1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH) 4 * 5 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com> 6 * 7 * Interactivity improvements by Mike Galbraith 8 * (C) 2007 Mike Galbraith <efault@gmx.de> 9 * 10 * Various enhancements by Dmitry Adamushko. 11 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com> 12 * 13 * Group scheduling enhancements by Srivatsa Vaddagiri 14 * Copyright IBM Corporation, 2007 15 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com> 16 * 17 * Scaled math optimizations by Thomas Gleixner 18 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de> 19 * 20 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra 21 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra 22 */ 23 #include "sched.h" 24 25 #include <trace/events/sched.h> 26 27 /* 28 * Targeted preemption latency for CPU-bound tasks: 29 * 30 * NOTE: this latency value is not the same as the concept of 31 * 'timeslice length' - timeslices in CFS are of variable length 32 * and have no persistent notion like in traditional, time-slice 33 * based scheduling concepts. 34 * 35 * (to see the precise effective timeslice length of your workload, 36 * run vmstat and monitor the context-switches (cs) field) 37 * 38 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds) 39 */ 40 unsigned int sysctl_sched_latency = 6000000ULL; 41 static unsigned int normalized_sysctl_sched_latency = 6000000ULL; 42 43 /* 44 * The initial- and re-scaling of tunables is configurable 45 * 46 * Options are: 47 * 48 * SCHED_TUNABLESCALING_NONE - unscaled, always *1 49 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus) 50 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus 51 * 52 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus)) 53 */ 54 enum sched_tunable_scaling sysctl_sched_tunable_scaling = SCHED_TUNABLESCALING_LOG; 55 56 /* 57 * Minimal preemption granularity for CPU-bound tasks: 58 * 59 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds) 60 */ 61 unsigned int sysctl_sched_min_granularity = 750000ULL; 62 static unsigned int normalized_sysctl_sched_min_granularity = 750000ULL; 63 64 /* 65 * This value is kept at sysctl_sched_latency/sysctl_sched_min_granularity 66 */ 67 static unsigned int sched_nr_latency = 8; 68 69 /* 70 * After fork, child runs first. If set to 0 (default) then 71 * parent will (try to) run first. 72 */ 73 unsigned int sysctl_sched_child_runs_first __read_mostly; 74 75 /* 76 * SCHED_OTHER wake-up granularity. 77 * 78 * This option delays the preemption effects of decoupled workloads 79 * and reduces their over-scheduling. Synchronous workloads will still 80 * have immediate wakeup/sleep latencies. 81 * 82 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds) 83 */ 84 unsigned int sysctl_sched_wakeup_granularity = 1000000UL; 85 static unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL; 86 87 const_debug unsigned int sysctl_sched_migration_cost = 500000UL; 88 89 int sched_thermal_decay_shift; 90 static int __init setup_sched_thermal_decay_shift(char *str) 91 { 92 int _shift = 0; 93 94 if (kstrtoint(str, 0, &_shift)) 95 pr_warn("Unable to set scheduler thermal pressure decay shift parameter\n"); 96 97 sched_thermal_decay_shift = clamp(_shift, 0, 10); 98 return 1; 99 } 100 __setup("sched_thermal_decay_shift=", setup_sched_thermal_decay_shift); 101 102 #ifdef CONFIG_SMP 103 /* 104 * For asym packing, by default the lower numbered CPU has higher priority. 105 */ 106 int __weak arch_asym_cpu_priority(int cpu) 107 { 108 return -cpu; 109 } 110 111 /* 112 * The margin used when comparing utilization with CPU capacity. 113 * 114 * (default: ~20%) 115 */ 116 #define fits_capacity(cap, max) ((cap) * 1280 < (max) * 1024) 117 118 #endif 119 120 #ifdef CONFIG_CFS_BANDWIDTH 121 /* 122 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool 123 * each time a cfs_rq requests quota. 124 * 125 * Note: in the case that the slice exceeds the runtime remaining (either due 126 * to consumption or the quota being specified to be smaller than the slice) 127 * we will always only issue the remaining available time. 128 * 129 * (default: 5 msec, units: microseconds) 130 */ 131 unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL; 132 #endif 133 134 static inline void update_load_add(struct load_weight *lw, unsigned long inc) 135 { 136 lw->weight += inc; 137 lw->inv_weight = 0; 138 } 139 140 static inline void update_load_sub(struct load_weight *lw, unsigned long dec) 141 { 142 lw->weight -= dec; 143 lw->inv_weight = 0; 144 } 145 146 static inline void update_load_set(struct load_weight *lw, unsigned long w) 147 { 148 lw->weight = w; 149 lw->inv_weight = 0; 150 } 151 152 /* 153 * Increase the granularity value when there are more CPUs, 154 * because with more CPUs the 'effective latency' as visible 155 * to users decreases. But the relationship is not linear, 156 * so pick a second-best guess by going with the log2 of the 157 * number of CPUs. 158 * 159 * This idea comes from the SD scheduler of Con Kolivas: 160 */ 161 static unsigned int get_update_sysctl_factor(void) 162 { 163 unsigned int cpus = min_t(unsigned int, num_online_cpus(), 8); 164 unsigned int factor; 165 166 switch (sysctl_sched_tunable_scaling) { 167 case SCHED_TUNABLESCALING_NONE: 168 factor = 1; 169 break; 170 case SCHED_TUNABLESCALING_LINEAR: 171 factor = cpus; 172 break; 173 case SCHED_TUNABLESCALING_LOG: 174 default: 175 factor = 1 + ilog2(cpus); 176 break; 177 } 178 179 return factor; 180 } 181 182 static void update_sysctl(void) 183 { 184 unsigned int factor = get_update_sysctl_factor(); 185 186 #define SET_SYSCTL(name) \ 187 (sysctl_##name = (factor) * normalized_sysctl_##name) 188 SET_SYSCTL(sched_min_granularity); 189 SET_SYSCTL(sched_latency); 190 SET_SYSCTL(sched_wakeup_granularity); 191 #undef SET_SYSCTL 192 } 193 194 void __init sched_init_granularity(void) 195 { 196 update_sysctl(); 197 } 198 199 #define WMULT_CONST (~0U) 200 #define WMULT_SHIFT 32 201 202 static void __update_inv_weight(struct load_weight *lw) 203 { 204 unsigned long w; 205 206 if (likely(lw->inv_weight)) 207 return; 208 209 w = scale_load_down(lw->weight); 210 211 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST)) 212 lw->inv_weight = 1; 213 else if (unlikely(!w)) 214 lw->inv_weight = WMULT_CONST; 215 else 216 lw->inv_weight = WMULT_CONST / w; 217 } 218 219 /* 220 * delta_exec * weight / lw.weight 221 * OR 222 * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT 223 * 224 * Either weight := NICE_0_LOAD and lw \e sched_prio_to_wmult[], in which case 225 * we're guaranteed shift stays positive because inv_weight is guaranteed to 226 * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22. 227 * 228 * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus 229 * weight/lw.weight <= 1, and therefore our shift will also be positive. 230 */ 231 static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw) 232 { 233 u64 fact = scale_load_down(weight); 234 int shift = WMULT_SHIFT; 235 236 __update_inv_weight(lw); 237 238 if (unlikely(fact >> 32)) { 239 while (fact >> 32) { 240 fact >>= 1; 241 shift--; 242 } 243 } 244 245 fact = mul_u32_u32(fact, lw->inv_weight); 246 247 while (fact >> 32) { 248 fact >>= 1; 249 shift--; 250 } 251 252 return mul_u64_u32_shr(delta_exec, fact, shift); 253 } 254 255 256 const struct sched_class fair_sched_class; 257 258 /************************************************************** 259 * CFS operations on generic schedulable entities: 260 */ 261 262 #ifdef CONFIG_FAIR_GROUP_SCHED 263 static inline struct task_struct *task_of(struct sched_entity *se) 264 { 265 SCHED_WARN_ON(!entity_is_task(se)); 266 return container_of(se, struct task_struct, se); 267 } 268 269 /* Walk up scheduling entities hierarchy */ 270 #define for_each_sched_entity(se) \ 271 for (; se; se = se->parent) 272 273 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p) 274 { 275 return p->se.cfs_rq; 276 } 277 278 /* runqueue on which this entity is (to be) queued */ 279 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se) 280 { 281 return se->cfs_rq; 282 } 283 284 /* runqueue "owned" by this group */ 285 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp) 286 { 287 return grp->my_q; 288 } 289 290 static inline void cfs_rq_tg_path(struct cfs_rq *cfs_rq, char *path, int len) 291 { 292 if (!path) 293 return; 294 295 if (cfs_rq && task_group_is_autogroup(cfs_rq->tg)) 296 autogroup_path(cfs_rq->tg, path, len); 297 else if (cfs_rq && cfs_rq->tg->css.cgroup) 298 cgroup_path(cfs_rq->tg->css.cgroup, path, len); 299 else 300 strlcpy(path, "(null)", len); 301 } 302 303 static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq) 304 { 305 struct rq *rq = rq_of(cfs_rq); 306 int cpu = cpu_of(rq); 307 308 if (cfs_rq->on_list) 309 return rq->tmp_alone_branch == &rq->leaf_cfs_rq_list; 310 311 cfs_rq->on_list = 1; 312 313 /* 314 * Ensure we either appear before our parent (if already 315 * enqueued) or force our parent to appear after us when it is 316 * enqueued. The fact that we always enqueue bottom-up 317 * reduces this to two cases and a special case for the root 318 * cfs_rq. Furthermore, it also means that we will always reset 319 * tmp_alone_branch either when the branch is connected 320 * to a tree or when we reach the top of the tree 321 */ 322 if (cfs_rq->tg->parent && 323 cfs_rq->tg->parent->cfs_rq[cpu]->on_list) { 324 /* 325 * If parent is already on the list, we add the child 326 * just before. Thanks to circular linked property of 327 * the list, this means to put the child at the tail 328 * of the list that starts by parent. 329 */ 330 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list, 331 &(cfs_rq->tg->parent->cfs_rq[cpu]->leaf_cfs_rq_list)); 332 /* 333 * The branch is now connected to its tree so we can 334 * reset tmp_alone_branch to the beginning of the 335 * list. 336 */ 337 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list; 338 return true; 339 } 340 341 if (!cfs_rq->tg->parent) { 342 /* 343 * cfs rq without parent should be put 344 * at the tail of the list. 345 */ 346 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list, 347 &rq->leaf_cfs_rq_list); 348 /* 349 * We have reach the top of a tree so we can reset 350 * tmp_alone_branch to the beginning of the list. 351 */ 352 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list; 353 return true; 354 } 355 356 /* 357 * The parent has not already been added so we want to 358 * make sure that it will be put after us. 359 * tmp_alone_branch points to the begin of the branch 360 * where we will add parent. 361 */ 362 list_add_rcu(&cfs_rq->leaf_cfs_rq_list, rq->tmp_alone_branch); 363 /* 364 * update tmp_alone_branch to points to the new begin 365 * of the branch 366 */ 367 rq->tmp_alone_branch = &cfs_rq->leaf_cfs_rq_list; 368 return false; 369 } 370 371 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq) 372 { 373 if (cfs_rq->on_list) { 374 struct rq *rq = rq_of(cfs_rq); 375 376 /* 377 * With cfs_rq being unthrottled/throttled during an enqueue, 378 * it can happen the tmp_alone_branch points the a leaf that 379 * we finally want to del. In this case, tmp_alone_branch moves 380 * to the prev element but it will point to rq->leaf_cfs_rq_list 381 * at the end of the enqueue. 382 */ 383 if (rq->tmp_alone_branch == &cfs_rq->leaf_cfs_rq_list) 384 rq->tmp_alone_branch = cfs_rq->leaf_cfs_rq_list.prev; 385 386 list_del_rcu(&cfs_rq->leaf_cfs_rq_list); 387 cfs_rq->on_list = 0; 388 } 389 } 390 391 static inline void assert_list_leaf_cfs_rq(struct rq *rq) 392 { 393 SCHED_WARN_ON(rq->tmp_alone_branch != &rq->leaf_cfs_rq_list); 394 } 395 396 /* Iterate thr' all leaf cfs_rq's on a runqueue */ 397 #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) \ 398 list_for_each_entry_safe(cfs_rq, pos, &rq->leaf_cfs_rq_list, \ 399 leaf_cfs_rq_list) 400 401 /* Do the two (enqueued) entities belong to the same group ? */ 402 static inline struct cfs_rq * 403 is_same_group(struct sched_entity *se, struct sched_entity *pse) 404 { 405 if (se->cfs_rq == pse->cfs_rq) 406 return se->cfs_rq; 407 408 return NULL; 409 } 410 411 static inline struct sched_entity *parent_entity(struct sched_entity *se) 412 { 413 return se->parent; 414 } 415 416 static void 417 find_matching_se(struct sched_entity **se, struct sched_entity **pse) 418 { 419 int se_depth, pse_depth; 420 421 /* 422 * preemption test can be made between sibling entities who are in the 423 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of 424 * both tasks until we find their ancestors who are siblings of common 425 * parent. 426 */ 427 428 /* First walk up until both entities are at same depth */ 429 se_depth = (*se)->depth; 430 pse_depth = (*pse)->depth; 431 432 while (se_depth > pse_depth) { 433 se_depth--; 434 *se = parent_entity(*se); 435 } 436 437 while (pse_depth > se_depth) { 438 pse_depth--; 439 *pse = parent_entity(*pse); 440 } 441 442 while (!is_same_group(*se, *pse)) { 443 *se = parent_entity(*se); 444 *pse = parent_entity(*pse); 445 } 446 } 447 448 #else /* !CONFIG_FAIR_GROUP_SCHED */ 449 450 static inline struct task_struct *task_of(struct sched_entity *se) 451 { 452 return container_of(se, struct task_struct, se); 453 } 454 455 #define for_each_sched_entity(se) \ 456 for (; se; se = NULL) 457 458 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p) 459 { 460 return &task_rq(p)->cfs; 461 } 462 463 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se) 464 { 465 struct task_struct *p = task_of(se); 466 struct rq *rq = task_rq(p); 467 468 return &rq->cfs; 469 } 470 471 /* runqueue "owned" by this group */ 472 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp) 473 { 474 return NULL; 475 } 476 477 static inline void cfs_rq_tg_path(struct cfs_rq *cfs_rq, char *path, int len) 478 { 479 if (path) 480 strlcpy(path, "(null)", len); 481 } 482 483 static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq) 484 { 485 return true; 486 } 487 488 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq) 489 { 490 } 491 492 static inline void assert_list_leaf_cfs_rq(struct rq *rq) 493 { 494 } 495 496 #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) \ 497 for (cfs_rq = &rq->cfs, pos = NULL; cfs_rq; cfs_rq = pos) 498 499 static inline struct sched_entity *parent_entity(struct sched_entity *se) 500 { 501 return NULL; 502 } 503 504 static inline void 505 find_matching_se(struct sched_entity **se, struct sched_entity **pse) 506 { 507 } 508 509 #endif /* CONFIG_FAIR_GROUP_SCHED */ 510 511 static __always_inline 512 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec); 513 514 /************************************************************** 515 * Scheduling class tree data structure manipulation methods: 516 */ 517 518 static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime) 519 { 520 s64 delta = (s64)(vruntime - max_vruntime); 521 if (delta > 0) 522 max_vruntime = vruntime; 523 524 return max_vruntime; 525 } 526 527 static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime) 528 { 529 s64 delta = (s64)(vruntime - min_vruntime); 530 if (delta < 0) 531 min_vruntime = vruntime; 532 533 return min_vruntime; 534 } 535 536 static inline int entity_before(struct sched_entity *a, 537 struct sched_entity *b) 538 { 539 return (s64)(a->vruntime - b->vruntime) < 0; 540 } 541 542 static void update_min_vruntime(struct cfs_rq *cfs_rq) 543 { 544 struct sched_entity *curr = cfs_rq->curr; 545 struct rb_node *leftmost = rb_first_cached(&cfs_rq->tasks_timeline); 546 547 u64 vruntime = cfs_rq->min_vruntime; 548 549 if (curr) { 550 if (curr->on_rq) 551 vruntime = curr->vruntime; 552 else 553 curr = NULL; 554 } 555 556 if (leftmost) { /* non-empty tree */ 557 struct sched_entity *se; 558 se = rb_entry(leftmost, struct sched_entity, run_node); 559 560 if (!curr) 561 vruntime = se->vruntime; 562 else 563 vruntime = min_vruntime(vruntime, se->vruntime); 564 } 565 566 /* ensure we never gain time by being placed backwards. */ 567 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime); 568 #ifndef CONFIG_64BIT 569 smp_wmb(); 570 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime; 571 #endif 572 } 573 574 /* 575 * Enqueue an entity into the rb-tree: 576 */ 577 static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) 578 { 579 struct rb_node **link = &cfs_rq->tasks_timeline.rb_root.rb_node; 580 struct rb_node *parent = NULL; 581 struct sched_entity *entry; 582 bool leftmost = true; 583 584 /* 585 * Find the right place in the rbtree: 586 */ 587 while (*link) { 588 parent = *link; 589 entry = rb_entry(parent, struct sched_entity, run_node); 590 /* 591 * We dont care about collisions. Nodes with 592 * the same key stay together. 593 */ 594 if (entity_before(se, entry)) { 595 link = &parent->rb_left; 596 } else { 597 link = &parent->rb_right; 598 leftmost = false; 599 } 600 } 601 602 rb_link_node(&se->run_node, parent, link); 603 rb_insert_color_cached(&se->run_node, 604 &cfs_rq->tasks_timeline, leftmost); 605 } 606 607 static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) 608 { 609 rb_erase_cached(&se->run_node, &cfs_rq->tasks_timeline); 610 } 611 612 struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq) 613 { 614 struct rb_node *left = rb_first_cached(&cfs_rq->tasks_timeline); 615 616 if (!left) 617 return NULL; 618 619 return rb_entry(left, struct sched_entity, run_node); 620 } 621 622 static struct sched_entity *__pick_next_entity(struct sched_entity *se) 623 { 624 struct rb_node *next = rb_next(&se->run_node); 625 626 if (!next) 627 return NULL; 628 629 return rb_entry(next, struct sched_entity, run_node); 630 } 631 632 #ifdef CONFIG_SCHED_DEBUG 633 struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq) 634 { 635 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline.rb_root); 636 637 if (!last) 638 return NULL; 639 640 return rb_entry(last, struct sched_entity, run_node); 641 } 642 643 /************************************************************** 644 * Scheduling class statistics methods: 645 */ 646 647 int sched_proc_update_handler(struct ctl_table *table, int write, 648 void *buffer, size_t *lenp, loff_t *ppos) 649 { 650 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 651 unsigned int factor = get_update_sysctl_factor(); 652 653 if (ret || !write) 654 return ret; 655 656 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency, 657 sysctl_sched_min_granularity); 658 659 #define WRT_SYSCTL(name) \ 660 (normalized_sysctl_##name = sysctl_##name / (factor)) 661 WRT_SYSCTL(sched_min_granularity); 662 WRT_SYSCTL(sched_latency); 663 WRT_SYSCTL(sched_wakeup_granularity); 664 #undef WRT_SYSCTL 665 666 return 0; 667 } 668 #endif 669 670 /* 671 * delta /= w 672 */ 673 static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se) 674 { 675 if (unlikely(se->load.weight != NICE_0_LOAD)) 676 delta = __calc_delta(delta, NICE_0_LOAD, &se->load); 677 678 return delta; 679 } 680 681 /* 682 * The idea is to set a period in which each task runs once. 683 * 684 * When there are too many tasks (sched_nr_latency) we have to stretch 685 * this period because otherwise the slices get too small. 686 * 687 * p = (nr <= nl) ? l : l*nr/nl 688 */ 689 static u64 __sched_period(unsigned long nr_running) 690 { 691 if (unlikely(nr_running > sched_nr_latency)) 692 return nr_running * sysctl_sched_min_granularity; 693 else 694 return sysctl_sched_latency; 695 } 696 697 /* 698 * We calculate the wall-time slice from the period by taking a part 699 * proportional to the weight. 700 * 701 * s = p*P[w/rw] 702 */ 703 static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se) 704 { 705 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq); 706 707 for_each_sched_entity(se) { 708 struct load_weight *load; 709 struct load_weight lw; 710 711 cfs_rq = cfs_rq_of(se); 712 load = &cfs_rq->load; 713 714 if (unlikely(!se->on_rq)) { 715 lw = cfs_rq->load; 716 717 update_load_add(&lw, se->load.weight); 718 load = &lw; 719 } 720 slice = __calc_delta(slice, se->load.weight, load); 721 } 722 return slice; 723 } 724 725 /* 726 * We calculate the vruntime slice of a to-be-inserted task. 727 * 728 * vs = s/w 729 */ 730 static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se) 731 { 732 return calc_delta_fair(sched_slice(cfs_rq, se), se); 733 } 734 735 #include "pelt.h" 736 #ifdef CONFIG_SMP 737 738 static int select_idle_sibling(struct task_struct *p, int prev_cpu, int cpu); 739 static unsigned long task_h_load(struct task_struct *p); 740 static unsigned long capacity_of(int cpu); 741 742 /* Give new sched_entity start runnable values to heavy its load in infant time */ 743 void init_entity_runnable_average(struct sched_entity *se) 744 { 745 struct sched_avg *sa = &se->avg; 746 747 memset(sa, 0, sizeof(*sa)); 748 749 /* 750 * Tasks are initialized with full load to be seen as heavy tasks until 751 * they get a chance to stabilize to their real load level. 752 * Group entities are initialized with zero load to reflect the fact that 753 * nothing has been attached to the task group yet. 754 */ 755 if (entity_is_task(se)) 756 sa->load_avg = scale_load_down(se->load.weight); 757 758 /* when this task enqueue'ed, it will contribute to its cfs_rq's load_avg */ 759 } 760 761 static void attach_entity_cfs_rq(struct sched_entity *se); 762 763 /* 764 * With new tasks being created, their initial util_avgs are extrapolated 765 * based on the cfs_rq's current util_avg: 766 * 767 * util_avg = cfs_rq->util_avg / (cfs_rq->load_avg + 1) * se.load.weight 768 * 769 * However, in many cases, the above util_avg does not give a desired 770 * value. Moreover, the sum of the util_avgs may be divergent, such 771 * as when the series is a harmonic series. 772 * 773 * To solve this problem, we also cap the util_avg of successive tasks to 774 * only 1/2 of the left utilization budget: 775 * 776 * util_avg_cap = (cpu_scale - cfs_rq->avg.util_avg) / 2^n 777 * 778 * where n denotes the nth task and cpu_scale the CPU capacity. 779 * 780 * For example, for a CPU with 1024 of capacity, a simplest series from 781 * the beginning would be like: 782 * 783 * task util_avg: 512, 256, 128, 64, 32, 16, 8, ... 784 * cfs_rq util_avg: 512, 768, 896, 960, 992, 1008, 1016, ... 785 * 786 * Finally, that extrapolated util_avg is clamped to the cap (util_avg_cap) 787 * if util_avg > util_avg_cap. 788 */ 789 void post_init_entity_util_avg(struct task_struct *p) 790 { 791 struct sched_entity *se = &p->se; 792 struct cfs_rq *cfs_rq = cfs_rq_of(se); 793 struct sched_avg *sa = &se->avg; 794 long cpu_scale = arch_scale_cpu_capacity(cpu_of(rq_of(cfs_rq))); 795 long cap = (long)(cpu_scale - cfs_rq->avg.util_avg) / 2; 796 797 if (cap > 0) { 798 if (cfs_rq->avg.util_avg != 0) { 799 sa->util_avg = cfs_rq->avg.util_avg * se->load.weight; 800 sa->util_avg /= (cfs_rq->avg.load_avg + 1); 801 802 if (sa->util_avg > cap) 803 sa->util_avg = cap; 804 } else { 805 sa->util_avg = cap; 806 } 807 } 808 809 sa->runnable_avg = cpu_scale; 810 811 if (p->sched_class != &fair_sched_class) { 812 /* 813 * For !fair tasks do: 814 * 815 update_cfs_rq_load_avg(now, cfs_rq); 816 attach_entity_load_avg(cfs_rq, se); 817 switched_from_fair(rq, p); 818 * 819 * such that the next switched_to_fair() has the 820 * expected state. 821 */ 822 se->avg.last_update_time = cfs_rq_clock_pelt(cfs_rq); 823 return; 824 } 825 826 attach_entity_cfs_rq(se); 827 } 828 829 #else /* !CONFIG_SMP */ 830 void init_entity_runnable_average(struct sched_entity *se) 831 { 832 } 833 void post_init_entity_util_avg(struct task_struct *p) 834 { 835 } 836 static void update_tg_load_avg(struct cfs_rq *cfs_rq, int force) 837 { 838 } 839 #endif /* CONFIG_SMP */ 840 841 /* 842 * Update the current task's runtime statistics. 843 */ 844 static void update_curr(struct cfs_rq *cfs_rq) 845 { 846 struct sched_entity *curr = cfs_rq->curr; 847 u64 now = rq_clock_task(rq_of(cfs_rq)); 848 u64 delta_exec; 849 850 if (unlikely(!curr)) 851 return; 852 853 delta_exec = now - curr->exec_start; 854 if (unlikely((s64)delta_exec <= 0)) 855 return; 856 857 curr->exec_start = now; 858 859 schedstat_set(curr->statistics.exec_max, 860 max(delta_exec, curr->statistics.exec_max)); 861 862 curr->sum_exec_runtime += delta_exec; 863 schedstat_add(cfs_rq->exec_clock, delta_exec); 864 865 curr->vruntime += calc_delta_fair(delta_exec, curr); 866 update_min_vruntime(cfs_rq); 867 868 if (entity_is_task(curr)) { 869 struct task_struct *curtask = task_of(curr); 870 871 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime); 872 cgroup_account_cputime(curtask, delta_exec); 873 account_group_exec_runtime(curtask, delta_exec); 874 } 875 876 account_cfs_rq_runtime(cfs_rq, delta_exec); 877 } 878 879 static void update_curr_fair(struct rq *rq) 880 { 881 update_curr(cfs_rq_of(&rq->curr->se)); 882 } 883 884 static inline void 885 update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se) 886 { 887 u64 wait_start, prev_wait_start; 888 889 if (!schedstat_enabled()) 890 return; 891 892 wait_start = rq_clock(rq_of(cfs_rq)); 893 prev_wait_start = schedstat_val(se->statistics.wait_start); 894 895 if (entity_is_task(se) && task_on_rq_migrating(task_of(se)) && 896 likely(wait_start > prev_wait_start)) 897 wait_start -= prev_wait_start; 898 899 __schedstat_set(se->statistics.wait_start, wait_start); 900 } 901 902 static inline void 903 update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se) 904 { 905 struct task_struct *p; 906 u64 delta; 907 908 if (!schedstat_enabled()) 909 return; 910 911 delta = rq_clock(rq_of(cfs_rq)) - schedstat_val(se->statistics.wait_start); 912 913 if (entity_is_task(se)) { 914 p = task_of(se); 915 if (task_on_rq_migrating(p)) { 916 /* 917 * Preserve migrating task's wait time so wait_start 918 * time stamp can be adjusted to accumulate wait time 919 * prior to migration. 920 */ 921 __schedstat_set(se->statistics.wait_start, delta); 922 return; 923 } 924 trace_sched_stat_wait(p, delta); 925 } 926 927 __schedstat_set(se->statistics.wait_max, 928 max(schedstat_val(se->statistics.wait_max), delta)); 929 __schedstat_inc(se->statistics.wait_count); 930 __schedstat_add(se->statistics.wait_sum, delta); 931 __schedstat_set(se->statistics.wait_start, 0); 932 } 933 934 static inline void 935 update_stats_enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se) 936 { 937 struct task_struct *tsk = NULL; 938 u64 sleep_start, block_start; 939 940 if (!schedstat_enabled()) 941 return; 942 943 sleep_start = schedstat_val(se->statistics.sleep_start); 944 block_start = schedstat_val(se->statistics.block_start); 945 946 if (entity_is_task(se)) 947 tsk = task_of(se); 948 949 if (sleep_start) { 950 u64 delta = rq_clock(rq_of(cfs_rq)) - sleep_start; 951 952 if ((s64)delta < 0) 953 delta = 0; 954 955 if (unlikely(delta > schedstat_val(se->statistics.sleep_max))) 956 __schedstat_set(se->statistics.sleep_max, delta); 957 958 __schedstat_set(se->statistics.sleep_start, 0); 959 __schedstat_add(se->statistics.sum_sleep_runtime, delta); 960 961 if (tsk) { 962 account_scheduler_latency(tsk, delta >> 10, 1); 963 trace_sched_stat_sleep(tsk, delta); 964 } 965 } 966 if (block_start) { 967 u64 delta = rq_clock(rq_of(cfs_rq)) - block_start; 968 969 if ((s64)delta < 0) 970 delta = 0; 971 972 if (unlikely(delta > schedstat_val(se->statistics.block_max))) 973 __schedstat_set(se->statistics.block_max, delta); 974 975 __schedstat_set(se->statistics.block_start, 0); 976 __schedstat_add(se->statistics.sum_sleep_runtime, delta); 977 978 if (tsk) { 979 if (tsk->in_iowait) { 980 __schedstat_add(se->statistics.iowait_sum, delta); 981 __schedstat_inc(se->statistics.iowait_count); 982 trace_sched_stat_iowait(tsk, delta); 983 } 984 985 trace_sched_stat_blocked(tsk, delta); 986 987 /* 988 * Blocking time is in units of nanosecs, so shift by 989 * 20 to get a milliseconds-range estimation of the 990 * amount of time that the task spent sleeping: 991 */ 992 if (unlikely(prof_on == SLEEP_PROFILING)) { 993 profile_hits(SLEEP_PROFILING, 994 (void *)get_wchan(tsk), 995 delta >> 20); 996 } 997 account_scheduler_latency(tsk, delta >> 10, 0); 998 } 999 } 1000 } 1001 1002 /* 1003 * Task is being enqueued - update stats: 1004 */ 1005 static inline void 1006 update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 1007 { 1008 if (!schedstat_enabled()) 1009 return; 1010 1011 /* 1012 * Are we enqueueing a waiting task? (for current tasks 1013 * a dequeue/enqueue event is a NOP) 1014 */ 1015 if (se != cfs_rq->curr) 1016 update_stats_wait_start(cfs_rq, se); 1017 1018 if (flags & ENQUEUE_WAKEUP) 1019 update_stats_enqueue_sleeper(cfs_rq, se); 1020 } 1021 1022 static inline void 1023 update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 1024 { 1025 1026 if (!schedstat_enabled()) 1027 return; 1028 1029 /* 1030 * Mark the end of the wait period if dequeueing a 1031 * waiting task: 1032 */ 1033 if (se != cfs_rq->curr) 1034 update_stats_wait_end(cfs_rq, se); 1035 1036 if ((flags & DEQUEUE_SLEEP) && entity_is_task(se)) { 1037 struct task_struct *tsk = task_of(se); 1038 1039 if (tsk->state & TASK_INTERRUPTIBLE) 1040 __schedstat_set(se->statistics.sleep_start, 1041 rq_clock(rq_of(cfs_rq))); 1042 if (tsk->state & TASK_UNINTERRUPTIBLE) 1043 __schedstat_set(se->statistics.block_start, 1044 rq_clock(rq_of(cfs_rq))); 1045 } 1046 } 1047 1048 /* 1049 * We are picking a new current task - update its stats: 1050 */ 1051 static inline void 1052 update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se) 1053 { 1054 /* 1055 * We are starting a new run period: 1056 */ 1057 se->exec_start = rq_clock_task(rq_of(cfs_rq)); 1058 } 1059 1060 /************************************************** 1061 * Scheduling class queueing methods: 1062 */ 1063 1064 #ifdef CONFIG_NUMA_BALANCING 1065 /* 1066 * Approximate time to scan a full NUMA task in ms. The task scan period is 1067 * calculated based on the tasks virtual memory size and 1068 * numa_balancing_scan_size. 1069 */ 1070 unsigned int sysctl_numa_balancing_scan_period_min = 1000; 1071 unsigned int sysctl_numa_balancing_scan_period_max = 60000; 1072 1073 /* Portion of address space to scan in MB */ 1074 unsigned int sysctl_numa_balancing_scan_size = 256; 1075 1076 /* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */ 1077 unsigned int sysctl_numa_balancing_scan_delay = 1000; 1078 1079 struct numa_group { 1080 refcount_t refcount; 1081 1082 spinlock_t lock; /* nr_tasks, tasks */ 1083 int nr_tasks; 1084 pid_t gid; 1085 int active_nodes; 1086 1087 struct rcu_head rcu; 1088 unsigned long total_faults; 1089 unsigned long max_faults_cpu; 1090 /* 1091 * Faults_cpu is used to decide whether memory should move 1092 * towards the CPU. As a consequence, these stats are weighted 1093 * more by CPU use than by memory faults. 1094 */ 1095 unsigned long *faults_cpu; 1096 unsigned long faults[]; 1097 }; 1098 1099 /* 1100 * For functions that can be called in multiple contexts that permit reading 1101 * ->numa_group (see struct task_struct for locking rules). 1102 */ 1103 static struct numa_group *deref_task_numa_group(struct task_struct *p) 1104 { 1105 return rcu_dereference_check(p->numa_group, p == current || 1106 (lockdep_is_held(&task_rq(p)->lock) && !READ_ONCE(p->on_cpu))); 1107 } 1108 1109 static struct numa_group *deref_curr_numa_group(struct task_struct *p) 1110 { 1111 return rcu_dereference_protected(p->numa_group, p == current); 1112 } 1113 1114 static inline unsigned long group_faults_priv(struct numa_group *ng); 1115 static inline unsigned long group_faults_shared(struct numa_group *ng); 1116 1117 static unsigned int task_nr_scan_windows(struct task_struct *p) 1118 { 1119 unsigned long rss = 0; 1120 unsigned long nr_scan_pages; 1121 1122 /* 1123 * Calculations based on RSS as non-present and empty pages are skipped 1124 * by the PTE scanner and NUMA hinting faults should be trapped based 1125 * on resident pages 1126 */ 1127 nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT); 1128 rss = get_mm_rss(p->mm); 1129 if (!rss) 1130 rss = nr_scan_pages; 1131 1132 rss = round_up(rss, nr_scan_pages); 1133 return rss / nr_scan_pages; 1134 } 1135 1136 /* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */ 1137 #define MAX_SCAN_WINDOW 2560 1138 1139 static unsigned int task_scan_min(struct task_struct *p) 1140 { 1141 unsigned int scan_size = READ_ONCE(sysctl_numa_balancing_scan_size); 1142 unsigned int scan, floor; 1143 unsigned int windows = 1; 1144 1145 if (scan_size < MAX_SCAN_WINDOW) 1146 windows = MAX_SCAN_WINDOW / scan_size; 1147 floor = 1000 / windows; 1148 1149 scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p); 1150 return max_t(unsigned int, floor, scan); 1151 } 1152 1153 static unsigned int task_scan_start(struct task_struct *p) 1154 { 1155 unsigned long smin = task_scan_min(p); 1156 unsigned long period = smin; 1157 struct numa_group *ng; 1158 1159 /* Scale the maximum scan period with the amount of shared memory. */ 1160 rcu_read_lock(); 1161 ng = rcu_dereference(p->numa_group); 1162 if (ng) { 1163 unsigned long shared = group_faults_shared(ng); 1164 unsigned long private = group_faults_priv(ng); 1165 1166 period *= refcount_read(&ng->refcount); 1167 period *= shared + 1; 1168 period /= private + shared + 1; 1169 } 1170 rcu_read_unlock(); 1171 1172 return max(smin, period); 1173 } 1174 1175 static unsigned int task_scan_max(struct task_struct *p) 1176 { 1177 unsigned long smin = task_scan_min(p); 1178 unsigned long smax; 1179 struct numa_group *ng; 1180 1181 /* Watch for min being lower than max due to floor calculations */ 1182 smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p); 1183 1184 /* Scale the maximum scan period with the amount of shared memory. */ 1185 ng = deref_curr_numa_group(p); 1186 if (ng) { 1187 unsigned long shared = group_faults_shared(ng); 1188 unsigned long private = group_faults_priv(ng); 1189 unsigned long period = smax; 1190 1191 period *= refcount_read(&ng->refcount); 1192 period *= shared + 1; 1193 period /= private + shared + 1; 1194 1195 smax = max(smax, period); 1196 } 1197 1198 return max(smin, smax); 1199 } 1200 1201 static void account_numa_enqueue(struct rq *rq, struct task_struct *p) 1202 { 1203 rq->nr_numa_running += (p->numa_preferred_nid != NUMA_NO_NODE); 1204 rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p)); 1205 } 1206 1207 static void account_numa_dequeue(struct rq *rq, struct task_struct *p) 1208 { 1209 rq->nr_numa_running -= (p->numa_preferred_nid != NUMA_NO_NODE); 1210 rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p)); 1211 } 1212 1213 /* Shared or private faults. */ 1214 #define NR_NUMA_HINT_FAULT_TYPES 2 1215 1216 /* Memory and CPU locality */ 1217 #define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2) 1218 1219 /* Averaged statistics, and temporary buffers. */ 1220 #define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2) 1221 1222 pid_t task_numa_group_id(struct task_struct *p) 1223 { 1224 struct numa_group *ng; 1225 pid_t gid = 0; 1226 1227 rcu_read_lock(); 1228 ng = rcu_dereference(p->numa_group); 1229 if (ng) 1230 gid = ng->gid; 1231 rcu_read_unlock(); 1232 1233 return gid; 1234 } 1235 1236 /* 1237 * The averaged statistics, shared & private, memory & CPU, 1238 * occupy the first half of the array. The second half of the 1239 * array is for current counters, which are averaged into the 1240 * first set by task_numa_placement. 1241 */ 1242 static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv) 1243 { 1244 return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv; 1245 } 1246 1247 static inline unsigned long task_faults(struct task_struct *p, int nid) 1248 { 1249 if (!p->numa_faults) 1250 return 0; 1251 1252 return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] + 1253 p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)]; 1254 } 1255 1256 static inline unsigned long group_faults(struct task_struct *p, int nid) 1257 { 1258 struct numa_group *ng = deref_task_numa_group(p); 1259 1260 if (!ng) 1261 return 0; 1262 1263 return ng->faults[task_faults_idx(NUMA_MEM, nid, 0)] + 1264 ng->faults[task_faults_idx(NUMA_MEM, nid, 1)]; 1265 } 1266 1267 static inline unsigned long group_faults_cpu(struct numa_group *group, int nid) 1268 { 1269 return group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 0)] + 1270 group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 1)]; 1271 } 1272 1273 static inline unsigned long group_faults_priv(struct numa_group *ng) 1274 { 1275 unsigned long faults = 0; 1276 int node; 1277 1278 for_each_online_node(node) { 1279 faults += ng->faults[task_faults_idx(NUMA_MEM, node, 1)]; 1280 } 1281 1282 return faults; 1283 } 1284 1285 static inline unsigned long group_faults_shared(struct numa_group *ng) 1286 { 1287 unsigned long faults = 0; 1288 int node; 1289 1290 for_each_online_node(node) { 1291 faults += ng->faults[task_faults_idx(NUMA_MEM, node, 0)]; 1292 } 1293 1294 return faults; 1295 } 1296 1297 /* 1298 * A node triggering more than 1/3 as many NUMA faults as the maximum is 1299 * considered part of a numa group's pseudo-interleaving set. Migrations 1300 * between these nodes are slowed down, to allow things to settle down. 1301 */ 1302 #define ACTIVE_NODE_FRACTION 3 1303 1304 static bool numa_is_active_node(int nid, struct numa_group *ng) 1305 { 1306 return group_faults_cpu(ng, nid) * ACTIVE_NODE_FRACTION > ng->max_faults_cpu; 1307 } 1308 1309 /* Handle placement on systems where not all nodes are directly connected. */ 1310 static unsigned long score_nearby_nodes(struct task_struct *p, int nid, 1311 int maxdist, bool task) 1312 { 1313 unsigned long score = 0; 1314 int node; 1315 1316 /* 1317 * All nodes are directly connected, and the same distance 1318 * from each other. No need for fancy placement algorithms. 1319 */ 1320 if (sched_numa_topology_type == NUMA_DIRECT) 1321 return 0; 1322 1323 /* 1324 * This code is called for each node, introducing N^2 complexity, 1325 * which should be ok given the number of nodes rarely exceeds 8. 1326 */ 1327 for_each_online_node(node) { 1328 unsigned long faults; 1329 int dist = node_distance(nid, node); 1330 1331 /* 1332 * The furthest away nodes in the system are not interesting 1333 * for placement; nid was already counted. 1334 */ 1335 if (dist == sched_max_numa_distance || node == nid) 1336 continue; 1337 1338 /* 1339 * On systems with a backplane NUMA topology, compare groups 1340 * of nodes, and move tasks towards the group with the most 1341 * memory accesses. When comparing two nodes at distance 1342 * "hoplimit", only nodes closer by than "hoplimit" are part 1343 * of each group. Skip other nodes. 1344 */ 1345 if (sched_numa_topology_type == NUMA_BACKPLANE && 1346 dist >= maxdist) 1347 continue; 1348 1349 /* Add up the faults from nearby nodes. */ 1350 if (task) 1351 faults = task_faults(p, node); 1352 else 1353 faults = group_faults(p, node); 1354 1355 /* 1356 * On systems with a glueless mesh NUMA topology, there are 1357 * no fixed "groups of nodes". Instead, nodes that are not 1358 * directly connected bounce traffic through intermediate 1359 * nodes; a numa_group can occupy any set of nodes. 1360 * The further away a node is, the less the faults count. 1361 * This seems to result in good task placement. 1362 */ 1363 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) { 1364 faults *= (sched_max_numa_distance - dist); 1365 faults /= (sched_max_numa_distance - LOCAL_DISTANCE); 1366 } 1367 1368 score += faults; 1369 } 1370 1371 return score; 1372 } 1373 1374 /* 1375 * These return the fraction of accesses done by a particular task, or 1376 * task group, on a particular numa node. The group weight is given a 1377 * larger multiplier, in order to group tasks together that are almost 1378 * evenly spread out between numa nodes. 1379 */ 1380 static inline unsigned long task_weight(struct task_struct *p, int nid, 1381 int dist) 1382 { 1383 unsigned long faults, total_faults; 1384 1385 if (!p->numa_faults) 1386 return 0; 1387 1388 total_faults = p->total_numa_faults; 1389 1390 if (!total_faults) 1391 return 0; 1392 1393 faults = task_faults(p, nid); 1394 faults += score_nearby_nodes(p, nid, dist, true); 1395 1396 return 1000 * faults / total_faults; 1397 } 1398 1399 static inline unsigned long group_weight(struct task_struct *p, int nid, 1400 int dist) 1401 { 1402 struct numa_group *ng = deref_task_numa_group(p); 1403 unsigned long faults, total_faults; 1404 1405 if (!ng) 1406 return 0; 1407 1408 total_faults = ng->total_faults; 1409 1410 if (!total_faults) 1411 return 0; 1412 1413 faults = group_faults(p, nid); 1414 faults += score_nearby_nodes(p, nid, dist, false); 1415 1416 return 1000 * faults / total_faults; 1417 } 1418 1419 bool should_numa_migrate_memory(struct task_struct *p, struct page * page, 1420 int src_nid, int dst_cpu) 1421 { 1422 struct numa_group *ng = deref_curr_numa_group(p); 1423 int dst_nid = cpu_to_node(dst_cpu); 1424 int last_cpupid, this_cpupid; 1425 1426 this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid); 1427 last_cpupid = page_cpupid_xchg_last(page, this_cpupid); 1428 1429 /* 1430 * Allow first faults or private faults to migrate immediately early in 1431 * the lifetime of a task. The magic number 4 is based on waiting for 1432 * two full passes of the "multi-stage node selection" test that is 1433 * executed below. 1434 */ 1435 if ((p->numa_preferred_nid == NUMA_NO_NODE || p->numa_scan_seq <= 4) && 1436 (cpupid_pid_unset(last_cpupid) || cpupid_match_pid(p, last_cpupid))) 1437 return true; 1438 1439 /* 1440 * Multi-stage node selection is used in conjunction with a periodic 1441 * migration fault to build a temporal task<->page relation. By using 1442 * a two-stage filter we remove short/unlikely relations. 1443 * 1444 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate 1445 * a task's usage of a particular page (n_p) per total usage of this 1446 * page (n_t) (in a given time-span) to a probability. 1447 * 1448 * Our periodic faults will sample this probability and getting the 1449 * same result twice in a row, given these samples are fully 1450 * independent, is then given by P(n)^2, provided our sample period 1451 * is sufficiently short compared to the usage pattern. 1452 * 1453 * This quadric squishes small probabilities, making it less likely we 1454 * act on an unlikely task<->page relation. 1455 */ 1456 if (!cpupid_pid_unset(last_cpupid) && 1457 cpupid_to_nid(last_cpupid) != dst_nid) 1458 return false; 1459 1460 /* Always allow migrate on private faults */ 1461 if (cpupid_match_pid(p, last_cpupid)) 1462 return true; 1463 1464 /* A shared fault, but p->numa_group has not been set up yet. */ 1465 if (!ng) 1466 return true; 1467 1468 /* 1469 * Destination node is much more heavily used than the source 1470 * node? Allow migration. 1471 */ 1472 if (group_faults_cpu(ng, dst_nid) > group_faults_cpu(ng, src_nid) * 1473 ACTIVE_NODE_FRACTION) 1474 return true; 1475 1476 /* 1477 * Distribute memory according to CPU & memory use on each node, 1478 * with 3/4 hysteresis to avoid unnecessary memory migrations: 1479 * 1480 * faults_cpu(dst) 3 faults_cpu(src) 1481 * --------------- * - > --------------- 1482 * faults_mem(dst) 4 faults_mem(src) 1483 */ 1484 return group_faults_cpu(ng, dst_nid) * group_faults(p, src_nid) * 3 > 1485 group_faults_cpu(ng, src_nid) * group_faults(p, dst_nid) * 4; 1486 } 1487 1488 /* 1489 * 'numa_type' describes the node at the moment of load balancing. 1490 */ 1491 enum numa_type { 1492 /* The node has spare capacity that can be used to run more tasks. */ 1493 node_has_spare = 0, 1494 /* 1495 * The node is fully used and the tasks don't compete for more CPU 1496 * cycles. Nevertheless, some tasks might wait before running. 1497 */ 1498 node_fully_busy, 1499 /* 1500 * The node is overloaded and can't provide expected CPU cycles to all 1501 * tasks. 1502 */ 1503 node_overloaded 1504 }; 1505 1506 /* Cached statistics for all CPUs within a node */ 1507 struct numa_stats { 1508 unsigned long load; 1509 unsigned long util; 1510 /* Total compute capacity of CPUs on a node */ 1511 unsigned long compute_capacity; 1512 unsigned int nr_running; 1513 unsigned int weight; 1514 enum numa_type node_type; 1515 int idle_cpu; 1516 }; 1517 1518 static inline bool is_core_idle(int cpu) 1519 { 1520 #ifdef CONFIG_SCHED_SMT 1521 int sibling; 1522 1523 for_each_cpu(sibling, cpu_smt_mask(cpu)) { 1524 if (cpu == sibling) 1525 continue; 1526 1527 if (!idle_cpu(cpu)) 1528 return false; 1529 } 1530 #endif 1531 1532 return true; 1533 } 1534 1535 struct task_numa_env { 1536 struct task_struct *p; 1537 1538 int src_cpu, src_nid; 1539 int dst_cpu, dst_nid; 1540 1541 struct numa_stats src_stats, dst_stats; 1542 1543 int imbalance_pct; 1544 int dist; 1545 1546 struct task_struct *best_task; 1547 long best_imp; 1548 int best_cpu; 1549 }; 1550 1551 static unsigned long cpu_load(struct rq *rq); 1552 static unsigned long cpu_util(int cpu); 1553 static inline long adjust_numa_imbalance(int imbalance, int src_nr_running); 1554 1555 static inline enum 1556 numa_type numa_classify(unsigned int imbalance_pct, 1557 struct numa_stats *ns) 1558 { 1559 if ((ns->nr_running > ns->weight) && 1560 ((ns->compute_capacity * 100) < (ns->util * imbalance_pct))) 1561 return node_overloaded; 1562 1563 if ((ns->nr_running < ns->weight) || 1564 ((ns->compute_capacity * 100) > (ns->util * imbalance_pct))) 1565 return node_has_spare; 1566 1567 return node_fully_busy; 1568 } 1569 1570 #ifdef CONFIG_SCHED_SMT 1571 /* Forward declarations of select_idle_sibling helpers */ 1572 static inline bool test_idle_cores(int cpu, bool def); 1573 static inline int numa_idle_core(int idle_core, int cpu) 1574 { 1575 if (!static_branch_likely(&sched_smt_present) || 1576 idle_core >= 0 || !test_idle_cores(cpu, false)) 1577 return idle_core; 1578 1579 /* 1580 * Prefer cores instead of packing HT siblings 1581 * and triggering future load balancing. 1582 */ 1583 if (is_core_idle(cpu)) 1584 idle_core = cpu; 1585 1586 return idle_core; 1587 } 1588 #else 1589 static inline int numa_idle_core(int idle_core, int cpu) 1590 { 1591 return idle_core; 1592 } 1593 #endif 1594 1595 /* 1596 * Gather all necessary information to make NUMA balancing placement 1597 * decisions that are compatible with standard load balancer. This 1598 * borrows code and logic from update_sg_lb_stats but sharing a 1599 * common implementation is impractical. 1600 */ 1601 static void update_numa_stats(struct task_numa_env *env, 1602 struct numa_stats *ns, int nid, 1603 bool find_idle) 1604 { 1605 int cpu, idle_core = -1; 1606 1607 memset(ns, 0, sizeof(*ns)); 1608 ns->idle_cpu = -1; 1609 1610 rcu_read_lock(); 1611 for_each_cpu(cpu, cpumask_of_node(nid)) { 1612 struct rq *rq = cpu_rq(cpu); 1613 1614 ns->load += cpu_load(rq); 1615 ns->util += cpu_util(cpu); 1616 ns->nr_running += rq->cfs.h_nr_running; 1617 ns->compute_capacity += capacity_of(cpu); 1618 1619 if (find_idle && !rq->nr_running && idle_cpu(cpu)) { 1620 if (READ_ONCE(rq->numa_migrate_on) || 1621 !cpumask_test_cpu(cpu, env->p->cpus_ptr)) 1622 continue; 1623 1624 if (ns->idle_cpu == -1) 1625 ns->idle_cpu = cpu; 1626 1627 idle_core = numa_idle_core(idle_core, cpu); 1628 } 1629 } 1630 rcu_read_unlock(); 1631 1632 ns->weight = cpumask_weight(cpumask_of_node(nid)); 1633 1634 ns->node_type = numa_classify(env->imbalance_pct, ns); 1635 1636 if (idle_core >= 0) 1637 ns->idle_cpu = idle_core; 1638 } 1639 1640 static void task_numa_assign(struct task_numa_env *env, 1641 struct task_struct *p, long imp) 1642 { 1643 struct rq *rq = cpu_rq(env->dst_cpu); 1644 1645 /* Check if run-queue part of active NUMA balance. */ 1646 if (env->best_cpu != env->dst_cpu && xchg(&rq->numa_migrate_on, 1)) { 1647 int cpu; 1648 int start = env->dst_cpu; 1649 1650 /* Find alternative idle CPU. */ 1651 for_each_cpu_wrap(cpu, cpumask_of_node(env->dst_nid), start) { 1652 if (cpu == env->best_cpu || !idle_cpu(cpu) || 1653 !cpumask_test_cpu(cpu, env->p->cpus_ptr)) { 1654 continue; 1655 } 1656 1657 env->dst_cpu = cpu; 1658 rq = cpu_rq(env->dst_cpu); 1659 if (!xchg(&rq->numa_migrate_on, 1)) 1660 goto assign; 1661 } 1662 1663 /* Failed to find an alternative idle CPU */ 1664 return; 1665 } 1666 1667 assign: 1668 /* 1669 * Clear previous best_cpu/rq numa-migrate flag, since task now 1670 * found a better CPU to move/swap. 1671 */ 1672 if (env->best_cpu != -1 && env->best_cpu != env->dst_cpu) { 1673 rq = cpu_rq(env->best_cpu); 1674 WRITE_ONCE(rq->numa_migrate_on, 0); 1675 } 1676 1677 if (env->best_task) 1678 put_task_struct(env->best_task); 1679 if (p) 1680 get_task_struct(p); 1681 1682 env->best_task = p; 1683 env->best_imp = imp; 1684 env->best_cpu = env->dst_cpu; 1685 } 1686 1687 static bool load_too_imbalanced(long src_load, long dst_load, 1688 struct task_numa_env *env) 1689 { 1690 long imb, old_imb; 1691 long orig_src_load, orig_dst_load; 1692 long src_capacity, dst_capacity; 1693 1694 /* 1695 * The load is corrected for the CPU capacity available on each node. 1696 * 1697 * src_load dst_load 1698 * ------------ vs --------- 1699 * src_capacity dst_capacity 1700 */ 1701 src_capacity = env->src_stats.compute_capacity; 1702 dst_capacity = env->dst_stats.compute_capacity; 1703 1704 imb = abs(dst_load * src_capacity - src_load * dst_capacity); 1705 1706 orig_src_load = env->src_stats.load; 1707 orig_dst_load = env->dst_stats.load; 1708 1709 old_imb = abs(orig_dst_load * src_capacity - orig_src_load * dst_capacity); 1710 1711 /* Would this change make things worse? */ 1712 return (imb > old_imb); 1713 } 1714 1715 /* 1716 * Maximum NUMA importance can be 1998 (2*999); 1717 * SMALLIMP @ 30 would be close to 1998/64. 1718 * Used to deter task migration. 1719 */ 1720 #define SMALLIMP 30 1721 1722 /* 1723 * This checks if the overall compute and NUMA accesses of the system would 1724 * be improved if the source tasks was migrated to the target dst_cpu taking 1725 * into account that it might be best if task running on the dst_cpu should 1726 * be exchanged with the source task 1727 */ 1728 static bool task_numa_compare(struct task_numa_env *env, 1729 long taskimp, long groupimp, bool maymove) 1730 { 1731 struct numa_group *cur_ng, *p_ng = deref_curr_numa_group(env->p); 1732 struct rq *dst_rq = cpu_rq(env->dst_cpu); 1733 long imp = p_ng ? groupimp : taskimp; 1734 struct task_struct *cur; 1735 long src_load, dst_load; 1736 int dist = env->dist; 1737 long moveimp = imp; 1738 long load; 1739 bool stopsearch = false; 1740 1741 if (READ_ONCE(dst_rq->numa_migrate_on)) 1742 return false; 1743 1744 rcu_read_lock(); 1745 cur = rcu_dereference(dst_rq->curr); 1746 if (cur && ((cur->flags & PF_EXITING) || is_idle_task(cur))) 1747 cur = NULL; 1748 1749 /* 1750 * Because we have preemption enabled we can get migrated around and 1751 * end try selecting ourselves (current == env->p) as a swap candidate. 1752 */ 1753 if (cur == env->p) { 1754 stopsearch = true; 1755 goto unlock; 1756 } 1757 1758 if (!cur) { 1759 if (maymove && moveimp >= env->best_imp) 1760 goto assign; 1761 else 1762 goto unlock; 1763 } 1764 1765 /* Skip this swap candidate if cannot move to the source cpu. */ 1766 if (!cpumask_test_cpu(env->src_cpu, cur->cpus_ptr)) 1767 goto unlock; 1768 1769 /* 1770 * Skip this swap candidate if it is not moving to its preferred 1771 * node and the best task is. 1772 */ 1773 if (env->best_task && 1774 env->best_task->numa_preferred_nid == env->src_nid && 1775 cur->numa_preferred_nid != env->src_nid) { 1776 goto unlock; 1777 } 1778 1779 /* 1780 * "imp" is the fault differential for the source task between the 1781 * source and destination node. Calculate the total differential for 1782 * the source task and potential destination task. The more negative 1783 * the value is, the more remote accesses that would be expected to 1784 * be incurred if the tasks were swapped. 1785 * 1786 * If dst and source tasks are in the same NUMA group, or not 1787 * in any group then look only at task weights. 1788 */ 1789 cur_ng = rcu_dereference(cur->numa_group); 1790 if (cur_ng == p_ng) { 1791 imp = taskimp + task_weight(cur, env->src_nid, dist) - 1792 task_weight(cur, env->dst_nid, dist); 1793 /* 1794 * Add some hysteresis to prevent swapping the 1795 * tasks within a group over tiny differences. 1796 */ 1797 if (cur_ng) 1798 imp -= imp / 16; 1799 } else { 1800 /* 1801 * Compare the group weights. If a task is all by itself 1802 * (not part of a group), use the task weight instead. 1803 */ 1804 if (cur_ng && p_ng) 1805 imp += group_weight(cur, env->src_nid, dist) - 1806 group_weight(cur, env->dst_nid, dist); 1807 else 1808 imp += task_weight(cur, env->src_nid, dist) - 1809 task_weight(cur, env->dst_nid, dist); 1810 } 1811 1812 /* Discourage picking a task already on its preferred node */ 1813 if (cur->numa_preferred_nid == env->dst_nid) 1814 imp -= imp / 16; 1815 1816 /* 1817 * Encourage picking a task that moves to its preferred node. 1818 * This potentially makes imp larger than it's maximum of 1819 * 1998 (see SMALLIMP and task_weight for why) but in this 1820 * case, it does not matter. 1821 */ 1822 if (cur->numa_preferred_nid == env->src_nid) 1823 imp += imp / 8; 1824 1825 if (maymove && moveimp > imp && moveimp > env->best_imp) { 1826 imp = moveimp; 1827 cur = NULL; 1828 goto assign; 1829 } 1830 1831 /* 1832 * Prefer swapping with a task moving to its preferred node over a 1833 * task that is not. 1834 */ 1835 if (env->best_task && cur->numa_preferred_nid == env->src_nid && 1836 env->best_task->numa_preferred_nid != env->src_nid) { 1837 goto assign; 1838 } 1839 1840 /* 1841 * If the NUMA importance is less than SMALLIMP, 1842 * task migration might only result in ping pong 1843 * of tasks and also hurt performance due to cache 1844 * misses. 1845 */ 1846 if (imp < SMALLIMP || imp <= env->best_imp + SMALLIMP / 2) 1847 goto unlock; 1848 1849 /* 1850 * In the overloaded case, try and keep the load balanced. 1851 */ 1852 load = task_h_load(env->p) - task_h_load(cur); 1853 if (!load) 1854 goto assign; 1855 1856 dst_load = env->dst_stats.load + load; 1857 src_load = env->src_stats.load - load; 1858 1859 if (load_too_imbalanced(src_load, dst_load, env)) 1860 goto unlock; 1861 1862 assign: 1863 /* Evaluate an idle CPU for a task numa move. */ 1864 if (!cur) { 1865 int cpu = env->dst_stats.idle_cpu; 1866 1867 /* Nothing cached so current CPU went idle since the search. */ 1868 if (cpu < 0) 1869 cpu = env->dst_cpu; 1870 1871 /* 1872 * If the CPU is no longer truly idle and the previous best CPU 1873 * is, keep using it. 1874 */ 1875 if (!idle_cpu(cpu) && env->best_cpu >= 0 && 1876 idle_cpu(env->best_cpu)) { 1877 cpu = env->best_cpu; 1878 } 1879 1880 env->dst_cpu = cpu; 1881 } 1882 1883 task_numa_assign(env, cur, imp); 1884 1885 /* 1886 * If a move to idle is allowed because there is capacity or load 1887 * balance improves then stop the search. While a better swap 1888 * candidate may exist, a search is not free. 1889 */ 1890 if (maymove && !cur && env->best_cpu >= 0 && idle_cpu(env->best_cpu)) 1891 stopsearch = true; 1892 1893 /* 1894 * If a swap candidate must be identified and the current best task 1895 * moves its preferred node then stop the search. 1896 */ 1897 if (!maymove && env->best_task && 1898 env->best_task->numa_preferred_nid == env->src_nid) { 1899 stopsearch = true; 1900 } 1901 unlock: 1902 rcu_read_unlock(); 1903 1904 return stopsearch; 1905 } 1906 1907 static void task_numa_find_cpu(struct task_numa_env *env, 1908 long taskimp, long groupimp) 1909 { 1910 bool maymove = false; 1911 int cpu; 1912 1913 /* 1914 * If dst node has spare capacity, then check if there is an 1915 * imbalance that would be overruled by the load balancer. 1916 */ 1917 if (env->dst_stats.node_type == node_has_spare) { 1918 unsigned int imbalance; 1919 int src_running, dst_running; 1920 1921 /* 1922 * Would movement cause an imbalance? Note that if src has 1923 * more running tasks that the imbalance is ignored as the 1924 * move improves the imbalance from the perspective of the 1925 * CPU load balancer. 1926 * */ 1927 src_running = env->src_stats.nr_running - 1; 1928 dst_running = env->dst_stats.nr_running + 1; 1929 imbalance = max(0, dst_running - src_running); 1930 imbalance = adjust_numa_imbalance(imbalance, src_running); 1931 1932 /* Use idle CPU if there is no imbalance */ 1933 if (!imbalance) { 1934 maymove = true; 1935 if (env->dst_stats.idle_cpu >= 0) { 1936 env->dst_cpu = env->dst_stats.idle_cpu; 1937 task_numa_assign(env, NULL, 0); 1938 return; 1939 } 1940 } 1941 } else { 1942 long src_load, dst_load, load; 1943 /* 1944 * If the improvement from just moving env->p direction is better 1945 * than swapping tasks around, check if a move is possible. 1946 */ 1947 load = task_h_load(env->p); 1948 dst_load = env->dst_stats.load + load; 1949 src_load = env->src_stats.load - load; 1950 maymove = !load_too_imbalanced(src_load, dst_load, env); 1951 } 1952 1953 for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) { 1954 /* Skip this CPU if the source task cannot migrate */ 1955 if (!cpumask_test_cpu(cpu, env->p->cpus_ptr)) 1956 continue; 1957 1958 env->dst_cpu = cpu; 1959 if (task_numa_compare(env, taskimp, groupimp, maymove)) 1960 break; 1961 } 1962 } 1963 1964 static int task_numa_migrate(struct task_struct *p) 1965 { 1966 struct task_numa_env env = { 1967 .p = p, 1968 1969 .src_cpu = task_cpu(p), 1970 .src_nid = task_node(p), 1971 1972 .imbalance_pct = 112, 1973 1974 .best_task = NULL, 1975 .best_imp = 0, 1976 .best_cpu = -1, 1977 }; 1978 unsigned long taskweight, groupweight; 1979 struct sched_domain *sd; 1980 long taskimp, groupimp; 1981 struct numa_group *ng; 1982 struct rq *best_rq; 1983 int nid, ret, dist; 1984 1985 /* 1986 * Pick the lowest SD_NUMA domain, as that would have the smallest 1987 * imbalance and would be the first to start moving tasks about. 1988 * 1989 * And we want to avoid any moving of tasks about, as that would create 1990 * random movement of tasks -- counter the numa conditions we're trying 1991 * to satisfy here. 1992 */ 1993 rcu_read_lock(); 1994 sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu)); 1995 if (sd) 1996 env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2; 1997 rcu_read_unlock(); 1998 1999 /* 2000 * Cpusets can break the scheduler domain tree into smaller 2001 * balance domains, some of which do not cross NUMA boundaries. 2002 * Tasks that are "trapped" in such domains cannot be migrated 2003 * elsewhere, so there is no point in (re)trying. 2004 */ 2005 if (unlikely(!sd)) { 2006 sched_setnuma(p, task_node(p)); 2007 return -EINVAL; 2008 } 2009 2010 env.dst_nid = p->numa_preferred_nid; 2011 dist = env.dist = node_distance(env.src_nid, env.dst_nid); 2012 taskweight = task_weight(p, env.src_nid, dist); 2013 groupweight = group_weight(p, env.src_nid, dist); 2014 update_numa_stats(&env, &env.src_stats, env.src_nid, false); 2015 taskimp = task_weight(p, env.dst_nid, dist) - taskweight; 2016 groupimp = group_weight(p, env.dst_nid, dist) - groupweight; 2017 update_numa_stats(&env, &env.dst_stats, env.dst_nid, true); 2018 2019 /* Try to find a spot on the preferred nid. */ 2020 task_numa_find_cpu(&env, taskimp, groupimp); 2021 2022 /* 2023 * Look at other nodes in these cases: 2024 * - there is no space available on the preferred_nid 2025 * - the task is part of a numa_group that is interleaved across 2026 * multiple NUMA nodes; in order to better consolidate the group, 2027 * we need to check other locations. 2028 */ 2029 ng = deref_curr_numa_group(p); 2030 if (env.best_cpu == -1 || (ng && ng->active_nodes > 1)) { 2031 for_each_online_node(nid) { 2032 if (nid == env.src_nid || nid == p->numa_preferred_nid) 2033 continue; 2034 2035 dist = node_distance(env.src_nid, env.dst_nid); 2036 if (sched_numa_topology_type == NUMA_BACKPLANE && 2037 dist != env.dist) { 2038 taskweight = task_weight(p, env.src_nid, dist); 2039 groupweight = group_weight(p, env.src_nid, dist); 2040 } 2041 2042 /* Only consider nodes where both task and groups benefit */ 2043 taskimp = task_weight(p, nid, dist) - taskweight; 2044 groupimp = group_weight(p, nid, dist) - groupweight; 2045 if (taskimp < 0 && groupimp < 0) 2046 continue; 2047 2048 env.dist = dist; 2049 env.dst_nid = nid; 2050 update_numa_stats(&env, &env.dst_stats, env.dst_nid, true); 2051 task_numa_find_cpu(&env, taskimp, groupimp); 2052 } 2053 } 2054 2055 /* 2056 * If the task is part of a workload that spans multiple NUMA nodes, 2057 * and is migrating into one of the workload's active nodes, remember 2058 * this node as the task's preferred numa node, so the workload can 2059 * settle down. 2060 * A task that migrated to a second choice node will be better off 2061 * trying for a better one later. Do not set the preferred node here. 2062 */ 2063 if (ng) { 2064 if (env.best_cpu == -1) 2065 nid = env.src_nid; 2066 else 2067 nid = cpu_to_node(env.best_cpu); 2068 2069 if (nid != p->numa_preferred_nid) 2070 sched_setnuma(p, nid); 2071 } 2072 2073 /* No better CPU than the current one was found. */ 2074 if (env.best_cpu == -1) { 2075 trace_sched_stick_numa(p, env.src_cpu, NULL, -1); 2076 return -EAGAIN; 2077 } 2078 2079 best_rq = cpu_rq(env.best_cpu); 2080 if (env.best_task == NULL) { 2081 ret = migrate_task_to(p, env.best_cpu); 2082 WRITE_ONCE(best_rq->numa_migrate_on, 0); 2083 if (ret != 0) 2084 trace_sched_stick_numa(p, env.src_cpu, NULL, env.best_cpu); 2085 return ret; 2086 } 2087 2088 ret = migrate_swap(p, env.best_task, env.best_cpu, env.src_cpu); 2089 WRITE_ONCE(best_rq->numa_migrate_on, 0); 2090 2091 if (ret != 0) 2092 trace_sched_stick_numa(p, env.src_cpu, env.best_task, env.best_cpu); 2093 put_task_struct(env.best_task); 2094 return ret; 2095 } 2096 2097 /* Attempt to migrate a task to a CPU on the preferred node. */ 2098 static void numa_migrate_preferred(struct task_struct *p) 2099 { 2100 unsigned long interval = HZ; 2101 2102 /* This task has no NUMA fault statistics yet */ 2103 if (unlikely(p->numa_preferred_nid == NUMA_NO_NODE || !p->numa_faults)) 2104 return; 2105 2106 /* Periodically retry migrating the task to the preferred node */ 2107 interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16); 2108 p->numa_migrate_retry = jiffies + interval; 2109 2110 /* Success if task is already running on preferred CPU */ 2111 if (task_node(p) == p->numa_preferred_nid) 2112 return; 2113 2114 /* Otherwise, try migrate to a CPU on the preferred node */ 2115 task_numa_migrate(p); 2116 } 2117 2118 /* 2119 * Find out how many nodes on the workload is actively running on. Do this by 2120 * tracking the nodes from which NUMA hinting faults are triggered. This can 2121 * be different from the set of nodes where the workload's memory is currently 2122 * located. 2123 */ 2124 static void numa_group_count_active_nodes(struct numa_group *numa_group) 2125 { 2126 unsigned long faults, max_faults = 0; 2127 int nid, active_nodes = 0; 2128 2129 for_each_online_node(nid) { 2130 faults = group_faults_cpu(numa_group, nid); 2131 if (faults > max_faults) 2132 max_faults = faults; 2133 } 2134 2135 for_each_online_node(nid) { 2136 faults = group_faults_cpu(numa_group, nid); 2137 if (faults * ACTIVE_NODE_FRACTION > max_faults) 2138 active_nodes++; 2139 } 2140 2141 numa_group->max_faults_cpu = max_faults; 2142 numa_group->active_nodes = active_nodes; 2143 } 2144 2145 /* 2146 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS 2147 * increments. The more local the fault statistics are, the higher the scan 2148 * period will be for the next scan window. If local/(local+remote) ratio is 2149 * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS) 2150 * the scan period will decrease. Aim for 70% local accesses. 2151 */ 2152 #define NUMA_PERIOD_SLOTS 10 2153 #define NUMA_PERIOD_THRESHOLD 7 2154 2155 /* 2156 * Increase the scan period (slow down scanning) if the majority of 2157 * our memory is already on our local node, or if the majority of 2158 * the page accesses are shared with other processes. 2159 * Otherwise, decrease the scan period. 2160 */ 2161 static void update_task_scan_period(struct task_struct *p, 2162 unsigned long shared, unsigned long private) 2163 { 2164 unsigned int period_slot; 2165 int lr_ratio, ps_ratio; 2166 int diff; 2167 2168 unsigned long remote = p->numa_faults_locality[0]; 2169 unsigned long local = p->numa_faults_locality[1]; 2170 2171 /* 2172 * If there were no record hinting faults then either the task is 2173 * completely idle or all activity is areas that are not of interest 2174 * to automatic numa balancing. Related to that, if there were failed 2175 * migration then it implies we are migrating too quickly or the local 2176 * node is overloaded. In either case, scan slower 2177 */ 2178 if (local + shared == 0 || p->numa_faults_locality[2]) { 2179 p->numa_scan_period = min(p->numa_scan_period_max, 2180 p->numa_scan_period << 1); 2181 2182 p->mm->numa_next_scan = jiffies + 2183 msecs_to_jiffies(p->numa_scan_period); 2184 2185 return; 2186 } 2187 2188 /* 2189 * Prepare to scale scan period relative to the current period. 2190 * == NUMA_PERIOD_THRESHOLD scan period stays the same 2191 * < NUMA_PERIOD_THRESHOLD scan period decreases (scan faster) 2192 * >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower) 2193 */ 2194 period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS); 2195 lr_ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote); 2196 ps_ratio = (private * NUMA_PERIOD_SLOTS) / (private + shared); 2197 2198 if (ps_ratio >= NUMA_PERIOD_THRESHOLD) { 2199 /* 2200 * Most memory accesses are local. There is no need to 2201 * do fast NUMA scanning, since memory is already local. 2202 */ 2203 int slot = ps_ratio - NUMA_PERIOD_THRESHOLD; 2204 if (!slot) 2205 slot = 1; 2206 diff = slot * period_slot; 2207 } else if (lr_ratio >= NUMA_PERIOD_THRESHOLD) { 2208 /* 2209 * Most memory accesses are shared with other tasks. 2210 * There is no point in continuing fast NUMA scanning, 2211 * since other tasks may just move the memory elsewhere. 2212 */ 2213 int slot = lr_ratio - NUMA_PERIOD_THRESHOLD; 2214 if (!slot) 2215 slot = 1; 2216 diff = slot * period_slot; 2217 } else { 2218 /* 2219 * Private memory faults exceed (SLOTS-THRESHOLD)/SLOTS, 2220 * yet they are not on the local NUMA node. Speed up 2221 * NUMA scanning to get the memory moved over. 2222 */ 2223 int ratio = max(lr_ratio, ps_ratio); 2224 diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot; 2225 } 2226 2227 p->numa_scan_period = clamp(p->numa_scan_period + diff, 2228 task_scan_min(p), task_scan_max(p)); 2229 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality)); 2230 } 2231 2232 /* 2233 * Get the fraction of time the task has been running since the last 2234 * NUMA placement cycle. The scheduler keeps similar statistics, but 2235 * decays those on a 32ms period, which is orders of magnitude off 2236 * from the dozens-of-seconds NUMA balancing period. Use the scheduler 2237 * stats only if the task is so new there are no NUMA statistics yet. 2238 */ 2239 static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period) 2240 { 2241 u64 runtime, delta, now; 2242 /* Use the start of this time slice to avoid calculations. */ 2243 now = p->se.exec_start; 2244 runtime = p->se.sum_exec_runtime; 2245 2246 if (p->last_task_numa_placement) { 2247 delta = runtime - p->last_sum_exec_runtime; 2248 *period = now - p->last_task_numa_placement; 2249 2250 /* Avoid time going backwards, prevent potential divide error: */ 2251 if (unlikely((s64)*period < 0)) 2252 *period = 0; 2253 } else { 2254 delta = p->se.avg.load_sum; 2255 *period = LOAD_AVG_MAX; 2256 } 2257 2258 p->last_sum_exec_runtime = runtime; 2259 p->last_task_numa_placement = now; 2260 2261 return delta; 2262 } 2263 2264 /* 2265 * Determine the preferred nid for a task in a numa_group. This needs to 2266 * be done in a way that produces consistent results with group_weight, 2267 * otherwise workloads might not converge. 2268 */ 2269 static int preferred_group_nid(struct task_struct *p, int nid) 2270 { 2271 nodemask_t nodes; 2272 int dist; 2273 2274 /* Direct connections between all NUMA nodes. */ 2275 if (sched_numa_topology_type == NUMA_DIRECT) 2276 return nid; 2277 2278 /* 2279 * On a system with glueless mesh NUMA topology, group_weight 2280 * scores nodes according to the number of NUMA hinting faults on 2281 * both the node itself, and on nearby nodes. 2282 */ 2283 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) { 2284 unsigned long score, max_score = 0; 2285 int node, max_node = nid; 2286 2287 dist = sched_max_numa_distance; 2288 2289 for_each_online_node(node) { 2290 score = group_weight(p, node, dist); 2291 if (score > max_score) { 2292 max_score = score; 2293 max_node = node; 2294 } 2295 } 2296 return max_node; 2297 } 2298 2299 /* 2300 * Finding the preferred nid in a system with NUMA backplane 2301 * interconnect topology is more involved. The goal is to locate 2302 * tasks from numa_groups near each other in the system, and 2303 * untangle workloads from different sides of the system. This requires 2304 * searching down the hierarchy of node groups, recursively searching 2305 * inside the highest scoring group of nodes. The nodemask tricks 2306 * keep the complexity of the search down. 2307 */ 2308 nodes = node_online_map; 2309 for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) { 2310 unsigned long max_faults = 0; 2311 nodemask_t max_group = NODE_MASK_NONE; 2312 int a, b; 2313 2314 /* Are there nodes at this distance from each other? */ 2315 if (!find_numa_distance(dist)) 2316 continue; 2317 2318 for_each_node_mask(a, nodes) { 2319 unsigned long faults = 0; 2320 nodemask_t this_group; 2321 nodes_clear(this_group); 2322 2323 /* Sum group's NUMA faults; includes a==b case. */ 2324 for_each_node_mask(b, nodes) { 2325 if (node_distance(a, b) < dist) { 2326 faults += group_faults(p, b); 2327 node_set(b, this_group); 2328 node_clear(b, nodes); 2329 } 2330 } 2331 2332 /* Remember the top group. */ 2333 if (faults > max_faults) { 2334 max_faults = faults; 2335 max_group = this_group; 2336 /* 2337 * subtle: at the smallest distance there is 2338 * just one node left in each "group", the 2339 * winner is the preferred nid. 2340 */ 2341 nid = a; 2342 } 2343 } 2344 /* Next round, evaluate the nodes within max_group. */ 2345 if (!max_faults) 2346 break; 2347 nodes = max_group; 2348 } 2349 return nid; 2350 } 2351 2352 static void task_numa_placement(struct task_struct *p) 2353 { 2354 int seq, nid, max_nid = NUMA_NO_NODE; 2355 unsigned long max_faults = 0; 2356 unsigned long fault_types[2] = { 0, 0 }; 2357 unsigned long total_faults; 2358 u64 runtime, period; 2359 spinlock_t *group_lock = NULL; 2360 struct numa_group *ng; 2361 2362 /* 2363 * The p->mm->numa_scan_seq field gets updated without 2364 * exclusive access. Use READ_ONCE() here to ensure 2365 * that the field is read in a single access: 2366 */ 2367 seq = READ_ONCE(p->mm->numa_scan_seq); 2368 if (p->numa_scan_seq == seq) 2369 return; 2370 p->numa_scan_seq = seq; 2371 p->numa_scan_period_max = task_scan_max(p); 2372 2373 total_faults = p->numa_faults_locality[0] + 2374 p->numa_faults_locality[1]; 2375 runtime = numa_get_avg_runtime(p, &period); 2376 2377 /* If the task is part of a group prevent parallel updates to group stats */ 2378 ng = deref_curr_numa_group(p); 2379 if (ng) { 2380 group_lock = &ng->lock; 2381 spin_lock_irq(group_lock); 2382 } 2383 2384 /* Find the node with the highest number of faults */ 2385 for_each_online_node(nid) { 2386 /* Keep track of the offsets in numa_faults array */ 2387 int mem_idx, membuf_idx, cpu_idx, cpubuf_idx; 2388 unsigned long faults = 0, group_faults = 0; 2389 int priv; 2390 2391 for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) { 2392 long diff, f_diff, f_weight; 2393 2394 mem_idx = task_faults_idx(NUMA_MEM, nid, priv); 2395 membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv); 2396 cpu_idx = task_faults_idx(NUMA_CPU, nid, priv); 2397 cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv); 2398 2399 /* Decay existing window, copy faults since last scan */ 2400 diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2; 2401 fault_types[priv] += p->numa_faults[membuf_idx]; 2402 p->numa_faults[membuf_idx] = 0; 2403 2404 /* 2405 * Normalize the faults_from, so all tasks in a group 2406 * count according to CPU use, instead of by the raw 2407 * number of faults. Tasks with little runtime have 2408 * little over-all impact on throughput, and thus their 2409 * faults are less important. 2410 */ 2411 f_weight = div64_u64(runtime << 16, period + 1); 2412 f_weight = (f_weight * p->numa_faults[cpubuf_idx]) / 2413 (total_faults + 1); 2414 f_diff = f_weight - p->numa_faults[cpu_idx] / 2; 2415 p->numa_faults[cpubuf_idx] = 0; 2416 2417 p->numa_faults[mem_idx] += diff; 2418 p->numa_faults[cpu_idx] += f_diff; 2419 faults += p->numa_faults[mem_idx]; 2420 p->total_numa_faults += diff; 2421 if (ng) { 2422 /* 2423 * safe because we can only change our own group 2424 * 2425 * mem_idx represents the offset for a given 2426 * nid and priv in a specific region because it 2427 * is at the beginning of the numa_faults array. 2428 */ 2429 ng->faults[mem_idx] += diff; 2430 ng->faults_cpu[mem_idx] += f_diff; 2431 ng->total_faults += diff; 2432 group_faults += ng->faults[mem_idx]; 2433 } 2434 } 2435 2436 if (!ng) { 2437 if (faults > max_faults) { 2438 max_faults = faults; 2439 max_nid = nid; 2440 } 2441 } else if (group_faults > max_faults) { 2442 max_faults = group_faults; 2443 max_nid = nid; 2444 } 2445 } 2446 2447 if (ng) { 2448 numa_group_count_active_nodes(ng); 2449 spin_unlock_irq(group_lock); 2450 max_nid = preferred_group_nid(p, max_nid); 2451 } 2452 2453 if (max_faults) { 2454 /* Set the new preferred node */ 2455 if (max_nid != p->numa_preferred_nid) 2456 sched_setnuma(p, max_nid); 2457 } 2458 2459 update_task_scan_period(p, fault_types[0], fault_types[1]); 2460 } 2461 2462 static inline int get_numa_group(struct numa_group *grp) 2463 { 2464 return refcount_inc_not_zero(&grp->refcount); 2465 } 2466 2467 static inline void put_numa_group(struct numa_group *grp) 2468 { 2469 if (refcount_dec_and_test(&grp->refcount)) 2470 kfree_rcu(grp, rcu); 2471 } 2472 2473 static void task_numa_group(struct task_struct *p, int cpupid, int flags, 2474 int *priv) 2475 { 2476 struct numa_group *grp, *my_grp; 2477 struct task_struct *tsk; 2478 bool join = false; 2479 int cpu = cpupid_to_cpu(cpupid); 2480 int i; 2481 2482 if (unlikely(!deref_curr_numa_group(p))) { 2483 unsigned int size = sizeof(struct numa_group) + 2484 4*nr_node_ids*sizeof(unsigned long); 2485 2486 grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN); 2487 if (!grp) 2488 return; 2489 2490 refcount_set(&grp->refcount, 1); 2491 grp->active_nodes = 1; 2492 grp->max_faults_cpu = 0; 2493 spin_lock_init(&grp->lock); 2494 grp->gid = p->pid; 2495 /* Second half of the array tracks nids where faults happen */ 2496 grp->faults_cpu = grp->faults + NR_NUMA_HINT_FAULT_TYPES * 2497 nr_node_ids; 2498 2499 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) 2500 grp->faults[i] = p->numa_faults[i]; 2501 2502 grp->total_faults = p->total_numa_faults; 2503 2504 grp->nr_tasks++; 2505 rcu_assign_pointer(p->numa_group, grp); 2506 } 2507 2508 rcu_read_lock(); 2509 tsk = READ_ONCE(cpu_rq(cpu)->curr); 2510 2511 if (!cpupid_match_pid(tsk, cpupid)) 2512 goto no_join; 2513 2514 grp = rcu_dereference(tsk->numa_group); 2515 if (!grp) 2516 goto no_join; 2517 2518 my_grp = deref_curr_numa_group(p); 2519 if (grp == my_grp) 2520 goto no_join; 2521 2522 /* 2523 * Only join the other group if its bigger; if we're the bigger group, 2524 * the other task will join us. 2525 */ 2526 if (my_grp->nr_tasks > grp->nr_tasks) 2527 goto no_join; 2528 2529 /* 2530 * Tie-break on the grp address. 2531 */ 2532 if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp) 2533 goto no_join; 2534 2535 /* Always join threads in the same process. */ 2536 if (tsk->mm == current->mm) 2537 join = true; 2538 2539 /* Simple filter to avoid false positives due to PID collisions */ 2540 if (flags & TNF_SHARED) 2541 join = true; 2542 2543 /* Update priv based on whether false sharing was detected */ 2544 *priv = !join; 2545 2546 if (join && !get_numa_group(grp)) 2547 goto no_join; 2548 2549 rcu_read_unlock(); 2550 2551 if (!join) 2552 return; 2553 2554 BUG_ON(irqs_disabled()); 2555 double_lock_irq(&my_grp->lock, &grp->lock); 2556 2557 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) { 2558 my_grp->faults[i] -= p->numa_faults[i]; 2559 grp->faults[i] += p->numa_faults[i]; 2560 } 2561 my_grp->total_faults -= p->total_numa_faults; 2562 grp->total_faults += p->total_numa_faults; 2563 2564 my_grp->nr_tasks--; 2565 grp->nr_tasks++; 2566 2567 spin_unlock(&my_grp->lock); 2568 spin_unlock_irq(&grp->lock); 2569 2570 rcu_assign_pointer(p->numa_group, grp); 2571 2572 put_numa_group(my_grp); 2573 return; 2574 2575 no_join: 2576 rcu_read_unlock(); 2577 return; 2578 } 2579 2580 /* 2581 * Get rid of NUMA staticstics associated with a task (either current or dead). 2582 * If @final is set, the task is dead and has reached refcount zero, so we can 2583 * safely free all relevant data structures. Otherwise, there might be 2584 * concurrent reads from places like load balancing and procfs, and we should 2585 * reset the data back to default state without freeing ->numa_faults. 2586 */ 2587 void task_numa_free(struct task_struct *p, bool final) 2588 { 2589 /* safe: p either is current or is being freed by current */ 2590 struct numa_group *grp = rcu_dereference_raw(p->numa_group); 2591 unsigned long *numa_faults = p->numa_faults; 2592 unsigned long flags; 2593 int i; 2594 2595 if (!numa_faults) 2596 return; 2597 2598 if (grp) { 2599 spin_lock_irqsave(&grp->lock, flags); 2600 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) 2601 grp->faults[i] -= p->numa_faults[i]; 2602 grp->total_faults -= p->total_numa_faults; 2603 2604 grp->nr_tasks--; 2605 spin_unlock_irqrestore(&grp->lock, flags); 2606 RCU_INIT_POINTER(p->numa_group, NULL); 2607 put_numa_group(grp); 2608 } 2609 2610 if (final) { 2611 p->numa_faults = NULL; 2612 kfree(numa_faults); 2613 } else { 2614 p->total_numa_faults = 0; 2615 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) 2616 numa_faults[i] = 0; 2617 } 2618 } 2619 2620 /* 2621 * Got a PROT_NONE fault for a page on @node. 2622 */ 2623 void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags) 2624 { 2625 struct task_struct *p = current; 2626 bool migrated = flags & TNF_MIGRATED; 2627 int cpu_node = task_node(current); 2628 int local = !!(flags & TNF_FAULT_LOCAL); 2629 struct numa_group *ng; 2630 int priv; 2631 2632 if (!static_branch_likely(&sched_numa_balancing)) 2633 return; 2634 2635 /* for example, ksmd faulting in a user's mm */ 2636 if (!p->mm) 2637 return; 2638 2639 /* Allocate buffer to track faults on a per-node basis */ 2640 if (unlikely(!p->numa_faults)) { 2641 int size = sizeof(*p->numa_faults) * 2642 NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids; 2643 2644 p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN); 2645 if (!p->numa_faults) 2646 return; 2647 2648 p->total_numa_faults = 0; 2649 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality)); 2650 } 2651 2652 /* 2653 * First accesses are treated as private, otherwise consider accesses 2654 * to be private if the accessing pid has not changed 2655 */ 2656 if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) { 2657 priv = 1; 2658 } else { 2659 priv = cpupid_match_pid(p, last_cpupid); 2660 if (!priv && !(flags & TNF_NO_GROUP)) 2661 task_numa_group(p, last_cpupid, flags, &priv); 2662 } 2663 2664 /* 2665 * If a workload spans multiple NUMA nodes, a shared fault that 2666 * occurs wholly within the set of nodes that the workload is 2667 * actively using should be counted as local. This allows the 2668 * scan rate to slow down when a workload has settled down. 2669 */ 2670 ng = deref_curr_numa_group(p); 2671 if (!priv && !local && ng && ng->active_nodes > 1 && 2672 numa_is_active_node(cpu_node, ng) && 2673 numa_is_active_node(mem_node, ng)) 2674 local = 1; 2675 2676 /* 2677 * Retry to migrate task to preferred node periodically, in case it 2678 * previously failed, or the scheduler moved us. 2679 */ 2680 if (time_after(jiffies, p->numa_migrate_retry)) { 2681 task_numa_placement(p); 2682 numa_migrate_preferred(p); 2683 } 2684 2685 if (migrated) 2686 p->numa_pages_migrated += pages; 2687 if (flags & TNF_MIGRATE_FAIL) 2688 p->numa_faults_locality[2] += pages; 2689 2690 p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages; 2691 p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages; 2692 p->numa_faults_locality[local] += pages; 2693 } 2694 2695 static void reset_ptenuma_scan(struct task_struct *p) 2696 { 2697 /* 2698 * We only did a read acquisition of the mmap sem, so 2699 * p->mm->numa_scan_seq is written to without exclusive access 2700 * and the update is not guaranteed to be atomic. That's not 2701 * much of an issue though, since this is just used for 2702 * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not 2703 * expensive, to avoid any form of compiler optimizations: 2704 */ 2705 WRITE_ONCE(p->mm->numa_scan_seq, READ_ONCE(p->mm->numa_scan_seq) + 1); 2706 p->mm->numa_scan_offset = 0; 2707 } 2708 2709 /* 2710 * The expensive part of numa migration is done from task_work context. 2711 * Triggered from task_tick_numa(). 2712 */ 2713 static void task_numa_work(struct callback_head *work) 2714 { 2715 unsigned long migrate, next_scan, now = jiffies; 2716 struct task_struct *p = current; 2717 struct mm_struct *mm = p->mm; 2718 u64 runtime = p->se.sum_exec_runtime; 2719 struct vm_area_struct *vma; 2720 unsigned long start, end; 2721 unsigned long nr_pte_updates = 0; 2722 long pages, virtpages; 2723 2724 SCHED_WARN_ON(p != container_of(work, struct task_struct, numa_work)); 2725 2726 work->next = work; 2727 /* 2728 * Who cares about NUMA placement when they're dying. 2729 * 2730 * NOTE: make sure not to dereference p->mm before this check, 2731 * exit_task_work() happens _after_ exit_mm() so we could be called 2732 * without p->mm even though we still had it when we enqueued this 2733 * work. 2734 */ 2735 if (p->flags & PF_EXITING) 2736 return; 2737 2738 if (!mm->numa_next_scan) { 2739 mm->numa_next_scan = now + 2740 msecs_to_jiffies(sysctl_numa_balancing_scan_delay); 2741 } 2742 2743 /* 2744 * Enforce maximal scan/migration frequency.. 2745 */ 2746 migrate = mm->numa_next_scan; 2747 if (time_before(now, migrate)) 2748 return; 2749 2750 if (p->numa_scan_period == 0) { 2751 p->numa_scan_period_max = task_scan_max(p); 2752 p->numa_scan_period = task_scan_start(p); 2753 } 2754 2755 next_scan = now + msecs_to_jiffies(p->numa_scan_period); 2756 if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate) 2757 return; 2758 2759 /* 2760 * Delay this task enough that another task of this mm will likely win 2761 * the next time around. 2762 */ 2763 p->node_stamp += 2 * TICK_NSEC; 2764 2765 start = mm->numa_scan_offset; 2766 pages = sysctl_numa_balancing_scan_size; 2767 pages <<= 20 - PAGE_SHIFT; /* MB in pages */ 2768 virtpages = pages * 8; /* Scan up to this much virtual space */ 2769 if (!pages) 2770 return; 2771 2772 2773 if (!mmap_read_trylock(mm)) 2774 return; 2775 vma = find_vma(mm, start); 2776 if (!vma) { 2777 reset_ptenuma_scan(p); 2778 start = 0; 2779 vma = mm->mmap; 2780 } 2781 for (; vma; vma = vma->vm_next) { 2782 if (!vma_migratable(vma) || !vma_policy_mof(vma) || 2783 is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_MIXEDMAP)) { 2784 continue; 2785 } 2786 2787 /* 2788 * Shared library pages mapped by multiple processes are not 2789 * migrated as it is expected they are cache replicated. Avoid 2790 * hinting faults in read-only file-backed mappings or the vdso 2791 * as migrating the pages will be of marginal benefit. 2792 */ 2793 if (!vma->vm_mm || 2794 (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ))) 2795 continue; 2796 2797 /* 2798 * Skip inaccessible VMAs to avoid any confusion between 2799 * PROT_NONE and NUMA hinting ptes 2800 */ 2801 if (!vma_is_accessible(vma)) 2802 continue; 2803 2804 do { 2805 start = max(start, vma->vm_start); 2806 end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE); 2807 end = min(end, vma->vm_end); 2808 nr_pte_updates = change_prot_numa(vma, start, end); 2809 2810 /* 2811 * Try to scan sysctl_numa_balancing_size worth of 2812 * hpages that have at least one present PTE that 2813 * is not already pte-numa. If the VMA contains 2814 * areas that are unused or already full of prot_numa 2815 * PTEs, scan up to virtpages, to skip through those 2816 * areas faster. 2817 */ 2818 if (nr_pte_updates) 2819 pages -= (end - start) >> PAGE_SHIFT; 2820 virtpages -= (end - start) >> PAGE_SHIFT; 2821 2822 start = end; 2823 if (pages <= 0 || virtpages <= 0) 2824 goto out; 2825 2826 cond_resched(); 2827 } while (end != vma->vm_end); 2828 } 2829 2830 out: 2831 /* 2832 * It is possible to reach the end of the VMA list but the last few 2833 * VMAs are not guaranteed to the vma_migratable. If they are not, we 2834 * would find the !migratable VMA on the next scan but not reset the 2835 * scanner to the start so check it now. 2836 */ 2837 if (vma) 2838 mm->numa_scan_offset = start; 2839 else 2840 reset_ptenuma_scan(p); 2841 mmap_read_unlock(mm); 2842 2843 /* 2844 * Make sure tasks use at least 32x as much time to run other code 2845 * than they used here, to limit NUMA PTE scanning overhead to 3% max. 2846 * Usually update_task_scan_period slows down scanning enough; on an 2847 * overloaded system we need to limit overhead on a per task basis. 2848 */ 2849 if (unlikely(p->se.sum_exec_runtime != runtime)) { 2850 u64 diff = p->se.sum_exec_runtime - runtime; 2851 p->node_stamp += 32 * diff; 2852 } 2853 } 2854 2855 void init_numa_balancing(unsigned long clone_flags, struct task_struct *p) 2856 { 2857 int mm_users = 0; 2858 struct mm_struct *mm = p->mm; 2859 2860 if (mm) { 2861 mm_users = atomic_read(&mm->mm_users); 2862 if (mm_users == 1) { 2863 mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay); 2864 mm->numa_scan_seq = 0; 2865 } 2866 } 2867 p->node_stamp = 0; 2868 p->numa_scan_seq = mm ? mm->numa_scan_seq : 0; 2869 p->numa_scan_period = sysctl_numa_balancing_scan_delay; 2870 /* Protect against double add, see task_tick_numa and task_numa_work */ 2871 p->numa_work.next = &p->numa_work; 2872 p->numa_faults = NULL; 2873 RCU_INIT_POINTER(p->numa_group, NULL); 2874 p->last_task_numa_placement = 0; 2875 p->last_sum_exec_runtime = 0; 2876 2877 init_task_work(&p->numa_work, task_numa_work); 2878 2879 /* New address space, reset the preferred nid */ 2880 if (!(clone_flags & CLONE_VM)) { 2881 p->numa_preferred_nid = NUMA_NO_NODE; 2882 return; 2883 } 2884 2885 /* 2886 * New thread, keep existing numa_preferred_nid which should be copied 2887 * already by arch_dup_task_struct but stagger when scans start. 2888 */ 2889 if (mm) { 2890 unsigned int delay; 2891 2892 delay = min_t(unsigned int, task_scan_max(current), 2893 current->numa_scan_period * mm_users * NSEC_PER_MSEC); 2894 delay += 2 * TICK_NSEC; 2895 p->node_stamp = delay; 2896 } 2897 } 2898 2899 /* 2900 * Drive the periodic memory faults.. 2901 */ 2902 static void task_tick_numa(struct rq *rq, struct task_struct *curr) 2903 { 2904 struct callback_head *work = &curr->numa_work; 2905 u64 period, now; 2906 2907 /* 2908 * We don't care about NUMA placement if we don't have memory. 2909 */ 2910 if ((curr->flags & (PF_EXITING | PF_KTHREAD)) || work->next != work) 2911 return; 2912 2913 /* 2914 * Using runtime rather than walltime has the dual advantage that 2915 * we (mostly) drive the selection from busy threads and that the 2916 * task needs to have done some actual work before we bother with 2917 * NUMA placement. 2918 */ 2919 now = curr->se.sum_exec_runtime; 2920 period = (u64)curr->numa_scan_period * NSEC_PER_MSEC; 2921 2922 if (now > curr->node_stamp + period) { 2923 if (!curr->node_stamp) 2924 curr->numa_scan_period = task_scan_start(curr); 2925 curr->node_stamp += period; 2926 2927 if (!time_before(jiffies, curr->mm->numa_next_scan)) 2928 task_work_add(curr, work, true); 2929 } 2930 } 2931 2932 static void update_scan_period(struct task_struct *p, int new_cpu) 2933 { 2934 int src_nid = cpu_to_node(task_cpu(p)); 2935 int dst_nid = cpu_to_node(new_cpu); 2936 2937 if (!static_branch_likely(&sched_numa_balancing)) 2938 return; 2939 2940 if (!p->mm || !p->numa_faults || (p->flags & PF_EXITING)) 2941 return; 2942 2943 if (src_nid == dst_nid) 2944 return; 2945 2946 /* 2947 * Allow resets if faults have been trapped before one scan 2948 * has completed. This is most likely due to a new task that 2949 * is pulled cross-node due to wakeups or load balancing. 2950 */ 2951 if (p->numa_scan_seq) { 2952 /* 2953 * Avoid scan adjustments if moving to the preferred 2954 * node or if the task was not previously running on 2955 * the preferred node. 2956 */ 2957 if (dst_nid == p->numa_preferred_nid || 2958 (p->numa_preferred_nid != NUMA_NO_NODE && 2959 src_nid != p->numa_preferred_nid)) 2960 return; 2961 } 2962 2963 p->numa_scan_period = task_scan_start(p); 2964 } 2965 2966 #else 2967 static void task_tick_numa(struct rq *rq, struct task_struct *curr) 2968 { 2969 } 2970 2971 static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p) 2972 { 2973 } 2974 2975 static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p) 2976 { 2977 } 2978 2979 static inline void update_scan_period(struct task_struct *p, int new_cpu) 2980 { 2981 } 2982 2983 #endif /* CONFIG_NUMA_BALANCING */ 2984 2985 static void 2986 account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se) 2987 { 2988 update_load_add(&cfs_rq->load, se->load.weight); 2989 #ifdef CONFIG_SMP 2990 if (entity_is_task(se)) { 2991 struct rq *rq = rq_of(cfs_rq); 2992 2993 account_numa_enqueue(rq, task_of(se)); 2994 list_add(&se->group_node, &rq->cfs_tasks); 2995 } 2996 #endif 2997 cfs_rq->nr_running++; 2998 } 2999 3000 static void 3001 account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se) 3002 { 3003 update_load_sub(&cfs_rq->load, se->load.weight); 3004 #ifdef CONFIG_SMP 3005 if (entity_is_task(se)) { 3006 account_numa_dequeue(rq_of(cfs_rq), task_of(se)); 3007 list_del_init(&se->group_node); 3008 } 3009 #endif 3010 cfs_rq->nr_running--; 3011 } 3012 3013 /* 3014 * Signed add and clamp on underflow. 3015 * 3016 * Explicitly do a load-store to ensure the intermediate value never hits 3017 * memory. This allows lockless observations without ever seeing the negative 3018 * values. 3019 */ 3020 #define add_positive(_ptr, _val) do { \ 3021 typeof(_ptr) ptr = (_ptr); \ 3022 typeof(_val) val = (_val); \ 3023 typeof(*ptr) res, var = READ_ONCE(*ptr); \ 3024 \ 3025 res = var + val; \ 3026 \ 3027 if (val < 0 && res > var) \ 3028 res = 0; \ 3029 \ 3030 WRITE_ONCE(*ptr, res); \ 3031 } while (0) 3032 3033 /* 3034 * Unsigned subtract and clamp on underflow. 3035 * 3036 * Explicitly do a load-store to ensure the intermediate value never hits 3037 * memory. This allows lockless observations without ever seeing the negative 3038 * values. 3039 */ 3040 #define sub_positive(_ptr, _val) do { \ 3041 typeof(_ptr) ptr = (_ptr); \ 3042 typeof(*ptr) val = (_val); \ 3043 typeof(*ptr) res, var = READ_ONCE(*ptr); \ 3044 res = var - val; \ 3045 if (res > var) \ 3046 res = 0; \ 3047 WRITE_ONCE(*ptr, res); \ 3048 } while (0) 3049 3050 /* 3051 * Remove and clamp on negative, from a local variable. 3052 * 3053 * A variant of sub_positive(), which does not use explicit load-store 3054 * and is thus optimized for local variable updates. 3055 */ 3056 #define lsub_positive(_ptr, _val) do { \ 3057 typeof(_ptr) ptr = (_ptr); \ 3058 *ptr -= min_t(typeof(*ptr), *ptr, _val); \ 3059 } while (0) 3060 3061 #ifdef CONFIG_SMP 3062 static inline void 3063 enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) 3064 { 3065 cfs_rq->avg.load_avg += se->avg.load_avg; 3066 cfs_rq->avg.load_sum += se_weight(se) * se->avg.load_sum; 3067 } 3068 3069 static inline void 3070 dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) 3071 { 3072 sub_positive(&cfs_rq->avg.load_avg, se->avg.load_avg); 3073 sub_positive(&cfs_rq->avg.load_sum, se_weight(se) * se->avg.load_sum); 3074 } 3075 #else 3076 static inline void 3077 enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { } 3078 static inline void 3079 dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { } 3080 #endif 3081 3082 static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, 3083 unsigned long weight) 3084 { 3085 if (se->on_rq) { 3086 /* commit outstanding execution time */ 3087 if (cfs_rq->curr == se) 3088 update_curr(cfs_rq); 3089 account_entity_dequeue(cfs_rq, se); 3090 } 3091 dequeue_load_avg(cfs_rq, se); 3092 3093 update_load_set(&se->load, weight); 3094 3095 #ifdef CONFIG_SMP 3096 do { 3097 u32 divider = LOAD_AVG_MAX - 1024 + se->avg.period_contrib; 3098 3099 se->avg.load_avg = div_u64(se_weight(se) * se->avg.load_sum, divider); 3100 } while (0); 3101 #endif 3102 3103 enqueue_load_avg(cfs_rq, se); 3104 if (se->on_rq) 3105 account_entity_enqueue(cfs_rq, se); 3106 3107 } 3108 3109 void reweight_task(struct task_struct *p, int prio) 3110 { 3111 struct sched_entity *se = &p->se; 3112 struct cfs_rq *cfs_rq = cfs_rq_of(se); 3113 struct load_weight *load = &se->load; 3114 unsigned long weight = scale_load(sched_prio_to_weight[prio]); 3115 3116 reweight_entity(cfs_rq, se, weight); 3117 load->inv_weight = sched_prio_to_wmult[prio]; 3118 } 3119 3120 #ifdef CONFIG_FAIR_GROUP_SCHED 3121 #ifdef CONFIG_SMP 3122 /* 3123 * All this does is approximate the hierarchical proportion which includes that 3124 * global sum we all love to hate. 3125 * 3126 * That is, the weight of a group entity, is the proportional share of the 3127 * group weight based on the group runqueue weights. That is: 3128 * 3129 * tg->weight * grq->load.weight 3130 * ge->load.weight = ----------------------------- (1) 3131 * \Sum grq->load.weight 3132 * 3133 * Now, because computing that sum is prohibitively expensive to compute (been 3134 * there, done that) we approximate it with this average stuff. The average 3135 * moves slower and therefore the approximation is cheaper and more stable. 3136 * 3137 * So instead of the above, we substitute: 3138 * 3139 * grq->load.weight -> grq->avg.load_avg (2) 3140 * 3141 * which yields the following: 3142 * 3143 * tg->weight * grq->avg.load_avg 3144 * ge->load.weight = ------------------------------ (3) 3145 * tg->load_avg 3146 * 3147 * Where: tg->load_avg ~= \Sum grq->avg.load_avg 3148 * 3149 * That is shares_avg, and it is right (given the approximation (2)). 3150 * 3151 * The problem with it is that because the average is slow -- it was designed 3152 * to be exactly that of course -- this leads to transients in boundary 3153 * conditions. In specific, the case where the group was idle and we start the 3154 * one task. It takes time for our CPU's grq->avg.load_avg to build up, 3155 * yielding bad latency etc.. 3156 * 3157 * Now, in that special case (1) reduces to: 3158 * 3159 * tg->weight * grq->load.weight 3160 * ge->load.weight = ----------------------------- = tg->weight (4) 3161 * grp->load.weight 3162 * 3163 * That is, the sum collapses because all other CPUs are idle; the UP scenario. 3164 * 3165 * So what we do is modify our approximation (3) to approach (4) in the (near) 3166 * UP case, like: 3167 * 3168 * ge->load.weight = 3169 * 3170 * tg->weight * grq->load.weight 3171 * --------------------------------------------------- (5) 3172 * tg->load_avg - grq->avg.load_avg + grq->load.weight 3173 * 3174 * But because grq->load.weight can drop to 0, resulting in a divide by zero, 3175 * we need to use grq->avg.load_avg as its lower bound, which then gives: 3176 * 3177 * 3178 * tg->weight * grq->load.weight 3179 * ge->load.weight = ----------------------------- (6) 3180 * tg_load_avg' 3181 * 3182 * Where: 3183 * 3184 * tg_load_avg' = tg->load_avg - grq->avg.load_avg + 3185 * max(grq->load.weight, grq->avg.load_avg) 3186 * 3187 * And that is shares_weight and is icky. In the (near) UP case it approaches 3188 * (4) while in the normal case it approaches (3). It consistently 3189 * overestimates the ge->load.weight and therefore: 3190 * 3191 * \Sum ge->load.weight >= tg->weight 3192 * 3193 * hence icky! 3194 */ 3195 static long calc_group_shares(struct cfs_rq *cfs_rq) 3196 { 3197 long tg_weight, tg_shares, load, shares; 3198 struct task_group *tg = cfs_rq->tg; 3199 3200 tg_shares = READ_ONCE(tg->shares); 3201 3202 load = max(scale_load_down(cfs_rq->load.weight), cfs_rq->avg.load_avg); 3203 3204 tg_weight = atomic_long_read(&tg->load_avg); 3205 3206 /* Ensure tg_weight >= load */ 3207 tg_weight -= cfs_rq->tg_load_avg_contrib; 3208 tg_weight += load; 3209 3210 shares = (tg_shares * load); 3211 if (tg_weight) 3212 shares /= tg_weight; 3213 3214 /* 3215 * MIN_SHARES has to be unscaled here to support per-CPU partitioning 3216 * of a group with small tg->shares value. It is a floor value which is 3217 * assigned as a minimum load.weight to the sched_entity representing 3218 * the group on a CPU. 3219 * 3220 * E.g. on 64-bit for a group with tg->shares of scale_load(15)=15*1024 3221 * on an 8-core system with 8 tasks each runnable on one CPU shares has 3222 * to be 15*1024*1/8=1920 instead of scale_load(MIN_SHARES)=2*1024. In 3223 * case no task is runnable on a CPU MIN_SHARES=2 should be returned 3224 * instead of 0. 3225 */ 3226 return clamp_t(long, shares, MIN_SHARES, tg_shares); 3227 } 3228 #endif /* CONFIG_SMP */ 3229 3230 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq); 3231 3232 /* 3233 * Recomputes the group entity based on the current state of its group 3234 * runqueue. 3235 */ 3236 static void update_cfs_group(struct sched_entity *se) 3237 { 3238 struct cfs_rq *gcfs_rq = group_cfs_rq(se); 3239 long shares; 3240 3241 if (!gcfs_rq) 3242 return; 3243 3244 if (throttled_hierarchy(gcfs_rq)) 3245 return; 3246 3247 #ifndef CONFIG_SMP 3248 shares = READ_ONCE(gcfs_rq->tg->shares); 3249 3250 if (likely(se->load.weight == shares)) 3251 return; 3252 #else 3253 shares = calc_group_shares(gcfs_rq); 3254 #endif 3255 3256 reweight_entity(cfs_rq_of(se), se, shares); 3257 } 3258 3259 #else /* CONFIG_FAIR_GROUP_SCHED */ 3260 static inline void update_cfs_group(struct sched_entity *se) 3261 { 3262 } 3263 #endif /* CONFIG_FAIR_GROUP_SCHED */ 3264 3265 static inline void cfs_rq_util_change(struct cfs_rq *cfs_rq, int flags) 3266 { 3267 struct rq *rq = rq_of(cfs_rq); 3268 3269 if (&rq->cfs == cfs_rq) { 3270 /* 3271 * There are a few boundary cases this might miss but it should 3272 * get called often enough that that should (hopefully) not be 3273 * a real problem. 3274 * 3275 * It will not get called when we go idle, because the idle 3276 * thread is a different class (!fair), nor will the utilization 3277 * number include things like RT tasks. 3278 * 3279 * As is, the util number is not freq-invariant (we'd have to 3280 * implement arch_scale_freq_capacity() for that). 3281 * 3282 * See cpu_util(). 3283 */ 3284 cpufreq_update_util(rq, flags); 3285 } 3286 } 3287 3288 #ifdef CONFIG_SMP 3289 #ifdef CONFIG_FAIR_GROUP_SCHED 3290 /** 3291 * update_tg_load_avg - update the tg's load avg 3292 * @cfs_rq: the cfs_rq whose avg changed 3293 * @force: update regardless of how small the difference 3294 * 3295 * This function 'ensures': tg->load_avg := \Sum tg->cfs_rq[]->avg.load. 3296 * However, because tg->load_avg is a global value there are performance 3297 * considerations. 3298 * 3299 * In order to avoid having to look at the other cfs_rq's, we use a 3300 * differential update where we store the last value we propagated. This in 3301 * turn allows skipping updates if the differential is 'small'. 3302 * 3303 * Updating tg's load_avg is necessary before update_cfs_share(). 3304 */ 3305 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force) 3306 { 3307 long delta = cfs_rq->avg.load_avg - cfs_rq->tg_load_avg_contrib; 3308 3309 /* 3310 * No need to update load_avg for root_task_group as it is not used. 3311 */ 3312 if (cfs_rq->tg == &root_task_group) 3313 return; 3314 3315 if (force || abs(delta) > cfs_rq->tg_load_avg_contrib / 64) { 3316 atomic_long_add(delta, &cfs_rq->tg->load_avg); 3317 cfs_rq->tg_load_avg_contrib = cfs_rq->avg.load_avg; 3318 } 3319 } 3320 3321 /* 3322 * Called within set_task_rq() right before setting a task's CPU. The 3323 * caller only guarantees p->pi_lock is held; no other assumptions, 3324 * including the state of rq->lock, should be made. 3325 */ 3326 void set_task_rq_fair(struct sched_entity *se, 3327 struct cfs_rq *prev, struct cfs_rq *next) 3328 { 3329 u64 p_last_update_time; 3330 u64 n_last_update_time; 3331 3332 if (!sched_feat(ATTACH_AGE_LOAD)) 3333 return; 3334 3335 /* 3336 * We are supposed to update the task to "current" time, then its up to 3337 * date and ready to go to new CPU/cfs_rq. But we have difficulty in 3338 * getting what current time is, so simply throw away the out-of-date 3339 * time. This will result in the wakee task is less decayed, but giving 3340 * the wakee more load sounds not bad. 3341 */ 3342 if (!(se->avg.last_update_time && prev)) 3343 return; 3344 3345 #ifndef CONFIG_64BIT 3346 { 3347 u64 p_last_update_time_copy; 3348 u64 n_last_update_time_copy; 3349 3350 do { 3351 p_last_update_time_copy = prev->load_last_update_time_copy; 3352 n_last_update_time_copy = next->load_last_update_time_copy; 3353 3354 smp_rmb(); 3355 3356 p_last_update_time = prev->avg.last_update_time; 3357 n_last_update_time = next->avg.last_update_time; 3358 3359 } while (p_last_update_time != p_last_update_time_copy || 3360 n_last_update_time != n_last_update_time_copy); 3361 } 3362 #else 3363 p_last_update_time = prev->avg.last_update_time; 3364 n_last_update_time = next->avg.last_update_time; 3365 #endif 3366 __update_load_avg_blocked_se(p_last_update_time, se); 3367 se->avg.last_update_time = n_last_update_time; 3368 } 3369 3370 3371 /* 3372 * When on migration a sched_entity joins/leaves the PELT hierarchy, we need to 3373 * propagate its contribution. The key to this propagation is the invariant 3374 * that for each group: 3375 * 3376 * ge->avg == grq->avg (1) 3377 * 3378 * _IFF_ we look at the pure running and runnable sums. Because they 3379 * represent the very same entity, just at different points in the hierarchy. 3380 * 3381 * Per the above update_tg_cfs_util() and update_tg_cfs_runnable() are trivial 3382 * and simply copies the running/runnable sum over (but still wrong, because 3383 * the group entity and group rq do not have their PELT windows aligned). 3384 * 3385 * However, update_tg_cfs_load() is more complex. So we have: 3386 * 3387 * ge->avg.load_avg = ge->load.weight * ge->avg.runnable_avg (2) 3388 * 3389 * And since, like util, the runnable part should be directly transferable, 3390 * the following would _appear_ to be the straight forward approach: 3391 * 3392 * grq->avg.load_avg = grq->load.weight * grq->avg.runnable_avg (3) 3393 * 3394 * And per (1) we have: 3395 * 3396 * ge->avg.runnable_avg == grq->avg.runnable_avg 3397 * 3398 * Which gives: 3399 * 3400 * ge->load.weight * grq->avg.load_avg 3401 * ge->avg.load_avg = ----------------------------------- (4) 3402 * grq->load.weight 3403 * 3404 * Except that is wrong! 3405 * 3406 * Because while for entities historical weight is not important and we 3407 * really only care about our future and therefore can consider a pure 3408 * runnable sum, runqueues can NOT do this. 3409 * 3410 * We specifically want runqueues to have a load_avg that includes 3411 * historical weights. Those represent the blocked load, the load we expect 3412 * to (shortly) return to us. This only works by keeping the weights as 3413 * integral part of the sum. We therefore cannot decompose as per (3). 3414 * 3415 * Another reason this doesn't work is that runnable isn't a 0-sum entity. 3416 * Imagine a rq with 2 tasks that each are runnable 2/3 of the time. Then the 3417 * rq itself is runnable anywhere between 2/3 and 1 depending on how the 3418 * runnable section of these tasks overlap (or not). If they were to perfectly 3419 * align the rq as a whole would be runnable 2/3 of the time. If however we 3420 * always have at least 1 runnable task, the rq as a whole is always runnable. 3421 * 3422 * So we'll have to approximate.. :/ 3423 * 3424 * Given the constraint: 3425 * 3426 * ge->avg.running_sum <= ge->avg.runnable_sum <= LOAD_AVG_MAX 3427 * 3428 * We can construct a rule that adds runnable to a rq by assuming minimal 3429 * overlap. 3430 * 3431 * On removal, we'll assume each task is equally runnable; which yields: 3432 * 3433 * grq->avg.runnable_sum = grq->avg.load_sum / grq->load.weight 3434 * 3435 * XXX: only do this for the part of runnable > running ? 3436 * 3437 */ 3438 3439 static inline void 3440 update_tg_cfs_util(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq) 3441 { 3442 long delta = gcfs_rq->avg.util_avg - se->avg.util_avg; 3443 /* 3444 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se. 3445 * See ___update_load_avg() for details. 3446 */ 3447 u32 divider = LOAD_AVG_MAX - 1024 + cfs_rq->avg.period_contrib; 3448 3449 /* Nothing to update */ 3450 if (!delta) 3451 return; 3452 3453 /* Set new sched_entity's utilization */ 3454 se->avg.util_avg = gcfs_rq->avg.util_avg; 3455 se->avg.util_sum = se->avg.util_avg * divider; 3456 3457 /* Update parent cfs_rq utilization */ 3458 add_positive(&cfs_rq->avg.util_avg, delta); 3459 cfs_rq->avg.util_sum = cfs_rq->avg.util_avg * divider; 3460 } 3461 3462 static inline void 3463 update_tg_cfs_runnable(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq) 3464 { 3465 long delta = gcfs_rq->avg.runnable_avg - se->avg.runnable_avg; 3466 /* 3467 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se. 3468 * See ___update_load_avg() for details. 3469 */ 3470 u32 divider = LOAD_AVG_MAX - 1024 + cfs_rq->avg.period_contrib; 3471 3472 /* Nothing to update */ 3473 if (!delta) 3474 return; 3475 3476 /* Set new sched_entity's runnable */ 3477 se->avg.runnable_avg = gcfs_rq->avg.runnable_avg; 3478 se->avg.runnable_sum = se->avg.runnable_avg * divider; 3479 3480 /* Update parent cfs_rq runnable */ 3481 add_positive(&cfs_rq->avg.runnable_avg, delta); 3482 cfs_rq->avg.runnable_sum = cfs_rq->avg.runnable_avg * divider; 3483 } 3484 3485 static inline void 3486 update_tg_cfs_load(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq) 3487 { 3488 long delta_avg, running_sum, runnable_sum = gcfs_rq->prop_runnable_sum; 3489 unsigned long load_avg; 3490 u64 load_sum = 0; 3491 s64 delta_sum; 3492 u32 divider; 3493 3494 if (!runnable_sum) 3495 return; 3496 3497 gcfs_rq->prop_runnable_sum = 0; 3498 3499 /* 3500 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se. 3501 * See ___update_load_avg() for details. 3502 */ 3503 divider = LOAD_AVG_MAX - 1024 + cfs_rq->avg.period_contrib; 3504 3505 if (runnable_sum >= 0) { 3506 /* 3507 * Add runnable; clip at LOAD_AVG_MAX. Reflects that until 3508 * the CPU is saturated running == runnable. 3509 */ 3510 runnable_sum += se->avg.load_sum; 3511 runnable_sum = min_t(long, runnable_sum, divider); 3512 } else { 3513 /* 3514 * Estimate the new unweighted runnable_sum of the gcfs_rq by 3515 * assuming all tasks are equally runnable. 3516 */ 3517 if (scale_load_down(gcfs_rq->load.weight)) { 3518 load_sum = div_s64(gcfs_rq->avg.load_sum, 3519 scale_load_down(gcfs_rq->load.weight)); 3520 } 3521 3522 /* But make sure to not inflate se's runnable */ 3523 runnable_sum = min(se->avg.load_sum, load_sum); 3524 } 3525 3526 /* 3527 * runnable_sum can't be lower than running_sum 3528 * Rescale running sum to be in the same range as runnable sum 3529 * running_sum is in [0 : LOAD_AVG_MAX << SCHED_CAPACITY_SHIFT] 3530 * runnable_sum is in [0 : LOAD_AVG_MAX] 3531 */ 3532 running_sum = se->avg.util_sum >> SCHED_CAPACITY_SHIFT; 3533 runnable_sum = max(runnable_sum, running_sum); 3534 3535 load_sum = (s64)se_weight(se) * runnable_sum; 3536 load_avg = div_s64(load_sum, divider); 3537 3538 delta_sum = load_sum - (s64)se_weight(se) * se->avg.load_sum; 3539 delta_avg = load_avg - se->avg.load_avg; 3540 3541 se->avg.load_sum = runnable_sum; 3542 se->avg.load_avg = load_avg; 3543 add_positive(&cfs_rq->avg.load_avg, delta_avg); 3544 add_positive(&cfs_rq->avg.load_sum, delta_sum); 3545 } 3546 3547 static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum) 3548 { 3549 cfs_rq->propagate = 1; 3550 cfs_rq->prop_runnable_sum += runnable_sum; 3551 } 3552 3553 /* Update task and its cfs_rq load average */ 3554 static inline int propagate_entity_load_avg(struct sched_entity *se) 3555 { 3556 struct cfs_rq *cfs_rq, *gcfs_rq; 3557 3558 if (entity_is_task(se)) 3559 return 0; 3560 3561 gcfs_rq = group_cfs_rq(se); 3562 if (!gcfs_rq->propagate) 3563 return 0; 3564 3565 gcfs_rq->propagate = 0; 3566 3567 cfs_rq = cfs_rq_of(se); 3568 3569 add_tg_cfs_propagate(cfs_rq, gcfs_rq->prop_runnable_sum); 3570 3571 update_tg_cfs_util(cfs_rq, se, gcfs_rq); 3572 update_tg_cfs_runnable(cfs_rq, se, gcfs_rq); 3573 update_tg_cfs_load(cfs_rq, se, gcfs_rq); 3574 3575 trace_pelt_cfs_tp(cfs_rq); 3576 trace_pelt_se_tp(se); 3577 3578 return 1; 3579 } 3580 3581 /* 3582 * Check if we need to update the load and the utilization of a blocked 3583 * group_entity: 3584 */ 3585 static inline bool skip_blocked_update(struct sched_entity *se) 3586 { 3587 struct cfs_rq *gcfs_rq = group_cfs_rq(se); 3588 3589 /* 3590 * If sched_entity still have not zero load or utilization, we have to 3591 * decay it: 3592 */ 3593 if (se->avg.load_avg || se->avg.util_avg) 3594 return false; 3595 3596 /* 3597 * If there is a pending propagation, we have to update the load and 3598 * the utilization of the sched_entity: 3599 */ 3600 if (gcfs_rq->propagate) 3601 return false; 3602 3603 /* 3604 * Otherwise, the load and the utilization of the sched_entity is 3605 * already zero and there is no pending propagation, so it will be a 3606 * waste of time to try to decay it: 3607 */ 3608 return true; 3609 } 3610 3611 #else /* CONFIG_FAIR_GROUP_SCHED */ 3612 3613 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force) {} 3614 3615 static inline int propagate_entity_load_avg(struct sched_entity *se) 3616 { 3617 return 0; 3618 } 3619 3620 static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum) {} 3621 3622 #endif /* CONFIG_FAIR_GROUP_SCHED */ 3623 3624 /** 3625 * update_cfs_rq_load_avg - update the cfs_rq's load/util averages 3626 * @now: current time, as per cfs_rq_clock_pelt() 3627 * @cfs_rq: cfs_rq to update 3628 * 3629 * The cfs_rq avg is the direct sum of all its entities (blocked and runnable) 3630 * avg. The immediate corollary is that all (fair) tasks must be attached, see 3631 * post_init_entity_util_avg(). 3632 * 3633 * cfs_rq->avg is used for task_h_load() and update_cfs_share() for example. 3634 * 3635 * Returns true if the load decayed or we removed load. 3636 * 3637 * Since both these conditions indicate a changed cfs_rq->avg.load we should 3638 * call update_tg_load_avg() when this function returns true. 3639 */ 3640 static inline int 3641 update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq) 3642 { 3643 unsigned long removed_load = 0, removed_util = 0, removed_runnable = 0; 3644 struct sched_avg *sa = &cfs_rq->avg; 3645 int decayed = 0; 3646 3647 if (cfs_rq->removed.nr) { 3648 unsigned long r; 3649 u32 divider = LOAD_AVG_MAX - 1024 + sa->period_contrib; 3650 3651 raw_spin_lock(&cfs_rq->removed.lock); 3652 swap(cfs_rq->removed.util_avg, removed_util); 3653 swap(cfs_rq->removed.load_avg, removed_load); 3654 swap(cfs_rq->removed.runnable_avg, removed_runnable); 3655 cfs_rq->removed.nr = 0; 3656 raw_spin_unlock(&cfs_rq->removed.lock); 3657 3658 r = removed_load; 3659 sub_positive(&sa->load_avg, r); 3660 sub_positive(&sa->load_sum, r * divider); 3661 3662 r = removed_util; 3663 sub_positive(&sa->util_avg, r); 3664 sub_positive(&sa->util_sum, r * divider); 3665 3666 r = removed_runnable; 3667 sub_positive(&sa->runnable_avg, r); 3668 sub_positive(&sa->runnable_sum, r * divider); 3669 3670 /* 3671 * removed_runnable is the unweighted version of removed_load so we 3672 * can use it to estimate removed_load_sum. 3673 */ 3674 add_tg_cfs_propagate(cfs_rq, 3675 -(long)(removed_runnable * divider) >> SCHED_CAPACITY_SHIFT); 3676 3677 decayed = 1; 3678 } 3679 3680 decayed |= __update_load_avg_cfs_rq(now, cfs_rq); 3681 3682 #ifndef CONFIG_64BIT 3683 smp_wmb(); 3684 cfs_rq->load_last_update_time_copy = sa->last_update_time; 3685 #endif 3686 3687 return decayed; 3688 } 3689 3690 /** 3691 * attach_entity_load_avg - attach this entity to its cfs_rq load avg 3692 * @cfs_rq: cfs_rq to attach to 3693 * @se: sched_entity to attach 3694 * 3695 * Must call update_cfs_rq_load_avg() before this, since we rely on 3696 * cfs_rq->avg.last_update_time being current. 3697 */ 3698 static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) 3699 { 3700 /* 3701 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se. 3702 * See ___update_load_avg() for details. 3703 */ 3704 u32 divider = LOAD_AVG_MAX - 1024 + cfs_rq->avg.period_contrib; 3705 3706 /* 3707 * When we attach the @se to the @cfs_rq, we must align the decay 3708 * window because without that, really weird and wonderful things can 3709 * happen. 3710 * 3711 * XXX illustrate 3712 */ 3713 se->avg.last_update_time = cfs_rq->avg.last_update_time; 3714 se->avg.period_contrib = cfs_rq->avg.period_contrib; 3715 3716 /* 3717 * Hell(o) Nasty stuff.. we need to recompute _sum based on the new 3718 * period_contrib. This isn't strictly correct, but since we're 3719 * entirely outside of the PELT hierarchy, nobody cares if we truncate 3720 * _sum a little. 3721 */ 3722 se->avg.util_sum = se->avg.util_avg * divider; 3723 3724 se->avg.runnable_sum = se->avg.runnable_avg * divider; 3725 3726 se->avg.load_sum = divider; 3727 if (se_weight(se)) { 3728 se->avg.load_sum = 3729 div_u64(se->avg.load_avg * se->avg.load_sum, se_weight(se)); 3730 } 3731 3732 enqueue_load_avg(cfs_rq, se); 3733 cfs_rq->avg.util_avg += se->avg.util_avg; 3734 cfs_rq->avg.util_sum += se->avg.util_sum; 3735 cfs_rq->avg.runnable_avg += se->avg.runnable_avg; 3736 cfs_rq->avg.runnable_sum += se->avg.runnable_sum; 3737 3738 add_tg_cfs_propagate(cfs_rq, se->avg.load_sum); 3739 3740 cfs_rq_util_change(cfs_rq, 0); 3741 3742 trace_pelt_cfs_tp(cfs_rq); 3743 } 3744 3745 /** 3746 * detach_entity_load_avg - detach this entity from its cfs_rq load avg 3747 * @cfs_rq: cfs_rq to detach from 3748 * @se: sched_entity to detach 3749 * 3750 * Must call update_cfs_rq_load_avg() before this, since we rely on 3751 * cfs_rq->avg.last_update_time being current. 3752 */ 3753 static void detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) 3754 { 3755 dequeue_load_avg(cfs_rq, se); 3756 sub_positive(&cfs_rq->avg.util_avg, se->avg.util_avg); 3757 sub_positive(&cfs_rq->avg.util_sum, se->avg.util_sum); 3758 sub_positive(&cfs_rq->avg.runnable_avg, se->avg.runnable_avg); 3759 sub_positive(&cfs_rq->avg.runnable_sum, se->avg.runnable_sum); 3760 3761 add_tg_cfs_propagate(cfs_rq, -se->avg.load_sum); 3762 3763 cfs_rq_util_change(cfs_rq, 0); 3764 3765 trace_pelt_cfs_tp(cfs_rq); 3766 } 3767 3768 /* 3769 * Optional action to be done while updating the load average 3770 */ 3771 #define UPDATE_TG 0x1 3772 #define SKIP_AGE_LOAD 0x2 3773 #define DO_ATTACH 0x4 3774 3775 /* Update task and its cfs_rq load average */ 3776 static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 3777 { 3778 u64 now = cfs_rq_clock_pelt(cfs_rq); 3779 int decayed; 3780 3781 /* 3782 * Track task load average for carrying it to new CPU after migrated, and 3783 * track group sched_entity load average for task_h_load calc in migration 3784 */ 3785 if (se->avg.last_update_time && !(flags & SKIP_AGE_LOAD)) 3786 __update_load_avg_se(now, cfs_rq, se); 3787 3788 decayed = update_cfs_rq_load_avg(now, cfs_rq); 3789 decayed |= propagate_entity_load_avg(se); 3790 3791 if (!se->avg.last_update_time && (flags & DO_ATTACH)) { 3792 3793 /* 3794 * DO_ATTACH means we're here from enqueue_entity(). 3795 * !last_update_time means we've passed through 3796 * migrate_task_rq_fair() indicating we migrated. 3797 * 3798 * IOW we're enqueueing a task on a new CPU. 3799 */ 3800 attach_entity_load_avg(cfs_rq, se); 3801 update_tg_load_avg(cfs_rq, 0); 3802 3803 } else if (decayed) { 3804 cfs_rq_util_change(cfs_rq, 0); 3805 3806 if (flags & UPDATE_TG) 3807 update_tg_load_avg(cfs_rq, 0); 3808 } 3809 } 3810 3811 #ifndef CONFIG_64BIT 3812 static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq) 3813 { 3814 u64 last_update_time_copy; 3815 u64 last_update_time; 3816 3817 do { 3818 last_update_time_copy = cfs_rq->load_last_update_time_copy; 3819 smp_rmb(); 3820 last_update_time = cfs_rq->avg.last_update_time; 3821 } while (last_update_time != last_update_time_copy); 3822 3823 return last_update_time; 3824 } 3825 #else 3826 static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq) 3827 { 3828 return cfs_rq->avg.last_update_time; 3829 } 3830 #endif 3831 3832 /* 3833 * Synchronize entity load avg of dequeued entity without locking 3834 * the previous rq. 3835 */ 3836 static void sync_entity_load_avg(struct sched_entity *se) 3837 { 3838 struct cfs_rq *cfs_rq = cfs_rq_of(se); 3839 u64 last_update_time; 3840 3841 last_update_time = cfs_rq_last_update_time(cfs_rq); 3842 __update_load_avg_blocked_se(last_update_time, se); 3843 } 3844 3845 /* 3846 * Task first catches up with cfs_rq, and then subtract 3847 * itself from the cfs_rq (task must be off the queue now). 3848 */ 3849 static void remove_entity_load_avg(struct sched_entity *se) 3850 { 3851 struct cfs_rq *cfs_rq = cfs_rq_of(se); 3852 unsigned long flags; 3853 3854 /* 3855 * tasks cannot exit without having gone through wake_up_new_task() -> 3856 * post_init_entity_util_avg() which will have added things to the 3857 * cfs_rq, so we can remove unconditionally. 3858 */ 3859 3860 sync_entity_load_avg(se); 3861 3862 raw_spin_lock_irqsave(&cfs_rq->removed.lock, flags); 3863 ++cfs_rq->removed.nr; 3864 cfs_rq->removed.util_avg += se->avg.util_avg; 3865 cfs_rq->removed.load_avg += se->avg.load_avg; 3866 cfs_rq->removed.runnable_avg += se->avg.runnable_avg; 3867 raw_spin_unlock_irqrestore(&cfs_rq->removed.lock, flags); 3868 } 3869 3870 static inline unsigned long cfs_rq_runnable_avg(struct cfs_rq *cfs_rq) 3871 { 3872 return cfs_rq->avg.runnable_avg; 3873 } 3874 3875 static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq) 3876 { 3877 return cfs_rq->avg.load_avg; 3878 } 3879 3880 static int newidle_balance(struct rq *this_rq, struct rq_flags *rf); 3881 3882 static inline unsigned long task_util(struct task_struct *p) 3883 { 3884 return READ_ONCE(p->se.avg.util_avg); 3885 } 3886 3887 static inline unsigned long _task_util_est(struct task_struct *p) 3888 { 3889 struct util_est ue = READ_ONCE(p->se.avg.util_est); 3890 3891 return (max(ue.ewma, ue.enqueued) | UTIL_AVG_UNCHANGED); 3892 } 3893 3894 static inline unsigned long task_util_est(struct task_struct *p) 3895 { 3896 return max(task_util(p), _task_util_est(p)); 3897 } 3898 3899 #ifdef CONFIG_UCLAMP_TASK 3900 static inline unsigned long uclamp_task_util(struct task_struct *p) 3901 { 3902 return clamp(task_util_est(p), 3903 uclamp_eff_value(p, UCLAMP_MIN), 3904 uclamp_eff_value(p, UCLAMP_MAX)); 3905 } 3906 #else 3907 static inline unsigned long uclamp_task_util(struct task_struct *p) 3908 { 3909 return task_util_est(p); 3910 } 3911 #endif 3912 3913 static inline void util_est_enqueue(struct cfs_rq *cfs_rq, 3914 struct task_struct *p) 3915 { 3916 unsigned int enqueued; 3917 3918 if (!sched_feat(UTIL_EST)) 3919 return; 3920 3921 /* Update root cfs_rq's estimated utilization */ 3922 enqueued = cfs_rq->avg.util_est.enqueued; 3923 enqueued += _task_util_est(p); 3924 WRITE_ONCE(cfs_rq->avg.util_est.enqueued, enqueued); 3925 } 3926 3927 /* 3928 * Check if a (signed) value is within a specified (unsigned) margin, 3929 * based on the observation that: 3930 * 3931 * abs(x) < y := (unsigned)(x + y - 1) < (2 * y - 1) 3932 * 3933 * NOTE: this only works when value + maring < INT_MAX. 3934 */ 3935 static inline bool within_margin(int value, int margin) 3936 { 3937 return ((unsigned int)(value + margin - 1) < (2 * margin - 1)); 3938 } 3939 3940 static void 3941 util_est_dequeue(struct cfs_rq *cfs_rq, struct task_struct *p, bool task_sleep) 3942 { 3943 long last_ewma_diff; 3944 struct util_est ue; 3945 int cpu; 3946 3947 if (!sched_feat(UTIL_EST)) 3948 return; 3949 3950 /* Update root cfs_rq's estimated utilization */ 3951 ue.enqueued = cfs_rq->avg.util_est.enqueued; 3952 ue.enqueued -= min_t(unsigned int, ue.enqueued, _task_util_est(p)); 3953 WRITE_ONCE(cfs_rq->avg.util_est.enqueued, ue.enqueued); 3954 3955 /* 3956 * Skip update of task's estimated utilization when the task has not 3957 * yet completed an activation, e.g. being migrated. 3958 */ 3959 if (!task_sleep) 3960 return; 3961 3962 /* 3963 * If the PELT values haven't changed since enqueue time, 3964 * skip the util_est update. 3965 */ 3966 ue = p->se.avg.util_est; 3967 if (ue.enqueued & UTIL_AVG_UNCHANGED) 3968 return; 3969 3970 /* 3971 * Reset EWMA on utilization increases, the moving average is used only 3972 * to smooth utilization decreases. 3973 */ 3974 ue.enqueued = (task_util(p) | UTIL_AVG_UNCHANGED); 3975 if (sched_feat(UTIL_EST_FASTUP)) { 3976 if (ue.ewma < ue.enqueued) { 3977 ue.ewma = ue.enqueued; 3978 goto done; 3979 } 3980 } 3981 3982 /* 3983 * Skip update of task's estimated utilization when its EWMA is 3984 * already ~1% close to its last activation value. 3985 */ 3986 last_ewma_diff = ue.enqueued - ue.ewma; 3987 if (within_margin(last_ewma_diff, (SCHED_CAPACITY_SCALE / 100))) 3988 return; 3989 3990 /* 3991 * To avoid overestimation of actual task utilization, skip updates if 3992 * we cannot grant there is idle time in this CPU. 3993 */ 3994 cpu = cpu_of(rq_of(cfs_rq)); 3995 if (task_util(p) > capacity_orig_of(cpu)) 3996 return; 3997 3998 /* 3999 * Update Task's estimated utilization 4000 * 4001 * When *p completes an activation we can consolidate another sample 4002 * of the task size. This is done by storing the current PELT value 4003 * as ue.enqueued and by using this value to update the Exponential 4004 * Weighted Moving Average (EWMA): 4005 * 4006 * ewma(t) = w * task_util(p) + (1-w) * ewma(t-1) 4007 * = w * task_util(p) + ewma(t-1) - w * ewma(t-1) 4008 * = w * (task_util(p) - ewma(t-1)) + ewma(t-1) 4009 * = w * ( last_ewma_diff ) + ewma(t-1) 4010 * = w * (last_ewma_diff + ewma(t-1) / w) 4011 * 4012 * Where 'w' is the weight of new samples, which is configured to be 4013 * 0.25, thus making w=1/4 ( >>= UTIL_EST_WEIGHT_SHIFT) 4014 */ 4015 ue.ewma <<= UTIL_EST_WEIGHT_SHIFT; 4016 ue.ewma += last_ewma_diff; 4017 ue.ewma >>= UTIL_EST_WEIGHT_SHIFT; 4018 done: 4019 WRITE_ONCE(p->se.avg.util_est, ue); 4020 } 4021 4022 static inline int task_fits_capacity(struct task_struct *p, long capacity) 4023 { 4024 return fits_capacity(uclamp_task_util(p), capacity); 4025 } 4026 4027 static inline void update_misfit_status(struct task_struct *p, struct rq *rq) 4028 { 4029 if (!static_branch_unlikely(&sched_asym_cpucapacity)) 4030 return; 4031 4032 if (!p) { 4033 rq->misfit_task_load = 0; 4034 return; 4035 } 4036 4037 if (task_fits_capacity(p, capacity_of(cpu_of(rq)))) { 4038 rq->misfit_task_load = 0; 4039 return; 4040 } 4041 4042 rq->misfit_task_load = task_h_load(p); 4043 } 4044 4045 #else /* CONFIG_SMP */ 4046 4047 #define UPDATE_TG 0x0 4048 #define SKIP_AGE_LOAD 0x0 4049 #define DO_ATTACH 0x0 4050 4051 static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int not_used1) 4052 { 4053 cfs_rq_util_change(cfs_rq, 0); 4054 } 4055 4056 static inline void remove_entity_load_avg(struct sched_entity *se) {} 4057 4058 static inline void 4059 attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {} 4060 static inline void 4061 detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {} 4062 4063 static inline int newidle_balance(struct rq *rq, struct rq_flags *rf) 4064 { 4065 return 0; 4066 } 4067 4068 static inline void 4069 util_est_enqueue(struct cfs_rq *cfs_rq, struct task_struct *p) {} 4070 4071 static inline void 4072 util_est_dequeue(struct cfs_rq *cfs_rq, struct task_struct *p, 4073 bool task_sleep) {} 4074 static inline void update_misfit_status(struct task_struct *p, struct rq *rq) {} 4075 4076 #endif /* CONFIG_SMP */ 4077 4078 static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se) 4079 { 4080 #ifdef CONFIG_SCHED_DEBUG 4081 s64 d = se->vruntime - cfs_rq->min_vruntime; 4082 4083 if (d < 0) 4084 d = -d; 4085 4086 if (d > 3*sysctl_sched_latency) 4087 schedstat_inc(cfs_rq->nr_spread_over); 4088 #endif 4089 } 4090 4091 static void 4092 place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial) 4093 { 4094 u64 vruntime = cfs_rq->min_vruntime; 4095 4096 /* 4097 * The 'current' period is already promised to the current tasks, 4098 * however the extra weight of the new task will slow them down a 4099 * little, place the new task so that it fits in the slot that 4100 * stays open at the end. 4101 */ 4102 if (initial && sched_feat(START_DEBIT)) 4103 vruntime += sched_vslice(cfs_rq, se); 4104 4105 /* sleeps up to a single latency don't count. */ 4106 if (!initial) { 4107 unsigned long thresh = sysctl_sched_latency; 4108 4109 /* 4110 * Halve their sleep time's effect, to allow 4111 * for a gentler effect of sleepers: 4112 */ 4113 if (sched_feat(GENTLE_FAIR_SLEEPERS)) 4114 thresh >>= 1; 4115 4116 vruntime -= thresh; 4117 } 4118 4119 /* ensure we never gain time by being placed backwards. */ 4120 se->vruntime = max_vruntime(se->vruntime, vruntime); 4121 } 4122 4123 static void check_enqueue_throttle(struct cfs_rq *cfs_rq); 4124 4125 static inline void check_schedstat_required(void) 4126 { 4127 #ifdef CONFIG_SCHEDSTATS 4128 if (schedstat_enabled()) 4129 return; 4130 4131 /* Force schedstat enabled if a dependent tracepoint is active */ 4132 if (trace_sched_stat_wait_enabled() || 4133 trace_sched_stat_sleep_enabled() || 4134 trace_sched_stat_iowait_enabled() || 4135 trace_sched_stat_blocked_enabled() || 4136 trace_sched_stat_runtime_enabled()) { 4137 printk_deferred_once("Scheduler tracepoints stat_sleep, stat_iowait, " 4138 "stat_blocked and stat_runtime require the " 4139 "kernel parameter schedstats=enable or " 4140 "kernel.sched_schedstats=1\n"); 4141 } 4142 #endif 4143 } 4144 4145 static inline bool cfs_bandwidth_used(void); 4146 4147 /* 4148 * MIGRATION 4149 * 4150 * dequeue 4151 * update_curr() 4152 * update_min_vruntime() 4153 * vruntime -= min_vruntime 4154 * 4155 * enqueue 4156 * update_curr() 4157 * update_min_vruntime() 4158 * vruntime += min_vruntime 4159 * 4160 * this way the vruntime transition between RQs is done when both 4161 * min_vruntime are up-to-date. 4162 * 4163 * WAKEUP (remote) 4164 * 4165 * ->migrate_task_rq_fair() (p->state == TASK_WAKING) 4166 * vruntime -= min_vruntime 4167 * 4168 * enqueue 4169 * update_curr() 4170 * update_min_vruntime() 4171 * vruntime += min_vruntime 4172 * 4173 * this way we don't have the most up-to-date min_vruntime on the originating 4174 * CPU and an up-to-date min_vruntime on the destination CPU. 4175 */ 4176 4177 static void 4178 enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 4179 { 4180 bool renorm = !(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_MIGRATED); 4181 bool curr = cfs_rq->curr == se; 4182 4183 /* 4184 * If we're the current task, we must renormalise before calling 4185 * update_curr(). 4186 */ 4187 if (renorm && curr) 4188 se->vruntime += cfs_rq->min_vruntime; 4189 4190 update_curr(cfs_rq); 4191 4192 /* 4193 * Otherwise, renormalise after, such that we're placed at the current 4194 * moment in time, instead of some random moment in the past. Being 4195 * placed in the past could significantly boost this task to the 4196 * fairness detriment of existing tasks. 4197 */ 4198 if (renorm && !curr) 4199 se->vruntime += cfs_rq->min_vruntime; 4200 4201 /* 4202 * When enqueuing a sched_entity, we must: 4203 * - Update loads to have both entity and cfs_rq synced with now. 4204 * - Add its load to cfs_rq->runnable_avg 4205 * - For group_entity, update its weight to reflect the new share of 4206 * its group cfs_rq 4207 * - Add its new weight to cfs_rq->load.weight 4208 */ 4209 update_load_avg(cfs_rq, se, UPDATE_TG | DO_ATTACH); 4210 se_update_runnable(se); 4211 update_cfs_group(se); 4212 account_entity_enqueue(cfs_rq, se); 4213 4214 if (flags & ENQUEUE_WAKEUP) 4215 place_entity(cfs_rq, se, 0); 4216 4217 check_schedstat_required(); 4218 update_stats_enqueue(cfs_rq, se, flags); 4219 check_spread(cfs_rq, se); 4220 if (!curr) 4221 __enqueue_entity(cfs_rq, se); 4222 se->on_rq = 1; 4223 4224 /* 4225 * When bandwidth control is enabled, cfs might have been removed 4226 * because of a parent been throttled but cfs->nr_running > 1. Try to 4227 * add it unconditionnally. 4228 */ 4229 if (cfs_rq->nr_running == 1 || cfs_bandwidth_used()) 4230 list_add_leaf_cfs_rq(cfs_rq); 4231 4232 if (cfs_rq->nr_running == 1) 4233 check_enqueue_throttle(cfs_rq); 4234 } 4235 4236 static void __clear_buddies_last(struct sched_entity *se) 4237 { 4238 for_each_sched_entity(se) { 4239 struct cfs_rq *cfs_rq = cfs_rq_of(se); 4240 if (cfs_rq->last != se) 4241 break; 4242 4243 cfs_rq->last = NULL; 4244 } 4245 } 4246 4247 static void __clear_buddies_next(struct sched_entity *se) 4248 { 4249 for_each_sched_entity(se) { 4250 struct cfs_rq *cfs_rq = cfs_rq_of(se); 4251 if (cfs_rq->next != se) 4252 break; 4253 4254 cfs_rq->next = NULL; 4255 } 4256 } 4257 4258 static void __clear_buddies_skip(struct sched_entity *se) 4259 { 4260 for_each_sched_entity(se) { 4261 struct cfs_rq *cfs_rq = cfs_rq_of(se); 4262 if (cfs_rq->skip != se) 4263 break; 4264 4265 cfs_rq->skip = NULL; 4266 } 4267 } 4268 4269 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se) 4270 { 4271 if (cfs_rq->last == se) 4272 __clear_buddies_last(se); 4273 4274 if (cfs_rq->next == se) 4275 __clear_buddies_next(se); 4276 4277 if (cfs_rq->skip == se) 4278 __clear_buddies_skip(se); 4279 } 4280 4281 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq); 4282 4283 static void 4284 dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 4285 { 4286 /* 4287 * Update run-time statistics of the 'current'. 4288 */ 4289 update_curr(cfs_rq); 4290 4291 /* 4292 * When dequeuing a sched_entity, we must: 4293 * - Update loads to have both entity and cfs_rq synced with now. 4294 * - Subtract its load from the cfs_rq->runnable_avg. 4295 * - Subtract its previous weight from cfs_rq->load.weight. 4296 * - For group entity, update its weight to reflect the new share 4297 * of its group cfs_rq. 4298 */ 4299 update_load_avg(cfs_rq, se, UPDATE_TG); 4300 se_update_runnable(se); 4301 4302 update_stats_dequeue(cfs_rq, se, flags); 4303 4304 clear_buddies(cfs_rq, se); 4305 4306 if (se != cfs_rq->curr) 4307 __dequeue_entity(cfs_rq, se); 4308 se->on_rq = 0; 4309 account_entity_dequeue(cfs_rq, se); 4310 4311 /* 4312 * Normalize after update_curr(); which will also have moved 4313 * min_vruntime if @se is the one holding it back. But before doing 4314 * update_min_vruntime() again, which will discount @se's position and 4315 * can move min_vruntime forward still more. 4316 */ 4317 if (!(flags & DEQUEUE_SLEEP)) 4318 se->vruntime -= cfs_rq->min_vruntime; 4319 4320 /* return excess runtime on last dequeue */ 4321 return_cfs_rq_runtime(cfs_rq); 4322 4323 update_cfs_group(se); 4324 4325 /* 4326 * Now advance min_vruntime if @se was the entity holding it back, 4327 * except when: DEQUEUE_SAVE && !DEQUEUE_MOVE, in this case we'll be 4328 * put back on, and if we advance min_vruntime, we'll be placed back 4329 * further than we started -- ie. we'll be penalized. 4330 */ 4331 if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) != DEQUEUE_SAVE) 4332 update_min_vruntime(cfs_rq); 4333 } 4334 4335 /* 4336 * Preempt the current task with a newly woken task if needed: 4337 */ 4338 static void 4339 check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr) 4340 { 4341 unsigned long ideal_runtime, delta_exec; 4342 struct sched_entity *se; 4343 s64 delta; 4344 4345 ideal_runtime = sched_slice(cfs_rq, curr); 4346 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime; 4347 if (delta_exec > ideal_runtime) { 4348 resched_curr(rq_of(cfs_rq)); 4349 /* 4350 * The current task ran long enough, ensure it doesn't get 4351 * re-elected due to buddy favours. 4352 */ 4353 clear_buddies(cfs_rq, curr); 4354 return; 4355 } 4356 4357 /* 4358 * Ensure that a task that missed wakeup preemption by a 4359 * narrow margin doesn't have to wait for a full slice. 4360 * This also mitigates buddy induced latencies under load. 4361 */ 4362 if (delta_exec < sysctl_sched_min_granularity) 4363 return; 4364 4365 se = __pick_first_entity(cfs_rq); 4366 delta = curr->vruntime - se->vruntime; 4367 4368 if (delta < 0) 4369 return; 4370 4371 if (delta > ideal_runtime) 4372 resched_curr(rq_of(cfs_rq)); 4373 } 4374 4375 static void 4376 set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) 4377 { 4378 /* 'current' is not kept within the tree. */ 4379 if (se->on_rq) { 4380 /* 4381 * Any task has to be enqueued before it get to execute on 4382 * a CPU. So account for the time it spent waiting on the 4383 * runqueue. 4384 */ 4385 update_stats_wait_end(cfs_rq, se); 4386 __dequeue_entity(cfs_rq, se); 4387 update_load_avg(cfs_rq, se, UPDATE_TG); 4388 } 4389 4390 update_stats_curr_start(cfs_rq, se); 4391 cfs_rq->curr = se; 4392 4393 /* 4394 * Track our maximum slice length, if the CPU's load is at 4395 * least twice that of our own weight (i.e. dont track it 4396 * when there are only lesser-weight tasks around): 4397 */ 4398 if (schedstat_enabled() && 4399 rq_of(cfs_rq)->cfs.load.weight >= 2*se->load.weight) { 4400 schedstat_set(se->statistics.slice_max, 4401 max((u64)schedstat_val(se->statistics.slice_max), 4402 se->sum_exec_runtime - se->prev_sum_exec_runtime)); 4403 } 4404 4405 se->prev_sum_exec_runtime = se->sum_exec_runtime; 4406 } 4407 4408 static int 4409 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se); 4410 4411 /* 4412 * Pick the next process, keeping these things in mind, in this order: 4413 * 1) keep things fair between processes/task groups 4414 * 2) pick the "next" process, since someone really wants that to run 4415 * 3) pick the "last" process, for cache locality 4416 * 4) do not run the "skip" process, if something else is available 4417 */ 4418 static struct sched_entity * 4419 pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr) 4420 { 4421 struct sched_entity *left = __pick_first_entity(cfs_rq); 4422 struct sched_entity *se; 4423 4424 /* 4425 * If curr is set we have to see if its left of the leftmost entity 4426 * still in the tree, provided there was anything in the tree at all. 4427 */ 4428 if (!left || (curr && entity_before(curr, left))) 4429 left = curr; 4430 4431 se = left; /* ideally we run the leftmost entity */ 4432 4433 /* 4434 * Avoid running the skip buddy, if running something else can 4435 * be done without getting too unfair. 4436 */ 4437 if (cfs_rq->skip == se) { 4438 struct sched_entity *second; 4439 4440 if (se == curr) { 4441 second = __pick_first_entity(cfs_rq); 4442 } else { 4443 second = __pick_next_entity(se); 4444 if (!second || (curr && entity_before(curr, second))) 4445 second = curr; 4446 } 4447 4448 if (second && wakeup_preempt_entity(second, left) < 1) 4449 se = second; 4450 } 4451 4452 /* 4453 * Prefer last buddy, try to return the CPU to a preempted task. 4454 */ 4455 if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1) 4456 se = cfs_rq->last; 4457 4458 /* 4459 * Someone really wants this to run. If it's not unfair, run it. 4460 */ 4461 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1) 4462 se = cfs_rq->next; 4463 4464 clear_buddies(cfs_rq, se); 4465 4466 return se; 4467 } 4468 4469 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq); 4470 4471 static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev) 4472 { 4473 /* 4474 * If still on the runqueue then deactivate_task() 4475 * was not called and update_curr() has to be done: 4476 */ 4477 if (prev->on_rq) 4478 update_curr(cfs_rq); 4479 4480 /* throttle cfs_rqs exceeding runtime */ 4481 check_cfs_rq_runtime(cfs_rq); 4482 4483 check_spread(cfs_rq, prev); 4484 4485 if (prev->on_rq) { 4486 update_stats_wait_start(cfs_rq, prev); 4487 /* Put 'current' back into the tree. */ 4488 __enqueue_entity(cfs_rq, prev); 4489 /* in !on_rq case, update occurred at dequeue */ 4490 update_load_avg(cfs_rq, prev, 0); 4491 } 4492 cfs_rq->curr = NULL; 4493 } 4494 4495 static void 4496 entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued) 4497 { 4498 /* 4499 * Update run-time statistics of the 'current'. 4500 */ 4501 update_curr(cfs_rq); 4502 4503 /* 4504 * Ensure that runnable average is periodically updated. 4505 */ 4506 update_load_avg(cfs_rq, curr, UPDATE_TG); 4507 update_cfs_group(curr); 4508 4509 #ifdef CONFIG_SCHED_HRTICK 4510 /* 4511 * queued ticks are scheduled to match the slice, so don't bother 4512 * validating it and just reschedule. 4513 */ 4514 if (queued) { 4515 resched_curr(rq_of(cfs_rq)); 4516 return; 4517 } 4518 /* 4519 * don't let the period tick interfere with the hrtick preemption 4520 */ 4521 if (!sched_feat(DOUBLE_TICK) && 4522 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer)) 4523 return; 4524 #endif 4525 4526 if (cfs_rq->nr_running > 1) 4527 check_preempt_tick(cfs_rq, curr); 4528 } 4529 4530 4531 /************************************************** 4532 * CFS bandwidth control machinery 4533 */ 4534 4535 #ifdef CONFIG_CFS_BANDWIDTH 4536 4537 #ifdef CONFIG_JUMP_LABEL 4538 static struct static_key __cfs_bandwidth_used; 4539 4540 static inline bool cfs_bandwidth_used(void) 4541 { 4542 return static_key_false(&__cfs_bandwidth_used); 4543 } 4544 4545 void cfs_bandwidth_usage_inc(void) 4546 { 4547 static_key_slow_inc_cpuslocked(&__cfs_bandwidth_used); 4548 } 4549 4550 void cfs_bandwidth_usage_dec(void) 4551 { 4552 static_key_slow_dec_cpuslocked(&__cfs_bandwidth_used); 4553 } 4554 #else /* CONFIG_JUMP_LABEL */ 4555 static bool cfs_bandwidth_used(void) 4556 { 4557 return true; 4558 } 4559 4560 void cfs_bandwidth_usage_inc(void) {} 4561 void cfs_bandwidth_usage_dec(void) {} 4562 #endif /* CONFIG_JUMP_LABEL */ 4563 4564 /* 4565 * default period for cfs group bandwidth. 4566 * default: 0.1s, units: nanoseconds 4567 */ 4568 static inline u64 default_cfs_period(void) 4569 { 4570 return 100000000ULL; 4571 } 4572 4573 static inline u64 sched_cfs_bandwidth_slice(void) 4574 { 4575 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC; 4576 } 4577 4578 /* 4579 * Replenish runtime according to assigned quota. We use sched_clock_cpu 4580 * directly instead of rq->clock to avoid adding additional synchronization 4581 * around rq->lock. 4582 * 4583 * requires cfs_b->lock 4584 */ 4585 void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b) 4586 { 4587 if (cfs_b->quota != RUNTIME_INF) 4588 cfs_b->runtime = cfs_b->quota; 4589 } 4590 4591 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg) 4592 { 4593 return &tg->cfs_bandwidth; 4594 } 4595 4596 /* returns 0 on failure to allocate runtime */ 4597 static int __assign_cfs_rq_runtime(struct cfs_bandwidth *cfs_b, 4598 struct cfs_rq *cfs_rq, u64 target_runtime) 4599 { 4600 u64 min_amount, amount = 0; 4601 4602 lockdep_assert_held(&cfs_b->lock); 4603 4604 /* note: this is a positive sum as runtime_remaining <= 0 */ 4605 min_amount = target_runtime - cfs_rq->runtime_remaining; 4606 4607 if (cfs_b->quota == RUNTIME_INF) 4608 amount = min_amount; 4609 else { 4610 start_cfs_bandwidth(cfs_b); 4611 4612 if (cfs_b->runtime > 0) { 4613 amount = min(cfs_b->runtime, min_amount); 4614 cfs_b->runtime -= amount; 4615 cfs_b->idle = 0; 4616 } 4617 } 4618 4619 cfs_rq->runtime_remaining += amount; 4620 4621 return cfs_rq->runtime_remaining > 0; 4622 } 4623 4624 /* returns 0 on failure to allocate runtime */ 4625 static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq) 4626 { 4627 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 4628 int ret; 4629 4630 raw_spin_lock(&cfs_b->lock); 4631 ret = __assign_cfs_rq_runtime(cfs_b, cfs_rq, sched_cfs_bandwidth_slice()); 4632 raw_spin_unlock(&cfs_b->lock); 4633 4634 return ret; 4635 } 4636 4637 static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) 4638 { 4639 /* dock delta_exec before expiring quota (as it could span periods) */ 4640 cfs_rq->runtime_remaining -= delta_exec; 4641 4642 if (likely(cfs_rq->runtime_remaining > 0)) 4643 return; 4644 4645 if (cfs_rq->throttled) 4646 return; 4647 /* 4648 * if we're unable to extend our runtime we resched so that the active 4649 * hierarchy can be throttled 4650 */ 4651 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr)) 4652 resched_curr(rq_of(cfs_rq)); 4653 } 4654 4655 static __always_inline 4656 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) 4657 { 4658 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled) 4659 return; 4660 4661 __account_cfs_rq_runtime(cfs_rq, delta_exec); 4662 } 4663 4664 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq) 4665 { 4666 return cfs_bandwidth_used() && cfs_rq->throttled; 4667 } 4668 4669 /* check whether cfs_rq, or any parent, is throttled */ 4670 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq) 4671 { 4672 return cfs_bandwidth_used() && cfs_rq->throttle_count; 4673 } 4674 4675 /* 4676 * Ensure that neither of the group entities corresponding to src_cpu or 4677 * dest_cpu are members of a throttled hierarchy when performing group 4678 * load-balance operations. 4679 */ 4680 static inline int throttled_lb_pair(struct task_group *tg, 4681 int src_cpu, int dest_cpu) 4682 { 4683 struct cfs_rq *src_cfs_rq, *dest_cfs_rq; 4684 4685 src_cfs_rq = tg->cfs_rq[src_cpu]; 4686 dest_cfs_rq = tg->cfs_rq[dest_cpu]; 4687 4688 return throttled_hierarchy(src_cfs_rq) || 4689 throttled_hierarchy(dest_cfs_rq); 4690 } 4691 4692 static int tg_unthrottle_up(struct task_group *tg, void *data) 4693 { 4694 struct rq *rq = data; 4695 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; 4696 4697 cfs_rq->throttle_count--; 4698 if (!cfs_rq->throttle_count) { 4699 cfs_rq->throttled_clock_task_time += rq_clock_task(rq) - 4700 cfs_rq->throttled_clock_task; 4701 4702 /* Add cfs_rq with already running entity in the list */ 4703 if (cfs_rq->nr_running >= 1) 4704 list_add_leaf_cfs_rq(cfs_rq); 4705 } 4706 4707 return 0; 4708 } 4709 4710 static int tg_throttle_down(struct task_group *tg, void *data) 4711 { 4712 struct rq *rq = data; 4713 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; 4714 4715 /* group is entering throttled state, stop time */ 4716 if (!cfs_rq->throttle_count) { 4717 cfs_rq->throttled_clock_task = rq_clock_task(rq); 4718 list_del_leaf_cfs_rq(cfs_rq); 4719 } 4720 cfs_rq->throttle_count++; 4721 4722 return 0; 4723 } 4724 4725 static bool throttle_cfs_rq(struct cfs_rq *cfs_rq) 4726 { 4727 struct rq *rq = rq_of(cfs_rq); 4728 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 4729 struct sched_entity *se; 4730 long task_delta, idle_task_delta, dequeue = 1; 4731 4732 raw_spin_lock(&cfs_b->lock); 4733 /* This will start the period timer if necessary */ 4734 if (__assign_cfs_rq_runtime(cfs_b, cfs_rq, 1)) { 4735 /* 4736 * We have raced with bandwidth becoming available, and if we 4737 * actually throttled the timer might not unthrottle us for an 4738 * entire period. We additionally needed to make sure that any 4739 * subsequent check_cfs_rq_runtime calls agree not to throttle 4740 * us, as we may commit to do cfs put_prev+pick_next, so we ask 4741 * for 1ns of runtime rather than just check cfs_b. 4742 */ 4743 dequeue = 0; 4744 } else { 4745 list_add_tail_rcu(&cfs_rq->throttled_list, 4746 &cfs_b->throttled_cfs_rq); 4747 } 4748 raw_spin_unlock(&cfs_b->lock); 4749 4750 if (!dequeue) 4751 return false; /* Throttle no longer required. */ 4752 4753 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))]; 4754 4755 /* freeze hierarchy runnable averages while throttled */ 4756 rcu_read_lock(); 4757 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq); 4758 rcu_read_unlock(); 4759 4760 task_delta = cfs_rq->h_nr_running; 4761 idle_task_delta = cfs_rq->idle_h_nr_running; 4762 for_each_sched_entity(se) { 4763 struct cfs_rq *qcfs_rq = cfs_rq_of(se); 4764 /* throttled entity or throttle-on-deactivate */ 4765 if (!se->on_rq) 4766 break; 4767 4768 if (dequeue) { 4769 dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP); 4770 } else { 4771 update_load_avg(qcfs_rq, se, 0); 4772 se_update_runnable(se); 4773 } 4774 4775 qcfs_rq->h_nr_running -= task_delta; 4776 qcfs_rq->idle_h_nr_running -= idle_task_delta; 4777 4778 if (qcfs_rq->load.weight) 4779 dequeue = 0; 4780 } 4781 4782 if (!se) 4783 sub_nr_running(rq, task_delta); 4784 4785 /* 4786 * Note: distribution will already see us throttled via the 4787 * throttled-list. rq->lock protects completion. 4788 */ 4789 cfs_rq->throttled = 1; 4790 cfs_rq->throttled_clock = rq_clock(rq); 4791 return true; 4792 } 4793 4794 void unthrottle_cfs_rq(struct cfs_rq *cfs_rq) 4795 { 4796 struct rq *rq = rq_of(cfs_rq); 4797 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 4798 struct sched_entity *se; 4799 long task_delta, idle_task_delta; 4800 4801 se = cfs_rq->tg->se[cpu_of(rq)]; 4802 4803 cfs_rq->throttled = 0; 4804 4805 update_rq_clock(rq); 4806 4807 raw_spin_lock(&cfs_b->lock); 4808 cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock; 4809 list_del_rcu(&cfs_rq->throttled_list); 4810 raw_spin_unlock(&cfs_b->lock); 4811 4812 /* update hierarchical throttle state */ 4813 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq); 4814 4815 if (!cfs_rq->load.weight) 4816 return; 4817 4818 task_delta = cfs_rq->h_nr_running; 4819 idle_task_delta = cfs_rq->idle_h_nr_running; 4820 for_each_sched_entity(se) { 4821 if (se->on_rq) 4822 break; 4823 cfs_rq = cfs_rq_of(se); 4824 enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP); 4825 4826 cfs_rq->h_nr_running += task_delta; 4827 cfs_rq->idle_h_nr_running += idle_task_delta; 4828 4829 /* end evaluation on encountering a throttled cfs_rq */ 4830 if (cfs_rq_throttled(cfs_rq)) 4831 goto unthrottle_throttle; 4832 } 4833 4834 for_each_sched_entity(se) { 4835 cfs_rq = cfs_rq_of(se); 4836 4837 update_load_avg(cfs_rq, se, UPDATE_TG); 4838 se_update_runnable(se); 4839 4840 cfs_rq->h_nr_running += task_delta; 4841 cfs_rq->idle_h_nr_running += idle_task_delta; 4842 4843 4844 /* end evaluation on encountering a throttled cfs_rq */ 4845 if (cfs_rq_throttled(cfs_rq)) 4846 goto unthrottle_throttle; 4847 4848 /* 4849 * One parent has been throttled and cfs_rq removed from the 4850 * list. Add it back to not break the leaf list. 4851 */ 4852 if (throttled_hierarchy(cfs_rq)) 4853 list_add_leaf_cfs_rq(cfs_rq); 4854 } 4855 4856 /* At this point se is NULL and we are at root level*/ 4857 add_nr_running(rq, task_delta); 4858 4859 unthrottle_throttle: 4860 /* 4861 * The cfs_rq_throttled() breaks in the above iteration can result in 4862 * incomplete leaf list maintenance, resulting in triggering the 4863 * assertion below. 4864 */ 4865 for_each_sched_entity(se) { 4866 cfs_rq = cfs_rq_of(se); 4867 4868 if (list_add_leaf_cfs_rq(cfs_rq)) 4869 break; 4870 } 4871 4872 assert_list_leaf_cfs_rq(rq); 4873 4874 /* Determine whether we need to wake up potentially idle CPU: */ 4875 if (rq->curr == rq->idle && rq->cfs.nr_running) 4876 resched_curr(rq); 4877 } 4878 4879 static void distribute_cfs_runtime(struct cfs_bandwidth *cfs_b) 4880 { 4881 struct cfs_rq *cfs_rq; 4882 u64 runtime, remaining = 1; 4883 4884 rcu_read_lock(); 4885 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq, 4886 throttled_list) { 4887 struct rq *rq = rq_of(cfs_rq); 4888 struct rq_flags rf; 4889 4890 rq_lock_irqsave(rq, &rf); 4891 if (!cfs_rq_throttled(cfs_rq)) 4892 goto next; 4893 4894 /* By the above check, this should never be true */ 4895 SCHED_WARN_ON(cfs_rq->runtime_remaining > 0); 4896 4897 raw_spin_lock(&cfs_b->lock); 4898 runtime = -cfs_rq->runtime_remaining + 1; 4899 if (runtime > cfs_b->runtime) 4900 runtime = cfs_b->runtime; 4901 cfs_b->runtime -= runtime; 4902 remaining = cfs_b->runtime; 4903 raw_spin_unlock(&cfs_b->lock); 4904 4905 cfs_rq->runtime_remaining += runtime; 4906 4907 /* we check whether we're throttled above */ 4908 if (cfs_rq->runtime_remaining > 0) 4909 unthrottle_cfs_rq(cfs_rq); 4910 4911 next: 4912 rq_unlock_irqrestore(rq, &rf); 4913 4914 if (!remaining) 4915 break; 4916 } 4917 rcu_read_unlock(); 4918 } 4919 4920 /* 4921 * Responsible for refilling a task_group's bandwidth and unthrottling its 4922 * cfs_rqs as appropriate. If there has been no activity within the last 4923 * period the timer is deactivated until scheduling resumes; cfs_b->idle is 4924 * used to track this state. 4925 */ 4926 static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun, unsigned long flags) 4927 { 4928 int throttled; 4929 4930 /* no need to continue the timer with no bandwidth constraint */ 4931 if (cfs_b->quota == RUNTIME_INF) 4932 goto out_deactivate; 4933 4934 throttled = !list_empty(&cfs_b->throttled_cfs_rq); 4935 cfs_b->nr_periods += overrun; 4936 4937 /* 4938 * idle depends on !throttled (for the case of a large deficit), and if 4939 * we're going inactive then everything else can be deferred 4940 */ 4941 if (cfs_b->idle && !throttled) 4942 goto out_deactivate; 4943 4944 __refill_cfs_bandwidth_runtime(cfs_b); 4945 4946 if (!throttled) { 4947 /* mark as potentially idle for the upcoming period */ 4948 cfs_b->idle = 1; 4949 return 0; 4950 } 4951 4952 /* account preceding periods in which throttling occurred */ 4953 cfs_b->nr_throttled += overrun; 4954 4955 /* 4956 * This check is repeated as we release cfs_b->lock while we unthrottle. 4957 */ 4958 while (throttled && cfs_b->runtime > 0) { 4959 raw_spin_unlock_irqrestore(&cfs_b->lock, flags); 4960 /* we can't nest cfs_b->lock while distributing bandwidth */ 4961 distribute_cfs_runtime(cfs_b); 4962 raw_spin_lock_irqsave(&cfs_b->lock, flags); 4963 4964 throttled = !list_empty(&cfs_b->throttled_cfs_rq); 4965 } 4966 4967 /* 4968 * While we are ensured activity in the period following an 4969 * unthrottle, this also covers the case in which the new bandwidth is 4970 * insufficient to cover the existing bandwidth deficit. (Forcing the 4971 * timer to remain active while there are any throttled entities.) 4972 */ 4973 cfs_b->idle = 0; 4974 4975 return 0; 4976 4977 out_deactivate: 4978 return 1; 4979 } 4980 4981 /* a cfs_rq won't donate quota below this amount */ 4982 static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC; 4983 /* minimum remaining period time to redistribute slack quota */ 4984 static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC; 4985 /* how long we wait to gather additional slack before distributing */ 4986 static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC; 4987 4988 /* 4989 * Are we near the end of the current quota period? 4990 * 4991 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the 4992 * hrtimer base being cleared by hrtimer_start. In the case of 4993 * migrate_hrtimers, base is never cleared, so we are fine. 4994 */ 4995 static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire) 4996 { 4997 struct hrtimer *refresh_timer = &cfs_b->period_timer; 4998 u64 remaining; 4999 5000 /* if the call-back is running a quota refresh is already occurring */ 5001 if (hrtimer_callback_running(refresh_timer)) 5002 return 1; 5003 5004 /* is a quota refresh about to occur? */ 5005 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer)); 5006 if (remaining < min_expire) 5007 return 1; 5008 5009 return 0; 5010 } 5011 5012 static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b) 5013 { 5014 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration; 5015 5016 /* if there's a quota refresh soon don't bother with slack */ 5017 if (runtime_refresh_within(cfs_b, min_left)) 5018 return; 5019 5020 /* don't push forwards an existing deferred unthrottle */ 5021 if (cfs_b->slack_started) 5022 return; 5023 cfs_b->slack_started = true; 5024 5025 hrtimer_start(&cfs_b->slack_timer, 5026 ns_to_ktime(cfs_bandwidth_slack_period), 5027 HRTIMER_MODE_REL); 5028 } 5029 5030 /* we know any runtime found here is valid as update_curr() precedes return */ 5031 static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq) 5032 { 5033 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 5034 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime; 5035 5036 if (slack_runtime <= 0) 5037 return; 5038 5039 raw_spin_lock(&cfs_b->lock); 5040 if (cfs_b->quota != RUNTIME_INF) { 5041 cfs_b->runtime += slack_runtime; 5042 5043 /* we are under rq->lock, defer unthrottling using a timer */ 5044 if (cfs_b->runtime > sched_cfs_bandwidth_slice() && 5045 !list_empty(&cfs_b->throttled_cfs_rq)) 5046 start_cfs_slack_bandwidth(cfs_b); 5047 } 5048 raw_spin_unlock(&cfs_b->lock); 5049 5050 /* even if it's not valid for return we don't want to try again */ 5051 cfs_rq->runtime_remaining -= slack_runtime; 5052 } 5053 5054 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) 5055 { 5056 if (!cfs_bandwidth_used()) 5057 return; 5058 5059 if (!cfs_rq->runtime_enabled || cfs_rq->nr_running) 5060 return; 5061 5062 __return_cfs_rq_runtime(cfs_rq); 5063 } 5064 5065 /* 5066 * This is done with a timer (instead of inline with bandwidth return) since 5067 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs. 5068 */ 5069 static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b) 5070 { 5071 u64 runtime = 0, slice = sched_cfs_bandwidth_slice(); 5072 unsigned long flags; 5073 5074 /* confirm we're still not at a refresh boundary */ 5075 raw_spin_lock_irqsave(&cfs_b->lock, flags); 5076 cfs_b->slack_started = false; 5077 5078 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) { 5079 raw_spin_unlock_irqrestore(&cfs_b->lock, flags); 5080 return; 5081 } 5082 5083 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice) 5084 runtime = cfs_b->runtime; 5085 5086 raw_spin_unlock_irqrestore(&cfs_b->lock, flags); 5087 5088 if (!runtime) 5089 return; 5090 5091 distribute_cfs_runtime(cfs_b); 5092 5093 raw_spin_lock_irqsave(&cfs_b->lock, flags); 5094 raw_spin_unlock_irqrestore(&cfs_b->lock, flags); 5095 } 5096 5097 /* 5098 * When a group wakes up we want to make sure that its quota is not already 5099 * expired/exceeded, otherwise it may be allowed to steal additional ticks of 5100 * runtime as update_curr() throttling can not not trigger until it's on-rq. 5101 */ 5102 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) 5103 { 5104 if (!cfs_bandwidth_used()) 5105 return; 5106 5107 /* an active group must be handled by the update_curr()->put() path */ 5108 if (!cfs_rq->runtime_enabled || cfs_rq->curr) 5109 return; 5110 5111 /* ensure the group is not already throttled */ 5112 if (cfs_rq_throttled(cfs_rq)) 5113 return; 5114 5115 /* update runtime allocation */ 5116 account_cfs_rq_runtime(cfs_rq, 0); 5117 if (cfs_rq->runtime_remaining <= 0) 5118 throttle_cfs_rq(cfs_rq); 5119 } 5120 5121 static void sync_throttle(struct task_group *tg, int cpu) 5122 { 5123 struct cfs_rq *pcfs_rq, *cfs_rq; 5124 5125 if (!cfs_bandwidth_used()) 5126 return; 5127 5128 if (!tg->parent) 5129 return; 5130 5131 cfs_rq = tg->cfs_rq[cpu]; 5132 pcfs_rq = tg->parent->cfs_rq[cpu]; 5133 5134 cfs_rq->throttle_count = pcfs_rq->throttle_count; 5135 cfs_rq->throttled_clock_task = rq_clock_task(cpu_rq(cpu)); 5136 } 5137 5138 /* conditionally throttle active cfs_rq's from put_prev_entity() */ 5139 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) 5140 { 5141 if (!cfs_bandwidth_used()) 5142 return false; 5143 5144 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0)) 5145 return false; 5146 5147 /* 5148 * it's possible for a throttled entity to be forced into a running 5149 * state (e.g. set_curr_task), in this case we're finished. 5150 */ 5151 if (cfs_rq_throttled(cfs_rq)) 5152 return true; 5153 5154 return throttle_cfs_rq(cfs_rq); 5155 } 5156 5157 static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer) 5158 { 5159 struct cfs_bandwidth *cfs_b = 5160 container_of(timer, struct cfs_bandwidth, slack_timer); 5161 5162 do_sched_cfs_slack_timer(cfs_b); 5163 5164 return HRTIMER_NORESTART; 5165 } 5166 5167 extern const u64 max_cfs_quota_period; 5168 5169 static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer) 5170 { 5171 struct cfs_bandwidth *cfs_b = 5172 container_of(timer, struct cfs_bandwidth, period_timer); 5173 unsigned long flags; 5174 int overrun; 5175 int idle = 0; 5176 int count = 0; 5177 5178 raw_spin_lock_irqsave(&cfs_b->lock, flags); 5179 for (;;) { 5180 overrun = hrtimer_forward_now(timer, cfs_b->period); 5181 if (!overrun) 5182 break; 5183 5184 idle = do_sched_cfs_period_timer(cfs_b, overrun, flags); 5185 5186 if (++count > 3) { 5187 u64 new, old = ktime_to_ns(cfs_b->period); 5188 5189 /* 5190 * Grow period by a factor of 2 to avoid losing precision. 5191 * Precision loss in the quota/period ratio can cause __cfs_schedulable 5192 * to fail. 5193 */ 5194 new = old * 2; 5195 if (new < max_cfs_quota_period) { 5196 cfs_b->period = ns_to_ktime(new); 5197 cfs_b->quota *= 2; 5198 5199 pr_warn_ratelimited( 5200 "cfs_period_timer[cpu%d]: period too short, scaling up (new cfs_period_us = %lld, cfs_quota_us = %lld)\n", 5201 smp_processor_id(), 5202 div_u64(new, NSEC_PER_USEC), 5203 div_u64(cfs_b->quota, NSEC_PER_USEC)); 5204 } else { 5205 pr_warn_ratelimited( 5206 "cfs_period_timer[cpu%d]: period too short, but cannot scale up without losing precision (cfs_period_us = %lld, cfs_quota_us = %lld)\n", 5207 smp_processor_id(), 5208 div_u64(old, NSEC_PER_USEC), 5209 div_u64(cfs_b->quota, NSEC_PER_USEC)); 5210 } 5211 5212 /* reset count so we don't come right back in here */ 5213 count = 0; 5214 } 5215 } 5216 if (idle) 5217 cfs_b->period_active = 0; 5218 raw_spin_unlock_irqrestore(&cfs_b->lock, flags); 5219 5220 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART; 5221 } 5222 5223 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) 5224 { 5225 raw_spin_lock_init(&cfs_b->lock); 5226 cfs_b->runtime = 0; 5227 cfs_b->quota = RUNTIME_INF; 5228 cfs_b->period = ns_to_ktime(default_cfs_period()); 5229 5230 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq); 5231 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED); 5232 cfs_b->period_timer.function = sched_cfs_period_timer; 5233 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 5234 cfs_b->slack_timer.function = sched_cfs_slack_timer; 5235 cfs_b->slack_started = false; 5236 } 5237 5238 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) 5239 { 5240 cfs_rq->runtime_enabled = 0; 5241 INIT_LIST_HEAD(&cfs_rq->throttled_list); 5242 } 5243 5244 void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b) 5245 { 5246 lockdep_assert_held(&cfs_b->lock); 5247 5248 if (cfs_b->period_active) 5249 return; 5250 5251 cfs_b->period_active = 1; 5252 hrtimer_forward_now(&cfs_b->period_timer, cfs_b->period); 5253 hrtimer_start_expires(&cfs_b->period_timer, HRTIMER_MODE_ABS_PINNED); 5254 } 5255 5256 static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) 5257 { 5258 /* init_cfs_bandwidth() was not called */ 5259 if (!cfs_b->throttled_cfs_rq.next) 5260 return; 5261 5262 hrtimer_cancel(&cfs_b->period_timer); 5263 hrtimer_cancel(&cfs_b->slack_timer); 5264 } 5265 5266 /* 5267 * Both these CPU hotplug callbacks race against unregister_fair_sched_group() 5268 * 5269 * The race is harmless, since modifying bandwidth settings of unhooked group 5270 * bits doesn't do much. 5271 */ 5272 5273 /* cpu online calback */ 5274 static void __maybe_unused update_runtime_enabled(struct rq *rq) 5275 { 5276 struct task_group *tg; 5277 5278 lockdep_assert_held(&rq->lock); 5279 5280 rcu_read_lock(); 5281 list_for_each_entry_rcu(tg, &task_groups, list) { 5282 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 5283 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; 5284 5285 raw_spin_lock(&cfs_b->lock); 5286 cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF; 5287 raw_spin_unlock(&cfs_b->lock); 5288 } 5289 rcu_read_unlock(); 5290 } 5291 5292 /* cpu offline callback */ 5293 static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq) 5294 { 5295 struct task_group *tg; 5296 5297 lockdep_assert_held(&rq->lock); 5298 5299 rcu_read_lock(); 5300 list_for_each_entry_rcu(tg, &task_groups, list) { 5301 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; 5302 5303 if (!cfs_rq->runtime_enabled) 5304 continue; 5305 5306 /* 5307 * clock_task is not advancing so we just need to make sure 5308 * there's some valid quota amount 5309 */ 5310 cfs_rq->runtime_remaining = 1; 5311 /* 5312 * Offline rq is schedulable till CPU is completely disabled 5313 * in take_cpu_down(), so we prevent new cfs throttling here. 5314 */ 5315 cfs_rq->runtime_enabled = 0; 5316 5317 if (cfs_rq_throttled(cfs_rq)) 5318 unthrottle_cfs_rq(cfs_rq); 5319 } 5320 rcu_read_unlock(); 5321 } 5322 5323 #else /* CONFIG_CFS_BANDWIDTH */ 5324 5325 static inline bool cfs_bandwidth_used(void) 5326 { 5327 return false; 5328 } 5329 5330 static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {} 5331 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; } 5332 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {} 5333 static inline void sync_throttle(struct task_group *tg, int cpu) {} 5334 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {} 5335 5336 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq) 5337 { 5338 return 0; 5339 } 5340 5341 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq) 5342 { 5343 return 0; 5344 } 5345 5346 static inline int throttled_lb_pair(struct task_group *tg, 5347 int src_cpu, int dest_cpu) 5348 { 5349 return 0; 5350 } 5351 5352 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {} 5353 5354 #ifdef CONFIG_FAIR_GROUP_SCHED 5355 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {} 5356 #endif 5357 5358 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg) 5359 { 5360 return NULL; 5361 } 5362 static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {} 5363 static inline void update_runtime_enabled(struct rq *rq) {} 5364 static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {} 5365 5366 #endif /* CONFIG_CFS_BANDWIDTH */ 5367 5368 /************************************************** 5369 * CFS operations on tasks: 5370 */ 5371 5372 #ifdef CONFIG_SCHED_HRTICK 5373 static void hrtick_start_fair(struct rq *rq, struct task_struct *p) 5374 { 5375 struct sched_entity *se = &p->se; 5376 struct cfs_rq *cfs_rq = cfs_rq_of(se); 5377 5378 SCHED_WARN_ON(task_rq(p) != rq); 5379 5380 if (rq->cfs.h_nr_running > 1) { 5381 u64 slice = sched_slice(cfs_rq, se); 5382 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime; 5383 s64 delta = slice - ran; 5384 5385 if (delta < 0) { 5386 if (rq->curr == p) 5387 resched_curr(rq); 5388 return; 5389 } 5390 hrtick_start(rq, delta); 5391 } 5392 } 5393 5394 /* 5395 * called from enqueue/dequeue and updates the hrtick when the 5396 * current task is from our class and nr_running is low enough 5397 * to matter. 5398 */ 5399 static void hrtick_update(struct rq *rq) 5400 { 5401 struct task_struct *curr = rq->curr; 5402 5403 if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class) 5404 return; 5405 5406 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency) 5407 hrtick_start_fair(rq, curr); 5408 } 5409 #else /* !CONFIG_SCHED_HRTICK */ 5410 static inline void 5411 hrtick_start_fair(struct rq *rq, struct task_struct *p) 5412 { 5413 } 5414 5415 static inline void hrtick_update(struct rq *rq) 5416 { 5417 } 5418 #endif 5419 5420 #ifdef CONFIG_SMP 5421 static inline unsigned long cpu_util(int cpu); 5422 5423 static inline bool cpu_overutilized(int cpu) 5424 { 5425 return !fits_capacity(cpu_util(cpu), capacity_of(cpu)); 5426 } 5427 5428 static inline void update_overutilized_status(struct rq *rq) 5429 { 5430 if (!READ_ONCE(rq->rd->overutilized) && cpu_overutilized(rq->cpu)) { 5431 WRITE_ONCE(rq->rd->overutilized, SG_OVERUTILIZED); 5432 trace_sched_overutilized_tp(rq->rd, SG_OVERUTILIZED); 5433 } 5434 } 5435 #else 5436 static inline void update_overutilized_status(struct rq *rq) { } 5437 #endif 5438 5439 /* Runqueue only has SCHED_IDLE tasks enqueued */ 5440 static int sched_idle_rq(struct rq *rq) 5441 { 5442 return unlikely(rq->nr_running == rq->cfs.idle_h_nr_running && 5443 rq->nr_running); 5444 } 5445 5446 #ifdef CONFIG_SMP 5447 static int sched_idle_cpu(int cpu) 5448 { 5449 return sched_idle_rq(cpu_rq(cpu)); 5450 } 5451 #endif 5452 5453 /* 5454 * The enqueue_task method is called before nr_running is 5455 * increased. Here we update the fair scheduling stats and 5456 * then put the task into the rbtree: 5457 */ 5458 static void 5459 enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags) 5460 { 5461 struct cfs_rq *cfs_rq; 5462 struct sched_entity *se = &p->se; 5463 int idle_h_nr_running = task_has_idle_policy(p); 5464 5465 /* 5466 * The code below (indirectly) updates schedutil which looks at 5467 * the cfs_rq utilization to select a frequency. 5468 * Let's add the task's estimated utilization to the cfs_rq's 5469 * estimated utilization, before we update schedutil. 5470 */ 5471 util_est_enqueue(&rq->cfs, p); 5472 5473 /* 5474 * If in_iowait is set, the code below may not trigger any cpufreq 5475 * utilization updates, so do it here explicitly with the IOWAIT flag 5476 * passed. 5477 */ 5478 if (p->in_iowait) 5479 cpufreq_update_util(rq, SCHED_CPUFREQ_IOWAIT); 5480 5481 for_each_sched_entity(se) { 5482 if (se->on_rq) 5483 break; 5484 cfs_rq = cfs_rq_of(se); 5485 enqueue_entity(cfs_rq, se, flags); 5486 5487 cfs_rq->h_nr_running++; 5488 cfs_rq->idle_h_nr_running += idle_h_nr_running; 5489 5490 /* end evaluation on encountering a throttled cfs_rq */ 5491 if (cfs_rq_throttled(cfs_rq)) 5492 goto enqueue_throttle; 5493 5494 flags = ENQUEUE_WAKEUP; 5495 } 5496 5497 for_each_sched_entity(se) { 5498 cfs_rq = cfs_rq_of(se); 5499 5500 update_load_avg(cfs_rq, se, UPDATE_TG); 5501 se_update_runnable(se); 5502 update_cfs_group(se); 5503 5504 cfs_rq->h_nr_running++; 5505 cfs_rq->idle_h_nr_running += idle_h_nr_running; 5506 5507 /* end evaluation on encountering a throttled cfs_rq */ 5508 if (cfs_rq_throttled(cfs_rq)) 5509 goto enqueue_throttle; 5510 5511 /* 5512 * One parent has been throttled and cfs_rq removed from the 5513 * list. Add it back to not break the leaf list. 5514 */ 5515 if (throttled_hierarchy(cfs_rq)) 5516 list_add_leaf_cfs_rq(cfs_rq); 5517 } 5518 5519 /* At this point se is NULL and we are at root level*/ 5520 add_nr_running(rq, 1); 5521 5522 /* 5523 * Since new tasks are assigned an initial util_avg equal to 5524 * half of the spare capacity of their CPU, tiny tasks have the 5525 * ability to cross the overutilized threshold, which will 5526 * result in the load balancer ruining all the task placement 5527 * done by EAS. As a way to mitigate that effect, do not account 5528 * for the first enqueue operation of new tasks during the 5529 * overutilized flag detection. 5530 * 5531 * A better way of solving this problem would be to wait for 5532 * the PELT signals of tasks to converge before taking them 5533 * into account, but that is not straightforward to implement, 5534 * and the following generally works well enough in practice. 5535 */ 5536 if (flags & ENQUEUE_WAKEUP) 5537 update_overutilized_status(rq); 5538 5539 enqueue_throttle: 5540 if (cfs_bandwidth_used()) { 5541 /* 5542 * When bandwidth control is enabled; the cfs_rq_throttled() 5543 * breaks in the above iteration can result in incomplete 5544 * leaf list maintenance, resulting in triggering the assertion 5545 * below. 5546 */ 5547 for_each_sched_entity(se) { 5548 cfs_rq = cfs_rq_of(se); 5549 5550 if (list_add_leaf_cfs_rq(cfs_rq)) 5551 break; 5552 } 5553 } 5554 5555 assert_list_leaf_cfs_rq(rq); 5556 5557 hrtick_update(rq); 5558 } 5559 5560 static void set_next_buddy(struct sched_entity *se); 5561 5562 /* 5563 * The dequeue_task method is called before nr_running is 5564 * decreased. We remove the task from the rbtree and 5565 * update the fair scheduling stats: 5566 */ 5567 static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags) 5568 { 5569 struct cfs_rq *cfs_rq; 5570 struct sched_entity *se = &p->se; 5571 int task_sleep = flags & DEQUEUE_SLEEP; 5572 int idle_h_nr_running = task_has_idle_policy(p); 5573 bool was_sched_idle = sched_idle_rq(rq); 5574 5575 for_each_sched_entity(se) { 5576 cfs_rq = cfs_rq_of(se); 5577 dequeue_entity(cfs_rq, se, flags); 5578 5579 cfs_rq->h_nr_running--; 5580 cfs_rq->idle_h_nr_running -= idle_h_nr_running; 5581 5582 /* end evaluation on encountering a throttled cfs_rq */ 5583 if (cfs_rq_throttled(cfs_rq)) 5584 goto dequeue_throttle; 5585 5586 /* Don't dequeue parent if it has other entities besides us */ 5587 if (cfs_rq->load.weight) { 5588 /* Avoid re-evaluating load for this entity: */ 5589 se = parent_entity(se); 5590 /* 5591 * Bias pick_next to pick a task from this cfs_rq, as 5592 * p is sleeping when it is within its sched_slice. 5593 */ 5594 if (task_sleep && se && !throttled_hierarchy(cfs_rq)) 5595 set_next_buddy(se); 5596 break; 5597 } 5598 flags |= DEQUEUE_SLEEP; 5599 } 5600 5601 for_each_sched_entity(se) { 5602 cfs_rq = cfs_rq_of(se); 5603 5604 update_load_avg(cfs_rq, se, UPDATE_TG); 5605 se_update_runnable(se); 5606 update_cfs_group(se); 5607 5608 cfs_rq->h_nr_running--; 5609 cfs_rq->idle_h_nr_running -= idle_h_nr_running; 5610 5611 /* end evaluation on encountering a throttled cfs_rq */ 5612 if (cfs_rq_throttled(cfs_rq)) 5613 goto dequeue_throttle; 5614 5615 } 5616 5617 dequeue_throttle: 5618 if (!se) 5619 sub_nr_running(rq, 1); 5620 5621 /* balance early to pull high priority tasks */ 5622 if (unlikely(!was_sched_idle && sched_idle_rq(rq))) 5623 rq->next_balance = jiffies; 5624 5625 util_est_dequeue(&rq->cfs, p, task_sleep); 5626 hrtick_update(rq); 5627 } 5628 5629 #ifdef CONFIG_SMP 5630 5631 /* Working cpumask for: load_balance, load_balance_newidle. */ 5632 DEFINE_PER_CPU(cpumask_var_t, load_balance_mask); 5633 DEFINE_PER_CPU(cpumask_var_t, select_idle_mask); 5634 5635 #ifdef CONFIG_NO_HZ_COMMON 5636 5637 static struct { 5638 cpumask_var_t idle_cpus_mask; 5639 atomic_t nr_cpus; 5640 int has_blocked; /* Idle CPUS has blocked load */ 5641 unsigned long next_balance; /* in jiffy units */ 5642 unsigned long next_blocked; /* Next update of blocked load in jiffies */ 5643 } nohz ____cacheline_aligned; 5644 5645 #endif /* CONFIG_NO_HZ_COMMON */ 5646 5647 static unsigned long cpu_load(struct rq *rq) 5648 { 5649 return cfs_rq_load_avg(&rq->cfs); 5650 } 5651 5652 /* 5653 * cpu_load_without - compute CPU load without any contributions from *p 5654 * @cpu: the CPU which load is requested 5655 * @p: the task which load should be discounted 5656 * 5657 * The load of a CPU is defined by the load of tasks currently enqueued on that 5658 * CPU as well as tasks which are currently sleeping after an execution on that 5659 * CPU. 5660 * 5661 * This method returns the load of the specified CPU by discounting the load of 5662 * the specified task, whenever the task is currently contributing to the CPU 5663 * load. 5664 */ 5665 static unsigned long cpu_load_without(struct rq *rq, struct task_struct *p) 5666 { 5667 struct cfs_rq *cfs_rq; 5668 unsigned int load; 5669 5670 /* Task has no contribution or is new */ 5671 if (cpu_of(rq) != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time)) 5672 return cpu_load(rq); 5673 5674 cfs_rq = &rq->cfs; 5675 load = READ_ONCE(cfs_rq->avg.load_avg); 5676 5677 /* Discount task's util from CPU's util */ 5678 lsub_positive(&load, task_h_load(p)); 5679 5680 return load; 5681 } 5682 5683 static unsigned long cpu_runnable(struct rq *rq) 5684 { 5685 return cfs_rq_runnable_avg(&rq->cfs); 5686 } 5687 5688 static unsigned long cpu_runnable_without(struct rq *rq, struct task_struct *p) 5689 { 5690 struct cfs_rq *cfs_rq; 5691 unsigned int runnable; 5692 5693 /* Task has no contribution or is new */ 5694 if (cpu_of(rq) != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time)) 5695 return cpu_runnable(rq); 5696 5697 cfs_rq = &rq->cfs; 5698 runnable = READ_ONCE(cfs_rq->avg.runnable_avg); 5699 5700 /* Discount task's runnable from CPU's runnable */ 5701 lsub_positive(&runnable, p->se.avg.runnable_avg); 5702 5703 return runnable; 5704 } 5705 5706 static unsigned long capacity_of(int cpu) 5707 { 5708 return cpu_rq(cpu)->cpu_capacity; 5709 } 5710 5711 static void record_wakee(struct task_struct *p) 5712 { 5713 /* 5714 * Only decay a single time; tasks that have less then 1 wakeup per 5715 * jiffy will not have built up many flips. 5716 */ 5717 if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) { 5718 current->wakee_flips >>= 1; 5719 current->wakee_flip_decay_ts = jiffies; 5720 } 5721 5722 if (current->last_wakee != p) { 5723 current->last_wakee = p; 5724 current->wakee_flips++; 5725 } 5726 } 5727 5728 /* 5729 * Detect M:N waker/wakee relationships via a switching-frequency heuristic. 5730 * 5731 * A waker of many should wake a different task than the one last awakened 5732 * at a frequency roughly N times higher than one of its wakees. 5733 * 5734 * In order to determine whether we should let the load spread vs consolidating 5735 * to shared cache, we look for a minimum 'flip' frequency of llc_size in one 5736 * partner, and a factor of lls_size higher frequency in the other. 5737 * 5738 * With both conditions met, we can be relatively sure that the relationship is 5739 * non-monogamous, with partner count exceeding socket size. 5740 * 5741 * Waker/wakee being client/server, worker/dispatcher, interrupt source or 5742 * whatever is irrelevant, spread criteria is apparent partner count exceeds 5743 * socket size. 5744 */ 5745 static int wake_wide(struct task_struct *p) 5746 { 5747 unsigned int master = current->wakee_flips; 5748 unsigned int slave = p->wakee_flips; 5749 int factor = __this_cpu_read(sd_llc_size); 5750 5751 if (master < slave) 5752 swap(master, slave); 5753 if (slave < factor || master < slave * factor) 5754 return 0; 5755 return 1; 5756 } 5757 5758 /* 5759 * The purpose of wake_affine() is to quickly determine on which CPU we can run 5760 * soonest. For the purpose of speed we only consider the waking and previous 5761 * CPU. 5762 * 5763 * wake_affine_idle() - only considers 'now', it check if the waking CPU is 5764 * cache-affine and is (or will be) idle. 5765 * 5766 * wake_affine_weight() - considers the weight to reflect the average 5767 * scheduling latency of the CPUs. This seems to work 5768 * for the overloaded case. 5769 */ 5770 static int 5771 wake_affine_idle(int this_cpu, int prev_cpu, int sync) 5772 { 5773 /* 5774 * If this_cpu is idle, it implies the wakeup is from interrupt 5775 * context. Only allow the move if cache is shared. Otherwise an 5776 * interrupt intensive workload could force all tasks onto one 5777 * node depending on the IO topology or IRQ affinity settings. 5778 * 5779 * If the prev_cpu is idle and cache affine then avoid a migration. 5780 * There is no guarantee that the cache hot data from an interrupt 5781 * is more important than cache hot data on the prev_cpu and from 5782 * a cpufreq perspective, it's better to have higher utilisation 5783 * on one CPU. 5784 */ 5785 if (available_idle_cpu(this_cpu) && cpus_share_cache(this_cpu, prev_cpu)) 5786 return available_idle_cpu(prev_cpu) ? prev_cpu : this_cpu; 5787 5788 if (sync && cpu_rq(this_cpu)->nr_running == 1) 5789 return this_cpu; 5790 5791 return nr_cpumask_bits; 5792 } 5793 5794 static int 5795 wake_affine_weight(struct sched_domain *sd, struct task_struct *p, 5796 int this_cpu, int prev_cpu, int sync) 5797 { 5798 s64 this_eff_load, prev_eff_load; 5799 unsigned long task_load; 5800 5801 this_eff_load = cpu_load(cpu_rq(this_cpu)); 5802 5803 if (sync) { 5804 unsigned long current_load = task_h_load(current); 5805 5806 if (current_load > this_eff_load) 5807 return this_cpu; 5808 5809 this_eff_load -= current_load; 5810 } 5811 5812 task_load = task_h_load(p); 5813 5814 this_eff_load += task_load; 5815 if (sched_feat(WA_BIAS)) 5816 this_eff_load *= 100; 5817 this_eff_load *= capacity_of(prev_cpu); 5818 5819 prev_eff_load = cpu_load(cpu_rq(prev_cpu)); 5820 prev_eff_load -= task_load; 5821 if (sched_feat(WA_BIAS)) 5822 prev_eff_load *= 100 + (sd->imbalance_pct - 100) / 2; 5823 prev_eff_load *= capacity_of(this_cpu); 5824 5825 /* 5826 * If sync, adjust the weight of prev_eff_load such that if 5827 * prev_eff == this_eff that select_idle_sibling() will consider 5828 * stacking the wakee on top of the waker if no other CPU is 5829 * idle. 5830 */ 5831 if (sync) 5832 prev_eff_load += 1; 5833 5834 return this_eff_load < prev_eff_load ? this_cpu : nr_cpumask_bits; 5835 } 5836 5837 static int wake_affine(struct sched_domain *sd, struct task_struct *p, 5838 int this_cpu, int prev_cpu, int sync) 5839 { 5840 int target = nr_cpumask_bits; 5841 5842 if (sched_feat(WA_IDLE)) 5843 target = wake_affine_idle(this_cpu, prev_cpu, sync); 5844 5845 if (sched_feat(WA_WEIGHT) && target == nr_cpumask_bits) 5846 target = wake_affine_weight(sd, p, this_cpu, prev_cpu, sync); 5847 5848 schedstat_inc(p->se.statistics.nr_wakeups_affine_attempts); 5849 if (target == nr_cpumask_bits) 5850 return prev_cpu; 5851 5852 schedstat_inc(sd->ttwu_move_affine); 5853 schedstat_inc(p->se.statistics.nr_wakeups_affine); 5854 return target; 5855 } 5856 5857 static struct sched_group * 5858 find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu); 5859 5860 /* 5861 * find_idlest_group_cpu - find the idlest CPU among the CPUs in the group. 5862 */ 5863 static int 5864 find_idlest_group_cpu(struct sched_group *group, struct task_struct *p, int this_cpu) 5865 { 5866 unsigned long load, min_load = ULONG_MAX; 5867 unsigned int min_exit_latency = UINT_MAX; 5868 u64 latest_idle_timestamp = 0; 5869 int least_loaded_cpu = this_cpu; 5870 int shallowest_idle_cpu = -1; 5871 int i; 5872 5873 /* Check if we have any choice: */ 5874 if (group->group_weight == 1) 5875 return cpumask_first(sched_group_span(group)); 5876 5877 /* Traverse only the allowed CPUs */ 5878 for_each_cpu_and(i, sched_group_span(group), p->cpus_ptr) { 5879 if (sched_idle_cpu(i)) 5880 return i; 5881 5882 if (available_idle_cpu(i)) { 5883 struct rq *rq = cpu_rq(i); 5884 struct cpuidle_state *idle = idle_get_state(rq); 5885 if (idle && idle->exit_latency < min_exit_latency) { 5886 /* 5887 * We give priority to a CPU whose idle state 5888 * has the smallest exit latency irrespective 5889 * of any idle timestamp. 5890 */ 5891 min_exit_latency = idle->exit_latency; 5892 latest_idle_timestamp = rq->idle_stamp; 5893 shallowest_idle_cpu = i; 5894 } else if ((!idle || idle->exit_latency == min_exit_latency) && 5895 rq->idle_stamp > latest_idle_timestamp) { 5896 /* 5897 * If equal or no active idle state, then 5898 * the most recently idled CPU might have 5899 * a warmer cache. 5900 */ 5901 latest_idle_timestamp = rq->idle_stamp; 5902 shallowest_idle_cpu = i; 5903 } 5904 } else if (shallowest_idle_cpu == -1) { 5905 load = cpu_load(cpu_rq(i)); 5906 if (load < min_load) { 5907 min_load = load; 5908 least_loaded_cpu = i; 5909 } 5910 } 5911 } 5912 5913 return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu; 5914 } 5915 5916 static inline int find_idlest_cpu(struct sched_domain *sd, struct task_struct *p, 5917 int cpu, int prev_cpu, int sd_flag) 5918 { 5919 int new_cpu = cpu; 5920 5921 if (!cpumask_intersects(sched_domain_span(sd), p->cpus_ptr)) 5922 return prev_cpu; 5923 5924 /* 5925 * We need task's util for cpu_util_without, sync it up to 5926 * prev_cpu's last_update_time. 5927 */ 5928 if (!(sd_flag & SD_BALANCE_FORK)) 5929 sync_entity_load_avg(&p->se); 5930 5931 while (sd) { 5932 struct sched_group *group; 5933 struct sched_domain *tmp; 5934 int weight; 5935 5936 if (!(sd->flags & sd_flag)) { 5937 sd = sd->child; 5938 continue; 5939 } 5940 5941 group = find_idlest_group(sd, p, cpu); 5942 if (!group) { 5943 sd = sd->child; 5944 continue; 5945 } 5946 5947 new_cpu = find_idlest_group_cpu(group, p, cpu); 5948 if (new_cpu == cpu) { 5949 /* Now try balancing at a lower domain level of 'cpu': */ 5950 sd = sd->child; 5951 continue; 5952 } 5953 5954 /* Now try balancing at a lower domain level of 'new_cpu': */ 5955 cpu = new_cpu; 5956 weight = sd->span_weight; 5957 sd = NULL; 5958 for_each_domain(cpu, tmp) { 5959 if (weight <= tmp->span_weight) 5960 break; 5961 if (tmp->flags & sd_flag) 5962 sd = tmp; 5963 } 5964 } 5965 5966 return new_cpu; 5967 } 5968 5969 #ifdef CONFIG_SCHED_SMT 5970 DEFINE_STATIC_KEY_FALSE(sched_smt_present); 5971 EXPORT_SYMBOL_GPL(sched_smt_present); 5972 5973 static inline void set_idle_cores(int cpu, int val) 5974 { 5975 struct sched_domain_shared *sds; 5976 5977 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu)); 5978 if (sds) 5979 WRITE_ONCE(sds->has_idle_cores, val); 5980 } 5981 5982 static inline bool test_idle_cores(int cpu, bool def) 5983 { 5984 struct sched_domain_shared *sds; 5985 5986 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu)); 5987 if (sds) 5988 return READ_ONCE(sds->has_idle_cores); 5989 5990 return def; 5991 } 5992 5993 /* 5994 * Scans the local SMT mask to see if the entire core is idle, and records this 5995 * information in sd_llc_shared->has_idle_cores. 5996 * 5997 * Since SMT siblings share all cache levels, inspecting this limited remote 5998 * state should be fairly cheap. 5999 */ 6000 void __update_idle_core(struct rq *rq) 6001 { 6002 int core = cpu_of(rq); 6003 int cpu; 6004 6005 rcu_read_lock(); 6006 if (test_idle_cores(core, true)) 6007 goto unlock; 6008 6009 for_each_cpu(cpu, cpu_smt_mask(core)) { 6010 if (cpu == core) 6011 continue; 6012 6013 if (!available_idle_cpu(cpu)) 6014 goto unlock; 6015 } 6016 6017 set_idle_cores(core, 1); 6018 unlock: 6019 rcu_read_unlock(); 6020 } 6021 6022 /* 6023 * Scan the entire LLC domain for idle cores; this dynamically switches off if 6024 * there are no idle cores left in the system; tracked through 6025 * sd_llc->shared->has_idle_cores and enabled through update_idle_core() above. 6026 */ 6027 static int select_idle_core(struct task_struct *p, struct sched_domain *sd, int target) 6028 { 6029 struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_idle_mask); 6030 int core, cpu; 6031 6032 if (!static_branch_likely(&sched_smt_present)) 6033 return -1; 6034 6035 if (!test_idle_cores(target, false)) 6036 return -1; 6037 6038 cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr); 6039 6040 for_each_cpu_wrap(core, cpus, target) { 6041 bool idle = true; 6042 6043 for_each_cpu(cpu, cpu_smt_mask(core)) { 6044 if (!available_idle_cpu(cpu)) { 6045 idle = false; 6046 break; 6047 } 6048 } 6049 cpumask_andnot(cpus, cpus, cpu_smt_mask(core)); 6050 6051 if (idle) 6052 return core; 6053 } 6054 6055 /* 6056 * Failed to find an idle core; stop looking for one. 6057 */ 6058 set_idle_cores(target, 0); 6059 6060 return -1; 6061 } 6062 6063 /* 6064 * Scan the local SMT mask for idle CPUs. 6065 */ 6066 static int select_idle_smt(struct task_struct *p, int target) 6067 { 6068 int cpu; 6069 6070 if (!static_branch_likely(&sched_smt_present)) 6071 return -1; 6072 6073 for_each_cpu(cpu, cpu_smt_mask(target)) { 6074 if (!cpumask_test_cpu(cpu, p->cpus_ptr)) 6075 continue; 6076 if (available_idle_cpu(cpu) || sched_idle_cpu(cpu)) 6077 return cpu; 6078 } 6079 6080 return -1; 6081 } 6082 6083 #else /* CONFIG_SCHED_SMT */ 6084 6085 static inline int select_idle_core(struct task_struct *p, struct sched_domain *sd, int target) 6086 { 6087 return -1; 6088 } 6089 6090 static inline int select_idle_smt(struct task_struct *p, int target) 6091 { 6092 return -1; 6093 } 6094 6095 #endif /* CONFIG_SCHED_SMT */ 6096 6097 /* 6098 * Scan the LLC domain for idle CPUs; this is dynamically regulated by 6099 * comparing the average scan cost (tracked in sd->avg_scan_cost) against the 6100 * average idle time for this rq (as found in rq->avg_idle). 6101 */ 6102 static int select_idle_cpu(struct task_struct *p, struct sched_domain *sd, int target) 6103 { 6104 struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_idle_mask); 6105 struct sched_domain *this_sd; 6106 u64 avg_cost, avg_idle; 6107 u64 time; 6108 int this = smp_processor_id(); 6109 int cpu, nr = INT_MAX; 6110 6111 this_sd = rcu_dereference(*this_cpu_ptr(&sd_llc)); 6112 if (!this_sd) 6113 return -1; 6114 6115 /* 6116 * Due to large variance we need a large fuzz factor; hackbench in 6117 * particularly is sensitive here. 6118 */ 6119 avg_idle = this_rq()->avg_idle / 512; 6120 avg_cost = this_sd->avg_scan_cost + 1; 6121 6122 if (sched_feat(SIS_AVG_CPU) && avg_idle < avg_cost) 6123 return -1; 6124 6125 if (sched_feat(SIS_PROP)) { 6126 u64 span_avg = sd->span_weight * avg_idle; 6127 if (span_avg > 4*avg_cost) 6128 nr = div_u64(span_avg, avg_cost); 6129 else 6130 nr = 4; 6131 } 6132 6133 time = cpu_clock(this); 6134 6135 cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr); 6136 6137 for_each_cpu_wrap(cpu, cpus, target) { 6138 if (!--nr) 6139 return -1; 6140 if (available_idle_cpu(cpu) || sched_idle_cpu(cpu)) 6141 break; 6142 } 6143 6144 time = cpu_clock(this) - time; 6145 update_avg(&this_sd->avg_scan_cost, time); 6146 6147 return cpu; 6148 } 6149 6150 /* 6151 * Scan the asym_capacity domain for idle CPUs; pick the first idle one on which 6152 * the task fits. If no CPU is big enough, but there are idle ones, try to 6153 * maximize capacity. 6154 */ 6155 static int 6156 select_idle_capacity(struct task_struct *p, struct sched_domain *sd, int target) 6157 { 6158 unsigned long best_cap = 0; 6159 int cpu, best_cpu = -1; 6160 struct cpumask *cpus; 6161 6162 sync_entity_load_avg(&p->se); 6163 6164 cpus = this_cpu_cpumask_var_ptr(select_idle_mask); 6165 cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr); 6166 6167 for_each_cpu_wrap(cpu, cpus, target) { 6168 unsigned long cpu_cap = capacity_of(cpu); 6169 6170 if (!available_idle_cpu(cpu) && !sched_idle_cpu(cpu)) 6171 continue; 6172 if (task_fits_capacity(p, cpu_cap)) 6173 return cpu; 6174 6175 if (cpu_cap > best_cap) { 6176 best_cap = cpu_cap; 6177 best_cpu = cpu; 6178 } 6179 } 6180 6181 return best_cpu; 6182 } 6183 6184 /* 6185 * Try and locate an idle core/thread in the LLC cache domain. 6186 */ 6187 static int select_idle_sibling(struct task_struct *p, int prev, int target) 6188 { 6189 struct sched_domain *sd; 6190 int i, recent_used_cpu; 6191 6192 /* 6193 * For asymmetric CPU capacity systems, our domain of interest is 6194 * sd_asym_cpucapacity rather than sd_llc. 6195 */ 6196 if (static_branch_unlikely(&sched_asym_cpucapacity)) { 6197 sd = rcu_dereference(per_cpu(sd_asym_cpucapacity, target)); 6198 /* 6199 * On an asymmetric CPU capacity system where an exclusive 6200 * cpuset defines a symmetric island (i.e. one unique 6201 * capacity_orig value through the cpuset), the key will be set 6202 * but the CPUs within that cpuset will not have a domain with 6203 * SD_ASYM_CPUCAPACITY. These should follow the usual symmetric 6204 * capacity path. 6205 */ 6206 if (!sd) 6207 goto symmetric; 6208 6209 i = select_idle_capacity(p, sd, target); 6210 return ((unsigned)i < nr_cpumask_bits) ? i : target; 6211 } 6212 6213 symmetric: 6214 if (available_idle_cpu(target) || sched_idle_cpu(target)) 6215 return target; 6216 6217 /* 6218 * If the previous CPU is cache affine and idle, don't be stupid: 6219 */ 6220 if (prev != target && cpus_share_cache(prev, target) && 6221 (available_idle_cpu(prev) || sched_idle_cpu(prev))) 6222 return prev; 6223 6224 /* 6225 * Allow a per-cpu kthread to stack with the wakee if the 6226 * kworker thread and the tasks previous CPUs are the same. 6227 * The assumption is that the wakee queued work for the 6228 * per-cpu kthread that is now complete and the wakeup is 6229 * essentially a sync wakeup. An obvious example of this 6230 * pattern is IO completions. 6231 */ 6232 if (is_per_cpu_kthread(current) && 6233 prev == smp_processor_id() && 6234 this_rq()->nr_running <= 1) { 6235 return prev; 6236 } 6237 6238 /* Check a recently used CPU as a potential idle candidate: */ 6239 recent_used_cpu = p->recent_used_cpu; 6240 if (recent_used_cpu != prev && 6241 recent_used_cpu != target && 6242 cpus_share_cache(recent_used_cpu, target) && 6243 (available_idle_cpu(recent_used_cpu) || sched_idle_cpu(recent_used_cpu)) && 6244 cpumask_test_cpu(p->recent_used_cpu, p->cpus_ptr)) { 6245 /* 6246 * Replace recent_used_cpu with prev as it is a potential 6247 * candidate for the next wake: 6248 */ 6249 p->recent_used_cpu = prev; 6250 return recent_used_cpu; 6251 } 6252 6253 sd = rcu_dereference(per_cpu(sd_llc, target)); 6254 if (!sd) 6255 return target; 6256 6257 i = select_idle_core(p, sd, target); 6258 if ((unsigned)i < nr_cpumask_bits) 6259 return i; 6260 6261 i = select_idle_cpu(p, sd, target); 6262 if ((unsigned)i < nr_cpumask_bits) 6263 return i; 6264 6265 i = select_idle_smt(p, target); 6266 if ((unsigned)i < nr_cpumask_bits) 6267 return i; 6268 6269 return target; 6270 } 6271 6272 /** 6273 * Amount of capacity of a CPU that is (estimated to be) used by CFS tasks 6274 * @cpu: the CPU to get the utilization of 6275 * 6276 * The unit of the return value must be the one of capacity so we can compare 6277 * the utilization with the capacity of the CPU that is available for CFS task 6278 * (ie cpu_capacity). 6279 * 6280 * cfs_rq.avg.util_avg is the sum of running time of runnable tasks plus the 6281 * recent utilization of currently non-runnable tasks on a CPU. It represents 6282 * the amount of utilization of a CPU in the range [0..capacity_orig] where 6283 * capacity_orig is the cpu_capacity available at the highest frequency 6284 * (arch_scale_freq_capacity()). 6285 * The utilization of a CPU converges towards a sum equal to or less than the 6286 * current capacity (capacity_curr <= capacity_orig) of the CPU because it is 6287 * the running time on this CPU scaled by capacity_curr. 6288 * 6289 * The estimated utilization of a CPU is defined to be the maximum between its 6290 * cfs_rq.avg.util_avg and the sum of the estimated utilization of the tasks 6291 * currently RUNNABLE on that CPU. 6292 * This allows to properly represent the expected utilization of a CPU which 6293 * has just got a big task running since a long sleep period. At the same time 6294 * however it preserves the benefits of the "blocked utilization" in 6295 * describing the potential for other tasks waking up on the same CPU. 6296 * 6297 * Nevertheless, cfs_rq.avg.util_avg can be higher than capacity_curr or even 6298 * higher than capacity_orig because of unfortunate rounding in 6299 * cfs.avg.util_avg or just after migrating tasks and new task wakeups until 6300 * the average stabilizes with the new running time. We need to check that the 6301 * utilization stays within the range of [0..capacity_orig] and cap it if 6302 * necessary. Without utilization capping, a group could be seen as overloaded 6303 * (CPU0 utilization at 121% + CPU1 utilization at 80%) whereas CPU1 has 20% of 6304 * available capacity. We allow utilization to overshoot capacity_curr (but not 6305 * capacity_orig) as it useful for predicting the capacity required after task 6306 * migrations (scheduler-driven DVFS). 6307 * 6308 * Return: the (estimated) utilization for the specified CPU 6309 */ 6310 static inline unsigned long cpu_util(int cpu) 6311 { 6312 struct cfs_rq *cfs_rq; 6313 unsigned int util; 6314 6315 cfs_rq = &cpu_rq(cpu)->cfs; 6316 util = READ_ONCE(cfs_rq->avg.util_avg); 6317 6318 if (sched_feat(UTIL_EST)) 6319 util = max(util, READ_ONCE(cfs_rq->avg.util_est.enqueued)); 6320 6321 return min_t(unsigned long, util, capacity_orig_of(cpu)); 6322 } 6323 6324 /* 6325 * cpu_util_without: compute cpu utilization without any contributions from *p 6326 * @cpu: the CPU which utilization is requested 6327 * @p: the task which utilization should be discounted 6328 * 6329 * The utilization of a CPU is defined by the utilization of tasks currently 6330 * enqueued on that CPU as well as tasks which are currently sleeping after an 6331 * execution on that CPU. 6332 * 6333 * This method returns the utilization of the specified CPU by discounting the 6334 * utilization of the specified task, whenever the task is currently 6335 * contributing to the CPU utilization. 6336 */ 6337 static unsigned long cpu_util_without(int cpu, struct task_struct *p) 6338 { 6339 struct cfs_rq *cfs_rq; 6340 unsigned int util; 6341 6342 /* Task has no contribution or is new */ 6343 if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time)) 6344 return cpu_util(cpu); 6345 6346 cfs_rq = &cpu_rq(cpu)->cfs; 6347 util = READ_ONCE(cfs_rq->avg.util_avg); 6348 6349 /* Discount task's util from CPU's util */ 6350 lsub_positive(&util, task_util(p)); 6351 6352 /* 6353 * Covered cases: 6354 * 6355 * a) if *p is the only task sleeping on this CPU, then: 6356 * cpu_util (== task_util) > util_est (== 0) 6357 * and thus we return: 6358 * cpu_util_without = (cpu_util - task_util) = 0 6359 * 6360 * b) if other tasks are SLEEPING on this CPU, which is now exiting 6361 * IDLE, then: 6362 * cpu_util >= task_util 6363 * cpu_util > util_est (== 0) 6364 * and thus we discount *p's blocked utilization to return: 6365 * cpu_util_without = (cpu_util - task_util) >= 0 6366 * 6367 * c) if other tasks are RUNNABLE on that CPU and 6368 * util_est > cpu_util 6369 * then we use util_est since it returns a more restrictive 6370 * estimation of the spare capacity on that CPU, by just 6371 * considering the expected utilization of tasks already 6372 * runnable on that CPU. 6373 * 6374 * Cases a) and b) are covered by the above code, while case c) is 6375 * covered by the following code when estimated utilization is 6376 * enabled. 6377 */ 6378 if (sched_feat(UTIL_EST)) { 6379 unsigned int estimated = 6380 READ_ONCE(cfs_rq->avg.util_est.enqueued); 6381 6382 /* 6383 * Despite the following checks we still have a small window 6384 * for a possible race, when an execl's select_task_rq_fair() 6385 * races with LB's detach_task(): 6386 * 6387 * detach_task() 6388 * p->on_rq = TASK_ON_RQ_MIGRATING; 6389 * ---------------------------------- A 6390 * deactivate_task() \ 6391 * dequeue_task() + RaceTime 6392 * util_est_dequeue() / 6393 * ---------------------------------- B 6394 * 6395 * The additional check on "current == p" it's required to 6396 * properly fix the execl regression and it helps in further 6397 * reducing the chances for the above race. 6398 */ 6399 if (unlikely(task_on_rq_queued(p) || current == p)) 6400 lsub_positive(&estimated, _task_util_est(p)); 6401 6402 util = max(util, estimated); 6403 } 6404 6405 /* 6406 * Utilization (estimated) can exceed the CPU capacity, thus let's 6407 * clamp to the maximum CPU capacity to ensure consistency with 6408 * the cpu_util call. 6409 */ 6410 return min_t(unsigned long, util, capacity_orig_of(cpu)); 6411 } 6412 6413 /* 6414 * Predicts what cpu_util(@cpu) would return if @p was migrated (and enqueued) 6415 * to @dst_cpu. 6416 */ 6417 static unsigned long cpu_util_next(int cpu, struct task_struct *p, int dst_cpu) 6418 { 6419 struct cfs_rq *cfs_rq = &cpu_rq(cpu)->cfs; 6420 unsigned long util_est, util = READ_ONCE(cfs_rq->avg.util_avg); 6421 6422 /* 6423 * If @p migrates from @cpu to another, remove its contribution. Or, 6424 * if @p migrates from another CPU to @cpu, add its contribution. In 6425 * the other cases, @cpu is not impacted by the migration, so the 6426 * util_avg should already be correct. 6427 */ 6428 if (task_cpu(p) == cpu && dst_cpu != cpu) 6429 sub_positive(&util, task_util(p)); 6430 else if (task_cpu(p) != cpu && dst_cpu == cpu) 6431 util += task_util(p); 6432 6433 if (sched_feat(UTIL_EST)) { 6434 util_est = READ_ONCE(cfs_rq->avg.util_est.enqueued); 6435 6436 /* 6437 * During wake-up, the task isn't enqueued yet and doesn't 6438 * appear in the cfs_rq->avg.util_est.enqueued of any rq, 6439 * so just add it (if needed) to "simulate" what will be 6440 * cpu_util() after the task has been enqueued. 6441 */ 6442 if (dst_cpu == cpu) 6443 util_est += _task_util_est(p); 6444 6445 util = max(util, util_est); 6446 } 6447 6448 return min(util, capacity_orig_of(cpu)); 6449 } 6450 6451 /* 6452 * compute_energy(): Estimates the energy that @pd would consume if @p was 6453 * migrated to @dst_cpu. compute_energy() predicts what will be the utilization 6454 * landscape of @pd's CPUs after the task migration, and uses the Energy Model 6455 * to compute what would be the energy if we decided to actually migrate that 6456 * task. 6457 */ 6458 static long 6459 compute_energy(struct task_struct *p, int dst_cpu, struct perf_domain *pd) 6460 { 6461 struct cpumask *pd_mask = perf_domain_span(pd); 6462 unsigned long cpu_cap = arch_scale_cpu_capacity(cpumask_first(pd_mask)); 6463 unsigned long max_util = 0, sum_util = 0; 6464 int cpu; 6465 6466 /* 6467 * The capacity state of CPUs of the current rd can be driven by CPUs 6468 * of another rd if they belong to the same pd. So, account for the 6469 * utilization of these CPUs too by masking pd with cpu_online_mask 6470 * instead of the rd span. 6471 * 6472 * If an entire pd is outside of the current rd, it will not appear in 6473 * its pd list and will not be accounted by compute_energy(). 6474 */ 6475 for_each_cpu_and(cpu, pd_mask, cpu_online_mask) { 6476 unsigned long cpu_util, util_cfs = cpu_util_next(cpu, p, dst_cpu); 6477 struct task_struct *tsk = cpu == dst_cpu ? p : NULL; 6478 6479 /* 6480 * Busy time computation: utilization clamping is not 6481 * required since the ratio (sum_util / cpu_capacity) 6482 * is already enough to scale the EM reported power 6483 * consumption at the (eventually clamped) cpu_capacity. 6484 */ 6485 sum_util += schedutil_cpu_util(cpu, util_cfs, cpu_cap, 6486 ENERGY_UTIL, NULL); 6487 6488 /* 6489 * Performance domain frequency: utilization clamping 6490 * must be considered since it affects the selection 6491 * of the performance domain frequency. 6492 * NOTE: in case RT tasks are running, by default the 6493 * FREQUENCY_UTIL's utilization can be max OPP. 6494 */ 6495 cpu_util = schedutil_cpu_util(cpu, util_cfs, cpu_cap, 6496 FREQUENCY_UTIL, tsk); 6497 max_util = max(max_util, cpu_util); 6498 } 6499 6500 return em_pd_energy(pd->em_pd, max_util, sum_util); 6501 } 6502 6503 /* 6504 * find_energy_efficient_cpu(): Find most energy-efficient target CPU for the 6505 * waking task. find_energy_efficient_cpu() looks for the CPU with maximum 6506 * spare capacity in each performance domain and uses it as a potential 6507 * candidate to execute the task. Then, it uses the Energy Model to figure 6508 * out which of the CPU candidates is the most energy-efficient. 6509 * 6510 * The rationale for this heuristic is as follows. In a performance domain, 6511 * all the most energy efficient CPU candidates (according to the Energy 6512 * Model) are those for which we'll request a low frequency. When there are 6513 * several CPUs for which the frequency request will be the same, we don't 6514 * have enough data to break the tie between them, because the Energy Model 6515 * only includes active power costs. With this model, if we assume that 6516 * frequency requests follow utilization (e.g. using schedutil), the CPU with 6517 * the maximum spare capacity in a performance domain is guaranteed to be among 6518 * the best candidates of the performance domain. 6519 * 6520 * In practice, it could be preferable from an energy standpoint to pack 6521 * small tasks on a CPU in order to let other CPUs go in deeper idle states, 6522 * but that could also hurt our chances to go cluster idle, and we have no 6523 * ways to tell with the current Energy Model if this is actually a good 6524 * idea or not. So, find_energy_efficient_cpu() basically favors 6525 * cluster-packing, and spreading inside a cluster. That should at least be 6526 * a good thing for latency, and this is consistent with the idea that most 6527 * of the energy savings of EAS come from the asymmetry of the system, and 6528 * not so much from breaking the tie between identical CPUs. That's also the 6529 * reason why EAS is enabled in the topology code only for systems where 6530 * SD_ASYM_CPUCAPACITY is set. 6531 * 6532 * NOTE: Forkees are not accepted in the energy-aware wake-up path because 6533 * they don't have any useful utilization data yet and it's not possible to 6534 * forecast their impact on energy consumption. Consequently, they will be 6535 * placed by find_idlest_cpu() on the least loaded CPU, which might turn out 6536 * to be energy-inefficient in some use-cases. The alternative would be to 6537 * bias new tasks towards specific types of CPUs first, or to try to infer 6538 * their util_avg from the parent task, but those heuristics could hurt 6539 * other use-cases too. So, until someone finds a better way to solve this, 6540 * let's keep things simple by re-using the existing slow path. 6541 */ 6542 static int find_energy_efficient_cpu(struct task_struct *p, int prev_cpu) 6543 { 6544 unsigned long prev_delta = ULONG_MAX, best_delta = ULONG_MAX; 6545 struct root_domain *rd = cpu_rq(smp_processor_id())->rd; 6546 unsigned long cpu_cap, util, base_energy = 0; 6547 int cpu, best_energy_cpu = prev_cpu; 6548 struct sched_domain *sd; 6549 struct perf_domain *pd; 6550 6551 rcu_read_lock(); 6552 pd = rcu_dereference(rd->pd); 6553 if (!pd || READ_ONCE(rd->overutilized)) 6554 goto fail; 6555 6556 /* 6557 * Energy-aware wake-up happens on the lowest sched_domain starting 6558 * from sd_asym_cpucapacity spanning over this_cpu and prev_cpu. 6559 */ 6560 sd = rcu_dereference(*this_cpu_ptr(&sd_asym_cpucapacity)); 6561 while (sd && !cpumask_test_cpu(prev_cpu, sched_domain_span(sd))) 6562 sd = sd->parent; 6563 if (!sd) 6564 goto fail; 6565 6566 sync_entity_load_avg(&p->se); 6567 if (!task_util_est(p)) 6568 goto unlock; 6569 6570 for (; pd; pd = pd->next) { 6571 unsigned long cur_delta, spare_cap, max_spare_cap = 0; 6572 unsigned long base_energy_pd; 6573 int max_spare_cap_cpu = -1; 6574 6575 /* Compute the 'base' energy of the pd, without @p */ 6576 base_energy_pd = compute_energy(p, -1, pd); 6577 base_energy += base_energy_pd; 6578 6579 for_each_cpu_and(cpu, perf_domain_span(pd), sched_domain_span(sd)) { 6580 if (!cpumask_test_cpu(cpu, p->cpus_ptr)) 6581 continue; 6582 6583 util = cpu_util_next(cpu, p, cpu); 6584 cpu_cap = capacity_of(cpu); 6585 spare_cap = cpu_cap - util; 6586 6587 /* 6588 * Skip CPUs that cannot satisfy the capacity request. 6589 * IOW, placing the task there would make the CPU 6590 * overutilized. Take uclamp into account to see how 6591 * much capacity we can get out of the CPU; this is 6592 * aligned with schedutil_cpu_util(). 6593 */ 6594 util = uclamp_rq_util_with(cpu_rq(cpu), util, p); 6595 if (!fits_capacity(util, cpu_cap)) 6596 continue; 6597 6598 /* Always use prev_cpu as a candidate. */ 6599 if (cpu == prev_cpu) { 6600 prev_delta = compute_energy(p, prev_cpu, pd); 6601 prev_delta -= base_energy_pd; 6602 best_delta = min(best_delta, prev_delta); 6603 } 6604 6605 /* 6606 * Find the CPU with the maximum spare capacity in 6607 * the performance domain 6608 */ 6609 if (spare_cap > max_spare_cap) { 6610 max_spare_cap = spare_cap; 6611 max_spare_cap_cpu = cpu; 6612 } 6613 } 6614 6615 /* Evaluate the energy impact of using this CPU. */ 6616 if (max_spare_cap_cpu >= 0 && max_spare_cap_cpu != prev_cpu) { 6617 cur_delta = compute_energy(p, max_spare_cap_cpu, pd); 6618 cur_delta -= base_energy_pd; 6619 if (cur_delta < best_delta) { 6620 best_delta = cur_delta; 6621 best_energy_cpu = max_spare_cap_cpu; 6622 } 6623 } 6624 } 6625 unlock: 6626 rcu_read_unlock(); 6627 6628 /* 6629 * Pick the best CPU if prev_cpu cannot be used, or if it saves at 6630 * least 6% of the energy used by prev_cpu. 6631 */ 6632 if (prev_delta == ULONG_MAX) 6633 return best_energy_cpu; 6634 6635 if ((prev_delta - best_delta) > ((prev_delta + base_energy) >> 4)) 6636 return best_energy_cpu; 6637 6638 return prev_cpu; 6639 6640 fail: 6641 rcu_read_unlock(); 6642 6643 return -1; 6644 } 6645 6646 /* 6647 * select_task_rq_fair: Select target runqueue for the waking task in domains 6648 * that have the 'sd_flag' flag set. In practice, this is SD_BALANCE_WAKE, 6649 * SD_BALANCE_FORK, or SD_BALANCE_EXEC. 6650 * 6651 * Balances load by selecting the idlest CPU in the idlest group, or under 6652 * certain conditions an idle sibling CPU if the domain has SD_WAKE_AFFINE set. 6653 * 6654 * Returns the target CPU number. 6655 * 6656 * preempt must be disabled. 6657 */ 6658 static int 6659 select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_flags) 6660 { 6661 struct sched_domain *tmp, *sd = NULL; 6662 int cpu = smp_processor_id(); 6663 int new_cpu = prev_cpu; 6664 int want_affine = 0; 6665 int sync = (wake_flags & WF_SYNC) && !(current->flags & PF_EXITING); 6666 6667 if (sd_flag & SD_BALANCE_WAKE) { 6668 record_wakee(p); 6669 6670 if (sched_energy_enabled()) { 6671 new_cpu = find_energy_efficient_cpu(p, prev_cpu); 6672 if (new_cpu >= 0) 6673 return new_cpu; 6674 new_cpu = prev_cpu; 6675 } 6676 6677 want_affine = !wake_wide(p) && cpumask_test_cpu(cpu, p->cpus_ptr); 6678 } 6679 6680 rcu_read_lock(); 6681 for_each_domain(cpu, tmp) { 6682 /* 6683 * If both 'cpu' and 'prev_cpu' are part of this domain, 6684 * cpu is a valid SD_WAKE_AFFINE target. 6685 */ 6686 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) && 6687 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) { 6688 if (cpu != prev_cpu) 6689 new_cpu = wake_affine(tmp, p, cpu, prev_cpu, sync); 6690 6691 sd = NULL; /* Prefer wake_affine over balance flags */ 6692 break; 6693 } 6694 6695 if (tmp->flags & sd_flag) 6696 sd = tmp; 6697 else if (!want_affine) 6698 break; 6699 } 6700 6701 if (unlikely(sd)) { 6702 /* Slow path */ 6703 new_cpu = find_idlest_cpu(sd, p, cpu, prev_cpu, sd_flag); 6704 } else if (sd_flag & SD_BALANCE_WAKE) { /* XXX always ? */ 6705 /* Fast path */ 6706 6707 new_cpu = select_idle_sibling(p, prev_cpu, new_cpu); 6708 6709 if (want_affine) 6710 current->recent_used_cpu = cpu; 6711 } 6712 rcu_read_unlock(); 6713 6714 return new_cpu; 6715 } 6716 6717 static void detach_entity_cfs_rq(struct sched_entity *se); 6718 6719 /* 6720 * Called immediately before a task is migrated to a new CPU; task_cpu(p) and 6721 * cfs_rq_of(p) references at time of call are still valid and identify the 6722 * previous CPU. The caller guarantees p->pi_lock or task_rq(p)->lock is held. 6723 */ 6724 static void migrate_task_rq_fair(struct task_struct *p, int new_cpu) 6725 { 6726 /* 6727 * As blocked tasks retain absolute vruntime the migration needs to 6728 * deal with this by subtracting the old and adding the new 6729 * min_vruntime -- the latter is done by enqueue_entity() when placing 6730 * the task on the new runqueue. 6731 */ 6732 if (p->state == TASK_WAKING) { 6733 struct sched_entity *se = &p->se; 6734 struct cfs_rq *cfs_rq = cfs_rq_of(se); 6735 u64 min_vruntime; 6736 6737 #ifndef CONFIG_64BIT 6738 u64 min_vruntime_copy; 6739 6740 do { 6741 min_vruntime_copy = cfs_rq->min_vruntime_copy; 6742 smp_rmb(); 6743 min_vruntime = cfs_rq->min_vruntime; 6744 } while (min_vruntime != min_vruntime_copy); 6745 #else 6746 min_vruntime = cfs_rq->min_vruntime; 6747 #endif 6748 6749 se->vruntime -= min_vruntime; 6750 } 6751 6752 if (p->on_rq == TASK_ON_RQ_MIGRATING) { 6753 /* 6754 * In case of TASK_ON_RQ_MIGRATING we in fact hold the 'old' 6755 * rq->lock and can modify state directly. 6756 */ 6757 lockdep_assert_held(&task_rq(p)->lock); 6758 detach_entity_cfs_rq(&p->se); 6759 6760 } else { 6761 /* 6762 * We are supposed to update the task to "current" time, then 6763 * its up to date and ready to go to new CPU/cfs_rq. But we 6764 * have difficulty in getting what current time is, so simply 6765 * throw away the out-of-date time. This will result in the 6766 * wakee task is less decayed, but giving the wakee more load 6767 * sounds not bad. 6768 */ 6769 remove_entity_load_avg(&p->se); 6770 } 6771 6772 /* Tell new CPU we are migrated */ 6773 p->se.avg.last_update_time = 0; 6774 6775 /* We have migrated, no longer consider this task hot */ 6776 p->se.exec_start = 0; 6777 6778 update_scan_period(p, new_cpu); 6779 } 6780 6781 static void task_dead_fair(struct task_struct *p) 6782 { 6783 remove_entity_load_avg(&p->se); 6784 } 6785 6786 static int 6787 balance_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf) 6788 { 6789 if (rq->nr_running) 6790 return 1; 6791 6792 return newidle_balance(rq, rf) != 0; 6793 } 6794 #endif /* CONFIG_SMP */ 6795 6796 static unsigned long wakeup_gran(struct sched_entity *se) 6797 { 6798 unsigned long gran = sysctl_sched_wakeup_granularity; 6799 6800 /* 6801 * Since its curr running now, convert the gran from real-time 6802 * to virtual-time in his units. 6803 * 6804 * By using 'se' instead of 'curr' we penalize light tasks, so 6805 * they get preempted easier. That is, if 'se' < 'curr' then 6806 * the resulting gran will be larger, therefore penalizing the 6807 * lighter, if otoh 'se' > 'curr' then the resulting gran will 6808 * be smaller, again penalizing the lighter task. 6809 * 6810 * This is especially important for buddies when the leftmost 6811 * task is higher priority than the buddy. 6812 */ 6813 return calc_delta_fair(gran, se); 6814 } 6815 6816 /* 6817 * Should 'se' preempt 'curr'. 6818 * 6819 * |s1 6820 * |s2 6821 * |s3 6822 * g 6823 * |<--->|c 6824 * 6825 * w(c, s1) = -1 6826 * w(c, s2) = 0 6827 * w(c, s3) = 1 6828 * 6829 */ 6830 static int 6831 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se) 6832 { 6833 s64 gran, vdiff = curr->vruntime - se->vruntime; 6834 6835 if (vdiff <= 0) 6836 return -1; 6837 6838 gran = wakeup_gran(se); 6839 if (vdiff > gran) 6840 return 1; 6841 6842 return 0; 6843 } 6844 6845 static void set_last_buddy(struct sched_entity *se) 6846 { 6847 if (entity_is_task(se) && unlikely(task_has_idle_policy(task_of(se)))) 6848 return; 6849 6850 for_each_sched_entity(se) { 6851 if (SCHED_WARN_ON(!se->on_rq)) 6852 return; 6853 cfs_rq_of(se)->last = se; 6854 } 6855 } 6856 6857 static void set_next_buddy(struct sched_entity *se) 6858 { 6859 if (entity_is_task(se) && unlikely(task_has_idle_policy(task_of(se)))) 6860 return; 6861 6862 for_each_sched_entity(se) { 6863 if (SCHED_WARN_ON(!se->on_rq)) 6864 return; 6865 cfs_rq_of(se)->next = se; 6866 } 6867 } 6868 6869 static void set_skip_buddy(struct sched_entity *se) 6870 { 6871 for_each_sched_entity(se) 6872 cfs_rq_of(se)->skip = se; 6873 } 6874 6875 /* 6876 * Preempt the current task with a newly woken task if needed: 6877 */ 6878 static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags) 6879 { 6880 struct task_struct *curr = rq->curr; 6881 struct sched_entity *se = &curr->se, *pse = &p->se; 6882 struct cfs_rq *cfs_rq = task_cfs_rq(curr); 6883 int scale = cfs_rq->nr_running >= sched_nr_latency; 6884 int next_buddy_marked = 0; 6885 6886 if (unlikely(se == pse)) 6887 return; 6888 6889 /* 6890 * This is possible from callers such as attach_tasks(), in which we 6891 * unconditionally check_prempt_curr() after an enqueue (which may have 6892 * lead to a throttle). This both saves work and prevents false 6893 * next-buddy nomination below. 6894 */ 6895 if (unlikely(throttled_hierarchy(cfs_rq_of(pse)))) 6896 return; 6897 6898 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) { 6899 set_next_buddy(pse); 6900 next_buddy_marked = 1; 6901 } 6902 6903 /* 6904 * We can come here with TIF_NEED_RESCHED already set from new task 6905 * wake up path. 6906 * 6907 * Note: this also catches the edge-case of curr being in a throttled 6908 * group (e.g. via set_curr_task), since update_curr() (in the 6909 * enqueue of curr) will have resulted in resched being set. This 6910 * prevents us from potentially nominating it as a false LAST_BUDDY 6911 * below. 6912 */ 6913 if (test_tsk_need_resched(curr)) 6914 return; 6915 6916 /* Idle tasks are by definition preempted by non-idle tasks. */ 6917 if (unlikely(task_has_idle_policy(curr)) && 6918 likely(!task_has_idle_policy(p))) 6919 goto preempt; 6920 6921 /* 6922 * Batch and idle tasks do not preempt non-idle tasks (their preemption 6923 * is driven by the tick): 6924 */ 6925 if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION)) 6926 return; 6927 6928 find_matching_se(&se, &pse); 6929 update_curr(cfs_rq_of(se)); 6930 BUG_ON(!pse); 6931 if (wakeup_preempt_entity(se, pse) == 1) { 6932 /* 6933 * Bias pick_next to pick the sched entity that is 6934 * triggering this preemption. 6935 */ 6936 if (!next_buddy_marked) 6937 set_next_buddy(pse); 6938 goto preempt; 6939 } 6940 6941 return; 6942 6943 preempt: 6944 resched_curr(rq); 6945 /* 6946 * Only set the backward buddy when the current task is still 6947 * on the rq. This can happen when a wakeup gets interleaved 6948 * with schedule on the ->pre_schedule() or idle_balance() 6949 * point, either of which can * drop the rq lock. 6950 * 6951 * Also, during early boot the idle thread is in the fair class, 6952 * for obvious reasons its a bad idea to schedule back to it. 6953 */ 6954 if (unlikely(!se->on_rq || curr == rq->idle)) 6955 return; 6956 6957 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se)) 6958 set_last_buddy(se); 6959 } 6960 6961 struct task_struct * 6962 pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf) 6963 { 6964 struct cfs_rq *cfs_rq = &rq->cfs; 6965 struct sched_entity *se; 6966 struct task_struct *p; 6967 int new_tasks; 6968 6969 again: 6970 if (!sched_fair_runnable(rq)) 6971 goto idle; 6972 6973 #ifdef CONFIG_FAIR_GROUP_SCHED 6974 if (!prev || prev->sched_class != &fair_sched_class) 6975 goto simple; 6976 6977 /* 6978 * Because of the set_next_buddy() in dequeue_task_fair() it is rather 6979 * likely that a next task is from the same cgroup as the current. 6980 * 6981 * Therefore attempt to avoid putting and setting the entire cgroup 6982 * hierarchy, only change the part that actually changes. 6983 */ 6984 6985 do { 6986 struct sched_entity *curr = cfs_rq->curr; 6987 6988 /* 6989 * Since we got here without doing put_prev_entity() we also 6990 * have to consider cfs_rq->curr. If it is still a runnable 6991 * entity, update_curr() will update its vruntime, otherwise 6992 * forget we've ever seen it. 6993 */ 6994 if (curr) { 6995 if (curr->on_rq) 6996 update_curr(cfs_rq); 6997 else 6998 curr = NULL; 6999 7000 /* 7001 * This call to check_cfs_rq_runtime() will do the 7002 * throttle and dequeue its entity in the parent(s). 7003 * Therefore the nr_running test will indeed 7004 * be correct. 7005 */ 7006 if (unlikely(check_cfs_rq_runtime(cfs_rq))) { 7007 cfs_rq = &rq->cfs; 7008 7009 if (!cfs_rq->nr_running) 7010 goto idle; 7011 7012 goto simple; 7013 } 7014 } 7015 7016 se = pick_next_entity(cfs_rq, curr); 7017 cfs_rq = group_cfs_rq(se); 7018 } while (cfs_rq); 7019 7020 p = task_of(se); 7021 7022 /* 7023 * Since we haven't yet done put_prev_entity and if the selected task 7024 * is a different task than we started out with, try and touch the 7025 * least amount of cfs_rqs. 7026 */ 7027 if (prev != p) { 7028 struct sched_entity *pse = &prev->se; 7029 7030 while (!(cfs_rq = is_same_group(se, pse))) { 7031 int se_depth = se->depth; 7032 int pse_depth = pse->depth; 7033 7034 if (se_depth <= pse_depth) { 7035 put_prev_entity(cfs_rq_of(pse), pse); 7036 pse = parent_entity(pse); 7037 } 7038 if (se_depth >= pse_depth) { 7039 set_next_entity(cfs_rq_of(se), se); 7040 se = parent_entity(se); 7041 } 7042 } 7043 7044 put_prev_entity(cfs_rq, pse); 7045 set_next_entity(cfs_rq, se); 7046 } 7047 7048 goto done; 7049 simple: 7050 #endif 7051 if (prev) 7052 put_prev_task(rq, prev); 7053 7054 do { 7055 se = pick_next_entity(cfs_rq, NULL); 7056 set_next_entity(cfs_rq, se); 7057 cfs_rq = group_cfs_rq(se); 7058 } while (cfs_rq); 7059 7060 p = task_of(se); 7061 7062 done: __maybe_unused; 7063 #ifdef CONFIG_SMP 7064 /* 7065 * Move the next running task to the front of 7066 * the list, so our cfs_tasks list becomes MRU 7067 * one. 7068 */ 7069 list_move(&p->se.group_node, &rq->cfs_tasks); 7070 #endif 7071 7072 if (hrtick_enabled(rq)) 7073 hrtick_start_fair(rq, p); 7074 7075 update_misfit_status(p, rq); 7076 7077 return p; 7078 7079 idle: 7080 if (!rf) 7081 return NULL; 7082 7083 new_tasks = newidle_balance(rq, rf); 7084 7085 /* 7086 * Because newidle_balance() releases (and re-acquires) rq->lock, it is 7087 * possible for any higher priority task to appear. In that case we 7088 * must re-start the pick_next_entity() loop. 7089 */ 7090 if (new_tasks < 0) 7091 return RETRY_TASK; 7092 7093 if (new_tasks > 0) 7094 goto again; 7095 7096 /* 7097 * rq is about to be idle, check if we need to update the 7098 * lost_idle_time of clock_pelt 7099 */ 7100 update_idle_rq_clock_pelt(rq); 7101 7102 return NULL; 7103 } 7104 7105 static struct task_struct *__pick_next_task_fair(struct rq *rq) 7106 { 7107 return pick_next_task_fair(rq, NULL, NULL); 7108 } 7109 7110 /* 7111 * Account for a descheduled task: 7112 */ 7113 static void put_prev_task_fair(struct rq *rq, struct task_struct *prev) 7114 { 7115 struct sched_entity *se = &prev->se; 7116 struct cfs_rq *cfs_rq; 7117 7118 for_each_sched_entity(se) { 7119 cfs_rq = cfs_rq_of(se); 7120 put_prev_entity(cfs_rq, se); 7121 } 7122 } 7123 7124 /* 7125 * sched_yield() is very simple 7126 * 7127 * The magic of dealing with the ->skip buddy is in pick_next_entity. 7128 */ 7129 static void yield_task_fair(struct rq *rq) 7130 { 7131 struct task_struct *curr = rq->curr; 7132 struct cfs_rq *cfs_rq = task_cfs_rq(curr); 7133 struct sched_entity *se = &curr->se; 7134 7135 /* 7136 * Are we the only task in the tree? 7137 */ 7138 if (unlikely(rq->nr_running == 1)) 7139 return; 7140 7141 clear_buddies(cfs_rq, se); 7142 7143 if (curr->policy != SCHED_BATCH) { 7144 update_rq_clock(rq); 7145 /* 7146 * Update run-time statistics of the 'current'. 7147 */ 7148 update_curr(cfs_rq); 7149 /* 7150 * Tell update_rq_clock() that we've just updated, 7151 * so we don't do microscopic update in schedule() 7152 * and double the fastpath cost. 7153 */ 7154 rq_clock_skip_update(rq); 7155 } 7156 7157 set_skip_buddy(se); 7158 } 7159 7160 static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt) 7161 { 7162 struct sched_entity *se = &p->se; 7163 7164 /* throttled hierarchies are not runnable */ 7165 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se))) 7166 return false; 7167 7168 /* Tell the scheduler that we'd really like pse to run next. */ 7169 set_next_buddy(se); 7170 7171 yield_task_fair(rq); 7172 7173 return true; 7174 } 7175 7176 #ifdef CONFIG_SMP 7177 /************************************************** 7178 * Fair scheduling class load-balancing methods. 7179 * 7180 * BASICS 7181 * 7182 * The purpose of load-balancing is to achieve the same basic fairness the 7183 * per-CPU scheduler provides, namely provide a proportional amount of compute 7184 * time to each task. This is expressed in the following equation: 7185 * 7186 * W_i,n/P_i == W_j,n/P_j for all i,j (1) 7187 * 7188 * Where W_i,n is the n-th weight average for CPU i. The instantaneous weight 7189 * W_i,0 is defined as: 7190 * 7191 * W_i,0 = \Sum_j w_i,j (2) 7192 * 7193 * Where w_i,j is the weight of the j-th runnable task on CPU i. This weight 7194 * is derived from the nice value as per sched_prio_to_weight[]. 7195 * 7196 * The weight average is an exponential decay average of the instantaneous 7197 * weight: 7198 * 7199 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3) 7200 * 7201 * C_i is the compute capacity of CPU i, typically it is the 7202 * fraction of 'recent' time available for SCHED_OTHER task execution. But it 7203 * can also include other factors [XXX]. 7204 * 7205 * To achieve this balance we define a measure of imbalance which follows 7206 * directly from (1): 7207 * 7208 * imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j } (4) 7209 * 7210 * We them move tasks around to minimize the imbalance. In the continuous 7211 * function space it is obvious this converges, in the discrete case we get 7212 * a few fun cases generally called infeasible weight scenarios. 7213 * 7214 * [XXX expand on: 7215 * - infeasible weights; 7216 * - local vs global optima in the discrete case. ] 7217 * 7218 * 7219 * SCHED DOMAINS 7220 * 7221 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2) 7222 * for all i,j solution, we create a tree of CPUs that follows the hardware 7223 * topology where each level pairs two lower groups (or better). This results 7224 * in O(log n) layers. Furthermore we reduce the number of CPUs going up the 7225 * tree to only the first of the previous level and we decrease the frequency 7226 * of load-balance at each level inv. proportional to the number of CPUs in 7227 * the groups. 7228 * 7229 * This yields: 7230 * 7231 * log_2 n 1 n 7232 * \Sum { --- * --- * 2^i } = O(n) (5) 7233 * i = 0 2^i 2^i 7234 * `- size of each group 7235 * | | `- number of CPUs doing load-balance 7236 * | `- freq 7237 * `- sum over all levels 7238 * 7239 * Coupled with a limit on how many tasks we can migrate every balance pass, 7240 * this makes (5) the runtime complexity of the balancer. 7241 * 7242 * An important property here is that each CPU is still (indirectly) connected 7243 * to every other CPU in at most O(log n) steps: 7244 * 7245 * The adjacency matrix of the resulting graph is given by: 7246 * 7247 * log_2 n 7248 * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6) 7249 * k = 0 7250 * 7251 * And you'll find that: 7252 * 7253 * A^(log_2 n)_i,j != 0 for all i,j (7) 7254 * 7255 * Showing there's indeed a path between every CPU in at most O(log n) steps. 7256 * The task movement gives a factor of O(m), giving a convergence complexity 7257 * of: 7258 * 7259 * O(nm log n), n := nr_cpus, m := nr_tasks (8) 7260 * 7261 * 7262 * WORK CONSERVING 7263 * 7264 * In order to avoid CPUs going idle while there's still work to do, new idle 7265 * balancing is more aggressive and has the newly idle CPU iterate up the domain 7266 * tree itself instead of relying on other CPUs to bring it work. 7267 * 7268 * This adds some complexity to both (5) and (8) but it reduces the total idle 7269 * time. 7270 * 7271 * [XXX more?] 7272 * 7273 * 7274 * CGROUPS 7275 * 7276 * Cgroups make a horror show out of (2), instead of a simple sum we get: 7277 * 7278 * s_k,i 7279 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9) 7280 * S_k 7281 * 7282 * Where 7283 * 7284 * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10) 7285 * 7286 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on CPU i. 7287 * 7288 * The big problem is S_k, its a global sum needed to compute a local (W_i) 7289 * property. 7290 * 7291 * [XXX write more on how we solve this.. _after_ merging pjt's patches that 7292 * rewrite all of this once again.] 7293 */ 7294 7295 static unsigned long __read_mostly max_load_balance_interval = HZ/10; 7296 7297 enum fbq_type { regular, remote, all }; 7298 7299 /* 7300 * 'group_type' describes the group of CPUs at the moment of load balancing. 7301 * 7302 * The enum is ordered by pulling priority, with the group with lowest priority 7303 * first so the group_type can simply be compared when selecting the busiest 7304 * group. See update_sd_pick_busiest(). 7305 */ 7306 enum group_type { 7307 /* The group has spare capacity that can be used to run more tasks. */ 7308 group_has_spare = 0, 7309 /* 7310 * The group is fully used and the tasks don't compete for more CPU 7311 * cycles. Nevertheless, some tasks might wait before running. 7312 */ 7313 group_fully_busy, 7314 /* 7315 * SD_ASYM_CPUCAPACITY only: One task doesn't fit with CPU's capacity 7316 * and must be migrated to a more powerful CPU. 7317 */ 7318 group_misfit_task, 7319 /* 7320 * SD_ASYM_PACKING only: One local CPU with higher capacity is available, 7321 * and the task should be migrated to it instead of running on the 7322 * current CPU. 7323 */ 7324 group_asym_packing, 7325 /* 7326 * The tasks' affinity constraints previously prevented the scheduler 7327 * from balancing the load across the system. 7328 */ 7329 group_imbalanced, 7330 /* 7331 * The CPU is overloaded and can't provide expected CPU cycles to all 7332 * tasks. 7333 */ 7334 group_overloaded 7335 }; 7336 7337 enum migration_type { 7338 migrate_load = 0, 7339 migrate_util, 7340 migrate_task, 7341 migrate_misfit 7342 }; 7343 7344 #define LBF_ALL_PINNED 0x01 7345 #define LBF_NEED_BREAK 0x02 7346 #define LBF_DST_PINNED 0x04 7347 #define LBF_SOME_PINNED 0x08 7348 #define LBF_NOHZ_STATS 0x10 7349 #define LBF_NOHZ_AGAIN 0x20 7350 7351 struct lb_env { 7352 struct sched_domain *sd; 7353 7354 struct rq *src_rq; 7355 int src_cpu; 7356 7357 int dst_cpu; 7358 struct rq *dst_rq; 7359 7360 struct cpumask *dst_grpmask; 7361 int new_dst_cpu; 7362 enum cpu_idle_type idle; 7363 long imbalance; 7364 /* The set of CPUs under consideration for load-balancing */ 7365 struct cpumask *cpus; 7366 7367 unsigned int flags; 7368 7369 unsigned int loop; 7370 unsigned int loop_break; 7371 unsigned int loop_max; 7372 7373 enum fbq_type fbq_type; 7374 enum migration_type migration_type; 7375 struct list_head tasks; 7376 }; 7377 7378 /* 7379 * Is this task likely cache-hot: 7380 */ 7381 static int task_hot(struct task_struct *p, struct lb_env *env) 7382 { 7383 s64 delta; 7384 7385 lockdep_assert_held(&env->src_rq->lock); 7386 7387 if (p->sched_class != &fair_sched_class) 7388 return 0; 7389 7390 if (unlikely(task_has_idle_policy(p))) 7391 return 0; 7392 7393 /* 7394 * Buddy candidates are cache hot: 7395 */ 7396 if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running && 7397 (&p->se == cfs_rq_of(&p->se)->next || 7398 &p->se == cfs_rq_of(&p->se)->last)) 7399 return 1; 7400 7401 if (sysctl_sched_migration_cost == -1) 7402 return 1; 7403 if (sysctl_sched_migration_cost == 0) 7404 return 0; 7405 7406 delta = rq_clock_task(env->src_rq) - p->se.exec_start; 7407 7408 return delta < (s64)sysctl_sched_migration_cost; 7409 } 7410 7411 #ifdef CONFIG_NUMA_BALANCING 7412 /* 7413 * Returns 1, if task migration degrades locality 7414 * Returns 0, if task migration improves locality i.e migration preferred. 7415 * Returns -1, if task migration is not affected by locality. 7416 */ 7417 static int migrate_degrades_locality(struct task_struct *p, struct lb_env *env) 7418 { 7419 struct numa_group *numa_group = rcu_dereference(p->numa_group); 7420 unsigned long src_weight, dst_weight; 7421 int src_nid, dst_nid, dist; 7422 7423 if (!static_branch_likely(&sched_numa_balancing)) 7424 return -1; 7425 7426 if (!p->numa_faults || !(env->sd->flags & SD_NUMA)) 7427 return -1; 7428 7429 src_nid = cpu_to_node(env->src_cpu); 7430 dst_nid = cpu_to_node(env->dst_cpu); 7431 7432 if (src_nid == dst_nid) 7433 return -1; 7434 7435 /* Migrating away from the preferred node is always bad. */ 7436 if (src_nid == p->numa_preferred_nid) { 7437 if (env->src_rq->nr_running > env->src_rq->nr_preferred_running) 7438 return 1; 7439 else 7440 return -1; 7441 } 7442 7443 /* Encourage migration to the preferred node. */ 7444 if (dst_nid == p->numa_preferred_nid) 7445 return 0; 7446 7447 /* Leaving a core idle is often worse than degrading locality. */ 7448 if (env->idle == CPU_IDLE) 7449 return -1; 7450 7451 dist = node_distance(src_nid, dst_nid); 7452 if (numa_group) { 7453 src_weight = group_weight(p, src_nid, dist); 7454 dst_weight = group_weight(p, dst_nid, dist); 7455 } else { 7456 src_weight = task_weight(p, src_nid, dist); 7457 dst_weight = task_weight(p, dst_nid, dist); 7458 } 7459 7460 return dst_weight < src_weight; 7461 } 7462 7463 #else 7464 static inline int migrate_degrades_locality(struct task_struct *p, 7465 struct lb_env *env) 7466 { 7467 return -1; 7468 } 7469 #endif 7470 7471 /* 7472 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu? 7473 */ 7474 static 7475 int can_migrate_task(struct task_struct *p, struct lb_env *env) 7476 { 7477 int tsk_cache_hot; 7478 7479 lockdep_assert_held(&env->src_rq->lock); 7480 7481 /* 7482 * We do not migrate tasks that are: 7483 * 1) throttled_lb_pair, or 7484 * 2) cannot be migrated to this CPU due to cpus_ptr, or 7485 * 3) running (obviously), or 7486 * 4) are cache-hot on their current CPU. 7487 */ 7488 if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu)) 7489 return 0; 7490 7491 if (!cpumask_test_cpu(env->dst_cpu, p->cpus_ptr)) { 7492 int cpu; 7493 7494 schedstat_inc(p->se.statistics.nr_failed_migrations_affine); 7495 7496 env->flags |= LBF_SOME_PINNED; 7497 7498 /* 7499 * Remember if this task can be migrated to any other CPU in 7500 * our sched_group. We may want to revisit it if we couldn't 7501 * meet load balance goals by pulling other tasks on src_cpu. 7502 * 7503 * Avoid computing new_dst_cpu for NEWLY_IDLE or if we have 7504 * already computed one in current iteration. 7505 */ 7506 if (env->idle == CPU_NEWLY_IDLE || (env->flags & LBF_DST_PINNED)) 7507 return 0; 7508 7509 /* Prevent to re-select dst_cpu via env's CPUs: */ 7510 for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) { 7511 if (cpumask_test_cpu(cpu, p->cpus_ptr)) { 7512 env->flags |= LBF_DST_PINNED; 7513 env->new_dst_cpu = cpu; 7514 break; 7515 } 7516 } 7517 7518 return 0; 7519 } 7520 7521 /* Record that we found atleast one task that could run on dst_cpu */ 7522 env->flags &= ~LBF_ALL_PINNED; 7523 7524 if (task_running(env->src_rq, p)) { 7525 schedstat_inc(p->se.statistics.nr_failed_migrations_running); 7526 return 0; 7527 } 7528 7529 /* 7530 * Aggressive migration if: 7531 * 1) destination numa is preferred 7532 * 2) task is cache cold, or 7533 * 3) too many balance attempts have failed. 7534 */ 7535 tsk_cache_hot = migrate_degrades_locality(p, env); 7536 if (tsk_cache_hot == -1) 7537 tsk_cache_hot = task_hot(p, env); 7538 7539 if (tsk_cache_hot <= 0 || 7540 env->sd->nr_balance_failed > env->sd->cache_nice_tries) { 7541 if (tsk_cache_hot == 1) { 7542 schedstat_inc(env->sd->lb_hot_gained[env->idle]); 7543 schedstat_inc(p->se.statistics.nr_forced_migrations); 7544 } 7545 return 1; 7546 } 7547 7548 schedstat_inc(p->se.statistics.nr_failed_migrations_hot); 7549 return 0; 7550 } 7551 7552 /* 7553 * detach_task() -- detach the task for the migration specified in env 7554 */ 7555 static void detach_task(struct task_struct *p, struct lb_env *env) 7556 { 7557 lockdep_assert_held(&env->src_rq->lock); 7558 7559 deactivate_task(env->src_rq, p, DEQUEUE_NOCLOCK); 7560 set_task_cpu(p, env->dst_cpu); 7561 } 7562 7563 /* 7564 * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as 7565 * part of active balancing operations within "domain". 7566 * 7567 * Returns a task if successful and NULL otherwise. 7568 */ 7569 static struct task_struct *detach_one_task(struct lb_env *env) 7570 { 7571 struct task_struct *p; 7572 7573 lockdep_assert_held(&env->src_rq->lock); 7574 7575 list_for_each_entry_reverse(p, 7576 &env->src_rq->cfs_tasks, se.group_node) { 7577 if (!can_migrate_task(p, env)) 7578 continue; 7579 7580 detach_task(p, env); 7581 7582 /* 7583 * Right now, this is only the second place where 7584 * lb_gained[env->idle] is updated (other is detach_tasks) 7585 * so we can safely collect stats here rather than 7586 * inside detach_tasks(). 7587 */ 7588 schedstat_inc(env->sd->lb_gained[env->idle]); 7589 return p; 7590 } 7591 return NULL; 7592 } 7593 7594 static const unsigned int sched_nr_migrate_break = 32; 7595 7596 /* 7597 * detach_tasks() -- tries to detach up to imbalance load/util/tasks from 7598 * busiest_rq, as part of a balancing operation within domain "sd". 7599 * 7600 * Returns number of detached tasks if successful and 0 otherwise. 7601 */ 7602 static int detach_tasks(struct lb_env *env) 7603 { 7604 struct list_head *tasks = &env->src_rq->cfs_tasks; 7605 unsigned long util, load; 7606 struct task_struct *p; 7607 int detached = 0; 7608 7609 lockdep_assert_held(&env->src_rq->lock); 7610 7611 if (env->imbalance <= 0) 7612 return 0; 7613 7614 while (!list_empty(tasks)) { 7615 /* 7616 * We don't want to steal all, otherwise we may be treated likewise, 7617 * which could at worst lead to a livelock crash. 7618 */ 7619 if (env->idle != CPU_NOT_IDLE && env->src_rq->nr_running <= 1) 7620 break; 7621 7622 p = list_last_entry(tasks, struct task_struct, se.group_node); 7623 7624 env->loop++; 7625 /* We've more or less seen every task there is, call it quits */ 7626 if (env->loop > env->loop_max) 7627 break; 7628 7629 /* take a breather every nr_migrate tasks */ 7630 if (env->loop > env->loop_break) { 7631 env->loop_break += sched_nr_migrate_break; 7632 env->flags |= LBF_NEED_BREAK; 7633 break; 7634 } 7635 7636 if (!can_migrate_task(p, env)) 7637 goto next; 7638 7639 switch (env->migration_type) { 7640 case migrate_load: 7641 load = task_h_load(p); 7642 7643 if (sched_feat(LB_MIN) && 7644 load < 16 && !env->sd->nr_balance_failed) 7645 goto next; 7646 7647 /* 7648 * Make sure that we don't migrate too much load. 7649 * Nevertheless, let relax the constraint if 7650 * scheduler fails to find a good waiting task to 7651 * migrate. 7652 */ 7653 if (load/2 > env->imbalance && 7654 env->sd->nr_balance_failed <= env->sd->cache_nice_tries) 7655 goto next; 7656 7657 env->imbalance -= load; 7658 break; 7659 7660 case migrate_util: 7661 util = task_util_est(p); 7662 7663 if (util > env->imbalance) 7664 goto next; 7665 7666 env->imbalance -= util; 7667 break; 7668 7669 case migrate_task: 7670 env->imbalance--; 7671 break; 7672 7673 case migrate_misfit: 7674 /* This is not a misfit task */ 7675 if (task_fits_capacity(p, capacity_of(env->src_cpu))) 7676 goto next; 7677 7678 env->imbalance = 0; 7679 break; 7680 } 7681 7682 detach_task(p, env); 7683 list_add(&p->se.group_node, &env->tasks); 7684 7685 detached++; 7686 7687 #ifdef CONFIG_PREEMPTION 7688 /* 7689 * NEWIDLE balancing is a source of latency, so preemptible 7690 * kernels will stop after the first task is detached to minimize 7691 * the critical section. 7692 */ 7693 if (env->idle == CPU_NEWLY_IDLE) 7694 break; 7695 #endif 7696 7697 /* 7698 * We only want to steal up to the prescribed amount of 7699 * load/util/tasks. 7700 */ 7701 if (env->imbalance <= 0) 7702 break; 7703 7704 continue; 7705 next: 7706 list_move(&p->se.group_node, tasks); 7707 } 7708 7709 /* 7710 * Right now, this is one of only two places we collect this stat 7711 * so we can safely collect detach_one_task() stats here rather 7712 * than inside detach_one_task(). 7713 */ 7714 schedstat_add(env->sd->lb_gained[env->idle], detached); 7715 7716 return detached; 7717 } 7718 7719 /* 7720 * attach_task() -- attach the task detached by detach_task() to its new rq. 7721 */ 7722 static void attach_task(struct rq *rq, struct task_struct *p) 7723 { 7724 lockdep_assert_held(&rq->lock); 7725 7726 BUG_ON(task_rq(p) != rq); 7727 activate_task(rq, p, ENQUEUE_NOCLOCK); 7728 check_preempt_curr(rq, p, 0); 7729 } 7730 7731 /* 7732 * attach_one_task() -- attaches the task returned from detach_one_task() to 7733 * its new rq. 7734 */ 7735 static void attach_one_task(struct rq *rq, struct task_struct *p) 7736 { 7737 struct rq_flags rf; 7738 7739 rq_lock(rq, &rf); 7740 update_rq_clock(rq); 7741 attach_task(rq, p); 7742 rq_unlock(rq, &rf); 7743 } 7744 7745 /* 7746 * attach_tasks() -- attaches all tasks detached by detach_tasks() to their 7747 * new rq. 7748 */ 7749 static void attach_tasks(struct lb_env *env) 7750 { 7751 struct list_head *tasks = &env->tasks; 7752 struct task_struct *p; 7753 struct rq_flags rf; 7754 7755 rq_lock(env->dst_rq, &rf); 7756 update_rq_clock(env->dst_rq); 7757 7758 while (!list_empty(tasks)) { 7759 p = list_first_entry(tasks, struct task_struct, se.group_node); 7760 list_del_init(&p->se.group_node); 7761 7762 attach_task(env->dst_rq, p); 7763 } 7764 7765 rq_unlock(env->dst_rq, &rf); 7766 } 7767 7768 #ifdef CONFIG_NO_HZ_COMMON 7769 static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq) 7770 { 7771 if (cfs_rq->avg.load_avg) 7772 return true; 7773 7774 if (cfs_rq->avg.util_avg) 7775 return true; 7776 7777 return false; 7778 } 7779 7780 static inline bool others_have_blocked(struct rq *rq) 7781 { 7782 if (READ_ONCE(rq->avg_rt.util_avg)) 7783 return true; 7784 7785 if (READ_ONCE(rq->avg_dl.util_avg)) 7786 return true; 7787 7788 if (thermal_load_avg(rq)) 7789 return true; 7790 7791 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ 7792 if (READ_ONCE(rq->avg_irq.util_avg)) 7793 return true; 7794 #endif 7795 7796 return false; 7797 } 7798 7799 static inline void update_blocked_load_status(struct rq *rq, bool has_blocked) 7800 { 7801 rq->last_blocked_load_update_tick = jiffies; 7802 7803 if (!has_blocked) 7804 rq->has_blocked_load = 0; 7805 } 7806 #else 7807 static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq) { return false; } 7808 static inline bool others_have_blocked(struct rq *rq) { return false; } 7809 static inline void update_blocked_load_status(struct rq *rq, bool has_blocked) {} 7810 #endif 7811 7812 static bool __update_blocked_others(struct rq *rq, bool *done) 7813 { 7814 const struct sched_class *curr_class; 7815 u64 now = rq_clock_pelt(rq); 7816 unsigned long thermal_pressure; 7817 bool decayed; 7818 7819 /* 7820 * update_load_avg() can call cpufreq_update_util(). Make sure that RT, 7821 * DL and IRQ signals have been updated before updating CFS. 7822 */ 7823 curr_class = rq->curr->sched_class; 7824 7825 thermal_pressure = arch_scale_thermal_pressure(cpu_of(rq)); 7826 7827 decayed = update_rt_rq_load_avg(now, rq, curr_class == &rt_sched_class) | 7828 update_dl_rq_load_avg(now, rq, curr_class == &dl_sched_class) | 7829 update_thermal_load_avg(rq_clock_thermal(rq), rq, thermal_pressure) | 7830 update_irq_load_avg(rq, 0); 7831 7832 if (others_have_blocked(rq)) 7833 *done = false; 7834 7835 return decayed; 7836 } 7837 7838 #ifdef CONFIG_FAIR_GROUP_SCHED 7839 7840 static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq) 7841 { 7842 if (cfs_rq->load.weight) 7843 return false; 7844 7845 if (cfs_rq->avg.load_sum) 7846 return false; 7847 7848 if (cfs_rq->avg.util_sum) 7849 return false; 7850 7851 if (cfs_rq->avg.runnable_sum) 7852 return false; 7853 7854 return true; 7855 } 7856 7857 static bool __update_blocked_fair(struct rq *rq, bool *done) 7858 { 7859 struct cfs_rq *cfs_rq, *pos; 7860 bool decayed = false; 7861 int cpu = cpu_of(rq); 7862 7863 /* 7864 * Iterates the task_group tree in a bottom up fashion, see 7865 * list_add_leaf_cfs_rq() for details. 7866 */ 7867 for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) { 7868 struct sched_entity *se; 7869 7870 if (update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq)) { 7871 update_tg_load_avg(cfs_rq, 0); 7872 7873 if (cfs_rq == &rq->cfs) 7874 decayed = true; 7875 } 7876 7877 /* Propagate pending load changes to the parent, if any: */ 7878 se = cfs_rq->tg->se[cpu]; 7879 if (se && !skip_blocked_update(se)) 7880 update_load_avg(cfs_rq_of(se), se, 0); 7881 7882 /* 7883 * There can be a lot of idle CPU cgroups. Don't let fully 7884 * decayed cfs_rqs linger on the list. 7885 */ 7886 if (cfs_rq_is_decayed(cfs_rq)) 7887 list_del_leaf_cfs_rq(cfs_rq); 7888 7889 /* Don't need periodic decay once load/util_avg are null */ 7890 if (cfs_rq_has_blocked(cfs_rq)) 7891 *done = false; 7892 } 7893 7894 return decayed; 7895 } 7896 7897 /* 7898 * Compute the hierarchical load factor for cfs_rq and all its ascendants. 7899 * This needs to be done in a top-down fashion because the load of a child 7900 * group is a fraction of its parents load. 7901 */ 7902 static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq) 7903 { 7904 struct rq *rq = rq_of(cfs_rq); 7905 struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)]; 7906 unsigned long now = jiffies; 7907 unsigned long load; 7908 7909 if (cfs_rq->last_h_load_update == now) 7910 return; 7911 7912 WRITE_ONCE(cfs_rq->h_load_next, NULL); 7913 for_each_sched_entity(se) { 7914 cfs_rq = cfs_rq_of(se); 7915 WRITE_ONCE(cfs_rq->h_load_next, se); 7916 if (cfs_rq->last_h_load_update == now) 7917 break; 7918 } 7919 7920 if (!se) { 7921 cfs_rq->h_load = cfs_rq_load_avg(cfs_rq); 7922 cfs_rq->last_h_load_update = now; 7923 } 7924 7925 while ((se = READ_ONCE(cfs_rq->h_load_next)) != NULL) { 7926 load = cfs_rq->h_load; 7927 load = div64_ul(load * se->avg.load_avg, 7928 cfs_rq_load_avg(cfs_rq) + 1); 7929 cfs_rq = group_cfs_rq(se); 7930 cfs_rq->h_load = load; 7931 cfs_rq->last_h_load_update = now; 7932 } 7933 } 7934 7935 static unsigned long task_h_load(struct task_struct *p) 7936 { 7937 struct cfs_rq *cfs_rq = task_cfs_rq(p); 7938 7939 update_cfs_rq_h_load(cfs_rq); 7940 return div64_ul(p->se.avg.load_avg * cfs_rq->h_load, 7941 cfs_rq_load_avg(cfs_rq) + 1); 7942 } 7943 #else 7944 static bool __update_blocked_fair(struct rq *rq, bool *done) 7945 { 7946 struct cfs_rq *cfs_rq = &rq->cfs; 7947 bool decayed; 7948 7949 decayed = update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq); 7950 if (cfs_rq_has_blocked(cfs_rq)) 7951 *done = false; 7952 7953 return decayed; 7954 } 7955 7956 static unsigned long task_h_load(struct task_struct *p) 7957 { 7958 return p->se.avg.load_avg; 7959 } 7960 #endif 7961 7962 static void update_blocked_averages(int cpu) 7963 { 7964 bool decayed = false, done = true; 7965 struct rq *rq = cpu_rq(cpu); 7966 struct rq_flags rf; 7967 7968 rq_lock_irqsave(rq, &rf); 7969 update_rq_clock(rq); 7970 7971 decayed |= __update_blocked_others(rq, &done); 7972 decayed |= __update_blocked_fair(rq, &done); 7973 7974 update_blocked_load_status(rq, !done); 7975 if (decayed) 7976 cpufreq_update_util(rq, 0); 7977 rq_unlock_irqrestore(rq, &rf); 7978 } 7979 7980 /********** Helpers for find_busiest_group ************************/ 7981 7982 /* 7983 * sg_lb_stats - stats of a sched_group required for load_balancing 7984 */ 7985 struct sg_lb_stats { 7986 unsigned long avg_load; /*Avg load across the CPUs of the group */ 7987 unsigned long group_load; /* Total load over the CPUs of the group */ 7988 unsigned long group_capacity; 7989 unsigned long group_util; /* Total utilization over the CPUs of the group */ 7990 unsigned long group_runnable; /* Total runnable time over the CPUs of the group */ 7991 unsigned int sum_nr_running; /* Nr of tasks running in the group */ 7992 unsigned int sum_h_nr_running; /* Nr of CFS tasks running in the group */ 7993 unsigned int idle_cpus; 7994 unsigned int group_weight; 7995 enum group_type group_type; 7996 unsigned int group_asym_packing; /* Tasks should be moved to preferred CPU */ 7997 unsigned long group_misfit_task_load; /* A CPU has a task too big for its capacity */ 7998 #ifdef CONFIG_NUMA_BALANCING 7999 unsigned int nr_numa_running; 8000 unsigned int nr_preferred_running; 8001 #endif 8002 }; 8003 8004 /* 8005 * sd_lb_stats - Structure to store the statistics of a sched_domain 8006 * during load balancing. 8007 */ 8008 struct sd_lb_stats { 8009 struct sched_group *busiest; /* Busiest group in this sd */ 8010 struct sched_group *local; /* Local group in this sd */ 8011 unsigned long total_load; /* Total load of all groups in sd */ 8012 unsigned long total_capacity; /* Total capacity of all groups in sd */ 8013 unsigned long avg_load; /* Average load across all groups in sd */ 8014 unsigned int prefer_sibling; /* tasks should go to sibling first */ 8015 8016 struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */ 8017 struct sg_lb_stats local_stat; /* Statistics of the local group */ 8018 }; 8019 8020 static inline void init_sd_lb_stats(struct sd_lb_stats *sds) 8021 { 8022 /* 8023 * Skimp on the clearing to avoid duplicate work. We can avoid clearing 8024 * local_stat because update_sg_lb_stats() does a full clear/assignment. 8025 * We must however set busiest_stat::group_type and 8026 * busiest_stat::idle_cpus to the worst busiest group because 8027 * update_sd_pick_busiest() reads these before assignment. 8028 */ 8029 *sds = (struct sd_lb_stats){ 8030 .busiest = NULL, 8031 .local = NULL, 8032 .total_load = 0UL, 8033 .total_capacity = 0UL, 8034 .busiest_stat = { 8035 .idle_cpus = UINT_MAX, 8036 .group_type = group_has_spare, 8037 }, 8038 }; 8039 } 8040 8041 static unsigned long scale_rt_capacity(struct sched_domain *sd, int cpu) 8042 { 8043 struct rq *rq = cpu_rq(cpu); 8044 unsigned long max = arch_scale_cpu_capacity(cpu); 8045 unsigned long used, free; 8046 unsigned long irq; 8047 8048 irq = cpu_util_irq(rq); 8049 8050 if (unlikely(irq >= max)) 8051 return 1; 8052 8053 /* 8054 * avg_rt.util_avg and avg_dl.util_avg track binary signals 8055 * (running and not running) with weights 0 and 1024 respectively. 8056 * avg_thermal.load_avg tracks thermal pressure and the weighted 8057 * average uses the actual delta max capacity(load). 8058 */ 8059 used = READ_ONCE(rq->avg_rt.util_avg); 8060 used += READ_ONCE(rq->avg_dl.util_avg); 8061 used += thermal_load_avg(rq); 8062 8063 if (unlikely(used >= max)) 8064 return 1; 8065 8066 free = max - used; 8067 8068 return scale_irq_capacity(free, irq, max); 8069 } 8070 8071 static void update_cpu_capacity(struct sched_domain *sd, int cpu) 8072 { 8073 unsigned long capacity = scale_rt_capacity(sd, cpu); 8074 struct sched_group *sdg = sd->groups; 8075 8076 cpu_rq(cpu)->cpu_capacity_orig = arch_scale_cpu_capacity(cpu); 8077 8078 if (!capacity) 8079 capacity = 1; 8080 8081 cpu_rq(cpu)->cpu_capacity = capacity; 8082 sdg->sgc->capacity = capacity; 8083 sdg->sgc->min_capacity = capacity; 8084 sdg->sgc->max_capacity = capacity; 8085 } 8086 8087 void update_group_capacity(struct sched_domain *sd, int cpu) 8088 { 8089 struct sched_domain *child = sd->child; 8090 struct sched_group *group, *sdg = sd->groups; 8091 unsigned long capacity, min_capacity, max_capacity; 8092 unsigned long interval; 8093 8094 interval = msecs_to_jiffies(sd->balance_interval); 8095 interval = clamp(interval, 1UL, max_load_balance_interval); 8096 sdg->sgc->next_update = jiffies + interval; 8097 8098 if (!child) { 8099 update_cpu_capacity(sd, cpu); 8100 return; 8101 } 8102 8103 capacity = 0; 8104 min_capacity = ULONG_MAX; 8105 max_capacity = 0; 8106 8107 if (child->flags & SD_OVERLAP) { 8108 /* 8109 * SD_OVERLAP domains cannot assume that child groups 8110 * span the current group. 8111 */ 8112 8113 for_each_cpu(cpu, sched_group_span(sdg)) { 8114 unsigned long cpu_cap = capacity_of(cpu); 8115 8116 capacity += cpu_cap; 8117 min_capacity = min(cpu_cap, min_capacity); 8118 max_capacity = max(cpu_cap, max_capacity); 8119 } 8120 } else { 8121 /* 8122 * !SD_OVERLAP domains can assume that child groups 8123 * span the current group. 8124 */ 8125 8126 group = child->groups; 8127 do { 8128 struct sched_group_capacity *sgc = group->sgc; 8129 8130 capacity += sgc->capacity; 8131 min_capacity = min(sgc->min_capacity, min_capacity); 8132 max_capacity = max(sgc->max_capacity, max_capacity); 8133 group = group->next; 8134 } while (group != child->groups); 8135 } 8136 8137 sdg->sgc->capacity = capacity; 8138 sdg->sgc->min_capacity = min_capacity; 8139 sdg->sgc->max_capacity = max_capacity; 8140 } 8141 8142 /* 8143 * Check whether the capacity of the rq has been noticeably reduced by side 8144 * activity. The imbalance_pct is used for the threshold. 8145 * Return true is the capacity is reduced 8146 */ 8147 static inline int 8148 check_cpu_capacity(struct rq *rq, struct sched_domain *sd) 8149 { 8150 return ((rq->cpu_capacity * sd->imbalance_pct) < 8151 (rq->cpu_capacity_orig * 100)); 8152 } 8153 8154 /* 8155 * Check whether a rq has a misfit task and if it looks like we can actually 8156 * help that task: we can migrate the task to a CPU of higher capacity, or 8157 * the task's current CPU is heavily pressured. 8158 */ 8159 static inline int check_misfit_status(struct rq *rq, struct sched_domain *sd) 8160 { 8161 return rq->misfit_task_load && 8162 (rq->cpu_capacity_orig < rq->rd->max_cpu_capacity || 8163 check_cpu_capacity(rq, sd)); 8164 } 8165 8166 /* 8167 * Group imbalance indicates (and tries to solve) the problem where balancing 8168 * groups is inadequate due to ->cpus_ptr constraints. 8169 * 8170 * Imagine a situation of two groups of 4 CPUs each and 4 tasks each with a 8171 * cpumask covering 1 CPU of the first group and 3 CPUs of the second group. 8172 * Something like: 8173 * 8174 * { 0 1 2 3 } { 4 5 6 7 } 8175 * * * * * 8176 * 8177 * If we were to balance group-wise we'd place two tasks in the first group and 8178 * two tasks in the second group. Clearly this is undesired as it will overload 8179 * cpu 3 and leave one of the CPUs in the second group unused. 8180 * 8181 * The current solution to this issue is detecting the skew in the first group 8182 * by noticing the lower domain failed to reach balance and had difficulty 8183 * moving tasks due to affinity constraints. 8184 * 8185 * When this is so detected; this group becomes a candidate for busiest; see 8186 * update_sd_pick_busiest(). And calculate_imbalance() and 8187 * find_busiest_group() avoid some of the usual balance conditions to allow it 8188 * to create an effective group imbalance. 8189 * 8190 * This is a somewhat tricky proposition since the next run might not find the 8191 * group imbalance and decide the groups need to be balanced again. A most 8192 * subtle and fragile situation. 8193 */ 8194 8195 static inline int sg_imbalanced(struct sched_group *group) 8196 { 8197 return group->sgc->imbalance; 8198 } 8199 8200 /* 8201 * group_has_capacity returns true if the group has spare capacity that could 8202 * be used by some tasks. 8203 * We consider that a group has spare capacity if the * number of task is 8204 * smaller than the number of CPUs or if the utilization is lower than the 8205 * available capacity for CFS tasks. 8206 * For the latter, we use a threshold to stabilize the state, to take into 8207 * account the variance of the tasks' load and to return true if the available 8208 * capacity in meaningful for the load balancer. 8209 * As an example, an available capacity of 1% can appear but it doesn't make 8210 * any benefit for the load balance. 8211 */ 8212 static inline bool 8213 group_has_capacity(unsigned int imbalance_pct, struct sg_lb_stats *sgs) 8214 { 8215 if (sgs->sum_nr_running < sgs->group_weight) 8216 return true; 8217 8218 if ((sgs->group_capacity * imbalance_pct) < 8219 (sgs->group_runnable * 100)) 8220 return false; 8221 8222 if ((sgs->group_capacity * 100) > 8223 (sgs->group_util * imbalance_pct)) 8224 return true; 8225 8226 return false; 8227 } 8228 8229 /* 8230 * group_is_overloaded returns true if the group has more tasks than it can 8231 * handle. 8232 * group_is_overloaded is not equals to !group_has_capacity because a group 8233 * with the exact right number of tasks, has no more spare capacity but is not 8234 * overloaded so both group_has_capacity and group_is_overloaded return 8235 * false. 8236 */ 8237 static inline bool 8238 group_is_overloaded(unsigned int imbalance_pct, struct sg_lb_stats *sgs) 8239 { 8240 if (sgs->sum_nr_running <= sgs->group_weight) 8241 return false; 8242 8243 if ((sgs->group_capacity * 100) < 8244 (sgs->group_util * imbalance_pct)) 8245 return true; 8246 8247 if ((sgs->group_capacity * imbalance_pct) < 8248 (sgs->group_runnable * 100)) 8249 return true; 8250 8251 return false; 8252 } 8253 8254 /* 8255 * group_smaller_min_cpu_capacity: Returns true if sched_group sg has smaller 8256 * per-CPU capacity than sched_group ref. 8257 */ 8258 static inline bool 8259 group_smaller_min_cpu_capacity(struct sched_group *sg, struct sched_group *ref) 8260 { 8261 return fits_capacity(sg->sgc->min_capacity, ref->sgc->min_capacity); 8262 } 8263 8264 /* 8265 * group_smaller_max_cpu_capacity: Returns true if sched_group sg has smaller 8266 * per-CPU capacity_orig than sched_group ref. 8267 */ 8268 static inline bool 8269 group_smaller_max_cpu_capacity(struct sched_group *sg, struct sched_group *ref) 8270 { 8271 return fits_capacity(sg->sgc->max_capacity, ref->sgc->max_capacity); 8272 } 8273 8274 static inline enum 8275 group_type group_classify(unsigned int imbalance_pct, 8276 struct sched_group *group, 8277 struct sg_lb_stats *sgs) 8278 { 8279 if (group_is_overloaded(imbalance_pct, sgs)) 8280 return group_overloaded; 8281 8282 if (sg_imbalanced(group)) 8283 return group_imbalanced; 8284 8285 if (sgs->group_asym_packing) 8286 return group_asym_packing; 8287 8288 if (sgs->group_misfit_task_load) 8289 return group_misfit_task; 8290 8291 if (!group_has_capacity(imbalance_pct, sgs)) 8292 return group_fully_busy; 8293 8294 return group_has_spare; 8295 } 8296 8297 static bool update_nohz_stats(struct rq *rq, bool force) 8298 { 8299 #ifdef CONFIG_NO_HZ_COMMON 8300 unsigned int cpu = rq->cpu; 8301 8302 if (!rq->has_blocked_load) 8303 return false; 8304 8305 if (!cpumask_test_cpu(cpu, nohz.idle_cpus_mask)) 8306 return false; 8307 8308 if (!force && !time_after(jiffies, rq->last_blocked_load_update_tick)) 8309 return true; 8310 8311 update_blocked_averages(cpu); 8312 8313 return rq->has_blocked_load; 8314 #else 8315 return false; 8316 #endif 8317 } 8318 8319 /** 8320 * update_sg_lb_stats - Update sched_group's statistics for load balancing. 8321 * @env: The load balancing environment. 8322 * @group: sched_group whose statistics are to be updated. 8323 * @sgs: variable to hold the statistics for this group. 8324 * @sg_status: Holds flag indicating the status of the sched_group 8325 */ 8326 static inline void update_sg_lb_stats(struct lb_env *env, 8327 struct sched_group *group, 8328 struct sg_lb_stats *sgs, 8329 int *sg_status) 8330 { 8331 int i, nr_running, local_group; 8332 8333 memset(sgs, 0, sizeof(*sgs)); 8334 8335 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_span(group)); 8336 8337 for_each_cpu_and(i, sched_group_span(group), env->cpus) { 8338 struct rq *rq = cpu_rq(i); 8339 8340 if ((env->flags & LBF_NOHZ_STATS) && update_nohz_stats(rq, false)) 8341 env->flags |= LBF_NOHZ_AGAIN; 8342 8343 sgs->group_load += cpu_load(rq); 8344 sgs->group_util += cpu_util(i); 8345 sgs->group_runnable += cpu_runnable(rq); 8346 sgs->sum_h_nr_running += rq->cfs.h_nr_running; 8347 8348 nr_running = rq->nr_running; 8349 sgs->sum_nr_running += nr_running; 8350 8351 if (nr_running > 1) 8352 *sg_status |= SG_OVERLOAD; 8353 8354 if (cpu_overutilized(i)) 8355 *sg_status |= SG_OVERUTILIZED; 8356 8357 #ifdef CONFIG_NUMA_BALANCING 8358 sgs->nr_numa_running += rq->nr_numa_running; 8359 sgs->nr_preferred_running += rq->nr_preferred_running; 8360 #endif 8361 /* 8362 * No need to call idle_cpu() if nr_running is not 0 8363 */ 8364 if (!nr_running && idle_cpu(i)) { 8365 sgs->idle_cpus++; 8366 /* Idle cpu can't have misfit task */ 8367 continue; 8368 } 8369 8370 if (local_group) 8371 continue; 8372 8373 /* Check for a misfit task on the cpu */ 8374 if (env->sd->flags & SD_ASYM_CPUCAPACITY && 8375 sgs->group_misfit_task_load < rq->misfit_task_load) { 8376 sgs->group_misfit_task_load = rq->misfit_task_load; 8377 *sg_status |= SG_OVERLOAD; 8378 } 8379 } 8380 8381 /* Check if dst CPU is idle and preferred to this group */ 8382 if (env->sd->flags & SD_ASYM_PACKING && 8383 env->idle != CPU_NOT_IDLE && 8384 sgs->sum_h_nr_running && 8385 sched_asym_prefer(env->dst_cpu, group->asym_prefer_cpu)) { 8386 sgs->group_asym_packing = 1; 8387 } 8388 8389 sgs->group_capacity = group->sgc->capacity; 8390 8391 sgs->group_weight = group->group_weight; 8392 8393 sgs->group_type = group_classify(env->sd->imbalance_pct, group, sgs); 8394 8395 /* Computing avg_load makes sense only when group is overloaded */ 8396 if (sgs->group_type == group_overloaded) 8397 sgs->avg_load = (sgs->group_load * SCHED_CAPACITY_SCALE) / 8398 sgs->group_capacity; 8399 } 8400 8401 /** 8402 * update_sd_pick_busiest - return 1 on busiest group 8403 * @env: The load balancing environment. 8404 * @sds: sched_domain statistics 8405 * @sg: sched_group candidate to be checked for being the busiest 8406 * @sgs: sched_group statistics 8407 * 8408 * Determine if @sg is a busier group than the previously selected 8409 * busiest group. 8410 * 8411 * Return: %true if @sg is a busier group than the previously selected 8412 * busiest group. %false otherwise. 8413 */ 8414 static bool update_sd_pick_busiest(struct lb_env *env, 8415 struct sd_lb_stats *sds, 8416 struct sched_group *sg, 8417 struct sg_lb_stats *sgs) 8418 { 8419 struct sg_lb_stats *busiest = &sds->busiest_stat; 8420 8421 /* Make sure that there is at least one task to pull */ 8422 if (!sgs->sum_h_nr_running) 8423 return false; 8424 8425 /* 8426 * Don't try to pull misfit tasks we can't help. 8427 * We can use max_capacity here as reduction in capacity on some 8428 * CPUs in the group should either be possible to resolve 8429 * internally or be covered by avg_load imbalance (eventually). 8430 */ 8431 if (sgs->group_type == group_misfit_task && 8432 (!group_smaller_max_cpu_capacity(sg, sds->local) || 8433 sds->local_stat.group_type != group_has_spare)) 8434 return false; 8435 8436 if (sgs->group_type > busiest->group_type) 8437 return true; 8438 8439 if (sgs->group_type < busiest->group_type) 8440 return false; 8441 8442 /* 8443 * The candidate and the current busiest group are the same type of 8444 * group. Let check which one is the busiest according to the type. 8445 */ 8446 8447 switch (sgs->group_type) { 8448 case group_overloaded: 8449 /* Select the overloaded group with highest avg_load. */ 8450 if (sgs->avg_load <= busiest->avg_load) 8451 return false; 8452 break; 8453 8454 case group_imbalanced: 8455 /* 8456 * Select the 1st imbalanced group as we don't have any way to 8457 * choose one more than another. 8458 */ 8459 return false; 8460 8461 case group_asym_packing: 8462 /* Prefer to move from lowest priority CPU's work */ 8463 if (sched_asym_prefer(sg->asym_prefer_cpu, sds->busiest->asym_prefer_cpu)) 8464 return false; 8465 break; 8466 8467 case group_misfit_task: 8468 /* 8469 * If we have more than one misfit sg go with the biggest 8470 * misfit. 8471 */ 8472 if (sgs->group_misfit_task_load < busiest->group_misfit_task_load) 8473 return false; 8474 break; 8475 8476 case group_fully_busy: 8477 /* 8478 * Select the fully busy group with highest avg_load. In 8479 * theory, there is no need to pull task from such kind of 8480 * group because tasks have all compute capacity that they need 8481 * but we can still improve the overall throughput by reducing 8482 * contention when accessing shared HW resources. 8483 * 8484 * XXX for now avg_load is not computed and always 0 so we 8485 * select the 1st one. 8486 */ 8487 if (sgs->avg_load <= busiest->avg_load) 8488 return false; 8489 break; 8490 8491 case group_has_spare: 8492 /* 8493 * Select not overloaded group with lowest number of idle cpus 8494 * and highest number of running tasks. We could also compare 8495 * the spare capacity which is more stable but it can end up 8496 * that the group has less spare capacity but finally more idle 8497 * CPUs which means less opportunity to pull tasks. 8498 */ 8499 if (sgs->idle_cpus > busiest->idle_cpus) 8500 return false; 8501 else if ((sgs->idle_cpus == busiest->idle_cpus) && 8502 (sgs->sum_nr_running <= busiest->sum_nr_running)) 8503 return false; 8504 8505 break; 8506 } 8507 8508 /* 8509 * Candidate sg has no more than one task per CPU and has higher 8510 * per-CPU capacity. Migrating tasks to less capable CPUs may harm 8511 * throughput. Maximize throughput, power/energy consequences are not 8512 * considered. 8513 */ 8514 if ((env->sd->flags & SD_ASYM_CPUCAPACITY) && 8515 (sgs->group_type <= group_fully_busy) && 8516 (group_smaller_min_cpu_capacity(sds->local, sg))) 8517 return false; 8518 8519 return true; 8520 } 8521 8522 #ifdef CONFIG_NUMA_BALANCING 8523 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs) 8524 { 8525 if (sgs->sum_h_nr_running > sgs->nr_numa_running) 8526 return regular; 8527 if (sgs->sum_h_nr_running > sgs->nr_preferred_running) 8528 return remote; 8529 return all; 8530 } 8531 8532 static inline enum fbq_type fbq_classify_rq(struct rq *rq) 8533 { 8534 if (rq->nr_running > rq->nr_numa_running) 8535 return regular; 8536 if (rq->nr_running > rq->nr_preferred_running) 8537 return remote; 8538 return all; 8539 } 8540 #else 8541 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs) 8542 { 8543 return all; 8544 } 8545 8546 static inline enum fbq_type fbq_classify_rq(struct rq *rq) 8547 { 8548 return regular; 8549 } 8550 #endif /* CONFIG_NUMA_BALANCING */ 8551 8552 8553 struct sg_lb_stats; 8554 8555 /* 8556 * task_running_on_cpu - return 1 if @p is running on @cpu. 8557 */ 8558 8559 static unsigned int task_running_on_cpu(int cpu, struct task_struct *p) 8560 { 8561 /* Task has no contribution or is new */ 8562 if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time)) 8563 return 0; 8564 8565 if (task_on_rq_queued(p)) 8566 return 1; 8567 8568 return 0; 8569 } 8570 8571 /** 8572 * idle_cpu_without - would a given CPU be idle without p ? 8573 * @cpu: the processor on which idleness is tested. 8574 * @p: task which should be ignored. 8575 * 8576 * Return: 1 if the CPU would be idle. 0 otherwise. 8577 */ 8578 static int idle_cpu_without(int cpu, struct task_struct *p) 8579 { 8580 struct rq *rq = cpu_rq(cpu); 8581 8582 if (rq->curr != rq->idle && rq->curr != p) 8583 return 0; 8584 8585 /* 8586 * rq->nr_running can't be used but an updated version without the 8587 * impact of p on cpu must be used instead. The updated nr_running 8588 * be computed and tested before calling idle_cpu_without(). 8589 */ 8590 8591 #ifdef CONFIG_SMP 8592 if (rq->ttwu_pending) 8593 return 0; 8594 #endif 8595 8596 return 1; 8597 } 8598 8599 /* 8600 * update_sg_wakeup_stats - Update sched_group's statistics for wakeup. 8601 * @sd: The sched_domain level to look for idlest group. 8602 * @group: sched_group whose statistics are to be updated. 8603 * @sgs: variable to hold the statistics for this group. 8604 * @p: The task for which we look for the idlest group/CPU. 8605 */ 8606 static inline void update_sg_wakeup_stats(struct sched_domain *sd, 8607 struct sched_group *group, 8608 struct sg_lb_stats *sgs, 8609 struct task_struct *p) 8610 { 8611 int i, nr_running; 8612 8613 memset(sgs, 0, sizeof(*sgs)); 8614 8615 for_each_cpu(i, sched_group_span(group)) { 8616 struct rq *rq = cpu_rq(i); 8617 unsigned int local; 8618 8619 sgs->group_load += cpu_load_without(rq, p); 8620 sgs->group_util += cpu_util_without(i, p); 8621 sgs->group_runnable += cpu_runnable_without(rq, p); 8622 local = task_running_on_cpu(i, p); 8623 sgs->sum_h_nr_running += rq->cfs.h_nr_running - local; 8624 8625 nr_running = rq->nr_running - local; 8626 sgs->sum_nr_running += nr_running; 8627 8628 /* 8629 * No need to call idle_cpu_without() if nr_running is not 0 8630 */ 8631 if (!nr_running && idle_cpu_without(i, p)) 8632 sgs->idle_cpus++; 8633 8634 } 8635 8636 /* Check if task fits in the group */ 8637 if (sd->flags & SD_ASYM_CPUCAPACITY && 8638 !task_fits_capacity(p, group->sgc->max_capacity)) { 8639 sgs->group_misfit_task_load = 1; 8640 } 8641 8642 sgs->group_capacity = group->sgc->capacity; 8643 8644 sgs->group_weight = group->group_weight; 8645 8646 sgs->group_type = group_classify(sd->imbalance_pct, group, sgs); 8647 8648 /* 8649 * Computing avg_load makes sense only when group is fully busy or 8650 * overloaded 8651 */ 8652 if (sgs->group_type == group_fully_busy || 8653 sgs->group_type == group_overloaded) 8654 sgs->avg_load = (sgs->group_load * SCHED_CAPACITY_SCALE) / 8655 sgs->group_capacity; 8656 } 8657 8658 static bool update_pick_idlest(struct sched_group *idlest, 8659 struct sg_lb_stats *idlest_sgs, 8660 struct sched_group *group, 8661 struct sg_lb_stats *sgs) 8662 { 8663 if (sgs->group_type < idlest_sgs->group_type) 8664 return true; 8665 8666 if (sgs->group_type > idlest_sgs->group_type) 8667 return false; 8668 8669 /* 8670 * The candidate and the current idlest group are the same type of 8671 * group. Let check which one is the idlest according to the type. 8672 */ 8673 8674 switch (sgs->group_type) { 8675 case group_overloaded: 8676 case group_fully_busy: 8677 /* Select the group with lowest avg_load. */ 8678 if (idlest_sgs->avg_load <= sgs->avg_load) 8679 return false; 8680 break; 8681 8682 case group_imbalanced: 8683 case group_asym_packing: 8684 /* Those types are not used in the slow wakeup path */ 8685 return false; 8686 8687 case group_misfit_task: 8688 /* Select group with the highest max capacity */ 8689 if (idlest->sgc->max_capacity >= group->sgc->max_capacity) 8690 return false; 8691 break; 8692 8693 case group_has_spare: 8694 /* Select group with most idle CPUs */ 8695 if (idlest_sgs->idle_cpus >= sgs->idle_cpus) 8696 return false; 8697 break; 8698 } 8699 8700 return true; 8701 } 8702 8703 /* 8704 * find_idlest_group() finds and returns the least busy CPU group within the 8705 * domain. 8706 * 8707 * Assumes p is allowed on at least one CPU in sd. 8708 */ 8709 static struct sched_group * 8710 find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu) 8711 { 8712 struct sched_group *idlest = NULL, *local = NULL, *group = sd->groups; 8713 struct sg_lb_stats local_sgs, tmp_sgs; 8714 struct sg_lb_stats *sgs; 8715 unsigned long imbalance; 8716 struct sg_lb_stats idlest_sgs = { 8717 .avg_load = UINT_MAX, 8718 .group_type = group_overloaded, 8719 }; 8720 8721 imbalance = scale_load_down(NICE_0_LOAD) * 8722 (sd->imbalance_pct-100) / 100; 8723 8724 do { 8725 int local_group; 8726 8727 /* Skip over this group if it has no CPUs allowed */ 8728 if (!cpumask_intersects(sched_group_span(group), 8729 p->cpus_ptr)) 8730 continue; 8731 8732 local_group = cpumask_test_cpu(this_cpu, 8733 sched_group_span(group)); 8734 8735 if (local_group) { 8736 sgs = &local_sgs; 8737 local = group; 8738 } else { 8739 sgs = &tmp_sgs; 8740 } 8741 8742 update_sg_wakeup_stats(sd, group, sgs, p); 8743 8744 if (!local_group && update_pick_idlest(idlest, &idlest_sgs, group, sgs)) { 8745 idlest = group; 8746 idlest_sgs = *sgs; 8747 } 8748 8749 } while (group = group->next, group != sd->groups); 8750 8751 8752 /* There is no idlest group to push tasks to */ 8753 if (!idlest) 8754 return NULL; 8755 8756 /* The local group has been skipped because of CPU affinity */ 8757 if (!local) 8758 return idlest; 8759 8760 /* 8761 * If the local group is idler than the selected idlest group 8762 * don't try and push the task. 8763 */ 8764 if (local_sgs.group_type < idlest_sgs.group_type) 8765 return NULL; 8766 8767 /* 8768 * If the local group is busier than the selected idlest group 8769 * try and push the task. 8770 */ 8771 if (local_sgs.group_type > idlest_sgs.group_type) 8772 return idlest; 8773 8774 switch (local_sgs.group_type) { 8775 case group_overloaded: 8776 case group_fully_busy: 8777 /* 8778 * When comparing groups across NUMA domains, it's possible for 8779 * the local domain to be very lightly loaded relative to the 8780 * remote domains but "imbalance" skews the comparison making 8781 * remote CPUs look much more favourable. When considering 8782 * cross-domain, add imbalance to the load on the remote node 8783 * and consider staying local. 8784 */ 8785 8786 if ((sd->flags & SD_NUMA) && 8787 ((idlest_sgs.avg_load + imbalance) >= local_sgs.avg_load)) 8788 return NULL; 8789 8790 /* 8791 * If the local group is less loaded than the selected 8792 * idlest group don't try and push any tasks. 8793 */ 8794 if (idlest_sgs.avg_load >= (local_sgs.avg_load + imbalance)) 8795 return NULL; 8796 8797 if (100 * local_sgs.avg_load <= sd->imbalance_pct * idlest_sgs.avg_load) 8798 return NULL; 8799 break; 8800 8801 case group_imbalanced: 8802 case group_asym_packing: 8803 /* Those type are not used in the slow wakeup path */ 8804 return NULL; 8805 8806 case group_misfit_task: 8807 /* Select group with the highest max capacity */ 8808 if (local->sgc->max_capacity >= idlest->sgc->max_capacity) 8809 return NULL; 8810 break; 8811 8812 case group_has_spare: 8813 if (sd->flags & SD_NUMA) { 8814 #ifdef CONFIG_NUMA_BALANCING 8815 int idlest_cpu; 8816 /* 8817 * If there is spare capacity at NUMA, try to select 8818 * the preferred node 8819 */ 8820 if (cpu_to_node(this_cpu) == p->numa_preferred_nid) 8821 return NULL; 8822 8823 idlest_cpu = cpumask_first(sched_group_span(idlest)); 8824 if (cpu_to_node(idlest_cpu) == p->numa_preferred_nid) 8825 return idlest; 8826 #endif 8827 /* 8828 * Otherwise, keep the task on this node to stay close 8829 * its wakeup source and improve locality. If there is 8830 * a real need of migration, periodic load balance will 8831 * take care of it. 8832 */ 8833 if (local_sgs.idle_cpus) 8834 return NULL; 8835 } 8836 8837 /* 8838 * Select group with highest number of idle CPUs. We could also 8839 * compare the utilization which is more stable but it can end 8840 * up that the group has less spare capacity but finally more 8841 * idle CPUs which means more opportunity to run task. 8842 */ 8843 if (local_sgs.idle_cpus >= idlest_sgs.idle_cpus) 8844 return NULL; 8845 break; 8846 } 8847 8848 return idlest; 8849 } 8850 8851 /** 8852 * update_sd_lb_stats - Update sched_domain's statistics for load balancing. 8853 * @env: The load balancing environment. 8854 * @sds: variable to hold the statistics for this sched_domain. 8855 */ 8856 8857 static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds) 8858 { 8859 struct sched_domain *child = env->sd->child; 8860 struct sched_group *sg = env->sd->groups; 8861 struct sg_lb_stats *local = &sds->local_stat; 8862 struct sg_lb_stats tmp_sgs; 8863 int sg_status = 0; 8864 8865 #ifdef CONFIG_NO_HZ_COMMON 8866 if (env->idle == CPU_NEWLY_IDLE && READ_ONCE(nohz.has_blocked)) 8867 env->flags |= LBF_NOHZ_STATS; 8868 #endif 8869 8870 do { 8871 struct sg_lb_stats *sgs = &tmp_sgs; 8872 int local_group; 8873 8874 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_span(sg)); 8875 if (local_group) { 8876 sds->local = sg; 8877 sgs = local; 8878 8879 if (env->idle != CPU_NEWLY_IDLE || 8880 time_after_eq(jiffies, sg->sgc->next_update)) 8881 update_group_capacity(env->sd, env->dst_cpu); 8882 } 8883 8884 update_sg_lb_stats(env, sg, sgs, &sg_status); 8885 8886 if (local_group) 8887 goto next_group; 8888 8889 8890 if (update_sd_pick_busiest(env, sds, sg, sgs)) { 8891 sds->busiest = sg; 8892 sds->busiest_stat = *sgs; 8893 } 8894 8895 next_group: 8896 /* Now, start updating sd_lb_stats */ 8897 sds->total_load += sgs->group_load; 8898 sds->total_capacity += sgs->group_capacity; 8899 8900 sg = sg->next; 8901 } while (sg != env->sd->groups); 8902 8903 /* Tag domain that child domain prefers tasks go to siblings first */ 8904 sds->prefer_sibling = child && child->flags & SD_PREFER_SIBLING; 8905 8906 #ifdef CONFIG_NO_HZ_COMMON 8907 if ((env->flags & LBF_NOHZ_AGAIN) && 8908 cpumask_subset(nohz.idle_cpus_mask, sched_domain_span(env->sd))) { 8909 8910 WRITE_ONCE(nohz.next_blocked, 8911 jiffies + msecs_to_jiffies(LOAD_AVG_PERIOD)); 8912 } 8913 #endif 8914 8915 if (env->sd->flags & SD_NUMA) 8916 env->fbq_type = fbq_classify_group(&sds->busiest_stat); 8917 8918 if (!env->sd->parent) { 8919 struct root_domain *rd = env->dst_rq->rd; 8920 8921 /* update overload indicator if we are at root domain */ 8922 WRITE_ONCE(rd->overload, sg_status & SG_OVERLOAD); 8923 8924 /* Update over-utilization (tipping point, U >= 0) indicator */ 8925 WRITE_ONCE(rd->overutilized, sg_status & SG_OVERUTILIZED); 8926 trace_sched_overutilized_tp(rd, sg_status & SG_OVERUTILIZED); 8927 } else if (sg_status & SG_OVERUTILIZED) { 8928 struct root_domain *rd = env->dst_rq->rd; 8929 8930 WRITE_ONCE(rd->overutilized, SG_OVERUTILIZED); 8931 trace_sched_overutilized_tp(rd, SG_OVERUTILIZED); 8932 } 8933 } 8934 8935 static inline long adjust_numa_imbalance(int imbalance, int src_nr_running) 8936 { 8937 unsigned int imbalance_min; 8938 8939 /* 8940 * Allow a small imbalance based on a simple pair of communicating 8941 * tasks that remain local when the source domain is almost idle. 8942 */ 8943 imbalance_min = 2; 8944 if (src_nr_running <= imbalance_min) 8945 return 0; 8946 8947 return imbalance; 8948 } 8949 8950 /** 8951 * calculate_imbalance - Calculate the amount of imbalance present within the 8952 * groups of a given sched_domain during load balance. 8953 * @env: load balance environment 8954 * @sds: statistics of the sched_domain whose imbalance is to be calculated. 8955 */ 8956 static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds) 8957 { 8958 struct sg_lb_stats *local, *busiest; 8959 8960 local = &sds->local_stat; 8961 busiest = &sds->busiest_stat; 8962 8963 if (busiest->group_type == group_misfit_task) { 8964 /* Set imbalance to allow misfit tasks to be balanced. */ 8965 env->migration_type = migrate_misfit; 8966 env->imbalance = 1; 8967 return; 8968 } 8969 8970 if (busiest->group_type == group_asym_packing) { 8971 /* 8972 * In case of asym capacity, we will try to migrate all load to 8973 * the preferred CPU. 8974 */ 8975 env->migration_type = migrate_task; 8976 env->imbalance = busiest->sum_h_nr_running; 8977 return; 8978 } 8979 8980 if (busiest->group_type == group_imbalanced) { 8981 /* 8982 * In the group_imb case we cannot rely on group-wide averages 8983 * to ensure CPU-load equilibrium, try to move any task to fix 8984 * the imbalance. The next load balance will take care of 8985 * balancing back the system. 8986 */ 8987 env->migration_type = migrate_task; 8988 env->imbalance = 1; 8989 return; 8990 } 8991 8992 /* 8993 * Try to use spare capacity of local group without overloading it or 8994 * emptying busiest. 8995 */ 8996 if (local->group_type == group_has_spare) { 8997 if (busiest->group_type > group_fully_busy) { 8998 /* 8999 * If busiest is overloaded, try to fill spare 9000 * capacity. This might end up creating spare capacity 9001 * in busiest or busiest still being overloaded but 9002 * there is no simple way to directly compute the 9003 * amount of load to migrate in order to balance the 9004 * system. 9005 */ 9006 env->migration_type = migrate_util; 9007 env->imbalance = max(local->group_capacity, local->group_util) - 9008 local->group_util; 9009 9010 /* 9011 * In some cases, the group's utilization is max or even 9012 * higher than capacity because of migrations but the 9013 * local CPU is (newly) idle. There is at least one 9014 * waiting task in this overloaded busiest group. Let's 9015 * try to pull it. 9016 */ 9017 if (env->idle != CPU_NOT_IDLE && env->imbalance == 0) { 9018 env->migration_type = migrate_task; 9019 env->imbalance = 1; 9020 } 9021 9022 return; 9023 } 9024 9025 if (busiest->group_weight == 1 || sds->prefer_sibling) { 9026 unsigned int nr_diff = busiest->sum_nr_running; 9027 /* 9028 * When prefer sibling, evenly spread running tasks on 9029 * groups. 9030 */ 9031 env->migration_type = migrate_task; 9032 lsub_positive(&nr_diff, local->sum_nr_running); 9033 env->imbalance = nr_diff >> 1; 9034 } else { 9035 9036 /* 9037 * If there is no overload, we just want to even the number of 9038 * idle cpus. 9039 */ 9040 env->migration_type = migrate_task; 9041 env->imbalance = max_t(long, 0, (local->idle_cpus - 9042 busiest->idle_cpus) >> 1); 9043 } 9044 9045 /* Consider allowing a small imbalance between NUMA groups */ 9046 if (env->sd->flags & SD_NUMA) 9047 env->imbalance = adjust_numa_imbalance(env->imbalance, 9048 busiest->sum_nr_running); 9049 9050 return; 9051 } 9052 9053 /* 9054 * Local is fully busy but has to take more load to relieve the 9055 * busiest group 9056 */ 9057 if (local->group_type < group_overloaded) { 9058 /* 9059 * Local will become overloaded so the avg_load metrics are 9060 * finally needed. 9061 */ 9062 9063 local->avg_load = (local->group_load * SCHED_CAPACITY_SCALE) / 9064 local->group_capacity; 9065 9066 sds->avg_load = (sds->total_load * SCHED_CAPACITY_SCALE) / 9067 sds->total_capacity; 9068 /* 9069 * If the local group is more loaded than the selected 9070 * busiest group don't try to pull any tasks. 9071 */ 9072 if (local->avg_load >= busiest->avg_load) { 9073 env->imbalance = 0; 9074 return; 9075 } 9076 } 9077 9078 /* 9079 * Both group are or will become overloaded and we're trying to get all 9080 * the CPUs to the average_load, so we don't want to push ourselves 9081 * above the average load, nor do we wish to reduce the max loaded CPU 9082 * below the average load. At the same time, we also don't want to 9083 * reduce the group load below the group capacity. Thus we look for 9084 * the minimum possible imbalance. 9085 */ 9086 env->migration_type = migrate_load; 9087 env->imbalance = min( 9088 (busiest->avg_load - sds->avg_load) * busiest->group_capacity, 9089 (sds->avg_load - local->avg_load) * local->group_capacity 9090 ) / SCHED_CAPACITY_SCALE; 9091 } 9092 9093 /******* find_busiest_group() helpers end here *********************/ 9094 9095 /* 9096 * Decision matrix according to the local and busiest group type: 9097 * 9098 * busiest \ local has_spare fully_busy misfit asym imbalanced overloaded 9099 * has_spare nr_idle balanced N/A N/A balanced balanced 9100 * fully_busy nr_idle nr_idle N/A N/A balanced balanced 9101 * misfit_task force N/A N/A N/A force force 9102 * asym_packing force force N/A N/A force force 9103 * imbalanced force force N/A N/A force force 9104 * overloaded force force N/A N/A force avg_load 9105 * 9106 * N/A : Not Applicable because already filtered while updating 9107 * statistics. 9108 * balanced : The system is balanced for these 2 groups. 9109 * force : Calculate the imbalance as load migration is probably needed. 9110 * avg_load : Only if imbalance is significant enough. 9111 * nr_idle : dst_cpu is not busy and the number of idle CPUs is quite 9112 * different in groups. 9113 */ 9114 9115 /** 9116 * find_busiest_group - Returns the busiest group within the sched_domain 9117 * if there is an imbalance. 9118 * 9119 * Also calculates the amount of runnable load which should be moved 9120 * to restore balance. 9121 * 9122 * @env: The load balancing environment. 9123 * 9124 * Return: - The busiest group if imbalance exists. 9125 */ 9126 static struct sched_group *find_busiest_group(struct lb_env *env) 9127 { 9128 struct sg_lb_stats *local, *busiest; 9129 struct sd_lb_stats sds; 9130 9131 init_sd_lb_stats(&sds); 9132 9133 /* 9134 * Compute the various statistics relevant for load balancing at 9135 * this level. 9136 */ 9137 update_sd_lb_stats(env, &sds); 9138 9139 if (sched_energy_enabled()) { 9140 struct root_domain *rd = env->dst_rq->rd; 9141 9142 if (rcu_dereference(rd->pd) && !READ_ONCE(rd->overutilized)) 9143 goto out_balanced; 9144 } 9145 9146 local = &sds.local_stat; 9147 busiest = &sds.busiest_stat; 9148 9149 /* There is no busy sibling group to pull tasks from */ 9150 if (!sds.busiest) 9151 goto out_balanced; 9152 9153 /* Misfit tasks should be dealt with regardless of the avg load */ 9154 if (busiest->group_type == group_misfit_task) 9155 goto force_balance; 9156 9157 /* ASYM feature bypasses nice load balance check */ 9158 if (busiest->group_type == group_asym_packing) 9159 goto force_balance; 9160 9161 /* 9162 * If the busiest group is imbalanced the below checks don't 9163 * work because they assume all things are equal, which typically 9164 * isn't true due to cpus_ptr constraints and the like. 9165 */ 9166 if (busiest->group_type == group_imbalanced) 9167 goto force_balance; 9168 9169 /* 9170 * If the local group is busier than the selected busiest group 9171 * don't try and pull any tasks. 9172 */ 9173 if (local->group_type > busiest->group_type) 9174 goto out_balanced; 9175 9176 /* 9177 * When groups are overloaded, use the avg_load to ensure fairness 9178 * between tasks. 9179 */ 9180 if (local->group_type == group_overloaded) { 9181 /* 9182 * If the local group is more loaded than the selected 9183 * busiest group don't try to pull any tasks. 9184 */ 9185 if (local->avg_load >= busiest->avg_load) 9186 goto out_balanced; 9187 9188 /* XXX broken for overlapping NUMA groups */ 9189 sds.avg_load = (sds.total_load * SCHED_CAPACITY_SCALE) / 9190 sds.total_capacity; 9191 9192 /* 9193 * Don't pull any tasks if this group is already above the 9194 * domain average load. 9195 */ 9196 if (local->avg_load >= sds.avg_load) 9197 goto out_balanced; 9198 9199 /* 9200 * If the busiest group is more loaded, use imbalance_pct to be 9201 * conservative. 9202 */ 9203 if (100 * busiest->avg_load <= 9204 env->sd->imbalance_pct * local->avg_load) 9205 goto out_balanced; 9206 } 9207 9208 /* Try to move all excess tasks to child's sibling domain */ 9209 if (sds.prefer_sibling && local->group_type == group_has_spare && 9210 busiest->sum_nr_running > local->sum_nr_running + 1) 9211 goto force_balance; 9212 9213 if (busiest->group_type != group_overloaded) { 9214 if (env->idle == CPU_NOT_IDLE) 9215 /* 9216 * If the busiest group is not overloaded (and as a 9217 * result the local one too) but this CPU is already 9218 * busy, let another idle CPU try to pull task. 9219 */ 9220 goto out_balanced; 9221 9222 if (busiest->group_weight > 1 && 9223 local->idle_cpus <= (busiest->idle_cpus + 1)) 9224 /* 9225 * If the busiest group is not overloaded 9226 * and there is no imbalance between this and busiest 9227 * group wrt idle CPUs, it is balanced. The imbalance 9228 * becomes significant if the diff is greater than 1 9229 * otherwise we might end up to just move the imbalance 9230 * on another group. Of course this applies only if 9231 * there is more than 1 CPU per group. 9232 */ 9233 goto out_balanced; 9234 9235 if (busiest->sum_h_nr_running == 1) 9236 /* 9237 * busiest doesn't have any tasks waiting to run 9238 */ 9239 goto out_balanced; 9240 } 9241 9242 force_balance: 9243 /* Looks like there is an imbalance. Compute it */ 9244 calculate_imbalance(env, &sds); 9245 return env->imbalance ? sds.busiest : NULL; 9246 9247 out_balanced: 9248 env->imbalance = 0; 9249 return NULL; 9250 } 9251 9252 /* 9253 * find_busiest_queue - find the busiest runqueue among the CPUs in the group. 9254 */ 9255 static struct rq *find_busiest_queue(struct lb_env *env, 9256 struct sched_group *group) 9257 { 9258 struct rq *busiest = NULL, *rq; 9259 unsigned long busiest_util = 0, busiest_load = 0, busiest_capacity = 1; 9260 unsigned int busiest_nr = 0; 9261 int i; 9262 9263 for_each_cpu_and(i, sched_group_span(group), env->cpus) { 9264 unsigned long capacity, load, util; 9265 unsigned int nr_running; 9266 enum fbq_type rt; 9267 9268 rq = cpu_rq(i); 9269 rt = fbq_classify_rq(rq); 9270 9271 /* 9272 * We classify groups/runqueues into three groups: 9273 * - regular: there are !numa tasks 9274 * - remote: there are numa tasks that run on the 'wrong' node 9275 * - all: there is no distinction 9276 * 9277 * In order to avoid migrating ideally placed numa tasks, 9278 * ignore those when there's better options. 9279 * 9280 * If we ignore the actual busiest queue to migrate another 9281 * task, the next balance pass can still reduce the busiest 9282 * queue by moving tasks around inside the node. 9283 * 9284 * If we cannot move enough load due to this classification 9285 * the next pass will adjust the group classification and 9286 * allow migration of more tasks. 9287 * 9288 * Both cases only affect the total convergence complexity. 9289 */ 9290 if (rt > env->fbq_type) 9291 continue; 9292 9293 capacity = capacity_of(i); 9294 nr_running = rq->cfs.h_nr_running; 9295 9296 /* 9297 * For ASYM_CPUCAPACITY domains, don't pick a CPU that could 9298 * eventually lead to active_balancing high->low capacity. 9299 * Higher per-CPU capacity is considered better than balancing 9300 * average load. 9301 */ 9302 if (env->sd->flags & SD_ASYM_CPUCAPACITY && 9303 capacity_of(env->dst_cpu) < capacity && 9304 nr_running == 1) 9305 continue; 9306 9307 switch (env->migration_type) { 9308 case migrate_load: 9309 /* 9310 * When comparing with load imbalance, use cpu_load() 9311 * which is not scaled with the CPU capacity. 9312 */ 9313 load = cpu_load(rq); 9314 9315 if (nr_running == 1 && load > env->imbalance && 9316 !check_cpu_capacity(rq, env->sd)) 9317 break; 9318 9319 /* 9320 * For the load comparisons with the other CPUs, 9321 * consider the cpu_load() scaled with the CPU 9322 * capacity, so that the load can be moved away 9323 * from the CPU that is potentially running at a 9324 * lower capacity. 9325 * 9326 * Thus we're looking for max(load_i / capacity_i), 9327 * crosswise multiplication to rid ourselves of the 9328 * division works out to: 9329 * load_i * capacity_j > load_j * capacity_i; 9330 * where j is our previous maximum. 9331 */ 9332 if (load * busiest_capacity > busiest_load * capacity) { 9333 busiest_load = load; 9334 busiest_capacity = capacity; 9335 busiest = rq; 9336 } 9337 break; 9338 9339 case migrate_util: 9340 util = cpu_util(cpu_of(rq)); 9341 9342 /* 9343 * Don't try to pull utilization from a CPU with one 9344 * running task. Whatever its utilization, we will fail 9345 * detach the task. 9346 */ 9347 if (nr_running <= 1) 9348 continue; 9349 9350 if (busiest_util < util) { 9351 busiest_util = util; 9352 busiest = rq; 9353 } 9354 break; 9355 9356 case migrate_task: 9357 if (busiest_nr < nr_running) { 9358 busiest_nr = nr_running; 9359 busiest = rq; 9360 } 9361 break; 9362 9363 case migrate_misfit: 9364 /* 9365 * For ASYM_CPUCAPACITY domains with misfit tasks we 9366 * simply seek the "biggest" misfit task. 9367 */ 9368 if (rq->misfit_task_load > busiest_load) { 9369 busiest_load = rq->misfit_task_load; 9370 busiest = rq; 9371 } 9372 9373 break; 9374 9375 } 9376 } 9377 9378 return busiest; 9379 } 9380 9381 /* 9382 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but 9383 * so long as it is large enough. 9384 */ 9385 #define MAX_PINNED_INTERVAL 512 9386 9387 static inline bool 9388 asym_active_balance(struct lb_env *env) 9389 { 9390 /* 9391 * ASYM_PACKING needs to force migrate tasks from busy but 9392 * lower priority CPUs in order to pack all tasks in the 9393 * highest priority CPUs. 9394 */ 9395 return env->idle != CPU_NOT_IDLE && (env->sd->flags & SD_ASYM_PACKING) && 9396 sched_asym_prefer(env->dst_cpu, env->src_cpu); 9397 } 9398 9399 static inline bool 9400 voluntary_active_balance(struct lb_env *env) 9401 { 9402 struct sched_domain *sd = env->sd; 9403 9404 if (asym_active_balance(env)) 9405 return 1; 9406 9407 /* 9408 * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task. 9409 * It's worth migrating the task if the src_cpu's capacity is reduced 9410 * because of other sched_class or IRQs if more capacity stays 9411 * available on dst_cpu. 9412 */ 9413 if ((env->idle != CPU_NOT_IDLE) && 9414 (env->src_rq->cfs.h_nr_running == 1)) { 9415 if ((check_cpu_capacity(env->src_rq, sd)) && 9416 (capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100)) 9417 return 1; 9418 } 9419 9420 if (env->migration_type == migrate_misfit) 9421 return 1; 9422 9423 return 0; 9424 } 9425 9426 static int need_active_balance(struct lb_env *env) 9427 { 9428 struct sched_domain *sd = env->sd; 9429 9430 if (voluntary_active_balance(env)) 9431 return 1; 9432 9433 return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2); 9434 } 9435 9436 static int active_load_balance_cpu_stop(void *data); 9437 9438 static int should_we_balance(struct lb_env *env) 9439 { 9440 struct sched_group *sg = env->sd->groups; 9441 int cpu; 9442 9443 /* 9444 * Ensure the balancing environment is consistent; can happen 9445 * when the softirq triggers 'during' hotplug. 9446 */ 9447 if (!cpumask_test_cpu(env->dst_cpu, env->cpus)) 9448 return 0; 9449 9450 /* 9451 * In the newly idle case, we will allow all the CPUs 9452 * to do the newly idle load balance. 9453 */ 9454 if (env->idle == CPU_NEWLY_IDLE) 9455 return 1; 9456 9457 /* Try to find first idle CPU */ 9458 for_each_cpu_and(cpu, group_balance_mask(sg), env->cpus) { 9459 if (!idle_cpu(cpu)) 9460 continue; 9461 9462 /* Are we the first idle CPU? */ 9463 return cpu == env->dst_cpu; 9464 } 9465 9466 /* Are we the first CPU of this group ? */ 9467 return group_balance_cpu(sg) == env->dst_cpu; 9468 } 9469 9470 /* 9471 * Check this_cpu to ensure it is balanced within domain. Attempt to move 9472 * tasks if there is an imbalance. 9473 */ 9474 static int load_balance(int this_cpu, struct rq *this_rq, 9475 struct sched_domain *sd, enum cpu_idle_type idle, 9476 int *continue_balancing) 9477 { 9478 int ld_moved, cur_ld_moved, active_balance = 0; 9479 struct sched_domain *sd_parent = sd->parent; 9480 struct sched_group *group; 9481 struct rq *busiest; 9482 struct rq_flags rf; 9483 struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask); 9484 9485 struct lb_env env = { 9486 .sd = sd, 9487 .dst_cpu = this_cpu, 9488 .dst_rq = this_rq, 9489 .dst_grpmask = sched_group_span(sd->groups), 9490 .idle = idle, 9491 .loop_break = sched_nr_migrate_break, 9492 .cpus = cpus, 9493 .fbq_type = all, 9494 .tasks = LIST_HEAD_INIT(env.tasks), 9495 }; 9496 9497 cpumask_and(cpus, sched_domain_span(sd), cpu_active_mask); 9498 9499 schedstat_inc(sd->lb_count[idle]); 9500 9501 redo: 9502 if (!should_we_balance(&env)) { 9503 *continue_balancing = 0; 9504 goto out_balanced; 9505 } 9506 9507 group = find_busiest_group(&env); 9508 if (!group) { 9509 schedstat_inc(sd->lb_nobusyg[idle]); 9510 goto out_balanced; 9511 } 9512 9513 busiest = find_busiest_queue(&env, group); 9514 if (!busiest) { 9515 schedstat_inc(sd->lb_nobusyq[idle]); 9516 goto out_balanced; 9517 } 9518 9519 BUG_ON(busiest == env.dst_rq); 9520 9521 schedstat_add(sd->lb_imbalance[idle], env.imbalance); 9522 9523 env.src_cpu = busiest->cpu; 9524 env.src_rq = busiest; 9525 9526 ld_moved = 0; 9527 if (busiest->nr_running > 1) { 9528 /* 9529 * Attempt to move tasks. If find_busiest_group has found 9530 * an imbalance but busiest->nr_running <= 1, the group is 9531 * still unbalanced. ld_moved simply stays zero, so it is 9532 * correctly treated as an imbalance. 9533 */ 9534 env.flags |= LBF_ALL_PINNED; 9535 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running); 9536 9537 more_balance: 9538 rq_lock_irqsave(busiest, &rf); 9539 update_rq_clock(busiest); 9540 9541 /* 9542 * cur_ld_moved - load moved in current iteration 9543 * ld_moved - cumulative load moved across iterations 9544 */ 9545 cur_ld_moved = detach_tasks(&env); 9546 9547 /* 9548 * We've detached some tasks from busiest_rq. Every 9549 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely 9550 * unlock busiest->lock, and we are able to be sure 9551 * that nobody can manipulate the tasks in parallel. 9552 * See task_rq_lock() family for the details. 9553 */ 9554 9555 rq_unlock(busiest, &rf); 9556 9557 if (cur_ld_moved) { 9558 attach_tasks(&env); 9559 ld_moved += cur_ld_moved; 9560 } 9561 9562 local_irq_restore(rf.flags); 9563 9564 if (env.flags & LBF_NEED_BREAK) { 9565 env.flags &= ~LBF_NEED_BREAK; 9566 goto more_balance; 9567 } 9568 9569 /* 9570 * Revisit (affine) tasks on src_cpu that couldn't be moved to 9571 * us and move them to an alternate dst_cpu in our sched_group 9572 * where they can run. The upper limit on how many times we 9573 * iterate on same src_cpu is dependent on number of CPUs in our 9574 * sched_group. 9575 * 9576 * This changes load balance semantics a bit on who can move 9577 * load to a given_cpu. In addition to the given_cpu itself 9578 * (or a ilb_cpu acting on its behalf where given_cpu is 9579 * nohz-idle), we now have balance_cpu in a position to move 9580 * load to given_cpu. In rare situations, this may cause 9581 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding 9582 * _independently_ and at _same_ time to move some load to 9583 * given_cpu) causing exceess load to be moved to given_cpu. 9584 * This however should not happen so much in practice and 9585 * moreover subsequent load balance cycles should correct the 9586 * excess load moved. 9587 */ 9588 if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) { 9589 9590 /* Prevent to re-select dst_cpu via env's CPUs */ 9591 __cpumask_clear_cpu(env.dst_cpu, env.cpus); 9592 9593 env.dst_rq = cpu_rq(env.new_dst_cpu); 9594 env.dst_cpu = env.new_dst_cpu; 9595 env.flags &= ~LBF_DST_PINNED; 9596 env.loop = 0; 9597 env.loop_break = sched_nr_migrate_break; 9598 9599 /* 9600 * Go back to "more_balance" rather than "redo" since we 9601 * need to continue with same src_cpu. 9602 */ 9603 goto more_balance; 9604 } 9605 9606 /* 9607 * We failed to reach balance because of affinity. 9608 */ 9609 if (sd_parent) { 9610 int *group_imbalance = &sd_parent->groups->sgc->imbalance; 9611 9612 if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0) 9613 *group_imbalance = 1; 9614 } 9615 9616 /* All tasks on this runqueue were pinned by CPU affinity */ 9617 if (unlikely(env.flags & LBF_ALL_PINNED)) { 9618 __cpumask_clear_cpu(cpu_of(busiest), cpus); 9619 /* 9620 * Attempting to continue load balancing at the current 9621 * sched_domain level only makes sense if there are 9622 * active CPUs remaining as possible busiest CPUs to 9623 * pull load from which are not contained within the 9624 * destination group that is receiving any migrated 9625 * load. 9626 */ 9627 if (!cpumask_subset(cpus, env.dst_grpmask)) { 9628 env.loop = 0; 9629 env.loop_break = sched_nr_migrate_break; 9630 goto redo; 9631 } 9632 goto out_all_pinned; 9633 } 9634 } 9635 9636 if (!ld_moved) { 9637 schedstat_inc(sd->lb_failed[idle]); 9638 /* 9639 * Increment the failure counter only on periodic balance. 9640 * We do not want newidle balance, which can be very 9641 * frequent, pollute the failure counter causing 9642 * excessive cache_hot migrations and active balances. 9643 */ 9644 if (idle != CPU_NEWLY_IDLE) 9645 sd->nr_balance_failed++; 9646 9647 if (need_active_balance(&env)) { 9648 unsigned long flags; 9649 9650 raw_spin_lock_irqsave(&busiest->lock, flags); 9651 9652 /* 9653 * Don't kick the active_load_balance_cpu_stop, 9654 * if the curr task on busiest CPU can't be 9655 * moved to this_cpu: 9656 */ 9657 if (!cpumask_test_cpu(this_cpu, busiest->curr->cpus_ptr)) { 9658 raw_spin_unlock_irqrestore(&busiest->lock, 9659 flags); 9660 env.flags |= LBF_ALL_PINNED; 9661 goto out_one_pinned; 9662 } 9663 9664 /* 9665 * ->active_balance synchronizes accesses to 9666 * ->active_balance_work. Once set, it's cleared 9667 * only after active load balance is finished. 9668 */ 9669 if (!busiest->active_balance) { 9670 busiest->active_balance = 1; 9671 busiest->push_cpu = this_cpu; 9672 active_balance = 1; 9673 } 9674 raw_spin_unlock_irqrestore(&busiest->lock, flags); 9675 9676 if (active_balance) { 9677 stop_one_cpu_nowait(cpu_of(busiest), 9678 active_load_balance_cpu_stop, busiest, 9679 &busiest->active_balance_work); 9680 } 9681 9682 /* We've kicked active balancing, force task migration. */ 9683 sd->nr_balance_failed = sd->cache_nice_tries+1; 9684 } 9685 } else 9686 sd->nr_balance_failed = 0; 9687 9688 if (likely(!active_balance) || voluntary_active_balance(&env)) { 9689 /* We were unbalanced, so reset the balancing interval */ 9690 sd->balance_interval = sd->min_interval; 9691 } else { 9692 /* 9693 * If we've begun active balancing, start to back off. This 9694 * case may not be covered by the all_pinned logic if there 9695 * is only 1 task on the busy runqueue (because we don't call 9696 * detach_tasks). 9697 */ 9698 if (sd->balance_interval < sd->max_interval) 9699 sd->balance_interval *= 2; 9700 } 9701 9702 goto out; 9703 9704 out_balanced: 9705 /* 9706 * We reach balance although we may have faced some affinity 9707 * constraints. Clear the imbalance flag only if other tasks got 9708 * a chance to move and fix the imbalance. 9709 */ 9710 if (sd_parent && !(env.flags & LBF_ALL_PINNED)) { 9711 int *group_imbalance = &sd_parent->groups->sgc->imbalance; 9712 9713 if (*group_imbalance) 9714 *group_imbalance = 0; 9715 } 9716 9717 out_all_pinned: 9718 /* 9719 * We reach balance because all tasks are pinned at this level so 9720 * we can't migrate them. Let the imbalance flag set so parent level 9721 * can try to migrate them. 9722 */ 9723 schedstat_inc(sd->lb_balanced[idle]); 9724 9725 sd->nr_balance_failed = 0; 9726 9727 out_one_pinned: 9728 ld_moved = 0; 9729 9730 /* 9731 * newidle_balance() disregards balance intervals, so we could 9732 * repeatedly reach this code, which would lead to balance_interval 9733 * skyrocketting in a short amount of time. Skip the balance_interval 9734 * increase logic to avoid that. 9735 */ 9736 if (env.idle == CPU_NEWLY_IDLE) 9737 goto out; 9738 9739 /* tune up the balancing interval */ 9740 if ((env.flags & LBF_ALL_PINNED && 9741 sd->balance_interval < MAX_PINNED_INTERVAL) || 9742 sd->balance_interval < sd->max_interval) 9743 sd->balance_interval *= 2; 9744 out: 9745 return ld_moved; 9746 } 9747 9748 static inline unsigned long 9749 get_sd_balance_interval(struct sched_domain *sd, int cpu_busy) 9750 { 9751 unsigned long interval = sd->balance_interval; 9752 9753 if (cpu_busy) 9754 interval *= sd->busy_factor; 9755 9756 /* scale ms to jiffies */ 9757 interval = msecs_to_jiffies(interval); 9758 interval = clamp(interval, 1UL, max_load_balance_interval); 9759 9760 return interval; 9761 } 9762 9763 static inline void 9764 update_next_balance(struct sched_domain *sd, unsigned long *next_balance) 9765 { 9766 unsigned long interval, next; 9767 9768 /* used by idle balance, so cpu_busy = 0 */ 9769 interval = get_sd_balance_interval(sd, 0); 9770 next = sd->last_balance + interval; 9771 9772 if (time_after(*next_balance, next)) 9773 *next_balance = next; 9774 } 9775 9776 /* 9777 * active_load_balance_cpu_stop is run by the CPU stopper. It pushes 9778 * running tasks off the busiest CPU onto idle CPUs. It requires at 9779 * least 1 task to be running on each physical CPU where possible, and 9780 * avoids physical / logical imbalances. 9781 */ 9782 static int active_load_balance_cpu_stop(void *data) 9783 { 9784 struct rq *busiest_rq = data; 9785 int busiest_cpu = cpu_of(busiest_rq); 9786 int target_cpu = busiest_rq->push_cpu; 9787 struct rq *target_rq = cpu_rq(target_cpu); 9788 struct sched_domain *sd; 9789 struct task_struct *p = NULL; 9790 struct rq_flags rf; 9791 9792 rq_lock_irq(busiest_rq, &rf); 9793 /* 9794 * Between queueing the stop-work and running it is a hole in which 9795 * CPUs can become inactive. We should not move tasks from or to 9796 * inactive CPUs. 9797 */ 9798 if (!cpu_active(busiest_cpu) || !cpu_active(target_cpu)) 9799 goto out_unlock; 9800 9801 /* Make sure the requested CPU hasn't gone down in the meantime: */ 9802 if (unlikely(busiest_cpu != smp_processor_id() || 9803 !busiest_rq->active_balance)) 9804 goto out_unlock; 9805 9806 /* Is there any task to move? */ 9807 if (busiest_rq->nr_running <= 1) 9808 goto out_unlock; 9809 9810 /* 9811 * This condition is "impossible", if it occurs 9812 * we need to fix it. Originally reported by 9813 * Bjorn Helgaas on a 128-CPU setup. 9814 */ 9815 BUG_ON(busiest_rq == target_rq); 9816 9817 /* Search for an sd spanning us and the target CPU. */ 9818 rcu_read_lock(); 9819 for_each_domain(target_cpu, sd) { 9820 if (cpumask_test_cpu(busiest_cpu, sched_domain_span(sd))) 9821 break; 9822 } 9823 9824 if (likely(sd)) { 9825 struct lb_env env = { 9826 .sd = sd, 9827 .dst_cpu = target_cpu, 9828 .dst_rq = target_rq, 9829 .src_cpu = busiest_rq->cpu, 9830 .src_rq = busiest_rq, 9831 .idle = CPU_IDLE, 9832 /* 9833 * can_migrate_task() doesn't need to compute new_dst_cpu 9834 * for active balancing. Since we have CPU_IDLE, but no 9835 * @dst_grpmask we need to make that test go away with lying 9836 * about DST_PINNED. 9837 */ 9838 .flags = LBF_DST_PINNED, 9839 }; 9840 9841 schedstat_inc(sd->alb_count); 9842 update_rq_clock(busiest_rq); 9843 9844 p = detach_one_task(&env); 9845 if (p) { 9846 schedstat_inc(sd->alb_pushed); 9847 /* Active balancing done, reset the failure counter. */ 9848 sd->nr_balance_failed = 0; 9849 } else { 9850 schedstat_inc(sd->alb_failed); 9851 } 9852 } 9853 rcu_read_unlock(); 9854 out_unlock: 9855 busiest_rq->active_balance = 0; 9856 rq_unlock(busiest_rq, &rf); 9857 9858 if (p) 9859 attach_one_task(target_rq, p); 9860 9861 local_irq_enable(); 9862 9863 return 0; 9864 } 9865 9866 static DEFINE_SPINLOCK(balancing); 9867 9868 /* 9869 * Scale the max load_balance interval with the number of CPUs in the system. 9870 * This trades load-balance latency on larger machines for less cross talk. 9871 */ 9872 void update_max_interval(void) 9873 { 9874 max_load_balance_interval = HZ*num_online_cpus()/10; 9875 } 9876 9877 /* 9878 * It checks each scheduling domain to see if it is due to be balanced, 9879 * and initiates a balancing operation if so. 9880 * 9881 * Balancing parameters are set up in init_sched_domains. 9882 */ 9883 static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle) 9884 { 9885 int continue_balancing = 1; 9886 int cpu = rq->cpu; 9887 int busy = idle != CPU_IDLE && !sched_idle_cpu(cpu); 9888 unsigned long interval; 9889 struct sched_domain *sd; 9890 /* Earliest time when we have to do rebalance again */ 9891 unsigned long next_balance = jiffies + 60*HZ; 9892 int update_next_balance = 0; 9893 int need_serialize, need_decay = 0; 9894 u64 max_cost = 0; 9895 9896 rcu_read_lock(); 9897 for_each_domain(cpu, sd) { 9898 /* 9899 * Decay the newidle max times here because this is a regular 9900 * visit to all the domains. Decay ~1% per second. 9901 */ 9902 if (time_after(jiffies, sd->next_decay_max_lb_cost)) { 9903 sd->max_newidle_lb_cost = 9904 (sd->max_newidle_lb_cost * 253) / 256; 9905 sd->next_decay_max_lb_cost = jiffies + HZ; 9906 need_decay = 1; 9907 } 9908 max_cost += sd->max_newidle_lb_cost; 9909 9910 /* 9911 * Stop the load balance at this level. There is another 9912 * CPU in our sched group which is doing load balancing more 9913 * actively. 9914 */ 9915 if (!continue_balancing) { 9916 if (need_decay) 9917 continue; 9918 break; 9919 } 9920 9921 interval = get_sd_balance_interval(sd, busy); 9922 9923 need_serialize = sd->flags & SD_SERIALIZE; 9924 if (need_serialize) { 9925 if (!spin_trylock(&balancing)) 9926 goto out; 9927 } 9928 9929 if (time_after_eq(jiffies, sd->last_balance + interval)) { 9930 if (load_balance(cpu, rq, sd, idle, &continue_balancing)) { 9931 /* 9932 * The LBF_DST_PINNED logic could have changed 9933 * env->dst_cpu, so we can't know our idle 9934 * state even if we migrated tasks. Update it. 9935 */ 9936 idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE; 9937 busy = idle != CPU_IDLE && !sched_idle_cpu(cpu); 9938 } 9939 sd->last_balance = jiffies; 9940 interval = get_sd_balance_interval(sd, busy); 9941 } 9942 if (need_serialize) 9943 spin_unlock(&balancing); 9944 out: 9945 if (time_after(next_balance, sd->last_balance + interval)) { 9946 next_balance = sd->last_balance + interval; 9947 update_next_balance = 1; 9948 } 9949 } 9950 if (need_decay) { 9951 /* 9952 * Ensure the rq-wide value also decays but keep it at a 9953 * reasonable floor to avoid funnies with rq->avg_idle. 9954 */ 9955 rq->max_idle_balance_cost = 9956 max((u64)sysctl_sched_migration_cost, max_cost); 9957 } 9958 rcu_read_unlock(); 9959 9960 /* 9961 * next_balance will be updated only when there is a need. 9962 * When the cpu is attached to null domain for ex, it will not be 9963 * updated. 9964 */ 9965 if (likely(update_next_balance)) { 9966 rq->next_balance = next_balance; 9967 9968 #ifdef CONFIG_NO_HZ_COMMON 9969 /* 9970 * If this CPU has been elected to perform the nohz idle 9971 * balance. Other idle CPUs have already rebalanced with 9972 * nohz_idle_balance() and nohz.next_balance has been 9973 * updated accordingly. This CPU is now running the idle load 9974 * balance for itself and we need to update the 9975 * nohz.next_balance accordingly. 9976 */ 9977 if ((idle == CPU_IDLE) && time_after(nohz.next_balance, rq->next_balance)) 9978 nohz.next_balance = rq->next_balance; 9979 #endif 9980 } 9981 } 9982 9983 static inline int on_null_domain(struct rq *rq) 9984 { 9985 return unlikely(!rcu_dereference_sched(rq->sd)); 9986 } 9987 9988 #ifdef CONFIG_NO_HZ_COMMON 9989 /* 9990 * idle load balancing details 9991 * - When one of the busy CPUs notice that there may be an idle rebalancing 9992 * needed, they will kick the idle load balancer, which then does idle 9993 * load balancing for all the idle CPUs. 9994 * - HK_FLAG_MISC CPUs are used for this task, because HK_FLAG_SCHED not set 9995 * anywhere yet. 9996 */ 9997 9998 static inline int find_new_ilb(void) 9999 { 10000 int ilb; 10001 10002 for_each_cpu_and(ilb, nohz.idle_cpus_mask, 10003 housekeeping_cpumask(HK_FLAG_MISC)) { 10004 if (idle_cpu(ilb)) 10005 return ilb; 10006 } 10007 10008 return nr_cpu_ids; 10009 } 10010 10011 /* 10012 * Kick a CPU to do the nohz balancing, if it is time for it. We pick any 10013 * idle CPU in the HK_FLAG_MISC housekeeping set (if there is one). 10014 */ 10015 static void kick_ilb(unsigned int flags) 10016 { 10017 int ilb_cpu; 10018 10019 nohz.next_balance++; 10020 10021 ilb_cpu = find_new_ilb(); 10022 10023 if (ilb_cpu >= nr_cpu_ids) 10024 return; 10025 10026 /* 10027 * Access to rq::nohz_csd is serialized by NOHZ_KICK_MASK; he who sets 10028 * the first flag owns it; cleared by nohz_csd_func(). 10029 */ 10030 flags = atomic_fetch_or(flags, nohz_flags(ilb_cpu)); 10031 if (flags & NOHZ_KICK_MASK) 10032 return; 10033 10034 /* 10035 * This way we generate an IPI on the target CPU which 10036 * is idle. And the softirq performing nohz idle load balance 10037 * will be run before returning from the IPI. 10038 */ 10039 smp_call_function_single_async(ilb_cpu, &cpu_rq(ilb_cpu)->nohz_csd); 10040 } 10041 10042 /* 10043 * Current decision point for kicking the idle load balancer in the presence 10044 * of idle CPUs in the system. 10045 */ 10046 static void nohz_balancer_kick(struct rq *rq) 10047 { 10048 unsigned long now = jiffies; 10049 struct sched_domain_shared *sds; 10050 struct sched_domain *sd; 10051 int nr_busy, i, cpu = rq->cpu; 10052 unsigned int flags = 0; 10053 10054 if (unlikely(rq->idle_balance)) 10055 return; 10056 10057 /* 10058 * We may be recently in ticked or tickless idle mode. At the first 10059 * busy tick after returning from idle, we will update the busy stats. 10060 */ 10061 nohz_balance_exit_idle(rq); 10062 10063 /* 10064 * None are in tickless mode and hence no need for NOHZ idle load 10065 * balancing. 10066 */ 10067 if (likely(!atomic_read(&nohz.nr_cpus))) 10068 return; 10069 10070 if (READ_ONCE(nohz.has_blocked) && 10071 time_after(now, READ_ONCE(nohz.next_blocked))) 10072 flags = NOHZ_STATS_KICK; 10073 10074 if (time_before(now, nohz.next_balance)) 10075 goto out; 10076 10077 if (rq->nr_running >= 2) { 10078 flags = NOHZ_KICK_MASK; 10079 goto out; 10080 } 10081 10082 rcu_read_lock(); 10083 10084 sd = rcu_dereference(rq->sd); 10085 if (sd) { 10086 /* 10087 * If there's a CFS task and the current CPU has reduced 10088 * capacity; kick the ILB to see if there's a better CPU to run 10089 * on. 10090 */ 10091 if (rq->cfs.h_nr_running >= 1 && check_cpu_capacity(rq, sd)) { 10092 flags = NOHZ_KICK_MASK; 10093 goto unlock; 10094 } 10095 } 10096 10097 sd = rcu_dereference(per_cpu(sd_asym_packing, cpu)); 10098 if (sd) { 10099 /* 10100 * When ASYM_PACKING; see if there's a more preferred CPU 10101 * currently idle; in which case, kick the ILB to move tasks 10102 * around. 10103 */ 10104 for_each_cpu_and(i, sched_domain_span(sd), nohz.idle_cpus_mask) { 10105 if (sched_asym_prefer(i, cpu)) { 10106 flags = NOHZ_KICK_MASK; 10107 goto unlock; 10108 } 10109 } 10110 } 10111 10112 sd = rcu_dereference(per_cpu(sd_asym_cpucapacity, cpu)); 10113 if (sd) { 10114 /* 10115 * When ASYM_CPUCAPACITY; see if there's a higher capacity CPU 10116 * to run the misfit task on. 10117 */ 10118 if (check_misfit_status(rq, sd)) { 10119 flags = NOHZ_KICK_MASK; 10120 goto unlock; 10121 } 10122 10123 /* 10124 * For asymmetric systems, we do not want to nicely balance 10125 * cache use, instead we want to embrace asymmetry and only 10126 * ensure tasks have enough CPU capacity. 10127 * 10128 * Skip the LLC logic because it's not relevant in that case. 10129 */ 10130 goto unlock; 10131 } 10132 10133 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu)); 10134 if (sds) { 10135 /* 10136 * If there is an imbalance between LLC domains (IOW we could 10137 * increase the overall cache use), we need some less-loaded LLC 10138 * domain to pull some load. Likewise, we may need to spread 10139 * load within the current LLC domain (e.g. packed SMT cores but 10140 * other CPUs are idle). We can't really know from here how busy 10141 * the others are - so just get a nohz balance going if it looks 10142 * like this LLC domain has tasks we could move. 10143 */ 10144 nr_busy = atomic_read(&sds->nr_busy_cpus); 10145 if (nr_busy > 1) { 10146 flags = NOHZ_KICK_MASK; 10147 goto unlock; 10148 } 10149 } 10150 unlock: 10151 rcu_read_unlock(); 10152 out: 10153 if (flags) 10154 kick_ilb(flags); 10155 } 10156 10157 static void set_cpu_sd_state_busy(int cpu) 10158 { 10159 struct sched_domain *sd; 10160 10161 rcu_read_lock(); 10162 sd = rcu_dereference(per_cpu(sd_llc, cpu)); 10163 10164 if (!sd || !sd->nohz_idle) 10165 goto unlock; 10166 sd->nohz_idle = 0; 10167 10168 atomic_inc(&sd->shared->nr_busy_cpus); 10169 unlock: 10170 rcu_read_unlock(); 10171 } 10172 10173 void nohz_balance_exit_idle(struct rq *rq) 10174 { 10175 SCHED_WARN_ON(rq != this_rq()); 10176 10177 if (likely(!rq->nohz_tick_stopped)) 10178 return; 10179 10180 rq->nohz_tick_stopped = 0; 10181 cpumask_clear_cpu(rq->cpu, nohz.idle_cpus_mask); 10182 atomic_dec(&nohz.nr_cpus); 10183 10184 set_cpu_sd_state_busy(rq->cpu); 10185 } 10186 10187 static void set_cpu_sd_state_idle(int cpu) 10188 { 10189 struct sched_domain *sd; 10190 10191 rcu_read_lock(); 10192 sd = rcu_dereference(per_cpu(sd_llc, cpu)); 10193 10194 if (!sd || sd->nohz_idle) 10195 goto unlock; 10196 sd->nohz_idle = 1; 10197 10198 atomic_dec(&sd->shared->nr_busy_cpus); 10199 unlock: 10200 rcu_read_unlock(); 10201 } 10202 10203 /* 10204 * This routine will record that the CPU is going idle with tick stopped. 10205 * This info will be used in performing idle load balancing in the future. 10206 */ 10207 void nohz_balance_enter_idle(int cpu) 10208 { 10209 struct rq *rq = cpu_rq(cpu); 10210 10211 SCHED_WARN_ON(cpu != smp_processor_id()); 10212 10213 /* If this CPU is going down, then nothing needs to be done: */ 10214 if (!cpu_active(cpu)) 10215 return; 10216 10217 /* Spare idle load balancing on CPUs that don't want to be disturbed: */ 10218 if (!housekeeping_cpu(cpu, HK_FLAG_SCHED)) 10219 return; 10220 10221 /* 10222 * Can be set safely without rq->lock held 10223 * If a clear happens, it will have evaluated last additions because 10224 * rq->lock is held during the check and the clear 10225 */ 10226 rq->has_blocked_load = 1; 10227 10228 /* 10229 * The tick is still stopped but load could have been added in the 10230 * meantime. We set the nohz.has_blocked flag to trig a check of the 10231 * *_avg. The CPU is already part of nohz.idle_cpus_mask so the clear 10232 * of nohz.has_blocked can only happen after checking the new load 10233 */ 10234 if (rq->nohz_tick_stopped) 10235 goto out; 10236 10237 /* If we're a completely isolated CPU, we don't play: */ 10238 if (on_null_domain(rq)) 10239 return; 10240 10241 rq->nohz_tick_stopped = 1; 10242 10243 cpumask_set_cpu(cpu, nohz.idle_cpus_mask); 10244 atomic_inc(&nohz.nr_cpus); 10245 10246 /* 10247 * Ensures that if nohz_idle_balance() fails to observe our 10248 * @idle_cpus_mask store, it must observe the @has_blocked 10249 * store. 10250 */ 10251 smp_mb__after_atomic(); 10252 10253 set_cpu_sd_state_idle(cpu); 10254 10255 out: 10256 /* 10257 * Each time a cpu enter idle, we assume that it has blocked load and 10258 * enable the periodic update of the load of idle cpus 10259 */ 10260 WRITE_ONCE(nohz.has_blocked, 1); 10261 } 10262 10263 /* 10264 * Internal function that runs load balance for all idle cpus. The load balance 10265 * can be a simple update of blocked load or a complete load balance with 10266 * tasks movement depending of flags. 10267 * The function returns false if the loop has stopped before running 10268 * through all idle CPUs. 10269 */ 10270 static bool _nohz_idle_balance(struct rq *this_rq, unsigned int flags, 10271 enum cpu_idle_type idle) 10272 { 10273 /* Earliest time when we have to do rebalance again */ 10274 unsigned long now = jiffies; 10275 unsigned long next_balance = now + 60*HZ; 10276 bool has_blocked_load = false; 10277 int update_next_balance = 0; 10278 int this_cpu = this_rq->cpu; 10279 int balance_cpu; 10280 int ret = false; 10281 struct rq *rq; 10282 10283 SCHED_WARN_ON((flags & NOHZ_KICK_MASK) == NOHZ_BALANCE_KICK); 10284 10285 /* 10286 * We assume there will be no idle load after this update and clear 10287 * the has_blocked flag. If a cpu enters idle in the mean time, it will 10288 * set the has_blocked flag and trig another update of idle load. 10289 * Because a cpu that becomes idle, is added to idle_cpus_mask before 10290 * setting the flag, we are sure to not clear the state and not 10291 * check the load of an idle cpu. 10292 */ 10293 WRITE_ONCE(nohz.has_blocked, 0); 10294 10295 /* 10296 * Ensures that if we miss the CPU, we must see the has_blocked 10297 * store from nohz_balance_enter_idle(). 10298 */ 10299 smp_mb(); 10300 10301 for_each_cpu(balance_cpu, nohz.idle_cpus_mask) { 10302 if (balance_cpu == this_cpu || !idle_cpu(balance_cpu)) 10303 continue; 10304 10305 /* 10306 * If this CPU gets work to do, stop the load balancing 10307 * work being done for other CPUs. Next load 10308 * balancing owner will pick it up. 10309 */ 10310 if (need_resched()) { 10311 has_blocked_load = true; 10312 goto abort; 10313 } 10314 10315 rq = cpu_rq(balance_cpu); 10316 10317 has_blocked_load |= update_nohz_stats(rq, true); 10318 10319 /* 10320 * If time for next balance is due, 10321 * do the balance. 10322 */ 10323 if (time_after_eq(jiffies, rq->next_balance)) { 10324 struct rq_flags rf; 10325 10326 rq_lock_irqsave(rq, &rf); 10327 update_rq_clock(rq); 10328 rq_unlock_irqrestore(rq, &rf); 10329 10330 if (flags & NOHZ_BALANCE_KICK) 10331 rebalance_domains(rq, CPU_IDLE); 10332 } 10333 10334 if (time_after(next_balance, rq->next_balance)) { 10335 next_balance = rq->next_balance; 10336 update_next_balance = 1; 10337 } 10338 } 10339 10340 /* Newly idle CPU doesn't need an update */ 10341 if (idle != CPU_NEWLY_IDLE) { 10342 update_blocked_averages(this_cpu); 10343 has_blocked_load |= this_rq->has_blocked_load; 10344 } 10345 10346 if (flags & NOHZ_BALANCE_KICK) 10347 rebalance_domains(this_rq, CPU_IDLE); 10348 10349 WRITE_ONCE(nohz.next_blocked, 10350 now + msecs_to_jiffies(LOAD_AVG_PERIOD)); 10351 10352 /* The full idle balance loop has been done */ 10353 ret = true; 10354 10355 abort: 10356 /* There is still blocked load, enable periodic update */ 10357 if (has_blocked_load) 10358 WRITE_ONCE(nohz.has_blocked, 1); 10359 10360 /* 10361 * next_balance will be updated only when there is a need. 10362 * When the CPU is attached to null domain for ex, it will not be 10363 * updated. 10364 */ 10365 if (likely(update_next_balance)) 10366 nohz.next_balance = next_balance; 10367 10368 return ret; 10369 } 10370 10371 /* 10372 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the 10373 * rebalancing for all the cpus for whom scheduler ticks are stopped. 10374 */ 10375 static bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) 10376 { 10377 unsigned int flags = this_rq->nohz_idle_balance; 10378 10379 if (!flags) 10380 return false; 10381 10382 this_rq->nohz_idle_balance = 0; 10383 10384 if (idle != CPU_IDLE) 10385 return false; 10386 10387 _nohz_idle_balance(this_rq, flags, idle); 10388 10389 return true; 10390 } 10391 10392 static void nohz_newidle_balance(struct rq *this_rq) 10393 { 10394 int this_cpu = this_rq->cpu; 10395 10396 /* 10397 * This CPU doesn't want to be disturbed by scheduler 10398 * housekeeping 10399 */ 10400 if (!housekeeping_cpu(this_cpu, HK_FLAG_SCHED)) 10401 return; 10402 10403 /* Will wake up very soon. No time for doing anything else*/ 10404 if (this_rq->avg_idle < sysctl_sched_migration_cost) 10405 return; 10406 10407 /* Don't need to update blocked load of idle CPUs*/ 10408 if (!READ_ONCE(nohz.has_blocked) || 10409 time_before(jiffies, READ_ONCE(nohz.next_blocked))) 10410 return; 10411 10412 raw_spin_unlock(&this_rq->lock); 10413 /* 10414 * This CPU is going to be idle and blocked load of idle CPUs 10415 * need to be updated. Run the ilb locally as it is a good 10416 * candidate for ilb instead of waking up another idle CPU. 10417 * Kick an normal ilb if we failed to do the update. 10418 */ 10419 if (!_nohz_idle_balance(this_rq, NOHZ_STATS_KICK, CPU_NEWLY_IDLE)) 10420 kick_ilb(NOHZ_STATS_KICK); 10421 raw_spin_lock(&this_rq->lock); 10422 } 10423 10424 #else /* !CONFIG_NO_HZ_COMMON */ 10425 static inline void nohz_balancer_kick(struct rq *rq) { } 10426 10427 static inline bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) 10428 { 10429 return false; 10430 } 10431 10432 static inline void nohz_newidle_balance(struct rq *this_rq) { } 10433 #endif /* CONFIG_NO_HZ_COMMON */ 10434 10435 /* 10436 * idle_balance is called by schedule() if this_cpu is about to become 10437 * idle. Attempts to pull tasks from other CPUs. 10438 * 10439 * Returns: 10440 * < 0 - we released the lock and there are !fair tasks present 10441 * 0 - failed, no new tasks 10442 * > 0 - success, new (fair) tasks present 10443 */ 10444 static int newidle_balance(struct rq *this_rq, struct rq_flags *rf) 10445 { 10446 unsigned long next_balance = jiffies + HZ; 10447 int this_cpu = this_rq->cpu; 10448 struct sched_domain *sd; 10449 int pulled_task = 0; 10450 u64 curr_cost = 0; 10451 10452 update_misfit_status(NULL, this_rq); 10453 /* 10454 * We must set idle_stamp _before_ calling idle_balance(), such that we 10455 * measure the duration of idle_balance() as idle time. 10456 */ 10457 this_rq->idle_stamp = rq_clock(this_rq); 10458 10459 /* 10460 * Do not pull tasks towards !active CPUs... 10461 */ 10462 if (!cpu_active(this_cpu)) 10463 return 0; 10464 10465 /* 10466 * This is OK, because current is on_cpu, which avoids it being picked 10467 * for load-balance and preemption/IRQs are still disabled avoiding 10468 * further scheduler activity on it and we're being very careful to 10469 * re-start the picking loop. 10470 */ 10471 rq_unpin_lock(this_rq, rf); 10472 10473 if (this_rq->avg_idle < sysctl_sched_migration_cost || 10474 !READ_ONCE(this_rq->rd->overload)) { 10475 10476 rcu_read_lock(); 10477 sd = rcu_dereference_check_sched_domain(this_rq->sd); 10478 if (sd) 10479 update_next_balance(sd, &next_balance); 10480 rcu_read_unlock(); 10481 10482 nohz_newidle_balance(this_rq); 10483 10484 goto out; 10485 } 10486 10487 raw_spin_unlock(&this_rq->lock); 10488 10489 update_blocked_averages(this_cpu); 10490 rcu_read_lock(); 10491 for_each_domain(this_cpu, sd) { 10492 int continue_balancing = 1; 10493 u64 t0, domain_cost; 10494 10495 if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) { 10496 update_next_balance(sd, &next_balance); 10497 break; 10498 } 10499 10500 if (sd->flags & SD_BALANCE_NEWIDLE) { 10501 t0 = sched_clock_cpu(this_cpu); 10502 10503 pulled_task = load_balance(this_cpu, this_rq, 10504 sd, CPU_NEWLY_IDLE, 10505 &continue_balancing); 10506 10507 domain_cost = sched_clock_cpu(this_cpu) - t0; 10508 if (domain_cost > sd->max_newidle_lb_cost) 10509 sd->max_newidle_lb_cost = domain_cost; 10510 10511 curr_cost += domain_cost; 10512 } 10513 10514 update_next_balance(sd, &next_balance); 10515 10516 /* 10517 * Stop searching for tasks to pull if there are 10518 * now runnable tasks on this rq. 10519 */ 10520 if (pulled_task || this_rq->nr_running > 0) 10521 break; 10522 } 10523 rcu_read_unlock(); 10524 10525 raw_spin_lock(&this_rq->lock); 10526 10527 if (curr_cost > this_rq->max_idle_balance_cost) 10528 this_rq->max_idle_balance_cost = curr_cost; 10529 10530 out: 10531 /* 10532 * While browsing the domains, we released the rq lock, a task could 10533 * have been enqueued in the meantime. Since we're not going idle, 10534 * pretend we pulled a task. 10535 */ 10536 if (this_rq->cfs.h_nr_running && !pulled_task) 10537 pulled_task = 1; 10538 10539 /* Move the next balance forward */ 10540 if (time_after(this_rq->next_balance, next_balance)) 10541 this_rq->next_balance = next_balance; 10542 10543 /* Is there a task of a high priority class? */ 10544 if (this_rq->nr_running != this_rq->cfs.h_nr_running) 10545 pulled_task = -1; 10546 10547 if (pulled_task) 10548 this_rq->idle_stamp = 0; 10549 10550 rq_repin_lock(this_rq, rf); 10551 10552 return pulled_task; 10553 } 10554 10555 /* 10556 * run_rebalance_domains is triggered when needed from the scheduler tick. 10557 * Also triggered for nohz idle balancing (with nohz_balancing_kick set). 10558 */ 10559 static __latent_entropy void run_rebalance_domains(struct softirq_action *h) 10560 { 10561 struct rq *this_rq = this_rq(); 10562 enum cpu_idle_type idle = this_rq->idle_balance ? 10563 CPU_IDLE : CPU_NOT_IDLE; 10564 10565 /* 10566 * If this CPU has a pending nohz_balance_kick, then do the 10567 * balancing on behalf of the other idle CPUs whose ticks are 10568 * stopped. Do nohz_idle_balance *before* rebalance_domains to 10569 * give the idle CPUs a chance to load balance. Else we may 10570 * load balance only within the local sched_domain hierarchy 10571 * and abort nohz_idle_balance altogether if we pull some load. 10572 */ 10573 if (nohz_idle_balance(this_rq, idle)) 10574 return; 10575 10576 /* normal load balance */ 10577 update_blocked_averages(this_rq->cpu); 10578 rebalance_domains(this_rq, idle); 10579 } 10580 10581 /* 10582 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing. 10583 */ 10584 void trigger_load_balance(struct rq *rq) 10585 { 10586 /* Don't need to rebalance while attached to NULL domain */ 10587 if (unlikely(on_null_domain(rq))) 10588 return; 10589 10590 if (time_after_eq(jiffies, rq->next_balance)) 10591 raise_softirq(SCHED_SOFTIRQ); 10592 10593 nohz_balancer_kick(rq); 10594 } 10595 10596 static void rq_online_fair(struct rq *rq) 10597 { 10598 update_sysctl(); 10599 10600 update_runtime_enabled(rq); 10601 } 10602 10603 static void rq_offline_fair(struct rq *rq) 10604 { 10605 update_sysctl(); 10606 10607 /* Ensure any throttled groups are reachable by pick_next_task */ 10608 unthrottle_offline_cfs_rqs(rq); 10609 } 10610 10611 #endif /* CONFIG_SMP */ 10612 10613 /* 10614 * scheduler tick hitting a task of our scheduling class. 10615 * 10616 * NOTE: This function can be called remotely by the tick offload that 10617 * goes along full dynticks. Therefore no local assumption can be made 10618 * and everything must be accessed through the @rq and @curr passed in 10619 * parameters. 10620 */ 10621 static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued) 10622 { 10623 struct cfs_rq *cfs_rq; 10624 struct sched_entity *se = &curr->se; 10625 10626 for_each_sched_entity(se) { 10627 cfs_rq = cfs_rq_of(se); 10628 entity_tick(cfs_rq, se, queued); 10629 } 10630 10631 if (static_branch_unlikely(&sched_numa_balancing)) 10632 task_tick_numa(rq, curr); 10633 10634 update_misfit_status(curr, rq); 10635 update_overutilized_status(task_rq(curr)); 10636 } 10637 10638 /* 10639 * called on fork with the child task as argument from the parent's context 10640 * - child not yet on the tasklist 10641 * - preemption disabled 10642 */ 10643 static void task_fork_fair(struct task_struct *p) 10644 { 10645 struct cfs_rq *cfs_rq; 10646 struct sched_entity *se = &p->se, *curr; 10647 struct rq *rq = this_rq(); 10648 struct rq_flags rf; 10649 10650 rq_lock(rq, &rf); 10651 update_rq_clock(rq); 10652 10653 cfs_rq = task_cfs_rq(current); 10654 curr = cfs_rq->curr; 10655 if (curr) { 10656 update_curr(cfs_rq); 10657 se->vruntime = curr->vruntime; 10658 } 10659 place_entity(cfs_rq, se, 1); 10660 10661 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) { 10662 /* 10663 * Upon rescheduling, sched_class::put_prev_task() will place 10664 * 'current' within the tree based on its new key value. 10665 */ 10666 swap(curr->vruntime, se->vruntime); 10667 resched_curr(rq); 10668 } 10669 10670 se->vruntime -= cfs_rq->min_vruntime; 10671 rq_unlock(rq, &rf); 10672 } 10673 10674 /* 10675 * Priority of the task has changed. Check to see if we preempt 10676 * the current task. 10677 */ 10678 static void 10679 prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio) 10680 { 10681 if (!task_on_rq_queued(p)) 10682 return; 10683 10684 if (rq->cfs.nr_running == 1) 10685 return; 10686 10687 /* 10688 * Reschedule if we are currently running on this runqueue and 10689 * our priority decreased, or if we are not currently running on 10690 * this runqueue and our priority is higher than the current's 10691 */ 10692 if (rq->curr == p) { 10693 if (p->prio > oldprio) 10694 resched_curr(rq); 10695 } else 10696 check_preempt_curr(rq, p, 0); 10697 } 10698 10699 static inline bool vruntime_normalized(struct task_struct *p) 10700 { 10701 struct sched_entity *se = &p->se; 10702 10703 /* 10704 * In both the TASK_ON_RQ_QUEUED and TASK_ON_RQ_MIGRATING cases, 10705 * the dequeue_entity(.flags=0) will already have normalized the 10706 * vruntime. 10707 */ 10708 if (p->on_rq) 10709 return true; 10710 10711 /* 10712 * When !on_rq, vruntime of the task has usually NOT been normalized. 10713 * But there are some cases where it has already been normalized: 10714 * 10715 * - A forked child which is waiting for being woken up by 10716 * wake_up_new_task(). 10717 * - A task which has been woken up by try_to_wake_up() and 10718 * waiting for actually being woken up by sched_ttwu_pending(). 10719 */ 10720 if (!se->sum_exec_runtime || 10721 (p->state == TASK_WAKING && p->sched_remote_wakeup)) 10722 return true; 10723 10724 return false; 10725 } 10726 10727 #ifdef CONFIG_FAIR_GROUP_SCHED 10728 /* 10729 * Propagate the changes of the sched_entity across the tg tree to make it 10730 * visible to the root 10731 */ 10732 static void propagate_entity_cfs_rq(struct sched_entity *se) 10733 { 10734 struct cfs_rq *cfs_rq; 10735 10736 /* Start to propagate at parent */ 10737 se = se->parent; 10738 10739 for_each_sched_entity(se) { 10740 cfs_rq = cfs_rq_of(se); 10741 10742 if (cfs_rq_throttled(cfs_rq)) 10743 break; 10744 10745 update_load_avg(cfs_rq, se, UPDATE_TG); 10746 } 10747 } 10748 #else 10749 static void propagate_entity_cfs_rq(struct sched_entity *se) { } 10750 #endif 10751 10752 static void detach_entity_cfs_rq(struct sched_entity *se) 10753 { 10754 struct cfs_rq *cfs_rq = cfs_rq_of(se); 10755 10756 /* Catch up with the cfs_rq and remove our load when we leave */ 10757 update_load_avg(cfs_rq, se, 0); 10758 detach_entity_load_avg(cfs_rq, se); 10759 update_tg_load_avg(cfs_rq, false); 10760 propagate_entity_cfs_rq(se); 10761 } 10762 10763 static void attach_entity_cfs_rq(struct sched_entity *se) 10764 { 10765 struct cfs_rq *cfs_rq = cfs_rq_of(se); 10766 10767 #ifdef CONFIG_FAIR_GROUP_SCHED 10768 /* 10769 * Since the real-depth could have been changed (only FAIR 10770 * class maintain depth value), reset depth properly. 10771 */ 10772 se->depth = se->parent ? se->parent->depth + 1 : 0; 10773 #endif 10774 10775 /* Synchronize entity with its cfs_rq */ 10776 update_load_avg(cfs_rq, se, sched_feat(ATTACH_AGE_LOAD) ? 0 : SKIP_AGE_LOAD); 10777 attach_entity_load_avg(cfs_rq, se); 10778 update_tg_load_avg(cfs_rq, false); 10779 propagate_entity_cfs_rq(se); 10780 } 10781 10782 static void detach_task_cfs_rq(struct task_struct *p) 10783 { 10784 struct sched_entity *se = &p->se; 10785 struct cfs_rq *cfs_rq = cfs_rq_of(se); 10786 10787 if (!vruntime_normalized(p)) { 10788 /* 10789 * Fix up our vruntime so that the current sleep doesn't 10790 * cause 'unlimited' sleep bonus. 10791 */ 10792 place_entity(cfs_rq, se, 0); 10793 se->vruntime -= cfs_rq->min_vruntime; 10794 } 10795 10796 detach_entity_cfs_rq(se); 10797 } 10798 10799 static void attach_task_cfs_rq(struct task_struct *p) 10800 { 10801 struct sched_entity *se = &p->se; 10802 struct cfs_rq *cfs_rq = cfs_rq_of(se); 10803 10804 attach_entity_cfs_rq(se); 10805 10806 if (!vruntime_normalized(p)) 10807 se->vruntime += cfs_rq->min_vruntime; 10808 } 10809 10810 static void switched_from_fair(struct rq *rq, struct task_struct *p) 10811 { 10812 detach_task_cfs_rq(p); 10813 } 10814 10815 static void switched_to_fair(struct rq *rq, struct task_struct *p) 10816 { 10817 attach_task_cfs_rq(p); 10818 10819 if (task_on_rq_queued(p)) { 10820 /* 10821 * We were most likely switched from sched_rt, so 10822 * kick off the schedule if running, otherwise just see 10823 * if we can still preempt the current task. 10824 */ 10825 if (rq->curr == p) 10826 resched_curr(rq); 10827 else 10828 check_preempt_curr(rq, p, 0); 10829 } 10830 } 10831 10832 /* Account for a task changing its policy or group. 10833 * 10834 * This routine is mostly called to set cfs_rq->curr field when a task 10835 * migrates between groups/classes. 10836 */ 10837 static void set_next_task_fair(struct rq *rq, struct task_struct *p, bool first) 10838 { 10839 struct sched_entity *se = &p->se; 10840 10841 #ifdef CONFIG_SMP 10842 if (task_on_rq_queued(p)) { 10843 /* 10844 * Move the next running task to the front of the list, so our 10845 * cfs_tasks list becomes MRU one. 10846 */ 10847 list_move(&se->group_node, &rq->cfs_tasks); 10848 } 10849 #endif 10850 10851 for_each_sched_entity(se) { 10852 struct cfs_rq *cfs_rq = cfs_rq_of(se); 10853 10854 set_next_entity(cfs_rq, se); 10855 /* ensure bandwidth has been allocated on our new cfs_rq */ 10856 account_cfs_rq_runtime(cfs_rq, 0); 10857 } 10858 } 10859 10860 void init_cfs_rq(struct cfs_rq *cfs_rq) 10861 { 10862 cfs_rq->tasks_timeline = RB_ROOT_CACHED; 10863 cfs_rq->min_vruntime = (u64)(-(1LL << 20)); 10864 #ifndef CONFIG_64BIT 10865 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime; 10866 #endif 10867 #ifdef CONFIG_SMP 10868 raw_spin_lock_init(&cfs_rq->removed.lock); 10869 #endif 10870 } 10871 10872 #ifdef CONFIG_FAIR_GROUP_SCHED 10873 static void task_set_group_fair(struct task_struct *p) 10874 { 10875 struct sched_entity *se = &p->se; 10876 10877 set_task_rq(p, task_cpu(p)); 10878 se->depth = se->parent ? se->parent->depth + 1 : 0; 10879 } 10880 10881 static void task_move_group_fair(struct task_struct *p) 10882 { 10883 detach_task_cfs_rq(p); 10884 set_task_rq(p, task_cpu(p)); 10885 10886 #ifdef CONFIG_SMP 10887 /* Tell se's cfs_rq has been changed -- migrated */ 10888 p->se.avg.last_update_time = 0; 10889 #endif 10890 attach_task_cfs_rq(p); 10891 } 10892 10893 static void task_change_group_fair(struct task_struct *p, int type) 10894 { 10895 switch (type) { 10896 case TASK_SET_GROUP: 10897 task_set_group_fair(p); 10898 break; 10899 10900 case TASK_MOVE_GROUP: 10901 task_move_group_fair(p); 10902 break; 10903 } 10904 } 10905 10906 void free_fair_sched_group(struct task_group *tg) 10907 { 10908 int i; 10909 10910 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg)); 10911 10912 for_each_possible_cpu(i) { 10913 if (tg->cfs_rq) 10914 kfree(tg->cfs_rq[i]); 10915 if (tg->se) 10916 kfree(tg->se[i]); 10917 } 10918 10919 kfree(tg->cfs_rq); 10920 kfree(tg->se); 10921 } 10922 10923 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent) 10924 { 10925 struct sched_entity *se; 10926 struct cfs_rq *cfs_rq; 10927 int i; 10928 10929 tg->cfs_rq = kcalloc(nr_cpu_ids, sizeof(cfs_rq), GFP_KERNEL); 10930 if (!tg->cfs_rq) 10931 goto err; 10932 tg->se = kcalloc(nr_cpu_ids, sizeof(se), GFP_KERNEL); 10933 if (!tg->se) 10934 goto err; 10935 10936 tg->shares = NICE_0_LOAD; 10937 10938 init_cfs_bandwidth(tg_cfs_bandwidth(tg)); 10939 10940 for_each_possible_cpu(i) { 10941 cfs_rq = kzalloc_node(sizeof(struct cfs_rq), 10942 GFP_KERNEL, cpu_to_node(i)); 10943 if (!cfs_rq) 10944 goto err; 10945 10946 se = kzalloc_node(sizeof(struct sched_entity), 10947 GFP_KERNEL, cpu_to_node(i)); 10948 if (!se) 10949 goto err_free_rq; 10950 10951 init_cfs_rq(cfs_rq); 10952 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]); 10953 init_entity_runnable_average(se); 10954 } 10955 10956 return 1; 10957 10958 err_free_rq: 10959 kfree(cfs_rq); 10960 err: 10961 return 0; 10962 } 10963 10964 void online_fair_sched_group(struct task_group *tg) 10965 { 10966 struct sched_entity *se; 10967 struct rq_flags rf; 10968 struct rq *rq; 10969 int i; 10970 10971 for_each_possible_cpu(i) { 10972 rq = cpu_rq(i); 10973 se = tg->se[i]; 10974 rq_lock_irq(rq, &rf); 10975 update_rq_clock(rq); 10976 attach_entity_cfs_rq(se); 10977 sync_throttle(tg, i); 10978 rq_unlock_irq(rq, &rf); 10979 } 10980 } 10981 10982 void unregister_fair_sched_group(struct task_group *tg) 10983 { 10984 unsigned long flags; 10985 struct rq *rq; 10986 int cpu; 10987 10988 for_each_possible_cpu(cpu) { 10989 if (tg->se[cpu]) 10990 remove_entity_load_avg(tg->se[cpu]); 10991 10992 /* 10993 * Only empty task groups can be destroyed; so we can speculatively 10994 * check on_list without danger of it being re-added. 10995 */ 10996 if (!tg->cfs_rq[cpu]->on_list) 10997 continue; 10998 10999 rq = cpu_rq(cpu); 11000 11001 raw_spin_lock_irqsave(&rq->lock, flags); 11002 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]); 11003 raw_spin_unlock_irqrestore(&rq->lock, flags); 11004 } 11005 } 11006 11007 void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq, 11008 struct sched_entity *se, int cpu, 11009 struct sched_entity *parent) 11010 { 11011 struct rq *rq = cpu_rq(cpu); 11012 11013 cfs_rq->tg = tg; 11014 cfs_rq->rq = rq; 11015 init_cfs_rq_runtime(cfs_rq); 11016 11017 tg->cfs_rq[cpu] = cfs_rq; 11018 tg->se[cpu] = se; 11019 11020 /* se could be NULL for root_task_group */ 11021 if (!se) 11022 return; 11023 11024 if (!parent) { 11025 se->cfs_rq = &rq->cfs; 11026 se->depth = 0; 11027 } else { 11028 se->cfs_rq = parent->my_q; 11029 se->depth = parent->depth + 1; 11030 } 11031 11032 se->my_q = cfs_rq; 11033 /* guarantee group entities always have weight */ 11034 update_load_set(&se->load, NICE_0_LOAD); 11035 se->parent = parent; 11036 } 11037 11038 static DEFINE_MUTEX(shares_mutex); 11039 11040 int sched_group_set_shares(struct task_group *tg, unsigned long shares) 11041 { 11042 int i; 11043 11044 /* 11045 * We can't change the weight of the root cgroup. 11046 */ 11047 if (!tg->se[0]) 11048 return -EINVAL; 11049 11050 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES)); 11051 11052 mutex_lock(&shares_mutex); 11053 if (tg->shares == shares) 11054 goto done; 11055 11056 tg->shares = shares; 11057 for_each_possible_cpu(i) { 11058 struct rq *rq = cpu_rq(i); 11059 struct sched_entity *se = tg->se[i]; 11060 struct rq_flags rf; 11061 11062 /* Propagate contribution to hierarchy */ 11063 rq_lock_irqsave(rq, &rf); 11064 update_rq_clock(rq); 11065 for_each_sched_entity(se) { 11066 update_load_avg(cfs_rq_of(se), se, UPDATE_TG); 11067 update_cfs_group(se); 11068 } 11069 rq_unlock_irqrestore(rq, &rf); 11070 } 11071 11072 done: 11073 mutex_unlock(&shares_mutex); 11074 return 0; 11075 } 11076 #else /* CONFIG_FAIR_GROUP_SCHED */ 11077 11078 void free_fair_sched_group(struct task_group *tg) { } 11079 11080 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent) 11081 { 11082 return 1; 11083 } 11084 11085 void online_fair_sched_group(struct task_group *tg) { } 11086 11087 void unregister_fair_sched_group(struct task_group *tg) { } 11088 11089 #endif /* CONFIG_FAIR_GROUP_SCHED */ 11090 11091 11092 static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task) 11093 { 11094 struct sched_entity *se = &task->se; 11095 unsigned int rr_interval = 0; 11096 11097 /* 11098 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise 11099 * idle runqueue: 11100 */ 11101 if (rq->cfs.load.weight) 11102 rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se)); 11103 11104 return rr_interval; 11105 } 11106 11107 /* 11108 * All the scheduling class methods: 11109 */ 11110 const struct sched_class fair_sched_class = { 11111 .next = &idle_sched_class, 11112 .enqueue_task = enqueue_task_fair, 11113 .dequeue_task = dequeue_task_fair, 11114 .yield_task = yield_task_fair, 11115 .yield_to_task = yield_to_task_fair, 11116 11117 .check_preempt_curr = check_preempt_wakeup, 11118 11119 .pick_next_task = __pick_next_task_fair, 11120 .put_prev_task = put_prev_task_fair, 11121 .set_next_task = set_next_task_fair, 11122 11123 #ifdef CONFIG_SMP 11124 .balance = balance_fair, 11125 .select_task_rq = select_task_rq_fair, 11126 .migrate_task_rq = migrate_task_rq_fair, 11127 11128 .rq_online = rq_online_fair, 11129 .rq_offline = rq_offline_fair, 11130 11131 .task_dead = task_dead_fair, 11132 .set_cpus_allowed = set_cpus_allowed_common, 11133 #endif 11134 11135 .task_tick = task_tick_fair, 11136 .task_fork = task_fork_fair, 11137 11138 .prio_changed = prio_changed_fair, 11139 .switched_from = switched_from_fair, 11140 .switched_to = switched_to_fair, 11141 11142 .get_rr_interval = get_rr_interval_fair, 11143 11144 .update_curr = update_curr_fair, 11145 11146 #ifdef CONFIG_FAIR_GROUP_SCHED 11147 .task_change_group = task_change_group_fair, 11148 #endif 11149 11150 #ifdef CONFIG_UCLAMP_TASK 11151 .uclamp_enabled = 1, 11152 #endif 11153 }; 11154 11155 #ifdef CONFIG_SCHED_DEBUG 11156 void print_cfs_stats(struct seq_file *m, int cpu) 11157 { 11158 struct cfs_rq *cfs_rq, *pos; 11159 11160 rcu_read_lock(); 11161 for_each_leaf_cfs_rq_safe(cpu_rq(cpu), cfs_rq, pos) 11162 print_cfs_rq(m, cpu, cfs_rq); 11163 rcu_read_unlock(); 11164 } 11165 11166 #ifdef CONFIG_NUMA_BALANCING 11167 void show_numa_stats(struct task_struct *p, struct seq_file *m) 11168 { 11169 int node; 11170 unsigned long tsf = 0, tpf = 0, gsf = 0, gpf = 0; 11171 struct numa_group *ng; 11172 11173 rcu_read_lock(); 11174 ng = rcu_dereference(p->numa_group); 11175 for_each_online_node(node) { 11176 if (p->numa_faults) { 11177 tsf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 0)]; 11178 tpf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 1)]; 11179 } 11180 if (ng) { 11181 gsf = ng->faults[task_faults_idx(NUMA_MEM, node, 0)], 11182 gpf = ng->faults[task_faults_idx(NUMA_MEM, node, 1)]; 11183 } 11184 print_numa_stats(m, node, tsf, tpf, gsf, gpf); 11185 } 11186 rcu_read_unlock(); 11187 } 11188 #endif /* CONFIG_NUMA_BALANCING */ 11189 #endif /* CONFIG_SCHED_DEBUG */ 11190 11191 __init void init_sched_fair_class(void) 11192 { 11193 #ifdef CONFIG_SMP 11194 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains); 11195 11196 #ifdef CONFIG_NO_HZ_COMMON 11197 nohz.next_balance = jiffies; 11198 nohz.next_blocked = jiffies; 11199 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT); 11200 #endif 11201 #endif /* SMP */ 11202 11203 } 11204 11205 /* 11206 * Helper functions to facilitate extracting info from tracepoints. 11207 */ 11208 11209 const struct sched_avg *sched_trace_cfs_rq_avg(struct cfs_rq *cfs_rq) 11210 { 11211 #ifdef CONFIG_SMP 11212 return cfs_rq ? &cfs_rq->avg : NULL; 11213 #else 11214 return NULL; 11215 #endif 11216 } 11217 EXPORT_SYMBOL_GPL(sched_trace_cfs_rq_avg); 11218 11219 char *sched_trace_cfs_rq_path(struct cfs_rq *cfs_rq, char *str, int len) 11220 { 11221 if (!cfs_rq) { 11222 if (str) 11223 strlcpy(str, "(null)", len); 11224 else 11225 return NULL; 11226 } 11227 11228 cfs_rq_tg_path(cfs_rq, str, len); 11229 return str; 11230 } 11231 EXPORT_SYMBOL_GPL(sched_trace_cfs_rq_path); 11232 11233 int sched_trace_cfs_rq_cpu(struct cfs_rq *cfs_rq) 11234 { 11235 return cfs_rq ? cpu_of(rq_of(cfs_rq)) : -1; 11236 } 11237 EXPORT_SYMBOL_GPL(sched_trace_cfs_rq_cpu); 11238 11239 const struct sched_avg *sched_trace_rq_avg_rt(struct rq *rq) 11240 { 11241 #ifdef CONFIG_SMP 11242 return rq ? &rq->avg_rt : NULL; 11243 #else 11244 return NULL; 11245 #endif 11246 } 11247 EXPORT_SYMBOL_GPL(sched_trace_rq_avg_rt); 11248 11249 const struct sched_avg *sched_trace_rq_avg_dl(struct rq *rq) 11250 { 11251 #ifdef CONFIG_SMP 11252 return rq ? &rq->avg_dl : NULL; 11253 #else 11254 return NULL; 11255 #endif 11256 } 11257 EXPORT_SYMBOL_GPL(sched_trace_rq_avg_dl); 11258 11259 const struct sched_avg *sched_trace_rq_avg_irq(struct rq *rq) 11260 { 11261 #if defined(CONFIG_SMP) && defined(CONFIG_HAVE_SCHED_AVG_IRQ) 11262 return rq ? &rq->avg_irq : NULL; 11263 #else 11264 return NULL; 11265 #endif 11266 } 11267 EXPORT_SYMBOL_GPL(sched_trace_rq_avg_irq); 11268 11269 int sched_trace_rq_cpu(struct rq *rq) 11270 { 11271 return rq ? cpu_of(rq) : -1; 11272 } 11273 EXPORT_SYMBOL_GPL(sched_trace_rq_cpu); 11274 11275 const struct cpumask *sched_trace_rd_span(struct root_domain *rd) 11276 { 11277 #ifdef CONFIG_SMP 11278 return rd ? rd->span : NULL; 11279 #else 11280 return NULL; 11281 #endif 11282 } 11283 EXPORT_SYMBOL_GPL(sched_trace_rd_span); 11284