xref: /openbmc/linux/kernel/sched/fair.c (revision 82e6fdd6)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
4  *
5  *  Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
6  *
7  *  Interactivity improvements by Mike Galbraith
8  *  (C) 2007 Mike Galbraith <efault@gmx.de>
9  *
10  *  Various enhancements by Dmitry Adamushko.
11  *  (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
12  *
13  *  Group scheduling enhancements by Srivatsa Vaddagiri
14  *  Copyright IBM Corporation, 2007
15  *  Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
16  *
17  *  Scaled math optimizations by Thomas Gleixner
18  *  Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
19  *
20  *  Adaptive scheduling granularity, math enhancements by Peter Zijlstra
21  *  Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
22  */
23 
24 #include <linux/sched/mm.h>
25 #include <linux/sched/topology.h>
26 
27 #include <linux/latencytop.h>
28 #include <linux/cpumask.h>
29 #include <linux/cpuidle.h>
30 #include <linux/slab.h>
31 #include <linux/profile.h>
32 #include <linux/interrupt.h>
33 #include <linux/mempolicy.h>
34 #include <linux/migrate.h>
35 #include <linux/task_work.h>
36 #include <linux/sched/isolation.h>
37 
38 #include <trace/events/sched.h>
39 
40 #include "sched.h"
41 
42 /*
43  * Targeted preemption latency for CPU-bound tasks:
44  *
45  * NOTE: this latency value is not the same as the concept of
46  * 'timeslice length' - timeslices in CFS are of variable length
47  * and have no persistent notion like in traditional, time-slice
48  * based scheduling concepts.
49  *
50  * (to see the precise effective timeslice length of your workload,
51  *  run vmstat and monitor the context-switches (cs) field)
52  *
53  * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
54  */
55 unsigned int sysctl_sched_latency			= 6000000ULL;
56 unsigned int normalized_sysctl_sched_latency		= 6000000ULL;
57 
58 /*
59  * The initial- and re-scaling of tunables is configurable
60  *
61  * Options are:
62  *
63  *   SCHED_TUNABLESCALING_NONE - unscaled, always *1
64  *   SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
65  *   SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
66  *
67  * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
68  */
69 enum sched_tunable_scaling sysctl_sched_tunable_scaling = SCHED_TUNABLESCALING_LOG;
70 
71 /*
72  * Minimal preemption granularity for CPU-bound tasks:
73  *
74  * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
75  */
76 unsigned int sysctl_sched_min_granularity		= 750000ULL;
77 unsigned int normalized_sysctl_sched_min_granularity	= 750000ULL;
78 
79 /*
80  * This value is kept at sysctl_sched_latency/sysctl_sched_min_granularity
81  */
82 static unsigned int sched_nr_latency = 8;
83 
84 /*
85  * After fork, child runs first. If set to 0 (default) then
86  * parent will (try to) run first.
87  */
88 unsigned int sysctl_sched_child_runs_first __read_mostly;
89 
90 /*
91  * SCHED_OTHER wake-up granularity.
92  *
93  * This option delays the preemption effects of decoupled workloads
94  * and reduces their over-scheduling. Synchronous workloads will still
95  * have immediate wakeup/sleep latencies.
96  *
97  * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
98  */
99 unsigned int sysctl_sched_wakeup_granularity		= 1000000UL;
100 unsigned int normalized_sysctl_sched_wakeup_granularity	= 1000000UL;
101 
102 const_debug unsigned int sysctl_sched_migration_cost	= 500000UL;
103 
104 #ifdef CONFIG_SMP
105 /*
106  * For asym packing, by default the lower numbered cpu has higher priority.
107  */
108 int __weak arch_asym_cpu_priority(int cpu)
109 {
110 	return -cpu;
111 }
112 #endif
113 
114 #ifdef CONFIG_CFS_BANDWIDTH
115 /*
116  * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
117  * each time a cfs_rq requests quota.
118  *
119  * Note: in the case that the slice exceeds the runtime remaining (either due
120  * to consumption or the quota being specified to be smaller than the slice)
121  * we will always only issue the remaining available time.
122  *
123  * (default: 5 msec, units: microseconds)
124  */
125 unsigned int sysctl_sched_cfs_bandwidth_slice		= 5000UL;
126 #endif
127 
128 /*
129  * The margin used when comparing utilization with CPU capacity:
130  * util * margin < capacity * 1024
131  *
132  * (default: ~20%)
133  */
134 unsigned int capacity_margin				= 1280;
135 
136 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
137 {
138 	lw->weight += inc;
139 	lw->inv_weight = 0;
140 }
141 
142 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
143 {
144 	lw->weight -= dec;
145 	lw->inv_weight = 0;
146 }
147 
148 static inline void update_load_set(struct load_weight *lw, unsigned long w)
149 {
150 	lw->weight = w;
151 	lw->inv_weight = 0;
152 }
153 
154 /*
155  * Increase the granularity value when there are more CPUs,
156  * because with more CPUs the 'effective latency' as visible
157  * to users decreases. But the relationship is not linear,
158  * so pick a second-best guess by going with the log2 of the
159  * number of CPUs.
160  *
161  * This idea comes from the SD scheduler of Con Kolivas:
162  */
163 static unsigned int get_update_sysctl_factor(void)
164 {
165 	unsigned int cpus = min_t(unsigned int, num_online_cpus(), 8);
166 	unsigned int factor;
167 
168 	switch (sysctl_sched_tunable_scaling) {
169 	case SCHED_TUNABLESCALING_NONE:
170 		factor = 1;
171 		break;
172 	case SCHED_TUNABLESCALING_LINEAR:
173 		factor = cpus;
174 		break;
175 	case SCHED_TUNABLESCALING_LOG:
176 	default:
177 		factor = 1 + ilog2(cpus);
178 		break;
179 	}
180 
181 	return factor;
182 }
183 
184 static void update_sysctl(void)
185 {
186 	unsigned int factor = get_update_sysctl_factor();
187 
188 #define SET_SYSCTL(name) \
189 	(sysctl_##name = (factor) * normalized_sysctl_##name)
190 	SET_SYSCTL(sched_min_granularity);
191 	SET_SYSCTL(sched_latency);
192 	SET_SYSCTL(sched_wakeup_granularity);
193 #undef SET_SYSCTL
194 }
195 
196 void sched_init_granularity(void)
197 {
198 	update_sysctl();
199 }
200 
201 #define WMULT_CONST	(~0U)
202 #define WMULT_SHIFT	32
203 
204 static void __update_inv_weight(struct load_weight *lw)
205 {
206 	unsigned long w;
207 
208 	if (likely(lw->inv_weight))
209 		return;
210 
211 	w = scale_load_down(lw->weight);
212 
213 	if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
214 		lw->inv_weight = 1;
215 	else if (unlikely(!w))
216 		lw->inv_weight = WMULT_CONST;
217 	else
218 		lw->inv_weight = WMULT_CONST / w;
219 }
220 
221 /*
222  * delta_exec * weight / lw.weight
223  *   OR
224  * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
225  *
226  * Either weight := NICE_0_LOAD and lw \e sched_prio_to_wmult[], in which case
227  * we're guaranteed shift stays positive because inv_weight is guaranteed to
228  * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
229  *
230  * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
231  * weight/lw.weight <= 1, and therefore our shift will also be positive.
232  */
233 static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw)
234 {
235 	u64 fact = scale_load_down(weight);
236 	int shift = WMULT_SHIFT;
237 
238 	__update_inv_weight(lw);
239 
240 	if (unlikely(fact >> 32)) {
241 		while (fact >> 32) {
242 			fact >>= 1;
243 			shift--;
244 		}
245 	}
246 
247 	/* hint to use a 32x32->64 mul */
248 	fact = (u64)(u32)fact * lw->inv_weight;
249 
250 	while (fact >> 32) {
251 		fact >>= 1;
252 		shift--;
253 	}
254 
255 	return mul_u64_u32_shr(delta_exec, fact, shift);
256 }
257 
258 
259 const struct sched_class fair_sched_class;
260 
261 /**************************************************************
262  * CFS operations on generic schedulable entities:
263  */
264 
265 #ifdef CONFIG_FAIR_GROUP_SCHED
266 
267 /* cpu runqueue to which this cfs_rq is attached */
268 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
269 {
270 	return cfs_rq->rq;
271 }
272 
273 /* An entity is a task if it doesn't "own" a runqueue */
274 #define entity_is_task(se)	(!se->my_q)
275 
276 static inline struct task_struct *task_of(struct sched_entity *se)
277 {
278 	SCHED_WARN_ON(!entity_is_task(se));
279 	return container_of(se, struct task_struct, se);
280 }
281 
282 /* Walk up scheduling entities hierarchy */
283 #define for_each_sched_entity(se) \
284 		for (; se; se = se->parent)
285 
286 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
287 {
288 	return p->se.cfs_rq;
289 }
290 
291 /* runqueue on which this entity is (to be) queued */
292 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
293 {
294 	return se->cfs_rq;
295 }
296 
297 /* runqueue "owned" by this group */
298 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
299 {
300 	return grp->my_q;
301 }
302 
303 static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
304 {
305 	if (!cfs_rq->on_list) {
306 		struct rq *rq = rq_of(cfs_rq);
307 		int cpu = cpu_of(rq);
308 		/*
309 		 * Ensure we either appear before our parent (if already
310 		 * enqueued) or force our parent to appear after us when it is
311 		 * enqueued. The fact that we always enqueue bottom-up
312 		 * reduces this to two cases and a special case for the root
313 		 * cfs_rq. Furthermore, it also means that we will always reset
314 		 * tmp_alone_branch either when the branch is connected
315 		 * to a tree or when we reach the beg of the tree
316 		 */
317 		if (cfs_rq->tg->parent &&
318 		    cfs_rq->tg->parent->cfs_rq[cpu]->on_list) {
319 			/*
320 			 * If parent is already on the list, we add the child
321 			 * just before. Thanks to circular linked property of
322 			 * the list, this means to put the child at the tail
323 			 * of the list that starts by parent.
324 			 */
325 			list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
326 				&(cfs_rq->tg->parent->cfs_rq[cpu]->leaf_cfs_rq_list));
327 			/*
328 			 * The branch is now connected to its tree so we can
329 			 * reset tmp_alone_branch to the beginning of the
330 			 * list.
331 			 */
332 			rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
333 		} else if (!cfs_rq->tg->parent) {
334 			/*
335 			 * cfs rq without parent should be put
336 			 * at the tail of the list.
337 			 */
338 			list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
339 				&rq->leaf_cfs_rq_list);
340 			/*
341 			 * We have reach the beg of a tree so we can reset
342 			 * tmp_alone_branch to the beginning of the list.
343 			 */
344 			rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
345 		} else {
346 			/*
347 			 * The parent has not already been added so we want to
348 			 * make sure that it will be put after us.
349 			 * tmp_alone_branch points to the beg of the branch
350 			 * where we will add parent.
351 			 */
352 			list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
353 				rq->tmp_alone_branch);
354 			/*
355 			 * update tmp_alone_branch to points to the new beg
356 			 * of the branch
357 			 */
358 			rq->tmp_alone_branch = &cfs_rq->leaf_cfs_rq_list;
359 		}
360 
361 		cfs_rq->on_list = 1;
362 	}
363 }
364 
365 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
366 {
367 	if (cfs_rq->on_list) {
368 		list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
369 		cfs_rq->on_list = 0;
370 	}
371 }
372 
373 /* Iterate thr' all leaf cfs_rq's on a runqueue */
374 #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos)			\
375 	list_for_each_entry_safe(cfs_rq, pos, &rq->leaf_cfs_rq_list,	\
376 				 leaf_cfs_rq_list)
377 
378 /* Do the two (enqueued) entities belong to the same group ? */
379 static inline struct cfs_rq *
380 is_same_group(struct sched_entity *se, struct sched_entity *pse)
381 {
382 	if (se->cfs_rq == pse->cfs_rq)
383 		return se->cfs_rq;
384 
385 	return NULL;
386 }
387 
388 static inline struct sched_entity *parent_entity(struct sched_entity *se)
389 {
390 	return se->parent;
391 }
392 
393 static void
394 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
395 {
396 	int se_depth, pse_depth;
397 
398 	/*
399 	 * preemption test can be made between sibling entities who are in the
400 	 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
401 	 * both tasks until we find their ancestors who are siblings of common
402 	 * parent.
403 	 */
404 
405 	/* First walk up until both entities are at same depth */
406 	se_depth = (*se)->depth;
407 	pse_depth = (*pse)->depth;
408 
409 	while (se_depth > pse_depth) {
410 		se_depth--;
411 		*se = parent_entity(*se);
412 	}
413 
414 	while (pse_depth > se_depth) {
415 		pse_depth--;
416 		*pse = parent_entity(*pse);
417 	}
418 
419 	while (!is_same_group(*se, *pse)) {
420 		*se = parent_entity(*se);
421 		*pse = parent_entity(*pse);
422 	}
423 }
424 
425 #else	/* !CONFIG_FAIR_GROUP_SCHED */
426 
427 static inline struct task_struct *task_of(struct sched_entity *se)
428 {
429 	return container_of(se, struct task_struct, se);
430 }
431 
432 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
433 {
434 	return container_of(cfs_rq, struct rq, cfs);
435 }
436 
437 #define entity_is_task(se)	1
438 
439 #define for_each_sched_entity(se) \
440 		for (; se; se = NULL)
441 
442 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
443 {
444 	return &task_rq(p)->cfs;
445 }
446 
447 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
448 {
449 	struct task_struct *p = task_of(se);
450 	struct rq *rq = task_rq(p);
451 
452 	return &rq->cfs;
453 }
454 
455 /* runqueue "owned" by this group */
456 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
457 {
458 	return NULL;
459 }
460 
461 static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
462 {
463 }
464 
465 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
466 {
467 }
468 
469 #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos)	\
470 		for (cfs_rq = &rq->cfs, pos = NULL; cfs_rq; cfs_rq = pos)
471 
472 static inline struct sched_entity *parent_entity(struct sched_entity *se)
473 {
474 	return NULL;
475 }
476 
477 static inline void
478 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
479 {
480 }
481 
482 #endif	/* CONFIG_FAIR_GROUP_SCHED */
483 
484 static __always_inline
485 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec);
486 
487 /**************************************************************
488  * Scheduling class tree data structure manipulation methods:
489  */
490 
491 static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
492 {
493 	s64 delta = (s64)(vruntime - max_vruntime);
494 	if (delta > 0)
495 		max_vruntime = vruntime;
496 
497 	return max_vruntime;
498 }
499 
500 static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
501 {
502 	s64 delta = (s64)(vruntime - min_vruntime);
503 	if (delta < 0)
504 		min_vruntime = vruntime;
505 
506 	return min_vruntime;
507 }
508 
509 static inline int entity_before(struct sched_entity *a,
510 				struct sched_entity *b)
511 {
512 	return (s64)(a->vruntime - b->vruntime) < 0;
513 }
514 
515 static void update_min_vruntime(struct cfs_rq *cfs_rq)
516 {
517 	struct sched_entity *curr = cfs_rq->curr;
518 	struct rb_node *leftmost = rb_first_cached(&cfs_rq->tasks_timeline);
519 
520 	u64 vruntime = cfs_rq->min_vruntime;
521 
522 	if (curr) {
523 		if (curr->on_rq)
524 			vruntime = curr->vruntime;
525 		else
526 			curr = NULL;
527 	}
528 
529 	if (leftmost) { /* non-empty tree */
530 		struct sched_entity *se;
531 		se = rb_entry(leftmost, struct sched_entity, run_node);
532 
533 		if (!curr)
534 			vruntime = se->vruntime;
535 		else
536 			vruntime = min_vruntime(vruntime, se->vruntime);
537 	}
538 
539 	/* ensure we never gain time by being placed backwards. */
540 	cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
541 #ifndef CONFIG_64BIT
542 	smp_wmb();
543 	cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
544 #endif
545 }
546 
547 /*
548  * Enqueue an entity into the rb-tree:
549  */
550 static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
551 {
552 	struct rb_node **link = &cfs_rq->tasks_timeline.rb_root.rb_node;
553 	struct rb_node *parent = NULL;
554 	struct sched_entity *entry;
555 	bool leftmost = true;
556 
557 	/*
558 	 * Find the right place in the rbtree:
559 	 */
560 	while (*link) {
561 		parent = *link;
562 		entry = rb_entry(parent, struct sched_entity, run_node);
563 		/*
564 		 * We dont care about collisions. Nodes with
565 		 * the same key stay together.
566 		 */
567 		if (entity_before(se, entry)) {
568 			link = &parent->rb_left;
569 		} else {
570 			link = &parent->rb_right;
571 			leftmost = false;
572 		}
573 	}
574 
575 	rb_link_node(&se->run_node, parent, link);
576 	rb_insert_color_cached(&se->run_node,
577 			       &cfs_rq->tasks_timeline, leftmost);
578 }
579 
580 static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
581 {
582 	rb_erase_cached(&se->run_node, &cfs_rq->tasks_timeline);
583 }
584 
585 struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
586 {
587 	struct rb_node *left = rb_first_cached(&cfs_rq->tasks_timeline);
588 
589 	if (!left)
590 		return NULL;
591 
592 	return rb_entry(left, struct sched_entity, run_node);
593 }
594 
595 static struct sched_entity *__pick_next_entity(struct sched_entity *se)
596 {
597 	struct rb_node *next = rb_next(&se->run_node);
598 
599 	if (!next)
600 		return NULL;
601 
602 	return rb_entry(next, struct sched_entity, run_node);
603 }
604 
605 #ifdef CONFIG_SCHED_DEBUG
606 struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
607 {
608 	struct rb_node *last = rb_last(&cfs_rq->tasks_timeline.rb_root);
609 
610 	if (!last)
611 		return NULL;
612 
613 	return rb_entry(last, struct sched_entity, run_node);
614 }
615 
616 /**************************************************************
617  * Scheduling class statistics methods:
618  */
619 
620 int sched_proc_update_handler(struct ctl_table *table, int write,
621 		void __user *buffer, size_t *lenp,
622 		loff_t *ppos)
623 {
624 	int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
625 	unsigned int factor = get_update_sysctl_factor();
626 
627 	if (ret || !write)
628 		return ret;
629 
630 	sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
631 					sysctl_sched_min_granularity);
632 
633 #define WRT_SYSCTL(name) \
634 	(normalized_sysctl_##name = sysctl_##name / (factor))
635 	WRT_SYSCTL(sched_min_granularity);
636 	WRT_SYSCTL(sched_latency);
637 	WRT_SYSCTL(sched_wakeup_granularity);
638 #undef WRT_SYSCTL
639 
640 	return 0;
641 }
642 #endif
643 
644 /*
645  * delta /= w
646  */
647 static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
648 {
649 	if (unlikely(se->load.weight != NICE_0_LOAD))
650 		delta = __calc_delta(delta, NICE_0_LOAD, &se->load);
651 
652 	return delta;
653 }
654 
655 /*
656  * The idea is to set a period in which each task runs once.
657  *
658  * When there are too many tasks (sched_nr_latency) we have to stretch
659  * this period because otherwise the slices get too small.
660  *
661  * p = (nr <= nl) ? l : l*nr/nl
662  */
663 static u64 __sched_period(unsigned long nr_running)
664 {
665 	if (unlikely(nr_running > sched_nr_latency))
666 		return nr_running * sysctl_sched_min_granularity;
667 	else
668 		return sysctl_sched_latency;
669 }
670 
671 /*
672  * We calculate the wall-time slice from the period by taking a part
673  * proportional to the weight.
674  *
675  * s = p*P[w/rw]
676  */
677 static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
678 {
679 	u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
680 
681 	for_each_sched_entity(se) {
682 		struct load_weight *load;
683 		struct load_weight lw;
684 
685 		cfs_rq = cfs_rq_of(se);
686 		load = &cfs_rq->load;
687 
688 		if (unlikely(!se->on_rq)) {
689 			lw = cfs_rq->load;
690 
691 			update_load_add(&lw, se->load.weight);
692 			load = &lw;
693 		}
694 		slice = __calc_delta(slice, se->load.weight, load);
695 	}
696 	return slice;
697 }
698 
699 /*
700  * We calculate the vruntime slice of a to-be-inserted task.
701  *
702  * vs = s/w
703  */
704 static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
705 {
706 	return calc_delta_fair(sched_slice(cfs_rq, se), se);
707 }
708 
709 #ifdef CONFIG_SMP
710 
711 #include "sched-pelt.h"
712 
713 static int select_idle_sibling(struct task_struct *p, int prev_cpu, int cpu);
714 static unsigned long task_h_load(struct task_struct *p);
715 
716 /* Give new sched_entity start runnable values to heavy its load in infant time */
717 void init_entity_runnable_average(struct sched_entity *se)
718 {
719 	struct sched_avg *sa = &se->avg;
720 
721 	memset(sa, 0, sizeof(*sa));
722 
723 	/*
724 	 * Tasks are intialized with full load to be seen as heavy tasks until
725 	 * they get a chance to stabilize to their real load level.
726 	 * Group entities are intialized with zero load to reflect the fact that
727 	 * nothing has been attached to the task group yet.
728 	 */
729 	if (entity_is_task(se))
730 		sa->runnable_load_avg = sa->load_avg = scale_load_down(se->load.weight);
731 
732 	se->runnable_weight = se->load.weight;
733 
734 	/* when this task enqueue'ed, it will contribute to its cfs_rq's load_avg */
735 }
736 
737 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq);
738 static void attach_entity_cfs_rq(struct sched_entity *se);
739 
740 /*
741  * With new tasks being created, their initial util_avgs are extrapolated
742  * based on the cfs_rq's current util_avg:
743  *
744  *   util_avg = cfs_rq->util_avg / (cfs_rq->load_avg + 1) * se.load.weight
745  *
746  * However, in many cases, the above util_avg does not give a desired
747  * value. Moreover, the sum of the util_avgs may be divergent, such
748  * as when the series is a harmonic series.
749  *
750  * To solve this problem, we also cap the util_avg of successive tasks to
751  * only 1/2 of the left utilization budget:
752  *
753  *   util_avg_cap = (1024 - cfs_rq->avg.util_avg) / 2^n
754  *
755  * where n denotes the nth task.
756  *
757  * For example, a simplest series from the beginning would be like:
758  *
759  *  task  util_avg: 512, 256, 128,  64,  32,   16,    8, ...
760  * cfs_rq util_avg: 512, 768, 896, 960, 992, 1008, 1016, ...
761  *
762  * Finally, that extrapolated util_avg is clamped to the cap (util_avg_cap)
763  * if util_avg > util_avg_cap.
764  */
765 void post_init_entity_util_avg(struct sched_entity *se)
766 {
767 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
768 	struct sched_avg *sa = &se->avg;
769 	long cap = (long)(SCHED_CAPACITY_SCALE - cfs_rq->avg.util_avg) / 2;
770 
771 	if (cap > 0) {
772 		if (cfs_rq->avg.util_avg != 0) {
773 			sa->util_avg  = cfs_rq->avg.util_avg * se->load.weight;
774 			sa->util_avg /= (cfs_rq->avg.load_avg + 1);
775 
776 			if (sa->util_avg > cap)
777 				sa->util_avg = cap;
778 		} else {
779 			sa->util_avg = cap;
780 		}
781 	}
782 
783 	if (entity_is_task(se)) {
784 		struct task_struct *p = task_of(se);
785 		if (p->sched_class != &fair_sched_class) {
786 			/*
787 			 * For !fair tasks do:
788 			 *
789 			update_cfs_rq_load_avg(now, cfs_rq);
790 			attach_entity_load_avg(cfs_rq, se);
791 			switched_from_fair(rq, p);
792 			 *
793 			 * such that the next switched_to_fair() has the
794 			 * expected state.
795 			 */
796 			se->avg.last_update_time = cfs_rq_clock_task(cfs_rq);
797 			return;
798 		}
799 	}
800 
801 	attach_entity_cfs_rq(se);
802 }
803 
804 #else /* !CONFIG_SMP */
805 void init_entity_runnable_average(struct sched_entity *se)
806 {
807 }
808 void post_init_entity_util_avg(struct sched_entity *se)
809 {
810 }
811 static void update_tg_load_avg(struct cfs_rq *cfs_rq, int force)
812 {
813 }
814 #endif /* CONFIG_SMP */
815 
816 /*
817  * Update the current task's runtime statistics.
818  */
819 static void update_curr(struct cfs_rq *cfs_rq)
820 {
821 	struct sched_entity *curr = cfs_rq->curr;
822 	u64 now = rq_clock_task(rq_of(cfs_rq));
823 	u64 delta_exec;
824 
825 	if (unlikely(!curr))
826 		return;
827 
828 	delta_exec = now - curr->exec_start;
829 	if (unlikely((s64)delta_exec <= 0))
830 		return;
831 
832 	curr->exec_start = now;
833 
834 	schedstat_set(curr->statistics.exec_max,
835 		      max(delta_exec, curr->statistics.exec_max));
836 
837 	curr->sum_exec_runtime += delta_exec;
838 	schedstat_add(cfs_rq->exec_clock, delta_exec);
839 
840 	curr->vruntime += calc_delta_fair(delta_exec, curr);
841 	update_min_vruntime(cfs_rq);
842 
843 	if (entity_is_task(curr)) {
844 		struct task_struct *curtask = task_of(curr);
845 
846 		trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
847 		cgroup_account_cputime(curtask, delta_exec);
848 		account_group_exec_runtime(curtask, delta_exec);
849 	}
850 
851 	account_cfs_rq_runtime(cfs_rq, delta_exec);
852 }
853 
854 static void update_curr_fair(struct rq *rq)
855 {
856 	update_curr(cfs_rq_of(&rq->curr->se));
857 }
858 
859 static inline void
860 update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
861 {
862 	u64 wait_start, prev_wait_start;
863 
864 	if (!schedstat_enabled())
865 		return;
866 
867 	wait_start = rq_clock(rq_of(cfs_rq));
868 	prev_wait_start = schedstat_val(se->statistics.wait_start);
869 
870 	if (entity_is_task(se) && task_on_rq_migrating(task_of(se)) &&
871 	    likely(wait_start > prev_wait_start))
872 		wait_start -= prev_wait_start;
873 
874 	__schedstat_set(se->statistics.wait_start, wait_start);
875 }
876 
877 static inline void
878 update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
879 {
880 	struct task_struct *p;
881 	u64 delta;
882 
883 	if (!schedstat_enabled())
884 		return;
885 
886 	delta = rq_clock(rq_of(cfs_rq)) - schedstat_val(se->statistics.wait_start);
887 
888 	if (entity_is_task(se)) {
889 		p = task_of(se);
890 		if (task_on_rq_migrating(p)) {
891 			/*
892 			 * Preserve migrating task's wait time so wait_start
893 			 * time stamp can be adjusted to accumulate wait time
894 			 * prior to migration.
895 			 */
896 			__schedstat_set(se->statistics.wait_start, delta);
897 			return;
898 		}
899 		trace_sched_stat_wait(p, delta);
900 	}
901 
902 	__schedstat_set(se->statistics.wait_max,
903 		      max(schedstat_val(se->statistics.wait_max), delta));
904 	__schedstat_inc(se->statistics.wait_count);
905 	__schedstat_add(se->statistics.wait_sum, delta);
906 	__schedstat_set(se->statistics.wait_start, 0);
907 }
908 
909 static inline void
910 update_stats_enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
911 {
912 	struct task_struct *tsk = NULL;
913 	u64 sleep_start, block_start;
914 
915 	if (!schedstat_enabled())
916 		return;
917 
918 	sleep_start = schedstat_val(se->statistics.sleep_start);
919 	block_start = schedstat_val(se->statistics.block_start);
920 
921 	if (entity_is_task(se))
922 		tsk = task_of(se);
923 
924 	if (sleep_start) {
925 		u64 delta = rq_clock(rq_of(cfs_rq)) - sleep_start;
926 
927 		if ((s64)delta < 0)
928 			delta = 0;
929 
930 		if (unlikely(delta > schedstat_val(se->statistics.sleep_max)))
931 			__schedstat_set(se->statistics.sleep_max, delta);
932 
933 		__schedstat_set(se->statistics.sleep_start, 0);
934 		__schedstat_add(se->statistics.sum_sleep_runtime, delta);
935 
936 		if (tsk) {
937 			account_scheduler_latency(tsk, delta >> 10, 1);
938 			trace_sched_stat_sleep(tsk, delta);
939 		}
940 	}
941 	if (block_start) {
942 		u64 delta = rq_clock(rq_of(cfs_rq)) - block_start;
943 
944 		if ((s64)delta < 0)
945 			delta = 0;
946 
947 		if (unlikely(delta > schedstat_val(se->statistics.block_max)))
948 			__schedstat_set(se->statistics.block_max, delta);
949 
950 		__schedstat_set(se->statistics.block_start, 0);
951 		__schedstat_add(se->statistics.sum_sleep_runtime, delta);
952 
953 		if (tsk) {
954 			if (tsk->in_iowait) {
955 				__schedstat_add(se->statistics.iowait_sum, delta);
956 				__schedstat_inc(se->statistics.iowait_count);
957 				trace_sched_stat_iowait(tsk, delta);
958 			}
959 
960 			trace_sched_stat_blocked(tsk, delta);
961 
962 			/*
963 			 * Blocking time is in units of nanosecs, so shift by
964 			 * 20 to get a milliseconds-range estimation of the
965 			 * amount of time that the task spent sleeping:
966 			 */
967 			if (unlikely(prof_on == SLEEP_PROFILING)) {
968 				profile_hits(SLEEP_PROFILING,
969 						(void *)get_wchan(tsk),
970 						delta >> 20);
971 			}
972 			account_scheduler_latency(tsk, delta >> 10, 0);
973 		}
974 	}
975 }
976 
977 /*
978  * Task is being enqueued - update stats:
979  */
980 static inline void
981 update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
982 {
983 	if (!schedstat_enabled())
984 		return;
985 
986 	/*
987 	 * Are we enqueueing a waiting task? (for current tasks
988 	 * a dequeue/enqueue event is a NOP)
989 	 */
990 	if (se != cfs_rq->curr)
991 		update_stats_wait_start(cfs_rq, se);
992 
993 	if (flags & ENQUEUE_WAKEUP)
994 		update_stats_enqueue_sleeper(cfs_rq, se);
995 }
996 
997 static inline void
998 update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
999 {
1000 
1001 	if (!schedstat_enabled())
1002 		return;
1003 
1004 	/*
1005 	 * Mark the end of the wait period if dequeueing a
1006 	 * waiting task:
1007 	 */
1008 	if (se != cfs_rq->curr)
1009 		update_stats_wait_end(cfs_rq, se);
1010 
1011 	if ((flags & DEQUEUE_SLEEP) && entity_is_task(se)) {
1012 		struct task_struct *tsk = task_of(se);
1013 
1014 		if (tsk->state & TASK_INTERRUPTIBLE)
1015 			__schedstat_set(se->statistics.sleep_start,
1016 				      rq_clock(rq_of(cfs_rq)));
1017 		if (tsk->state & TASK_UNINTERRUPTIBLE)
1018 			__schedstat_set(se->statistics.block_start,
1019 				      rq_clock(rq_of(cfs_rq)));
1020 	}
1021 }
1022 
1023 /*
1024  * We are picking a new current task - update its stats:
1025  */
1026 static inline void
1027 update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
1028 {
1029 	/*
1030 	 * We are starting a new run period:
1031 	 */
1032 	se->exec_start = rq_clock_task(rq_of(cfs_rq));
1033 }
1034 
1035 /**************************************************
1036  * Scheduling class queueing methods:
1037  */
1038 
1039 #ifdef CONFIG_NUMA_BALANCING
1040 /*
1041  * Approximate time to scan a full NUMA task in ms. The task scan period is
1042  * calculated based on the tasks virtual memory size and
1043  * numa_balancing_scan_size.
1044  */
1045 unsigned int sysctl_numa_balancing_scan_period_min = 1000;
1046 unsigned int sysctl_numa_balancing_scan_period_max = 60000;
1047 
1048 /* Portion of address space to scan in MB */
1049 unsigned int sysctl_numa_balancing_scan_size = 256;
1050 
1051 /* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
1052 unsigned int sysctl_numa_balancing_scan_delay = 1000;
1053 
1054 struct numa_group {
1055 	atomic_t refcount;
1056 
1057 	spinlock_t lock; /* nr_tasks, tasks */
1058 	int nr_tasks;
1059 	pid_t gid;
1060 	int active_nodes;
1061 
1062 	struct rcu_head rcu;
1063 	unsigned long total_faults;
1064 	unsigned long max_faults_cpu;
1065 	/*
1066 	 * Faults_cpu is used to decide whether memory should move
1067 	 * towards the CPU. As a consequence, these stats are weighted
1068 	 * more by CPU use than by memory faults.
1069 	 */
1070 	unsigned long *faults_cpu;
1071 	unsigned long faults[0];
1072 };
1073 
1074 static inline unsigned long group_faults_priv(struct numa_group *ng);
1075 static inline unsigned long group_faults_shared(struct numa_group *ng);
1076 
1077 static unsigned int task_nr_scan_windows(struct task_struct *p)
1078 {
1079 	unsigned long rss = 0;
1080 	unsigned long nr_scan_pages;
1081 
1082 	/*
1083 	 * Calculations based on RSS as non-present and empty pages are skipped
1084 	 * by the PTE scanner and NUMA hinting faults should be trapped based
1085 	 * on resident pages
1086 	 */
1087 	nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
1088 	rss = get_mm_rss(p->mm);
1089 	if (!rss)
1090 		rss = nr_scan_pages;
1091 
1092 	rss = round_up(rss, nr_scan_pages);
1093 	return rss / nr_scan_pages;
1094 }
1095 
1096 /* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
1097 #define MAX_SCAN_WINDOW 2560
1098 
1099 static unsigned int task_scan_min(struct task_struct *p)
1100 {
1101 	unsigned int scan_size = READ_ONCE(sysctl_numa_balancing_scan_size);
1102 	unsigned int scan, floor;
1103 	unsigned int windows = 1;
1104 
1105 	if (scan_size < MAX_SCAN_WINDOW)
1106 		windows = MAX_SCAN_WINDOW / scan_size;
1107 	floor = 1000 / windows;
1108 
1109 	scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
1110 	return max_t(unsigned int, floor, scan);
1111 }
1112 
1113 static unsigned int task_scan_start(struct task_struct *p)
1114 {
1115 	unsigned long smin = task_scan_min(p);
1116 	unsigned long period = smin;
1117 
1118 	/* Scale the maximum scan period with the amount of shared memory. */
1119 	if (p->numa_group) {
1120 		struct numa_group *ng = p->numa_group;
1121 		unsigned long shared = group_faults_shared(ng);
1122 		unsigned long private = group_faults_priv(ng);
1123 
1124 		period *= atomic_read(&ng->refcount);
1125 		period *= shared + 1;
1126 		period /= private + shared + 1;
1127 	}
1128 
1129 	return max(smin, period);
1130 }
1131 
1132 static unsigned int task_scan_max(struct task_struct *p)
1133 {
1134 	unsigned long smin = task_scan_min(p);
1135 	unsigned long smax;
1136 
1137 	/* Watch for min being lower than max due to floor calculations */
1138 	smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
1139 
1140 	/* Scale the maximum scan period with the amount of shared memory. */
1141 	if (p->numa_group) {
1142 		struct numa_group *ng = p->numa_group;
1143 		unsigned long shared = group_faults_shared(ng);
1144 		unsigned long private = group_faults_priv(ng);
1145 		unsigned long period = smax;
1146 
1147 		period *= atomic_read(&ng->refcount);
1148 		period *= shared + 1;
1149 		period /= private + shared + 1;
1150 
1151 		smax = max(smax, period);
1152 	}
1153 
1154 	return max(smin, smax);
1155 }
1156 
1157 static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
1158 {
1159 	rq->nr_numa_running += (p->numa_preferred_nid != -1);
1160 	rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
1161 }
1162 
1163 static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
1164 {
1165 	rq->nr_numa_running -= (p->numa_preferred_nid != -1);
1166 	rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
1167 }
1168 
1169 /* Shared or private faults. */
1170 #define NR_NUMA_HINT_FAULT_TYPES 2
1171 
1172 /* Memory and CPU locality */
1173 #define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2)
1174 
1175 /* Averaged statistics, and temporary buffers. */
1176 #define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2)
1177 
1178 pid_t task_numa_group_id(struct task_struct *p)
1179 {
1180 	return p->numa_group ? p->numa_group->gid : 0;
1181 }
1182 
1183 /*
1184  * The averaged statistics, shared & private, memory & cpu,
1185  * occupy the first half of the array. The second half of the
1186  * array is for current counters, which are averaged into the
1187  * first set by task_numa_placement.
1188  */
1189 static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv)
1190 {
1191 	return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv;
1192 }
1193 
1194 static inline unsigned long task_faults(struct task_struct *p, int nid)
1195 {
1196 	if (!p->numa_faults)
1197 		return 0;
1198 
1199 	return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1200 		p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)];
1201 }
1202 
1203 static inline unsigned long group_faults(struct task_struct *p, int nid)
1204 {
1205 	if (!p->numa_group)
1206 		return 0;
1207 
1208 	return p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1209 		p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 1)];
1210 }
1211 
1212 static inline unsigned long group_faults_cpu(struct numa_group *group, int nid)
1213 {
1214 	return group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 0)] +
1215 		group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 1)];
1216 }
1217 
1218 static inline unsigned long group_faults_priv(struct numa_group *ng)
1219 {
1220 	unsigned long faults = 0;
1221 	int node;
1222 
1223 	for_each_online_node(node) {
1224 		faults += ng->faults[task_faults_idx(NUMA_MEM, node, 1)];
1225 	}
1226 
1227 	return faults;
1228 }
1229 
1230 static inline unsigned long group_faults_shared(struct numa_group *ng)
1231 {
1232 	unsigned long faults = 0;
1233 	int node;
1234 
1235 	for_each_online_node(node) {
1236 		faults += ng->faults[task_faults_idx(NUMA_MEM, node, 0)];
1237 	}
1238 
1239 	return faults;
1240 }
1241 
1242 /*
1243  * A node triggering more than 1/3 as many NUMA faults as the maximum is
1244  * considered part of a numa group's pseudo-interleaving set. Migrations
1245  * between these nodes are slowed down, to allow things to settle down.
1246  */
1247 #define ACTIVE_NODE_FRACTION 3
1248 
1249 static bool numa_is_active_node(int nid, struct numa_group *ng)
1250 {
1251 	return group_faults_cpu(ng, nid) * ACTIVE_NODE_FRACTION > ng->max_faults_cpu;
1252 }
1253 
1254 /* Handle placement on systems where not all nodes are directly connected. */
1255 static unsigned long score_nearby_nodes(struct task_struct *p, int nid,
1256 					int maxdist, bool task)
1257 {
1258 	unsigned long score = 0;
1259 	int node;
1260 
1261 	/*
1262 	 * All nodes are directly connected, and the same distance
1263 	 * from each other. No need for fancy placement algorithms.
1264 	 */
1265 	if (sched_numa_topology_type == NUMA_DIRECT)
1266 		return 0;
1267 
1268 	/*
1269 	 * This code is called for each node, introducing N^2 complexity,
1270 	 * which should be ok given the number of nodes rarely exceeds 8.
1271 	 */
1272 	for_each_online_node(node) {
1273 		unsigned long faults;
1274 		int dist = node_distance(nid, node);
1275 
1276 		/*
1277 		 * The furthest away nodes in the system are not interesting
1278 		 * for placement; nid was already counted.
1279 		 */
1280 		if (dist == sched_max_numa_distance || node == nid)
1281 			continue;
1282 
1283 		/*
1284 		 * On systems with a backplane NUMA topology, compare groups
1285 		 * of nodes, and move tasks towards the group with the most
1286 		 * memory accesses. When comparing two nodes at distance
1287 		 * "hoplimit", only nodes closer by than "hoplimit" are part
1288 		 * of each group. Skip other nodes.
1289 		 */
1290 		if (sched_numa_topology_type == NUMA_BACKPLANE &&
1291 					dist > maxdist)
1292 			continue;
1293 
1294 		/* Add up the faults from nearby nodes. */
1295 		if (task)
1296 			faults = task_faults(p, node);
1297 		else
1298 			faults = group_faults(p, node);
1299 
1300 		/*
1301 		 * On systems with a glueless mesh NUMA topology, there are
1302 		 * no fixed "groups of nodes". Instead, nodes that are not
1303 		 * directly connected bounce traffic through intermediate
1304 		 * nodes; a numa_group can occupy any set of nodes.
1305 		 * The further away a node is, the less the faults count.
1306 		 * This seems to result in good task placement.
1307 		 */
1308 		if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
1309 			faults *= (sched_max_numa_distance - dist);
1310 			faults /= (sched_max_numa_distance - LOCAL_DISTANCE);
1311 		}
1312 
1313 		score += faults;
1314 	}
1315 
1316 	return score;
1317 }
1318 
1319 /*
1320  * These return the fraction of accesses done by a particular task, or
1321  * task group, on a particular numa node.  The group weight is given a
1322  * larger multiplier, in order to group tasks together that are almost
1323  * evenly spread out between numa nodes.
1324  */
1325 static inline unsigned long task_weight(struct task_struct *p, int nid,
1326 					int dist)
1327 {
1328 	unsigned long faults, total_faults;
1329 
1330 	if (!p->numa_faults)
1331 		return 0;
1332 
1333 	total_faults = p->total_numa_faults;
1334 
1335 	if (!total_faults)
1336 		return 0;
1337 
1338 	faults = task_faults(p, nid);
1339 	faults += score_nearby_nodes(p, nid, dist, true);
1340 
1341 	return 1000 * faults / total_faults;
1342 }
1343 
1344 static inline unsigned long group_weight(struct task_struct *p, int nid,
1345 					 int dist)
1346 {
1347 	unsigned long faults, total_faults;
1348 
1349 	if (!p->numa_group)
1350 		return 0;
1351 
1352 	total_faults = p->numa_group->total_faults;
1353 
1354 	if (!total_faults)
1355 		return 0;
1356 
1357 	faults = group_faults(p, nid);
1358 	faults += score_nearby_nodes(p, nid, dist, false);
1359 
1360 	return 1000 * faults / total_faults;
1361 }
1362 
1363 bool should_numa_migrate_memory(struct task_struct *p, struct page * page,
1364 				int src_nid, int dst_cpu)
1365 {
1366 	struct numa_group *ng = p->numa_group;
1367 	int dst_nid = cpu_to_node(dst_cpu);
1368 	int last_cpupid, this_cpupid;
1369 
1370 	this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid);
1371 
1372 	/*
1373 	 * Multi-stage node selection is used in conjunction with a periodic
1374 	 * migration fault to build a temporal task<->page relation. By using
1375 	 * a two-stage filter we remove short/unlikely relations.
1376 	 *
1377 	 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate
1378 	 * a task's usage of a particular page (n_p) per total usage of this
1379 	 * page (n_t) (in a given time-span) to a probability.
1380 	 *
1381 	 * Our periodic faults will sample this probability and getting the
1382 	 * same result twice in a row, given these samples are fully
1383 	 * independent, is then given by P(n)^2, provided our sample period
1384 	 * is sufficiently short compared to the usage pattern.
1385 	 *
1386 	 * This quadric squishes small probabilities, making it less likely we
1387 	 * act on an unlikely task<->page relation.
1388 	 */
1389 	last_cpupid = page_cpupid_xchg_last(page, this_cpupid);
1390 	if (!cpupid_pid_unset(last_cpupid) &&
1391 				cpupid_to_nid(last_cpupid) != dst_nid)
1392 		return false;
1393 
1394 	/* Always allow migrate on private faults */
1395 	if (cpupid_match_pid(p, last_cpupid))
1396 		return true;
1397 
1398 	/* A shared fault, but p->numa_group has not been set up yet. */
1399 	if (!ng)
1400 		return true;
1401 
1402 	/*
1403 	 * Destination node is much more heavily used than the source
1404 	 * node? Allow migration.
1405 	 */
1406 	if (group_faults_cpu(ng, dst_nid) > group_faults_cpu(ng, src_nid) *
1407 					ACTIVE_NODE_FRACTION)
1408 		return true;
1409 
1410 	/*
1411 	 * Distribute memory according to CPU & memory use on each node,
1412 	 * with 3/4 hysteresis to avoid unnecessary memory migrations:
1413 	 *
1414 	 * faults_cpu(dst)   3   faults_cpu(src)
1415 	 * --------------- * - > ---------------
1416 	 * faults_mem(dst)   4   faults_mem(src)
1417 	 */
1418 	return group_faults_cpu(ng, dst_nid) * group_faults(p, src_nid) * 3 >
1419 	       group_faults_cpu(ng, src_nid) * group_faults(p, dst_nid) * 4;
1420 }
1421 
1422 static unsigned long weighted_cpuload(struct rq *rq);
1423 static unsigned long source_load(int cpu, int type);
1424 static unsigned long target_load(int cpu, int type);
1425 static unsigned long capacity_of(int cpu);
1426 
1427 /* Cached statistics for all CPUs within a node */
1428 struct numa_stats {
1429 	unsigned long nr_running;
1430 	unsigned long load;
1431 
1432 	/* Total compute capacity of CPUs on a node */
1433 	unsigned long compute_capacity;
1434 
1435 	/* Approximate capacity in terms of runnable tasks on a node */
1436 	unsigned long task_capacity;
1437 	int has_free_capacity;
1438 };
1439 
1440 /*
1441  * XXX borrowed from update_sg_lb_stats
1442  */
1443 static void update_numa_stats(struct numa_stats *ns, int nid)
1444 {
1445 	int smt, cpu, cpus = 0;
1446 	unsigned long capacity;
1447 
1448 	memset(ns, 0, sizeof(*ns));
1449 	for_each_cpu(cpu, cpumask_of_node(nid)) {
1450 		struct rq *rq = cpu_rq(cpu);
1451 
1452 		ns->nr_running += rq->nr_running;
1453 		ns->load += weighted_cpuload(rq);
1454 		ns->compute_capacity += capacity_of(cpu);
1455 
1456 		cpus++;
1457 	}
1458 
1459 	/*
1460 	 * If we raced with hotplug and there are no CPUs left in our mask
1461 	 * the @ns structure is NULL'ed and task_numa_compare() will
1462 	 * not find this node attractive.
1463 	 *
1464 	 * We'll either bail at !has_free_capacity, or we'll detect a huge
1465 	 * imbalance and bail there.
1466 	 */
1467 	if (!cpus)
1468 		return;
1469 
1470 	/* smt := ceil(cpus / capacity), assumes: 1 < smt_power < 2 */
1471 	smt = DIV_ROUND_UP(SCHED_CAPACITY_SCALE * cpus, ns->compute_capacity);
1472 	capacity = cpus / smt; /* cores */
1473 
1474 	ns->task_capacity = min_t(unsigned, capacity,
1475 		DIV_ROUND_CLOSEST(ns->compute_capacity, SCHED_CAPACITY_SCALE));
1476 	ns->has_free_capacity = (ns->nr_running < ns->task_capacity);
1477 }
1478 
1479 struct task_numa_env {
1480 	struct task_struct *p;
1481 
1482 	int src_cpu, src_nid;
1483 	int dst_cpu, dst_nid;
1484 
1485 	struct numa_stats src_stats, dst_stats;
1486 
1487 	int imbalance_pct;
1488 	int dist;
1489 
1490 	struct task_struct *best_task;
1491 	long best_imp;
1492 	int best_cpu;
1493 };
1494 
1495 static void task_numa_assign(struct task_numa_env *env,
1496 			     struct task_struct *p, long imp)
1497 {
1498 	if (env->best_task)
1499 		put_task_struct(env->best_task);
1500 	if (p)
1501 		get_task_struct(p);
1502 
1503 	env->best_task = p;
1504 	env->best_imp = imp;
1505 	env->best_cpu = env->dst_cpu;
1506 }
1507 
1508 static bool load_too_imbalanced(long src_load, long dst_load,
1509 				struct task_numa_env *env)
1510 {
1511 	long imb, old_imb;
1512 	long orig_src_load, orig_dst_load;
1513 	long src_capacity, dst_capacity;
1514 
1515 	/*
1516 	 * The load is corrected for the CPU capacity available on each node.
1517 	 *
1518 	 * src_load        dst_load
1519 	 * ------------ vs ---------
1520 	 * src_capacity    dst_capacity
1521 	 */
1522 	src_capacity = env->src_stats.compute_capacity;
1523 	dst_capacity = env->dst_stats.compute_capacity;
1524 
1525 	/* We care about the slope of the imbalance, not the direction. */
1526 	if (dst_load < src_load)
1527 		swap(dst_load, src_load);
1528 
1529 	/* Is the difference below the threshold? */
1530 	imb = dst_load * src_capacity * 100 -
1531 	      src_load * dst_capacity * env->imbalance_pct;
1532 	if (imb <= 0)
1533 		return false;
1534 
1535 	/*
1536 	 * The imbalance is above the allowed threshold.
1537 	 * Compare it with the old imbalance.
1538 	 */
1539 	orig_src_load = env->src_stats.load;
1540 	orig_dst_load = env->dst_stats.load;
1541 
1542 	if (orig_dst_load < orig_src_load)
1543 		swap(orig_dst_load, orig_src_load);
1544 
1545 	old_imb = orig_dst_load * src_capacity * 100 -
1546 		  orig_src_load * dst_capacity * env->imbalance_pct;
1547 
1548 	/* Would this change make things worse? */
1549 	return (imb > old_imb);
1550 }
1551 
1552 /*
1553  * This checks if the overall compute and NUMA accesses of the system would
1554  * be improved if the source tasks was migrated to the target dst_cpu taking
1555  * into account that it might be best if task running on the dst_cpu should
1556  * be exchanged with the source task
1557  */
1558 static void task_numa_compare(struct task_numa_env *env,
1559 			      long taskimp, long groupimp)
1560 {
1561 	struct rq *src_rq = cpu_rq(env->src_cpu);
1562 	struct rq *dst_rq = cpu_rq(env->dst_cpu);
1563 	struct task_struct *cur;
1564 	long src_load, dst_load;
1565 	long load;
1566 	long imp = env->p->numa_group ? groupimp : taskimp;
1567 	long moveimp = imp;
1568 	int dist = env->dist;
1569 
1570 	rcu_read_lock();
1571 	cur = task_rcu_dereference(&dst_rq->curr);
1572 	if (cur && ((cur->flags & PF_EXITING) || is_idle_task(cur)))
1573 		cur = NULL;
1574 
1575 	/*
1576 	 * Because we have preemption enabled we can get migrated around and
1577 	 * end try selecting ourselves (current == env->p) as a swap candidate.
1578 	 */
1579 	if (cur == env->p)
1580 		goto unlock;
1581 
1582 	/*
1583 	 * "imp" is the fault differential for the source task between the
1584 	 * source and destination node. Calculate the total differential for
1585 	 * the source task and potential destination task. The more negative
1586 	 * the value is, the more rmeote accesses that would be expected to
1587 	 * be incurred if the tasks were swapped.
1588 	 */
1589 	if (cur) {
1590 		/* Skip this swap candidate if cannot move to the source cpu */
1591 		if (!cpumask_test_cpu(env->src_cpu, &cur->cpus_allowed))
1592 			goto unlock;
1593 
1594 		/*
1595 		 * If dst and source tasks are in the same NUMA group, or not
1596 		 * in any group then look only at task weights.
1597 		 */
1598 		if (cur->numa_group == env->p->numa_group) {
1599 			imp = taskimp + task_weight(cur, env->src_nid, dist) -
1600 			      task_weight(cur, env->dst_nid, dist);
1601 			/*
1602 			 * Add some hysteresis to prevent swapping the
1603 			 * tasks within a group over tiny differences.
1604 			 */
1605 			if (cur->numa_group)
1606 				imp -= imp/16;
1607 		} else {
1608 			/*
1609 			 * Compare the group weights. If a task is all by
1610 			 * itself (not part of a group), use the task weight
1611 			 * instead.
1612 			 */
1613 			if (cur->numa_group)
1614 				imp += group_weight(cur, env->src_nid, dist) -
1615 				       group_weight(cur, env->dst_nid, dist);
1616 			else
1617 				imp += task_weight(cur, env->src_nid, dist) -
1618 				       task_weight(cur, env->dst_nid, dist);
1619 		}
1620 	}
1621 
1622 	if (imp <= env->best_imp && moveimp <= env->best_imp)
1623 		goto unlock;
1624 
1625 	if (!cur) {
1626 		/* Is there capacity at our destination? */
1627 		if (env->src_stats.nr_running <= env->src_stats.task_capacity &&
1628 		    !env->dst_stats.has_free_capacity)
1629 			goto unlock;
1630 
1631 		goto balance;
1632 	}
1633 
1634 	/* Balance doesn't matter much if we're running a task per cpu */
1635 	if (imp > env->best_imp && src_rq->nr_running == 1 &&
1636 			dst_rq->nr_running == 1)
1637 		goto assign;
1638 
1639 	/*
1640 	 * In the overloaded case, try and keep the load balanced.
1641 	 */
1642 balance:
1643 	load = task_h_load(env->p);
1644 	dst_load = env->dst_stats.load + load;
1645 	src_load = env->src_stats.load - load;
1646 
1647 	if (moveimp > imp && moveimp > env->best_imp) {
1648 		/*
1649 		 * If the improvement from just moving env->p direction is
1650 		 * better than swapping tasks around, check if a move is
1651 		 * possible. Store a slightly smaller score than moveimp,
1652 		 * so an actually idle CPU will win.
1653 		 */
1654 		if (!load_too_imbalanced(src_load, dst_load, env)) {
1655 			imp = moveimp - 1;
1656 			cur = NULL;
1657 			goto assign;
1658 		}
1659 	}
1660 
1661 	if (imp <= env->best_imp)
1662 		goto unlock;
1663 
1664 	if (cur) {
1665 		load = task_h_load(cur);
1666 		dst_load -= load;
1667 		src_load += load;
1668 	}
1669 
1670 	if (load_too_imbalanced(src_load, dst_load, env))
1671 		goto unlock;
1672 
1673 	/*
1674 	 * One idle CPU per node is evaluated for a task numa move.
1675 	 * Call select_idle_sibling to maybe find a better one.
1676 	 */
1677 	if (!cur) {
1678 		/*
1679 		 * select_idle_siblings() uses an per-cpu cpumask that
1680 		 * can be used from IRQ context.
1681 		 */
1682 		local_irq_disable();
1683 		env->dst_cpu = select_idle_sibling(env->p, env->src_cpu,
1684 						   env->dst_cpu);
1685 		local_irq_enable();
1686 	}
1687 
1688 assign:
1689 	task_numa_assign(env, cur, imp);
1690 unlock:
1691 	rcu_read_unlock();
1692 }
1693 
1694 static void task_numa_find_cpu(struct task_numa_env *env,
1695 				long taskimp, long groupimp)
1696 {
1697 	int cpu;
1698 
1699 	for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
1700 		/* Skip this CPU if the source task cannot migrate */
1701 		if (!cpumask_test_cpu(cpu, &env->p->cpus_allowed))
1702 			continue;
1703 
1704 		env->dst_cpu = cpu;
1705 		task_numa_compare(env, taskimp, groupimp);
1706 	}
1707 }
1708 
1709 /* Only move tasks to a NUMA node less busy than the current node. */
1710 static bool numa_has_capacity(struct task_numa_env *env)
1711 {
1712 	struct numa_stats *src = &env->src_stats;
1713 	struct numa_stats *dst = &env->dst_stats;
1714 
1715 	if (src->has_free_capacity && !dst->has_free_capacity)
1716 		return false;
1717 
1718 	/*
1719 	 * Only consider a task move if the source has a higher load
1720 	 * than the destination, corrected for CPU capacity on each node.
1721 	 *
1722 	 *      src->load                dst->load
1723 	 * --------------------- vs ---------------------
1724 	 * src->compute_capacity    dst->compute_capacity
1725 	 */
1726 	if (src->load * dst->compute_capacity * env->imbalance_pct >
1727 
1728 	    dst->load * src->compute_capacity * 100)
1729 		return true;
1730 
1731 	return false;
1732 }
1733 
1734 static int task_numa_migrate(struct task_struct *p)
1735 {
1736 	struct task_numa_env env = {
1737 		.p = p,
1738 
1739 		.src_cpu = task_cpu(p),
1740 		.src_nid = task_node(p),
1741 
1742 		.imbalance_pct = 112,
1743 
1744 		.best_task = NULL,
1745 		.best_imp = 0,
1746 		.best_cpu = -1,
1747 	};
1748 	struct sched_domain *sd;
1749 	unsigned long taskweight, groupweight;
1750 	int nid, ret, dist;
1751 	long taskimp, groupimp;
1752 
1753 	/*
1754 	 * Pick the lowest SD_NUMA domain, as that would have the smallest
1755 	 * imbalance and would be the first to start moving tasks about.
1756 	 *
1757 	 * And we want to avoid any moving of tasks about, as that would create
1758 	 * random movement of tasks -- counter the numa conditions we're trying
1759 	 * to satisfy here.
1760 	 */
1761 	rcu_read_lock();
1762 	sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
1763 	if (sd)
1764 		env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
1765 	rcu_read_unlock();
1766 
1767 	/*
1768 	 * Cpusets can break the scheduler domain tree into smaller
1769 	 * balance domains, some of which do not cross NUMA boundaries.
1770 	 * Tasks that are "trapped" in such domains cannot be migrated
1771 	 * elsewhere, so there is no point in (re)trying.
1772 	 */
1773 	if (unlikely(!sd)) {
1774 		p->numa_preferred_nid = task_node(p);
1775 		return -EINVAL;
1776 	}
1777 
1778 	env.dst_nid = p->numa_preferred_nid;
1779 	dist = env.dist = node_distance(env.src_nid, env.dst_nid);
1780 	taskweight = task_weight(p, env.src_nid, dist);
1781 	groupweight = group_weight(p, env.src_nid, dist);
1782 	update_numa_stats(&env.src_stats, env.src_nid);
1783 	taskimp = task_weight(p, env.dst_nid, dist) - taskweight;
1784 	groupimp = group_weight(p, env.dst_nid, dist) - groupweight;
1785 	update_numa_stats(&env.dst_stats, env.dst_nid);
1786 
1787 	/* Try to find a spot on the preferred nid. */
1788 	if (numa_has_capacity(&env))
1789 		task_numa_find_cpu(&env, taskimp, groupimp);
1790 
1791 	/*
1792 	 * Look at other nodes in these cases:
1793 	 * - there is no space available on the preferred_nid
1794 	 * - the task is part of a numa_group that is interleaved across
1795 	 *   multiple NUMA nodes; in order to better consolidate the group,
1796 	 *   we need to check other locations.
1797 	 */
1798 	if (env.best_cpu == -1 || (p->numa_group && p->numa_group->active_nodes > 1)) {
1799 		for_each_online_node(nid) {
1800 			if (nid == env.src_nid || nid == p->numa_preferred_nid)
1801 				continue;
1802 
1803 			dist = node_distance(env.src_nid, env.dst_nid);
1804 			if (sched_numa_topology_type == NUMA_BACKPLANE &&
1805 						dist != env.dist) {
1806 				taskweight = task_weight(p, env.src_nid, dist);
1807 				groupweight = group_weight(p, env.src_nid, dist);
1808 			}
1809 
1810 			/* Only consider nodes where both task and groups benefit */
1811 			taskimp = task_weight(p, nid, dist) - taskweight;
1812 			groupimp = group_weight(p, nid, dist) - groupweight;
1813 			if (taskimp < 0 && groupimp < 0)
1814 				continue;
1815 
1816 			env.dist = dist;
1817 			env.dst_nid = nid;
1818 			update_numa_stats(&env.dst_stats, env.dst_nid);
1819 			if (numa_has_capacity(&env))
1820 				task_numa_find_cpu(&env, taskimp, groupimp);
1821 		}
1822 	}
1823 
1824 	/*
1825 	 * If the task is part of a workload that spans multiple NUMA nodes,
1826 	 * and is migrating into one of the workload's active nodes, remember
1827 	 * this node as the task's preferred numa node, so the workload can
1828 	 * settle down.
1829 	 * A task that migrated to a second choice node will be better off
1830 	 * trying for a better one later. Do not set the preferred node here.
1831 	 */
1832 	if (p->numa_group) {
1833 		struct numa_group *ng = p->numa_group;
1834 
1835 		if (env.best_cpu == -1)
1836 			nid = env.src_nid;
1837 		else
1838 			nid = env.dst_nid;
1839 
1840 		if (ng->active_nodes > 1 && numa_is_active_node(env.dst_nid, ng))
1841 			sched_setnuma(p, env.dst_nid);
1842 	}
1843 
1844 	/* No better CPU than the current one was found. */
1845 	if (env.best_cpu == -1)
1846 		return -EAGAIN;
1847 
1848 	/*
1849 	 * Reset the scan period if the task is being rescheduled on an
1850 	 * alternative node to recheck if the tasks is now properly placed.
1851 	 */
1852 	p->numa_scan_period = task_scan_start(p);
1853 
1854 	if (env.best_task == NULL) {
1855 		ret = migrate_task_to(p, env.best_cpu);
1856 		if (ret != 0)
1857 			trace_sched_stick_numa(p, env.src_cpu, env.best_cpu);
1858 		return ret;
1859 	}
1860 
1861 	ret = migrate_swap(p, env.best_task);
1862 	if (ret != 0)
1863 		trace_sched_stick_numa(p, env.src_cpu, task_cpu(env.best_task));
1864 	put_task_struct(env.best_task);
1865 	return ret;
1866 }
1867 
1868 /* Attempt to migrate a task to a CPU on the preferred node. */
1869 static void numa_migrate_preferred(struct task_struct *p)
1870 {
1871 	unsigned long interval = HZ;
1872 
1873 	/* This task has no NUMA fault statistics yet */
1874 	if (unlikely(p->numa_preferred_nid == -1 || !p->numa_faults))
1875 		return;
1876 
1877 	/* Periodically retry migrating the task to the preferred node */
1878 	interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16);
1879 	p->numa_migrate_retry = jiffies + interval;
1880 
1881 	/* Success if task is already running on preferred CPU */
1882 	if (task_node(p) == p->numa_preferred_nid)
1883 		return;
1884 
1885 	/* Otherwise, try migrate to a CPU on the preferred node */
1886 	task_numa_migrate(p);
1887 }
1888 
1889 /*
1890  * Find out how many nodes on the workload is actively running on. Do this by
1891  * tracking the nodes from which NUMA hinting faults are triggered. This can
1892  * be different from the set of nodes where the workload's memory is currently
1893  * located.
1894  */
1895 static void numa_group_count_active_nodes(struct numa_group *numa_group)
1896 {
1897 	unsigned long faults, max_faults = 0;
1898 	int nid, active_nodes = 0;
1899 
1900 	for_each_online_node(nid) {
1901 		faults = group_faults_cpu(numa_group, nid);
1902 		if (faults > max_faults)
1903 			max_faults = faults;
1904 	}
1905 
1906 	for_each_online_node(nid) {
1907 		faults = group_faults_cpu(numa_group, nid);
1908 		if (faults * ACTIVE_NODE_FRACTION > max_faults)
1909 			active_nodes++;
1910 	}
1911 
1912 	numa_group->max_faults_cpu = max_faults;
1913 	numa_group->active_nodes = active_nodes;
1914 }
1915 
1916 /*
1917  * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
1918  * increments. The more local the fault statistics are, the higher the scan
1919  * period will be for the next scan window. If local/(local+remote) ratio is
1920  * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS)
1921  * the scan period will decrease. Aim for 70% local accesses.
1922  */
1923 #define NUMA_PERIOD_SLOTS 10
1924 #define NUMA_PERIOD_THRESHOLD 7
1925 
1926 /*
1927  * Increase the scan period (slow down scanning) if the majority of
1928  * our memory is already on our local node, or if the majority of
1929  * the page accesses are shared with other processes.
1930  * Otherwise, decrease the scan period.
1931  */
1932 static void update_task_scan_period(struct task_struct *p,
1933 			unsigned long shared, unsigned long private)
1934 {
1935 	unsigned int period_slot;
1936 	int lr_ratio, ps_ratio;
1937 	int diff;
1938 
1939 	unsigned long remote = p->numa_faults_locality[0];
1940 	unsigned long local = p->numa_faults_locality[1];
1941 
1942 	/*
1943 	 * If there were no record hinting faults then either the task is
1944 	 * completely idle or all activity is areas that are not of interest
1945 	 * to automatic numa balancing. Related to that, if there were failed
1946 	 * migration then it implies we are migrating too quickly or the local
1947 	 * node is overloaded. In either case, scan slower
1948 	 */
1949 	if (local + shared == 0 || p->numa_faults_locality[2]) {
1950 		p->numa_scan_period = min(p->numa_scan_period_max,
1951 			p->numa_scan_period << 1);
1952 
1953 		p->mm->numa_next_scan = jiffies +
1954 			msecs_to_jiffies(p->numa_scan_period);
1955 
1956 		return;
1957 	}
1958 
1959 	/*
1960 	 * Prepare to scale scan period relative to the current period.
1961 	 *	 == NUMA_PERIOD_THRESHOLD scan period stays the same
1962 	 *       <  NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
1963 	 *	 >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
1964 	 */
1965 	period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
1966 	lr_ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
1967 	ps_ratio = (private * NUMA_PERIOD_SLOTS) / (private + shared);
1968 
1969 	if (ps_ratio >= NUMA_PERIOD_THRESHOLD) {
1970 		/*
1971 		 * Most memory accesses are local. There is no need to
1972 		 * do fast NUMA scanning, since memory is already local.
1973 		 */
1974 		int slot = ps_ratio - NUMA_PERIOD_THRESHOLD;
1975 		if (!slot)
1976 			slot = 1;
1977 		diff = slot * period_slot;
1978 	} else if (lr_ratio >= NUMA_PERIOD_THRESHOLD) {
1979 		/*
1980 		 * Most memory accesses are shared with other tasks.
1981 		 * There is no point in continuing fast NUMA scanning,
1982 		 * since other tasks may just move the memory elsewhere.
1983 		 */
1984 		int slot = lr_ratio - NUMA_PERIOD_THRESHOLD;
1985 		if (!slot)
1986 			slot = 1;
1987 		diff = slot * period_slot;
1988 	} else {
1989 		/*
1990 		 * Private memory faults exceed (SLOTS-THRESHOLD)/SLOTS,
1991 		 * yet they are not on the local NUMA node. Speed up
1992 		 * NUMA scanning to get the memory moved over.
1993 		 */
1994 		int ratio = max(lr_ratio, ps_ratio);
1995 		diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;
1996 	}
1997 
1998 	p->numa_scan_period = clamp(p->numa_scan_period + diff,
1999 			task_scan_min(p), task_scan_max(p));
2000 	memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
2001 }
2002 
2003 /*
2004  * Get the fraction of time the task has been running since the last
2005  * NUMA placement cycle. The scheduler keeps similar statistics, but
2006  * decays those on a 32ms period, which is orders of magnitude off
2007  * from the dozens-of-seconds NUMA balancing period. Use the scheduler
2008  * stats only if the task is so new there are no NUMA statistics yet.
2009  */
2010 static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period)
2011 {
2012 	u64 runtime, delta, now;
2013 	/* Use the start of this time slice to avoid calculations. */
2014 	now = p->se.exec_start;
2015 	runtime = p->se.sum_exec_runtime;
2016 
2017 	if (p->last_task_numa_placement) {
2018 		delta = runtime - p->last_sum_exec_runtime;
2019 		*period = now - p->last_task_numa_placement;
2020 	} else {
2021 		delta = p->se.avg.load_sum;
2022 		*period = LOAD_AVG_MAX;
2023 	}
2024 
2025 	p->last_sum_exec_runtime = runtime;
2026 	p->last_task_numa_placement = now;
2027 
2028 	return delta;
2029 }
2030 
2031 /*
2032  * Determine the preferred nid for a task in a numa_group. This needs to
2033  * be done in a way that produces consistent results with group_weight,
2034  * otherwise workloads might not converge.
2035  */
2036 static int preferred_group_nid(struct task_struct *p, int nid)
2037 {
2038 	nodemask_t nodes;
2039 	int dist;
2040 
2041 	/* Direct connections between all NUMA nodes. */
2042 	if (sched_numa_topology_type == NUMA_DIRECT)
2043 		return nid;
2044 
2045 	/*
2046 	 * On a system with glueless mesh NUMA topology, group_weight
2047 	 * scores nodes according to the number of NUMA hinting faults on
2048 	 * both the node itself, and on nearby nodes.
2049 	 */
2050 	if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
2051 		unsigned long score, max_score = 0;
2052 		int node, max_node = nid;
2053 
2054 		dist = sched_max_numa_distance;
2055 
2056 		for_each_online_node(node) {
2057 			score = group_weight(p, node, dist);
2058 			if (score > max_score) {
2059 				max_score = score;
2060 				max_node = node;
2061 			}
2062 		}
2063 		return max_node;
2064 	}
2065 
2066 	/*
2067 	 * Finding the preferred nid in a system with NUMA backplane
2068 	 * interconnect topology is more involved. The goal is to locate
2069 	 * tasks from numa_groups near each other in the system, and
2070 	 * untangle workloads from different sides of the system. This requires
2071 	 * searching down the hierarchy of node groups, recursively searching
2072 	 * inside the highest scoring group of nodes. The nodemask tricks
2073 	 * keep the complexity of the search down.
2074 	 */
2075 	nodes = node_online_map;
2076 	for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) {
2077 		unsigned long max_faults = 0;
2078 		nodemask_t max_group = NODE_MASK_NONE;
2079 		int a, b;
2080 
2081 		/* Are there nodes at this distance from each other? */
2082 		if (!find_numa_distance(dist))
2083 			continue;
2084 
2085 		for_each_node_mask(a, nodes) {
2086 			unsigned long faults = 0;
2087 			nodemask_t this_group;
2088 			nodes_clear(this_group);
2089 
2090 			/* Sum group's NUMA faults; includes a==b case. */
2091 			for_each_node_mask(b, nodes) {
2092 				if (node_distance(a, b) < dist) {
2093 					faults += group_faults(p, b);
2094 					node_set(b, this_group);
2095 					node_clear(b, nodes);
2096 				}
2097 			}
2098 
2099 			/* Remember the top group. */
2100 			if (faults > max_faults) {
2101 				max_faults = faults;
2102 				max_group = this_group;
2103 				/*
2104 				 * subtle: at the smallest distance there is
2105 				 * just one node left in each "group", the
2106 				 * winner is the preferred nid.
2107 				 */
2108 				nid = a;
2109 			}
2110 		}
2111 		/* Next round, evaluate the nodes within max_group. */
2112 		if (!max_faults)
2113 			break;
2114 		nodes = max_group;
2115 	}
2116 	return nid;
2117 }
2118 
2119 static void task_numa_placement(struct task_struct *p)
2120 {
2121 	int seq, nid, max_nid = -1, max_group_nid = -1;
2122 	unsigned long max_faults = 0, max_group_faults = 0;
2123 	unsigned long fault_types[2] = { 0, 0 };
2124 	unsigned long total_faults;
2125 	u64 runtime, period;
2126 	spinlock_t *group_lock = NULL;
2127 
2128 	/*
2129 	 * The p->mm->numa_scan_seq field gets updated without
2130 	 * exclusive access. Use READ_ONCE() here to ensure
2131 	 * that the field is read in a single access:
2132 	 */
2133 	seq = READ_ONCE(p->mm->numa_scan_seq);
2134 	if (p->numa_scan_seq == seq)
2135 		return;
2136 	p->numa_scan_seq = seq;
2137 	p->numa_scan_period_max = task_scan_max(p);
2138 
2139 	total_faults = p->numa_faults_locality[0] +
2140 		       p->numa_faults_locality[1];
2141 	runtime = numa_get_avg_runtime(p, &period);
2142 
2143 	/* If the task is part of a group prevent parallel updates to group stats */
2144 	if (p->numa_group) {
2145 		group_lock = &p->numa_group->lock;
2146 		spin_lock_irq(group_lock);
2147 	}
2148 
2149 	/* Find the node with the highest number of faults */
2150 	for_each_online_node(nid) {
2151 		/* Keep track of the offsets in numa_faults array */
2152 		int mem_idx, membuf_idx, cpu_idx, cpubuf_idx;
2153 		unsigned long faults = 0, group_faults = 0;
2154 		int priv;
2155 
2156 		for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) {
2157 			long diff, f_diff, f_weight;
2158 
2159 			mem_idx = task_faults_idx(NUMA_MEM, nid, priv);
2160 			membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv);
2161 			cpu_idx = task_faults_idx(NUMA_CPU, nid, priv);
2162 			cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv);
2163 
2164 			/* Decay existing window, copy faults since last scan */
2165 			diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2;
2166 			fault_types[priv] += p->numa_faults[membuf_idx];
2167 			p->numa_faults[membuf_idx] = 0;
2168 
2169 			/*
2170 			 * Normalize the faults_from, so all tasks in a group
2171 			 * count according to CPU use, instead of by the raw
2172 			 * number of faults. Tasks with little runtime have
2173 			 * little over-all impact on throughput, and thus their
2174 			 * faults are less important.
2175 			 */
2176 			f_weight = div64_u64(runtime << 16, period + 1);
2177 			f_weight = (f_weight * p->numa_faults[cpubuf_idx]) /
2178 				   (total_faults + 1);
2179 			f_diff = f_weight - p->numa_faults[cpu_idx] / 2;
2180 			p->numa_faults[cpubuf_idx] = 0;
2181 
2182 			p->numa_faults[mem_idx] += diff;
2183 			p->numa_faults[cpu_idx] += f_diff;
2184 			faults += p->numa_faults[mem_idx];
2185 			p->total_numa_faults += diff;
2186 			if (p->numa_group) {
2187 				/*
2188 				 * safe because we can only change our own group
2189 				 *
2190 				 * mem_idx represents the offset for a given
2191 				 * nid and priv in a specific region because it
2192 				 * is at the beginning of the numa_faults array.
2193 				 */
2194 				p->numa_group->faults[mem_idx] += diff;
2195 				p->numa_group->faults_cpu[mem_idx] += f_diff;
2196 				p->numa_group->total_faults += diff;
2197 				group_faults += p->numa_group->faults[mem_idx];
2198 			}
2199 		}
2200 
2201 		if (faults > max_faults) {
2202 			max_faults = faults;
2203 			max_nid = nid;
2204 		}
2205 
2206 		if (group_faults > max_group_faults) {
2207 			max_group_faults = group_faults;
2208 			max_group_nid = nid;
2209 		}
2210 	}
2211 
2212 	update_task_scan_period(p, fault_types[0], fault_types[1]);
2213 
2214 	if (p->numa_group) {
2215 		numa_group_count_active_nodes(p->numa_group);
2216 		spin_unlock_irq(group_lock);
2217 		max_nid = preferred_group_nid(p, max_group_nid);
2218 	}
2219 
2220 	if (max_faults) {
2221 		/* Set the new preferred node */
2222 		if (max_nid != p->numa_preferred_nid)
2223 			sched_setnuma(p, max_nid);
2224 
2225 		if (task_node(p) != p->numa_preferred_nid)
2226 			numa_migrate_preferred(p);
2227 	}
2228 }
2229 
2230 static inline int get_numa_group(struct numa_group *grp)
2231 {
2232 	return atomic_inc_not_zero(&grp->refcount);
2233 }
2234 
2235 static inline void put_numa_group(struct numa_group *grp)
2236 {
2237 	if (atomic_dec_and_test(&grp->refcount))
2238 		kfree_rcu(grp, rcu);
2239 }
2240 
2241 static void task_numa_group(struct task_struct *p, int cpupid, int flags,
2242 			int *priv)
2243 {
2244 	struct numa_group *grp, *my_grp;
2245 	struct task_struct *tsk;
2246 	bool join = false;
2247 	int cpu = cpupid_to_cpu(cpupid);
2248 	int i;
2249 
2250 	if (unlikely(!p->numa_group)) {
2251 		unsigned int size = sizeof(struct numa_group) +
2252 				    4*nr_node_ids*sizeof(unsigned long);
2253 
2254 		grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
2255 		if (!grp)
2256 			return;
2257 
2258 		atomic_set(&grp->refcount, 1);
2259 		grp->active_nodes = 1;
2260 		grp->max_faults_cpu = 0;
2261 		spin_lock_init(&grp->lock);
2262 		grp->gid = p->pid;
2263 		/* Second half of the array tracks nids where faults happen */
2264 		grp->faults_cpu = grp->faults + NR_NUMA_HINT_FAULT_TYPES *
2265 						nr_node_ids;
2266 
2267 		for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
2268 			grp->faults[i] = p->numa_faults[i];
2269 
2270 		grp->total_faults = p->total_numa_faults;
2271 
2272 		grp->nr_tasks++;
2273 		rcu_assign_pointer(p->numa_group, grp);
2274 	}
2275 
2276 	rcu_read_lock();
2277 	tsk = READ_ONCE(cpu_rq(cpu)->curr);
2278 
2279 	if (!cpupid_match_pid(tsk, cpupid))
2280 		goto no_join;
2281 
2282 	grp = rcu_dereference(tsk->numa_group);
2283 	if (!grp)
2284 		goto no_join;
2285 
2286 	my_grp = p->numa_group;
2287 	if (grp == my_grp)
2288 		goto no_join;
2289 
2290 	/*
2291 	 * Only join the other group if its bigger; if we're the bigger group,
2292 	 * the other task will join us.
2293 	 */
2294 	if (my_grp->nr_tasks > grp->nr_tasks)
2295 		goto no_join;
2296 
2297 	/*
2298 	 * Tie-break on the grp address.
2299 	 */
2300 	if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
2301 		goto no_join;
2302 
2303 	/* Always join threads in the same process. */
2304 	if (tsk->mm == current->mm)
2305 		join = true;
2306 
2307 	/* Simple filter to avoid false positives due to PID collisions */
2308 	if (flags & TNF_SHARED)
2309 		join = true;
2310 
2311 	/* Update priv based on whether false sharing was detected */
2312 	*priv = !join;
2313 
2314 	if (join && !get_numa_group(grp))
2315 		goto no_join;
2316 
2317 	rcu_read_unlock();
2318 
2319 	if (!join)
2320 		return;
2321 
2322 	BUG_ON(irqs_disabled());
2323 	double_lock_irq(&my_grp->lock, &grp->lock);
2324 
2325 	for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) {
2326 		my_grp->faults[i] -= p->numa_faults[i];
2327 		grp->faults[i] += p->numa_faults[i];
2328 	}
2329 	my_grp->total_faults -= p->total_numa_faults;
2330 	grp->total_faults += p->total_numa_faults;
2331 
2332 	my_grp->nr_tasks--;
2333 	grp->nr_tasks++;
2334 
2335 	spin_unlock(&my_grp->lock);
2336 	spin_unlock_irq(&grp->lock);
2337 
2338 	rcu_assign_pointer(p->numa_group, grp);
2339 
2340 	put_numa_group(my_grp);
2341 	return;
2342 
2343 no_join:
2344 	rcu_read_unlock();
2345 	return;
2346 }
2347 
2348 void task_numa_free(struct task_struct *p)
2349 {
2350 	struct numa_group *grp = p->numa_group;
2351 	void *numa_faults = p->numa_faults;
2352 	unsigned long flags;
2353 	int i;
2354 
2355 	if (grp) {
2356 		spin_lock_irqsave(&grp->lock, flags);
2357 		for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
2358 			grp->faults[i] -= p->numa_faults[i];
2359 		grp->total_faults -= p->total_numa_faults;
2360 
2361 		grp->nr_tasks--;
2362 		spin_unlock_irqrestore(&grp->lock, flags);
2363 		RCU_INIT_POINTER(p->numa_group, NULL);
2364 		put_numa_group(grp);
2365 	}
2366 
2367 	p->numa_faults = NULL;
2368 	kfree(numa_faults);
2369 }
2370 
2371 /*
2372  * Got a PROT_NONE fault for a page on @node.
2373  */
2374 void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags)
2375 {
2376 	struct task_struct *p = current;
2377 	bool migrated = flags & TNF_MIGRATED;
2378 	int cpu_node = task_node(current);
2379 	int local = !!(flags & TNF_FAULT_LOCAL);
2380 	struct numa_group *ng;
2381 	int priv;
2382 
2383 	if (!static_branch_likely(&sched_numa_balancing))
2384 		return;
2385 
2386 	/* for example, ksmd faulting in a user's mm */
2387 	if (!p->mm)
2388 		return;
2389 
2390 	/* Allocate buffer to track faults on a per-node basis */
2391 	if (unlikely(!p->numa_faults)) {
2392 		int size = sizeof(*p->numa_faults) *
2393 			   NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids;
2394 
2395 		p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN);
2396 		if (!p->numa_faults)
2397 			return;
2398 
2399 		p->total_numa_faults = 0;
2400 		memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
2401 	}
2402 
2403 	/*
2404 	 * First accesses are treated as private, otherwise consider accesses
2405 	 * to be private if the accessing pid has not changed
2406 	 */
2407 	if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
2408 		priv = 1;
2409 	} else {
2410 		priv = cpupid_match_pid(p, last_cpupid);
2411 		if (!priv && !(flags & TNF_NO_GROUP))
2412 			task_numa_group(p, last_cpupid, flags, &priv);
2413 	}
2414 
2415 	/*
2416 	 * If a workload spans multiple NUMA nodes, a shared fault that
2417 	 * occurs wholly within the set of nodes that the workload is
2418 	 * actively using should be counted as local. This allows the
2419 	 * scan rate to slow down when a workload has settled down.
2420 	 */
2421 	ng = p->numa_group;
2422 	if (!priv && !local && ng && ng->active_nodes > 1 &&
2423 				numa_is_active_node(cpu_node, ng) &&
2424 				numa_is_active_node(mem_node, ng))
2425 		local = 1;
2426 
2427 	task_numa_placement(p);
2428 
2429 	/*
2430 	 * Retry task to preferred node migration periodically, in case it
2431 	 * case it previously failed, or the scheduler moved us.
2432 	 */
2433 	if (time_after(jiffies, p->numa_migrate_retry))
2434 		numa_migrate_preferred(p);
2435 
2436 	if (migrated)
2437 		p->numa_pages_migrated += pages;
2438 	if (flags & TNF_MIGRATE_FAIL)
2439 		p->numa_faults_locality[2] += pages;
2440 
2441 	p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages;
2442 	p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages;
2443 	p->numa_faults_locality[local] += pages;
2444 }
2445 
2446 static void reset_ptenuma_scan(struct task_struct *p)
2447 {
2448 	/*
2449 	 * We only did a read acquisition of the mmap sem, so
2450 	 * p->mm->numa_scan_seq is written to without exclusive access
2451 	 * and the update is not guaranteed to be atomic. That's not
2452 	 * much of an issue though, since this is just used for
2453 	 * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not
2454 	 * expensive, to avoid any form of compiler optimizations:
2455 	 */
2456 	WRITE_ONCE(p->mm->numa_scan_seq, READ_ONCE(p->mm->numa_scan_seq) + 1);
2457 	p->mm->numa_scan_offset = 0;
2458 }
2459 
2460 /*
2461  * The expensive part of numa migration is done from task_work context.
2462  * Triggered from task_tick_numa().
2463  */
2464 void task_numa_work(struct callback_head *work)
2465 {
2466 	unsigned long migrate, next_scan, now = jiffies;
2467 	struct task_struct *p = current;
2468 	struct mm_struct *mm = p->mm;
2469 	u64 runtime = p->se.sum_exec_runtime;
2470 	struct vm_area_struct *vma;
2471 	unsigned long start, end;
2472 	unsigned long nr_pte_updates = 0;
2473 	long pages, virtpages;
2474 
2475 	SCHED_WARN_ON(p != container_of(work, struct task_struct, numa_work));
2476 
2477 	work->next = work; /* protect against double add */
2478 	/*
2479 	 * Who cares about NUMA placement when they're dying.
2480 	 *
2481 	 * NOTE: make sure not to dereference p->mm before this check,
2482 	 * exit_task_work() happens _after_ exit_mm() so we could be called
2483 	 * without p->mm even though we still had it when we enqueued this
2484 	 * work.
2485 	 */
2486 	if (p->flags & PF_EXITING)
2487 		return;
2488 
2489 	if (!mm->numa_next_scan) {
2490 		mm->numa_next_scan = now +
2491 			msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
2492 	}
2493 
2494 	/*
2495 	 * Enforce maximal scan/migration frequency..
2496 	 */
2497 	migrate = mm->numa_next_scan;
2498 	if (time_before(now, migrate))
2499 		return;
2500 
2501 	if (p->numa_scan_period == 0) {
2502 		p->numa_scan_period_max = task_scan_max(p);
2503 		p->numa_scan_period = task_scan_start(p);
2504 	}
2505 
2506 	next_scan = now + msecs_to_jiffies(p->numa_scan_period);
2507 	if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
2508 		return;
2509 
2510 	/*
2511 	 * Delay this task enough that another task of this mm will likely win
2512 	 * the next time around.
2513 	 */
2514 	p->node_stamp += 2 * TICK_NSEC;
2515 
2516 	start = mm->numa_scan_offset;
2517 	pages = sysctl_numa_balancing_scan_size;
2518 	pages <<= 20 - PAGE_SHIFT; /* MB in pages */
2519 	virtpages = pages * 8;	   /* Scan up to this much virtual space */
2520 	if (!pages)
2521 		return;
2522 
2523 
2524 	if (!down_read_trylock(&mm->mmap_sem))
2525 		return;
2526 	vma = find_vma(mm, start);
2527 	if (!vma) {
2528 		reset_ptenuma_scan(p);
2529 		start = 0;
2530 		vma = mm->mmap;
2531 	}
2532 	for (; vma; vma = vma->vm_next) {
2533 		if (!vma_migratable(vma) || !vma_policy_mof(vma) ||
2534 			is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_MIXEDMAP)) {
2535 			continue;
2536 		}
2537 
2538 		/*
2539 		 * Shared library pages mapped by multiple processes are not
2540 		 * migrated as it is expected they are cache replicated. Avoid
2541 		 * hinting faults in read-only file-backed mappings or the vdso
2542 		 * as migrating the pages will be of marginal benefit.
2543 		 */
2544 		if (!vma->vm_mm ||
2545 		    (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ)))
2546 			continue;
2547 
2548 		/*
2549 		 * Skip inaccessible VMAs to avoid any confusion between
2550 		 * PROT_NONE and NUMA hinting ptes
2551 		 */
2552 		if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)))
2553 			continue;
2554 
2555 		do {
2556 			start = max(start, vma->vm_start);
2557 			end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
2558 			end = min(end, vma->vm_end);
2559 			nr_pte_updates = change_prot_numa(vma, start, end);
2560 
2561 			/*
2562 			 * Try to scan sysctl_numa_balancing_size worth of
2563 			 * hpages that have at least one present PTE that
2564 			 * is not already pte-numa. If the VMA contains
2565 			 * areas that are unused or already full of prot_numa
2566 			 * PTEs, scan up to virtpages, to skip through those
2567 			 * areas faster.
2568 			 */
2569 			if (nr_pte_updates)
2570 				pages -= (end - start) >> PAGE_SHIFT;
2571 			virtpages -= (end - start) >> PAGE_SHIFT;
2572 
2573 			start = end;
2574 			if (pages <= 0 || virtpages <= 0)
2575 				goto out;
2576 
2577 			cond_resched();
2578 		} while (end != vma->vm_end);
2579 	}
2580 
2581 out:
2582 	/*
2583 	 * It is possible to reach the end of the VMA list but the last few
2584 	 * VMAs are not guaranteed to the vma_migratable. If they are not, we
2585 	 * would find the !migratable VMA on the next scan but not reset the
2586 	 * scanner to the start so check it now.
2587 	 */
2588 	if (vma)
2589 		mm->numa_scan_offset = start;
2590 	else
2591 		reset_ptenuma_scan(p);
2592 	up_read(&mm->mmap_sem);
2593 
2594 	/*
2595 	 * Make sure tasks use at least 32x as much time to run other code
2596 	 * than they used here, to limit NUMA PTE scanning overhead to 3% max.
2597 	 * Usually update_task_scan_period slows down scanning enough; on an
2598 	 * overloaded system we need to limit overhead on a per task basis.
2599 	 */
2600 	if (unlikely(p->se.sum_exec_runtime != runtime)) {
2601 		u64 diff = p->se.sum_exec_runtime - runtime;
2602 		p->node_stamp += 32 * diff;
2603 	}
2604 }
2605 
2606 /*
2607  * Drive the periodic memory faults..
2608  */
2609 void task_tick_numa(struct rq *rq, struct task_struct *curr)
2610 {
2611 	struct callback_head *work = &curr->numa_work;
2612 	u64 period, now;
2613 
2614 	/*
2615 	 * We don't care about NUMA placement if we don't have memory.
2616 	 */
2617 	if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work)
2618 		return;
2619 
2620 	/*
2621 	 * Using runtime rather than walltime has the dual advantage that
2622 	 * we (mostly) drive the selection from busy threads and that the
2623 	 * task needs to have done some actual work before we bother with
2624 	 * NUMA placement.
2625 	 */
2626 	now = curr->se.sum_exec_runtime;
2627 	period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
2628 
2629 	if (now > curr->node_stamp + period) {
2630 		if (!curr->node_stamp)
2631 			curr->numa_scan_period = task_scan_start(curr);
2632 		curr->node_stamp += period;
2633 
2634 		if (!time_before(jiffies, curr->mm->numa_next_scan)) {
2635 			init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */
2636 			task_work_add(curr, work, true);
2637 		}
2638 	}
2639 }
2640 
2641 #else
2642 static void task_tick_numa(struct rq *rq, struct task_struct *curr)
2643 {
2644 }
2645 
2646 static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
2647 {
2648 }
2649 
2650 static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
2651 {
2652 }
2653 
2654 #endif /* CONFIG_NUMA_BALANCING */
2655 
2656 static void
2657 account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2658 {
2659 	update_load_add(&cfs_rq->load, se->load.weight);
2660 	if (!parent_entity(se))
2661 		update_load_add(&rq_of(cfs_rq)->load, se->load.weight);
2662 #ifdef CONFIG_SMP
2663 	if (entity_is_task(se)) {
2664 		struct rq *rq = rq_of(cfs_rq);
2665 
2666 		account_numa_enqueue(rq, task_of(se));
2667 		list_add(&se->group_node, &rq->cfs_tasks);
2668 	}
2669 #endif
2670 	cfs_rq->nr_running++;
2671 }
2672 
2673 static void
2674 account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2675 {
2676 	update_load_sub(&cfs_rq->load, se->load.weight);
2677 	if (!parent_entity(se))
2678 		update_load_sub(&rq_of(cfs_rq)->load, se->load.weight);
2679 #ifdef CONFIG_SMP
2680 	if (entity_is_task(se)) {
2681 		account_numa_dequeue(rq_of(cfs_rq), task_of(se));
2682 		list_del_init(&se->group_node);
2683 	}
2684 #endif
2685 	cfs_rq->nr_running--;
2686 }
2687 
2688 /*
2689  * Signed add and clamp on underflow.
2690  *
2691  * Explicitly do a load-store to ensure the intermediate value never hits
2692  * memory. This allows lockless observations without ever seeing the negative
2693  * values.
2694  */
2695 #define add_positive(_ptr, _val) do {                           \
2696 	typeof(_ptr) ptr = (_ptr);                              \
2697 	typeof(_val) val = (_val);                              \
2698 	typeof(*ptr) res, var = READ_ONCE(*ptr);                \
2699 								\
2700 	res = var + val;                                        \
2701 								\
2702 	if (val < 0 && res > var)                               \
2703 		res = 0;                                        \
2704 								\
2705 	WRITE_ONCE(*ptr, res);                                  \
2706 } while (0)
2707 
2708 /*
2709  * Unsigned subtract and clamp on underflow.
2710  *
2711  * Explicitly do a load-store to ensure the intermediate value never hits
2712  * memory. This allows lockless observations without ever seeing the negative
2713  * values.
2714  */
2715 #define sub_positive(_ptr, _val) do {				\
2716 	typeof(_ptr) ptr = (_ptr);				\
2717 	typeof(*ptr) val = (_val);				\
2718 	typeof(*ptr) res, var = READ_ONCE(*ptr);		\
2719 	res = var - val;					\
2720 	if (res > var)						\
2721 		res = 0;					\
2722 	WRITE_ONCE(*ptr, res);					\
2723 } while (0)
2724 
2725 #ifdef CONFIG_SMP
2726 /*
2727  * XXX we want to get rid of these helpers and use the full load resolution.
2728  */
2729 static inline long se_weight(struct sched_entity *se)
2730 {
2731 	return scale_load_down(se->load.weight);
2732 }
2733 
2734 static inline long se_runnable(struct sched_entity *se)
2735 {
2736 	return scale_load_down(se->runnable_weight);
2737 }
2738 
2739 static inline void
2740 enqueue_runnable_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
2741 {
2742 	cfs_rq->runnable_weight += se->runnable_weight;
2743 
2744 	cfs_rq->avg.runnable_load_avg += se->avg.runnable_load_avg;
2745 	cfs_rq->avg.runnable_load_sum += se_runnable(se) * se->avg.runnable_load_sum;
2746 }
2747 
2748 static inline void
2749 dequeue_runnable_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
2750 {
2751 	cfs_rq->runnable_weight -= se->runnable_weight;
2752 
2753 	sub_positive(&cfs_rq->avg.runnable_load_avg, se->avg.runnable_load_avg);
2754 	sub_positive(&cfs_rq->avg.runnable_load_sum,
2755 		     se_runnable(se) * se->avg.runnable_load_sum);
2756 }
2757 
2758 static inline void
2759 enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
2760 {
2761 	cfs_rq->avg.load_avg += se->avg.load_avg;
2762 	cfs_rq->avg.load_sum += se_weight(se) * se->avg.load_sum;
2763 }
2764 
2765 static inline void
2766 dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
2767 {
2768 	sub_positive(&cfs_rq->avg.load_avg, se->avg.load_avg);
2769 	sub_positive(&cfs_rq->avg.load_sum, se_weight(se) * se->avg.load_sum);
2770 }
2771 #else
2772 static inline void
2773 enqueue_runnable_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
2774 static inline void
2775 dequeue_runnable_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
2776 static inline void
2777 enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
2778 static inline void
2779 dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
2780 #endif
2781 
2782 static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
2783 			    unsigned long weight, unsigned long runnable)
2784 {
2785 	if (se->on_rq) {
2786 		/* commit outstanding execution time */
2787 		if (cfs_rq->curr == se)
2788 			update_curr(cfs_rq);
2789 		account_entity_dequeue(cfs_rq, se);
2790 		dequeue_runnable_load_avg(cfs_rq, se);
2791 	}
2792 	dequeue_load_avg(cfs_rq, se);
2793 
2794 	se->runnable_weight = runnable;
2795 	update_load_set(&se->load, weight);
2796 
2797 #ifdef CONFIG_SMP
2798 	do {
2799 		u32 divider = LOAD_AVG_MAX - 1024 + se->avg.period_contrib;
2800 
2801 		se->avg.load_avg = div_u64(se_weight(se) * se->avg.load_sum, divider);
2802 		se->avg.runnable_load_avg =
2803 			div_u64(se_runnable(se) * se->avg.runnable_load_sum, divider);
2804 	} while (0);
2805 #endif
2806 
2807 	enqueue_load_avg(cfs_rq, se);
2808 	if (se->on_rq) {
2809 		account_entity_enqueue(cfs_rq, se);
2810 		enqueue_runnable_load_avg(cfs_rq, se);
2811 	}
2812 }
2813 
2814 void reweight_task(struct task_struct *p, int prio)
2815 {
2816 	struct sched_entity *se = &p->se;
2817 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
2818 	struct load_weight *load = &se->load;
2819 	unsigned long weight = scale_load(sched_prio_to_weight[prio]);
2820 
2821 	reweight_entity(cfs_rq, se, weight, weight);
2822 	load->inv_weight = sched_prio_to_wmult[prio];
2823 }
2824 
2825 #ifdef CONFIG_FAIR_GROUP_SCHED
2826 # ifdef CONFIG_SMP
2827 /*
2828  * All this does is approximate the hierarchical proportion which includes that
2829  * global sum we all love to hate.
2830  *
2831  * That is, the weight of a group entity, is the proportional share of the
2832  * group weight based on the group runqueue weights. That is:
2833  *
2834  *                     tg->weight * grq->load.weight
2835  *   ge->load.weight = -----------------------------               (1)
2836  *			  \Sum grq->load.weight
2837  *
2838  * Now, because computing that sum is prohibitively expensive to compute (been
2839  * there, done that) we approximate it with this average stuff. The average
2840  * moves slower and therefore the approximation is cheaper and more stable.
2841  *
2842  * So instead of the above, we substitute:
2843  *
2844  *   grq->load.weight -> grq->avg.load_avg                         (2)
2845  *
2846  * which yields the following:
2847  *
2848  *                     tg->weight * grq->avg.load_avg
2849  *   ge->load.weight = ------------------------------              (3)
2850  *				tg->load_avg
2851  *
2852  * Where: tg->load_avg ~= \Sum grq->avg.load_avg
2853  *
2854  * That is shares_avg, and it is right (given the approximation (2)).
2855  *
2856  * The problem with it is that because the average is slow -- it was designed
2857  * to be exactly that of course -- this leads to transients in boundary
2858  * conditions. In specific, the case where the group was idle and we start the
2859  * one task. It takes time for our CPU's grq->avg.load_avg to build up,
2860  * yielding bad latency etc..
2861  *
2862  * Now, in that special case (1) reduces to:
2863  *
2864  *                     tg->weight * grq->load.weight
2865  *   ge->load.weight = ----------------------------- = tg->weight   (4)
2866  *			    grp->load.weight
2867  *
2868  * That is, the sum collapses because all other CPUs are idle; the UP scenario.
2869  *
2870  * So what we do is modify our approximation (3) to approach (4) in the (near)
2871  * UP case, like:
2872  *
2873  *   ge->load.weight =
2874  *
2875  *              tg->weight * grq->load.weight
2876  *     ---------------------------------------------------         (5)
2877  *     tg->load_avg - grq->avg.load_avg + grq->load.weight
2878  *
2879  * But because grq->load.weight can drop to 0, resulting in a divide by zero,
2880  * we need to use grq->avg.load_avg as its lower bound, which then gives:
2881  *
2882  *
2883  *                     tg->weight * grq->load.weight
2884  *   ge->load.weight = -----------------------------		   (6)
2885  *				tg_load_avg'
2886  *
2887  * Where:
2888  *
2889  *   tg_load_avg' = tg->load_avg - grq->avg.load_avg +
2890  *                  max(grq->load.weight, grq->avg.load_avg)
2891  *
2892  * And that is shares_weight and is icky. In the (near) UP case it approaches
2893  * (4) while in the normal case it approaches (3). It consistently
2894  * overestimates the ge->load.weight and therefore:
2895  *
2896  *   \Sum ge->load.weight >= tg->weight
2897  *
2898  * hence icky!
2899  */
2900 static long calc_group_shares(struct cfs_rq *cfs_rq)
2901 {
2902 	long tg_weight, tg_shares, load, shares;
2903 	struct task_group *tg = cfs_rq->tg;
2904 
2905 	tg_shares = READ_ONCE(tg->shares);
2906 
2907 	load = max(scale_load_down(cfs_rq->load.weight), cfs_rq->avg.load_avg);
2908 
2909 	tg_weight = atomic_long_read(&tg->load_avg);
2910 
2911 	/* Ensure tg_weight >= load */
2912 	tg_weight -= cfs_rq->tg_load_avg_contrib;
2913 	tg_weight += load;
2914 
2915 	shares = (tg_shares * load);
2916 	if (tg_weight)
2917 		shares /= tg_weight;
2918 
2919 	/*
2920 	 * MIN_SHARES has to be unscaled here to support per-CPU partitioning
2921 	 * of a group with small tg->shares value. It is a floor value which is
2922 	 * assigned as a minimum load.weight to the sched_entity representing
2923 	 * the group on a CPU.
2924 	 *
2925 	 * E.g. on 64-bit for a group with tg->shares of scale_load(15)=15*1024
2926 	 * on an 8-core system with 8 tasks each runnable on one CPU shares has
2927 	 * to be 15*1024*1/8=1920 instead of scale_load(MIN_SHARES)=2*1024. In
2928 	 * case no task is runnable on a CPU MIN_SHARES=2 should be returned
2929 	 * instead of 0.
2930 	 */
2931 	return clamp_t(long, shares, MIN_SHARES, tg_shares);
2932 }
2933 
2934 /*
2935  * This calculates the effective runnable weight for a group entity based on
2936  * the group entity weight calculated above.
2937  *
2938  * Because of the above approximation (2), our group entity weight is
2939  * an load_avg based ratio (3). This means that it includes blocked load and
2940  * does not represent the runnable weight.
2941  *
2942  * Approximate the group entity's runnable weight per ratio from the group
2943  * runqueue:
2944  *
2945  *					     grq->avg.runnable_load_avg
2946  *   ge->runnable_weight = ge->load.weight * -------------------------- (7)
2947  *						 grq->avg.load_avg
2948  *
2949  * However, analogous to above, since the avg numbers are slow, this leads to
2950  * transients in the from-idle case. Instead we use:
2951  *
2952  *   ge->runnable_weight = ge->load.weight *
2953  *
2954  *		max(grq->avg.runnable_load_avg, grq->runnable_weight)
2955  *		-----------------------------------------------------	(8)
2956  *		      max(grq->avg.load_avg, grq->load.weight)
2957  *
2958  * Where these max() serve both to use the 'instant' values to fix the slow
2959  * from-idle and avoid the /0 on to-idle, similar to (6).
2960  */
2961 static long calc_group_runnable(struct cfs_rq *cfs_rq, long shares)
2962 {
2963 	long runnable, load_avg;
2964 
2965 	load_avg = max(cfs_rq->avg.load_avg,
2966 		       scale_load_down(cfs_rq->load.weight));
2967 
2968 	runnable = max(cfs_rq->avg.runnable_load_avg,
2969 		       scale_load_down(cfs_rq->runnable_weight));
2970 
2971 	runnable *= shares;
2972 	if (load_avg)
2973 		runnable /= load_avg;
2974 
2975 	return clamp_t(long, runnable, MIN_SHARES, shares);
2976 }
2977 # endif /* CONFIG_SMP */
2978 
2979 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
2980 
2981 /*
2982  * Recomputes the group entity based on the current state of its group
2983  * runqueue.
2984  */
2985 static void update_cfs_group(struct sched_entity *se)
2986 {
2987 	struct cfs_rq *gcfs_rq = group_cfs_rq(se);
2988 	long shares, runnable;
2989 
2990 	if (!gcfs_rq)
2991 		return;
2992 
2993 	if (throttled_hierarchy(gcfs_rq))
2994 		return;
2995 
2996 #ifndef CONFIG_SMP
2997 	runnable = shares = READ_ONCE(gcfs_rq->tg->shares);
2998 
2999 	if (likely(se->load.weight == shares))
3000 		return;
3001 #else
3002 	shares   = calc_group_shares(gcfs_rq);
3003 	runnable = calc_group_runnable(gcfs_rq, shares);
3004 #endif
3005 
3006 	reweight_entity(cfs_rq_of(se), se, shares, runnable);
3007 }
3008 
3009 #else /* CONFIG_FAIR_GROUP_SCHED */
3010 static inline void update_cfs_group(struct sched_entity *se)
3011 {
3012 }
3013 #endif /* CONFIG_FAIR_GROUP_SCHED */
3014 
3015 static inline void cfs_rq_util_change(struct cfs_rq *cfs_rq)
3016 {
3017 	struct rq *rq = rq_of(cfs_rq);
3018 
3019 	if (&rq->cfs == cfs_rq) {
3020 		/*
3021 		 * There are a few boundary cases this might miss but it should
3022 		 * get called often enough that that should (hopefully) not be
3023 		 * a real problem.
3024 		 *
3025 		 * It will not get called when we go idle, because the idle
3026 		 * thread is a different class (!fair), nor will the utilization
3027 		 * number include things like RT tasks.
3028 		 *
3029 		 * As is, the util number is not freq-invariant (we'd have to
3030 		 * implement arch_scale_freq_capacity() for that).
3031 		 *
3032 		 * See cpu_util().
3033 		 */
3034 		cpufreq_update_util(rq, 0);
3035 	}
3036 }
3037 
3038 #ifdef CONFIG_SMP
3039 /*
3040  * Approximate:
3041  *   val * y^n,    where y^32 ~= 0.5 (~1 scheduling period)
3042  */
3043 static u64 decay_load(u64 val, u64 n)
3044 {
3045 	unsigned int local_n;
3046 
3047 	if (unlikely(n > LOAD_AVG_PERIOD * 63))
3048 		return 0;
3049 
3050 	/* after bounds checking we can collapse to 32-bit */
3051 	local_n = n;
3052 
3053 	/*
3054 	 * As y^PERIOD = 1/2, we can combine
3055 	 *    y^n = 1/2^(n/PERIOD) * y^(n%PERIOD)
3056 	 * With a look-up table which covers y^n (n<PERIOD)
3057 	 *
3058 	 * To achieve constant time decay_load.
3059 	 */
3060 	if (unlikely(local_n >= LOAD_AVG_PERIOD)) {
3061 		val >>= local_n / LOAD_AVG_PERIOD;
3062 		local_n %= LOAD_AVG_PERIOD;
3063 	}
3064 
3065 	val = mul_u64_u32_shr(val, runnable_avg_yN_inv[local_n], 32);
3066 	return val;
3067 }
3068 
3069 static u32 __accumulate_pelt_segments(u64 periods, u32 d1, u32 d3)
3070 {
3071 	u32 c1, c2, c3 = d3; /* y^0 == 1 */
3072 
3073 	/*
3074 	 * c1 = d1 y^p
3075 	 */
3076 	c1 = decay_load((u64)d1, periods);
3077 
3078 	/*
3079 	 *            p-1
3080 	 * c2 = 1024 \Sum y^n
3081 	 *            n=1
3082 	 *
3083 	 *              inf        inf
3084 	 *    = 1024 ( \Sum y^n - \Sum y^n - y^0 )
3085 	 *              n=0        n=p
3086 	 */
3087 	c2 = LOAD_AVG_MAX - decay_load(LOAD_AVG_MAX, periods) - 1024;
3088 
3089 	return c1 + c2 + c3;
3090 }
3091 
3092 /*
3093  * Accumulate the three separate parts of the sum; d1 the remainder
3094  * of the last (incomplete) period, d2 the span of full periods and d3
3095  * the remainder of the (incomplete) current period.
3096  *
3097  *           d1          d2           d3
3098  *           ^           ^            ^
3099  *           |           |            |
3100  *         |<->|<----------------->|<--->|
3101  * ... |---x---|------| ... |------|-----x (now)
3102  *
3103  *                           p-1
3104  * u' = (u + d1) y^p + 1024 \Sum y^n + d3 y^0
3105  *                           n=1
3106  *
3107  *    = u y^p +					(Step 1)
3108  *
3109  *                     p-1
3110  *      d1 y^p + 1024 \Sum y^n + d3 y^0		(Step 2)
3111  *                     n=1
3112  */
3113 static __always_inline u32
3114 accumulate_sum(u64 delta, int cpu, struct sched_avg *sa,
3115 	       unsigned long load, unsigned long runnable, int running)
3116 {
3117 	unsigned long scale_freq, scale_cpu;
3118 	u32 contrib = (u32)delta; /* p == 0 -> delta < 1024 */
3119 	u64 periods;
3120 
3121 	scale_freq = arch_scale_freq_capacity(cpu);
3122 	scale_cpu = arch_scale_cpu_capacity(NULL, cpu);
3123 
3124 	delta += sa->period_contrib;
3125 	periods = delta / 1024; /* A period is 1024us (~1ms) */
3126 
3127 	/*
3128 	 * Step 1: decay old *_sum if we crossed period boundaries.
3129 	 */
3130 	if (periods) {
3131 		sa->load_sum = decay_load(sa->load_sum, periods);
3132 		sa->runnable_load_sum =
3133 			decay_load(sa->runnable_load_sum, periods);
3134 		sa->util_sum = decay_load((u64)(sa->util_sum), periods);
3135 
3136 		/*
3137 		 * Step 2
3138 		 */
3139 		delta %= 1024;
3140 		contrib = __accumulate_pelt_segments(periods,
3141 				1024 - sa->period_contrib, delta);
3142 	}
3143 	sa->period_contrib = delta;
3144 
3145 	contrib = cap_scale(contrib, scale_freq);
3146 	if (load)
3147 		sa->load_sum += load * contrib;
3148 	if (runnable)
3149 		sa->runnable_load_sum += runnable * contrib;
3150 	if (running)
3151 		sa->util_sum += contrib * scale_cpu;
3152 
3153 	return periods;
3154 }
3155 
3156 /*
3157  * We can represent the historical contribution to runnable average as the
3158  * coefficients of a geometric series.  To do this we sub-divide our runnable
3159  * history into segments of approximately 1ms (1024us); label the segment that
3160  * occurred N-ms ago p_N, with p_0 corresponding to the current period, e.g.
3161  *
3162  * [<- 1024us ->|<- 1024us ->|<- 1024us ->| ...
3163  *      p0            p1           p2
3164  *     (now)       (~1ms ago)  (~2ms ago)
3165  *
3166  * Let u_i denote the fraction of p_i that the entity was runnable.
3167  *
3168  * We then designate the fractions u_i as our co-efficients, yielding the
3169  * following representation of historical load:
3170  *   u_0 + u_1*y + u_2*y^2 + u_3*y^3 + ...
3171  *
3172  * We choose y based on the with of a reasonably scheduling period, fixing:
3173  *   y^32 = 0.5
3174  *
3175  * This means that the contribution to load ~32ms ago (u_32) will be weighted
3176  * approximately half as much as the contribution to load within the last ms
3177  * (u_0).
3178  *
3179  * When a period "rolls over" and we have new u_0`, multiplying the previous
3180  * sum again by y is sufficient to update:
3181  *   load_avg = u_0` + y*(u_0 + u_1*y + u_2*y^2 + ... )
3182  *            = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1}]
3183  */
3184 static __always_inline int
3185 ___update_load_sum(u64 now, int cpu, struct sched_avg *sa,
3186 		  unsigned long load, unsigned long runnable, int running)
3187 {
3188 	u64 delta;
3189 
3190 	delta = now - sa->last_update_time;
3191 	/*
3192 	 * This should only happen when time goes backwards, which it
3193 	 * unfortunately does during sched clock init when we swap over to TSC.
3194 	 */
3195 	if ((s64)delta < 0) {
3196 		sa->last_update_time = now;
3197 		return 0;
3198 	}
3199 
3200 	/*
3201 	 * Use 1024ns as the unit of measurement since it's a reasonable
3202 	 * approximation of 1us and fast to compute.
3203 	 */
3204 	delta >>= 10;
3205 	if (!delta)
3206 		return 0;
3207 
3208 	sa->last_update_time += delta << 10;
3209 
3210 	/*
3211 	 * running is a subset of runnable (weight) so running can't be set if
3212 	 * runnable is clear. But there are some corner cases where the current
3213 	 * se has been already dequeued but cfs_rq->curr still points to it.
3214 	 * This means that weight will be 0 but not running for a sched_entity
3215 	 * but also for a cfs_rq if the latter becomes idle. As an example,
3216 	 * this happens during idle_balance() which calls
3217 	 * update_blocked_averages()
3218 	 */
3219 	if (!load)
3220 		runnable = running = 0;
3221 
3222 	/*
3223 	 * Now we know we crossed measurement unit boundaries. The *_avg
3224 	 * accrues by two steps:
3225 	 *
3226 	 * Step 1: accumulate *_sum since last_update_time. If we haven't
3227 	 * crossed period boundaries, finish.
3228 	 */
3229 	if (!accumulate_sum(delta, cpu, sa, load, runnable, running))
3230 		return 0;
3231 
3232 	return 1;
3233 }
3234 
3235 static __always_inline void
3236 ___update_load_avg(struct sched_avg *sa, unsigned long load, unsigned long runnable)
3237 {
3238 	u32 divider = LOAD_AVG_MAX - 1024 + sa->period_contrib;
3239 
3240 	/*
3241 	 * Step 2: update *_avg.
3242 	 */
3243 	sa->load_avg = div_u64(load * sa->load_sum, divider);
3244 	sa->runnable_load_avg =	div_u64(runnable * sa->runnable_load_sum, divider);
3245 	sa->util_avg = sa->util_sum / divider;
3246 }
3247 
3248 /*
3249  * sched_entity:
3250  *
3251  *   task:
3252  *     se_runnable() == se_weight()
3253  *
3254  *   group: [ see update_cfs_group() ]
3255  *     se_weight()   = tg->weight * grq->load_avg / tg->load_avg
3256  *     se_runnable() = se_weight(se) * grq->runnable_load_avg / grq->load_avg
3257  *
3258  *   load_sum := runnable_sum
3259  *   load_avg = se_weight(se) * runnable_avg
3260  *
3261  *   runnable_load_sum := runnable_sum
3262  *   runnable_load_avg = se_runnable(se) * runnable_avg
3263  *
3264  * XXX collapse load_sum and runnable_load_sum
3265  *
3266  * cfq_rs:
3267  *
3268  *   load_sum = \Sum se_weight(se) * se->avg.load_sum
3269  *   load_avg = \Sum se->avg.load_avg
3270  *
3271  *   runnable_load_sum = \Sum se_runnable(se) * se->avg.runnable_load_sum
3272  *   runnable_load_avg = \Sum se->avg.runable_load_avg
3273  */
3274 
3275 static int
3276 __update_load_avg_blocked_se(u64 now, int cpu, struct sched_entity *se)
3277 {
3278 	if (entity_is_task(se))
3279 		se->runnable_weight = se->load.weight;
3280 
3281 	if (___update_load_sum(now, cpu, &se->avg, 0, 0, 0)) {
3282 		___update_load_avg(&se->avg, se_weight(se), se_runnable(se));
3283 		return 1;
3284 	}
3285 
3286 	return 0;
3287 }
3288 
3289 static int
3290 __update_load_avg_se(u64 now, int cpu, struct cfs_rq *cfs_rq, struct sched_entity *se)
3291 {
3292 	if (entity_is_task(se))
3293 		se->runnable_weight = se->load.weight;
3294 
3295 	if (___update_load_sum(now, cpu, &se->avg, !!se->on_rq, !!se->on_rq,
3296 				cfs_rq->curr == se)) {
3297 
3298 		___update_load_avg(&se->avg, se_weight(se), se_runnable(se));
3299 		return 1;
3300 	}
3301 
3302 	return 0;
3303 }
3304 
3305 static int
3306 __update_load_avg_cfs_rq(u64 now, int cpu, struct cfs_rq *cfs_rq)
3307 {
3308 	if (___update_load_sum(now, cpu, &cfs_rq->avg,
3309 				scale_load_down(cfs_rq->load.weight),
3310 				scale_load_down(cfs_rq->runnable_weight),
3311 				cfs_rq->curr != NULL)) {
3312 
3313 		___update_load_avg(&cfs_rq->avg, 1, 1);
3314 		return 1;
3315 	}
3316 
3317 	return 0;
3318 }
3319 
3320 #ifdef CONFIG_FAIR_GROUP_SCHED
3321 /**
3322  * update_tg_load_avg - update the tg's load avg
3323  * @cfs_rq: the cfs_rq whose avg changed
3324  * @force: update regardless of how small the difference
3325  *
3326  * This function 'ensures': tg->load_avg := \Sum tg->cfs_rq[]->avg.load.
3327  * However, because tg->load_avg is a global value there are performance
3328  * considerations.
3329  *
3330  * In order to avoid having to look at the other cfs_rq's, we use a
3331  * differential update where we store the last value we propagated. This in
3332  * turn allows skipping updates if the differential is 'small'.
3333  *
3334  * Updating tg's load_avg is necessary before update_cfs_share().
3335  */
3336 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force)
3337 {
3338 	long delta = cfs_rq->avg.load_avg - cfs_rq->tg_load_avg_contrib;
3339 
3340 	/*
3341 	 * No need to update load_avg for root_task_group as it is not used.
3342 	 */
3343 	if (cfs_rq->tg == &root_task_group)
3344 		return;
3345 
3346 	if (force || abs(delta) > cfs_rq->tg_load_avg_contrib / 64) {
3347 		atomic_long_add(delta, &cfs_rq->tg->load_avg);
3348 		cfs_rq->tg_load_avg_contrib = cfs_rq->avg.load_avg;
3349 	}
3350 }
3351 
3352 /*
3353  * Called within set_task_rq() right before setting a task's cpu. The
3354  * caller only guarantees p->pi_lock is held; no other assumptions,
3355  * including the state of rq->lock, should be made.
3356  */
3357 void set_task_rq_fair(struct sched_entity *se,
3358 		      struct cfs_rq *prev, struct cfs_rq *next)
3359 {
3360 	u64 p_last_update_time;
3361 	u64 n_last_update_time;
3362 
3363 	if (!sched_feat(ATTACH_AGE_LOAD))
3364 		return;
3365 
3366 	/*
3367 	 * We are supposed to update the task to "current" time, then its up to
3368 	 * date and ready to go to new CPU/cfs_rq. But we have difficulty in
3369 	 * getting what current time is, so simply throw away the out-of-date
3370 	 * time. This will result in the wakee task is less decayed, but giving
3371 	 * the wakee more load sounds not bad.
3372 	 */
3373 	if (!(se->avg.last_update_time && prev))
3374 		return;
3375 
3376 #ifndef CONFIG_64BIT
3377 	{
3378 		u64 p_last_update_time_copy;
3379 		u64 n_last_update_time_copy;
3380 
3381 		do {
3382 			p_last_update_time_copy = prev->load_last_update_time_copy;
3383 			n_last_update_time_copy = next->load_last_update_time_copy;
3384 
3385 			smp_rmb();
3386 
3387 			p_last_update_time = prev->avg.last_update_time;
3388 			n_last_update_time = next->avg.last_update_time;
3389 
3390 		} while (p_last_update_time != p_last_update_time_copy ||
3391 			 n_last_update_time != n_last_update_time_copy);
3392 	}
3393 #else
3394 	p_last_update_time = prev->avg.last_update_time;
3395 	n_last_update_time = next->avg.last_update_time;
3396 #endif
3397 	__update_load_avg_blocked_se(p_last_update_time, cpu_of(rq_of(prev)), se);
3398 	se->avg.last_update_time = n_last_update_time;
3399 }
3400 
3401 
3402 /*
3403  * When on migration a sched_entity joins/leaves the PELT hierarchy, we need to
3404  * propagate its contribution. The key to this propagation is the invariant
3405  * that for each group:
3406  *
3407  *   ge->avg == grq->avg						(1)
3408  *
3409  * _IFF_ we look at the pure running and runnable sums. Because they
3410  * represent the very same entity, just at different points in the hierarchy.
3411  *
3412  * Per the above update_tg_cfs_util() is trivial and simply copies the running
3413  * sum over (but still wrong, because the group entity and group rq do not have
3414  * their PELT windows aligned).
3415  *
3416  * However, update_tg_cfs_runnable() is more complex. So we have:
3417  *
3418  *   ge->avg.load_avg = ge->load.weight * ge->avg.runnable_avg		(2)
3419  *
3420  * And since, like util, the runnable part should be directly transferable,
3421  * the following would _appear_ to be the straight forward approach:
3422  *
3423  *   grq->avg.load_avg = grq->load.weight * grq->avg.runnable_avg	(3)
3424  *
3425  * And per (1) we have:
3426  *
3427  *   ge->avg.runnable_avg == grq->avg.runnable_avg
3428  *
3429  * Which gives:
3430  *
3431  *                      ge->load.weight * grq->avg.load_avg
3432  *   ge->avg.load_avg = -----------------------------------		(4)
3433  *                               grq->load.weight
3434  *
3435  * Except that is wrong!
3436  *
3437  * Because while for entities historical weight is not important and we
3438  * really only care about our future and therefore can consider a pure
3439  * runnable sum, runqueues can NOT do this.
3440  *
3441  * We specifically want runqueues to have a load_avg that includes
3442  * historical weights. Those represent the blocked load, the load we expect
3443  * to (shortly) return to us. This only works by keeping the weights as
3444  * integral part of the sum. We therefore cannot decompose as per (3).
3445  *
3446  * Another reason this doesn't work is that runnable isn't a 0-sum entity.
3447  * Imagine a rq with 2 tasks that each are runnable 2/3 of the time. Then the
3448  * rq itself is runnable anywhere between 2/3 and 1 depending on how the
3449  * runnable section of these tasks overlap (or not). If they were to perfectly
3450  * align the rq as a whole would be runnable 2/3 of the time. If however we
3451  * always have at least 1 runnable task, the rq as a whole is always runnable.
3452  *
3453  * So we'll have to approximate.. :/
3454  *
3455  * Given the constraint:
3456  *
3457  *   ge->avg.running_sum <= ge->avg.runnable_sum <= LOAD_AVG_MAX
3458  *
3459  * We can construct a rule that adds runnable to a rq by assuming minimal
3460  * overlap.
3461  *
3462  * On removal, we'll assume each task is equally runnable; which yields:
3463  *
3464  *   grq->avg.runnable_sum = grq->avg.load_sum / grq->load.weight
3465  *
3466  * XXX: only do this for the part of runnable > running ?
3467  *
3468  */
3469 
3470 static inline void
3471 update_tg_cfs_util(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
3472 {
3473 	long delta = gcfs_rq->avg.util_avg - se->avg.util_avg;
3474 
3475 	/* Nothing to update */
3476 	if (!delta)
3477 		return;
3478 
3479 	/*
3480 	 * The relation between sum and avg is:
3481 	 *
3482 	 *   LOAD_AVG_MAX - 1024 + sa->period_contrib
3483 	 *
3484 	 * however, the PELT windows are not aligned between grq and gse.
3485 	 */
3486 
3487 	/* Set new sched_entity's utilization */
3488 	se->avg.util_avg = gcfs_rq->avg.util_avg;
3489 	se->avg.util_sum = se->avg.util_avg * LOAD_AVG_MAX;
3490 
3491 	/* Update parent cfs_rq utilization */
3492 	add_positive(&cfs_rq->avg.util_avg, delta);
3493 	cfs_rq->avg.util_sum = cfs_rq->avg.util_avg * LOAD_AVG_MAX;
3494 }
3495 
3496 static inline void
3497 update_tg_cfs_runnable(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
3498 {
3499 	long delta_avg, running_sum, runnable_sum = gcfs_rq->prop_runnable_sum;
3500 	unsigned long runnable_load_avg, load_avg;
3501 	u64 runnable_load_sum, load_sum = 0;
3502 	s64 delta_sum;
3503 
3504 	if (!runnable_sum)
3505 		return;
3506 
3507 	gcfs_rq->prop_runnable_sum = 0;
3508 
3509 	if (runnable_sum >= 0) {
3510 		/*
3511 		 * Add runnable; clip at LOAD_AVG_MAX. Reflects that until
3512 		 * the CPU is saturated running == runnable.
3513 		 */
3514 		runnable_sum += se->avg.load_sum;
3515 		runnable_sum = min(runnable_sum, (long)LOAD_AVG_MAX);
3516 	} else {
3517 		/*
3518 		 * Estimate the new unweighted runnable_sum of the gcfs_rq by
3519 		 * assuming all tasks are equally runnable.
3520 		 */
3521 		if (scale_load_down(gcfs_rq->load.weight)) {
3522 			load_sum = div_s64(gcfs_rq->avg.load_sum,
3523 				scale_load_down(gcfs_rq->load.weight));
3524 		}
3525 
3526 		/* But make sure to not inflate se's runnable */
3527 		runnable_sum = min(se->avg.load_sum, load_sum);
3528 	}
3529 
3530 	/*
3531 	 * runnable_sum can't be lower than running_sum
3532 	 * As running sum is scale with cpu capacity wehreas the runnable sum
3533 	 * is not we rescale running_sum 1st
3534 	 */
3535 	running_sum = se->avg.util_sum /
3536 		arch_scale_cpu_capacity(NULL, cpu_of(rq_of(cfs_rq)));
3537 	runnable_sum = max(runnable_sum, running_sum);
3538 
3539 	load_sum = (s64)se_weight(se) * runnable_sum;
3540 	load_avg = div_s64(load_sum, LOAD_AVG_MAX);
3541 
3542 	delta_sum = load_sum - (s64)se_weight(se) * se->avg.load_sum;
3543 	delta_avg = load_avg - se->avg.load_avg;
3544 
3545 	se->avg.load_sum = runnable_sum;
3546 	se->avg.load_avg = load_avg;
3547 	add_positive(&cfs_rq->avg.load_avg, delta_avg);
3548 	add_positive(&cfs_rq->avg.load_sum, delta_sum);
3549 
3550 	runnable_load_sum = (s64)se_runnable(se) * runnable_sum;
3551 	runnable_load_avg = div_s64(runnable_load_sum, LOAD_AVG_MAX);
3552 	delta_sum = runnable_load_sum - se_weight(se) * se->avg.runnable_load_sum;
3553 	delta_avg = runnable_load_avg - se->avg.runnable_load_avg;
3554 
3555 	se->avg.runnable_load_sum = runnable_sum;
3556 	se->avg.runnable_load_avg = runnable_load_avg;
3557 
3558 	if (se->on_rq) {
3559 		add_positive(&cfs_rq->avg.runnable_load_avg, delta_avg);
3560 		add_positive(&cfs_rq->avg.runnable_load_sum, delta_sum);
3561 	}
3562 }
3563 
3564 static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum)
3565 {
3566 	cfs_rq->propagate = 1;
3567 	cfs_rq->prop_runnable_sum += runnable_sum;
3568 }
3569 
3570 /* Update task and its cfs_rq load average */
3571 static inline int propagate_entity_load_avg(struct sched_entity *se)
3572 {
3573 	struct cfs_rq *cfs_rq, *gcfs_rq;
3574 
3575 	if (entity_is_task(se))
3576 		return 0;
3577 
3578 	gcfs_rq = group_cfs_rq(se);
3579 	if (!gcfs_rq->propagate)
3580 		return 0;
3581 
3582 	gcfs_rq->propagate = 0;
3583 
3584 	cfs_rq = cfs_rq_of(se);
3585 
3586 	add_tg_cfs_propagate(cfs_rq, gcfs_rq->prop_runnable_sum);
3587 
3588 	update_tg_cfs_util(cfs_rq, se, gcfs_rq);
3589 	update_tg_cfs_runnable(cfs_rq, se, gcfs_rq);
3590 
3591 	return 1;
3592 }
3593 
3594 /*
3595  * Check if we need to update the load and the utilization of a blocked
3596  * group_entity:
3597  */
3598 static inline bool skip_blocked_update(struct sched_entity *se)
3599 {
3600 	struct cfs_rq *gcfs_rq = group_cfs_rq(se);
3601 
3602 	/*
3603 	 * If sched_entity still have not zero load or utilization, we have to
3604 	 * decay it:
3605 	 */
3606 	if (se->avg.load_avg || se->avg.util_avg)
3607 		return false;
3608 
3609 	/*
3610 	 * If there is a pending propagation, we have to update the load and
3611 	 * the utilization of the sched_entity:
3612 	 */
3613 	if (gcfs_rq->propagate)
3614 		return false;
3615 
3616 	/*
3617 	 * Otherwise, the load and the utilization of the sched_entity is
3618 	 * already zero and there is no pending propagation, so it will be a
3619 	 * waste of time to try to decay it:
3620 	 */
3621 	return true;
3622 }
3623 
3624 #else /* CONFIG_FAIR_GROUP_SCHED */
3625 
3626 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force) {}
3627 
3628 static inline int propagate_entity_load_avg(struct sched_entity *se)
3629 {
3630 	return 0;
3631 }
3632 
3633 static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum) {}
3634 
3635 #endif /* CONFIG_FAIR_GROUP_SCHED */
3636 
3637 /**
3638  * update_cfs_rq_load_avg - update the cfs_rq's load/util averages
3639  * @now: current time, as per cfs_rq_clock_task()
3640  * @cfs_rq: cfs_rq to update
3641  *
3642  * The cfs_rq avg is the direct sum of all its entities (blocked and runnable)
3643  * avg. The immediate corollary is that all (fair) tasks must be attached, see
3644  * post_init_entity_util_avg().
3645  *
3646  * cfs_rq->avg is used for task_h_load() and update_cfs_share() for example.
3647  *
3648  * Returns true if the load decayed or we removed load.
3649  *
3650  * Since both these conditions indicate a changed cfs_rq->avg.load we should
3651  * call update_tg_load_avg() when this function returns true.
3652  */
3653 static inline int
3654 update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq)
3655 {
3656 	unsigned long removed_load = 0, removed_util = 0, removed_runnable_sum = 0;
3657 	struct sched_avg *sa = &cfs_rq->avg;
3658 	int decayed = 0;
3659 
3660 	if (cfs_rq->removed.nr) {
3661 		unsigned long r;
3662 		u32 divider = LOAD_AVG_MAX - 1024 + sa->period_contrib;
3663 
3664 		raw_spin_lock(&cfs_rq->removed.lock);
3665 		swap(cfs_rq->removed.util_avg, removed_util);
3666 		swap(cfs_rq->removed.load_avg, removed_load);
3667 		swap(cfs_rq->removed.runnable_sum, removed_runnable_sum);
3668 		cfs_rq->removed.nr = 0;
3669 		raw_spin_unlock(&cfs_rq->removed.lock);
3670 
3671 		r = removed_load;
3672 		sub_positive(&sa->load_avg, r);
3673 		sub_positive(&sa->load_sum, r * divider);
3674 
3675 		r = removed_util;
3676 		sub_positive(&sa->util_avg, r);
3677 		sub_positive(&sa->util_sum, r * divider);
3678 
3679 		add_tg_cfs_propagate(cfs_rq, -(long)removed_runnable_sum);
3680 
3681 		decayed = 1;
3682 	}
3683 
3684 	decayed |= __update_load_avg_cfs_rq(now, cpu_of(rq_of(cfs_rq)), cfs_rq);
3685 
3686 #ifndef CONFIG_64BIT
3687 	smp_wmb();
3688 	cfs_rq->load_last_update_time_copy = sa->last_update_time;
3689 #endif
3690 
3691 	if (decayed)
3692 		cfs_rq_util_change(cfs_rq);
3693 
3694 	return decayed;
3695 }
3696 
3697 /**
3698  * attach_entity_load_avg - attach this entity to its cfs_rq load avg
3699  * @cfs_rq: cfs_rq to attach to
3700  * @se: sched_entity to attach
3701  *
3702  * Must call update_cfs_rq_load_avg() before this, since we rely on
3703  * cfs_rq->avg.last_update_time being current.
3704  */
3705 static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3706 {
3707 	u32 divider = LOAD_AVG_MAX - 1024 + cfs_rq->avg.period_contrib;
3708 
3709 	/*
3710 	 * When we attach the @se to the @cfs_rq, we must align the decay
3711 	 * window because without that, really weird and wonderful things can
3712 	 * happen.
3713 	 *
3714 	 * XXX illustrate
3715 	 */
3716 	se->avg.last_update_time = cfs_rq->avg.last_update_time;
3717 	se->avg.period_contrib = cfs_rq->avg.period_contrib;
3718 
3719 	/*
3720 	 * Hell(o) Nasty stuff.. we need to recompute _sum based on the new
3721 	 * period_contrib. This isn't strictly correct, but since we're
3722 	 * entirely outside of the PELT hierarchy, nobody cares if we truncate
3723 	 * _sum a little.
3724 	 */
3725 	se->avg.util_sum = se->avg.util_avg * divider;
3726 
3727 	se->avg.load_sum = divider;
3728 	if (se_weight(se)) {
3729 		se->avg.load_sum =
3730 			div_u64(se->avg.load_avg * se->avg.load_sum, se_weight(se));
3731 	}
3732 
3733 	se->avg.runnable_load_sum = se->avg.load_sum;
3734 
3735 	enqueue_load_avg(cfs_rq, se);
3736 	cfs_rq->avg.util_avg += se->avg.util_avg;
3737 	cfs_rq->avg.util_sum += se->avg.util_sum;
3738 
3739 	add_tg_cfs_propagate(cfs_rq, se->avg.load_sum);
3740 
3741 	cfs_rq_util_change(cfs_rq);
3742 }
3743 
3744 /**
3745  * detach_entity_load_avg - detach this entity from its cfs_rq load avg
3746  * @cfs_rq: cfs_rq to detach from
3747  * @se: sched_entity to detach
3748  *
3749  * Must call update_cfs_rq_load_avg() before this, since we rely on
3750  * cfs_rq->avg.last_update_time being current.
3751  */
3752 static void detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3753 {
3754 	dequeue_load_avg(cfs_rq, se);
3755 	sub_positive(&cfs_rq->avg.util_avg, se->avg.util_avg);
3756 	sub_positive(&cfs_rq->avg.util_sum, se->avg.util_sum);
3757 
3758 	add_tg_cfs_propagate(cfs_rq, -se->avg.load_sum);
3759 
3760 	cfs_rq_util_change(cfs_rq);
3761 }
3762 
3763 /*
3764  * Optional action to be done while updating the load average
3765  */
3766 #define UPDATE_TG	0x1
3767 #define SKIP_AGE_LOAD	0x2
3768 #define DO_ATTACH	0x4
3769 
3770 /* Update task and its cfs_rq load average */
3771 static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
3772 {
3773 	u64 now = cfs_rq_clock_task(cfs_rq);
3774 	struct rq *rq = rq_of(cfs_rq);
3775 	int cpu = cpu_of(rq);
3776 	int decayed;
3777 
3778 	/*
3779 	 * Track task load average for carrying it to new CPU after migrated, and
3780 	 * track group sched_entity load average for task_h_load calc in migration
3781 	 */
3782 	if (se->avg.last_update_time && !(flags & SKIP_AGE_LOAD))
3783 		__update_load_avg_se(now, cpu, cfs_rq, se);
3784 
3785 	decayed  = update_cfs_rq_load_avg(now, cfs_rq);
3786 	decayed |= propagate_entity_load_avg(se);
3787 
3788 	if (!se->avg.last_update_time && (flags & DO_ATTACH)) {
3789 
3790 		attach_entity_load_avg(cfs_rq, se);
3791 		update_tg_load_avg(cfs_rq, 0);
3792 
3793 	} else if (decayed && (flags & UPDATE_TG))
3794 		update_tg_load_avg(cfs_rq, 0);
3795 }
3796 
3797 #ifndef CONFIG_64BIT
3798 static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
3799 {
3800 	u64 last_update_time_copy;
3801 	u64 last_update_time;
3802 
3803 	do {
3804 		last_update_time_copy = cfs_rq->load_last_update_time_copy;
3805 		smp_rmb();
3806 		last_update_time = cfs_rq->avg.last_update_time;
3807 	} while (last_update_time != last_update_time_copy);
3808 
3809 	return last_update_time;
3810 }
3811 #else
3812 static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
3813 {
3814 	return cfs_rq->avg.last_update_time;
3815 }
3816 #endif
3817 
3818 /*
3819  * Synchronize entity load avg of dequeued entity without locking
3820  * the previous rq.
3821  */
3822 void sync_entity_load_avg(struct sched_entity *se)
3823 {
3824 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
3825 	u64 last_update_time;
3826 
3827 	last_update_time = cfs_rq_last_update_time(cfs_rq);
3828 	__update_load_avg_blocked_se(last_update_time, cpu_of(rq_of(cfs_rq)), se);
3829 }
3830 
3831 /*
3832  * Task first catches up with cfs_rq, and then subtract
3833  * itself from the cfs_rq (task must be off the queue now).
3834  */
3835 void remove_entity_load_avg(struct sched_entity *se)
3836 {
3837 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
3838 	unsigned long flags;
3839 
3840 	/*
3841 	 * tasks cannot exit without having gone through wake_up_new_task() ->
3842 	 * post_init_entity_util_avg() which will have added things to the
3843 	 * cfs_rq, so we can remove unconditionally.
3844 	 *
3845 	 * Similarly for groups, they will have passed through
3846 	 * post_init_entity_util_avg() before unregister_sched_fair_group()
3847 	 * calls this.
3848 	 */
3849 
3850 	sync_entity_load_avg(se);
3851 
3852 	raw_spin_lock_irqsave(&cfs_rq->removed.lock, flags);
3853 	++cfs_rq->removed.nr;
3854 	cfs_rq->removed.util_avg	+= se->avg.util_avg;
3855 	cfs_rq->removed.load_avg	+= se->avg.load_avg;
3856 	cfs_rq->removed.runnable_sum	+= se->avg.load_sum; /* == runnable_sum */
3857 	raw_spin_unlock_irqrestore(&cfs_rq->removed.lock, flags);
3858 }
3859 
3860 static inline unsigned long cfs_rq_runnable_load_avg(struct cfs_rq *cfs_rq)
3861 {
3862 	return cfs_rq->avg.runnable_load_avg;
3863 }
3864 
3865 static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq)
3866 {
3867 	return cfs_rq->avg.load_avg;
3868 }
3869 
3870 static int idle_balance(struct rq *this_rq, struct rq_flags *rf);
3871 
3872 #else /* CONFIG_SMP */
3873 
3874 static inline int
3875 update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq)
3876 {
3877 	return 0;
3878 }
3879 
3880 #define UPDATE_TG	0x0
3881 #define SKIP_AGE_LOAD	0x0
3882 #define DO_ATTACH	0x0
3883 
3884 static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int not_used1)
3885 {
3886 	cfs_rq_util_change(cfs_rq);
3887 }
3888 
3889 static inline void remove_entity_load_avg(struct sched_entity *se) {}
3890 
3891 static inline void
3892 attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
3893 static inline void
3894 detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
3895 
3896 static inline int idle_balance(struct rq *rq, struct rq_flags *rf)
3897 {
3898 	return 0;
3899 }
3900 
3901 #endif /* CONFIG_SMP */
3902 
3903 static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
3904 {
3905 #ifdef CONFIG_SCHED_DEBUG
3906 	s64 d = se->vruntime - cfs_rq->min_vruntime;
3907 
3908 	if (d < 0)
3909 		d = -d;
3910 
3911 	if (d > 3*sysctl_sched_latency)
3912 		schedstat_inc(cfs_rq->nr_spread_over);
3913 #endif
3914 }
3915 
3916 static void
3917 place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
3918 {
3919 	u64 vruntime = cfs_rq->min_vruntime;
3920 
3921 	/*
3922 	 * The 'current' period is already promised to the current tasks,
3923 	 * however the extra weight of the new task will slow them down a
3924 	 * little, place the new task so that it fits in the slot that
3925 	 * stays open at the end.
3926 	 */
3927 	if (initial && sched_feat(START_DEBIT))
3928 		vruntime += sched_vslice(cfs_rq, se);
3929 
3930 	/* sleeps up to a single latency don't count. */
3931 	if (!initial) {
3932 		unsigned long thresh = sysctl_sched_latency;
3933 
3934 		/*
3935 		 * Halve their sleep time's effect, to allow
3936 		 * for a gentler effect of sleepers:
3937 		 */
3938 		if (sched_feat(GENTLE_FAIR_SLEEPERS))
3939 			thresh >>= 1;
3940 
3941 		vruntime -= thresh;
3942 	}
3943 
3944 	/* ensure we never gain time by being placed backwards. */
3945 	se->vruntime = max_vruntime(se->vruntime, vruntime);
3946 }
3947 
3948 static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
3949 
3950 static inline void check_schedstat_required(void)
3951 {
3952 #ifdef CONFIG_SCHEDSTATS
3953 	if (schedstat_enabled())
3954 		return;
3955 
3956 	/* Force schedstat enabled if a dependent tracepoint is active */
3957 	if (trace_sched_stat_wait_enabled()    ||
3958 			trace_sched_stat_sleep_enabled()   ||
3959 			trace_sched_stat_iowait_enabled()  ||
3960 			trace_sched_stat_blocked_enabled() ||
3961 			trace_sched_stat_runtime_enabled())  {
3962 		printk_deferred_once("Scheduler tracepoints stat_sleep, stat_iowait, "
3963 			     "stat_blocked and stat_runtime require the "
3964 			     "kernel parameter schedstats=enable or "
3965 			     "kernel.sched_schedstats=1\n");
3966 	}
3967 #endif
3968 }
3969 
3970 
3971 /*
3972  * MIGRATION
3973  *
3974  *	dequeue
3975  *	  update_curr()
3976  *	    update_min_vruntime()
3977  *	  vruntime -= min_vruntime
3978  *
3979  *	enqueue
3980  *	  update_curr()
3981  *	    update_min_vruntime()
3982  *	  vruntime += min_vruntime
3983  *
3984  * this way the vruntime transition between RQs is done when both
3985  * min_vruntime are up-to-date.
3986  *
3987  * WAKEUP (remote)
3988  *
3989  *	->migrate_task_rq_fair() (p->state == TASK_WAKING)
3990  *	  vruntime -= min_vruntime
3991  *
3992  *	enqueue
3993  *	  update_curr()
3994  *	    update_min_vruntime()
3995  *	  vruntime += min_vruntime
3996  *
3997  * this way we don't have the most up-to-date min_vruntime on the originating
3998  * CPU and an up-to-date min_vruntime on the destination CPU.
3999  */
4000 
4001 static void
4002 enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
4003 {
4004 	bool renorm = !(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_MIGRATED);
4005 	bool curr = cfs_rq->curr == se;
4006 
4007 	/*
4008 	 * If we're the current task, we must renormalise before calling
4009 	 * update_curr().
4010 	 */
4011 	if (renorm && curr)
4012 		se->vruntime += cfs_rq->min_vruntime;
4013 
4014 	update_curr(cfs_rq);
4015 
4016 	/*
4017 	 * Otherwise, renormalise after, such that we're placed at the current
4018 	 * moment in time, instead of some random moment in the past. Being
4019 	 * placed in the past could significantly boost this task to the
4020 	 * fairness detriment of existing tasks.
4021 	 */
4022 	if (renorm && !curr)
4023 		se->vruntime += cfs_rq->min_vruntime;
4024 
4025 	/*
4026 	 * When enqueuing a sched_entity, we must:
4027 	 *   - Update loads to have both entity and cfs_rq synced with now.
4028 	 *   - Add its load to cfs_rq->runnable_avg
4029 	 *   - For group_entity, update its weight to reflect the new share of
4030 	 *     its group cfs_rq
4031 	 *   - Add its new weight to cfs_rq->load.weight
4032 	 */
4033 	update_load_avg(cfs_rq, se, UPDATE_TG | DO_ATTACH);
4034 	update_cfs_group(se);
4035 	enqueue_runnable_load_avg(cfs_rq, se);
4036 	account_entity_enqueue(cfs_rq, se);
4037 
4038 	if (flags & ENQUEUE_WAKEUP)
4039 		place_entity(cfs_rq, se, 0);
4040 
4041 	check_schedstat_required();
4042 	update_stats_enqueue(cfs_rq, se, flags);
4043 	check_spread(cfs_rq, se);
4044 	if (!curr)
4045 		__enqueue_entity(cfs_rq, se);
4046 	se->on_rq = 1;
4047 
4048 	if (cfs_rq->nr_running == 1) {
4049 		list_add_leaf_cfs_rq(cfs_rq);
4050 		check_enqueue_throttle(cfs_rq);
4051 	}
4052 }
4053 
4054 static void __clear_buddies_last(struct sched_entity *se)
4055 {
4056 	for_each_sched_entity(se) {
4057 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
4058 		if (cfs_rq->last != se)
4059 			break;
4060 
4061 		cfs_rq->last = NULL;
4062 	}
4063 }
4064 
4065 static void __clear_buddies_next(struct sched_entity *se)
4066 {
4067 	for_each_sched_entity(se) {
4068 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
4069 		if (cfs_rq->next != se)
4070 			break;
4071 
4072 		cfs_rq->next = NULL;
4073 	}
4074 }
4075 
4076 static void __clear_buddies_skip(struct sched_entity *se)
4077 {
4078 	for_each_sched_entity(se) {
4079 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
4080 		if (cfs_rq->skip != se)
4081 			break;
4082 
4083 		cfs_rq->skip = NULL;
4084 	}
4085 }
4086 
4087 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
4088 {
4089 	if (cfs_rq->last == se)
4090 		__clear_buddies_last(se);
4091 
4092 	if (cfs_rq->next == se)
4093 		__clear_buddies_next(se);
4094 
4095 	if (cfs_rq->skip == se)
4096 		__clear_buddies_skip(se);
4097 }
4098 
4099 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
4100 
4101 static void
4102 dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
4103 {
4104 	/*
4105 	 * Update run-time statistics of the 'current'.
4106 	 */
4107 	update_curr(cfs_rq);
4108 
4109 	/*
4110 	 * When dequeuing a sched_entity, we must:
4111 	 *   - Update loads to have both entity and cfs_rq synced with now.
4112 	 *   - Substract its load from the cfs_rq->runnable_avg.
4113 	 *   - Substract its previous weight from cfs_rq->load.weight.
4114 	 *   - For group entity, update its weight to reflect the new share
4115 	 *     of its group cfs_rq.
4116 	 */
4117 	update_load_avg(cfs_rq, se, UPDATE_TG);
4118 	dequeue_runnable_load_avg(cfs_rq, se);
4119 
4120 	update_stats_dequeue(cfs_rq, se, flags);
4121 
4122 	clear_buddies(cfs_rq, se);
4123 
4124 	if (se != cfs_rq->curr)
4125 		__dequeue_entity(cfs_rq, se);
4126 	se->on_rq = 0;
4127 	account_entity_dequeue(cfs_rq, se);
4128 
4129 	/*
4130 	 * Normalize after update_curr(); which will also have moved
4131 	 * min_vruntime if @se is the one holding it back. But before doing
4132 	 * update_min_vruntime() again, which will discount @se's position and
4133 	 * can move min_vruntime forward still more.
4134 	 */
4135 	if (!(flags & DEQUEUE_SLEEP))
4136 		se->vruntime -= cfs_rq->min_vruntime;
4137 
4138 	/* return excess runtime on last dequeue */
4139 	return_cfs_rq_runtime(cfs_rq);
4140 
4141 	update_cfs_group(se);
4142 
4143 	/*
4144 	 * Now advance min_vruntime if @se was the entity holding it back,
4145 	 * except when: DEQUEUE_SAVE && !DEQUEUE_MOVE, in this case we'll be
4146 	 * put back on, and if we advance min_vruntime, we'll be placed back
4147 	 * further than we started -- ie. we'll be penalized.
4148 	 */
4149 	if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) == DEQUEUE_SAVE)
4150 		update_min_vruntime(cfs_rq);
4151 }
4152 
4153 /*
4154  * Preempt the current task with a newly woken task if needed:
4155  */
4156 static void
4157 check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
4158 {
4159 	unsigned long ideal_runtime, delta_exec;
4160 	struct sched_entity *se;
4161 	s64 delta;
4162 
4163 	ideal_runtime = sched_slice(cfs_rq, curr);
4164 	delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
4165 	if (delta_exec > ideal_runtime) {
4166 		resched_curr(rq_of(cfs_rq));
4167 		/*
4168 		 * The current task ran long enough, ensure it doesn't get
4169 		 * re-elected due to buddy favours.
4170 		 */
4171 		clear_buddies(cfs_rq, curr);
4172 		return;
4173 	}
4174 
4175 	/*
4176 	 * Ensure that a task that missed wakeup preemption by a
4177 	 * narrow margin doesn't have to wait for a full slice.
4178 	 * This also mitigates buddy induced latencies under load.
4179 	 */
4180 	if (delta_exec < sysctl_sched_min_granularity)
4181 		return;
4182 
4183 	se = __pick_first_entity(cfs_rq);
4184 	delta = curr->vruntime - se->vruntime;
4185 
4186 	if (delta < 0)
4187 		return;
4188 
4189 	if (delta > ideal_runtime)
4190 		resched_curr(rq_of(cfs_rq));
4191 }
4192 
4193 static void
4194 set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
4195 {
4196 	/* 'current' is not kept within the tree. */
4197 	if (se->on_rq) {
4198 		/*
4199 		 * Any task has to be enqueued before it get to execute on
4200 		 * a CPU. So account for the time it spent waiting on the
4201 		 * runqueue.
4202 		 */
4203 		update_stats_wait_end(cfs_rq, se);
4204 		__dequeue_entity(cfs_rq, se);
4205 		update_load_avg(cfs_rq, se, UPDATE_TG);
4206 	}
4207 
4208 	update_stats_curr_start(cfs_rq, se);
4209 	cfs_rq->curr = se;
4210 
4211 	/*
4212 	 * Track our maximum slice length, if the CPU's load is at
4213 	 * least twice that of our own weight (i.e. dont track it
4214 	 * when there are only lesser-weight tasks around):
4215 	 */
4216 	if (schedstat_enabled() && rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
4217 		schedstat_set(se->statistics.slice_max,
4218 			max((u64)schedstat_val(se->statistics.slice_max),
4219 			    se->sum_exec_runtime - se->prev_sum_exec_runtime));
4220 	}
4221 
4222 	se->prev_sum_exec_runtime = se->sum_exec_runtime;
4223 }
4224 
4225 static int
4226 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
4227 
4228 /*
4229  * Pick the next process, keeping these things in mind, in this order:
4230  * 1) keep things fair between processes/task groups
4231  * 2) pick the "next" process, since someone really wants that to run
4232  * 3) pick the "last" process, for cache locality
4233  * 4) do not run the "skip" process, if something else is available
4234  */
4235 static struct sched_entity *
4236 pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr)
4237 {
4238 	struct sched_entity *left = __pick_first_entity(cfs_rq);
4239 	struct sched_entity *se;
4240 
4241 	/*
4242 	 * If curr is set we have to see if its left of the leftmost entity
4243 	 * still in the tree, provided there was anything in the tree at all.
4244 	 */
4245 	if (!left || (curr && entity_before(curr, left)))
4246 		left = curr;
4247 
4248 	se = left; /* ideally we run the leftmost entity */
4249 
4250 	/*
4251 	 * Avoid running the skip buddy, if running something else can
4252 	 * be done without getting too unfair.
4253 	 */
4254 	if (cfs_rq->skip == se) {
4255 		struct sched_entity *second;
4256 
4257 		if (se == curr) {
4258 			second = __pick_first_entity(cfs_rq);
4259 		} else {
4260 			second = __pick_next_entity(se);
4261 			if (!second || (curr && entity_before(curr, second)))
4262 				second = curr;
4263 		}
4264 
4265 		if (second && wakeup_preempt_entity(second, left) < 1)
4266 			se = second;
4267 	}
4268 
4269 	/*
4270 	 * Prefer last buddy, try to return the CPU to a preempted task.
4271 	 */
4272 	if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
4273 		se = cfs_rq->last;
4274 
4275 	/*
4276 	 * Someone really wants this to run. If it's not unfair, run it.
4277 	 */
4278 	if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
4279 		se = cfs_rq->next;
4280 
4281 	clear_buddies(cfs_rq, se);
4282 
4283 	return se;
4284 }
4285 
4286 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
4287 
4288 static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
4289 {
4290 	/*
4291 	 * If still on the runqueue then deactivate_task()
4292 	 * was not called and update_curr() has to be done:
4293 	 */
4294 	if (prev->on_rq)
4295 		update_curr(cfs_rq);
4296 
4297 	/* throttle cfs_rqs exceeding runtime */
4298 	check_cfs_rq_runtime(cfs_rq);
4299 
4300 	check_spread(cfs_rq, prev);
4301 
4302 	if (prev->on_rq) {
4303 		update_stats_wait_start(cfs_rq, prev);
4304 		/* Put 'current' back into the tree. */
4305 		__enqueue_entity(cfs_rq, prev);
4306 		/* in !on_rq case, update occurred at dequeue */
4307 		update_load_avg(cfs_rq, prev, 0);
4308 	}
4309 	cfs_rq->curr = NULL;
4310 }
4311 
4312 static void
4313 entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
4314 {
4315 	/*
4316 	 * Update run-time statistics of the 'current'.
4317 	 */
4318 	update_curr(cfs_rq);
4319 
4320 	/*
4321 	 * Ensure that runnable average is periodically updated.
4322 	 */
4323 	update_load_avg(cfs_rq, curr, UPDATE_TG);
4324 	update_cfs_group(curr);
4325 
4326 #ifdef CONFIG_SCHED_HRTICK
4327 	/*
4328 	 * queued ticks are scheduled to match the slice, so don't bother
4329 	 * validating it and just reschedule.
4330 	 */
4331 	if (queued) {
4332 		resched_curr(rq_of(cfs_rq));
4333 		return;
4334 	}
4335 	/*
4336 	 * don't let the period tick interfere with the hrtick preemption
4337 	 */
4338 	if (!sched_feat(DOUBLE_TICK) &&
4339 			hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
4340 		return;
4341 #endif
4342 
4343 	if (cfs_rq->nr_running > 1)
4344 		check_preempt_tick(cfs_rq, curr);
4345 }
4346 
4347 
4348 /**************************************************
4349  * CFS bandwidth control machinery
4350  */
4351 
4352 #ifdef CONFIG_CFS_BANDWIDTH
4353 
4354 #ifdef HAVE_JUMP_LABEL
4355 static struct static_key __cfs_bandwidth_used;
4356 
4357 static inline bool cfs_bandwidth_used(void)
4358 {
4359 	return static_key_false(&__cfs_bandwidth_used);
4360 }
4361 
4362 void cfs_bandwidth_usage_inc(void)
4363 {
4364 	static_key_slow_inc_cpuslocked(&__cfs_bandwidth_used);
4365 }
4366 
4367 void cfs_bandwidth_usage_dec(void)
4368 {
4369 	static_key_slow_dec_cpuslocked(&__cfs_bandwidth_used);
4370 }
4371 #else /* HAVE_JUMP_LABEL */
4372 static bool cfs_bandwidth_used(void)
4373 {
4374 	return true;
4375 }
4376 
4377 void cfs_bandwidth_usage_inc(void) {}
4378 void cfs_bandwidth_usage_dec(void) {}
4379 #endif /* HAVE_JUMP_LABEL */
4380 
4381 /*
4382  * default period for cfs group bandwidth.
4383  * default: 0.1s, units: nanoseconds
4384  */
4385 static inline u64 default_cfs_period(void)
4386 {
4387 	return 100000000ULL;
4388 }
4389 
4390 static inline u64 sched_cfs_bandwidth_slice(void)
4391 {
4392 	return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
4393 }
4394 
4395 /*
4396  * Replenish runtime according to assigned quota and update expiration time.
4397  * We use sched_clock_cpu directly instead of rq->clock to avoid adding
4398  * additional synchronization around rq->lock.
4399  *
4400  * requires cfs_b->lock
4401  */
4402 void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
4403 {
4404 	u64 now;
4405 
4406 	if (cfs_b->quota == RUNTIME_INF)
4407 		return;
4408 
4409 	now = sched_clock_cpu(smp_processor_id());
4410 	cfs_b->runtime = cfs_b->quota;
4411 	cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
4412 }
4413 
4414 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
4415 {
4416 	return &tg->cfs_bandwidth;
4417 }
4418 
4419 /* rq->task_clock normalized against any time this cfs_rq has spent throttled */
4420 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
4421 {
4422 	if (unlikely(cfs_rq->throttle_count))
4423 		return cfs_rq->throttled_clock_task - cfs_rq->throttled_clock_task_time;
4424 
4425 	return rq_clock_task(rq_of(cfs_rq)) - cfs_rq->throttled_clock_task_time;
4426 }
4427 
4428 /* returns 0 on failure to allocate runtime */
4429 static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4430 {
4431 	struct task_group *tg = cfs_rq->tg;
4432 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
4433 	u64 amount = 0, min_amount, expires;
4434 
4435 	/* note: this is a positive sum as runtime_remaining <= 0 */
4436 	min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;
4437 
4438 	raw_spin_lock(&cfs_b->lock);
4439 	if (cfs_b->quota == RUNTIME_INF)
4440 		amount = min_amount;
4441 	else {
4442 		start_cfs_bandwidth(cfs_b);
4443 
4444 		if (cfs_b->runtime > 0) {
4445 			amount = min(cfs_b->runtime, min_amount);
4446 			cfs_b->runtime -= amount;
4447 			cfs_b->idle = 0;
4448 		}
4449 	}
4450 	expires = cfs_b->runtime_expires;
4451 	raw_spin_unlock(&cfs_b->lock);
4452 
4453 	cfs_rq->runtime_remaining += amount;
4454 	/*
4455 	 * we may have advanced our local expiration to account for allowed
4456 	 * spread between our sched_clock and the one on which runtime was
4457 	 * issued.
4458 	 */
4459 	if ((s64)(expires - cfs_rq->runtime_expires) > 0)
4460 		cfs_rq->runtime_expires = expires;
4461 
4462 	return cfs_rq->runtime_remaining > 0;
4463 }
4464 
4465 /*
4466  * Note: This depends on the synchronization provided by sched_clock and the
4467  * fact that rq->clock snapshots this value.
4468  */
4469 static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4470 {
4471 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4472 
4473 	/* if the deadline is ahead of our clock, nothing to do */
4474 	if (likely((s64)(rq_clock(rq_of(cfs_rq)) - cfs_rq->runtime_expires) < 0))
4475 		return;
4476 
4477 	if (cfs_rq->runtime_remaining < 0)
4478 		return;
4479 
4480 	/*
4481 	 * If the local deadline has passed we have to consider the
4482 	 * possibility that our sched_clock is 'fast' and the global deadline
4483 	 * has not truly expired.
4484 	 *
4485 	 * Fortunately we can check determine whether this the case by checking
4486 	 * whether the global deadline has advanced. It is valid to compare
4487 	 * cfs_b->runtime_expires without any locks since we only care about
4488 	 * exact equality, so a partial write will still work.
4489 	 */
4490 
4491 	if (cfs_rq->runtime_expires != cfs_b->runtime_expires) {
4492 		/* extend local deadline, drift is bounded above by 2 ticks */
4493 		cfs_rq->runtime_expires += TICK_NSEC;
4494 	} else {
4495 		/* global deadline is ahead, expiration has passed */
4496 		cfs_rq->runtime_remaining = 0;
4497 	}
4498 }
4499 
4500 static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
4501 {
4502 	/* dock delta_exec before expiring quota (as it could span periods) */
4503 	cfs_rq->runtime_remaining -= delta_exec;
4504 	expire_cfs_rq_runtime(cfs_rq);
4505 
4506 	if (likely(cfs_rq->runtime_remaining > 0))
4507 		return;
4508 
4509 	/*
4510 	 * if we're unable to extend our runtime we resched so that the active
4511 	 * hierarchy can be throttled
4512 	 */
4513 	if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
4514 		resched_curr(rq_of(cfs_rq));
4515 }
4516 
4517 static __always_inline
4518 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
4519 {
4520 	if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
4521 		return;
4522 
4523 	__account_cfs_rq_runtime(cfs_rq, delta_exec);
4524 }
4525 
4526 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
4527 {
4528 	return cfs_bandwidth_used() && cfs_rq->throttled;
4529 }
4530 
4531 /* check whether cfs_rq, or any parent, is throttled */
4532 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
4533 {
4534 	return cfs_bandwidth_used() && cfs_rq->throttle_count;
4535 }
4536 
4537 /*
4538  * Ensure that neither of the group entities corresponding to src_cpu or
4539  * dest_cpu are members of a throttled hierarchy when performing group
4540  * load-balance operations.
4541  */
4542 static inline int throttled_lb_pair(struct task_group *tg,
4543 				    int src_cpu, int dest_cpu)
4544 {
4545 	struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
4546 
4547 	src_cfs_rq = tg->cfs_rq[src_cpu];
4548 	dest_cfs_rq = tg->cfs_rq[dest_cpu];
4549 
4550 	return throttled_hierarchy(src_cfs_rq) ||
4551 	       throttled_hierarchy(dest_cfs_rq);
4552 }
4553 
4554 /* updated child weight may affect parent so we have to do this bottom up */
4555 static int tg_unthrottle_up(struct task_group *tg, void *data)
4556 {
4557 	struct rq *rq = data;
4558 	struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
4559 
4560 	cfs_rq->throttle_count--;
4561 	if (!cfs_rq->throttle_count) {
4562 		/* adjust cfs_rq_clock_task() */
4563 		cfs_rq->throttled_clock_task_time += rq_clock_task(rq) -
4564 					     cfs_rq->throttled_clock_task;
4565 	}
4566 
4567 	return 0;
4568 }
4569 
4570 static int tg_throttle_down(struct task_group *tg, void *data)
4571 {
4572 	struct rq *rq = data;
4573 	struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
4574 
4575 	/* group is entering throttled state, stop time */
4576 	if (!cfs_rq->throttle_count)
4577 		cfs_rq->throttled_clock_task = rq_clock_task(rq);
4578 	cfs_rq->throttle_count++;
4579 
4580 	return 0;
4581 }
4582 
4583 static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
4584 {
4585 	struct rq *rq = rq_of(cfs_rq);
4586 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4587 	struct sched_entity *se;
4588 	long task_delta, dequeue = 1;
4589 	bool empty;
4590 
4591 	se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
4592 
4593 	/* freeze hierarchy runnable averages while throttled */
4594 	rcu_read_lock();
4595 	walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
4596 	rcu_read_unlock();
4597 
4598 	task_delta = cfs_rq->h_nr_running;
4599 	for_each_sched_entity(se) {
4600 		struct cfs_rq *qcfs_rq = cfs_rq_of(se);
4601 		/* throttled entity or throttle-on-deactivate */
4602 		if (!se->on_rq)
4603 			break;
4604 
4605 		if (dequeue)
4606 			dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
4607 		qcfs_rq->h_nr_running -= task_delta;
4608 
4609 		if (qcfs_rq->load.weight)
4610 			dequeue = 0;
4611 	}
4612 
4613 	if (!se)
4614 		sub_nr_running(rq, task_delta);
4615 
4616 	cfs_rq->throttled = 1;
4617 	cfs_rq->throttled_clock = rq_clock(rq);
4618 	raw_spin_lock(&cfs_b->lock);
4619 	empty = list_empty(&cfs_b->throttled_cfs_rq);
4620 
4621 	/*
4622 	 * Add to the _head_ of the list, so that an already-started
4623 	 * distribute_cfs_runtime will not see us
4624 	 */
4625 	list_add_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
4626 
4627 	/*
4628 	 * If we're the first throttled task, make sure the bandwidth
4629 	 * timer is running.
4630 	 */
4631 	if (empty)
4632 		start_cfs_bandwidth(cfs_b);
4633 
4634 	raw_spin_unlock(&cfs_b->lock);
4635 }
4636 
4637 void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
4638 {
4639 	struct rq *rq = rq_of(cfs_rq);
4640 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4641 	struct sched_entity *se;
4642 	int enqueue = 1;
4643 	long task_delta;
4644 
4645 	se = cfs_rq->tg->se[cpu_of(rq)];
4646 
4647 	cfs_rq->throttled = 0;
4648 
4649 	update_rq_clock(rq);
4650 
4651 	raw_spin_lock(&cfs_b->lock);
4652 	cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
4653 	list_del_rcu(&cfs_rq->throttled_list);
4654 	raw_spin_unlock(&cfs_b->lock);
4655 
4656 	/* update hierarchical throttle state */
4657 	walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
4658 
4659 	if (!cfs_rq->load.weight)
4660 		return;
4661 
4662 	task_delta = cfs_rq->h_nr_running;
4663 	for_each_sched_entity(se) {
4664 		if (se->on_rq)
4665 			enqueue = 0;
4666 
4667 		cfs_rq = cfs_rq_of(se);
4668 		if (enqueue)
4669 			enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
4670 		cfs_rq->h_nr_running += task_delta;
4671 
4672 		if (cfs_rq_throttled(cfs_rq))
4673 			break;
4674 	}
4675 
4676 	if (!se)
4677 		add_nr_running(rq, task_delta);
4678 
4679 	/* determine whether we need to wake up potentially idle cpu */
4680 	if (rq->curr == rq->idle && rq->cfs.nr_running)
4681 		resched_curr(rq);
4682 }
4683 
4684 static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
4685 		u64 remaining, u64 expires)
4686 {
4687 	struct cfs_rq *cfs_rq;
4688 	u64 runtime;
4689 	u64 starting_runtime = remaining;
4690 
4691 	rcu_read_lock();
4692 	list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
4693 				throttled_list) {
4694 		struct rq *rq = rq_of(cfs_rq);
4695 		struct rq_flags rf;
4696 
4697 		rq_lock(rq, &rf);
4698 		if (!cfs_rq_throttled(cfs_rq))
4699 			goto next;
4700 
4701 		runtime = -cfs_rq->runtime_remaining + 1;
4702 		if (runtime > remaining)
4703 			runtime = remaining;
4704 		remaining -= runtime;
4705 
4706 		cfs_rq->runtime_remaining += runtime;
4707 		cfs_rq->runtime_expires = expires;
4708 
4709 		/* we check whether we're throttled above */
4710 		if (cfs_rq->runtime_remaining > 0)
4711 			unthrottle_cfs_rq(cfs_rq);
4712 
4713 next:
4714 		rq_unlock(rq, &rf);
4715 
4716 		if (!remaining)
4717 			break;
4718 	}
4719 	rcu_read_unlock();
4720 
4721 	return starting_runtime - remaining;
4722 }
4723 
4724 /*
4725  * Responsible for refilling a task_group's bandwidth and unthrottling its
4726  * cfs_rqs as appropriate. If there has been no activity within the last
4727  * period the timer is deactivated until scheduling resumes; cfs_b->idle is
4728  * used to track this state.
4729  */
4730 static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
4731 {
4732 	u64 runtime, runtime_expires;
4733 	int throttled;
4734 
4735 	/* no need to continue the timer with no bandwidth constraint */
4736 	if (cfs_b->quota == RUNTIME_INF)
4737 		goto out_deactivate;
4738 
4739 	throttled = !list_empty(&cfs_b->throttled_cfs_rq);
4740 	cfs_b->nr_periods += overrun;
4741 
4742 	/*
4743 	 * idle depends on !throttled (for the case of a large deficit), and if
4744 	 * we're going inactive then everything else can be deferred
4745 	 */
4746 	if (cfs_b->idle && !throttled)
4747 		goto out_deactivate;
4748 
4749 	__refill_cfs_bandwidth_runtime(cfs_b);
4750 
4751 	if (!throttled) {
4752 		/* mark as potentially idle for the upcoming period */
4753 		cfs_b->idle = 1;
4754 		return 0;
4755 	}
4756 
4757 	/* account preceding periods in which throttling occurred */
4758 	cfs_b->nr_throttled += overrun;
4759 
4760 	runtime_expires = cfs_b->runtime_expires;
4761 
4762 	/*
4763 	 * This check is repeated as we are holding onto the new bandwidth while
4764 	 * we unthrottle. This can potentially race with an unthrottled group
4765 	 * trying to acquire new bandwidth from the global pool. This can result
4766 	 * in us over-using our runtime if it is all used during this loop, but
4767 	 * only by limited amounts in that extreme case.
4768 	 */
4769 	while (throttled && cfs_b->runtime > 0) {
4770 		runtime = cfs_b->runtime;
4771 		raw_spin_unlock(&cfs_b->lock);
4772 		/* we can't nest cfs_b->lock while distributing bandwidth */
4773 		runtime = distribute_cfs_runtime(cfs_b, runtime,
4774 						 runtime_expires);
4775 		raw_spin_lock(&cfs_b->lock);
4776 
4777 		throttled = !list_empty(&cfs_b->throttled_cfs_rq);
4778 
4779 		cfs_b->runtime -= min(runtime, cfs_b->runtime);
4780 	}
4781 
4782 	/*
4783 	 * While we are ensured activity in the period following an
4784 	 * unthrottle, this also covers the case in which the new bandwidth is
4785 	 * insufficient to cover the existing bandwidth deficit.  (Forcing the
4786 	 * timer to remain active while there are any throttled entities.)
4787 	 */
4788 	cfs_b->idle = 0;
4789 
4790 	return 0;
4791 
4792 out_deactivate:
4793 	return 1;
4794 }
4795 
4796 /* a cfs_rq won't donate quota below this amount */
4797 static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
4798 /* minimum remaining period time to redistribute slack quota */
4799 static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
4800 /* how long we wait to gather additional slack before distributing */
4801 static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
4802 
4803 /*
4804  * Are we near the end of the current quota period?
4805  *
4806  * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
4807  * hrtimer base being cleared by hrtimer_start. In the case of
4808  * migrate_hrtimers, base is never cleared, so we are fine.
4809  */
4810 static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
4811 {
4812 	struct hrtimer *refresh_timer = &cfs_b->period_timer;
4813 	u64 remaining;
4814 
4815 	/* if the call-back is running a quota refresh is already occurring */
4816 	if (hrtimer_callback_running(refresh_timer))
4817 		return 1;
4818 
4819 	/* is a quota refresh about to occur? */
4820 	remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
4821 	if (remaining < min_expire)
4822 		return 1;
4823 
4824 	return 0;
4825 }
4826 
4827 static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
4828 {
4829 	u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
4830 
4831 	/* if there's a quota refresh soon don't bother with slack */
4832 	if (runtime_refresh_within(cfs_b, min_left))
4833 		return;
4834 
4835 	hrtimer_start(&cfs_b->slack_timer,
4836 			ns_to_ktime(cfs_bandwidth_slack_period),
4837 			HRTIMER_MODE_REL);
4838 }
4839 
4840 /* we know any runtime found here is valid as update_curr() precedes return */
4841 static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4842 {
4843 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4844 	s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
4845 
4846 	if (slack_runtime <= 0)
4847 		return;
4848 
4849 	raw_spin_lock(&cfs_b->lock);
4850 	if (cfs_b->quota != RUNTIME_INF &&
4851 	    cfs_rq->runtime_expires == cfs_b->runtime_expires) {
4852 		cfs_b->runtime += slack_runtime;
4853 
4854 		/* we are under rq->lock, defer unthrottling using a timer */
4855 		if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
4856 		    !list_empty(&cfs_b->throttled_cfs_rq))
4857 			start_cfs_slack_bandwidth(cfs_b);
4858 	}
4859 	raw_spin_unlock(&cfs_b->lock);
4860 
4861 	/* even if it's not valid for return we don't want to try again */
4862 	cfs_rq->runtime_remaining -= slack_runtime;
4863 }
4864 
4865 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4866 {
4867 	if (!cfs_bandwidth_used())
4868 		return;
4869 
4870 	if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
4871 		return;
4872 
4873 	__return_cfs_rq_runtime(cfs_rq);
4874 }
4875 
4876 /*
4877  * This is done with a timer (instead of inline with bandwidth return) since
4878  * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
4879  */
4880 static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
4881 {
4882 	u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
4883 	u64 expires;
4884 
4885 	/* confirm we're still not at a refresh boundary */
4886 	raw_spin_lock(&cfs_b->lock);
4887 	if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
4888 		raw_spin_unlock(&cfs_b->lock);
4889 		return;
4890 	}
4891 
4892 	if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice)
4893 		runtime = cfs_b->runtime;
4894 
4895 	expires = cfs_b->runtime_expires;
4896 	raw_spin_unlock(&cfs_b->lock);
4897 
4898 	if (!runtime)
4899 		return;
4900 
4901 	runtime = distribute_cfs_runtime(cfs_b, runtime, expires);
4902 
4903 	raw_spin_lock(&cfs_b->lock);
4904 	if (expires == cfs_b->runtime_expires)
4905 		cfs_b->runtime -= min(runtime, cfs_b->runtime);
4906 	raw_spin_unlock(&cfs_b->lock);
4907 }
4908 
4909 /*
4910  * When a group wakes up we want to make sure that its quota is not already
4911  * expired/exceeded, otherwise it may be allowed to steal additional ticks of
4912  * runtime as update_curr() throttling can not not trigger until it's on-rq.
4913  */
4914 static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
4915 {
4916 	if (!cfs_bandwidth_used())
4917 		return;
4918 
4919 	/* an active group must be handled by the update_curr()->put() path */
4920 	if (!cfs_rq->runtime_enabled || cfs_rq->curr)
4921 		return;
4922 
4923 	/* ensure the group is not already throttled */
4924 	if (cfs_rq_throttled(cfs_rq))
4925 		return;
4926 
4927 	/* update runtime allocation */
4928 	account_cfs_rq_runtime(cfs_rq, 0);
4929 	if (cfs_rq->runtime_remaining <= 0)
4930 		throttle_cfs_rq(cfs_rq);
4931 }
4932 
4933 static void sync_throttle(struct task_group *tg, int cpu)
4934 {
4935 	struct cfs_rq *pcfs_rq, *cfs_rq;
4936 
4937 	if (!cfs_bandwidth_used())
4938 		return;
4939 
4940 	if (!tg->parent)
4941 		return;
4942 
4943 	cfs_rq = tg->cfs_rq[cpu];
4944 	pcfs_rq = tg->parent->cfs_rq[cpu];
4945 
4946 	cfs_rq->throttle_count = pcfs_rq->throttle_count;
4947 	cfs_rq->throttled_clock_task = rq_clock_task(cpu_rq(cpu));
4948 }
4949 
4950 /* conditionally throttle active cfs_rq's from put_prev_entity() */
4951 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4952 {
4953 	if (!cfs_bandwidth_used())
4954 		return false;
4955 
4956 	if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
4957 		return false;
4958 
4959 	/*
4960 	 * it's possible for a throttled entity to be forced into a running
4961 	 * state (e.g. set_curr_task), in this case we're finished.
4962 	 */
4963 	if (cfs_rq_throttled(cfs_rq))
4964 		return true;
4965 
4966 	throttle_cfs_rq(cfs_rq);
4967 	return true;
4968 }
4969 
4970 static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
4971 {
4972 	struct cfs_bandwidth *cfs_b =
4973 		container_of(timer, struct cfs_bandwidth, slack_timer);
4974 
4975 	do_sched_cfs_slack_timer(cfs_b);
4976 
4977 	return HRTIMER_NORESTART;
4978 }
4979 
4980 static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
4981 {
4982 	struct cfs_bandwidth *cfs_b =
4983 		container_of(timer, struct cfs_bandwidth, period_timer);
4984 	int overrun;
4985 	int idle = 0;
4986 
4987 	raw_spin_lock(&cfs_b->lock);
4988 	for (;;) {
4989 		overrun = hrtimer_forward_now(timer, cfs_b->period);
4990 		if (!overrun)
4991 			break;
4992 
4993 		idle = do_sched_cfs_period_timer(cfs_b, overrun);
4994 	}
4995 	if (idle)
4996 		cfs_b->period_active = 0;
4997 	raw_spin_unlock(&cfs_b->lock);
4998 
4999 	return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
5000 }
5001 
5002 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
5003 {
5004 	raw_spin_lock_init(&cfs_b->lock);
5005 	cfs_b->runtime = 0;
5006 	cfs_b->quota = RUNTIME_INF;
5007 	cfs_b->period = ns_to_ktime(default_cfs_period());
5008 
5009 	INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
5010 	hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
5011 	cfs_b->period_timer.function = sched_cfs_period_timer;
5012 	hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
5013 	cfs_b->slack_timer.function = sched_cfs_slack_timer;
5014 }
5015 
5016 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
5017 {
5018 	cfs_rq->runtime_enabled = 0;
5019 	INIT_LIST_HEAD(&cfs_rq->throttled_list);
5020 }
5021 
5022 void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
5023 {
5024 	lockdep_assert_held(&cfs_b->lock);
5025 
5026 	if (!cfs_b->period_active) {
5027 		cfs_b->period_active = 1;
5028 		hrtimer_forward_now(&cfs_b->period_timer, cfs_b->period);
5029 		hrtimer_start_expires(&cfs_b->period_timer, HRTIMER_MODE_ABS_PINNED);
5030 	}
5031 }
5032 
5033 static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
5034 {
5035 	/* init_cfs_bandwidth() was not called */
5036 	if (!cfs_b->throttled_cfs_rq.next)
5037 		return;
5038 
5039 	hrtimer_cancel(&cfs_b->period_timer);
5040 	hrtimer_cancel(&cfs_b->slack_timer);
5041 }
5042 
5043 /*
5044  * Both these cpu hotplug callbacks race against unregister_fair_sched_group()
5045  *
5046  * The race is harmless, since modifying bandwidth settings of unhooked group
5047  * bits doesn't do much.
5048  */
5049 
5050 /* cpu online calback */
5051 static void __maybe_unused update_runtime_enabled(struct rq *rq)
5052 {
5053 	struct task_group *tg;
5054 
5055 	lockdep_assert_held(&rq->lock);
5056 
5057 	rcu_read_lock();
5058 	list_for_each_entry_rcu(tg, &task_groups, list) {
5059 		struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
5060 		struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
5061 
5062 		raw_spin_lock(&cfs_b->lock);
5063 		cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF;
5064 		raw_spin_unlock(&cfs_b->lock);
5065 	}
5066 	rcu_read_unlock();
5067 }
5068 
5069 /* cpu offline callback */
5070 static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
5071 {
5072 	struct task_group *tg;
5073 
5074 	lockdep_assert_held(&rq->lock);
5075 
5076 	rcu_read_lock();
5077 	list_for_each_entry_rcu(tg, &task_groups, list) {
5078 		struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
5079 
5080 		if (!cfs_rq->runtime_enabled)
5081 			continue;
5082 
5083 		/*
5084 		 * clock_task is not advancing so we just need to make sure
5085 		 * there's some valid quota amount
5086 		 */
5087 		cfs_rq->runtime_remaining = 1;
5088 		/*
5089 		 * Offline rq is schedulable till cpu is completely disabled
5090 		 * in take_cpu_down(), so we prevent new cfs throttling here.
5091 		 */
5092 		cfs_rq->runtime_enabled = 0;
5093 
5094 		if (cfs_rq_throttled(cfs_rq))
5095 			unthrottle_cfs_rq(cfs_rq);
5096 	}
5097 	rcu_read_unlock();
5098 }
5099 
5100 #else /* CONFIG_CFS_BANDWIDTH */
5101 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
5102 {
5103 	return rq_clock_task(rq_of(cfs_rq));
5104 }
5105 
5106 static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {}
5107 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; }
5108 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
5109 static inline void sync_throttle(struct task_group *tg, int cpu) {}
5110 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
5111 
5112 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
5113 {
5114 	return 0;
5115 }
5116 
5117 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
5118 {
5119 	return 0;
5120 }
5121 
5122 static inline int throttled_lb_pair(struct task_group *tg,
5123 				    int src_cpu, int dest_cpu)
5124 {
5125 	return 0;
5126 }
5127 
5128 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
5129 
5130 #ifdef CONFIG_FAIR_GROUP_SCHED
5131 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
5132 #endif
5133 
5134 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
5135 {
5136 	return NULL;
5137 }
5138 static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
5139 static inline void update_runtime_enabled(struct rq *rq) {}
5140 static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
5141 
5142 #endif /* CONFIG_CFS_BANDWIDTH */
5143 
5144 /**************************************************
5145  * CFS operations on tasks:
5146  */
5147 
5148 #ifdef CONFIG_SCHED_HRTICK
5149 static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
5150 {
5151 	struct sched_entity *se = &p->se;
5152 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
5153 
5154 	SCHED_WARN_ON(task_rq(p) != rq);
5155 
5156 	if (rq->cfs.h_nr_running > 1) {
5157 		u64 slice = sched_slice(cfs_rq, se);
5158 		u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
5159 		s64 delta = slice - ran;
5160 
5161 		if (delta < 0) {
5162 			if (rq->curr == p)
5163 				resched_curr(rq);
5164 			return;
5165 		}
5166 		hrtick_start(rq, delta);
5167 	}
5168 }
5169 
5170 /*
5171  * called from enqueue/dequeue and updates the hrtick when the
5172  * current task is from our class and nr_running is low enough
5173  * to matter.
5174  */
5175 static void hrtick_update(struct rq *rq)
5176 {
5177 	struct task_struct *curr = rq->curr;
5178 
5179 	if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
5180 		return;
5181 
5182 	if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
5183 		hrtick_start_fair(rq, curr);
5184 }
5185 #else /* !CONFIG_SCHED_HRTICK */
5186 static inline void
5187 hrtick_start_fair(struct rq *rq, struct task_struct *p)
5188 {
5189 }
5190 
5191 static inline void hrtick_update(struct rq *rq)
5192 {
5193 }
5194 #endif
5195 
5196 /*
5197  * The enqueue_task method is called before nr_running is
5198  * increased. Here we update the fair scheduling stats and
5199  * then put the task into the rbtree:
5200  */
5201 static void
5202 enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
5203 {
5204 	struct cfs_rq *cfs_rq;
5205 	struct sched_entity *se = &p->se;
5206 
5207 	/*
5208 	 * If in_iowait is set, the code below may not trigger any cpufreq
5209 	 * utilization updates, so do it here explicitly with the IOWAIT flag
5210 	 * passed.
5211 	 */
5212 	if (p->in_iowait)
5213 		cpufreq_update_util(rq, SCHED_CPUFREQ_IOWAIT);
5214 
5215 	for_each_sched_entity(se) {
5216 		if (se->on_rq)
5217 			break;
5218 		cfs_rq = cfs_rq_of(se);
5219 		enqueue_entity(cfs_rq, se, flags);
5220 
5221 		/*
5222 		 * end evaluation on encountering a throttled cfs_rq
5223 		 *
5224 		 * note: in the case of encountering a throttled cfs_rq we will
5225 		 * post the final h_nr_running increment below.
5226 		 */
5227 		if (cfs_rq_throttled(cfs_rq))
5228 			break;
5229 		cfs_rq->h_nr_running++;
5230 
5231 		flags = ENQUEUE_WAKEUP;
5232 	}
5233 
5234 	for_each_sched_entity(se) {
5235 		cfs_rq = cfs_rq_of(se);
5236 		cfs_rq->h_nr_running++;
5237 
5238 		if (cfs_rq_throttled(cfs_rq))
5239 			break;
5240 
5241 		update_load_avg(cfs_rq, se, UPDATE_TG);
5242 		update_cfs_group(se);
5243 	}
5244 
5245 	if (!se)
5246 		add_nr_running(rq, 1);
5247 
5248 	hrtick_update(rq);
5249 }
5250 
5251 static void set_next_buddy(struct sched_entity *se);
5252 
5253 /*
5254  * The dequeue_task method is called before nr_running is
5255  * decreased. We remove the task from the rbtree and
5256  * update the fair scheduling stats:
5257  */
5258 static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
5259 {
5260 	struct cfs_rq *cfs_rq;
5261 	struct sched_entity *se = &p->se;
5262 	int task_sleep = flags & DEQUEUE_SLEEP;
5263 
5264 	for_each_sched_entity(se) {
5265 		cfs_rq = cfs_rq_of(se);
5266 		dequeue_entity(cfs_rq, se, flags);
5267 
5268 		/*
5269 		 * end evaluation on encountering a throttled cfs_rq
5270 		 *
5271 		 * note: in the case of encountering a throttled cfs_rq we will
5272 		 * post the final h_nr_running decrement below.
5273 		*/
5274 		if (cfs_rq_throttled(cfs_rq))
5275 			break;
5276 		cfs_rq->h_nr_running--;
5277 
5278 		/* Don't dequeue parent if it has other entities besides us */
5279 		if (cfs_rq->load.weight) {
5280 			/* Avoid re-evaluating load for this entity: */
5281 			se = parent_entity(se);
5282 			/*
5283 			 * Bias pick_next to pick a task from this cfs_rq, as
5284 			 * p is sleeping when it is within its sched_slice.
5285 			 */
5286 			if (task_sleep && se && !throttled_hierarchy(cfs_rq))
5287 				set_next_buddy(se);
5288 			break;
5289 		}
5290 		flags |= DEQUEUE_SLEEP;
5291 	}
5292 
5293 	for_each_sched_entity(se) {
5294 		cfs_rq = cfs_rq_of(se);
5295 		cfs_rq->h_nr_running--;
5296 
5297 		if (cfs_rq_throttled(cfs_rq))
5298 			break;
5299 
5300 		update_load_avg(cfs_rq, se, UPDATE_TG);
5301 		update_cfs_group(se);
5302 	}
5303 
5304 	if (!se)
5305 		sub_nr_running(rq, 1);
5306 
5307 	hrtick_update(rq);
5308 }
5309 
5310 #ifdef CONFIG_SMP
5311 
5312 /* Working cpumask for: load_balance, load_balance_newidle. */
5313 DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
5314 DEFINE_PER_CPU(cpumask_var_t, select_idle_mask);
5315 
5316 #ifdef CONFIG_NO_HZ_COMMON
5317 /*
5318  * per rq 'load' arrray crap; XXX kill this.
5319  */
5320 
5321 /*
5322  * The exact cpuload calculated at every tick would be:
5323  *
5324  *   load' = (1 - 1/2^i) * load + (1/2^i) * cur_load
5325  *
5326  * If a cpu misses updates for n ticks (as it was idle) and update gets
5327  * called on the n+1-th tick when cpu may be busy, then we have:
5328  *
5329  *   load_n   = (1 - 1/2^i)^n * load_0
5330  *   load_n+1 = (1 - 1/2^i)   * load_n + (1/2^i) * cur_load
5331  *
5332  * decay_load_missed() below does efficient calculation of
5333  *
5334  *   load' = (1 - 1/2^i)^n * load
5335  *
5336  * Because x^(n+m) := x^n * x^m we can decompose any x^n in power-of-2 factors.
5337  * This allows us to precompute the above in said factors, thereby allowing the
5338  * reduction of an arbitrary n in O(log_2 n) steps. (See also
5339  * fixed_power_int())
5340  *
5341  * The calculation is approximated on a 128 point scale.
5342  */
5343 #define DEGRADE_SHIFT		7
5344 
5345 static const u8 degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
5346 static const u8 degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
5347 	{   0,   0,  0,  0,  0,  0, 0, 0 },
5348 	{  64,  32,  8,  0,  0,  0, 0, 0 },
5349 	{  96,  72, 40, 12,  1,  0, 0, 0 },
5350 	{ 112,  98, 75, 43, 15,  1, 0, 0 },
5351 	{ 120, 112, 98, 76, 45, 16, 2, 0 }
5352 };
5353 
5354 /*
5355  * Update cpu_load for any missed ticks, due to tickless idle. The backlog
5356  * would be when CPU is idle and so we just decay the old load without
5357  * adding any new load.
5358  */
5359 static unsigned long
5360 decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
5361 {
5362 	int j = 0;
5363 
5364 	if (!missed_updates)
5365 		return load;
5366 
5367 	if (missed_updates >= degrade_zero_ticks[idx])
5368 		return 0;
5369 
5370 	if (idx == 1)
5371 		return load >> missed_updates;
5372 
5373 	while (missed_updates) {
5374 		if (missed_updates % 2)
5375 			load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;
5376 
5377 		missed_updates >>= 1;
5378 		j++;
5379 	}
5380 	return load;
5381 }
5382 #endif /* CONFIG_NO_HZ_COMMON */
5383 
5384 /**
5385  * __cpu_load_update - update the rq->cpu_load[] statistics
5386  * @this_rq: The rq to update statistics for
5387  * @this_load: The current load
5388  * @pending_updates: The number of missed updates
5389  *
5390  * Update rq->cpu_load[] statistics. This function is usually called every
5391  * scheduler tick (TICK_NSEC).
5392  *
5393  * This function computes a decaying average:
5394  *
5395  *   load[i]' = (1 - 1/2^i) * load[i] + (1/2^i) * load
5396  *
5397  * Because of NOHZ it might not get called on every tick which gives need for
5398  * the @pending_updates argument.
5399  *
5400  *   load[i]_n = (1 - 1/2^i) * load[i]_n-1 + (1/2^i) * load_n-1
5401  *             = A * load[i]_n-1 + B ; A := (1 - 1/2^i), B := (1/2^i) * load
5402  *             = A * (A * load[i]_n-2 + B) + B
5403  *             = A * (A * (A * load[i]_n-3 + B) + B) + B
5404  *             = A^3 * load[i]_n-3 + (A^2 + A + 1) * B
5405  *             = A^n * load[i]_0 + (A^(n-1) + A^(n-2) + ... + 1) * B
5406  *             = A^n * load[i]_0 + ((1 - A^n) / (1 - A)) * B
5407  *             = (1 - 1/2^i)^n * (load[i]_0 - load) + load
5408  *
5409  * In the above we've assumed load_n := load, which is true for NOHZ_FULL as
5410  * any change in load would have resulted in the tick being turned back on.
5411  *
5412  * For regular NOHZ, this reduces to:
5413  *
5414  *   load[i]_n = (1 - 1/2^i)^n * load[i]_0
5415  *
5416  * see decay_load_misses(). For NOHZ_FULL we get to subtract and add the extra
5417  * term.
5418  */
5419 static void cpu_load_update(struct rq *this_rq, unsigned long this_load,
5420 			    unsigned long pending_updates)
5421 {
5422 	unsigned long __maybe_unused tickless_load = this_rq->cpu_load[0];
5423 	int i, scale;
5424 
5425 	this_rq->nr_load_updates++;
5426 
5427 	/* Update our load: */
5428 	this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
5429 	for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
5430 		unsigned long old_load, new_load;
5431 
5432 		/* scale is effectively 1 << i now, and >> i divides by scale */
5433 
5434 		old_load = this_rq->cpu_load[i];
5435 #ifdef CONFIG_NO_HZ_COMMON
5436 		old_load = decay_load_missed(old_load, pending_updates - 1, i);
5437 		if (tickless_load) {
5438 			old_load -= decay_load_missed(tickless_load, pending_updates - 1, i);
5439 			/*
5440 			 * old_load can never be a negative value because a
5441 			 * decayed tickless_load cannot be greater than the
5442 			 * original tickless_load.
5443 			 */
5444 			old_load += tickless_load;
5445 		}
5446 #endif
5447 		new_load = this_load;
5448 		/*
5449 		 * Round up the averaging division if load is increasing. This
5450 		 * prevents us from getting stuck on 9 if the load is 10, for
5451 		 * example.
5452 		 */
5453 		if (new_load > old_load)
5454 			new_load += scale - 1;
5455 
5456 		this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
5457 	}
5458 
5459 	sched_avg_update(this_rq);
5460 }
5461 
5462 /* Used instead of source_load when we know the type == 0 */
5463 static unsigned long weighted_cpuload(struct rq *rq)
5464 {
5465 	return cfs_rq_runnable_load_avg(&rq->cfs);
5466 }
5467 
5468 #ifdef CONFIG_NO_HZ_COMMON
5469 /*
5470  * There is no sane way to deal with nohz on smp when using jiffies because the
5471  * cpu doing the jiffies update might drift wrt the cpu doing the jiffy reading
5472  * causing off-by-one errors in observed deltas; {0,2} instead of {1,1}.
5473  *
5474  * Therefore we need to avoid the delta approach from the regular tick when
5475  * possible since that would seriously skew the load calculation. This is why we
5476  * use cpu_load_update_periodic() for CPUs out of nohz. However we'll rely on
5477  * jiffies deltas for updates happening while in nohz mode (idle ticks, idle
5478  * loop exit, nohz_idle_balance, nohz full exit...)
5479  *
5480  * This means we might still be one tick off for nohz periods.
5481  */
5482 
5483 static void cpu_load_update_nohz(struct rq *this_rq,
5484 				 unsigned long curr_jiffies,
5485 				 unsigned long load)
5486 {
5487 	unsigned long pending_updates;
5488 
5489 	pending_updates = curr_jiffies - this_rq->last_load_update_tick;
5490 	if (pending_updates) {
5491 		this_rq->last_load_update_tick = curr_jiffies;
5492 		/*
5493 		 * In the regular NOHZ case, we were idle, this means load 0.
5494 		 * In the NOHZ_FULL case, we were non-idle, we should consider
5495 		 * its weighted load.
5496 		 */
5497 		cpu_load_update(this_rq, load, pending_updates);
5498 	}
5499 }
5500 
5501 /*
5502  * Called from nohz_idle_balance() to update the load ratings before doing the
5503  * idle balance.
5504  */
5505 static void cpu_load_update_idle(struct rq *this_rq)
5506 {
5507 	/*
5508 	 * bail if there's load or we're actually up-to-date.
5509 	 */
5510 	if (weighted_cpuload(this_rq))
5511 		return;
5512 
5513 	cpu_load_update_nohz(this_rq, READ_ONCE(jiffies), 0);
5514 }
5515 
5516 /*
5517  * Record CPU load on nohz entry so we know the tickless load to account
5518  * on nohz exit. cpu_load[0] happens then to be updated more frequently
5519  * than other cpu_load[idx] but it should be fine as cpu_load readers
5520  * shouldn't rely into synchronized cpu_load[*] updates.
5521  */
5522 void cpu_load_update_nohz_start(void)
5523 {
5524 	struct rq *this_rq = this_rq();
5525 
5526 	/*
5527 	 * This is all lockless but should be fine. If weighted_cpuload changes
5528 	 * concurrently we'll exit nohz. And cpu_load write can race with
5529 	 * cpu_load_update_idle() but both updater would be writing the same.
5530 	 */
5531 	this_rq->cpu_load[0] = weighted_cpuload(this_rq);
5532 }
5533 
5534 /*
5535  * Account the tickless load in the end of a nohz frame.
5536  */
5537 void cpu_load_update_nohz_stop(void)
5538 {
5539 	unsigned long curr_jiffies = READ_ONCE(jiffies);
5540 	struct rq *this_rq = this_rq();
5541 	unsigned long load;
5542 	struct rq_flags rf;
5543 
5544 	if (curr_jiffies == this_rq->last_load_update_tick)
5545 		return;
5546 
5547 	load = weighted_cpuload(this_rq);
5548 	rq_lock(this_rq, &rf);
5549 	update_rq_clock(this_rq);
5550 	cpu_load_update_nohz(this_rq, curr_jiffies, load);
5551 	rq_unlock(this_rq, &rf);
5552 }
5553 #else /* !CONFIG_NO_HZ_COMMON */
5554 static inline void cpu_load_update_nohz(struct rq *this_rq,
5555 					unsigned long curr_jiffies,
5556 					unsigned long load) { }
5557 #endif /* CONFIG_NO_HZ_COMMON */
5558 
5559 static void cpu_load_update_periodic(struct rq *this_rq, unsigned long load)
5560 {
5561 #ifdef CONFIG_NO_HZ_COMMON
5562 	/* See the mess around cpu_load_update_nohz(). */
5563 	this_rq->last_load_update_tick = READ_ONCE(jiffies);
5564 #endif
5565 	cpu_load_update(this_rq, load, 1);
5566 }
5567 
5568 /*
5569  * Called from scheduler_tick()
5570  */
5571 void cpu_load_update_active(struct rq *this_rq)
5572 {
5573 	unsigned long load = weighted_cpuload(this_rq);
5574 
5575 	if (tick_nohz_tick_stopped())
5576 		cpu_load_update_nohz(this_rq, READ_ONCE(jiffies), load);
5577 	else
5578 		cpu_load_update_periodic(this_rq, load);
5579 }
5580 
5581 /*
5582  * Return a low guess at the load of a migration-source cpu weighted
5583  * according to the scheduling class and "nice" value.
5584  *
5585  * We want to under-estimate the load of migration sources, to
5586  * balance conservatively.
5587  */
5588 static unsigned long source_load(int cpu, int type)
5589 {
5590 	struct rq *rq = cpu_rq(cpu);
5591 	unsigned long total = weighted_cpuload(rq);
5592 
5593 	if (type == 0 || !sched_feat(LB_BIAS))
5594 		return total;
5595 
5596 	return min(rq->cpu_load[type-1], total);
5597 }
5598 
5599 /*
5600  * Return a high guess at the load of a migration-target cpu weighted
5601  * according to the scheduling class and "nice" value.
5602  */
5603 static unsigned long target_load(int cpu, int type)
5604 {
5605 	struct rq *rq = cpu_rq(cpu);
5606 	unsigned long total = weighted_cpuload(rq);
5607 
5608 	if (type == 0 || !sched_feat(LB_BIAS))
5609 		return total;
5610 
5611 	return max(rq->cpu_load[type-1], total);
5612 }
5613 
5614 static unsigned long capacity_of(int cpu)
5615 {
5616 	return cpu_rq(cpu)->cpu_capacity;
5617 }
5618 
5619 static unsigned long capacity_orig_of(int cpu)
5620 {
5621 	return cpu_rq(cpu)->cpu_capacity_orig;
5622 }
5623 
5624 static unsigned long cpu_avg_load_per_task(int cpu)
5625 {
5626 	struct rq *rq = cpu_rq(cpu);
5627 	unsigned long nr_running = READ_ONCE(rq->cfs.h_nr_running);
5628 	unsigned long load_avg = weighted_cpuload(rq);
5629 
5630 	if (nr_running)
5631 		return load_avg / nr_running;
5632 
5633 	return 0;
5634 }
5635 
5636 static void record_wakee(struct task_struct *p)
5637 {
5638 	/*
5639 	 * Only decay a single time; tasks that have less then 1 wakeup per
5640 	 * jiffy will not have built up many flips.
5641 	 */
5642 	if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) {
5643 		current->wakee_flips >>= 1;
5644 		current->wakee_flip_decay_ts = jiffies;
5645 	}
5646 
5647 	if (current->last_wakee != p) {
5648 		current->last_wakee = p;
5649 		current->wakee_flips++;
5650 	}
5651 }
5652 
5653 /*
5654  * Detect M:N waker/wakee relationships via a switching-frequency heuristic.
5655  *
5656  * A waker of many should wake a different task than the one last awakened
5657  * at a frequency roughly N times higher than one of its wakees.
5658  *
5659  * In order to determine whether we should let the load spread vs consolidating
5660  * to shared cache, we look for a minimum 'flip' frequency of llc_size in one
5661  * partner, and a factor of lls_size higher frequency in the other.
5662  *
5663  * With both conditions met, we can be relatively sure that the relationship is
5664  * non-monogamous, with partner count exceeding socket size.
5665  *
5666  * Waker/wakee being client/server, worker/dispatcher, interrupt source or
5667  * whatever is irrelevant, spread criteria is apparent partner count exceeds
5668  * socket size.
5669  */
5670 static int wake_wide(struct task_struct *p)
5671 {
5672 	unsigned int master = current->wakee_flips;
5673 	unsigned int slave = p->wakee_flips;
5674 	int factor = this_cpu_read(sd_llc_size);
5675 
5676 	if (master < slave)
5677 		swap(master, slave);
5678 	if (slave < factor || master < slave * factor)
5679 		return 0;
5680 	return 1;
5681 }
5682 
5683 /*
5684  * The purpose of wake_affine() is to quickly determine on which CPU we can run
5685  * soonest. For the purpose of speed we only consider the waking and previous
5686  * CPU.
5687  *
5688  * wake_affine_idle() - only considers 'now', it check if the waking CPU is
5689  *			cache-affine and is (or	will be) idle.
5690  *
5691  * wake_affine_weight() - considers the weight to reflect the average
5692  *			  scheduling latency of the CPUs. This seems to work
5693  *			  for the overloaded case.
5694  */
5695 static int
5696 wake_affine_idle(int this_cpu, int prev_cpu, int sync)
5697 {
5698 	/*
5699 	 * If this_cpu is idle, it implies the wakeup is from interrupt
5700 	 * context. Only allow the move if cache is shared. Otherwise an
5701 	 * interrupt intensive workload could force all tasks onto one
5702 	 * node depending on the IO topology or IRQ affinity settings.
5703 	 *
5704 	 * If the prev_cpu is idle and cache affine then avoid a migration.
5705 	 * There is no guarantee that the cache hot data from an interrupt
5706 	 * is more important than cache hot data on the prev_cpu and from
5707 	 * a cpufreq perspective, it's better to have higher utilisation
5708 	 * on one CPU.
5709 	 */
5710 	if (idle_cpu(this_cpu) && cpus_share_cache(this_cpu, prev_cpu))
5711 		return idle_cpu(prev_cpu) ? prev_cpu : this_cpu;
5712 
5713 	if (sync && cpu_rq(this_cpu)->nr_running == 1)
5714 		return this_cpu;
5715 
5716 	return nr_cpumask_bits;
5717 }
5718 
5719 static int
5720 wake_affine_weight(struct sched_domain *sd, struct task_struct *p,
5721 		   int this_cpu, int prev_cpu, int sync)
5722 {
5723 	s64 this_eff_load, prev_eff_load;
5724 	unsigned long task_load;
5725 
5726 	this_eff_load = target_load(this_cpu, sd->wake_idx);
5727 	prev_eff_load = source_load(prev_cpu, sd->wake_idx);
5728 
5729 	if (sync) {
5730 		unsigned long current_load = task_h_load(current);
5731 
5732 		if (current_load > this_eff_load)
5733 			return this_cpu;
5734 
5735 		this_eff_load -= current_load;
5736 	}
5737 
5738 	task_load = task_h_load(p);
5739 
5740 	this_eff_load += task_load;
5741 	if (sched_feat(WA_BIAS))
5742 		this_eff_load *= 100;
5743 	this_eff_load *= capacity_of(prev_cpu);
5744 
5745 	prev_eff_load -= task_load;
5746 	if (sched_feat(WA_BIAS))
5747 		prev_eff_load *= 100 + (sd->imbalance_pct - 100) / 2;
5748 	prev_eff_load *= capacity_of(this_cpu);
5749 
5750 	return this_eff_load <= prev_eff_load ? this_cpu : nr_cpumask_bits;
5751 }
5752 
5753 static int wake_affine(struct sched_domain *sd, struct task_struct *p,
5754 		       int prev_cpu, int sync)
5755 {
5756 	int this_cpu = smp_processor_id();
5757 	int target = nr_cpumask_bits;
5758 
5759 	if (sched_feat(WA_IDLE))
5760 		target = wake_affine_idle(this_cpu, prev_cpu, sync);
5761 
5762 	if (sched_feat(WA_WEIGHT) && target == nr_cpumask_bits)
5763 		target = wake_affine_weight(sd, p, this_cpu, prev_cpu, sync);
5764 
5765 	schedstat_inc(p->se.statistics.nr_wakeups_affine_attempts);
5766 	if (target == nr_cpumask_bits)
5767 		return prev_cpu;
5768 
5769 	schedstat_inc(sd->ttwu_move_affine);
5770 	schedstat_inc(p->se.statistics.nr_wakeups_affine);
5771 	return target;
5772 }
5773 
5774 static inline unsigned long task_util(struct task_struct *p);
5775 static unsigned long cpu_util_wake(int cpu, struct task_struct *p);
5776 
5777 static unsigned long capacity_spare_wake(int cpu, struct task_struct *p)
5778 {
5779 	return max_t(long, capacity_of(cpu) - cpu_util_wake(cpu, p), 0);
5780 }
5781 
5782 /*
5783  * find_idlest_group finds and returns the least busy CPU group within the
5784  * domain.
5785  *
5786  * Assumes p is allowed on at least one CPU in sd.
5787  */
5788 static struct sched_group *
5789 find_idlest_group(struct sched_domain *sd, struct task_struct *p,
5790 		  int this_cpu, int sd_flag)
5791 {
5792 	struct sched_group *idlest = NULL, *group = sd->groups;
5793 	struct sched_group *most_spare_sg = NULL;
5794 	unsigned long min_runnable_load = ULONG_MAX;
5795 	unsigned long this_runnable_load = ULONG_MAX;
5796 	unsigned long min_avg_load = ULONG_MAX, this_avg_load = ULONG_MAX;
5797 	unsigned long most_spare = 0, this_spare = 0;
5798 	int load_idx = sd->forkexec_idx;
5799 	int imbalance_scale = 100 + (sd->imbalance_pct-100)/2;
5800 	unsigned long imbalance = scale_load_down(NICE_0_LOAD) *
5801 				(sd->imbalance_pct-100) / 100;
5802 
5803 	if (sd_flag & SD_BALANCE_WAKE)
5804 		load_idx = sd->wake_idx;
5805 
5806 	do {
5807 		unsigned long load, avg_load, runnable_load;
5808 		unsigned long spare_cap, max_spare_cap;
5809 		int local_group;
5810 		int i;
5811 
5812 		/* Skip over this group if it has no CPUs allowed */
5813 		if (!cpumask_intersects(sched_group_span(group),
5814 					&p->cpus_allowed))
5815 			continue;
5816 
5817 		local_group = cpumask_test_cpu(this_cpu,
5818 					       sched_group_span(group));
5819 
5820 		/*
5821 		 * Tally up the load of all CPUs in the group and find
5822 		 * the group containing the CPU with most spare capacity.
5823 		 */
5824 		avg_load = 0;
5825 		runnable_load = 0;
5826 		max_spare_cap = 0;
5827 
5828 		for_each_cpu(i, sched_group_span(group)) {
5829 			/* Bias balancing toward cpus of our domain */
5830 			if (local_group)
5831 				load = source_load(i, load_idx);
5832 			else
5833 				load = target_load(i, load_idx);
5834 
5835 			runnable_load += load;
5836 
5837 			avg_load += cfs_rq_load_avg(&cpu_rq(i)->cfs);
5838 
5839 			spare_cap = capacity_spare_wake(i, p);
5840 
5841 			if (spare_cap > max_spare_cap)
5842 				max_spare_cap = spare_cap;
5843 		}
5844 
5845 		/* Adjust by relative CPU capacity of the group */
5846 		avg_load = (avg_load * SCHED_CAPACITY_SCALE) /
5847 					group->sgc->capacity;
5848 		runnable_load = (runnable_load * SCHED_CAPACITY_SCALE) /
5849 					group->sgc->capacity;
5850 
5851 		if (local_group) {
5852 			this_runnable_load = runnable_load;
5853 			this_avg_load = avg_load;
5854 			this_spare = max_spare_cap;
5855 		} else {
5856 			if (min_runnable_load > (runnable_load + imbalance)) {
5857 				/*
5858 				 * The runnable load is significantly smaller
5859 				 * so we can pick this new cpu
5860 				 */
5861 				min_runnable_load = runnable_load;
5862 				min_avg_load = avg_load;
5863 				idlest = group;
5864 			} else if ((runnable_load < (min_runnable_load + imbalance)) &&
5865 				   (100*min_avg_load > imbalance_scale*avg_load)) {
5866 				/*
5867 				 * The runnable loads are close so take the
5868 				 * blocked load into account through avg_load.
5869 				 */
5870 				min_avg_load = avg_load;
5871 				idlest = group;
5872 			}
5873 
5874 			if (most_spare < max_spare_cap) {
5875 				most_spare = max_spare_cap;
5876 				most_spare_sg = group;
5877 			}
5878 		}
5879 	} while (group = group->next, group != sd->groups);
5880 
5881 	/*
5882 	 * The cross-over point between using spare capacity or least load
5883 	 * is too conservative for high utilization tasks on partially
5884 	 * utilized systems if we require spare_capacity > task_util(p),
5885 	 * so we allow for some task stuffing by using
5886 	 * spare_capacity > task_util(p)/2.
5887 	 *
5888 	 * Spare capacity can't be used for fork because the utilization has
5889 	 * not been set yet, we must first select a rq to compute the initial
5890 	 * utilization.
5891 	 */
5892 	if (sd_flag & SD_BALANCE_FORK)
5893 		goto skip_spare;
5894 
5895 	if (this_spare > task_util(p) / 2 &&
5896 	    imbalance_scale*this_spare > 100*most_spare)
5897 		return NULL;
5898 
5899 	if (most_spare > task_util(p) / 2)
5900 		return most_spare_sg;
5901 
5902 skip_spare:
5903 	if (!idlest)
5904 		return NULL;
5905 
5906 	if (min_runnable_load > (this_runnable_load + imbalance))
5907 		return NULL;
5908 
5909 	if ((this_runnable_load < (min_runnable_load + imbalance)) &&
5910 	     (100*this_avg_load < imbalance_scale*min_avg_load))
5911 		return NULL;
5912 
5913 	return idlest;
5914 }
5915 
5916 /*
5917  * find_idlest_group_cpu - find the idlest cpu among the cpus in group.
5918  */
5919 static int
5920 find_idlest_group_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
5921 {
5922 	unsigned long load, min_load = ULONG_MAX;
5923 	unsigned int min_exit_latency = UINT_MAX;
5924 	u64 latest_idle_timestamp = 0;
5925 	int least_loaded_cpu = this_cpu;
5926 	int shallowest_idle_cpu = -1;
5927 	int i;
5928 
5929 	/* Check if we have any choice: */
5930 	if (group->group_weight == 1)
5931 		return cpumask_first(sched_group_span(group));
5932 
5933 	/* Traverse only the allowed CPUs */
5934 	for_each_cpu_and(i, sched_group_span(group), &p->cpus_allowed) {
5935 		if (idle_cpu(i)) {
5936 			struct rq *rq = cpu_rq(i);
5937 			struct cpuidle_state *idle = idle_get_state(rq);
5938 			if (idle && idle->exit_latency < min_exit_latency) {
5939 				/*
5940 				 * We give priority to a CPU whose idle state
5941 				 * has the smallest exit latency irrespective
5942 				 * of any idle timestamp.
5943 				 */
5944 				min_exit_latency = idle->exit_latency;
5945 				latest_idle_timestamp = rq->idle_stamp;
5946 				shallowest_idle_cpu = i;
5947 			} else if ((!idle || idle->exit_latency == min_exit_latency) &&
5948 				   rq->idle_stamp > latest_idle_timestamp) {
5949 				/*
5950 				 * If equal or no active idle state, then
5951 				 * the most recently idled CPU might have
5952 				 * a warmer cache.
5953 				 */
5954 				latest_idle_timestamp = rq->idle_stamp;
5955 				shallowest_idle_cpu = i;
5956 			}
5957 		} else if (shallowest_idle_cpu == -1) {
5958 			load = weighted_cpuload(cpu_rq(i));
5959 			if (load < min_load) {
5960 				min_load = load;
5961 				least_loaded_cpu = i;
5962 			}
5963 		}
5964 	}
5965 
5966 	return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu;
5967 }
5968 
5969 static inline int find_idlest_cpu(struct sched_domain *sd, struct task_struct *p,
5970 				  int cpu, int prev_cpu, int sd_flag)
5971 {
5972 	int new_cpu = cpu;
5973 
5974 	if (!cpumask_intersects(sched_domain_span(sd), &p->cpus_allowed))
5975 		return prev_cpu;
5976 
5977 	while (sd) {
5978 		struct sched_group *group;
5979 		struct sched_domain *tmp;
5980 		int weight;
5981 
5982 		if (!(sd->flags & sd_flag)) {
5983 			sd = sd->child;
5984 			continue;
5985 		}
5986 
5987 		group = find_idlest_group(sd, p, cpu, sd_flag);
5988 		if (!group) {
5989 			sd = sd->child;
5990 			continue;
5991 		}
5992 
5993 		new_cpu = find_idlest_group_cpu(group, p, cpu);
5994 		if (new_cpu == cpu) {
5995 			/* Now try balancing at a lower domain level of cpu */
5996 			sd = sd->child;
5997 			continue;
5998 		}
5999 
6000 		/* Now try balancing at a lower domain level of new_cpu */
6001 		cpu = new_cpu;
6002 		weight = sd->span_weight;
6003 		sd = NULL;
6004 		for_each_domain(cpu, tmp) {
6005 			if (weight <= tmp->span_weight)
6006 				break;
6007 			if (tmp->flags & sd_flag)
6008 				sd = tmp;
6009 		}
6010 		/* while loop will break here if sd == NULL */
6011 	}
6012 
6013 	return new_cpu;
6014 }
6015 
6016 #ifdef CONFIG_SCHED_SMT
6017 
6018 static inline void set_idle_cores(int cpu, int val)
6019 {
6020 	struct sched_domain_shared *sds;
6021 
6022 	sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
6023 	if (sds)
6024 		WRITE_ONCE(sds->has_idle_cores, val);
6025 }
6026 
6027 static inline bool test_idle_cores(int cpu, bool def)
6028 {
6029 	struct sched_domain_shared *sds;
6030 
6031 	sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
6032 	if (sds)
6033 		return READ_ONCE(sds->has_idle_cores);
6034 
6035 	return def;
6036 }
6037 
6038 /*
6039  * Scans the local SMT mask to see if the entire core is idle, and records this
6040  * information in sd_llc_shared->has_idle_cores.
6041  *
6042  * Since SMT siblings share all cache levels, inspecting this limited remote
6043  * state should be fairly cheap.
6044  */
6045 void __update_idle_core(struct rq *rq)
6046 {
6047 	int core = cpu_of(rq);
6048 	int cpu;
6049 
6050 	rcu_read_lock();
6051 	if (test_idle_cores(core, true))
6052 		goto unlock;
6053 
6054 	for_each_cpu(cpu, cpu_smt_mask(core)) {
6055 		if (cpu == core)
6056 			continue;
6057 
6058 		if (!idle_cpu(cpu))
6059 			goto unlock;
6060 	}
6061 
6062 	set_idle_cores(core, 1);
6063 unlock:
6064 	rcu_read_unlock();
6065 }
6066 
6067 /*
6068  * Scan the entire LLC domain for idle cores; this dynamically switches off if
6069  * there are no idle cores left in the system; tracked through
6070  * sd_llc->shared->has_idle_cores and enabled through update_idle_core() above.
6071  */
6072 static int select_idle_core(struct task_struct *p, struct sched_domain *sd, int target)
6073 {
6074 	struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_idle_mask);
6075 	int core, cpu;
6076 
6077 	if (!static_branch_likely(&sched_smt_present))
6078 		return -1;
6079 
6080 	if (!test_idle_cores(target, false))
6081 		return -1;
6082 
6083 	cpumask_and(cpus, sched_domain_span(sd), &p->cpus_allowed);
6084 
6085 	for_each_cpu_wrap(core, cpus, target) {
6086 		bool idle = true;
6087 
6088 		for_each_cpu(cpu, cpu_smt_mask(core)) {
6089 			cpumask_clear_cpu(cpu, cpus);
6090 			if (!idle_cpu(cpu))
6091 				idle = false;
6092 		}
6093 
6094 		if (idle)
6095 			return core;
6096 	}
6097 
6098 	/*
6099 	 * Failed to find an idle core; stop looking for one.
6100 	 */
6101 	set_idle_cores(target, 0);
6102 
6103 	return -1;
6104 }
6105 
6106 /*
6107  * Scan the local SMT mask for idle CPUs.
6108  */
6109 static int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target)
6110 {
6111 	int cpu;
6112 
6113 	if (!static_branch_likely(&sched_smt_present))
6114 		return -1;
6115 
6116 	for_each_cpu(cpu, cpu_smt_mask(target)) {
6117 		if (!cpumask_test_cpu(cpu, &p->cpus_allowed))
6118 			continue;
6119 		if (idle_cpu(cpu))
6120 			return cpu;
6121 	}
6122 
6123 	return -1;
6124 }
6125 
6126 #else /* CONFIG_SCHED_SMT */
6127 
6128 static inline int select_idle_core(struct task_struct *p, struct sched_domain *sd, int target)
6129 {
6130 	return -1;
6131 }
6132 
6133 static inline int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target)
6134 {
6135 	return -1;
6136 }
6137 
6138 #endif /* CONFIG_SCHED_SMT */
6139 
6140 /*
6141  * Scan the LLC domain for idle CPUs; this is dynamically regulated by
6142  * comparing the average scan cost (tracked in sd->avg_scan_cost) against the
6143  * average idle time for this rq (as found in rq->avg_idle).
6144  */
6145 static int select_idle_cpu(struct task_struct *p, struct sched_domain *sd, int target)
6146 {
6147 	struct sched_domain *this_sd;
6148 	u64 avg_cost, avg_idle;
6149 	u64 time, cost;
6150 	s64 delta;
6151 	int cpu, nr = INT_MAX;
6152 
6153 	this_sd = rcu_dereference(*this_cpu_ptr(&sd_llc));
6154 	if (!this_sd)
6155 		return -1;
6156 
6157 	/*
6158 	 * Due to large variance we need a large fuzz factor; hackbench in
6159 	 * particularly is sensitive here.
6160 	 */
6161 	avg_idle = this_rq()->avg_idle / 512;
6162 	avg_cost = this_sd->avg_scan_cost + 1;
6163 
6164 	if (sched_feat(SIS_AVG_CPU) && avg_idle < avg_cost)
6165 		return -1;
6166 
6167 	if (sched_feat(SIS_PROP)) {
6168 		u64 span_avg = sd->span_weight * avg_idle;
6169 		if (span_avg > 4*avg_cost)
6170 			nr = div_u64(span_avg, avg_cost);
6171 		else
6172 			nr = 4;
6173 	}
6174 
6175 	time = local_clock();
6176 
6177 	for_each_cpu_wrap(cpu, sched_domain_span(sd), target) {
6178 		if (!--nr)
6179 			return -1;
6180 		if (!cpumask_test_cpu(cpu, &p->cpus_allowed))
6181 			continue;
6182 		if (idle_cpu(cpu))
6183 			break;
6184 	}
6185 
6186 	time = local_clock() - time;
6187 	cost = this_sd->avg_scan_cost;
6188 	delta = (s64)(time - cost) / 8;
6189 	this_sd->avg_scan_cost += delta;
6190 
6191 	return cpu;
6192 }
6193 
6194 /*
6195  * Try and locate an idle core/thread in the LLC cache domain.
6196  */
6197 static int select_idle_sibling(struct task_struct *p, int prev, int target)
6198 {
6199 	struct sched_domain *sd;
6200 	int i, recent_used_cpu;
6201 
6202 	if (idle_cpu(target))
6203 		return target;
6204 
6205 	/*
6206 	 * If the previous cpu is cache affine and idle, don't be stupid.
6207 	 */
6208 	if (prev != target && cpus_share_cache(prev, target) && idle_cpu(prev))
6209 		return prev;
6210 
6211 	/* Check a recently used CPU as a potential idle candidate */
6212 	recent_used_cpu = p->recent_used_cpu;
6213 	if (recent_used_cpu != prev &&
6214 	    recent_used_cpu != target &&
6215 	    cpus_share_cache(recent_used_cpu, target) &&
6216 	    idle_cpu(recent_used_cpu) &&
6217 	    cpumask_test_cpu(p->recent_used_cpu, &p->cpus_allowed)) {
6218 		/*
6219 		 * Replace recent_used_cpu with prev as it is a potential
6220 		 * candidate for the next wake.
6221 		 */
6222 		p->recent_used_cpu = prev;
6223 		return recent_used_cpu;
6224 	}
6225 
6226 	sd = rcu_dereference(per_cpu(sd_llc, target));
6227 	if (!sd)
6228 		return target;
6229 
6230 	i = select_idle_core(p, sd, target);
6231 	if ((unsigned)i < nr_cpumask_bits)
6232 		return i;
6233 
6234 	i = select_idle_cpu(p, sd, target);
6235 	if ((unsigned)i < nr_cpumask_bits)
6236 		return i;
6237 
6238 	i = select_idle_smt(p, sd, target);
6239 	if ((unsigned)i < nr_cpumask_bits)
6240 		return i;
6241 
6242 	return target;
6243 }
6244 
6245 /*
6246  * cpu_util returns the amount of capacity of a CPU that is used by CFS
6247  * tasks. The unit of the return value must be the one of capacity so we can
6248  * compare the utilization with the capacity of the CPU that is available for
6249  * CFS task (ie cpu_capacity).
6250  *
6251  * cfs_rq.avg.util_avg is the sum of running time of runnable tasks plus the
6252  * recent utilization of currently non-runnable tasks on a CPU. It represents
6253  * the amount of utilization of a CPU in the range [0..capacity_orig] where
6254  * capacity_orig is the cpu_capacity available at the highest frequency
6255  * (arch_scale_freq_capacity()).
6256  * The utilization of a CPU converges towards a sum equal to or less than the
6257  * current capacity (capacity_curr <= capacity_orig) of the CPU because it is
6258  * the running time on this CPU scaled by capacity_curr.
6259  *
6260  * Nevertheless, cfs_rq.avg.util_avg can be higher than capacity_curr or even
6261  * higher than capacity_orig because of unfortunate rounding in
6262  * cfs.avg.util_avg or just after migrating tasks and new task wakeups until
6263  * the average stabilizes with the new running time. We need to check that the
6264  * utilization stays within the range of [0..capacity_orig] and cap it if
6265  * necessary. Without utilization capping, a group could be seen as overloaded
6266  * (CPU0 utilization at 121% + CPU1 utilization at 80%) whereas CPU1 has 20% of
6267  * available capacity. We allow utilization to overshoot capacity_curr (but not
6268  * capacity_orig) as it useful for predicting the capacity required after task
6269  * migrations (scheduler-driven DVFS).
6270  */
6271 static unsigned long cpu_util(int cpu)
6272 {
6273 	unsigned long util = cpu_rq(cpu)->cfs.avg.util_avg;
6274 	unsigned long capacity = capacity_orig_of(cpu);
6275 
6276 	return (util >= capacity) ? capacity : util;
6277 }
6278 
6279 static inline unsigned long task_util(struct task_struct *p)
6280 {
6281 	return p->se.avg.util_avg;
6282 }
6283 
6284 /*
6285  * cpu_util_wake: Compute cpu utilization with any contributions from
6286  * the waking task p removed.
6287  */
6288 static unsigned long cpu_util_wake(int cpu, struct task_struct *p)
6289 {
6290 	unsigned long util, capacity;
6291 
6292 	/* Task has no contribution or is new */
6293 	if (cpu != task_cpu(p) || !p->se.avg.last_update_time)
6294 		return cpu_util(cpu);
6295 
6296 	capacity = capacity_orig_of(cpu);
6297 	util = max_t(long, cpu_rq(cpu)->cfs.avg.util_avg - task_util(p), 0);
6298 
6299 	return (util >= capacity) ? capacity : util;
6300 }
6301 
6302 /*
6303  * Disable WAKE_AFFINE in the case where task @p doesn't fit in the
6304  * capacity of either the waking CPU @cpu or the previous CPU @prev_cpu.
6305  *
6306  * In that case WAKE_AFFINE doesn't make sense and we'll let
6307  * BALANCE_WAKE sort things out.
6308  */
6309 static int wake_cap(struct task_struct *p, int cpu, int prev_cpu)
6310 {
6311 	long min_cap, max_cap;
6312 
6313 	min_cap = min(capacity_orig_of(prev_cpu), capacity_orig_of(cpu));
6314 	max_cap = cpu_rq(cpu)->rd->max_cpu_capacity;
6315 
6316 	/* Minimum capacity is close to max, no need to abort wake_affine */
6317 	if (max_cap - min_cap < max_cap >> 3)
6318 		return 0;
6319 
6320 	/* Bring task utilization in sync with prev_cpu */
6321 	sync_entity_load_avg(&p->se);
6322 
6323 	return min_cap * 1024 < task_util(p) * capacity_margin;
6324 }
6325 
6326 /*
6327  * select_task_rq_fair: Select target runqueue for the waking task in domains
6328  * that have the 'sd_flag' flag set. In practice, this is SD_BALANCE_WAKE,
6329  * SD_BALANCE_FORK, or SD_BALANCE_EXEC.
6330  *
6331  * Balances load by selecting the idlest cpu in the idlest group, or under
6332  * certain conditions an idle sibling cpu if the domain has SD_WAKE_AFFINE set.
6333  *
6334  * Returns the target cpu number.
6335  *
6336  * preempt must be disabled.
6337  */
6338 static int
6339 select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_flags)
6340 {
6341 	struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
6342 	int cpu = smp_processor_id();
6343 	int new_cpu = prev_cpu;
6344 	int want_affine = 0;
6345 	int sync = wake_flags & WF_SYNC;
6346 
6347 	if (sd_flag & SD_BALANCE_WAKE) {
6348 		record_wakee(p);
6349 		want_affine = !wake_wide(p) && !wake_cap(p, cpu, prev_cpu)
6350 			      && cpumask_test_cpu(cpu, &p->cpus_allowed);
6351 	}
6352 
6353 	rcu_read_lock();
6354 	for_each_domain(cpu, tmp) {
6355 		if (!(tmp->flags & SD_LOAD_BALANCE))
6356 			break;
6357 
6358 		/*
6359 		 * If both cpu and prev_cpu are part of this domain,
6360 		 * cpu is a valid SD_WAKE_AFFINE target.
6361 		 */
6362 		if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
6363 		    cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
6364 			affine_sd = tmp;
6365 			break;
6366 		}
6367 
6368 		if (tmp->flags & sd_flag)
6369 			sd = tmp;
6370 		else if (!want_affine)
6371 			break;
6372 	}
6373 
6374 	if (affine_sd) {
6375 		sd = NULL; /* Prefer wake_affine over balance flags */
6376 		if (cpu == prev_cpu)
6377 			goto pick_cpu;
6378 
6379 		new_cpu = wake_affine(affine_sd, p, prev_cpu, sync);
6380 	}
6381 
6382 	if (sd && !(sd_flag & SD_BALANCE_FORK)) {
6383 		/*
6384 		 * We're going to need the task's util for capacity_spare_wake
6385 		 * in find_idlest_group. Sync it up to prev_cpu's
6386 		 * last_update_time.
6387 		 */
6388 		sync_entity_load_avg(&p->se);
6389 	}
6390 
6391 	if (!sd) {
6392 pick_cpu:
6393 		if (sd_flag & SD_BALANCE_WAKE) { /* XXX always ? */
6394 			new_cpu = select_idle_sibling(p, prev_cpu, new_cpu);
6395 
6396 			if (want_affine)
6397 				current->recent_used_cpu = cpu;
6398 		}
6399 	} else {
6400 		new_cpu = find_idlest_cpu(sd, p, cpu, prev_cpu, sd_flag);
6401 	}
6402 	rcu_read_unlock();
6403 
6404 	return new_cpu;
6405 }
6406 
6407 static void detach_entity_cfs_rq(struct sched_entity *se);
6408 
6409 /*
6410  * Called immediately before a task is migrated to a new cpu; task_cpu(p) and
6411  * cfs_rq_of(p) references at time of call are still valid and identify the
6412  * previous cpu. The caller guarantees p->pi_lock or task_rq(p)->lock is held.
6413  */
6414 static void migrate_task_rq_fair(struct task_struct *p)
6415 {
6416 	/*
6417 	 * As blocked tasks retain absolute vruntime the migration needs to
6418 	 * deal with this by subtracting the old and adding the new
6419 	 * min_vruntime -- the latter is done by enqueue_entity() when placing
6420 	 * the task on the new runqueue.
6421 	 */
6422 	if (p->state == TASK_WAKING) {
6423 		struct sched_entity *se = &p->se;
6424 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
6425 		u64 min_vruntime;
6426 
6427 #ifndef CONFIG_64BIT
6428 		u64 min_vruntime_copy;
6429 
6430 		do {
6431 			min_vruntime_copy = cfs_rq->min_vruntime_copy;
6432 			smp_rmb();
6433 			min_vruntime = cfs_rq->min_vruntime;
6434 		} while (min_vruntime != min_vruntime_copy);
6435 #else
6436 		min_vruntime = cfs_rq->min_vruntime;
6437 #endif
6438 
6439 		se->vruntime -= min_vruntime;
6440 	}
6441 
6442 	if (p->on_rq == TASK_ON_RQ_MIGRATING) {
6443 		/*
6444 		 * In case of TASK_ON_RQ_MIGRATING we in fact hold the 'old'
6445 		 * rq->lock and can modify state directly.
6446 		 */
6447 		lockdep_assert_held(&task_rq(p)->lock);
6448 		detach_entity_cfs_rq(&p->se);
6449 
6450 	} else {
6451 		/*
6452 		 * We are supposed to update the task to "current" time, then
6453 		 * its up to date and ready to go to new CPU/cfs_rq. But we
6454 		 * have difficulty in getting what current time is, so simply
6455 		 * throw away the out-of-date time. This will result in the
6456 		 * wakee task is less decayed, but giving the wakee more load
6457 		 * sounds not bad.
6458 		 */
6459 		remove_entity_load_avg(&p->se);
6460 	}
6461 
6462 	/* Tell new CPU we are migrated */
6463 	p->se.avg.last_update_time = 0;
6464 
6465 	/* We have migrated, no longer consider this task hot */
6466 	p->se.exec_start = 0;
6467 }
6468 
6469 static void task_dead_fair(struct task_struct *p)
6470 {
6471 	remove_entity_load_avg(&p->se);
6472 }
6473 #endif /* CONFIG_SMP */
6474 
6475 static unsigned long wakeup_gran(struct sched_entity *se)
6476 {
6477 	unsigned long gran = sysctl_sched_wakeup_granularity;
6478 
6479 	/*
6480 	 * Since its curr running now, convert the gran from real-time
6481 	 * to virtual-time in his units.
6482 	 *
6483 	 * By using 'se' instead of 'curr' we penalize light tasks, so
6484 	 * they get preempted easier. That is, if 'se' < 'curr' then
6485 	 * the resulting gran will be larger, therefore penalizing the
6486 	 * lighter, if otoh 'se' > 'curr' then the resulting gran will
6487 	 * be smaller, again penalizing the lighter task.
6488 	 *
6489 	 * This is especially important for buddies when the leftmost
6490 	 * task is higher priority than the buddy.
6491 	 */
6492 	return calc_delta_fair(gran, se);
6493 }
6494 
6495 /*
6496  * Should 'se' preempt 'curr'.
6497  *
6498  *             |s1
6499  *        |s2
6500  *   |s3
6501  *         g
6502  *      |<--->|c
6503  *
6504  *  w(c, s1) = -1
6505  *  w(c, s2) =  0
6506  *  w(c, s3) =  1
6507  *
6508  */
6509 static int
6510 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
6511 {
6512 	s64 gran, vdiff = curr->vruntime - se->vruntime;
6513 
6514 	if (vdiff <= 0)
6515 		return -1;
6516 
6517 	gran = wakeup_gran(se);
6518 	if (vdiff > gran)
6519 		return 1;
6520 
6521 	return 0;
6522 }
6523 
6524 static void set_last_buddy(struct sched_entity *se)
6525 {
6526 	if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
6527 		return;
6528 
6529 	for_each_sched_entity(se) {
6530 		if (SCHED_WARN_ON(!se->on_rq))
6531 			return;
6532 		cfs_rq_of(se)->last = se;
6533 	}
6534 }
6535 
6536 static void set_next_buddy(struct sched_entity *se)
6537 {
6538 	if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
6539 		return;
6540 
6541 	for_each_sched_entity(se) {
6542 		if (SCHED_WARN_ON(!se->on_rq))
6543 			return;
6544 		cfs_rq_of(se)->next = se;
6545 	}
6546 }
6547 
6548 static void set_skip_buddy(struct sched_entity *se)
6549 {
6550 	for_each_sched_entity(se)
6551 		cfs_rq_of(se)->skip = se;
6552 }
6553 
6554 /*
6555  * Preempt the current task with a newly woken task if needed:
6556  */
6557 static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
6558 {
6559 	struct task_struct *curr = rq->curr;
6560 	struct sched_entity *se = &curr->se, *pse = &p->se;
6561 	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
6562 	int scale = cfs_rq->nr_running >= sched_nr_latency;
6563 	int next_buddy_marked = 0;
6564 
6565 	if (unlikely(se == pse))
6566 		return;
6567 
6568 	/*
6569 	 * This is possible from callers such as attach_tasks(), in which we
6570 	 * unconditionally check_prempt_curr() after an enqueue (which may have
6571 	 * lead to a throttle).  This both saves work and prevents false
6572 	 * next-buddy nomination below.
6573 	 */
6574 	if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
6575 		return;
6576 
6577 	if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
6578 		set_next_buddy(pse);
6579 		next_buddy_marked = 1;
6580 	}
6581 
6582 	/*
6583 	 * We can come here with TIF_NEED_RESCHED already set from new task
6584 	 * wake up path.
6585 	 *
6586 	 * Note: this also catches the edge-case of curr being in a throttled
6587 	 * group (e.g. via set_curr_task), since update_curr() (in the
6588 	 * enqueue of curr) will have resulted in resched being set.  This
6589 	 * prevents us from potentially nominating it as a false LAST_BUDDY
6590 	 * below.
6591 	 */
6592 	if (test_tsk_need_resched(curr))
6593 		return;
6594 
6595 	/* Idle tasks are by definition preempted by non-idle tasks. */
6596 	if (unlikely(curr->policy == SCHED_IDLE) &&
6597 	    likely(p->policy != SCHED_IDLE))
6598 		goto preempt;
6599 
6600 	/*
6601 	 * Batch and idle tasks do not preempt non-idle tasks (their preemption
6602 	 * is driven by the tick):
6603 	 */
6604 	if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
6605 		return;
6606 
6607 	find_matching_se(&se, &pse);
6608 	update_curr(cfs_rq_of(se));
6609 	BUG_ON(!pse);
6610 	if (wakeup_preempt_entity(se, pse) == 1) {
6611 		/*
6612 		 * Bias pick_next to pick the sched entity that is
6613 		 * triggering this preemption.
6614 		 */
6615 		if (!next_buddy_marked)
6616 			set_next_buddy(pse);
6617 		goto preempt;
6618 	}
6619 
6620 	return;
6621 
6622 preempt:
6623 	resched_curr(rq);
6624 	/*
6625 	 * Only set the backward buddy when the current task is still
6626 	 * on the rq. This can happen when a wakeup gets interleaved
6627 	 * with schedule on the ->pre_schedule() or idle_balance()
6628 	 * point, either of which can * drop the rq lock.
6629 	 *
6630 	 * Also, during early boot the idle thread is in the fair class,
6631 	 * for obvious reasons its a bad idea to schedule back to it.
6632 	 */
6633 	if (unlikely(!se->on_rq || curr == rq->idle))
6634 		return;
6635 
6636 	if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
6637 		set_last_buddy(se);
6638 }
6639 
6640 static struct task_struct *
6641 pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
6642 {
6643 	struct cfs_rq *cfs_rq = &rq->cfs;
6644 	struct sched_entity *se;
6645 	struct task_struct *p;
6646 	int new_tasks;
6647 
6648 again:
6649 	if (!cfs_rq->nr_running)
6650 		goto idle;
6651 
6652 #ifdef CONFIG_FAIR_GROUP_SCHED
6653 	if (prev->sched_class != &fair_sched_class)
6654 		goto simple;
6655 
6656 	/*
6657 	 * Because of the set_next_buddy() in dequeue_task_fair() it is rather
6658 	 * likely that a next task is from the same cgroup as the current.
6659 	 *
6660 	 * Therefore attempt to avoid putting and setting the entire cgroup
6661 	 * hierarchy, only change the part that actually changes.
6662 	 */
6663 
6664 	do {
6665 		struct sched_entity *curr = cfs_rq->curr;
6666 
6667 		/*
6668 		 * Since we got here without doing put_prev_entity() we also
6669 		 * have to consider cfs_rq->curr. If it is still a runnable
6670 		 * entity, update_curr() will update its vruntime, otherwise
6671 		 * forget we've ever seen it.
6672 		 */
6673 		if (curr) {
6674 			if (curr->on_rq)
6675 				update_curr(cfs_rq);
6676 			else
6677 				curr = NULL;
6678 
6679 			/*
6680 			 * This call to check_cfs_rq_runtime() will do the
6681 			 * throttle and dequeue its entity in the parent(s).
6682 			 * Therefore the nr_running test will indeed
6683 			 * be correct.
6684 			 */
6685 			if (unlikely(check_cfs_rq_runtime(cfs_rq))) {
6686 				cfs_rq = &rq->cfs;
6687 
6688 				if (!cfs_rq->nr_running)
6689 					goto idle;
6690 
6691 				goto simple;
6692 			}
6693 		}
6694 
6695 		se = pick_next_entity(cfs_rq, curr);
6696 		cfs_rq = group_cfs_rq(se);
6697 	} while (cfs_rq);
6698 
6699 	p = task_of(se);
6700 
6701 	/*
6702 	 * Since we haven't yet done put_prev_entity and if the selected task
6703 	 * is a different task than we started out with, try and touch the
6704 	 * least amount of cfs_rqs.
6705 	 */
6706 	if (prev != p) {
6707 		struct sched_entity *pse = &prev->se;
6708 
6709 		while (!(cfs_rq = is_same_group(se, pse))) {
6710 			int se_depth = se->depth;
6711 			int pse_depth = pse->depth;
6712 
6713 			if (se_depth <= pse_depth) {
6714 				put_prev_entity(cfs_rq_of(pse), pse);
6715 				pse = parent_entity(pse);
6716 			}
6717 			if (se_depth >= pse_depth) {
6718 				set_next_entity(cfs_rq_of(se), se);
6719 				se = parent_entity(se);
6720 			}
6721 		}
6722 
6723 		put_prev_entity(cfs_rq, pse);
6724 		set_next_entity(cfs_rq, se);
6725 	}
6726 
6727 	goto done;
6728 simple:
6729 #endif
6730 
6731 	put_prev_task(rq, prev);
6732 
6733 	do {
6734 		se = pick_next_entity(cfs_rq, NULL);
6735 		set_next_entity(cfs_rq, se);
6736 		cfs_rq = group_cfs_rq(se);
6737 	} while (cfs_rq);
6738 
6739 	p = task_of(se);
6740 
6741 done: __maybe_unused
6742 #ifdef CONFIG_SMP
6743 	/*
6744 	 * Move the next running task to the front of
6745 	 * the list, so our cfs_tasks list becomes MRU
6746 	 * one.
6747 	 */
6748 	list_move(&p->se.group_node, &rq->cfs_tasks);
6749 #endif
6750 
6751 	if (hrtick_enabled(rq))
6752 		hrtick_start_fair(rq, p);
6753 
6754 	return p;
6755 
6756 idle:
6757 	new_tasks = idle_balance(rq, rf);
6758 
6759 	/*
6760 	 * Because idle_balance() releases (and re-acquires) rq->lock, it is
6761 	 * possible for any higher priority task to appear. In that case we
6762 	 * must re-start the pick_next_entity() loop.
6763 	 */
6764 	if (new_tasks < 0)
6765 		return RETRY_TASK;
6766 
6767 	if (new_tasks > 0)
6768 		goto again;
6769 
6770 	return NULL;
6771 }
6772 
6773 /*
6774  * Account for a descheduled task:
6775  */
6776 static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
6777 {
6778 	struct sched_entity *se = &prev->se;
6779 	struct cfs_rq *cfs_rq;
6780 
6781 	for_each_sched_entity(se) {
6782 		cfs_rq = cfs_rq_of(se);
6783 		put_prev_entity(cfs_rq, se);
6784 	}
6785 }
6786 
6787 /*
6788  * sched_yield() is very simple
6789  *
6790  * The magic of dealing with the ->skip buddy is in pick_next_entity.
6791  */
6792 static void yield_task_fair(struct rq *rq)
6793 {
6794 	struct task_struct *curr = rq->curr;
6795 	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
6796 	struct sched_entity *se = &curr->se;
6797 
6798 	/*
6799 	 * Are we the only task in the tree?
6800 	 */
6801 	if (unlikely(rq->nr_running == 1))
6802 		return;
6803 
6804 	clear_buddies(cfs_rq, se);
6805 
6806 	if (curr->policy != SCHED_BATCH) {
6807 		update_rq_clock(rq);
6808 		/*
6809 		 * Update run-time statistics of the 'current'.
6810 		 */
6811 		update_curr(cfs_rq);
6812 		/*
6813 		 * Tell update_rq_clock() that we've just updated,
6814 		 * so we don't do microscopic update in schedule()
6815 		 * and double the fastpath cost.
6816 		 */
6817 		rq_clock_skip_update(rq, true);
6818 	}
6819 
6820 	set_skip_buddy(se);
6821 }
6822 
6823 static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
6824 {
6825 	struct sched_entity *se = &p->se;
6826 
6827 	/* throttled hierarchies are not runnable */
6828 	if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
6829 		return false;
6830 
6831 	/* Tell the scheduler that we'd really like pse to run next. */
6832 	set_next_buddy(se);
6833 
6834 	yield_task_fair(rq);
6835 
6836 	return true;
6837 }
6838 
6839 #ifdef CONFIG_SMP
6840 /**************************************************
6841  * Fair scheduling class load-balancing methods.
6842  *
6843  * BASICS
6844  *
6845  * The purpose of load-balancing is to achieve the same basic fairness the
6846  * per-cpu scheduler provides, namely provide a proportional amount of compute
6847  * time to each task. This is expressed in the following equation:
6848  *
6849  *   W_i,n/P_i == W_j,n/P_j for all i,j                               (1)
6850  *
6851  * Where W_i,n is the n-th weight average for cpu i. The instantaneous weight
6852  * W_i,0 is defined as:
6853  *
6854  *   W_i,0 = \Sum_j w_i,j                                             (2)
6855  *
6856  * Where w_i,j is the weight of the j-th runnable task on cpu i. This weight
6857  * is derived from the nice value as per sched_prio_to_weight[].
6858  *
6859  * The weight average is an exponential decay average of the instantaneous
6860  * weight:
6861  *
6862  *   W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0               (3)
6863  *
6864  * C_i is the compute capacity of cpu i, typically it is the
6865  * fraction of 'recent' time available for SCHED_OTHER task execution. But it
6866  * can also include other factors [XXX].
6867  *
6868  * To achieve this balance we define a measure of imbalance which follows
6869  * directly from (1):
6870  *
6871  *   imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j }    (4)
6872  *
6873  * We them move tasks around to minimize the imbalance. In the continuous
6874  * function space it is obvious this converges, in the discrete case we get
6875  * a few fun cases generally called infeasible weight scenarios.
6876  *
6877  * [XXX expand on:
6878  *     - infeasible weights;
6879  *     - local vs global optima in the discrete case. ]
6880  *
6881  *
6882  * SCHED DOMAINS
6883  *
6884  * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
6885  * for all i,j solution, we create a tree of cpus that follows the hardware
6886  * topology where each level pairs two lower groups (or better). This results
6887  * in O(log n) layers. Furthermore we reduce the number of cpus going up the
6888  * tree to only the first of the previous level and we decrease the frequency
6889  * of load-balance at each level inv. proportional to the number of cpus in
6890  * the groups.
6891  *
6892  * This yields:
6893  *
6894  *     log_2 n     1     n
6895  *   \Sum       { --- * --- * 2^i } = O(n)                            (5)
6896  *     i = 0      2^i   2^i
6897  *                               `- size of each group
6898  *         |         |     `- number of cpus doing load-balance
6899  *         |         `- freq
6900  *         `- sum over all levels
6901  *
6902  * Coupled with a limit on how many tasks we can migrate every balance pass,
6903  * this makes (5) the runtime complexity of the balancer.
6904  *
6905  * An important property here is that each CPU is still (indirectly) connected
6906  * to every other cpu in at most O(log n) steps:
6907  *
6908  * The adjacency matrix of the resulting graph is given by:
6909  *
6910  *             log_2 n
6911  *   A_i,j = \Union     (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1)  (6)
6912  *             k = 0
6913  *
6914  * And you'll find that:
6915  *
6916  *   A^(log_2 n)_i,j != 0  for all i,j                                (7)
6917  *
6918  * Showing there's indeed a path between every cpu in at most O(log n) steps.
6919  * The task movement gives a factor of O(m), giving a convergence complexity
6920  * of:
6921  *
6922  *   O(nm log n),  n := nr_cpus, m := nr_tasks                        (8)
6923  *
6924  *
6925  * WORK CONSERVING
6926  *
6927  * In order to avoid CPUs going idle while there's still work to do, new idle
6928  * balancing is more aggressive and has the newly idle cpu iterate up the domain
6929  * tree itself instead of relying on other CPUs to bring it work.
6930  *
6931  * This adds some complexity to both (5) and (8) but it reduces the total idle
6932  * time.
6933  *
6934  * [XXX more?]
6935  *
6936  *
6937  * CGROUPS
6938  *
6939  * Cgroups make a horror show out of (2), instead of a simple sum we get:
6940  *
6941  *                                s_k,i
6942  *   W_i,0 = \Sum_j \Prod_k w_k * -----                               (9)
6943  *                                 S_k
6944  *
6945  * Where
6946  *
6947  *   s_k,i = \Sum_j w_i,j,k  and  S_k = \Sum_i s_k,i                 (10)
6948  *
6949  * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on cpu i.
6950  *
6951  * The big problem is S_k, its a global sum needed to compute a local (W_i)
6952  * property.
6953  *
6954  * [XXX write more on how we solve this.. _after_ merging pjt's patches that
6955  *      rewrite all of this once again.]
6956  */
6957 
6958 static unsigned long __read_mostly max_load_balance_interval = HZ/10;
6959 
6960 enum fbq_type { regular, remote, all };
6961 
6962 #define LBF_ALL_PINNED	0x01
6963 #define LBF_NEED_BREAK	0x02
6964 #define LBF_DST_PINNED  0x04
6965 #define LBF_SOME_PINNED	0x08
6966 
6967 struct lb_env {
6968 	struct sched_domain	*sd;
6969 
6970 	struct rq		*src_rq;
6971 	int			src_cpu;
6972 
6973 	int			dst_cpu;
6974 	struct rq		*dst_rq;
6975 
6976 	struct cpumask		*dst_grpmask;
6977 	int			new_dst_cpu;
6978 	enum cpu_idle_type	idle;
6979 	long			imbalance;
6980 	/* The set of CPUs under consideration for load-balancing */
6981 	struct cpumask		*cpus;
6982 
6983 	unsigned int		flags;
6984 
6985 	unsigned int		loop;
6986 	unsigned int		loop_break;
6987 	unsigned int		loop_max;
6988 
6989 	enum fbq_type		fbq_type;
6990 	struct list_head	tasks;
6991 };
6992 
6993 /*
6994  * Is this task likely cache-hot:
6995  */
6996 static int task_hot(struct task_struct *p, struct lb_env *env)
6997 {
6998 	s64 delta;
6999 
7000 	lockdep_assert_held(&env->src_rq->lock);
7001 
7002 	if (p->sched_class != &fair_sched_class)
7003 		return 0;
7004 
7005 	if (unlikely(p->policy == SCHED_IDLE))
7006 		return 0;
7007 
7008 	/*
7009 	 * Buddy candidates are cache hot:
7010 	 */
7011 	if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running &&
7012 			(&p->se == cfs_rq_of(&p->se)->next ||
7013 			 &p->se == cfs_rq_of(&p->se)->last))
7014 		return 1;
7015 
7016 	if (sysctl_sched_migration_cost == -1)
7017 		return 1;
7018 	if (sysctl_sched_migration_cost == 0)
7019 		return 0;
7020 
7021 	delta = rq_clock_task(env->src_rq) - p->se.exec_start;
7022 
7023 	return delta < (s64)sysctl_sched_migration_cost;
7024 }
7025 
7026 #ifdef CONFIG_NUMA_BALANCING
7027 /*
7028  * Returns 1, if task migration degrades locality
7029  * Returns 0, if task migration improves locality i.e migration preferred.
7030  * Returns -1, if task migration is not affected by locality.
7031  */
7032 static int migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
7033 {
7034 	struct numa_group *numa_group = rcu_dereference(p->numa_group);
7035 	unsigned long src_faults, dst_faults;
7036 	int src_nid, dst_nid;
7037 
7038 	if (!static_branch_likely(&sched_numa_balancing))
7039 		return -1;
7040 
7041 	if (!p->numa_faults || !(env->sd->flags & SD_NUMA))
7042 		return -1;
7043 
7044 	src_nid = cpu_to_node(env->src_cpu);
7045 	dst_nid = cpu_to_node(env->dst_cpu);
7046 
7047 	if (src_nid == dst_nid)
7048 		return -1;
7049 
7050 	/* Migrating away from the preferred node is always bad. */
7051 	if (src_nid == p->numa_preferred_nid) {
7052 		if (env->src_rq->nr_running > env->src_rq->nr_preferred_running)
7053 			return 1;
7054 		else
7055 			return -1;
7056 	}
7057 
7058 	/* Encourage migration to the preferred node. */
7059 	if (dst_nid == p->numa_preferred_nid)
7060 		return 0;
7061 
7062 	/* Leaving a core idle is often worse than degrading locality. */
7063 	if (env->idle != CPU_NOT_IDLE)
7064 		return -1;
7065 
7066 	if (numa_group) {
7067 		src_faults = group_faults(p, src_nid);
7068 		dst_faults = group_faults(p, dst_nid);
7069 	} else {
7070 		src_faults = task_faults(p, src_nid);
7071 		dst_faults = task_faults(p, dst_nid);
7072 	}
7073 
7074 	return dst_faults < src_faults;
7075 }
7076 
7077 #else
7078 static inline int migrate_degrades_locality(struct task_struct *p,
7079 					     struct lb_env *env)
7080 {
7081 	return -1;
7082 }
7083 #endif
7084 
7085 /*
7086  * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
7087  */
7088 static
7089 int can_migrate_task(struct task_struct *p, struct lb_env *env)
7090 {
7091 	int tsk_cache_hot;
7092 
7093 	lockdep_assert_held(&env->src_rq->lock);
7094 
7095 	/*
7096 	 * We do not migrate tasks that are:
7097 	 * 1) throttled_lb_pair, or
7098 	 * 2) cannot be migrated to this CPU due to cpus_allowed, or
7099 	 * 3) running (obviously), or
7100 	 * 4) are cache-hot on their current CPU.
7101 	 */
7102 	if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
7103 		return 0;
7104 
7105 	if (!cpumask_test_cpu(env->dst_cpu, &p->cpus_allowed)) {
7106 		int cpu;
7107 
7108 		schedstat_inc(p->se.statistics.nr_failed_migrations_affine);
7109 
7110 		env->flags |= LBF_SOME_PINNED;
7111 
7112 		/*
7113 		 * Remember if this task can be migrated to any other cpu in
7114 		 * our sched_group. We may want to revisit it if we couldn't
7115 		 * meet load balance goals by pulling other tasks on src_cpu.
7116 		 *
7117 		 * Avoid computing new_dst_cpu for NEWLY_IDLE or if we have
7118 		 * already computed one in current iteration.
7119 		 */
7120 		if (env->idle == CPU_NEWLY_IDLE || (env->flags & LBF_DST_PINNED))
7121 			return 0;
7122 
7123 		/* Prevent to re-select dst_cpu via env's cpus */
7124 		for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
7125 			if (cpumask_test_cpu(cpu, &p->cpus_allowed)) {
7126 				env->flags |= LBF_DST_PINNED;
7127 				env->new_dst_cpu = cpu;
7128 				break;
7129 			}
7130 		}
7131 
7132 		return 0;
7133 	}
7134 
7135 	/* Record that we found atleast one task that could run on dst_cpu */
7136 	env->flags &= ~LBF_ALL_PINNED;
7137 
7138 	if (task_running(env->src_rq, p)) {
7139 		schedstat_inc(p->se.statistics.nr_failed_migrations_running);
7140 		return 0;
7141 	}
7142 
7143 	/*
7144 	 * Aggressive migration if:
7145 	 * 1) destination numa is preferred
7146 	 * 2) task is cache cold, or
7147 	 * 3) too many balance attempts have failed.
7148 	 */
7149 	tsk_cache_hot = migrate_degrades_locality(p, env);
7150 	if (tsk_cache_hot == -1)
7151 		tsk_cache_hot = task_hot(p, env);
7152 
7153 	if (tsk_cache_hot <= 0 ||
7154 	    env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
7155 		if (tsk_cache_hot == 1) {
7156 			schedstat_inc(env->sd->lb_hot_gained[env->idle]);
7157 			schedstat_inc(p->se.statistics.nr_forced_migrations);
7158 		}
7159 		return 1;
7160 	}
7161 
7162 	schedstat_inc(p->se.statistics.nr_failed_migrations_hot);
7163 	return 0;
7164 }
7165 
7166 /*
7167  * detach_task() -- detach the task for the migration specified in env
7168  */
7169 static void detach_task(struct task_struct *p, struct lb_env *env)
7170 {
7171 	lockdep_assert_held(&env->src_rq->lock);
7172 
7173 	p->on_rq = TASK_ON_RQ_MIGRATING;
7174 	deactivate_task(env->src_rq, p, DEQUEUE_NOCLOCK);
7175 	set_task_cpu(p, env->dst_cpu);
7176 }
7177 
7178 /*
7179  * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as
7180  * part of active balancing operations within "domain".
7181  *
7182  * Returns a task if successful and NULL otherwise.
7183  */
7184 static struct task_struct *detach_one_task(struct lb_env *env)
7185 {
7186 	struct task_struct *p;
7187 
7188 	lockdep_assert_held(&env->src_rq->lock);
7189 
7190 	list_for_each_entry_reverse(p,
7191 			&env->src_rq->cfs_tasks, se.group_node) {
7192 		if (!can_migrate_task(p, env))
7193 			continue;
7194 
7195 		detach_task(p, env);
7196 
7197 		/*
7198 		 * Right now, this is only the second place where
7199 		 * lb_gained[env->idle] is updated (other is detach_tasks)
7200 		 * so we can safely collect stats here rather than
7201 		 * inside detach_tasks().
7202 		 */
7203 		schedstat_inc(env->sd->lb_gained[env->idle]);
7204 		return p;
7205 	}
7206 	return NULL;
7207 }
7208 
7209 static const unsigned int sched_nr_migrate_break = 32;
7210 
7211 /*
7212  * detach_tasks() -- tries to detach up to imbalance weighted load from
7213  * busiest_rq, as part of a balancing operation within domain "sd".
7214  *
7215  * Returns number of detached tasks if successful and 0 otherwise.
7216  */
7217 static int detach_tasks(struct lb_env *env)
7218 {
7219 	struct list_head *tasks = &env->src_rq->cfs_tasks;
7220 	struct task_struct *p;
7221 	unsigned long load;
7222 	int detached = 0;
7223 
7224 	lockdep_assert_held(&env->src_rq->lock);
7225 
7226 	if (env->imbalance <= 0)
7227 		return 0;
7228 
7229 	while (!list_empty(tasks)) {
7230 		/*
7231 		 * We don't want to steal all, otherwise we may be treated likewise,
7232 		 * which could at worst lead to a livelock crash.
7233 		 */
7234 		if (env->idle != CPU_NOT_IDLE && env->src_rq->nr_running <= 1)
7235 			break;
7236 
7237 		p = list_last_entry(tasks, struct task_struct, se.group_node);
7238 
7239 		env->loop++;
7240 		/* We've more or less seen every task there is, call it quits */
7241 		if (env->loop > env->loop_max)
7242 			break;
7243 
7244 		/* take a breather every nr_migrate tasks */
7245 		if (env->loop > env->loop_break) {
7246 			env->loop_break += sched_nr_migrate_break;
7247 			env->flags |= LBF_NEED_BREAK;
7248 			break;
7249 		}
7250 
7251 		if (!can_migrate_task(p, env))
7252 			goto next;
7253 
7254 		load = task_h_load(p);
7255 
7256 		if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed)
7257 			goto next;
7258 
7259 		if ((load / 2) > env->imbalance)
7260 			goto next;
7261 
7262 		detach_task(p, env);
7263 		list_add(&p->se.group_node, &env->tasks);
7264 
7265 		detached++;
7266 		env->imbalance -= load;
7267 
7268 #ifdef CONFIG_PREEMPT
7269 		/*
7270 		 * NEWIDLE balancing is a source of latency, so preemptible
7271 		 * kernels will stop after the first task is detached to minimize
7272 		 * the critical section.
7273 		 */
7274 		if (env->idle == CPU_NEWLY_IDLE)
7275 			break;
7276 #endif
7277 
7278 		/*
7279 		 * We only want to steal up to the prescribed amount of
7280 		 * weighted load.
7281 		 */
7282 		if (env->imbalance <= 0)
7283 			break;
7284 
7285 		continue;
7286 next:
7287 		list_move(&p->se.group_node, tasks);
7288 	}
7289 
7290 	/*
7291 	 * Right now, this is one of only two places we collect this stat
7292 	 * so we can safely collect detach_one_task() stats here rather
7293 	 * than inside detach_one_task().
7294 	 */
7295 	schedstat_add(env->sd->lb_gained[env->idle], detached);
7296 
7297 	return detached;
7298 }
7299 
7300 /*
7301  * attach_task() -- attach the task detached by detach_task() to its new rq.
7302  */
7303 static void attach_task(struct rq *rq, struct task_struct *p)
7304 {
7305 	lockdep_assert_held(&rq->lock);
7306 
7307 	BUG_ON(task_rq(p) != rq);
7308 	activate_task(rq, p, ENQUEUE_NOCLOCK);
7309 	p->on_rq = TASK_ON_RQ_QUEUED;
7310 	check_preempt_curr(rq, p, 0);
7311 }
7312 
7313 /*
7314  * attach_one_task() -- attaches the task returned from detach_one_task() to
7315  * its new rq.
7316  */
7317 static void attach_one_task(struct rq *rq, struct task_struct *p)
7318 {
7319 	struct rq_flags rf;
7320 
7321 	rq_lock(rq, &rf);
7322 	update_rq_clock(rq);
7323 	attach_task(rq, p);
7324 	rq_unlock(rq, &rf);
7325 }
7326 
7327 /*
7328  * attach_tasks() -- attaches all tasks detached by detach_tasks() to their
7329  * new rq.
7330  */
7331 static void attach_tasks(struct lb_env *env)
7332 {
7333 	struct list_head *tasks = &env->tasks;
7334 	struct task_struct *p;
7335 	struct rq_flags rf;
7336 
7337 	rq_lock(env->dst_rq, &rf);
7338 	update_rq_clock(env->dst_rq);
7339 
7340 	while (!list_empty(tasks)) {
7341 		p = list_first_entry(tasks, struct task_struct, se.group_node);
7342 		list_del_init(&p->se.group_node);
7343 
7344 		attach_task(env->dst_rq, p);
7345 	}
7346 
7347 	rq_unlock(env->dst_rq, &rf);
7348 }
7349 
7350 #ifdef CONFIG_FAIR_GROUP_SCHED
7351 
7352 static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq)
7353 {
7354 	if (cfs_rq->load.weight)
7355 		return false;
7356 
7357 	if (cfs_rq->avg.load_sum)
7358 		return false;
7359 
7360 	if (cfs_rq->avg.util_sum)
7361 		return false;
7362 
7363 	if (cfs_rq->avg.runnable_load_sum)
7364 		return false;
7365 
7366 	return true;
7367 }
7368 
7369 static void update_blocked_averages(int cpu)
7370 {
7371 	struct rq *rq = cpu_rq(cpu);
7372 	struct cfs_rq *cfs_rq, *pos;
7373 	struct rq_flags rf;
7374 
7375 	rq_lock_irqsave(rq, &rf);
7376 	update_rq_clock(rq);
7377 
7378 	/*
7379 	 * Iterates the task_group tree in a bottom up fashion, see
7380 	 * list_add_leaf_cfs_rq() for details.
7381 	 */
7382 	for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) {
7383 		struct sched_entity *se;
7384 
7385 		/* throttled entities do not contribute to load */
7386 		if (throttled_hierarchy(cfs_rq))
7387 			continue;
7388 
7389 		if (update_cfs_rq_load_avg(cfs_rq_clock_task(cfs_rq), cfs_rq))
7390 			update_tg_load_avg(cfs_rq, 0);
7391 
7392 		/* Propagate pending load changes to the parent, if any: */
7393 		se = cfs_rq->tg->se[cpu];
7394 		if (se && !skip_blocked_update(se))
7395 			update_load_avg(cfs_rq_of(se), se, 0);
7396 
7397 		/*
7398 		 * There can be a lot of idle CPU cgroups.  Don't let fully
7399 		 * decayed cfs_rqs linger on the list.
7400 		 */
7401 		if (cfs_rq_is_decayed(cfs_rq))
7402 			list_del_leaf_cfs_rq(cfs_rq);
7403 	}
7404 	rq_unlock_irqrestore(rq, &rf);
7405 }
7406 
7407 /*
7408  * Compute the hierarchical load factor for cfs_rq and all its ascendants.
7409  * This needs to be done in a top-down fashion because the load of a child
7410  * group is a fraction of its parents load.
7411  */
7412 static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
7413 {
7414 	struct rq *rq = rq_of(cfs_rq);
7415 	struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
7416 	unsigned long now = jiffies;
7417 	unsigned long load;
7418 
7419 	if (cfs_rq->last_h_load_update == now)
7420 		return;
7421 
7422 	cfs_rq->h_load_next = NULL;
7423 	for_each_sched_entity(se) {
7424 		cfs_rq = cfs_rq_of(se);
7425 		cfs_rq->h_load_next = se;
7426 		if (cfs_rq->last_h_load_update == now)
7427 			break;
7428 	}
7429 
7430 	if (!se) {
7431 		cfs_rq->h_load = cfs_rq_load_avg(cfs_rq);
7432 		cfs_rq->last_h_load_update = now;
7433 	}
7434 
7435 	while ((se = cfs_rq->h_load_next) != NULL) {
7436 		load = cfs_rq->h_load;
7437 		load = div64_ul(load * se->avg.load_avg,
7438 			cfs_rq_load_avg(cfs_rq) + 1);
7439 		cfs_rq = group_cfs_rq(se);
7440 		cfs_rq->h_load = load;
7441 		cfs_rq->last_h_load_update = now;
7442 	}
7443 }
7444 
7445 static unsigned long task_h_load(struct task_struct *p)
7446 {
7447 	struct cfs_rq *cfs_rq = task_cfs_rq(p);
7448 
7449 	update_cfs_rq_h_load(cfs_rq);
7450 	return div64_ul(p->se.avg.load_avg * cfs_rq->h_load,
7451 			cfs_rq_load_avg(cfs_rq) + 1);
7452 }
7453 #else
7454 static inline void update_blocked_averages(int cpu)
7455 {
7456 	struct rq *rq = cpu_rq(cpu);
7457 	struct cfs_rq *cfs_rq = &rq->cfs;
7458 	struct rq_flags rf;
7459 
7460 	rq_lock_irqsave(rq, &rf);
7461 	update_rq_clock(rq);
7462 	update_cfs_rq_load_avg(cfs_rq_clock_task(cfs_rq), cfs_rq);
7463 	rq_unlock_irqrestore(rq, &rf);
7464 }
7465 
7466 static unsigned long task_h_load(struct task_struct *p)
7467 {
7468 	return p->se.avg.load_avg;
7469 }
7470 #endif
7471 
7472 /********** Helpers for find_busiest_group ************************/
7473 
7474 enum group_type {
7475 	group_other = 0,
7476 	group_imbalanced,
7477 	group_overloaded,
7478 };
7479 
7480 /*
7481  * sg_lb_stats - stats of a sched_group required for load_balancing
7482  */
7483 struct sg_lb_stats {
7484 	unsigned long avg_load; /*Avg load across the CPUs of the group */
7485 	unsigned long group_load; /* Total load over the CPUs of the group */
7486 	unsigned long sum_weighted_load; /* Weighted load of group's tasks */
7487 	unsigned long load_per_task;
7488 	unsigned long group_capacity;
7489 	unsigned long group_util; /* Total utilization of the group */
7490 	unsigned int sum_nr_running; /* Nr tasks running in the group */
7491 	unsigned int idle_cpus;
7492 	unsigned int group_weight;
7493 	enum group_type group_type;
7494 	int group_no_capacity;
7495 #ifdef CONFIG_NUMA_BALANCING
7496 	unsigned int nr_numa_running;
7497 	unsigned int nr_preferred_running;
7498 #endif
7499 };
7500 
7501 /*
7502  * sd_lb_stats - Structure to store the statistics of a sched_domain
7503  *		 during load balancing.
7504  */
7505 struct sd_lb_stats {
7506 	struct sched_group *busiest;	/* Busiest group in this sd */
7507 	struct sched_group *local;	/* Local group in this sd */
7508 	unsigned long total_running;
7509 	unsigned long total_load;	/* Total load of all groups in sd */
7510 	unsigned long total_capacity;	/* Total capacity of all groups in sd */
7511 	unsigned long avg_load;	/* Average load across all groups in sd */
7512 
7513 	struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
7514 	struct sg_lb_stats local_stat;	/* Statistics of the local group */
7515 };
7516 
7517 static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
7518 {
7519 	/*
7520 	 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
7521 	 * local_stat because update_sg_lb_stats() does a full clear/assignment.
7522 	 * We must however clear busiest_stat::avg_load because
7523 	 * update_sd_pick_busiest() reads this before assignment.
7524 	 */
7525 	*sds = (struct sd_lb_stats){
7526 		.busiest = NULL,
7527 		.local = NULL,
7528 		.total_running = 0UL,
7529 		.total_load = 0UL,
7530 		.total_capacity = 0UL,
7531 		.busiest_stat = {
7532 			.avg_load = 0UL,
7533 			.sum_nr_running = 0,
7534 			.group_type = group_other,
7535 		},
7536 	};
7537 }
7538 
7539 /**
7540  * get_sd_load_idx - Obtain the load index for a given sched domain.
7541  * @sd: The sched_domain whose load_idx is to be obtained.
7542  * @idle: The idle status of the CPU for whose sd load_idx is obtained.
7543  *
7544  * Return: The load index.
7545  */
7546 static inline int get_sd_load_idx(struct sched_domain *sd,
7547 					enum cpu_idle_type idle)
7548 {
7549 	int load_idx;
7550 
7551 	switch (idle) {
7552 	case CPU_NOT_IDLE:
7553 		load_idx = sd->busy_idx;
7554 		break;
7555 
7556 	case CPU_NEWLY_IDLE:
7557 		load_idx = sd->newidle_idx;
7558 		break;
7559 	default:
7560 		load_idx = sd->idle_idx;
7561 		break;
7562 	}
7563 
7564 	return load_idx;
7565 }
7566 
7567 static unsigned long scale_rt_capacity(int cpu)
7568 {
7569 	struct rq *rq = cpu_rq(cpu);
7570 	u64 total, used, age_stamp, avg;
7571 	s64 delta;
7572 
7573 	/*
7574 	 * Since we're reading these variables without serialization make sure
7575 	 * we read them once before doing sanity checks on them.
7576 	 */
7577 	age_stamp = READ_ONCE(rq->age_stamp);
7578 	avg = READ_ONCE(rq->rt_avg);
7579 	delta = __rq_clock_broken(rq) - age_stamp;
7580 
7581 	if (unlikely(delta < 0))
7582 		delta = 0;
7583 
7584 	total = sched_avg_period() + delta;
7585 
7586 	used = div_u64(avg, total);
7587 
7588 	if (likely(used < SCHED_CAPACITY_SCALE))
7589 		return SCHED_CAPACITY_SCALE - used;
7590 
7591 	return 1;
7592 }
7593 
7594 static void update_cpu_capacity(struct sched_domain *sd, int cpu)
7595 {
7596 	unsigned long capacity = arch_scale_cpu_capacity(sd, cpu);
7597 	struct sched_group *sdg = sd->groups;
7598 
7599 	cpu_rq(cpu)->cpu_capacity_orig = capacity;
7600 
7601 	capacity *= scale_rt_capacity(cpu);
7602 	capacity >>= SCHED_CAPACITY_SHIFT;
7603 
7604 	if (!capacity)
7605 		capacity = 1;
7606 
7607 	cpu_rq(cpu)->cpu_capacity = capacity;
7608 	sdg->sgc->capacity = capacity;
7609 	sdg->sgc->min_capacity = capacity;
7610 }
7611 
7612 void update_group_capacity(struct sched_domain *sd, int cpu)
7613 {
7614 	struct sched_domain *child = sd->child;
7615 	struct sched_group *group, *sdg = sd->groups;
7616 	unsigned long capacity, min_capacity;
7617 	unsigned long interval;
7618 
7619 	interval = msecs_to_jiffies(sd->balance_interval);
7620 	interval = clamp(interval, 1UL, max_load_balance_interval);
7621 	sdg->sgc->next_update = jiffies + interval;
7622 
7623 	if (!child) {
7624 		update_cpu_capacity(sd, cpu);
7625 		return;
7626 	}
7627 
7628 	capacity = 0;
7629 	min_capacity = ULONG_MAX;
7630 
7631 	if (child->flags & SD_OVERLAP) {
7632 		/*
7633 		 * SD_OVERLAP domains cannot assume that child groups
7634 		 * span the current group.
7635 		 */
7636 
7637 		for_each_cpu(cpu, sched_group_span(sdg)) {
7638 			struct sched_group_capacity *sgc;
7639 			struct rq *rq = cpu_rq(cpu);
7640 
7641 			/*
7642 			 * build_sched_domains() -> init_sched_groups_capacity()
7643 			 * gets here before we've attached the domains to the
7644 			 * runqueues.
7645 			 *
7646 			 * Use capacity_of(), which is set irrespective of domains
7647 			 * in update_cpu_capacity().
7648 			 *
7649 			 * This avoids capacity from being 0 and
7650 			 * causing divide-by-zero issues on boot.
7651 			 */
7652 			if (unlikely(!rq->sd)) {
7653 				capacity += capacity_of(cpu);
7654 			} else {
7655 				sgc = rq->sd->groups->sgc;
7656 				capacity += sgc->capacity;
7657 			}
7658 
7659 			min_capacity = min(capacity, min_capacity);
7660 		}
7661 	} else  {
7662 		/*
7663 		 * !SD_OVERLAP domains can assume that child groups
7664 		 * span the current group.
7665 		 */
7666 
7667 		group = child->groups;
7668 		do {
7669 			struct sched_group_capacity *sgc = group->sgc;
7670 
7671 			capacity += sgc->capacity;
7672 			min_capacity = min(sgc->min_capacity, min_capacity);
7673 			group = group->next;
7674 		} while (group != child->groups);
7675 	}
7676 
7677 	sdg->sgc->capacity = capacity;
7678 	sdg->sgc->min_capacity = min_capacity;
7679 }
7680 
7681 /*
7682  * Check whether the capacity of the rq has been noticeably reduced by side
7683  * activity. The imbalance_pct is used for the threshold.
7684  * Return true is the capacity is reduced
7685  */
7686 static inline int
7687 check_cpu_capacity(struct rq *rq, struct sched_domain *sd)
7688 {
7689 	return ((rq->cpu_capacity * sd->imbalance_pct) <
7690 				(rq->cpu_capacity_orig * 100));
7691 }
7692 
7693 /*
7694  * Group imbalance indicates (and tries to solve) the problem where balancing
7695  * groups is inadequate due to ->cpus_allowed constraints.
7696  *
7697  * Imagine a situation of two groups of 4 cpus each and 4 tasks each with a
7698  * cpumask covering 1 cpu of the first group and 3 cpus of the second group.
7699  * Something like:
7700  *
7701  *	{ 0 1 2 3 } { 4 5 6 7 }
7702  *	        *     * * *
7703  *
7704  * If we were to balance group-wise we'd place two tasks in the first group and
7705  * two tasks in the second group. Clearly this is undesired as it will overload
7706  * cpu 3 and leave one of the cpus in the second group unused.
7707  *
7708  * The current solution to this issue is detecting the skew in the first group
7709  * by noticing the lower domain failed to reach balance and had difficulty
7710  * moving tasks due to affinity constraints.
7711  *
7712  * When this is so detected; this group becomes a candidate for busiest; see
7713  * update_sd_pick_busiest(). And calculate_imbalance() and
7714  * find_busiest_group() avoid some of the usual balance conditions to allow it
7715  * to create an effective group imbalance.
7716  *
7717  * This is a somewhat tricky proposition since the next run might not find the
7718  * group imbalance and decide the groups need to be balanced again. A most
7719  * subtle and fragile situation.
7720  */
7721 
7722 static inline int sg_imbalanced(struct sched_group *group)
7723 {
7724 	return group->sgc->imbalance;
7725 }
7726 
7727 /*
7728  * group_has_capacity returns true if the group has spare capacity that could
7729  * be used by some tasks.
7730  * We consider that a group has spare capacity if the  * number of task is
7731  * smaller than the number of CPUs or if the utilization is lower than the
7732  * available capacity for CFS tasks.
7733  * For the latter, we use a threshold to stabilize the state, to take into
7734  * account the variance of the tasks' load and to return true if the available
7735  * capacity in meaningful for the load balancer.
7736  * As an example, an available capacity of 1% can appear but it doesn't make
7737  * any benefit for the load balance.
7738  */
7739 static inline bool
7740 group_has_capacity(struct lb_env *env, struct sg_lb_stats *sgs)
7741 {
7742 	if (sgs->sum_nr_running < sgs->group_weight)
7743 		return true;
7744 
7745 	if ((sgs->group_capacity * 100) >
7746 			(sgs->group_util * env->sd->imbalance_pct))
7747 		return true;
7748 
7749 	return false;
7750 }
7751 
7752 /*
7753  *  group_is_overloaded returns true if the group has more tasks than it can
7754  *  handle.
7755  *  group_is_overloaded is not equals to !group_has_capacity because a group
7756  *  with the exact right number of tasks, has no more spare capacity but is not
7757  *  overloaded so both group_has_capacity and group_is_overloaded return
7758  *  false.
7759  */
7760 static inline bool
7761 group_is_overloaded(struct lb_env *env, struct sg_lb_stats *sgs)
7762 {
7763 	if (sgs->sum_nr_running <= sgs->group_weight)
7764 		return false;
7765 
7766 	if ((sgs->group_capacity * 100) <
7767 			(sgs->group_util * env->sd->imbalance_pct))
7768 		return true;
7769 
7770 	return false;
7771 }
7772 
7773 /*
7774  * group_smaller_cpu_capacity: Returns true if sched_group sg has smaller
7775  * per-CPU capacity than sched_group ref.
7776  */
7777 static inline bool
7778 group_smaller_cpu_capacity(struct sched_group *sg, struct sched_group *ref)
7779 {
7780 	return sg->sgc->min_capacity * capacity_margin <
7781 						ref->sgc->min_capacity * 1024;
7782 }
7783 
7784 static inline enum
7785 group_type group_classify(struct sched_group *group,
7786 			  struct sg_lb_stats *sgs)
7787 {
7788 	if (sgs->group_no_capacity)
7789 		return group_overloaded;
7790 
7791 	if (sg_imbalanced(group))
7792 		return group_imbalanced;
7793 
7794 	return group_other;
7795 }
7796 
7797 /**
7798  * update_sg_lb_stats - Update sched_group's statistics for load balancing.
7799  * @env: The load balancing environment.
7800  * @group: sched_group whose statistics are to be updated.
7801  * @load_idx: Load index of sched_domain of this_cpu for load calc.
7802  * @local_group: Does group contain this_cpu.
7803  * @sgs: variable to hold the statistics for this group.
7804  * @overload: Indicate more than one runnable task for any CPU.
7805  */
7806 static inline void update_sg_lb_stats(struct lb_env *env,
7807 			struct sched_group *group, int load_idx,
7808 			int local_group, struct sg_lb_stats *sgs,
7809 			bool *overload)
7810 {
7811 	unsigned long load;
7812 	int i, nr_running;
7813 
7814 	memset(sgs, 0, sizeof(*sgs));
7815 
7816 	for_each_cpu_and(i, sched_group_span(group), env->cpus) {
7817 		struct rq *rq = cpu_rq(i);
7818 
7819 		/* Bias balancing toward cpus of our domain */
7820 		if (local_group)
7821 			load = target_load(i, load_idx);
7822 		else
7823 			load = source_load(i, load_idx);
7824 
7825 		sgs->group_load += load;
7826 		sgs->group_util += cpu_util(i);
7827 		sgs->sum_nr_running += rq->cfs.h_nr_running;
7828 
7829 		nr_running = rq->nr_running;
7830 		if (nr_running > 1)
7831 			*overload = true;
7832 
7833 #ifdef CONFIG_NUMA_BALANCING
7834 		sgs->nr_numa_running += rq->nr_numa_running;
7835 		sgs->nr_preferred_running += rq->nr_preferred_running;
7836 #endif
7837 		sgs->sum_weighted_load += weighted_cpuload(rq);
7838 		/*
7839 		 * No need to call idle_cpu() if nr_running is not 0
7840 		 */
7841 		if (!nr_running && idle_cpu(i))
7842 			sgs->idle_cpus++;
7843 	}
7844 
7845 	/* Adjust by relative CPU capacity of the group */
7846 	sgs->group_capacity = group->sgc->capacity;
7847 	sgs->avg_load = (sgs->group_load*SCHED_CAPACITY_SCALE) / sgs->group_capacity;
7848 
7849 	if (sgs->sum_nr_running)
7850 		sgs->load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
7851 
7852 	sgs->group_weight = group->group_weight;
7853 
7854 	sgs->group_no_capacity = group_is_overloaded(env, sgs);
7855 	sgs->group_type = group_classify(group, sgs);
7856 }
7857 
7858 /**
7859  * update_sd_pick_busiest - return 1 on busiest group
7860  * @env: The load balancing environment.
7861  * @sds: sched_domain statistics
7862  * @sg: sched_group candidate to be checked for being the busiest
7863  * @sgs: sched_group statistics
7864  *
7865  * Determine if @sg is a busier group than the previously selected
7866  * busiest group.
7867  *
7868  * Return: %true if @sg is a busier group than the previously selected
7869  * busiest group. %false otherwise.
7870  */
7871 static bool update_sd_pick_busiest(struct lb_env *env,
7872 				   struct sd_lb_stats *sds,
7873 				   struct sched_group *sg,
7874 				   struct sg_lb_stats *sgs)
7875 {
7876 	struct sg_lb_stats *busiest = &sds->busiest_stat;
7877 
7878 	if (sgs->group_type > busiest->group_type)
7879 		return true;
7880 
7881 	if (sgs->group_type < busiest->group_type)
7882 		return false;
7883 
7884 	if (sgs->avg_load <= busiest->avg_load)
7885 		return false;
7886 
7887 	if (!(env->sd->flags & SD_ASYM_CPUCAPACITY))
7888 		goto asym_packing;
7889 
7890 	/*
7891 	 * Candidate sg has no more than one task per CPU and
7892 	 * has higher per-CPU capacity. Migrating tasks to less
7893 	 * capable CPUs may harm throughput. Maximize throughput,
7894 	 * power/energy consequences are not considered.
7895 	 */
7896 	if (sgs->sum_nr_running <= sgs->group_weight &&
7897 	    group_smaller_cpu_capacity(sds->local, sg))
7898 		return false;
7899 
7900 asym_packing:
7901 	/* This is the busiest node in its class. */
7902 	if (!(env->sd->flags & SD_ASYM_PACKING))
7903 		return true;
7904 
7905 	/* No ASYM_PACKING if target cpu is already busy */
7906 	if (env->idle == CPU_NOT_IDLE)
7907 		return true;
7908 	/*
7909 	 * ASYM_PACKING needs to move all the work to the highest
7910 	 * prority CPUs in the group, therefore mark all groups
7911 	 * of lower priority than ourself as busy.
7912 	 */
7913 	if (sgs->sum_nr_running &&
7914 	    sched_asym_prefer(env->dst_cpu, sg->asym_prefer_cpu)) {
7915 		if (!sds->busiest)
7916 			return true;
7917 
7918 		/* Prefer to move from lowest priority cpu's work */
7919 		if (sched_asym_prefer(sds->busiest->asym_prefer_cpu,
7920 				      sg->asym_prefer_cpu))
7921 			return true;
7922 	}
7923 
7924 	return false;
7925 }
7926 
7927 #ifdef CONFIG_NUMA_BALANCING
7928 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
7929 {
7930 	if (sgs->sum_nr_running > sgs->nr_numa_running)
7931 		return regular;
7932 	if (sgs->sum_nr_running > sgs->nr_preferred_running)
7933 		return remote;
7934 	return all;
7935 }
7936 
7937 static inline enum fbq_type fbq_classify_rq(struct rq *rq)
7938 {
7939 	if (rq->nr_running > rq->nr_numa_running)
7940 		return regular;
7941 	if (rq->nr_running > rq->nr_preferred_running)
7942 		return remote;
7943 	return all;
7944 }
7945 #else
7946 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
7947 {
7948 	return all;
7949 }
7950 
7951 static inline enum fbq_type fbq_classify_rq(struct rq *rq)
7952 {
7953 	return regular;
7954 }
7955 #endif /* CONFIG_NUMA_BALANCING */
7956 
7957 /**
7958  * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
7959  * @env: The load balancing environment.
7960  * @sds: variable to hold the statistics for this sched_domain.
7961  */
7962 static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
7963 {
7964 	struct sched_domain *child = env->sd->child;
7965 	struct sched_group *sg = env->sd->groups;
7966 	struct sg_lb_stats *local = &sds->local_stat;
7967 	struct sg_lb_stats tmp_sgs;
7968 	int load_idx, prefer_sibling = 0;
7969 	bool overload = false;
7970 
7971 	if (child && child->flags & SD_PREFER_SIBLING)
7972 		prefer_sibling = 1;
7973 
7974 	load_idx = get_sd_load_idx(env->sd, env->idle);
7975 
7976 	do {
7977 		struct sg_lb_stats *sgs = &tmp_sgs;
7978 		int local_group;
7979 
7980 		local_group = cpumask_test_cpu(env->dst_cpu, sched_group_span(sg));
7981 		if (local_group) {
7982 			sds->local = sg;
7983 			sgs = local;
7984 
7985 			if (env->idle != CPU_NEWLY_IDLE ||
7986 			    time_after_eq(jiffies, sg->sgc->next_update))
7987 				update_group_capacity(env->sd, env->dst_cpu);
7988 		}
7989 
7990 		update_sg_lb_stats(env, sg, load_idx, local_group, sgs,
7991 						&overload);
7992 
7993 		if (local_group)
7994 			goto next_group;
7995 
7996 		/*
7997 		 * In case the child domain prefers tasks go to siblings
7998 		 * first, lower the sg capacity so that we'll try
7999 		 * and move all the excess tasks away. We lower the capacity
8000 		 * of a group only if the local group has the capacity to fit
8001 		 * these excess tasks. The extra check prevents the case where
8002 		 * you always pull from the heaviest group when it is already
8003 		 * under-utilized (possible with a large weight task outweighs
8004 		 * the tasks on the system).
8005 		 */
8006 		if (prefer_sibling && sds->local &&
8007 		    group_has_capacity(env, local) &&
8008 		    (sgs->sum_nr_running > local->sum_nr_running + 1)) {
8009 			sgs->group_no_capacity = 1;
8010 			sgs->group_type = group_classify(sg, sgs);
8011 		}
8012 
8013 		if (update_sd_pick_busiest(env, sds, sg, sgs)) {
8014 			sds->busiest = sg;
8015 			sds->busiest_stat = *sgs;
8016 		}
8017 
8018 next_group:
8019 		/* Now, start updating sd_lb_stats */
8020 		sds->total_running += sgs->sum_nr_running;
8021 		sds->total_load += sgs->group_load;
8022 		sds->total_capacity += sgs->group_capacity;
8023 
8024 		sg = sg->next;
8025 	} while (sg != env->sd->groups);
8026 
8027 	if (env->sd->flags & SD_NUMA)
8028 		env->fbq_type = fbq_classify_group(&sds->busiest_stat);
8029 
8030 	if (!env->sd->parent) {
8031 		/* update overload indicator if we are at root domain */
8032 		if (env->dst_rq->rd->overload != overload)
8033 			env->dst_rq->rd->overload = overload;
8034 	}
8035 }
8036 
8037 /**
8038  * check_asym_packing - Check to see if the group is packed into the
8039  *			sched domain.
8040  *
8041  * This is primarily intended to used at the sibling level.  Some
8042  * cores like POWER7 prefer to use lower numbered SMT threads.  In the
8043  * case of POWER7, it can move to lower SMT modes only when higher
8044  * threads are idle.  When in lower SMT modes, the threads will
8045  * perform better since they share less core resources.  Hence when we
8046  * have idle threads, we want them to be the higher ones.
8047  *
8048  * This packing function is run on idle threads.  It checks to see if
8049  * the busiest CPU in this domain (core in the P7 case) has a higher
8050  * CPU number than the packing function is being run on.  Here we are
8051  * assuming lower CPU number will be equivalent to lower a SMT thread
8052  * number.
8053  *
8054  * Return: 1 when packing is required and a task should be moved to
8055  * this CPU.  The amount of the imbalance is returned in env->imbalance.
8056  *
8057  * @env: The load balancing environment.
8058  * @sds: Statistics of the sched_domain which is to be packed
8059  */
8060 static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds)
8061 {
8062 	int busiest_cpu;
8063 
8064 	if (!(env->sd->flags & SD_ASYM_PACKING))
8065 		return 0;
8066 
8067 	if (env->idle == CPU_NOT_IDLE)
8068 		return 0;
8069 
8070 	if (!sds->busiest)
8071 		return 0;
8072 
8073 	busiest_cpu = sds->busiest->asym_prefer_cpu;
8074 	if (sched_asym_prefer(busiest_cpu, env->dst_cpu))
8075 		return 0;
8076 
8077 	env->imbalance = DIV_ROUND_CLOSEST(
8078 		sds->busiest_stat.avg_load * sds->busiest_stat.group_capacity,
8079 		SCHED_CAPACITY_SCALE);
8080 
8081 	return 1;
8082 }
8083 
8084 /**
8085  * fix_small_imbalance - Calculate the minor imbalance that exists
8086  *			amongst the groups of a sched_domain, during
8087  *			load balancing.
8088  * @env: The load balancing environment.
8089  * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
8090  */
8091 static inline
8092 void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
8093 {
8094 	unsigned long tmp, capa_now = 0, capa_move = 0;
8095 	unsigned int imbn = 2;
8096 	unsigned long scaled_busy_load_per_task;
8097 	struct sg_lb_stats *local, *busiest;
8098 
8099 	local = &sds->local_stat;
8100 	busiest = &sds->busiest_stat;
8101 
8102 	if (!local->sum_nr_running)
8103 		local->load_per_task = cpu_avg_load_per_task(env->dst_cpu);
8104 	else if (busiest->load_per_task > local->load_per_task)
8105 		imbn = 1;
8106 
8107 	scaled_busy_load_per_task =
8108 		(busiest->load_per_task * SCHED_CAPACITY_SCALE) /
8109 		busiest->group_capacity;
8110 
8111 	if (busiest->avg_load + scaled_busy_load_per_task >=
8112 	    local->avg_load + (scaled_busy_load_per_task * imbn)) {
8113 		env->imbalance = busiest->load_per_task;
8114 		return;
8115 	}
8116 
8117 	/*
8118 	 * OK, we don't have enough imbalance to justify moving tasks,
8119 	 * however we may be able to increase total CPU capacity used by
8120 	 * moving them.
8121 	 */
8122 
8123 	capa_now += busiest->group_capacity *
8124 			min(busiest->load_per_task, busiest->avg_load);
8125 	capa_now += local->group_capacity *
8126 			min(local->load_per_task, local->avg_load);
8127 	capa_now /= SCHED_CAPACITY_SCALE;
8128 
8129 	/* Amount of load we'd subtract */
8130 	if (busiest->avg_load > scaled_busy_load_per_task) {
8131 		capa_move += busiest->group_capacity *
8132 			    min(busiest->load_per_task,
8133 				busiest->avg_load - scaled_busy_load_per_task);
8134 	}
8135 
8136 	/* Amount of load we'd add */
8137 	if (busiest->avg_load * busiest->group_capacity <
8138 	    busiest->load_per_task * SCHED_CAPACITY_SCALE) {
8139 		tmp = (busiest->avg_load * busiest->group_capacity) /
8140 		      local->group_capacity;
8141 	} else {
8142 		tmp = (busiest->load_per_task * SCHED_CAPACITY_SCALE) /
8143 		      local->group_capacity;
8144 	}
8145 	capa_move += local->group_capacity *
8146 		    min(local->load_per_task, local->avg_load + tmp);
8147 	capa_move /= SCHED_CAPACITY_SCALE;
8148 
8149 	/* Move if we gain throughput */
8150 	if (capa_move > capa_now)
8151 		env->imbalance = busiest->load_per_task;
8152 }
8153 
8154 /**
8155  * calculate_imbalance - Calculate the amount of imbalance present within the
8156  *			 groups of a given sched_domain during load balance.
8157  * @env: load balance environment
8158  * @sds: statistics of the sched_domain whose imbalance is to be calculated.
8159  */
8160 static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
8161 {
8162 	unsigned long max_pull, load_above_capacity = ~0UL;
8163 	struct sg_lb_stats *local, *busiest;
8164 
8165 	local = &sds->local_stat;
8166 	busiest = &sds->busiest_stat;
8167 
8168 	if (busiest->group_type == group_imbalanced) {
8169 		/*
8170 		 * In the group_imb case we cannot rely on group-wide averages
8171 		 * to ensure cpu-load equilibrium, look at wider averages. XXX
8172 		 */
8173 		busiest->load_per_task =
8174 			min(busiest->load_per_task, sds->avg_load);
8175 	}
8176 
8177 	/*
8178 	 * Avg load of busiest sg can be less and avg load of local sg can
8179 	 * be greater than avg load across all sgs of sd because avg load
8180 	 * factors in sg capacity and sgs with smaller group_type are
8181 	 * skipped when updating the busiest sg:
8182 	 */
8183 	if (busiest->avg_load <= sds->avg_load ||
8184 	    local->avg_load >= sds->avg_load) {
8185 		env->imbalance = 0;
8186 		return fix_small_imbalance(env, sds);
8187 	}
8188 
8189 	/*
8190 	 * If there aren't any idle cpus, avoid creating some.
8191 	 */
8192 	if (busiest->group_type == group_overloaded &&
8193 	    local->group_type   == group_overloaded) {
8194 		load_above_capacity = busiest->sum_nr_running * SCHED_CAPACITY_SCALE;
8195 		if (load_above_capacity > busiest->group_capacity) {
8196 			load_above_capacity -= busiest->group_capacity;
8197 			load_above_capacity *= scale_load_down(NICE_0_LOAD);
8198 			load_above_capacity /= busiest->group_capacity;
8199 		} else
8200 			load_above_capacity = ~0UL;
8201 	}
8202 
8203 	/*
8204 	 * We're trying to get all the cpus to the average_load, so we don't
8205 	 * want to push ourselves above the average load, nor do we wish to
8206 	 * reduce the max loaded cpu below the average load. At the same time,
8207 	 * we also don't want to reduce the group load below the group
8208 	 * capacity. Thus we look for the minimum possible imbalance.
8209 	 */
8210 	max_pull = min(busiest->avg_load - sds->avg_load, load_above_capacity);
8211 
8212 	/* How much load to actually move to equalise the imbalance */
8213 	env->imbalance = min(
8214 		max_pull * busiest->group_capacity,
8215 		(sds->avg_load - local->avg_load) * local->group_capacity
8216 	) / SCHED_CAPACITY_SCALE;
8217 
8218 	/*
8219 	 * if *imbalance is less than the average load per runnable task
8220 	 * there is no guarantee that any tasks will be moved so we'll have
8221 	 * a think about bumping its value to force at least one task to be
8222 	 * moved
8223 	 */
8224 	if (env->imbalance < busiest->load_per_task)
8225 		return fix_small_imbalance(env, sds);
8226 }
8227 
8228 /******* find_busiest_group() helpers end here *********************/
8229 
8230 /**
8231  * find_busiest_group - Returns the busiest group within the sched_domain
8232  * if there is an imbalance.
8233  *
8234  * Also calculates the amount of weighted load which should be moved
8235  * to restore balance.
8236  *
8237  * @env: The load balancing environment.
8238  *
8239  * Return:	- The busiest group if imbalance exists.
8240  */
8241 static struct sched_group *find_busiest_group(struct lb_env *env)
8242 {
8243 	struct sg_lb_stats *local, *busiest;
8244 	struct sd_lb_stats sds;
8245 
8246 	init_sd_lb_stats(&sds);
8247 
8248 	/*
8249 	 * Compute the various statistics relavent for load balancing at
8250 	 * this level.
8251 	 */
8252 	update_sd_lb_stats(env, &sds);
8253 	local = &sds.local_stat;
8254 	busiest = &sds.busiest_stat;
8255 
8256 	/* ASYM feature bypasses nice load balance check */
8257 	if (check_asym_packing(env, &sds))
8258 		return sds.busiest;
8259 
8260 	/* There is no busy sibling group to pull tasks from */
8261 	if (!sds.busiest || busiest->sum_nr_running == 0)
8262 		goto out_balanced;
8263 
8264 	/* XXX broken for overlapping NUMA groups */
8265 	sds.avg_load = (SCHED_CAPACITY_SCALE * sds.total_load)
8266 						/ sds.total_capacity;
8267 
8268 	/*
8269 	 * If the busiest group is imbalanced the below checks don't
8270 	 * work because they assume all things are equal, which typically
8271 	 * isn't true due to cpus_allowed constraints and the like.
8272 	 */
8273 	if (busiest->group_type == group_imbalanced)
8274 		goto force_balance;
8275 
8276 	/*
8277 	 * When dst_cpu is idle, prevent SMP nice and/or asymmetric group
8278 	 * capacities from resulting in underutilization due to avg_load.
8279 	 */
8280 	if (env->idle != CPU_NOT_IDLE && group_has_capacity(env, local) &&
8281 	    busiest->group_no_capacity)
8282 		goto force_balance;
8283 
8284 	/*
8285 	 * If the local group is busier than the selected busiest group
8286 	 * don't try and pull any tasks.
8287 	 */
8288 	if (local->avg_load >= busiest->avg_load)
8289 		goto out_balanced;
8290 
8291 	/*
8292 	 * Don't pull any tasks if this group is already above the domain
8293 	 * average load.
8294 	 */
8295 	if (local->avg_load >= sds.avg_load)
8296 		goto out_balanced;
8297 
8298 	if (env->idle == CPU_IDLE) {
8299 		/*
8300 		 * This cpu is idle. If the busiest group is not overloaded
8301 		 * and there is no imbalance between this and busiest group
8302 		 * wrt idle cpus, it is balanced. The imbalance becomes
8303 		 * significant if the diff is greater than 1 otherwise we
8304 		 * might end up to just move the imbalance on another group
8305 		 */
8306 		if ((busiest->group_type != group_overloaded) &&
8307 				(local->idle_cpus <= (busiest->idle_cpus + 1)))
8308 			goto out_balanced;
8309 	} else {
8310 		/*
8311 		 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
8312 		 * imbalance_pct to be conservative.
8313 		 */
8314 		if (100 * busiest->avg_load <=
8315 				env->sd->imbalance_pct * local->avg_load)
8316 			goto out_balanced;
8317 	}
8318 
8319 force_balance:
8320 	/* Looks like there is an imbalance. Compute it */
8321 	calculate_imbalance(env, &sds);
8322 	return sds.busiest;
8323 
8324 out_balanced:
8325 	env->imbalance = 0;
8326 	return NULL;
8327 }
8328 
8329 /*
8330  * find_busiest_queue - find the busiest runqueue among the cpus in group.
8331  */
8332 static struct rq *find_busiest_queue(struct lb_env *env,
8333 				     struct sched_group *group)
8334 {
8335 	struct rq *busiest = NULL, *rq;
8336 	unsigned long busiest_load = 0, busiest_capacity = 1;
8337 	int i;
8338 
8339 	for_each_cpu_and(i, sched_group_span(group), env->cpus) {
8340 		unsigned long capacity, wl;
8341 		enum fbq_type rt;
8342 
8343 		rq = cpu_rq(i);
8344 		rt = fbq_classify_rq(rq);
8345 
8346 		/*
8347 		 * We classify groups/runqueues into three groups:
8348 		 *  - regular: there are !numa tasks
8349 		 *  - remote:  there are numa tasks that run on the 'wrong' node
8350 		 *  - all:     there is no distinction
8351 		 *
8352 		 * In order to avoid migrating ideally placed numa tasks,
8353 		 * ignore those when there's better options.
8354 		 *
8355 		 * If we ignore the actual busiest queue to migrate another
8356 		 * task, the next balance pass can still reduce the busiest
8357 		 * queue by moving tasks around inside the node.
8358 		 *
8359 		 * If we cannot move enough load due to this classification
8360 		 * the next pass will adjust the group classification and
8361 		 * allow migration of more tasks.
8362 		 *
8363 		 * Both cases only affect the total convergence complexity.
8364 		 */
8365 		if (rt > env->fbq_type)
8366 			continue;
8367 
8368 		capacity = capacity_of(i);
8369 
8370 		wl = weighted_cpuload(rq);
8371 
8372 		/*
8373 		 * When comparing with imbalance, use weighted_cpuload()
8374 		 * which is not scaled with the cpu capacity.
8375 		 */
8376 
8377 		if (rq->nr_running == 1 && wl > env->imbalance &&
8378 		    !check_cpu_capacity(rq, env->sd))
8379 			continue;
8380 
8381 		/*
8382 		 * For the load comparisons with the other cpu's, consider
8383 		 * the weighted_cpuload() scaled with the cpu capacity, so
8384 		 * that the load can be moved away from the cpu that is
8385 		 * potentially running at a lower capacity.
8386 		 *
8387 		 * Thus we're looking for max(wl_i / capacity_i), crosswise
8388 		 * multiplication to rid ourselves of the division works out
8389 		 * to: wl_i * capacity_j > wl_j * capacity_i;  where j is
8390 		 * our previous maximum.
8391 		 */
8392 		if (wl * busiest_capacity > busiest_load * capacity) {
8393 			busiest_load = wl;
8394 			busiest_capacity = capacity;
8395 			busiest = rq;
8396 		}
8397 	}
8398 
8399 	return busiest;
8400 }
8401 
8402 /*
8403  * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
8404  * so long as it is large enough.
8405  */
8406 #define MAX_PINNED_INTERVAL	512
8407 
8408 static int need_active_balance(struct lb_env *env)
8409 {
8410 	struct sched_domain *sd = env->sd;
8411 
8412 	if (env->idle == CPU_NEWLY_IDLE) {
8413 
8414 		/*
8415 		 * ASYM_PACKING needs to force migrate tasks from busy but
8416 		 * lower priority CPUs in order to pack all tasks in the
8417 		 * highest priority CPUs.
8418 		 */
8419 		if ((sd->flags & SD_ASYM_PACKING) &&
8420 		    sched_asym_prefer(env->dst_cpu, env->src_cpu))
8421 			return 1;
8422 	}
8423 
8424 	/*
8425 	 * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task.
8426 	 * It's worth migrating the task if the src_cpu's capacity is reduced
8427 	 * because of other sched_class or IRQs if more capacity stays
8428 	 * available on dst_cpu.
8429 	 */
8430 	if ((env->idle != CPU_NOT_IDLE) &&
8431 	    (env->src_rq->cfs.h_nr_running == 1)) {
8432 		if ((check_cpu_capacity(env->src_rq, sd)) &&
8433 		    (capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100))
8434 			return 1;
8435 	}
8436 
8437 	return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
8438 }
8439 
8440 static int active_load_balance_cpu_stop(void *data);
8441 
8442 static int should_we_balance(struct lb_env *env)
8443 {
8444 	struct sched_group *sg = env->sd->groups;
8445 	int cpu, balance_cpu = -1;
8446 
8447 	/*
8448 	 * Ensure the balancing environment is consistent; can happen
8449 	 * when the softirq triggers 'during' hotplug.
8450 	 */
8451 	if (!cpumask_test_cpu(env->dst_cpu, env->cpus))
8452 		return 0;
8453 
8454 	/*
8455 	 * In the newly idle case, we will allow all the cpu's
8456 	 * to do the newly idle load balance.
8457 	 */
8458 	if (env->idle == CPU_NEWLY_IDLE)
8459 		return 1;
8460 
8461 	/* Try to find first idle cpu */
8462 	for_each_cpu_and(cpu, group_balance_mask(sg), env->cpus) {
8463 		if (!idle_cpu(cpu))
8464 			continue;
8465 
8466 		balance_cpu = cpu;
8467 		break;
8468 	}
8469 
8470 	if (balance_cpu == -1)
8471 		balance_cpu = group_balance_cpu(sg);
8472 
8473 	/*
8474 	 * First idle cpu or the first cpu(busiest) in this sched group
8475 	 * is eligible for doing load balancing at this and above domains.
8476 	 */
8477 	return balance_cpu == env->dst_cpu;
8478 }
8479 
8480 /*
8481  * Check this_cpu to ensure it is balanced within domain. Attempt to move
8482  * tasks if there is an imbalance.
8483  */
8484 static int load_balance(int this_cpu, struct rq *this_rq,
8485 			struct sched_domain *sd, enum cpu_idle_type idle,
8486 			int *continue_balancing)
8487 {
8488 	int ld_moved, cur_ld_moved, active_balance = 0;
8489 	struct sched_domain *sd_parent = sd->parent;
8490 	struct sched_group *group;
8491 	struct rq *busiest;
8492 	struct rq_flags rf;
8493 	struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask);
8494 
8495 	struct lb_env env = {
8496 		.sd		= sd,
8497 		.dst_cpu	= this_cpu,
8498 		.dst_rq		= this_rq,
8499 		.dst_grpmask    = sched_group_span(sd->groups),
8500 		.idle		= idle,
8501 		.loop_break	= sched_nr_migrate_break,
8502 		.cpus		= cpus,
8503 		.fbq_type	= all,
8504 		.tasks		= LIST_HEAD_INIT(env.tasks),
8505 	};
8506 
8507 	cpumask_and(cpus, sched_domain_span(sd), cpu_active_mask);
8508 
8509 	schedstat_inc(sd->lb_count[idle]);
8510 
8511 redo:
8512 	if (!should_we_balance(&env)) {
8513 		*continue_balancing = 0;
8514 		goto out_balanced;
8515 	}
8516 
8517 	group = find_busiest_group(&env);
8518 	if (!group) {
8519 		schedstat_inc(sd->lb_nobusyg[idle]);
8520 		goto out_balanced;
8521 	}
8522 
8523 	busiest = find_busiest_queue(&env, group);
8524 	if (!busiest) {
8525 		schedstat_inc(sd->lb_nobusyq[idle]);
8526 		goto out_balanced;
8527 	}
8528 
8529 	BUG_ON(busiest == env.dst_rq);
8530 
8531 	schedstat_add(sd->lb_imbalance[idle], env.imbalance);
8532 
8533 	env.src_cpu = busiest->cpu;
8534 	env.src_rq = busiest;
8535 
8536 	ld_moved = 0;
8537 	if (busiest->nr_running > 1) {
8538 		/*
8539 		 * Attempt to move tasks. If find_busiest_group has found
8540 		 * an imbalance but busiest->nr_running <= 1, the group is
8541 		 * still unbalanced. ld_moved simply stays zero, so it is
8542 		 * correctly treated as an imbalance.
8543 		 */
8544 		env.flags |= LBF_ALL_PINNED;
8545 		env.loop_max  = min(sysctl_sched_nr_migrate, busiest->nr_running);
8546 
8547 more_balance:
8548 		rq_lock_irqsave(busiest, &rf);
8549 		update_rq_clock(busiest);
8550 
8551 		/*
8552 		 * cur_ld_moved - load moved in current iteration
8553 		 * ld_moved     - cumulative load moved across iterations
8554 		 */
8555 		cur_ld_moved = detach_tasks(&env);
8556 
8557 		/*
8558 		 * We've detached some tasks from busiest_rq. Every
8559 		 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely
8560 		 * unlock busiest->lock, and we are able to be sure
8561 		 * that nobody can manipulate the tasks in parallel.
8562 		 * See task_rq_lock() family for the details.
8563 		 */
8564 
8565 		rq_unlock(busiest, &rf);
8566 
8567 		if (cur_ld_moved) {
8568 			attach_tasks(&env);
8569 			ld_moved += cur_ld_moved;
8570 		}
8571 
8572 		local_irq_restore(rf.flags);
8573 
8574 		if (env.flags & LBF_NEED_BREAK) {
8575 			env.flags &= ~LBF_NEED_BREAK;
8576 			goto more_balance;
8577 		}
8578 
8579 		/*
8580 		 * Revisit (affine) tasks on src_cpu that couldn't be moved to
8581 		 * us and move them to an alternate dst_cpu in our sched_group
8582 		 * where they can run. The upper limit on how many times we
8583 		 * iterate on same src_cpu is dependent on number of cpus in our
8584 		 * sched_group.
8585 		 *
8586 		 * This changes load balance semantics a bit on who can move
8587 		 * load to a given_cpu. In addition to the given_cpu itself
8588 		 * (or a ilb_cpu acting on its behalf where given_cpu is
8589 		 * nohz-idle), we now have balance_cpu in a position to move
8590 		 * load to given_cpu. In rare situations, this may cause
8591 		 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
8592 		 * _independently_ and at _same_ time to move some load to
8593 		 * given_cpu) causing exceess load to be moved to given_cpu.
8594 		 * This however should not happen so much in practice and
8595 		 * moreover subsequent load balance cycles should correct the
8596 		 * excess load moved.
8597 		 */
8598 		if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
8599 
8600 			/* Prevent to re-select dst_cpu via env's cpus */
8601 			cpumask_clear_cpu(env.dst_cpu, env.cpus);
8602 
8603 			env.dst_rq	 = cpu_rq(env.new_dst_cpu);
8604 			env.dst_cpu	 = env.new_dst_cpu;
8605 			env.flags	&= ~LBF_DST_PINNED;
8606 			env.loop	 = 0;
8607 			env.loop_break	 = sched_nr_migrate_break;
8608 
8609 			/*
8610 			 * Go back to "more_balance" rather than "redo" since we
8611 			 * need to continue with same src_cpu.
8612 			 */
8613 			goto more_balance;
8614 		}
8615 
8616 		/*
8617 		 * We failed to reach balance because of affinity.
8618 		 */
8619 		if (sd_parent) {
8620 			int *group_imbalance = &sd_parent->groups->sgc->imbalance;
8621 
8622 			if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0)
8623 				*group_imbalance = 1;
8624 		}
8625 
8626 		/* All tasks on this runqueue were pinned by CPU affinity */
8627 		if (unlikely(env.flags & LBF_ALL_PINNED)) {
8628 			cpumask_clear_cpu(cpu_of(busiest), cpus);
8629 			/*
8630 			 * Attempting to continue load balancing at the current
8631 			 * sched_domain level only makes sense if there are
8632 			 * active CPUs remaining as possible busiest CPUs to
8633 			 * pull load from which are not contained within the
8634 			 * destination group that is receiving any migrated
8635 			 * load.
8636 			 */
8637 			if (!cpumask_subset(cpus, env.dst_grpmask)) {
8638 				env.loop = 0;
8639 				env.loop_break = sched_nr_migrate_break;
8640 				goto redo;
8641 			}
8642 			goto out_all_pinned;
8643 		}
8644 	}
8645 
8646 	if (!ld_moved) {
8647 		schedstat_inc(sd->lb_failed[idle]);
8648 		/*
8649 		 * Increment the failure counter only on periodic balance.
8650 		 * We do not want newidle balance, which can be very
8651 		 * frequent, pollute the failure counter causing
8652 		 * excessive cache_hot migrations and active balances.
8653 		 */
8654 		if (idle != CPU_NEWLY_IDLE)
8655 			sd->nr_balance_failed++;
8656 
8657 		if (need_active_balance(&env)) {
8658 			unsigned long flags;
8659 
8660 			raw_spin_lock_irqsave(&busiest->lock, flags);
8661 
8662 			/* don't kick the active_load_balance_cpu_stop,
8663 			 * if the curr task on busiest cpu can't be
8664 			 * moved to this_cpu
8665 			 */
8666 			if (!cpumask_test_cpu(this_cpu, &busiest->curr->cpus_allowed)) {
8667 				raw_spin_unlock_irqrestore(&busiest->lock,
8668 							    flags);
8669 				env.flags |= LBF_ALL_PINNED;
8670 				goto out_one_pinned;
8671 			}
8672 
8673 			/*
8674 			 * ->active_balance synchronizes accesses to
8675 			 * ->active_balance_work.  Once set, it's cleared
8676 			 * only after active load balance is finished.
8677 			 */
8678 			if (!busiest->active_balance) {
8679 				busiest->active_balance = 1;
8680 				busiest->push_cpu = this_cpu;
8681 				active_balance = 1;
8682 			}
8683 			raw_spin_unlock_irqrestore(&busiest->lock, flags);
8684 
8685 			if (active_balance) {
8686 				stop_one_cpu_nowait(cpu_of(busiest),
8687 					active_load_balance_cpu_stop, busiest,
8688 					&busiest->active_balance_work);
8689 			}
8690 
8691 			/* We've kicked active balancing, force task migration. */
8692 			sd->nr_balance_failed = sd->cache_nice_tries+1;
8693 		}
8694 	} else
8695 		sd->nr_balance_failed = 0;
8696 
8697 	if (likely(!active_balance)) {
8698 		/* We were unbalanced, so reset the balancing interval */
8699 		sd->balance_interval = sd->min_interval;
8700 	} else {
8701 		/*
8702 		 * If we've begun active balancing, start to back off. This
8703 		 * case may not be covered by the all_pinned logic if there
8704 		 * is only 1 task on the busy runqueue (because we don't call
8705 		 * detach_tasks).
8706 		 */
8707 		if (sd->balance_interval < sd->max_interval)
8708 			sd->balance_interval *= 2;
8709 	}
8710 
8711 	goto out;
8712 
8713 out_balanced:
8714 	/*
8715 	 * We reach balance although we may have faced some affinity
8716 	 * constraints. Clear the imbalance flag if it was set.
8717 	 */
8718 	if (sd_parent) {
8719 		int *group_imbalance = &sd_parent->groups->sgc->imbalance;
8720 
8721 		if (*group_imbalance)
8722 			*group_imbalance = 0;
8723 	}
8724 
8725 out_all_pinned:
8726 	/*
8727 	 * We reach balance because all tasks are pinned at this level so
8728 	 * we can't migrate them. Let the imbalance flag set so parent level
8729 	 * can try to migrate them.
8730 	 */
8731 	schedstat_inc(sd->lb_balanced[idle]);
8732 
8733 	sd->nr_balance_failed = 0;
8734 
8735 out_one_pinned:
8736 	/* tune up the balancing interval */
8737 	if (((env.flags & LBF_ALL_PINNED) &&
8738 			sd->balance_interval < MAX_PINNED_INTERVAL) ||
8739 			(sd->balance_interval < sd->max_interval))
8740 		sd->balance_interval *= 2;
8741 
8742 	ld_moved = 0;
8743 out:
8744 	return ld_moved;
8745 }
8746 
8747 static inline unsigned long
8748 get_sd_balance_interval(struct sched_domain *sd, int cpu_busy)
8749 {
8750 	unsigned long interval = sd->balance_interval;
8751 
8752 	if (cpu_busy)
8753 		interval *= sd->busy_factor;
8754 
8755 	/* scale ms to jiffies */
8756 	interval = msecs_to_jiffies(interval);
8757 	interval = clamp(interval, 1UL, max_load_balance_interval);
8758 
8759 	return interval;
8760 }
8761 
8762 static inline void
8763 update_next_balance(struct sched_domain *sd, unsigned long *next_balance)
8764 {
8765 	unsigned long interval, next;
8766 
8767 	/* used by idle balance, so cpu_busy = 0 */
8768 	interval = get_sd_balance_interval(sd, 0);
8769 	next = sd->last_balance + interval;
8770 
8771 	if (time_after(*next_balance, next))
8772 		*next_balance = next;
8773 }
8774 
8775 /*
8776  * idle_balance is called by schedule() if this_cpu is about to become
8777  * idle. Attempts to pull tasks from other CPUs.
8778  */
8779 static int idle_balance(struct rq *this_rq, struct rq_flags *rf)
8780 {
8781 	unsigned long next_balance = jiffies + HZ;
8782 	int this_cpu = this_rq->cpu;
8783 	struct sched_domain *sd;
8784 	int pulled_task = 0;
8785 	u64 curr_cost = 0;
8786 
8787 	/*
8788 	 * We must set idle_stamp _before_ calling idle_balance(), such that we
8789 	 * measure the duration of idle_balance() as idle time.
8790 	 */
8791 	this_rq->idle_stamp = rq_clock(this_rq);
8792 
8793 	/*
8794 	 * Do not pull tasks towards !active CPUs...
8795 	 */
8796 	if (!cpu_active(this_cpu))
8797 		return 0;
8798 
8799 	/*
8800 	 * This is OK, because current is on_cpu, which avoids it being picked
8801 	 * for load-balance and preemption/IRQs are still disabled avoiding
8802 	 * further scheduler activity on it and we're being very careful to
8803 	 * re-start the picking loop.
8804 	 */
8805 	rq_unpin_lock(this_rq, rf);
8806 
8807 	if (this_rq->avg_idle < sysctl_sched_migration_cost ||
8808 	    !this_rq->rd->overload) {
8809 		rcu_read_lock();
8810 		sd = rcu_dereference_check_sched_domain(this_rq->sd);
8811 		if (sd)
8812 			update_next_balance(sd, &next_balance);
8813 		rcu_read_unlock();
8814 
8815 		goto out;
8816 	}
8817 
8818 	raw_spin_unlock(&this_rq->lock);
8819 
8820 	update_blocked_averages(this_cpu);
8821 	rcu_read_lock();
8822 	for_each_domain(this_cpu, sd) {
8823 		int continue_balancing = 1;
8824 		u64 t0, domain_cost;
8825 
8826 		if (!(sd->flags & SD_LOAD_BALANCE))
8827 			continue;
8828 
8829 		if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) {
8830 			update_next_balance(sd, &next_balance);
8831 			break;
8832 		}
8833 
8834 		if (sd->flags & SD_BALANCE_NEWIDLE) {
8835 			t0 = sched_clock_cpu(this_cpu);
8836 
8837 			pulled_task = load_balance(this_cpu, this_rq,
8838 						   sd, CPU_NEWLY_IDLE,
8839 						   &continue_balancing);
8840 
8841 			domain_cost = sched_clock_cpu(this_cpu) - t0;
8842 			if (domain_cost > sd->max_newidle_lb_cost)
8843 				sd->max_newidle_lb_cost = domain_cost;
8844 
8845 			curr_cost += domain_cost;
8846 		}
8847 
8848 		update_next_balance(sd, &next_balance);
8849 
8850 		/*
8851 		 * Stop searching for tasks to pull if there are
8852 		 * now runnable tasks on this rq.
8853 		 */
8854 		if (pulled_task || this_rq->nr_running > 0)
8855 			break;
8856 	}
8857 	rcu_read_unlock();
8858 
8859 	raw_spin_lock(&this_rq->lock);
8860 
8861 	if (curr_cost > this_rq->max_idle_balance_cost)
8862 		this_rq->max_idle_balance_cost = curr_cost;
8863 
8864 	/*
8865 	 * While browsing the domains, we released the rq lock, a task could
8866 	 * have been enqueued in the meantime. Since we're not going idle,
8867 	 * pretend we pulled a task.
8868 	 */
8869 	if (this_rq->cfs.h_nr_running && !pulled_task)
8870 		pulled_task = 1;
8871 
8872 out:
8873 	/* Move the next balance forward */
8874 	if (time_after(this_rq->next_balance, next_balance))
8875 		this_rq->next_balance = next_balance;
8876 
8877 	/* Is there a task of a high priority class? */
8878 	if (this_rq->nr_running != this_rq->cfs.h_nr_running)
8879 		pulled_task = -1;
8880 
8881 	if (pulled_task)
8882 		this_rq->idle_stamp = 0;
8883 
8884 	rq_repin_lock(this_rq, rf);
8885 
8886 	return pulled_task;
8887 }
8888 
8889 /*
8890  * active_load_balance_cpu_stop is run by cpu stopper. It pushes
8891  * running tasks off the busiest CPU onto idle CPUs. It requires at
8892  * least 1 task to be running on each physical CPU where possible, and
8893  * avoids physical / logical imbalances.
8894  */
8895 static int active_load_balance_cpu_stop(void *data)
8896 {
8897 	struct rq *busiest_rq = data;
8898 	int busiest_cpu = cpu_of(busiest_rq);
8899 	int target_cpu = busiest_rq->push_cpu;
8900 	struct rq *target_rq = cpu_rq(target_cpu);
8901 	struct sched_domain *sd;
8902 	struct task_struct *p = NULL;
8903 	struct rq_flags rf;
8904 
8905 	rq_lock_irq(busiest_rq, &rf);
8906 	/*
8907 	 * Between queueing the stop-work and running it is a hole in which
8908 	 * CPUs can become inactive. We should not move tasks from or to
8909 	 * inactive CPUs.
8910 	 */
8911 	if (!cpu_active(busiest_cpu) || !cpu_active(target_cpu))
8912 		goto out_unlock;
8913 
8914 	/* make sure the requested cpu hasn't gone down in the meantime */
8915 	if (unlikely(busiest_cpu != smp_processor_id() ||
8916 		     !busiest_rq->active_balance))
8917 		goto out_unlock;
8918 
8919 	/* Is there any task to move? */
8920 	if (busiest_rq->nr_running <= 1)
8921 		goto out_unlock;
8922 
8923 	/*
8924 	 * This condition is "impossible", if it occurs
8925 	 * we need to fix it. Originally reported by
8926 	 * Bjorn Helgaas on a 128-cpu setup.
8927 	 */
8928 	BUG_ON(busiest_rq == target_rq);
8929 
8930 	/* Search for an sd spanning us and the target CPU. */
8931 	rcu_read_lock();
8932 	for_each_domain(target_cpu, sd) {
8933 		if ((sd->flags & SD_LOAD_BALANCE) &&
8934 		    cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
8935 				break;
8936 	}
8937 
8938 	if (likely(sd)) {
8939 		struct lb_env env = {
8940 			.sd		= sd,
8941 			.dst_cpu	= target_cpu,
8942 			.dst_rq		= target_rq,
8943 			.src_cpu	= busiest_rq->cpu,
8944 			.src_rq		= busiest_rq,
8945 			.idle		= CPU_IDLE,
8946 			/*
8947 			 * can_migrate_task() doesn't need to compute new_dst_cpu
8948 			 * for active balancing. Since we have CPU_IDLE, but no
8949 			 * @dst_grpmask we need to make that test go away with lying
8950 			 * about DST_PINNED.
8951 			 */
8952 			.flags		= LBF_DST_PINNED,
8953 		};
8954 
8955 		schedstat_inc(sd->alb_count);
8956 		update_rq_clock(busiest_rq);
8957 
8958 		p = detach_one_task(&env);
8959 		if (p) {
8960 			schedstat_inc(sd->alb_pushed);
8961 			/* Active balancing done, reset the failure counter. */
8962 			sd->nr_balance_failed = 0;
8963 		} else {
8964 			schedstat_inc(sd->alb_failed);
8965 		}
8966 	}
8967 	rcu_read_unlock();
8968 out_unlock:
8969 	busiest_rq->active_balance = 0;
8970 	rq_unlock(busiest_rq, &rf);
8971 
8972 	if (p)
8973 		attach_one_task(target_rq, p);
8974 
8975 	local_irq_enable();
8976 
8977 	return 0;
8978 }
8979 
8980 static inline int on_null_domain(struct rq *rq)
8981 {
8982 	return unlikely(!rcu_dereference_sched(rq->sd));
8983 }
8984 
8985 #ifdef CONFIG_NO_HZ_COMMON
8986 /*
8987  * idle load balancing details
8988  * - When one of the busy CPUs notice that there may be an idle rebalancing
8989  *   needed, they will kick the idle load balancer, which then does idle
8990  *   load balancing for all the idle CPUs.
8991  */
8992 static struct {
8993 	cpumask_var_t idle_cpus_mask;
8994 	atomic_t nr_cpus;
8995 	unsigned long next_balance;     /* in jiffy units */
8996 } nohz ____cacheline_aligned;
8997 
8998 static inline int find_new_ilb(void)
8999 {
9000 	int ilb = cpumask_first(nohz.idle_cpus_mask);
9001 
9002 	if (ilb < nr_cpu_ids && idle_cpu(ilb))
9003 		return ilb;
9004 
9005 	return nr_cpu_ids;
9006 }
9007 
9008 /*
9009  * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
9010  * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
9011  * CPU (if there is one).
9012  */
9013 static void nohz_balancer_kick(void)
9014 {
9015 	int ilb_cpu;
9016 
9017 	nohz.next_balance++;
9018 
9019 	ilb_cpu = find_new_ilb();
9020 
9021 	if (ilb_cpu >= nr_cpu_ids)
9022 		return;
9023 
9024 	if (test_and_set_bit(NOHZ_BALANCE_KICK, nohz_flags(ilb_cpu)))
9025 		return;
9026 	/*
9027 	 * Use smp_send_reschedule() instead of resched_cpu().
9028 	 * This way we generate a sched IPI on the target cpu which
9029 	 * is idle. And the softirq performing nohz idle load balance
9030 	 * will be run before returning from the IPI.
9031 	 */
9032 	smp_send_reschedule(ilb_cpu);
9033 	return;
9034 }
9035 
9036 void nohz_balance_exit_idle(unsigned int cpu)
9037 {
9038 	if (unlikely(test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))) {
9039 		/*
9040 		 * Completely isolated CPUs don't ever set, so we must test.
9041 		 */
9042 		if (likely(cpumask_test_cpu(cpu, nohz.idle_cpus_mask))) {
9043 			cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
9044 			atomic_dec(&nohz.nr_cpus);
9045 		}
9046 		clear_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
9047 	}
9048 }
9049 
9050 static inline void set_cpu_sd_state_busy(void)
9051 {
9052 	struct sched_domain *sd;
9053 	int cpu = smp_processor_id();
9054 
9055 	rcu_read_lock();
9056 	sd = rcu_dereference(per_cpu(sd_llc, cpu));
9057 
9058 	if (!sd || !sd->nohz_idle)
9059 		goto unlock;
9060 	sd->nohz_idle = 0;
9061 
9062 	atomic_inc(&sd->shared->nr_busy_cpus);
9063 unlock:
9064 	rcu_read_unlock();
9065 }
9066 
9067 void set_cpu_sd_state_idle(void)
9068 {
9069 	struct sched_domain *sd;
9070 	int cpu = smp_processor_id();
9071 
9072 	rcu_read_lock();
9073 	sd = rcu_dereference(per_cpu(sd_llc, cpu));
9074 
9075 	if (!sd || sd->nohz_idle)
9076 		goto unlock;
9077 	sd->nohz_idle = 1;
9078 
9079 	atomic_dec(&sd->shared->nr_busy_cpus);
9080 unlock:
9081 	rcu_read_unlock();
9082 }
9083 
9084 /*
9085  * This routine will record that the cpu is going idle with tick stopped.
9086  * This info will be used in performing idle load balancing in the future.
9087  */
9088 void nohz_balance_enter_idle(int cpu)
9089 {
9090 	/*
9091 	 * If this cpu is going down, then nothing needs to be done.
9092 	 */
9093 	if (!cpu_active(cpu))
9094 		return;
9095 
9096 	/* Spare idle load balancing on CPUs that don't want to be disturbed: */
9097 	if (!housekeeping_cpu(cpu, HK_FLAG_SCHED))
9098 		return;
9099 
9100 	if (test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))
9101 		return;
9102 
9103 	/*
9104 	 * If we're a completely isolated CPU, we don't play.
9105 	 */
9106 	if (on_null_domain(cpu_rq(cpu)))
9107 		return;
9108 
9109 	cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
9110 	atomic_inc(&nohz.nr_cpus);
9111 	set_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
9112 }
9113 #endif
9114 
9115 static DEFINE_SPINLOCK(balancing);
9116 
9117 /*
9118  * Scale the max load_balance interval with the number of CPUs in the system.
9119  * This trades load-balance latency on larger machines for less cross talk.
9120  */
9121 void update_max_interval(void)
9122 {
9123 	max_load_balance_interval = HZ*num_online_cpus()/10;
9124 }
9125 
9126 /*
9127  * It checks each scheduling domain to see if it is due to be balanced,
9128  * and initiates a balancing operation if so.
9129  *
9130  * Balancing parameters are set up in init_sched_domains.
9131  */
9132 static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle)
9133 {
9134 	int continue_balancing = 1;
9135 	int cpu = rq->cpu;
9136 	unsigned long interval;
9137 	struct sched_domain *sd;
9138 	/* Earliest time when we have to do rebalance again */
9139 	unsigned long next_balance = jiffies + 60*HZ;
9140 	int update_next_balance = 0;
9141 	int need_serialize, need_decay = 0;
9142 	u64 max_cost = 0;
9143 
9144 	update_blocked_averages(cpu);
9145 
9146 	rcu_read_lock();
9147 	for_each_domain(cpu, sd) {
9148 		/*
9149 		 * Decay the newidle max times here because this is a regular
9150 		 * visit to all the domains. Decay ~1% per second.
9151 		 */
9152 		if (time_after(jiffies, sd->next_decay_max_lb_cost)) {
9153 			sd->max_newidle_lb_cost =
9154 				(sd->max_newidle_lb_cost * 253) / 256;
9155 			sd->next_decay_max_lb_cost = jiffies + HZ;
9156 			need_decay = 1;
9157 		}
9158 		max_cost += sd->max_newidle_lb_cost;
9159 
9160 		if (!(sd->flags & SD_LOAD_BALANCE))
9161 			continue;
9162 
9163 		/*
9164 		 * Stop the load balance at this level. There is another
9165 		 * CPU in our sched group which is doing load balancing more
9166 		 * actively.
9167 		 */
9168 		if (!continue_balancing) {
9169 			if (need_decay)
9170 				continue;
9171 			break;
9172 		}
9173 
9174 		interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
9175 
9176 		need_serialize = sd->flags & SD_SERIALIZE;
9177 		if (need_serialize) {
9178 			if (!spin_trylock(&balancing))
9179 				goto out;
9180 		}
9181 
9182 		if (time_after_eq(jiffies, sd->last_balance + interval)) {
9183 			if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
9184 				/*
9185 				 * The LBF_DST_PINNED logic could have changed
9186 				 * env->dst_cpu, so we can't know our idle
9187 				 * state even if we migrated tasks. Update it.
9188 				 */
9189 				idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
9190 			}
9191 			sd->last_balance = jiffies;
9192 			interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
9193 		}
9194 		if (need_serialize)
9195 			spin_unlock(&balancing);
9196 out:
9197 		if (time_after(next_balance, sd->last_balance + interval)) {
9198 			next_balance = sd->last_balance + interval;
9199 			update_next_balance = 1;
9200 		}
9201 	}
9202 	if (need_decay) {
9203 		/*
9204 		 * Ensure the rq-wide value also decays but keep it at a
9205 		 * reasonable floor to avoid funnies with rq->avg_idle.
9206 		 */
9207 		rq->max_idle_balance_cost =
9208 			max((u64)sysctl_sched_migration_cost, max_cost);
9209 	}
9210 	rcu_read_unlock();
9211 
9212 	/*
9213 	 * next_balance will be updated only when there is a need.
9214 	 * When the cpu is attached to null domain for ex, it will not be
9215 	 * updated.
9216 	 */
9217 	if (likely(update_next_balance)) {
9218 		rq->next_balance = next_balance;
9219 
9220 #ifdef CONFIG_NO_HZ_COMMON
9221 		/*
9222 		 * If this CPU has been elected to perform the nohz idle
9223 		 * balance. Other idle CPUs have already rebalanced with
9224 		 * nohz_idle_balance() and nohz.next_balance has been
9225 		 * updated accordingly. This CPU is now running the idle load
9226 		 * balance for itself and we need to update the
9227 		 * nohz.next_balance accordingly.
9228 		 */
9229 		if ((idle == CPU_IDLE) && time_after(nohz.next_balance, rq->next_balance))
9230 			nohz.next_balance = rq->next_balance;
9231 #endif
9232 	}
9233 }
9234 
9235 #ifdef CONFIG_NO_HZ_COMMON
9236 /*
9237  * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
9238  * rebalancing for all the cpus for whom scheduler ticks are stopped.
9239  */
9240 static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
9241 {
9242 	int this_cpu = this_rq->cpu;
9243 	struct rq *rq;
9244 	int balance_cpu;
9245 	/* Earliest time when we have to do rebalance again */
9246 	unsigned long next_balance = jiffies + 60*HZ;
9247 	int update_next_balance = 0;
9248 
9249 	if (idle != CPU_IDLE ||
9250 	    !test_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu)))
9251 		goto end;
9252 
9253 	for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
9254 		if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
9255 			continue;
9256 
9257 		/*
9258 		 * If this cpu gets work to do, stop the load balancing
9259 		 * work being done for other cpus. Next load
9260 		 * balancing owner will pick it up.
9261 		 */
9262 		if (need_resched())
9263 			break;
9264 
9265 		rq = cpu_rq(balance_cpu);
9266 
9267 		/*
9268 		 * If time for next balance is due,
9269 		 * do the balance.
9270 		 */
9271 		if (time_after_eq(jiffies, rq->next_balance)) {
9272 			struct rq_flags rf;
9273 
9274 			rq_lock_irq(rq, &rf);
9275 			update_rq_clock(rq);
9276 			cpu_load_update_idle(rq);
9277 			rq_unlock_irq(rq, &rf);
9278 
9279 			rebalance_domains(rq, CPU_IDLE);
9280 		}
9281 
9282 		if (time_after(next_balance, rq->next_balance)) {
9283 			next_balance = rq->next_balance;
9284 			update_next_balance = 1;
9285 		}
9286 	}
9287 
9288 	/*
9289 	 * next_balance will be updated only when there is a need.
9290 	 * When the CPU is attached to null domain for ex, it will not be
9291 	 * updated.
9292 	 */
9293 	if (likely(update_next_balance))
9294 		nohz.next_balance = next_balance;
9295 end:
9296 	clear_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu));
9297 }
9298 
9299 /*
9300  * Current heuristic for kicking the idle load balancer in the presence
9301  * of an idle cpu in the system.
9302  *   - This rq has more than one task.
9303  *   - This rq has at least one CFS task and the capacity of the CPU is
9304  *     significantly reduced because of RT tasks or IRQs.
9305  *   - At parent of LLC scheduler domain level, this cpu's scheduler group has
9306  *     multiple busy cpu.
9307  *   - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler
9308  *     domain span are idle.
9309  */
9310 static inline bool nohz_kick_needed(struct rq *rq)
9311 {
9312 	unsigned long now = jiffies;
9313 	struct sched_domain_shared *sds;
9314 	struct sched_domain *sd;
9315 	int nr_busy, i, cpu = rq->cpu;
9316 	bool kick = false;
9317 
9318 	if (unlikely(rq->idle_balance))
9319 		return false;
9320 
9321        /*
9322 	* We may be recently in ticked or tickless idle mode. At the first
9323 	* busy tick after returning from idle, we will update the busy stats.
9324 	*/
9325 	set_cpu_sd_state_busy();
9326 	nohz_balance_exit_idle(cpu);
9327 
9328 	/*
9329 	 * None are in tickless mode and hence no need for NOHZ idle load
9330 	 * balancing.
9331 	 */
9332 	if (likely(!atomic_read(&nohz.nr_cpus)))
9333 		return false;
9334 
9335 	if (time_before(now, nohz.next_balance))
9336 		return false;
9337 
9338 	if (rq->nr_running >= 2)
9339 		return true;
9340 
9341 	rcu_read_lock();
9342 	sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
9343 	if (sds) {
9344 		/*
9345 		 * XXX: write a coherent comment on why we do this.
9346 		 * See also: http://lkml.kernel.org/r/20111202010832.602203411@sbsiddha-desk.sc.intel.com
9347 		 */
9348 		nr_busy = atomic_read(&sds->nr_busy_cpus);
9349 		if (nr_busy > 1) {
9350 			kick = true;
9351 			goto unlock;
9352 		}
9353 
9354 	}
9355 
9356 	sd = rcu_dereference(rq->sd);
9357 	if (sd) {
9358 		if ((rq->cfs.h_nr_running >= 1) &&
9359 				check_cpu_capacity(rq, sd)) {
9360 			kick = true;
9361 			goto unlock;
9362 		}
9363 	}
9364 
9365 	sd = rcu_dereference(per_cpu(sd_asym, cpu));
9366 	if (sd) {
9367 		for_each_cpu(i, sched_domain_span(sd)) {
9368 			if (i == cpu ||
9369 			    !cpumask_test_cpu(i, nohz.idle_cpus_mask))
9370 				continue;
9371 
9372 			if (sched_asym_prefer(i, cpu)) {
9373 				kick = true;
9374 				goto unlock;
9375 			}
9376 		}
9377 	}
9378 unlock:
9379 	rcu_read_unlock();
9380 	return kick;
9381 }
9382 #else
9383 static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) { }
9384 #endif
9385 
9386 /*
9387  * run_rebalance_domains is triggered when needed from the scheduler tick.
9388  * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
9389  */
9390 static __latent_entropy void run_rebalance_domains(struct softirq_action *h)
9391 {
9392 	struct rq *this_rq = this_rq();
9393 	enum cpu_idle_type idle = this_rq->idle_balance ?
9394 						CPU_IDLE : CPU_NOT_IDLE;
9395 
9396 	/*
9397 	 * If this cpu has a pending nohz_balance_kick, then do the
9398 	 * balancing on behalf of the other idle cpus whose ticks are
9399 	 * stopped. Do nohz_idle_balance *before* rebalance_domains to
9400 	 * give the idle cpus a chance to load balance. Else we may
9401 	 * load balance only within the local sched_domain hierarchy
9402 	 * and abort nohz_idle_balance altogether if we pull some load.
9403 	 */
9404 	nohz_idle_balance(this_rq, idle);
9405 	rebalance_domains(this_rq, idle);
9406 }
9407 
9408 /*
9409  * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
9410  */
9411 void trigger_load_balance(struct rq *rq)
9412 {
9413 	/* Don't need to rebalance while attached to NULL domain */
9414 	if (unlikely(on_null_domain(rq)))
9415 		return;
9416 
9417 	if (time_after_eq(jiffies, rq->next_balance))
9418 		raise_softirq(SCHED_SOFTIRQ);
9419 #ifdef CONFIG_NO_HZ_COMMON
9420 	if (nohz_kick_needed(rq))
9421 		nohz_balancer_kick();
9422 #endif
9423 }
9424 
9425 static void rq_online_fair(struct rq *rq)
9426 {
9427 	update_sysctl();
9428 
9429 	update_runtime_enabled(rq);
9430 }
9431 
9432 static void rq_offline_fair(struct rq *rq)
9433 {
9434 	update_sysctl();
9435 
9436 	/* Ensure any throttled groups are reachable by pick_next_task */
9437 	unthrottle_offline_cfs_rqs(rq);
9438 }
9439 
9440 #endif /* CONFIG_SMP */
9441 
9442 /*
9443  * scheduler tick hitting a task of our scheduling class:
9444  */
9445 static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
9446 {
9447 	struct cfs_rq *cfs_rq;
9448 	struct sched_entity *se = &curr->se;
9449 
9450 	for_each_sched_entity(se) {
9451 		cfs_rq = cfs_rq_of(se);
9452 		entity_tick(cfs_rq, se, queued);
9453 	}
9454 
9455 	if (static_branch_unlikely(&sched_numa_balancing))
9456 		task_tick_numa(rq, curr);
9457 }
9458 
9459 /*
9460  * called on fork with the child task as argument from the parent's context
9461  *  - child not yet on the tasklist
9462  *  - preemption disabled
9463  */
9464 static void task_fork_fair(struct task_struct *p)
9465 {
9466 	struct cfs_rq *cfs_rq;
9467 	struct sched_entity *se = &p->se, *curr;
9468 	struct rq *rq = this_rq();
9469 	struct rq_flags rf;
9470 
9471 	rq_lock(rq, &rf);
9472 	update_rq_clock(rq);
9473 
9474 	cfs_rq = task_cfs_rq(current);
9475 	curr = cfs_rq->curr;
9476 	if (curr) {
9477 		update_curr(cfs_rq);
9478 		se->vruntime = curr->vruntime;
9479 	}
9480 	place_entity(cfs_rq, se, 1);
9481 
9482 	if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
9483 		/*
9484 		 * Upon rescheduling, sched_class::put_prev_task() will place
9485 		 * 'current' within the tree based on its new key value.
9486 		 */
9487 		swap(curr->vruntime, se->vruntime);
9488 		resched_curr(rq);
9489 	}
9490 
9491 	se->vruntime -= cfs_rq->min_vruntime;
9492 	rq_unlock(rq, &rf);
9493 }
9494 
9495 /*
9496  * Priority of the task has changed. Check to see if we preempt
9497  * the current task.
9498  */
9499 static void
9500 prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
9501 {
9502 	if (!task_on_rq_queued(p))
9503 		return;
9504 
9505 	/*
9506 	 * Reschedule if we are currently running on this runqueue and
9507 	 * our priority decreased, or if we are not currently running on
9508 	 * this runqueue and our priority is higher than the current's
9509 	 */
9510 	if (rq->curr == p) {
9511 		if (p->prio > oldprio)
9512 			resched_curr(rq);
9513 	} else
9514 		check_preempt_curr(rq, p, 0);
9515 }
9516 
9517 static inline bool vruntime_normalized(struct task_struct *p)
9518 {
9519 	struct sched_entity *se = &p->se;
9520 
9521 	/*
9522 	 * In both the TASK_ON_RQ_QUEUED and TASK_ON_RQ_MIGRATING cases,
9523 	 * the dequeue_entity(.flags=0) will already have normalized the
9524 	 * vruntime.
9525 	 */
9526 	if (p->on_rq)
9527 		return true;
9528 
9529 	/*
9530 	 * When !on_rq, vruntime of the task has usually NOT been normalized.
9531 	 * But there are some cases where it has already been normalized:
9532 	 *
9533 	 * - A forked child which is waiting for being woken up by
9534 	 *   wake_up_new_task().
9535 	 * - A task which has been woken up by try_to_wake_up() and
9536 	 *   waiting for actually being woken up by sched_ttwu_pending().
9537 	 */
9538 	if (!se->sum_exec_runtime || p->state == TASK_WAKING)
9539 		return true;
9540 
9541 	return false;
9542 }
9543 
9544 #ifdef CONFIG_FAIR_GROUP_SCHED
9545 /*
9546  * Propagate the changes of the sched_entity across the tg tree to make it
9547  * visible to the root
9548  */
9549 static void propagate_entity_cfs_rq(struct sched_entity *se)
9550 {
9551 	struct cfs_rq *cfs_rq;
9552 
9553 	/* Start to propagate at parent */
9554 	se = se->parent;
9555 
9556 	for_each_sched_entity(se) {
9557 		cfs_rq = cfs_rq_of(se);
9558 
9559 		if (cfs_rq_throttled(cfs_rq))
9560 			break;
9561 
9562 		update_load_avg(cfs_rq, se, UPDATE_TG);
9563 	}
9564 }
9565 #else
9566 static void propagate_entity_cfs_rq(struct sched_entity *se) { }
9567 #endif
9568 
9569 static void detach_entity_cfs_rq(struct sched_entity *se)
9570 {
9571 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
9572 
9573 	/* Catch up with the cfs_rq and remove our load when we leave */
9574 	update_load_avg(cfs_rq, se, 0);
9575 	detach_entity_load_avg(cfs_rq, se);
9576 	update_tg_load_avg(cfs_rq, false);
9577 	propagate_entity_cfs_rq(se);
9578 }
9579 
9580 static void attach_entity_cfs_rq(struct sched_entity *se)
9581 {
9582 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
9583 
9584 #ifdef CONFIG_FAIR_GROUP_SCHED
9585 	/*
9586 	 * Since the real-depth could have been changed (only FAIR
9587 	 * class maintain depth value), reset depth properly.
9588 	 */
9589 	se->depth = se->parent ? se->parent->depth + 1 : 0;
9590 #endif
9591 
9592 	/* Synchronize entity with its cfs_rq */
9593 	update_load_avg(cfs_rq, se, sched_feat(ATTACH_AGE_LOAD) ? 0 : SKIP_AGE_LOAD);
9594 	attach_entity_load_avg(cfs_rq, se);
9595 	update_tg_load_avg(cfs_rq, false);
9596 	propagate_entity_cfs_rq(se);
9597 }
9598 
9599 static void detach_task_cfs_rq(struct task_struct *p)
9600 {
9601 	struct sched_entity *se = &p->se;
9602 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
9603 
9604 	if (!vruntime_normalized(p)) {
9605 		/*
9606 		 * Fix up our vruntime so that the current sleep doesn't
9607 		 * cause 'unlimited' sleep bonus.
9608 		 */
9609 		place_entity(cfs_rq, se, 0);
9610 		se->vruntime -= cfs_rq->min_vruntime;
9611 	}
9612 
9613 	detach_entity_cfs_rq(se);
9614 }
9615 
9616 static void attach_task_cfs_rq(struct task_struct *p)
9617 {
9618 	struct sched_entity *se = &p->se;
9619 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
9620 
9621 	attach_entity_cfs_rq(se);
9622 
9623 	if (!vruntime_normalized(p))
9624 		se->vruntime += cfs_rq->min_vruntime;
9625 }
9626 
9627 static void switched_from_fair(struct rq *rq, struct task_struct *p)
9628 {
9629 	detach_task_cfs_rq(p);
9630 }
9631 
9632 static void switched_to_fair(struct rq *rq, struct task_struct *p)
9633 {
9634 	attach_task_cfs_rq(p);
9635 
9636 	if (task_on_rq_queued(p)) {
9637 		/*
9638 		 * We were most likely switched from sched_rt, so
9639 		 * kick off the schedule if running, otherwise just see
9640 		 * if we can still preempt the current task.
9641 		 */
9642 		if (rq->curr == p)
9643 			resched_curr(rq);
9644 		else
9645 			check_preempt_curr(rq, p, 0);
9646 	}
9647 }
9648 
9649 /* Account for a task changing its policy or group.
9650  *
9651  * This routine is mostly called to set cfs_rq->curr field when a task
9652  * migrates between groups/classes.
9653  */
9654 static void set_curr_task_fair(struct rq *rq)
9655 {
9656 	struct sched_entity *se = &rq->curr->se;
9657 
9658 	for_each_sched_entity(se) {
9659 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
9660 
9661 		set_next_entity(cfs_rq, se);
9662 		/* ensure bandwidth has been allocated on our new cfs_rq */
9663 		account_cfs_rq_runtime(cfs_rq, 0);
9664 	}
9665 }
9666 
9667 void init_cfs_rq(struct cfs_rq *cfs_rq)
9668 {
9669 	cfs_rq->tasks_timeline = RB_ROOT_CACHED;
9670 	cfs_rq->min_vruntime = (u64)(-(1LL << 20));
9671 #ifndef CONFIG_64BIT
9672 	cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
9673 #endif
9674 #ifdef CONFIG_SMP
9675 	raw_spin_lock_init(&cfs_rq->removed.lock);
9676 #endif
9677 }
9678 
9679 #ifdef CONFIG_FAIR_GROUP_SCHED
9680 static void task_set_group_fair(struct task_struct *p)
9681 {
9682 	struct sched_entity *se = &p->se;
9683 
9684 	set_task_rq(p, task_cpu(p));
9685 	se->depth = se->parent ? se->parent->depth + 1 : 0;
9686 }
9687 
9688 static void task_move_group_fair(struct task_struct *p)
9689 {
9690 	detach_task_cfs_rq(p);
9691 	set_task_rq(p, task_cpu(p));
9692 
9693 #ifdef CONFIG_SMP
9694 	/* Tell se's cfs_rq has been changed -- migrated */
9695 	p->se.avg.last_update_time = 0;
9696 #endif
9697 	attach_task_cfs_rq(p);
9698 }
9699 
9700 static void task_change_group_fair(struct task_struct *p, int type)
9701 {
9702 	switch (type) {
9703 	case TASK_SET_GROUP:
9704 		task_set_group_fair(p);
9705 		break;
9706 
9707 	case TASK_MOVE_GROUP:
9708 		task_move_group_fair(p);
9709 		break;
9710 	}
9711 }
9712 
9713 void free_fair_sched_group(struct task_group *tg)
9714 {
9715 	int i;
9716 
9717 	destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
9718 
9719 	for_each_possible_cpu(i) {
9720 		if (tg->cfs_rq)
9721 			kfree(tg->cfs_rq[i]);
9722 		if (tg->se)
9723 			kfree(tg->se[i]);
9724 	}
9725 
9726 	kfree(tg->cfs_rq);
9727 	kfree(tg->se);
9728 }
9729 
9730 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
9731 {
9732 	struct sched_entity *se;
9733 	struct cfs_rq *cfs_rq;
9734 	int i;
9735 
9736 	tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
9737 	if (!tg->cfs_rq)
9738 		goto err;
9739 	tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
9740 	if (!tg->se)
9741 		goto err;
9742 
9743 	tg->shares = NICE_0_LOAD;
9744 
9745 	init_cfs_bandwidth(tg_cfs_bandwidth(tg));
9746 
9747 	for_each_possible_cpu(i) {
9748 		cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
9749 				      GFP_KERNEL, cpu_to_node(i));
9750 		if (!cfs_rq)
9751 			goto err;
9752 
9753 		se = kzalloc_node(sizeof(struct sched_entity),
9754 				  GFP_KERNEL, cpu_to_node(i));
9755 		if (!se)
9756 			goto err_free_rq;
9757 
9758 		init_cfs_rq(cfs_rq);
9759 		init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
9760 		init_entity_runnable_average(se);
9761 	}
9762 
9763 	return 1;
9764 
9765 err_free_rq:
9766 	kfree(cfs_rq);
9767 err:
9768 	return 0;
9769 }
9770 
9771 void online_fair_sched_group(struct task_group *tg)
9772 {
9773 	struct sched_entity *se;
9774 	struct rq *rq;
9775 	int i;
9776 
9777 	for_each_possible_cpu(i) {
9778 		rq = cpu_rq(i);
9779 		se = tg->se[i];
9780 
9781 		raw_spin_lock_irq(&rq->lock);
9782 		update_rq_clock(rq);
9783 		attach_entity_cfs_rq(se);
9784 		sync_throttle(tg, i);
9785 		raw_spin_unlock_irq(&rq->lock);
9786 	}
9787 }
9788 
9789 void unregister_fair_sched_group(struct task_group *tg)
9790 {
9791 	unsigned long flags;
9792 	struct rq *rq;
9793 	int cpu;
9794 
9795 	for_each_possible_cpu(cpu) {
9796 		if (tg->se[cpu])
9797 			remove_entity_load_avg(tg->se[cpu]);
9798 
9799 		/*
9800 		 * Only empty task groups can be destroyed; so we can speculatively
9801 		 * check on_list without danger of it being re-added.
9802 		 */
9803 		if (!tg->cfs_rq[cpu]->on_list)
9804 			continue;
9805 
9806 		rq = cpu_rq(cpu);
9807 
9808 		raw_spin_lock_irqsave(&rq->lock, flags);
9809 		list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
9810 		raw_spin_unlock_irqrestore(&rq->lock, flags);
9811 	}
9812 }
9813 
9814 void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
9815 			struct sched_entity *se, int cpu,
9816 			struct sched_entity *parent)
9817 {
9818 	struct rq *rq = cpu_rq(cpu);
9819 
9820 	cfs_rq->tg = tg;
9821 	cfs_rq->rq = rq;
9822 	init_cfs_rq_runtime(cfs_rq);
9823 
9824 	tg->cfs_rq[cpu] = cfs_rq;
9825 	tg->se[cpu] = se;
9826 
9827 	/* se could be NULL for root_task_group */
9828 	if (!se)
9829 		return;
9830 
9831 	if (!parent) {
9832 		se->cfs_rq = &rq->cfs;
9833 		se->depth = 0;
9834 	} else {
9835 		se->cfs_rq = parent->my_q;
9836 		se->depth = parent->depth + 1;
9837 	}
9838 
9839 	se->my_q = cfs_rq;
9840 	/* guarantee group entities always have weight */
9841 	update_load_set(&se->load, NICE_0_LOAD);
9842 	se->parent = parent;
9843 }
9844 
9845 static DEFINE_MUTEX(shares_mutex);
9846 
9847 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
9848 {
9849 	int i;
9850 
9851 	/*
9852 	 * We can't change the weight of the root cgroup.
9853 	 */
9854 	if (!tg->se[0])
9855 		return -EINVAL;
9856 
9857 	shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
9858 
9859 	mutex_lock(&shares_mutex);
9860 	if (tg->shares == shares)
9861 		goto done;
9862 
9863 	tg->shares = shares;
9864 	for_each_possible_cpu(i) {
9865 		struct rq *rq = cpu_rq(i);
9866 		struct sched_entity *se = tg->se[i];
9867 		struct rq_flags rf;
9868 
9869 		/* Propagate contribution to hierarchy */
9870 		rq_lock_irqsave(rq, &rf);
9871 		update_rq_clock(rq);
9872 		for_each_sched_entity(se) {
9873 			update_load_avg(cfs_rq_of(se), se, UPDATE_TG);
9874 			update_cfs_group(se);
9875 		}
9876 		rq_unlock_irqrestore(rq, &rf);
9877 	}
9878 
9879 done:
9880 	mutex_unlock(&shares_mutex);
9881 	return 0;
9882 }
9883 #else /* CONFIG_FAIR_GROUP_SCHED */
9884 
9885 void free_fair_sched_group(struct task_group *tg) { }
9886 
9887 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
9888 {
9889 	return 1;
9890 }
9891 
9892 void online_fair_sched_group(struct task_group *tg) { }
9893 
9894 void unregister_fair_sched_group(struct task_group *tg) { }
9895 
9896 #endif /* CONFIG_FAIR_GROUP_SCHED */
9897 
9898 
9899 static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
9900 {
9901 	struct sched_entity *se = &task->se;
9902 	unsigned int rr_interval = 0;
9903 
9904 	/*
9905 	 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
9906 	 * idle runqueue:
9907 	 */
9908 	if (rq->cfs.load.weight)
9909 		rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
9910 
9911 	return rr_interval;
9912 }
9913 
9914 /*
9915  * All the scheduling class methods:
9916  */
9917 const struct sched_class fair_sched_class = {
9918 	.next			= &idle_sched_class,
9919 	.enqueue_task		= enqueue_task_fair,
9920 	.dequeue_task		= dequeue_task_fair,
9921 	.yield_task		= yield_task_fair,
9922 	.yield_to_task		= yield_to_task_fair,
9923 
9924 	.check_preempt_curr	= check_preempt_wakeup,
9925 
9926 	.pick_next_task		= pick_next_task_fair,
9927 	.put_prev_task		= put_prev_task_fair,
9928 
9929 #ifdef CONFIG_SMP
9930 	.select_task_rq		= select_task_rq_fair,
9931 	.migrate_task_rq	= migrate_task_rq_fair,
9932 
9933 	.rq_online		= rq_online_fair,
9934 	.rq_offline		= rq_offline_fair,
9935 
9936 	.task_dead		= task_dead_fair,
9937 	.set_cpus_allowed	= set_cpus_allowed_common,
9938 #endif
9939 
9940 	.set_curr_task          = set_curr_task_fair,
9941 	.task_tick		= task_tick_fair,
9942 	.task_fork		= task_fork_fair,
9943 
9944 	.prio_changed		= prio_changed_fair,
9945 	.switched_from		= switched_from_fair,
9946 	.switched_to		= switched_to_fair,
9947 
9948 	.get_rr_interval	= get_rr_interval_fair,
9949 
9950 	.update_curr		= update_curr_fair,
9951 
9952 #ifdef CONFIG_FAIR_GROUP_SCHED
9953 	.task_change_group	= task_change_group_fair,
9954 #endif
9955 };
9956 
9957 #ifdef CONFIG_SCHED_DEBUG
9958 void print_cfs_stats(struct seq_file *m, int cpu)
9959 {
9960 	struct cfs_rq *cfs_rq, *pos;
9961 
9962 	rcu_read_lock();
9963 	for_each_leaf_cfs_rq_safe(cpu_rq(cpu), cfs_rq, pos)
9964 		print_cfs_rq(m, cpu, cfs_rq);
9965 	rcu_read_unlock();
9966 }
9967 
9968 #ifdef CONFIG_NUMA_BALANCING
9969 void show_numa_stats(struct task_struct *p, struct seq_file *m)
9970 {
9971 	int node;
9972 	unsigned long tsf = 0, tpf = 0, gsf = 0, gpf = 0;
9973 
9974 	for_each_online_node(node) {
9975 		if (p->numa_faults) {
9976 			tsf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 0)];
9977 			tpf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 1)];
9978 		}
9979 		if (p->numa_group) {
9980 			gsf = p->numa_group->faults[task_faults_idx(NUMA_MEM, node, 0)],
9981 			gpf = p->numa_group->faults[task_faults_idx(NUMA_MEM, node, 1)];
9982 		}
9983 		print_numa_stats(m, node, tsf, tpf, gsf, gpf);
9984 	}
9985 }
9986 #endif /* CONFIG_NUMA_BALANCING */
9987 #endif /* CONFIG_SCHED_DEBUG */
9988 
9989 __init void init_sched_fair_class(void)
9990 {
9991 #ifdef CONFIG_SMP
9992 	open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
9993 
9994 #ifdef CONFIG_NO_HZ_COMMON
9995 	nohz.next_balance = jiffies;
9996 	zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
9997 #endif
9998 #endif /* SMP */
9999 
10000 }
10001