task(env->src_rq, p, 0);
5085 	set_task_cpu(p, env->dst_cpu);
5086 	activate_task(env->dst_rq, p, 0);
5087 	check_preempt_curr(env->dst_rq, p, 0);
5088 }
5089 
5090 /*
5091  * Is this task likely cache-hot:
5092  */
5093 static int
5094 task_hot(struct task_struct *p, u64 now)
5095 {
5096 	s64 delta;
5097 
5098 	if (p->sched_class != &fair_sched_class)
5099 		return 0;
5100 
5101 	if (unlikely(p->policy == SCHED_IDLE))
5102 		return 0;
5103 
5104 	/*
5105 	 * Buddy candidates are cache hot:
5106 	 */
5107 	if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
5108 			(&p->se == cfs_rq_of(&p->se)->next ||
5109 			 &p->se == cfs_rq_of(&p->se)->last))
5110 		return 1;
5111 
5112 	if (sysctl_sched_migration_cost == -1)
5113 		return 1;
5114 	if (sysctl_sched_migration_cost == 0)
5115 		return 0;
5116 
5117 	delta = now - p->se.exec_start;
5118 
5119 	return delta < (s64)sysctl_sched_migration_cost;
5120 }
5121 
5122 #ifdef CONFIG_NUMA_BALANCING
5123 /* Returns true if the destination node has incurred more faults */
5124 static bool migrate_improves_locality(struct task_struct *p, struct lb_env *env)
5125 {
5126 	struct numa_group *numa_group = rcu_dereference(p->numa_group);
5127 	int src_nid, dst_nid;
5128 
5129 	if (!sched_feat(NUMA_FAVOUR_HIGHER) || !p->numa_faults_memory ||
5130 	    !(env->sd->flags & SD_NUMA)) {
5131 		return false;
5132 	}
5133 
5134 	src_nid = cpu_to_node(env->src_cpu);
5135 	dst_nid = cpu_to_node(env->dst_cpu);
5136 
5137 	if (src_nid == dst_nid)
5138 		return false;
5139 
5140 	if (numa_group) {
5141 		/* Task is already in the group's interleave set. */
5142 		if (node_isset(src_nid, numa_group->active_nodes))
5143 			return false;
5144 
5145 		/* Task is moving into the group's interleave set. */
5146 		if (node_isset(dst_nid, numa_group->active_nodes))
5147 			return true;
5148 
5149 		return group_faults(p, dst_nid) > group_faults(p, src_nid);
5150 	}
5151 
5152 	/* Encourage migration to the preferred node. */
5153 	if (dst_nid == p->numa_preferred_nid)
5154 		return true;
5155 
5156 	return task_faults(p, dst_nid) > task_faults(p, src_nid);
5157 }
5158 
5159 
5160 static bool migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
5161 {
5162 	struct numa_group *numa_group = rcu_dereference(p->numa_group);
5163 	int src_nid, dst_nid;
5164 
5165 	if (!sched_feat(NUMA) || !sched_feat(NUMA_RESIST_LOWER))
5166 		return false;
5167 
5168 	if (!p->numa_faults_memory || !(env->sd->flags & SD_NUMA))
5169 		return false;
5170 
5171 	src_nid = cpu_to_node(env->src_cpu);
5172 	dst_nid = cpu_to_node(env->dst_cpu);
5173 
5174 	if (src_nid == dst_nid)
5175 		return false;
5176 
5177 	if (numa_group) {
5178 		/* Task is moving within/into the group's interleave set. */
5179 		if (node_isset(dst_nid, numa_group->active_nodes))
5180 			return false;
5181 
5182 		/* Task is moving out of the group's interleave set. */
5183 		if (node_isset(src_nid, numa_group->active_nodes))
5184 			return true;
5185 
5186 		return group_faults(p, dst_nid) < group_faults(p, src_nid);
5187 	}
5188 
5189 	/* Migrating away from the preferred node is always bad. */
5190 	if (src_nid == p->numa_preferred_nid)
5191 		return true;
5192 
5193 	return task_faults(p, dst_nid) < task_faults(p, src_nid);
5194 }
5195 
5196 #else
5197 static inline bool migrate_improves_locality(struct task_struct *p,
5198 					     struct lb_env *env)
5199 {
5200 	return false;
5201 }
5202 
5203 static inline bool migrate_degrades_locality(struct task_struct *p,
5204 					     struct lb_env *env)
5205 {
5206 	return false;
5207 }
5208 #endif
5209 
5210 /*
5211  * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
5212  */
5213 static
5214 int can_migrate_task(struct task_struct *p, struct lb_env *env)
5215 {
5216 	int tsk_cache_hot = 0;
5217 	/*
5218 	 * We do not migrate tasks that are:
5219 	 * 1) throttled_lb_pair, or
5220 	 * 2) cannot be migrated to this CPU due to cpus_allowed, or
5221 	 * 3) running (obviously), or
5222 	 * 4) are cache-hot on their current CPU.
5223 	 */
5224 	if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
5225 		return 0;
5226 
5227 	if (!cpumask_test_cpu(env->dst_cpu, tsk_cpus_allowed(p))) {
5228 		int cpu;
5229 
5230 		schedstat_inc(p, se.statistics.nr_failed_migrations_affine);
5231 
5232 		env->flags |= LBF_SOME_PINNED;
5233 
5234 		/*
5235 		 * Remember if this task can be migrated to any other cpu in
5236 		 * our sched_group. We may want to revisit it if we couldn't
5237 		 * meet load balance goals by pulling other tasks on src_cpu.
5238 		 *
5239 		 * Also avoid computing new_dst_cpu if we have already computed
5240 		 * one in current iteration.
5241 		 */
5242 		if (!env->dst_grpmask || (env->flags & LBF_DST_PINNED))
5243 			return 0;
5244 
5245 		/* Prevent to re-select dst_cpu via env's cpus */
5246 		for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
5247 			if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p))) {
5248 				env->flags |= LBF_DST_PINNED;
5249 				env->new_dst_cpu = cpu;
5250 				break;
5251 			}
5252 		}
5253 
5254 		return 0;
5255 	}
5256 
5257 	/* Record that we found atleast one task that could run on dst_cpu */
5258 	env->flags &= ~LBF_ALL_PINNED;
5259 
5260 	if (task_running(env->src_rq, p)) {
5261 		schedstat_inc(p, se.statistics.nr_failed_migrations_running);
5262 		return 0;
5263 	}
5264 
5265 	/*
5266 	 * Aggressive migration if:
5267 	 * 1) destination numa is preferred
5268 	 * 2) task is cache cold, or
5269 	 * 3) too many balance attempts have failed.
5270 	 */
5271 	tsk_cache_hot = task_hot(p, rq_clock_task(env->src_rq));
5272 	if (!tsk_cache_hot)
5273 		tsk_cache_hot = migrate_degrades_locality(p, env);
5274 
5275 	if (migrate_improves_locality(p, env)) {
5276 #ifdef CONFIG_SCHEDSTATS
5277 		if (tsk_cache_hot) {
5278 			schedstat_inc(env->sd, lb_hot_gained[env->idle]);
5279 			schedstat_inc(p, se.statistics.nr_forced_migrations);
5280 		}
5281 #endif
5282 		return 1;
5283 	}
5284 
5285 	if (!tsk_cache_hot ||
5286 		env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
5287 
5288 		if (tsk_cache_hot) {
5289 			schedstat_inc(env->sd, lb_hot_gained[env->idle]);
5290 			schedstat_inc(p, se.statistics.nr_forced_migrations);
5291 		}
5292 
5293 		return 1;
5294 	}
5295 
5296 	schedstat_inc(p, se.statistics.nr_failed_migrations_hot);
5297 	return 0;
5298 }
5299 
5300 /*
5301  * move_one_task tries to move exactly one task from busiest to this_rq, as
5302  * part of active balancing operations within "domain".
5303  * Returns 1 if successful and 0 otherwise.
5304  *
5305  * Called with both runqueues locked.
5306  */
5307 static int move_one_task(struct lb_env *env)
5308 {
5309 	struct task_struct *p, *n;
5310 
5311 	list_for_each_entry_safe(p, n, &env->src_rq->cfs_tasks, se.group_node) {
5312 		if (!can_migrate_task(p, env))
5313 			continue;
5314 
5315 		move_task(p, env);
5316 		/*
5317 		 * Right now, this is only the second place move_task()
5318 		 * is called, so we can safely collect move_task()
5319 		 * stats here rather than inside move_task().
5320 		 */
5321 		schedstat_inc(env->sd, lb_gained[env->idle]);
5322 		return 1;
5323 	}
5324 	return 0;
5325 }
5326 
5327 static const unsigned int sched_nr_migrate_break = 32;
5328 
5329 /*
5330  * move_tasks tries to move up to imbalance weighted load from busiest to
5331  * this_rq, as part of a balancing operation within domain "sd".
5332  * Returns 1 if successful and 0 otherwise.
5333  *
5334  * Called with both runqueues locked.
5335  */
5336 static int move_tasks(struct lb_env *env)
5337 {
5338 	struct list_head *tasks = &env->src_rq->cfs_tasks;
5339 	struct task_struct *p;
5340 	unsigned long load;
5341 	int pulled = 0;
5342 
5343 	if (env->imbalance <= 0)
5344 		return 0;
5345 
5346 	while (!list_empty(tasks)) {
5347 		p = list_first_entry(tasks, struct task_struct, se.group_node);
5348 
5349 		env->loop++;
5350 		/* We've more or less seen every task there is, call it quits */
5351 		if (env->loop > env->loop_max)
5352 			break;
5353 
5354 		/* take a breather every nr_migrate tasks */
5355 		if (env->loop > env->loop_break) {
5356 			env->loop_break += sched_nr_migrate_break;
5357 			env->flags |= LBF_NEED_BREAK;
5358 			break;
5359 		}
5360 
5361 		if (!can_migrate_task(p, env))
5362 			goto next;
5363 
5364 		load = task_h_load(p);
5365 
5366 		if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed)
5367 			goto next;
5368 
5369 		if ((load / 2) > env->imbalance)
5370 			goto next;
5371 
5372 		move_task(p, env);
5373 		pulled++;
5374 		env->imbalance -= load;
5375 
5376 #ifdef CONFIG_PREEMPT
5377 		/*
5378 		 * NEWIDLE balancing is a source of latency, so preemptible
5379 		 * kernels will stop after the first task is pulled to minimize
5380 		 * the critical section.
5381 		 */
5382 		if (env->idle == CPU_NEWLY_IDLE)
5383 			break;
5384 #endif
5385 
5386 		/*
5387 		 * We only want to steal up to the prescribed amount of
5388 		 * weighted load.
5389 		 */
5390 		if (env->imbalance <= 0)
5391 			break;
5392 
5393 		continue;
5394 next:
5395 		list_move_tail(&p->se.group_node, tasks);
5396 	}
5397 
5398 	/*
5399 	 * Right now, this is one of only two places move_task() is called,
5400 	 * so we can safely collect move_task() stats here rather than
5401 	 * inside move_task().
5402 	 */
5403 	schedstat_add(env->sd, lb_gained[env->idle], pulled);
5404 
5405 	return pulled;
5406 }
5407 
5408 #ifdef CONFIG_FAIR_GROUP_SCHED
5409 /*
5410  * update tg->load_weight by folding this cpu's load_avg
5411  */
5412 static void __update_blocked_averages_cpu(struct task_group *tg, int cpu)
5413 {
5414 	struct sched_entity *se = tg->se[cpu];
5415 	struct cfs_rq *cfs_rq = tg->cfs_rq[cpu];
5416 
5417 	/* throttled entities do not contribute to load */
5418 	if (throttled_hierarchy(cfs_rq))
5419 		return;
5420 
5421 	update_cfs_rq_blocked_load(cfs_rq, 1);
5422 
5423 	if (se) {
5424 		update_entity_load_avg(se, 1);
5425 		/*
5426 		 * We pivot on our runnable average having decayed to zero for
5427 		 * list removal.  This generally implies that all our children
5428 		 * have also been removed (modulo rounding error or bandwidth
5429 		 * control); however, such cases are rare and we can fix these
5430 		 * at enqueue.
5431 		 *
5432 		 * TODO: fix up out-of-order children on enqueue.
5433 		 */
5434 		if (!se->avg.runnable_avg_sum && !cfs_rq->nr_running)
5435 			list_del_leaf_cfs_rq(cfs_rq);
5436 	} else {
5437 		struct rq *rq = rq_of(cfs_rq);
5438 		update_rq_runnable_avg(rq, rq->nr_running);
5439 	}
5440 }
5441 
5442 static void update_blocked_averages(int cpu)
5443 {
5444 	struct rq *rq = cpu_rq(cpu);
5445 	struct cfs_rq *cfs_rq;
5446 	unsigned long flags;
5447 
5448 	raw_spin_lock_irqsave(&rq->lock, flags);
5449 	update_rq_clock(rq);
5450 	/*
5451 	 * Iterates the task_group tree in a bottom up fashion, see
5452 	 * list_add_leaf_cfs_rq() for details.
5453 	 */
5454 	for_each_leaf_cfs_rq(rq, cfs_rq) {
5455 		/*
5456 		 * Note: We may want to consider periodically releasing
5457 		 * rq->lock about these updates so that creating many task
5458 		 * groups does not result in continually extending hold time.
5459 		 */
5460 		__update_blocked_averages_cpu(cfs_rq->tg, rq->cpu);
5461 	}
5462 
5463 	raw_spin_unlock_irqrestore(&rq->lock, flags);
5464 }
5465 
5466 /*
5467  * Compute the hierarchical load factor for cfs_rq and all its ascendants.
5468  * This needs to be done in a top-down fashion because the load of a child
5469  * group is a fraction of its parents load.
5470  */
5471 static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
5472 {
5473 	struct rq *rq = rq_of(cfs_rq);
5474 	struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
5475 	unsigned long now = jiffies;
5476 	unsigned long load;
5477 
5478 	if (cfs_rq->last_h_load_update == now)
5479 		return;
5480 
5481 	cfs_rq->h_load_next = NULL;
5482 	for_each_sched_entity(se) {
5483 		cfs_rq = cfs_rq_of(se);
5484 		cfs_rq->h_load_next = se;
5485 		if (cfs_rq->last_h_load_update == now)
5486 			break;
5487 	}
5488 
5489 	if (!se) {
5490 		cfs_rq->h_load = cfs_rq->runnable_load_avg;
5491 		cfs_rq->last_h_load_update = now;
5492 	}
5493 
5494 	while ((se = cfs_rq->h_load_next) != NULL) {
5495 		load = cfs_rq->h_load;
5496 		load = div64_ul(load * se->avg.load_avg_contrib,
5497 				cfs_rq->runnable_load_avg + 1);
5498 		cfs_rq = group_cfs_rq(se);
5499 		cfs_rq->h_load = load;
5500 		cfs_rq->last_h_load_update = now;
5501 	}
5502 }
5503 
5504 static unsigned long task_h_load(struct task_struct *p)
5505 {
5506 	struct cfs_rq *cfs_rq = task_cfs_rq(p);
5507 
5508 	update_cfs_rq_h_load(cfs_rq);
5509 	return div64_ul(p->se.avg.load_avg_contrib * cfs_rq->h_load,
5510 			cfs_rq->runnable_load_avg + 1);
5511 }
5512 #else
5513 static inline void update_blocked_averages(int cpu)
5514 {
5515 }
5516 
5517 static unsigned long task_h_load(struct task_struct *p)
5518 {
5519 	return p->se.avg.load_avg_contrib;
5520 }
5521 #endif
5522 
5523 /********** Helpers for find_busiest_group ************************/
5524 /*
5525  * sg_lb_stats - stats of a sched_group required for load_balancing
5526  */
5527 struct sg_lb_stats {
5528 	unsigned long avg_load; /*Avg load across the CPUs of the group */
5529 	unsigned long group_load; /* Total load over the CPUs of the group */
5530 	unsigned long sum_weighted_load; /* Weighted load of group's tasks */
5531 	unsigned long load_per_task;
5532 	unsigned long group_power;
5533 	unsigned int sum_nr_running; /* Nr tasks running in the group */
5534 	unsigned int group_capacity;
5535 	unsigned int idle_cpus;
5536 	unsigned int group_weight;
5537 	int group_imb; /* Is there an imbalance in the group ? */
5538 	int group_has_capacity; /* Is there extra capacity in the group? */
5539 #ifdef CONFIG_NUMA_BALANCING
5540 	unsigned int nr_numa_running;
5541 	unsigned int nr_preferred_running;
5542 #endif
5543 };
5544 
5545 /*
5546  * sd_lb_stats - Structure to store the statistics of a sched_domain
5547  *		 during load balancing.
5548  */
5549 struct sd_lb_stats {
5550 	struct sched_group *busiest;	/* Busiest group in this sd */
5551 	struct sched_group *local;	/* Local group in this sd */
5552 	unsigned long total_load;	/* Total load of all groups in sd */
5553 	unsigned long total_pwr;	/* Total power of all groups in sd */
5554 	unsigned long avg_load;	/* Average load across all groups in sd */
5555 
5556 	struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
5557 	struct sg_lb_stats local_stat;	/* Statistics of the local group */
5558 };
5559 
5560 static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
5561 {
5562 	/*
5563 	 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
5564 	 * local_stat because update_sg_lb_stats() does a full clear/assignment.
5565 	 * We must however clear busiest_stat::avg_load because
5566 	 * update_sd_pick_busiest() reads this before assignment.
5567 	 */
5568 	*sds = (struct sd_lb_stats){
5569 		.busiest = NULL,
5570 		.local = NULL,
5571 		.total_load = 0UL,
5572 		.total_pwr = 0UL,
5573 		.busiest_stat = {
5574 			.avg_load = 0UL,
5575 		},
5576 	};
5577 }
5578 
5579 /**
5580  * get_sd_load_idx - Obtain the load index for a given sched domain.
5581  * @sd: The sched_domain whose load_idx is to be obtained.
5582  * @idle: The idle status of the CPU for whose sd load_idx is obtained.
5583  *
5584  * Return: The load index.
5585  */
5586 static inline int get_sd_load_idx(struct sched_domain *sd,
5587 					enum cpu_idle_type idle)
5588 {
5589 	int load_idx;
5590 
5591 	switch (idle) {
5592 	case CPU_NOT_IDLE:
5593 		load_idx = sd->busy_idx;
5594 		break;
5595 
5596 	case CPU_NEWLY_IDLE:
5597 		load_idx = sd->newidle_idx;
5598 		break;
5599 	default:
5600 		load_idx = sd->idle_idx;
5601 		break;
5602 	}
5603 
5604 	return load_idx;
5605 }
5606 
5607 static unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu)
5608 {
5609 	return SCHED_POWER_SCALE;
5610 }
5611 
5612 unsigned long __weak arch_scale_freq_power(struct sched_domain *sd, int cpu)
5613 {
5614 	return default_scale_freq_power(sd, cpu);
5615 }
5616 
5617 static unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu)
5618 {
5619 	unsigned long weight = sd->span_weight;
5620 	unsigned long smt_gain = sd->smt_gain;
5621 
5622 	smt_gain /= weight;
5623 
5624 	return smt_gain;
5625 }
5626 
5627 unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu)
5628 {
5629 	return default_scale_smt_power(sd, cpu);
5630 }
5631 
5632 static unsigned long scale_rt_power(int cpu)
5633 {
5634 	struct rq *rq = cpu_rq(cpu);
5635 	u64 total, available, age_stamp, avg;
5636 	s64 delta;
5637 
5638 	/*
5639 	 * Since we're reading these variables without serialization make sure
5640 	 * we read them once before doing sanity checks on them.
5641 	 */
5642 	age_stamp = ACCESS_ONCE(rq->age_stamp);
5643 	avg = ACCESS_ONCE(rq->rt_avg);
5644 
5645 	delta = rq_clock(rq) - age_stamp;
5646 	if (unlikely(delta < 0))
5647 		delta = 0;
5648 
5649 	total = sched_avg_period() + delta;
5650 
5651 	if (unlikely(total < avg)) {
5652 		/* Ensures that power won't end up being negative */
5653 		available = 0;
5654 	} else {
5655 		available = total - avg;
5656 	}
5657 
5658 	if (unlikely((s64)total < SCHED_POWER_SCALE))
5659 		total = SCHED_POWER_SCALE;
5660 
5661 	total >>= SCHED_POWER_SHIFT;
5662 
5663 	return div_u64(available, total);
5664 }
5665 
5666 static void update_cpu_power(struct sched_domain *sd, int cpu)
5667 {
5668 	unsigned long weight = sd->span_weight;
5669 	unsigned long power = SCHED_POWER_SCALE;
5670 	struct sched_group *sdg = sd->groups;
5671 
5672 	if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
5673 		if (sched_feat(ARCH_POWER))
5674 			power *= arch_scale_smt_power(sd, cpu);
5675 		else
5676 			power *= default_scale_smt_power(sd, cpu);
5677 
5678 		power >>= SCHED_POWER_SHIFT;
5679 	}
5680 
5681 	sdg->sgp->power_orig = power;
5682 
5683 	if (sched_feat(ARCH_POWER))
5684 		power *= arch_scale_freq_power(sd, cpu);
5685 	else
5686 		power *= default_scale_freq_power(sd, cpu);
5687 
5688 	power >>= SCHED_POWER_SHIFT;
5689 
5690 	power *= scale_rt_power(cpu);
5691 	power >>= SCHED_POWER_SHIFT;
5692 
5693 	if (!power)
5694 		power = 1;
5695 
5696 	cpu_rq(cpu)->cpu_power = power;
5697 	sdg->sgp->power = power;
5698 }
5699 
5700 void update_group_power(struct sched_domain *sd, int cpu)
5701 {
5702 	struct sched_domain *child = sd->child;
5703 	struct sched_group *group, *sdg = sd->groups;
5704 	unsigned long power, power_orig;
5705 	unsigned long interval;
5706 
5707 	interval = msecs_to_jiffies(sd->balance_interval);
5708 	interval = clamp(interval, 1UL, max_load_balance_interval);
5709 	sdg->sgp->next_update = jiffies + interval;
5710 
5711 	if (!child) {
5712 		update_cpu_power(sd, cpu);
5713 		return;
5714 	}
5715 
5716 	power_orig = power = 0;
5717 
5718 	if (child->flags & SD_OVERLAP) {
5719 		/*
5720 		 * SD_OVERLAP domains cannot assume that child groups
5721 		 * span the current group.
5722 		 */
5723 
5724 		for_each_cpu(cpu, sched_group_cpus(sdg)) {
5725 			struct sched_group_power *sgp;
5726 			struct rq *rq = cpu_rq(cpu);
5727 
5728 			/*
5729 			 * build_sched_domains() -> init_sched_groups_power()
5730 			 * gets here before we've attached the domains to the
5731 			 * runqueues.
5732 			 *
5733 			 * Use power_of(), which is set irrespective of domains
5734 			 * in update_cpu_power().
5735 			 *
5736 			 * This avoids power/power_orig from being 0 and
5737 			 * causing divide-by-zero issues on boot.
5738 			 *
5739 			 * Runtime updates will correct power_orig.
5740 			 */
5741 			if (unlikely(!rq->sd)) {
5742 				power_orig += power_of(cpu);
5743 				power += power_of(cpu);
5744 				continue;
5745 			}
5746 
5747 			sgp = rq->sd->groups->sgp;
5748 			power_orig += sgp->power_orig;
5749 			power += sgp->power;
5750 		}
5751 	} else  {
5752 		/*
5753 		 * !SD_OVERLAP domains can assume that child groups
5754 		 * span the current group.
5755 		 */
5756 
5757 		group = child->groups;
5758 		do {
5759 			power_orig += group->sgp->power_orig;
5760 			power += group->sgp->power;
5761 			group = group->next;
5762 		} while (group != child->groups);
5763 	}
5764 
5765 	sdg->sgp->power_orig = power_orig;
5766 	sdg->sgp->power = power;
5767 }
5768 
5769 /*
5770  * Try and fix up capacity for tiny siblings, this is needed when
5771  * things like SD_ASYM_PACKING need f_b_g to select another sibling
5772  * which on its own isn't powerful enough.
5773  *
5774  * See update_sd_pick_busiest() and check_asym_packing().
5775  */
5776 static inline int
5777 fix_small_capacity(struct sched_domain *sd, struct sched_group *group)
5778 {
5779 	/*
5780 	 * Only siblings can have significantly less than SCHED_POWER_SCALE
5781 	 */
5782 	if (!(sd->flags & SD_SHARE_CPUPOWER))
5783 		return 0;
5784 
5785 	/*
5786 	 * If ~90% of the cpu_power is still there, we're good.
5787 	 */
5788 	if (group->sgp->power * 32 > group->sgp->power_orig * 29)
5789 		return 1;
5790 
5791 	return 0;
5792 }
5793 
5794 /*
5795  * Group imbalance indicates (and tries to solve) the problem where balancing
5796  * groups is inadequate due to tsk_cpus_allowed() constraints.
5797  *
5798  * Imagine a situation of two groups of 4 cpus each and 4 tasks each with a
5799  * cpumask covering 1 cpu of the first group and 3 cpus of the second group.
5800  * Something like:
5801  *
5802  * 	{ 0 1 2 3 } { 4 5 6 7 }
5803  * 	        *     * * *
5804  *
5805  * If we were to balance group-wise we'd place two tasks in the first group and
5806  * two tasks in the second group. Clearly this is undesired as it will overload
5807  * cpu 3 and leave one of the cpus in the second group unused.
5808  *
5809  * The current solution to this issue is detecting the skew in the first group
5810  * by noticing the lower domain failed to reach balance and had difficulty
5811  * moving tasks due to affinity constraints.
5812  *
5813  * When this is so detected; this group becomes a candidate for busiest; see
5814  * update_sd_pick_busiest(). And calculate_imbalance() and
5815  * find_busiest_group() avoid some of the usual balance conditions to allow it
5816  * to create an effective group imbalance.
5817  *
5818  * This is a somewhat tricky proposition since the next run might not find the
5819  * group imbalance and decide the groups need to be balanced again. A most
5820  * subtle and fragile situation.
5821  */
5822 
5823 static inline int sg_imbalanced(struct sched_group *group)
5824 {
5825 	return group->sgp->imbalance;
5826 }
5827 
5828 /*
5829  * Compute the group capacity.
5830  *
5831  * Avoid the issue where N*frac(smt_power) >= 1 creates 'phantom' cores by
5832  * first dividing out the smt factor and computing the actual number of cores
5833  * and limit power unit capacity with that.
5834  */
5835 static inline int sg_capacity(struct lb_env *env, struct sched_group *group)
5836 {
5837 	unsigned int capacity, smt, cpus;
5838 	unsigned int power, power_orig;
5839 
5840 	power = group->sgp->power;
5841 	power_orig = group->sgp->power_orig;
5842 	cpus = group->group_weight;
5843 
5844 	/* smt := ceil(cpus / power), assumes: 1 < smt_power < 2 */
5845 	smt = DIV_ROUND_UP(SCHED_POWER_SCALE * cpus, power_orig);
5846 	capacity = cpus / smt; /* cores */
5847 
5848 	capacity = min_t(unsigned, capacity, DIV_ROUND_CLOSEST(power, SCHED_POWER_SCALE));
5849 	if (!capacity)
5850 		capacity = fix_small_capacity(env->sd, group);
5851 
5852 	return capacity;
5853 }
5854 
5855 /**
5856  * update_sg_lb_stats - Update sched_group's statistics for load balancing.
5857  * @env: The load balancing environment.
5858  * @group: sched_group whose statistics are to be updated.
5859  * @load_idx: Load index of sched_domain of this_cpu for load calc.
5860  * @local_group: Does group contain this_cpu.
5861  * @sgs: variable to hold the statistics for this group.
5862  */
5863 static inline void update_sg_lb_stats(struct lb_env *env,
5864 			struct sched_group *group, int load_idx,
5865 			int local_group, struct sg_lb_stats *sgs)
5866 {
5867 	unsigned long load;
5868 	int i;
5869 
5870 	memset(sgs, 0, sizeof(*sgs));
5871 
5872 	for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
5873 		struct rq *rq = cpu_rq(i);
5874 
5875 		/* Bias balancing toward cpus of our domain */
5876 		if (local_group)
5877 			load = target_load(i, load_idx);
5878 		else
5879 			load = source_load(i, load_idx);
5880 
5881 		sgs->group_load += load;
5882 		sgs->sum_nr_running += rq->nr_running;
5883 #ifdef CONFIG_NUMA_BALANCING
5884 		sgs->nr_numa_running += rq->nr_numa_running;
5885 		sgs->nr_preferred_running += rq->nr_preferred_running;
5886 #endif
5887 		sgs->sum_weighted_load += weighted_cpuload(i);
5888 		if (idle_cpu(i))
5889 			sgs->idle_cpus++;
5890 	}
5891 
5892 	/* Adjust by relative CPU power of the group */
5893 	sgs->group_power = group->sgp->power;
5894 	sgs->avg_load = (sgs->group_load*SCHED_POWER_SCALE) / sgs->group_power;
5895 
5896 	if (sgs->sum_nr_running)
5897 		sgs->load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
5898 
5899 	sgs->group_weight = group->group_weight;
5900 
5901 	sgs->group_imb = sg_imbalanced(group);
5902 	sgs->group_capacity = sg_capacity(env, group);
5903 
5904 	if (sgs->group_capacity > sgs->sum_nr_running)
5905 		sgs->group_has_capacity = 1;
5906 }
5907 
5908 /**
5909  * update_sd_pick_busiest - return 1 on busiest group
5910  * @env: The load balancing environment.
5911  * @sds: sched_domain statistics
5912  * @sg: sched_group candidate to be checked for being the busiest
5913  * @sgs: sched_group statistics
5914  *
5915  * Determine if @sg is a busier group than the previously selected
5916  * busiest group.
5917  *
5918  * Return: %true if @sg is a busier group than the previously selected
5919  * busiest group. %false otherwise.
5920  */
5921 static bool update_sd_pick_busiest(struct lb_env *env,
5922 				   struct sd_lb_stats *sds,
5923 				   struct sched_group *sg,
5924 				   struct sg_lb_stats *sgs)
5925 {
5926 	if (sgs->avg_load <= sds->busiest_stat.avg_load)
5927 		return false;
5928 
5929 	if (sgs->sum_nr_running > sgs->group_capacity)
5930 		return true;
5931 
5932 	if (sgs->group_imb)
5933 		return true;
5934 
5935 	/*
5936 	 * ASYM_PACKING needs to move all the work to the lowest
5937 	 * numbered CPUs in the group, therefore mark all groups
5938 	 * higher than ourself as busy.
5939 	 */
5940 	if ((env->sd->flags & SD_ASYM_PACKING) && sgs->sum_nr_running &&
5941 	    env->dst_cpu < group_first_cpu(sg)) {
5942 		if (!sds->busiest)
5943 			return true;
5944 
5945 		if (group_first_cpu(sds->busiest) > group_first_cpu(sg))
5946 			return true;
5947 	}
5948 
5949 	return false;
5950 }
5951 
5952 #ifdef CONFIG_NUMA_BALANCING
5953 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
5954 {
5955 	if (sgs->sum_nr_running > sgs->nr_numa_running)
5956 		return regular;
5957 	if (sgs->sum_nr_running > sgs->nr_preferred_running)
5958 		return remote;
5959 	return all;
5960 }
5961 
5962 static inline enum fbq_type fbq_classify_rq(struct rq *rq)
5963 {
5964 	if (rq->nr_running > rq->nr_numa_running)
5965 		return regular;
5966 	if (rq->nr_running > rq->nr_preferred_running)
5967 		return remote;
5968 	return all;
5969 }
5970 #else
5971 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
5972 {
5973 	return all;
5974 }
5975 
5976 static inline enum fbq_type fbq_classify_rq(struct rq *rq)
5977 {
5978 	return regular;
5979 }
5980 #endif /* CONFIG_NUMA_BALANCING */
5981 
5982 /**
5983  * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
5984  * @env: The load balancing environment.
5985  * @sds: variable to hold the statistics for this sched_domain.
5986  */
5987 static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
5988 {
5989 	struct sched_domain *child = env->sd->child;
5990 	struct sched_group *sg = env->sd->groups;
5991 	struct sg_lb_stats tmp_sgs;
5992 	int load_idx, prefer_sibling = 0;
5993 
5994 	if (child && child->flags & SD_PREFER_SIBLING)
5995 		prefer_sibling = 1;
5996 
5997 	load_idx = get_sd_load_idx(env->sd, env->idle);
5998 
5999 	do {
6000 		struct sg_lb_stats *sgs = &tmp_sgs;
6001 		int local_group;
6002 
6003 		local_group = cpumask_test_cpu(env->dst_cpu, sched_group_cpus(sg));
6004 		if (local_group) {
6005 			sds->local = sg;
6006 			sgs = &sds->local_stat;
6007 
6008 			if (env->idle != CPU_NEWLY_IDLE ||
6009 			    time_after_eq(jiffies, sg->sgp->next_update))
6010 				update_group_power(env->sd, env->dst_cpu);
6011 		}
6012 
6013 		update_sg_lb_stats(env, sg, load_idx, local_group, sgs);
6014 
6015 		if (local_group)
6016 			goto next_group;
6017 
6018 		/*
6019 		 * In case the child domain prefers tasks go to siblings
6020 		 * first, lower the sg capacity to one so that we'll try
6021 		 * and move all the excess tasks away. We lower the capacity
6022 		 * of a group only if the local group has the capacity to fit
6023 		 * these excess tasks, i.e. nr_running < group_capacity. The
6024 		 * extra check prevents the case where you always pull from the
6025 		 * heaviest group when it is already under-utilized (possible
6026 		 * with a large weight task outweighs the tasks on the system).
6027 		 */
6028 		if (prefer_sibling && sds->local &&
6029 		    sds->local_stat.group_has_capacity)
6030 			sgs->group_capacity = min(sgs->group_capacity, 1U);
6031 
6032 		if (update_sd_pick_busiest(env, sds, sg, sgs)) {
6033 			sds->busiest = sg;
6034 			sds->busiest_stat = *sgs;
6035 		}
6036 
6037 next_group:
6038 		/* Now, start updating sd_lb_stats */
6039 		sds->total_load += sgs->group_load;
6040 		sds->total_pwr += sgs->group_power;
6041 
6042 		sg = sg->next;
6043 	} while (sg != env->sd->groups);
6044 
6045 	if (env->sd->flags & SD_NUMA)
6046 		env->fbq_type = fbq_classify_group(&sds->busiest_stat);
6047 }
6048 
6049 /**
6050  * check_asym_packing - Check to see if the group is packed into the
6051  *			sched doman.
6052  *
6053  * This is primarily intended to used at the sibling level.  Some
6054  * cores like POWER7 prefer to use lower numbered SMT threads.  In the
6055  * case of POWER7, it can move to lower SMT modes only when higher
6056  * threads are idle.  When in lower SMT modes, the threads will
6057  * perform better since they share less core resources.  Hence when we
6058  * have idle threads, we want them to be the higher ones.
6059  *
6060  * This packing function is run on idle threads.  It checks to see if
6061  * the busiest CPU in this domain (core in the P7 case) has a higher
6062  * CPU number than the packing function is being run on.  Here we are
6063  * assuming lower CPU number will be equivalent to lower a SMT thread
6064  * number.
6065  *
6066  * Return: 1 when packing is required and a task should be moved to
6067  * this CPU.  The amount of the imbalance is returned in *imbalance.
6068  *
6069  * @env: The load balancing environment.
6070  * @sds: Statistics of the sched_domain which is to be packed
6071  */
6072 static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds)
6073 {
6074 	int busiest_cpu;
6075 
6076 	if (!(env->sd->flags & SD_ASYM_PACKING))
6077 		return 0;
6078 
6079 	if (!sds->busiest)
6080 		return 0;
6081 
6082 	busiest_cpu = group_first_cpu(sds->busiest);
6083 	if (env->dst_cpu > busiest_cpu)
6084 		return 0;
6085 
6086 	env->imbalance = DIV_ROUND_CLOSEST(
6087 		sds->busiest_stat.avg_load * sds->busiest_stat.group_power,
6088 		SCHED_POWER_SCALE);
6089 
6090 	return 1;
6091 }
6092 
6093 /**
6094  * fix_small_imbalance - Calculate the minor imbalance that exists
6095  *			amongst the groups of a sched_domain, during
6096  *			load balancing.
6097  * @env: The load balancing environment.
6098  * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
6099  */
6100 static inline
6101 void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
6102 {
6103 	unsigned long tmp, pwr_now = 0, pwr_move = 0;
6104 	unsigned int imbn = 2;
6105 	unsigned long scaled_busy_load_per_task;
6106 	struct sg_lb_stats *local, *busiest;
6107 
6108 	local = &sds->local_stat;
6109 	busiest = &sds->busiest_stat;
6110 
6111 	if (!local->sum_nr_running)
6112 		local->load_per_task = cpu_avg_load_per_task(env->dst_cpu);
6113 	else if (busiest->load_per_task > local->load_per_task)
6114 		imbn = 1;
6115 
6116 	scaled_busy_load_per_task =
6117 		(busiest->load_per_task * SCHED_POWER_SCALE) /
6118 		busiest->group_power;
6119 
6120 	if (busiest->avg_load + scaled_busy_load_per_task >=
6121 	    local->avg_load + (scaled_busy_load_per_task * imbn)) {
6122 		env->imbalance = busiest->load_per_task;
6123 		return;
6124 	}
6125 
6126 	/*
6127 	 * OK, we don't have enough imbalance to justify moving tasks,
6128 	 * however we may be able to increase total CPU power used by
6129 	 * moving them.
6130 	 */
6131 
6132 	pwr_now += busiest->group_power *
6133 			min(busiest->load_per_task, busiest->avg_load);
6134 	pwr_now += local->group_power *
6135 			min(local->load_per_task, local->avg_load);
6136 	pwr_now /= SCHED_POWER_SCALE;
6137 
6138 	/* Amount of load we'd subtract */
6139 	if (busiest->avg_load > scaled_busy_load_per_task) {
6140 		pwr_move += busiest->group_power *
6141 			    min(busiest->load_per_task,
6142 				busiest->avg_load - scaled_busy_load_per_task);
6143 	}
6144 
6145 	/* Amount of load we'd add */
6146 	if (busiest->avg_load * busiest->group_power <
6147 	    busiest->load_per_task * SCHED_POWER_SCALE) {
6148 		tmp = (busiest->avg_load * busiest->group_power) /
6149 		      local->group_power;
6150 	} else {
6151 		tmp = (busiest->load_per_task * SCHED_POWER_SCALE) /
6152 		      local->group_power;
6153 	}
6154 	pwr_move += local->group_power *
6155 		    min(local->load_per_task, local->avg_load + tmp);
6156 	pwr_move /= SCHED_POWER_SCALE;
6157 
6158 	/* Move if we gain throughput */
6159 	if (pwr_move > pwr_now)
6160 		env->imbalance = busiest->load_per_task;
6161 }
6162 
6163 /**
6164  * calculate_imbalance - Calculate the amount of imbalance present within the
6165  *			 groups of a given sched_domain during load balance.
6166  * @env: load balance environment
6167  * @sds: statistics of the sched_domain whose imbalance is to be calculated.
6168  */
6169 static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
6170 {
6171 	unsigned long max_pull, load_above_capacity = ~0UL;
6172 	struct sg_lb_stats *local, *busiest;
6173 
6174 	local = &sds->local_stat;
6175 	busiest = &sds->busiest_stat;
6176 
6177 	if (busiest->group_imb) {
6178 		/*
6179 		 * In the group_imb case we cannot rely on group-wide averages
6180 		 * to ensure cpu-load equilibrium, look at wider averages. XXX
6181 		 */
6182 		busiest->load_per_task =
6183 			min(busiest->load_per_task, sds->avg_load);
6184 	}
6185 
6186 	/*
6187 	 * In the presence of smp nice balancing, certain scenarios can have
6188 	 * max load less than avg load(as we skip the groups at or below
6189 	 * its cpu_power, while calculating max_load..)
6190 	 */
6191 	if (busiest->avg_load <= sds->avg_load ||
6192 	    local->avg_load >= sds->avg_load) {
6193 		env->imbalance = 0;
6194 		return fix_small_imbalance(env, sds);
6195 	}
6196 
6197 	if (!busiest->group_imb) {
6198 		/*
6199 		 * Don't want to pull so many tasks that a group would go idle.
6200 		 * Except of course for the group_imb case, since then we might
6201 		 * have to drop below capacity to reach cpu-load equilibrium.
6202 		 */
6203 		load_above_capacity =
6204 			(busiest->sum_nr_running - busiest->group_capacity);
6205 
6206 		load_above_capacity *= (SCHED_LOAD_SCALE * SCHED_POWER_SCALE);
6207 		load_above_capacity /= busiest->group_power;
6208 	}
6209 
6210 	/*
6211 	 * We're trying to get all the cpus to the average_load, so we don't
6212 	 * want to push ourselves above the average load, nor do we wish to
6213 	 * reduce the max loaded cpu below the average load. At the same time,
6214 	 * we also don't want to reduce the group load below the group capacity
6215 	 * (so that we can implement power-savings policies etc). Thus we look
6216 	 * for the minimum possible imbalance.
6217 	 */
6218 	max_pull = min(busiest->avg_load - sds->avg_load, load_above_capacity);
6219 
6220 	/* How much load to actually move to equalise the imbalance */
6221 	env->imbalance = min(
6222 		max_pull * busiest->group_power,
6223 		(sds->avg_load - local->avg_load) * local->group_power
6224 	) / SCHED_POWER_SCALE;
6225 
6226 	/*
6227 	 * if *imbalance is less than the average load per runnable task
6228 	 * there is no guarantee that any tasks will be moved so we'll have
6229 	 * a think about bumping its value to force at least one task to be
6230 	 * moved
6231 	 */
6232 	if (env->imbalance < busiest->load_per_task)
6233 		return fix_small_imbalance(env, sds);
6234 }
6235 
6236 /******* find_busiest_group() helpers end here *********************/
6237 
6238 /**
6239  * find_busiest_group - Returns the busiest group within the sched_domain
6240  * if there is an imbalance. If there isn't an imbalance, and
6241  * the user has opted for power-savings, it returns a group whose
6242  * CPUs can be put to idle by rebalancing those tasks elsewhere, if
6243  * such a group exists.
6244  *
6245  * Also calculates the amount of weighted load which should be moved
6246  * to restore balance.
6247  *
6248  * @env: The load balancing environment.
6249  *
6250  * Return:	- The busiest group if imbalance exists.
6251  *		- If no imbalance and user has opted for power-savings balance,
6252  *		   return the least loaded group whose CPUs can be
6253  *		   put to idle by rebalancing its tasks onto our group.
6254  */
6255 static struct sched_group *find_busiest_group(struct lb_env *env)
6256 {
6257 	struct sg_lb_stats *local, *busiest;
6258 	struct sd_lb_stats sds;
6259 
6260 	init_sd_lb_stats(&sds);
6261 
6262 	/*
6263 	 * Compute the various statistics relavent for load balancing at
6264 	 * this level.
6265 	 */
6266 	update_sd_lb_stats(env, &sds);
6267 	local = &sds.local_stat;
6268 	busiest = &sds.busiest_stat;
6269 
6270 	if ((env->idle == CPU_IDLE || env->idle == CPU_NEWLY_IDLE) &&
6271 	    check_asym_packing(env, &sds))
6272 		return sds.busiest;
6273 
6274 	/* There is no busy sibling group to pull tasks from */
6275 	if (!sds.busiest || busiest->sum_nr_running == 0)
6276 		goto out_balanced;
6277 
6278 	sds.avg_load = (SCHED_POWER_SCALE * sds.total_load) / sds.total_pwr;
6279 
6280 	/*
6281 	 * If the busiest group is imbalanced the below checks don't
6282 	 * work because they assume all things are equal, which typically
6283 	 * isn't true due to cpus_allowed constraints and the like.
6284 	 */
6285 	if (busiest->group_imb)
6286 		goto force_balance;
6287 
6288 	/* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
6289 	if (env->idle == CPU_NEWLY_IDLE && local->group_has_capacity &&
6290 	    !busiest->group_has_capacity)
6291 		goto force_balance;
6292 
6293 	/*
6294 	 * If the local group is more busy than the selected busiest group
6295 	 * don't try and pull any tasks.
6296 	 */
6297 	if (local->avg_load >= busiest->avg_load)
6298 		goto out_balanced;
6299 
6300 	/*
6301 	 * Don't pull any tasks if this group is already above the domain
6302 	 * average load.
6303 	 */
6304 	if (local->avg_load >= sds.avg_load)
6305 		goto out_balanced;
6306 
6307 	if (env->idle == CPU_IDLE) {
6308 		/*
6309 		 * This cpu is idle. If the busiest group load doesn't
6310 		 * have more tasks than the number of available cpu's and
6311 		 * there is no imbalance between this and busiest group
6312 		 * wrt to idle cpu's, it is balanced.
6313 		 */
6314 		if ((local->idle_cpus < busiest->idle_cpus) &&
6315 		    busiest->sum_nr_running <= busiest->group_weight)
6316 			goto out_balanced;
6317 	} else {
6318 		/*
6319 		 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
6320 		 * imbalance_pct to be conservative.
6321 		 */
6322 		if (100 * busiest->avg_load <=
6323 				env->sd->imbalance_pct * local->avg_load)
6324 			goto out_balanced;
6325 	}
6326 
6327 force_balance:
6328 	/* Looks like there is an imbalance. Compute it */
6329 	calculate_imbalance(env, &sds);
6330 	return sds.busiest;
6331 
6332 out_balanced:
6333 	env->imbalance = 0;
6334 	return NULL;
6335 }
6336 
6337 /*
6338  * find_busiest_queue - find the busiest runqueue among the cpus in group.
6339  */
6340 static struct rq *find_busiest_queue(struct lb_env *env,
6341 				     struct sched_group *group)
6342 {
6343 	struct rq *busiest = NULL, *rq;
6344 	unsigned long busiest_load = 0, busiest_power = 1;
6345 	int i;
6346 
6347 	for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
6348 		unsigned long power, capacity, wl;
6349 		enum fbq_type rt;
6350 
6351 		rq = cpu_rq(i);
6352 		rt = fbq_classify_rq(rq);
6353 
6354 		/*
6355 		 * We classify groups/runqueues into three groups:
6356 		 *  - regular: there are !numa tasks
6357 		 *  - remote:  there are numa tasks that run on the 'wrong' node
6358 		 *  - all:     there is no distinction
6359 		 *
6360 		 * In order to avoid migrating ideally placed numa tasks,
6361 		 * ignore those when there's better options.
6362 		 *
6363 		 * If we ignore the actual busiest queue to migrate another
6364 		 * task, the next balance pass can still reduce the busiest
6365 		 * queue by moving tasks around inside the node.
6366 		 *
6367 		 * If we cannot move enough load due to this classification
6368 		 * the next pass will adjust the group classification and
6369 		 * allow migration of more tasks.
6370 		 *
6371 		 * Both cases only affect the total convergence complexity.
6372 		 */
6373 		if (rt > env->fbq_type)
6374 			continue;
6375 
6376 		power = power_of(i);
6377 		capacity = DIV_ROUND_CLOSEST(power, SCHED_POWER_SCALE);
6378 		if (!capacity)
6379 			capacity = fix_small_capacity(env->sd, group);
6380 
6381 		wl = weighted_cpuload(i);
6382 
6383 		/*
6384 		 * When comparing with imbalance, use weighted_cpuload()
6385 		 * which is not scaled with the cpu power.
6386 		 */
6387 		if (capacity && rq->nr_running == 1 && wl > env->imbalance)
6388 			continue;
6389 
6390 		/*
6391 		 * For the load comparisons with the other cpu's, consider
6392 		 * the weighted_cpuload() scaled with the cpu power, so that
6393 		 * the load can be moved away from the cpu that is potentially
6394 		 * running at a lower capacity.
6395 		 *
6396 		 * Thus we're looking for max(wl_i / power_i), crosswise
6397 		 * multiplication to rid ourselves of the division works out
6398 		 * to: wl_i * power_j > wl_j * power_i;  where j is our
6399 		 * previous maximum.
6400 		 */
6401 		if (wl * busiest_power > busiest_load * power) {
6402 			busiest_load = wl;
6403 			busiest_power = power;
6404 			busiest = rq;
6405 		}
6406 	}
6407 
6408 	return busiest;
6409 }
6410 
6411 /*
6412  * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
6413  * so long as it is large enough.
6414  */
6415 #define MAX_PINNED_INTERVAL	512
6416 
6417 /* Working cpumask for load_balance and load_balance_newidle. */
6418 DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
6419 
6420 static int need_active_balance(struct lb_env *env)
6421 {
6422 	struct sched_domain *sd = env->sd;
6423 
6424 	if (env->idle == CPU_NEWLY_IDLE) {
6425 
6426 		/*
6427 		 * ASYM_PACKING needs to force migrate tasks from busy but
6428 		 * higher numbered CPUs in order to pack all tasks in the
6429 		 * lowest numbered CPUs.
6430 		 */
6431 		if ((sd->flags & SD_ASYM_PACKING) && env->src_cpu > env->dst_cpu)
6432 			return 1;
6433 	}
6434 
6435 	return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
6436 }
6437 
6438 static int active_load_balance_cpu_stop(void *data);
6439 
6440 static int should_we_balance(struct lb_env *env)
6441 {
6442 	struct sched_group *sg = env->sd->groups;
6443 	struct cpumask *sg_cpus, *sg_mask;
6444 	int cpu, balance_cpu = -1;
6445 
6446 	/*
6447 	 * In the newly idle case, we will allow all the cpu's
6448 	 * to do the newly idle load balance.
6449 	 */
6450 	if (env->idle == CPU_NEWLY_IDLE)
6451 		return 1;
6452 
6453 	sg_cpus = sched_group_cpus(sg);
6454 	sg_mask = sched_group_mask(sg);
6455 	/* Try to find first idle cpu */
6456 	for_each_cpu_and(cpu, sg_cpus, env->cpus) {
6457 		if (!cpumask_test_cpu(cpu, sg_mask) || !idle_cpu(cpu))
6458 			continue;
6459 
6460 		balance_cpu = cpu;
6461 		break;
6462 	}
6463 
6464 	if (balance_cpu == -1)
6465 		balance_cpu = group_balance_cpu(sg);
6466 
6467 	/*
6468 	 * First idle cpu or the first cpu(busiest) in this sched group
6469 	 * is eligible for doing load balancing at this and above domains.
6470 	 */
6471 	return balance_cpu == env->dst_cpu;
6472 }
6473 
6474 /*
6475  * Check this_cpu to ensure it is balanced within domain. Attempt to move
6476  * tasks if there is an imbalance.
6477  */
6478 static int load_balance(int this_cpu, struct rq *this_rq,
6479 			struct sched_domain *sd, enum cpu_idle_type idle,
6480 			int *continue_balancing)
6481 {
6482 	int ld_moved, cur_ld_moved, active_balance = 0;
6483 	struct sched_domain *sd_parent = sd->parent;
6484 	struct sched_group *group;
6485 	struct rq *busiest;
6486 	unsigned long flags;
6487 	struct cpumask *cpus = __get_cpu_var(load_balance_mask);
6488 
6489 	struct lb_env env = {
6490 		.sd		= sd,
6491 		.dst_cpu	= this_cpu,
6492 		.dst_rq		= this_rq,
6493 		.dst_grpmask    = sched_group_cpus(sd->groups),
6494 		.idle		= idle,
6495 		.loop_break	= sched_nr_migrate_break,
6496 		.cpus		= cpus,
6497 		.fbq_type	= all,
6498 	};
6499 
6500 	/*
6501 	 * For NEWLY_IDLE load_balancing, we don't need to consider
6502 	 * other cpus in our group
6503 	 */
6504 	if (idle == CPU_NEWLY_IDLE)
6505 		env.dst_grpmask = NULL;
6506 
6507 	cpumask_copy(cpus, cpu_active_mask);
6508 
6509 	schedstat_inc(sd, lb_count[idle]);
6510 
6511 redo:
6512 	if (!should_we_balance(&env)) {
6513 		*continue_balancing = 0;
6514 		goto out_balanced;
6515 	}
6516 
6517 	group = find_busiest_group(&env);
6518 	if (!group) {
6519 		schedstat_inc(sd, lb_nobusyg[idle]);
6520 		goto out_balanced;
6521 	}
6522 
6523 	busiest = find_busiest_queue(&env, group);
6524 	if (!busiest) {
6525 		schedstat_inc(sd, lb_nobusyq[idle]);
6526 		goto out_balanced;
6527 	}
6528 
6529 	BUG_ON(busiest == env.dst_rq);
6530 
6531 	schedstat_add(sd, lb_imbalance[idle], env.imbalance);
6532 
6533 	ld_moved = 0;
6534 	if (busiest->nr_running > 1) {
6535 		/*
6536 		 * Attempt to move tasks. If find_busiest_group has found
6537 		 * an imbalance but busiest->nr_running <= 1, the group is
6538 		 * still unbalanced. ld_moved simply stays zero, so it is
6539 		 * correctly treated as an imbalance.
6540 		 */
6541 		env.flags |= LBF_ALL_PINNED;
6542 		env.src_cpu   = busiest->cpu;
6543 		env.src_rq    = busiest;
6544 		env.loop_max  = min(sysctl_sched_nr_migrate, busiest->nr_running);
6545 
6546 more_balance:
6547 		local_irq_save(flags);
6548 		double_rq_lock(env.dst_rq, busiest);
6549 
6550 		/*
6551 		 * cur_ld_moved - load moved in current iteration
6552 		 * ld_moved     - cumulative load moved across iterations
6553 		 */
6554 		cur_ld_moved = move_tasks(&env);
6555 		ld_moved += cur_ld_moved;
6556 		double_rq_unlock(env.dst_rq, busiest);
6557 		local_irq_restore(flags);
6558 
6559 		/*
6560 		 * some other cpu did the load balance for us.
6561 		 */
6562 		if (cur_ld_moved && env.dst_cpu != smp_processor_id())
6563 			resched_cpu(env.dst_cpu);
6564 
6565 		if (env.flags & LBF_NEED_BREAK) {
6566 			env.flags &= ~LBF_NEED_BREAK;
6567 			goto more_balance;
6568 		}
6569 
6570 		/*
6571 		 * Revisit (affine) tasks on src_cpu that couldn't be moved to
6572 		 * us and move them to an alternate dst_cpu in our sched_group
6573 		 * where they can run. The upper limit on how many times we
6574 		 * iterate on same src_cpu is dependent on number of cpus in our
6575 		 * sched_group.
6576 		 *
6577 		 * This changes load balance semantics a bit on who can move
6578 		 * load to a given_cpu. In addition to the given_cpu itself
6579 		 * (or a ilb_cpu acting on its behalf where given_cpu is
6580 		 * nohz-idle), we now have balance_cpu in a position to move
6581 		 * load to given_cpu. In rare situations, this may cause
6582 		 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
6583 		 * _independently_ and at _same_ time to move some load to
6584 		 * given_cpu) causing exceess load to be moved to given_cpu.
6585 		 * This however should not happen so much in practice and
6586 		 * moreover subsequent load balance cycles should correct the
6587 		 * excess load moved.
6588 		 */
6589 		if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
6590 
6591 			/* Prevent to re-select dst_cpu via env's cpus */
6592 			cpumask_clear_cpu(env.dst_cpu, env.cpus);
6593 
6594 			env.dst_rq	 = cpu_rq(env.new_dst_cpu);
6595 			env.dst_cpu	 = env.new_dst_cpu;
6596 			env.flags	&= ~LBF_DST_PINNED;
6597 			env.loop	 = 0;
6598 			env.loop_break	 = sched_nr_migrate_break;
6599 
6600 			/*
6601 			 * Go back to "more_balance" rather than "redo" since we
6602 			 * need to continue with same src_cpu.
6603 			 */
6604 			goto more_balance;
6605 		}
6606 
6607 		/*
6608 		 * We failed to reach balance because of affinity.
6609 		 */
6610 		if (sd_parent) {
6611 			int *group_imbalance = &sd_parent->groups->sgp->imbalance;
6612 
6613 			if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0) {
6614 				*group_imbalance = 1;
6615 			} else if (*group_imbalance)
6616 				*group_imbalance = 0;
6617 		}
6618 
6619 		/* All tasks on this runqueue were pinned by CPU affinity */
6620 		if (unlikely(env.flags & LBF_ALL_PINNED)) {
6621 			cpumask_clear_cpu(cpu_of(busiest), cpus);
6622 			if (!cpumask_empty(cpus)) {
6623 				env.loop = 0;
6624 				env.loop_break = sched_nr_migrate_break;
6625 				goto redo;
6626 			}
6627 			goto out_balanced;
6628 		}
6629 	}
6630 
6631 	if (!ld_moved) {
6632 		schedstat_inc(sd, lb_failed[idle]);
6633 		/*
6634 		 * Increment the failure counter only on periodic balance.
6635 		 * We do not want newidle balance, which can be very
6636 		 * frequent, pollute the failure counter causing
6637 		 * excessive cache_hot migrations and active balances.
6638 		 */
6639 		if (idle != CPU_NEWLY_IDLE)
6640 			sd->nr_balance_failed++;
6641 
6642 		if (need_active_balance(&env)) {
6643 			raw_spin_lock_irqsave(&busiest->lock, flags);
6644 
6645 			/* don't kick the active_load_balance_cpu_stop,
6646 			 * if the curr task on busiest cpu can't be
6647 			 * moved to this_cpu
6648 			 */
6649 			if (!cpumask_test_cpu(this_cpu,
6650 					tsk_cpus_allowed(busiest->curr))) {
6651 				raw_spin_unlock_irqrestore(&busiest->lock,
6652 							    flags);
6653 				env.flags |= LBF_ALL_PINNED;
6654 				goto out_one_pinned;
6655 			}
6656 
6657 			/*
6658 			 * ->active_balance synchronizes accesses to
6659 			 * ->active_balance_work.  Once set, it's cleared
6660 			 * only after active load balance is finished.
6661 			 */
6662 			if (!busiest->active_balance) {
6663 				busiest->active_balance = 1;
6664 				busiest->push_cpu = this_cpu;
6665 				active_balance = 1;
6666 			}
6667 			raw_spin_unlock_irqrestore(&busiest->lock, flags);
6668 
6669 			if (active_balance) {
6670 				stop_one_cpu_nowait(cpu_of(busiest),
6671 					active_load_balance_cpu_stop, busiest,
6672 					&busiest->active_balance_work);
6673 			}
6674 
6675 			/*
6676 			 * We've kicked active balancing, reset the failure
6677 			 * counter.
6678 			 */
6679 			sd->nr_balance_failed = sd->cache_nice_tries+1;
6680 		}
6681 	} else
6682 		sd->nr_balance_failed = 0;
6683 
6684 	if (likely(!active_balance)) {
6685 		/* We were unbalanced, so reset the balancing interval */
6686 		sd->balance_interval = sd->min_interval;
6687 	} else {
6688 		/*
6689 		 * If we've begun active balancing, start to back off. This
6690 		 * case may not be covered by the all_pinned logic if there
6691 		 * is only 1 task on the busy runqueue (because we don't call
6692 		 * move_tasks).
6693 		 */
6694 		if (sd->balance_interval < sd->max_interval)
6695 			sd->balance_interval *= 2;
6696 	}
6697 
6698 	goto out;
6699 
6700 out_balanced:
6701 	schedstat_inc(sd, lb_balanced[idle]);
6702 
6703 	sd->nr_balance_failed = 0;
6704 
6705 out_one_pinned:
6706 	/* tune up the balancing interval */
6707 	if (((env.flags & LBF_ALL_PINNED) &&
6708 			sd->balance_interval < MAX_PINNED_INTERVAL) ||
6709 			(sd->balance_interval < sd->max_interval))
6710 		sd->balance_interval *= 2;
6711 
6712 	ld_moved = 0;
6713 out:
6714 	return ld_moved;
6715 }
6716 
6717 static inline unsigned long
6718 get_sd_balance_interval(struct sched_domain *sd, int cpu_busy)
6719 {
6720 	unsigned long interval = sd->balance_interval;
6721 
6722 	if (cpu_busy)
6723 		interval *= sd->busy_factor;
6724 
6725 	/* scale ms to jiffies */
6726 	interval = msecs_to_jiffies(interval);
6727 	interval = clamp(interval, 1UL, max_load_balance_interval);
6728 
6729 	return interval;
6730 }
6731 
6732 static inline void
6733 update_next_balance(struct sched_domain *sd, int cpu_busy, unsigned long *next_balance)
6734 {
6735 	unsigned long interval, next;
6736 
6737 	interval = get_sd_balance_interval(sd, cpu_busy);
6738 	next = sd->last_balance + interval;
6739 
6740 	if (time_after(*next_balance, next))
6741 		*next_balance = next;
6742 }
6743 
6744 /*
6745  * idle_balance is called by schedule() if this_cpu is about to become
6746  * idle. Attempts to pull tasks from other CPUs.
6747  */
6748 static int idle_balance(struct rq *this_rq)
6749 {
6750 	unsigned long next_balance = jiffies + HZ;
6751 	int this_cpu = this_rq->cpu;
6752 	struct sched_domain *sd;
6753 	int pulled_task = 0;
6754 	u64 curr_cost = 0;
6755 
6756 	idle_enter_fair(this_rq);
6757 
6758 	/*
6759 	 * We must set idle_stamp _before_ calling idle_balance(), such that we
6760 	 * measure the duration of idle_balance() as idle time.
6761 	 */
6762 	this_rq->idle_stamp = rq_clock(this_rq);
6763 
6764 	if (this_rq->avg_idle < sysctl_sched_migration_cost) {
6765 		rcu_read_lock();
6766 		sd = rcu_dereference_check_sched_domain(this_rq->sd);
6767 		if (sd)
6768 			update_next_balance(sd, 0, &next_balance);
6769 		rcu_read_unlock();
6770 
6771 		goto out;
6772 	}
6773 
6774 	/*
6775 	 * Drop the rq->lock, but keep IRQ/preempt disabled.
6776 	 */
6777 	raw_spin_unlock(&this_rq->lock);
6778 
6779 	update_blocked_averages(this_cpu);
6780 	rcu_read_lock();
6781 	for_each_domain(this_cpu, sd) {
6782 		int continue_balancing = 1;
6783 		u64 t0, domain_cost;
6784 
6785 		if (!(sd->flags & SD_LOAD_BALANCE))
6786 			continue;
6787 
6788 		if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) {
6789 			update_next_balance(sd, 0, &next_balance);
6790 			break;
6791 		}
6792 
6793 		if (sd->flags & SD_BALANCE_NEWIDLE) {
6794 			t0 = sched_clock_cpu(this_cpu);
6795 
6796 			pulled_task = load_balance(this_cpu, this_rq,
6797 						   sd, CPU_NEWLY_IDLE,
6798 						   &continue_balancing);
6799 
6800 			domain_cost = sched_clock_cpu(this_cpu) - t0;
6801 			if (domain_cost > sd->max_newidle_lb_cost)
6802 				sd->max_newidle_lb_cost = domain_cost;
6803 
6804 			curr_cost += domain_cost;
6805 		}
6806 
6807 		update_next_balance(sd, 0, &next_balance);
6808 
6809 		/*
6810 		 * Stop searching for tasks to pull if there are
6811 		 * now runnable tasks on this rq.
6812 		 */
6813 		if (pulled_task || this_rq->nr_running > 0)
6814 			break;
6815 	}
6816 	rcu_read_unlock();
6817 
6818 	raw_spin_lock(&this_rq->lock);
6819 
6820 	if (curr_cost > this_rq->max_idle_balance_cost)
6821 		this_rq->max_idle_balance_cost = curr_cost;
6822 
6823 	/*
6824 	 * While browsing the domains, we released the rq lock, a task could
6825 	 * have been enqueued in the meantime. Since we're not going idle,
6826 	 * pretend we pulled a task.
6827 	 */
6828 	if (this_rq->cfs.h_nr_running && !pulled_task)
6829 		pulled_task = 1;
6830 
6831 out:
6832 	/* Move the next balance forward */
6833 	if (time_after(this_rq->next_balance, next_balance))
6834 		this_rq->next_balance = next_balance;
6835 
6836 	/* Is there a task of a high priority class? */
6837 	if (this_rq->nr_running != this_rq->cfs.h_nr_running)
6838 		pulled_task = -1;
6839 
6840 	if (pulled_task) {
6841 		idle_exit_fair(this_rq);
6842 		this_rq->idle_stamp = 0;
6843 	}
6844 
6845 	return pulled_task;
6846 }
6847 
6848 /*
6849  * active_load_balance_cpu_stop is run by cpu stopper. It pushes
6850  * running tasks off the busiest CPU onto idle CPUs. It requires at
6851  * least 1 task to be running on each physical CPU where possible, and
6852  * avoids physical / logical imbalances.
6853  */
6854 static int active_load_balance_cpu_stop(void *data)
6855 {
6856 	struct rq *busiest_rq = data;
6857 	int busiest_cpu = cpu_of(busiest_rq);
6858 	int target_cpu = busiest_rq->push_cpu;
6859 	struct rq *target_rq = cpu_rq(target_cpu);
6860 	struct sched_domain *sd;
6861 
6862 	raw_spin_lock_irq(&busiest_rq->lock);
6863 
6864 	/* make sure the requested cpu hasn't gone down in the meantime */
6865 	if (unlikely(busiest_cpu != smp_processor_id() ||
6866 		     !busiest_rq->active_balance))
6867 		goto out_unlock;
6868 
6869 	/* Is there any task to move? */
6870 	if (busiest_rq->nr_running <= 1)
6871 		goto out_unlock;
6872 
6873 	/*
6874 	 * This condition is "impossible", if it occurs
6875 	 * we need to fix it. Originally reported by
6876 	 * Bjorn Helgaas on a 128-cpu setup.
6877 	 */
6878 	BUG_ON(busiest_rq == target_rq);
6879 
6880 	/* move a task from busiest_rq to target_rq */
6881 	double_lock_balance(busiest_rq, target_rq);
6882 
6883 	/* Search for an sd spanning us and the target CPU. */
6884 	rcu_read_lock();
6885 	for_each_domain(target_cpu, sd) {
6886 		if ((sd->flags & SD_LOAD_BALANCE) &&
6887 		    cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
6888 				break;
6889 	}
6890 
6891 	if (likely(sd)) {
6892 		struct lb_env env = {
6893 			.sd		= sd,
6894 			.dst_cpu	= target_cpu,
6895 			.dst_rq		= target_rq,
6896 			.src_cpu	= busiest_rq->cpu,
6897 			.src_rq		= busiest_rq,
6898 			.idle		= CPU_IDLE,
6899 		};
6900 
6901 		schedstat_inc(sd, alb_count);
6902 
6903 		if (move_one_task(&env))
6904 			schedstat_inc(sd, alb_pushed);
6905 		else
6906 			schedstat_inc(sd, alb_failed);
6907 	}
6908 	rcu_read_unlock();
6909 	double_unlock_balance(busiest_rq, target_rq);
6910 out_unlock:
6911 	busiest_rq->active_balance = 0;
6912 	raw_spin_unlock_irq(&busiest_rq->lock);
6913 	return 0;
6914 }
6915 
6916 static inline int on_null_domain(struct rq *rq)
6917 {
6918 	return unlikely(!rcu_dereference_sched(rq->sd));
6919 }
6920 
6921 #ifdef CONFIG_NO_HZ_COMMON
6922 /*
6923  * idle load balancing details
6924  * - When one of the busy CPUs notice that there may be an idle rebalancing
6925  *   needed, they will kick the idle load balancer, which then does idle
6926  *   load balancing for all the idle CPUs.
6927  */
6928 static struct {
6929 	cpumask_var_t idle_cpus_mask;
6930 	atomic_t nr_cpus;
6931 	unsigned long next_balance;     /* in jiffy units */
6932 } nohz ____cacheline_aligned;
6933 
6934 static inline int find_new_ilb(void)
6935 {
6936 	int ilb = cpumask_first(nohz.idle_cpus_mask);
6937 
6938 	if (ilb < nr_cpu_ids && idle_cpu(ilb))
6939 		return ilb;
6940 
6941 	return nr_cpu_ids;
6942 }
6943 
6944 /*
6945  * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
6946  * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
6947  * CPU (if there is one).
6948  */
6949 static void nohz_balancer_kick(void)
6950 {
6951 	int ilb_cpu;
6952 
6953 	nohz.next_balance++;
6954 
6955 	ilb_cpu = find_new_ilb();
6956 
6957 	if (ilb_cpu >= nr_cpu_ids)
6958 		return;
6959 
6960 	if (test_and_set_bit(NOHZ_BALANCE_KICK, nohz_flags(ilb_cpu)))
6961 		return;
6962 	/*
6963 	 * Use smp_send_reschedule() instead of resched_cpu().
6964 	 * This way we generate a sched IPI on the target cpu which
6965 	 * is idle. And the softirq performing nohz idle load balance
6966 	 * will be run before returning from the IPI.
6967 	 */
6968 	smp_send_reschedule(ilb_cpu);
6969 	return;
6970 }
6971 
6972 static inline void nohz_balance_exit_idle(int cpu)
6973 {
6974 	if (unlikely(test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))) {
6975 		/*
6976 		 * Completely isolated CPUs don't ever set, so we must test.
6977 		 */
6978 		if (likely(cpumask_test_cpu(cpu, nohz.idle_cpus_mask))) {
6979 			cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
6980 			atomic_dec(&nohz.nr_cpus);
6981 		}
6982 		clear_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
6983 	}
6984 }
6985 
6986 static inline void set_cpu_sd_state_busy(void)
6987 {
6988 	struct sched_domain *sd;
6989 	int cpu = smp_processor_id();
6990 
6991 	rcu_read_lock();
6992 	sd = rcu_dereference(per_cpu(sd_busy, cpu));
6993 
6994 	if (!sd || !sd->nohz_idle)
6995 		goto unlock;
6996 	sd->nohz_idle = 0;
6997 
6998 	atomic_inc(&sd->groups->sgp->nr_busy_cpus);
6999 unlock:
7000 	rcu_read_unlock();
7001 }
7002 
7003 void set_cpu_sd_state_idle(void)
7004 {
7005 	struct sched_domain *sd;
7006 	int cpu = smp_processor_id();
7007 
7008 	rcu_read_lock();
7009 	sd = rcu_dereference(per_cpu(sd_busy, cpu));
7010 
7011 	if (!sd || sd->nohz_idle)
7012 		goto unlock;
7013 	sd->nohz_idle = 1;
7014 
7015 	atomic_dec(&sd->groups->sgp->nr_busy_cpus);
7016 unlock:
7017 	rcu_read_unlock();
7018 }
7019 
7020 /*
7021  * This routine will record that the cpu is going idle with tick stopped.
7022  * This info will be used in performing idle load balancing in the future.
7023  */
7024 void nohz_balance_enter_idle(int cpu)
7025 {
7026 	/*
7027 	 * If this cpu is going down, then nothing needs to be done.
7028 	 */
7029 	if (!cpu_active(cpu))
7030 		return;
7031 
7032 	if (test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))
7033 		return;
7034 
7035 	/*
7036 	 * If we're a completely isolated CPU, we don't play.
7037 	 */
7038 	if (on_null_domain(cpu_rq(cpu)))
7039 		return;
7040 
7041 	cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
7042 	atomic_inc(&nohz.nr_cpus);
7043 	set_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
7044 }
7045 
7046 static int sched_ilb_notifier(struct notifier_block *nfb,
7047 					unsigned long action, void *hcpu)
7048 {
7049 	switch (action & ~CPU_TASKS_FROZEN) {
7050 	case CPU_DYING:
7051 		nohz_balance_exit_idle(smp_processor_id());
7052 		return NOTIFY_OK;
7053 	default:
7054 		return NOTIFY_DONE;
7055 	}
7056 }
7057 #endif
7058 
7059 static DEFINE_SPINLOCK(balancing);
7060 
7061 /*
7062  * Scale the max load_balance interval with the number of CPUs in the system.
7063  * This trades load-balance latency on larger machines for less cross talk.
7064  */
7065 void update_max_interval(void)
7066 {
7067 	max_load_balance_interval = HZ*num_online_cpus()/10;
7068 }
7069 
7070 /*
7071  * It checks each scheduling domain to see if it is due to be balanced,
7072  * and initiates a balancing operation if so.
7073  *
7074  * Balancing parameters are set up in init_sched_domains.
7075  */
7076 static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle)
7077 {
7078 	int continue_balancing = 1;
7079 	int cpu = rq->cpu;
7080 	unsigned long interval;
7081 	struct sched_domain *sd;
7082 	/* Earliest time when we have to do rebalance again */
7083 	unsigned long next_balance = jiffies + 60*HZ;
7084 	int update_next_balance = 0;
7085 	int need_serialize, need_decay = 0;
7086 	u64 max_cost = 0;
7087 
7088 	update_blocked_averages(cpu);
7089 
7090 	rcu_read_lock();
7091 	for_each_domain(cpu, sd) {
7092 		/*
7093 		 * Decay the newidle max times here because this is a regular
7094 		 * visit to all the domains. Decay ~1% per second.
7095 		 */
7096 		if (time_after(jiffies, sd->next_decay_max_lb_cost)) {
7097 			sd->max_newidle_lb_cost =
7098 				(sd->max_newidle_lb_cost * 253) / 256;
7099 			sd->next_decay_max_lb_cost = jiffies + HZ;
7100 			need_decay = 1;
7101 		}
7102 		max_cost += sd->max_newidle_lb_cost;
7103 
7104 		if (!(sd->flags & SD_LOAD_BALANCE))
7105 			continue;
7106 
7107 		/*
7108 		 * Stop the load balance at this level. There is another
7109 		 * CPU in our sched group which is doing load balancing more
7110 		 * actively.
7111 		 */
7112 		if (!continue_balancing) {
7113 			if (need_decay)
7114 				continue;
7115 			break;
7116 		}
7117 
7118 		interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
7119 
7120 		need_serialize = sd->flags & SD_SERIALIZE;
7121 		if (need_serialize) {
7122 			if (!spin_trylock(&balancing))
7123 				goto out;
7124 		}
7125 
7126 		if (time_after_eq(jiffies, sd->last_balance + interval)) {
7127 			if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
7128 				/*
7129 				 * The LBF_DST_PINNED logic could have changed
7130 				 * env->dst_cpu, so we can't know our idle
7131 				 * state even if we migrated tasks. Update it.
7132 				 */
7133 				idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
7134 			}
7135 			sd->last_balance = jiffies;
7136 			interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
7137 		}
7138 		if (need_serialize)
7139 			spin_unlock(&balancing);
7140 out:
7141 		if (time_after(next_balance, sd->last_balance + interval)) {
7142 			next_balance = sd->last_balance + interval;
7143 			update_next_balance = 1;
7144 		}
7145 	}
7146 	if (need_decay) {
7147 		/*
7148 		 * Ensure the rq-wide value also decays but keep it at a
7149 		 * reasonable floor to avoid funnies with rq->avg_idle.
7150 		 */
7151 		rq->max_idle_balance_cost =
7152 			max((u64)sysctl_sched_migration_cost, max_cost);
7153 	}
7154 	rcu_read_unlock();
7155 
7156 	/*
7157 	 * next_balance will be updated only when there is a need.
7158 	 * When the cpu is attached to null domain for ex, it will not be
7159 	 * updated.
7160 	 */
7161 	if (likely(update_next_balance))
7162 		rq->next_balance = next_balance;
7163 }
7164 
7165 #ifdef CONFIG_NO_HZ_COMMON
7166 /*
7167  * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
7168  * rebalancing for all the cpus for whom scheduler ticks are stopped.
7169  */
7170 static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
7171 {
7172 	int this_cpu = this_rq->cpu;
7173 	struct rq *rq;
7174 	int balance_cpu;
7175 
7176 	if (idle != CPU_IDLE ||
7177 	    !test_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu)))
7178 		goto end;
7179 
7180 	for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
7181 		if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
7182 			continue;
7183 
7184 		/*
7185 		 * If this cpu gets work to do, stop the load balancing
7186 		 * work being done for other cpus. Next load
7187 		 * balancing owner will pick it up.
7188 		 */
7189 		if (need_resched())
7190 			break;
7191 
7192 		rq = cpu_rq(balance_cpu);
7193 
7194 		raw_spin_lock_irq(&rq->lock);
7195 		update_rq_clock(rq);
7196 		update_idle_cpu_load(rq);
7197 		raw_spin_unlock_irq(&rq->lock);
7198 
7199 		rebalance_domains(rq, CPU_IDLE);
7200 
7201 		if (time_after(this_rq->next_balance, rq->next_balance))
7202 			this_rq->next_balance = rq->next_balance;
7203 	}
7204 	nohz.next_balance = this_rq->next_balance;
7205 end:
7206 	clear_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu));
7207 }
7208 
7209 /*
7210  * Current heuristic for kicking the idle load balancer in the presence
7211  * of an idle cpu is the system.
7212  *   - This rq has more than one task.
7213  *   - At any scheduler domain level, this cpu's scheduler group has multiple
7214  *     busy cpu's exceeding the group's power.
7215  *   - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler
7216  *     domain span are idle.
7217  */
7218 static inline int nohz_kick_needed(struct rq *rq)
7219 {
7220 	unsigned long now = jiffies;
7221 	struct sched_domain *sd;
7222 	struct sched_group_power *sgp;
7223 	int nr_busy, cpu = rq->cpu;
7224 
7225 	if (unlikely(rq->idle_balance))
7226 		return 0;
7227 
7228        /*
7229 	* We may be recently in ticked or tickless idle mode. At the first
7230 	* busy tick after returning from idle, we will update the busy stats.
7231 	*/
7232 	set_cpu_sd_state_busy();
7233 	nohz_balance_exit_idle(cpu);
7234 
7235 	/*
7236 	 * None are in tickless mode and hence no need for NOHZ idle load
7237 	 * balancing.
7238 	 */
7239 	if (likely(!atomic_read(&nohz.nr_cpus)))
7240 		return 0;
7241 
7242 	if (time_before(now, nohz.next_balance))
7243 		return 0;
7244 
7245 	if (rq->nr_running >= 2)
7246 		goto need_kick;
7247 
7248 	rcu_read_lock();
7249 	sd = rcu_dereference(per_cpu(sd_busy, cpu));
7250 
7251 	if (sd) {
7252 		sgp = sd->groups->sgp;
7253 		nr_busy = atomic_read(&sgp->nr_busy_cpus);
7254 
7255 		if (nr_busy > 1)
7256 			goto need_kick_unlock;
7257 	}
7258 
7259 	sd = rcu_dereference(per_cpu(sd_asym, cpu));
7260 
7261 	if (sd && (cpumask_first_and(nohz.idle_cpus_mask,
7262 				  sched_domain_span(sd)) < cpu))
7263 		goto need_kick_unlock;
7264 
7265 	rcu_read_unlock();
7266 	return 0;
7267 
7268 need_kick_unlock:
7269 	rcu_read_unlock();
7270 need_kick:
7271 	return 1;
7272 }
7273 #else
7274 static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) { }
7275 #endif
7276 
7277 /*
7278  * run_rebalance_domains is triggered when needed from the scheduler tick.
7279  * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
7280  */
7281 static void run_rebalance_domains(struct softirq_action *h)
7282 {
7283 	struct rq *this_rq = this_rq();
7284 	enum cpu_idle_type idle = this_rq->idle_balance ?
7285 						CPU_IDLE : CPU_NOT_IDLE;
7286 
7287 	rebalance_domains(this_rq, idle);
7288 
7289 	/*
7290 	 * If this cpu has a pending nohz_balance_kick, then do the
7291 	 * balancing on behalf of the other idle cpus whose ticks are
7292 	 * stopped.
7293 	 */
7294 	nohz_idle_balance(this_rq, idle);
7295 }
7296 
7297 /*
7298  * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
7299  */
7300 void trigger_load_balance(struct rq *rq)
7301 {
7302 	/* Don't need to rebalance while attached to NULL domain */
7303 	if (unlikely(on_null_domain(rq)))
7304 		return;
7305 
7306 	if (time_after_eq(jiffies, rq->next_balance))
7307 		raise_softirq(SCHED_SOFTIRQ);
7308 #ifdef CONFIG_NO_HZ_COMMON
7309 	if (nohz_kick_needed(rq))
7310 		nohz_balancer_kick();
7311 #endif
7312 }
7313 
7314 static void rq_online_fair(struct rq *rq)
7315 {
7316 	update_sysctl();
7317 }
7318 
7319 static void rq_offline_fair(struct rq *rq)
7320 {
7321 	update_sysctl();
7322 
7323 	/* Ensure any throttled groups are reachable by pick_next_task */
7324 	unthrottle_offline_cfs_rqs(rq);
7325 }
7326 
7327 #endif /* CONFIG_SMP */
7328 
7329 /*
7330  * scheduler tick hitting a task of our scheduling class:
7331  */
7332 static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
7333 {
7334 	struct cfs_rq *cfs_rq;
7335 	struct sched_entity *se = &curr->se;
7336 
7337 	for_each_sched_entity(se) {
7338 		cfs_rq = cfs_rq_of(se);
7339 		entity_tick(cfs_rq, se, queued);
7340 	}
7341 
7342 	if (numabalancing_enabled)
7343 		task_tick_numa(rq, curr);
7344 
7345 	update_rq_runnable_avg(rq, 1);
7346 }
7347 
7348 /*
7349  * called on fork with the child task as argument from the parent's context
7350  *  - child not yet on the tasklist
7351  *  - preemption disabled
7352  */
7353 static void task_fork_fair(struct task_struct *p)
7354 {
7355 	struct cfs_rq *cfs_rq;
7356 	struct sched_entity *se = &p->se, *curr;
7357 	int this_cpu = smp_processor_id();
7358 	struct rq *rq = this_rq();
7359 	unsigned long flags;
7360 
7361 	raw_spin_lock_irqsave(&rq->lock, flags);
7362 
7363 	update_rq_clock(rq);
7364 
7365 	cfs_rq = task_cfs_rq(current);
7366 	curr = cfs_rq->curr;
7367 
7368 	/*
7369 	 * Not only the cpu but also the task_group of the parent might have
7370 	 * been changed after parent->se.parent,cfs_rq were copied to
7371 	 * child->se.parent,cfs_rq. So call __set_task_cpu() to make those
7372 	 * of child point to valid ones.
7373 	 */
7374 	rcu_read_lock();
7375 	__set_task_cpu(p, this_cpu);
7376 	rcu_read_unlock();
7377 
7378 	update_curr(cfs_rq);
7379 
7380 	if (curr)
7381 		se->vruntime = curr->vruntime;
7382 	place_entity(cfs_rq, se, 1);
7383 
7384 	if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
7385 		/*
7386 		 * Upon rescheduling, sched_class::put_prev_task() will place
7387 		 * 'current' within the tree based on its new key value.
7388 		 */
7389 		swap(curr->vruntime, se->vruntime);
7390 		resched_task(rq->curr);
7391 	}
7392 
7393 	se->vruntime -= cfs_rq->min_vruntime;
7394 
7395 	raw_spin_unlock_irqrestore(&rq->lock, flags);
7396 }
7397 
7398 /*
7399  * Priority of the task has changed. Check to see if we preempt
7400  * the current task.
7401  */
7402 static void
7403 prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
7404 {
7405 	if (!p->se.on_rq)
7406 		return;
7407 
7408 	/*
7409 	 * Reschedule if we are currently running on this runqueue and
7410 	 * our priority decreased, or if we are not currently running on
7411 	 * this runqueue and our priority is higher than the current's
7412 	 */
7413 	if (rq->curr == p) {
7414 		if (p->prio > oldprio)
7415 			resched_task(rq->curr);
7416 	} else
7417 		check_preempt_curr(rq, p, 0);
7418 }
7419 
7420 static void switched_from_fair(struct rq *rq, struct task_struct *p)
7421 {
7422 	struct sched_entity *se = &p->se;
7423 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
7424 
7425 	/*
7426 	 * Ensure the task's vruntime is normalized, so that when it's
7427 	 * switched back to the fair class the enqueue_entity(.flags=0) will
7428 	 * do the right thing.
7429 	 *
7430 	 * If it's on_rq, then the dequeue_entity(.flags=0) will already
7431 	 * have normalized the vruntime, if it's !on_rq, then only when
7432 	 * the task is sleeping will it still have non-normalized vruntime.
7433 	 */
7434 	if (!p->on_rq && p->state != TASK_RUNNING) {
7435 		/*
7436 		 * Fix up our vruntime so that the current sleep doesn't
7437 		 * cause 'unlimited' sleep bonus.
7438 		 */
7439 		place_entity(cfs_rq, se, 0);
7440 		se->vruntime -= cfs_rq->min_vruntime;
7441 	}
7442 
7443 #ifdef CONFIG_SMP
7444 	/*
7445 	* Remove our load from contribution when we leave sched_fair
7446 	* and ensure we don't carry in an old decay_count if we
7447 	* switch back.
7448 	*/
7449 	if (se->avg.decay_count) {
7450 		__synchronize_entity_decay(se);
7451 		subtract_blocked_load_contrib(cfs_rq, se->avg.load_avg_contrib);
7452 	}
7453 #endif
7454 }
7455 
7456 /*
7457  * We switched to the sched_fair class.
7458  */
7459 static void switched_to_fair(struct rq *rq, struct task_struct *p)
7460 {
7461 	struct sched_entity *se = &p->se;
7462 #ifdef CONFIG_FAIR_GROUP_SCHED
7463 	/*
7464 	 * Since the real-depth could have been changed (only FAIR
7465 	 * class maintain depth value), reset depth properly.
7466 	 */
7467 	se->depth = se->parent ? se->parent->depth + 1 : 0;
7468 #endif
7469 	if (!se->on_rq)
7470 		return;
7471 
7472 	/*
7473 	 * We were most likely switched from sched_rt, so
7474 	 * kick off the schedule if running, otherwise just see
7475 	 * if we can still preempt the current task.
7476 	 */
7477 	if (rq->curr == p)
7478 		resched_task(rq->curr);
7479 	else
7480 		check_preempt_curr(rq, p, 0);
7481 }
7482 
7483 /* Account for a task changing its policy or group.
7484  *
7485  * This routine is mostly called to set cfs_rq->curr field when a task
7486  * migrates between groups/classes.
7487  */
7488 static void set_curr_task_fair(struct rq *rq)
7489 {
7490 	struct sched_entity *se = &rq->curr->se;
7491 
7492 	for_each_sched_entity(se) {
7493 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
7494 
7495 		set_next_entity(cfs_rq, se);
7496 		/* ensure bandwidth has been allocated on our new cfs_rq */
7497 		account_cfs_rq_runtime(cfs_rq, 0);
7498 	}
7499 }
7500 
7501 void init_cfs_rq(struct cfs_rq *cfs_rq)
7502 {
7503 	cfs_rq->tasks_timeline = RB_ROOT;
7504 	cfs_rq->min_vruntime = (u64)(-(1LL << 20));
7505 #ifndef CONFIG_64BIT
7506 	cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
7507 #endif
7508 #ifdef CONFIG_SMP
7509 	atomic64_set(&cfs_rq->decay_counter, 1);
7510 	atomic_long_set(&cfs_rq->removed_load, 0);
7511 #endif
7512 }
7513 
7514 #ifdef CONFIG_FAIR_GROUP_SCHED
7515 static void task_move_group_fair(struct task_struct *p, int on_rq)
7516 {
7517 	struct sched_entity *se = &p->se;
7518 	struct cfs_rq *cfs_rq;
7519 
7520 	/*
7521 	 * If the task was not on the rq at the time of this cgroup movement
7522 	 * it must have been asleep, sleeping tasks keep their ->vruntime
7523 	 * absolute on their old rq until wakeup (needed for the fair sleeper
7524 	 * bonus in place_entity()).
7525 	 *
7526 	 * If it was on the rq, we've just 'preempted' it, which does convert
7527 	 * ->vruntime to a relative base.
7528 	 *
7529 	 * Make sure both cases convert their relative position when migrating
7530 	 * to another cgroup's rq. This does somewhat interfere with the
7531 	 * fair sleeper stuff for the first placement, but who cares.
7532 	 */
7533 	/*
7534 	 * When !on_rq, vruntime of the task has usually NOT been normalized.
7535 	 * But there are some cases where it has already been normalized:
7536 	 *
7537 	 * - Moving a forked child which is waiting for being woken up by
7538 	 *   wake_up_new_task().
7539 	 * - Moving a task which has been woken up by try_to_wake_up() and
7540 	 *   waiting for actually being woken up by sched_ttwu_pending().
7541 	 *
7542 	 * To prevent boost or penalty in the new cfs_rq caused by delta
7543 	 * min_vruntime between the two cfs_rqs, we skip vruntime adjustment.
7544 	 */
7545 	if (!on_rq && (!se->sum_exec_runtime || p->state == TASK_WAKING))
7546 		on_rq = 1;
7547 
7548 	if (!on_rq)
7549 		se->vruntime -= cfs_rq_of(se)->min_vruntime;
7550 	set_task_rq(p, task_cpu(p));
7551 	se->depth = se->parent ? se->parent->depth + 1 : 0;
7552 	if (!on_rq) {
7553 		cfs_rq = cfs_rq_of(se);
7554 		se->vruntime += cfs_rq->min_vruntime;
7555 #ifdef CONFIG_SMP
7556 		/*
7557 		 * migrate_task_rq_fair() will have removed our previous
7558 		 * contribution, but we must synchronize for ongoing future
7559 		 * decay.
7560 		 */
7561 		se->avg.decay_count = atomic64_read(&cfs_rq->decay_counter);
7562 		cfs_rq->blocked_load_avg += se->avg.load_avg_contrib;
7563 #endif
7564 	}
7565 }
7566 
7567 void free_fair_sched_group(struct task_group *tg)
7568 {
7569 	int i;
7570 
7571 	destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
7572 
7573 	for_each_possible_cpu(i) {
7574 		if (tg->cfs_rq)
7575 			kfree(tg->cfs_rq[i]);
7576 		if (tg->se)
7577 			kfree(tg->se[i]);
7578 	}
7579 
7580 	kfree(tg->cfs_rq);
7581 	kfree(tg->se);
7582 }
7583 
7584 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
7585 {
7586 	struct cfs_rq *cfs_rq;
7587 	struct sched_entity *se;
7588 	int i;
7589 
7590 	tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
7591 	if (!tg->cfs_rq)
7592 		goto err;
7593 	tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
7594 	if (!tg->se)
7595 		goto err;
7596 
7597 	tg->shares = NICE_0_LOAD;
7598 
7599 	init_cfs_bandwidth(tg_cfs_bandwidth(tg));
7600 
7601 	for_each_possible_cpu(i) {
7602 		cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
7603 				      GFP_KERNEL, cpu_to_node(i));
7604 		if (!cfs_rq)
7605 			goto err;
7606 
7607 		se = kzalloc_node(sizeof(struct sched_entity),
7608 				  GFP_KERNEL, cpu_to_node(i));
7609 		if (!se)
7610 			goto err_free_rq;
7611 
7612 		init_cfs_rq(cfs_rq);
7613 		init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
7614 	}
7615 
7616 	return 1;
7617 
7618 err_free_rq:
7619 	kfree(cfs_rq);
7620 err:
7621 	return 0;
7622 }
7623 
7624 void unregister_fair_sched_group(struct task_group *tg, int cpu)
7625 {
7626 	struct rq *rq = cpu_rq(cpu);
7627 	unsigned long flags;
7628 
7629 	/*
7630 	* Only empty task groups can be destroyed; so we can speculatively
7631 	* check on_list without danger of it being re-added.
7632 	*/
7633 	if (!tg->cfs_rq[cpu]->on_list)
7634 		return;
7635 
7636 	raw_spin_lock_irqsave(&rq->lock, flags);
7637 	list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
7638 	raw_spin_unlock_irqrestore(&rq->lock, flags);
7639 }
7640 
7641 void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
7642 			struct sched_entity *se, int cpu,
7643 			struct sched_entity *parent)
7644 {
7645 	struct rq *rq = cpu_rq(cpu);
7646 
7647 	cfs_rq->tg = tg;
7648 	cfs_rq->rq = rq;
7649 	init_cfs_rq_runtime(cfs_rq);
7650 
7651 	tg->cfs_rq[cpu] = cfs_rq;
7652 	tg->se[cpu] = se;
7653 
7654 	/* se could be NULL for root_task_group */
7655 	if (!se)
7656 		return;
7657 
7658 	if (!parent) {
7659 		se->cfs_rq = &rq->cfs;
7660 		se->depth = 0;
7661 	} else {
7662 		se->cfs_rq = parent->my_q;
7663 		se->depth = parent->depth + 1;
7664 	}
7665 
7666 	se->my_q = cfs_rq;
7667 	/* guarantee group entities always have weight */
7668 	update_load_set(&se->load, NICE_0_LOAD);
7669 	se->parent = parent;
7670 }
7671 
7672 static DEFINE_MUTEX(shares_mutex);
7673 
7674 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
7675 {
7676 	int i;
7677 	unsigned long flags;
7678 
7679 	/*
7680 	 * We can't change the weight of the root cgroup.
7681 	 */
7682 	if (!tg->se[0])
7683 		return -EINVAL;
7684 
7685 	shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
7686 
7687 	mutex_lock(&shares_mutex);
7688 	if (tg->shares == shares)
7689 		goto done;
7690 
7691 	tg->shares = shares;
7692 	for_each_possible_cpu(i) {
7693 		struct rq *rq = cpu_rq(i);
7694 		struct sched_entity *se;
7695 
7696 		se = tg->se[i];
7697 		/* Propagate contribution to hierarchy */
7698 		raw_spin_lock_irqsave(&rq->lock, flags);
7699 
7700 		/* Possible calls to update_curr() need rq clock */
7701 		update_rq_clock(rq);
7702 		for_each_sched_entity(se)
7703 			update_cfs_shares(group_cfs_rq(se));
7704 		raw_spin_unlock_irqrestore(&rq->lock, flags);
7705 	}
7706 
7707 done:
7708 	mutex_unlock(&shares_mutex);
7709 	return 0;
7710 }
7711 #else /* CONFIG_FAIR_GROUP_SCHED */
7712 
7713 void free_fair_sched_group(struct task_group *tg) { }
7714 
7715 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
7716 {
7717 	return 1;
7718 }
7719 
7720 void unregister_fair_sched_group(struct task_group *tg, int cpu) { }
7721 
7722 #endif /* CONFIG_FAIR_GROUP_SCHED */
7723 
7724 
7725 static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
7726 {
7727 	struct sched_entity *se = &task->se;
7728 	unsigned int rr_interval = 0;
7729 
7730 	/*
7731 	 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
7732 	 * idle runqueue:
7733 	 */
7734 	if (rq->cfs.load.weight)
7735 		rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
7736 
7737 	return rr_interval;
7738 }
7739 
7740 /*
7741  * All the scheduling class methods:
7742  */
7743 const struct sched_class fair_sched_class = {
7744 	.next			= &idle_sched_class,
7745 	.enqueue_task		= enqueue_task_fair,
7746 	.dequeue_task		= dequeue_task_fair,
7747 	.yield_task		= yield_task_fair,
7748 	.yield_to_task		= yield_to_task_fair,
7749 
7750 	.check_preempt_curr	= check_preempt_wakeup,
7751 
7752 	.pick_next_task		= pick_next_task_fair,
7753 	.put_prev_task		= put_prev_task_fair,
7754 
7755 #ifdef CONFIG_SMP
7756 	.select_task_rq		= select_task_rq_fair,
7757 	.migrate_task_rq	= migrate_task_rq_fair,
7758 
7759 	.rq_online		= rq_online_fair,
7760 	.rq_offline		= rq_offline_fair,
7761 
7762 	.task_waking		= task_waking_fair,
7763 #endif
7764 
7765 	.set_curr_task          = set_curr_task_fair,
7766 	.task_tick		= task_tick_fair,
7767 	.task_fork		= task_fork_fair,
7768 
7769 	.prio_changed		= prio_changed_fair,
7770 	.switched_from		= switched_from_fair,
7771 	.switched_to		= switched_to_fair,
7772 
7773 	.get_rr_interval	= get_rr_interval_fair,
7774 
7775 #ifdef CONFIG_FAIR_GROUP_SCHED
7776 	.task_move_group	= task_move_group_fair,
7777 #endif
7778 };
7779 
7780 #ifdef CONFIG_SCHED_DEBUG
7781 void print_cfs_stats(struct seq_file *m, int cpu)
7782 {
7783 	struct cfs_rq *cfs_rq;
7784 
7785 	rcu_read_lock();
7786 	for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
7787 		print_cfs_rq(m, cpu, cfs_rq);
7788 	rcu_read_unlock();
7789 }
7790 #endif
7791 
7792 __init void init_sched_fair_class(void)
7793 {
7794 #ifdef CONFIG_SMP
7795 	open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
7796 
7797 #ifdef CONFIG_NO_HZ_COMMON
7798 	nohz.next_balance = jiffies;
7799 	zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
7800 	cpu_notifier(sched_ilb_notifier, 0);
7801 #endif
7802 #endif /* SMP */
7803 
7804 }
7805