1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH) 4 * 5 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com> 6 * 7 * Interactivity improvements by Mike Galbraith 8 * (C) 2007 Mike Galbraith <efault@gmx.de> 9 * 10 * Various enhancements by Dmitry Adamushko. 11 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com> 12 * 13 * Group scheduling enhancements by Srivatsa Vaddagiri 14 * Copyright IBM Corporation, 2007 15 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com> 16 * 17 * Scaled math optimizations by Thomas Gleixner 18 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de> 19 * 20 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra 21 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra 22 */ 23 24 #include <linux/sched/mm.h> 25 #include <linux/sched/topology.h> 26 27 #include <linux/latencytop.h> 28 #include <linux/cpumask.h> 29 #include <linux/cpuidle.h> 30 #include <linux/slab.h> 31 #include <linux/profile.h> 32 #include <linux/interrupt.h> 33 #include <linux/mempolicy.h> 34 #include <linux/migrate.h> 35 #include <linux/task_work.h> 36 #include <linux/sched/isolation.h> 37 38 #include <trace/events/sched.h> 39 40 #include "sched.h" 41 42 /* 43 * Targeted preemption latency for CPU-bound tasks: 44 * 45 * NOTE: this latency value is not the same as the concept of 46 * 'timeslice length' - timeslices in CFS are of variable length 47 * and have no persistent notion like in traditional, time-slice 48 * based scheduling concepts. 49 * 50 * (to see the precise effective timeslice length of your workload, 51 * run vmstat and monitor the context-switches (cs) field) 52 * 53 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds) 54 */ 55 unsigned int sysctl_sched_latency = 6000000ULL; 56 unsigned int normalized_sysctl_sched_latency = 6000000ULL; 57 58 /* 59 * The initial- and re-scaling of tunables is configurable 60 * 61 * Options are: 62 * 63 * SCHED_TUNABLESCALING_NONE - unscaled, always *1 64 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus) 65 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus 66 * 67 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus)) 68 */ 69 enum sched_tunable_scaling sysctl_sched_tunable_scaling = SCHED_TUNABLESCALING_LOG; 70 71 /* 72 * Minimal preemption granularity for CPU-bound tasks: 73 * 74 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds) 75 */ 76 unsigned int sysctl_sched_min_granularity = 750000ULL; 77 unsigned int normalized_sysctl_sched_min_granularity = 750000ULL; 78 79 /* 80 * This value is kept at sysctl_sched_latency/sysctl_sched_min_granularity 81 */ 82 static unsigned int sched_nr_latency = 8; 83 84 /* 85 * After fork, child runs first. If set to 0 (default) then 86 * parent will (try to) run first. 87 */ 88 unsigned int sysctl_sched_child_runs_first __read_mostly; 89 90 /* 91 * SCHED_OTHER wake-up granularity. 92 * 93 * This option delays the preemption effects of decoupled workloads 94 * and reduces their over-scheduling. Synchronous workloads will still 95 * have immediate wakeup/sleep latencies. 96 * 97 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds) 98 */ 99 unsigned int sysctl_sched_wakeup_granularity = 1000000UL; 100 unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL; 101 102 const_debug unsigned int sysctl_sched_migration_cost = 500000UL; 103 104 #ifdef CONFIG_SMP 105 /* 106 * For asym packing, by default the lower numbered cpu has higher priority. 107 */ 108 int __weak arch_asym_cpu_priority(int cpu) 109 { 110 return -cpu; 111 } 112 #endif 113 114 #ifdef CONFIG_CFS_BANDWIDTH 115 /* 116 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool 117 * each time a cfs_rq requests quota. 118 * 119 * Note: in the case that the slice exceeds the runtime remaining (either due 120 * to consumption or the quota being specified to be smaller than the slice) 121 * we will always only issue the remaining available time. 122 * 123 * (default: 5 msec, units: microseconds) 124 */ 125 unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL; 126 #endif 127 128 /* 129 * The margin used when comparing utilization with CPU capacity: 130 * util * margin < capacity * 1024 131 * 132 * (default: ~20%) 133 */ 134 unsigned int capacity_margin = 1280; 135 136 static inline void update_load_add(struct load_weight *lw, unsigned long inc) 137 { 138 lw->weight += inc; 139 lw->inv_weight = 0; 140 } 141 142 static inline void update_load_sub(struct load_weight *lw, unsigned long dec) 143 { 144 lw->weight -= dec; 145 lw->inv_weight = 0; 146 } 147 148 static inline void update_load_set(struct load_weight *lw, unsigned long w) 149 { 150 lw->weight = w; 151 lw->inv_weight = 0; 152 } 153 154 /* 155 * Increase the granularity value when there are more CPUs, 156 * because with more CPUs the 'effective latency' as visible 157 * to users decreases. But the relationship is not linear, 158 * so pick a second-best guess by going with the log2 of the 159 * number of CPUs. 160 * 161 * This idea comes from the SD scheduler of Con Kolivas: 162 */ 163 static unsigned int get_update_sysctl_factor(void) 164 { 165 unsigned int cpus = min_t(unsigned int, num_online_cpus(), 8); 166 unsigned int factor; 167 168 switch (sysctl_sched_tunable_scaling) { 169 case SCHED_TUNABLESCALING_NONE: 170 factor = 1; 171 break; 172 case SCHED_TUNABLESCALING_LINEAR: 173 factor = cpus; 174 break; 175 case SCHED_TUNABLESCALING_LOG: 176 default: 177 factor = 1 + ilog2(cpus); 178 break; 179 } 180 181 return factor; 182 } 183 184 static void update_sysctl(void) 185 { 186 unsigned int factor = get_update_sysctl_factor(); 187 188 #define SET_SYSCTL(name) \ 189 (sysctl_##name = (factor) * normalized_sysctl_##name) 190 SET_SYSCTL(sched_min_granularity); 191 SET_SYSCTL(sched_latency); 192 SET_SYSCTL(sched_wakeup_granularity); 193 #undef SET_SYSCTL 194 } 195 196 void sched_init_granularity(void) 197 { 198 update_sysctl(); 199 } 200 201 #define WMULT_CONST (~0U) 202 #define WMULT_SHIFT 32 203 204 static void __update_inv_weight(struct load_weight *lw) 205 { 206 unsigned long w; 207 208 if (likely(lw->inv_weight)) 209 return; 210 211 w = scale_load_down(lw->weight); 212 213 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST)) 214 lw->inv_weight = 1; 215 else if (unlikely(!w)) 216 lw->inv_weight = WMULT_CONST; 217 else 218 lw->inv_weight = WMULT_CONST / w; 219 } 220 221 /* 222 * delta_exec * weight / lw.weight 223 * OR 224 * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT 225 * 226 * Either weight := NICE_0_LOAD and lw \e sched_prio_to_wmult[], in which case 227 * we're guaranteed shift stays positive because inv_weight is guaranteed to 228 * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22. 229 * 230 * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus 231 * weight/lw.weight <= 1, and therefore our shift will also be positive. 232 */ 233 static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw) 234 { 235 u64 fact = scale_load_down(weight); 236 int shift = WMULT_SHIFT; 237 238 __update_inv_weight(lw); 239 240 if (unlikely(fact >> 32)) { 241 while (fact >> 32) { 242 fact >>= 1; 243 shift--; 244 } 245 } 246 247 /* hint to use a 32x32->64 mul */ 248 fact = (u64)(u32)fact * lw->inv_weight; 249 250 while (fact >> 32) { 251 fact >>= 1; 252 shift--; 253 } 254 255 return mul_u64_u32_shr(delta_exec, fact, shift); 256 } 257 258 259 const struct sched_class fair_sched_class; 260 261 /************************************************************** 262 * CFS operations on generic schedulable entities: 263 */ 264 265 #ifdef CONFIG_FAIR_GROUP_SCHED 266 267 /* cpu runqueue to which this cfs_rq is attached */ 268 static inline struct rq *rq_of(struct cfs_rq *cfs_rq) 269 { 270 return cfs_rq->rq; 271 } 272 273 /* An entity is a task if it doesn't "own" a runqueue */ 274 #define entity_is_task(se) (!se->my_q) 275 276 static inline struct task_struct *task_of(struct sched_entity *se) 277 { 278 SCHED_WARN_ON(!entity_is_task(se)); 279 return container_of(se, struct task_struct, se); 280 } 281 282 /* Walk up scheduling entities hierarchy */ 283 #define for_each_sched_entity(se) \ 284 for (; se; se = se->parent) 285 286 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p) 287 { 288 return p->se.cfs_rq; 289 } 290 291 /* runqueue on which this entity is (to be) queued */ 292 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se) 293 { 294 return se->cfs_rq; 295 } 296 297 /* runqueue "owned" by this group */ 298 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp) 299 { 300 return grp->my_q; 301 } 302 303 static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq) 304 { 305 if (!cfs_rq->on_list) { 306 struct rq *rq = rq_of(cfs_rq); 307 int cpu = cpu_of(rq); 308 /* 309 * Ensure we either appear before our parent (if already 310 * enqueued) or force our parent to appear after us when it is 311 * enqueued. The fact that we always enqueue bottom-up 312 * reduces this to two cases and a special case for the root 313 * cfs_rq. Furthermore, it also means that we will always reset 314 * tmp_alone_branch either when the branch is connected 315 * to a tree or when we reach the beg of the tree 316 */ 317 if (cfs_rq->tg->parent && 318 cfs_rq->tg->parent->cfs_rq[cpu]->on_list) { 319 /* 320 * If parent is already on the list, we add the child 321 * just before. Thanks to circular linked property of 322 * the list, this means to put the child at the tail 323 * of the list that starts by parent. 324 */ 325 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list, 326 &(cfs_rq->tg->parent->cfs_rq[cpu]->leaf_cfs_rq_list)); 327 /* 328 * The branch is now connected to its tree so we can 329 * reset tmp_alone_branch to the beginning of the 330 * list. 331 */ 332 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list; 333 } else if (!cfs_rq->tg->parent) { 334 /* 335 * cfs rq without parent should be put 336 * at the tail of the list. 337 */ 338 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list, 339 &rq->leaf_cfs_rq_list); 340 /* 341 * We have reach the beg of a tree so we can reset 342 * tmp_alone_branch to the beginning of the list. 343 */ 344 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list; 345 } else { 346 /* 347 * The parent has not already been added so we want to 348 * make sure that it will be put after us. 349 * tmp_alone_branch points to the beg of the branch 350 * where we will add parent. 351 */ 352 list_add_rcu(&cfs_rq->leaf_cfs_rq_list, 353 rq->tmp_alone_branch); 354 /* 355 * update tmp_alone_branch to points to the new beg 356 * of the branch 357 */ 358 rq->tmp_alone_branch = &cfs_rq->leaf_cfs_rq_list; 359 } 360 361 cfs_rq->on_list = 1; 362 } 363 } 364 365 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq) 366 { 367 if (cfs_rq->on_list) { 368 list_del_rcu(&cfs_rq->leaf_cfs_rq_list); 369 cfs_rq->on_list = 0; 370 } 371 } 372 373 /* Iterate thr' all leaf cfs_rq's on a runqueue */ 374 #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) \ 375 list_for_each_entry_safe(cfs_rq, pos, &rq->leaf_cfs_rq_list, \ 376 leaf_cfs_rq_list) 377 378 /* Do the two (enqueued) entities belong to the same group ? */ 379 static inline struct cfs_rq * 380 is_same_group(struct sched_entity *se, struct sched_entity *pse) 381 { 382 if (se->cfs_rq == pse->cfs_rq) 383 return se->cfs_rq; 384 385 return NULL; 386 } 387 388 static inline struct sched_entity *parent_entity(struct sched_entity *se) 389 { 390 return se->parent; 391 } 392 393 static void 394 find_matching_se(struct sched_entity **se, struct sched_entity **pse) 395 { 396 int se_depth, pse_depth; 397 398 /* 399 * preemption test can be made between sibling entities who are in the 400 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of 401 * both tasks until we find their ancestors who are siblings of common 402 * parent. 403 */ 404 405 /* First walk up until both entities are at same depth */ 406 se_depth = (*se)->depth; 407 pse_depth = (*pse)->depth; 408 409 while (se_depth > pse_depth) { 410 se_depth--; 411 *se = parent_entity(*se); 412 } 413 414 while (pse_depth > se_depth) { 415 pse_depth--; 416 *pse = parent_entity(*pse); 417 } 418 419 while (!is_same_group(*se, *pse)) { 420 *se = parent_entity(*se); 421 *pse = parent_entity(*pse); 422 } 423 } 424 425 #else /* !CONFIG_FAIR_GROUP_SCHED */ 426 427 static inline struct task_struct *task_of(struct sched_entity *se) 428 { 429 return container_of(se, struct task_struct, se); 430 } 431 432 static inline struct rq *rq_of(struct cfs_rq *cfs_rq) 433 { 434 return container_of(cfs_rq, struct rq, cfs); 435 } 436 437 #define entity_is_task(se) 1 438 439 #define for_each_sched_entity(se) \ 440 for (; se; se = NULL) 441 442 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p) 443 { 444 return &task_rq(p)->cfs; 445 } 446 447 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se) 448 { 449 struct task_struct *p = task_of(se); 450 struct rq *rq = task_rq(p); 451 452 return &rq->cfs; 453 } 454 455 /* runqueue "owned" by this group */ 456 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp) 457 { 458 return NULL; 459 } 460 461 static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq) 462 { 463 } 464 465 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq) 466 { 467 } 468 469 #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) \ 470 for (cfs_rq = &rq->cfs, pos = NULL; cfs_rq; cfs_rq = pos) 471 472 static inline struct sched_entity *parent_entity(struct sched_entity *se) 473 { 474 return NULL; 475 } 476 477 static inline void 478 find_matching_se(struct sched_entity **se, struct sched_entity **pse) 479 { 480 } 481 482 #endif /* CONFIG_FAIR_GROUP_SCHED */ 483 484 static __always_inline 485 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec); 486 487 /************************************************************** 488 * Scheduling class tree data structure manipulation methods: 489 */ 490 491 static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime) 492 { 493 s64 delta = (s64)(vruntime - max_vruntime); 494 if (delta > 0) 495 max_vruntime = vruntime; 496 497 return max_vruntime; 498 } 499 500 static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime) 501 { 502 s64 delta = (s64)(vruntime - min_vruntime); 503 if (delta < 0) 504 min_vruntime = vruntime; 505 506 return min_vruntime; 507 } 508 509 static inline int entity_before(struct sched_entity *a, 510 struct sched_entity *b) 511 { 512 return (s64)(a->vruntime - b->vruntime) < 0; 513 } 514 515 static void update_min_vruntime(struct cfs_rq *cfs_rq) 516 { 517 struct sched_entity *curr = cfs_rq->curr; 518 struct rb_node *leftmost = rb_first_cached(&cfs_rq->tasks_timeline); 519 520 u64 vruntime = cfs_rq->min_vruntime; 521 522 if (curr) { 523 if (curr->on_rq) 524 vruntime = curr->vruntime; 525 else 526 curr = NULL; 527 } 528 529 if (leftmost) { /* non-empty tree */ 530 struct sched_entity *se; 531 se = rb_entry(leftmost, struct sched_entity, run_node); 532 533 if (!curr) 534 vruntime = se->vruntime; 535 else 536 vruntime = min_vruntime(vruntime, se->vruntime); 537 } 538 539 /* ensure we never gain time by being placed backwards. */ 540 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime); 541 #ifndef CONFIG_64BIT 542 smp_wmb(); 543 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime; 544 #endif 545 } 546 547 /* 548 * Enqueue an entity into the rb-tree: 549 */ 550 static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) 551 { 552 struct rb_node **link = &cfs_rq->tasks_timeline.rb_root.rb_node; 553 struct rb_node *parent = NULL; 554 struct sched_entity *entry; 555 bool leftmost = true; 556 557 /* 558 * Find the right place in the rbtree: 559 */ 560 while (*link) { 561 parent = *link; 562 entry = rb_entry(parent, struct sched_entity, run_node); 563 /* 564 * We dont care about collisions. Nodes with 565 * the same key stay together. 566 */ 567 if (entity_before(se, entry)) { 568 link = &parent->rb_left; 569 } else { 570 link = &parent->rb_right; 571 leftmost = false; 572 } 573 } 574 575 rb_link_node(&se->run_node, parent, link); 576 rb_insert_color_cached(&se->run_node, 577 &cfs_rq->tasks_timeline, leftmost); 578 } 579 580 static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) 581 { 582 rb_erase_cached(&se->run_node, &cfs_rq->tasks_timeline); 583 } 584 585 struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq) 586 { 587 struct rb_node *left = rb_first_cached(&cfs_rq->tasks_timeline); 588 589 if (!left) 590 return NULL; 591 592 return rb_entry(left, struct sched_entity, run_node); 593 } 594 595 static struct sched_entity *__pick_next_entity(struct sched_entity *se) 596 { 597 struct rb_node *next = rb_next(&se->run_node); 598 599 if (!next) 600 return NULL; 601 602 return rb_entry(next, struct sched_entity, run_node); 603 } 604 605 #ifdef CONFIG_SCHED_DEBUG 606 struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq) 607 { 608 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline.rb_root); 609 610 if (!last) 611 return NULL; 612 613 return rb_entry(last, struct sched_entity, run_node); 614 } 615 616 /************************************************************** 617 * Scheduling class statistics methods: 618 */ 619 620 int sched_proc_update_handler(struct ctl_table *table, int write, 621 void __user *buffer, size_t *lenp, 622 loff_t *ppos) 623 { 624 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 625 unsigned int factor = get_update_sysctl_factor(); 626 627 if (ret || !write) 628 return ret; 629 630 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency, 631 sysctl_sched_min_granularity); 632 633 #define WRT_SYSCTL(name) \ 634 (normalized_sysctl_##name = sysctl_##name / (factor)) 635 WRT_SYSCTL(sched_min_granularity); 636 WRT_SYSCTL(sched_latency); 637 WRT_SYSCTL(sched_wakeup_granularity); 638 #undef WRT_SYSCTL 639 640 return 0; 641 } 642 #endif 643 644 /* 645 * delta /= w 646 */ 647 static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se) 648 { 649 if (unlikely(se->load.weight != NICE_0_LOAD)) 650 delta = __calc_delta(delta, NICE_0_LOAD, &se->load); 651 652 return delta; 653 } 654 655 /* 656 * The idea is to set a period in which each task runs once. 657 * 658 * When there are too many tasks (sched_nr_latency) we have to stretch 659 * this period because otherwise the slices get too small. 660 * 661 * p = (nr <= nl) ? l : l*nr/nl 662 */ 663 static u64 __sched_period(unsigned long nr_running) 664 { 665 if (unlikely(nr_running > sched_nr_latency)) 666 return nr_running * sysctl_sched_min_granularity; 667 else 668 return sysctl_sched_latency; 669 } 670 671 /* 672 * We calculate the wall-time slice from the period by taking a part 673 * proportional to the weight. 674 * 675 * s = p*P[w/rw] 676 */ 677 static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se) 678 { 679 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq); 680 681 for_each_sched_entity(se) { 682 struct load_weight *load; 683 struct load_weight lw; 684 685 cfs_rq = cfs_rq_of(se); 686 load = &cfs_rq->load; 687 688 if (unlikely(!se->on_rq)) { 689 lw = cfs_rq->load; 690 691 update_load_add(&lw, se->load.weight); 692 load = &lw; 693 } 694 slice = __calc_delta(slice, se->load.weight, load); 695 } 696 return slice; 697 } 698 699 /* 700 * We calculate the vruntime slice of a to-be-inserted task. 701 * 702 * vs = s/w 703 */ 704 static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se) 705 { 706 return calc_delta_fair(sched_slice(cfs_rq, se), se); 707 } 708 709 #ifdef CONFIG_SMP 710 711 #include "sched-pelt.h" 712 713 static int select_idle_sibling(struct task_struct *p, int prev_cpu, int cpu); 714 static unsigned long task_h_load(struct task_struct *p); 715 716 /* Give new sched_entity start runnable values to heavy its load in infant time */ 717 void init_entity_runnable_average(struct sched_entity *se) 718 { 719 struct sched_avg *sa = &se->avg; 720 721 memset(sa, 0, sizeof(*sa)); 722 723 /* 724 * Tasks are intialized with full load to be seen as heavy tasks until 725 * they get a chance to stabilize to their real load level. 726 * Group entities are intialized with zero load to reflect the fact that 727 * nothing has been attached to the task group yet. 728 */ 729 if (entity_is_task(se)) 730 sa->runnable_load_avg = sa->load_avg = scale_load_down(se->load.weight); 731 732 se->runnable_weight = se->load.weight; 733 734 /* when this task enqueue'ed, it will contribute to its cfs_rq's load_avg */ 735 } 736 737 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq); 738 static void attach_entity_cfs_rq(struct sched_entity *se); 739 740 /* 741 * With new tasks being created, their initial util_avgs are extrapolated 742 * based on the cfs_rq's current util_avg: 743 * 744 * util_avg = cfs_rq->util_avg / (cfs_rq->load_avg + 1) * se.load.weight 745 * 746 * However, in many cases, the above util_avg does not give a desired 747 * value. Moreover, the sum of the util_avgs may be divergent, such 748 * as when the series is a harmonic series. 749 * 750 * To solve this problem, we also cap the util_avg of successive tasks to 751 * only 1/2 of the left utilization budget: 752 * 753 * util_avg_cap = (1024 - cfs_rq->avg.util_avg) / 2^n 754 * 755 * where n denotes the nth task. 756 * 757 * For example, a simplest series from the beginning would be like: 758 * 759 * task util_avg: 512, 256, 128, 64, 32, 16, 8, ... 760 * cfs_rq util_avg: 512, 768, 896, 960, 992, 1008, 1016, ... 761 * 762 * Finally, that extrapolated util_avg is clamped to the cap (util_avg_cap) 763 * if util_avg > util_avg_cap. 764 */ 765 void post_init_entity_util_avg(struct sched_entity *se) 766 { 767 struct cfs_rq *cfs_rq = cfs_rq_of(se); 768 struct sched_avg *sa = &se->avg; 769 long cap = (long)(SCHED_CAPACITY_SCALE - cfs_rq->avg.util_avg) / 2; 770 771 if (cap > 0) { 772 if (cfs_rq->avg.util_avg != 0) { 773 sa->util_avg = cfs_rq->avg.util_avg * se->load.weight; 774 sa->util_avg /= (cfs_rq->avg.load_avg + 1); 775 776 if (sa->util_avg > cap) 777 sa->util_avg = cap; 778 } else { 779 sa->util_avg = cap; 780 } 781 } 782 783 if (entity_is_task(se)) { 784 struct task_struct *p = task_of(se); 785 if (p->sched_class != &fair_sched_class) { 786 /* 787 * For !fair tasks do: 788 * 789 update_cfs_rq_load_avg(now, cfs_rq); 790 attach_entity_load_avg(cfs_rq, se); 791 switched_from_fair(rq, p); 792 * 793 * such that the next switched_to_fair() has the 794 * expected state. 795 */ 796 se->avg.last_update_time = cfs_rq_clock_task(cfs_rq); 797 return; 798 } 799 } 800 801 attach_entity_cfs_rq(se); 802 } 803 804 #else /* !CONFIG_SMP */ 805 void init_entity_runnable_average(struct sched_entity *se) 806 { 807 } 808 void post_init_entity_util_avg(struct sched_entity *se) 809 { 810 } 811 static void update_tg_load_avg(struct cfs_rq *cfs_rq, int force) 812 { 813 } 814 #endif /* CONFIG_SMP */ 815 816 /* 817 * Update the current task's runtime statistics. 818 */ 819 static void update_curr(struct cfs_rq *cfs_rq) 820 { 821 struct sched_entity *curr = cfs_rq->curr; 822 u64 now = rq_clock_task(rq_of(cfs_rq)); 823 u64 delta_exec; 824 825 if (unlikely(!curr)) 826 return; 827 828 delta_exec = now - curr->exec_start; 829 if (unlikely((s64)delta_exec <= 0)) 830 return; 831 832 curr->exec_start = now; 833 834 schedstat_set(curr->statistics.exec_max, 835 max(delta_exec, curr->statistics.exec_max)); 836 837 curr->sum_exec_runtime += delta_exec; 838 schedstat_add(cfs_rq->exec_clock, delta_exec); 839 840 curr->vruntime += calc_delta_fair(delta_exec, curr); 841 update_min_vruntime(cfs_rq); 842 843 if (entity_is_task(curr)) { 844 struct task_struct *curtask = task_of(curr); 845 846 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime); 847 cgroup_account_cputime(curtask, delta_exec); 848 account_group_exec_runtime(curtask, delta_exec); 849 } 850 851 account_cfs_rq_runtime(cfs_rq, delta_exec); 852 } 853 854 static void update_curr_fair(struct rq *rq) 855 { 856 update_curr(cfs_rq_of(&rq->curr->se)); 857 } 858 859 static inline void 860 update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se) 861 { 862 u64 wait_start, prev_wait_start; 863 864 if (!schedstat_enabled()) 865 return; 866 867 wait_start = rq_clock(rq_of(cfs_rq)); 868 prev_wait_start = schedstat_val(se->statistics.wait_start); 869 870 if (entity_is_task(se) && task_on_rq_migrating(task_of(se)) && 871 likely(wait_start > prev_wait_start)) 872 wait_start -= prev_wait_start; 873 874 __schedstat_set(se->statistics.wait_start, wait_start); 875 } 876 877 static inline void 878 update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se) 879 { 880 struct task_struct *p; 881 u64 delta; 882 883 if (!schedstat_enabled()) 884 return; 885 886 delta = rq_clock(rq_of(cfs_rq)) - schedstat_val(se->statistics.wait_start); 887 888 if (entity_is_task(se)) { 889 p = task_of(se); 890 if (task_on_rq_migrating(p)) { 891 /* 892 * Preserve migrating task's wait time so wait_start 893 * time stamp can be adjusted to accumulate wait time 894 * prior to migration. 895 */ 896 __schedstat_set(se->statistics.wait_start, delta); 897 return; 898 } 899 trace_sched_stat_wait(p, delta); 900 } 901 902 __schedstat_set(se->statistics.wait_max, 903 max(schedstat_val(se->statistics.wait_max), delta)); 904 __schedstat_inc(se->statistics.wait_count); 905 __schedstat_add(se->statistics.wait_sum, delta); 906 __schedstat_set(se->statistics.wait_start, 0); 907 } 908 909 static inline void 910 update_stats_enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se) 911 { 912 struct task_struct *tsk = NULL; 913 u64 sleep_start, block_start; 914 915 if (!schedstat_enabled()) 916 return; 917 918 sleep_start = schedstat_val(se->statistics.sleep_start); 919 block_start = schedstat_val(se->statistics.block_start); 920 921 if (entity_is_task(se)) 922 tsk = task_of(se); 923 924 if (sleep_start) { 925 u64 delta = rq_clock(rq_of(cfs_rq)) - sleep_start; 926 927 if ((s64)delta < 0) 928 delta = 0; 929 930 if (unlikely(delta > schedstat_val(se->statistics.sleep_max))) 931 __schedstat_set(se->statistics.sleep_max, delta); 932 933 __schedstat_set(se->statistics.sleep_start, 0); 934 __schedstat_add(se->statistics.sum_sleep_runtime, delta); 935 936 if (tsk) { 937 account_scheduler_latency(tsk, delta >> 10, 1); 938 trace_sched_stat_sleep(tsk, delta); 939 } 940 } 941 if (block_start) { 942 u64 delta = rq_clock(rq_of(cfs_rq)) - block_start; 943 944 if ((s64)delta < 0) 945 delta = 0; 946 947 if (unlikely(delta > schedstat_val(se->statistics.block_max))) 948 __schedstat_set(se->statistics.block_max, delta); 949 950 __schedstat_set(se->statistics.block_start, 0); 951 __schedstat_add(se->statistics.sum_sleep_runtime, delta); 952 953 if (tsk) { 954 if (tsk->in_iowait) { 955 __schedstat_add(se->statistics.iowait_sum, delta); 956 __schedstat_inc(se->statistics.iowait_count); 957 trace_sched_stat_iowait(tsk, delta); 958 } 959 960 trace_sched_stat_blocked(tsk, delta); 961 962 /* 963 * Blocking time is in units of nanosecs, so shift by 964 * 20 to get a milliseconds-range estimation of the 965 * amount of time that the task spent sleeping: 966 */ 967 if (unlikely(prof_on == SLEEP_PROFILING)) { 968 profile_hits(SLEEP_PROFILING, 969 (void *)get_wchan(tsk), 970 delta >> 20); 971 } 972 account_scheduler_latency(tsk, delta >> 10, 0); 973 } 974 } 975 } 976 977 /* 978 * Task is being enqueued - update stats: 979 */ 980 static inline void 981 update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 982 { 983 if (!schedstat_enabled()) 984 return; 985 986 /* 987 * Are we enqueueing a waiting task? (for current tasks 988 * a dequeue/enqueue event is a NOP) 989 */ 990 if (se != cfs_rq->curr) 991 update_stats_wait_start(cfs_rq, se); 992 993 if (flags & ENQUEUE_WAKEUP) 994 update_stats_enqueue_sleeper(cfs_rq, se); 995 } 996 997 static inline void 998 update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 999 { 1000 1001 if (!schedstat_enabled()) 1002 return; 1003 1004 /* 1005 * Mark the end of the wait period if dequeueing a 1006 * waiting task: 1007 */ 1008 if (se != cfs_rq->curr) 1009 update_stats_wait_end(cfs_rq, se); 1010 1011 if ((flags & DEQUEUE_SLEEP) && entity_is_task(se)) { 1012 struct task_struct *tsk = task_of(se); 1013 1014 if (tsk->state & TASK_INTERRUPTIBLE) 1015 __schedstat_set(se->statistics.sleep_start, 1016 rq_clock(rq_of(cfs_rq))); 1017 if (tsk->state & TASK_UNINTERRUPTIBLE) 1018 __schedstat_set(se->statistics.block_start, 1019 rq_clock(rq_of(cfs_rq))); 1020 } 1021 } 1022 1023 /* 1024 * We are picking a new current task - update its stats: 1025 */ 1026 static inline void 1027 update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se) 1028 { 1029 /* 1030 * We are starting a new run period: 1031 */ 1032 se->exec_start = rq_clock_task(rq_of(cfs_rq)); 1033 } 1034 1035 /************************************************** 1036 * Scheduling class queueing methods: 1037 */ 1038 1039 #ifdef CONFIG_NUMA_BALANCING 1040 /* 1041 * Approximate time to scan a full NUMA task in ms. The task scan period is 1042 * calculated based on the tasks virtual memory size and 1043 * numa_balancing_scan_size. 1044 */ 1045 unsigned int sysctl_numa_balancing_scan_period_min = 1000; 1046 unsigned int sysctl_numa_balancing_scan_period_max = 60000; 1047 1048 /* Portion of address space to scan in MB */ 1049 unsigned int sysctl_numa_balancing_scan_size = 256; 1050 1051 /* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */ 1052 unsigned int sysctl_numa_balancing_scan_delay = 1000; 1053 1054 struct numa_group { 1055 atomic_t refcount; 1056 1057 spinlock_t lock; /* nr_tasks, tasks */ 1058 int nr_tasks; 1059 pid_t gid; 1060 int active_nodes; 1061 1062 struct rcu_head rcu; 1063 unsigned long total_faults; 1064 unsigned long max_faults_cpu; 1065 /* 1066 * Faults_cpu is used to decide whether memory should move 1067 * towards the CPU. As a consequence, these stats are weighted 1068 * more by CPU use than by memory faults. 1069 */ 1070 unsigned long *faults_cpu; 1071 unsigned long faults[0]; 1072 }; 1073 1074 static inline unsigned long group_faults_priv(struct numa_group *ng); 1075 static inline unsigned long group_faults_shared(struct numa_group *ng); 1076 1077 static unsigned int task_nr_scan_windows(struct task_struct *p) 1078 { 1079 unsigned long rss = 0; 1080 unsigned long nr_scan_pages; 1081 1082 /* 1083 * Calculations based on RSS as non-present and empty pages are skipped 1084 * by the PTE scanner and NUMA hinting faults should be trapped based 1085 * on resident pages 1086 */ 1087 nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT); 1088 rss = get_mm_rss(p->mm); 1089 if (!rss) 1090 rss = nr_scan_pages; 1091 1092 rss = round_up(rss, nr_scan_pages); 1093 return rss / nr_scan_pages; 1094 } 1095 1096 /* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */ 1097 #define MAX_SCAN_WINDOW 2560 1098 1099 static unsigned int task_scan_min(struct task_struct *p) 1100 { 1101 unsigned int scan_size = READ_ONCE(sysctl_numa_balancing_scan_size); 1102 unsigned int scan, floor; 1103 unsigned int windows = 1; 1104 1105 if (scan_size < MAX_SCAN_WINDOW) 1106 windows = MAX_SCAN_WINDOW / scan_size; 1107 floor = 1000 / windows; 1108 1109 scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p); 1110 return max_t(unsigned int, floor, scan); 1111 } 1112 1113 static unsigned int task_scan_start(struct task_struct *p) 1114 { 1115 unsigned long smin = task_scan_min(p); 1116 unsigned long period = smin; 1117 1118 /* Scale the maximum scan period with the amount of shared memory. */ 1119 if (p->numa_group) { 1120 struct numa_group *ng = p->numa_group; 1121 unsigned long shared = group_faults_shared(ng); 1122 unsigned long private = group_faults_priv(ng); 1123 1124 period *= atomic_read(&ng->refcount); 1125 period *= shared + 1; 1126 period /= private + shared + 1; 1127 } 1128 1129 return max(smin, period); 1130 } 1131 1132 static unsigned int task_scan_max(struct task_struct *p) 1133 { 1134 unsigned long smin = task_scan_min(p); 1135 unsigned long smax; 1136 1137 /* Watch for min being lower than max due to floor calculations */ 1138 smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p); 1139 1140 /* Scale the maximum scan period with the amount of shared memory. */ 1141 if (p->numa_group) { 1142 struct numa_group *ng = p->numa_group; 1143 unsigned long shared = group_faults_shared(ng); 1144 unsigned long private = group_faults_priv(ng); 1145 unsigned long period = smax; 1146 1147 period *= atomic_read(&ng->refcount); 1148 period *= shared + 1; 1149 period /= private + shared + 1; 1150 1151 smax = max(smax, period); 1152 } 1153 1154 return max(smin, smax); 1155 } 1156 1157 static void account_numa_enqueue(struct rq *rq, struct task_struct *p) 1158 { 1159 rq->nr_numa_running += (p->numa_preferred_nid != -1); 1160 rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p)); 1161 } 1162 1163 static void account_numa_dequeue(struct rq *rq, struct task_struct *p) 1164 { 1165 rq->nr_numa_running -= (p->numa_preferred_nid != -1); 1166 rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p)); 1167 } 1168 1169 /* Shared or private faults. */ 1170 #define NR_NUMA_HINT_FAULT_TYPES 2 1171 1172 /* Memory and CPU locality */ 1173 #define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2) 1174 1175 /* Averaged statistics, and temporary buffers. */ 1176 #define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2) 1177 1178 pid_t task_numa_group_id(struct task_struct *p) 1179 { 1180 return p->numa_group ? p->numa_group->gid : 0; 1181 } 1182 1183 /* 1184 * The averaged statistics, shared & private, memory & cpu, 1185 * occupy the first half of the array. The second half of the 1186 * array is for current counters, which are averaged into the 1187 * first set by task_numa_placement. 1188 */ 1189 static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv) 1190 { 1191 return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv; 1192 } 1193 1194 static inline unsigned long task_faults(struct task_struct *p, int nid) 1195 { 1196 if (!p->numa_faults) 1197 return 0; 1198 1199 return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] + 1200 p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)]; 1201 } 1202 1203 static inline unsigned long group_faults(struct task_struct *p, int nid) 1204 { 1205 if (!p->numa_group) 1206 return 0; 1207 1208 return p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 0)] + 1209 p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 1)]; 1210 } 1211 1212 static inline unsigned long group_faults_cpu(struct numa_group *group, int nid) 1213 { 1214 return group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 0)] + 1215 group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 1)]; 1216 } 1217 1218 static inline unsigned long group_faults_priv(struct numa_group *ng) 1219 { 1220 unsigned long faults = 0; 1221 int node; 1222 1223 for_each_online_node(node) { 1224 faults += ng->faults[task_faults_idx(NUMA_MEM, node, 1)]; 1225 } 1226 1227 return faults; 1228 } 1229 1230 static inline unsigned long group_faults_shared(struct numa_group *ng) 1231 { 1232 unsigned long faults = 0; 1233 int node; 1234 1235 for_each_online_node(node) { 1236 faults += ng->faults[task_faults_idx(NUMA_MEM, node, 0)]; 1237 } 1238 1239 return faults; 1240 } 1241 1242 /* 1243 * A node triggering more than 1/3 as many NUMA faults as the maximum is 1244 * considered part of a numa group's pseudo-interleaving set. Migrations 1245 * between these nodes are slowed down, to allow things to settle down. 1246 */ 1247 #define ACTIVE_NODE_FRACTION 3 1248 1249 static bool numa_is_active_node(int nid, struct numa_group *ng) 1250 { 1251 return group_faults_cpu(ng, nid) * ACTIVE_NODE_FRACTION > ng->max_faults_cpu; 1252 } 1253 1254 /* Handle placement on systems where not all nodes are directly connected. */ 1255 static unsigned long score_nearby_nodes(struct task_struct *p, int nid, 1256 int maxdist, bool task) 1257 { 1258 unsigned long score = 0; 1259 int node; 1260 1261 /* 1262 * All nodes are directly connected, and the same distance 1263 * from each other. No need for fancy placement algorithms. 1264 */ 1265 if (sched_numa_topology_type == NUMA_DIRECT) 1266 return 0; 1267 1268 /* 1269 * This code is called for each node, introducing N^2 complexity, 1270 * which should be ok given the number of nodes rarely exceeds 8. 1271 */ 1272 for_each_online_node(node) { 1273 unsigned long faults; 1274 int dist = node_distance(nid, node); 1275 1276 /* 1277 * The furthest away nodes in the system are not interesting 1278 * for placement; nid was already counted. 1279 */ 1280 if (dist == sched_max_numa_distance || node == nid) 1281 continue; 1282 1283 /* 1284 * On systems with a backplane NUMA topology, compare groups 1285 * of nodes, and move tasks towards the group with the most 1286 * memory accesses. When comparing two nodes at distance 1287 * "hoplimit", only nodes closer by than "hoplimit" are part 1288 * of each group. Skip other nodes. 1289 */ 1290 if (sched_numa_topology_type == NUMA_BACKPLANE && 1291 dist > maxdist) 1292 continue; 1293 1294 /* Add up the faults from nearby nodes. */ 1295 if (task) 1296 faults = task_faults(p, node); 1297 else 1298 faults = group_faults(p, node); 1299 1300 /* 1301 * On systems with a glueless mesh NUMA topology, there are 1302 * no fixed "groups of nodes". Instead, nodes that are not 1303 * directly connected bounce traffic through intermediate 1304 * nodes; a numa_group can occupy any set of nodes. 1305 * The further away a node is, the less the faults count. 1306 * This seems to result in good task placement. 1307 */ 1308 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) { 1309 faults *= (sched_max_numa_distance - dist); 1310 faults /= (sched_max_numa_distance - LOCAL_DISTANCE); 1311 } 1312 1313 score += faults; 1314 } 1315 1316 return score; 1317 } 1318 1319 /* 1320 * These return the fraction of accesses done by a particular task, or 1321 * task group, on a particular numa node. The group weight is given a 1322 * larger multiplier, in order to group tasks together that are almost 1323 * evenly spread out between numa nodes. 1324 */ 1325 static inline unsigned long task_weight(struct task_struct *p, int nid, 1326 int dist) 1327 { 1328 unsigned long faults, total_faults; 1329 1330 if (!p->numa_faults) 1331 return 0; 1332 1333 total_faults = p->total_numa_faults; 1334 1335 if (!total_faults) 1336 return 0; 1337 1338 faults = task_faults(p, nid); 1339 faults += score_nearby_nodes(p, nid, dist, true); 1340 1341 return 1000 * faults / total_faults; 1342 } 1343 1344 static inline unsigned long group_weight(struct task_struct *p, int nid, 1345 int dist) 1346 { 1347 unsigned long faults, total_faults; 1348 1349 if (!p->numa_group) 1350 return 0; 1351 1352 total_faults = p->numa_group->total_faults; 1353 1354 if (!total_faults) 1355 return 0; 1356 1357 faults = group_faults(p, nid); 1358 faults += score_nearby_nodes(p, nid, dist, false); 1359 1360 return 1000 * faults / total_faults; 1361 } 1362 1363 bool should_numa_migrate_memory(struct task_struct *p, struct page * page, 1364 int src_nid, int dst_cpu) 1365 { 1366 struct numa_group *ng = p->numa_group; 1367 int dst_nid = cpu_to_node(dst_cpu); 1368 int last_cpupid, this_cpupid; 1369 1370 this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid); 1371 1372 /* 1373 * Multi-stage node selection is used in conjunction with a periodic 1374 * migration fault to build a temporal task<->page relation. By using 1375 * a two-stage filter we remove short/unlikely relations. 1376 * 1377 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate 1378 * a task's usage of a particular page (n_p) per total usage of this 1379 * page (n_t) (in a given time-span) to a probability. 1380 * 1381 * Our periodic faults will sample this probability and getting the 1382 * same result twice in a row, given these samples are fully 1383 * independent, is then given by P(n)^2, provided our sample period 1384 * is sufficiently short compared to the usage pattern. 1385 * 1386 * This quadric squishes small probabilities, making it less likely we 1387 * act on an unlikely task<->page relation. 1388 */ 1389 last_cpupid = page_cpupid_xchg_last(page, this_cpupid); 1390 if (!cpupid_pid_unset(last_cpupid) && 1391 cpupid_to_nid(last_cpupid) != dst_nid) 1392 return false; 1393 1394 /* Always allow migrate on private faults */ 1395 if (cpupid_match_pid(p, last_cpupid)) 1396 return true; 1397 1398 /* A shared fault, but p->numa_group has not been set up yet. */ 1399 if (!ng) 1400 return true; 1401 1402 /* 1403 * Destination node is much more heavily used than the source 1404 * node? Allow migration. 1405 */ 1406 if (group_faults_cpu(ng, dst_nid) > group_faults_cpu(ng, src_nid) * 1407 ACTIVE_NODE_FRACTION) 1408 return true; 1409 1410 /* 1411 * Distribute memory according to CPU & memory use on each node, 1412 * with 3/4 hysteresis to avoid unnecessary memory migrations: 1413 * 1414 * faults_cpu(dst) 3 faults_cpu(src) 1415 * --------------- * - > --------------- 1416 * faults_mem(dst) 4 faults_mem(src) 1417 */ 1418 return group_faults_cpu(ng, dst_nid) * group_faults(p, src_nid) * 3 > 1419 group_faults_cpu(ng, src_nid) * group_faults(p, dst_nid) * 4; 1420 } 1421 1422 static unsigned long weighted_cpuload(struct rq *rq); 1423 static unsigned long source_load(int cpu, int type); 1424 static unsigned long target_load(int cpu, int type); 1425 static unsigned long capacity_of(int cpu); 1426 1427 /* Cached statistics for all CPUs within a node */ 1428 struct numa_stats { 1429 unsigned long nr_running; 1430 unsigned long load; 1431 1432 /* Total compute capacity of CPUs on a node */ 1433 unsigned long compute_capacity; 1434 1435 /* Approximate capacity in terms of runnable tasks on a node */ 1436 unsigned long task_capacity; 1437 int has_free_capacity; 1438 }; 1439 1440 /* 1441 * XXX borrowed from update_sg_lb_stats 1442 */ 1443 static void update_numa_stats(struct numa_stats *ns, int nid) 1444 { 1445 int smt, cpu, cpus = 0; 1446 unsigned long capacity; 1447 1448 memset(ns, 0, sizeof(*ns)); 1449 for_each_cpu(cpu, cpumask_of_node(nid)) { 1450 struct rq *rq = cpu_rq(cpu); 1451 1452 ns->nr_running += rq->nr_running; 1453 ns->load += weighted_cpuload(rq); 1454 ns->compute_capacity += capacity_of(cpu); 1455 1456 cpus++; 1457 } 1458 1459 /* 1460 * If we raced with hotplug and there are no CPUs left in our mask 1461 * the @ns structure is NULL'ed and task_numa_compare() will 1462 * not find this node attractive. 1463 * 1464 * We'll either bail at !has_free_capacity, or we'll detect a huge 1465 * imbalance and bail there. 1466 */ 1467 if (!cpus) 1468 return; 1469 1470 /* smt := ceil(cpus / capacity), assumes: 1 < smt_power < 2 */ 1471 smt = DIV_ROUND_UP(SCHED_CAPACITY_SCALE * cpus, ns->compute_capacity); 1472 capacity = cpus / smt; /* cores */ 1473 1474 ns->task_capacity = min_t(unsigned, capacity, 1475 DIV_ROUND_CLOSEST(ns->compute_capacity, SCHED_CAPACITY_SCALE)); 1476 ns->has_free_capacity = (ns->nr_running < ns->task_capacity); 1477 } 1478 1479 struct task_numa_env { 1480 struct task_struct *p; 1481 1482 int src_cpu, src_nid; 1483 int dst_cpu, dst_nid; 1484 1485 struct numa_stats src_stats, dst_stats; 1486 1487 int imbalance_pct; 1488 int dist; 1489 1490 struct task_struct *best_task; 1491 long best_imp; 1492 int best_cpu; 1493 }; 1494 1495 static void task_numa_assign(struct task_numa_env *env, 1496 struct task_struct *p, long imp) 1497 { 1498 if (env->best_task) 1499 put_task_struct(env->best_task); 1500 if (p) 1501 get_task_struct(p); 1502 1503 env->best_task = p; 1504 env->best_imp = imp; 1505 env->best_cpu = env->dst_cpu; 1506 } 1507 1508 static bool load_too_imbalanced(long src_load, long dst_load, 1509 struct task_numa_env *env) 1510 { 1511 long imb, old_imb; 1512 long orig_src_load, orig_dst_load; 1513 long src_capacity, dst_capacity; 1514 1515 /* 1516 * The load is corrected for the CPU capacity available on each node. 1517 * 1518 * src_load dst_load 1519 * ------------ vs --------- 1520 * src_capacity dst_capacity 1521 */ 1522 src_capacity = env->src_stats.compute_capacity; 1523 dst_capacity = env->dst_stats.compute_capacity; 1524 1525 /* We care about the slope of the imbalance, not the direction. */ 1526 if (dst_load < src_load) 1527 swap(dst_load, src_load); 1528 1529 /* Is the difference below the threshold? */ 1530 imb = dst_load * src_capacity * 100 - 1531 src_load * dst_capacity * env->imbalance_pct; 1532 if (imb <= 0) 1533 return false; 1534 1535 /* 1536 * The imbalance is above the allowed threshold. 1537 * Compare it with the old imbalance. 1538 */ 1539 orig_src_load = env->src_stats.load; 1540 orig_dst_load = env->dst_stats.load; 1541 1542 if (orig_dst_load < orig_src_load) 1543 swap(orig_dst_load, orig_src_load); 1544 1545 old_imb = orig_dst_load * src_capacity * 100 - 1546 orig_src_load * dst_capacity * env->imbalance_pct; 1547 1548 /* Would this change make things worse? */ 1549 return (imb > old_imb); 1550 } 1551 1552 /* 1553 * This checks if the overall compute and NUMA accesses of the system would 1554 * be improved if the source tasks was migrated to the target dst_cpu taking 1555 * into account that it might be best if task running on the dst_cpu should 1556 * be exchanged with the source task 1557 */ 1558 static void task_numa_compare(struct task_numa_env *env, 1559 long taskimp, long groupimp) 1560 { 1561 struct rq *src_rq = cpu_rq(env->src_cpu); 1562 struct rq *dst_rq = cpu_rq(env->dst_cpu); 1563 struct task_struct *cur; 1564 long src_load, dst_load; 1565 long load; 1566 long imp = env->p->numa_group ? groupimp : taskimp; 1567 long moveimp = imp; 1568 int dist = env->dist; 1569 1570 rcu_read_lock(); 1571 cur = task_rcu_dereference(&dst_rq->curr); 1572 if (cur && ((cur->flags & PF_EXITING) || is_idle_task(cur))) 1573 cur = NULL; 1574 1575 /* 1576 * Because we have preemption enabled we can get migrated around and 1577 * end try selecting ourselves (current == env->p) as a swap candidate. 1578 */ 1579 if (cur == env->p) 1580 goto unlock; 1581 1582 /* 1583 * "imp" is the fault differential for the source task between the 1584 * source and destination node. Calculate the total differential for 1585 * the source task and potential destination task. The more negative 1586 * the value is, the more rmeote accesses that would be expected to 1587 * be incurred if the tasks were swapped. 1588 */ 1589 if (cur) { 1590 /* Skip this swap candidate if cannot move to the source cpu */ 1591 if (!cpumask_test_cpu(env->src_cpu, &cur->cpus_allowed)) 1592 goto unlock; 1593 1594 /* 1595 * If dst and source tasks are in the same NUMA group, or not 1596 * in any group then look only at task weights. 1597 */ 1598 if (cur->numa_group == env->p->numa_group) { 1599 imp = taskimp + task_weight(cur, env->src_nid, dist) - 1600 task_weight(cur, env->dst_nid, dist); 1601 /* 1602 * Add some hysteresis to prevent swapping the 1603 * tasks within a group over tiny differences. 1604 */ 1605 if (cur->numa_group) 1606 imp -= imp/16; 1607 } else { 1608 /* 1609 * Compare the group weights. If a task is all by 1610 * itself (not part of a group), use the task weight 1611 * instead. 1612 */ 1613 if (cur->numa_group) 1614 imp += group_weight(cur, env->src_nid, dist) - 1615 group_weight(cur, env->dst_nid, dist); 1616 else 1617 imp += task_weight(cur, env->src_nid, dist) - 1618 task_weight(cur, env->dst_nid, dist); 1619 } 1620 } 1621 1622 if (imp <= env->best_imp && moveimp <= env->best_imp) 1623 goto unlock; 1624 1625 if (!cur) { 1626 /* Is there capacity at our destination? */ 1627 if (env->src_stats.nr_running <= env->src_stats.task_capacity && 1628 !env->dst_stats.has_free_capacity) 1629 goto unlock; 1630 1631 goto balance; 1632 } 1633 1634 /* Balance doesn't matter much if we're running a task per cpu */ 1635 if (imp > env->best_imp && src_rq->nr_running == 1 && 1636 dst_rq->nr_running == 1) 1637 goto assign; 1638 1639 /* 1640 * In the overloaded case, try and keep the load balanced. 1641 */ 1642 balance: 1643 load = task_h_load(env->p); 1644 dst_load = env->dst_stats.load + load; 1645 src_load = env->src_stats.load - load; 1646 1647 if (moveimp > imp && moveimp > env->best_imp) { 1648 /* 1649 * If the improvement from just moving env->p direction is 1650 * better than swapping tasks around, check if a move is 1651 * possible. Store a slightly smaller score than moveimp, 1652 * so an actually idle CPU will win. 1653 */ 1654 if (!load_too_imbalanced(src_load, dst_load, env)) { 1655 imp = moveimp - 1; 1656 cur = NULL; 1657 goto assign; 1658 } 1659 } 1660 1661 if (imp <= env->best_imp) 1662 goto unlock; 1663 1664 if (cur) { 1665 load = task_h_load(cur); 1666 dst_load -= load; 1667 src_load += load; 1668 } 1669 1670 if (load_too_imbalanced(src_load, dst_load, env)) 1671 goto unlock; 1672 1673 /* 1674 * One idle CPU per node is evaluated for a task numa move. 1675 * Call select_idle_sibling to maybe find a better one. 1676 */ 1677 if (!cur) { 1678 /* 1679 * select_idle_siblings() uses an per-cpu cpumask that 1680 * can be used from IRQ context. 1681 */ 1682 local_irq_disable(); 1683 env->dst_cpu = select_idle_sibling(env->p, env->src_cpu, 1684 env->dst_cpu); 1685 local_irq_enable(); 1686 } 1687 1688 assign: 1689 task_numa_assign(env, cur, imp); 1690 unlock: 1691 rcu_read_unlock(); 1692 } 1693 1694 static void task_numa_find_cpu(struct task_numa_env *env, 1695 long taskimp, long groupimp) 1696 { 1697 int cpu; 1698 1699 for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) { 1700 /* Skip this CPU if the source task cannot migrate */ 1701 if (!cpumask_test_cpu(cpu, &env->p->cpus_allowed)) 1702 continue; 1703 1704 env->dst_cpu = cpu; 1705 task_numa_compare(env, taskimp, groupimp); 1706 } 1707 } 1708 1709 /* Only move tasks to a NUMA node less busy than the current node. */ 1710 static bool numa_has_capacity(struct task_numa_env *env) 1711 { 1712 struct numa_stats *src = &env->src_stats; 1713 struct numa_stats *dst = &env->dst_stats; 1714 1715 if (src->has_free_capacity && !dst->has_free_capacity) 1716 return false; 1717 1718 /* 1719 * Only consider a task move if the source has a higher load 1720 * than the destination, corrected for CPU capacity on each node. 1721 * 1722 * src->load dst->load 1723 * --------------------- vs --------------------- 1724 * src->compute_capacity dst->compute_capacity 1725 */ 1726 if (src->load * dst->compute_capacity * env->imbalance_pct > 1727 1728 dst->load * src->compute_capacity * 100) 1729 return true; 1730 1731 return false; 1732 } 1733 1734 static int task_numa_migrate(struct task_struct *p) 1735 { 1736 struct task_numa_env env = { 1737 .p = p, 1738 1739 .src_cpu = task_cpu(p), 1740 .src_nid = task_node(p), 1741 1742 .imbalance_pct = 112, 1743 1744 .best_task = NULL, 1745 .best_imp = 0, 1746 .best_cpu = -1, 1747 }; 1748 struct sched_domain *sd; 1749 unsigned long taskweight, groupweight; 1750 int nid, ret, dist; 1751 long taskimp, groupimp; 1752 1753 /* 1754 * Pick the lowest SD_NUMA domain, as that would have the smallest 1755 * imbalance and would be the first to start moving tasks about. 1756 * 1757 * And we want to avoid any moving of tasks about, as that would create 1758 * random movement of tasks -- counter the numa conditions we're trying 1759 * to satisfy here. 1760 */ 1761 rcu_read_lock(); 1762 sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu)); 1763 if (sd) 1764 env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2; 1765 rcu_read_unlock(); 1766 1767 /* 1768 * Cpusets can break the scheduler domain tree into smaller 1769 * balance domains, some of which do not cross NUMA boundaries. 1770 * Tasks that are "trapped" in such domains cannot be migrated 1771 * elsewhere, so there is no point in (re)trying. 1772 */ 1773 if (unlikely(!sd)) { 1774 p->numa_preferred_nid = task_node(p); 1775 return -EINVAL; 1776 } 1777 1778 env.dst_nid = p->numa_preferred_nid; 1779 dist = env.dist = node_distance(env.src_nid, env.dst_nid); 1780 taskweight = task_weight(p, env.src_nid, dist); 1781 groupweight = group_weight(p, env.src_nid, dist); 1782 update_numa_stats(&env.src_stats, env.src_nid); 1783 taskimp = task_weight(p, env.dst_nid, dist) - taskweight; 1784 groupimp = group_weight(p, env.dst_nid, dist) - groupweight; 1785 update_numa_stats(&env.dst_stats, env.dst_nid); 1786 1787 /* Try to find a spot on the preferred nid. */ 1788 if (numa_has_capacity(&env)) 1789 task_numa_find_cpu(&env, taskimp, groupimp); 1790 1791 /* 1792 * Look at other nodes in these cases: 1793 * - there is no space available on the preferred_nid 1794 * - the task is part of a numa_group that is interleaved across 1795 * multiple NUMA nodes; in order to better consolidate the group, 1796 * we need to check other locations. 1797 */ 1798 if (env.best_cpu == -1 || (p->numa_group && p->numa_group->active_nodes > 1)) { 1799 for_each_online_node(nid) { 1800 if (nid == env.src_nid || nid == p->numa_preferred_nid) 1801 continue; 1802 1803 dist = node_distance(env.src_nid, env.dst_nid); 1804 if (sched_numa_topology_type == NUMA_BACKPLANE && 1805 dist != env.dist) { 1806 taskweight = task_weight(p, env.src_nid, dist); 1807 groupweight = group_weight(p, env.src_nid, dist); 1808 } 1809 1810 /* Only consider nodes where both task and groups benefit */ 1811 taskimp = task_weight(p, nid, dist) - taskweight; 1812 groupimp = group_weight(p, nid, dist) - groupweight; 1813 if (taskimp < 0 && groupimp < 0) 1814 continue; 1815 1816 env.dist = dist; 1817 env.dst_nid = nid; 1818 update_numa_stats(&env.dst_stats, env.dst_nid); 1819 if (numa_has_capacity(&env)) 1820 task_numa_find_cpu(&env, taskimp, groupimp); 1821 } 1822 } 1823 1824 /* 1825 * If the task is part of a workload that spans multiple NUMA nodes, 1826 * and is migrating into one of the workload's active nodes, remember 1827 * this node as the task's preferred numa node, so the workload can 1828 * settle down. 1829 * A task that migrated to a second choice node will be better off 1830 * trying for a better one later. Do not set the preferred node here. 1831 */ 1832 if (p->numa_group) { 1833 struct numa_group *ng = p->numa_group; 1834 1835 if (env.best_cpu == -1) 1836 nid = env.src_nid; 1837 else 1838 nid = env.dst_nid; 1839 1840 if (ng->active_nodes > 1 && numa_is_active_node(env.dst_nid, ng)) 1841 sched_setnuma(p, env.dst_nid); 1842 } 1843 1844 /* No better CPU than the current one was found. */ 1845 if (env.best_cpu == -1) 1846 return -EAGAIN; 1847 1848 /* 1849 * Reset the scan period if the task is being rescheduled on an 1850 * alternative node to recheck if the tasks is now properly placed. 1851 */ 1852 p->numa_scan_period = task_scan_start(p); 1853 1854 if (env.best_task == NULL) { 1855 ret = migrate_task_to(p, env.best_cpu); 1856 if (ret != 0) 1857 trace_sched_stick_numa(p, env.src_cpu, env.best_cpu); 1858 return ret; 1859 } 1860 1861 ret = migrate_swap(p, env.best_task); 1862 if (ret != 0) 1863 trace_sched_stick_numa(p, env.src_cpu, task_cpu(env.best_task)); 1864 put_task_struct(env.best_task); 1865 return ret; 1866 } 1867 1868 /* Attempt to migrate a task to a CPU on the preferred node. */ 1869 static void numa_migrate_preferred(struct task_struct *p) 1870 { 1871 unsigned long interval = HZ; 1872 1873 /* This task has no NUMA fault statistics yet */ 1874 if (unlikely(p->numa_preferred_nid == -1 || !p->numa_faults)) 1875 return; 1876 1877 /* Periodically retry migrating the task to the preferred node */ 1878 interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16); 1879 p->numa_migrate_retry = jiffies + interval; 1880 1881 /* Success if task is already running on preferred CPU */ 1882 if (task_node(p) == p->numa_preferred_nid) 1883 return; 1884 1885 /* Otherwise, try migrate to a CPU on the preferred node */ 1886 task_numa_migrate(p); 1887 } 1888 1889 /* 1890 * Find out how many nodes on the workload is actively running on. Do this by 1891 * tracking the nodes from which NUMA hinting faults are triggered. This can 1892 * be different from the set of nodes where the workload's memory is currently 1893 * located. 1894 */ 1895 static void numa_group_count_active_nodes(struct numa_group *numa_group) 1896 { 1897 unsigned long faults, max_faults = 0; 1898 int nid, active_nodes = 0; 1899 1900 for_each_online_node(nid) { 1901 faults = group_faults_cpu(numa_group, nid); 1902 if (faults > max_faults) 1903 max_faults = faults; 1904 } 1905 1906 for_each_online_node(nid) { 1907 faults = group_faults_cpu(numa_group, nid); 1908 if (faults * ACTIVE_NODE_FRACTION > max_faults) 1909 active_nodes++; 1910 } 1911 1912 numa_group->max_faults_cpu = max_faults; 1913 numa_group->active_nodes = active_nodes; 1914 } 1915 1916 /* 1917 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS 1918 * increments. The more local the fault statistics are, the higher the scan 1919 * period will be for the next scan window. If local/(local+remote) ratio is 1920 * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS) 1921 * the scan period will decrease. Aim for 70% local accesses. 1922 */ 1923 #define NUMA_PERIOD_SLOTS 10 1924 #define NUMA_PERIOD_THRESHOLD 7 1925 1926 /* 1927 * Increase the scan period (slow down scanning) if the majority of 1928 * our memory is already on our local node, or if the majority of 1929 * the page accesses are shared with other processes. 1930 * Otherwise, decrease the scan period. 1931 */ 1932 static void update_task_scan_period(struct task_struct *p, 1933 unsigned long shared, unsigned long private) 1934 { 1935 unsigned int period_slot; 1936 int lr_ratio, ps_ratio; 1937 int diff; 1938 1939 unsigned long remote = p->numa_faults_locality[0]; 1940 unsigned long local = p->numa_faults_locality[1]; 1941 1942 /* 1943 * If there were no record hinting faults then either the task is 1944 * completely idle or all activity is areas that are not of interest 1945 * to automatic numa balancing. Related to that, if there were failed 1946 * migration then it implies we are migrating too quickly or the local 1947 * node is overloaded. In either case, scan slower 1948 */ 1949 if (local + shared == 0 || p->numa_faults_locality[2]) { 1950 p->numa_scan_period = min(p->numa_scan_period_max, 1951 p->numa_scan_period << 1); 1952 1953 p->mm->numa_next_scan = jiffies + 1954 msecs_to_jiffies(p->numa_scan_period); 1955 1956 return; 1957 } 1958 1959 /* 1960 * Prepare to scale scan period relative to the current period. 1961 * == NUMA_PERIOD_THRESHOLD scan period stays the same 1962 * < NUMA_PERIOD_THRESHOLD scan period decreases (scan faster) 1963 * >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower) 1964 */ 1965 period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS); 1966 lr_ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote); 1967 ps_ratio = (private * NUMA_PERIOD_SLOTS) / (private + shared); 1968 1969 if (ps_ratio >= NUMA_PERIOD_THRESHOLD) { 1970 /* 1971 * Most memory accesses are local. There is no need to 1972 * do fast NUMA scanning, since memory is already local. 1973 */ 1974 int slot = ps_ratio - NUMA_PERIOD_THRESHOLD; 1975 if (!slot) 1976 slot = 1; 1977 diff = slot * period_slot; 1978 } else if (lr_ratio >= NUMA_PERIOD_THRESHOLD) { 1979 /* 1980 * Most memory accesses are shared with other tasks. 1981 * There is no point in continuing fast NUMA scanning, 1982 * since other tasks may just move the memory elsewhere. 1983 */ 1984 int slot = lr_ratio - NUMA_PERIOD_THRESHOLD; 1985 if (!slot) 1986 slot = 1; 1987 diff = slot * period_slot; 1988 } else { 1989 /* 1990 * Private memory faults exceed (SLOTS-THRESHOLD)/SLOTS, 1991 * yet they are not on the local NUMA node. Speed up 1992 * NUMA scanning to get the memory moved over. 1993 */ 1994 int ratio = max(lr_ratio, ps_ratio); 1995 diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot; 1996 } 1997 1998 p->numa_scan_period = clamp(p->numa_scan_period + diff, 1999 task_scan_min(p), task_scan_max(p)); 2000 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality)); 2001 } 2002 2003 /* 2004 * Get the fraction of time the task has been running since the last 2005 * NUMA placement cycle. The scheduler keeps similar statistics, but 2006 * decays those on a 32ms period, which is orders of magnitude off 2007 * from the dozens-of-seconds NUMA balancing period. Use the scheduler 2008 * stats only if the task is so new there are no NUMA statistics yet. 2009 */ 2010 static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period) 2011 { 2012 u64 runtime, delta, now; 2013 /* Use the start of this time slice to avoid calculations. */ 2014 now = p->se.exec_start; 2015 runtime = p->se.sum_exec_runtime; 2016 2017 if (p->last_task_numa_placement) { 2018 delta = runtime - p->last_sum_exec_runtime; 2019 *period = now - p->last_task_numa_placement; 2020 } else { 2021 delta = p->se.avg.load_sum; 2022 *period = LOAD_AVG_MAX; 2023 } 2024 2025 p->last_sum_exec_runtime = runtime; 2026 p->last_task_numa_placement = now; 2027 2028 return delta; 2029 } 2030 2031 /* 2032 * Determine the preferred nid for a task in a numa_group. This needs to 2033 * be done in a way that produces consistent results with group_weight, 2034 * otherwise workloads might not converge. 2035 */ 2036 static int preferred_group_nid(struct task_struct *p, int nid) 2037 { 2038 nodemask_t nodes; 2039 int dist; 2040 2041 /* Direct connections between all NUMA nodes. */ 2042 if (sched_numa_topology_type == NUMA_DIRECT) 2043 return nid; 2044 2045 /* 2046 * On a system with glueless mesh NUMA topology, group_weight 2047 * scores nodes according to the number of NUMA hinting faults on 2048 * both the node itself, and on nearby nodes. 2049 */ 2050 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) { 2051 unsigned long score, max_score = 0; 2052 int node, max_node = nid; 2053 2054 dist = sched_max_numa_distance; 2055 2056 for_each_online_node(node) { 2057 score = group_weight(p, node, dist); 2058 if (score > max_score) { 2059 max_score = score; 2060 max_node = node; 2061 } 2062 } 2063 return max_node; 2064 } 2065 2066 /* 2067 * Finding the preferred nid in a system with NUMA backplane 2068 * interconnect topology is more involved. The goal is to locate 2069 * tasks from numa_groups near each other in the system, and 2070 * untangle workloads from different sides of the system. This requires 2071 * searching down the hierarchy of node groups, recursively searching 2072 * inside the highest scoring group of nodes. The nodemask tricks 2073 * keep the complexity of the search down. 2074 */ 2075 nodes = node_online_map; 2076 for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) { 2077 unsigned long max_faults = 0; 2078 nodemask_t max_group = NODE_MASK_NONE; 2079 int a, b; 2080 2081 /* Are there nodes at this distance from each other? */ 2082 if (!find_numa_distance(dist)) 2083 continue; 2084 2085 for_each_node_mask(a, nodes) { 2086 unsigned long faults = 0; 2087 nodemask_t this_group; 2088 nodes_clear(this_group); 2089 2090 /* Sum group's NUMA faults; includes a==b case. */ 2091 for_each_node_mask(b, nodes) { 2092 if (node_distance(a, b) < dist) { 2093 faults += group_faults(p, b); 2094 node_set(b, this_group); 2095 node_clear(b, nodes); 2096 } 2097 } 2098 2099 /* Remember the top group. */ 2100 if (faults > max_faults) { 2101 max_faults = faults; 2102 max_group = this_group; 2103 /* 2104 * subtle: at the smallest distance there is 2105 * just one node left in each "group", the 2106 * winner is the preferred nid. 2107 */ 2108 nid = a; 2109 } 2110 } 2111 /* Next round, evaluate the nodes within max_group. */ 2112 if (!max_faults) 2113 break; 2114 nodes = max_group; 2115 } 2116 return nid; 2117 } 2118 2119 static void task_numa_placement(struct task_struct *p) 2120 { 2121 int seq, nid, max_nid = -1, max_group_nid = -1; 2122 unsigned long max_faults = 0, max_group_faults = 0; 2123 unsigned long fault_types[2] = { 0, 0 }; 2124 unsigned long total_faults; 2125 u64 runtime, period; 2126 spinlock_t *group_lock = NULL; 2127 2128 /* 2129 * The p->mm->numa_scan_seq field gets updated without 2130 * exclusive access. Use READ_ONCE() here to ensure 2131 * that the field is read in a single access: 2132 */ 2133 seq = READ_ONCE(p->mm->numa_scan_seq); 2134 if (p->numa_scan_seq == seq) 2135 return; 2136 p->numa_scan_seq = seq; 2137 p->numa_scan_period_max = task_scan_max(p); 2138 2139 total_faults = p->numa_faults_locality[0] + 2140 p->numa_faults_locality[1]; 2141 runtime = numa_get_avg_runtime(p, &period); 2142 2143 /* If the task is part of a group prevent parallel updates to group stats */ 2144 if (p->numa_group) { 2145 group_lock = &p->numa_group->lock; 2146 spin_lock_irq(group_lock); 2147 } 2148 2149 /* Find the node with the highest number of faults */ 2150 for_each_online_node(nid) { 2151 /* Keep track of the offsets in numa_faults array */ 2152 int mem_idx, membuf_idx, cpu_idx, cpubuf_idx; 2153 unsigned long faults = 0, group_faults = 0; 2154 int priv; 2155 2156 for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) { 2157 long diff, f_diff, f_weight; 2158 2159 mem_idx = task_faults_idx(NUMA_MEM, nid, priv); 2160 membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv); 2161 cpu_idx = task_faults_idx(NUMA_CPU, nid, priv); 2162 cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv); 2163 2164 /* Decay existing window, copy faults since last scan */ 2165 diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2; 2166 fault_types[priv] += p->numa_faults[membuf_idx]; 2167 p->numa_faults[membuf_idx] = 0; 2168 2169 /* 2170 * Normalize the faults_from, so all tasks in a group 2171 * count according to CPU use, instead of by the raw 2172 * number of faults. Tasks with little runtime have 2173 * little over-all impact on throughput, and thus their 2174 * faults are less important. 2175 */ 2176 f_weight = div64_u64(runtime << 16, period + 1); 2177 f_weight = (f_weight * p->numa_faults[cpubuf_idx]) / 2178 (total_faults + 1); 2179 f_diff = f_weight - p->numa_faults[cpu_idx] / 2; 2180 p->numa_faults[cpubuf_idx] = 0; 2181 2182 p->numa_faults[mem_idx] += diff; 2183 p->numa_faults[cpu_idx] += f_diff; 2184 faults += p->numa_faults[mem_idx]; 2185 p->total_numa_faults += diff; 2186 if (p->numa_group) { 2187 /* 2188 * safe because we can only change our own group 2189 * 2190 * mem_idx represents the offset for a given 2191 * nid and priv in a specific region because it 2192 * is at the beginning of the numa_faults array. 2193 */ 2194 p->numa_group->faults[mem_idx] += diff; 2195 p->numa_group->faults_cpu[mem_idx] += f_diff; 2196 p->numa_group->total_faults += diff; 2197 group_faults += p->numa_group->faults[mem_idx]; 2198 } 2199 } 2200 2201 if (faults > max_faults) { 2202 max_faults = faults; 2203 max_nid = nid; 2204 } 2205 2206 if (group_faults > max_group_faults) { 2207 max_group_faults = group_faults; 2208 max_group_nid = nid; 2209 } 2210 } 2211 2212 update_task_scan_period(p, fault_types[0], fault_types[1]); 2213 2214 if (p->numa_group) { 2215 numa_group_count_active_nodes(p->numa_group); 2216 spin_unlock_irq(group_lock); 2217 max_nid = preferred_group_nid(p, max_group_nid); 2218 } 2219 2220 if (max_faults) { 2221 /* Set the new preferred node */ 2222 if (max_nid != p->numa_preferred_nid) 2223 sched_setnuma(p, max_nid); 2224 2225 if (task_node(p) != p->numa_preferred_nid) 2226 numa_migrate_preferred(p); 2227 } 2228 } 2229 2230 static inline int get_numa_group(struct numa_group *grp) 2231 { 2232 return atomic_inc_not_zero(&grp->refcount); 2233 } 2234 2235 static inline void put_numa_group(struct numa_group *grp) 2236 { 2237 if (atomic_dec_and_test(&grp->refcount)) 2238 kfree_rcu(grp, rcu); 2239 } 2240 2241 static void task_numa_group(struct task_struct *p, int cpupid, int flags, 2242 int *priv) 2243 { 2244 struct numa_group *grp, *my_grp; 2245 struct task_struct *tsk; 2246 bool join = false; 2247 int cpu = cpupid_to_cpu(cpupid); 2248 int i; 2249 2250 if (unlikely(!p->numa_group)) { 2251 unsigned int size = sizeof(struct numa_group) + 2252 4*nr_node_ids*sizeof(unsigned long); 2253 2254 grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN); 2255 if (!grp) 2256 return; 2257 2258 atomic_set(&grp->refcount, 1); 2259 grp->active_nodes = 1; 2260 grp->max_faults_cpu = 0; 2261 spin_lock_init(&grp->lock); 2262 grp->gid = p->pid; 2263 /* Second half of the array tracks nids where faults happen */ 2264 grp->faults_cpu = grp->faults + NR_NUMA_HINT_FAULT_TYPES * 2265 nr_node_ids; 2266 2267 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) 2268 grp->faults[i] = p->numa_faults[i]; 2269 2270 grp->total_faults = p->total_numa_faults; 2271 2272 grp->nr_tasks++; 2273 rcu_assign_pointer(p->numa_group, grp); 2274 } 2275 2276 rcu_read_lock(); 2277 tsk = READ_ONCE(cpu_rq(cpu)->curr); 2278 2279 if (!cpupid_match_pid(tsk, cpupid)) 2280 goto no_join; 2281 2282 grp = rcu_dereference(tsk->numa_group); 2283 if (!grp) 2284 goto no_join; 2285 2286 my_grp = p->numa_group; 2287 if (grp == my_grp) 2288 goto no_join; 2289 2290 /* 2291 * Only join the other group if its bigger; if we're the bigger group, 2292 * the other task will join us. 2293 */ 2294 if (my_grp->nr_tasks > grp->nr_tasks) 2295 goto no_join; 2296 2297 /* 2298 * Tie-break on the grp address. 2299 */ 2300 if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp) 2301 goto no_join; 2302 2303 /* Always join threads in the same process. */ 2304 if (tsk->mm == current->mm) 2305 join = true; 2306 2307 /* Simple filter to avoid false positives due to PID collisions */ 2308 if (flags & TNF_SHARED) 2309 join = true; 2310 2311 /* Update priv based on whether false sharing was detected */ 2312 *priv = !join; 2313 2314 if (join && !get_numa_group(grp)) 2315 goto no_join; 2316 2317 rcu_read_unlock(); 2318 2319 if (!join) 2320 return; 2321 2322 BUG_ON(irqs_disabled()); 2323 double_lock_irq(&my_grp->lock, &grp->lock); 2324 2325 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) { 2326 my_grp->faults[i] -= p->numa_faults[i]; 2327 grp->faults[i] += p->numa_faults[i]; 2328 } 2329 my_grp->total_faults -= p->total_numa_faults; 2330 grp->total_faults += p->total_numa_faults; 2331 2332 my_grp->nr_tasks--; 2333 grp->nr_tasks++; 2334 2335 spin_unlock(&my_grp->lock); 2336 spin_unlock_irq(&grp->lock); 2337 2338 rcu_assign_pointer(p->numa_group, grp); 2339 2340 put_numa_group(my_grp); 2341 return; 2342 2343 no_join: 2344 rcu_read_unlock(); 2345 return; 2346 } 2347 2348 void task_numa_free(struct task_struct *p) 2349 { 2350 struct numa_group *grp = p->numa_group; 2351 void *numa_faults = p->numa_faults; 2352 unsigned long flags; 2353 int i; 2354 2355 if (grp) { 2356 spin_lock_irqsave(&grp->lock, flags); 2357 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) 2358 grp->faults[i] -= p->numa_faults[i]; 2359 grp->total_faults -= p->total_numa_faults; 2360 2361 grp->nr_tasks--; 2362 spin_unlock_irqrestore(&grp->lock, flags); 2363 RCU_INIT_POINTER(p->numa_group, NULL); 2364 put_numa_group(grp); 2365 } 2366 2367 p->numa_faults = NULL; 2368 kfree(numa_faults); 2369 } 2370 2371 /* 2372 * Got a PROT_NONE fault for a page on @node. 2373 */ 2374 void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags) 2375 { 2376 struct task_struct *p = current; 2377 bool migrated = flags & TNF_MIGRATED; 2378 int cpu_node = task_node(current); 2379 int local = !!(flags & TNF_FAULT_LOCAL); 2380 struct numa_group *ng; 2381 int priv; 2382 2383 if (!static_branch_likely(&sched_numa_balancing)) 2384 return; 2385 2386 /* for example, ksmd faulting in a user's mm */ 2387 if (!p->mm) 2388 return; 2389 2390 /* Allocate buffer to track faults on a per-node basis */ 2391 if (unlikely(!p->numa_faults)) { 2392 int size = sizeof(*p->numa_faults) * 2393 NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids; 2394 2395 p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN); 2396 if (!p->numa_faults) 2397 return; 2398 2399 p->total_numa_faults = 0; 2400 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality)); 2401 } 2402 2403 /* 2404 * First accesses are treated as private, otherwise consider accesses 2405 * to be private if the accessing pid has not changed 2406 */ 2407 if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) { 2408 priv = 1; 2409 } else { 2410 priv = cpupid_match_pid(p, last_cpupid); 2411 if (!priv && !(flags & TNF_NO_GROUP)) 2412 task_numa_group(p, last_cpupid, flags, &priv); 2413 } 2414 2415 /* 2416 * If a workload spans multiple NUMA nodes, a shared fault that 2417 * occurs wholly within the set of nodes that the workload is 2418 * actively using should be counted as local. This allows the 2419 * scan rate to slow down when a workload has settled down. 2420 */ 2421 ng = p->numa_group; 2422 if (!priv && !local && ng && ng->active_nodes > 1 && 2423 numa_is_active_node(cpu_node, ng) && 2424 numa_is_active_node(mem_node, ng)) 2425 local = 1; 2426 2427 task_numa_placement(p); 2428 2429 /* 2430 * Retry task to preferred node migration periodically, in case it 2431 * case it previously failed, or the scheduler moved us. 2432 */ 2433 if (time_after(jiffies, p->numa_migrate_retry)) 2434 numa_migrate_preferred(p); 2435 2436 if (migrated) 2437 p->numa_pages_migrated += pages; 2438 if (flags & TNF_MIGRATE_FAIL) 2439 p->numa_faults_locality[2] += pages; 2440 2441 p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages; 2442 p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages; 2443 p->numa_faults_locality[local] += pages; 2444 } 2445 2446 static void reset_ptenuma_scan(struct task_struct *p) 2447 { 2448 /* 2449 * We only did a read acquisition of the mmap sem, so 2450 * p->mm->numa_scan_seq is written to without exclusive access 2451 * and the update is not guaranteed to be atomic. That's not 2452 * much of an issue though, since this is just used for 2453 * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not 2454 * expensive, to avoid any form of compiler optimizations: 2455 */ 2456 WRITE_ONCE(p->mm->numa_scan_seq, READ_ONCE(p->mm->numa_scan_seq) + 1); 2457 p->mm->numa_scan_offset = 0; 2458 } 2459 2460 /* 2461 * The expensive part of numa migration is done from task_work context. 2462 * Triggered from task_tick_numa(). 2463 */ 2464 void task_numa_work(struct callback_head *work) 2465 { 2466 unsigned long migrate, next_scan, now = jiffies; 2467 struct task_struct *p = current; 2468 struct mm_struct *mm = p->mm; 2469 u64 runtime = p->se.sum_exec_runtime; 2470 struct vm_area_struct *vma; 2471 unsigned long start, end; 2472 unsigned long nr_pte_updates = 0; 2473 long pages, virtpages; 2474 2475 SCHED_WARN_ON(p != container_of(work, struct task_struct, numa_work)); 2476 2477 work->next = work; /* protect against double add */ 2478 /* 2479 * Who cares about NUMA placement when they're dying. 2480 * 2481 * NOTE: make sure not to dereference p->mm before this check, 2482 * exit_task_work() happens _after_ exit_mm() so we could be called 2483 * without p->mm even though we still had it when we enqueued this 2484 * work. 2485 */ 2486 if (p->flags & PF_EXITING) 2487 return; 2488 2489 if (!mm->numa_next_scan) { 2490 mm->numa_next_scan = now + 2491 msecs_to_jiffies(sysctl_numa_balancing_scan_delay); 2492 } 2493 2494 /* 2495 * Enforce maximal scan/migration frequency.. 2496 */ 2497 migrate = mm->numa_next_scan; 2498 if (time_before(now, migrate)) 2499 return; 2500 2501 if (p->numa_scan_period == 0) { 2502 p->numa_scan_period_max = task_scan_max(p); 2503 p->numa_scan_period = task_scan_start(p); 2504 } 2505 2506 next_scan = now + msecs_to_jiffies(p->numa_scan_period); 2507 if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate) 2508 return; 2509 2510 /* 2511 * Delay this task enough that another task of this mm will likely win 2512 * the next time around. 2513 */ 2514 p->node_stamp += 2 * TICK_NSEC; 2515 2516 start = mm->numa_scan_offset; 2517 pages = sysctl_numa_balancing_scan_size; 2518 pages <<= 20 - PAGE_SHIFT; /* MB in pages */ 2519 virtpages = pages * 8; /* Scan up to this much virtual space */ 2520 if (!pages) 2521 return; 2522 2523 2524 if (!down_read_trylock(&mm->mmap_sem)) 2525 return; 2526 vma = find_vma(mm, start); 2527 if (!vma) { 2528 reset_ptenuma_scan(p); 2529 start = 0; 2530 vma = mm->mmap; 2531 } 2532 for (; vma; vma = vma->vm_next) { 2533 if (!vma_migratable(vma) || !vma_policy_mof(vma) || 2534 is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_MIXEDMAP)) { 2535 continue; 2536 } 2537 2538 /* 2539 * Shared library pages mapped by multiple processes are not 2540 * migrated as it is expected they are cache replicated. Avoid 2541 * hinting faults in read-only file-backed mappings or the vdso 2542 * as migrating the pages will be of marginal benefit. 2543 */ 2544 if (!vma->vm_mm || 2545 (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ))) 2546 continue; 2547 2548 /* 2549 * Skip inaccessible VMAs to avoid any confusion between 2550 * PROT_NONE and NUMA hinting ptes 2551 */ 2552 if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE))) 2553 continue; 2554 2555 do { 2556 start = max(start, vma->vm_start); 2557 end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE); 2558 end = min(end, vma->vm_end); 2559 nr_pte_updates = change_prot_numa(vma, start, end); 2560 2561 /* 2562 * Try to scan sysctl_numa_balancing_size worth of 2563 * hpages that have at least one present PTE that 2564 * is not already pte-numa. If the VMA contains 2565 * areas that are unused or already full of prot_numa 2566 * PTEs, scan up to virtpages, to skip through those 2567 * areas faster. 2568 */ 2569 if (nr_pte_updates) 2570 pages -= (end - start) >> PAGE_SHIFT; 2571 virtpages -= (end - start) >> PAGE_SHIFT; 2572 2573 start = end; 2574 if (pages <= 0 || virtpages <= 0) 2575 goto out; 2576 2577 cond_resched(); 2578 } while (end != vma->vm_end); 2579 } 2580 2581 out: 2582 /* 2583 * It is possible to reach the end of the VMA list but the last few 2584 * VMAs are not guaranteed to the vma_migratable. If they are not, we 2585 * would find the !migratable VMA on the next scan but not reset the 2586 * scanner to the start so check it now. 2587 */ 2588 if (vma) 2589 mm->numa_scan_offset = start; 2590 else 2591 reset_ptenuma_scan(p); 2592 up_read(&mm->mmap_sem); 2593 2594 /* 2595 * Make sure tasks use at least 32x as much time to run other code 2596 * than they used here, to limit NUMA PTE scanning overhead to 3% max. 2597 * Usually update_task_scan_period slows down scanning enough; on an 2598 * overloaded system we need to limit overhead on a per task basis. 2599 */ 2600 if (unlikely(p->se.sum_exec_runtime != runtime)) { 2601 u64 diff = p->se.sum_exec_runtime - runtime; 2602 p->node_stamp += 32 * diff; 2603 } 2604 } 2605 2606 /* 2607 * Drive the periodic memory faults.. 2608 */ 2609 void task_tick_numa(struct rq *rq, struct task_struct *curr) 2610 { 2611 struct callback_head *work = &curr->numa_work; 2612 u64 period, now; 2613 2614 /* 2615 * We don't care about NUMA placement if we don't have memory. 2616 */ 2617 if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work) 2618 return; 2619 2620 /* 2621 * Using runtime rather than walltime has the dual advantage that 2622 * we (mostly) drive the selection from busy threads and that the 2623 * task needs to have done some actual work before we bother with 2624 * NUMA placement. 2625 */ 2626 now = curr->se.sum_exec_runtime; 2627 period = (u64)curr->numa_scan_period * NSEC_PER_MSEC; 2628 2629 if (now > curr->node_stamp + period) { 2630 if (!curr->node_stamp) 2631 curr->numa_scan_period = task_scan_start(curr); 2632 curr->node_stamp += period; 2633 2634 if (!time_before(jiffies, curr->mm->numa_next_scan)) { 2635 init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */ 2636 task_work_add(curr, work, true); 2637 } 2638 } 2639 } 2640 2641 #else 2642 static void task_tick_numa(struct rq *rq, struct task_struct *curr) 2643 { 2644 } 2645 2646 static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p) 2647 { 2648 } 2649 2650 static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p) 2651 { 2652 } 2653 2654 #endif /* CONFIG_NUMA_BALANCING */ 2655 2656 static void 2657 account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se) 2658 { 2659 update_load_add(&cfs_rq->load, se->load.weight); 2660 if (!parent_entity(se)) 2661 update_load_add(&rq_of(cfs_rq)->load, se->load.weight); 2662 #ifdef CONFIG_SMP 2663 if (entity_is_task(se)) { 2664 struct rq *rq = rq_of(cfs_rq); 2665 2666 account_numa_enqueue(rq, task_of(se)); 2667 list_add(&se->group_node, &rq->cfs_tasks); 2668 } 2669 #endif 2670 cfs_rq->nr_running++; 2671 } 2672 2673 static void 2674 account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se) 2675 { 2676 update_load_sub(&cfs_rq->load, se->load.weight); 2677 if (!parent_entity(se)) 2678 update_load_sub(&rq_of(cfs_rq)->load, se->load.weight); 2679 #ifdef CONFIG_SMP 2680 if (entity_is_task(se)) { 2681 account_numa_dequeue(rq_of(cfs_rq), task_of(se)); 2682 list_del_init(&se->group_node); 2683 } 2684 #endif 2685 cfs_rq->nr_running--; 2686 } 2687 2688 /* 2689 * Signed add and clamp on underflow. 2690 * 2691 * Explicitly do a load-store to ensure the intermediate value never hits 2692 * memory. This allows lockless observations without ever seeing the negative 2693 * values. 2694 */ 2695 #define add_positive(_ptr, _val) do { \ 2696 typeof(_ptr) ptr = (_ptr); \ 2697 typeof(_val) val = (_val); \ 2698 typeof(*ptr) res, var = READ_ONCE(*ptr); \ 2699 \ 2700 res = var + val; \ 2701 \ 2702 if (val < 0 && res > var) \ 2703 res = 0; \ 2704 \ 2705 WRITE_ONCE(*ptr, res); \ 2706 } while (0) 2707 2708 /* 2709 * Unsigned subtract and clamp on underflow. 2710 * 2711 * Explicitly do a load-store to ensure the intermediate value never hits 2712 * memory. This allows lockless observations without ever seeing the negative 2713 * values. 2714 */ 2715 #define sub_positive(_ptr, _val) do { \ 2716 typeof(_ptr) ptr = (_ptr); \ 2717 typeof(*ptr) val = (_val); \ 2718 typeof(*ptr) res, var = READ_ONCE(*ptr); \ 2719 res = var - val; \ 2720 if (res > var) \ 2721 res = 0; \ 2722 WRITE_ONCE(*ptr, res); \ 2723 } while (0) 2724 2725 #ifdef CONFIG_SMP 2726 /* 2727 * XXX we want to get rid of these helpers and use the full load resolution. 2728 */ 2729 static inline long se_weight(struct sched_entity *se) 2730 { 2731 return scale_load_down(se->load.weight); 2732 } 2733 2734 static inline long se_runnable(struct sched_entity *se) 2735 { 2736 return scale_load_down(se->runnable_weight); 2737 } 2738 2739 static inline void 2740 enqueue_runnable_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) 2741 { 2742 cfs_rq->runnable_weight += se->runnable_weight; 2743 2744 cfs_rq->avg.runnable_load_avg += se->avg.runnable_load_avg; 2745 cfs_rq->avg.runnable_load_sum += se_runnable(se) * se->avg.runnable_load_sum; 2746 } 2747 2748 static inline void 2749 dequeue_runnable_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) 2750 { 2751 cfs_rq->runnable_weight -= se->runnable_weight; 2752 2753 sub_positive(&cfs_rq->avg.runnable_load_avg, se->avg.runnable_load_avg); 2754 sub_positive(&cfs_rq->avg.runnable_load_sum, 2755 se_runnable(se) * se->avg.runnable_load_sum); 2756 } 2757 2758 static inline void 2759 enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) 2760 { 2761 cfs_rq->avg.load_avg += se->avg.load_avg; 2762 cfs_rq->avg.load_sum += se_weight(se) * se->avg.load_sum; 2763 } 2764 2765 static inline void 2766 dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) 2767 { 2768 sub_positive(&cfs_rq->avg.load_avg, se->avg.load_avg); 2769 sub_positive(&cfs_rq->avg.load_sum, se_weight(se) * se->avg.load_sum); 2770 } 2771 #else 2772 static inline void 2773 enqueue_runnable_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { } 2774 static inline void 2775 dequeue_runnable_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { } 2776 static inline void 2777 enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { } 2778 static inline void 2779 dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { } 2780 #endif 2781 2782 static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, 2783 unsigned long weight, unsigned long runnable) 2784 { 2785 if (se->on_rq) { 2786 /* commit outstanding execution time */ 2787 if (cfs_rq->curr == se) 2788 update_curr(cfs_rq); 2789 account_entity_dequeue(cfs_rq, se); 2790 dequeue_runnable_load_avg(cfs_rq, se); 2791 } 2792 dequeue_load_avg(cfs_rq, se); 2793 2794 se->runnable_weight = runnable; 2795 update_load_set(&se->load, weight); 2796 2797 #ifdef CONFIG_SMP 2798 do { 2799 u32 divider = LOAD_AVG_MAX - 1024 + se->avg.period_contrib; 2800 2801 se->avg.load_avg = div_u64(se_weight(se) * se->avg.load_sum, divider); 2802 se->avg.runnable_load_avg = 2803 div_u64(se_runnable(se) * se->avg.runnable_load_sum, divider); 2804 } while (0); 2805 #endif 2806 2807 enqueue_load_avg(cfs_rq, se); 2808 if (se->on_rq) { 2809 account_entity_enqueue(cfs_rq, se); 2810 enqueue_runnable_load_avg(cfs_rq, se); 2811 } 2812 } 2813 2814 void reweight_task(struct task_struct *p, int prio) 2815 { 2816 struct sched_entity *se = &p->se; 2817 struct cfs_rq *cfs_rq = cfs_rq_of(se); 2818 struct load_weight *load = &se->load; 2819 unsigned long weight = scale_load(sched_prio_to_weight[prio]); 2820 2821 reweight_entity(cfs_rq, se, weight, weight); 2822 load->inv_weight = sched_prio_to_wmult[prio]; 2823 } 2824 2825 #ifdef CONFIG_FAIR_GROUP_SCHED 2826 # ifdef CONFIG_SMP 2827 /* 2828 * All this does is approximate the hierarchical proportion which includes that 2829 * global sum we all love to hate. 2830 * 2831 * That is, the weight of a group entity, is the proportional share of the 2832 * group weight based on the group runqueue weights. That is: 2833 * 2834 * tg->weight * grq->load.weight 2835 * ge->load.weight = ----------------------------- (1) 2836 * \Sum grq->load.weight 2837 * 2838 * Now, because computing that sum is prohibitively expensive to compute (been 2839 * there, done that) we approximate it with this average stuff. The average 2840 * moves slower and therefore the approximation is cheaper and more stable. 2841 * 2842 * So instead of the above, we substitute: 2843 * 2844 * grq->load.weight -> grq->avg.load_avg (2) 2845 * 2846 * which yields the following: 2847 * 2848 * tg->weight * grq->avg.load_avg 2849 * ge->load.weight = ------------------------------ (3) 2850 * tg->load_avg 2851 * 2852 * Where: tg->load_avg ~= \Sum grq->avg.load_avg 2853 * 2854 * That is shares_avg, and it is right (given the approximation (2)). 2855 * 2856 * The problem with it is that because the average is slow -- it was designed 2857 * to be exactly that of course -- this leads to transients in boundary 2858 * conditions. In specific, the case where the group was idle and we start the 2859 * one task. It takes time for our CPU's grq->avg.load_avg to build up, 2860 * yielding bad latency etc.. 2861 * 2862 * Now, in that special case (1) reduces to: 2863 * 2864 * tg->weight * grq->load.weight 2865 * ge->load.weight = ----------------------------- = tg->weight (4) 2866 * grp->load.weight 2867 * 2868 * That is, the sum collapses because all other CPUs are idle; the UP scenario. 2869 * 2870 * So what we do is modify our approximation (3) to approach (4) in the (near) 2871 * UP case, like: 2872 * 2873 * ge->load.weight = 2874 * 2875 * tg->weight * grq->load.weight 2876 * --------------------------------------------------- (5) 2877 * tg->load_avg - grq->avg.load_avg + grq->load.weight 2878 * 2879 * But because grq->load.weight can drop to 0, resulting in a divide by zero, 2880 * we need to use grq->avg.load_avg as its lower bound, which then gives: 2881 * 2882 * 2883 * tg->weight * grq->load.weight 2884 * ge->load.weight = ----------------------------- (6) 2885 * tg_load_avg' 2886 * 2887 * Where: 2888 * 2889 * tg_load_avg' = tg->load_avg - grq->avg.load_avg + 2890 * max(grq->load.weight, grq->avg.load_avg) 2891 * 2892 * And that is shares_weight and is icky. In the (near) UP case it approaches 2893 * (4) while in the normal case it approaches (3). It consistently 2894 * overestimates the ge->load.weight and therefore: 2895 * 2896 * \Sum ge->load.weight >= tg->weight 2897 * 2898 * hence icky! 2899 */ 2900 static long calc_group_shares(struct cfs_rq *cfs_rq) 2901 { 2902 long tg_weight, tg_shares, load, shares; 2903 struct task_group *tg = cfs_rq->tg; 2904 2905 tg_shares = READ_ONCE(tg->shares); 2906 2907 load = max(scale_load_down(cfs_rq->load.weight), cfs_rq->avg.load_avg); 2908 2909 tg_weight = atomic_long_read(&tg->load_avg); 2910 2911 /* Ensure tg_weight >= load */ 2912 tg_weight -= cfs_rq->tg_load_avg_contrib; 2913 tg_weight += load; 2914 2915 shares = (tg_shares * load); 2916 if (tg_weight) 2917 shares /= tg_weight; 2918 2919 /* 2920 * MIN_SHARES has to be unscaled here to support per-CPU partitioning 2921 * of a group with small tg->shares value. It is a floor value which is 2922 * assigned as a minimum load.weight to the sched_entity representing 2923 * the group on a CPU. 2924 * 2925 * E.g. on 64-bit for a group with tg->shares of scale_load(15)=15*1024 2926 * on an 8-core system with 8 tasks each runnable on one CPU shares has 2927 * to be 15*1024*1/8=1920 instead of scale_load(MIN_SHARES)=2*1024. In 2928 * case no task is runnable on a CPU MIN_SHARES=2 should be returned 2929 * instead of 0. 2930 */ 2931 return clamp_t(long, shares, MIN_SHARES, tg_shares); 2932 } 2933 2934 /* 2935 * This calculates the effective runnable weight for a group entity based on 2936 * the group entity weight calculated above. 2937 * 2938 * Because of the above approximation (2), our group entity weight is 2939 * an load_avg based ratio (3). This means that it includes blocked load and 2940 * does not represent the runnable weight. 2941 * 2942 * Approximate the group entity's runnable weight per ratio from the group 2943 * runqueue: 2944 * 2945 * grq->avg.runnable_load_avg 2946 * ge->runnable_weight = ge->load.weight * -------------------------- (7) 2947 * grq->avg.load_avg 2948 * 2949 * However, analogous to above, since the avg numbers are slow, this leads to 2950 * transients in the from-idle case. Instead we use: 2951 * 2952 * ge->runnable_weight = ge->load.weight * 2953 * 2954 * max(grq->avg.runnable_load_avg, grq->runnable_weight) 2955 * ----------------------------------------------------- (8) 2956 * max(grq->avg.load_avg, grq->load.weight) 2957 * 2958 * Where these max() serve both to use the 'instant' values to fix the slow 2959 * from-idle and avoid the /0 on to-idle, similar to (6). 2960 */ 2961 static long calc_group_runnable(struct cfs_rq *cfs_rq, long shares) 2962 { 2963 long runnable, load_avg; 2964 2965 load_avg = max(cfs_rq->avg.load_avg, 2966 scale_load_down(cfs_rq->load.weight)); 2967 2968 runnable = max(cfs_rq->avg.runnable_load_avg, 2969 scale_load_down(cfs_rq->runnable_weight)); 2970 2971 runnable *= shares; 2972 if (load_avg) 2973 runnable /= load_avg; 2974 2975 return clamp_t(long, runnable, MIN_SHARES, shares); 2976 } 2977 # endif /* CONFIG_SMP */ 2978 2979 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq); 2980 2981 /* 2982 * Recomputes the group entity based on the current state of its group 2983 * runqueue. 2984 */ 2985 static void update_cfs_group(struct sched_entity *se) 2986 { 2987 struct cfs_rq *gcfs_rq = group_cfs_rq(se); 2988 long shares, runnable; 2989 2990 if (!gcfs_rq) 2991 return; 2992 2993 if (throttled_hierarchy(gcfs_rq)) 2994 return; 2995 2996 #ifndef CONFIG_SMP 2997 runnable = shares = READ_ONCE(gcfs_rq->tg->shares); 2998 2999 if (likely(se->load.weight == shares)) 3000 return; 3001 #else 3002 shares = calc_group_shares(gcfs_rq); 3003 runnable = calc_group_runnable(gcfs_rq, shares); 3004 #endif 3005 3006 reweight_entity(cfs_rq_of(se), se, shares, runnable); 3007 } 3008 3009 #else /* CONFIG_FAIR_GROUP_SCHED */ 3010 static inline void update_cfs_group(struct sched_entity *se) 3011 { 3012 } 3013 #endif /* CONFIG_FAIR_GROUP_SCHED */ 3014 3015 static inline void cfs_rq_util_change(struct cfs_rq *cfs_rq) 3016 { 3017 struct rq *rq = rq_of(cfs_rq); 3018 3019 if (&rq->cfs == cfs_rq) { 3020 /* 3021 * There are a few boundary cases this might miss but it should 3022 * get called often enough that that should (hopefully) not be 3023 * a real problem. 3024 * 3025 * It will not get called when we go idle, because the idle 3026 * thread is a different class (!fair), nor will the utilization 3027 * number include things like RT tasks. 3028 * 3029 * As is, the util number is not freq-invariant (we'd have to 3030 * implement arch_scale_freq_capacity() for that). 3031 * 3032 * See cpu_util(). 3033 */ 3034 cpufreq_update_util(rq, 0); 3035 } 3036 } 3037 3038 #ifdef CONFIG_SMP 3039 /* 3040 * Approximate: 3041 * val * y^n, where y^32 ~= 0.5 (~1 scheduling period) 3042 */ 3043 static u64 decay_load(u64 val, u64 n) 3044 { 3045 unsigned int local_n; 3046 3047 if (unlikely(n > LOAD_AVG_PERIOD * 63)) 3048 return 0; 3049 3050 /* after bounds checking we can collapse to 32-bit */ 3051 local_n = n; 3052 3053 /* 3054 * As y^PERIOD = 1/2, we can combine 3055 * y^n = 1/2^(n/PERIOD) * y^(n%PERIOD) 3056 * With a look-up table which covers y^n (n<PERIOD) 3057 * 3058 * To achieve constant time decay_load. 3059 */ 3060 if (unlikely(local_n >= LOAD_AVG_PERIOD)) { 3061 val >>= local_n / LOAD_AVG_PERIOD; 3062 local_n %= LOAD_AVG_PERIOD; 3063 } 3064 3065 val = mul_u64_u32_shr(val, runnable_avg_yN_inv[local_n], 32); 3066 return val; 3067 } 3068 3069 static u32 __accumulate_pelt_segments(u64 periods, u32 d1, u32 d3) 3070 { 3071 u32 c1, c2, c3 = d3; /* y^0 == 1 */ 3072 3073 /* 3074 * c1 = d1 y^p 3075 */ 3076 c1 = decay_load((u64)d1, periods); 3077 3078 /* 3079 * p-1 3080 * c2 = 1024 \Sum y^n 3081 * n=1 3082 * 3083 * inf inf 3084 * = 1024 ( \Sum y^n - \Sum y^n - y^0 ) 3085 * n=0 n=p 3086 */ 3087 c2 = LOAD_AVG_MAX - decay_load(LOAD_AVG_MAX, periods) - 1024; 3088 3089 return c1 + c2 + c3; 3090 } 3091 3092 /* 3093 * Accumulate the three separate parts of the sum; d1 the remainder 3094 * of the last (incomplete) period, d2 the span of full periods and d3 3095 * the remainder of the (incomplete) current period. 3096 * 3097 * d1 d2 d3 3098 * ^ ^ ^ 3099 * | | | 3100 * |<->|<----------------->|<--->| 3101 * ... |---x---|------| ... |------|-----x (now) 3102 * 3103 * p-1 3104 * u' = (u + d1) y^p + 1024 \Sum y^n + d3 y^0 3105 * n=1 3106 * 3107 * = u y^p + (Step 1) 3108 * 3109 * p-1 3110 * d1 y^p + 1024 \Sum y^n + d3 y^0 (Step 2) 3111 * n=1 3112 */ 3113 static __always_inline u32 3114 accumulate_sum(u64 delta, int cpu, struct sched_avg *sa, 3115 unsigned long load, unsigned long runnable, int running) 3116 { 3117 unsigned long scale_freq, scale_cpu; 3118 u32 contrib = (u32)delta; /* p == 0 -> delta < 1024 */ 3119 u64 periods; 3120 3121 scale_freq = arch_scale_freq_capacity(cpu); 3122 scale_cpu = arch_scale_cpu_capacity(NULL, cpu); 3123 3124 delta += sa->period_contrib; 3125 periods = delta / 1024; /* A period is 1024us (~1ms) */ 3126 3127 /* 3128 * Step 1: decay old *_sum if we crossed period boundaries. 3129 */ 3130 if (periods) { 3131 sa->load_sum = decay_load(sa->load_sum, periods); 3132 sa->runnable_load_sum = 3133 decay_load(sa->runnable_load_sum, periods); 3134 sa->util_sum = decay_load((u64)(sa->util_sum), periods); 3135 3136 /* 3137 * Step 2 3138 */ 3139 delta %= 1024; 3140 contrib = __accumulate_pelt_segments(periods, 3141 1024 - sa->period_contrib, delta); 3142 } 3143 sa->period_contrib = delta; 3144 3145 contrib = cap_scale(contrib, scale_freq); 3146 if (load) 3147 sa->load_sum += load * contrib; 3148 if (runnable) 3149 sa->runnable_load_sum += runnable * contrib; 3150 if (running) 3151 sa->util_sum += contrib * scale_cpu; 3152 3153 return periods; 3154 } 3155 3156 /* 3157 * We can represent the historical contribution to runnable average as the 3158 * coefficients of a geometric series. To do this we sub-divide our runnable 3159 * history into segments of approximately 1ms (1024us); label the segment that 3160 * occurred N-ms ago p_N, with p_0 corresponding to the current period, e.g. 3161 * 3162 * [<- 1024us ->|<- 1024us ->|<- 1024us ->| ... 3163 * p0 p1 p2 3164 * (now) (~1ms ago) (~2ms ago) 3165 * 3166 * Let u_i denote the fraction of p_i that the entity was runnable. 3167 * 3168 * We then designate the fractions u_i as our co-efficients, yielding the 3169 * following representation of historical load: 3170 * u_0 + u_1*y + u_2*y^2 + u_3*y^3 + ... 3171 * 3172 * We choose y based on the with of a reasonably scheduling period, fixing: 3173 * y^32 = 0.5 3174 * 3175 * This means that the contribution to load ~32ms ago (u_32) will be weighted 3176 * approximately half as much as the contribution to load within the last ms 3177 * (u_0). 3178 * 3179 * When a period "rolls over" and we have new u_0`, multiplying the previous 3180 * sum again by y is sufficient to update: 3181 * load_avg = u_0` + y*(u_0 + u_1*y + u_2*y^2 + ... ) 3182 * = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1}] 3183 */ 3184 static __always_inline int 3185 ___update_load_sum(u64 now, int cpu, struct sched_avg *sa, 3186 unsigned long load, unsigned long runnable, int running) 3187 { 3188 u64 delta; 3189 3190 delta = now - sa->last_update_time; 3191 /* 3192 * This should only happen when time goes backwards, which it 3193 * unfortunately does during sched clock init when we swap over to TSC. 3194 */ 3195 if ((s64)delta < 0) { 3196 sa->last_update_time = now; 3197 return 0; 3198 } 3199 3200 /* 3201 * Use 1024ns as the unit of measurement since it's a reasonable 3202 * approximation of 1us and fast to compute. 3203 */ 3204 delta >>= 10; 3205 if (!delta) 3206 return 0; 3207 3208 sa->last_update_time += delta << 10; 3209 3210 /* 3211 * running is a subset of runnable (weight) so running can't be set if 3212 * runnable is clear. But there are some corner cases where the current 3213 * se has been already dequeued but cfs_rq->curr still points to it. 3214 * This means that weight will be 0 but not running for a sched_entity 3215 * but also for a cfs_rq if the latter becomes idle. As an example, 3216 * this happens during idle_balance() which calls 3217 * update_blocked_averages() 3218 */ 3219 if (!load) 3220 runnable = running = 0; 3221 3222 /* 3223 * Now we know we crossed measurement unit boundaries. The *_avg 3224 * accrues by two steps: 3225 * 3226 * Step 1: accumulate *_sum since last_update_time. If we haven't 3227 * crossed period boundaries, finish. 3228 */ 3229 if (!accumulate_sum(delta, cpu, sa, load, runnable, running)) 3230 return 0; 3231 3232 return 1; 3233 } 3234 3235 static __always_inline void 3236 ___update_load_avg(struct sched_avg *sa, unsigned long load, unsigned long runnable) 3237 { 3238 u32 divider = LOAD_AVG_MAX - 1024 + sa->period_contrib; 3239 3240 /* 3241 * Step 2: update *_avg. 3242 */ 3243 sa->load_avg = div_u64(load * sa->load_sum, divider); 3244 sa->runnable_load_avg = div_u64(runnable * sa->runnable_load_sum, divider); 3245 sa->util_avg = sa->util_sum / divider; 3246 } 3247 3248 /* 3249 * sched_entity: 3250 * 3251 * task: 3252 * se_runnable() == se_weight() 3253 * 3254 * group: [ see update_cfs_group() ] 3255 * se_weight() = tg->weight * grq->load_avg / tg->load_avg 3256 * se_runnable() = se_weight(se) * grq->runnable_load_avg / grq->load_avg 3257 * 3258 * load_sum := runnable_sum 3259 * load_avg = se_weight(se) * runnable_avg 3260 * 3261 * runnable_load_sum := runnable_sum 3262 * runnable_load_avg = se_runnable(se) * runnable_avg 3263 * 3264 * XXX collapse load_sum and runnable_load_sum 3265 * 3266 * cfq_rs: 3267 * 3268 * load_sum = \Sum se_weight(se) * se->avg.load_sum 3269 * load_avg = \Sum se->avg.load_avg 3270 * 3271 * runnable_load_sum = \Sum se_runnable(se) * se->avg.runnable_load_sum 3272 * runnable_load_avg = \Sum se->avg.runable_load_avg 3273 */ 3274 3275 static int 3276 __update_load_avg_blocked_se(u64 now, int cpu, struct sched_entity *se) 3277 { 3278 if (entity_is_task(se)) 3279 se->runnable_weight = se->load.weight; 3280 3281 if (___update_load_sum(now, cpu, &se->avg, 0, 0, 0)) { 3282 ___update_load_avg(&se->avg, se_weight(se), se_runnable(se)); 3283 return 1; 3284 } 3285 3286 return 0; 3287 } 3288 3289 static int 3290 __update_load_avg_se(u64 now, int cpu, struct cfs_rq *cfs_rq, struct sched_entity *se) 3291 { 3292 if (entity_is_task(se)) 3293 se->runnable_weight = se->load.weight; 3294 3295 if (___update_load_sum(now, cpu, &se->avg, !!se->on_rq, !!se->on_rq, 3296 cfs_rq->curr == se)) { 3297 3298 ___update_load_avg(&se->avg, se_weight(se), se_runnable(se)); 3299 return 1; 3300 } 3301 3302 return 0; 3303 } 3304 3305 static int 3306 __update_load_avg_cfs_rq(u64 now, int cpu, struct cfs_rq *cfs_rq) 3307 { 3308 if (___update_load_sum(now, cpu, &cfs_rq->avg, 3309 scale_load_down(cfs_rq->load.weight), 3310 scale_load_down(cfs_rq->runnable_weight), 3311 cfs_rq->curr != NULL)) { 3312 3313 ___update_load_avg(&cfs_rq->avg, 1, 1); 3314 return 1; 3315 } 3316 3317 return 0; 3318 } 3319 3320 #ifdef CONFIG_FAIR_GROUP_SCHED 3321 /** 3322 * update_tg_load_avg - update the tg's load avg 3323 * @cfs_rq: the cfs_rq whose avg changed 3324 * @force: update regardless of how small the difference 3325 * 3326 * This function 'ensures': tg->load_avg := \Sum tg->cfs_rq[]->avg.load. 3327 * However, because tg->load_avg is a global value there are performance 3328 * considerations. 3329 * 3330 * In order to avoid having to look at the other cfs_rq's, we use a 3331 * differential update where we store the last value we propagated. This in 3332 * turn allows skipping updates if the differential is 'small'. 3333 * 3334 * Updating tg's load_avg is necessary before update_cfs_share(). 3335 */ 3336 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force) 3337 { 3338 long delta = cfs_rq->avg.load_avg - cfs_rq->tg_load_avg_contrib; 3339 3340 /* 3341 * No need to update load_avg for root_task_group as it is not used. 3342 */ 3343 if (cfs_rq->tg == &root_task_group) 3344 return; 3345 3346 if (force || abs(delta) > cfs_rq->tg_load_avg_contrib / 64) { 3347 atomic_long_add(delta, &cfs_rq->tg->load_avg); 3348 cfs_rq->tg_load_avg_contrib = cfs_rq->avg.load_avg; 3349 } 3350 } 3351 3352 /* 3353 * Called within set_task_rq() right before setting a task's cpu. The 3354 * caller only guarantees p->pi_lock is held; no other assumptions, 3355 * including the state of rq->lock, should be made. 3356 */ 3357 void set_task_rq_fair(struct sched_entity *se, 3358 struct cfs_rq *prev, struct cfs_rq *next) 3359 { 3360 u64 p_last_update_time; 3361 u64 n_last_update_time; 3362 3363 if (!sched_feat(ATTACH_AGE_LOAD)) 3364 return; 3365 3366 /* 3367 * We are supposed to update the task to "current" time, then its up to 3368 * date and ready to go to new CPU/cfs_rq. But we have difficulty in 3369 * getting what current time is, so simply throw away the out-of-date 3370 * time. This will result in the wakee task is less decayed, but giving 3371 * the wakee more load sounds not bad. 3372 */ 3373 if (!(se->avg.last_update_time && prev)) 3374 return; 3375 3376 #ifndef CONFIG_64BIT 3377 { 3378 u64 p_last_update_time_copy; 3379 u64 n_last_update_time_copy; 3380 3381 do { 3382 p_last_update_time_copy = prev->load_last_update_time_copy; 3383 n_last_update_time_copy = next->load_last_update_time_copy; 3384 3385 smp_rmb(); 3386 3387 p_last_update_time = prev->avg.last_update_time; 3388 n_last_update_time = next->avg.last_update_time; 3389 3390 } while (p_last_update_time != p_last_update_time_copy || 3391 n_last_update_time != n_last_update_time_copy); 3392 } 3393 #else 3394 p_last_update_time = prev->avg.last_update_time; 3395 n_last_update_time = next->avg.last_update_time; 3396 #endif 3397 __update_load_avg_blocked_se(p_last_update_time, cpu_of(rq_of(prev)), se); 3398 se->avg.last_update_time = n_last_update_time; 3399 } 3400 3401 3402 /* 3403 * When on migration a sched_entity joins/leaves the PELT hierarchy, we need to 3404 * propagate its contribution. The key to this propagation is the invariant 3405 * that for each group: 3406 * 3407 * ge->avg == grq->avg (1) 3408 * 3409 * _IFF_ we look at the pure running and runnable sums. Because they 3410 * represent the very same entity, just at different points in the hierarchy. 3411 * 3412 * Per the above update_tg_cfs_util() is trivial and simply copies the running 3413 * sum over (but still wrong, because the group entity and group rq do not have 3414 * their PELT windows aligned). 3415 * 3416 * However, update_tg_cfs_runnable() is more complex. So we have: 3417 * 3418 * ge->avg.load_avg = ge->load.weight * ge->avg.runnable_avg (2) 3419 * 3420 * And since, like util, the runnable part should be directly transferable, 3421 * the following would _appear_ to be the straight forward approach: 3422 * 3423 * grq->avg.load_avg = grq->load.weight * grq->avg.runnable_avg (3) 3424 * 3425 * And per (1) we have: 3426 * 3427 * ge->avg.runnable_avg == grq->avg.runnable_avg 3428 * 3429 * Which gives: 3430 * 3431 * ge->load.weight * grq->avg.load_avg 3432 * ge->avg.load_avg = ----------------------------------- (4) 3433 * grq->load.weight 3434 * 3435 * Except that is wrong! 3436 * 3437 * Because while for entities historical weight is not important and we 3438 * really only care about our future and therefore can consider a pure 3439 * runnable sum, runqueues can NOT do this. 3440 * 3441 * We specifically want runqueues to have a load_avg that includes 3442 * historical weights. Those represent the blocked load, the load we expect 3443 * to (shortly) return to us. This only works by keeping the weights as 3444 * integral part of the sum. We therefore cannot decompose as per (3). 3445 * 3446 * Another reason this doesn't work is that runnable isn't a 0-sum entity. 3447 * Imagine a rq with 2 tasks that each are runnable 2/3 of the time. Then the 3448 * rq itself is runnable anywhere between 2/3 and 1 depending on how the 3449 * runnable section of these tasks overlap (or not). If they were to perfectly 3450 * align the rq as a whole would be runnable 2/3 of the time. If however we 3451 * always have at least 1 runnable task, the rq as a whole is always runnable. 3452 * 3453 * So we'll have to approximate.. :/ 3454 * 3455 * Given the constraint: 3456 * 3457 * ge->avg.running_sum <= ge->avg.runnable_sum <= LOAD_AVG_MAX 3458 * 3459 * We can construct a rule that adds runnable to a rq by assuming minimal 3460 * overlap. 3461 * 3462 * On removal, we'll assume each task is equally runnable; which yields: 3463 * 3464 * grq->avg.runnable_sum = grq->avg.load_sum / grq->load.weight 3465 * 3466 * XXX: only do this for the part of runnable > running ? 3467 * 3468 */ 3469 3470 static inline void 3471 update_tg_cfs_util(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq) 3472 { 3473 long delta = gcfs_rq->avg.util_avg - se->avg.util_avg; 3474 3475 /* Nothing to update */ 3476 if (!delta) 3477 return; 3478 3479 /* 3480 * The relation between sum and avg is: 3481 * 3482 * LOAD_AVG_MAX - 1024 + sa->period_contrib 3483 * 3484 * however, the PELT windows are not aligned between grq and gse. 3485 */ 3486 3487 /* Set new sched_entity's utilization */ 3488 se->avg.util_avg = gcfs_rq->avg.util_avg; 3489 se->avg.util_sum = se->avg.util_avg * LOAD_AVG_MAX; 3490 3491 /* Update parent cfs_rq utilization */ 3492 add_positive(&cfs_rq->avg.util_avg, delta); 3493 cfs_rq->avg.util_sum = cfs_rq->avg.util_avg * LOAD_AVG_MAX; 3494 } 3495 3496 static inline void 3497 update_tg_cfs_runnable(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq) 3498 { 3499 long delta_avg, running_sum, runnable_sum = gcfs_rq->prop_runnable_sum; 3500 unsigned long runnable_load_avg, load_avg; 3501 u64 runnable_load_sum, load_sum = 0; 3502 s64 delta_sum; 3503 3504 if (!runnable_sum) 3505 return; 3506 3507 gcfs_rq->prop_runnable_sum = 0; 3508 3509 if (runnable_sum >= 0) { 3510 /* 3511 * Add runnable; clip at LOAD_AVG_MAX. Reflects that until 3512 * the CPU is saturated running == runnable. 3513 */ 3514 runnable_sum += se->avg.load_sum; 3515 runnable_sum = min(runnable_sum, (long)LOAD_AVG_MAX); 3516 } else { 3517 /* 3518 * Estimate the new unweighted runnable_sum of the gcfs_rq by 3519 * assuming all tasks are equally runnable. 3520 */ 3521 if (scale_load_down(gcfs_rq->load.weight)) { 3522 load_sum = div_s64(gcfs_rq->avg.load_sum, 3523 scale_load_down(gcfs_rq->load.weight)); 3524 } 3525 3526 /* But make sure to not inflate se's runnable */ 3527 runnable_sum = min(se->avg.load_sum, load_sum); 3528 } 3529 3530 /* 3531 * runnable_sum can't be lower than running_sum 3532 * As running sum is scale with cpu capacity wehreas the runnable sum 3533 * is not we rescale running_sum 1st 3534 */ 3535 running_sum = se->avg.util_sum / 3536 arch_scale_cpu_capacity(NULL, cpu_of(rq_of(cfs_rq))); 3537 runnable_sum = max(runnable_sum, running_sum); 3538 3539 load_sum = (s64)se_weight(se) * runnable_sum; 3540 load_avg = div_s64(load_sum, LOAD_AVG_MAX); 3541 3542 delta_sum = load_sum - (s64)se_weight(se) * se->avg.load_sum; 3543 delta_avg = load_avg - se->avg.load_avg; 3544 3545 se->avg.load_sum = runnable_sum; 3546 se->avg.load_avg = load_avg; 3547 add_positive(&cfs_rq->avg.load_avg, delta_avg); 3548 add_positive(&cfs_rq->avg.load_sum, delta_sum); 3549 3550 runnable_load_sum = (s64)se_runnable(se) * runnable_sum; 3551 runnable_load_avg = div_s64(runnable_load_sum, LOAD_AVG_MAX); 3552 delta_sum = runnable_load_sum - se_weight(se) * se->avg.runnable_load_sum; 3553 delta_avg = runnable_load_avg - se->avg.runnable_load_avg; 3554 3555 se->avg.runnable_load_sum = runnable_sum; 3556 se->avg.runnable_load_avg = runnable_load_avg; 3557 3558 if (se->on_rq) { 3559 add_positive(&cfs_rq->avg.runnable_load_avg, delta_avg); 3560 add_positive(&cfs_rq->avg.runnable_load_sum, delta_sum); 3561 } 3562 } 3563 3564 static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum) 3565 { 3566 cfs_rq->propagate = 1; 3567 cfs_rq->prop_runnable_sum += runnable_sum; 3568 } 3569 3570 /* Update task and its cfs_rq load average */ 3571 static inline int propagate_entity_load_avg(struct sched_entity *se) 3572 { 3573 struct cfs_rq *cfs_rq, *gcfs_rq; 3574 3575 if (entity_is_task(se)) 3576 return 0; 3577 3578 gcfs_rq = group_cfs_rq(se); 3579 if (!gcfs_rq->propagate) 3580 return 0; 3581 3582 gcfs_rq->propagate = 0; 3583 3584 cfs_rq = cfs_rq_of(se); 3585 3586 add_tg_cfs_propagate(cfs_rq, gcfs_rq->prop_runnable_sum); 3587 3588 update_tg_cfs_util(cfs_rq, se, gcfs_rq); 3589 update_tg_cfs_runnable(cfs_rq, se, gcfs_rq); 3590 3591 return 1; 3592 } 3593 3594 /* 3595 * Check if we need to update the load and the utilization of a blocked 3596 * group_entity: 3597 */ 3598 static inline bool skip_blocked_update(struct sched_entity *se) 3599 { 3600 struct cfs_rq *gcfs_rq = group_cfs_rq(se); 3601 3602 /* 3603 * If sched_entity still have not zero load or utilization, we have to 3604 * decay it: 3605 */ 3606 if (se->avg.load_avg || se->avg.util_avg) 3607 return false; 3608 3609 /* 3610 * If there is a pending propagation, we have to update the load and 3611 * the utilization of the sched_entity: 3612 */ 3613 if (gcfs_rq->propagate) 3614 return false; 3615 3616 /* 3617 * Otherwise, the load and the utilization of the sched_entity is 3618 * already zero and there is no pending propagation, so it will be a 3619 * waste of time to try to decay it: 3620 */ 3621 return true; 3622 } 3623 3624 #else /* CONFIG_FAIR_GROUP_SCHED */ 3625 3626 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force) {} 3627 3628 static inline int propagate_entity_load_avg(struct sched_entity *se) 3629 { 3630 return 0; 3631 } 3632 3633 static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum) {} 3634 3635 #endif /* CONFIG_FAIR_GROUP_SCHED */ 3636 3637 /** 3638 * update_cfs_rq_load_avg - update the cfs_rq's load/util averages 3639 * @now: current time, as per cfs_rq_clock_task() 3640 * @cfs_rq: cfs_rq to update 3641 * 3642 * The cfs_rq avg is the direct sum of all its entities (blocked and runnable) 3643 * avg. The immediate corollary is that all (fair) tasks must be attached, see 3644 * post_init_entity_util_avg(). 3645 * 3646 * cfs_rq->avg is used for task_h_load() and update_cfs_share() for example. 3647 * 3648 * Returns true if the load decayed or we removed load. 3649 * 3650 * Since both these conditions indicate a changed cfs_rq->avg.load we should 3651 * call update_tg_load_avg() when this function returns true. 3652 */ 3653 static inline int 3654 update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq) 3655 { 3656 unsigned long removed_load = 0, removed_util = 0, removed_runnable_sum = 0; 3657 struct sched_avg *sa = &cfs_rq->avg; 3658 int decayed = 0; 3659 3660 if (cfs_rq->removed.nr) { 3661 unsigned long r; 3662 u32 divider = LOAD_AVG_MAX - 1024 + sa->period_contrib; 3663 3664 raw_spin_lock(&cfs_rq->removed.lock); 3665 swap(cfs_rq->removed.util_avg, removed_util); 3666 swap(cfs_rq->removed.load_avg, removed_load); 3667 swap(cfs_rq->removed.runnable_sum, removed_runnable_sum); 3668 cfs_rq->removed.nr = 0; 3669 raw_spin_unlock(&cfs_rq->removed.lock); 3670 3671 r = removed_load; 3672 sub_positive(&sa->load_avg, r); 3673 sub_positive(&sa->load_sum, r * divider); 3674 3675 r = removed_util; 3676 sub_positive(&sa->util_avg, r); 3677 sub_positive(&sa->util_sum, r * divider); 3678 3679 add_tg_cfs_propagate(cfs_rq, -(long)removed_runnable_sum); 3680 3681 decayed = 1; 3682 } 3683 3684 decayed |= __update_load_avg_cfs_rq(now, cpu_of(rq_of(cfs_rq)), cfs_rq); 3685 3686 #ifndef CONFIG_64BIT 3687 smp_wmb(); 3688 cfs_rq->load_last_update_time_copy = sa->last_update_time; 3689 #endif 3690 3691 if (decayed) 3692 cfs_rq_util_change(cfs_rq); 3693 3694 return decayed; 3695 } 3696 3697 /** 3698 * attach_entity_load_avg - attach this entity to its cfs_rq load avg 3699 * @cfs_rq: cfs_rq to attach to 3700 * @se: sched_entity to attach 3701 * 3702 * Must call update_cfs_rq_load_avg() before this, since we rely on 3703 * cfs_rq->avg.last_update_time being current. 3704 */ 3705 static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) 3706 { 3707 u32 divider = LOAD_AVG_MAX - 1024 + cfs_rq->avg.period_contrib; 3708 3709 /* 3710 * When we attach the @se to the @cfs_rq, we must align the decay 3711 * window because without that, really weird and wonderful things can 3712 * happen. 3713 * 3714 * XXX illustrate 3715 */ 3716 se->avg.last_update_time = cfs_rq->avg.last_update_time; 3717 se->avg.period_contrib = cfs_rq->avg.period_contrib; 3718 3719 /* 3720 * Hell(o) Nasty stuff.. we need to recompute _sum based on the new 3721 * period_contrib. This isn't strictly correct, but since we're 3722 * entirely outside of the PELT hierarchy, nobody cares if we truncate 3723 * _sum a little. 3724 */ 3725 se->avg.util_sum = se->avg.util_avg * divider; 3726 3727 se->avg.load_sum = divider; 3728 if (se_weight(se)) { 3729 se->avg.load_sum = 3730 div_u64(se->avg.load_avg * se->avg.load_sum, se_weight(se)); 3731 } 3732 3733 se->avg.runnable_load_sum = se->avg.load_sum; 3734 3735 enqueue_load_avg(cfs_rq, se); 3736 cfs_rq->avg.util_avg += se->avg.util_avg; 3737 cfs_rq->avg.util_sum += se->avg.util_sum; 3738 3739 add_tg_cfs_propagate(cfs_rq, se->avg.load_sum); 3740 3741 cfs_rq_util_change(cfs_rq); 3742 } 3743 3744 /** 3745 * detach_entity_load_avg - detach this entity from its cfs_rq load avg 3746 * @cfs_rq: cfs_rq to detach from 3747 * @se: sched_entity to detach 3748 * 3749 * Must call update_cfs_rq_load_avg() before this, since we rely on 3750 * cfs_rq->avg.last_update_time being current. 3751 */ 3752 static void detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) 3753 { 3754 dequeue_load_avg(cfs_rq, se); 3755 sub_positive(&cfs_rq->avg.util_avg, se->avg.util_avg); 3756 sub_positive(&cfs_rq->avg.util_sum, se->avg.util_sum); 3757 3758 add_tg_cfs_propagate(cfs_rq, -se->avg.load_sum); 3759 3760 cfs_rq_util_change(cfs_rq); 3761 } 3762 3763 /* 3764 * Optional action to be done while updating the load average 3765 */ 3766 #define UPDATE_TG 0x1 3767 #define SKIP_AGE_LOAD 0x2 3768 #define DO_ATTACH 0x4 3769 3770 /* Update task and its cfs_rq load average */ 3771 static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 3772 { 3773 u64 now = cfs_rq_clock_task(cfs_rq); 3774 struct rq *rq = rq_of(cfs_rq); 3775 int cpu = cpu_of(rq); 3776 int decayed; 3777 3778 /* 3779 * Track task load average for carrying it to new CPU after migrated, and 3780 * track group sched_entity load average for task_h_load calc in migration 3781 */ 3782 if (se->avg.last_update_time && !(flags & SKIP_AGE_LOAD)) 3783 __update_load_avg_se(now, cpu, cfs_rq, se); 3784 3785 decayed = update_cfs_rq_load_avg(now, cfs_rq); 3786 decayed |= propagate_entity_load_avg(se); 3787 3788 if (!se->avg.last_update_time && (flags & DO_ATTACH)) { 3789 3790 attach_entity_load_avg(cfs_rq, se); 3791 update_tg_load_avg(cfs_rq, 0); 3792 3793 } else if (decayed && (flags & UPDATE_TG)) 3794 update_tg_load_avg(cfs_rq, 0); 3795 } 3796 3797 #ifndef CONFIG_64BIT 3798 static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq) 3799 { 3800 u64 last_update_time_copy; 3801 u64 last_update_time; 3802 3803 do { 3804 last_update_time_copy = cfs_rq->load_last_update_time_copy; 3805 smp_rmb(); 3806 last_update_time = cfs_rq->avg.last_update_time; 3807 } while (last_update_time != last_update_time_copy); 3808 3809 return last_update_time; 3810 } 3811 #else 3812 static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq) 3813 { 3814 return cfs_rq->avg.last_update_time; 3815 } 3816 #endif 3817 3818 /* 3819 * Synchronize entity load avg of dequeued entity without locking 3820 * the previous rq. 3821 */ 3822 void sync_entity_load_avg(struct sched_entity *se) 3823 { 3824 struct cfs_rq *cfs_rq = cfs_rq_of(se); 3825 u64 last_update_time; 3826 3827 last_update_time = cfs_rq_last_update_time(cfs_rq); 3828 __update_load_avg_blocked_se(last_update_time, cpu_of(rq_of(cfs_rq)), se); 3829 } 3830 3831 /* 3832 * Task first catches up with cfs_rq, and then subtract 3833 * itself from the cfs_rq (task must be off the queue now). 3834 */ 3835 void remove_entity_load_avg(struct sched_entity *se) 3836 { 3837 struct cfs_rq *cfs_rq = cfs_rq_of(se); 3838 unsigned long flags; 3839 3840 /* 3841 * tasks cannot exit without having gone through wake_up_new_task() -> 3842 * post_init_entity_util_avg() which will have added things to the 3843 * cfs_rq, so we can remove unconditionally. 3844 * 3845 * Similarly for groups, they will have passed through 3846 * post_init_entity_util_avg() before unregister_sched_fair_group() 3847 * calls this. 3848 */ 3849 3850 sync_entity_load_avg(se); 3851 3852 raw_spin_lock_irqsave(&cfs_rq->removed.lock, flags); 3853 ++cfs_rq->removed.nr; 3854 cfs_rq->removed.util_avg += se->avg.util_avg; 3855 cfs_rq->removed.load_avg += se->avg.load_avg; 3856 cfs_rq->removed.runnable_sum += se->avg.load_sum; /* == runnable_sum */ 3857 raw_spin_unlock_irqrestore(&cfs_rq->removed.lock, flags); 3858 } 3859 3860 static inline unsigned long cfs_rq_runnable_load_avg(struct cfs_rq *cfs_rq) 3861 { 3862 return cfs_rq->avg.runnable_load_avg; 3863 } 3864 3865 static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq) 3866 { 3867 return cfs_rq->avg.load_avg; 3868 } 3869 3870 static int idle_balance(struct rq *this_rq, struct rq_flags *rf); 3871 3872 #else /* CONFIG_SMP */ 3873 3874 static inline int 3875 update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq) 3876 { 3877 return 0; 3878 } 3879 3880 #define UPDATE_TG 0x0 3881 #define SKIP_AGE_LOAD 0x0 3882 #define DO_ATTACH 0x0 3883 3884 static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int not_used1) 3885 { 3886 cfs_rq_util_change(cfs_rq); 3887 } 3888 3889 static inline void remove_entity_load_avg(struct sched_entity *se) {} 3890 3891 static inline void 3892 attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {} 3893 static inline void 3894 detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {} 3895 3896 static inline int idle_balance(struct rq *rq, struct rq_flags *rf) 3897 { 3898 return 0; 3899 } 3900 3901 #endif /* CONFIG_SMP */ 3902 3903 static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se) 3904 { 3905 #ifdef CONFIG_SCHED_DEBUG 3906 s64 d = se->vruntime - cfs_rq->min_vruntime; 3907 3908 if (d < 0) 3909 d = -d; 3910 3911 if (d > 3*sysctl_sched_latency) 3912 schedstat_inc(cfs_rq->nr_spread_over); 3913 #endif 3914 } 3915 3916 static void 3917 place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial) 3918 { 3919 u64 vruntime = cfs_rq->min_vruntime; 3920 3921 /* 3922 * The 'current' period is already promised to the current tasks, 3923 * however the extra weight of the new task will slow them down a 3924 * little, place the new task so that it fits in the slot that 3925 * stays open at the end. 3926 */ 3927 if (initial && sched_feat(START_DEBIT)) 3928 vruntime += sched_vslice(cfs_rq, se); 3929 3930 /* sleeps up to a single latency don't count. */ 3931 if (!initial) { 3932 unsigned long thresh = sysctl_sched_latency; 3933 3934 /* 3935 * Halve their sleep time's effect, to allow 3936 * for a gentler effect of sleepers: 3937 */ 3938 if (sched_feat(GENTLE_FAIR_SLEEPERS)) 3939 thresh >>= 1; 3940 3941 vruntime -= thresh; 3942 } 3943 3944 /* ensure we never gain time by being placed backwards. */ 3945 se->vruntime = max_vruntime(se->vruntime, vruntime); 3946 } 3947 3948 static void check_enqueue_throttle(struct cfs_rq *cfs_rq); 3949 3950 static inline void check_schedstat_required(void) 3951 { 3952 #ifdef CONFIG_SCHEDSTATS 3953 if (schedstat_enabled()) 3954 return; 3955 3956 /* Force schedstat enabled if a dependent tracepoint is active */ 3957 if (trace_sched_stat_wait_enabled() || 3958 trace_sched_stat_sleep_enabled() || 3959 trace_sched_stat_iowait_enabled() || 3960 trace_sched_stat_blocked_enabled() || 3961 trace_sched_stat_runtime_enabled()) { 3962 printk_deferred_once("Scheduler tracepoints stat_sleep, stat_iowait, " 3963 "stat_blocked and stat_runtime require the " 3964 "kernel parameter schedstats=enable or " 3965 "kernel.sched_schedstats=1\n"); 3966 } 3967 #endif 3968 } 3969 3970 3971 /* 3972 * MIGRATION 3973 * 3974 * dequeue 3975 * update_curr() 3976 * update_min_vruntime() 3977 * vruntime -= min_vruntime 3978 * 3979 * enqueue 3980 * update_curr() 3981 * update_min_vruntime() 3982 * vruntime += min_vruntime 3983 * 3984 * this way the vruntime transition between RQs is done when both 3985 * min_vruntime are up-to-date. 3986 * 3987 * WAKEUP (remote) 3988 * 3989 * ->migrate_task_rq_fair() (p->state == TASK_WAKING) 3990 * vruntime -= min_vruntime 3991 * 3992 * enqueue 3993 * update_curr() 3994 * update_min_vruntime() 3995 * vruntime += min_vruntime 3996 * 3997 * this way we don't have the most up-to-date min_vruntime on the originating 3998 * CPU and an up-to-date min_vruntime on the destination CPU. 3999 */ 4000 4001 static void 4002 enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 4003 { 4004 bool renorm = !(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_MIGRATED); 4005 bool curr = cfs_rq->curr == se; 4006 4007 /* 4008 * If we're the current task, we must renormalise before calling 4009 * update_curr(). 4010 */ 4011 if (renorm && curr) 4012 se->vruntime += cfs_rq->min_vruntime; 4013 4014 update_curr(cfs_rq); 4015 4016 /* 4017 * Otherwise, renormalise after, such that we're placed at the current 4018 * moment in time, instead of some random moment in the past. Being 4019 * placed in the past could significantly boost this task to the 4020 * fairness detriment of existing tasks. 4021 */ 4022 if (renorm && !curr) 4023 se->vruntime += cfs_rq->min_vruntime; 4024 4025 /* 4026 * When enqueuing a sched_entity, we must: 4027 * - Update loads to have both entity and cfs_rq synced with now. 4028 * - Add its load to cfs_rq->runnable_avg 4029 * - For group_entity, update its weight to reflect the new share of 4030 * its group cfs_rq 4031 * - Add its new weight to cfs_rq->load.weight 4032 */ 4033 update_load_avg(cfs_rq, se, UPDATE_TG | DO_ATTACH); 4034 update_cfs_group(se); 4035 enqueue_runnable_load_avg(cfs_rq, se); 4036 account_entity_enqueue(cfs_rq, se); 4037 4038 if (flags & ENQUEUE_WAKEUP) 4039 place_entity(cfs_rq, se, 0); 4040 4041 check_schedstat_required(); 4042 update_stats_enqueue(cfs_rq, se, flags); 4043 check_spread(cfs_rq, se); 4044 if (!curr) 4045 __enqueue_entity(cfs_rq, se); 4046 se->on_rq = 1; 4047 4048 if (cfs_rq->nr_running == 1) { 4049 list_add_leaf_cfs_rq(cfs_rq); 4050 check_enqueue_throttle(cfs_rq); 4051 } 4052 } 4053 4054 static void __clear_buddies_last(struct sched_entity *se) 4055 { 4056 for_each_sched_entity(se) { 4057 struct cfs_rq *cfs_rq = cfs_rq_of(se); 4058 if (cfs_rq->last != se) 4059 break; 4060 4061 cfs_rq->last = NULL; 4062 } 4063 } 4064 4065 static void __clear_buddies_next(struct sched_entity *se) 4066 { 4067 for_each_sched_entity(se) { 4068 struct cfs_rq *cfs_rq = cfs_rq_of(se); 4069 if (cfs_rq->next != se) 4070 break; 4071 4072 cfs_rq->next = NULL; 4073 } 4074 } 4075 4076 static void __clear_buddies_skip(struct sched_entity *se) 4077 { 4078 for_each_sched_entity(se) { 4079 struct cfs_rq *cfs_rq = cfs_rq_of(se); 4080 if (cfs_rq->skip != se) 4081 break; 4082 4083 cfs_rq->skip = NULL; 4084 } 4085 } 4086 4087 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se) 4088 { 4089 if (cfs_rq->last == se) 4090 __clear_buddies_last(se); 4091 4092 if (cfs_rq->next == se) 4093 __clear_buddies_next(se); 4094 4095 if (cfs_rq->skip == se) 4096 __clear_buddies_skip(se); 4097 } 4098 4099 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq); 4100 4101 static void 4102 dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 4103 { 4104 /* 4105 * Update run-time statistics of the 'current'. 4106 */ 4107 update_curr(cfs_rq); 4108 4109 /* 4110 * When dequeuing a sched_entity, we must: 4111 * - Update loads to have both entity and cfs_rq synced with now. 4112 * - Substract its load from the cfs_rq->runnable_avg. 4113 * - Substract its previous weight from cfs_rq->load.weight. 4114 * - For group entity, update its weight to reflect the new share 4115 * of its group cfs_rq. 4116 */ 4117 update_load_avg(cfs_rq, se, UPDATE_TG); 4118 dequeue_runnable_load_avg(cfs_rq, se); 4119 4120 update_stats_dequeue(cfs_rq, se, flags); 4121 4122 clear_buddies(cfs_rq, se); 4123 4124 if (se != cfs_rq->curr) 4125 __dequeue_entity(cfs_rq, se); 4126 se->on_rq = 0; 4127 account_entity_dequeue(cfs_rq, se); 4128 4129 /* 4130 * Normalize after update_curr(); which will also have moved 4131 * min_vruntime if @se is the one holding it back. But before doing 4132 * update_min_vruntime() again, which will discount @se's position and 4133 * can move min_vruntime forward still more. 4134 */ 4135 if (!(flags & DEQUEUE_SLEEP)) 4136 se->vruntime -= cfs_rq->min_vruntime; 4137 4138 /* return excess runtime on last dequeue */ 4139 return_cfs_rq_runtime(cfs_rq); 4140 4141 update_cfs_group(se); 4142 4143 /* 4144 * Now advance min_vruntime if @se was the entity holding it back, 4145 * except when: DEQUEUE_SAVE && !DEQUEUE_MOVE, in this case we'll be 4146 * put back on, and if we advance min_vruntime, we'll be placed back 4147 * further than we started -- ie. we'll be penalized. 4148 */ 4149 if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) == DEQUEUE_SAVE) 4150 update_min_vruntime(cfs_rq); 4151 } 4152 4153 /* 4154 * Preempt the current task with a newly woken task if needed: 4155 */ 4156 static void 4157 check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr) 4158 { 4159 unsigned long ideal_runtime, delta_exec; 4160 struct sched_entity *se; 4161 s64 delta; 4162 4163 ideal_runtime = sched_slice(cfs_rq, curr); 4164 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime; 4165 if (delta_exec > ideal_runtime) { 4166 resched_curr(rq_of(cfs_rq)); 4167 /* 4168 * The current task ran long enough, ensure it doesn't get 4169 * re-elected due to buddy favours. 4170 */ 4171 clear_buddies(cfs_rq, curr); 4172 return; 4173 } 4174 4175 /* 4176 * Ensure that a task that missed wakeup preemption by a 4177 * narrow margin doesn't have to wait for a full slice. 4178 * This also mitigates buddy induced latencies under load. 4179 */ 4180 if (delta_exec < sysctl_sched_min_granularity) 4181 return; 4182 4183 se = __pick_first_entity(cfs_rq); 4184 delta = curr->vruntime - se->vruntime; 4185 4186 if (delta < 0) 4187 return; 4188 4189 if (delta > ideal_runtime) 4190 resched_curr(rq_of(cfs_rq)); 4191 } 4192 4193 static void 4194 set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) 4195 { 4196 /* 'current' is not kept within the tree. */ 4197 if (se->on_rq) { 4198 /* 4199 * Any task has to be enqueued before it get to execute on 4200 * a CPU. So account for the time it spent waiting on the 4201 * runqueue. 4202 */ 4203 update_stats_wait_end(cfs_rq, se); 4204 __dequeue_entity(cfs_rq, se); 4205 update_load_avg(cfs_rq, se, UPDATE_TG); 4206 } 4207 4208 update_stats_curr_start(cfs_rq, se); 4209 cfs_rq->curr = se; 4210 4211 /* 4212 * Track our maximum slice length, if the CPU's load is at 4213 * least twice that of our own weight (i.e. dont track it 4214 * when there are only lesser-weight tasks around): 4215 */ 4216 if (schedstat_enabled() && rq_of(cfs_rq)->load.weight >= 2*se->load.weight) { 4217 schedstat_set(se->statistics.slice_max, 4218 max((u64)schedstat_val(se->statistics.slice_max), 4219 se->sum_exec_runtime - se->prev_sum_exec_runtime)); 4220 } 4221 4222 se->prev_sum_exec_runtime = se->sum_exec_runtime; 4223 } 4224 4225 static int 4226 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se); 4227 4228 /* 4229 * Pick the next process, keeping these things in mind, in this order: 4230 * 1) keep things fair between processes/task groups 4231 * 2) pick the "next" process, since someone really wants that to run 4232 * 3) pick the "last" process, for cache locality 4233 * 4) do not run the "skip" process, if something else is available 4234 */ 4235 static struct sched_entity * 4236 pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr) 4237 { 4238 struct sched_entity *left = __pick_first_entity(cfs_rq); 4239 struct sched_entity *se; 4240 4241 /* 4242 * If curr is set we have to see if its left of the leftmost entity 4243 * still in the tree, provided there was anything in the tree at all. 4244 */ 4245 if (!left || (curr && entity_before(curr, left))) 4246 left = curr; 4247 4248 se = left; /* ideally we run the leftmost entity */ 4249 4250 /* 4251 * Avoid running the skip buddy, if running something else can 4252 * be done without getting too unfair. 4253 */ 4254 if (cfs_rq->skip == se) { 4255 struct sched_entity *second; 4256 4257 if (se == curr) { 4258 second = __pick_first_entity(cfs_rq); 4259 } else { 4260 second = __pick_next_entity(se); 4261 if (!second || (curr && entity_before(curr, second))) 4262 second = curr; 4263 } 4264 4265 if (second && wakeup_preempt_entity(second, left) < 1) 4266 se = second; 4267 } 4268 4269 /* 4270 * Prefer last buddy, try to return the CPU to a preempted task. 4271 */ 4272 if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1) 4273 se = cfs_rq->last; 4274 4275 /* 4276 * Someone really wants this to run. If it's not unfair, run it. 4277 */ 4278 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1) 4279 se = cfs_rq->next; 4280 4281 clear_buddies(cfs_rq, se); 4282 4283 return se; 4284 } 4285 4286 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq); 4287 4288 static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev) 4289 { 4290 /* 4291 * If still on the runqueue then deactivate_task() 4292 * was not called and update_curr() has to be done: 4293 */ 4294 if (prev->on_rq) 4295 update_curr(cfs_rq); 4296 4297 /* throttle cfs_rqs exceeding runtime */ 4298 check_cfs_rq_runtime(cfs_rq); 4299 4300 check_spread(cfs_rq, prev); 4301 4302 if (prev->on_rq) { 4303 update_stats_wait_start(cfs_rq, prev); 4304 /* Put 'current' back into the tree. */ 4305 __enqueue_entity(cfs_rq, prev); 4306 /* in !on_rq case, update occurred at dequeue */ 4307 update_load_avg(cfs_rq, prev, 0); 4308 } 4309 cfs_rq->curr = NULL; 4310 } 4311 4312 static void 4313 entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued) 4314 { 4315 /* 4316 * Update run-time statistics of the 'current'. 4317 */ 4318 update_curr(cfs_rq); 4319 4320 /* 4321 * Ensure that runnable average is periodically updated. 4322 */ 4323 update_load_avg(cfs_rq, curr, UPDATE_TG); 4324 update_cfs_group(curr); 4325 4326 #ifdef CONFIG_SCHED_HRTICK 4327 /* 4328 * queued ticks are scheduled to match the slice, so don't bother 4329 * validating it and just reschedule. 4330 */ 4331 if (queued) { 4332 resched_curr(rq_of(cfs_rq)); 4333 return; 4334 } 4335 /* 4336 * don't let the period tick interfere with the hrtick preemption 4337 */ 4338 if (!sched_feat(DOUBLE_TICK) && 4339 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer)) 4340 return; 4341 #endif 4342 4343 if (cfs_rq->nr_running > 1) 4344 check_preempt_tick(cfs_rq, curr); 4345 } 4346 4347 4348 /************************************************** 4349 * CFS bandwidth control machinery 4350 */ 4351 4352 #ifdef CONFIG_CFS_BANDWIDTH 4353 4354 #ifdef HAVE_JUMP_LABEL 4355 static struct static_key __cfs_bandwidth_used; 4356 4357 static inline bool cfs_bandwidth_used(void) 4358 { 4359 return static_key_false(&__cfs_bandwidth_used); 4360 } 4361 4362 void cfs_bandwidth_usage_inc(void) 4363 { 4364 static_key_slow_inc_cpuslocked(&__cfs_bandwidth_used); 4365 } 4366 4367 void cfs_bandwidth_usage_dec(void) 4368 { 4369 static_key_slow_dec_cpuslocked(&__cfs_bandwidth_used); 4370 } 4371 #else /* HAVE_JUMP_LABEL */ 4372 static bool cfs_bandwidth_used(void) 4373 { 4374 return true; 4375 } 4376 4377 void cfs_bandwidth_usage_inc(void) {} 4378 void cfs_bandwidth_usage_dec(void) {} 4379 #endif /* HAVE_JUMP_LABEL */ 4380 4381 /* 4382 * default period for cfs group bandwidth. 4383 * default: 0.1s, units: nanoseconds 4384 */ 4385 static inline u64 default_cfs_period(void) 4386 { 4387 return 100000000ULL; 4388 } 4389 4390 static inline u64 sched_cfs_bandwidth_slice(void) 4391 { 4392 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC; 4393 } 4394 4395 /* 4396 * Replenish runtime according to assigned quota and update expiration time. 4397 * We use sched_clock_cpu directly instead of rq->clock to avoid adding 4398 * additional synchronization around rq->lock. 4399 * 4400 * requires cfs_b->lock 4401 */ 4402 void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b) 4403 { 4404 u64 now; 4405 4406 if (cfs_b->quota == RUNTIME_INF) 4407 return; 4408 4409 now = sched_clock_cpu(smp_processor_id()); 4410 cfs_b->runtime = cfs_b->quota; 4411 cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period); 4412 } 4413 4414 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg) 4415 { 4416 return &tg->cfs_bandwidth; 4417 } 4418 4419 /* rq->task_clock normalized against any time this cfs_rq has spent throttled */ 4420 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq) 4421 { 4422 if (unlikely(cfs_rq->throttle_count)) 4423 return cfs_rq->throttled_clock_task - cfs_rq->throttled_clock_task_time; 4424 4425 return rq_clock_task(rq_of(cfs_rq)) - cfs_rq->throttled_clock_task_time; 4426 } 4427 4428 /* returns 0 on failure to allocate runtime */ 4429 static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq) 4430 { 4431 struct task_group *tg = cfs_rq->tg; 4432 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg); 4433 u64 amount = 0, min_amount, expires; 4434 4435 /* note: this is a positive sum as runtime_remaining <= 0 */ 4436 min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining; 4437 4438 raw_spin_lock(&cfs_b->lock); 4439 if (cfs_b->quota == RUNTIME_INF) 4440 amount = min_amount; 4441 else { 4442 start_cfs_bandwidth(cfs_b); 4443 4444 if (cfs_b->runtime > 0) { 4445 amount = min(cfs_b->runtime, min_amount); 4446 cfs_b->runtime -= amount; 4447 cfs_b->idle = 0; 4448 } 4449 } 4450 expires = cfs_b->runtime_expires; 4451 raw_spin_unlock(&cfs_b->lock); 4452 4453 cfs_rq->runtime_remaining += amount; 4454 /* 4455 * we may have advanced our local expiration to account for allowed 4456 * spread between our sched_clock and the one on which runtime was 4457 * issued. 4458 */ 4459 if ((s64)(expires - cfs_rq->runtime_expires) > 0) 4460 cfs_rq->runtime_expires = expires; 4461 4462 return cfs_rq->runtime_remaining > 0; 4463 } 4464 4465 /* 4466 * Note: This depends on the synchronization provided by sched_clock and the 4467 * fact that rq->clock snapshots this value. 4468 */ 4469 static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq) 4470 { 4471 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 4472 4473 /* if the deadline is ahead of our clock, nothing to do */ 4474 if (likely((s64)(rq_clock(rq_of(cfs_rq)) - cfs_rq->runtime_expires) < 0)) 4475 return; 4476 4477 if (cfs_rq->runtime_remaining < 0) 4478 return; 4479 4480 /* 4481 * If the local deadline has passed we have to consider the 4482 * possibility that our sched_clock is 'fast' and the global deadline 4483 * has not truly expired. 4484 * 4485 * Fortunately we can check determine whether this the case by checking 4486 * whether the global deadline has advanced. It is valid to compare 4487 * cfs_b->runtime_expires without any locks since we only care about 4488 * exact equality, so a partial write will still work. 4489 */ 4490 4491 if (cfs_rq->runtime_expires != cfs_b->runtime_expires) { 4492 /* extend local deadline, drift is bounded above by 2 ticks */ 4493 cfs_rq->runtime_expires += TICK_NSEC; 4494 } else { 4495 /* global deadline is ahead, expiration has passed */ 4496 cfs_rq->runtime_remaining = 0; 4497 } 4498 } 4499 4500 static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) 4501 { 4502 /* dock delta_exec before expiring quota (as it could span periods) */ 4503 cfs_rq->runtime_remaining -= delta_exec; 4504 expire_cfs_rq_runtime(cfs_rq); 4505 4506 if (likely(cfs_rq->runtime_remaining > 0)) 4507 return; 4508 4509 /* 4510 * if we're unable to extend our runtime we resched so that the active 4511 * hierarchy can be throttled 4512 */ 4513 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr)) 4514 resched_curr(rq_of(cfs_rq)); 4515 } 4516 4517 static __always_inline 4518 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) 4519 { 4520 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled) 4521 return; 4522 4523 __account_cfs_rq_runtime(cfs_rq, delta_exec); 4524 } 4525 4526 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq) 4527 { 4528 return cfs_bandwidth_used() && cfs_rq->throttled; 4529 } 4530 4531 /* check whether cfs_rq, or any parent, is throttled */ 4532 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq) 4533 { 4534 return cfs_bandwidth_used() && cfs_rq->throttle_count; 4535 } 4536 4537 /* 4538 * Ensure that neither of the group entities corresponding to src_cpu or 4539 * dest_cpu are members of a throttled hierarchy when performing group 4540 * load-balance operations. 4541 */ 4542 static inline int throttled_lb_pair(struct task_group *tg, 4543 int src_cpu, int dest_cpu) 4544 { 4545 struct cfs_rq *src_cfs_rq, *dest_cfs_rq; 4546 4547 src_cfs_rq = tg->cfs_rq[src_cpu]; 4548 dest_cfs_rq = tg->cfs_rq[dest_cpu]; 4549 4550 return throttled_hierarchy(src_cfs_rq) || 4551 throttled_hierarchy(dest_cfs_rq); 4552 } 4553 4554 /* updated child weight may affect parent so we have to do this bottom up */ 4555 static int tg_unthrottle_up(struct task_group *tg, void *data) 4556 { 4557 struct rq *rq = data; 4558 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; 4559 4560 cfs_rq->throttle_count--; 4561 if (!cfs_rq->throttle_count) { 4562 /* adjust cfs_rq_clock_task() */ 4563 cfs_rq->throttled_clock_task_time += rq_clock_task(rq) - 4564 cfs_rq->throttled_clock_task; 4565 } 4566 4567 return 0; 4568 } 4569 4570 static int tg_throttle_down(struct task_group *tg, void *data) 4571 { 4572 struct rq *rq = data; 4573 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; 4574 4575 /* group is entering throttled state, stop time */ 4576 if (!cfs_rq->throttle_count) 4577 cfs_rq->throttled_clock_task = rq_clock_task(rq); 4578 cfs_rq->throttle_count++; 4579 4580 return 0; 4581 } 4582 4583 static void throttle_cfs_rq(struct cfs_rq *cfs_rq) 4584 { 4585 struct rq *rq = rq_of(cfs_rq); 4586 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 4587 struct sched_entity *se; 4588 long task_delta, dequeue = 1; 4589 bool empty; 4590 4591 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))]; 4592 4593 /* freeze hierarchy runnable averages while throttled */ 4594 rcu_read_lock(); 4595 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq); 4596 rcu_read_unlock(); 4597 4598 task_delta = cfs_rq->h_nr_running; 4599 for_each_sched_entity(se) { 4600 struct cfs_rq *qcfs_rq = cfs_rq_of(se); 4601 /* throttled entity or throttle-on-deactivate */ 4602 if (!se->on_rq) 4603 break; 4604 4605 if (dequeue) 4606 dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP); 4607 qcfs_rq->h_nr_running -= task_delta; 4608 4609 if (qcfs_rq->load.weight) 4610 dequeue = 0; 4611 } 4612 4613 if (!se) 4614 sub_nr_running(rq, task_delta); 4615 4616 cfs_rq->throttled = 1; 4617 cfs_rq->throttled_clock = rq_clock(rq); 4618 raw_spin_lock(&cfs_b->lock); 4619 empty = list_empty(&cfs_b->throttled_cfs_rq); 4620 4621 /* 4622 * Add to the _head_ of the list, so that an already-started 4623 * distribute_cfs_runtime will not see us 4624 */ 4625 list_add_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq); 4626 4627 /* 4628 * If we're the first throttled task, make sure the bandwidth 4629 * timer is running. 4630 */ 4631 if (empty) 4632 start_cfs_bandwidth(cfs_b); 4633 4634 raw_spin_unlock(&cfs_b->lock); 4635 } 4636 4637 void unthrottle_cfs_rq(struct cfs_rq *cfs_rq) 4638 { 4639 struct rq *rq = rq_of(cfs_rq); 4640 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 4641 struct sched_entity *se; 4642 int enqueue = 1; 4643 long task_delta; 4644 4645 se = cfs_rq->tg->se[cpu_of(rq)]; 4646 4647 cfs_rq->throttled = 0; 4648 4649 update_rq_clock(rq); 4650 4651 raw_spin_lock(&cfs_b->lock); 4652 cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock; 4653 list_del_rcu(&cfs_rq->throttled_list); 4654 raw_spin_unlock(&cfs_b->lock); 4655 4656 /* update hierarchical throttle state */ 4657 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq); 4658 4659 if (!cfs_rq->load.weight) 4660 return; 4661 4662 task_delta = cfs_rq->h_nr_running; 4663 for_each_sched_entity(se) { 4664 if (se->on_rq) 4665 enqueue = 0; 4666 4667 cfs_rq = cfs_rq_of(se); 4668 if (enqueue) 4669 enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP); 4670 cfs_rq->h_nr_running += task_delta; 4671 4672 if (cfs_rq_throttled(cfs_rq)) 4673 break; 4674 } 4675 4676 if (!se) 4677 add_nr_running(rq, task_delta); 4678 4679 /* determine whether we need to wake up potentially idle cpu */ 4680 if (rq->curr == rq->idle && rq->cfs.nr_running) 4681 resched_curr(rq); 4682 } 4683 4684 static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b, 4685 u64 remaining, u64 expires) 4686 { 4687 struct cfs_rq *cfs_rq; 4688 u64 runtime; 4689 u64 starting_runtime = remaining; 4690 4691 rcu_read_lock(); 4692 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq, 4693 throttled_list) { 4694 struct rq *rq = rq_of(cfs_rq); 4695 struct rq_flags rf; 4696 4697 rq_lock(rq, &rf); 4698 if (!cfs_rq_throttled(cfs_rq)) 4699 goto next; 4700 4701 runtime = -cfs_rq->runtime_remaining + 1; 4702 if (runtime > remaining) 4703 runtime = remaining; 4704 remaining -= runtime; 4705 4706 cfs_rq->runtime_remaining += runtime; 4707 cfs_rq->runtime_expires = expires; 4708 4709 /* we check whether we're throttled above */ 4710 if (cfs_rq->runtime_remaining > 0) 4711 unthrottle_cfs_rq(cfs_rq); 4712 4713 next: 4714 rq_unlock(rq, &rf); 4715 4716 if (!remaining) 4717 break; 4718 } 4719 rcu_read_unlock(); 4720 4721 return starting_runtime - remaining; 4722 } 4723 4724 /* 4725 * Responsible for refilling a task_group's bandwidth and unthrottling its 4726 * cfs_rqs as appropriate. If there has been no activity within the last 4727 * period the timer is deactivated until scheduling resumes; cfs_b->idle is 4728 * used to track this state. 4729 */ 4730 static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun) 4731 { 4732 u64 runtime, runtime_expires; 4733 int throttled; 4734 4735 /* no need to continue the timer with no bandwidth constraint */ 4736 if (cfs_b->quota == RUNTIME_INF) 4737 goto out_deactivate; 4738 4739 throttled = !list_empty(&cfs_b->throttled_cfs_rq); 4740 cfs_b->nr_periods += overrun; 4741 4742 /* 4743 * idle depends on !throttled (for the case of a large deficit), and if 4744 * we're going inactive then everything else can be deferred 4745 */ 4746 if (cfs_b->idle && !throttled) 4747 goto out_deactivate; 4748 4749 __refill_cfs_bandwidth_runtime(cfs_b); 4750 4751 if (!throttled) { 4752 /* mark as potentially idle for the upcoming period */ 4753 cfs_b->idle = 1; 4754 return 0; 4755 } 4756 4757 /* account preceding periods in which throttling occurred */ 4758 cfs_b->nr_throttled += overrun; 4759 4760 runtime_expires = cfs_b->runtime_expires; 4761 4762 /* 4763 * This check is repeated as we are holding onto the new bandwidth while 4764 * we unthrottle. This can potentially race with an unthrottled group 4765 * trying to acquire new bandwidth from the global pool. This can result 4766 * in us over-using our runtime if it is all used during this loop, but 4767 * only by limited amounts in that extreme case. 4768 */ 4769 while (throttled && cfs_b->runtime > 0) { 4770 runtime = cfs_b->runtime; 4771 raw_spin_unlock(&cfs_b->lock); 4772 /* we can't nest cfs_b->lock while distributing bandwidth */ 4773 runtime = distribute_cfs_runtime(cfs_b, runtime, 4774 runtime_expires); 4775 raw_spin_lock(&cfs_b->lock); 4776 4777 throttled = !list_empty(&cfs_b->throttled_cfs_rq); 4778 4779 cfs_b->runtime -= min(runtime, cfs_b->runtime); 4780 } 4781 4782 /* 4783 * While we are ensured activity in the period following an 4784 * unthrottle, this also covers the case in which the new bandwidth is 4785 * insufficient to cover the existing bandwidth deficit. (Forcing the 4786 * timer to remain active while there are any throttled entities.) 4787 */ 4788 cfs_b->idle = 0; 4789 4790 return 0; 4791 4792 out_deactivate: 4793 return 1; 4794 } 4795 4796 /* a cfs_rq won't donate quota below this amount */ 4797 static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC; 4798 /* minimum remaining period time to redistribute slack quota */ 4799 static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC; 4800 /* how long we wait to gather additional slack before distributing */ 4801 static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC; 4802 4803 /* 4804 * Are we near the end of the current quota period? 4805 * 4806 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the 4807 * hrtimer base being cleared by hrtimer_start. In the case of 4808 * migrate_hrtimers, base is never cleared, so we are fine. 4809 */ 4810 static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire) 4811 { 4812 struct hrtimer *refresh_timer = &cfs_b->period_timer; 4813 u64 remaining; 4814 4815 /* if the call-back is running a quota refresh is already occurring */ 4816 if (hrtimer_callback_running(refresh_timer)) 4817 return 1; 4818 4819 /* is a quota refresh about to occur? */ 4820 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer)); 4821 if (remaining < min_expire) 4822 return 1; 4823 4824 return 0; 4825 } 4826 4827 static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b) 4828 { 4829 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration; 4830 4831 /* if there's a quota refresh soon don't bother with slack */ 4832 if (runtime_refresh_within(cfs_b, min_left)) 4833 return; 4834 4835 hrtimer_start(&cfs_b->slack_timer, 4836 ns_to_ktime(cfs_bandwidth_slack_period), 4837 HRTIMER_MODE_REL); 4838 } 4839 4840 /* we know any runtime found here is valid as update_curr() precedes return */ 4841 static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq) 4842 { 4843 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 4844 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime; 4845 4846 if (slack_runtime <= 0) 4847 return; 4848 4849 raw_spin_lock(&cfs_b->lock); 4850 if (cfs_b->quota != RUNTIME_INF && 4851 cfs_rq->runtime_expires == cfs_b->runtime_expires) { 4852 cfs_b->runtime += slack_runtime; 4853 4854 /* we are under rq->lock, defer unthrottling using a timer */ 4855 if (cfs_b->runtime > sched_cfs_bandwidth_slice() && 4856 !list_empty(&cfs_b->throttled_cfs_rq)) 4857 start_cfs_slack_bandwidth(cfs_b); 4858 } 4859 raw_spin_unlock(&cfs_b->lock); 4860 4861 /* even if it's not valid for return we don't want to try again */ 4862 cfs_rq->runtime_remaining -= slack_runtime; 4863 } 4864 4865 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) 4866 { 4867 if (!cfs_bandwidth_used()) 4868 return; 4869 4870 if (!cfs_rq->runtime_enabled || cfs_rq->nr_running) 4871 return; 4872 4873 __return_cfs_rq_runtime(cfs_rq); 4874 } 4875 4876 /* 4877 * This is done with a timer (instead of inline with bandwidth return) since 4878 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs. 4879 */ 4880 static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b) 4881 { 4882 u64 runtime = 0, slice = sched_cfs_bandwidth_slice(); 4883 u64 expires; 4884 4885 /* confirm we're still not at a refresh boundary */ 4886 raw_spin_lock(&cfs_b->lock); 4887 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) { 4888 raw_spin_unlock(&cfs_b->lock); 4889 return; 4890 } 4891 4892 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice) 4893 runtime = cfs_b->runtime; 4894 4895 expires = cfs_b->runtime_expires; 4896 raw_spin_unlock(&cfs_b->lock); 4897 4898 if (!runtime) 4899 return; 4900 4901 runtime = distribute_cfs_runtime(cfs_b, runtime, expires); 4902 4903 raw_spin_lock(&cfs_b->lock); 4904 if (expires == cfs_b->runtime_expires) 4905 cfs_b->runtime -= min(runtime, cfs_b->runtime); 4906 raw_spin_unlock(&cfs_b->lock); 4907 } 4908 4909 /* 4910 * When a group wakes up we want to make sure that its quota is not already 4911 * expired/exceeded, otherwise it may be allowed to steal additional ticks of 4912 * runtime as update_curr() throttling can not not trigger until it's on-rq. 4913 */ 4914 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) 4915 { 4916 if (!cfs_bandwidth_used()) 4917 return; 4918 4919 /* an active group must be handled by the update_curr()->put() path */ 4920 if (!cfs_rq->runtime_enabled || cfs_rq->curr) 4921 return; 4922 4923 /* ensure the group is not already throttled */ 4924 if (cfs_rq_throttled(cfs_rq)) 4925 return; 4926 4927 /* update runtime allocation */ 4928 account_cfs_rq_runtime(cfs_rq, 0); 4929 if (cfs_rq->runtime_remaining <= 0) 4930 throttle_cfs_rq(cfs_rq); 4931 } 4932 4933 static void sync_throttle(struct task_group *tg, int cpu) 4934 { 4935 struct cfs_rq *pcfs_rq, *cfs_rq; 4936 4937 if (!cfs_bandwidth_used()) 4938 return; 4939 4940 if (!tg->parent) 4941 return; 4942 4943 cfs_rq = tg->cfs_rq[cpu]; 4944 pcfs_rq = tg->parent->cfs_rq[cpu]; 4945 4946 cfs_rq->throttle_count = pcfs_rq->throttle_count; 4947 cfs_rq->throttled_clock_task = rq_clock_task(cpu_rq(cpu)); 4948 } 4949 4950 /* conditionally throttle active cfs_rq's from put_prev_entity() */ 4951 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) 4952 { 4953 if (!cfs_bandwidth_used()) 4954 return false; 4955 4956 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0)) 4957 return false; 4958 4959 /* 4960 * it's possible for a throttled entity to be forced into a running 4961 * state (e.g. set_curr_task), in this case we're finished. 4962 */ 4963 if (cfs_rq_throttled(cfs_rq)) 4964 return true; 4965 4966 throttle_cfs_rq(cfs_rq); 4967 return true; 4968 } 4969 4970 static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer) 4971 { 4972 struct cfs_bandwidth *cfs_b = 4973 container_of(timer, struct cfs_bandwidth, slack_timer); 4974 4975 do_sched_cfs_slack_timer(cfs_b); 4976 4977 return HRTIMER_NORESTART; 4978 } 4979 4980 static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer) 4981 { 4982 struct cfs_bandwidth *cfs_b = 4983 container_of(timer, struct cfs_bandwidth, period_timer); 4984 int overrun; 4985 int idle = 0; 4986 4987 raw_spin_lock(&cfs_b->lock); 4988 for (;;) { 4989 overrun = hrtimer_forward_now(timer, cfs_b->period); 4990 if (!overrun) 4991 break; 4992 4993 idle = do_sched_cfs_period_timer(cfs_b, overrun); 4994 } 4995 if (idle) 4996 cfs_b->period_active = 0; 4997 raw_spin_unlock(&cfs_b->lock); 4998 4999 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART; 5000 } 5001 5002 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) 5003 { 5004 raw_spin_lock_init(&cfs_b->lock); 5005 cfs_b->runtime = 0; 5006 cfs_b->quota = RUNTIME_INF; 5007 cfs_b->period = ns_to_ktime(default_cfs_period()); 5008 5009 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq); 5010 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED); 5011 cfs_b->period_timer.function = sched_cfs_period_timer; 5012 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 5013 cfs_b->slack_timer.function = sched_cfs_slack_timer; 5014 } 5015 5016 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) 5017 { 5018 cfs_rq->runtime_enabled = 0; 5019 INIT_LIST_HEAD(&cfs_rq->throttled_list); 5020 } 5021 5022 void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b) 5023 { 5024 lockdep_assert_held(&cfs_b->lock); 5025 5026 if (!cfs_b->period_active) { 5027 cfs_b->period_active = 1; 5028 hrtimer_forward_now(&cfs_b->period_timer, cfs_b->period); 5029 hrtimer_start_expires(&cfs_b->period_timer, HRTIMER_MODE_ABS_PINNED); 5030 } 5031 } 5032 5033 static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) 5034 { 5035 /* init_cfs_bandwidth() was not called */ 5036 if (!cfs_b->throttled_cfs_rq.next) 5037 return; 5038 5039 hrtimer_cancel(&cfs_b->period_timer); 5040 hrtimer_cancel(&cfs_b->slack_timer); 5041 } 5042 5043 /* 5044 * Both these cpu hotplug callbacks race against unregister_fair_sched_group() 5045 * 5046 * The race is harmless, since modifying bandwidth settings of unhooked group 5047 * bits doesn't do much. 5048 */ 5049 5050 /* cpu online calback */ 5051 static void __maybe_unused update_runtime_enabled(struct rq *rq) 5052 { 5053 struct task_group *tg; 5054 5055 lockdep_assert_held(&rq->lock); 5056 5057 rcu_read_lock(); 5058 list_for_each_entry_rcu(tg, &task_groups, list) { 5059 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 5060 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; 5061 5062 raw_spin_lock(&cfs_b->lock); 5063 cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF; 5064 raw_spin_unlock(&cfs_b->lock); 5065 } 5066 rcu_read_unlock(); 5067 } 5068 5069 /* cpu offline callback */ 5070 static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq) 5071 { 5072 struct task_group *tg; 5073 5074 lockdep_assert_held(&rq->lock); 5075 5076 rcu_read_lock(); 5077 list_for_each_entry_rcu(tg, &task_groups, list) { 5078 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; 5079 5080 if (!cfs_rq->runtime_enabled) 5081 continue; 5082 5083 /* 5084 * clock_task is not advancing so we just need to make sure 5085 * there's some valid quota amount 5086 */ 5087 cfs_rq->runtime_remaining = 1; 5088 /* 5089 * Offline rq is schedulable till cpu is completely disabled 5090 * in take_cpu_down(), so we prevent new cfs throttling here. 5091 */ 5092 cfs_rq->runtime_enabled = 0; 5093 5094 if (cfs_rq_throttled(cfs_rq)) 5095 unthrottle_cfs_rq(cfs_rq); 5096 } 5097 rcu_read_unlock(); 5098 } 5099 5100 #else /* CONFIG_CFS_BANDWIDTH */ 5101 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq) 5102 { 5103 return rq_clock_task(rq_of(cfs_rq)); 5104 } 5105 5106 static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {} 5107 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; } 5108 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {} 5109 static inline void sync_throttle(struct task_group *tg, int cpu) {} 5110 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {} 5111 5112 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq) 5113 { 5114 return 0; 5115 } 5116 5117 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq) 5118 { 5119 return 0; 5120 } 5121 5122 static inline int throttled_lb_pair(struct task_group *tg, 5123 int src_cpu, int dest_cpu) 5124 { 5125 return 0; 5126 } 5127 5128 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {} 5129 5130 #ifdef CONFIG_FAIR_GROUP_SCHED 5131 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {} 5132 #endif 5133 5134 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg) 5135 { 5136 return NULL; 5137 } 5138 static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {} 5139 static inline void update_runtime_enabled(struct rq *rq) {} 5140 static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {} 5141 5142 #endif /* CONFIG_CFS_BANDWIDTH */ 5143 5144 /************************************************** 5145 * CFS operations on tasks: 5146 */ 5147 5148 #ifdef CONFIG_SCHED_HRTICK 5149 static void hrtick_start_fair(struct rq *rq, struct task_struct *p) 5150 { 5151 struct sched_entity *se = &p->se; 5152 struct cfs_rq *cfs_rq = cfs_rq_of(se); 5153 5154 SCHED_WARN_ON(task_rq(p) != rq); 5155 5156 if (rq->cfs.h_nr_running > 1) { 5157 u64 slice = sched_slice(cfs_rq, se); 5158 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime; 5159 s64 delta = slice - ran; 5160 5161 if (delta < 0) { 5162 if (rq->curr == p) 5163 resched_curr(rq); 5164 return; 5165 } 5166 hrtick_start(rq, delta); 5167 } 5168 } 5169 5170 /* 5171 * called from enqueue/dequeue and updates the hrtick when the 5172 * current task is from our class and nr_running is low enough 5173 * to matter. 5174 */ 5175 static void hrtick_update(struct rq *rq) 5176 { 5177 struct task_struct *curr = rq->curr; 5178 5179 if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class) 5180 return; 5181 5182 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency) 5183 hrtick_start_fair(rq, curr); 5184 } 5185 #else /* !CONFIG_SCHED_HRTICK */ 5186 static inline void 5187 hrtick_start_fair(struct rq *rq, struct task_struct *p) 5188 { 5189 } 5190 5191 static inline void hrtick_update(struct rq *rq) 5192 { 5193 } 5194 #endif 5195 5196 /* 5197 * The enqueue_task method is called before nr_running is 5198 * increased. Here we update the fair scheduling stats and 5199 * then put the task into the rbtree: 5200 */ 5201 static void 5202 enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags) 5203 { 5204 struct cfs_rq *cfs_rq; 5205 struct sched_entity *se = &p->se; 5206 5207 /* 5208 * If in_iowait is set, the code below may not trigger any cpufreq 5209 * utilization updates, so do it here explicitly with the IOWAIT flag 5210 * passed. 5211 */ 5212 if (p->in_iowait) 5213 cpufreq_update_util(rq, SCHED_CPUFREQ_IOWAIT); 5214 5215 for_each_sched_entity(se) { 5216 if (se->on_rq) 5217 break; 5218 cfs_rq = cfs_rq_of(se); 5219 enqueue_entity(cfs_rq, se, flags); 5220 5221 /* 5222 * end evaluation on encountering a throttled cfs_rq 5223 * 5224 * note: in the case of encountering a throttled cfs_rq we will 5225 * post the final h_nr_running increment below. 5226 */ 5227 if (cfs_rq_throttled(cfs_rq)) 5228 break; 5229 cfs_rq->h_nr_running++; 5230 5231 flags = ENQUEUE_WAKEUP; 5232 } 5233 5234 for_each_sched_entity(se) { 5235 cfs_rq = cfs_rq_of(se); 5236 cfs_rq->h_nr_running++; 5237 5238 if (cfs_rq_throttled(cfs_rq)) 5239 break; 5240 5241 update_load_avg(cfs_rq, se, UPDATE_TG); 5242 update_cfs_group(se); 5243 } 5244 5245 if (!se) 5246 add_nr_running(rq, 1); 5247 5248 hrtick_update(rq); 5249 } 5250 5251 static void set_next_buddy(struct sched_entity *se); 5252 5253 /* 5254 * The dequeue_task method is called before nr_running is 5255 * decreased. We remove the task from the rbtree and 5256 * update the fair scheduling stats: 5257 */ 5258 static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags) 5259 { 5260 struct cfs_rq *cfs_rq; 5261 struct sched_entity *se = &p->se; 5262 int task_sleep = flags & DEQUEUE_SLEEP; 5263 5264 for_each_sched_entity(se) { 5265 cfs_rq = cfs_rq_of(se); 5266 dequeue_entity(cfs_rq, se, flags); 5267 5268 /* 5269 * end evaluation on encountering a throttled cfs_rq 5270 * 5271 * note: in the case of encountering a throttled cfs_rq we will 5272 * post the final h_nr_running decrement below. 5273 */ 5274 if (cfs_rq_throttled(cfs_rq)) 5275 break; 5276 cfs_rq->h_nr_running--; 5277 5278 /* Don't dequeue parent if it has other entities besides us */ 5279 if (cfs_rq->load.weight) { 5280 /* Avoid re-evaluating load for this entity: */ 5281 se = parent_entity(se); 5282 /* 5283 * Bias pick_next to pick a task from this cfs_rq, as 5284 * p is sleeping when it is within its sched_slice. 5285 */ 5286 if (task_sleep && se && !throttled_hierarchy(cfs_rq)) 5287 set_next_buddy(se); 5288 break; 5289 } 5290 flags |= DEQUEUE_SLEEP; 5291 } 5292 5293 for_each_sched_entity(se) { 5294 cfs_rq = cfs_rq_of(se); 5295 cfs_rq->h_nr_running--; 5296 5297 if (cfs_rq_throttled(cfs_rq)) 5298 break; 5299 5300 update_load_avg(cfs_rq, se, UPDATE_TG); 5301 update_cfs_group(se); 5302 } 5303 5304 if (!se) 5305 sub_nr_running(rq, 1); 5306 5307 hrtick_update(rq); 5308 } 5309 5310 #ifdef CONFIG_SMP 5311 5312 /* Working cpumask for: load_balance, load_balance_newidle. */ 5313 DEFINE_PER_CPU(cpumask_var_t, load_balance_mask); 5314 DEFINE_PER_CPU(cpumask_var_t, select_idle_mask); 5315 5316 #ifdef CONFIG_NO_HZ_COMMON 5317 /* 5318 * per rq 'load' arrray crap; XXX kill this. 5319 */ 5320 5321 /* 5322 * The exact cpuload calculated at every tick would be: 5323 * 5324 * load' = (1 - 1/2^i) * load + (1/2^i) * cur_load 5325 * 5326 * If a cpu misses updates for n ticks (as it was idle) and update gets 5327 * called on the n+1-th tick when cpu may be busy, then we have: 5328 * 5329 * load_n = (1 - 1/2^i)^n * load_0 5330 * load_n+1 = (1 - 1/2^i) * load_n + (1/2^i) * cur_load 5331 * 5332 * decay_load_missed() below does efficient calculation of 5333 * 5334 * load' = (1 - 1/2^i)^n * load 5335 * 5336 * Because x^(n+m) := x^n * x^m we can decompose any x^n in power-of-2 factors. 5337 * This allows us to precompute the above in said factors, thereby allowing the 5338 * reduction of an arbitrary n in O(log_2 n) steps. (See also 5339 * fixed_power_int()) 5340 * 5341 * The calculation is approximated on a 128 point scale. 5342 */ 5343 #define DEGRADE_SHIFT 7 5344 5345 static const u8 degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128}; 5346 static const u8 degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = { 5347 { 0, 0, 0, 0, 0, 0, 0, 0 }, 5348 { 64, 32, 8, 0, 0, 0, 0, 0 }, 5349 { 96, 72, 40, 12, 1, 0, 0, 0 }, 5350 { 112, 98, 75, 43, 15, 1, 0, 0 }, 5351 { 120, 112, 98, 76, 45, 16, 2, 0 } 5352 }; 5353 5354 /* 5355 * Update cpu_load for any missed ticks, due to tickless idle. The backlog 5356 * would be when CPU is idle and so we just decay the old load without 5357 * adding any new load. 5358 */ 5359 static unsigned long 5360 decay_load_missed(unsigned long load, unsigned long missed_updates, int idx) 5361 { 5362 int j = 0; 5363 5364 if (!missed_updates) 5365 return load; 5366 5367 if (missed_updates >= degrade_zero_ticks[idx]) 5368 return 0; 5369 5370 if (idx == 1) 5371 return load >> missed_updates; 5372 5373 while (missed_updates) { 5374 if (missed_updates % 2) 5375 load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT; 5376 5377 missed_updates >>= 1; 5378 j++; 5379 } 5380 return load; 5381 } 5382 #endif /* CONFIG_NO_HZ_COMMON */ 5383 5384 /** 5385 * __cpu_load_update - update the rq->cpu_load[] statistics 5386 * @this_rq: The rq to update statistics for 5387 * @this_load: The current load 5388 * @pending_updates: The number of missed updates 5389 * 5390 * Update rq->cpu_load[] statistics. This function is usually called every 5391 * scheduler tick (TICK_NSEC). 5392 * 5393 * This function computes a decaying average: 5394 * 5395 * load[i]' = (1 - 1/2^i) * load[i] + (1/2^i) * load 5396 * 5397 * Because of NOHZ it might not get called on every tick which gives need for 5398 * the @pending_updates argument. 5399 * 5400 * load[i]_n = (1 - 1/2^i) * load[i]_n-1 + (1/2^i) * load_n-1 5401 * = A * load[i]_n-1 + B ; A := (1 - 1/2^i), B := (1/2^i) * load 5402 * = A * (A * load[i]_n-2 + B) + B 5403 * = A * (A * (A * load[i]_n-3 + B) + B) + B 5404 * = A^3 * load[i]_n-3 + (A^2 + A + 1) * B 5405 * = A^n * load[i]_0 + (A^(n-1) + A^(n-2) + ... + 1) * B 5406 * = A^n * load[i]_0 + ((1 - A^n) / (1 - A)) * B 5407 * = (1 - 1/2^i)^n * (load[i]_0 - load) + load 5408 * 5409 * In the above we've assumed load_n := load, which is true for NOHZ_FULL as 5410 * any change in load would have resulted in the tick being turned back on. 5411 * 5412 * For regular NOHZ, this reduces to: 5413 * 5414 * load[i]_n = (1 - 1/2^i)^n * load[i]_0 5415 * 5416 * see decay_load_misses(). For NOHZ_FULL we get to subtract and add the extra 5417 * term. 5418 */ 5419 static void cpu_load_update(struct rq *this_rq, unsigned long this_load, 5420 unsigned long pending_updates) 5421 { 5422 unsigned long __maybe_unused tickless_load = this_rq->cpu_load[0]; 5423 int i, scale; 5424 5425 this_rq->nr_load_updates++; 5426 5427 /* Update our load: */ 5428 this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */ 5429 for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) { 5430 unsigned long old_load, new_load; 5431 5432 /* scale is effectively 1 << i now, and >> i divides by scale */ 5433 5434 old_load = this_rq->cpu_load[i]; 5435 #ifdef CONFIG_NO_HZ_COMMON 5436 old_load = decay_load_missed(old_load, pending_updates - 1, i); 5437 if (tickless_load) { 5438 old_load -= decay_load_missed(tickless_load, pending_updates - 1, i); 5439 /* 5440 * old_load can never be a negative value because a 5441 * decayed tickless_load cannot be greater than the 5442 * original tickless_load. 5443 */ 5444 old_load += tickless_load; 5445 } 5446 #endif 5447 new_load = this_load; 5448 /* 5449 * Round up the averaging division if load is increasing. This 5450 * prevents us from getting stuck on 9 if the load is 10, for 5451 * example. 5452 */ 5453 if (new_load > old_load) 5454 new_load += scale - 1; 5455 5456 this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i; 5457 } 5458 5459 sched_avg_update(this_rq); 5460 } 5461 5462 /* Used instead of source_load when we know the type == 0 */ 5463 static unsigned long weighted_cpuload(struct rq *rq) 5464 { 5465 return cfs_rq_runnable_load_avg(&rq->cfs); 5466 } 5467 5468 #ifdef CONFIG_NO_HZ_COMMON 5469 /* 5470 * There is no sane way to deal with nohz on smp when using jiffies because the 5471 * cpu doing the jiffies update might drift wrt the cpu doing the jiffy reading 5472 * causing off-by-one errors in observed deltas; {0,2} instead of {1,1}. 5473 * 5474 * Therefore we need to avoid the delta approach from the regular tick when 5475 * possible since that would seriously skew the load calculation. This is why we 5476 * use cpu_load_update_periodic() for CPUs out of nohz. However we'll rely on 5477 * jiffies deltas for updates happening while in nohz mode (idle ticks, idle 5478 * loop exit, nohz_idle_balance, nohz full exit...) 5479 * 5480 * This means we might still be one tick off for nohz periods. 5481 */ 5482 5483 static void cpu_load_update_nohz(struct rq *this_rq, 5484 unsigned long curr_jiffies, 5485 unsigned long load) 5486 { 5487 unsigned long pending_updates; 5488 5489 pending_updates = curr_jiffies - this_rq->last_load_update_tick; 5490 if (pending_updates) { 5491 this_rq->last_load_update_tick = curr_jiffies; 5492 /* 5493 * In the regular NOHZ case, we were idle, this means load 0. 5494 * In the NOHZ_FULL case, we were non-idle, we should consider 5495 * its weighted load. 5496 */ 5497 cpu_load_update(this_rq, load, pending_updates); 5498 } 5499 } 5500 5501 /* 5502 * Called from nohz_idle_balance() to update the load ratings before doing the 5503 * idle balance. 5504 */ 5505 static void cpu_load_update_idle(struct rq *this_rq) 5506 { 5507 /* 5508 * bail if there's load or we're actually up-to-date. 5509 */ 5510 if (weighted_cpuload(this_rq)) 5511 return; 5512 5513 cpu_load_update_nohz(this_rq, READ_ONCE(jiffies), 0); 5514 } 5515 5516 /* 5517 * Record CPU load on nohz entry so we know the tickless load to account 5518 * on nohz exit. cpu_load[0] happens then to be updated more frequently 5519 * than other cpu_load[idx] but it should be fine as cpu_load readers 5520 * shouldn't rely into synchronized cpu_load[*] updates. 5521 */ 5522 void cpu_load_update_nohz_start(void) 5523 { 5524 struct rq *this_rq = this_rq(); 5525 5526 /* 5527 * This is all lockless but should be fine. If weighted_cpuload changes 5528 * concurrently we'll exit nohz. And cpu_load write can race with 5529 * cpu_load_update_idle() but both updater would be writing the same. 5530 */ 5531 this_rq->cpu_load[0] = weighted_cpuload(this_rq); 5532 } 5533 5534 /* 5535 * Account the tickless load in the end of a nohz frame. 5536 */ 5537 void cpu_load_update_nohz_stop(void) 5538 { 5539 unsigned long curr_jiffies = READ_ONCE(jiffies); 5540 struct rq *this_rq = this_rq(); 5541 unsigned long load; 5542 struct rq_flags rf; 5543 5544 if (curr_jiffies == this_rq->last_load_update_tick) 5545 return; 5546 5547 load = weighted_cpuload(this_rq); 5548 rq_lock(this_rq, &rf); 5549 update_rq_clock(this_rq); 5550 cpu_load_update_nohz(this_rq, curr_jiffies, load); 5551 rq_unlock(this_rq, &rf); 5552 } 5553 #else /* !CONFIG_NO_HZ_COMMON */ 5554 static inline void cpu_load_update_nohz(struct rq *this_rq, 5555 unsigned long curr_jiffies, 5556 unsigned long load) { } 5557 #endif /* CONFIG_NO_HZ_COMMON */ 5558 5559 static void cpu_load_update_periodic(struct rq *this_rq, unsigned long load) 5560 { 5561 #ifdef CONFIG_NO_HZ_COMMON 5562 /* See the mess around cpu_load_update_nohz(). */ 5563 this_rq->last_load_update_tick = READ_ONCE(jiffies); 5564 #endif 5565 cpu_load_update(this_rq, load, 1); 5566 } 5567 5568 /* 5569 * Called from scheduler_tick() 5570 */ 5571 void cpu_load_update_active(struct rq *this_rq) 5572 { 5573 unsigned long load = weighted_cpuload(this_rq); 5574 5575 if (tick_nohz_tick_stopped()) 5576 cpu_load_update_nohz(this_rq, READ_ONCE(jiffies), load); 5577 else 5578 cpu_load_update_periodic(this_rq, load); 5579 } 5580 5581 /* 5582 * Return a low guess at the load of a migration-source cpu weighted 5583 * according to the scheduling class and "nice" value. 5584 * 5585 * We want to under-estimate the load of migration sources, to 5586 * balance conservatively. 5587 */ 5588 static unsigned long source_load(int cpu, int type) 5589 { 5590 struct rq *rq = cpu_rq(cpu); 5591 unsigned long total = weighted_cpuload(rq); 5592 5593 if (type == 0 || !sched_feat(LB_BIAS)) 5594 return total; 5595 5596 return min(rq->cpu_load[type-1], total); 5597 } 5598 5599 /* 5600 * Return a high guess at the load of a migration-target cpu weighted 5601 * according to the scheduling class and "nice" value. 5602 */ 5603 static unsigned long target_load(int cpu, int type) 5604 { 5605 struct rq *rq = cpu_rq(cpu); 5606 unsigned long total = weighted_cpuload(rq); 5607 5608 if (type == 0 || !sched_feat(LB_BIAS)) 5609 return total; 5610 5611 return max(rq->cpu_load[type-1], total); 5612 } 5613 5614 static unsigned long capacity_of(int cpu) 5615 { 5616 return cpu_rq(cpu)->cpu_capacity; 5617 } 5618 5619 static unsigned long capacity_orig_of(int cpu) 5620 { 5621 return cpu_rq(cpu)->cpu_capacity_orig; 5622 } 5623 5624 static unsigned long cpu_avg_load_per_task(int cpu) 5625 { 5626 struct rq *rq = cpu_rq(cpu); 5627 unsigned long nr_running = READ_ONCE(rq->cfs.h_nr_running); 5628 unsigned long load_avg = weighted_cpuload(rq); 5629 5630 if (nr_running) 5631 return load_avg / nr_running; 5632 5633 return 0; 5634 } 5635 5636 static void record_wakee(struct task_struct *p) 5637 { 5638 /* 5639 * Only decay a single time; tasks that have less then 1 wakeup per 5640 * jiffy will not have built up many flips. 5641 */ 5642 if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) { 5643 current->wakee_flips >>= 1; 5644 current->wakee_flip_decay_ts = jiffies; 5645 } 5646 5647 if (current->last_wakee != p) { 5648 current->last_wakee = p; 5649 current->wakee_flips++; 5650 } 5651 } 5652 5653 /* 5654 * Detect M:N waker/wakee relationships via a switching-frequency heuristic. 5655 * 5656 * A waker of many should wake a different task than the one last awakened 5657 * at a frequency roughly N times higher than one of its wakees. 5658 * 5659 * In order to determine whether we should let the load spread vs consolidating 5660 * to shared cache, we look for a minimum 'flip' frequency of llc_size in one 5661 * partner, and a factor of lls_size higher frequency in the other. 5662 * 5663 * With both conditions met, we can be relatively sure that the relationship is 5664 * non-monogamous, with partner count exceeding socket size. 5665 * 5666 * Waker/wakee being client/server, worker/dispatcher, interrupt source or 5667 * whatever is irrelevant, spread criteria is apparent partner count exceeds 5668 * socket size. 5669 */ 5670 static int wake_wide(struct task_struct *p) 5671 { 5672 unsigned int master = current->wakee_flips; 5673 unsigned int slave = p->wakee_flips; 5674 int factor = this_cpu_read(sd_llc_size); 5675 5676 if (master < slave) 5677 swap(master, slave); 5678 if (slave < factor || master < slave * factor) 5679 return 0; 5680 return 1; 5681 } 5682 5683 /* 5684 * The purpose of wake_affine() is to quickly determine on which CPU we can run 5685 * soonest. For the purpose of speed we only consider the waking and previous 5686 * CPU. 5687 * 5688 * wake_affine_idle() - only considers 'now', it check if the waking CPU is 5689 * cache-affine and is (or will be) idle. 5690 * 5691 * wake_affine_weight() - considers the weight to reflect the average 5692 * scheduling latency of the CPUs. This seems to work 5693 * for the overloaded case. 5694 */ 5695 static int 5696 wake_affine_idle(int this_cpu, int prev_cpu, int sync) 5697 { 5698 /* 5699 * If this_cpu is idle, it implies the wakeup is from interrupt 5700 * context. Only allow the move if cache is shared. Otherwise an 5701 * interrupt intensive workload could force all tasks onto one 5702 * node depending on the IO topology or IRQ affinity settings. 5703 * 5704 * If the prev_cpu is idle and cache affine then avoid a migration. 5705 * There is no guarantee that the cache hot data from an interrupt 5706 * is more important than cache hot data on the prev_cpu and from 5707 * a cpufreq perspective, it's better to have higher utilisation 5708 * on one CPU. 5709 */ 5710 if (idle_cpu(this_cpu) && cpus_share_cache(this_cpu, prev_cpu)) 5711 return idle_cpu(prev_cpu) ? prev_cpu : this_cpu; 5712 5713 if (sync && cpu_rq(this_cpu)->nr_running == 1) 5714 return this_cpu; 5715 5716 return nr_cpumask_bits; 5717 } 5718 5719 static int 5720 wake_affine_weight(struct sched_domain *sd, struct task_struct *p, 5721 int this_cpu, int prev_cpu, int sync) 5722 { 5723 s64 this_eff_load, prev_eff_load; 5724 unsigned long task_load; 5725 5726 this_eff_load = target_load(this_cpu, sd->wake_idx); 5727 prev_eff_load = source_load(prev_cpu, sd->wake_idx); 5728 5729 if (sync) { 5730 unsigned long current_load = task_h_load(current); 5731 5732 if (current_load > this_eff_load) 5733 return this_cpu; 5734 5735 this_eff_load -= current_load; 5736 } 5737 5738 task_load = task_h_load(p); 5739 5740 this_eff_load += task_load; 5741 if (sched_feat(WA_BIAS)) 5742 this_eff_load *= 100; 5743 this_eff_load *= capacity_of(prev_cpu); 5744 5745 prev_eff_load -= task_load; 5746 if (sched_feat(WA_BIAS)) 5747 prev_eff_load *= 100 + (sd->imbalance_pct - 100) / 2; 5748 prev_eff_load *= capacity_of(this_cpu); 5749 5750 return this_eff_load <= prev_eff_load ? this_cpu : nr_cpumask_bits; 5751 } 5752 5753 static int wake_affine(struct sched_domain *sd, struct task_struct *p, 5754 int prev_cpu, int sync) 5755 { 5756 int this_cpu = smp_processor_id(); 5757 int target = nr_cpumask_bits; 5758 5759 if (sched_feat(WA_IDLE)) 5760 target = wake_affine_idle(this_cpu, prev_cpu, sync); 5761 5762 if (sched_feat(WA_WEIGHT) && target == nr_cpumask_bits) 5763 target = wake_affine_weight(sd, p, this_cpu, prev_cpu, sync); 5764 5765 schedstat_inc(p->se.statistics.nr_wakeups_affine_attempts); 5766 if (target == nr_cpumask_bits) 5767 return prev_cpu; 5768 5769 schedstat_inc(sd->ttwu_move_affine); 5770 schedstat_inc(p->se.statistics.nr_wakeups_affine); 5771 return target; 5772 } 5773 5774 static inline unsigned long task_util(struct task_struct *p); 5775 static unsigned long cpu_util_wake(int cpu, struct task_struct *p); 5776 5777 static unsigned long capacity_spare_wake(int cpu, struct task_struct *p) 5778 { 5779 return max_t(long, capacity_of(cpu) - cpu_util_wake(cpu, p), 0); 5780 } 5781 5782 /* 5783 * find_idlest_group finds and returns the least busy CPU group within the 5784 * domain. 5785 * 5786 * Assumes p is allowed on at least one CPU in sd. 5787 */ 5788 static struct sched_group * 5789 find_idlest_group(struct sched_domain *sd, struct task_struct *p, 5790 int this_cpu, int sd_flag) 5791 { 5792 struct sched_group *idlest = NULL, *group = sd->groups; 5793 struct sched_group *most_spare_sg = NULL; 5794 unsigned long min_runnable_load = ULONG_MAX; 5795 unsigned long this_runnable_load = ULONG_MAX; 5796 unsigned long min_avg_load = ULONG_MAX, this_avg_load = ULONG_MAX; 5797 unsigned long most_spare = 0, this_spare = 0; 5798 int load_idx = sd->forkexec_idx; 5799 int imbalance_scale = 100 + (sd->imbalance_pct-100)/2; 5800 unsigned long imbalance = scale_load_down(NICE_0_LOAD) * 5801 (sd->imbalance_pct-100) / 100; 5802 5803 if (sd_flag & SD_BALANCE_WAKE) 5804 load_idx = sd->wake_idx; 5805 5806 do { 5807 unsigned long load, avg_load, runnable_load; 5808 unsigned long spare_cap, max_spare_cap; 5809 int local_group; 5810 int i; 5811 5812 /* Skip over this group if it has no CPUs allowed */ 5813 if (!cpumask_intersects(sched_group_span(group), 5814 &p->cpus_allowed)) 5815 continue; 5816 5817 local_group = cpumask_test_cpu(this_cpu, 5818 sched_group_span(group)); 5819 5820 /* 5821 * Tally up the load of all CPUs in the group and find 5822 * the group containing the CPU with most spare capacity. 5823 */ 5824 avg_load = 0; 5825 runnable_load = 0; 5826 max_spare_cap = 0; 5827 5828 for_each_cpu(i, sched_group_span(group)) { 5829 /* Bias balancing toward cpus of our domain */ 5830 if (local_group) 5831 load = source_load(i, load_idx); 5832 else 5833 load = target_load(i, load_idx); 5834 5835 runnable_load += load; 5836 5837 avg_load += cfs_rq_load_avg(&cpu_rq(i)->cfs); 5838 5839 spare_cap = capacity_spare_wake(i, p); 5840 5841 if (spare_cap > max_spare_cap) 5842 max_spare_cap = spare_cap; 5843 } 5844 5845 /* Adjust by relative CPU capacity of the group */ 5846 avg_load = (avg_load * SCHED_CAPACITY_SCALE) / 5847 group->sgc->capacity; 5848 runnable_load = (runnable_load * SCHED_CAPACITY_SCALE) / 5849 group->sgc->capacity; 5850 5851 if (local_group) { 5852 this_runnable_load = runnable_load; 5853 this_avg_load = avg_load; 5854 this_spare = max_spare_cap; 5855 } else { 5856 if (min_runnable_load > (runnable_load + imbalance)) { 5857 /* 5858 * The runnable load is significantly smaller 5859 * so we can pick this new cpu 5860 */ 5861 min_runnable_load = runnable_load; 5862 min_avg_load = avg_load; 5863 idlest = group; 5864 } else if ((runnable_load < (min_runnable_load + imbalance)) && 5865 (100*min_avg_load > imbalance_scale*avg_load)) { 5866 /* 5867 * The runnable loads are close so take the 5868 * blocked load into account through avg_load. 5869 */ 5870 min_avg_load = avg_load; 5871 idlest = group; 5872 } 5873 5874 if (most_spare < max_spare_cap) { 5875 most_spare = max_spare_cap; 5876 most_spare_sg = group; 5877 } 5878 } 5879 } while (group = group->next, group != sd->groups); 5880 5881 /* 5882 * The cross-over point between using spare capacity or least load 5883 * is too conservative for high utilization tasks on partially 5884 * utilized systems if we require spare_capacity > task_util(p), 5885 * so we allow for some task stuffing by using 5886 * spare_capacity > task_util(p)/2. 5887 * 5888 * Spare capacity can't be used for fork because the utilization has 5889 * not been set yet, we must first select a rq to compute the initial 5890 * utilization. 5891 */ 5892 if (sd_flag & SD_BALANCE_FORK) 5893 goto skip_spare; 5894 5895 if (this_spare > task_util(p) / 2 && 5896 imbalance_scale*this_spare > 100*most_spare) 5897 return NULL; 5898 5899 if (most_spare > task_util(p) / 2) 5900 return most_spare_sg; 5901 5902 skip_spare: 5903 if (!idlest) 5904 return NULL; 5905 5906 if (min_runnable_load > (this_runnable_load + imbalance)) 5907 return NULL; 5908 5909 if ((this_runnable_load < (min_runnable_load + imbalance)) && 5910 (100*this_avg_load < imbalance_scale*min_avg_load)) 5911 return NULL; 5912 5913 return idlest; 5914 } 5915 5916 /* 5917 * find_idlest_group_cpu - find the idlest cpu among the cpus in group. 5918 */ 5919 static int 5920 find_idlest_group_cpu(struct sched_group *group, struct task_struct *p, int this_cpu) 5921 { 5922 unsigned long load, min_load = ULONG_MAX; 5923 unsigned int min_exit_latency = UINT_MAX; 5924 u64 latest_idle_timestamp = 0; 5925 int least_loaded_cpu = this_cpu; 5926 int shallowest_idle_cpu = -1; 5927 int i; 5928 5929 /* Check if we have any choice: */ 5930 if (group->group_weight == 1) 5931 return cpumask_first(sched_group_span(group)); 5932 5933 /* Traverse only the allowed CPUs */ 5934 for_each_cpu_and(i, sched_group_span(group), &p->cpus_allowed) { 5935 if (idle_cpu(i)) { 5936 struct rq *rq = cpu_rq(i); 5937 struct cpuidle_state *idle = idle_get_state(rq); 5938 if (idle && idle->exit_latency < min_exit_latency) { 5939 /* 5940 * We give priority to a CPU whose idle state 5941 * has the smallest exit latency irrespective 5942 * of any idle timestamp. 5943 */ 5944 min_exit_latency = idle->exit_latency; 5945 latest_idle_timestamp = rq->idle_stamp; 5946 shallowest_idle_cpu = i; 5947 } else if ((!idle || idle->exit_latency == min_exit_latency) && 5948 rq->idle_stamp > latest_idle_timestamp) { 5949 /* 5950 * If equal or no active idle state, then 5951 * the most recently idled CPU might have 5952 * a warmer cache. 5953 */ 5954 latest_idle_timestamp = rq->idle_stamp; 5955 shallowest_idle_cpu = i; 5956 } 5957 } else if (shallowest_idle_cpu == -1) { 5958 load = weighted_cpuload(cpu_rq(i)); 5959 if (load < min_load) { 5960 min_load = load; 5961 least_loaded_cpu = i; 5962 } 5963 } 5964 } 5965 5966 return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu; 5967 } 5968 5969 static inline int find_idlest_cpu(struct sched_domain *sd, struct task_struct *p, 5970 int cpu, int prev_cpu, int sd_flag) 5971 { 5972 int new_cpu = cpu; 5973 5974 if (!cpumask_intersects(sched_domain_span(sd), &p->cpus_allowed)) 5975 return prev_cpu; 5976 5977 while (sd) { 5978 struct sched_group *group; 5979 struct sched_domain *tmp; 5980 int weight; 5981 5982 if (!(sd->flags & sd_flag)) { 5983 sd = sd->child; 5984 continue; 5985 } 5986 5987 group = find_idlest_group(sd, p, cpu, sd_flag); 5988 if (!group) { 5989 sd = sd->child; 5990 continue; 5991 } 5992 5993 new_cpu = find_idlest_group_cpu(group, p, cpu); 5994 if (new_cpu == cpu) { 5995 /* Now try balancing at a lower domain level of cpu */ 5996 sd = sd->child; 5997 continue; 5998 } 5999 6000 /* Now try balancing at a lower domain level of new_cpu */ 6001 cpu = new_cpu; 6002 weight = sd->span_weight; 6003 sd = NULL; 6004 for_each_domain(cpu, tmp) { 6005 if (weight <= tmp->span_weight) 6006 break; 6007 if (tmp->flags & sd_flag) 6008 sd = tmp; 6009 } 6010 /* while loop will break here if sd == NULL */ 6011 } 6012 6013 return new_cpu; 6014 } 6015 6016 #ifdef CONFIG_SCHED_SMT 6017 6018 static inline void set_idle_cores(int cpu, int val) 6019 { 6020 struct sched_domain_shared *sds; 6021 6022 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu)); 6023 if (sds) 6024 WRITE_ONCE(sds->has_idle_cores, val); 6025 } 6026 6027 static inline bool test_idle_cores(int cpu, bool def) 6028 { 6029 struct sched_domain_shared *sds; 6030 6031 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu)); 6032 if (sds) 6033 return READ_ONCE(sds->has_idle_cores); 6034 6035 return def; 6036 } 6037 6038 /* 6039 * Scans the local SMT mask to see if the entire core is idle, and records this 6040 * information in sd_llc_shared->has_idle_cores. 6041 * 6042 * Since SMT siblings share all cache levels, inspecting this limited remote 6043 * state should be fairly cheap. 6044 */ 6045 void __update_idle_core(struct rq *rq) 6046 { 6047 int core = cpu_of(rq); 6048 int cpu; 6049 6050 rcu_read_lock(); 6051 if (test_idle_cores(core, true)) 6052 goto unlock; 6053 6054 for_each_cpu(cpu, cpu_smt_mask(core)) { 6055 if (cpu == core) 6056 continue; 6057 6058 if (!idle_cpu(cpu)) 6059 goto unlock; 6060 } 6061 6062 set_idle_cores(core, 1); 6063 unlock: 6064 rcu_read_unlock(); 6065 } 6066 6067 /* 6068 * Scan the entire LLC domain for idle cores; this dynamically switches off if 6069 * there are no idle cores left in the system; tracked through 6070 * sd_llc->shared->has_idle_cores and enabled through update_idle_core() above. 6071 */ 6072 static int select_idle_core(struct task_struct *p, struct sched_domain *sd, int target) 6073 { 6074 struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_idle_mask); 6075 int core, cpu; 6076 6077 if (!static_branch_likely(&sched_smt_present)) 6078 return -1; 6079 6080 if (!test_idle_cores(target, false)) 6081 return -1; 6082 6083 cpumask_and(cpus, sched_domain_span(sd), &p->cpus_allowed); 6084 6085 for_each_cpu_wrap(core, cpus, target) { 6086 bool idle = true; 6087 6088 for_each_cpu(cpu, cpu_smt_mask(core)) { 6089 cpumask_clear_cpu(cpu, cpus); 6090 if (!idle_cpu(cpu)) 6091 idle = false; 6092 } 6093 6094 if (idle) 6095 return core; 6096 } 6097 6098 /* 6099 * Failed to find an idle core; stop looking for one. 6100 */ 6101 set_idle_cores(target, 0); 6102 6103 return -1; 6104 } 6105 6106 /* 6107 * Scan the local SMT mask for idle CPUs. 6108 */ 6109 static int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target) 6110 { 6111 int cpu; 6112 6113 if (!static_branch_likely(&sched_smt_present)) 6114 return -1; 6115 6116 for_each_cpu(cpu, cpu_smt_mask(target)) { 6117 if (!cpumask_test_cpu(cpu, &p->cpus_allowed)) 6118 continue; 6119 if (idle_cpu(cpu)) 6120 return cpu; 6121 } 6122 6123 return -1; 6124 } 6125 6126 #else /* CONFIG_SCHED_SMT */ 6127 6128 static inline int select_idle_core(struct task_struct *p, struct sched_domain *sd, int target) 6129 { 6130 return -1; 6131 } 6132 6133 static inline int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target) 6134 { 6135 return -1; 6136 } 6137 6138 #endif /* CONFIG_SCHED_SMT */ 6139 6140 /* 6141 * Scan the LLC domain for idle CPUs; this is dynamically regulated by 6142 * comparing the average scan cost (tracked in sd->avg_scan_cost) against the 6143 * average idle time for this rq (as found in rq->avg_idle). 6144 */ 6145 static int select_idle_cpu(struct task_struct *p, struct sched_domain *sd, int target) 6146 { 6147 struct sched_domain *this_sd; 6148 u64 avg_cost, avg_idle; 6149 u64 time, cost; 6150 s64 delta; 6151 int cpu, nr = INT_MAX; 6152 6153 this_sd = rcu_dereference(*this_cpu_ptr(&sd_llc)); 6154 if (!this_sd) 6155 return -1; 6156 6157 /* 6158 * Due to large variance we need a large fuzz factor; hackbench in 6159 * particularly is sensitive here. 6160 */ 6161 avg_idle = this_rq()->avg_idle / 512; 6162 avg_cost = this_sd->avg_scan_cost + 1; 6163 6164 if (sched_feat(SIS_AVG_CPU) && avg_idle < avg_cost) 6165 return -1; 6166 6167 if (sched_feat(SIS_PROP)) { 6168 u64 span_avg = sd->span_weight * avg_idle; 6169 if (span_avg > 4*avg_cost) 6170 nr = div_u64(span_avg, avg_cost); 6171 else 6172 nr = 4; 6173 } 6174 6175 time = local_clock(); 6176 6177 for_each_cpu_wrap(cpu, sched_domain_span(sd), target) { 6178 if (!--nr) 6179 return -1; 6180 if (!cpumask_test_cpu(cpu, &p->cpus_allowed)) 6181 continue; 6182 if (idle_cpu(cpu)) 6183 break; 6184 } 6185 6186 time = local_clock() - time; 6187 cost = this_sd->avg_scan_cost; 6188 delta = (s64)(time - cost) / 8; 6189 this_sd->avg_scan_cost += delta; 6190 6191 return cpu; 6192 } 6193 6194 /* 6195 * Try and locate an idle core/thread in the LLC cache domain. 6196 */ 6197 static int select_idle_sibling(struct task_struct *p, int prev, int target) 6198 { 6199 struct sched_domain *sd; 6200 int i, recent_used_cpu; 6201 6202 if (idle_cpu(target)) 6203 return target; 6204 6205 /* 6206 * If the previous cpu is cache affine and idle, don't be stupid. 6207 */ 6208 if (prev != target && cpus_share_cache(prev, target) && idle_cpu(prev)) 6209 return prev; 6210 6211 /* Check a recently used CPU as a potential idle candidate */ 6212 recent_used_cpu = p->recent_used_cpu; 6213 if (recent_used_cpu != prev && 6214 recent_used_cpu != target && 6215 cpus_share_cache(recent_used_cpu, target) && 6216 idle_cpu(recent_used_cpu) && 6217 cpumask_test_cpu(p->recent_used_cpu, &p->cpus_allowed)) { 6218 /* 6219 * Replace recent_used_cpu with prev as it is a potential 6220 * candidate for the next wake. 6221 */ 6222 p->recent_used_cpu = prev; 6223 return recent_used_cpu; 6224 } 6225 6226 sd = rcu_dereference(per_cpu(sd_llc, target)); 6227 if (!sd) 6228 return target; 6229 6230 i = select_idle_core(p, sd, target); 6231 if ((unsigned)i < nr_cpumask_bits) 6232 return i; 6233 6234 i = select_idle_cpu(p, sd, target); 6235 if ((unsigned)i < nr_cpumask_bits) 6236 return i; 6237 6238 i = select_idle_smt(p, sd, target); 6239 if ((unsigned)i < nr_cpumask_bits) 6240 return i; 6241 6242 return target; 6243 } 6244 6245 /* 6246 * cpu_util returns the amount of capacity of a CPU that is used by CFS 6247 * tasks. The unit of the return value must be the one of capacity so we can 6248 * compare the utilization with the capacity of the CPU that is available for 6249 * CFS task (ie cpu_capacity). 6250 * 6251 * cfs_rq.avg.util_avg is the sum of running time of runnable tasks plus the 6252 * recent utilization of currently non-runnable tasks on a CPU. It represents 6253 * the amount of utilization of a CPU in the range [0..capacity_orig] where 6254 * capacity_orig is the cpu_capacity available at the highest frequency 6255 * (arch_scale_freq_capacity()). 6256 * The utilization of a CPU converges towards a sum equal to or less than the 6257 * current capacity (capacity_curr <= capacity_orig) of the CPU because it is 6258 * the running time on this CPU scaled by capacity_curr. 6259 * 6260 * Nevertheless, cfs_rq.avg.util_avg can be higher than capacity_curr or even 6261 * higher than capacity_orig because of unfortunate rounding in 6262 * cfs.avg.util_avg or just after migrating tasks and new task wakeups until 6263 * the average stabilizes with the new running time. We need to check that the 6264 * utilization stays within the range of [0..capacity_orig] and cap it if 6265 * necessary. Without utilization capping, a group could be seen as overloaded 6266 * (CPU0 utilization at 121% + CPU1 utilization at 80%) whereas CPU1 has 20% of 6267 * available capacity. We allow utilization to overshoot capacity_curr (but not 6268 * capacity_orig) as it useful for predicting the capacity required after task 6269 * migrations (scheduler-driven DVFS). 6270 */ 6271 static unsigned long cpu_util(int cpu) 6272 { 6273 unsigned long util = cpu_rq(cpu)->cfs.avg.util_avg; 6274 unsigned long capacity = capacity_orig_of(cpu); 6275 6276 return (util >= capacity) ? capacity : util; 6277 } 6278 6279 static inline unsigned long task_util(struct task_struct *p) 6280 { 6281 return p->se.avg.util_avg; 6282 } 6283 6284 /* 6285 * cpu_util_wake: Compute cpu utilization with any contributions from 6286 * the waking task p removed. 6287 */ 6288 static unsigned long cpu_util_wake(int cpu, struct task_struct *p) 6289 { 6290 unsigned long util, capacity; 6291 6292 /* Task has no contribution or is new */ 6293 if (cpu != task_cpu(p) || !p->se.avg.last_update_time) 6294 return cpu_util(cpu); 6295 6296 capacity = capacity_orig_of(cpu); 6297 util = max_t(long, cpu_rq(cpu)->cfs.avg.util_avg - task_util(p), 0); 6298 6299 return (util >= capacity) ? capacity : util; 6300 } 6301 6302 /* 6303 * Disable WAKE_AFFINE in the case where task @p doesn't fit in the 6304 * capacity of either the waking CPU @cpu or the previous CPU @prev_cpu. 6305 * 6306 * In that case WAKE_AFFINE doesn't make sense and we'll let 6307 * BALANCE_WAKE sort things out. 6308 */ 6309 static int wake_cap(struct task_struct *p, int cpu, int prev_cpu) 6310 { 6311 long min_cap, max_cap; 6312 6313 min_cap = min(capacity_orig_of(prev_cpu), capacity_orig_of(cpu)); 6314 max_cap = cpu_rq(cpu)->rd->max_cpu_capacity; 6315 6316 /* Minimum capacity is close to max, no need to abort wake_affine */ 6317 if (max_cap - min_cap < max_cap >> 3) 6318 return 0; 6319 6320 /* Bring task utilization in sync with prev_cpu */ 6321 sync_entity_load_avg(&p->se); 6322 6323 return min_cap * 1024 < task_util(p) * capacity_margin; 6324 } 6325 6326 /* 6327 * select_task_rq_fair: Select target runqueue for the waking task in domains 6328 * that have the 'sd_flag' flag set. In practice, this is SD_BALANCE_WAKE, 6329 * SD_BALANCE_FORK, or SD_BALANCE_EXEC. 6330 * 6331 * Balances load by selecting the idlest cpu in the idlest group, or under 6332 * certain conditions an idle sibling cpu if the domain has SD_WAKE_AFFINE set. 6333 * 6334 * Returns the target cpu number. 6335 * 6336 * preempt must be disabled. 6337 */ 6338 static int 6339 select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_flags) 6340 { 6341 struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL; 6342 int cpu = smp_processor_id(); 6343 int new_cpu = prev_cpu; 6344 int want_affine = 0; 6345 int sync = wake_flags & WF_SYNC; 6346 6347 if (sd_flag & SD_BALANCE_WAKE) { 6348 record_wakee(p); 6349 want_affine = !wake_wide(p) && !wake_cap(p, cpu, prev_cpu) 6350 && cpumask_test_cpu(cpu, &p->cpus_allowed); 6351 } 6352 6353 rcu_read_lock(); 6354 for_each_domain(cpu, tmp) { 6355 if (!(tmp->flags & SD_LOAD_BALANCE)) 6356 break; 6357 6358 /* 6359 * If both cpu and prev_cpu are part of this domain, 6360 * cpu is a valid SD_WAKE_AFFINE target. 6361 */ 6362 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) && 6363 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) { 6364 affine_sd = tmp; 6365 break; 6366 } 6367 6368 if (tmp->flags & sd_flag) 6369 sd = tmp; 6370 else if (!want_affine) 6371 break; 6372 } 6373 6374 if (affine_sd) { 6375 sd = NULL; /* Prefer wake_affine over balance flags */ 6376 if (cpu == prev_cpu) 6377 goto pick_cpu; 6378 6379 new_cpu = wake_affine(affine_sd, p, prev_cpu, sync); 6380 } 6381 6382 if (sd && !(sd_flag & SD_BALANCE_FORK)) { 6383 /* 6384 * We're going to need the task's util for capacity_spare_wake 6385 * in find_idlest_group. Sync it up to prev_cpu's 6386 * last_update_time. 6387 */ 6388 sync_entity_load_avg(&p->se); 6389 } 6390 6391 if (!sd) { 6392 pick_cpu: 6393 if (sd_flag & SD_BALANCE_WAKE) { /* XXX always ? */ 6394 new_cpu = select_idle_sibling(p, prev_cpu, new_cpu); 6395 6396 if (want_affine) 6397 current->recent_used_cpu = cpu; 6398 } 6399 } else { 6400 new_cpu = find_idlest_cpu(sd, p, cpu, prev_cpu, sd_flag); 6401 } 6402 rcu_read_unlock(); 6403 6404 return new_cpu; 6405 } 6406 6407 static void detach_entity_cfs_rq(struct sched_entity *se); 6408 6409 /* 6410 * Called immediately before a task is migrated to a new cpu; task_cpu(p) and 6411 * cfs_rq_of(p) references at time of call are still valid and identify the 6412 * previous cpu. The caller guarantees p->pi_lock or task_rq(p)->lock is held. 6413 */ 6414 static void migrate_task_rq_fair(struct task_struct *p) 6415 { 6416 /* 6417 * As blocked tasks retain absolute vruntime the migration needs to 6418 * deal with this by subtracting the old and adding the new 6419 * min_vruntime -- the latter is done by enqueue_entity() when placing 6420 * the task on the new runqueue. 6421 */ 6422 if (p->state == TASK_WAKING) { 6423 struct sched_entity *se = &p->se; 6424 struct cfs_rq *cfs_rq = cfs_rq_of(se); 6425 u64 min_vruntime; 6426 6427 #ifndef CONFIG_64BIT 6428 u64 min_vruntime_copy; 6429 6430 do { 6431 min_vruntime_copy = cfs_rq->min_vruntime_copy; 6432 smp_rmb(); 6433 min_vruntime = cfs_rq->min_vruntime; 6434 } while (min_vruntime != min_vruntime_copy); 6435 #else 6436 min_vruntime = cfs_rq->min_vruntime; 6437 #endif 6438 6439 se->vruntime -= min_vruntime; 6440 } 6441 6442 if (p->on_rq == TASK_ON_RQ_MIGRATING) { 6443 /* 6444 * In case of TASK_ON_RQ_MIGRATING we in fact hold the 'old' 6445 * rq->lock and can modify state directly. 6446 */ 6447 lockdep_assert_held(&task_rq(p)->lock); 6448 detach_entity_cfs_rq(&p->se); 6449 6450 } else { 6451 /* 6452 * We are supposed to update the task to "current" time, then 6453 * its up to date and ready to go to new CPU/cfs_rq. But we 6454 * have difficulty in getting what current time is, so simply 6455 * throw away the out-of-date time. This will result in the 6456 * wakee task is less decayed, but giving the wakee more load 6457 * sounds not bad. 6458 */ 6459 remove_entity_load_avg(&p->se); 6460 } 6461 6462 /* Tell new CPU we are migrated */ 6463 p->se.avg.last_update_time = 0; 6464 6465 /* We have migrated, no longer consider this task hot */ 6466 p->se.exec_start = 0; 6467 } 6468 6469 static void task_dead_fair(struct task_struct *p) 6470 { 6471 remove_entity_load_avg(&p->se); 6472 } 6473 #endif /* CONFIG_SMP */ 6474 6475 static unsigned long wakeup_gran(struct sched_entity *se) 6476 { 6477 unsigned long gran = sysctl_sched_wakeup_granularity; 6478 6479 /* 6480 * Since its curr running now, convert the gran from real-time 6481 * to virtual-time in his units. 6482 * 6483 * By using 'se' instead of 'curr' we penalize light tasks, so 6484 * they get preempted easier. That is, if 'se' < 'curr' then 6485 * the resulting gran will be larger, therefore penalizing the 6486 * lighter, if otoh 'se' > 'curr' then the resulting gran will 6487 * be smaller, again penalizing the lighter task. 6488 * 6489 * This is especially important for buddies when the leftmost 6490 * task is higher priority than the buddy. 6491 */ 6492 return calc_delta_fair(gran, se); 6493 } 6494 6495 /* 6496 * Should 'se' preempt 'curr'. 6497 * 6498 * |s1 6499 * |s2 6500 * |s3 6501 * g 6502 * |<--->|c 6503 * 6504 * w(c, s1) = -1 6505 * w(c, s2) = 0 6506 * w(c, s3) = 1 6507 * 6508 */ 6509 static int 6510 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se) 6511 { 6512 s64 gran, vdiff = curr->vruntime - se->vruntime; 6513 6514 if (vdiff <= 0) 6515 return -1; 6516 6517 gran = wakeup_gran(se); 6518 if (vdiff > gran) 6519 return 1; 6520 6521 return 0; 6522 } 6523 6524 static void set_last_buddy(struct sched_entity *se) 6525 { 6526 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE)) 6527 return; 6528 6529 for_each_sched_entity(se) { 6530 if (SCHED_WARN_ON(!se->on_rq)) 6531 return; 6532 cfs_rq_of(se)->last = se; 6533 } 6534 } 6535 6536 static void set_next_buddy(struct sched_entity *se) 6537 { 6538 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE)) 6539 return; 6540 6541 for_each_sched_entity(se) { 6542 if (SCHED_WARN_ON(!se->on_rq)) 6543 return; 6544 cfs_rq_of(se)->next = se; 6545 } 6546 } 6547 6548 static void set_skip_buddy(struct sched_entity *se) 6549 { 6550 for_each_sched_entity(se) 6551 cfs_rq_of(se)->skip = se; 6552 } 6553 6554 /* 6555 * Preempt the current task with a newly woken task if needed: 6556 */ 6557 static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags) 6558 { 6559 struct task_struct *curr = rq->curr; 6560 struct sched_entity *se = &curr->se, *pse = &p->se; 6561 struct cfs_rq *cfs_rq = task_cfs_rq(curr); 6562 int scale = cfs_rq->nr_running >= sched_nr_latency; 6563 int next_buddy_marked = 0; 6564 6565 if (unlikely(se == pse)) 6566 return; 6567 6568 /* 6569 * This is possible from callers such as attach_tasks(), in which we 6570 * unconditionally check_prempt_curr() after an enqueue (which may have 6571 * lead to a throttle). This both saves work and prevents false 6572 * next-buddy nomination below. 6573 */ 6574 if (unlikely(throttled_hierarchy(cfs_rq_of(pse)))) 6575 return; 6576 6577 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) { 6578 set_next_buddy(pse); 6579 next_buddy_marked = 1; 6580 } 6581 6582 /* 6583 * We can come here with TIF_NEED_RESCHED already set from new task 6584 * wake up path. 6585 * 6586 * Note: this also catches the edge-case of curr being in a throttled 6587 * group (e.g. via set_curr_task), since update_curr() (in the 6588 * enqueue of curr) will have resulted in resched being set. This 6589 * prevents us from potentially nominating it as a false LAST_BUDDY 6590 * below. 6591 */ 6592 if (test_tsk_need_resched(curr)) 6593 return; 6594 6595 /* Idle tasks are by definition preempted by non-idle tasks. */ 6596 if (unlikely(curr->policy == SCHED_IDLE) && 6597 likely(p->policy != SCHED_IDLE)) 6598 goto preempt; 6599 6600 /* 6601 * Batch and idle tasks do not preempt non-idle tasks (their preemption 6602 * is driven by the tick): 6603 */ 6604 if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION)) 6605 return; 6606 6607 find_matching_se(&se, &pse); 6608 update_curr(cfs_rq_of(se)); 6609 BUG_ON(!pse); 6610 if (wakeup_preempt_entity(se, pse) == 1) { 6611 /* 6612 * Bias pick_next to pick the sched entity that is 6613 * triggering this preemption. 6614 */ 6615 if (!next_buddy_marked) 6616 set_next_buddy(pse); 6617 goto preempt; 6618 } 6619 6620 return; 6621 6622 preempt: 6623 resched_curr(rq); 6624 /* 6625 * Only set the backward buddy when the current task is still 6626 * on the rq. This can happen when a wakeup gets interleaved 6627 * with schedule on the ->pre_schedule() or idle_balance() 6628 * point, either of which can * drop the rq lock. 6629 * 6630 * Also, during early boot the idle thread is in the fair class, 6631 * for obvious reasons its a bad idea to schedule back to it. 6632 */ 6633 if (unlikely(!se->on_rq || curr == rq->idle)) 6634 return; 6635 6636 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se)) 6637 set_last_buddy(se); 6638 } 6639 6640 static struct task_struct * 6641 pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf) 6642 { 6643 struct cfs_rq *cfs_rq = &rq->cfs; 6644 struct sched_entity *se; 6645 struct task_struct *p; 6646 int new_tasks; 6647 6648 again: 6649 if (!cfs_rq->nr_running) 6650 goto idle; 6651 6652 #ifdef CONFIG_FAIR_GROUP_SCHED 6653 if (prev->sched_class != &fair_sched_class) 6654 goto simple; 6655 6656 /* 6657 * Because of the set_next_buddy() in dequeue_task_fair() it is rather 6658 * likely that a next task is from the same cgroup as the current. 6659 * 6660 * Therefore attempt to avoid putting and setting the entire cgroup 6661 * hierarchy, only change the part that actually changes. 6662 */ 6663 6664 do { 6665 struct sched_entity *curr = cfs_rq->curr; 6666 6667 /* 6668 * Since we got here without doing put_prev_entity() we also 6669 * have to consider cfs_rq->curr. If it is still a runnable 6670 * entity, update_curr() will update its vruntime, otherwise 6671 * forget we've ever seen it. 6672 */ 6673 if (curr) { 6674 if (curr->on_rq) 6675 update_curr(cfs_rq); 6676 else 6677 curr = NULL; 6678 6679 /* 6680 * This call to check_cfs_rq_runtime() will do the 6681 * throttle and dequeue its entity in the parent(s). 6682 * Therefore the nr_running test will indeed 6683 * be correct. 6684 */ 6685 if (unlikely(check_cfs_rq_runtime(cfs_rq))) { 6686 cfs_rq = &rq->cfs; 6687 6688 if (!cfs_rq->nr_running) 6689 goto idle; 6690 6691 goto simple; 6692 } 6693 } 6694 6695 se = pick_next_entity(cfs_rq, curr); 6696 cfs_rq = group_cfs_rq(se); 6697 } while (cfs_rq); 6698 6699 p = task_of(se); 6700 6701 /* 6702 * Since we haven't yet done put_prev_entity and if the selected task 6703 * is a different task than we started out with, try and touch the 6704 * least amount of cfs_rqs. 6705 */ 6706 if (prev != p) { 6707 struct sched_entity *pse = &prev->se; 6708 6709 while (!(cfs_rq = is_same_group(se, pse))) { 6710 int se_depth = se->depth; 6711 int pse_depth = pse->depth; 6712 6713 if (se_depth <= pse_depth) { 6714 put_prev_entity(cfs_rq_of(pse), pse); 6715 pse = parent_entity(pse); 6716 } 6717 if (se_depth >= pse_depth) { 6718 set_next_entity(cfs_rq_of(se), se); 6719 se = parent_entity(se); 6720 } 6721 } 6722 6723 put_prev_entity(cfs_rq, pse); 6724 set_next_entity(cfs_rq, se); 6725 } 6726 6727 goto done; 6728 simple: 6729 #endif 6730 6731 put_prev_task(rq, prev); 6732 6733 do { 6734 se = pick_next_entity(cfs_rq, NULL); 6735 set_next_entity(cfs_rq, se); 6736 cfs_rq = group_cfs_rq(se); 6737 } while (cfs_rq); 6738 6739 p = task_of(se); 6740 6741 done: __maybe_unused 6742 #ifdef CONFIG_SMP 6743 /* 6744 * Move the next running task to the front of 6745 * the list, so our cfs_tasks list becomes MRU 6746 * one. 6747 */ 6748 list_move(&p->se.group_node, &rq->cfs_tasks); 6749 #endif 6750 6751 if (hrtick_enabled(rq)) 6752 hrtick_start_fair(rq, p); 6753 6754 return p; 6755 6756 idle: 6757 new_tasks = idle_balance(rq, rf); 6758 6759 /* 6760 * Because idle_balance() releases (and re-acquires) rq->lock, it is 6761 * possible for any higher priority task to appear. In that case we 6762 * must re-start the pick_next_entity() loop. 6763 */ 6764 if (new_tasks < 0) 6765 return RETRY_TASK; 6766 6767 if (new_tasks > 0) 6768 goto again; 6769 6770 return NULL; 6771 } 6772 6773 /* 6774 * Account for a descheduled task: 6775 */ 6776 static void put_prev_task_fair(struct rq *rq, struct task_struct *prev) 6777 { 6778 struct sched_entity *se = &prev->se; 6779 struct cfs_rq *cfs_rq; 6780 6781 for_each_sched_entity(se) { 6782 cfs_rq = cfs_rq_of(se); 6783 put_prev_entity(cfs_rq, se); 6784 } 6785 } 6786 6787 /* 6788 * sched_yield() is very simple 6789 * 6790 * The magic of dealing with the ->skip buddy is in pick_next_entity. 6791 */ 6792 static void yield_task_fair(struct rq *rq) 6793 { 6794 struct task_struct *curr = rq->curr; 6795 struct cfs_rq *cfs_rq = task_cfs_rq(curr); 6796 struct sched_entity *se = &curr->se; 6797 6798 /* 6799 * Are we the only task in the tree? 6800 */ 6801 if (unlikely(rq->nr_running == 1)) 6802 return; 6803 6804 clear_buddies(cfs_rq, se); 6805 6806 if (curr->policy != SCHED_BATCH) { 6807 update_rq_clock(rq); 6808 /* 6809 * Update run-time statistics of the 'current'. 6810 */ 6811 update_curr(cfs_rq); 6812 /* 6813 * Tell update_rq_clock() that we've just updated, 6814 * so we don't do microscopic update in schedule() 6815 * and double the fastpath cost. 6816 */ 6817 rq_clock_skip_update(rq, true); 6818 } 6819 6820 set_skip_buddy(se); 6821 } 6822 6823 static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt) 6824 { 6825 struct sched_entity *se = &p->se; 6826 6827 /* throttled hierarchies are not runnable */ 6828 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se))) 6829 return false; 6830 6831 /* Tell the scheduler that we'd really like pse to run next. */ 6832 set_next_buddy(se); 6833 6834 yield_task_fair(rq); 6835 6836 return true; 6837 } 6838 6839 #ifdef CONFIG_SMP 6840 /************************************************** 6841 * Fair scheduling class load-balancing methods. 6842 * 6843 * BASICS 6844 * 6845 * The purpose of load-balancing is to achieve the same basic fairness the 6846 * per-cpu scheduler provides, namely provide a proportional amount of compute 6847 * time to each task. This is expressed in the following equation: 6848 * 6849 * W_i,n/P_i == W_j,n/P_j for all i,j (1) 6850 * 6851 * Where W_i,n is the n-th weight average for cpu i. The instantaneous weight 6852 * W_i,0 is defined as: 6853 * 6854 * W_i,0 = \Sum_j w_i,j (2) 6855 * 6856 * Where w_i,j is the weight of the j-th runnable task on cpu i. This weight 6857 * is derived from the nice value as per sched_prio_to_weight[]. 6858 * 6859 * The weight average is an exponential decay average of the instantaneous 6860 * weight: 6861 * 6862 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3) 6863 * 6864 * C_i is the compute capacity of cpu i, typically it is the 6865 * fraction of 'recent' time available for SCHED_OTHER task execution. But it 6866 * can also include other factors [XXX]. 6867 * 6868 * To achieve this balance we define a measure of imbalance which follows 6869 * directly from (1): 6870 * 6871 * imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j } (4) 6872 * 6873 * We them move tasks around to minimize the imbalance. In the continuous 6874 * function space it is obvious this converges, in the discrete case we get 6875 * a few fun cases generally called infeasible weight scenarios. 6876 * 6877 * [XXX expand on: 6878 * - infeasible weights; 6879 * - local vs global optima in the discrete case. ] 6880 * 6881 * 6882 * SCHED DOMAINS 6883 * 6884 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2) 6885 * for all i,j solution, we create a tree of cpus that follows the hardware 6886 * topology where each level pairs two lower groups (or better). This results 6887 * in O(log n) layers. Furthermore we reduce the number of cpus going up the 6888 * tree to only the first of the previous level and we decrease the frequency 6889 * of load-balance at each level inv. proportional to the number of cpus in 6890 * the groups. 6891 * 6892 * This yields: 6893 * 6894 * log_2 n 1 n 6895 * \Sum { --- * --- * 2^i } = O(n) (5) 6896 * i = 0 2^i 2^i 6897 * `- size of each group 6898 * | | `- number of cpus doing load-balance 6899 * | `- freq 6900 * `- sum over all levels 6901 * 6902 * Coupled with a limit on how many tasks we can migrate every balance pass, 6903 * this makes (5) the runtime complexity of the balancer. 6904 * 6905 * An important property here is that each CPU is still (indirectly) connected 6906 * to every other cpu in at most O(log n) steps: 6907 * 6908 * The adjacency matrix of the resulting graph is given by: 6909 * 6910 * log_2 n 6911 * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6) 6912 * k = 0 6913 * 6914 * And you'll find that: 6915 * 6916 * A^(log_2 n)_i,j != 0 for all i,j (7) 6917 * 6918 * Showing there's indeed a path between every cpu in at most O(log n) steps. 6919 * The task movement gives a factor of O(m), giving a convergence complexity 6920 * of: 6921 * 6922 * O(nm log n), n := nr_cpus, m := nr_tasks (8) 6923 * 6924 * 6925 * WORK CONSERVING 6926 * 6927 * In order to avoid CPUs going idle while there's still work to do, new idle 6928 * balancing is more aggressive and has the newly idle cpu iterate up the domain 6929 * tree itself instead of relying on other CPUs to bring it work. 6930 * 6931 * This adds some complexity to both (5) and (8) but it reduces the total idle 6932 * time. 6933 * 6934 * [XXX more?] 6935 * 6936 * 6937 * CGROUPS 6938 * 6939 * Cgroups make a horror show out of (2), instead of a simple sum we get: 6940 * 6941 * s_k,i 6942 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9) 6943 * S_k 6944 * 6945 * Where 6946 * 6947 * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10) 6948 * 6949 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on cpu i. 6950 * 6951 * The big problem is S_k, its a global sum needed to compute a local (W_i) 6952 * property. 6953 * 6954 * [XXX write more on how we solve this.. _after_ merging pjt's patches that 6955 * rewrite all of this once again.] 6956 */ 6957 6958 static unsigned long __read_mostly max_load_balance_interval = HZ/10; 6959 6960 enum fbq_type { regular, remote, all }; 6961 6962 #define LBF_ALL_PINNED 0x01 6963 #define LBF_NEED_BREAK 0x02 6964 #define LBF_DST_PINNED 0x04 6965 #define LBF_SOME_PINNED 0x08 6966 6967 struct lb_env { 6968 struct sched_domain *sd; 6969 6970 struct rq *src_rq; 6971 int src_cpu; 6972 6973 int dst_cpu; 6974 struct rq *dst_rq; 6975 6976 struct cpumask *dst_grpmask; 6977 int new_dst_cpu; 6978 enum cpu_idle_type idle; 6979 long imbalance; 6980 /* The set of CPUs under consideration for load-balancing */ 6981 struct cpumask *cpus; 6982 6983 unsigned int flags; 6984 6985 unsigned int loop; 6986 unsigned int loop_break; 6987 unsigned int loop_max; 6988 6989 enum fbq_type fbq_type; 6990 struct list_head tasks; 6991 }; 6992 6993 /* 6994 * Is this task likely cache-hot: 6995 */ 6996 static int task_hot(struct task_struct *p, struct lb_env *env) 6997 { 6998 s64 delta; 6999 7000 lockdep_assert_held(&env->src_rq->lock); 7001 7002 if (p->sched_class != &fair_sched_class) 7003 return 0; 7004 7005 if (unlikely(p->policy == SCHED_IDLE)) 7006 return 0; 7007 7008 /* 7009 * Buddy candidates are cache hot: 7010 */ 7011 if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running && 7012 (&p->se == cfs_rq_of(&p->se)->next || 7013 &p->se == cfs_rq_of(&p->se)->last)) 7014 return 1; 7015 7016 if (sysctl_sched_migration_cost == -1) 7017 return 1; 7018 if (sysctl_sched_migration_cost == 0) 7019 return 0; 7020 7021 delta = rq_clock_task(env->src_rq) - p->se.exec_start; 7022 7023 return delta < (s64)sysctl_sched_migration_cost; 7024 } 7025 7026 #ifdef CONFIG_NUMA_BALANCING 7027 /* 7028 * Returns 1, if task migration degrades locality 7029 * Returns 0, if task migration improves locality i.e migration preferred. 7030 * Returns -1, if task migration is not affected by locality. 7031 */ 7032 static int migrate_degrades_locality(struct task_struct *p, struct lb_env *env) 7033 { 7034 struct numa_group *numa_group = rcu_dereference(p->numa_group); 7035 unsigned long src_faults, dst_faults; 7036 int src_nid, dst_nid; 7037 7038 if (!static_branch_likely(&sched_numa_balancing)) 7039 return -1; 7040 7041 if (!p->numa_faults || !(env->sd->flags & SD_NUMA)) 7042 return -1; 7043 7044 src_nid = cpu_to_node(env->src_cpu); 7045 dst_nid = cpu_to_node(env->dst_cpu); 7046 7047 if (src_nid == dst_nid) 7048 return -1; 7049 7050 /* Migrating away from the preferred node is always bad. */ 7051 if (src_nid == p->numa_preferred_nid) { 7052 if (env->src_rq->nr_running > env->src_rq->nr_preferred_running) 7053 return 1; 7054 else 7055 return -1; 7056 } 7057 7058 /* Encourage migration to the preferred node. */ 7059 if (dst_nid == p->numa_preferred_nid) 7060 return 0; 7061 7062 /* Leaving a core idle is often worse than degrading locality. */ 7063 if (env->idle != CPU_NOT_IDLE) 7064 return -1; 7065 7066 if (numa_group) { 7067 src_faults = group_faults(p, src_nid); 7068 dst_faults = group_faults(p, dst_nid); 7069 } else { 7070 src_faults = task_faults(p, src_nid); 7071 dst_faults = task_faults(p, dst_nid); 7072 } 7073 7074 return dst_faults < src_faults; 7075 } 7076 7077 #else 7078 static inline int migrate_degrades_locality(struct task_struct *p, 7079 struct lb_env *env) 7080 { 7081 return -1; 7082 } 7083 #endif 7084 7085 /* 7086 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu? 7087 */ 7088 static 7089 int can_migrate_task(struct task_struct *p, struct lb_env *env) 7090 { 7091 int tsk_cache_hot; 7092 7093 lockdep_assert_held(&env->src_rq->lock); 7094 7095 /* 7096 * We do not migrate tasks that are: 7097 * 1) throttled_lb_pair, or 7098 * 2) cannot be migrated to this CPU due to cpus_allowed, or 7099 * 3) running (obviously), or 7100 * 4) are cache-hot on their current CPU. 7101 */ 7102 if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu)) 7103 return 0; 7104 7105 if (!cpumask_test_cpu(env->dst_cpu, &p->cpus_allowed)) { 7106 int cpu; 7107 7108 schedstat_inc(p->se.statistics.nr_failed_migrations_affine); 7109 7110 env->flags |= LBF_SOME_PINNED; 7111 7112 /* 7113 * Remember if this task can be migrated to any other cpu in 7114 * our sched_group. We may want to revisit it if we couldn't 7115 * meet load balance goals by pulling other tasks on src_cpu. 7116 * 7117 * Avoid computing new_dst_cpu for NEWLY_IDLE or if we have 7118 * already computed one in current iteration. 7119 */ 7120 if (env->idle == CPU_NEWLY_IDLE || (env->flags & LBF_DST_PINNED)) 7121 return 0; 7122 7123 /* Prevent to re-select dst_cpu via env's cpus */ 7124 for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) { 7125 if (cpumask_test_cpu(cpu, &p->cpus_allowed)) { 7126 env->flags |= LBF_DST_PINNED; 7127 env->new_dst_cpu = cpu; 7128 break; 7129 } 7130 } 7131 7132 return 0; 7133 } 7134 7135 /* Record that we found atleast one task that could run on dst_cpu */ 7136 env->flags &= ~LBF_ALL_PINNED; 7137 7138 if (task_running(env->src_rq, p)) { 7139 schedstat_inc(p->se.statistics.nr_failed_migrations_running); 7140 return 0; 7141 } 7142 7143 /* 7144 * Aggressive migration if: 7145 * 1) destination numa is preferred 7146 * 2) task is cache cold, or 7147 * 3) too many balance attempts have failed. 7148 */ 7149 tsk_cache_hot = migrate_degrades_locality(p, env); 7150 if (tsk_cache_hot == -1) 7151 tsk_cache_hot = task_hot(p, env); 7152 7153 if (tsk_cache_hot <= 0 || 7154 env->sd->nr_balance_failed > env->sd->cache_nice_tries) { 7155 if (tsk_cache_hot == 1) { 7156 schedstat_inc(env->sd->lb_hot_gained[env->idle]); 7157 schedstat_inc(p->se.statistics.nr_forced_migrations); 7158 } 7159 return 1; 7160 } 7161 7162 schedstat_inc(p->se.statistics.nr_failed_migrations_hot); 7163 return 0; 7164 } 7165 7166 /* 7167 * detach_task() -- detach the task for the migration specified in env 7168 */ 7169 static void detach_task(struct task_struct *p, struct lb_env *env) 7170 { 7171 lockdep_assert_held(&env->src_rq->lock); 7172 7173 p->on_rq = TASK_ON_RQ_MIGRATING; 7174 deactivate_task(env->src_rq, p, DEQUEUE_NOCLOCK); 7175 set_task_cpu(p, env->dst_cpu); 7176 } 7177 7178 /* 7179 * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as 7180 * part of active balancing operations within "domain". 7181 * 7182 * Returns a task if successful and NULL otherwise. 7183 */ 7184 static struct task_struct *detach_one_task(struct lb_env *env) 7185 { 7186 struct task_struct *p; 7187 7188 lockdep_assert_held(&env->src_rq->lock); 7189 7190 list_for_each_entry_reverse(p, 7191 &env->src_rq->cfs_tasks, se.group_node) { 7192 if (!can_migrate_task(p, env)) 7193 continue; 7194 7195 detach_task(p, env); 7196 7197 /* 7198 * Right now, this is only the second place where 7199 * lb_gained[env->idle] is updated (other is detach_tasks) 7200 * so we can safely collect stats here rather than 7201 * inside detach_tasks(). 7202 */ 7203 schedstat_inc(env->sd->lb_gained[env->idle]); 7204 return p; 7205 } 7206 return NULL; 7207 } 7208 7209 static const unsigned int sched_nr_migrate_break = 32; 7210 7211 /* 7212 * detach_tasks() -- tries to detach up to imbalance weighted load from 7213 * busiest_rq, as part of a balancing operation within domain "sd". 7214 * 7215 * Returns number of detached tasks if successful and 0 otherwise. 7216 */ 7217 static int detach_tasks(struct lb_env *env) 7218 { 7219 struct list_head *tasks = &env->src_rq->cfs_tasks; 7220 struct task_struct *p; 7221 unsigned long load; 7222 int detached = 0; 7223 7224 lockdep_assert_held(&env->src_rq->lock); 7225 7226 if (env->imbalance <= 0) 7227 return 0; 7228 7229 while (!list_empty(tasks)) { 7230 /* 7231 * We don't want to steal all, otherwise we may be treated likewise, 7232 * which could at worst lead to a livelock crash. 7233 */ 7234 if (env->idle != CPU_NOT_IDLE && env->src_rq->nr_running <= 1) 7235 break; 7236 7237 p = list_last_entry(tasks, struct task_struct, se.group_node); 7238 7239 env->loop++; 7240 /* We've more or less seen every task there is, call it quits */ 7241 if (env->loop > env->loop_max) 7242 break; 7243 7244 /* take a breather every nr_migrate tasks */ 7245 if (env->loop > env->loop_break) { 7246 env->loop_break += sched_nr_migrate_break; 7247 env->flags |= LBF_NEED_BREAK; 7248 break; 7249 } 7250 7251 if (!can_migrate_task(p, env)) 7252 goto next; 7253 7254 load = task_h_load(p); 7255 7256 if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed) 7257 goto next; 7258 7259 if ((load / 2) > env->imbalance) 7260 goto next; 7261 7262 detach_task(p, env); 7263 list_add(&p->se.group_node, &env->tasks); 7264 7265 detached++; 7266 env->imbalance -= load; 7267 7268 #ifdef CONFIG_PREEMPT 7269 /* 7270 * NEWIDLE balancing is a source of latency, so preemptible 7271 * kernels will stop after the first task is detached to minimize 7272 * the critical section. 7273 */ 7274 if (env->idle == CPU_NEWLY_IDLE) 7275 break; 7276 #endif 7277 7278 /* 7279 * We only want to steal up to the prescribed amount of 7280 * weighted load. 7281 */ 7282 if (env->imbalance <= 0) 7283 break; 7284 7285 continue; 7286 next: 7287 list_move(&p->se.group_node, tasks); 7288 } 7289 7290 /* 7291 * Right now, this is one of only two places we collect this stat 7292 * so we can safely collect detach_one_task() stats here rather 7293 * than inside detach_one_task(). 7294 */ 7295 schedstat_add(env->sd->lb_gained[env->idle], detached); 7296 7297 return detached; 7298 } 7299 7300 /* 7301 * attach_task() -- attach the task detached by detach_task() to its new rq. 7302 */ 7303 static void attach_task(struct rq *rq, struct task_struct *p) 7304 { 7305 lockdep_assert_held(&rq->lock); 7306 7307 BUG_ON(task_rq(p) != rq); 7308 activate_task(rq, p, ENQUEUE_NOCLOCK); 7309 p->on_rq = TASK_ON_RQ_QUEUED; 7310 check_preempt_curr(rq, p, 0); 7311 } 7312 7313 /* 7314 * attach_one_task() -- attaches the task returned from detach_one_task() to 7315 * its new rq. 7316 */ 7317 static void attach_one_task(struct rq *rq, struct task_struct *p) 7318 { 7319 struct rq_flags rf; 7320 7321 rq_lock(rq, &rf); 7322 update_rq_clock(rq); 7323 attach_task(rq, p); 7324 rq_unlock(rq, &rf); 7325 } 7326 7327 /* 7328 * attach_tasks() -- attaches all tasks detached by detach_tasks() to their 7329 * new rq. 7330 */ 7331 static void attach_tasks(struct lb_env *env) 7332 { 7333 struct list_head *tasks = &env->tasks; 7334 struct task_struct *p; 7335 struct rq_flags rf; 7336 7337 rq_lock(env->dst_rq, &rf); 7338 update_rq_clock(env->dst_rq); 7339 7340 while (!list_empty(tasks)) { 7341 p = list_first_entry(tasks, struct task_struct, se.group_node); 7342 list_del_init(&p->se.group_node); 7343 7344 attach_task(env->dst_rq, p); 7345 } 7346 7347 rq_unlock(env->dst_rq, &rf); 7348 } 7349 7350 #ifdef CONFIG_FAIR_GROUP_SCHED 7351 7352 static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq) 7353 { 7354 if (cfs_rq->load.weight) 7355 return false; 7356 7357 if (cfs_rq->avg.load_sum) 7358 return false; 7359 7360 if (cfs_rq->avg.util_sum) 7361 return false; 7362 7363 if (cfs_rq->avg.runnable_load_sum) 7364 return false; 7365 7366 return true; 7367 } 7368 7369 static void update_blocked_averages(int cpu) 7370 { 7371 struct rq *rq = cpu_rq(cpu); 7372 struct cfs_rq *cfs_rq, *pos; 7373 struct rq_flags rf; 7374 7375 rq_lock_irqsave(rq, &rf); 7376 update_rq_clock(rq); 7377 7378 /* 7379 * Iterates the task_group tree in a bottom up fashion, see 7380 * list_add_leaf_cfs_rq() for details. 7381 */ 7382 for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) { 7383 struct sched_entity *se; 7384 7385 /* throttled entities do not contribute to load */ 7386 if (throttled_hierarchy(cfs_rq)) 7387 continue; 7388 7389 if (update_cfs_rq_load_avg(cfs_rq_clock_task(cfs_rq), cfs_rq)) 7390 update_tg_load_avg(cfs_rq, 0); 7391 7392 /* Propagate pending load changes to the parent, if any: */ 7393 se = cfs_rq->tg->se[cpu]; 7394 if (se && !skip_blocked_update(se)) 7395 update_load_avg(cfs_rq_of(se), se, 0); 7396 7397 /* 7398 * There can be a lot of idle CPU cgroups. Don't let fully 7399 * decayed cfs_rqs linger on the list. 7400 */ 7401 if (cfs_rq_is_decayed(cfs_rq)) 7402 list_del_leaf_cfs_rq(cfs_rq); 7403 } 7404 rq_unlock_irqrestore(rq, &rf); 7405 } 7406 7407 /* 7408 * Compute the hierarchical load factor for cfs_rq and all its ascendants. 7409 * This needs to be done in a top-down fashion because the load of a child 7410 * group is a fraction of its parents load. 7411 */ 7412 static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq) 7413 { 7414 struct rq *rq = rq_of(cfs_rq); 7415 struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)]; 7416 unsigned long now = jiffies; 7417 unsigned long load; 7418 7419 if (cfs_rq->last_h_load_update == now) 7420 return; 7421 7422 cfs_rq->h_load_next = NULL; 7423 for_each_sched_entity(se) { 7424 cfs_rq = cfs_rq_of(se); 7425 cfs_rq->h_load_next = se; 7426 if (cfs_rq->last_h_load_update == now) 7427 break; 7428 } 7429 7430 if (!se) { 7431 cfs_rq->h_load = cfs_rq_load_avg(cfs_rq); 7432 cfs_rq->last_h_load_update = now; 7433 } 7434 7435 while ((se = cfs_rq->h_load_next) != NULL) { 7436 load = cfs_rq->h_load; 7437 load = div64_ul(load * se->avg.load_avg, 7438 cfs_rq_load_avg(cfs_rq) + 1); 7439 cfs_rq = group_cfs_rq(se); 7440 cfs_rq->h_load = load; 7441 cfs_rq->last_h_load_update = now; 7442 } 7443 } 7444 7445 static unsigned long task_h_load(struct task_struct *p) 7446 { 7447 struct cfs_rq *cfs_rq = task_cfs_rq(p); 7448 7449 update_cfs_rq_h_load(cfs_rq); 7450 return div64_ul(p->se.avg.load_avg * cfs_rq->h_load, 7451 cfs_rq_load_avg(cfs_rq) + 1); 7452 } 7453 #else 7454 static inline void update_blocked_averages(int cpu) 7455 { 7456 struct rq *rq = cpu_rq(cpu); 7457 struct cfs_rq *cfs_rq = &rq->cfs; 7458 struct rq_flags rf; 7459 7460 rq_lock_irqsave(rq, &rf); 7461 update_rq_clock(rq); 7462 update_cfs_rq_load_avg(cfs_rq_clock_task(cfs_rq), cfs_rq); 7463 rq_unlock_irqrestore(rq, &rf); 7464 } 7465 7466 static unsigned long task_h_load(struct task_struct *p) 7467 { 7468 return p->se.avg.load_avg; 7469 } 7470 #endif 7471 7472 /********** Helpers for find_busiest_group ************************/ 7473 7474 enum group_type { 7475 group_other = 0, 7476 group_imbalanced, 7477 group_overloaded, 7478 }; 7479 7480 /* 7481 * sg_lb_stats - stats of a sched_group required for load_balancing 7482 */ 7483 struct sg_lb_stats { 7484 unsigned long avg_load; /*Avg load across the CPUs of the group */ 7485 unsigned long group_load; /* Total load over the CPUs of the group */ 7486 unsigned long sum_weighted_load; /* Weighted load of group's tasks */ 7487 unsigned long load_per_task; 7488 unsigned long group_capacity; 7489 unsigned long group_util; /* Total utilization of the group */ 7490 unsigned int sum_nr_running; /* Nr tasks running in the group */ 7491 unsigned int idle_cpus; 7492 unsigned int group_weight; 7493 enum group_type group_type; 7494 int group_no_capacity; 7495 #ifdef CONFIG_NUMA_BALANCING 7496 unsigned int nr_numa_running; 7497 unsigned int nr_preferred_running; 7498 #endif 7499 }; 7500 7501 /* 7502 * sd_lb_stats - Structure to store the statistics of a sched_domain 7503 * during load balancing. 7504 */ 7505 struct sd_lb_stats { 7506 struct sched_group *busiest; /* Busiest group in this sd */ 7507 struct sched_group *local; /* Local group in this sd */ 7508 unsigned long total_running; 7509 unsigned long total_load; /* Total load of all groups in sd */ 7510 unsigned long total_capacity; /* Total capacity of all groups in sd */ 7511 unsigned long avg_load; /* Average load across all groups in sd */ 7512 7513 struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */ 7514 struct sg_lb_stats local_stat; /* Statistics of the local group */ 7515 }; 7516 7517 static inline void init_sd_lb_stats(struct sd_lb_stats *sds) 7518 { 7519 /* 7520 * Skimp on the clearing to avoid duplicate work. We can avoid clearing 7521 * local_stat because update_sg_lb_stats() does a full clear/assignment. 7522 * We must however clear busiest_stat::avg_load because 7523 * update_sd_pick_busiest() reads this before assignment. 7524 */ 7525 *sds = (struct sd_lb_stats){ 7526 .busiest = NULL, 7527 .local = NULL, 7528 .total_running = 0UL, 7529 .total_load = 0UL, 7530 .total_capacity = 0UL, 7531 .busiest_stat = { 7532 .avg_load = 0UL, 7533 .sum_nr_running = 0, 7534 .group_type = group_other, 7535 }, 7536 }; 7537 } 7538 7539 /** 7540 * get_sd_load_idx - Obtain the load index for a given sched domain. 7541 * @sd: The sched_domain whose load_idx is to be obtained. 7542 * @idle: The idle status of the CPU for whose sd load_idx is obtained. 7543 * 7544 * Return: The load index. 7545 */ 7546 static inline int get_sd_load_idx(struct sched_domain *sd, 7547 enum cpu_idle_type idle) 7548 { 7549 int load_idx; 7550 7551 switch (idle) { 7552 case CPU_NOT_IDLE: 7553 load_idx = sd->busy_idx; 7554 break; 7555 7556 case CPU_NEWLY_IDLE: 7557 load_idx = sd->newidle_idx; 7558 break; 7559 default: 7560 load_idx = sd->idle_idx; 7561 break; 7562 } 7563 7564 return load_idx; 7565 } 7566 7567 static unsigned long scale_rt_capacity(int cpu) 7568 { 7569 struct rq *rq = cpu_rq(cpu); 7570 u64 total, used, age_stamp, avg; 7571 s64 delta; 7572 7573 /* 7574 * Since we're reading these variables without serialization make sure 7575 * we read them once before doing sanity checks on them. 7576 */ 7577 age_stamp = READ_ONCE(rq->age_stamp); 7578 avg = READ_ONCE(rq->rt_avg); 7579 delta = __rq_clock_broken(rq) - age_stamp; 7580 7581 if (unlikely(delta < 0)) 7582 delta = 0; 7583 7584 total = sched_avg_period() + delta; 7585 7586 used = div_u64(avg, total); 7587 7588 if (likely(used < SCHED_CAPACITY_SCALE)) 7589 return SCHED_CAPACITY_SCALE - used; 7590 7591 return 1; 7592 } 7593 7594 static void update_cpu_capacity(struct sched_domain *sd, int cpu) 7595 { 7596 unsigned long capacity = arch_scale_cpu_capacity(sd, cpu); 7597 struct sched_group *sdg = sd->groups; 7598 7599 cpu_rq(cpu)->cpu_capacity_orig = capacity; 7600 7601 capacity *= scale_rt_capacity(cpu); 7602 capacity >>= SCHED_CAPACITY_SHIFT; 7603 7604 if (!capacity) 7605 capacity = 1; 7606 7607 cpu_rq(cpu)->cpu_capacity = capacity; 7608 sdg->sgc->capacity = capacity; 7609 sdg->sgc->min_capacity = capacity; 7610 } 7611 7612 void update_group_capacity(struct sched_domain *sd, int cpu) 7613 { 7614 struct sched_domain *child = sd->child; 7615 struct sched_group *group, *sdg = sd->groups; 7616 unsigned long capacity, min_capacity; 7617 unsigned long interval; 7618 7619 interval = msecs_to_jiffies(sd->balance_interval); 7620 interval = clamp(interval, 1UL, max_load_balance_interval); 7621 sdg->sgc->next_update = jiffies + interval; 7622 7623 if (!child) { 7624 update_cpu_capacity(sd, cpu); 7625 return; 7626 } 7627 7628 capacity = 0; 7629 min_capacity = ULONG_MAX; 7630 7631 if (child->flags & SD_OVERLAP) { 7632 /* 7633 * SD_OVERLAP domains cannot assume that child groups 7634 * span the current group. 7635 */ 7636 7637 for_each_cpu(cpu, sched_group_span(sdg)) { 7638 struct sched_group_capacity *sgc; 7639 struct rq *rq = cpu_rq(cpu); 7640 7641 /* 7642 * build_sched_domains() -> init_sched_groups_capacity() 7643 * gets here before we've attached the domains to the 7644 * runqueues. 7645 * 7646 * Use capacity_of(), which is set irrespective of domains 7647 * in update_cpu_capacity(). 7648 * 7649 * This avoids capacity from being 0 and 7650 * causing divide-by-zero issues on boot. 7651 */ 7652 if (unlikely(!rq->sd)) { 7653 capacity += capacity_of(cpu); 7654 } else { 7655 sgc = rq->sd->groups->sgc; 7656 capacity += sgc->capacity; 7657 } 7658 7659 min_capacity = min(capacity, min_capacity); 7660 } 7661 } else { 7662 /* 7663 * !SD_OVERLAP domains can assume that child groups 7664 * span the current group. 7665 */ 7666 7667 group = child->groups; 7668 do { 7669 struct sched_group_capacity *sgc = group->sgc; 7670 7671 capacity += sgc->capacity; 7672 min_capacity = min(sgc->min_capacity, min_capacity); 7673 group = group->next; 7674 } while (group != child->groups); 7675 } 7676 7677 sdg->sgc->capacity = capacity; 7678 sdg->sgc->min_capacity = min_capacity; 7679 } 7680 7681 /* 7682 * Check whether the capacity of the rq has been noticeably reduced by side 7683 * activity. The imbalance_pct is used for the threshold. 7684 * Return true is the capacity is reduced 7685 */ 7686 static inline int 7687 check_cpu_capacity(struct rq *rq, struct sched_domain *sd) 7688 { 7689 return ((rq->cpu_capacity * sd->imbalance_pct) < 7690 (rq->cpu_capacity_orig * 100)); 7691 } 7692 7693 /* 7694 * Group imbalance indicates (and tries to solve) the problem where balancing 7695 * groups is inadequate due to ->cpus_allowed constraints. 7696 * 7697 * Imagine a situation of two groups of 4 cpus each and 4 tasks each with a 7698 * cpumask covering 1 cpu of the first group and 3 cpus of the second group. 7699 * Something like: 7700 * 7701 * { 0 1 2 3 } { 4 5 6 7 } 7702 * * * * * 7703 * 7704 * If we were to balance group-wise we'd place two tasks in the first group and 7705 * two tasks in the second group. Clearly this is undesired as it will overload 7706 * cpu 3 and leave one of the cpus in the second group unused. 7707 * 7708 * The current solution to this issue is detecting the skew in the first group 7709 * by noticing the lower domain failed to reach balance and had difficulty 7710 * moving tasks due to affinity constraints. 7711 * 7712 * When this is so detected; this group becomes a candidate for busiest; see 7713 * update_sd_pick_busiest(). And calculate_imbalance() and 7714 * find_busiest_group() avoid some of the usual balance conditions to allow it 7715 * to create an effective group imbalance. 7716 * 7717 * This is a somewhat tricky proposition since the next run might not find the 7718 * group imbalance and decide the groups need to be balanced again. A most 7719 * subtle and fragile situation. 7720 */ 7721 7722 static inline int sg_imbalanced(struct sched_group *group) 7723 { 7724 return group->sgc->imbalance; 7725 } 7726 7727 /* 7728 * group_has_capacity returns true if the group has spare capacity that could 7729 * be used by some tasks. 7730 * We consider that a group has spare capacity if the * number of task is 7731 * smaller than the number of CPUs or if the utilization is lower than the 7732 * available capacity for CFS tasks. 7733 * For the latter, we use a threshold to stabilize the state, to take into 7734 * account the variance of the tasks' load and to return true if the available 7735 * capacity in meaningful for the load balancer. 7736 * As an example, an available capacity of 1% can appear but it doesn't make 7737 * any benefit for the load balance. 7738 */ 7739 static inline bool 7740 group_has_capacity(struct lb_env *env, struct sg_lb_stats *sgs) 7741 { 7742 if (sgs->sum_nr_running < sgs->group_weight) 7743 return true; 7744 7745 if ((sgs->group_capacity * 100) > 7746 (sgs->group_util * env->sd->imbalance_pct)) 7747 return true; 7748 7749 return false; 7750 } 7751 7752 /* 7753 * group_is_overloaded returns true if the group has more tasks than it can 7754 * handle. 7755 * group_is_overloaded is not equals to !group_has_capacity because a group 7756 * with the exact right number of tasks, has no more spare capacity but is not 7757 * overloaded so both group_has_capacity and group_is_overloaded return 7758 * false. 7759 */ 7760 static inline bool 7761 group_is_overloaded(struct lb_env *env, struct sg_lb_stats *sgs) 7762 { 7763 if (sgs->sum_nr_running <= sgs->group_weight) 7764 return false; 7765 7766 if ((sgs->group_capacity * 100) < 7767 (sgs->group_util * env->sd->imbalance_pct)) 7768 return true; 7769 7770 return false; 7771 } 7772 7773 /* 7774 * group_smaller_cpu_capacity: Returns true if sched_group sg has smaller 7775 * per-CPU capacity than sched_group ref. 7776 */ 7777 static inline bool 7778 group_smaller_cpu_capacity(struct sched_group *sg, struct sched_group *ref) 7779 { 7780 return sg->sgc->min_capacity * capacity_margin < 7781 ref->sgc->min_capacity * 1024; 7782 } 7783 7784 static inline enum 7785 group_type group_classify(struct sched_group *group, 7786 struct sg_lb_stats *sgs) 7787 { 7788 if (sgs->group_no_capacity) 7789 return group_overloaded; 7790 7791 if (sg_imbalanced(group)) 7792 return group_imbalanced; 7793 7794 return group_other; 7795 } 7796 7797 /** 7798 * update_sg_lb_stats - Update sched_group's statistics for load balancing. 7799 * @env: The load balancing environment. 7800 * @group: sched_group whose statistics are to be updated. 7801 * @load_idx: Load index of sched_domain of this_cpu for load calc. 7802 * @local_group: Does group contain this_cpu. 7803 * @sgs: variable to hold the statistics for this group. 7804 * @overload: Indicate more than one runnable task for any CPU. 7805 */ 7806 static inline void update_sg_lb_stats(struct lb_env *env, 7807 struct sched_group *group, int load_idx, 7808 int local_group, struct sg_lb_stats *sgs, 7809 bool *overload) 7810 { 7811 unsigned long load; 7812 int i, nr_running; 7813 7814 memset(sgs, 0, sizeof(*sgs)); 7815 7816 for_each_cpu_and(i, sched_group_span(group), env->cpus) { 7817 struct rq *rq = cpu_rq(i); 7818 7819 /* Bias balancing toward cpus of our domain */ 7820 if (local_group) 7821 load = target_load(i, load_idx); 7822 else 7823 load = source_load(i, load_idx); 7824 7825 sgs->group_load += load; 7826 sgs->group_util += cpu_util(i); 7827 sgs->sum_nr_running += rq->cfs.h_nr_running; 7828 7829 nr_running = rq->nr_running; 7830 if (nr_running > 1) 7831 *overload = true; 7832 7833 #ifdef CONFIG_NUMA_BALANCING 7834 sgs->nr_numa_running += rq->nr_numa_running; 7835 sgs->nr_preferred_running += rq->nr_preferred_running; 7836 #endif 7837 sgs->sum_weighted_load += weighted_cpuload(rq); 7838 /* 7839 * No need to call idle_cpu() if nr_running is not 0 7840 */ 7841 if (!nr_running && idle_cpu(i)) 7842 sgs->idle_cpus++; 7843 } 7844 7845 /* Adjust by relative CPU capacity of the group */ 7846 sgs->group_capacity = group->sgc->capacity; 7847 sgs->avg_load = (sgs->group_load*SCHED_CAPACITY_SCALE) / sgs->group_capacity; 7848 7849 if (sgs->sum_nr_running) 7850 sgs->load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running; 7851 7852 sgs->group_weight = group->group_weight; 7853 7854 sgs->group_no_capacity = group_is_overloaded(env, sgs); 7855 sgs->group_type = group_classify(group, sgs); 7856 } 7857 7858 /** 7859 * update_sd_pick_busiest - return 1 on busiest group 7860 * @env: The load balancing environment. 7861 * @sds: sched_domain statistics 7862 * @sg: sched_group candidate to be checked for being the busiest 7863 * @sgs: sched_group statistics 7864 * 7865 * Determine if @sg is a busier group than the previously selected 7866 * busiest group. 7867 * 7868 * Return: %true if @sg is a busier group than the previously selected 7869 * busiest group. %false otherwise. 7870 */ 7871 static bool update_sd_pick_busiest(struct lb_env *env, 7872 struct sd_lb_stats *sds, 7873 struct sched_group *sg, 7874 struct sg_lb_stats *sgs) 7875 { 7876 struct sg_lb_stats *busiest = &sds->busiest_stat; 7877 7878 if (sgs->group_type > busiest->group_type) 7879 return true; 7880 7881 if (sgs->group_type < busiest->group_type) 7882 return false; 7883 7884 if (sgs->avg_load <= busiest->avg_load) 7885 return false; 7886 7887 if (!(env->sd->flags & SD_ASYM_CPUCAPACITY)) 7888 goto asym_packing; 7889 7890 /* 7891 * Candidate sg has no more than one task per CPU and 7892 * has higher per-CPU capacity. Migrating tasks to less 7893 * capable CPUs may harm throughput. Maximize throughput, 7894 * power/energy consequences are not considered. 7895 */ 7896 if (sgs->sum_nr_running <= sgs->group_weight && 7897 group_smaller_cpu_capacity(sds->local, sg)) 7898 return false; 7899 7900 asym_packing: 7901 /* This is the busiest node in its class. */ 7902 if (!(env->sd->flags & SD_ASYM_PACKING)) 7903 return true; 7904 7905 /* No ASYM_PACKING if target cpu is already busy */ 7906 if (env->idle == CPU_NOT_IDLE) 7907 return true; 7908 /* 7909 * ASYM_PACKING needs to move all the work to the highest 7910 * prority CPUs in the group, therefore mark all groups 7911 * of lower priority than ourself as busy. 7912 */ 7913 if (sgs->sum_nr_running && 7914 sched_asym_prefer(env->dst_cpu, sg->asym_prefer_cpu)) { 7915 if (!sds->busiest) 7916 return true; 7917 7918 /* Prefer to move from lowest priority cpu's work */ 7919 if (sched_asym_prefer(sds->busiest->asym_prefer_cpu, 7920 sg->asym_prefer_cpu)) 7921 return true; 7922 } 7923 7924 return false; 7925 } 7926 7927 #ifdef CONFIG_NUMA_BALANCING 7928 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs) 7929 { 7930 if (sgs->sum_nr_running > sgs->nr_numa_running) 7931 return regular; 7932 if (sgs->sum_nr_running > sgs->nr_preferred_running) 7933 return remote; 7934 return all; 7935 } 7936 7937 static inline enum fbq_type fbq_classify_rq(struct rq *rq) 7938 { 7939 if (rq->nr_running > rq->nr_numa_running) 7940 return regular; 7941 if (rq->nr_running > rq->nr_preferred_running) 7942 return remote; 7943 return all; 7944 } 7945 #else 7946 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs) 7947 { 7948 return all; 7949 } 7950 7951 static inline enum fbq_type fbq_classify_rq(struct rq *rq) 7952 { 7953 return regular; 7954 } 7955 #endif /* CONFIG_NUMA_BALANCING */ 7956 7957 /** 7958 * update_sd_lb_stats - Update sched_domain's statistics for load balancing. 7959 * @env: The load balancing environment. 7960 * @sds: variable to hold the statistics for this sched_domain. 7961 */ 7962 static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds) 7963 { 7964 struct sched_domain *child = env->sd->child; 7965 struct sched_group *sg = env->sd->groups; 7966 struct sg_lb_stats *local = &sds->local_stat; 7967 struct sg_lb_stats tmp_sgs; 7968 int load_idx, prefer_sibling = 0; 7969 bool overload = false; 7970 7971 if (child && child->flags & SD_PREFER_SIBLING) 7972 prefer_sibling = 1; 7973 7974 load_idx = get_sd_load_idx(env->sd, env->idle); 7975 7976 do { 7977 struct sg_lb_stats *sgs = &tmp_sgs; 7978 int local_group; 7979 7980 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_span(sg)); 7981 if (local_group) { 7982 sds->local = sg; 7983 sgs = local; 7984 7985 if (env->idle != CPU_NEWLY_IDLE || 7986 time_after_eq(jiffies, sg->sgc->next_update)) 7987 update_group_capacity(env->sd, env->dst_cpu); 7988 } 7989 7990 update_sg_lb_stats(env, sg, load_idx, local_group, sgs, 7991 &overload); 7992 7993 if (local_group) 7994 goto next_group; 7995 7996 /* 7997 * In case the child domain prefers tasks go to siblings 7998 * first, lower the sg capacity so that we'll try 7999 * and move all the excess tasks away. We lower the capacity 8000 * of a group only if the local group has the capacity to fit 8001 * these excess tasks. The extra check prevents the case where 8002 * you always pull from the heaviest group when it is already 8003 * under-utilized (possible with a large weight task outweighs 8004 * the tasks on the system). 8005 */ 8006 if (prefer_sibling && sds->local && 8007 group_has_capacity(env, local) && 8008 (sgs->sum_nr_running > local->sum_nr_running + 1)) { 8009 sgs->group_no_capacity = 1; 8010 sgs->group_type = group_classify(sg, sgs); 8011 } 8012 8013 if (update_sd_pick_busiest(env, sds, sg, sgs)) { 8014 sds->busiest = sg; 8015 sds->busiest_stat = *sgs; 8016 } 8017 8018 next_group: 8019 /* Now, start updating sd_lb_stats */ 8020 sds->total_running += sgs->sum_nr_running; 8021 sds->total_load += sgs->group_load; 8022 sds->total_capacity += sgs->group_capacity; 8023 8024 sg = sg->next; 8025 } while (sg != env->sd->groups); 8026 8027 if (env->sd->flags & SD_NUMA) 8028 env->fbq_type = fbq_classify_group(&sds->busiest_stat); 8029 8030 if (!env->sd->parent) { 8031 /* update overload indicator if we are at root domain */ 8032 if (env->dst_rq->rd->overload != overload) 8033 env->dst_rq->rd->overload = overload; 8034 } 8035 } 8036 8037 /** 8038 * check_asym_packing - Check to see if the group is packed into the 8039 * sched domain. 8040 * 8041 * This is primarily intended to used at the sibling level. Some 8042 * cores like POWER7 prefer to use lower numbered SMT threads. In the 8043 * case of POWER7, it can move to lower SMT modes only when higher 8044 * threads are idle. When in lower SMT modes, the threads will 8045 * perform better since they share less core resources. Hence when we 8046 * have idle threads, we want them to be the higher ones. 8047 * 8048 * This packing function is run on idle threads. It checks to see if 8049 * the busiest CPU in this domain (core in the P7 case) has a higher 8050 * CPU number than the packing function is being run on. Here we are 8051 * assuming lower CPU number will be equivalent to lower a SMT thread 8052 * number. 8053 * 8054 * Return: 1 when packing is required and a task should be moved to 8055 * this CPU. The amount of the imbalance is returned in env->imbalance. 8056 * 8057 * @env: The load balancing environment. 8058 * @sds: Statistics of the sched_domain which is to be packed 8059 */ 8060 static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds) 8061 { 8062 int busiest_cpu; 8063 8064 if (!(env->sd->flags & SD_ASYM_PACKING)) 8065 return 0; 8066 8067 if (env->idle == CPU_NOT_IDLE) 8068 return 0; 8069 8070 if (!sds->busiest) 8071 return 0; 8072 8073 busiest_cpu = sds->busiest->asym_prefer_cpu; 8074 if (sched_asym_prefer(busiest_cpu, env->dst_cpu)) 8075 return 0; 8076 8077 env->imbalance = DIV_ROUND_CLOSEST( 8078 sds->busiest_stat.avg_load * sds->busiest_stat.group_capacity, 8079 SCHED_CAPACITY_SCALE); 8080 8081 return 1; 8082 } 8083 8084 /** 8085 * fix_small_imbalance - Calculate the minor imbalance that exists 8086 * amongst the groups of a sched_domain, during 8087 * load balancing. 8088 * @env: The load balancing environment. 8089 * @sds: Statistics of the sched_domain whose imbalance is to be calculated. 8090 */ 8091 static inline 8092 void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds) 8093 { 8094 unsigned long tmp, capa_now = 0, capa_move = 0; 8095 unsigned int imbn = 2; 8096 unsigned long scaled_busy_load_per_task; 8097 struct sg_lb_stats *local, *busiest; 8098 8099 local = &sds->local_stat; 8100 busiest = &sds->busiest_stat; 8101 8102 if (!local->sum_nr_running) 8103 local->load_per_task = cpu_avg_load_per_task(env->dst_cpu); 8104 else if (busiest->load_per_task > local->load_per_task) 8105 imbn = 1; 8106 8107 scaled_busy_load_per_task = 8108 (busiest->load_per_task * SCHED_CAPACITY_SCALE) / 8109 busiest->group_capacity; 8110 8111 if (busiest->avg_load + scaled_busy_load_per_task >= 8112 local->avg_load + (scaled_busy_load_per_task * imbn)) { 8113 env->imbalance = busiest->load_per_task; 8114 return; 8115 } 8116 8117 /* 8118 * OK, we don't have enough imbalance to justify moving tasks, 8119 * however we may be able to increase total CPU capacity used by 8120 * moving them. 8121 */ 8122 8123 capa_now += busiest->group_capacity * 8124 min(busiest->load_per_task, busiest->avg_load); 8125 capa_now += local->group_capacity * 8126 min(local->load_per_task, local->avg_load); 8127 capa_now /= SCHED_CAPACITY_SCALE; 8128 8129 /* Amount of load we'd subtract */ 8130 if (busiest->avg_load > scaled_busy_load_per_task) { 8131 capa_move += busiest->group_capacity * 8132 min(busiest->load_per_task, 8133 busiest->avg_load - scaled_busy_load_per_task); 8134 } 8135 8136 /* Amount of load we'd add */ 8137 if (busiest->avg_load * busiest->group_capacity < 8138 busiest->load_per_task * SCHED_CAPACITY_SCALE) { 8139 tmp = (busiest->avg_load * busiest->group_capacity) / 8140 local->group_capacity; 8141 } else { 8142 tmp = (busiest->load_per_task * SCHED_CAPACITY_SCALE) / 8143 local->group_capacity; 8144 } 8145 capa_move += local->group_capacity * 8146 min(local->load_per_task, local->avg_load + tmp); 8147 capa_move /= SCHED_CAPACITY_SCALE; 8148 8149 /* Move if we gain throughput */ 8150 if (capa_move > capa_now) 8151 env->imbalance = busiest->load_per_task; 8152 } 8153 8154 /** 8155 * calculate_imbalance - Calculate the amount of imbalance present within the 8156 * groups of a given sched_domain during load balance. 8157 * @env: load balance environment 8158 * @sds: statistics of the sched_domain whose imbalance is to be calculated. 8159 */ 8160 static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds) 8161 { 8162 unsigned long max_pull, load_above_capacity = ~0UL; 8163 struct sg_lb_stats *local, *busiest; 8164 8165 local = &sds->local_stat; 8166 busiest = &sds->busiest_stat; 8167 8168 if (busiest->group_type == group_imbalanced) { 8169 /* 8170 * In the group_imb case we cannot rely on group-wide averages 8171 * to ensure cpu-load equilibrium, look at wider averages. XXX 8172 */ 8173 busiest->load_per_task = 8174 min(busiest->load_per_task, sds->avg_load); 8175 } 8176 8177 /* 8178 * Avg load of busiest sg can be less and avg load of local sg can 8179 * be greater than avg load across all sgs of sd because avg load 8180 * factors in sg capacity and sgs with smaller group_type are 8181 * skipped when updating the busiest sg: 8182 */ 8183 if (busiest->avg_load <= sds->avg_load || 8184 local->avg_load >= sds->avg_load) { 8185 env->imbalance = 0; 8186 return fix_small_imbalance(env, sds); 8187 } 8188 8189 /* 8190 * If there aren't any idle cpus, avoid creating some. 8191 */ 8192 if (busiest->group_type == group_overloaded && 8193 local->group_type == group_overloaded) { 8194 load_above_capacity = busiest->sum_nr_running * SCHED_CAPACITY_SCALE; 8195 if (load_above_capacity > busiest->group_capacity) { 8196 load_above_capacity -= busiest->group_capacity; 8197 load_above_capacity *= scale_load_down(NICE_0_LOAD); 8198 load_above_capacity /= busiest->group_capacity; 8199 } else 8200 load_above_capacity = ~0UL; 8201 } 8202 8203 /* 8204 * We're trying to get all the cpus to the average_load, so we don't 8205 * want to push ourselves above the average load, nor do we wish to 8206 * reduce the max loaded cpu below the average load. At the same time, 8207 * we also don't want to reduce the group load below the group 8208 * capacity. Thus we look for the minimum possible imbalance. 8209 */ 8210 max_pull = min(busiest->avg_load - sds->avg_load, load_above_capacity); 8211 8212 /* How much load to actually move to equalise the imbalance */ 8213 env->imbalance = min( 8214 max_pull * busiest->group_capacity, 8215 (sds->avg_load - local->avg_load) * local->group_capacity 8216 ) / SCHED_CAPACITY_SCALE; 8217 8218 /* 8219 * if *imbalance is less than the average load per runnable task 8220 * there is no guarantee that any tasks will be moved so we'll have 8221 * a think about bumping its value to force at least one task to be 8222 * moved 8223 */ 8224 if (env->imbalance < busiest->load_per_task) 8225 return fix_small_imbalance(env, sds); 8226 } 8227 8228 /******* find_busiest_group() helpers end here *********************/ 8229 8230 /** 8231 * find_busiest_group - Returns the busiest group within the sched_domain 8232 * if there is an imbalance. 8233 * 8234 * Also calculates the amount of weighted load which should be moved 8235 * to restore balance. 8236 * 8237 * @env: The load balancing environment. 8238 * 8239 * Return: - The busiest group if imbalance exists. 8240 */ 8241 static struct sched_group *find_busiest_group(struct lb_env *env) 8242 { 8243 struct sg_lb_stats *local, *busiest; 8244 struct sd_lb_stats sds; 8245 8246 init_sd_lb_stats(&sds); 8247 8248 /* 8249 * Compute the various statistics relavent for load balancing at 8250 * this level. 8251 */ 8252 update_sd_lb_stats(env, &sds); 8253 local = &sds.local_stat; 8254 busiest = &sds.busiest_stat; 8255 8256 /* ASYM feature bypasses nice load balance check */ 8257 if (check_asym_packing(env, &sds)) 8258 return sds.busiest; 8259 8260 /* There is no busy sibling group to pull tasks from */ 8261 if (!sds.busiest || busiest->sum_nr_running == 0) 8262 goto out_balanced; 8263 8264 /* XXX broken for overlapping NUMA groups */ 8265 sds.avg_load = (SCHED_CAPACITY_SCALE * sds.total_load) 8266 / sds.total_capacity; 8267 8268 /* 8269 * If the busiest group is imbalanced the below checks don't 8270 * work because they assume all things are equal, which typically 8271 * isn't true due to cpus_allowed constraints and the like. 8272 */ 8273 if (busiest->group_type == group_imbalanced) 8274 goto force_balance; 8275 8276 /* 8277 * When dst_cpu is idle, prevent SMP nice and/or asymmetric group 8278 * capacities from resulting in underutilization due to avg_load. 8279 */ 8280 if (env->idle != CPU_NOT_IDLE && group_has_capacity(env, local) && 8281 busiest->group_no_capacity) 8282 goto force_balance; 8283 8284 /* 8285 * If the local group is busier than the selected busiest group 8286 * don't try and pull any tasks. 8287 */ 8288 if (local->avg_load >= busiest->avg_load) 8289 goto out_balanced; 8290 8291 /* 8292 * Don't pull any tasks if this group is already above the domain 8293 * average load. 8294 */ 8295 if (local->avg_load >= sds.avg_load) 8296 goto out_balanced; 8297 8298 if (env->idle == CPU_IDLE) { 8299 /* 8300 * This cpu is idle. If the busiest group is not overloaded 8301 * and there is no imbalance between this and busiest group 8302 * wrt idle cpus, it is balanced. The imbalance becomes 8303 * significant if the diff is greater than 1 otherwise we 8304 * might end up to just move the imbalance on another group 8305 */ 8306 if ((busiest->group_type != group_overloaded) && 8307 (local->idle_cpus <= (busiest->idle_cpus + 1))) 8308 goto out_balanced; 8309 } else { 8310 /* 8311 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use 8312 * imbalance_pct to be conservative. 8313 */ 8314 if (100 * busiest->avg_load <= 8315 env->sd->imbalance_pct * local->avg_load) 8316 goto out_balanced; 8317 } 8318 8319 force_balance: 8320 /* Looks like there is an imbalance. Compute it */ 8321 calculate_imbalance(env, &sds); 8322 return sds.busiest; 8323 8324 out_balanced: 8325 env->imbalance = 0; 8326 return NULL; 8327 } 8328 8329 /* 8330 * find_busiest_queue - find the busiest runqueue among the cpus in group. 8331 */ 8332 static struct rq *find_busiest_queue(struct lb_env *env, 8333 struct sched_group *group) 8334 { 8335 struct rq *busiest = NULL, *rq; 8336 unsigned long busiest_load = 0, busiest_capacity = 1; 8337 int i; 8338 8339 for_each_cpu_and(i, sched_group_span(group), env->cpus) { 8340 unsigned long capacity, wl; 8341 enum fbq_type rt; 8342 8343 rq = cpu_rq(i); 8344 rt = fbq_classify_rq(rq); 8345 8346 /* 8347 * We classify groups/runqueues into three groups: 8348 * - regular: there are !numa tasks 8349 * - remote: there are numa tasks that run on the 'wrong' node 8350 * - all: there is no distinction 8351 * 8352 * In order to avoid migrating ideally placed numa tasks, 8353 * ignore those when there's better options. 8354 * 8355 * If we ignore the actual busiest queue to migrate another 8356 * task, the next balance pass can still reduce the busiest 8357 * queue by moving tasks around inside the node. 8358 * 8359 * If we cannot move enough load due to this classification 8360 * the next pass will adjust the group classification and 8361 * allow migration of more tasks. 8362 * 8363 * Both cases only affect the total convergence complexity. 8364 */ 8365 if (rt > env->fbq_type) 8366 continue; 8367 8368 capacity = capacity_of(i); 8369 8370 wl = weighted_cpuload(rq); 8371 8372 /* 8373 * When comparing with imbalance, use weighted_cpuload() 8374 * which is not scaled with the cpu capacity. 8375 */ 8376 8377 if (rq->nr_running == 1 && wl > env->imbalance && 8378 !check_cpu_capacity(rq, env->sd)) 8379 continue; 8380 8381 /* 8382 * For the load comparisons with the other cpu's, consider 8383 * the weighted_cpuload() scaled with the cpu capacity, so 8384 * that the load can be moved away from the cpu that is 8385 * potentially running at a lower capacity. 8386 * 8387 * Thus we're looking for max(wl_i / capacity_i), crosswise 8388 * multiplication to rid ourselves of the division works out 8389 * to: wl_i * capacity_j > wl_j * capacity_i; where j is 8390 * our previous maximum. 8391 */ 8392 if (wl * busiest_capacity > busiest_load * capacity) { 8393 busiest_load = wl; 8394 busiest_capacity = capacity; 8395 busiest = rq; 8396 } 8397 } 8398 8399 return busiest; 8400 } 8401 8402 /* 8403 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but 8404 * so long as it is large enough. 8405 */ 8406 #define MAX_PINNED_INTERVAL 512 8407 8408 static int need_active_balance(struct lb_env *env) 8409 { 8410 struct sched_domain *sd = env->sd; 8411 8412 if (env->idle == CPU_NEWLY_IDLE) { 8413 8414 /* 8415 * ASYM_PACKING needs to force migrate tasks from busy but 8416 * lower priority CPUs in order to pack all tasks in the 8417 * highest priority CPUs. 8418 */ 8419 if ((sd->flags & SD_ASYM_PACKING) && 8420 sched_asym_prefer(env->dst_cpu, env->src_cpu)) 8421 return 1; 8422 } 8423 8424 /* 8425 * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task. 8426 * It's worth migrating the task if the src_cpu's capacity is reduced 8427 * because of other sched_class or IRQs if more capacity stays 8428 * available on dst_cpu. 8429 */ 8430 if ((env->idle != CPU_NOT_IDLE) && 8431 (env->src_rq->cfs.h_nr_running == 1)) { 8432 if ((check_cpu_capacity(env->src_rq, sd)) && 8433 (capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100)) 8434 return 1; 8435 } 8436 8437 return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2); 8438 } 8439 8440 static int active_load_balance_cpu_stop(void *data); 8441 8442 static int should_we_balance(struct lb_env *env) 8443 { 8444 struct sched_group *sg = env->sd->groups; 8445 int cpu, balance_cpu = -1; 8446 8447 /* 8448 * Ensure the balancing environment is consistent; can happen 8449 * when the softirq triggers 'during' hotplug. 8450 */ 8451 if (!cpumask_test_cpu(env->dst_cpu, env->cpus)) 8452 return 0; 8453 8454 /* 8455 * In the newly idle case, we will allow all the cpu's 8456 * to do the newly idle load balance. 8457 */ 8458 if (env->idle == CPU_NEWLY_IDLE) 8459 return 1; 8460 8461 /* Try to find first idle cpu */ 8462 for_each_cpu_and(cpu, group_balance_mask(sg), env->cpus) { 8463 if (!idle_cpu(cpu)) 8464 continue; 8465 8466 balance_cpu = cpu; 8467 break; 8468 } 8469 8470 if (balance_cpu == -1) 8471 balance_cpu = group_balance_cpu(sg); 8472 8473 /* 8474 * First idle cpu or the first cpu(busiest) in this sched group 8475 * is eligible for doing load balancing at this and above domains. 8476 */ 8477 return balance_cpu == env->dst_cpu; 8478 } 8479 8480 /* 8481 * Check this_cpu to ensure it is balanced within domain. Attempt to move 8482 * tasks if there is an imbalance. 8483 */ 8484 static int load_balance(int this_cpu, struct rq *this_rq, 8485 struct sched_domain *sd, enum cpu_idle_type idle, 8486 int *continue_balancing) 8487 { 8488 int ld_moved, cur_ld_moved, active_balance = 0; 8489 struct sched_domain *sd_parent = sd->parent; 8490 struct sched_group *group; 8491 struct rq *busiest; 8492 struct rq_flags rf; 8493 struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask); 8494 8495 struct lb_env env = { 8496 .sd = sd, 8497 .dst_cpu = this_cpu, 8498 .dst_rq = this_rq, 8499 .dst_grpmask = sched_group_span(sd->groups), 8500 .idle = idle, 8501 .loop_break = sched_nr_migrate_break, 8502 .cpus = cpus, 8503 .fbq_type = all, 8504 .tasks = LIST_HEAD_INIT(env.tasks), 8505 }; 8506 8507 cpumask_and(cpus, sched_domain_span(sd), cpu_active_mask); 8508 8509 schedstat_inc(sd->lb_count[idle]); 8510 8511 redo: 8512 if (!should_we_balance(&env)) { 8513 *continue_balancing = 0; 8514 goto out_balanced; 8515 } 8516 8517 group = find_busiest_group(&env); 8518 if (!group) { 8519 schedstat_inc(sd->lb_nobusyg[idle]); 8520 goto out_balanced; 8521 } 8522 8523 busiest = find_busiest_queue(&env, group); 8524 if (!busiest) { 8525 schedstat_inc(sd->lb_nobusyq[idle]); 8526 goto out_balanced; 8527 } 8528 8529 BUG_ON(busiest == env.dst_rq); 8530 8531 schedstat_add(sd->lb_imbalance[idle], env.imbalance); 8532 8533 env.src_cpu = busiest->cpu; 8534 env.src_rq = busiest; 8535 8536 ld_moved = 0; 8537 if (busiest->nr_running > 1) { 8538 /* 8539 * Attempt to move tasks. If find_busiest_group has found 8540 * an imbalance but busiest->nr_running <= 1, the group is 8541 * still unbalanced. ld_moved simply stays zero, so it is 8542 * correctly treated as an imbalance. 8543 */ 8544 env.flags |= LBF_ALL_PINNED; 8545 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running); 8546 8547 more_balance: 8548 rq_lock_irqsave(busiest, &rf); 8549 update_rq_clock(busiest); 8550 8551 /* 8552 * cur_ld_moved - load moved in current iteration 8553 * ld_moved - cumulative load moved across iterations 8554 */ 8555 cur_ld_moved = detach_tasks(&env); 8556 8557 /* 8558 * We've detached some tasks from busiest_rq. Every 8559 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely 8560 * unlock busiest->lock, and we are able to be sure 8561 * that nobody can manipulate the tasks in parallel. 8562 * See task_rq_lock() family for the details. 8563 */ 8564 8565 rq_unlock(busiest, &rf); 8566 8567 if (cur_ld_moved) { 8568 attach_tasks(&env); 8569 ld_moved += cur_ld_moved; 8570 } 8571 8572 local_irq_restore(rf.flags); 8573 8574 if (env.flags & LBF_NEED_BREAK) { 8575 env.flags &= ~LBF_NEED_BREAK; 8576 goto more_balance; 8577 } 8578 8579 /* 8580 * Revisit (affine) tasks on src_cpu that couldn't be moved to 8581 * us and move them to an alternate dst_cpu in our sched_group 8582 * where they can run. The upper limit on how many times we 8583 * iterate on same src_cpu is dependent on number of cpus in our 8584 * sched_group. 8585 * 8586 * This changes load balance semantics a bit on who can move 8587 * load to a given_cpu. In addition to the given_cpu itself 8588 * (or a ilb_cpu acting on its behalf where given_cpu is 8589 * nohz-idle), we now have balance_cpu in a position to move 8590 * load to given_cpu. In rare situations, this may cause 8591 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding 8592 * _independently_ and at _same_ time to move some load to 8593 * given_cpu) causing exceess load to be moved to given_cpu. 8594 * This however should not happen so much in practice and 8595 * moreover subsequent load balance cycles should correct the 8596 * excess load moved. 8597 */ 8598 if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) { 8599 8600 /* Prevent to re-select dst_cpu via env's cpus */ 8601 cpumask_clear_cpu(env.dst_cpu, env.cpus); 8602 8603 env.dst_rq = cpu_rq(env.new_dst_cpu); 8604 env.dst_cpu = env.new_dst_cpu; 8605 env.flags &= ~LBF_DST_PINNED; 8606 env.loop = 0; 8607 env.loop_break = sched_nr_migrate_break; 8608 8609 /* 8610 * Go back to "more_balance" rather than "redo" since we 8611 * need to continue with same src_cpu. 8612 */ 8613 goto more_balance; 8614 } 8615 8616 /* 8617 * We failed to reach balance because of affinity. 8618 */ 8619 if (sd_parent) { 8620 int *group_imbalance = &sd_parent->groups->sgc->imbalance; 8621 8622 if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0) 8623 *group_imbalance = 1; 8624 } 8625 8626 /* All tasks on this runqueue were pinned by CPU affinity */ 8627 if (unlikely(env.flags & LBF_ALL_PINNED)) { 8628 cpumask_clear_cpu(cpu_of(busiest), cpus); 8629 /* 8630 * Attempting to continue load balancing at the current 8631 * sched_domain level only makes sense if there are 8632 * active CPUs remaining as possible busiest CPUs to 8633 * pull load from which are not contained within the 8634 * destination group that is receiving any migrated 8635 * load. 8636 */ 8637 if (!cpumask_subset(cpus, env.dst_grpmask)) { 8638 env.loop = 0; 8639 env.loop_break = sched_nr_migrate_break; 8640 goto redo; 8641 } 8642 goto out_all_pinned; 8643 } 8644 } 8645 8646 if (!ld_moved) { 8647 schedstat_inc(sd->lb_failed[idle]); 8648 /* 8649 * Increment the failure counter only on periodic balance. 8650 * We do not want newidle balance, which can be very 8651 * frequent, pollute the failure counter causing 8652 * excessive cache_hot migrations and active balances. 8653 */ 8654 if (idle != CPU_NEWLY_IDLE) 8655 sd->nr_balance_failed++; 8656 8657 if (need_active_balance(&env)) { 8658 unsigned long flags; 8659 8660 raw_spin_lock_irqsave(&busiest->lock, flags); 8661 8662 /* don't kick the active_load_balance_cpu_stop, 8663 * if the curr task on busiest cpu can't be 8664 * moved to this_cpu 8665 */ 8666 if (!cpumask_test_cpu(this_cpu, &busiest->curr->cpus_allowed)) { 8667 raw_spin_unlock_irqrestore(&busiest->lock, 8668 flags); 8669 env.flags |= LBF_ALL_PINNED; 8670 goto out_one_pinned; 8671 } 8672 8673 /* 8674 * ->active_balance synchronizes accesses to 8675 * ->active_balance_work. Once set, it's cleared 8676 * only after active load balance is finished. 8677 */ 8678 if (!busiest->active_balance) { 8679 busiest->active_balance = 1; 8680 busiest->push_cpu = this_cpu; 8681 active_balance = 1; 8682 } 8683 raw_spin_unlock_irqrestore(&busiest->lock, flags); 8684 8685 if (active_balance) { 8686 stop_one_cpu_nowait(cpu_of(busiest), 8687 active_load_balance_cpu_stop, busiest, 8688 &busiest->active_balance_work); 8689 } 8690 8691 /* We've kicked active balancing, force task migration. */ 8692 sd->nr_balance_failed = sd->cache_nice_tries+1; 8693 } 8694 } else 8695 sd->nr_balance_failed = 0; 8696 8697 if (likely(!active_balance)) { 8698 /* We were unbalanced, so reset the balancing interval */ 8699 sd->balance_interval = sd->min_interval; 8700 } else { 8701 /* 8702 * If we've begun active balancing, start to back off. This 8703 * case may not be covered by the all_pinned logic if there 8704 * is only 1 task on the busy runqueue (because we don't call 8705 * detach_tasks). 8706 */ 8707 if (sd->balance_interval < sd->max_interval) 8708 sd->balance_interval *= 2; 8709 } 8710 8711 goto out; 8712 8713 out_balanced: 8714 /* 8715 * We reach balance although we may have faced some affinity 8716 * constraints. Clear the imbalance flag if it was set. 8717 */ 8718 if (sd_parent) { 8719 int *group_imbalance = &sd_parent->groups->sgc->imbalance; 8720 8721 if (*group_imbalance) 8722 *group_imbalance = 0; 8723 } 8724 8725 out_all_pinned: 8726 /* 8727 * We reach balance because all tasks are pinned at this level so 8728 * we can't migrate them. Let the imbalance flag set so parent level 8729 * can try to migrate them. 8730 */ 8731 schedstat_inc(sd->lb_balanced[idle]); 8732 8733 sd->nr_balance_failed = 0; 8734 8735 out_one_pinned: 8736 /* tune up the balancing interval */ 8737 if (((env.flags & LBF_ALL_PINNED) && 8738 sd->balance_interval < MAX_PINNED_INTERVAL) || 8739 (sd->balance_interval < sd->max_interval)) 8740 sd->balance_interval *= 2; 8741 8742 ld_moved = 0; 8743 out: 8744 return ld_moved; 8745 } 8746 8747 static inline unsigned long 8748 get_sd_balance_interval(struct sched_domain *sd, int cpu_busy) 8749 { 8750 unsigned long interval = sd->balance_interval; 8751 8752 if (cpu_busy) 8753 interval *= sd->busy_factor; 8754 8755 /* scale ms to jiffies */ 8756 interval = msecs_to_jiffies(interval); 8757 interval = clamp(interval, 1UL, max_load_balance_interval); 8758 8759 return interval; 8760 } 8761 8762 static inline void 8763 update_next_balance(struct sched_domain *sd, unsigned long *next_balance) 8764 { 8765 unsigned long interval, next; 8766 8767 /* used by idle balance, so cpu_busy = 0 */ 8768 interval = get_sd_balance_interval(sd, 0); 8769 next = sd->last_balance + interval; 8770 8771 if (time_after(*next_balance, next)) 8772 *next_balance = next; 8773 } 8774 8775 /* 8776 * idle_balance is called by schedule() if this_cpu is about to become 8777 * idle. Attempts to pull tasks from other CPUs. 8778 */ 8779 static int idle_balance(struct rq *this_rq, struct rq_flags *rf) 8780 { 8781 unsigned long next_balance = jiffies + HZ; 8782 int this_cpu = this_rq->cpu; 8783 struct sched_domain *sd; 8784 int pulled_task = 0; 8785 u64 curr_cost = 0; 8786 8787 /* 8788 * We must set idle_stamp _before_ calling idle_balance(), such that we 8789 * measure the duration of idle_balance() as idle time. 8790 */ 8791 this_rq->idle_stamp = rq_clock(this_rq); 8792 8793 /* 8794 * Do not pull tasks towards !active CPUs... 8795 */ 8796 if (!cpu_active(this_cpu)) 8797 return 0; 8798 8799 /* 8800 * This is OK, because current is on_cpu, which avoids it being picked 8801 * for load-balance and preemption/IRQs are still disabled avoiding 8802 * further scheduler activity on it and we're being very careful to 8803 * re-start the picking loop. 8804 */ 8805 rq_unpin_lock(this_rq, rf); 8806 8807 if (this_rq->avg_idle < sysctl_sched_migration_cost || 8808 !this_rq->rd->overload) { 8809 rcu_read_lock(); 8810 sd = rcu_dereference_check_sched_domain(this_rq->sd); 8811 if (sd) 8812 update_next_balance(sd, &next_balance); 8813 rcu_read_unlock(); 8814 8815 goto out; 8816 } 8817 8818 raw_spin_unlock(&this_rq->lock); 8819 8820 update_blocked_averages(this_cpu); 8821 rcu_read_lock(); 8822 for_each_domain(this_cpu, sd) { 8823 int continue_balancing = 1; 8824 u64 t0, domain_cost; 8825 8826 if (!(sd->flags & SD_LOAD_BALANCE)) 8827 continue; 8828 8829 if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) { 8830 update_next_balance(sd, &next_balance); 8831 break; 8832 } 8833 8834 if (sd->flags & SD_BALANCE_NEWIDLE) { 8835 t0 = sched_clock_cpu(this_cpu); 8836 8837 pulled_task = load_balance(this_cpu, this_rq, 8838 sd, CPU_NEWLY_IDLE, 8839 &continue_balancing); 8840 8841 domain_cost = sched_clock_cpu(this_cpu) - t0; 8842 if (domain_cost > sd->max_newidle_lb_cost) 8843 sd->max_newidle_lb_cost = domain_cost; 8844 8845 curr_cost += domain_cost; 8846 } 8847 8848 update_next_balance(sd, &next_balance); 8849 8850 /* 8851 * Stop searching for tasks to pull if there are 8852 * now runnable tasks on this rq. 8853 */ 8854 if (pulled_task || this_rq->nr_running > 0) 8855 break; 8856 } 8857 rcu_read_unlock(); 8858 8859 raw_spin_lock(&this_rq->lock); 8860 8861 if (curr_cost > this_rq->max_idle_balance_cost) 8862 this_rq->max_idle_balance_cost = curr_cost; 8863 8864 /* 8865 * While browsing the domains, we released the rq lock, a task could 8866 * have been enqueued in the meantime. Since we're not going idle, 8867 * pretend we pulled a task. 8868 */ 8869 if (this_rq->cfs.h_nr_running && !pulled_task) 8870 pulled_task = 1; 8871 8872 out: 8873 /* Move the next balance forward */ 8874 if (time_after(this_rq->next_balance, next_balance)) 8875 this_rq->next_balance = next_balance; 8876 8877 /* Is there a task of a high priority class? */ 8878 if (this_rq->nr_running != this_rq->cfs.h_nr_running) 8879 pulled_task = -1; 8880 8881 if (pulled_task) 8882 this_rq->idle_stamp = 0; 8883 8884 rq_repin_lock(this_rq, rf); 8885 8886 return pulled_task; 8887 } 8888 8889 /* 8890 * active_load_balance_cpu_stop is run by cpu stopper. It pushes 8891 * running tasks off the busiest CPU onto idle CPUs. It requires at 8892 * least 1 task to be running on each physical CPU where possible, and 8893 * avoids physical / logical imbalances. 8894 */ 8895 static int active_load_balance_cpu_stop(void *data) 8896 { 8897 struct rq *busiest_rq = data; 8898 int busiest_cpu = cpu_of(busiest_rq); 8899 int target_cpu = busiest_rq->push_cpu; 8900 struct rq *target_rq = cpu_rq(target_cpu); 8901 struct sched_domain *sd; 8902 struct task_struct *p = NULL; 8903 struct rq_flags rf; 8904 8905 rq_lock_irq(busiest_rq, &rf); 8906 /* 8907 * Between queueing the stop-work and running it is a hole in which 8908 * CPUs can become inactive. We should not move tasks from or to 8909 * inactive CPUs. 8910 */ 8911 if (!cpu_active(busiest_cpu) || !cpu_active(target_cpu)) 8912 goto out_unlock; 8913 8914 /* make sure the requested cpu hasn't gone down in the meantime */ 8915 if (unlikely(busiest_cpu != smp_processor_id() || 8916 !busiest_rq->active_balance)) 8917 goto out_unlock; 8918 8919 /* Is there any task to move? */ 8920 if (busiest_rq->nr_running <= 1) 8921 goto out_unlock; 8922 8923 /* 8924 * This condition is "impossible", if it occurs 8925 * we need to fix it. Originally reported by 8926 * Bjorn Helgaas on a 128-cpu setup. 8927 */ 8928 BUG_ON(busiest_rq == target_rq); 8929 8930 /* Search for an sd spanning us and the target CPU. */ 8931 rcu_read_lock(); 8932 for_each_domain(target_cpu, sd) { 8933 if ((sd->flags & SD_LOAD_BALANCE) && 8934 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd))) 8935 break; 8936 } 8937 8938 if (likely(sd)) { 8939 struct lb_env env = { 8940 .sd = sd, 8941 .dst_cpu = target_cpu, 8942 .dst_rq = target_rq, 8943 .src_cpu = busiest_rq->cpu, 8944 .src_rq = busiest_rq, 8945 .idle = CPU_IDLE, 8946 /* 8947 * can_migrate_task() doesn't need to compute new_dst_cpu 8948 * for active balancing. Since we have CPU_IDLE, but no 8949 * @dst_grpmask we need to make that test go away with lying 8950 * about DST_PINNED. 8951 */ 8952 .flags = LBF_DST_PINNED, 8953 }; 8954 8955 schedstat_inc(sd->alb_count); 8956 update_rq_clock(busiest_rq); 8957 8958 p = detach_one_task(&env); 8959 if (p) { 8960 schedstat_inc(sd->alb_pushed); 8961 /* Active balancing done, reset the failure counter. */ 8962 sd->nr_balance_failed = 0; 8963 } else { 8964 schedstat_inc(sd->alb_failed); 8965 } 8966 } 8967 rcu_read_unlock(); 8968 out_unlock: 8969 busiest_rq->active_balance = 0; 8970 rq_unlock(busiest_rq, &rf); 8971 8972 if (p) 8973 attach_one_task(target_rq, p); 8974 8975 local_irq_enable(); 8976 8977 return 0; 8978 } 8979 8980 static inline int on_null_domain(struct rq *rq) 8981 { 8982 return unlikely(!rcu_dereference_sched(rq->sd)); 8983 } 8984 8985 #ifdef CONFIG_NO_HZ_COMMON 8986 /* 8987 * idle load balancing details 8988 * - When one of the busy CPUs notice that there may be an idle rebalancing 8989 * needed, they will kick the idle load balancer, which then does idle 8990 * load balancing for all the idle CPUs. 8991 */ 8992 static struct { 8993 cpumask_var_t idle_cpus_mask; 8994 atomic_t nr_cpus; 8995 unsigned long next_balance; /* in jiffy units */ 8996 } nohz ____cacheline_aligned; 8997 8998 static inline int find_new_ilb(void) 8999 { 9000 int ilb = cpumask_first(nohz.idle_cpus_mask); 9001 9002 if (ilb < nr_cpu_ids && idle_cpu(ilb)) 9003 return ilb; 9004 9005 return nr_cpu_ids; 9006 } 9007 9008 /* 9009 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the 9010 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle 9011 * CPU (if there is one). 9012 */ 9013 static void nohz_balancer_kick(void) 9014 { 9015 int ilb_cpu; 9016 9017 nohz.next_balance++; 9018 9019 ilb_cpu = find_new_ilb(); 9020 9021 if (ilb_cpu >= nr_cpu_ids) 9022 return; 9023 9024 if (test_and_set_bit(NOHZ_BALANCE_KICK, nohz_flags(ilb_cpu))) 9025 return; 9026 /* 9027 * Use smp_send_reschedule() instead of resched_cpu(). 9028 * This way we generate a sched IPI on the target cpu which 9029 * is idle. And the softirq performing nohz idle load balance 9030 * will be run before returning from the IPI. 9031 */ 9032 smp_send_reschedule(ilb_cpu); 9033 return; 9034 } 9035 9036 void nohz_balance_exit_idle(unsigned int cpu) 9037 { 9038 if (unlikely(test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))) { 9039 /* 9040 * Completely isolated CPUs don't ever set, so we must test. 9041 */ 9042 if (likely(cpumask_test_cpu(cpu, nohz.idle_cpus_mask))) { 9043 cpumask_clear_cpu(cpu, nohz.idle_cpus_mask); 9044 atomic_dec(&nohz.nr_cpus); 9045 } 9046 clear_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)); 9047 } 9048 } 9049 9050 static inline void set_cpu_sd_state_busy(void) 9051 { 9052 struct sched_domain *sd; 9053 int cpu = smp_processor_id(); 9054 9055 rcu_read_lock(); 9056 sd = rcu_dereference(per_cpu(sd_llc, cpu)); 9057 9058 if (!sd || !sd->nohz_idle) 9059 goto unlock; 9060 sd->nohz_idle = 0; 9061 9062 atomic_inc(&sd->shared->nr_busy_cpus); 9063 unlock: 9064 rcu_read_unlock(); 9065 } 9066 9067 void set_cpu_sd_state_idle(void) 9068 { 9069 struct sched_domain *sd; 9070 int cpu = smp_processor_id(); 9071 9072 rcu_read_lock(); 9073 sd = rcu_dereference(per_cpu(sd_llc, cpu)); 9074 9075 if (!sd || sd->nohz_idle) 9076 goto unlock; 9077 sd->nohz_idle = 1; 9078 9079 atomic_dec(&sd->shared->nr_busy_cpus); 9080 unlock: 9081 rcu_read_unlock(); 9082 } 9083 9084 /* 9085 * This routine will record that the cpu is going idle with tick stopped. 9086 * This info will be used in performing idle load balancing in the future. 9087 */ 9088 void nohz_balance_enter_idle(int cpu) 9089 { 9090 /* 9091 * If this cpu is going down, then nothing needs to be done. 9092 */ 9093 if (!cpu_active(cpu)) 9094 return; 9095 9096 /* Spare idle load balancing on CPUs that don't want to be disturbed: */ 9097 if (!housekeeping_cpu(cpu, HK_FLAG_SCHED)) 9098 return; 9099 9100 if (test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu))) 9101 return; 9102 9103 /* 9104 * If we're a completely isolated CPU, we don't play. 9105 */ 9106 if (on_null_domain(cpu_rq(cpu))) 9107 return; 9108 9109 cpumask_set_cpu(cpu, nohz.idle_cpus_mask); 9110 atomic_inc(&nohz.nr_cpus); 9111 set_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)); 9112 } 9113 #endif 9114 9115 static DEFINE_SPINLOCK(balancing); 9116 9117 /* 9118 * Scale the max load_balance interval with the number of CPUs in the system. 9119 * This trades load-balance latency on larger machines for less cross talk. 9120 */ 9121 void update_max_interval(void) 9122 { 9123 max_load_balance_interval = HZ*num_online_cpus()/10; 9124 } 9125 9126 /* 9127 * It checks each scheduling domain to see if it is due to be balanced, 9128 * and initiates a balancing operation if so. 9129 * 9130 * Balancing parameters are set up in init_sched_domains. 9131 */ 9132 static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle) 9133 { 9134 int continue_balancing = 1; 9135 int cpu = rq->cpu; 9136 unsigned long interval; 9137 struct sched_domain *sd; 9138 /* Earliest time when we have to do rebalance again */ 9139 unsigned long next_balance = jiffies + 60*HZ; 9140 int update_next_balance = 0; 9141 int need_serialize, need_decay = 0; 9142 u64 max_cost = 0; 9143 9144 update_blocked_averages(cpu); 9145 9146 rcu_read_lock(); 9147 for_each_domain(cpu, sd) { 9148 /* 9149 * Decay the newidle max times here because this is a regular 9150 * visit to all the domains. Decay ~1% per second. 9151 */ 9152 if (time_after(jiffies, sd->next_decay_max_lb_cost)) { 9153 sd->max_newidle_lb_cost = 9154 (sd->max_newidle_lb_cost * 253) / 256; 9155 sd->next_decay_max_lb_cost = jiffies + HZ; 9156 need_decay = 1; 9157 } 9158 max_cost += sd->max_newidle_lb_cost; 9159 9160 if (!(sd->flags & SD_LOAD_BALANCE)) 9161 continue; 9162 9163 /* 9164 * Stop the load balance at this level. There is another 9165 * CPU in our sched group which is doing load balancing more 9166 * actively. 9167 */ 9168 if (!continue_balancing) { 9169 if (need_decay) 9170 continue; 9171 break; 9172 } 9173 9174 interval = get_sd_balance_interval(sd, idle != CPU_IDLE); 9175 9176 need_serialize = sd->flags & SD_SERIALIZE; 9177 if (need_serialize) { 9178 if (!spin_trylock(&balancing)) 9179 goto out; 9180 } 9181 9182 if (time_after_eq(jiffies, sd->last_balance + interval)) { 9183 if (load_balance(cpu, rq, sd, idle, &continue_balancing)) { 9184 /* 9185 * The LBF_DST_PINNED logic could have changed 9186 * env->dst_cpu, so we can't know our idle 9187 * state even if we migrated tasks. Update it. 9188 */ 9189 idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE; 9190 } 9191 sd->last_balance = jiffies; 9192 interval = get_sd_balance_interval(sd, idle != CPU_IDLE); 9193 } 9194 if (need_serialize) 9195 spin_unlock(&balancing); 9196 out: 9197 if (time_after(next_balance, sd->last_balance + interval)) { 9198 next_balance = sd->last_balance + interval; 9199 update_next_balance = 1; 9200 } 9201 } 9202 if (need_decay) { 9203 /* 9204 * Ensure the rq-wide value also decays but keep it at a 9205 * reasonable floor to avoid funnies with rq->avg_idle. 9206 */ 9207 rq->max_idle_balance_cost = 9208 max((u64)sysctl_sched_migration_cost, max_cost); 9209 } 9210 rcu_read_unlock(); 9211 9212 /* 9213 * next_balance will be updated only when there is a need. 9214 * When the cpu is attached to null domain for ex, it will not be 9215 * updated. 9216 */ 9217 if (likely(update_next_balance)) { 9218 rq->next_balance = next_balance; 9219 9220 #ifdef CONFIG_NO_HZ_COMMON 9221 /* 9222 * If this CPU has been elected to perform the nohz idle 9223 * balance. Other idle CPUs have already rebalanced with 9224 * nohz_idle_balance() and nohz.next_balance has been 9225 * updated accordingly. This CPU is now running the idle load 9226 * balance for itself and we need to update the 9227 * nohz.next_balance accordingly. 9228 */ 9229 if ((idle == CPU_IDLE) && time_after(nohz.next_balance, rq->next_balance)) 9230 nohz.next_balance = rq->next_balance; 9231 #endif 9232 } 9233 } 9234 9235 #ifdef CONFIG_NO_HZ_COMMON 9236 /* 9237 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the 9238 * rebalancing for all the cpus for whom scheduler ticks are stopped. 9239 */ 9240 static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) 9241 { 9242 int this_cpu = this_rq->cpu; 9243 struct rq *rq; 9244 int balance_cpu; 9245 /* Earliest time when we have to do rebalance again */ 9246 unsigned long next_balance = jiffies + 60*HZ; 9247 int update_next_balance = 0; 9248 9249 if (idle != CPU_IDLE || 9250 !test_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu))) 9251 goto end; 9252 9253 for_each_cpu(balance_cpu, nohz.idle_cpus_mask) { 9254 if (balance_cpu == this_cpu || !idle_cpu(balance_cpu)) 9255 continue; 9256 9257 /* 9258 * If this cpu gets work to do, stop the load balancing 9259 * work being done for other cpus. Next load 9260 * balancing owner will pick it up. 9261 */ 9262 if (need_resched()) 9263 break; 9264 9265 rq = cpu_rq(balance_cpu); 9266 9267 /* 9268 * If time for next balance is due, 9269 * do the balance. 9270 */ 9271 if (time_after_eq(jiffies, rq->next_balance)) { 9272 struct rq_flags rf; 9273 9274 rq_lock_irq(rq, &rf); 9275 update_rq_clock(rq); 9276 cpu_load_update_idle(rq); 9277 rq_unlock_irq(rq, &rf); 9278 9279 rebalance_domains(rq, CPU_IDLE); 9280 } 9281 9282 if (time_after(next_balance, rq->next_balance)) { 9283 next_balance = rq->next_balance; 9284 update_next_balance = 1; 9285 } 9286 } 9287 9288 /* 9289 * next_balance will be updated only when there is a need. 9290 * When the CPU is attached to null domain for ex, it will not be 9291 * updated. 9292 */ 9293 if (likely(update_next_balance)) 9294 nohz.next_balance = next_balance; 9295 end: 9296 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu)); 9297 } 9298 9299 /* 9300 * Current heuristic for kicking the idle load balancer in the presence 9301 * of an idle cpu in the system. 9302 * - This rq has more than one task. 9303 * - This rq has at least one CFS task and the capacity of the CPU is 9304 * significantly reduced because of RT tasks or IRQs. 9305 * - At parent of LLC scheduler domain level, this cpu's scheduler group has 9306 * multiple busy cpu. 9307 * - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler 9308 * domain span are idle. 9309 */ 9310 static inline bool nohz_kick_needed(struct rq *rq) 9311 { 9312 unsigned long now = jiffies; 9313 struct sched_domain_shared *sds; 9314 struct sched_domain *sd; 9315 int nr_busy, i, cpu = rq->cpu; 9316 bool kick = false; 9317 9318 if (unlikely(rq->idle_balance)) 9319 return false; 9320 9321 /* 9322 * We may be recently in ticked or tickless idle mode. At the first 9323 * busy tick after returning from idle, we will update the busy stats. 9324 */ 9325 set_cpu_sd_state_busy(); 9326 nohz_balance_exit_idle(cpu); 9327 9328 /* 9329 * None are in tickless mode and hence no need for NOHZ idle load 9330 * balancing. 9331 */ 9332 if (likely(!atomic_read(&nohz.nr_cpus))) 9333 return false; 9334 9335 if (time_before(now, nohz.next_balance)) 9336 return false; 9337 9338 if (rq->nr_running >= 2) 9339 return true; 9340 9341 rcu_read_lock(); 9342 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu)); 9343 if (sds) { 9344 /* 9345 * XXX: write a coherent comment on why we do this. 9346 * See also: http://lkml.kernel.org/r/20111202010832.602203411@sbsiddha-desk.sc.intel.com 9347 */ 9348 nr_busy = atomic_read(&sds->nr_busy_cpus); 9349 if (nr_busy > 1) { 9350 kick = true; 9351 goto unlock; 9352 } 9353 9354 } 9355 9356 sd = rcu_dereference(rq->sd); 9357 if (sd) { 9358 if ((rq->cfs.h_nr_running >= 1) && 9359 check_cpu_capacity(rq, sd)) { 9360 kick = true; 9361 goto unlock; 9362 } 9363 } 9364 9365 sd = rcu_dereference(per_cpu(sd_asym, cpu)); 9366 if (sd) { 9367 for_each_cpu(i, sched_domain_span(sd)) { 9368 if (i == cpu || 9369 !cpumask_test_cpu(i, nohz.idle_cpus_mask)) 9370 continue; 9371 9372 if (sched_asym_prefer(i, cpu)) { 9373 kick = true; 9374 goto unlock; 9375 } 9376 } 9377 } 9378 unlock: 9379 rcu_read_unlock(); 9380 return kick; 9381 } 9382 #else 9383 static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) { } 9384 #endif 9385 9386 /* 9387 * run_rebalance_domains is triggered when needed from the scheduler tick. 9388 * Also triggered for nohz idle balancing (with nohz_balancing_kick set). 9389 */ 9390 static __latent_entropy void run_rebalance_domains(struct softirq_action *h) 9391 { 9392 struct rq *this_rq = this_rq(); 9393 enum cpu_idle_type idle = this_rq->idle_balance ? 9394 CPU_IDLE : CPU_NOT_IDLE; 9395 9396 /* 9397 * If this cpu has a pending nohz_balance_kick, then do the 9398 * balancing on behalf of the other idle cpus whose ticks are 9399 * stopped. Do nohz_idle_balance *before* rebalance_domains to 9400 * give the idle cpus a chance to load balance. Else we may 9401 * load balance only within the local sched_domain hierarchy 9402 * and abort nohz_idle_balance altogether if we pull some load. 9403 */ 9404 nohz_idle_balance(this_rq, idle); 9405 rebalance_domains(this_rq, idle); 9406 } 9407 9408 /* 9409 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing. 9410 */ 9411 void trigger_load_balance(struct rq *rq) 9412 { 9413 /* Don't need to rebalance while attached to NULL domain */ 9414 if (unlikely(on_null_domain(rq))) 9415 return; 9416 9417 if (time_after_eq(jiffies, rq->next_balance)) 9418 raise_softirq(SCHED_SOFTIRQ); 9419 #ifdef CONFIG_NO_HZ_COMMON 9420 if (nohz_kick_needed(rq)) 9421 nohz_balancer_kick(); 9422 #endif 9423 } 9424 9425 static void rq_online_fair(struct rq *rq) 9426 { 9427 update_sysctl(); 9428 9429 update_runtime_enabled(rq); 9430 } 9431 9432 static void rq_offline_fair(struct rq *rq) 9433 { 9434 update_sysctl(); 9435 9436 /* Ensure any throttled groups are reachable by pick_next_task */ 9437 unthrottle_offline_cfs_rqs(rq); 9438 } 9439 9440 #endif /* CONFIG_SMP */ 9441 9442 /* 9443 * scheduler tick hitting a task of our scheduling class: 9444 */ 9445 static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued) 9446 { 9447 struct cfs_rq *cfs_rq; 9448 struct sched_entity *se = &curr->se; 9449 9450 for_each_sched_entity(se) { 9451 cfs_rq = cfs_rq_of(se); 9452 entity_tick(cfs_rq, se, queued); 9453 } 9454 9455 if (static_branch_unlikely(&sched_numa_balancing)) 9456 task_tick_numa(rq, curr); 9457 } 9458 9459 /* 9460 * called on fork with the child task as argument from the parent's context 9461 * - child not yet on the tasklist 9462 * - preemption disabled 9463 */ 9464 static void task_fork_fair(struct task_struct *p) 9465 { 9466 struct cfs_rq *cfs_rq; 9467 struct sched_entity *se = &p->se, *curr; 9468 struct rq *rq = this_rq(); 9469 struct rq_flags rf; 9470 9471 rq_lock(rq, &rf); 9472 update_rq_clock(rq); 9473 9474 cfs_rq = task_cfs_rq(current); 9475 curr = cfs_rq->curr; 9476 if (curr) { 9477 update_curr(cfs_rq); 9478 se->vruntime = curr->vruntime; 9479 } 9480 place_entity(cfs_rq, se, 1); 9481 9482 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) { 9483 /* 9484 * Upon rescheduling, sched_class::put_prev_task() will place 9485 * 'current' within the tree based on its new key value. 9486 */ 9487 swap(curr->vruntime, se->vruntime); 9488 resched_curr(rq); 9489 } 9490 9491 se->vruntime -= cfs_rq->min_vruntime; 9492 rq_unlock(rq, &rf); 9493 } 9494 9495 /* 9496 * Priority of the task has changed. Check to see if we preempt 9497 * the current task. 9498 */ 9499 static void 9500 prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio) 9501 { 9502 if (!task_on_rq_queued(p)) 9503 return; 9504 9505 /* 9506 * Reschedule if we are currently running on this runqueue and 9507 * our priority decreased, or if we are not currently running on 9508 * this runqueue and our priority is higher than the current's 9509 */ 9510 if (rq->curr == p) { 9511 if (p->prio > oldprio) 9512 resched_curr(rq); 9513 } else 9514 check_preempt_curr(rq, p, 0); 9515 } 9516 9517 static inline bool vruntime_normalized(struct task_struct *p) 9518 { 9519 struct sched_entity *se = &p->se; 9520 9521 /* 9522 * In both the TASK_ON_RQ_QUEUED and TASK_ON_RQ_MIGRATING cases, 9523 * the dequeue_entity(.flags=0) will already have normalized the 9524 * vruntime. 9525 */ 9526 if (p->on_rq) 9527 return true; 9528 9529 /* 9530 * When !on_rq, vruntime of the task has usually NOT been normalized. 9531 * But there are some cases where it has already been normalized: 9532 * 9533 * - A forked child which is waiting for being woken up by 9534 * wake_up_new_task(). 9535 * - A task which has been woken up by try_to_wake_up() and 9536 * waiting for actually being woken up by sched_ttwu_pending(). 9537 */ 9538 if (!se->sum_exec_runtime || p->state == TASK_WAKING) 9539 return true; 9540 9541 return false; 9542 } 9543 9544 #ifdef CONFIG_FAIR_GROUP_SCHED 9545 /* 9546 * Propagate the changes of the sched_entity across the tg tree to make it 9547 * visible to the root 9548 */ 9549 static void propagate_entity_cfs_rq(struct sched_entity *se) 9550 { 9551 struct cfs_rq *cfs_rq; 9552 9553 /* Start to propagate at parent */ 9554 se = se->parent; 9555 9556 for_each_sched_entity(se) { 9557 cfs_rq = cfs_rq_of(se); 9558 9559 if (cfs_rq_throttled(cfs_rq)) 9560 break; 9561 9562 update_load_avg(cfs_rq, se, UPDATE_TG); 9563 } 9564 } 9565 #else 9566 static void propagate_entity_cfs_rq(struct sched_entity *se) { } 9567 #endif 9568 9569 static void detach_entity_cfs_rq(struct sched_entity *se) 9570 { 9571 struct cfs_rq *cfs_rq = cfs_rq_of(se); 9572 9573 /* Catch up with the cfs_rq and remove our load when we leave */ 9574 update_load_avg(cfs_rq, se, 0); 9575 detach_entity_load_avg(cfs_rq, se); 9576 update_tg_load_avg(cfs_rq, false); 9577 propagate_entity_cfs_rq(se); 9578 } 9579 9580 static void attach_entity_cfs_rq(struct sched_entity *se) 9581 { 9582 struct cfs_rq *cfs_rq = cfs_rq_of(se); 9583 9584 #ifdef CONFIG_FAIR_GROUP_SCHED 9585 /* 9586 * Since the real-depth could have been changed (only FAIR 9587 * class maintain depth value), reset depth properly. 9588 */ 9589 se->depth = se->parent ? se->parent->depth + 1 : 0; 9590 #endif 9591 9592 /* Synchronize entity with its cfs_rq */ 9593 update_load_avg(cfs_rq, se, sched_feat(ATTACH_AGE_LOAD) ? 0 : SKIP_AGE_LOAD); 9594 attach_entity_load_avg(cfs_rq, se); 9595 update_tg_load_avg(cfs_rq, false); 9596 propagate_entity_cfs_rq(se); 9597 } 9598 9599 static void detach_task_cfs_rq(struct task_struct *p) 9600 { 9601 struct sched_entity *se = &p->se; 9602 struct cfs_rq *cfs_rq = cfs_rq_of(se); 9603 9604 if (!vruntime_normalized(p)) { 9605 /* 9606 * Fix up our vruntime so that the current sleep doesn't 9607 * cause 'unlimited' sleep bonus. 9608 */ 9609 place_entity(cfs_rq, se, 0); 9610 se->vruntime -= cfs_rq->min_vruntime; 9611 } 9612 9613 detach_entity_cfs_rq(se); 9614 } 9615 9616 static void attach_task_cfs_rq(struct task_struct *p) 9617 { 9618 struct sched_entity *se = &p->se; 9619 struct cfs_rq *cfs_rq = cfs_rq_of(se); 9620 9621 attach_entity_cfs_rq(se); 9622 9623 if (!vruntime_normalized(p)) 9624 se->vruntime += cfs_rq->min_vruntime; 9625 } 9626 9627 static void switched_from_fair(struct rq *rq, struct task_struct *p) 9628 { 9629 detach_task_cfs_rq(p); 9630 } 9631 9632 static void switched_to_fair(struct rq *rq, struct task_struct *p) 9633 { 9634 attach_task_cfs_rq(p); 9635 9636 if (task_on_rq_queued(p)) { 9637 /* 9638 * We were most likely switched from sched_rt, so 9639 * kick off the schedule if running, otherwise just see 9640 * if we can still preempt the current task. 9641 */ 9642 if (rq->curr == p) 9643 resched_curr(rq); 9644 else 9645 check_preempt_curr(rq, p, 0); 9646 } 9647 } 9648 9649 /* Account for a task changing its policy or group. 9650 * 9651 * This routine is mostly called to set cfs_rq->curr field when a task 9652 * migrates between groups/classes. 9653 */ 9654 static void set_curr_task_fair(struct rq *rq) 9655 { 9656 struct sched_entity *se = &rq->curr->se; 9657 9658 for_each_sched_entity(se) { 9659 struct cfs_rq *cfs_rq = cfs_rq_of(se); 9660 9661 set_next_entity(cfs_rq, se); 9662 /* ensure bandwidth has been allocated on our new cfs_rq */ 9663 account_cfs_rq_runtime(cfs_rq, 0); 9664 } 9665 } 9666 9667 void init_cfs_rq(struct cfs_rq *cfs_rq) 9668 { 9669 cfs_rq->tasks_timeline = RB_ROOT_CACHED; 9670 cfs_rq->min_vruntime = (u64)(-(1LL << 20)); 9671 #ifndef CONFIG_64BIT 9672 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime; 9673 #endif 9674 #ifdef CONFIG_SMP 9675 raw_spin_lock_init(&cfs_rq->removed.lock); 9676 #endif 9677 } 9678 9679 #ifdef CONFIG_FAIR_GROUP_SCHED 9680 static void task_set_group_fair(struct task_struct *p) 9681 { 9682 struct sched_entity *se = &p->se; 9683 9684 set_task_rq(p, task_cpu(p)); 9685 se->depth = se->parent ? se->parent->depth + 1 : 0; 9686 } 9687 9688 static void task_move_group_fair(struct task_struct *p) 9689 { 9690 detach_task_cfs_rq(p); 9691 set_task_rq(p, task_cpu(p)); 9692 9693 #ifdef CONFIG_SMP 9694 /* Tell se's cfs_rq has been changed -- migrated */ 9695 p->se.avg.last_update_time = 0; 9696 #endif 9697 attach_task_cfs_rq(p); 9698 } 9699 9700 static void task_change_group_fair(struct task_struct *p, int type) 9701 { 9702 switch (type) { 9703 case TASK_SET_GROUP: 9704 task_set_group_fair(p); 9705 break; 9706 9707 case TASK_MOVE_GROUP: 9708 task_move_group_fair(p); 9709 break; 9710 } 9711 } 9712 9713 void free_fair_sched_group(struct task_group *tg) 9714 { 9715 int i; 9716 9717 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg)); 9718 9719 for_each_possible_cpu(i) { 9720 if (tg->cfs_rq) 9721 kfree(tg->cfs_rq[i]); 9722 if (tg->se) 9723 kfree(tg->se[i]); 9724 } 9725 9726 kfree(tg->cfs_rq); 9727 kfree(tg->se); 9728 } 9729 9730 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent) 9731 { 9732 struct sched_entity *se; 9733 struct cfs_rq *cfs_rq; 9734 int i; 9735 9736 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL); 9737 if (!tg->cfs_rq) 9738 goto err; 9739 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL); 9740 if (!tg->se) 9741 goto err; 9742 9743 tg->shares = NICE_0_LOAD; 9744 9745 init_cfs_bandwidth(tg_cfs_bandwidth(tg)); 9746 9747 for_each_possible_cpu(i) { 9748 cfs_rq = kzalloc_node(sizeof(struct cfs_rq), 9749 GFP_KERNEL, cpu_to_node(i)); 9750 if (!cfs_rq) 9751 goto err; 9752 9753 se = kzalloc_node(sizeof(struct sched_entity), 9754 GFP_KERNEL, cpu_to_node(i)); 9755 if (!se) 9756 goto err_free_rq; 9757 9758 init_cfs_rq(cfs_rq); 9759 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]); 9760 init_entity_runnable_average(se); 9761 } 9762 9763 return 1; 9764 9765 err_free_rq: 9766 kfree(cfs_rq); 9767 err: 9768 return 0; 9769 } 9770 9771 void online_fair_sched_group(struct task_group *tg) 9772 { 9773 struct sched_entity *se; 9774 struct rq *rq; 9775 int i; 9776 9777 for_each_possible_cpu(i) { 9778 rq = cpu_rq(i); 9779 se = tg->se[i]; 9780 9781 raw_spin_lock_irq(&rq->lock); 9782 update_rq_clock(rq); 9783 attach_entity_cfs_rq(se); 9784 sync_throttle(tg, i); 9785 raw_spin_unlock_irq(&rq->lock); 9786 } 9787 } 9788 9789 void unregister_fair_sched_group(struct task_group *tg) 9790 { 9791 unsigned long flags; 9792 struct rq *rq; 9793 int cpu; 9794 9795 for_each_possible_cpu(cpu) { 9796 if (tg->se[cpu]) 9797 remove_entity_load_avg(tg->se[cpu]); 9798 9799 /* 9800 * Only empty task groups can be destroyed; so we can speculatively 9801 * check on_list without danger of it being re-added. 9802 */ 9803 if (!tg->cfs_rq[cpu]->on_list) 9804 continue; 9805 9806 rq = cpu_rq(cpu); 9807 9808 raw_spin_lock_irqsave(&rq->lock, flags); 9809 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]); 9810 raw_spin_unlock_irqrestore(&rq->lock, flags); 9811 } 9812 } 9813 9814 void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq, 9815 struct sched_entity *se, int cpu, 9816 struct sched_entity *parent) 9817 { 9818 struct rq *rq = cpu_rq(cpu); 9819 9820 cfs_rq->tg = tg; 9821 cfs_rq->rq = rq; 9822 init_cfs_rq_runtime(cfs_rq); 9823 9824 tg->cfs_rq[cpu] = cfs_rq; 9825 tg->se[cpu] = se; 9826 9827 /* se could be NULL for root_task_group */ 9828 if (!se) 9829 return; 9830 9831 if (!parent) { 9832 se->cfs_rq = &rq->cfs; 9833 se->depth = 0; 9834 } else { 9835 se->cfs_rq = parent->my_q; 9836 se->depth = parent->depth + 1; 9837 } 9838 9839 se->my_q = cfs_rq; 9840 /* guarantee group entities always have weight */ 9841 update_load_set(&se->load, NICE_0_LOAD); 9842 se->parent = parent; 9843 } 9844 9845 static DEFINE_MUTEX(shares_mutex); 9846 9847 int sched_group_set_shares(struct task_group *tg, unsigned long shares) 9848 { 9849 int i; 9850 9851 /* 9852 * We can't change the weight of the root cgroup. 9853 */ 9854 if (!tg->se[0]) 9855 return -EINVAL; 9856 9857 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES)); 9858 9859 mutex_lock(&shares_mutex); 9860 if (tg->shares == shares) 9861 goto done; 9862 9863 tg->shares = shares; 9864 for_each_possible_cpu(i) { 9865 struct rq *rq = cpu_rq(i); 9866 struct sched_entity *se = tg->se[i]; 9867 struct rq_flags rf; 9868 9869 /* Propagate contribution to hierarchy */ 9870 rq_lock_irqsave(rq, &rf); 9871 update_rq_clock(rq); 9872 for_each_sched_entity(se) { 9873 update_load_avg(cfs_rq_of(se), se, UPDATE_TG); 9874 update_cfs_group(se); 9875 } 9876 rq_unlock_irqrestore(rq, &rf); 9877 } 9878 9879 done: 9880 mutex_unlock(&shares_mutex); 9881 return 0; 9882 } 9883 #else /* CONFIG_FAIR_GROUP_SCHED */ 9884 9885 void free_fair_sched_group(struct task_group *tg) { } 9886 9887 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent) 9888 { 9889 return 1; 9890 } 9891 9892 void online_fair_sched_group(struct task_group *tg) { } 9893 9894 void unregister_fair_sched_group(struct task_group *tg) { } 9895 9896 #endif /* CONFIG_FAIR_GROUP_SCHED */ 9897 9898 9899 static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task) 9900 { 9901 struct sched_entity *se = &task->se; 9902 unsigned int rr_interval = 0; 9903 9904 /* 9905 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise 9906 * idle runqueue: 9907 */ 9908 if (rq->cfs.load.weight) 9909 rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se)); 9910 9911 return rr_interval; 9912 } 9913 9914 /* 9915 * All the scheduling class methods: 9916 */ 9917 const struct sched_class fair_sched_class = { 9918 .next = &idle_sched_class, 9919 .enqueue_task = enqueue_task_fair, 9920 .dequeue_task = dequeue_task_fair, 9921 .yield_task = yield_task_fair, 9922 .yield_to_task = yield_to_task_fair, 9923 9924 .check_preempt_curr = check_preempt_wakeup, 9925 9926 .pick_next_task = pick_next_task_fair, 9927 .put_prev_task = put_prev_task_fair, 9928 9929 #ifdef CONFIG_SMP 9930 .select_task_rq = select_task_rq_fair, 9931 .migrate_task_rq = migrate_task_rq_fair, 9932 9933 .rq_online = rq_online_fair, 9934 .rq_offline = rq_offline_fair, 9935 9936 .task_dead = task_dead_fair, 9937 .set_cpus_allowed = set_cpus_allowed_common, 9938 #endif 9939 9940 .set_curr_task = set_curr_task_fair, 9941 .task_tick = task_tick_fair, 9942 .task_fork = task_fork_fair, 9943 9944 .prio_changed = prio_changed_fair, 9945 .switched_from = switched_from_fair, 9946 .switched_to = switched_to_fair, 9947 9948 .get_rr_interval = get_rr_interval_fair, 9949 9950 .update_curr = update_curr_fair, 9951 9952 #ifdef CONFIG_FAIR_GROUP_SCHED 9953 .task_change_group = task_change_group_fair, 9954 #endif 9955 }; 9956 9957 #ifdef CONFIG_SCHED_DEBUG 9958 void print_cfs_stats(struct seq_file *m, int cpu) 9959 { 9960 struct cfs_rq *cfs_rq, *pos; 9961 9962 rcu_read_lock(); 9963 for_each_leaf_cfs_rq_safe(cpu_rq(cpu), cfs_rq, pos) 9964 print_cfs_rq(m, cpu, cfs_rq); 9965 rcu_read_unlock(); 9966 } 9967 9968 #ifdef CONFIG_NUMA_BALANCING 9969 void show_numa_stats(struct task_struct *p, struct seq_file *m) 9970 { 9971 int node; 9972 unsigned long tsf = 0, tpf = 0, gsf = 0, gpf = 0; 9973 9974 for_each_online_node(node) { 9975 if (p->numa_faults) { 9976 tsf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 0)]; 9977 tpf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 1)]; 9978 } 9979 if (p->numa_group) { 9980 gsf = p->numa_group->faults[task_faults_idx(NUMA_MEM, node, 0)], 9981 gpf = p->numa_group->faults[task_faults_idx(NUMA_MEM, node, 1)]; 9982 } 9983 print_numa_stats(m, node, tsf, tpf, gsf, gpf); 9984 } 9985 } 9986 #endif /* CONFIG_NUMA_BALANCING */ 9987 #endif /* CONFIG_SCHED_DEBUG */ 9988 9989 __init void init_sched_fair_class(void) 9990 { 9991 #ifdef CONFIG_SMP 9992 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains); 9993 9994 #ifdef CONFIG_NO_HZ_COMMON 9995 nohz.next_balance = jiffies; 9996 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT); 9997 #endif 9998 #endif /* SMP */ 9999 10000 } 10001