1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH) 4 * 5 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com> 6 * 7 * Interactivity improvements by Mike Galbraith 8 * (C) 2007 Mike Galbraith <efault@gmx.de> 9 * 10 * Various enhancements by Dmitry Adamushko. 11 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com> 12 * 13 * Group scheduling enhancements by Srivatsa Vaddagiri 14 * Copyright IBM Corporation, 2007 15 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com> 16 * 17 * Scaled math optimizations by Thomas Gleixner 18 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de> 19 * 20 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra 21 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra 22 */ 23 #include "sched.h" 24 25 /* 26 * Targeted preemption latency for CPU-bound tasks: 27 * 28 * NOTE: this latency value is not the same as the concept of 29 * 'timeslice length' - timeslices in CFS are of variable length 30 * and have no persistent notion like in traditional, time-slice 31 * based scheduling concepts. 32 * 33 * (to see the precise effective timeslice length of your workload, 34 * run vmstat and monitor the context-switches (cs) field) 35 * 36 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds) 37 */ 38 unsigned int sysctl_sched_latency = 6000000ULL; 39 static unsigned int normalized_sysctl_sched_latency = 6000000ULL; 40 41 /* 42 * The initial- and re-scaling of tunables is configurable 43 * 44 * Options are: 45 * 46 * SCHED_TUNABLESCALING_NONE - unscaled, always *1 47 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus) 48 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus 49 * 50 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus)) 51 */ 52 enum sched_tunable_scaling sysctl_sched_tunable_scaling = SCHED_TUNABLESCALING_LOG; 53 54 /* 55 * Minimal preemption granularity for CPU-bound tasks: 56 * 57 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds) 58 */ 59 unsigned int sysctl_sched_min_granularity = 750000ULL; 60 static unsigned int normalized_sysctl_sched_min_granularity = 750000ULL; 61 62 /* 63 * This value is kept at sysctl_sched_latency/sysctl_sched_min_granularity 64 */ 65 static unsigned int sched_nr_latency = 8; 66 67 /* 68 * After fork, child runs first. If set to 0 (default) then 69 * parent will (try to) run first. 70 */ 71 unsigned int sysctl_sched_child_runs_first __read_mostly; 72 73 /* 74 * SCHED_OTHER wake-up granularity. 75 * 76 * This option delays the preemption effects of decoupled workloads 77 * and reduces their over-scheduling. Synchronous workloads will still 78 * have immediate wakeup/sleep latencies. 79 * 80 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds) 81 */ 82 unsigned int sysctl_sched_wakeup_granularity = 1000000UL; 83 static unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL; 84 85 const_debug unsigned int sysctl_sched_migration_cost = 500000UL; 86 87 int sched_thermal_decay_shift; 88 static int __init setup_sched_thermal_decay_shift(char *str) 89 { 90 int _shift = 0; 91 92 if (kstrtoint(str, 0, &_shift)) 93 pr_warn("Unable to set scheduler thermal pressure decay shift parameter\n"); 94 95 sched_thermal_decay_shift = clamp(_shift, 0, 10); 96 return 1; 97 } 98 __setup("sched_thermal_decay_shift=", setup_sched_thermal_decay_shift); 99 100 #ifdef CONFIG_SMP 101 /* 102 * For asym packing, by default the lower numbered CPU has higher priority. 103 */ 104 int __weak arch_asym_cpu_priority(int cpu) 105 { 106 return -cpu; 107 } 108 109 /* 110 * The margin used when comparing utilization with CPU capacity. 111 * 112 * (default: ~20%) 113 */ 114 #define fits_capacity(cap, max) ((cap) * 1280 < (max) * 1024) 115 116 #endif 117 118 #ifdef CONFIG_CFS_BANDWIDTH 119 /* 120 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool 121 * each time a cfs_rq requests quota. 122 * 123 * Note: in the case that the slice exceeds the runtime remaining (either due 124 * to consumption or the quota being specified to be smaller than the slice) 125 * we will always only issue the remaining available time. 126 * 127 * (default: 5 msec, units: microseconds) 128 */ 129 unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL; 130 #endif 131 132 static inline void update_load_add(struct load_weight *lw, unsigned long inc) 133 { 134 lw->weight += inc; 135 lw->inv_weight = 0; 136 } 137 138 static inline void update_load_sub(struct load_weight *lw, unsigned long dec) 139 { 140 lw->weight -= dec; 141 lw->inv_weight = 0; 142 } 143 144 static inline void update_load_set(struct load_weight *lw, unsigned long w) 145 { 146 lw->weight = w; 147 lw->inv_weight = 0; 148 } 149 150 /* 151 * Increase the granularity value when there are more CPUs, 152 * because with more CPUs the 'effective latency' as visible 153 * to users decreases. But the relationship is not linear, 154 * so pick a second-best guess by going with the log2 of the 155 * number of CPUs. 156 * 157 * This idea comes from the SD scheduler of Con Kolivas: 158 */ 159 static unsigned int get_update_sysctl_factor(void) 160 { 161 unsigned int cpus = min_t(unsigned int, num_online_cpus(), 8); 162 unsigned int factor; 163 164 switch (sysctl_sched_tunable_scaling) { 165 case SCHED_TUNABLESCALING_NONE: 166 factor = 1; 167 break; 168 case SCHED_TUNABLESCALING_LINEAR: 169 factor = cpus; 170 break; 171 case SCHED_TUNABLESCALING_LOG: 172 default: 173 factor = 1 + ilog2(cpus); 174 break; 175 } 176 177 return factor; 178 } 179 180 static void update_sysctl(void) 181 { 182 unsigned int factor = get_update_sysctl_factor(); 183 184 #define SET_SYSCTL(name) \ 185 (sysctl_##name = (factor) * normalized_sysctl_##name) 186 SET_SYSCTL(sched_min_granularity); 187 SET_SYSCTL(sched_latency); 188 SET_SYSCTL(sched_wakeup_granularity); 189 #undef SET_SYSCTL 190 } 191 192 void __init sched_init_granularity(void) 193 { 194 update_sysctl(); 195 } 196 197 #define WMULT_CONST (~0U) 198 #define WMULT_SHIFT 32 199 200 static void __update_inv_weight(struct load_weight *lw) 201 { 202 unsigned long w; 203 204 if (likely(lw->inv_weight)) 205 return; 206 207 w = scale_load_down(lw->weight); 208 209 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST)) 210 lw->inv_weight = 1; 211 else if (unlikely(!w)) 212 lw->inv_weight = WMULT_CONST; 213 else 214 lw->inv_weight = WMULT_CONST / w; 215 } 216 217 /* 218 * delta_exec * weight / lw.weight 219 * OR 220 * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT 221 * 222 * Either weight := NICE_0_LOAD and lw \e sched_prio_to_wmult[], in which case 223 * we're guaranteed shift stays positive because inv_weight is guaranteed to 224 * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22. 225 * 226 * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus 227 * weight/lw.weight <= 1, and therefore our shift will also be positive. 228 */ 229 static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw) 230 { 231 u64 fact = scale_load_down(weight); 232 int shift = WMULT_SHIFT; 233 234 __update_inv_weight(lw); 235 236 if (unlikely(fact >> 32)) { 237 while (fact >> 32) { 238 fact >>= 1; 239 shift--; 240 } 241 } 242 243 fact = mul_u32_u32(fact, lw->inv_weight); 244 245 while (fact >> 32) { 246 fact >>= 1; 247 shift--; 248 } 249 250 return mul_u64_u32_shr(delta_exec, fact, shift); 251 } 252 253 254 const struct sched_class fair_sched_class; 255 256 /************************************************************** 257 * CFS operations on generic schedulable entities: 258 */ 259 260 #ifdef CONFIG_FAIR_GROUP_SCHED 261 static inline struct task_struct *task_of(struct sched_entity *se) 262 { 263 SCHED_WARN_ON(!entity_is_task(se)); 264 return container_of(se, struct task_struct, se); 265 } 266 267 /* Walk up scheduling entities hierarchy */ 268 #define for_each_sched_entity(se) \ 269 for (; se; se = se->parent) 270 271 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p) 272 { 273 return p->se.cfs_rq; 274 } 275 276 /* runqueue on which this entity is (to be) queued */ 277 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se) 278 { 279 return se->cfs_rq; 280 } 281 282 /* runqueue "owned" by this group */ 283 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp) 284 { 285 return grp->my_q; 286 } 287 288 static inline void cfs_rq_tg_path(struct cfs_rq *cfs_rq, char *path, int len) 289 { 290 if (!path) 291 return; 292 293 if (cfs_rq && task_group_is_autogroup(cfs_rq->tg)) 294 autogroup_path(cfs_rq->tg, path, len); 295 else if (cfs_rq && cfs_rq->tg->css.cgroup) 296 cgroup_path(cfs_rq->tg->css.cgroup, path, len); 297 else 298 strlcpy(path, "(null)", len); 299 } 300 301 static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq) 302 { 303 struct rq *rq = rq_of(cfs_rq); 304 int cpu = cpu_of(rq); 305 306 if (cfs_rq->on_list) 307 return rq->tmp_alone_branch == &rq->leaf_cfs_rq_list; 308 309 cfs_rq->on_list = 1; 310 311 /* 312 * Ensure we either appear before our parent (if already 313 * enqueued) or force our parent to appear after us when it is 314 * enqueued. The fact that we always enqueue bottom-up 315 * reduces this to two cases and a special case for the root 316 * cfs_rq. Furthermore, it also means that we will always reset 317 * tmp_alone_branch either when the branch is connected 318 * to a tree or when we reach the top of the tree 319 */ 320 if (cfs_rq->tg->parent && 321 cfs_rq->tg->parent->cfs_rq[cpu]->on_list) { 322 /* 323 * If parent is already on the list, we add the child 324 * just before. Thanks to circular linked property of 325 * the list, this means to put the child at the tail 326 * of the list that starts by parent. 327 */ 328 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list, 329 &(cfs_rq->tg->parent->cfs_rq[cpu]->leaf_cfs_rq_list)); 330 /* 331 * The branch is now connected to its tree so we can 332 * reset tmp_alone_branch to the beginning of the 333 * list. 334 */ 335 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list; 336 return true; 337 } 338 339 if (!cfs_rq->tg->parent) { 340 /* 341 * cfs rq without parent should be put 342 * at the tail of the list. 343 */ 344 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list, 345 &rq->leaf_cfs_rq_list); 346 /* 347 * We have reach the top of a tree so we can reset 348 * tmp_alone_branch to the beginning of the list. 349 */ 350 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list; 351 return true; 352 } 353 354 /* 355 * The parent has not already been added so we want to 356 * make sure that it will be put after us. 357 * tmp_alone_branch points to the begin of the branch 358 * where we will add parent. 359 */ 360 list_add_rcu(&cfs_rq->leaf_cfs_rq_list, rq->tmp_alone_branch); 361 /* 362 * update tmp_alone_branch to points to the new begin 363 * of the branch 364 */ 365 rq->tmp_alone_branch = &cfs_rq->leaf_cfs_rq_list; 366 return false; 367 } 368 369 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq) 370 { 371 if (cfs_rq->on_list) { 372 struct rq *rq = rq_of(cfs_rq); 373 374 /* 375 * With cfs_rq being unthrottled/throttled during an enqueue, 376 * it can happen the tmp_alone_branch points the a leaf that 377 * we finally want to del. In this case, tmp_alone_branch moves 378 * to the prev element but it will point to rq->leaf_cfs_rq_list 379 * at the end of the enqueue. 380 */ 381 if (rq->tmp_alone_branch == &cfs_rq->leaf_cfs_rq_list) 382 rq->tmp_alone_branch = cfs_rq->leaf_cfs_rq_list.prev; 383 384 list_del_rcu(&cfs_rq->leaf_cfs_rq_list); 385 cfs_rq->on_list = 0; 386 } 387 } 388 389 static inline void assert_list_leaf_cfs_rq(struct rq *rq) 390 { 391 SCHED_WARN_ON(rq->tmp_alone_branch != &rq->leaf_cfs_rq_list); 392 } 393 394 /* Iterate thr' all leaf cfs_rq's on a runqueue */ 395 #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) \ 396 list_for_each_entry_safe(cfs_rq, pos, &rq->leaf_cfs_rq_list, \ 397 leaf_cfs_rq_list) 398 399 /* Do the two (enqueued) entities belong to the same group ? */ 400 static inline struct cfs_rq * 401 is_same_group(struct sched_entity *se, struct sched_entity *pse) 402 { 403 if (se->cfs_rq == pse->cfs_rq) 404 return se->cfs_rq; 405 406 return NULL; 407 } 408 409 static inline struct sched_entity *parent_entity(struct sched_entity *se) 410 { 411 return se->parent; 412 } 413 414 static void 415 find_matching_se(struct sched_entity **se, struct sched_entity **pse) 416 { 417 int se_depth, pse_depth; 418 419 /* 420 * preemption test can be made between sibling entities who are in the 421 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of 422 * both tasks until we find their ancestors who are siblings of common 423 * parent. 424 */ 425 426 /* First walk up until both entities are at same depth */ 427 se_depth = (*se)->depth; 428 pse_depth = (*pse)->depth; 429 430 while (se_depth > pse_depth) { 431 se_depth--; 432 *se = parent_entity(*se); 433 } 434 435 while (pse_depth > se_depth) { 436 pse_depth--; 437 *pse = parent_entity(*pse); 438 } 439 440 while (!is_same_group(*se, *pse)) { 441 *se = parent_entity(*se); 442 *pse = parent_entity(*pse); 443 } 444 } 445 446 #else /* !CONFIG_FAIR_GROUP_SCHED */ 447 448 static inline struct task_struct *task_of(struct sched_entity *se) 449 { 450 return container_of(se, struct task_struct, se); 451 } 452 453 #define for_each_sched_entity(se) \ 454 for (; se; se = NULL) 455 456 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p) 457 { 458 return &task_rq(p)->cfs; 459 } 460 461 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se) 462 { 463 struct task_struct *p = task_of(se); 464 struct rq *rq = task_rq(p); 465 466 return &rq->cfs; 467 } 468 469 /* runqueue "owned" by this group */ 470 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp) 471 { 472 return NULL; 473 } 474 475 static inline void cfs_rq_tg_path(struct cfs_rq *cfs_rq, char *path, int len) 476 { 477 if (path) 478 strlcpy(path, "(null)", len); 479 } 480 481 static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq) 482 { 483 return true; 484 } 485 486 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq) 487 { 488 } 489 490 static inline void assert_list_leaf_cfs_rq(struct rq *rq) 491 { 492 } 493 494 #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) \ 495 for (cfs_rq = &rq->cfs, pos = NULL; cfs_rq; cfs_rq = pos) 496 497 static inline struct sched_entity *parent_entity(struct sched_entity *se) 498 { 499 return NULL; 500 } 501 502 static inline void 503 find_matching_se(struct sched_entity **se, struct sched_entity **pse) 504 { 505 } 506 507 #endif /* CONFIG_FAIR_GROUP_SCHED */ 508 509 static __always_inline 510 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec); 511 512 /************************************************************** 513 * Scheduling class tree data structure manipulation methods: 514 */ 515 516 static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime) 517 { 518 s64 delta = (s64)(vruntime - max_vruntime); 519 if (delta > 0) 520 max_vruntime = vruntime; 521 522 return max_vruntime; 523 } 524 525 static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime) 526 { 527 s64 delta = (s64)(vruntime - min_vruntime); 528 if (delta < 0) 529 min_vruntime = vruntime; 530 531 return min_vruntime; 532 } 533 534 static inline int entity_before(struct sched_entity *a, 535 struct sched_entity *b) 536 { 537 return (s64)(a->vruntime - b->vruntime) < 0; 538 } 539 540 static void update_min_vruntime(struct cfs_rq *cfs_rq) 541 { 542 struct sched_entity *curr = cfs_rq->curr; 543 struct rb_node *leftmost = rb_first_cached(&cfs_rq->tasks_timeline); 544 545 u64 vruntime = cfs_rq->min_vruntime; 546 547 if (curr) { 548 if (curr->on_rq) 549 vruntime = curr->vruntime; 550 else 551 curr = NULL; 552 } 553 554 if (leftmost) { /* non-empty tree */ 555 struct sched_entity *se; 556 se = rb_entry(leftmost, struct sched_entity, run_node); 557 558 if (!curr) 559 vruntime = se->vruntime; 560 else 561 vruntime = min_vruntime(vruntime, se->vruntime); 562 } 563 564 /* ensure we never gain time by being placed backwards. */ 565 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime); 566 #ifndef CONFIG_64BIT 567 smp_wmb(); 568 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime; 569 #endif 570 } 571 572 /* 573 * Enqueue an entity into the rb-tree: 574 */ 575 static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) 576 { 577 struct rb_node **link = &cfs_rq->tasks_timeline.rb_root.rb_node; 578 struct rb_node *parent = NULL; 579 struct sched_entity *entry; 580 bool leftmost = true; 581 582 /* 583 * Find the right place in the rbtree: 584 */ 585 while (*link) { 586 parent = *link; 587 entry = rb_entry(parent, struct sched_entity, run_node); 588 /* 589 * We dont care about collisions. Nodes with 590 * the same key stay together. 591 */ 592 if (entity_before(se, entry)) { 593 link = &parent->rb_left; 594 } else { 595 link = &parent->rb_right; 596 leftmost = false; 597 } 598 } 599 600 rb_link_node(&se->run_node, parent, link); 601 rb_insert_color_cached(&se->run_node, 602 &cfs_rq->tasks_timeline, leftmost); 603 } 604 605 static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) 606 { 607 rb_erase_cached(&se->run_node, &cfs_rq->tasks_timeline); 608 } 609 610 struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq) 611 { 612 struct rb_node *left = rb_first_cached(&cfs_rq->tasks_timeline); 613 614 if (!left) 615 return NULL; 616 617 return rb_entry(left, struct sched_entity, run_node); 618 } 619 620 static struct sched_entity *__pick_next_entity(struct sched_entity *se) 621 { 622 struct rb_node *next = rb_next(&se->run_node); 623 624 if (!next) 625 return NULL; 626 627 return rb_entry(next, struct sched_entity, run_node); 628 } 629 630 #ifdef CONFIG_SCHED_DEBUG 631 struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq) 632 { 633 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline.rb_root); 634 635 if (!last) 636 return NULL; 637 638 return rb_entry(last, struct sched_entity, run_node); 639 } 640 641 /************************************************************** 642 * Scheduling class statistics methods: 643 */ 644 645 int sched_proc_update_handler(struct ctl_table *table, int write, 646 void *buffer, size_t *lenp, loff_t *ppos) 647 { 648 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 649 unsigned int factor = get_update_sysctl_factor(); 650 651 if (ret || !write) 652 return ret; 653 654 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency, 655 sysctl_sched_min_granularity); 656 657 #define WRT_SYSCTL(name) \ 658 (normalized_sysctl_##name = sysctl_##name / (factor)) 659 WRT_SYSCTL(sched_min_granularity); 660 WRT_SYSCTL(sched_latency); 661 WRT_SYSCTL(sched_wakeup_granularity); 662 #undef WRT_SYSCTL 663 664 return 0; 665 } 666 #endif 667 668 /* 669 * delta /= w 670 */ 671 static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se) 672 { 673 if (unlikely(se->load.weight != NICE_0_LOAD)) 674 delta = __calc_delta(delta, NICE_0_LOAD, &se->load); 675 676 return delta; 677 } 678 679 /* 680 * The idea is to set a period in which each task runs once. 681 * 682 * When there are too many tasks (sched_nr_latency) we have to stretch 683 * this period because otherwise the slices get too small. 684 * 685 * p = (nr <= nl) ? l : l*nr/nl 686 */ 687 static u64 __sched_period(unsigned long nr_running) 688 { 689 if (unlikely(nr_running > sched_nr_latency)) 690 return nr_running * sysctl_sched_min_granularity; 691 else 692 return sysctl_sched_latency; 693 } 694 695 /* 696 * We calculate the wall-time slice from the period by taking a part 697 * proportional to the weight. 698 * 699 * s = p*P[w/rw] 700 */ 701 static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se) 702 { 703 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq); 704 705 for_each_sched_entity(se) { 706 struct load_weight *load; 707 struct load_weight lw; 708 709 cfs_rq = cfs_rq_of(se); 710 load = &cfs_rq->load; 711 712 if (unlikely(!se->on_rq)) { 713 lw = cfs_rq->load; 714 715 update_load_add(&lw, se->load.weight); 716 load = &lw; 717 } 718 slice = __calc_delta(slice, se->load.weight, load); 719 } 720 return slice; 721 } 722 723 /* 724 * We calculate the vruntime slice of a to-be-inserted task. 725 * 726 * vs = s/w 727 */ 728 static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se) 729 { 730 return calc_delta_fair(sched_slice(cfs_rq, se), se); 731 } 732 733 #include "pelt.h" 734 #ifdef CONFIG_SMP 735 736 static int select_idle_sibling(struct task_struct *p, int prev_cpu, int cpu); 737 static unsigned long task_h_load(struct task_struct *p); 738 static unsigned long capacity_of(int cpu); 739 740 /* Give new sched_entity start runnable values to heavy its load in infant time */ 741 void init_entity_runnable_average(struct sched_entity *se) 742 { 743 struct sched_avg *sa = &se->avg; 744 745 memset(sa, 0, sizeof(*sa)); 746 747 /* 748 * Tasks are initialized with full load to be seen as heavy tasks until 749 * they get a chance to stabilize to their real load level. 750 * Group entities are initialized with zero load to reflect the fact that 751 * nothing has been attached to the task group yet. 752 */ 753 if (entity_is_task(se)) 754 sa->load_avg = scale_load_down(se->load.weight); 755 756 /* when this task enqueue'ed, it will contribute to its cfs_rq's load_avg */ 757 } 758 759 static void attach_entity_cfs_rq(struct sched_entity *se); 760 761 /* 762 * With new tasks being created, their initial util_avgs are extrapolated 763 * based on the cfs_rq's current util_avg: 764 * 765 * util_avg = cfs_rq->util_avg / (cfs_rq->load_avg + 1) * se.load.weight 766 * 767 * However, in many cases, the above util_avg does not give a desired 768 * value. Moreover, the sum of the util_avgs may be divergent, such 769 * as when the series is a harmonic series. 770 * 771 * To solve this problem, we also cap the util_avg of successive tasks to 772 * only 1/2 of the left utilization budget: 773 * 774 * util_avg_cap = (cpu_scale - cfs_rq->avg.util_avg) / 2^n 775 * 776 * where n denotes the nth task and cpu_scale the CPU capacity. 777 * 778 * For example, for a CPU with 1024 of capacity, a simplest series from 779 * the beginning would be like: 780 * 781 * task util_avg: 512, 256, 128, 64, 32, 16, 8, ... 782 * cfs_rq util_avg: 512, 768, 896, 960, 992, 1008, 1016, ... 783 * 784 * Finally, that extrapolated util_avg is clamped to the cap (util_avg_cap) 785 * if util_avg > util_avg_cap. 786 */ 787 void post_init_entity_util_avg(struct task_struct *p) 788 { 789 struct sched_entity *se = &p->se; 790 struct cfs_rq *cfs_rq = cfs_rq_of(se); 791 struct sched_avg *sa = &se->avg; 792 long cpu_scale = arch_scale_cpu_capacity(cpu_of(rq_of(cfs_rq))); 793 long cap = (long)(cpu_scale - cfs_rq->avg.util_avg) / 2; 794 795 if (cap > 0) { 796 if (cfs_rq->avg.util_avg != 0) { 797 sa->util_avg = cfs_rq->avg.util_avg * se->load.weight; 798 sa->util_avg /= (cfs_rq->avg.load_avg + 1); 799 800 if (sa->util_avg > cap) 801 sa->util_avg = cap; 802 } else { 803 sa->util_avg = cap; 804 } 805 } 806 807 sa->runnable_avg = sa->util_avg; 808 809 if (p->sched_class != &fair_sched_class) { 810 /* 811 * For !fair tasks do: 812 * 813 update_cfs_rq_load_avg(now, cfs_rq); 814 attach_entity_load_avg(cfs_rq, se); 815 switched_from_fair(rq, p); 816 * 817 * such that the next switched_to_fair() has the 818 * expected state. 819 */ 820 se->avg.last_update_time = cfs_rq_clock_pelt(cfs_rq); 821 return; 822 } 823 824 attach_entity_cfs_rq(se); 825 } 826 827 #else /* !CONFIG_SMP */ 828 void init_entity_runnable_average(struct sched_entity *se) 829 { 830 } 831 void post_init_entity_util_avg(struct task_struct *p) 832 { 833 } 834 static void update_tg_load_avg(struct cfs_rq *cfs_rq) 835 { 836 } 837 #endif /* CONFIG_SMP */ 838 839 /* 840 * Update the current task's runtime statistics. 841 */ 842 static void update_curr(struct cfs_rq *cfs_rq) 843 { 844 struct sched_entity *curr = cfs_rq->curr; 845 u64 now = rq_clock_task(rq_of(cfs_rq)); 846 u64 delta_exec; 847 848 if (unlikely(!curr)) 849 return; 850 851 delta_exec = now - curr->exec_start; 852 if (unlikely((s64)delta_exec <= 0)) 853 return; 854 855 curr->exec_start = now; 856 857 schedstat_set(curr->statistics.exec_max, 858 max(delta_exec, curr->statistics.exec_max)); 859 860 curr->sum_exec_runtime += delta_exec; 861 schedstat_add(cfs_rq->exec_clock, delta_exec); 862 863 curr->vruntime += calc_delta_fair(delta_exec, curr); 864 update_min_vruntime(cfs_rq); 865 866 if (entity_is_task(curr)) { 867 struct task_struct *curtask = task_of(curr); 868 869 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime); 870 cgroup_account_cputime(curtask, delta_exec); 871 account_group_exec_runtime(curtask, delta_exec); 872 } 873 874 account_cfs_rq_runtime(cfs_rq, delta_exec); 875 } 876 877 static void update_curr_fair(struct rq *rq) 878 { 879 update_curr(cfs_rq_of(&rq->curr->se)); 880 } 881 882 static inline void 883 update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se) 884 { 885 u64 wait_start, prev_wait_start; 886 887 if (!schedstat_enabled()) 888 return; 889 890 wait_start = rq_clock(rq_of(cfs_rq)); 891 prev_wait_start = schedstat_val(se->statistics.wait_start); 892 893 if (entity_is_task(se) && task_on_rq_migrating(task_of(se)) && 894 likely(wait_start > prev_wait_start)) 895 wait_start -= prev_wait_start; 896 897 __schedstat_set(se->statistics.wait_start, wait_start); 898 } 899 900 static inline void 901 update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se) 902 { 903 struct task_struct *p; 904 u64 delta; 905 906 if (!schedstat_enabled()) 907 return; 908 909 /* 910 * When the sched_schedstat changes from 0 to 1, some sched se 911 * maybe already in the runqueue, the se->statistics.wait_start 912 * will be 0.So it will let the delta wrong. We need to avoid this 913 * scenario. 914 */ 915 if (unlikely(!schedstat_val(se->statistics.wait_start))) 916 return; 917 918 delta = rq_clock(rq_of(cfs_rq)) - schedstat_val(se->statistics.wait_start); 919 920 if (entity_is_task(se)) { 921 p = task_of(se); 922 if (task_on_rq_migrating(p)) { 923 /* 924 * Preserve migrating task's wait time so wait_start 925 * time stamp can be adjusted to accumulate wait time 926 * prior to migration. 927 */ 928 __schedstat_set(se->statistics.wait_start, delta); 929 return; 930 } 931 trace_sched_stat_wait(p, delta); 932 } 933 934 __schedstat_set(se->statistics.wait_max, 935 max(schedstat_val(se->statistics.wait_max), delta)); 936 __schedstat_inc(se->statistics.wait_count); 937 __schedstat_add(se->statistics.wait_sum, delta); 938 __schedstat_set(se->statistics.wait_start, 0); 939 } 940 941 static inline void 942 update_stats_enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se) 943 { 944 struct task_struct *tsk = NULL; 945 u64 sleep_start, block_start; 946 947 if (!schedstat_enabled()) 948 return; 949 950 sleep_start = schedstat_val(se->statistics.sleep_start); 951 block_start = schedstat_val(se->statistics.block_start); 952 953 if (entity_is_task(se)) 954 tsk = task_of(se); 955 956 if (sleep_start) { 957 u64 delta = rq_clock(rq_of(cfs_rq)) - sleep_start; 958 959 if ((s64)delta < 0) 960 delta = 0; 961 962 if (unlikely(delta > schedstat_val(se->statistics.sleep_max))) 963 __schedstat_set(se->statistics.sleep_max, delta); 964 965 __schedstat_set(se->statistics.sleep_start, 0); 966 __schedstat_add(se->statistics.sum_sleep_runtime, delta); 967 968 if (tsk) { 969 account_scheduler_latency(tsk, delta >> 10, 1); 970 trace_sched_stat_sleep(tsk, delta); 971 } 972 } 973 if (block_start) { 974 u64 delta = rq_clock(rq_of(cfs_rq)) - block_start; 975 976 if ((s64)delta < 0) 977 delta = 0; 978 979 if (unlikely(delta > schedstat_val(se->statistics.block_max))) 980 __schedstat_set(se->statistics.block_max, delta); 981 982 __schedstat_set(se->statistics.block_start, 0); 983 __schedstat_add(se->statistics.sum_sleep_runtime, delta); 984 985 if (tsk) { 986 if (tsk->in_iowait) { 987 __schedstat_add(se->statistics.iowait_sum, delta); 988 __schedstat_inc(se->statistics.iowait_count); 989 trace_sched_stat_iowait(tsk, delta); 990 } 991 992 trace_sched_stat_blocked(tsk, delta); 993 994 /* 995 * Blocking time is in units of nanosecs, so shift by 996 * 20 to get a milliseconds-range estimation of the 997 * amount of time that the task spent sleeping: 998 */ 999 if (unlikely(prof_on == SLEEP_PROFILING)) { 1000 profile_hits(SLEEP_PROFILING, 1001 (void *)get_wchan(tsk), 1002 delta >> 20); 1003 } 1004 account_scheduler_latency(tsk, delta >> 10, 0); 1005 } 1006 } 1007 } 1008 1009 /* 1010 * Task is being enqueued - update stats: 1011 */ 1012 static inline void 1013 update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 1014 { 1015 if (!schedstat_enabled()) 1016 return; 1017 1018 /* 1019 * Are we enqueueing a waiting task? (for current tasks 1020 * a dequeue/enqueue event is a NOP) 1021 */ 1022 if (se != cfs_rq->curr) 1023 update_stats_wait_start(cfs_rq, se); 1024 1025 if (flags & ENQUEUE_WAKEUP) 1026 update_stats_enqueue_sleeper(cfs_rq, se); 1027 } 1028 1029 static inline void 1030 update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 1031 { 1032 1033 if (!schedstat_enabled()) 1034 return; 1035 1036 /* 1037 * Mark the end of the wait period if dequeueing a 1038 * waiting task: 1039 */ 1040 if (se != cfs_rq->curr) 1041 update_stats_wait_end(cfs_rq, se); 1042 1043 if ((flags & DEQUEUE_SLEEP) && entity_is_task(se)) { 1044 struct task_struct *tsk = task_of(se); 1045 1046 if (tsk->state & TASK_INTERRUPTIBLE) 1047 __schedstat_set(se->statistics.sleep_start, 1048 rq_clock(rq_of(cfs_rq))); 1049 if (tsk->state & TASK_UNINTERRUPTIBLE) 1050 __schedstat_set(se->statistics.block_start, 1051 rq_clock(rq_of(cfs_rq))); 1052 } 1053 } 1054 1055 /* 1056 * We are picking a new current task - update its stats: 1057 */ 1058 static inline void 1059 update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se) 1060 { 1061 /* 1062 * We are starting a new run period: 1063 */ 1064 se->exec_start = rq_clock_task(rq_of(cfs_rq)); 1065 } 1066 1067 /************************************************** 1068 * Scheduling class queueing methods: 1069 */ 1070 1071 #ifdef CONFIG_NUMA_BALANCING 1072 /* 1073 * Approximate time to scan a full NUMA task in ms. The task scan period is 1074 * calculated based on the tasks virtual memory size and 1075 * numa_balancing_scan_size. 1076 */ 1077 unsigned int sysctl_numa_balancing_scan_period_min = 1000; 1078 unsigned int sysctl_numa_balancing_scan_period_max = 60000; 1079 1080 /* Portion of address space to scan in MB */ 1081 unsigned int sysctl_numa_balancing_scan_size = 256; 1082 1083 /* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */ 1084 unsigned int sysctl_numa_balancing_scan_delay = 1000; 1085 1086 struct numa_group { 1087 refcount_t refcount; 1088 1089 spinlock_t lock; /* nr_tasks, tasks */ 1090 int nr_tasks; 1091 pid_t gid; 1092 int active_nodes; 1093 1094 struct rcu_head rcu; 1095 unsigned long total_faults; 1096 unsigned long max_faults_cpu; 1097 /* 1098 * Faults_cpu is used to decide whether memory should move 1099 * towards the CPU. As a consequence, these stats are weighted 1100 * more by CPU use than by memory faults. 1101 */ 1102 unsigned long *faults_cpu; 1103 unsigned long faults[]; 1104 }; 1105 1106 /* 1107 * For functions that can be called in multiple contexts that permit reading 1108 * ->numa_group (see struct task_struct for locking rules). 1109 */ 1110 static struct numa_group *deref_task_numa_group(struct task_struct *p) 1111 { 1112 return rcu_dereference_check(p->numa_group, p == current || 1113 (lockdep_is_held(&task_rq(p)->lock) && !READ_ONCE(p->on_cpu))); 1114 } 1115 1116 static struct numa_group *deref_curr_numa_group(struct task_struct *p) 1117 { 1118 return rcu_dereference_protected(p->numa_group, p == current); 1119 } 1120 1121 static inline unsigned long group_faults_priv(struct numa_group *ng); 1122 static inline unsigned long group_faults_shared(struct numa_group *ng); 1123 1124 static unsigned int task_nr_scan_windows(struct task_struct *p) 1125 { 1126 unsigned long rss = 0; 1127 unsigned long nr_scan_pages; 1128 1129 /* 1130 * Calculations based on RSS as non-present and empty pages are skipped 1131 * by the PTE scanner and NUMA hinting faults should be trapped based 1132 * on resident pages 1133 */ 1134 nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT); 1135 rss = get_mm_rss(p->mm); 1136 if (!rss) 1137 rss = nr_scan_pages; 1138 1139 rss = round_up(rss, nr_scan_pages); 1140 return rss / nr_scan_pages; 1141 } 1142 1143 /* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */ 1144 #define MAX_SCAN_WINDOW 2560 1145 1146 static unsigned int task_scan_min(struct task_struct *p) 1147 { 1148 unsigned int scan_size = READ_ONCE(sysctl_numa_balancing_scan_size); 1149 unsigned int scan, floor; 1150 unsigned int windows = 1; 1151 1152 if (scan_size < MAX_SCAN_WINDOW) 1153 windows = MAX_SCAN_WINDOW / scan_size; 1154 floor = 1000 / windows; 1155 1156 scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p); 1157 return max_t(unsigned int, floor, scan); 1158 } 1159 1160 static unsigned int task_scan_start(struct task_struct *p) 1161 { 1162 unsigned long smin = task_scan_min(p); 1163 unsigned long period = smin; 1164 struct numa_group *ng; 1165 1166 /* Scale the maximum scan period with the amount of shared memory. */ 1167 rcu_read_lock(); 1168 ng = rcu_dereference(p->numa_group); 1169 if (ng) { 1170 unsigned long shared = group_faults_shared(ng); 1171 unsigned long private = group_faults_priv(ng); 1172 1173 period *= refcount_read(&ng->refcount); 1174 period *= shared + 1; 1175 period /= private + shared + 1; 1176 } 1177 rcu_read_unlock(); 1178 1179 return max(smin, period); 1180 } 1181 1182 static unsigned int task_scan_max(struct task_struct *p) 1183 { 1184 unsigned long smin = task_scan_min(p); 1185 unsigned long smax; 1186 struct numa_group *ng; 1187 1188 /* Watch for min being lower than max due to floor calculations */ 1189 smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p); 1190 1191 /* Scale the maximum scan period with the amount of shared memory. */ 1192 ng = deref_curr_numa_group(p); 1193 if (ng) { 1194 unsigned long shared = group_faults_shared(ng); 1195 unsigned long private = group_faults_priv(ng); 1196 unsigned long period = smax; 1197 1198 period *= refcount_read(&ng->refcount); 1199 period *= shared + 1; 1200 period /= private + shared + 1; 1201 1202 smax = max(smax, period); 1203 } 1204 1205 return max(smin, smax); 1206 } 1207 1208 static void account_numa_enqueue(struct rq *rq, struct task_struct *p) 1209 { 1210 rq->nr_numa_running += (p->numa_preferred_nid != NUMA_NO_NODE); 1211 rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p)); 1212 } 1213 1214 static void account_numa_dequeue(struct rq *rq, struct task_struct *p) 1215 { 1216 rq->nr_numa_running -= (p->numa_preferred_nid != NUMA_NO_NODE); 1217 rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p)); 1218 } 1219 1220 /* Shared or private faults. */ 1221 #define NR_NUMA_HINT_FAULT_TYPES 2 1222 1223 /* Memory and CPU locality */ 1224 #define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2) 1225 1226 /* Averaged statistics, and temporary buffers. */ 1227 #define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2) 1228 1229 pid_t task_numa_group_id(struct task_struct *p) 1230 { 1231 struct numa_group *ng; 1232 pid_t gid = 0; 1233 1234 rcu_read_lock(); 1235 ng = rcu_dereference(p->numa_group); 1236 if (ng) 1237 gid = ng->gid; 1238 rcu_read_unlock(); 1239 1240 return gid; 1241 } 1242 1243 /* 1244 * The averaged statistics, shared & private, memory & CPU, 1245 * occupy the first half of the array. The second half of the 1246 * array is for current counters, which are averaged into the 1247 * first set by task_numa_placement. 1248 */ 1249 static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv) 1250 { 1251 return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv; 1252 } 1253 1254 static inline unsigned long task_faults(struct task_struct *p, int nid) 1255 { 1256 if (!p->numa_faults) 1257 return 0; 1258 1259 return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] + 1260 p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)]; 1261 } 1262 1263 static inline unsigned long group_faults(struct task_struct *p, int nid) 1264 { 1265 struct numa_group *ng = deref_task_numa_group(p); 1266 1267 if (!ng) 1268 return 0; 1269 1270 return ng->faults[task_faults_idx(NUMA_MEM, nid, 0)] + 1271 ng->faults[task_faults_idx(NUMA_MEM, nid, 1)]; 1272 } 1273 1274 static inline unsigned long group_faults_cpu(struct numa_group *group, int nid) 1275 { 1276 return group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 0)] + 1277 group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 1)]; 1278 } 1279 1280 static inline unsigned long group_faults_priv(struct numa_group *ng) 1281 { 1282 unsigned long faults = 0; 1283 int node; 1284 1285 for_each_online_node(node) { 1286 faults += ng->faults[task_faults_idx(NUMA_MEM, node, 1)]; 1287 } 1288 1289 return faults; 1290 } 1291 1292 static inline unsigned long group_faults_shared(struct numa_group *ng) 1293 { 1294 unsigned long faults = 0; 1295 int node; 1296 1297 for_each_online_node(node) { 1298 faults += ng->faults[task_faults_idx(NUMA_MEM, node, 0)]; 1299 } 1300 1301 return faults; 1302 } 1303 1304 /* 1305 * A node triggering more than 1/3 as many NUMA faults as the maximum is 1306 * considered part of a numa group's pseudo-interleaving set. Migrations 1307 * between these nodes are slowed down, to allow things to settle down. 1308 */ 1309 #define ACTIVE_NODE_FRACTION 3 1310 1311 static bool numa_is_active_node(int nid, struct numa_group *ng) 1312 { 1313 return group_faults_cpu(ng, nid) * ACTIVE_NODE_FRACTION > ng->max_faults_cpu; 1314 } 1315 1316 /* Handle placement on systems where not all nodes are directly connected. */ 1317 static unsigned long score_nearby_nodes(struct task_struct *p, int nid, 1318 int maxdist, bool task) 1319 { 1320 unsigned long score = 0; 1321 int node; 1322 1323 /* 1324 * All nodes are directly connected, and the same distance 1325 * from each other. No need for fancy placement algorithms. 1326 */ 1327 if (sched_numa_topology_type == NUMA_DIRECT) 1328 return 0; 1329 1330 /* 1331 * This code is called for each node, introducing N^2 complexity, 1332 * which should be ok given the number of nodes rarely exceeds 8. 1333 */ 1334 for_each_online_node(node) { 1335 unsigned long faults; 1336 int dist = node_distance(nid, node); 1337 1338 /* 1339 * The furthest away nodes in the system are not interesting 1340 * for placement; nid was already counted. 1341 */ 1342 if (dist == sched_max_numa_distance || node == nid) 1343 continue; 1344 1345 /* 1346 * On systems with a backplane NUMA topology, compare groups 1347 * of nodes, and move tasks towards the group with the most 1348 * memory accesses. When comparing two nodes at distance 1349 * "hoplimit", only nodes closer by than "hoplimit" are part 1350 * of each group. Skip other nodes. 1351 */ 1352 if (sched_numa_topology_type == NUMA_BACKPLANE && 1353 dist >= maxdist) 1354 continue; 1355 1356 /* Add up the faults from nearby nodes. */ 1357 if (task) 1358 faults = task_faults(p, node); 1359 else 1360 faults = group_faults(p, node); 1361 1362 /* 1363 * On systems with a glueless mesh NUMA topology, there are 1364 * no fixed "groups of nodes". Instead, nodes that are not 1365 * directly connected bounce traffic through intermediate 1366 * nodes; a numa_group can occupy any set of nodes. 1367 * The further away a node is, the less the faults count. 1368 * This seems to result in good task placement. 1369 */ 1370 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) { 1371 faults *= (sched_max_numa_distance - dist); 1372 faults /= (sched_max_numa_distance - LOCAL_DISTANCE); 1373 } 1374 1375 score += faults; 1376 } 1377 1378 return score; 1379 } 1380 1381 /* 1382 * These return the fraction of accesses done by a particular task, or 1383 * task group, on a particular numa node. The group weight is given a 1384 * larger multiplier, in order to group tasks together that are almost 1385 * evenly spread out between numa nodes. 1386 */ 1387 static inline unsigned long task_weight(struct task_struct *p, int nid, 1388 int dist) 1389 { 1390 unsigned long faults, total_faults; 1391 1392 if (!p->numa_faults) 1393 return 0; 1394 1395 total_faults = p->total_numa_faults; 1396 1397 if (!total_faults) 1398 return 0; 1399 1400 faults = task_faults(p, nid); 1401 faults += score_nearby_nodes(p, nid, dist, true); 1402 1403 return 1000 * faults / total_faults; 1404 } 1405 1406 static inline unsigned long group_weight(struct task_struct *p, int nid, 1407 int dist) 1408 { 1409 struct numa_group *ng = deref_task_numa_group(p); 1410 unsigned long faults, total_faults; 1411 1412 if (!ng) 1413 return 0; 1414 1415 total_faults = ng->total_faults; 1416 1417 if (!total_faults) 1418 return 0; 1419 1420 faults = group_faults(p, nid); 1421 faults += score_nearby_nodes(p, nid, dist, false); 1422 1423 return 1000 * faults / total_faults; 1424 } 1425 1426 bool should_numa_migrate_memory(struct task_struct *p, struct page * page, 1427 int src_nid, int dst_cpu) 1428 { 1429 struct numa_group *ng = deref_curr_numa_group(p); 1430 int dst_nid = cpu_to_node(dst_cpu); 1431 int last_cpupid, this_cpupid; 1432 1433 this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid); 1434 last_cpupid = page_cpupid_xchg_last(page, this_cpupid); 1435 1436 /* 1437 * Allow first faults or private faults to migrate immediately early in 1438 * the lifetime of a task. The magic number 4 is based on waiting for 1439 * two full passes of the "multi-stage node selection" test that is 1440 * executed below. 1441 */ 1442 if ((p->numa_preferred_nid == NUMA_NO_NODE || p->numa_scan_seq <= 4) && 1443 (cpupid_pid_unset(last_cpupid) || cpupid_match_pid(p, last_cpupid))) 1444 return true; 1445 1446 /* 1447 * Multi-stage node selection is used in conjunction with a periodic 1448 * migration fault to build a temporal task<->page relation. By using 1449 * a two-stage filter we remove short/unlikely relations. 1450 * 1451 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate 1452 * a task's usage of a particular page (n_p) per total usage of this 1453 * page (n_t) (in a given time-span) to a probability. 1454 * 1455 * Our periodic faults will sample this probability and getting the 1456 * same result twice in a row, given these samples are fully 1457 * independent, is then given by P(n)^2, provided our sample period 1458 * is sufficiently short compared to the usage pattern. 1459 * 1460 * This quadric squishes small probabilities, making it less likely we 1461 * act on an unlikely task<->page relation. 1462 */ 1463 if (!cpupid_pid_unset(last_cpupid) && 1464 cpupid_to_nid(last_cpupid) != dst_nid) 1465 return false; 1466 1467 /* Always allow migrate on private faults */ 1468 if (cpupid_match_pid(p, last_cpupid)) 1469 return true; 1470 1471 /* A shared fault, but p->numa_group has not been set up yet. */ 1472 if (!ng) 1473 return true; 1474 1475 /* 1476 * Destination node is much more heavily used than the source 1477 * node? Allow migration. 1478 */ 1479 if (group_faults_cpu(ng, dst_nid) > group_faults_cpu(ng, src_nid) * 1480 ACTIVE_NODE_FRACTION) 1481 return true; 1482 1483 /* 1484 * Distribute memory according to CPU & memory use on each node, 1485 * with 3/4 hysteresis to avoid unnecessary memory migrations: 1486 * 1487 * faults_cpu(dst) 3 faults_cpu(src) 1488 * --------------- * - > --------------- 1489 * faults_mem(dst) 4 faults_mem(src) 1490 */ 1491 return group_faults_cpu(ng, dst_nid) * group_faults(p, src_nid) * 3 > 1492 group_faults_cpu(ng, src_nid) * group_faults(p, dst_nid) * 4; 1493 } 1494 1495 /* 1496 * 'numa_type' describes the node at the moment of load balancing. 1497 */ 1498 enum numa_type { 1499 /* The node has spare capacity that can be used to run more tasks. */ 1500 node_has_spare = 0, 1501 /* 1502 * The node is fully used and the tasks don't compete for more CPU 1503 * cycles. Nevertheless, some tasks might wait before running. 1504 */ 1505 node_fully_busy, 1506 /* 1507 * The node is overloaded and can't provide expected CPU cycles to all 1508 * tasks. 1509 */ 1510 node_overloaded 1511 }; 1512 1513 /* Cached statistics for all CPUs within a node */ 1514 struct numa_stats { 1515 unsigned long load; 1516 unsigned long runnable; 1517 unsigned long util; 1518 /* Total compute capacity of CPUs on a node */ 1519 unsigned long compute_capacity; 1520 unsigned int nr_running; 1521 unsigned int weight; 1522 enum numa_type node_type; 1523 int idle_cpu; 1524 }; 1525 1526 static inline bool is_core_idle(int cpu) 1527 { 1528 #ifdef CONFIG_SCHED_SMT 1529 int sibling; 1530 1531 for_each_cpu(sibling, cpu_smt_mask(cpu)) { 1532 if (cpu == sibling) 1533 continue; 1534 1535 if (!idle_cpu(cpu)) 1536 return false; 1537 } 1538 #endif 1539 1540 return true; 1541 } 1542 1543 struct task_numa_env { 1544 struct task_struct *p; 1545 1546 int src_cpu, src_nid; 1547 int dst_cpu, dst_nid; 1548 1549 struct numa_stats src_stats, dst_stats; 1550 1551 int imbalance_pct; 1552 int dist; 1553 1554 struct task_struct *best_task; 1555 long best_imp; 1556 int best_cpu; 1557 }; 1558 1559 static unsigned long cpu_load(struct rq *rq); 1560 static unsigned long cpu_runnable(struct rq *rq); 1561 static unsigned long cpu_util(int cpu); 1562 static inline long adjust_numa_imbalance(int imbalance, 1563 int dst_running, int dst_weight); 1564 1565 static inline enum 1566 numa_type numa_classify(unsigned int imbalance_pct, 1567 struct numa_stats *ns) 1568 { 1569 if ((ns->nr_running > ns->weight) && 1570 (((ns->compute_capacity * 100) < (ns->util * imbalance_pct)) || 1571 ((ns->compute_capacity * imbalance_pct) < (ns->runnable * 100)))) 1572 return node_overloaded; 1573 1574 if ((ns->nr_running < ns->weight) || 1575 (((ns->compute_capacity * 100) > (ns->util * imbalance_pct)) && 1576 ((ns->compute_capacity * imbalance_pct) > (ns->runnable * 100)))) 1577 return node_has_spare; 1578 1579 return node_fully_busy; 1580 } 1581 1582 #ifdef CONFIG_SCHED_SMT 1583 /* Forward declarations of select_idle_sibling helpers */ 1584 static inline bool test_idle_cores(int cpu, bool def); 1585 static inline int numa_idle_core(int idle_core, int cpu) 1586 { 1587 if (!static_branch_likely(&sched_smt_present) || 1588 idle_core >= 0 || !test_idle_cores(cpu, false)) 1589 return idle_core; 1590 1591 /* 1592 * Prefer cores instead of packing HT siblings 1593 * and triggering future load balancing. 1594 */ 1595 if (is_core_idle(cpu)) 1596 idle_core = cpu; 1597 1598 return idle_core; 1599 } 1600 #else 1601 static inline int numa_idle_core(int idle_core, int cpu) 1602 { 1603 return idle_core; 1604 } 1605 #endif 1606 1607 /* 1608 * Gather all necessary information to make NUMA balancing placement 1609 * decisions that are compatible with standard load balancer. This 1610 * borrows code and logic from update_sg_lb_stats but sharing a 1611 * common implementation is impractical. 1612 */ 1613 static void update_numa_stats(struct task_numa_env *env, 1614 struct numa_stats *ns, int nid, 1615 bool find_idle) 1616 { 1617 int cpu, idle_core = -1; 1618 1619 memset(ns, 0, sizeof(*ns)); 1620 ns->idle_cpu = -1; 1621 1622 rcu_read_lock(); 1623 for_each_cpu(cpu, cpumask_of_node(nid)) { 1624 struct rq *rq = cpu_rq(cpu); 1625 1626 ns->load += cpu_load(rq); 1627 ns->runnable += cpu_runnable(rq); 1628 ns->util += cpu_util(cpu); 1629 ns->nr_running += rq->cfs.h_nr_running; 1630 ns->compute_capacity += capacity_of(cpu); 1631 1632 if (find_idle && !rq->nr_running && idle_cpu(cpu)) { 1633 if (READ_ONCE(rq->numa_migrate_on) || 1634 !cpumask_test_cpu(cpu, env->p->cpus_ptr)) 1635 continue; 1636 1637 if (ns->idle_cpu == -1) 1638 ns->idle_cpu = cpu; 1639 1640 idle_core = numa_idle_core(idle_core, cpu); 1641 } 1642 } 1643 rcu_read_unlock(); 1644 1645 ns->weight = cpumask_weight(cpumask_of_node(nid)); 1646 1647 ns->node_type = numa_classify(env->imbalance_pct, ns); 1648 1649 if (idle_core >= 0) 1650 ns->idle_cpu = idle_core; 1651 } 1652 1653 static void task_numa_assign(struct task_numa_env *env, 1654 struct task_struct *p, long imp) 1655 { 1656 struct rq *rq = cpu_rq(env->dst_cpu); 1657 1658 /* Check if run-queue part of active NUMA balance. */ 1659 if (env->best_cpu != env->dst_cpu && xchg(&rq->numa_migrate_on, 1)) { 1660 int cpu; 1661 int start = env->dst_cpu; 1662 1663 /* Find alternative idle CPU. */ 1664 for_each_cpu_wrap(cpu, cpumask_of_node(env->dst_nid), start) { 1665 if (cpu == env->best_cpu || !idle_cpu(cpu) || 1666 !cpumask_test_cpu(cpu, env->p->cpus_ptr)) { 1667 continue; 1668 } 1669 1670 env->dst_cpu = cpu; 1671 rq = cpu_rq(env->dst_cpu); 1672 if (!xchg(&rq->numa_migrate_on, 1)) 1673 goto assign; 1674 } 1675 1676 /* Failed to find an alternative idle CPU */ 1677 return; 1678 } 1679 1680 assign: 1681 /* 1682 * Clear previous best_cpu/rq numa-migrate flag, since task now 1683 * found a better CPU to move/swap. 1684 */ 1685 if (env->best_cpu != -1 && env->best_cpu != env->dst_cpu) { 1686 rq = cpu_rq(env->best_cpu); 1687 WRITE_ONCE(rq->numa_migrate_on, 0); 1688 } 1689 1690 if (env->best_task) 1691 put_task_struct(env->best_task); 1692 if (p) 1693 get_task_struct(p); 1694 1695 env->best_task = p; 1696 env->best_imp = imp; 1697 env->best_cpu = env->dst_cpu; 1698 } 1699 1700 static bool load_too_imbalanced(long src_load, long dst_load, 1701 struct task_numa_env *env) 1702 { 1703 long imb, old_imb; 1704 long orig_src_load, orig_dst_load; 1705 long src_capacity, dst_capacity; 1706 1707 /* 1708 * The load is corrected for the CPU capacity available on each node. 1709 * 1710 * src_load dst_load 1711 * ------------ vs --------- 1712 * src_capacity dst_capacity 1713 */ 1714 src_capacity = env->src_stats.compute_capacity; 1715 dst_capacity = env->dst_stats.compute_capacity; 1716 1717 imb = abs(dst_load * src_capacity - src_load * dst_capacity); 1718 1719 orig_src_load = env->src_stats.load; 1720 orig_dst_load = env->dst_stats.load; 1721 1722 old_imb = abs(orig_dst_load * src_capacity - orig_src_load * dst_capacity); 1723 1724 /* Would this change make things worse? */ 1725 return (imb > old_imb); 1726 } 1727 1728 /* 1729 * Maximum NUMA importance can be 1998 (2*999); 1730 * SMALLIMP @ 30 would be close to 1998/64. 1731 * Used to deter task migration. 1732 */ 1733 #define SMALLIMP 30 1734 1735 /* 1736 * This checks if the overall compute and NUMA accesses of the system would 1737 * be improved if the source tasks was migrated to the target dst_cpu taking 1738 * into account that it might be best if task running on the dst_cpu should 1739 * be exchanged with the source task 1740 */ 1741 static bool task_numa_compare(struct task_numa_env *env, 1742 long taskimp, long groupimp, bool maymove) 1743 { 1744 struct numa_group *cur_ng, *p_ng = deref_curr_numa_group(env->p); 1745 struct rq *dst_rq = cpu_rq(env->dst_cpu); 1746 long imp = p_ng ? groupimp : taskimp; 1747 struct task_struct *cur; 1748 long src_load, dst_load; 1749 int dist = env->dist; 1750 long moveimp = imp; 1751 long load; 1752 bool stopsearch = false; 1753 1754 if (READ_ONCE(dst_rq->numa_migrate_on)) 1755 return false; 1756 1757 rcu_read_lock(); 1758 cur = rcu_dereference(dst_rq->curr); 1759 if (cur && ((cur->flags & PF_EXITING) || is_idle_task(cur))) 1760 cur = NULL; 1761 1762 /* 1763 * Because we have preemption enabled we can get migrated around and 1764 * end try selecting ourselves (current == env->p) as a swap candidate. 1765 */ 1766 if (cur == env->p) { 1767 stopsearch = true; 1768 goto unlock; 1769 } 1770 1771 if (!cur) { 1772 if (maymove && moveimp >= env->best_imp) 1773 goto assign; 1774 else 1775 goto unlock; 1776 } 1777 1778 /* Skip this swap candidate if cannot move to the source cpu. */ 1779 if (!cpumask_test_cpu(env->src_cpu, cur->cpus_ptr)) 1780 goto unlock; 1781 1782 /* 1783 * Skip this swap candidate if it is not moving to its preferred 1784 * node and the best task is. 1785 */ 1786 if (env->best_task && 1787 env->best_task->numa_preferred_nid == env->src_nid && 1788 cur->numa_preferred_nid != env->src_nid) { 1789 goto unlock; 1790 } 1791 1792 /* 1793 * "imp" is the fault differential for the source task between the 1794 * source and destination node. Calculate the total differential for 1795 * the source task and potential destination task. The more negative 1796 * the value is, the more remote accesses that would be expected to 1797 * be incurred if the tasks were swapped. 1798 * 1799 * If dst and source tasks are in the same NUMA group, or not 1800 * in any group then look only at task weights. 1801 */ 1802 cur_ng = rcu_dereference(cur->numa_group); 1803 if (cur_ng == p_ng) { 1804 imp = taskimp + task_weight(cur, env->src_nid, dist) - 1805 task_weight(cur, env->dst_nid, dist); 1806 /* 1807 * Add some hysteresis to prevent swapping the 1808 * tasks within a group over tiny differences. 1809 */ 1810 if (cur_ng) 1811 imp -= imp / 16; 1812 } else { 1813 /* 1814 * Compare the group weights. If a task is all by itself 1815 * (not part of a group), use the task weight instead. 1816 */ 1817 if (cur_ng && p_ng) 1818 imp += group_weight(cur, env->src_nid, dist) - 1819 group_weight(cur, env->dst_nid, dist); 1820 else 1821 imp += task_weight(cur, env->src_nid, dist) - 1822 task_weight(cur, env->dst_nid, dist); 1823 } 1824 1825 /* Discourage picking a task already on its preferred node */ 1826 if (cur->numa_preferred_nid == env->dst_nid) 1827 imp -= imp / 16; 1828 1829 /* 1830 * Encourage picking a task that moves to its preferred node. 1831 * This potentially makes imp larger than it's maximum of 1832 * 1998 (see SMALLIMP and task_weight for why) but in this 1833 * case, it does not matter. 1834 */ 1835 if (cur->numa_preferred_nid == env->src_nid) 1836 imp += imp / 8; 1837 1838 if (maymove && moveimp > imp && moveimp > env->best_imp) { 1839 imp = moveimp; 1840 cur = NULL; 1841 goto assign; 1842 } 1843 1844 /* 1845 * Prefer swapping with a task moving to its preferred node over a 1846 * task that is not. 1847 */ 1848 if (env->best_task && cur->numa_preferred_nid == env->src_nid && 1849 env->best_task->numa_preferred_nid != env->src_nid) { 1850 goto assign; 1851 } 1852 1853 /* 1854 * If the NUMA importance is less than SMALLIMP, 1855 * task migration might only result in ping pong 1856 * of tasks and also hurt performance due to cache 1857 * misses. 1858 */ 1859 if (imp < SMALLIMP || imp <= env->best_imp + SMALLIMP / 2) 1860 goto unlock; 1861 1862 /* 1863 * In the overloaded case, try and keep the load balanced. 1864 */ 1865 load = task_h_load(env->p) - task_h_load(cur); 1866 if (!load) 1867 goto assign; 1868 1869 dst_load = env->dst_stats.load + load; 1870 src_load = env->src_stats.load - load; 1871 1872 if (load_too_imbalanced(src_load, dst_load, env)) 1873 goto unlock; 1874 1875 assign: 1876 /* Evaluate an idle CPU for a task numa move. */ 1877 if (!cur) { 1878 int cpu = env->dst_stats.idle_cpu; 1879 1880 /* Nothing cached so current CPU went idle since the search. */ 1881 if (cpu < 0) 1882 cpu = env->dst_cpu; 1883 1884 /* 1885 * If the CPU is no longer truly idle and the previous best CPU 1886 * is, keep using it. 1887 */ 1888 if (!idle_cpu(cpu) && env->best_cpu >= 0 && 1889 idle_cpu(env->best_cpu)) { 1890 cpu = env->best_cpu; 1891 } 1892 1893 env->dst_cpu = cpu; 1894 } 1895 1896 task_numa_assign(env, cur, imp); 1897 1898 /* 1899 * If a move to idle is allowed because there is capacity or load 1900 * balance improves then stop the search. While a better swap 1901 * candidate may exist, a search is not free. 1902 */ 1903 if (maymove && !cur && env->best_cpu >= 0 && idle_cpu(env->best_cpu)) 1904 stopsearch = true; 1905 1906 /* 1907 * If a swap candidate must be identified and the current best task 1908 * moves its preferred node then stop the search. 1909 */ 1910 if (!maymove && env->best_task && 1911 env->best_task->numa_preferred_nid == env->src_nid) { 1912 stopsearch = true; 1913 } 1914 unlock: 1915 rcu_read_unlock(); 1916 1917 return stopsearch; 1918 } 1919 1920 static void task_numa_find_cpu(struct task_numa_env *env, 1921 long taskimp, long groupimp) 1922 { 1923 bool maymove = false; 1924 int cpu; 1925 1926 /* 1927 * If dst node has spare capacity, then check if there is an 1928 * imbalance that would be overruled by the load balancer. 1929 */ 1930 if (env->dst_stats.node_type == node_has_spare) { 1931 unsigned int imbalance; 1932 int src_running, dst_running; 1933 1934 /* 1935 * Would movement cause an imbalance? Note that if src has 1936 * more running tasks that the imbalance is ignored as the 1937 * move improves the imbalance from the perspective of the 1938 * CPU load balancer. 1939 * */ 1940 src_running = env->src_stats.nr_running - 1; 1941 dst_running = env->dst_stats.nr_running + 1; 1942 imbalance = max(0, dst_running - src_running); 1943 imbalance = adjust_numa_imbalance(imbalance, dst_running, 1944 env->dst_stats.weight); 1945 1946 /* Use idle CPU if there is no imbalance */ 1947 if (!imbalance) { 1948 maymove = true; 1949 if (env->dst_stats.idle_cpu >= 0) { 1950 env->dst_cpu = env->dst_stats.idle_cpu; 1951 task_numa_assign(env, NULL, 0); 1952 return; 1953 } 1954 } 1955 } else { 1956 long src_load, dst_load, load; 1957 /* 1958 * If the improvement from just moving env->p direction is better 1959 * than swapping tasks around, check if a move is possible. 1960 */ 1961 load = task_h_load(env->p); 1962 dst_load = env->dst_stats.load + load; 1963 src_load = env->src_stats.load - load; 1964 maymove = !load_too_imbalanced(src_load, dst_load, env); 1965 } 1966 1967 for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) { 1968 /* Skip this CPU if the source task cannot migrate */ 1969 if (!cpumask_test_cpu(cpu, env->p->cpus_ptr)) 1970 continue; 1971 1972 env->dst_cpu = cpu; 1973 if (task_numa_compare(env, taskimp, groupimp, maymove)) 1974 break; 1975 } 1976 } 1977 1978 static int task_numa_migrate(struct task_struct *p) 1979 { 1980 struct task_numa_env env = { 1981 .p = p, 1982 1983 .src_cpu = task_cpu(p), 1984 .src_nid = task_node(p), 1985 1986 .imbalance_pct = 112, 1987 1988 .best_task = NULL, 1989 .best_imp = 0, 1990 .best_cpu = -1, 1991 }; 1992 unsigned long taskweight, groupweight; 1993 struct sched_domain *sd; 1994 long taskimp, groupimp; 1995 struct numa_group *ng; 1996 struct rq *best_rq; 1997 int nid, ret, dist; 1998 1999 /* 2000 * Pick the lowest SD_NUMA domain, as that would have the smallest 2001 * imbalance and would be the first to start moving tasks about. 2002 * 2003 * And we want to avoid any moving of tasks about, as that would create 2004 * random movement of tasks -- counter the numa conditions we're trying 2005 * to satisfy here. 2006 */ 2007 rcu_read_lock(); 2008 sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu)); 2009 if (sd) 2010 env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2; 2011 rcu_read_unlock(); 2012 2013 /* 2014 * Cpusets can break the scheduler domain tree into smaller 2015 * balance domains, some of which do not cross NUMA boundaries. 2016 * Tasks that are "trapped" in such domains cannot be migrated 2017 * elsewhere, so there is no point in (re)trying. 2018 */ 2019 if (unlikely(!sd)) { 2020 sched_setnuma(p, task_node(p)); 2021 return -EINVAL; 2022 } 2023 2024 env.dst_nid = p->numa_preferred_nid; 2025 dist = env.dist = node_distance(env.src_nid, env.dst_nid); 2026 taskweight = task_weight(p, env.src_nid, dist); 2027 groupweight = group_weight(p, env.src_nid, dist); 2028 update_numa_stats(&env, &env.src_stats, env.src_nid, false); 2029 taskimp = task_weight(p, env.dst_nid, dist) - taskweight; 2030 groupimp = group_weight(p, env.dst_nid, dist) - groupweight; 2031 update_numa_stats(&env, &env.dst_stats, env.dst_nid, true); 2032 2033 /* Try to find a spot on the preferred nid. */ 2034 task_numa_find_cpu(&env, taskimp, groupimp); 2035 2036 /* 2037 * Look at other nodes in these cases: 2038 * - there is no space available on the preferred_nid 2039 * - the task is part of a numa_group that is interleaved across 2040 * multiple NUMA nodes; in order to better consolidate the group, 2041 * we need to check other locations. 2042 */ 2043 ng = deref_curr_numa_group(p); 2044 if (env.best_cpu == -1 || (ng && ng->active_nodes > 1)) { 2045 for_each_online_node(nid) { 2046 if (nid == env.src_nid || nid == p->numa_preferred_nid) 2047 continue; 2048 2049 dist = node_distance(env.src_nid, env.dst_nid); 2050 if (sched_numa_topology_type == NUMA_BACKPLANE && 2051 dist != env.dist) { 2052 taskweight = task_weight(p, env.src_nid, dist); 2053 groupweight = group_weight(p, env.src_nid, dist); 2054 } 2055 2056 /* Only consider nodes where both task and groups benefit */ 2057 taskimp = task_weight(p, nid, dist) - taskweight; 2058 groupimp = group_weight(p, nid, dist) - groupweight; 2059 if (taskimp < 0 && groupimp < 0) 2060 continue; 2061 2062 env.dist = dist; 2063 env.dst_nid = nid; 2064 update_numa_stats(&env, &env.dst_stats, env.dst_nid, true); 2065 task_numa_find_cpu(&env, taskimp, groupimp); 2066 } 2067 } 2068 2069 /* 2070 * If the task is part of a workload that spans multiple NUMA nodes, 2071 * and is migrating into one of the workload's active nodes, remember 2072 * this node as the task's preferred numa node, so the workload can 2073 * settle down. 2074 * A task that migrated to a second choice node will be better off 2075 * trying for a better one later. Do not set the preferred node here. 2076 */ 2077 if (ng) { 2078 if (env.best_cpu == -1) 2079 nid = env.src_nid; 2080 else 2081 nid = cpu_to_node(env.best_cpu); 2082 2083 if (nid != p->numa_preferred_nid) 2084 sched_setnuma(p, nid); 2085 } 2086 2087 /* No better CPU than the current one was found. */ 2088 if (env.best_cpu == -1) { 2089 trace_sched_stick_numa(p, env.src_cpu, NULL, -1); 2090 return -EAGAIN; 2091 } 2092 2093 best_rq = cpu_rq(env.best_cpu); 2094 if (env.best_task == NULL) { 2095 ret = migrate_task_to(p, env.best_cpu); 2096 WRITE_ONCE(best_rq->numa_migrate_on, 0); 2097 if (ret != 0) 2098 trace_sched_stick_numa(p, env.src_cpu, NULL, env.best_cpu); 2099 return ret; 2100 } 2101 2102 ret = migrate_swap(p, env.best_task, env.best_cpu, env.src_cpu); 2103 WRITE_ONCE(best_rq->numa_migrate_on, 0); 2104 2105 if (ret != 0) 2106 trace_sched_stick_numa(p, env.src_cpu, env.best_task, env.best_cpu); 2107 put_task_struct(env.best_task); 2108 return ret; 2109 } 2110 2111 /* Attempt to migrate a task to a CPU on the preferred node. */ 2112 static void numa_migrate_preferred(struct task_struct *p) 2113 { 2114 unsigned long interval = HZ; 2115 2116 /* This task has no NUMA fault statistics yet */ 2117 if (unlikely(p->numa_preferred_nid == NUMA_NO_NODE || !p->numa_faults)) 2118 return; 2119 2120 /* Periodically retry migrating the task to the preferred node */ 2121 interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16); 2122 p->numa_migrate_retry = jiffies + interval; 2123 2124 /* Success if task is already running on preferred CPU */ 2125 if (task_node(p) == p->numa_preferred_nid) 2126 return; 2127 2128 /* Otherwise, try migrate to a CPU on the preferred node */ 2129 task_numa_migrate(p); 2130 } 2131 2132 /* 2133 * Find out how many nodes on the workload is actively running on. Do this by 2134 * tracking the nodes from which NUMA hinting faults are triggered. This can 2135 * be different from the set of nodes where the workload's memory is currently 2136 * located. 2137 */ 2138 static void numa_group_count_active_nodes(struct numa_group *numa_group) 2139 { 2140 unsigned long faults, max_faults = 0; 2141 int nid, active_nodes = 0; 2142 2143 for_each_online_node(nid) { 2144 faults = group_faults_cpu(numa_group, nid); 2145 if (faults > max_faults) 2146 max_faults = faults; 2147 } 2148 2149 for_each_online_node(nid) { 2150 faults = group_faults_cpu(numa_group, nid); 2151 if (faults * ACTIVE_NODE_FRACTION > max_faults) 2152 active_nodes++; 2153 } 2154 2155 numa_group->max_faults_cpu = max_faults; 2156 numa_group->active_nodes = active_nodes; 2157 } 2158 2159 /* 2160 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS 2161 * increments. The more local the fault statistics are, the higher the scan 2162 * period will be for the next scan window. If local/(local+remote) ratio is 2163 * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS) 2164 * the scan period will decrease. Aim for 70% local accesses. 2165 */ 2166 #define NUMA_PERIOD_SLOTS 10 2167 #define NUMA_PERIOD_THRESHOLD 7 2168 2169 /* 2170 * Increase the scan period (slow down scanning) if the majority of 2171 * our memory is already on our local node, or if the majority of 2172 * the page accesses are shared with other processes. 2173 * Otherwise, decrease the scan period. 2174 */ 2175 static void update_task_scan_period(struct task_struct *p, 2176 unsigned long shared, unsigned long private) 2177 { 2178 unsigned int period_slot; 2179 int lr_ratio, ps_ratio; 2180 int diff; 2181 2182 unsigned long remote = p->numa_faults_locality[0]; 2183 unsigned long local = p->numa_faults_locality[1]; 2184 2185 /* 2186 * If there were no record hinting faults then either the task is 2187 * completely idle or all activity is areas that are not of interest 2188 * to automatic numa balancing. Related to that, if there were failed 2189 * migration then it implies we are migrating too quickly or the local 2190 * node is overloaded. In either case, scan slower 2191 */ 2192 if (local + shared == 0 || p->numa_faults_locality[2]) { 2193 p->numa_scan_period = min(p->numa_scan_period_max, 2194 p->numa_scan_period << 1); 2195 2196 p->mm->numa_next_scan = jiffies + 2197 msecs_to_jiffies(p->numa_scan_period); 2198 2199 return; 2200 } 2201 2202 /* 2203 * Prepare to scale scan period relative to the current period. 2204 * == NUMA_PERIOD_THRESHOLD scan period stays the same 2205 * < NUMA_PERIOD_THRESHOLD scan period decreases (scan faster) 2206 * >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower) 2207 */ 2208 period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS); 2209 lr_ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote); 2210 ps_ratio = (private * NUMA_PERIOD_SLOTS) / (private + shared); 2211 2212 if (ps_ratio >= NUMA_PERIOD_THRESHOLD) { 2213 /* 2214 * Most memory accesses are local. There is no need to 2215 * do fast NUMA scanning, since memory is already local. 2216 */ 2217 int slot = ps_ratio - NUMA_PERIOD_THRESHOLD; 2218 if (!slot) 2219 slot = 1; 2220 diff = slot * period_slot; 2221 } else if (lr_ratio >= NUMA_PERIOD_THRESHOLD) { 2222 /* 2223 * Most memory accesses are shared with other tasks. 2224 * There is no point in continuing fast NUMA scanning, 2225 * since other tasks may just move the memory elsewhere. 2226 */ 2227 int slot = lr_ratio - NUMA_PERIOD_THRESHOLD; 2228 if (!slot) 2229 slot = 1; 2230 diff = slot * period_slot; 2231 } else { 2232 /* 2233 * Private memory faults exceed (SLOTS-THRESHOLD)/SLOTS, 2234 * yet they are not on the local NUMA node. Speed up 2235 * NUMA scanning to get the memory moved over. 2236 */ 2237 int ratio = max(lr_ratio, ps_ratio); 2238 diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot; 2239 } 2240 2241 p->numa_scan_period = clamp(p->numa_scan_period + diff, 2242 task_scan_min(p), task_scan_max(p)); 2243 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality)); 2244 } 2245 2246 /* 2247 * Get the fraction of time the task has been running since the last 2248 * NUMA placement cycle. The scheduler keeps similar statistics, but 2249 * decays those on a 32ms period, which is orders of magnitude off 2250 * from the dozens-of-seconds NUMA balancing period. Use the scheduler 2251 * stats only if the task is so new there are no NUMA statistics yet. 2252 */ 2253 static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period) 2254 { 2255 u64 runtime, delta, now; 2256 /* Use the start of this time slice to avoid calculations. */ 2257 now = p->se.exec_start; 2258 runtime = p->se.sum_exec_runtime; 2259 2260 if (p->last_task_numa_placement) { 2261 delta = runtime - p->last_sum_exec_runtime; 2262 *period = now - p->last_task_numa_placement; 2263 2264 /* Avoid time going backwards, prevent potential divide error: */ 2265 if (unlikely((s64)*period < 0)) 2266 *period = 0; 2267 } else { 2268 delta = p->se.avg.load_sum; 2269 *period = LOAD_AVG_MAX; 2270 } 2271 2272 p->last_sum_exec_runtime = runtime; 2273 p->last_task_numa_placement = now; 2274 2275 return delta; 2276 } 2277 2278 /* 2279 * Determine the preferred nid for a task in a numa_group. This needs to 2280 * be done in a way that produces consistent results with group_weight, 2281 * otherwise workloads might not converge. 2282 */ 2283 static int preferred_group_nid(struct task_struct *p, int nid) 2284 { 2285 nodemask_t nodes; 2286 int dist; 2287 2288 /* Direct connections between all NUMA nodes. */ 2289 if (sched_numa_topology_type == NUMA_DIRECT) 2290 return nid; 2291 2292 /* 2293 * On a system with glueless mesh NUMA topology, group_weight 2294 * scores nodes according to the number of NUMA hinting faults on 2295 * both the node itself, and on nearby nodes. 2296 */ 2297 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) { 2298 unsigned long score, max_score = 0; 2299 int node, max_node = nid; 2300 2301 dist = sched_max_numa_distance; 2302 2303 for_each_online_node(node) { 2304 score = group_weight(p, node, dist); 2305 if (score > max_score) { 2306 max_score = score; 2307 max_node = node; 2308 } 2309 } 2310 return max_node; 2311 } 2312 2313 /* 2314 * Finding the preferred nid in a system with NUMA backplane 2315 * interconnect topology is more involved. The goal is to locate 2316 * tasks from numa_groups near each other in the system, and 2317 * untangle workloads from different sides of the system. This requires 2318 * searching down the hierarchy of node groups, recursively searching 2319 * inside the highest scoring group of nodes. The nodemask tricks 2320 * keep the complexity of the search down. 2321 */ 2322 nodes = node_online_map; 2323 for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) { 2324 unsigned long max_faults = 0; 2325 nodemask_t max_group = NODE_MASK_NONE; 2326 int a, b; 2327 2328 /* Are there nodes at this distance from each other? */ 2329 if (!find_numa_distance(dist)) 2330 continue; 2331 2332 for_each_node_mask(a, nodes) { 2333 unsigned long faults = 0; 2334 nodemask_t this_group; 2335 nodes_clear(this_group); 2336 2337 /* Sum group's NUMA faults; includes a==b case. */ 2338 for_each_node_mask(b, nodes) { 2339 if (node_distance(a, b) < dist) { 2340 faults += group_faults(p, b); 2341 node_set(b, this_group); 2342 node_clear(b, nodes); 2343 } 2344 } 2345 2346 /* Remember the top group. */ 2347 if (faults > max_faults) { 2348 max_faults = faults; 2349 max_group = this_group; 2350 /* 2351 * subtle: at the smallest distance there is 2352 * just one node left in each "group", the 2353 * winner is the preferred nid. 2354 */ 2355 nid = a; 2356 } 2357 } 2358 /* Next round, evaluate the nodes within max_group. */ 2359 if (!max_faults) 2360 break; 2361 nodes = max_group; 2362 } 2363 return nid; 2364 } 2365 2366 static void task_numa_placement(struct task_struct *p) 2367 { 2368 int seq, nid, max_nid = NUMA_NO_NODE; 2369 unsigned long max_faults = 0; 2370 unsigned long fault_types[2] = { 0, 0 }; 2371 unsigned long total_faults; 2372 u64 runtime, period; 2373 spinlock_t *group_lock = NULL; 2374 struct numa_group *ng; 2375 2376 /* 2377 * The p->mm->numa_scan_seq field gets updated without 2378 * exclusive access. Use READ_ONCE() here to ensure 2379 * that the field is read in a single access: 2380 */ 2381 seq = READ_ONCE(p->mm->numa_scan_seq); 2382 if (p->numa_scan_seq == seq) 2383 return; 2384 p->numa_scan_seq = seq; 2385 p->numa_scan_period_max = task_scan_max(p); 2386 2387 total_faults = p->numa_faults_locality[0] + 2388 p->numa_faults_locality[1]; 2389 runtime = numa_get_avg_runtime(p, &period); 2390 2391 /* If the task is part of a group prevent parallel updates to group stats */ 2392 ng = deref_curr_numa_group(p); 2393 if (ng) { 2394 group_lock = &ng->lock; 2395 spin_lock_irq(group_lock); 2396 } 2397 2398 /* Find the node with the highest number of faults */ 2399 for_each_online_node(nid) { 2400 /* Keep track of the offsets in numa_faults array */ 2401 int mem_idx, membuf_idx, cpu_idx, cpubuf_idx; 2402 unsigned long faults = 0, group_faults = 0; 2403 int priv; 2404 2405 for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) { 2406 long diff, f_diff, f_weight; 2407 2408 mem_idx = task_faults_idx(NUMA_MEM, nid, priv); 2409 membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv); 2410 cpu_idx = task_faults_idx(NUMA_CPU, nid, priv); 2411 cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv); 2412 2413 /* Decay existing window, copy faults since last scan */ 2414 diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2; 2415 fault_types[priv] += p->numa_faults[membuf_idx]; 2416 p->numa_faults[membuf_idx] = 0; 2417 2418 /* 2419 * Normalize the faults_from, so all tasks in a group 2420 * count according to CPU use, instead of by the raw 2421 * number of faults. Tasks with little runtime have 2422 * little over-all impact on throughput, and thus their 2423 * faults are less important. 2424 */ 2425 f_weight = div64_u64(runtime << 16, period + 1); 2426 f_weight = (f_weight * p->numa_faults[cpubuf_idx]) / 2427 (total_faults + 1); 2428 f_diff = f_weight - p->numa_faults[cpu_idx] / 2; 2429 p->numa_faults[cpubuf_idx] = 0; 2430 2431 p->numa_faults[mem_idx] += diff; 2432 p->numa_faults[cpu_idx] += f_diff; 2433 faults += p->numa_faults[mem_idx]; 2434 p->total_numa_faults += diff; 2435 if (ng) { 2436 /* 2437 * safe because we can only change our own group 2438 * 2439 * mem_idx represents the offset for a given 2440 * nid and priv in a specific region because it 2441 * is at the beginning of the numa_faults array. 2442 */ 2443 ng->faults[mem_idx] += diff; 2444 ng->faults_cpu[mem_idx] += f_diff; 2445 ng->total_faults += diff; 2446 group_faults += ng->faults[mem_idx]; 2447 } 2448 } 2449 2450 if (!ng) { 2451 if (faults > max_faults) { 2452 max_faults = faults; 2453 max_nid = nid; 2454 } 2455 } else if (group_faults > max_faults) { 2456 max_faults = group_faults; 2457 max_nid = nid; 2458 } 2459 } 2460 2461 if (ng) { 2462 numa_group_count_active_nodes(ng); 2463 spin_unlock_irq(group_lock); 2464 max_nid = preferred_group_nid(p, max_nid); 2465 } 2466 2467 if (max_faults) { 2468 /* Set the new preferred node */ 2469 if (max_nid != p->numa_preferred_nid) 2470 sched_setnuma(p, max_nid); 2471 } 2472 2473 update_task_scan_period(p, fault_types[0], fault_types[1]); 2474 } 2475 2476 static inline int get_numa_group(struct numa_group *grp) 2477 { 2478 return refcount_inc_not_zero(&grp->refcount); 2479 } 2480 2481 static inline void put_numa_group(struct numa_group *grp) 2482 { 2483 if (refcount_dec_and_test(&grp->refcount)) 2484 kfree_rcu(grp, rcu); 2485 } 2486 2487 static void task_numa_group(struct task_struct *p, int cpupid, int flags, 2488 int *priv) 2489 { 2490 struct numa_group *grp, *my_grp; 2491 struct task_struct *tsk; 2492 bool join = false; 2493 int cpu = cpupid_to_cpu(cpupid); 2494 int i; 2495 2496 if (unlikely(!deref_curr_numa_group(p))) { 2497 unsigned int size = sizeof(struct numa_group) + 2498 4*nr_node_ids*sizeof(unsigned long); 2499 2500 grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN); 2501 if (!grp) 2502 return; 2503 2504 refcount_set(&grp->refcount, 1); 2505 grp->active_nodes = 1; 2506 grp->max_faults_cpu = 0; 2507 spin_lock_init(&grp->lock); 2508 grp->gid = p->pid; 2509 /* Second half of the array tracks nids where faults happen */ 2510 grp->faults_cpu = grp->faults + NR_NUMA_HINT_FAULT_TYPES * 2511 nr_node_ids; 2512 2513 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) 2514 grp->faults[i] = p->numa_faults[i]; 2515 2516 grp->total_faults = p->total_numa_faults; 2517 2518 grp->nr_tasks++; 2519 rcu_assign_pointer(p->numa_group, grp); 2520 } 2521 2522 rcu_read_lock(); 2523 tsk = READ_ONCE(cpu_rq(cpu)->curr); 2524 2525 if (!cpupid_match_pid(tsk, cpupid)) 2526 goto no_join; 2527 2528 grp = rcu_dereference(tsk->numa_group); 2529 if (!grp) 2530 goto no_join; 2531 2532 my_grp = deref_curr_numa_group(p); 2533 if (grp == my_grp) 2534 goto no_join; 2535 2536 /* 2537 * Only join the other group if its bigger; if we're the bigger group, 2538 * the other task will join us. 2539 */ 2540 if (my_grp->nr_tasks > grp->nr_tasks) 2541 goto no_join; 2542 2543 /* 2544 * Tie-break on the grp address. 2545 */ 2546 if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp) 2547 goto no_join; 2548 2549 /* Always join threads in the same process. */ 2550 if (tsk->mm == current->mm) 2551 join = true; 2552 2553 /* Simple filter to avoid false positives due to PID collisions */ 2554 if (flags & TNF_SHARED) 2555 join = true; 2556 2557 /* Update priv based on whether false sharing was detected */ 2558 *priv = !join; 2559 2560 if (join && !get_numa_group(grp)) 2561 goto no_join; 2562 2563 rcu_read_unlock(); 2564 2565 if (!join) 2566 return; 2567 2568 BUG_ON(irqs_disabled()); 2569 double_lock_irq(&my_grp->lock, &grp->lock); 2570 2571 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) { 2572 my_grp->faults[i] -= p->numa_faults[i]; 2573 grp->faults[i] += p->numa_faults[i]; 2574 } 2575 my_grp->total_faults -= p->total_numa_faults; 2576 grp->total_faults += p->total_numa_faults; 2577 2578 my_grp->nr_tasks--; 2579 grp->nr_tasks++; 2580 2581 spin_unlock(&my_grp->lock); 2582 spin_unlock_irq(&grp->lock); 2583 2584 rcu_assign_pointer(p->numa_group, grp); 2585 2586 put_numa_group(my_grp); 2587 return; 2588 2589 no_join: 2590 rcu_read_unlock(); 2591 return; 2592 } 2593 2594 /* 2595 * Get rid of NUMA staticstics associated with a task (either current or dead). 2596 * If @final is set, the task is dead and has reached refcount zero, so we can 2597 * safely free all relevant data structures. Otherwise, there might be 2598 * concurrent reads from places like load balancing and procfs, and we should 2599 * reset the data back to default state without freeing ->numa_faults. 2600 */ 2601 void task_numa_free(struct task_struct *p, bool final) 2602 { 2603 /* safe: p either is current or is being freed by current */ 2604 struct numa_group *grp = rcu_dereference_raw(p->numa_group); 2605 unsigned long *numa_faults = p->numa_faults; 2606 unsigned long flags; 2607 int i; 2608 2609 if (!numa_faults) 2610 return; 2611 2612 if (grp) { 2613 spin_lock_irqsave(&grp->lock, flags); 2614 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) 2615 grp->faults[i] -= p->numa_faults[i]; 2616 grp->total_faults -= p->total_numa_faults; 2617 2618 grp->nr_tasks--; 2619 spin_unlock_irqrestore(&grp->lock, flags); 2620 RCU_INIT_POINTER(p->numa_group, NULL); 2621 put_numa_group(grp); 2622 } 2623 2624 if (final) { 2625 p->numa_faults = NULL; 2626 kfree(numa_faults); 2627 } else { 2628 p->total_numa_faults = 0; 2629 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) 2630 numa_faults[i] = 0; 2631 } 2632 } 2633 2634 /* 2635 * Got a PROT_NONE fault for a page on @node. 2636 */ 2637 void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags) 2638 { 2639 struct task_struct *p = current; 2640 bool migrated = flags & TNF_MIGRATED; 2641 int cpu_node = task_node(current); 2642 int local = !!(flags & TNF_FAULT_LOCAL); 2643 struct numa_group *ng; 2644 int priv; 2645 2646 if (!static_branch_likely(&sched_numa_balancing)) 2647 return; 2648 2649 /* for example, ksmd faulting in a user's mm */ 2650 if (!p->mm) 2651 return; 2652 2653 /* Allocate buffer to track faults on a per-node basis */ 2654 if (unlikely(!p->numa_faults)) { 2655 int size = sizeof(*p->numa_faults) * 2656 NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids; 2657 2658 p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN); 2659 if (!p->numa_faults) 2660 return; 2661 2662 p->total_numa_faults = 0; 2663 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality)); 2664 } 2665 2666 /* 2667 * First accesses are treated as private, otherwise consider accesses 2668 * to be private if the accessing pid has not changed 2669 */ 2670 if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) { 2671 priv = 1; 2672 } else { 2673 priv = cpupid_match_pid(p, last_cpupid); 2674 if (!priv && !(flags & TNF_NO_GROUP)) 2675 task_numa_group(p, last_cpupid, flags, &priv); 2676 } 2677 2678 /* 2679 * If a workload spans multiple NUMA nodes, a shared fault that 2680 * occurs wholly within the set of nodes that the workload is 2681 * actively using should be counted as local. This allows the 2682 * scan rate to slow down when a workload has settled down. 2683 */ 2684 ng = deref_curr_numa_group(p); 2685 if (!priv && !local && ng && ng->active_nodes > 1 && 2686 numa_is_active_node(cpu_node, ng) && 2687 numa_is_active_node(mem_node, ng)) 2688 local = 1; 2689 2690 /* 2691 * Retry to migrate task to preferred node periodically, in case it 2692 * previously failed, or the scheduler moved us. 2693 */ 2694 if (time_after(jiffies, p->numa_migrate_retry)) { 2695 task_numa_placement(p); 2696 numa_migrate_preferred(p); 2697 } 2698 2699 if (migrated) 2700 p->numa_pages_migrated += pages; 2701 if (flags & TNF_MIGRATE_FAIL) 2702 p->numa_faults_locality[2] += pages; 2703 2704 p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages; 2705 p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages; 2706 p->numa_faults_locality[local] += pages; 2707 } 2708 2709 static void reset_ptenuma_scan(struct task_struct *p) 2710 { 2711 /* 2712 * We only did a read acquisition of the mmap sem, so 2713 * p->mm->numa_scan_seq is written to without exclusive access 2714 * and the update is not guaranteed to be atomic. That's not 2715 * much of an issue though, since this is just used for 2716 * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not 2717 * expensive, to avoid any form of compiler optimizations: 2718 */ 2719 WRITE_ONCE(p->mm->numa_scan_seq, READ_ONCE(p->mm->numa_scan_seq) + 1); 2720 p->mm->numa_scan_offset = 0; 2721 } 2722 2723 /* 2724 * The expensive part of numa migration is done from task_work context. 2725 * Triggered from task_tick_numa(). 2726 */ 2727 static void task_numa_work(struct callback_head *work) 2728 { 2729 unsigned long migrate, next_scan, now = jiffies; 2730 struct task_struct *p = current; 2731 struct mm_struct *mm = p->mm; 2732 u64 runtime = p->se.sum_exec_runtime; 2733 struct vm_area_struct *vma; 2734 unsigned long start, end; 2735 unsigned long nr_pte_updates = 0; 2736 long pages, virtpages; 2737 2738 SCHED_WARN_ON(p != container_of(work, struct task_struct, numa_work)); 2739 2740 work->next = work; 2741 /* 2742 * Who cares about NUMA placement when they're dying. 2743 * 2744 * NOTE: make sure not to dereference p->mm before this check, 2745 * exit_task_work() happens _after_ exit_mm() so we could be called 2746 * without p->mm even though we still had it when we enqueued this 2747 * work. 2748 */ 2749 if (p->flags & PF_EXITING) 2750 return; 2751 2752 if (!mm->numa_next_scan) { 2753 mm->numa_next_scan = now + 2754 msecs_to_jiffies(sysctl_numa_balancing_scan_delay); 2755 } 2756 2757 /* 2758 * Enforce maximal scan/migration frequency.. 2759 */ 2760 migrate = mm->numa_next_scan; 2761 if (time_before(now, migrate)) 2762 return; 2763 2764 if (p->numa_scan_period == 0) { 2765 p->numa_scan_period_max = task_scan_max(p); 2766 p->numa_scan_period = task_scan_start(p); 2767 } 2768 2769 next_scan = now + msecs_to_jiffies(p->numa_scan_period); 2770 if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate) 2771 return; 2772 2773 /* 2774 * Delay this task enough that another task of this mm will likely win 2775 * the next time around. 2776 */ 2777 p->node_stamp += 2 * TICK_NSEC; 2778 2779 start = mm->numa_scan_offset; 2780 pages = sysctl_numa_balancing_scan_size; 2781 pages <<= 20 - PAGE_SHIFT; /* MB in pages */ 2782 virtpages = pages * 8; /* Scan up to this much virtual space */ 2783 if (!pages) 2784 return; 2785 2786 2787 if (!mmap_read_trylock(mm)) 2788 return; 2789 vma = find_vma(mm, start); 2790 if (!vma) { 2791 reset_ptenuma_scan(p); 2792 start = 0; 2793 vma = mm->mmap; 2794 } 2795 for (; vma; vma = vma->vm_next) { 2796 if (!vma_migratable(vma) || !vma_policy_mof(vma) || 2797 is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_MIXEDMAP)) { 2798 continue; 2799 } 2800 2801 /* 2802 * Shared library pages mapped by multiple processes are not 2803 * migrated as it is expected they are cache replicated. Avoid 2804 * hinting faults in read-only file-backed mappings or the vdso 2805 * as migrating the pages will be of marginal benefit. 2806 */ 2807 if (!vma->vm_mm || 2808 (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ))) 2809 continue; 2810 2811 /* 2812 * Skip inaccessible VMAs to avoid any confusion between 2813 * PROT_NONE and NUMA hinting ptes 2814 */ 2815 if (!vma_is_accessible(vma)) 2816 continue; 2817 2818 do { 2819 start = max(start, vma->vm_start); 2820 end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE); 2821 end = min(end, vma->vm_end); 2822 nr_pte_updates = change_prot_numa(vma, start, end); 2823 2824 /* 2825 * Try to scan sysctl_numa_balancing_size worth of 2826 * hpages that have at least one present PTE that 2827 * is not already pte-numa. If the VMA contains 2828 * areas that are unused or already full of prot_numa 2829 * PTEs, scan up to virtpages, to skip through those 2830 * areas faster. 2831 */ 2832 if (nr_pte_updates) 2833 pages -= (end - start) >> PAGE_SHIFT; 2834 virtpages -= (end - start) >> PAGE_SHIFT; 2835 2836 start = end; 2837 if (pages <= 0 || virtpages <= 0) 2838 goto out; 2839 2840 cond_resched(); 2841 } while (end != vma->vm_end); 2842 } 2843 2844 out: 2845 /* 2846 * It is possible to reach the end of the VMA list but the last few 2847 * VMAs are not guaranteed to the vma_migratable. If they are not, we 2848 * would find the !migratable VMA on the next scan but not reset the 2849 * scanner to the start so check it now. 2850 */ 2851 if (vma) 2852 mm->numa_scan_offset = start; 2853 else 2854 reset_ptenuma_scan(p); 2855 mmap_read_unlock(mm); 2856 2857 /* 2858 * Make sure tasks use at least 32x as much time to run other code 2859 * than they used here, to limit NUMA PTE scanning overhead to 3% max. 2860 * Usually update_task_scan_period slows down scanning enough; on an 2861 * overloaded system we need to limit overhead on a per task basis. 2862 */ 2863 if (unlikely(p->se.sum_exec_runtime != runtime)) { 2864 u64 diff = p->se.sum_exec_runtime - runtime; 2865 p->node_stamp += 32 * diff; 2866 } 2867 } 2868 2869 void init_numa_balancing(unsigned long clone_flags, struct task_struct *p) 2870 { 2871 int mm_users = 0; 2872 struct mm_struct *mm = p->mm; 2873 2874 if (mm) { 2875 mm_users = atomic_read(&mm->mm_users); 2876 if (mm_users == 1) { 2877 mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay); 2878 mm->numa_scan_seq = 0; 2879 } 2880 } 2881 p->node_stamp = 0; 2882 p->numa_scan_seq = mm ? mm->numa_scan_seq : 0; 2883 p->numa_scan_period = sysctl_numa_balancing_scan_delay; 2884 /* Protect against double add, see task_tick_numa and task_numa_work */ 2885 p->numa_work.next = &p->numa_work; 2886 p->numa_faults = NULL; 2887 RCU_INIT_POINTER(p->numa_group, NULL); 2888 p->last_task_numa_placement = 0; 2889 p->last_sum_exec_runtime = 0; 2890 2891 init_task_work(&p->numa_work, task_numa_work); 2892 2893 /* New address space, reset the preferred nid */ 2894 if (!(clone_flags & CLONE_VM)) { 2895 p->numa_preferred_nid = NUMA_NO_NODE; 2896 return; 2897 } 2898 2899 /* 2900 * New thread, keep existing numa_preferred_nid which should be copied 2901 * already by arch_dup_task_struct but stagger when scans start. 2902 */ 2903 if (mm) { 2904 unsigned int delay; 2905 2906 delay = min_t(unsigned int, task_scan_max(current), 2907 current->numa_scan_period * mm_users * NSEC_PER_MSEC); 2908 delay += 2 * TICK_NSEC; 2909 p->node_stamp = delay; 2910 } 2911 } 2912 2913 /* 2914 * Drive the periodic memory faults.. 2915 */ 2916 static void task_tick_numa(struct rq *rq, struct task_struct *curr) 2917 { 2918 struct callback_head *work = &curr->numa_work; 2919 u64 period, now; 2920 2921 /* 2922 * We don't care about NUMA placement if we don't have memory. 2923 */ 2924 if ((curr->flags & (PF_EXITING | PF_KTHREAD)) || work->next != work) 2925 return; 2926 2927 /* 2928 * Using runtime rather than walltime has the dual advantage that 2929 * we (mostly) drive the selection from busy threads and that the 2930 * task needs to have done some actual work before we bother with 2931 * NUMA placement. 2932 */ 2933 now = curr->se.sum_exec_runtime; 2934 period = (u64)curr->numa_scan_period * NSEC_PER_MSEC; 2935 2936 if (now > curr->node_stamp + period) { 2937 if (!curr->node_stamp) 2938 curr->numa_scan_period = task_scan_start(curr); 2939 curr->node_stamp += period; 2940 2941 if (!time_before(jiffies, curr->mm->numa_next_scan)) 2942 task_work_add(curr, work, TWA_RESUME); 2943 } 2944 } 2945 2946 static void update_scan_period(struct task_struct *p, int new_cpu) 2947 { 2948 int src_nid = cpu_to_node(task_cpu(p)); 2949 int dst_nid = cpu_to_node(new_cpu); 2950 2951 if (!static_branch_likely(&sched_numa_balancing)) 2952 return; 2953 2954 if (!p->mm || !p->numa_faults || (p->flags & PF_EXITING)) 2955 return; 2956 2957 if (src_nid == dst_nid) 2958 return; 2959 2960 /* 2961 * Allow resets if faults have been trapped before one scan 2962 * has completed. This is most likely due to a new task that 2963 * is pulled cross-node due to wakeups or load balancing. 2964 */ 2965 if (p->numa_scan_seq) { 2966 /* 2967 * Avoid scan adjustments if moving to the preferred 2968 * node or if the task was not previously running on 2969 * the preferred node. 2970 */ 2971 if (dst_nid == p->numa_preferred_nid || 2972 (p->numa_preferred_nid != NUMA_NO_NODE && 2973 src_nid != p->numa_preferred_nid)) 2974 return; 2975 } 2976 2977 p->numa_scan_period = task_scan_start(p); 2978 } 2979 2980 #else 2981 static void task_tick_numa(struct rq *rq, struct task_struct *curr) 2982 { 2983 } 2984 2985 static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p) 2986 { 2987 } 2988 2989 static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p) 2990 { 2991 } 2992 2993 static inline void update_scan_period(struct task_struct *p, int new_cpu) 2994 { 2995 } 2996 2997 #endif /* CONFIG_NUMA_BALANCING */ 2998 2999 static void 3000 account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se) 3001 { 3002 update_load_add(&cfs_rq->load, se->load.weight); 3003 #ifdef CONFIG_SMP 3004 if (entity_is_task(se)) { 3005 struct rq *rq = rq_of(cfs_rq); 3006 3007 account_numa_enqueue(rq, task_of(se)); 3008 list_add(&se->group_node, &rq->cfs_tasks); 3009 } 3010 #endif 3011 cfs_rq->nr_running++; 3012 } 3013 3014 static void 3015 account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se) 3016 { 3017 update_load_sub(&cfs_rq->load, se->load.weight); 3018 #ifdef CONFIG_SMP 3019 if (entity_is_task(se)) { 3020 account_numa_dequeue(rq_of(cfs_rq), task_of(se)); 3021 list_del_init(&se->group_node); 3022 } 3023 #endif 3024 cfs_rq->nr_running--; 3025 } 3026 3027 /* 3028 * Signed add and clamp on underflow. 3029 * 3030 * Explicitly do a load-store to ensure the intermediate value never hits 3031 * memory. This allows lockless observations without ever seeing the negative 3032 * values. 3033 */ 3034 #define add_positive(_ptr, _val) do { \ 3035 typeof(_ptr) ptr = (_ptr); \ 3036 typeof(_val) val = (_val); \ 3037 typeof(*ptr) res, var = READ_ONCE(*ptr); \ 3038 \ 3039 res = var + val; \ 3040 \ 3041 if (val < 0 && res > var) \ 3042 res = 0; \ 3043 \ 3044 WRITE_ONCE(*ptr, res); \ 3045 } while (0) 3046 3047 /* 3048 * Unsigned subtract and clamp on underflow. 3049 * 3050 * Explicitly do a load-store to ensure the intermediate value never hits 3051 * memory. This allows lockless observations without ever seeing the negative 3052 * values. 3053 */ 3054 #define sub_positive(_ptr, _val) do { \ 3055 typeof(_ptr) ptr = (_ptr); \ 3056 typeof(*ptr) val = (_val); \ 3057 typeof(*ptr) res, var = READ_ONCE(*ptr); \ 3058 res = var - val; \ 3059 if (res > var) \ 3060 res = 0; \ 3061 WRITE_ONCE(*ptr, res); \ 3062 } while (0) 3063 3064 /* 3065 * Remove and clamp on negative, from a local variable. 3066 * 3067 * A variant of sub_positive(), which does not use explicit load-store 3068 * and is thus optimized for local variable updates. 3069 */ 3070 #define lsub_positive(_ptr, _val) do { \ 3071 typeof(_ptr) ptr = (_ptr); \ 3072 *ptr -= min_t(typeof(*ptr), *ptr, _val); \ 3073 } while (0) 3074 3075 #ifdef CONFIG_SMP 3076 static inline void 3077 enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) 3078 { 3079 cfs_rq->avg.load_avg += se->avg.load_avg; 3080 cfs_rq->avg.load_sum += se_weight(se) * se->avg.load_sum; 3081 } 3082 3083 static inline void 3084 dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) 3085 { 3086 sub_positive(&cfs_rq->avg.load_avg, se->avg.load_avg); 3087 sub_positive(&cfs_rq->avg.load_sum, se_weight(se) * se->avg.load_sum); 3088 } 3089 #else 3090 static inline void 3091 enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { } 3092 static inline void 3093 dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { } 3094 #endif 3095 3096 static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, 3097 unsigned long weight) 3098 { 3099 if (se->on_rq) { 3100 /* commit outstanding execution time */ 3101 if (cfs_rq->curr == se) 3102 update_curr(cfs_rq); 3103 update_load_sub(&cfs_rq->load, se->load.weight); 3104 } 3105 dequeue_load_avg(cfs_rq, se); 3106 3107 update_load_set(&se->load, weight); 3108 3109 #ifdef CONFIG_SMP 3110 do { 3111 u32 divider = get_pelt_divider(&se->avg); 3112 3113 se->avg.load_avg = div_u64(se_weight(se) * se->avg.load_sum, divider); 3114 } while (0); 3115 #endif 3116 3117 enqueue_load_avg(cfs_rq, se); 3118 if (se->on_rq) 3119 update_load_add(&cfs_rq->load, se->load.weight); 3120 3121 } 3122 3123 void reweight_task(struct task_struct *p, int prio) 3124 { 3125 struct sched_entity *se = &p->se; 3126 struct cfs_rq *cfs_rq = cfs_rq_of(se); 3127 struct load_weight *load = &se->load; 3128 unsigned long weight = scale_load(sched_prio_to_weight[prio]); 3129 3130 reweight_entity(cfs_rq, se, weight); 3131 load->inv_weight = sched_prio_to_wmult[prio]; 3132 } 3133 3134 #ifdef CONFIG_FAIR_GROUP_SCHED 3135 #ifdef CONFIG_SMP 3136 /* 3137 * All this does is approximate the hierarchical proportion which includes that 3138 * global sum we all love to hate. 3139 * 3140 * That is, the weight of a group entity, is the proportional share of the 3141 * group weight based on the group runqueue weights. That is: 3142 * 3143 * tg->weight * grq->load.weight 3144 * ge->load.weight = ----------------------------- (1) 3145 * \Sum grq->load.weight 3146 * 3147 * Now, because computing that sum is prohibitively expensive to compute (been 3148 * there, done that) we approximate it with this average stuff. The average 3149 * moves slower and therefore the approximation is cheaper and more stable. 3150 * 3151 * So instead of the above, we substitute: 3152 * 3153 * grq->load.weight -> grq->avg.load_avg (2) 3154 * 3155 * which yields the following: 3156 * 3157 * tg->weight * grq->avg.load_avg 3158 * ge->load.weight = ------------------------------ (3) 3159 * tg->load_avg 3160 * 3161 * Where: tg->load_avg ~= \Sum grq->avg.load_avg 3162 * 3163 * That is shares_avg, and it is right (given the approximation (2)). 3164 * 3165 * The problem with it is that because the average is slow -- it was designed 3166 * to be exactly that of course -- this leads to transients in boundary 3167 * conditions. In specific, the case where the group was idle and we start the 3168 * one task. It takes time for our CPU's grq->avg.load_avg to build up, 3169 * yielding bad latency etc.. 3170 * 3171 * Now, in that special case (1) reduces to: 3172 * 3173 * tg->weight * grq->load.weight 3174 * ge->load.weight = ----------------------------- = tg->weight (4) 3175 * grp->load.weight 3176 * 3177 * That is, the sum collapses because all other CPUs are idle; the UP scenario. 3178 * 3179 * So what we do is modify our approximation (3) to approach (4) in the (near) 3180 * UP case, like: 3181 * 3182 * ge->load.weight = 3183 * 3184 * tg->weight * grq->load.weight 3185 * --------------------------------------------------- (5) 3186 * tg->load_avg - grq->avg.load_avg + grq->load.weight 3187 * 3188 * But because grq->load.weight can drop to 0, resulting in a divide by zero, 3189 * we need to use grq->avg.load_avg as its lower bound, which then gives: 3190 * 3191 * 3192 * tg->weight * grq->load.weight 3193 * ge->load.weight = ----------------------------- (6) 3194 * tg_load_avg' 3195 * 3196 * Where: 3197 * 3198 * tg_load_avg' = tg->load_avg - grq->avg.load_avg + 3199 * max(grq->load.weight, grq->avg.load_avg) 3200 * 3201 * And that is shares_weight and is icky. In the (near) UP case it approaches 3202 * (4) while in the normal case it approaches (3). It consistently 3203 * overestimates the ge->load.weight and therefore: 3204 * 3205 * \Sum ge->load.weight >= tg->weight 3206 * 3207 * hence icky! 3208 */ 3209 static long calc_group_shares(struct cfs_rq *cfs_rq) 3210 { 3211 long tg_weight, tg_shares, load, shares; 3212 struct task_group *tg = cfs_rq->tg; 3213 3214 tg_shares = READ_ONCE(tg->shares); 3215 3216 load = max(scale_load_down(cfs_rq->load.weight), cfs_rq->avg.load_avg); 3217 3218 tg_weight = atomic_long_read(&tg->load_avg); 3219 3220 /* Ensure tg_weight >= load */ 3221 tg_weight -= cfs_rq->tg_load_avg_contrib; 3222 tg_weight += load; 3223 3224 shares = (tg_shares * load); 3225 if (tg_weight) 3226 shares /= tg_weight; 3227 3228 /* 3229 * MIN_SHARES has to be unscaled here to support per-CPU partitioning 3230 * of a group with small tg->shares value. It is a floor value which is 3231 * assigned as a minimum load.weight to the sched_entity representing 3232 * the group on a CPU. 3233 * 3234 * E.g. on 64-bit for a group with tg->shares of scale_load(15)=15*1024 3235 * on an 8-core system with 8 tasks each runnable on one CPU shares has 3236 * to be 15*1024*1/8=1920 instead of scale_load(MIN_SHARES)=2*1024. In 3237 * case no task is runnable on a CPU MIN_SHARES=2 should be returned 3238 * instead of 0. 3239 */ 3240 return clamp_t(long, shares, MIN_SHARES, tg_shares); 3241 } 3242 #endif /* CONFIG_SMP */ 3243 3244 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq); 3245 3246 /* 3247 * Recomputes the group entity based on the current state of its group 3248 * runqueue. 3249 */ 3250 static void update_cfs_group(struct sched_entity *se) 3251 { 3252 struct cfs_rq *gcfs_rq = group_cfs_rq(se); 3253 long shares; 3254 3255 if (!gcfs_rq) 3256 return; 3257 3258 if (throttled_hierarchy(gcfs_rq)) 3259 return; 3260 3261 #ifndef CONFIG_SMP 3262 shares = READ_ONCE(gcfs_rq->tg->shares); 3263 3264 if (likely(se->load.weight == shares)) 3265 return; 3266 #else 3267 shares = calc_group_shares(gcfs_rq); 3268 #endif 3269 3270 reweight_entity(cfs_rq_of(se), se, shares); 3271 } 3272 3273 #else /* CONFIG_FAIR_GROUP_SCHED */ 3274 static inline void update_cfs_group(struct sched_entity *se) 3275 { 3276 } 3277 #endif /* CONFIG_FAIR_GROUP_SCHED */ 3278 3279 static inline void cfs_rq_util_change(struct cfs_rq *cfs_rq, int flags) 3280 { 3281 struct rq *rq = rq_of(cfs_rq); 3282 3283 if (&rq->cfs == cfs_rq) { 3284 /* 3285 * There are a few boundary cases this might miss but it should 3286 * get called often enough that that should (hopefully) not be 3287 * a real problem. 3288 * 3289 * It will not get called when we go idle, because the idle 3290 * thread is a different class (!fair), nor will the utilization 3291 * number include things like RT tasks. 3292 * 3293 * As is, the util number is not freq-invariant (we'd have to 3294 * implement arch_scale_freq_capacity() for that). 3295 * 3296 * See cpu_util(). 3297 */ 3298 cpufreq_update_util(rq, flags); 3299 } 3300 } 3301 3302 #ifdef CONFIG_SMP 3303 #ifdef CONFIG_FAIR_GROUP_SCHED 3304 /** 3305 * update_tg_load_avg - update the tg's load avg 3306 * @cfs_rq: the cfs_rq whose avg changed 3307 * 3308 * This function 'ensures': tg->load_avg := \Sum tg->cfs_rq[]->avg.load. 3309 * However, because tg->load_avg is a global value there are performance 3310 * considerations. 3311 * 3312 * In order to avoid having to look at the other cfs_rq's, we use a 3313 * differential update where we store the last value we propagated. This in 3314 * turn allows skipping updates if the differential is 'small'. 3315 * 3316 * Updating tg's load_avg is necessary before update_cfs_share(). 3317 */ 3318 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq) 3319 { 3320 long delta = cfs_rq->avg.load_avg - cfs_rq->tg_load_avg_contrib; 3321 3322 /* 3323 * No need to update load_avg for root_task_group as it is not used. 3324 */ 3325 if (cfs_rq->tg == &root_task_group) 3326 return; 3327 3328 if (abs(delta) > cfs_rq->tg_load_avg_contrib / 64) { 3329 atomic_long_add(delta, &cfs_rq->tg->load_avg); 3330 cfs_rq->tg_load_avg_contrib = cfs_rq->avg.load_avg; 3331 } 3332 } 3333 3334 /* 3335 * Called within set_task_rq() right before setting a task's CPU. The 3336 * caller only guarantees p->pi_lock is held; no other assumptions, 3337 * including the state of rq->lock, should be made. 3338 */ 3339 void set_task_rq_fair(struct sched_entity *se, 3340 struct cfs_rq *prev, struct cfs_rq *next) 3341 { 3342 u64 p_last_update_time; 3343 u64 n_last_update_time; 3344 3345 if (!sched_feat(ATTACH_AGE_LOAD)) 3346 return; 3347 3348 /* 3349 * We are supposed to update the task to "current" time, then its up to 3350 * date and ready to go to new CPU/cfs_rq. But we have difficulty in 3351 * getting what current time is, so simply throw away the out-of-date 3352 * time. This will result in the wakee task is less decayed, but giving 3353 * the wakee more load sounds not bad. 3354 */ 3355 if (!(se->avg.last_update_time && prev)) 3356 return; 3357 3358 #ifndef CONFIG_64BIT 3359 { 3360 u64 p_last_update_time_copy; 3361 u64 n_last_update_time_copy; 3362 3363 do { 3364 p_last_update_time_copy = prev->load_last_update_time_copy; 3365 n_last_update_time_copy = next->load_last_update_time_copy; 3366 3367 smp_rmb(); 3368 3369 p_last_update_time = prev->avg.last_update_time; 3370 n_last_update_time = next->avg.last_update_time; 3371 3372 } while (p_last_update_time != p_last_update_time_copy || 3373 n_last_update_time != n_last_update_time_copy); 3374 } 3375 #else 3376 p_last_update_time = prev->avg.last_update_time; 3377 n_last_update_time = next->avg.last_update_time; 3378 #endif 3379 __update_load_avg_blocked_se(p_last_update_time, se); 3380 se->avg.last_update_time = n_last_update_time; 3381 } 3382 3383 3384 /* 3385 * When on migration a sched_entity joins/leaves the PELT hierarchy, we need to 3386 * propagate its contribution. The key to this propagation is the invariant 3387 * that for each group: 3388 * 3389 * ge->avg == grq->avg (1) 3390 * 3391 * _IFF_ we look at the pure running and runnable sums. Because they 3392 * represent the very same entity, just at different points in the hierarchy. 3393 * 3394 * Per the above update_tg_cfs_util() and update_tg_cfs_runnable() are trivial 3395 * and simply copies the running/runnable sum over (but still wrong, because 3396 * the group entity and group rq do not have their PELT windows aligned). 3397 * 3398 * However, update_tg_cfs_load() is more complex. So we have: 3399 * 3400 * ge->avg.load_avg = ge->load.weight * ge->avg.runnable_avg (2) 3401 * 3402 * And since, like util, the runnable part should be directly transferable, 3403 * the following would _appear_ to be the straight forward approach: 3404 * 3405 * grq->avg.load_avg = grq->load.weight * grq->avg.runnable_avg (3) 3406 * 3407 * And per (1) we have: 3408 * 3409 * ge->avg.runnable_avg == grq->avg.runnable_avg 3410 * 3411 * Which gives: 3412 * 3413 * ge->load.weight * grq->avg.load_avg 3414 * ge->avg.load_avg = ----------------------------------- (4) 3415 * grq->load.weight 3416 * 3417 * Except that is wrong! 3418 * 3419 * Because while for entities historical weight is not important and we 3420 * really only care about our future and therefore can consider a pure 3421 * runnable sum, runqueues can NOT do this. 3422 * 3423 * We specifically want runqueues to have a load_avg that includes 3424 * historical weights. Those represent the blocked load, the load we expect 3425 * to (shortly) return to us. This only works by keeping the weights as 3426 * integral part of the sum. We therefore cannot decompose as per (3). 3427 * 3428 * Another reason this doesn't work is that runnable isn't a 0-sum entity. 3429 * Imagine a rq with 2 tasks that each are runnable 2/3 of the time. Then the 3430 * rq itself is runnable anywhere between 2/3 and 1 depending on how the 3431 * runnable section of these tasks overlap (or not). If they were to perfectly 3432 * align the rq as a whole would be runnable 2/3 of the time. If however we 3433 * always have at least 1 runnable task, the rq as a whole is always runnable. 3434 * 3435 * So we'll have to approximate.. :/ 3436 * 3437 * Given the constraint: 3438 * 3439 * ge->avg.running_sum <= ge->avg.runnable_sum <= LOAD_AVG_MAX 3440 * 3441 * We can construct a rule that adds runnable to a rq by assuming minimal 3442 * overlap. 3443 * 3444 * On removal, we'll assume each task is equally runnable; which yields: 3445 * 3446 * grq->avg.runnable_sum = grq->avg.load_sum / grq->load.weight 3447 * 3448 * XXX: only do this for the part of runnable > running ? 3449 * 3450 */ 3451 3452 static inline void 3453 update_tg_cfs_util(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq) 3454 { 3455 long delta = gcfs_rq->avg.util_avg - se->avg.util_avg; 3456 u32 divider; 3457 3458 /* Nothing to update */ 3459 if (!delta) 3460 return; 3461 3462 /* 3463 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se. 3464 * See ___update_load_avg() for details. 3465 */ 3466 divider = get_pelt_divider(&cfs_rq->avg); 3467 3468 /* Set new sched_entity's utilization */ 3469 se->avg.util_avg = gcfs_rq->avg.util_avg; 3470 se->avg.util_sum = se->avg.util_avg * divider; 3471 3472 /* Update parent cfs_rq utilization */ 3473 add_positive(&cfs_rq->avg.util_avg, delta); 3474 cfs_rq->avg.util_sum = cfs_rq->avg.util_avg * divider; 3475 } 3476 3477 static inline void 3478 update_tg_cfs_runnable(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq) 3479 { 3480 long delta = gcfs_rq->avg.runnable_avg - se->avg.runnable_avg; 3481 u32 divider; 3482 3483 /* Nothing to update */ 3484 if (!delta) 3485 return; 3486 3487 /* 3488 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se. 3489 * See ___update_load_avg() for details. 3490 */ 3491 divider = get_pelt_divider(&cfs_rq->avg); 3492 3493 /* Set new sched_entity's runnable */ 3494 se->avg.runnable_avg = gcfs_rq->avg.runnable_avg; 3495 se->avg.runnable_sum = se->avg.runnable_avg * divider; 3496 3497 /* Update parent cfs_rq runnable */ 3498 add_positive(&cfs_rq->avg.runnable_avg, delta); 3499 cfs_rq->avg.runnable_sum = cfs_rq->avg.runnable_avg * divider; 3500 } 3501 3502 static inline void 3503 update_tg_cfs_load(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq) 3504 { 3505 long delta_avg, running_sum, runnable_sum = gcfs_rq->prop_runnable_sum; 3506 unsigned long load_avg; 3507 u64 load_sum = 0; 3508 s64 delta_sum; 3509 u32 divider; 3510 3511 if (!runnable_sum) 3512 return; 3513 3514 gcfs_rq->prop_runnable_sum = 0; 3515 3516 /* 3517 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se. 3518 * See ___update_load_avg() for details. 3519 */ 3520 divider = get_pelt_divider(&cfs_rq->avg); 3521 3522 if (runnable_sum >= 0) { 3523 /* 3524 * Add runnable; clip at LOAD_AVG_MAX. Reflects that until 3525 * the CPU is saturated running == runnable. 3526 */ 3527 runnable_sum += se->avg.load_sum; 3528 runnable_sum = min_t(long, runnable_sum, divider); 3529 } else { 3530 /* 3531 * Estimate the new unweighted runnable_sum of the gcfs_rq by 3532 * assuming all tasks are equally runnable. 3533 */ 3534 if (scale_load_down(gcfs_rq->load.weight)) { 3535 load_sum = div_s64(gcfs_rq->avg.load_sum, 3536 scale_load_down(gcfs_rq->load.weight)); 3537 } 3538 3539 /* But make sure to not inflate se's runnable */ 3540 runnable_sum = min(se->avg.load_sum, load_sum); 3541 } 3542 3543 /* 3544 * runnable_sum can't be lower than running_sum 3545 * Rescale running sum to be in the same range as runnable sum 3546 * running_sum is in [0 : LOAD_AVG_MAX << SCHED_CAPACITY_SHIFT] 3547 * runnable_sum is in [0 : LOAD_AVG_MAX] 3548 */ 3549 running_sum = se->avg.util_sum >> SCHED_CAPACITY_SHIFT; 3550 runnable_sum = max(runnable_sum, running_sum); 3551 3552 load_sum = (s64)se_weight(se) * runnable_sum; 3553 load_avg = div_s64(load_sum, divider); 3554 3555 delta_sum = load_sum - (s64)se_weight(se) * se->avg.load_sum; 3556 delta_avg = load_avg - se->avg.load_avg; 3557 3558 se->avg.load_sum = runnable_sum; 3559 se->avg.load_avg = load_avg; 3560 add_positive(&cfs_rq->avg.load_avg, delta_avg); 3561 add_positive(&cfs_rq->avg.load_sum, delta_sum); 3562 } 3563 3564 static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum) 3565 { 3566 cfs_rq->propagate = 1; 3567 cfs_rq->prop_runnable_sum += runnable_sum; 3568 } 3569 3570 /* Update task and its cfs_rq load average */ 3571 static inline int propagate_entity_load_avg(struct sched_entity *se) 3572 { 3573 struct cfs_rq *cfs_rq, *gcfs_rq; 3574 3575 if (entity_is_task(se)) 3576 return 0; 3577 3578 gcfs_rq = group_cfs_rq(se); 3579 if (!gcfs_rq->propagate) 3580 return 0; 3581 3582 gcfs_rq->propagate = 0; 3583 3584 cfs_rq = cfs_rq_of(se); 3585 3586 add_tg_cfs_propagate(cfs_rq, gcfs_rq->prop_runnable_sum); 3587 3588 update_tg_cfs_util(cfs_rq, se, gcfs_rq); 3589 update_tg_cfs_runnable(cfs_rq, se, gcfs_rq); 3590 update_tg_cfs_load(cfs_rq, se, gcfs_rq); 3591 3592 trace_pelt_cfs_tp(cfs_rq); 3593 trace_pelt_se_tp(se); 3594 3595 return 1; 3596 } 3597 3598 /* 3599 * Check if we need to update the load and the utilization of a blocked 3600 * group_entity: 3601 */ 3602 static inline bool skip_blocked_update(struct sched_entity *se) 3603 { 3604 struct cfs_rq *gcfs_rq = group_cfs_rq(se); 3605 3606 /* 3607 * If sched_entity still have not zero load or utilization, we have to 3608 * decay it: 3609 */ 3610 if (se->avg.load_avg || se->avg.util_avg) 3611 return false; 3612 3613 /* 3614 * If there is a pending propagation, we have to update the load and 3615 * the utilization of the sched_entity: 3616 */ 3617 if (gcfs_rq->propagate) 3618 return false; 3619 3620 /* 3621 * Otherwise, the load and the utilization of the sched_entity is 3622 * already zero and there is no pending propagation, so it will be a 3623 * waste of time to try to decay it: 3624 */ 3625 return true; 3626 } 3627 3628 #else /* CONFIG_FAIR_GROUP_SCHED */ 3629 3630 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq) {} 3631 3632 static inline int propagate_entity_load_avg(struct sched_entity *se) 3633 { 3634 return 0; 3635 } 3636 3637 static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum) {} 3638 3639 #endif /* CONFIG_FAIR_GROUP_SCHED */ 3640 3641 /** 3642 * update_cfs_rq_load_avg - update the cfs_rq's load/util averages 3643 * @now: current time, as per cfs_rq_clock_pelt() 3644 * @cfs_rq: cfs_rq to update 3645 * 3646 * The cfs_rq avg is the direct sum of all its entities (blocked and runnable) 3647 * avg. The immediate corollary is that all (fair) tasks must be attached, see 3648 * post_init_entity_util_avg(). 3649 * 3650 * cfs_rq->avg is used for task_h_load() and update_cfs_share() for example. 3651 * 3652 * Returns true if the load decayed or we removed load. 3653 * 3654 * Since both these conditions indicate a changed cfs_rq->avg.load we should 3655 * call update_tg_load_avg() when this function returns true. 3656 */ 3657 static inline int 3658 update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq) 3659 { 3660 unsigned long removed_load = 0, removed_util = 0, removed_runnable = 0; 3661 struct sched_avg *sa = &cfs_rq->avg; 3662 int decayed = 0; 3663 3664 if (cfs_rq->removed.nr) { 3665 unsigned long r; 3666 u32 divider = get_pelt_divider(&cfs_rq->avg); 3667 3668 raw_spin_lock(&cfs_rq->removed.lock); 3669 swap(cfs_rq->removed.util_avg, removed_util); 3670 swap(cfs_rq->removed.load_avg, removed_load); 3671 swap(cfs_rq->removed.runnable_avg, removed_runnable); 3672 cfs_rq->removed.nr = 0; 3673 raw_spin_unlock(&cfs_rq->removed.lock); 3674 3675 r = removed_load; 3676 sub_positive(&sa->load_avg, r); 3677 sub_positive(&sa->load_sum, r * divider); 3678 3679 r = removed_util; 3680 sub_positive(&sa->util_avg, r); 3681 sub_positive(&sa->util_sum, r * divider); 3682 3683 r = removed_runnable; 3684 sub_positive(&sa->runnable_avg, r); 3685 sub_positive(&sa->runnable_sum, r * divider); 3686 3687 /* 3688 * removed_runnable is the unweighted version of removed_load so we 3689 * can use it to estimate removed_load_sum. 3690 */ 3691 add_tg_cfs_propagate(cfs_rq, 3692 -(long)(removed_runnable * divider) >> SCHED_CAPACITY_SHIFT); 3693 3694 decayed = 1; 3695 } 3696 3697 decayed |= __update_load_avg_cfs_rq(now, cfs_rq); 3698 3699 #ifndef CONFIG_64BIT 3700 smp_wmb(); 3701 cfs_rq->load_last_update_time_copy = sa->last_update_time; 3702 #endif 3703 3704 return decayed; 3705 } 3706 3707 /** 3708 * attach_entity_load_avg - attach this entity to its cfs_rq load avg 3709 * @cfs_rq: cfs_rq to attach to 3710 * @se: sched_entity to attach 3711 * 3712 * Must call update_cfs_rq_load_avg() before this, since we rely on 3713 * cfs_rq->avg.last_update_time being current. 3714 */ 3715 static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) 3716 { 3717 /* 3718 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se. 3719 * See ___update_load_avg() for details. 3720 */ 3721 u32 divider = get_pelt_divider(&cfs_rq->avg); 3722 3723 /* 3724 * When we attach the @se to the @cfs_rq, we must align the decay 3725 * window because without that, really weird and wonderful things can 3726 * happen. 3727 * 3728 * XXX illustrate 3729 */ 3730 se->avg.last_update_time = cfs_rq->avg.last_update_time; 3731 se->avg.period_contrib = cfs_rq->avg.period_contrib; 3732 3733 /* 3734 * Hell(o) Nasty stuff.. we need to recompute _sum based on the new 3735 * period_contrib. This isn't strictly correct, but since we're 3736 * entirely outside of the PELT hierarchy, nobody cares if we truncate 3737 * _sum a little. 3738 */ 3739 se->avg.util_sum = se->avg.util_avg * divider; 3740 3741 se->avg.runnable_sum = se->avg.runnable_avg * divider; 3742 3743 se->avg.load_sum = divider; 3744 if (se_weight(se)) { 3745 se->avg.load_sum = 3746 div_u64(se->avg.load_avg * se->avg.load_sum, se_weight(se)); 3747 } 3748 3749 enqueue_load_avg(cfs_rq, se); 3750 cfs_rq->avg.util_avg += se->avg.util_avg; 3751 cfs_rq->avg.util_sum += se->avg.util_sum; 3752 cfs_rq->avg.runnable_avg += se->avg.runnable_avg; 3753 cfs_rq->avg.runnable_sum += se->avg.runnable_sum; 3754 3755 add_tg_cfs_propagate(cfs_rq, se->avg.load_sum); 3756 3757 cfs_rq_util_change(cfs_rq, 0); 3758 3759 trace_pelt_cfs_tp(cfs_rq); 3760 } 3761 3762 /** 3763 * detach_entity_load_avg - detach this entity from its cfs_rq load avg 3764 * @cfs_rq: cfs_rq to detach from 3765 * @se: sched_entity to detach 3766 * 3767 * Must call update_cfs_rq_load_avg() before this, since we rely on 3768 * cfs_rq->avg.last_update_time being current. 3769 */ 3770 static void detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) 3771 { 3772 dequeue_load_avg(cfs_rq, se); 3773 sub_positive(&cfs_rq->avg.util_avg, se->avg.util_avg); 3774 sub_positive(&cfs_rq->avg.util_sum, se->avg.util_sum); 3775 sub_positive(&cfs_rq->avg.runnable_avg, se->avg.runnable_avg); 3776 sub_positive(&cfs_rq->avg.runnable_sum, se->avg.runnable_sum); 3777 3778 add_tg_cfs_propagate(cfs_rq, -se->avg.load_sum); 3779 3780 cfs_rq_util_change(cfs_rq, 0); 3781 3782 trace_pelt_cfs_tp(cfs_rq); 3783 } 3784 3785 /* 3786 * Optional action to be done while updating the load average 3787 */ 3788 #define UPDATE_TG 0x1 3789 #define SKIP_AGE_LOAD 0x2 3790 #define DO_ATTACH 0x4 3791 3792 /* Update task and its cfs_rq load average */ 3793 static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 3794 { 3795 u64 now = cfs_rq_clock_pelt(cfs_rq); 3796 int decayed; 3797 3798 /* 3799 * Track task load average for carrying it to new CPU after migrated, and 3800 * track group sched_entity load average for task_h_load calc in migration 3801 */ 3802 if (se->avg.last_update_time && !(flags & SKIP_AGE_LOAD)) 3803 __update_load_avg_se(now, cfs_rq, se); 3804 3805 decayed = update_cfs_rq_load_avg(now, cfs_rq); 3806 decayed |= propagate_entity_load_avg(se); 3807 3808 if (!se->avg.last_update_time && (flags & DO_ATTACH)) { 3809 3810 /* 3811 * DO_ATTACH means we're here from enqueue_entity(). 3812 * !last_update_time means we've passed through 3813 * migrate_task_rq_fair() indicating we migrated. 3814 * 3815 * IOW we're enqueueing a task on a new CPU. 3816 */ 3817 attach_entity_load_avg(cfs_rq, se); 3818 update_tg_load_avg(cfs_rq); 3819 3820 } else if (decayed) { 3821 cfs_rq_util_change(cfs_rq, 0); 3822 3823 if (flags & UPDATE_TG) 3824 update_tg_load_avg(cfs_rq); 3825 } 3826 } 3827 3828 #ifndef CONFIG_64BIT 3829 static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq) 3830 { 3831 u64 last_update_time_copy; 3832 u64 last_update_time; 3833 3834 do { 3835 last_update_time_copy = cfs_rq->load_last_update_time_copy; 3836 smp_rmb(); 3837 last_update_time = cfs_rq->avg.last_update_time; 3838 } while (last_update_time != last_update_time_copy); 3839 3840 return last_update_time; 3841 } 3842 #else 3843 static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq) 3844 { 3845 return cfs_rq->avg.last_update_time; 3846 } 3847 #endif 3848 3849 /* 3850 * Synchronize entity load avg of dequeued entity without locking 3851 * the previous rq. 3852 */ 3853 static void sync_entity_load_avg(struct sched_entity *se) 3854 { 3855 struct cfs_rq *cfs_rq = cfs_rq_of(se); 3856 u64 last_update_time; 3857 3858 last_update_time = cfs_rq_last_update_time(cfs_rq); 3859 __update_load_avg_blocked_se(last_update_time, se); 3860 } 3861 3862 /* 3863 * Task first catches up with cfs_rq, and then subtract 3864 * itself from the cfs_rq (task must be off the queue now). 3865 */ 3866 static void remove_entity_load_avg(struct sched_entity *se) 3867 { 3868 struct cfs_rq *cfs_rq = cfs_rq_of(se); 3869 unsigned long flags; 3870 3871 /* 3872 * tasks cannot exit without having gone through wake_up_new_task() -> 3873 * post_init_entity_util_avg() which will have added things to the 3874 * cfs_rq, so we can remove unconditionally. 3875 */ 3876 3877 sync_entity_load_avg(se); 3878 3879 raw_spin_lock_irqsave(&cfs_rq->removed.lock, flags); 3880 ++cfs_rq->removed.nr; 3881 cfs_rq->removed.util_avg += se->avg.util_avg; 3882 cfs_rq->removed.load_avg += se->avg.load_avg; 3883 cfs_rq->removed.runnable_avg += se->avg.runnable_avg; 3884 raw_spin_unlock_irqrestore(&cfs_rq->removed.lock, flags); 3885 } 3886 3887 static inline unsigned long cfs_rq_runnable_avg(struct cfs_rq *cfs_rq) 3888 { 3889 return cfs_rq->avg.runnable_avg; 3890 } 3891 3892 static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq) 3893 { 3894 return cfs_rq->avg.load_avg; 3895 } 3896 3897 static int newidle_balance(struct rq *this_rq, struct rq_flags *rf); 3898 3899 static inline unsigned long task_util(struct task_struct *p) 3900 { 3901 return READ_ONCE(p->se.avg.util_avg); 3902 } 3903 3904 static inline unsigned long _task_util_est(struct task_struct *p) 3905 { 3906 struct util_est ue = READ_ONCE(p->se.avg.util_est); 3907 3908 return (max(ue.ewma, ue.enqueued) | UTIL_AVG_UNCHANGED); 3909 } 3910 3911 static inline unsigned long task_util_est(struct task_struct *p) 3912 { 3913 return max(task_util(p), _task_util_est(p)); 3914 } 3915 3916 #ifdef CONFIG_UCLAMP_TASK 3917 static inline unsigned long uclamp_task_util(struct task_struct *p) 3918 { 3919 return clamp(task_util_est(p), 3920 uclamp_eff_value(p, UCLAMP_MIN), 3921 uclamp_eff_value(p, UCLAMP_MAX)); 3922 } 3923 #else 3924 static inline unsigned long uclamp_task_util(struct task_struct *p) 3925 { 3926 return task_util_est(p); 3927 } 3928 #endif 3929 3930 static inline void util_est_enqueue(struct cfs_rq *cfs_rq, 3931 struct task_struct *p) 3932 { 3933 unsigned int enqueued; 3934 3935 if (!sched_feat(UTIL_EST)) 3936 return; 3937 3938 /* Update root cfs_rq's estimated utilization */ 3939 enqueued = cfs_rq->avg.util_est.enqueued; 3940 enqueued += _task_util_est(p); 3941 WRITE_ONCE(cfs_rq->avg.util_est.enqueued, enqueued); 3942 3943 trace_sched_util_est_cfs_tp(cfs_rq); 3944 } 3945 3946 /* 3947 * Check if a (signed) value is within a specified (unsigned) margin, 3948 * based on the observation that: 3949 * 3950 * abs(x) < y := (unsigned)(x + y - 1) < (2 * y - 1) 3951 * 3952 * NOTE: this only works when value + maring < INT_MAX. 3953 */ 3954 static inline bool within_margin(int value, int margin) 3955 { 3956 return ((unsigned int)(value + margin - 1) < (2 * margin - 1)); 3957 } 3958 3959 static void 3960 util_est_dequeue(struct cfs_rq *cfs_rq, struct task_struct *p, bool task_sleep) 3961 { 3962 long last_ewma_diff; 3963 struct util_est ue; 3964 int cpu; 3965 3966 if (!sched_feat(UTIL_EST)) 3967 return; 3968 3969 /* Update root cfs_rq's estimated utilization */ 3970 ue.enqueued = cfs_rq->avg.util_est.enqueued; 3971 ue.enqueued -= min_t(unsigned int, ue.enqueued, _task_util_est(p)); 3972 WRITE_ONCE(cfs_rq->avg.util_est.enqueued, ue.enqueued); 3973 3974 trace_sched_util_est_cfs_tp(cfs_rq); 3975 3976 /* 3977 * Skip update of task's estimated utilization when the task has not 3978 * yet completed an activation, e.g. being migrated. 3979 */ 3980 if (!task_sleep) 3981 return; 3982 3983 /* 3984 * If the PELT values haven't changed since enqueue time, 3985 * skip the util_est update. 3986 */ 3987 ue = p->se.avg.util_est; 3988 if (ue.enqueued & UTIL_AVG_UNCHANGED) 3989 return; 3990 3991 /* 3992 * Reset EWMA on utilization increases, the moving average is used only 3993 * to smooth utilization decreases. 3994 */ 3995 ue.enqueued = (task_util(p) | UTIL_AVG_UNCHANGED); 3996 if (sched_feat(UTIL_EST_FASTUP)) { 3997 if (ue.ewma < ue.enqueued) { 3998 ue.ewma = ue.enqueued; 3999 goto done; 4000 } 4001 } 4002 4003 /* 4004 * Skip update of task's estimated utilization when its EWMA is 4005 * already ~1% close to its last activation value. 4006 */ 4007 last_ewma_diff = ue.enqueued - ue.ewma; 4008 if (within_margin(last_ewma_diff, (SCHED_CAPACITY_SCALE / 100))) 4009 return; 4010 4011 /* 4012 * To avoid overestimation of actual task utilization, skip updates if 4013 * we cannot grant there is idle time in this CPU. 4014 */ 4015 cpu = cpu_of(rq_of(cfs_rq)); 4016 if (task_util(p) > capacity_orig_of(cpu)) 4017 return; 4018 4019 /* 4020 * Update Task's estimated utilization 4021 * 4022 * When *p completes an activation we can consolidate another sample 4023 * of the task size. This is done by storing the current PELT value 4024 * as ue.enqueued and by using this value to update the Exponential 4025 * Weighted Moving Average (EWMA): 4026 * 4027 * ewma(t) = w * task_util(p) + (1-w) * ewma(t-1) 4028 * = w * task_util(p) + ewma(t-1) - w * ewma(t-1) 4029 * = w * (task_util(p) - ewma(t-1)) + ewma(t-1) 4030 * = w * ( last_ewma_diff ) + ewma(t-1) 4031 * = w * (last_ewma_diff + ewma(t-1) / w) 4032 * 4033 * Where 'w' is the weight of new samples, which is configured to be 4034 * 0.25, thus making w=1/4 ( >>= UTIL_EST_WEIGHT_SHIFT) 4035 */ 4036 ue.ewma <<= UTIL_EST_WEIGHT_SHIFT; 4037 ue.ewma += last_ewma_diff; 4038 ue.ewma >>= UTIL_EST_WEIGHT_SHIFT; 4039 done: 4040 WRITE_ONCE(p->se.avg.util_est, ue); 4041 4042 trace_sched_util_est_se_tp(&p->se); 4043 } 4044 4045 static inline int task_fits_capacity(struct task_struct *p, long capacity) 4046 { 4047 return fits_capacity(uclamp_task_util(p), capacity); 4048 } 4049 4050 static inline void update_misfit_status(struct task_struct *p, struct rq *rq) 4051 { 4052 if (!static_branch_unlikely(&sched_asym_cpucapacity)) 4053 return; 4054 4055 if (!p) { 4056 rq->misfit_task_load = 0; 4057 return; 4058 } 4059 4060 if (task_fits_capacity(p, capacity_of(cpu_of(rq)))) { 4061 rq->misfit_task_load = 0; 4062 return; 4063 } 4064 4065 /* 4066 * Make sure that misfit_task_load will not be null even if 4067 * task_h_load() returns 0. 4068 */ 4069 rq->misfit_task_load = max_t(unsigned long, task_h_load(p), 1); 4070 } 4071 4072 #else /* CONFIG_SMP */ 4073 4074 #define UPDATE_TG 0x0 4075 #define SKIP_AGE_LOAD 0x0 4076 #define DO_ATTACH 0x0 4077 4078 static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int not_used1) 4079 { 4080 cfs_rq_util_change(cfs_rq, 0); 4081 } 4082 4083 static inline void remove_entity_load_avg(struct sched_entity *se) {} 4084 4085 static inline void 4086 attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {} 4087 static inline void 4088 detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {} 4089 4090 static inline int newidle_balance(struct rq *rq, struct rq_flags *rf) 4091 { 4092 return 0; 4093 } 4094 4095 static inline void 4096 util_est_enqueue(struct cfs_rq *cfs_rq, struct task_struct *p) {} 4097 4098 static inline void 4099 util_est_dequeue(struct cfs_rq *cfs_rq, struct task_struct *p, 4100 bool task_sleep) {} 4101 static inline void update_misfit_status(struct task_struct *p, struct rq *rq) {} 4102 4103 #endif /* CONFIG_SMP */ 4104 4105 static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se) 4106 { 4107 #ifdef CONFIG_SCHED_DEBUG 4108 s64 d = se->vruntime - cfs_rq->min_vruntime; 4109 4110 if (d < 0) 4111 d = -d; 4112 4113 if (d > 3*sysctl_sched_latency) 4114 schedstat_inc(cfs_rq->nr_spread_over); 4115 #endif 4116 } 4117 4118 static void 4119 place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial) 4120 { 4121 u64 vruntime = cfs_rq->min_vruntime; 4122 4123 /* 4124 * The 'current' period is already promised to the current tasks, 4125 * however the extra weight of the new task will slow them down a 4126 * little, place the new task so that it fits in the slot that 4127 * stays open at the end. 4128 */ 4129 if (initial && sched_feat(START_DEBIT)) 4130 vruntime += sched_vslice(cfs_rq, se); 4131 4132 /* sleeps up to a single latency don't count. */ 4133 if (!initial) { 4134 unsigned long thresh = sysctl_sched_latency; 4135 4136 /* 4137 * Halve their sleep time's effect, to allow 4138 * for a gentler effect of sleepers: 4139 */ 4140 if (sched_feat(GENTLE_FAIR_SLEEPERS)) 4141 thresh >>= 1; 4142 4143 vruntime -= thresh; 4144 } 4145 4146 /* ensure we never gain time by being placed backwards. */ 4147 se->vruntime = max_vruntime(se->vruntime, vruntime); 4148 } 4149 4150 static void check_enqueue_throttle(struct cfs_rq *cfs_rq); 4151 4152 static inline void check_schedstat_required(void) 4153 { 4154 #ifdef CONFIG_SCHEDSTATS 4155 if (schedstat_enabled()) 4156 return; 4157 4158 /* Force schedstat enabled if a dependent tracepoint is active */ 4159 if (trace_sched_stat_wait_enabled() || 4160 trace_sched_stat_sleep_enabled() || 4161 trace_sched_stat_iowait_enabled() || 4162 trace_sched_stat_blocked_enabled() || 4163 trace_sched_stat_runtime_enabled()) { 4164 printk_deferred_once("Scheduler tracepoints stat_sleep, stat_iowait, " 4165 "stat_blocked and stat_runtime require the " 4166 "kernel parameter schedstats=enable or " 4167 "kernel.sched_schedstats=1\n"); 4168 } 4169 #endif 4170 } 4171 4172 static inline bool cfs_bandwidth_used(void); 4173 4174 /* 4175 * MIGRATION 4176 * 4177 * dequeue 4178 * update_curr() 4179 * update_min_vruntime() 4180 * vruntime -= min_vruntime 4181 * 4182 * enqueue 4183 * update_curr() 4184 * update_min_vruntime() 4185 * vruntime += min_vruntime 4186 * 4187 * this way the vruntime transition between RQs is done when both 4188 * min_vruntime are up-to-date. 4189 * 4190 * WAKEUP (remote) 4191 * 4192 * ->migrate_task_rq_fair() (p->state == TASK_WAKING) 4193 * vruntime -= min_vruntime 4194 * 4195 * enqueue 4196 * update_curr() 4197 * update_min_vruntime() 4198 * vruntime += min_vruntime 4199 * 4200 * this way we don't have the most up-to-date min_vruntime on the originating 4201 * CPU and an up-to-date min_vruntime on the destination CPU. 4202 */ 4203 4204 static void 4205 enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 4206 { 4207 bool renorm = !(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_MIGRATED); 4208 bool curr = cfs_rq->curr == se; 4209 4210 /* 4211 * If we're the current task, we must renormalise before calling 4212 * update_curr(). 4213 */ 4214 if (renorm && curr) 4215 se->vruntime += cfs_rq->min_vruntime; 4216 4217 update_curr(cfs_rq); 4218 4219 /* 4220 * Otherwise, renormalise after, such that we're placed at the current 4221 * moment in time, instead of some random moment in the past. Being 4222 * placed in the past could significantly boost this task to the 4223 * fairness detriment of existing tasks. 4224 */ 4225 if (renorm && !curr) 4226 se->vruntime += cfs_rq->min_vruntime; 4227 4228 /* 4229 * When enqueuing a sched_entity, we must: 4230 * - Update loads to have both entity and cfs_rq synced with now. 4231 * - Add its load to cfs_rq->runnable_avg 4232 * - For group_entity, update its weight to reflect the new share of 4233 * its group cfs_rq 4234 * - Add its new weight to cfs_rq->load.weight 4235 */ 4236 update_load_avg(cfs_rq, se, UPDATE_TG | DO_ATTACH); 4237 se_update_runnable(se); 4238 update_cfs_group(se); 4239 account_entity_enqueue(cfs_rq, se); 4240 4241 if (flags & ENQUEUE_WAKEUP) 4242 place_entity(cfs_rq, se, 0); 4243 4244 check_schedstat_required(); 4245 update_stats_enqueue(cfs_rq, se, flags); 4246 check_spread(cfs_rq, se); 4247 if (!curr) 4248 __enqueue_entity(cfs_rq, se); 4249 se->on_rq = 1; 4250 4251 /* 4252 * When bandwidth control is enabled, cfs might have been removed 4253 * because of a parent been throttled but cfs->nr_running > 1. Try to 4254 * add it unconditionnally. 4255 */ 4256 if (cfs_rq->nr_running == 1 || cfs_bandwidth_used()) 4257 list_add_leaf_cfs_rq(cfs_rq); 4258 4259 if (cfs_rq->nr_running == 1) 4260 check_enqueue_throttle(cfs_rq); 4261 } 4262 4263 static void __clear_buddies_last(struct sched_entity *se) 4264 { 4265 for_each_sched_entity(se) { 4266 struct cfs_rq *cfs_rq = cfs_rq_of(se); 4267 if (cfs_rq->last != se) 4268 break; 4269 4270 cfs_rq->last = NULL; 4271 } 4272 } 4273 4274 static void __clear_buddies_next(struct sched_entity *se) 4275 { 4276 for_each_sched_entity(se) { 4277 struct cfs_rq *cfs_rq = cfs_rq_of(se); 4278 if (cfs_rq->next != se) 4279 break; 4280 4281 cfs_rq->next = NULL; 4282 } 4283 } 4284 4285 static void __clear_buddies_skip(struct sched_entity *se) 4286 { 4287 for_each_sched_entity(se) { 4288 struct cfs_rq *cfs_rq = cfs_rq_of(se); 4289 if (cfs_rq->skip != se) 4290 break; 4291 4292 cfs_rq->skip = NULL; 4293 } 4294 } 4295 4296 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se) 4297 { 4298 if (cfs_rq->last == se) 4299 __clear_buddies_last(se); 4300 4301 if (cfs_rq->next == se) 4302 __clear_buddies_next(se); 4303 4304 if (cfs_rq->skip == se) 4305 __clear_buddies_skip(se); 4306 } 4307 4308 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq); 4309 4310 static void 4311 dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 4312 { 4313 /* 4314 * Update run-time statistics of the 'current'. 4315 */ 4316 update_curr(cfs_rq); 4317 4318 /* 4319 * When dequeuing a sched_entity, we must: 4320 * - Update loads to have both entity and cfs_rq synced with now. 4321 * - Subtract its load from the cfs_rq->runnable_avg. 4322 * - Subtract its previous weight from cfs_rq->load.weight. 4323 * - For group entity, update its weight to reflect the new share 4324 * of its group cfs_rq. 4325 */ 4326 update_load_avg(cfs_rq, se, UPDATE_TG); 4327 se_update_runnable(se); 4328 4329 update_stats_dequeue(cfs_rq, se, flags); 4330 4331 clear_buddies(cfs_rq, se); 4332 4333 if (se != cfs_rq->curr) 4334 __dequeue_entity(cfs_rq, se); 4335 se->on_rq = 0; 4336 account_entity_dequeue(cfs_rq, se); 4337 4338 /* 4339 * Normalize after update_curr(); which will also have moved 4340 * min_vruntime if @se is the one holding it back. But before doing 4341 * update_min_vruntime() again, which will discount @se's position and 4342 * can move min_vruntime forward still more. 4343 */ 4344 if (!(flags & DEQUEUE_SLEEP)) 4345 se->vruntime -= cfs_rq->min_vruntime; 4346 4347 /* return excess runtime on last dequeue */ 4348 return_cfs_rq_runtime(cfs_rq); 4349 4350 update_cfs_group(se); 4351 4352 /* 4353 * Now advance min_vruntime if @se was the entity holding it back, 4354 * except when: DEQUEUE_SAVE && !DEQUEUE_MOVE, in this case we'll be 4355 * put back on, and if we advance min_vruntime, we'll be placed back 4356 * further than we started -- ie. we'll be penalized. 4357 */ 4358 if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) != DEQUEUE_SAVE) 4359 update_min_vruntime(cfs_rq); 4360 } 4361 4362 /* 4363 * Preempt the current task with a newly woken task if needed: 4364 */ 4365 static void 4366 check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr) 4367 { 4368 unsigned long ideal_runtime, delta_exec; 4369 struct sched_entity *se; 4370 s64 delta; 4371 4372 ideal_runtime = sched_slice(cfs_rq, curr); 4373 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime; 4374 if (delta_exec > ideal_runtime) { 4375 resched_curr(rq_of(cfs_rq)); 4376 /* 4377 * The current task ran long enough, ensure it doesn't get 4378 * re-elected due to buddy favours. 4379 */ 4380 clear_buddies(cfs_rq, curr); 4381 return; 4382 } 4383 4384 /* 4385 * Ensure that a task that missed wakeup preemption by a 4386 * narrow margin doesn't have to wait for a full slice. 4387 * This also mitigates buddy induced latencies under load. 4388 */ 4389 if (delta_exec < sysctl_sched_min_granularity) 4390 return; 4391 4392 se = __pick_first_entity(cfs_rq); 4393 delta = curr->vruntime - se->vruntime; 4394 4395 if (delta < 0) 4396 return; 4397 4398 if (delta > ideal_runtime) 4399 resched_curr(rq_of(cfs_rq)); 4400 } 4401 4402 static void 4403 set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) 4404 { 4405 /* 'current' is not kept within the tree. */ 4406 if (se->on_rq) { 4407 /* 4408 * Any task has to be enqueued before it get to execute on 4409 * a CPU. So account for the time it spent waiting on the 4410 * runqueue. 4411 */ 4412 update_stats_wait_end(cfs_rq, se); 4413 __dequeue_entity(cfs_rq, se); 4414 update_load_avg(cfs_rq, se, UPDATE_TG); 4415 } 4416 4417 update_stats_curr_start(cfs_rq, se); 4418 cfs_rq->curr = se; 4419 4420 /* 4421 * Track our maximum slice length, if the CPU's load is at 4422 * least twice that of our own weight (i.e. dont track it 4423 * when there are only lesser-weight tasks around): 4424 */ 4425 if (schedstat_enabled() && 4426 rq_of(cfs_rq)->cfs.load.weight >= 2*se->load.weight) { 4427 schedstat_set(se->statistics.slice_max, 4428 max((u64)schedstat_val(se->statistics.slice_max), 4429 se->sum_exec_runtime - se->prev_sum_exec_runtime)); 4430 } 4431 4432 se->prev_sum_exec_runtime = se->sum_exec_runtime; 4433 } 4434 4435 static int 4436 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se); 4437 4438 /* 4439 * Pick the next process, keeping these things in mind, in this order: 4440 * 1) keep things fair between processes/task groups 4441 * 2) pick the "next" process, since someone really wants that to run 4442 * 3) pick the "last" process, for cache locality 4443 * 4) do not run the "skip" process, if something else is available 4444 */ 4445 static struct sched_entity * 4446 pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr) 4447 { 4448 struct sched_entity *left = __pick_first_entity(cfs_rq); 4449 struct sched_entity *se; 4450 4451 /* 4452 * If curr is set we have to see if its left of the leftmost entity 4453 * still in the tree, provided there was anything in the tree at all. 4454 */ 4455 if (!left || (curr && entity_before(curr, left))) 4456 left = curr; 4457 4458 se = left; /* ideally we run the leftmost entity */ 4459 4460 /* 4461 * Avoid running the skip buddy, if running something else can 4462 * be done without getting too unfair. 4463 */ 4464 if (cfs_rq->skip == se) { 4465 struct sched_entity *second; 4466 4467 if (se == curr) { 4468 second = __pick_first_entity(cfs_rq); 4469 } else { 4470 second = __pick_next_entity(se); 4471 if (!second || (curr && entity_before(curr, second))) 4472 second = curr; 4473 } 4474 4475 if (second && wakeup_preempt_entity(second, left) < 1) 4476 se = second; 4477 } 4478 4479 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1) { 4480 /* 4481 * Someone really wants this to run. If it's not unfair, run it. 4482 */ 4483 se = cfs_rq->next; 4484 } else if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1) { 4485 /* 4486 * Prefer last buddy, try to return the CPU to a preempted task. 4487 */ 4488 se = cfs_rq->last; 4489 } 4490 4491 clear_buddies(cfs_rq, se); 4492 4493 return se; 4494 } 4495 4496 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq); 4497 4498 static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev) 4499 { 4500 /* 4501 * If still on the runqueue then deactivate_task() 4502 * was not called and update_curr() has to be done: 4503 */ 4504 if (prev->on_rq) 4505 update_curr(cfs_rq); 4506 4507 /* throttle cfs_rqs exceeding runtime */ 4508 check_cfs_rq_runtime(cfs_rq); 4509 4510 check_spread(cfs_rq, prev); 4511 4512 if (prev->on_rq) { 4513 update_stats_wait_start(cfs_rq, prev); 4514 /* Put 'current' back into the tree. */ 4515 __enqueue_entity(cfs_rq, prev); 4516 /* in !on_rq case, update occurred at dequeue */ 4517 update_load_avg(cfs_rq, prev, 0); 4518 } 4519 cfs_rq->curr = NULL; 4520 } 4521 4522 static void 4523 entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued) 4524 { 4525 /* 4526 * Update run-time statistics of the 'current'. 4527 */ 4528 update_curr(cfs_rq); 4529 4530 /* 4531 * Ensure that runnable average is periodically updated. 4532 */ 4533 update_load_avg(cfs_rq, curr, UPDATE_TG); 4534 update_cfs_group(curr); 4535 4536 #ifdef CONFIG_SCHED_HRTICK 4537 /* 4538 * queued ticks are scheduled to match the slice, so don't bother 4539 * validating it and just reschedule. 4540 */ 4541 if (queued) { 4542 resched_curr(rq_of(cfs_rq)); 4543 return; 4544 } 4545 /* 4546 * don't let the period tick interfere with the hrtick preemption 4547 */ 4548 if (!sched_feat(DOUBLE_TICK) && 4549 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer)) 4550 return; 4551 #endif 4552 4553 if (cfs_rq->nr_running > 1) 4554 check_preempt_tick(cfs_rq, curr); 4555 } 4556 4557 4558 /************************************************** 4559 * CFS bandwidth control machinery 4560 */ 4561 4562 #ifdef CONFIG_CFS_BANDWIDTH 4563 4564 #ifdef CONFIG_JUMP_LABEL 4565 static struct static_key __cfs_bandwidth_used; 4566 4567 static inline bool cfs_bandwidth_used(void) 4568 { 4569 return static_key_false(&__cfs_bandwidth_used); 4570 } 4571 4572 void cfs_bandwidth_usage_inc(void) 4573 { 4574 static_key_slow_inc_cpuslocked(&__cfs_bandwidth_used); 4575 } 4576 4577 void cfs_bandwidth_usage_dec(void) 4578 { 4579 static_key_slow_dec_cpuslocked(&__cfs_bandwidth_used); 4580 } 4581 #else /* CONFIG_JUMP_LABEL */ 4582 static bool cfs_bandwidth_used(void) 4583 { 4584 return true; 4585 } 4586 4587 void cfs_bandwidth_usage_inc(void) {} 4588 void cfs_bandwidth_usage_dec(void) {} 4589 #endif /* CONFIG_JUMP_LABEL */ 4590 4591 /* 4592 * default period for cfs group bandwidth. 4593 * default: 0.1s, units: nanoseconds 4594 */ 4595 static inline u64 default_cfs_period(void) 4596 { 4597 return 100000000ULL; 4598 } 4599 4600 static inline u64 sched_cfs_bandwidth_slice(void) 4601 { 4602 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC; 4603 } 4604 4605 /* 4606 * Replenish runtime according to assigned quota. We use sched_clock_cpu 4607 * directly instead of rq->clock to avoid adding additional synchronization 4608 * around rq->lock. 4609 * 4610 * requires cfs_b->lock 4611 */ 4612 void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b) 4613 { 4614 if (cfs_b->quota != RUNTIME_INF) 4615 cfs_b->runtime = cfs_b->quota; 4616 } 4617 4618 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg) 4619 { 4620 return &tg->cfs_bandwidth; 4621 } 4622 4623 /* returns 0 on failure to allocate runtime */ 4624 static int __assign_cfs_rq_runtime(struct cfs_bandwidth *cfs_b, 4625 struct cfs_rq *cfs_rq, u64 target_runtime) 4626 { 4627 u64 min_amount, amount = 0; 4628 4629 lockdep_assert_held(&cfs_b->lock); 4630 4631 /* note: this is a positive sum as runtime_remaining <= 0 */ 4632 min_amount = target_runtime - cfs_rq->runtime_remaining; 4633 4634 if (cfs_b->quota == RUNTIME_INF) 4635 amount = min_amount; 4636 else { 4637 start_cfs_bandwidth(cfs_b); 4638 4639 if (cfs_b->runtime > 0) { 4640 amount = min(cfs_b->runtime, min_amount); 4641 cfs_b->runtime -= amount; 4642 cfs_b->idle = 0; 4643 } 4644 } 4645 4646 cfs_rq->runtime_remaining += amount; 4647 4648 return cfs_rq->runtime_remaining > 0; 4649 } 4650 4651 /* returns 0 on failure to allocate runtime */ 4652 static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq) 4653 { 4654 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 4655 int ret; 4656 4657 raw_spin_lock(&cfs_b->lock); 4658 ret = __assign_cfs_rq_runtime(cfs_b, cfs_rq, sched_cfs_bandwidth_slice()); 4659 raw_spin_unlock(&cfs_b->lock); 4660 4661 return ret; 4662 } 4663 4664 static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) 4665 { 4666 /* dock delta_exec before expiring quota (as it could span periods) */ 4667 cfs_rq->runtime_remaining -= delta_exec; 4668 4669 if (likely(cfs_rq->runtime_remaining > 0)) 4670 return; 4671 4672 if (cfs_rq->throttled) 4673 return; 4674 /* 4675 * if we're unable to extend our runtime we resched so that the active 4676 * hierarchy can be throttled 4677 */ 4678 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr)) 4679 resched_curr(rq_of(cfs_rq)); 4680 } 4681 4682 static __always_inline 4683 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) 4684 { 4685 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled) 4686 return; 4687 4688 __account_cfs_rq_runtime(cfs_rq, delta_exec); 4689 } 4690 4691 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq) 4692 { 4693 return cfs_bandwidth_used() && cfs_rq->throttled; 4694 } 4695 4696 /* check whether cfs_rq, or any parent, is throttled */ 4697 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq) 4698 { 4699 return cfs_bandwidth_used() && cfs_rq->throttle_count; 4700 } 4701 4702 /* 4703 * Ensure that neither of the group entities corresponding to src_cpu or 4704 * dest_cpu are members of a throttled hierarchy when performing group 4705 * load-balance operations. 4706 */ 4707 static inline int throttled_lb_pair(struct task_group *tg, 4708 int src_cpu, int dest_cpu) 4709 { 4710 struct cfs_rq *src_cfs_rq, *dest_cfs_rq; 4711 4712 src_cfs_rq = tg->cfs_rq[src_cpu]; 4713 dest_cfs_rq = tg->cfs_rq[dest_cpu]; 4714 4715 return throttled_hierarchy(src_cfs_rq) || 4716 throttled_hierarchy(dest_cfs_rq); 4717 } 4718 4719 static int tg_unthrottle_up(struct task_group *tg, void *data) 4720 { 4721 struct rq *rq = data; 4722 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; 4723 4724 cfs_rq->throttle_count--; 4725 if (!cfs_rq->throttle_count) { 4726 cfs_rq->throttled_clock_task_time += rq_clock_task(rq) - 4727 cfs_rq->throttled_clock_task; 4728 4729 /* Add cfs_rq with already running entity in the list */ 4730 if (cfs_rq->nr_running >= 1) 4731 list_add_leaf_cfs_rq(cfs_rq); 4732 } 4733 4734 return 0; 4735 } 4736 4737 static int tg_throttle_down(struct task_group *tg, void *data) 4738 { 4739 struct rq *rq = data; 4740 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; 4741 4742 /* group is entering throttled state, stop time */ 4743 if (!cfs_rq->throttle_count) { 4744 cfs_rq->throttled_clock_task = rq_clock_task(rq); 4745 list_del_leaf_cfs_rq(cfs_rq); 4746 } 4747 cfs_rq->throttle_count++; 4748 4749 return 0; 4750 } 4751 4752 static bool throttle_cfs_rq(struct cfs_rq *cfs_rq) 4753 { 4754 struct rq *rq = rq_of(cfs_rq); 4755 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 4756 struct sched_entity *se; 4757 long task_delta, idle_task_delta, dequeue = 1; 4758 4759 raw_spin_lock(&cfs_b->lock); 4760 /* This will start the period timer if necessary */ 4761 if (__assign_cfs_rq_runtime(cfs_b, cfs_rq, 1)) { 4762 /* 4763 * We have raced with bandwidth becoming available, and if we 4764 * actually throttled the timer might not unthrottle us for an 4765 * entire period. We additionally needed to make sure that any 4766 * subsequent check_cfs_rq_runtime calls agree not to throttle 4767 * us, as we may commit to do cfs put_prev+pick_next, so we ask 4768 * for 1ns of runtime rather than just check cfs_b. 4769 */ 4770 dequeue = 0; 4771 } else { 4772 list_add_tail_rcu(&cfs_rq->throttled_list, 4773 &cfs_b->throttled_cfs_rq); 4774 } 4775 raw_spin_unlock(&cfs_b->lock); 4776 4777 if (!dequeue) 4778 return false; /* Throttle no longer required. */ 4779 4780 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))]; 4781 4782 /* freeze hierarchy runnable averages while throttled */ 4783 rcu_read_lock(); 4784 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq); 4785 rcu_read_unlock(); 4786 4787 task_delta = cfs_rq->h_nr_running; 4788 idle_task_delta = cfs_rq->idle_h_nr_running; 4789 for_each_sched_entity(se) { 4790 struct cfs_rq *qcfs_rq = cfs_rq_of(se); 4791 /* throttled entity or throttle-on-deactivate */ 4792 if (!se->on_rq) 4793 goto done; 4794 4795 dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP); 4796 4797 qcfs_rq->h_nr_running -= task_delta; 4798 qcfs_rq->idle_h_nr_running -= idle_task_delta; 4799 4800 if (qcfs_rq->load.weight) { 4801 /* Avoid re-evaluating load for this entity: */ 4802 se = parent_entity(se); 4803 break; 4804 } 4805 } 4806 4807 for_each_sched_entity(se) { 4808 struct cfs_rq *qcfs_rq = cfs_rq_of(se); 4809 /* throttled entity or throttle-on-deactivate */ 4810 if (!se->on_rq) 4811 goto done; 4812 4813 update_load_avg(qcfs_rq, se, 0); 4814 se_update_runnable(se); 4815 4816 qcfs_rq->h_nr_running -= task_delta; 4817 qcfs_rq->idle_h_nr_running -= idle_task_delta; 4818 } 4819 4820 /* At this point se is NULL and we are at root level*/ 4821 sub_nr_running(rq, task_delta); 4822 4823 done: 4824 /* 4825 * Note: distribution will already see us throttled via the 4826 * throttled-list. rq->lock protects completion. 4827 */ 4828 cfs_rq->throttled = 1; 4829 cfs_rq->throttled_clock = rq_clock(rq); 4830 return true; 4831 } 4832 4833 void unthrottle_cfs_rq(struct cfs_rq *cfs_rq) 4834 { 4835 struct rq *rq = rq_of(cfs_rq); 4836 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 4837 struct sched_entity *se; 4838 long task_delta, idle_task_delta; 4839 4840 se = cfs_rq->tg->se[cpu_of(rq)]; 4841 4842 cfs_rq->throttled = 0; 4843 4844 update_rq_clock(rq); 4845 4846 raw_spin_lock(&cfs_b->lock); 4847 cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock; 4848 list_del_rcu(&cfs_rq->throttled_list); 4849 raw_spin_unlock(&cfs_b->lock); 4850 4851 /* update hierarchical throttle state */ 4852 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq); 4853 4854 if (!cfs_rq->load.weight) 4855 return; 4856 4857 task_delta = cfs_rq->h_nr_running; 4858 idle_task_delta = cfs_rq->idle_h_nr_running; 4859 for_each_sched_entity(se) { 4860 if (se->on_rq) 4861 break; 4862 cfs_rq = cfs_rq_of(se); 4863 enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP); 4864 4865 cfs_rq->h_nr_running += task_delta; 4866 cfs_rq->idle_h_nr_running += idle_task_delta; 4867 4868 /* end evaluation on encountering a throttled cfs_rq */ 4869 if (cfs_rq_throttled(cfs_rq)) 4870 goto unthrottle_throttle; 4871 } 4872 4873 for_each_sched_entity(se) { 4874 cfs_rq = cfs_rq_of(se); 4875 4876 update_load_avg(cfs_rq, se, UPDATE_TG); 4877 se_update_runnable(se); 4878 4879 cfs_rq->h_nr_running += task_delta; 4880 cfs_rq->idle_h_nr_running += idle_task_delta; 4881 4882 4883 /* end evaluation on encountering a throttled cfs_rq */ 4884 if (cfs_rq_throttled(cfs_rq)) 4885 goto unthrottle_throttle; 4886 4887 /* 4888 * One parent has been throttled and cfs_rq removed from the 4889 * list. Add it back to not break the leaf list. 4890 */ 4891 if (throttled_hierarchy(cfs_rq)) 4892 list_add_leaf_cfs_rq(cfs_rq); 4893 } 4894 4895 /* At this point se is NULL and we are at root level*/ 4896 add_nr_running(rq, task_delta); 4897 4898 unthrottle_throttle: 4899 /* 4900 * The cfs_rq_throttled() breaks in the above iteration can result in 4901 * incomplete leaf list maintenance, resulting in triggering the 4902 * assertion below. 4903 */ 4904 for_each_sched_entity(se) { 4905 cfs_rq = cfs_rq_of(se); 4906 4907 if (list_add_leaf_cfs_rq(cfs_rq)) 4908 break; 4909 } 4910 4911 assert_list_leaf_cfs_rq(rq); 4912 4913 /* Determine whether we need to wake up potentially idle CPU: */ 4914 if (rq->curr == rq->idle && rq->cfs.nr_running) 4915 resched_curr(rq); 4916 } 4917 4918 static void distribute_cfs_runtime(struct cfs_bandwidth *cfs_b) 4919 { 4920 struct cfs_rq *cfs_rq; 4921 u64 runtime, remaining = 1; 4922 4923 rcu_read_lock(); 4924 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq, 4925 throttled_list) { 4926 struct rq *rq = rq_of(cfs_rq); 4927 struct rq_flags rf; 4928 4929 rq_lock_irqsave(rq, &rf); 4930 if (!cfs_rq_throttled(cfs_rq)) 4931 goto next; 4932 4933 /* By the above check, this should never be true */ 4934 SCHED_WARN_ON(cfs_rq->runtime_remaining > 0); 4935 4936 raw_spin_lock(&cfs_b->lock); 4937 runtime = -cfs_rq->runtime_remaining + 1; 4938 if (runtime > cfs_b->runtime) 4939 runtime = cfs_b->runtime; 4940 cfs_b->runtime -= runtime; 4941 remaining = cfs_b->runtime; 4942 raw_spin_unlock(&cfs_b->lock); 4943 4944 cfs_rq->runtime_remaining += runtime; 4945 4946 /* we check whether we're throttled above */ 4947 if (cfs_rq->runtime_remaining > 0) 4948 unthrottle_cfs_rq(cfs_rq); 4949 4950 next: 4951 rq_unlock_irqrestore(rq, &rf); 4952 4953 if (!remaining) 4954 break; 4955 } 4956 rcu_read_unlock(); 4957 } 4958 4959 /* 4960 * Responsible for refilling a task_group's bandwidth and unthrottling its 4961 * cfs_rqs as appropriate. If there has been no activity within the last 4962 * period the timer is deactivated until scheduling resumes; cfs_b->idle is 4963 * used to track this state. 4964 */ 4965 static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun, unsigned long flags) 4966 { 4967 int throttled; 4968 4969 /* no need to continue the timer with no bandwidth constraint */ 4970 if (cfs_b->quota == RUNTIME_INF) 4971 goto out_deactivate; 4972 4973 throttled = !list_empty(&cfs_b->throttled_cfs_rq); 4974 cfs_b->nr_periods += overrun; 4975 4976 /* 4977 * idle depends on !throttled (for the case of a large deficit), and if 4978 * we're going inactive then everything else can be deferred 4979 */ 4980 if (cfs_b->idle && !throttled) 4981 goto out_deactivate; 4982 4983 __refill_cfs_bandwidth_runtime(cfs_b); 4984 4985 if (!throttled) { 4986 /* mark as potentially idle for the upcoming period */ 4987 cfs_b->idle = 1; 4988 return 0; 4989 } 4990 4991 /* account preceding periods in which throttling occurred */ 4992 cfs_b->nr_throttled += overrun; 4993 4994 /* 4995 * This check is repeated as we release cfs_b->lock while we unthrottle. 4996 */ 4997 while (throttled && cfs_b->runtime > 0) { 4998 raw_spin_unlock_irqrestore(&cfs_b->lock, flags); 4999 /* we can't nest cfs_b->lock while distributing bandwidth */ 5000 distribute_cfs_runtime(cfs_b); 5001 raw_spin_lock_irqsave(&cfs_b->lock, flags); 5002 5003 throttled = !list_empty(&cfs_b->throttled_cfs_rq); 5004 } 5005 5006 /* 5007 * While we are ensured activity in the period following an 5008 * unthrottle, this also covers the case in which the new bandwidth is 5009 * insufficient to cover the existing bandwidth deficit. (Forcing the 5010 * timer to remain active while there are any throttled entities.) 5011 */ 5012 cfs_b->idle = 0; 5013 5014 return 0; 5015 5016 out_deactivate: 5017 return 1; 5018 } 5019 5020 /* a cfs_rq won't donate quota below this amount */ 5021 static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC; 5022 /* minimum remaining period time to redistribute slack quota */ 5023 static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC; 5024 /* how long we wait to gather additional slack before distributing */ 5025 static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC; 5026 5027 /* 5028 * Are we near the end of the current quota period? 5029 * 5030 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the 5031 * hrtimer base being cleared by hrtimer_start. In the case of 5032 * migrate_hrtimers, base is never cleared, so we are fine. 5033 */ 5034 static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire) 5035 { 5036 struct hrtimer *refresh_timer = &cfs_b->period_timer; 5037 u64 remaining; 5038 5039 /* if the call-back is running a quota refresh is already occurring */ 5040 if (hrtimer_callback_running(refresh_timer)) 5041 return 1; 5042 5043 /* is a quota refresh about to occur? */ 5044 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer)); 5045 if (remaining < min_expire) 5046 return 1; 5047 5048 return 0; 5049 } 5050 5051 static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b) 5052 { 5053 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration; 5054 5055 /* if there's a quota refresh soon don't bother with slack */ 5056 if (runtime_refresh_within(cfs_b, min_left)) 5057 return; 5058 5059 /* don't push forwards an existing deferred unthrottle */ 5060 if (cfs_b->slack_started) 5061 return; 5062 cfs_b->slack_started = true; 5063 5064 hrtimer_start(&cfs_b->slack_timer, 5065 ns_to_ktime(cfs_bandwidth_slack_period), 5066 HRTIMER_MODE_REL); 5067 } 5068 5069 /* we know any runtime found here is valid as update_curr() precedes return */ 5070 static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq) 5071 { 5072 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 5073 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime; 5074 5075 if (slack_runtime <= 0) 5076 return; 5077 5078 raw_spin_lock(&cfs_b->lock); 5079 if (cfs_b->quota != RUNTIME_INF) { 5080 cfs_b->runtime += slack_runtime; 5081 5082 /* we are under rq->lock, defer unthrottling using a timer */ 5083 if (cfs_b->runtime > sched_cfs_bandwidth_slice() && 5084 !list_empty(&cfs_b->throttled_cfs_rq)) 5085 start_cfs_slack_bandwidth(cfs_b); 5086 } 5087 raw_spin_unlock(&cfs_b->lock); 5088 5089 /* even if it's not valid for return we don't want to try again */ 5090 cfs_rq->runtime_remaining -= slack_runtime; 5091 } 5092 5093 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) 5094 { 5095 if (!cfs_bandwidth_used()) 5096 return; 5097 5098 if (!cfs_rq->runtime_enabled || cfs_rq->nr_running) 5099 return; 5100 5101 __return_cfs_rq_runtime(cfs_rq); 5102 } 5103 5104 /* 5105 * This is done with a timer (instead of inline with bandwidth return) since 5106 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs. 5107 */ 5108 static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b) 5109 { 5110 u64 runtime = 0, slice = sched_cfs_bandwidth_slice(); 5111 unsigned long flags; 5112 5113 /* confirm we're still not at a refresh boundary */ 5114 raw_spin_lock_irqsave(&cfs_b->lock, flags); 5115 cfs_b->slack_started = false; 5116 5117 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) { 5118 raw_spin_unlock_irqrestore(&cfs_b->lock, flags); 5119 return; 5120 } 5121 5122 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice) 5123 runtime = cfs_b->runtime; 5124 5125 raw_spin_unlock_irqrestore(&cfs_b->lock, flags); 5126 5127 if (!runtime) 5128 return; 5129 5130 distribute_cfs_runtime(cfs_b); 5131 } 5132 5133 /* 5134 * When a group wakes up we want to make sure that its quota is not already 5135 * expired/exceeded, otherwise it may be allowed to steal additional ticks of 5136 * runtime as update_curr() throttling can not not trigger until it's on-rq. 5137 */ 5138 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) 5139 { 5140 if (!cfs_bandwidth_used()) 5141 return; 5142 5143 /* an active group must be handled by the update_curr()->put() path */ 5144 if (!cfs_rq->runtime_enabled || cfs_rq->curr) 5145 return; 5146 5147 /* ensure the group is not already throttled */ 5148 if (cfs_rq_throttled(cfs_rq)) 5149 return; 5150 5151 /* update runtime allocation */ 5152 account_cfs_rq_runtime(cfs_rq, 0); 5153 if (cfs_rq->runtime_remaining <= 0) 5154 throttle_cfs_rq(cfs_rq); 5155 } 5156 5157 static void sync_throttle(struct task_group *tg, int cpu) 5158 { 5159 struct cfs_rq *pcfs_rq, *cfs_rq; 5160 5161 if (!cfs_bandwidth_used()) 5162 return; 5163 5164 if (!tg->parent) 5165 return; 5166 5167 cfs_rq = tg->cfs_rq[cpu]; 5168 pcfs_rq = tg->parent->cfs_rq[cpu]; 5169 5170 cfs_rq->throttle_count = pcfs_rq->throttle_count; 5171 cfs_rq->throttled_clock_task = rq_clock_task(cpu_rq(cpu)); 5172 } 5173 5174 /* conditionally throttle active cfs_rq's from put_prev_entity() */ 5175 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) 5176 { 5177 if (!cfs_bandwidth_used()) 5178 return false; 5179 5180 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0)) 5181 return false; 5182 5183 /* 5184 * it's possible for a throttled entity to be forced into a running 5185 * state (e.g. set_curr_task), in this case we're finished. 5186 */ 5187 if (cfs_rq_throttled(cfs_rq)) 5188 return true; 5189 5190 return throttle_cfs_rq(cfs_rq); 5191 } 5192 5193 static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer) 5194 { 5195 struct cfs_bandwidth *cfs_b = 5196 container_of(timer, struct cfs_bandwidth, slack_timer); 5197 5198 do_sched_cfs_slack_timer(cfs_b); 5199 5200 return HRTIMER_NORESTART; 5201 } 5202 5203 extern const u64 max_cfs_quota_period; 5204 5205 static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer) 5206 { 5207 struct cfs_bandwidth *cfs_b = 5208 container_of(timer, struct cfs_bandwidth, period_timer); 5209 unsigned long flags; 5210 int overrun; 5211 int idle = 0; 5212 int count = 0; 5213 5214 raw_spin_lock_irqsave(&cfs_b->lock, flags); 5215 for (;;) { 5216 overrun = hrtimer_forward_now(timer, cfs_b->period); 5217 if (!overrun) 5218 break; 5219 5220 idle = do_sched_cfs_period_timer(cfs_b, overrun, flags); 5221 5222 if (++count > 3) { 5223 u64 new, old = ktime_to_ns(cfs_b->period); 5224 5225 /* 5226 * Grow period by a factor of 2 to avoid losing precision. 5227 * Precision loss in the quota/period ratio can cause __cfs_schedulable 5228 * to fail. 5229 */ 5230 new = old * 2; 5231 if (new < max_cfs_quota_period) { 5232 cfs_b->period = ns_to_ktime(new); 5233 cfs_b->quota *= 2; 5234 5235 pr_warn_ratelimited( 5236 "cfs_period_timer[cpu%d]: period too short, scaling up (new cfs_period_us = %lld, cfs_quota_us = %lld)\n", 5237 smp_processor_id(), 5238 div_u64(new, NSEC_PER_USEC), 5239 div_u64(cfs_b->quota, NSEC_PER_USEC)); 5240 } else { 5241 pr_warn_ratelimited( 5242 "cfs_period_timer[cpu%d]: period too short, but cannot scale up without losing precision (cfs_period_us = %lld, cfs_quota_us = %lld)\n", 5243 smp_processor_id(), 5244 div_u64(old, NSEC_PER_USEC), 5245 div_u64(cfs_b->quota, NSEC_PER_USEC)); 5246 } 5247 5248 /* reset count so we don't come right back in here */ 5249 count = 0; 5250 } 5251 } 5252 if (idle) 5253 cfs_b->period_active = 0; 5254 raw_spin_unlock_irqrestore(&cfs_b->lock, flags); 5255 5256 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART; 5257 } 5258 5259 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) 5260 { 5261 raw_spin_lock_init(&cfs_b->lock); 5262 cfs_b->runtime = 0; 5263 cfs_b->quota = RUNTIME_INF; 5264 cfs_b->period = ns_to_ktime(default_cfs_period()); 5265 5266 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq); 5267 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED); 5268 cfs_b->period_timer.function = sched_cfs_period_timer; 5269 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 5270 cfs_b->slack_timer.function = sched_cfs_slack_timer; 5271 cfs_b->slack_started = false; 5272 } 5273 5274 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) 5275 { 5276 cfs_rq->runtime_enabled = 0; 5277 INIT_LIST_HEAD(&cfs_rq->throttled_list); 5278 } 5279 5280 void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b) 5281 { 5282 lockdep_assert_held(&cfs_b->lock); 5283 5284 if (cfs_b->period_active) 5285 return; 5286 5287 cfs_b->period_active = 1; 5288 hrtimer_forward_now(&cfs_b->period_timer, cfs_b->period); 5289 hrtimer_start_expires(&cfs_b->period_timer, HRTIMER_MODE_ABS_PINNED); 5290 } 5291 5292 static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) 5293 { 5294 /* init_cfs_bandwidth() was not called */ 5295 if (!cfs_b->throttled_cfs_rq.next) 5296 return; 5297 5298 hrtimer_cancel(&cfs_b->period_timer); 5299 hrtimer_cancel(&cfs_b->slack_timer); 5300 } 5301 5302 /* 5303 * Both these CPU hotplug callbacks race against unregister_fair_sched_group() 5304 * 5305 * The race is harmless, since modifying bandwidth settings of unhooked group 5306 * bits doesn't do much. 5307 */ 5308 5309 /* cpu online calback */ 5310 static void __maybe_unused update_runtime_enabled(struct rq *rq) 5311 { 5312 struct task_group *tg; 5313 5314 lockdep_assert_held(&rq->lock); 5315 5316 rcu_read_lock(); 5317 list_for_each_entry_rcu(tg, &task_groups, list) { 5318 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 5319 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; 5320 5321 raw_spin_lock(&cfs_b->lock); 5322 cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF; 5323 raw_spin_unlock(&cfs_b->lock); 5324 } 5325 rcu_read_unlock(); 5326 } 5327 5328 /* cpu offline callback */ 5329 static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq) 5330 { 5331 struct task_group *tg; 5332 5333 lockdep_assert_held(&rq->lock); 5334 5335 rcu_read_lock(); 5336 list_for_each_entry_rcu(tg, &task_groups, list) { 5337 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; 5338 5339 if (!cfs_rq->runtime_enabled) 5340 continue; 5341 5342 /* 5343 * clock_task is not advancing so we just need to make sure 5344 * there's some valid quota amount 5345 */ 5346 cfs_rq->runtime_remaining = 1; 5347 /* 5348 * Offline rq is schedulable till CPU is completely disabled 5349 * in take_cpu_down(), so we prevent new cfs throttling here. 5350 */ 5351 cfs_rq->runtime_enabled = 0; 5352 5353 if (cfs_rq_throttled(cfs_rq)) 5354 unthrottle_cfs_rq(cfs_rq); 5355 } 5356 rcu_read_unlock(); 5357 } 5358 5359 #else /* CONFIG_CFS_BANDWIDTH */ 5360 5361 static inline bool cfs_bandwidth_used(void) 5362 { 5363 return false; 5364 } 5365 5366 static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {} 5367 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; } 5368 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {} 5369 static inline void sync_throttle(struct task_group *tg, int cpu) {} 5370 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {} 5371 5372 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq) 5373 { 5374 return 0; 5375 } 5376 5377 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq) 5378 { 5379 return 0; 5380 } 5381 5382 static inline int throttled_lb_pair(struct task_group *tg, 5383 int src_cpu, int dest_cpu) 5384 { 5385 return 0; 5386 } 5387 5388 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {} 5389 5390 #ifdef CONFIG_FAIR_GROUP_SCHED 5391 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {} 5392 #endif 5393 5394 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg) 5395 { 5396 return NULL; 5397 } 5398 static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {} 5399 static inline void update_runtime_enabled(struct rq *rq) {} 5400 static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {} 5401 5402 #endif /* CONFIG_CFS_BANDWIDTH */ 5403 5404 /************************************************** 5405 * CFS operations on tasks: 5406 */ 5407 5408 #ifdef CONFIG_SCHED_HRTICK 5409 static void hrtick_start_fair(struct rq *rq, struct task_struct *p) 5410 { 5411 struct sched_entity *se = &p->se; 5412 struct cfs_rq *cfs_rq = cfs_rq_of(se); 5413 5414 SCHED_WARN_ON(task_rq(p) != rq); 5415 5416 if (rq->cfs.h_nr_running > 1) { 5417 u64 slice = sched_slice(cfs_rq, se); 5418 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime; 5419 s64 delta = slice - ran; 5420 5421 if (delta < 0) { 5422 if (rq->curr == p) 5423 resched_curr(rq); 5424 return; 5425 } 5426 hrtick_start(rq, delta); 5427 } 5428 } 5429 5430 /* 5431 * called from enqueue/dequeue and updates the hrtick when the 5432 * current task is from our class and nr_running is low enough 5433 * to matter. 5434 */ 5435 static void hrtick_update(struct rq *rq) 5436 { 5437 struct task_struct *curr = rq->curr; 5438 5439 if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class) 5440 return; 5441 5442 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency) 5443 hrtick_start_fair(rq, curr); 5444 } 5445 #else /* !CONFIG_SCHED_HRTICK */ 5446 static inline void 5447 hrtick_start_fair(struct rq *rq, struct task_struct *p) 5448 { 5449 } 5450 5451 static inline void hrtick_update(struct rq *rq) 5452 { 5453 } 5454 #endif 5455 5456 #ifdef CONFIG_SMP 5457 static inline unsigned long cpu_util(int cpu); 5458 5459 static inline bool cpu_overutilized(int cpu) 5460 { 5461 return !fits_capacity(cpu_util(cpu), capacity_of(cpu)); 5462 } 5463 5464 static inline void update_overutilized_status(struct rq *rq) 5465 { 5466 if (!READ_ONCE(rq->rd->overutilized) && cpu_overutilized(rq->cpu)) { 5467 WRITE_ONCE(rq->rd->overutilized, SG_OVERUTILIZED); 5468 trace_sched_overutilized_tp(rq->rd, SG_OVERUTILIZED); 5469 } 5470 } 5471 #else 5472 static inline void update_overutilized_status(struct rq *rq) { } 5473 #endif 5474 5475 /* Runqueue only has SCHED_IDLE tasks enqueued */ 5476 static int sched_idle_rq(struct rq *rq) 5477 { 5478 return unlikely(rq->nr_running == rq->cfs.idle_h_nr_running && 5479 rq->nr_running); 5480 } 5481 5482 #ifdef CONFIG_SMP 5483 static int sched_idle_cpu(int cpu) 5484 { 5485 return sched_idle_rq(cpu_rq(cpu)); 5486 } 5487 #endif 5488 5489 /* 5490 * The enqueue_task method is called before nr_running is 5491 * increased. Here we update the fair scheduling stats and 5492 * then put the task into the rbtree: 5493 */ 5494 static void 5495 enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags) 5496 { 5497 struct cfs_rq *cfs_rq; 5498 struct sched_entity *se = &p->se; 5499 int idle_h_nr_running = task_has_idle_policy(p); 5500 int task_new = !(flags & ENQUEUE_WAKEUP); 5501 5502 /* 5503 * The code below (indirectly) updates schedutil which looks at 5504 * the cfs_rq utilization to select a frequency. 5505 * Let's add the task's estimated utilization to the cfs_rq's 5506 * estimated utilization, before we update schedutil. 5507 */ 5508 util_est_enqueue(&rq->cfs, p); 5509 5510 /* 5511 * If in_iowait is set, the code below may not trigger any cpufreq 5512 * utilization updates, so do it here explicitly with the IOWAIT flag 5513 * passed. 5514 */ 5515 if (p->in_iowait) 5516 cpufreq_update_util(rq, SCHED_CPUFREQ_IOWAIT); 5517 5518 for_each_sched_entity(se) { 5519 if (se->on_rq) 5520 break; 5521 cfs_rq = cfs_rq_of(se); 5522 enqueue_entity(cfs_rq, se, flags); 5523 5524 cfs_rq->h_nr_running++; 5525 cfs_rq->idle_h_nr_running += idle_h_nr_running; 5526 5527 /* end evaluation on encountering a throttled cfs_rq */ 5528 if (cfs_rq_throttled(cfs_rq)) 5529 goto enqueue_throttle; 5530 5531 flags = ENQUEUE_WAKEUP; 5532 } 5533 5534 for_each_sched_entity(se) { 5535 cfs_rq = cfs_rq_of(se); 5536 5537 update_load_avg(cfs_rq, se, UPDATE_TG); 5538 se_update_runnable(se); 5539 update_cfs_group(se); 5540 5541 cfs_rq->h_nr_running++; 5542 cfs_rq->idle_h_nr_running += idle_h_nr_running; 5543 5544 /* end evaluation on encountering a throttled cfs_rq */ 5545 if (cfs_rq_throttled(cfs_rq)) 5546 goto enqueue_throttle; 5547 5548 /* 5549 * One parent has been throttled and cfs_rq removed from the 5550 * list. Add it back to not break the leaf list. 5551 */ 5552 if (throttled_hierarchy(cfs_rq)) 5553 list_add_leaf_cfs_rq(cfs_rq); 5554 } 5555 5556 /* At this point se is NULL and we are at root level*/ 5557 add_nr_running(rq, 1); 5558 5559 /* 5560 * Since new tasks are assigned an initial util_avg equal to 5561 * half of the spare capacity of their CPU, tiny tasks have the 5562 * ability to cross the overutilized threshold, which will 5563 * result in the load balancer ruining all the task placement 5564 * done by EAS. As a way to mitigate that effect, do not account 5565 * for the first enqueue operation of new tasks during the 5566 * overutilized flag detection. 5567 * 5568 * A better way of solving this problem would be to wait for 5569 * the PELT signals of tasks to converge before taking them 5570 * into account, but that is not straightforward to implement, 5571 * and the following generally works well enough in practice. 5572 */ 5573 if (!task_new) 5574 update_overutilized_status(rq); 5575 5576 enqueue_throttle: 5577 if (cfs_bandwidth_used()) { 5578 /* 5579 * When bandwidth control is enabled; the cfs_rq_throttled() 5580 * breaks in the above iteration can result in incomplete 5581 * leaf list maintenance, resulting in triggering the assertion 5582 * below. 5583 */ 5584 for_each_sched_entity(se) { 5585 cfs_rq = cfs_rq_of(se); 5586 5587 if (list_add_leaf_cfs_rq(cfs_rq)) 5588 break; 5589 } 5590 } 5591 5592 assert_list_leaf_cfs_rq(rq); 5593 5594 hrtick_update(rq); 5595 } 5596 5597 static void set_next_buddy(struct sched_entity *se); 5598 5599 /* 5600 * The dequeue_task method is called before nr_running is 5601 * decreased. We remove the task from the rbtree and 5602 * update the fair scheduling stats: 5603 */ 5604 static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags) 5605 { 5606 struct cfs_rq *cfs_rq; 5607 struct sched_entity *se = &p->se; 5608 int task_sleep = flags & DEQUEUE_SLEEP; 5609 int idle_h_nr_running = task_has_idle_policy(p); 5610 bool was_sched_idle = sched_idle_rq(rq); 5611 5612 for_each_sched_entity(se) { 5613 cfs_rq = cfs_rq_of(se); 5614 dequeue_entity(cfs_rq, se, flags); 5615 5616 cfs_rq->h_nr_running--; 5617 cfs_rq->idle_h_nr_running -= idle_h_nr_running; 5618 5619 /* end evaluation on encountering a throttled cfs_rq */ 5620 if (cfs_rq_throttled(cfs_rq)) 5621 goto dequeue_throttle; 5622 5623 /* Don't dequeue parent if it has other entities besides us */ 5624 if (cfs_rq->load.weight) { 5625 /* Avoid re-evaluating load for this entity: */ 5626 se = parent_entity(se); 5627 /* 5628 * Bias pick_next to pick a task from this cfs_rq, as 5629 * p is sleeping when it is within its sched_slice. 5630 */ 5631 if (task_sleep && se && !throttled_hierarchy(cfs_rq)) 5632 set_next_buddy(se); 5633 break; 5634 } 5635 flags |= DEQUEUE_SLEEP; 5636 } 5637 5638 for_each_sched_entity(se) { 5639 cfs_rq = cfs_rq_of(se); 5640 5641 update_load_avg(cfs_rq, se, UPDATE_TG); 5642 se_update_runnable(se); 5643 update_cfs_group(se); 5644 5645 cfs_rq->h_nr_running--; 5646 cfs_rq->idle_h_nr_running -= idle_h_nr_running; 5647 5648 /* end evaluation on encountering a throttled cfs_rq */ 5649 if (cfs_rq_throttled(cfs_rq)) 5650 goto dequeue_throttle; 5651 5652 } 5653 5654 /* At this point se is NULL and we are at root level*/ 5655 sub_nr_running(rq, 1); 5656 5657 /* balance early to pull high priority tasks */ 5658 if (unlikely(!was_sched_idle && sched_idle_rq(rq))) 5659 rq->next_balance = jiffies; 5660 5661 dequeue_throttle: 5662 util_est_dequeue(&rq->cfs, p, task_sleep); 5663 hrtick_update(rq); 5664 } 5665 5666 #ifdef CONFIG_SMP 5667 5668 /* Working cpumask for: load_balance, load_balance_newidle. */ 5669 DEFINE_PER_CPU(cpumask_var_t, load_balance_mask); 5670 DEFINE_PER_CPU(cpumask_var_t, select_idle_mask); 5671 5672 #ifdef CONFIG_NO_HZ_COMMON 5673 5674 static struct { 5675 cpumask_var_t idle_cpus_mask; 5676 atomic_t nr_cpus; 5677 int has_blocked; /* Idle CPUS has blocked load */ 5678 unsigned long next_balance; /* in jiffy units */ 5679 unsigned long next_blocked; /* Next update of blocked load in jiffies */ 5680 } nohz ____cacheline_aligned; 5681 5682 #endif /* CONFIG_NO_HZ_COMMON */ 5683 5684 static unsigned long cpu_load(struct rq *rq) 5685 { 5686 return cfs_rq_load_avg(&rq->cfs); 5687 } 5688 5689 /* 5690 * cpu_load_without - compute CPU load without any contributions from *p 5691 * @cpu: the CPU which load is requested 5692 * @p: the task which load should be discounted 5693 * 5694 * The load of a CPU is defined by the load of tasks currently enqueued on that 5695 * CPU as well as tasks which are currently sleeping after an execution on that 5696 * CPU. 5697 * 5698 * This method returns the load of the specified CPU by discounting the load of 5699 * the specified task, whenever the task is currently contributing to the CPU 5700 * load. 5701 */ 5702 static unsigned long cpu_load_without(struct rq *rq, struct task_struct *p) 5703 { 5704 struct cfs_rq *cfs_rq; 5705 unsigned int load; 5706 5707 /* Task has no contribution or is new */ 5708 if (cpu_of(rq) != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time)) 5709 return cpu_load(rq); 5710 5711 cfs_rq = &rq->cfs; 5712 load = READ_ONCE(cfs_rq->avg.load_avg); 5713 5714 /* Discount task's util from CPU's util */ 5715 lsub_positive(&load, task_h_load(p)); 5716 5717 return load; 5718 } 5719 5720 static unsigned long cpu_runnable(struct rq *rq) 5721 { 5722 return cfs_rq_runnable_avg(&rq->cfs); 5723 } 5724 5725 static unsigned long cpu_runnable_without(struct rq *rq, struct task_struct *p) 5726 { 5727 struct cfs_rq *cfs_rq; 5728 unsigned int runnable; 5729 5730 /* Task has no contribution or is new */ 5731 if (cpu_of(rq) != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time)) 5732 return cpu_runnable(rq); 5733 5734 cfs_rq = &rq->cfs; 5735 runnable = READ_ONCE(cfs_rq->avg.runnable_avg); 5736 5737 /* Discount task's runnable from CPU's runnable */ 5738 lsub_positive(&runnable, p->se.avg.runnable_avg); 5739 5740 return runnable; 5741 } 5742 5743 static unsigned long capacity_of(int cpu) 5744 { 5745 return cpu_rq(cpu)->cpu_capacity; 5746 } 5747 5748 static void record_wakee(struct task_struct *p) 5749 { 5750 /* 5751 * Only decay a single time; tasks that have less then 1 wakeup per 5752 * jiffy will not have built up many flips. 5753 */ 5754 if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) { 5755 current->wakee_flips >>= 1; 5756 current->wakee_flip_decay_ts = jiffies; 5757 } 5758 5759 if (current->last_wakee != p) { 5760 current->last_wakee = p; 5761 current->wakee_flips++; 5762 } 5763 } 5764 5765 /* 5766 * Detect M:N waker/wakee relationships via a switching-frequency heuristic. 5767 * 5768 * A waker of many should wake a different task than the one last awakened 5769 * at a frequency roughly N times higher than one of its wakees. 5770 * 5771 * In order to determine whether we should let the load spread vs consolidating 5772 * to shared cache, we look for a minimum 'flip' frequency of llc_size in one 5773 * partner, and a factor of lls_size higher frequency in the other. 5774 * 5775 * With both conditions met, we can be relatively sure that the relationship is 5776 * non-monogamous, with partner count exceeding socket size. 5777 * 5778 * Waker/wakee being client/server, worker/dispatcher, interrupt source or 5779 * whatever is irrelevant, spread criteria is apparent partner count exceeds 5780 * socket size. 5781 */ 5782 static int wake_wide(struct task_struct *p) 5783 { 5784 unsigned int master = current->wakee_flips; 5785 unsigned int slave = p->wakee_flips; 5786 int factor = __this_cpu_read(sd_llc_size); 5787 5788 if (master < slave) 5789 swap(master, slave); 5790 if (slave < factor || master < slave * factor) 5791 return 0; 5792 return 1; 5793 } 5794 5795 /* 5796 * The purpose of wake_affine() is to quickly determine on which CPU we can run 5797 * soonest. For the purpose of speed we only consider the waking and previous 5798 * CPU. 5799 * 5800 * wake_affine_idle() - only considers 'now', it check if the waking CPU is 5801 * cache-affine and is (or will be) idle. 5802 * 5803 * wake_affine_weight() - considers the weight to reflect the average 5804 * scheduling latency of the CPUs. This seems to work 5805 * for the overloaded case. 5806 */ 5807 static int 5808 wake_affine_idle(int this_cpu, int prev_cpu, int sync) 5809 { 5810 /* 5811 * If this_cpu is idle, it implies the wakeup is from interrupt 5812 * context. Only allow the move if cache is shared. Otherwise an 5813 * interrupt intensive workload could force all tasks onto one 5814 * node depending on the IO topology or IRQ affinity settings. 5815 * 5816 * If the prev_cpu is idle and cache affine then avoid a migration. 5817 * There is no guarantee that the cache hot data from an interrupt 5818 * is more important than cache hot data on the prev_cpu and from 5819 * a cpufreq perspective, it's better to have higher utilisation 5820 * on one CPU. 5821 */ 5822 if (available_idle_cpu(this_cpu) && cpus_share_cache(this_cpu, prev_cpu)) 5823 return available_idle_cpu(prev_cpu) ? prev_cpu : this_cpu; 5824 5825 if (sync && cpu_rq(this_cpu)->nr_running == 1) 5826 return this_cpu; 5827 5828 if (available_idle_cpu(prev_cpu)) 5829 return prev_cpu; 5830 5831 return nr_cpumask_bits; 5832 } 5833 5834 static int 5835 wake_affine_weight(struct sched_domain *sd, struct task_struct *p, 5836 int this_cpu, int prev_cpu, int sync) 5837 { 5838 s64 this_eff_load, prev_eff_load; 5839 unsigned long task_load; 5840 5841 this_eff_load = cpu_load(cpu_rq(this_cpu)); 5842 5843 if (sync) { 5844 unsigned long current_load = task_h_load(current); 5845 5846 if (current_load > this_eff_load) 5847 return this_cpu; 5848 5849 this_eff_load -= current_load; 5850 } 5851 5852 task_load = task_h_load(p); 5853 5854 this_eff_load += task_load; 5855 if (sched_feat(WA_BIAS)) 5856 this_eff_load *= 100; 5857 this_eff_load *= capacity_of(prev_cpu); 5858 5859 prev_eff_load = cpu_load(cpu_rq(prev_cpu)); 5860 prev_eff_load -= task_load; 5861 if (sched_feat(WA_BIAS)) 5862 prev_eff_load *= 100 + (sd->imbalance_pct - 100) / 2; 5863 prev_eff_load *= capacity_of(this_cpu); 5864 5865 /* 5866 * If sync, adjust the weight of prev_eff_load such that if 5867 * prev_eff == this_eff that select_idle_sibling() will consider 5868 * stacking the wakee on top of the waker if no other CPU is 5869 * idle. 5870 */ 5871 if (sync) 5872 prev_eff_load += 1; 5873 5874 return this_eff_load < prev_eff_load ? this_cpu : nr_cpumask_bits; 5875 } 5876 5877 static int wake_affine(struct sched_domain *sd, struct task_struct *p, 5878 int this_cpu, int prev_cpu, int sync) 5879 { 5880 int target = nr_cpumask_bits; 5881 5882 if (sched_feat(WA_IDLE)) 5883 target = wake_affine_idle(this_cpu, prev_cpu, sync); 5884 5885 if (sched_feat(WA_WEIGHT) && target == nr_cpumask_bits) 5886 target = wake_affine_weight(sd, p, this_cpu, prev_cpu, sync); 5887 5888 schedstat_inc(p->se.statistics.nr_wakeups_affine_attempts); 5889 if (target == nr_cpumask_bits) 5890 return prev_cpu; 5891 5892 schedstat_inc(sd->ttwu_move_affine); 5893 schedstat_inc(p->se.statistics.nr_wakeups_affine); 5894 return target; 5895 } 5896 5897 static struct sched_group * 5898 find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu); 5899 5900 /* 5901 * find_idlest_group_cpu - find the idlest CPU among the CPUs in the group. 5902 */ 5903 static int 5904 find_idlest_group_cpu(struct sched_group *group, struct task_struct *p, int this_cpu) 5905 { 5906 unsigned long load, min_load = ULONG_MAX; 5907 unsigned int min_exit_latency = UINT_MAX; 5908 u64 latest_idle_timestamp = 0; 5909 int least_loaded_cpu = this_cpu; 5910 int shallowest_idle_cpu = -1; 5911 int i; 5912 5913 /* Check if we have any choice: */ 5914 if (group->group_weight == 1) 5915 return cpumask_first(sched_group_span(group)); 5916 5917 /* Traverse only the allowed CPUs */ 5918 for_each_cpu_and(i, sched_group_span(group), p->cpus_ptr) { 5919 if (sched_idle_cpu(i)) 5920 return i; 5921 5922 if (available_idle_cpu(i)) { 5923 struct rq *rq = cpu_rq(i); 5924 struct cpuidle_state *idle = idle_get_state(rq); 5925 if (idle && idle->exit_latency < min_exit_latency) { 5926 /* 5927 * We give priority to a CPU whose idle state 5928 * has the smallest exit latency irrespective 5929 * of any idle timestamp. 5930 */ 5931 min_exit_latency = idle->exit_latency; 5932 latest_idle_timestamp = rq->idle_stamp; 5933 shallowest_idle_cpu = i; 5934 } else if ((!idle || idle->exit_latency == min_exit_latency) && 5935 rq->idle_stamp > latest_idle_timestamp) { 5936 /* 5937 * If equal or no active idle state, then 5938 * the most recently idled CPU might have 5939 * a warmer cache. 5940 */ 5941 latest_idle_timestamp = rq->idle_stamp; 5942 shallowest_idle_cpu = i; 5943 } 5944 } else if (shallowest_idle_cpu == -1) { 5945 load = cpu_load(cpu_rq(i)); 5946 if (load < min_load) { 5947 min_load = load; 5948 least_loaded_cpu = i; 5949 } 5950 } 5951 } 5952 5953 return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu; 5954 } 5955 5956 static inline int find_idlest_cpu(struct sched_domain *sd, struct task_struct *p, 5957 int cpu, int prev_cpu, int sd_flag) 5958 { 5959 int new_cpu = cpu; 5960 5961 if (!cpumask_intersects(sched_domain_span(sd), p->cpus_ptr)) 5962 return prev_cpu; 5963 5964 /* 5965 * We need task's util for cpu_util_without, sync it up to 5966 * prev_cpu's last_update_time. 5967 */ 5968 if (!(sd_flag & SD_BALANCE_FORK)) 5969 sync_entity_load_avg(&p->se); 5970 5971 while (sd) { 5972 struct sched_group *group; 5973 struct sched_domain *tmp; 5974 int weight; 5975 5976 if (!(sd->flags & sd_flag)) { 5977 sd = sd->child; 5978 continue; 5979 } 5980 5981 group = find_idlest_group(sd, p, cpu); 5982 if (!group) { 5983 sd = sd->child; 5984 continue; 5985 } 5986 5987 new_cpu = find_idlest_group_cpu(group, p, cpu); 5988 if (new_cpu == cpu) { 5989 /* Now try balancing at a lower domain level of 'cpu': */ 5990 sd = sd->child; 5991 continue; 5992 } 5993 5994 /* Now try balancing at a lower domain level of 'new_cpu': */ 5995 cpu = new_cpu; 5996 weight = sd->span_weight; 5997 sd = NULL; 5998 for_each_domain(cpu, tmp) { 5999 if (weight <= tmp->span_weight) 6000 break; 6001 if (tmp->flags & sd_flag) 6002 sd = tmp; 6003 } 6004 } 6005 6006 return new_cpu; 6007 } 6008 6009 #ifdef CONFIG_SCHED_SMT 6010 DEFINE_STATIC_KEY_FALSE(sched_smt_present); 6011 EXPORT_SYMBOL_GPL(sched_smt_present); 6012 6013 static inline void set_idle_cores(int cpu, int val) 6014 { 6015 struct sched_domain_shared *sds; 6016 6017 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu)); 6018 if (sds) 6019 WRITE_ONCE(sds->has_idle_cores, val); 6020 } 6021 6022 static inline bool test_idle_cores(int cpu, bool def) 6023 { 6024 struct sched_domain_shared *sds; 6025 6026 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu)); 6027 if (sds) 6028 return READ_ONCE(sds->has_idle_cores); 6029 6030 return def; 6031 } 6032 6033 /* 6034 * Scans the local SMT mask to see if the entire core is idle, and records this 6035 * information in sd_llc_shared->has_idle_cores. 6036 * 6037 * Since SMT siblings share all cache levels, inspecting this limited remote 6038 * state should be fairly cheap. 6039 */ 6040 void __update_idle_core(struct rq *rq) 6041 { 6042 int core = cpu_of(rq); 6043 int cpu; 6044 6045 rcu_read_lock(); 6046 if (test_idle_cores(core, true)) 6047 goto unlock; 6048 6049 for_each_cpu(cpu, cpu_smt_mask(core)) { 6050 if (cpu == core) 6051 continue; 6052 6053 if (!available_idle_cpu(cpu)) 6054 goto unlock; 6055 } 6056 6057 set_idle_cores(core, 1); 6058 unlock: 6059 rcu_read_unlock(); 6060 } 6061 6062 /* 6063 * Scan the entire LLC domain for idle cores; this dynamically switches off if 6064 * there are no idle cores left in the system; tracked through 6065 * sd_llc->shared->has_idle_cores and enabled through update_idle_core() above. 6066 */ 6067 static int select_idle_core(struct task_struct *p, struct sched_domain *sd, int target) 6068 { 6069 struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_idle_mask); 6070 int core, cpu; 6071 6072 if (!static_branch_likely(&sched_smt_present)) 6073 return -1; 6074 6075 if (!test_idle_cores(target, false)) 6076 return -1; 6077 6078 cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr); 6079 6080 for_each_cpu_wrap(core, cpus, target) { 6081 bool idle = true; 6082 6083 for_each_cpu(cpu, cpu_smt_mask(core)) { 6084 if (!available_idle_cpu(cpu)) { 6085 idle = false; 6086 break; 6087 } 6088 } 6089 6090 if (idle) 6091 return core; 6092 6093 cpumask_andnot(cpus, cpus, cpu_smt_mask(core)); 6094 } 6095 6096 /* 6097 * Failed to find an idle core; stop looking for one. 6098 */ 6099 set_idle_cores(target, 0); 6100 6101 return -1; 6102 } 6103 6104 /* 6105 * Scan the local SMT mask for idle CPUs. 6106 */ 6107 static int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target) 6108 { 6109 int cpu; 6110 6111 if (!static_branch_likely(&sched_smt_present)) 6112 return -1; 6113 6114 for_each_cpu(cpu, cpu_smt_mask(target)) { 6115 if (!cpumask_test_cpu(cpu, p->cpus_ptr) || 6116 !cpumask_test_cpu(cpu, sched_domain_span(sd))) 6117 continue; 6118 if (available_idle_cpu(cpu) || sched_idle_cpu(cpu)) 6119 return cpu; 6120 } 6121 6122 return -1; 6123 } 6124 6125 #else /* CONFIG_SCHED_SMT */ 6126 6127 static inline int select_idle_core(struct task_struct *p, struct sched_domain *sd, int target) 6128 { 6129 return -1; 6130 } 6131 6132 static inline int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target) 6133 { 6134 return -1; 6135 } 6136 6137 #endif /* CONFIG_SCHED_SMT */ 6138 6139 /* 6140 * Scan the LLC domain for idle CPUs; this is dynamically regulated by 6141 * comparing the average scan cost (tracked in sd->avg_scan_cost) against the 6142 * average idle time for this rq (as found in rq->avg_idle). 6143 */ 6144 static int select_idle_cpu(struct task_struct *p, struct sched_domain *sd, int target) 6145 { 6146 struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_idle_mask); 6147 struct sched_domain *this_sd; 6148 u64 avg_cost, avg_idle; 6149 u64 time; 6150 int this = smp_processor_id(); 6151 int cpu, nr = INT_MAX; 6152 6153 this_sd = rcu_dereference(*this_cpu_ptr(&sd_llc)); 6154 if (!this_sd) 6155 return -1; 6156 6157 /* 6158 * Due to large variance we need a large fuzz factor; hackbench in 6159 * particularly is sensitive here. 6160 */ 6161 avg_idle = this_rq()->avg_idle / 512; 6162 avg_cost = this_sd->avg_scan_cost + 1; 6163 6164 if (sched_feat(SIS_AVG_CPU) && avg_idle < avg_cost) 6165 return -1; 6166 6167 if (sched_feat(SIS_PROP)) { 6168 u64 span_avg = sd->span_weight * avg_idle; 6169 if (span_avg > 4*avg_cost) 6170 nr = div_u64(span_avg, avg_cost); 6171 else 6172 nr = 4; 6173 } 6174 6175 time = cpu_clock(this); 6176 6177 cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr); 6178 6179 for_each_cpu_wrap(cpu, cpus, target) { 6180 if (!--nr) 6181 return -1; 6182 if (available_idle_cpu(cpu) || sched_idle_cpu(cpu)) 6183 break; 6184 } 6185 6186 time = cpu_clock(this) - time; 6187 update_avg(&this_sd->avg_scan_cost, time); 6188 6189 return cpu; 6190 } 6191 6192 /* 6193 * Scan the asym_capacity domain for idle CPUs; pick the first idle one on which 6194 * the task fits. If no CPU is big enough, but there are idle ones, try to 6195 * maximize capacity. 6196 */ 6197 static int 6198 select_idle_capacity(struct task_struct *p, struct sched_domain *sd, int target) 6199 { 6200 unsigned long task_util, best_cap = 0; 6201 int cpu, best_cpu = -1; 6202 struct cpumask *cpus; 6203 6204 cpus = this_cpu_cpumask_var_ptr(select_idle_mask); 6205 cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr); 6206 6207 task_util = uclamp_task_util(p); 6208 6209 for_each_cpu_wrap(cpu, cpus, target) { 6210 unsigned long cpu_cap = capacity_of(cpu); 6211 6212 if (!available_idle_cpu(cpu) && !sched_idle_cpu(cpu)) 6213 continue; 6214 if (fits_capacity(task_util, cpu_cap)) 6215 return cpu; 6216 6217 if (cpu_cap > best_cap) { 6218 best_cap = cpu_cap; 6219 best_cpu = cpu; 6220 } 6221 } 6222 6223 return best_cpu; 6224 } 6225 6226 static inline bool asym_fits_capacity(int task_util, int cpu) 6227 { 6228 if (static_branch_unlikely(&sched_asym_cpucapacity)) 6229 return fits_capacity(task_util, capacity_of(cpu)); 6230 6231 return true; 6232 } 6233 6234 /* 6235 * Try and locate an idle core/thread in the LLC cache domain. 6236 */ 6237 static int select_idle_sibling(struct task_struct *p, int prev, int target) 6238 { 6239 struct sched_domain *sd; 6240 unsigned long task_util; 6241 int i, recent_used_cpu; 6242 6243 /* 6244 * On asymmetric system, update task utilization because we will check 6245 * that the task fits with cpu's capacity. 6246 */ 6247 if (static_branch_unlikely(&sched_asym_cpucapacity)) { 6248 sync_entity_load_avg(&p->se); 6249 task_util = uclamp_task_util(p); 6250 } 6251 6252 if ((available_idle_cpu(target) || sched_idle_cpu(target)) && 6253 asym_fits_capacity(task_util, target)) 6254 return target; 6255 6256 /* 6257 * If the previous CPU is cache affine and idle, don't be stupid: 6258 */ 6259 if (prev != target && cpus_share_cache(prev, target) && 6260 (available_idle_cpu(prev) || sched_idle_cpu(prev)) && 6261 asym_fits_capacity(task_util, prev)) 6262 return prev; 6263 6264 /* 6265 * Allow a per-cpu kthread to stack with the wakee if the 6266 * kworker thread and the tasks previous CPUs are the same. 6267 * The assumption is that the wakee queued work for the 6268 * per-cpu kthread that is now complete and the wakeup is 6269 * essentially a sync wakeup. An obvious example of this 6270 * pattern is IO completions. 6271 */ 6272 if (is_per_cpu_kthread(current) && 6273 prev == smp_processor_id() && 6274 this_rq()->nr_running <= 1) { 6275 return prev; 6276 } 6277 6278 /* Check a recently used CPU as a potential idle candidate: */ 6279 recent_used_cpu = p->recent_used_cpu; 6280 if (recent_used_cpu != prev && 6281 recent_used_cpu != target && 6282 cpus_share_cache(recent_used_cpu, target) && 6283 (available_idle_cpu(recent_used_cpu) || sched_idle_cpu(recent_used_cpu)) && 6284 cpumask_test_cpu(p->recent_used_cpu, p->cpus_ptr) && 6285 asym_fits_capacity(task_util, recent_used_cpu)) { 6286 /* 6287 * Replace recent_used_cpu with prev as it is a potential 6288 * candidate for the next wake: 6289 */ 6290 p->recent_used_cpu = prev; 6291 return recent_used_cpu; 6292 } 6293 6294 /* 6295 * For asymmetric CPU capacity systems, our domain of interest is 6296 * sd_asym_cpucapacity rather than sd_llc. 6297 */ 6298 if (static_branch_unlikely(&sched_asym_cpucapacity)) { 6299 sd = rcu_dereference(per_cpu(sd_asym_cpucapacity, target)); 6300 /* 6301 * On an asymmetric CPU capacity system where an exclusive 6302 * cpuset defines a symmetric island (i.e. one unique 6303 * capacity_orig value through the cpuset), the key will be set 6304 * but the CPUs within that cpuset will not have a domain with 6305 * SD_ASYM_CPUCAPACITY. These should follow the usual symmetric 6306 * capacity path. 6307 */ 6308 if (sd) { 6309 i = select_idle_capacity(p, sd, target); 6310 return ((unsigned)i < nr_cpumask_bits) ? i : target; 6311 } 6312 } 6313 6314 sd = rcu_dereference(per_cpu(sd_llc, target)); 6315 if (!sd) 6316 return target; 6317 6318 i = select_idle_core(p, sd, target); 6319 if ((unsigned)i < nr_cpumask_bits) 6320 return i; 6321 6322 i = select_idle_cpu(p, sd, target); 6323 if ((unsigned)i < nr_cpumask_bits) 6324 return i; 6325 6326 i = select_idle_smt(p, sd, target); 6327 if ((unsigned)i < nr_cpumask_bits) 6328 return i; 6329 6330 return target; 6331 } 6332 6333 /** 6334 * cpu_util - Estimates the amount of capacity of a CPU used by CFS tasks. 6335 * @cpu: the CPU to get the utilization of 6336 * 6337 * The unit of the return value must be the one of capacity so we can compare 6338 * the utilization with the capacity of the CPU that is available for CFS task 6339 * (ie cpu_capacity). 6340 * 6341 * cfs_rq.avg.util_avg is the sum of running time of runnable tasks plus the 6342 * recent utilization of currently non-runnable tasks on a CPU. It represents 6343 * the amount of utilization of a CPU in the range [0..capacity_orig] where 6344 * capacity_orig is the cpu_capacity available at the highest frequency 6345 * (arch_scale_freq_capacity()). 6346 * The utilization of a CPU converges towards a sum equal to or less than the 6347 * current capacity (capacity_curr <= capacity_orig) of the CPU because it is 6348 * the running time on this CPU scaled by capacity_curr. 6349 * 6350 * The estimated utilization of a CPU is defined to be the maximum between its 6351 * cfs_rq.avg.util_avg and the sum of the estimated utilization of the tasks 6352 * currently RUNNABLE on that CPU. 6353 * This allows to properly represent the expected utilization of a CPU which 6354 * has just got a big task running since a long sleep period. At the same time 6355 * however it preserves the benefits of the "blocked utilization" in 6356 * describing the potential for other tasks waking up on the same CPU. 6357 * 6358 * Nevertheless, cfs_rq.avg.util_avg can be higher than capacity_curr or even 6359 * higher than capacity_orig because of unfortunate rounding in 6360 * cfs.avg.util_avg or just after migrating tasks and new task wakeups until 6361 * the average stabilizes with the new running time. We need to check that the 6362 * utilization stays within the range of [0..capacity_orig] and cap it if 6363 * necessary. Without utilization capping, a group could be seen as overloaded 6364 * (CPU0 utilization at 121% + CPU1 utilization at 80%) whereas CPU1 has 20% of 6365 * available capacity. We allow utilization to overshoot capacity_curr (but not 6366 * capacity_orig) as it useful for predicting the capacity required after task 6367 * migrations (scheduler-driven DVFS). 6368 * 6369 * Return: the (estimated) utilization for the specified CPU 6370 */ 6371 static inline unsigned long cpu_util(int cpu) 6372 { 6373 struct cfs_rq *cfs_rq; 6374 unsigned int util; 6375 6376 cfs_rq = &cpu_rq(cpu)->cfs; 6377 util = READ_ONCE(cfs_rq->avg.util_avg); 6378 6379 if (sched_feat(UTIL_EST)) 6380 util = max(util, READ_ONCE(cfs_rq->avg.util_est.enqueued)); 6381 6382 return min_t(unsigned long, util, capacity_orig_of(cpu)); 6383 } 6384 6385 /* 6386 * cpu_util_without: compute cpu utilization without any contributions from *p 6387 * @cpu: the CPU which utilization is requested 6388 * @p: the task which utilization should be discounted 6389 * 6390 * The utilization of a CPU is defined by the utilization of tasks currently 6391 * enqueued on that CPU as well as tasks which are currently sleeping after an 6392 * execution on that CPU. 6393 * 6394 * This method returns the utilization of the specified CPU by discounting the 6395 * utilization of the specified task, whenever the task is currently 6396 * contributing to the CPU utilization. 6397 */ 6398 static unsigned long cpu_util_without(int cpu, struct task_struct *p) 6399 { 6400 struct cfs_rq *cfs_rq; 6401 unsigned int util; 6402 6403 /* Task has no contribution or is new */ 6404 if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time)) 6405 return cpu_util(cpu); 6406 6407 cfs_rq = &cpu_rq(cpu)->cfs; 6408 util = READ_ONCE(cfs_rq->avg.util_avg); 6409 6410 /* Discount task's util from CPU's util */ 6411 lsub_positive(&util, task_util(p)); 6412 6413 /* 6414 * Covered cases: 6415 * 6416 * a) if *p is the only task sleeping on this CPU, then: 6417 * cpu_util (== task_util) > util_est (== 0) 6418 * and thus we return: 6419 * cpu_util_without = (cpu_util - task_util) = 0 6420 * 6421 * b) if other tasks are SLEEPING on this CPU, which is now exiting 6422 * IDLE, then: 6423 * cpu_util >= task_util 6424 * cpu_util > util_est (== 0) 6425 * and thus we discount *p's blocked utilization to return: 6426 * cpu_util_without = (cpu_util - task_util) >= 0 6427 * 6428 * c) if other tasks are RUNNABLE on that CPU and 6429 * util_est > cpu_util 6430 * then we use util_est since it returns a more restrictive 6431 * estimation of the spare capacity on that CPU, by just 6432 * considering the expected utilization of tasks already 6433 * runnable on that CPU. 6434 * 6435 * Cases a) and b) are covered by the above code, while case c) is 6436 * covered by the following code when estimated utilization is 6437 * enabled. 6438 */ 6439 if (sched_feat(UTIL_EST)) { 6440 unsigned int estimated = 6441 READ_ONCE(cfs_rq->avg.util_est.enqueued); 6442 6443 /* 6444 * Despite the following checks we still have a small window 6445 * for a possible race, when an execl's select_task_rq_fair() 6446 * races with LB's detach_task(): 6447 * 6448 * detach_task() 6449 * p->on_rq = TASK_ON_RQ_MIGRATING; 6450 * ---------------------------------- A 6451 * deactivate_task() \ 6452 * dequeue_task() + RaceTime 6453 * util_est_dequeue() / 6454 * ---------------------------------- B 6455 * 6456 * The additional check on "current == p" it's required to 6457 * properly fix the execl regression and it helps in further 6458 * reducing the chances for the above race. 6459 */ 6460 if (unlikely(task_on_rq_queued(p) || current == p)) 6461 lsub_positive(&estimated, _task_util_est(p)); 6462 6463 util = max(util, estimated); 6464 } 6465 6466 /* 6467 * Utilization (estimated) can exceed the CPU capacity, thus let's 6468 * clamp to the maximum CPU capacity to ensure consistency with 6469 * the cpu_util call. 6470 */ 6471 return min_t(unsigned long, util, capacity_orig_of(cpu)); 6472 } 6473 6474 /* 6475 * Predicts what cpu_util(@cpu) would return if @p was migrated (and enqueued) 6476 * to @dst_cpu. 6477 */ 6478 static unsigned long cpu_util_next(int cpu, struct task_struct *p, int dst_cpu) 6479 { 6480 struct cfs_rq *cfs_rq = &cpu_rq(cpu)->cfs; 6481 unsigned long util_est, util = READ_ONCE(cfs_rq->avg.util_avg); 6482 6483 /* 6484 * If @p migrates from @cpu to another, remove its contribution. Or, 6485 * if @p migrates from another CPU to @cpu, add its contribution. In 6486 * the other cases, @cpu is not impacted by the migration, so the 6487 * util_avg should already be correct. 6488 */ 6489 if (task_cpu(p) == cpu && dst_cpu != cpu) 6490 sub_positive(&util, task_util(p)); 6491 else if (task_cpu(p) != cpu && dst_cpu == cpu) 6492 util += task_util(p); 6493 6494 if (sched_feat(UTIL_EST)) { 6495 util_est = READ_ONCE(cfs_rq->avg.util_est.enqueued); 6496 6497 /* 6498 * During wake-up, the task isn't enqueued yet and doesn't 6499 * appear in the cfs_rq->avg.util_est.enqueued of any rq, 6500 * so just add it (if needed) to "simulate" what will be 6501 * cpu_util() after the task has been enqueued. 6502 */ 6503 if (dst_cpu == cpu) 6504 util_est += _task_util_est(p); 6505 6506 util = max(util, util_est); 6507 } 6508 6509 return min(util, capacity_orig_of(cpu)); 6510 } 6511 6512 /* 6513 * compute_energy(): Estimates the energy that @pd would consume if @p was 6514 * migrated to @dst_cpu. compute_energy() predicts what will be the utilization 6515 * landscape of @pd's CPUs after the task migration, and uses the Energy Model 6516 * to compute what would be the energy if we decided to actually migrate that 6517 * task. 6518 */ 6519 static long 6520 compute_energy(struct task_struct *p, int dst_cpu, struct perf_domain *pd) 6521 { 6522 struct cpumask *pd_mask = perf_domain_span(pd); 6523 unsigned long cpu_cap = arch_scale_cpu_capacity(cpumask_first(pd_mask)); 6524 unsigned long max_util = 0, sum_util = 0; 6525 int cpu; 6526 6527 /* 6528 * The capacity state of CPUs of the current rd can be driven by CPUs 6529 * of another rd if they belong to the same pd. So, account for the 6530 * utilization of these CPUs too by masking pd with cpu_online_mask 6531 * instead of the rd span. 6532 * 6533 * If an entire pd is outside of the current rd, it will not appear in 6534 * its pd list and will not be accounted by compute_energy(). 6535 */ 6536 for_each_cpu_and(cpu, pd_mask, cpu_online_mask) { 6537 unsigned long cpu_util, util_cfs = cpu_util_next(cpu, p, dst_cpu); 6538 struct task_struct *tsk = cpu == dst_cpu ? p : NULL; 6539 6540 /* 6541 * Busy time computation: utilization clamping is not 6542 * required since the ratio (sum_util / cpu_capacity) 6543 * is already enough to scale the EM reported power 6544 * consumption at the (eventually clamped) cpu_capacity. 6545 */ 6546 sum_util += schedutil_cpu_util(cpu, util_cfs, cpu_cap, 6547 ENERGY_UTIL, NULL); 6548 6549 /* 6550 * Performance domain frequency: utilization clamping 6551 * must be considered since it affects the selection 6552 * of the performance domain frequency. 6553 * NOTE: in case RT tasks are running, by default the 6554 * FREQUENCY_UTIL's utilization can be max OPP. 6555 */ 6556 cpu_util = schedutil_cpu_util(cpu, util_cfs, cpu_cap, 6557 FREQUENCY_UTIL, tsk); 6558 max_util = max(max_util, cpu_util); 6559 } 6560 6561 return em_cpu_energy(pd->em_pd, max_util, sum_util); 6562 } 6563 6564 /* 6565 * find_energy_efficient_cpu(): Find most energy-efficient target CPU for the 6566 * waking task. find_energy_efficient_cpu() looks for the CPU with maximum 6567 * spare capacity in each performance domain and uses it as a potential 6568 * candidate to execute the task. Then, it uses the Energy Model to figure 6569 * out which of the CPU candidates is the most energy-efficient. 6570 * 6571 * The rationale for this heuristic is as follows. In a performance domain, 6572 * all the most energy efficient CPU candidates (according to the Energy 6573 * Model) are those for which we'll request a low frequency. When there are 6574 * several CPUs for which the frequency request will be the same, we don't 6575 * have enough data to break the tie between them, because the Energy Model 6576 * only includes active power costs. With this model, if we assume that 6577 * frequency requests follow utilization (e.g. using schedutil), the CPU with 6578 * the maximum spare capacity in a performance domain is guaranteed to be among 6579 * the best candidates of the performance domain. 6580 * 6581 * In practice, it could be preferable from an energy standpoint to pack 6582 * small tasks on a CPU in order to let other CPUs go in deeper idle states, 6583 * but that could also hurt our chances to go cluster idle, and we have no 6584 * ways to tell with the current Energy Model if this is actually a good 6585 * idea or not. So, find_energy_efficient_cpu() basically favors 6586 * cluster-packing, and spreading inside a cluster. That should at least be 6587 * a good thing for latency, and this is consistent with the idea that most 6588 * of the energy savings of EAS come from the asymmetry of the system, and 6589 * not so much from breaking the tie between identical CPUs. That's also the 6590 * reason why EAS is enabled in the topology code only for systems where 6591 * SD_ASYM_CPUCAPACITY is set. 6592 * 6593 * NOTE: Forkees are not accepted in the energy-aware wake-up path because 6594 * they don't have any useful utilization data yet and it's not possible to 6595 * forecast their impact on energy consumption. Consequently, they will be 6596 * placed by find_idlest_cpu() on the least loaded CPU, which might turn out 6597 * to be energy-inefficient in some use-cases. The alternative would be to 6598 * bias new tasks towards specific types of CPUs first, or to try to infer 6599 * their util_avg from the parent task, but those heuristics could hurt 6600 * other use-cases too. So, until someone finds a better way to solve this, 6601 * let's keep things simple by re-using the existing slow path. 6602 */ 6603 static int find_energy_efficient_cpu(struct task_struct *p, int prev_cpu) 6604 { 6605 unsigned long prev_delta = ULONG_MAX, best_delta = ULONG_MAX; 6606 struct root_domain *rd = cpu_rq(smp_processor_id())->rd; 6607 unsigned long cpu_cap, util, base_energy = 0; 6608 int cpu, best_energy_cpu = prev_cpu; 6609 struct sched_domain *sd; 6610 struct perf_domain *pd; 6611 6612 rcu_read_lock(); 6613 pd = rcu_dereference(rd->pd); 6614 if (!pd || READ_ONCE(rd->overutilized)) 6615 goto fail; 6616 6617 /* 6618 * Energy-aware wake-up happens on the lowest sched_domain starting 6619 * from sd_asym_cpucapacity spanning over this_cpu and prev_cpu. 6620 */ 6621 sd = rcu_dereference(*this_cpu_ptr(&sd_asym_cpucapacity)); 6622 while (sd && !cpumask_test_cpu(prev_cpu, sched_domain_span(sd))) 6623 sd = sd->parent; 6624 if (!sd) 6625 goto fail; 6626 6627 sync_entity_load_avg(&p->se); 6628 if (!task_util_est(p)) 6629 goto unlock; 6630 6631 for (; pd; pd = pd->next) { 6632 unsigned long cur_delta, spare_cap, max_spare_cap = 0; 6633 unsigned long base_energy_pd; 6634 int max_spare_cap_cpu = -1; 6635 6636 /* Compute the 'base' energy of the pd, without @p */ 6637 base_energy_pd = compute_energy(p, -1, pd); 6638 base_energy += base_energy_pd; 6639 6640 for_each_cpu_and(cpu, perf_domain_span(pd), sched_domain_span(sd)) { 6641 if (!cpumask_test_cpu(cpu, p->cpus_ptr)) 6642 continue; 6643 6644 util = cpu_util_next(cpu, p, cpu); 6645 cpu_cap = capacity_of(cpu); 6646 spare_cap = cpu_cap; 6647 lsub_positive(&spare_cap, util); 6648 6649 /* 6650 * Skip CPUs that cannot satisfy the capacity request. 6651 * IOW, placing the task there would make the CPU 6652 * overutilized. Take uclamp into account to see how 6653 * much capacity we can get out of the CPU; this is 6654 * aligned with schedutil_cpu_util(). 6655 */ 6656 util = uclamp_rq_util_with(cpu_rq(cpu), util, p); 6657 if (!fits_capacity(util, cpu_cap)) 6658 continue; 6659 6660 /* Always use prev_cpu as a candidate. */ 6661 if (cpu == prev_cpu) { 6662 prev_delta = compute_energy(p, prev_cpu, pd); 6663 prev_delta -= base_energy_pd; 6664 best_delta = min(best_delta, prev_delta); 6665 } 6666 6667 /* 6668 * Find the CPU with the maximum spare capacity in 6669 * the performance domain 6670 */ 6671 if (spare_cap > max_spare_cap) { 6672 max_spare_cap = spare_cap; 6673 max_spare_cap_cpu = cpu; 6674 } 6675 } 6676 6677 /* Evaluate the energy impact of using this CPU. */ 6678 if (max_spare_cap_cpu >= 0 && max_spare_cap_cpu != prev_cpu) { 6679 cur_delta = compute_energy(p, max_spare_cap_cpu, pd); 6680 cur_delta -= base_energy_pd; 6681 if (cur_delta < best_delta) { 6682 best_delta = cur_delta; 6683 best_energy_cpu = max_spare_cap_cpu; 6684 } 6685 } 6686 } 6687 unlock: 6688 rcu_read_unlock(); 6689 6690 /* 6691 * Pick the best CPU if prev_cpu cannot be used, or if it saves at 6692 * least 6% of the energy used by prev_cpu. 6693 */ 6694 if (prev_delta == ULONG_MAX) 6695 return best_energy_cpu; 6696 6697 if ((prev_delta - best_delta) > ((prev_delta + base_energy) >> 4)) 6698 return best_energy_cpu; 6699 6700 return prev_cpu; 6701 6702 fail: 6703 rcu_read_unlock(); 6704 6705 return -1; 6706 } 6707 6708 /* 6709 * select_task_rq_fair: Select target runqueue for the waking task in domains 6710 * that have the relevant SD flag set. In practice, this is SD_BALANCE_WAKE, 6711 * SD_BALANCE_FORK, or SD_BALANCE_EXEC. 6712 * 6713 * Balances load by selecting the idlest CPU in the idlest group, or under 6714 * certain conditions an idle sibling CPU if the domain has SD_WAKE_AFFINE set. 6715 * 6716 * Returns the target CPU number. 6717 * 6718 * preempt must be disabled. 6719 */ 6720 static int 6721 select_task_rq_fair(struct task_struct *p, int prev_cpu, int wake_flags) 6722 { 6723 int sync = (wake_flags & WF_SYNC) && !(current->flags & PF_EXITING); 6724 struct sched_domain *tmp, *sd = NULL; 6725 int cpu = smp_processor_id(); 6726 int new_cpu = prev_cpu; 6727 int want_affine = 0; 6728 /* SD_flags and WF_flags share the first nibble */ 6729 int sd_flag = wake_flags & 0xF; 6730 6731 if (wake_flags & WF_TTWU) { 6732 record_wakee(p); 6733 6734 if (sched_energy_enabled()) { 6735 new_cpu = find_energy_efficient_cpu(p, prev_cpu); 6736 if (new_cpu >= 0) 6737 return new_cpu; 6738 new_cpu = prev_cpu; 6739 } 6740 6741 want_affine = !wake_wide(p) && cpumask_test_cpu(cpu, p->cpus_ptr); 6742 } 6743 6744 rcu_read_lock(); 6745 for_each_domain(cpu, tmp) { 6746 /* 6747 * If both 'cpu' and 'prev_cpu' are part of this domain, 6748 * cpu is a valid SD_WAKE_AFFINE target. 6749 */ 6750 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) && 6751 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) { 6752 if (cpu != prev_cpu) 6753 new_cpu = wake_affine(tmp, p, cpu, prev_cpu, sync); 6754 6755 sd = NULL; /* Prefer wake_affine over balance flags */ 6756 break; 6757 } 6758 6759 if (tmp->flags & sd_flag) 6760 sd = tmp; 6761 else if (!want_affine) 6762 break; 6763 } 6764 6765 if (unlikely(sd)) { 6766 /* Slow path */ 6767 new_cpu = find_idlest_cpu(sd, p, cpu, prev_cpu, sd_flag); 6768 } else if (wake_flags & WF_TTWU) { /* XXX always ? */ 6769 /* Fast path */ 6770 new_cpu = select_idle_sibling(p, prev_cpu, new_cpu); 6771 6772 if (want_affine) 6773 current->recent_used_cpu = cpu; 6774 } 6775 rcu_read_unlock(); 6776 6777 return new_cpu; 6778 } 6779 6780 static void detach_entity_cfs_rq(struct sched_entity *se); 6781 6782 /* 6783 * Called immediately before a task is migrated to a new CPU; task_cpu(p) and 6784 * cfs_rq_of(p) references at time of call are still valid and identify the 6785 * previous CPU. The caller guarantees p->pi_lock or task_rq(p)->lock is held. 6786 */ 6787 static void migrate_task_rq_fair(struct task_struct *p, int new_cpu) 6788 { 6789 /* 6790 * As blocked tasks retain absolute vruntime the migration needs to 6791 * deal with this by subtracting the old and adding the new 6792 * min_vruntime -- the latter is done by enqueue_entity() when placing 6793 * the task on the new runqueue. 6794 */ 6795 if (p->state == TASK_WAKING) { 6796 struct sched_entity *se = &p->se; 6797 struct cfs_rq *cfs_rq = cfs_rq_of(se); 6798 u64 min_vruntime; 6799 6800 #ifndef CONFIG_64BIT 6801 u64 min_vruntime_copy; 6802 6803 do { 6804 min_vruntime_copy = cfs_rq->min_vruntime_copy; 6805 smp_rmb(); 6806 min_vruntime = cfs_rq->min_vruntime; 6807 } while (min_vruntime != min_vruntime_copy); 6808 #else 6809 min_vruntime = cfs_rq->min_vruntime; 6810 #endif 6811 6812 se->vruntime -= min_vruntime; 6813 } 6814 6815 if (p->on_rq == TASK_ON_RQ_MIGRATING) { 6816 /* 6817 * In case of TASK_ON_RQ_MIGRATING we in fact hold the 'old' 6818 * rq->lock and can modify state directly. 6819 */ 6820 lockdep_assert_held(&task_rq(p)->lock); 6821 detach_entity_cfs_rq(&p->se); 6822 6823 } else { 6824 /* 6825 * We are supposed to update the task to "current" time, then 6826 * its up to date and ready to go to new CPU/cfs_rq. But we 6827 * have difficulty in getting what current time is, so simply 6828 * throw away the out-of-date time. This will result in the 6829 * wakee task is less decayed, but giving the wakee more load 6830 * sounds not bad. 6831 */ 6832 remove_entity_load_avg(&p->se); 6833 } 6834 6835 /* Tell new CPU we are migrated */ 6836 p->se.avg.last_update_time = 0; 6837 6838 /* We have migrated, no longer consider this task hot */ 6839 p->se.exec_start = 0; 6840 6841 update_scan_period(p, new_cpu); 6842 } 6843 6844 static void task_dead_fair(struct task_struct *p) 6845 { 6846 remove_entity_load_avg(&p->se); 6847 } 6848 6849 static int 6850 balance_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf) 6851 { 6852 if (rq->nr_running) 6853 return 1; 6854 6855 return newidle_balance(rq, rf) != 0; 6856 } 6857 #endif /* CONFIG_SMP */ 6858 6859 static unsigned long wakeup_gran(struct sched_entity *se) 6860 { 6861 unsigned long gran = sysctl_sched_wakeup_granularity; 6862 6863 /* 6864 * Since its curr running now, convert the gran from real-time 6865 * to virtual-time in his units. 6866 * 6867 * By using 'se' instead of 'curr' we penalize light tasks, so 6868 * they get preempted easier. That is, if 'se' < 'curr' then 6869 * the resulting gran will be larger, therefore penalizing the 6870 * lighter, if otoh 'se' > 'curr' then the resulting gran will 6871 * be smaller, again penalizing the lighter task. 6872 * 6873 * This is especially important for buddies when the leftmost 6874 * task is higher priority than the buddy. 6875 */ 6876 return calc_delta_fair(gran, se); 6877 } 6878 6879 /* 6880 * Should 'se' preempt 'curr'. 6881 * 6882 * |s1 6883 * |s2 6884 * |s3 6885 * g 6886 * |<--->|c 6887 * 6888 * w(c, s1) = -1 6889 * w(c, s2) = 0 6890 * w(c, s3) = 1 6891 * 6892 */ 6893 static int 6894 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se) 6895 { 6896 s64 gran, vdiff = curr->vruntime - se->vruntime; 6897 6898 if (vdiff <= 0) 6899 return -1; 6900 6901 gran = wakeup_gran(se); 6902 if (vdiff > gran) 6903 return 1; 6904 6905 return 0; 6906 } 6907 6908 static void set_last_buddy(struct sched_entity *se) 6909 { 6910 if (entity_is_task(se) && unlikely(task_has_idle_policy(task_of(se)))) 6911 return; 6912 6913 for_each_sched_entity(se) { 6914 if (SCHED_WARN_ON(!se->on_rq)) 6915 return; 6916 cfs_rq_of(se)->last = se; 6917 } 6918 } 6919 6920 static void set_next_buddy(struct sched_entity *se) 6921 { 6922 if (entity_is_task(se) && unlikely(task_has_idle_policy(task_of(se)))) 6923 return; 6924 6925 for_each_sched_entity(se) { 6926 if (SCHED_WARN_ON(!se->on_rq)) 6927 return; 6928 cfs_rq_of(se)->next = se; 6929 } 6930 } 6931 6932 static void set_skip_buddy(struct sched_entity *se) 6933 { 6934 for_each_sched_entity(se) 6935 cfs_rq_of(se)->skip = se; 6936 } 6937 6938 /* 6939 * Preempt the current task with a newly woken task if needed: 6940 */ 6941 static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags) 6942 { 6943 struct task_struct *curr = rq->curr; 6944 struct sched_entity *se = &curr->se, *pse = &p->se; 6945 struct cfs_rq *cfs_rq = task_cfs_rq(curr); 6946 int scale = cfs_rq->nr_running >= sched_nr_latency; 6947 int next_buddy_marked = 0; 6948 6949 if (unlikely(se == pse)) 6950 return; 6951 6952 /* 6953 * This is possible from callers such as attach_tasks(), in which we 6954 * unconditionally check_prempt_curr() after an enqueue (which may have 6955 * lead to a throttle). This both saves work and prevents false 6956 * next-buddy nomination below. 6957 */ 6958 if (unlikely(throttled_hierarchy(cfs_rq_of(pse)))) 6959 return; 6960 6961 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) { 6962 set_next_buddy(pse); 6963 next_buddy_marked = 1; 6964 } 6965 6966 /* 6967 * We can come here with TIF_NEED_RESCHED already set from new task 6968 * wake up path. 6969 * 6970 * Note: this also catches the edge-case of curr being in a throttled 6971 * group (e.g. via set_curr_task), since update_curr() (in the 6972 * enqueue of curr) will have resulted in resched being set. This 6973 * prevents us from potentially nominating it as a false LAST_BUDDY 6974 * below. 6975 */ 6976 if (test_tsk_need_resched(curr)) 6977 return; 6978 6979 /* Idle tasks are by definition preempted by non-idle tasks. */ 6980 if (unlikely(task_has_idle_policy(curr)) && 6981 likely(!task_has_idle_policy(p))) 6982 goto preempt; 6983 6984 /* 6985 * Batch and idle tasks do not preempt non-idle tasks (their preemption 6986 * is driven by the tick): 6987 */ 6988 if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION)) 6989 return; 6990 6991 find_matching_se(&se, &pse); 6992 update_curr(cfs_rq_of(se)); 6993 BUG_ON(!pse); 6994 if (wakeup_preempt_entity(se, pse) == 1) { 6995 /* 6996 * Bias pick_next to pick the sched entity that is 6997 * triggering this preemption. 6998 */ 6999 if (!next_buddy_marked) 7000 set_next_buddy(pse); 7001 goto preempt; 7002 } 7003 7004 return; 7005 7006 preempt: 7007 resched_curr(rq); 7008 /* 7009 * Only set the backward buddy when the current task is still 7010 * on the rq. This can happen when a wakeup gets interleaved 7011 * with schedule on the ->pre_schedule() or idle_balance() 7012 * point, either of which can * drop the rq lock. 7013 * 7014 * Also, during early boot the idle thread is in the fair class, 7015 * for obvious reasons its a bad idea to schedule back to it. 7016 */ 7017 if (unlikely(!se->on_rq || curr == rq->idle)) 7018 return; 7019 7020 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se)) 7021 set_last_buddy(se); 7022 } 7023 7024 struct task_struct * 7025 pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf) 7026 { 7027 struct cfs_rq *cfs_rq = &rq->cfs; 7028 struct sched_entity *se; 7029 struct task_struct *p; 7030 int new_tasks; 7031 7032 again: 7033 if (!sched_fair_runnable(rq)) 7034 goto idle; 7035 7036 #ifdef CONFIG_FAIR_GROUP_SCHED 7037 if (!prev || prev->sched_class != &fair_sched_class) 7038 goto simple; 7039 7040 /* 7041 * Because of the set_next_buddy() in dequeue_task_fair() it is rather 7042 * likely that a next task is from the same cgroup as the current. 7043 * 7044 * Therefore attempt to avoid putting and setting the entire cgroup 7045 * hierarchy, only change the part that actually changes. 7046 */ 7047 7048 do { 7049 struct sched_entity *curr = cfs_rq->curr; 7050 7051 /* 7052 * Since we got here without doing put_prev_entity() we also 7053 * have to consider cfs_rq->curr. If it is still a runnable 7054 * entity, update_curr() will update its vruntime, otherwise 7055 * forget we've ever seen it. 7056 */ 7057 if (curr) { 7058 if (curr->on_rq) 7059 update_curr(cfs_rq); 7060 else 7061 curr = NULL; 7062 7063 /* 7064 * This call to check_cfs_rq_runtime() will do the 7065 * throttle and dequeue its entity in the parent(s). 7066 * Therefore the nr_running test will indeed 7067 * be correct. 7068 */ 7069 if (unlikely(check_cfs_rq_runtime(cfs_rq))) { 7070 cfs_rq = &rq->cfs; 7071 7072 if (!cfs_rq->nr_running) 7073 goto idle; 7074 7075 goto simple; 7076 } 7077 } 7078 7079 se = pick_next_entity(cfs_rq, curr); 7080 cfs_rq = group_cfs_rq(se); 7081 } while (cfs_rq); 7082 7083 p = task_of(se); 7084 7085 /* 7086 * Since we haven't yet done put_prev_entity and if the selected task 7087 * is a different task than we started out with, try and touch the 7088 * least amount of cfs_rqs. 7089 */ 7090 if (prev != p) { 7091 struct sched_entity *pse = &prev->se; 7092 7093 while (!(cfs_rq = is_same_group(se, pse))) { 7094 int se_depth = se->depth; 7095 int pse_depth = pse->depth; 7096 7097 if (se_depth <= pse_depth) { 7098 put_prev_entity(cfs_rq_of(pse), pse); 7099 pse = parent_entity(pse); 7100 } 7101 if (se_depth >= pse_depth) { 7102 set_next_entity(cfs_rq_of(se), se); 7103 se = parent_entity(se); 7104 } 7105 } 7106 7107 put_prev_entity(cfs_rq, pse); 7108 set_next_entity(cfs_rq, se); 7109 } 7110 7111 goto done; 7112 simple: 7113 #endif 7114 if (prev) 7115 put_prev_task(rq, prev); 7116 7117 do { 7118 se = pick_next_entity(cfs_rq, NULL); 7119 set_next_entity(cfs_rq, se); 7120 cfs_rq = group_cfs_rq(se); 7121 } while (cfs_rq); 7122 7123 p = task_of(se); 7124 7125 done: __maybe_unused; 7126 #ifdef CONFIG_SMP 7127 /* 7128 * Move the next running task to the front of 7129 * the list, so our cfs_tasks list becomes MRU 7130 * one. 7131 */ 7132 list_move(&p->se.group_node, &rq->cfs_tasks); 7133 #endif 7134 7135 if (hrtick_enabled(rq)) 7136 hrtick_start_fair(rq, p); 7137 7138 update_misfit_status(p, rq); 7139 7140 return p; 7141 7142 idle: 7143 if (!rf) 7144 return NULL; 7145 7146 new_tasks = newidle_balance(rq, rf); 7147 7148 /* 7149 * Because newidle_balance() releases (and re-acquires) rq->lock, it is 7150 * possible for any higher priority task to appear. In that case we 7151 * must re-start the pick_next_entity() loop. 7152 */ 7153 if (new_tasks < 0) 7154 return RETRY_TASK; 7155 7156 if (new_tasks > 0) 7157 goto again; 7158 7159 /* 7160 * rq is about to be idle, check if we need to update the 7161 * lost_idle_time of clock_pelt 7162 */ 7163 update_idle_rq_clock_pelt(rq); 7164 7165 return NULL; 7166 } 7167 7168 static struct task_struct *__pick_next_task_fair(struct rq *rq) 7169 { 7170 return pick_next_task_fair(rq, NULL, NULL); 7171 } 7172 7173 /* 7174 * Account for a descheduled task: 7175 */ 7176 static void put_prev_task_fair(struct rq *rq, struct task_struct *prev) 7177 { 7178 struct sched_entity *se = &prev->se; 7179 struct cfs_rq *cfs_rq; 7180 7181 for_each_sched_entity(se) { 7182 cfs_rq = cfs_rq_of(se); 7183 put_prev_entity(cfs_rq, se); 7184 } 7185 } 7186 7187 /* 7188 * sched_yield() is very simple 7189 * 7190 * The magic of dealing with the ->skip buddy is in pick_next_entity. 7191 */ 7192 static void yield_task_fair(struct rq *rq) 7193 { 7194 struct task_struct *curr = rq->curr; 7195 struct cfs_rq *cfs_rq = task_cfs_rq(curr); 7196 struct sched_entity *se = &curr->se; 7197 7198 /* 7199 * Are we the only task in the tree? 7200 */ 7201 if (unlikely(rq->nr_running == 1)) 7202 return; 7203 7204 clear_buddies(cfs_rq, se); 7205 7206 if (curr->policy != SCHED_BATCH) { 7207 update_rq_clock(rq); 7208 /* 7209 * Update run-time statistics of the 'current'. 7210 */ 7211 update_curr(cfs_rq); 7212 /* 7213 * Tell update_rq_clock() that we've just updated, 7214 * so we don't do microscopic update in schedule() 7215 * and double the fastpath cost. 7216 */ 7217 rq_clock_skip_update(rq); 7218 } 7219 7220 set_skip_buddy(se); 7221 } 7222 7223 static bool yield_to_task_fair(struct rq *rq, struct task_struct *p) 7224 { 7225 struct sched_entity *se = &p->se; 7226 7227 /* throttled hierarchies are not runnable */ 7228 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se))) 7229 return false; 7230 7231 /* Tell the scheduler that we'd really like pse to run next. */ 7232 set_next_buddy(se); 7233 7234 yield_task_fair(rq); 7235 7236 return true; 7237 } 7238 7239 #ifdef CONFIG_SMP 7240 /************************************************** 7241 * Fair scheduling class load-balancing methods. 7242 * 7243 * BASICS 7244 * 7245 * The purpose of load-balancing is to achieve the same basic fairness the 7246 * per-CPU scheduler provides, namely provide a proportional amount of compute 7247 * time to each task. This is expressed in the following equation: 7248 * 7249 * W_i,n/P_i == W_j,n/P_j for all i,j (1) 7250 * 7251 * Where W_i,n is the n-th weight average for CPU i. The instantaneous weight 7252 * W_i,0 is defined as: 7253 * 7254 * W_i,0 = \Sum_j w_i,j (2) 7255 * 7256 * Where w_i,j is the weight of the j-th runnable task on CPU i. This weight 7257 * is derived from the nice value as per sched_prio_to_weight[]. 7258 * 7259 * The weight average is an exponential decay average of the instantaneous 7260 * weight: 7261 * 7262 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3) 7263 * 7264 * C_i is the compute capacity of CPU i, typically it is the 7265 * fraction of 'recent' time available for SCHED_OTHER task execution. But it 7266 * can also include other factors [XXX]. 7267 * 7268 * To achieve this balance we define a measure of imbalance which follows 7269 * directly from (1): 7270 * 7271 * imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j } (4) 7272 * 7273 * We them move tasks around to minimize the imbalance. In the continuous 7274 * function space it is obvious this converges, in the discrete case we get 7275 * a few fun cases generally called infeasible weight scenarios. 7276 * 7277 * [XXX expand on: 7278 * - infeasible weights; 7279 * - local vs global optima in the discrete case. ] 7280 * 7281 * 7282 * SCHED DOMAINS 7283 * 7284 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2) 7285 * for all i,j solution, we create a tree of CPUs that follows the hardware 7286 * topology where each level pairs two lower groups (or better). This results 7287 * in O(log n) layers. Furthermore we reduce the number of CPUs going up the 7288 * tree to only the first of the previous level and we decrease the frequency 7289 * of load-balance at each level inv. proportional to the number of CPUs in 7290 * the groups. 7291 * 7292 * This yields: 7293 * 7294 * log_2 n 1 n 7295 * \Sum { --- * --- * 2^i } = O(n) (5) 7296 * i = 0 2^i 2^i 7297 * `- size of each group 7298 * | | `- number of CPUs doing load-balance 7299 * | `- freq 7300 * `- sum over all levels 7301 * 7302 * Coupled with a limit on how many tasks we can migrate every balance pass, 7303 * this makes (5) the runtime complexity of the balancer. 7304 * 7305 * An important property here is that each CPU is still (indirectly) connected 7306 * to every other CPU in at most O(log n) steps: 7307 * 7308 * The adjacency matrix of the resulting graph is given by: 7309 * 7310 * log_2 n 7311 * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6) 7312 * k = 0 7313 * 7314 * And you'll find that: 7315 * 7316 * A^(log_2 n)_i,j != 0 for all i,j (7) 7317 * 7318 * Showing there's indeed a path between every CPU in at most O(log n) steps. 7319 * The task movement gives a factor of O(m), giving a convergence complexity 7320 * of: 7321 * 7322 * O(nm log n), n := nr_cpus, m := nr_tasks (8) 7323 * 7324 * 7325 * WORK CONSERVING 7326 * 7327 * In order to avoid CPUs going idle while there's still work to do, new idle 7328 * balancing is more aggressive and has the newly idle CPU iterate up the domain 7329 * tree itself instead of relying on other CPUs to bring it work. 7330 * 7331 * This adds some complexity to both (5) and (8) but it reduces the total idle 7332 * time. 7333 * 7334 * [XXX more?] 7335 * 7336 * 7337 * CGROUPS 7338 * 7339 * Cgroups make a horror show out of (2), instead of a simple sum we get: 7340 * 7341 * s_k,i 7342 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9) 7343 * S_k 7344 * 7345 * Where 7346 * 7347 * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10) 7348 * 7349 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on CPU i. 7350 * 7351 * The big problem is S_k, its a global sum needed to compute a local (W_i) 7352 * property. 7353 * 7354 * [XXX write more on how we solve this.. _after_ merging pjt's patches that 7355 * rewrite all of this once again.] 7356 */ 7357 7358 static unsigned long __read_mostly max_load_balance_interval = HZ/10; 7359 7360 enum fbq_type { regular, remote, all }; 7361 7362 /* 7363 * 'group_type' describes the group of CPUs at the moment of load balancing. 7364 * 7365 * The enum is ordered by pulling priority, with the group with lowest priority 7366 * first so the group_type can simply be compared when selecting the busiest 7367 * group. See update_sd_pick_busiest(). 7368 */ 7369 enum group_type { 7370 /* The group has spare capacity that can be used to run more tasks. */ 7371 group_has_spare = 0, 7372 /* 7373 * The group is fully used and the tasks don't compete for more CPU 7374 * cycles. Nevertheless, some tasks might wait before running. 7375 */ 7376 group_fully_busy, 7377 /* 7378 * SD_ASYM_CPUCAPACITY only: One task doesn't fit with CPU's capacity 7379 * and must be migrated to a more powerful CPU. 7380 */ 7381 group_misfit_task, 7382 /* 7383 * SD_ASYM_PACKING only: One local CPU with higher capacity is available, 7384 * and the task should be migrated to it instead of running on the 7385 * current CPU. 7386 */ 7387 group_asym_packing, 7388 /* 7389 * The tasks' affinity constraints previously prevented the scheduler 7390 * from balancing the load across the system. 7391 */ 7392 group_imbalanced, 7393 /* 7394 * The CPU is overloaded and can't provide expected CPU cycles to all 7395 * tasks. 7396 */ 7397 group_overloaded 7398 }; 7399 7400 enum migration_type { 7401 migrate_load = 0, 7402 migrate_util, 7403 migrate_task, 7404 migrate_misfit 7405 }; 7406 7407 #define LBF_ALL_PINNED 0x01 7408 #define LBF_NEED_BREAK 0x02 7409 #define LBF_DST_PINNED 0x04 7410 #define LBF_SOME_PINNED 0x08 7411 #define LBF_NOHZ_STATS 0x10 7412 #define LBF_NOHZ_AGAIN 0x20 7413 7414 struct lb_env { 7415 struct sched_domain *sd; 7416 7417 struct rq *src_rq; 7418 int src_cpu; 7419 7420 int dst_cpu; 7421 struct rq *dst_rq; 7422 7423 struct cpumask *dst_grpmask; 7424 int new_dst_cpu; 7425 enum cpu_idle_type idle; 7426 long imbalance; 7427 /* The set of CPUs under consideration for load-balancing */ 7428 struct cpumask *cpus; 7429 7430 unsigned int flags; 7431 7432 unsigned int loop; 7433 unsigned int loop_break; 7434 unsigned int loop_max; 7435 7436 enum fbq_type fbq_type; 7437 enum migration_type migration_type; 7438 struct list_head tasks; 7439 }; 7440 7441 /* 7442 * Is this task likely cache-hot: 7443 */ 7444 static int task_hot(struct task_struct *p, struct lb_env *env) 7445 { 7446 s64 delta; 7447 7448 lockdep_assert_held(&env->src_rq->lock); 7449 7450 if (p->sched_class != &fair_sched_class) 7451 return 0; 7452 7453 if (unlikely(task_has_idle_policy(p))) 7454 return 0; 7455 7456 /* SMT siblings share cache */ 7457 if (env->sd->flags & SD_SHARE_CPUCAPACITY) 7458 return 0; 7459 7460 /* 7461 * Buddy candidates are cache hot: 7462 */ 7463 if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running && 7464 (&p->se == cfs_rq_of(&p->se)->next || 7465 &p->se == cfs_rq_of(&p->se)->last)) 7466 return 1; 7467 7468 if (sysctl_sched_migration_cost == -1) 7469 return 1; 7470 if (sysctl_sched_migration_cost == 0) 7471 return 0; 7472 7473 delta = rq_clock_task(env->src_rq) - p->se.exec_start; 7474 7475 return delta < (s64)sysctl_sched_migration_cost; 7476 } 7477 7478 #ifdef CONFIG_NUMA_BALANCING 7479 /* 7480 * Returns 1, if task migration degrades locality 7481 * Returns 0, if task migration improves locality i.e migration preferred. 7482 * Returns -1, if task migration is not affected by locality. 7483 */ 7484 static int migrate_degrades_locality(struct task_struct *p, struct lb_env *env) 7485 { 7486 struct numa_group *numa_group = rcu_dereference(p->numa_group); 7487 unsigned long src_weight, dst_weight; 7488 int src_nid, dst_nid, dist; 7489 7490 if (!static_branch_likely(&sched_numa_balancing)) 7491 return -1; 7492 7493 if (!p->numa_faults || !(env->sd->flags & SD_NUMA)) 7494 return -1; 7495 7496 src_nid = cpu_to_node(env->src_cpu); 7497 dst_nid = cpu_to_node(env->dst_cpu); 7498 7499 if (src_nid == dst_nid) 7500 return -1; 7501 7502 /* Migrating away from the preferred node is always bad. */ 7503 if (src_nid == p->numa_preferred_nid) { 7504 if (env->src_rq->nr_running > env->src_rq->nr_preferred_running) 7505 return 1; 7506 else 7507 return -1; 7508 } 7509 7510 /* Encourage migration to the preferred node. */ 7511 if (dst_nid == p->numa_preferred_nid) 7512 return 0; 7513 7514 /* Leaving a core idle is often worse than degrading locality. */ 7515 if (env->idle == CPU_IDLE) 7516 return -1; 7517 7518 dist = node_distance(src_nid, dst_nid); 7519 if (numa_group) { 7520 src_weight = group_weight(p, src_nid, dist); 7521 dst_weight = group_weight(p, dst_nid, dist); 7522 } else { 7523 src_weight = task_weight(p, src_nid, dist); 7524 dst_weight = task_weight(p, dst_nid, dist); 7525 } 7526 7527 return dst_weight < src_weight; 7528 } 7529 7530 #else 7531 static inline int migrate_degrades_locality(struct task_struct *p, 7532 struct lb_env *env) 7533 { 7534 return -1; 7535 } 7536 #endif 7537 7538 /* 7539 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu? 7540 */ 7541 static 7542 int can_migrate_task(struct task_struct *p, struct lb_env *env) 7543 { 7544 int tsk_cache_hot; 7545 7546 lockdep_assert_held(&env->src_rq->lock); 7547 7548 /* 7549 * We do not migrate tasks that are: 7550 * 1) throttled_lb_pair, or 7551 * 2) cannot be migrated to this CPU due to cpus_ptr, or 7552 * 3) running (obviously), or 7553 * 4) are cache-hot on their current CPU. 7554 */ 7555 if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu)) 7556 return 0; 7557 7558 if (!cpumask_test_cpu(env->dst_cpu, p->cpus_ptr)) { 7559 int cpu; 7560 7561 schedstat_inc(p->se.statistics.nr_failed_migrations_affine); 7562 7563 env->flags |= LBF_SOME_PINNED; 7564 7565 /* 7566 * Remember if this task can be migrated to any other CPU in 7567 * our sched_group. We may want to revisit it if we couldn't 7568 * meet load balance goals by pulling other tasks on src_cpu. 7569 * 7570 * Avoid computing new_dst_cpu for NEWLY_IDLE or if we have 7571 * already computed one in current iteration. 7572 */ 7573 if (env->idle == CPU_NEWLY_IDLE || (env->flags & LBF_DST_PINNED)) 7574 return 0; 7575 7576 /* Prevent to re-select dst_cpu via env's CPUs: */ 7577 for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) { 7578 if (cpumask_test_cpu(cpu, p->cpus_ptr)) { 7579 env->flags |= LBF_DST_PINNED; 7580 env->new_dst_cpu = cpu; 7581 break; 7582 } 7583 } 7584 7585 return 0; 7586 } 7587 7588 /* Record that we found atleast one task that could run on dst_cpu */ 7589 env->flags &= ~LBF_ALL_PINNED; 7590 7591 if (task_running(env->src_rq, p)) { 7592 schedstat_inc(p->se.statistics.nr_failed_migrations_running); 7593 return 0; 7594 } 7595 7596 /* 7597 * Aggressive migration if: 7598 * 1) destination numa is preferred 7599 * 2) task is cache cold, or 7600 * 3) too many balance attempts have failed. 7601 */ 7602 tsk_cache_hot = migrate_degrades_locality(p, env); 7603 if (tsk_cache_hot == -1) 7604 tsk_cache_hot = task_hot(p, env); 7605 7606 if (tsk_cache_hot <= 0 || 7607 env->sd->nr_balance_failed > env->sd->cache_nice_tries) { 7608 if (tsk_cache_hot == 1) { 7609 schedstat_inc(env->sd->lb_hot_gained[env->idle]); 7610 schedstat_inc(p->se.statistics.nr_forced_migrations); 7611 } 7612 return 1; 7613 } 7614 7615 schedstat_inc(p->se.statistics.nr_failed_migrations_hot); 7616 return 0; 7617 } 7618 7619 /* 7620 * detach_task() -- detach the task for the migration specified in env 7621 */ 7622 static void detach_task(struct task_struct *p, struct lb_env *env) 7623 { 7624 lockdep_assert_held(&env->src_rq->lock); 7625 7626 deactivate_task(env->src_rq, p, DEQUEUE_NOCLOCK); 7627 set_task_cpu(p, env->dst_cpu); 7628 } 7629 7630 /* 7631 * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as 7632 * part of active balancing operations within "domain". 7633 * 7634 * Returns a task if successful and NULL otherwise. 7635 */ 7636 static struct task_struct *detach_one_task(struct lb_env *env) 7637 { 7638 struct task_struct *p; 7639 7640 lockdep_assert_held(&env->src_rq->lock); 7641 7642 list_for_each_entry_reverse(p, 7643 &env->src_rq->cfs_tasks, se.group_node) { 7644 if (!can_migrate_task(p, env)) 7645 continue; 7646 7647 detach_task(p, env); 7648 7649 /* 7650 * Right now, this is only the second place where 7651 * lb_gained[env->idle] is updated (other is detach_tasks) 7652 * so we can safely collect stats here rather than 7653 * inside detach_tasks(). 7654 */ 7655 schedstat_inc(env->sd->lb_gained[env->idle]); 7656 return p; 7657 } 7658 return NULL; 7659 } 7660 7661 static const unsigned int sched_nr_migrate_break = 32; 7662 7663 /* 7664 * detach_tasks() -- tries to detach up to imbalance load/util/tasks from 7665 * busiest_rq, as part of a balancing operation within domain "sd". 7666 * 7667 * Returns number of detached tasks if successful and 0 otherwise. 7668 */ 7669 static int detach_tasks(struct lb_env *env) 7670 { 7671 struct list_head *tasks = &env->src_rq->cfs_tasks; 7672 unsigned long util, load; 7673 struct task_struct *p; 7674 int detached = 0; 7675 7676 lockdep_assert_held(&env->src_rq->lock); 7677 7678 if (env->imbalance <= 0) 7679 return 0; 7680 7681 while (!list_empty(tasks)) { 7682 /* 7683 * We don't want to steal all, otherwise we may be treated likewise, 7684 * which could at worst lead to a livelock crash. 7685 */ 7686 if (env->idle != CPU_NOT_IDLE && env->src_rq->nr_running <= 1) 7687 break; 7688 7689 p = list_last_entry(tasks, struct task_struct, se.group_node); 7690 7691 env->loop++; 7692 /* We've more or less seen every task there is, call it quits */ 7693 if (env->loop > env->loop_max) 7694 break; 7695 7696 /* take a breather every nr_migrate tasks */ 7697 if (env->loop > env->loop_break) { 7698 env->loop_break += sched_nr_migrate_break; 7699 env->flags |= LBF_NEED_BREAK; 7700 break; 7701 } 7702 7703 if (!can_migrate_task(p, env)) 7704 goto next; 7705 7706 switch (env->migration_type) { 7707 case migrate_load: 7708 /* 7709 * Depending of the number of CPUs and tasks and the 7710 * cgroup hierarchy, task_h_load() can return a null 7711 * value. Make sure that env->imbalance decreases 7712 * otherwise detach_tasks() will stop only after 7713 * detaching up to loop_max tasks. 7714 */ 7715 load = max_t(unsigned long, task_h_load(p), 1); 7716 7717 if (sched_feat(LB_MIN) && 7718 load < 16 && !env->sd->nr_balance_failed) 7719 goto next; 7720 7721 /* 7722 * Make sure that we don't migrate too much load. 7723 * Nevertheless, let relax the constraint if 7724 * scheduler fails to find a good waiting task to 7725 * migrate. 7726 */ 7727 7728 if ((load >> env->sd->nr_balance_failed) > env->imbalance) 7729 goto next; 7730 7731 env->imbalance -= load; 7732 break; 7733 7734 case migrate_util: 7735 util = task_util_est(p); 7736 7737 if (util > env->imbalance) 7738 goto next; 7739 7740 env->imbalance -= util; 7741 break; 7742 7743 case migrate_task: 7744 env->imbalance--; 7745 break; 7746 7747 case migrate_misfit: 7748 /* This is not a misfit task */ 7749 if (task_fits_capacity(p, capacity_of(env->src_cpu))) 7750 goto next; 7751 7752 env->imbalance = 0; 7753 break; 7754 } 7755 7756 detach_task(p, env); 7757 list_add(&p->se.group_node, &env->tasks); 7758 7759 detached++; 7760 7761 #ifdef CONFIG_PREEMPTION 7762 /* 7763 * NEWIDLE balancing is a source of latency, so preemptible 7764 * kernels will stop after the first task is detached to minimize 7765 * the critical section. 7766 */ 7767 if (env->idle == CPU_NEWLY_IDLE) 7768 break; 7769 #endif 7770 7771 /* 7772 * We only want to steal up to the prescribed amount of 7773 * load/util/tasks. 7774 */ 7775 if (env->imbalance <= 0) 7776 break; 7777 7778 continue; 7779 next: 7780 list_move(&p->se.group_node, tasks); 7781 } 7782 7783 /* 7784 * Right now, this is one of only two places we collect this stat 7785 * so we can safely collect detach_one_task() stats here rather 7786 * than inside detach_one_task(). 7787 */ 7788 schedstat_add(env->sd->lb_gained[env->idle], detached); 7789 7790 return detached; 7791 } 7792 7793 /* 7794 * attach_task() -- attach the task detached by detach_task() to its new rq. 7795 */ 7796 static void attach_task(struct rq *rq, struct task_struct *p) 7797 { 7798 lockdep_assert_held(&rq->lock); 7799 7800 BUG_ON(task_rq(p) != rq); 7801 activate_task(rq, p, ENQUEUE_NOCLOCK); 7802 check_preempt_curr(rq, p, 0); 7803 } 7804 7805 /* 7806 * attach_one_task() -- attaches the task returned from detach_one_task() to 7807 * its new rq. 7808 */ 7809 static void attach_one_task(struct rq *rq, struct task_struct *p) 7810 { 7811 struct rq_flags rf; 7812 7813 rq_lock(rq, &rf); 7814 update_rq_clock(rq); 7815 attach_task(rq, p); 7816 rq_unlock(rq, &rf); 7817 } 7818 7819 /* 7820 * attach_tasks() -- attaches all tasks detached by detach_tasks() to their 7821 * new rq. 7822 */ 7823 static void attach_tasks(struct lb_env *env) 7824 { 7825 struct list_head *tasks = &env->tasks; 7826 struct task_struct *p; 7827 struct rq_flags rf; 7828 7829 rq_lock(env->dst_rq, &rf); 7830 update_rq_clock(env->dst_rq); 7831 7832 while (!list_empty(tasks)) { 7833 p = list_first_entry(tasks, struct task_struct, se.group_node); 7834 list_del_init(&p->se.group_node); 7835 7836 attach_task(env->dst_rq, p); 7837 } 7838 7839 rq_unlock(env->dst_rq, &rf); 7840 } 7841 7842 #ifdef CONFIG_NO_HZ_COMMON 7843 static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq) 7844 { 7845 if (cfs_rq->avg.load_avg) 7846 return true; 7847 7848 if (cfs_rq->avg.util_avg) 7849 return true; 7850 7851 return false; 7852 } 7853 7854 static inline bool others_have_blocked(struct rq *rq) 7855 { 7856 if (READ_ONCE(rq->avg_rt.util_avg)) 7857 return true; 7858 7859 if (READ_ONCE(rq->avg_dl.util_avg)) 7860 return true; 7861 7862 if (thermal_load_avg(rq)) 7863 return true; 7864 7865 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ 7866 if (READ_ONCE(rq->avg_irq.util_avg)) 7867 return true; 7868 #endif 7869 7870 return false; 7871 } 7872 7873 static inline void update_blocked_load_status(struct rq *rq, bool has_blocked) 7874 { 7875 rq->last_blocked_load_update_tick = jiffies; 7876 7877 if (!has_blocked) 7878 rq->has_blocked_load = 0; 7879 } 7880 #else 7881 static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq) { return false; } 7882 static inline bool others_have_blocked(struct rq *rq) { return false; } 7883 static inline void update_blocked_load_status(struct rq *rq, bool has_blocked) {} 7884 #endif 7885 7886 static bool __update_blocked_others(struct rq *rq, bool *done) 7887 { 7888 const struct sched_class *curr_class; 7889 u64 now = rq_clock_pelt(rq); 7890 unsigned long thermal_pressure; 7891 bool decayed; 7892 7893 /* 7894 * update_load_avg() can call cpufreq_update_util(). Make sure that RT, 7895 * DL and IRQ signals have been updated before updating CFS. 7896 */ 7897 curr_class = rq->curr->sched_class; 7898 7899 thermal_pressure = arch_scale_thermal_pressure(cpu_of(rq)); 7900 7901 decayed = update_rt_rq_load_avg(now, rq, curr_class == &rt_sched_class) | 7902 update_dl_rq_load_avg(now, rq, curr_class == &dl_sched_class) | 7903 update_thermal_load_avg(rq_clock_thermal(rq), rq, thermal_pressure) | 7904 update_irq_load_avg(rq, 0); 7905 7906 if (others_have_blocked(rq)) 7907 *done = false; 7908 7909 return decayed; 7910 } 7911 7912 #ifdef CONFIG_FAIR_GROUP_SCHED 7913 7914 static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq) 7915 { 7916 if (cfs_rq->load.weight) 7917 return false; 7918 7919 if (cfs_rq->avg.load_sum) 7920 return false; 7921 7922 if (cfs_rq->avg.util_sum) 7923 return false; 7924 7925 if (cfs_rq->avg.runnable_sum) 7926 return false; 7927 7928 return true; 7929 } 7930 7931 static bool __update_blocked_fair(struct rq *rq, bool *done) 7932 { 7933 struct cfs_rq *cfs_rq, *pos; 7934 bool decayed = false; 7935 int cpu = cpu_of(rq); 7936 7937 /* 7938 * Iterates the task_group tree in a bottom up fashion, see 7939 * list_add_leaf_cfs_rq() for details. 7940 */ 7941 for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) { 7942 struct sched_entity *se; 7943 7944 if (update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq)) { 7945 update_tg_load_avg(cfs_rq); 7946 7947 if (cfs_rq == &rq->cfs) 7948 decayed = true; 7949 } 7950 7951 /* Propagate pending load changes to the parent, if any: */ 7952 se = cfs_rq->tg->se[cpu]; 7953 if (se && !skip_blocked_update(se)) 7954 update_load_avg(cfs_rq_of(se), se, 0); 7955 7956 /* 7957 * There can be a lot of idle CPU cgroups. Don't let fully 7958 * decayed cfs_rqs linger on the list. 7959 */ 7960 if (cfs_rq_is_decayed(cfs_rq)) 7961 list_del_leaf_cfs_rq(cfs_rq); 7962 7963 /* Don't need periodic decay once load/util_avg are null */ 7964 if (cfs_rq_has_blocked(cfs_rq)) 7965 *done = false; 7966 } 7967 7968 return decayed; 7969 } 7970 7971 /* 7972 * Compute the hierarchical load factor for cfs_rq and all its ascendants. 7973 * This needs to be done in a top-down fashion because the load of a child 7974 * group is a fraction of its parents load. 7975 */ 7976 static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq) 7977 { 7978 struct rq *rq = rq_of(cfs_rq); 7979 struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)]; 7980 unsigned long now = jiffies; 7981 unsigned long load; 7982 7983 if (cfs_rq->last_h_load_update == now) 7984 return; 7985 7986 WRITE_ONCE(cfs_rq->h_load_next, NULL); 7987 for_each_sched_entity(se) { 7988 cfs_rq = cfs_rq_of(se); 7989 WRITE_ONCE(cfs_rq->h_load_next, se); 7990 if (cfs_rq->last_h_load_update == now) 7991 break; 7992 } 7993 7994 if (!se) { 7995 cfs_rq->h_load = cfs_rq_load_avg(cfs_rq); 7996 cfs_rq->last_h_load_update = now; 7997 } 7998 7999 while ((se = READ_ONCE(cfs_rq->h_load_next)) != NULL) { 8000 load = cfs_rq->h_load; 8001 load = div64_ul(load * se->avg.load_avg, 8002 cfs_rq_load_avg(cfs_rq) + 1); 8003 cfs_rq = group_cfs_rq(se); 8004 cfs_rq->h_load = load; 8005 cfs_rq->last_h_load_update = now; 8006 } 8007 } 8008 8009 static unsigned long task_h_load(struct task_struct *p) 8010 { 8011 struct cfs_rq *cfs_rq = task_cfs_rq(p); 8012 8013 update_cfs_rq_h_load(cfs_rq); 8014 return div64_ul(p->se.avg.load_avg * cfs_rq->h_load, 8015 cfs_rq_load_avg(cfs_rq) + 1); 8016 } 8017 #else 8018 static bool __update_blocked_fair(struct rq *rq, bool *done) 8019 { 8020 struct cfs_rq *cfs_rq = &rq->cfs; 8021 bool decayed; 8022 8023 decayed = update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq); 8024 if (cfs_rq_has_blocked(cfs_rq)) 8025 *done = false; 8026 8027 return decayed; 8028 } 8029 8030 static unsigned long task_h_load(struct task_struct *p) 8031 { 8032 return p->se.avg.load_avg; 8033 } 8034 #endif 8035 8036 static void update_blocked_averages(int cpu) 8037 { 8038 bool decayed = false, done = true; 8039 struct rq *rq = cpu_rq(cpu); 8040 struct rq_flags rf; 8041 8042 rq_lock_irqsave(rq, &rf); 8043 update_rq_clock(rq); 8044 8045 decayed |= __update_blocked_others(rq, &done); 8046 decayed |= __update_blocked_fair(rq, &done); 8047 8048 update_blocked_load_status(rq, !done); 8049 if (decayed) 8050 cpufreq_update_util(rq, 0); 8051 rq_unlock_irqrestore(rq, &rf); 8052 } 8053 8054 /********** Helpers for find_busiest_group ************************/ 8055 8056 /* 8057 * sg_lb_stats - stats of a sched_group required for load_balancing 8058 */ 8059 struct sg_lb_stats { 8060 unsigned long avg_load; /*Avg load across the CPUs of the group */ 8061 unsigned long group_load; /* Total load over the CPUs of the group */ 8062 unsigned long group_capacity; 8063 unsigned long group_util; /* Total utilization over the CPUs of the group */ 8064 unsigned long group_runnable; /* Total runnable time over the CPUs of the group */ 8065 unsigned int sum_nr_running; /* Nr of tasks running in the group */ 8066 unsigned int sum_h_nr_running; /* Nr of CFS tasks running in the group */ 8067 unsigned int idle_cpus; 8068 unsigned int group_weight; 8069 enum group_type group_type; 8070 unsigned int group_asym_packing; /* Tasks should be moved to preferred CPU */ 8071 unsigned long group_misfit_task_load; /* A CPU has a task too big for its capacity */ 8072 #ifdef CONFIG_NUMA_BALANCING 8073 unsigned int nr_numa_running; 8074 unsigned int nr_preferred_running; 8075 #endif 8076 }; 8077 8078 /* 8079 * sd_lb_stats - Structure to store the statistics of a sched_domain 8080 * during load balancing. 8081 */ 8082 struct sd_lb_stats { 8083 struct sched_group *busiest; /* Busiest group in this sd */ 8084 struct sched_group *local; /* Local group in this sd */ 8085 unsigned long total_load; /* Total load of all groups in sd */ 8086 unsigned long total_capacity; /* Total capacity of all groups in sd */ 8087 unsigned long avg_load; /* Average load across all groups in sd */ 8088 unsigned int prefer_sibling; /* tasks should go to sibling first */ 8089 8090 struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */ 8091 struct sg_lb_stats local_stat; /* Statistics of the local group */ 8092 }; 8093 8094 static inline void init_sd_lb_stats(struct sd_lb_stats *sds) 8095 { 8096 /* 8097 * Skimp on the clearing to avoid duplicate work. We can avoid clearing 8098 * local_stat because update_sg_lb_stats() does a full clear/assignment. 8099 * We must however set busiest_stat::group_type and 8100 * busiest_stat::idle_cpus to the worst busiest group because 8101 * update_sd_pick_busiest() reads these before assignment. 8102 */ 8103 *sds = (struct sd_lb_stats){ 8104 .busiest = NULL, 8105 .local = NULL, 8106 .total_load = 0UL, 8107 .total_capacity = 0UL, 8108 .busiest_stat = { 8109 .idle_cpus = UINT_MAX, 8110 .group_type = group_has_spare, 8111 }, 8112 }; 8113 } 8114 8115 static unsigned long scale_rt_capacity(int cpu) 8116 { 8117 struct rq *rq = cpu_rq(cpu); 8118 unsigned long max = arch_scale_cpu_capacity(cpu); 8119 unsigned long used, free; 8120 unsigned long irq; 8121 8122 irq = cpu_util_irq(rq); 8123 8124 if (unlikely(irq >= max)) 8125 return 1; 8126 8127 /* 8128 * avg_rt.util_avg and avg_dl.util_avg track binary signals 8129 * (running and not running) with weights 0 and 1024 respectively. 8130 * avg_thermal.load_avg tracks thermal pressure and the weighted 8131 * average uses the actual delta max capacity(load). 8132 */ 8133 used = READ_ONCE(rq->avg_rt.util_avg); 8134 used += READ_ONCE(rq->avg_dl.util_avg); 8135 used += thermal_load_avg(rq); 8136 8137 if (unlikely(used >= max)) 8138 return 1; 8139 8140 free = max - used; 8141 8142 return scale_irq_capacity(free, irq, max); 8143 } 8144 8145 static void update_cpu_capacity(struct sched_domain *sd, int cpu) 8146 { 8147 unsigned long capacity = scale_rt_capacity(cpu); 8148 struct sched_group *sdg = sd->groups; 8149 8150 cpu_rq(cpu)->cpu_capacity_orig = arch_scale_cpu_capacity(cpu); 8151 8152 if (!capacity) 8153 capacity = 1; 8154 8155 cpu_rq(cpu)->cpu_capacity = capacity; 8156 trace_sched_cpu_capacity_tp(cpu_rq(cpu)); 8157 8158 sdg->sgc->capacity = capacity; 8159 sdg->sgc->min_capacity = capacity; 8160 sdg->sgc->max_capacity = capacity; 8161 } 8162 8163 void update_group_capacity(struct sched_domain *sd, int cpu) 8164 { 8165 struct sched_domain *child = sd->child; 8166 struct sched_group *group, *sdg = sd->groups; 8167 unsigned long capacity, min_capacity, max_capacity; 8168 unsigned long interval; 8169 8170 interval = msecs_to_jiffies(sd->balance_interval); 8171 interval = clamp(interval, 1UL, max_load_balance_interval); 8172 sdg->sgc->next_update = jiffies + interval; 8173 8174 if (!child) { 8175 update_cpu_capacity(sd, cpu); 8176 return; 8177 } 8178 8179 capacity = 0; 8180 min_capacity = ULONG_MAX; 8181 max_capacity = 0; 8182 8183 if (child->flags & SD_OVERLAP) { 8184 /* 8185 * SD_OVERLAP domains cannot assume that child groups 8186 * span the current group. 8187 */ 8188 8189 for_each_cpu(cpu, sched_group_span(sdg)) { 8190 unsigned long cpu_cap = capacity_of(cpu); 8191 8192 capacity += cpu_cap; 8193 min_capacity = min(cpu_cap, min_capacity); 8194 max_capacity = max(cpu_cap, max_capacity); 8195 } 8196 } else { 8197 /* 8198 * !SD_OVERLAP domains can assume that child groups 8199 * span the current group. 8200 */ 8201 8202 group = child->groups; 8203 do { 8204 struct sched_group_capacity *sgc = group->sgc; 8205 8206 capacity += sgc->capacity; 8207 min_capacity = min(sgc->min_capacity, min_capacity); 8208 max_capacity = max(sgc->max_capacity, max_capacity); 8209 group = group->next; 8210 } while (group != child->groups); 8211 } 8212 8213 sdg->sgc->capacity = capacity; 8214 sdg->sgc->min_capacity = min_capacity; 8215 sdg->sgc->max_capacity = max_capacity; 8216 } 8217 8218 /* 8219 * Check whether the capacity of the rq has been noticeably reduced by side 8220 * activity. The imbalance_pct is used for the threshold. 8221 * Return true is the capacity is reduced 8222 */ 8223 static inline int 8224 check_cpu_capacity(struct rq *rq, struct sched_domain *sd) 8225 { 8226 return ((rq->cpu_capacity * sd->imbalance_pct) < 8227 (rq->cpu_capacity_orig * 100)); 8228 } 8229 8230 /* 8231 * Check whether a rq has a misfit task and if it looks like we can actually 8232 * help that task: we can migrate the task to a CPU of higher capacity, or 8233 * the task's current CPU is heavily pressured. 8234 */ 8235 static inline int check_misfit_status(struct rq *rq, struct sched_domain *sd) 8236 { 8237 return rq->misfit_task_load && 8238 (rq->cpu_capacity_orig < rq->rd->max_cpu_capacity || 8239 check_cpu_capacity(rq, sd)); 8240 } 8241 8242 /* 8243 * Group imbalance indicates (and tries to solve) the problem where balancing 8244 * groups is inadequate due to ->cpus_ptr constraints. 8245 * 8246 * Imagine a situation of two groups of 4 CPUs each and 4 tasks each with a 8247 * cpumask covering 1 CPU of the first group and 3 CPUs of the second group. 8248 * Something like: 8249 * 8250 * { 0 1 2 3 } { 4 5 6 7 } 8251 * * * * * 8252 * 8253 * If we were to balance group-wise we'd place two tasks in the first group and 8254 * two tasks in the second group. Clearly this is undesired as it will overload 8255 * cpu 3 and leave one of the CPUs in the second group unused. 8256 * 8257 * The current solution to this issue is detecting the skew in the first group 8258 * by noticing the lower domain failed to reach balance and had difficulty 8259 * moving tasks due to affinity constraints. 8260 * 8261 * When this is so detected; this group becomes a candidate for busiest; see 8262 * update_sd_pick_busiest(). And calculate_imbalance() and 8263 * find_busiest_group() avoid some of the usual balance conditions to allow it 8264 * to create an effective group imbalance. 8265 * 8266 * This is a somewhat tricky proposition since the next run might not find the 8267 * group imbalance and decide the groups need to be balanced again. A most 8268 * subtle and fragile situation. 8269 */ 8270 8271 static inline int sg_imbalanced(struct sched_group *group) 8272 { 8273 return group->sgc->imbalance; 8274 } 8275 8276 /* 8277 * group_has_capacity returns true if the group has spare capacity that could 8278 * be used by some tasks. 8279 * We consider that a group has spare capacity if the * number of task is 8280 * smaller than the number of CPUs or if the utilization is lower than the 8281 * available capacity for CFS tasks. 8282 * For the latter, we use a threshold to stabilize the state, to take into 8283 * account the variance of the tasks' load and to return true if the available 8284 * capacity in meaningful for the load balancer. 8285 * As an example, an available capacity of 1% can appear but it doesn't make 8286 * any benefit for the load balance. 8287 */ 8288 static inline bool 8289 group_has_capacity(unsigned int imbalance_pct, struct sg_lb_stats *sgs) 8290 { 8291 if (sgs->sum_nr_running < sgs->group_weight) 8292 return true; 8293 8294 if ((sgs->group_capacity * imbalance_pct) < 8295 (sgs->group_runnable * 100)) 8296 return false; 8297 8298 if ((sgs->group_capacity * 100) > 8299 (sgs->group_util * imbalance_pct)) 8300 return true; 8301 8302 return false; 8303 } 8304 8305 /* 8306 * group_is_overloaded returns true if the group has more tasks than it can 8307 * handle. 8308 * group_is_overloaded is not equals to !group_has_capacity because a group 8309 * with the exact right number of tasks, has no more spare capacity but is not 8310 * overloaded so both group_has_capacity and group_is_overloaded return 8311 * false. 8312 */ 8313 static inline bool 8314 group_is_overloaded(unsigned int imbalance_pct, struct sg_lb_stats *sgs) 8315 { 8316 if (sgs->sum_nr_running <= sgs->group_weight) 8317 return false; 8318 8319 if ((sgs->group_capacity * 100) < 8320 (sgs->group_util * imbalance_pct)) 8321 return true; 8322 8323 if ((sgs->group_capacity * imbalance_pct) < 8324 (sgs->group_runnable * 100)) 8325 return true; 8326 8327 return false; 8328 } 8329 8330 /* 8331 * group_smaller_min_cpu_capacity: Returns true if sched_group sg has smaller 8332 * per-CPU capacity than sched_group ref. 8333 */ 8334 static inline bool 8335 group_smaller_min_cpu_capacity(struct sched_group *sg, struct sched_group *ref) 8336 { 8337 return fits_capacity(sg->sgc->min_capacity, ref->sgc->min_capacity); 8338 } 8339 8340 /* 8341 * group_smaller_max_cpu_capacity: Returns true if sched_group sg has smaller 8342 * per-CPU capacity_orig than sched_group ref. 8343 */ 8344 static inline bool 8345 group_smaller_max_cpu_capacity(struct sched_group *sg, struct sched_group *ref) 8346 { 8347 return fits_capacity(sg->sgc->max_capacity, ref->sgc->max_capacity); 8348 } 8349 8350 static inline enum 8351 group_type group_classify(unsigned int imbalance_pct, 8352 struct sched_group *group, 8353 struct sg_lb_stats *sgs) 8354 { 8355 if (group_is_overloaded(imbalance_pct, sgs)) 8356 return group_overloaded; 8357 8358 if (sg_imbalanced(group)) 8359 return group_imbalanced; 8360 8361 if (sgs->group_asym_packing) 8362 return group_asym_packing; 8363 8364 if (sgs->group_misfit_task_load) 8365 return group_misfit_task; 8366 8367 if (!group_has_capacity(imbalance_pct, sgs)) 8368 return group_fully_busy; 8369 8370 return group_has_spare; 8371 } 8372 8373 static bool update_nohz_stats(struct rq *rq, bool force) 8374 { 8375 #ifdef CONFIG_NO_HZ_COMMON 8376 unsigned int cpu = rq->cpu; 8377 8378 if (!rq->has_blocked_load) 8379 return false; 8380 8381 if (!cpumask_test_cpu(cpu, nohz.idle_cpus_mask)) 8382 return false; 8383 8384 if (!force && !time_after(jiffies, rq->last_blocked_load_update_tick)) 8385 return true; 8386 8387 update_blocked_averages(cpu); 8388 8389 return rq->has_blocked_load; 8390 #else 8391 return false; 8392 #endif 8393 } 8394 8395 /** 8396 * update_sg_lb_stats - Update sched_group's statistics for load balancing. 8397 * @env: The load balancing environment. 8398 * @group: sched_group whose statistics are to be updated. 8399 * @sgs: variable to hold the statistics for this group. 8400 * @sg_status: Holds flag indicating the status of the sched_group 8401 */ 8402 static inline void update_sg_lb_stats(struct lb_env *env, 8403 struct sched_group *group, 8404 struct sg_lb_stats *sgs, 8405 int *sg_status) 8406 { 8407 int i, nr_running, local_group; 8408 8409 memset(sgs, 0, sizeof(*sgs)); 8410 8411 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_span(group)); 8412 8413 for_each_cpu_and(i, sched_group_span(group), env->cpus) { 8414 struct rq *rq = cpu_rq(i); 8415 8416 if ((env->flags & LBF_NOHZ_STATS) && update_nohz_stats(rq, false)) 8417 env->flags |= LBF_NOHZ_AGAIN; 8418 8419 sgs->group_load += cpu_load(rq); 8420 sgs->group_util += cpu_util(i); 8421 sgs->group_runnable += cpu_runnable(rq); 8422 sgs->sum_h_nr_running += rq->cfs.h_nr_running; 8423 8424 nr_running = rq->nr_running; 8425 sgs->sum_nr_running += nr_running; 8426 8427 if (nr_running > 1) 8428 *sg_status |= SG_OVERLOAD; 8429 8430 if (cpu_overutilized(i)) 8431 *sg_status |= SG_OVERUTILIZED; 8432 8433 #ifdef CONFIG_NUMA_BALANCING 8434 sgs->nr_numa_running += rq->nr_numa_running; 8435 sgs->nr_preferred_running += rq->nr_preferred_running; 8436 #endif 8437 /* 8438 * No need to call idle_cpu() if nr_running is not 0 8439 */ 8440 if (!nr_running && idle_cpu(i)) { 8441 sgs->idle_cpus++; 8442 /* Idle cpu can't have misfit task */ 8443 continue; 8444 } 8445 8446 if (local_group) 8447 continue; 8448 8449 /* Check for a misfit task on the cpu */ 8450 if (env->sd->flags & SD_ASYM_CPUCAPACITY && 8451 sgs->group_misfit_task_load < rq->misfit_task_load) { 8452 sgs->group_misfit_task_load = rq->misfit_task_load; 8453 *sg_status |= SG_OVERLOAD; 8454 } 8455 } 8456 8457 /* Check if dst CPU is idle and preferred to this group */ 8458 if (env->sd->flags & SD_ASYM_PACKING && 8459 env->idle != CPU_NOT_IDLE && 8460 sgs->sum_h_nr_running && 8461 sched_asym_prefer(env->dst_cpu, group->asym_prefer_cpu)) { 8462 sgs->group_asym_packing = 1; 8463 } 8464 8465 sgs->group_capacity = group->sgc->capacity; 8466 8467 sgs->group_weight = group->group_weight; 8468 8469 sgs->group_type = group_classify(env->sd->imbalance_pct, group, sgs); 8470 8471 /* Computing avg_load makes sense only when group is overloaded */ 8472 if (sgs->group_type == group_overloaded) 8473 sgs->avg_load = (sgs->group_load * SCHED_CAPACITY_SCALE) / 8474 sgs->group_capacity; 8475 } 8476 8477 /** 8478 * update_sd_pick_busiest - return 1 on busiest group 8479 * @env: The load balancing environment. 8480 * @sds: sched_domain statistics 8481 * @sg: sched_group candidate to be checked for being the busiest 8482 * @sgs: sched_group statistics 8483 * 8484 * Determine if @sg is a busier group than the previously selected 8485 * busiest group. 8486 * 8487 * Return: %true if @sg is a busier group than the previously selected 8488 * busiest group. %false otherwise. 8489 */ 8490 static bool update_sd_pick_busiest(struct lb_env *env, 8491 struct sd_lb_stats *sds, 8492 struct sched_group *sg, 8493 struct sg_lb_stats *sgs) 8494 { 8495 struct sg_lb_stats *busiest = &sds->busiest_stat; 8496 8497 /* Make sure that there is at least one task to pull */ 8498 if (!sgs->sum_h_nr_running) 8499 return false; 8500 8501 /* 8502 * Don't try to pull misfit tasks we can't help. 8503 * We can use max_capacity here as reduction in capacity on some 8504 * CPUs in the group should either be possible to resolve 8505 * internally or be covered by avg_load imbalance (eventually). 8506 */ 8507 if (sgs->group_type == group_misfit_task && 8508 (!group_smaller_max_cpu_capacity(sg, sds->local) || 8509 sds->local_stat.group_type != group_has_spare)) 8510 return false; 8511 8512 if (sgs->group_type > busiest->group_type) 8513 return true; 8514 8515 if (sgs->group_type < busiest->group_type) 8516 return false; 8517 8518 /* 8519 * The candidate and the current busiest group are the same type of 8520 * group. Let check which one is the busiest according to the type. 8521 */ 8522 8523 switch (sgs->group_type) { 8524 case group_overloaded: 8525 /* Select the overloaded group with highest avg_load. */ 8526 if (sgs->avg_load <= busiest->avg_load) 8527 return false; 8528 break; 8529 8530 case group_imbalanced: 8531 /* 8532 * Select the 1st imbalanced group as we don't have any way to 8533 * choose one more than another. 8534 */ 8535 return false; 8536 8537 case group_asym_packing: 8538 /* Prefer to move from lowest priority CPU's work */ 8539 if (sched_asym_prefer(sg->asym_prefer_cpu, sds->busiest->asym_prefer_cpu)) 8540 return false; 8541 break; 8542 8543 case group_misfit_task: 8544 /* 8545 * If we have more than one misfit sg go with the biggest 8546 * misfit. 8547 */ 8548 if (sgs->group_misfit_task_load < busiest->group_misfit_task_load) 8549 return false; 8550 break; 8551 8552 case group_fully_busy: 8553 /* 8554 * Select the fully busy group with highest avg_load. In 8555 * theory, there is no need to pull task from such kind of 8556 * group because tasks have all compute capacity that they need 8557 * but we can still improve the overall throughput by reducing 8558 * contention when accessing shared HW resources. 8559 * 8560 * XXX for now avg_load is not computed and always 0 so we 8561 * select the 1st one. 8562 */ 8563 if (sgs->avg_load <= busiest->avg_load) 8564 return false; 8565 break; 8566 8567 case group_has_spare: 8568 /* 8569 * Select not overloaded group with lowest number of idle cpus 8570 * and highest number of running tasks. We could also compare 8571 * the spare capacity which is more stable but it can end up 8572 * that the group has less spare capacity but finally more idle 8573 * CPUs which means less opportunity to pull tasks. 8574 */ 8575 if (sgs->idle_cpus > busiest->idle_cpus) 8576 return false; 8577 else if ((sgs->idle_cpus == busiest->idle_cpus) && 8578 (sgs->sum_nr_running <= busiest->sum_nr_running)) 8579 return false; 8580 8581 break; 8582 } 8583 8584 /* 8585 * Candidate sg has no more than one task per CPU and has higher 8586 * per-CPU capacity. Migrating tasks to less capable CPUs may harm 8587 * throughput. Maximize throughput, power/energy consequences are not 8588 * considered. 8589 */ 8590 if ((env->sd->flags & SD_ASYM_CPUCAPACITY) && 8591 (sgs->group_type <= group_fully_busy) && 8592 (group_smaller_min_cpu_capacity(sds->local, sg))) 8593 return false; 8594 8595 return true; 8596 } 8597 8598 #ifdef CONFIG_NUMA_BALANCING 8599 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs) 8600 { 8601 if (sgs->sum_h_nr_running > sgs->nr_numa_running) 8602 return regular; 8603 if (sgs->sum_h_nr_running > sgs->nr_preferred_running) 8604 return remote; 8605 return all; 8606 } 8607 8608 static inline enum fbq_type fbq_classify_rq(struct rq *rq) 8609 { 8610 if (rq->nr_running > rq->nr_numa_running) 8611 return regular; 8612 if (rq->nr_running > rq->nr_preferred_running) 8613 return remote; 8614 return all; 8615 } 8616 #else 8617 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs) 8618 { 8619 return all; 8620 } 8621 8622 static inline enum fbq_type fbq_classify_rq(struct rq *rq) 8623 { 8624 return regular; 8625 } 8626 #endif /* CONFIG_NUMA_BALANCING */ 8627 8628 8629 struct sg_lb_stats; 8630 8631 /* 8632 * task_running_on_cpu - return 1 if @p is running on @cpu. 8633 */ 8634 8635 static unsigned int task_running_on_cpu(int cpu, struct task_struct *p) 8636 { 8637 /* Task has no contribution or is new */ 8638 if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time)) 8639 return 0; 8640 8641 if (task_on_rq_queued(p)) 8642 return 1; 8643 8644 return 0; 8645 } 8646 8647 /** 8648 * idle_cpu_without - would a given CPU be idle without p ? 8649 * @cpu: the processor on which idleness is tested. 8650 * @p: task which should be ignored. 8651 * 8652 * Return: 1 if the CPU would be idle. 0 otherwise. 8653 */ 8654 static int idle_cpu_without(int cpu, struct task_struct *p) 8655 { 8656 struct rq *rq = cpu_rq(cpu); 8657 8658 if (rq->curr != rq->idle && rq->curr != p) 8659 return 0; 8660 8661 /* 8662 * rq->nr_running can't be used but an updated version without the 8663 * impact of p on cpu must be used instead. The updated nr_running 8664 * be computed and tested before calling idle_cpu_without(). 8665 */ 8666 8667 #ifdef CONFIG_SMP 8668 if (rq->ttwu_pending) 8669 return 0; 8670 #endif 8671 8672 return 1; 8673 } 8674 8675 /* 8676 * update_sg_wakeup_stats - Update sched_group's statistics for wakeup. 8677 * @sd: The sched_domain level to look for idlest group. 8678 * @group: sched_group whose statistics are to be updated. 8679 * @sgs: variable to hold the statistics for this group. 8680 * @p: The task for which we look for the idlest group/CPU. 8681 */ 8682 static inline void update_sg_wakeup_stats(struct sched_domain *sd, 8683 struct sched_group *group, 8684 struct sg_lb_stats *sgs, 8685 struct task_struct *p) 8686 { 8687 int i, nr_running; 8688 8689 memset(sgs, 0, sizeof(*sgs)); 8690 8691 for_each_cpu(i, sched_group_span(group)) { 8692 struct rq *rq = cpu_rq(i); 8693 unsigned int local; 8694 8695 sgs->group_load += cpu_load_without(rq, p); 8696 sgs->group_util += cpu_util_without(i, p); 8697 sgs->group_runnable += cpu_runnable_without(rq, p); 8698 local = task_running_on_cpu(i, p); 8699 sgs->sum_h_nr_running += rq->cfs.h_nr_running - local; 8700 8701 nr_running = rq->nr_running - local; 8702 sgs->sum_nr_running += nr_running; 8703 8704 /* 8705 * No need to call idle_cpu_without() if nr_running is not 0 8706 */ 8707 if (!nr_running && idle_cpu_without(i, p)) 8708 sgs->idle_cpus++; 8709 8710 } 8711 8712 /* Check if task fits in the group */ 8713 if (sd->flags & SD_ASYM_CPUCAPACITY && 8714 !task_fits_capacity(p, group->sgc->max_capacity)) { 8715 sgs->group_misfit_task_load = 1; 8716 } 8717 8718 sgs->group_capacity = group->sgc->capacity; 8719 8720 sgs->group_weight = group->group_weight; 8721 8722 sgs->group_type = group_classify(sd->imbalance_pct, group, sgs); 8723 8724 /* 8725 * Computing avg_load makes sense only when group is fully busy or 8726 * overloaded 8727 */ 8728 if (sgs->group_type == group_fully_busy || 8729 sgs->group_type == group_overloaded) 8730 sgs->avg_load = (sgs->group_load * SCHED_CAPACITY_SCALE) / 8731 sgs->group_capacity; 8732 } 8733 8734 static bool update_pick_idlest(struct sched_group *idlest, 8735 struct sg_lb_stats *idlest_sgs, 8736 struct sched_group *group, 8737 struct sg_lb_stats *sgs) 8738 { 8739 if (sgs->group_type < idlest_sgs->group_type) 8740 return true; 8741 8742 if (sgs->group_type > idlest_sgs->group_type) 8743 return false; 8744 8745 /* 8746 * The candidate and the current idlest group are the same type of 8747 * group. Let check which one is the idlest according to the type. 8748 */ 8749 8750 switch (sgs->group_type) { 8751 case group_overloaded: 8752 case group_fully_busy: 8753 /* Select the group with lowest avg_load. */ 8754 if (idlest_sgs->avg_load <= sgs->avg_load) 8755 return false; 8756 break; 8757 8758 case group_imbalanced: 8759 case group_asym_packing: 8760 /* Those types are not used in the slow wakeup path */ 8761 return false; 8762 8763 case group_misfit_task: 8764 /* Select group with the highest max capacity */ 8765 if (idlest->sgc->max_capacity >= group->sgc->max_capacity) 8766 return false; 8767 break; 8768 8769 case group_has_spare: 8770 /* Select group with most idle CPUs */ 8771 if (idlest_sgs->idle_cpus > sgs->idle_cpus) 8772 return false; 8773 8774 /* Select group with lowest group_util */ 8775 if (idlest_sgs->idle_cpus == sgs->idle_cpus && 8776 idlest_sgs->group_util <= sgs->group_util) 8777 return false; 8778 8779 break; 8780 } 8781 8782 return true; 8783 } 8784 8785 /* 8786 * Allow a NUMA imbalance if busy CPUs is less than 25% of the domain. 8787 * This is an approximation as the number of running tasks may not be 8788 * related to the number of busy CPUs due to sched_setaffinity. 8789 */ 8790 static inline bool allow_numa_imbalance(int dst_running, int dst_weight) 8791 { 8792 return (dst_running < (dst_weight >> 2)); 8793 } 8794 8795 /* 8796 * find_idlest_group() finds and returns the least busy CPU group within the 8797 * domain. 8798 * 8799 * Assumes p is allowed on at least one CPU in sd. 8800 */ 8801 static struct sched_group * 8802 find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu) 8803 { 8804 struct sched_group *idlest = NULL, *local = NULL, *group = sd->groups; 8805 struct sg_lb_stats local_sgs, tmp_sgs; 8806 struct sg_lb_stats *sgs; 8807 unsigned long imbalance; 8808 struct sg_lb_stats idlest_sgs = { 8809 .avg_load = UINT_MAX, 8810 .group_type = group_overloaded, 8811 }; 8812 8813 do { 8814 int local_group; 8815 8816 /* Skip over this group if it has no CPUs allowed */ 8817 if (!cpumask_intersects(sched_group_span(group), 8818 p->cpus_ptr)) 8819 continue; 8820 8821 local_group = cpumask_test_cpu(this_cpu, 8822 sched_group_span(group)); 8823 8824 if (local_group) { 8825 sgs = &local_sgs; 8826 local = group; 8827 } else { 8828 sgs = &tmp_sgs; 8829 } 8830 8831 update_sg_wakeup_stats(sd, group, sgs, p); 8832 8833 if (!local_group && update_pick_idlest(idlest, &idlest_sgs, group, sgs)) { 8834 idlest = group; 8835 idlest_sgs = *sgs; 8836 } 8837 8838 } while (group = group->next, group != sd->groups); 8839 8840 8841 /* There is no idlest group to push tasks to */ 8842 if (!idlest) 8843 return NULL; 8844 8845 /* The local group has been skipped because of CPU affinity */ 8846 if (!local) 8847 return idlest; 8848 8849 /* 8850 * If the local group is idler than the selected idlest group 8851 * don't try and push the task. 8852 */ 8853 if (local_sgs.group_type < idlest_sgs.group_type) 8854 return NULL; 8855 8856 /* 8857 * If the local group is busier than the selected idlest group 8858 * try and push the task. 8859 */ 8860 if (local_sgs.group_type > idlest_sgs.group_type) 8861 return idlest; 8862 8863 switch (local_sgs.group_type) { 8864 case group_overloaded: 8865 case group_fully_busy: 8866 8867 /* Calculate allowed imbalance based on load */ 8868 imbalance = scale_load_down(NICE_0_LOAD) * 8869 (sd->imbalance_pct-100) / 100; 8870 8871 /* 8872 * When comparing groups across NUMA domains, it's possible for 8873 * the local domain to be very lightly loaded relative to the 8874 * remote domains but "imbalance" skews the comparison making 8875 * remote CPUs look much more favourable. When considering 8876 * cross-domain, add imbalance to the load on the remote node 8877 * and consider staying local. 8878 */ 8879 8880 if ((sd->flags & SD_NUMA) && 8881 ((idlest_sgs.avg_load + imbalance) >= local_sgs.avg_load)) 8882 return NULL; 8883 8884 /* 8885 * If the local group is less loaded than the selected 8886 * idlest group don't try and push any tasks. 8887 */ 8888 if (idlest_sgs.avg_load >= (local_sgs.avg_load + imbalance)) 8889 return NULL; 8890 8891 if (100 * local_sgs.avg_load <= sd->imbalance_pct * idlest_sgs.avg_load) 8892 return NULL; 8893 break; 8894 8895 case group_imbalanced: 8896 case group_asym_packing: 8897 /* Those type are not used in the slow wakeup path */ 8898 return NULL; 8899 8900 case group_misfit_task: 8901 /* Select group with the highest max capacity */ 8902 if (local->sgc->max_capacity >= idlest->sgc->max_capacity) 8903 return NULL; 8904 break; 8905 8906 case group_has_spare: 8907 if (sd->flags & SD_NUMA) { 8908 #ifdef CONFIG_NUMA_BALANCING 8909 int idlest_cpu; 8910 /* 8911 * If there is spare capacity at NUMA, try to select 8912 * the preferred node 8913 */ 8914 if (cpu_to_node(this_cpu) == p->numa_preferred_nid) 8915 return NULL; 8916 8917 idlest_cpu = cpumask_first(sched_group_span(idlest)); 8918 if (cpu_to_node(idlest_cpu) == p->numa_preferred_nid) 8919 return idlest; 8920 #endif 8921 /* 8922 * Otherwise, keep the task on this node to stay close 8923 * its wakeup source and improve locality. If there is 8924 * a real need of migration, periodic load balance will 8925 * take care of it. 8926 */ 8927 if (allow_numa_imbalance(local_sgs.sum_nr_running, sd->span_weight)) 8928 return NULL; 8929 } 8930 8931 /* 8932 * Select group with highest number of idle CPUs. We could also 8933 * compare the utilization which is more stable but it can end 8934 * up that the group has less spare capacity but finally more 8935 * idle CPUs which means more opportunity to run task. 8936 */ 8937 if (local_sgs.idle_cpus >= idlest_sgs.idle_cpus) 8938 return NULL; 8939 break; 8940 } 8941 8942 return idlest; 8943 } 8944 8945 /** 8946 * update_sd_lb_stats - Update sched_domain's statistics for load balancing. 8947 * @env: The load balancing environment. 8948 * @sds: variable to hold the statistics for this sched_domain. 8949 */ 8950 8951 static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds) 8952 { 8953 struct sched_domain *child = env->sd->child; 8954 struct sched_group *sg = env->sd->groups; 8955 struct sg_lb_stats *local = &sds->local_stat; 8956 struct sg_lb_stats tmp_sgs; 8957 int sg_status = 0; 8958 8959 #ifdef CONFIG_NO_HZ_COMMON 8960 if (env->idle == CPU_NEWLY_IDLE && READ_ONCE(nohz.has_blocked)) 8961 env->flags |= LBF_NOHZ_STATS; 8962 #endif 8963 8964 do { 8965 struct sg_lb_stats *sgs = &tmp_sgs; 8966 int local_group; 8967 8968 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_span(sg)); 8969 if (local_group) { 8970 sds->local = sg; 8971 sgs = local; 8972 8973 if (env->idle != CPU_NEWLY_IDLE || 8974 time_after_eq(jiffies, sg->sgc->next_update)) 8975 update_group_capacity(env->sd, env->dst_cpu); 8976 } 8977 8978 update_sg_lb_stats(env, sg, sgs, &sg_status); 8979 8980 if (local_group) 8981 goto next_group; 8982 8983 8984 if (update_sd_pick_busiest(env, sds, sg, sgs)) { 8985 sds->busiest = sg; 8986 sds->busiest_stat = *sgs; 8987 } 8988 8989 next_group: 8990 /* Now, start updating sd_lb_stats */ 8991 sds->total_load += sgs->group_load; 8992 sds->total_capacity += sgs->group_capacity; 8993 8994 sg = sg->next; 8995 } while (sg != env->sd->groups); 8996 8997 /* Tag domain that child domain prefers tasks go to siblings first */ 8998 sds->prefer_sibling = child && child->flags & SD_PREFER_SIBLING; 8999 9000 #ifdef CONFIG_NO_HZ_COMMON 9001 if ((env->flags & LBF_NOHZ_AGAIN) && 9002 cpumask_subset(nohz.idle_cpus_mask, sched_domain_span(env->sd))) { 9003 9004 WRITE_ONCE(nohz.next_blocked, 9005 jiffies + msecs_to_jiffies(LOAD_AVG_PERIOD)); 9006 } 9007 #endif 9008 9009 if (env->sd->flags & SD_NUMA) 9010 env->fbq_type = fbq_classify_group(&sds->busiest_stat); 9011 9012 if (!env->sd->parent) { 9013 struct root_domain *rd = env->dst_rq->rd; 9014 9015 /* update overload indicator if we are at root domain */ 9016 WRITE_ONCE(rd->overload, sg_status & SG_OVERLOAD); 9017 9018 /* Update over-utilization (tipping point, U >= 0) indicator */ 9019 WRITE_ONCE(rd->overutilized, sg_status & SG_OVERUTILIZED); 9020 trace_sched_overutilized_tp(rd, sg_status & SG_OVERUTILIZED); 9021 } else if (sg_status & SG_OVERUTILIZED) { 9022 struct root_domain *rd = env->dst_rq->rd; 9023 9024 WRITE_ONCE(rd->overutilized, SG_OVERUTILIZED); 9025 trace_sched_overutilized_tp(rd, SG_OVERUTILIZED); 9026 } 9027 } 9028 9029 #define NUMA_IMBALANCE_MIN 2 9030 9031 static inline long adjust_numa_imbalance(int imbalance, 9032 int dst_running, int dst_weight) 9033 { 9034 if (!allow_numa_imbalance(dst_running, dst_weight)) 9035 return imbalance; 9036 9037 /* 9038 * Allow a small imbalance based on a simple pair of communicating 9039 * tasks that remain local when the destination is lightly loaded. 9040 */ 9041 if (imbalance <= NUMA_IMBALANCE_MIN) 9042 return 0; 9043 9044 return imbalance; 9045 } 9046 9047 /** 9048 * calculate_imbalance - Calculate the amount of imbalance present within the 9049 * groups of a given sched_domain during load balance. 9050 * @env: load balance environment 9051 * @sds: statistics of the sched_domain whose imbalance is to be calculated. 9052 */ 9053 static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds) 9054 { 9055 struct sg_lb_stats *local, *busiest; 9056 9057 local = &sds->local_stat; 9058 busiest = &sds->busiest_stat; 9059 9060 if (busiest->group_type == group_misfit_task) { 9061 /* Set imbalance to allow misfit tasks to be balanced. */ 9062 env->migration_type = migrate_misfit; 9063 env->imbalance = 1; 9064 return; 9065 } 9066 9067 if (busiest->group_type == group_asym_packing) { 9068 /* 9069 * In case of asym capacity, we will try to migrate all load to 9070 * the preferred CPU. 9071 */ 9072 env->migration_type = migrate_task; 9073 env->imbalance = busiest->sum_h_nr_running; 9074 return; 9075 } 9076 9077 if (busiest->group_type == group_imbalanced) { 9078 /* 9079 * In the group_imb case we cannot rely on group-wide averages 9080 * to ensure CPU-load equilibrium, try to move any task to fix 9081 * the imbalance. The next load balance will take care of 9082 * balancing back the system. 9083 */ 9084 env->migration_type = migrate_task; 9085 env->imbalance = 1; 9086 return; 9087 } 9088 9089 /* 9090 * Try to use spare capacity of local group without overloading it or 9091 * emptying busiest. 9092 */ 9093 if (local->group_type == group_has_spare) { 9094 if ((busiest->group_type > group_fully_busy) && 9095 !(env->sd->flags & SD_SHARE_PKG_RESOURCES)) { 9096 /* 9097 * If busiest is overloaded, try to fill spare 9098 * capacity. This might end up creating spare capacity 9099 * in busiest or busiest still being overloaded but 9100 * there is no simple way to directly compute the 9101 * amount of load to migrate in order to balance the 9102 * system. 9103 */ 9104 env->migration_type = migrate_util; 9105 env->imbalance = max(local->group_capacity, local->group_util) - 9106 local->group_util; 9107 9108 /* 9109 * In some cases, the group's utilization is max or even 9110 * higher than capacity because of migrations but the 9111 * local CPU is (newly) idle. There is at least one 9112 * waiting task in this overloaded busiest group. Let's 9113 * try to pull it. 9114 */ 9115 if (env->idle != CPU_NOT_IDLE && env->imbalance == 0) { 9116 env->migration_type = migrate_task; 9117 env->imbalance = 1; 9118 } 9119 9120 return; 9121 } 9122 9123 if (busiest->group_weight == 1 || sds->prefer_sibling) { 9124 unsigned int nr_diff = busiest->sum_nr_running; 9125 /* 9126 * When prefer sibling, evenly spread running tasks on 9127 * groups. 9128 */ 9129 env->migration_type = migrate_task; 9130 lsub_positive(&nr_diff, local->sum_nr_running); 9131 env->imbalance = nr_diff >> 1; 9132 } else { 9133 9134 /* 9135 * If there is no overload, we just want to even the number of 9136 * idle cpus. 9137 */ 9138 env->migration_type = migrate_task; 9139 env->imbalance = max_t(long, 0, (local->idle_cpus - 9140 busiest->idle_cpus) >> 1); 9141 } 9142 9143 /* Consider allowing a small imbalance between NUMA groups */ 9144 if (env->sd->flags & SD_NUMA) { 9145 env->imbalance = adjust_numa_imbalance(env->imbalance, 9146 busiest->sum_nr_running, busiest->group_weight); 9147 } 9148 9149 return; 9150 } 9151 9152 /* 9153 * Local is fully busy but has to take more load to relieve the 9154 * busiest group 9155 */ 9156 if (local->group_type < group_overloaded) { 9157 /* 9158 * Local will become overloaded so the avg_load metrics are 9159 * finally needed. 9160 */ 9161 9162 local->avg_load = (local->group_load * SCHED_CAPACITY_SCALE) / 9163 local->group_capacity; 9164 9165 sds->avg_load = (sds->total_load * SCHED_CAPACITY_SCALE) / 9166 sds->total_capacity; 9167 /* 9168 * If the local group is more loaded than the selected 9169 * busiest group don't try to pull any tasks. 9170 */ 9171 if (local->avg_load >= busiest->avg_load) { 9172 env->imbalance = 0; 9173 return; 9174 } 9175 } 9176 9177 /* 9178 * Both group are or will become overloaded and we're trying to get all 9179 * the CPUs to the average_load, so we don't want to push ourselves 9180 * above the average load, nor do we wish to reduce the max loaded CPU 9181 * below the average load. At the same time, we also don't want to 9182 * reduce the group load below the group capacity. Thus we look for 9183 * the minimum possible imbalance. 9184 */ 9185 env->migration_type = migrate_load; 9186 env->imbalance = min( 9187 (busiest->avg_load - sds->avg_load) * busiest->group_capacity, 9188 (sds->avg_load - local->avg_load) * local->group_capacity 9189 ) / SCHED_CAPACITY_SCALE; 9190 } 9191 9192 /******* find_busiest_group() helpers end here *********************/ 9193 9194 /* 9195 * Decision matrix according to the local and busiest group type: 9196 * 9197 * busiest \ local has_spare fully_busy misfit asym imbalanced overloaded 9198 * has_spare nr_idle balanced N/A N/A balanced balanced 9199 * fully_busy nr_idle nr_idle N/A N/A balanced balanced 9200 * misfit_task force N/A N/A N/A force force 9201 * asym_packing force force N/A N/A force force 9202 * imbalanced force force N/A N/A force force 9203 * overloaded force force N/A N/A force avg_load 9204 * 9205 * N/A : Not Applicable because already filtered while updating 9206 * statistics. 9207 * balanced : The system is balanced for these 2 groups. 9208 * force : Calculate the imbalance as load migration is probably needed. 9209 * avg_load : Only if imbalance is significant enough. 9210 * nr_idle : dst_cpu is not busy and the number of idle CPUs is quite 9211 * different in groups. 9212 */ 9213 9214 /** 9215 * find_busiest_group - Returns the busiest group within the sched_domain 9216 * if there is an imbalance. 9217 * 9218 * Also calculates the amount of runnable load which should be moved 9219 * to restore balance. 9220 * 9221 * @env: The load balancing environment. 9222 * 9223 * Return: - The busiest group if imbalance exists. 9224 */ 9225 static struct sched_group *find_busiest_group(struct lb_env *env) 9226 { 9227 struct sg_lb_stats *local, *busiest; 9228 struct sd_lb_stats sds; 9229 9230 init_sd_lb_stats(&sds); 9231 9232 /* 9233 * Compute the various statistics relevant for load balancing at 9234 * this level. 9235 */ 9236 update_sd_lb_stats(env, &sds); 9237 9238 if (sched_energy_enabled()) { 9239 struct root_domain *rd = env->dst_rq->rd; 9240 9241 if (rcu_dereference(rd->pd) && !READ_ONCE(rd->overutilized)) 9242 goto out_balanced; 9243 } 9244 9245 local = &sds.local_stat; 9246 busiest = &sds.busiest_stat; 9247 9248 /* There is no busy sibling group to pull tasks from */ 9249 if (!sds.busiest) 9250 goto out_balanced; 9251 9252 /* Misfit tasks should be dealt with regardless of the avg load */ 9253 if (busiest->group_type == group_misfit_task) 9254 goto force_balance; 9255 9256 /* ASYM feature bypasses nice load balance check */ 9257 if (busiest->group_type == group_asym_packing) 9258 goto force_balance; 9259 9260 /* 9261 * If the busiest group is imbalanced the below checks don't 9262 * work because they assume all things are equal, which typically 9263 * isn't true due to cpus_ptr constraints and the like. 9264 */ 9265 if (busiest->group_type == group_imbalanced) 9266 goto force_balance; 9267 9268 /* 9269 * If the local group is busier than the selected busiest group 9270 * don't try and pull any tasks. 9271 */ 9272 if (local->group_type > busiest->group_type) 9273 goto out_balanced; 9274 9275 /* 9276 * When groups are overloaded, use the avg_load to ensure fairness 9277 * between tasks. 9278 */ 9279 if (local->group_type == group_overloaded) { 9280 /* 9281 * If the local group is more loaded than the selected 9282 * busiest group don't try to pull any tasks. 9283 */ 9284 if (local->avg_load >= busiest->avg_load) 9285 goto out_balanced; 9286 9287 /* XXX broken for overlapping NUMA groups */ 9288 sds.avg_load = (sds.total_load * SCHED_CAPACITY_SCALE) / 9289 sds.total_capacity; 9290 9291 /* 9292 * Don't pull any tasks if this group is already above the 9293 * domain average load. 9294 */ 9295 if (local->avg_load >= sds.avg_load) 9296 goto out_balanced; 9297 9298 /* 9299 * If the busiest group is more loaded, use imbalance_pct to be 9300 * conservative. 9301 */ 9302 if (100 * busiest->avg_load <= 9303 env->sd->imbalance_pct * local->avg_load) 9304 goto out_balanced; 9305 } 9306 9307 /* Try to move all excess tasks to child's sibling domain */ 9308 if (sds.prefer_sibling && local->group_type == group_has_spare && 9309 busiest->sum_nr_running > local->sum_nr_running + 1) 9310 goto force_balance; 9311 9312 if (busiest->group_type != group_overloaded) { 9313 if (env->idle == CPU_NOT_IDLE) 9314 /* 9315 * If the busiest group is not overloaded (and as a 9316 * result the local one too) but this CPU is already 9317 * busy, let another idle CPU try to pull task. 9318 */ 9319 goto out_balanced; 9320 9321 if (busiest->group_weight > 1 && 9322 local->idle_cpus <= (busiest->idle_cpus + 1)) 9323 /* 9324 * If the busiest group is not overloaded 9325 * and there is no imbalance between this and busiest 9326 * group wrt idle CPUs, it is balanced. The imbalance 9327 * becomes significant if the diff is greater than 1 9328 * otherwise we might end up to just move the imbalance 9329 * on another group. Of course this applies only if 9330 * there is more than 1 CPU per group. 9331 */ 9332 goto out_balanced; 9333 9334 if (busiest->sum_h_nr_running == 1) 9335 /* 9336 * busiest doesn't have any tasks waiting to run 9337 */ 9338 goto out_balanced; 9339 } 9340 9341 force_balance: 9342 /* Looks like there is an imbalance. Compute it */ 9343 calculate_imbalance(env, &sds); 9344 return env->imbalance ? sds.busiest : NULL; 9345 9346 out_balanced: 9347 env->imbalance = 0; 9348 return NULL; 9349 } 9350 9351 /* 9352 * find_busiest_queue - find the busiest runqueue among the CPUs in the group. 9353 */ 9354 static struct rq *find_busiest_queue(struct lb_env *env, 9355 struct sched_group *group) 9356 { 9357 struct rq *busiest = NULL, *rq; 9358 unsigned long busiest_util = 0, busiest_load = 0, busiest_capacity = 1; 9359 unsigned int busiest_nr = 0; 9360 int i; 9361 9362 for_each_cpu_and(i, sched_group_span(group), env->cpus) { 9363 unsigned long capacity, load, util; 9364 unsigned int nr_running; 9365 enum fbq_type rt; 9366 9367 rq = cpu_rq(i); 9368 rt = fbq_classify_rq(rq); 9369 9370 /* 9371 * We classify groups/runqueues into three groups: 9372 * - regular: there are !numa tasks 9373 * - remote: there are numa tasks that run on the 'wrong' node 9374 * - all: there is no distinction 9375 * 9376 * In order to avoid migrating ideally placed numa tasks, 9377 * ignore those when there's better options. 9378 * 9379 * If we ignore the actual busiest queue to migrate another 9380 * task, the next balance pass can still reduce the busiest 9381 * queue by moving tasks around inside the node. 9382 * 9383 * If we cannot move enough load due to this classification 9384 * the next pass will adjust the group classification and 9385 * allow migration of more tasks. 9386 * 9387 * Both cases only affect the total convergence complexity. 9388 */ 9389 if (rt > env->fbq_type) 9390 continue; 9391 9392 capacity = capacity_of(i); 9393 nr_running = rq->cfs.h_nr_running; 9394 9395 /* 9396 * For ASYM_CPUCAPACITY domains, don't pick a CPU that could 9397 * eventually lead to active_balancing high->low capacity. 9398 * Higher per-CPU capacity is considered better than balancing 9399 * average load. 9400 */ 9401 if (env->sd->flags & SD_ASYM_CPUCAPACITY && 9402 capacity_of(env->dst_cpu) < capacity && 9403 nr_running == 1) 9404 continue; 9405 9406 switch (env->migration_type) { 9407 case migrate_load: 9408 /* 9409 * When comparing with load imbalance, use cpu_load() 9410 * which is not scaled with the CPU capacity. 9411 */ 9412 load = cpu_load(rq); 9413 9414 if (nr_running == 1 && load > env->imbalance && 9415 !check_cpu_capacity(rq, env->sd)) 9416 break; 9417 9418 /* 9419 * For the load comparisons with the other CPUs, 9420 * consider the cpu_load() scaled with the CPU 9421 * capacity, so that the load can be moved away 9422 * from the CPU that is potentially running at a 9423 * lower capacity. 9424 * 9425 * Thus we're looking for max(load_i / capacity_i), 9426 * crosswise multiplication to rid ourselves of the 9427 * division works out to: 9428 * load_i * capacity_j > load_j * capacity_i; 9429 * where j is our previous maximum. 9430 */ 9431 if (load * busiest_capacity > busiest_load * capacity) { 9432 busiest_load = load; 9433 busiest_capacity = capacity; 9434 busiest = rq; 9435 } 9436 break; 9437 9438 case migrate_util: 9439 util = cpu_util(cpu_of(rq)); 9440 9441 /* 9442 * Don't try to pull utilization from a CPU with one 9443 * running task. Whatever its utilization, we will fail 9444 * detach the task. 9445 */ 9446 if (nr_running <= 1) 9447 continue; 9448 9449 if (busiest_util < util) { 9450 busiest_util = util; 9451 busiest = rq; 9452 } 9453 break; 9454 9455 case migrate_task: 9456 if (busiest_nr < nr_running) { 9457 busiest_nr = nr_running; 9458 busiest = rq; 9459 } 9460 break; 9461 9462 case migrate_misfit: 9463 /* 9464 * For ASYM_CPUCAPACITY domains with misfit tasks we 9465 * simply seek the "biggest" misfit task. 9466 */ 9467 if (rq->misfit_task_load > busiest_load) { 9468 busiest_load = rq->misfit_task_load; 9469 busiest = rq; 9470 } 9471 9472 break; 9473 9474 } 9475 } 9476 9477 return busiest; 9478 } 9479 9480 /* 9481 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but 9482 * so long as it is large enough. 9483 */ 9484 #define MAX_PINNED_INTERVAL 512 9485 9486 static inline bool 9487 asym_active_balance(struct lb_env *env) 9488 { 9489 /* 9490 * ASYM_PACKING needs to force migrate tasks from busy but 9491 * lower priority CPUs in order to pack all tasks in the 9492 * highest priority CPUs. 9493 */ 9494 return env->idle != CPU_NOT_IDLE && (env->sd->flags & SD_ASYM_PACKING) && 9495 sched_asym_prefer(env->dst_cpu, env->src_cpu); 9496 } 9497 9498 static inline bool 9499 voluntary_active_balance(struct lb_env *env) 9500 { 9501 struct sched_domain *sd = env->sd; 9502 9503 if (asym_active_balance(env)) 9504 return 1; 9505 9506 /* 9507 * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task. 9508 * It's worth migrating the task if the src_cpu's capacity is reduced 9509 * because of other sched_class or IRQs if more capacity stays 9510 * available on dst_cpu. 9511 */ 9512 if ((env->idle != CPU_NOT_IDLE) && 9513 (env->src_rq->cfs.h_nr_running == 1)) { 9514 if ((check_cpu_capacity(env->src_rq, sd)) && 9515 (capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100)) 9516 return 1; 9517 } 9518 9519 if (env->migration_type == migrate_misfit) 9520 return 1; 9521 9522 return 0; 9523 } 9524 9525 static int need_active_balance(struct lb_env *env) 9526 { 9527 struct sched_domain *sd = env->sd; 9528 9529 if (voluntary_active_balance(env)) 9530 return 1; 9531 9532 return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2); 9533 } 9534 9535 static int active_load_balance_cpu_stop(void *data); 9536 9537 static int should_we_balance(struct lb_env *env) 9538 { 9539 struct sched_group *sg = env->sd->groups; 9540 int cpu; 9541 9542 /* 9543 * Ensure the balancing environment is consistent; can happen 9544 * when the softirq triggers 'during' hotplug. 9545 */ 9546 if (!cpumask_test_cpu(env->dst_cpu, env->cpus)) 9547 return 0; 9548 9549 /* 9550 * In the newly idle case, we will allow all the CPUs 9551 * to do the newly idle load balance. 9552 */ 9553 if (env->idle == CPU_NEWLY_IDLE) 9554 return 1; 9555 9556 /* Try to find first idle CPU */ 9557 for_each_cpu_and(cpu, group_balance_mask(sg), env->cpus) { 9558 if (!idle_cpu(cpu)) 9559 continue; 9560 9561 /* Are we the first idle CPU? */ 9562 return cpu == env->dst_cpu; 9563 } 9564 9565 /* Are we the first CPU of this group ? */ 9566 return group_balance_cpu(sg) == env->dst_cpu; 9567 } 9568 9569 /* 9570 * Check this_cpu to ensure it is balanced within domain. Attempt to move 9571 * tasks if there is an imbalance. 9572 */ 9573 static int load_balance(int this_cpu, struct rq *this_rq, 9574 struct sched_domain *sd, enum cpu_idle_type idle, 9575 int *continue_balancing) 9576 { 9577 int ld_moved, cur_ld_moved, active_balance = 0; 9578 struct sched_domain *sd_parent = sd->parent; 9579 struct sched_group *group; 9580 struct rq *busiest; 9581 struct rq_flags rf; 9582 struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask); 9583 9584 struct lb_env env = { 9585 .sd = sd, 9586 .dst_cpu = this_cpu, 9587 .dst_rq = this_rq, 9588 .dst_grpmask = sched_group_span(sd->groups), 9589 .idle = idle, 9590 .loop_break = sched_nr_migrate_break, 9591 .cpus = cpus, 9592 .fbq_type = all, 9593 .tasks = LIST_HEAD_INIT(env.tasks), 9594 }; 9595 9596 cpumask_and(cpus, sched_domain_span(sd), cpu_active_mask); 9597 9598 schedstat_inc(sd->lb_count[idle]); 9599 9600 redo: 9601 if (!should_we_balance(&env)) { 9602 *continue_balancing = 0; 9603 goto out_balanced; 9604 } 9605 9606 group = find_busiest_group(&env); 9607 if (!group) { 9608 schedstat_inc(sd->lb_nobusyg[idle]); 9609 goto out_balanced; 9610 } 9611 9612 busiest = find_busiest_queue(&env, group); 9613 if (!busiest) { 9614 schedstat_inc(sd->lb_nobusyq[idle]); 9615 goto out_balanced; 9616 } 9617 9618 BUG_ON(busiest == env.dst_rq); 9619 9620 schedstat_add(sd->lb_imbalance[idle], env.imbalance); 9621 9622 env.src_cpu = busiest->cpu; 9623 env.src_rq = busiest; 9624 9625 ld_moved = 0; 9626 if (busiest->nr_running > 1) { 9627 /* 9628 * Attempt to move tasks. If find_busiest_group has found 9629 * an imbalance but busiest->nr_running <= 1, the group is 9630 * still unbalanced. ld_moved simply stays zero, so it is 9631 * correctly treated as an imbalance. 9632 */ 9633 env.flags |= LBF_ALL_PINNED; 9634 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running); 9635 9636 more_balance: 9637 rq_lock_irqsave(busiest, &rf); 9638 update_rq_clock(busiest); 9639 9640 /* 9641 * cur_ld_moved - load moved in current iteration 9642 * ld_moved - cumulative load moved across iterations 9643 */ 9644 cur_ld_moved = detach_tasks(&env); 9645 9646 /* 9647 * We've detached some tasks from busiest_rq. Every 9648 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely 9649 * unlock busiest->lock, and we are able to be sure 9650 * that nobody can manipulate the tasks in parallel. 9651 * See task_rq_lock() family for the details. 9652 */ 9653 9654 rq_unlock(busiest, &rf); 9655 9656 if (cur_ld_moved) { 9657 attach_tasks(&env); 9658 ld_moved += cur_ld_moved; 9659 } 9660 9661 local_irq_restore(rf.flags); 9662 9663 if (env.flags & LBF_NEED_BREAK) { 9664 env.flags &= ~LBF_NEED_BREAK; 9665 goto more_balance; 9666 } 9667 9668 /* 9669 * Revisit (affine) tasks on src_cpu that couldn't be moved to 9670 * us and move them to an alternate dst_cpu in our sched_group 9671 * where they can run. The upper limit on how many times we 9672 * iterate on same src_cpu is dependent on number of CPUs in our 9673 * sched_group. 9674 * 9675 * This changes load balance semantics a bit on who can move 9676 * load to a given_cpu. In addition to the given_cpu itself 9677 * (or a ilb_cpu acting on its behalf where given_cpu is 9678 * nohz-idle), we now have balance_cpu in a position to move 9679 * load to given_cpu. In rare situations, this may cause 9680 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding 9681 * _independently_ and at _same_ time to move some load to 9682 * given_cpu) causing exceess load to be moved to given_cpu. 9683 * This however should not happen so much in practice and 9684 * moreover subsequent load balance cycles should correct the 9685 * excess load moved. 9686 */ 9687 if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) { 9688 9689 /* Prevent to re-select dst_cpu via env's CPUs */ 9690 __cpumask_clear_cpu(env.dst_cpu, env.cpus); 9691 9692 env.dst_rq = cpu_rq(env.new_dst_cpu); 9693 env.dst_cpu = env.new_dst_cpu; 9694 env.flags &= ~LBF_DST_PINNED; 9695 env.loop = 0; 9696 env.loop_break = sched_nr_migrate_break; 9697 9698 /* 9699 * Go back to "more_balance" rather than "redo" since we 9700 * need to continue with same src_cpu. 9701 */ 9702 goto more_balance; 9703 } 9704 9705 /* 9706 * We failed to reach balance because of affinity. 9707 */ 9708 if (sd_parent) { 9709 int *group_imbalance = &sd_parent->groups->sgc->imbalance; 9710 9711 if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0) 9712 *group_imbalance = 1; 9713 } 9714 9715 /* All tasks on this runqueue were pinned by CPU affinity */ 9716 if (unlikely(env.flags & LBF_ALL_PINNED)) { 9717 __cpumask_clear_cpu(cpu_of(busiest), cpus); 9718 /* 9719 * Attempting to continue load balancing at the current 9720 * sched_domain level only makes sense if there are 9721 * active CPUs remaining as possible busiest CPUs to 9722 * pull load from which are not contained within the 9723 * destination group that is receiving any migrated 9724 * load. 9725 */ 9726 if (!cpumask_subset(cpus, env.dst_grpmask)) { 9727 env.loop = 0; 9728 env.loop_break = sched_nr_migrate_break; 9729 goto redo; 9730 } 9731 goto out_all_pinned; 9732 } 9733 } 9734 9735 if (!ld_moved) { 9736 schedstat_inc(sd->lb_failed[idle]); 9737 /* 9738 * Increment the failure counter only on periodic balance. 9739 * We do not want newidle balance, which can be very 9740 * frequent, pollute the failure counter causing 9741 * excessive cache_hot migrations and active balances. 9742 */ 9743 if (idle != CPU_NEWLY_IDLE) 9744 sd->nr_balance_failed++; 9745 9746 if (need_active_balance(&env)) { 9747 unsigned long flags; 9748 9749 raw_spin_lock_irqsave(&busiest->lock, flags); 9750 9751 /* 9752 * Don't kick the active_load_balance_cpu_stop, 9753 * if the curr task on busiest CPU can't be 9754 * moved to this_cpu: 9755 */ 9756 if (!cpumask_test_cpu(this_cpu, busiest->curr->cpus_ptr)) { 9757 raw_spin_unlock_irqrestore(&busiest->lock, 9758 flags); 9759 env.flags |= LBF_ALL_PINNED; 9760 goto out_one_pinned; 9761 } 9762 9763 /* 9764 * ->active_balance synchronizes accesses to 9765 * ->active_balance_work. Once set, it's cleared 9766 * only after active load balance is finished. 9767 */ 9768 if (!busiest->active_balance) { 9769 busiest->active_balance = 1; 9770 busiest->push_cpu = this_cpu; 9771 active_balance = 1; 9772 } 9773 raw_spin_unlock_irqrestore(&busiest->lock, flags); 9774 9775 if (active_balance) { 9776 stop_one_cpu_nowait(cpu_of(busiest), 9777 active_load_balance_cpu_stop, busiest, 9778 &busiest->active_balance_work); 9779 } 9780 9781 /* We've kicked active balancing, force task migration. */ 9782 sd->nr_balance_failed = sd->cache_nice_tries+1; 9783 } 9784 } else 9785 sd->nr_balance_failed = 0; 9786 9787 if (likely(!active_balance) || voluntary_active_balance(&env)) { 9788 /* We were unbalanced, so reset the balancing interval */ 9789 sd->balance_interval = sd->min_interval; 9790 } else { 9791 /* 9792 * If we've begun active balancing, start to back off. This 9793 * case may not be covered by the all_pinned logic if there 9794 * is only 1 task on the busy runqueue (because we don't call 9795 * detach_tasks). 9796 */ 9797 if (sd->balance_interval < sd->max_interval) 9798 sd->balance_interval *= 2; 9799 } 9800 9801 goto out; 9802 9803 out_balanced: 9804 /* 9805 * We reach balance although we may have faced some affinity 9806 * constraints. Clear the imbalance flag only if other tasks got 9807 * a chance to move and fix the imbalance. 9808 */ 9809 if (sd_parent && !(env.flags & LBF_ALL_PINNED)) { 9810 int *group_imbalance = &sd_parent->groups->sgc->imbalance; 9811 9812 if (*group_imbalance) 9813 *group_imbalance = 0; 9814 } 9815 9816 out_all_pinned: 9817 /* 9818 * We reach balance because all tasks are pinned at this level so 9819 * we can't migrate them. Let the imbalance flag set so parent level 9820 * can try to migrate them. 9821 */ 9822 schedstat_inc(sd->lb_balanced[idle]); 9823 9824 sd->nr_balance_failed = 0; 9825 9826 out_one_pinned: 9827 ld_moved = 0; 9828 9829 /* 9830 * newidle_balance() disregards balance intervals, so we could 9831 * repeatedly reach this code, which would lead to balance_interval 9832 * skyrocketting in a short amount of time. Skip the balance_interval 9833 * increase logic to avoid that. 9834 */ 9835 if (env.idle == CPU_NEWLY_IDLE) 9836 goto out; 9837 9838 /* tune up the balancing interval */ 9839 if ((env.flags & LBF_ALL_PINNED && 9840 sd->balance_interval < MAX_PINNED_INTERVAL) || 9841 sd->balance_interval < sd->max_interval) 9842 sd->balance_interval *= 2; 9843 out: 9844 return ld_moved; 9845 } 9846 9847 static inline unsigned long 9848 get_sd_balance_interval(struct sched_domain *sd, int cpu_busy) 9849 { 9850 unsigned long interval = sd->balance_interval; 9851 9852 if (cpu_busy) 9853 interval *= sd->busy_factor; 9854 9855 /* scale ms to jiffies */ 9856 interval = msecs_to_jiffies(interval); 9857 9858 /* 9859 * Reduce likelihood of busy balancing at higher domains racing with 9860 * balancing at lower domains by preventing their balancing periods 9861 * from being multiples of each other. 9862 */ 9863 if (cpu_busy) 9864 interval -= 1; 9865 9866 interval = clamp(interval, 1UL, max_load_balance_interval); 9867 9868 return interval; 9869 } 9870 9871 static inline void 9872 update_next_balance(struct sched_domain *sd, unsigned long *next_balance) 9873 { 9874 unsigned long interval, next; 9875 9876 /* used by idle balance, so cpu_busy = 0 */ 9877 interval = get_sd_balance_interval(sd, 0); 9878 next = sd->last_balance + interval; 9879 9880 if (time_after(*next_balance, next)) 9881 *next_balance = next; 9882 } 9883 9884 /* 9885 * active_load_balance_cpu_stop is run by the CPU stopper. It pushes 9886 * running tasks off the busiest CPU onto idle CPUs. It requires at 9887 * least 1 task to be running on each physical CPU where possible, and 9888 * avoids physical / logical imbalances. 9889 */ 9890 static int active_load_balance_cpu_stop(void *data) 9891 { 9892 struct rq *busiest_rq = data; 9893 int busiest_cpu = cpu_of(busiest_rq); 9894 int target_cpu = busiest_rq->push_cpu; 9895 struct rq *target_rq = cpu_rq(target_cpu); 9896 struct sched_domain *sd; 9897 struct task_struct *p = NULL; 9898 struct rq_flags rf; 9899 9900 rq_lock_irq(busiest_rq, &rf); 9901 /* 9902 * Between queueing the stop-work and running it is a hole in which 9903 * CPUs can become inactive. We should not move tasks from or to 9904 * inactive CPUs. 9905 */ 9906 if (!cpu_active(busiest_cpu) || !cpu_active(target_cpu)) 9907 goto out_unlock; 9908 9909 /* Make sure the requested CPU hasn't gone down in the meantime: */ 9910 if (unlikely(busiest_cpu != smp_processor_id() || 9911 !busiest_rq->active_balance)) 9912 goto out_unlock; 9913 9914 /* Is there any task to move? */ 9915 if (busiest_rq->nr_running <= 1) 9916 goto out_unlock; 9917 9918 /* 9919 * This condition is "impossible", if it occurs 9920 * we need to fix it. Originally reported by 9921 * Bjorn Helgaas on a 128-CPU setup. 9922 */ 9923 BUG_ON(busiest_rq == target_rq); 9924 9925 /* Search for an sd spanning us and the target CPU. */ 9926 rcu_read_lock(); 9927 for_each_domain(target_cpu, sd) { 9928 if (cpumask_test_cpu(busiest_cpu, sched_domain_span(sd))) 9929 break; 9930 } 9931 9932 if (likely(sd)) { 9933 struct lb_env env = { 9934 .sd = sd, 9935 .dst_cpu = target_cpu, 9936 .dst_rq = target_rq, 9937 .src_cpu = busiest_rq->cpu, 9938 .src_rq = busiest_rq, 9939 .idle = CPU_IDLE, 9940 /* 9941 * can_migrate_task() doesn't need to compute new_dst_cpu 9942 * for active balancing. Since we have CPU_IDLE, but no 9943 * @dst_grpmask we need to make that test go away with lying 9944 * about DST_PINNED. 9945 */ 9946 .flags = LBF_DST_PINNED, 9947 }; 9948 9949 schedstat_inc(sd->alb_count); 9950 update_rq_clock(busiest_rq); 9951 9952 p = detach_one_task(&env); 9953 if (p) { 9954 schedstat_inc(sd->alb_pushed); 9955 /* Active balancing done, reset the failure counter. */ 9956 sd->nr_balance_failed = 0; 9957 } else { 9958 schedstat_inc(sd->alb_failed); 9959 } 9960 } 9961 rcu_read_unlock(); 9962 out_unlock: 9963 busiest_rq->active_balance = 0; 9964 rq_unlock(busiest_rq, &rf); 9965 9966 if (p) 9967 attach_one_task(target_rq, p); 9968 9969 local_irq_enable(); 9970 9971 return 0; 9972 } 9973 9974 static DEFINE_SPINLOCK(balancing); 9975 9976 /* 9977 * Scale the max load_balance interval with the number of CPUs in the system. 9978 * This trades load-balance latency on larger machines for less cross talk. 9979 */ 9980 void update_max_interval(void) 9981 { 9982 max_load_balance_interval = HZ*num_online_cpus()/10; 9983 } 9984 9985 /* 9986 * It checks each scheduling domain to see if it is due to be balanced, 9987 * and initiates a balancing operation if so. 9988 * 9989 * Balancing parameters are set up in init_sched_domains. 9990 */ 9991 static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle) 9992 { 9993 int continue_balancing = 1; 9994 int cpu = rq->cpu; 9995 int busy = idle != CPU_IDLE && !sched_idle_cpu(cpu); 9996 unsigned long interval; 9997 struct sched_domain *sd; 9998 /* Earliest time when we have to do rebalance again */ 9999 unsigned long next_balance = jiffies + 60*HZ; 10000 int update_next_balance = 0; 10001 int need_serialize, need_decay = 0; 10002 u64 max_cost = 0; 10003 10004 rcu_read_lock(); 10005 for_each_domain(cpu, sd) { 10006 /* 10007 * Decay the newidle max times here because this is a regular 10008 * visit to all the domains. Decay ~1% per second. 10009 */ 10010 if (time_after(jiffies, sd->next_decay_max_lb_cost)) { 10011 sd->max_newidle_lb_cost = 10012 (sd->max_newidle_lb_cost * 253) / 256; 10013 sd->next_decay_max_lb_cost = jiffies + HZ; 10014 need_decay = 1; 10015 } 10016 max_cost += sd->max_newidle_lb_cost; 10017 10018 /* 10019 * Stop the load balance at this level. There is another 10020 * CPU in our sched group which is doing load balancing more 10021 * actively. 10022 */ 10023 if (!continue_balancing) { 10024 if (need_decay) 10025 continue; 10026 break; 10027 } 10028 10029 interval = get_sd_balance_interval(sd, busy); 10030 10031 need_serialize = sd->flags & SD_SERIALIZE; 10032 if (need_serialize) { 10033 if (!spin_trylock(&balancing)) 10034 goto out; 10035 } 10036 10037 if (time_after_eq(jiffies, sd->last_balance + interval)) { 10038 if (load_balance(cpu, rq, sd, idle, &continue_balancing)) { 10039 /* 10040 * The LBF_DST_PINNED logic could have changed 10041 * env->dst_cpu, so we can't know our idle 10042 * state even if we migrated tasks. Update it. 10043 */ 10044 idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE; 10045 busy = idle != CPU_IDLE && !sched_idle_cpu(cpu); 10046 } 10047 sd->last_balance = jiffies; 10048 interval = get_sd_balance_interval(sd, busy); 10049 } 10050 if (need_serialize) 10051 spin_unlock(&balancing); 10052 out: 10053 if (time_after(next_balance, sd->last_balance + interval)) { 10054 next_balance = sd->last_balance + interval; 10055 update_next_balance = 1; 10056 } 10057 } 10058 if (need_decay) { 10059 /* 10060 * Ensure the rq-wide value also decays but keep it at a 10061 * reasonable floor to avoid funnies with rq->avg_idle. 10062 */ 10063 rq->max_idle_balance_cost = 10064 max((u64)sysctl_sched_migration_cost, max_cost); 10065 } 10066 rcu_read_unlock(); 10067 10068 /* 10069 * next_balance will be updated only when there is a need. 10070 * When the cpu is attached to null domain for ex, it will not be 10071 * updated. 10072 */ 10073 if (likely(update_next_balance)) { 10074 rq->next_balance = next_balance; 10075 10076 #ifdef CONFIG_NO_HZ_COMMON 10077 /* 10078 * If this CPU has been elected to perform the nohz idle 10079 * balance. Other idle CPUs have already rebalanced with 10080 * nohz_idle_balance() and nohz.next_balance has been 10081 * updated accordingly. This CPU is now running the idle load 10082 * balance for itself and we need to update the 10083 * nohz.next_balance accordingly. 10084 */ 10085 if ((idle == CPU_IDLE) && time_after(nohz.next_balance, rq->next_balance)) 10086 nohz.next_balance = rq->next_balance; 10087 #endif 10088 } 10089 } 10090 10091 static inline int on_null_domain(struct rq *rq) 10092 { 10093 return unlikely(!rcu_dereference_sched(rq->sd)); 10094 } 10095 10096 #ifdef CONFIG_NO_HZ_COMMON 10097 /* 10098 * idle load balancing details 10099 * - When one of the busy CPUs notice that there may be an idle rebalancing 10100 * needed, they will kick the idle load balancer, which then does idle 10101 * load balancing for all the idle CPUs. 10102 * - HK_FLAG_MISC CPUs are used for this task, because HK_FLAG_SCHED not set 10103 * anywhere yet. 10104 */ 10105 10106 static inline int find_new_ilb(void) 10107 { 10108 int ilb; 10109 10110 for_each_cpu_and(ilb, nohz.idle_cpus_mask, 10111 housekeeping_cpumask(HK_FLAG_MISC)) { 10112 10113 if (ilb == smp_processor_id()) 10114 continue; 10115 10116 if (idle_cpu(ilb)) 10117 return ilb; 10118 } 10119 10120 return nr_cpu_ids; 10121 } 10122 10123 /* 10124 * Kick a CPU to do the nohz balancing, if it is time for it. We pick any 10125 * idle CPU in the HK_FLAG_MISC housekeeping set (if there is one). 10126 */ 10127 static void kick_ilb(unsigned int flags) 10128 { 10129 int ilb_cpu; 10130 10131 /* 10132 * Increase nohz.next_balance only when if full ilb is triggered but 10133 * not if we only update stats. 10134 */ 10135 if (flags & NOHZ_BALANCE_KICK) 10136 nohz.next_balance = jiffies+1; 10137 10138 ilb_cpu = find_new_ilb(); 10139 10140 if (ilb_cpu >= nr_cpu_ids) 10141 return; 10142 10143 /* 10144 * Access to rq::nohz_csd is serialized by NOHZ_KICK_MASK; he who sets 10145 * the first flag owns it; cleared by nohz_csd_func(). 10146 */ 10147 flags = atomic_fetch_or(flags, nohz_flags(ilb_cpu)); 10148 if (flags & NOHZ_KICK_MASK) 10149 return; 10150 10151 /* 10152 * This way we generate an IPI on the target CPU which 10153 * is idle. And the softirq performing nohz idle load balance 10154 * will be run before returning from the IPI. 10155 */ 10156 smp_call_function_single_async(ilb_cpu, &cpu_rq(ilb_cpu)->nohz_csd); 10157 } 10158 10159 /* 10160 * Current decision point for kicking the idle load balancer in the presence 10161 * of idle CPUs in the system. 10162 */ 10163 static void nohz_balancer_kick(struct rq *rq) 10164 { 10165 unsigned long now = jiffies; 10166 struct sched_domain_shared *sds; 10167 struct sched_domain *sd; 10168 int nr_busy, i, cpu = rq->cpu; 10169 unsigned int flags = 0; 10170 10171 if (unlikely(rq->idle_balance)) 10172 return; 10173 10174 /* 10175 * We may be recently in ticked or tickless idle mode. At the first 10176 * busy tick after returning from idle, we will update the busy stats. 10177 */ 10178 nohz_balance_exit_idle(rq); 10179 10180 /* 10181 * None are in tickless mode and hence no need for NOHZ idle load 10182 * balancing. 10183 */ 10184 if (likely(!atomic_read(&nohz.nr_cpus))) 10185 return; 10186 10187 if (READ_ONCE(nohz.has_blocked) && 10188 time_after(now, READ_ONCE(nohz.next_blocked))) 10189 flags = NOHZ_STATS_KICK; 10190 10191 if (time_before(now, nohz.next_balance)) 10192 goto out; 10193 10194 if (rq->nr_running >= 2) { 10195 flags = NOHZ_KICK_MASK; 10196 goto out; 10197 } 10198 10199 rcu_read_lock(); 10200 10201 sd = rcu_dereference(rq->sd); 10202 if (sd) { 10203 /* 10204 * If there's a CFS task and the current CPU has reduced 10205 * capacity; kick the ILB to see if there's a better CPU to run 10206 * on. 10207 */ 10208 if (rq->cfs.h_nr_running >= 1 && check_cpu_capacity(rq, sd)) { 10209 flags = NOHZ_KICK_MASK; 10210 goto unlock; 10211 } 10212 } 10213 10214 sd = rcu_dereference(per_cpu(sd_asym_packing, cpu)); 10215 if (sd) { 10216 /* 10217 * When ASYM_PACKING; see if there's a more preferred CPU 10218 * currently idle; in which case, kick the ILB to move tasks 10219 * around. 10220 */ 10221 for_each_cpu_and(i, sched_domain_span(sd), nohz.idle_cpus_mask) { 10222 if (sched_asym_prefer(i, cpu)) { 10223 flags = NOHZ_KICK_MASK; 10224 goto unlock; 10225 } 10226 } 10227 } 10228 10229 sd = rcu_dereference(per_cpu(sd_asym_cpucapacity, cpu)); 10230 if (sd) { 10231 /* 10232 * When ASYM_CPUCAPACITY; see if there's a higher capacity CPU 10233 * to run the misfit task on. 10234 */ 10235 if (check_misfit_status(rq, sd)) { 10236 flags = NOHZ_KICK_MASK; 10237 goto unlock; 10238 } 10239 10240 /* 10241 * For asymmetric systems, we do not want to nicely balance 10242 * cache use, instead we want to embrace asymmetry and only 10243 * ensure tasks have enough CPU capacity. 10244 * 10245 * Skip the LLC logic because it's not relevant in that case. 10246 */ 10247 goto unlock; 10248 } 10249 10250 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu)); 10251 if (sds) { 10252 /* 10253 * If there is an imbalance between LLC domains (IOW we could 10254 * increase the overall cache use), we need some less-loaded LLC 10255 * domain to pull some load. Likewise, we may need to spread 10256 * load within the current LLC domain (e.g. packed SMT cores but 10257 * other CPUs are idle). We can't really know from here how busy 10258 * the others are - so just get a nohz balance going if it looks 10259 * like this LLC domain has tasks we could move. 10260 */ 10261 nr_busy = atomic_read(&sds->nr_busy_cpus); 10262 if (nr_busy > 1) { 10263 flags = NOHZ_KICK_MASK; 10264 goto unlock; 10265 } 10266 } 10267 unlock: 10268 rcu_read_unlock(); 10269 out: 10270 if (flags) 10271 kick_ilb(flags); 10272 } 10273 10274 static void set_cpu_sd_state_busy(int cpu) 10275 { 10276 struct sched_domain *sd; 10277 10278 rcu_read_lock(); 10279 sd = rcu_dereference(per_cpu(sd_llc, cpu)); 10280 10281 if (!sd || !sd->nohz_idle) 10282 goto unlock; 10283 sd->nohz_idle = 0; 10284 10285 atomic_inc(&sd->shared->nr_busy_cpus); 10286 unlock: 10287 rcu_read_unlock(); 10288 } 10289 10290 void nohz_balance_exit_idle(struct rq *rq) 10291 { 10292 SCHED_WARN_ON(rq != this_rq()); 10293 10294 if (likely(!rq->nohz_tick_stopped)) 10295 return; 10296 10297 rq->nohz_tick_stopped = 0; 10298 cpumask_clear_cpu(rq->cpu, nohz.idle_cpus_mask); 10299 atomic_dec(&nohz.nr_cpus); 10300 10301 set_cpu_sd_state_busy(rq->cpu); 10302 } 10303 10304 static void set_cpu_sd_state_idle(int cpu) 10305 { 10306 struct sched_domain *sd; 10307 10308 rcu_read_lock(); 10309 sd = rcu_dereference(per_cpu(sd_llc, cpu)); 10310 10311 if (!sd || sd->nohz_idle) 10312 goto unlock; 10313 sd->nohz_idle = 1; 10314 10315 atomic_dec(&sd->shared->nr_busy_cpus); 10316 unlock: 10317 rcu_read_unlock(); 10318 } 10319 10320 /* 10321 * This routine will record that the CPU is going idle with tick stopped. 10322 * This info will be used in performing idle load balancing in the future. 10323 */ 10324 void nohz_balance_enter_idle(int cpu) 10325 { 10326 struct rq *rq = cpu_rq(cpu); 10327 10328 SCHED_WARN_ON(cpu != smp_processor_id()); 10329 10330 /* If this CPU is going down, then nothing needs to be done: */ 10331 if (!cpu_active(cpu)) 10332 return; 10333 10334 /* Spare idle load balancing on CPUs that don't want to be disturbed: */ 10335 if (!housekeeping_cpu(cpu, HK_FLAG_SCHED)) 10336 return; 10337 10338 /* 10339 * Can be set safely without rq->lock held 10340 * If a clear happens, it will have evaluated last additions because 10341 * rq->lock is held during the check and the clear 10342 */ 10343 rq->has_blocked_load = 1; 10344 10345 /* 10346 * The tick is still stopped but load could have been added in the 10347 * meantime. We set the nohz.has_blocked flag to trig a check of the 10348 * *_avg. The CPU is already part of nohz.idle_cpus_mask so the clear 10349 * of nohz.has_blocked can only happen after checking the new load 10350 */ 10351 if (rq->nohz_tick_stopped) 10352 goto out; 10353 10354 /* If we're a completely isolated CPU, we don't play: */ 10355 if (on_null_domain(rq)) 10356 return; 10357 10358 rq->nohz_tick_stopped = 1; 10359 10360 cpumask_set_cpu(cpu, nohz.idle_cpus_mask); 10361 atomic_inc(&nohz.nr_cpus); 10362 10363 /* 10364 * Ensures that if nohz_idle_balance() fails to observe our 10365 * @idle_cpus_mask store, it must observe the @has_blocked 10366 * store. 10367 */ 10368 smp_mb__after_atomic(); 10369 10370 set_cpu_sd_state_idle(cpu); 10371 10372 out: 10373 /* 10374 * Each time a cpu enter idle, we assume that it has blocked load and 10375 * enable the periodic update of the load of idle cpus 10376 */ 10377 WRITE_ONCE(nohz.has_blocked, 1); 10378 } 10379 10380 /* 10381 * Internal function that runs load balance for all idle cpus. The load balance 10382 * can be a simple update of blocked load or a complete load balance with 10383 * tasks movement depending of flags. 10384 * The function returns false if the loop has stopped before running 10385 * through all idle CPUs. 10386 */ 10387 static bool _nohz_idle_balance(struct rq *this_rq, unsigned int flags, 10388 enum cpu_idle_type idle) 10389 { 10390 /* Earliest time when we have to do rebalance again */ 10391 unsigned long now = jiffies; 10392 unsigned long next_balance = now + 60*HZ; 10393 bool has_blocked_load = false; 10394 int update_next_balance = 0; 10395 int this_cpu = this_rq->cpu; 10396 int balance_cpu; 10397 int ret = false; 10398 struct rq *rq; 10399 10400 SCHED_WARN_ON((flags & NOHZ_KICK_MASK) == NOHZ_BALANCE_KICK); 10401 10402 /* 10403 * We assume there will be no idle load after this update and clear 10404 * the has_blocked flag. If a cpu enters idle in the mean time, it will 10405 * set the has_blocked flag and trig another update of idle load. 10406 * Because a cpu that becomes idle, is added to idle_cpus_mask before 10407 * setting the flag, we are sure to not clear the state and not 10408 * check the load of an idle cpu. 10409 */ 10410 WRITE_ONCE(nohz.has_blocked, 0); 10411 10412 /* 10413 * Ensures that if we miss the CPU, we must see the has_blocked 10414 * store from nohz_balance_enter_idle(). 10415 */ 10416 smp_mb(); 10417 10418 for_each_cpu(balance_cpu, nohz.idle_cpus_mask) { 10419 if (balance_cpu == this_cpu || !idle_cpu(balance_cpu)) 10420 continue; 10421 10422 /* 10423 * If this CPU gets work to do, stop the load balancing 10424 * work being done for other CPUs. Next load 10425 * balancing owner will pick it up. 10426 */ 10427 if (need_resched()) { 10428 has_blocked_load = true; 10429 goto abort; 10430 } 10431 10432 rq = cpu_rq(balance_cpu); 10433 10434 has_blocked_load |= update_nohz_stats(rq, true); 10435 10436 /* 10437 * If time for next balance is due, 10438 * do the balance. 10439 */ 10440 if (time_after_eq(jiffies, rq->next_balance)) { 10441 struct rq_flags rf; 10442 10443 rq_lock_irqsave(rq, &rf); 10444 update_rq_clock(rq); 10445 rq_unlock_irqrestore(rq, &rf); 10446 10447 if (flags & NOHZ_BALANCE_KICK) 10448 rebalance_domains(rq, CPU_IDLE); 10449 } 10450 10451 if (time_after(next_balance, rq->next_balance)) { 10452 next_balance = rq->next_balance; 10453 update_next_balance = 1; 10454 } 10455 } 10456 10457 /* 10458 * next_balance will be updated only when there is a need. 10459 * When the CPU is attached to null domain for ex, it will not be 10460 * updated. 10461 */ 10462 if (likely(update_next_balance)) 10463 nohz.next_balance = next_balance; 10464 10465 /* Newly idle CPU doesn't need an update */ 10466 if (idle != CPU_NEWLY_IDLE) { 10467 update_blocked_averages(this_cpu); 10468 has_blocked_load |= this_rq->has_blocked_load; 10469 } 10470 10471 if (flags & NOHZ_BALANCE_KICK) 10472 rebalance_domains(this_rq, CPU_IDLE); 10473 10474 WRITE_ONCE(nohz.next_blocked, 10475 now + msecs_to_jiffies(LOAD_AVG_PERIOD)); 10476 10477 /* The full idle balance loop has been done */ 10478 ret = true; 10479 10480 abort: 10481 /* There is still blocked load, enable periodic update */ 10482 if (has_blocked_load) 10483 WRITE_ONCE(nohz.has_blocked, 1); 10484 10485 return ret; 10486 } 10487 10488 /* 10489 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the 10490 * rebalancing for all the cpus for whom scheduler ticks are stopped. 10491 */ 10492 static bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) 10493 { 10494 unsigned int flags = this_rq->nohz_idle_balance; 10495 10496 if (!flags) 10497 return false; 10498 10499 this_rq->nohz_idle_balance = 0; 10500 10501 if (idle != CPU_IDLE) 10502 return false; 10503 10504 _nohz_idle_balance(this_rq, flags, idle); 10505 10506 return true; 10507 } 10508 10509 static void nohz_newidle_balance(struct rq *this_rq) 10510 { 10511 int this_cpu = this_rq->cpu; 10512 10513 /* 10514 * This CPU doesn't want to be disturbed by scheduler 10515 * housekeeping 10516 */ 10517 if (!housekeeping_cpu(this_cpu, HK_FLAG_SCHED)) 10518 return; 10519 10520 /* Will wake up very soon. No time for doing anything else*/ 10521 if (this_rq->avg_idle < sysctl_sched_migration_cost) 10522 return; 10523 10524 /* Don't need to update blocked load of idle CPUs*/ 10525 if (!READ_ONCE(nohz.has_blocked) || 10526 time_before(jiffies, READ_ONCE(nohz.next_blocked))) 10527 return; 10528 10529 raw_spin_unlock(&this_rq->lock); 10530 /* 10531 * This CPU is going to be idle and blocked load of idle CPUs 10532 * need to be updated. Run the ilb locally as it is a good 10533 * candidate for ilb instead of waking up another idle CPU. 10534 * Kick an normal ilb if we failed to do the update. 10535 */ 10536 if (!_nohz_idle_balance(this_rq, NOHZ_STATS_KICK, CPU_NEWLY_IDLE)) 10537 kick_ilb(NOHZ_STATS_KICK); 10538 raw_spin_lock(&this_rq->lock); 10539 } 10540 10541 #else /* !CONFIG_NO_HZ_COMMON */ 10542 static inline void nohz_balancer_kick(struct rq *rq) { } 10543 10544 static inline bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) 10545 { 10546 return false; 10547 } 10548 10549 static inline void nohz_newidle_balance(struct rq *this_rq) { } 10550 #endif /* CONFIG_NO_HZ_COMMON */ 10551 10552 /* 10553 * newidle_balance is called by schedule() if this_cpu is about to become 10554 * idle. Attempts to pull tasks from other CPUs. 10555 * 10556 * Returns: 10557 * < 0 - we released the lock and there are !fair tasks present 10558 * 0 - failed, no new tasks 10559 * > 0 - success, new (fair) tasks present 10560 */ 10561 static int newidle_balance(struct rq *this_rq, struct rq_flags *rf) 10562 { 10563 unsigned long next_balance = jiffies + HZ; 10564 int this_cpu = this_rq->cpu; 10565 struct sched_domain *sd; 10566 int pulled_task = 0; 10567 u64 curr_cost = 0; 10568 10569 update_misfit_status(NULL, this_rq); 10570 /* 10571 * We must set idle_stamp _before_ calling idle_balance(), such that we 10572 * measure the duration of idle_balance() as idle time. 10573 */ 10574 this_rq->idle_stamp = rq_clock(this_rq); 10575 10576 /* 10577 * Do not pull tasks towards !active CPUs... 10578 */ 10579 if (!cpu_active(this_cpu)) 10580 return 0; 10581 10582 /* 10583 * This is OK, because current is on_cpu, which avoids it being picked 10584 * for load-balance and preemption/IRQs are still disabled avoiding 10585 * further scheduler activity on it and we're being very careful to 10586 * re-start the picking loop. 10587 */ 10588 rq_unpin_lock(this_rq, rf); 10589 10590 if (this_rq->avg_idle < sysctl_sched_migration_cost || 10591 !READ_ONCE(this_rq->rd->overload)) { 10592 10593 rcu_read_lock(); 10594 sd = rcu_dereference_check_sched_domain(this_rq->sd); 10595 if (sd) 10596 update_next_balance(sd, &next_balance); 10597 rcu_read_unlock(); 10598 10599 nohz_newidle_balance(this_rq); 10600 10601 goto out; 10602 } 10603 10604 raw_spin_unlock(&this_rq->lock); 10605 10606 update_blocked_averages(this_cpu); 10607 rcu_read_lock(); 10608 for_each_domain(this_cpu, sd) { 10609 int continue_balancing = 1; 10610 u64 t0, domain_cost; 10611 10612 if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) { 10613 update_next_balance(sd, &next_balance); 10614 break; 10615 } 10616 10617 if (sd->flags & SD_BALANCE_NEWIDLE) { 10618 t0 = sched_clock_cpu(this_cpu); 10619 10620 pulled_task = load_balance(this_cpu, this_rq, 10621 sd, CPU_NEWLY_IDLE, 10622 &continue_balancing); 10623 10624 domain_cost = sched_clock_cpu(this_cpu) - t0; 10625 if (domain_cost > sd->max_newidle_lb_cost) 10626 sd->max_newidle_lb_cost = domain_cost; 10627 10628 curr_cost += domain_cost; 10629 } 10630 10631 update_next_balance(sd, &next_balance); 10632 10633 /* 10634 * Stop searching for tasks to pull if there are 10635 * now runnable tasks on this rq. 10636 */ 10637 if (pulled_task || this_rq->nr_running > 0) 10638 break; 10639 } 10640 rcu_read_unlock(); 10641 10642 raw_spin_lock(&this_rq->lock); 10643 10644 if (curr_cost > this_rq->max_idle_balance_cost) 10645 this_rq->max_idle_balance_cost = curr_cost; 10646 10647 out: 10648 /* 10649 * While browsing the domains, we released the rq lock, a task could 10650 * have been enqueued in the meantime. Since we're not going idle, 10651 * pretend we pulled a task. 10652 */ 10653 if (this_rq->cfs.h_nr_running && !pulled_task) 10654 pulled_task = 1; 10655 10656 /* Move the next balance forward */ 10657 if (time_after(this_rq->next_balance, next_balance)) 10658 this_rq->next_balance = next_balance; 10659 10660 /* Is there a task of a high priority class? */ 10661 if (this_rq->nr_running != this_rq->cfs.h_nr_running) 10662 pulled_task = -1; 10663 10664 if (pulled_task) 10665 this_rq->idle_stamp = 0; 10666 10667 rq_repin_lock(this_rq, rf); 10668 10669 return pulled_task; 10670 } 10671 10672 /* 10673 * run_rebalance_domains is triggered when needed from the scheduler tick. 10674 * Also triggered for nohz idle balancing (with nohz_balancing_kick set). 10675 */ 10676 static __latent_entropy void run_rebalance_domains(struct softirq_action *h) 10677 { 10678 struct rq *this_rq = this_rq(); 10679 enum cpu_idle_type idle = this_rq->idle_balance ? 10680 CPU_IDLE : CPU_NOT_IDLE; 10681 10682 /* 10683 * If this CPU has a pending nohz_balance_kick, then do the 10684 * balancing on behalf of the other idle CPUs whose ticks are 10685 * stopped. Do nohz_idle_balance *before* rebalance_domains to 10686 * give the idle CPUs a chance to load balance. Else we may 10687 * load balance only within the local sched_domain hierarchy 10688 * and abort nohz_idle_balance altogether if we pull some load. 10689 */ 10690 if (nohz_idle_balance(this_rq, idle)) 10691 return; 10692 10693 /* normal load balance */ 10694 update_blocked_averages(this_rq->cpu); 10695 rebalance_domains(this_rq, idle); 10696 } 10697 10698 /* 10699 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing. 10700 */ 10701 void trigger_load_balance(struct rq *rq) 10702 { 10703 /* Don't need to rebalance while attached to NULL domain */ 10704 if (unlikely(on_null_domain(rq))) 10705 return; 10706 10707 if (time_after_eq(jiffies, rq->next_balance)) 10708 raise_softirq(SCHED_SOFTIRQ); 10709 10710 nohz_balancer_kick(rq); 10711 } 10712 10713 static void rq_online_fair(struct rq *rq) 10714 { 10715 update_sysctl(); 10716 10717 update_runtime_enabled(rq); 10718 } 10719 10720 static void rq_offline_fair(struct rq *rq) 10721 { 10722 update_sysctl(); 10723 10724 /* Ensure any throttled groups are reachable by pick_next_task */ 10725 unthrottle_offline_cfs_rqs(rq); 10726 } 10727 10728 #endif /* CONFIG_SMP */ 10729 10730 /* 10731 * scheduler tick hitting a task of our scheduling class. 10732 * 10733 * NOTE: This function can be called remotely by the tick offload that 10734 * goes along full dynticks. Therefore no local assumption can be made 10735 * and everything must be accessed through the @rq and @curr passed in 10736 * parameters. 10737 */ 10738 static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued) 10739 { 10740 struct cfs_rq *cfs_rq; 10741 struct sched_entity *se = &curr->se; 10742 10743 for_each_sched_entity(se) { 10744 cfs_rq = cfs_rq_of(se); 10745 entity_tick(cfs_rq, se, queued); 10746 } 10747 10748 if (static_branch_unlikely(&sched_numa_balancing)) 10749 task_tick_numa(rq, curr); 10750 10751 update_misfit_status(curr, rq); 10752 update_overutilized_status(task_rq(curr)); 10753 } 10754 10755 /* 10756 * called on fork with the child task as argument from the parent's context 10757 * - child not yet on the tasklist 10758 * - preemption disabled 10759 */ 10760 static void task_fork_fair(struct task_struct *p) 10761 { 10762 struct cfs_rq *cfs_rq; 10763 struct sched_entity *se = &p->se, *curr; 10764 struct rq *rq = this_rq(); 10765 struct rq_flags rf; 10766 10767 rq_lock(rq, &rf); 10768 update_rq_clock(rq); 10769 10770 cfs_rq = task_cfs_rq(current); 10771 curr = cfs_rq->curr; 10772 if (curr) { 10773 update_curr(cfs_rq); 10774 se->vruntime = curr->vruntime; 10775 } 10776 place_entity(cfs_rq, se, 1); 10777 10778 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) { 10779 /* 10780 * Upon rescheduling, sched_class::put_prev_task() will place 10781 * 'current' within the tree based on its new key value. 10782 */ 10783 swap(curr->vruntime, se->vruntime); 10784 resched_curr(rq); 10785 } 10786 10787 se->vruntime -= cfs_rq->min_vruntime; 10788 rq_unlock(rq, &rf); 10789 } 10790 10791 /* 10792 * Priority of the task has changed. Check to see if we preempt 10793 * the current task. 10794 */ 10795 static void 10796 prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio) 10797 { 10798 if (!task_on_rq_queued(p)) 10799 return; 10800 10801 if (rq->cfs.nr_running == 1) 10802 return; 10803 10804 /* 10805 * Reschedule if we are currently running on this runqueue and 10806 * our priority decreased, or if we are not currently running on 10807 * this runqueue and our priority is higher than the current's 10808 */ 10809 if (rq->curr == p) { 10810 if (p->prio > oldprio) 10811 resched_curr(rq); 10812 } else 10813 check_preempt_curr(rq, p, 0); 10814 } 10815 10816 static inline bool vruntime_normalized(struct task_struct *p) 10817 { 10818 struct sched_entity *se = &p->se; 10819 10820 /* 10821 * In both the TASK_ON_RQ_QUEUED and TASK_ON_RQ_MIGRATING cases, 10822 * the dequeue_entity(.flags=0) will already have normalized the 10823 * vruntime. 10824 */ 10825 if (p->on_rq) 10826 return true; 10827 10828 /* 10829 * When !on_rq, vruntime of the task has usually NOT been normalized. 10830 * But there are some cases where it has already been normalized: 10831 * 10832 * - A forked child which is waiting for being woken up by 10833 * wake_up_new_task(). 10834 * - A task which has been woken up by try_to_wake_up() and 10835 * waiting for actually being woken up by sched_ttwu_pending(). 10836 */ 10837 if (!se->sum_exec_runtime || 10838 (p->state == TASK_WAKING && p->sched_remote_wakeup)) 10839 return true; 10840 10841 return false; 10842 } 10843 10844 #ifdef CONFIG_FAIR_GROUP_SCHED 10845 /* 10846 * Propagate the changes of the sched_entity across the tg tree to make it 10847 * visible to the root 10848 */ 10849 static void propagate_entity_cfs_rq(struct sched_entity *se) 10850 { 10851 struct cfs_rq *cfs_rq; 10852 10853 /* Start to propagate at parent */ 10854 se = se->parent; 10855 10856 for_each_sched_entity(se) { 10857 cfs_rq = cfs_rq_of(se); 10858 10859 if (cfs_rq_throttled(cfs_rq)) 10860 break; 10861 10862 update_load_avg(cfs_rq, se, UPDATE_TG); 10863 } 10864 } 10865 #else 10866 static void propagate_entity_cfs_rq(struct sched_entity *se) { } 10867 #endif 10868 10869 static void detach_entity_cfs_rq(struct sched_entity *se) 10870 { 10871 struct cfs_rq *cfs_rq = cfs_rq_of(se); 10872 10873 /* Catch up with the cfs_rq and remove our load when we leave */ 10874 update_load_avg(cfs_rq, se, 0); 10875 detach_entity_load_avg(cfs_rq, se); 10876 update_tg_load_avg(cfs_rq); 10877 propagate_entity_cfs_rq(se); 10878 } 10879 10880 static void attach_entity_cfs_rq(struct sched_entity *se) 10881 { 10882 struct cfs_rq *cfs_rq = cfs_rq_of(se); 10883 10884 #ifdef CONFIG_FAIR_GROUP_SCHED 10885 /* 10886 * Since the real-depth could have been changed (only FAIR 10887 * class maintain depth value), reset depth properly. 10888 */ 10889 se->depth = se->parent ? se->parent->depth + 1 : 0; 10890 #endif 10891 10892 /* Synchronize entity with its cfs_rq */ 10893 update_load_avg(cfs_rq, se, sched_feat(ATTACH_AGE_LOAD) ? 0 : SKIP_AGE_LOAD); 10894 attach_entity_load_avg(cfs_rq, se); 10895 update_tg_load_avg(cfs_rq); 10896 propagate_entity_cfs_rq(se); 10897 } 10898 10899 static void detach_task_cfs_rq(struct task_struct *p) 10900 { 10901 struct sched_entity *se = &p->se; 10902 struct cfs_rq *cfs_rq = cfs_rq_of(se); 10903 10904 if (!vruntime_normalized(p)) { 10905 /* 10906 * Fix up our vruntime so that the current sleep doesn't 10907 * cause 'unlimited' sleep bonus. 10908 */ 10909 place_entity(cfs_rq, se, 0); 10910 se->vruntime -= cfs_rq->min_vruntime; 10911 } 10912 10913 detach_entity_cfs_rq(se); 10914 } 10915 10916 static void attach_task_cfs_rq(struct task_struct *p) 10917 { 10918 struct sched_entity *se = &p->se; 10919 struct cfs_rq *cfs_rq = cfs_rq_of(se); 10920 10921 attach_entity_cfs_rq(se); 10922 10923 if (!vruntime_normalized(p)) 10924 se->vruntime += cfs_rq->min_vruntime; 10925 } 10926 10927 static void switched_from_fair(struct rq *rq, struct task_struct *p) 10928 { 10929 detach_task_cfs_rq(p); 10930 } 10931 10932 static void switched_to_fair(struct rq *rq, struct task_struct *p) 10933 { 10934 attach_task_cfs_rq(p); 10935 10936 if (task_on_rq_queued(p)) { 10937 /* 10938 * We were most likely switched from sched_rt, so 10939 * kick off the schedule if running, otherwise just see 10940 * if we can still preempt the current task. 10941 */ 10942 if (rq->curr == p) 10943 resched_curr(rq); 10944 else 10945 check_preempt_curr(rq, p, 0); 10946 } 10947 } 10948 10949 /* Account for a task changing its policy or group. 10950 * 10951 * This routine is mostly called to set cfs_rq->curr field when a task 10952 * migrates between groups/classes. 10953 */ 10954 static void set_next_task_fair(struct rq *rq, struct task_struct *p, bool first) 10955 { 10956 struct sched_entity *se = &p->se; 10957 10958 #ifdef CONFIG_SMP 10959 if (task_on_rq_queued(p)) { 10960 /* 10961 * Move the next running task to the front of the list, so our 10962 * cfs_tasks list becomes MRU one. 10963 */ 10964 list_move(&se->group_node, &rq->cfs_tasks); 10965 } 10966 #endif 10967 10968 for_each_sched_entity(se) { 10969 struct cfs_rq *cfs_rq = cfs_rq_of(se); 10970 10971 set_next_entity(cfs_rq, se); 10972 /* ensure bandwidth has been allocated on our new cfs_rq */ 10973 account_cfs_rq_runtime(cfs_rq, 0); 10974 } 10975 } 10976 10977 void init_cfs_rq(struct cfs_rq *cfs_rq) 10978 { 10979 cfs_rq->tasks_timeline = RB_ROOT_CACHED; 10980 cfs_rq->min_vruntime = (u64)(-(1LL << 20)); 10981 #ifndef CONFIG_64BIT 10982 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime; 10983 #endif 10984 #ifdef CONFIG_SMP 10985 raw_spin_lock_init(&cfs_rq->removed.lock); 10986 #endif 10987 } 10988 10989 #ifdef CONFIG_FAIR_GROUP_SCHED 10990 static void task_set_group_fair(struct task_struct *p) 10991 { 10992 struct sched_entity *se = &p->se; 10993 10994 set_task_rq(p, task_cpu(p)); 10995 se->depth = se->parent ? se->parent->depth + 1 : 0; 10996 } 10997 10998 static void task_move_group_fair(struct task_struct *p) 10999 { 11000 detach_task_cfs_rq(p); 11001 set_task_rq(p, task_cpu(p)); 11002 11003 #ifdef CONFIG_SMP 11004 /* Tell se's cfs_rq has been changed -- migrated */ 11005 p->se.avg.last_update_time = 0; 11006 #endif 11007 attach_task_cfs_rq(p); 11008 } 11009 11010 static void task_change_group_fair(struct task_struct *p, int type) 11011 { 11012 switch (type) { 11013 case TASK_SET_GROUP: 11014 task_set_group_fair(p); 11015 break; 11016 11017 case TASK_MOVE_GROUP: 11018 task_move_group_fair(p); 11019 break; 11020 } 11021 } 11022 11023 void free_fair_sched_group(struct task_group *tg) 11024 { 11025 int i; 11026 11027 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg)); 11028 11029 for_each_possible_cpu(i) { 11030 if (tg->cfs_rq) 11031 kfree(tg->cfs_rq[i]); 11032 if (tg->se) 11033 kfree(tg->se[i]); 11034 } 11035 11036 kfree(tg->cfs_rq); 11037 kfree(tg->se); 11038 } 11039 11040 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent) 11041 { 11042 struct sched_entity *se; 11043 struct cfs_rq *cfs_rq; 11044 int i; 11045 11046 tg->cfs_rq = kcalloc(nr_cpu_ids, sizeof(cfs_rq), GFP_KERNEL); 11047 if (!tg->cfs_rq) 11048 goto err; 11049 tg->se = kcalloc(nr_cpu_ids, sizeof(se), GFP_KERNEL); 11050 if (!tg->se) 11051 goto err; 11052 11053 tg->shares = NICE_0_LOAD; 11054 11055 init_cfs_bandwidth(tg_cfs_bandwidth(tg)); 11056 11057 for_each_possible_cpu(i) { 11058 cfs_rq = kzalloc_node(sizeof(struct cfs_rq), 11059 GFP_KERNEL, cpu_to_node(i)); 11060 if (!cfs_rq) 11061 goto err; 11062 11063 se = kzalloc_node(sizeof(struct sched_entity), 11064 GFP_KERNEL, cpu_to_node(i)); 11065 if (!se) 11066 goto err_free_rq; 11067 11068 init_cfs_rq(cfs_rq); 11069 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]); 11070 init_entity_runnable_average(se); 11071 } 11072 11073 return 1; 11074 11075 err_free_rq: 11076 kfree(cfs_rq); 11077 err: 11078 return 0; 11079 } 11080 11081 void online_fair_sched_group(struct task_group *tg) 11082 { 11083 struct sched_entity *se; 11084 struct rq_flags rf; 11085 struct rq *rq; 11086 int i; 11087 11088 for_each_possible_cpu(i) { 11089 rq = cpu_rq(i); 11090 se = tg->se[i]; 11091 rq_lock_irq(rq, &rf); 11092 update_rq_clock(rq); 11093 attach_entity_cfs_rq(se); 11094 sync_throttle(tg, i); 11095 rq_unlock_irq(rq, &rf); 11096 } 11097 } 11098 11099 void unregister_fair_sched_group(struct task_group *tg) 11100 { 11101 unsigned long flags; 11102 struct rq *rq; 11103 int cpu; 11104 11105 for_each_possible_cpu(cpu) { 11106 if (tg->se[cpu]) 11107 remove_entity_load_avg(tg->se[cpu]); 11108 11109 /* 11110 * Only empty task groups can be destroyed; so we can speculatively 11111 * check on_list without danger of it being re-added. 11112 */ 11113 if (!tg->cfs_rq[cpu]->on_list) 11114 continue; 11115 11116 rq = cpu_rq(cpu); 11117 11118 raw_spin_lock_irqsave(&rq->lock, flags); 11119 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]); 11120 raw_spin_unlock_irqrestore(&rq->lock, flags); 11121 } 11122 } 11123 11124 void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq, 11125 struct sched_entity *se, int cpu, 11126 struct sched_entity *parent) 11127 { 11128 struct rq *rq = cpu_rq(cpu); 11129 11130 cfs_rq->tg = tg; 11131 cfs_rq->rq = rq; 11132 init_cfs_rq_runtime(cfs_rq); 11133 11134 tg->cfs_rq[cpu] = cfs_rq; 11135 tg->se[cpu] = se; 11136 11137 /* se could be NULL for root_task_group */ 11138 if (!se) 11139 return; 11140 11141 if (!parent) { 11142 se->cfs_rq = &rq->cfs; 11143 se->depth = 0; 11144 } else { 11145 se->cfs_rq = parent->my_q; 11146 se->depth = parent->depth + 1; 11147 } 11148 11149 se->my_q = cfs_rq; 11150 /* guarantee group entities always have weight */ 11151 update_load_set(&se->load, NICE_0_LOAD); 11152 se->parent = parent; 11153 } 11154 11155 static DEFINE_MUTEX(shares_mutex); 11156 11157 int sched_group_set_shares(struct task_group *tg, unsigned long shares) 11158 { 11159 int i; 11160 11161 /* 11162 * We can't change the weight of the root cgroup. 11163 */ 11164 if (!tg->se[0]) 11165 return -EINVAL; 11166 11167 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES)); 11168 11169 mutex_lock(&shares_mutex); 11170 if (tg->shares == shares) 11171 goto done; 11172 11173 tg->shares = shares; 11174 for_each_possible_cpu(i) { 11175 struct rq *rq = cpu_rq(i); 11176 struct sched_entity *se = tg->se[i]; 11177 struct rq_flags rf; 11178 11179 /* Propagate contribution to hierarchy */ 11180 rq_lock_irqsave(rq, &rf); 11181 update_rq_clock(rq); 11182 for_each_sched_entity(se) { 11183 update_load_avg(cfs_rq_of(se), se, UPDATE_TG); 11184 update_cfs_group(se); 11185 } 11186 rq_unlock_irqrestore(rq, &rf); 11187 } 11188 11189 done: 11190 mutex_unlock(&shares_mutex); 11191 return 0; 11192 } 11193 #else /* CONFIG_FAIR_GROUP_SCHED */ 11194 11195 void free_fair_sched_group(struct task_group *tg) { } 11196 11197 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent) 11198 { 11199 return 1; 11200 } 11201 11202 void online_fair_sched_group(struct task_group *tg) { } 11203 11204 void unregister_fair_sched_group(struct task_group *tg) { } 11205 11206 #endif /* CONFIG_FAIR_GROUP_SCHED */ 11207 11208 11209 static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task) 11210 { 11211 struct sched_entity *se = &task->se; 11212 unsigned int rr_interval = 0; 11213 11214 /* 11215 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise 11216 * idle runqueue: 11217 */ 11218 if (rq->cfs.load.weight) 11219 rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se)); 11220 11221 return rr_interval; 11222 } 11223 11224 /* 11225 * All the scheduling class methods: 11226 */ 11227 DEFINE_SCHED_CLASS(fair) = { 11228 11229 .enqueue_task = enqueue_task_fair, 11230 .dequeue_task = dequeue_task_fair, 11231 .yield_task = yield_task_fair, 11232 .yield_to_task = yield_to_task_fair, 11233 11234 .check_preempt_curr = check_preempt_wakeup, 11235 11236 .pick_next_task = __pick_next_task_fair, 11237 .put_prev_task = put_prev_task_fair, 11238 .set_next_task = set_next_task_fair, 11239 11240 #ifdef CONFIG_SMP 11241 .balance = balance_fair, 11242 .select_task_rq = select_task_rq_fair, 11243 .migrate_task_rq = migrate_task_rq_fair, 11244 11245 .rq_online = rq_online_fair, 11246 .rq_offline = rq_offline_fair, 11247 11248 .task_dead = task_dead_fair, 11249 .set_cpus_allowed = set_cpus_allowed_common, 11250 #endif 11251 11252 .task_tick = task_tick_fair, 11253 .task_fork = task_fork_fair, 11254 11255 .prio_changed = prio_changed_fair, 11256 .switched_from = switched_from_fair, 11257 .switched_to = switched_to_fair, 11258 11259 .get_rr_interval = get_rr_interval_fair, 11260 11261 .update_curr = update_curr_fair, 11262 11263 #ifdef CONFIG_FAIR_GROUP_SCHED 11264 .task_change_group = task_change_group_fair, 11265 #endif 11266 11267 #ifdef CONFIG_UCLAMP_TASK 11268 .uclamp_enabled = 1, 11269 #endif 11270 }; 11271 11272 #ifdef CONFIG_SCHED_DEBUG 11273 void print_cfs_stats(struct seq_file *m, int cpu) 11274 { 11275 struct cfs_rq *cfs_rq, *pos; 11276 11277 rcu_read_lock(); 11278 for_each_leaf_cfs_rq_safe(cpu_rq(cpu), cfs_rq, pos) 11279 print_cfs_rq(m, cpu, cfs_rq); 11280 rcu_read_unlock(); 11281 } 11282 11283 #ifdef CONFIG_NUMA_BALANCING 11284 void show_numa_stats(struct task_struct *p, struct seq_file *m) 11285 { 11286 int node; 11287 unsigned long tsf = 0, tpf = 0, gsf = 0, gpf = 0; 11288 struct numa_group *ng; 11289 11290 rcu_read_lock(); 11291 ng = rcu_dereference(p->numa_group); 11292 for_each_online_node(node) { 11293 if (p->numa_faults) { 11294 tsf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 0)]; 11295 tpf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 1)]; 11296 } 11297 if (ng) { 11298 gsf = ng->faults[task_faults_idx(NUMA_MEM, node, 0)], 11299 gpf = ng->faults[task_faults_idx(NUMA_MEM, node, 1)]; 11300 } 11301 print_numa_stats(m, node, tsf, tpf, gsf, gpf); 11302 } 11303 rcu_read_unlock(); 11304 } 11305 #endif /* CONFIG_NUMA_BALANCING */ 11306 #endif /* CONFIG_SCHED_DEBUG */ 11307 11308 __init void init_sched_fair_class(void) 11309 { 11310 #ifdef CONFIG_SMP 11311 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains); 11312 11313 #ifdef CONFIG_NO_HZ_COMMON 11314 nohz.next_balance = jiffies; 11315 nohz.next_blocked = jiffies; 11316 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT); 11317 #endif 11318 #endif /* SMP */ 11319 11320 } 11321 11322 /* 11323 * Helper functions to facilitate extracting info from tracepoints. 11324 */ 11325 11326 const struct sched_avg *sched_trace_cfs_rq_avg(struct cfs_rq *cfs_rq) 11327 { 11328 #ifdef CONFIG_SMP 11329 return cfs_rq ? &cfs_rq->avg : NULL; 11330 #else 11331 return NULL; 11332 #endif 11333 } 11334 EXPORT_SYMBOL_GPL(sched_trace_cfs_rq_avg); 11335 11336 char *sched_trace_cfs_rq_path(struct cfs_rq *cfs_rq, char *str, int len) 11337 { 11338 if (!cfs_rq) { 11339 if (str) 11340 strlcpy(str, "(null)", len); 11341 else 11342 return NULL; 11343 } 11344 11345 cfs_rq_tg_path(cfs_rq, str, len); 11346 return str; 11347 } 11348 EXPORT_SYMBOL_GPL(sched_trace_cfs_rq_path); 11349 11350 int sched_trace_cfs_rq_cpu(struct cfs_rq *cfs_rq) 11351 { 11352 return cfs_rq ? cpu_of(rq_of(cfs_rq)) : -1; 11353 } 11354 EXPORT_SYMBOL_GPL(sched_trace_cfs_rq_cpu); 11355 11356 const struct sched_avg *sched_trace_rq_avg_rt(struct rq *rq) 11357 { 11358 #ifdef CONFIG_SMP 11359 return rq ? &rq->avg_rt : NULL; 11360 #else 11361 return NULL; 11362 #endif 11363 } 11364 EXPORT_SYMBOL_GPL(sched_trace_rq_avg_rt); 11365 11366 const struct sched_avg *sched_trace_rq_avg_dl(struct rq *rq) 11367 { 11368 #ifdef CONFIG_SMP 11369 return rq ? &rq->avg_dl : NULL; 11370 #else 11371 return NULL; 11372 #endif 11373 } 11374 EXPORT_SYMBOL_GPL(sched_trace_rq_avg_dl); 11375 11376 const struct sched_avg *sched_trace_rq_avg_irq(struct rq *rq) 11377 { 11378 #if defined(CONFIG_SMP) && defined(CONFIG_HAVE_SCHED_AVG_IRQ) 11379 return rq ? &rq->avg_irq : NULL; 11380 #else 11381 return NULL; 11382 #endif 11383 } 11384 EXPORT_SYMBOL_GPL(sched_trace_rq_avg_irq); 11385 11386 int sched_trace_rq_cpu(struct rq *rq) 11387 { 11388 return rq ? cpu_of(rq) : -1; 11389 } 11390 EXPORT_SYMBOL_GPL(sched_trace_rq_cpu); 11391 11392 int sched_trace_rq_cpu_capacity(struct rq *rq) 11393 { 11394 return rq ? 11395 #ifdef CONFIG_SMP 11396 rq->cpu_capacity 11397 #else 11398 SCHED_CAPACITY_SCALE 11399 #endif 11400 : -1; 11401 } 11402 EXPORT_SYMBOL_GPL(sched_trace_rq_cpu_capacity); 11403 11404 const struct cpumask *sched_trace_rd_span(struct root_domain *rd) 11405 { 11406 #ifdef CONFIG_SMP 11407 return rd ? rd->span : NULL; 11408 #else 11409 return NULL; 11410 #endif 11411 } 11412 EXPORT_SYMBOL_GPL(sched_trace_rd_span); 11413 11414 int sched_trace_rq_nr_running(struct rq *rq) 11415 { 11416 return rq ? rq->nr_running : -1; 11417 } 11418 EXPORT_SYMBOL_GPL(sched_trace_rq_nr_running); 11419