1 /* 2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH) 3 * 4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com> 5 * 6 * Interactivity improvements by Mike Galbraith 7 * (C) 2007 Mike Galbraith <efault@gmx.de> 8 * 9 * Various enhancements by Dmitry Adamushko. 10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com> 11 * 12 * Group scheduling enhancements by Srivatsa Vaddagiri 13 * Copyright IBM Corporation, 2007 14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com> 15 * 16 * Scaled math optimizations by Thomas Gleixner 17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de> 18 * 19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra 20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com> 21 */ 22 23 #include <linux/latencytop.h> 24 #include <linux/sched.h> 25 #include <linux/cpumask.h> 26 #include <linux/slab.h> 27 #include <linux/profile.h> 28 #include <linux/interrupt.h> 29 #include <linux/mempolicy.h> 30 #include <linux/migrate.h> 31 #include <linux/task_work.h> 32 33 #include <trace/events/sched.h> 34 35 #include "sched.h" 36 37 /* 38 * Targeted preemption latency for CPU-bound tasks: 39 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds) 40 * 41 * NOTE: this latency value is not the same as the concept of 42 * 'timeslice length' - timeslices in CFS are of variable length 43 * and have no persistent notion like in traditional, time-slice 44 * based scheduling concepts. 45 * 46 * (to see the precise effective timeslice length of your workload, 47 * run vmstat and monitor the context-switches (cs) field) 48 */ 49 unsigned int sysctl_sched_latency = 6000000ULL; 50 unsigned int normalized_sysctl_sched_latency = 6000000ULL; 51 52 /* 53 * The initial- and re-scaling of tunables is configurable 54 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus)) 55 * 56 * Options are: 57 * SCHED_TUNABLESCALING_NONE - unscaled, always *1 58 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus) 59 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus 60 */ 61 enum sched_tunable_scaling sysctl_sched_tunable_scaling 62 = SCHED_TUNABLESCALING_LOG; 63 64 /* 65 * Minimal preemption granularity for CPU-bound tasks: 66 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds) 67 */ 68 unsigned int sysctl_sched_min_granularity = 750000ULL; 69 unsigned int normalized_sysctl_sched_min_granularity = 750000ULL; 70 71 /* 72 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity 73 */ 74 static unsigned int sched_nr_latency = 8; 75 76 /* 77 * After fork, child runs first. If set to 0 (default) then 78 * parent will (try to) run first. 79 */ 80 unsigned int sysctl_sched_child_runs_first __read_mostly; 81 82 /* 83 * SCHED_OTHER wake-up granularity. 84 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds) 85 * 86 * This option delays the preemption effects of decoupled workloads 87 * and reduces their over-scheduling. Synchronous workloads will still 88 * have immediate wakeup/sleep latencies. 89 */ 90 unsigned int sysctl_sched_wakeup_granularity = 1000000UL; 91 unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL; 92 93 const_debug unsigned int sysctl_sched_migration_cost = 500000UL; 94 95 /* 96 * The exponential sliding window over which load is averaged for shares 97 * distribution. 98 * (default: 10msec) 99 */ 100 unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL; 101 102 #ifdef CONFIG_CFS_BANDWIDTH 103 /* 104 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool 105 * each time a cfs_rq requests quota. 106 * 107 * Note: in the case that the slice exceeds the runtime remaining (either due 108 * to consumption or the quota being specified to be smaller than the slice) 109 * we will always only issue the remaining available time. 110 * 111 * default: 5 msec, units: microseconds 112 */ 113 unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL; 114 #endif 115 116 static inline void update_load_add(struct load_weight *lw, unsigned long inc) 117 { 118 lw->weight += inc; 119 lw->inv_weight = 0; 120 } 121 122 static inline void update_load_sub(struct load_weight *lw, unsigned long dec) 123 { 124 lw->weight -= dec; 125 lw->inv_weight = 0; 126 } 127 128 static inline void update_load_set(struct load_weight *lw, unsigned long w) 129 { 130 lw->weight = w; 131 lw->inv_weight = 0; 132 } 133 134 /* 135 * Increase the granularity value when there are more CPUs, 136 * because with more CPUs the 'effective latency' as visible 137 * to users decreases. But the relationship is not linear, 138 * so pick a second-best guess by going with the log2 of the 139 * number of CPUs. 140 * 141 * This idea comes from the SD scheduler of Con Kolivas: 142 */ 143 static int get_update_sysctl_factor(void) 144 { 145 unsigned int cpus = min_t(int, num_online_cpus(), 8); 146 unsigned int factor; 147 148 switch (sysctl_sched_tunable_scaling) { 149 case SCHED_TUNABLESCALING_NONE: 150 factor = 1; 151 break; 152 case SCHED_TUNABLESCALING_LINEAR: 153 factor = cpus; 154 break; 155 case SCHED_TUNABLESCALING_LOG: 156 default: 157 factor = 1 + ilog2(cpus); 158 break; 159 } 160 161 return factor; 162 } 163 164 static void update_sysctl(void) 165 { 166 unsigned int factor = get_update_sysctl_factor(); 167 168 #define SET_SYSCTL(name) \ 169 (sysctl_##name = (factor) * normalized_sysctl_##name) 170 SET_SYSCTL(sched_min_granularity); 171 SET_SYSCTL(sched_latency); 172 SET_SYSCTL(sched_wakeup_granularity); 173 #undef SET_SYSCTL 174 } 175 176 void sched_init_granularity(void) 177 { 178 update_sysctl(); 179 } 180 181 #if BITS_PER_LONG == 32 182 # define WMULT_CONST (~0UL) 183 #else 184 # define WMULT_CONST (1UL << 32) 185 #endif 186 187 #define WMULT_SHIFT 32 188 189 /* 190 * Shift right and round: 191 */ 192 #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y)) 193 194 /* 195 * delta *= weight / lw 196 */ 197 static unsigned long 198 calc_delta_mine(unsigned long delta_exec, unsigned long weight, 199 struct load_weight *lw) 200 { 201 u64 tmp; 202 203 /* 204 * weight can be less than 2^SCHED_LOAD_RESOLUTION for task group sched 205 * entities since MIN_SHARES = 2. Treat weight as 1 if less than 206 * 2^SCHED_LOAD_RESOLUTION. 207 */ 208 if (likely(weight > (1UL << SCHED_LOAD_RESOLUTION))) 209 tmp = (u64)delta_exec * scale_load_down(weight); 210 else 211 tmp = (u64)delta_exec; 212 213 if (!lw->inv_weight) { 214 unsigned long w = scale_load_down(lw->weight); 215 216 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST)) 217 lw->inv_weight = 1; 218 else if (unlikely(!w)) 219 lw->inv_weight = WMULT_CONST; 220 else 221 lw->inv_weight = WMULT_CONST / w; 222 } 223 224 /* 225 * Check whether we'd overflow the 64-bit multiplication: 226 */ 227 if (unlikely(tmp > WMULT_CONST)) 228 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight, 229 WMULT_SHIFT/2); 230 else 231 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT); 232 233 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX); 234 } 235 236 237 const struct sched_class fair_sched_class; 238 239 /************************************************************** 240 * CFS operations on generic schedulable entities: 241 */ 242 243 #ifdef CONFIG_FAIR_GROUP_SCHED 244 245 /* cpu runqueue to which this cfs_rq is attached */ 246 static inline struct rq *rq_of(struct cfs_rq *cfs_rq) 247 { 248 return cfs_rq->rq; 249 } 250 251 /* An entity is a task if it doesn't "own" a runqueue */ 252 #define entity_is_task(se) (!se->my_q) 253 254 static inline struct task_struct *task_of(struct sched_entity *se) 255 { 256 #ifdef CONFIG_SCHED_DEBUG 257 WARN_ON_ONCE(!entity_is_task(se)); 258 #endif 259 return container_of(se, struct task_struct, se); 260 } 261 262 /* Walk up scheduling entities hierarchy */ 263 #define for_each_sched_entity(se) \ 264 for (; se; se = se->parent) 265 266 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p) 267 { 268 return p->se.cfs_rq; 269 } 270 271 /* runqueue on which this entity is (to be) queued */ 272 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se) 273 { 274 return se->cfs_rq; 275 } 276 277 /* runqueue "owned" by this group */ 278 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp) 279 { 280 return grp->my_q; 281 } 282 283 static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq, 284 int force_update); 285 286 static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq) 287 { 288 if (!cfs_rq->on_list) { 289 /* 290 * Ensure we either appear before our parent (if already 291 * enqueued) or force our parent to appear after us when it is 292 * enqueued. The fact that we always enqueue bottom-up 293 * reduces this to two cases. 294 */ 295 if (cfs_rq->tg->parent && 296 cfs_rq->tg->parent->cfs_rq[cpu_of(rq_of(cfs_rq))]->on_list) { 297 list_add_rcu(&cfs_rq->leaf_cfs_rq_list, 298 &rq_of(cfs_rq)->leaf_cfs_rq_list); 299 } else { 300 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list, 301 &rq_of(cfs_rq)->leaf_cfs_rq_list); 302 } 303 304 cfs_rq->on_list = 1; 305 /* We should have no load, but we need to update last_decay. */ 306 update_cfs_rq_blocked_load(cfs_rq, 0); 307 } 308 } 309 310 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq) 311 { 312 if (cfs_rq->on_list) { 313 list_del_rcu(&cfs_rq->leaf_cfs_rq_list); 314 cfs_rq->on_list = 0; 315 } 316 } 317 318 /* Iterate thr' all leaf cfs_rq's on a runqueue */ 319 #define for_each_leaf_cfs_rq(rq, cfs_rq) \ 320 list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list) 321 322 /* Do the two (enqueued) entities belong to the same group ? */ 323 static inline int 324 is_same_group(struct sched_entity *se, struct sched_entity *pse) 325 { 326 if (se->cfs_rq == pse->cfs_rq) 327 return 1; 328 329 return 0; 330 } 331 332 static inline struct sched_entity *parent_entity(struct sched_entity *se) 333 { 334 return se->parent; 335 } 336 337 /* return depth at which a sched entity is present in the hierarchy */ 338 static inline int depth_se(struct sched_entity *se) 339 { 340 int depth = 0; 341 342 for_each_sched_entity(se) 343 depth++; 344 345 return depth; 346 } 347 348 static void 349 find_matching_se(struct sched_entity **se, struct sched_entity **pse) 350 { 351 int se_depth, pse_depth; 352 353 /* 354 * preemption test can be made between sibling entities who are in the 355 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of 356 * both tasks until we find their ancestors who are siblings of common 357 * parent. 358 */ 359 360 /* First walk up until both entities are at same depth */ 361 se_depth = depth_se(*se); 362 pse_depth = depth_se(*pse); 363 364 while (se_depth > pse_depth) { 365 se_depth--; 366 *se = parent_entity(*se); 367 } 368 369 while (pse_depth > se_depth) { 370 pse_depth--; 371 *pse = parent_entity(*pse); 372 } 373 374 while (!is_same_group(*se, *pse)) { 375 *se = parent_entity(*se); 376 *pse = parent_entity(*pse); 377 } 378 } 379 380 #else /* !CONFIG_FAIR_GROUP_SCHED */ 381 382 static inline struct task_struct *task_of(struct sched_entity *se) 383 { 384 return container_of(se, struct task_struct, se); 385 } 386 387 static inline struct rq *rq_of(struct cfs_rq *cfs_rq) 388 { 389 return container_of(cfs_rq, struct rq, cfs); 390 } 391 392 #define entity_is_task(se) 1 393 394 #define for_each_sched_entity(se) \ 395 for (; se; se = NULL) 396 397 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p) 398 { 399 return &task_rq(p)->cfs; 400 } 401 402 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se) 403 { 404 struct task_struct *p = task_of(se); 405 struct rq *rq = task_rq(p); 406 407 return &rq->cfs; 408 } 409 410 /* runqueue "owned" by this group */ 411 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp) 412 { 413 return NULL; 414 } 415 416 static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq) 417 { 418 } 419 420 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq) 421 { 422 } 423 424 #define for_each_leaf_cfs_rq(rq, cfs_rq) \ 425 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL) 426 427 static inline int 428 is_same_group(struct sched_entity *se, struct sched_entity *pse) 429 { 430 return 1; 431 } 432 433 static inline struct sched_entity *parent_entity(struct sched_entity *se) 434 { 435 return NULL; 436 } 437 438 static inline void 439 find_matching_se(struct sched_entity **se, struct sched_entity **pse) 440 { 441 } 442 443 #endif /* CONFIG_FAIR_GROUP_SCHED */ 444 445 static __always_inline 446 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, unsigned long delta_exec); 447 448 /************************************************************** 449 * Scheduling class tree data structure manipulation methods: 450 */ 451 452 static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime) 453 { 454 s64 delta = (s64)(vruntime - max_vruntime); 455 if (delta > 0) 456 max_vruntime = vruntime; 457 458 return max_vruntime; 459 } 460 461 static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime) 462 { 463 s64 delta = (s64)(vruntime - min_vruntime); 464 if (delta < 0) 465 min_vruntime = vruntime; 466 467 return min_vruntime; 468 } 469 470 static inline int entity_before(struct sched_entity *a, 471 struct sched_entity *b) 472 { 473 return (s64)(a->vruntime - b->vruntime) < 0; 474 } 475 476 static void update_min_vruntime(struct cfs_rq *cfs_rq) 477 { 478 u64 vruntime = cfs_rq->min_vruntime; 479 480 if (cfs_rq->curr) 481 vruntime = cfs_rq->curr->vruntime; 482 483 if (cfs_rq->rb_leftmost) { 484 struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost, 485 struct sched_entity, 486 run_node); 487 488 if (!cfs_rq->curr) 489 vruntime = se->vruntime; 490 else 491 vruntime = min_vruntime(vruntime, se->vruntime); 492 } 493 494 /* ensure we never gain time by being placed backwards. */ 495 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime); 496 #ifndef CONFIG_64BIT 497 smp_wmb(); 498 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime; 499 #endif 500 } 501 502 /* 503 * Enqueue an entity into the rb-tree: 504 */ 505 static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) 506 { 507 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node; 508 struct rb_node *parent = NULL; 509 struct sched_entity *entry; 510 int leftmost = 1; 511 512 /* 513 * Find the right place in the rbtree: 514 */ 515 while (*link) { 516 parent = *link; 517 entry = rb_entry(parent, struct sched_entity, run_node); 518 /* 519 * We dont care about collisions. Nodes with 520 * the same key stay together. 521 */ 522 if (entity_before(se, entry)) { 523 link = &parent->rb_left; 524 } else { 525 link = &parent->rb_right; 526 leftmost = 0; 527 } 528 } 529 530 /* 531 * Maintain a cache of leftmost tree entries (it is frequently 532 * used): 533 */ 534 if (leftmost) 535 cfs_rq->rb_leftmost = &se->run_node; 536 537 rb_link_node(&se->run_node, parent, link); 538 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline); 539 } 540 541 static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) 542 { 543 if (cfs_rq->rb_leftmost == &se->run_node) { 544 struct rb_node *next_node; 545 546 next_node = rb_next(&se->run_node); 547 cfs_rq->rb_leftmost = next_node; 548 } 549 550 rb_erase(&se->run_node, &cfs_rq->tasks_timeline); 551 } 552 553 struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq) 554 { 555 struct rb_node *left = cfs_rq->rb_leftmost; 556 557 if (!left) 558 return NULL; 559 560 return rb_entry(left, struct sched_entity, run_node); 561 } 562 563 static struct sched_entity *__pick_next_entity(struct sched_entity *se) 564 { 565 struct rb_node *next = rb_next(&se->run_node); 566 567 if (!next) 568 return NULL; 569 570 return rb_entry(next, struct sched_entity, run_node); 571 } 572 573 #ifdef CONFIG_SCHED_DEBUG 574 struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq) 575 { 576 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline); 577 578 if (!last) 579 return NULL; 580 581 return rb_entry(last, struct sched_entity, run_node); 582 } 583 584 /************************************************************** 585 * Scheduling class statistics methods: 586 */ 587 588 int sched_proc_update_handler(struct ctl_table *table, int write, 589 void __user *buffer, size_t *lenp, 590 loff_t *ppos) 591 { 592 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 593 int factor = get_update_sysctl_factor(); 594 595 if (ret || !write) 596 return ret; 597 598 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency, 599 sysctl_sched_min_granularity); 600 601 #define WRT_SYSCTL(name) \ 602 (normalized_sysctl_##name = sysctl_##name / (factor)) 603 WRT_SYSCTL(sched_min_granularity); 604 WRT_SYSCTL(sched_latency); 605 WRT_SYSCTL(sched_wakeup_granularity); 606 #undef WRT_SYSCTL 607 608 return 0; 609 } 610 #endif 611 612 /* 613 * delta /= w 614 */ 615 static inline unsigned long 616 calc_delta_fair(unsigned long delta, struct sched_entity *se) 617 { 618 if (unlikely(se->load.weight != NICE_0_LOAD)) 619 delta = calc_delta_mine(delta, NICE_0_LOAD, &se->load); 620 621 return delta; 622 } 623 624 /* 625 * The idea is to set a period in which each task runs once. 626 * 627 * When there are too many tasks (sched_nr_latency) we have to stretch 628 * this period because otherwise the slices get too small. 629 * 630 * p = (nr <= nl) ? l : l*nr/nl 631 */ 632 static u64 __sched_period(unsigned long nr_running) 633 { 634 u64 period = sysctl_sched_latency; 635 unsigned long nr_latency = sched_nr_latency; 636 637 if (unlikely(nr_running > nr_latency)) { 638 period = sysctl_sched_min_granularity; 639 period *= nr_running; 640 } 641 642 return period; 643 } 644 645 /* 646 * We calculate the wall-time slice from the period by taking a part 647 * proportional to the weight. 648 * 649 * s = p*P[w/rw] 650 */ 651 static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se) 652 { 653 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq); 654 655 for_each_sched_entity(se) { 656 struct load_weight *load; 657 struct load_weight lw; 658 659 cfs_rq = cfs_rq_of(se); 660 load = &cfs_rq->load; 661 662 if (unlikely(!se->on_rq)) { 663 lw = cfs_rq->load; 664 665 update_load_add(&lw, se->load.weight); 666 load = &lw; 667 } 668 slice = calc_delta_mine(slice, se->load.weight, load); 669 } 670 return slice; 671 } 672 673 /* 674 * We calculate the vruntime slice of a to-be-inserted task. 675 * 676 * vs = s/w 677 */ 678 static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se) 679 { 680 return calc_delta_fair(sched_slice(cfs_rq, se), se); 681 } 682 683 #ifdef CONFIG_SMP 684 static inline void __update_task_entity_contrib(struct sched_entity *se); 685 686 /* Give new task start runnable values to heavy its load in infant time */ 687 void init_task_runnable_average(struct task_struct *p) 688 { 689 u32 slice; 690 691 p->se.avg.decay_count = 0; 692 slice = sched_slice(task_cfs_rq(p), &p->se) >> 10; 693 p->se.avg.runnable_avg_sum = slice; 694 p->se.avg.runnable_avg_period = slice; 695 __update_task_entity_contrib(&p->se); 696 } 697 #else 698 void init_task_runnable_average(struct task_struct *p) 699 { 700 } 701 #endif 702 703 /* 704 * Update the current task's runtime statistics. Skip current tasks that 705 * are not in our scheduling class. 706 */ 707 static inline void 708 __update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr, 709 unsigned long delta_exec) 710 { 711 unsigned long delta_exec_weighted; 712 713 schedstat_set(curr->statistics.exec_max, 714 max((u64)delta_exec, curr->statistics.exec_max)); 715 716 curr->sum_exec_runtime += delta_exec; 717 schedstat_add(cfs_rq, exec_clock, delta_exec); 718 delta_exec_weighted = calc_delta_fair(delta_exec, curr); 719 720 curr->vruntime += delta_exec_weighted; 721 update_min_vruntime(cfs_rq); 722 } 723 724 static void update_curr(struct cfs_rq *cfs_rq) 725 { 726 struct sched_entity *curr = cfs_rq->curr; 727 u64 now = rq_clock_task(rq_of(cfs_rq)); 728 unsigned long delta_exec; 729 730 if (unlikely(!curr)) 731 return; 732 733 /* 734 * Get the amount of time the current task was running 735 * since the last time we changed load (this cannot 736 * overflow on 32 bits): 737 */ 738 delta_exec = (unsigned long)(now - curr->exec_start); 739 if (!delta_exec) 740 return; 741 742 __update_curr(cfs_rq, curr, delta_exec); 743 curr->exec_start = now; 744 745 if (entity_is_task(curr)) { 746 struct task_struct *curtask = task_of(curr); 747 748 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime); 749 cpuacct_charge(curtask, delta_exec); 750 account_group_exec_runtime(curtask, delta_exec); 751 } 752 753 account_cfs_rq_runtime(cfs_rq, delta_exec); 754 } 755 756 static inline void 757 update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se) 758 { 759 schedstat_set(se->statistics.wait_start, rq_clock(rq_of(cfs_rq))); 760 } 761 762 /* 763 * Task is being enqueued - update stats: 764 */ 765 static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se) 766 { 767 /* 768 * Are we enqueueing a waiting task? (for current tasks 769 * a dequeue/enqueue event is a NOP) 770 */ 771 if (se != cfs_rq->curr) 772 update_stats_wait_start(cfs_rq, se); 773 } 774 775 static void 776 update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se) 777 { 778 schedstat_set(se->statistics.wait_max, max(se->statistics.wait_max, 779 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start)); 780 schedstat_set(se->statistics.wait_count, se->statistics.wait_count + 1); 781 schedstat_set(se->statistics.wait_sum, se->statistics.wait_sum + 782 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start); 783 #ifdef CONFIG_SCHEDSTATS 784 if (entity_is_task(se)) { 785 trace_sched_stat_wait(task_of(se), 786 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start); 787 } 788 #endif 789 schedstat_set(se->statistics.wait_start, 0); 790 } 791 792 static inline void 793 update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se) 794 { 795 /* 796 * Mark the end of the wait period if dequeueing a 797 * waiting task: 798 */ 799 if (se != cfs_rq->curr) 800 update_stats_wait_end(cfs_rq, se); 801 } 802 803 /* 804 * We are picking a new current task - update its stats: 805 */ 806 static inline void 807 update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se) 808 { 809 /* 810 * We are starting a new run period: 811 */ 812 se->exec_start = rq_clock_task(rq_of(cfs_rq)); 813 } 814 815 /************************************************** 816 * Scheduling class queueing methods: 817 */ 818 819 #ifdef CONFIG_NUMA_BALANCING 820 /* 821 * numa task sample period in ms 822 */ 823 unsigned int sysctl_numa_balancing_scan_period_min = 100; 824 unsigned int sysctl_numa_balancing_scan_period_max = 100*50; 825 unsigned int sysctl_numa_balancing_scan_period_reset = 100*600; 826 827 /* Portion of address space to scan in MB */ 828 unsigned int sysctl_numa_balancing_scan_size = 256; 829 830 /* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */ 831 unsigned int sysctl_numa_balancing_scan_delay = 1000; 832 833 static void task_numa_placement(struct task_struct *p) 834 { 835 int seq; 836 837 if (!p->mm) /* for example, ksmd faulting in a user's mm */ 838 return; 839 seq = ACCESS_ONCE(p->mm->numa_scan_seq); 840 if (p->numa_scan_seq == seq) 841 return; 842 p->numa_scan_seq = seq; 843 844 /* FIXME: Scheduling placement policy hints go here */ 845 } 846 847 /* 848 * Got a PROT_NONE fault for a page on @node. 849 */ 850 void task_numa_fault(int node, int pages, bool migrated) 851 { 852 struct task_struct *p = current; 853 854 if (!numabalancing_enabled) 855 return; 856 857 /* FIXME: Allocate task-specific structure for placement policy here */ 858 859 /* 860 * If pages are properly placed (did not migrate) then scan slower. 861 * This is reset periodically in case of phase changes 862 */ 863 if (!migrated) 864 p->numa_scan_period = min(sysctl_numa_balancing_scan_period_max, 865 p->numa_scan_period + jiffies_to_msecs(10)); 866 867 task_numa_placement(p); 868 } 869 870 static void reset_ptenuma_scan(struct task_struct *p) 871 { 872 ACCESS_ONCE(p->mm->numa_scan_seq)++; 873 p->mm->numa_scan_offset = 0; 874 } 875 876 /* 877 * The expensive part of numa migration is done from task_work context. 878 * Triggered from task_tick_numa(). 879 */ 880 void task_numa_work(struct callback_head *work) 881 { 882 unsigned long migrate, next_scan, now = jiffies; 883 struct task_struct *p = current; 884 struct mm_struct *mm = p->mm; 885 struct vm_area_struct *vma; 886 unsigned long start, end; 887 long pages; 888 889 WARN_ON_ONCE(p != container_of(work, struct task_struct, numa_work)); 890 891 work->next = work; /* protect against double add */ 892 /* 893 * Who cares about NUMA placement when they're dying. 894 * 895 * NOTE: make sure not to dereference p->mm before this check, 896 * exit_task_work() happens _after_ exit_mm() so we could be called 897 * without p->mm even though we still had it when we enqueued this 898 * work. 899 */ 900 if (p->flags & PF_EXITING) 901 return; 902 903 /* 904 * We do not care about task placement until a task runs on a node 905 * other than the first one used by the address space. This is 906 * largely because migrations are driven by what CPU the task 907 * is running on. If it's never scheduled on another node, it'll 908 * not migrate so why bother trapping the fault. 909 */ 910 if (mm->first_nid == NUMA_PTE_SCAN_INIT) 911 mm->first_nid = numa_node_id(); 912 if (mm->first_nid != NUMA_PTE_SCAN_ACTIVE) { 913 /* Are we running on a new node yet? */ 914 if (numa_node_id() == mm->first_nid && 915 !sched_feat_numa(NUMA_FORCE)) 916 return; 917 918 mm->first_nid = NUMA_PTE_SCAN_ACTIVE; 919 } 920 921 /* 922 * Reset the scan period if enough time has gone by. Objective is that 923 * scanning will be reduced if pages are properly placed. As tasks 924 * can enter different phases this needs to be re-examined. Lacking 925 * proper tracking of reference behaviour, this blunt hammer is used. 926 */ 927 migrate = mm->numa_next_reset; 928 if (time_after(now, migrate)) { 929 p->numa_scan_period = sysctl_numa_balancing_scan_period_min; 930 next_scan = now + msecs_to_jiffies(sysctl_numa_balancing_scan_period_reset); 931 xchg(&mm->numa_next_reset, next_scan); 932 } 933 934 /* 935 * Enforce maximal scan/migration frequency.. 936 */ 937 migrate = mm->numa_next_scan; 938 if (time_before(now, migrate)) 939 return; 940 941 if (p->numa_scan_period == 0) 942 p->numa_scan_period = sysctl_numa_balancing_scan_period_min; 943 944 next_scan = now + msecs_to_jiffies(p->numa_scan_period); 945 if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate) 946 return; 947 948 /* 949 * Do not set pte_numa if the current running node is rate-limited. 950 * This loses statistics on the fault but if we are unwilling to 951 * migrate to this node, it is less likely we can do useful work 952 */ 953 if (migrate_ratelimited(numa_node_id())) 954 return; 955 956 start = mm->numa_scan_offset; 957 pages = sysctl_numa_balancing_scan_size; 958 pages <<= 20 - PAGE_SHIFT; /* MB in pages */ 959 if (!pages) 960 return; 961 962 down_read(&mm->mmap_sem); 963 vma = find_vma(mm, start); 964 if (!vma) { 965 reset_ptenuma_scan(p); 966 start = 0; 967 vma = mm->mmap; 968 } 969 for (; vma; vma = vma->vm_next) { 970 if (!vma_migratable(vma)) 971 continue; 972 973 /* Skip small VMAs. They are not likely to be of relevance */ 974 if (vma->vm_end - vma->vm_start < HPAGE_SIZE) 975 continue; 976 977 do { 978 start = max(start, vma->vm_start); 979 end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE); 980 end = min(end, vma->vm_end); 981 pages -= change_prot_numa(vma, start, end); 982 983 start = end; 984 if (pages <= 0) 985 goto out; 986 } while (end != vma->vm_end); 987 } 988 989 out: 990 /* 991 * It is possible to reach the end of the VMA list but the last few VMAs are 992 * not guaranteed to the vma_migratable. If they are not, we would find the 993 * !migratable VMA on the next scan but not reset the scanner to the start 994 * so check it now. 995 */ 996 if (vma) 997 mm->numa_scan_offset = start; 998 else 999 reset_ptenuma_scan(p); 1000 up_read(&mm->mmap_sem); 1001 } 1002 1003 /* 1004 * Drive the periodic memory faults.. 1005 */ 1006 void task_tick_numa(struct rq *rq, struct task_struct *curr) 1007 { 1008 struct callback_head *work = &curr->numa_work; 1009 u64 period, now; 1010 1011 /* 1012 * We don't care about NUMA placement if we don't have memory. 1013 */ 1014 if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work) 1015 return; 1016 1017 /* 1018 * Using runtime rather than walltime has the dual advantage that 1019 * we (mostly) drive the selection from busy threads and that the 1020 * task needs to have done some actual work before we bother with 1021 * NUMA placement. 1022 */ 1023 now = curr->se.sum_exec_runtime; 1024 period = (u64)curr->numa_scan_period * NSEC_PER_MSEC; 1025 1026 if (now - curr->node_stamp > period) { 1027 if (!curr->node_stamp) 1028 curr->numa_scan_period = sysctl_numa_balancing_scan_period_min; 1029 curr->node_stamp = now; 1030 1031 if (!time_before(jiffies, curr->mm->numa_next_scan)) { 1032 init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */ 1033 task_work_add(curr, work, true); 1034 } 1035 } 1036 } 1037 #else 1038 static void task_tick_numa(struct rq *rq, struct task_struct *curr) 1039 { 1040 } 1041 #endif /* CONFIG_NUMA_BALANCING */ 1042 1043 static void 1044 account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se) 1045 { 1046 update_load_add(&cfs_rq->load, se->load.weight); 1047 if (!parent_entity(se)) 1048 update_load_add(&rq_of(cfs_rq)->load, se->load.weight); 1049 #ifdef CONFIG_SMP 1050 if (entity_is_task(se)) 1051 list_add(&se->group_node, &rq_of(cfs_rq)->cfs_tasks); 1052 #endif 1053 cfs_rq->nr_running++; 1054 } 1055 1056 static void 1057 account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se) 1058 { 1059 update_load_sub(&cfs_rq->load, se->load.weight); 1060 if (!parent_entity(se)) 1061 update_load_sub(&rq_of(cfs_rq)->load, se->load.weight); 1062 if (entity_is_task(se)) 1063 list_del_init(&se->group_node); 1064 cfs_rq->nr_running--; 1065 } 1066 1067 #ifdef CONFIG_FAIR_GROUP_SCHED 1068 # ifdef CONFIG_SMP 1069 static inline long calc_tg_weight(struct task_group *tg, struct cfs_rq *cfs_rq) 1070 { 1071 long tg_weight; 1072 1073 /* 1074 * Use this CPU's actual weight instead of the last load_contribution 1075 * to gain a more accurate current total weight. See 1076 * update_cfs_rq_load_contribution(). 1077 */ 1078 tg_weight = atomic_long_read(&tg->load_avg); 1079 tg_weight -= cfs_rq->tg_load_contrib; 1080 tg_weight += cfs_rq->load.weight; 1081 1082 return tg_weight; 1083 } 1084 1085 static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg) 1086 { 1087 long tg_weight, load, shares; 1088 1089 tg_weight = calc_tg_weight(tg, cfs_rq); 1090 load = cfs_rq->load.weight; 1091 1092 shares = (tg->shares * load); 1093 if (tg_weight) 1094 shares /= tg_weight; 1095 1096 if (shares < MIN_SHARES) 1097 shares = MIN_SHARES; 1098 if (shares > tg->shares) 1099 shares = tg->shares; 1100 1101 return shares; 1102 } 1103 # else /* CONFIG_SMP */ 1104 static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg) 1105 { 1106 return tg->shares; 1107 } 1108 # endif /* CONFIG_SMP */ 1109 static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, 1110 unsigned long weight) 1111 { 1112 if (se->on_rq) { 1113 /* commit outstanding execution time */ 1114 if (cfs_rq->curr == se) 1115 update_curr(cfs_rq); 1116 account_entity_dequeue(cfs_rq, se); 1117 } 1118 1119 update_load_set(&se->load, weight); 1120 1121 if (se->on_rq) 1122 account_entity_enqueue(cfs_rq, se); 1123 } 1124 1125 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq); 1126 1127 static void update_cfs_shares(struct cfs_rq *cfs_rq) 1128 { 1129 struct task_group *tg; 1130 struct sched_entity *se; 1131 long shares; 1132 1133 tg = cfs_rq->tg; 1134 se = tg->se[cpu_of(rq_of(cfs_rq))]; 1135 if (!se || throttled_hierarchy(cfs_rq)) 1136 return; 1137 #ifndef CONFIG_SMP 1138 if (likely(se->load.weight == tg->shares)) 1139 return; 1140 #endif 1141 shares = calc_cfs_shares(cfs_rq, tg); 1142 1143 reweight_entity(cfs_rq_of(se), se, shares); 1144 } 1145 #else /* CONFIG_FAIR_GROUP_SCHED */ 1146 static inline void update_cfs_shares(struct cfs_rq *cfs_rq) 1147 { 1148 } 1149 #endif /* CONFIG_FAIR_GROUP_SCHED */ 1150 1151 #ifdef CONFIG_SMP 1152 /* 1153 * We choose a half-life close to 1 scheduling period. 1154 * Note: The tables below are dependent on this value. 1155 */ 1156 #define LOAD_AVG_PERIOD 32 1157 #define LOAD_AVG_MAX 47742 /* maximum possible load avg */ 1158 #define LOAD_AVG_MAX_N 345 /* number of full periods to produce LOAD_MAX_AVG */ 1159 1160 /* Precomputed fixed inverse multiplies for multiplication by y^n */ 1161 static const u32 runnable_avg_yN_inv[] = { 1162 0xffffffff, 0xfa83b2da, 0xf5257d14, 0xefe4b99a, 0xeac0c6e6, 0xe5b906e6, 1163 0xe0ccdeeb, 0xdbfbb796, 0xd744fcc9, 0xd2a81d91, 0xce248c14, 0xc9b9bd85, 1164 0xc5672a10, 0xc12c4cc9, 0xbd08a39e, 0xb8fbaf46, 0xb504f333, 0xb123f581, 1165 0xad583ee9, 0xa9a15ab4, 0xa5fed6a9, 0xa2704302, 0x9ef5325f, 0x9b8d39b9, 1166 0x9837f050, 0x94f4efa8, 0x91c3d373, 0x8ea4398a, 0x8b95c1e3, 0x88980e80, 1167 0x85aac367, 0x82cd8698, 1168 }; 1169 1170 /* 1171 * Precomputed \Sum y^k { 1<=k<=n }. These are floor(true_value) to prevent 1172 * over-estimates when re-combining. 1173 */ 1174 static const u32 runnable_avg_yN_sum[] = { 1175 0, 1002, 1982, 2941, 3880, 4798, 5697, 6576, 7437, 8279, 9103, 1176 9909,10698,11470,12226,12966,13690,14398,15091,15769,16433,17082, 1177 17718,18340,18949,19545,20128,20698,21256,21802,22336,22859,23371, 1178 }; 1179 1180 /* 1181 * Approximate: 1182 * val * y^n, where y^32 ~= 0.5 (~1 scheduling period) 1183 */ 1184 static __always_inline u64 decay_load(u64 val, u64 n) 1185 { 1186 unsigned int local_n; 1187 1188 if (!n) 1189 return val; 1190 else if (unlikely(n > LOAD_AVG_PERIOD * 63)) 1191 return 0; 1192 1193 /* after bounds checking we can collapse to 32-bit */ 1194 local_n = n; 1195 1196 /* 1197 * As y^PERIOD = 1/2, we can combine 1198 * y^n = 1/2^(n/PERIOD) * k^(n%PERIOD) 1199 * With a look-up table which covers k^n (n<PERIOD) 1200 * 1201 * To achieve constant time decay_load. 1202 */ 1203 if (unlikely(local_n >= LOAD_AVG_PERIOD)) { 1204 val >>= local_n / LOAD_AVG_PERIOD; 1205 local_n %= LOAD_AVG_PERIOD; 1206 } 1207 1208 val *= runnable_avg_yN_inv[local_n]; 1209 /* We don't use SRR here since we always want to round down. */ 1210 return val >> 32; 1211 } 1212 1213 /* 1214 * For updates fully spanning n periods, the contribution to runnable 1215 * average will be: \Sum 1024*y^n 1216 * 1217 * We can compute this reasonably efficiently by combining: 1218 * y^PERIOD = 1/2 with precomputed \Sum 1024*y^n {for n <PERIOD} 1219 */ 1220 static u32 __compute_runnable_contrib(u64 n) 1221 { 1222 u32 contrib = 0; 1223 1224 if (likely(n <= LOAD_AVG_PERIOD)) 1225 return runnable_avg_yN_sum[n]; 1226 else if (unlikely(n >= LOAD_AVG_MAX_N)) 1227 return LOAD_AVG_MAX; 1228 1229 /* Compute \Sum k^n combining precomputed values for k^i, \Sum k^j */ 1230 do { 1231 contrib /= 2; /* y^LOAD_AVG_PERIOD = 1/2 */ 1232 contrib += runnable_avg_yN_sum[LOAD_AVG_PERIOD]; 1233 1234 n -= LOAD_AVG_PERIOD; 1235 } while (n > LOAD_AVG_PERIOD); 1236 1237 contrib = decay_load(contrib, n); 1238 return contrib + runnable_avg_yN_sum[n]; 1239 } 1240 1241 /* 1242 * We can represent the historical contribution to runnable average as the 1243 * coefficients of a geometric series. To do this we sub-divide our runnable 1244 * history into segments of approximately 1ms (1024us); label the segment that 1245 * occurred N-ms ago p_N, with p_0 corresponding to the current period, e.g. 1246 * 1247 * [<- 1024us ->|<- 1024us ->|<- 1024us ->| ... 1248 * p0 p1 p2 1249 * (now) (~1ms ago) (~2ms ago) 1250 * 1251 * Let u_i denote the fraction of p_i that the entity was runnable. 1252 * 1253 * We then designate the fractions u_i as our co-efficients, yielding the 1254 * following representation of historical load: 1255 * u_0 + u_1*y + u_2*y^2 + u_3*y^3 + ... 1256 * 1257 * We choose y based on the with of a reasonably scheduling period, fixing: 1258 * y^32 = 0.5 1259 * 1260 * This means that the contribution to load ~32ms ago (u_32) will be weighted 1261 * approximately half as much as the contribution to load within the last ms 1262 * (u_0). 1263 * 1264 * When a period "rolls over" and we have new u_0`, multiplying the previous 1265 * sum again by y is sufficient to update: 1266 * load_avg = u_0` + y*(u_0 + u_1*y + u_2*y^2 + ... ) 1267 * = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1}] 1268 */ 1269 static __always_inline int __update_entity_runnable_avg(u64 now, 1270 struct sched_avg *sa, 1271 int runnable) 1272 { 1273 u64 delta, periods; 1274 u32 runnable_contrib; 1275 int delta_w, decayed = 0; 1276 1277 delta = now - sa->last_runnable_update; 1278 /* 1279 * This should only happen when time goes backwards, which it 1280 * unfortunately does during sched clock init when we swap over to TSC. 1281 */ 1282 if ((s64)delta < 0) { 1283 sa->last_runnable_update = now; 1284 return 0; 1285 } 1286 1287 /* 1288 * Use 1024ns as the unit of measurement since it's a reasonable 1289 * approximation of 1us and fast to compute. 1290 */ 1291 delta >>= 10; 1292 if (!delta) 1293 return 0; 1294 sa->last_runnable_update = now; 1295 1296 /* delta_w is the amount already accumulated against our next period */ 1297 delta_w = sa->runnable_avg_period % 1024; 1298 if (delta + delta_w >= 1024) { 1299 /* period roll-over */ 1300 decayed = 1; 1301 1302 /* 1303 * Now that we know we're crossing a period boundary, figure 1304 * out how much from delta we need to complete the current 1305 * period and accrue it. 1306 */ 1307 delta_w = 1024 - delta_w; 1308 if (runnable) 1309 sa->runnable_avg_sum += delta_w; 1310 sa->runnable_avg_period += delta_w; 1311 1312 delta -= delta_w; 1313 1314 /* Figure out how many additional periods this update spans */ 1315 periods = delta / 1024; 1316 delta %= 1024; 1317 1318 sa->runnable_avg_sum = decay_load(sa->runnable_avg_sum, 1319 periods + 1); 1320 sa->runnable_avg_period = decay_load(sa->runnable_avg_period, 1321 periods + 1); 1322 1323 /* Efficiently calculate \sum (1..n_period) 1024*y^i */ 1324 runnable_contrib = __compute_runnable_contrib(periods); 1325 if (runnable) 1326 sa->runnable_avg_sum += runnable_contrib; 1327 sa->runnable_avg_period += runnable_contrib; 1328 } 1329 1330 /* Remainder of delta accrued against u_0` */ 1331 if (runnable) 1332 sa->runnable_avg_sum += delta; 1333 sa->runnable_avg_period += delta; 1334 1335 return decayed; 1336 } 1337 1338 /* Synchronize an entity's decay with its parenting cfs_rq.*/ 1339 static inline u64 __synchronize_entity_decay(struct sched_entity *se) 1340 { 1341 struct cfs_rq *cfs_rq = cfs_rq_of(se); 1342 u64 decays = atomic64_read(&cfs_rq->decay_counter); 1343 1344 decays -= se->avg.decay_count; 1345 if (!decays) 1346 return 0; 1347 1348 se->avg.load_avg_contrib = decay_load(se->avg.load_avg_contrib, decays); 1349 se->avg.decay_count = 0; 1350 1351 return decays; 1352 } 1353 1354 #ifdef CONFIG_FAIR_GROUP_SCHED 1355 static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq, 1356 int force_update) 1357 { 1358 struct task_group *tg = cfs_rq->tg; 1359 long tg_contrib; 1360 1361 tg_contrib = cfs_rq->runnable_load_avg + cfs_rq->blocked_load_avg; 1362 tg_contrib -= cfs_rq->tg_load_contrib; 1363 1364 if (force_update || abs(tg_contrib) > cfs_rq->tg_load_contrib / 8) { 1365 atomic_long_add(tg_contrib, &tg->load_avg); 1366 cfs_rq->tg_load_contrib += tg_contrib; 1367 } 1368 } 1369 1370 /* 1371 * Aggregate cfs_rq runnable averages into an equivalent task_group 1372 * representation for computing load contributions. 1373 */ 1374 static inline void __update_tg_runnable_avg(struct sched_avg *sa, 1375 struct cfs_rq *cfs_rq) 1376 { 1377 struct task_group *tg = cfs_rq->tg; 1378 long contrib; 1379 1380 /* The fraction of a cpu used by this cfs_rq */ 1381 contrib = div_u64(sa->runnable_avg_sum << NICE_0_SHIFT, 1382 sa->runnable_avg_period + 1); 1383 contrib -= cfs_rq->tg_runnable_contrib; 1384 1385 if (abs(contrib) > cfs_rq->tg_runnable_contrib / 64) { 1386 atomic_add(contrib, &tg->runnable_avg); 1387 cfs_rq->tg_runnable_contrib += contrib; 1388 } 1389 } 1390 1391 static inline void __update_group_entity_contrib(struct sched_entity *se) 1392 { 1393 struct cfs_rq *cfs_rq = group_cfs_rq(se); 1394 struct task_group *tg = cfs_rq->tg; 1395 int runnable_avg; 1396 1397 u64 contrib; 1398 1399 contrib = cfs_rq->tg_load_contrib * tg->shares; 1400 se->avg.load_avg_contrib = div_u64(contrib, 1401 atomic_long_read(&tg->load_avg) + 1); 1402 1403 /* 1404 * For group entities we need to compute a correction term in the case 1405 * that they are consuming <1 cpu so that we would contribute the same 1406 * load as a task of equal weight. 1407 * 1408 * Explicitly co-ordinating this measurement would be expensive, but 1409 * fortunately the sum of each cpus contribution forms a usable 1410 * lower-bound on the true value. 1411 * 1412 * Consider the aggregate of 2 contributions. Either they are disjoint 1413 * (and the sum represents true value) or they are disjoint and we are 1414 * understating by the aggregate of their overlap. 1415 * 1416 * Extending this to N cpus, for a given overlap, the maximum amount we 1417 * understand is then n_i(n_i+1)/2 * w_i where n_i is the number of 1418 * cpus that overlap for this interval and w_i is the interval width. 1419 * 1420 * On a small machine; the first term is well-bounded which bounds the 1421 * total error since w_i is a subset of the period. Whereas on a 1422 * larger machine, while this first term can be larger, if w_i is the 1423 * of consequential size guaranteed to see n_i*w_i quickly converge to 1424 * our upper bound of 1-cpu. 1425 */ 1426 runnable_avg = atomic_read(&tg->runnable_avg); 1427 if (runnable_avg < NICE_0_LOAD) { 1428 se->avg.load_avg_contrib *= runnable_avg; 1429 se->avg.load_avg_contrib >>= NICE_0_SHIFT; 1430 } 1431 } 1432 #else 1433 static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq, 1434 int force_update) {} 1435 static inline void __update_tg_runnable_avg(struct sched_avg *sa, 1436 struct cfs_rq *cfs_rq) {} 1437 static inline void __update_group_entity_contrib(struct sched_entity *se) {} 1438 #endif 1439 1440 static inline void __update_task_entity_contrib(struct sched_entity *se) 1441 { 1442 u32 contrib; 1443 1444 /* avoid overflowing a 32-bit type w/ SCHED_LOAD_SCALE */ 1445 contrib = se->avg.runnable_avg_sum * scale_load_down(se->load.weight); 1446 contrib /= (se->avg.runnable_avg_period + 1); 1447 se->avg.load_avg_contrib = scale_load(contrib); 1448 } 1449 1450 /* Compute the current contribution to load_avg by se, return any delta */ 1451 static long __update_entity_load_avg_contrib(struct sched_entity *se) 1452 { 1453 long old_contrib = se->avg.load_avg_contrib; 1454 1455 if (entity_is_task(se)) { 1456 __update_task_entity_contrib(se); 1457 } else { 1458 __update_tg_runnable_avg(&se->avg, group_cfs_rq(se)); 1459 __update_group_entity_contrib(se); 1460 } 1461 1462 return se->avg.load_avg_contrib - old_contrib; 1463 } 1464 1465 static inline void subtract_blocked_load_contrib(struct cfs_rq *cfs_rq, 1466 long load_contrib) 1467 { 1468 if (likely(load_contrib < cfs_rq->blocked_load_avg)) 1469 cfs_rq->blocked_load_avg -= load_contrib; 1470 else 1471 cfs_rq->blocked_load_avg = 0; 1472 } 1473 1474 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq); 1475 1476 /* Update a sched_entity's runnable average */ 1477 static inline void update_entity_load_avg(struct sched_entity *se, 1478 int update_cfs_rq) 1479 { 1480 struct cfs_rq *cfs_rq = cfs_rq_of(se); 1481 long contrib_delta; 1482 u64 now; 1483 1484 /* 1485 * For a group entity we need to use their owned cfs_rq_clock_task() in 1486 * case they are the parent of a throttled hierarchy. 1487 */ 1488 if (entity_is_task(se)) 1489 now = cfs_rq_clock_task(cfs_rq); 1490 else 1491 now = cfs_rq_clock_task(group_cfs_rq(se)); 1492 1493 if (!__update_entity_runnable_avg(now, &se->avg, se->on_rq)) 1494 return; 1495 1496 contrib_delta = __update_entity_load_avg_contrib(se); 1497 1498 if (!update_cfs_rq) 1499 return; 1500 1501 if (se->on_rq) 1502 cfs_rq->runnable_load_avg += contrib_delta; 1503 else 1504 subtract_blocked_load_contrib(cfs_rq, -contrib_delta); 1505 } 1506 1507 /* 1508 * Decay the load contributed by all blocked children and account this so that 1509 * their contribution may appropriately discounted when they wake up. 1510 */ 1511 static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq, int force_update) 1512 { 1513 u64 now = cfs_rq_clock_task(cfs_rq) >> 20; 1514 u64 decays; 1515 1516 decays = now - cfs_rq->last_decay; 1517 if (!decays && !force_update) 1518 return; 1519 1520 if (atomic_long_read(&cfs_rq->removed_load)) { 1521 unsigned long removed_load; 1522 removed_load = atomic_long_xchg(&cfs_rq->removed_load, 0); 1523 subtract_blocked_load_contrib(cfs_rq, removed_load); 1524 } 1525 1526 if (decays) { 1527 cfs_rq->blocked_load_avg = decay_load(cfs_rq->blocked_load_avg, 1528 decays); 1529 atomic64_add(decays, &cfs_rq->decay_counter); 1530 cfs_rq->last_decay = now; 1531 } 1532 1533 __update_cfs_rq_tg_load_contrib(cfs_rq, force_update); 1534 } 1535 1536 static inline void update_rq_runnable_avg(struct rq *rq, int runnable) 1537 { 1538 __update_entity_runnable_avg(rq_clock_task(rq), &rq->avg, runnable); 1539 __update_tg_runnable_avg(&rq->avg, &rq->cfs); 1540 } 1541 1542 /* Add the load generated by se into cfs_rq's child load-average */ 1543 static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq, 1544 struct sched_entity *se, 1545 int wakeup) 1546 { 1547 /* 1548 * We track migrations using entity decay_count <= 0, on a wake-up 1549 * migration we use a negative decay count to track the remote decays 1550 * accumulated while sleeping. 1551 * 1552 * Newly forked tasks are enqueued with se->avg.decay_count == 0, they 1553 * are seen by enqueue_entity_load_avg() as a migration with an already 1554 * constructed load_avg_contrib. 1555 */ 1556 if (unlikely(se->avg.decay_count <= 0)) { 1557 se->avg.last_runnable_update = rq_clock_task(rq_of(cfs_rq)); 1558 if (se->avg.decay_count) { 1559 /* 1560 * In a wake-up migration we have to approximate the 1561 * time sleeping. This is because we can't synchronize 1562 * clock_task between the two cpus, and it is not 1563 * guaranteed to be read-safe. Instead, we can 1564 * approximate this using our carried decays, which are 1565 * explicitly atomically readable. 1566 */ 1567 se->avg.last_runnable_update -= (-se->avg.decay_count) 1568 << 20; 1569 update_entity_load_avg(se, 0); 1570 /* Indicate that we're now synchronized and on-rq */ 1571 se->avg.decay_count = 0; 1572 } 1573 wakeup = 0; 1574 } else { 1575 /* 1576 * Task re-woke on same cpu (or else migrate_task_rq_fair() 1577 * would have made count negative); we must be careful to avoid 1578 * double-accounting blocked time after synchronizing decays. 1579 */ 1580 se->avg.last_runnable_update += __synchronize_entity_decay(se) 1581 << 20; 1582 } 1583 1584 /* migrated tasks did not contribute to our blocked load */ 1585 if (wakeup) { 1586 subtract_blocked_load_contrib(cfs_rq, se->avg.load_avg_contrib); 1587 update_entity_load_avg(se, 0); 1588 } 1589 1590 cfs_rq->runnable_load_avg += se->avg.load_avg_contrib; 1591 /* we force update consideration on load-balancer moves */ 1592 update_cfs_rq_blocked_load(cfs_rq, !wakeup); 1593 } 1594 1595 /* 1596 * Remove se's load from this cfs_rq child load-average, if the entity is 1597 * transitioning to a blocked state we track its projected decay using 1598 * blocked_load_avg. 1599 */ 1600 static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq, 1601 struct sched_entity *se, 1602 int sleep) 1603 { 1604 update_entity_load_avg(se, 1); 1605 /* we force update consideration on load-balancer moves */ 1606 update_cfs_rq_blocked_load(cfs_rq, !sleep); 1607 1608 cfs_rq->runnable_load_avg -= se->avg.load_avg_contrib; 1609 if (sleep) { 1610 cfs_rq->blocked_load_avg += se->avg.load_avg_contrib; 1611 se->avg.decay_count = atomic64_read(&cfs_rq->decay_counter); 1612 } /* migrations, e.g. sleep=0 leave decay_count == 0 */ 1613 } 1614 1615 /* 1616 * Update the rq's load with the elapsed running time before entering 1617 * idle. if the last scheduled task is not a CFS task, idle_enter will 1618 * be the only way to update the runnable statistic. 1619 */ 1620 void idle_enter_fair(struct rq *this_rq) 1621 { 1622 update_rq_runnable_avg(this_rq, 1); 1623 } 1624 1625 /* 1626 * Update the rq's load with the elapsed idle time before a task is 1627 * scheduled. if the newly scheduled task is not a CFS task, idle_exit will 1628 * be the only way to update the runnable statistic. 1629 */ 1630 void idle_exit_fair(struct rq *this_rq) 1631 { 1632 update_rq_runnable_avg(this_rq, 0); 1633 } 1634 1635 #else 1636 static inline void update_entity_load_avg(struct sched_entity *se, 1637 int update_cfs_rq) {} 1638 static inline void update_rq_runnable_avg(struct rq *rq, int runnable) {} 1639 static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq, 1640 struct sched_entity *se, 1641 int wakeup) {} 1642 static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq, 1643 struct sched_entity *se, 1644 int sleep) {} 1645 static inline void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq, 1646 int force_update) {} 1647 #endif 1648 1649 static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se) 1650 { 1651 #ifdef CONFIG_SCHEDSTATS 1652 struct task_struct *tsk = NULL; 1653 1654 if (entity_is_task(se)) 1655 tsk = task_of(se); 1656 1657 if (se->statistics.sleep_start) { 1658 u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.sleep_start; 1659 1660 if ((s64)delta < 0) 1661 delta = 0; 1662 1663 if (unlikely(delta > se->statistics.sleep_max)) 1664 se->statistics.sleep_max = delta; 1665 1666 se->statistics.sleep_start = 0; 1667 se->statistics.sum_sleep_runtime += delta; 1668 1669 if (tsk) { 1670 account_scheduler_latency(tsk, delta >> 10, 1); 1671 trace_sched_stat_sleep(tsk, delta); 1672 } 1673 } 1674 if (se->statistics.block_start) { 1675 u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.block_start; 1676 1677 if ((s64)delta < 0) 1678 delta = 0; 1679 1680 if (unlikely(delta > se->statistics.block_max)) 1681 se->statistics.block_max = delta; 1682 1683 se->statistics.block_start = 0; 1684 se->statistics.sum_sleep_runtime += delta; 1685 1686 if (tsk) { 1687 if (tsk->in_iowait) { 1688 se->statistics.iowait_sum += delta; 1689 se->statistics.iowait_count++; 1690 trace_sched_stat_iowait(tsk, delta); 1691 } 1692 1693 trace_sched_stat_blocked(tsk, delta); 1694 1695 /* 1696 * Blocking time is in units of nanosecs, so shift by 1697 * 20 to get a milliseconds-range estimation of the 1698 * amount of time that the task spent sleeping: 1699 */ 1700 if (unlikely(prof_on == SLEEP_PROFILING)) { 1701 profile_hits(SLEEP_PROFILING, 1702 (void *)get_wchan(tsk), 1703 delta >> 20); 1704 } 1705 account_scheduler_latency(tsk, delta >> 10, 0); 1706 } 1707 } 1708 #endif 1709 } 1710 1711 static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se) 1712 { 1713 #ifdef CONFIG_SCHED_DEBUG 1714 s64 d = se->vruntime - cfs_rq->min_vruntime; 1715 1716 if (d < 0) 1717 d = -d; 1718 1719 if (d > 3*sysctl_sched_latency) 1720 schedstat_inc(cfs_rq, nr_spread_over); 1721 #endif 1722 } 1723 1724 static void 1725 place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial) 1726 { 1727 u64 vruntime = cfs_rq->min_vruntime; 1728 1729 /* 1730 * The 'current' period is already promised to the current tasks, 1731 * however the extra weight of the new task will slow them down a 1732 * little, place the new task so that it fits in the slot that 1733 * stays open at the end. 1734 */ 1735 if (initial && sched_feat(START_DEBIT)) 1736 vruntime += sched_vslice(cfs_rq, se); 1737 1738 /* sleeps up to a single latency don't count. */ 1739 if (!initial) { 1740 unsigned long thresh = sysctl_sched_latency; 1741 1742 /* 1743 * Halve their sleep time's effect, to allow 1744 * for a gentler effect of sleepers: 1745 */ 1746 if (sched_feat(GENTLE_FAIR_SLEEPERS)) 1747 thresh >>= 1; 1748 1749 vruntime -= thresh; 1750 } 1751 1752 /* ensure we never gain time by being placed backwards. */ 1753 se->vruntime = max_vruntime(se->vruntime, vruntime); 1754 } 1755 1756 static void check_enqueue_throttle(struct cfs_rq *cfs_rq); 1757 1758 static void 1759 enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 1760 { 1761 /* 1762 * Update the normalized vruntime before updating min_vruntime 1763 * through calling update_curr(). 1764 */ 1765 if (!(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_WAKING)) 1766 se->vruntime += cfs_rq->min_vruntime; 1767 1768 /* 1769 * Update run-time statistics of the 'current'. 1770 */ 1771 update_curr(cfs_rq); 1772 enqueue_entity_load_avg(cfs_rq, se, flags & ENQUEUE_WAKEUP); 1773 account_entity_enqueue(cfs_rq, se); 1774 update_cfs_shares(cfs_rq); 1775 1776 if (flags & ENQUEUE_WAKEUP) { 1777 place_entity(cfs_rq, se, 0); 1778 enqueue_sleeper(cfs_rq, se); 1779 } 1780 1781 update_stats_enqueue(cfs_rq, se); 1782 check_spread(cfs_rq, se); 1783 if (se != cfs_rq->curr) 1784 __enqueue_entity(cfs_rq, se); 1785 se->on_rq = 1; 1786 1787 if (cfs_rq->nr_running == 1) { 1788 list_add_leaf_cfs_rq(cfs_rq); 1789 check_enqueue_throttle(cfs_rq); 1790 } 1791 } 1792 1793 static void __clear_buddies_last(struct sched_entity *se) 1794 { 1795 for_each_sched_entity(se) { 1796 struct cfs_rq *cfs_rq = cfs_rq_of(se); 1797 if (cfs_rq->last == se) 1798 cfs_rq->last = NULL; 1799 else 1800 break; 1801 } 1802 } 1803 1804 static void __clear_buddies_next(struct sched_entity *se) 1805 { 1806 for_each_sched_entity(se) { 1807 struct cfs_rq *cfs_rq = cfs_rq_of(se); 1808 if (cfs_rq->next == se) 1809 cfs_rq->next = NULL; 1810 else 1811 break; 1812 } 1813 } 1814 1815 static void __clear_buddies_skip(struct sched_entity *se) 1816 { 1817 for_each_sched_entity(se) { 1818 struct cfs_rq *cfs_rq = cfs_rq_of(se); 1819 if (cfs_rq->skip == se) 1820 cfs_rq->skip = NULL; 1821 else 1822 break; 1823 } 1824 } 1825 1826 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se) 1827 { 1828 if (cfs_rq->last == se) 1829 __clear_buddies_last(se); 1830 1831 if (cfs_rq->next == se) 1832 __clear_buddies_next(se); 1833 1834 if (cfs_rq->skip == se) 1835 __clear_buddies_skip(se); 1836 } 1837 1838 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq); 1839 1840 static void 1841 dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 1842 { 1843 /* 1844 * Update run-time statistics of the 'current'. 1845 */ 1846 update_curr(cfs_rq); 1847 dequeue_entity_load_avg(cfs_rq, se, flags & DEQUEUE_SLEEP); 1848 1849 update_stats_dequeue(cfs_rq, se); 1850 if (flags & DEQUEUE_SLEEP) { 1851 #ifdef CONFIG_SCHEDSTATS 1852 if (entity_is_task(se)) { 1853 struct task_struct *tsk = task_of(se); 1854 1855 if (tsk->state & TASK_INTERRUPTIBLE) 1856 se->statistics.sleep_start = rq_clock(rq_of(cfs_rq)); 1857 if (tsk->state & TASK_UNINTERRUPTIBLE) 1858 se->statistics.block_start = rq_clock(rq_of(cfs_rq)); 1859 } 1860 #endif 1861 } 1862 1863 clear_buddies(cfs_rq, se); 1864 1865 if (se != cfs_rq->curr) 1866 __dequeue_entity(cfs_rq, se); 1867 se->on_rq = 0; 1868 account_entity_dequeue(cfs_rq, se); 1869 1870 /* 1871 * Normalize the entity after updating the min_vruntime because the 1872 * update can refer to the ->curr item and we need to reflect this 1873 * movement in our normalized position. 1874 */ 1875 if (!(flags & DEQUEUE_SLEEP)) 1876 se->vruntime -= cfs_rq->min_vruntime; 1877 1878 /* return excess runtime on last dequeue */ 1879 return_cfs_rq_runtime(cfs_rq); 1880 1881 update_min_vruntime(cfs_rq); 1882 update_cfs_shares(cfs_rq); 1883 } 1884 1885 /* 1886 * Preempt the current task with a newly woken task if needed: 1887 */ 1888 static void 1889 check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr) 1890 { 1891 unsigned long ideal_runtime, delta_exec; 1892 struct sched_entity *se; 1893 s64 delta; 1894 1895 ideal_runtime = sched_slice(cfs_rq, curr); 1896 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime; 1897 if (delta_exec > ideal_runtime) { 1898 resched_task(rq_of(cfs_rq)->curr); 1899 /* 1900 * The current task ran long enough, ensure it doesn't get 1901 * re-elected due to buddy favours. 1902 */ 1903 clear_buddies(cfs_rq, curr); 1904 return; 1905 } 1906 1907 /* 1908 * Ensure that a task that missed wakeup preemption by a 1909 * narrow margin doesn't have to wait for a full slice. 1910 * This also mitigates buddy induced latencies under load. 1911 */ 1912 if (delta_exec < sysctl_sched_min_granularity) 1913 return; 1914 1915 se = __pick_first_entity(cfs_rq); 1916 delta = curr->vruntime - se->vruntime; 1917 1918 if (delta < 0) 1919 return; 1920 1921 if (delta > ideal_runtime) 1922 resched_task(rq_of(cfs_rq)->curr); 1923 } 1924 1925 static void 1926 set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) 1927 { 1928 /* 'current' is not kept within the tree. */ 1929 if (se->on_rq) { 1930 /* 1931 * Any task has to be enqueued before it get to execute on 1932 * a CPU. So account for the time it spent waiting on the 1933 * runqueue. 1934 */ 1935 update_stats_wait_end(cfs_rq, se); 1936 __dequeue_entity(cfs_rq, se); 1937 } 1938 1939 update_stats_curr_start(cfs_rq, se); 1940 cfs_rq->curr = se; 1941 #ifdef CONFIG_SCHEDSTATS 1942 /* 1943 * Track our maximum slice length, if the CPU's load is at 1944 * least twice that of our own weight (i.e. dont track it 1945 * when there are only lesser-weight tasks around): 1946 */ 1947 if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) { 1948 se->statistics.slice_max = max(se->statistics.slice_max, 1949 se->sum_exec_runtime - se->prev_sum_exec_runtime); 1950 } 1951 #endif 1952 se->prev_sum_exec_runtime = se->sum_exec_runtime; 1953 } 1954 1955 static int 1956 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se); 1957 1958 /* 1959 * Pick the next process, keeping these things in mind, in this order: 1960 * 1) keep things fair between processes/task groups 1961 * 2) pick the "next" process, since someone really wants that to run 1962 * 3) pick the "last" process, for cache locality 1963 * 4) do not run the "skip" process, if something else is available 1964 */ 1965 static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq) 1966 { 1967 struct sched_entity *se = __pick_first_entity(cfs_rq); 1968 struct sched_entity *left = se; 1969 1970 /* 1971 * Avoid running the skip buddy, if running something else can 1972 * be done without getting too unfair. 1973 */ 1974 if (cfs_rq->skip == se) { 1975 struct sched_entity *second = __pick_next_entity(se); 1976 if (second && wakeup_preempt_entity(second, left) < 1) 1977 se = second; 1978 } 1979 1980 /* 1981 * Prefer last buddy, try to return the CPU to a preempted task. 1982 */ 1983 if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1) 1984 se = cfs_rq->last; 1985 1986 /* 1987 * Someone really wants this to run. If it's not unfair, run it. 1988 */ 1989 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1) 1990 se = cfs_rq->next; 1991 1992 clear_buddies(cfs_rq, se); 1993 1994 return se; 1995 } 1996 1997 static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq); 1998 1999 static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev) 2000 { 2001 /* 2002 * If still on the runqueue then deactivate_task() 2003 * was not called and update_curr() has to be done: 2004 */ 2005 if (prev->on_rq) 2006 update_curr(cfs_rq); 2007 2008 /* throttle cfs_rqs exceeding runtime */ 2009 check_cfs_rq_runtime(cfs_rq); 2010 2011 check_spread(cfs_rq, prev); 2012 if (prev->on_rq) { 2013 update_stats_wait_start(cfs_rq, prev); 2014 /* Put 'current' back into the tree. */ 2015 __enqueue_entity(cfs_rq, prev); 2016 /* in !on_rq case, update occurred at dequeue */ 2017 update_entity_load_avg(prev, 1); 2018 } 2019 cfs_rq->curr = NULL; 2020 } 2021 2022 static void 2023 entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued) 2024 { 2025 /* 2026 * Update run-time statistics of the 'current'. 2027 */ 2028 update_curr(cfs_rq); 2029 2030 /* 2031 * Ensure that runnable average is periodically updated. 2032 */ 2033 update_entity_load_avg(curr, 1); 2034 update_cfs_rq_blocked_load(cfs_rq, 1); 2035 update_cfs_shares(cfs_rq); 2036 2037 #ifdef CONFIG_SCHED_HRTICK 2038 /* 2039 * queued ticks are scheduled to match the slice, so don't bother 2040 * validating it and just reschedule. 2041 */ 2042 if (queued) { 2043 resched_task(rq_of(cfs_rq)->curr); 2044 return; 2045 } 2046 /* 2047 * don't let the period tick interfere with the hrtick preemption 2048 */ 2049 if (!sched_feat(DOUBLE_TICK) && 2050 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer)) 2051 return; 2052 #endif 2053 2054 if (cfs_rq->nr_running > 1) 2055 check_preempt_tick(cfs_rq, curr); 2056 } 2057 2058 2059 /************************************************** 2060 * CFS bandwidth control machinery 2061 */ 2062 2063 #ifdef CONFIG_CFS_BANDWIDTH 2064 2065 #ifdef HAVE_JUMP_LABEL 2066 static struct static_key __cfs_bandwidth_used; 2067 2068 static inline bool cfs_bandwidth_used(void) 2069 { 2070 return static_key_false(&__cfs_bandwidth_used); 2071 } 2072 2073 void account_cfs_bandwidth_used(int enabled, int was_enabled) 2074 { 2075 /* only need to count groups transitioning between enabled/!enabled */ 2076 if (enabled && !was_enabled) 2077 static_key_slow_inc(&__cfs_bandwidth_used); 2078 else if (!enabled && was_enabled) 2079 static_key_slow_dec(&__cfs_bandwidth_used); 2080 } 2081 #else /* HAVE_JUMP_LABEL */ 2082 static bool cfs_bandwidth_used(void) 2083 { 2084 return true; 2085 } 2086 2087 void account_cfs_bandwidth_used(int enabled, int was_enabled) {} 2088 #endif /* HAVE_JUMP_LABEL */ 2089 2090 /* 2091 * default period for cfs group bandwidth. 2092 * default: 0.1s, units: nanoseconds 2093 */ 2094 static inline u64 default_cfs_period(void) 2095 { 2096 return 100000000ULL; 2097 } 2098 2099 static inline u64 sched_cfs_bandwidth_slice(void) 2100 { 2101 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC; 2102 } 2103 2104 /* 2105 * Replenish runtime according to assigned quota and update expiration time. 2106 * We use sched_clock_cpu directly instead of rq->clock to avoid adding 2107 * additional synchronization around rq->lock. 2108 * 2109 * requires cfs_b->lock 2110 */ 2111 void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b) 2112 { 2113 u64 now; 2114 2115 if (cfs_b->quota == RUNTIME_INF) 2116 return; 2117 2118 now = sched_clock_cpu(smp_processor_id()); 2119 cfs_b->runtime = cfs_b->quota; 2120 cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period); 2121 } 2122 2123 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg) 2124 { 2125 return &tg->cfs_bandwidth; 2126 } 2127 2128 /* rq->task_clock normalized against any time this cfs_rq has spent throttled */ 2129 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq) 2130 { 2131 if (unlikely(cfs_rq->throttle_count)) 2132 return cfs_rq->throttled_clock_task; 2133 2134 return rq_clock_task(rq_of(cfs_rq)) - cfs_rq->throttled_clock_task_time; 2135 } 2136 2137 /* returns 0 on failure to allocate runtime */ 2138 static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq) 2139 { 2140 struct task_group *tg = cfs_rq->tg; 2141 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg); 2142 u64 amount = 0, min_amount, expires; 2143 2144 /* note: this is a positive sum as runtime_remaining <= 0 */ 2145 min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining; 2146 2147 raw_spin_lock(&cfs_b->lock); 2148 if (cfs_b->quota == RUNTIME_INF) 2149 amount = min_amount; 2150 else { 2151 /* 2152 * If the bandwidth pool has become inactive, then at least one 2153 * period must have elapsed since the last consumption. 2154 * Refresh the global state and ensure bandwidth timer becomes 2155 * active. 2156 */ 2157 if (!cfs_b->timer_active) { 2158 __refill_cfs_bandwidth_runtime(cfs_b); 2159 __start_cfs_bandwidth(cfs_b); 2160 } 2161 2162 if (cfs_b->runtime > 0) { 2163 amount = min(cfs_b->runtime, min_amount); 2164 cfs_b->runtime -= amount; 2165 cfs_b->idle = 0; 2166 } 2167 } 2168 expires = cfs_b->runtime_expires; 2169 raw_spin_unlock(&cfs_b->lock); 2170 2171 cfs_rq->runtime_remaining += amount; 2172 /* 2173 * we may have advanced our local expiration to account for allowed 2174 * spread between our sched_clock and the one on which runtime was 2175 * issued. 2176 */ 2177 if ((s64)(expires - cfs_rq->runtime_expires) > 0) 2178 cfs_rq->runtime_expires = expires; 2179 2180 return cfs_rq->runtime_remaining > 0; 2181 } 2182 2183 /* 2184 * Note: This depends on the synchronization provided by sched_clock and the 2185 * fact that rq->clock snapshots this value. 2186 */ 2187 static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq) 2188 { 2189 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 2190 2191 /* if the deadline is ahead of our clock, nothing to do */ 2192 if (likely((s64)(rq_clock(rq_of(cfs_rq)) - cfs_rq->runtime_expires) < 0)) 2193 return; 2194 2195 if (cfs_rq->runtime_remaining < 0) 2196 return; 2197 2198 /* 2199 * If the local deadline has passed we have to consider the 2200 * possibility that our sched_clock is 'fast' and the global deadline 2201 * has not truly expired. 2202 * 2203 * Fortunately we can check determine whether this the case by checking 2204 * whether the global deadline has advanced. 2205 */ 2206 2207 if ((s64)(cfs_rq->runtime_expires - cfs_b->runtime_expires) >= 0) { 2208 /* extend local deadline, drift is bounded above by 2 ticks */ 2209 cfs_rq->runtime_expires += TICK_NSEC; 2210 } else { 2211 /* global deadline is ahead, expiration has passed */ 2212 cfs_rq->runtime_remaining = 0; 2213 } 2214 } 2215 2216 static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, 2217 unsigned long delta_exec) 2218 { 2219 /* dock delta_exec before expiring quota (as it could span periods) */ 2220 cfs_rq->runtime_remaining -= delta_exec; 2221 expire_cfs_rq_runtime(cfs_rq); 2222 2223 if (likely(cfs_rq->runtime_remaining > 0)) 2224 return; 2225 2226 /* 2227 * if we're unable to extend our runtime we resched so that the active 2228 * hierarchy can be throttled 2229 */ 2230 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr)) 2231 resched_task(rq_of(cfs_rq)->curr); 2232 } 2233 2234 static __always_inline 2235 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, unsigned long delta_exec) 2236 { 2237 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled) 2238 return; 2239 2240 __account_cfs_rq_runtime(cfs_rq, delta_exec); 2241 } 2242 2243 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq) 2244 { 2245 return cfs_bandwidth_used() && cfs_rq->throttled; 2246 } 2247 2248 /* check whether cfs_rq, or any parent, is throttled */ 2249 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq) 2250 { 2251 return cfs_bandwidth_used() && cfs_rq->throttle_count; 2252 } 2253 2254 /* 2255 * Ensure that neither of the group entities corresponding to src_cpu or 2256 * dest_cpu are members of a throttled hierarchy when performing group 2257 * load-balance operations. 2258 */ 2259 static inline int throttled_lb_pair(struct task_group *tg, 2260 int src_cpu, int dest_cpu) 2261 { 2262 struct cfs_rq *src_cfs_rq, *dest_cfs_rq; 2263 2264 src_cfs_rq = tg->cfs_rq[src_cpu]; 2265 dest_cfs_rq = tg->cfs_rq[dest_cpu]; 2266 2267 return throttled_hierarchy(src_cfs_rq) || 2268 throttled_hierarchy(dest_cfs_rq); 2269 } 2270 2271 /* updated child weight may affect parent so we have to do this bottom up */ 2272 static int tg_unthrottle_up(struct task_group *tg, void *data) 2273 { 2274 struct rq *rq = data; 2275 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; 2276 2277 cfs_rq->throttle_count--; 2278 #ifdef CONFIG_SMP 2279 if (!cfs_rq->throttle_count) { 2280 /* adjust cfs_rq_clock_task() */ 2281 cfs_rq->throttled_clock_task_time += rq_clock_task(rq) - 2282 cfs_rq->throttled_clock_task; 2283 } 2284 #endif 2285 2286 return 0; 2287 } 2288 2289 static int tg_throttle_down(struct task_group *tg, void *data) 2290 { 2291 struct rq *rq = data; 2292 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; 2293 2294 /* group is entering throttled state, stop time */ 2295 if (!cfs_rq->throttle_count) 2296 cfs_rq->throttled_clock_task = rq_clock_task(rq); 2297 cfs_rq->throttle_count++; 2298 2299 return 0; 2300 } 2301 2302 static void throttle_cfs_rq(struct cfs_rq *cfs_rq) 2303 { 2304 struct rq *rq = rq_of(cfs_rq); 2305 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 2306 struct sched_entity *se; 2307 long task_delta, dequeue = 1; 2308 2309 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))]; 2310 2311 /* freeze hierarchy runnable averages while throttled */ 2312 rcu_read_lock(); 2313 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq); 2314 rcu_read_unlock(); 2315 2316 task_delta = cfs_rq->h_nr_running; 2317 for_each_sched_entity(se) { 2318 struct cfs_rq *qcfs_rq = cfs_rq_of(se); 2319 /* throttled entity or throttle-on-deactivate */ 2320 if (!se->on_rq) 2321 break; 2322 2323 if (dequeue) 2324 dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP); 2325 qcfs_rq->h_nr_running -= task_delta; 2326 2327 if (qcfs_rq->load.weight) 2328 dequeue = 0; 2329 } 2330 2331 if (!se) 2332 rq->nr_running -= task_delta; 2333 2334 cfs_rq->throttled = 1; 2335 cfs_rq->throttled_clock = rq_clock(rq); 2336 raw_spin_lock(&cfs_b->lock); 2337 list_add_tail_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq); 2338 raw_spin_unlock(&cfs_b->lock); 2339 } 2340 2341 void unthrottle_cfs_rq(struct cfs_rq *cfs_rq) 2342 { 2343 struct rq *rq = rq_of(cfs_rq); 2344 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 2345 struct sched_entity *se; 2346 int enqueue = 1; 2347 long task_delta; 2348 2349 se = cfs_rq->tg->se[cpu_of(rq)]; 2350 2351 cfs_rq->throttled = 0; 2352 2353 update_rq_clock(rq); 2354 2355 raw_spin_lock(&cfs_b->lock); 2356 cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock; 2357 list_del_rcu(&cfs_rq->throttled_list); 2358 raw_spin_unlock(&cfs_b->lock); 2359 2360 /* update hierarchical throttle state */ 2361 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq); 2362 2363 if (!cfs_rq->load.weight) 2364 return; 2365 2366 task_delta = cfs_rq->h_nr_running; 2367 for_each_sched_entity(se) { 2368 if (se->on_rq) 2369 enqueue = 0; 2370 2371 cfs_rq = cfs_rq_of(se); 2372 if (enqueue) 2373 enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP); 2374 cfs_rq->h_nr_running += task_delta; 2375 2376 if (cfs_rq_throttled(cfs_rq)) 2377 break; 2378 } 2379 2380 if (!se) 2381 rq->nr_running += task_delta; 2382 2383 /* determine whether we need to wake up potentially idle cpu */ 2384 if (rq->curr == rq->idle && rq->cfs.nr_running) 2385 resched_task(rq->curr); 2386 } 2387 2388 static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b, 2389 u64 remaining, u64 expires) 2390 { 2391 struct cfs_rq *cfs_rq; 2392 u64 runtime = remaining; 2393 2394 rcu_read_lock(); 2395 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq, 2396 throttled_list) { 2397 struct rq *rq = rq_of(cfs_rq); 2398 2399 raw_spin_lock(&rq->lock); 2400 if (!cfs_rq_throttled(cfs_rq)) 2401 goto next; 2402 2403 runtime = -cfs_rq->runtime_remaining + 1; 2404 if (runtime > remaining) 2405 runtime = remaining; 2406 remaining -= runtime; 2407 2408 cfs_rq->runtime_remaining += runtime; 2409 cfs_rq->runtime_expires = expires; 2410 2411 /* we check whether we're throttled above */ 2412 if (cfs_rq->runtime_remaining > 0) 2413 unthrottle_cfs_rq(cfs_rq); 2414 2415 next: 2416 raw_spin_unlock(&rq->lock); 2417 2418 if (!remaining) 2419 break; 2420 } 2421 rcu_read_unlock(); 2422 2423 return remaining; 2424 } 2425 2426 /* 2427 * Responsible for refilling a task_group's bandwidth and unthrottling its 2428 * cfs_rqs as appropriate. If there has been no activity within the last 2429 * period the timer is deactivated until scheduling resumes; cfs_b->idle is 2430 * used to track this state. 2431 */ 2432 static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun) 2433 { 2434 u64 runtime, runtime_expires; 2435 int idle = 1, throttled; 2436 2437 raw_spin_lock(&cfs_b->lock); 2438 /* no need to continue the timer with no bandwidth constraint */ 2439 if (cfs_b->quota == RUNTIME_INF) 2440 goto out_unlock; 2441 2442 throttled = !list_empty(&cfs_b->throttled_cfs_rq); 2443 /* idle depends on !throttled (for the case of a large deficit) */ 2444 idle = cfs_b->idle && !throttled; 2445 cfs_b->nr_periods += overrun; 2446 2447 /* if we're going inactive then everything else can be deferred */ 2448 if (idle) 2449 goto out_unlock; 2450 2451 __refill_cfs_bandwidth_runtime(cfs_b); 2452 2453 if (!throttled) { 2454 /* mark as potentially idle for the upcoming period */ 2455 cfs_b->idle = 1; 2456 goto out_unlock; 2457 } 2458 2459 /* account preceding periods in which throttling occurred */ 2460 cfs_b->nr_throttled += overrun; 2461 2462 /* 2463 * There are throttled entities so we must first use the new bandwidth 2464 * to unthrottle them before making it generally available. This 2465 * ensures that all existing debts will be paid before a new cfs_rq is 2466 * allowed to run. 2467 */ 2468 runtime = cfs_b->runtime; 2469 runtime_expires = cfs_b->runtime_expires; 2470 cfs_b->runtime = 0; 2471 2472 /* 2473 * This check is repeated as we are holding onto the new bandwidth 2474 * while we unthrottle. This can potentially race with an unthrottled 2475 * group trying to acquire new bandwidth from the global pool. 2476 */ 2477 while (throttled && runtime > 0) { 2478 raw_spin_unlock(&cfs_b->lock); 2479 /* we can't nest cfs_b->lock while distributing bandwidth */ 2480 runtime = distribute_cfs_runtime(cfs_b, runtime, 2481 runtime_expires); 2482 raw_spin_lock(&cfs_b->lock); 2483 2484 throttled = !list_empty(&cfs_b->throttled_cfs_rq); 2485 } 2486 2487 /* return (any) remaining runtime */ 2488 cfs_b->runtime = runtime; 2489 /* 2490 * While we are ensured activity in the period following an 2491 * unthrottle, this also covers the case in which the new bandwidth is 2492 * insufficient to cover the existing bandwidth deficit. (Forcing the 2493 * timer to remain active while there are any throttled entities.) 2494 */ 2495 cfs_b->idle = 0; 2496 out_unlock: 2497 if (idle) 2498 cfs_b->timer_active = 0; 2499 raw_spin_unlock(&cfs_b->lock); 2500 2501 return idle; 2502 } 2503 2504 /* a cfs_rq won't donate quota below this amount */ 2505 static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC; 2506 /* minimum remaining period time to redistribute slack quota */ 2507 static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC; 2508 /* how long we wait to gather additional slack before distributing */ 2509 static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC; 2510 2511 /* are we near the end of the current quota period? */ 2512 static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire) 2513 { 2514 struct hrtimer *refresh_timer = &cfs_b->period_timer; 2515 u64 remaining; 2516 2517 /* if the call-back is running a quota refresh is already occurring */ 2518 if (hrtimer_callback_running(refresh_timer)) 2519 return 1; 2520 2521 /* is a quota refresh about to occur? */ 2522 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer)); 2523 if (remaining < min_expire) 2524 return 1; 2525 2526 return 0; 2527 } 2528 2529 static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b) 2530 { 2531 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration; 2532 2533 /* if there's a quota refresh soon don't bother with slack */ 2534 if (runtime_refresh_within(cfs_b, min_left)) 2535 return; 2536 2537 start_bandwidth_timer(&cfs_b->slack_timer, 2538 ns_to_ktime(cfs_bandwidth_slack_period)); 2539 } 2540 2541 /* we know any runtime found here is valid as update_curr() precedes return */ 2542 static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq) 2543 { 2544 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 2545 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime; 2546 2547 if (slack_runtime <= 0) 2548 return; 2549 2550 raw_spin_lock(&cfs_b->lock); 2551 if (cfs_b->quota != RUNTIME_INF && 2552 cfs_rq->runtime_expires == cfs_b->runtime_expires) { 2553 cfs_b->runtime += slack_runtime; 2554 2555 /* we are under rq->lock, defer unthrottling using a timer */ 2556 if (cfs_b->runtime > sched_cfs_bandwidth_slice() && 2557 !list_empty(&cfs_b->throttled_cfs_rq)) 2558 start_cfs_slack_bandwidth(cfs_b); 2559 } 2560 raw_spin_unlock(&cfs_b->lock); 2561 2562 /* even if it's not valid for return we don't want to try again */ 2563 cfs_rq->runtime_remaining -= slack_runtime; 2564 } 2565 2566 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) 2567 { 2568 if (!cfs_bandwidth_used()) 2569 return; 2570 2571 if (!cfs_rq->runtime_enabled || cfs_rq->nr_running) 2572 return; 2573 2574 __return_cfs_rq_runtime(cfs_rq); 2575 } 2576 2577 /* 2578 * This is done with a timer (instead of inline with bandwidth return) since 2579 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs. 2580 */ 2581 static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b) 2582 { 2583 u64 runtime = 0, slice = sched_cfs_bandwidth_slice(); 2584 u64 expires; 2585 2586 /* confirm we're still not at a refresh boundary */ 2587 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) 2588 return; 2589 2590 raw_spin_lock(&cfs_b->lock); 2591 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice) { 2592 runtime = cfs_b->runtime; 2593 cfs_b->runtime = 0; 2594 } 2595 expires = cfs_b->runtime_expires; 2596 raw_spin_unlock(&cfs_b->lock); 2597 2598 if (!runtime) 2599 return; 2600 2601 runtime = distribute_cfs_runtime(cfs_b, runtime, expires); 2602 2603 raw_spin_lock(&cfs_b->lock); 2604 if (expires == cfs_b->runtime_expires) 2605 cfs_b->runtime = runtime; 2606 raw_spin_unlock(&cfs_b->lock); 2607 } 2608 2609 /* 2610 * When a group wakes up we want to make sure that its quota is not already 2611 * expired/exceeded, otherwise it may be allowed to steal additional ticks of 2612 * runtime as update_curr() throttling can not not trigger until it's on-rq. 2613 */ 2614 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) 2615 { 2616 if (!cfs_bandwidth_used()) 2617 return; 2618 2619 /* an active group must be handled by the update_curr()->put() path */ 2620 if (!cfs_rq->runtime_enabled || cfs_rq->curr) 2621 return; 2622 2623 /* ensure the group is not already throttled */ 2624 if (cfs_rq_throttled(cfs_rq)) 2625 return; 2626 2627 /* update runtime allocation */ 2628 account_cfs_rq_runtime(cfs_rq, 0); 2629 if (cfs_rq->runtime_remaining <= 0) 2630 throttle_cfs_rq(cfs_rq); 2631 } 2632 2633 /* conditionally throttle active cfs_rq's from put_prev_entity() */ 2634 static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq) 2635 { 2636 if (!cfs_bandwidth_used()) 2637 return; 2638 2639 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0)) 2640 return; 2641 2642 /* 2643 * it's possible for a throttled entity to be forced into a running 2644 * state (e.g. set_curr_task), in this case we're finished. 2645 */ 2646 if (cfs_rq_throttled(cfs_rq)) 2647 return; 2648 2649 throttle_cfs_rq(cfs_rq); 2650 } 2651 2652 static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer) 2653 { 2654 struct cfs_bandwidth *cfs_b = 2655 container_of(timer, struct cfs_bandwidth, slack_timer); 2656 do_sched_cfs_slack_timer(cfs_b); 2657 2658 return HRTIMER_NORESTART; 2659 } 2660 2661 static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer) 2662 { 2663 struct cfs_bandwidth *cfs_b = 2664 container_of(timer, struct cfs_bandwidth, period_timer); 2665 ktime_t now; 2666 int overrun; 2667 int idle = 0; 2668 2669 for (;;) { 2670 now = hrtimer_cb_get_time(timer); 2671 overrun = hrtimer_forward(timer, now, cfs_b->period); 2672 2673 if (!overrun) 2674 break; 2675 2676 idle = do_sched_cfs_period_timer(cfs_b, overrun); 2677 } 2678 2679 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART; 2680 } 2681 2682 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) 2683 { 2684 raw_spin_lock_init(&cfs_b->lock); 2685 cfs_b->runtime = 0; 2686 cfs_b->quota = RUNTIME_INF; 2687 cfs_b->period = ns_to_ktime(default_cfs_period()); 2688 2689 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq); 2690 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 2691 cfs_b->period_timer.function = sched_cfs_period_timer; 2692 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 2693 cfs_b->slack_timer.function = sched_cfs_slack_timer; 2694 } 2695 2696 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) 2697 { 2698 cfs_rq->runtime_enabled = 0; 2699 INIT_LIST_HEAD(&cfs_rq->throttled_list); 2700 } 2701 2702 /* requires cfs_b->lock, may release to reprogram timer */ 2703 void __start_cfs_bandwidth(struct cfs_bandwidth *cfs_b) 2704 { 2705 /* 2706 * The timer may be active because we're trying to set a new bandwidth 2707 * period or because we're racing with the tear-down path 2708 * (timer_active==0 becomes visible before the hrtimer call-back 2709 * terminates). In either case we ensure that it's re-programmed 2710 */ 2711 while (unlikely(hrtimer_active(&cfs_b->period_timer))) { 2712 raw_spin_unlock(&cfs_b->lock); 2713 /* ensure cfs_b->lock is available while we wait */ 2714 hrtimer_cancel(&cfs_b->period_timer); 2715 2716 raw_spin_lock(&cfs_b->lock); 2717 /* if someone else restarted the timer then we're done */ 2718 if (cfs_b->timer_active) 2719 return; 2720 } 2721 2722 cfs_b->timer_active = 1; 2723 start_bandwidth_timer(&cfs_b->period_timer, cfs_b->period); 2724 } 2725 2726 static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) 2727 { 2728 hrtimer_cancel(&cfs_b->period_timer); 2729 hrtimer_cancel(&cfs_b->slack_timer); 2730 } 2731 2732 static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq) 2733 { 2734 struct cfs_rq *cfs_rq; 2735 2736 for_each_leaf_cfs_rq(rq, cfs_rq) { 2737 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 2738 2739 if (!cfs_rq->runtime_enabled) 2740 continue; 2741 2742 /* 2743 * clock_task is not advancing so we just need to make sure 2744 * there's some valid quota amount 2745 */ 2746 cfs_rq->runtime_remaining = cfs_b->quota; 2747 if (cfs_rq_throttled(cfs_rq)) 2748 unthrottle_cfs_rq(cfs_rq); 2749 } 2750 } 2751 2752 #else /* CONFIG_CFS_BANDWIDTH */ 2753 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq) 2754 { 2755 return rq_clock_task(rq_of(cfs_rq)); 2756 } 2757 2758 static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, 2759 unsigned long delta_exec) {} 2760 static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq) {} 2761 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {} 2762 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {} 2763 2764 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq) 2765 { 2766 return 0; 2767 } 2768 2769 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq) 2770 { 2771 return 0; 2772 } 2773 2774 static inline int throttled_lb_pair(struct task_group *tg, 2775 int src_cpu, int dest_cpu) 2776 { 2777 return 0; 2778 } 2779 2780 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {} 2781 2782 #ifdef CONFIG_FAIR_GROUP_SCHED 2783 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {} 2784 #endif 2785 2786 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg) 2787 { 2788 return NULL; 2789 } 2790 static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {} 2791 static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {} 2792 2793 #endif /* CONFIG_CFS_BANDWIDTH */ 2794 2795 /************************************************** 2796 * CFS operations on tasks: 2797 */ 2798 2799 #ifdef CONFIG_SCHED_HRTICK 2800 static void hrtick_start_fair(struct rq *rq, struct task_struct *p) 2801 { 2802 struct sched_entity *se = &p->se; 2803 struct cfs_rq *cfs_rq = cfs_rq_of(se); 2804 2805 WARN_ON(task_rq(p) != rq); 2806 2807 if (cfs_rq->nr_running > 1) { 2808 u64 slice = sched_slice(cfs_rq, se); 2809 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime; 2810 s64 delta = slice - ran; 2811 2812 if (delta < 0) { 2813 if (rq->curr == p) 2814 resched_task(p); 2815 return; 2816 } 2817 2818 /* 2819 * Don't schedule slices shorter than 10000ns, that just 2820 * doesn't make sense. Rely on vruntime for fairness. 2821 */ 2822 if (rq->curr != p) 2823 delta = max_t(s64, 10000LL, delta); 2824 2825 hrtick_start(rq, delta); 2826 } 2827 } 2828 2829 /* 2830 * called from enqueue/dequeue and updates the hrtick when the 2831 * current task is from our class and nr_running is low enough 2832 * to matter. 2833 */ 2834 static void hrtick_update(struct rq *rq) 2835 { 2836 struct task_struct *curr = rq->curr; 2837 2838 if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class) 2839 return; 2840 2841 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency) 2842 hrtick_start_fair(rq, curr); 2843 } 2844 #else /* !CONFIG_SCHED_HRTICK */ 2845 static inline void 2846 hrtick_start_fair(struct rq *rq, struct task_struct *p) 2847 { 2848 } 2849 2850 static inline void hrtick_update(struct rq *rq) 2851 { 2852 } 2853 #endif 2854 2855 /* 2856 * The enqueue_task method is called before nr_running is 2857 * increased. Here we update the fair scheduling stats and 2858 * then put the task into the rbtree: 2859 */ 2860 static void 2861 enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags) 2862 { 2863 struct cfs_rq *cfs_rq; 2864 struct sched_entity *se = &p->se; 2865 2866 for_each_sched_entity(se) { 2867 if (se->on_rq) 2868 break; 2869 cfs_rq = cfs_rq_of(se); 2870 enqueue_entity(cfs_rq, se, flags); 2871 2872 /* 2873 * end evaluation on encountering a throttled cfs_rq 2874 * 2875 * note: in the case of encountering a throttled cfs_rq we will 2876 * post the final h_nr_running increment below. 2877 */ 2878 if (cfs_rq_throttled(cfs_rq)) 2879 break; 2880 cfs_rq->h_nr_running++; 2881 2882 flags = ENQUEUE_WAKEUP; 2883 } 2884 2885 for_each_sched_entity(se) { 2886 cfs_rq = cfs_rq_of(se); 2887 cfs_rq->h_nr_running++; 2888 2889 if (cfs_rq_throttled(cfs_rq)) 2890 break; 2891 2892 update_cfs_shares(cfs_rq); 2893 update_entity_load_avg(se, 1); 2894 } 2895 2896 if (!se) { 2897 update_rq_runnable_avg(rq, rq->nr_running); 2898 inc_nr_running(rq); 2899 } 2900 hrtick_update(rq); 2901 } 2902 2903 static void set_next_buddy(struct sched_entity *se); 2904 2905 /* 2906 * The dequeue_task method is called before nr_running is 2907 * decreased. We remove the task from the rbtree and 2908 * update the fair scheduling stats: 2909 */ 2910 static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags) 2911 { 2912 struct cfs_rq *cfs_rq; 2913 struct sched_entity *se = &p->se; 2914 int task_sleep = flags & DEQUEUE_SLEEP; 2915 2916 for_each_sched_entity(se) { 2917 cfs_rq = cfs_rq_of(se); 2918 dequeue_entity(cfs_rq, se, flags); 2919 2920 /* 2921 * end evaluation on encountering a throttled cfs_rq 2922 * 2923 * note: in the case of encountering a throttled cfs_rq we will 2924 * post the final h_nr_running decrement below. 2925 */ 2926 if (cfs_rq_throttled(cfs_rq)) 2927 break; 2928 cfs_rq->h_nr_running--; 2929 2930 /* Don't dequeue parent if it has other entities besides us */ 2931 if (cfs_rq->load.weight) { 2932 /* 2933 * Bias pick_next to pick a task from this cfs_rq, as 2934 * p is sleeping when it is within its sched_slice. 2935 */ 2936 if (task_sleep && parent_entity(se)) 2937 set_next_buddy(parent_entity(se)); 2938 2939 /* avoid re-evaluating load for this entity */ 2940 se = parent_entity(se); 2941 break; 2942 } 2943 flags |= DEQUEUE_SLEEP; 2944 } 2945 2946 for_each_sched_entity(se) { 2947 cfs_rq = cfs_rq_of(se); 2948 cfs_rq->h_nr_running--; 2949 2950 if (cfs_rq_throttled(cfs_rq)) 2951 break; 2952 2953 update_cfs_shares(cfs_rq); 2954 update_entity_load_avg(se, 1); 2955 } 2956 2957 if (!se) { 2958 dec_nr_running(rq); 2959 update_rq_runnable_avg(rq, 1); 2960 } 2961 hrtick_update(rq); 2962 } 2963 2964 #ifdef CONFIG_SMP 2965 /* Used instead of source_load when we know the type == 0 */ 2966 static unsigned long weighted_cpuload(const int cpu) 2967 { 2968 return cpu_rq(cpu)->cfs.runnable_load_avg; 2969 } 2970 2971 /* 2972 * Return a low guess at the load of a migration-source cpu weighted 2973 * according to the scheduling class and "nice" value. 2974 * 2975 * We want to under-estimate the load of migration sources, to 2976 * balance conservatively. 2977 */ 2978 static unsigned long source_load(int cpu, int type) 2979 { 2980 struct rq *rq = cpu_rq(cpu); 2981 unsigned long total = weighted_cpuload(cpu); 2982 2983 if (type == 0 || !sched_feat(LB_BIAS)) 2984 return total; 2985 2986 return min(rq->cpu_load[type-1], total); 2987 } 2988 2989 /* 2990 * Return a high guess at the load of a migration-target cpu weighted 2991 * according to the scheduling class and "nice" value. 2992 */ 2993 static unsigned long target_load(int cpu, int type) 2994 { 2995 struct rq *rq = cpu_rq(cpu); 2996 unsigned long total = weighted_cpuload(cpu); 2997 2998 if (type == 0 || !sched_feat(LB_BIAS)) 2999 return total; 3000 3001 return max(rq->cpu_load[type-1], total); 3002 } 3003 3004 static unsigned long power_of(int cpu) 3005 { 3006 return cpu_rq(cpu)->cpu_power; 3007 } 3008 3009 static unsigned long cpu_avg_load_per_task(int cpu) 3010 { 3011 struct rq *rq = cpu_rq(cpu); 3012 unsigned long nr_running = ACCESS_ONCE(rq->nr_running); 3013 unsigned long load_avg = rq->cfs.runnable_load_avg; 3014 3015 if (nr_running) 3016 return load_avg / nr_running; 3017 3018 return 0; 3019 } 3020 3021 3022 static void task_waking_fair(struct task_struct *p) 3023 { 3024 struct sched_entity *se = &p->se; 3025 struct cfs_rq *cfs_rq = cfs_rq_of(se); 3026 u64 min_vruntime; 3027 3028 #ifndef CONFIG_64BIT 3029 u64 min_vruntime_copy; 3030 3031 do { 3032 min_vruntime_copy = cfs_rq->min_vruntime_copy; 3033 smp_rmb(); 3034 min_vruntime = cfs_rq->min_vruntime; 3035 } while (min_vruntime != min_vruntime_copy); 3036 #else 3037 min_vruntime = cfs_rq->min_vruntime; 3038 #endif 3039 3040 se->vruntime -= min_vruntime; 3041 } 3042 3043 #ifdef CONFIG_FAIR_GROUP_SCHED 3044 /* 3045 * effective_load() calculates the load change as seen from the root_task_group 3046 * 3047 * Adding load to a group doesn't make a group heavier, but can cause movement 3048 * of group shares between cpus. Assuming the shares were perfectly aligned one 3049 * can calculate the shift in shares. 3050 * 3051 * Calculate the effective load difference if @wl is added (subtracted) to @tg 3052 * on this @cpu and results in a total addition (subtraction) of @wg to the 3053 * total group weight. 3054 * 3055 * Given a runqueue weight distribution (rw_i) we can compute a shares 3056 * distribution (s_i) using: 3057 * 3058 * s_i = rw_i / \Sum rw_j (1) 3059 * 3060 * Suppose we have 4 CPUs and our @tg is a direct child of the root group and 3061 * has 7 equal weight tasks, distributed as below (rw_i), with the resulting 3062 * shares distribution (s_i): 3063 * 3064 * rw_i = { 2, 4, 1, 0 } 3065 * s_i = { 2/7, 4/7, 1/7, 0 } 3066 * 3067 * As per wake_affine() we're interested in the load of two CPUs (the CPU the 3068 * task used to run on and the CPU the waker is running on), we need to 3069 * compute the effect of waking a task on either CPU and, in case of a sync 3070 * wakeup, compute the effect of the current task going to sleep. 3071 * 3072 * So for a change of @wl to the local @cpu with an overall group weight change 3073 * of @wl we can compute the new shares distribution (s'_i) using: 3074 * 3075 * s'_i = (rw_i + @wl) / (@wg + \Sum rw_j) (2) 3076 * 3077 * Suppose we're interested in CPUs 0 and 1, and want to compute the load 3078 * differences in waking a task to CPU 0. The additional task changes the 3079 * weight and shares distributions like: 3080 * 3081 * rw'_i = { 3, 4, 1, 0 } 3082 * s'_i = { 3/8, 4/8, 1/8, 0 } 3083 * 3084 * We can then compute the difference in effective weight by using: 3085 * 3086 * dw_i = S * (s'_i - s_i) (3) 3087 * 3088 * Where 'S' is the group weight as seen by its parent. 3089 * 3090 * Therefore the effective change in loads on CPU 0 would be 5/56 (3/8 - 2/7) 3091 * times the weight of the group. The effect on CPU 1 would be -4/56 (4/8 - 3092 * 4/7) times the weight of the group. 3093 */ 3094 static long effective_load(struct task_group *tg, int cpu, long wl, long wg) 3095 { 3096 struct sched_entity *se = tg->se[cpu]; 3097 3098 if (!tg->parent) /* the trivial, non-cgroup case */ 3099 return wl; 3100 3101 for_each_sched_entity(se) { 3102 long w, W; 3103 3104 tg = se->my_q->tg; 3105 3106 /* 3107 * W = @wg + \Sum rw_j 3108 */ 3109 W = wg + calc_tg_weight(tg, se->my_q); 3110 3111 /* 3112 * w = rw_i + @wl 3113 */ 3114 w = se->my_q->load.weight + wl; 3115 3116 /* 3117 * wl = S * s'_i; see (2) 3118 */ 3119 if (W > 0 && w < W) 3120 wl = (w * tg->shares) / W; 3121 else 3122 wl = tg->shares; 3123 3124 /* 3125 * Per the above, wl is the new se->load.weight value; since 3126 * those are clipped to [MIN_SHARES, ...) do so now. See 3127 * calc_cfs_shares(). 3128 */ 3129 if (wl < MIN_SHARES) 3130 wl = MIN_SHARES; 3131 3132 /* 3133 * wl = dw_i = S * (s'_i - s_i); see (3) 3134 */ 3135 wl -= se->load.weight; 3136 3137 /* 3138 * Recursively apply this logic to all parent groups to compute 3139 * the final effective load change on the root group. Since 3140 * only the @tg group gets extra weight, all parent groups can 3141 * only redistribute existing shares. @wl is the shift in shares 3142 * resulting from this level per the above. 3143 */ 3144 wg = 0; 3145 } 3146 3147 return wl; 3148 } 3149 #else 3150 3151 static inline unsigned long effective_load(struct task_group *tg, int cpu, 3152 unsigned long wl, unsigned long wg) 3153 { 3154 return wl; 3155 } 3156 3157 #endif 3158 3159 static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync) 3160 { 3161 s64 this_load, load; 3162 int idx, this_cpu, prev_cpu; 3163 unsigned long tl_per_task; 3164 struct task_group *tg; 3165 unsigned long weight; 3166 int balanced; 3167 3168 idx = sd->wake_idx; 3169 this_cpu = smp_processor_id(); 3170 prev_cpu = task_cpu(p); 3171 load = source_load(prev_cpu, idx); 3172 this_load = target_load(this_cpu, idx); 3173 3174 /* 3175 * If sync wakeup then subtract the (maximum possible) 3176 * effect of the currently running task from the load 3177 * of the current CPU: 3178 */ 3179 if (sync) { 3180 tg = task_group(current); 3181 weight = current->se.load.weight; 3182 3183 this_load += effective_load(tg, this_cpu, -weight, -weight); 3184 load += effective_load(tg, prev_cpu, 0, -weight); 3185 } 3186 3187 tg = task_group(p); 3188 weight = p->se.load.weight; 3189 3190 /* 3191 * In low-load situations, where prev_cpu is idle and this_cpu is idle 3192 * due to the sync cause above having dropped this_load to 0, we'll 3193 * always have an imbalance, but there's really nothing you can do 3194 * about that, so that's good too. 3195 * 3196 * Otherwise check if either cpus are near enough in load to allow this 3197 * task to be woken on this_cpu. 3198 */ 3199 if (this_load > 0) { 3200 s64 this_eff_load, prev_eff_load; 3201 3202 this_eff_load = 100; 3203 this_eff_load *= power_of(prev_cpu); 3204 this_eff_load *= this_load + 3205 effective_load(tg, this_cpu, weight, weight); 3206 3207 prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2; 3208 prev_eff_load *= power_of(this_cpu); 3209 prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight); 3210 3211 balanced = this_eff_load <= prev_eff_load; 3212 } else 3213 balanced = true; 3214 3215 /* 3216 * If the currently running task will sleep within 3217 * a reasonable amount of time then attract this newly 3218 * woken task: 3219 */ 3220 if (sync && balanced) 3221 return 1; 3222 3223 schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts); 3224 tl_per_task = cpu_avg_load_per_task(this_cpu); 3225 3226 if (balanced || 3227 (this_load <= load && 3228 this_load + target_load(prev_cpu, idx) <= tl_per_task)) { 3229 /* 3230 * This domain has SD_WAKE_AFFINE and 3231 * p is cache cold in this domain, and 3232 * there is no bad imbalance. 3233 */ 3234 schedstat_inc(sd, ttwu_move_affine); 3235 schedstat_inc(p, se.statistics.nr_wakeups_affine); 3236 3237 return 1; 3238 } 3239 return 0; 3240 } 3241 3242 /* 3243 * find_idlest_group finds and returns the least busy CPU group within the 3244 * domain. 3245 */ 3246 static struct sched_group * 3247 find_idlest_group(struct sched_domain *sd, struct task_struct *p, 3248 int this_cpu, int load_idx) 3249 { 3250 struct sched_group *idlest = NULL, *group = sd->groups; 3251 unsigned long min_load = ULONG_MAX, this_load = 0; 3252 int imbalance = 100 + (sd->imbalance_pct-100)/2; 3253 3254 do { 3255 unsigned long load, avg_load; 3256 int local_group; 3257 int i; 3258 3259 /* Skip over this group if it has no CPUs allowed */ 3260 if (!cpumask_intersects(sched_group_cpus(group), 3261 tsk_cpus_allowed(p))) 3262 continue; 3263 3264 local_group = cpumask_test_cpu(this_cpu, 3265 sched_group_cpus(group)); 3266 3267 /* Tally up the load of all CPUs in the group */ 3268 avg_load = 0; 3269 3270 for_each_cpu(i, sched_group_cpus(group)) { 3271 /* Bias balancing toward cpus of our domain */ 3272 if (local_group) 3273 load = source_load(i, load_idx); 3274 else 3275 load = target_load(i, load_idx); 3276 3277 avg_load += load; 3278 } 3279 3280 /* Adjust by relative CPU power of the group */ 3281 avg_load = (avg_load * SCHED_POWER_SCALE) / group->sgp->power; 3282 3283 if (local_group) { 3284 this_load = avg_load; 3285 } else if (avg_load < min_load) { 3286 min_load = avg_load; 3287 idlest = group; 3288 } 3289 } while (group = group->next, group != sd->groups); 3290 3291 if (!idlest || 100*this_load < imbalance*min_load) 3292 return NULL; 3293 return idlest; 3294 } 3295 3296 /* 3297 * find_idlest_cpu - find the idlest cpu among the cpus in group. 3298 */ 3299 static int 3300 find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu) 3301 { 3302 unsigned long load, min_load = ULONG_MAX; 3303 int idlest = -1; 3304 int i; 3305 3306 /* Traverse only the allowed CPUs */ 3307 for_each_cpu_and(i, sched_group_cpus(group), tsk_cpus_allowed(p)) { 3308 load = weighted_cpuload(i); 3309 3310 if (load < min_load || (load == min_load && i == this_cpu)) { 3311 min_load = load; 3312 idlest = i; 3313 } 3314 } 3315 3316 return idlest; 3317 } 3318 3319 /* 3320 * Try and locate an idle CPU in the sched_domain. 3321 */ 3322 static int select_idle_sibling(struct task_struct *p, int target) 3323 { 3324 struct sched_domain *sd; 3325 struct sched_group *sg; 3326 int i = task_cpu(p); 3327 3328 if (idle_cpu(target)) 3329 return target; 3330 3331 /* 3332 * If the prevous cpu is cache affine and idle, don't be stupid. 3333 */ 3334 if (i != target && cpus_share_cache(i, target) && idle_cpu(i)) 3335 return i; 3336 3337 /* 3338 * Otherwise, iterate the domains and find an elegible idle cpu. 3339 */ 3340 sd = rcu_dereference(per_cpu(sd_llc, target)); 3341 for_each_lower_domain(sd) { 3342 sg = sd->groups; 3343 do { 3344 if (!cpumask_intersects(sched_group_cpus(sg), 3345 tsk_cpus_allowed(p))) 3346 goto next; 3347 3348 for_each_cpu(i, sched_group_cpus(sg)) { 3349 if (i == target || !idle_cpu(i)) 3350 goto next; 3351 } 3352 3353 target = cpumask_first_and(sched_group_cpus(sg), 3354 tsk_cpus_allowed(p)); 3355 goto done; 3356 next: 3357 sg = sg->next; 3358 } while (sg != sd->groups); 3359 } 3360 done: 3361 return target; 3362 } 3363 3364 /* 3365 * sched_balance_self: balance the current task (running on cpu) in domains 3366 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and 3367 * SD_BALANCE_EXEC. 3368 * 3369 * Balance, ie. select the least loaded group. 3370 * 3371 * Returns the target CPU number, or the same CPU if no balancing is needed. 3372 * 3373 * preempt must be disabled. 3374 */ 3375 static int 3376 select_task_rq_fair(struct task_struct *p, int sd_flag, int wake_flags) 3377 { 3378 struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL; 3379 int cpu = smp_processor_id(); 3380 int prev_cpu = task_cpu(p); 3381 int new_cpu = cpu; 3382 int want_affine = 0; 3383 int sync = wake_flags & WF_SYNC; 3384 3385 if (p->nr_cpus_allowed == 1) 3386 return prev_cpu; 3387 3388 if (sd_flag & SD_BALANCE_WAKE) { 3389 if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p))) 3390 want_affine = 1; 3391 new_cpu = prev_cpu; 3392 } 3393 3394 rcu_read_lock(); 3395 for_each_domain(cpu, tmp) { 3396 if (!(tmp->flags & SD_LOAD_BALANCE)) 3397 continue; 3398 3399 /* 3400 * If both cpu and prev_cpu are part of this domain, 3401 * cpu is a valid SD_WAKE_AFFINE target. 3402 */ 3403 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) && 3404 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) { 3405 affine_sd = tmp; 3406 break; 3407 } 3408 3409 if (tmp->flags & sd_flag) 3410 sd = tmp; 3411 } 3412 3413 if (affine_sd) { 3414 if (cpu != prev_cpu && wake_affine(affine_sd, p, sync)) 3415 prev_cpu = cpu; 3416 3417 new_cpu = select_idle_sibling(p, prev_cpu); 3418 goto unlock; 3419 } 3420 3421 while (sd) { 3422 int load_idx = sd->forkexec_idx; 3423 struct sched_group *group; 3424 int weight; 3425 3426 if (!(sd->flags & sd_flag)) { 3427 sd = sd->child; 3428 continue; 3429 } 3430 3431 if (sd_flag & SD_BALANCE_WAKE) 3432 load_idx = sd->wake_idx; 3433 3434 group = find_idlest_group(sd, p, cpu, load_idx); 3435 if (!group) { 3436 sd = sd->child; 3437 continue; 3438 } 3439 3440 new_cpu = find_idlest_cpu(group, p, cpu); 3441 if (new_cpu == -1 || new_cpu == cpu) { 3442 /* Now try balancing at a lower domain level of cpu */ 3443 sd = sd->child; 3444 continue; 3445 } 3446 3447 /* Now try balancing at a lower domain level of new_cpu */ 3448 cpu = new_cpu; 3449 weight = sd->span_weight; 3450 sd = NULL; 3451 for_each_domain(cpu, tmp) { 3452 if (weight <= tmp->span_weight) 3453 break; 3454 if (tmp->flags & sd_flag) 3455 sd = tmp; 3456 } 3457 /* while loop will break here if sd == NULL */ 3458 } 3459 unlock: 3460 rcu_read_unlock(); 3461 3462 return new_cpu; 3463 } 3464 3465 /* 3466 * Called immediately before a task is migrated to a new cpu; task_cpu(p) and 3467 * cfs_rq_of(p) references at time of call are still valid and identify the 3468 * previous cpu. However, the caller only guarantees p->pi_lock is held; no 3469 * other assumptions, including the state of rq->lock, should be made. 3470 */ 3471 static void 3472 migrate_task_rq_fair(struct task_struct *p, int next_cpu) 3473 { 3474 struct sched_entity *se = &p->se; 3475 struct cfs_rq *cfs_rq = cfs_rq_of(se); 3476 3477 /* 3478 * Load tracking: accumulate removed load so that it can be processed 3479 * when we next update owning cfs_rq under rq->lock. Tasks contribute 3480 * to blocked load iff they have a positive decay-count. It can never 3481 * be negative here since on-rq tasks have decay-count == 0. 3482 */ 3483 if (se->avg.decay_count) { 3484 se->avg.decay_count = -__synchronize_entity_decay(se); 3485 atomic_long_add(se->avg.load_avg_contrib, 3486 &cfs_rq->removed_load); 3487 } 3488 } 3489 #endif /* CONFIG_SMP */ 3490 3491 static unsigned long 3492 wakeup_gran(struct sched_entity *curr, struct sched_entity *se) 3493 { 3494 unsigned long gran = sysctl_sched_wakeup_granularity; 3495 3496 /* 3497 * Since its curr running now, convert the gran from real-time 3498 * to virtual-time in his units. 3499 * 3500 * By using 'se' instead of 'curr' we penalize light tasks, so 3501 * they get preempted easier. That is, if 'se' < 'curr' then 3502 * the resulting gran will be larger, therefore penalizing the 3503 * lighter, if otoh 'se' > 'curr' then the resulting gran will 3504 * be smaller, again penalizing the lighter task. 3505 * 3506 * This is especially important for buddies when the leftmost 3507 * task is higher priority than the buddy. 3508 */ 3509 return calc_delta_fair(gran, se); 3510 } 3511 3512 /* 3513 * Should 'se' preempt 'curr'. 3514 * 3515 * |s1 3516 * |s2 3517 * |s3 3518 * g 3519 * |<--->|c 3520 * 3521 * w(c, s1) = -1 3522 * w(c, s2) = 0 3523 * w(c, s3) = 1 3524 * 3525 */ 3526 static int 3527 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se) 3528 { 3529 s64 gran, vdiff = curr->vruntime - se->vruntime; 3530 3531 if (vdiff <= 0) 3532 return -1; 3533 3534 gran = wakeup_gran(curr, se); 3535 if (vdiff > gran) 3536 return 1; 3537 3538 return 0; 3539 } 3540 3541 static void set_last_buddy(struct sched_entity *se) 3542 { 3543 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE)) 3544 return; 3545 3546 for_each_sched_entity(se) 3547 cfs_rq_of(se)->last = se; 3548 } 3549 3550 static void set_next_buddy(struct sched_entity *se) 3551 { 3552 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE)) 3553 return; 3554 3555 for_each_sched_entity(se) 3556 cfs_rq_of(se)->next = se; 3557 } 3558 3559 static void set_skip_buddy(struct sched_entity *se) 3560 { 3561 for_each_sched_entity(se) 3562 cfs_rq_of(se)->skip = se; 3563 } 3564 3565 /* 3566 * Preempt the current task with a newly woken task if needed: 3567 */ 3568 static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags) 3569 { 3570 struct task_struct *curr = rq->curr; 3571 struct sched_entity *se = &curr->se, *pse = &p->se; 3572 struct cfs_rq *cfs_rq = task_cfs_rq(curr); 3573 int scale = cfs_rq->nr_running >= sched_nr_latency; 3574 int next_buddy_marked = 0; 3575 3576 if (unlikely(se == pse)) 3577 return; 3578 3579 /* 3580 * This is possible from callers such as move_task(), in which we 3581 * unconditionally check_prempt_curr() after an enqueue (which may have 3582 * lead to a throttle). This both saves work and prevents false 3583 * next-buddy nomination below. 3584 */ 3585 if (unlikely(throttled_hierarchy(cfs_rq_of(pse)))) 3586 return; 3587 3588 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) { 3589 set_next_buddy(pse); 3590 next_buddy_marked = 1; 3591 } 3592 3593 /* 3594 * We can come here with TIF_NEED_RESCHED already set from new task 3595 * wake up path. 3596 * 3597 * Note: this also catches the edge-case of curr being in a throttled 3598 * group (e.g. via set_curr_task), since update_curr() (in the 3599 * enqueue of curr) will have resulted in resched being set. This 3600 * prevents us from potentially nominating it as a false LAST_BUDDY 3601 * below. 3602 */ 3603 if (test_tsk_need_resched(curr)) 3604 return; 3605 3606 /* Idle tasks are by definition preempted by non-idle tasks. */ 3607 if (unlikely(curr->policy == SCHED_IDLE) && 3608 likely(p->policy != SCHED_IDLE)) 3609 goto preempt; 3610 3611 /* 3612 * Batch and idle tasks do not preempt non-idle tasks (their preemption 3613 * is driven by the tick): 3614 */ 3615 if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION)) 3616 return; 3617 3618 find_matching_se(&se, &pse); 3619 update_curr(cfs_rq_of(se)); 3620 BUG_ON(!pse); 3621 if (wakeup_preempt_entity(se, pse) == 1) { 3622 /* 3623 * Bias pick_next to pick the sched entity that is 3624 * triggering this preemption. 3625 */ 3626 if (!next_buddy_marked) 3627 set_next_buddy(pse); 3628 goto preempt; 3629 } 3630 3631 return; 3632 3633 preempt: 3634 resched_task(curr); 3635 /* 3636 * Only set the backward buddy when the current task is still 3637 * on the rq. This can happen when a wakeup gets interleaved 3638 * with schedule on the ->pre_schedule() or idle_balance() 3639 * point, either of which can * drop the rq lock. 3640 * 3641 * Also, during early boot the idle thread is in the fair class, 3642 * for obvious reasons its a bad idea to schedule back to it. 3643 */ 3644 if (unlikely(!se->on_rq || curr == rq->idle)) 3645 return; 3646 3647 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se)) 3648 set_last_buddy(se); 3649 } 3650 3651 static struct task_struct *pick_next_task_fair(struct rq *rq) 3652 { 3653 struct task_struct *p; 3654 struct cfs_rq *cfs_rq = &rq->cfs; 3655 struct sched_entity *se; 3656 3657 if (!cfs_rq->nr_running) 3658 return NULL; 3659 3660 do { 3661 se = pick_next_entity(cfs_rq); 3662 set_next_entity(cfs_rq, se); 3663 cfs_rq = group_cfs_rq(se); 3664 } while (cfs_rq); 3665 3666 p = task_of(se); 3667 if (hrtick_enabled(rq)) 3668 hrtick_start_fair(rq, p); 3669 3670 return p; 3671 } 3672 3673 /* 3674 * Account for a descheduled task: 3675 */ 3676 static void put_prev_task_fair(struct rq *rq, struct task_struct *prev) 3677 { 3678 struct sched_entity *se = &prev->se; 3679 struct cfs_rq *cfs_rq; 3680 3681 for_each_sched_entity(se) { 3682 cfs_rq = cfs_rq_of(se); 3683 put_prev_entity(cfs_rq, se); 3684 } 3685 } 3686 3687 /* 3688 * sched_yield() is very simple 3689 * 3690 * The magic of dealing with the ->skip buddy is in pick_next_entity. 3691 */ 3692 static void yield_task_fair(struct rq *rq) 3693 { 3694 struct task_struct *curr = rq->curr; 3695 struct cfs_rq *cfs_rq = task_cfs_rq(curr); 3696 struct sched_entity *se = &curr->se; 3697 3698 /* 3699 * Are we the only task in the tree? 3700 */ 3701 if (unlikely(rq->nr_running == 1)) 3702 return; 3703 3704 clear_buddies(cfs_rq, se); 3705 3706 if (curr->policy != SCHED_BATCH) { 3707 update_rq_clock(rq); 3708 /* 3709 * Update run-time statistics of the 'current'. 3710 */ 3711 update_curr(cfs_rq); 3712 /* 3713 * Tell update_rq_clock() that we've just updated, 3714 * so we don't do microscopic update in schedule() 3715 * and double the fastpath cost. 3716 */ 3717 rq->skip_clock_update = 1; 3718 } 3719 3720 set_skip_buddy(se); 3721 } 3722 3723 static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt) 3724 { 3725 struct sched_entity *se = &p->se; 3726 3727 /* throttled hierarchies are not runnable */ 3728 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se))) 3729 return false; 3730 3731 /* Tell the scheduler that we'd really like pse to run next. */ 3732 set_next_buddy(se); 3733 3734 yield_task_fair(rq); 3735 3736 return true; 3737 } 3738 3739 #ifdef CONFIG_SMP 3740 /************************************************** 3741 * Fair scheduling class load-balancing methods. 3742 * 3743 * BASICS 3744 * 3745 * The purpose of load-balancing is to achieve the same basic fairness the 3746 * per-cpu scheduler provides, namely provide a proportional amount of compute 3747 * time to each task. This is expressed in the following equation: 3748 * 3749 * W_i,n/P_i == W_j,n/P_j for all i,j (1) 3750 * 3751 * Where W_i,n is the n-th weight average for cpu i. The instantaneous weight 3752 * W_i,0 is defined as: 3753 * 3754 * W_i,0 = \Sum_j w_i,j (2) 3755 * 3756 * Where w_i,j is the weight of the j-th runnable task on cpu i. This weight 3757 * is derived from the nice value as per prio_to_weight[]. 3758 * 3759 * The weight average is an exponential decay average of the instantaneous 3760 * weight: 3761 * 3762 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3) 3763 * 3764 * P_i is the cpu power (or compute capacity) of cpu i, typically it is the 3765 * fraction of 'recent' time available for SCHED_OTHER task execution. But it 3766 * can also include other factors [XXX]. 3767 * 3768 * To achieve this balance we define a measure of imbalance which follows 3769 * directly from (1): 3770 * 3771 * imb_i,j = max{ avg(W/P), W_i/P_i } - min{ avg(W/P), W_j/P_j } (4) 3772 * 3773 * We them move tasks around to minimize the imbalance. In the continuous 3774 * function space it is obvious this converges, in the discrete case we get 3775 * a few fun cases generally called infeasible weight scenarios. 3776 * 3777 * [XXX expand on: 3778 * - infeasible weights; 3779 * - local vs global optima in the discrete case. ] 3780 * 3781 * 3782 * SCHED DOMAINS 3783 * 3784 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2) 3785 * for all i,j solution, we create a tree of cpus that follows the hardware 3786 * topology where each level pairs two lower groups (or better). This results 3787 * in O(log n) layers. Furthermore we reduce the number of cpus going up the 3788 * tree to only the first of the previous level and we decrease the frequency 3789 * of load-balance at each level inv. proportional to the number of cpus in 3790 * the groups. 3791 * 3792 * This yields: 3793 * 3794 * log_2 n 1 n 3795 * \Sum { --- * --- * 2^i } = O(n) (5) 3796 * i = 0 2^i 2^i 3797 * `- size of each group 3798 * | | `- number of cpus doing load-balance 3799 * | `- freq 3800 * `- sum over all levels 3801 * 3802 * Coupled with a limit on how many tasks we can migrate every balance pass, 3803 * this makes (5) the runtime complexity of the balancer. 3804 * 3805 * An important property here is that each CPU is still (indirectly) connected 3806 * to every other cpu in at most O(log n) steps: 3807 * 3808 * The adjacency matrix of the resulting graph is given by: 3809 * 3810 * log_2 n 3811 * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6) 3812 * k = 0 3813 * 3814 * And you'll find that: 3815 * 3816 * A^(log_2 n)_i,j != 0 for all i,j (7) 3817 * 3818 * Showing there's indeed a path between every cpu in at most O(log n) steps. 3819 * The task movement gives a factor of O(m), giving a convergence complexity 3820 * of: 3821 * 3822 * O(nm log n), n := nr_cpus, m := nr_tasks (8) 3823 * 3824 * 3825 * WORK CONSERVING 3826 * 3827 * In order to avoid CPUs going idle while there's still work to do, new idle 3828 * balancing is more aggressive and has the newly idle cpu iterate up the domain 3829 * tree itself instead of relying on other CPUs to bring it work. 3830 * 3831 * This adds some complexity to both (5) and (8) but it reduces the total idle 3832 * time. 3833 * 3834 * [XXX more?] 3835 * 3836 * 3837 * CGROUPS 3838 * 3839 * Cgroups make a horror show out of (2), instead of a simple sum we get: 3840 * 3841 * s_k,i 3842 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9) 3843 * S_k 3844 * 3845 * Where 3846 * 3847 * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10) 3848 * 3849 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on cpu i. 3850 * 3851 * The big problem is S_k, its a global sum needed to compute a local (W_i) 3852 * property. 3853 * 3854 * [XXX write more on how we solve this.. _after_ merging pjt's patches that 3855 * rewrite all of this once again.] 3856 */ 3857 3858 static unsigned long __read_mostly max_load_balance_interval = HZ/10; 3859 3860 #define LBF_ALL_PINNED 0x01 3861 #define LBF_NEED_BREAK 0x02 3862 #define LBF_SOME_PINNED 0x04 3863 3864 struct lb_env { 3865 struct sched_domain *sd; 3866 3867 struct rq *src_rq; 3868 int src_cpu; 3869 3870 int dst_cpu; 3871 struct rq *dst_rq; 3872 3873 struct cpumask *dst_grpmask; 3874 int new_dst_cpu; 3875 enum cpu_idle_type idle; 3876 long imbalance; 3877 /* The set of CPUs under consideration for load-balancing */ 3878 struct cpumask *cpus; 3879 3880 unsigned int flags; 3881 3882 unsigned int loop; 3883 unsigned int loop_break; 3884 unsigned int loop_max; 3885 }; 3886 3887 /* 3888 * move_task - move a task from one runqueue to another runqueue. 3889 * Both runqueues must be locked. 3890 */ 3891 static void move_task(struct task_struct *p, struct lb_env *env) 3892 { 3893 deactivate_task(env->src_rq, p, 0); 3894 set_task_cpu(p, env->dst_cpu); 3895 activate_task(env->dst_rq, p, 0); 3896 check_preempt_curr(env->dst_rq, p, 0); 3897 } 3898 3899 /* 3900 * Is this task likely cache-hot: 3901 */ 3902 static int 3903 task_hot(struct task_struct *p, u64 now, struct sched_domain *sd) 3904 { 3905 s64 delta; 3906 3907 if (p->sched_class != &fair_sched_class) 3908 return 0; 3909 3910 if (unlikely(p->policy == SCHED_IDLE)) 3911 return 0; 3912 3913 /* 3914 * Buddy candidates are cache hot: 3915 */ 3916 if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running && 3917 (&p->se == cfs_rq_of(&p->se)->next || 3918 &p->se == cfs_rq_of(&p->se)->last)) 3919 return 1; 3920 3921 if (sysctl_sched_migration_cost == -1) 3922 return 1; 3923 if (sysctl_sched_migration_cost == 0) 3924 return 0; 3925 3926 delta = now - p->se.exec_start; 3927 3928 return delta < (s64)sysctl_sched_migration_cost; 3929 } 3930 3931 /* 3932 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu? 3933 */ 3934 static 3935 int can_migrate_task(struct task_struct *p, struct lb_env *env) 3936 { 3937 int tsk_cache_hot = 0; 3938 /* 3939 * We do not migrate tasks that are: 3940 * 1) throttled_lb_pair, or 3941 * 2) cannot be migrated to this CPU due to cpus_allowed, or 3942 * 3) running (obviously), or 3943 * 4) are cache-hot on their current CPU. 3944 */ 3945 if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu)) 3946 return 0; 3947 3948 if (!cpumask_test_cpu(env->dst_cpu, tsk_cpus_allowed(p))) { 3949 int cpu; 3950 3951 schedstat_inc(p, se.statistics.nr_failed_migrations_affine); 3952 3953 /* 3954 * Remember if this task can be migrated to any other cpu in 3955 * our sched_group. We may want to revisit it if we couldn't 3956 * meet load balance goals by pulling other tasks on src_cpu. 3957 * 3958 * Also avoid computing new_dst_cpu if we have already computed 3959 * one in current iteration. 3960 */ 3961 if (!env->dst_grpmask || (env->flags & LBF_SOME_PINNED)) 3962 return 0; 3963 3964 /* Prevent to re-select dst_cpu via env's cpus */ 3965 for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) { 3966 if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p))) { 3967 env->flags |= LBF_SOME_PINNED; 3968 env->new_dst_cpu = cpu; 3969 break; 3970 } 3971 } 3972 3973 return 0; 3974 } 3975 3976 /* Record that we found atleast one task that could run on dst_cpu */ 3977 env->flags &= ~LBF_ALL_PINNED; 3978 3979 if (task_running(env->src_rq, p)) { 3980 schedstat_inc(p, se.statistics.nr_failed_migrations_running); 3981 return 0; 3982 } 3983 3984 /* 3985 * Aggressive migration if: 3986 * 1) task is cache cold, or 3987 * 2) too many balance attempts have failed. 3988 */ 3989 3990 tsk_cache_hot = task_hot(p, rq_clock_task(env->src_rq), env->sd); 3991 if (!tsk_cache_hot || 3992 env->sd->nr_balance_failed > env->sd->cache_nice_tries) { 3993 3994 if (tsk_cache_hot) { 3995 schedstat_inc(env->sd, lb_hot_gained[env->idle]); 3996 schedstat_inc(p, se.statistics.nr_forced_migrations); 3997 } 3998 3999 return 1; 4000 } 4001 4002 schedstat_inc(p, se.statistics.nr_failed_migrations_hot); 4003 return 0; 4004 } 4005 4006 /* 4007 * move_one_task tries to move exactly one task from busiest to this_rq, as 4008 * part of active balancing operations within "domain". 4009 * Returns 1 if successful and 0 otherwise. 4010 * 4011 * Called with both runqueues locked. 4012 */ 4013 static int move_one_task(struct lb_env *env) 4014 { 4015 struct task_struct *p, *n; 4016 4017 list_for_each_entry_safe(p, n, &env->src_rq->cfs_tasks, se.group_node) { 4018 if (!can_migrate_task(p, env)) 4019 continue; 4020 4021 move_task(p, env); 4022 /* 4023 * Right now, this is only the second place move_task() 4024 * is called, so we can safely collect move_task() 4025 * stats here rather than inside move_task(). 4026 */ 4027 schedstat_inc(env->sd, lb_gained[env->idle]); 4028 return 1; 4029 } 4030 return 0; 4031 } 4032 4033 static unsigned long task_h_load(struct task_struct *p); 4034 4035 static const unsigned int sched_nr_migrate_break = 32; 4036 4037 /* 4038 * move_tasks tries to move up to imbalance weighted load from busiest to 4039 * this_rq, as part of a balancing operation within domain "sd". 4040 * Returns 1 if successful and 0 otherwise. 4041 * 4042 * Called with both runqueues locked. 4043 */ 4044 static int move_tasks(struct lb_env *env) 4045 { 4046 struct list_head *tasks = &env->src_rq->cfs_tasks; 4047 struct task_struct *p; 4048 unsigned long load; 4049 int pulled = 0; 4050 4051 if (env->imbalance <= 0) 4052 return 0; 4053 4054 while (!list_empty(tasks)) { 4055 p = list_first_entry(tasks, struct task_struct, se.group_node); 4056 4057 env->loop++; 4058 /* We've more or less seen every task there is, call it quits */ 4059 if (env->loop > env->loop_max) 4060 break; 4061 4062 /* take a breather every nr_migrate tasks */ 4063 if (env->loop > env->loop_break) { 4064 env->loop_break += sched_nr_migrate_break; 4065 env->flags |= LBF_NEED_BREAK; 4066 break; 4067 } 4068 4069 if (!can_migrate_task(p, env)) 4070 goto next; 4071 4072 load = task_h_load(p); 4073 4074 if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed) 4075 goto next; 4076 4077 if ((load / 2) > env->imbalance) 4078 goto next; 4079 4080 move_task(p, env); 4081 pulled++; 4082 env->imbalance -= load; 4083 4084 #ifdef CONFIG_PREEMPT 4085 /* 4086 * NEWIDLE balancing is a source of latency, so preemptible 4087 * kernels will stop after the first task is pulled to minimize 4088 * the critical section. 4089 */ 4090 if (env->idle == CPU_NEWLY_IDLE) 4091 break; 4092 #endif 4093 4094 /* 4095 * We only want to steal up to the prescribed amount of 4096 * weighted load. 4097 */ 4098 if (env->imbalance <= 0) 4099 break; 4100 4101 continue; 4102 next: 4103 list_move_tail(&p->se.group_node, tasks); 4104 } 4105 4106 /* 4107 * Right now, this is one of only two places move_task() is called, 4108 * so we can safely collect move_task() stats here rather than 4109 * inside move_task(). 4110 */ 4111 schedstat_add(env->sd, lb_gained[env->idle], pulled); 4112 4113 return pulled; 4114 } 4115 4116 #ifdef CONFIG_FAIR_GROUP_SCHED 4117 /* 4118 * update tg->load_weight by folding this cpu's load_avg 4119 */ 4120 static void __update_blocked_averages_cpu(struct task_group *tg, int cpu) 4121 { 4122 struct sched_entity *se = tg->se[cpu]; 4123 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu]; 4124 4125 /* throttled entities do not contribute to load */ 4126 if (throttled_hierarchy(cfs_rq)) 4127 return; 4128 4129 update_cfs_rq_blocked_load(cfs_rq, 1); 4130 4131 if (se) { 4132 update_entity_load_avg(se, 1); 4133 /* 4134 * We pivot on our runnable average having decayed to zero for 4135 * list removal. This generally implies that all our children 4136 * have also been removed (modulo rounding error or bandwidth 4137 * control); however, such cases are rare and we can fix these 4138 * at enqueue. 4139 * 4140 * TODO: fix up out-of-order children on enqueue. 4141 */ 4142 if (!se->avg.runnable_avg_sum && !cfs_rq->nr_running) 4143 list_del_leaf_cfs_rq(cfs_rq); 4144 } else { 4145 struct rq *rq = rq_of(cfs_rq); 4146 update_rq_runnable_avg(rq, rq->nr_running); 4147 } 4148 } 4149 4150 static void update_blocked_averages(int cpu) 4151 { 4152 struct rq *rq = cpu_rq(cpu); 4153 struct cfs_rq *cfs_rq; 4154 unsigned long flags; 4155 4156 raw_spin_lock_irqsave(&rq->lock, flags); 4157 update_rq_clock(rq); 4158 /* 4159 * Iterates the task_group tree in a bottom up fashion, see 4160 * list_add_leaf_cfs_rq() for details. 4161 */ 4162 for_each_leaf_cfs_rq(rq, cfs_rq) { 4163 /* 4164 * Note: We may want to consider periodically releasing 4165 * rq->lock about these updates so that creating many task 4166 * groups does not result in continually extending hold time. 4167 */ 4168 __update_blocked_averages_cpu(cfs_rq->tg, rq->cpu); 4169 } 4170 4171 raw_spin_unlock_irqrestore(&rq->lock, flags); 4172 } 4173 4174 /* 4175 * Compute the cpu's hierarchical load factor for each task group. 4176 * This needs to be done in a top-down fashion because the load of a child 4177 * group is a fraction of its parents load. 4178 */ 4179 static int tg_load_down(struct task_group *tg, void *data) 4180 { 4181 unsigned long load; 4182 long cpu = (long)data; 4183 4184 if (!tg->parent) { 4185 load = cpu_rq(cpu)->avg.load_avg_contrib; 4186 } else { 4187 load = tg->parent->cfs_rq[cpu]->h_load; 4188 load = div64_ul(load * tg->se[cpu]->avg.load_avg_contrib, 4189 tg->parent->cfs_rq[cpu]->runnable_load_avg + 1); 4190 } 4191 4192 tg->cfs_rq[cpu]->h_load = load; 4193 4194 return 0; 4195 } 4196 4197 static void update_h_load(long cpu) 4198 { 4199 struct rq *rq = cpu_rq(cpu); 4200 unsigned long now = jiffies; 4201 4202 if (rq->h_load_throttle == now) 4203 return; 4204 4205 rq->h_load_throttle = now; 4206 4207 rcu_read_lock(); 4208 walk_tg_tree(tg_load_down, tg_nop, (void *)cpu); 4209 rcu_read_unlock(); 4210 } 4211 4212 static unsigned long task_h_load(struct task_struct *p) 4213 { 4214 struct cfs_rq *cfs_rq = task_cfs_rq(p); 4215 4216 return div64_ul(p->se.avg.load_avg_contrib * cfs_rq->h_load, 4217 cfs_rq->runnable_load_avg + 1); 4218 } 4219 #else 4220 static inline void update_blocked_averages(int cpu) 4221 { 4222 } 4223 4224 static inline void update_h_load(long cpu) 4225 { 4226 } 4227 4228 static unsigned long task_h_load(struct task_struct *p) 4229 { 4230 return p->se.avg.load_avg_contrib; 4231 } 4232 #endif 4233 4234 /********** Helpers for find_busiest_group ************************/ 4235 /* 4236 * sd_lb_stats - Structure to store the statistics of a sched_domain 4237 * during load balancing. 4238 */ 4239 struct sd_lb_stats { 4240 struct sched_group *busiest; /* Busiest group in this sd */ 4241 struct sched_group *this; /* Local group in this sd */ 4242 unsigned long total_load; /* Total load of all groups in sd */ 4243 unsigned long total_pwr; /* Total power of all groups in sd */ 4244 unsigned long avg_load; /* Average load across all groups in sd */ 4245 4246 /** Statistics of this group */ 4247 unsigned long this_load; 4248 unsigned long this_load_per_task; 4249 unsigned long this_nr_running; 4250 unsigned long this_has_capacity; 4251 unsigned int this_idle_cpus; 4252 4253 /* Statistics of the busiest group */ 4254 unsigned int busiest_idle_cpus; 4255 unsigned long max_load; 4256 unsigned long busiest_load_per_task; 4257 unsigned long busiest_nr_running; 4258 unsigned long busiest_group_capacity; 4259 unsigned long busiest_has_capacity; 4260 unsigned int busiest_group_weight; 4261 4262 int group_imb; /* Is there imbalance in this sd */ 4263 }; 4264 4265 /* 4266 * sg_lb_stats - stats of a sched_group required for load_balancing 4267 */ 4268 struct sg_lb_stats { 4269 unsigned long avg_load; /*Avg load across the CPUs of the group */ 4270 unsigned long group_load; /* Total load over the CPUs of the group */ 4271 unsigned long sum_nr_running; /* Nr tasks running in the group */ 4272 unsigned long sum_weighted_load; /* Weighted load of group's tasks */ 4273 unsigned long group_capacity; 4274 unsigned long idle_cpus; 4275 unsigned long group_weight; 4276 int group_imb; /* Is there an imbalance in the group ? */ 4277 int group_has_capacity; /* Is there extra capacity in the group? */ 4278 }; 4279 4280 /** 4281 * get_sd_load_idx - Obtain the load index for a given sched domain. 4282 * @sd: The sched_domain whose load_idx is to be obtained. 4283 * @idle: The Idle status of the CPU for whose sd load_icx is obtained. 4284 * 4285 * Return: The load index. 4286 */ 4287 static inline int get_sd_load_idx(struct sched_domain *sd, 4288 enum cpu_idle_type idle) 4289 { 4290 int load_idx; 4291 4292 switch (idle) { 4293 case CPU_NOT_IDLE: 4294 load_idx = sd->busy_idx; 4295 break; 4296 4297 case CPU_NEWLY_IDLE: 4298 load_idx = sd->newidle_idx; 4299 break; 4300 default: 4301 load_idx = sd->idle_idx; 4302 break; 4303 } 4304 4305 return load_idx; 4306 } 4307 4308 static unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu) 4309 { 4310 return SCHED_POWER_SCALE; 4311 } 4312 4313 unsigned long __weak arch_scale_freq_power(struct sched_domain *sd, int cpu) 4314 { 4315 return default_scale_freq_power(sd, cpu); 4316 } 4317 4318 static unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu) 4319 { 4320 unsigned long weight = sd->span_weight; 4321 unsigned long smt_gain = sd->smt_gain; 4322 4323 smt_gain /= weight; 4324 4325 return smt_gain; 4326 } 4327 4328 unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu) 4329 { 4330 return default_scale_smt_power(sd, cpu); 4331 } 4332 4333 static unsigned long scale_rt_power(int cpu) 4334 { 4335 struct rq *rq = cpu_rq(cpu); 4336 u64 total, available, age_stamp, avg; 4337 4338 /* 4339 * Since we're reading these variables without serialization make sure 4340 * we read them once before doing sanity checks on them. 4341 */ 4342 age_stamp = ACCESS_ONCE(rq->age_stamp); 4343 avg = ACCESS_ONCE(rq->rt_avg); 4344 4345 total = sched_avg_period() + (rq_clock(rq) - age_stamp); 4346 4347 if (unlikely(total < avg)) { 4348 /* Ensures that power won't end up being negative */ 4349 available = 0; 4350 } else { 4351 available = total - avg; 4352 } 4353 4354 if (unlikely((s64)total < SCHED_POWER_SCALE)) 4355 total = SCHED_POWER_SCALE; 4356 4357 total >>= SCHED_POWER_SHIFT; 4358 4359 return div_u64(available, total); 4360 } 4361 4362 static void update_cpu_power(struct sched_domain *sd, int cpu) 4363 { 4364 unsigned long weight = sd->span_weight; 4365 unsigned long power = SCHED_POWER_SCALE; 4366 struct sched_group *sdg = sd->groups; 4367 4368 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) { 4369 if (sched_feat(ARCH_POWER)) 4370 power *= arch_scale_smt_power(sd, cpu); 4371 else 4372 power *= default_scale_smt_power(sd, cpu); 4373 4374 power >>= SCHED_POWER_SHIFT; 4375 } 4376 4377 sdg->sgp->power_orig = power; 4378 4379 if (sched_feat(ARCH_POWER)) 4380 power *= arch_scale_freq_power(sd, cpu); 4381 else 4382 power *= default_scale_freq_power(sd, cpu); 4383 4384 power >>= SCHED_POWER_SHIFT; 4385 4386 power *= scale_rt_power(cpu); 4387 power >>= SCHED_POWER_SHIFT; 4388 4389 if (!power) 4390 power = 1; 4391 4392 cpu_rq(cpu)->cpu_power = power; 4393 sdg->sgp->power = power; 4394 } 4395 4396 void update_group_power(struct sched_domain *sd, int cpu) 4397 { 4398 struct sched_domain *child = sd->child; 4399 struct sched_group *group, *sdg = sd->groups; 4400 unsigned long power; 4401 unsigned long interval; 4402 4403 interval = msecs_to_jiffies(sd->balance_interval); 4404 interval = clamp(interval, 1UL, max_load_balance_interval); 4405 sdg->sgp->next_update = jiffies + interval; 4406 4407 if (!child) { 4408 update_cpu_power(sd, cpu); 4409 return; 4410 } 4411 4412 power = 0; 4413 4414 if (child->flags & SD_OVERLAP) { 4415 /* 4416 * SD_OVERLAP domains cannot assume that child groups 4417 * span the current group. 4418 */ 4419 4420 for_each_cpu(cpu, sched_group_cpus(sdg)) 4421 power += power_of(cpu); 4422 } else { 4423 /* 4424 * !SD_OVERLAP domains can assume that child groups 4425 * span the current group. 4426 */ 4427 4428 group = child->groups; 4429 do { 4430 power += group->sgp->power; 4431 group = group->next; 4432 } while (group != child->groups); 4433 } 4434 4435 sdg->sgp->power_orig = sdg->sgp->power = power; 4436 } 4437 4438 /* 4439 * Try and fix up capacity for tiny siblings, this is needed when 4440 * things like SD_ASYM_PACKING need f_b_g to select another sibling 4441 * which on its own isn't powerful enough. 4442 * 4443 * See update_sd_pick_busiest() and check_asym_packing(). 4444 */ 4445 static inline int 4446 fix_small_capacity(struct sched_domain *sd, struct sched_group *group) 4447 { 4448 /* 4449 * Only siblings can have significantly less than SCHED_POWER_SCALE 4450 */ 4451 if (!(sd->flags & SD_SHARE_CPUPOWER)) 4452 return 0; 4453 4454 /* 4455 * If ~90% of the cpu_power is still there, we're good. 4456 */ 4457 if (group->sgp->power * 32 > group->sgp->power_orig * 29) 4458 return 1; 4459 4460 return 0; 4461 } 4462 4463 /** 4464 * update_sg_lb_stats - Update sched_group's statistics for load balancing. 4465 * @env: The load balancing environment. 4466 * @group: sched_group whose statistics are to be updated. 4467 * @load_idx: Load index of sched_domain of this_cpu for load calc. 4468 * @local_group: Does group contain this_cpu. 4469 * @balance: Should we balance. 4470 * @sgs: variable to hold the statistics for this group. 4471 */ 4472 static inline void update_sg_lb_stats(struct lb_env *env, 4473 struct sched_group *group, int load_idx, 4474 int local_group, int *balance, struct sg_lb_stats *sgs) 4475 { 4476 unsigned long nr_running, max_nr_running, min_nr_running; 4477 unsigned long load, max_cpu_load, min_cpu_load; 4478 unsigned int balance_cpu = -1, first_idle_cpu = 0; 4479 unsigned long avg_load_per_task = 0; 4480 int i; 4481 4482 if (local_group) 4483 balance_cpu = group_balance_cpu(group); 4484 4485 /* Tally up the load of all CPUs in the group */ 4486 max_cpu_load = 0; 4487 min_cpu_load = ~0UL; 4488 max_nr_running = 0; 4489 min_nr_running = ~0UL; 4490 4491 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) { 4492 struct rq *rq = cpu_rq(i); 4493 4494 nr_running = rq->nr_running; 4495 4496 /* Bias balancing toward cpus of our domain */ 4497 if (local_group) { 4498 if (idle_cpu(i) && !first_idle_cpu && 4499 cpumask_test_cpu(i, sched_group_mask(group))) { 4500 first_idle_cpu = 1; 4501 balance_cpu = i; 4502 } 4503 4504 load = target_load(i, load_idx); 4505 } else { 4506 load = source_load(i, load_idx); 4507 if (load > max_cpu_load) 4508 max_cpu_load = load; 4509 if (min_cpu_load > load) 4510 min_cpu_load = load; 4511 4512 if (nr_running > max_nr_running) 4513 max_nr_running = nr_running; 4514 if (min_nr_running > nr_running) 4515 min_nr_running = nr_running; 4516 } 4517 4518 sgs->group_load += load; 4519 sgs->sum_nr_running += nr_running; 4520 sgs->sum_weighted_load += weighted_cpuload(i); 4521 if (idle_cpu(i)) 4522 sgs->idle_cpus++; 4523 } 4524 4525 /* 4526 * First idle cpu or the first cpu(busiest) in this sched group 4527 * is eligible for doing load balancing at this and above 4528 * domains. In the newly idle case, we will allow all the cpu's 4529 * to do the newly idle load balance. 4530 */ 4531 if (local_group) { 4532 if (env->idle != CPU_NEWLY_IDLE) { 4533 if (balance_cpu != env->dst_cpu) { 4534 *balance = 0; 4535 return; 4536 } 4537 update_group_power(env->sd, env->dst_cpu); 4538 } else if (time_after_eq(jiffies, group->sgp->next_update)) 4539 update_group_power(env->sd, env->dst_cpu); 4540 } 4541 4542 /* Adjust by relative CPU power of the group */ 4543 sgs->avg_load = (sgs->group_load*SCHED_POWER_SCALE) / group->sgp->power; 4544 4545 /* 4546 * Consider the group unbalanced when the imbalance is larger 4547 * than the average weight of a task. 4548 * 4549 * APZ: with cgroup the avg task weight can vary wildly and 4550 * might not be a suitable number - should we keep a 4551 * normalized nr_running number somewhere that negates 4552 * the hierarchy? 4553 */ 4554 if (sgs->sum_nr_running) 4555 avg_load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running; 4556 4557 if ((max_cpu_load - min_cpu_load) >= avg_load_per_task && 4558 (max_nr_running - min_nr_running) > 1) 4559 sgs->group_imb = 1; 4560 4561 sgs->group_capacity = DIV_ROUND_CLOSEST(group->sgp->power, 4562 SCHED_POWER_SCALE); 4563 if (!sgs->group_capacity) 4564 sgs->group_capacity = fix_small_capacity(env->sd, group); 4565 sgs->group_weight = group->group_weight; 4566 4567 if (sgs->group_capacity > sgs->sum_nr_running) 4568 sgs->group_has_capacity = 1; 4569 } 4570 4571 /** 4572 * update_sd_pick_busiest - return 1 on busiest group 4573 * @env: The load balancing environment. 4574 * @sds: sched_domain statistics 4575 * @sg: sched_group candidate to be checked for being the busiest 4576 * @sgs: sched_group statistics 4577 * 4578 * Determine if @sg is a busier group than the previously selected 4579 * busiest group. 4580 * 4581 * Return: %true if @sg is a busier group than the previously selected 4582 * busiest group. %false otherwise. 4583 */ 4584 static bool update_sd_pick_busiest(struct lb_env *env, 4585 struct sd_lb_stats *sds, 4586 struct sched_group *sg, 4587 struct sg_lb_stats *sgs) 4588 { 4589 if (sgs->avg_load <= sds->max_load) 4590 return false; 4591 4592 if (sgs->sum_nr_running > sgs->group_capacity) 4593 return true; 4594 4595 if (sgs->group_imb) 4596 return true; 4597 4598 /* 4599 * ASYM_PACKING needs to move all the work to the lowest 4600 * numbered CPUs in the group, therefore mark all groups 4601 * higher than ourself as busy. 4602 */ 4603 if ((env->sd->flags & SD_ASYM_PACKING) && sgs->sum_nr_running && 4604 env->dst_cpu < group_first_cpu(sg)) { 4605 if (!sds->busiest) 4606 return true; 4607 4608 if (group_first_cpu(sds->busiest) > group_first_cpu(sg)) 4609 return true; 4610 } 4611 4612 return false; 4613 } 4614 4615 /** 4616 * update_sd_lb_stats - Update sched_domain's statistics for load balancing. 4617 * @env: The load balancing environment. 4618 * @balance: Should we balance. 4619 * @sds: variable to hold the statistics for this sched_domain. 4620 */ 4621 static inline void update_sd_lb_stats(struct lb_env *env, 4622 int *balance, struct sd_lb_stats *sds) 4623 { 4624 struct sched_domain *child = env->sd->child; 4625 struct sched_group *sg = env->sd->groups; 4626 struct sg_lb_stats sgs; 4627 int load_idx, prefer_sibling = 0; 4628 4629 if (child && child->flags & SD_PREFER_SIBLING) 4630 prefer_sibling = 1; 4631 4632 load_idx = get_sd_load_idx(env->sd, env->idle); 4633 4634 do { 4635 int local_group; 4636 4637 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_cpus(sg)); 4638 memset(&sgs, 0, sizeof(sgs)); 4639 update_sg_lb_stats(env, sg, load_idx, local_group, balance, &sgs); 4640 4641 if (local_group && !(*balance)) 4642 return; 4643 4644 sds->total_load += sgs.group_load; 4645 sds->total_pwr += sg->sgp->power; 4646 4647 /* 4648 * In case the child domain prefers tasks go to siblings 4649 * first, lower the sg capacity to one so that we'll try 4650 * and move all the excess tasks away. We lower the capacity 4651 * of a group only if the local group has the capacity to fit 4652 * these excess tasks, i.e. nr_running < group_capacity. The 4653 * extra check prevents the case where you always pull from the 4654 * heaviest group when it is already under-utilized (possible 4655 * with a large weight task outweighs the tasks on the system). 4656 */ 4657 if (prefer_sibling && !local_group && sds->this_has_capacity) 4658 sgs.group_capacity = min(sgs.group_capacity, 1UL); 4659 4660 if (local_group) { 4661 sds->this_load = sgs.avg_load; 4662 sds->this = sg; 4663 sds->this_nr_running = sgs.sum_nr_running; 4664 sds->this_load_per_task = sgs.sum_weighted_load; 4665 sds->this_has_capacity = sgs.group_has_capacity; 4666 sds->this_idle_cpus = sgs.idle_cpus; 4667 } else if (update_sd_pick_busiest(env, sds, sg, &sgs)) { 4668 sds->max_load = sgs.avg_load; 4669 sds->busiest = sg; 4670 sds->busiest_nr_running = sgs.sum_nr_running; 4671 sds->busiest_idle_cpus = sgs.idle_cpus; 4672 sds->busiest_group_capacity = sgs.group_capacity; 4673 sds->busiest_load_per_task = sgs.sum_weighted_load; 4674 sds->busiest_has_capacity = sgs.group_has_capacity; 4675 sds->busiest_group_weight = sgs.group_weight; 4676 sds->group_imb = sgs.group_imb; 4677 } 4678 4679 sg = sg->next; 4680 } while (sg != env->sd->groups); 4681 } 4682 4683 /** 4684 * check_asym_packing - Check to see if the group is packed into the 4685 * sched doman. 4686 * 4687 * This is primarily intended to used at the sibling level. Some 4688 * cores like POWER7 prefer to use lower numbered SMT threads. In the 4689 * case of POWER7, it can move to lower SMT modes only when higher 4690 * threads are idle. When in lower SMT modes, the threads will 4691 * perform better since they share less core resources. Hence when we 4692 * have idle threads, we want them to be the higher ones. 4693 * 4694 * This packing function is run on idle threads. It checks to see if 4695 * the busiest CPU in this domain (core in the P7 case) has a higher 4696 * CPU number than the packing function is being run on. Here we are 4697 * assuming lower CPU number will be equivalent to lower a SMT thread 4698 * number. 4699 * 4700 * Return: 1 when packing is required and a task should be moved to 4701 * this CPU. The amount of the imbalance is returned in *imbalance. 4702 * 4703 * @env: The load balancing environment. 4704 * @sds: Statistics of the sched_domain which is to be packed 4705 */ 4706 static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds) 4707 { 4708 int busiest_cpu; 4709 4710 if (!(env->sd->flags & SD_ASYM_PACKING)) 4711 return 0; 4712 4713 if (!sds->busiest) 4714 return 0; 4715 4716 busiest_cpu = group_first_cpu(sds->busiest); 4717 if (env->dst_cpu > busiest_cpu) 4718 return 0; 4719 4720 env->imbalance = DIV_ROUND_CLOSEST( 4721 sds->max_load * sds->busiest->sgp->power, SCHED_POWER_SCALE); 4722 4723 return 1; 4724 } 4725 4726 /** 4727 * fix_small_imbalance - Calculate the minor imbalance that exists 4728 * amongst the groups of a sched_domain, during 4729 * load balancing. 4730 * @env: The load balancing environment. 4731 * @sds: Statistics of the sched_domain whose imbalance is to be calculated. 4732 */ 4733 static inline 4734 void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds) 4735 { 4736 unsigned long tmp, pwr_now = 0, pwr_move = 0; 4737 unsigned int imbn = 2; 4738 unsigned long scaled_busy_load_per_task; 4739 4740 if (sds->this_nr_running) { 4741 sds->this_load_per_task /= sds->this_nr_running; 4742 if (sds->busiest_load_per_task > 4743 sds->this_load_per_task) 4744 imbn = 1; 4745 } else { 4746 sds->this_load_per_task = 4747 cpu_avg_load_per_task(env->dst_cpu); 4748 } 4749 4750 scaled_busy_load_per_task = sds->busiest_load_per_task 4751 * SCHED_POWER_SCALE; 4752 scaled_busy_load_per_task /= sds->busiest->sgp->power; 4753 4754 if (sds->max_load - sds->this_load + scaled_busy_load_per_task >= 4755 (scaled_busy_load_per_task * imbn)) { 4756 env->imbalance = sds->busiest_load_per_task; 4757 return; 4758 } 4759 4760 /* 4761 * OK, we don't have enough imbalance to justify moving tasks, 4762 * however we may be able to increase total CPU power used by 4763 * moving them. 4764 */ 4765 4766 pwr_now += sds->busiest->sgp->power * 4767 min(sds->busiest_load_per_task, sds->max_load); 4768 pwr_now += sds->this->sgp->power * 4769 min(sds->this_load_per_task, sds->this_load); 4770 pwr_now /= SCHED_POWER_SCALE; 4771 4772 /* Amount of load we'd subtract */ 4773 tmp = (sds->busiest_load_per_task * SCHED_POWER_SCALE) / 4774 sds->busiest->sgp->power; 4775 if (sds->max_load > tmp) 4776 pwr_move += sds->busiest->sgp->power * 4777 min(sds->busiest_load_per_task, sds->max_load - tmp); 4778 4779 /* Amount of load we'd add */ 4780 if (sds->max_load * sds->busiest->sgp->power < 4781 sds->busiest_load_per_task * SCHED_POWER_SCALE) 4782 tmp = (sds->max_load * sds->busiest->sgp->power) / 4783 sds->this->sgp->power; 4784 else 4785 tmp = (sds->busiest_load_per_task * SCHED_POWER_SCALE) / 4786 sds->this->sgp->power; 4787 pwr_move += sds->this->sgp->power * 4788 min(sds->this_load_per_task, sds->this_load + tmp); 4789 pwr_move /= SCHED_POWER_SCALE; 4790 4791 /* Move if we gain throughput */ 4792 if (pwr_move > pwr_now) 4793 env->imbalance = sds->busiest_load_per_task; 4794 } 4795 4796 /** 4797 * calculate_imbalance - Calculate the amount of imbalance present within the 4798 * groups of a given sched_domain during load balance. 4799 * @env: load balance environment 4800 * @sds: statistics of the sched_domain whose imbalance is to be calculated. 4801 */ 4802 static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds) 4803 { 4804 unsigned long max_pull, load_above_capacity = ~0UL; 4805 4806 sds->busiest_load_per_task /= sds->busiest_nr_running; 4807 if (sds->group_imb) { 4808 sds->busiest_load_per_task = 4809 min(sds->busiest_load_per_task, sds->avg_load); 4810 } 4811 4812 /* 4813 * In the presence of smp nice balancing, certain scenarios can have 4814 * max load less than avg load(as we skip the groups at or below 4815 * its cpu_power, while calculating max_load..) 4816 */ 4817 if (sds->max_load < sds->avg_load) { 4818 env->imbalance = 0; 4819 return fix_small_imbalance(env, sds); 4820 } 4821 4822 if (!sds->group_imb) { 4823 /* 4824 * Don't want to pull so many tasks that a group would go idle. 4825 */ 4826 load_above_capacity = (sds->busiest_nr_running - 4827 sds->busiest_group_capacity); 4828 4829 load_above_capacity *= (SCHED_LOAD_SCALE * SCHED_POWER_SCALE); 4830 4831 load_above_capacity /= sds->busiest->sgp->power; 4832 } 4833 4834 /* 4835 * We're trying to get all the cpus to the average_load, so we don't 4836 * want to push ourselves above the average load, nor do we wish to 4837 * reduce the max loaded cpu below the average load. At the same time, 4838 * we also don't want to reduce the group load below the group capacity 4839 * (so that we can implement power-savings policies etc). Thus we look 4840 * for the minimum possible imbalance. 4841 * Be careful of negative numbers as they'll appear as very large values 4842 * with unsigned longs. 4843 */ 4844 max_pull = min(sds->max_load - sds->avg_load, load_above_capacity); 4845 4846 /* How much load to actually move to equalise the imbalance */ 4847 env->imbalance = min(max_pull * sds->busiest->sgp->power, 4848 (sds->avg_load - sds->this_load) * sds->this->sgp->power) 4849 / SCHED_POWER_SCALE; 4850 4851 /* 4852 * if *imbalance is less than the average load per runnable task 4853 * there is no guarantee that any tasks will be moved so we'll have 4854 * a think about bumping its value to force at least one task to be 4855 * moved 4856 */ 4857 if (env->imbalance < sds->busiest_load_per_task) 4858 return fix_small_imbalance(env, sds); 4859 4860 } 4861 4862 /******* find_busiest_group() helpers end here *********************/ 4863 4864 /** 4865 * find_busiest_group - Returns the busiest group within the sched_domain 4866 * if there is an imbalance. If there isn't an imbalance, and 4867 * the user has opted for power-savings, it returns a group whose 4868 * CPUs can be put to idle by rebalancing those tasks elsewhere, if 4869 * such a group exists. 4870 * 4871 * Also calculates the amount of weighted load which should be moved 4872 * to restore balance. 4873 * 4874 * @env: The load balancing environment. 4875 * @balance: Pointer to a variable indicating if this_cpu 4876 * is the appropriate cpu to perform load balancing at this_level. 4877 * 4878 * Return: - The busiest group if imbalance exists. 4879 * - If no imbalance and user has opted for power-savings balance, 4880 * return the least loaded group whose CPUs can be 4881 * put to idle by rebalancing its tasks onto our group. 4882 */ 4883 static struct sched_group * 4884 find_busiest_group(struct lb_env *env, int *balance) 4885 { 4886 struct sd_lb_stats sds; 4887 4888 memset(&sds, 0, sizeof(sds)); 4889 4890 /* 4891 * Compute the various statistics relavent for load balancing at 4892 * this level. 4893 */ 4894 update_sd_lb_stats(env, balance, &sds); 4895 4896 /* 4897 * this_cpu is not the appropriate cpu to perform load balancing at 4898 * this level. 4899 */ 4900 if (!(*balance)) 4901 goto ret; 4902 4903 if ((env->idle == CPU_IDLE || env->idle == CPU_NEWLY_IDLE) && 4904 check_asym_packing(env, &sds)) 4905 return sds.busiest; 4906 4907 /* There is no busy sibling group to pull tasks from */ 4908 if (!sds.busiest || sds.busiest_nr_running == 0) 4909 goto out_balanced; 4910 4911 sds.avg_load = (SCHED_POWER_SCALE * sds.total_load) / sds.total_pwr; 4912 4913 /* 4914 * If the busiest group is imbalanced the below checks don't 4915 * work because they assumes all things are equal, which typically 4916 * isn't true due to cpus_allowed constraints and the like. 4917 */ 4918 if (sds.group_imb) 4919 goto force_balance; 4920 4921 /* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */ 4922 if (env->idle == CPU_NEWLY_IDLE && sds.this_has_capacity && 4923 !sds.busiest_has_capacity) 4924 goto force_balance; 4925 4926 /* 4927 * If the local group is more busy than the selected busiest group 4928 * don't try and pull any tasks. 4929 */ 4930 if (sds.this_load >= sds.max_load) 4931 goto out_balanced; 4932 4933 /* 4934 * Don't pull any tasks if this group is already above the domain 4935 * average load. 4936 */ 4937 if (sds.this_load >= sds.avg_load) 4938 goto out_balanced; 4939 4940 if (env->idle == CPU_IDLE) { 4941 /* 4942 * This cpu is idle. If the busiest group load doesn't 4943 * have more tasks than the number of available cpu's and 4944 * there is no imbalance between this and busiest group 4945 * wrt to idle cpu's, it is balanced. 4946 */ 4947 if ((sds.this_idle_cpus <= sds.busiest_idle_cpus + 1) && 4948 sds.busiest_nr_running <= sds.busiest_group_weight) 4949 goto out_balanced; 4950 } else { 4951 /* 4952 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use 4953 * imbalance_pct to be conservative. 4954 */ 4955 if (100 * sds.max_load <= env->sd->imbalance_pct * sds.this_load) 4956 goto out_balanced; 4957 } 4958 4959 force_balance: 4960 /* Looks like there is an imbalance. Compute it */ 4961 calculate_imbalance(env, &sds); 4962 return sds.busiest; 4963 4964 out_balanced: 4965 ret: 4966 env->imbalance = 0; 4967 return NULL; 4968 } 4969 4970 /* 4971 * find_busiest_queue - find the busiest runqueue among the cpus in group. 4972 */ 4973 static struct rq *find_busiest_queue(struct lb_env *env, 4974 struct sched_group *group) 4975 { 4976 struct rq *busiest = NULL, *rq; 4977 unsigned long max_load = 0; 4978 int i; 4979 4980 for_each_cpu(i, sched_group_cpus(group)) { 4981 unsigned long power = power_of(i); 4982 unsigned long capacity = DIV_ROUND_CLOSEST(power, 4983 SCHED_POWER_SCALE); 4984 unsigned long wl; 4985 4986 if (!capacity) 4987 capacity = fix_small_capacity(env->sd, group); 4988 4989 if (!cpumask_test_cpu(i, env->cpus)) 4990 continue; 4991 4992 rq = cpu_rq(i); 4993 wl = weighted_cpuload(i); 4994 4995 /* 4996 * When comparing with imbalance, use weighted_cpuload() 4997 * which is not scaled with the cpu power. 4998 */ 4999 if (capacity && rq->nr_running == 1 && wl > env->imbalance) 5000 continue; 5001 5002 /* 5003 * For the load comparisons with the other cpu's, consider 5004 * the weighted_cpuload() scaled with the cpu power, so that 5005 * the load can be moved away from the cpu that is potentially 5006 * running at a lower capacity. 5007 */ 5008 wl = (wl * SCHED_POWER_SCALE) / power; 5009 5010 if (wl > max_load) { 5011 max_load = wl; 5012 busiest = rq; 5013 } 5014 } 5015 5016 return busiest; 5017 } 5018 5019 /* 5020 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but 5021 * so long as it is large enough. 5022 */ 5023 #define MAX_PINNED_INTERVAL 512 5024 5025 /* Working cpumask for load_balance and load_balance_newidle. */ 5026 DEFINE_PER_CPU(cpumask_var_t, load_balance_mask); 5027 5028 static int need_active_balance(struct lb_env *env) 5029 { 5030 struct sched_domain *sd = env->sd; 5031 5032 if (env->idle == CPU_NEWLY_IDLE) { 5033 5034 /* 5035 * ASYM_PACKING needs to force migrate tasks from busy but 5036 * higher numbered CPUs in order to pack all tasks in the 5037 * lowest numbered CPUs. 5038 */ 5039 if ((sd->flags & SD_ASYM_PACKING) && env->src_cpu > env->dst_cpu) 5040 return 1; 5041 } 5042 5043 return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2); 5044 } 5045 5046 static int active_load_balance_cpu_stop(void *data); 5047 5048 /* 5049 * Check this_cpu to ensure it is balanced within domain. Attempt to move 5050 * tasks if there is an imbalance. 5051 */ 5052 static int load_balance(int this_cpu, struct rq *this_rq, 5053 struct sched_domain *sd, enum cpu_idle_type idle, 5054 int *balance) 5055 { 5056 int ld_moved, cur_ld_moved, active_balance = 0; 5057 struct sched_group *group; 5058 struct rq *busiest; 5059 unsigned long flags; 5060 struct cpumask *cpus = __get_cpu_var(load_balance_mask); 5061 5062 struct lb_env env = { 5063 .sd = sd, 5064 .dst_cpu = this_cpu, 5065 .dst_rq = this_rq, 5066 .dst_grpmask = sched_group_cpus(sd->groups), 5067 .idle = idle, 5068 .loop_break = sched_nr_migrate_break, 5069 .cpus = cpus, 5070 }; 5071 5072 /* 5073 * For NEWLY_IDLE load_balancing, we don't need to consider 5074 * other cpus in our group 5075 */ 5076 if (idle == CPU_NEWLY_IDLE) 5077 env.dst_grpmask = NULL; 5078 5079 cpumask_copy(cpus, cpu_active_mask); 5080 5081 schedstat_inc(sd, lb_count[idle]); 5082 5083 redo: 5084 group = find_busiest_group(&env, balance); 5085 5086 if (*balance == 0) 5087 goto out_balanced; 5088 5089 if (!group) { 5090 schedstat_inc(sd, lb_nobusyg[idle]); 5091 goto out_balanced; 5092 } 5093 5094 busiest = find_busiest_queue(&env, group); 5095 if (!busiest) { 5096 schedstat_inc(sd, lb_nobusyq[idle]); 5097 goto out_balanced; 5098 } 5099 5100 BUG_ON(busiest == env.dst_rq); 5101 5102 schedstat_add(sd, lb_imbalance[idle], env.imbalance); 5103 5104 ld_moved = 0; 5105 if (busiest->nr_running > 1) { 5106 /* 5107 * Attempt to move tasks. If find_busiest_group has found 5108 * an imbalance but busiest->nr_running <= 1, the group is 5109 * still unbalanced. ld_moved simply stays zero, so it is 5110 * correctly treated as an imbalance. 5111 */ 5112 env.flags |= LBF_ALL_PINNED; 5113 env.src_cpu = busiest->cpu; 5114 env.src_rq = busiest; 5115 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running); 5116 5117 update_h_load(env.src_cpu); 5118 more_balance: 5119 local_irq_save(flags); 5120 double_rq_lock(env.dst_rq, busiest); 5121 5122 /* 5123 * cur_ld_moved - load moved in current iteration 5124 * ld_moved - cumulative load moved across iterations 5125 */ 5126 cur_ld_moved = move_tasks(&env); 5127 ld_moved += cur_ld_moved; 5128 double_rq_unlock(env.dst_rq, busiest); 5129 local_irq_restore(flags); 5130 5131 /* 5132 * some other cpu did the load balance for us. 5133 */ 5134 if (cur_ld_moved && env.dst_cpu != smp_processor_id()) 5135 resched_cpu(env.dst_cpu); 5136 5137 if (env.flags & LBF_NEED_BREAK) { 5138 env.flags &= ~LBF_NEED_BREAK; 5139 goto more_balance; 5140 } 5141 5142 /* 5143 * Revisit (affine) tasks on src_cpu that couldn't be moved to 5144 * us and move them to an alternate dst_cpu in our sched_group 5145 * where they can run. The upper limit on how many times we 5146 * iterate on same src_cpu is dependent on number of cpus in our 5147 * sched_group. 5148 * 5149 * This changes load balance semantics a bit on who can move 5150 * load to a given_cpu. In addition to the given_cpu itself 5151 * (or a ilb_cpu acting on its behalf where given_cpu is 5152 * nohz-idle), we now have balance_cpu in a position to move 5153 * load to given_cpu. In rare situations, this may cause 5154 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding 5155 * _independently_ and at _same_ time to move some load to 5156 * given_cpu) causing exceess load to be moved to given_cpu. 5157 * This however should not happen so much in practice and 5158 * moreover subsequent load balance cycles should correct the 5159 * excess load moved. 5160 */ 5161 if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0) { 5162 5163 env.dst_rq = cpu_rq(env.new_dst_cpu); 5164 env.dst_cpu = env.new_dst_cpu; 5165 env.flags &= ~LBF_SOME_PINNED; 5166 env.loop = 0; 5167 env.loop_break = sched_nr_migrate_break; 5168 5169 /* Prevent to re-select dst_cpu via env's cpus */ 5170 cpumask_clear_cpu(env.dst_cpu, env.cpus); 5171 5172 /* 5173 * Go back to "more_balance" rather than "redo" since we 5174 * need to continue with same src_cpu. 5175 */ 5176 goto more_balance; 5177 } 5178 5179 /* All tasks on this runqueue were pinned by CPU affinity */ 5180 if (unlikely(env.flags & LBF_ALL_PINNED)) { 5181 cpumask_clear_cpu(cpu_of(busiest), cpus); 5182 if (!cpumask_empty(cpus)) { 5183 env.loop = 0; 5184 env.loop_break = sched_nr_migrate_break; 5185 goto redo; 5186 } 5187 goto out_balanced; 5188 } 5189 } 5190 5191 if (!ld_moved) { 5192 schedstat_inc(sd, lb_failed[idle]); 5193 /* 5194 * Increment the failure counter only on periodic balance. 5195 * We do not want newidle balance, which can be very 5196 * frequent, pollute the failure counter causing 5197 * excessive cache_hot migrations and active balances. 5198 */ 5199 if (idle != CPU_NEWLY_IDLE) 5200 sd->nr_balance_failed++; 5201 5202 if (need_active_balance(&env)) { 5203 raw_spin_lock_irqsave(&busiest->lock, flags); 5204 5205 /* don't kick the active_load_balance_cpu_stop, 5206 * if the curr task on busiest cpu can't be 5207 * moved to this_cpu 5208 */ 5209 if (!cpumask_test_cpu(this_cpu, 5210 tsk_cpus_allowed(busiest->curr))) { 5211 raw_spin_unlock_irqrestore(&busiest->lock, 5212 flags); 5213 env.flags |= LBF_ALL_PINNED; 5214 goto out_one_pinned; 5215 } 5216 5217 /* 5218 * ->active_balance synchronizes accesses to 5219 * ->active_balance_work. Once set, it's cleared 5220 * only after active load balance is finished. 5221 */ 5222 if (!busiest->active_balance) { 5223 busiest->active_balance = 1; 5224 busiest->push_cpu = this_cpu; 5225 active_balance = 1; 5226 } 5227 raw_spin_unlock_irqrestore(&busiest->lock, flags); 5228 5229 if (active_balance) { 5230 stop_one_cpu_nowait(cpu_of(busiest), 5231 active_load_balance_cpu_stop, busiest, 5232 &busiest->active_balance_work); 5233 } 5234 5235 /* 5236 * We've kicked active balancing, reset the failure 5237 * counter. 5238 */ 5239 sd->nr_balance_failed = sd->cache_nice_tries+1; 5240 } 5241 } else 5242 sd->nr_balance_failed = 0; 5243 5244 if (likely(!active_balance)) { 5245 /* We were unbalanced, so reset the balancing interval */ 5246 sd->balance_interval = sd->min_interval; 5247 } else { 5248 /* 5249 * If we've begun active balancing, start to back off. This 5250 * case may not be covered by the all_pinned logic if there 5251 * is only 1 task on the busy runqueue (because we don't call 5252 * move_tasks). 5253 */ 5254 if (sd->balance_interval < sd->max_interval) 5255 sd->balance_interval *= 2; 5256 } 5257 5258 goto out; 5259 5260 out_balanced: 5261 schedstat_inc(sd, lb_balanced[idle]); 5262 5263 sd->nr_balance_failed = 0; 5264 5265 out_one_pinned: 5266 /* tune up the balancing interval */ 5267 if (((env.flags & LBF_ALL_PINNED) && 5268 sd->balance_interval < MAX_PINNED_INTERVAL) || 5269 (sd->balance_interval < sd->max_interval)) 5270 sd->balance_interval *= 2; 5271 5272 ld_moved = 0; 5273 out: 5274 return ld_moved; 5275 } 5276 5277 /* 5278 * idle_balance is called by schedule() if this_cpu is about to become 5279 * idle. Attempts to pull tasks from other CPUs. 5280 */ 5281 void idle_balance(int this_cpu, struct rq *this_rq) 5282 { 5283 struct sched_domain *sd; 5284 int pulled_task = 0; 5285 unsigned long next_balance = jiffies + HZ; 5286 5287 this_rq->idle_stamp = rq_clock(this_rq); 5288 5289 if (this_rq->avg_idle < sysctl_sched_migration_cost) 5290 return; 5291 5292 /* 5293 * Drop the rq->lock, but keep IRQ/preempt disabled. 5294 */ 5295 raw_spin_unlock(&this_rq->lock); 5296 5297 update_blocked_averages(this_cpu); 5298 rcu_read_lock(); 5299 for_each_domain(this_cpu, sd) { 5300 unsigned long interval; 5301 int balance = 1; 5302 5303 if (!(sd->flags & SD_LOAD_BALANCE)) 5304 continue; 5305 5306 if (sd->flags & SD_BALANCE_NEWIDLE) { 5307 /* If we've pulled tasks over stop searching: */ 5308 pulled_task = load_balance(this_cpu, this_rq, 5309 sd, CPU_NEWLY_IDLE, &balance); 5310 } 5311 5312 interval = msecs_to_jiffies(sd->balance_interval); 5313 if (time_after(next_balance, sd->last_balance + interval)) 5314 next_balance = sd->last_balance + interval; 5315 if (pulled_task) { 5316 this_rq->idle_stamp = 0; 5317 break; 5318 } 5319 } 5320 rcu_read_unlock(); 5321 5322 raw_spin_lock(&this_rq->lock); 5323 5324 if (pulled_task || time_after(jiffies, this_rq->next_balance)) { 5325 /* 5326 * We are going idle. next_balance may be set based on 5327 * a busy processor. So reset next_balance. 5328 */ 5329 this_rq->next_balance = next_balance; 5330 } 5331 } 5332 5333 /* 5334 * active_load_balance_cpu_stop is run by cpu stopper. It pushes 5335 * running tasks off the busiest CPU onto idle CPUs. It requires at 5336 * least 1 task to be running on each physical CPU where possible, and 5337 * avoids physical / logical imbalances. 5338 */ 5339 static int active_load_balance_cpu_stop(void *data) 5340 { 5341 struct rq *busiest_rq = data; 5342 int busiest_cpu = cpu_of(busiest_rq); 5343 int target_cpu = busiest_rq->push_cpu; 5344 struct rq *target_rq = cpu_rq(target_cpu); 5345 struct sched_domain *sd; 5346 5347 raw_spin_lock_irq(&busiest_rq->lock); 5348 5349 /* make sure the requested cpu hasn't gone down in the meantime */ 5350 if (unlikely(busiest_cpu != smp_processor_id() || 5351 !busiest_rq->active_balance)) 5352 goto out_unlock; 5353 5354 /* Is there any task to move? */ 5355 if (busiest_rq->nr_running <= 1) 5356 goto out_unlock; 5357 5358 /* 5359 * This condition is "impossible", if it occurs 5360 * we need to fix it. Originally reported by 5361 * Bjorn Helgaas on a 128-cpu setup. 5362 */ 5363 BUG_ON(busiest_rq == target_rq); 5364 5365 /* move a task from busiest_rq to target_rq */ 5366 double_lock_balance(busiest_rq, target_rq); 5367 5368 /* Search for an sd spanning us and the target CPU. */ 5369 rcu_read_lock(); 5370 for_each_domain(target_cpu, sd) { 5371 if ((sd->flags & SD_LOAD_BALANCE) && 5372 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd))) 5373 break; 5374 } 5375 5376 if (likely(sd)) { 5377 struct lb_env env = { 5378 .sd = sd, 5379 .dst_cpu = target_cpu, 5380 .dst_rq = target_rq, 5381 .src_cpu = busiest_rq->cpu, 5382 .src_rq = busiest_rq, 5383 .idle = CPU_IDLE, 5384 }; 5385 5386 schedstat_inc(sd, alb_count); 5387 5388 if (move_one_task(&env)) 5389 schedstat_inc(sd, alb_pushed); 5390 else 5391 schedstat_inc(sd, alb_failed); 5392 } 5393 rcu_read_unlock(); 5394 double_unlock_balance(busiest_rq, target_rq); 5395 out_unlock: 5396 busiest_rq->active_balance = 0; 5397 raw_spin_unlock_irq(&busiest_rq->lock); 5398 return 0; 5399 } 5400 5401 #ifdef CONFIG_NO_HZ_COMMON 5402 /* 5403 * idle load balancing details 5404 * - When one of the busy CPUs notice that there may be an idle rebalancing 5405 * needed, they will kick the idle load balancer, which then does idle 5406 * load balancing for all the idle CPUs. 5407 */ 5408 static struct { 5409 cpumask_var_t idle_cpus_mask; 5410 atomic_t nr_cpus; 5411 unsigned long next_balance; /* in jiffy units */ 5412 } nohz ____cacheline_aligned; 5413 5414 static inline int find_new_ilb(int call_cpu) 5415 { 5416 int ilb = cpumask_first(nohz.idle_cpus_mask); 5417 5418 if (ilb < nr_cpu_ids && idle_cpu(ilb)) 5419 return ilb; 5420 5421 return nr_cpu_ids; 5422 } 5423 5424 /* 5425 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the 5426 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle 5427 * CPU (if there is one). 5428 */ 5429 static void nohz_balancer_kick(int cpu) 5430 { 5431 int ilb_cpu; 5432 5433 nohz.next_balance++; 5434 5435 ilb_cpu = find_new_ilb(cpu); 5436 5437 if (ilb_cpu >= nr_cpu_ids) 5438 return; 5439 5440 if (test_and_set_bit(NOHZ_BALANCE_KICK, nohz_flags(ilb_cpu))) 5441 return; 5442 /* 5443 * Use smp_send_reschedule() instead of resched_cpu(). 5444 * This way we generate a sched IPI on the target cpu which 5445 * is idle. And the softirq performing nohz idle load balance 5446 * will be run before returning from the IPI. 5447 */ 5448 smp_send_reschedule(ilb_cpu); 5449 return; 5450 } 5451 5452 static inline void nohz_balance_exit_idle(int cpu) 5453 { 5454 if (unlikely(test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))) { 5455 cpumask_clear_cpu(cpu, nohz.idle_cpus_mask); 5456 atomic_dec(&nohz.nr_cpus); 5457 clear_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)); 5458 } 5459 } 5460 5461 static inline void set_cpu_sd_state_busy(void) 5462 { 5463 struct sched_domain *sd; 5464 5465 rcu_read_lock(); 5466 sd = rcu_dereference_check_sched_domain(this_rq()->sd); 5467 5468 if (!sd || !sd->nohz_idle) 5469 goto unlock; 5470 sd->nohz_idle = 0; 5471 5472 for (; sd; sd = sd->parent) 5473 atomic_inc(&sd->groups->sgp->nr_busy_cpus); 5474 unlock: 5475 rcu_read_unlock(); 5476 } 5477 5478 void set_cpu_sd_state_idle(void) 5479 { 5480 struct sched_domain *sd; 5481 5482 rcu_read_lock(); 5483 sd = rcu_dereference_check_sched_domain(this_rq()->sd); 5484 5485 if (!sd || sd->nohz_idle) 5486 goto unlock; 5487 sd->nohz_idle = 1; 5488 5489 for (; sd; sd = sd->parent) 5490 atomic_dec(&sd->groups->sgp->nr_busy_cpus); 5491 unlock: 5492 rcu_read_unlock(); 5493 } 5494 5495 /* 5496 * This routine will record that the cpu is going idle with tick stopped. 5497 * This info will be used in performing idle load balancing in the future. 5498 */ 5499 void nohz_balance_enter_idle(int cpu) 5500 { 5501 /* 5502 * If this cpu is going down, then nothing needs to be done. 5503 */ 5504 if (!cpu_active(cpu)) 5505 return; 5506 5507 if (test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu))) 5508 return; 5509 5510 cpumask_set_cpu(cpu, nohz.idle_cpus_mask); 5511 atomic_inc(&nohz.nr_cpus); 5512 set_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)); 5513 } 5514 5515 static int sched_ilb_notifier(struct notifier_block *nfb, 5516 unsigned long action, void *hcpu) 5517 { 5518 switch (action & ~CPU_TASKS_FROZEN) { 5519 case CPU_DYING: 5520 nohz_balance_exit_idle(smp_processor_id()); 5521 return NOTIFY_OK; 5522 default: 5523 return NOTIFY_DONE; 5524 } 5525 } 5526 #endif 5527 5528 static DEFINE_SPINLOCK(balancing); 5529 5530 /* 5531 * Scale the max load_balance interval with the number of CPUs in the system. 5532 * This trades load-balance latency on larger machines for less cross talk. 5533 */ 5534 void update_max_interval(void) 5535 { 5536 max_load_balance_interval = HZ*num_online_cpus()/10; 5537 } 5538 5539 /* 5540 * It checks each scheduling domain to see if it is due to be balanced, 5541 * and initiates a balancing operation if so. 5542 * 5543 * Balancing parameters are set up in init_sched_domains. 5544 */ 5545 static void rebalance_domains(int cpu, enum cpu_idle_type idle) 5546 { 5547 int balance = 1; 5548 struct rq *rq = cpu_rq(cpu); 5549 unsigned long interval; 5550 struct sched_domain *sd; 5551 /* Earliest time when we have to do rebalance again */ 5552 unsigned long next_balance = jiffies + 60*HZ; 5553 int update_next_balance = 0; 5554 int need_serialize; 5555 5556 update_blocked_averages(cpu); 5557 5558 rcu_read_lock(); 5559 for_each_domain(cpu, sd) { 5560 if (!(sd->flags & SD_LOAD_BALANCE)) 5561 continue; 5562 5563 interval = sd->balance_interval; 5564 if (idle != CPU_IDLE) 5565 interval *= sd->busy_factor; 5566 5567 /* scale ms to jiffies */ 5568 interval = msecs_to_jiffies(interval); 5569 interval = clamp(interval, 1UL, max_load_balance_interval); 5570 5571 need_serialize = sd->flags & SD_SERIALIZE; 5572 5573 if (need_serialize) { 5574 if (!spin_trylock(&balancing)) 5575 goto out; 5576 } 5577 5578 if (time_after_eq(jiffies, sd->last_balance + interval)) { 5579 if (load_balance(cpu, rq, sd, idle, &balance)) { 5580 /* 5581 * The LBF_SOME_PINNED logic could have changed 5582 * env->dst_cpu, so we can't know our idle 5583 * state even if we migrated tasks. Update it. 5584 */ 5585 idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE; 5586 } 5587 sd->last_balance = jiffies; 5588 } 5589 if (need_serialize) 5590 spin_unlock(&balancing); 5591 out: 5592 if (time_after(next_balance, sd->last_balance + interval)) { 5593 next_balance = sd->last_balance + interval; 5594 update_next_balance = 1; 5595 } 5596 5597 /* 5598 * Stop the load balance at this level. There is another 5599 * CPU in our sched group which is doing load balancing more 5600 * actively. 5601 */ 5602 if (!balance) 5603 break; 5604 } 5605 rcu_read_unlock(); 5606 5607 /* 5608 * next_balance will be updated only when there is a need. 5609 * When the cpu is attached to null domain for ex, it will not be 5610 * updated. 5611 */ 5612 if (likely(update_next_balance)) 5613 rq->next_balance = next_balance; 5614 } 5615 5616 #ifdef CONFIG_NO_HZ_COMMON 5617 /* 5618 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the 5619 * rebalancing for all the cpus for whom scheduler ticks are stopped. 5620 */ 5621 static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle) 5622 { 5623 struct rq *this_rq = cpu_rq(this_cpu); 5624 struct rq *rq; 5625 int balance_cpu; 5626 5627 if (idle != CPU_IDLE || 5628 !test_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu))) 5629 goto end; 5630 5631 for_each_cpu(balance_cpu, nohz.idle_cpus_mask) { 5632 if (balance_cpu == this_cpu || !idle_cpu(balance_cpu)) 5633 continue; 5634 5635 /* 5636 * If this cpu gets work to do, stop the load balancing 5637 * work being done for other cpus. Next load 5638 * balancing owner will pick it up. 5639 */ 5640 if (need_resched()) 5641 break; 5642 5643 rq = cpu_rq(balance_cpu); 5644 5645 raw_spin_lock_irq(&rq->lock); 5646 update_rq_clock(rq); 5647 update_idle_cpu_load(rq); 5648 raw_spin_unlock_irq(&rq->lock); 5649 5650 rebalance_domains(balance_cpu, CPU_IDLE); 5651 5652 if (time_after(this_rq->next_balance, rq->next_balance)) 5653 this_rq->next_balance = rq->next_balance; 5654 } 5655 nohz.next_balance = this_rq->next_balance; 5656 end: 5657 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu)); 5658 } 5659 5660 /* 5661 * Current heuristic for kicking the idle load balancer in the presence 5662 * of an idle cpu is the system. 5663 * - This rq has more than one task. 5664 * - At any scheduler domain level, this cpu's scheduler group has multiple 5665 * busy cpu's exceeding the group's power. 5666 * - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler 5667 * domain span are idle. 5668 */ 5669 static inline int nohz_kick_needed(struct rq *rq, int cpu) 5670 { 5671 unsigned long now = jiffies; 5672 struct sched_domain *sd; 5673 5674 if (unlikely(idle_cpu(cpu))) 5675 return 0; 5676 5677 /* 5678 * We may be recently in ticked or tickless idle mode. At the first 5679 * busy tick after returning from idle, we will update the busy stats. 5680 */ 5681 set_cpu_sd_state_busy(); 5682 nohz_balance_exit_idle(cpu); 5683 5684 /* 5685 * None are in tickless mode and hence no need for NOHZ idle load 5686 * balancing. 5687 */ 5688 if (likely(!atomic_read(&nohz.nr_cpus))) 5689 return 0; 5690 5691 if (time_before(now, nohz.next_balance)) 5692 return 0; 5693 5694 if (rq->nr_running >= 2) 5695 goto need_kick; 5696 5697 rcu_read_lock(); 5698 for_each_domain(cpu, sd) { 5699 struct sched_group *sg = sd->groups; 5700 struct sched_group_power *sgp = sg->sgp; 5701 int nr_busy = atomic_read(&sgp->nr_busy_cpus); 5702 5703 if (sd->flags & SD_SHARE_PKG_RESOURCES && nr_busy > 1) 5704 goto need_kick_unlock; 5705 5706 if (sd->flags & SD_ASYM_PACKING && nr_busy != sg->group_weight 5707 && (cpumask_first_and(nohz.idle_cpus_mask, 5708 sched_domain_span(sd)) < cpu)) 5709 goto need_kick_unlock; 5710 5711 if (!(sd->flags & (SD_SHARE_PKG_RESOURCES | SD_ASYM_PACKING))) 5712 break; 5713 } 5714 rcu_read_unlock(); 5715 return 0; 5716 5717 need_kick_unlock: 5718 rcu_read_unlock(); 5719 need_kick: 5720 return 1; 5721 } 5722 #else 5723 static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle) { } 5724 #endif 5725 5726 /* 5727 * run_rebalance_domains is triggered when needed from the scheduler tick. 5728 * Also triggered for nohz idle balancing (with nohz_balancing_kick set). 5729 */ 5730 static void run_rebalance_domains(struct softirq_action *h) 5731 { 5732 int this_cpu = smp_processor_id(); 5733 struct rq *this_rq = cpu_rq(this_cpu); 5734 enum cpu_idle_type idle = this_rq->idle_balance ? 5735 CPU_IDLE : CPU_NOT_IDLE; 5736 5737 rebalance_domains(this_cpu, idle); 5738 5739 /* 5740 * If this cpu has a pending nohz_balance_kick, then do the 5741 * balancing on behalf of the other idle cpus whose ticks are 5742 * stopped. 5743 */ 5744 nohz_idle_balance(this_cpu, idle); 5745 } 5746 5747 static inline int on_null_domain(int cpu) 5748 { 5749 return !rcu_dereference_sched(cpu_rq(cpu)->sd); 5750 } 5751 5752 /* 5753 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing. 5754 */ 5755 void trigger_load_balance(struct rq *rq, int cpu) 5756 { 5757 /* Don't need to rebalance while attached to NULL domain */ 5758 if (time_after_eq(jiffies, rq->next_balance) && 5759 likely(!on_null_domain(cpu))) 5760 raise_softirq(SCHED_SOFTIRQ); 5761 #ifdef CONFIG_NO_HZ_COMMON 5762 if (nohz_kick_needed(rq, cpu) && likely(!on_null_domain(cpu))) 5763 nohz_balancer_kick(cpu); 5764 #endif 5765 } 5766 5767 static void rq_online_fair(struct rq *rq) 5768 { 5769 update_sysctl(); 5770 } 5771 5772 static void rq_offline_fair(struct rq *rq) 5773 { 5774 update_sysctl(); 5775 5776 /* Ensure any throttled groups are reachable by pick_next_task */ 5777 unthrottle_offline_cfs_rqs(rq); 5778 } 5779 5780 #endif /* CONFIG_SMP */ 5781 5782 /* 5783 * scheduler tick hitting a task of our scheduling class: 5784 */ 5785 static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued) 5786 { 5787 struct cfs_rq *cfs_rq; 5788 struct sched_entity *se = &curr->se; 5789 5790 for_each_sched_entity(se) { 5791 cfs_rq = cfs_rq_of(se); 5792 entity_tick(cfs_rq, se, queued); 5793 } 5794 5795 if (numabalancing_enabled) 5796 task_tick_numa(rq, curr); 5797 5798 update_rq_runnable_avg(rq, 1); 5799 } 5800 5801 /* 5802 * called on fork with the child task as argument from the parent's context 5803 * - child not yet on the tasklist 5804 * - preemption disabled 5805 */ 5806 static void task_fork_fair(struct task_struct *p) 5807 { 5808 struct cfs_rq *cfs_rq; 5809 struct sched_entity *se = &p->se, *curr; 5810 int this_cpu = smp_processor_id(); 5811 struct rq *rq = this_rq(); 5812 unsigned long flags; 5813 5814 raw_spin_lock_irqsave(&rq->lock, flags); 5815 5816 update_rq_clock(rq); 5817 5818 cfs_rq = task_cfs_rq(current); 5819 curr = cfs_rq->curr; 5820 5821 if (unlikely(task_cpu(p) != this_cpu)) { 5822 rcu_read_lock(); 5823 __set_task_cpu(p, this_cpu); 5824 rcu_read_unlock(); 5825 } 5826 5827 update_curr(cfs_rq); 5828 5829 if (curr) 5830 se->vruntime = curr->vruntime; 5831 place_entity(cfs_rq, se, 1); 5832 5833 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) { 5834 /* 5835 * Upon rescheduling, sched_class::put_prev_task() will place 5836 * 'current' within the tree based on its new key value. 5837 */ 5838 swap(curr->vruntime, se->vruntime); 5839 resched_task(rq->curr); 5840 } 5841 5842 se->vruntime -= cfs_rq->min_vruntime; 5843 5844 raw_spin_unlock_irqrestore(&rq->lock, flags); 5845 } 5846 5847 /* 5848 * Priority of the task has changed. Check to see if we preempt 5849 * the current task. 5850 */ 5851 static void 5852 prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio) 5853 { 5854 if (!p->se.on_rq) 5855 return; 5856 5857 /* 5858 * Reschedule if we are currently running on this runqueue and 5859 * our priority decreased, or if we are not currently running on 5860 * this runqueue and our priority is higher than the current's 5861 */ 5862 if (rq->curr == p) { 5863 if (p->prio > oldprio) 5864 resched_task(rq->curr); 5865 } else 5866 check_preempt_curr(rq, p, 0); 5867 } 5868 5869 static void switched_from_fair(struct rq *rq, struct task_struct *p) 5870 { 5871 struct sched_entity *se = &p->se; 5872 struct cfs_rq *cfs_rq = cfs_rq_of(se); 5873 5874 /* 5875 * Ensure the task's vruntime is normalized, so that when its 5876 * switched back to the fair class the enqueue_entity(.flags=0) will 5877 * do the right thing. 5878 * 5879 * If it was on_rq, then the dequeue_entity(.flags=0) will already 5880 * have normalized the vruntime, if it was !on_rq, then only when 5881 * the task is sleeping will it still have non-normalized vruntime. 5882 */ 5883 if (!se->on_rq && p->state != TASK_RUNNING) { 5884 /* 5885 * Fix up our vruntime so that the current sleep doesn't 5886 * cause 'unlimited' sleep bonus. 5887 */ 5888 place_entity(cfs_rq, se, 0); 5889 se->vruntime -= cfs_rq->min_vruntime; 5890 } 5891 5892 #ifdef CONFIG_SMP 5893 /* 5894 * Remove our load from contribution when we leave sched_fair 5895 * and ensure we don't carry in an old decay_count if we 5896 * switch back. 5897 */ 5898 if (p->se.avg.decay_count) { 5899 struct cfs_rq *cfs_rq = cfs_rq_of(&p->se); 5900 __synchronize_entity_decay(&p->se); 5901 subtract_blocked_load_contrib(cfs_rq, 5902 p->se.avg.load_avg_contrib); 5903 } 5904 #endif 5905 } 5906 5907 /* 5908 * We switched to the sched_fair class. 5909 */ 5910 static void switched_to_fair(struct rq *rq, struct task_struct *p) 5911 { 5912 if (!p->se.on_rq) 5913 return; 5914 5915 /* 5916 * We were most likely switched from sched_rt, so 5917 * kick off the schedule if running, otherwise just see 5918 * if we can still preempt the current task. 5919 */ 5920 if (rq->curr == p) 5921 resched_task(rq->curr); 5922 else 5923 check_preempt_curr(rq, p, 0); 5924 } 5925 5926 /* Account for a task changing its policy or group. 5927 * 5928 * This routine is mostly called to set cfs_rq->curr field when a task 5929 * migrates between groups/classes. 5930 */ 5931 static void set_curr_task_fair(struct rq *rq) 5932 { 5933 struct sched_entity *se = &rq->curr->se; 5934 5935 for_each_sched_entity(se) { 5936 struct cfs_rq *cfs_rq = cfs_rq_of(se); 5937 5938 set_next_entity(cfs_rq, se); 5939 /* ensure bandwidth has been allocated on our new cfs_rq */ 5940 account_cfs_rq_runtime(cfs_rq, 0); 5941 } 5942 } 5943 5944 void init_cfs_rq(struct cfs_rq *cfs_rq) 5945 { 5946 cfs_rq->tasks_timeline = RB_ROOT; 5947 cfs_rq->min_vruntime = (u64)(-(1LL << 20)); 5948 #ifndef CONFIG_64BIT 5949 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime; 5950 #endif 5951 #ifdef CONFIG_SMP 5952 atomic64_set(&cfs_rq->decay_counter, 1); 5953 atomic_long_set(&cfs_rq->removed_load, 0); 5954 #endif 5955 } 5956 5957 #ifdef CONFIG_FAIR_GROUP_SCHED 5958 static void task_move_group_fair(struct task_struct *p, int on_rq) 5959 { 5960 struct cfs_rq *cfs_rq; 5961 /* 5962 * If the task was not on the rq at the time of this cgroup movement 5963 * it must have been asleep, sleeping tasks keep their ->vruntime 5964 * absolute on their old rq until wakeup (needed for the fair sleeper 5965 * bonus in place_entity()). 5966 * 5967 * If it was on the rq, we've just 'preempted' it, which does convert 5968 * ->vruntime to a relative base. 5969 * 5970 * Make sure both cases convert their relative position when migrating 5971 * to another cgroup's rq. This does somewhat interfere with the 5972 * fair sleeper stuff for the first placement, but who cares. 5973 */ 5974 /* 5975 * When !on_rq, vruntime of the task has usually NOT been normalized. 5976 * But there are some cases where it has already been normalized: 5977 * 5978 * - Moving a forked child which is waiting for being woken up by 5979 * wake_up_new_task(). 5980 * - Moving a task which has been woken up by try_to_wake_up() and 5981 * waiting for actually being woken up by sched_ttwu_pending(). 5982 * 5983 * To prevent boost or penalty in the new cfs_rq caused by delta 5984 * min_vruntime between the two cfs_rqs, we skip vruntime adjustment. 5985 */ 5986 if (!on_rq && (!p->se.sum_exec_runtime || p->state == TASK_WAKING)) 5987 on_rq = 1; 5988 5989 if (!on_rq) 5990 p->se.vruntime -= cfs_rq_of(&p->se)->min_vruntime; 5991 set_task_rq(p, task_cpu(p)); 5992 if (!on_rq) { 5993 cfs_rq = cfs_rq_of(&p->se); 5994 p->se.vruntime += cfs_rq->min_vruntime; 5995 #ifdef CONFIG_SMP 5996 /* 5997 * migrate_task_rq_fair() will have removed our previous 5998 * contribution, but we must synchronize for ongoing future 5999 * decay. 6000 */ 6001 p->se.avg.decay_count = atomic64_read(&cfs_rq->decay_counter); 6002 cfs_rq->blocked_load_avg += p->se.avg.load_avg_contrib; 6003 #endif 6004 } 6005 } 6006 6007 void free_fair_sched_group(struct task_group *tg) 6008 { 6009 int i; 6010 6011 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg)); 6012 6013 for_each_possible_cpu(i) { 6014 if (tg->cfs_rq) 6015 kfree(tg->cfs_rq[i]); 6016 if (tg->se) 6017 kfree(tg->se[i]); 6018 } 6019 6020 kfree(tg->cfs_rq); 6021 kfree(tg->se); 6022 } 6023 6024 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent) 6025 { 6026 struct cfs_rq *cfs_rq; 6027 struct sched_entity *se; 6028 int i; 6029 6030 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL); 6031 if (!tg->cfs_rq) 6032 goto err; 6033 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL); 6034 if (!tg->se) 6035 goto err; 6036 6037 tg->shares = NICE_0_LOAD; 6038 6039 init_cfs_bandwidth(tg_cfs_bandwidth(tg)); 6040 6041 for_each_possible_cpu(i) { 6042 cfs_rq = kzalloc_node(sizeof(struct cfs_rq), 6043 GFP_KERNEL, cpu_to_node(i)); 6044 if (!cfs_rq) 6045 goto err; 6046 6047 se = kzalloc_node(sizeof(struct sched_entity), 6048 GFP_KERNEL, cpu_to_node(i)); 6049 if (!se) 6050 goto err_free_rq; 6051 6052 init_cfs_rq(cfs_rq); 6053 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]); 6054 } 6055 6056 return 1; 6057 6058 err_free_rq: 6059 kfree(cfs_rq); 6060 err: 6061 return 0; 6062 } 6063 6064 void unregister_fair_sched_group(struct task_group *tg, int cpu) 6065 { 6066 struct rq *rq = cpu_rq(cpu); 6067 unsigned long flags; 6068 6069 /* 6070 * Only empty task groups can be destroyed; so we can speculatively 6071 * check on_list without danger of it being re-added. 6072 */ 6073 if (!tg->cfs_rq[cpu]->on_list) 6074 return; 6075 6076 raw_spin_lock_irqsave(&rq->lock, flags); 6077 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]); 6078 raw_spin_unlock_irqrestore(&rq->lock, flags); 6079 } 6080 6081 void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq, 6082 struct sched_entity *se, int cpu, 6083 struct sched_entity *parent) 6084 { 6085 struct rq *rq = cpu_rq(cpu); 6086 6087 cfs_rq->tg = tg; 6088 cfs_rq->rq = rq; 6089 init_cfs_rq_runtime(cfs_rq); 6090 6091 tg->cfs_rq[cpu] = cfs_rq; 6092 tg->se[cpu] = se; 6093 6094 /* se could be NULL for root_task_group */ 6095 if (!se) 6096 return; 6097 6098 if (!parent) 6099 se->cfs_rq = &rq->cfs; 6100 else 6101 se->cfs_rq = parent->my_q; 6102 6103 se->my_q = cfs_rq; 6104 update_load_set(&se->load, 0); 6105 se->parent = parent; 6106 } 6107 6108 static DEFINE_MUTEX(shares_mutex); 6109 6110 int sched_group_set_shares(struct task_group *tg, unsigned long shares) 6111 { 6112 int i; 6113 unsigned long flags; 6114 6115 /* 6116 * We can't change the weight of the root cgroup. 6117 */ 6118 if (!tg->se[0]) 6119 return -EINVAL; 6120 6121 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES)); 6122 6123 mutex_lock(&shares_mutex); 6124 if (tg->shares == shares) 6125 goto done; 6126 6127 tg->shares = shares; 6128 for_each_possible_cpu(i) { 6129 struct rq *rq = cpu_rq(i); 6130 struct sched_entity *se; 6131 6132 se = tg->se[i]; 6133 /* Propagate contribution to hierarchy */ 6134 raw_spin_lock_irqsave(&rq->lock, flags); 6135 6136 /* Possible calls to update_curr() need rq clock */ 6137 update_rq_clock(rq); 6138 for_each_sched_entity(se) 6139 update_cfs_shares(group_cfs_rq(se)); 6140 raw_spin_unlock_irqrestore(&rq->lock, flags); 6141 } 6142 6143 done: 6144 mutex_unlock(&shares_mutex); 6145 return 0; 6146 } 6147 #else /* CONFIG_FAIR_GROUP_SCHED */ 6148 6149 void free_fair_sched_group(struct task_group *tg) { } 6150 6151 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent) 6152 { 6153 return 1; 6154 } 6155 6156 void unregister_fair_sched_group(struct task_group *tg, int cpu) { } 6157 6158 #endif /* CONFIG_FAIR_GROUP_SCHED */ 6159 6160 6161 static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task) 6162 { 6163 struct sched_entity *se = &task->se; 6164 unsigned int rr_interval = 0; 6165 6166 /* 6167 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise 6168 * idle runqueue: 6169 */ 6170 if (rq->cfs.load.weight) 6171 rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se)); 6172 6173 return rr_interval; 6174 } 6175 6176 /* 6177 * All the scheduling class methods: 6178 */ 6179 const struct sched_class fair_sched_class = { 6180 .next = &idle_sched_class, 6181 .enqueue_task = enqueue_task_fair, 6182 .dequeue_task = dequeue_task_fair, 6183 .yield_task = yield_task_fair, 6184 .yield_to_task = yield_to_task_fair, 6185 6186 .check_preempt_curr = check_preempt_wakeup, 6187 6188 .pick_next_task = pick_next_task_fair, 6189 .put_prev_task = put_prev_task_fair, 6190 6191 #ifdef CONFIG_SMP 6192 .select_task_rq = select_task_rq_fair, 6193 .migrate_task_rq = migrate_task_rq_fair, 6194 6195 .rq_online = rq_online_fair, 6196 .rq_offline = rq_offline_fair, 6197 6198 .task_waking = task_waking_fair, 6199 #endif 6200 6201 .set_curr_task = set_curr_task_fair, 6202 .task_tick = task_tick_fair, 6203 .task_fork = task_fork_fair, 6204 6205 .prio_changed = prio_changed_fair, 6206 .switched_from = switched_from_fair, 6207 .switched_to = switched_to_fair, 6208 6209 .get_rr_interval = get_rr_interval_fair, 6210 6211 #ifdef CONFIG_FAIR_GROUP_SCHED 6212 .task_move_group = task_move_group_fair, 6213 #endif 6214 }; 6215 6216 #ifdef CONFIG_SCHED_DEBUG 6217 void print_cfs_stats(struct seq_file *m, int cpu) 6218 { 6219 struct cfs_rq *cfs_rq; 6220 6221 rcu_read_lock(); 6222 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq) 6223 print_cfs_rq(m, cpu, cfs_rq); 6224 rcu_read_unlock(); 6225 } 6226 #endif 6227 6228 __init void init_sched_fair_class(void) 6229 { 6230 #ifdef CONFIG_SMP 6231 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains); 6232 6233 #ifdef CONFIG_NO_HZ_COMMON 6234 nohz.next_balance = jiffies; 6235 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT); 6236 cpu_notifier(sched_ilb_notifier, 0); 6237 #endif 6238 #endif /* SMP */ 6239 6240 } 6241