xref: /openbmc/linux/kernel/sched/fair.c (revision 79e790ff)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
4  *
5  *  Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
6  *
7  *  Interactivity improvements by Mike Galbraith
8  *  (C) 2007 Mike Galbraith <efault@gmx.de>
9  *
10  *  Various enhancements by Dmitry Adamushko.
11  *  (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
12  *
13  *  Group scheduling enhancements by Srivatsa Vaddagiri
14  *  Copyright IBM Corporation, 2007
15  *  Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
16  *
17  *  Scaled math optimizations by Thomas Gleixner
18  *  Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
19  *
20  *  Adaptive scheduling granularity, math enhancements by Peter Zijlstra
21  *  Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
22  */
23 #include "sched.h"
24 
25 /*
26  * Targeted preemption latency for CPU-bound tasks:
27  *
28  * NOTE: this latency value is not the same as the concept of
29  * 'timeslice length' - timeslices in CFS are of variable length
30  * and have no persistent notion like in traditional, time-slice
31  * based scheduling concepts.
32  *
33  * (to see the precise effective timeslice length of your workload,
34  *  run vmstat and monitor the context-switches (cs) field)
35  *
36  * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
37  */
38 unsigned int sysctl_sched_latency			= 6000000ULL;
39 static unsigned int normalized_sysctl_sched_latency	= 6000000ULL;
40 
41 /*
42  * The initial- and re-scaling of tunables is configurable
43  *
44  * Options are:
45  *
46  *   SCHED_TUNABLESCALING_NONE - unscaled, always *1
47  *   SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
48  *   SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
49  *
50  * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
51  */
52 unsigned int sysctl_sched_tunable_scaling = SCHED_TUNABLESCALING_LOG;
53 
54 /*
55  * Minimal preemption granularity for CPU-bound tasks:
56  *
57  * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
58  */
59 unsigned int sysctl_sched_min_granularity			= 750000ULL;
60 static unsigned int normalized_sysctl_sched_min_granularity	= 750000ULL;
61 
62 /*
63  * This value is kept at sysctl_sched_latency/sysctl_sched_min_granularity
64  */
65 static unsigned int sched_nr_latency = 8;
66 
67 /*
68  * After fork, child runs first. If set to 0 (default) then
69  * parent will (try to) run first.
70  */
71 unsigned int sysctl_sched_child_runs_first __read_mostly;
72 
73 /*
74  * SCHED_OTHER wake-up granularity.
75  *
76  * This option delays the preemption effects of decoupled workloads
77  * and reduces their over-scheduling. Synchronous workloads will still
78  * have immediate wakeup/sleep latencies.
79  *
80  * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
81  */
82 unsigned int sysctl_sched_wakeup_granularity			= 1000000UL;
83 static unsigned int normalized_sysctl_sched_wakeup_granularity	= 1000000UL;
84 
85 const_debug unsigned int sysctl_sched_migration_cost	= 500000UL;
86 
87 int sched_thermal_decay_shift;
88 static int __init setup_sched_thermal_decay_shift(char *str)
89 {
90 	int _shift = 0;
91 
92 	if (kstrtoint(str, 0, &_shift))
93 		pr_warn("Unable to set scheduler thermal pressure decay shift parameter\n");
94 
95 	sched_thermal_decay_shift = clamp(_shift, 0, 10);
96 	return 1;
97 }
98 __setup("sched_thermal_decay_shift=", setup_sched_thermal_decay_shift);
99 
100 #ifdef CONFIG_SMP
101 /*
102  * For asym packing, by default the lower numbered CPU has higher priority.
103  */
104 int __weak arch_asym_cpu_priority(int cpu)
105 {
106 	return -cpu;
107 }
108 
109 /*
110  * The margin used when comparing utilization with CPU capacity.
111  *
112  * (default: ~20%)
113  */
114 #define fits_capacity(cap, max)	((cap) * 1280 < (max) * 1024)
115 
116 /*
117  * The margin used when comparing CPU capacities.
118  * is 'cap1' noticeably greater than 'cap2'
119  *
120  * (default: ~5%)
121  */
122 #define capacity_greater(cap1, cap2) ((cap1) * 1024 > (cap2) * 1078)
123 #endif
124 
125 #ifdef CONFIG_CFS_BANDWIDTH
126 /*
127  * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
128  * each time a cfs_rq requests quota.
129  *
130  * Note: in the case that the slice exceeds the runtime remaining (either due
131  * to consumption or the quota being specified to be smaller than the slice)
132  * we will always only issue the remaining available time.
133  *
134  * (default: 5 msec, units: microseconds)
135  */
136 unsigned int sysctl_sched_cfs_bandwidth_slice		= 5000UL;
137 #endif
138 
139 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
140 {
141 	lw->weight += inc;
142 	lw->inv_weight = 0;
143 }
144 
145 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
146 {
147 	lw->weight -= dec;
148 	lw->inv_weight = 0;
149 }
150 
151 static inline void update_load_set(struct load_weight *lw, unsigned long w)
152 {
153 	lw->weight = w;
154 	lw->inv_weight = 0;
155 }
156 
157 /*
158  * Increase the granularity value when there are more CPUs,
159  * because with more CPUs the 'effective latency' as visible
160  * to users decreases. But the relationship is not linear,
161  * so pick a second-best guess by going with the log2 of the
162  * number of CPUs.
163  *
164  * This idea comes from the SD scheduler of Con Kolivas:
165  */
166 static unsigned int get_update_sysctl_factor(void)
167 {
168 	unsigned int cpus = min_t(unsigned int, num_online_cpus(), 8);
169 	unsigned int factor;
170 
171 	switch (sysctl_sched_tunable_scaling) {
172 	case SCHED_TUNABLESCALING_NONE:
173 		factor = 1;
174 		break;
175 	case SCHED_TUNABLESCALING_LINEAR:
176 		factor = cpus;
177 		break;
178 	case SCHED_TUNABLESCALING_LOG:
179 	default:
180 		factor = 1 + ilog2(cpus);
181 		break;
182 	}
183 
184 	return factor;
185 }
186 
187 static void update_sysctl(void)
188 {
189 	unsigned int factor = get_update_sysctl_factor();
190 
191 #define SET_SYSCTL(name) \
192 	(sysctl_##name = (factor) * normalized_sysctl_##name)
193 	SET_SYSCTL(sched_min_granularity);
194 	SET_SYSCTL(sched_latency);
195 	SET_SYSCTL(sched_wakeup_granularity);
196 #undef SET_SYSCTL
197 }
198 
199 void __init sched_init_granularity(void)
200 {
201 	update_sysctl();
202 }
203 
204 #define WMULT_CONST	(~0U)
205 #define WMULT_SHIFT	32
206 
207 static void __update_inv_weight(struct load_weight *lw)
208 {
209 	unsigned long w;
210 
211 	if (likely(lw->inv_weight))
212 		return;
213 
214 	w = scale_load_down(lw->weight);
215 
216 	if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
217 		lw->inv_weight = 1;
218 	else if (unlikely(!w))
219 		lw->inv_weight = WMULT_CONST;
220 	else
221 		lw->inv_weight = WMULT_CONST / w;
222 }
223 
224 /*
225  * delta_exec * weight / lw.weight
226  *   OR
227  * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
228  *
229  * Either weight := NICE_0_LOAD and lw \e sched_prio_to_wmult[], in which case
230  * we're guaranteed shift stays positive because inv_weight is guaranteed to
231  * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
232  *
233  * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
234  * weight/lw.weight <= 1, and therefore our shift will also be positive.
235  */
236 static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw)
237 {
238 	u64 fact = scale_load_down(weight);
239 	u32 fact_hi = (u32)(fact >> 32);
240 	int shift = WMULT_SHIFT;
241 	int fs;
242 
243 	__update_inv_weight(lw);
244 
245 	if (unlikely(fact_hi)) {
246 		fs = fls(fact_hi);
247 		shift -= fs;
248 		fact >>= fs;
249 	}
250 
251 	fact = mul_u32_u32(fact, lw->inv_weight);
252 
253 	fact_hi = (u32)(fact >> 32);
254 	if (fact_hi) {
255 		fs = fls(fact_hi);
256 		shift -= fs;
257 		fact >>= fs;
258 	}
259 
260 	return mul_u64_u32_shr(delta_exec, fact, shift);
261 }
262 
263 
264 const struct sched_class fair_sched_class;
265 
266 /**************************************************************
267  * CFS operations on generic schedulable entities:
268  */
269 
270 #ifdef CONFIG_FAIR_GROUP_SCHED
271 static inline struct task_struct *task_of(struct sched_entity *se)
272 {
273 	SCHED_WARN_ON(!entity_is_task(se));
274 	return container_of(se, struct task_struct, se);
275 }
276 
277 /* Walk up scheduling entities hierarchy */
278 #define for_each_sched_entity(se) \
279 		for (; se; se = se->parent)
280 
281 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
282 {
283 	return p->se.cfs_rq;
284 }
285 
286 /* runqueue on which this entity is (to be) queued */
287 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
288 {
289 	return se->cfs_rq;
290 }
291 
292 /* runqueue "owned" by this group */
293 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
294 {
295 	return grp->my_q;
296 }
297 
298 static inline void cfs_rq_tg_path(struct cfs_rq *cfs_rq, char *path, int len)
299 {
300 	if (!path)
301 		return;
302 
303 	if (cfs_rq && task_group_is_autogroup(cfs_rq->tg))
304 		autogroup_path(cfs_rq->tg, path, len);
305 	else if (cfs_rq && cfs_rq->tg->css.cgroup)
306 		cgroup_path(cfs_rq->tg->css.cgroup, path, len);
307 	else
308 		strlcpy(path, "(null)", len);
309 }
310 
311 static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
312 {
313 	struct rq *rq = rq_of(cfs_rq);
314 	int cpu = cpu_of(rq);
315 
316 	if (cfs_rq->on_list)
317 		return rq->tmp_alone_branch == &rq->leaf_cfs_rq_list;
318 
319 	cfs_rq->on_list = 1;
320 
321 	/*
322 	 * Ensure we either appear before our parent (if already
323 	 * enqueued) or force our parent to appear after us when it is
324 	 * enqueued. The fact that we always enqueue bottom-up
325 	 * reduces this to two cases and a special case for the root
326 	 * cfs_rq. Furthermore, it also means that we will always reset
327 	 * tmp_alone_branch either when the branch is connected
328 	 * to a tree or when we reach the top of the tree
329 	 */
330 	if (cfs_rq->tg->parent &&
331 	    cfs_rq->tg->parent->cfs_rq[cpu]->on_list) {
332 		/*
333 		 * If parent is already on the list, we add the child
334 		 * just before. Thanks to circular linked property of
335 		 * the list, this means to put the child at the tail
336 		 * of the list that starts by parent.
337 		 */
338 		list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
339 			&(cfs_rq->tg->parent->cfs_rq[cpu]->leaf_cfs_rq_list));
340 		/*
341 		 * The branch is now connected to its tree so we can
342 		 * reset tmp_alone_branch to the beginning of the
343 		 * list.
344 		 */
345 		rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
346 		return true;
347 	}
348 
349 	if (!cfs_rq->tg->parent) {
350 		/*
351 		 * cfs rq without parent should be put
352 		 * at the tail of the list.
353 		 */
354 		list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
355 			&rq->leaf_cfs_rq_list);
356 		/*
357 		 * We have reach the top of a tree so we can reset
358 		 * tmp_alone_branch to the beginning of the list.
359 		 */
360 		rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
361 		return true;
362 	}
363 
364 	/*
365 	 * The parent has not already been added so we want to
366 	 * make sure that it will be put after us.
367 	 * tmp_alone_branch points to the begin of the branch
368 	 * where we will add parent.
369 	 */
370 	list_add_rcu(&cfs_rq->leaf_cfs_rq_list, rq->tmp_alone_branch);
371 	/*
372 	 * update tmp_alone_branch to points to the new begin
373 	 * of the branch
374 	 */
375 	rq->tmp_alone_branch = &cfs_rq->leaf_cfs_rq_list;
376 	return false;
377 }
378 
379 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
380 {
381 	if (cfs_rq->on_list) {
382 		struct rq *rq = rq_of(cfs_rq);
383 
384 		/*
385 		 * With cfs_rq being unthrottled/throttled during an enqueue,
386 		 * it can happen the tmp_alone_branch points the a leaf that
387 		 * we finally want to del. In this case, tmp_alone_branch moves
388 		 * to the prev element but it will point to rq->leaf_cfs_rq_list
389 		 * at the end of the enqueue.
390 		 */
391 		if (rq->tmp_alone_branch == &cfs_rq->leaf_cfs_rq_list)
392 			rq->tmp_alone_branch = cfs_rq->leaf_cfs_rq_list.prev;
393 
394 		list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
395 		cfs_rq->on_list = 0;
396 	}
397 }
398 
399 static inline void assert_list_leaf_cfs_rq(struct rq *rq)
400 {
401 	SCHED_WARN_ON(rq->tmp_alone_branch != &rq->leaf_cfs_rq_list);
402 }
403 
404 /* Iterate thr' all leaf cfs_rq's on a runqueue */
405 #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos)			\
406 	list_for_each_entry_safe(cfs_rq, pos, &rq->leaf_cfs_rq_list,	\
407 				 leaf_cfs_rq_list)
408 
409 /* Do the two (enqueued) entities belong to the same group ? */
410 static inline struct cfs_rq *
411 is_same_group(struct sched_entity *se, struct sched_entity *pse)
412 {
413 	if (se->cfs_rq == pse->cfs_rq)
414 		return se->cfs_rq;
415 
416 	return NULL;
417 }
418 
419 static inline struct sched_entity *parent_entity(struct sched_entity *se)
420 {
421 	return se->parent;
422 }
423 
424 static void
425 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
426 {
427 	int se_depth, pse_depth;
428 
429 	/*
430 	 * preemption test can be made between sibling entities who are in the
431 	 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
432 	 * both tasks until we find their ancestors who are siblings of common
433 	 * parent.
434 	 */
435 
436 	/* First walk up until both entities are at same depth */
437 	se_depth = (*se)->depth;
438 	pse_depth = (*pse)->depth;
439 
440 	while (se_depth > pse_depth) {
441 		se_depth--;
442 		*se = parent_entity(*se);
443 	}
444 
445 	while (pse_depth > se_depth) {
446 		pse_depth--;
447 		*pse = parent_entity(*pse);
448 	}
449 
450 	while (!is_same_group(*se, *pse)) {
451 		*se = parent_entity(*se);
452 		*pse = parent_entity(*pse);
453 	}
454 }
455 
456 #else	/* !CONFIG_FAIR_GROUP_SCHED */
457 
458 static inline struct task_struct *task_of(struct sched_entity *se)
459 {
460 	return container_of(se, struct task_struct, se);
461 }
462 
463 #define for_each_sched_entity(se) \
464 		for (; se; se = NULL)
465 
466 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
467 {
468 	return &task_rq(p)->cfs;
469 }
470 
471 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
472 {
473 	struct task_struct *p = task_of(se);
474 	struct rq *rq = task_rq(p);
475 
476 	return &rq->cfs;
477 }
478 
479 /* runqueue "owned" by this group */
480 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
481 {
482 	return NULL;
483 }
484 
485 static inline void cfs_rq_tg_path(struct cfs_rq *cfs_rq, char *path, int len)
486 {
487 	if (path)
488 		strlcpy(path, "(null)", len);
489 }
490 
491 static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
492 {
493 	return true;
494 }
495 
496 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
497 {
498 }
499 
500 static inline void assert_list_leaf_cfs_rq(struct rq *rq)
501 {
502 }
503 
504 #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos)	\
505 		for (cfs_rq = &rq->cfs, pos = NULL; cfs_rq; cfs_rq = pos)
506 
507 static inline struct sched_entity *parent_entity(struct sched_entity *se)
508 {
509 	return NULL;
510 }
511 
512 static inline void
513 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
514 {
515 }
516 
517 #endif	/* CONFIG_FAIR_GROUP_SCHED */
518 
519 static __always_inline
520 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec);
521 
522 /**************************************************************
523  * Scheduling class tree data structure manipulation methods:
524  */
525 
526 static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
527 {
528 	s64 delta = (s64)(vruntime - max_vruntime);
529 	if (delta > 0)
530 		max_vruntime = vruntime;
531 
532 	return max_vruntime;
533 }
534 
535 static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
536 {
537 	s64 delta = (s64)(vruntime - min_vruntime);
538 	if (delta < 0)
539 		min_vruntime = vruntime;
540 
541 	return min_vruntime;
542 }
543 
544 static inline bool entity_before(struct sched_entity *a,
545 				struct sched_entity *b)
546 {
547 	return (s64)(a->vruntime - b->vruntime) < 0;
548 }
549 
550 #define __node_2_se(node) \
551 	rb_entry((node), struct sched_entity, run_node)
552 
553 static void update_min_vruntime(struct cfs_rq *cfs_rq)
554 {
555 	struct sched_entity *curr = cfs_rq->curr;
556 	struct rb_node *leftmost = rb_first_cached(&cfs_rq->tasks_timeline);
557 
558 	u64 vruntime = cfs_rq->min_vruntime;
559 
560 	if (curr) {
561 		if (curr->on_rq)
562 			vruntime = curr->vruntime;
563 		else
564 			curr = NULL;
565 	}
566 
567 	if (leftmost) { /* non-empty tree */
568 		struct sched_entity *se = __node_2_se(leftmost);
569 
570 		if (!curr)
571 			vruntime = se->vruntime;
572 		else
573 			vruntime = min_vruntime(vruntime, se->vruntime);
574 	}
575 
576 	/* ensure we never gain time by being placed backwards. */
577 	cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
578 #ifndef CONFIG_64BIT
579 	smp_wmb();
580 	cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
581 #endif
582 }
583 
584 static inline bool __entity_less(struct rb_node *a, const struct rb_node *b)
585 {
586 	return entity_before(__node_2_se(a), __node_2_se(b));
587 }
588 
589 /*
590  * Enqueue an entity into the rb-tree:
591  */
592 static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
593 {
594 	rb_add_cached(&se->run_node, &cfs_rq->tasks_timeline, __entity_less);
595 }
596 
597 static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
598 {
599 	rb_erase_cached(&se->run_node, &cfs_rq->tasks_timeline);
600 }
601 
602 struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
603 {
604 	struct rb_node *left = rb_first_cached(&cfs_rq->tasks_timeline);
605 
606 	if (!left)
607 		return NULL;
608 
609 	return __node_2_se(left);
610 }
611 
612 static struct sched_entity *__pick_next_entity(struct sched_entity *se)
613 {
614 	struct rb_node *next = rb_next(&se->run_node);
615 
616 	if (!next)
617 		return NULL;
618 
619 	return __node_2_se(next);
620 }
621 
622 #ifdef CONFIG_SCHED_DEBUG
623 struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
624 {
625 	struct rb_node *last = rb_last(&cfs_rq->tasks_timeline.rb_root);
626 
627 	if (!last)
628 		return NULL;
629 
630 	return __node_2_se(last);
631 }
632 
633 /**************************************************************
634  * Scheduling class statistics methods:
635  */
636 
637 int sched_update_scaling(void)
638 {
639 	unsigned int factor = get_update_sysctl_factor();
640 
641 	sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
642 					sysctl_sched_min_granularity);
643 
644 #define WRT_SYSCTL(name) \
645 	(normalized_sysctl_##name = sysctl_##name / (factor))
646 	WRT_SYSCTL(sched_min_granularity);
647 	WRT_SYSCTL(sched_latency);
648 	WRT_SYSCTL(sched_wakeup_granularity);
649 #undef WRT_SYSCTL
650 
651 	return 0;
652 }
653 #endif
654 
655 /*
656  * delta /= w
657  */
658 static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
659 {
660 	if (unlikely(se->load.weight != NICE_0_LOAD))
661 		delta = __calc_delta(delta, NICE_0_LOAD, &se->load);
662 
663 	return delta;
664 }
665 
666 /*
667  * The idea is to set a period in which each task runs once.
668  *
669  * When there are too many tasks (sched_nr_latency) we have to stretch
670  * this period because otherwise the slices get too small.
671  *
672  * p = (nr <= nl) ? l : l*nr/nl
673  */
674 static u64 __sched_period(unsigned long nr_running)
675 {
676 	if (unlikely(nr_running > sched_nr_latency))
677 		return nr_running * sysctl_sched_min_granularity;
678 	else
679 		return sysctl_sched_latency;
680 }
681 
682 /*
683  * We calculate the wall-time slice from the period by taking a part
684  * proportional to the weight.
685  *
686  * s = p*P[w/rw]
687  */
688 static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
689 {
690 	unsigned int nr_running = cfs_rq->nr_running;
691 	u64 slice;
692 
693 	if (sched_feat(ALT_PERIOD))
694 		nr_running = rq_of(cfs_rq)->cfs.h_nr_running;
695 
696 	slice = __sched_period(nr_running + !se->on_rq);
697 
698 	for_each_sched_entity(se) {
699 		struct load_weight *load;
700 		struct load_weight lw;
701 
702 		cfs_rq = cfs_rq_of(se);
703 		load = &cfs_rq->load;
704 
705 		if (unlikely(!se->on_rq)) {
706 			lw = cfs_rq->load;
707 
708 			update_load_add(&lw, se->load.weight);
709 			load = &lw;
710 		}
711 		slice = __calc_delta(slice, se->load.weight, load);
712 	}
713 
714 	if (sched_feat(BASE_SLICE))
715 		slice = max(slice, (u64)sysctl_sched_min_granularity);
716 
717 	return slice;
718 }
719 
720 /*
721  * We calculate the vruntime slice of a to-be-inserted task.
722  *
723  * vs = s/w
724  */
725 static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
726 {
727 	return calc_delta_fair(sched_slice(cfs_rq, se), se);
728 }
729 
730 #include "pelt.h"
731 #ifdef CONFIG_SMP
732 
733 static int select_idle_sibling(struct task_struct *p, int prev_cpu, int cpu);
734 static unsigned long task_h_load(struct task_struct *p);
735 static unsigned long capacity_of(int cpu);
736 
737 /* Give new sched_entity start runnable values to heavy its load in infant time */
738 void init_entity_runnable_average(struct sched_entity *se)
739 {
740 	struct sched_avg *sa = &se->avg;
741 
742 	memset(sa, 0, sizeof(*sa));
743 
744 	/*
745 	 * Tasks are initialized with full load to be seen as heavy tasks until
746 	 * they get a chance to stabilize to their real load level.
747 	 * Group entities are initialized with zero load to reflect the fact that
748 	 * nothing has been attached to the task group yet.
749 	 */
750 	if (entity_is_task(se))
751 		sa->load_avg = scale_load_down(se->load.weight);
752 
753 	/* when this task enqueue'ed, it will contribute to its cfs_rq's load_avg */
754 }
755 
756 static void attach_entity_cfs_rq(struct sched_entity *se);
757 
758 /*
759  * With new tasks being created, their initial util_avgs are extrapolated
760  * based on the cfs_rq's current util_avg:
761  *
762  *   util_avg = cfs_rq->util_avg / (cfs_rq->load_avg + 1) * se.load.weight
763  *
764  * However, in many cases, the above util_avg does not give a desired
765  * value. Moreover, the sum of the util_avgs may be divergent, such
766  * as when the series is a harmonic series.
767  *
768  * To solve this problem, we also cap the util_avg of successive tasks to
769  * only 1/2 of the left utilization budget:
770  *
771  *   util_avg_cap = (cpu_scale - cfs_rq->avg.util_avg) / 2^n
772  *
773  * where n denotes the nth task and cpu_scale the CPU capacity.
774  *
775  * For example, for a CPU with 1024 of capacity, a simplest series from
776  * the beginning would be like:
777  *
778  *  task  util_avg: 512, 256, 128,  64,  32,   16,    8, ...
779  * cfs_rq util_avg: 512, 768, 896, 960, 992, 1008, 1016, ...
780  *
781  * Finally, that extrapolated util_avg is clamped to the cap (util_avg_cap)
782  * if util_avg > util_avg_cap.
783  */
784 void post_init_entity_util_avg(struct task_struct *p)
785 {
786 	struct sched_entity *se = &p->se;
787 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
788 	struct sched_avg *sa = &se->avg;
789 	long cpu_scale = arch_scale_cpu_capacity(cpu_of(rq_of(cfs_rq)));
790 	long cap = (long)(cpu_scale - cfs_rq->avg.util_avg) / 2;
791 
792 	if (cap > 0) {
793 		if (cfs_rq->avg.util_avg != 0) {
794 			sa->util_avg  = cfs_rq->avg.util_avg * se->load.weight;
795 			sa->util_avg /= (cfs_rq->avg.load_avg + 1);
796 
797 			if (sa->util_avg > cap)
798 				sa->util_avg = cap;
799 		} else {
800 			sa->util_avg = cap;
801 		}
802 	}
803 
804 	sa->runnable_avg = sa->util_avg;
805 
806 	if (p->sched_class != &fair_sched_class) {
807 		/*
808 		 * For !fair tasks do:
809 		 *
810 		update_cfs_rq_load_avg(now, cfs_rq);
811 		attach_entity_load_avg(cfs_rq, se);
812 		switched_from_fair(rq, p);
813 		 *
814 		 * such that the next switched_to_fair() has the
815 		 * expected state.
816 		 */
817 		se->avg.last_update_time = cfs_rq_clock_pelt(cfs_rq);
818 		return;
819 	}
820 
821 	attach_entity_cfs_rq(se);
822 }
823 
824 #else /* !CONFIG_SMP */
825 void init_entity_runnable_average(struct sched_entity *se)
826 {
827 }
828 void post_init_entity_util_avg(struct task_struct *p)
829 {
830 }
831 static void update_tg_load_avg(struct cfs_rq *cfs_rq)
832 {
833 }
834 #endif /* CONFIG_SMP */
835 
836 /*
837  * Update the current task's runtime statistics.
838  */
839 static void update_curr(struct cfs_rq *cfs_rq)
840 {
841 	struct sched_entity *curr = cfs_rq->curr;
842 	u64 now = rq_clock_task(rq_of(cfs_rq));
843 	u64 delta_exec;
844 
845 	if (unlikely(!curr))
846 		return;
847 
848 	delta_exec = now - curr->exec_start;
849 	if (unlikely((s64)delta_exec <= 0))
850 		return;
851 
852 	curr->exec_start = now;
853 
854 	schedstat_set(curr->statistics.exec_max,
855 		      max(delta_exec, curr->statistics.exec_max));
856 
857 	curr->sum_exec_runtime += delta_exec;
858 	schedstat_add(cfs_rq->exec_clock, delta_exec);
859 
860 	curr->vruntime += calc_delta_fair(delta_exec, curr);
861 	update_min_vruntime(cfs_rq);
862 
863 	if (entity_is_task(curr)) {
864 		struct task_struct *curtask = task_of(curr);
865 
866 		trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
867 		cgroup_account_cputime(curtask, delta_exec);
868 		account_group_exec_runtime(curtask, delta_exec);
869 	}
870 
871 	account_cfs_rq_runtime(cfs_rq, delta_exec);
872 }
873 
874 static void update_curr_fair(struct rq *rq)
875 {
876 	update_curr(cfs_rq_of(&rq->curr->se));
877 }
878 
879 static inline void
880 update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
881 {
882 	u64 wait_start, prev_wait_start;
883 
884 	if (!schedstat_enabled())
885 		return;
886 
887 	wait_start = rq_clock(rq_of(cfs_rq));
888 	prev_wait_start = schedstat_val(se->statistics.wait_start);
889 
890 	if (entity_is_task(se) && task_on_rq_migrating(task_of(se)) &&
891 	    likely(wait_start > prev_wait_start))
892 		wait_start -= prev_wait_start;
893 
894 	__schedstat_set(se->statistics.wait_start, wait_start);
895 }
896 
897 static inline void
898 update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
899 {
900 	struct task_struct *p;
901 	u64 delta;
902 
903 	if (!schedstat_enabled())
904 		return;
905 
906 	/*
907 	 * When the sched_schedstat changes from 0 to 1, some sched se
908 	 * maybe already in the runqueue, the se->statistics.wait_start
909 	 * will be 0.So it will let the delta wrong. We need to avoid this
910 	 * scenario.
911 	 */
912 	if (unlikely(!schedstat_val(se->statistics.wait_start)))
913 		return;
914 
915 	delta = rq_clock(rq_of(cfs_rq)) - schedstat_val(se->statistics.wait_start);
916 
917 	if (entity_is_task(se)) {
918 		p = task_of(se);
919 		if (task_on_rq_migrating(p)) {
920 			/*
921 			 * Preserve migrating task's wait time so wait_start
922 			 * time stamp can be adjusted to accumulate wait time
923 			 * prior to migration.
924 			 */
925 			__schedstat_set(se->statistics.wait_start, delta);
926 			return;
927 		}
928 		trace_sched_stat_wait(p, delta);
929 	}
930 
931 	__schedstat_set(se->statistics.wait_max,
932 		      max(schedstat_val(se->statistics.wait_max), delta));
933 	__schedstat_inc(se->statistics.wait_count);
934 	__schedstat_add(se->statistics.wait_sum, delta);
935 	__schedstat_set(se->statistics.wait_start, 0);
936 }
937 
938 static inline void
939 update_stats_enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
940 {
941 	struct task_struct *tsk = NULL;
942 	u64 sleep_start, block_start;
943 
944 	if (!schedstat_enabled())
945 		return;
946 
947 	sleep_start = schedstat_val(se->statistics.sleep_start);
948 	block_start = schedstat_val(se->statistics.block_start);
949 
950 	if (entity_is_task(se))
951 		tsk = task_of(se);
952 
953 	if (sleep_start) {
954 		u64 delta = rq_clock(rq_of(cfs_rq)) - sleep_start;
955 
956 		if ((s64)delta < 0)
957 			delta = 0;
958 
959 		if (unlikely(delta > schedstat_val(se->statistics.sleep_max)))
960 			__schedstat_set(se->statistics.sleep_max, delta);
961 
962 		__schedstat_set(se->statistics.sleep_start, 0);
963 		__schedstat_add(se->statistics.sum_sleep_runtime, delta);
964 
965 		if (tsk) {
966 			account_scheduler_latency(tsk, delta >> 10, 1);
967 			trace_sched_stat_sleep(tsk, delta);
968 		}
969 	}
970 	if (block_start) {
971 		u64 delta = rq_clock(rq_of(cfs_rq)) - block_start;
972 
973 		if ((s64)delta < 0)
974 			delta = 0;
975 
976 		if (unlikely(delta > schedstat_val(se->statistics.block_max)))
977 			__schedstat_set(se->statistics.block_max, delta);
978 
979 		__schedstat_set(se->statistics.block_start, 0);
980 		__schedstat_add(se->statistics.sum_sleep_runtime, delta);
981 
982 		if (tsk) {
983 			if (tsk->in_iowait) {
984 				__schedstat_add(se->statistics.iowait_sum, delta);
985 				__schedstat_inc(se->statistics.iowait_count);
986 				trace_sched_stat_iowait(tsk, delta);
987 			}
988 
989 			trace_sched_stat_blocked(tsk, delta);
990 
991 			/*
992 			 * Blocking time is in units of nanosecs, so shift by
993 			 * 20 to get a milliseconds-range estimation of the
994 			 * amount of time that the task spent sleeping:
995 			 */
996 			if (unlikely(prof_on == SLEEP_PROFILING)) {
997 				profile_hits(SLEEP_PROFILING,
998 						(void *)get_wchan(tsk),
999 						delta >> 20);
1000 			}
1001 			account_scheduler_latency(tsk, delta >> 10, 0);
1002 		}
1003 	}
1004 }
1005 
1006 /*
1007  * Task is being enqueued - update stats:
1008  */
1009 static inline void
1010 update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
1011 {
1012 	if (!schedstat_enabled())
1013 		return;
1014 
1015 	/*
1016 	 * Are we enqueueing a waiting task? (for current tasks
1017 	 * a dequeue/enqueue event is a NOP)
1018 	 */
1019 	if (se != cfs_rq->curr)
1020 		update_stats_wait_start(cfs_rq, se);
1021 
1022 	if (flags & ENQUEUE_WAKEUP)
1023 		update_stats_enqueue_sleeper(cfs_rq, se);
1024 }
1025 
1026 static inline void
1027 update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
1028 {
1029 
1030 	if (!schedstat_enabled())
1031 		return;
1032 
1033 	/*
1034 	 * Mark the end of the wait period if dequeueing a
1035 	 * waiting task:
1036 	 */
1037 	if (se != cfs_rq->curr)
1038 		update_stats_wait_end(cfs_rq, se);
1039 
1040 	if ((flags & DEQUEUE_SLEEP) && entity_is_task(se)) {
1041 		struct task_struct *tsk = task_of(se);
1042 
1043 		if (tsk->state & TASK_INTERRUPTIBLE)
1044 			__schedstat_set(se->statistics.sleep_start,
1045 				      rq_clock(rq_of(cfs_rq)));
1046 		if (tsk->state & TASK_UNINTERRUPTIBLE)
1047 			__schedstat_set(se->statistics.block_start,
1048 				      rq_clock(rq_of(cfs_rq)));
1049 	}
1050 }
1051 
1052 /*
1053  * We are picking a new current task - update its stats:
1054  */
1055 static inline void
1056 update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
1057 {
1058 	/*
1059 	 * We are starting a new run period:
1060 	 */
1061 	se->exec_start = rq_clock_task(rq_of(cfs_rq));
1062 }
1063 
1064 /**************************************************
1065  * Scheduling class queueing methods:
1066  */
1067 
1068 #ifdef CONFIG_NUMA_BALANCING
1069 /*
1070  * Approximate time to scan a full NUMA task in ms. The task scan period is
1071  * calculated based on the tasks virtual memory size and
1072  * numa_balancing_scan_size.
1073  */
1074 unsigned int sysctl_numa_balancing_scan_period_min = 1000;
1075 unsigned int sysctl_numa_balancing_scan_period_max = 60000;
1076 
1077 /* Portion of address space to scan in MB */
1078 unsigned int sysctl_numa_balancing_scan_size = 256;
1079 
1080 /* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
1081 unsigned int sysctl_numa_balancing_scan_delay = 1000;
1082 
1083 struct numa_group {
1084 	refcount_t refcount;
1085 
1086 	spinlock_t lock; /* nr_tasks, tasks */
1087 	int nr_tasks;
1088 	pid_t gid;
1089 	int active_nodes;
1090 
1091 	struct rcu_head rcu;
1092 	unsigned long total_faults;
1093 	unsigned long max_faults_cpu;
1094 	/*
1095 	 * Faults_cpu is used to decide whether memory should move
1096 	 * towards the CPU. As a consequence, these stats are weighted
1097 	 * more by CPU use than by memory faults.
1098 	 */
1099 	unsigned long *faults_cpu;
1100 	unsigned long faults[];
1101 };
1102 
1103 /*
1104  * For functions that can be called in multiple contexts that permit reading
1105  * ->numa_group (see struct task_struct for locking rules).
1106  */
1107 static struct numa_group *deref_task_numa_group(struct task_struct *p)
1108 {
1109 	return rcu_dereference_check(p->numa_group, p == current ||
1110 		(lockdep_is_held(&task_rq(p)->lock) && !READ_ONCE(p->on_cpu)));
1111 }
1112 
1113 static struct numa_group *deref_curr_numa_group(struct task_struct *p)
1114 {
1115 	return rcu_dereference_protected(p->numa_group, p == current);
1116 }
1117 
1118 static inline unsigned long group_faults_priv(struct numa_group *ng);
1119 static inline unsigned long group_faults_shared(struct numa_group *ng);
1120 
1121 static unsigned int task_nr_scan_windows(struct task_struct *p)
1122 {
1123 	unsigned long rss = 0;
1124 	unsigned long nr_scan_pages;
1125 
1126 	/*
1127 	 * Calculations based on RSS as non-present and empty pages are skipped
1128 	 * by the PTE scanner and NUMA hinting faults should be trapped based
1129 	 * on resident pages
1130 	 */
1131 	nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
1132 	rss = get_mm_rss(p->mm);
1133 	if (!rss)
1134 		rss = nr_scan_pages;
1135 
1136 	rss = round_up(rss, nr_scan_pages);
1137 	return rss / nr_scan_pages;
1138 }
1139 
1140 /* For sanity's sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
1141 #define MAX_SCAN_WINDOW 2560
1142 
1143 static unsigned int task_scan_min(struct task_struct *p)
1144 {
1145 	unsigned int scan_size = READ_ONCE(sysctl_numa_balancing_scan_size);
1146 	unsigned int scan, floor;
1147 	unsigned int windows = 1;
1148 
1149 	if (scan_size < MAX_SCAN_WINDOW)
1150 		windows = MAX_SCAN_WINDOW / scan_size;
1151 	floor = 1000 / windows;
1152 
1153 	scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
1154 	return max_t(unsigned int, floor, scan);
1155 }
1156 
1157 static unsigned int task_scan_start(struct task_struct *p)
1158 {
1159 	unsigned long smin = task_scan_min(p);
1160 	unsigned long period = smin;
1161 	struct numa_group *ng;
1162 
1163 	/* Scale the maximum scan period with the amount of shared memory. */
1164 	rcu_read_lock();
1165 	ng = rcu_dereference(p->numa_group);
1166 	if (ng) {
1167 		unsigned long shared = group_faults_shared(ng);
1168 		unsigned long private = group_faults_priv(ng);
1169 
1170 		period *= refcount_read(&ng->refcount);
1171 		period *= shared + 1;
1172 		period /= private + shared + 1;
1173 	}
1174 	rcu_read_unlock();
1175 
1176 	return max(smin, period);
1177 }
1178 
1179 static unsigned int task_scan_max(struct task_struct *p)
1180 {
1181 	unsigned long smin = task_scan_min(p);
1182 	unsigned long smax;
1183 	struct numa_group *ng;
1184 
1185 	/* Watch for min being lower than max due to floor calculations */
1186 	smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
1187 
1188 	/* Scale the maximum scan period with the amount of shared memory. */
1189 	ng = deref_curr_numa_group(p);
1190 	if (ng) {
1191 		unsigned long shared = group_faults_shared(ng);
1192 		unsigned long private = group_faults_priv(ng);
1193 		unsigned long period = smax;
1194 
1195 		period *= refcount_read(&ng->refcount);
1196 		period *= shared + 1;
1197 		period /= private + shared + 1;
1198 
1199 		smax = max(smax, period);
1200 	}
1201 
1202 	return max(smin, smax);
1203 }
1204 
1205 static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
1206 {
1207 	rq->nr_numa_running += (p->numa_preferred_nid != NUMA_NO_NODE);
1208 	rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
1209 }
1210 
1211 static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
1212 {
1213 	rq->nr_numa_running -= (p->numa_preferred_nid != NUMA_NO_NODE);
1214 	rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
1215 }
1216 
1217 /* Shared or private faults. */
1218 #define NR_NUMA_HINT_FAULT_TYPES 2
1219 
1220 /* Memory and CPU locality */
1221 #define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2)
1222 
1223 /* Averaged statistics, and temporary buffers. */
1224 #define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2)
1225 
1226 pid_t task_numa_group_id(struct task_struct *p)
1227 {
1228 	struct numa_group *ng;
1229 	pid_t gid = 0;
1230 
1231 	rcu_read_lock();
1232 	ng = rcu_dereference(p->numa_group);
1233 	if (ng)
1234 		gid = ng->gid;
1235 	rcu_read_unlock();
1236 
1237 	return gid;
1238 }
1239 
1240 /*
1241  * The averaged statistics, shared & private, memory & CPU,
1242  * occupy the first half of the array. The second half of the
1243  * array is for current counters, which are averaged into the
1244  * first set by task_numa_placement.
1245  */
1246 static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv)
1247 {
1248 	return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv;
1249 }
1250 
1251 static inline unsigned long task_faults(struct task_struct *p, int nid)
1252 {
1253 	if (!p->numa_faults)
1254 		return 0;
1255 
1256 	return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1257 		p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)];
1258 }
1259 
1260 static inline unsigned long group_faults(struct task_struct *p, int nid)
1261 {
1262 	struct numa_group *ng = deref_task_numa_group(p);
1263 
1264 	if (!ng)
1265 		return 0;
1266 
1267 	return ng->faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1268 		ng->faults[task_faults_idx(NUMA_MEM, nid, 1)];
1269 }
1270 
1271 static inline unsigned long group_faults_cpu(struct numa_group *group, int nid)
1272 {
1273 	return group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 0)] +
1274 		group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 1)];
1275 }
1276 
1277 static inline unsigned long group_faults_priv(struct numa_group *ng)
1278 {
1279 	unsigned long faults = 0;
1280 	int node;
1281 
1282 	for_each_online_node(node) {
1283 		faults += ng->faults[task_faults_idx(NUMA_MEM, node, 1)];
1284 	}
1285 
1286 	return faults;
1287 }
1288 
1289 static inline unsigned long group_faults_shared(struct numa_group *ng)
1290 {
1291 	unsigned long faults = 0;
1292 	int node;
1293 
1294 	for_each_online_node(node) {
1295 		faults += ng->faults[task_faults_idx(NUMA_MEM, node, 0)];
1296 	}
1297 
1298 	return faults;
1299 }
1300 
1301 /*
1302  * A node triggering more than 1/3 as many NUMA faults as the maximum is
1303  * considered part of a numa group's pseudo-interleaving set. Migrations
1304  * between these nodes are slowed down, to allow things to settle down.
1305  */
1306 #define ACTIVE_NODE_FRACTION 3
1307 
1308 static bool numa_is_active_node(int nid, struct numa_group *ng)
1309 {
1310 	return group_faults_cpu(ng, nid) * ACTIVE_NODE_FRACTION > ng->max_faults_cpu;
1311 }
1312 
1313 /* Handle placement on systems where not all nodes are directly connected. */
1314 static unsigned long score_nearby_nodes(struct task_struct *p, int nid,
1315 					int maxdist, bool task)
1316 {
1317 	unsigned long score = 0;
1318 	int node;
1319 
1320 	/*
1321 	 * All nodes are directly connected, and the same distance
1322 	 * from each other. No need for fancy placement algorithms.
1323 	 */
1324 	if (sched_numa_topology_type == NUMA_DIRECT)
1325 		return 0;
1326 
1327 	/*
1328 	 * This code is called for each node, introducing N^2 complexity,
1329 	 * which should be ok given the number of nodes rarely exceeds 8.
1330 	 */
1331 	for_each_online_node(node) {
1332 		unsigned long faults;
1333 		int dist = node_distance(nid, node);
1334 
1335 		/*
1336 		 * The furthest away nodes in the system are not interesting
1337 		 * for placement; nid was already counted.
1338 		 */
1339 		if (dist == sched_max_numa_distance || node == nid)
1340 			continue;
1341 
1342 		/*
1343 		 * On systems with a backplane NUMA topology, compare groups
1344 		 * of nodes, and move tasks towards the group with the most
1345 		 * memory accesses. When comparing two nodes at distance
1346 		 * "hoplimit", only nodes closer by than "hoplimit" are part
1347 		 * of each group. Skip other nodes.
1348 		 */
1349 		if (sched_numa_topology_type == NUMA_BACKPLANE &&
1350 					dist >= maxdist)
1351 			continue;
1352 
1353 		/* Add up the faults from nearby nodes. */
1354 		if (task)
1355 			faults = task_faults(p, node);
1356 		else
1357 			faults = group_faults(p, node);
1358 
1359 		/*
1360 		 * On systems with a glueless mesh NUMA topology, there are
1361 		 * no fixed "groups of nodes". Instead, nodes that are not
1362 		 * directly connected bounce traffic through intermediate
1363 		 * nodes; a numa_group can occupy any set of nodes.
1364 		 * The further away a node is, the less the faults count.
1365 		 * This seems to result in good task placement.
1366 		 */
1367 		if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
1368 			faults *= (sched_max_numa_distance - dist);
1369 			faults /= (sched_max_numa_distance - LOCAL_DISTANCE);
1370 		}
1371 
1372 		score += faults;
1373 	}
1374 
1375 	return score;
1376 }
1377 
1378 /*
1379  * These return the fraction of accesses done by a particular task, or
1380  * task group, on a particular numa node.  The group weight is given a
1381  * larger multiplier, in order to group tasks together that are almost
1382  * evenly spread out between numa nodes.
1383  */
1384 static inline unsigned long task_weight(struct task_struct *p, int nid,
1385 					int dist)
1386 {
1387 	unsigned long faults, total_faults;
1388 
1389 	if (!p->numa_faults)
1390 		return 0;
1391 
1392 	total_faults = p->total_numa_faults;
1393 
1394 	if (!total_faults)
1395 		return 0;
1396 
1397 	faults = task_faults(p, nid);
1398 	faults += score_nearby_nodes(p, nid, dist, true);
1399 
1400 	return 1000 * faults / total_faults;
1401 }
1402 
1403 static inline unsigned long group_weight(struct task_struct *p, int nid,
1404 					 int dist)
1405 {
1406 	struct numa_group *ng = deref_task_numa_group(p);
1407 	unsigned long faults, total_faults;
1408 
1409 	if (!ng)
1410 		return 0;
1411 
1412 	total_faults = ng->total_faults;
1413 
1414 	if (!total_faults)
1415 		return 0;
1416 
1417 	faults = group_faults(p, nid);
1418 	faults += score_nearby_nodes(p, nid, dist, false);
1419 
1420 	return 1000 * faults / total_faults;
1421 }
1422 
1423 bool should_numa_migrate_memory(struct task_struct *p, struct page * page,
1424 				int src_nid, int dst_cpu)
1425 {
1426 	struct numa_group *ng = deref_curr_numa_group(p);
1427 	int dst_nid = cpu_to_node(dst_cpu);
1428 	int last_cpupid, this_cpupid;
1429 
1430 	this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid);
1431 	last_cpupid = page_cpupid_xchg_last(page, this_cpupid);
1432 
1433 	/*
1434 	 * Allow first faults or private faults to migrate immediately early in
1435 	 * the lifetime of a task. The magic number 4 is based on waiting for
1436 	 * two full passes of the "multi-stage node selection" test that is
1437 	 * executed below.
1438 	 */
1439 	if ((p->numa_preferred_nid == NUMA_NO_NODE || p->numa_scan_seq <= 4) &&
1440 	    (cpupid_pid_unset(last_cpupid) || cpupid_match_pid(p, last_cpupid)))
1441 		return true;
1442 
1443 	/*
1444 	 * Multi-stage node selection is used in conjunction with a periodic
1445 	 * migration fault to build a temporal task<->page relation. By using
1446 	 * a two-stage filter we remove short/unlikely relations.
1447 	 *
1448 	 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate
1449 	 * a task's usage of a particular page (n_p) per total usage of this
1450 	 * page (n_t) (in a given time-span) to a probability.
1451 	 *
1452 	 * Our periodic faults will sample this probability and getting the
1453 	 * same result twice in a row, given these samples are fully
1454 	 * independent, is then given by P(n)^2, provided our sample period
1455 	 * is sufficiently short compared to the usage pattern.
1456 	 *
1457 	 * This quadric squishes small probabilities, making it less likely we
1458 	 * act on an unlikely task<->page relation.
1459 	 */
1460 	if (!cpupid_pid_unset(last_cpupid) &&
1461 				cpupid_to_nid(last_cpupid) != dst_nid)
1462 		return false;
1463 
1464 	/* Always allow migrate on private faults */
1465 	if (cpupid_match_pid(p, last_cpupid))
1466 		return true;
1467 
1468 	/* A shared fault, but p->numa_group has not been set up yet. */
1469 	if (!ng)
1470 		return true;
1471 
1472 	/*
1473 	 * Destination node is much more heavily used than the source
1474 	 * node? Allow migration.
1475 	 */
1476 	if (group_faults_cpu(ng, dst_nid) > group_faults_cpu(ng, src_nid) *
1477 					ACTIVE_NODE_FRACTION)
1478 		return true;
1479 
1480 	/*
1481 	 * Distribute memory according to CPU & memory use on each node,
1482 	 * with 3/4 hysteresis to avoid unnecessary memory migrations:
1483 	 *
1484 	 * faults_cpu(dst)   3   faults_cpu(src)
1485 	 * --------------- * - > ---------------
1486 	 * faults_mem(dst)   4   faults_mem(src)
1487 	 */
1488 	return group_faults_cpu(ng, dst_nid) * group_faults(p, src_nid) * 3 >
1489 	       group_faults_cpu(ng, src_nid) * group_faults(p, dst_nid) * 4;
1490 }
1491 
1492 /*
1493  * 'numa_type' describes the node at the moment of load balancing.
1494  */
1495 enum numa_type {
1496 	/* The node has spare capacity that can be used to run more tasks.  */
1497 	node_has_spare = 0,
1498 	/*
1499 	 * The node is fully used and the tasks don't compete for more CPU
1500 	 * cycles. Nevertheless, some tasks might wait before running.
1501 	 */
1502 	node_fully_busy,
1503 	/*
1504 	 * The node is overloaded and can't provide expected CPU cycles to all
1505 	 * tasks.
1506 	 */
1507 	node_overloaded
1508 };
1509 
1510 /* Cached statistics for all CPUs within a node */
1511 struct numa_stats {
1512 	unsigned long load;
1513 	unsigned long runnable;
1514 	unsigned long util;
1515 	/* Total compute capacity of CPUs on a node */
1516 	unsigned long compute_capacity;
1517 	unsigned int nr_running;
1518 	unsigned int weight;
1519 	enum numa_type node_type;
1520 	int idle_cpu;
1521 };
1522 
1523 static inline bool is_core_idle(int cpu)
1524 {
1525 #ifdef CONFIG_SCHED_SMT
1526 	int sibling;
1527 
1528 	for_each_cpu(sibling, cpu_smt_mask(cpu)) {
1529 		if (cpu == sibling)
1530 			continue;
1531 
1532 		if (!idle_cpu(cpu))
1533 			return false;
1534 	}
1535 #endif
1536 
1537 	return true;
1538 }
1539 
1540 struct task_numa_env {
1541 	struct task_struct *p;
1542 
1543 	int src_cpu, src_nid;
1544 	int dst_cpu, dst_nid;
1545 
1546 	struct numa_stats src_stats, dst_stats;
1547 
1548 	int imbalance_pct;
1549 	int dist;
1550 
1551 	struct task_struct *best_task;
1552 	long best_imp;
1553 	int best_cpu;
1554 };
1555 
1556 static unsigned long cpu_load(struct rq *rq);
1557 static unsigned long cpu_runnable(struct rq *rq);
1558 static unsigned long cpu_util(int cpu);
1559 static inline long adjust_numa_imbalance(int imbalance,
1560 					int dst_running, int dst_weight);
1561 
1562 static inline enum
1563 numa_type numa_classify(unsigned int imbalance_pct,
1564 			 struct numa_stats *ns)
1565 {
1566 	if ((ns->nr_running > ns->weight) &&
1567 	    (((ns->compute_capacity * 100) < (ns->util * imbalance_pct)) ||
1568 	     ((ns->compute_capacity * imbalance_pct) < (ns->runnable * 100))))
1569 		return node_overloaded;
1570 
1571 	if ((ns->nr_running < ns->weight) ||
1572 	    (((ns->compute_capacity * 100) > (ns->util * imbalance_pct)) &&
1573 	     ((ns->compute_capacity * imbalance_pct) > (ns->runnable * 100))))
1574 		return node_has_spare;
1575 
1576 	return node_fully_busy;
1577 }
1578 
1579 #ifdef CONFIG_SCHED_SMT
1580 /* Forward declarations of select_idle_sibling helpers */
1581 static inline bool test_idle_cores(int cpu, bool def);
1582 static inline int numa_idle_core(int idle_core, int cpu)
1583 {
1584 	if (!static_branch_likely(&sched_smt_present) ||
1585 	    idle_core >= 0 || !test_idle_cores(cpu, false))
1586 		return idle_core;
1587 
1588 	/*
1589 	 * Prefer cores instead of packing HT siblings
1590 	 * and triggering future load balancing.
1591 	 */
1592 	if (is_core_idle(cpu))
1593 		idle_core = cpu;
1594 
1595 	return idle_core;
1596 }
1597 #else
1598 static inline int numa_idle_core(int idle_core, int cpu)
1599 {
1600 	return idle_core;
1601 }
1602 #endif
1603 
1604 /*
1605  * Gather all necessary information to make NUMA balancing placement
1606  * decisions that are compatible with standard load balancer. This
1607  * borrows code and logic from update_sg_lb_stats but sharing a
1608  * common implementation is impractical.
1609  */
1610 static void update_numa_stats(struct task_numa_env *env,
1611 			      struct numa_stats *ns, int nid,
1612 			      bool find_idle)
1613 {
1614 	int cpu, idle_core = -1;
1615 
1616 	memset(ns, 0, sizeof(*ns));
1617 	ns->idle_cpu = -1;
1618 
1619 	rcu_read_lock();
1620 	for_each_cpu(cpu, cpumask_of_node(nid)) {
1621 		struct rq *rq = cpu_rq(cpu);
1622 
1623 		ns->load += cpu_load(rq);
1624 		ns->runnable += cpu_runnable(rq);
1625 		ns->util += cpu_util(cpu);
1626 		ns->nr_running += rq->cfs.h_nr_running;
1627 		ns->compute_capacity += capacity_of(cpu);
1628 
1629 		if (find_idle && !rq->nr_running && idle_cpu(cpu)) {
1630 			if (READ_ONCE(rq->numa_migrate_on) ||
1631 			    !cpumask_test_cpu(cpu, env->p->cpus_ptr))
1632 				continue;
1633 
1634 			if (ns->idle_cpu == -1)
1635 				ns->idle_cpu = cpu;
1636 
1637 			idle_core = numa_idle_core(idle_core, cpu);
1638 		}
1639 	}
1640 	rcu_read_unlock();
1641 
1642 	ns->weight = cpumask_weight(cpumask_of_node(nid));
1643 
1644 	ns->node_type = numa_classify(env->imbalance_pct, ns);
1645 
1646 	if (idle_core >= 0)
1647 		ns->idle_cpu = idle_core;
1648 }
1649 
1650 static void task_numa_assign(struct task_numa_env *env,
1651 			     struct task_struct *p, long imp)
1652 {
1653 	struct rq *rq = cpu_rq(env->dst_cpu);
1654 
1655 	/* Check if run-queue part of active NUMA balance. */
1656 	if (env->best_cpu != env->dst_cpu && xchg(&rq->numa_migrate_on, 1)) {
1657 		int cpu;
1658 		int start = env->dst_cpu;
1659 
1660 		/* Find alternative idle CPU. */
1661 		for_each_cpu_wrap(cpu, cpumask_of_node(env->dst_nid), start) {
1662 			if (cpu == env->best_cpu || !idle_cpu(cpu) ||
1663 			    !cpumask_test_cpu(cpu, env->p->cpus_ptr)) {
1664 				continue;
1665 			}
1666 
1667 			env->dst_cpu = cpu;
1668 			rq = cpu_rq(env->dst_cpu);
1669 			if (!xchg(&rq->numa_migrate_on, 1))
1670 				goto assign;
1671 		}
1672 
1673 		/* Failed to find an alternative idle CPU */
1674 		return;
1675 	}
1676 
1677 assign:
1678 	/*
1679 	 * Clear previous best_cpu/rq numa-migrate flag, since task now
1680 	 * found a better CPU to move/swap.
1681 	 */
1682 	if (env->best_cpu != -1 && env->best_cpu != env->dst_cpu) {
1683 		rq = cpu_rq(env->best_cpu);
1684 		WRITE_ONCE(rq->numa_migrate_on, 0);
1685 	}
1686 
1687 	if (env->best_task)
1688 		put_task_struct(env->best_task);
1689 	if (p)
1690 		get_task_struct(p);
1691 
1692 	env->best_task = p;
1693 	env->best_imp = imp;
1694 	env->best_cpu = env->dst_cpu;
1695 }
1696 
1697 static bool load_too_imbalanced(long src_load, long dst_load,
1698 				struct task_numa_env *env)
1699 {
1700 	long imb, old_imb;
1701 	long orig_src_load, orig_dst_load;
1702 	long src_capacity, dst_capacity;
1703 
1704 	/*
1705 	 * The load is corrected for the CPU capacity available on each node.
1706 	 *
1707 	 * src_load        dst_load
1708 	 * ------------ vs ---------
1709 	 * src_capacity    dst_capacity
1710 	 */
1711 	src_capacity = env->src_stats.compute_capacity;
1712 	dst_capacity = env->dst_stats.compute_capacity;
1713 
1714 	imb = abs(dst_load * src_capacity - src_load * dst_capacity);
1715 
1716 	orig_src_load = env->src_stats.load;
1717 	orig_dst_load = env->dst_stats.load;
1718 
1719 	old_imb = abs(orig_dst_load * src_capacity - orig_src_load * dst_capacity);
1720 
1721 	/* Would this change make things worse? */
1722 	return (imb > old_imb);
1723 }
1724 
1725 /*
1726  * Maximum NUMA importance can be 1998 (2*999);
1727  * SMALLIMP @ 30 would be close to 1998/64.
1728  * Used to deter task migration.
1729  */
1730 #define SMALLIMP	30
1731 
1732 /*
1733  * This checks if the overall compute and NUMA accesses of the system would
1734  * be improved if the source tasks was migrated to the target dst_cpu taking
1735  * into account that it might be best if task running on the dst_cpu should
1736  * be exchanged with the source task
1737  */
1738 static bool task_numa_compare(struct task_numa_env *env,
1739 			      long taskimp, long groupimp, bool maymove)
1740 {
1741 	struct numa_group *cur_ng, *p_ng = deref_curr_numa_group(env->p);
1742 	struct rq *dst_rq = cpu_rq(env->dst_cpu);
1743 	long imp = p_ng ? groupimp : taskimp;
1744 	struct task_struct *cur;
1745 	long src_load, dst_load;
1746 	int dist = env->dist;
1747 	long moveimp = imp;
1748 	long load;
1749 	bool stopsearch = false;
1750 
1751 	if (READ_ONCE(dst_rq->numa_migrate_on))
1752 		return false;
1753 
1754 	rcu_read_lock();
1755 	cur = rcu_dereference(dst_rq->curr);
1756 	if (cur && ((cur->flags & PF_EXITING) || is_idle_task(cur)))
1757 		cur = NULL;
1758 
1759 	/*
1760 	 * Because we have preemption enabled we can get migrated around and
1761 	 * end try selecting ourselves (current == env->p) as a swap candidate.
1762 	 */
1763 	if (cur == env->p) {
1764 		stopsearch = true;
1765 		goto unlock;
1766 	}
1767 
1768 	if (!cur) {
1769 		if (maymove && moveimp >= env->best_imp)
1770 			goto assign;
1771 		else
1772 			goto unlock;
1773 	}
1774 
1775 	/* Skip this swap candidate if cannot move to the source cpu. */
1776 	if (!cpumask_test_cpu(env->src_cpu, cur->cpus_ptr))
1777 		goto unlock;
1778 
1779 	/*
1780 	 * Skip this swap candidate if it is not moving to its preferred
1781 	 * node and the best task is.
1782 	 */
1783 	if (env->best_task &&
1784 	    env->best_task->numa_preferred_nid == env->src_nid &&
1785 	    cur->numa_preferred_nid != env->src_nid) {
1786 		goto unlock;
1787 	}
1788 
1789 	/*
1790 	 * "imp" is the fault differential for the source task between the
1791 	 * source and destination node. Calculate the total differential for
1792 	 * the source task and potential destination task. The more negative
1793 	 * the value is, the more remote accesses that would be expected to
1794 	 * be incurred if the tasks were swapped.
1795 	 *
1796 	 * If dst and source tasks are in the same NUMA group, or not
1797 	 * in any group then look only at task weights.
1798 	 */
1799 	cur_ng = rcu_dereference(cur->numa_group);
1800 	if (cur_ng == p_ng) {
1801 		imp = taskimp + task_weight(cur, env->src_nid, dist) -
1802 		      task_weight(cur, env->dst_nid, dist);
1803 		/*
1804 		 * Add some hysteresis to prevent swapping the
1805 		 * tasks within a group over tiny differences.
1806 		 */
1807 		if (cur_ng)
1808 			imp -= imp / 16;
1809 	} else {
1810 		/*
1811 		 * Compare the group weights. If a task is all by itself
1812 		 * (not part of a group), use the task weight instead.
1813 		 */
1814 		if (cur_ng && p_ng)
1815 			imp += group_weight(cur, env->src_nid, dist) -
1816 			       group_weight(cur, env->dst_nid, dist);
1817 		else
1818 			imp += task_weight(cur, env->src_nid, dist) -
1819 			       task_weight(cur, env->dst_nid, dist);
1820 	}
1821 
1822 	/* Discourage picking a task already on its preferred node */
1823 	if (cur->numa_preferred_nid == env->dst_nid)
1824 		imp -= imp / 16;
1825 
1826 	/*
1827 	 * Encourage picking a task that moves to its preferred node.
1828 	 * This potentially makes imp larger than it's maximum of
1829 	 * 1998 (see SMALLIMP and task_weight for why) but in this
1830 	 * case, it does not matter.
1831 	 */
1832 	if (cur->numa_preferred_nid == env->src_nid)
1833 		imp += imp / 8;
1834 
1835 	if (maymove && moveimp > imp && moveimp > env->best_imp) {
1836 		imp = moveimp;
1837 		cur = NULL;
1838 		goto assign;
1839 	}
1840 
1841 	/*
1842 	 * Prefer swapping with a task moving to its preferred node over a
1843 	 * task that is not.
1844 	 */
1845 	if (env->best_task && cur->numa_preferred_nid == env->src_nid &&
1846 	    env->best_task->numa_preferred_nid != env->src_nid) {
1847 		goto assign;
1848 	}
1849 
1850 	/*
1851 	 * If the NUMA importance is less than SMALLIMP,
1852 	 * task migration might only result in ping pong
1853 	 * of tasks and also hurt performance due to cache
1854 	 * misses.
1855 	 */
1856 	if (imp < SMALLIMP || imp <= env->best_imp + SMALLIMP / 2)
1857 		goto unlock;
1858 
1859 	/*
1860 	 * In the overloaded case, try and keep the load balanced.
1861 	 */
1862 	load = task_h_load(env->p) - task_h_load(cur);
1863 	if (!load)
1864 		goto assign;
1865 
1866 	dst_load = env->dst_stats.load + load;
1867 	src_load = env->src_stats.load - load;
1868 
1869 	if (load_too_imbalanced(src_load, dst_load, env))
1870 		goto unlock;
1871 
1872 assign:
1873 	/* Evaluate an idle CPU for a task numa move. */
1874 	if (!cur) {
1875 		int cpu = env->dst_stats.idle_cpu;
1876 
1877 		/* Nothing cached so current CPU went idle since the search. */
1878 		if (cpu < 0)
1879 			cpu = env->dst_cpu;
1880 
1881 		/*
1882 		 * If the CPU is no longer truly idle and the previous best CPU
1883 		 * is, keep using it.
1884 		 */
1885 		if (!idle_cpu(cpu) && env->best_cpu >= 0 &&
1886 		    idle_cpu(env->best_cpu)) {
1887 			cpu = env->best_cpu;
1888 		}
1889 
1890 		env->dst_cpu = cpu;
1891 	}
1892 
1893 	task_numa_assign(env, cur, imp);
1894 
1895 	/*
1896 	 * If a move to idle is allowed because there is capacity or load
1897 	 * balance improves then stop the search. While a better swap
1898 	 * candidate may exist, a search is not free.
1899 	 */
1900 	if (maymove && !cur && env->best_cpu >= 0 && idle_cpu(env->best_cpu))
1901 		stopsearch = true;
1902 
1903 	/*
1904 	 * If a swap candidate must be identified and the current best task
1905 	 * moves its preferred node then stop the search.
1906 	 */
1907 	if (!maymove && env->best_task &&
1908 	    env->best_task->numa_preferred_nid == env->src_nid) {
1909 		stopsearch = true;
1910 	}
1911 unlock:
1912 	rcu_read_unlock();
1913 
1914 	return stopsearch;
1915 }
1916 
1917 static void task_numa_find_cpu(struct task_numa_env *env,
1918 				long taskimp, long groupimp)
1919 {
1920 	bool maymove = false;
1921 	int cpu;
1922 
1923 	/*
1924 	 * If dst node has spare capacity, then check if there is an
1925 	 * imbalance that would be overruled by the load balancer.
1926 	 */
1927 	if (env->dst_stats.node_type == node_has_spare) {
1928 		unsigned int imbalance;
1929 		int src_running, dst_running;
1930 
1931 		/*
1932 		 * Would movement cause an imbalance? Note that if src has
1933 		 * more running tasks that the imbalance is ignored as the
1934 		 * move improves the imbalance from the perspective of the
1935 		 * CPU load balancer.
1936 		 * */
1937 		src_running = env->src_stats.nr_running - 1;
1938 		dst_running = env->dst_stats.nr_running + 1;
1939 		imbalance = max(0, dst_running - src_running);
1940 		imbalance = adjust_numa_imbalance(imbalance, dst_running,
1941 							env->dst_stats.weight);
1942 
1943 		/* Use idle CPU if there is no imbalance */
1944 		if (!imbalance) {
1945 			maymove = true;
1946 			if (env->dst_stats.idle_cpu >= 0) {
1947 				env->dst_cpu = env->dst_stats.idle_cpu;
1948 				task_numa_assign(env, NULL, 0);
1949 				return;
1950 			}
1951 		}
1952 	} else {
1953 		long src_load, dst_load, load;
1954 		/*
1955 		 * If the improvement from just moving env->p direction is better
1956 		 * than swapping tasks around, check if a move is possible.
1957 		 */
1958 		load = task_h_load(env->p);
1959 		dst_load = env->dst_stats.load + load;
1960 		src_load = env->src_stats.load - load;
1961 		maymove = !load_too_imbalanced(src_load, dst_load, env);
1962 	}
1963 
1964 	for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
1965 		/* Skip this CPU if the source task cannot migrate */
1966 		if (!cpumask_test_cpu(cpu, env->p->cpus_ptr))
1967 			continue;
1968 
1969 		env->dst_cpu = cpu;
1970 		if (task_numa_compare(env, taskimp, groupimp, maymove))
1971 			break;
1972 	}
1973 }
1974 
1975 static int task_numa_migrate(struct task_struct *p)
1976 {
1977 	struct task_numa_env env = {
1978 		.p = p,
1979 
1980 		.src_cpu = task_cpu(p),
1981 		.src_nid = task_node(p),
1982 
1983 		.imbalance_pct = 112,
1984 
1985 		.best_task = NULL,
1986 		.best_imp = 0,
1987 		.best_cpu = -1,
1988 	};
1989 	unsigned long taskweight, groupweight;
1990 	struct sched_domain *sd;
1991 	long taskimp, groupimp;
1992 	struct numa_group *ng;
1993 	struct rq *best_rq;
1994 	int nid, ret, dist;
1995 
1996 	/*
1997 	 * Pick the lowest SD_NUMA domain, as that would have the smallest
1998 	 * imbalance and would be the first to start moving tasks about.
1999 	 *
2000 	 * And we want to avoid any moving of tasks about, as that would create
2001 	 * random movement of tasks -- counter the numa conditions we're trying
2002 	 * to satisfy here.
2003 	 */
2004 	rcu_read_lock();
2005 	sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
2006 	if (sd)
2007 		env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
2008 	rcu_read_unlock();
2009 
2010 	/*
2011 	 * Cpusets can break the scheduler domain tree into smaller
2012 	 * balance domains, some of which do not cross NUMA boundaries.
2013 	 * Tasks that are "trapped" in such domains cannot be migrated
2014 	 * elsewhere, so there is no point in (re)trying.
2015 	 */
2016 	if (unlikely(!sd)) {
2017 		sched_setnuma(p, task_node(p));
2018 		return -EINVAL;
2019 	}
2020 
2021 	env.dst_nid = p->numa_preferred_nid;
2022 	dist = env.dist = node_distance(env.src_nid, env.dst_nid);
2023 	taskweight = task_weight(p, env.src_nid, dist);
2024 	groupweight = group_weight(p, env.src_nid, dist);
2025 	update_numa_stats(&env, &env.src_stats, env.src_nid, false);
2026 	taskimp = task_weight(p, env.dst_nid, dist) - taskweight;
2027 	groupimp = group_weight(p, env.dst_nid, dist) - groupweight;
2028 	update_numa_stats(&env, &env.dst_stats, env.dst_nid, true);
2029 
2030 	/* Try to find a spot on the preferred nid. */
2031 	task_numa_find_cpu(&env, taskimp, groupimp);
2032 
2033 	/*
2034 	 * Look at other nodes in these cases:
2035 	 * - there is no space available on the preferred_nid
2036 	 * - the task is part of a numa_group that is interleaved across
2037 	 *   multiple NUMA nodes; in order to better consolidate the group,
2038 	 *   we need to check other locations.
2039 	 */
2040 	ng = deref_curr_numa_group(p);
2041 	if (env.best_cpu == -1 || (ng && ng->active_nodes > 1)) {
2042 		for_each_online_node(nid) {
2043 			if (nid == env.src_nid || nid == p->numa_preferred_nid)
2044 				continue;
2045 
2046 			dist = node_distance(env.src_nid, env.dst_nid);
2047 			if (sched_numa_topology_type == NUMA_BACKPLANE &&
2048 						dist != env.dist) {
2049 				taskweight = task_weight(p, env.src_nid, dist);
2050 				groupweight = group_weight(p, env.src_nid, dist);
2051 			}
2052 
2053 			/* Only consider nodes where both task and groups benefit */
2054 			taskimp = task_weight(p, nid, dist) - taskweight;
2055 			groupimp = group_weight(p, nid, dist) - groupweight;
2056 			if (taskimp < 0 && groupimp < 0)
2057 				continue;
2058 
2059 			env.dist = dist;
2060 			env.dst_nid = nid;
2061 			update_numa_stats(&env, &env.dst_stats, env.dst_nid, true);
2062 			task_numa_find_cpu(&env, taskimp, groupimp);
2063 		}
2064 	}
2065 
2066 	/*
2067 	 * If the task is part of a workload that spans multiple NUMA nodes,
2068 	 * and is migrating into one of the workload's active nodes, remember
2069 	 * this node as the task's preferred numa node, so the workload can
2070 	 * settle down.
2071 	 * A task that migrated to a second choice node will be better off
2072 	 * trying for a better one later. Do not set the preferred node here.
2073 	 */
2074 	if (ng) {
2075 		if (env.best_cpu == -1)
2076 			nid = env.src_nid;
2077 		else
2078 			nid = cpu_to_node(env.best_cpu);
2079 
2080 		if (nid != p->numa_preferred_nid)
2081 			sched_setnuma(p, nid);
2082 	}
2083 
2084 	/* No better CPU than the current one was found. */
2085 	if (env.best_cpu == -1) {
2086 		trace_sched_stick_numa(p, env.src_cpu, NULL, -1);
2087 		return -EAGAIN;
2088 	}
2089 
2090 	best_rq = cpu_rq(env.best_cpu);
2091 	if (env.best_task == NULL) {
2092 		ret = migrate_task_to(p, env.best_cpu);
2093 		WRITE_ONCE(best_rq->numa_migrate_on, 0);
2094 		if (ret != 0)
2095 			trace_sched_stick_numa(p, env.src_cpu, NULL, env.best_cpu);
2096 		return ret;
2097 	}
2098 
2099 	ret = migrate_swap(p, env.best_task, env.best_cpu, env.src_cpu);
2100 	WRITE_ONCE(best_rq->numa_migrate_on, 0);
2101 
2102 	if (ret != 0)
2103 		trace_sched_stick_numa(p, env.src_cpu, env.best_task, env.best_cpu);
2104 	put_task_struct(env.best_task);
2105 	return ret;
2106 }
2107 
2108 /* Attempt to migrate a task to a CPU on the preferred node. */
2109 static void numa_migrate_preferred(struct task_struct *p)
2110 {
2111 	unsigned long interval = HZ;
2112 
2113 	/* This task has no NUMA fault statistics yet */
2114 	if (unlikely(p->numa_preferred_nid == NUMA_NO_NODE || !p->numa_faults))
2115 		return;
2116 
2117 	/* Periodically retry migrating the task to the preferred node */
2118 	interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16);
2119 	p->numa_migrate_retry = jiffies + interval;
2120 
2121 	/* Success if task is already running on preferred CPU */
2122 	if (task_node(p) == p->numa_preferred_nid)
2123 		return;
2124 
2125 	/* Otherwise, try migrate to a CPU on the preferred node */
2126 	task_numa_migrate(p);
2127 }
2128 
2129 /*
2130  * Find out how many nodes on the workload is actively running on. Do this by
2131  * tracking the nodes from which NUMA hinting faults are triggered. This can
2132  * be different from the set of nodes where the workload's memory is currently
2133  * located.
2134  */
2135 static void numa_group_count_active_nodes(struct numa_group *numa_group)
2136 {
2137 	unsigned long faults, max_faults = 0;
2138 	int nid, active_nodes = 0;
2139 
2140 	for_each_online_node(nid) {
2141 		faults = group_faults_cpu(numa_group, nid);
2142 		if (faults > max_faults)
2143 			max_faults = faults;
2144 	}
2145 
2146 	for_each_online_node(nid) {
2147 		faults = group_faults_cpu(numa_group, nid);
2148 		if (faults * ACTIVE_NODE_FRACTION > max_faults)
2149 			active_nodes++;
2150 	}
2151 
2152 	numa_group->max_faults_cpu = max_faults;
2153 	numa_group->active_nodes = active_nodes;
2154 }
2155 
2156 /*
2157  * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
2158  * increments. The more local the fault statistics are, the higher the scan
2159  * period will be for the next scan window. If local/(local+remote) ratio is
2160  * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS)
2161  * the scan period will decrease. Aim for 70% local accesses.
2162  */
2163 #define NUMA_PERIOD_SLOTS 10
2164 #define NUMA_PERIOD_THRESHOLD 7
2165 
2166 /*
2167  * Increase the scan period (slow down scanning) if the majority of
2168  * our memory is already on our local node, or if the majority of
2169  * the page accesses are shared with other processes.
2170  * Otherwise, decrease the scan period.
2171  */
2172 static void update_task_scan_period(struct task_struct *p,
2173 			unsigned long shared, unsigned long private)
2174 {
2175 	unsigned int period_slot;
2176 	int lr_ratio, ps_ratio;
2177 	int diff;
2178 
2179 	unsigned long remote = p->numa_faults_locality[0];
2180 	unsigned long local = p->numa_faults_locality[1];
2181 
2182 	/*
2183 	 * If there were no record hinting faults then either the task is
2184 	 * completely idle or all activity is areas that are not of interest
2185 	 * to automatic numa balancing. Related to that, if there were failed
2186 	 * migration then it implies we are migrating too quickly or the local
2187 	 * node is overloaded. In either case, scan slower
2188 	 */
2189 	if (local + shared == 0 || p->numa_faults_locality[2]) {
2190 		p->numa_scan_period = min(p->numa_scan_period_max,
2191 			p->numa_scan_period << 1);
2192 
2193 		p->mm->numa_next_scan = jiffies +
2194 			msecs_to_jiffies(p->numa_scan_period);
2195 
2196 		return;
2197 	}
2198 
2199 	/*
2200 	 * Prepare to scale scan period relative to the current period.
2201 	 *	 == NUMA_PERIOD_THRESHOLD scan period stays the same
2202 	 *       <  NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
2203 	 *	 >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
2204 	 */
2205 	period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
2206 	lr_ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
2207 	ps_ratio = (private * NUMA_PERIOD_SLOTS) / (private + shared);
2208 
2209 	if (ps_ratio >= NUMA_PERIOD_THRESHOLD) {
2210 		/*
2211 		 * Most memory accesses are local. There is no need to
2212 		 * do fast NUMA scanning, since memory is already local.
2213 		 */
2214 		int slot = ps_ratio - NUMA_PERIOD_THRESHOLD;
2215 		if (!slot)
2216 			slot = 1;
2217 		diff = slot * period_slot;
2218 	} else if (lr_ratio >= NUMA_PERIOD_THRESHOLD) {
2219 		/*
2220 		 * Most memory accesses are shared with other tasks.
2221 		 * There is no point in continuing fast NUMA scanning,
2222 		 * since other tasks may just move the memory elsewhere.
2223 		 */
2224 		int slot = lr_ratio - NUMA_PERIOD_THRESHOLD;
2225 		if (!slot)
2226 			slot = 1;
2227 		diff = slot * period_slot;
2228 	} else {
2229 		/*
2230 		 * Private memory faults exceed (SLOTS-THRESHOLD)/SLOTS,
2231 		 * yet they are not on the local NUMA node. Speed up
2232 		 * NUMA scanning to get the memory moved over.
2233 		 */
2234 		int ratio = max(lr_ratio, ps_ratio);
2235 		diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;
2236 	}
2237 
2238 	p->numa_scan_period = clamp(p->numa_scan_period + diff,
2239 			task_scan_min(p), task_scan_max(p));
2240 	memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
2241 }
2242 
2243 /*
2244  * Get the fraction of time the task has been running since the last
2245  * NUMA placement cycle. The scheduler keeps similar statistics, but
2246  * decays those on a 32ms period, which is orders of magnitude off
2247  * from the dozens-of-seconds NUMA balancing period. Use the scheduler
2248  * stats only if the task is so new there are no NUMA statistics yet.
2249  */
2250 static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period)
2251 {
2252 	u64 runtime, delta, now;
2253 	/* Use the start of this time slice to avoid calculations. */
2254 	now = p->se.exec_start;
2255 	runtime = p->se.sum_exec_runtime;
2256 
2257 	if (p->last_task_numa_placement) {
2258 		delta = runtime - p->last_sum_exec_runtime;
2259 		*period = now - p->last_task_numa_placement;
2260 
2261 		/* Avoid time going backwards, prevent potential divide error: */
2262 		if (unlikely((s64)*period < 0))
2263 			*period = 0;
2264 	} else {
2265 		delta = p->se.avg.load_sum;
2266 		*period = LOAD_AVG_MAX;
2267 	}
2268 
2269 	p->last_sum_exec_runtime = runtime;
2270 	p->last_task_numa_placement = now;
2271 
2272 	return delta;
2273 }
2274 
2275 /*
2276  * Determine the preferred nid for a task in a numa_group. This needs to
2277  * be done in a way that produces consistent results with group_weight,
2278  * otherwise workloads might not converge.
2279  */
2280 static int preferred_group_nid(struct task_struct *p, int nid)
2281 {
2282 	nodemask_t nodes;
2283 	int dist;
2284 
2285 	/* Direct connections between all NUMA nodes. */
2286 	if (sched_numa_topology_type == NUMA_DIRECT)
2287 		return nid;
2288 
2289 	/*
2290 	 * On a system with glueless mesh NUMA topology, group_weight
2291 	 * scores nodes according to the number of NUMA hinting faults on
2292 	 * both the node itself, and on nearby nodes.
2293 	 */
2294 	if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
2295 		unsigned long score, max_score = 0;
2296 		int node, max_node = nid;
2297 
2298 		dist = sched_max_numa_distance;
2299 
2300 		for_each_online_node(node) {
2301 			score = group_weight(p, node, dist);
2302 			if (score > max_score) {
2303 				max_score = score;
2304 				max_node = node;
2305 			}
2306 		}
2307 		return max_node;
2308 	}
2309 
2310 	/*
2311 	 * Finding the preferred nid in a system with NUMA backplane
2312 	 * interconnect topology is more involved. The goal is to locate
2313 	 * tasks from numa_groups near each other in the system, and
2314 	 * untangle workloads from different sides of the system. This requires
2315 	 * searching down the hierarchy of node groups, recursively searching
2316 	 * inside the highest scoring group of nodes. The nodemask tricks
2317 	 * keep the complexity of the search down.
2318 	 */
2319 	nodes = node_online_map;
2320 	for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) {
2321 		unsigned long max_faults = 0;
2322 		nodemask_t max_group = NODE_MASK_NONE;
2323 		int a, b;
2324 
2325 		/* Are there nodes at this distance from each other? */
2326 		if (!find_numa_distance(dist))
2327 			continue;
2328 
2329 		for_each_node_mask(a, nodes) {
2330 			unsigned long faults = 0;
2331 			nodemask_t this_group;
2332 			nodes_clear(this_group);
2333 
2334 			/* Sum group's NUMA faults; includes a==b case. */
2335 			for_each_node_mask(b, nodes) {
2336 				if (node_distance(a, b) < dist) {
2337 					faults += group_faults(p, b);
2338 					node_set(b, this_group);
2339 					node_clear(b, nodes);
2340 				}
2341 			}
2342 
2343 			/* Remember the top group. */
2344 			if (faults > max_faults) {
2345 				max_faults = faults;
2346 				max_group = this_group;
2347 				/*
2348 				 * subtle: at the smallest distance there is
2349 				 * just one node left in each "group", the
2350 				 * winner is the preferred nid.
2351 				 */
2352 				nid = a;
2353 			}
2354 		}
2355 		/* Next round, evaluate the nodes within max_group. */
2356 		if (!max_faults)
2357 			break;
2358 		nodes = max_group;
2359 	}
2360 	return nid;
2361 }
2362 
2363 static void task_numa_placement(struct task_struct *p)
2364 {
2365 	int seq, nid, max_nid = NUMA_NO_NODE;
2366 	unsigned long max_faults = 0;
2367 	unsigned long fault_types[2] = { 0, 0 };
2368 	unsigned long total_faults;
2369 	u64 runtime, period;
2370 	spinlock_t *group_lock = NULL;
2371 	struct numa_group *ng;
2372 
2373 	/*
2374 	 * The p->mm->numa_scan_seq field gets updated without
2375 	 * exclusive access. Use READ_ONCE() here to ensure
2376 	 * that the field is read in a single access:
2377 	 */
2378 	seq = READ_ONCE(p->mm->numa_scan_seq);
2379 	if (p->numa_scan_seq == seq)
2380 		return;
2381 	p->numa_scan_seq = seq;
2382 	p->numa_scan_period_max = task_scan_max(p);
2383 
2384 	total_faults = p->numa_faults_locality[0] +
2385 		       p->numa_faults_locality[1];
2386 	runtime = numa_get_avg_runtime(p, &period);
2387 
2388 	/* If the task is part of a group prevent parallel updates to group stats */
2389 	ng = deref_curr_numa_group(p);
2390 	if (ng) {
2391 		group_lock = &ng->lock;
2392 		spin_lock_irq(group_lock);
2393 	}
2394 
2395 	/* Find the node with the highest number of faults */
2396 	for_each_online_node(nid) {
2397 		/* Keep track of the offsets in numa_faults array */
2398 		int mem_idx, membuf_idx, cpu_idx, cpubuf_idx;
2399 		unsigned long faults = 0, group_faults = 0;
2400 		int priv;
2401 
2402 		for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) {
2403 			long diff, f_diff, f_weight;
2404 
2405 			mem_idx = task_faults_idx(NUMA_MEM, nid, priv);
2406 			membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv);
2407 			cpu_idx = task_faults_idx(NUMA_CPU, nid, priv);
2408 			cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv);
2409 
2410 			/* Decay existing window, copy faults since last scan */
2411 			diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2;
2412 			fault_types[priv] += p->numa_faults[membuf_idx];
2413 			p->numa_faults[membuf_idx] = 0;
2414 
2415 			/*
2416 			 * Normalize the faults_from, so all tasks in a group
2417 			 * count according to CPU use, instead of by the raw
2418 			 * number of faults. Tasks with little runtime have
2419 			 * little over-all impact on throughput, and thus their
2420 			 * faults are less important.
2421 			 */
2422 			f_weight = div64_u64(runtime << 16, period + 1);
2423 			f_weight = (f_weight * p->numa_faults[cpubuf_idx]) /
2424 				   (total_faults + 1);
2425 			f_diff = f_weight - p->numa_faults[cpu_idx] / 2;
2426 			p->numa_faults[cpubuf_idx] = 0;
2427 
2428 			p->numa_faults[mem_idx] += diff;
2429 			p->numa_faults[cpu_idx] += f_diff;
2430 			faults += p->numa_faults[mem_idx];
2431 			p->total_numa_faults += diff;
2432 			if (ng) {
2433 				/*
2434 				 * safe because we can only change our own group
2435 				 *
2436 				 * mem_idx represents the offset for a given
2437 				 * nid and priv in a specific region because it
2438 				 * is at the beginning of the numa_faults array.
2439 				 */
2440 				ng->faults[mem_idx] += diff;
2441 				ng->faults_cpu[mem_idx] += f_diff;
2442 				ng->total_faults += diff;
2443 				group_faults += ng->faults[mem_idx];
2444 			}
2445 		}
2446 
2447 		if (!ng) {
2448 			if (faults > max_faults) {
2449 				max_faults = faults;
2450 				max_nid = nid;
2451 			}
2452 		} else if (group_faults > max_faults) {
2453 			max_faults = group_faults;
2454 			max_nid = nid;
2455 		}
2456 	}
2457 
2458 	if (ng) {
2459 		numa_group_count_active_nodes(ng);
2460 		spin_unlock_irq(group_lock);
2461 		max_nid = preferred_group_nid(p, max_nid);
2462 	}
2463 
2464 	if (max_faults) {
2465 		/* Set the new preferred node */
2466 		if (max_nid != p->numa_preferred_nid)
2467 			sched_setnuma(p, max_nid);
2468 	}
2469 
2470 	update_task_scan_period(p, fault_types[0], fault_types[1]);
2471 }
2472 
2473 static inline int get_numa_group(struct numa_group *grp)
2474 {
2475 	return refcount_inc_not_zero(&grp->refcount);
2476 }
2477 
2478 static inline void put_numa_group(struct numa_group *grp)
2479 {
2480 	if (refcount_dec_and_test(&grp->refcount))
2481 		kfree_rcu(grp, rcu);
2482 }
2483 
2484 static void task_numa_group(struct task_struct *p, int cpupid, int flags,
2485 			int *priv)
2486 {
2487 	struct numa_group *grp, *my_grp;
2488 	struct task_struct *tsk;
2489 	bool join = false;
2490 	int cpu = cpupid_to_cpu(cpupid);
2491 	int i;
2492 
2493 	if (unlikely(!deref_curr_numa_group(p))) {
2494 		unsigned int size = sizeof(struct numa_group) +
2495 				    4*nr_node_ids*sizeof(unsigned long);
2496 
2497 		grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
2498 		if (!grp)
2499 			return;
2500 
2501 		refcount_set(&grp->refcount, 1);
2502 		grp->active_nodes = 1;
2503 		grp->max_faults_cpu = 0;
2504 		spin_lock_init(&grp->lock);
2505 		grp->gid = p->pid;
2506 		/* Second half of the array tracks nids where faults happen */
2507 		grp->faults_cpu = grp->faults + NR_NUMA_HINT_FAULT_TYPES *
2508 						nr_node_ids;
2509 
2510 		for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
2511 			grp->faults[i] = p->numa_faults[i];
2512 
2513 		grp->total_faults = p->total_numa_faults;
2514 
2515 		grp->nr_tasks++;
2516 		rcu_assign_pointer(p->numa_group, grp);
2517 	}
2518 
2519 	rcu_read_lock();
2520 	tsk = READ_ONCE(cpu_rq(cpu)->curr);
2521 
2522 	if (!cpupid_match_pid(tsk, cpupid))
2523 		goto no_join;
2524 
2525 	grp = rcu_dereference(tsk->numa_group);
2526 	if (!grp)
2527 		goto no_join;
2528 
2529 	my_grp = deref_curr_numa_group(p);
2530 	if (grp == my_grp)
2531 		goto no_join;
2532 
2533 	/*
2534 	 * Only join the other group if its bigger; if we're the bigger group,
2535 	 * the other task will join us.
2536 	 */
2537 	if (my_grp->nr_tasks > grp->nr_tasks)
2538 		goto no_join;
2539 
2540 	/*
2541 	 * Tie-break on the grp address.
2542 	 */
2543 	if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
2544 		goto no_join;
2545 
2546 	/* Always join threads in the same process. */
2547 	if (tsk->mm == current->mm)
2548 		join = true;
2549 
2550 	/* Simple filter to avoid false positives due to PID collisions */
2551 	if (flags & TNF_SHARED)
2552 		join = true;
2553 
2554 	/* Update priv based on whether false sharing was detected */
2555 	*priv = !join;
2556 
2557 	if (join && !get_numa_group(grp))
2558 		goto no_join;
2559 
2560 	rcu_read_unlock();
2561 
2562 	if (!join)
2563 		return;
2564 
2565 	BUG_ON(irqs_disabled());
2566 	double_lock_irq(&my_grp->lock, &grp->lock);
2567 
2568 	for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) {
2569 		my_grp->faults[i] -= p->numa_faults[i];
2570 		grp->faults[i] += p->numa_faults[i];
2571 	}
2572 	my_grp->total_faults -= p->total_numa_faults;
2573 	grp->total_faults += p->total_numa_faults;
2574 
2575 	my_grp->nr_tasks--;
2576 	grp->nr_tasks++;
2577 
2578 	spin_unlock(&my_grp->lock);
2579 	spin_unlock_irq(&grp->lock);
2580 
2581 	rcu_assign_pointer(p->numa_group, grp);
2582 
2583 	put_numa_group(my_grp);
2584 	return;
2585 
2586 no_join:
2587 	rcu_read_unlock();
2588 	return;
2589 }
2590 
2591 /*
2592  * Get rid of NUMA statistics associated with a task (either current or dead).
2593  * If @final is set, the task is dead and has reached refcount zero, so we can
2594  * safely free all relevant data structures. Otherwise, there might be
2595  * concurrent reads from places like load balancing and procfs, and we should
2596  * reset the data back to default state without freeing ->numa_faults.
2597  */
2598 void task_numa_free(struct task_struct *p, bool final)
2599 {
2600 	/* safe: p either is current or is being freed by current */
2601 	struct numa_group *grp = rcu_dereference_raw(p->numa_group);
2602 	unsigned long *numa_faults = p->numa_faults;
2603 	unsigned long flags;
2604 	int i;
2605 
2606 	if (!numa_faults)
2607 		return;
2608 
2609 	if (grp) {
2610 		spin_lock_irqsave(&grp->lock, flags);
2611 		for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
2612 			grp->faults[i] -= p->numa_faults[i];
2613 		grp->total_faults -= p->total_numa_faults;
2614 
2615 		grp->nr_tasks--;
2616 		spin_unlock_irqrestore(&grp->lock, flags);
2617 		RCU_INIT_POINTER(p->numa_group, NULL);
2618 		put_numa_group(grp);
2619 	}
2620 
2621 	if (final) {
2622 		p->numa_faults = NULL;
2623 		kfree(numa_faults);
2624 	} else {
2625 		p->total_numa_faults = 0;
2626 		for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
2627 			numa_faults[i] = 0;
2628 	}
2629 }
2630 
2631 /*
2632  * Got a PROT_NONE fault for a page on @node.
2633  */
2634 void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags)
2635 {
2636 	struct task_struct *p = current;
2637 	bool migrated = flags & TNF_MIGRATED;
2638 	int cpu_node = task_node(current);
2639 	int local = !!(flags & TNF_FAULT_LOCAL);
2640 	struct numa_group *ng;
2641 	int priv;
2642 
2643 	if (!static_branch_likely(&sched_numa_balancing))
2644 		return;
2645 
2646 	/* for example, ksmd faulting in a user's mm */
2647 	if (!p->mm)
2648 		return;
2649 
2650 	/* Allocate buffer to track faults on a per-node basis */
2651 	if (unlikely(!p->numa_faults)) {
2652 		int size = sizeof(*p->numa_faults) *
2653 			   NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids;
2654 
2655 		p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN);
2656 		if (!p->numa_faults)
2657 			return;
2658 
2659 		p->total_numa_faults = 0;
2660 		memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
2661 	}
2662 
2663 	/*
2664 	 * First accesses are treated as private, otherwise consider accesses
2665 	 * to be private if the accessing pid has not changed
2666 	 */
2667 	if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
2668 		priv = 1;
2669 	} else {
2670 		priv = cpupid_match_pid(p, last_cpupid);
2671 		if (!priv && !(flags & TNF_NO_GROUP))
2672 			task_numa_group(p, last_cpupid, flags, &priv);
2673 	}
2674 
2675 	/*
2676 	 * If a workload spans multiple NUMA nodes, a shared fault that
2677 	 * occurs wholly within the set of nodes that the workload is
2678 	 * actively using should be counted as local. This allows the
2679 	 * scan rate to slow down when a workload has settled down.
2680 	 */
2681 	ng = deref_curr_numa_group(p);
2682 	if (!priv && !local && ng && ng->active_nodes > 1 &&
2683 				numa_is_active_node(cpu_node, ng) &&
2684 				numa_is_active_node(mem_node, ng))
2685 		local = 1;
2686 
2687 	/*
2688 	 * Retry to migrate task to preferred node periodically, in case it
2689 	 * previously failed, or the scheduler moved us.
2690 	 */
2691 	if (time_after(jiffies, p->numa_migrate_retry)) {
2692 		task_numa_placement(p);
2693 		numa_migrate_preferred(p);
2694 	}
2695 
2696 	if (migrated)
2697 		p->numa_pages_migrated += pages;
2698 	if (flags & TNF_MIGRATE_FAIL)
2699 		p->numa_faults_locality[2] += pages;
2700 
2701 	p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages;
2702 	p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages;
2703 	p->numa_faults_locality[local] += pages;
2704 }
2705 
2706 static void reset_ptenuma_scan(struct task_struct *p)
2707 {
2708 	/*
2709 	 * We only did a read acquisition of the mmap sem, so
2710 	 * p->mm->numa_scan_seq is written to without exclusive access
2711 	 * and the update is not guaranteed to be atomic. That's not
2712 	 * much of an issue though, since this is just used for
2713 	 * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not
2714 	 * expensive, to avoid any form of compiler optimizations:
2715 	 */
2716 	WRITE_ONCE(p->mm->numa_scan_seq, READ_ONCE(p->mm->numa_scan_seq) + 1);
2717 	p->mm->numa_scan_offset = 0;
2718 }
2719 
2720 /*
2721  * The expensive part of numa migration is done from task_work context.
2722  * Triggered from task_tick_numa().
2723  */
2724 static void task_numa_work(struct callback_head *work)
2725 {
2726 	unsigned long migrate, next_scan, now = jiffies;
2727 	struct task_struct *p = current;
2728 	struct mm_struct *mm = p->mm;
2729 	u64 runtime = p->se.sum_exec_runtime;
2730 	struct vm_area_struct *vma;
2731 	unsigned long start, end;
2732 	unsigned long nr_pte_updates = 0;
2733 	long pages, virtpages;
2734 
2735 	SCHED_WARN_ON(p != container_of(work, struct task_struct, numa_work));
2736 
2737 	work->next = work;
2738 	/*
2739 	 * Who cares about NUMA placement when they're dying.
2740 	 *
2741 	 * NOTE: make sure not to dereference p->mm before this check,
2742 	 * exit_task_work() happens _after_ exit_mm() so we could be called
2743 	 * without p->mm even though we still had it when we enqueued this
2744 	 * work.
2745 	 */
2746 	if (p->flags & PF_EXITING)
2747 		return;
2748 
2749 	if (!mm->numa_next_scan) {
2750 		mm->numa_next_scan = now +
2751 			msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
2752 	}
2753 
2754 	/*
2755 	 * Enforce maximal scan/migration frequency..
2756 	 */
2757 	migrate = mm->numa_next_scan;
2758 	if (time_before(now, migrate))
2759 		return;
2760 
2761 	if (p->numa_scan_period == 0) {
2762 		p->numa_scan_period_max = task_scan_max(p);
2763 		p->numa_scan_period = task_scan_start(p);
2764 	}
2765 
2766 	next_scan = now + msecs_to_jiffies(p->numa_scan_period);
2767 	if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
2768 		return;
2769 
2770 	/*
2771 	 * Delay this task enough that another task of this mm will likely win
2772 	 * the next time around.
2773 	 */
2774 	p->node_stamp += 2 * TICK_NSEC;
2775 
2776 	start = mm->numa_scan_offset;
2777 	pages = sysctl_numa_balancing_scan_size;
2778 	pages <<= 20 - PAGE_SHIFT; /* MB in pages */
2779 	virtpages = pages * 8;	   /* Scan up to this much virtual space */
2780 	if (!pages)
2781 		return;
2782 
2783 
2784 	if (!mmap_read_trylock(mm))
2785 		return;
2786 	vma = find_vma(mm, start);
2787 	if (!vma) {
2788 		reset_ptenuma_scan(p);
2789 		start = 0;
2790 		vma = mm->mmap;
2791 	}
2792 	for (; vma; vma = vma->vm_next) {
2793 		if (!vma_migratable(vma) || !vma_policy_mof(vma) ||
2794 			is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_MIXEDMAP)) {
2795 			continue;
2796 		}
2797 
2798 		/*
2799 		 * Shared library pages mapped by multiple processes are not
2800 		 * migrated as it is expected they are cache replicated. Avoid
2801 		 * hinting faults in read-only file-backed mappings or the vdso
2802 		 * as migrating the pages will be of marginal benefit.
2803 		 */
2804 		if (!vma->vm_mm ||
2805 		    (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ)))
2806 			continue;
2807 
2808 		/*
2809 		 * Skip inaccessible VMAs to avoid any confusion between
2810 		 * PROT_NONE and NUMA hinting ptes
2811 		 */
2812 		if (!vma_is_accessible(vma))
2813 			continue;
2814 
2815 		do {
2816 			start = max(start, vma->vm_start);
2817 			end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
2818 			end = min(end, vma->vm_end);
2819 			nr_pte_updates = change_prot_numa(vma, start, end);
2820 
2821 			/*
2822 			 * Try to scan sysctl_numa_balancing_size worth of
2823 			 * hpages that have at least one present PTE that
2824 			 * is not already pte-numa. If the VMA contains
2825 			 * areas that are unused or already full of prot_numa
2826 			 * PTEs, scan up to virtpages, to skip through those
2827 			 * areas faster.
2828 			 */
2829 			if (nr_pte_updates)
2830 				pages -= (end - start) >> PAGE_SHIFT;
2831 			virtpages -= (end - start) >> PAGE_SHIFT;
2832 
2833 			start = end;
2834 			if (pages <= 0 || virtpages <= 0)
2835 				goto out;
2836 
2837 			cond_resched();
2838 		} while (end != vma->vm_end);
2839 	}
2840 
2841 out:
2842 	/*
2843 	 * It is possible to reach the end of the VMA list but the last few
2844 	 * VMAs are not guaranteed to the vma_migratable. If they are not, we
2845 	 * would find the !migratable VMA on the next scan but not reset the
2846 	 * scanner to the start so check it now.
2847 	 */
2848 	if (vma)
2849 		mm->numa_scan_offset = start;
2850 	else
2851 		reset_ptenuma_scan(p);
2852 	mmap_read_unlock(mm);
2853 
2854 	/*
2855 	 * Make sure tasks use at least 32x as much time to run other code
2856 	 * than they used here, to limit NUMA PTE scanning overhead to 3% max.
2857 	 * Usually update_task_scan_period slows down scanning enough; on an
2858 	 * overloaded system we need to limit overhead on a per task basis.
2859 	 */
2860 	if (unlikely(p->se.sum_exec_runtime != runtime)) {
2861 		u64 diff = p->se.sum_exec_runtime - runtime;
2862 		p->node_stamp += 32 * diff;
2863 	}
2864 }
2865 
2866 void init_numa_balancing(unsigned long clone_flags, struct task_struct *p)
2867 {
2868 	int mm_users = 0;
2869 	struct mm_struct *mm = p->mm;
2870 
2871 	if (mm) {
2872 		mm_users = atomic_read(&mm->mm_users);
2873 		if (mm_users == 1) {
2874 			mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
2875 			mm->numa_scan_seq = 0;
2876 		}
2877 	}
2878 	p->node_stamp			= 0;
2879 	p->numa_scan_seq		= mm ? mm->numa_scan_seq : 0;
2880 	p->numa_scan_period		= sysctl_numa_balancing_scan_delay;
2881 	/* Protect against double add, see task_tick_numa and task_numa_work */
2882 	p->numa_work.next		= &p->numa_work;
2883 	p->numa_faults			= NULL;
2884 	RCU_INIT_POINTER(p->numa_group, NULL);
2885 	p->last_task_numa_placement	= 0;
2886 	p->last_sum_exec_runtime	= 0;
2887 
2888 	init_task_work(&p->numa_work, task_numa_work);
2889 
2890 	/* New address space, reset the preferred nid */
2891 	if (!(clone_flags & CLONE_VM)) {
2892 		p->numa_preferred_nid = NUMA_NO_NODE;
2893 		return;
2894 	}
2895 
2896 	/*
2897 	 * New thread, keep existing numa_preferred_nid which should be copied
2898 	 * already by arch_dup_task_struct but stagger when scans start.
2899 	 */
2900 	if (mm) {
2901 		unsigned int delay;
2902 
2903 		delay = min_t(unsigned int, task_scan_max(current),
2904 			current->numa_scan_period * mm_users * NSEC_PER_MSEC);
2905 		delay += 2 * TICK_NSEC;
2906 		p->node_stamp = delay;
2907 	}
2908 }
2909 
2910 /*
2911  * Drive the periodic memory faults..
2912  */
2913 static void task_tick_numa(struct rq *rq, struct task_struct *curr)
2914 {
2915 	struct callback_head *work = &curr->numa_work;
2916 	u64 period, now;
2917 
2918 	/*
2919 	 * We don't care about NUMA placement if we don't have memory.
2920 	 */
2921 	if ((curr->flags & (PF_EXITING | PF_KTHREAD)) || work->next != work)
2922 		return;
2923 
2924 	/*
2925 	 * Using runtime rather than walltime has the dual advantage that
2926 	 * we (mostly) drive the selection from busy threads and that the
2927 	 * task needs to have done some actual work before we bother with
2928 	 * NUMA placement.
2929 	 */
2930 	now = curr->se.sum_exec_runtime;
2931 	period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
2932 
2933 	if (now > curr->node_stamp + period) {
2934 		if (!curr->node_stamp)
2935 			curr->numa_scan_period = task_scan_start(curr);
2936 		curr->node_stamp += period;
2937 
2938 		if (!time_before(jiffies, curr->mm->numa_next_scan))
2939 			task_work_add(curr, work, TWA_RESUME);
2940 	}
2941 }
2942 
2943 static void update_scan_period(struct task_struct *p, int new_cpu)
2944 {
2945 	int src_nid = cpu_to_node(task_cpu(p));
2946 	int dst_nid = cpu_to_node(new_cpu);
2947 
2948 	if (!static_branch_likely(&sched_numa_balancing))
2949 		return;
2950 
2951 	if (!p->mm || !p->numa_faults || (p->flags & PF_EXITING))
2952 		return;
2953 
2954 	if (src_nid == dst_nid)
2955 		return;
2956 
2957 	/*
2958 	 * Allow resets if faults have been trapped before one scan
2959 	 * has completed. This is most likely due to a new task that
2960 	 * is pulled cross-node due to wakeups or load balancing.
2961 	 */
2962 	if (p->numa_scan_seq) {
2963 		/*
2964 		 * Avoid scan adjustments if moving to the preferred
2965 		 * node or if the task was not previously running on
2966 		 * the preferred node.
2967 		 */
2968 		if (dst_nid == p->numa_preferred_nid ||
2969 		    (p->numa_preferred_nid != NUMA_NO_NODE &&
2970 			src_nid != p->numa_preferred_nid))
2971 			return;
2972 	}
2973 
2974 	p->numa_scan_period = task_scan_start(p);
2975 }
2976 
2977 #else
2978 static void task_tick_numa(struct rq *rq, struct task_struct *curr)
2979 {
2980 }
2981 
2982 static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
2983 {
2984 }
2985 
2986 static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
2987 {
2988 }
2989 
2990 static inline void update_scan_period(struct task_struct *p, int new_cpu)
2991 {
2992 }
2993 
2994 #endif /* CONFIG_NUMA_BALANCING */
2995 
2996 static void
2997 account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2998 {
2999 	update_load_add(&cfs_rq->load, se->load.weight);
3000 #ifdef CONFIG_SMP
3001 	if (entity_is_task(se)) {
3002 		struct rq *rq = rq_of(cfs_rq);
3003 
3004 		account_numa_enqueue(rq, task_of(se));
3005 		list_add(&se->group_node, &rq->cfs_tasks);
3006 	}
3007 #endif
3008 	cfs_rq->nr_running++;
3009 }
3010 
3011 static void
3012 account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
3013 {
3014 	update_load_sub(&cfs_rq->load, se->load.weight);
3015 #ifdef CONFIG_SMP
3016 	if (entity_is_task(se)) {
3017 		account_numa_dequeue(rq_of(cfs_rq), task_of(se));
3018 		list_del_init(&se->group_node);
3019 	}
3020 #endif
3021 	cfs_rq->nr_running--;
3022 }
3023 
3024 /*
3025  * Signed add and clamp on underflow.
3026  *
3027  * Explicitly do a load-store to ensure the intermediate value never hits
3028  * memory. This allows lockless observations without ever seeing the negative
3029  * values.
3030  */
3031 #define add_positive(_ptr, _val) do {                           \
3032 	typeof(_ptr) ptr = (_ptr);                              \
3033 	typeof(_val) val = (_val);                              \
3034 	typeof(*ptr) res, var = READ_ONCE(*ptr);                \
3035 								\
3036 	res = var + val;                                        \
3037 								\
3038 	if (val < 0 && res > var)                               \
3039 		res = 0;                                        \
3040 								\
3041 	WRITE_ONCE(*ptr, res);                                  \
3042 } while (0)
3043 
3044 /*
3045  * Unsigned subtract and clamp on underflow.
3046  *
3047  * Explicitly do a load-store to ensure the intermediate value never hits
3048  * memory. This allows lockless observations without ever seeing the negative
3049  * values.
3050  */
3051 #define sub_positive(_ptr, _val) do {				\
3052 	typeof(_ptr) ptr = (_ptr);				\
3053 	typeof(*ptr) val = (_val);				\
3054 	typeof(*ptr) res, var = READ_ONCE(*ptr);		\
3055 	res = var - val;					\
3056 	if (res > var)						\
3057 		res = 0;					\
3058 	WRITE_ONCE(*ptr, res);					\
3059 } while (0)
3060 
3061 /*
3062  * Remove and clamp on negative, from a local variable.
3063  *
3064  * A variant of sub_positive(), which does not use explicit load-store
3065  * and is thus optimized for local variable updates.
3066  */
3067 #define lsub_positive(_ptr, _val) do {				\
3068 	typeof(_ptr) ptr = (_ptr);				\
3069 	*ptr -= min_t(typeof(*ptr), *ptr, _val);		\
3070 } while (0)
3071 
3072 #ifdef CONFIG_SMP
3073 static inline void
3074 enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3075 {
3076 	cfs_rq->avg.load_avg += se->avg.load_avg;
3077 	cfs_rq->avg.load_sum += se_weight(se) * se->avg.load_sum;
3078 }
3079 
3080 static inline void
3081 dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3082 {
3083 	sub_positive(&cfs_rq->avg.load_avg, se->avg.load_avg);
3084 	sub_positive(&cfs_rq->avg.load_sum, se_weight(se) * se->avg.load_sum);
3085 }
3086 #else
3087 static inline void
3088 enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
3089 static inline void
3090 dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
3091 #endif
3092 
3093 static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
3094 			    unsigned long weight)
3095 {
3096 	if (se->on_rq) {
3097 		/* commit outstanding execution time */
3098 		if (cfs_rq->curr == se)
3099 			update_curr(cfs_rq);
3100 		update_load_sub(&cfs_rq->load, se->load.weight);
3101 	}
3102 	dequeue_load_avg(cfs_rq, se);
3103 
3104 	update_load_set(&se->load, weight);
3105 
3106 #ifdef CONFIG_SMP
3107 	do {
3108 		u32 divider = get_pelt_divider(&se->avg);
3109 
3110 		se->avg.load_avg = div_u64(se_weight(se) * se->avg.load_sum, divider);
3111 	} while (0);
3112 #endif
3113 
3114 	enqueue_load_avg(cfs_rq, se);
3115 	if (se->on_rq)
3116 		update_load_add(&cfs_rq->load, se->load.weight);
3117 
3118 }
3119 
3120 void reweight_task(struct task_struct *p, int prio)
3121 {
3122 	struct sched_entity *se = &p->se;
3123 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
3124 	struct load_weight *load = &se->load;
3125 	unsigned long weight = scale_load(sched_prio_to_weight[prio]);
3126 
3127 	reweight_entity(cfs_rq, se, weight);
3128 	load->inv_weight = sched_prio_to_wmult[prio];
3129 }
3130 
3131 #ifdef CONFIG_FAIR_GROUP_SCHED
3132 #ifdef CONFIG_SMP
3133 /*
3134  * All this does is approximate the hierarchical proportion which includes that
3135  * global sum we all love to hate.
3136  *
3137  * That is, the weight of a group entity, is the proportional share of the
3138  * group weight based on the group runqueue weights. That is:
3139  *
3140  *                     tg->weight * grq->load.weight
3141  *   ge->load.weight = -----------------------------               (1)
3142  *			  \Sum grq->load.weight
3143  *
3144  * Now, because computing that sum is prohibitively expensive to compute (been
3145  * there, done that) we approximate it with this average stuff. The average
3146  * moves slower and therefore the approximation is cheaper and more stable.
3147  *
3148  * So instead of the above, we substitute:
3149  *
3150  *   grq->load.weight -> grq->avg.load_avg                         (2)
3151  *
3152  * which yields the following:
3153  *
3154  *                     tg->weight * grq->avg.load_avg
3155  *   ge->load.weight = ------------------------------              (3)
3156  *				tg->load_avg
3157  *
3158  * Where: tg->load_avg ~= \Sum grq->avg.load_avg
3159  *
3160  * That is shares_avg, and it is right (given the approximation (2)).
3161  *
3162  * The problem with it is that because the average is slow -- it was designed
3163  * to be exactly that of course -- this leads to transients in boundary
3164  * conditions. In specific, the case where the group was idle and we start the
3165  * one task. It takes time for our CPU's grq->avg.load_avg to build up,
3166  * yielding bad latency etc..
3167  *
3168  * Now, in that special case (1) reduces to:
3169  *
3170  *                     tg->weight * grq->load.weight
3171  *   ge->load.weight = ----------------------------- = tg->weight   (4)
3172  *			    grp->load.weight
3173  *
3174  * That is, the sum collapses because all other CPUs are idle; the UP scenario.
3175  *
3176  * So what we do is modify our approximation (3) to approach (4) in the (near)
3177  * UP case, like:
3178  *
3179  *   ge->load.weight =
3180  *
3181  *              tg->weight * grq->load.weight
3182  *     ---------------------------------------------------         (5)
3183  *     tg->load_avg - grq->avg.load_avg + grq->load.weight
3184  *
3185  * But because grq->load.weight can drop to 0, resulting in a divide by zero,
3186  * we need to use grq->avg.load_avg as its lower bound, which then gives:
3187  *
3188  *
3189  *                     tg->weight * grq->load.weight
3190  *   ge->load.weight = -----------------------------		   (6)
3191  *				tg_load_avg'
3192  *
3193  * Where:
3194  *
3195  *   tg_load_avg' = tg->load_avg - grq->avg.load_avg +
3196  *                  max(grq->load.weight, grq->avg.load_avg)
3197  *
3198  * And that is shares_weight and is icky. In the (near) UP case it approaches
3199  * (4) while in the normal case it approaches (3). It consistently
3200  * overestimates the ge->load.weight and therefore:
3201  *
3202  *   \Sum ge->load.weight >= tg->weight
3203  *
3204  * hence icky!
3205  */
3206 static long calc_group_shares(struct cfs_rq *cfs_rq)
3207 {
3208 	long tg_weight, tg_shares, load, shares;
3209 	struct task_group *tg = cfs_rq->tg;
3210 
3211 	tg_shares = READ_ONCE(tg->shares);
3212 
3213 	load = max(scale_load_down(cfs_rq->load.weight), cfs_rq->avg.load_avg);
3214 
3215 	tg_weight = atomic_long_read(&tg->load_avg);
3216 
3217 	/* Ensure tg_weight >= load */
3218 	tg_weight -= cfs_rq->tg_load_avg_contrib;
3219 	tg_weight += load;
3220 
3221 	shares = (tg_shares * load);
3222 	if (tg_weight)
3223 		shares /= tg_weight;
3224 
3225 	/*
3226 	 * MIN_SHARES has to be unscaled here to support per-CPU partitioning
3227 	 * of a group with small tg->shares value. It is a floor value which is
3228 	 * assigned as a minimum load.weight to the sched_entity representing
3229 	 * the group on a CPU.
3230 	 *
3231 	 * E.g. on 64-bit for a group with tg->shares of scale_load(15)=15*1024
3232 	 * on an 8-core system with 8 tasks each runnable on one CPU shares has
3233 	 * to be 15*1024*1/8=1920 instead of scale_load(MIN_SHARES)=2*1024. In
3234 	 * case no task is runnable on a CPU MIN_SHARES=2 should be returned
3235 	 * instead of 0.
3236 	 */
3237 	return clamp_t(long, shares, MIN_SHARES, tg_shares);
3238 }
3239 #endif /* CONFIG_SMP */
3240 
3241 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
3242 
3243 /*
3244  * Recomputes the group entity based on the current state of its group
3245  * runqueue.
3246  */
3247 static void update_cfs_group(struct sched_entity *se)
3248 {
3249 	struct cfs_rq *gcfs_rq = group_cfs_rq(se);
3250 	long shares;
3251 
3252 	if (!gcfs_rq)
3253 		return;
3254 
3255 	if (throttled_hierarchy(gcfs_rq))
3256 		return;
3257 
3258 #ifndef CONFIG_SMP
3259 	shares = READ_ONCE(gcfs_rq->tg->shares);
3260 
3261 	if (likely(se->load.weight == shares))
3262 		return;
3263 #else
3264 	shares   = calc_group_shares(gcfs_rq);
3265 #endif
3266 
3267 	reweight_entity(cfs_rq_of(se), se, shares);
3268 }
3269 
3270 #else /* CONFIG_FAIR_GROUP_SCHED */
3271 static inline void update_cfs_group(struct sched_entity *se)
3272 {
3273 }
3274 #endif /* CONFIG_FAIR_GROUP_SCHED */
3275 
3276 static inline void cfs_rq_util_change(struct cfs_rq *cfs_rq, int flags)
3277 {
3278 	struct rq *rq = rq_of(cfs_rq);
3279 
3280 	if (&rq->cfs == cfs_rq) {
3281 		/*
3282 		 * There are a few boundary cases this might miss but it should
3283 		 * get called often enough that that should (hopefully) not be
3284 		 * a real problem.
3285 		 *
3286 		 * It will not get called when we go idle, because the idle
3287 		 * thread is a different class (!fair), nor will the utilization
3288 		 * number include things like RT tasks.
3289 		 *
3290 		 * As is, the util number is not freq-invariant (we'd have to
3291 		 * implement arch_scale_freq_capacity() for that).
3292 		 *
3293 		 * See cpu_util().
3294 		 */
3295 		cpufreq_update_util(rq, flags);
3296 	}
3297 }
3298 
3299 #ifdef CONFIG_SMP
3300 #ifdef CONFIG_FAIR_GROUP_SCHED
3301 /**
3302  * update_tg_load_avg - update the tg's load avg
3303  * @cfs_rq: the cfs_rq whose avg changed
3304  *
3305  * This function 'ensures': tg->load_avg := \Sum tg->cfs_rq[]->avg.load.
3306  * However, because tg->load_avg is a global value there are performance
3307  * considerations.
3308  *
3309  * In order to avoid having to look at the other cfs_rq's, we use a
3310  * differential update where we store the last value we propagated. This in
3311  * turn allows skipping updates if the differential is 'small'.
3312  *
3313  * Updating tg's load_avg is necessary before update_cfs_share().
3314  */
3315 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq)
3316 {
3317 	long delta = cfs_rq->avg.load_avg - cfs_rq->tg_load_avg_contrib;
3318 
3319 	/*
3320 	 * No need to update load_avg for root_task_group as it is not used.
3321 	 */
3322 	if (cfs_rq->tg == &root_task_group)
3323 		return;
3324 
3325 	if (abs(delta) > cfs_rq->tg_load_avg_contrib / 64) {
3326 		atomic_long_add(delta, &cfs_rq->tg->load_avg);
3327 		cfs_rq->tg_load_avg_contrib = cfs_rq->avg.load_avg;
3328 	}
3329 }
3330 
3331 /*
3332  * Called within set_task_rq() right before setting a task's CPU. The
3333  * caller only guarantees p->pi_lock is held; no other assumptions,
3334  * including the state of rq->lock, should be made.
3335  */
3336 void set_task_rq_fair(struct sched_entity *se,
3337 		      struct cfs_rq *prev, struct cfs_rq *next)
3338 {
3339 	u64 p_last_update_time;
3340 	u64 n_last_update_time;
3341 
3342 	if (!sched_feat(ATTACH_AGE_LOAD))
3343 		return;
3344 
3345 	/*
3346 	 * We are supposed to update the task to "current" time, then its up to
3347 	 * date and ready to go to new CPU/cfs_rq. But we have difficulty in
3348 	 * getting what current time is, so simply throw away the out-of-date
3349 	 * time. This will result in the wakee task is less decayed, but giving
3350 	 * the wakee more load sounds not bad.
3351 	 */
3352 	if (!(se->avg.last_update_time && prev))
3353 		return;
3354 
3355 #ifndef CONFIG_64BIT
3356 	{
3357 		u64 p_last_update_time_copy;
3358 		u64 n_last_update_time_copy;
3359 
3360 		do {
3361 			p_last_update_time_copy = prev->load_last_update_time_copy;
3362 			n_last_update_time_copy = next->load_last_update_time_copy;
3363 
3364 			smp_rmb();
3365 
3366 			p_last_update_time = prev->avg.last_update_time;
3367 			n_last_update_time = next->avg.last_update_time;
3368 
3369 		} while (p_last_update_time != p_last_update_time_copy ||
3370 			 n_last_update_time != n_last_update_time_copy);
3371 	}
3372 #else
3373 	p_last_update_time = prev->avg.last_update_time;
3374 	n_last_update_time = next->avg.last_update_time;
3375 #endif
3376 	__update_load_avg_blocked_se(p_last_update_time, se);
3377 	se->avg.last_update_time = n_last_update_time;
3378 }
3379 
3380 
3381 /*
3382  * When on migration a sched_entity joins/leaves the PELT hierarchy, we need to
3383  * propagate its contribution. The key to this propagation is the invariant
3384  * that for each group:
3385  *
3386  *   ge->avg == grq->avg						(1)
3387  *
3388  * _IFF_ we look at the pure running and runnable sums. Because they
3389  * represent the very same entity, just at different points in the hierarchy.
3390  *
3391  * Per the above update_tg_cfs_util() and update_tg_cfs_runnable() are trivial
3392  * and simply copies the running/runnable sum over (but still wrong, because
3393  * the group entity and group rq do not have their PELT windows aligned).
3394  *
3395  * However, update_tg_cfs_load() is more complex. So we have:
3396  *
3397  *   ge->avg.load_avg = ge->load.weight * ge->avg.runnable_avg		(2)
3398  *
3399  * And since, like util, the runnable part should be directly transferable,
3400  * the following would _appear_ to be the straight forward approach:
3401  *
3402  *   grq->avg.load_avg = grq->load.weight * grq->avg.runnable_avg	(3)
3403  *
3404  * And per (1) we have:
3405  *
3406  *   ge->avg.runnable_avg == grq->avg.runnable_avg
3407  *
3408  * Which gives:
3409  *
3410  *                      ge->load.weight * grq->avg.load_avg
3411  *   ge->avg.load_avg = -----------------------------------		(4)
3412  *                               grq->load.weight
3413  *
3414  * Except that is wrong!
3415  *
3416  * Because while for entities historical weight is not important and we
3417  * really only care about our future and therefore can consider a pure
3418  * runnable sum, runqueues can NOT do this.
3419  *
3420  * We specifically want runqueues to have a load_avg that includes
3421  * historical weights. Those represent the blocked load, the load we expect
3422  * to (shortly) return to us. This only works by keeping the weights as
3423  * integral part of the sum. We therefore cannot decompose as per (3).
3424  *
3425  * Another reason this doesn't work is that runnable isn't a 0-sum entity.
3426  * Imagine a rq with 2 tasks that each are runnable 2/3 of the time. Then the
3427  * rq itself is runnable anywhere between 2/3 and 1 depending on how the
3428  * runnable section of these tasks overlap (or not). If they were to perfectly
3429  * align the rq as a whole would be runnable 2/3 of the time. If however we
3430  * always have at least 1 runnable task, the rq as a whole is always runnable.
3431  *
3432  * So we'll have to approximate.. :/
3433  *
3434  * Given the constraint:
3435  *
3436  *   ge->avg.running_sum <= ge->avg.runnable_sum <= LOAD_AVG_MAX
3437  *
3438  * We can construct a rule that adds runnable to a rq by assuming minimal
3439  * overlap.
3440  *
3441  * On removal, we'll assume each task is equally runnable; which yields:
3442  *
3443  *   grq->avg.runnable_sum = grq->avg.load_sum / grq->load.weight
3444  *
3445  * XXX: only do this for the part of runnable > running ?
3446  *
3447  */
3448 
3449 static inline void
3450 update_tg_cfs_util(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
3451 {
3452 	long delta = gcfs_rq->avg.util_avg - se->avg.util_avg;
3453 	u32 divider;
3454 
3455 	/* Nothing to update */
3456 	if (!delta)
3457 		return;
3458 
3459 	/*
3460 	 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
3461 	 * See ___update_load_avg() for details.
3462 	 */
3463 	divider = get_pelt_divider(&cfs_rq->avg);
3464 
3465 	/* Set new sched_entity's utilization */
3466 	se->avg.util_avg = gcfs_rq->avg.util_avg;
3467 	se->avg.util_sum = se->avg.util_avg * divider;
3468 
3469 	/* Update parent cfs_rq utilization */
3470 	add_positive(&cfs_rq->avg.util_avg, delta);
3471 	cfs_rq->avg.util_sum = cfs_rq->avg.util_avg * divider;
3472 }
3473 
3474 static inline void
3475 update_tg_cfs_runnable(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
3476 {
3477 	long delta = gcfs_rq->avg.runnable_avg - se->avg.runnable_avg;
3478 	u32 divider;
3479 
3480 	/* Nothing to update */
3481 	if (!delta)
3482 		return;
3483 
3484 	/*
3485 	 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
3486 	 * See ___update_load_avg() for details.
3487 	 */
3488 	divider = get_pelt_divider(&cfs_rq->avg);
3489 
3490 	/* Set new sched_entity's runnable */
3491 	se->avg.runnable_avg = gcfs_rq->avg.runnable_avg;
3492 	se->avg.runnable_sum = se->avg.runnable_avg * divider;
3493 
3494 	/* Update parent cfs_rq runnable */
3495 	add_positive(&cfs_rq->avg.runnable_avg, delta);
3496 	cfs_rq->avg.runnable_sum = cfs_rq->avg.runnable_avg * divider;
3497 }
3498 
3499 static inline void
3500 update_tg_cfs_load(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
3501 {
3502 	long delta_avg, running_sum, runnable_sum = gcfs_rq->prop_runnable_sum;
3503 	unsigned long load_avg;
3504 	u64 load_sum = 0;
3505 	s64 delta_sum;
3506 	u32 divider;
3507 
3508 	if (!runnable_sum)
3509 		return;
3510 
3511 	gcfs_rq->prop_runnable_sum = 0;
3512 
3513 	/*
3514 	 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
3515 	 * See ___update_load_avg() for details.
3516 	 */
3517 	divider = get_pelt_divider(&cfs_rq->avg);
3518 
3519 	if (runnable_sum >= 0) {
3520 		/*
3521 		 * Add runnable; clip at LOAD_AVG_MAX. Reflects that until
3522 		 * the CPU is saturated running == runnable.
3523 		 */
3524 		runnable_sum += se->avg.load_sum;
3525 		runnable_sum = min_t(long, runnable_sum, divider);
3526 	} else {
3527 		/*
3528 		 * Estimate the new unweighted runnable_sum of the gcfs_rq by
3529 		 * assuming all tasks are equally runnable.
3530 		 */
3531 		if (scale_load_down(gcfs_rq->load.weight)) {
3532 			load_sum = div_s64(gcfs_rq->avg.load_sum,
3533 				scale_load_down(gcfs_rq->load.weight));
3534 		}
3535 
3536 		/* But make sure to not inflate se's runnable */
3537 		runnable_sum = min(se->avg.load_sum, load_sum);
3538 	}
3539 
3540 	/*
3541 	 * runnable_sum can't be lower than running_sum
3542 	 * Rescale running sum to be in the same range as runnable sum
3543 	 * running_sum is in [0 : LOAD_AVG_MAX <<  SCHED_CAPACITY_SHIFT]
3544 	 * runnable_sum is in [0 : LOAD_AVG_MAX]
3545 	 */
3546 	running_sum = se->avg.util_sum >> SCHED_CAPACITY_SHIFT;
3547 	runnable_sum = max(runnable_sum, running_sum);
3548 
3549 	load_sum = (s64)se_weight(se) * runnable_sum;
3550 	load_avg = div_s64(load_sum, divider);
3551 
3552 	delta_sum = load_sum - (s64)se_weight(se) * se->avg.load_sum;
3553 	delta_avg = load_avg - se->avg.load_avg;
3554 
3555 	se->avg.load_sum = runnable_sum;
3556 	se->avg.load_avg = load_avg;
3557 	add_positive(&cfs_rq->avg.load_avg, delta_avg);
3558 	add_positive(&cfs_rq->avg.load_sum, delta_sum);
3559 }
3560 
3561 static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum)
3562 {
3563 	cfs_rq->propagate = 1;
3564 	cfs_rq->prop_runnable_sum += runnable_sum;
3565 }
3566 
3567 /* Update task and its cfs_rq load average */
3568 static inline int propagate_entity_load_avg(struct sched_entity *se)
3569 {
3570 	struct cfs_rq *cfs_rq, *gcfs_rq;
3571 
3572 	if (entity_is_task(se))
3573 		return 0;
3574 
3575 	gcfs_rq = group_cfs_rq(se);
3576 	if (!gcfs_rq->propagate)
3577 		return 0;
3578 
3579 	gcfs_rq->propagate = 0;
3580 
3581 	cfs_rq = cfs_rq_of(se);
3582 
3583 	add_tg_cfs_propagate(cfs_rq, gcfs_rq->prop_runnable_sum);
3584 
3585 	update_tg_cfs_util(cfs_rq, se, gcfs_rq);
3586 	update_tg_cfs_runnable(cfs_rq, se, gcfs_rq);
3587 	update_tg_cfs_load(cfs_rq, se, gcfs_rq);
3588 
3589 	trace_pelt_cfs_tp(cfs_rq);
3590 	trace_pelt_se_tp(se);
3591 
3592 	return 1;
3593 }
3594 
3595 /*
3596  * Check if we need to update the load and the utilization of a blocked
3597  * group_entity:
3598  */
3599 static inline bool skip_blocked_update(struct sched_entity *se)
3600 {
3601 	struct cfs_rq *gcfs_rq = group_cfs_rq(se);
3602 
3603 	/*
3604 	 * If sched_entity still have not zero load or utilization, we have to
3605 	 * decay it:
3606 	 */
3607 	if (se->avg.load_avg || se->avg.util_avg)
3608 		return false;
3609 
3610 	/*
3611 	 * If there is a pending propagation, we have to update the load and
3612 	 * the utilization of the sched_entity:
3613 	 */
3614 	if (gcfs_rq->propagate)
3615 		return false;
3616 
3617 	/*
3618 	 * Otherwise, the load and the utilization of the sched_entity is
3619 	 * already zero and there is no pending propagation, so it will be a
3620 	 * waste of time to try to decay it:
3621 	 */
3622 	return true;
3623 }
3624 
3625 #else /* CONFIG_FAIR_GROUP_SCHED */
3626 
3627 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq) {}
3628 
3629 static inline int propagate_entity_load_avg(struct sched_entity *se)
3630 {
3631 	return 0;
3632 }
3633 
3634 static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum) {}
3635 
3636 #endif /* CONFIG_FAIR_GROUP_SCHED */
3637 
3638 /**
3639  * update_cfs_rq_load_avg - update the cfs_rq's load/util averages
3640  * @now: current time, as per cfs_rq_clock_pelt()
3641  * @cfs_rq: cfs_rq to update
3642  *
3643  * The cfs_rq avg is the direct sum of all its entities (blocked and runnable)
3644  * avg. The immediate corollary is that all (fair) tasks must be attached, see
3645  * post_init_entity_util_avg().
3646  *
3647  * cfs_rq->avg is used for task_h_load() and update_cfs_share() for example.
3648  *
3649  * Returns true if the load decayed or we removed load.
3650  *
3651  * Since both these conditions indicate a changed cfs_rq->avg.load we should
3652  * call update_tg_load_avg() when this function returns true.
3653  */
3654 static inline int
3655 update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq)
3656 {
3657 	unsigned long removed_load = 0, removed_util = 0, removed_runnable = 0;
3658 	struct sched_avg *sa = &cfs_rq->avg;
3659 	int decayed = 0;
3660 
3661 	if (cfs_rq->removed.nr) {
3662 		unsigned long r;
3663 		u32 divider = get_pelt_divider(&cfs_rq->avg);
3664 
3665 		raw_spin_lock(&cfs_rq->removed.lock);
3666 		swap(cfs_rq->removed.util_avg, removed_util);
3667 		swap(cfs_rq->removed.load_avg, removed_load);
3668 		swap(cfs_rq->removed.runnable_avg, removed_runnable);
3669 		cfs_rq->removed.nr = 0;
3670 		raw_spin_unlock(&cfs_rq->removed.lock);
3671 
3672 		r = removed_load;
3673 		sub_positive(&sa->load_avg, r);
3674 		sub_positive(&sa->load_sum, r * divider);
3675 
3676 		r = removed_util;
3677 		sub_positive(&sa->util_avg, r);
3678 		sub_positive(&sa->util_sum, r * divider);
3679 
3680 		r = removed_runnable;
3681 		sub_positive(&sa->runnable_avg, r);
3682 		sub_positive(&sa->runnable_sum, r * divider);
3683 
3684 		/*
3685 		 * removed_runnable is the unweighted version of removed_load so we
3686 		 * can use it to estimate removed_load_sum.
3687 		 */
3688 		add_tg_cfs_propagate(cfs_rq,
3689 			-(long)(removed_runnable * divider) >> SCHED_CAPACITY_SHIFT);
3690 
3691 		decayed = 1;
3692 	}
3693 
3694 	decayed |= __update_load_avg_cfs_rq(now, cfs_rq);
3695 
3696 #ifndef CONFIG_64BIT
3697 	smp_wmb();
3698 	cfs_rq->load_last_update_time_copy = sa->last_update_time;
3699 #endif
3700 
3701 	return decayed;
3702 }
3703 
3704 /**
3705  * attach_entity_load_avg - attach this entity to its cfs_rq load avg
3706  * @cfs_rq: cfs_rq to attach to
3707  * @se: sched_entity to attach
3708  *
3709  * Must call update_cfs_rq_load_avg() before this, since we rely on
3710  * cfs_rq->avg.last_update_time being current.
3711  */
3712 static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3713 {
3714 	/*
3715 	 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
3716 	 * See ___update_load_avg() for details.
3717 	 */
3718 	u32 divider = get_pelt_divider(&cfs_rq->avg);
3719 
3720 	/*
3721 	 * When we attach the @se to the @cfs_rq, we must align the decay
3722 	 * window because without that, really weird and wonderful things can
3723 	 * happen.
3724 	 *
3725 	 * XXX illustrate
3726 	 */
3727 	se->avg.last_update_time = cfs_rq->avg.last_update_time;
3728 	se->avg.period_contrib = cfs_rq->avg.period_contrib;
3729 
3730 	/*
3731 	 * Hell(o) Nasty stuff.. we need to recompute _sum based on the new
3732 	 * period_contrib. This isn't strictly correct, but since we're
3733 	 * entirely outside of the PELT hierarchy, nobody cares if we truncate
3734 	 * _sum a little.
3735 	 */
3736 	se->avg.util_sum = se->avg.util_avg * divider;
3737 
3738 	se->avg.runnable_sum = se->avg.runnable_avg * divider;
3739 
3740 	se->avg.load_sum = divider;
3741 	if (se_weight(se)) {
3742 		se->avg.load_sum =
3743 			div_u64(se->avg.load_avg * se->avg.load_sum, se_weight(se));
3744 	}
3745 
3746 	enqueue_load_avg(cfs_rq, se);
3747 	cfs_rq->avg.util_avg += se->avg.util_avg;
3748 	cfs_rq->avg.util_sum += se->avg.util_sum;
3749 	cfs_rq->avg.runnable_avg += se->avg.runnable_avg;
3750 	cfs_rq->avg.runnable_sum += se->avg.runnable_sum;
3751 
3752 	add_tg_cfs_propagate(cfs_rq, se->avg.load_sum);
3753 
3754 	cfs_rq_util_change(cfs_rq, 0);
3755 
3756 	trace_pelt_cfs_tp(cfs_rq);
3757 }
3758 
3759 /**
3760  * detach_entity_load_avg - detach this entity from its cfs_rq load avg
3761  * @cfs_rq: cfs_rq to detach from
3762  * @se: sched_entity to detach
3763  *
3764  * Must call update_cfs_rq_load_avg() before this, since we rely on
3765  * cfs_rq->avg.last_update_time being current.
3766  */
3767 static void detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3768 {
3769 	dequeue_load_avg(cfs_rq, se);
3770 	sub_positive(&cfs_rq->avg.util_avg, se->avg.util_avg);
3771 	sub_positive(&cfs_rq->avg.util_sum, se->avg.util_sum);
3772 	sub_positive(&cfs_rq->avg.runnable_avg, se->avg.runnable_avg);
3773 	sub_positive(&cfs_rq->avg.runnable_sum, se->avg.runnable_sum);
3774 
3775 	add_tg_cfs_propagate(cfs_rq, -se->avg.load_sum);
3776 
3777 	cfs_rq_util_change(cfs_rq, 0);
3778 
3779 	trace_pelt_cfs_tp(cfs_rq);
3780 }
3781 
3782 /*
3783  * Optional action to be done while updating the load average
3784  */
3785 #define UPDATE_TG	0x1
3786 #define SKIP_AGE_LOAD	0x2
3787 #define DO_ATTACH	0x4
3788 
3789 /* Update task and its cfs_rq load average */
3790 static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
3791 {
3792 	u64 now = cfs_rq_clock_pelt(cfs_rq);
3793 	int decayed;
3794 
3795 	/*
3796 	 * Track task load average for carrying it to new CPU after migrated, and
3797 	 * track group sched_entity load average for task_h_load calc in migration
3798 	 */
3799 	if (se->avg.last_update_time && !(flags & SKIP_AGE_LOAD))
3800 		__update_load_avg_se(now, cfs_rq, se);
3801 
3802 	decayed  = update_cfs_rq_load_avg(now, cfs_rq);
3803 	decayed |= propagate_entity_load_avg(se);
3804 
3805 	if (!se->avg.last_update_time && (flags & DO_ATTACH)) {
3806 
3807 		/*
3808 		 * DO_ATTACH means we're here from enqueue_entity().
3809 		 * !last_update_time means we've passed through
3810 		 * migrate_task_rq_fair() indicating we migrated.
3811 		 *
3812 		 * IOW we're enqueueing a task on a new CPU.
3813 		 */
3814 		attach_entity_load_avg(cfs_rq, se);
3815 		update_tg_load_avg(cfs_rq);
3816 
3817 	} else if (decayed) {
3818 		cfs_rq_util_change(cfs_rq, 0);
3819 
3820 		if (flags & UPDATE_TG)
3821 			update_tg_load_avg(cfs_rq);
3822 	}
3823 }
3824 
3825 #ifndef CONFIG_64BIT
3826 static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
3827 {
3828 	u64 last_update_time_copy;
3829 	u64 last_update_time;
3830 
3831 	do {
3832 		last_update_time_copy = cfs_rq->load_last_update_time_copy;
3833 		smp_rmb();
3834 		last_update_time = cfs_rq->avg.last_update_time;
3835 	} while (last_update_time != last_update_time_copy);
3836 
3837 	return last_update_time;
3838 }
3839 #else
3840 static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
3841 {
3842 	return cfs_rq->avg.last_update_time;
3843 }
3844 #endif
3845 
3846 /*
3847  * Synchronize entity load avg of dequeued entity without locking
3848  * the previous rq.
3849  */
3850 static void sync_entity_load_avg(struct sched_entity *se)
3851 {
3852 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
3853 	u64 last_update_time;
3854 
3855 	last_update_time = cfs_rq_last_update_time(cfs_rq);
3856 	__update_load_avg_blocked_se(last_update_time, se);
3857 }
3858 
3859 /*
3860  * Task first catches up with cfs_rq, and then subtract
3861  * itself from the cfs_rq (task must be off the queue now).
3862  */
3863 static void remove_entity_load_avg(struct sched_entity *se)
3864 {
3865 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
3866 	unsigned long flags;
3867 
3868 	/*
3869 	 * tasks cannot exit without having gone through wake_up_new_task() ->
3870 	 * post_init_entity_util_avg() which will have added things to the
3871 	 * cfs_rq, so we can remove unconditionally.
3872 	 */
3873 
3874 	sync_entity_load_avg(se);
3875 
3876 	raw_spin_lock_irqsave(&cfs_rq->removed.lock, flags);
3877 	++cfs_rq->removed.nr;
3878 	cfs_rq->removed.util_avg	+= se->avg.util_avg;
3879 	cfs_rq->removed.load_avg	+= se->avg.load_avg;
3880 	cfs_rq->removed.runnable_avg	+= se->avg.runnable_avg;
3881 	raw_spin_unlock_irqrestore(&cfs_rq->removed.lock, flags);
3882 }
3883 
3884 static inline unsigned long cfs_rq_runnable_avg(struct cfs_rq *cfs_rq)
3885 {
3886 	return cfs_rq->avg.runnable_avg;
3887 }
3888 
3889 static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq)
3890 {
3891 	return cfs_rq->avg.load_avg;
3892 }
3893 
3894 static int newidle_balance(struct rq *this_rq, struct rq_flags *rf);
3895 
3896 static inline unsigned long task_util(struct task_struct *p)
3897 {
3898 	return READ_ONCE(p->se.avg.util_avg);
3899 }
3900 
3901 static inline unsigned long _task_util_est(struct task_struct *p)
3902 {
3903 	struct util_est ue = READ_ONCE(p->se.avg.util_est);
3904 
3905 	return (max(ue.ewma, ue.enqueued) | UTIL_AVG_UNCHANGED);
3906 }
3907 
3908 static inline unsigned long task_util_est(struct task_struct *p)
3909 {
3910 	return max(task_util(p), _task_util_est(p));
3911 }
3912 
3913 #ifdef CONFIG_UCLAMP_TASK
3914 static inline unsigned long uclamp_task_util(struct task_struct *p)
3915 {
3916 	return clamp(task_util_est(p),
3917 		     uclamp_eff_value(p, UCLAMP_MIN),
3918 		     uclamp_eff_value(p, UCLAMP_MAX));
3919 }
3920 #else
3921 static inline unsigned long uclamp_task_util(struct task_struct *p)
3922 {
3923 	return task_util_est(p);
3924 }
3925 #endif
3926 
3927 static inline void util_est_enqueue(struct cfs_rq *cfs_rq,
3928 				    struct task_struct *p)
3929 {
3930 	unsigned int enqueued;
3931 
3932 	if (!sched_feat(UTIL_EST))
3933 		return;
3934 
3935 	/* Update root cfs_rq's estimated utilization */
3936 	enqueued  = cfs_rq->avg.util_est.enqueued;
3937 	enqueued += _task_util_est(p);
3938 	WRITE_ONCE(cfs_rq->avg.util_est.enqueued, enqueued);
3939 
3940 	trace_sched_util_est_cfs_tp(cfs_rq);
3941 }
3942 
3943 static inline void util_est_dequeue(struct cfs_rq *cfs_rq,
3944 				    struct task_struct *p)
3945 {
3946 	unsigned int enqueued;
3947 
3948 	if (!sched_feat(UTIL_EST))
3949 		return;
3950 
3951 	/* Update root cfs_rq's estimated utilization */
3952 	enqueued  = cfs_rq->avg.util_est.enqueued;
3953 	enqueued -= min_t(unsigned int, enqueued, _task_util_est(p));
3954 	WRITE_ONCE(cfs_rq->avg.util_est.enqueued, enqueued);
3955 
3956 	trace_sched_util_est_cfs_tp(cfs_rq);
3957 }
3958 
3959 #define UTIL_EST_MARGIN (SCHED_CAPACITY_SCALE / 100)
3960 
3961 /*
3962  * Check if a (signed) value is within a specified (unsigned) margin,
3963  * based on the observation that:
3964  *
3965  *     abs(x) < y := (unsigned)(x + y - 1) < (2 * y - 1)
3966  *
3967  * NOTE: this only works when value + margin < INT_MAX.
3968  */
3969 static inline bool within_margin(int value, int margin)
3970 {
3971 	return ((unsigned int)(value + margin - 1) < (2 * margin - 1));
3972 }
3973 
3974 static inline void util_est_update(struct cfs_rq *cfs_rq,
3975 				   struct task_struct *p,
3976 				   bool task_sleep)
3977 {
3978 	long last_ewma_diff, last_enqueued_diff;
3979 	struct util_est ue;
3980 
3981 	if (!sched_feat(UTIL_EST))
3982 		return;
3983 
3984 	/*
3985 	 * Skip update of task's estimated utilization when the task has not
3986 	 * yet completed an activation, e.g. being migrated.
3987 	 */
3988 	if (!task_sleep)
3989 		return;
3990 
3991 	/*
3992 	 * If the PELT values haven't changed since enqueue time,
3993 	 * skip the util_est update.
3994 	 */
3995 	ue = p->se.avg.util_est;
3996 	if (ue.enqueued & UTIL_AVG_UNCHANGED)
3997 		return;
3998 
3999 	last_enqueued_diff = ue.enqueued;
4000 
4001 	/*
4002 	 * Reset EWMA on utilization increases, the moving average is used only
4003 	 * to smooth utilization decreases.
4004 	 */
4005 	ue.enqueued = (task_util(p) | UTIL_AVG_UNCHANGED);
4006 	if (sched_feat(UTIL_EST_FASTUP)) {
4007 		if (ue.ewma < ue.enqueued) {
4008 			ue.ewma = ue.enqueued;
4009 			goto done;
4010 		}
4011 	}
4012 
4013 	/*
4014 	 * Skip update of task's estimated utilization when its members are
4015 	 * already ~1% close to its last activation value.
4016 	 */
4017 	last_ewma_diff = ue.enqueued - ue.ewma;
4018 	last_enqueued_diff -= ue.enqueued;
4019 	if (within_margin(last_ewma_diff, UTIL_EST_MARGIN)) {
4020 		if (!within_margin(last_enqueued_diff, UTIL_EST_MARGIN))
4021 			goto done;
4022 
4023 		return;
4024 	}
4025 
4026 	/*
4027 	 * To avoid overestimation of actual task utilization, skip updates if
4028 	 * we cannot grant there is idle time in this CPU.
4029 	 */
4030 	if (task_util(p) > capacity_orig_of(cpu_of(rq_of(cfs_rq))))
4031 		return;
4032 
4033 	/*
4034 	 * Update Task's estimated utilization
4035 	 *
4036 	 * When *p completes an activation we can consolidate another sample
4037 	 * of the task size. This is done by storing the current PELT value
4038 	 * as ue.enqueued and by using this value to update the Exponential
4039 	 * Weighted Moving Average (EWMA):
4040 	 *
4041 	 *  ewma(t) = w *  task_util(p) + (1-w) * ewma(t-1)
4042 	 *          = w *  task_util(p) +         ewma(t-1)  - w * ewma(t-1)
4043 	 *          = w * (task_util(p) -         ewma(t-1)) +     ewma(t-1)
4044 	 *          = w * (      last_ewma_diff            ) +     ewma(t-1)
4045 	 *          = w * (last_ewma_diff  +  ewma(t-1) / w)
4046 	 *
4047 	 * Where 'w' is the weight of new samples, which is configured to be
4048 	 * 0.25, thus making w=1/4 ( >>= UTIL_EST_WEIGHT_SHIFT)
4049 	 */
4050 	ue.ewma <<= UTIL_EST_WEIGHT_SHIFT;
4051 	ue.ewma  += last_ewma_diff;
4052 	ue.ewma >>= UTIL_EST_WEIGHT_SHIFT;
4053 done:
4054 	WRITE_ONCE(p->se.avg.util_est, ue);
4055 
4056 	trace_sched_util_est_se_tp(&p->se);
4057 }
4058 
4059 static inline int task_fits_capacity(struct task_struct *p, long capacity)
4060 {
4061 	return fits_capacity(uclamp_task_util(p), capacity);
4062 }
4063 
4064 static inline void update_misfit_status(struct task_struct *p, struct rq *rq)
4065 {
4066 	if (!static_branch_unlikely(&sched_asym_cpucapacity))
4067 		return;
4068 
4069 	if (!p || p->nr_cpus_allowed == 1) {
4070 		rq->misfit_task_load = 0;
4071 		return;
4072 	}
4073 
4074 	if (task_fits_capacity(p, capacity_of(cpu_of(rq)))) {
4075 		rq->misfit_task_load = 0;
4076 		return;
4077 	}
4078 
4079 	/*
4080 	 * Make sure that misfit_task_load will not be null even if
4081 	 * task_h_load() returns 0.
4082 	 */
4083 	rq->misfit_task_load = max_t(unsigned long, task_h_load(p), 1);
4084 }
4085 
4086 #else /* CONFIG_SMP */
4087 
4088 #define UPDATE_TG	0x0
4089 #define SKIP_AGE_LOAD	0x0
4090 #define DO_ATTACH	0x0
4091 
4092 static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int not_used1)
4093 {
4094 	cfs_rq_util_change(cfs_rq, 0);
4095 }
4096 
4097 static inline void remove_entity_load_avg(struct sched_entity *se) {}
4098 
4099 static inline void
4100 attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
4101 static inline void
4102 detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
4103 
4104 static inline int newidle_balance(struct rq *rq, struct rq_flags *rf)
4105 {
4106 	return 0;
4107 }
4108 
4109 static inline void
4110 util_est_enqueue(struct cfs_rq *cfs_rq, struct task_struct *p) {}
4111 
4112 static inline void
4113 util_est_dequeue(struct cfs_rq *cfs_rq, struct task_struct *p) {}
4114 
4115 static inline void
4116 util_est_update(struct cfs_rq *cfs_rq, struct task_struct *p,
4117 		bool task_sleep) {}
4118 static inline void update_misfit_status(struct task_struct *p, struct rq *rq) {}
4119 
4120 #endif /* CONFIG_SMP */
4121 
4122 static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
4123 {
4124 #ifdef CONFIG_SCHED_DEBUG
4125 	s64 d = se->vruntime - cfs_rq->min_vruntime;
4126 
4127 	if (d < 0)
4128 		d = -d;
4129 
4130 	if (d > 3*sysctl_sched_latency)
4131 		schedstat_inc(cfs_rq->nr_spread_over);
4132 #endif
4133 }
4134 
4135 static void
4136 place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
4137 {
4138 	u64 vruntime = cfs_rq->min_vruntime;
4139 
4140 	/*
4141 	 * The 'current' period is already promised to the current tasks,
4142 	 * however the extra weight of the new task will slow them down a
4143 	 * little, place the new task so that it fits in the slot that
4144 	 * stays open at the end.
4145 	 */
4146 	if (initial && sched_feat(START_DEBIT))
4147 		vruntime += sched_vslice(cfs_rq, se);
4148 
4149 	/* sleeps up to a single latency don't count. */
4150 	if (!initial) {
4151 		unsigned long thresh = sysctl_sched_latency;
4152 
4153 		/*
4154 		 * Halve their sleep time's effect, to allow
4155 		 * for a gentler effect of sleepers:
4156 		 */
4157 		if (sched_feat(GENTLE_FAIR_SLEEPERS))
4158 			thresh >>= 1;
4159 
4160 		vruntime -= thresh;
4161 	}
4162 
4163 	/* ensure we never gain time by being placed backwards. */
4164 	se->vruntime = max_vruntime(se->vruntime, vruntime);
4165 }
4166 
4167 static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
4168 
4169 static inline void check_schedstat_required(void)
4170 {
4171 #ifdef CONFIG_SCHEDSTATS
4172 	if (schedstat_enabled())
4173 		return;
4174 
4175 	/* Force schedstat enabled if a dependent tracepoint is active */
4176 	if (trace_sched_stat_wait_enabled()    ||
4177 			trace_sched_stat_sleep_enabled()   ||
4178 			trace_sched_stat_iowait_enabled()  ||
4179 			trace_sched_stat_blocked_enabled() ||
4180 			trace_sched_stat_runtime_enabled())  {
4181 		printk_deferred_once("Scheduler tracepoints stat_sleep, stat_iowait, "
4182 			     "stat_blocked and stat_runtime require the "
4183 			     "kernel parameter schedstats=enable or "
4184 			     "kernel.sched_schedstats=1\n");
4185 	}
4186 #endif
4187 }
4188 
4189 static inline bool cfs_bandwidth_used(void);
4190 
4191 /*
4192  * MIGRATION
4193  *
4194  *	dequeue
4195  *	  update_curr()
4196  *	    update_min_vruntime()
4197  *	  vruntime -= min_vruntime
4198  *
4199  *	enqueue
4200  *	  update_curr()
4201  *	    update_min_vruntime()
4202  *	  vruntime += min_vruntime
4203  *
4204  * this way the vruntime transition between RQs is done when both
4205  * min_vruntime are up-to-date.
4206  *
4207  * WAKEUP (remote)
4208  *
4209  *	->migrate_task_rq_fair() (p->state == TASK_WAKING)
4210  *	  vruntime -= min_vruntime
4211  *
4212  *	enqueue
4213  *	  update_curr()
4214  *	    update_min_vruntime()
4215  *	  vruntime += min_vruntime
4216  *
4217  * this way we don't have the most up-to-date min_vruntime on the originating
4218  * CPU and an up-to-date min_vruntime on the destination CPU.
4219  */
4220 
4221 static void
4222 enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
4223 {
4224 	bool renorm = !(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_MIGRATED);
4225 	bool curr = cfs_rq->curr == se;
4226 
4227 	/*
4228 	 * If we're the current task, we must renormalise before calling
4229 	 * update_curr().
4230 	 */
4231 	if (renorm && curr)
4232 		se->vruntime += cfs_rq->min_vruntime;
4233 
4234 	update_curr(cfs_rq);
4235 
4236 	/*
4237 	 * Otherwise, renormalise after, such that we're placed at the current
4238 	 * moment in time, instead of some random moment in the past. Being
4239 	 * placed in the past could significantly boost this task to the
4240 	 * fairness detriment of existing tasks.
4241 	 */
4242 	if (renorm && !curr)
4243 		se->vruntime += cfs_rq->min_vruntime;
4244 
4245 	/*
4246 	 * When enqueuing a sched_entity, we must:
4247 	 *   - Update loads to have both entity and cfs_rq synced with now.
4248 	 *   - Add its load to cfs_rq->runnable_avg
4249 	 *   - For group_entity, update its weight to reflect the new share of
4250 	 *     its group cfs_rq
4251 	 *   - Add its new weight to cfs_rq->load.weight
4252 	 */
4253 	update_load_avg(cfs_rq, se, UPDATE_TG | DO_ATTACH);
4254 	se_update_runnable(se);
4255 	update_cfs_group(se);
4256 	account_entity_enqueue(cfs_rq, se);
4257 
4258 	if (flags & ENQUEUE_WAKEUP)
4259 		place_entity(cfs_rq, se, 0);
4260 
4261 	check_schedstat_required();
4262 	update_stats_enqueue(cfs_rq, se, flags);
4263 	check_spread(cfs_rq, se);
4264 	if (!curr)
4265 		__enqueue_entity(cfs_rq, se);
4266 	se->on_rq = 1;
4267 
4268 	/*
4269 	 * When bandwidth control is enabled, cfs might have been removed
4270 	 * because of a parent been throttled but cfs->nr_running > 1. Try to
4271 	 * add it unconditionally.
4272 	 */
4273 	if (cfs_rq->nr_running == 1 || cfs_bandwidth_used())
4274 		list_add_leaf_cfs_rq(cfs_rq);
4275 
4276 	if (cfs_rq->nr_running == 1)
4277 		check_enqueue_throttle(cfs_rq);
4278 }
4279 
4280 static void __clear_buddies_last(struct sched_entity *se)
4281 {
4282 	for_each_sched_entity(se) {
4283 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
4284 		if (cfs_rq->last != se)
4285 			break;
4286 
4287 		cfs_rq->last = NULL;
4288 	}
4289 }
4290 
4291 static void __clear_buddies_next(struct sched_entity *se)
4292 {
4293 	for_each_sched_entity(se) {
4294 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
4295 		if (cfs_rq->next != se)
4296 			break;
4297 
4298 		cfs_rq->next = NULL;
4299 	}
4300 }
4301 
4302 static void __clear_buddies_skip(struct sched_entity *se)
4303 {
4304 	for_each_sched_entity(se) {
4305 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
4306 		if (cfs_rq->skip != se)
4307 			break;
4308 
4309 		cfs_rq->skip = NULL;
4310 	}
4311 }
4312 
4313 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
4314 {
4315 	if (cfs_rq->last == se)
4316 		__clear_buddies_last(se);
4317 
4318 	if (cfs_rq->next == se)
4319 		__clear_buddies_next(se);
4320 
4321 	if (cfs_rq->skip == se)
4322 		__clear_buddies_skip(se);
4323 }
4324 
4325 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
4326 
4327 static void
4328 dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
4329 {
4330 	/*
4331 	 * Update run-time statistics of the 'current'.
4332 	 */
4333 	update_curr(cfs_rq);
4334 
4335 	/*
4336 	 * When dequeuing a sched_entity, we must:
4337 	 *   - Update loads to have both entity and cfs_rq synced with now.
4338 	 *   - Subtract its load from the cfs_rq->runnable_avg.
4339 	 *   - Subtract its previous weight from cfs_rq->load.weight.
4340 	 *   - For group entity, update its weight to reflect the new share
4341 	 *     of its group cfs_rq.
4342 	 */
4343 	update_load_avg(cfs_rq, se, UPDATE_TG);
4344 	se_update_runnable(se);
4345 
4346 	update_stats_dequeue(cfs_rq, se, flags);
4347 
4348 	clear_buddies(cfs_rq, se);
4349 
4350 	if (se != cfs_rq->curr)
4351 		__dequeue_entity(cfs_rq, se);
4352 	se->on_rq = 0;
4353 	account_entity_dequeue(cfs_rq, se);
4354 
4355 	/*
4356 	 * Normalize after update_curr(); which will also have moved
4357 	 * min_vruntime if @se is the one holding it back. But before doing
4358 	 * update_min_vruntime() again, which will discount @se's position and
4359 	 * can move min_vruntime forward still more.
4360 	 */
4361 	if (!(flags & DEQUEUE_SLEEP))
4362 		se->vruntime -= cfs_rq->min_vruntime;
4363 
4364 	/* return excess runtime on last dequeue */
4365 	return_cfs_rq_runtime(cfs_rq);
4366 
4367 	update_cfs_group(se);
4368 
4369 	/*
4370 	 * Now advance min_vruntime if @se was the entity holding it back,
4371 	 * except when: DEQUEUE_SAVE && !DEQUEUE_MOVE, in this case we'll be
4372 	 * put back on, and if we advance min_vruntime, we'll be placed back
4373 	 * further than we started -- ie. we'll be penalized.
4374 	 */
4375 	if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) != DEQUEUE_SAVE)
4376 		update_min_vruntime(cfs_rq);
4377 }
4378 
4379 /*
4380  * Preempt the current task with a newly woken task if needed:
4381  */
4382 static void
4383 check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
4384 {
4385 	unsigned long ideal_runtime, delta_exec;
4386 	struct sched_entity *se;
4387 	s64 delta;
4388 
4389 	ideal_runtime = sched_slice(cfs_rq, curr);
4390 	delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
4391 	if (delta_exec > ideal_runtime) {
4392 		resched_curr(rq_of(cfs_rq));
4393 		/*
4394 		 * The current task ran long enough, ensure it doesn't get
4395 		 * re-elected due to buddy favours.
4396 		 */
4397 		clear_buddies(cfs_rq, curr);
4398 		return;
4399 	}
4400 
4401 	/*
4402 	 * Ensure that a task that missed wakeup preemption by a
4403 	 * narrow margin doesn't have to wait for a full slice.
4404 	 * This also mitigates buddy induced latencies under load.
4405 	 */
4406 	if (delta_exec < sysctl_sched_min_granularity)
4407 		return;
4408 
4409 	se = __pick_first_entity(cfs_rq);
4410 	delta = curr->vruntime - se->vruntime;
4411 
4412 	if (delta < 0)
4413 		return;
4414 
4415 	if (delta > ideal_runtime)
4416 		resched_curr(rq_of(cfs_rq));
4417 }
4418 
4419 static void
4420 set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
4421 {
4422 	/* 'current' is not kept within the tree. */
4423 	if (se->on_rq) {
4424 		/*
4425 		 * Any task has to be enqueued before it get to execute on
4426 		 * a CPU. So account for the time it spent waiting on the
4427 		 * runqueue.
4428 		 */
4429 		update_stats_wait_end(cfs_rq, se);
4430 		__dequeue_entity(cfs_rq, se);
4431 		update_load_avg(cfs_rq, se, UPDATE_TG);
4432 	}
4433 
4434 	update_stats_curr_start(cfs_rq, se);
4435 	cfs_rq->curr = se;
4436 
4437 	/*
4438 	 * Track our maximum slice length, if the CPU's load is at
4439 	 * least twice that of our own weight (i.e. dont track it
4440 	 * when there are only lesser-weight tasks around):
4441 	 */
4442 	if (schedstat_enabled() &&
4443 	    rq_of(cfs_rq)->cfs.load.weight >= 2*se->load.weight) {
4444 		schedstat_set(se->statistics.slice_max,
4445 			max((u64)schedstat_val(se->statistics.slice_max),
4446 			    se->sum_exec_runtime - se->prev_sum_exec_runtime));
4447 	}
4448 
4449 	se->prev_sum_exec_runtime = se->sum_exec_runtime;
4450 }
4451 
4452 static int
4453 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
4454 
4455 /*
4456  * Pick the next process, keeping these things in mind, in this order:
4457  * 1) keep things fair between processes/task groups
4458  * 2) pick the "next" process, since someone really wants that to run
4459  * 3) pick the "last" process, for cache locality
4460  * 4) do not run the "skip" process, if something else is available
4461  */
4462 static struct sched_entity *
4463 pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr)
4464 {
4465 	struct sched_entity *left = __pick_first_entity(cfs_rq);
4466 	struct sched_entity *se;
4467 
4468 	/*
4469 	 * If curr is set we have to see if its left of the leftmost entity
4470 	 * still in the tree, provided there was anything in the tree at all.
4471 	 */
4472 	if (!left || (curr && entity_before(curr, left)))
4473 		left = curr;
4474 
4475 	se = left; /* ideally we run the leftmost entity */
4476 
4477 	/*
4478 	 * Avoid running the skip buddy, if running something else can
4479 	 * be done without getting too unfair.
4480 	 */
4481 	if (cfs_rq->skip == se) {
4482 		struct sched_entity *second;
4483 
4484 		if (se == curr) {
4485 			second = __pick_first_entity(cfs_rq);
4486 		} else {
4487 			second = __pick_next_entity(se);
4488 			if (!second || (curr && entity_before(curr, second)))
4489 				second = curr;
4490 		}
4491 
4492 		if (second && wakeup_preempt_entity(second, left) < 1)
4493 			se = second;
4494 	}
4495 
4496 	if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1) {
4497 		/*
4498 		 * Someone really wants this to run. If it's not unfair, run it.
4499 		 */
4500 		se = cfs_rq->next;
4501 	} else if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1) {
4502 		/*
4503 		 * Prefer last buddy, try to return the CPU to a preempted task.
4504 		 */
4505 		se = cfs_rq->last;
4506 	}
4507 
4508 	clear_buddies(cfs_rq, se);
4509 
4510 	return se;
4511 }
4512 
4513 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
4514 
4515 static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
4516 {
4517 	/*
4518 	 * If still on the runqueue then deactivate_task()
4519 	 * was not called and update_curr() has to be done:
4520 	 */
4521 	if (prev->on_rq)
4522 		update_curr(cfs_rq);
4523 
4524 	/* throttle cfs_rqs exceeding runtime */
4525 	check_cfs_rq_runtime(cfs_rq);
4526 
4527 	check_spread(cfs_rq, prev);
4528 
4529 	if (prev->on_rq) {
4530 		update_stats_wait_start(cfs_rq, prev);
4531 		/* Put 'current' back into the tree. */
4532 		__enqueue_entity(cfs_rq, prev);
4533 		/* in !on_rq case, update occurred at dequeue */
4534 		update_load_avg(cfs_rq, prev, 0);
4535 	}
4536 	cfs_rq->curr = NULL;
4537 }
4538 
4539 static void
4540 entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
4541 {
4542 	/*
4543 	 * Update run-time statistics of the 'current'.
4544 	 */
4545 	update_curr(cfs_rq);
4546 
4547 	/*
4548 	 * Ensure that runnable average is periodically updated.
4549 	 */
4550 	update_load_avg(cfs_rq, curr, UPDATE_TG);
4551 	update_cfs_group(curr);
4552 
4553 #ifdef CONFIG_SCHED_HRTICK
4554 	/*
4555 	 * queued ticks are scheduled to match the slice, so don't bother
4556 	 * validating it and just reschedule.
4557 	 */
4558 	if (queued) {
4559 		resched_curr(rq_of(cfs_rq));
4560 		return;
4561 	}
4562 	/*
4563 	 * don't let the period tick interfere with the hrtick preemption
4564 	 */
4565 	if (!sched_feat(DOUBLE_TICK) &&
4566 			hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
4567 		return;
4568 #endif
4569 
4570 	if (cfs_rq->nr_running > 1)
4571 		check_preempt_tick(cfs_rq, curr);
4572 }
4573 
4574 
4575 /**************************************************
4576  * CFS bandwidth control machinery
4577  */
4578 
4579 #ifdef CONFIG_CFS_BANDWIDTH
4580 
4581 #ifdef CONFIG_JUMP_LABEL
4582 static struct static_key __cfs_bandwidth_used;
4583 
4584 static inline bool cfs_bandwidth_used(void)
4585 {
4586 	return static_key_false(&__cfs_bandwidth_used);
4587 }
4588 
4589 void cfs_bandwidth_usage_inc(void)
4590 {
4591 	static_key_slow_inc_cpuslocked(&__cfs_bandwidth_used);
4592 }
4593 
4594 void cfs_bandwidth_usage_dec(void)
4595 {
4596 	static_key_slow_dec_cpuslocked(&__cfs_bandwidth_used);
4597 }
4598 #else /* CONFIG_JUMP_LABEL */
4599 static bool cfs_bandwidth_used(void)
4600 {
4601 	return true;
4602 }
4603 
4604 void cfs_bandwidth_usage_inc(void) {}
4605 void cfs_bandwidth_usage_dec(void) {}
4606 #endif /* CONFIG_JUMP_LABEL */
4607 
4608 /*
4609  * default period for cfs group bandwidth.
4610  * default: 0.1s, units: nanoseconds
4611  */
4612 static inline u64 default_cfs_period(void)
4613 {
4614 	return 100000000ULL;
4615 }
4616 
4617 static inline u64 sched_cfs_bandwidth_slice(void)
4618 {
4619 	return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
4620 }
4621 
4622 /*
4623  * Replenish runtime according to assigned quota. We use sched_clock_cpu
4624  * directly instead of rq->clock to avoid adding additional synchronization
4625  * around rq->lock.
4626  *
4627  * requires cfs_b->lock
4628  */
4629 void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
4630 {
4631 	if (cfs_b->quota != RUNTIME_INF)
4632 		cfs_b->runtime = cfs_b->quota;
4633 }
4634 
4635 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
4636 {
4637 	return &tg->cfs_bandwidth;
4638 }
4639 
4640 /* returns 0 on failure to allocate runtime */
4641 static int __assign_cfs_rq_runtime(struct cfs_bandwidth *cfs_b,
4642 				   struct cfs_rq *cfs_rq, u64 target_runtime)
4643 {
4644 	u64 min_amount, amount = 0;
4645 
4646 	lockdep_assert_held(&cfs_b->lock);
4647 
4648 	/* note: this is a positive sum as runtime_remaining <= 0 */
4649 	min_amount = target_runtime - cfs_rq->runtime_remaining;
4650 
4651 	if (cfs_b->quota == RUNTIME_INF)
4652 		amount = min_amount;
4653 	else {
4654 		start_cfs_bandwidth(cfs_b);
4655 
4656 		if (cfs_b->runtime > 0) {
4657 			amount = min(cfs_b->runtime, min_amount);
4658 			cfs_b->runtime -= amount;
4659 			cfs_b->idle = 0;
4660 		}
4661 	}
4662 
4663 	cfs_rq->runtime_remaining += amount;
4664 
4665 	return cfs_rq->runtime_remaining > 0;
4666 }
4667 
4668 /* returns 0 on failure to allocate runtime */
4669 static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4670 {
4671 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4672 	int ret;
4673 
4674 	raw_spin_lock(&cfs_b->lock);
4675 	ret = __assign_cfs_rq_runtime(cfs_b, cfs_rq, sched_cfs_bandwidth_slice());
4676 	raw_spin_unlock(&cfs_b->lock);
4677 
4678 	return ret;
4679 }
4680 
4681 static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
4682 {
4683 	/* dock delta_exec before expiring quota (as it could span periods) */
4684 	cfs_rq->runtime_remaining -= delta_exec;
4685 
4686 	if (likely(cfs_rq->runtime_remaining > 0))
4687 		return;
4688 
4689 	if (cfs_rq->throttled)
4690 		return;
4691 	/*
4692 	 * if we're unable to extend our runtime we resched so that the active
4693 	 * hierarchy can be throttled
4694 	 */
4695 	if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
4696 		resched_curr(rq_of(cfs_rq));
4697 }
4698 
4699 static __always_inline
4700 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
4701 {
4702 	if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
4703 		return;
4704 
4705 	__account_cfs_rq_runtime(cfs_rq, delta_exec);
4706 }
4707 
4708 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
4709 {
4710 	return cfs_bandwidth_used() && cfs_rq->throttled;
4711 }
4712 
4713 /* check whether cfs_rq, or any parent, is throttled */
4714 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
4715 {
4716 	return cfs_bandwidth_used() && cfs_rq->throttle_count;
4717 }
4718 
4719 /*
4720  * Ensure that neither of the group entities corresponding to src_cpu or
4721  * dest_cpu are members of a throttled hierarchy when performing group
4722  * load-balance operations.
4723  */
4724 static inline int throttled_lb_pair(struct task_group *tg,
4725 				    int src_cpu, int dest_cpu)
4726 {
4727 	struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
4728 
4729 	src_cfs_rq = tg->cfs_rq[src_cpu];
4730 	dest_cfs_rq = tg->cfs_rq[dest_cpu];
4731 
4732 	return throttled_hierarchy(src_cfs_rq) ||
4733 	       throttled_hierarchy(dest_cfs_rq);
4734 }
4735 
4736 static int tg_unthrottle_up(struct task_group *tg, void *data)
4737 {
4738 	struct rq *rq = data;
4739 	struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
4740 
4741 	cfs_rq->throttle_count--;
4742 	if (!cfs_rq->throttle_count) {
4743 		cfs_rq->throttled_clock_task_time += rq_clock_task(rq) -
4744 					     cfs_rq->throttled_clock_task;
4745 
4746 		/* Add cfs_rq with already running entity in the list */
4747 		if (cfs_rq->nr_running >= 1)
4748 			list_add_leaf_cfs_rq(cfs_rq);
4749 	}
4750 
4751 	return 0;
4752 }
4753 
4754 static int tg_throttle_down(struct task_group *tg, void *data)
4755 {
4756 	struct rq *rq = data;
4757 	struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
4758 
4759 	/* group is entering throttled state, stop time */
4760 	if (!cfs_rq->throttle_count) {
4761 		cfs_rq->throttled_clock_task = rq_clock_task(rq);
4762 		list_del_leaf_cfs_rq(cfs_rq);
4763 	}
4764 	cfs_rq->throttle_count++;
4765 
4766 	return 0;
4767 }
4768 
4769 static bool throttle_cfs_rq(struct cfs_rq *cfs_rq)
4770 {
4771 	struct rq *rq = rq_of(cfs_rq);
4772 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4773 	struct sched_entity *se;
4774 	long task_delta, idle_task_delta, dequeue = 1;
4775 
4776 	raw_spin_lock(&cfs_b->lock);
4777 	/* This will start the period timer if necessary */
4778 	if (__assign_cfs_rq_runtime(cfs_b, cfs_rq, 1)) {
4779 		/*
4780 		 * We have raced with bandwidth becoming available, and if we
4781 		 * actually throttled the timer might not unthrottle us for an
4782 		 * entire period. We additionally needed to make sure that any
4783 		 * subsequent check_cfs_rq_runtime calls agree not to throttle
4784 		 * us, as we may commit to do cfs put_prev+pick_next, so we ask
4785 		 * for 1ns of runtime rather than just check cfs_b.
4786 		 */
4787 		dequeue = 0;
4788 	} else {
4789 		list_add_tail_rcu(&cfs_rq->throttled_list,
4790 				  &cfs_b->throttled_cfs_rq);
4791 	}
4792 	raw_spin_unlock(&cfs_b->lock);
4793 
4794 	if (!dequeue)
4795 		return false;  /* Throttle no longer required. */
4796 
4797 	se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
4798 
4799 	/* freeze hierarchy runnable averages while throttled */
4800 	rcu_read_lock();
4801 	walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
4802 	rcu_read_unlock();
4803 
4804 	task_delta = cfs_rq->h_nr_running;
4805 	idle_task_delta = cfs_rq->idle_h_nr_running;
4806 	for_each_sched_entity(se) {
4807 		struct cfs_rq *qcfs_rq = cfs_rq_of(se);
4808 		/* throttled entity or throttle-on-deactivate */
4809 		if (!se->on_rq)
4810 			goto done;
4811 
4812 		dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
4813 
4814 		qcfs_rq->h_nr_running -= task_delta;
4815 		qcfs_rq->idle_h_nr_running -= idle_task_delta;
4816 
4817 		if (qcfs_rq->load.weight) {
4818 			/* Avoid re-evaluating load for this entity: */
4819 			se = parent_entity(se);
4820 			break;
4821 		}
4822 	}
4823 
4824 	for_each_sched_entity(se) {
4825 		struct cfs_rq *qcfs_rq = cfs_rq_of(se);
4826 		/* throttled entity or throttle-on-deactivate */
4827 		if (!se->on_rq)
4828 			goto done;
4829 
4830 		update_load_avg(qcfs_rq, se, 0);
4831 		se_update_runnable(se);
4832 
4833 		qcfs_rq->h_nr_running -= task_delta;
4834 		qcfs_rq->idle_h_nr_running -= idle_task_delta;
4835 	}
4836 
4837 	/* At this point se is NULL and we are at root level*/
4838 	sub_nr_running(rq, task_delta);
4839 
4840 done:
4841 	/*
4842 	 * Note: distribution will already see us throttled via the
4843 	 * throttled-list.  rq->lock protects completion.
4844 	 */
4845 	cfs_rq->throttled = 1;
4846 	cfs_rq->throttled_clock = rq_clock(rq);
4847 	return true;
4848 }
4849 
4850 void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
4851 {
4852 	struct rq *rq = rq_of(cfs_rq);
4853 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4854 	struct sched_entity *se;
4855 	long task_delta, idle_task_delta;
4856 
4857 	se = cfs_rq->tg->se[cpu_of(rq)];
4858 
4859 	cfs_rq->throttled = 0;
4860 
4861 	update_rq_clock(rq);
4862 
4863 	raw_spin_lock(&cfs_b->lock);
4864 	cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
4865 	list_del_rcu(&cfs_rq->throttled_list);
4866 	raw_spin_unlock(&cfs_b->lock);
4867 
4868 	/* update hierarchical throttle state */
4869 	walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
4870 
4871 	if (!cfs_rq->load.weight)
4872 		return;
4873 
4874 	task_delta = cfs_rq->h_nr_running;
4875 	idle_task_delta = cfs_rq->idle_h_nr_running;
4876 	for_each_sched_entity(se) {
4877 		if (se->on_rq)
4878 			break;
4879 		cfs_rq = cfs_rq_of(se);
4880 		enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
4881 
4882 		cfs_rq->h_nr_running += task_delta;
4883 		cfs_rq->idle_h_nr_running += idle_task_delta;
4884 
4885 		/* end evaluation on encountering a throttled cfs_rq */
4886 		if (cfs_rq_throttled(cfs_rq))
4887 			goto unthrottle_throttle;
4888 	}
4889 
4890 	for_each_sched_entity(se) {
4891 		cfs_rq = cfs_rq_of(se);
4892 
4893 		update_load_avg(cfs_rq, se, UPDATE_TG);
4894 		se_update_runnable(se);
4895 
4896 		cfs_rq->h_nr_running += task_delta;
4897 		cfs_rq->idle_h_nr_running += idle_task_delta;
4898 
4899 
4900 		/* end evaluation on encountering a throttled cfs_rq */
4901 		if (cfs_rq_throttled(cfs_rq))
4902 			goto unthrottle_throttle;
4903 
4904 		/*
4905 		 * One parent has been throttled and cfs_rq removed from the
4906 		 * list. Add it back to not break the leaf list.
4907 		 */
4908 		if (throttled_hierarchy(cfs_rq))
4909 			list_add_leaf_cfs_rq(cfs_rq);
4910 	}
4911 
4912 	/* At this point se is NULL and we are at root level*/
4913 	add_nr_running(rq, task_delta);
4914 
4915 unthrottle_throttle:
4916 	/*
4917 	 * The cfs_rq_throttled() breaks in the above iteration can result in
4918 	 * incomplete leaf list maintenance, resulting in triggering the
4919 	 * assertion below.
4920 	 */
4921 	for_each_sched_entity(se) {
4922 		cfs_rq = cfs_rq_of(se);
4923 
4924 		if (list_add_leaf_cfs_rq(cfs_rq))
4925 			break;
4926 	}
4927 
4928 	assert_list_leaf_cfs_rq(rq);
4929 
4930 	/* Determine whether we need to wake up potentially idle CPU: */
4931 	if (rq->curr == rq->idle && rq->cfs.nr_running)
4932 		resched_curr(rq);
4933 }
4934 
4935 static void distribute_cfs_runtime(struct cfs_bandwidth *cfs_b)
4936 {
4937 	struct cfs_rq *cfs_rq;
4938 	u64 runtime, remaining = 1;
4939 
4940 	rcu_read_lock();
4941 	list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
4942 				throttled_list) {
4943 		struct rq *rq = rq_of(cfs_rq);
4944 		struct rq_flags rf;
4945 
4946 		rq_lock_irqsave(rq, &rf);
4947 		if (!cfs_rq_throttled(cfs_rq))
4948 			goto next;
4949 
4950 		/* By the above check, this should never be true */
4951 		SCHED_WARN_ON(cfs_rq->runtime_remaining > 0);
4952 
4953 		raw_spin_lock(&cfs_b->lock);
4954 		runtime = -cfs_rq->runtime_remaining + 1;
4955 		if (runtime > cfs_b->runtime)
4956 			runtime = cfs_b->runtime;
4957 		cfs_b->runtime -= runtime;
4958 		remaining = cfs_b->runtime;
4959 		raw_spin_unlock(&cfs_b->lock);
4960 
4961 		cfs_rq->runtime_remaining += runtime;
4962 
4963 		/* we check whether we're throttled above */
4964 		if (cfs_rq->runtime_remaining > 0)
4965 			unthrottle_cfs_rq(cfs_rq);
4966 
4967 next:
4968 		rq_unlock_irqrestore(rq, &rf);
4969 
4970 		if (!remaining)
4971 			break;
4972 	}
4973 	rcu_read_unlock();
4974 }
4975 
4976 /*
4977  * Responsible for refilling a task_group's bandwidth and unthrottling its
4978  * cfs_rqs as appropriate. If there has been no activity within the last
4979  * period the timer is deactivated until scheduling resumes; cfs_b->idle is
4980  * used to track this state.
4981  */
4982 static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun, unsigned long flags)
4983 {
4984 	int throttled;
4985 
4986 	/* no need to continue the timer with no bandwidth constraint */
4987 	if (cfs_b->quota == RUNTIME_INF)
4988 		goto out_deactivate;
4989 
4990 	throttled = !list_empty(&cfs_b->throttled_cfs_rq);
4991 	cfs_b->nr_periods += overrun;
4992 
4993 	/*
4994 	 * idle depends on !throttled (for the case of a large deficit), and if
4995 	 * we're going inactive then everything else can be deferred
4996 	 */
4997 	if (cfs_b->idle && !throttled)
4998 		goto out_deactivate;
4999 
5000 	__refill_cfs_bandwidth_runtime(cfs_b);
5001 
5002 	if (!throttled) {
5003 		/* mark as potentially idle for the upcoming period */
5004 		cfs_b->idle = 1;
5005 		return 0;
5006 	}
5007 
5008 	/* account preceding periods in which throttling occurred */
5009 	cfs_b->nr_throttled += overrun;
5010 
5011 	/*
5012 	 * This check is repeated as we release cfs_b->lock while we unthrottle.
5013 	 */
5014 	while (throttled && cfs_b->runtime > 0) {
5015 		raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
5016 		/* we can't nest cfs_b->lock while distributing bandwidth */
5017 		distribute_cfs_runtime(cfs_b);
5018 		raw_spin_lock_irqsave(&cfs_b->lock, flags);
5019 
5020 		throttled = !list_empty(&cfs_b->throttled_cfs_rq);
5021 	}
5022 
5023 	/*
5024 	 * While we are ensured activity in the period following an
5025 	 * unthrottle, this also covers the case in which the new bandwidth is
5026 	 * insufficient to cover the existing bandwidth deficit.  (Forcing the
5027 	 * timer to remain active while there are any throttled entities.)
5028 	 */
5029 	cfs_b->idle = 0;
5030 
5031 	return 0;
5032 
5033 out_deactivate:
5034 	return 1;
5035 }
5036 
5037 /* a cfs_rq won't donate quota below this amount */
5038 static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
5039 /* minimum remaining period time to redistribute slack quota */
5040 static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
5041 /* how long we wait to gather additional slack before distributing */
5042 static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
5043 
5044 /*
5045  * Are we near the end of the current quota period?
5046  *
5047  * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
5048  * hrtimer base being cleared by hrtimer_start. In the case of
5049  * migrate_hrtimers, base is never cleared, so we are fine.
5050  */
5051 static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
5052 {
5053 	struct hrtimer *refresh_timer = &cfs_b->period_timer;
5054 	u64 remaining;
5055 
5056 	/* if the call-back is running a quota refresh is already occurring */
5057 	if (hrtimer_callback_running(refresh_timer))
5058 		return 1;
5059 
5060 	/* is a quota refresh about to occur? */
5061 	remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
5062 	if (remaining < min_expire)
5063 		return 1;
5064 
5065 	return 0;
5066 }
5067 
5068 static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
5069 {
5070 	u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
5071 
5072 	/* if there's a quota refresh soon don't bother with slack */
5073 	if (runtime_refresh_within(cfs_b, min_left))
5074 		return;
5075 
5076 	/* don't push forwards an existing deferred unthrottle */
5077 	if (cfs_b->slack_started)
5078 		return;
5079 	cfs_b->slack_started = true;
5080 
5081 	hrtimer_start(&cfs_b->slack_timer,
5082 			ns_to_ktime(cfs_bandwidth_slack_period),
5083 			HRTIMER_MODE_REL);
5084 }
5085 
5086 /* we know any runtime found here is valid as update_curr() precedes return */
5087 static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
5088 {
5089 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
5090 	s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
5091 
5092 	if (slack_runtime <= 0)
5093 		return;
5094 
5095 	raw_spin_lock(&cfs_b->lock);
5096 	if (cfs_b->quota != RUNTIME_INF) {
5097 		cfs_b->runtime += slack_runtime;
5098 
5099 		/* we are under rq->lock, defer unthrottling using a timer */
5100 		if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
5101 		    !list_empty(&cfs_b->throttled_cfs_rq))
5102 			start_cfs_slack_bandwidth(cfs_b);
5103 	}
5104 	raw_spin_unlock(&cfs_b->lock);
5105 
5106 	/* even if it's not valid for return we don't want to try again */
5107 	cfs_rq->runtime_remaining -= slack_runtime;
5108 }
5109 
5110 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
5111 {
5112 	if (!cfs_bandwidth_used())
5113 		return;
5114 
5115 	if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
5116 		return;
5117 
5118 	__return_cfs_rq_runtime(cfs_rq);
5119 }
5120 
5121 /*
5122  * This is done with a timer (instead of inline with bandwidth return) since
5123  * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
5124  */
5125 static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
5126 {
5127 	u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
5128 	unsigned long flags;
5129 
5130 	/* confirm we're still not at a refresh boundary */
5131 	raw_spin_lock_irqsave(&cfs_b->lock, flags);
5132 	cfs_b->slack_started = false;
5133 
5134 	if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
5135 		raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
5136 		return;
5137 	}
5138 
5139 	if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice)
5140 		runtime = cfs_b->runtime;
5141 
5142 	raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
5143 
5144 	if (!runtime)
5145 		return;
5146 
5147 	distribute_cfs_runtime(cfs_b);
5148 }
5149 
5150 /*
5151  * When a group wakes up we want to make sure that its quota is not already
5152  * expired/exceeded, otherwise it may be allowed to steal additional ticks of
5153  * runtime as update_curr() throttling can not trigger until it's on-rq.
5154  */
5155 static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
5156 {
5157 	if (!cfs_bandwidth_used())
5158 		return;
5159 
5160 	/* an active group must be handled by the update_curr()->put() path */
5161 	if (!cfs_rq->runtime_enabled || cfs_rq->curr)
5162 		return;
5163 
5164 	/* ensure the group is not already throttled */
5165 	if (cfs_rq_throttled(cfs_rq))
5166 		return;
5167 
5168 	/* update runtime allocation */
5169 	account_cfs_rq_runtime(cfs_rq, 0);
5170 	if (cfs_rq->runtime_remaining <= 0)
5171 		throttle_cfs_rq(cfs_rq);
5172 }
5173 
5174 static void sync_throttle(struct task_group *tg, int cpu)
5175 {
5176 	struct cfs_rq *pcfs_rq, *cfs_rq;
5177 
5178 	if (!cfs_bandwidth_used())
5179 		return;
5180 
5181 	if (!tg->parent)
5182 		return;
5183 
5184 	cfs_rq = tg->cfs_rq[cpu];
5185 	pcfs_rq = tg->parent->cfs_rq[cpu];
5186 
5187 	cfs_rq->throttle_count = pcfs_rq->throttle_count;
5188 	cfs_rq->throttled_clock_task = rq_clock_task(cpu_rq(cpu));
5189 }
5190 
5191 /* conditionally throttle active cfs_rq's from put_prev_entity() */
5192 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
5193 {
5194 	if (!cfs_bandwidth_used())
5195 		return false;
5196 
5197 	if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
5198 		return false;
5199 
5200 	/*
5201 	 * it's possible for a throttled entity to be forced into a running
5202 	 * state (e.g. set_curr_task), in this case we're finished.
5203 	 */
5204 	if (cfs_rq_throttled(cfs_rq))
5205 		return true;
5206 
5207 	return throttle_cfs_rq(cfs_rq);
5208 }
5209 
5210 static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
5211 {
5212 	struct cfs_bandwidth *cfs_b =
5213 		container_of(timer, struct cfs_bandwidth, slack_timer);
5214 
5215 	do_sched_cfs_slack_timer(cfs_b);
5216 
5217 	return HRTIMER_NORESTART;
5218 }
5219 
5220 extern const u64 max_cfs_quota_period;
5221 
5222 static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
5223 {
5224 	struct cfs_bandwidth *cfs_b =
5225 		container_of(timer, struct cfs_bandwidth, period_timer);
5226 	unsigned long flags;
5227 	int overrun;
5228 	int idle = 0;
5229 	int count = 0;
5230 
5231 	raw_spin_lock_irqsave(&cfs_b->lock, flags);
5232 	for (;;) {
5233 		overrun = hrtimer_forward_now(timer, cfs_b->period);
5234 		if (!overrun)
5235 			break;
5236 
5237 		idle = do_sched_cfs_period_timer(cfs_b, overrun, flags);
5238 
5239 		if (++count > 3) {
5240 			u64 new, old = ktime_to_ns(cfs_b->period);
5241 
5242 			/*
5243 			 * Grow period by a factor of 2 to avoid losing precision.
5244 			 * Precision loss in the quota/period ratio can cause __cfs_schedulable
5245 			 * to fail.
5246 			 */
5247 			new = old * 2;
5248 			if (new < max_cfs_quota_period) {
5249 				cfs_b->period = ns_to_ktime(new);
5250 				cfs_b->quota *= 2;
5251 
5252 				pr_warn_ratelimited(
5253 	"cfs_period_timer[cpu%d]: period too short, scaling up (new cfs_period_us = %lld, cfs_quota_us = %lld)\n",
5254 					smp_processor_id(),
5255 					div_u64(new, NSEC_PER_USEC),
5256 					div_u64(cfs_b->quota, NSEC_PER_USEC));
5257 			} else {
5258 				pr_warn_ratelimited(
5259 	"cfs_period_timer[cpu%d]: period too short, but cannot scale up without losing precision (cfs_period_us = %lld, cfs_quota_us = %lld)\n",
5260 					smp_processor_id(),
5261 					div_u64(old, NSEC_PER_USEC),
5262 					div_u64(cfs_b->quota, NSEC_PER_USEC));
5263 			}
5264 
5265 			/* reset count so we don't come right back in here */
5266 			count = 0;
5267 		}
5268 	}
5269 	if (idle)
5270 		cfs_b->period_active = 0;
5271 	raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
5272 
5273 	return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
5274 }
5275 
5276 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
5277 {
5278 	raw_spin_lock_init(&cfs_b->lock);
5279 	cfs_b->runtime = 0;
5280 	cfs_b->quota = RUNTIME_INF;
5281 	cfs_b->period = ns_to_ktime(default_cfs_period());
5282 
5283 	INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
5284 	hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
5285 	cfs_b->period_timer.function = sched_cfs_period_timer;
5286 	hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
5287 	cfs_b->slack_timer.function = sched_cfs_slack_timer;
5288 	cfs_b->slack_started = false;
5289 }
5290 
5291 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
5292 {
5293 	cfs_rq->runtime_enabled = 0;
5294 	INIT_LIST_HEAD(&cfs_rq->throttled_list);
5295 }
5296 
5297 void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
5298 {
5299 	lockdep_assert_held(&cfs_b->lock);
5300 
5301 	if (cfs_b->period_active)
5302 		return;
5303 
5304 	cfs_b->period_active = 1;
5305 	hrtimer_forward_now(&cfs_b->period_timer, cfs_b->period);
5306 	hrtimer_start_expires(&cfs_b->period_timer, HRTIMER_MODE_ABS_PINNED);
5307 }
5308 
5309 static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
5310 {
5311 	/* init_cfs_bandwidth() was not called */
5312 	if (!cfs_b->throttled_cfs_rq.next)
5313 		return;
5314 
5315 	hrtimer_cancel(&cfs_b->period_timer);
5316 	hrtimer_cancel(&cfs_b->slack_timer);
5317 }
5318 
5319 /*
5320  * Both these CPU hotplug callbacks race against unregister_fair_sched_group()
5321  *
5322  * The race is harmless, since modifying bandwidth settings of unhooked group
5323  * bits doesn't do much.
5324  */
5325 
5326 /* cpu online callback */
5327 static void __maybe_unused update_runtime_enabled(struct rq *rq)
5328 {
5329 	struct task_group *tg;
5330 
5331 	lockdep_assert_held(&rq->lock);
5332 
5333 	rcu_read_lock();
5334 	list_for_each_entry_rcu(tg, &task_groups, list) {
5335 		struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
5336 		struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
5337 
5338 		raw_spin_lock(&cfs_b->lock);
5339 		cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF;
5340 		raw_spin_unlock(&cfs_b->lock);
5341 	}
5342 	rcu_read_unlock();
5343 }
5344 
5345 /* cpu offline callback */
5346 static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
5347 {
5348 	struct task_group *tg;
5349 
5350 	lockdep_assert_held(&rq->lock);
5351 
5352 	rcu_read_lock();
5353 	list_for_each_entry_rcu(tg, &task_groups, list) {
5354 		struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
5355 
5356 		if (!cfs_rq->runtime_enabled)
5357 			continue;
5358 
5359 		/*
5360 		 * clock_task is not advancing so we just need to make sure
5361 		 * there's some valid quota amount
5362 		 */
5363 		cfs_rq->runtime_remaining = 1;
5364 		/*
5365 		 * Offline rq is schedulable till CPU is completely disabled
5366 		 * in take_cpu_down(), so we prevent new cfs throttling here.
5367 		 */
5368 		cfs_rq->runtime_enabled = 0;
5369 
5370 		if (cfs_rq_throttled(cfs_rq))
5371 			unthrottle_cfs_rq(cfs_rq);
5372 	}
5373 	rcu_read_unlock();
5374 }
5375 
5376 #else /* CONFIG_CFS_BANDWIDTH */
5377 
5378 static inline bool cfs_bandwidth_used(void)
5379 {
5380 	return false;
5381 }
5382 
5383 static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {}
5384 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; }
5385 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
5386 static inline void sync_throttle(struct task_group *tg, int cpu) {}
5387 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
5388 
5389 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
5390 {
5391 	return 0;
5392 }
5393 
5394 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
5395 {
5396 	return 0;
5397 }
5398 
5399 static inline int throttled_lb_pair(struct task_group *tg,
5400 				    int src_cpu, int dest_cpu)
5401 {
5402 	return 0;
5403 }
5404 
5405 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
5406 
5407 #ifdef CONFIG_FAIR_GROUP_SCHED
5408 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
5409 #endif
5410 
5411 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
5412 {
5413 	return NULL;
5414 }
5415 static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
5416 static inline void update_runtime_enabled(struct rq *rq) {}
5417 static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
5418 
5419 #endif /* CONFIG_CFS_BANDWIDTH */
5420 
5421 /**************************************************
5422  * CFS operations on tasks:
5423  */
5424 
5425 #ifdef CONFIG_SCHED_HRTICK
5426 static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
5427 {
5428 	struct sched_entity *se = &p->se;
5429 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
5430 
5431 	SCHED_WARN_ON(task_rq(p) != rq);
5432 
5433 	if (rq->cfs.h_nr_running > 1) {
5434 		u64 slice = sched_slice(cfs_rq, se);
5435 		u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
5436 		s64 delta = slice - ran;
5437 
5438 		if (delta < 0) {
5439 			if (task_current(rq, p))
5440 				resched_curr(rq);
5441 			return;
5442 		}
5443 		hrtick_start(rq, delta);
5444 	}
5445 }
5446 
5447 /*
5448  * called from enqueue/dequeue and updates the hrtick when the
5449  * current task is from our class and nr_running is low enough
5450  * to matter.
5451  */
5452 static void hrtick_update(struct rq *rq)
5453 {
5454 	struct task_struct *curr = rq->curr;
5455 
5456 	if (!hrtick_enabled_fair(rq) || curr->sched_class != &fair_sched_class)
5457 		return;
5458 
5459 	if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
5460 		hrtick_start_fair(rq, curr);
5461 }
5462 #else /* !CONFIG_SCHED_HRTICK */
5463 static inline void
5464 hrtick_start_fair(struct rq *rq, struct task_struct *p)
5465 {
5466 }
5467 
5468 static inline void hrtick_update(struct rq *rq)
5469 {
5470 }
5471 #endif
5472 
5473 #ifdef CONFIG_SMP
5474 static inline unsigned long cpu_util(int cpu);
5475 
5476 static inline bool cpu_overutilized(int cpu)
5477 {
5478 	return !fits_capacity(cpu_util(cpu), capacity_of(cpu));
5479 }
5480 
5481 static inline void update_overutilized_status(struct rq *rq)
5482 {
5483 	if (!READ_ONCE(rq->rd->overutilized) && cpu_overutilized(rq->cpu)) {
5484 		WRITE_ONCE(rq->rd->overutilized, SG_OVERUTILIZED);
5485 		trace_sched_overutilized_tp(rq->rd, SG_OVERUTILIZED);
5486 	}
5487 }
5488 #else
5489 static inline void update_overutilized_status(struct rq *rq) { }
5490 #endif
5491 
5492 /* Runqueue only has SCHED_IDLE tasks enqueued */
5493 static int sched_idle_rq(struct rq *rq)
5494 {
5495 	return unlikely(rq->nr_running == rq->cfs.idle_h_nr_running &&
5496 			rq->nr_running);
5497 }
5498 
5499 #ifdef CONFIG_SMP
5500 static int sched_idle_cpu(int cpu)
5501 {
5502 	return sched_idle_rq(cpu_rq(cpu));
5503 }
5504 #endif
5505 
5506 /*
5507  * The enqueue_task method is called before nr_running is
5508  * increased. Here we update the fair scheduling stats and
5509  * then put the task into the rbtree:
5510  */
5511 static void
5512 enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
5513 {
5514 	struct cfs_rq *cfs_rq;
5515 	struct sched_entity *se = &p->se;
5516 	int idle_h_nr_running = task_has_idle_policy(p);
5517 	int task_new = !(flags & ENQUEUE_WAKEUP);
5518 
5519 	/*
5520 	 * The code below (indirectly) updates schedutil which looks at
5521 	 * the cfs_rq utilization to select a frequency.
5522 	 * Let's add the task's estimated utilization to the cfs_rq's
5523 	 * estimated utilization, before we update schedutil.
5524 	 */
5525 	util_est_enqueue(&rq->cfs, p);
5526 
5527 	/*
5528 	 * If in_iowait is set, the code below may not trigger any cpufreq
5529 	 * utilization updates, so do it here explicitly with the IOWAIT flag
5530 	 * passed.
5531 	 */
5532 	if (p->in_iowait)
5533 		cpufreq_update_util(rq, SCHED_CPUFREQ_IOWAIT);
5534 
5535 	for_each_sched_entity(se) {
5536 		if (se->on_rq)
5537 			break;
5538 		cfs_rq = cfs_rq_of(se);
5539 		enqueue_entity(cfs_rq, se, flags);
5540 
5541 		cfs_rq->h_nr_running++;
5542 		cfs_rq->idle_h_nr_running += idle_h_nr_running;
5543 
5544 		/* end evaluation on encountering a throttled cfs_rq */
5545 		if (cfs_rq_throttled(cfs_rq))
5546 			goto enqueue_throttle;
5547 
5548 		flags = ENQUEUE_WAKEUP;
5549 	}
5550 
5551 	for_each_sched_entity(se) {
5552 		cfs_rq = cfs_rq_of(se);
5553 
5554 		update_load_avg(cfs_rq, se, UPDATE_TG);
5555 		se_update_runnable(se);
5556 		update_cfs_group(se);
5557 
5558 		cfs_rq->h_nr_running++;
5559 		cfs_rq->idle_h_nr_running += idle_h_nr_running;
5560 
5561 		/* end evaluation on encountering a throttled cfs_rq */
5562 		if (cfs_rq_throttled(cfs_rq))
5563 			goto enqueue_throttle;
5564 
5565                /*
5566                 * One parent has been throttled and cfs_rq removed from the
5567                 * list. Add it back to not break the leaf list.
5568                 */
5569                if (throttled_hierarchy(cfs_rq))
5570                        list_add_leaf_cfs_rq(cfs_rq);
5571 	}
5572 
5573 	/* At this point se is NULL and we are at root level*/
5574 	add_nr_running(rq, 1);
5575 
5576 	/*
5577 	 * Since new tasks are assigned an initial util_avg equal to
5578 	 * half of the spare capacity of their CPU, tiny tasks have the
5579 	 * ability to cross the overutilized threshold, which will
5580 	 * result in the load balancer ruining all the task placement
5581 	 * done by EAS. As a way to mitigate that effect, do not account
5582 	 * for the first enqueue operation of new tasks during the
5583 	 * overutilized flag detection.
5584 	 *
5585 	 * A better way of solving this problem would be to wait for
5586 	 * the PELT signals of tasks to converge before taking them
5587 	 * into account, but that is not straightforward to implement,
5588 	 * and the following generally works well enough in practice.
5589 	 */
5590 	if (!task_new)
5591 		update_overutilized_status(rq);
5592 
5593 enqueue_throttle:
5594 	if (cfs_bandwidth_used()) {
5595 		/*
5596 		 * When bandwidth control is enabled; the cfs_rq_throttled()
5597 		 * breaks in the above iteration can result in incomplete
5598 		 * leaf list maintenance, resulting in triggering the assertion
5599 		 * below.
5600 		 */
5601 		for_each_sched_entity(se) {
5602 			cfs_rq = cfs_rq_of(se);
5603 
5604 			if (list_add_leaf_cfs_rq(cfs_rq))
5605 				break;
5606 		}
5607 	}
5608 
5609 	assert_list_leaf_cfs_rq(rq);
5610 
5611 	hrtick_update(rq);
5612 }
5613 
5614 static void set_next_buddy(struct sched_entity *se);
5615 
5616 /*
5617  * The dequeue_task method is called before nr_running is
5618  * decreased. We remove the task from the rbtree and
5619  * update the fair scheduling stats:
5620  */
5621 static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
5622 {
5623 	struct cfs_rq *cfs_rq;
5624 	struct sched_entity *se = &p->se;
5625 	int task_sleep = flags & DEQUEUE_SLEEP;
5626 	int idle_h_nr_running = task_has_idle_policy(p);
5627 	bool was_sched_idle = sched_idle_rq(rq);
5628 
5629 	util_est_dequeue(&rq->cfs, p);
5630 
5631 	for_each_sched_entity(se) {
5632 		cfs_rq = cfs_rq_of(se);
5633 		dequeue_entity(cfs_rq, se, flags);
5634 
5635 		cfs_rq->h_nr_running--;
5636 		cfs_rq->idle_h_nr_running -= idle_h_nr_running;
5637 
5638 		/* end evaluation on encountering a throttled cfs_rq */
5639 		if (cfs_rq_throttled(cfs_rq))
5640 			goto dequeue_throttle;
5641 
5642 		/* Don't dequeue parent if it has other entities besides us */
5643 		if (cfs_rq->load.weight) {
5644 			/* Avoid re-evaluating load for this entity: */
5645 			se = parent_entity(se);
5646 			/*
5647 			 * Bias pick_next to pick a task from this cfs_rq, as
5648 			 * p is sleeping when it is within its sched_slice.
5649 			 */
5650 			if (task_sleep && se && !throttled_hierarchy(cfs_rq))
5651 				set_next_buddy(se);
5652 			break;
5653 		}
5654 		flags |= DEQUEUE_SLEEP;
5655 	}
5656 
5657 	for_each_sched_entity(se) {
5658 		cfs_rq = cfs_rq_of(se);
5659 
5660 		update_load_avg(cfs_rq, se, UPDATE_TG);
5661 		se_update_runnable(se);
5662 		update_cfs_group(se);
5663 
5664 		cfs_rq->h_nr_running--;
5665 		cfs_rq->idle_h_nr_running -= idle_h_nr_running;
5666 
5667 		/* end evaluation on encountering a throttled cfs_rq */
5668 		if (cfs_rq_throttled(cfs_rq))
5669 			goto dequeue_throttle;
5670 
5671 	}
5672 
5673 	/* At this point se is NULL and we are at root level*/
5674 	sub_nr_running(rq, 1);
5675 
5676 	/* balance early to pull high priority tasks */
5677 	if (unlikely(!was_sched_idle && sched_idle_rq(rq)))
5678 		rq->next_balance = jiffies;
5679 
5680 dequeue_throttle:
5681 	util_est_update(&rq->cfs, p, task_sleep);
5682 	hrtick_update(rq);
5683 }
5684 
5685 #ifdef CONFIG_SMP
5686 
5687 /* Working cpumask for: load_balance, load_balance_newidle. */
5688 DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
5689 DEFINE_PER_CPU(cpumask_var_t, select_idle_mask);
5690 
5691 #ifdef CONFIG_NO_HZ_COMMON
5692 
5693 static struct {
5694 	cpumask_var_t idle_cpus_mask;
5695 	atomic_t nr_cpus;
5696 	int has_blocked;		/* Idle CPUS has blocked load */
5697 	unsigned long next_balance;     /* in jiffy units */
5698 	unsigned long next_blocked;	/* Next update of blocked load in jiffies */
5699 } nohz ____cacheline_aligned;
5700 
5701 #endif /* CONFIG_NO_HZ_COMMON */
5702 
5703 static unsigned long cpu_load(struct rq *rq)
5704 {
5705 	return cfs_rq_load_avg(&rq->cfs);
5706 }
5707 
5708 /*
5709  * cpu_load_without - compute CPU load without any contributions from *p
5710  * @cpu: the CPU which load is requested
5711  * @p: the task which load should be discounted
5712  *
5713  * The load of a CPU is defined by the load of tasks currently enqueued on that
5714  * CPU as well as tasks which are currently sleeping after an execution on that
5715  * CPU.
5716  *
5717  * This method returns the load of the specified CPU by discounting the load of
5718  * the specified task, whenever the task is currently contributing to the CPU
5719  * load.
5720  */
5721 static unsigned long cpu_load_without(struct rq *rq, struct task_struct *p)
5722 {
5723 	struct cfs_rq *cfs_rq;
5724 	unsigned int load;
5725 
5726 	/* Task has no contribution or is new */
5727 	if (cpu_of(rq) != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
5728 		return cpu_load(rq);
5729 
5730 	cfs_rq = &rq->cfs;
5731 	load = READ_ONCE(cfs_rq->avg.load_avg);
5732 
5733 	/* Discount task's util from CPU's util */
5734 	lsub_positive(&load, task_h_load(p));
5735 
5736 	return load;
5737 }
5738 
5739 static unsigned long cpu_runnable(struct rq *rq)
5740 {
5741 	return cfs_rq_runnable_avg(&rq->cfs);
5742 }
5743 
5744 static unsigned long cpu_runnable_without(struct rq *rq, struct task_struct *p)
5745 {
5746 	struct cfs_rq *cfs_rq;
5747 	unsigned int runnable;
5748 
5749 	/* Task has no contribution or is new */
5750 	if (cpu_of(rq) != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
5751 		return cpu_runnable(rq);
5752 
5753 	cfs_rq = &rq->cfs;
5754 	runnable = READ_ONCE(cfs_rq->avg.runnable_avg);
5755 
5756 	/* Discount task's runnable from CPU's runnable */
5757 	lsub_positive(&runnable, p->se.avg.runnable_avg);
5758 
5759 	return runnable;
5760 }
5761 
5762 static unsigned long capacity_of(int cpu)
5763 {
5764 	return cpu_rq(cpu)->cpu_capacity;
5765 }
5766 
5767 static void record_wakee(struct task_struct *p)
5768 {
5769 	/*
5770 	 * Only decay a single time; tasks that have less then 1 wakeup per
5771 	 * jiffy will not have built up many flips.
5772 	 */
5773 	if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) {
5774 		current->wakee_flips >>= 1;
5775 		current->wakee_flip_decay_ts = jiffies;
5776 	}
5777 
5778 	if (current->last_wakee != p) {
5779 		current->last_wakee = p;
5780 		current->wakee_flips++;
5781 	}
5782 }
5783 
5784 /*
5785  * Detect M:N waker/wakee relationships via a switching-frequency heuristic.
5786  *
5787  * A waker of many should wake a different task than the one last awakened
5788  * at a frequency roughly N times higher than one of its wakees.
5789  *
5790  * In order to determine whether we should let the load spread vs consolidating
5791  * to shared cache, we look for a minimum 'flip' frequency of llc_size in one
5792  * partner, and a factor of lls_size higher frequency in the other.
5793  *
5794  * With both conditions met, we can be relatively sure that the relationship is
5795  * non-monogamous, with partner count exceeding socket size.
5796  *
5797  * Waker/wakee being client/server, worker/dispatcher, interrupt source or
5798  * whatever is irrelevant, spread criteria is apparent partner count exceeds
5799  * socket size.
5800  */
5801 static int wake_wide(struct task_struct *p)
5802 {
5803 	unsigned int master = current->wakee_flips;
5804 	unsigned int slave = p->wakee_flips;
5805 	int factor = __this_cpu_read(sd_llc_size);
5806 
5807 	if (master < slave)
5808 		swap(master, slave);
5809 	if (slave < factor || master < slave * factor)
5810 		return 0;
5811 	return 1;
5812 }
5813 
5814 /*
5815  * The purpose of wake_affine() is to quickly determine on which CPU we can run
5816  * soonest. For the purpose of speed we only consider the waking and previous
5817  * CPU.
5818  *
5819  * wake_affine_idle() - only considers 'now', it check if the waking CPU is
5820  *			cache-affine and is (or	will be) idle.
5821  *
5822  * wake_affine_weight() - considers the weight to reflect the average
5823  *			  scheduling latency of the CPUs. This seems to work
5824  *			  for the overloaded case.
5825  */
5826 static int
5827 wake_affine_idle(int this_cpu, int prev_cpu, int sync)
5828 {
5829 	/*
5830 	 * If this_cpu is idle, it implies the wakeup is from interrupt
5831 	 * context. Only allow the move if cache is shared. Otherwise an
5832 	 * interrupt intensive workload could force all tasks onto one
5833 	 * node depending on the IO topology or IRQ affinity settings.
5834 	 *
5835 	 * If the prev_cpu is idle and cache affine then avoid a migration.
5836 	 * There is no guarantee that the cache hot data from an interrupt
5837 	 * is more important than cache hot data on the prev_cpu and from
5838 	 * a cpufreq perspective, it's better to have higher utilisation
5839 	 * on one CPU.
5840 	 */
5841 	if (available_idle_cpu(this_cpu) && cpus_share_cache(this_cpu, prev_cpu))
5842 		return available_idle_cpu(prev_cpu) ? prev_cpu : this_cpu;
5843 
5844 	if (sync && cpu_rq(this_cpu)->nr_running == 1)
5845 		return this_cpu;
5846 
5847 	if (available_idle_cpu(prev_cpu))
5848 		return prev_cpu;
5849 
5850 	return nr_cpumask_bits;
5851 }
5852 
5853 static int
5854 wake_affine_weight(struct sched_domain *sd, struct task_struct *p,
5855 		   int this_cpu, int prev_cpu, int sync)
5856 {
5857 	s64 this_eff_load, prev_eff_load;
5858 	unsigned long task_load;
5859 
5860 	this_eff_load = cpu_load(cpu_rq(this_cpu));
5861 
5862 	if (sync) {
5863 		unsigned long current_load = task_h_load(current);
5864 
5865 		if (current_load > this_eff_load)
5866 			return this_cpu;
5867 
5868 		this_eff_load -= current_load;
5869 	}
5870 
5871 	task_load = task_h_load(p);
5872 
5873 	this_eff_load += task_load;
5874 	if (sched_feat(WA_BIAS))
5875 		this_eff_load *= 100;
5876 	this_eff_load *= capacity_of(prev_cpu);
5877 
5878 	prev_eff_load = cpu_load(cpu_rq(prev_cpu));
5879 	prev_eff_load -= task_load;
5880 	if (sched_feat(WA_BIAS))
5881 		prev_eff_load *= 100 + (sd->imbalance_pct - 100) / 2;
5882 	prev_eff_load *= capacity_of(this_cpu);
5883 
5884 	/*
5885 	 * If sync, adjust the weight of prev_eff_load such that if
5886 	 * prev_eff == this_eff that select_idle_sibling() will consider
5887 	 * stacking the wakee on top of the waker if no other CPU is
5888 	 * idle.
5889 	 */
5890 	if (sync)
5891 		prev_eff_load += 1;
5892 
5893 	return this_eff_load < prev_eff_load ? this_cpu : nr_cpumask_bits;
5894 }
5895 
5896 static int wake_affine(struct sched_domain *sd, struct task_struct *p,
5897 		       int this_cpu, int prev_cpu, int sync)
5898 {
5899 	int target = nr_cpumask_bits;
5900 
5901 	if (sched_feat(WA_IDLE))
5902 		target = wake_affine_idle(this_cpu, prev_cpu, sync);
5903 
5904 	if (sched_feat(WA_WEIGHT) && target == nr_cpumask_bits)
5905 		target = wake_affine_weight(sd, p, this_cpu, prev_cpu, sync);
5906 
5907 	schedstat_inc(p->se.statistics.nr_wakeups_affine_attempts);
5908 	if (target == nr_cpumask_bits)
5909 		return prev_cpu;
5910 
5911 	schedstat_inc(sd->ttwu_move_affine);
5912 	schedstat_inc(p->se.statistics.nr_wakeups_affine);
5913 	return target;
5914 }
5915 
5916 static struct sched_group *
5917 find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu);
5918 
5919 /*
5920  * find_idlest_group_cpu - find the idlest CPU among the CPUs in the group.
5921  */
5922 static int
5923 find_idlest_group_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
5924 {
5925 	unsigned long load, min_load = ULONG_MAX;
5926 	unsigned int min_exit_latency = UINT_MAX;
5927 	u64 latest_idle_timestamp = 0;
5928 	int least_loaded_cpu = this_cpu;
5929 	int shallowest_idle_cpu = -1;
5930 	int i;
5931 
5932 	/* Check if we have any choice: */
5933 	if (group->group_weight == 1)
5934 		return cpumask_first(sched_group_span(group));
5935 
5936 	/* Traverse only the allowed CPUs */
5937 	for_each_cpu_and(i, sched_group_span(group), p->cpus_ptr) {
5938 		if (sched_idle_cpu(i))
5939 			return i;
5940 
5941 		if (available_idle_cpu(i)) {
5942 			struct rq *rq = cpu_rq(i);
5943 			struct cpuidle_state *idle = idle_get_state(rq);
5944 			if (idle && idle->exit_latency < min_exit_latency) {
5945 				/*
5946 				 * We give priority to a CPU whose idle state
5947 				 * has the smallest exit latency irrespective
5948 				 * of any idle timestamp.
5949 				 */
5950 				min_exit_latency = idle->exit_latency;
5951 				latest_idle_timestamp = rq->idle_stamp;
5952 				shallowest_idle_cpu = i;
5953 			} else if ((!idle || idle->exit_latency == min_exit_latency) &&
5954 				   rq->idle_stamp > latest_idle_timestamp) {
5955 				/*
5956 				 * If equal or no active idle state, then
5957 				 * the most recently idled CPU might have
5958 				 * a warmer cache.
5959 				 */
5960 				latest_idle_timestamp = rq->idle_stamp;
5961 				shallowest_idle_cpu = i;
5962 			}
5963 		} else if (shallowest_idle_cpu == -1) {
5964 			load = cpu_load(cpu_rq(i));
5965 			if (load < min_load) {
5966 				min_load = load;
5967 				least_loaded_cpu = i;
5968 			}
5969 		}
5970 	}
5971 
5972 	return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu;
5973 }
5974 
5975 static inline int find_idlest_cpu(struct sched_domain *sd, struct task_struct *p,
5976 				  int cpu, int prev_cpu, int sd_flag)
5977 {
5978 	int new_cpu = cpu;
5979 
5980 	if (!cpumask_intersects(sched_domain_span(sd), p->cpus_ptr))
5981 		return prev_cpu;
5982 
5983 	/*
5984 	 * We need task's util for cpu_util_without, sync it up to
5985 	 * prev_cpu's last_update_time.
5986 	 */
5987 	if (!(sd_flag & SD_BALANCE_FORK))
5988 		sync_entity_load_avg(&p->se);
5989 
5990 	while (sd) {
5991 		struct sched_group *group;
5992 		struct sched_domain *tmp;
5993 		int weight;
5994 
5995 		if (!(sd->flags & sd_flag)) {
5996 			sd = sd->child;
5997 			continue;
5998 		}
5999 
6000 		group = find_idlest_group(sd, p, cpu);
6001 		if (!group) {
6002 			sd = sd->child;
6003 			continue;
6004 		}
6005 
6006 		new_cpu = find_idlest_group_cpu(group, p, cpu);
6007 		if (new_cpu == cpu) {
6008 			/* Now try balancing at a lower domain level of 'cpu': */
6009 			sd = sd->child;
6010 			continue;
6011 		}
6012 
6013 		/* Now try balancing at a lower domain level of 'new_cpu': */
6014 		cpu = new_cpu;
6015 		weight = sd->span_weight;
6016 		sd = NULL;
6017 		for_each_domain(cpu, tmp) {
6018 			if (weight <= tmp->span_weight)
6019 				break;
6020 			if (tmp->flags & sd_flag)
6021 				sd = tmp;
6022 		}
6023 	}
6024 
6025 	return new_cpu;
6026 }
6027 
6028 static inline int __select_idle_cpu(int cpu)
6029 {
6030 	if (available_idle_cpu(cpu) || sched_idle_cpu(cpu))
6031 		return cpu;
6032 
6033 	return -1;
6034 }
6035 
6036 #ifdef CONFIG_SCHED_SMT
6037 DEFINE_STATIC_KEY_FALSE(sched_smt_present);
6038 EXPORT_SYMBOL_GPL(sched_smt_present);
6039 
6040 static inline void set_idle_cores(int cpu, int val)
6041 {
6042 	struct sched_domain_shared *sds;
6043 
6044 	sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
6045 	if (sds)
6046 		WRITE_ONCE(sds->has_idle_cores, val);
6047 }
6048 
6049 static inline bool test_idle_cores(int cpu, bool def)
6050 {
6051 	struct sched_domain_shared *sds;
6052 
6053 	sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
6054 	if (sds)
6055 		return READ_ONCE(sds->has_idle_cores);
6056 
6057 	return def;
6058 }
6059 
6060 /*
6061  * Scans the local SMT mask to see if the entire core is idle, and records this
6062  * information in sd_llc_shared->has_idle_cores.
6063  *
6064  * Since SMT siblings share all cache levels, inspecting this limited remote
6065  * state should be fairly cheap.
6066  */
6067 void __update_idle_core(struct rq *rq)
6068 {
6069 	int core = cpu_of(rq);
6070 	int cpu;
6071 
6072 	rcu_read_lock();
6073 	if (test_idle_cores(core, true))
6074 		goto unlock;
6075 
6076 	for_each_cpu(cpu, cpu_smt_mask(core)) {
6077 		if (cpu == core)
6078 			continue;
6079 
6080 		if (!available_idle_cpu(cpu))
6081 			goto unlock;
6082 	}
6083 
6084 	set_idle_cores(core, 1);
6085 unlock:
6086 	rcu_read_unlock();
6087 }
6088 
6089 /*
6090  * Scan the entire LLC domain for idle cores; this dynamically switches off if
6091  * there are no idle cores left in the system; tracked through
6092  * sd_llc->shared->has_idle_cores and enabled through update_idle_core() above.
6093  */
6094 static int select_idle_core(struct task_struct *p, int core, struct cpumask *cpus, int *idle_cpu)
6095 {
6096 	bool idle = true;
6097 	int cpu;
6098 
6099 	if (!static_branch_likely(&sched_smt_present))
6100 		return __select_idle_cpu(core);
6101 
6102 	for_each_cpu(cpu, cpu_smt_mask(core)) {
6103 		if (!available_idle_cpu(cpu)) {
6104 			idle = false;
6105 			if (*idle_cpu == -1) {
6106 				if (sched_idle_cpu(cpu) && cpumask_test_cpu(cpu, p->cpus_ptr)) {
6107 					*idle_cpu = cpu;
6108 					break;
6109 				}
6110 				continue;
6111 			}
6112 			break;
6113 		}
6114 		if (*idle_cpu == -1 && cpumask_test_cpu(cpu, p->cpus_ptr))
6115 			*idle_cpu = cpu;
6116 	}
6117 
6118 	if (idle)
6119 		return core;
6120 
6121 	cpumask_andnot(cpus, cpus, cpu_smt_mask(core));
6122 	return -1;
6123 }
6124 
6125 /*
6126  * Scan the local SMT mask for idle CPUs.
6127  */
6128 static int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target)
6129 {
6130 	int cpu;
6131 
6132 	for_each_cpu(cpu, cpu_smt_mask(target)) {
6133 		if (!cpumask_test_cpu(cpu, p->cpus_ptr) ||
6134 		    !cpumask_test_cpu(cpu, sched_domain_span(sd)))
6135 			continue;
6136 		if (available_idle_cpu(cpu) || sched_idle_cpu(cpu))
6137 			return cpu;
6138 	}
6139 
6140 	return -1;
6141 }
6142 
6143 #else /* CONFIG_SCHED_SMT */
6144 
6145 static inline void set_idle_cores(int cpu, int val)
6146 {
6147 }
6148 
6149 static inline bool test_idle_cores(int cpu, bool def)
6150 {
6151 	return def;
6152 }
6153 
6154 static inline int select_idle_core(struct task_struct *p, int core, struct cpumask *cpus, int *idle_cpu)
6155 {
6156 	return __select_idle_cpu(core);
6157 }
6158 
6159 static inline int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target)
6160 {
6161 	return -1;
6162 }
6163 
6164 #endif /* CONFIG_SCHED_SMT */
6165 
6166 /*
6167  * Scan the LLC domain for idle CPUs; this is dynamically regulated by
6168  * comparing the average scan cost (tracked in sd->avg_scan_cost) against the
6169  * average idle time for this rq (as found in rq->avg_idle).
6170  */
6171 static int select_idle_cpu(struct task_struct *p, struct sched_domain *sd, bool has_idle_core, int target)
6172 {
6173 	struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_idle_mask);
6174 	int i, cpu, idle_cpu = -1, nr = INT_MAX;
6175 	int this = smp_processor_id();
6176 	struct sched_domain *this_sd;
6177 	u64 time;
6178 
6179 	this_sd = rcu_dereference(*this_cpu_ptr(&sd_llc));
6180 	if (!this_sd)
6181 		return -1;
6182 
6183 	cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr);
6184 
6185 	if (sched_feat(SIS_PROP) && !has_idle_core) {
6186 		u64 avg_cost, avg_idle, span_avg;
6187 
6188 		/*
6189 		 * Due to large variance we need a large fuzz factor;
6190 		 * hackbench in particularly is sensitive here.
6191 		 */
6192 		avg_idle = this_rq()->avg_idle / 512;
6193 		avg_cost = this_sd->avg_scan_cost + 1;
6194 
6195 		span_avg = sd->span_weight * avg_idle;
6196 		if (span_avg > 4*avg_cost)
6197 			nr = div_u64(span_avg, avg_cost);
6198 		else
6199 			nr = 4;
6200 
6201 		time = cpu_clock(this);
6202 	}
6203 
6204 	for_each_cpu_wrap(cpu, cpus, target) {
6205 		if (has_idle_core) {
6206 			i = select_idle_core(p, cpu, cpus, &idle_cpu);
6207 			if ((unsigned int)i < nr_cpumask_bits)
6208 				return i;
6209 
6210 		} else {
6211 			if (!--nr)
6212 				return -1;
6213 			idle_cpu = __select_idle_cpu(cpu);
6214 			if ((unsigned int)idle_cpu < nr_cpumask_bits)
6215 				break;
6216 		}
6217 	}
6218 
6219 	if (has_idle_core)
6220 		set_idle_cores(this, false);
6221 
6222 	if (sched_feat(SIS_PROP) && !has_idle_core) {
6223 		time = cpu_clock(this) - time;
6224 		update_avg(&this_sd->avg_scan_cost, time);
6225 	}
6226 
6227 	return idle_cpu;
6228 }
6229 
6230 /*
6231  * Scan the asym_capacity domain for idle CPUs; pick the first idle one on which
6232  * the task fits. If no CPU is big enough, but there are idle ones, try to
6233  * maximize capacity.
6234  */
6235 static int
6236 select_idle_capacity(struct task_struct *p, struct sched_domain *sd, int target)
6237 {
6238 	unsigned long task_util, best_cap = 0;
6239 	int cpu, best_cpu = -1;
6240 	struct cpumask *cpus;
6241 
6242 	cpus = this_cpu_cpumask_var_ptr(select_idle_mask);
6243 	cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr);
6244 
6245 	task_util = uclamp_task_util(p);
6246 
6247 	for_each_cpu_wrap(cpu, cpus, target) {
6248 		unsigned long cpu_cap = capacity_of(cpu);
6249 
6250 		if (!available_idle_cpu(cpu) && !sched_idle_cpu(cpu))
6251 			continue;
6252 		if (fits_capacity(task_util, cpu_cap))
6253 			return cpu;
6254 
6255 		if (cpu_cap > best_cap) {
6256 			best_cap = cpu_cap;
6257 			best_cpu = cpu;
6258 		}
6259 	}
6260 
6261 	return best_cpu;
6262 }
6263 
6264 static inline bool asym_fits_capacity(int task_util, int cpu)
6265 {
6266 	if (static_branch_unlikely(&sched_asym_cpucapacity))
6267 		return fits_capacity(task_util, capacity_of(cpu));
6268 
6269 	return true;
6270 }
6271 
6272 /*
6273  * Try and locate an idle core/thread in the LLC cache domain.
6274  */
6275 static int select_idle_sibling(struct task_struct *p, int prev, int target)
6276 {
6277 	bool has_idle_core = false;
6278 	struct sched_domain *sd;
6279 	unsigned long task_util;
6280 	int i, recent_used_cpu;
6281 
6282 	/*
6283 	 * On asymmetric system, update task utilization because we will check
6284 	 * that the task fits with cpu's capacity.
6285 	 */
6286 	if (static_branch_unlikely(&sched_asym_cpucapacity)) {
6287 		sync_entity_load_avg(&p->se);
6288 		task_util = uclamp_task_util(p);
6289 	}
6290 
6291 	if ((available_idle_cpu(target) || sched_idle_cpu(target)) &&
6292 	    asym_fits_capacity(task_util, target))
6293 		return target;
6294 
6295 	/*
6296 	 * If the previous CPU is cache affine and idle, don't be stupid:
6297 	 */
6298 	if (prev != target && cpus_share_cache(prev, target) &&
6299 	    (available_idle_cpu(prev) || sched_idle_cpu(prev)) &&
6300 	    asym_fits_capacity(task_util, prev))
6301 		return prev;
6302 
6303 	/*
6304 	 * Allow a per-cpu kthread to stack with the wakee if the
6305 	 * kworker thread and the tasks previous CPUs are the same.
6306 	 * The assumption is that the wakee queued work for the
6307 	 * per-cpu kthread that is now complete and the wakeup is
6308 	 * essentially a sync wakeup. An obvious example of this
6309 	 * pattern is IO completions.
6310 	 */
6311 	if (is_per_cpu_kthread(current) &&
6312 	    prev == smp_processor_id() &&
6313 	    this_rq()->nr_running <= 1) {
6314 		return prev;
6315 	}
6316 
6317 	/* Check a recently used CPU as a potential idle candidate: */
6318 	recent_used_cpu = p->recent_used_cpu;
6319 	if (recent_used_cpu != prev &&
6320 	    recent_used_cpu != target &&
6321 	    cpus_share_cache(recent_used_cpu, target) &&
6322 	    (available_idle_cpu(recent_used_cpu) || sched_idle_cpu(recent_used_cpu)) &&
6323 	    cpumask_test_cpu(p->recent_used_cpu, p->cpus_ptr) &&
6324 	    asym_fits_capacity(task_util, recent_used_cpu)) {
6325 		/*
6326 		 * Replace recent_used_cpu with prev as it is a potential
6327 		 * candidate for the next wake:
6328 		 */
6329 		p->recent_used_cpu = prev;
6330 		return recent_used_cpu;
6331 	}
6332 
6333 	/*
6334 	 * For asymmetric CPU capacity systems, our domain of interest is
6335 	 * sd_asym_cpucapacity rather than sd_llc.
6336 	 */
6337 	if (static_branch_unlikely(&sched_asym_cpucapacity)) {
6338 		sd = rcu_dereference(per_cpu(sd_asym_cpucapacity, target));
6339 		/*
6340 		 * On an asymmetric CPU capacity system where an exclusive
6341 		 * cpuset defines a symmetric island (i.e. one unique
6342 		 * capacity_orig value through the cpuset), the key will be set
6343 		 * but the CPUs within that cpuset will not have a domain with
6344 		 * SD_ASYM_CPUCAPACITY. These should follow the usual symmetric
6345 		 * capacity path.
6346 		 */
6347 		if (sd) {
6348 			i = select_idle_capacity(p, sd, target);
6349 			return ((unsigned)i < nr_cpumask_bits) ? i : target;
6350 		}
6351 	}
6352 
6353 	sd = rcu_dereference(per_cpu(sd_llc, target));
6354 	if (!sd)
6355 		return target;
6356 
6357 	if (sched_smt_active()) {
6358 		has_idle_core = test_idle_cores(target, false);
6359 
6360 		if (!has_idle_core && cpus_share_cache(prev, target)) {
6361 			i = select_idle_smt(p, sd, prev);
6362 			if ((unsigned int)i < nr_cpumask_bits)
6363 				return i;
6364 		}
6365 	}
6366 
6367 	i = select_idle_cpu(p, sd, has_idle_core, target);
6368 	if ((unsigned)i < nr_cpumask_bits)
6369 		return i;
6370 
6371 	return target;
6372 }
6373 
6374 /**
6375  * cpu_util - Estimates the amount of capacity of a CPU used by CFS tasks.
6376  * @cpu: the CPU to get the utilization of
6377  *
6378  * The unit of the return value must be the one of capacity so we can compare
6379  * the utilization with the capacity of the CPU that is available for CFS task
6380  * (ie cpu_capacity).
6381  *
6382  * cfs_rq.avg.util_avg is the sum of running time of runnable tasks plus the
6383  * recent utilization of currently non-runnable tasks on a CPU. It represents
6384  * the amount of utilization of a CPU in the range [0..capacity_orig] where
6385  * capacity_orig is the cpu_capacity available at the highest frequency
6386  * (arch_scale_freq_capacity()).
6387  * The utilization of a CPU converges towards a sum equal to or less than the
6388  * current capacity (capacity_curr <= capacity_orig) of the CPU because it is
6389  * the running time on this CPU scaled by capacity_curr.
6390  *
6391  * The estimated utilization of a CPU is defined to be the maximum between its
6392  * cfs_rq.avg.util_avg and the sum of the estimated utilization of the tasks
6393  * currently RUNNABLE on that CPU.
6394  * This allows to properly represent the expected utilization of a CPU which
6395  * has just got a big task running since a long sleep period. At the same time
6396  * however it preserves the benefits of the "blocked utilization" in
6397  * describing the potential for other tasks waking up on the same CPU.
6398  *
6399  * Nevertheless, cfs_rq.avg.util_avg can be higher than capacity_curr or even
6400  * higher than capacity_orig because of unfortunate rounding in
6401  * cfs.avg.util_avg or just after migrating tasks and new task wakeups until
6402  * the average stabilizes with the new running time. We need to check that the
6403  * utilization stays within the range of [0..capacity_orig] and cap it if
6404  * necessary. Without utilization capping, a group could be seen as overloaded
6405  * (CPU0 utilization at 121% + CPU1 utilization at 80%) whereas CPU1 has 20% of
6406  * available capacity. We allow utilization to overshoot capacity_curr (but not
6407  * capacity_orig) as it useful for predicting the capacity required after task
6408  * migrations (scheduler-driven DVFS).
6409  *
6410  * Return: the (estimated) utilization for the specified CPU
6411  */
6412 static inline unsigned long cpu_util(int cpu)
6413 {
6414 	struct cfs_rq *cfs_rq;
6415 	unsigned int util;
6416 
6417 	cfs_rq = &cpu_rq(cpu)->cfs;
6418 	util = READ_ONCE(cfs_rq->avg.util_avg);
6419 
6420 	if (sched_feat(UTIL_EST))
6421 		util = max(util, READ_ONCE(cfs_rq->avg.util_est.enqueued));
6422 
6423 	return min_t(unsigned long, util, capacity_orig_of(cpu));
6424 }
6425 
6426 /*
6427  * cpu_util_without: compute cpu utilization without any contributions from *p
6428  * @cpu: the CPU which utilization is requested
6429  * @p: the task which utilization should be discounted
6430  *
6431  * The utilization of a CPU is defined by the utilization of tasks currently
6432  * enqueued on that CPU as well as tasks which are currently sleeping after an
6433  * execution on that CPU.
6434  *
6435  * This method returns the utilization of the specified CPU by discounting the
6436  * utilization of the specified task, whenever the task is currently
6437  * contributing to the CPU utilization.
6438  */
6439 static unsigned long cpu_util_without(int cpu, struct task_struct *p)
6440 {
6441 	struct cfs_rq *cfs_rq;
6442 	unsigned int util;
6443 
6444 	/* Task has no contribution or is new */
6445 	if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
6446 		return cpu_util(cpu);
6447 
6448 	cfs_rq = &cpu_rq(cpu)->cfs;
6449 	util = READ_ONCE(cfs_rq->avg.util_avg);
6450 
6451 	/* Discount task's util from CPU's util */
6452 	lsub_positive(&util, task_util(p));
6453 
6454 	/*
6455 	 * Covered cases:
6456 	 *
6457 	 * a) if *p is the only task sleeping on this CPU, then:
6458 	 *      cpu_util (== task_util) > util_est (== 0)
6459 	 *    and thus we return:
6460 	 *      cpu_util_without = (cpu_util - task_util) = 0
6461 	 *
6462 	 * b) if other tasks are SLEEPING on this CPU, which is now exiting
6463 	 *    IDLE, then:
6464 	 *      cpu_util >= task_util
6465 	 *      cpu_util > util_est (== 0)
6466 	 *    and thus we discount *p's blocked utilization to return:
6467 	 *      cpu_util_without = (cpu_util - task_util) >= 0
6468 	 *
6469 	 * c) if other tasks are RUNNABLE on that CPU and
6470 	 *      util_est > cpu_util
6471 	 *    then we use util_est since it returns a more restrictive
6472 	 *    estimation of the spare capacity on that CPU, by just
6473 	 *    considering the expected utilization of tasks already
6474 	 *    runnable on that CPU.
6475 	 *
6476 	 * Cases a) and b) are covered by the above code, while case c) is
6477 	 * covered by the following code when estimated utilization is
6478 	 * enabled.
6479 	 */
6480 	if (sched_feat(UTIL_EST)) {
6481 		unsigned int estimated =
6482 			READ_ONCE(cfs_rq->avg.util_est.enqueued);
6483 
6484 		/*
6485 		 * Despite the following checks we still have a small window
6486 		 * for a possible race, when an execl's select_task_rq_fair()
6487 		 * races with LB's detach_task():
6488 		 *
6489 		 *   detach_task()
6490 		 *     p->on_rq = TASK_ON_RQ_MIGRATING;
6491 		 *     ---------------------------------- A
6492 		 *     deactivate_task()                   \
6493 		 *       dequeue_task()                     + RaceTime
6494 		 *         util_est_dequeue()              /
6495 		 *     ---------------------------------- B
6496 		 *
6497 		 * The additional check on "current == p" it's required to
6498 		 * properly fix the execl regression and it helps in further
6499 		 * reducing the chances for the above race.
6500 		 */
6501 		if (unlikely(task_on_rq_queued(p) || current == p))
6502 			lsub_positive(&estimated, _task_util_est(p));
6503 
6504 		util = max(util, estimated);
6505 	}
6506 
6507 	/*
6508 	 * Utilization (estimated) can exceed the CPU capacity, thus let's
6509 	 * clamp to the maximum CPU capacity to ensure consistency with
6510 	 * the cpu_util call.
6511 	 */
6512 	return min_t(unsigned long, util, capacity_orig_of(cpu));
6513 }
6514 
6515 /*
6516  * Predicts what cpu_util(@cpu) would return if @p was migrated (and enqueued)
6517  * to @dst_cpu.
6518  */
6519 static unsigned long cpu_util_next(int cpu, struct task_struct *p, int dst_cpu)
6520 {
6521 	struct cfs_rq *cfs_rq = &cpu_rq(cpu)->cfs;
6522 	unsigned long util_est, util = READ_ONCE(cfs_rq->avg.util_avg);
6523 
6524 	/*
6525 	 * If @p migrates from @cpu to another, remove its contribution. Or,
6526 	 * if @p migrates from another CPU to @cpu, add its contribution. In
6527 	 * the other cases, @cpu is not impacted by the migration, so the
6528 	 * util_avg should already be correct.
6529 	 */
6530 	if (task_cpu(p) == cpu && dst_cpu != cpu)
6531 		lsub_positive(&util, task_util(p));
6532 	else if (task_cpu(p) != cpu && dst_cpu == cpu)
6533 		util += task_util(p);
6534 
6535 	if (sched_feat(UTIL_EST)) {
6536 		util_est = READ_ONCE(cfs_rq->avg.util_est.enqueued);
6537 
6538 		/*
6539 		 * During wake-up, the task isn't enqueued yet and doesn't
6540 		 * appear in the cfs_rq->avg.util_est.enqueued of any rq,
6541 		 * so just add it (if needed) to "simulate" what will be
6542 		 * cpu_util() after the task has been enqueued.
6543 		 */
6544 		if (dst_cpu == cpu)
6545 			util_est += _task_util_est(p);
6546 
6547 		util = max(util, util_est);
6548 	}
6549 
6550 	return min(util, capacity_orig_of(cpu));
6551 }
6552 
6553 /*
6554  * compute_energy(): Estimates the energy that @pd would consume if @p was
6555  * migrated to @dst_cpu. compute_energy() predicts what will be the utilization
6556  * landscape of @pd's CPUs after the task migration, and uses the Energy Model
6557  * to compute what would be the energy if we decided to actually migrate that
6558  * task.
6559  */
6560 static long
6561 compute_energy(struct task_struct *p, int dst_cpu, struct perf_domain *pd)
6562 {
6563 	struct cpumask *pd_mask = perf_domain_span(pd);
6564 	unsigned long cpu_cap = arch_scale_cpu_capacity(cpumask_first(pd_mask));
6565 	unsigned long max_util = 0, sum_util = 0;
6566 	int cpu;
6567 
6568 	/*
6569 	 * The capacity state of CPUs of the current rd can be driven by CPUs
6570 	 * of another rd if they belong to the same pd. So, account for the
6571 	 * utilization of these CPUs too by masking pd with cpu_online_mask
6572 	 * instead of the rd span.
6573 	 *
6574 	 * If an entire pd is outside of the current rd, it will not appear in
6575 	 * its pd list and will not be accounted by compute_energy().
6576 	 */
6577 	for_each_cpu_and(cpu, pd_mask, cpu_online_mask) {
6578 		unsigned long util_freq = cpu_util_next(cpu, p, dst_cpu);
6579 		unsigned long cpu_util, util_running = util_freq;
6580 		struct task_struct *tsk = NULL;
6581 
6582 		/*
6583 		 * When @p is placed on @cpu:
6584 		 *
6585 		 * util_running = max(cpu_util, cpu_util_est) +
6586 		 *		  max(task_util, _task_util_est)
6587 		 *
6588 		 * while cpu_util_next is: max(cpu_util + task_util,
6589 		 *			       cpu_util_est + _task_util_est)
6590 		 */
6591 		if (cpu == dst_cpu) {
6592 			tsk = p;
6593 			util_running =
6594 				cpu_util_next(cpu, p, -1) + task_util_est(p);
6595 		}
6596 
6597 		/*
6598 		 * Busy time computation: utilization clamping is not
6599 		 * required since the ratio (sum_util / cpu_capacity)
6600 		 * is already enough to scale the EM reported power
6601 		 * consumption at the (eventually clamped) cpu_capacity.
6602 		 */
6603 		sum_util += effective_cpu_util(cpu, util_running, cpu_cap,
6604 					       ENERGY_UTIL, NULL);
6605 
6606 		/*
6607 		 * Performance domain frequency: utilization clamping
6608 		 * must be considered since it affects the selection
6609 		 * of the performance domain frequency.
6610 		 * NOTE: in case RT tasks are running, by default the
6611 		 * FREQUENCY_UTIL's utilization can be max OPP.
6612 		 */
6613 		cpu_util = effective_cpu_util(cpu, util_freq, cpu_cap,
6614 					      FREQUENCY_UTIL, tsk);
6615 		max_util = max(max_util, cpu_util);
6616 	}
6617 
6618 	return em_cpu_energy(pd->em_pd, max_util, sum_util);
6619 }
6620 
6621 /*
6622  * find_energy_efficient_cpu(): Find most energy-efficient target CPU for the
6623  * waking task. find_energy_efficient_cpu() looks for the CPU with maximum
6624  * spare capacity in each performance domain and uses it as a potential
6625  * candidate to execute the task. Then, it uses the Energy Model to figure
6626  * out which of the CPU candidates is the most energy-efficient.
6627  *
6628  * The rationale for this heuristic is as follows. In a performance domain,
6629  * all the most energy efficient CPU candidates (according to the Energy
6630  * Model) are those for which we'll request a low frequency. When there are
6631  * several CPUs for which the frequency request will be the same, we don't
6632  * have enough data to break the tie between them, because the Energy Model
6633  * only includes active power costs. With this model, if we assume that
6634  * frequency requests follow utilization (e.g. using schedutil), the CPU with
6635  * the maximum spare capacity in a performance domain is guaranteed to be among
6636  * the best candidates of the performance domain.
6637  *
6638  * In practice, it could be preferable from an energy standpoint to pack
6639  * small tasks on a CPU in order to let other CPUs go in deeper idle states,
6640  * but that could also hurt our chances to go cluster idle, and we have no
6641  * ways to tell with the current Energy Model if this is actually a good
6642  * idea or not. So, find_energy_efficient_cpu() basically favors
6643  * cluster-packing, and spreading inside a cluster. That should at least be
6644  * a good thing for latency, and this is consistent with the idea that most
6645  * of the energy savings of EAS come from the asymmetry of the system, and
6646  * not so much from breaking the tie between identical CPUs. That's also the
6647  * reason why EAS is enabled in the topology code only for systems where
6648  * SD_ASYM_CPUCAPACITY is set.
6649  *
6650  * NOTE: Forkees are not accepted in the energy-aware wake-up path because
6651  * they don't have any useful utilization data yet and it's not possible to
6652  * forecast their impact on energy consumption. Consequently, they will be
6653  * placed by find_idlest_cpu() on the least loaded CPU, which might turn out
6654  * to be energy-inefficient in some use-cases. The alternative would be to
6655  * bias new tasks towards specific types of CPUs first, or to try to infer
6656  * their util_avg from the parent task, but those heuristics could hurt
6657  * other use-cases too. So, until someone finds a better way to solve this,
6658  * let's keep things simple by re-using the existing slow path.
6659  */
6660 static int find_energy_efficient_cpu(struct task_struct *p, int prev_cpu)
6661 {
6662 	unsigned long prev_delta = ULONG_MAX, best_delta = ULONG_MAX;
6663 	struct root_domain *rd = cpu_rq(smp_processor_id())->rd;
6664 	unsigned long cpu_cap, util, base_energy = 0;
6665 	int cpu, best_energy_cpu = prev_cpu;
6666 	struct sched_domain *sd;
6667 	struct perf_domain *pd;
6668 
6669 	rcu_read_lock();
6670 	pd = rcu_dereference(rd->pd);
6671 	if (!pd || READ_ONCE(rd->overutilized))
6672 		goto fail;
6673 
6674 	/*
6675 	 * Energy-aware wake-up happens on the lowest sched_domain starting
6676 	 * from sd_asym_cpucapacity spanning over this_cpu and prev_cpu.
6677 	 */
6678 	sd = rcu_dereference(*this_cpu_ptr(&sd_asym_cpucapacity));
6679 	while (sd && !cpumask_test_cpu(prev_cpu, sched_domain_span(sd)))
6680 		sd = sd->parent;
6681 	if (!sd)
6682 		goto fail;
6683 
6684 	sync_entity_load_avg(&p->se);
6685 	if (!task_util_est(p))
6686 		goto unlock;
6687 
6688 	for (; pd; pd = pd->next) {
6689 		unsigned long cur_delta, spare_cap, max_spare_cap = 0;
6690 		unsigned long base_energy_pd;
6691 		int max_spare_cap_cpu = -1;
6692 
6693 		/* Compute the 'base' energy of the pd, without @p */
6694 		base_energy_pd = compute_energy(p, -1, pd);
6695 		base_energy += base_energy_pd;
6696 
6697 		for_each_cpu_and(cpu, perf_domain_span(pd), sched_domain_span(sd)) {
6698 			if (!cpumask_test_cpu(cpu, p->cpus_ptr))
6699 				continue;
6700 
6701 			util = cpu_util_next(cpu, p, cpu);
6702 			cpu_cap = capacity_of(cpu);
6703 			spare_cap = cpu_cap;
6704 			lsub_positive(&spare_cap, util);
6705 
6706 			/*
6707 			 * Skip CPUs that cannot satisfy the capacity request.
6708 			 * IOW, placing the task there would make the CPU
6709 			 * overutilized. Take uclamp into account to see how
6710 			 * much capacity we can get out of the CPU; this is
6711 			 * aligned with sched_cpu_util().
6712 			 */
6713 			util = uclamp_rq_util_with(cpu_rq(cpu), util, p);
6714 			if (!fits_capacity(util, cpu_cap))
6715 				continue;
6716 
6717 			/* Always use prev_cpu as a candidate. */
6718 			if (cpu == prev_cpu) {
6719 				prev_delta = compute_energy(p, prev_cpu, pd);
6720 				prev_delta -= base_energy_pd;
6721 				best_delta = min(best_delta, prev_delta);
6722 			}
6723 
6724 			/*
6725 			 * Find the CPU with the maximum spare capacity in
6726 			 * the performance domain
6727 			 */
6728 			if (spare_cap > max_spare_cap) {
6729 				max_spare_cap = spare_cap;
6730 				max_spare_cap_cpu = cpu;
6731 			}
6732 		}
6733 
6734 		/* Evaluate the energy impact of using this CPU. */
6735 		if (max_spare_cap_cpu >= 0 && max_spare_cap_cpu != prev_cpu) {
6736 			cur_delta = compute_energy(p, max_spare_cap_cpu, pd);
6737 			cur_delta -= base_energy_pd;
6738 			if (cur_delta < best_delta) {
6739 				best_delta = cur_delta;
6740 				best_energy_cpu = max_spare_cap_cpu;
6741 			}
6742 		}
6743 	}
6744 unlock:
6745 	rcu_read_unlock();
6746 
6747 	/*
6748 	 * Pick the best CPU if prev_cpu cannot be used, or if it saves at
6749 	 * least 6% of the energy used by prev_cpu.
6750 	 */
6751 	if (prev_delta == ULONG_MAX)
6752 		return best_energy_cpu;
6753 
6754 	if ((prev_delta - best_delta) > ((prev_delta + base_energy) >> 4))
6755 		return best_energy_cpu;
6756 
6757 	return prev_cpu;
6758 
6759 fail:
6760 	rcu_read_unlock();
6761 
6762 	return -1;
6763 }
6764 
6765 /*
6766  * select_task_rq_fair: Select target runqueue for the waking task in domains
6767  * that have the relevant SD flag set. In practice, this is SD_BALANCE_WAKE,
6768  * SD_BALANCE_FORK, or SD_BALANCE_EXEC.
6769  *
6770  * Balances load by selecting the idlest CPU in the idlest group, or under
6771  * certain conditions an idle sibling CPU if the domain has SD_WAKE_AFFINE set.
6772  *
6773  * Returns the target CPU number.
6774  *
6775  * preempt must be disabled.
6776  */
6777 static int
6778 select_task_rq_fair(struct task_struct *p, int prev_cpu, int wake_flags)
6779 {
6780 	int sync = (wake_flags & WF_SYNC) && !(current->flags & PF_EXITING);
6781 	struct sched_domain *tmp, *sd = NULL;
6782 	int cpu = smp_processor_id();
6783 	int new_cpu = prev_cpu;
6784 	int want_affine = 0;
6785 	/* SD_flags and WF_flags share the first nibble */
6786 	int sd_flag = wake_flags & 0xF;
6787 
6788 	if (wake_flags & WF_TTWU) {
6789 		record_wakee(p);
6790 
6791 		if (sched_energy_enabled()) {
6792 			new_cpu = find_energy_efficient_cpu(p, prev_cpu);
6793 			if (new_cpu >= 0)
6794 				return new_cpu;
6795 			new_cpu = prev_cpu;
6796 		}
6797 
6798 		want_affine = !wake_wide(p) && cpumask_test_cpu(cpu, p->cpus_ptr);
6799 	}
6800 
6801 	rcu_read_lock();
6802 	for_each_domain(cpu, tmp) {
6803 		/*
6804 		 * If both 'cpu' and 'prev_cpu' are part of this domain,
6805 		 * cpu is a valid SD_WAKE_AFFINE target.
6806 		 */
6807 		if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
6808 		    cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
6809 			if (cpu != prev_cpu)
6810 				new_cpu = wake_affine(tmp, p, cpu, prev_cpu, sync);
6811 
6812 			sd = NULL; /* Prefer wake_affine over balance flags */
6813 			break;
6814 		}
6815 
6816 		if (tmp->flags & sd_flag)
6817 			sd = tmp;
6818 		else if (!want_affine)
6819 			break;
6820 	}
6821 
6822 	if (unlikely(sd)) {
6823 		/* Slow path */
6824 		new_cpu = find_idlest_cpu(sd, p, cpu, prev_cpu, sd_flag);
6825 	} else if (wake_flags & WF_TTWU) { /* XXX always ? */
6826 		/* Fast path */
6827 		new_cpu = select_idle_sibling(p, prev_cpu, new_cpu);
6828 
6829 		if (want_affine)
6830 			current->recent_used_cpu = cpu;
6831 	}
6832 	rcu_read_unlock();
6833 
6834 	return new_cpu;
6835 }
6836 
6837 static void detach_entity_cfs_rq(struct sched_entity *se);
6838 
6839 /*
6840  * Called immediately before a task is migrated to a new CPU; task_cpu(p) and
6841  * cfs_rq_of(p) references at time of call are still valid and identify the
6842  * previous CPU. The caller guarantees p->pi_lock or task_rq(p)->lock is held.
6843  */
6844 static void migrate_task_rq_fair(struct task_struct *p, int new_cpu)
6845 {
6846 	/*
6847 	 * As blocked tasks retain absolute vruntime the migration needs to
6848 	 * deal with this by subtracting the old and adding the new
6849 	 * min_vruntime -- the latter is done by enqueue_entity() when placing
6850 	 * the task on the new runqueue.
6851 	 */
6852 	if (p->state == TASK_WAKING) {
6853 		struct sched_entity *se = &p->se;
6854 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
6855 		u64 min_vruntime;
6856 
6857 #ifndef CONFIG_64BIT
6858 		u64 min_vruntime_copy;
6859 
6860 		do {
6861 			min_vruntime_copy = cfs_rq->min_vruntime_copy;
6862 			smp_rmb();
6863 			min_vruntime = cfs_rq->min_vruntime;
6864 		} while (min_vruntime != min_vruntime_copy);
6865 #else
6866 		min_vruntime = cfs_rq->min_vruntime;
6867 #endif
6868 
6869 		se->vruntime -= min_vruntime;
6870 	}
6871 
6872 	if (p->on_rq == TASK_ON_RQ_MIGRATING) {
6873 		/*
6874 		 * In case of TASK_ON_RQ_MIGRATING we in fact hold the 'old'
6875 		 * rq->lock and can modify state directly.
6876 		 */
6877 		lockdep_assert_held(&task_rq(p)->lock);
6878 		detach_entity_cfs_rq(&p->se);
6879 
6880 	} else {
6881 		/*
6882 		 * We are supposed to update the task to "current" time, then
6883 		 * its up to date and ready to go to new CPU/cfs_rq. But we
6884 		 * have difficulty in getting what current time is, so simply
6885 		 * throw away the out-of-date time. This will result in the
6886 		 * wakee task is less decayed, but giving the wakee more load
6887 		 * sounds not bad.
6888 		 */
6889 		remove_entity_load_avg(&p->se);
6890 	}
6891 
6892 	/* Tell new CPU we are migrated */
6893 	p->se.avg.last_update_time = 0;
6894 
6895 	/* We have migrated, no longer consider this task hot */
6896 	p->se.exec_start = 0;
6897 
6898 	update_scan_period(p, new_cpu);
6899 }
6900 
6901 static void task_dead_fair(struct task_struct *p)
6902 {
6903 	remove_entity_load_avg(&p->se);
6904 }
6905 
6906 static int
6907 balance_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
6908 {
6909 	if (rq->nr_running)
6910 		return 1;
6911 
6912 	return newidle_balance(rq, rf) != 0;
6913 }
6914 #endif /* CONFIG_SMP */
6915 
6916 static unsigned long wakeup_gran(struct sched_entity *se)
6917 {
6918 	unsigned long gran = sysctl_sched_wakeup_granularity;
6919 
6920 	/*
6921 	 * Since its curr running now, convert the gran from real-time
6922 	 * to virtual-time in his units.
6923 	 *
6924 	 * By using 'se' instead of 'curr' we penalize light tasks, so
6925 	 * they get preempted easier. That is, if 'se' < 'curr' then
6926 	 * the resulting gran will be larger, therefore penalizing the
6927 	 * lighter, if otoh 'se' > 'curr' then the resulting gran will
6928 	 * be smaller, again penalizing the lighter task.
6929 	 *
6930 	 * This is especially important for buddies when the leftmost
6931 	 * task is higher priority than the buddy.
6932 	 */
6933 	return calc_delta_fair(gran, se);
6934 }
6935 
6936 /*
6937  * Should 'se' preempt 'curr'.
6938  *
6939  *             |s1
6940  *        |s2
6941  *   |s3
6942  *         g
6943  *      |<--->|c
6944  *
6945  *  w(c, s1) = -1
6946  *  w(c, s2) =  0
6947  *  w(c, s3) =  1
6948  *
6949  */
6950 static int
6951 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
6952 {
6953 	s64 gran, vdiff = curr->vruntime - se->vruntime;
6954 
6955 	if (vdiff <= 0)
6956 		return -1;
6957 
6958 	gran = wakeup_gran(se);
6959 	if (vdiff > gran)
6960 		return 1;
6961 
6962 	return 0;
6963 }
6964 
6965 static void set_last_buddy(struct sched_entity *se)
6966 {
6967 	if (entity_is_task(se) && unlikely(task_has_idle_policy(task_of(se))))
6968 		return;
6969 
6970 	for_each_sched_entity(se) {
6971 		if (SCHED_WARN_ON(!se->on_rq))
6972 			return;
6973 		cfs_rq_of(se)->last = se;
6974 	}
6975 }
6976 
6977 static void set_next_buddy(struct sched_entity *se)
6978 {
6979 	if (entity_is_task(se) && unlikely(task_has_idle_policy(task_of(se))))
6980 		return;
6981 
6982 	for_each_sched_entity(se) {
6983 		if (SCHED_WARN_ON(!se->on_rq))
6984 			return;
6985 		cfs_rq_of(se)->next = se;
6986 	}
6987 }
6988 
6989 static void set_skip_buddy(struct sched_entity *se)
6990 {
6991 	for_each_sched_entity(se)
6992 		cfs_rq_of(se)->skip = se;
6993 }
6994 
6995 /*
6996  * Preempt the current task with a newly woken task if needed:
6997  */
6998 static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
6999 {
7000 	struct task_struct *curr = rq->curr;
7001 	struct sched_entity *se = &curr->se, *pse = &p->se;
7002 	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
7003 	int scale = cfs_rq->nr_running >= sched_nr_latency;
7004 	int next_buddy_marked = 0;
7005 
7006 	if (unlikely(se == pse))
7007 		return;
7008 
7009 	/*
7010 	 * This is possible from callers such as attach_tasks(), in which we
7011 	 * unconditionally check_preempt_curr() after an enqueue (which may have
7012 	 * lead to a throttle).  This both saves work and prevents false
7013 	 * next-buddy nomination below.
7014 	 */
7015 	if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
7016 		return;
7017 
7018 	if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
7019 		set_next_buddy(pse);
7020 		next_buddy_marked = 1;
7021 	}
7022 
7023 	/*
7024 	 * We can come here with TIF_NEED_RESCHED already set from new task
7025 	 * wake up path.
7026 	 *
7027 	 * Note: this also catches the edge-case of curr being in a throttled
7028 	 * group (e.g. via set_curr_task), since update_curr() (in the
7029 	 * enqueue of curr) will have resulted in resched being set.  This
7030 	 * prevents us from potentially nominating it as a false LAST_BUDDY
7031 	 * below.
7032 	 */
7033 	if (test_tsk_need_resched(curr))
7034 		return;
7035 
7036 	/* Idle tasks are by definition preempted by non-idle tasks. */
7037 	if (unlikely(task_has_idle_policy(curr)) &&
7038 	    likely(!task_has_idle_policy(p)))
7039 		goto preempt;
7040 
7041 	/*
7042 	 * Batch and idle tasks do not preempt non-idle tasks (their preemption
7043 	 * is driven by the tick):
7044 	 */
7045 	if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
7046 		return;
7047 
7048 	find_matching_se(&se, &pse);
7049 	update_curr(cfs_rq_of(se));
7050 	BUG_ON(!pse);
7051 	if (wakeup_preempt_entity(se, pse) == 1) {
7052 		/*
7053 		 * Bias pick_next to pick the sched entity that is
7054 		 * triggering this preemption.
7055 		 */
7056 		if (!next_buddy_marked)
7057 			set_next_buddy(pse);
7058 		goto preempt;
7059 	}
7060 
7061 	return;
7062 
7063 preempt:
7064 	resched_curr(rq);
7065 	/*
7066 	 * Only set the backward buddy when the current task is still
7067 	 * on the rq. This can happen when a wakeup gets interleaved
7068 	 * with schedule on the ->pre_schedule() or idle_balance()
7069 	 * point, either of which can * drop the rq lock.
7070 	 *
7071 	 * Also, during early boot the idle thread is in the fair class,
7072 	 * for obvious reasons its a bad idea to schedule back to it.
7073 	 */
7074 	if (unlikely(!se->on_rq || curr == rq->idle))
7075 		return;
7076 
7077 	if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
7078 		set_last_buddy(se);
7079 }
7080 
7081 struct task_struct *
7082 pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
7083 {
7084 	struct cfs_rq *cfs_rq = &rq->cfs;
7085 	struct sched_entity *se;
7086 	struct task_struct *p;
7087 	int new_tasks;
7088 
7089 again:
7090 	if (!sched_fair_runnable(rq))
7091 		goto idle;
7092 
7093 #ifdef CONFIG_FAIR_GROUP_SCHED
7094 	if (!prev || prev->sched_class != &fair_sched_class)
7095 		goto simple;
7096 
7097 	/*
7098 	 * Because of the set_next_buddy() in dequeue_task_fair() it is rather
7099 	 * likely that a next task is from the same cgroup as the current.
7100 	 *
7101 	 * Therefore attempt to avoid putting and setting the entire cgroup
7102 	 * hierarchy, only change the part that actually changes.
7103 	 */
7104 
7105 	do {
7106 		struct sched_entity *curr = cfs_rq->curr;
7107 
7108 		/*
7109 		 * Since we got here without doing put_prev_entity() we also
7110 		 * have to consider cfs_rq->curr. If it is still a runnable
7111 		 * entity, update_curr() will update its vruntime, otherwise
7112 		 * forget we've ever seen it.
7113 		 */
7114 		if (curr) {
7115 			if (curr->on_rq)
7116 				update_curr(cfs_rq);
7117 			else
7118 				curr = NULL;
7119 
7120 			/*
7121 			 * This call to check_cfs_rq_runtime() will do the
7122 			 * throttle and dequeue its entity in the parent(s).
7123 			 * Therefore the nr_running test will indeed
7124 			 * be correct.
7125 			 */
7126 			if (unlikely(check_cfs_rq_runtime(cfs_rq))) {
7127 				cfs_rq = &rq->cfs;
7128 
7129 				if (!cfs_rq->nr_running)
7130 					goto idle;
7131 
7132 				goto simple;
7133 			}
7134 		}
7135 
7136 		se = pick_next_entity(cfs_rq, curr);
7137 		cfs_rq = group_cfs_rq(se);
7138 	} while (cfs_rq);
7139 
7140 	p = task_of(se);
7141 
7142 	/*
7143 	 * Since we haven't yet done put_prev_entity and if the selected task
7144 	 * is a different task than we started out with, try and touch the
7145 	 * least amount of cfs_rqs.
7146 	 */
7147 	if (prev != p) {
7148 		struct sched_entity *pse = &prev->se;
7149 
7150 		while (!(cfs_rq = is_same_group(se, pse))) {
7151 			int se_depth = se->depth;
7152 			int pse_depth = pse->depth;
7153 
7154 			if (se_depth <= pse_depth) {
7155 				put_prev_entity(cfs_rq_of(pse), pse);
7156 				pse = parent_entity(pse);
7157 			}
7158 			if (se_depth >= pse_depth) {
7159 				set_next_entity(cfs_rq_of(se), se);
7160 				se = parent_entity(se);
7161 			}
7162 		}
7163 
7164 		put_prev_entity(cfs_rq, pse);
7165 		set_next_entity(cfs_rq, se);
7166 	}
7167 
7168 	goto done;
7169 simple:
7170 #endif
7171 	if (prev)
7172 		put_prev_task(rq, prev);
7173 
7174 	do {
7175 		se = pick_next_entity(cfs_rq, NULL);
7176 		set_next_entity(cfs_rq, se);
7177 		cfs_rq = group_cfs_rq(se);
7178 	} while (cfs_rq);
7179 
7180 	p = task_of(se);
7181 
7182 done: __maybe_unused;
7183 #ifdef CONFIG_SMP
7184 	/*
7185 	 * Move the next running task to the front of
7186 	 * the list, so our cfs_tasks list becomes MRU
7187 	 * one.
7188 	 */
7189 	list_move(&p->se.group_node, &rq->cfs_tasks);
7190 #endif
7191 
7192 	if (hrtick_enabled_fair(rq))
7193 		hrtick_start_fair(rq, p);
7194 
7195 	update_misfit_status(p, rq);
7196 
7197 	return p;
7198 
7199 idle:
7200 	if (!rf)
7201 		return NULL;
7202 
7203 	new_tasks = newidle_balance(rq, rf);
7204 
7205 	/*
7206 	 * Because newidle_balance() releases (and re-acquires) rq->lock, it is
7207 	 * possible for any higher priority task to appear. In that case we
7208 	 * must re-start the pick_next_entity() loop.
7209 	 */
7210 	if (new_tasks < 0)
7211 		return RETRY_TASK;
7212 
7213 	if (new_tasks > 0)
7214 		goto again;
7215 
7216 	/*
7217 	 * rq is about to be idle, check if we need to update the
7218 	 * lost_idle_time of clock_pelt
7219 	 */
7220 	update_idle_rq_clock_pelt(rq);
7221 
7222 	return NULL;
7223 }
7224 
7225 static struct task_struct *__pick_next_task_fair(struct rq *rq)
7226 {
7227 	return pick_next_task_fair(rq, NULL, NULL);
7228 }
7229 
7230 /*
7231  * Account for a descheduled task:
7232  */
7233 static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
7234 {
7235 	struct sched_entity *se = &prev->se;
7236 	struct cfs_rq *cfs_rq;
7237 
7238 	for_each_sched_entity(se) {
7239 		cfs_rq = cfs_rq_of(se);
7240 		put_prev_entity(cfs_rq, se);
7241 	}
7242 }
7243 
7244 /*
7245  * sched_yield() is very simple
7246  *
7247  * The magic of dealing with the ->skip buddy is in pick_next_entity.
7248  */
7249 static void yield_task_fair(struct rq *rq)
7250 {
7251 	struct task_struct *curr = rq->curr;
7252 	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
7253 	struct sched_entity *se = &curr->se;
7254 
7255 	/*
7256 	 * Are we the only task in the tree?
7257 	 */
7258 	if (unlikely(rq->nr_running == 1))
7259 		return;
7260 
7261 	clear_buddies(cfs_rq, se);
7262 
7263 	if (curr->policy != SCHED_BATCH) {
7264 		update_rq_clock(rq);
7265 		/*
7266 		 * Update run-time statistics of the 'current'.
7267 		 */
7268 		update_curr(cfs_rq);
7269 		/*
7270 		 * Tell update_rq_clock() that we've just updated,
7271 		 * so we don't do microscopic update in schedule()
7272 		 * and double the fastpath cost.
7273 		 */
7274 		rq_clock_skip_update(rq);
7275 	}
7276 
7277 	set_skip_buddy(se);
7278 }
7279 
7280 static bool yield_to_task_fair(struct rq *rq, struct task_struct *p)
7281 {
7282 	struct sched_entity *se = &p->se;
7283 
7284 	/* throttled hierarchies are not runnable */
7285 	if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
7286 		return false;
7287 
7288 	/* Tell the scheduler that we'd really like pse to run next. */
7289 	set_next_buddy(se);
7290 
7291 	yield_task_fair(rq);
7292 
7293 	return true;
7294 }
7295 
7296 #ifdef CONFIG_SMP
7297 /**************************************************
7298  * Fair scheduling class load-balancing methods.
7299  *
7300  * BASICS
7301  *
7302  * The purpose of load-balancing is to achieve the same basic fairness the
7303  * per-CPU scheduler provides, namely provide a proportional amount of compute
7304  * time to each task. This is expressed in the following equation:
7305  *
7306  *   W_i,n/P_i == W_j,n/P_j for all i,j                               (1)
7307  *
7308  * Where W_i,n is the n-th weight average for CPU i. The instantaneous weight
7309  * W_i,0 is defined as:
7310  *
7311  *   W_i,0 = \Sum_j w_i,j                                             (2)
7312  *
7313  * Where w_i,j is the weight of the j-th runnable task on CPU i. This weight
7314  * is derived from the nice value as per sched_prio_to_weight[].
7315  *
7316  * The weight average is an exponential decay average of the instantaneous
7317  * weight:
7318  *
7319  *   W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0               (3)
7320  *
7321  * C_i is the compute capacity of CPU i, typically it is the
7322  * fraction of 'recent' time available for SCHED_OTHER task execution. But it
7323  * can also include other factors [XXX].
7324  *
7325  * To achieve this balance we define a measure of imbalance which follows
7326  * directly from (1):
7327  *
7328  *   imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j }    (4)
7329  *
7330  * We them move tasks around to minimize the imbalance. In the continuous
7331  * function space it is obvious this converges, in the discrete case we get
7332  * a few fun cases generally called infeasible weight scenarios.
7333  *
7334  * [XXX expand on:
7335  *     - infeasible weights;
7336  *     - local vs global optima in the discrete case. ]
7337  *
7338  *
7339  * SCHED DOMAINS
7340  *
7341  * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
7342  * for all i,j solution, we create a tree of CPUs that follows the hardware
7343  * topology where each level pairs two lower groups (or better). This results
7344  * in O(log n) layers. Furthermore we reduce the number of CPUs going up the
7345  * tree to only the first of the previous level and we decrease the frequency
7346  * of load-balance at each level inv. proportional to the number of CPUs in
7347  * the groups.
7348  *
7349  * This yields:
7350  *
7351  *     log_2 n     1     n
7352  *   \Sum       { --- * --- * 2^i } = O(n)                            (5)
7353  *     i = 0      2^i   2^i
7354  *                               `- size of each group
7355  *         |         |     `- number of CPUs doing load-balance
7356  *         |         `- freq
7357  *         `- sum over all levels
7358  *
7359  * Coupled with a limit on how many tasks we can migrate every balance pass,
7360  * this makes (5) the runtime complexity of the balancer.
7361  *
7362  * An important property here is that each CPU is still (indirectly) connected
7363  * to every other CPU in at most O(log n) steps:
7364  *
7365  * The adjacency matrix of the resulting graph is given by:
7366  *
7367  *             log_2 n
7368  *   A_i,j = \Union     (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1)  (6)
7369  *             k = 0
7370  *
7371  * And you'll find that:
7372  *
7373  *   A^(log_2 n)_i,j != 0  for all i,j                                (7)
7374  *
7375  * Showing there's indeed a path between every CPU in at most O(log n) steps.
7376  * The task movement gives a factor of O(m), giving a convergence complexity
7377  * of:
7378  *
7379  *   O(nm log n),  n := nr_cpus, m := nr_tasks                        (8)
7380  *
7381  *
7382  * WORK CONSERVING
7383  *
7384  * In order to avoid CPUs going idle while there's still work to do, new idle
7385  * balancing is more aggressive and has the newly idle CPU iterate up the domain
7386  * tree itself instead of relying on other CPUs to bring it work.
7387  *
7388  * This adds some complexity to both (5) and (8) but it reduces the total idle
7389  * time.
7390  *
7391  * [XXX more?]
7392  *
7393  *
7394  * CGROUPS
7395  *
7396  * Cgroups make a horror show out of (2), instead of a simple sum we get:
7397  *
7398  *                                s_k,i
7399  *   W_i,0 = \Sum_j \Prod_k w_k * -----                               (9)
7400  *                                 S_k
7401  *
7402  * Where
7403  *
7404  *   s_k,i = \Sum_j w_i,j,k  and  S_k = \Sum_i s_k,i                 (10)
7405  *
7406  * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on CPU i.
7407  *
7408  * The big problem is S_k, its a global sum needed to compute a local (W_i)
7409  * property.
7410  *
7411  * [XXX write more on how we solve this.. _after_ merging pjt's patches that
7412  *      rewrite all of this once again.]
7413  */
7414 
7415 static unsigned long __read_mostly max_load_balance_interval = HZ/10;
7416 
7417 enum fbq_type { regular, remote, all };
7418 
7419 /*
7420  * 'group_type' describes the group of CPUs at the moment of load balancing.
7421  *
7422  * The enum is ordered by pulling priority, with the group with lowest priority
7423  * first so the group_type can simply be compared when selecting the busiest
7424  * group. See update_sd_pick_busiest().
7425  */
7426 enum group_type {
7427 	/* The group has spare capacity that can be used to run more tasks.  */
7428 	group_has_spare = 0,
7429 	/*
7430 	 * The group is fully used and the tasks don't compete for more CPU
7431 	 * cycles. Nevertheless, some tasks might wait before running.
7432 	 */
7433 	group_fully_busy,
7434 	/*
7435 	 * SD_ASYM_CPUCAPACITY only: One task doesn't fit with CPU's capacity
7436 	 * and must be migrated to a more powerful CPU.
7437 	 */
7438 	group_misfit_task,
7439 	/*
7440 	 * SD_ASYM_PACKING only: One local CPU with higher capacity is available,
7441 	 * and the task should be migrated to it instead of running on the
7442 	 * current CPU.
7443 	 */
7444 	group_asym_packing,
7445 	/*
7446 	 * The tasks' affinity constraints previously prevented the scheduler
7447 	 * from balancing the load across the system.
7448 	 */
7449 	group_imbalanced,
7450 	/*
7451 	 * The CPU is overloaded and can't provide expected CPU cycles to all
7452 	 * tasks.
7453 	 */
7454 	group_overloaded
7455 };
7456 
7457 enum migration_type {
7458 	migrate_load = 0,
7459 	migrate_util,
7460 	migrate_task,
7461 	migrate_misfit
7462 };
7463 
7464 #define LBF_ALL_PINNED	0x01
7465 #define LBF_NEED_BREAK	0x02
7466 #define LBF_DST_PINNED  0x04
7467 #define LBF_SOME_PINNED	0x08
7468 #define LBF_ACTIVE_LB	0x10
7469 
7470 struct lb_env {
7471 	struct sched_domain	*sd;
7472 
7473 	struct rq		*src_rq;
7474 	int			src_cpu;
7475 
7476 	int			dst_cpu;
7477 	struct rq		*dst_rq;
7478 
7479 	struct cpumask		*dst_grpmask;
7480 	int			new_dst_cpu;
7481 	enum cpu_idle_type	idle;
7482 	long			imbalance;
7483 	/* The set of CPUs under consideration for load-balancing */
7484 	struct cpumask		*cpus;
7485 
7486 	unsigned int		flags;
7487 
7488 	unsigned int		loop;
7489 	unsigned int		loop_break;
7490 	unsigned int		loop_max;
7491 
7492 	enum fbq_type		fbq_type;
7493 	enum migration_type	migration_type;
7494 	struct list_head	tasks;
7495 };
7496 
7497 /*
7498  * Is this task likely cache-hot:
7499  */
7500 static int task_hot(struct task_struct *p, struct lb_env *env)
7501 {
7502 	s64 delta;
7503 
7504 	lockdep_assert_held(&env->src_rq->lock);
7505 
7506 	if (p->sched_class != &fair_sched_class)
7507 		return 0;
7508 
7509 	if (unlikely(task_has_idle_policy(p)))
7510 		return 0;
7511 
7512 	/* SMT siblings share cache */
7513 	if (env->sd->flags & SD_SHARE_CPUCAPACITY)
7514 		return 0;
7515 
7516 	/*
7517 	 * Buddy candidates are cache hot:
7518 	 */
7519 	if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running &&
7520 			(&p->se == cfs_rq_of(&p->se)->next ||
7521 			 &p->se == cfs_rq_of(&p->se)->last))
7522 		return 1;
7523 
7524 	if (sysctl_sched_migration_cost == -1)
7525 		return 1;
7526 	if (sysctl_sched_migration_cost == 0)
7527 		return 0;
7528 
7529 	delta = rq_clock_task(env->src_rq) - p->se.exec_start;
7530 
7531 	return delta < (s64)sysctl_sched_migration_cost;
7532 }
7533 
7534 #ifdef CONFIG_NUMA_BALANCING
7535 /*
7536  * Returns 1, if task migration degrades locality
7537  * Returns 0, if task migration improves locality i.e migration preferred.
7538  * Returns -1, if task migration is not affected by locality.
7539  */
7540 static int migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
7541 {
7542 	struct numa_group *numa_group = rcu_dereference(p->numa_group);
7543 	unsigned long src_weight, dst_weight;
7544 	int src_nid, dst_nid, dist;
7545 
7546 	if (!static_branch_likely(&sched_numa_balancing))
7547 		return -1;
7548 
7549 	if (!p->numa_faults || !(env->sd->flags & SD_NUMA))
7550 		return -1;
7551 
7552 	src_nid = cpu_to_node(env->src_cpu);
7553 	dst_nid = cpu_to_node(env->dst_cpu);
7554 
7555 	if (src_nid == dst_nid)
7556 		return -1;
7557 
7558 	/* Migrating away from the preferred node is always bad. */
7559 	if (src_nid == p->numa_preferred_nid) {
7560 		if (env->src_rq->nr_running > env->src_rq->nr_preferred_running)
7561 			return 1;
7562 		else
7563 			return -1;
7564 	}
7565 
7566 	/* Encourage migration to the preferred node. */
7567 	if (dst_nid == p->numa_preferred_nid)
7568 		return 0;
7569 
7570 	/* Leaving a core idle is often worse than degrading locality. */
7571 	if (env->idle == CPU_IDLE)
7572 		return -1;
7573 
7574 	dist = node_distance(src_nid, dst_nid);
7575 	if (numa_group) {
7576 		src_weight = group_weight(p, src_nid, dist);
7577 		dst_weight = group_weight(p, dst_nid, dist);
7578 	} else {
7579 		src_weight = task_weight(p, src_nid, dist);
7580 		dst_weight = task_weight(p, dst_nid, dist);
7581 	}
7582 
7583 	return dst_weight < src_weight;
7584 }
7585 
7586 #else
7587 static inline int migrate_degrades_locality(struct task_struct *p,
7588 					     struct lb_env *env)
7589 {
7590 	return -1;
7591 }
7592 #endif
7593 
7594 /*
7595  * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
7596  */
7597 static
7598 int can_migrate_task(struct task_struct *p, struct lb_env *env)
7599 {
7600 	int tsk_cache_hot;
7601 
7602 	lockdep_assert_held(&env->src_rq->lock);
7603 
7604 	/*
7605 	 * We do not migrate tasks that are:
7606 	 * 1) throttled_lb_pair, or
7607 	 * 2) cannot be migrated to this CPU due to cpus_ptr, or
7608 	 * 3) running (obviously), or
7609 	 * 4) are cache-hot on their current CPU.
7610 	 */
7611 	if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
7612 		return 0;
7613 
7614 	/* Disregard pcpu kthreads; they are where they need to be. */
7615 	if (kthread_is_per_cpu(p))
7616 		return 0;
7617 
7618 	if (!cpumask_test_cpu(env->dst_cpu, p->cpus_ptr)) {
7619 		int cpu;
7620 
7621 		schedstat_inc(p->se.statistics.nr_failed_migrations_affine);
7622 
7623 		env->flags |= LBF_SOME_PINNED;
7624 
7625 		/*
7626 		 * Remember if this task can be migrated to any other CPU in
7627 		 * our sched_group. We may want to revisit it if we couldn't
7628 		 * meet load balance goals by pulling other tasks on src_cpu.
7629 		 *
7630 		 * Avoid computing new_dst_cpu
7631 		 * - for NEWLY_IDLE
7632 		 * - if we have already computed one in current iteration
7633 		 * - if it's an active balance
7634 		 */
7635 		if (env->idle == CPU_NEWLY_IDLE ||
7636 		    env->flags & (LBF_DST_PINNED | LBF_ACTIVE_LB))
7637 			return 0;
7638 
7639 		/* Prevent to re-select dst_cpu via env's CPUs: */
7640 		for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
7641 			if (cpumask_test_cpu(cpu, p->cpus_ptr)) {
7642 				env->flags |= LBF_DST_PINNED;
7643 				env->new_dst_cpu = cpu;
7644 				break;
7645 			}
7646 		}
7647 
7648 		return 0;
7649 	}
7650 
7651 	/* Record that we found at least one task that could run on dst_cpu */
7652 	env->flags &= ~LBF_ALL_PINNED;
7653 
7654 	if (task_running(env->src_rq, p)) {
7655 		schedstat_inc(p->se.statistics.nr_failed_migrations_running);
7656 		return 0;
7657 	}
7658 
7659 	/*
7660 	 * Aggressive migration if:
7661 	 * 1) active balance
7662 	 * 2) destination numa is preferred
7663 	 * 3) task is cache cold, or
7664 	 * 4) too many balance attempts have failed.
7665 	 */
7666 	if (env->flags & LBF_ACTIVE_LB)
7667 		return 1;
7668 
7669 	tsk_cache_hot = migrate_degrades_locality(p, env);
7670 	if (tsk_cache_hot == -1)
7671 		tsk_cache_hot = task_hot(p, env);
7672 
7673 	if (tsk_cache_hot <= 0 ||
7674 	    env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
7675 		if (tsk_cache_hot == 1) {
7676 			schedstat_inc(env->sd->lb_hot_gained[env->idle]);
7677 			schedstat_inc(p->se.statistics.nr_forced_migrations);
7678 		}
7679 		return 1;
7680 	}
7681 
7682 	schedstat_inc(p->se.statistics.nr_failed_migrations_hot);
7683 	return 0;
7684 }
7685 
7686 /*
7687  * detach_task() -- detach the task for the migration specified in env
7688  */
7689 static void detach_task(struct task_struct *p, struct lb_env *env)
7690 {
7691 	lockdep_assert_held(&env->src_rq->lock);
7692 
7693 	deactivate_task(env->src_rq, p, DEQUEUE_NOCLOCK);
7694 	set_task_cpu(p, env->dst_cpu);
7695 }
7696 
7697 /*
7698  * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as
7699  * part of active balancing operations within "domain".
7700  *
7701  * Returns a task if successful and NULL otherwise.
7702  */
7703 static struct task_struct *detach_one_task(struct lb_env *env)
7704 {
7705 	struct task_struct *p;
7706 
7707 	lockdep_assert_held(&env->src_rq->lock);
7708 
7709 	list_for_each_entry_reverse(p,
7710 			&env->src_rq->cfs_tasks, se.group_node) {
7711 		if (!can_migrate_task(p, env))
7712 			continue;
7713 
7714 		detach_task(p, env);
7715 
7716 		/*
7717 		 * Right now, this is only the second place where
7718 		 * lb_gained[env->idle] is updated (other is detach_tasks)
7719 		 * so we can safely collect stats here rather than
7720 		 * inside detach_tasks().
7721 		 */
7722 		schedstat_inc(env->sd->lb_gained[env->idle]);
7723 		return p;
7724 	}
7725 	return NULL;
7726 }
7727 
7728 static const unsigned int sched_nr_migrate_break = 32;
7729 
7730 /*
7731  * detach_tasks() -- tries to detach up to imbalance load/util/tasks from
7732  * busiest_rq, as part of a balancing operation within domain "sd".
7733  *
7734  * Returns number of detached tasks if successful and 0 otherwise.
7735  */
7736 static int detach_tasks(struct lb_env *env)
7737 {
7738 	struct list_head *tasks = &env->src_rq->cfs_tasks;
7739 	unsigned long util, load;
7740 	struct task_struct *p;
7741 	int detached = 0;
7742 
7743 	lockdep_assert_held(&env->src_rq->lock);
7744 
7745 	/*
7746 	 * Source run queue has been emptied by another CPU, clear
7747 	 * LBF_ALL_PINNED flag as we will not test any task.
7748 	 */
7749 	if (env->src_rq->nr_running <= 1) {
7750 		env->flags &= ~LBF_ALL_PINNED;
7751 		return 0;
7752 	}
7753 
7754 	if (env->imbalance <= 0)
7755 		return 0;
7756 
7757 	while (!list_empty(tasks)) {
7758 		/*
7759 		 * We don't want to steal all, otherwise we may be treated likewise,
7760 		 * which could at worst lead to a livelock crash.
7761 		 */
7762 		if (env->idle != CPU_NOT_IDLE && env->src_rq->nr_running <= 1)
7763 			break;
7764 
7765 		p = list_last_entry(tasks, struct task_struct, se.group_node);
7766 
7767 		env->loop++;
7768 		/* We've more or less seen every task there is, call it quits */
7769 		if (env->loop > env->loop_max)
7770 			break;
7771 
7772 		/* take a breather every nr_migrate tasks */
7773 		if (env->loop > env->loop_break) {
7774 			env->loop_break += sched_nr_migrate_break;
7775 			env->flags |= LBF_NEED_BREAK;
7776 			break;
7777 		}
7778 
7779 		if (!can_migrate_task(p, env))
7780 			goto next;
7781 
7782 		switch (env->migration_type) {
7783 		case migrate_load:
7784 			/*
7785 			 * Depending of the number of CPUs and tasks and the
7786 			 * cgroup hierarchy, task_h_load() can return a null
7787 			 * value. Make sure that env->imbalance decreases
7788 			 * otherwise detach_tasks() will stop only after
7789 			 * detaching up to loop_max tasks.
7790 			 */
7791 			load = max_t(unsigned long, task_h_load(p), 1);
7792 
7793 			if (sched_feat(LB_MIN) &&
7794 			    load < 16 && !env->sd->nr_balance_failed)
7795 				goto next;
7796 
7797 			/*
7798 			 * Make sure that we don't migrate too much load.
7799 			 * Nevertheless, let relax the constraint if
7800 			 * scheduler fails to find a good waiting task to
7801 			 * migrate.
7802 			 */
7803 			if (shr_bound(load, env->sd->nr_balance_failed) > env->imbalance)
7804 				goto next;
7805 
7806 			env->imbalance -= load;
7807 			break;
7808 
7809 		case migrate_util:
7810 			util = task_util_est(p);
7811 
7812 			if (util > env->imbalance)
7813 				goto next;
7814 
7815 			env->imbalance -= util;
7816 			break;
7817 
7818 		case migrate_task:
7819 			env->imbalance--;
7820 			break;
7821 
7822 		case migrate_misfit:
7823 			/* This is not a misfit task */
7824 			if (task_fits_capacity(p, capacity_of(env->src_cpu)))
7825 				goto next;
7826 
7827 			env->imbalance = 0;
7828 			break;
7829 		}
7830 
7831 		detach_task(p, env);
7832 		list_add(&p->se.group_node, &env->tasks);
7833 
7834 		detached++;
7835 
7836 #ifdef CONFIG_PREEMPTION
7837 		/*
7838 		 * NEWIDLE balancing is a source of latency, so preemptible
7839 		 * kernels will stop after the first task is detached to minimize
7840 		 * the critical section.
7841 		 */
7842 		if (env->idle == CPU_NEWLY_IDLE)
7843 			break;
7844 #endif
7845 
7846 		/*
7847 		 * We only want to steal up to the prescribed amount of
7848 		 * load/util/tasks.
7849 		 */
7850 		if (env->imbalance <= 0)
7851 			break;
7852 
7853 		continue;
7854 next:
7855 		list_move(&p->se.group_node, tasks);
7856 	}
7857 
7858 	/*
7859 	 * Right now, this is one of only two places we collect this stat
7860 	 * so we can safely collect detach_one_task() stats here rather
7861 	 * than inside detach_one_task().
7862 	 */
7863 	schedstat_add(env->sd->lb_gained[env->idle], detached);
7864 
7865 	return detached;
7866 }
7867 
7868 /*
7869  * attach_task() -- attach the task detached by detach_task() to its new rq.
7870  */
7871 static void attach_task(struct rq *rq, struct task_struct *p)
7872 {
7873 	lockdep_assert_held(&rq->lock);
7874 
7875 	BUG_ON(task_rq(p) != rq);
7876 	activate_task(rq, p, ENQUEUE_NOCLOCK);
7877 	check_preempt_curr(rq, p, 0);
7878 }
7879 
7880 /*
7881  * attach_one_task() -- attaches the task returned from detach_one_task() to
7882  * its new rq.
7883  */
7884 static void attach_one_task(struct rq *rq, struct task_struct *p)
7885 {
7886 	struct rq_flags rf;
7887 
7888 	rq_lock(rq, &rf);
7889 	update_rq_clock(rq);
7890 	attach_task(rq, p);
7891 	rq_unlock(rq, &rf);
7892 }
7893 
7894 /*
7895  * attach_tasks() -- attaches all tasks detached by detach_tasks() to their
7896  * new rq.
7897  */
7898 static void attach_tasks(struct lb_env *env)
7899 {
7900 	struct list_head *tasks = &env->tasks;
7901 	struct task_struct *p;
7902 	struct rq_flags rf;
7903 
7904 	rq_lock(env->dst_rq, &rf);
7905 	update_rq_clock(env->dst_rq);
7906 
7907 	while (!list_empty(tasks)) {
7908 		p = list_first_entry(tasks, struct task_struct, se.group_node);
7909 		list_del_init(&p->se.group_node);
7910 
7911 		attach_task(env->dst_rq, p);
7912 	}
7913 
7914 	rq_unlock(env->dst_rq, &rf);
7915 }
7916 
7917 #ifdef CONFIG_NO_HZ_COMMON
7918 static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq)
7919 {
7920 	if (cfs_rq->avg.load_avg)
7921 		return true;
7922 
7923 	if (cfs_rq->avg.util_avg)
7924 		return true;
7925 
7926 	return false;
7927 }
7928 
7929 static inline bool others_have_blocked(struct rq *rq)
7930 {
7931 	if (READ_ONCE(rq->avg_rt.util_avg))
7932 		return true;
7933 
7934 	if (READ_ONCE(rq->avg_dl.util_avg))
7935 		return true;
7936 
7937 	if (thermal_load_avg(rq))
7938 		return true;
7939 
7940 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ
7941 	if (READ_ONCE(rq->avg_irq.util_avg))
7942 		return true;
7943 #endif
7944 
7945 	return false;
7946 }
7947 
7948 static inline void update_blocked_load_tick(struct rq *rq)
7949 {
7950 	WRITE_ONCE(rq->last_blocked_load_update_tick, jiffies);
7951 }
7952 
7953 static inline void update_blocked_load_status(struct rq *rq, bool has_blocked)
7954 {
7955 	if (!has_blocked)
7956 		rq->has_blocked_load = 0;
7957 }
7958 #else
7959 static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq) { return false; }
7960 static inline bool others_have_blocked(struct rq *rq) { return false; }
7961 static inline void update_blocked_load_tick(struct rq *rq) {}
7962 static inline void update_blocked_load_status(struct rq *rq, bool has_blocked) {}
7963 #endif
7964 
7965 static bool __update_blocked_others(struct rq *rq, bool *done)
7966 {
7967 	const struct sched_class *curr_class;
7968 	u64 now = rq_clock_pelt(rq);
7969 	unsigned long thermal_pressure;
7970 	bool decayed;
7971 
7972 	/*
7973 	 * update_load_avg() can call cpufreq_update_util(). Make sure that RT,
7974 	 * DL and IRQ signals have been updated before updating CFS.
7975 	 */
7976 	curr_class = rq->curr->sched_class;
7977 
7978 	thermal_pressure = arch_scale_thermal_pressure(cpu_of(rq));
7979 
7980 	decayed = update_rt_rq_load_avg(now, rq, curr_class == &rt_sched_class) |
7981 		  update_dl_rq_load_avg(now, rq, curr_class == &dl_sched_class) |
7982 		  update_thermal_load_avg(rq_clock_thermal(rq), rq, thermal_pressure) |
7983 		  update_irq_load_avg(rq, 0);
7984 
7985 	if (others_have_blocked(rq))
7986 		*done = false;
7987 
7988 	return decayed;
7989 }
7990 
7991 #ifdef CONFIG_FAIR_GROUP_SCHED
7992 
7993 static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq)
7994 {
7995 	if (cfs_rq->load.weight)
7996 		return false;
7997 
7998 	if (cfs_rq->avg.load_sum)
7999 		return false;
8000 
8001 	if (cfs_rq->avg.util_sum)
8002 		return false;
8003 
8004 	if (cfs_rq->avg.runnable_sum)
8005 		return false;
8006 
8007 	return true;
8008 }
8009 
8010 static bool __update_blocked_fair(struct rq *rq, bool *done)
8011 {
8012 	struct cfs_rq *cfs_rq, *pos;
8013 	bool decayed = false;
8014 	int cpu = cpu_of(rq);
8015 
8016 	/*
8017 	 * Iterates the task_group tree in a bottom up fashion, see
8018 	 * list_add_leaf_cfs_rq() for details.
8019 	 */
8020 	for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) {
8021 		struct sched_entity *se;
8022 
8023 		if (update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq)) {
8024 			update_tg_load_avg(cfs_rq);
8025 
8026 			if (cfs_rq == &rq->cfs)
8027 				decayed = true;
8028 		}
8029 
8030 		/* Propagate pending load changes to the parent, if any: */
8031 		se = cfs_rq->tg->se[cpu];
8032 		if (se && !skip_blocked_update(se))
8033 			update_load_avg(cfs_rq_of(se), se, 0);
8034 
8035 		/*
8036 		 * There can be a lot of idle CPU cgroups.  Don't let fully
8037 		 * decayed cfs_rqs linger on the list.
8038 		 */
8039 		if (cfs_rq_is_decayed(cfs_rq))
8040 			list_del_leaf_cfs_rq(cfs_rq);
8041 
8042 		/* Don't need periodic decay once load/util_avg are null */
8043 		if (cfs_rq_has_blocked(cfs_rq))
8044 			*done = false;
8045 	}
8046 
8047 	return decayed;
8048 }
8049 
8050 /*
8051  * Compute the hierarchical load factor for cfs_rq and all its ascendants.
8052  * This needs to be done in a top-down fashion because the load of a child
8053  * group is a fraction of its parents load.
8054  */
8055 static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
8056 {
8057 	struct rq *rq = rq_of(cfs_rq);
8058 	struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
8059 	unsigned long now = jiffies;
8060 	unsigned long load;
8061 
8062 	if (cfs_rq->last_h_load_update == now)
8063 		return;
8064 
8065 	WRITE_ONCE(cfs_rq->h_load_next, NULL);
8066 	for_each_sched_entity(se) {
8067 		cfs_rq = cfs_rq_of(se);
8068 		WRITE_ONCE(cfs_rq->h_load_next, se);
8069 		if (cfs_rq->last_h_load_update == now)
8070 			break;
8071 	}
8072 
8073 	if (!se) {
8074 		cfs_rq->h_load = cfs_rq_load_avg(cfs_rq);
8075 		cfs_rq->last_h_load_update = now;
8076 	}
8077 
8078 	while ((se = READ_ONCE(cfs_rq->h_load_next)) != NULL) {
8079 		load = cfs_rq->h_load;
8080 		load = div64_ul(load * se->avg.load_avg,
8081 			cfs_rq_load_avg(cfs_rq) + 1);
8082 		cfs_rq = group_cfs_rq(se);
8083 		cfs_rq->h_load = load;
8084 		cfs_rq->last_h_load_update = now;
8085 	}
8086 }
8087 
8088 static unsigned long task_h_load(struct task_struct *p)
8089 {
8090 	struct cfs_rq *cfs_rq = task_cfs_rq(p);
8091 
8092 	update_cfs_rq_h_load(cfs_rq);
8093 	return div64_ul(p->se.avg.load_avg * cfs_rq->h_load,
8094 			cfs_rq_load_avg(cfs_rq) + 1);
8095 }
8096 #else
8097 static bool __update_blocked_fair(struct rq *rq, bool *done)
8098 {
8099 	struct cfs_rq *cfs_rq = &rq->cfs;
8100 	bool decayed;
8101 
8102 	decayed = update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq);
8103 	if (cfs_rq_has_blocked(cfs_rq))
8104 		*done = false;
8105 
8106 	return decayed;
8107 }
8108 
8109 static unsigned long task_h_load(struct task_struct *p)
8110 {
8111 	return p->se.avg.load_avg;
8112 }
8113 #endif
8114 
8115 static void update_blocked_averages(int cpu)
8116 {
8117 	bool decayed = false, done = true;
8118 	struct rq *rq = cpu_rq(cpu);
8119 	struct rq_flags rf;
8120 
8121 	rq_lock_irqsave(rq, &rf);
8122 	update_blocked_load_tick(rq);
8123 	update_rq_clock(rq);
8124 
8125 	decayed |= __update_blocked_others(rq, &done);
8126 	decayed |= __update_blocked_fair(rq, &done);
8127 
8128 	update_blocked_load_status(rq, !done);
8129 	if (decayed)
8130 		cpufreq_update_util(rq, 0);
8131 	rq_unlock_irqrestore(rq, &rf);
8132 }
8133 
8134 /********** Helpers for find_busiest_group ************************/
8135 
8136 /*
8137  * sg_lb_stats - stats of a sched_group required for load_balancing
8138  */
8139 struct sg_lb_stats {
8140 	unsigned long avg_load; /*Avg load across the CPUs of the group */
8141 	unsigned long group_load; /* Total load over the CPUs of the group */
8142 	unsigned long group_capacity;
8143 	unsigned long group_util; /* Total utilization over the CPUs of the group */
8144 	unsigned long group_runnable; /* Total runnable time over the CPUs of the group */
8145 	unsigned int sum_nr_running; /* Nr of tasks running in the group */
8146 	unsigned int sum_h_nr_running; /* Nr of CFS tasks running in the group */
8147 	unsigned int idle_cpus;
8148 	unsigned int group_weight;
8149 	enum group_type group_type;
8150 	unsigned int group_asym_packing; /* Tasks should be moved to preferred CPU */
8151 	unsigned long group_misfit_task_load; /* A CPU has a task too big for its capacity */
8152 #ifdef CONFIG_NUMA_BALANCING
8153 	unsigned int nr_numa_running;
8154 	unsigned int nr_preferred_running;
8155 #endif
8156 };
8157 
8158 /*
8159  * sd_lb_stats - Structure to store the statistics of a sched_domain
8160  *		 during load balancing.
8161  */
8162 struct sd_lb_stats {
8163 	struct sched_group *busiest;	/* Busiest group in this sd */
8164 	struct sched_group *local;	/* Local group in this sd */
8165 	unsigned long total_load;	/* Total load of all groups in sd */
8166 	unsigned long total_capacity;	/* Total capacity of all groups in sd */
8167 	unsigned long avg_load;	/* Average load across all groups in sd */
8168 	unsigned int prefer_sibling; /* tasks should go to sibling first */
8169 
8170 	struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
8171 	struct sg_lb_stats local_stat;	/* Statistics of the local group */
8172 };
8173 
8174 static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
8175 {
8176 	/*
8177 	 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
8178 	 * local_stat because update_sg_lb_stats() does a full clear/assignment.
8179 	 * We must however set busiest_stat::group_type and
8180 	 * busiest_stat::idle_cpus to the worst busiest group because
8181 	 * update_sd_pick_busiest() reads these before assignment.
8182 	 */
8183 	*sds = (struct sd_lb_stats){
8184 		.busiest = NULL,
8185 		.local = NULL,
8186 		.total_load = 0UL,
8187 		.total_capacity = 0UL,
8188 		.busiest_stat = {
8189 			.idle_cpus = UINT_MAX,
8190 			.group_type = group_has_spare,
8191 		},
8192 	};
8193 }
8194 
8195 static unsigned long scale_rt_capacity(int cpu)
8196 {
8197 	struct rq *rq = cpu_rq(cpu);
8198 	unsigned long max = arch_scale_cpu_capacity(cpu);
8199 	unsigned long used, free;
8200 	unsigned long irq;
8201 
8202 	irq = cpu_util_irq(rq);
8203 
8204 	if (unlikely(irq >= max))
8205 		return 1;
8206 
8207 	/*
8208 	 * avg_rt.util_avg and avg_dl.util_avg track binary signals
8209 	 * (running and not running) with weights 0 and 1024 respectively.
8210 	 * avg_thermal.load_avg tracks thermal pressure and the weighted
8211 	 * average uses the actual delta max capacity(load).
8212 	 */
8213 	used = READ_ONCE(rq->avg_rt.util_avg);
8214 	used += READ_ONCE(rq->avg_dl.util_avg);
8215 	used += thermal_load_avg(rq);
8216 
8217 	if (unlikely(used >= max))
8218 		return 1;
8219 
8220 	free = max - used;
8221 
8222 	return scale_irq_capacity(free, irq, max);
8223 }
8224 
8225 static void update_cpu_capacity(struct sched_domain *sd, int cpu)
8226 {
8227 	unsigned long capacity = scale_rt_capacity(cpu);
8228 	struct sched_group *sdg = sd->groups;
8229 
8230 	cpu_rq(cpu)->cpu_capacity_orig = arch_scale_cpu_capacity(cpu);
8231 
8232 	if (!capacity)
8233 		capacity = 1;
8234 
8235 	cpu_rq(cpu)->cpu_capacity = capacity;
8236 	trace_sched_cpu_capacity_tp(cpu_rq(cpu));
8237 
8238 	sdg->sgc->capacity = capacity;
8239 	sdg->sgc->min_capacity = capacity;
8240 	sdg->sgc->max_capacity = capacity;
8241 }
8242 
8243 void update_group_capacity(struct sched_domain *sd, int cpu)
8244 {
8245 	struct sched_domain *child = sd->child;
8246 	struct sched_group *group, *sdg = sd->groups;
8247 	unsigned long capacity, min_capacity, max_capacity;
8248 	unsigned long interval;
8249 
8250 	interval = msecs_to_jiffies(sd->balance_interval);
8251 	interval = clamp(interval, 1UL, max_load_balance_interval);
8252 	sdg->sgc->next_update = jiffies + interval;
8253 
8254 	if (!child) {
8255 		update_cpu_capacity(sd, cpu);
8256 		return;
8257 	}
8258 
8259 	capacity = 0;
8260 	min_capacity = ULONG_MAX;
8261 	max_capacity = 0;
8262 
8263 	if (child->flags & SD_OVERLAP) {
8264 		/*
8265 		 * SD_OVERLAP domains cannot assume that child groups
8266 		 * span the current group.
8267 		 */
8268 
8269 		for_each_cpu(cpu, sched_group_span(sdg)) {
8270 			unsigned long cpu_cap = capacity_of(cpu);
8271 
8272 			capacity += cpu_cap;
8273 			min_capacity = min(cpu_cap, min_capacity);
8274 			max_capacity = max(cpu_cap, max_capacity);
8275 		}
8276 	} else  {
8277 		/*
8278 		 * !SD_OVERLAP domains can assume that child groups
8279 		 * span the current group.
8280 		 */
8281 
8282 		group = child->groups;
8283 		do {
8284 			struct sched_group_capacity *sgc = group->sgc;
8285 
8286 			capacity += sgc->capacity;
8287 			min_capacity = min(sgc->min_capacity, min_capacity);
8288 			max_capacity = max(sgc->max_capacity, max_capacity);
8289 			group = group->next;
8290 		} while (group != child->groups);
8291 	}
8292 
8293 	sdg->sgc->capacity = capacity;
8294 	sdg->sgc->min_capacity = min_capacity;
8295 	sdg->sgc->max_capacity = max_capacity;
8296 }
8297 
8298 /*
8299  * Check whether the capacity of the rq has been noticeably reduced by side
8300  * activity. The imbalance_pct is used for the threshold.
8301  * Return true is the capacity is reduced
8302  */
8303 static inline int
8304 check_cpu_capacity(struct rq *rq, struct sched_domain *sd)
8305 {
8306 	return ((rq->cpu_capacity * sd->imbalance_pct) <
8307 				(rq->cpu_capacity_orig * 100));
8308 }
8309 
8310 /*
8311  * Check whether a rq has a misfit task and if it looks like we can actually
8312  * help that task: we can migrate the task to a CPU of higher capacity, or
8313  * the task's current CPU is heavily pressured.
8314  */
8315 static inline int check_misfit_status(struct rq *rq, struct sched_domain *sd)
8316 {
8317 	return rq->misfit_task_load &&
8318 		(rq->cpu_capacity_orig < rq->rd->max_cpu_capacity ||
8319 		 check_cpu_capacity(rq, sd));
8320 }
8321 
8322 /*
8323  * Group imbalance indicates (and tries to solve) the problem where balancing
8324  * groups is inadequate due to ->cpus_ptr constraints.
8325  *
8326  * Imagine a situation of two groups of 4 CPUs each and 4 tasks each with a
8327  * cpumask covering 1 CPU of the first group and 3 CPUs of the second group.
8328  * Something like:
8329  *
8330  *	{ 0 1 2 3 } { 4 5 6 7 }
8331  *	        *     * * *
8332  *
8333  * If we were to balance group-wise we'd place two tasks in the first group and
8334  * two tasks in the second group. Clearly this is undesired as it will overload
8335  * cpu 3 and leave one of the CPUs in the second group unused.
8336  *
8337  * The current solution to this issue is detecting the skew in the first group
8338  * by noticing the lower domain failed to reach balance and had difficulty
8339  * moving tasks due to affinity constraints.
8340  *
8341  * When this is so detected; this group becomes a candidate for busiest; see
8342  * update_sd_pick_busiest(). And calculate_imbalance() and
8343  * find_busiest_group() avoid some of the usual balance conditions to allow it
8344  * to create an effective group imbalance.
8345  *
8346  * This is a somewhat tricky proposition since the next run might not find the
8347  * group imbalance and decide the groups need to be balanced again. A most
8348  * subtle and fragile situation.
8349  */
8350 
8351 static inline int sg_imbalanced(struct sched_group *group)
8352 {
8353 	return group->sgc->imbalance;
8354 }
8355 
8356 /*
8357  * group_has_capacity returns true if the group has spare capacity that could
8358  * be used by some tasks.
8359  * We consider that a group has spare capacity if the  * number of task is
8360  * smaller than the number of CPUs or if the utilization is lower than the
8361  * available capacity for CFS tasks.
8362  * For the latter, we use a threshold to stabilize the state, to take into
8363  * account the variance of the tasks' load and to return true if the available
8364  * capacity in meaningful for the load balancer.
8365  * As an example, an available capacity of 1% can appear but it doesn't make
8366  * any benefit for the load balance.
8367  */
8368 static inline bool
8369 group_has_capacity(unsigned int imbalance_pct, struct sg_lb_stats *sgs)
8370 {
8371 	if (sgs->sum_nr_running < sgs->group_weight)
8372 		return true;
8373 
8374 	if ((sgs->group_capacity * imbalance_pct) <
8375 			(sgs->group_runnable * 100))
8376 		return false;
8377 
8378 	if ((sgs->group_capacity * 100) >
8379 			(sgs->group_util * imbalance_pct))
8380 		return true;
8381 
8382 	return false;
8383 }
8384 
8385 /*
8386  *  group_is_overloaded returns true if the group has more tasks than it can
8387  *  handle.
8388  *  group_is_overloaded is not equals to !group_has_capacity because a group
8389  *  with the exact right number of tasks, has no more spare capacity but is not
8390  *  overloaded so both group_has_capacity and group_is_overloaded return
8391  *  false.
8392  */
8393 static inline bool
8394 group_is_overloaded(unsigned int imbalance_pct, struct sg_lb_stats *sgs)
8395 {
8396 	if (sgs->sum_nr_running <= sgs->group_weight)
8397 		return false;
8398 
8399 	if ((sgs->group_capacity * 100) <
8400 			(sgs->group_util * imbalance_pct))
8401 		return true;
8402 
8403 	if ((sgs->group_capacity * imbalance_pct) <
8404 			(sgs->group_runnable * 100))
8405 		return true;
8406 
8407 	return false;
8408 }
8409 
8410 static inline enum
8411 group_type group_classify(unsigned int imbalance_pct,
8412 			  struct sched_group *group,
8413 			  struct sg_lb_stats *sgs)
8414 {
8415 	if (group_is_overloaded(imbalance_pct, sgs))
8416 		return group_overloaded;
8417 
8418 	if (sg_imbalanced(group))
8419 		return group_imbalanced;
8420 
8421 	if (sgs->group_asym_packing)
8422 		return group_asym_packing;
8423 
8424 	if (sgs->group_misfit_task_load)
8425 		return group_misfit_task;
8426 
8427 	if (!group_has_capacity(imbalance_pct, sgs))
8428 		return group_fully_busy;
8429 
8430 	return group_has_spare;
8431 }
8432 
8433 /**
8434  * update_sg_lb_stats - Update sched_group's statistics for load balancing.
8435  * @env: The load balancing environment.
8436  * @group: sched_group whose statistics are to be updated.
8437  * @sgs: variable to hold the statistics for this group.
8438  * @sg_status: Holds flag indicating the status of the sched_group
8439  */
8440 static inline void update_sg_lb_stats(struct lb_env *env,
8441 				      struct sched_group *group,
8442 				      struct sg_lb_stats *sgs,
8443 				      int *sg_status)
8444 {
8445 	int i, nr_running, local_group;
8446 
8447 	memset(sgs, 0, sizeof(*sgs));
8448 
8449 	local_group = cpumask_test_cpu(env->dst_cpu, sched_group_span(group));
8450 
8451 	for_each_cpu_and(i, sched_group_span(group), env->cpus) {
8452 		struct rq *rq = cpu_rq(i);
8453 
8454 		sgs->group_load += cpu_load(rq);
8455 		sgs->group_util += cpu_util(i);
8456 		sgs->group_runnable += cpu_runnable(rq);
8457 		sgs->sum_h_nr_running += rq->cfs.h_nr_running;
8458 
8459 		nr_running = rq->nr_running;
8460 		sgs->sum_nr_running += nr_running;
8461 
8462 		if (nr_running > 1)
8463 			*sg_status |= SG_OVERLOAD;
8464 
8465 		if (cpu_overutilized(i))
8466 			*sg_status |= SG_OVERUTILIZED;
8467 
8468 #ifdef CONFIG_NUMA_BALANCING
8469 		sgs->nr_numa_running += rq->nr_numa_running;
8470 		sgs->nr_preferred_running += rq->nr_preferred_running;
8471 #endif
8472 		/*
8473 		 * No need to call idle_cpu() if nr_running is not 0
8474 		 */
8475 		if (!nr_running && idle_cpu(i)) {
8476 			sgs->idle_cpus++;
8477 			/* Idle cpu can't have misfit task */
8478 			continue;
8479 		}
8480 
8481 		if (local_group)
8482 			continue;
8483 
8484 		/* Check for a misfit task on the cpu */
8485 		if (env->sd->flags & SD_ASYM_CPUCAPACITY &&
8486 		    sgs->group_misfit_task_load < rq->misfit_task_load) {
8487 			sgs->group_misfit_task_load = rq->misfit_task_load;
8488 			*sg_status |= SG_OVERLOAD;
8489 		}
8490 	}
8491 
8492 	/* Check if dst CPU is idle and preferred to this group */
8493 	if (env->sd->flags & SD_ASYM_PACKING &&
8494 	    env->idle != CPU_NOT_IDLE &&
8495 	    sgs->sum_h_nr_running &&
8496 	    sched_asym_prefer(env->dst_cpu, group->asym_prefer_cpu)) {
8497 		sgs->group_asym_packing = 1;
8498 	}
8499 
8500 	sgs->group_capacity = group->sgc->capacity;
8501 
8502 	sgs->group_weight = group->group_weight;
8503 
8504 	sgs->group_type = group_classify(env->sd->imbalance_pct, group, sgs);
8505 
8506 	/* Computing avg_load makes sense only when group is overloaded */
8507 	if (sgs->group_type == group_overloaded)
8508 		sgs->avg_load = (sgs->group_load * SCHED_CAPACITY_SCALE) /
8509 				sgs->group_capacity;
8510 }
8511 
8512 /**
8513  * update_sd_pick_busiest - return 1 on busiest group
8514  * @env: The load balancing environment.
8515  * @sds: sched_domain statistics
8516  * @sg: sched_group candidate to be checked for being the busiest
8517  * @sgs: sched_group statistics
8518  *
8519  * Determine if @sg is a busier group than the previously selected
8520  * busiest group.
8521  *
8522  * Return: %true if @sg is a busier group than the previously selected
8523  * busiest group. %false otherwise.
8524  */
8525 static bool update_sd_pick_busiest(struct lb_env *env,
8526 				   struct sd_lb_stats *sds,
8527 				   struct sched_group *sg,
8528 				   struct sg_lb_stats *sgs)
8529 {
8530 	struct sg_lb_stats *busiest = &sds->busiest_stat;
8531 
8532 	/* Make sure that there is at least one task to pull */
8533 	if (!sgs->sum_h_nr_running)
8534 		return false;
8535 
8536 	/*
8537 	 * Don't try to pull misfit tasks we can't help.
8538 	 * We can use max_capacity here as reduction in capacity on some
8539 	 * CPUs in the group should either be possible to resolve
8540 	 * internally or be covered by avg_load imbalance (eventually).
8541 	 */
8542 	if (sgs->group_type == group_misfit_task &&
8543 	    (!capacity_greater(capacity_of(env->dst_cpu), sg->sgc->max_capacity) ||
8544 	     sds->local_stat.group_type != group_has_spare))
8545 		return false;
8546 
8547 	if (sgs->group_type > busiest->group_type)
8548 		return true;
8549 
8550 	if (sgs->group_type < busiest->group_type)
8551 		return false;
8552 
8553 	/*
8554 	 * The candidate and the current busiest group are the same type of
8555 	 * group. Let check which one is the busiest according to the type.
8556 	 */
8557 
8558 	switch (sgs->group_type) {
8559 	case group_overloaded:
8560 		/* Select the overloaded group with highest avg_load. */
8561 		if (sgs->avg_load <= busiest->avg_load)
8562 			return false;
8563 		break;
8564 
8565 	case group_imbalanced:
8566 		/*
8567 		 * Select the 1st imbalanced group as we don't have any way to
8568 		 * choose one more than another.
8569 		 */
8570 		return false;
8571 
8572 	case group_asym_packing:
8573 		/* Prefer to move from lowest priority CPU's work */
8574 		if (sched_asym_prefer(sg->asym_prefer_cpu, sds->busiest->asym_prefer_cpu))
8575 			return false;
8576 		break;
8577 
8578 	case group_misfit_task:
8579 		/*
8580 		 * If we have more than one misfit sg go with the biggest
8581 		 * misfit.
8582 		 */
8583 		if (sgs->group_misfit_task_load < busiest->group_misfit_task_load)
8584 			return false;
8585 		break;
8586 
8587 	case group_fully_busy:
8588 		/*
8589 		 * Select the fully busy group with highest avg_load. In
8590 		 * theory, there is no need to pull task from such kind of
8591 		 * group because tasks have all compute capacity that they need
8592 		 * but we can still improve the overall throughput by reducing
8593 		 * contention when accessing shared HW resources.
8594 		 *
8595 		 * XXX for now avg_load is not computed and always 0 so we
8596 		 * select the 1st one.
8597 		 */
8598 		if (sgs->avg_load <= busiest->avg_load)
8599 			return false;
8600 		break;
8601 
8602 	case group_has_spare:
8603 		/*
8604 		 * Select not overloaded group with lowest number of idle cpus
8605 		 * and highest number of running tasks. We could also compare
8606 		 * the spare capacity which is more stable but it can end up
8607 		 * that the group has less spare capacity but finally more idle
8608 		 * CPUs which means less opportunity to pull tasks.
8609 		 */
8610 		if (sgs->idle_cpus > busiest->idle_cpus)
8611 			return false;
8612 		else if ((sgs->idle_cpus == busiest->idle_cpus) &&
8613 			 (sgs->sum_nr_running <= busiest->sum_nr_running))
8614 			return false;
8615 
8616 		break;
8617 	}
8618 
8619 	/*
8620 	 * Candidate sg has no more than one task per CPU and has higher
8621 	 * per-CPU capacity. Migrating tasks to less capable CPUs may harm
8622 	 * throughput. Maximize throughput, power/energy consequences are not
8623 	 * considered.
8624 	 */
8625 	if ((env->sd->flags & SD_ASYM_CPUCAPACITY) &&
8626 	    (sgs->group_type <= group_fully_busy) &&
8627 	    (capacity_greater(sg->sgc->min_capacity, capacity_of(env->dst_cpu))))
8628 		return false;
8629 
8630 	return true;
8631 }
8632 
8633 #ifdef CONFIG_NUMA_BALANCING
8634 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
8635 {
8636 	if (sgs->sum_h_nr_running > sgs->nr_numa_running)
8637 		return regular;
8638 	if (sgs->sum_h_nr_running > sgs->nr_preferred_running)
8639 		return remote;
8640 	return all;
8641 }
8642 
8643 static inline enum fbq_type fbq_classify_rq(struct rq *rq)
8644 {
8645 	if (rq->nr_running > rq->nr_numa_running)
8646 		return regular;
8647 	if (rq->nr_running > rq->nr_preferred_running)
8648 		return remote;
8649 	return all;
8650 }
8651 #else
8652 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
8653 {
8654 	return all;
8655 }
8656 
8657 static inline enum fbq_type fbq_classify_rq(struct rq *rq)
8658 {
8659 	return regular;
8660 }
8661 #endif /* CONFIG_NUMA_BALANCING */
8662 
8663 
8664 struct sg_lb_stats;
8665 
8666 /*
8667  * task_running_on_cpu - return 1 if @p is running on @cpu.
8668  */
8669 
8670 static unsigned int task_running_on_cpu(int cpu, struct task_struct *p)
8671 {
8672 	/* Task has no contribution or is new */
8673 	if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
8674 		return 0;
8675 
8676 	if (task_on_rq_queued(p))
8677 		return 1;
8678 
8679 	return 0;
8680 }
8681 
8682 /**
8683  * idle_cpu_without - would a given CPU be idle without p ?
8684  * @cpu: the processor on which idleness is tested.
8685  * @p: task which should be ignored.
8686  *
8687  * Return: 1 if the CPU would be idle. 0 otherwise.
8688  */
8689 static int idle_cpu_without(int cpu, struct task_struct *p)
8690 {
8691 	struct rq *rq = cpu_rq(cpu);
8692 
8693 	if (rq->curr != rq->idle && rq->curr != p)
8694 		return 0;
8695 
8696 	/*
8697 	 * rq->nr_running can't be used but an updated version without the
8698 	 * impact of p on cpu must be used instead. The updated nr_running
8699 	 * be computed and tested before calling idle_cpu_without().
8700 	 */
8701 
8702 #ifdef CONFIG_SMP
8703 	if (rq->ttwu_pending)
8704 		return 0;
8705 #endif
8706 
8707 	return 1;
8708 }
8709 
8710 /*
8711  * update_sg_wakeup_stats - Update sched_group's statistics for wakeup.
8712  * @sd: The sched_domain level to look for idlest group.
8713  * @group: sched_group whose statistics are to be updated.
8714  * @sgs: variable to hold the statistics for this group.
8715  * @p: The task for which we look for the idlest group/CPU.
8716  */
8717 static inline void update_sg_wakeup_stats(struct sched_domain *sd,
8718 					  struct sched_group *group,
8719 					  struct sg_lb_stats *sgs,
8720 					  struct task_struct *p)
8721 {
8722 	int i, nr_running;
8723 
8724 	memset(sgs, 0, sizeof(*sgs));
8725 
8726 	for_each_cpu(i, sched_group_span(group)) {
8727 		struct rq *rq = cpu_rq(i);
8728 		unsigned int local;
8729 
8730 		sgs->group_load += cpu_load_without(rq, p);
8731 		sgs->group_util += cpu_util_without(i, p);
8732 		sgs->group_runnable += cpu_runnable_without(rq, p);
8733 		local = task_running_on_cpu(i, p);
8734 		sgs->sum_h_nr_running += rq->cfs.h_nr_running - local;
8735 
8736 		nr_running = rq->nr_running - local;
8737 		sgs->sum_nr_running += nr_running;
8738 
8739 		/*
8740 		 * No need to call idle_cpu_without() if nr_running is not 0
8741 		 */
8742 		if (!nr_running && idle_cpu_without(i, p))
8743 			sgs->idle_cpus++;
8744 
8745 	}
8746 
8747 	/* Check if task fits in the group */
8748 	if (sd->flags & SD_ASYM_CPUCAPACITY &&
8749 	    !task_fits_capacity(p, group->sgc->max_capacity)) {
8750 		sgs->group_misfit_task_load = 1;
8751 	}
8752 
8753 	sgs->group_capacity = group->sgc->capacity;
8754 
8755 	sgs->group_weight = group->group_weight;
8756 
8757 	sgs->group_type = group_classify(sd->imbalance_pct, group, sgs);
8758 
8759 	/*
8760 	 * Computing avg_load makes sense only when group is fully busy or
8761 	 * overloaded
8762 	 */
8763 	if (sgs->group_type == group_fully_busy ||
8764 		sgs->group_type == group_overloaded)
8765 		sgs->avg_load = (sgs->group_load * SCHED_CAPACITY_SCALE) /
8766 				sgs->group_capacity;
8767 }
8768 
8769 static bool update_pick_idlest(struct sched_group *idlest,
8770 			       struct sg_lb_stats *idlest_sgs,
8771 			       struct sched_group *group,
8772 			       struct sg_lb_stats *sgs)
8773 {
8774 	if (sgs->group_type < idlest_sgs->group_type)
8775 		return true;
8776 
8777 	if (sgs->group_type > idlest_sgs->group_type)
8778 		return false;
8779 
8780 	/*
8781 	 * The candidate and the current idlest group are the same type of
8782 	 * group. Let check which one is the idlest according to the type.
8783 	 */
8784 
8785 	switch (sgs->group_type) {
8786 	case group_overloaded:
8787 	case group_fully_busy:
8788 		/* Select the group with lowest avg_load. */
8789 		if (idlest_sgs->avg_load <= sgs->avg_load)
8790 			return false;
8791 		break;
8792 
8793 	case group_imbalanced:
8794 	case group_asym_packing:
8795 		/* Those types are not used in the slow wakeup path */
8796 		return false;
8797 
8798 	case group_misfit_task:
8799 		/* Select group with the highest max capacity */
8800 		if (idlest->sgc->max_capacity >= group->sgc->max_capacity)
8801 			return false;
8802 		break;
8803 
8804 	case group_has_spare:
8805 		/* Select group with most idle CPUs */
8806 		if (idlest_sgs->idle_cpus > sgs->idle_cpus)
8807 			return false;
8808 
8809 		/* Select group with lowest group_util */
8810 		if (idlest_sgs->idle_cpus == sgs->idle_cpus &&
8811 			idlest_sgs->group_util <= sgs->group_util)
8812 			return false;
8813 
8814 		break;
8815 	}
8816 
8817 	return true;
8818 }
8819 
8820 /*
8821  * Allow a NUMA imbalance if busy CPUs is less than 25% of the domain.
8822  * This is an approximation as the number of running tasks may not be
8823  * related to the number of busy CPUs due to sched_setaffinity.
8824  */
8825 static inline bool allow_numa_imbalance(int dst_running, int dst_weight)
8826 {
8827 	return (dst_running < (dst_weight >> 2));
8828 }
8829 
8830 /*
8831  * find_idlest_group() finds and returns the least busy CPU group within the
8832  * domain.
8833  *
8834  * Assumes p is allowed on at least one CPU in sd.
8835  */
8836 static struct sched_group *
8837 find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
8838 {
8839 	struct sched_group *idlest = NULL, *local = NULL, *group = sd->groups;
8840 	struct sg_lb_stats local_sgs, tmp_sgs;
8841 	struct sg_lb_stats *sgs;
8842 	unsigned long imbalance;
8843 	struct sg_lb_stats idlest_sgs = {
8844 			.avg_load = UINT_MAX,
8845 			.group_type = group_overloaded,
8846 	};
8847 
8848 	do {
8849 		int local_group;
8850 
8851 		/* Skip over this group if it has no CPUs allowed */
8852 		if (!cpumask_intersects(sched_group_span(group),
8853 					p->cpus_ptr))
8854 			continue;
8855 
8856 		local_group = cpumask_test_cpu(this_cpu,
8857 					       sched_group_span(group));
8858 
8859 		if (local_group) {
8860 			sgs = &local_sgs;
8861 			local = group;
8862 		} else {
8863 			sgs = &tmp_sgs;
8864 		}
8865 
8866 		update_sg_wakeup_stats(sd, group, sgs, p);
8867 
8868 		if (!local_group && update_pick_idlest(idlest, &idlest_sgs, group, sgs)) {
8869 			idlest = group;
8870 			idlest_sgs = *sgs;
8871 		}
8872 
8873 	} while (group = group->next, group != sd->groups);
8874 
8875 
8876 	/* There is no idlest group to push tasks to */
8877 	if (!idlest)
8878 		return NULL;
8879 
8880 	/* The local group has been skipped because of CPU affinity */
8881 	if (!local)
8882 		return idlest;
8883 
8884 	/*
8885 	 * If the local group is idler than the selected idlest group
8886 	 * don't try and push the task.
8887 	 */
8888 	if (local_sgs.group_type < idlest_sgs.group_type)
8889 		return NULL;
8890 
8891 	/*
8892 	 * If the local group is busier than the selected idlest group
8893 	 * try and push the task.
8894 	 */
8895 	if (local_sgs.group_type > idlest_sgs.group_type)
8896 		return idlest;
8897 
8898 	switch (local_sgs.group_type) {
8899 	case group_overloaded:
8900 	case group_fully_busy:
8901 
8902 		/* Calculate allowed imbalance based on load */
8903 		imbalance = scale_load_down(NICE_0_LOAD) *
8904 				(sd->imbalance_pct-100) / 100;
8905 
8906 		/*
8907 		 * When comparing groups across NUMA domains, it's possible for
8908 		 * the local domain to be very lightly loaded relative to the
8909 		 * remote domains but "imbalance" skews the comparison making
8910 		 * remote CPUs look much more favourable. When considering
8911 		 * cross-domain, add imbalance to the load on the remote node
8912 		 * and consider staying local.
8913 		 */
8914 
8915 		if ((sd->flags & SD_NUMA) &&
8916 		    ((idlest_sgs.avg_load + imbalance) >= local_sgs.avg_load))
8917 			return NULL;
8918 
8919 		/*
8920 		 * If the local group is less loaded than the selected
8921 		 * idlest group don't try and push any tasks.
8922 		 */
8923 		if (idlest_sgs.avg_load >= (local_sgs.avg_load + imbalance))
8924 			return NULL;
8925 
8926 		if (100 * local_sgs.avg_load <= sd->imbalance_pct * idlest_sgs.avg_load)
8927 			return NULL;
8928 		break;
8929 
8930 	case group_imbalanced:
8931 	case group_asym_packing:
8932 		/* Those type are not used in the slow wakeup path */
8933 		return NULL;
8934 
8935 	case group_misfit_task:
8936 		/* Select group with the highest max capacity */
8937 		if (local->sgc->max_capacity >= idlest->sgc->max_capacity)
8938 			return NULL;
8939 		break;
8940 
8941 	case group_has_spare:
8942 		if (sd->flags & SD_NUMA) {
8943 #ifdef CONFIG_NUMA_BALANCING
8944 			int idlest_cpu;
8945 			/*
8946 			 * If there is spare capacity at NUMA, try to select
8947 			 * the preferred node
8948 			 */
8949 			if (cpu_to_node(this_cpu) == p->numa_preferred_nid)
8950 				return NULL;
8951 
8952 			idlest_cpu = cpumask_first(sched_group_span(idlest));
8953 			if (cpu_to_node(idlest_cpu) == p->numa_preferred_nid)
8954 				return idlest;
8955 #endif
8956 			/*
8957 			 * Otherwise, keep the task on this node to stay close
8958 			 * its wakeup source and improve locality. If there is
8959 			 * a real need of migration, periodic load balance will
8960 			 * take care of it.
8961 			 */
8962 			if (allow_numa_imbalance(local_sgs.sum_nr_running, sd->span_weight))
8963 				return NULL;
8964 		}
8965 
8966 		/*
8967 		 * Select group with highest number of idle CPUs. We could also
8968 		 * compare the utilization which is more stable but it can end
8969 		 * up that the group has less spare capacity but finally more
8970 		 * idle CPUs which means more opportunity to run task.
8971 		 */
8972 		if (local_sgs.idle_cpus >= idlest_sgs.idle_cpus)
8973 			return NULL;
8974 		break;
8975 	}
8976 
8977 	return idlest;
8978 }
8979 
8980 /**
8981  * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
8982  * @env: The load balancing environment.
8983  * @sds: variable to hold the statistics for this sched_domain.
8984  */
8985 
8986 static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
8987 {
8988 	struct sched_domain *child = env->sd->child;
8989 	struct sched_group *sg = env->sd->groups;
8990 	struct sg_lb_stats *local = &sds->local_stat;
8991 	struct sg_lb_stats tmp_sgs;
8992 	int sg_status = 0;
8993 
8994 	do {
8995 		struct sg_lb_stats *sgs = &tmp_sgs;
8996 		int local_group;
8997 
8998 		local_group = cpumask_test_cpu(env->dst_cpu, sched_group_span(sg));
8999 		if (local_group) {
9000 			sds->local = sg;
9001 			sgs = local;
9002 
9003 			if (env->idle != CPU_NEWLY_IDLE ||
9004 			    time_after_eq(jiffies, sg->sgc->next_update))
9005 				update_group_capacity(env->sd, env->dst_cpu);
9006 		}
9007 
9008 		update_sg_lb_stats(env, sg, sgs, &sg_status);
9009 
9010 		if (local_group)
9011 			goto next_group;
9012 
9013 
9014 		if (update_sd_pick_busiest(env, sds, sg, sgs)) {
9015 			sds->busiest = sg;
9016 			sds->busiest_stat = *sgs;
9017 		}
9018 
9019 next_group:
9020 		/* Now, start updating sd_lb_stats */
9021 		sds->total_load += sgs->group_load;
9022 		sds->total_capacity += sgs->group_capacity;
9023 
9024 		sg = sg->next;
9025 	} while (sg != env->sd->groups);
9026 
9027 	/* Tag domain that child domain prefers tasks go to siblings first */
9028 	sds->prefer_sibling = child && child->flags & SD_PREFER_SIBLING;
9029 
9030 
9031 	if (env->sd->flags & SD_NUMA)
9032 		env->fbq_type = fbq_classify_group(&sds->busiest_stat);
9033 
9034 	if (!env->sd->parent) {
9035 		struct root_domain *rd = env->dst_rq->rd;
9036 
9037 		/* update overload indicator if we are at root domain */
9038 		WRITE_ONCE(rd->overload, sg_status & SG_OVERLOAD);
9039 
9040 		/* Update over-utilization (tipping point, U >= 0) indicator */
9041 		WRITE_ONCE(rd->overutilized, sg_status & SG_OVERUTILIZED);
9042 		trace_sched_overutilized_tp(rd, sg_status & SG_OVERUTILIZED);
9043 	} else if (sg_status & SG_OVERUTILIZED) {
9044 		struct root_domain *rd = env->dst_rq->rd;
9045 
9046 		WRITE_ONCE(rd->overutilized, SG_OVERUTILIZED);
9047 		trace_sched_overutilized_tp(rd, SG_OVERUTILIZED);
9048 	}
9049 }
9050 
9051 #define NUMA_IMBALANCE_MIN 2
9052 
9053 static inline long adjust_numa_imbalance(int imbalance,
9054 				int dst_running, int dst_weight)
9055 {
9056 	if (!allow_numa_imbalance(dst_running, dst_weight))
9057 		return imbalance;
9058 
9059 	/*
9060 	 * Allow a small imbalance based on a simple pair of communicating
9061 	 * tasks that remain local when the destination is lightly loaded.
9062 	 */
9063 	if (imbalance <= NUMA_IMBALANCE_MIN)
9064 		return 0;
9065 
9066 	return imbalance;
9067 }
9068 
9069 /**
9070  * calculate_imbalance - Calculate the amount of imbalance present within the
9071  *			 groups of a given sched_domain during load balance.
9072  * @env: load balance environment
9073  * @sds: statistics of the sched_domain whose imbalance is to be calculated.
9074  */
9075 static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
9076 {
9077 	struct sg_lb_stats *local, *busiest;
9078 
9079 	local = &sds->local_stat;
9080 	busiest = &sds->busiest_stat;
9081 
9082 	if (busiest->group_type == group_misfit_task) {
9083 		/* Set imbalance to allow misfit tasks to be balanced. */
9084 		env->migration_type = migrate_misfit;
9085 		env->imbalance = 1;
9086 		return;
9087 	}
9088 
9089 	if (busiest->group_type == group_asym_packing) {
9090 		/*
9091 		 * In case of asym capacity, we will try to migrate all load to
9092 		 * the preferred CPU.
9093 		 */
9094 		env->migration_type = migrate_task;
9095 		env->imbalance = busiest->sum_h_nr_running;
9096 		return;
9097 	}
9098 
9099 	if (busiest->group_type == group_imbalanced) {
9100 		/*
9101 		 * In the group_imb case we cannot rely on group-wide averages
9102 		 * to ensure CPU-load equilibrium, try to move any task to fix
9103 		 * the imbalance. The next load balance will take care of
9104 		 * balancing back the system.
9105 		 */
9106 		env->migration_type = migrate_task;
9107 		env->imbalance = 1;
9108 		return;
9109 	}
9110 
9111 	/*
9112 	 * Try to use spare capacity of local group without overloading it or
9113 	 * emptying busiest.
9114 	 */
9115 	if (local->group_type == group_has_spare) {
9116 		if ((busiest->group_type > group_fully_busy) &&
9117 		    !(env->sd->flags & SD_SHARE_PKG_RESOURCES)) {
9118 			/*
9119 			 * If busiest is overloaded, try to fill spare
9120 			 * capacity. This might end up creating spare capacity
9121 			 * in busiest or busiest still being overloaded but
9122 			 * there is no simple way to directly compute the
9123 			 * amount of load to migrate in order to balance the
9124 			 * system.
9125 			 */
9126 			env->migration_type = migrate_util;
9127 			env->imbalance = max(local->group_capacity, local->group_util) -
9128 					 local->group_util;
9129 
9130 			/*
9131 			 * In some cases, the group's utilization is max or even
9132 			 * higher than capacity because of migrations but the
9133 			 * local CPU is (newly) idle. There is at least one
9134 			 * waiting task in this overloaded busiest group. Let's
9135 			 * try to pull it.
9136 			 */
9137 			if (env->idle != CPU_NOT_IDLE && env->imbalance == 0) {
9138 				env->migration_type = migrate_task;
9139 				env->imbalance = 1;
9140 			}
9141 
9142 			return;
9143 		}
9144 
9145 		if (busiest->group_weight == 1 || sds->prefer_sibling) {
9146 			unsigned int nr_diff = busiest->sum_nr_running;
9147 			/*
9148 			 * When prefer sibling, evenly spread running tasks on
9149 			 * groups.
9150 			 */
9151 			env->migration_type = migrate_task;
9152 			lsub_positive(&nr_diff, local->sum_nr_running);
9153 			env->imbalance = nr_diff >> 1;
9154 		} else {
9155 
9156 			/*
9157 			 * If there is no overload, we just want to even the number of
9158 			 * idle cpus.
9159 			 */
9160 			env->migration_type = migrate_task;
9161 			env->imbalance = max_t(long, 0, (local->idle_cpus -
9162 						 busiest->idle_cpus) >> 1);
9163 		}
9164 
9165 		/* Consider allowing a small imbalance between NUMA groups */
9166 		if (env->sd->flags & SD_NUMA) {
9167 			env->imbalance = adjust_numa_imbalance(env->imbalance,
9168 				busiest->sum_nr_running, busiest->group_weight);
9169 		}
9170 
9171 		return;
9172 	}
9173 
9174 	/*
9175 	 * Local is fully busy but has to take more load to relieve the
9176 	 * busiest group
9177 	 */
9178 	if (local->group_type < group_overloaded) {
9179 		/*
9180 		 * Local will become overloaded so the avg_load metrics are
9181 		 * finally needed.
9182 		 */
9183 
9184 		local->avg_load = (local->group_load * SCHED_CAPACITY_SCALE) /
9185 				  local->group_capacity;
9186 
9187 		sds->avg_load = (sds->total_load * SCHED_CAPACITY_SCALE) /
9188 				sds->total_capacity;
9189 		/*
9190 		 * If the local group is more loaded than the selected
9191 		 * busiest group don't try to pull any tasks.
9192 		 */
9193 		if (local->avg_load >= busiest->avg_load) {
9194 			env->imbalance = 0;
9195 			return;
9196 		}
9197 	}
9198 
9199 	/*
9200 	 * Both group are or will become overloaded and we're trying to get all
9201 	 * the CPUs to the average_load, so we don't want to push ourselves
9202 	 * above the average load, nor do we wish to reduce the max loaded CPU
9203 	 * below the average load. At the same time, we also don't want to
9204 	 * reduce the group load below the group capacity. Thus we look for
9205 	 * the minimum possible imbalance.
9206 	 */
9207 	env->migration_type = migrate_load;
9208 	env->imbalance = min(
9209 		(busiest->avg_load - sds->avg_load) * busiest->group_capacity,
9210 		(sds->avg_load - local->avg_load) * local->group_capacity
9211 	) / SCHED_CAPACITY_SCALE;
9212 }
9213 
9214 /******* find_busiest_group() helpers end here *********************/
9215 
9216 /*
9217  * Decision matrix according to the local and busiest group type:
9218  *
9219  * busiest \ local has_spare fully_busy misfit asym imbalanced overloaded
9220  * has_spare        nr_idle   balanced   N/A    N/A  balanced   balanced
9221  * fully_busy       nr_idle   nr_idle    N/A    N/A  balanced   balanced
9222  * misfit_task      force     N/A        N/A    N/A  force      force
9223  * asym_packing     force     force      N/A    N/A  force      force
9224  * imbalanced       force     force      N/A    N/A  force      force
9225  * overloaded       force     force      N/A    N/A  force      avg_load
9226  *
9227  * N/A :      Not Applicable because already filtered while updating
9228  *            statistics.
9229  * balanced : The system is balanced for these 2 groups.
9230  * force :    Calculate the imbalance as load migration is probably needed.
9231  * avg_load : Only if imbalance is significant enough.
9232  * nr_idle :  dst_cpu is not busy and the number of idle CPUs is quite
9233  *            different in groups.
9234  */
9235 
9236 /**
9237  * find_busiest_group - Returns the busiest group within the sched_domain
9238  * if there is an imbalance.
9239  *
9240  * Also calculates the amount of runnable load which should be moved
9241  * to restore balance.
9242  *
9243  * @env: The load balancing environment.
9244  *
9245  * Return:	- The busiest group if imbalance exists.
9246  */
9247 static struct sched_group *find_busiest_group(struct lb_env *env)
9248 {
9249 	struct sg_lb_stats *local, *busiest;
9250 	struct sd_lb_stats sds;
9251 
9252 	init_sd_lb_stats(&sds);
9253 
9254 	/*
9255 	 * Compute the various statistics relevant for load balancing at
9256 	 * this level.
9257 	 */
9258 	update_sd_lb_stats(env, &sds);
9259 
9260 	if (sched_energy_enabled()) {
9261 		struct root_domain *rd = env->dst_rq->rd;
9262 
9263 		if (rcu_dereference(rd->pd) && !READ_ONCE(rd->overutilized))
9264 			goto out_balanced;
9265 	}
9266 
9267 	local = &sds.local_stat;
9268 	busiest = &sds.busiest_stat;
9269 
9270 	/* There is no busy sibling group to pull tasks from */
9271 	if (!sds.busiest)
9272 		goto out_balanced;
9273 
9274 	/* Misfit tasks should be dealt with regardless of the avg load */
9275 	if (busiest->group_type == group_misfit_task)
9276 		goto force_balance;
9277 
9278 	/* ASYM feature bypasses nice load balance check */
9279 	if (busiest->group_type == group_asym_packing)
9280 		goto force_balance;
9281 
9282 	/*
9283 	 * If the busiest group is imbalanced the below checks don't
9284 	 * work because they assume all things are equal, which typically
9285 	 * isn't true due to cpus_ptr constraints and the like.
9286 	 */
9287 	if (busiest->group_type == group_imbalanced)
9288 		goto force_balance;
9289 
9290 	/*
9291 	 * If the local group is busier than the selected busiest group
9292 	 * don't try and pull any tasks.
9293 	 */
9294 	if (local->group_type > busiest->group_type)
9295 		goto out_balanced;
9296 
9297 	/*
9298 	 * When groups are overloaded, use the avg_load to ensure fairness
9299 	 * between tasks.
9300 	 */
9301 	if (local->group_type == group_overloaded) {
9302 		/*
9303 		 * If the local group is more loaded than the selected
9304 		 * busiest group don't try to pull any tasks.
9305 		 */
9306 		if (local->avg_load >= busiest->avg_load)
9307 			goto out_balanced;
9308 
9309 		/* XXX broken for overlapping NUMA groups */
9310 		sds.avg_load = (sds.total_load * SCHED_CAPACITY_SCALE) /
9311 				sds.total_capacity;
9312 
9313 		/*
9314 		 * Don't pull any tasks if this group is already above the
9315 		 * domain average load.
9316 		 */
9317 		if (local->avg_load >= sds.avg_load)
9318 			goto out_balanced;
9319 
9320 		/*
9321 		 * If the busiest group is more loaded, use imbalance_pct to be
9322 		 * conservative.
9323 		 */
9324 		if (100 * busiest->avg_load <=
9325 				env->sd->imbalance_pct * local->avg_load)
9326 			goto out_balanced;
9327 	}
9328 
9329 	/* Try to move all excess tasks to child's sibling domain */
9330 	if (sds.prefer_sibling && local->group_type == group_has_spare &&
9331 	    busiest->sum_nr_running > local->sum_nr_running + 1)
9332 		goto force_balance;
9333 
9334 	if (busiest->group_type != group_overloaded) {
9335 		if (env->idle == CPU_NOT_IDLE)
9336 			/*
9337 			 * If the busiest group is not overloaded (and as a
9338 			 * result the local one too) but this CPU is already
9339 			 * busy, let another idle CPU try to pull task.
9340 			 */
9341 			goto out_balanced;
9342 
9343 		if (busiest->group_weight > 1 &&
9344 		    local->idle_cpus <= (busiest->idle_cpus + 1))
9345 			/*
9346 			 * If the busiest group is not overloaded
9347 			 * and there is no imbalance between this and busiest
9348 			 * group wrt idle CPUs, it is balanced. The imbalance
9349 			 * becomes significant if the diff is greater than 1
9350 			 * otherwise we might end up to just move the imbalance
9351 			 * on another group. Of course this applies only if
9352 			 * there is more than 1 CPU per group.
9353 			 */
9354 			goto out_balanced;
9355 
9356 		if (busiest->sum_h_nr_running == 1)
9357 			/*
9358 			 * busiest doesn't have any tasks waiting to run
9359 			 */
9360 			goto out_balanced;
9361 	}
9362 
9363 force_balance:
9364 	/* Looks like there is an imbalance. Compute it */
9365 	calculate_imbalance(env, &sds);
9366 	return env->imbalance ? sds.busiest : NULL;
9367 
9368 out_balanced:
9369 	env->imbalance = 0;
9370 	return NULL;
9371 }
9372 
9373 /*
9374  * find_busiest_queue - find the busiest runqueue among the CPUs in the group.
9375  */
9376 static struct rq *find_busiest_queue(struct lb_env *env,
9377 				     struct sched_group *group)
9378 {
9379 	struct rq *busiest = NULL, *rq;
9380 	unsigned long busiest_util = 0, busiest_load = 0, busiest_capacity = 1;
9381 	unsigned int busiest_nr = 0;
9382 	int i;
9383 
9384 	for_each_cpu_and(i, sched_group_span(group), env->cpus) {
9385 		unsigned long capacity, load, util;
9386 		unsigned int nr_running;
9387 		enum fbq_type rt;
9388 
9389 		rq = cpu_rq(i);
9390 		rt = fbq_classify_rq(rq);
9391 
9392 		/*
9393 		 * We classify groups/runqueues into three groups:
9394 		 *  - regular: there are !numa tasks
9395 		 *  - remote:  there are numa tasks that run on the 'wrong' node
9396 		 *  - all:     there is no distinction
9397 		 *
9398 		 * In order to avoid migrating ideally placed numa tasks,
9399 		 * ignore those when there's better options.
9400 		 *
9401 		 * If we ignore the actual busiest queue to migrate another
9402 		 * task, the next balance pass can still reduce the busiest
9403 		 * queue by moving tasks around inside the node.
9404 		 *
9405 		 * If we cannot move enough load due to this classification
9406 		 * the next pass will adjust the group classification and
9407 		 * allow migration of more tasks.
9408 		 *
9409 		 * Both cases only affect the total convergence complexity.
9410 		 */
9411 		if (rt > env->fbq_type)
9412 			continue;
9413 
9414 		nr_running = rq->cfs.h_nr_running;
9415 		if (!nr_running)
9416 			continue;
9417 
9418 		capacity = capacity_of(i);
9419 
9420 		/*
9421 		 * For ASYM_CPUCAPACITY domains, don't pick a CPU that could
9422 		 * eventually lead to active_balancing high->low capacity.
9423 		 * Higher per-CPU capacity is considered better than balancing
9424 		 * average load.
9425 		 */
9426 		if (env->sd->flags & SD_ASYM_CPUCAPACITY &&
9427 		    !capacity_greater(capacity_of(env->dst_cpu), capacity) &&
9428 		    nr_running == 1)
9429 			continue;
9430 
9431 		switch (env->migration_type) {
9432 		case migrate_load:
9433 			/*
9434 			 * When comparing with load imbalance, use cpu_load()
9435 			 * which is not scaled with the CPU capacity.
9436 			 */
9437 			load = cpu_load(rq);
9438 
9439 			if (nr_running == 1 && load > env->imbalance &&
9440 			    !check_cpu_capacity(rq, env->sd))
9441 				break;
9442 
9443 			/*
9444 			 * For the load comparisons with the other CPUs,
9445 			 * consider the cpu_load() scaled with the CPU
9446 			 * capacity, so that the load can be moved away
9447 			 * from the CPU that is potentially running at a
9448 			 * lower capacity.
9449 			 *
9450 			 * Thus we're looking for max(load_i / capacity_i),
9451 			 * crosswise multiplication to rid ourselves of the
9452 			 * division works out to:
9453 			 * load_i * capacity_j > load_j * capacity_i;
9454 			 * where j is our previous maximum.
9455 			 */
9456 			if (load * busiest_capacity > busiest_load * capacity) {
9457 				busiest_load = load;
9458 				busiest_capacity = capacity;
9459 				busiest = rq;
9460 			}
9461 			break;
9462 
9463 		case migrate_util:
9464 			util = cpu_util(cpu_of(rq));
9465 
9466 			/*
9467 			 * Don't try to pull utilization from a CPU with one
9468 			 * running task. Whatever its utilization, we will fail
9469 			 * detach the task.
9470 			 */
9471 			if (nr_running <= 1)
9472 				continue;
9473 
9474 			if (busiest_util < util) {
9475 				busiest_util = util;
9476 				busiest = rq;
9477 			}
9478 			break;
9479 
9480 		case migrate_task:
9481 			if (busiest_nr < nr_running) {
9482 				busiest_nr = nr_running;
9483 				busiest = rq;
9484 			}
9485 			break;
9486 
9487 		case migrate_misfit:
9488 			/*
9489 			 * For ASYM_CPUCAPACITY domains with misfit tasks we
9490 			 * simply seek the "biggest" misfit task.
9491 			 */
9492 			if (rq->misfit_task_load > busiest_load) {
9493 				busiest_load = rq->misfit_task_load;
9494 				busiest = rq;
9495 			}
9496 
9497 			break;
9498 
9499 		}
9500 	}
9501 
9502 	return busiest;
9503 }
9504 
9505 /*
9506  * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
9507  * so long as it is large enough.
9508  */
9509 #define MAX_PINNED_INTERVAL	512
9510 
9511 static inline bool
9512 asym_active_balance(struct lb_env *env)
9513 {
9514 	/*
9515 	 * ASYM_PACKING needs to force migrate tasks from busy but
9516 	 * lower priority CPUs in order to pack all tasks in the
9517 	 * highest priority CPUs.
9518 	 */
9519 	return env->idle != CPU_NOT_IDLE && (env->sd->flags & SD_ASYM_PACKING) &&
9520 	       sched_asym_prefer(env->dst_cpu, env->src_cpu);
9521 }
9522 
9523 static inline bool
9524 imbalanced_active_balance(struct lb_env *env)
9525 {
9526 	struct sched_domain *sd = env->sd;
9527 
9528 	/*
9529 	 * The imbalanced case includes the case of pinned tasks preventing a fair
9530 	 * distribution of the load on the system but also the even distribution of the
9531 	 * threads on a system with spare capacity
9532 	 */
9533 	if ((env->migration_type == migrate_task) &&
9534 	    (sd->nr_balance_failed > sd->cache_nice_tries+2))
9535 		return 1;
9536 
9537 	return 0;
9538 }
9539 
9540 static int need_active_balance(struct lb_env *env)
9541 {
9542 	struct sched_domain *sd = env->sd;
9543 
9544 	if (asym_active_balance(env))
9545 		return 1;
9546 
9547 	if (imbalanced_active_balance(env))
9548 		return 1;
9549 
9550 	/*
9551 	 * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task.
9552 	 * It's worth migrating the task if the src_cpu's capacity is reduced
9553 	 * because of other sched_class or IRQs if more capacity stays
9554 	 * available on dst_cpu.
9555 	 */
9556 	if ((env->idle != CPU_NOT_IDLE) &&
9557 	    (env->src_rq->cfs.h_nr_running == 1)) {
9558 		if ((check_cpu_capacity(env->src_rq, sd)) &&
9559 		    (capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100))
9560 			return 1;
9561 	}
9562 
9563 	if (env->migration_type == migrate_misfit)
9564 		return 1;
9565 
9566 	return 0;
9567 }
9568 
9569 static int active_load_balance_cpu_stop(void *data);
9570 
9571 static int should_we_balance(struct lb_env *env)
9572 {
9573 	struct sched_group *sg = env->sd->groups;
9574 	int cpu;
9575 
9576 	/*
9577 	 * Ensure the balancing environment is consistent; can happen
9578 	 * when the softirq triggers 'during' hotplug.
9579 	 */
9580 	if (!cpumask_test_cpu(env->dst_cpu, env->cpus))
9581 		return 0;
9582 
9583 	/*
9584 	 * In the newly idle case, we will allow all the CPUs
9585 	 * to do the newly idle load balance.
9586 	 */
9587 	if (env->idle == CPU_NEWLY_IDLE)
9588 		return 1;
9589 
9590 	/* Try to find first idle CPU */
9591 	for_each_cpu_and(cpu, group_balance_mask(sg), env->cpus) {
9592 		if (!idle_cpu(cpu))
9593 			continue;
9594 
9595 		/* Are we the first idle CPU? */
9596 		return cpu == env->dst_cpu;
9597 	}
9598 
9599 	/* Are we the first CPU of this group ? */
9600 	return group_balance_cpu(sg) == env->dst_cpu;
9601 }
9602 
9603 /*
9604  * Check this_cpu to ensure it is balanced within domain. Attempt to move
9605  * tasks if there is an imbalance.
9606  */
9607 static int load_balance(int this_cpu, struct rq *this_rq,
9608 			struct sched_domain *sd, enum cpu_idle_type idle,
9609 			int *continue_balancing)
9610 {
9611 	int ld_moved, cur_ld_moved, active_balance = 0;
9612 	struct sched_domain *sd_parent = sd->parent;
9613 	struct sched_group *group;
9614 	struct rq *busiest;
9615 	struct rq_flags rf;
9616 	struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask);
9617 
9618 	struct lb_env env = {
9619 		.sd		= sd,
9620 		.dst_cpu	= this_cpu,
9621 		.dst_rq		= this_rq,
9622 		.dst_grpmask    = sched_group_span(sd->groups),
9623 		.idle		= idle,
9624 		.loop_break	= sched_nr_migrate_break,
9625 		.cpus		= cpus,
9626 		.fbq_type	= all,
9627 		.tasks		= LIST_HEAD_INIT(env.tasks),
9628 	};
9629 
9630 	cpumask_and(cpus, sched_domain_span(sd), cpu_active_mask);
9631 
9632 	schedstat_inc(sd->lb_count[idle]);
9633 
9634 redo:
9635 	if (!should_we_balance(&env)) {
9636 		*continue_balancing = 0;
9637 		goto out_balanced;
9638 	}
9639 
9640 	group = find_busiest_group(&env);
9641 	if (!group) {
9642 		schedstat_inc(sd->lb_nobusyg[idle]);
9643 		goto out_balanced;
9644 	}
9645 
9646 	busiest = find_busiest_queue(&env, group);
9647 	if (!busiest) {
9648 		schedstat_inc(sd->lb_nobusyq[idle]);
9649 		goto out_balanced;
9650 	}
9651 
9652 	BUG_ON(busiest == env.dst_rq);
9653 
9654 	schedstat_add(sd->lb_imbalance[idle], env.imbalance);
9655 
9656 	env.src_cpu = busiest->cpu;
9657 	env.src_rq = busiest;
9658 
9659 	ld_moved = 0;
9660 	/* Clear this flag as soon as we find a pullable task */
9661 	env.flags |= LBF_ALL_PINNED;
9662 	if (busiest->nr_running > 1) {
9663 		/*
9664 		 * Attempt to move tasks. If find_busiest_group has found
9665 		 * an imbalance but busiest->nr_running <= 1, the group is
9666 		 * still unbalanced. ld_moved simply stays zero, so it is
9667 		 * correctly treated as an imbalance.
9668 		 */
9669 		env.loop_max  = min(sysctl_sched_nr_migrate, busiest->nr_running);
9670 
9671 more_balance:
9672 		rq_lock_irqsave(busiest, &rf);
9673 		update_rq_clock(busiest);
9674 
9675 		/*
9676 		 * cur_ld_moved - load moved in current iteration
9677 		 * ld_moved     - cumulative load moved across iterations
9678 		 */
9679 		cur_ld_moved = detach_tasks(&env);
9680 
9681 		/*
9682 		 * We've detached some tasks from busiest_rq. Every
9683 		 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely
9684 		 * unlock busiest->lock, and we are able to be sure
9685 		 * that nobody can manipulate the tasks in parallel.
9686 		 * See task_rq_lock() family for the details.
9687 		 */
9688 
9689 		rq_unlock(busiest, &rf);
9690 
9691 		if (cur_ld_moved) {
9692 			attach_tasks(&env);
9693 			ld_moved += cur_ld_moved;
9694 		}
9695 
9696 		local_irq_restore(rf.flags);
9697 
9698 		if (env.flags & LBF_NEED_BREAK) {
9699 			env.flags &= ~LBF_NEED_BREAK;
9700 			goto more_balance;
9701 		}
9702 
9703 		/*
9704 		 * Revisit (affine) tasks on src_cpu that couldn't be moved to
9705 		 * us and move them to an alternate dst_cpu in our sched_group
9706 		 * where they can run. The upper limit on how many times we
9707 		 * iterate on same src_cpu is dependent on number of CPUs in our
9708 		 * sched_group.
9709 		 *
9710 		 * This changes load balance semantics a bit on who can move
9711 		 * load to a given_cpu. In addition to the given_cpu itself
9712 		 * (or a ilb_cpu acting on its behalf where given_cpu is
9713 		 * nohz-idle), we now have balance_cpu in a position to move
9714 		 * load to given_cpu. In rare situations, this may cause
9715 		 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
9716 		 * _independently_ and at _same_ time to move some load to
9717 		 * given_cpu) causing excess load to be moved to given_cpu.
9718 		 * This however should not happen so much in practice and
9719 		 * moreover subsequent load balance cycles should correct the
9720 		 * excess load moved.
9721 		 */
9722 		if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
9723 
9724 			/* Prevent to re-select dst_cpu via env's CPUs */
9725 			__cpumask_clear_cpu(env.dst_cpu, env.cpus);
9726 
9727 			env.dst_rq	 = cpu_rq(env.new_dst_cpu);
9728 			env.dst_cpu	 = env.new_dst_cpu;
9729 			env.flags	&= ~LBF_DST_PINNED;
9730 			env.loop	 = 0;
9731 			env.loop_break	 = sched_nr_migrate_break;
9732 
9733 			/*
9734 			 * Go back to "more_balance" rather than "redo" since we
9735 			 * need to continue with same src_cpu.
9736 			 */
9737 			goto more_balance;
9738 		}
9739 
9740 		/*
9741 		 * We failed to reach balance because of affinity.
9742 		 */
9743 		if (sd_parent) {
9744 			int *group_imbalance = &sd_parent->groups->sgc->imbalance;
9745 
9746 			if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0)
9747 				*group_imbalance = 1;
9748 		}
9749 
9750 		/* All tasks on this runqueue were pinned by CPU affinity */
9751 		if (unlikely(env.flags & LBF_ALL_PINNED)) {
9752 			__cpumask_clear_cpu(cpu_of(busiest), cpus);
9753 			/*
9754 			 * Attempting to continue load balancing at the current
9755 			 * sched_domain level only makes sense if there are
9756 			 * active CPUs remaining as possible busiest CPUs to
9757 			 * pull load from which are not contained within the
9758 			 * destination group that is receiving any migrated
9759 			 * load.
9760 			 */
9761 			if (!cpumask_subset(cpus, env.dst_grpmask)) {
9762 				env.loop = 0;
9763 				env.loop_break = sched_nr_migrate_break;
9764 				goto redo;
9765 			}
9766 			goto out_all_pinned;
9767 		}
9768 	}
9769 
9770 	if (!ld_moved) {
9771 		schedstat_inc(sd->lb_failed[idle]);
9772 		/*
9773 		 * Increment the failure counter only on periodic balance.
9774 		 * We do not want newidle balance, which can be very
9775 		 * frequent, pollute the failure counter causing
9776 		 * excessive cache_hot migrations and active balances.
9777 		 */
9778 		if (idle != CPU_NEWLY_IDLE)
9779 			sd->nr_balance_failed++;
9780 
9781 		if (need_active_balance(&env)) {
9782 			unsigned long flags;
9783 
9784 			raw_spin_lock_irqsave(&busiest->lock, flags);
9785 
9786 			/*
9787 			 * Don't kick the active_load_balance_cpu_stop,
9788 			 * if the curr task on busiest CPU can't be
9789 			 * moved to this_cpu:
9790 			 */
9791 			if (!cpumask_test_cpu(this_cpu, busiest->curr->cpus_ptr)) {
9792 				raw_spin_unlock_irqrestore(&busiest->lock,
9793 							    flags);
9794 				goto out_one_pinned;
9795 			}
9796 
9797 			/* Record that we found at least one task that could run on this_cpu */
9798 			env.flags &= ~LBF_ALL_PINNED;
9799 
9800 			/*
9801 			 * ->active_balance synchronizes accesses to
9802 			 * ->active_balance_work.  Once set, it's cleared
9803 			 * only after active load balance is finished.
9804 			 */
9805 			if (!busiest->active_balance) {
9806 				busiest->active_balance = 1;
9807 				busiest->push_cpu = this_cpu;
9808 				active_balance = 1;
9809 			}
9810 			raw_spin_unlock_irqrestore(&busiest->lock, flags);
9811 
9812 			if (active_balance) {
9813 				stop_one_cpu_nowait(cpu_of(busiest),
9814 					active_load_balance_cpu_stop, busiest,
9815 					&busiest->active_balance_work);
9816 			}
9817 		}
9818 	} else {
9819 		sd->nr_balance_failed = 0;
9820 	}
9821 
9822 	if (likely(!active_balance) || need_active_balance(&env)) {
9823 		/* We were unbalanced, so reset the balancing interval */
9824 		sd->balance_interval = sd->min_interval;
9825 	}
9826 
9827 	goto out;
9828 
9829 out_balanced:
9830 	/*
9831 	 * We reach balance although we may have faced some affinity
9832 	 * constraints. Clear the imbalance flag only if other tasks got
9833 	 * a chance to move and fix the imbalance.
9834 	 */
9835 	if (sd_parent && !(env.flags & LBF_ALL_PINNED)) {
9836 		int *group_imbalance = &sd_parent->groups->sgc->imbalance;
9837 
9838 		if (*group_imbalance)
9839 			*group_imbalance = 0;
9840 	}
9841 
9842 out_all_pinned:
9843 	/*
9844 	 * We reach balance because all tasks are pinned at this level so
9845 	 * we can't migrate them. Let the imbalance flag set so parent level
9846 	 * can try to migrate them.
9847 	 */
9848 	schedstat_inc(sd->lb_balanced[idle]);
9849 
9850 	sd->nr_balance_failed = 0;
9851 
9852 out_one_pinned:
9853 	ld_moved = 0;
9854 
9855 	/*
9856 	 * newidle_balance() disregards balance intervals, so we could
9857 	 * repeatedly reach this code, which would lead to balance_interval
9858 	 * skyrocketing in a short amount of time. Skip the balance_interval
9859 	 * increase logic to avoid that.
9860 	 */
9861 	if (env.idle == CPU_NEWLY_IDLE)
9862 		goto out;
9863 
9864 	/* tune up the balancing interval */
9865 	if ((env.flags & LBF_ALL_PINNED &&
9866 	     sd->balance_interval < MAX_PINNED_INTERVAL) ||
9867 	    sd->balance_interval < sd->max_interval)
9868 		sd->balance_interval *= 2;
9869 out:
9870 	return ld_moved;
9871 }
9872 
9873 static inline unsigned long
9874 get_sd_balance_interval(struct sched_domain *sd, int cpu_busy)
9875 {
9876 	unsigned long interval = sd->balance_interval;
9877 
9878 	if (cpu_busy)
9879 		interval *= sd->busy_factor;
9880 
9881 	/* scale ms to jiffies */
9882 	interval = msecs_to_jiffies(interval);
9883 
9884 	/*
9885 	 * Reduce likelihood of busy balancing at higher domains racing with
9886 	 * balancing at lower domains by preventing their balancing periods
9887 	 * from being multiples of each other.
9888 	 */
9889 	if (cpu_busy)
9890 		interval -= 1;
9891 
9892 	interval = clamp(interval, 1UL, max_load_balance_interval);
9893 
9894 	return interval;
9895 }
9896 
9897 static inline void
9898 update_next_balance(struct sched_domain *sd, unsigned long *next_balance)
9899 {
9900 	unsigned long interval, next;
9901 
9902 	/* used by idle balance, so cpu_busy = 0 */
9903 	interval = get_sd_balance_interval(sd, 0);
9904 	next = sd->last_balance + interval;
9905 
9906 	if (time_after(*next_balance, next))
9907 		*next_balance = next;
9908 }
9909 
9910 /*
9911  * active_load_balance_cpu_stop is run by the CPU stopper. It pushes
9912  * running tasks off the busiest CPU onto idle CPUs. It requires at
9913  * least 1 task to be running on each physical CPU where possible, and
9914  * avoids physical / logical imbalances.
9915  */
9916 static int active_load_balance_cpu_stop(void *data)
9917 {
9918 	struct rq *busiest_rq = data;
9919 	int busiest_cpu = cpu_of(busiest_rq);
9920 	int target_cpu = busiest_rq->push_cpu;
9921 	struct rq *target_rq = cpu_rq(target_cpu);
9922 	struct sched_domain *sd;
9923 	struct task_struct *p = NULL;
9924 	struct rq_flags rf;
9925 
9926 	rq_lock_irq(busiest_rq, &rf);
9927 	/*
9928 	 * Between queueing the stop-work and running it is a hole in which
9929 	 * CPUs can become inactive. We should not move tasks from or to
9930 	 * inactive CPUs.
9931 	 */
9932 	if (!cpu_active(busiest_cpu) || !cpu_active(target_cpu))
9933 		goto out_unlock;
9934 
9935 	/* Make sure the requested CPU hasn't gone down in the meantime: */
9936 	if (unlikely(busiest_cpu != smp_processor_id() ||
9937 		     !busiest_rq->active_balance))
9938 		goto out_unlock;
9939 
9940 	/* Is there any task to move? */
9941 	if (busiest_rq->nr_running <= 1)
9942 		goto out_unlock;
9943 
9944 	/*
9945 	 * This condition is "impossible", if it occurs
9946 	 * we need to fix it. Originally reported by
9947 	 * Bjorn Helgaas on a 128-CPU setup.
9948 	 */
9949 	BUG_ON(busiest_rq == target_rq);
9950 
9951 	/* Search for an sd spanning us and the target CPU. */
9952 	rcu_read_lock();
9953 	for_each_domain(target_cpu, sd) {
9954 		if (cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
9955 			break;
9956 	}
9957 
9958 	if (likely(sd)) {
9959 		struct lb_env env = {
9960 			.sd		= sd,
9961 			.dst_cpu	= target_cpu,
9962 			.dst_rq		= target_rq,
9963 			.src_cpu	= busiest_rq->cpu,
9964 			.src_rq		= busiest_rq,
9965 			.idle		= CPU_IDLE,
9966 			.flags		= LBF_ACTIVE_LB,
9967 		};
9968 
9969 		schedstat_inc(sd->alb_count);
9970 		update_rq_clock(busiest_rq);
9971 
9972 		p = detach_one_task(&env);
9973 		if (p) {
9974 			schedstat_inc(sd->alb_pushed);
9975 			/* Active balancing done, reset the failure counter. */
9976 			sd->nr_balance_failed = 0;
9977 		} else {
9978 			schedstat_inc(sd->alb_failed);
9979 		}
9980 	}
9981 	rcu_read_unlock();
9982 out_unlock:
9983 	busiest_rq->active_balance = 0;
9984 	rq_unlock(busiest_rq, &rf);
9985 
9986 	if (p)
9987 		attach_one_task(target_rq, p);
9988 
9989 	local_irq_enable();
9990 
9991 	return 0;
9992 }
9993 
9994 static DEFINE_SPINLOCK(balancing);
9995 
9996 /*
9997  * Scale the max load_balance interval with the number of CPUs in the system.
9998  * This trades load-balance latency on larger machines for less cross talk.
9999  */
10000 void update_max_interval(void)
10001 {
10002 	max_load_balance_interval = HZ*num_online_cpus()/10;
10003 }
10004 
10005 /*
10006  * It checks each scheduling domain to see if it is due to be balanced,
10007  * and initiates a balancing operation if so.
10008  *
10009  * Balancing parameters are set up in init_sched_domains.
10010  */
10011 static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle)
10012 {
10013 	int continue_balancing = 1;
10014 	int cpu = rq->cpu;
10015 	int busy = idle != CPU_IDLE && !sched_idle_cpu(cpu);
10016 	unsigned long interval;
10017 	struct sched_domain *sd;
10018 	/* Earliest time when we have to do rebalance again */
10019 	unsigned long next_balance = jiffies + 60*HZ;
10020 	int update_next_balance = 0;
10021 	int need_serialize, need_decay = 0;
10022 	u64 max_cost = 0;
10023 
10024 	rcu_read_lock();
10025 	for_each_domain(cpu, sd) {
10026 		/*
10027 		 * Decay the newidle max times here because this is a regular
10028 		 * visit to all the domains. Decay ~1% per second.
10029 		 */
10030 		if (time_after(jiffies, sd->next_decay_max_lb_cost)) {
10031 			sd->max_newidle_lb_cost =
10032 				(sd->max_newidle_lb_cost * 253) / 256;
10033 			sd->next_decay_max_lb_cost = jiffies + HZ;
10034 			need_decay = 1;
10035 		}
10036 		max_cost += sd->max_newidle_lb_cost;
10037 
10038 		/*
10039 		 * Stop the load balance at this level. There is another
10040 		 * CPU in our sched group which is doing load balancing more
10041 		 * actively.
10042 		 */
10043 		if (!continue_balancing) {
10044 			if (need_decay)
10045 				continue;
10046 			break;
10047 		}
10048 
10049 		interval = get_sd_balance_interval(sd, busy);
10050 
10051 		need_serialize = sd->flags & SD_SERIALIZE;
10052 		if (need_serialize) {
10053 			if (!spin_trylock(&balancing))
10054 				goto out;
10055 		}
10056 
10057 		if (time_after_eq(jiffies, sd->last_balance + interval)) {
10058 			if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
10059 				/*
10060 				 * The LBF_DST_PINNED logic could have changed
10061 				 * env->dst_cpu, so we can't know our idle
10062 				 * state even if we migrated tasks. Update it.
10063 				 */
10064 				idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
10065 				busy = idle != CPU_IDLE && !sched_idle_cpu(cpu);
10066 			}
10067 			sd->last_balance = jiffies;
10068 			interval = get_sd_balance_interval(sd, busy);
10069 		}
10070 		if (need_serialize)
10071 			spin_unlock(&balancing);
10072 out:
10073 		if (time_after(next_balance, sd->last_balance + interval)) {
10074 			next_balance = sd->last_balance + interval;
10075 			update_next_balance = 1;
10076 		}
10077 	}
10078 	if (need_decay) {
10079 		/*
10080 		 * Ensure the rq-wide value also decays but keep it at a
10081 		 * reasonable floor to avoid funnies with rq->avg_idle.
10082 		 */
10083 		rq->max_idle_balance_cost =
10084 			max((u64)sysctl_sched_migration_cost, max_cost);
10085 	}
10086 	rcu_read_unlock();
10087 
10088 	/*
10089 	 * next_balance will be updated only when there is a need.
10090 	 * When the cpu is attached to null domain for ex, it will not be
10091 	 * updated.
10092 	 */
10093 	if (likely(update_next_balance))
10094 		rq->next_balance = next_balance;
10095 
10096 }
10097 
10098 static inline int on_null_domain(struct rq *rq)
10099 {
10100 	return unlikely(!rcu_dereference_sched(rq->sd));
10101 }
10102 
10103 #ifdef CONFIG_NO_HZ_COMMON
10104 /*
10105  * idle load balancing details
10106  * - When one of the busy CPUs notice that there may be an idle rebalancing
10107  *   needed, they will kick the idle load balancer, which then does idle
10108  *   load balancing for all the idle CPUs.
10109  * - HK_FLAG_MISC CPUs are used for this task, because HK_FLAG_SCHED not set
10110  *   anywhere yet.
10111  */
10112 
10113 static inline int find_new_ilb(void)
10114 {
10115 	int ilb;
10116 
10117 	for_each_cpu_and(ilb, nohz.idle_cpus_mask,
10118 			      housekeeping_cpumask(HK_FLAG_MISC)) {
10119 
10120 		if (ilb == smp_processor_id())
10121 			continue;
10122 
10123 		if (idle_cpu(ilb))
10124 			return ilb;
10125 	}
10126 
10127 	return nr_cpu_ids;
10128 }
10129 
10130 /*
10131  * Kick a CPU to do the nohz balancing, if it is time for it. We pick any
10132  * idle CPU in the HK_FLAG_MISC housekeeping set (if there is one).
10133  */
10134 static void kick_ilb(unsigned int flags)
10135 {
10136 	int ilb_cpu;
10137 
10138 	/*
10139 	 * Increase nohz.next_balance only when if full ilb is triggered but
10140 	 * not if we only update stats.
10141 	 */
10142 	if (flags & NOHZ_BALANCE_KICK)
10143 		nohz.next_balance = jiffies+1;
10144 
10145 	ilb_cpu = find_new_ilb();
10146 
10147 	if (ilb_cpu >= nr_cpu_ids)
10148 		return;
10149 
10150 	/*
10151 	 * Access to rq::nohz_csd is serialized by NOHZ_KICK_MASK; he who sets
10152 	 * the first flag owns it; cleared by nohz_csd_func().
10153 	 */
10154 	flags = atomic_fetch_or(flags, nohz_flags(ilb_cpu));
10155 	if (flags & NOHZ_KICK_MASK)
10156 		return;
10157 
10158 	/*
10159 	 * This way we generate an IPI on the target CPU which
10160 	 * is idle. And the softirq performing nohz idle load balance
10161 	 * will be run before returning from the IPI.
10162 	 */
10163 	smp_call_function_single_async(ilb_cpu, &cpu_rq(ilb_cpu)->nohz_csd);
10164 }
10165 
10166 /*
10167  * Current decision point for kicking the idle load balancer in the presence
10168  * of idle CPUs in the system.
10169  */
10170 static void nohz_balancer_kick(struct rq *rq)
10171 {
10172 	unsigned long now = jiffies;
10173 	struct sched_domain_shared *sds;
10174 	struct sched_domain *sd;
10175 	int nr_busy, i, cpu = rq->cpu;
10176 	unsigned int flags = 0;
10177 
10178 	if (unlikely(rq->idle_balance))
10179 		return;
10180 
10181 	/*
10182 	 * We may be recently in ticked or tickless idle mode. At the first
10183 	 * busy tick after returning from idle, we will update the busy stats.
10184 	 */
10185 	nohz_balance_exit_idle(rq);
10186 
10187 	/*
10188 	 * None are in tickless mode and hence no need for NOHZ idle load
10189 	 * balancing.
10190 	 */
10191 	if (likely(!atomic_read(&nohz.nr_cpus)))
10192 		return;
10193 
10194 	if (READ_ONCE(nohz.has_blocked) &&
10195 	    time_after(now, READ_ONCE(nohz.next_blocked)))
10196 		flags = NOHZ_STATS_KICK;
10197 
10198 	if (time_before(now, nohz.next_balance))
10199 		goto out;
10200 
10201 	if (rq->nr_running >= 2) {
10202 		flags = NOHZ_KICK_MASK;
10203 		goto out;
10204 	}
10205 
10206 	rcu_read_lock();
10207 
10208 	sd = rcu_dereference(rq->sd);
10209 	if (sd) {
10210 		/*
10211 		 * If there's a CFS task and the current CPU has reduced
10212 		 * capacity; kick the ILB to see if there's a better CPU to run
10213 		 * on.
10214 		 */
10215 		if (rq->cfs.h_nr_running >= 1 && check_cpu_capacity(rq, sd)) {
10216 			flags = NOHZ_KICK_MASK;
10217 			goto unlock;
10218 		}
10219 	}
10220 
10221 	sd = rcu_dereference(per_cpu(sd_asym_packing, cpu));
10222 	if (sd) {
10223 		/*
10224 		 * When ASYM_PACKING; see if there's a more preferred CPU
10225 		 * currently idle; in which case, kick the ILB to move tasks
10226 		 * around.
10227 		 */
10228 		for_each_cpu_and(i, sched_domain_span(sd), nohz.idle_cpus_mask) {
10229 			if (sched_asym_prefer(i, cpu)) {
10230 				flags = NOHZ_KICK_MASK;
10231 				goto unlock;
10232 			}
10233 		}
10234 	}
10235 
10236 	sd = rcu_dereference(per_cpu(sd_asym_cpucapacity, cpu));
10237 	if (sd) {
10238 		/*
10239 		 * When ASYM_CPUCAPACITY; see if there's a higher capacity CPU
10240 		 * to run the misfit task on.
10241 		 */
10242 		if (check_misfit_status(rq, sd)) {
10243 			flags = NOHZ_KICK_MASK;
10244 			goto unlock;
10245 		}
10246 
10247 		/*
10248 		 * For asymmetric systems, we do not want to nicely balance
10249 		 * cache use, instead we want to embrace asymmetry and only
10250 		 * ensure tasks have enough CPU capacity.
10251 		 *
10252 		 * Skip the LLC logic because it's not relevant in that case.
10253 		 */
10254 		goto unlock;
10255 	}
10256 
10257 	sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
10258 	if (sds) {
10259 		/*
10260 		 * If there is an imbalance between LLC domains (IOW we could
10261 		 * increase the overall cache use), we need some less-loaded LLC
10262 		 * domain to pull some load. Likewise, we may need to spread
10263 		 * load within the current LLC domain (e.g. packed SMT cores but
10264 		 * other CPUs are idle). We can't really know from here how busy
10265 		 * the others are - so just get a nohz balance going if it looks
10266 		 * like this LLC domain has tasks we could move.
10267 		 */
10268 		nr_busy = atomic_read(&sds->nr_busy_cpus);
10269 		if (nr_busy > 1) {
10270 			flags = NOHZ_KICK_MASK;
10271 			goto unlock;
10272 		}
10273 	}
10274 unlock:
10275 	rcu_read_unlock();
10276 out:
10277 	if (flags)
10278 		kick_ilb(flags);
10279 }
10280 
10281 static void set_cpu_sd_state_busy(int cpu)
10282 {
10283 	struct sched_domain *sd;
10284 
10285 	rcu_read_lock();
10286 	sd = rcu_dereference(per_cpu(sd_llc, cpu));
10287 
10288 	if (!sd || !sd->nohz_idle)
10289 		goto unlock;
10290 	sd->nohz_idle = 0;
10291 
10292 	atomic_inc(&sd->shared->nr_busy_cpus);
10293 unlock:
10294 	rcu_read_unlock();
10295 }
10296 
10297 void nohz_balance_exit_idle(struct rq *rq)
10298 {
10299 	SCHED_WARN_ON(rq != this_rq());
10300 
10301 	if (likely(!rq->nohz_tick_stopped))
10302 		return;
10303 
10304 	rq->nohz_tick_stopped = 0;
10305 	cpumask_clear_cpu(rq->cpu, nohz.idle_cpus_mask);
10306 	atomic_dec(&nohz.nr_cpus);
10307 
10308 	set_cpu_sd_state_busy(rq->cpu);
10309 }
10310 
10311 static void set_cpu_sd_state_idle(int cpu)
10312 {
10313 	struct sched_domain *sd;
10314 
10315 	rcu_read_lock();
10316 	sd = rcu_dereference(per_cpu(sd_llc, cpu));
10317 
10318 	if (!sd || sd->nohz_idle)
10319 		goto unlock;
10320 	sd->nohz_idle = 1;
10321 
10322 	atomic_dec(&sd->shared->nr_busy_cpus);
10323 unlock:
10324 	rcu_read_unlock();
10325 }
10326 
10327 /*
10328  * This routine will record that the CPU is going idle with tick stopped.
10329  * This info will be used in performing idle load balancing in the future.
10330  */
10331 void nohz_balance_enter_idle(int cpu)
10332 {
10333 	struct rq *rq = cpu_rq(cpu);
10334 
10335 	SCHED_WARN_ON(cpu != smp_processor_id());
10336 
10337 	/* If this CPU is going down, then nothing needs to be done: */
10338 	if (!cpu_active(cpu))
10339 		return;
10340 
10341 	/* Spare idle load balancing on CPUs that don't want to be disturbed: */
10342 	if (!housekeeping_cpu(cpu, HK_FLAG_SCHED))
10343 		return;
10344 
10345 	/*
10346 	 * Can be set safely without rq->lock held
10347 	 * If a clear happens, it will have evaluated last additions because
10348 	 * rq->lock is held during the check and the clear
10349 	 */
10350 	rq->has_blocked_load = 1;
10351 
10352 	/*
10353 	 * The tick is still stopped but load could have been added in the
10354 	 * meantime. We set the nohz.has_blocked flag to trig a check of the
10355 	 * *_avg. The CPU is already part of nohz.idle_cpus_mask so the clear
10356 	 * of nohz.has_blocked can only happen after checking the new load
10357 	 */
10358 	if (rq->nohz_tick_stopped)
10359 		goto out;
10360 
10361 	/* If we're a completely isolated CPU, we don't play: */
10362 	if (on_null_domain(rq))
10363 		return;
10364 
10365 	rq->nohz_tick_stopped = 1;
10366 
10367 	cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
10368 	atomic_inc(&nohz.nr_cpus);
10369 
10370 	/*
10371 	 * Ensures that if nohz_idle_balance() fails to observe our
10372 	 * @idle_cpus_mask store, it must observe the @has_blocked
10373 	 * store.
10374 	 */
10375 	smp_mb__after_atomic();
10376 
10377 	set_cpu_sd_state_idle(cpu);
10378 
10379 out:
10380 	/*
10381 	 * Each time a cpu enter idle, we assume that it has blocked load and
10382 	 * enable the periodic update of the load of idle cpus
10383 	 */
10384 	WRITE_ONCE(nohz.has_blocked, 1);
10385 }
10386 
10387 static bool update_nohz_stats(struct rq *rq)
10388 {
10389 	unsigned int cpu = rq->cpu;
10390 
10391 	if (!rq->has_blocked_load)
10392 		return false;
10393 
10394 	if (!cpumask_test_cpu(cpu, nohz.idle_cpus_mask))
10395 		return false;
10396 
10397 	if (!time_after(jiffies, READ_ONCE(rq->last_blocked_load_update_tick)))
10398 		return true;
10399 
10400 	update_blocked_averages(cpu);
10401 
10402 	return rq->has_blocked_load;
10403 }
10404 
10405 /*
10406  * Internal function that runs load balance for all idle cpus. The load balance
10407  * can be a simple update of blocked load or a complete load balance with
10408  * tasks movement depending of flags.
10409  */
10410 static void _nohz_idle_balance(struct rq *this_rq, unsigned int flags,
10411 			       enum cpu_idle_type idle)
10412 {
10413 	/* Earliest time when we have to do rebalance again */
10414 	unsigned long now = jiffies;
10415 	unsigned long next_balance = now + 60*HZ;
10416 	bool has_blocked_load = false;
10417 	int update_next_balance = 0;
10418 	int this_cpu = this_rq->cpu;
10419 	int balance_cpu;
10420 	struct rq *rq;
10421 
10422 	SCHED_WARN_ON((flags & NOHZ_KICK_MASK) == NOHZ_BALANCE_KICK);
10423 
10424 	/*
10425 	 * We assume there will be no idle load after this update and clear
10426 	 * the has_blocked flag. If a cpu enters idle in the mean time, it will
10427 	 * set the has_blocked flag and trig another update of idle load.
10428 	 * Because a cpu that becomes idle, is added to idle_cpus_mask before
10429 	 * setting the flag, we are sure to not clear the state and not
10430 	 * check the load of an idle cpu.
10431 	 */
10432 	WRITE_ONCE(nohz.has_blocked, 0);
10433 
10434 	/*
10435 	 * Ensures that if we miss the CPU, we must see the has_blocked
10436 	 * store from nohz_balance_enter_idle().
10437 	 */
10438 	smp_mb();
10439 
10440 	/*
10441 	 * Start with the next CPU after this_cpu so we will end with this_cpu and let a
10442 	 * chance for other idle cpu to pull load.
10443 	 */
10444 	for_each_cpu_wrap(balance_cpu,  nohz.idle_cpus_mask, this_cpu+1) {
10445 		if (!idle_cpu(balance_cpu))
10446 			continue;
10447 
10448 		/*
10449 		 * If this CPU gets work to do, stop the load balancing
10450 		 * work being done for other CPUs. Next load
10451 		 * balancing owner will pick it up.
10452 		 */
10453 		if (need_resched()) {
10454 			has_blocked_load = true;
10455 			goto abort;
10456 		}
10457 
10458 		rq = cpu_rq(balance_cpu);
10459 
10460 		has_blocked_load |= update_nohz_stats(rq);
10461 
10462 		/*
10463 		 * If time for next balance is due,
10464 		 * do the balance.
10465 		 */
10466 		if (time_after_eq(jiffies, rq->next_balance)) {
10467 			struct rq_flags rf;
10468 
10469 			rq_lock_irqsave(rq, &rf);
10470 			update_rq_clock(rq);
10471 			rq_unlock_irqrestore(rq, &rf);
10472 
10473 			if (flags & NOHZ_BALANCE_KICK)
10474 				rebalance_domains(rq, CPU_IDLE);
10475 		}
10476 
10477 		if (time_after(next_balance, rq->next_balance)) {
10478 			next_balance = rq->next_balance;
10479 			update_next_balance = 1;
10480 		}
10481 	}
10482 
10483 	/*
10484 	 * next_balance will be updated only when there is a need.
10485 	 * When the CPU is attached to null domain for ex, it will not be
10486 	 * updated.
10487 	 */
10488 	if (likely(update_next_balance))
10489 		nohz.next_balance = next_balance;
10490 
10491 	WRITE_ONCE(nohz.next_blocked,
10492 		now + msecs_to_jiffies(LOAD_AVG_PERIOD));
10493 
10494 abort:
10495 	/* There is still blocked load, enable periodic update */
10496 	if (has_blocked_load)
10497 		WRITE_ONCE(nohz.has_blocked, 1);
10498 }
10499 
10500 /*
10501  * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
10502  * rebalancing for all the cpus for whom scheduler ticks are stopped.
10503  */
10504 static bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
10505 {
10506 	unsigned int flags = this_rq->nohz_idle_balance;
10507 
10508 	if (!flags)
10509 		return false;
10510 
10511 	this_rq->nohz_idle_balance = 0;
10512 
10513 	if (idle != CPU_IDLE)
10514 		return false;
10515 
10516 	_nohz_idle_balance(this_rq, flags, idle);
10517 
10518 	return true;
10519 }
10520 
10521 /*
10522  * Check if we need to run the ILB for updating blocked load before entering
10523  * idle state.
10524  */
10525 void nohz_run_idle_balance(int cpu)
10526 {
10527 	unsigned int flags;
10528 
10529 	flags = atomic_fetch_andnot(NOHZ_NEWILB_KICK, nohz_flags(cpu));
10530 
10531 	/*
10532 	 * Update the blocked load only if no SCHED_SOFTIRQ is about to happen
10533 	 * (ie NOHZ_STATS_KICK set) and will do the same.
10534 	 */
10535 	if ((flags == NOHZ_NEWILB_KICK) && !need_resched())
10536 		_nohz_idle_balance(cpu_rq(cpu), NOHZ_STATS_KICK, CPU_IDLE);
10537 }
10538 
10539 static void nohz_newidle_balance(struct rq *this_rq)
10540 {
10541 	int this_cpu = this_rq->cpu;
10542 
10543 	/*
10544 	 * This CPU doesn't want to be disturbed by scheduler
10545 	 * housekeeping
10546 	 */
10547 	if (!housekeeping_cpu(this_cpu, HK_FLAG_SCHED))
10548 		return;
10549 
10550 	/* Will wake up very soon. No time for doing anything else*/
10551 	if (this_rq->avg_idle < sysctl_sched_migration_cost)
10552 		return;
10553 
10554 	/* Don't need to update blocked load of idle CPUs*/
10555 	if (!READ_ONCE(nohz.has_blocked) ||
10556 	    time_before(jiffies, READ_ONCE(nohz.next_blocked)))
10557 		return;
10558 
10559 	/*
10560 	 * Set the need to trigger ILB in order to update blocked load
10561 	 * before entering idle state.
10562 	 */
10563 	atomic_or(NOHZ_NEWILB_KICK, nohz_flags(this_cpu));
10564 }
10565 
10566 #else /* !CONFIG_NO_HZ_COMMON */
10567 static inline void nohz_balancer_kick(struct rq *rq) { }
10568 
10569 static inline bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
10570 {
10571 	return false;
10572 }
10573 
10574 static inline void nohz_newidle_balance(struct rq *this_rq) { }
10575 #endif /* CONFIG_NO_HZ_COMMON */
10576 
10577 /*
10578  * newidle_balance is called by schedule() if this_cpu is about to become
10579  * idle. Attempts to pull tasks from other CPUs.
10580  *
10581  * Returns:
10582  *   < 0 - we released the lock and there are !fair tasks present
10583  *     0 - failed, no new tasks
10584  *   > 0 - success, new (fair) tasks present
10585  */
10586 static int newidle_balance(struct rq *this_rq, struct rq_flags *rf)
10587 {
10588 	unsigned long next_balance = jiffies + HZ;
10589 	int this_cpu = this_rq->cpu;
10590 	struct sched_domain *sd;
10591 	int pulled_task = 0;
10592 	u64 curr_cost = 0;
10593 
10594 	update_misfit_status(NULL, this_rq);
10595 	/*
10596 	 * We must set idle_stamp _before_ calling idle_balance(), such that we
10597 	 * measure the duration of idle_balance() as idle time.
10598 	 */
10599 	this_rq->idle_stamp = rq_clock(this_rq);
10600 
10601 	/*
10602 	 * Do not pull tasks towards !active CPUs...
10603 	 */
10604 	if (!cpu_active(this_cpu))
10605 		return 0;
10606 
10607 	/*
10608 	 * This is OK, because current is on_cpu, which avoids it being picked
10609 	 * for load-balance and preemption/IRQs are still disabled avoiding
10610 	 * further scheduler activity on it and we're being very careful to
10611 	 * re-start the picking loop.
10612 	 */
10613 	rq_unpin_lock(this_rq, rf);
10614 
10615 	if (this_rq->avg_idle < sysctl_sched_migration_cost ||
10616 	    !READ_ONCE(this_rq->rd->overload)) {
10617 
10618 		rcu_read_lock();
10619 		sd = rcu_dereference_check_sched_domain(this_rq->sd);
10620 		if (sd)
10621 			update_next_balance(sd, &next_balance);
10622 		rcu_read_unlock();
10623 
10624 		goto out;
10625 	}
10626 
10627 	raw_spin_unlock(&this_rq->lock);
10628 
10629 	update_blocked_averages(this_cpu);
10630 	rcu_read_lock();
10631 	for_each_domain(this_cpu, sd) {
10632 		int continue_balancing = 1;
10633 		u64 t0, domain_cost;
10634 
10635 		if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) {
10636 			update_next_balance(sd, &next_balance);
10637 			break;
10638 		}
10639 
10640 		if (sd->flags & SD_BALANCE_NEWIDLE) {
10641 			t0 = sched_clock_cpu(this_cpu);
10642 
10643 			pulled_task = load_balance(this_cpu, this_rq,
10644 						   sd, CPU_NEWLY_IDLE,
10645 						   &continue_balancing);
10646 
10647 			domain_cost = sched_clock_cpu(this_cpu) - t0;
10648 			if (domain_cost > sd->max_newidle_lb_cost)
10649 				sd->max_newidle_lb_cost = domain_cost;
10650 
10651 			curr_cost += domain_cost;
10652 		}
10653 
10654 		update_next_balance(sd, &next_balance);
10655 
10656 		/*
10657 		 * Stop searching for tasks to pull if there are
10658 		 * now runnable tasks on this rq.
10659 		 */
10660 		if (pulled_task || this_rq->nr_running > 0)
10661 			break;
10662 	}
10663 	rcu_read_unlock();
10664 
10665 	raw_spin_lock(&this_rq->lock);
10666 
10667 	if (curr_cost > this_rq->max_idle_balance_cost)
10668 		this_rq->max_idle_balance_cost = curr_cost;
10669 
10670 	/*
10671 	 * While browsing the domains, we released the rq lock, a task could
10672 	 * have been enqueued in the meantime. Since we're not going idle,
10673 	 * pretend we pulled a task.
10674 	 */
10675 	if (this_rq->cfs.h_nr_running && !pulled_task)
10676 		pulled_task = 1;
10677 
10678 	/* Is there a task of a high priority class? */
10679 	if (this_rq->nr_running != this_rq->cfs.h_nr_running)
10680 		pulled_task = -1;
10681 
10682 out:
10683 	/* Move the next balance forward */
10684 	if (time_after(this_rq->next_balance, next_balance))
10685 		this_rq->next_balance = next_balance;
10686 
10687 	if (pulled_task)
10688 		this_rq->idle_stamp = 0;
10689 	else
10690 		nohz_newidle_balance(this_rq);
10691 
10692 	rq_repin_lock(this_rq, rf);
10693 
10694 	return pulled_task;
10695 }
10696 
10697 /*
10698  * run_rebalance_domains is triggered when needed from the scheduler tick.
10699  * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
10700  */
10701 static __latent_entropy void run_rebalance_domains(struct softirq_action *h)
10702 {
10703 	struct rq *this_rq = this_rq();
10704 	enum cpu_idle_type idle = this_rq->idle_balance ?
10705 						CPU_IDLE : CPU_NOT_IDLE;
10706 
10707 	/*
10708 	 * If this CPU has a pending nohz_balance_kick, then do the
10709 	 * balancing on behalf of the other idle CPUs whose ticks are
10710 	 * stopped. Do nohz_idle_balance *before* rebalance_domains to
10711 	 * give the idle CPUs a chance to load balance. Else we may
10712 	 * load balance only within the local sched_domain hierarchy
10713 	 * and abort nohz_idle_balance altogether if we pull some load.
10714 	 */
10715 	if (nohz_idle_balance(this_rq, idle))
10716 		return;
10717 
10718 	/* normal load balance */
10719 	update_blocked_averages(this_rq->cpu);
10720 	rebalance_domains(this_rq, idle);
10721 }
10722 
10723 /*
10724  * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
10725  */
10726 void trigger_load_balance(struct rq *rq)
10727 {
10728 	/*
10729 	 * Don't need to rebalance while attached to NULL domain or
10730 	 * runqueue CPU is not active
10731 	 */
10732 	if (unlikely(on_null_domain(rq) || !cpu_active(cpu_of(rq))))
10733 		return;
10734 
10735 	if (time_after_eq(jiffies, rq->next_balance))
10736 		raise_softirq(SCHED_SOFTIRQ);
10737 
10738 	nohz_balancer_kick(rq);
10739 }
10740 
10741 static void rq_online_fair(struct rq *rq)
10742 {
10743 	update_sysctl();
10744 
10745 	update_runtime_enabled(rq);
10746 }
10747 
10748 static void rq_offline_fair(struct rq *rq)
10749 {
10750 	update_sysctl();
10751 
10752 	/* Ensure any throttled groups are reachable by pick_next_task */
10753 	unthrottle_offline_cfs_rqs(rq);
10754 }
10755 
10756 #endif /* CONFIG_SMP */
10757 
10758 /*
10759  * scheduler tick hitting a task of our scheduling class.
10760  *
10761  * NOTE: This function can be called remotely by the tick offload that
10762  * goes along full dynticks. Therefore no local assumption can be made
10763  * and everything must be accessed through the @rq and @curr passed in
10764  * parameters.
10765  */
10766 static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
10767 {
10768 	struct cfs_rq *cfs_rq;
10769 	struct sched_entity *se = &curr->se;
10770 
10771 	for_each_sched_entity(se) {
10772 		cfs_rq = cfs_rq_of(se);
10773 		entity_tick(cfs_rq, se, queued);
10774 	}
10775 
10776 	if (static_branch_unlikely(&sched_numa_balancing))
10777 		task_tick_numa(rq, curr);
10778 
10779 	update_misfit_status(curr, rq);
10780 	update_overutilized_status(task_rq(curr));
10781 }
10782 
10783 /*
10784  * called on fork with the child task as argument from the parent's context
10785  *  - child not yet on the tasklist
10786  *  - preemption disabled
10787  */
10788 static void task_fork_fair(struct task_struct *p)
10789 {
10790 	struct cfs_rq *cfs_rq;
10791 	struct sched_entity *se = &p->se, *curr;
10792 	struct rq *rq = this_rq();
10793 	struct rq_flags rf;
10794 
10795 	rq_lock(rq, &rf);
10796 	update_rq_clock(rq);
10797 
10798 	cfs_rq = task_cfs_rq(current);
10799 	curr = cfs_rq->curr;
10800 	if (curr) {
10801 		update_curr(cfs_rq);
10802 		se->vruntime = curr->vruntime;
10803 	}
10804 	place_entity(cfs_rq, se, 1);
10805 
10806 	if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
10807 		/*
10808 		 * Upon rescheduling, sched_class::put_prev_task() will place
10809 		 * 'current' within the tree based on its new key value.
10810 		 */
10811 		swap(curr->vruntime, se->vruntime);
10812 		resched_curr(rq);
10813 	}
10814 
10815 	se->vruntime -= cfs_rq->min_vruntime;
10816 	rq_unlock(rq, &rf);
10817 }
10818 
10819 /*
10820  * Priority of the task has changed. Check to see if we preempt
10821  * the current task.
10822  */
10823 static void
10824 prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
10825 {
10826 	if (!task_on_rq_queued(p))
10827 		return;
10828 
10829 	if (rq->cfs.nr_running == 1)
10830 		return;
10831 
10832 	/*
10833 	 * Reschedule if we are currently running on this runqueue and
10834 	 * our priority decreased, or if we are not currently running on
10835 	 * this runqueue and our priority is higher than the current's
10836 	 */
10837 	if (task_current(rq, p)) {
10838 		if (p->prio > oldprio)
10839 			resched_curr(rq);
10840 	} else
10841 		check_preempt_curr(rq, p, 0);
10842 }
10843 
10844 static inline bool vruntime_normalized(struct task_struct *p)
10845 {
10846 	struct sched_entity *se = &p->se;
10847 
10848 	/*
10849 	 * In both the TASK_ON_RQ_QUEUED and TASK_ON_RQ_MIGRATING cases,
10850 	 * the dequeue_entity(.flags=0) will already have normalized the
10851 	 * vruntime.
10852 	 */
10853 	if (p->on_rq)
10854 		return true;
10855 
10856 	/*
10857 	 * When !on_rq, vruntime of the task has usually NOT been normalized.
10858 	 * But there are some cases where it has already been normalized:
10859 	 *
10860 	 * - A forked child which is waiting for being woken up by
10861 	 *   wake_up_new_task().
10862 	 * - A task which has been woken up by try_to_wake_up() and
10863 	 *   waiting for actually being woken up by sched_ttwu_pending().
10864 	 */
10865 	if (!se->sum_exec_runtime ||
10866 	    (p->state == TASK_WAKING && p->sched_remote_wakeup))
10867 		return true;
10868 
10869 	return false;
10870 }
10871 
10872 #ifdef CONFIG_FAIR_GROUP_SCHED
10873 /*
10874  * Propagate the changes of the sched_entity across the tg tree to make it
10875  * visible to the root
10876  */
10877 static void propagate_entity_cfs_rq(struct sched_entity *se)
10878 {
10879 	struct cfs_rq *cfs_rq;
10880 
10881 	list_add_leaf_cfs_rq(cfs_rq_of(se));
10882 
10883 	/* Start to propagate at parent */
10884 	se = se->parent;
10885 
10886 	for_each_sched_entity(se) {
10887 		cfs_rq = cfs_rq_of(se);
10888 
10889 		if (!cfs_rq_throttled(cfs_rq)){
10890 			update_load_avg(cfs_rq, se, UPDATE_TG);
10891 			list_add_leaf_cfs_rq(cfs_rq);
10892 			continue;
10893 		}
10894 
10895 		if (list_add_leaf_cfs_rq(cfs_rq))
10896 			break;
10897 	}
10898 }
10899 #else
10900 static void propagate_entity_cfs_rq(struct sched_entity *se) { }
10901 #endif
10902 
10903 static void detach_entity_cfs_rq(struct sched_entity *se)
10904 {
10905 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
10906 
10907 	/* Catch up with the cfs_rq and remove our load when we leave */
10908 	update_load_avg(cfs_rq, se, 0);
10909 	detach_entity_load_avg(cfs_rq, se);
10910 	update_tg_load_avg(cfs_rq);
10911 	propagate_entity_cfs_rq(se);
10912 }
10913 
10914 static void attach_entity_cfs_rq(struct sched_entity *se)
10915 {
10916 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
10917 
10918 #ifdef CONFIG_FAIR_GROUP_SCHED
10919 	/*
10920 	 * Since the real-depth could have been changed (only FAIR
10921 	 * class maintain depth value), reset depth properly.
10922 	 */
10923 	se->depth = se->parent ? se->parent->depth + 1 : 0;
10924 #endif
10925 
10926 	/* Synchronize entity with its cfs_rq */
10927 	update_load_avg(cfs_rq, se, sched_feat(ATTACH_AGE_LOAD) ? 0 : SKIP_AGE_LOAD);
10928 	attach_entity_load_avg(cfs_rq, se);
10929 	update_tg_load_avg(cfs_rq);
10930 	propagate_entity_cfs_rq(se);
10931 }
10932 
10933 static void detach_task_cfs_rq(struct task_struct *p)
10934 {
10935 	struct sched_entity *se = &p->se;
10936 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
10937 
10938 	if (!vruntime_normalized(p)) {
10939 		/*
10940 		 * Fix up our vruntime so that the current sleep doesn't
10941 		 * cause 'unlimited' sleep bonus.
10942 		 */
10943 		place_entity(cfs_rq, se, 0);
10944 		se->vruntime -= cfs_rq->min_vruntime;
10945 	}
10946 
10947 	detach_entity_cfs_rq(se);
10948 }
10949 
10950 static void attach_task_cfs_rq(struct task_struct *p)
10951 {
10952 	struct sched_entity *se = &p->se;
10953 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
10954 
10955 	attach_entity_cfs_rq(se);
10956 
10957 	if (!vruntime_normalized(p))
10958 		se->vruntime += cfs_rq->min_vruntime;
10959 }
10960 
10961 static void switched_from_fair(struct rq *rq, struct task_struct *p)
10962 {
10963 	detach_task_cfs_rq(p);
10964 }
10965 
10966 static void switched_to_fair(struct rq *rq, struct task_struct *p)
10967 {
10968 	attach_task_cfs_rq(p);
10969 
10970 	if (task_on_rq_queued(p)) {
10971 		/*
10972 		 * We were most likely switched from sched_rt, so
10973 		 * kick off the schedule if running, otherwise just see
10974 		 * if we can still preempt the current task.
10975 		 */
10976 		if (task_current(rq, p))
10977 			resched_curr(rq);
10978 		else
10979 			check_preempt_curr(rq, p, 0);
10980 	}
10981 }
10982 
10983 /* Account for a task changing its policy or group.
10984  *
10985  * This routine is mostly called to set cfs_rq->curr field when a task
10986  * migrates between groups/classes.
10987  */
10988 static void set_next_task_fair(struct rq *rq, struct task_struct *p, bool first)
10989 {
10990 	struct sched_entity *se = &p->se;
10991 
10992 #ifdef CONFIG_SMP
10993 	if (task_on_rq_queued(p)) {
10994 		/*
10995 		 * Move the next running task to the front of the list, so our
10996 		 * cfs_tasks list becomes MRU one.
10997 		 */
10998 		list_move(&se->group_node, &rq->cfs_tasks);
10999 	}
11000 #endif
11001 
11002 	for_each_sched_entity(se) {
11003 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
11004 
11005 		set_next_entity(cfs_rq, se);
11006 		/* ensure bandwidth has been allocated on our new cfs_rq */
11007 		account_cfs_rq_runtime(cfs_rq, 0);
11008 	}
11009 }
11010 
11011 void init_cfs_rq(struct cfs_rq *cfs_rq)
11012 {
11013 	cfs_rq->tasks_timeline = RB_ROOT_CACHED;
11014 	cfs_rq->min_vruntime = (u64)(-(1LL << 20));
11015 #ifndef CONFIG_64BIT
11016 	cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
11017 #endif
11018 #ifdef CONFIG_SMP
11019 	raw_spin_lock_init(&cfs_rq->removed.lock);
11020 #endif
11021 }
11022 
11023 #ifdef CONFIG_FAIR_GROUP_SCHED
11024 static void task_set_group_fair(struct task_struct *p)
11025 {
11026 	struct sched_entity *se = &p->se;
11027 
11028 	set_task_rq(p, task_cpu(p));
11029 	se->depth = se->parent ? se->parent->depth + 1 : 0;
11030 }
11031 
11032 static void task_move_group_fair(struct task_struct *p)
11033 {
11034 	detach_task_cfs_rq(p);
11035 	set_task_rq(p, task_cpu(p));
11036 
11037 #ifdef CONFIG_SMP
11038 	/* Tell se's cfs_rq has been changed -- migrated */
11039 	p->se.avg.last_update_time = 0;
11040 #endif
11041 	attach_task_cfs_rq(p);
11042 }
11043 
11044 static void task_change_group_fair(struct task_struct *p, int type)
11045 {
11046 	switch (type) {
11047 	case TASK_SET_GROUP:
11048 		task_set_group_fair(p);
11049 		break;
11050 
11051 	case TASK_MOVE_GROUP:
11052 		task_move_group_fair(p);
11053 		break;
11054 	}
11055 }
11056 
11057 void free_fair_sched_group(struct task_group *tg)
11058 {
11059 	int i;
11060 
11061 	destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
11062 
11063 	for_each_possible_cpu(i) {
11064 		if (tg->cfs_rq)
11065 			kfree(tg->cfs_rq[i]);
11066 		if (tg->se)
11067 			kfree(tg->se[i]);
11068 	}
11069 
11070 	kfree(tg->cfs_rq);
11071 	kfree(tg->se);
11072 }
11073 
11074 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
11075 {
11076 	struct sched_entity *se;
11077 	struct cfs_rq *cfs_rq;
11078 	int i;
11079 
11080 	tg->cfs_rq = kcalloc(nr_cpu_ids, sizeof(cfs_rq), GFP_KERNEL);
11081 	if (!tg->cfs_rq)
11082 		goto err;
11083 	tg->se = kcalloc(nr_cpu_ids, sizeof(se), GFP_KERNEL);
11084 	if (!tg->se)
11085 		goto err;
11086 
11087 	tg->shares = NICE_0_LOAD;
11088 
11089 	init_cfs_bandwidth(tg_cfs_bandwidth(tg));
11090 
11091 	for_each_possible_cpu(i) {
11092 		cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
11093 				      GFP_KERNEL, cpu_to_node(i));
11094 		if (!cfs_rq)
11095 			goto err;
11096 
11097 		se = kzalloc_node(sizeof(struct sched_entity),
11098 				  GFP_KERNEL, cpu_to_node(i));
11099 		if (!se)
11100 			goto err_free_rq;
11101 
11102 		init_cfs_rq(cfs_rq);
11103 		init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
11104 		init_entity_runnable_average(se);
11105 	}
11106 
11107 	return 1;
11108 
11109 err_free_rq:
11110 	kfree(cfs_rq);
11111 err:
11112 	return 0;
11113 }
11114 
11115 void online_fair_sched_group(struct task_group *tg)
11116 {
11117 	struct sched_entity *se;
11118 	struct rq_flags rf;
11119 	struct rq *rq;
11120 	int i;
11121 
11122 	for_each_possible_cpu(i) {
11123 		rq = cpu_rq(i);
11124 		se = tg->se[i];
11125 		rq_lock_irq(rq, &rf);
11126 		update_rq_clock(rq);
11127 		attach_entity_cfs_rq(se);
11128 		sync_throttle(tg, i);
11129 		rq_unlock_irq(rq, &rf);
11130 	}
11131 }
11132 
11133 void unregister_fair_sched_group(struct task_group *tg)
11134 {
11135 	unsigned long flags;
11136 	struct rq *rq;
11137 	int cpu;
11138 
11139 	for_each_possible_cpu(cpu) {
11140 		if (tg->se[cpu])
11141 			remove_entity_load_avg(tg->se[cpu]);
11142 
11143 		/*
11144 		 * Only empty task groups can be destroyed; so we can speculatively
11145 		 * check on_list without danger of it being re-added.
11146 		 */
11147 		if (!tg->cfs_rq[cpu]->on_list)
11148 			continue;
11149 
11150 		rq = cpu_rq(cpu);
11151 
11152 		raw_spin_lock_irqsave(&rq->lock, flags);
11153 		list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
11154 		raw_spin_unlock_irqrestore(&rq->lock, flags);
11155 	}
11156 }
11157 
11158 void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
11159 			struct sched_entity *se, int cpu,
11160 			struct sched_entity *parent)
11161 {
11162 	struct rq *rq = cpu_rq(cpu);
11163 
11164 	cfs_rq->tg = tg;
11165 	cfs_rq->rq = rq;
11166 	init_cfs_rq_runtime(cfs_rq);
11167 
11168 	tg->cfs_rq[cpu] = cfs_rq;
11169 	tg->se[cpu] = se;
11170 
11171 	/* se could be NULL for root_task_group */
11172 	if (!se)
11173 		return;
11174 
11175 	if (!parent) {
11176 		se->cfs_rq = &rq->cfs;
11177 		se->depth = 0;
11178 	} else {
11179 		se->cfs_rq = parent->my_q;
11180 		se->depth = parent->depth + 1;
11181 	}
11182 
11183 	se->my_q = cfs_rq;
11184 	/* guarantee group entities always have weight */
11185 	update_load_set(&se->load, NICE_0_LOAD);
11186 	se->parent = parent;
11187 }
11188 
11189 static DEFINE_MUTEX(shares_mutex);
11190 
11191 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
11192 {
11193 	int i;
11194 
11195 	/*
11196 	 * We can't change the weight of the root cgroup.
11197 	 */
11198 	if (!tg->se[0])
11199 		return -EINVAL;
11200 
11201 	shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
11202 
11203 	mutex_lock(&shares_mutex);
11204 	if (tg->shares == shares)
11205 		goto done;
11206 
11207 	tg->shares = shares;
11208 	for_each_possible_cpu(i) {
11209 		struct rq *rq = cpu_rq(i);
11210 		struct sched_entity *se = tg->se[i];
11211 		struct rq_flags rf;
11212 
11213 		/* Propagate contribution to hierarchy */
11214 		rq_lock_irqsave(rq, &rf);
11215 		update_rq_clock(rq);
11216 		for_each_sched_entity(se) {
11217 			update_load_avg(cfs_rq_of(se), se, UPDATE_TG);
11218 			update_cfs_group(se);
11219 		}
11220 		rq_unlock_irqrestore(rq, &rf);
11221 	}
11222 
11223 done:
11224 	mutex_unlock(&shares_mutex);
11225 	return 0;
11226 }
11227 #else /* CONFIG_FAIR_GROUP_SCHED */
11228 
11229 void free_fair_sched_group(struct task_group *tg) { }
11230 
11231 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
11232 {
11233 	return 1;
11234 }
11235 
11236 void online_fair_sched_group(struct task_group *tg) { }
11237 
11238 void unregister_fair_sched_group(struct task_group *tg) { }
11239 
11240 #endif /* CONFIG_FAIR_GROUP_SCHED */
11241 
11242 
11243 static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
11244 {
11245 	struct sched_entity *se = &task->se;
11246 	unsigned int rr_interval = 0;
11247 
11248 	/*
11249 	 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
11250 	 * idle runqueue:
11251 	 */
11252 	if (rq->cfs.load.weight)
11253 		rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
11254 
11255 	return rr_interval;
11256 }
11257 
11258 /*
11259  * All the scheduling class methods:
11260  */
11261 DEFINE_SCHED_CLASS(fair) = {
11262 
11263 	.enqueue_task		= enqueue_task_fair,
11264 	.dequeue_task		= dequeue_task_fair,
11265 	.yield_task		= yield_task_fair,
11266 	.yield_to_task		= yield_to_task_fair,
11267 
11268 	.check_preempt_curr	= check_preempt_wakeup,
11269 
11270 	.pick_next_task		= __pick_next_task_fair,
11271 	.put_prev_task		= put_prev_task_fair,
11272 	.set_next_task          = set_next_task_fair,
11273 
11274 #ifdef CONFIG_SMP
11275 	.balance		= balance_fair,
11276 	.select_task_rq		= select_task_rq_fair,
11277 	.migrate_task_rq	= migrate_task_rq_fair,
11278 
11279 	.rq_online		= rq_online_fair,
11280 	.rq_offline		= rq_offline_fair,
11281 
11282 	.task_dead		= task_dead_fair,
11283 	.set_cpus_allowed	= set_cpus_allowed_common,
11284 #endif
11285 
11286 	.task_tick		= task_tick_fair,
11287 	.task_fork		= task_fork_fair,
11288 
11289 	.prio_changed		= prio_changed_fair,
11290 	.switched_from		= switched_from_fair,
11291 	.switched_to		= switched_to_fair,
11292 
11293 	.get_rr_interval	= get_rr_interval_fair,
11294 
11295 	.update_curr		= update_curr_fair,
11296 
11297 #ifdef CONFIG_FAIR_GROUP_SCHED
11298 	.task_change_group	= task_change_group_fair,
11299 #endif
11300 
11301 #ifdef CONFIG_UCLAMP_TASK
11302 	.uclamp_enabled		= 1,
11303 #endif
11304 };
11305 
11306 #ifdef CONFIG_SCHED_DEBUG
11307 void print_cfs_stats(struct seq_file *m, int cpu)
11308 {
11309 	struct cfs_rq *cfs_rq, *pos;
11310 
11311 	rcu_read_lock();
11312 	for_each_leaf_cfs_rq_safe(cpu_rq(cpu), cfs_rq, pos)
11313 		print_cfs_rq(m, cpu, cfs_rq);
11314 	rcu_read_unlock();
11315 }
11316 
11317 #ifdef CONFIG_NUMA_BALANCING
11318 void show_numa_stats(struct task_struct *p, struct seq_file *m)
11319 {
11320 	int node;
11321 	unsigned long tsf = 0, tpf = 0, gsf = 0, gpf = 0;
11322 	struct numa_group *ng;
11323 
11324 	rcu_read_lock();
11325 	ng = rcu_dereference(p->numa_group);
11326 	for_each_online_node(node) {
11327 		if (p->numa_faults) {
11328 			tsf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 0)];
11329 			tpf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 1)];
11330 		}
11331 		if (ng) {
11332 			gsf = ng->faults[task_faults_idx(NUMA_MEM, node, 0)],
11333 			gpf = ng->faults[task_faults_idx(NUMA_MEM, node, 1)];
11334 		}
11335 		print_numa_stats(m, node, tsf, tpf, gsf, gpf);
11336 	}
11337 	rcu_read_unlock();
11338 }
11339 #endif /* CONFIG_NUMA_BALANCING */
11340 #endif /* CONFIG_SCHED_DEBUG */
11341 
11342 __init void init_sched_fair_class(void)
11343 {
11344 #ifdef CONFIG_SMP
11345 	open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
11346 
11347 #ifdef CONFIG_NO_HZ_COMMON
11348 	nohz.next_balance = jiffies;
11349 	nohz.next_blocked = jiffies;
11350 	zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
11351 #endif
11352 #endif /* SMP */
11353 
11354 }
11355 
11356 /*
11357  * Helper functions to facilitate extracting info from tracepoints.
11358  */
11359 
11360 const struct sched_avg *sched_trace_cfs_rq_avg(struct cfs_rq *cfs_rq)
11361 {
11362 #ifdef CONFIG_SMP
11363 	return cfs_rq ? &cfs_rq->avg : NULL;
11364 #else
11365 	return NULL;
11366 #endif
11367 }
11368 EXPORT_SYMBOL_GPL(sched_trace_cfs_rq_avg);
11369 
11370 char *sched_trace_cfs_rq_path(struct cfs_rq *cfs_rq, char *str, int len)
11371 {
11372 	if (!cfs_rq) {
11373 		if (str)
11374 			strlcpy(str, "(null)", len);
11375 		else
11376 			return NULL;
11377 	}
11378 
11379 	cfs_rq_tg_path(cfs_rq, str, len);
11380 	return str;
11381 }
11382 EXPORT_SYMBOL_GPL(sched_trace_cfs_rq_path);
11383 
11384 int sched_trace_cfs_rq_cpu(struct cfs_rq *cfs_rq)
11385 {
11386 	return cfs_rq ? cpu_of(rq_of(cfs_rq)) : -1;
11387 }
11388 EXPORT_SYMBOL_GPL(sched_trace_cfs_rq_cpu);
11389 
11390 const struct sched_avg *sched_trace_rq_avg_rt(struct rq *rq)
11391 {
11392 #ifdef CONFIG_SMP
11393 	return rq ? &rq->avg_rt : NULL;
11394 #else
11395 	return NULL;
11396 #endif
11397 }
11398 EXPORT_SYMBOL_GPL(sched_trace_rq_avg_rt);
11399 
11400 const struct sched_avg *sched_trace_rq_avg_dl(struct rq *rq)
11401 {
11402 #ifdef CONFIG_SMP
11403 	return rq ? &rq->avg_dl : NULL;
11404 #else
11405 	return NULL;
11406 #endif
11407 }
11408 EXPORT_SYMBOL_GPL(sched_trace_rq_avg_dl);
11409 
11410 const struct sched_avg *sched_trace_rq_avg_irq(struct rq *rq)
11411 {
11412 #if defined(CONFIG_SMP) && defined(CONFIG_HAVE_SCHED_AVG_IRQ)
11413 	return rq ? &rq->avg_irq : NULL;
11414 #else
11415 	return NULL;
11416 #endif
11417 }
11418 EXPORT_SYMBOL_GPL(sched_trace_rq_avg_irq);
11419 
11420 int sched_trace_rq_cpu(struct rq *rq)
11421 {
11422 	return rq ? cpu_of(rq) : -1;
11423 }
11424 EXPORT_SYMBOL_GPL(sched_trace_rq_cpu);
11425 
11426 int sched_trace_rq_cpu_capacity(struct rq *rq)
11427 {
11428 	return rq ?
11429 #ifdef CONFIG_SMP
11430 		rq->cpu_capacity
11431 #else
11432 		SCHED_CAPACITY_SCALE
11433 #endif
11434 		: -1;
11435 }
11436 EXPORT_SYMBOL_GPL(sched_trace_rq_cpu_capacity);
11437 
11438 const struct cpumask *sched_trace_rd_span(struct root_domain *rd)
11439 {
11440 #ifdef CONFIG_SMP
11441 	return rd ? rd->span : NULL;
11442 #else
11443 	return NULL;
11444 #endif
11445 }
11446 EXPORT_SYMBOL_GPL(sched_trace_rd_span);
11447 
11448 int sched_trace_rq_nr_running(struct rq *rq)
11449 {
11450         return rq ? rq->nr_running : -1;
11451 }
11452 EXPORT_SYMBOL_GPL(sched_trace_rq_nr_running);
11453