1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH) 4 * 5 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com> 6 * 7 * Interactivity improvements by Mike Galbraith 8 * (C) 2007 Mike Galbraith <efault@gmx.de> 9 * 10 * Various enhancements by Dmitry Adamushko. 11 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com> 12 * 13 * Group scheduling enhancements by Srivatsa Vaddagiri 14 * Copyright IBM Corporation, 2007 15 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com> 16 * 17 * Scaled math optimizations by Thomas Gleixner 18 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de> 19 * 20 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra 21 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra 22 */ 23 #include "sched.h" 24 25 /* 26 * Targeted preemption latency for CPU-bound tasks: 27 * 28 * NOTE: this latency value is not the same as the concept of 29 * 'timeslice length' - timeslices in CFS are of variable length 30 * and have no persistent notion like in traditional, time-slice 31 * based scheduling concepts. 32 * 33 * (to see the precise effective timeslice length of your workload, 34 * run vmstat and monitor the context-switches (cs) field) 35 * 36 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds) 37 */ 38 unsigned int sysctl_sched_latency = 6000000ULL; 39 static unsigned int normalized_sysctl_sched_latency = 6000000ULL; 40 41 /* 42 * The initial- and re-scaling of tunables is configurable 43 * 44 * Options are: 45 * 46 * SCHED_TUNABLESCALING_NONE - unscaled, always *1 47 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus) 48 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus 49 * 50 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus)) 51 */ 52 unsigned int sysctl_sched_tunable_scaling = SCHED_TUNABLESCALING_LOG; 53 54 /* 55 * Minimal preemption granularity for CPU-bound tasks: 56 * 57 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds) 58 */ 59 unsigned int sysctl_sched_min_granularity = 750000ULL; 60 static unsigned int normalized_sysctl_sched_min_granularity = 750000ULL; 61 62 /* 63 * This value is kept at sysctl_sched_latency/sysctl_sched_min_granularity 64 */ 65 static unsigned int sched_nr_latency = 8; 66 67 /* 68 * After fork, child runs first. If set to 0 (default) then 69 * parent will (try to) run first. 70 */ 71 unsigned int sysctl_sched_child_runs_first __read_mostly; 72 73 /* 74 * SCHED_OTHER wake-up granularity. 75 * 76 * This option delays the preemption effects of decoupled workloads 77 * and reduces their over-scheduling. Synchronous workloads will still 78 * have immediate wakeup/sleep latencies. 79 * 80 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds) 81 */ 82 unsigned int sysctl_sched_wakeup_granularity = 1000000UL; 83 static unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL; 84 85 const_debug unsigned int sysctl_sched_migration_cost = 500000UL; 86 87 int sched_thermal_decay_shift; 88 static int __init setup_sched_thermal_decay_shift(char *str) 89 { 90 int _shift = 0; 91 92 if (kstrtoint(str, 0, &_shift)) 93 pr_warn("Unable to set scheduler thermal pressure decay shift parameter\n"); 94 95 sched_thermal_decay_shift = clamp(_shift, 0, 10); 96 return 1; 97 } 98 __setup("sched_thermal_decay_shift=", setup_sched_thermal_decay_shift); 99 100 #ifdef CONFIG_SMP 101 /* 102 * For asym packing, by default the lower numbered CPU has higher priority. 103 */ 104 int __weak arch_asym_cpu_priority(int cpu) 105 { 106 return -cpu; 107 } 108 109 /* 110 * The margin used when comparing utilization with CPU capacity. 111 * 112 * (default: ~20%) 113 */ 114 #define fits_capacity(cap, max) ((cap) * 1280 < (max) * 1024) 115 116 /* 117 * The margin used when comparing CPU capacities. 118 * is 'cap1' noticeably greater than 'cap2' 119 * 120 * (default: ~5%) 121 */ 122 #define capacity_greater(cap1, cap2) ((cap1) * 1024 > (cap2) * 1078) 123 #endif 124 125 #ifdef CONFIG_CFS_BANDWIDTH 126 /* 127 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool 128 * each time a cfs_rq requests quota. 129 * 130 * Note: in the case that the slice exceeds the runtime remaining (either due 131 * to consumption or the quota being specified to be smaller than the slice) 132 * we will always only issue the remaining available time. 133 * 134 * (default: 5 msec, units: microseconds) 135 */ 136 unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL; 137 #endif 138 139 static inline void update_load_add(struct load_weight *lw, unsigned long inc) 140 { 141 lw->weight += inc; 142 lw->inv_weight = 0; 143 } 144 145 static inline void update_load_sub(struct load_weight *lw, unsigned long dec) 146 { 147 lw->weight -= dec; 148 lw->inv_weight = 0; 149 } 150 151 static inline void update_load_set(struct load_weight *lw, unsigned long w) 152 { 153 lw->weight = w; 154 lw->inv_weight = 0; 155 } 156 157 /* 158 * Increase the granularity value when there are more CPUs, 159 * because with more CPUs the 'effective latency' as visible 160 * to users decreases. But the relationship is not linear, 161 * so pick a second-best guess by going with the log2 of the 162 * number of CPUs. 163 * 164 * This idea comes from the SD scheduler of Con Kolivas: 165 */ 166 static unsigned int get_update_sysctl_factor(void) 167 { 168 unsigned int cpus = min_t(unsigned int, num_online_cpus(), 8); 169 unsigned int factor; 170 171 switch (sysctl_sched_tunable_scaling) { 172 case SCHED_TUNABLESCALING_NONE: 173 factor = 1; 174 break; 175 case SCHED_TUNABLESCALING_LINEAR: 176 factor = cpus; 177 break; 178 case SCHED_TUNABLESCALING_LOG: 179 default: 180 factor = 1 + ilog2(cpus); 181 break; 182 } 183 184 return factor; 185 } 186 187 static void update_sysctl(void) 188 { 189 unsigned int factor = get_update_sysctl_factor(); 190 191 #define SET_SYSCTL(name) \ 192 (sysctl_##name = (factor) * normalized_sysctl_##name) 193 SET_SYSCTL(sched_min_granularity); 194 SET_SYSCTL(sched_latency); 195 SET_SYSCTL(sched_wakeup_granularity); 196 #undef SET_SYSCTL 197 } 198 199 void __init sched_init_granularity(void) 200 { 201 update_sysctl(); 202 } 203 204 #define WMULT_CONST (~0U) 205 #define WMULT_SHIFT 32 206 207 static void __update_inv_weight(struct load_weight *lw) 208 { 209 unsigned long w; 210 211 if (likely(lw->inv_weight)) 212 return; 213 214 w = scale_load_down(lw->weight); 215 216 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST)) 217 lw->inv_weight = 1; 218 else if (unlikely(!w)) 219 lw->inv_weight = WMULT_CONST; 220 else 221 lw->inv_weight = WMULT_CONST / w; 222 } 223 224 /* 225 * delta_exec * weight / lw.weight 226 * OR 227 * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT 228 * 229 * Either weight := NICE_0_LOAD and lw \e sched_prio_to_wmult[], in which case 230 * we're guaranteed shift stays positive because inv_weight is guaranteed to 231 * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22. 232 * 233 * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus 234 * weight/lw.weight <= 1, and therefore our shift will also be positive. 235 */ 236 static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw) 237 { 238 u64 fact = scale_load_down(weight); 239 u32 fact_hi = (u32)(fact >> 32); 240 int shift = WMULT_SHIFT; 241 int fs; 242 243 __update_inv_weight(lw); 244 245 if (unlikely(fact_hi)) { 246 fs = fls(fact_hi); 247 shift -= fs; 248 fact >>= fs; 249 } 250 251 fact = mul_u32_u32(fact, lw->inv_weight); 252 253 fact_hi = (u32)(fact >> 32); 254 if (fact_hi) { 255 fs = fls(fact_hi); 256 shift -= fs; 257 fact >>= fs; 258 } 259 260 return mul_u64_u32_shr(delta_exec, fact, shift); 261 } 262 263 264 const struct sched_class fair_sched_class; 265 266 /************************************************************** 267 * CFS operations on generic schedulable entities: 268 */ 269 270 #ifdef CONFIG_FAIR_GROUP_SCHED 271 272 /* Walk up scheduling entities hierarchy */ 273 #define for_each_sched_entity(se) \ 274 for (; se; se = se->parent) 275 276 static inline void cfs_rq_tg_path(struct cfs_rq *cfs_rq, char *path, int len) 277 { 278 if (!path) 279 return; 280 281 if (cfs_rq && task_group_is_autogroup(cfs_rq->tg)) 282 autogroup_path(cfs_rq->tg, path, len); 283 else if (cfs_rq && cfs_rq->tg->css.cgroup) 284 cgroup_path(cfs_rq->tg->css.cgroup, path, len); 285 else 286 strlcpy(path, "(null)", len); 287 } 288 289 static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq) 290 { 291 struct rq *rq = rq_of(cfs_rq); 292 int cpu = cpu_of(rq); 293 294 if (cfs_rq->on_list) 295 return rq->tmp_alone_branch == &rq->leaf_cfs_rq_list; 296 297 cfs_rq->on_list = 1; 298 299 /* 300 * Ensure we either appear before our parent (if already 301 * enqueued) or force our parent to appear after us when it is 302 * enqueued. The fact that we always enqueue bottom-up 303 * reduces this to two cases and a special case for the root 304 * cfs_rq. Furthermore, it also means that we will always reset 305 * tmp_alone_branch either when the branch is connected 306 * to a tree or when we reach the top of the tree 307 */ 308 if (cfs_rq->tg->parent && 309 cfs_rq->tg->parent->cfs_rq[cpu]->on_list) { 310 /* 311 * If parent is already on the list, we add the child 312 * just before. Thanks to circular linked property of 313 * the list, this means to put the child at the tail 314 * of the list that starts by parent. 315 */ 316 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list, 317 &(cfs_rq->tg->parent->cfs_rq[cpu]->leaf_cfs_rq_list)); 318 /* 319 * The branch is now connected to its tree so we can 320 * reset tmp_alone_branch to the beginning of the 321 * list. 322 */ 323 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list; 324 return true; 325 } 326 327 if (!cfs_rq->tg->parent) { 328 /* 329 * cfs rq without parent should be put 330 * at the tail of the list. 331 */ 332 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list, 333 &rq->leaf_cfs_rq_list); 334 /* 335 * We have reach the top of a tree so we can reset 336 * tmp_alone_branch to the beginning of the list. 337 */ 338 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list; 339 return true; 340 } 341 342 /* 343 * The parent has not already been added so we want to 344 * make sure that it will be put after us. 345 * tmp_alone_branch points to the begin of the branch 346 * where we will add parent. 347 */ 348 list_add_rcu(&cfs_rq->leaf_cfs_rq_list, rq->tmp_alone_branch); 349 /* 350 * update tmp_alone_branch to points to the new begin 351 * of the branch 352 */ 353 rq->tmp_alone_branch = &cfs_rq->leaf_cfs_rq_list; 354 return false; 355 } 356 357 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq) 358 { 359 if (cfs_rq->on_list) { 360 struct rq *rq = rq_of(cfs_rq); 361 362 /* 363 * With cfs_rq being unthrottled/throttled during an enqueue, 364 * it can happen the tmp_alone_branch points the a leaf that 365 * we finally want to del. In this case, tmp_alone_branch moves 366 * to the prev element but it will point to rq->leaf_cfs_rq_list 367 * at the end of the enqueue. 368 */ 369 if (rq->tmp_alone_branch == &cfs_rq->leaf_cfs_rq_list) 370 rq->tmp_alone_branch = cfs_rq->leaf_cfs_rq_list.prev; 371 372 list_del_rcu(&cfs_rq->leaf_cfs_rq_list); 373 cfs_rq->on_list = 0; 374 } 375 } 376 377 static inline void assert_list_leaf_cfs_rq(struct rq *rq) 378 { 379 SCHED_WARN_ON(rq->tmp_alone_branch != &rq->leaf_cfs_rq_list); 380 } 381 382 /* Iterate thr' all leaf cfs_rq's on a runqueue */ 383 #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) \ 384 list_for_each_entry_safe(cfs_rq, pos, &rq->leaf_cfs_rq_list, \ 385 leaf_cfs_rq_list) 386 387 /* Do the two (enqueued) entities belong to the same group ? */ 388 static inline struct cfs_rq * 389 is_same_group(struct sched_entity *se, struct sched_entity *pse) 390 { 391 if (se->cfs_rq == pse->cfs_rq) 392 return se->cfs_rq; 393 394 return NULL; 395 } 396 397 static inline struct sched_entity *parent_entity(struct sched_entity *se) 398 { 399 return se->parent; 400 } 401 402 static void 403 find_matching_se(struct sched_entity **se, struct sched_entity **pse) 404 { 405 int se_depth, pse_depth; 406 407 /* 408 * preemption test can be made between sibling entities who are in the 409 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of 410 * both tasks until we find their ancestors who are siblings of common 411 * parent. 412 */ 413 414 /* First walk up until both entities are at same depth */ 415 se_depth = (*se)->depth; 416 pse_depth = (*pse)->depth; 417 418 while (se_depth > pse_depth) { 419 se_depth--; 420 *se = parent_entity(*se); 421 } 422 423 while (pse_depth > se_depth) { 424 pse_depth--; 425 *pse = parent_entity(*pse); 426 } 427 428 while (!is_same_group(*se, *pse)) { 429 *se = parent_entity(*se); 430 *pse = parent_entity(*pse); 431 } 432 } 433 434 static int tg_is_idle(struct task_group *tg) 435 { 436 return tg->idle > 0; 437 } 438 439 static int cfs_rq_is_idle(struct cfs_rq *cfs_rq) 440 { 441 return cfs_rq->idle > 0; 442 } 443 444 static int se_is_idle(struct sched_entity *se) 445 { 446 if (entity_is_task(se)) 447 return task_has_idle_policy(task_of(se)); 448 return cfs_rq_is_idle(group_cfs_rq(se)); 449 } 450 451 #else /* !CONFIG_FAIR_GROUP_SCHED */ 452 453 #define for_each_sched_entity(se) \ 454 for (; se; se = NULL) 455 456 static inline void cfs_rq_tg_path(struct cfs_rq *cfs_rq, char *path, int len) 457 { 458 if (path) 459 strlcpy(path, "(null)", len); 460 } 461 462 static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq) 463 { 464 return true; 465 } 466 467 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq) 468 { 469 } 470 471 static inline void assert_list_leaf_cfs_rq(struct rq *rq) 472 { 473 } 474 475 #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) \ 476 for (cfs_rq = &rq->cfs, pos = NULL; cfs_rq; cfs_rq = pos) 477 478 static inline struct sched_entity *parent_entity(struct sched_entity *se) 479 { 480 return NULL; 481 } 482 483 static inline void 484 find_matching_se(struct sched_entity **se, struct sched_entity **pse) 485 { 486 } 487 488 static inline int tg_is_idle(struct task_group *tg) 489 { 490 return 0; 491 } 492 493 static int cfs_rq_is_idle(struct cfs_rq *cfs_rq) 494 { 495 return 0; 496 } 497 498 static int se_is_idle(struct sched_entity *se) 499 { 500 return 0; 501 } 502 503 #endif /* CONFIG_FAIR_GROUP_SCHED */ 504 505 static __always_inline 506 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec); 507 508 /************************************************************** 509 * Scheduling class tree data structure manipulation methods: 510 */ 511 512 static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime) 513 { 514 s64 delta = (s64)(vruntime - max_vruntime); 515 if (delta > 0) 516 max_vruntime = vruntime; 517 518 return max_vruntime; 519 } 520 521 static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime) 522 { 523 s64 delta = (s64)(vruntime - min_vruntime); 524 if (delta < 0) 525 min_vruntime = vruntime; 526 527 return min_vruntime; 528 } 529 530 static inline bool entity_before(struct sched_entity *a, 531 struct sched_entity *b) 532 { 533 return (s64)(a->vruntime - b->vruntime) < 0; 534 } 535 536 #define __node_2_se(node) \ 537 rb_entry((node), struct sched_entity, run_node) 538 539 static void update_min_vruntime(struct cfs_rq *cfs_rq) 540 { 541 struct sched_entity *curr = cfs_rq->curr; 542 struct rb_node *leftmost = rb_first_cached(&cfs_rq->tasks_timeline); 543 544 u64 vruntime = cfs_rq->min_vruntime; 545 546 if (curr) { 547 if (curr->on_rq) 548 vruntime = curr->vruntime; 549 else 550 curr = NULL; 551 } 552 553 if (leftmost) { /* non-empty tree */ 554 struct sched_entity *se = __node_2_se(leftmost); 555 556 if (!curr) 557 vruntime = se->vruntime; 558 else 559 vruntime = min_vruntime(vruntime, se->vruntime); 560 } 561 562 /* ensure we never gain time by being placed backwards. */ 563 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime); 564 #ifndef CONFIG_64BIT 565 smp_wmb(); 566 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime; 567 #endif 568 } 569 570 static inline bool __entity_less(struct rb_node *a, const struct rb_node *b) 571 { 572 return entity_before(__node_2_se(a), __node_2_se(b)); 573 } 574 575 /* 576 * Enqueue an entity into the rb-tree: 577 */ 578 static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) 579 { 580 rb_add_cached(&se->run_node, &cfs_rq->tasks_timeline, __entity_less); 581 } 582 583 static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) 584 { 585 rb_erase_cached(&se->run_node, &cfs_rq->tasks_timeline); 586 } 587 588 struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq) 589 { 590 struct rb_node *left = rb_first_cached(&cfs_rq->tasks_timeline); 591 592 if (!left) 593 return NULL; 594 595 return __node_2_se(left); 596 } 597 598 static struct sched_entity *__pick_next_entity(struct sched_entity *se) 599 { 600 struct rb_node *next = rb_next(&se->run_node); 601 602 if (!next) 603 return NULL; 604 605 return __node_2_se(next); 606 } 607 608 #ifdef CONFIG_SCHED_DEBUG 609 struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq) 610 { 611 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline.rb_root); 612 613 if (!last) 614 return NULL; 615 616 return __node_2_se(last); 617 } 618 619 /************************************************************** 620 * Scheduling class statistics methods: 621 */ 622 623 int sched_update_scaling(void) 624 { 625 unsigned int factor = get_update_sysctl_factor(); 626 627 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency, 628 sysctl_sched_min_granularity); 629 630 #define WRT_SYSCTL(name) \ 631 (normalized_sysctl_##name = sysctl_##name / (factor)) 632 WRT_SYSCTL(sched_min_granularity); 633 WRT_SYSCTL(sched_latency); 634 WRT_SYSCTL(sched_wakeup_granularity); 635 #undef WRT_SYSCTL 636 637 return 0; 638 } 639 #endif 640 641 /* 642 * delta /= w 643 */ 644 static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se) 645 { 646 if (unlikely(se->load.weight != NICE_0_LOAD)) 647 delta = __calc_delta(delta, NICE_0_LOAD, &se->load); 648 649 return delta; 650 } 651 652 /* 653 * The idea is to set a period in which each task runs once. 654 * 655 * When there are too many tasks (sched_nr_latency) we have to stretch 656 * this period because otherwise the slices get too small. 657 * 658 * p = (nr <= nl) ? l : l*nr/nl 659 */ 660 static u64 __sched_period(unsigned long nr_running) 661 { 662 if (unlikely(nr_running > sched_nr_latency)) 663 return nr_running * sysctl_sched_min_granularity; 664 else 665 return sysctl_sched_latency; 666 } 667 668 /* 669 * We calculate the wall-time slice from the period by taking a part 670 * proportional to the weight. 671 * 672 * s = p*P[w/rw] 673 */ 674 static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se) 675 { 676 unsigned int nr_running = cfs_rq->nr_running; 677 u64 slice; 678 679 if (sched_feat(ALT_PERIOD)) 680 nr_running = rq_of(cfs_rq)->cfs.h_nr_running; 681 682 slice = __sched_period(nr_running + !se->on_rq); 683 684 for_each_sched_entity(se) { 685 struct load_weight *load; 686 struct load_weight lw; 687 688 cfs_rq = cfs_rq_of(se); 689 load = &cfs_rq->load; 690 691 if (unlikely(!se->on_rq)) { 692 lw = cfs_rq->load; 693 694 update_load_add(&lw, se->load.weight); 695 load = &lw; 696 } 697 slice = __calc_delta(slice, se->load.weight, load); 698 } 699 700 if (sched_feat(BASE_SLICE)) 701 slice = max(slice, (u64)sysctl_sched_min_granularity); 702 703 return slice; 704 } 705 706 /* 707 * We calculate the vruntime slice of a to-be-inserted task. 708 * 709 * vs = s/w 710 */ 711 static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se) 712 { 713 return calc_delta_fair(sched_slice(cfs_rq, se), se); 714 } 715 716 #include "pelt.h" 717 #ifdef CONFIG_SMP 718 719 static int select_idle_sibling(struct task_struct *p, int prev_cpu, int cpu); 720 static unsigned long task_h_load(struct task_struct *p); 721 static unsigned long capacity_of(int cpu); 722 723 /* Give new sched_entity start runnable values to heavy its load in infant time */ 724 void init_entity_runnable_average(struct sched_entity *se) 725 { 726 struct sched_avg *sa = &se->avg; 727 728 memset(sa, 0, sizeof(*sa)); 729 730 /* 731 * Tasks are initialized with full load to be seen as heavy tasks until 732 * they get a chance to stabilize to their real load level. 733 * Group entities are initialized with zero load to reflect the fact that 734 * nothing has been attached to the task group yet. 735 */ 736 if (entity_is_task(se)) 737 sa->load_avg = scale_load_down(se->load.weight); 738 739 /* when this task enqueue'ed, it will contribute to its cfs_rq's load_avg */ 740 } 741 742 static void attach_entity_cfs_rq(struct sched_entity *se); 743 744 /* 745 * With new tasks being created, their initial util_avgs are extrapolated 746 * based on the cfs_rq's current util_avg: 747 * 748 * util_avg = cfs_rq->util_avg / (cfs_rq->load_avg + 1) * se.load.weight 749 * 750 * However, in many cases, the above util_avg does not give a desired 751 * value. Moreover, the sum of the util_avgs may be divergent, such 752 * as when the series is a harmonic series. 753 * 754 * To solve this problem, we also cap the util_avg of successive tasks to 755 * only 1/2 of the left utilization budget: 756 * 757 * util_avg_cap = (cpu_scale - cfs_rq->avg.util_avg) / 2^n 758 * 759 * where n denotes the nth task and cpu_scale the CPU capacity. 760 * 761 * For example, for a CPU with 1024 of capacity, a simplest series from 762 * the beginning would be like: 763 * 764 * task util_avg: 512, 256, 128, 64, 32, 16, 8, ... 765 * cfs_rq util_avg: 512, 768, 896, 960, 992, 1008, 1016, ... 766 * 767 * Finally, that extrapolated util_avg is clamped to the cap (util_avg_cap) 768 * if util_avg > util_avg_cap. 769 */ 770 void post_init_entity_util_avg(struct task_struct *p) 771 { 772 struct sched_entity *se = &p->se; 773 struct cfs_rq *cfs_rq = cfs_rq_of(se); 774 struct sched_avg *sa = &se->avg; 775 long cpu_scale = arch_scale_cpu_capacity(cpu_of(rq_of(cfs_rq))); 776 long cap = (long)(cpu_scale - cfs_rq->avg.util_avg) / 2; 777 778 if (cap > 0) { 779 if (cfs_rq->avg.util_avg != 0) { 780 sa->util_avg = cfs_rq->avg.util_avg * se->load.weight; 781 sa->util_avg /= (cfs_rq->avg.load_avg + 1); 782 783 if (sa->util_avg > cap) 784 sa->util_avg = cap; 785 } else { 786 sa->util_avg = cap; 787 } 788 } 789 790 sa->runnable_avg = sa->util_avg; 791 792 if (p->sched_class != &fair_sched_class) { 793 /* 794 * For !fair tasks do: 795 * 796 update_cfs_rq_load_avg(now, cfs_rq); 797 attach_entity_load_avg(cfs_rq, se); 798 switched_from_fair(rq, p); 799 * 800 * such that the next switched_to_fair() has the 801 * expected state. 802 */ 803 se->avg.last_update_time = cfs_rq_clock_pelt(cfs_rq); 804 return; 805 } 806 807 attach_entity_cfs_rq(se); 808 } 809 810 #else /* !CONFIG_SMP */ 811 void init_entity_runnable_average(struct sched_entity *se) 812 { 813 } 814 void post_init_entity_util_avg(struct task_struct *p) 815 { 816 } 817 static void update_tg_load_avg(struct cfs_rq *cfs_rq) 818 { 819 } 820 #endif /* CONFIG_SMP */ 821 822 /* 823 * Update the current task's runtime statistics. 824 */ 825 static void update_curr(struct cfs_rq *cfs_rq) 826 { 827 struct sched_entity *curr = cfs_rq->curr; 828 u64 now = rq_clock_task(rq_of(cfs_rq)); 829 u64 delta_exec; 830 831 if (unlikely(!curr)) 832 return; 833 834 delta_exec = now - curr->exec_start; 835 if (unlikely((s64)delta_exec <= 0)) 836 return; 837 838 curr->exec_start = now; 839 840 schedstat_set(curr->statistics.exec_max, 841 max(delta_exec, curr->statistics.exec_max)); 842 843 curr->sum_exec_runtime += delta_exec; 844 schedstat_add(cfs_rq->exec_clock, delta_exec); 845 846 curr->vruntime += calc_delta_fair(delta_exec, curr); 847 update_min_vruntime(cfs_rq); 848 849 if (entity_is_task(curr)) { 850 struct task_struct *curtask = task_of(curr); 851 852 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime); 853 cgroup_account_cputime(curtask, delta_exec); 854 account_group_exec_runtime(curtask, delta_exec); 855 } 856 857 account_cfs_rq_runtime(cfs_rq, delta_exec); 858 } 859 860 static void update_curr_fair(struct rq *rq) 861 { 862 update_curr(cfs_rq_of(&rq->curr->se)); 863 } 864 865 static inline void 866 update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se) 867 { 868 u64 wait_start, prev_wait_start; 869 870 if (!schedstat_enabled()) 871 return; 872 873 wait_start = rq_clock(rq_of(cfs_rq)); 874 prev_wait_start = schedstat_val(se->statistics.wait_start); 875 876 if (entity_is_task(se) && task_on_rq_migrating(task_of(se)) && 877 likely(wait_start > prev_wait_start)) 878 wait_start -= prev_wait_start; 879 880 __schedstat_set(se->statistics.wait_start, wait_start); 881 } 882 883 static inline void 884 update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se) 885 { 886 struct task_struct *p; 887 u64 delta; 888 889 if (!schedstat_enabled()) 890 return; 891 892 /* 893 * When the sched_schedstat changes from 0 to 1, some sched se 894 * maybe already in the runqueue, the se->statistics.wait_start 895 * will be 0.So it will let the delta wrong. We need to avoid this 896 * scenario. 897 */ 898 if (unlikely(!schedstat_val(se->statistics.wait_start))) 899 return; 900 901 delta = rq_clock(rq_of(cfs_rq)) - schedstat_val(se->statistics.wait_start); 902 903 if (entity_is_task(se)) { 904 p = task_of(se); 905 if (task_on_rq_migrating(p)) { 906 /* 907 * Preserve migrating task's wait time so wait_start 908 * time stamp can be adjusted to accumulate wait time 909 * prior to migration. 910 */ 911 __schedstat_set(se->statistics.wait_start, delta); 912 return; 913 } 914 trace_sched_stat_wait(p, delta); 915 } 916 917 __schedstat_set(se->statistics.wait_max, 918 max(schedstat_val(se->statistics.wait_max), delta)); 919 __schedstat_inc(se->statistics.wait_count); 920 __schedstat_add(se->statistics.wait_sum, delta); 921 __schedstat_set(se->statistics.wait_start, 0); 922 } 923 924 static inline void 925 update_stats_enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se) 926 { 927 struct task_struct *tsk = NULL; 928 u64 sleep_start, block_start; 929 930 if (!schedstat_enabled()) 931 return; 932 933 sleep_start = schedstat_val(se->statistics.sleep_start); 934 block_start = schedstat_val(se->statistics.block_start); 935 936 if (entity_is_task(se)) 937 tsk = task_of(se); 938 939 if (sleep_start) { 940 u64 delta = rq_clock(rq_of(cfs_rq)) - sleep_start; 941 942 if ((s64)delta < 0) 943 delta = 0; 944 945 if (unlikely(delta > schedstat_val(se->statistics.sleep_max))) 946 __schedstat_set(se->statistics.sleep_max, delta); 947 948 __schedstat_set(se->statistics.sleep_start, 0); 949 __schedstat_add(se->statistics.sum_sleep_runtime, delta); 950 951 if (tsk) { 952 account_scheduler_latency(tsk, delta >> 10, 1); 953 trace_sched_stat_sleep(tsk, delta); 954 } 955 } 956 if (block_start) { 957 u64 delta = rq_clock(rq_of(cfs_rq)) - block_start; 958 959 if ((s64)delta < 0) 960 delta = 0; 961 962 if (unlikely(delta > schedstat_val(se->statistics.block_max))) 963 __schedstat_set(se->statistics.block_max, delta); 964 965 __schedstat_set(se->statistics.block_start, 0); 966 __schedstat_add(se->statistics.sum_sleep_runtime, delta); 967 968 if (tsk) { 969 if (tsk->in_iowait) { 970 __schedstat_add(se->statistics.iowait_sum, delta); 971 __schedstat_inc(se->statistics.iowait_count); 972 trace_sched_stat_iowait(tsk, delta); 973 } 974 975 trace_sched_stat_blocked(tsk, delta); 976 977 /* 978 * Blocking time is in units of nanosecs, so shift by 979 * 20 to get a milliseconds-range estimation of the 980 * amount of time that the task spent sleeping: 981 */ 982 if (unlikely(prof_on == SLEEP_PROFILING)) { 983 profile_hits(SLEEP_PROFILING, 984 (void *)get_wchan(tsk), 985 delta >> 20); 986 } 987 account_scheduler_latency(tsk, delta >> 10, 0); 988 } 989 } 990 } 991 992 /* 993 * Task is being enqueued - update stats: 994 */ 995 static inline void 996 update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 997 { 998 if (!schedstat_enabled()) 999 return; 1000 1001 /* 1002 * Are we enqueueing a waiting task? (for current tasks 1003 * a dequeue/enqueue event is a NOP) 1004 */ 1005 if (se != cfs_rq->curr) 1006 update_stats_wait_start(cfs_rq, se); 1007 1008 if (flags & ENQUEUE_WAKEUP) 1009 update_stats_enqueue_sleeper(cfs_rq, se); 1010 } 1011 1012 static inline void 1013 update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 1014 { 1015 1016 if (!schedstat_enabled()) 1017 return; 1018 1019 /* 1020 * Mark the end of the wait period if dequeueing a 1021 * waiting task: 1022 */ 1023 if (se != cfs_rq->curr) 1024 update_stats_wait_end(cfs_rq, se); 1025 1026 if ((flags & DEQUEUE_SLEEP) && entity_is_task(se)) { 1027 struct task_struct *tsk = task_of(se); 1028 unsigned int state; 1029 1030 /* XXX racy against TTWU */ 1031 state = READ_ONCE(tsk->__state); 1032 if (state & TASK_INTERRUPTIBLE) 1033 __schedstat_set(se->statistics.sleep_start, 1034 rq_clock(rq_of(cfs_rq))); 1035 if (state & TASK_UNINTERRUPTIBLE) 1036 __schedstat_set(se->statistics.block_start, 1037 rq_clock(rq_of(cfs_rq))); 1038 } 1039 } 1040 1041 /* 1042 * We are picking a new current task - update its stats: 1043 */ 1044 static inline void 1045 update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se) 1046 { 1047 /* 1048 * We are starting a new run period: 1049 */ 1050 se->exec_start = rq_clock_task(rq_of(cfs_rq)); 1051 } 1052 1053 /************************************************** 1054 * Scheduling class queueing methods: 1055 */ 1056 1057 #ifdef CONFIG_NUMA_BALANCING 1058 /* 1059 * Approximate time to scan a full NUMA task in ms. The task scan period is 1060 * calculated based on the tasks virtual memory size and 1061 * numa_balancing_scan_size. 1062 */ 1063 unsigned int sysctl_numa_balancing_scan_period_min = 1000; 1064 unsigned int sysctl_numa_balancing_scan_period_max = 60000; 1065 1066 /* Portion of address space to scan in MB */ 1067 unsigned int sysctl_numa_balancing_scan_size = 256; 1068 1069 /* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */ 1070 unsigned int sysctl_numa_balancing_scan_delay = 1000; 1071 1072 struct numa_group { 1073 refcount_t refcount; 1074 1075 spinlock_t lock; /* nr_tasks, tasks */ 1076 int nr_tasks; 1077 pid_t gid; 1078 int active_nodes; 1079 1080 struct rcu_head rcu; 1081 unsigned long total_faults; 1082 unsigned long max_faults_cpu; 1083 /* 1084 * Faults_cpu is used to decide whether memory should move 1085 * towards the CPU. As a consequence, these stats are weighted 1086 * more by CPU use than by memory faults. 1087 */ 1088 unsigned long *faults_cpu; 1089 unsigned long faults[]; 1090 }; 1091 1092 /* 1093 * For functions that can be called in multiple contexts that permit reading 1094 * ->numa_group (see struct task_struct for locking rules). 1095 */ 1096 static struct numa_group *deref_task_numa_group(struct task_struct *p) 1097 { 1098 return rcu_dereference_check(p->numa_group, p == current || 1099 (lockdep_is_held(__rq_lockp(task_rq(p))) && !READ_ONCE(p->on_cpu))); 1100 } 1101 1102 static struct numa_group *deref_curr_numa_group(struct task_struct *p) 1103 { 1104 return rcu_dereference_protected(p->numa_group, p == current); 1105 } 1106 1107 static inline unsigned long group_faults_priv(struct numa_group *ng); 1108 static inline unsigned long group_faults_shared(struct numa_group *ng); 1109 1110 static unsigned int task_nr_scan_windows(struct task_struct *p) 1111 { 1112 unsigned long rss = 0; 1113 unsigned long nr_scan_pages; 1114 1115 /* 1116 * Calculations based on RSS as non-present and empty pages are skipped 1117 * by the PTE scanner and NUMA hinting faults should be trapped based 1118 * on resident pages 1119 */ 1120 nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT); 1121 rss = get_mm_rss(p->mm); 1122 if (!rss) 1123 rss = nr_scan_pages; 1124 1125 rss = round_up(rss, nr_scan_pages); 1126 return rss / nr_scan_pages; 1127 } 1128 1129 /* For sanity's sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */ 1130 #define MAX_SCAN_WINDOW 2560 1131 1132 static unsigned int task_scan_min(struct task_struct *p) 1133 { 1134 unsigned int scan_size = READ_ONCE(sysctl_numa_balancing_scan_size); 1135 unsigned int scan, floor; 1136 unsigned int windows = 1; 1137 1138 if (scan_size < MAX_SCAN_WINDOW) 1139 windows = MAX_SCAN_WINDOW / scan_size; 1140 floor = 1000 / windows; 1141 1142 scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p); 1143 return max_t(unsigned int, floor, scan); 1144 } 1145 1146 static unsigned int task_scan_start(struct task_struct *p) 1147 { 1148 unsigned long smin = task_scan_min(p); 1149 unsigned long period = smin; 1150 struct numa_group *ng; 1151 1152 /* Scale the maximum scan period with the amount of shared memory. */ 1153 rcu_read_lock(); 1154 ng = rcu_dereference(p->numa_group); 1155 if (ng) { 1156 unsigned long shared = group_faults_shared(ng); 1157 unsigned long private = group_faults_priv(ng); 1158 1159 period *= refcount_read(&ng->refcount); 1160 period *= shared + 1; 1161 period /= private + shared + 1; 1162 } 1163 rcu_read_unlock(); 1164 1165 return max(smin, period); 1166 } 1167 1168 static unsigned int task_scan_max(struct task_struct *p) 1169 { 1170 unsigned long smin = task_scan_min(p); 1171 unsigned long smax; 1172 struct numa_group *ng; 1173 1174 /* Watch for min being lower than max due to floor calculations */ 1175 smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p); 1176 1177 /* Scale the maximum scan period with the amount of shared memory. */ 1178 ng = deref_curr_numa_group(p); 1179 if (ng) { 1180 unsigned long shared = group_faults_shared(ng); 1181 unsigned long private = group_faults_priv(ng); 1182 unsigned long period = smax; 1183 1184 period *= refcount_read(&ng->refcount); 1185 period *= shared + 1; 1186 period /= private + shared + 1; 1187 1188 smax = max(smax, period); 1189 } 1190 1191 return max(smin, smax); 1192 } 1193 1194 static void account_numa_enqueue(struct rq *rq, struct task_struct *p) 1195 { 1196 rq->nr_numa_running += (p->numa_preferred_nid != NUMA_NO_NODE); 1197 rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p)); 1198 } 1199 1200 static void account_numa_dequeue(struct rq *rq, struct task_struct *p) 1201 { 1202 rq->nr_numa_running -= (p->numa_preferred_nid != NUMA_NO_NODE); 1203 rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p)); 1204 } 1205 1206 /* Shared or private faults. */ 1207 #define NR_NUMA_HINT_FAULT_TYPES 2 1208 1209 /* Memory and CPU locality */ 1210 #define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2) 1211 1212 /* Averaged statistics, and temporary buffers. */ 1213 #define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2) 1214 1215 pid_t task_numa_group_id(struct task_struct *p) 1216 { 1217 struct numa_group *ng; 1218 pid_t gid = 0; 1219 1220 rcu_read_lock(); 1221 ng = rcu_dereference(p->numa_group); 1222 if (ng) 1223 gid = ng->gid; 1224 rcu_read_unlock(); 1225 1226 return gid; 1227 } 1228 1229 /* 1230 * The averaged statistics, shared & private, memory & CPU, 1231 * occupy the first half of the array. The second half of the 1232 * array is for current counters, which are averaged into the 1233 * first set by task_numa_placement. 1234 */ 1235 static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv) 1236 { 1237 return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv; 1238 } 1239 1240 static inline unsigned long task_faults(struct task_struct *p, int nid) 1241 { 1242 if (!p->numa_faults) 1243 return 0; 1244 1245 return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] + 1246 p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)]; 1247 } 1248 1249 static inline unsigned long group_faults(struct task_struct *p, int nid) 1250 { 1251 struct numa_group *ng = deref_task_numa_group(p); 1252 1253 if (!ng) 1254 return 0; 1255 1256 return ng->faults[task_faults_idx(NUMA_MEM, nid, 0)] + 1257 ng->faults[task_faults_idx(NUMA_MEM, nid, 1)]; 1258 } 1259 1260 static inline unsigned long group_faults_cpu(struct numa_group *group, int nid) 1261 { 1262 return group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 0)] + 1263 group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 1)]; 1264 } 1265 1266 static inline unsigned long group_faults_priv(struct numa_group *ng) 1267 { 1268 unsigned long faults = 0; 1269 int node; 1270 1271 for_each_online_node(node) { 1272 faults += ng->faults[task_faults_idx(NUMA_MEM, node, 1)]; 1273 } 1274 1275 return faults; 1276 } 1277 1278 static inline unsigned long group_faults_shared(struct numa_group *ng) 1279 { 1280 unsigned long faults = 0; 1281 int node; 1282 1283 for_each_online_node(node) { 1284 faults += ng->faults[task_faults_idx(NUMA_MEM, node, 0)]; 1285 } 1286 1287 return faults; 1288 } 1289 1290 /* 1291 * A node triggering more than 1/3 as many NUMA faults as the maximum is 1292 * considered part of a numa group's pseudo-interleaving set. Migrations 1293 * between these nodes are slowed down, to allow things to settle down. 1294 */ 1295 #define ACTIVE_NODE_FRACTION 3 1296 1297 static bool numa_is_active_node(int nid, struct numa_group *ng) 1298 { 1299 return group_faults_cpu(ng, nid) * ACTIVE_NODE_FRACTION > ng->max_faults_cpu; 1300 } 1301 1302 /* Handle placement on systems where not all nodes are directly connected. */ 1303 static unsigned long score_nearby_nodes(struct task_struct *p, int nid, 1304 int maxdist, bool task) 1305 { 1306 unsigned long score = 0; 1307 int node; 1308 1309 /* 1310 * All nodes are directly connected, and the same distance 1311 * from each other. No need for fancy placement algorithms. 1312 */ 1313 if (sched_numa_topology_type == NUMA_DIRECT) 1314 return 0; 1315 1316 /* 1317 * This code is called for each node, introducing N^2 complexity, 1318 * which should be ok given the number of nodes rarely exceeds 8. 1319 */ 1320 for_each_online_node(node) { 1321 unsigned long faults; 1322 int dist = node_distance(nid, node); 1323 1324 /* 1325 * The furthest away nodes in the system are not interesting 1326 * for placement; nid was already counted. 1327 */ 1328 if (dist == sched_max_numa_distance || node == nid) 1329 continue; 1330 1331 /* 1332 * On systems with a backplane NUMA topology, compare groups 1333 * of nodes, and move tasks towards the group with the most 1334 * memory accesses. When comparing two nodes at distance 1335 * "hoplimit", only nodes closer by than "hoplimit" are part 1336 * of each group. Skip other nodes. 1337 */ 1338 if (sched_numa_topology_type == NUMA_BACKPLANE && 1339 dist >= maxdist) 1340 continue; 1341 1342 /* Add up the faults from nearby nodes. */ 1343 if (task) 1344 faults = task_faults(p, node); 1345 else 1346 faults = group_faults(p, node); 1347 1348 /* 1349 * On systems with a glueless mesh NUMA topology, there are 1350 * no fixed "groups of nodes". Instead, nodes that are not 1351 * directly connected bounce traffic through intermediate 1352 * nodes; a numa_group can occupy any set of nodes. 1353 * The further away a node is, the less the faults count. 1354 * This seems to result in good task placement. 1355 */ 1356 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) { 1357 faults *= (sched_max_numa_distance - dist); 1358 faults /= (sched_max_numa_distance - LOCAL_DISTANCE); 1359 } 1360 1361 score += faults; 1362 } 1363 1364 return score; 1365 } 1366 1367 /* 1368 * These return the fraction of accesses done by a particular task, or 1369 * task group, on a particular numa node. The group weight is given a 1370 * larger multiplier, in order to group tasks together that are almost 1371 * evenly spread out between numa nodes. 1372 */ 1373 static inline unsigned long task_weight(struct task_struct *p, int nid, 1374 int dist) 1375 { 1376 unsigned long faults, total_faults; 1377 1378 if (!p->numa_faults) 1379 return 0; 1380 1381 total_faults = p->total_numa_faults; 1382 1383 if (!total_faults) 1384 return 0; 1385 1386 faults = task_faults(p, nid); 1387 faults += score_nearby_nodes(p, nid, dist, true); 1388 1389 return 1000 * faults / total_faults; 1390 } 1391 1392 static inline unsigned long group_weight(struct task_struct *p, int nid, 1393 int dist) 1394 { 1395 struct numa_group *ng = deref_task_numa_group(p); 1396 unsigned long faults, total_faults; 1397 1398 if (!ng) 1399 return 0; 1400 1401 total_faults = ng->total_faults; 1402 1403 if (!total_faults) 1404 return 0; 1405 1406 faults = group_faults(p, nid); 1407 faults += score_nearby_nodes(p, nid, dist, false); 1408 1409 return 1000 * faults / total_faults; 1410 } 1411 1412 bool should_numa_migrate_memory(struct task_struct *p, struct page * page, 1413 int src_nid, int dst_cpu) 1414 { 1415 struct numa_group *ng = deref_curr_numa_group(p); 1416 int dst_nid = cpu_to_node(dst_cpu); 1417 int last_cpupid, this_cpupid; 1418 1419 this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid); 1420 last_cpupid = page_cpupid_xchg_last(page, this_cpupid); 1421 1422 /* 1423 * Allow first faults or private faults to migrate immediately early in 1424 * the lifetime of a task. The magic number 4 is based on waiting for 1425 * two full passes of the "multi-stage node selection" test that is 1426 * executed below. 1427 */ 1428 if ((p->numa_preferred_nid == NUMA_NO_NODE || p->numa_scan_seq <= 4) && 1429 (cpupid_pid_unset(last_cpupid) || cpupid_match_pid(p, last_cpupid))) 1430 return true; 1431 1432 /* 1433 * Multi-stage node selection is used in conjunction with a periodic 1434 * migration fault to build a temporal task<->page relation. By using 1435 * a two-stage filter we remove short/unlikely relations. 1436 * 1437 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate 1438 * a task's usage of a particular page (n_p) per total usage of this 1439 * page (n_t) (in a given time-span) to a probability. 1440 * 1441 * Our periodic faults will sample this probability and getting the 1442 * same result twice in a row, given these samples are fully 1443 * independent, is then given by P(n)^2, provided our sample period 1444 * is sufficiently short compared to the usage pattern. 1445 * 1446 * This quadric squishes small probabilities, making it less likely we 1447 * act on an unlikely task<->page relation. 1448 */ 1449 if (!cpupid_pid_unset(last_cpupid) && 1450 cpupid_to_nid(last_cpupid) != dst_nid) 1451 return false; 1452 1453 /* Always allow migrate on private faults */ 1454 if (cpupid_match_pid(p, last_cpupid)) 1455 return true; 1456 1457 /* A shared fault, but p->numa_group has not been set up yet. */ 1458 if (!ng) 1459 return true; 1460 1461 /* 1462 * Destination node is much more heavily used than the source 1463 * node? Allow migration. 1464 */ 1465 if (group_faults_cpu(ng, dst_nid) > group_faults_cpu(ng, src_nid) * 1466 ACTIVE_NODE_FRACTION) 1467 return true; 1468 1469 /* 1470 * Distribute memory according to CPU & memory use on each node, 1471 * with 3/4 hysteresis to avoid unnecessary memory migrations: 1472 * 1473 * faults_cpu(dst) 3 faults_cpu(src) 1474 * --------------- * - > --------------- 1475 * faults_mem(dst) 4 faults_mem(src) 1476 */ 1477 return group_faults_cpu(ng, dst_nid) * group_faults(p, src_nid) * 3 > 1478 group_faults_cpu(ng, src_nid) * group_faults(p, dst_nid) * 4; 1479 } 1480 1481 /* 1482 * 'numa_type' describes the node at the moment of load balancing. 1483 */ 1484 enum numa_type { 1485 /* The node has spare capacity that can be used to run more tasks. */ 1486 node_has_spare = 0, 1487 /* 1488 * The node is fully used and the tasks don't compete for more CPU 1489 * cycles. Nevertheless, some tasks might wait before running. 1490 */ 1491 node_fully_busy, 1492 /* 1493 * The node is overloaded and can't provide expected CPU cycles to all 1494 * tasks. 1495 */ 1496 node_overloaded 1497 }; 1498 1499 /* Cached statistics for all CPUs within a node */ 1500 struct numa_stats { 1501 unsigned long load; 1502 unsigned long runnable; 1503 unsigned long util; 1504 /* Total compute capacity of CPUs on a node */ 1505 unsigned long compute_capacity; 1506 unsigned int nr_running; 1507 unsigned int weight; 1508 enum numa_type node_type; 1509 int idle_cpu; 1510 }; 1511 1512 static inline bool is_core_idle(int cpu) 1513 { 1514 #ifdef CONFIG_SCHED_SMT 1515 int sibling; 1516 1517 for_each_cpu(sibling, cpu_smt_mask(cpu)) { 1518 if (cpu == sibling) 1519 continue; 1520 1521 if (!idle_cpu(sibling)) 1522 return false; 1523 } 1524 #endif 1525 1526 return true; 1527 } 1528 1529 struct task_numa_env { 1530 struct task_struct *p; 1531 1532 int src_cpu, src_nid; 1533 int dst_cpu, dst_nid; 1534 1535 struct numa_stats src_stats, dst_stats; 1536 1537 int imbalance_pct; 1538 int dist; 1539 1540 struct task_struct *best_task; 1541 long best_imp; 1542 int best_cpu; 1543 }; 1544 1545 static unsigned long cpu_load(struct rq *rq); 1546 static unsigned long cpu_runnable(struct rq *rq); 1547 static unsigned long cpu_util(int cpu); 1548 static inline long adjust_numa_imbalance(int imbalance, 1549 int dst_running, int dst_weight); 1550 1551 static inline enum 1552 numa_type numa_classify(unsigned int imbalance_pct, 1553 struct numa_stats *ns) 1554 { 1555 if ((ns->nr_running > ns->weight) && 1556 (((ns->compute_capacity * 100) < (ns->util * imbalance_pct)) || 1557 ((ns->compute_capacity * imbalance_pct) < (ns->runnable * 100)))) 1558 return node_overloaded; 1559 1560 if ((ns->nr_running < ns->weight) || 1561 (((ns->compute_capacity * 100) > (ns->util * imbalance_pct)) && 1562 ((ns->compute_capacity * imbalance_pct) > (ns->runnable * 100)))) 1563 return node_has_spare; 1564 1565 return node_fully_busy; 1566 } 1567 1568 #ifdef CONFIG_SCHED_SMT 1569 /* Forward declarations of select_idle_sibling helpers */ 1570 static inline bool test_idle_cores(int cpu, bool def); 1571 static inline int numa_idle_core(int idle_core, int cpu) 1572 { 1573 if (!static_branch_likely(&sched_smt_present) || 1574 idle_core >= 0 || !test_idle_cores(cpu, false)) 1575 return idle_core; 1576 1577 /* 1578 * Prefer cores instead of packing HT siblings 1579 * and triggering future load balancing. 1580 */ 1581 if (is_core_idle(cpu)) 1582 idle_core = cpu; 1583 1584 return idle_core; 1585 } 1586 #else 1587 static inline int numa_idle_core(int idle_core, int cpu) 1588 { 1589 return idle_core; 1590 } 1591 #endif 1592 1593 /* 1594 * Gather all necessary information to make NUMA balancing placement 1595 * decisions that are compatible with standard load balancer. This 1596 * borrows code and logic from update_sg_lb_stats but sharing a 1597 * common implementation is impractical. 1598 */ 1599 static void update_numa_stats(struct task_numa_env *env, 1600 struct numa_stats *ns, int nid, 1601 bool find_idle) 1602 { 1603 int cpu, idle_core = -1; 1604 1605 memset(ns, 0, sizeof(*ns)); 1606 ns->idle_cpu = -1; 1607 1608 rcu_read_lock(); 1609 for_each_cpu(cpu, cpumask_of_node(nid)) { 1610 struct rq *rq = cpu_rq(cpu); 1611 1612 ns->load += cpu_load(rq); 1613 ns->runnable += cpu_runnable(rq); 1614 ns->util += cpu_util(cpu); 1615 ns->nr_running += rq->cfs.h_nr_running; 1616 ns->compute_capacity += capacity_of(cpu); 1617 1618 if (find_idle && !rq->nr_running && idle_cpu(cpu)) { 1619 if (READ_ONCE(rq->numa_migrate_on) || 1620 !cpumask_test_cpu(cpu, env->p->cpus_ptr)) 1621 continue; 1622 1623 if (ns->idle_cpu == -1) 1624 ns->idle_cpu = cpu; 1625 1626 idle_core = numa_idle_core(idle_core, cpu); 1627 } 1628 } 1629 rcu_read_unlock(); 1630 1631 ns->weight = cpumask_weight(cpumask_of_node(nid)); 1632 1633 ns->node_type = numa_classify(env->imbalance_pct, ns); 1634 1635 if (idle_core >= 0) 1636 ns->idle_cpu = idle_core; 1637 } 1638 1639 static void task_numa_assign(struct task_numa_env *env, 1640 struct task_struct *p, long imp) 1641 { 1642 struct rq *rq = cpu_rq(env->dst_cpu); 1643 1644 /* Check if run-queue part of active NUMA balance. */ 1645 if (env->best_cpu != env->dst_cpu && xchg(&rq->numa_migrate_on, 1)) { 1646 int cpu; 1647 int start = env->dst_cpu; 1648 1649 /* Find alternative idle CPU. */ 1650 for_each_cpu_wrap(cpu, cpumask_of_node(env->dst_nid), start) { 1651 if (cpu == env->best_cpu || !idle_cpu(cpu) || 1652 !cpumask_test_cpu(cpu, env->p->cpus_ptr)) { 1653 continue; 1654 } 1655 1656 env->dst_cpu = cpu; 1657 rq = cpu_rq(env->dst_cpu); 1658 if (!xchg(&rq->numa_migrate_on, 1)) 1659 goto assign; 1660 } 1661 1662 /* Failed to find an alternative idle CPU */ 1663 return; 1664 } 1665 1666 assign: 1667 /* 1668 * Clear previous best_cpu/rq numa-migrate flag, since task now 1669 * found a better CPU to move/swap. 1670 */ 1671 if (env->best_cpu != -1 && env->best_cpu != env->dst_cpu) { 1672 rq = cpu_rq(env->best_cpu); 1673 WRITE_ONCE(rq->numa_migrate_on, 0); 1674 } 1675 1676 if (env->best_task) 1677 put_task_struct(env->best_task); 1678 if (p) 1679 get_task_struct(p); 1680 1681 env->best_task = p; 1682 env->best_imp = imp; 1683 env->best_cpu = env->dst_cpu; 1684 } 1685 1686 static bool load_too_imbalanced(long src_load, long dst_load, 1687 struct task_numa_env *env) 1688 { 1689 long imb, old_imb; 1690 long orig_src_load, orig_dst_load; 1691 long src_capacity, dst_capacity; 1692 1693 /* 1694 * The load is corrected for the CPU capacity available on each node. 1695 * 1696 * src_load dst_load 1697 * ------------ vs --------- 1698 * src_capacity dst_capacity 1699 */ 1700 src_capacity = env->src_stats.compute_capacity; 1701 dst_capacity = env->dst_stats.compute_capacity; 1702 1703 imb = abs(dst_load * src_capacity - src_load * dst_capacity); 1704 1705 orig_src_load = env->src_stats.load; 1706 orig_dst_load = env->dst_stats.load; 1707 1708 old_imb = abs(orig_dst_load * src_capacity - orig_src_load * dst_capacity); 1709 1710 /* Would this change make things worse? */ 1711 return (imb > old_imb); 1712 } 1713 1714 /* 1715 * Maximum NUMA importance can be 1998 (2*999); 1716 * SMALLIMP @ 30 would be close to 1998/64. 1717 * Used to deter task migration. 1718 */ 1719 #define SMALLIMP 30 1720 1721 /* 1722 * This checks if the overall compute and NUMA accesses of the system would 1723 * be improved if the source tasks was migrated to the target dst_cpu taking 1724 * into account that it might be best if task running on the dst_cpu should 1725 * be exchanged with the source task 1726 */ 1727 static bool task_numa_compare(struct task_numa_env *env, 1728 long taskimp, long groupimp, bool maymove) 1729 { 1730 struct numa_group *cur_ng, *p_ng = deref_curr_numa_group(env->p); 1731 struct rq *dst_rq = cpu_rq(env->dst_cpu); 1732 long imp = p_ng ? groupimp : taskimp; 1733 struct task_struct *cur; 1734 long src_load, dst_load; 1735 int dist = env->dist; 1736 long moveimp = imp; 1737 long load; 1738 bool stopsearch = false; 1739 1740 if (READ_ONCE(dst_rq->numa_migrate_on)) 1741 return false; 1742 1743 rcu_read_lock(); 1744 cur = rcu_dereference(dst_rq->curr); 1745 if (cur && ((cur->flags & PF_EXITING) || is_idle_task(cur))) 1746 cur = NULL; 1747 1748 /* 1749 * Because we have preemption enabled we can get migrated around and 1750 * end try selecting ourselves (current == env->p) as a swap candidate. 1751 */ 1752 if (cur == env->p) { 1753 stopsearch = true; 1754 goto unlock; 1755 } 1756 1757 if (!cur) { 1758 if (maymove && moveimp >= env->best_imp) 1759 goto assign; 1760 else 1761 goto unlock; 1762 } 1763 1764 /* Skip this swap candidate if cannot move to the source cpu. */ 1765 if (!cpumask_test_cpu(env->src_cpu, cur->cpus_ptr)) 1766 goto unlock; 1767 1768 /* 1769 * Skip this swap candidate if it is not moving to its preferred 1770 * node and the best task is. 1771 */ 1772 if (env->best_task && 1773 env->best_task->numa_preferred_nid == env->src_nid && 1774 cur->numa_preferred_nid != env->src_nid) { 1775 goto unlock; 1776 } 1777 1778 /* 1779 * "imp" is the fault differential for the source task between the 1780 * source and destination node. Calculate the total differential for 1781 * the source task and potential destination task. The more negative 1782 * the value is, the more remote accesses that would be expected to 1783 * be incurred if the tasks were swapped. 1784 * 1785 * If dst and source tasks are in the same NUMA group, or not 1786 * in any group then look only at task weights. 1787 */ 1788 cur_ng = rcu_dereference(cur->numa_group); 1789 if (cur_ng == p_ng) { 1790 imp = taskimp + task_weight(cur, env->src_nid, dist) - 1791 task_weight(cur, env->dst_nid, dist); 1792 /* 1793 * Add some hysteresis to prevent swapping the 1794 * tasks within a group over tiny differences. 1795 */ 1796 if (cur_ng) 1797 imp -= imp / 16; 1798 } else { 1799 /* 1800 * Compare the group weights. If a task is all by itself 1801 * (not part of a group), use the task weight instead. 1802 */ 1803 if (cur_ng && p_ng) 1804 imp += group_weight(cur, env->src_nid, dist) - 1805 group_weight(cur, env->dst_nid, dist); 1806 else 1807 imp += task_weight(cur, env->src_nid, dist) - 1808 task_weight(cur, env->dst_nid, dist); 1809 } 1810 1811 /* Discourage picking a task already on its preferred node */ 1812 if (cur->numa_preferred_nid == env->dst_nid) 1813 imp -= imp / 16; 1814 1815 /* 1816 * Encourage picking a task that moves to its preferred node. 1817 * This potentially makes imp larger than it's maximum of 1818 * 1998 (see SMALLIMP and task_weight for why) but in this 1819 * case, it does not matter. 1820 */ 1821 if (cur->numa_preferred_nid == env->src_nid) 1822 imp += imp / 8; 1823 1824 if (maymove && moveimp > imp && moveimp > env->best_imp) { 1825 imp = moveimp; 1826 cur = NULL; 1827 goto assign; 1828 } 1829 1830 /* 1831 * Prefer swapping with a task moving to its preferred node over a 1832 * task that is not. 1833 */ 1834 if (env->best_task && cur->numa_preferred_nid == env->src_nid && 1835 env->best_task->numa_preferred_nid != env->src_nid) { 1836 goto assign; 1837 } 1838 1839 /* 1840 * If the NUMA importance is less than SMALLIMP, 1841 * task migration might only result in ping pong 1842 * of tasks and also hurt performance due to cache 1843 * misses. 1844 */ 1845 if (imp < SMALLIMP || imp <= env->best_imp + SMALLIMP / 2) 1846 goto unlock; 1847 1848 /* 1849 * In the overloaded case, try and keep the load balanced. 1850 */ 1851 load = task_h_load(env->p) - task_h_load(cur); 1852 if (!load) 1853 goto assign; 1854 1855 dst_load = env->dst_stats.load + load; 1856 src_load = env->src_stats.load - load; 1857 1858 if (load_too_imbalanced(src_load, dst_load, env)) 1859 goto unlock; 1860 1861 assign: 1862 /* Evaluate an idle CPU for a task numa move. */ 1863 if (!cur) { 1864 int cpu = env->dst_stats.idle_cpu; 1865 1866 /* Nothing cached so current CPU went idle since the search. */ 1867 if (cpu < 0) 1868 cpu = env->dst_cpu; 1869 1870 /* 1871 * If the CPU is no longer truly idle and the previous best CPU 1872 * is, keep using it. 1873 */ 1874 if (!idle_cpu(cpu) && env->best_cpu >= 0 && 1875 idle_cpu(env->best_cpu)) { 1876 cpu = env->best_cpu; 1877 } 1878 1879 env->dst_cpu = cpu; 1880 } 1881 1882 task_numa_assign(env, cur, imp); 1883 1884 /* 1885 * If a move to idle is allowed because there is capacity or load 1886 * balance improves then stop the search. While a better swap 1887 * candidate may exist, a search is not free. 1888 */ 1889 if (maymove && !cur && env->best_cpu >= 0 && idle_cpu(env->best_cpu)) 1890 stopsearch = true; 1891 1892 /* 1893 * If a swap candidate must be identified and the current best task 1894 * moves its preferred node then stop the search. 1895 */ 1896 if (!maymove && env->best_task && 1897 env->best_task->numa_preferred_nid == env->src_nid) { 1898 stopsearch = true; 1899 } 1900 unlock: 1901 rcu_read_unlock(); 1902 1903 return stopsearch; 1904 } 1905 1906 static void task_numa_find_cpu(struct task_numa_env *env, 1907 long taskimp, long groupimp) 1908 { 1909 bool maymove = false; 1910 int cpu; 1911 1912 /* 1913 * If dst node has spare capacity, then check if there is an 1914 * imbalance that would be overruled by the load balancer. 1915 */ 1916 if (env->dst_stats.node_type == node_has_spare) { 1917 unsigned int imbalance; 1918 int src_running, dst_running; 1919 1920 /* 1921 * Would movement cause an imbalance? Note that if src has 1922 * more running tasks that the imbalance is ignored as the 1923 * move improves the imbalance from the perspective of the 1924 * CPU load balancer. 1925 * */ 1926 src_running = env->src_stats.nr_running - 1; 1927 dst_running = env->dst_stats.nr_running + 1; 1928 imbalance = max(0, dst_running - src_running); 1929 imbalance = adjust_numa_imbalance(imbalance, dst_running, 1930 env->dst_stats.weight); 1931 1932 /* Use idle CPU if there is no imbalance */ 1933 if (!imbalance) { 1934 maymove = true; 1935 if (env->dst_stats.idle_cpu >= 0) { 1936 env->dst_cpu = env->dst_stats.idle_cpu; 1937 task_numa_assign(env, NULL, 0); 1938 return; 1939 } 1940 } 1941 } else { 1942 long src_load, dst_load, load; 1943 /* 1944 * If the improvement from just moving env->p direction is better 1945 * than swapping tasks around, check if a move is possible. 1946 */ 1947 load = task_h_load(env->p); 1948 dst_load = env->dst_stats.load + load; 1949 src_load = env->src_stats.load - load; 1950 maymove = !load_too_imbalanced(src_load, dst_load, env); 1951 } 1952 1953 for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) { 1954 /* Skip this CPU if the source task cannot migrate */ 1955 if (!cpumask_test_cpu(cpu, env->p->cpus_ptr)) 1956 continue; 1957 1958 env->dst_cpu = cpu; 1959 if (task_numa_compare(env, taskimp, groupimp, maymove)) 1960 break; 1961 } 1962 } 1963 1964 static int task_numa_migrate(struct task_struct *p) 1965 { 1966 struct task_numa_env env = { 1967 .p = p, 1968 1969 .src_cpu = task_cpu(p), 1970 .src_nid = task_node(p), 1971 1972 .imbalance_pct = 112, 1973 1974 .best_task = NULL, 1975 .best_imp = 0, 1976 .best_cpu = -1, 1977 }; 1978 unsigned long taskweight, groupweight; 1979 struct sched_domain *sd; 1980 long taskimp, groupimp; 1981 struct numa_group *ng; 1982 struct rq *best_rq; 1983 int nid, ret, dist; 1984 1985 /* 1986 * Pick the lowest SD_NUMA domain, as that would have the smallest 1987 * imbalance and would be the first to start moving tasks about. 1988 * 1989 * And we want to avoid any moving of tasks about, as that would create 1990 * random movement of tasks -- counter the numa conditions we're trying 1991 * to satisfy here. 1992 */ 1993 rcu_read_lock(); 1994 sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu)); 1995 if (sd) 1996 env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2; 1997 rcu_read_unlock(); 1998 1999 /* 2000 * Cpusets can break the scheduler domain tree into smaller 2001 * balance domains, some of which do not cross NUMA boundaries. 2002 * Tasks that are "trapped" in such domains cannot be migrated 2003 * elsewhere, so there is no point in (re)trying. 2004 */ 2005 if (unlikely(!sd)) { 2006 sched_setnuma(p, task_node(p)); 2007 return -EINVAL; 2008 } 2009 2010 env.dst_nid = p->numa_preferred_nid; 2011 dist = env.dist = node_distance(env.src_nid, env.dst_nid); 2012 taskweight = task_weight(p, env.src_nid, dist); 2013 groupweight = group_weight(p, env.src_nid, dist); 2014 update_numa_stats(&env, &env.src_stats, env.src_nid, false); 2015 taskimp = task_weight(p, env.dst_nid, dist) - taskweight; 2016 groupimp = group_weight(p, env.dst_nid, dist) - groupweight; 2017 update_numa_stats(&env, &env.dst_stats, env.dst_nid, true); 2018 2019 /* Try to find a spot on the preferred nid. */ 2020 task_numa_find_cpu(&env, taskimp, groupimp); 2021 2022 /* 2023 * Look at other nodes in these cases: 2024 * - there is no space available on the preferred_nid 2025 * - the task is part of a numa_group that is interleaved across 2026 * multiple NUMA nodes; in order to better consolidate the group, 2027 * we need to check other locations. 2028 */ 2029 ng = deref_curr_numa_group(p); 2030 if (env.best_cpu == -1 || (ng && ng->active_nodes > 1)) { 2031 for_each_online_node(nid) { 2032 if (nid == env.src_nid || nid == p->numa_preferred_nid) 2033 continue; 2034 2035 dist = node_distance(env.src_nid, env.dst_nid); 2036 if (sched_numa_topology_type == NUMA_BACKPLANE && 2037 dist != env.dist) { 2038 taskweight = task_weight(p, env.src_nid, dist); 2039 groupweight = group_weight(p, env.src_nid, dist); 2040 } 2041 2042 /* Only consider nodes where both task and groups benefit */ 2043 taskimp = task_weight(p, nid, dist) - taskweight; 2044 groupimp = group_weight(p, nid, dist) - groupweight; 2045 if (taskimp < 0 && groupimp < 0) 2046 continue; 2047 2048 env.dist = dist; 2049 env.dst_nid = nid; 2050 update_numa_stats(&env, &env.dst_stats, env.dst_nid, true); 2051 task_numa_find_cpu(&env, taskimp, groupimp); 2052 } 2053 } 2054 2055 /* 2056 * If the task is part of a workload that spans multiple NUMA nodes, 2057 * and is migrating into one of the workload's active nodes, remember 2058 * this node as the task's preferred numa node, so the workload can 2059 * settle down. 2060 * A task that migrated to a second choice node will be better off 2061 * trying for a better one later. Do not set the preferred node here. 2062 */ 2063 if (ng) { 2064 if (env.best_cpu == -1) 2065 nid = env.src_nid; 2066 else 2067 nid = cpu_to_node(env.best_cpu); 2068 2069 if (nid != p->numa_preferred_nid) 2070 sched_setnuma(p, nid); 2071 } 2072 2073 /* No better CPU than the current one was found. */ 2074 if (env.best_cpu == -1) { 2075 trace_sched_stick_numa(p, env.src_cpu, NULL, -1); 2076 return -EAGAIN; 2077 } 2078 2079 best_rq = cpu_rq(env.best_cpu); 2080 if (env.best_task == NULL) { 2081 ret = migrate_task_to(p, env.best_cpu); 2082 WRITE_ONCE(best_rq->numa_migrate_on, 0); 2083 if (ret != 0) 2084 trace_sched_stick_numa(p, env.src_cpu, NULL, env.best_cpu); 2085 return ret; 2086 } 2087 2088 ret = migrate_swap(p, env.best_task, env.best_cpu, env.src_cpu); 2089 WRITE_ONCE(best_rq->numa_migrate_on, 0); 2090 2091 if (ret != 0) 2092 trace_sched_stick_numa(p, env.src_cpu, env.best_task, env.best_cpu); 2093 put_task_struct(env.best_task); 2094 return ret; 2095 } 2096 2097 /* Attempt to migrate a task to a CPU on the preferred node. */ 2098 static void numa_migrate_preferred(struct task_struct *p) 2099 { 2100 unsigned long interval = HZ; 2101 2102 /* This task has no NUMA fault statistics yet */ 2103 if (unlikely(p->numa_preferred_nid == NUMA_NO_NODE || !p->numa_faults)) 2104 return; 2105 2106 /* Periodically retry migrating the task to the preferred node */ 2107 interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16); 2108 p->numa_migrate_retry = jiffies + interval; 2109 2110 /* Success if task is already running on preferred CPU */ 2111 if (task_node(p) == p->numa_preferred_nid) 2112 return; 2113 2114 /* Otherwise, try migrate to a CPU on the preferred node */ 2115 task_numa_migrate(p); 2116 } 2117 2118 /* 2119 * Find out how many nodes on the workload is actively running on. Do this by 2120 * tracking the nodes from which NUMA hinting faults are triggered. This can 2121 * be different from the set of nodes where the workload's memory is currently 2122 * located. 2123 */ 2124 static void numa_group_count_active_nodes(struct numa_group *numa_group) 2125 { 2126 unsigned long faults, max_faults = 0; 2127 int nid, active_nodes = 0; 2128 2129 for_each_online_node(nid) { 2130 faults = group_faults_cpu(numa_group, nid); 2131 if (faults > max_faults) 2132 max_faults = faults; 2133 } 2134 2135 for_each_online_node(nid) { 2136 faults = group_faults_cpu(numa_group, nid); 2137 if (faults * ACTIVE_NODE_FRACTION > max_faults) 2138 active_nodes++; 2139 } 2140 2141 numa_group->max_faults_cpu = max_faults; 2142 numa_group->active_nodes = active_nodes; 2143 } 2144 2145 /* 2146 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS 2147 * increments. The more local the fault statistics are, the higher the scan 2148 * period will be for the next scan window. If local/(local+remote) ratio is 2149 * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS) 2150 * the scan period will decrease. Aim for 70% local accesses. 2151 */ 2152 #define NUMA_PERIOD_SLOTS 10 2153 #define NUMA_PERIOD_THRESHOLD 7 2154 2155 /* 2156 * Increase the scan period (slow down scanning) if the majority of 2157 * our memory is already on our local node, or if the majority of 2158 * the page accesses are shared with other processes. 2159 * Otherwise, decrease the scan period. 2160 */ 2161 static void update_task_scan_period(struct task_struct *p, 2162 unsigned long shared, unsigned long private) 2163 { 2164 unsigned int period_slot; 2165 int lr_ratio, ps_ratio; 2166 int diff; 2167 2168 unsigned long remote = p->numa_faults_locality[0]; 2169 unsigned long local = p->numa_faults_locality[1]; 2170 2171 /* 2172 * If there were no record hinting faults then either the task is 2173 * completely idle or all activity is areas that are not of interest 2174 * to automatic numa balancing. Related to that, if there were failed 2175 * migration then it implies we are migrating too quickly or the local 2176 * node is overloaded. In either case, scan slower 2177 */ 2178 if (local + shared == 0 || p->numa_faults_locality[2]) { 2179 p->numa_scan_period = min(p->numa_scan_period_max, 2180 p->numa_scan_period << 1); 2181 2182 p->mm->numa_next_scan = jiffies + 2183 msecs_to_jiffies(p->numa_scan_period); 2184 2185 return; 2186 } 2187 2188 /* 2189 * Prepare to scale scan period relative to the current period. 2190 * == NUMA_PERIOD_THRESHOLD scan period stays the same 2191 * < NUMA_PERIOD_THRESHOLD scan period decreases (scan faster) 2192 * >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower) 2193 */ 2194 period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS); 2195 lr_ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote); 2196 ps_ratio = (private * NUMA_PERIOD_SLOTS) / (private + shared); 2197 2198 if (ps_ratio >= NUMA_PERIOD_THRESHOLD) { 2199 /* 2200 * Most memory accesses are local. There is no need to 2201 * do fast NUMA scanning, since memory is already local. 2202 */ 2203 int slot = ps_ratio - NUMA_PERIOD_THRESHOLD; 2204 if (!slot) 2205 slot = 1; 2206 diff = slot * period_slot; 2207 } else if (lr_ratio >= NUMA_PERIOD_THRESHOLD) { 2208 /* 2209 * Most memory accesses are shared with other tasks. 2210 * There is no point in continuing fast NUMA scanning, 2211 * since other tasks may just move the memory elsewhere. 2212 */ 2213 int slot = lr_ratio - NUMA_PERIOD_THRESHOLD; 2214 if (!slot) 2215 slot = 1; 2216 diff = slot * period_slot; 2217 } else { 2218 /* 2219 * Private memory faults exceed (SLOTS-THRESHOLD)/SLOTS, 2220 * yet they are not on the local NUMA node. Speed up 2221 * NUMA scanning to get the memory moved over. 2222 */ 2223 int ratio = max(lr_ratio, ps_ratio); 2224 diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot; 2225 } 2226 2227 p->numa_scan_period = clamp(p->numa_scan_period + diff, 2228 task_scan_min(p), task_scan_max(p)); 2229 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality)); 2230 } 2231 2232 /* 2233 * Get the fraction of time the task has been running since the last 2234 * NUMA placement cycle. The scheduler keeps similar statistics, but 2235 * decays those on a 32ms period, which is orders of magnitude off 2236 * from the dozens-of-seconds NUMA balancing period. Use the scheduler 2237 * stats only if the task is so new there are no NUMA statistics yet. 2238 */ 2239 static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period) 2240 { 2241 u64 runtime, delta, now; 2242 /* Use the start of this time slice to avoid calculations. */ 2243 now = p->se.exec_start; 2244 runtime = p->se.sum_exec_runtime; 2245 2246 if (p->last_task_numa_placement) { 2247 delta = runtime - p->last_sum_exec_runtime; 2248 *period = now - p->last_task_numa_placement; 2249 2250 /* Avoid time going backwards, prevent potential divide error: */ 2251 if (unlikely((s64)*period < 0)) 2252 *period = 0; 2253 } else { 2254 delta = p->se.avg.load_sum; 2255 *period = LOAD_AVG_MAX; 2256 } 2257 2258 p->last_sum_exec_runtime = runtime; 2259 p->last_task_numa_placement = now; 2260 2261 return delta; 2262 } 2263 2264 /* 2265 * Determine the preferred nid for a task in a numa_group. This needs to 2266 * be done in a way that produces consistent results with group_weight, 2267 * otherwise workloads might not converge. 2268 */ 2269 static int preferred_group_nid(struct task_struct *p, int nid) 2270 { 2271 nodemask_t nodes; 2272 int dist; 2273 2274 /* Direct connections between all NUMA nodes. */ 2275 if (sched_numa_topology_type == NUMA_DIRECT) 2276 return nid; 2277 2278 /* 2279 * On a system with glueless mesh NUMA topology, group_weight 2280 * scores nodes according to the number of NUMA hinting faults on 2281 * both the node itself, and on nearby nodes. 2282 */ 2283 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) { 2284 unsigned long score, max_score = 0; 2285 int node, max_node = nid; 2286 2287 dist = sched_max_numa_distance; 2288 2289 for_each_online_node(node) { 2290 score = group_weight(p, node, dist); 2291 if (score > max_score) { 2292 max_score = score; 2293 max_node = node; 2294 } 2295 } 2296 return max_node; 2297 } 2298 2299 /* 2300 * Finding the preferred nid in a system with NUMA backplane 2301 * interconnect topology is more involved. The goal is to locate 2302 * tasks from numa_groups near each other in the system, and 2303 * untangle workloads from different sides of the system. This requires 2304 * searching down the hierarchy of node groups, recursively searching 2305 * inside the highest scoring group of nodes. The nodemask tricks 2306 * keep the complexity of the search down. 2307 */ 2308 nodes = node_online_map; 2309 for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) { 2310 unsigned long max_faults = 0; 2311 nodemask_t max_group = NODE_MASK_NONE; 2312 int a, b; 2313 2314 /* Are there nodes at this distance from each other? */ 2315 if (!find_numa_distance(dist)) 2316 continue; 2317 2318 for_each_node_mask(a, nodes) { 2319 unsigned long faults = 0; 2320 nodemask_t this_group; 2321 nodes_clear(this_group); 2322 2323 /* Sum group's NUMA faults; includes a==b case. */ 2324 for_each_node_mask(b, nodes) { 2325 if (node_distance(a, b) < dist) { 2326 faults += group_faults(p, b); 2327 node_set(b, this_group); 2328 node_clear(b, nodes); 2329 } 2330 } 2331 2332 /* Remember the top group. */ 2333 if (faults > max_faults) { 2334 max_faults = faults; 2335 max_group = this_group; 2336 /* 2337 * subtle: at the smallest distance there is 2338 * just one node left in each "group", the 2339 * winner is the preferred nid. 2340 */ 2341 nid = a; 2342 } 2343 } 2344 /* Next round, evaluate the nodes within max_group. */ 2345 if (!max_faults) 2346 break; 2347 nodes = max_group; 2348 } 2349 return nid; 2350 } 2351 2352 static void task_numa_placement(struct task_struct *p) 2353 { 2354 int seq, nid, max_nid = NUMA_NO_NODE; 2355 unsigned long max_faults = 0; 2356 unsigned long fault_types[2] = { 0, 0 }; 2357 unsigned long total_faults; 2358 u64 runtime, period; 2359 spinlock_t *group_lock = NULL; 2360 struct numa_group *ng; 2361 2362 /* 2363 * The p->mm->numa_scan_seq field gets updated without 2364 * exclusive access. Use READ_ONCE() here to ensure 2365 * that the field is read in a single access: 2366 */ 2367 seq = READ_ONCE(p->mm->numa_scan_seq); 2368 if (p->numa_scan_seq == seq) 2369 return; 2370 p->numa_scan_seq = seq; 2371 p->numa_scan_period_max = task_scan_max(p); 2372 2373 total_faults = p->numa_faults_locality[0] + 2374 p->numa_faults_locality[1]; 2375 runtime = numa_get_avg_runtime(p, &period); 2376 2377 /* If the task is part of a group prevent parallel updates to group stats */ 2378 ng = deref_curr_numa_group(p); 2379 if (ng) { 2380 group_lock = &ng->lock; 2381 spin_lock_irq(group_lock); 2382 } 2383 2384 /* Find the node with the highest number of faults */ 2385 for_each_online_node(nid) { 2386 /* Keep track of the offsets in numa_faults array */ 2387 int mem_idx, membuf_idx, cpu_idx, cpubuf_idx; 2388 unsigned long faults = 0, group_faults = 0; 2389 int priv; 2390 2391 for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) { 2392 long diff, f_diff, f_weight; 2393 2394 mem_idx = task_faults_idx(NUMA_MEM, nid, priv); 2395 membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv); 2396 cpu_idx = task_faults_idx(NUMA_CPU, nid, priv); 2397 cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv); 2398 2399 /* Decay existing window, copy faults since last scan */ 2400 diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2; 2401 fault_types[priv] += p->numa_faults[membuf_idx]; 2402 p->numa_faults[membuf_idx] = 0; 2403 2404 /* 2405 * Normalize the faults_from, so all tasks in a group 2406 * count according to CPU use, instead of by the raw 2407 * number of faults. Tasks with little runtime have 2408 * little over-all impact on throughput, and thus their 2409 * faults are less important. 2410 */ 2411 f_weight = div64_u64(runtime << 16, period + 1); 2412 f_weight = (f_weight * p->numa_faults[cpubuf_idx]) / 2413 (total_faults + 1); 2414 f_diff = f_weight - p->numa_faults[cpu_idx] / 2; 2415 p->numa_faults[cpubuf_idx] = 0; 2416 2417 p->numa_faults[mem_idx] += diff; 2418 p->numa_faults[cpu_idx] += f_diff; 2419 faults += p->numa_faults[mem_idx]; 2420 p->total_numa_faults += diff; 2421 if (ng) { 2422 /* 2423 * safe because we can only change our own group 2424 * 2425 * mem_idx represents the offset for a given 2426 * nid and priv in a specific region because it 2427 * is at the beginning of the numa_faults array. 2428 */ 2429 ng->faults[mem_idx] += diff; 2430 ng->faults_cpu[mem_idx] += f_diff; 2431 ng->total_faults += diff; 2432 group_faults += ng->faults[mem_idx]; 2433 } 2434 } 2435 2436 if (!ng) { 2437 if (faults > max_faults) { 2438 max_faults = faults; 2439 max_nid = nid; 2440 } 2441 } else if (group_faults > max_faults) { 2442 max_faults = group_faults; 2443 max_nid = nid; 2444 } 2445 } 2446 2447 if (ng) { 2448 numa_group_count_active_nodes(ng); 2449 spin_unlock_irq(group_lock); 2450 max_nid = preferred_group_nid(p, max_nid); 2451 } 2452 2453 if (max_faults) { 2454 /* Set the new preferred node */ 2455 if (max_nid != p->numa_preferred_nid) 2456 sched_setnuma(p, max_nid); 2457 } 2458 2459 update_task_scan_period(p, fault_types[0], fault_types[1]); 2460 } 2461 2462 static inline int get_numa_group(struct numa_group *grp) 2463 { 2464 return refcount_inc_not_zero(&grp->refcount); 2465 } 2466 2467 static inline void put_numa_group(struct numa_group *grp) 2468 { 2469 if (refcount_dec_and_test(&grp->refcount)) 2470 kfree_rcu(grp, rcu); 2471 } 2472 2473 static void task_numa_group(struct task_struct *p, int cpupid, int flags, 2474 int *priv) 2475 { 2476 struct numa_group *grp, *my_grp; 2477 struct task_struct *tsk; 2478 bool join = false; 2479 int cpu = cpupid_to_cpu(cpupid); 2480 int i; 2481 2482 if (unlikely(!deref_curr_numa_group(p))) { 2483 unsigned int size = sizeof(struct numa_group) + 2484 4*nr_node_ids*sizeof(unsigned long); 2485 2486 grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN); 2487 if (!grp) 2488 return; 2489 2490 refcount_set(&grp->refcount, 1); 2491 grp->active_nodes = 1; 2492 grp->max_faults_cpu = 0; 2493 spin_lock_init(&grp->lock); 2494 grp->gid = p->pid; 2495 /* Second half of the array tracks nids where faults happen */ 2496 grp->faults_cpu = grp->faults + NR_NUMA_HINT_FAULT_TYPES * 2497 nr_node_ids; 2498 2499 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) 2500 grp->faults[i] = p->numa_faults[i]; 2501 2502 grp->total_faults = p->total_numa_faults; 2503 2504 grp->nr_tasks++; 2505 rcu_assign_pointer(p->numa_group, grp); 2506 } 2507 2508 rcu_read_lock(); 2509 tsk = READ_ONCE(cpu_rq(cpu)->curr); 2510 2511 if (!cpupid_match_pid(tsk, cpupid)) 2512 goto no_join; 2513 2514 grp = rcu_dereference(tsk->numa_group); 2515 if (!grp) 2516 goto no_join; 2517 2518 my_grp = deref_curr_numa_group(p); 2519 if (grp == my_grp) 2520 goto no_join; 2521 2522 /* 2523 * Only join the other group if its bigger; if we're the bigger group, 2524 * the other task will join us. 2525 */ 2526 if (my_grp->nr_tasks > grp->nr_tasks) 2527 goto no_join; 2528 2529 /* 2530 * Tie-break on the grp address. 2531 */ 2532 if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp) 2533 goto no_join; 2534 2535 /* Always join threads in the same process. */ 2536 if (tsk->mm == current->mm) 2537 join = true; 2538 2539 /* Simple filter to avoid false positives due to PID collisions */ 2540 if (flags & TNF_SHARED) 2541 join = true; 2542 2543 /* Update priv based on whether false sharing was detected */ 2544 *priv = !join; 2545 2546 if (join && !get_numa_group(grp)) 2547 goto no_join; 2548 2549 rcu_read_unlock(); 2550 2551 if (!join) 2552 return; 2553 2554 BUG_ON(irqs_disabled()); 2555 double_lock_irq(&my_grp->lock, &grp->lock); 2556 2557 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) { 2558 my_grp->faults[i] -= p->numa_faults[i]; 2559 grp->faults[i] += p->numa_faults[i]; 2560 } 2561 my_grp->total_faults -= p->total_numa_faults; 2562 grp->total_faults += p->total_numa_faults; 2563 2564 my_grp->nr_tasks--; 2565 grp->nr_tasks++; 2566 2567 spin_unlock(&my_grp->lock); 2568 spin_unlock_irq(&grp->lock); 2569 2570 rcu_assign_pointer(p->numa_group, grp); 2571 2572 put_numa_group(my_grp); 2573 return; 2574 2575 no_join: 2576 rcu_read_unlock(); 2577 return; 2578 } 2579 2580 /* 2581 * Get rid of NUMA statistics associated with a task (either current or dead). 2582 * If @final is set, the task is dead and has reached refcount zero, so we can 2583 * safely free all relevant data structures. Otherwise, there might be 2584 * concurrent reads from places like load balancing and procfs, and we should 2585 * reset the data back to default state without freeing ->numa_faults. 2586 */ 2587 void task_numa_free(struct task_struct *p, bool final) 2588 { 2589 /* safe: p either is current or is being freed by current */ 2590 struct numa_group *grp = rcu_dereference_raw(p->numa_group); 2591 unsigned long *numa_faults = p->numa_faults; 2592 unsigned long flags; 2593 int i; 2594 2595 if (!numa_faults) 2596 return; 2597 2598 if (grp) { 2599 spin_lock_irqsave(&grp->lock, flags); 2600 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) 2601 grp->faults[i] -= p->numa_faults[i]; 2602 grp->total_faults -= p->total_numa_faults; 2603 2604 grp->nr_tasks--; 2605 spin_unlock_irqrestore(&grp->lock, flags); 2606 RCU_INIT_POINTER(p->numa_group, NULL); 2607 put_numa_group(grp); 2608 } 2609 2610 if (final) { 2611 p->numa_faults = NULL; 2612 kfree(numa_faults); 2613 } else { 2614 p->total_numa_faults = 0; 2615 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) 2616 numa_faults[i] = 0; 2617 } 2618 } 2619 2620 /* 2621 * Got a PROT_NONE fault for a page on @node. 2622 */ 2623 void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags) 2624 { 2625 struct task_struct *p = current; 2626 bool migrated = flags & TNF_MIGRATED; 2627 int cpu_node = task_node(current); 2628 int local = !!(flags & TNF_FAULT_LOCAL); 2629 struct numa_group *ng; 2630 int priv; 2631 2632 if (!static_branch_likely(&sched_numa_balancing)) 2633 return; 2634 2635 /* for example, ksmd faulting in a user's mm */ 2636 if (!p->mm) 2637 return; 2638 2639 /* Allocate buffer to track faults on a per-node basis */ 2640 if (unlikely(!p->numa_faults)) { 2641 int size = sizeof(*p->numa_faults) * 2642 NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids; 2643 2644 p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN); 2645 if (!p->numa_faults) 2646 return; 2647 2648 p->total_numa_faults = 0; 2649 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality)); 2650 } 2651 2652 /* 2653 * First accesses are treated as private, otherwise consider accesses 2654 * to be private if the accessing pid has not changed 2655 */ 2656 if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) { 2657 priv = 1; 2658 } else { 2659 priv = cpupid_match_pid(p, last_cpupid); 2660 if (!priv && !(flags & TNF_NO_GROUP)) 2661 task_numa_group(p, last_cpupid, flags, &priv); 2662 } 2663 2664 /* 2665 * If a workload spans multiple NUMA nodes, a shared fault that 2666 * occurs wholly within the set of nodes that the workload is 2667 * actively using should be counted as local. This allows the 2668 * scan rate to slow down when a workload has settled down. 2669 */ 2670 ng = deref_curr_numa_group(p); 2671 if (!priv && !local && ng && ng->active_nodes > 1 && 2672 numa_is_active_node(cpu_node, ng) && 2673 numa_is_active_node(mem_node, ng)) 2674 local = 1; 2675 2676 /* 2677 * Retry to migrate task to preferred node periodically, in case it 2678 * previously failed, or the scheduler moved us. 2679 */ 2680 if (time_after(jiffies, p->numa_migrate_retry)) { 2681 task_numa_placement(p); 2682 numa_migrate_preferred(p); 2683 } 2684 2685 if (migrated) 2686 p->numa_pages_migrated += pages; 2687 if (flags & TNF_MIGRATE_FAIL) 2688 p->numa_faults_locality[2] += pages; 2689 2690 p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages; 2691 p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages; 2692 p->numa_faults_locality[local] += pages; 2693 } 2694 2695 static void reset_ptenuma_scan(struct task_struct *p) 2696 { 2697 /* 2698 * We only did a read acquisition of the mmap sem, so 2699 * p->mm->numa_scan_seq is written to without exclusive access 2700 * and the update is not guaranteed to be atomic. That's not 2701 * much of an issue though, since this is just used for 2702 * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not 2703 * expensive, to avoid any form of compiler optimizations: 2704 */ 2705 WRITE_ONCE(p->mm->numa_scan_seq, READ_ONCE(p->mm->numa_scan_seq) + 1); 2706 p->mm->numa_scan_offset = 0; 2707 } 2708 2709 /* 2710 * The expensive part of numa migration is done from task_work context. 2711 * Triggered from task_tick_numa(). 2712 */ 2713 static void task_numa_work(struct callback_head *work) 2714 { 2715 unsigned long migrate, next_scan, now = jiffies; 2716 struct task_struct *p = current; 2717 struct mm_struct *mm = p->mm; 2718 u64 runtime = p->se.sum_exec_runtime; 2719 struct vm_area_struct *vma; 2720 unsigned long start, end; 2721 unsigned long nr_pte_updates = 0; 2722 long pages, virtpages; 2723 2724 SCHED_WARN_ON(p != container_of(work, struct task_struct, numa_work)); 2725 2726 work->next = work; 2727 /* 2728 * Who cares about NUMA placement when they're dying. 2729 * 2730 * NOTE: make sure not to dereference p->mm before this check, 2731 * exit_task_work() happens _after_ exit_mm() so we could be called 2732 * without p->mm even though we still had it when we enqueued this 2733 * work. 2734 */ 2735 if (p->flags & PF_EXITING) 2736 return; 2737 2738 if (!mm->numa_next_scan) { 2739 mm->numa_next_scan = now + 2740 msecs_to_jiffies(sysctl_numa_balancing_scan_delay); 2741 } 2742 2743 /* 2744 * Enforce maximal scan/migration frequency.. 2745 */ 2746 migrate = mm->numa_next_scan; 2747 if (time_before(now, migrate)) 2748 return; 2749 2750 if (p->numa_scan_period == 0) { 2751 p->numa_scan_period_max = task_scan_max(p); 2752 p->numa_scan_period = task_scan_start(p); 2753 } 2754 2755 next_scan = now + msecs_to_jiffies(p->numa_scan_period); 2756 if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate) 2757 return; 2758 2759 /* 2760 * Delay this task enough that another task of this mm will likely win 2761 * the next time around. 2762 */ 2763 p->node_stamp += 2 * TICK_NSEC; 2764 2765 start = mm->numa_scan_offset; 2766 pages = sysctl_numa_balancing_scan_size; 2767 pages <<= 20 - PAGE_SHIFT; /* MB in pages */ 2768 virtpages = pages * 8; /* Scan up to this much virtual space */ 2769 if (!pages) 2770 return; 2771 2772 2773 if (!mmap_read_trylock(mm)) 2774 return; 2775 vma = find_vma(mm, start); 2776 if (!vma) { 2777 reset_ptenuma_scan(p); 2778 start = 0; 2779 vma = mm->mmap; 2780 } 2781 for (; vma; vma = vma->vm_next) { 2782 if (!vma_migratable(vma) || !vma_policy_mof(vma) || 2783 is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_MIXEDMAP)) { 2784 continue; 2785 } 2786 2787 /* 2788 * Shared library pages mapped by multiple processes are not 2789 * migrated as it is expected they are cache replicated. Avoid 2790 * hinting faults in read-only file-backed mappings or the vdso 2791 * as migrating the pages will be of marginal benefit. 2792 */ 2793 if (!vma->vm_mm || 2794 (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ))) 2795 continue; 2796 2797 /* 2798 * Skip inaccessible VMAs to avoid any confusion between 2799 * PROT_NONE and NUMA hinting ptes 2800 */ 2801 if (!vma_is_accessible(vma)) 2802 continue; 2803 2804 do { 2805 start = max(start, vma->vm_start); 2806 end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE); 2807 end = min(end, vma->vm_end); 2808 nr_pte_updates = change_prot_numa(vma, start, end); 2809 2810 /* 2811 * Try to scan sysctl_numa_balancing_size worth of 2812 * hpages that have at least one present PTE that 2813 * is not already pte-numa. If the VMA contains 2814 * areas that are unused or already full of prot_numa 2815 * PTEs, scan up to virtpages, to skip through those 2816 * areas faster. 2817 */ 2818 if (nr_pte_updates) 2819 pages -= (end - start) >> PAGE_SHIFT; 2820 virtpages -= (end - start) >> PAGE_SHIFT; 2821 2822 start = end; 2823 if (pages <= 0 || virtpages <= 0) 2824 goto out; 2825 2826 cond_resched(); 2827 } while (end != vma->vm_end); 2828 } 2829 2830 out: 2831 /* 2832 * It is possible to reach the end of the VMA list but the last few 2833 * VMAs are not guaranteed to the vma_migratable. If they are not, we 2834 * would find the !migratable VMA on the next scan but not reset the 2835 * scanner to the start so check it now. 2836 */ 2837 if (vma) 2838 mm->numa_scan_offset = start; 2839 else 2840 reset_ptenuma_scan(p); 2841 mmap_read_unlock(mm); 2842 2843 /* 2844 * Make sure tasks use at least 32x as much time to run other code 2845 * than they used here, to limit NUMA PTE scanning overhead to 3% max. 2846 * Usually update_task_scan_period slows down scanning enough; on an 2847 * overloaded system we need to limit overhead on a per task basis. 2848 */ 2849 if (unlikely(p->se.sum_exec_runtime != runtime)) { 2850 u64 diff = p->se.sum_exec_runtime - runtime; 2851 p->node_stamp += 32 * diff; 2852 } 2853 } 2854 2855 void init_numa_balancing(unsigned long clone_flags, struct task_struct *p) 2856 { 2857 int mm_users = 0; 2858 struct mm_struct *mm = p->mm; 2859 2860 if (mm) { 2861 mm_users = atomic_read(&mm->mm_users); 2862 if (mm_users == 1) { 2863 mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay); 2864 mm->numa_scan_seq = 0; 2865 } 2866 } 2867 p->node_stamp = 0; 2868 p->numa_scan_seq = mm ? mm->numa_scan_seq : 0; 2869 p->numa_scan_period = sysctl_numa_balancing_scan_delay; 2870 /* Protect against double add, see task_tick_numa and task_numa_work */ 2871 p->numa_work.next = &p->numa_work; 2872 p->numa_faults = NULL; 2873 RCU_INIT_POINTER(p->numa_group, NULL); 2874 p->last_task_numa_placement = 0; 2875 p->last_sum_exec_runtime = 0; 2876 2877 init_task_work(&p->numa_work, task_numa_work); 2878 2879 /* New address space, reset the preferred nid */ 2880 if (!(clone_flags & CLONE_VM)) { 2881 p->numa_preferred_nid = NUMA_NO_NODE; 2882 return; 2883 } 2884 2885 /* 2886 * New thread, keep existing numa_preferred_nid which should be copied 2887 * already by arch_dup_task_struct but stagger when scans start. 2888 */ 2889 if (mm) { 2890 unsigned int delay; 2891 2892 delay = min_t(unsigned int, task_scan_max(current), 2893 current->numa_scan_period * mm_users * NSEC_PER_MSEC); 2894 delay += 2 * TICK_NSEC; 2895 p->node_stamp = delay; 2896 } 2897 } 2898 2899 /* 2900 * Drive the periodic memory faults.. 2901 */ 2902 static void task_tick_numa(struct rq *rq, struct task_struct *curr) 2903 { 2904 struct callback_head *work = &curr->numa_work; 2905 u64 period, now; 2906 2907 /* 2908 * We don't care about NUMA placement if we don't have memory. 2909 */ 2910 if ((curr->flags & (PF_EXITING | PF_KTHREAD)) || work->next != work) 2911 return; 2912 2913 /* 2914 * Using runtime rather than walltime has the dual advantage that 2915 * we (mostly) drive the selection from busy threads and that the 2916 * task needs to have done some actual work before we bother with 2917 * NUMA placement. 2918 */ 2919 now = curr->se.sum_exec_runtime; 2920 period = (u64)curr->numa_scan_period * NSEC_PER_MSEC; 2921 2922 if (now > curr->node_stamp + period) { 2923 if (!curr->node_stamp) 2924 curr->numa_scan_period = task_scan_start(curr); 2925 curr->node_stamp += period; 2926 2927 if (!time_before(jiffies, curr->mm->numa_next_scan)) 2928 task_work_add(curr, work, TWA_RESUME); 2929 } 2930 } 2931 2932 static void update_scan_period(struct task_struct *p, int new_cpu) 2933 { 2934 int src_nid = cpu_to_node(task_cpu(p)); 2935 int dst_nid = cpu_to_node(new_cpu); 2936 2937 if (!static_branch_likely(&sched_numa_balancing)) 2938 return; 2939 2940 if (!p->mm || !p->numa_faults || (p->flags & PF_EXITING)) 2941 return; 2942 2943 if (src_nid == dst_nid) 2944 return; 2945 2946 /* 2947 * Allow resets if faults have been trapped before one scan 2948 * has completed. This is most likely due to a new task that 2949 * is pulled cross-node due to wakeups or load balancing. 2950 */ 2951 if (p->numa_scan_seq) { 2952 /* 2953 * Avoid scan adjustments if moving to the preferred 2954 * node or if the task was not previously running on 2955 * the preferred node. 2956 */ 2957 if (dst_nid == p->numa_preferred_nid || 2958 (p->numa_preferred_nid != NUMA_NO_NODE && 2959 src_nid != p->numa_preferred_nid)) 2960 return; 2961 } 2962 2963 p->numa_scan_period = task_scan_start(p); 2964 } 2965 2966 #else 2967 static void task_tick_numa(struct rq *rq, struct task_struct *curr) 2968 { 2969 } 2970 2971 static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p) 2972 { 2973 } 2974 2975 static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p) 2976 { 2977 } 2978 2979 static inline void update_scan_period(struct task_struct *p, int new_cpu) 2980 { 2981 } 2982 2983 #endif /* CONFIG_NUMA_BALANCING */ 2984 2985 static void 2986 account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se) 2987 { 2988 update_load_add(&cfs_rq->load, se->load.weight); 2989 #ifdef CONFIG_SMP 2990 if (entity_is_task(se)) { 2991 struct rq *rq = rq_of(cfs_rq); 2992 2993 account_numa_enqueue(rq, task_of(se)); 2994 list_add(&se->group_node, &rq->cfs_tasks); 2995 } 2996 #endif 2997 cfs_rq->nr_running++; 2998 } 2999 3000 static void 3001 account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se) 3002 { 3003 update_load_sub(&cfs_rq->load, se->load.weight); 3004 #ifdef CONFIG_SMP 3005 if (entity_is_task(se)) { 3006 account_numa_dequeue(rq_of(cfs_rq), task_of(se)); 3007 list_del_init(&se->group_node); 3008 } 3009 #endif 3010 cfs_rq->nr_running--; 3011 } 3012 3013 /* 3014 * Signed add and clamp on underflow. 3015 * 3016 * Explicitly do a load-store to ensure the intermediate value never hits 3017 * memory. This allows lockless observations without ever seeing the negative 3018 * values. 3019 */ 3020 #define add_positive(_ptr, _val) do { \ 3021 typeof(_ptr) ptr = (_ptr); \ 3022 typeof(_val) val = (_val); \ 3023 typeof(*ptr) res, var = READ_ONCE(*ptr); \ 3024 \ 3025 res = var + val; \ 3026 \ 3027 if (val < 0 && res > var) \ 3028 res = 0; \ 3029 \ 3030 WRITE_ONCE(*ptr, res); \ 3031 } while (0) 3032 3033 /* 3034 * Unsigned subtract and clamp on underflow. 3035 * 3036 * Explicitly do a load-store to ensure the intermediate value never hits 3037 * memory. This allows lockless observations without ever seeing the negative 3038 * values. 3039 */ 3040 #define sub_positive(_ptr, _val) do { \ 3041 typeof(_ptr) ptr = (_ptr); \ 3042 typeof(*ptr) val = (_val); \ 3043 typeof(*ptr) res, var = READ_ONCE(*ptr); \ 3044 res = var - val; \ 3045 if (res > var) \ 3046 res = 0; \ 3047 WRITE_ONCE(*ptr, res); \ 3048 } while (0) 3049 3050 /* 3051 * Remove and clamp on negative, from a local variable. 3052 * 3053 * A variant of sub_positive(), which does not use explicit load-store 3054 * and is thus optimized for local variable updates. 3055 */ 3056 #define lsub_positive(_ptr, _val) do { \ 3057 typeof(_ptr) ptr = (_ptr); \ 3058 *ptr -= min_t(typeof(*ptr), *ptr, _val); \ 3059 } while (0) 3060 3061 #ifdef CONFIG_SMP 3062 static inline void 3063 enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) 3064 { 3065 cfs_rq->avg.load_avg += se->avg.load_avg; 3066 cfs_rq->avg.load_sum += se_weight(se) * se->avg.load_sum; 3067 } 3068 3069 static inline void 3070 dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) 3071 { 3072 u32 divider = get_pelt_divider(&se->avg); 3073 sub_positive(&cfs_rq->avg.load_avg, se->avg.load_avg); 3074 cfs_rq->avg.load_sum = cfs_rq->avg.load_avg * divider; 3075 } 3076 #else 3077 static inline void 3078 enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { } 3079 static inline void 3080 dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { } 3081 #endif 3082 3083 static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, 3084 unsigned long weight) 3085 { 3086 if (se->on_rq) { 3087 /* commit outstanding execution time */ 3088 if (cfs_rq->curr == se) 3089 update_curr(cfs_rq); 3090 update_load_sub(&cfs_rq->load, se->load.weight); 3091 } 3092 dequeue_load_avg(cfs_rq, se); 3093 3094 update_load_set(&se->load, weight); 3095 3096 #ifdef CONFIG_SMP 3097 do { 3098 u32 divider = get_pelt_divider(&se->avg); 3099 3100 se->avg.load_avg = div_u64(se_weight(se) * se->avg.load_sum, divider); 3101 } while (0); 3102 #endif 3103 3104 enqueue_load_avg(cfs_rq, se); 3105 if (se->on_rq) 3106 update_load_add(&cfs_rq->load, se->load.weight); 3107 3108 } 3109 3110 void reweight_task(struct task_struct *p, int prio) 3111 { 3112 struct sched_entity *se = &p->se; 3113 struct cfs_rq *cfs_rq = cfs_rq_of(se); 3114 struct load_weight *load = &se->load; 3115 unsigned long weight = scale_load(sched_prio_to_weight[prio]); 3116 3117 reweight_entity(cfs_rq, se, weight); 3118 load->inv_weight = sched_prio_to_wmult[prio]; 3119 } 3120 3121 #ifdef CONFIG_FAIR_GROUP_SCHED 3122 #ifdef CONFIG_SMP 3123 /* 3124 * All this does is approximate the hierarchical proportion which includes that 3125 * global sum we all love to hate. 3126 * 3127 * That is, the weight of a group entity, is the proportional share of the 3128 * group weight based on the group runqueue weights. That is: 3129 * 3130 * tg->weight * grq->load.weight 3131 * ge->load.weight = ----------------------------- (1) 3132 * \Sum grq->load.weight 3133 * 3134 * Now, because computing that sum is prohibitively expensive to compute (been 3135 * there, done that) we approximate it with this average stuff. The average 3136 * moves slower and therefore the approximation is cheaper and more stable. 3137 * 3138 * So instead of the above, we substitute: 3139 * 3140 * grq->load.weight -> grq->avg.load_avg (2) 3141 * 3142 * which yields the following: 3143 * 3144 * tg->weight * grq->avg.load_avg 3145 * ge->load.weight = ------------------------------ (3) 3146 * tg->load_avg 3147 * 3148 * Where: tg->load_avg ~= \Sum grq->avg.load_avg 3149 * 3150 * That is shares_avg, and it is right (given the approximation (2)). 3151 * 3152 * The problem with it is that because the average is slow -- it was designed 3153 * to be exactly that of course -- this leads to transients in boundary 3154 * conditions. In specific, the case where the group was idle and we start the 3155 * one task. It takes time for our CPU's grq->avg.load_avg to build up, 3156 * yielding bad latency etc.. 3157 * 3158 * Now, in that special case (1) reduces to: 3159 * 3160 * tg->weight * grq->load.weight 3161 * ge->load.weight = ----------------------------- = tg->weight (4) 3162 * grp->load.weight 3163 * 3164 * That is, the sum collapses because all other CPUs are idle; the UP scenario. 3165 * 3166 * So what we do is modify our approximation (3) to approach (4) in the (near) 3167 * UP case, like: 3168 * 3169 * ge->load.weight = 3170 * 3171 * tg->weight * grq->load.weight 3172 * --------------------------------------------------- (5) 3173 * tg->load_avg - grq->avg.load_avg + grq->load.weight 3174 * 3175 * But because grq->load.weight can drop to 0, resulting in a divide by zero, 3176 * we need to use grq->avg.load_avg as its lower bound, which then gives: 3177 * 3178 * 3179 * tg->weight * grq->load.weight 3180 * ge->load.weight = ----------------------------- (6) 3181 * tg_load_avg' 3182 * 3183 * Where: 3184 * 3185 * tg_load_avg' = tg->load_avg - grq->avg.load_avg + 3186 * max(grq->load.weight, grq->avg.load_avg) 3187 * 3188 * And that is shares_weight and is icky. In the (near) UP case it approaches 3189 * (4) while in the normal case it approaches (3). It consistently 3190 * overestimates the ge->load.weight and therefore: 3191 * 3192 * \Sum ge->load.weight >= tg->weight 3193 * 3194 * hence icky! 3195 */ 3196 static long calc_group_shares(struct cfs_rq *cfs_rq) 3197 { 3198 long tg_weight, tg_shares, load, shares; 3199 struct task_group *tg = cfs_rq->tg; 3200 3201 tg_shares = READ_ONCE(tg->shares); 3202 3203 load = max(scale_load_down(cfs_rq->load.weight), cfs_rq->avg.load_avg); 3204 3205 tg_weight = atomic_long_read(&tg->load_avg); 3206 3207 /* Ensure tg_weight >= load */ 3208 tg_weight -= cfs_rq->tg_load_avg_contrib; 3209 tg_weight += load; 3210 3211 shares = (tg_shares * load); 3212 if (tg_weight) 3213 shares /= tg_weight; 3214 3215 /* 3216 * MIN_SHARES has to be unscaled here to support per-CPU partitioning 3217 * of a group with small tg->shares value. It is a floor value which is 3218 * assigned as a minimum load.weight to the sched_entity representing 3219 * the group on a CPU. 3220 * 3221 * E.g. on 64-bit for a group with tg->shares of scale_load(15)=15*1024 3222 * on an 8-core system with 8 tasks each runnable on one CPU shares has 3223 * to be 15*1024*1/8=1920 instead of scale_load(MIN_SHARES)=2*1024. In 3224 * case no task is runnable on a CPU MIN_SHARES=2 should be returned 3225 * instead of 0. 3226 */ 3227 return clamp_t(long, shares, MIN_SHARES, tg_shares); 3228 } 3229 #endif /* CONFIG_SMP */ 3230 3231 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq); 3232 3233 /* 3234 * Recomputes the group entity based on the current state of its group 3235 * runqueue. 3236 */ 3237 static void update_cfs_group(struct sched_entity *se) 3238 { 3239 struct cfs_rq *gcfs_rq = group_cfs_rq(se); 3240 long shares; 3241 3242 if (!gcfs_rq) 3243 return; 3244 3245 if (throttled_hierarchy(gcfs_rq)) 3246 return; 3247 3248 #ifndef CONFIG_SMP 3249 shares = READ_ONCE(gcfs_rq->tg->shares); 3250 3251 if (likely(se->load.weight == shares)) 3252 return; 3253 #else 3254 shares = calc_group_shares(gcfs_rq); 3255 #endif 3256 3257 reweight_entity(cfs_rq_of(se), se, shares); 3258 } 3259 3260 #else /* CONFIG_FAIR_GROUP_SCHED */ 3261 static inline void update_cfs_group(struct sched_entity *se) 3262 { 3263 } 3264 #endif /* CONFIG_FAIR_GROUP_SCHED */ 3265 3266 static inline void cfs_rq_util_change(struct cfs_rq *cfs_rq, int flags) 3267 { 3268 struct rq *rq = rq_of(cfs_rq); 3269 3270 if (&rq->cfs == cfs_rq) { 3271 /* 3272 * There are a few boundary cases this might miss but it should 3273 * get called often enough that that should (hopefully) not be 3274 * a real problem. 3275 * 3276 * It will not get called when we go idle, because the idle 3277 * thread is a different class (!fair), nor will the utilization 3278 * number include things like RT tasks. 3279 * 3280 * As is, the util number is not freq-invariant (we'd have to 3281 * implement arch_scale_freq_capacity() for that). 3282 * 3283 * See cpu_util(). 3284 */ 3285 cpufreq_update_util(rq, flags); 3286 } 3287 } 3288 3289 #ifdef CONFIG_SMP 3290 #ifdef CONFIG_FAIR_GROUP_SCHED 3291 /* 3292 * Because list_add_leaf_cfs_rq always places a child cfs_rq on the list 3293 * immediately before a parent cfs_rq, and cfs_rqs are removed from the list 3294 * bottom-up, we only have to test whether the cfs_rq before us on the list 3295 * is our child. 3296 * If cfs_rq is not on the list, test whether a child needs its to be added to 3297 * connect a branch to the tree * (see list_add_leaf_cfs_rq() for details). 3298 */ 3299 static inline bool child_cfs_rq_on_list(struct cfs_rq *cfs_rq) 3300 { 3301 struct cfs_rq *prev_cfs_rq; 3302 struct list_head *prev; 3303 3304 if (cfs_rq->on_list) { 3305 prev = cfs_rq->leaf_cfs_rq_list.prev; 3306 } else { 3307 struct rq *rq = rq_of(cfs_rq); 3308 3309 prev = rq->tmp_alone_branch; 3310 } 3311 3312 prev_cfs_rq = container_of(prev, struct cfs_rq, leaf_cfs_rq_list); 3313 3314 return (prev_cfs_rq->tg->parent == cfs_rq->tg); 3315 } 3316 3317 static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq) 3318 { 3319 if (cfs_rq->load.weight) 3320 return false; 3321 3322 if (cfs_rq->avg.load_sum) 3323 return false; 3324 3325 if (cfs_rq->avg.util_sum) 3326 return false; 3327 3328 if (cfs_rq->avg.runnable_sum) 3329 return false; 3330 3331 if (child_cfs_rq_on_list(cfs_rq)) 3332 return false; 3333 3334 /* 3335 * _avg must be null when _sum are null because _avg = _sum / divider 3336 * Make sure that rounding and/or propagation of PELT values never 3337 * break this. 3338 */ 3339 SCHED_WARN_ON(cfs_rq->avg.load_avg || 3340 cfs_rq->avg.util_avg || 3341 cfs_rq->avg.runnable_avg); 3342 3343 return true; 3344 } 3345 3346 /** 3347 * update_tg_load_avg - update the tg's load avg 3348 * @cfs_rq: the cfs_rq whose avg changed 3349 * 3350 * This function 'ensures': tg->load_avg := \Sum tg->cfs_rq[]->avg.load. 3351 * However, because tg->load_avg is a global value there are performance 3352 * considerations. 3353 * 3354 * In order to avoid having to look at the other cfs_rq's, we use a 3355 * differential update where we store the last value we propagated. This in 3356 * turn allows skipping updates if the differential is 'small'. 3357 * 3358 * Updating tg's load_avg is necessary before update_cfs_share(). 3359 */ 3360 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq) 3361 { 3362 long delta = cfs_rq->avg.load_avg - cfs_rq->tg_load_avg_contrib; 3363 3364 /* 3365 * No need to update load_avg for root_task_group as it is not used. 3366 */ 3367 if (cfs_rq->tg == &root_task_group) 3368 return; 3369 3370 if (abs(delta) > cfs_rq->tg_load_avg_contrib / 64) { 3371 atomic_long_add(delta, &cfs_rq->tg->load_avg); 3372 cfs_rq->tg_load_avg_contrib = cfs_rq->avg.load_avg; 3373 } 3374 } 3375 3376 /* 3377 * Called within set_task_rq() right before setting a task's CPU. The 3378 * caller only guarantees p->pi_lock is held; no other assumptions, 3379 * including the state of rq->lock, should be made. 3380 */ 3381 void set_task_rq_fair(struct sched_entity *se, 3382 struct cfs_rq *prev, struct cfs_rq *next) 3383 { 3384 u64 p_last_update_time; 3385 u64 n_last_update_time; 3386 3387 if (!sched_feat(ATTACH_AGE_LOAD)) 3388 return; 3389 3390 /* 3391 * We are supposed to update the task to "current" time, then its up to 3392 * date and ready to go to new CPU/cfs_rq. But we have difficulty in 3393 * getting what current time is, so simply throw away the out-of-date 3394 * time. This will result in the wakee task is less decayed, but giving 3395 * the wakee more load sounds not bad. 3396 */ 3397 if (!(se->avg.last_update_time && prev)) 3398 return; 3399 3400 #ifndef CONFIG_64BIT 3401 { 3402 u64 p_last_update_time_copy; 3403 u64 n_last_update_time_copy; 3404 3405 do { 3406 p_last_update_time_copy = prev->load_last_update_time_copy; 3407 n_last_update_time_copy = next->load_last_update_time_copy; 3408 3409 smp_rmb(); 3410 3411 p_last_update_time = prev->avg.last_update_time; 3412 n_last_update_time = next->avg.last_update_time; 3413 3414 } while (p_last_update_time != p_last_update_time_copy || 3415 n_last_update_time != n_last_update_time_copy); 3416 } 3417 #else 3418 p_last_update_time = prev->avg.last_update_time; 3419 n_last_update_time = next->avg.last_update_time; 3420 #endif 3421 __update_load_avg_blocked_se(p_last_update_time, se); 3422 se->avg.last_update_time = n_last_update_time; 3423 } 3424 3425 3426 /* 3427 * When on migration a sched_entity joins/leaves the PELT hierarchy, we need to 3428 * propagate its contribution. The key to this propagation is the invariant 3429 * that for each group: 3430 * 3431 * ge->avg == grq->avg (1) 3432 * 3433 * _IFF_ we look at the pure running and runnable sums. Because they 3434 * represent the very same entity, just at different points in the hierarchy. 3435 * 3436 * Per the above update_tg_cfs_util() and update_tg_cfs_runnable() are trivial 3437 * and simply copies the running/runnable sum over (but still wrong, because 3438 * the group entity and group rq do not have their PELT windows aligned). 3439 * 3440 * However, update_tg_cfs_load() is more complex. So we have: 3441 * 3442 * ge->avg.load_avg = ge->load.weight * ge->avg.runnable_avg (2) 3443 * 3444 * And since, like util, the runnable part should be directly transferable, 3445 * the following would _appear_ to be the straight forward approach: 3446 * 3447 * grq->avg.load_avg = grq->load.weight * grq->avg.runnable_avg (3) 3448 * 3449 * And per (1) we have: 3450 * 3451 * ge->avg.runnable_avg == grq->avg.runnable_avg 3452 * 3453 * Which gives: 3454 * 3455 * ge->load.weight * grq->avg.load_avg 3456 * ge->avg.load_avg = ----------------------------------- (4) 3457 * grq->load.weight 3458 * 3459 * Except that is wrong! 3460 * 3461 * Because while for entities historical weight is not important and we 3462 * really only care about our future and therefore can consider a pure 3463 * runnable sum, runqueues can NOT do this. 3464 * 3465 * We specifically want runqueues to have a load_avg that includes 3466 * historical weights. Those represent the blocked load, the load we expect 3467 * to (shortly) return to us. This only works by keeping the weights as 3468 * integral part of the sum. We therefore cannot decompose as per (3). 3469 * 3470 * Another reason this doesn't work is that runnable isn't a 0-sum entity. 3471 * Imagine a rq with 2 tasks that each are runnable 2/3 of the time. Then the 3472 * rq itself is runnable anywhere between 2/3 and 1 depending on how the 3473 * runnable section of these tasks overlap (or not). If they were to perfectly 3474 * align the rq as a whole would be runnable 2/3 of the time. If however we 3475 * always have at least 1 runnable task, the rq as a whole is always runnable. 3476 * 3477 * So we'll have to approximate.. :/ 3478 * 3479 * Given the constraint: 3480 * 3481 * ge->avg.running_sum <= ge->avg.runnable_sum <= LOAD_AVG_MAX 3482 * 3483 * We can construct a rule that adds runnable to a rq by assuming minimal 3484 * overlap. 3485 * 3486 * On removal, we'll assume each task is equally runnable; which yields: 3487 * 3488 * grq->avg.runnable_sum = grq->avg.load_sum / grq->load.weight 3489 * 3490 * XXX: only do this for the part of runnable > running ? 3491 * 3492 */ 3493 3494 static inline void 3495 update_tg_cfs_util(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq) 3496 { 3497 long delta = gcfs_rq->avg.util_avg - se->avg.util_avg; 3498 u32 divider; 3499 3500 /* Nothing to update */ 3501 if (!delta) 3502 return; 3503 3504 /* 3505 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se. 3506 * See ___update_load_avg() for details. 3507 */ 3508 divider = get_pelt_divider(&cfs_rq->avg); 3509 3510 /* Set new sched_entity's utilization */ 3511 se->avg.util_avg = gcfs_rq->avg.util_avg; 3512 se->avg.util_sum = se->avg.util_avg * divider; 3513 3514 /* Update parent cfs_rq utilization */ 3515 add_positive(&cfs_rq->avg.util_avg, delta); 3516 cfs_rq->avg.util_sum = cfs_rq->avg.util_avg * divider; 3517 } 3518 3519 static inline void 3520 update_tg_cfs_runnable(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq) 3521 { 3522 long delta = gcfs_rq->avg.runnable_avg - se->avg.runnable_avg; 3523 u32 divider; 3524 3525 /* Nothing to update */ 3526 if (!delta) 3527 return; 3528 3529 /* 3530 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se. 3531 * See ___update_load_avg() for details. 3532 */ 3533 divider = get_pelt_divider(&cfs_rq->avg); 3534 3535 /* Set new sched_entity's runnable */ 3536 se->avg.runnable_avg = gcfs_rq->avg.runnable_avg; 3537 se->avg.runnable_sum = se->avg.runnable_avg * divider; 3538 3539 /* Update parent cfs_rq runnable */ 3540 add_positive(&cfs_rq->avg.runnable_avg, delta); 3541 cfs_rq->avg.runnable_sum = cfs_rq->avg.runnable_avg * divider; 3542 } 3543 3544 static inline void 3545 update_tg_cfs_load(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq) 3546 { 3547 long delta, running_sum, runnable_sum = gcfs_rq->prop_runnable_sum; 3548 unsigned long load_avg; 3549 u64 load_sum = 0; 3550 u32 divider; 3551 3552 if (!runnable_sum) 3553 return; 3554 3555 gcfs_rq->prop_runnable_sum = 0; 3556 3557 /* 3558 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se. 3559 * See ___update_load_avg() for details. 3560 */ 3561 divider = get_pelt_divider(&cfs_rq->avg); 3562 3563 if (runnable_sum >= 0) { 3564 /* 3565 * Add runnable; clip at LOAD_AVG_MAX. Reflects that until 3566 * the CPU is saturated running == runnable. 3567 */ 3568 runnable_sum += se->avg.load_sum; 3569 runnable_sum = min_t(long, runnable_sum, divider); 3570 } else { 3571 /* 3572 * Estimate the new unweighted runnable_sum of the gcfs_rq by 3573 * assuming all tasks are equally runnable. 3574 */ 3575 if (scale_load_down(gcfs_rq->load.weight)) { 3576 load_sum = div_s64(gcfs_rq->avg.load_sum, 3577 scale_load_down(gcfs_rq->load.weight)); 3578 } 3579 3580 /* But make sure to not inflate se's runnable */ 3581 runnable_sum = min(se->avg.load_sum, load_sum); 3582 } 3583 3584 /* 3585 * runnable_sum can't be lower than running_sum 3586 * Rescale running sum to be in the same range as runnable sum 3587 * running_sum is in [0 : LOAD_AVG_MAX << SCHED_CAPACITY_SHIFT] 3588 * runnable_sum is in [0 : LOAD_AVG_MAX] 3589 */ 3590 running_sum = se->avg.util_sum >> SCHED_CAPACITY_SHIFT; 3591 runnable_sum = max(runnable_sum, running_sum); 3592 3593 load_sum = (s64)se_weight(se) * runnable_sum; 3594 load_avg = div_s64(load_sum, divider); 3595 3596 se->avg.load_sum = runnable_sum; 3597 3598 delta = load_avg - se->avg.load_avg; 3599 if (!delta) 3600 return; 3601 3602 se->avg.load_avg = load_avg; 3603 3604 add_positive(&cfs_rq->avg.load_avg, delta); 3605 cfs_rq->avg.load_sum = cfs_rq->avg.load_avg * divider; 3606 } 3607 3608 static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum) 3609 { 3610 cfs_rq->propagate = 1; 3611 cfs_rq->prop_runnable_sum += runnable_sum; 3612 } 3613 3614 /* Update task and its cfs_rq load average */ 3615 static inline int propagate_entity_load_avg(struct sched_entity *se) 3616 { 3617 struct cfs_rq *cfs_rq, *gcfs_rq; 3618 3619 if (entity_is_task(se)) 3620 return 0; 3621 3622 gcfs_rq = group_cfs_rq(se); 3623 if (!gcfs_rq->propagate) 3624 return 0; 3625 3626 gcfs_rq->propagate = 0; 3627 3628 cfs_rq = cfs_rq_of(se); 3629 3630 add_tg_cfs_propagate(cfs_rq, gcfs_rq->prop_runnable_sum); 3631 3632 update_tg_cfs_util(cfs_rq, se, gcfs_rq); 3633 update_tg_cfs_runnable(cfs_rq, se, gcfs_rq); 3634 update_tg_cfs_load(cfs_rq, se, gcfs_rq); 3635 3636 trace_pelt_cfs_tp(cfs_rq); 3637 trace_pelt_se_tp(se); 3638 3639 return 1; 3640 } 3641 3642 /* 3643 * Check if we need to update the load and the utilization of a blocked 3644 * group_entity: 3645 */ 3646 static inline bool skip_blocked_update(struct sched_entity *se) 3647 { 3648 struct cfs_rq *gcfs_rq = group_cfs_rq(se); 3649 3650 /* 3651 * If sched_entity still have not zero load or utilization, we have to 3652 * decay it: 3653 */ 3654 if (se->avg.load_avg || se->avg.util_avg) 3655 return false; 3656 3657 /* 3658 * If there is a pending propagation, we have to update the load and 3659 * the utilization of the sched_entity: 3660 */ 3661 if (gcfs_rq->propagate) 3662 return false; 3663 3664 /* 3665 * Otherwise, the load and the utilization of the sched_entity is 3666 * already zero and there is no pending propagation, so it will be a 3667 * waste of time to try to decay it: 3668 */ 3669 return true; 3670 } 3671 3672 #else /* CONFIG_FAIR_GROUP_SCHED */ 3673 3674 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq) {} 3675 3676 static inline int propagate_entity_load_avg(struct sched_entity *se) 3677 { 3678 return 0; 3679 } 3680 3681 static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum) {} 3682 3683 #endif /* CONFIG_FAIR_GROUP_SCHED */ 3684 3685 /** 3686 * update_cfs_rq_load_avg - update the cfs_rq's load/util averages 3687 * @now: current time, as per cfs_rq_clock_pelt() 3688 * @cfs_rq: cfs_rq to update 3689 * 3690 * The cfs_rq avg is the direct sum of all its entities (blocked and runnable) 3691 * avg. The immediate corollary is that all (fair) tasks must be attached, see 3692 * post_init_entity_util_avg(). 3693 * 3694 * cfs_rq->avg is used for task_h_load() and update_cfs_share() for example. 3695 * 3696 * Returns true if the load decayed or we removed load. 3697 * 3698 * Since both these conditions indicate a changed cfs_rq->avg.load we should 3699 * call update_tg_load_avg() when this function returns true. 3700 */ 3701 static inline int 3702 update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq) 3703 { 3704 unsigned long removed_load = 0, removed_util = 0, removed_runnable = 0; 3705 struct sched_avg *sa = &cfs_rq->avg; 3706 int decayed = 0; 3707 3708 if (cfs_rq->removed.nr) { 3709 unsigned long r; 3710 u32 divider = get_pelt_divider(&cfs_rq->avg); 3711 3712 raw_spin_lock(&cfs_rq->removed.lock); 3713 swap(cfs_rq->removed.util_avg, removed_util); 3714 swap(cfs_rq->removed.load_avg, removed_load); 3715 swap(cfs_rq->removed.runnable_avg, removed_runnable); 3716 cfs_rq->removed.nr = 0; 3717 raw_spin_unlock(&cfs_rq->removed.lock); 3718 3719 r = removed_load; 3720 sub_positive(&sa->load_avg, r); 3721 sa->load_sum = sa->load_avg * divider; 3722 3723 r = removed_util; 3724 sub_positive(&sa->util_avg, r); 3725 sa->util_sum = sa->util_avg * divider; 3726 3727 r = removed_runnable; 3728 sub_positive(&sa->runnable_avg, r); 3729 sa->runnable_sum = sa->runnable_avg * divider; 3730 3731 /* 3732 * removed_runnable is the unweighted version of removed_load so we 3733 * can use it to estimate removed_load_sum. 3734 */ 3735 add_tg_cfs_propagate(cfs_rq, 3736 -(long)(removed_runnable * divider) >> SCHED_CAPACITY_SHIFT); 3737 3738 decayed = 1; 3739 } 3740 3741 decayed |= __update_load_avg_cfs_rq(now, cfs_rq); 3742 3743 #ifndef CONFIG_64BIT 3744 smp_wmb(); 3745 cfs_rq->load_last_update_time_copy = sa->last_update_time; 3746 #endif 3747 3748 return decayed; 3749 } 3750 3751 /** 3752 * attach_entity_load_avg - attach this entity to its cfs_rq load avg 3753 * @cfs_rq: cfs_rq to attach to 3754 * @se: sched_entity to attach 3755 * 3756 * Must call update_cfs_rq_load_avg() before this, since we rely on 3757 * cfs_rq->avg.last_update_time being current. 3758 */ 3759 static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) 3760 { 3761 /* 3762 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se. 3763 * See ___update_load_avg() for details. 3764 */ 3765 u32 divider = get_pelt_divider(&cfs_rq->avg); 3766 3767 /* 3768 * When we attach the @se to the @cfs_rq, we must align the decay 3769 * window because without that, really weird and wonderful things can 3770 * happen. 3771 * 3772 * XXX illustrate 3773 */ 3774 se->avg.last_update_time = cfs_rq->avg.last_update_time; 3775 se->avg.period_contrib = cfs_rq->avg.period_contrib; 3776 3777 /* 3778 * Hell(o) Nasty stuff.. we need to recompute _sum based on the new 3779 * period_contrib. This isn't strictly correct, but since we're 3780 * entirely outside of the PELT hierarchy, nobody cares if we truncate 3781 * _sum a little. 3782 */ 3783 se->avg.util_sum = se->avg.util_avg * divider; 3784 3785 se->avg.runnable_sum = se->avg.runnable_avg * divider; 3786 3787 se->avg.load_sum = divider; 3788 if (se_weight(se)) { 3789 se->avg.load_sum = 3790 div_u64(se->avg.load_avg * se->avg.load_sum, se_weight(se)); 3791 } 3792 3793 enqueue_load_avg(cfs_rq, se); 3794 cfs_rq->avg.util_avg += se->avg.util_avg; 3795 cfs_rq->avg.util_sum += se->avg.util_sum; 3796 cfs_rq->avg.runnable_avg += se->avg.runnable_avg; 3797 cfs_rq->avg.runnable_sum += se->avg.runnable_sum; 3798 3799 add_tg_cfs_propagate(cfs_rq, se->avg.load_sum); 3800 3801 cfs_rq_util_change(cfs_rq, 0); 3802 3803 trace_pelt_cfs_tp(cfs_rq); 3804 } 3805 3806 /** 3807 * detach_entity_load_avg - detach this entity from its cfs_rq load avg 3808 * @cfs_rq: cfs_rq to detach from 3809 * @se: sched_entity to detach 3810 * 3811 * Must call update_cfs_rq_load_avg() before this, since we rely on 3812 * cfs_rq->avg.last_update_time being current. 3813 */ 3814 static void detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) 3815 { 3816 /* 3817 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se. 3818 * See ___update_load_avg() for details. 3819 */ 3820 u32 divider = get_pelt_divider(&cfs_rq->avg); 3821 3822 dequeue_load_avg(cfs_rq, se); 3823 sub_positive(&cfs_rq->avg.util_avg, se->avg.util_avg); 3824 cfs_rq->avg.util_sum = cfs_rq->avg.util_avg * divider; 3825 sub_positive(&cfs_rq->avg.runnable_avg, se->avg.runnable_avg); 3826 cfs_rq->avg.runnable_sum = cfs_rq->avg.runnable_avg * divider; 3827 3828 add_tg_cfs_propagate(cfs_rq, -se->avg.load_sum); 3829 3830 cfs_rq_util_change(cfs_rq, 0); 3831 3832 trace_pelt_cfs_tp(cfs_rq); 3833 } 3834 3835 /* 3836 * Optional action to be done while updating the load average 3837 */ 3838 #define UPDATE_TG 0x1 3839 #define SKIP_AGE_LOAD 0x2 3840 #define DO_ATTACH 0x4 3841 3842 /* Update task and its cfs_rq load average */ 3843 static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 3844 { 3845 u64 now = cfs_rq_clock_pelt(cfs_rq); 3846 int decayed; 3847 3848 /* 3849 * Track task load average for carrying it to new CPU after migrated, and 3850 * track group sched_entity load average for task_h_load calc in migration 3851 */ 3852 if (se->avg.last_update_time && !(flags & SKIP_AGE_LOAD)) 3853 __update_load_avg_se(now, cfs_rq, se); 3854 3855 decayed = update_cfs_rq_load_avg(now, cfs_rq); 3856 decayed |= propagate_entity_load_avg(se); 3857 3858 if (!se->avg.last_update_time && (flags & DO_ATTACH)) { 3859 3860 /* 3861 * DO_ATTACH means we're here from enqueue_entity(). 3862 * !last_update_time means we've passed through 3863 * migrate_task_rq_fair() indicating we migrated. 3864 * 3865 * IOW we're enqueueing a task on a new CPU. 3866 */ 3867 attach_entity_load_avg(cfs_rq, se); 3868 update_tg_load_avg(cfs_rq); 3869 3870 } else if (decayed) { 3871 cfs_rq_util_change(cfs_rq, 0); 3872 3873 if (flags & UPDATE_TG) 3874 update_tg_load_avg(cfs_rq); 3875 } 3876 } 3877 3878 #ifndef CONFIG_64BIT 3879 static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq) 3880 { 3881 u64 last_update_time_copy; 3882 u64 last_update_time; 3883 3884 do { 3885 last_update_time_copy = cfs_rq->load_last_update_time_copy; 3886 smp_rmb(); 3887 last_update_time = cfs_rq->avg.last_update_time; 3888 } while (last_update_time != last_update_time_copy); 3889 3890 return last_update_time; 3891 } 3892 #else 3893 static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq) 3894 { 3895 return cfs_rq->avg.last_update_time; 3896 } 3897 #endif 3898 3899 /* 3900 * Synchronize entity load avg of dequeued entity without locking 3901 * the previous rq. 3902 */ 3903 static void sync_entity_load_avg(struct sched_entity *se) 3904 { 3905 struct cfs_rq *cfs_rq = cfs_rq_of(se); 3906 u64 last_update_time; 3907 3908 last_update_time = cfs_rq_last_update_time(cfs_rq); 3909 __update_load_avg_blocked_se(last_update_time, se); 3910 } 3911 3912 /* 3913 * Task first catches up with cfs_rq, and then subtract 3914 * itself from the cfs_rq (task must be off the queue now). 3915 */ 3916 static void remove_entity_load_avg(struct sched_entity *se) 3917 { 3918 struct cfs_rq *cfs_rq = cfs_rq_of(se); 3919 unsigned long flags; 3920 3921 /* 3922 * tasks cannot exit without having gone through wake_up_new_task() -> 3923 * post_init_entity_util_avg() which will have added things to the 3924 * cfs_rq, so we can remove unconditionally. 3925 */ 3926 3927 sync_entity_load_avg(se); 3928 3929 raw_spin_lock_irqsave(&cfs_rq->removed.lock, flags); 3930 ++cfs_rq->removed.nr; 3931 cfs_rq->removed.util_avg += se->avg.util_avg; 3932 cfs_rq->removed.load_avg += se->avg.load_avg; 3933 cfs_rq->removed.runnable_avg += se->avg.runnable_avg; 3934 raw_spin_unlock_irqrestore(&cfs_rq->removed.lock, flags); 3935 } 3936 3937 static inline unsigned long cfs_rq_runnable_avg(struct cfs_rq *cfs_rq) 3938 { 3939 return cfs_rq->avg.runnable_avg; 3940 } 3941 3942 static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq) 3943 { 3944 return cfs_rq->avg.load_avg; 3945 } 3946 3947 static int newidle_balance(struct rq *this_rq, struct rq_flags *rf); 3948 3949 static inline unsigned long task_util(struct task_struct *p) 3950 { 3951 return READ_ONCE(p->se.avg.util_avg); 3952 } 3953 3954 static inline unsigned long _task_util_est(struct task_struct *p) 3955 { 3956 struct util_est ue = READ_ONCE(p->se.avg.util_est); 3957 3958 return max(ue.ewma, (ue.enqueued & ~UTIL_AVG_UNCHANGED)); 3959 } 3960 3961 static inline unsigned long task_util_est(struct task_struct *p) 3962 { 3963 return max(task_util(p), _task_util_est(p)); 3964 } 3965 3966 #ifdef CONFIG_UCLAMP_TASK 3967 static inline unsigned long uclamp_task_util(struct task_struct *p) 3968 { 3969 return clamp(task_util_est(p), 3970 uclamp_eff_value(p, UCLAMP_MIN), 3971 uclamp_eff_value(p, UCLAMP_MAX)); 3972 } 3973 #else 3974 static inline unsigned long uclamp_task_util(struct task_struct *p) 3975 { 3976 return task_util_est(p); 3977 } 3978 #endif 3979 3980 static inline void util_est_enqueue(struct cfs_rq *cfs_rq, 3981 struct task_struct *p) 3982 { 3983 unsigned int enqueued; 3984 3985 if (!sched_feat(UTIL_EST)) 3986 return; 3987 3988 /* Update root cfs_rq's estimated utilization */ 3989 enqueued = cfs_rq->avg.util_est.enqueued; 3990 enqueued += _task_util_est(p); 3991 WRITE_ONCE(cfs_rq->avg.util_est.enqueued, enqueued); 3992 3993 trace_sched_util_est_cfs_tp(cfs_rq); 3994 } 3995 3996 static inline void util_est_dequeue(struct cfs_rq *cfs_rq, 3997 struct task_struct *p) 3998 { 3999 unsigned int enqueued; 4000 4001 if (!sched_feat(UTIL_EST)) 4002 return; 4003 4004 /* Update root cfs_rq's estimated utilization */ 4005 enqueued = cfs_rq->avg.util_est.enqueued; 4006 enqueued -= min_t(unsigned int, enqueued, _task_util_est(p)); 4007 WRITE_ONCE(cfs_rq->avg.util_est.enqueued, enqueued); 4008 4009 trace_sched_util_est_cfs_tp(cfs_rq); 4010 } 4011 4012 #define UTIL_EST_MARGIN (SCHED_CAPACITY_SCALE / 100) 4013 4014 /* 4015 * Check if a (signed) value is within a specified (unsigned) margin, 4016 * based on the observation that: 4017 * 4018 * abs(x) < y := (unsigned)(x + y - 1) < (2 * y - 1) 4019 * 4020 * NOTE: this only works when value + margin < INT_MAX. 4021 */ 4022 static inline bool within_margin(int value, int margin) 4023 { 4024 return ((unsigned int)(value + margin - 1) < (2 * margin - 1)); 4025 } 4026 4027 static inline void util_est_update(struct cfs_rq *cfs_rq, 4028 struct task_struct *p, 4029 bool task_sleep) 4030 { 4031 long last_ewma_diff, last_enqueued_diff; 4032 struct util_est ue; 4033 4034 if (!sched_feat(UTIL_EST)) 4035 return; 4036 4037 /* 4038 * Skip update of task's estimated utilization when the task has not 4039 * yet completed an activation, e.g. being migrated. 4040 */ 4041 if (!task_sleep) 4042 return; 4043 4044 /* 4045 * If the PELT values haven't changed since enqueue time, 4046 * skip the util_est update. 4047 */ 4048 ue = p->se.avg.util_est; 4049 if (ue.enqueued & UTIL_AVG_UNCHANGED) 4050 return; 4051 4052 last_enqueued_diff = ue.enqueued; 4053 4054 /* 4055 * Reset EWMA on utilization increases, the moving average is used only 4056 * to smooth utilization decreases. 4057 */ 4058 ue.enqueued = task_util(p); 4059 if (sched_feat(UTIL_EST_FASTUP)) { 4060 if (ue.ewma < ue.enqueued) { 4061 ue.ewma = ue.enqueued; 4062 goto done; 4063 } 4064 } 4065 4066 /* 4067 * Skip update of task's estimated utilization when its members are 4068 * already ~1% close to its last activation value. 4069 */ 4070 last_ewma_diff = ue.enqueued - ue.ewma; 4071 last_enqueued_diff -= ue.enqueued; 4072 if (within_margin(last_ewma_diff, UTIL_EST_MARGIN)) { 4073 if (!within_margin(last_enqueued_diff, UTIL_EST_MARGIN)) 4074 goto done; 4075 4076 return; 4077 } 4078 4079 /* 4080 * To avoid overestimation of actual task utilization, skip updates if 4081 * we cannot grant there is idle time in this CPU. 4082 */ 4083 if (task_util(p) > capacity_orig_of(cpu_of(rq_of(cfs_rq)))) 4084 return; 4085 4086 /* 4087 * Update Task's estimated utilization 4088 * 4089 * When *p completes an activation we can consolidate another sample 4090 * of the task size. This is done by storing the current PELT value 4091 * as ue.enqueued and by using this value to update the Exponential 4092 * Weighted Moving Average (EWMA): 4093 * 4094 * ewma(t) = w * task_util(p) + (1-w) * ewma(t-1) 4095 * = w * task_util(p) + ewma(t-1) - w * ewma(t-1) 4096 * = w * (task_util(p) - ewma(t-1)) + ewma(t-1) 4097 * = w * ( last_ewma_diff ) + ewma(t-1) 4098 * = w * (last_ewma_diff + ewma(t-1) / w) 4099 * 4100 * Where 'w' is the weight of new samples, which is configured to be 4101 * 0.25, thus making w=1/4 ( >>= UTIL_EST_WEIGHT_SHIFT) 4102 */ 4103 ue.ewma <<= UTIL_EST_WEIGHT_SHIFT; 4104 ue.ewma += last_ewma_diff; 4105 ue.ewma >>= UTIL_EST_WEIGHT_SHIFT; 4106 done: 4107 ue.enqueued |= UTIL_AVG_UNCHANGED; 4108 WRITE_ONCE(p->se.avg.util_est, ue); 4109 4110 trace_sched_util_est_se_tp(&p->se); 4111 } 4112 4113 static inline int task_fits_capacity(struct task_struct *p, long capacity) 4114 { 4115 return fits_capacity(uclamp_task_util(p), capacity); 4116 } 4117 4118 static inline void update_misfit_status(struct task_struct *p, struct rq *rq) 4119 { 4120 if (!static_branch_unlikely(&sched_asym_cpucapacity)) 4121 return; 4122 4123 if (!p || p->nr_cpus_allowed == 1) { 4124 rq->misfit_task_load = 0; 4125 return; 4126 } 4127 4128 if (task_fits_capacity(p, capacity_of(cpu_of(rq)))) { 4129 rq->misfit_task_load = 0; 4130 return; 4131 } 4132 4133 /* 4134 * Make sure that misfit_task_load will not be null even if 4135 * task_h_load() returns 0. 4136 */ 4137 rq->misfit_task_load = max_t(unsigned long, task_h_load(p), 1); 4138 } 4139 4140 #else /* CONFIG_SMP */ 4141 4142 static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq) 4143 { 4144 return true; 4145 } 4146 4147 #define UPDATE_TG 0x0 4148 #define SKIP_AGE_LOAD 0x0 4149 #define DO_ATTACH 0x0 4150 4151 static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int not_used1) 4152 { 4153 cfs_rq_util_change(cfs_rq, 0); 4154 } 4155 4156 static inline void remove_entity_load_avg(struct sched_entity *se) {} 4157 4158 static inline void 4159 attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {} 4160 static inline void 4161 detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {} 4162 4163 static inline int newidle_balance(struct rq *rq, struct rq_flags *rf) 4164 { 4165 return 0; 4166 } 4167 4168 static inline void 4169 util_est_enqueue(struct cfs_rq *cfs_rq, struct task_struct *p) {} 4170 4171 static inline void 4172 util_est_dequeue(struct cfs_rq *cfs_rq, struct task_struct *p) {} 4173 4174 static inline void 4175 util_est_update(struct cfs_rq *cfs_rq, struct task_struct *p, 4176 bool task_sleep) {} 4177 static inline void update_misfit_status(struct task_struct *p, struct rq *rq) {} 4178 4179 #endif /* CONFIG_SMP */ 4180 4181 static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se) 4182 { 4183 #ifdef CONFIG_SCHED_DEBUG 4184 s64 d = se->vruntime - cfs_rq->min_vruntime; 4185 4186 if (d < 0) 4187 d = -d; 4188 4189 if (d > 3*sysctl_sched_latency) 4190 schedstat_inc(cfs_rq->nr_spread_over); 4191 #endif 4192 } 4193 4194 static void 4195 place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial) 4196 { 4197 u64 vruntime = cfs_rq->min_vruntime; 4198 4199 /* 4200 * The 'current' period is already promised to the current tasks, 4201 * however the extra weight of the new task will slow them down a 4202 * little, place the new task so that it fits in the slot that 4203 * stays open at the end. 4204 */ 4205 if (initial && sched_feat(START_DEBIT)) 4206 vruntime += sched_vslice(cfs_rq, se); 4207 4208 /* sleeps up to a single latency don't count. */ 4209 if (!initial) { 4210 unsigned long thresh = sysctl_sched_latency; 4211 4212 /* 4213 * Halve their sleep time's effect, to allow 4214 * for a gentler effect of sleepers: 4215 */ 4216 if (sched_feat(GENTLE_FAIR_SLEEPERS)) 4217 thresh >>= 1; 4218 4219 vruntime -= thresh; 4220 } 4221 4222 /* ensure we never gain time by being placed backwards. */ 4223 se->vruntime = max_vruntime(se->vruntime, vruntime); 4224 } 4225 4226 static void check_enqueue_throttle(struct cfs_rq *cfs_rq); 4227 4228 static inline void check_schedstat_required(void) 4229 { 4230 #ifdef CONFIG_SCHEDSTATS 4231 if (schedstat_enabled()) 4232 return; 4233 4234 /* Force schedstat enabled if a dependent tracepoint is active */ 4235 if (trace_sched_stat_wait_enabled() || 4236 trace_sched_stat_sleep_enabled() || 4237 trace_sched_stat_iowait_enabled() || 4238 trace_sched_stat_blocked_enabled() || 4239 trace_sched_stat_runtime_enabled()) { 4240 printk_deferred_once("Scheduler tracepoints stat_sleep, stat_iowait, " 4241 "stat_blocked and stat_runtime require the " 4242 "kernel parameter schedstats=enable or " 4243 "kernel.sched_schedstats=1\n"); 4244 } 4245 #endif 4246 } 4247 4248 static inline bool cfs_bandwidth_used(void); 4249 4250 /* 4251 * MIGRATION 4252 * 4253 * dequeue 4254 * update_curr() 4255 * update_min_vruntime() 4256 * vruntime -= min_vruntime 4257 * 4258 * enqueue 4259 * update_curr() 4260 * update_min_vruntime() 4261 * vruntime += min_vruntime 4262 * 4263 * this way the vruntime transition between RQs is done when both 4264 * min_vruntime are up-to-date. 4265 * 4266 * WAKEUP (remote) 4267 * 4268 * ->migrate_task_rq_fair() (p->state == TASK_WAKING) 4269 * vruntime -= min_vruntime 4270 * 4271 * enqueue 4272 * update_curr() 4273 * update_min_vruntime() 4274 * vruntime += min_vruntime 4275 * 4276 * this way we don't have the most up-to-date min_vruntime on the originating 4277 * CPU and an up-to-date min_vruntime on the destination CPU. 4278 */ 4279 4280 static void 4281 enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 4282 { 4283 bool renorm = !(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_MIGRATED); 4284 bool curr = cfs_rq->curr == se; 4285 4286 /* 4287 * If we're the current task, we must renormalise before calling 4288 * update_curr(). 4289 */ 4290 if (renorm && curr) 4291 se->vruntime += cfs_rq->min_vruntime; 4292 4293 update_curr(cfs_rq); 4294 4295 /* 4296 * Otherwise, renormalise after, such that we're placed at the current 4297 * moment in time, instead of some random moment in the past. Being 4298 * placed in the past could significantly boost this task to the 4299 * fairness detriment of existing tasks. 4300 */ 4301 if (renorm && !curr) 4302 se->vruntime += cfs_rq->min_vruntime; 4303 4304 /* 4305 * When enqueuing a sched_entity, we must: 4306 * - Update loads to have both entity and cfs_rq synced with now. 4307 * - Add its load to cfs_rq->runnable_avg 4308 * - For group_entity, update its weight to reflect the new share of 4309 * its group cfs_rq 4310 * - Add its new weight to cfs_rq->load.weight 4311 */ 4312 update_load_avg(cfs_rq, se, UPDATE_TG | DO_ATTACH); 4313 se_update_runnable(se); 4314 update_cfs_group(se); 4315 account_entity_enqueue(cfs_rq, se); 4316 4317 if (flags & ENQUEUE_WAKEUP) 4318 place_entity(cfs_rq, se, 0); 4319 4320 check_schedstat_required(); 4321 update_stats_enqueue(cfs_rq, se, flags); 4322 check_spread(cfs_rq, se); 4323 if (!curr) 4324 __enqueue_entity(cfs_rq, se); 4325 se->on_rq = 1; 4326 4327 /* 4328 * When bandwidth control is enabled, cfs might have been removed 4329 * because of a parent been throttled but cfs->nr_running > 1. Try to 4330 * add it unconditionally. 4331 */ 4332 if (cfs_rq->nr_running == 1 || cfs_bandwidth_used()) 4333 list_add_leaf_cfs_rq(cfs_rq); 4334 4335 if (cfs_rq->nr_running == 1) 4336 check_enqueue_throttle(cfs_rq); 4337 } 4338 4339 static void __clear_buddies_last(struct sched_entity *se) 4340 { 4341 for_each_sched_entity(se) { 4342 struct cfs_rq *cfs_rq = cfs_rq_of(se); 4343 if (cfs_rq->last != se) 4344 break; 4345 4346 cfs_rq->last = NULL; 4347 } 4348 } 4349 4350 static void __clear_buddies_next(struct sched_entity *se) 4351 { 4352 for_each_sched_entity(se) { 4353 struct cfs_rq *cfs_rq = cfs_rq_of(se); 4354 if (cfs_rq->next != se) 4355 break; 4356 4357 cfs_rq->next = NULL; 4358 } 4359 } 4360 4361 static void __clear_buddies_skip(struct sched_entity *se) 4362 { 4363 for_each_sched_entity(se) { 4364 struct cfs_rq *cfs_rq = cfs_rq_of(se); 4365 if (cfs_rq->skip != se) 4366 break; 4367 4368 cfs_rq->skip = NULL; 4369 } 4370 } 4371 4372 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se) 4373 { 4374 if (cfs_rq->last == se) 4375 __clear_buddies_last(se); 4376 4377 if (cfs_rq->next == se) 4378 __clear_buddies_next(se); 4379 4380 if (cfs_rq->skip == se) 4381 __clear_buddies_skip(se); 4382 } 4383 4384 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq); 4385 4386 static void 4387 dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 4388 { 4389 /* 4390 * Update run-time statistics of the 'current'. 4391 */ 4392 update_curr(cfs_rq); 4393 4394 /* 4395 * When dequeuing a sched_entity, we must: 4396 * - Update loads to have both entity and cfs_rq synced with now. 4397 * - Subtract its load from the cfs_rq->runnable_avg. 4398 * - Subtract its previous weight from cfs_rq->load.weight. 4399 * - For group entity, update its weight to reflect the new share 4400 * of its group cfs_rq. 4401 */ 4402 update_load_avg(cfs_rq, se, UPDATE_TG); 4403 se_update_runnable(se); 4404 4405 update_stats_dequeue(cfs_rq, se, flags); 4406 4407 clear_buddies(cfs_rq, se); 4408 4409 if (se != cfs_rq->curr) 4410 __dequeue_entity(cfs_rq, se); 4411 se->on_rq = 0; 4412 account_entity_dequeue(cfs_rq, se); 4413 4414 /* 4415 * Normalize after update_curr(); which will also have moved 4416 * min_vruntime if @se is the one holding it back. But before doing 4417 * update_min_vruntime() again, which will discount @se's position and 4418 * can move min_vruntime forward still more. 4419 */ 4420 if (!(flags & DEQUEUE_SLEEP)) 4421 se->vruntime -= cfs_rq->min_vruntime; 4422 4423 /* return excess runtime on last dequeue */ 4424 return_cfs_rq_runtime(cfs_rq); 4425 4426 update_cfs_group(se); 4427 4428 /* 4429 * Now advance min_vruntime if @se was the entity holding it back, 4430 * except when: DEQUEUE_SAVE && !DEQUEUE_MOVE, in this case we'll be 4431 * put back on, and if we advance min_vruntime, we'll be placed back 4432 * further than we started -- ie. we'll be penalized. 4433 */ 4434 if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) != DEQUEUE_SAVE) 4435 update_min_vruntime(cfs_rq); 4436 } 4437 4438 /* 4439 * Preempt the current task with a newly woken task if needed: 4440 */ 4441 static void 4442 check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr) 4443 { 4444 unsigned long ideal_runtime, delta_exec; 4445 struct sched_entity *se; 4446 s64 delta; 4447 4448 ideal_runtime = sched_slice(cfs_rq, curr); 4449 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime; 4450 if (delta_exec > ideal_runtime) { 4451 resched_curr(rq_of(cfs_rq)); 4452 /* 4453 * The current task ran long enough, ensure it doesn't get 4454 * re-elected due to buddy favours. 4455 */ 4456 clear_buddies(cfs_rq, curr); 4457 return; 4458 } 4459 4460 /* 4461 * Ensure that a task that missed wakeup preemption by a 4462 * narrow margin doesn't have to wait for a full slice. 4463 * This also mitigates buddy induced latencies under load. 4464 */ 4465 if (delta_exec < sysctl_sched_min_granularity) 4466 return; 4467 4468 se = __pick_first_entity(cfs_rq); 4469 delta = curr->vruntime - se->vruntime; 4470 4471 if (delta < 0) 4472 return; 4473 4474 if (delta > ideal_runtime) 4475 resched_curr(rq_of(cfs_rq)); 4476 } 4477 4478 static void 4479 set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) 4480 { 4481 clear_buddies(cfs_rq, se); 4482 4483 /* 'current' is not kept within the tree. */ 4484 if (se->on_rq) { 4485 /* 4486 * Any task has to be enqueued before it get to execute on 4487 * a CPU. So account for the time it spent waiting on the 4488 * runqueue. 4489 */ 4490 update_stats_wait_end(cfs_rq, se); 4491 __dequeue_entity(cfs_rq, se); 4492 update_load_avg(cfs_rq, se, UPDATE_TG); 4493 } 4494 4495 update_stats_curr_start(cfs_rq, se); 4496 cfs_rq->curr = se; 4497 4498 /* 4499 * Track our maximum slice length, if the CPU's load is at 4500 * least twice that of our own weight (i.e. dont track it 4501 * when there are only lesser-weight tasks around): 4502 */ 4503 if (schedstat_enabled() && 4504 rq_of(cfs_rq)->cfs.load.weight >= 2*se->load.weight) { 4505 schedstat_set(se->statistics.slice_max, 4506 max((u64)schedstat_val(se->statistics.slice_max), 4507 se->sum_exec_runtime - se->prev_sum_exec_runtime)); 4508 } 4509 4510 se->prev_sum_exec_runtime = se->sum_exec_runtime; 4511 } 4512 4513 static int 4514 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se); 4515 4516 /* 4517 * Pick the next process, keeping these things in mind, in this order: 4518 * 1) keep things fair between processes/task groups 4519 * 2) pick the "next" process, since someone really wants that to run 4520 * 3) pick the "last" process, for cache locality 4521 * 4) do not run the "skip" process, if something else is available 4522 */ 4523 static struct sched_entity * 4524 pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr) 4525 { 4526 struct sched_entity *left = __pick_first_entity(cfs_rq); 4527 struct sched_entity *se; 4528 4529 /* 4530 * If curr is set we have to see if its left of the leftmost entity 4531 * still in the tree, provided there was anything in the tree at all. 4532 */ 4533 if (!left || (curr && entity_before(curr, left))) 4534 left = curr; 4535 4536 se = left; /* ideally we run the leftmost entity */ 4537 4538 /* 4539 * Avoid running the skip buddy, if running something else can 4540 * be done without getting too unfair. 4541 */ 4542 if (cfs_rq->skip && cfs_rq->skip == se) { 4543 struct sched_entity *second; 4544 4545 if (se == curr) { 4546 second = __pick_first_entity(cfs_rq); 4547 } else { 4548 second = __pick_next_entity(se); 4549 if (!second || (curr && entity_before(curr, second))) 4550 second = curr; 4551 } 4552 4553 if (second && wakeup_preempt_entity(second, left) < 1) 4554 se = second; 4555 } 4556 4557 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1) { 4558 /* 4559 * Someone really wants this to run. If it's not unfair, run it. 4560 */ 4561 se = cfs_rq->next; 4562 } else if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1) { 4563 /* 4564 * Prefer last buddy, try to return the CPU to a preempted task. 4565 */ 4566 se = cfs_rq->last; 4567 } 4568 4569 return se; 4570 } 4571 4572 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq); 4573 4574 static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev) 4575 { 4576 /* 4577 * If still on the runqueue then deactivate_task() 4578 * was not called and update_curr() has to be done: 4579 */ 4580 if (prev->on_rq) 4581 update_curr(cfs_rq); 4582 4583 /* throttle cfs_rqs exceeding runtime */ 4584 check_cfs_rq_runtime(cfs_rq); 4585 4586 check_spread(cfs_rq, prev); 4587 4588 if (prev->on_rq) { 4589 update_stats_wait_start(cfs_rq, prev); 4590 /* Put 'current' back into the tree. */ 4591 __enqueue_entity(cfs_rq, prev); 4592 /* in !on_rq case, update occurred at dequeue */ 4593 update_load_avg(cfs_rq, prev, 0); 4594 } 4595 cfs_rq->curr = NULL; 4596 } 4597 4598 static void 4599 entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued) 4600 { 4601 /* 4602 * Update run-time statistics of the 'current'. 4603 */ 4604 update_curr(cfs_rq); 4605 4606 /* 4607 * Ensure that runnable average is periodically updated. 4608 */ 4609 update_load_avg(cfs_rq, curr, UPDATE_TG); 4610 update_cfs_group(curr); 4611 4612 #ifdef CONFIG_SCHED_HRTICK 4613 /* 4614 * queued ticks are scheduled to match the slice, so don't bother 4615 * validating it and just reschedule. 4616 */ 4617 if (queued) { 4618 resched_curr(rq_of(cfs_rq)); 4619 return; 4620 } 4621 /* 4622 * don't let the period tick interfere with the hrtick preemption 4623 */ 4624 if (!sched_feat(DOUBLE_TICK) && 4625 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer)) 4626 return; 4627 #endif 4628 4629 if (cfs_rq->nr_running > 1) 4630 check_preempt_tick(cfs_rq, curr); 4631 } 4632 4633 4634 /************************************************** 4635 * CFS bandwidth control machinery 4636 */ 4637 4638 #ifdef CONFIG_CFS_BANDWIDTH 4639 4640 #ifdef CONFIG_JUMP_LABEL 4641 static struct static_key __cfs_bandwidth_used; 4642 4643 static inline bool cfs_bandwidth_used(void) 4644 { 4645 return static_key_false(&__cfs_bandwidth_used); 4646 } 4647 4648 void cfs_bandwidth_usage_inc(void) 4649 { 4650 static_key_slow_inc_cpuslocked(&__cfs_bandwidth_used); 4651 } 4652 4653 void cfs_bandwidth_usage_dec(void) 4654 { 4655 static_key_slow_dec_cpuslocked(&__cfs_bandwidth_used); 4656 } 4657 #else /* CONFIG_JUMP_LABEL */ 4658 static bool cfs_bandwidth_used(void) 4659 { 4660 return true; 4661 } 4662 4663 void cfs_bandwidth_usage_inc(void) {} 4664 void cfs_bandwidth_usage_dec(void) {} 4665 #endif /* CONFIG_JUMP_LABEL */ 4666 4667 /* 4668 * default period for cfs group bandwidth. 4669 * default: 0.1s, units: nanoseconds 4670 */ 4671 static inline u64 default_cfs_period(void) 4672 { 4673 return 100000000ULL; 4674 } 4675 4676 static inline u64 sched_cfs_bandwidth_slice(void) 4677 { 4678 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC; 4679 } 4680 4681 /* 4682 * Replenish runtime according to assigned quota. We use sched_clock_cpu 4683 * directly instead of rq->clock to avoid adding additional synchronization 4684 * around rq->lock. 4685 * 4686 * requires cfs_b->lock 4687 */ 4688 void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b) 4689 { 4690 if (unlikely(cfs_b->quota == RUNTIME_INF)) 4691 return; 4692 4693 cfs_b->runtime += cfs_b->quota; 4694 cfs_b->runtime = min(cfs_b->runtime, cfs_b->quota + cfs_b->burst); 4695 } 4696 4697 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg) 4698 { 4699 return &tg->cfs_bandwidth; 4700 } 4701 4702 /* returns 0 on failure to allocate runtime */ 4703 static int __assign_cfs_rq_runtime(struct cfs_bandwidth *cfs_b, 4704 struct cfs_rq *cfs_rq, u64 target_runtime) 4705 { 4706 u64 min_amount, amount = 0; 4707 4708 lockdep_assert_held(&cfs_b->lock); 4709 4710 /* note: this is a positive sum as runtime_remaining <= 0 */ 4711 min_amount = target_runtime - cfs_rq->runtime_remaining; 4712 4713 if (cfs_b->quota == RUNTIME_INF) 4714 amount = min_amount; 4715 else { 4716 start_cfs_bandwidth(cfs_b); 4717 4718 if (cfs_b->runtime > 0) { 4719 amount = min(cfs_b->runtime, min_amount); 4720 cfs_b->runtime -= amount; 4721 cfs_b->idle = 0; 4722 } 4723 } 4724 4725 cfs_rq->runtime_remaining += amount; 4726 4727 return cfs_rq->runtime_remaining > 0; 4728 } 4729 4730 /* returns 0 on failure to allocate runtime */ 4731 static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq) 4732 { 4733 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 4734 int ret; 4735 4736 raw_spin_lock(&cfs_b->lock); 4737 ret = __assign_cfs_rq_runtime(cfs_b, cfs_rq, sched_cfs_bandwidth_slice()); 4738 raw_spin_unlock(&cfs_b->lock); 4739 4740 return ret; 4741 } 4742 4743 static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) 4744 { 4745 /* dock delta_exec before expiring quota (as it could span periods) */ 4746 cfs_rq->runtime_remaining -= delta_exec; 4747 4748 if (likely(cfs_rq->runtime_remaining > 0)) 4749 return; 4750 4751 if (cfs_rq->throttled) 4752 return; 4753 /* 4754 * if we're unable to extend our runtime we resched so that the active 4755 * hierarchy can be throttled 4756 */ 4757 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr)) 4758 resched_curr(rq_of(cfs_rq)); 4759 } 4760 4761 static __always_inline 4762 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) 4763 { 4764 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled) 4765 return; 4766 4767 __account_cfs_rq_runtime(cfs_rq, delta_exec); 4768 } 4769 4770 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq) 4771 { 4772 return cfs_bandwidth_used() && cfs_rq->throttled; 4773 } 4774 4775 /* check whether cfs_rq, or any parent, is throttled */ 4776 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq) 4777 { 4778 return cfs_bandwidth_used() && cfs_rq->throttle_count; 4779 } 4780 4781 /* 4782 * Ensure that neither of the group entities corresponding to src_cpu or 4783 * dest_cpu are members of a throttled hierarchy when performing group 4784 * load-balance operations. 4785 */ 4786 static inline int throttled_lb_pair(struct task_group *tg, 4787 int src_cpu, int dest_cpu) 4788 { 4789 struct cfs_rq *src_cfs_rq, *dest_cfs_rq; 4790 4791 src_cfs_rq = tg->cfs_rq[src_cpu]; 4792 dest_cfs_rq = tg->cfs_rq[dest_cpu]; 4793 4794 return throttled_hierarchy(src_cfs_rq) || 4795 throttled_hierarchy(dest_cfs_rq); 4796 } 4797 4798 static int tg_unthrottle_up(struct task_group *tg, void *data) 4799 { 4800 struct rq *rq = data; 4801 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; 4802 4803 cfs_rq->throttle_count--; 4804 if (!cfs_rq->throttle_count) { 4805 cfs_rq->throttled_clock_task_time += rq_clock_task(rq) - 4806 cfs_rq->throttled_clock_task; 4807 4808 /* Add cfs_rq with load or one or more already running entities to the list */ 4809 if (!cfs_rq_is_decayed(cfs_rq) || cfs_rq->nr_running) 4810 list_add_leaf_cfs_rq(cfs_rq); 4811 } 4812 4813 return 0; 4814 } 4815 4816 static int tg_throttle_down(struct task_group *tg, void *data) 4817 { 4818 struct rq *rq = data; 4819 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; 4820 4821 /* group is entering throttled state, stop time */ 4822 if (!cfs_rq->throttle_count) { 4823 cfs_rq->throttled_clock_task = rq_clock_task(rq); 4824 list_del_leaf_cfs_rq(cfs_rq); 4825 } 4826 cfs_rq->throttle_count++; 4827 4828 return 0; 4829 } 4830 4831 static bool throttle_cfs_rq(struct cfs_rq *cfs_rq) 4832 { 4833 struct rq *rq = rq_of(cfs_rq); 4834 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 4835 struct sched_entity *se; 4836 long task_delta, idle_task_delta, dequeue = 1; 4837 4838 raw_spin_lock(&cfs_b->lock); 4839 /* This will start the period timer if necessary */ 4840 if (__assign_cfs_rq_runtime(cfs_b, cfs_rq, 1)) { 4841 /* 4842 * We have raced with bandwidth becoming available, and if we 4843 * actually throttled the timer might not unthrottle us for an 4844 * entire period. We additionally needed to make sure that any 4845 * subsequent check_cfs_rq_runtime calls agree not to throttle 4846 * us, as we may commit to do cfs put_prev+pick_next, so we ask 4847 * for 1ns of runtime rather than just check cfs_b. 4848 */ 4849 dequeue = 0; 4850 } else { 4851 list_add_tail_rcu(&cfs_rq->throttled_list, 4852 &cfs_b->throttled_cfs_rq); 4853 } 4854 raw_spin_unlock(&cfs_b->lock); 4855 4856 if (!dequeue) 4857 return false; /* Throttle no longer required. */ 4858 4859 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))]; 4860 4861 /* freeze hierarchy runnable averages while throttled */ 4862 rcu_read_lock(); 4863 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq); 4864 rcu_read_unlock(); 4865 4866 task_delta = cfs_rq->h_nr_running; 4867 idle_task_delta = cfs_rq->idle_h_nr_running; 4868 for_each_sched_entity(se) { 4869 struct cfs_rq *qcfs_rq = cfs_rq_of(se); 4870 /* throttled entity or throttle-on-deactivate */ 4871 if (!se->on_rq) 4872 goto done; 4873 4874 dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP); 4875 4876 if (cfs_rq_is_idle(group_cfs_rq(se))) 4877 idle_task_delta = cfs_rq->h_nr_running; 4878 4879 qcfs_rq->h_nr_running -= task_delta; 4880 qcfs_rq->idle_h_nr_running -= idle_task_delta; 4881 4882 if (qcfs_rq->load.weight) { 4883 /* Avoid re-evaluating load for this entity: */ 4884 se = parent_entity(se); 4885 break; 4886 } 4887 } 4888 4889 for_each_sched_entity(se) { 4890 struct cfs_rq *qcfs_rq = cfs_rq_of(se); 4891 /* throttled entity or throttle-on-deactivate */ 4892 if (!se->on_rq) 4893 goto done; 4894 4895 update_load_avg(qcfs_rq, se, 0); 4896 se_update_runnable(se); 4897 4898 if (cfs_rq_is_idle(group_cfs_rq(se))) 4899 idle_task_delta = cfs_rq->h_nr_running; 4900 4901 qcfs_rq->h_nr_running -= task_delta; 4902 qcfs_rq->idle_h_nr_running -= idle_task_delta; 4903 } 4904 4905 /* At this point se is NULL and we are at root level*/ 4906 sub_nr_running(rq, task_delta); 4907 4908 done: 4909 /* 4910 * Note: distribution will already see us throttled via the 4911 * throttled-list. rq->lock protects completion. 4912 */ 4913 cfs_rq->throttled = 1; 4914 cfs_rq->throttled_clock = rq_clock(rq); 4915 return true; 4916 } 4917 4918 void unthrottle_cfs_rq(struct cfs_rq *cfs_rq) 4919 { 4920 struct rq *rq = rq_of(cfs_rq); 4921 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 4922 struct sched_entity *se; 4923 long task_delta, idle_task_delta; 4924 4925 se = cfs_rq->tg->se[cpu_of(rq)]; 4926 4927 cfs_rq->throttled = 0; 4928 4929 update_rq_clock(rq); 4930 4931 raw_spin_lock(&cfs_b->lock); 4932 cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock; 4933 list_del_rcu(&cfs_rq->throttled_list); 4934 raw_spin_unlock(&cfs_b->lock); 4935 4936 /* update hierarchical throttle state */ 4937 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq); 4938 4939 if (!cfs_rq->load.weight) 4940 return; 4941 4942 task_delta = cfs_rq->h_nr_running; 4943 idle_task_delta = cfs_rq->idle_h_nr_running; 4944 for_each_sched_entity(se) { 4945 struct cfs_rq *qcfs_rq = cfs_rq_of(se); 4946 4947 if (se->on_rq) 4948 break; 4949 enqueue_entity(qcfs_rq, se, ENQUEUE_WAKEUP); 4950 4951 if (cfs_rq_is_idle(group_cfs_rq(se))) 4952 idle_task_delta = cfs_rq->h_nr_running; 4953 4954 qcfs_rq->h_nr_running += task_delta; 4955 qcfs_rq->idle_h_nr_running += idle_task_delta; 4956 4957 /* end evaluation on encountering a throttled cfs_rq */ 4958 if (cfs_rq_throttled(qcfs_rq)) 4959 goto unthrottle_throttle; 4960 } 4961 4962 for_each_sched_entity(se) { 4963 struct cfs_rq *qcfs_rq = cfs_rq_of(se); 4964 4965 update_load_avg(qcfs_rq, se, UPDATE_TG); 4966 se_update_runnable(se); 4967 4968 if (cfs_rq_is_idle(group_cfs_rq(se))) 4969 idle_task_delta = cfs_rq->h_nr_running; 4970 4971 qcfs_rq->h_nr_running += task_delta; 4972 qcfs_rq->idle_h_nr_running += idle_task_delta; 4973 4974 /* end evaluation on encountering a throttled cfs_rq */ 4975 if (cfs_rq_throttled(qcfs_rq)) 4976 goto unthrottle_throttle; 4977 4978 /* 4979 * One parent has been throttled and cfs_rq removed from the 4980 * list. Add it back to not break the leaf list. 4981 */ 4982 if (throttled_hierarchy(qcfs_rq)) 4983 list_add_leaf_cfs_rq(qcfs_rq); 4984 } 4985 4986 /* At this point se is NULL and we are at root level*/ 4987 add_nr_running(rq, task_delta); 4988 4989 unthrottle_throttle: 4990 /* 4991 * The cfs_rq_throttled() breaks in the above iteration can result in 4992 * incomplete leaf list maintenance, resulting in triggering the 4993 * assertion below. 4994 */ 4995 for_each_sched_entity(se) { 4996 struct cfs_rq *qcfs_rq = cfs_rq_of(se); 4997 4998 if (list_add_leaf_cfs_rq(qcfs_rq)) 4999 break; 5000 } 5001 5002 assert_list_leaf_cfs_rq(rq); 5003 5004 /* Determine whether we need to wake up potentially idle CPU: */ 5005 if (rq->curr == rq->idle && rq->cfs.nr_running) 5006 resched_curr(rq); 5007 } 5008 5009 static void distribute_cfs_runtime(struct cfs_bandwidth *cfs_b) 5010 { 5011 struct cfs_rq *cfs_rq; 5012 u64 runtime, remaining = 1; 5013 5014 rcu_read_lock(); 5015 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq, 5016 throttled_list) { 5017 struct rq *rq = rq_of(cfs_rq); 5018 struct rq_flags rf; 5019 5020 rq_lock_irqsave(rq, &rf); 5021 if (!cfs_rq_throttled(cfs_rq)) 5022 goto next; 5023 5024 /* By the above check, this should never be true */ 5025 SCHED_WARN_ON(cfs_rq->runtime_remaining > 0); 5026 5027 raw_spin_lock(&cfs_b->lock); 5028 runtime = -cfs_rq->runtime_remaining + 1; 5029 if (runtime > cfs_b->runtime) 5030 runtime = cfs_b->runtime; 5031 cfs_b->runtime -= runtime; 5032 remaining = cfs_b->runtime; 5033 raw_spin_unlock(&cfs_b->lock); 5034 5035 cfs_rq->runtime_remaining += runtime; 5036 5037 /* we check whether we're throttled above */ 5038 if (cfs_rq->runtime_remaining > 0) 5039 unthrottle_cfs_rq(cfs_rq); 5040 5041 next: 5042 rq_unlock_irqrestore(rq, &rf); 5043 5044 if (!remaining) 5045 break; 5046 } 5047 rcu_read_unlock(); 5048 } 5049 5050 /* 5051 * Responsible for refilling a task_group's bandwidth and unthrottling its 5052 * cfs_rqs as appropriate. If there has been no activity within the last 5053 * period the timer is deactivated until scheduling resumes; cfs_b->idle is 5054 * used to track this state. 5055 */ 5056 static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun, unsigned long flags) 5057 { 5058 int throttled; 5059 5060 /* no need to continue the timer with no bandwidth constraint */ 5061 if (cfs_b->quota == RUNTIME_INF) 5062 goto out_deactivate; 5063 5064 throttled = !list_empty(&cfs_b->throttled_cfs_rq); 5065 cfs_b->nr_periods += overrun; 5066 5067 /* Refill extra burst quota even if cfs_b->idle */ 5068 __refill_cfs_bandwidth_runtime(cfs_b); 5069 5070 /* 5071 * idle depends on !throttled (for the case of a large deficit), and if 5072 * we're going inactive then everything else can be deferred 5073 */ 5074 if (cfs_b->idle && !throttled) 5075 goto out_deactivate; 5076 5077 if (!throttled) { 5078 /* mark as potentially idle for the upcoming period */ 5079 cfs_b->idle = 1; 5080 return 0; 5081 } 5082 5083 /* account preceding periods in which throttling occurred */ 5084 cfs_b->nr_throttled += overrun; 5085 5086 /* 5087 * This check is repeated as we release cfs_b->lock while we unthrottle. 5088 */ 5089 while (throttled && cfs_b->runtime > 0) { 5090 raw_spin_unlock_irqrestore(&cfs_b->lock, flags); 5091 /* we can't nest cfs_b->lock while distributing bandwidth */ 5092 distribute_cfs_runtime(cfs_b); 5093 raw_spin_lock_irqsave(&cfs_b->lock, flags); 5094 5095 throttled = !list_empty(&cfs_b->throttled_cfs_rq); 5096 } 5097 5098 /* 5099 * While we are ensured activity in the period following an 5100 * unthrottle, this also covers the case in which the new bandwidth is 5101 * insufficient to cover the existing bandwidth deficit. (Forcing the 5102 * timer to remain active while there are any throttled entities.) 5103 */ 5104 cfs_b->idle = 0; 5105 5106 return 0; 5107 5108 out_deactivate: 5109 return 1; 5110 } 5111 5112 /* a cfs_rq won't donate quota below this amount */ 5113 static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC; 5114 /* minimum remaining period time to redistribute slack quota */ 5115 static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC; 5116 /* how long we wait to gather additional slack before distributing */ 5117 static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC; 5118 5119 /* 5120 * Are we near the end of the current quota period? 5121 * 5122 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the 5123 * hrtimer base being cleared by hrtimer_start. In the case of 5124 * migrate_hrtimers, base is never cleared, so we are fine. 5125 */ 5126 static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire) 5127 { 5128 struct hrtimer *refresh_timer = &cfs_b->period_timer; 5129 s64 remaining; 5130 5131 /* if the call-back is running a quota refresh is already occurring */ 5132 if (hrtimer_callback_running(refresh_timer)) 5133 return 1; 5134 5135 /* is a quota refresh about to occur? */ 5136 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer)); 5137 if (remaining < (s64)min_expire) 5138 return 1; 5139 5140 return 0; 5141 } 5142 5143 static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b) 5144 { 5145 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration; 5146 5147 /* if there's a quota refresh soon don't bother with slack */ 5148 if (runtime_refresh_within(cfs_b, min_left)) 5149 return; 5150 5151 /* don't push forwards an existing deferred unthrottle */ 5152 if (cfs_b->slack_started) 5153 return; 5154 cfs_b->slack_started = true; 5155 5156 hrtimer_start(&cfs_b->slack_timer, 5157 ns_to_ktime(cfs_bandwidth_slack_period), 5158 HRTIMER_MODE_REL); 5159 } 5160 5161 /* we know any runtime found here is valid as update_curr() precedes return */ 5162 static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq) 5163 { 5164 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 5165 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime; 5166 5167 if (slack_runtime <= 0) 5168 return; 5169 5170 raw_spin_lock(&cfs_b->lock); 5171 if (cfs_b->quota != RUNTIME_INF) { 5172 cfs_b->runtime += slack_runtime; 5173 5174 /* we are under rq->lock, defer unthrottling using a timer */ 5175 if (cfs_b->runtime > sched_cfs_bandwidth_slice() && 5176 !list_empty(&cfs_b->throttled_cfs_rq)) 5177 start_cfs_slack_bandwidth(cfs_b); 5178 } 5179 raw_spin_unlock(&cfs_b->lock); 5180 5181 /* even if it's not valid for return we don't want to try again */ 5182 cfs_rq->runtime_remaining -= slack_runtime; 5183 } 5184 5185 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) 5186 { 5187 if (!cfs_bandwidth_used()) 5188 return; 5189 5190 if (!cfs_rq->runtime_enabled || cfs_rq->nr_running) 5191 return; 5192 5193 __return_cfs_rq_runtime(cfs_rq); 5194 } 5195 5196 /* 5197 * This is done with a timer (instead of inline with bandwidth return) since 5198 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs. 5199 */ 5200 static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b) 5201 { 5202 u64 runtime = 0, slice = sched_cfs_bandwidth_slice(); 5203 unsigned long flags; 5204 5205 /* confirm we're still not at a refresh boundary */ 5206 raw_spin_lock_irqsave(&cfs_b->lock, flags); 5207 cfs_b->slack_started = false; 5208 5209 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) { 5210 raw_spin_unlock_irqrestore(&cfs_b->lock, flags); 5211 return; 5212 } 5213 5214 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice) 5215 runtime = cfs_b->runtime; 5216 5217 raw_spin_unlock_irqrestore(&cfs_b->lock, flags); 5218 5219 if (!runtime) 5220 return; 5221 5222 distribute_cfs_runtime(cfs_b); 5223 } 5224 5225 /* 5226 * When a group wakes up we want to make sure that its quota is not already 5227 * expired/exceeded, otherwise it may be allowed to steal additional ticks of 5228 * runtime as update_curr() throttling can not trigger until it's on-rq. 5229 */ 5230 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) 5231 { 5232 if (!cfs_bandwidth_used()) 5233 return; 5234 5235 /* an active group must be handled by the update_curr()->put() path */ 5236 if (!cfs_rq->runtime_enabled || cfs_rq->curr) 5237 return; 5238 5239 /* ensure the group is not already throttled */ 5240 if (cfs_rq_throttled(cfs_rq)) 5241 return; 5242 5243 /* update runtime allocation */ 5244 account_cfs_rq_runtime(cfs_rq, 0); 5245 if (cfs_rq->runtime_remaining <= 0) 5246 throttle_cfs_rq(cfs_rq); 5247 } 5248 5249 static void sync_throttle(struct task_group *tg, int cpu) 5250 { 5251 struct cfs_rq *pcfs_rq, *cfs_rq; 5252 5253 if (!cfs_bandwidth_used()) 5254 return; 5255 5256 if (!tg->parent) 5257 return; 5258 5259 cfs_rq = tg->cfs_rq[cpu]; 5260 pcfs_rq = tg->parent->cfs_rq[cpu]; 5261 5262 cfs_rq->throttle_count = pcfs_rq->throttle_count; 5263 cfs_rq->throttled_clock_task = rq_clock_task(cpu_rq(cpu)); 5264 } 5265 5266 /* conditionally throttle active cfs_rq's from put_prev_entity() */ 5267 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) 5268 { 5269 if (!cfs_bandwidth_used()) 5270 return false; 5271 5272 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0)) 5273 return false; 5274 5275 /* 5276 * it's possible for a throttled entity to be forced into a running 5277 * state (e.g. set_curr_task), in this case we're finished. 5278 */ 5279 if (cfs_rq_throttled(cfs_rq)) 5280 return true; 5281 5282 return throttle_cfs_rq(cfs_rq); 5283 } 5284 5285 static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer) 5286 { 5287 struct cfs_bandwidth *cfs_b = 5288 container_of(timer, struct cfs_bandwidth, slack_timer); 5289 5290 do_sched_cfs_slack_timer(cfs_b); 5291 5292 return HRTIMER_NORESTART; 5293 } 5294 5295 extern const u64 max_cfs_quota_period; 5296 5297 static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer) 5298 { 5299 struct cfs_bandwidth *cfs_b = 5300 container_of(timer, struct cfs_bandwidth, period_timer); 5301 unsigned long flags; 5302 int overrun; 5303 int idle = 0; 5304 int count = 0; 5305 5306 raw_spin_lock_irqsave(&cfs_b->lock, flags); 5307 for (;;) { 5308 overrun = hrtimer_forward_now(timer, cfs_b->period); 5309 if (!overrun) 5310 break; 5311 5312 idle = do_sched_cfs_period_timer(cfs_b, overrun, flags); 5313 5314 if (++count > 3) { 5315 u64 new, old = ktime_to_ns(cfs_b->period); 5316 5317 /* 5318 * Grow period by a factor of 2 to avoid losing precision. 5319 * Precision loss in the quota/period ratio can cause __cfs_schedulable 5320 * to fail. 5321 */ 5322 new = old * 2; 5323 if (new < max_cfs_quota_period) { 5324 cfs_b->period = ns_to_ktime(new); 5325 cfs_b->quota *= 2; 5326 cfs_b->burst *= 2; 5327 5328 pr_warn_ratelimited( 5329 "cfs_period_timer[cpu%d]: period too short, scaling up (new cfs_period_us = %lld, cfs_quota_us = %lld)\n", 5330 smp_processor_id(), 5331 div_u64(new, NSEC_PER_USEC), 5332 div_u64(cfs_b->quota, NSEC_PER_USEC)); 5333 } else { 5334 pr_warn_ratelimited( 5335 "cfs_period_timer[cpu%d]: period too short, but cannot scale up without losing precision (cfs_period_us = %lld, cfs_quota_us = %lld)\n", 5336 smp_processor_id(), 5337 div_u64(old, NSEC_PER_USEC), 5338 div_u64(cfs_b->quota, NSEC_PER_USEC)); 5339 } 5340 5341 /* reset count so we don't come right back in here */ 5342 count = 0; 5343 } 5344 } 5345 if (idle) 5346 cfs_b->period_active = 0; 5347 raw_spin_unlock_irqrestore(&cfs_b->lock, flags); 5348 5349 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART; 5350 } 5351 5352 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) 5353 { 5354 raw_spin_lock_init(&cfs_b->lock); 5355 cfs_b->runtime = 0; 5356 cfs_b->quota = RUNTIME_INF; 5357 cfs_b->period = ns_to_ktime(default_cfs_period()); 5358 cfs_b->burst = 0; 5359 5360 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq); 5361 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED); 5362 cfs_b->period_timer.function = sched_cfs_period_timer; 5363 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 5364 cfs_b->slack_timer.function = sched_cfs_slack_timer; 5365 cfs_b->slack_started = false; 5366 } 5367 5368 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) 5369 { 5370 cfs_rq->runtime_enabled = 0; 5371 INIT_LIST_HEAD(&cfs_rq->throttled_list); 5372 } 5373 5374 void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b) 5375 { 5376 lockdep_assert_held(&cfs_b->lock); 5377 5378 if (cfs_b->period_active) 5379 return; 5380 5381 cfs_b->period_active = 1; 5382 hrtimer_forward_now(&cfs_b->period_timer, cfs_b->period); 5383 hrtimer_start_expires(&cfs_b->period_timer, HRTIMER_MODE_ABS_PINNED); 5384 } 5385 5386 static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) 5387 { 5388 /* init_cfs_bandwidth() was not called */ 5389 if (!cfs_b->throttled_cfs_rq.next) 5390 return; 5391 5392 hrtimer_cancel(&cfs_b->period_timer); 5393 hrtimer_cancel(&cfs_b->slack_timer); 5394 } 5395 5396 /* 5397 * Both these CPU hotplug callbacks race against unregister_fair_sched_group() 5398 * 5399 * The race is harmless, since modifying bandwidth settings of unhooked group 5400 * bits doesn't do much. 5401 */ 5402 5403 /* cpu online callback */ 5404 static void __maybe_unused update_runtime_enabled(struct rq *rq) 5405 { 5406 struct task_group *tg; 5407 5408 lockdep_assert_rq_held(rq); 5409 5410 rcu_read_lock(); 5411 list_for_each_entry_rcu(tg, &task_groups, list) { 5412 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 5413 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; 5414 5415 raw_spin_lock(&cfs_b->lock); 5416 cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF; 5417 raw_spin_unlock(&cfs_b->lock); 5418 } 5419 rcu_read_unlock(); 5420 } 5421 5422 /* cpu offline callback */ 5423 static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq) 5424 { 5425 struct task_group *tg; 5426 5427 lockdep_assert_rq_held(rq); 5428 5429 rcu_read_lock(); 5430 list_for_each_entry_rcu(tg, &task_groups, list) { 5431 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; 5432 5433 if (!cfs_rq->runtime_enabled) 5434 continue; 5435 5436 /* 5437 * clock_task is not advancing so we just need to make sure 5438 * there's some valid quota amount 5439 */ 5440 cfs_rq->runtime_remaining = 1; 5441 /* 5442 * Offline rq is schedulable till CPU is completely disabled 5443 * in take_cpu_down(), so we prevent new cfs throttling here. 5444 */ 5445 cfs_rq->runtime_enabled = 0; 5446 5447 if (cfs_rq_throttled(cfs_rq)) 5448 unthrottle_cfs_rq(cfs_rq); 5449 } 5450 rcu_read_unlock(); 5451 } 5452 5453 #else /* CONFIG_CFS_BANDWIDTH */ 5454 5455 static inline bool cfs_bandwidth_used(void) 5456 { 5457 return false; 5458 } 5459 5460 static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {} 5461 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; } 5462 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {} 5463 static inline void sync_throttle(struct task_group *tg, int cpu) {} 5464 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {} 5465 5466 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq) 5467 { 5468 return 0; 5469 } 5470 5471 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq) 5472 { 5473 return 0; 5474 } 5475 5476 static inline int throttled_lb_pair(struct task_group *tg, 5477 int src_cpu, int dest_cpu) 5478 { 5479 return 0; 5480 } 5481 5482 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {} 5483 5484 #ifdef CONFIG_FAIR_GROUP_SCHED 5485 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {} 5486 #endif 5487 5488 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg) 5489 { 5490 return NULL; 5491 } 5492 static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {} 5493 static inline void update_runtime_enabled(struct rq *rq) {} 5494 static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {} 5495 5496 #endif /* CONFIG_CFS_BANDWIDTH */ 5497 5498 /************************************************** 5499 * CFS operations on tasks: 5500 */ 5501 5502 #ifdef CONFIG_SCHED_HRTICK 5503 static void hrtick_start_fair(struct rq *rq, struct task_struct *p) 5504 { 5505 struct sched_entity *se = &p->se; 5506 struct cfs_rq *cfs_rq = cfs_rq_of(se); 5507 5508 SCHED_WARN_ON(task_rq(p) != rq); 5509 5510 if (rq->cfs.h_nr_running > 1) { 5511 u64 slice = sched_slice(cfs_rq, se); 5512 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime; 5513 s64 delta = slice - ran; 5514 5515 if (delta < 0) { 5516 if (task_current(rq, p)) 5517 resched_curr(rq); 5518 return; 5519 } 5520 hrtick_start(rq, delta); 5521 } 5522 } 5523 5524 /* 5525 * called from enqueue/dequeue and updates the hrtick when the 5526 * current task is from our class and nr_running is low enough 5527 * to matter. 5528 */ 5529 static void hrtick_update(struct rq *rq) 5530 { 5531 struct task_struct *curr = rq->curr; 5532 5533 if (!hrtick_enabled_fair(rq) || curr->sched_class != &fair_sched_class) 5534 return; 5535 5536 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency) 5537 hrtick_start_fair(rq, curr); 5538 } 5539 #else /* !CONFIG_SCHED_HRTICK */ 5540 static inline void 5541 hrtick_start_fair(struct rq *rq, struct task_struct *p) 5542 { 5543 } 5544 5545 static inline void hrtick_update(struct rq *rq) 5546 { 5547 } 5548 #endif 5549 5550 #ifdef CONFIG_SMP 5551 static inline unsigned long cpu_util(int cpu); 5552 5553 static inline bool cpu_overutilized(int cpu) 5554 { 5555 return !fits_capacity(cpu_util(cpu), capacity_of(cpu)); 5556 } 5557 5558 static inline void update_overutilized_status(struct rq *rq) 5559 { 5560 if (!READ_ONCE(rq->rd->overutilized) && cpu_overutilized(rq->cpu)) { 5561 WRITE_ONCE(rq->rd->overutilized, SG_OVERUTILIZED); 5562 trace_sched_overutilized_tp(rq->rd, SG_OVERUTILIZED); 5563 } 5564 } 5565 #else 5566 static inline void update_overutilized_status(struct rq *rq) { } 5567 #endif 5568 5569 /* Runqueue only has SCHED_IDLE tasks enqueued */ 5570 static int sched_idle_rq(struct rq *rq) 5571 { 5572 return unlikely(rq->nr_running == rq->cfs.idle_h_nr_running && 5573 rq->nr_running); 5574 } 5575 5576 #ifdef CONFIG_SMP 5577 static int sched_idle_cpu(int cpu) 5578 { 5579 return sched_idle_rq(cpu_rq(cpu)); 5580 } 5581 #endif 5582 5583 /* 5584 * The enqueue_task method is called before nr_running is 5585 * increased. Here we update the fair scheduling stats and 5586 * then put the task into the rbtree: 5587 */ 5588 static void 5589 enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags) 5590 { 5591 struct cfs_rq *cfs_rq; 5592 struct sched_entity *se = &p->se; 5593 int idle_h_nr_running = task_has_idle_policy(p); 5594 int task_new = !(flags & ENQUEUE_WAKEUP); 5595 5596 /* 5597 * The code below (indirectly) updates schedutil which looks at 5598 * the cfs_rq utilization to select a frequency. 5599 * Let's add the task's estimated utilization to the cfs_rq's 5600 * estimated utilization, before we update schedutil. 5601 */ 5602 util_est_enqueue(&rq->cfs, p); 5603 5604 /* 5605 * If in_iowait is set, the code below may not trigger any cpufreq 5606 * utilization updates, so do it here explicitly with the IOWAIT flag 5607 * passed. 5608 */ 5609 if (p->in_iowait) 5610 cpufreq_update_util(rq, SCHED_CPUFREQ_IOWAIT); 5611 5612 for_each_sched_entity(se) { 5613 if (se->on_rq) 5614 break; 5615 cfs_rq = cfs_rq_of(se); 5616 enqueue_entity(cfs_rq, se, flags); 5617 5618 cfs_rq->h_nr_running++; 5619 cfs_rq->idle_h_nr_running += idle_h_nr_running; 5620 5621 if (cfs_rq_is_idle(cfs_rq)) 5622 idle_h_nr_running = 1; 5623 5624 /* end evaluation on encountering a throttled cfs_rq */ 5625 if (cfs_rq_throttled(cfs_rq)) 5626 goto enqueue_throttle; 5627 5628 flags = ENQUEUE_WAKEUP; 5629 } 5630 5631 for_each_sched_entity(se) { 5632 cfs_rq = cfs_rq_of(se); 5633 5634 update_load_avg(cfs_rq, se, UPDATE_TG); 5635 se_update_runnable(se); 5636 update_cfs_group(se); 5637 5638 cfs_rq->h_nr_running++; 5639 cfs_rq->idle_h_nr_running += idle_h_nr_running; 5640 5641 if (cfs_rq_is_idle(cfs_rq)) 5642 idle_h_nr_running = 1; 5643 5644 /* end evaluation on encountering a throttled cfs_rq */ 5645 if (cfs_rq_throttled(cfs_rq)) 5646 goto enqueue_throttle; 5647 5648 /* 5649 * One parent has been throttled and cfs_rq removed from the 5650 * list. Add it back to not break the leaf list. 5651 */ 5652 if (throttled_hierarchy(cfs_rq)) 5653 list_add_leaf_cfs_rq(cfs_rq); 5654 } 5655 5656 /* At this point se is NULL and we are at root level*/ 5657 add_nr_running(rq, 1); 5658 5659 /* 5660 * Since new tasks are assigned an initial util_avg equal to 5661 * half of the spare capacity of their CPU, tiny tasks have the 5662 * ability to cross the overutilized threshold, which will 5663 * result in the load balancer ruining all the task placement 5664 * done by EAS. As a way to mitigate that effect, do not account 5665 * for the first enqueue operation of new tasks during the 5666 * overutilized flag detection. 5667 * 5668 * A better way of solving this problem would be to wait for 5669 * the PELT signals of tasks to converge before taking them 5670 * into account, but that is not straightforward to implement, 5671 * and the following generally works well enough in practice. 5672 */ 5673 if (!task_new) 5674 update_overutilized_status(rq); 5675 5676 enqueue_throttle: 5677 if (cfs_bandwidth_used()) { 5678 /* 5679 * When bandwidth control is enabled; the cfs_rq_throttled() 5680 * breaks in the above iteration can result in incomplete 5681 * leaf list maintenance, resulting in triggering the assertion 5682 * below. 5683 */ 5684 for_each_sched_entity(se) { 5685 cfs_rq = cfs_rq_of(se); 5686 5687 if (list_add_leaf_cfs_rq(cfs_rq)) 5688 break; 5689 } 5690 } 5691 5692 assert_list_leaf_cfs_rq(rq); 5693 5694 hrtick_update(rq); 5695 } 5696 5697 static void set_next_buddy(struct sched_entity *se); 5698 5699 /* 5700 * The dequeue_task method is called before nr_running is 5701 * decreased. We remove the task from the rbtree and 5702 * update the fair scheduling stats: 5703 */ 5704 static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags) 5705 { 5706 struct cfs_rq *cfs_rq; 5707 struct sched_entity *se = &p->se; 5708 int task_sleep = flags & DEQUEUE_SLEEP; 5709 int idle_h_nr_running = task_has_idle_policy(p); 5710 bool was_sched_idle = sched_idle_rq(rq); 5711 5712 util_est_dequeue(&rq->cfs, p); 5713 5714 for_each_sched_entity(se) { 5715 cfs_rq = cfs_rq_of(se); 5716 dequeue_entity(cfs_rq, se, flags); 5717 5718 cfs_rq->h_nr_running--; 5719 cfs_rq->idle_h_nr_running -= idle_h_nr_running; 5720 5721 if (cfs_rq_is_idle(cfs_rq)) 5722 idle_h_nr_running = 1; 5723 5724 /* end evaluation on encountering a throttled cfs_rq */ 5725 if (cfs_rq_throttled(cfs_rq)) 5726 goto dequeue_throttle; 5727 5728 /* Don't dequeue parent if it has other entities besides us */ 5729 if (cfs_rq->load.weight) { 5730 /* Avoid re-evaluating load for this entity: */ 5731 se = parent_entity(se); 5732 /* 5733 * Bias pick_next to pick a task from this cfs_rq, as 5734 * p is sleeping when it is within its sched_slice. 5735 */ 5736 if (task_sleep && se && !throttled_hierarchy(cfs_rq)) 5737 set_next_buddy(se); 5738 break; 5739 } 5740 flags |= DEQUEUE_SLEEP; 5741 } 5742 5743 for_each_sched_entity(se) { 5744 cfs_rq = cfs_rq_of(se); 5745 5746 update_load_avg(cfs_rq, se, UPDATE_TG); 5747 se_update_runnable(se); 5748 update_cfs_group(se); 5749 5750 cfs_rq->h_nr_running--; 5751 cfs_rq->idle_h_nr_running -= idle_h_nr_running; 5752 5753 if (cfs_rq_is_idle(cfs_rq)) 5754 idle_h_nr_running = 1; 5755 5756 /* end evaluation on encountering a throttled cfs_rq */ 5757 if (cfs_rq_throttled(cfs_rq)) 5758 goto dequeue_throttle; 5759 5760 } 5761 5762 /* At this point se is NULL and we are at root level*/ 5763 sub_nr_running(rq, 1); 5764 5765 /* balance early to pull high priority tasks */ 5766 if (unlikely(!was_sched_idle && sched_idle_rq(rq))) 5767 rq->next_balance = jiffies; 5768 5769 dequeue_throttle: 5770 util_est_update(&rq->cfs, p, task_sleep); 5771 hrtick_update(rq); 5772 } 5773 5774 #ifdef CONFIG_SMP 5775 5776 /* Working cpumask for: load_balance, load_balance_newidle. */ 5777 DEFINE_PER_CPU(cpumask_var_t, load_balance_mask); 5778 DEFINE_PER_CPU(cpumask_var_t, select_idle_mask); 5779 5780 #ifdef CONFIG_NO_HZ_COMMON 5781 5782 static struct { 5783 cpumask_var_t idle_cpus_mask; 5784 atomic_t nr_cpus; 5785 int has_blocked; /* Idle CPUS has blocked load */ 5786 unsigned long next_balance; /* in jiffy units */ 5787 unsigned long next_blocked; /* Next update of blocked load in jiffies */ 5788 } nohz ____cacheline_aligned; 5789 5790 #endif /* CONFIG_NO_HZ_COMMON */ 5791 5792 static unsigned long cpu_load(struct rq *rq) 5793 { 5794 return cfs_rq_load_avg(&rq->cfs); 5795 } 5796 5797 /* 5798 * cpu_load_without - compute CPU load without any contributions from *p 5799 * @cpu: the CPU which load is requested 5800 * @p: the task which load should be discounted 5801 * 5802 * The load of a CPU is defined by the load of tasks currently enqueued on that 5803 * CPU as well as tasks which are currently sleeping after an execution on that 5804 * CPU. 5805 * 5806 * This method returns the load of the specified CPU by discounting the load of 5807 * the specified task, whenever the task is currently contributing to the CPU 5808 * load. 5809 */ 5810 static unsigned long cpu_load_without(struct rq *rq, struct task_struct *p) 5811 { 5812 struct cfs_rq *cfs_rq; 5813 unsigned int load; 5814 5815 /* Task has no contribution or is new */ 5816 if (cpu_of(rq) != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time)) 5817 return cpu_load(rq); 5818 5819 cfs_rq = &rq->cfs; 5820 load = READ_ONCE(cfs_rq->avg.load_avg); 5821 5822 /* Discount task's util from CPU's util */ 5823 lsub_positive(&load, task_h_load(p)); 5824 5825 return load; 5826 } 5827 5828 static unsigned long cpu_runnable(struct rq *rq) 5829 { 5830 return cfs_rq_runnable_avg(&rq->cfs); 5831 } 5832 5833 static unsigned long cpu_runnable_without(struct rq *rq, struct task_struct *p) 5834 { 5835 struct cfs_rq *cfs_rq; 5836 unsigned int runnable; 5837 5838 /* Task has no contribution or is new */ 5839 if (cpu_of(rq) != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time)) 5840 return cpu_runnable(rq); 5841 5842 cfs_rq = &rq->cfs; 5843 runnable = READ_ONCE(cfs_rq->avg.runnable_avg); 5844 5845 /* Discount task's runnable from CPU's runnable */ 5846 lsub_positive(&runnable, p->se.avg.runnable_avg); 5847 5848 return runnable; 5849 } 5850 5851 static unsigned long capacity_of(int cpu) 5852 { 5853 return cpu_rq(cpu)->cpu_capacity; 5854 } 5855 5856 static void record_wakee(struct task_struct *p) 5857 { 5858 /* 5859 * Only decay a single time; tasks that have less then 1 wakeup per 5860 * jiffy will not have built up many flips. 5861 */ 5862 if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) { 5863 current->wakee_flips >>= 1; 5864 current->wakee_flip_decay_ts = jiffies; 5865 } 5866 5867 if (current->last_wakee != p) { 5868 current->last_wakee = p; 5869 current->wakee_flips++; 5870 } 5871 } 5872 5873 /* 5874 * Detect M:N waker/wakee relationships via a switching-frequency heuristic. 5875 * 5876 * A waker of many should wake a different task than the one last awakened 5877 * at a frequency roughly N times higher than one of its wakees. 5878 * 5879 * In order to determine whether we should let the load spread vs consolidating 5880 * to shared cache, we look for a minimum 'flip' frequency of llc_size in one 5881 * partner, and a factor of lls_size higher frequency in the other. 5882 * 5883 * With both conditions met, we can be relatively sure that the relationship is 5884 * non-monogamous, with partner count exceeding socket size. 5885 * 5886 * Waker/wakee being client/server, worker/dispatcher, interrupt source or 5887 * whatever is irrelevant, spread criteria is apparent partner count exceeds 5888 * socket size. 5889 */ 5890 static int wake_wide(struct task_struct *p) 5891 { 5892 unsigned int master = current->wakee_flips; 5893 unsigned int slave = p->wakee_flips; 5894 int factor = __this_cpu_read(sd_llc_size); 5895 5896 if (master < slave) 5897 swap(master, slave); 5898 if (slave < factor || master < slave * factor) 5899 return 0; 5900 return 1; 5901 } 5902 5903 /* 5904 * The purpose of wake_affine() is to quickly determine on which CPU we can run 5905 * soonest. For the purpose of speed we only consider the waking and previous 5906 * CPU. 5907 * 5908 * wake_affine_idle() - only considers 'now', it check if the waking CPU is 5909 * cache-affine and is (or will be) idle. 5910 * 5911 * wake_affine_weight() - considers the weight to reflect the average 5912 * scheduling latency of the CPUs. This seems to work 5913 * for the overloaded case. 5914 */ 5915 static int 5916 wake_affine_idle(int this_cpu, int prev_cpu, int sync) 5917 { 5918 /* 5919 * If this_cpu is idle, it implies the wakeup is from interrupt 5920 * context. Only allow the move if cache is shared. Otherwise an 5921 * interrupt intensive workload could force all tasks onto one 5922 * node depending on the IO topology or IRQ affinity settings. 5923 * 5924 * If the prev_cpu is idle and cache affine then avoid a migration. 5925 * There is no guarantee that the cache hot data from an interrupt 5926 * is more important than cache hot data on the prev_cpu and from 5927 * a cpufreq perspective, it's better to have higher utilisation 5928 * on one CPU. 5929 */ 5930 if (available_idle_cpu(this_cpu) && cpus_share_cache(this_cpu, prev_cpu)) 5931 return available_idle_cpu(prev_cpu) ? prev_cpu : this_cpu; 5932 5933 if (sync && cpu_rq(this_cpu)->nr_running == 1) 5934 return this_cpu; 5935 5936 if (available_idle_cpu(prev_cpu)) 5937 return prev_cpu; 5938 5939 return nr_cpumask_bits; 5940 } 5941 5942 static int 5943 wake_affine_weight(struct sched_domain *sd, struct task_struct *p, 5944 int this_cpu, int prev_cpu, int sync) 5945 { 5946 s64 this_eff_load, prev_eff_load; 5947 unsigned long task_load; 5948 5949 this_eff_load = cpu_load(cpu_rq(this_cpu)); 5950 5951 if (sync) { 5952 unsigned long current_load = task_h_load(current); 5953 5954 if (current_load > this_eff_load) 5955 return this_cpu; 5956 5957 this_eff_load -= current_load; 5958 } 5959 5960 task_load = task_h_load(p); 5961 5962 this_eff_load += task_load; 5963 if (sched_feat(WA_BIAS)) 5964 this_eff_load *= 100; 5965 this_eff_load *= capacity_of(prev_cpu); 5966 5967 prev_eff_load = cpu_load(cpu_rq(prev_cpu)); 5968 prev_eff_load -= task_load; 5969 if (sched_feat(WA_BIAS)) 5970 prev_eff_load *= 100 + (sd->imbalance_pct - 100) / 2; 5971 prev_eff_load *= capacity_of(this_cpu); 5972 5973 /* 5974 * If sync, adjust the weight of prev_eff_load such that if 5975 * prev_eff == this_eff that select_idle_sibling() will consider 5976 * stacking the wakee on top of the waker if no other CPU is 5977 * idle. 5978 */ 5979 if (sync) 5980 prev_eff_load += 1; 5981 5982 return this_eff_load < prev_eff_load ? this_cpu : nr_cpumask_bits; 5983 } 5984 5985 static int wake_affine(struct sched_domain *sd, struct task_struct *p, 5986 int this_cpu, int prev_cpu, int sync) 5987 { 5988 int target = nr_cpumask_bits; 5989 5990 if (sched_feat(WA_IDLE)) 5991 target = wake_affine_idle(this_cpu, prev_cpu, sync); 5992 5993 if (sched_feat(WA_WEIGHT) && target == nr_cpumask_bits) 5994 target = wake_affine_weight(sd, p, this_cpu, prev_cpu, sync); 5995 5996 schedstat_inc(p->se.statistics.nr_wakeups_affine_attempts); 5997 if (target == nr_cpumask_bits) 5998 return prev_cpu; 5999 6000 schedstat_inc(sd->ttwu_move_affine); 6001 schedstat_inc(p->se.statistics.nr_wakeups_affine); 6002 return target; 6003 } 6004 6005 static struct sched_group * 6006 find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu); 6007 6008 /* 6009 * find_idlest_group_cpu - find the idlest CPU among the CPUs in the group. 6010 */ 6011 static int 6012 find_idlest_group_cpu(struct sched_group *group, struct task_struct *p, int this_cpu) 6013 { 6014 unsigned long load, min_load = ULONG_MAX; 6015 unsigned int min_exit_latency = UINT_MAX; 6016 u64 latest_idle_timestamp = 0; 6017 int least_loaded_cpu = this_cpu; 6018 int shallowest_idle_cpu = -1; 6019 int i; 6020 6021 /* Check if we have any choice: */ 6022 if (group->group_weight == 1) 6023 return cpumask_first(sched_group_span(group)); 6024 6025 /* Traverse only the allowed CPUs */ 6026 for_each_cpu_and(i, sched_group_span(group), p->cpus_ptr) { 6027 struct rq *rq = cpu_rq(i); 6028 6029 if (!sched_core_cookie_match(rq, p)) 6030 continue; 6031 6032 if (sched_idle_cpu(i)) 6033 return i; 6034 6035 if (available_idle_cpu(i)) { 6036 struct cpuidle_state *idle = idle_get_state(rq); 6037 if (idle && idle->exit_latency < min_exit_latency) { 6038 /* 6039 * We give priority to a CPU whose idle state 6040 * has the smallest exit latency irrespective 6041 * of any idle timestamp. 6042 */ 6043 min_exit_latency = idle->exit_latency; 6044 latest_idle_timestamp = rq->idle_stamp; 6045 shallowest_idle_cpu = i; 6046 } else if ((!idle || idle->exit_latency == min_exit_latency) && 6047 rq->idle_stamp > latest_idle_timestamp) { 6048 /* 6049 * If equal or no active idle state, then 6050 * the most recently idled CPU might have 6051 * a warmer cache. 6052 */ 6053 latest_idle_timestamp = rq->idle_stamp; 6054 shallowest_idle_cpu = i; 6055 } 6056 } else if (shallowest_idle_cpu == -1) { 6057 load = cpu_load(cpu_rq(i)); 6058 if (load < min_load) { 6059 min_load = load; 6060 least_loaded_cpu = i; 6061 } 6062 } 6063 } 6064 6065 return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu; 6066 } 6067 6068 static inline int find_idlest_cpu(struct sched_domain *sd, struct task_struct *p, 6069 int cpu, int prev_cpu, int sd_flag) 6070 { 6071 int new_cpu = cpu; 6072 6073 if (!cpumask_intersects(sched_domain_span(sd), p->cpus_ptr)) 6074 return prev_cpu; 6075 6076 /* 6077 * We need task's util for cpu_util_without, sync it up to 6078 * prev_cpu's last_update_time. 6079 */ 6080 if (!(sd_flag & SD_BALANCE_FORK)) 6081 sync_entity_load_avg(&p->se); 6082 6083 while (sd) { 6084 struct sched_group *group; 6085 struct sched_domain *tmp; 6086 int weight; 6087 6088 if (!(sd->flags & sd_flag)) { 6089 sd = sd->child; 6090 continue; 6091 } 6092 6093 group = find_idlest_group(sd, p, cpu); 6094 if (!group) { 6095 sd = sd->child; 6096 continue; 6097 } 6098 6099 new_cpu = find_idlest_group_cpu(group, p, cpu); 6100 if (new_cpu == cpu) { 6101 /* Now try balancing at a lower domain level of 'cpu': */ 6102 sd = sd->child; 6103 continue; 6104 } 6105 6106 /* Now try balancing at a lower domain level of 'new_cpu': */ 6107 cpu = new_cpu; 6108 weight = sd->span_weight; 6109 sd = NULL; 6110 for_each_domain(cpu, tmp) { 6111 if (weight <= tmp->span_weight) 6112 break; 6113 if (tmp->flags & sd_flag) 6114 sd = tmp; 6115 } 6116 } 6117 6118 return new_cpu; 6119 } 6120 6121 static inline int __select_idle_cpu(int cpu, struct task_struct *p) 6122 { 6123 if ((available_idle_cpu(cpu) || sched_idle_cpu(cpu)) && 6124 sched_cpu_cookie_match(cpu_rq(cpu), p)) 6125 return cpu; 6126 6127 return -1; 6128 } 6129 6130 #ifdef CONFIG_SCHED_SMT 6131 DEFINE_STATIC_KEY_FALSE(sched_smt_present); 6132 EXPORT_SYMBOL_GPL(sched_smt_present); 6133 6134 static inline void set_idle_cores(int cpu, int val) 6135 { 6136 struct sched_domain_shared *sds; 6137 6138 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu)); 6139 if (sds) 6140 WRITE_ONCE(sds->has_idle_cores, val); 6141 } 6142 6143 static inline bool test_idle_cores(int cpu, bool def) 6144 { 6145 struct sched_domain_shared *sds; 6146 6147 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu)); 6148 if (sds) 6149 return READ_ONCE(sds->has_idle_cores); 6150 6151 return def; 6152 } 6153 6154 /* 6155 * Scans the local SMT mask to see if the entire core is idle, and records this 6156 * information in sd_llc_shared->has_idle_cores. 6157 * 6158 * Since SMT siblings share all cache levels, inspecting this limited remote 6159 * state should be fairly cheap. 6160 */ 6161 void __update_idle_core(struct rq *rq) 6162 { 6163 int core = cpu_of(rq); 6164 int cpu; 6165 6166 rcu_read_lock(); 6167 if (test_idle_cores(core, true)) 6168 goto unlock; 6169 6170 for_each_cpu(cpu, cpu_smt_mask(core)) { 6171 if (cpu == core) 6172 continue; 6173 6174 if (!available_idle_cpu(cpu)) 6175 goto unlock; 6176 } 6177 6178 set_idle_cores(core, 1); 6179 unlock: 6180 rcu_read_unlock(); 6181 } 6182 6183 /* 6184 * Scan the entire LLC domain for idle cores; this dynamically switches off if 6185 * there are no idle cores left in the system; tracked through 6186 * sd_llc->shared->has_idle_cores and enabled through update_idle_core() above. 6187 */ 6188 static int select_idle_core(struct task_struct *p, int core, struct cpumask *cpus, int *idle_cpu) 6189 { 6190 bool idle = true; 6191 int cpu; 6192 6193 if (!static_branch_likely(&sched_smt_present)) 6194 return __select_idle_cpu(core, p); 6195 6196 for_each_cpu(cpu, cpu_smt_mask(core)) { 6197 if (!available_idle_cpu(cpu)) { 6198 idle = false; 6199 if (*idle_cpu == -1) { 6200 if (sched_idle_cpu(cpu) && cpumask_test_cpu(cpu, p->cpus_ptr)) { 6201 *idle_cpu = cpu; 6202 break; 6203 } 6204 continue; 6205 } 6206 break; 6207 } 6208 if (*idle_cpu == -1 && cpumask_test_cpu(cpu, p->cpus_ptr)) 6209 *idle_cpu = cpu; 6210 } 6211 6212 if (idle) 6213 return core; 6214 6215 cpumask_andnot(cpus, cpus, cpu_smt_mask(core)); 6216 return -1; 6217 } 6218 6219 /* 6220 * Scan the local SMT mask for idle CPUs. 6221 */ 6222 static int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target) 6223 { 6224 int cpu; 6225 6226 for_each_cpu(cpu, cpu_smt_mask(target)) { 6227 if (!cpumask_test_cpu(cpu, p->cpus_ptr) || 6228 !cpumask_test_cpu(cpu, sched_domain_span(sd))) 6229 continue; 6230 if (available_idle_cpu(cpu) || sched_idle_cpu(cpu)) 6231 return cpu; 6232 } 6233 6234 return -1; 6235 } 6236 6237 #else /* CONFIG_SCHED_SMT */ 6238 6239 static inline void set_idle_cores(int cpu, int val) 6240 { 6241 } 6242 6243 static inline bool test_idle_cores(int cpu, bool def) 6244 { 6245 return def; 6246 } 6247 6248 static inline int select_idle_core(struct task_struct *p, int core, struct cpumask *cpus, int *idle_cpu) 6249 { 6250 return __select_idle_cpu(core, p); 6251 } 6252 6253 static inline int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target) 6254 { 6255 return -1; 6256 } 6257 6258 #endif /* CONFIG_SCHED_SMT */ 6259 6260 /* 6261 * Scan the LLC domain for idle CPUs; this is dynamically regulated by 6262 * comparing the average scan cost (tracked in sd->avg_scan_cost) against the 6263 * average idle time for this rq (as found in rq->avg_idle). 6264 */ 6265 static int select_idle_cpu(struct task_struct *p, struct sched_domain *sd, bool has_idle_core, int target) 6266 { 6267 struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_idle_mask); 6268 int i, cpu, idle_cpu = -1, nr = INT_MAX; 6269 struct rq *this_rq = this_rq(); 6270 int this = smp_processor_id(); 6271 struct sched_domain *this_sd; 6272 u64 time = 0; 6273 6274 this_sd = rcu_dereference(*this_cpu_ptr(&sd_llc)); 6275 if (!this_sd) 6276 return -1; 6277 6278 cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr); 6279 6280 if (sched_feat(SIS_PROP) && !has_idle_core) { 6281 u64 avg_cost, avg_idle, span_avg; 6282 unsigned long now = jiffies; 6283 6284 /* 6285 * If we're busy, the assumption that the last idle period 6286 * predicts the future is flawed; age away the remaining 6287 * predicted idle time. 6288 */ 6289 if (unlikely(this_rq->wake_stamp < now)) { 6290 while (this_rq->wake_stamp < now && this_rq->wake_avg_idle) { 6291 this_rq->wake_stamp++; 6292 this_rq->wake_avg_idle >>= 1; 6293 } 6294 } 6295 6296 avg_idle = this_rq->wake_avg_idle; 6297 avg_cost = this_sd->avg_scan_cost + 1; 6298 6299 span_avg = sd->span_weight * avg_idle; 6300 if (span_avg > 4*avg_cost) 6301 nr = div_u64(span_avg, avg_cost); 6302 else 6303 nr = 4; 6304 6305 time = cpu_clock(this); 6306 } 6307 6308 for_each_cpu_wrap(cpu, cpus, target + 1) { 6309 if (has_idle_core) { 6310 i = select_idle_core(p, cpu, cpus, &idle_cpu); 6311 if ((unsigned int)i < nr_cpumask_bits) 6312 return i; 6313 6314 } else { 6315 if (!--nr) 6316 return -1; 6317 idle_cpu = __select_idle_cpu(cpu, p); 6318 if ((unsigned int)idle_cpu < nr_cpumask_bits) 6319 break; 6320 } 6321 } 6322 6323 if (has_idle_core) 6324 set_idle_cores(target, false); 6325 6326 if (sched_feat(SIS_PROP) && !has_idle_core) { 6327 time = cpu_clock(this) - time; 6328 6329 /* 6330 * Account for the scan cost of wakeups against the average 6331 * idle time. 6332 */ 6333 this_rq->wake_avg_idle -= min(this_rq->wake_avg_idle, time); 6334 6335 update_avg(&this_sd->avg_scan_cost, time); 6336 } 6337 6338 return idle_cpu; 6339 } 6340 6341 /* 6342 * Scan the asym_capacity domain for idle CPUs; pick the first idle one on which 6343 * the task fits. If no CPU is big enough, but there are idle ones, try to 6344 * maximize capacity. 6345 */ 6346 static int 6347 select_idle_capacity(struct task_struct *p, struct sched_domain *sd, int target) 6348 { 6349 unsigned long task_util, best_cap = 0; 6350 int cpu, best_cpu = -1; 6351 struct cpumask *cpus; 6352 6353 cpus = this_cpu_cpumask_var_ptr(select_idle_mask); 6354 cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr); 6355 6356 task_util = uclamp_task_util(p); 6357 6358 for_each_cpu_wrap(cpu, cpus, target) { 6359 unsigned long cpu_cap = capacity_of(cpu); 6360 6361 if (!available_idle_cpu(cpu) && !sched_idle_cpu(cpu)) 6362 continue; 6363 if (fits_capacity(task_util, cpu_cap)) 6364 return cpu; 6365 6366 if (cpu_cap > best_cap) { 6367 best_cap = cpu_cap; 6368 best_cpu = cpu; 6369 } 6370 } 6371 6372 return best_cpu; 6373 } 6374 6375 static inline bool asym_fits_capacity(int task_util, int cpu) 6376 { 6377 if (static_branch_unlikely(&sched_asym_cpucapacity)) 6378 return fits_capacity(task_util, capacity_of(cpu)); 6379 6380 return true; 6381 } 6382 6383 /* 6384 * Try and locate an idle core/thread in the LLC cache domain. 6385 */ 6386 static int select_idle_sibling(struct task_struct *p, int prev, int target) 6387 { 6388 bool has_idle_core = false; 6389 struct sched_domain *sd; 6390 unsigned long task_util; 6391 int i, recent_used_cpu; 6392 6393 /* 6394 * On asymmetric system, update task utilization because we will check 6395 * that the task fits with cpu's capacity. 6396 */ 6397 if (static_branch_unlikely(&sched_asym_cpucapacity)) { 6398 sync_entity_load_avg(&p->se); 6399 task_util = uclamp_task_util(p); 6400 } 6401 6402 /* 6403 * per-cpu select_idle_mask usage 6404 */ 6405 lockdep_assert_irqs_disabled(); 6406 6407 if ((available_idle_cpu(target) || sched_idle_cpu(target)) && 6408 asym_fits_capacity(task_util, target)) 6409 return target; 6410 6411 /* 6412 * If the previous CPU is cache affine and idle, don't be stupid: 6413 */ 6414 if (prev != target && cpus_share_cache(prev, target) && 6415 (available_idle_cpu(prev) || sched_idle_cpu(prev)) && 6416 asym_fits_capacity(task_util, prev)) 6417 return prev; 6418 6419 /* 6420 * Allow a per-cpu kthread to stack with the wakee if the 6421 * kworker thread and the tasks previous CPUs are the same. 6422 * The assumption is that the wakee queued work for the 6423 * per-cpu kthread that is now complete and the wakeup is 6424 * essentially a sync wakeup. An obvious example of this 6425 * pattern is IO completions. 6426 */ 6427 if (is_per_cpu_kthread(current) && 6428 prev == smp_processor_id() && 6429 this_rq()->nr_running <= 1) { 6430 return prev; 6431 } 6432 6433 /* Check a recently used CPU as a potential idle candidate: */ 6434 recent_used_cpu = p->recent_used_cpu; 6435 p->recent_used_cpu = prev; 6436 if (recent_used_cpu != prev && 6437 recent_used_cpu != target && 6438 cpus_share_cache(recent_used_cpu, target) && 6439 (available_idle_cpu(recent_used_cpu) || sched_idle_cpu(recent_used_cpu)) && 6440 cpumask_test_cpu(p->recent_used_cpu, p->cpus_ptr) && 6441 asym_fits_capacity(task_util, recent_used_cpu)) { 6442 /* 6443 * Replace recent_used_cpu with prev as it is a potential 6444 * candidate for the next wake: 6445 */ 6446 p->recent_used_cpu = prev; 6447 return recent_used_cpu; 6448 } 6449 6450 /* 6451 * For asymmetric CPU capacity systems, our domain of interest is 6452 * sd_asym_cpucapacity rather than sd_llc. 6453 */ 6454 if (static_branch_unlikely(&sched_asym_cpucapacity)) { 6455 sd = rcu_dereference(per_cpu(sd_asym_cpucapacity, target)); 6456 /* 6457 * On an asymmetric CPU capacity system where an exclusive 6458 * cpuset defines a symmetric island (i.e. one unique 6459 * capacity_orig value through the cpuset), the key will be set 6460 * but the CPUs within that cpuset will not have a domain with 6461 * SD_ASYM_CPUCAPACITY. These should follow the usual symmetric 6462 * capacity path. 6463 */ 6464 if (sd) { 6465 i = select_idle_capacity(p, sd, target); 6466 return ((unsigned)i < nr_cpumask_bits) ? i : target; 6467 } 6468 } 6469 6470 sd = rcu_dereference(per_cpu(sd_llc, target)); 6471 if (!sd) 6472 return target; 6473 6474 if (sched_smt_active()) { 6475 has_idle_core = test_idle_cores(target, false); 6476 6477 if (!has_idle_core && cpus_share_cache(prev, target)) { 6478 i = select_idle_smt(p, sd, prev); 6479 if ((unsigned int)i < nr_cpumask_bits) 6480 return i; 6481 } 6482 } 6483 6484 i = select_idle_cpu(p, sd, has_idle_core, target); 6485 if ((unsigned)i < nr_cpumask_bits) 6486 return i; 6487 6488 return target; 6489 } 6490 6491 /** 6492 * cpu_util - Estimates the amount of capacity of a CPU used by CFS tasks. 6493 * @cpu: the CPU to get the utilization of 6494 * 6495 * The unit of the return value must be the one of capacity so we can compare 6496 * the utilization with the capacity of the CPU that is available for CFS task 6497 * (ie cpu_capacity). 6498 * 6499 * cfs_rq.avg.util_avg is the sum of running time of runnable tasks plus the 6500 * recent utilization of currently non-runnable tasks on a CPU. It represents 6501 * the amount of utilization of a CPU in the range [0..capacity_orig] where 6502 * capacity_orig is the cpu_capacity available at the highest frequency 6503 * (arch_scale_freq_capacity()). 6504 * The utilization of a CPU converges towards a sum equal to or less than the 6505 * current capacity (capacity_curr <= capacity_orig) of the CPU because it is 6506 * the running time on this CPU scaled by capacity_curr. 6507 * 6508 * The estimated utilization of a CPU is defined to be the maximum between its 6509 * cfs_rq.avg.util_avg and the sum of the estimated utilization of the tasks 6510 * currently RUNNABLE on that CPU. 6511 * This allows to properly represent the expected utilization of a CPU which 6512 * has just got a big task running since a long sleep period. At the same time 6513 * however it preserves the benefits of the "blocked utilization" in 6514 * describing the potential for other tasks waking up on the same CPU. 6515 * 6516 * Nevertheless, cfs_rq.avg.util_avg can be higher than capacity_curr or even 6517 * higher than capacity_orig because of unfortunate rounding in 6518 * cfs.avg.util_avg or just after migrating tasks and new task wakeups until 6519 * the average stabilizes with the new running time. We need to check that the 6520 * utilization stays within the range of [0..capacity_orig] and cap it if 6521 * necessary. Without utilization capping, a group could be seen as overloaded 6522 * (CPU0 utilization at 121% + CPU1 utilization at 80%) whereas CPU1 has 20% of 6523 * available capacity. We allow utilization to overshoot capacity_curr (but not 6524 * capacity_orig) as it useful for predicting the capacity required after task 6525 * migrations (scheduler-driven DVFS). 6526 * 6527 * Return: the (estimated) utilization for the specified CPU 6528 */ 6529 static inline unsigned long cpu_util(int cpu) 6530 { 6531 struct cfs_rq *cfs_rq; 6532 unsigned int util; 6533 6534 cfs_rq = &cpu_rq(cpu)->cfs; 6535 util = READ_ONCE(cfs_rq->avg.util_avg); 6536 6537 if (sched_feat(UTIL_EST)) 6538 util = max(util, READ_ONCE(cfs_rq->avg.util_est.enqueued)); 6539 6540 return min_t(unsigned long, util, capacity_orig_of(cpu)); 6541 } 6542 6543 /* 6544 * cpu_util_without: compute cpu utilization without any contributions from *p 6545 * @cpu: the CPU which utilization is requested 6546 * @p: the task which utilization should be discounted 6547 * 6548 * The utilization of a CPU is defined by the utilization of tasks currently 6549 * enqueued on that CPU as well as tasks which are currently sleeping after an 6550 * execution on that CPU. 6551 * 6552 * This method returns the utilization of the specified CPU by discounting the 6553 * utilization of the specified task, whenever the task is currently 6554 * contributing to the CPU utilization. 6555 */ 6556 static unsigned long cpu_util_without(int cpu, struct task_struct *p) 6557 { 6558 struct cfs_rq *cfs_rq; 6559 unsigned int util; 6560 6561 /* Task has no contribution or is new */ 6562 if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time)) 6563 return cpu_util(cpu); 6564 6565 cfs_rq = &cpu_rq(cpu)->cfs; 6566 util = READ_ONCE(cfs_rq->avg.util_avg); 6567 6568 /* Discount task's util from CPU's util */ 6569 lsub_positive(&util, task_util(p)); 6570 6571 /* 6572 * Covered cases: 6573 * 6574 * a) if *p is the only task sleeping on this CPU, then: 6575 * cpu_util (== task_util) > util_est (== 0) 6576 * and thus we return: 6577 * cpu_util_without = (cpu_util - task_util) = 0 6578 * 6579 * b) if other tasks are SLEEPING on this CPU, which is now exiting 6580 * IDLE, then: 6581 * cpu_util >= task_util 6582 * cpu_util > util_est (== 0) 6583 * and thus we discount *p's blocked utilization to return: 6584 * cpu_util_without = (cpu_util - task_util) >= 0 6585 * 6586 * c) if other tasks are RUNNABLE on that CPU and 6587 * util_est > cpu_util 6588 * then we use util_est since it returns a more restrictive 6589 * estimation of the spare capacity on that CPU, by just 6590 * considering the expected utilization of tasks already 6591 * runnable on that CPU. 6592 * 6593 * Cases a) and b) are covered by the above code, while case c) is 6594 * covered by the following code when estimated utilization is 6595 * enabled. 6596 */ 6597 if (sched_feat(UTIL_EST)) { 6598 unsigned int estimated = 6599 READ_ONCE(cfs_rq->avg.util_est.enqueued); 6600 6601 /* 6602 * Despite the following checks we still have a small window 6603 * for a possible race, when an execl's select_task_rq_fair() 6604 * races with LB's detach_task(): 6605 * 6606 * detach_task() 6607 * p->on_rq = TASK_ON_RQ_MIGRATING; 6608 * ---------------------------------- A 6609 * deactivate_task() \ 6610 * dequeue_task() + RaceTime 6611 * util_est_dequeue() / 6612 * ---------------------------------- B 6613 * 6614 * The additional check on "current == p" it's required to 6615 * properly fix the execl regression and it helps in further 6616 * reducing the chances for the above race. 6617 */ 6618 if (unlikely(task_on_rq_queued(p) || current == p)) 6619 lsub_positive(&estimated, _task_util_est(p)); 6620 6621 util = max(util, estimated); 6622 } 6623 6624 /* 6625 * Utilization (estimated) can exceed the CPU capacity, thus let's 6626 * clamp to the maximum CPU capacity to ensure consistency with 6627 * the cpu_util call. 6628 */ 6629 return min_t(unsigned long, util, capacity_orig_of(cpu)); 6630 } 6631 6632 /* 6633 * Predicts what cpu_util(@cpu) would return if @p was migrated (and enqueued) 6634 * to @dst_cpu. 6635 */ 6636 static unsigned long cpu_util_next(int cpu, struct task_struct *p, int dst_cpu) 6637 { 6638 struct cfs_rq *cfs_rq = &cpu_rq(cpu)->cfs; 6639 unsigned long util_est, util = READ_ONCE(cfs_rq->avg.util_avg); 6640 6641 /* 6642 * If @p migrates from @cpu to another, remove its contribution. Or, 6643 * if @p migrates from another CPU to @cpu, add its contribution. In 6644 * the other cases, @cpu is not impacted by the migration, so the 6645 * util_avg should already be correct. 6646 */ 6647 if (task_cpu(p) == cpu && dst_cpu != cpu) 6648 lsub_positive(&util, task_util(p)); 6649 else if (task_cpu(p) != cpu && dst_cpu == cpu) 6650 util += task_util(p); 6651 6652 if (sched_feat(UTIL_EST)) { 6653 util_est = READ_ONCE(cfs_rq->avg.util_est.enqueued); 6654 6655 /* 6656 * During wake-up, the task isn't enqueued yet and doesn't 6657 * appear in the cfs_rq->avg.util_est.enqueued of any rq, 6658 * so just add it (if needed) to "simulate" what will be 6659 * cpu_util() after the task has been enqueued. 6660 */ 6661 if (dst_cpu == cpu) 6662 util_est += _task_util_est(p); 6663 6664 util = max(util, util_est); 6665 } 6666 6667 return min(util, capacity_orig_of(cpu)); 6668 } 6669 6670 /* 6671 * compute_energy(): Estimates the energy that @pd would consume if @p was 6672 * migrated to @dst_cpu. compute_energy() predicts what will be the utilization 6673 * landscape of @pd's CPUs after the task migration, and uses the Energy Model 6674 * to compute what would be the energy if we decided to actually migrate that 6675 * task. 6676 */ 6677 static long 6678 compute_energy(struct task_struct *p, int dst_cpu, struct perf_domain *pd) 6679 { 6680 struct cpumask *pd_mask = perf_domain_span(pd); 6681 unsigned long cpu_cap = arch_scale_cpu_capacity(cpumask_first(pd_mask)); 6682 unsigned long max_util = 0, sum_util = 0; 6683 unsigned long _cpu_cap = cpu_cap; 6684 int cpu; 6685 6686 _cpu_cap -= arch_scale_thermal_pressure(cpumask_first(pd_mask)); 6687 6688 /* 6689 * The capacity state of CPUs of the current rd can be driven by CPUs 6690 * of another rd if they belong to the same pd. So, account for the 6691 * utilization of these CPUs too by masking pd with cpu_online_mask 6692 * instead of the rd span. 6693 * 6694 * If an entire pd is outside of the current rd, it will not appear in 6695 * its pd list and will not be accounted by compute_energy(). 6696 */ 6697 for_each_cpu_and(cpu, pd_mask, cpu_online_mask) { 6698 unsigned long util_freq = cpu_util_next(cpu, p, dst_cpu); 6699 unsigned long cpu_util, util_running = util_freq; 6700 struct task_struct *tsk = NULL; 6701 6702 /* 6703 * When @p is placed on @cpu: 6704 * 6705 * util_running = max(cpu_util, cpu_util_est) + 6706 * max(task_util, _task_util_est) 6707 * 6708 * while cpu_util_next is: max(cpu_util + task_util, 6709 * cpu_util_est + _task_util_est) 6710 */ 6711 if (cpu == dst_cpu) { 6712 tsk = p; 6713 util_running = 6714 cpu_util_next(cpu, p, -1) + task_util_est(p); 6715 } 6716 6717 /* 6718 * Busy time computation: utilization clamping is not 6719 * required since the ratio (sum_util / cpu_capacity) 6720 * is already enough to scale the EM reported power 6721 * consumption at the (eventually clamped) cpu_capacity. 6722 */ 6723 cpu_util = effective_cpu_util(cpu, util_running, cpu_cap, 6724 ENERGY_UTIL, NULL); 6725 6726 sum_util += min(cpu_util, _cpu_cap); 6727 6728 /* 6729 * Performance domain frequency: utilization clamping 6730 * must be considered since it affects the selection 6731 * of the performance domain frequency. 6732 * NOTE: in case RT tasks are running, by default the 6733 * FREQUENCY_UTIL's utilization can be max OPP. 6734 */ 6735 cpu_util = effective_cpu_util(cpu, util_freq, cpu_cap, 6736 FREQUENCY_UTIL, tsk); 6737 max_util = max(max_util, min(cpu_util, _cpu_cap)); 6738 } 6739 6740 return em_cpu_energy(pd->em_pd, max_util, sum_util, _cpu_cap); 6741 } 6742 6743 /* 6744 * find_energy_efficient_cpu(): Find most energy-efficient target CPU for the 6745 * waking task. find_energy_efficient_cpu() looks for the CPU with maximum 6746 * spare capacity in each performance domain and uses it as a potential 6747 * candidate to execute the task. Then, it uses the Energy Model to figure 6748 * out which of the CPU candidates is the most energy-efficient. 6749 * 6750 * The rationale for this heuristic is as follows. In a performance domain, 6751 * all the most energy efficient CPU candidates (according to the Energy 6752 * Model) are those for which we'll request a low frequency. When there are 6753 * several CPUs for which the frequency request will be the same, we don't 6754 * have enough data to break the tie between them, because the Energy Model 6755 * only includes active power costs. With this model, if we assume that 6756 * frequency requests follow utilization (e.g. using schedutil), the CPU with 6757 * the maximum spare capacity in a performance domain is guaranteed to be among 6758 * the best candidates of the performance domain. 6759 * 6760 * In practice, it could be preferable from an energy standpoint to pack 6761 * small tasks on a CPU in order to let other CPUs go in deeper idle states, 6762 * but that could also hurt our chances to go cluster idle, and we have no 6763 * ways to tell with the current Energy Model if this is actually a good 6764 * idea or not. So, find_energy_efficient_cpu() basically favors 6765 * cluster-packing, and spreading inside a cluster. That should at least be 6766 * a good thing for latency, and this is consistent with the idea that most 6767 * of the energy savings of EAS come from the asymmetry of the system, and 6768 * not so much from breaking the tie between identical CPUs. That's also the 6769 * reason why EAS is enabled in the topology code only for systems where 6770 * SD_ASYM_CPUCAPACITY is set. 6771 * 6772 * NOTE: Forkees are not accepted in the energy-aware wake-up path because 6773 * they don't have any useful utilization data yet and it's not possible to 6774 * forecast their impact on energy consumption. Consequently, they will be 6775 * placed by find_idlest_cpu() on the least loaded CPU, which might turn out 6776 * to be energy-inefficient in some use-cases. The alternative would be to 6777 * bias new tasks towards specific types of CPUs first, or to try to infer 6778 * their util_avg from the parent task, but those heuristics could hurt 6779 * other use-cases too. So, until someone finds a better way to solve this, 6780 * let's keep things simple by re-using the existing slow path. 6781 */ 6782 static int find_energy_efficient_cpu(struct task_struct *p, int prev_cpu) 6783 { 6784 unsigned long prev_delta = ULONG_MAX, best_delta = ULONG_MAX; 6785 struct root_domain *rd = cpu_rq(smp_processor_id())->rd; 6786 int cpu, best_energy_cpu = prev_cpu, target = -1; 6787 unsigned long cpu_cap, util, base_energy = 0; 6788 struct sched_domain *sd; 6789 struct perf_domain *pd; 6790 6791 rcu_read_lock(); 6792 pd = rcu_dereference(rd->pd); 6793 if (!pd || READ_ONCE(rd->overutilized)) 6794 goto unlock; 6795 6796 /* 6797 * Energy-aware wake-up happens on the lowest sched_domain starting 6798 * from sd_asym_cpucapacity spanning over this_cpu and prev_cpu. 6799 */ 6800 sd = rcu_dereference(*this_cpu_ptr(&sd_asym_cpucapacity)); 6801 while (sd && !cpumask_test_cpu(prev_cpu, sched_domain_span(sd))) 6802 sd = sd->parent; 6803 if (!sd) 6804 goto unlock; 6805 6806 target = prev_cpu; 6807 6808 sync_entity_load_avg(&p->se); 6809 if (!task_util_est(p)) 6810 goto unlock; 6811 6812 for (; pd; pd = pd->next) { 6813 unsigned long cur_delta, spare_cap, max_spare_cap = 0; 6814 bool compute_prev_delta = false; 6815 unsigned long base_energy_pd; 6816 int max_spare_cap_cpu = -1; 6817 6818 for_each_cpu_and(cpu, perf_domain_span(pd), sched_domain_span(sd)) { 6819 if (!cpumask_test_cpu(cpu, p->cpus_ptr)) 6820 continue; 6821 6822 util = cpu_util_next(cpu, p, cpu); 6823 cpu_cap = capacity_of(cpu); 6824 spare_cap = cpu_cap; 6825 lsub_positive(&spare_cap, util); 6826 6827 /* 6828 * Skip CPUs that cannot satisfy the capacity request. 6829 * IOW, placing the task there would make the CPU 6830 * overutilized. Take uclamp into account to see how 6831 * much capacity we can get out of the CPU; this is 6832 * aligned with sched_cpu_util(). 6833 */ 6834 util = uclamp_rq_util_with(cpu_rq(cpu), util, p); 6835 if (!fits_capacity(util, cpu_cap)) 6836 continue; 6837 6838 if (cpu == prev_cpu) { 6839 /* Always use prev_cpu as a candidate. */ 6840 compute_prev_delta = true; 6841 } else if (spare_cap > max_spare_cap) { 6842 /* 6843 * Find the CPU with the maximum spare capacity 6844 * in the performance domain. 6845 */ 6846 max_spare_cap = spare_cap; 6847 max_spare_cap_cpu = cpu; 6848 } 6849 } 6850 6851 if (max_spare_cap_cpu < 0 && !compute_prev_delta) 6852 continue; 6853 6854 /* Compute the 'base' energy of the pd, without @p */ 6855 base_energy_pd = compute_energy(p, -1, pd); 6856 base_energy += base_energy_pd; 6857 6858 /* Evaluate the energy impact of using prev_cpu. */ 6859 if (compute_prev_delta) { 6860 prev_delta = compute_energy(p, prev_cpu, pd); 6861 if (prev_delta < base_energy_pd) 6862 goto unlock; 6863 prev_delta -= base_energy_pd; 6864 best_delta = min(best_delta, prev_delta); 6865 } 6866 6867 /* Evaluate the energy impact of using max_spare_cap_cpu. */ 6868 if (max_spare_cap_cpu >= 0) { 6869 cur_delta = compute_energy(p, max_spare_cap_cpu, pd); 6870 if (cur_delta < base_energy_pd) 6871 goto unlock; 6872 cur_delta -= base_energy_pd; 6873 if (cur_delta < best_delta) { 6874 best_delta = cur_delta; 6875 best_energy_cpu = max_spare_cap_cpu; 6876 } 6877 } 6878 } 6879 rcu_read_unlock(); 6880 6881 /* 6882 * Pick the best CPU if prev_cpu cannot be used, or if it saves at 6883 * least 6% of the energy used by prev_cpu. 6884 */ 6885 if ((prev_delta == ULONG_MAX) || 6886 (prev_delta - best_delta) > ((prev_delta + base_energy) >> 4)) 6887 target = best_energy_cpu; 6888 6889 return target; 6890 6891 unlock: 6892 rcu_read_unlock(); 6893 6894 return target; 6895 } 6896 6897 /* 6898 * select_task_rq_fair: Select target runqueue for the waking task in domains 6899 * that have the relevant SD flag set. In practice, this is SD_BALANCE_WAKE, 6900 * SD_BALANCE_FORK, or SD_BALANCE_EXEC. 6901 * 6902 * Balances load by selecting the idlest CPU in the idlest group, or under 6903 * certain conditions an idle sibling CPU if the domain has SD_WAKE_AFFINE set. 6904 * 6905 * Returns the target CPU number. 6906 */ 6907 static int 6908 select_task_rq_fair(struct task_struct *p, int prev_cpu, int wake_flags) 6909 { 6910 int sync = (wake_flags & WF_SYNC) && !(current->flags & PF_EXITING); 6911 struct sched_domain *tmp, *sd = NULL; 6912 int cpu = smp_processor_id(); 6913 int new_cpu = prev_cpu; 6914 int want_affine = 0; 6915 /* SD_flags and WF_flags share the first nibble */ 6916 int sd_flag = wake_flags & 0xF; 6917 6918 /* 6919 * required for stable ->cpus_allowed 6920 */ 6921 lockdep_assert_held(&p->pi_lock); 6922 if (wake_flags & WF_TTWU) { 6923 record_wakee(p); 6924 6925 if (sched_energy_enabled()) { 6926 new_cpu = find_energy_efficient_cpu(p, prev_cpu); 6927 if (new_cpu >= 0) 6928 return new_cpu; 6929 new_cpu = prev_cpu; 6930 } 6931 6932 want_affine = !wake_wide(p) && cpumask_test_cpu(cpu, p->cpus_ptr); 6933 } 6934 6935 rcu_read_lock(); 6936 for_each_domain(cpu, tmp) { 6937 /* 6938 * If both 'cpu' and 'prev_cpu' are part of this domain, 6939 * cpu is a valid SD_WAKE_AFFINE target. 6940 */ 6941 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) && 6942 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) { 6943 if (cpu != prev_cpu) 6944 new_cpu = wake_affine(tmp, p, cpu, prev_cpu, sync); 6945 6946 sd = NULL; /* Prefer wake_affine over balance flags */ 6947 break; 6948 } 6949 6950 if (tmp->flags & sd_flag) 6951 sd = tmp; 6952 else if (!want_affine) 6953 break; 6954 } 6955 6956 if (unlikely(sd)) { 6957 /* Slow path */ 6958 new_cpu = find_idlest_cpu(sd, p, cpu, prev_cpu, sd_flag); 6959 } else if (wake_flags & WF_TTWU) { /* XXX always ? */ 6960 /* Fast path */ 6961 new_cpu = select_idle_sibling(p, prev_cpu, new_cpu); 6962 } 6963 rcu_read_unlock(); 6964 6965 return new_cpu; 6966 } 6967 6968 static void detach_entity_cfs_rq(struct sched_entity *se); 6969 6970 /* 6971 * Called immediately before a task is migrated to a new CPU; task_cpu(p) and 6972 * cfs_rq_of(p) references at time of call are still valid and identify the 6973 * previous CPU. The caller guarantees p->pi_lock or task_rq(p)->lock is held. 6974 */ 6975 static void migrate_task_rq_fair(struct task_struct *p, int new_cpu) 6976 { 6977 /* 6978 * As blocked tasks retain absolute vruntime the migration needs to 6979 * deal with this by subtracting the old and adding the new 6980 * min_vruntime -- the latter is done by enqueue_entity() when placing 6981 * the task on the new runqueue. 6982 */ 6983 if (READ_ONCE(p->__state) == TASK_WAKING) { 6984 struct sched_entity *se = &p->se; 6985 struct cfs_rq *cfs_rq = cfs_rq_of(se); 6986 u64 min_vruntime; 6987 6988 #ifndef CONFIG_64BIT 6989 u64 min_vruntime_copy; 6990 6991 do { 6992 min_vruntime_copy = cfs_rq->min_vruntime_copy; 6993 smp_rmb(); 6994 min_vruntime = cfs_rq->min_vruntime; 6995 } while (min_vruntime != min_vruntime_copy); 6996 #else 6997 min_vruntime = cfs_rq->min_vruntime; 6998 #endif 6999 7000 se->vruntime -= min_vruntime; 7001 } 7002 7003 if (p->on_rq == TASK_ON_RQ_MIGRATING) { 7004 /* 7005 * In case of TASK_ON_RQ_MIGRATING we in fact hold the 'old' 7006 * rq->lock and can modify state directly. 7007 */ 7008 lockdep_assert_rq_held(task_rq(p)); 7009 detach_entity_cfs_rq(&p->se); 7010 7011 } else { 7012 /* 7013 * We are supposed to update the task to "current" time, then 7014 * its up to date and ready to go to new CPU/cfs_rq. But we 7015 * have difficulty in getting what current time is, so simply 7016 * throw away the out-of-date time. This will result in the 7017 * wakee task is less decayed, but giving the wakee more load 7018 * sounds not bad. 7019 */ 7020 remove_entity_load_avg(&p->se); 7021 } 7022 7023 /* Tell new CPU we are migrated */ 7024 p->se.avg.last_update_time = 0; 7025 7026 /* We have migrated, no longer consider this task hot */ 7027 p->se.exec_start = 0; 7028 7029 update_scan_period(p, new_cpu); 7030 } 7031 7032 static void task_dead_fair(struct task_struct *p) 7033 { 7034 remove_entity_load_avg(&p->se); 7035 } 7036 7037 static int 7038 balance_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf) 7039 { 7040 if (rq->nr_running) 7041 return 1; 7042 7043 return newidle_balance(rq, rf) != 0; 7044 } 7045 #endif /* CONFIG_SMP */ 7046 7047 static unsigned long wakeup_gran(struct sched_entity *se) 7048 { 7049 unsigned long gran = sysctl_sched_wakeup_granularity; 7050 7051 /* 7052 * Since its curr running now, convert the gran from real-time 7053 * to virtual-time in his units. 7054 * 7055 * By using 'se' instead of 'curr' we penalize light tasks, so 7056 * they get preempted easier. That is, if 'se' < 'curr' then 7057 * the resulting gran will be larger, therefore penalizing the 7058 * lighter, if otoh 'se' > 'curr' then the resulting gran will 7059 * be smaller, again penalizing the lighter task. 7060 * 7061 * This is especially important for buddies when the leftmost 7062 * task is higher priority than the buddy. 7063 */ 7064 return calc_delta_fair(gran, se); 7065 } 7066 7067 /* 7068 * Should 'se' preempt 'curr'. 7069 * 7070 * |s1 7071 * |s2 7072 * |s3 7073 * g 7074 * |<--->|c 7075 * 7076 * w(c, s1) = -1 7077 * w(c, s2) = 0 7078 * w(c, s3) = 1 7079 * 7080 */ 7081 static int 7082 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se) 7083 { 7084 s64 gran, vdiff = curr->vruntime - se->vruntime; 7085 7086 if (vdiff <= 0) 7087 return -1; 7088 7089 gran = wakeup_gran(se); 7090 if (vdiff > gran) 7091 return 1; 7092 7093 return 0; 7094 } 7095 7096 static void set_last_buddy(struct sched_entity *se) 7097 { 7098 for_each_sched_entity(se) { 7099 if (SCHED_WARN_ON(!se->on_rq)) 7100 return; 7101 if (se_is_idle(se)) 7102 return; 7103 cfs_rq_of(se)->last = se; 7104 } 7105 } 7106 7107 static void set_next_buddy(struct sched_entity *se) 7108 { 7109 for_each_sched_entity(se) { 7110 if (SCHED_WARN_ON(!se->on_rq)) 7111 return; 7112 if (se_is_idle(se)) 7113 return; 7114 cfs_rq_of(se)->next = se; 7115 } 7116 } 7117 7118 static void set_skip_buddy(struct sched_entity *se) 7119 { 7120 for_each_sched_entity(se) 7121 cfs_rq_of(se)->skip = se; 7122 } 7123 7124 /* 7125 * Preempt the current task with a newly woken task if needed: 7126 */ 7127 static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags) 7128 { 7129 struct task_struct *curr = rq->curr; 7130 struct sched_entity *se = &curr->se, *pse = &p->se; 7131 struct cfs_rq *cfs_rq = task_cfs_rq(curr); 7132 int scale = cfs_rq->nr_running >= sched_nr_latency; 7133 int next_buddy_marked = 0; 7134 int cse_is_idle, pse_is_idle; 7135 7136 if (unlikely(se == pse)) 7137 return; 7138 7139 /* 7140 * This is possible from callers such as attach_tasks(), in which we 7141 * unconditionally check_preempt_curr() after an enqueue (which may have 7142 * lead to a throttle). This both saves work and prevents false 7143 * next-buddy nomination below. 7144 */ 7145 if (unlikely(throttled_hierarchy(cfs_rq_of(pse)))) 7146 return; 7147 7148 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) { 7149 set_next_buddy(pse); 7150 next_buddy_marked = 1; 7151 } 7152 7153 /* 7154 * We can come here with TIF_NEED_RESCHED already set from new task 7155 * wake up path. 7156 * 7157 * Note: this also catches the edge-case of curr being in a throttled 7158 * group (e.g. via set_curr_task), since update_curr() (in the 7159 * enqueue of curr) will have resulted in resched being set. This 7160 * prevents us from potentially nominating it as a false LAST_BUDDY 7161 * below. 7162 */ 7163 if (test_tsk_need_resched(curr)) 7164 return; 7165 7166 /* Idle tasks are by definition preempted by non-idle tasks. */ 7167 if (unlikely(task_has_idle_policy(curr)) && 7168 likely(!task_has_idle_policy(p))) 7169 goto preempt; 7170 7171 /* 7172 * Batch and idle tasks do not preempt non-idle tasks (their preemption 7173 * is driven by the tick): 7174 */ 7175 if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION)) 7176 return; 7177 7178 find_matching_se(&se, &pse); 7179 BUG_ON(!pse); 7180 7181 cse_is_idle = se_is_idle(se); 7182 pse_is_idle = se_is_idle(pse); 7183 7184 /* 7185 * Preempt an idle group in favor of a non-idle group (and don't preempt 7186 * in the inverse case). 7187 */ 7188 if (cse_is_idle && !pse_is_idle) 7189 goto preempt; 7190 if (cse_is_idle != pse_is_idle) 7191 return; 7192 7193 update_curr(cfs_rq_of(se)); 7194 if (wakeup_preempt_entity(se, pse) == 1) { 7195 /* 7196 * Bias pick_next to pick the sched entity that is 7197 * triggering this preemption. 7198 */ 7199 if (!next_buddy_marked) 7200 set_next_buddy(pse); 7201 goto preempt; 7202 } 7203 7204 return; 7205 7206 preempt: 7207 resched_curr(rq); 7208 /* 7209 * Only set the backward buddy when the current task is still 7210 * on the rq. This can happen when a wakeup gets interleaved 7211 * with schedule on the ->pre_schedule() or idle_balance() 7212 * point, either of which can * drop the rq lock. 7213 * 7214 * Also, during early boot the idle thread is in the fair class, 7215 * for obvious reasons its a bad idea to schedule back to it. 7216 */ 7217 if (unlikely(!se->on_rq || curr == rq->idle)) 7218 return; 7219 7220 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se)) 7221 set_last_buddy(se); 7222 } 7223 7224 #ifdef CONFIG_SMP 7225 static struct task_struct *pick_task_fair(struct rq *rq) 7226 { 7227 struct sched_entity *se; 7228 struct cfs_rq *cfs_rq; 7229 7230 again: 7231 cfs_rq = &rq->cfs; 7232 if (!cfs_rq->nr_running) 7233 return NULL; 7234 7235 do { 7236 struct sched_entity *curr = cfs_rq->curr; 7237 7238 /* When we pick for a remote RQ, we'll not have done put_prev_entity() */ 7239 if (curr) { 7240 if (curr->on_rq) 7241 update_curr(cfs_rq); 7242 else 7243 curr = NULL; 7244 7245 if (unlikely(check_cfs_rq_runtime(cfs_rq))) 7246 goto again; 7247 } 7248 7249 se = pick_next_entity(cfs_rq, curr); 7250 cfs_rq = group_cfs_rq(se); 7251 } while (cfs_rq); 7252 7253 return task_of(se); 7254 } 7255 #endif 7256 7257 struct task_struct * 7258 pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf) 7259 { 7260 struct cfs_rq *cfs_rq = &rq->cfs; 7261 struct sched_entity *se; 7262 struct task_struct *p; 7263 int new_tasks; 7264 7265 again: 7266 if (!sched_fair_runnable(rq)) 7267 goto idle; 7268 7269 #ifdef CONFIG_FAIR_GROUP_SCHED 7270 if (!prev || prev->sched_class != &fair_sched_class) 7271 goto simple; 7272 7273 /* 7274 * Because of the set_next_buddy() in dequeue_task_fair() it is rather 7275 * likely that a next task is from the same cgroup as the current. 7276 * 7277 * Therefore attempt to avoid putting and setting the entire cgroup 7278 * hierarchy, only change the part that actually changes. 7279 */ 7280 7281 do { 7282 struct sched_entity *curr = cfs_rq->curr; 7283 7284 /* 7285 * Since we got here without doing put_prev_entity() we also 7286 * have to consider cfs_rq->curr. If it is still a runnable 7287 * entity, update_curr() will update its vruntime, otherwise 7288 * forget we've ever seen it. 7289 */ 7290 if (curr) { 7291 if (curr->on_rq) 7292 update_curr(cfs_rq); 7293 else 7294 curr = NULL; 7295 7296 /* 7297 * This call to check_cfs_rq_runtime() will do the 7298 * throttle and dequeue its entity in the parent(s). 7299 * Therefore the nr_running test will indeed 7300 * be correct. 7301 */ 7302 if (unlikely(check_cfs_rq_runtime(cfs_rq))) { 7303 cfs_rq = &rq->cfs; 7304 7305 if (!cfs_rq->nr_running) 7306 goto idle; 7307 7308 goto simple; 7309 } 7310 } 7311 7312 se = pick_next_entity(cfs_rq, curr); 7313 cfs_rq = group_cfs_rq(se); 7314 } while (cfs_rq); 7315 7316 p = task_of(se); 7317 7318 /* 7319 * Since we haven't yet done put_prev_entity and if the selected task 7320 * is a different task than we started out with, try and touch the 7321 * least amount of cfs_rqs. 7322 */ 7323 if (prev != p) { 7324 struct sched_entity *pse = &prev->se; 7325 7326 while (!(cfs_rq = is_same_group(se, pse))) { 7327 int se_depth = se->depth; 7328 int pse_depth = pse->depth; 7329 7330 if (se_depth <= pse_depth) { 7331 put_prev_entity(cfs_rq_of(pse), pse); 7332 pse = parent_entity(pse); 7333 } 7334 if (se_depth >= pse_depth) { 7335 set_next_entity(cfs_rq_of(se), se); 7336 se = parent_entity(se); 7337 } 7338 } 7339 7340 put_prev_entity(cfs_rq, pse); 7341 set_next_entity(cfs_rq, se); 7342 } 7343 7344 goto done; 7345 simple: 7346 #endif 7347 if (prev) 7348 put_prev_task(rq, prev); 7349 7350 do { 7351 se = pick_next_entity(cfs_rq, NULL); 7352 set_next_entity(cfs_rq, se); 7353 cfs_rq = group_cfs_rq(se); 7354 } while (cfs_rq); 7355 7356 p = task_of(se); 7357 7358 done: __maybe_unused; 7359 #ifdef CONFIG_SMP 7360 /* 7361 * Move the next running task to the front of 7362 * the list, so our cfs_tasks list becomes MRU 7363 * one. 7364 */ 7365 list_move(&p->se.group_node, &rq->cfs_tasks); 7366 #endif 7367 7368 if (hrtick_enabled_fair(rq)) 7369 hrtick_start_fair(rq, p); 7370 7371 update_misfit_status(p, rq); 7372 7373 return p; 7374 7375 idle: 7376 if (!rf) 7377 return NULL; 7378 7379 new_tasks = newidle_balance(rq, rf); 7380 7381 /* 7382 * Because newidle_balance() releases (and re-acquires) rq->lock, it is 7383 * possible for any higher priority task to appear. In that case we 7384 * must re-start the pick_next_entity() loop. 7385 */ 7386 if (new_tasks < 0) 7387 return RETRY_TASK; 7388 7389 if (new_tasks > 0) 7390 goto again; 7391 7392 /* 7393 * rq is about to be idle, check if we need to update the 7394 * lost_idle_time of clock_pelt 7395 */ 7396 update_idle_rq_clock_pelt(rq); 7397 7398 return NULL; 7399 } 7400 7401 static struct task_struct *__pick_next_task_fair(struct rq *rq) 7402 { 7403 return pick_next_task_fair(rq, NULL, NULL); 7404 } 7405 7406 /* 7407 * Account for a descheduled task: 7408 */ 7409 static void put_prev_task_fair(struct rq *rq, struct task_struct *prev) 7410 { 7411 struct sched_entity *se = &prev->se; 7412 struct cfs_rq *cfs_rq; 7413 7414 for_each_sched_entity(se) { 7415 cfs_rq = cfs_rq_of(se); 7416 put_prev_entity(cfs_rq, se); 7417 } 7418 } 7419 7420 /* 7421 * sched_yield() is very simple 7422 * 7423 * The magic of dealing with the ->skip buddy is in pick_next_entity. 7424 */ 7425 static void yield_task_fair(struct rq *rq) 7426 { 7427 struct task_struct *curr = rq->curr; 7428 struct cfs_rq *cfs_rq = task_cfs_rq(curr); 7429 struct sched_entity *se = &curr->se; 7430 7431 /* 7432 * Are we the only task in the tree? 7433 */ 7434 if (unlikely(rq->nr_running == 1)) 7435 return; 7436 7437 clear_buddies(cfs_rq, se); 7438 7439 if (curr->policy != SCHED_BATCH) { 7440 update_rq_clock(rq); 7441 /* 7442 * Update run-time statistics of the 'current'. 7443 */ 7444 update_curr(cfs_rq); 7445 /* 7446 * Tell update_rq_clock() that we've just updated, 7447 * so we don't do microscopic update in schedule() 7448 * and double the fastpath cost. 7449 */ 7450 rq_clock_skip_update(rq); 7451 } 7452 7453 set_skip_buddy(se); 7454 } 7455 7456 static bool yield_to_task_fair(struct rq *rq, struct task_struct *p) 7457 { 7458 struct sched_entity *se = &p->se; 7459 7460 /* throttled hierarchies are not runnable */ 7461 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se))) 7462 return false; 7463 7464 /* Tell the scheduler that we'd really like pse to run next. */ 7465 set_next_buddy(se); 7466 7467 yield_task_fair(rq); 7468 7469 return true; 7470 } 7471 7472 #ifdef CONFIG_SMP 7473 /************************************************** 7474 * Fair scheduling class load-balancing methods. 7475 * 7476 * BASICS 7477 * 7478 * The purpose of load-balancing is to achieve the same basic fairness the 7479 * per-CPU scheduler provides, namely provide a proportional amount of compute 7480 * time to each task. This is expressed in the following equation: 7481 * 7482 * W_i,n/P_i == W_j,n/P_j for all i,j (1) 7483 * 7484 * Where W_i,n is the n-th weight average for CPU i. The instantaneous weight 7485 * W_i,0 is defined as: 7486 * 7487 * W_i,0 = \Sum_j w_i,j (2) 7488 * 7489 * Where w_i,j is the weight of the j-th runnable task on CPU i. This weight 7490 * is derived from the nice value as per sched_prio_to_weight[]. 7491 * 7492 * The weight average is an exponential decay average of the instantaneous 7493 * weight: 7494 * 7495 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3) 7496 * 7497 * C_i is the compute capacity of CPU i, typically it is the 7498 * fraction of 'recent' time available for SCHED_OTHER task execution. But it 7499 * can also include other factors [XXX]. 7500 * 7501 * To achieve this balance we define a measure of imbalance which follows 7502 * directly from (1): 7503 * 7504 * imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j } (4) 7505 * 7506 * We them move tasks around to minimize the imbalance. In the continuous 7507 * function space it is obvious this converges, in the discrete case we get 7508 * a few fun cases generally called infeasible weight scenarios. 7509 * 7510 * [XXX expand on: 7511 * - infeasible weights; 7512 * - local vs global optima in the discrete case. ] 7513 * 7514 * 7515 * SCHED DOMAINS 7516 * 7517 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2) 7518 * for all i,j solution, we create a tree of CPUs that follows the hardware 7519 * topology where each level pairs two lower groups (or better). This results 7520 * in O(log n) layers. Furthermore we reduce the number of CPUs going up the 7521 * tree to only the first of the previous level and we decrease the frequency 7522 * of load-balance at each level inv. proportional to the number of CPUs in 7523 * the groups. 7524 * 7525 * This yields: 7526 * 7527 * log_2 n 1 n 7528 * \Sum { --- * --- * 2^i } = O(n) (5) 7529 * i = 0 2^i 2^i 7530 * `- size of each group 7531 * | | `- number of CPUs doing load-balance 7532 * | `- freq 7533 * `- sum over all levels 7534 * 7535 * Coupled with a limit on how many tasks we can migrate every balance pass, 7536 * this makes (5) the runtime complexity of the balancer. 7537 * 7538 * An important property here is that each CPU is still (indirectly) connected 7539 * to every other CPU in at most O(log n) steps: 7540 * 7541 * The adjacency matrix of the resulting graph is given by: 7542 * 7543 * log_2 n 7544 * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6) 7545 * k = 0 7546 * 7547 * And you'll find that: 7548 * 7549 * A^(log_2 n)_i,j != 0 for all i,j (7) 7550 * 7551 * Showing there's indeed a path between every CPU in at most O(log n) steps. 7552 * The task movement gives a factor of O(m), giving a convergence complexity 7553 * of: 7554 * 7555 * O(nm log n), n := nr_cpus, m := nr_tasks (8) 7556 * 7557 * 7558 * WORK CONSERVING 7559 * 7560 * In order to avoid CPUs going idle while there's still work to do, new idle 7561 * balancing is more aggressive and has the newly idle CPU iterate up the domain 7562 * tree itself instead of relying on other CPUs to bring it work. 7563 * 7564 * This adds some complexity to both (5) and (8) but it reduces the total idle 7565 * time. 7566 * 7567 * [XXX more?] 7568 * 7569 * 7570 * CGROUPS 7571 * 7572 * Cgroups make a horror show out of (2), instead of a simple sum we get: 7573 * 7574 * s_k,i 7575 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9) 7576 * S_k 7577 * 7578 * Where 7579 * 7580 * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10) 7581 * 7582 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on CPU i. 7583 * 7584 * The big problem is S_k, its a global sum needed to compute a local (W_i) 7585 * property. 7586 * 7587 * [XXX write more on how we solve this.. _after_ merging pjt's patches that 7588 * rewrite all of this once again.] 7589 */ 7590 7591 static unsigned long __read_mostly max_load_balance_interval = HZ/10; 7592 7593 enum fbq_type { regular, remote, all }; 7594 7595 /* 7596 * 'group_type' describes the group of CPUs at the moment of load balancing. 7597 * 7598 * The enum is ordered by pulling priority, with the group with lowest priority 7599 * first so the group_type can simply be compared when selecting the busiest 7600 * group. See update_sd_pick_busiest(). 7601 */ 7602 enum group_type { 7603 /* The group has spare capacity that can be used to run more tasks. */ 7604 group_has_spare = 0, 7605 /* 7606 * The group is fully used and the tasks don't compete for more CPU 7607 * cycles. Nevertheless, some tasks might wait before running. 7608 */ 7609 group_fully_busy, 7610 /* 7611 * SD_ASYM_CPUCAPACITY only: One task doesn't fit with CPU's capacity 7612 * and must be migrated to a more powerful CPU. 7613 */ 7614 group_misfit_task, 7615 /* 7616 * SD_ASYM_PACKING only: One local CPU with higher capacity is available, 7617 * and the task should be migrated to it instead of running on the 7618 * current CPU. 7619 */ 7620 group_asym_packing, 7621 /* 7622 * The tasks' affinity constraints previously prevented the scheduler 7623 * from balancing the load across the system. 7624 */ 7625 group_imbalanced, 7626 /* 7627 * The CPU is overloaded and can't provide expected CPU cycles to all 7628 * tasks. 7629 */ 7630 group_overloaded 7631 }; 7632 7633 enum migration_type { 7634 migrate_load = 0, 7635 migrate_util, 7636 migrate_task, 7637 migrate_misfit 7638 }; 7639 7640 #define LBF_ALL_PINNED 0x01 7641 #define LBF_NEED_BREAK 0x02 7642 #define LBF_DST_PINNED 0x04 7643 #define LBF_SOME_PINNED 0x08 7644 #define LBF_ACTIVE_LB 0x10 7645 7646 struct lb_env { 7647 struct sched_domain *sd; 7648 7649 struct rq *src_rq; 7650 int src_cpu; 7651 7652 int dst_cpu; 7653 struct rq *dst_rq; 7654 7655 struct cpumask *dst_grpmask; 7656 int new_dst_cpu; 7657 enum cpu_idle_type idle; 7658 long imbalance; 7659 /* The set of CPUs under consideration for load-balancing */ 7660 struct cpumask *cpus; 7661 7662 unsigned int flags; 7663 7664 unsigned int loop; 7665 unsigned int loop_break; 7666 unsigned int loop_max; 7667 7668 enum fbq_type fbq_type; 7669 enum migration_type migration_type; 7670 struct list_head tasks; 7671 }; 7672 7673 /* 7674 * Is this task likely cache-hot: 7675 */ 7676 static int task_hot(struct task_struct *p, struct lb_env *env) 7677 { 7678 s64 delta; 7679 7680 lockdep_assert_rq_held(env->src_rq); 7681 7682 if (p->sched_class != &fair_sched_class) 7683 return 0; 7684 7685 if (unlikely(task_has_idle_policy(p))) 7686 return 0; 7687 7688 /* SMT siblings share cache */ 7689 if (env->sd->flags & SD_SHARE_CPUCAPACITY) 7690 return 0; 7691 7692 /* 7693 * Buddy candidates are cache hot: 7694 */ 7695 if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running && 7696 (&p->se == cfs_rq_of(&p->se)->next || 7697 &p->se == cfs_rq_of(&p->se)->last)) 7698 return 1; 7699 7700 if (sysctl_sched_migration_cost == -1) 7701 return 1; 7702 7703 /* 7704 * Don't migrate task if the task's cookie does not match 7705 * with the destination CPU's core cookie. 7706 */ 7707 if (!sched_core_cookie_match(cpu_rq(env->dst_cpu), p)) 7708 return 1; 7709 7710 if (sysctl_sched_migration_cost == 0) 7711 return 0; 7712 7713 delta = rq_clock_task(env->src_rq) - p->se.exec_start; 7714 7715 return delta < (s64)sysctl_sched_migration_cost; 7716 } 7717 7718 #ifdef CONFIG_NUMA_BALANCING 7719 /* 7720 * Returns 1, if task migration degrades locality 7721 * Returns 0, if task migration improves locality i.e migration preferred. 7722 * Returns -1, if task migration is not affected by locality. 7723 */ 7724 static int migrate_degrades_locality(struct task_struct *p, struct lb_env *env) 7725 { 7726 struct numa_group *numa_group = rcu_dereference(p->numa_group); 7727 unsigned long src_weight, dst_weight; 7728 int src_nid, dst_nid, dist; 7729 7730 if (!static_branch_likely(&sched_numa_balancing)) 7731 return -1; 7732 7733 if (!p->numa_faults || !(env->sd->flags & SD_NUMA)) 7734 return -1; 7735 7736 src_nid = cpu_to_node(env->src_cpu); 7737 dst_nid = cpu_to_node(env->dst_cpu); 7738 7739 if (src_nid == dst_nid) 7740 return -1; 7741 7742 /* Migrating away from the preferred node is always bad. */ 7743 if (src_nid == p->numa_preferred_nid) { 7744 if (env->src_rq->nr_running > env->src_rq->nr_preferred_running) 7745 return 1; 7746 else 7747 return -1; 7748 } 7749 7750 /* Encourage migration to the preferred node. */ 7751 if (dst_nid == p->numa_preferred_nid) 7752 return 0; 7753 7754 /* Leaving a core idle is often worse than degrading locality. */ 7755 if (env->idle == CPU_IDLE) 7756 return -1; 7757 7758 dist = node_distance(src_nid, dst_nid); 7759 if (numa_group) { 7760 src_weight = group_weight(p, src_nid, dist); 7761 dst_weight = group_weight(p, dst_nid, dist); 7762 } else { 7763 src_weight = task_weight(p, src_nid, dist); 7764 dst_weight = task_weight(p, dst_nid, dist); 7765 } 7766 7767 return dst_weight < src_weight; 7768 } 7769 7770 #else 7771 static inline int migrate_degrades_locality(struct task_struct *p, 7772 struct lb_env *env) 7773 { 7774 return -1; 7775 } 7776 #endif 7777 7778 /* 7779 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu? 7780 */ 7781 static 7782 int can_migrate_task(struct task_struct *p, struct lb_env *env) 7783 { 7784 int tsk_cache_hot; 7785 7786 lockdep_assert_rq_held(env->src_rq); 7787 7788 /* 7789 * We do not migrate tasks that are: 7790 * 1) throttled_lb_pair, or 7791 * 2) cannot be migrated to this CPU due to cpus_ptr, or 7792 * 3) running (obviously), or 7793 * 4) are cache-hot on their current CPU. 7794 */ 7795 if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu)) 7796 return 0; 7797 7798 /* Disregard pcpu kthreads; they are where they need to be. */ 7799 if (kthread_is_per_cpu(p)) 7800 return 0; 7801 7802 if (!cpumask_test_cpu(env->dst_cpu, p->cpus_ptr)) { 7803 int cpu; 7804 7805 schedstat_inc(p->se.statistics.nr_failed_migrations_affine); 7806 7807 env->flags |= LBF_SOME_PINNED; 7808 7809 /* 7810 * Remember if this task can be migrated to any other CPU in 7811 * our sched_group. We may want to revisit it if we couldn't 7812 * meet load balance goals by pulling other tasks on src_cpu. 7813 * 7814 * Avoid computing new_dst_cpu 7815 * - for NEWLY_IDLE 7816 * - if we have already computed one in current iteration 7817 * - if it's an active balance 7818 */ 7819 if (env->idle == CPU_NEWLY_IDLE || 7820 env->flags & (LBF_DST_PINNED | LBF_ACTIVE_LB)) 7821 return 0; 7822 7823 /* Prevent to re-select dst_cpu via env's CPUs: */ 7824 for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) { 7825 if (cpumask_test_cpu(cpu, p->cpus_ptr)) { 7826 env->flags |= LBF_DST_PINNED; 7827 env->new_dst_cpu = cpu; 7828 break; 7829 } 7830 } 7831 7832 return 0; 7833 } 7834 7835 /* Record that we found at least one task that could run on dst_cpu */ 7836 env->flags &= ~LBF_ALL_PINNED; 7837 7838 if (task_running(env->src_rq, p)) { 7839 schedstat_inc(p->se.statistics.nr_failed_migrations_running); 7840 return 0; 7841 } 7842 7843 /* 7844 * Aggressive migration if: 7845 * 1) active balance 7846 * 2) destination numa is preferred 7847 * 3) task is cache cold, or 7848 * 4) too many balance attempts have failed. 7849 */ 7850 if (env->flags & LBF_ACTIVE_LB) 7851 return 1; 7852 7853 tsk_cache_hot = migrate_degrades_locality(p, env); 7854 if (tsk_cache_hot == -1) 7855 tsk_cache_hot = task_hot(p, env); 7856 7857 if (tsk_cache_hot <= 0 || 7858 env->sd->nr_balance_failed > env->sd->cache_nice_tries) { 7859 if (tsk_cache_hot == 1) { 7860 schedstat_inc(env->sd->lb_hot_gained[env->idle]); 7861 schedstat_inc(p->se.statistics.nr_forced_migrations); 7862 } 7863 return 1; 7864 } 7865 7866 schedstat_inc(p->se.statistics.nr_failed_migrations_hot); 7867 return 0; 7868 } 7869 7870 /* 7871 * detach_task() -- detach the task for the migration specified in env 7872 */ 7873 static void detach_task(struct task_struct *p, struct lb_env *env) 7874 { 7875 lockdep_assert_rq_held(env->src_rq); 7876 7877 deactivate_task(env->src_rq, p, DEQUEUE_NOCLOCK); 7878 set_task_cpu(p, env->dst_cpu); 7879 } 7880 7881 /* 7882 * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as 7883 * part of active balancing operations within "domain". 7884 * 7885 * Returns a task if successful and NULL otherwise. 7886 */ 7887 static struct task_struct *detach_one_task(struct lb_env *env) 7888 { 7889 struct task_struct *p; 7890 7891 lockdep_assert_rq_held(env->src_rq); 7892 7893 list_for_each_entry_reverse(p, 7894 &env->src_rq->cfs_tasks, se.group_node) { 7895 if (!can_migrate_task(p, env)) 7896 continue; 7897 7898 detach_task(p, env); 7899 7900 /* 7901 * Right now, this is only the second place where 7902 * lb_gained[env->idle] is updated (other is detach_tasks) 7903 * so we can safely collect stats here rather than 7904 * inside detach_tasks(). 7905 */ 7906 schedstat_inc(env->sd->lb_gained[env->idle]); 7907 return p; 7908 } 7909 return NULL; 7910 } 7911 7912 static const unsigned int sched_nr_migrate_break = 32; 7913 7914 /* 7915 * detach_tasks() -- tries to detach up to imbalance load/util/tasks from 7916 * busiest_rq, as part of a balancing operation within domain "sd". 7917 * 7918 * Returns number of detached tasks if successful and 0 otherwise. 7919 */ 7920 static int detach_tasks(struct lb_env *env) 7921 { 7922 struct list_head *tasks = &env->src_rq->cfs_tasks; 7923 unsigned long util, load; 7924 struct task_struct *p; 7925 int detached = 0; 7926 7927 lockdep_assert_rq_held(env->src_rq); 7928 7929 /* 7930 * Source run queue has been emptied by another CPU, clear 7931 * LBF_ALL_PINNED flag as we will not test any task. 7932 */ 7933 if (env->src_rq->nr_running <= 1) { 7934 env->flags &= ~LBF_ALL_PINNED; 7935 return 0; 7936 } 7937 7938 if (env->imbalance <= 0) 7939 return 0; 7940 7941 while (!list_empty(tasks)) { 7942 /* 7943 * We don't want to steal all, otherwise we may be treated likewise, 7944 * which could at worst lead to a livelock crash. 7945 */ 7946 if (env->idle != CPU_NOT_IDLE && env->src_rq->nr_running <= 1) 7947 break; 7948 7949 p = list_last_entry(tasks, struct task_struct, se.group_node); 7950 7951 env->loop++; 7952 /* We've more or less seen every task there is, call it quits */ 7953 if (env->loop > env->loop_max) 7954 break; 7955 7956 /* take a breather every nr_migrate tasks */ 7957 if (env->loop > env->loop_break) { 7958 env->loop_break += sched_nr_migrate_break; 7959 env->flags |= LBF_NEED_BREAK; 7960 break; 7961 } 7962 7963 if (!can_migrate_task(p, env)) 7964 goto next; 7965 7966 switch (env->migration_type) { 7967 case migrate_load: 7968 /* 7969 * Depending of the number of CPUs and tasks and the 7970 * cgroup hierarchy, task_h_load() can return a null 7971 * value. Make sure that env->imbalance decreases 7972 * otherwise detach_tasks() will stop only after 7973 * detaching up to loop_max tasks. 7974 */ 7975 load = max_t(unsigned long, task_h_load(p), 1); 7976 7977 if (sched_feat(LB_MIN) && 7978 load < 16 && !env->sd->nr_balance_failed) 7979 goto next; 7980 7981 /* 7982 * Make sure that we don't migrate too much load. 7983 * Nevertheless, let relax the constraint if 7984 * scheduler fails to find a good waiting task to 7985 * migrate. 7986 */ 7987 if (shr_bound(load, env->sd->nr_balance_failed) > env->imbalance) 7988 goto next; 7989 7990 env->imbalance -= load; 7991 break; 7992 7993 case migrate_util: 7994 util = task_util_est(p); 7995 7996 if (util > env->imbalance) 7997 goto next; 7998 7999 env->imbalance -= util; 8000 break; 8001 8002 case migrate_task: 8003 env->imbalance--; 8004 break; 8005 8006 case migrate_misfit: 8007 /* This is not a misfit task */ 8008 if (task_fits_capacity(p, capacity_of(env->src_cpu))) 8009 goto next; 8010 8011 env->imbalance = 0; 8012 break; 8013 } 8014 8015 detach_task(p, env); 8016 list_add(&p->se.group_node, &env->tasks); 8017 8018 detached++; 8019 8020 #ifdef CONFIG_PREEMPTION 8021 /* 8022 * NEWIDLE balancing is a source of latency, so preemptible 8023 * kernels will stop after the first task is detached to minimize 8024 * the critical section. 8025 */ 8026 if (env->idle == CPU_NEWLY_IDLE) 8027 break; 8028 #endif 8029 8030 /* 8031 * We only want to steal up to the prescribed amount of 8032 * load/util/tasks. 8033 */ 8034 if (env->imbalance <= 0) 8035 break; 8036 8037 continue; 8038 next: 8039 list_move(&p->se.group_node, tasks); 8040 } 8041 8042 /* 8043 * Right now, this is one of only two places we collect this stat 8044 * so we can safely collect detach_one_task() stats here rather 8045 * than inside detach_one_task(). 8046 */ 8047 schedstat_add(env->sd->lb_gained[env->idle], detached); 8048 8049 return detached; 8050 } 8051 8052 /* 8053 * attach_task() -- attach the task detached by detach_task() to its new rq. 8054 */ 8055 static void attach_task(struct rq *rq, struct task_struct *p) 8056 { 8057 lockdep_assert_rq_held(rq); 8058 8059 BUG_ON(task_rq(p) != rq); 8060 activate_task(rq, p, ENQUEUE_NOCLOCK); 8061 check_preempt_curr(rq, p, 0); 8062 } 8063 8064 /* 8065 * attach_one_task() -- attaches the task returned from detach_one_task() to 8066 * its new rq. 8067 */ 8068 static void attach_one_task(struct rq *rq, struct task_struct *p) 8069 { 8070 struct rq_flags rf; 8071 8072 rq_lock(rq, &rf); 8073 update_rq_clock(rq); 8074 attach_task(rq, p); 8075 rq_unlock(rq, &rf); 8076 } 8077 8078 /* 8079 * attach_tasks() -- attaches all tasks detached by detach_tasks() to their 8080 * new rq. 8081 */ 8082 static void attach_tasks(struct lb_env *env) 8083 { 8084 struct list_head *tasks = &env->tasks; 8085 struct task_struct *p; 8086 struct rq_flags rf; 8087 8088 rq_lock(env->dst_rq, &rf); 8089 update_rq_clock(env->dst_rq); 8090 8091 while (!list_empty(tasks)) { 8092 p = list_first_entry(tasks, struct task_struct, se.group_node); 8093 list_del_init(&p->se.group_node); 8094 8095 attach_task(env->dst_rq, p); 8096 } 8097 8098 rq_unlock(env->dst_rq, &rf); 8099 } 8100 8101 #ifdef CONFIG_NO_HZ_COMMON 8102 static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq) 8103 { 8104 if (cfs_rq->avg.load_avg) 8105 return true; 8106 8107 if (cfs_rq->avg.util_avg) 8108 return true; 8109 8110 return false; 8111 } 8112 8113 static inline bool others_have_blocked(struct rq *rq) 8114 { 8115 if (READ_ONCE(rq->avg_rt.util_avg)) 8116 return true; 8117 8118 if (READ_ONCE(rq->avg_dl.util_avg)) 8119 return true; 8120 8121 if (thermal_load_avg(rq)) 8122 return true; 8123 8124 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ 8125 if (READ_ONCE(rq->avg_irq.util_avg)) 8126 return true; 8127 #endif 8128 8129 return false; 8130 } 8131 8132 static inline void update_blocked_load_tick(struct rq *rq) 8133 { 8134 WRITE_ONCE(rq->last_blocked_load_update_tick, jiffies); 8135 } 8136 8137 static inline void update_blocked_load_status(struct rq *rq, bool has_blocked) 8138 { 8139 if (!has_blocked) 8140 rq->has_blocked_load = 0; 8141 } 8142 #else 8143 static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq) { return false; } 8144 static inline bool others_have_blocked(struct rq *rq) { return false; } 8145 static inline void update_blocked_load_tick(struct rq *rq) {} 8146 static inline void update_blocked_load_status(struct rq *rq, bool has_blocked) {} 8147 #endif 8148 8149 static bool __update_blocked_others(struct rq *rq, bool *done) 8150 { 8151 const struct sched_class *curr_class; 8152 u64 now = rq_clock_pelt(rq); 8153 unsigned long thermal_pressure; 8154 bool decayed; 8155 8156 /* 8157 * update_load_avg() can call cpufreq_update_util(). Make sure that RT, 8158 * DL and IRQ signals have been updated before updating CFS. 8159 */ 8160 curr_class = rq->curr->sched_class; 8161 8162 thermal_pressure = arch_scale_thermal_pressure(cpu_of(rq)); 8163 8164 decayed = update_rt_rq_load_avg(now, rq, curr_class == &rt_sched_class) | 8165 update_dl_rq_load_avg(now, rq, curr_class == &dl_sched_class) | 8166 update_thermal_load_avg(rq_clock_thermal(rq), rq, thermal_pressure) | 8167 update_irq_load_avg(rq, 0); 8168 8169 if (others_have_blocked(rq)) 8170 *done = false; 8171 8172 return decayed; 8173 } 8174 8175 #ifdef CONFIG_FAIR_GROUP_SCHED 8176 8177 static bool __update_blocked_fair(struct rq *rq, bool *done) 8178 { 8179 struct cfs_rq *cfs_rq, *pos; 8180 bool decayed = false; 8181 int cpu = cpu_of(rq); 8182 8183 /* 8184 * Iterates the task_group tree in a bottom up fashion, see 8185 * list_add_leaf_cfs_rq() for details. 8186 */ 8187 for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) { 8188 struct sched_entity *se; 8189 8190 if (update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq)) { 8191 update_tg_load_avg(cfs_rq); 8192 8193 if (cfs_rq == &rq->cfs) 8194 decayed = true; 8195 } 8196 8197 /* Propagate pending load changes to the parent, if any: */ 8198 se = cfs_rq->tg->se[cpu]; 8199 if (se && !skip_blocked_update(se)) 8200 update_load_avg(cfs_rq_of(se), se, UPDATE_TG); 8201 8202 /* 8203 * There can be a lot of idle CPU cgroups. Don't let fully 8204 * decayed cfs_rqs linger on the list. 8205 */ 8206 if (cfs_rq_is_decayed(cfs_rq)) 8207 list_del_leaf_cfs_rq(cfs_rq); 8208 8209 /* Don't need periodic decay once load/util_avg are null */ 8210 if (cfs_rq_has_blocked(cfs_rq)) 8211 *done = false; 8212 } 8213 8214 return decayed; 8215 } 8216 8217 /* 8218 * Compute the hierarchical load factor for cfs_rq and all its ascendants. 8219 * This needs to be done in a top-down fashion because the load of a child 8220 * group is a fraction of its parents load. 8221 */ 8222 static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq) 8223 { 8224 struct rq *rq = rq_of(cfs_rq); 8225 struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)]; 8226 unsigned long now = jiffies; 8227 unsigned long load; 8228 8229 if (cfs_rq->last_h_load_update == now) 8230 return; 8231 8232 WRITE_ONCE(cfs_rq->h_load_next, NULL); 8233 for_each_sched_entity(se) { 8234 cfs_rq = cfs_rq_of(se); 8235 WRITE_ONCE(cfs_rq->h_load_next, se); 8236 if (cfs_rq->last_h_load_update == now) 8237 break; 8238 } 8239 8240 if (!se) { 8241 cfs_rq->h_load = cfs_rq_load_avg(cfs_rq); 8242 cfs_rq->last_h_load_update = now; 8243 } 8244 8245 while ((se = READ_ONCE(cfs_rq->h_load_next)) != NULL) { 8246 load = cfs_rq->h_load; 8247 load = div64_ul(load * se->avg.load_avg, 8248 cfs_rq_load_avg(cfs_rq) + 1); 8249 cfs_rq = group_cfs_rq(se); 8250 cfs_rq->h_load = load; 8251 cfs_rq->last_h_load_update = now; 8252 } 8253 } 8254 8255 static unsigned long task_h_load(struct task_struct *p) 8256 { 8257 struct cfs_rq *cfs_rq = task_cfs_rq(p); 8258 8259 update_cfs_rq_h_load(cfs_rq); 8260 return div64_ul(p->se.avg.load_avg * cfs_rq->h_load, 8261 cfs_rq_load_avg(cfs_rq) + 1); 8262 } 8263 #else 8264 static bool __update_blocked_fair(struct rq *rq, bool *done) 8265 { 8266 struct cfs_rq *cfs_rq = &rq->cfs; 8267 bool decayed; 8268 8269 decayed = update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq); 8270 if (cfs_rq_has_blocked(cfs_rq)) 8271 *done = false; 8272 8273 return decayed; 8274 } 8275 8276 static unsigned long task_h_load(struct task_struct *p) 8277 { 8278 return p->se.avg.load_avg; 8279 } 8280 #endif 8281 8282 static void update_blocked_averages(int cpu) 8283 { 8284 bool decayed = false, done = true; 8285 struct rq *rq = cpu_rq(cpu); 8286 struct rq_flags rf; 8287 8288 rq_lock_irqsave(rq, &rf); 8289 update_blocked_load_tick(rq); 8290 update_rq_clock(rq); 8291 8292 decayed |= __update_blocked_others(rq, &done); 8293 decayed |= __update_blocked_fair(rq, &done); 8294 8295 update_blocked_load_status(rq, !done); 8296 if (decayed) 8297 cpufreq_update_util(rq, 0); 8298 rq_unlock_irqrestore(rq, &rf); 8299 } 8300 8301 /********** Helpers for find_busiest_group ************************/ 8302 8303 /* 8304 * sg_lb_stats - stats of a sched_group required for load_balancing 8305 */ 8306 struct sg_lb_stats { 8307 unsigned long avg_load; /*Avg load across the CPUs of the group */ 8308 unsigned long group_load; /* Total load over the CPUs of the group */ 8309 unsigned long group_capacity; 8310 unsigned long group_util; /* Total utilization over the CPUs of the group */ 8311 unsigned long group_runnable; /* Total runnable time over the CPUs of the group */ 8312 unsigned int sum_nr_running; /* Nr of tasks running in the group */ 8313 unsigned int sum_h_nr_running; /* Nr of CFS tasks running in the group */ 8314 unsigned int idle_cpus; 8315 unsigned int group_weight; 8316 enum group_type group_type; 8317 unsigned int group_asym_packing; /* Tasks should be moved to preferred CPU */ 8318 unsigned long group_misfit_task_load; /* A CPU has a task too big for its capacity */ 8319 #ifdef CONFIG_NUMA_BALANCING 8320 unsigned int nr_numa_running; 8321 unsigned int nr_preferred_running; 8322 #endif 8323 }; 8324 8325 /* 8326 * sd_lb_stats - Structure to store the statistics of a sched_domain 8327 * during load balancing. 8328 */ 8329 struct sd_lb_stats { 8330 struct sched_group *busiest; /* Busiest group in this sd */ 8331 struct sched_group *local; /* Local group in this sd */ 8332 unsigned long total_load; /* Total load of all groups in sd */ 8333 unsigned long total_capacity; /* Total capacity of all groups in sd */ 8334 unsigned long avg_load; /* Average load across all groups in sd */ 8335 unsigned int prefer_sibling; /* tasks should go to sibling first */ 8336 8337 struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */ 8338 struct sg_lb_stats local_stat; /* Statistics of the local group */ 8339 }; 8340 8341 static inline void init_sd_lb_stats(struct sd_lb_stats *sds) 8342 { 8343 /* 8344 * Skimp on the clearing to avoid duplicate work. We can avoid clearing 8345 * local_stat because update_sg_lb_stats() does a full clear/assignment. 8346 * We must however set busiest_stat::group_type and 8347 * busiest_stat::idle_cpus to the worst busiest group because 8348 * update_sd_pick_busiest() reads these before assignment. 8349 */ 8350 *sds = (struct sd_lb_stats){ 8351 .busiest = NULL, 8352 .local = NULL, 8353 .total_load = 0UL, 8354 .total_capacity = 0UL, 8355 .busiest_stat = { 8356 .idle_cpus = UINT_MAX, 8357 .group_type = group_has_spare, 8358 }, 8359 }; 8360 } 8361 8362 static unsigned long scale_rt_capacity(int cpu) 8363 { 8364 struct rq *rq = cpu_rq(cpu); 8365 unsigned long max = arch_scale_cpu_capacity(cpu); 8366 unsigned long used, free; 8367 unsigned long irq; 8368 8369 irq = cpu_util_irq(rq); 8370 8371 if (unlikely(irq >= max)) 8372 return 1; 8373 8374 /* 8375 * avg_rt.util_avg and avg_dl.util_avg track binary signals 8376 * (running and not running) with weights 0 and 1024 respectively. 8377 * avg_thermal.load_avg tracks thermal pressure and the weighted 8378 * average uses the actual delta max capacity(load). 8379 */ 8380 used = READ_ONCE(rq->avg_rt.util_avg); 8381 used += READ_ONCE(rq->avg_dl.util_avg); 8382 used += thermal_load_avg(rq); 8383 8384 if (unlikely(used >= max)) 8385 return 1; 8386 8387 free = max - used; 8388 8389 return scale_irq_capacity(free, irq, max); 8390 } 8391 8392 static void update_cpu_capacity(struct sched_domain *sd, int cpu) 8393 { 8394 unsigned long capacity = scale_rt_capacity(cpu); 8395 struct sched_group *sdg = sd->groups; 8396 8397 cpu_rq(cpu)->cpu_capacity_orig = arch_scale_cpu_capacity(cpu); 8398 8399 if (!capacity) 8400 capacity = 1; 8401 8402 cpu_rq(cpu)->cpu_capacity = capacity; 8403 trace_sched_cpu_capacity_tp(cpu_rq(cpu)); 8404 8405 sdg->sgc->capacity = capacity; 8406 sdg->sgc->min_capacity = capacity; 8407 sdg->sgc->max_capacity = capacity; 8408 } 8409 8410 void update_group_capacity(struct sched_domain *sd, int cpu) 8411 { 8412 struct sched_domain *child = sd->child; 8413 struct sched_group *group, *sdg = sd->groups; 8414 unsigned long capacity, min_capacity, max_capacity; 8415 unsigned long interval; 8416 8417 interval = msecs_to_jiffies(sd->balance_interval); 8418 interval = clamp(interval, 1UL, max_load_balance_interval); 8419 sdg->sgc->next_update = jiffies + interval; 8420 8421 if (!child) { 8422 update_cpu_capacity(sd, cpu); 8423 return; 8424 } 8425 8426 capacity = 0; 8427 min_capacity = ULONG_MAX; 8428 max_capacity = 0; 8429 8430 if (child->flags & SD_OVERLAP) { 8431 /* 8432 * SD_OVERLAP domains cannot assume that child groups 8433 * span the current group. 8434 */ 8435 8436 for_each_cpu(cpu, sched_group_span(sdg)) { 8437 unsigned long cpu_cap = capacity_of(cpu); 8438 8439 capacity += cpu_cap; 8440 min_capacity = min(cpu_cap, min_capacity); 8441 max_capacity = max(cpu_cap, max_capacity); 8442 } 8443 } else { 8444 /* 8445 * !SD_OVERLAP domains can assume that child groups 8446 * span the current group. 8447 */ 8448 8449 group = child->groups; 8450 do { 8451 struct sched_group_capacity *sgc = group->sgc; 8452 8453 capacity += sgc->capacity; 8454 min_capacity = min(sgc->min_capacity, min_capacity); 8455 max_capacity = max(sgc->max_capacity, max_capacity); 8456 group = group->next; 8457 } while (group != child->groups); 8458 } 8459 8460 sdg->sgc->capacity = capacity; 8461 sdg->sgc->min_capacity = min_capacity; 8462 sdg->sgc->max_capacity = max_capacity; 8463 } 8464 8465 /* 8466 * Check whether the capacity of the rq has been noticeably reduced by side 8467 * activity. The imbalance_pct is used for the threshold. 8468 * Return true is the capacity is reduced 8469 */ 8470 static inline int 8471 check_cpu_capacity(struct rq *rq, struct sched_domain *sd) 8472 { 8473 return ((rq->cpu_capacity * sd->imbalance_pct) < 8474 (rq->cpu_capacity_orig * 100)); 8475 } 8476 8477 /* 8478 * Check whether a rq has a misfit task and if it looks like we can actually 8479 * help that task: we can migrate the task to a CPU of higher capacity, or 8480 * the task's current CPU is heavily pressured. 8481 */ 8482 static inline int check_misfit_status(struct rq *rq, struct sched_domain *sd) 8483 { 8484 return rq->misfit_task_load && 8485 (rq->cpu_capacity_orig < rq->rd->max_cpu_capacity || 8486 check_cpu_capacity(rq, sd)); 8487 } 8488 8489 /* 8490 * Group imbalance indicates (and tries to solve) the problem where balancing 8491 * groups is inadequate due to ->cpus_ptr constraints. 8492 * 8493 * Imagine a situation of two groups of 4 CPUs each and 4 tasks each with a 8494 * cpumask covering 1 CPU of the first group and 3 CPUs of the second group. 8495 * Something like: 8496 * 8497 * { 0 1 2 3 } { 4 5 6 7 } 8498 * * * * * 8499 * 8500 * If we were to balance group-wise we'd place two tasks in the first group and 8501 * two tasks in the second group. Clearly this is undesired as it will overload 8502 * cpu 3 and leave one of the CPUs in the second group unused. 8503 * 8504 * The current solution to this issue is detecting the skew in the first group 8505 * by noticing the lower domain failed to reach balance and had difficulty 8506 * moving tasks due to affinity constraints. 8507 * 8508 * When this is so detected; this group becomes a candidate for busiest; see 8509 * update_sd_pick_busiest(). And calculate_imbalance() and 8510 * find_busiest_group() avoid some of the usual balance conditions to allow it 8511 * to create an effective group imbalance. 8512 * 8513 * This is a somewhat tricky proposition since the next run might not find the 8514 * group imbalance and decide the groups need to be balanced again. A most 8515 * subtle and fragile situation. 8516 */ 8517 8518 static inline int sg_imbalanced(struct sched_group *group) 8519 { 8520 return group->sgc->imbalance; 8521 } 8522 8523 /* 8524 * group_has_capacity returns true if the group has spare capacity that could 8525 * be used by some tasks. 8526 * We consider that a group has spare capacity if the * number of task is 8527 * smaller than the number of CPUs or if the utilization is lower than the 8528 * available capacity for CFS tasks. 8529 * For the latter, we use a threshold to stabilize the state, to take into 8530 * account the variance of the tasks' load and to return true if the available 8531 * capacity in meaningful for the load balancer. 8532 * As an example, an available capacity of 1% can appear but it doesn't make 8533 * any benefit for the load balance. 8534 */ 8535 static inline bool 8536 group_has_capacity(unsigned int imbalance_pct, struct sg_lb_stats *sgs) 8537 { 8538 if (sgs->sum_nr_running < sgs->group_weight) 8539 return true; 8540 8541 if ((sgs->group_capacity * imbalance_pct) < 8542 (sgs->group_runnable * 100)) 8543 return false; 8544 8545 if ((sgs->group_capacity * 100) > 8546 (sgs->group_util * imbalance_pct)) 8547 return true; 8548 8549 return false; 8550 } 8551 8552 /* 8553 * group_is_overloaded returns true if the group has more tasks than it can 8554 * handle. 8555 * group_is_overloaded is not equals to !group_has_capacity because a group 8556 * with the exact right number of tasks, has no more spare capacity but is not 8557 * overloaded so both group_has_capacity and group_is_overloaded return 8558 * false. 8559 */ 8560 static inline bool 8561 group_is_overloaded(unsigned int imbalance_pct, struct sg_lb_stats *sgs) 8562 { 8563 if (sgs->sum_nr_running <= sgs->group_weight) 8564 return false; 8565 8566 if ((sgs->group_capacity * 100) < 8567 (sgs->group_util * imbalance_pct)) 8568 return true; 8569 8570 if ((sgs->group_capacity * imbalance_pct) < 8571 (sgs->group_runnable * 100)) 8572 return true; 8573 8574 return false; 8575 } 8576 8577 static inline enum 8578 group_type group_classify(unsigned int imbalance_pct, 8579 struct sched_group *group, 8580 struct sg_lb_stats *sgs) 8581 { 8582 if (group_is_overloaded(imbalance_pct, sgs)) 8583 return group_overloaded; 8584 8585 if (sg_imbalanced(group)) 8586 return group_imbalanced; 8587 8588 if (sgs->group_asym_packing) 8589 return group_asym_packing; 8590 8591 if (sgs->group_misfit_task_load) 8592 return group_misfit_task; 8593 8594 if (!group_has_capacity(imbalance_pct, sgs)) 8595 return group_fully_busy; 8596 8597 return group_has_spare; 8598 } 8599 8600 /** 8601 * update_sg_lb_stats - Update sched_group's statistics for load balancing. 8602 * @env: The load balancing environment. 8603 * @group: sched_group whose statistics are to be updated. 8604 * @sgs: variable to hold the statistics for this group. 8605 * @sg_status: Holds flag indicating the status of the sched_group 8606 */ 8607 static inline void update_sg_lb_stats(struct lb_env *env, 8608 struct sched_group *group, 8609 struct sg_lb_stats *sgs, 8610 int *sg_status) 8611 { 8612 int i, nr_running, local_group; 8613 8614 memset(sgs, 0, sizeof(*sgs)); 8615 8616 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_span(group)); 8617 8618 for_each_cpu_and(i, sched_group_span(group), env->cpus) { 8619 struct rq *rq = cpu_rq(i); 8620 8621 sgs->group_load += cpu_load(rq); 8622 sgs->group_util += cpu_util(i); 8623 sgs->group_runnable += cpu_runnable(rq); 8624 sgs->sum_h_nr_running += rq->cfs.h_nr_running; 8625 8626 nr_running = rq->nr_running; 8627 sgs->sum_nr_running += nr_running; 8628 8629 if (nr_running > 1) 8630 *sg_status |= SG_OVERLOAD; 8631 8632 if (cpu_overutilized(i)) 8633 *sg_status |= SG_OVERUTILIZED; 8634 8635 #ifdef CONFIG_NUMA_BALANCING 8636 sgs->nr_numa_running += rq->nr_numa_running; 8637 sgs->nr_preferred_running += rq->nr_preferred_running; 8638 #endif 8639 /* 8640 * No need to call idle_cpu() if nr_running is not 0 8641 */ 8642 if (!nr_running && idle_cpu(i)) { 8643 sgs->idle_cpus++; 8644 /* Idle cpu can't have misfit task */ 8645 continue; 8646 } 8647 8648 if (local_group) 8649 continue; 8650 8651 /* Check for a misfit task on the cpu */ 8652 if (env->sd->flags & SD_ASYM_CPUCAPACITY && 8653 sgs->group_misfit_task_load < rq->misfit_task_load) { 8654 sgs->group_misfit_task_load = rq->misfit_task_load; 8655 *sg_status |= SG_OVERLOAD; 8656 } 8657 } 8658 8659 /* Check if dst CPU is idle and preferred to this group */ 8660 if (env->sd->flags & SD_ASYM_PACKING && 8661 env->idle != CPU_NOT_IDLE && 8662 sgs->sum_h_nr_running && 8663 sched_asym_prefer(env->dst_cpu, group->asym_prefer_cpu)) { 8664 sgs->group_asym_packing = 1; 8665 } 8666 8667 sgs->group_capacity = group->sgc->capacity; 8668 8669 sgs->group_weight = group->group_weight; 8670 8671 sgs->group_type = group_classify(env->sd->imbalance_pct, group, sgs); 8672 8673 /* Computing avg_load makes sense only when group is overloaded */ 8674 if (sgs->group_type == group_overloaded) 8675 sgs->avg_load = (sgs->group_load * SCHED_CAPACITY_SCALE) / 8676 sgs->group_capacity; 8677 } 8678 8679 /** 8680 * update_sd_pick_busiest - return 1 on busiest group 8681 * @env: The load balancing environment. 8682 * @sds: sched_domain statistics 8683 * @sg: sched_group candidate to be checked for being the busiest 8684 * @sgs: sched_group statistics 8685 * 8686 * Determine if @sg is a busier group than the previously selected 8687 * busiest group. 8688 * 8689 * Return: %true if @sg is a busier group than the previously selected 8690 * busiest group. %false otherwise. 8691 */ 8692 static bool update_sd_pick_busiest(struct lb_env *env, 8693 struct sd_lb_stats *sds, 8694 struct sched_group *sg, 8695 struct sg_lb_stats *sgs) 8696 { 8697 struct sg_lb_stats *busiest = &sds->busiest_stat; 8698 8699 /* Make sure that there is at least one task to pull */ 8700 if (!sgs->sum_h_nr_running) 8701 return false; 8702 8703 /* 8704 * Don't try to pull misfit tasks we can't help. 8705 * We can use max_capacity here as reduction in capacity on some 8706 * CPUs in the group should either be possible to resolve 8707 * internally or be covered by avg_load imbalance (eventually). 8708 */ 8709 if (sgs->group_type == group_misfit_task && 8710 (!capacity_greater(capacity_of(env->dst_cpu), sg->sgc->max_capacity) || 8711 sds->local_stat.group_type != group_has_spare)) 8712 return false; 8713 8714 if (sgs->group_type > busiest->group_type) 8715 return true; 8716 8717 if (sgs->group_type < busiest->group_type) 8718 return false; 8719 8720 /* 8721 * The candidate and the current busiest group are the same type of 8722 * group. Let check which one is the busiest according to the type. 8723 */ 8724 8725 switch (sgs->group_type) { 8726 case group_overloaded: 8727 /* Select the overloaded group with highest avg_load. */ 8728 if (sgs->avg_load <= busiest->avg_load) 8729 return false; 8730 break; 8731 8732 case group_imbalanced: 8733 /* 8734 * Select the 1st imbalanced group as we don't have any way to 8735 * choose one more than another. 8736 */ 8737 return false; 8738 8739 case group_asym_packing: 8740 /* Prefer to move from lowest priority CPU's work */ 8741 if (sched_asym_prefer(sg->asym_prefer_cpu, sds->busiest->asym_prefer_cpu)) 8742 return false; 8743 break; 8744 8745 case group_misfit_task: 8746 /* 8747 * If we have more than one misfit sg go with the biggest 8748 * misfit. 8749 */ 8750 if (sgs->group_misfit_task_load < busiest->group_misfit_task_load) 8751 return false; 8752 break; 8753 8754 case group_fully_busy: 8755 /* 8756 * Select the fully busy group with highest avg_load. In 8757 * theory, there is no need to pull task from such kind of 8758 * group because tasks have all compute capacity that they need 8759 * but we can still improve the overall throughput by reducing 8760 * contention when accessing shared HW resources. 8761 * 8762 * XXX for now avg_load is not computed and always 0 so we 8763 * select the 1st one. 8764 */ 8765 if (sgs->avg_load <= busiest->avg_load) 8766 return false; 8767 break; 8768 8769 case group_has_spare: 8770 /* 8771 * Select not overloaded group with lowest number of idle cpus 8772 * and highest number of running tasks. We could also compare 8773 * the spare capacity which is more stable but it can end up 8774 * that the group has less spare capacity but finally more idle 8775 * CPUs which means less opportunity to pull tasks. 8776 */ 8777 if (sgs->idle_cpus > busiest->idle_cpus) 8778 return false; 8779 else if ((sgs->idle_cpus == busiest->idle_cpus) && 8780 (sgs->sum_nr_running <= busiest->sum_nr_running)) 8781 return false; 8782 8783 break; 8784 } 8785 8786 /* 8787 * Candidate sg has no more than one task per CPU and has higher 8788 * per-CPU capacity. Migrating tasks to less capable CPUs may harm 8789 * throughput. Maximize throughput, power/energy consequences are not 8790 * considered. 8791 */ 8792 if ((env->sd->flags & SD_ASYM_CPUCAPACITY) && 8793 (sgs->group_type <= group_fully_busy) && 8794 (capacity_greater(sg->sgc->min_capacity, capacity_of(env->dst_cpu)))) 8795 return false; 8796 8797 return true; 8798 } 8799 8800 #ifdef CONFIG_NUMA_BALANCING 8801 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs) 8802 { 8803 if (sgs->sum_h_nr_running > sgs->nr_numa_running) 8804 return regular; 8805 if (sgs->sum_h_nr_running > sgs->nr_preferred_running) 8806 return remote; 8807 return all; 8808 } 8809 8810 static inline enum fbq_type fbq_classify_rq(struct rq *rq) 8811 { 8812 if (rq->nr_running > rq->nr_numa_running) 8813 return regular; 8814 if (rq->nr_running > rq->nr_preferred_running) 8815 return remote; 8816 return all; 8817 } 8818 #else 8819 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs) 8820 { 8821 return all; 8822 } 8823 8824 static inline enum fbq_type fbq_classify_rq(struct rq *rq) 8825 { 8826 return regular; 8827 } 8828 #endif /* CONFIG_NUMA_BALANCING */ 8829 8830 8831 struct sg_lb_stats; 8832 8833 /* 8834 * task_running_on_cpu - return 1 if @p is running on @cpu. 8835 */ 8836 8837 static unsigned int task_running_on_cpu(int cpu, struct task_struct *p) 8838 { 8839 /* Task has no contribution or is new */ 8840 if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time)) 8841 return 0; 8842 8843 if (task_on_rq_queued(p)) 8844 return 1; 8845 8846 return 0; 8847 } 8848 8849 /** 8850 * idle_cpu_without - would a given CPU be idle without p ? 8851 * @cpu: the processor on which idleness is tested. 8852 * @p: task which should be ignored. 8853 * 8854 * Return: 1 if the CPU would be idle. 0 otherwise. 8855 */ 8856 static int idle_cpu_without(int cpu, struct task_struct *p) 8857 { 8858 struct rq *rq = cpu_rq(cpu); 8859 8860 if (rq->curr != rq->idle && rq->curr != p) 8861 return 0; 8862 8863 /* 8864 * rq->nr_running can't be used but an updated version without the 8865 * impact of p on cpu must be used instead. The updated nr_running 8866 * be computed and tested before calling idle_cpu_without(). 8867 */ 8868 8869 #ifdef CONFIG_SMP 8870 if (rq->ttwu_pending) 8871 return 0; 8872 #endif 8873 8874 return 1; 8875 } 8876 8877 /* 8878 * update_sg_wakeup_stats - Update sched_group's statistics for wakeup. 8879 * @sd: The sched_domain level to look for idlest group. 8880 * @group: sched_group whose statistics are to be updated. 8881 * @sgs: variable to hold the statistics for this group. 8882 * @p: The task for which we look for the idlest group/CPU. 8883 */ 8884 static inline void update_sg_wakeup_stats(struct sched_domain *sd, 8885 struct sched_group *group, 8886 struct sg_lb_stats *sgs, 8887 struct task_struct *p) 8888 { 8889 int i, nr_running; 8890 8891 memset(sgs, 0, sizeof(*sgs)); 8892 8893 for_each_cpu(i, sched_group_span(group)) { 8894 struct rq *rq = cpu_rq(i); 8895 unsigned int local; 8896 8897 sgs->group_load += cpu_load_without(rq, p); 8898 sgs->group_util += cpu_util_without(i, p); 8899 sgs->group_runnable += cpu_runnable_without(rq, p); 8900 local = task_running_on_cpu(i, p); 8901 sgs->sum_h_nr_running += rq->cfs.h_nr_running - local; 8902 8903 nr_running = rq->nr_running - local; 8904 sgs->sum_nr_running += nr_running; 8905 8906 /* 8907 * No need to call idle_cpu_without() if nr_running is not 0 8908 */ 8909 if (!nr_running && idle_cpu_without(i, p)) 8910 sgs->idle_cpus++; 8911 8912 } 8913 8914 /* Check if task fits in the group */ 8915 if (sd->flags & SD_ASYM_CPUCAPACITY && 8916 !task_fits_capacity(p, group->sgc->max_capacity)) { 8917 sgs->group_misfit_task_load = 1; 8918 } 8919 8920 sgs->group_capacity = group->sgc->capacity; 8921 8922 sgs->group_weight = group->group_weight; 8923 8924 sgs->group_type = group_classify(sd->imbalance_pct, group, sgs); 8925 8926 /* 8927 * Computing avg_load makes sense only when group is fully busy or 8928 * overloaded 8929 */ 8930 if (sgs->group_type == group_fully_busy || 8931 sgs->group_type == group_overloaded) 8932 sgs->avg_load = (sgs->group_load * SCHED_CAPACITY_SCALE) / 8933 sgs->group_capacity; 8934 } 8935 8936 static bool update_pick_idlest(struct sched_group *idlest, 8937 struct sg_lb_stats *idlest_sgs, 8938 struct sched_group *group, 8939 struct sg_lb_stats *sgs) 8940 { 8941 if (sgs->group_type < idlest_sgs->group_type) 8942 return true; 8943 8944 if (sgs->group_type > idlest_sgs->group_type) 8945 return false; 8946 8947 /* 8948 * The candidate and the current idlest group are the same type of 8949 * group. Let check which one is the idlest according to the type. 8950 */ 8951 8952 switch (sgs->group_type) { 8953 case group_overloaded: 8954 case group_fully_busy: 8955 /* Select the group with lowest avg_load. */ 8956 if (idlest_sgs->avg_load <= sgs->avg_load) 8957 return false; 8958 break; 8959 8960 case group_imbalanced: 8961 case group_asym_packing: 8962 /* Those types are not used in the slow wakeup path */ 8963 return false; 8964 8965 case group_misfit_task: 8966 /* Select group with the highest max capacity */ 8967 if (idlest->sgc->max_capacity >= group->sgc->max_capacity) 8968 return false; 8969 break; 8970 8971 case group_has_spare: 8972 /* Select group with most idle CPUs */ 8973 if (idlest_sgs->idle_cpus > sgs->idle_cpus) 8974 return false; 8975 8976 /* Select group with lowest group_util */ 8977 if (idlest_sgs->idle_cpus == sgs->idle_cpus && 8978 idlest_sgs->group_util <= sgs->group_util) 8979 return false; 8980 8981 break; 8982 } 8983 8984 return true; 8985 } 8986 8987 /* 8988 * Allow a NUMA imbalance if busy CPUs is less than 25% of the domain. 8989 * This is an approximation as the number of running tasks may not be 8990 * related to the number of busy CPUs due to sched_setaffinity. 8991 */ 8992 static inline bool allow_numa_imbalance(int dst_running, int dst_weight) 8993 { 8994 return (dst_running < (dst_weight >> 2)); 8995 } 8996 8997 /* 8998 * find_idlest_group() finds and returns the least busy CPU group within the 8999 * domain. 9000 * 9001 * Assumes p is allowed on at least one CPU in sd. 9002 */ 9003 static struct sched_group * 9004 find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu) 9005 { 9006 struct sched_group *idlest = NULL, *local = NULL, *group = sd->groups; 9007 struct sg_lb_stats local_sgs, tmp_sgs; 9008 struct sg_lb_stats *sgs; 9009 unsigned long imbalance; 9010 struct sg_lb_stats idlest_sgs = { 9011 .avg_load = UINT_MAX, 9012 .group_type = group_overloaded, 9013 }; 9014 9015 do { 9016 int local_group; 9017 9018 /* Skip over this group if it has no CPUs allowed */ 9019 if (!cpumask_intersects(sched_group_span(group), 9020 p->cpus_ptr)) 9021 continue; 9022 9023 /* Skip over this group if no cookie matched */ 9024 if (!sched_group_cookie_match(cpu_rq(this_cpu), p, group)) 9025 continue; 9026 9027 local_group = cpumask_test_cpu(this_cpu, 9028 sched_group_span(group)); 9029 9030 if (local_group) { 9031 sgs = &local_sgs; 9032 local = group; 9033 } else { 9034 sgs = &tmp_sgs; 9035 } 9036 9037 update_sg_wakeup_stats(sd, group, sgs, p); 9038 9039 if (!local_group && update_pick_idlest(idlest, &idlest_sgs, group, sgs)) { 9040 idlest = group; 9041 idlest_sgs = *sgs; 9042 } 9043 9044 } while (group = group->next, group != sd->groups); 9045 9046 9047 /* There is no idlest group to push tasks to */ 9048 if (!idlest) 9049 return NULL; 9050 9051 /* The local group has been skipped because of CPU affinity */ 9052 if (!local) 9053 return idlest; 9054 9055 /* 9056 * If the local group is idler than the selected idlest group 9057 * don't try and push the task. 9058 */ 9059 if (local_sgs.group_type < idlest_sgs.group_type) 9060 return NULL; 9061 9062 /* 9063 * If the local group is busier than the selected idlest group 9064 * try and push the task. 9065 */ 9066 if (local_sgs.group_type > idlest_sgs.group_type) 9067 return idlest; 9068 9069 switch (local_sgs.group_type) { 9070 case group_overloaded: 9071 case group_fully_busy: 9072 9073 /* Calculate allowed imbalance based on load */ 9074 imbalance = scale_load_down(NICE_0_LOAD) * 9075 (sd->imbalance_pct-100) / 100; 9076 9077 /* 9078 * When comparing groups across NUMA domains, it's possible for 9079 * the local domain to be very lightly loaded relative to the 9080 * remote domains but "imbalance" skews the comparison making 9081 * remote CPUs look much more favourable. When considering 9082 * cross-domain, add imbalance to the load on the remote node 9083 * and consider staying local. 9084 */ 9085 9086 if ((sd->flags & SD_NUMA) && 9087 ((idlest_sgs.avg_load + imbalance) >= local_sgs.avg_load)) 9088 return NULL; 9089 9090 /* 9091 * If the local group is less loaded than the selected 9092 * idlest group don't try and push any tasks. 9093 */ 9094 if (idlest_sgs.avg_load >= (local_sgs.avg_load + imbalance)) 9095 return NULL; 9096 9097 if (100 * local_sgs.avg_load <= sd->imbalance_pct * idlest_sgs.avg_load) 9098 return NULL; 9099 break; 9100 9101 case group_imbalanced: 9102 case group_asym_packing: 9103 /* Those type are not used in the slow wakeup path */ 9104 return NULL; 9105 9106 case group_misfit_task: 9107 /* Select group with the highest max capacity */ 9108 if (local->sgc->max_capacity >= idlest->sgc->max_capacity) 9109 return NULL; 9110 break; 9111 9112 case group_has_spare: 9113 if (sd->flags & SD_NUMA) { 9114 #ifdef CONFIG_NUMA_BALANCING 9115 int idlest_cpu; 9116 /* 9117 * If there is spare capacity at NUMA, try to select 9118 * the preferred node 9119 */ 9120 if (cpu_to_node(this_cpu) == p->numa_preferred_nid) 9121 return NULL; 9122 9123 idlest_cpu = cpumask_first(sched_group_span(idlest)); 9124 if (cpu_to_node(idlest_cpu) == p->numa_preferred_nid) 9125 return idlest; 9126 #endif 9127 /* 9128 * Otherwise, keep the task on this node to stay close 9129 * its wakeup source and improve locality. If there is 9130 * a real need of migration, periodic load balance will 9131 * take care of it. 9132 */ 9133 if (allow_numa_imbalance(local_sgs.sum_nr_running, sd->span_weight)) 9134 return NULL; 9135 } 9136 9137 /* 9138 * Select group with highest number of idle CPUs. We could also 9139 * compare the utilization which is more stable but it can end 9140 * up that the group has less spare capacity but finally more 9141 * idle CPUs which means more opportunity to run task. 9142 */ 9143 if (local_sgs.idle_cpus >= idlest_sgs.idle_cpus) 9144 return NULL; 9145 break; 9146 } 9147 9148 return idlest; 9149 } 9150 9151 /** 9152 * update_sd_lb_stats - Update sched_domain's statistics for load balancing. 9153 * @env: The load balancing environment. 9154 * @sds: variable to hold the statistics for this sched_domain. 9155 */ 9156 9157 static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds) 9158 { 9159 struct sched_domain *child = env->sd->child; 9160 struct sched_group *sg = env->sd->groups; 9161 struct sg_lb_stats *local = &sds->local_stat; 9162 struct sg_lb_stats tmp_sgs; 9163 int sg_status = 0; 9164 9165 do { 9166 struct sg_lb_stats *sgs = &tmp_sgs; 9167 int local_group; 9168 9169 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_span(sg)); 9170 if (local_group) { 9171 sds->local = sg; 9172 sgs = local; 9173 9174 if (env->idle != CPU_NEWLY_IDLE || 9175 time_after_eq(jiffies, sg->sgc->next_update)) 9176 update_group_capacity(env->sd, env->dst_cpu); 9177 } 9178 9179 update_sg_lb_stats(env, sg, sgs, &sg_status); 9180 9181 if (local_group) 9182 goto next_group; 9183 9184 9185 if (update_sd_pick_busiest(env, sds, sg, sgs)) { 9186 sds->busiest = sg; 9187 sds->busiest_stat = *sgs; 9188 } 9189 9190 next_group: 9191 /* Now, start updating sd_lb_stats */ 9192 sds->total_load += sgs->group_load; 9193 sds->total_capacity += sgs->group_capacity; 9194 9195 sg = sg->next; 9196 } while (sg != env->sd->groups); 9197 9198 /* Tag domain that child domain prefers tasks go to siblings first */ 9199 sds->prefer_sibling = child && child->flags & SD_PREFER_SIBLING; 9200 9201 9202 if (env->sd->flags & SD_NUMA) 9203 env->fbq_type = fbq_classify_group(&sds->busiest_stat); 9204 9205 if (!env->sd->parent) { 9206 struct root_domain *rd = env->dst_rq->rd; 9207 9208 /* update overload indicator if we are at root domain */ 9209 WRITE_ONCE(rd->overload, sg_status & SG_OVERLOAD); 9210 9211 /* Update over-utilization (tipping point, U >= 0) indicator */ 9212 WRITE_ONCE(rd->overutilized, sg_status & SG_OVERUTILIZED); 9213 trace_sched_overutilized_tp(rd, sg_status & SG_OVERUTILIZED); 9214 } else if (sg_status & SG_OVERUTILIZED) { 9215 struct root_domain *rd = env->dst_rq->rd; 9216 9217 WRITE_ONCE(rd->overutilized, SG_OVERUTILIZED); 9218 trace_sched_overutilized_tp(rd, SG_OVERUTILIZED); 9219 } 9220 } 9221 9222 #define NUMA_IMBALANCE_MIN 2 9223 9224 static inline long adjust_numa_imbalance(int imbalance, 9225 int dst_running, int dst_weight) 9226 { 9227 if (!allow_numa_imbalance(dst_running, dst_weight)) 9228 return imbalance; 9229 9230 /* 9231 * Allow a small imbalance based on a simple pair of communicating 9232 * tasks that remain local when the destination is lightly loaded. 9233 */ 9234 if (imbalance <= NUMA_IMBALANCE_MIN) 9235 return 0; 9236 9237 return imbalance; 9238 } 9239 9240 /** 9241 * calculate_imbalance - Calculate the amount of imbalance present within the 9242 * groups of a given sched_domain during load balance. 9243 * @env: load balance environment 9244 * @sds: statistics of the sched_domain whose imbalance is to be calculated. 9245 */ 9246 static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds) 9247 { 9248 struct sg_lb_stats *local, *busiest; 9249 9250 local = &sds->local_stat; 9251 busiest = &sds->busiest_stat; 9252 9253 if (busiest->group_type == group_misfit_task) { 9254 /* Set imbalance to allow misfit tasks to be balanced. */ 9255 env->migration_type = migrate_misfit; 9256 env->imbalance = 1; 9257 return; 9258 } 9259 9260 if (busiest->group_type == group_asym_packing) { 9261 /* 9262 * In case of asym capacity, we will try to migrate all load to 9263 * the preferred CPU. 9264 */ 9265 env->migration_type = migrate_task; 9266 env->imbalance = busiest->sum_h_nr_running; 9267 return; 9268 } 9269 9270 if (busiest->group_type == group_imbalanced) { 9271 /* 9272 * In the group_imb case we cannot rely on group-wide averages 9273 * to ensure CPU-load equilibrium, try to move any task to fix 9274 * the imbalance. The next load balance will take care of 9275 * balancing back the system. 9276 */ 9277 env->migration_type = migrate_task; 9278 env->imbalance = 1; 9279 return; 9280 } 9281 9282 /* 9283 * Try to use spare capacity of local group without overloading it or 9284 * emptying busiest. 9285 */ 9286 if (local->group_type == group_has_spare) { 9287 if ((busiest->group_type > group_fully_busy) && 9288 !(env->sd->flags & SD_SHARE_PKG_RESOURCES)) { 9289 /* 9290 * If busiest is overloaded, try to fill spare 9291 * capacity. This might end up creating spare capacity 9292 * in busiest or busiest still being overloaded but 9293 * there is no simple way to directly compute the 9294 * amount of load to migrate in order to balance the 9295 * system. 9296 */ 9297 env->migration_type = migrate_util; 9298 env->imbalance = max(local->group_capacity, local->group_util) - 9299 local->group_util; 9300 9301 /* 9302 * In some cases, the group's utilization is max or even 9303 * higher than capacity because of migrations but the 9304 * local CPU is (newly) idle. There is at least one 9305 * waiting task in this overloaded busiest group. Let's 9306 * try to pull it. 9307 */ 9308 if (env->idle != CPU_NOT_IDLE && env->imbalance == 0) { 9309 env->migration_type = migrate_task; 9310 env->imbalance = 1; 9311 } 9312 9313 return; 9314 } 9315 9316 if (busiest->group_weight == 1 || sds->prefer_sibling) { 9317 unsigned int nr_diff = busiest->sum_nr_running; 9318 /* 9319 * When prefer sibling, evenly spread running tasks on 9320 * groups. 9321 */ 9322 env->migration_type = migrate_task; 9323 lsub_positive(&nr_diff, local->sum_nr_running); 9324 env->imbalance = nr_diff >> 1; 9325 } else { 9326 9327 /* 9328 * If there is no overload, we just want to even the number of 9329 * idle cpus. 9330 */ 9331 env->migration_type = migrate_task; 9332 env->imbalance = max_t(long, 0, (local->idle_cpus - 9333 busiest->idle_cpus) >> 1); 9334 } 9335 9336 /* Consider allowing a small imbalance between NUMA groups */ 9337 if (env->sd->flags & SD_NUMA) { 9338 env->imbalance = adjust_numa_imbalance(env->imbalance, 9339 busiest->sum_nr_running, busiest->group_weight); 9340 } 9341 9342 return; 9343 } 9344 9345 /* 9346 * Local is fully busy but has to take more load to relieve the 9347 * busiest group 9348 */ 9349 if (local->group_type < group_overloaded) { 9350 /* 9351 * Local will become overloaded so the avg_load metrics are 9352 * finally needed. 9353 */ 9354 9355 local->avg_load = (local->group_load * SCHED_CAPACITY_SCALE) / 9356 local->group_capacity; 9357 9358 sds->avg_load = (sds->total_load * SCHED_CAPACITY_SCALE) / 9359 sds->total_capacity; 9360 /* 9361 * If the local group is more loaded than the selected 9362 * busiest group don't try to pull any tasks. 9363 */ 9364 if (local->avg_load >= busiest->avg_load) { 9365 env->imbalance = 0; 9366 return; 9367 } 9368 } 9369 9370 /* 9371 * Both group are or will become overloaded and we're trying to get all 9372 * the CPUs to the average_load, so we don't want to push ourselves 9373 * above the average load, nor do we wish to reduce the max loaded CPU 9374 * below the average load. At the same time, we also don't want to 9375 * reduce the group load below the group capacity. Thus we look for 9376 * the minimum possible imbalance. 9377 */ 9378 env->migration_type = migrate_load; 9379 env->imbalance = min( 9380 (busiest->avg_load - sds->avg_load) * busiest->group_capacity, 9381 (sds->avg_load - local->avg_load) * local->group_capacity 9382 ) / SCHED_CAPACITY_SCALE; 9383 } 9384 9385 /******* find_busiest_group() helpers end here *********************/ 9386 9387 /* 9388 * Decision matrix according to the local and busiest group type: 9389 * 9390 * busiest \ local has_spare fully_busy misfit asym imbalanced overloaded 9391 * has_spare nr_idle balanced N/A N/A balanced balanced 9392 * fully_busy nr_idle nr_idle N/A N/A balanced balanced 9393 * misfit_task force N/A N/A N/A force force 9394 * asym_packing force force N/A N/A force force 9395 * imbalanced force force N/A N/A force force 9396 * overloaded force force N/A N/A force avg_load 9397 * 9398 * N/A : Not Applicable because already filtered while updating 9399 * statistics. 9400 * balanced : The system is balanced for these 2 groups. 9401 * force : Calculate the imbalance as load migration is probably needed. 9402 * avg_load : Only if imbalance is significant enough. 9403 * nr_idle : dst_cpu is not busy and the number of idle CPUs is quite 9404 * different in groups. 9405 */ 9406 9407 /** 9408 * find_busiest_group - Returns the busiest group within the sched_domain 9409 * if there is an imbalance. 9410 * 9411 * Also calculates the amount of runnable load which should be moved 9412 * to restore balance. 9413 * 9414 * @env: The load balancing environment. 9415 * 9416 * Return: - The busiest group if imbalance exists. 9417 */ 9418 static struct sched_group *find_busiest_group(struct lb_env *env) 9419 { 9420 struct sg_lb_stats *local, *busiest; 9421 struct sd_lb_stats sds; 9422 9423 init_sd_lb_stats(&sds); 9424 9425 /* 9426 * Compute the various statistics relevant for load balancing at 9427 * this level. 9428 */ 9429 update_sd_lb_stats(env, &sds); 9430 9431 if (sched_energy_enabled()) { 9432 struct root_domain *rd = env->dst_rq->rd; 9433 9434 if (rcu_dereference(rd->pd) && !READ_ONCE(rd->overutilized)) 9435 goto out_balanced; 9436 } 9437 9438 local = &sds.local_stat; 9439 busiest = &sds.busiest_stat; 9440 9441 /* There is no busy sibling group to pull tasks from */ 9442 if (!sds.busiest) 9443 goto out_balanced; 9444 9445 /* Misfit tasks should be dealt with regardless of the avg load */ 9446 if (busiest->group_type == group_misfit_task) 9447 goto force_balance; 9448 9449 /* ASYM feature bypasses nice load balance check */ 9450 if (busiest->group_type == group_asym_packing) 9451 goto force_balance; 9452 9453 /* 9454 * If the busiest group is imbalanced the below checks don't 9455 * work because they assume all things are equal, which typically 9456 * isn't true due to cpus_ptr constraints and the like. 9457 */ 9458 if (busiest->group_type == group_imbalanced) 9459 goto force_balance; 9460 9461 /* 9462 * If the local group is busier than the selected busiest group 9463 * don't try and pull any tasks. 9464 */ 9465 if (local->group_type > busiest->group_type) 9466 goto out_balanced; 9467 9468 /* 9469 * When groups are overloaded, use the avg_load to ensure fairness 9470 * between tasks. 9471 */ 9472 if (local->group_type == group_overloaded) { 9473 /* 9474 * If the local group is more loaded than the selected 9475 * busiest group don't try to pull any tasks. 9476 */ 9477 if (local->avg_load >= busiest->avg_load) 9478 goto out_balanced; 9479 9480 /* XXX broken for overlapping NUMA groups */ 9481 sds.avg_load = (sds.total_load * SCHED_CAPACITY_SCALE) / 9482 sds.total_capacity; 9483 9484 /* 9485 * Don't pull any tasks if this group is already above the 9486 * domain average load. 9487 */ 9488 if (local->avg_load >= sds.avg_load) 9489 goto out_balanced; 9490 9491 /* 9492 * If the busiest group is more loaded, use imbalance_pct to be 9493 * conservative. 9494 */ 9495 if (100 * busiest->avg_load <= 9496 env->sd->imbalance_pct * local->avg_load) 9497 goto out_balanced; 9498 } 9499 9500 /* Try to move all excess tasks to child's sibling domain */ 9501 if (sds.prefer_sibling && local->group_type == group_has_spare && 9502 busiest->sum_nr_running > local->sum_nr_running + 1) 9503 goto force_balance; 9504 9505 if (busiest->group_type != group_overloaded) { 9506 if (env->idle == CPU_NOT_IDLE) 9507 /* 9508 * If the busiest group is not overloaded (and as a 9509 * result the local one too) but this CPU is already 9510 * busy, let another idle CPU try to pull task. 9511 */ 9512 goto out_balanced; 9513 9514 if (busiest->group_weight > 1 && 9515 local->idle_cpus <= (busiest->idle_cpus + 1)) 9516 /* 9517 * If the busiest group is not overloaded 9518 * and there is no imbalance between this and busiest 9519 * group wrt idle CPUs, it is balanced. The imbalance 9520 * becomes significant if the diff is greater than 1 9521 * otherwise we might end up to just move the imbalance 9522 * on another group. Of course this applies only if 9523 * there is more than 1 CPU per group. 9524 */ 9525 goto out_balanced; 9526 9527 if (busiest->sum_h_nr_running == 1) 9528 /* 9529 * busiest doesn't have any tasks waiting to run 9530 */ 9531 goto out_balanced; 9532 } 9533 9534 force_balance: 9535 /* Looks like there is an imbalance. Compute it */ 9536 calculate_imbalance(env, &sds); 9537 return env->imbalance ? sds.busiest : NULL; 9538 9539 out_balanced: 9540 env->imbalance = 0; 9541 return NULL; 9542 } 9543 9544 /* 9545 * find_busiest_queue - find the busiest runqueue among the CPUs in the group. 9546 */ 9547 static struct rq *find_busiest_queue(struct lb_env *env, 9548 struct sched_group *group) 9549 { 9550 struct rq *busiest = NULL, *rq; 9551 unsigned long busiest_util = 0, busiest_load = 0, busiest_capacity = 1; 9552 unsigned int busiest_nr = 0; 9553 int i; 9554 9555 for_each_cpu_and(i, sched_group_span(group), env->cpus) { 9556 unsigned long capacity, load, util; 9557 unsigned int nr_running; 9558 enum fbq_type rt; 9559 9560 rq = cpu_rq(i); 9561 rt = fbq_classify_rq(rq); 9562 9563 /* 9564 * We classify groups/runqueues into three groups: 9565 * - regular: there are !numa tasks 9566 * - remote: there are numa tasks that run on the 'wrong' node 9567 * - all: there is no distinction 9568 * 9569 * In order to avoid migrating ideally placed numa tasks, 9570 * ignore those when there's better options. 9571 * 9572 * If we ignore the actual busiest queue to migrate another 9573 * task, the next balance pass can still reduce the busiest 9574 * queue by moving tasks around inside the node. 9575 * 9576 * If we cannot move enough load due to this classification 9577 * the next pass will adjust the group classification and 9578 * allow migration of more tasks. 9579 * 9580 * Both cases only affect the total convergence complexity. 9581 */ 9582 if (rt > env->fbq_type) 9583 continue; 9584 9585 nr_running = rq->cfs.h_nr_running; 9586 if (!nr_running) 9587 continue; 9588 9589 capacity = capacity_of(i); 9590 9591 /* 9592 * For ASYM_CPUCAPACITY domains, don't pick a CPU that could 9593 * eventually lead to active_balancing high->low capacity. 9594 * Higher per-CPU capacity is considered better than balancing 9595 * average load. 9596 */ 9597 if (env->sd->flags & SD_ASYM_CPUCAPACITY && 9598 !capacity_greater(capacity_of(env->dst_cpu), capacity) && 9599 nr_running == 1) 9600 continue; 9601 9602 switch (env->migration_type) { 9603 case migrate_load: 9604 /* 9605 * When comparing with load imbalance, use cpu_load() 9606 * which is not scaled with the CPU capacity. 9607 */ 9608 load = cpu_load(rq); 9609 9610 if (nr_running == 1 && load > env->imbalance && 9611 !check_cpu_capacity(rq, env->sd)) 9612 break; 9613 9614 /* 9615 * For the load comparisons with the other CPUs, 9616 * consider the cpu_load() scaled with the CPU 9617 * capacity, so that the load can be moved away 9618 * from the CPU that is potentially running at a 9619 * lower capacity. 9620 * 9621 * Thus we're looking for max(load_i / capacity_i), 9622 * crosswise multiplication to rid ourselves of the 9623 * division works out to: 9624 * load_i * capacity_j > load_j * capacity_i; 9625 * where j is our previous maximum. 9626 */ 9627 if (load * busiest_capacity > busiest_load * capacity) { 9628 busiest_load = load; 9629 busiest_capacity = capacity; 9630 busiest = rq; 9631 } 9632 break; 9633 9634 case migrate_util: 9635 util = cpu_util(cpu_of(rq)); 9636 9637 /* 9638 * Don't try to pull utilization from a CPU with one 9639 * running task. Whatever its utilization, we will fail 9640 * detach the task. 9641 */ 9642 if (nr_running <= 1) 9643 continue; 9644 9645 if (busiest_util < util) { 9646 busiest_util = util; 9647 busiest = rq; 9648 } 9649 break; 9650 9651 case migrate_task: 9652 if (busiest_nr < nr_running) { 9653 busiest_nr = nr_running; 9654 busiest = rq; 9655 } 9656 break; 9657 9658 case migrate_misfit: 9659 /* 9660 * For ASYM_CPUCAPACITY domains with misfit tasks we 9661 * simply seek the "biggest" misfit task. 9662 */ 9663 if (rq->misfit_task_load > busiest_load) { 9664 busiest_load = rq->misfit_task_load; 9665 busiest = rq; 9666 } 9667 9668 break; 9669 9670 } 9671 } 9672 9673 return busiest; 9674 } 9675 9676 /* 9677 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but 9678 * so long as it is large enough. 9679 */ 9680 #define MAX_PINNED_INTERVAL 512 9681 9682 static inline bool 9683 asym_active_balance(struct lb_env *env) 9684 { 9685 /* 9686 * ASYM_PACKING needs to force migrate tasks from busy but 9687 * lower priority CPUs in order to pack all tasks in the 9688 * highest priority CPUs. 9689 */ 9690 return env->idle != CPU_NOT_IDLE && (env->sd->flags & SD_ASYM_PACKING) && 9691 sched_asym_prefer(env->dst_cpu, env->src_cpu); 9692 } 9693 9694 static inline bool 9695 imbalanced_active_balance(struct lb_env *env) 9696 { 9697 struct sched_domain *sd = env->sd; 9698 9699 /* 9700 * The imbalanced case includes the case of pinned tasks preventing a fair 9701 * distribution of the load on the system but also the even distribution of the 9702 * threads on a system with spare capacity 9703 */ 9704 if ((env->migration_type == migrate_task) && 9705 (sd->nr_balance_failed > sd->cache_nice_tries+2)) 9706 return 1; 9707 9708 return 0; 9709 } 9710 9711 static int need_active_balance(struct lb_env *env) 9712 { 9713 struct sched_domain *sd = env->sd; 9714 9715 if (asym_active_balance(env)) 9716 return 1; 9717 9718 if (imbalanced_active_balance(env)) 9719 return 1; 9720 9721 /* 9722 * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task. 9723 * It's worth migrating the task if the src_cpu's capacity is reduced 9724 * because of other sched_class or IRQs if more capacity stays 9725 * available on dst_cpu. 9726 */ 9727 if ((env->idle != CPU_NOT_IDLE) && 9728 (env->src_rq->cfs.h_nr_running == 1)) { 9729 if ((check_cpu_capacity(env->src_rq, sd)) && 9730 (capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100)) 9731 return 1; 9732 } 9733 9734 if (env->migration_type == migrate_misfit) 9735 return 1; 9736 9737 return 0; 9738 } 9739 9740 static int active_load_balance_cpu_stop(void *data); 9741 9742 static int should_we_balance(struct lb_env *env) 9743 { 9744 struct sched_group *sg = env->sd->groups; 9745 int cpu; 9746 9747 /* 9748 * Ensure the balancing environment is consistent; can happen 9749 * when the softirq triggers 'during' hotplug. 9750 */ 9751 if (!cpumask_test_cpu(env->dst_cpu, env->cpus)) 9752 return 0; 9753 9754 /* 9755 * In the newly idle case, we will allow all the CPUs 9756 * to do the newly idle load balance. 9757 */ 9758 if (env->idle == CPU_NEWLY_IDLE) 9759 return 1; 9760 9761 /* Try to find first idle CPU */ 9762 for_each_cpu_and(cpu, group_balance_mask(sg), env->cpus) { 9763 if (!idle_cpu(cpu)) 9764 continue; 9765 9766 /* Are we the first idle CPU? */ 9767 return cpu == env->dst_cpu; 9768 } 9769 9770 /* Are we the first CPU of this group ? */ 9771 return group_balance_cpu(sg) == env->dst_cpu; 9772 } 9773 9774 /* 9775 * Check this_cpu to ensure it is balanced within domain. Attempt to move 9776 * tasks if there is an imbalance. 9777 */ 9778 static int load_balance(int this_cpu, struct rq *this_rq, 9779 struct sched_domain *sd, enum cpu_idle_type idle, 9780 int *continue_balancing) 9781 { 9782 int ld_moved, cur_ld_moved, active_balance = 0; 9783 struct sched_domain *sd_parent = sd->parent; 9784 struct sched_group *group; 9785 struct rq *busiest; 9786 struct rq_flags rf; 9787 struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask); 9788 9789 struct lb_env env = { 9790 .sd = sd, 9791 .dst_cpu = this_cpu, 9792 .dst_rq = this_rq, 9793 .dst_grpmask = sched_group_span(sd->groups), 9794 .idle = idle, 9795 .loop_break = sched_nr_migrate_break, 9796 .cpus = cpus, 9797 .fbq_type = all, 9798 .tasks = LIST_HEAD_INIT(env.tasks), 9799 }; 9800 9801 cpumask_and(cpus, sched_domain_span(sd), cpu_active_mask); 9802 9803 schedstat_inc(sd->lb_count[idle]); 9804 9805 redo: 9806 if (!should_we_balance(&env)) { 9807 *continue_balancing = 0; 9808 goto out_balanced; 9809 } 9810 9811 group = find_busiest_group(&env); 9812 if (!group) { 9813 schedstat_inc(sd->lb_nobusyg[idle]); 9814 goto out_balanced; 9815 } 9816 9817 busiest = find_busiest_queue(&env, group); 9818 if (!busiest) { 9819 schedstat_inc(sd->lb_nobusyq[idle]); 9820 goto out_balanced; 9821 } 9822 9823 BUG_ON(busiest == env.dst_rq); 9824 9825 schedstat_add(sd->lb_imbalance[idle], env.imbalance); 9826 9827 env.src_cpu = busiest->cpu; 9828 env.src_rq = busiest; 9829 9830 ld_moved = 0; 9831 /* Clear this flag as soon as we find a pullable task */ 9832 env.flags |= LBF_ALL_PINNED; 9833 if (busiest->nr_running > 1) { 9834 /* 9835 * Attempt to move tasks. If find_busiest_group has found 9836 * an imbalance but busiest->nr_running <= 1, the group is 9837 * still unbalanced. ld_moved simply stays zero, so it is 9838 * correctly treated as an imbalance. 9839 */ 9840 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running); 9841 9842 more_balance: 9843 rq_lock_irqsave(busiest, &rf); 9844 update_rq_clock(busiest); 9845 9846 /* 9847 * cur_ld_moved - load moved in current iteration 9848 * ld_moved - cumulative load moved across iterations 9849 */ 9850 cur_ld_moved = detach_tasks(&env); 9851 9852 /* 9853 * We've detached some tasks from busiest_rq. Every 9854 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely 9855 * unlock busiest->lock, and we are able to be sure 9856 * that nobody can manipulate the tasks in parallel. 9857 * See task_rq_lock() family for the details. 9858 */ 9859 9860 rq_unlock(busiest, &rf); 9861 9862 if (cur_ld_moved) { 9863 attach_tasks(&env); 9864 ld_moved += cur_ld_moved; 9865 } 9866 9867 local_irq_restore(rf.flags); 9868 9869 if (env.flags & LBF_NEED_BREAK) { 9870 env.flags &= ~LBF_NEED_BREAK; 9871 goto more_balance; 9872 } 9873 9874 /* 9875 * Revisit (affine) tasks on src_cpu that couldn't be moved to 9876 * us and move them to an alternate dst_cpu in our sched_group 9877 * where they can run. The upper limit on how many times we 9878 * iterate on same src_cpu is dependent on number of CPUs in our 9879 * sched_group. 9880 * 9881 * This changes load balance semantics a bit on who can move 9882 * load to a given_cpu. In addition to the given_cpu itself 9883 * (or a ilb_cpu acting on its behalf where given_cpu is 9884 * nohz-idle), we now have balance_cpu in a position to move 9885 * load to given_cpu. In rare situations, this may cause 9886 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding 9887 * _independently_ and at _same_ time to move some load to 9888 * given_cpu) causing excess load to be moved to given_cpu. 9889 * This however should not happen so much in practice and 9890 * moreover subsequent load balance cycles should correct the 9891 * excess load moved. 9892 */ 9893 if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) { 9894 9895 /* Prevent to re-select dst_cpu via env's CPUs */ 9896 __cpumask_clear_cpu(env.dst_cpu, env.cpus); 9897 9898 env.dst_rq = cpu_rq(env.new_dst_cpu); 9899 env.dst_cpu = env.new_dst_cpu; 9900 env.flags &= ~LBF_DST_PINNED; 9901 env.loop = 0; 9902 env.loop_break = sched_nr_migrate_break; 9903 9904 /* 9905 * Go back to "more_balance" rather than "redo" since we 9906 * need to continue with same src_cpu. 9907 */ 9908 goto more_balance; 9909 } 9910 9911 /* 9912 * We failed to reach balance because of affinity. 9913 */ 9914 if (sd_parent) { 9915 int *group_imbalance = &sd_parent->groups->sgc->imbalance; 9916 9917 if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0) 9918 *group_imbalance = 1; 9919 } 9920 9921 /* All tasks on this runqueue were pinned by CPU affinity */ 9922 if (unlikely(env.flags & LBF_ALL_PINNED)) { 9923 __cpumask_clear_cpu(cpu_of(busiest), cpus); 9924 /* 9925 * Attempting to continue load balancing at the current 9926 * sched_domain level only makes sense if there are 9927 * active CPUs remaining as possible busiest CPUs to 9928 * pull load from which are not contained within the 9929 * destination group that is receiving any migrated 9930 * load. 9931 */ 9932 if (!cpumask_subset(cpus, env.dst_grpmask)) { 9933 env.loop = 0; 9934 env.loop_break = sched_nr_migrate_break; 9935 goto redo; 9936 } 9937 goto out_all_pinned; 9938 } 9939 } 9940 9941 if (!ld_moved) { 9942 schedstat_inc(sd->lb_failed[idle]); 9943 /* 9944 * Increment the failure counter only on periodic balance. 9945 * We do not want newidle balance, which can be very 9946 * frequent, pollute the failure counter causing 9947 * excessive cache_hot migrations and active balances. 9948 */ 9949 if (idle != CPU_NEWLY_IDLE) 9950 sd->nr_balance_failed++; 9951 9952 if (need_active_balance(&env)) { 9953 unsigned long flags; 9954 9955 raw_spin_rq_lock_irqsave(busiest, flags); 9956 9957 /* 9958 * Don't kick the active_load_balance_cpu_stop, 9959 * if the curr task on busiest CPU can't be 9960 * moved to this_cpu: 9961 */ 9962 if (!cpumask_test_cpu(this_cpu, busiest->curr->cpus_ptr)) { 9963 raw_spin_rq_unlock_irqrestore(busiest, flags); 9964 goto out_one_pinned; 9965 } 9966 9967 /* Record that we found at least one task that could run on this_cpu */ 9968 env.flags &= ~LBF_ALL_PINNED; 9969 9970 /* 9971 * ->active_balance synchronizes accesses to 9972 * ->active_balance_work. Once set, it's cleared 9973 * only after active load balance is finished. 9974 */ 9975 if (!busiest->active_balance) { 9976 busiest->active_balance = 1; 9977 busiest->push_cpu = this_cpu; 9978 active_balance = 1; 9979 } 9980 raw_spin_rq_unlock_irqrestore(busiest, flags); 9981 9982 if (active_balance) { 9983 stop_one_cpu_nowait(cpu_of(busiest), 9984 active_load_balance_cpu_stop, busiest, 9985 &busiest->active_balance_work); 9986 } 9987 } 9988 } else { 9989 sd->nr_balance_failed = 0; 9990 } 9991 9992 if (likely(!active_balance) || need_active_balance(&env)) { 9993 /* We were unbalanced, so reset the balancing interval */ 9994 sd->balance_interval = sd->min_interval; 9995 } 9996 9997 goto out; 9998 9999 out_balanced: 10000 /* 10001 * We reach balance although we may have faced some affinity 10002 * constraints. Clear the imbalance flag only if other tasks got 10003 * a chance to move and fix the imbalance. 10004 */ 10005 if (sd_parent && !(env.flags & LBF_ALL_PINNED)) { 10006 int *group_imbalance = &sd_parent->groups->sgc->imbalance; 10007 10008 if (*group_imbalance) 10009 *group_imbalance = 0; 10010 } 10011 10012 out_all_pinned: 10013 /* 10014 * We reach balance because all tasks are pinned at this level so 10015 * we can't migrate them. Let the imbalance flag set so parent level 10016 * can try to migrate them. 10017 */ 10018 schedstat_inc(sd->lb_balanced[idle]); 10019 10020 sd->nr_balance_failed = 0; 10021 10022 out_one_pinned: 10023 ld_moved = 0; 10024 10025 /* 10026 * newidle_balance() disregards balance intervals, so we could 10027 * repeatedly reach this code, which would lead to balance_interval 10028 * skyrocketing in a short amount of time. Skip the balance_interval 10029 * increase logic to avoid that. 10030 */ 10031 if (env.idle == CPU_NEWLY_IDLE) 10032 goto out; 10033 10034 /* tune up the balancing interval */ 10035 if ((env.flags & LBF_ALL_PINNED && 10036 sd->balance_interval < MAX_PINNED_INTERVAL) || 10037 sd->balance_interval < sd->max_interval) 10038 sd->balance_interval *= 2; 10039 out: 10040 return ld_moved; 10041 } 10042 10043 static inline unsigned long 10044 get_sd_balance_interval(struct sched_domain *sd, int cpu_busy) 10045 { 10046 unsigned long interval = sd->balance_interval; 10047 10048 if (cpu_busy) 10049 interval *= sd->busy_factor; 10050 10051 /* scale ms to jiffies */ 10052 interval = msecs_to_jiffies(interval); 10053 10054 /* 10055 * Reduce likelihood of busy balancing at higher domains racing with 10056 * balancing at lower domains by preventing their balancing periods 10057 * from being multiples of each other. 10058 */ 10059 if (cpu_busy) 10060 interval -= 1; 10061 10062 interval = clamp(interval, 1UL, max_load_balance_interval); 10063 10064 return interval; 10065 } 10066 10067 static inline void 10068 update_next_balance(struct sched_domain *sd, unsigned long *next_balance) 10069 { 10070 unsigned long interval, next; 10071 10072 /* used by idle balance, so cpu_busy = 0 */ 10073 interval = get_sd_balance_interval(sd, 0); 10074 next = sd->last_balance + interval; 10075 10076 if (time_after(*next_balance, next)) 10077 *next_balance = next; 10078 } 10079 10080 /* 10081 * active_load_balance_cpu_stop is run by the CPU stopper. It pushes 10082 * running tasks off the busiest CPU onto idle CPUs. It requires at 10083 * least 1 task to be running on each physical CPU where possible, and 10084 * avoids physical / logical imbalances. 10085 */ 10086 static int active_load_balance_cpu_stop(void *data) 10087 { 10088 struct rq *busiest_rq = data; 10089 int busiest_cpu = cpu_of(busiest_rq); 10090 int target_cpu = busiest_rq->push_cpu; 10091 struct rq *target_rq = cpu_rq(target_cpu); 10092 struct sched_domain *sd; 10093 struct task_struct *p = NULL; 10094 struct rq_flags rf; 10095 10096 rq_lock_irq(busiest_rq, &rf); 10097 /* 10098 * Between queueing the stop-work and running it is a hole in which 10099 * CPUs can become inactive. We should not move tasks from or to 10100 * inactive CPUs. 10101 */ 10102 if (!cpu_active(busiest_cpu) || !cpu_active(target_cpu)) 10103 goto out_unlock; 10104 10105 /* Make sure the requested CPU hasn't gone down in the meantime: */ 10106 if (unlikely(busiest_cpu != smp_processor_id() || 10107 !busiest_rq->active_balance)) 10108 goto out_unlock; 10109 10110 /* Is there any task to move? */ 10111 if (busiest_rq->nr_running <= 1) 10112 goto out_unlock; 10113 10114 /* 10115 * This condition is "impossible", if it occurs 10116 * we need to fix it. Originally reported by 10117 * Bjorn Helgaas on a 128-CPU setup. 10118 */ 10119 BUG_ON(busiest_rq == target_rq); 10120 10121 /* Search for an sd spanning us and the target CPU. */ 10122 rcu_read_lock(); 10123 for_each_domain(target_cpu, sd) { 10124 if (cpumask_test_cpu(busiest_cpu, sched_domain_span(sd))) 10125 break; 10126 } 10127 10128 if (likely(sd)) { 10129 struct lb_env env = { 10130 .sd = sd, 10131 .dst_cpu = target_cpu, 10132 .dst_rq = target_rq, 10133 .src_cpu = busiest_rq->cpu, 10134 .src_rq = busiest_rq, 10135 .idle = CPU_IDLE, 10136 .flags = LBF_ACTIVE_LB, 10137 }; 10138 10139 schedstat_inc(sd->alb_count); 10140 update_rq_clock(busiest_rq); 10141 10142 p = detach_one_task(&env); 10143 if (p) { 10144 schedstat_inc(sd->alb_pushed); 10145 /* Active balancing done, reset the failure counter. */ 10146 sd->nr_balance_failed = 0; 10147 } else { 10148 schedstat_inc(sd->alb_failed); 10149 } 10150 } 10151 rcu_read_unlock(); 10152 out_unlock: 10153 busiest_rq->active_balance = 0; 10154 rq_unlock(busiest_rq, &rf); 10155 10156 if (p) 10157 attach_one_task(target_rq, p); 10158 10159 local_irq_enable(); 10160 10161 return 0; 10162 } 10163 10164 static DEFINE_SPINLOCK(balancing); 10165 10166 /* 10167 * Scale the max load_balance interval with the number of CPUs in the system. 10168 * This trades load-balance latency on larger machines for less cross talk. 10169 */ 10170 void update_max_interval(void) 10171 { 10172 max_load_balance_interval = HZ*num_online_cpus()/10; 10173 } 10174 10175 /* 10176 * It checks each scheduling domain to see if it is due to be balanced, 10177 * and initiates a balancing operation if so. 10178 * 10179 * Balancing parameters are set up in init_sched_domains. 10180 */ 10181 static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle) 10182 { 10183 int continue_balancing = 1; 10184 int cpu = rq->cpu; 10185 int busy = idle != CPU_IDLE && !sched_idle_cpu(cpu); 10186 unsigned long interval; 10187 struct sched_domain *sd; 10188 /* Earliest time when we have to do rebalance again */ 10189 unsigned long next_balance = jiffies + 60*HZ; 10190 int update_next_balance = 0; 10191 int need_serialize, need_decay = 0; 10192 u64 max_cost = 0; 10193 10194 rcu_read_lock(); 10195 for_each_domain(cpu, sd) { 10196 /* 10197 * Decay the newidle max times here because this is a regular 10198 * visit to all the domains. Decay ~1% per second. 10199 */ 10200 if (time_after(jiffies, sd->next_decay_max_lb_cost)) { 10201 sd->max_newidle_lb_cost = 10202 (sd->max_newidle_lb_cost * 253) / 256; 10203 sd->next_decay_max_lb_cost = jiffies + HZ; 10204 need_decay = 1; 10205 } 10206 max_cost += sd->max_newidle_lb_cost; 10207 10208 /* 10209 * Stop the load balance at this level. There is another 10210 * CPU in our sched group which is doing load balancing more 10211 * actively. 10212 */ 10213 if (!continue_balancing) { 10214 if (need_decay) 10215 continue; 10216 break; 10217 } 10218 10219 interval = get_sd_balance_interval(sd, busy); 10220 10221 need_serialize = sd->flags & SD_SERIALIZE; 10222 if (need_serialize) { 10223 if (!spin_trylock(&balancing)) 10224 goto out; 10225 } 10226 10227 if (time_after_eq(jiffies, sd->last_balance + interval)) { 10228 if (load_balance(cpu, rq, sd, idle, &continue_balancing)) { 10229 /* 10230 * The LBF_DST_PINNED logic could have changed 10231 * env->dst_cpu, so we can't know our idle 10232 * state even if we migrated tasks. Update it. 10233 */ 10234 idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE; 10235 busy = idle != CPU_IDLE && !sched_idle_cpu(cpu); 10236 } 10237 sd->last_balance = jiffies; 10238 interval = get_sd_balance_interval(sd, busy); 10239 } 10240 if (need_serialize) 10241 spin_unlock(&balancing); 10242 out: 10243 if (time_after(next_balance, sd->last_balance + interval)) { 10244 next_balance = sd->last_balance + interval; 10245 update_next_balance = 1; 10246 } 10247 } 10248 if (need_decay) { 10249 /* 10250 * Ensure the rq-wide value also decays but keep it at a 10251 * reasonable floor to avoid funnies with rq->avg_idle. 10252 */ 10253 rq->max_idle_balance_cost = 10254 max((u64)sysctl_sched_migration_cost, max_cost); 10255 } 10256 rcu_read_unlock(); 10257 10258 /* 10259 * next_balance will be updated only when there is a need. 10260 * When the cpu is attached to null domain for ex, it will not be 10261 * updated. 10262 */ 10263 if (likely(update_next_balance)) 10264 rq->next_balance = next_balance; 10265 10266 } 10267 10268 static inline int on_null_domain(struct rq *rq) 10269 { 10270 return unlikely(!rcu_dereference_sched(rq->sd)); 10271 } 10272 10273 #ifdef CONFIG_NO_HZ_COMMON 10274 /* 10275 * idle load balancing details 10276 * - When one of the busy CPUs notice that there may be an idle rebalancing 10277 * needed, they will kick the idle load balancer, which then does idle 10278 * load balancing for all the idle CPUs. 10279 * - HK_FLAG_MISC CPUs are used for this task, because HK_FLAG_SCHED not set 10280 * anywhere yet. 10281 */ 10282 10283 static inline int find_new_ilb(void) 10284 { 10285 int ilb; 10286 const struct cpumask *hk_mask; 10287 10288 hk_mask = housekeeping_cpumask(HK_FLAG_MISC); 10289 10290 for_each_cpu_and(ilb, nohz.idle_cpus_mask, hk_mask) { 10291 10292 if (ilb == smp_processor_id()) 10293 continue; 10294 10295 if (idle_cpu(ilb)) 10296 return ilb; 10297 } 10298 10299 return nr_cpu_ids; 10300 } 10301 10302 /* 10303 * Kick a CPU to do the nohz balancing, if it is time for it. We pick any 10304 * idle CPU in the HK_FLAG_MISC housekeeping set (if there is one). 10305 */ 10306 static void kick_ilb(unsigned int flags) 10307 { 10308 int ilb_cpu; 10309 10310 /* 10311 * Increase nohz.next_balance only when if full ilb is triggered but 10312 * not if we only update stats. 10313 */ 10314 if (flags & NOHZ_BALANCE_KICK) 10315 nohz.next_balance = jiffies+1; 10316 10317 ilb_cpu = find_new_ilb(); 10318 10319 if (ilb_cpu >= nr_cpu_ids) 10320 return; 10321 10322 /* 10323 * Access to rq::nohz_csd is serialized by NOHZ_KICK_MASK; he who sets 10324 * the first flag owns it; cleared by nohz_csd_func(). 10325 */ 10326 flags = atomic_fetch_or(flags, nohz_flags(ilb_cpu)); 10327 if (flags & NOHZ_KICK_MASK) 10328 return; 10329 10330 /* 10331 * This way we generate an IPI on the target CPU which 10332 * is idle. And the softirq performing nohz idle load balance 10333 * will be run before returning from the IPI. 10334 */ 10335 smp_call_function_single_async(ilb_cpu, &cpu_rq(ilb_cpu)->nohz_csd); 10336 } 10337 10338 /* 10339 * Current decision point for kicking the idle load balancer in the presence 10340 * of idle CPUs in the system. 10341 */ 10342 static void nohz_balancer_kick(struct rq *rq) 10343 { 10344 unsigned long now = jiffies; 10345 struct sched_domain_shared *sds; 10346 struct sched_domain *sd; 10347 int nr_busy, i, cpu = rq->cpu; 10348 unsigned int flags = 0; 10349 10350 if (unlikely(rq->idle_balance)) 10351 return; 10352 10353 /* 10354 * We may be recently in ticked or tickless idle mode. At the first 10355 * busy tick after returning from idle, we will update the busy stats. 10356 */ 10357 nohz_balance_exit_idle(rq); 10358 10359 /* 10360 * None are in tickless mode and hence no need for NOHZ idle load 10361 * balancing. 10362 */ 10363 if (likely(!atomic_read(&nohz.nr_cpus))) 10364 return; 10365 10366 if (READ_ONCE(nohz.has_blocked) && 10367 time_after(now, READ_ONCE(nohz.next_blocked))) 10368 flags = NOHZ_STATS_KICK; 10369 10370 if (time_before(now, nohz.next_balance)) 10371 goto out; 10372 10373 if (rq->nr_running >= 2) { 10374 flags = NOHZ_KICK_MASK; 10375 goto out; 10376 } 10377 10378 rcu_read_lock(); 10379 10380 sd = rcu_dereference(rq->sd); 10381 if (sd) { 10382 /* 10383 * If there's a CFS task and the current CPU has reduced 10384 * capacity; kick the ILB to see if there's a better CPU to run 10385 * on. 10386 */ 10387 if (rq->cfs.h_nr_running >= 1 && check_cpu_capacity(rq, sd)) { 10388 flags = NOHZ_KICK_MASK; 10389 goto unlock; 10390 } 10391 } 10392 10393 sd = rcu_dereference(per_cpu(sd_asym_packing, cpu)); 10394 if (sd) { 10395 /* 10396 * When ASYM_PACKING; see if there's a more preferred CPU 10397 * currently idle; in which case, kick the ILB to move tasks 10398 * around. 10399 */ 10400 for_each_cpu_and(i, sched_domain_span(sd), nohz.idle_cpus_mask) { 10401 if (sched_asym_prefer(i, cpu)) { 10402 flags = NOHZ_KICK_MASK; 10403 goto unlock; 10404 } 10405 } 10406 } 10407 10408 sd = rcu_dereference(per_cpu(sd_asym_cpucapacity, cpu)); 10409 if (sd) { 10410 /* 10411 * When ASYM_CPUCAPACITY; see if there's a higher capacity CPU 10412 * to run the misfit task on. 10413 */ 10414 if (check_misfit_status(rq, sd)) { 10415 flags = NOHZ_KICK_MASK; 10416 goto unlock; 10417 } 10418 10419 /* 10420 * For asymmetric systems, we do not want to nicely balance 10421 * cache use, instead we want to embrace asymmetry and only 10422 * ensure tasks have enough CPU capacity. 10423 * 10424 * Skip the LLC logic because it's not relevant in that case. 10425 */ 10426 goto unlock; 10427 } 10428 10429 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu)); 10430 if (sds) { 10431 /* 10432 * If there is an imbalance between LLC domains (IOW we could 10433 * increase the overall cache use), we need some less-loaded LLC 10434 * domain to pull some load. Likewise, we may need to spread 10435 * load within the current LLC domain (e.g. packed SMT cores but 10436 * other CPUs are idle). We can't really know from here how busy 10437 * the others are - so just get a nohz balance going if it looks 10438 * like this LLC domain has tasks we could move. 10439 */ 10440 nr_busy = atomic_read(&sds->nr_busy_cpus); 10441 if (nr_busy > 1) { 10442 flags = NOHZ_KICK_MASK; 10443 goto unlock; 10444 } 10445 } 10446 unlock: 10447 rcu_read_unlock(); 10448 out: 10449 if (flags) 10450 kick_ilb(flags); 10451 } 10452 10453 static void set_cpu_sd_state_busy(int cpu) 10454 { 10455 struct sched_domain *sd; 10456 10457 rcu_read_lock(); 10458 sd = rcu_dereference(per_cpu(sd_llc, cpu)); 10459 10460 if (!sd || !sd->nohz_idle) 10461 goto unlock; 10462 sd->nohz_idle = 0; 10463 10464 atomic_inc(&sd->shared->nr_busy_cpus); 10465 unlock: 10466 rcu_read_unlock(); 10467 } 10468 10469 void nohz_balance_exit_idle(struct rq *rq) 10470 { 10471 SCHED_WARN_ON(rq != this_rq()); 10472 10473 if (likely(!rq->nohz_tick_stopped)) 10474 return; 10475 10476 rq->nohz_tick_stopped = 0; 10477 cpumask_clear_cpu(rq->cpu, nohz.idle_cpus_mask); 10478 atomic_dec(&nohz.nr_cpus); 10479 10480 set_cpu_sd_state_busy(rq->cpu); 10481 } 10482 10483 static void set_cpu_sd_state_idle(int cpu) 10484 { 10485 struct sched_domain *sd; 10486 10487 rcu_read_lock(); 10488 sd = rcu_dereference(per_cpu(sd_llc, cpu)); 10489 10490 if (!sd || sd->nohz_idle) 10491 goto unlock; 10492 sd->nohz_idle = 1; 10493 10494 atomic_dec(&sd->shared->nr_busy_cpus); 10495 unlock: 10496 rcu_read_unlock(); 10497 } 10498 10499 /* 10500 * This routine will record that the CPU is going idle with tick stopped. 10501 * This info will be used in performing idle load balancing in the future. 10502 */ 10503 void nohz_balance_enter_idle(int cpu) 10504 { 10505 struct rq *rq = cpu_rq(cpu); 10506 10507 SCHED_WARN_ON(cpu != smp_processor_id()); 10508 10509 /* If this CPU is going down, then nothing needs to be done: */ 10510 if (!cpu_active(cpu)) 10511 return; 10512 10513 /* Spare idle load balancing on CPUs that don't want to be disturbed: */ 10514 if (!housekeeping_cpu(cpu, HK_FLAG_SCHED)) 10515 return; 10516 10517 /* 10518 * Can be set safely without rq->lock held 10519 * If a clear happens, it will have evaluated last additions because 10520 * rq->lock is held during the check and the clear 10521 */ 10522 rq->has_blocked_load = 1; 10523 10524 /* 10525 * The tick is still stopped but load could have been added in the 10526 * meantime. We set the nohz.has_blocked flag to trig a check of the 10527 * *_avg. The CPU is already part of nohz.idle_cpus_mask so the clear 10528 * of nohz.has_blocked can only happen after checking the new load 10529 */ 10530 if (rq->nohz_tick_stopped) 10531 goto out; 10532 10533 /* If we're a completely isolated CPU, we don't play: */ 10534 if (on_null_domain(rq)) 10535 return; 10536 10537 rq->nohz_tick_stopped = 1; 10538 10539 cpumask_set_cpu(cpu, nohz.idle_cpus_mask); 10540 atomic_inc(&nohz.nr_cpus); 10541 10542 /* 10543 * Ensures that if nohz_idle_balance() fails to observe our 10544 * @idle_cpus_mask store, it must observe the @has_blocked 10545 * store. 10546 */ 10547 smp_mb__after_atomic(); 10548 10549 set_cpu_sd_state_idle(cpu); 10550 10551 out: 10552 /* 10553 * Each time a cpu enter idle, we assume that it has blocked load and 10554 * enable the periodic update of the load of idle cpus 10555 */ 10556 WRITE_ONCE(nohz.has_blocked, 1); 10557 } 10558 10559 static bool update_nohz_stats(struct rq *rq) 10560 { 10561 unsigned int cpu = rq->cpu; 10562 10563 if (!rq->has_blocked_load) 10564 return false; 10565 10566 if (!cpumask_test_cpu(cpu, nohz.idle_cpus_mask)) 10567 return false; 10568 10569 if (!time_after(jiffies, READ_ONCE(rq->last_blocked_load_update_tick))) 10570 return true; 10571 10572 update_blocked_averages(cpu); 10573 10574 return rq->has_blocked_load; 10575 } 10576 10577 /* 10578 * Internal function that runs load balance for all idle cpus. The load balance 10579 * can be a simple update of blocked load or a complete load balance with 10580 * tasks movement depending of flags. 10581 */ 10582 static void _nohz_idle_balance(struct rq *this_rq, unsigned int flags, 10583 enum cpu_idle_type idle) 10584 { 10585 /* Earliest time when we have to do rebalance again */ 10586 unsigned long now = jiffies; 10587 unsigned long next_balance = now + 60*HZ; 10588 bool has_blocked_load = false; 10589 int update_next_balance = 0; 10590 int this_cpu = this_rq->cpu; 10591 int balance_cpu; 10592 struct rq *rq; 10593 10594 SCHED_WARN_ON((flags & NOHZ_KICK_MASK) == NOHZ_BALANCE_KICK); 10595 10596 /* 10597 * We assume there will be no idle load after this update and clear 10598 * the has_blocked flag. If a cpu enters idle in the mean time, it will 10599 * set the has_blocked flag and trig another update of idle load. 10600 * Because a cpu that becomes idle, is added to idle_cpus_mask before 10601 * setting the flag, we are sure to not clear the state and not 10602 * check the load of an idle cpu. 10603 */ 10604 WRITE_ONCE(nohz.has_blocked, 0); 10605 10606 /* 10607 * Ensures that if we miss the CPU, we must see the has_blocked 10608 * store from nohz_balance_enter_idle(). 10609 */ 10610 smp_mb(); 10611 10612 /* 10613 * Start with the next CPU after this_cpu so we will end with this_cpu and let a 10614 * chance for other idle cpu to pull load. 10615 */ 10616 for_each_cpu_wrap(balance_cpu, nohz.idle_cpus_mask, this_cpu+1) { 10617 if (!idle_cpu(balance_cpu)) 10618 continue; 10619 10620 /* 10621 * If this CPU gets work to do, stop the load balancing 10622 * work being done for other CPUs. Next load 10623 * balancing owner will pick it up. 10624 */ 10625 if (need_resched()) { 10626 has_blocked_load = true; 10627 goto abort; 10628 } 10629 10630 rq = cpu_rq(balance_cpu); 10631 10632 has_blocked_load |= update_nohz_stats(rq); 10633 10634 /* 10635 * If time for next balance is due, 10636 * do the balance. 10637 */ 10638 if (time_after_eq(jiffies, rq->next_balance)) { 10639 struct rq_flags rf; 10640 10641 rq_lock_irqsave(rq, &rf); 10642 update_rq_clock(rq); 10643 rq_unlock_irqrestore(rq, &rf); 10644 10645 if (flags & NOHZ_BALANCE_KICK) 10646 rebalance_domains(rq, CPU_IDLE); 10647 } 10648 10649 if (time_after(next_balance, rq->next_balance)) { 10650 next_balance = rq->next_balance; 10651 update_next_balance = 1; 10652 } 10653 } 10654 10655 /* 10656 * next_balance will be updated only when there is a need. 10657 * When the CPU is attached to null domain for ex, it will not be 10658 * updated. 10659 */ 10660 if (likely(update_next_balance)) 10661 nohz.next_balance = next_balance; 10662 10663 WRITE_ONCE(nohz.next_blocked, 10664 now + msecs_to_jiffies(LOAD_AVG_PERIOD)); 10665 10666 abort: 10667 /* There is still blocked load, enable periodic update */ 10668 if (has_blocked_load) 10669 WRITE_ONCE(nohz.has_blocked, 1); 10670 } 10671 10672 /* 10673 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the 10674 * rebalancing for all the cpus for whom scheduler ticks are stopped. 10675 */ 10676 static bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) 10677 { 10678 unsigned int flags = this_rq->nohz_idle_balance; 10679 10680 if (!flags) 10681 return false; 10682 10683 this_rq->nohz_idle_balance = 0; 10684 10685 if (idle != CPU_IDLE) 10686 return false; 10687 10688 _nohz_idle_balance(this_rq, flags, idle); 10689 10690 return true; 10691 } 10692 10693 /* 10694 * Check if we need to run the ILB for updating blocked load before entering 10695 * idle state. 10696 */ 10697 void nohz_run_idle_balance(int cpu) 10698 { 10699 unsigned int flags; 10700 10701 flags = atomic_fetch_andnot(NOHZ_NEWILB_KICK, nohz_flags(cpu)); 10702 10703 /* 10704 * Update the blocked load only if no SCHED_SOFTIRQ is about to happen 10705 * (ie NOHZ_STATS_KICK set) and will do the same. 10706 */ 10707 if ((flags == NOHZ_NEWILB_KICK) && !need_resched()) 10708 _nohz_idle_balance(cpu_rq(cpu), NOHZ_STATS_KICK, CPU_IDLE); 10709 } 10710 10711 static void nohz_newidle_balance(struct rq *this_rq) 10712 { 10713 int this_cpu = this_rq->cpu; 10714 10715 /* 10716 * This CPU doesn't want to be disturbed by scheduler 10717 * housekeeping 10718 */ 10719 if (!housekeeping_cpu(this_cpu, HK_FLAG_SCHED)) 10720 return; 10721 10722 /* Will wake up very soon. No time for doing anything else*/ 10723 if (this_rq->avg_idle < sysctl_sched_migration_cost) 10724 return; 10725 10726 /* Don't need to update blocked load of idle CPUs*/ 10727 if (!READ_ONCE(nohz.has_blocked) || 10728 time_before(jiffies, READ_ONCE(nohz.next_blocked))) 10729 return; 10730 10731 /* 10732 * Set the need to trigger ILB in order to update blocked load 10733 * before entering idle state. 10734 */ 10735 atomic_or(NOHZ_NEWILB_KICK, nohz_flags(this_cpu)); 10736 } 10737 10738 #else /* !CONFIG_NO_HZ_COMMON */ 10739 static inline void nohz_balancer_kick(struct rq *rq) { } 10740 10741 static inline bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) 10742 { 10743 return false; 10744 } 10745 10746 static inline void nohz_newidle_balance(struct rq *this_rq) { } 10747 #endif /* CONFIG_NO_HZ_COMMON */ 10748 10749 /* 10750 * newidle_balance is called by schedule() if this_cpu is about to become 10751 * idle. Attempts to pull tasks from other CPUs. 10752 * 10753 * Returns: 10754 * < 0 - we released the lock and there are !fair tasks present 10755 * 0 - failed, no new tasks 10756 * > 0 - success, new (fair) tasks present 10757 */ 10758 static int newidle_balance(struct rq *this_rq, struct rq_flags *rf) 10759 { 10760 unsigned long next_balance = jiffies + HZ; 10761 int this_cpu = this_rq->cpu; 10762 struct sched_domain *sd; 10763 int pulled_task = 0; 10764 u64 curr_cost = 0; 10765 10766 update_misfit_status(NULL, this_rq); 10767 10768 /* 10769 * There is a task waiting to run. No need to search for one. 10770 * Return 0; the task will be enqueued when switching to idle. 10771 */ 10772 if (this_rq->ttwu_pending) 10773 return 0; 10774 10775 /* 10776 * We must set idle_stamp _before_ calling idle_balance(), such that we 10777 * measure the duration of idle_balance() as idle time. 10778 */ 10779 this_rq->idle_stamp = rq_clock(this_rq); 10780 10781 /* 10782 * Do not pull tasks towards !active CPUs... 10783 */ 10784 if (!cpu_active(this_cpu)) 10785 return 0; 10786 10787 /* 10788 * This is OK, because current is on_cpu, which avoids it being picked 10789 * for load-balance and preemption/IRQs are still disabled avoiding 10790 * further scheduler activity on it and we're being very careful to 10791 * re-start the picking loop. 10792 */ 10793 rq_unpin_lock(this_rq, rf); 10794 10795 if (this_rq->avg_idle < sysctl_sched_migration_cost || 10796 !READ_ONCE(this_rq->rd->overload)) { 10797 10798 rcu_read_lock(); 10799 sd = rcu_dereference_check_sched_domain(this_rq->sd); 10800 if (sd) 10801 update_next_balance(sd, &next_balance); 10802 rcu_read_unlock(); 10803 10804 goto out; 10805 } 10806 10807 raw_spin_rq_unlock(this_rq); 10808 10809 update_blocked_averages(this_cpu); 10810 rcu_read_lock(); 10811 for_each_domain(this_cpu, sd) { 10812 int continue_balancing = 1; 10813 u64 t0, domain_cost; 10814 10815 if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) { 10816 update_next_balance(sd, &next_balance); 10817 break; 10818 } 10819 10820 if (sd->flags & SD_BALANCE_NEWIDLE) { 10821 t0 = sched_clock_cpu(this_cpu); 10822 10823 pulled_task = load_balance(this_cpu, this_rq, 10824 sd, CPU_NEWLY_IDLE, 10825 &continue_balancing); 10826 10827 domain_cost = sched_clock_cpu(this_cpu) - t0; 10828 if (domain_cost > sd->max_newidle_lb_cost) 10829 sd->max_newidle_lb_cost = domain_cost; 10830 10831 curr_cost += domain_cost; 10832 } 10833 10834 update_next_balance(sd, &next_balance); 10835 10836 /* 10837 * Stop searching for tasks to pull if there are 10838 * now runnable tasks on this rq. 10839 */ 10840 if (pulled_task || this_rq->nr_running > 0 || 10841 this_rq->ttwu_pending) 10842 break; 10843 } 10844 rcu_read_unlock(); 10845 10846 raw_spin_rq_lock(this_rq); 10847 10848 if (curr_cost > this_rq->max_idle_balance_cost) 10849 this_rq->max_idle_balance_cost = curr_cost; 10850 10851 /* 10852 * While browsing the domains, we released the rq lock, a task could 10853 * have been enqueued in the meantime. Since we're not going idle, 10854 * pretend we pulled a task. 10855 */ 10856 if (this_rq->cfs.h_nr_running && !pulled_task) 10857 pulled_task = 1; 10858 10859 /* Is there a task of a high priority class? */ 10860 if (this_rq->nr_running != this_rq->cfs.h_nr_running) 10861 pulled_task = -1; 10862 10863 out: 10864 /* Move the next balance forward */ 10865 if (time_after(this_rq->next_balance, next_balance)) 10866 this_rq->next_balance = next_balance; 10867 10868 if (pulled_task) 10869 this_rq->idle_stamp = 0; 10870 else 10871 nohz_newidle_balance(this_rq); 10872 10873 rq_repin_lock(this_rq, rf); 10874 10875 return pulled_task; 10876 } 10877 10878 /* 10879 * run_rebalance_domains is triggered when needed from the scheduler tick. 10880 * Also triggered for nohz idle balancing (with nohz_balancing_kick set). 10881 */ 10882 static __latent_entropy void run_rebalance_domains(struct softirq_action *h) 10883 { 10884 struct rq *this_rq = this_rq(); 10885 enum cpu_idle_type idle = this_rq->idle_balance ? 10886 CPU_IDLE : CPU_NOT_IDLE; 10887 10888 /* 10889 * If this CPU has a pending nohz_balance_kick, then do the 10890 * balancing on behalf of the other idle CPUs whose ticks are 10891 * stopped. Do nohz_idle_balance *before* rebalance_domains to 10892 * give the idle CPUs a chance to load balance. Else we may 10893 * load balance only within the local sched_domain hierarchy 10894 * and abort nohz_idle_balance altogether if we pull some load. 10895 */ 10896 if (nohz_idle_balance(this_rq, idle)) 10897 return; 10898 10899 /* normal load balance */ 10900 update_blocked_averages(this_rq->cpu); 10901 rebalance_domains(this_rq, idle); 10902 } 10903 10904 /* 10905 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing. 10906 */ 10907 void trigger_load_balance(struct rq *rq) 10908 { 10909 /* 10910 * Don't need to rebalance while attached to NULL domain or 10911 * runqueue CPU is not active 10912 */ 10913 if (unlikely(on_null_domain(rq) || !cpu_active(cpu_of(rq)))) 10914 return; 10915 10916 if (time_after_eq(jiffies, rq->next_balance)) 10917 raise_softirq(SCHED_SOFTIRQ); 10918 10919 nohz_balancer_kick(rq); 10920 } 10921 10922 static void rq_online_fair(struct rq *rq) 10923 { 10924 update_sysctl(); 10925 10926 update_runtime_enabled(rq); 10927 } 10928 10929 static void rq_offline_fair(struct rq *rq) 10930 { 10931 update_sysctl(); 10932 10933 /* Ensure any throttled groups are reachable by pick_next_task */ 10934 unthrottle_offline_cfs_rqs(rq); 10935 } 10936 10937 #endif /* CONFIG_SMP */ 10938 10939 #ifdef CONFIG_SCHED_CORE 10940 static inline bool 10941 __entity_slice_used(struct sched_entity *se, int min_nr_tasks) 10942 { 10943 u64 slice = sched_slice(cfs_rq_of(se), se); 10944 u64 rtime = se->sum_exec_runtime - se->prev_sum_exec_runtime; 10945 10946 return (rtime * min_nr_tasks > slice); 10947 } 10948 10949 #define MIN_NR_TASKS_DURING_FORCEIDLE 2 10950 static inline void task_tick_core(struct rq *rq, struct task_struct *curr) 10951 { 10952 if (!sched_core_enabled(rq)) 10953 return; 10954 10955 /* 10956 * If runqueue has only one task which used up its slice and 10957 * if the sibling is forced idle, then trigger schedule to 10958 * give forced idle task a chance. 10959 * 10960 * sched_slice() considers only this active rq and it gets the 10961 * whole slice. But during force idle, we have siblings acting 10962 * like a single runqueue and hence we need to consider runnable 10963 * tasks on this CPU and the forced idle CPU. Ideally, we should 10964 * go through the forced idle rq, but that would be a perf hit. 10965 * We can assume that the forced idle CPU has at least 10966 * MIN_NR_TASKS_DURING_FORCEIDLE - 1 tasks and use that to check 10967 * if we need to give up the CPU. 10968 */ 10969 if (rq->core->core_forceidle && rq->cfs.nr_running == 1 && 10970 __entity_slice_used(&curr->se, MIN_NR_TASKS_DURING_FORCEIDLE)) 10971 resched_curr(rq); 10972 } 10973 10974 /* 10975 * se_fi_update - Update the cfs_rq->min_vruntime_fi in a CFS hierarchy if needed. 10976 */ 10977 static void se_fi_update(struct sched_entity *se, unsigned int fi_seq, bool forceidle) 10978 { 10979 for_each_sched_entity(se) { 10980 struct cfs_rq *cfs_rq = cfs_rq_of(se); 10981 10982 if (forceidle) { 10983 if (cfs_rq->forceidle_seq == fi_seq) 10984 break; 10985 cfs_rq->forceidle_seq = fi_seq; 10986 } 10987 10988 cfs_rq->min_vruntime_fi = cfs_rq->min_vruntime; 10989 } 10990 } 10991 10992 void task_vruntime_update(struct rq *rq, struct task_struct *p, bool in_fi) 10993 { 10994 struct sched_entity *se = &p->se; 10995 10996 if (p->sched_class != &fair_sched_class) 10997 return; 10998 10999 se_fi_update(se, rq->core->core_forceidle_seq, in_fi); 11000 } 11001 11002 bool cfs_prio_less(struct task_struct *a, struct task_struct *b, bool in_fi) 11003 { 11004 struct rq *rq = task_rq(a); 11005 struct sched_entity *sea = &a->se; 11006 struct sched_entity *seb = &b->se; 11007 struct cfs_rq *cfs_rqa; 11008 struct cfs_rq *cfs_rqb; 11009 s64 delta; 11010 11011 SCHED_WARN_ON(task_rq(b)->core != rq->core); 11012 11013 #ifdef CONFIG_FAIR_GROUP_SCHED 11014 /* 11015 * Find an se in the hierarchy for tasks a and b, such that the se's 11016 * are immediate siblings. 11017 */ 11018 while (sea->cfs_rq->tg != seb->cfs_rq->tg) { 11019 int sea_depth = sea->depth; 11020 int seb_depth = seb->depth; 11021 11022 if (sea_depth >= seb_depth) 11023 sea = parent_entity(sea); 11024 if (sea_depth <= seb_depth) 11025 seb = parent_entity(seb); 11026 } 11027 11028 se_fi_update(sea, rq->core->core_forceidle_seq, in_fi); 11029 se_fi_update(seb, rq->core->core_forceidle_seq, in_fi); 11030 11031 cfs_rqa = sea->cfs_rq; 11032 cfs_rqb = seb->cfs_rq; 11033 #else 11034 cfs_rqa = &task_rq(a)->cfs; 11035 cfs_rqb = &task_rq(b)->cfs; 11036 #endif 11037 11038 /* 11039 * Find delta after normalizing se's vruntime with its cfs_rq's 11040 * min_vruntime_fi, which would have been updated in prior calls 11041 * to se_fi_update(). 11042 */ 11043 delta = (s64)(sea->vruntime - seb->vruntime) + 11044 (s64)(cfs_rqb->min_vruntime_fi - cfs_rqa->min_vruntime_fi); 11045 11046 return delta > 0; 11047 } 11048 #else 11049 static inline void task_tick_core(struct rq *rq, struct task_struct *curr) {} 11050 #endif 11051 11052 /* 11053 * scheduler tick hitting a task of our scheduling class. 11054 * 11055 * NOTE: This function can be called remotely by the tick offload that 11056 * goes along full dynticks. Therefore no local assumption can be made 11057 * and everything must be accessed through the @rq and @curr passed in 11058 * parameters. 11059 */ 11060 static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued) 11061 { 11062 struct cfs_rq *cfs_rq; 11063 struct sched_entity *se = &curr->se; 11064 11065 for_each_sched_entity(se) { 11066 cfs_rq = cfs_rq_of(se); 11067 entity_tick(cfs_rq, se, queued); 11068 } 11069 11070 if (static_branch_unlikely(&sched_numa_balancing)) 11071 task_tick_numa(rq, curr); 11072 11073 update_misfit_status(curr, rq); 11074 update_overutilized_status(task_rq(curr)); 11075 11076 task_tick_core(rq, curr); 11077 } 11078 11079 /* 11080 * called on fork with the child task as argument from the parent's context 11081 * - child not yet on the tasklist 11082 * - preemption disabled 11083 */ 11084 static void task_fork_fair(struct task_struct *p) 11085 { 11086 struct cfs_rq *cfs_rq; 11087 struct sched_entity *se = &p->se, *curr; 11088 struct rq *rq = this_rq(); 11089 struct rq_flags rf; 11090 11091 rq_lock(rq, &rf); 11092 update_rq_clock(rq); 11093 11094 cfs_rq = task_cfs_rq(current); 11095 curr = cfs_rq->curr; 11096 if (curr) { 11097 update_curr(cfs_rq); 11098 se->vruntime = curr->vruntime; 11099 } 11100 place_entity(cfs_rq, se, 1); 11101 11102 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) { 11103 /* 11104 * Upon rescheduling, sched_class::put_prev_task() will place 11105 * 'current' within the tree based on its new key value. 11106 */ 11107 swap(curr->vruntime, se->vruntime); 11108 resched_curr(rq); 11109 } 11110 11111 se->vruntime -= cfs_rq->min_vruntime; 11112 rq_unlock(rq, &rf); 11113 } 11114 11115 /* 11116 * Priority of the task has changed. Check to see if we preempt 11117 * the current task. 11118 */ 11119 static void 11120 prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio) 11121 { 11122 if (!task_on_rq_queued(p)) 11123 return; 11124 11125 if (rq->cfs.nr_running == 1) 11126 return; 11127 11128 /* 11129 * Reschedule if we are currently running on this runqueue and 11130 * our priority decreased, or if we are not currently running on 11131 * this runqueue and our priority is higher than the current's 11132 */ 11133 if (task_current(rq, p)) { 11134 if (p->prio > oldprio) 11135 resched_curr(rq); 11136 } else 11137 check_preempt_curr(rq, p, 0); 11138 } 11139 11140 static inline bool vruntime_normalized(struct task_struct *p) 11141 { 11142 struct sched_entity *se = &p->se; 11143 11144 /* 11145 * In both the TASK_ON_RQ_QUEUED and TASK_ON_RQ_MIGRATING cases, 11146 * the dequeue_entity(.flags=0) will already have normalized the 11147 * vruntime. 11148 */ 11149 if (p->on_rq) 11150 return true; 11151 11152 /* 11153 * When !on_rq, vruntime of the task has usually NOT been normalized. 11154 * But there are some cases where it has already been normalized: 11155 * 11156 * - A forked child which is waiting for being woken up by 11157 * wake_up_new_task(). 11158 * - A task which has been woken up by try_to_wake_up() and 11159 * waiting for actually being woken up by sched_ttwu_pending(). 11160 */ 11161 if (!se->sum_exec_runtime || 11162 (READ_ONCE(p->__state) == TASK_WAKING && p->sched_remote_wakeup)) 11163 return true; 11164 11165 return false; 11166 } 11167 11168 #ifdef CONFIG_FAIR_GROUP_SCHED 11169 /* 11170 * Propagate the changes of the sched_entity across the tg tree to make it 11171 * visible to the root 11172 */ 11173 static void propagate_entity_cfs_rq(struct sched_entity *se) 11174 { 11175 struct cfs_rq *cfs_rq; 11176 11177 list_add_leaf_cfs_rq(cfs_rq_of(se)); 11178 11179 /* Start to propagate at parent */ 11180 se = se->parent; 11181 11182 for_each_sched_entity(se) { 11183 cfs_rq = cfs_rq_of(se); 11184 11185 if (!cfs_rq_throttled(cfs_rq)){ 11186 update_load_avg(cfs_rq, se, UPDATE_TG); 11187 list_add_leaf_cfs_rq(cfs_rq); 11188 continue; 11189 } 11190 11191 if (list_add_leaf_cfs_rq(cfs_rq)) 11192 break; 11193 } 11194 } 11195 #else 11196 static void propagate_entity_cfs_rq(struct sched_entity *se) { } 11197 #endif 11198 11199 static void detach_entity_cfs_rq(struct sched_entity *se) 11200 { 11201 struct cfs_rq *cfs_rq = cfs_rq_of(se); 11202 11203 /* Catch up with the cfs_rq and remove our load when we leave */ 11204 update_load_avg(cfs_rq, se, 0); 11205 detach_entity_load_avg(cfs_rq, se); 11206 update_tg_load_avg(cfs_rq); 11207 propagate_entity_cfs_rq(se); 11208 } 11209 11210 static void attach_entity_cfs_rq(struct sched_entity *se) 11211 { 11212 struct cfs_rq *cfs_rq = cfs_rq_of(se); 11213 11214 #ifdef CONFIG_FAIR_GROUP_SCHED 11215 /* 11216 * Since the real-depth could have been changed (only FAIR 11217 * class maintain depth value), reset depth properly. 11218 */ 11219 se->depth = se->parent ? se->parent->depth + 1 : 0; 11220 #endif 11221 11222 /* Synchronize entity with its cfs_rq */ 11223 update_load_avg(cfs_rq, se, sched_feat(ATTACH_AGE_LOAD) ? 0 : SKIP_AGE_LOAD); 11224 attach_entity_load_avg(cfs_rq, se); 11225 update_tg_load_avg(cfs_rq); 11226 propagate_entity_cfs_rq(se); 11227 } 11228 11229 static void detach_task_cfs_rq(struct task_struct *p) 11230 { 11231 struct sched_entity *se = &p->se; 11232 struct cfs_rq *cfs_rq = cfs_rq_of(se); 11233 11234 if (!vruntime_normalized(p)) { 11235 /* 11236 * Fix up our vruntime so that the current sleep doesn't 11237 * cause 'unlimited' sleep bonus. 11238 */ 11239 place_entity(cfs_rq, se, 0); 11240 se->vruntime -= cfs_rq->min_vruntime; 11241 } 11242 11243 detach_entity_cfs_rq(se); 11244 } 11245 11246 static void attach_task_cfs_rq(struct task_struct *p) 11247 { 11248 struct sched_entity *se = &p->se; 11249 struct cfs_rq *cfs_rq = cfs_rq_of(se); 11250 11251 attach_entity_cfs_rq(se); 11252 11253 if (!vruntime_normalized(p)) 11254 se->vruntime += cfs_rq->min_vruntime; 11255 } 11256 11257 static void switched_from_fair(struct rq *rq, struct task_struct *p) 11258 { 11259 detach_task_cfs_rq(p); 11260 } 11261 11262 static void switched_to_fair(struct rq *rq, struct task_struct *p) 11263 { 11264 attach_task_cfs_rq(p); 11265 11266 if (task_on_rq_queued(p)) { 11267 /* 11268 * We were most likely switched from sched_rt, so 11269 * kick off the schedule if running, otherwise just see 11270 * if we can still preempt the current task. 11271 */ 11272 if (task_current(rq, p)) 11273 resched_curr(rq); 11274 else 11275 check_preempt_curr(rq, p, 0); 11276 } 11277 } 11278 11279 /* Account for a task changing its policy or group. 11280 * 11281 * This routine is mostly called to set cfs_rq->curr field when a task 11282 * migrates between groups/classes. 11283 */ 11284 static void set_next_task_fair(struct rq *rq, struct task_struct *p, bool first) 11285 { 11286 struct sched_entity *se = &p->se; 11287 11288 #ifdef CONFIG_SMP 11289 if (task_on_rq_queued(p)) { 11290 /* 11291 * Move the next running task to the front of the list, so our 11292 * cfs_tasks list becomes MRU one. 11293 */ 11294 list_move(&se->group_node, &rq->cfs_tasks); 11295 } 11296 #endif 11297 11298 for_each_sched_entity(se) { 11299 struct cfs_rq *cfs_rq = cfs_rq_of(se); 11300 11301 set_next_entity(cfs_rq, se); 11302 /* ensure bandwidth has been allocated on our new cfs_rq */ 11303 account_cfs_rq_runtime(cfs_rq, 0); 11304 } 11305 } 11306 11307 void init_cfs_rq(struct cfs_rq *cfs_rq) 11308 { 11309 cfs_rq->tasks_timeline = RB_ROOT_CACHED; 11310 cfs_rq->min_vruntime = (u64)(-(1LL << 20)); 11311 #ifndef CONFIG_64BIT 11312 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime; 11313 #endif 11314 #ifdef CONFIG_SMP 11315 raw_spin_lock_init(&cfs_rq->removed.lock); 11316 #endif 11317 } 11318 11319 #ifdef CONFIG_FAIR_GROUP_SCHED 11320 static void task_set_group_fair(struct task_struct *p) 11321 { 11322 struct sched_entity *se = &p->se; 11323 11324 set_task_rq(p, task_cpu(p)); 11325 se->depth = se->parent ? se->parent->depth + 1 : 0; 11326 } 11327 11328 static void task_move_group_fair(struct task_struct *p) 11329 { 11330 detach_task_cfs_rq(p); 11331 set_task_rq(p, task_cpu(p)); 11332 11333 #ifdef CONFIG_SMP 11334 /* Tell se's cfs_rq has been changed -- migrated */ 11335 p->se.avg.last_update_time = 0; 11336 #endif 11337 attach_task_cfs_rq(p); 11338 } 11339 11340 static void task_change_group_fair(struct task_struct *p, int type) 11341 { 11342 switch (type) { 11343 case TASK_SET_GROUP: 11344 task_set_group_fair(p); 11345 break; 11346 11347 case TASK_MOVE_GROUP: 11348 task_move_group_fair(p); 11349 break; 11350 } 11351 } 11352 11353 void free_fair_sched_group(struct task_group *tg) 11354 { 11355 int i; 11356 11357 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg)); 11358 11359 for_each_possible_cpu(i) { 11360 if (tg->cfs_rq) 11361 kfree(tg->cfs_rq[i]); 11362 if (tg->se) 11363 kfree(tg->se[i]); 11364 } 11365 11366 kfree(tg->cfs_rq); 11367 kfree(tg->se); 11368 } 11369 11370 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent) 11371 { 11372 struct sched_entity *se; 11373 struct cfs_rq *cfs_rq; 11374 int i; 11375 11376 tg->cfs_rq = kcalloc(nr_cpu_ids, sizeof(cfs_rq), GFP_KERNEL); 11377 if (!tg->cfs_rq) 11378 goto err; 11379 tg->se = kcalloc(nr_cpu_ids, sizeof(se), GFP_KERNEL); 11380 if (!tg->se) 11381 goto err; 11382 11383 tg->shares = NICE_0_LOAD; 11384 11385 init_cfs_bandwidth(tg_cfs_bandwidth(tg)); 11386 11387 for_each_possible_cpu(i) { 11388 cfs_rq = kzalloc_node(sizeof(struct cfs_rq), 11389 GFP_KERNEL, cpu_to_node(i)); 11390 if (!cfs_rq) 11391 goto err; 11392 11393 se = kzalloc_node(sizeof(struct sched_entity), 11394 GFP_KERNEL, cpu_to_node(i)); 11395 if (!se) 11396 goto err_free_rq; 11397 11398 init_cfs_rq(cfs_rq); 11399 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]); 11400 init_entity_runnable_average(se); 11401 } 11402 11403 return 1; 11404 11405 err_free_rq: 11406 kfree(cfs_rq); 11407 err: 11408 return 0; 11409 } 11410 11411 void online_fair_sched_group(struct task_group *tg) 11412 { 11413 struct sched_entity *se; 11414 struct rq_flags rf; 11415 struct rq *rq; 11416 int i; 11417 11418 for_each_possible_cpu(i) { 11419 rq = cpu_rq(i); 11420 se = tg->se[i]; 11421 rq_lock_irq(rq, &rf); 11422 update_rq_clock(rq); 11423 attach_entity_cfs_rq(se); 11424 sync_throttle(tg, i); 11425 rq_unlock_irq(rq, &rf); 11426 } 11427 } 11428 11429 void unregister_fair_sched_group(struct task_group *tg) 11430 { 11431 unsigned long flags; 11432 struct rq *rq; 11433 int cpu; 11434 11435 for_each_possible_cpu(cpu) { 11436 if (tg->se[cpu]) 11437 remove_entity_load_avg(tg->se[cpu]); 11438 11439 /* 11440 * Only empty task groups can be destroyed; so we can speculatively 11441 * check on_list without danger of it being re-added. 11442 */ 11443 if (!tg->cfs_rq[cpu]->on_list) 11444 continue; 11445 11446 rq = cpu_rq(cpu); 11447 11448 raw_spin_rq_lock_irqsave(rq, flags); 11449 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]); 11450 raw_spin_rq_unlock_irqrestore(rq, flags); 11451 } 11452 } 11453 11454 void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq, 11455 struct sched_entity *se, int cpu, 11456 struct sched_entity *parent) 11457 { 11458 struct rq *rq = cpu_rq(cpu); 11459 11460 cfs_rq->tg = tg; 11461 cfs_rq->rq = rq; 11462 init_cfs_rq_runtime(cfs_rq); 11463 11464 tg->cfs_rq[cpu] = cfs_rq; 11465 tg->se[cpu] = se; 11466 11467 /* se could be NULL for root_task_group */ 11468 if (!se) 11469 return; 11470 11471 if (!parent) { 11472 se->cfs_rq = &rq->cfs; 11473 se->depth = 0; 11474 } else { 11475 se->cfs_rq = parent->my_q; 11476 se->depth = parent->depth + 1; 11477 } 11478 11479 se->my_q = cfs_rq; 11480 /* guarantee group entities always have weight */ 11481 update_load_set(&se->load, NICE_0_LOAD); 11482 se->parent = parent; 11483 } 11484 11485 static DEFINE_MUTEX(shares_mutex); 11486 11487 static int __sched_group_set_shares(struct task_group *tg, unsigned long shares) 11488 { 11489 int i; 11490 11491 lockdep_assert_held(&shares_mutex); 11492 11493 /* 11494 * We can't change the weight of the root cgroup. 11495 */ 11496 if (!tg->se[0]) 11497 return -EINVAL; 11498 11499 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES)); 11500 11501 if (tg->shares == shares) 11502 return 0; 11503 11504 tg->shares = shares; 11505 for_each_possible_cpu(i) { 11506 struct rq *rq = cpu_rq(i); 11507 struct sched_entity *se = tg->se[i]; 11508 struct rq_flags rf; 11509 11510 /* Propagate contribution to hierarchy */ 11511 rq_lock_irqsave(rq, &rf); 11512 update_rq_clock(rq); 11513 for_each_sched_entity(se) { 11514 update_load_avg(cfs_rq_of(se), se, UPDATE_TG); 11515 update_cfs_group(se); 11516 } 11517 rq_unlock_irqrestore(rq, &rf); 11518 } 11519 11520 return 0; 11521 } 11522 11523 int sched_group_set_shares(struct task_group *tg, unsigned long shares) 11524 { 11525 int ret; 11526 11527 mutex_lock(&shares_mutex); 11528 if (tg_is_idle(tg)) 11529 ret = -EINVAL; 11530 else 11531 ret = __sched_group_set_shares(tg, shares); 11532 mutex_unlock(&shares_mutex); 11533 11534 return ret; 11535 } 11536 11537 int sched_group_set_idle(struct task_group *tg, long idle) 11538 { 11539 int i; 11540 11541 if (tg == &root_task_group) 11542 return -EINVAL; 11543 11544 if (idle < 0 || idle > 1) 11545 return -EINVAL; 11546 11547 mutex_lock(&shares_mutex); 11548 11549 if (tg->idle == idle) { 11550 mutex_unlock(&shares_mutex); 11551 return 0; 11552 } 11553 11554 tg->idle = idle; 11555 11556 for_each_possible_cpu(i) { 11557 struct rq *rq = cpu_rq(i); 11558 struct sched_entity *se = tg->se[i]; 11559 struct cfs_rq *grp_cfs_rq = tg->cfs_rq[i]; 11560 bool was_idle = cfs_rq_is_idle(grp_cfs_rq); 11561 long idle_task_delta; 11562 struct rq_flags rf; 11563 11564 rq_lock_irqsave(rq, &rf); 11565 11566 grp_cfs_rq->idle = idle; 11567 if (WARN_ON_ONCE(was_idle == cfs_rq_is_idle(grp_cfs_rq))) 11568 goto next_cpu; 11569 11570 idle_task_delta = grp_cfs_rq->h_nr_running - 11571 grp_cfs_rq->idle_h_nr_running; 11572 if (!cfs_rq_is_idle(grp_cfs_rq)) 11573 idle_task_delta *= -1; 11574 11575 for_each_sched_entity(se) { 11576 struct cfs_rq *cfs_rq = cfs_rq_of(se); 11577 11578 if (!se->on_rq) 11579 break; 11580 11581 cfs_rq->idle_h_nr_running += idle_task_delta; 11582 11583 /* Already accounted at parent level and above. */ 11584 if (cfs_rq_is_idle(cfs_rq)) 11585 break; 11586 } 11587 11588 next_cpu: 11589 rq_unlock_irqrestore(rq, &rf); 11590 } 11591 11592 /* Idle groups have minimum weight. */ 11593 if (tg_is_idle(tg)) 11594 __sched_group_set_shares(tg, scale_load(WEIGHT_IDLEPRIO)); 11595 else 11596 __sched_group_set_shares(tg, NICE_0_LOAD); 11597 11598 mutex_unlock(&shares_mutex); 11599 return 0; 11600 } 11601 11602 #else /* CONFIG_FAIR_GROUP_SCHED */ 11603 11604 void free_fair_sched_group(struct task_group *tg) { } 11605 11606 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent) 11607 { 11608 return 1; 11609 } 11610 11611 void online_fair_sched_group(struct task_group *tg) { } 11612 11613 void unregister_fair_sched_group(struct task_group *tg) { } 11614 11615 #endif /* CONFIG_FAIR_GROUP_SCHED */ 11616 11617 11618 static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task) 11619 { 11620 struct sched_entity *se = &task->se; 11621 unsigned int rr_interval = 0; 11622 11623 /* 11624 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise 11625 * idle runqueue: 11626 */ 11627 if (rq->cfs.load.weight) 11628 rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se)); 11629 11630 return rr_interval; 11631 } 11632 11633 /* 11634 * All the scheduling class methods: 11635 */ 11636 DEFINE_SCHED_CLASS(fair) = { 11637 11638 .enqueue_task = enqueue_task_fair, 11639 .dequeue_task = dequeue_task_fair, 11640 .yield_task = yield_task_fair, 11641 .yield_to_task = yield_to_task_fair, 11642 11643 .check_preempt_curr = check_preempt_wakeup, 11644 11645 .pick_next_task = __pick_next_task_fair, 11646 .put_prev_task = put_prev_task_fair, 11647 .set_next_task = set_next_task_fair, 11648 11649 #ifdef CONFIG_SMP 11650 .balance = balance_fair, 11651 .pick_task = pick_task_fair, 11652 .select_task_rq = select_task_rq_fair, 11653 .migrate_task_rq = migrate_task_rq_fair, 11654 11655 .rq_online = rq_online_fair, 11656 .rq_offline = rq_offline_fair, 11657 11658 .task_dead = task_dead_fair, 11659 .set_cpus_allowed = set_cpus_allowed_common, 11660 #endif 11661 11662 .task_tick = task_tick_fair, 11663 .task_fork = task_fork_fair, 11664 11665 .prio_changed = prio_changed_fair, 11666 .switched_from = switched_from_fair, 11667 .switched_to = switched_to_fair, 11668 11669 .get_rr_interval = get_rr_interval_fair, 11670 11671 .update_curr = update_curr_fair, 11672 11673 #ifdef CONFIG_FAIR_GROUP_SCHED 11674 .task_change_group = task_change_group_fair, 11675 #endif 11676 11677 #ifdef CONFIG_UCLAMP_TASK 11678 .uclamp_enabled = 1, 11679 #endif 11680 }; 11681 11682 #ifdef CONFIG_SCHED_DEBUG 11683 void print_cfs_stats(struct seq_file *m, int cpu) 11684 { 11685 struct cfs_rq *cfs_rq, *pos; 11686 11687 rcu_read_lock(); 11688 for_each_leaf_cfs_rq_safe(cpu_rq(cpu), cfs_rq, pos) 11689 print_cfs_rq(m, cpu, cfs_rq); 11690 rcu_read_unlock(); 11691 } 11692 11693 #ifdef CONFIG_NUMA_BALANCING 11694 void show_numa_stats(struct task_struct *p, struct seq_file *m) 11695 { 11696 int node; 11697 unsigned long tsf = 0, tpf = 0, gsf = 0, gpf = 0; 11698 struct numa_group *ng; 11699 11700 rcu_read_lock(); 11701 ng = rcu_dereference(p->numa_group); 11702 for_each_online_node(node) { 11703 if (p->numa_faults) { 11704 tsf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 0)]; 11705 tpf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 1)]; 11706 } 11707 if (ng) { 11708 gsf = ng->faults[task_faults_idx(NUMA_MEM, node, 0)], 11709 gpf = ng->faults[task_faults_idx(NUMA_MEM, node, 1)]; 11710 } 11711 print_numa_stats(m, node, tsf, tpf, gsf, gpf); 11712 } 11713 rcu_read_unlock(); 11714 } 11715 #endif /* CONFIG_NUMA_BALANCING */ 11716 #endif /* CONFIG_SCHED_DEBUG */ 11717 11718 __init void init_sched_fair_class(void) 11719 { 11720 #ifdef CONFIG_SMP 11721 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains); 11722 11723 #ifdef CONFIG_NO_HZ_COMMON 11724 nohz.next_balance = jiffies; 11725 nohz.next_blocked = jiffies; 11726 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT); 11727 #endif 11728 #endif /* SMP */ 11729 11730 } 11731 11732 /* 11733 * Helper functions to facilitate extracting info from tracepoints. 11734 */ 11735 11736 const struct sched_avg *sched_trace_cfs_rq_avg(struct cfs_rq *cfs_rq) 11737 { 11738 #ifdef CONFIG_SMP 11739 return cfs_rq ? &cfs_rq->avg : NULL; 11740 #else 11741 return NULL; 11742 #endif 11743 } 11744 EXPORT_SYMBOL_GPL(sched_trace_cfs_rq_avg); 11745 11746 char *sched_trace_cfs_rq_path(struct cfs_rq *cfs_rq, char *str, int len) 11747 { 11748 if (!cfs_rq) { 11749 if (str) 11750 strlcpy(str, "(null)", len); 11751 else 11752 return NULL; 11753 } 11754 11755 cfs_rq_tg_path(cfs_rq, str, len); 11756 return str; 11757 } 11758 EXPORT_SYMBOL_GPL(sched_trace_cfs_rq_path); 11759 11760 int sched_trace_cfs_rq_cpu(struct cfs_rq *cfs_rq) 11761 { 11762 return cfs_rq ? cpu_of(rq_of(cfs_rq)) : -1; 11763 } 11764 EXPORT_SYMBOL_GPL(sched_trace_cfs_rq_cpu); 11765 11766 const struct sched_avg *sched_trace_rq_avg_rt(struct rq *rq) 11767 { 11768 #ifdef CONFIG_SMP 11769 return rq ? &rq->avg_rt : NULL; 11770 #else 11771 return NULL; 11772 #endif 11773 } 11774 EXPORT_SYMBOL_GPL(sched_trace_rq_avg_rt); 11775 11776 const struct sched_avg *sched_trace_rq_avg_dl(struct rq *rq) 11777 { 11778 #ifdef CONFIG_SMP 11779 return rq ? &rq->avg_dl : NULL; 11780 #else 11781 return NULL; 11782 #endif 11783 } 11784 EXPORT_SYMBOL_GPL(sched_trace_rq_avg_dl); 11785 11786 const struct sched_avg *sched_trace_rq_avg_irq(struct rq *rq) 11787 { 11788 #if defined(CONFIG_SMP) && defined(CONFIG_HAVE_SCHED_AVG_IRQ) 11789 return rq ? &rq->avg_irq : NULL; 11790 #else 11791 return NULL; 11792 #endif 11793 } 11794 EXPORT_SYMBOL_GPL(sched_trace_rq_avg_irq); 11795 11796 int sched_trace_rq_cpu(struct rq *rq) 11797 { 11798 return rq ? cpu_of(rq) : -1; 11799 } 11800 EXPORT_SYMBOL_GPL(sched_trace_rq_cpu); 11801 11802 int sched_trace_rq_cpu_capacity(struct rq *rq) 11803 { 11804 return rq ? 11805 #ifdef CONFIG_SMP 11806 rq->cpu_capacity 11807 #else 11808 SCHED_CAPACITY_SCALE 11809 #endif 11810 : -1; 11811 } 11812 EXPORT_SYMBOL_GPL(sched_trace_rq_cpu_capacity); 11813 11814 const struct cpumask *sched_trace_rd_span(struct root_domain *rd) 11815 { 11816 #ifdef CONFIG_SMP 11817 return rd ? rd->span : NULL; 11818 #else 11819 return NULL; 11820 #endif 11821 } 11822 EXPORT_SYMBOL_GPL(sched_trace_rd_span); 11823 11824 int sched_trace_rq_nr_running(struct rq *rq) 11825 { 11826 return rq ? rq->nr_running : -1; 11827 } 11828 EXPORT_SYMBOL_GPL(sched_trace_rq_nr_running); 11829