xref: /openbmc/linux/kernel/sched/fair.c (revision 750afb08)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
4  *
5  *  Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
6  *
7  *  Interactivity improvements by Mike Galbraith
8  *  (C) 2007 Mike Galbraith <efault@gmx.de>
9  *
10  *  Various enhancements by Dmitry Adamushko.
11  *  (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
12  *
13  *  Group scheduling enhancements by Srivatsa Vaddagiri
14  *  Copyright IBM Corporation, 2007
15  *  Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
16  *
17  *  Scaled math optimizations by Thomas Gleixner
18  *  Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
19  *
20  *  Adaptive scheduling granularity, math enhancements by Peter Zijlstra
21  *  Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
22  */
23 #include "sched.h"
24 
25 #include <trace/events/sched.h>
26 
27 /*
28  * Targeted preemption latency for CPU-bound tasks:
29  *
30  * NOTE: this latency value is not the same as the concept of
31  * 'timeslice length' - timeslices in CFS are of variable length
32  * and have no persistent notion like in traditional, time-slice
33  * based scheduling concepts.
34  *
35  * (to see the precise effective timeslice length of your workload,
36  *  run vmstat and monitor the context-switches (cs) field)
37  *
38  * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
39  */
40 unsigned int sysctl_sched_latency			= 6000000ULL;
41 static unsigned int normalized_sysctl_sched_latency	= 6000000ULL;
42 
43 /*
44  * The initial- and re-scaling of tunables is configurable
45  *
46  * Options are:
47  *
48  *   SCHED_TUNABLESCALING_NONE - unscaled, always *1
49  *   SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
50  *   SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
51  *
52  * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
53  */
54 enum sched_tunable_scaling sysctl_sched_tunable_scaling = SCHED_TUNABLESCALING_LOG;
55 
56 /*
57  * Minimal preemption granularity for CPU-bound tasks:
58  *
59  * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
60  */
61 unsigned int sysctl_sched_min_granularity			= 750000ULL;
62 static unsigned int normalized_sysctl_sched_min_granularity	= 750000ULL;
63 
64 /*
65  * This value is kept at sysctl_sched_latency/sysctl_sched_min_granularity
66  */
67 static unsigned int sched_nr_latency = 8;
68 
69 /*
70  * After fork, child runs first. If set to 0 (default) then
71  * parent will (try to) run first.
72  */
73 unsigned int sysctl_sched_child_runs_first __read_mostly;
74 
75 /*
76  * SCHED_OTHER wake-up granularity.
77  *
78  * This option delays the preemption effects of decoupled workloads
79  * and reduces their over-scheduling. Synchronous workloads will still
80  * have immediate wakeup/sleep latencies.
81  *
82  * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
83  */
84 unsigned int sysctl_sched_wakeup_granularity			= 1000000UL;
85 static unsigned int normalized_sysctl_sched_wakeup_granularity	= 1000000UL;
86 
87 const_debug unsigned int sysctl_sched_migration_cost	= 500000UL;
88 
89 #ifdef CONFIG_SMP
90 /*
91  * For asym packing, by default the lower numbered CPU has higher priority.
92  */
93 int __weak arch_asym_cpu_priority(int cpu)
94 {
95 	return -cpu;
96 }
97 
98 /*
99  * The margin used when comparing utilization with CPU capacity:
100  * util * margin < capacity * 1024
101  *
102  * (default: ~20%)
103  */
104 static unsigned int capacity_margin			= 1280;
105 #endif
106 
107 #ifdef CONFIG_CFS_BANDWIDTH
108 /*
109  * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
110  * each time a cfs_rq requests quota.
111  *
112  * Note: in the case that the slice exceeds the runtime remaining (either due
113  * to consumption or the quota being specified to be smaller than the slice)
114  * we will always only issue the remaining available time.
115  *
116  * (default: 5 msec, units: microseconds)
117  */
118 unsigned int sysctl_sched_cfs_bandwidth_slice		= 5000UL;
119 #endif
120 
121 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
122 {
123 	lw->weight += inc;
124 	lw->inv_weight = 0;
125 }
126 
127 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
128 {
129 	lw->weight -= dec;
130 	lw->inv_weight = 0;
131 }
132 
133 static inline void update_load_set(struct load_weight *lw, unsigned long w)
134 {
135 	lw->weight = w;
136 	lw->inv_weight = 0;
137 }
138 
139 /*
140  * Increase the granularity value when there are more CPUs,
141  * because with more CPUs the 'effective latency' as visible
142  * to users decreases. But the relationship is not linear,
143  * so pick a second-best guess by going with the log2 of the
144  * number of CPUs.
145  *
146  * This idea comes from the SD scheduler of Con Kolivas:
147  */
148 static unsigned int get_update_sysctl_factor(void)
149 {
150 	unsigned int cpus = min_t(unsigned int, num_online_cpus(), 8);
151 	unsigned int factor;
152 
153 	switch (sysctl_sched_tunable_scaling) {
154 	case SCHED_TUNABLESCALING_NONE:
155 		factor = 1;
156 		break;
157 	case SCHED_TUNABLESCALING_LINEAR:
158 		factor = cpus;
159 		break;
160 	case SCHED_TUNABLESCALING_LOG:
161 	default:
162 		factor = 1 + ilog2(cpus);
163 		break;
164 	}
165 
166 	return factor;
167 }
168 
169 static void update_sysctl(void)
170 {
171 	unsigned int factor = get_update_sysctl_factor();
172 
173 #define SET_SYSCTL(name) \
174 	(sysctl_##name = (factor) * normalized_sysctl_##name)
175 	SET_SYSCTL(sched_min_granularity);
176 	SET_SYSCTL(sched_latency);
177 	SET_SYSCTL(sched_wakeup_granularity);
178 #undef SET_SYSCTL
179 }
180 
181 void sched_init_granularity(void)
182 {
183 	update_sysctl();
184 }
185 
186 #define WMULT_CONST	(~0U)
187 #define WMULT_SHIFT	32
188 
189 static void __update_inv_weight(struct load_weight *lw)
190 {
191 	unsigned long w;
192 
193 	if (likely(lw->inv_weight))
194 		return;
195 
196 	w = scale_load_down(lw->weight);
197 
198 	if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
199 		lw->inv_weight = 1;
200 	else if (unlikely(!w))
201 		lw->inv_weight = WMULT_CONST;
202 	else
203 		lw->inv_weight = WMULT_CONST / w;
204 }
205 
206 /*
207  * delta_exec * weight / lw.weight
208  *   OR
209  * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
210  *
211  * Either weight := NICE_0_LOAD and lw \e sched_prio_to_wmult[], in which case
212  * we're guaranteed shift stays positive because inv_weight is guaranteed to
213  * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
214  *
215  * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
216  * weight/lw.weight <= 1, and therefore our shift will also be positive.
217  */
218 static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw)
219 {
220 	u64 fact = scale_load_down(weight);
221 	int shift = WMULT_SHIFT;
222 
223 	__update_inv_weight(lw);
224 
225 	if (unlikely(fact >> 32)) {
226 		while (fact >> 32) {
227 			fact >>= 1;
228 			shift--;
229 		}
230 	}
231 
232 	/* hint to use a 32x32->64 mul */
233 	fact = (u64)(u32)fact * lw->inv_weight;
234 
235 	while (fact >> 32) {
236 		fact >>= 1;
237 		shift--;
238 	}
239 
240 	return mul_u64_u32_shr(delta_exec, fact, shift);
241 }
242 
243 
244 const struct sched_class fair_sched_class;
245 
246 /**************************************************************
247  * CFS operations on generic schedulable entities:
248  */
249 
250 #ifdef CONFIG_FAIR_GROUP_SCHED
251 
252 /* cpu runqueue to which this cfs_rq is attached */
253 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
254 {
255 	return cfs_rq->rq;
256 }
257 
258 static inline struct task_struct *task_of(struct sched_entity *se)
259 {
260 	SCHED_WARN_ON(!entity_is_task(se));
261 	return container_of(se, struct task_struct, se);
262 }
263 
264 /* Walk up scheduling entities hierarchy */
265 #define for_each_sched_entity(se) \
266 		for (; se; se = se->parent)
267 
268 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
269 {
270 	return p->se.cfs_rq;
271 }
272 
273 /* runqueue on which this entity is (to be) queued */
274 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
275 {
276 	return se->cfs_rq;
277 }
278 
279 /* runqueue "owned" by this group */
280 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
281 {
282 	return grp->my_q;
283 }
284 
285 static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
286 {
287 	if (!cfs_rq->on_list) {
288 		struct rq *rq = rq_of(cfs_rq);
289 		int cpu = cpu_of(rq);
290 		/*
291 		 * Ensure we either appear before our parent (if already
292 		 * enqueued) or force our parent to appear after us when it is
293 		 * enqueued. The fact that we always enqueue bottom-up
294 		 * reduces this to two cases and a special case for the root
295 		 * cfs_rq. Furthermore, it also means that we will always reset
296 		 * tmp_alone_branch either when the branch is connected
297 		 * to a tree or when we reach the beg of the tree
298 		 */
299 		if (cfs_rq->tg->parent &&
300 		    cfs_rq->tg->parent->cfs_rq[cpu]->on_list) {
301 			/*
302 			 * If parent is already on the list, we add the child
303 			 * just before. Thanks to circular linked property of
304 			 * the list, this means to put the child at the tail
305 			 * of the list that starts by parent.
306 			 */
307 			list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
308 				&(cfs_rq->tg->parent->cfs_rq[cpu]->leaf_cfs_rq_list));
309 			/*
310 			 * The branch is now connected to its tree so we can
311 			 * reset tmp_alone_branch to the beginning of the
312 			 * list.
313 			 */
314 			rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
315 		} else if (!cfs_rq->tg->parent) {
316 			/*
317 			 * cfs rq without parent should be put
318 			 * at the tail of the list.
319 			 */
320 			list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
321 				&rq->leaf_cfs_rq_list);
322 			/*
323 			 * We have reach the beg of a tree so we can reset
324 			 * tmp_alone_branch to the beginning of the list.
325 			 */
326 			rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
327 		} else {
328 			/*
329 			 * The parent has not already been added so we want to
330 			 * make sure that it will be put after us.
331 			 * tmp_alone_branch points to the beg of the branch
332 			 * where we will add parent.
333 			 */
334 			list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
335 				rq->tmp_alone_branch);
336 			/*
337 			 * update tmp_alone_branch to points to the new beg
338 			 * of the branch
339 			 */
340 			rq->tmp_alone_branch = &cfs_rq->leaf_cfs_rq_list;
341 		}
342 
343 		cfs_rq->on_list = 1;
344 	}
345 }
346 
347 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
348 {
349 	if (cfs_rq->on_list) {
350 		list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
351 		cfs_rq->on_list = 0;
352 	}
353 }
354 
355 /* Iterate through all leaf cfs_rq's on a runqueue: */
356 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
357 	list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
358 
359 /* Do the two (enqueued) entities belong to the same group ? */
360 static inline struct cfs_rq *
361 is_same_group(struct sched_entity *se, struct sched_entity *pse)
362 {
363 	if (se->cfs_rq == pse->cfs_rq)
364 		return se->cfs_rq;
365 
366 	return NULL;
367 }
368 
369 static inline struct sched_entity *parent_entity(struct sched_entity *se)
370 {
371 	return se->parent;
372 }
373 
374 static void
375 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
376 {
377 	int se_depth, pse_depth;
378 
379 	/*
380 	 * preemption test can be made between sibling entities who are in the
381 	 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
382 	 * both tasks until we find their ancestors who are siblings of common
383 	 * parent.
384 	 */
385 
386 	/* First walk up until both entities are at same depth */
387 	se_depth = (*se)->depth;
388 	pse_depth = (*pse)->depth;
389 
390 	while (se_depth > pse_depth) {
391 		se_depth--;
392 		*se = parent_entity(*se);
393 	}
394 
395 	while (pse_depth > se_depth) {
396 		pse_depth--;
397 		*pse = parent_entity(*pse);
398 	}
399 
400 	while (!is_same_group(*se, *pse)) {
401 		*se = parent_entity(*se);
402 		*pse = parent_entity(*pse);
403 	}
404 }
405 
406 #else	/* !CONFIG_FAIR_GROUP_SCHED */
407 
408 static inline struct task_struct *task_of(struct sched_entity *se)
409 {
410 	return container_of(se, struct task_struct, se);
411 }
412 
413 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
414 {
415 	return container_of(cfs_rq, struct rq, cfs);
416 }
417 
418 
419 #define for_each_sched_entity(se) \
420 		for (; se; se = NULL)
421 
422 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
423 {
424 	return &task_rq(p)->cfs;
425 }
426 
427 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
428 {
429 	struct task_struct *p = task_of(se);
430 	struct rq *rq = task_rq(p);
431 
432 	return &rq->cfs;
433 }
434 
435 /* runqueue "owned" by this group */
436 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
437 {
438 	return NULL;
439 }
440 
441 static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
442 {
443 }
444 
445 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
446 {
447 }
448 
449 #define for_each_leaf_cfs_rq(rq, cfs_rq)	\
450 		for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
451 
452 static inline struct sched_entity *parent_entity(struct sched_entity *se)
453 {
454 	return NULL;
455 }
456 
457 static inline void
458 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
459 {
460 }
461 
462 #endif	/* CONFIG_FAIR_GROUP_SCHED */
463 
464 static __always_inline
465 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec);
466 
467 /**************************************************************
468  * Scheduling class tree data structure manipulation methods:
469  */
470 
471 static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
472 {
473 	s64 delta = (s64)(vruntime - max_vruntime);
474 	if (delta > 0)
475 		max_vruntime = vruntime;
476 
477 	return max_vruntime;
478 }
479 
480 static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
481 {
482 	s64 delta = (s64)(vruntime - min_vruntime);
483 	if (delta < 0)
484 		min_vruntime = vruntime;
485 
486 	return min_vruntime;
487 }
488 
489 static inline int entity_before(struct sched_entity *a,
490 				struct sched_entity *b)
491 {
492 	return (s64)(a->vruntime - b->vruntime) < 0;
493 }
494 
495 static void update_min_vruntime(struct cfs_rq *cfs_rq)
496 {
497 	struct sched_entity *curr = cfs_rq->curr;
498 	struct rb_node *leftmost = rb_first_cached(&cfs_rq->tasks_timeline);
499 
500 	u64 vruntime = cfs_rq->min_vruntime;
501 
502 	if (curr) {
503 		if (curr->on_rq)
504 			vruntime = curr->vruntime;
505 		else
506 			curr = NULL;
507 	}
508 
509 	if (leftmost) { /* non-empty tree */
510 		struct sched_entity *se;
511 		se = rb_entry(leftmost, struct sched_entity, run_node);
512 
513 		if (!curr)
514 			vruntime = se->vruntime;
515 		else
516 			vruntime = min_vruntime(vruntime, se->vruntime);
517 	}
518 
519 	/* ensure we never gain time by being placed backwards. */
520 	cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
521 #ifndef CONFIG_64BIT
522 	smp_wmb();
523 	cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
524 #endif
525 }
526 
527 /*
528  * Enqueue an entity into the rb-tree:
529  */
530 static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
531 {
532 	struct rb_node **link = &cfs_rq->tasks_timeline.rb_root.rb_node;
533 	struct rb_node *parent = NULL;
534 	struct sched_entity *entry;
535 	bool leftmost = true;
536 
537 	/*
538 	 * Find the right place in the rbtree:
539 	 */
540 	while (*link) {
541 		parent = *link;
542 		entry = rb_entry(parent, struct sched_entity, run_node);
543 		/*
544 		 * We dont care about collisions. Nodes with
545 		 * the same key stay together.
546 		 */
547 		if (entity_before(se, entry)) {
548 			link = &parent->rb_left;
549 		} else {
550 			link = &parent->rb_right;
551 			leftmost = false;
552 		}
553 	}
554 
555 	rb_link_node(&se->run_node, parent, link);
556 	rb_insert_color_cached(&se->run_node,
557 			       &cfs_rq->tasks_timeline, leftmost);
558 }
559 
560 static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
561 {
562 	rb_erase_cached(&se->run_node, &cfs_rq->tasks_timeline);
563 }
564 
565 struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
566 {
567 	struct rb_node *left = rb_first_cached(&cfs_rq->tasks_timeline);
568 
569 	if (!left)
570 		return NULL;
571 
572 	return rb_entry(left, struct sched_entity, run_node);
573 }
574 
575 static struct sched_entity *__pick_next_entity(struct sched_entity *se)
576 {
577 	struct rb_node *next = rb_next(&se->run_node);
578 
579 	if (!next)
580 		return NULL;
581 
582 	return rb_entry(next, struct sched_entity, run_node);
583 }
584 
585 #ifdef CONFIG_SCHED_DEBUG
586 struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
587 {
588 	struct rb_node *last = rb_last(&cfs_rq->tasks_timeline.rb_root);
589 
590 	if (!last)
591 		return NULL;
592 
593 	return rb_entry(last, struct sched_entity, run_node);
594 }
595 
596 /**************************************************************
597  * Scheduling class statistics methods:
598  */
599 
600 int sched_proc_update_handler(struct ctl_table *table, int write,
601 		void __user *buffer, size_t *lenp,
602 		loff_t *ppos)
603 {
604 	int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
605 	unsigned int factor = get_update_sysctl_factor();
606 
607 	if (ret || !write)
608 		return ret;
609 
610 	sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
611 					sysctl_sched_min_granularity);
612 
613 #define WRT_SYSCTL(name) \
614 	(normalized_sysctl_##name = sysctl_##name / (factor))
615 	WRT_SYSCTL(sched_min_granularity);
616 	WRT_SYSCTL(sched_latency);
617 	WRT_SYSCTL(sched_wakeup_granularity);
618 #undef WRT_SYSCTL
619 
620 	return 0;
621 }
622 #endif
623 
624 /*
625  * delta /= w
626  */
627 static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
628 {
629 	if (unlikely(se->load.weight != NICE_0_LOAD))
630 		delta = __calc_delta(delta, NICE_0_LOAD, &se->load);
631 
632 	return delta;
633 }
634 
635 /*
636  * The idea is to set a period in which each task runs once.
637  *
638  * When there are too many tasks (sched_nr_latency) we have to stretch
639  * this period because otherwise the slices get too small.
640  *
641  * p = (nr <= nl) ? l : l*nr/nl
642  */
643 static u64 __sched_period(unsigned long nr_running)
644 {
645 	if (unlikely(nr_running > sched_nr_latency))
646 		return nr_running * sysctl_sched_min_granularity;
647 	else
648 		return sysctl_sched_latency;
649 }
650 
651 /*
652  * We calculate the wall-time slice from the period by taking a part
653  * proportional to the weight.
654  *
655  * s = p*P[w/rw]
656  */
657 static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
658 {
659 	u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
660 
661 	for_each_sched_entity(se) {
662 		struct load_weight *load;
663 		struct load_weight lw;
664 
665 		cfs_rq = cfs_rq_of(se);
666 		load = &cfs_rq->load;
667 
668 		if (unlikely(!se->on_rq)) {
669 			lw = cfs_rq->load;
670 
671 			update_load_add(&lw, se->load.weight);
672 			load = &lw;
673 		}
674 		slice = __calc_delta(slice, se->load.weight, load);
675 	}
676 	return slice;
677 }
678 
679 /*
680  * We calculate the vruntime slice of a to-be-inserted task.
681  *
682  * vs = s/w
683  */
684 static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
685 {
686 	return calc_delta_fair(sched_slice(cfs_rq, se), se);
687 }
688 
689 #ifdef CONFIG_SMP
690 #include "pelt.h"
691 #include "sched-pelt.h"
692 
693 static int select_idle_sibling(struct task_struct *p, int prev_cpu, int cpu);
694 static unsigned long task_h_load(struct task_struct *p);
695 static unsigned long capacity_of(int cpu);
696 
697 /* Give new sched_entity start runnable values to heavy its load in infant time */
698 void init_entity_runnable_average(struct sched_entity *se)
699 {
700 	struct sched_avg *sa = &se->avg;
701 
702 	memset(sa, 0, sizeof(*sa));
703 
704 	/*
705 	 * Tasks are initialized with full load to be seen as heavy tasks until
706 	 * they get a chance to stabilize to their real load level.
707 	 * Group entities are initialized with zero load to reflect the fact that
708 	 * nothing has been attached to the task group yet.
709 	 */
710 	if (entity_is_task(se))
711 		sa->runnable_load_avg = sa->load_avg = scale_load_down(se->load.weight);
712 
713 	se->runnable_weight = se->load.weight;
714 
715 	/* when this task enqueue'ed, it will contribute to its cfs_rq's load_avg */
716 }
717 
718 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq);
719 static void attach_entity_cfs_rq(struct sched_entity *se);
720 
721 /*
722  * With new tasks being created, their initial util_avgs are extrapolated
723  * based on the cfs_rq's current util_avg:
724  *
725  *   util_avg = cfs_rq->util_avg / (cfs_rq->load_avg + 1) * se.load.weight
726  *
727  * However, in many cases, the above util_avg does not give a desired
728  * value. Moreover, the sum of the util_avgs may be divergent, such
729  * as when the series is a harmonic series.
730  *
731  * To solve this problem, we also cap the util_avg of successive tasks to
732  * only 1/2 of the left utilization budget:
733  *
734  *   util_avg_cap = (cpu_scale - cfs_rq->avg.util_avg) / 2^n
735  *
736  * where n denotes the nth task and cpu_scale the CPU capacity.
737  *
738  * For example, for a CPU with 1024 of capacity, a simplest series from
739  * the beginning would be like:
740  *
741  *  task  util_avg: 512, 256, 128,  64,  32,   16,    8, ...
742  * cfs_rq util_avg: 512, 768, 896, 960, 992, 1008, 1016, ...
743  *
744  * Finally, that extrapolated util_avg is clamped to the cap (util_avg_cap)
745  * if util_avg > util_avg_cap.
746  */
747 void post_init_entity_util_avg(struct sched_entity *se)
748 {
749 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
750 	struct sched_avg *sa = &se->avg;
751 	long cpu_scale = arch_scale_cpu_capacity(NULL, cpu_of(rq_of(cfs_rq)));
752 	long cap = (long)(cpu_scale - cfs_rq->avg.util_avg) / 2;
753 
754 	if (cap > 0) {
755 		if (cfs_rq->avg.util_avg != 0) {
756 			sa->util_avg  = cfs_rq->avg.util_avg * se->load.weight;
757 			sa->util_avg /= (cfs_rq->avg.load_avg + 1);
758 
759 			if (sa->util_avg > cap)
760 				sa->util_avg = cap;
761 		} else {
762 			sa->util_avg = cap;
763 		}
764 	}
765 
766 	if (entity_is_task(se)) {
767 		struct task_struct *p = task_of(se);
768 		if (p->sched_class != &fair_sched_class) {
769 			/*
770 			 * For !fair tasks do:
771 			 *
772 			update_cfs_rq_load_avg(now, cfs_rq);
773 			attach_entity_load_avg(cfs_rq, se, 0);
774 			switched_from_fair(rq, p);
775 			 *
776 			 * such that the next switched_to_fair() has the
777 			 * expected state.
778 			 */
779 			se->avg.last_update_time = cfs_rq_clock_task(cfs_rq);
780 			return;
781 		}
782 	}
783 
784 	attach_entity_cfs_rq(se);
785 }
786 
787 #else /* !CONFIG_SMP */
788 void init_entity_runnable_average(struct sched_entity *se)
789 {
790 }
791 void post_init_entity_util_avg(struct sched_entity *se)
792 {
793 }
794 static void update_tg_load_avg(struct cfs_rq *cfs_rq, int force)
795 {
796 }
797 #endif /* CONFIG_SMP */
798 
799 /*
800  * Update the current task's runtime statistics.
801  */
802 static void update_curr(struct cfs_rq *cfs_rq)
803 {
804 	struct sched_entity *curr = cfs_rq->curr;
805 	u64 now = rq_clock_task(rq_of(cfs_rq));
806 	u64 delta_exec;
807 
808 	if (unlikely(!curr))
809 		return;
810 
811 	delta_exec = now - curr->exec_start;
812 	if (unlikely((s64)delta_exec <= 0))
813 		return;
814 
815 	curr->exec_start = now;
816 
817 	schedstat_set(curr->statistics.exec_max,
818 		      max(delta_exec, curr->statistics.exec_max));
819 
820 	curr->sum_exec_runtime += delta_exec;
821 	schedstat_add(cfs_rq->exec_clock, delta_exec);
822 
823 	curr->vruntime += calc_delta_fair(delta_exec, curr);
824 	update_min_vruntime(cfs_rq);
825 
826 	if (entity_is_task(curr)) {
827 		struct task_struct *curtask = task_of(curr);
828 
829 		trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
830 		cgroup_account_cputime(curtask, delta_exec);
831 		account_group_exec_runtime(curtask, delta_exec);
832 	}
833 
834 	account_cfs_rq_runtime(cfs_rq, delta_exec);
835 }
836 
837 static void update_curr_fair(struct rq *rq)
838 {
839 	update_curr(cfs_rq_of(&rq->curr->se));
840 }
841 
842 static inline void
843 update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
844 {
845 	u64 wait_start, prev_wait_start;
846 
847 	if (!schedstat_enabled())
848 		return;
849 
850 	wait_start = rq_clock(rq_of(cfs_rq));
851 	prev_wait_start = schedstat_val(se->statistics.wait_start);
852 
853 	if (entity_is_task(se) && task_on_rq_migrating(task_of(se)) &&
854 	    likely(wait_start > prev_wait_start))
855 		wait_start -= prev_wait_start;
856 
857 	__schedstat_set(se->statistics.wait_start, wait_start);
858 }
859 
860 static inline void
861 update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
862 {
863 	struct task_struct *p;
864 	u64 delta;
865 
866 	if (!schedstat_enabled())
867 		return;
868 
869 	delta = rq_clock(rq_of(cfs_rq)) - schedstat_val(se->statistics.wait_start);
870 
871 	if (entity_is_task(se)) {
872 		p = task_of(se);
873 		if (task_on_rq_migrating(p)) {
874 			/*
875 			 * Preserve migrating task's wait time so wait_start
876 			 * time stamp can be adjusted to accumulate wait time
877 			 * prior to migration.
878 			 */
879 			__schedstat_set(se->statistics.wait_start, delta);
880 			return;
881 		}
882 		trace_sched_stat_wait(p, delta);
883 	}
884 
885 	__schedstat_set(se->statistics.wait_max,
886 		      max(schedstat_val(se->statistics.wait_max), delta));
887 	__schedstat_inc(se->statistics.wait_count);
888 	__schedstat_add(se->statistics.wait_sum, delta);
889 	__schedstat_set(se->statistics.wait_start, 0);
890 }
891 
892 static inline void
893 update_stats_enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
894 {
895 	struct task_struct *tsk = NULL;
896 	u64 sleep_start, block_start;
897 
898 	if (!schedstat_enabled())
899 		return;
900 
901 	sleep_start = schedstat_val(se->statistics.sleep_start);
902 	block_start = schedstat_val(se->statistics.block_start);
903 
904 	if (entity_is_task(se))
905 		tsk = task_of(se);
906 
907 	if (sleep_start) {
908 		u64 delta = rq_clock(rq_of(cfs_rq)) - sleep_start;
909 
910 		if ((s64)delta < 0)
911 			delta = 0;
912 
913 		if (unlikely(delta > schedstat_val(se->statistics.sleep_max)))
914 			__schedstat_set(se->statistics.sleep_max, delta);
915 
916 		__schedstat_set(se->statistics.sleep_start, 0);
917 		__schedstat_add(se->statistics.sum_sleep_runtime, delta);
918 
919 		if (tsk) {
920 			account_scheduler_latency(tsk, delta >> 10, 1);
921 			trace_sched_stat_sleep(tsk, delta);
922 		}
923 	}
924 	if (block_start) {
925 		u64 delta = rq_clock(rq_of(cfs_rq)) - block_start;
926 
927 		if ((s64)delta < 0)
928 			delta = 0;
929 
930 		if (unlikely(delta > schedstat_val(se->statistics.block_max)))
931 			__schedstat_set(se->statistics.block_max, delta);
932 
933 		__schedstat_set(se->statistics.block_start, 0);
934 		__schedstat_add(se->statistics.sum_sleep_runtime, delta);
935 
936 		if (tsk) {
937 			if (tsk->in_iowait) {
938 				__schedstat_add(se->statistics.iowait_sum, delta);
939 				__schedstat_inc(se->statistics.iowait_count);
940 				trace_sched_stat_iowait(tsk, delta);
941 			}
942 
943 			trace_sched_stat_blocked(tsk, delta);
944 
945 			/*
946 			 * Blocking time is in units of nanosecs, so shift by
947 			 * 20 to get a milliseconds-range estimation of the
948 			 * amount of time that the task spent sleeping:
949 			 */
950 			if (unlikely(prof_on == SLEEP_PROFILING)) {
951 				profile_hits(SLEEP_PROFILING,
952 						(void *)get_wchan(tsk),
953 						delta >> 20);
954 			}
955 			account_scheduler_latency(tsk, delta >> 10, 0);
956 		}
957 	}
958 }
959 
960 /*
961  * Task is being enqueued - update stats:
962  */
963 static inline void
964 update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
965 {
966 	if (!schedstat_enabled())
967 		return;
968 
969 	/*
970 	 * Are we enqueueing a waiting task? (for current tasks
971 	 * a dequeue/enqueue event is a NOP)
972 	 */
973 	if (se != cfs_rq->curr)
974 		update_stats_wait_start(cfs_rq, se);
975 
976 	if (flags & ENQUEUE_WAKEUP)
977 		update_stats_enqueue_sleeper(cfs_rq, se);
978 }
979 
980 static inline void
981 update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
982 {
983 
984 	if (!schedstat_enabled())
985 		return;
986 
987 	/*
988 	 * Mark the end of the wait period if dequeueing a
989 	 * waiting task:
990 	 */
991 	if (se != cfs_rq->curr)
992 		update_stats_wait_end(cfs_rq, se);
993 
994 	if ((flags & DEQUEUE_SLEEP) && entity_is_task(se)) {
995 		struct task_struct *tsk = task_of(se);
996 
997 		if (tsk->state & TASK_INTERRUPTIBLE)
998 			__schedstat_set(se->statistics.sleep_start,
999 				      rq_clock(rq_of(cfs_rq)));
1000 		if (tsk->state & TASK_UNINTERRUPTIBLE)
1001 			__schedstat_set(se->statistics.block_start,
1002 				      rq_clock(rq_of(cfs_rq)));
1003 	}
1004 }
1005 
1006 /*
1007  * We are picking a new current task - update its stats:
1008  */
1009 static inline void
1010 update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
1011 {
1012 	/*
1013 	 * We are starting a new run period:
1014 	 */
1015 	se->exec_start = rq_clock_task(rq_of(cfs_rq));
1016 }
1017 
1018 /**************************************************
1019  * Scheduling class queueing methods:
1020  */
1021 
1022 #ifdef CONFIG_NUMA_BALANCING
1023 /*
1024  * Approximate time to scan a full NUMA task in ms. The task scan period is
1025  * calculated based on the tasks virtual memory size and
1026  * numa_balancing_scan_size.
1027  */
1028 unsigned int sysctl_numa_balancing_scan_period_min = 1000;
1029 unsigned int sysctl_numa_balancing_scan_period_max = 60000;
1030 
1031 /* Portion of address space to scan in MB */
1032 unsigned int sysctl_numa_balancing_scan_size = 256;
1033 
1034 /* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
1035 unsigned int sysctl_numa_balancing_scan_delay = 1000;
1036 
1037 struct numa_group {
1038 	atomic_t refcount;
1039 
1040 	spinlock_t lock; /* nr_tasks, tasks */
1041 	int nr_tasks;
1042 	pid_t gid;
1043 	int active_nodes;
1044 
1045 	struct rcu_head rcu;
1046 	unsigned long total_faults;
1047 	unsigned long max_faults_cpu;
1048 	/*
1049 	 * Faults_cpu is used to decide whether memory should move
1050 	 * towards the CPU. As a consequence, these stats are weighted
1051 	 * more by CPU use than by memory faults.
1052 	 */
1053 	unsigned long *faults_cpu;
1054 	unsigned long faults[0];
1055 };
1056 
1057 static inline unsigned long group_faults_priv(struct numa_group *ng);
1058 static inline unsigned long group_faults_shared(struct numa_group *ng);
1059 
1060 static unsigned int task_nr_scan_windows(struct task_struct *p)
1061 {
1062 	unsigned long rss = 0;
1063 	unsigned long nr_scan_pages;
1064 
1065 	/*
1066 	 * Calculations based on RSS as non-present and empty pages are skipped
1067 	 * by the PTE scanner and NUMA hinting faults should be trapped based
1068 	 * on resident pages
1069 	 */
1070 	nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
1071 	rss = get_mm_rss(p->mm);
1072 	if (!rss)
1073 		rss = nr_scan_pages;
1074 
1075 	rss = round_up(rss, nr_scan_pages);
1076 	return rss / nr_scan_pages;
1077 }
1078 
1079 /* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
1080 #define MAX_SCAN_WINDOW 2560
1081 
1082 static unsigned int task_scan_min(struct task_struct *p)
1083 {
1084 	unsigned int scan_size = READ_ONCE(sysctl_numa_balancing_scan_size);
1085 	unsigned int scan, floor;
1086 	unsigned int windows = 1;
1087 
1088 	if (scan_size < MAX_SCAN_WINDOW)
1089 		windows = MAX_SCAN_WINDOW / scan_size;
1090 	floor = 1000 / windows;
1091 
1092 	scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
1093 	return max_t(unsigned int, floor, scan);
1094 }
1095 
1096 static unsigned int task_scan_start(struct task_struct *p)
1097 {
1098 	unsigned long smin = task_scan_min(p);
1099 	unsigned long period = smin;
1100 
1101 	/* Scale the maximum scan period with the amount of shared memory. */
1102 	if (p->numa_group) {
1103 		struct numa_group *ng = p->numa_group;
1104 		unsigned long shared = group_faults_shared(ng);
1105 		unsigned long private = group_faults_priv(ng);
1106 
1107 		period *= atomic_read(&ng->refcount);
1108 		period *= shared + 1;
1109 		period /= private + shared + 1;
1110 	}
1111 
1112 	return max(smin, period);
1113 }
1114 
1115 static unsigned int task_scan_max(struct task_struct *p)
1116 {
1117 	unsigned long smin = task_scan_min(p);
1118 	unsigned long smax;
1119 
1120 	/* Watch for min being lower than max due to floor calculations */
1121 	smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
1122 
1123 	/* Scale the maximum scan period with the amount of shared memory. */
1124 	if (p->numa_group) {
1125 		struct numa_group *ng = p->numa_group;
1126 		unsigned long shared = group_faults_shared(ng);
1127 		unsigned long private = group_faults_priv(ng);
1128 		unsigned long period = smax;
1129 
1130 		period *= atomic_read(&ng->refcount);
1131 		period *= shared + 1;
1132 		period /= private + shared + 1;
1133 
1134 		smax = max(smax, period);
1135 	}
1136 
1137 	return max(smin, smax);
1138 }
1139 
1140 void init_numa_balancing(unsigned long clone_flags, struct task_struct *p)
1141 {
1142 	int mm_users = 0;
1143 	struct mm_struct *mm = p->mm;
1144 
1145 	if (mm) {
1146 		mm_users = atomic_read(&mm->mm_users);
1147 		if (mm_users == 1) {
1148 			mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
1149 			mm->numa_scan_seq = 0;
1150 		}
1151 	}
1152 	p->node_stamp			= 0;
1153 	p->numa_scan_seq		= mm ? mm->numa_scan_seq : 0;
1154 	p->numa_scan_period		= sysctl_numa_balancing_scan_delay;
1155 	p->numa_work.next		= &p->numa_work;
1156 	p->numa_faults			= NULL;
1157 	p->numa_group			= NULL;
1158 	p->last_task_numa_placement	= 0;
1159 	p->last_sum_exec_runtime	= 0;
1160 
1161 	/* New address space, reset the preferred nid */
1162 	if (!(clone_flags & CLONE_VM)) {
1163 		p->numa_preferred_nid = -1;
1164 		return;
1165 	}
1166 
1167 	/*
1168 	 * New thread, keep existing numa_preferred_nid which should be copied
1169 	 * already by arch_dup_task_struct but stagger when scans start.
1170 	 */
1171 	if (mm) {
1172 		unsigned int delay;
1173 
1174 		delay = min_t(unsigned int, task_scan_max(current),
1175 			current->numa_scan_period * mm_users * NSEC_PER_MSEC);
1176 		delay += 2 * TICK_NSEC;
1177 		p->node_stamp = delay;
1178 	}
1179 }
1180 
1181 static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
1182 {
1183 	rq->nr_numa_running += (p->numa_preferred_nid != -1);
1184 	rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
1185 }
1186 
1187 static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
1188 {
1189 	rq->nr_numa_running -= (p->numa_preferred_nid != -1);
1190 	rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
1191 }
1192 
1193 /* Shared or private faults. */
1194 #define NR_NUMA_HINT_FAULT_TYPES 2
1195 
1196 /* Memory and CPU locality */
1197 #define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2)
1198 
1199 /* Averaged statistics, and temporary buffers. */
1200 #define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2)
1201 
1202 pid_t task_numa_group_id(struct task_struct *p)
1203 {
1204 	return p->numa_group ? p->numa_group->gid : 0;
1205 }
1206 
1207 /*
1208  * The averaged statistics, shared & private, memory & CPU,
1209  * occupy the first half of the array. The second half of the
1210  * array is for current counters, which are averaged into the
1211  * first set by task_numa_placement.
1212  */
1213 static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv)
1214 {
1215 	return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv;
1216 }
1217 
1218 static inline unsigned long task_faults(struct task_struct *p, int nid)
1219 {
1220 	if (!p->numa_faults)
1221 		return 0;
1222 
1223 	return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1224 		p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)];
1225 }
1226 
1227 static inline unsigned long group_faults(struct task_struct *p, int nid)
1228 {
1229 	if (!p->numa_group)
1230 		return 0;
1231 
1232 	return p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1233 		p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 1)];
1234 }
1235 
1236 static inline unsigned long group_faults_cpu(struct numa_group *group, int nid)
1237 {
1238 	return group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 0)] +
1239 		group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 1)];
1240 }
1241 
1242 static inline unsigned long group_faults_priv(struct numa_group *ng)
1243 {
1244 	unsigned long faults = 0;
1245 	int node;
1246 
1247 	for_each_online_node(node) {
1248 		faults += ng->faults[task_faults_idx(NUMA_MEM, node, 1)];
1249 	}
1250 
1251 	return faults;
1252 }
1253 
1254 static inline unsigned long group_faults_shared(struct numa_group *ng)
1255 {
1256 	unsigned long faults = 0;
1257 	int node;
1258 
1259 	for_each_online_node(node) {
1260 		faults += ng->faults[task_faults_idx(NUMA_MEM, node, 0)];
1261 	}
1262 
1263 	return faults;
1264 }
1265 
1266 /*
1267  * A node triggering more than 1/3 as many NUMA faults as the maximum is
1268  * considered part of a numa group's pseudo-interleaving set. Migrations
1269  * between these nodes are slowed down, to allow things to settle down.
1270  */
1271 #define ACTIVE_NODE_FRACTION 3
1272 
1273 static bool numa_is_active_node(int nid, struct numa_group *ng)
1274 {
1275 	return group_faults_cpu(ng, nid) * ACTIVE_NODE_FRACTION > ng->max_faults_cpu;
1276 }
1277 
1278 /* Handle placement on systems where not all nodes are directly connected. */
1279 static unsigned long score_nearby_nodes(struct task_struct *p, int nid,
1280 					int maxdist, bool task)
1281 {
1282 	unsigned long score = 0;
1283 	int node;
1284 
1285 	/*
1286 	 * All nodes are directly connected, and the same distance
1287 	 * from each other. No need for fancy placement algorithms.
1288 	 */
1289 	if (sched_numa_topology_type == NUMA_DIRECT)
1290 		return 0;
1291 
1292 	/*
1293 	 * This code is called for each node, introducing N^2 complexity,
1294 	 * which should be ok given the number of nodes rarely exceeds 8.
1295 	 */
1296 	for_each_online_node(node) {
1297 		unsigned long faults;
1298 		int dist = node_distance(nid, node);
1299 
1300 		/*
1301 		 * The furthest away nodes in the system are not interesting
1302 		 * for placement; nid was already counted.
1303 		 */
1304 		if (dist == sched_max_numa_distance || node == nid)
1305 			continue;
1306 
1307 		/*
1308 		 * On systems with a backplane NUMA topology, compare groups
1309 		 * of nodes, and move tasks towards the group with the most
1310 		 * memory accesses. When comparing two nodes at distance
1311 		 * "hoplimit", only nodes closer by than "hoplimit" are part
1312 		 * of each group. Skip other nodes.
1313 		 */
1314 		if (sched_numa_topology_type == NUMA_BACKPLANE &&
1315 					dist >= maxdist)
1316 			continue;
1317 
1318 		/* Add up the faults from nearby nodes. */
1319 		if (task)
1320 			faults = task_faults(p, node);
1321 		else
1322 			faults = group_faults(p, node);
1323 
1324 		/*
1325 		 * On systems with a glueless mesh NUMA topology, there are
1326 		 * no fixed "groups of nodes". Instead, nodes that are not
1327 		 * directly connected bounce traffic through intermediate
1328 		 * nodes; a numa_group can occupy any set of nodes.
1329 		 * The further away a node is, the less the faults count.
1330 		 * This seems to result in good task placement.
1331 		 */
1332 		if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
1333 			faults *= (sched_max_numa_distance - dist);
1334 			faults /= (sched_max_numa_distance - LOCAL_DISTANCE);
1335 		}
1336 
1337 		score += faults;
1338 	}
1339 
1340 	return score;
1341 }
1342 
1343 /*
1344  * These return the fraction of accesses done by a particular task, or
1345  * task group, on a particular numa node.  The group weight is given a
1346  * larger multiplier, in order to group tasks together that are almost
1347  * evenly spread out between numa nodes.
1348  */
1349 static inline unsigned long task_weight(struct task_struct *p, int nid,
1350 					int dist)
1351 {
1352 	unsigned long faults, total_faults;
1353 
1354 	if (!p->numa_faults)
1355 		return 0;
1356 
1357 	total_faults = p->total_numa_faults;
1358 
1359 	if (!total_faults)
1360 		return 0;
1361 
1362 	faults = task_faults(p, nid);
1363 	faults += score_nearby_nodes(p, nid, dist, true);
1364 
1365 	return 1000 * faults / total_faults;
1366 }
1367 
1368 static inline unsigned long group_weight(struct task_struct *p, int nid,
1369 					 int dist)
1370 {
1371 	unsigned long faults, total_faults;
1372 
1373 	if (!p->numa_group)
1374 		return 0;
1375 
1376 	total_faults = p->numa_group->total_faults;
1377 
1378 	if (!total_faults)
1379 		return 0;
1380 
1381 	faults = group_faults(p, nid);
1382 	faults += score_nearby_nodes(p, nid, dist, false);
1383 
1384 	return 1000 * faults / total_faults;
1385 }
1386 
1387 bool should_numa_migrate_memory(struct task_struct *p, struct page * page,
1388 				int src_nid, int dst_cpu)
1389 {
1390 	struct numa_group *ng = p->numa_group;
1391 	int dst_nid = cpu_to_node(dst_cpu);
1392 	int last_cpupid, this_cpupid;
1393 
1394 	this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid);
1395 	last_cpupid = page_cpupid_xchg_last(page, this_cpupid);
1396 
1397 	/*
1398 	 * Allow first faults or private faults to migrate immediately early in
1399 	 * the lifetime of a task. The magic number 4 is based on waiting for
1400 	 * two full passes of the "multi-stage node selection" test that is
1401 	 * executed below.
1402 	 */
1403 	if ((p->numa_preferred_nid == -1 || p->numa_scan_seq <= 4) &&
1404 	    (cpupid_pid_unset(last_cpupid) || cpupid_match_pid(p, last_cpupid)))
1405 		return true;
1406 
1407 	/*
1408 	 * Multi-stage node selection is used in conjunction with a periodic
1409 	 * migration fault to build a temporal task<->page relation. By using
1410 	 * a two-stage filter we remove short/unlikely relations.
1411 	 *
1412 	 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate
1413 	 * a task's usage of a particular page (n_p) per total usage of this
1414 	 * page (n_t) (in a given time-span) to a probability.
1415 	 *
1416 	 * Our periodic faults will sample this probability and getting the
1417 	 * same result twice in a row, given these samples are fully
1418 	 * independent, is then given by P(n)^2, provided our sample period
1419 	 * is sufficiently short compared to the usage pattern.
1420 	 *
1421 	 * This quadric squishes small probabilities, making it less likely we
1422 	 * act on an unlikely task<->page relation.
1423 	 */
1424 	if (!cpupid_pid_unset(last_cpupid) &&
1425 				cpupid_to_nid(last_cpupid) != dst_nid)
1426 		return false;
1427 
1428 	/* Always allow migrate on private faults */
1429 	if (cpupid_match_pid(p, last_cpupid))
1430 		return true;
1431 
1432 	/* A shared fault, but p->numa_group has not been set up yet. */
1433 	if (!ng)
1434 		return true;
1435 
1436 	/*
1437 	 * Destination node is much more heavily used than the source
1438 	 * node? Allow migration.
1439 	 */
1440 	if (group_faults_cpu(ng, dst_nid) > group_faults_cpu(ng, src_nid) *
1441 					ACTIVE_NODE_FRACTION)
1442 		return true;
1443 
1444 	/*
1445 	 * Distribute memory according to CPU & memory use on each node,
1446 	 * with 3/4 hysteresis to avoid unnecessary memory migrations:
1447 	 *
1448 	 * faults_cpu(dst)   3   faults_cpu(src)
1449 	 * --------------- * - > ---------------
1450 	 * faults_mem(dst)   4   faults_mem(src)
1451 	 */
1452 	return group_faults_cpu(ng, dst_nid) * group_faults(p, src_nid) * 3 >
1453 	       group_faults_cpu(ng, src_nid) * group_faults(p, dst_nid) * 4;
1454 }
1455 
1456 static unsigned long weighted_cpuload(struct rq *rq);
1457 static unsigned long source_load(int cpu, int type);
1458 static unsigned long target_load(int cpu, int type);
1459 
1460 /* Cached statistics for all CPUs within a node */
1461 struct numa_stats {
1462 	unsigned long load;
1463 
1464 	/* Total compute capacity of CPUs on a node */
1465 	unsigned long compute_capacity;
1466 };
1467 
1468 /*
1469  * XXX borrowed from update_sg_lb_stats
1470  */
1471 static void update_numa_stats(struct numa_stats *ns, int nid)
1472 {
1473 	int cpu;
1474 
1475 	memset(ns, 0, sizeof(*ns));
1476 	for_each_cpu(cpu, cpumask_of_node(nid)) {
1477 		struct rq *rq = cpu_rq(cpu);
1478 
1479 		ns->load += weighted_cpuload(rq);
1480 		ns->compute_capacity += capacity_of(cpu);
1481 	}
1482 
1483 }
1484 
1485 struct task_numa_env {
1486 	struct task_struct *p;
1487 
1488 	int src_cpu, src_nid;
1489 	int dst_cpu, dst_nid;
1490 
1491 	struct numa_stats src_stats, dst_stats;
1492 
1493 	int imbalance_pct;
1494 	int dist;
1495 
1496 	struct task_struct *best_task;
1497 	long best_imp;
1498 	int best_cpu;
1499 };
1500 
1501 static void task_numa_assign(struct task_numa_env *env,
1502 			     struct task_struct *p, long imp)
1503 {
1504 	struct rq *rq = cpu_rq(env->dst_cpu);
1505 
1506 	/* Bail out if run-queue part of active NUMA balance. */
1507 	if (xchg(&rq->numa_migrate_on, 1))
1508 		return;
1509 
1510 	/*
1511 	 * Clear previous best_cpu/rq numa-migrate flag, since task now
1512 	 * found a better CPU to move/swap.
1513 	 */
1514 	if (env->best_cpu != -1) {
1515 		rq = cpu_rq(env->best_cpu);
1516 		WRITE_ONCE(rq->numa_migrate_on, 0);
1517 	}
1518 
1519 	if (env->best_task)
1520 		put_task_struct(env->best_task);
1521 	if (p)
1522 		get_task_struct(p);
1523 
1524 	env->best_task = p;
1525 	env->best_imp = imp;
1526 	env->best_cpu = env->dst_cpu;
1527 }
1528 
1529 static bool load_too_imbalanced(long src_load, long dst_load,
1530 				struct task_numa_env *env)
1531 {
1532 	long imb, old_imb;
1533 	long orig_src_load, orig_dst_load;
1534 	long src_capacity, dst_capacity;
1535 
1536 	/*
1537 	 * The load is corrected for the CPU capacity available on each node.
1538 	 *
1539 	 * src_load        dst_load
1540 	 * ------------ vs ---------
1541 	 * src_capacity    dst_capacity
1542 	 */
1543 	src_capacity = env->src_stats.compute_capacity;
1544 	dst_capacity = env->dst_stats.compute_capacity;
1545 
1546 	imb = abs(dst_load * src_capacity - src_load * dst_capacity);
1547 
1548 	orig_src_load = env->src_stats.load;
1549 	orig_dst_load = env->dst_stats.load;
1550 
1551 	old_imb = abs(orig_dst_load * src_capacity - orig_src_load * dst_capacity);
1552 
1553 	/* Would this change make things worse? */
1554 	return (imb > old_imb);
1555 }
1556 
1557 /*
1558  * Maximum NUMA importance can be 1998 (2*999);
1559  * SMALLIMP @ 30 would be close to 1998/64.
1560  * Used to deter task migration.
1561  */
1562 #define SMALLIMP	30
1563 
1564 /*
1565  * This checks if the overall compute and NUMA accesses of the system would
1566  * be improved if the source tasks was migrated to the target dst_cpu taking
1567  * into account that it might be best if task running on the dst_cpu should
1568  * be exchanged with the source task
1569  */
1570 static void task_numa_compare(struct task_numa_env *env,
1571 			      long taskimp, long groupimp, bool maymove)
1572 {
1573 	struct rq *dst_rq = cpu_rq(env->dst_cpu);
1574 	struct task_struct *cur;
1575 	long src_load, dst_load;
1576 	long load;
1577 	long imp = env->p->numa_group ? groupimp : taskimp;
1578 	long moveimp = imp;
1579 	int dist = env->dist;
1580 
1581 	if (READ_ONCE(dst_rq->numa_migrate_on))
1582 		return;
1583 
1584 	rcu_read_lock();
1585 	cur = task_rcu_dereference(&dst_rq->curr);
1586 	if (cur && ((cur->flags & PF_EXITING) || is_idle_task(cur)))
1587 		cur = NULL;
1588 
1589 	/*
1590 	 * Because we have preemption enabled we can get migrated around and
1591 	 * end try selecting ourselves (current == env->p) as a swap candidate.
1592 	 */
1593 	if (cur == env->p)
1594 		goto unlock;
1595 
1596 	if (!cur) {
1597 		if (maymove && moveimp >= env->best_imp)
1598 			goto assign;
1599 		else
1600 			goto unlock;
1601 	}
1602 
1603 	/*
1604 	 * "imp" is the fault differential for the source task between the
1605 	 * source and destination node. Calculate the total differential for
1606 	 * the source task and potential destination task. The more negative
1607 	 * the value is, the more remote accesses that would be expected to
1608 	 * be incurred if the tasks were swapped.
1609 	 */
1610 	/* Skip this swap candidate if cannot move to the source cpu */
1611 	if (!cpumask_test_cpu(env->src_cpu, &cur->cpus_allowed))
1612 		goto unlock;
1613 
1614 	/*
1615 	 * If dst and source tasks are in the same NUMA group, or not
1616 	 * in any group then look only at task weights.
1617 	 */
1618 	if (cur->numa_group == env->p->numa_group) {
1619 		imp = taskimp + task_weight(cur, env->src_nid, dist) -
1620 		      task_weight(cur, env->dst_nid, dist);
1621 		/*
1622 		 * Add some hysteresis to prevent swapping the
1623 		 * tasks within a group over tiny differences.
1624 		 */
1625 		if (cur->numa_group)
1626 			imp -= imp / 16;
1627 	} else {
1628 		/*
1629 		 * Compare the group weights. If a task is all by itself
1630 		 * (not part of a group), use the task weight instead.
1631 		 */
1632 		if (cur->numa_group && env->p->numa_group)
1633 			imp += group_weight(cur, env->src_nid, dist) -
1634 			       group_weight(cur, env->dst_nid, dist);
1635 		else
1636 			imp += task_weight(cur, env->src_nid, dist) -
1637 			       task_weight(cur, env->dst_nid, dist);
1638 	}
1639 
1640 	if (maymove && moveimp > imp && moveimp > env->best_imp) {
1641 		imp = moveimp;
1642 		cur = NULL;
1643 		goto assign;
1644 	}
1645 
1646 	/*
1647 	 * If the NUMA importance is less than SMALLIMP,
1648 	 * task migration might only result in ping pong
1649 	 * of tasks and also hurt performance due to cache
1650 	 * misses.
1651 	 */
1652 	if (imp < SMALLIMP || imp <= env->best_imp + SMALLIMP / 2)
1653 		goto unlock;
1654 
1655 	/*
1656 	 * In the overloaded case, try and keep the load balanced.
1657 	 */
1658 	load = task_h_load(env->p) - task_h_load(cur);
1659 	if (!load)
1660 		goto assign;
1661 
1662 	dst_load = env->dst_stats.load + load;
1663 	src_load = env->src_stats.load - load;
1664 
1665 	if (load_too_imbalanced(src_load, dst_load, env))
1666 		goto unlock;
1667 
1668 assign:
1669 	/*
1670 	 * One idle CPU per node is evaluated for a task numa move.
1671 	 * Call select_idle_sibling to maybe find a better one.
1672 	 */
1673 	if (!cur) {
1674 		/*
1675 		 * select_idle_siblings() uses an per-CPU cpumask that
1676 		 * can be used from IRQ context.
1677 		 */
1678 		local_irq_disable();
1679 		env->dst_cpu = select_idle_sibling(env->p, env->src_cpu,
1680 						   env->dst_cpu);
1681 		local_irq_enable();
1682 	}
1683 
1684 	task_numa_assign(env, cur, imp);
1685 unlock:
1686 	rcu_read_unlock();
1687 }
1688 
1689 static void task_numa_find_cpu(struct task_numa_env *env,
1690 				long taskimp, long groupimp)
1691 {
1692 	long src_load, dst_load, load;
1693 	bool maymove = false;
1694 	int cpu;
1695 
1696 	load = task_h_load(env->p);
1697 	dst_load = env->dst_stats.load + load;
1698 	src_load = env->src_stats.load - load;
1699 
1700 	/*
1701 	 * If the improvement from just moving env->p direction is better
1702 	 * than swapping tasks around, check if a move is possible.
1703 	 */
1704 	maymove = !load_too_imbalanced(src_load, dst_load, env);
1705 
1706 	for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
1707 		/* Skip this CPU if the source task cannot migrate */
1708 		if (!cpumask_test_cpu(cpu, &env->p->cpus_allowed))
1709 			continue;
1710 
1711 		env->dst_cpu = cpu;
1712 		task_numa_compare(env, taskimp, groupimp, maymove);
1713 	}
1714 }
1715 
1716 static int task_numa_migrate(struct task_struct *p)
1717 {
1718 	struct task_numa_env env = {
1719 		.p = p,
1720 
1721 		.src_cpu = task_cpu(p),
1722 		.src_nid = task_node(p),
1723 
1724 		.imbalance_pct = 112,
1725 
1726 		.best_task = NULL,
1727 		.best_imp = 0,
1728 		.best_cpu = -1,
1729 	};
1730 	struct sched_domain *sd;
1731 	struct rq *best_rq;
1732 	unsigned long taskweight, groupweight;
1733 	int nid, ret, dist;
1734 	long taskimp, groupimp;
1735 
1736 	/*
1737 	 * Pick the lowest SD_NUMA domain, as that would have the smallest
1738 	 * imbalance and would be the first to start moving tasks about.
1739 	 *
1740 	 * And we want to avoid any moving of tasks about, as that would create
1741 	 * random movement of tasks -- counter the numa conditions we're trying
1742 	 * to satisfy here.
1743 	 */
1744 	rcu_read_lock();
1745 	sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
1746 	if (sd)
1747 		env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
1748 	rcu_read_unlock();
1749 
1750 	/*
1751 	 * Cpusets can break the scheduler domain tree into smaller
1752 	 * balance domains, some of which do not cross NUMA boundaries.
1753 	 * Tasks that are "trapped" in such domains cannot be migrated
1754 	 * elsewhere, so there is no point in (re)trying.
1755 	 */
1756 	if (unlikely(!sd)) {
1757 		sched_setnuma(p, task_node(p));
1758 		return -EINVAL;
1759 	}
1760 
1761 	env.dst_nid = p->numa_preferred_nid;
1762 	dist = env.dist = node_distance(env.src_nid, env.dst_nid);
1763 	taskweight = task_weight(p, env.src_nid, dist);
1764 	groupweight = group_weight(p, env.src_nid, dist);
1765 	update_numa_stats(&env.src_stats, env.src_nid);
1766 	taskimp = task_weight(p, env.dst_nid, dist) - taskweight;
1767 	groupimp = group_weight(p, env.dst_nid, dist) - groupweight;
1768 	update_numa_stats(&env.dst_stats, env.dst_nid);
1769 
1770 	/* Try to find a spot on the preferred nid. */
1771 	task_numa_find_cpu(&env, taskimp, groupimp);
1772 
1773 	/*
1774 	 * Look at other nodes in these cases:
1775 	 * - there is no space available on the preferred_nid
1776 	 * - the task is part of a numa_group that is interleaved across
1777 	 *   multiple NUMA nodes; in order to better consolidate the group,
1778 	 *   we need to check other locations.
1779 	 */
1780 	if (env.best_cpu == -1 || (p->numa_group && p->numa_group->active_nodes > 1)) {
1781 		for_each_online_node(nid) {
1782 			if (nid == env.src_nid || nid == p->numa_preferred_nid)
1783 				continue;
1784 
1785 			dist = node_distance(env.src_nid, env.dst_nid);
1786 			if (sched_numa_topology_type == NUMA_BACKPLANE &&
1787 						dist != env.dist) {
1788 				taskweight = task_weight(p, env.src_nid, dist);
1789 				groupweight = group_weight(p, env.src_nid, dist);
1790 			}
1791 
1792 			/* Only consider nodes where both task and groups benefit */
1793 			taskimp = task_weight(p, nid, dist) - taskweight;
1794 			groupimp = group_weight(p, nid, dist) - groupweight;
1795 			if (taskimp < 0 && groupimp < 0)
1796 				continue;
1797 
1798 			env.dist = dist;
1799 			env.dst_nid = nid;
1800 			update_numa_stats(&env.dst_stats, env.dst_nid);
1801 			task_numa_find_cpu(&env, taskimp, groupimp);
1802 		}
1803 	}
1804 
1805 	/*
1806 	 * If the task is part of a workload that spans multiple NUMA nodes,
1807 	 * and is migrating into one of the workload's active nodes, remember
1808 	 * this node as the task's preferred numa node, so the workload can
1809 	 * settle down.
1810 	 * A task that migrated to a second choice node will be better off
1811 	 * trying for a better one later. Do not set the preferred node here.
1812 	 */
1813 	if (p->numa_group) {
1814 		if (env.best_cpu == -1)
1815 			nid = env.src_nid;
1816 		else
1817 			nid = cpu_to_node(env.best_cpu);
1818 
1819 		if (nid != p->numa_preferred_nid)
1820 			sched_setnuma(p, nid);
1821 	}
1822 
1823 	/* No better CPU than the current one was found. */
1824 	if (env.best_cpu == -1)
1825 		return -EAGAIN;
1826 
1827 	best_rq = cpu_rq(env.best_cpu);
1828 	if (env.best_task == NULL) {
1829 		ret = migrate_task_to(p, env.best_cpu);
1830 		WRITE_ONCE(best_rq->numa_migrate_on, 0);
1831 		if (ret != 0)
1832 			trace_sched_stick_numa(p, env.src_cpu, env.best_cpu);
1833 		return ret;
1834 	}
1835 
1836 	ret = migrate_swap(p, env.best_task, env.best_cpu, env.src_cpu);
1837 	WRITE_ONCE(best_rq->numa_migrate_on, 0);
1838 
1839 	if (ret != 0)
1840 		trace_sched_stick_numa(p, env.src_cpu, task_cpu(env.best_task));
1841 	put_task_struct(env.best_task);
1842 	return ret;
1843 }
1844 
1845 /* Attempt to migrate a task to a CPU on the preferred node. */
1846 static void numa_migrate_preferred(struct task_struct *p)
1847 {
1848 	unsigned long interval = HZ;
1849 
1850 	/* This task has no NUMA fault statistics yet */
1851 	if (unlikely(p->numa_preferred_nid == -1 || !p->numa_faults))
1852 		return;
1853 
1854 	/* Periodically retry migrating the task to the preferred node */
1855 	interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16);
1856 	p->numa_migrate_retry = jiffies + interval;
1857 
1858 	/* Success if task is already running on preferred CPU */
1859 	if (task_node(p) == p->numa_preferred_nid)
1860 		return;
1861 
1862 	/* Otherwise, try migrate to a CPU on the preferred node */
1863 	task_numa_migrate(p);
1864 }
1865 
1866 /*
1867  * Find out how many nodes on the workload is actively running on. Do this by
1868  * tracking the nodes from which NUMA hinting faults are triggered. This can
1869  * be different from the set of nodes where the workload's memory is currently
1870  * located.
1871  */
1872 static void numa_group_count_active_nodes(struct numa_group *numa_group)
1873 {
1874 	unsigned long faults, max_faults = 0;
1875 	int nid, active_nodes = 0;
1876 
1877 	for_each_online_node(nid) {
1878 		faults = group_faults_cpu(numa_group, nid);
1879 		if (faults > max_faults)
1880 			max_faults = faults;
1881 	}
1882 
1883 	for_each_online_node(nid) {
1884 		faults = group_faults_cpu(numa_group, nid);
1885 		if (faults * ACTIVE_NODE_FRACTION > max_faults)
1886 			active_nodes++;
1887 	}
1888 
1889 	numa_group->max_faults_cpu = max_faults;
1890 	numa_group->active_nodes = active_nodes;
1891 }
1892 
1893 /*
1894  * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
1895  * increments. The more local the fault statistics are, the higher the scan
1896  * period will be for the next scan window. If local/(local+remote) ratio is
1897  * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS)
1898  * the scan period will decrease. Aim for 70% local accesses.
1899  */
1900 #define NUMA_PERIOD_SLOTS 10
1901 #define NUMA_PERIOD_THRESHOLD 7
1902 
1903 /*
1904  * Increase the scan period (slow down scanning) if the majority of
1905  * our memory is already on our local node, or if the majority of
1906  * the page accesses are shared with other processes.
1907  * Otherwise, decrease the scan period.
1908  */
1909 static void update_task_scan_period(struct task_struct *p,
1910 			unsigned long shared, unsigned long private)
1911 {
1912 	unsigned int period_slot;
1913 	int lr_ratio, ps_ratio;
1914 	int diff;
1915 
1916 	unsigned long remote = p->numa_faults_locality[0];
1917 	unsigned long local = p->numa_faults_locality[1];
1918 
1919 	/*
1920 	 * If there were no record hinting faults then either the task is
1921 	 * completely idle or all activity is areas that are not of interest
1922 	 * to automatic numa balancing. Related to that, if there were failed
1923 	 * migration then it implies we are migrating too quickly or the local
1924 	 * node is overloaded. In either case, scan slower
1925 	 */
1926 	if (local + shared == 0 || p->numa_faults_locality[2]) {
1927 		p->numa_scan_period = min(p->numa_scan_period_max,
1928 			p->numa_scan_period << 1);
1929 
1930 		p->mm->numa_next_scan = jiffies +
1931 			msecs_to_jiffies(p->numa_scan_period);
1932 
1933 		return;
1934 	}
1935 
1936 	/*
1937 	 * Prepare to scale scan period relative to the current period.
1938 	 *	 == NUMA_PERIOD_THRESHOLD scan period stays the same
1939 	 *       <  NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
1940 	 *	 >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
1941 	 */
1942 	period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
1943 	lr_ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
1944 	ps_ratio = (private * NUMA_PERIOD_SLOTS) / (private + shared);
1945 
1946 	if (ps_ratio >= NUMA_PERIOD_THRESHOLD) {
1947 		/*
1948 		 * Most memory accesses are local. There is no need to
1949 		 * do fast NUMA scanning, since memory is already local.
1950 		 */
1951 		int slot = ps_ratio - NUMA_PERIOD_THRESHOLD;
1952 		if (!slot)
1953 			slot = 1;
1954 		diff = slot * period_slot;
1955 	} else if (lr_ratio >= NUMA_PERIOD_THRESHOLD) {
1956 		/*
1957 		 * Most memory accesses are shared with other tasks.
1958 		 * There is no point in continuing fast NUMA scanning,
1959 		 * since other tasks may just move the memory elsewhere.
1960 		 */
1961 		int slot = lr_ratio - NUMA_PERIOD_THRESHOLD;
1962 		if (!slot)
1963 			slot = 1;
1964 		diff = slot * period_slot;
1965 	} else {
1966 		/*
1967 		 * Private memory faults exceed (SLOTS-THRESHOLD)/SLOTS,
1968 		 * yet they are not on the local NUMA node. Speed up
1969 		 * NUMA scanning to get the memory moved over.
1970 		 */
1971 		int ratio = max(lr_ratio, ps_ratio);
1972 		diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;
1973 	}
1974 
1975 	p->numa_scan_period = clamp(p->numa_scan_period + diff,
1976 			task_scan_min(p), task_scan_max(p));
1977 	memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
1978 }
1979 
1980 /*
1981  * Get the fraction of time the task has been running since the last
1982  * NUMA placement cycle. The scheduler keeps similar statistics, but
1983  * decays those on a 32ms period, which is orders of magnitude off
1984  * from the dozens-of-seconds NUMA balancing period. Use the scheduler
1985  * stats only if the task is so new there are no NUMA statistics yet.
1986  */
1987 static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period)
1988 {
1989 	u64 runtime, delta, now;
1990 	/* Use the start of this time slice to avoid calculations. */
1991 	now = p->se.exec_start;
1992 	runtime = p->se.sum_exec_runtime;
1993 
1994 	if (p->last_task_numa_placement) {
1995 		delta = runtime - p->last_sum_exec_runtime;
1996 		*period = now - p->last_task_numa_placement;
1997 	} else {
1998 		delta = p->se.avg.load_sum;
1999 		*period = LOAD_AVG_MAX;
2000 	}
2001 
2002 	p->last_sum_exec_runtime = runtime;
2003 	p->last_task_numa_placement = now;
2004 
2005 	return delta;
2006 }
2007 
2008 /*
2009  * Determine the preferred nid for a task in a numa_group. This needs to
2010  * be done in a way that produces consistent results with group_weight,
2011  * otherwise workloads might not converge.
2012  */
2013 static int preferred_group_nid(struct task_struct *p, int nid)
2014 {
2015 	nodemask_t nodes;
2016 	int dist;
2017 
2018 	/* Direct connections between all NUMA nodes. */
2019 	if (sched_numa_topology_type == NUMA_DIRECT)
2020 		return nid;
2021 
2022 	/*
2023 	 * On a system with glueless mesh NUMA topology, group_weight
2024 	 * scores nodes according to the number of NUMA hinting faults on
2025 	 * both the node itself, and on nearby nodes.
2026 	 */
2027 	if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
2028 		unsigned long score, max_score = 0;
2029 		int node, max_node = nid;
2030 
2031 		dist = sched_max_numa_distance;
2032 
2033 		for_each_online_node(node) {
2034 			score = group_weight(p, node, dist);
2035 			if (score > max_score) {
2036 				max_score = score;
2037 				max_node = node;
2038 			}
2039 		}
2040 		return max_node;
2041 	}
2042 
2043 	/*
2044 	 * Finding the preferred nid in a system with NUMA backplane
2045 	 * interconnect topology is more involved. The goal is to locate
2046 	 * tasks from numa_groups near each other in the system, and
2047 	 * untangle workloads from different sides of the system. This requires
2048 	 * searching down the hierarchy of node groups, recursively searching
2049 	 * inside the highest scoring group of nodes. The nodemask tricks
2050 	 * keep the complexity of the search down.
2051 	 */
2052 	nodes = node_online_map;
2053 	for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) {
2054 		unsigned long max_faults = 0;
2055 		nodemask_t max_group = NODE_MASK_NONE;
2056 		int a, b;
2057 
2058 		/* Are there nodes at this distance from each other? */
2059 		if (!find_numa_distance(dist))
2060 			continue;
2061 
2062 		for_each_node_mask(a, nodes) {
2063 			unsigned long faults = 0;
2064 			nodemask_t this_group;
2065 			nodes_clear(this_group);
2066 
2067 			/* Sum group's NUMA faults; includes a==b case. */
2068 			for_each_node_mask(b, nodes) {
2069 				if (node_distance(a, b) < dist) {
2070 					faults += group_faults(p, b);
2071 					node_set(b, this_group);
2072 					node_clear(b, nodes);
2073 				}
2074 			}
2075 
2076 			/* Remember the top group. */
2077 			if (faults > max_faults) {
2078 				max_faults = faults;
2079 				max_group = this_group;
2080 				/*
2081 				 * subtle: at the smallest distance there is
2082 				 * just one node left in each "group", the
2083 				 * winner is the preferred nid.
2084 				 */
2085 				nid = a;
2086 			}
2087 		}
2088 		/* Next round, evaluate the nodes within max_group. */
2089 		if (!max_faults)
2090 			break;
2091 		nodes = max_group;
2092 	}
2093 	return nid;
2094 }
2095 
2096 static void task_numa_placement(struct task_struct *p)
2097 {
2098 	int seq, nid, max_nid = -1;
2099 	unsigned long max_faults = 0;
2100 	unsigned long fault_types[2] = { 0, 0 };
2101 	unsigned long total_faults;
2102 	u64 runtime, period;
2103 	spinlock_t *group_lock = NULL;
2104 
2105 	/*
2106 	 * The p->mm->numa_scan_seq field gets updated without
2107 	 * exclusive access. Use READ_ONCE() here to ensure
2108 	 * that the field is read in a single access:
2109 	 */
2110 	seq = READ_ONCE(p->mm->numa_scan_seq);
2111 	if (p->numa_scan_seq == seq)
2112 		return;
2113 	p->numa_scan_seq = seq;
2114 	p->numa_scan_period_max = task_scan_max(p);
2115 
2116 	total_faults = p->numa_faults_locality[0] +
2117 		       p->numa_faults_locality[1];
2118 	runtime = numa_get_avg_runtime(p, &period);
2119 
2120 	/* If the task is part of a group prevent parallel updates to group stats */
2121 	if (p->numa_group) {
2122 		group_lock = &p->numa_group->lock;
2123 		spin_lock_irq(group_lock);
2124 	}
2125 
2126 	/* Find the node with the highest number of faults */
2127 	for_each_online_node(nid) {
2128 		/* Keep track of the offsets in numa_faults array */
2129 		int mem_idx, membuf_idx, cpu_idx, cpubuf_idx;
2130 		unsigned long faults = 0, group_faults = 0;
2131 		int priv;
2132 
2133 		for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) {
2134 			long diff, f_diff, f_weight;
2135 
2136 			mem_idx = task_faults_idx(NUMA_MEM, nid, priv);
2137 			membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv);
2138 			cpu_idx = task_faults_idx(NUMA_CPU, nid, priv);
2139 			cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv);
2140 
2141 			/* Decay existing window, copy faults since last scan */
2142 			diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2;
2143 			fault_types[priv] += p->numa_faults[membuf_idx];
2144 			p->numa_faults[membuf_idx] = 0;
2145 
2146 			/*
2147 			 * Normalize the faults_from, so all tasks in a group
2148 			 * count according to CPU use, instead of by the raw
2149 			 * number of faults. Tasks with little runtime have
2150 			 * little over-all impact on throughput, and thus their
2151 			 * faults are less important.
2152 			 */
2153 			f_weight = div64_u64(runtime << 16, period + 1);
2154 			f_weight = (f_weight * p->numa_faults[cpubuf_idx]) /
2155 				   (total_faults + 1);
2156 			f_diff = f_weight - p->numa_faults[cpu_idx] / 2;
2157 			p->numa_faults[cpubuf_idx] = 0;
2158 
2159 			p->numa_faults[mem_idx] += diff;
2160 			p->numa_faults[cpu_idx] += f_diff;
2161 			faults += p->numa_faults[mem_idx];
2162 			p->total_numa_faults += diff;
2163 			if (p->numa_group) {
2164 				/*
2165 				 * safe because we can only change our own group
2166 				 *
2167 				 * mem_idx represents the offset for a given
2168 				 * nid and priv in a specific region because it
2169 				 * is at the beginning of the numa_faults array.
2170 				 */
2171 				p->numa_group->faults[mem_idx] += diff;
2172 				p->numa_group->faults_cpu[mem_idx] += f_diff;
2173 				p->numa_group->total_faults += diff;
2174 				group_faults += p->numa_group->faults[mem_idx];
2175 			}
2176 		}
2177 
2178 		if (!p->numa_group) {
2179 			if (faults > max_faults) {
2180 				max_faults = faults;
2181 				max_nid = nid;
2182 			}
2183 		} else if (group_faults > max_faults) {
2184 			max_faults = group_faults;
2185 			max_nid = nid;
2186 		}
2187 	}
2188 
2189 	if (p->numa_group) {
2190 		numa_group_count_active_nodes(p->numa_group);
2191 		spin_unlock_irq(group_lock);
2192 		max_nid = preferred_group_nid(p, max_nid);
2193 	}
2194 
2195 	if (max_faults) {
2196 		/* Set the new preferred node */
2197 		if (max_nid != p->numa_preferred_nid)
2198 			sched_setnuma(p, max_nid);
2199 	}
2200 
2201 	update_task_scan_period(p, fault_types[0], fault_types[1]);
2202 }
2203 
2204 static inline int get_numa_group(struct numa_group *grp)
2205 {
2206 	return atomic_inc_not_zero(&grp->refcount);
2207 }
2208 
2209 static inline void put_numa_group(struct numa_group *grp)
2210 {
2211 	if (atomic_dec_and_test(&grp->refcount))
2212 		kfree_rcu(grp, rcu);
2213 }
2214 
2215 static void task_numa_group(struct task_struct *p, int cpupid, int flags,
2216 			int *priv)
2217 {
2218 	struct numa_group *grp, *my_grp;
2219 	struct task_struct *tsk;
2220 	bool join = false;
2221 	int cpu = cpupid_to_cpu(cpupid);
2222 	int i;
2223 
2224 	if (unlikely(!p->numa_group)) {
2225 		unsigned int size = sizeof(struct numa_group) +
2226 				    4*nr_node_ids*sizeof(unsigned long);
2227 
2228 		grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
2229 		if (!grp)
2230 			return;
2231 
2232 		atomic_set(&grp->refcount, 1);
2233 		grp->active_nodes = 1;
2234 		grp->max_faults_cpu = 0;
2235 		spin_lock_init(&grp->lock);
2236 		grp->gid = p->pid;
2237 		/* Second half of the array tracks nids where faults happen */
2238 		grp->faults_cpu = grp->faults + NR_NUMA_HINT_FAULT_TYPES *
2239 						nr_node_ids;
2240 
2241 		for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
2242 			grp->faults[i] = p->numa_faults[i];
2243 
2244 		grp->total_faults = p->total_numa_faults;
2245 
2246 		grp->nr_tasks++;
2247 		rcu_assign_pointer(p->numa_group, grp);
2248 	}
2249 
2250 	rcu_read_lock();
2251 	tsk = READ_ONCE(cpu_rq(cpu)->curr);
2252 
2253 	if (!cpupid_match_pid(tsk, cpupid))
2254 		goto no_join;
2255 
2256 	grp = rcu_dereference(tsk->numa_group);
2257 	if (!grp)
2258 		goto no_join;
2259 
2260 	my_grp = p->numa_group;
2261 	if (grp == my_grp)
2262 		goto no_join;
2263 
2264 	/*
2265 	 * Only join the other group if its bigger; if we're the bigger group,
2266 	 * the other task will join us.
2267 	 */
2268 	if (my_grp->nr_tasks > grp->nr_tasks)
2269 		goto no_join;
2270 
2271 	/*
2272 	 * Tie-break on the grp address.
2273 	 */
2274 	if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
2275 		goto no_join;
2276 
2277 	/* Always join threads in the same process. */
2278 	if (tsk->mm == current->mm)
2279 		join = true;
2280 
2281 	/* Simple filter to avoid false positives due to PID collisions */
2282 	if (flags & TNF_SHARED)
2283 		join = true;
2284 
2285 	/* Update priv based on whether false sharing was detected */
2286 	*priv = !join;
2287 
2288 	if (join && !get_numa_group(grp))
2289 		goto no_join;
2290 
2291 	rcu_read_unlock();
2292 
2293 	if (!join)
2294 		return;
2295 
2296 	BUG_ON(irqs_disabled());
2297 	double_lock_irq(&my_grp->lock, &grp->lock);
2298 
2299 	for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) {
2300 		my_grp->faults[i] -= p->numa_faults[i];
2301 		grp->faults[i] += p->numa_faults[i];
2302 	}
2303 	my_grp->total_faults -= p->total_numa_faults;
2304 	grp->total_faults += p->total_numa_faults;
2305 
2306 	my_grp->nr_tasks--;
2307 	grp->nr_tasks++;
2308 
2309 	spin_unlock(&my_grp->lock);
2310 	spin_unlock_irq(&grp->lock);
2311 
2312 	rcu_assign_pointer(p->numa_group, grp);
2313 
2314 	put_numa_group(my_grp);
2315 	return;
2316 
2317 no_join:
2318 	rcu_read_unlock();
2319 	return;
2320 }
2321 
2322 void task_numa_free(struct task_struct *p)
2323 {
2324 	struct numa_group *grp = p->numa_group;
2325 	void *numa_faults = p->numa_faults;
2326 	unsigned long flags;
2327 	int i;
2328 
2329 	if (grp) {
2330 		spin_lock_irqsave(&grp->lock, flags);
2331 		for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
2332 			grp->faults[i] -= p->numa_faults[i];
2333 		grp->total_faults -= p->total_numa_faults;
2334 
2335 		grp->nr_tasks--;
2336 		spin_unlock_irqrestore(&grp->lock, flags);
2337 		RCU_INIT_POINTER(p->numa_group, NULL);
2338 		put_numa_group(grp);
2339 	}
2340 
2341 	p->numa_faults = NULL;
2342 	kfree(numa_faults);
2343 }
2344 
2345 /*
2346  * Got a PROT_NONE fault for a page on @node.
2347  */
2348 void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags)
2349 {
2350 	struct task_struct *p = current;
2351 	bool migrated = flags & TNF_MIGRATED;
2352 	int cpu_node = task_node(current);
2353 	int local = !!(flags & TNF_FAULT_LOCAL);
2354 	struct numa_group *ng;
2355 	int priv;
2356 
2357 	if (!static_branch_likely(&sched_numa_balancing))
2358 		return;
2359 
2360 	/* for example, ksmd faulting in a user's mm */
2361 	if (!p->mm)
2362 		return;
2363 
2364 	/* Allocate buffer to track faults on a per-node basis */
2365 	if (unlikely(!p->numa_faults)) {
2366 		int size = sizeof(*p->numa_faults) *
2367 			   NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids;
2368 
2369 		p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN);
2370 		if (!p->numa_faults)
2371 			return;
2372 
2373 		p->total_numa_faults = 0;
2374 		memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
2375 	}
2376 
2377 	/*
2378 	 * First accesses are treated as private, otherwise consider accesses
2379 	 * to be private if the accessing pid has not changed
2380 	 */
2381 	if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
2382 		priv = 1;
2383 	} else {
2384 		priv = cpupid_match_pid(p, last_cpupid);
2385 		if (!priv && !(flags & TNF_NO_GROUP))
2386 			task_numa_group(p, last_cpupid, flags, &priv);
2387 	}
2388 
2389 	/*
2390 	 * If a workload spans multiple NUMA nodes, a shared fault that
2391 	 * occurs wholly within the set of nodes that the workload is
2392 	 * actively using should be counted as local. This allows the
2393 	 * scan rate to slow down when a workload has settled down.
2394 	 */
2395 	ng = p->numa_group;
2396 	if (!priv && !local && ng && ng->active_nodes > 1 &&
2397 				numa_is_active_node(cpu_node, ng) &&
2398 				numa_is_active_node(mem_node, ng))
2399 		local = 1;
2400 
2401 	/*
2402 	 * Retry to migrate task to preferred node periodically, in case it
2403 	 * previously failed, or the scheduler moved us.
2404 	 */
2405 	if (time_after(jiffies, p->numa_migrate_retry)) {
2406 		task_numa_placement(p);
2407 		numa_migrate_preferred(p);
2408 	}
2409 
2410 	if (migrated)
2411 		p->numa_pages_migrated += pages;
2412 	if (flags & TNF_MIGRATE_FAIL)
2413 		p->numa_faults_locality[2] += pages;
2414 
2415 	p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages;
2416 	p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages;
2417 	p->numa_faults_locality[local] += pages;
2418 }
2419 
2420 static void reset_ptenuma_scan(struct task_struct *p)
2421 {
2422 	/*
2423 	 * We only did a read acquisition of the mmap sem, so
2424 	 * p->mm->numa_scan_seq is written to without exclusive access
2425 	 * and the update is not guaranteed to be atomic. That's not
2426 	 * much of an issue though, since this is just used for
2427 	 * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not
2428 	 * expensive, to avoid any form of compiler optimizations:
2429 	 */
2430 	WRITE_ONCE(p->mm->numa_scan_seq, READ_ONCE(p->mm->numa_scan_seq) + 1);
2431 	p->mm->numa_scan_offset = 0;
2432 }
2433 
2434 /*
2435  * The expensive part of numa migration is done from task_work context.
2436  * Triggered from task_tick_numa().
2437  */
2438 void task_numa_work(struct callback_head *work)
2439 {
2440 	unsigned long migrate, next_scan, now = jiffies;
2441 	struct task_struct *p = current;
2442 	struct mm_struct *mm = p->mm;
2443 	u64 runtime = p->se.sum_exec_runtime;
2444 	struct vm_area_struct *vma;
2445 	unsigned long start, end;
2446 	unsigned long nr_pte_updates = 0;
2447 	long pages, virtpages;
2448 
2449 	SCHED_WARN_ON(p != container_of(work, struct task_struct, numa_work));
2450 
2451 	work->next = work; /* protect against double add */
2452 	/*
2453 	 * Who cares about NUMA placement when they're dying.
2454 	 *
2455 	 * NOTE: make sure not to dereference p->mm before this check,
2456 	 * exit_task_work() happens _after_ exit_mm() so we could be called
2457 	 * without p->mm even though we still had it when we enqueued this
2458 	 * work.
2459 	 */
2460 	if (p->flags & PF_EXITING)
2461 		return;
2462 
2463 	if (!mm->numa_next_scan) {
2464 		mm->numa_next_scan = now +
2465 			msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
2466 	}
2467 
2468 	/*
2469 	 * Enforce maximal scan/migration frequency..
2470 	 */
2471 	migrate = mm->numa_next_scan;
2472 	if (time_before(now, migrate))
2473 		return;
2474 
2475 	if (p->numa_scan_period == 0) {
2476 		p->numa_scan_period_max = task_scan_max(p);
2477 		p->numa_scan_period = task_scan_start(p);
2478 	}
2479 
2480 	next_scan = now + msecs_to_jiffies(p->numa_scan_period);
2481 	if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
2482 		return;
2483 
2484 	/*
2485 	 * Delay this task enough that another task of this mm will likely win
2486 	 * the next time around.
2487 	 */
2488 	p->node_stamp += 2 * TICK_NSEC;
2489 
2490 	start = mm->numa_scan_offset;
2491 	pages = sysctl_numa_balancing_scan_size;
2492 	pages <<= 20 - PAGE_SHIFT; /* MB in pages */
2493 	virtpages = pages * 8;	   /* Scan up to this much virtual space */
2494 	if (!pages)
2495 		return;
2496 
2497 
2498 	if (!down_read_trylock(&mm->mmap_sem))
2499 		return;
2500 	vma = find_vma(mm, start);
2501 	if (!vma) {
2502 		reset_ptenuma_scan(p);
2503 		start = 0;
2504 		vma = mm->mmap;
2505 	}
2506 	for (; vma; vma = vma->vm_next) {
2507 		if (!vma_migratable(vma) || !vma_policy_mof(vma) ||
2508 			is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_MIXEDMAP)) {
2509 			continue;
2510 		}
2511 
2512 		/*
2513 		 * Shared library pages mapped by multiple processes are not
2514 		 * migrated as it is expected they are cache replicated. Avoid
2515 		 * hinting faults in read-only file-backed mappings or the vdso
2516 		 * as migrating the pages will be of marginal benefit.
2517 		 */
2518 		if (!vma->vm_mm ||
2519 		    (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ)))
2520 			continue;
2521 
2522 		/*
2523 		 * Skip inaccessible VMAs to avoid any confusion between
2524 		 * PROT_NONE and NUMA hinting ptes
2525 		 */
2526 		if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)))
2527 			continue;
2528 
2529 		do {
2530 			start = max(start, vma->vm_start);
2531 			end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
2532 			end = min(end, vma->vm_end);
2533 			nr_pte_updates = change_prot_numa(vma, start, end);
2534 
2535 			/*
2536 			 * Try to scan sysctl_numa_balancing_size worth of
2537 			 * hpages that have at least one present PTE that
2538 			 * is not already pte-numa. If the VMA contains
2539 			 * areas that are unused or already full of prot_numa
2540 			 * PTEs, scan up to virtpages, to skip through those
2541 			 * areas faster.
2542 			 */
2543 			if (nr_pte_updates)
2544 				pages -= (end - start) >> PAGE_SHIFT;
2545 			virtpages -= (end - start) >> PAGE_SHIFT;
2546 
2547 			start = end;
2548 			if (pages <= 0 || virtpages <= 0)
2549 				goto out;
2550 
2551 			cond_resched();
2552 		} while (end != vma->vm_end);
2553 	}
2554 
2555 out:
2556 	/*
2557 	 * It is possible to reach the end of the VMA list but the last few
2558 	 * VMAs are not guaranteed to the vma_migratable. If they are not, we
2559 	 * would find the !migratable VMA on the next scan but not reset the
2560 	 * scanner to the start so check it now.
2561 	 */
2562 	if (vma)
2563 		mm->numa_scan_offset = start;
2564 	else
2565 		reset_ptenuma_scan(p);
2566 	up_read(&mm->mmap_sem);
2567 
2568 	/*
2569 	 * Make sure tasks use at least 32x as much time to run other code
2570 	 * than they used here, to limit NUMA PTE scanning overhead to 3% max.
2571 	 * Usually update_task_scan_period slows down scanning enough; on an
2572 	 * overloaded system we need to limit overhead on a per task basis.
2573 	 */
2574 	if (unlikely(p->se.sum_exec_runtime != runtime)) {
2575 		u64 diff = p->se.sum_exec_runtime - runtime;
2576 		p->node_stamp += 32 * diff;
2577 	}
2578 }
2579 
2580 /*
2581  * Drive the periodic memory faults..
2582  */
2583 void task_tick_numa(struct rq *rq, struct task_struct *curr)
2584 {
2585 	struct callback_head *work = &curr->numa_work;
2586 	u64 period, now;
2587 
2588 	/*
2589 	 * We don't care about NUMA placement if we don't have memory.
2590 	 */
2591 	if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work)
2592 		return;
2593 
2594 	/*
2595 	 * Using runtime rather than walltime has the dual advantage that
2596 	 * we (mostly) drive the selection from busy threads and that the
2597 	 * task needs to have done some actual work before we bother with
2598 	 * NUMA placement.
2599 	 */
2600 	now = curr->se.sum_exec_runtime;
2601 	period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
2602 
2603 	if (now > curr->node_stamp + period) {
2604 		if (!curr->node_stamp)
2605 			curr->numa_scan_period = task_scan_start(curr);
2606 		curr->node_stamp += period;
2607 
2608 		if (!time_before(jiffies, curr->mm->numa_next_scan)) {
2609 			init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */
2610 			task_work_add(curr, work, true);
2611 		}
2612 	}
2613 }
2614 
2615 static void update_scan_period(struct task_struct *p, int new_cpu)
2616 {
2617 	int src_nid = cpu_to_node(task_cpu(p));
2618 	int dst_nid = cpu_to_node(new_cpu);
2619 
2620 	if (!static_branch_likely(&sched_numa_balancing))
2621 		return;
2622 
2623 	if (!p->mm || !p->numa_faults || (p->flags & PF_EXITING))
2624 		return;
2625 
2626 	if (src_nid == dst_nid)
2627 		return;
2628 
2629 	/*
2630 	 * Allow resets if faults have been trapped before one scan
2631 	 * has completed. This is most likely due to a new task that
2632 	 * is pulled cross-node due to wakeups or load balancing.
2633 	 */
2634 	if (p->numa_scan_seq) {
2635 		/*
2636 		 * Avoid scan adjustments if moving to the preferred
2637 		 * node or if the task was not previously running on
2638 		 * the preferred node.
2639 		 */
2640 		if (dst_nid == p->numa_preferred_nid ||
2641 		    (p->numa_preferred_nid != -1 && src_nid != p->numa_preferred_nid))
2642 			return;
2643 	}
2644 
2645 	p->numa_scan_period = task_scan_start(p);
2646 }
2647 
2648 #else
2649 static void task_tick_numa(struct rq *rq, struct task_struct *curr)
2650 {
2651 }
2652 
2653 static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
2654 {
2655 }
2656 
2657 static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
2658 {
2659 }
2660 
2661 static inline void update_scan_period(struct task_struct *p, int new_cpu)
2662 {
2663 }
2664 
2665 #endif /* CONFIG_NUMA_BALANCING */
2666 
2667 static void
2668 account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2669 {
2670 	update_load_add(&cfs_rq->load, se->load.weight);
2671 	if (!parent_entity(se))
2672 		update_load_add(&rq_of(cfs_rq)->load, se->load.weight);
2673 #ifdef CONFIG_SMP
2674 	if (entity_is_task(se)) {
2675 		struct rq *rq = rq_of(cfs_rq);
2676 
2677 		account_numa_enqueue(rq, task_of(se));
2678 		list_add(&se->group_node, &rq->cfs_tasks);
2679 	}
2680 #endif
2681 	cfs_rq->nr_running++;
2682 }
2683 
2684 static void
2685 account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2686 {
2687 	update_load_sub(&cfs_rq->load, se->load.weight);
2688 	if (!parent_entity(se))
2689 		update_load_sub(&rq_of(cfs_rq)->load, se->load.weight);
2690 #ifdef CONFIG_SMP
2691 	if (entity_is_task(se)) {
2692 		account_numa_dequeue(rq_of(cfs_rq), task_of(se));
2693 		list_del_init(&se->group_node);
2694 	}
2695 #endif
2696 	cfs_rq->nr_running--;
2697 }
2698 
2699 /*
2700  * Signed add and clamp on underflow.
2701  *
2702  * Explicitly do a load-store to ensure the intermediate value never hits
2703  * memory. This allows lockless observations without ever seeing the negative
2704  * values.
2705  */
2706 #define add_positive(_ptr, _val) do {                           \
2707 	typeof(_ptr) ptr = (_ptr);                              \
2708 	typeof(_val) val = (_val);                              \
2709 	typeof(*ptr) res, var = READ_ONCE(*ptr);                \
2710 								\
2711 	res = var + val;                                        \
2712 								\
2713 	if (val < 0 && res > var)                               \
2714 		res = 0;                                        \
2715 								\
2716 	WRITE_ONCE(*ptr, res);                                  \
2717 } while (0)
2718 
2719 /*
2720  * Unsigned subtract and clamp on underflow.
2721  *
2722  * Explicitly do a load-store to ensure the intermediate value never hits
2723  * memory. This allows lockless observations without ever seeing the negative
2724  * values.
2725  */
2726 #define sub_positive(_ptr, _val) do {				\
2727 	typeof(_ptr) ptr = (_ptr);				\
2728 	typeof(*ptr) val = (_val);				\
2729 	typeof(*ptr) res, var = READ_ONCE(*ptr);		\
2730 	res = var - val;					\
2731 	if (res > var)						\
2732 		res = 0;					\
2733 	WRITE_ONCE(*ptr, res);					\
2734 } while (0)
2735 
2736 /*
2737  * Remove and clamp on negative, from a local variable.
2738  *
2739  * A variant of sub_positive(), which does not use explicit load-store
2740  * and is thus optimized for local variable updates.
2741  */
2742 #define lsub_positive(_ptr, _val) do {				\
2743 	typeof(_ptr) ptr = (_ptr);				\
2744 	*ptr -= min_t(typeof(*ptr), *ptr, _val);		\
2745 } while (0)
2746 
2747 #ifdef CONFIG_SMP
2748 static inline void
2749 enqueue_runnable_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
2750 {
2751 	cfs_rq->runnable_weight += se->runnable_weight;
2752 
2753 	cfs_rq->avg.runnable_load_avg += se->avg.runnable_load_avg;
2754 	cfs_rq->avg.runnable_load_sum += se_runnable(se) * se->avg.runnable_load_sum;
2755 }
2756 
2757 static inline void
2758 dequeue_runnable_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
2759 {
2760 	cfs_rq->runnable_weight -= se->runnable_weight;
2761 
2762 	sub_positive(&cfs_rq->avg.runnable_load_avg, se->avg.runnable_load_avg);
2763 	sub_positive(&cfs_rq->avg.runnable_load_sum,
2764 		     se_runnable(se) * se->avg.runnable_load_sum);
2765 }
2766 
2767 static inline void
2768 enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
2769 {
2770 	cfs_rq->avg.load_avg += se->avg.load_avg;
2771 	cfs_rq->avg.load_sum += se_weight(se) * se->avg.load_sum;
2772 }
2773 
2774 static inline void
2775 dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
2776 {
2777 	sub_positive(&cfs_rq->avg.load_avg, se->avg.load_avg);
2778 	sub_positive(&cfs_rq->avg.load_sum, se_weight(se) * se->avg.load_sum);
2779 }
2780 #else
2781 static inline void
2782 enqueue_runnable_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
2783 static inline void
2784 dequeue_runnable_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
2785 static inline void
2786 enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
2787 static inline void
2788 dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
2789 #endif
2790 
2791 static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
2792 			    unsigned long weight, unsigned long runnable)
2793 {
2794 	if (se->on_rq) {
2795 		/* commit outstanding execution time */
2796 		if (cfs_rq->curr == se)
2797 			update_curr(cfs_rq);
2798 		account_entity_dequeue(cfs_rq, se);
2799 		dequeue_runnable_load_avg(cfs_rq, se);
2800 	}
2801 	dequeue_load_avg(cfs_rq, se);
2802 
2803 	se->runnable_weight = runnable;
2804 	update_load_set(&se->load, weight);
2805 
2806 #ifdef CONFIG_SMP
2807 	do {
2808 		u32 divider = LOAD_AVG_MAX - 1024 + se->avg.period_contrib;
2809 
2810 		se->avg.load_avg = div_u64(se_weight(se) * se->avg.load_sum, divider);
2811 		se->avg.runnable_load_avg =
2812 			div_u64(se_runnable(se) * se->avg.runnable_load_sum, divider);
2813 	} while (0);
2814 #endif
2815 
2816 	enqueue_load_avg(cfs_rq, se);
2817 	if (se->on_rq) {
2818 		account_entity_enqueue(cfs_rq, se);
2819 		enqueue_runnable_load_avg(cfs_rq, se);
2820 	}
2821 }
2822 
2823 void reweight_task(struct task_struct *p, int prio)
2824 {
2825 	struct sched_entity *se = &p->se;
2826 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
2827 	struct load_weight *load = &se->load;
2828 	unsigned long weight = scale_load(sched_prio_to_weight[prio]);
2829 
2830 	reweight_entity(cfs_rq, se, weight, weight);
2831 	load->inv_weight = sched_prio_to_wmult[prio];
2832 }
2833 
2834 #ifdef CONFIG_FAIR_GROUP_SCHED
2835 #ifdef CONFIG_SMP
2836 /*
2837  * All this does is approximate the hierarchical proportion which includes that
2838  * global sum we all love to hate.
2839  *
2840  * That is, the weight of a group entity, is the proportional share of the
2841  * group weight based on the group runqueue weights. That is:
2842  *
2843  *                     tg->weight * grq->load.weight
2844  *   ge->load.weight = -----------------------------               (1)
2845  *			  \Sum grq->load.weight
2846  *
2847  * Now, because computing that sum is prohibitively expensive to compute (been
2848  * there, done that) we approximate it with this average stuff. The average
2849  * moves slower and therefore the approximation is cheaper and more stable.
2850  *
2851  * So instead of the above, we substitute:
2852  *
2853  *   grq->load.weight -> grq->avg.load_avg                         (2)
2854  *
2855  * which yields the following:
2856  *
2857  *                     tg->weight * grq->avg.load_avg
2858  *   ge->load.weight = ------------------------------              (3)
2859  *				tg->load_avg
2860  *
2861  * Where: tg->load_avg ~= \Sum grq->avg.load_avg
2862  *
2863  * That is shares_avg, and it is right (given the approximation (2)).
2864  *
2865  * The problem with it is that because the average is slow -- it was designed
2866  * to be exactly that of course -- this leads to transients in boundary
2867  * conditions. In specific, the case where the group was idle and we start the
2868  * one task. It takes time for our CPU's grq->avg.load_avg to build up,
2869  * yielding bad latency etc..
2870  *
2871  * Now, in that special case (1) reduces to:
2872  *
2873  *                     tg->weight * grq->load.weight
2874  *   ge->load.weight = ----------------------------- = tg->weight   (4)
2875  *			    grp->load.weight
2876  *
2877  * That is, the sum collapses because all other CPUs are idle; the UP scenario.
2878  *
2879  * So what we do is modify our approximation (3) to approach (4) in the (near)
2880  * UP case, like:
2881  *
2882  *   ge->load.weight =
2883  *
2884  *              tg->weight * grq->load.weight
2885  *     ---------------------------------------------------         (5)
2886  *     tg->load_avg - grq->avg.load_avg + grq->load.weight
2887  *
2888  * But because grq->load.weight can drop to 0, resulting in a divide by zero,
2889  * we need to use grq->avg.load_avg as its lower bound, which then gives:
2890  *
2891  *
2892  *                     tg->weight * grq->load.weight
2893  *   ge->load.weight = -----------------------------		   (6)
2894  *				tg_load_avg'
2895  *
2896  * Where:
2897  *
2898  *   tg_load_avg' = tg->load_avg - grq->avg.load_avg +
2899  *                  max(grq->load.weight, grq->avg.load_avg)
2900  *
2901  * And that is shares_weight and is icky. In the (near) UP case it approaches
2902  * (4) while in the normal case it approaches (3). It consistently
2903  * overestimates the ge->load.weight and therefore:
2904  *
2905  *   \Sum ge->load.weight >= tg->weight
2906  *
2907  * hence icky!
2908  */
2909 static long calc_group_shares(struct cfs_rq *cfs_rq)
2910 {
2911 	long tg_weight, tg_shares, load, shares;
2912 	struct task_group *tg = cfs_rq->tg;
2913 
2914 	tg_shares = READ_ONCE(tg->shares);
2915 
2916 	load = max(scale_load_down(cfs_rq->load.weight), cfs_rq->avg.load_avg);
2917 
2918 	tg_weight = atomic_long_read(&tg->load_avg);
2919 
2920 	/* Ensure tg_weight >= load */
2921 	tg_weight -= cfs_rq->tg_load_avg_contrib;
2922 	tg_weight += load;
2923 
2924 	shares = (tg_shares * load);
2925 	if (tg_weight)
2926 		shares /= tg_weight;
2927 
2928 	/*
2929 	 * MIN_SHARES has to be unscaled here to support per-CPU partitioning
2930 	 * of a group with small tg->shares value. It is a floor value which is
2931 	 * assigned as a minimum load.weight to the sched_entity representing
2932 	 * the group on a CPU.
2933 	 *
2934 	 * E.g. on 64-bit for a group with tg->shares of scale_load(15)=15*1024
2935 	 * on an 8-core system with 8 tasks each runnable on one CPU shares has
2936 	 * to be 15*1024*1/8=1920 instead of scale_load(MIN_SHARES)=2*1024. In
2937 	 * case no task is runnable on a CPU MIN_SHARES=2 should be returned
2938 	 * instead of 0.
2939 	 */
2940 	return clamp_t(long, shares, MIN_SHARES, tg_shares);
2941 }
2942 
2943 /*
2944  * This calculates the effective runnable weight for a group entity based on
2945  * the group entity weight calculated above.
2946  *
2947  * Because of the above approximation (2), our group entity weight is
2948  * an load_avg based ratio (3). This means that it includes blocked load and
2949  * does not represent the runnable weight.
2950  *
2951  * Approximate the group entity's runnable weight per ratio from the group
2952  * runqueue:
2953  *
2954  *					     grq->avg.runnable_load_avg
2955  *   ge->runnable_weight = ge->load.weight * -------------------------- (7)
2956  *						 grq->avg.load_avg
2957  *
2958  * However, analogous to above, since the avg numbers are slow, this leads to
2959  * transients in the from-idle case. Instead we use:
2960  *
2961  *   ge->runnable_weight = ge->load.weight *
2962  *
2963  *		max(grq->avg.runnable_load_avg, grq->runnable_weight)
2964  *		-----------------------------------------------------	(8)
2965  *		      max(grq->avg.load_avg, grq->load.weight)
2966  *
2967  * Where these max() serve both to use the 'instant' values to fix the slow
2968  * from-idle and avoid the /0 on to-idle, similar to (6).
2969  */
2970 static long calc_group_runnable(struct cfs_rq *cfs_rq, long shares)
2971 {
2972 	long runnable, load_avg;
2973 
2974 	load_avg = max(cfs_rq->avg.load_avg,
2975 		       scale_load_down(cfs_rq->load.weight));
2976 
2977 	runnable = max(cfs_rq->avg.runnable_load_avg,
2978 		       scale_load_down(cfs_rq->runnable_weight));
2979 
2980 	runnable *= shares;
2981 	if (load_avg)
2982 		runnable /= load_avg;
2983 
2984 	return clamp_t(long, runnable, MIN_SHARES, shares);
2985 }
2986 #endif /* CONFIG_SMP */
2987 
2988 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
2989 
2990 /*
2991  * Recomputes the group entity based on the current state of its group
2992  * runqueue.
2993  */
2994 static void update_cfs_group(struct sched_entity *se)
2995 {
2996 	struct cfs_rq *gcfs_rq = group_cfs_rq(se);
2997 	long shares, runnable;
2998 
2999 	if (!gcfs_rq)
3000 		return;
3001 
3002 	if (throttled_hierarchy(gcfs_rq))
3003 		return;
3004 
3005 #ifndef CONFIG_SMP
3006 	runnable = shares = READ_ONCE(gcfs_rq->tg->shares);
3007 
3008 	if (likely(se->load.weight == shares))
3009 		return;
3010 #else
3011 	shares   = calc_group_shares(gcfs_rq);
3012 	runnable = calc_group_runnable(gcfs_rq, shares);
3013 #endif
3014 
3015 	reweight_entity(cfs_rq_of(se), se, shares, runnable);
3016 }
3017 
3018 #else /* CONFIG_FAIR_GROUP_SCHED */
3019 static inline void update_cfs_group(struct sched_entity *se)
3020 {
3021 }
3022 #endif /* CONFIG_FAIR_GROUP_SCHED */
3023 
3024 static inline void cfs_rq_util_change(struct cfs_rq *cfs_rq, int flags)
3025 {
3026 	struct rq *rq = rq_of(cfs_rq);
3027 
3028 	if (&rq->cfs == cfs_rq || (flags & SCHED_CPUFREQ_MIGRATION)) {
3029 		/*
3030 		 * There are a few boundary cases this might miss but it should
3031 		 * get called often enough that that should (hopefully) not be
3032 		 * a real problem.
3033 		 *
3034 		 * It will not get called when we go idle, because the idle
3035 		 * thread is a different class (!fair), nor will the utilization
3036 		 * number include things like RT tasks.
3037 		 *
3038 		 * As is, the util number is not freq-invariant (we'd have to
3039 		 * implement arch_scale_freq_capacity() for that).
3040 		 *
3041 		 * See cpu_util().
3042 		 */
3043 		cpufreq_update_util(rq, flags);
3044 	}
3045 }
3046 
3047 #ifdef CONFIG_SMP
3048 #ifdef CONFIG_FAIR_GROUP_SCHED
3049 /**
3050  * update_tg_load_avg - update the tg's load avg
3051  * @cfs_rq: the cfs_rq whose avg changed
3052  * @force: update regardless of how small the difference
3053  *
3054  * This function 'ensures': tg->load_avg := \Sum tg->cfs_rq[]->avg.load.
3055  * However, because tg->load_avg is a global value there are performance
3056  * considerations.
3057  *
3058  * In order to avoid having to look at the other cfs_rq's, we use a
3059  * differential update where we store the last value we propagated. This in
3060  * turn allows skipping updates if the differential is 'small'.
3061  *
3062  * Updating tg's load_avg is necessary before update_cfs_share().
3063  */
3064 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force)
3065 {
3066 	long delta = cfs_rq->avg.load_avg - cfs_rq->tg_load_avg_contrib;
3067 
3068 	/*
3069 	 * No need to update load_avg for root_task_group as it is not used.
3070 	 */
3071 	if (cfs_rq->tg == &root_task_group)
3072 		return;
3073 
3074 	if (force || abs(delta) > cfs_rq->tg_load_avg_contrib / 64) {
3075 		atomic_long_add(delta, &cfs_rq->tg->load_avg);
3076 		cfs_rq->tg_load_avg_contrib = cfs_rq->avg.load_avg;
3077 	}
3078 }
3079 
3080 /*
3081  * Called within set_task_rq() right before setting a task's CPU. The
3082  * caller only guarantees p->pi_lock is held; no other assumptions,
3083  * including the state of rq->lock, should be made.
3084  */
3085 void set_task_rq_fair(struct sched_entity *se,
3086 		      struct cfs_rq *prev, struct cfs_rq *next)
3087 {
3088 	u64 p_last_update_time;
3089 	u64 n_last_update_time;
3090 
3091 	if (!sched_feat(ATTACH_AGE_LOAD))
3092 		return;
3093 
3094 	/*
3095 	 * We are supposed to update the task to "current" time, then its up to
3096 	 * date and ready to go to new CPU/cfs_rq. But we have difficulty in
3097 	 * getting what current time is, so simply throw away the out-of-date
3098 	 * time. This will result in the wakee task is less decayed, but giving
3099 	 * the wakee more load sounds not bad.
3100 	 */
3101 	if (!(se->avg.last_update_time && prev))
3102 		return;
3103 
3104 #ifndef CONFIG_64BIT
3105 	{
3106 		u64 p_last_update_time_copy;
3107 		u64 n_last_update_time_copy;
3108 
3109 		do {
3110 			p_last_update_time_copy = prev->load_last_update_time_copy;
3111 			n_last_update_time_copy = next->load_last_update_time_copy;
3112 
3113 			smp_rmb();
3114 
3115 			p_last_update_time = prev->avg.last_update_time;
3116 			n_last_update_time = next->avg.last_update_time;
3117 
3118 		} while (p_last_update_time != p_last_update_time_copy ||
3119 			 n_last_update_time != n_last_update_time_copy);
3120 	}
3121 #else
3122 	p_last_update_time = prev->avg.last_update_time;
3123 	n_last_update_time = next->avg.last_update_time;
3124 #endif
3125 	__update_load_avg_blocked_se(p_last_update_time, cpu_of(rq_of(prev)), se);
3126 	se->avg.last_update_time = n_last_update_time;
3127 }
3128 
3129 
3130 /*
3131  * When on migration a sched_entity joins/leaves the PELT hierarchy, we need to
3132  * propagate its contribution. The key to this propagation is the invariant
3133  * that for each group:
3134  *
3135  *   ge->avg == grq->avg						(1)
3136  *
3137  * _IFF_ we look at the pure running and runnable sums. Because they
3138  * represent the very same entity, just at different points in the hierarchy.
3139  *
3140  * Per the above update_tg_cfs_util() is trivial and simply copies the running
3141  * sum over (but still wrong, because the group entity and group rq do not have
3142  * their PELT windows aligned).
3143  *
3144  * However, update_tg_cfs_runnable() is more complex. So we have:
3145  *
3146  *   ge->avg.load_avg = ge->load.weight * ge->avg.runnable_avg		(2)
3147  *
3148  * And since, like util, the runnable part should be directly transferable,
3149  * the following would _appear_ to be the straight forward approach:
3150  *
3151  *   grq->avg.load_avg = grq->load.weight * grq->avg.runnable_avg	(3)
3152  *
3153  * And per (1) we have:
3154  *
3155  *   ge->avg.runnable_avg == grq->avg.runnable_avg
3156  *
3157  * Which gives:
3158  *
3159  *                      ge->load.weight * grq->avg.load_avg
3160  *   ge->avg.load_avg = -----------------------------------		(4)
3161  *                               grq->load.weight
3162  *
3163  * Except that is wrong!
3164  *
3165  * Because while for entities historical weight is not important and we
3166  * really only care about our future and therefore can consider a pure
3167  * runnable sum, runqueues can NOT do this.
3168  *
3169  * We specifically want runqueues to have a load_avg that includes
3170  * historical weights. Those represent the blocked load, the load we expect
3171  * to (shortly) return to us. This only works by keeping the weights as
3172  * integral part of the sum. We therefore cannot decompose as per (3).
3173  *
3174  * Another reason this doesn't work is that runnable isn't a 0-sum entity.
3175  * Imagine a rq with 2 tasks that each are runnable 2/3 of the time. Then the
3176  * rq itself is runnable anywhere between 2/3 and 1 depending on how the
3177  * runnable section of these tasks overlap (or not). If they were to perfectly
3178  * align the rq as a whole would be runnable 2/3 of the time. If however we
3179  * always have at least 1 runnable task, the rq as a whole is always runnable.
3180  *
3181  * So we'll have to approximate.. :/
3182  *
3183  * Given the constraint:
3184  *
3185  *   ge->avg.running_sum <= ge->avg.runnable_sum <= LOAD_AVG_MAX
3186  *
3187  * We can construct a rule that adds runnable to a rq by assuming minimal
3188  * overlap.
3189  *
3190  * On removal, we'll assume each task is equally runnable; which yields:
3191  *
3192  *   grq->avg.runnable_sum = grq->avg.load_sum / grq->load.weight
3193  *
3194  * XXX: only do this for the part of runnable > running ?
3195  *
3196  */
3197 
3198 static inline void
3199 update_tg_cfs_util(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
3200 {
3201 	long delta = gcfs_rq->avg.util_avg - se->avg.util_avg;
3202 
3203 	/* Nothing to update */
3204 	if (!delta)
3205 		return;
3206 
3207 	/*
3208 	 * The relation between sum and avg is:
3209 	 *
3210 	 *   LOAD_AVG_MAX - 1024 + sa->period_contrib
3211 	 *
3212 	 * however, the PELT windows are not aligned between grq and gse.
3213 	 */
3214 
3215 	/* Set new sched_entity's utilization */
3216 	se->avg.util_avg = gcfs_rq->avg.util_avg;
3217 	se->avg.util_sum = se->avg.util_avg * LOAD_AVG_MAX;
3218 
3219 	/* Update parent cfs_rq utilization */
3220 	add_positive(&cfs_rq->avg.util_avg, delta);
3221 	cfs_rq->avg.util_sum = cfs_rq->avg.util_avg * LOAD_AVG_MAX;
3222 }
3223 
3224 static inline void
3225 update_tg_cfs_runnable(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
3226 {
3227 	long delta_avg, running_sum, runnable_sum = gcfs_rq->prop_runnable_sum;
3228 	unsigned long runnable_load_avg, load_avg;
3229 	u64 runnable_load_sum, load_sum = 0;
3230 	s64 delta_sum;
3231 
3232 	if (!runnable_sum)
3233 		return;
3234 
3235 	gcfs_rq->prop_runnable_sum = 0;
3236 
3237 	if (runnable_sum >= 0) {
3238 		/*
3239 		 * Add runnable; clip at LOAD_AVG_MAX. Reflects that until
3240 		 * the CPU is saturated running == runnable.
3241 		 */
3242 		runnable_sum += se->avg.load_sum;
3243 		runnable_sum = min(runnable_sum, (long)LOAD_AVG_MAX);
3244 	} else {
3245 		/*
3246 		 * Estimate the new unweighted runnable_sum of the gcfs_rq by
3247 		 * assuming all tasks are equally runnable.
3248 		 */
3249 		if (scale_load_down(gcfs_rq->load.weight)) {
3250 			load_sum = div_s64(gcfs_rq->avg.load_sum,
3251 				scale_load_down(gcfs_rq->load.weight));
3252 		}
3253 
3254 		/* But make sure to not inflate se's runnable */
3255 		runnable_sum = min(se->avg.load_sum, load_sum);
3256 	}
3257 
3258 	/*
3259 	 * runnable_sum can't be lower than running_sum
3260 	 * As running sum is scale with CPU capacity wehreas the runnable sum
3261 	 * is not we rescale running_sum 1st
3262 	 */
3263 	running_sum = se->avg.util_sum /
3264 		arch_scale_cpu_capacity(NULL, cpu_of(rq_of(cfs_rq)));
3265 	runnable_sum = max(runnable_sum, running_sum);
3266 
3267 	load_sum = (s64)se_weight(se) * runnable_sum;
3268 	load_avg = div_s64(load_sum, LOAD_AVG_MAX);
3269 
3270 	delta_sum = load_sum - (s64)se_weight(se) * se->avg.load_sum;
3271 	delta_avg = load_avg - se->avg.load_avg;
3272 
3273 	se->avg.load_sum = runnable_sum;
3274 	se->avg.load_avg = load_avg;
3275 	add_positive(&cfs_rq->avg.load_avg, delta_avg);
3276 	add_positive(&cfs_rq->avg.load_sum, delta_sum);
3277 
3278 	runnable_load_sum = (s64)se_runnable(se) * runnable_sum;
3279 	runnable_load_avg = div_s64(runnable_load_sum, LOAD_AVG_MAX);
3280 	delta_sum = runnable_load_sum - se_weight(se) * se->avg.runnable_load_sum;
3281 	delta_avg = runnable_load_avg - se->avg.runnable_load_avg;
3282 
3283 	se->avg.runnable_load_sum = runnable_sum;
3284 	se->avg.runnable_load_avg = runnable_load_avg;
3285 
3286 	if (se->on_rq) {
3287 		add_positive(&cfs_rq->avg.runnable_load_avg, delta_avg);
3288 		add_positive(&cfs_rq->avg.runnable_load_sum, delta_sum);
3289 	}
3290 }
3291 
3292 static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum)
3293 {
3294 	cfs_rq->propagate = 1;
3295 	cfs_rq->prop_runnable_sum += runnable_sum;
3296 }
3297 
3298 /* Update task and its cfs_rq load average */
3299 static inline int propagate_entity_load_avg(struct sched_entity *se)
3300 {
3301 	struct cfs_rq *cfs_rq, *gcfs_rq;
3302 
3303 	if (entity_is_task(se))
3304 		return 0;
3305 
3306 	gcfs_rq = group_cfs_rq(se);
3307 	if (!gcfs_rq->propagate)
3308 		return 0;
3309 
3310 	gcfs_rq->propagate = 0;
3311 
3312 	cfs_rq = cfs_rq_of(se);
3313 
3314 	add_tg_cfs_propagate(cfs_rq, gcfs_rq->prop_runnable_sum);
3315 
3316 	update_tg_cfs_util(cfs_rq, se, gcfs_rq);
3317 	update_tg_cfs_runnable(cfs_rq, se, gcfs_rq);
3318 
3319 	return 1;
3320 }
3321 
3322 /*
3323  * Check if we need to update the load and the utilization of a blocked
3324  * group_entity:
3325  */
3326 static inline bool skip_blocked_update(struct sched_entity *se)
3327 {
3328 	struct cfs_rq *gcfs_rq = group_cfs_rq(se);
3329 
3330 	/*
3331 	 * If sched_entity still have not zero load or utilization, we have to
3332 	 * decay it:
3333 	 */
3334 	if (se->avg.load_avg || se->avg.util_avg)
3335 		return false;
3336 
3337 	/*
3338 	 * If there is a pending propagation, we have to update the load and
3339 	 * the utilization of the sched_entity:
3340 	 */
3341 	if (gcfs_rq->propagate)
3342 		return false;
3343 
3344 	/*
3345 	 * Otherwise, the load and the utilization of the sched_entity is
3346 	 * already zero and there is no pending propagation, so it will be a
3347 	 * waste of time to try to decay it:
3348 	 */
3349 	return true;
3350 }
3351 
3352 #else /* CONFIG_FAIR_GROUP_SCHED */
3353 
3354 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force) {}
3355 
3356 static inline int propagate_entity_load_avg(struct sched_entity *se)
3357 {
3358 	return 0;
3359 }
3360 
3361 static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum) {}
3362 
3363 #endif /* CONFIG_FAIR_GROUP_SCHED */
3364 
3365 /**
3366  * update_cfs_rq_load_avg - update the cfs_rq's load/util averages
3367  * @now: current time, as per cfs_rq_clock_task()
3368  * @cfs_rq: cfs_rq to update
3369  *
3370  * The cfs_rq avg is the direct sum of all its entities (blocked and runnable)
3371  * avg. The immediate corollary is that all (fair) tasks must be attached, see
3372  * post_init_entity_util_avg().
3373  *
3374  * cfs_rq->avg is used for task_h_load() and update_cfs_share() for example.
3375  *
3376  * Returns true if the load decayed or we removed load.
3377  *
3378  * Since both these conditions indicate a changed cfs_rq->avg.load we should
3379  * call update_tg_load_avg() when this function returns true.
3380  */
3381 static inline int
3382 update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq)
3383 {
3384 	unsigned long removed_load = 0, removed_util = 0, removed_runnable_sum = 0;
3385 	struct sched_avg *sa = &cfs_rq->avg;
3386 	int decayed = 0;
3387 
3388 	if (cfs_rq->removed.nr) {
3389 		unsigned long r;
3390 		u32 divider = LOAD_AVG_MAX - 1024 + sa->period_contrib;
3391 
3392 		raw_spin_lock(&cfs_rq->removed.lock);
3393 		swap(cfs_rq->removed.util_avg, removed_util);
3394 		swap(cfs_rq->removed.load_avg, removed_load);
3395 		swap(cfs_rq->removed.runnable_sum, removed_runnable_sum);
3396 		cfs_rq->removed.nr = 0;
3397 		raw_spin_unlock(&cfs_rq->removed.lock);
3398 
3399 		r = removed_load;
3400 		sub_positive(&sa->load_avg, r);
3401 		sub_positive(&sa->load_sum, r * divider);
3402 
3403 		r = removed_util;
3404 		sub_positive(&sa->util_avg, r);
3405 		sub_positive(&sa->util_sum, r * divider);
3406 
3407 		add_tg_cfs_propagate(cfs_rq, -(long)removed_runnable_sum);
3408 
3409 		decayed = 1;
3410 	}
3411 
3412 	decayed |= __update_load_avg_cfs_rq(now, cpu_of(rq_of(cfs_rq)), cfs_rq);
3413 
3414 #ifndef CONFIG_64BIT
3415 	smp_wmb();
3416 	cfs_rq->load_last_update_time_copy = sa->last_update_time;
3417 #endif
3418 
3419 	if (decayed)
3420 		cfs_rq_util_change(cfs_rq, 0);
3421 
3422 	return decayed;
3423 }
3424 
3425 /**
3426  * attach_entity_load_avg - attach this entity to its cfs_rq load avg
3427  * @cfs_rq: cfs_rq to attach to
3428  * @se: sched_entity to attach
3429  * @flags: migration hints
3430  *
3431  * Must call update_cfs_rq_load_avg() before this, since we rely on
3432  * cfs_rq->avg.last_update_time being current.
3433  */
3434 static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
3435 {
3436 	u32 divider = LOAD_AVG_MAX - 1024 + cfs_rq->avg.period_contrib;
3437 
3438 	/*
3439 	 * When we attach the @se to the @cfs_rq, we must align the decay
3440 	 * window because without that, really weird and wonderful things can
3441 	 * happen.
3442 	 *
3443 	 * XXX illustrate
3444 	 */
3445 	se->avg.last_update_time = cfs_rq->avg.last_update_time;
3446 	se->avg.period_contrib = cfs_rq->avg.period_contrib;
3447 
3448 	/*
3449 	 * Hell(o) Nasty stuff.. we need to recompute _sum based on the new
3450 	 * period_contrib. This isn't strictly correct, but since we're
3451 	 * entirely outside of the PELT hierarchy, nobody cares if we truncate
3452 	 * _sum a little.
3453 	 */
3454 	se->avg.util_sum = se->avg.util_avg * divider;
3455 
3456 	se->avg.load_sum = divider;
3457 	if (se_weight(se)) {
3458 		se->avg.load_sum =
3459 			div_u64(se->avg.load_avg * se->avg.load_sum, se_weight(se));
3460 	}
3461 
3462 	se->avg.runnable_load_sum = se->avg.load_sum;
3463 
3464 	enqueue_load_avg(cfs_rq, se);
3465 	cfs_rq->avg.util_avg += se->avg.util_avg;
3466 	cfs_rq->avg.util_sum += se->avg.util_sum;
3467 
3468 	add_tg_cfs_propagate(cfs_rq, se->avg.load_sum);
3469 
3470 	cfs_rq_util_change(cfs_rq, flags);
3471 }
3472 
3473 /**
3474  * detach_entity_load_avg - detach this entity from its cfs_rq load avg
3475  * @cfs_rq: cfs_rq to detach from
3476  * @se: sched_entity to detach
3477  *
3478  * Must call update_cfs_rq_load_avg() before this, since we rely on
3479  * cfs_rq->avg.last_update_time being current.
3480  */
3481 static void detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3482 {
3483 	dequeue_load_avg(cfs_rq, se);
3484 	sub_positive(&cfs_rq->avg.util_avg, se->avg.util_avg);
3485 	sub_positive(&cfs_rq->avg.util_sum, se->avg.util_sum);
3486 
3487 	add_tg_cfs_propagate(cfs_rq, -se->avg.load_sum);
3488 
3489 	cfs_rq_util_change(cfs_rq, 0);
3490 }
3491 
3492 /*
3493  * Optional action to be done while updating the load average
3494  */
3495 #define UPDATE_TG	0x1
3496 #define SKIP_AGE_LOAD	0x2
3497 #define DO_ATTACH	0x4
3498 
3499 /* Update task and its cfs_rq load average */
3500 static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
3501 {
3502 	u64 now = cfs_rq_clock_task(cfs_rq);
3503 	struct rq *rq = rq_of(cfs_rq);
3504 	int cpu = cpu_of(rq);
3505 	int decayed;
3506 
3507 	/*
3508 	 * Track task load average for carrying it to new CPU after migrated, and
3509 	 * track group sched_entity load average for task_h_load calc in migration
3510 	 */
3511 	if (se->avg.last_update_time && !(flags & SKIP_AGE_LOAD))
3512 		__update_load_avg_se(now, cpu, cfs_rq, se);
3513 
3514 	decayed  = update_cfs_rq_load_avg(now, cfs_rq);
3515 	decayed |= propagate_entity_load_avg(se);
3516 
3517 	if (!se->avg.last_update_time && (flags & DO_ATTACH)) {
3518 
3519 		/*
3520 		 * DO_ATTACH means we're here from enqueue_entity().
3521 		 * !last_update_time means we've passed through
3522 		 * migrate_task_rq_fair() indicating we migrated.
3523 		 *
3524 		 * IOW we're enqueueing a task on a new CPU.
3525 		 */
3526 		attach_entity_load_avg(cfs_rq, se, SCHED_CPUFREQ_MIGRATION);
3527 		update_tg_load_avg(cfs_rq, 0);
3528 
3529 	} else if (decayed && (flags & UPDATE_TG))
3530 		update_tg_load_avg(cfs_rq, 0);
3531 }
3532 
3533 #ifndef CONFIG_64BIT
3534 static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
3535 {
3536 	u64 last_update_time_copy;
3537 	u64 last_update_time;
3538 
3539 	do {
3540 		last_update_time_copy = cfs_rq->load_last_update_time_copy;
3541 		smp_rmb();
3542 		last_update_time = cfs_rq->avg.last_update_time;
3543 	} while (last_update_time != last_update_time_copy);
3544 
3545 	return last_update_time;
3546 }
3547 #else
3548 static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
3549 {
3550 	return cfs_rq->avg.last_update_time;
3551 }
3552 #endif
3553 
3554 /*
3555  * Synchronize entity load avg of dequeued entity without locking
3556  * the previous rq.
3557  */
3558 void sync_entity_load_avg(struct sched_entity *se)
3559 {
3560 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
3561 	u64 last_update_time;
3562 
3563 	last_update_time = cfs_rq_last_update_time(cfs_rq);
3564 	__update_load_avg_blocked_se(last_update_time, cpu_of(rq_of(cfs_rq)), se);
3565 }
3566 
3567 /*
3568  * Task first catches up with cfs_rq, and then subtract
3569  * itself from the cfs_rq (task must be off the queue now).
3570  */
3571 void remove_entity_load_avg(struct sched_entity *se)
3572 {
3573 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
3574 	unsigned long flags;
3575 
3576 	/*
3577 	 * tasks cannot exit without having gone through wake_up_new_task() ->
3578 	 * post_init_entity_util_avg() which will have added things to the
3579 	 * cfs_rq, so we can remove unconditionally.
3580 	 *
3581 	 * Similarly for groups, they will have passed through
3582 	 * post_init_entity_util_avg() before unregister_sched_fair_group()
3583 	 * calls this.
3584 	 */
3585 
3586 	sync_entity_load_avg(se);
3587 
3588 	raw_spin_lock_irqsave(&cfs_rq->removed.lock, flags);
3589 	++cfs_rq->removed.nr;
3590 	cfs_rq->removed.util_avg	+= se->avg.util_avg;
3591 	cfs_rq->removed.load_avg	+= se->avg.load_avg;
3592 	cfs_rq->removed.runnable_sum	+= se->avg.load_sum; /* == runnable_sum */
3593 	raw_spin_unlock_irqrestore(&cfs_rq->removed.lock, flags);
3594 }
3595 
3596 static inline unsigned long cfs_rq_runnable_load_avg(struct cfs_rq *cfs_rq)
3597 {
3598 	return cfs_rq->avg.runnable_load_avg;
3599 }
3600 
3601 static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq)
3602 {
3603 	return cfs_rq->avg.load_avg;
3604 }
3605 
3606 static int idle_balance(struct rq *this_rq, struct rq_flags *rf);
3607 
3608 static inline unsigned long task_util(struct task_struct *p)
3609 {
3610 	return READ_ONCE(p->se.avg.util_avg);
3611 }
3612 
3613 static inline unsigned long _task_util_est(struct task_struct *p)
3614 {
3615 	struct util_est ue = READ_ONCE(p->se.avg.util_est);
3616 
3617 	return (max(ue.ewma, ue.enqueued) | UTIL_AVG_UNCHANGED);
3618 }
3619 
3620 static inline unsigned long task_util_est(struct task_struct *p)
3621 {
3622 	return max(task_util(p), _task_util_est(p));
3623 }
3624 
3625 static inline void util_est_enqueue(struct cfs_rq *cfs_rq,
3626 				    struct task_struct *p)
3627 {
3628 	unsigned int enqueued;
3629 
3630 	if (!sched_feat(UTIL_EST))
3631 		return;
3632 
3633 	/* Update root cfs_rq's estimated utilization */
3634 	enqueued  = cfs_rq->avg.util_est.enqueued;
3635 	enqueued += _task_util_est(p);
3636 	WRITE_ONCE(cfs_rq->avg.util_est.enqueued, enqueued);
3637 }
3638 
3639 /*
3640  * Check if a (signed) value is within a specified (unsigned) margin,
3641  * based on the observation that:
3642  *
3643  *     abs(x) < y := (unsigned)(x + y - 1) < (2 * y - 1)
3644  *
3645  * NOTE: this only works when value + maring < INT_MAX.
3646  */
3647 static inline bool within_margin(int value, int margin)
3648 {
3649 	return ((unsigned int)(value + margin - 1) < (2 * margin - 1));
3650 }
3651 
3652 static void
3653 util_est_dequeue(struct cfs_rq *cfs_rq, struct task_struct *p, bool task_sleep)
3654 {
3655 	long last_ewma_diff;
3656 	struct util_est ue;
3657 
3658 	if (!sched_feat(UTIL_EST))
3659 		return;
3660 
3661 	/* Update root cfs_rq's estimated utilization */
3662 	ue.enqueued  = cfs_rq->avg.util_est.enqueued;
3663 	ue.enqueued -= min_t(unsigned int, ue.enqueued, _task_util_est(p));
3664 	WRITE_ONCE(cfs_rq->avg.util_est.enqueued, ue.enqueued);
3665 
3666 	/*
3667 	 * Skip update of task's estimated utilization when the task has not
3668 	 * yet completed an activation, e.g. being migrated.
3669 	 */
3670 	if (!task_sleep)
3671 		return;
3672 
3673 	/*
3674 	 * If the PELT values haven't changed since enqueue time,
3675 	 * skip the util_est update.
3676 	 */
3677 	ue = p->se.avg.util_est;
3678 	if (ue.enqueued & UTIL_AVG_UNCHANGED)
3679 		return;
3680 
3681 	/*
3682 	 * Skip update of task's estimated utilization when its EWMA is
3683 	 * already ~1% close to its last activation value.
3684 	 */
3685 	ue.enqueued = (task_util(p) | UTIL_AVG_UNCHANGED);
3686 	last_ewma_diff = ue.enqueued - ue.ewma;
3687 	if (within_margin(last_ewma_diff, (SCHED_CAPACITY_SCALE / 100)))
3688 		return;
3689 
3690 	/*
3691 	 * Update Task's estimated utilization
3692 	 *
3693 	 * When *p completes an activation we can consolidate another sample
3694 	 * of the task size. This is done by storing the current PELT value
3695 	 * as ue.enqueued and by using this value to update the Exponential
3696 	 * Weighted Moving Average (EWMA):
3697 	 *
3698 	 *  ewma(t) = w *  task_util(p) + (1-w) * ewma(t-1)
3699 	 *          = w *  task_util(p) +         ewma(t-1)  - w * ewma(t-1)
3700 	 *          = w * (task_util(p) -         ewma(t-1)) +     ewma(t-1)
3701 	 *          = w * (      last_ewma_diff            ) +     ewma(t-1)
3702 	 *          = w * (last_ewma_diff  +  ewma(t-1) / w)
3703 	 *
3704 	 * Where 'w' is the weight of new samples, which is configured to be
3705 	 * 0.25, thus making w=1/4 ( >>= UTIL_EST_WEIGHT_SHIFT)
3706 	 */
3707 	ue.ewma <<= UTIL_EST_WEIGHT_SHIFT;
3708 	ue.ewma  += last_ewma_diff;
3709 	ue.ewma >>= UTIL_EST_WEIGHT_SHIFT;
3710 	WRITE_ONCE(p->se.avg.util_est, ue);
3711 }
3712 
3713 static inline int task_fits_capacity(struct task_struct *p, long capacity)
3714 {
3715 	return capacity * 1024 > task_util_est(p) * capacity_margin;
3716 }
3717 
3718 static inline void update_misfit_status(struct task_struct *p, struct rq *rq)
3719 {
3720 	if (!static_branch_unlikely(&sched_asym_cpucapacity))
3721 		return;
3722 
3723 	if (!p) {
3724 		rq->misfit_task_load = 0;
3725 		return;
3726 	}
3727 
3728 	if (task_fits_capacity(p, capacity_of(cpu_of(rq)))) {
3729 		rq->misfit_task_load = 0;
3730 		return;
3731 	}
3732 
3733 	rq->misfit_task_load = task_h_load(p);
3734 }
3735 
3736 #else /* CONFIG_SMP */
3737 
3738 #define UPDATE_TG	0x0
3739 #define SKIP_AGE_LOAD	0x0
3740 #define DO_ATTACH	0x0
3741 
3742 static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int not_used1)
3743 {
3744 	cfs_rq_util_change(cfs_rq, 0);
3745 }
3746 
3747 static inline void remove_entity_load_avg(struct sched_entity *se) {}
3748 
3749 static inline void
3750 attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) {}
3751 static inline void
3752 detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
3753 
3754 static inline int idle_balance(struct rq *rq, struct rq_flags *rf)
3755 {
3756 	return 0;
3757 }
3758 
3759 static inline void
3760 util_est_enqueue(struct cfs_rq *cfs_rq, struct task_struct *p) {}
3761 
3762 static inline void
3763 util_est_dequeue(struct cfs_rq *cfs_rq, struct task_struct *p,
3764 		 bool task_sleep) {}
3765 static inline void update_misfit_status(struct task_struct *p, struct rq *rq) {}
3766 
3767 #endif /* CONFIG_SMP */
3768 
3769 static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
3770 {
3771 #ifdef CONFIG_SCHED_DEBUG
3772 	s64 d = se->vruntime - cfs_rq->min_vruntime;
3773 
3774 	if (d < 0)
3775 		d = -d;
3776 
3777 	if (d > 3*sysctl_sched_latency)
3778 		schedstat_inc(cfs_rq->nr_spread_over);
3779 #endif
3780 }
3781 
3782 static void
3783 place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
3784 {
3785 	u64 vruntime = cfs_rq->min_vruntime;
3786 
3787 	/*
3788 	 * The 'current' period is already promised to the current tasks,
3789 	 * however the extra weight of the new task will slow them down a
3790 	 * little, place the new task so that it fits in the slot that
3791 	 * stays open at the end.
3792 	 */
3793 	if (initial && sched_feat(START_DEBIT))
3794 		vruntime += sched_vslice(cfs_rq, se);
3795 
3796 	/* sleeps up to a single latency don't count. */
3797 	if (!initial) {
3798 		unsigned long thresh = sysctl_sched_latency;
3799 
3800 		/*
3801 		 * Halve their sleep time's effect, to allow
3802 		 * for a gentler effect of sleepers:
3803 		 */
3804 		if (sched_feat(GENTLE_FAIR_SLEEPERS))
3805 			thresh >>= 1;
3806 
3807 		vruntime -= thresh;
3808 	}
3809 
3810 	/* ensure we never gain time by being placed backwards. */
3811 	se->vruntime = max_vruntime(se->vruntime, vruntime);
3812 }
3813 
3814 static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
3815 
3816 static inline void check_schedstat_required(void)
3817 {
3818 #ifdef CONFIG_SCHEDSTATS
3819 	if (schedstat_enabled())
3820 		return;
3821 
3822 	/* Force schedstat enabled if a dependent tracepoint is active */
3823 	if (trace_sched_stat_wait_enabled()    ||
3824 			trace_sched_stat_sleep_enabled()   ||
3825 			trace_sched_stat_iowait_enabled()  ||
3826 			trace_sched_stat_blocked_enabled() ||
3827 			trace_sched_stat_runtime_enabled())  {
3828 		printk_deferred_once("Scheduler tracepoints stat_sleep, stat_iowait, "
3829 			     "stat_blocked and stat_runtime require the "
3830 			     "kernel parameter schedstats=enable or "
3831 			     "kernel.sched_schedstats=1\n");
3832 	}
3833 #endif
3834 }
3835 
3836 
3837 /*
3838  * MIGRATION
3839  *
3840  *	dequeue
3841  *	  update_curr()
3842  *	    update_min_vruntime()
3843  *	  vruntime -= min_vruntime
3844  *
3845  *	enqueue
3846  *	  update_curr()
3847  *	    update_min_vruntime()
3848  *	  vruntime += min_vruntime
3849  *
3850  * this way the vruntime transition between RQs is done when both
3851  * min_vruntime are up-to-date.
3852  *
3853  * WAKEUP (remote)
3854  *
3855  *	->migrate_task_rq_fair() (p->state == TASK_WAKING)
3856  *	  vruntime -= min_vruntime
3857  *
3858  *	enqueue
3859  *	  update_curr()
3860  *	    update_min_vruntime()
3861  *	  vruntime += min_vruntime
3862  *
3863  * this way we don't have the most up-to-date min_vruntime on the originating
3864  * CPU and an up-to-date min_vruntime on the destination CPU.
3865  */
3866 
3867 static void
3868 enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
3869 {
3870 	bool renorm = !(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_MIGRATED);
3871 	bool curr = cfs_rq->curr == se;
3872 
3873 	/*
3874 	 * If we're the current task, we must renormalise before calling
3875 	 * update_curr().
3876 	 */
3877 	if (renorm && curr)
3878 		se->vruntime += cfs_rq->min_vruntime;
3879 
3880 	update_curr(cfs_rq);
3881 
3882 	/*
3883 	 * Otherwise, renormalise after, such that we're placed at the current
3884 	 * moment in time, instead of some random moment in the past. Being
3885 	 * placed in the past could significantly boost this task to the
3886 	 * fairness detriment of existing tasks.
3887 	 */
3888 	if (renorm && !curr)
3889 		se->vruntime += cfs_rq->min_vruntime;
3890 
3891 	/*
3892 	 * When enqueuing a sched_entity, we must:
3893 	 *   - Update loads to have both entity and cfs_rq synced with now.
3894 	 *   - Add its load to cfs_rq->runnable_avg
3895 	 *   - For group_entity, update its weight to reflect the new share of
3896 	 *     its group cfs_rq
3897 	 *   - Add its new weight to cfs_rq->load.weight
3898 	 */
3899 	update_load_avg(cfs_rq, se, UPDATE_TG | DO_ATTACH);
3900 	update_cfs_group(se);
3901 	enqueue_runnable_load_avg(cfs_rq, se);
3902 	account_entity_enqueue(cfs_rq, se);
3903 
3904 	if (flags & ENQUEUE_WAKEUP)
3905 		place_entity(cfs_rq, se, 0);
3906 
3907 	check_schedstat_required();
3908 	update_stats_enqueue(cfs_rq, se, flags);
3909 	check_spread(cfs_rq, se);
3910 	if (!curr)
3911 		__enqueue_entity(cfs_rq, se);
3912 	se->on_rq = 1;
3913 
3914 	if (cfs_rq->nr_running == 1) {
3915 		list_add_leaf_cfs_rq(cfs_rq);
3916 		check_enqueue_throttle(cfs_rq);
3917 	}
3918 }
3919 
3920 static void __clear_buddies_last(struct sched_entity *se)
3921 {
3922 	for_each_sched_entity(se) {
3923 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
3924 		if (cfs_rq->last != se)
3925 			break;
3926 
3927 		cfs_rq->last = NULL;
3928 	}
3929 }
3930 
3931 static void __clear_buddies_next(struct sched_entity *se)
3932 {
3933 	for_each_sched_entity(se) {
3934 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
3935 		if (cfs_rq->next != se)
3936 			break;
3937 
3938 		cfs_rq->next = NULL;
3939 	}
3940 }
3941 
3942 static void __clear_buddies_skip(struct sched_entity *se)
3943 {
3944 	for_each_sched_entity(se) {
3945 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
3946 		if (cfs_rq->skip != se)
3947 			break;
3948 
3949 		cfs_rq->skip = NULL;
3950 	}
3951 }
3952 
3953 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
3954 {
3955 	if (cfs_rq->last == se)
3956 		__clear_buddies_last(se);
3957 
3958 	if (cfs_rq->next == se)
3959 		__clear_buddies_next(se);
3960 
3961 	if (cfs_rq->skip == se)
3962 		__clear_buddies_skip(se);
3963 }
3964 
3965 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
3966 
3967 static void
3968 dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
3969 {
3970 	/*
3971 	 * Update run-time statistics of the 'current'.
3972 	 */
3973 	update_curr(cfs_rq);
3974 
3975 	/*
3976 	 * When dequeuing a sched_entity, we must:
3977 	 *   - Update loads to have both entity and cfs_rq synced with now.
3978 	 *   - Subtract its load from the cfs_rq->runnable_avg.
3979 	 *   - Subtract its previous weight from cfs_rq->load.weight.
3980 	 *   - For group entity, update its weight to reflect the new share
3981 	 *     of its group cfs_rq.
3982 	 */
3983 	update_load_avg(cfs_rq, se, UPDATE_TG);
3984 	dequeue_runnable_load_avg(cfs_rq, se);
3985 
3986 	update_stats_dequeue(cfs_rq, se, flags);
3987 
3988 	clear_buddies(cfs_rq, se);
3989 
3990 	if (se != cfs_rq->curr)
3991 		__dequeue_entity(cfs_rq, se);
3992 	se->on_rq = 0;
3993 	account_entity_dequeue(cfs_rq, se);
3994 
3995 	/*
3996 	 * Normalize after update_curr(); which will also have moved
3997 	 * min_vruntime if @se is the one holding it back. But before doing
3998 	 * update_min_vruntime() again, which will discount @se's position and
3999 	 * can move min_vruntime forward still more.
4000 	 */
4001 	if (!(flags & DEQUEUE_SLEEP))
4002 		se->vruntime -= cfs_rq->min_vruntime;
4003 
4004 	/* return excess runtime on last dequeue */
4005 	return_cfs_rq_runtime(cfs_rq);
4006 
4007 	update_cfs_group(se);
4008 
4009 	/*
4010 	 * Now advance min_vruntime if @se was the entity holding it back,
4011 	 * except when: DEQUEUE_SAVE && !DEQUEUE_MOVE, in this case we'll be
4012 	 * put back on, and if we advance min_vruntime, we'll be placed back
4013 	 * further than we started -- ie. we'll be penalized.
4014 	 */
4015 	if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) != DEQUEUE_SAVE)
4016 		update_min_vruntime(cfs_rq);
4017 }
4018 
4019 /*
4020  * Preempt the current task with a newly woken task if needed:
4021  */
4022 static void
4023 check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
4024 {
4025 	unsigned long ideal_runtime, delta_exec;
4026 	struct sched_entity *se;
4027 	s64 delta;
4028 
4029 	ideal_runtime = sched_slice(cfs_rq, curr);
4030 	delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
4031 	if (delta_exec > ideal_runtime) {
4032 		resched_curr(rq_of(cfs_rq));
4033 		/*
4034 		 * The current task ran long enough, ensure it doesn't get
4035 		 * re-elected due to buddy favours.
4036 		 */
4037 		clear_buddies(cfs_rq, curr);
4038 		return;
4039 	}
4040 
4041 	/*
4042 	 * Ensure that a task that missed wakeup preemption by a
4043 	 * narrow margin doesn't have to wait for a full slice.
4044 	 * This also mitigates buddy induced latencies under load.
4045 	 */
4046 	if (delta_exec < sysctl_sched_min_granularity)
4047 		return;
4048 
4049 	se = __pick_first_entity(cfs_rq);
4050 	delta = curr->vruntime - se->vruntime;
4051 
4052 	if (delta < 0)
4053 		return;
4054 
4055 	if (delta > ideal_runtime)
4056 		resched_curr(rq_of(cfs_rq));
4057 }
4058 
4059 static void
4060 set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
4061 {
4062 	/* 'current' is not kept within the tree. */
4063 	if (se->on_rq) {
4064 		/*
4065 		 * Any task has to be enqueued before it get to execute on
4066 		 * a CPU. So account for the time it spent waiting on the
4067 		 * runqueue.
4068 		 */
4069 		update_stats_wait_end(cfs_rq, se);
4070 		__dequeue_entity(cfs_rq, se);
4071 		update_load_avg(cfs_rq, se, UPDATE_TG);
4072 	}
4073 
4074 	update_stats_curr_start(cfs_rq, se);
4075 	cfs_rq->curr = se;
4076 
4077 	/*
4078 	 * Track our maximum slice length, if the CPU's load is at
4079 	 * least twice that of our own weight (i.e. dont track it
4080 	 * when there are only lesser-weight tasks around):
4081 	 */
4082 	if (schedstat_enabled() && rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
4083 		schedstat_set(se->statistics.slice_max,
4084 			max((u64)schedstat_val(se->statistics.slice_max),
4085 			    se->sum_exec_runtime - se->prev_sum_exec_runtime));
4086 	}
4087 
4088 	se->prev_sum_exec_runtime = se->sum_exec_runtime;
4089 }
4090 
4091 static int
4092 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
4093 
4094 /*
4095  * Pick the next process, keeping these things in mind, in this order:
4096  * 1) keep things fair between processes/task groups
4097  * 2) pick the "next" process, since someone really wants that to run
4098  * 3) pick the "last" process, for cache locality
4099  * 4) do not run the "skip" process, if something else is available
4100  */
4101 static struct sched_entity *
4102 pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr)
4103 {
4104 	struct sched_entity *left = __pick_first_entity(cfs_rq);
4105 	struct sched_entity *se;
4106 
4107 	/*
4108 	 * If curr is set we have to see if its left of the leftmost entity
4109 	 * still in the tree, provided there was anything in the tree at all.
4110 	 */
4111 	if (!left || (curr && entity_before(curr, left)))
4112 		left = curr;
4113 
4114 	se = left; /* ideally we run the leftmost entity */
4115 
4116 	/*
4117 	 * Avoid running the skip buddy, if running something else can
4118 	 * be done without getting too unfair.
4119 	 */
4120 	if (cfs_rq->skip == se) {
4121 		struct sched_entity *second;
4122 
4123 		if (se == curr) {
4124 			second = __pick_first_entity(cfs_rq);
4125 		} else {
4126 			second = __pick_next_entity(se);
4127 			if (!second || (curr && entity_before(curr, second)))
4128 				second = curr;
4129 		}
4130 
4131 		if (second && wakeup_preempt_entity(second, left) < 1)
4132 			se = second;
4133 	}
4134 
4135 	/*
4136 	 * Prefer last buddy, try to return the CPU to a preempted task.
4137 	 */
4138 	if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
4139 		se = cfs_rq->last;
4140 
4141 	/*
4142 	 * Someone really wants this to run. If it's not unfair, run it.
4143 	 */
4144 	if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
4145 		se = cfs_rq->next;
4146 
4147 	clear_buddies(cfs_rq, se);
4148 
4149 	return se;
4150 }
4151 
4152 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
4153 
4154 static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
4155 {
4156 	/*
4157 	 * If still on the runqueue then deactivate_task()
4158 	 * was not called and update_curr() has to be done:
4159 	 */
4160 	if (prev->on_rq)
4161 		update_curr(cfs_rq);
4162 
4163 	/* throttle cfs_rqs exceeding runtime */
4164 	check_cfs_rq_runtime(cfs_rq);
4165 
4166 	check_spread(cfs_rq, prev);
4167 
4168 	if (prev->on_rq) {
4169 		update_stats_wait_start(cfs_rq, prev);
4170 		/* Put 'current' back into the tree. */
4171 		__enqueue_entity(cfs_rq, prev);
4172 		/* in !on_rq case, update occurred at dequeue */
4173 		update_load_avg(cfs_rq, prev, 0);
4174 	}
4175 	cfs_rq->curr = NULL;
4176 }
4177 
4178 static void
4179 entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
4180 {
4181 	/*
4182 	 * Update run-time statistics of the 'current'.
4183 	 */
4184 	update_curr(cfs_rq);
4185 
4186 	/*
4187 	 * Ensure that runnable average is periodically updated.
4188 	 */
4189 	update_load_avg(cfs_rq, curr, UPDATE_TG);
4190 	update_cfs_group(curr);
4191 
4192 #ifdef CONFIG_SCHED_HRTICK
4193 	/*
4194 	 * queued ticks are scheduled to match the slice, so don't bother
4195 	 * validating it and just reschedule.
4196 	 */
4197 	if (queued) {
4198 		resched_curr(rq_of(cfs_rq));
4199 		return;
4200 	}
4201 	/*
4202 	 * don't let the period tick interfere with the hrtick preemption
4203 	 */
4204 	if (!sched_feat(DOUBLE_TICK) &&
4205 			hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
4206 		return;
4207 #endif
4208 
4209 	if (cfs_rq->nr_running > 1)
4210 		check_preempt_tick(cfs_rq, curr);
4211 }
4212 
4213 
4214 /**************************************************
4215  * CFS bandwidth control machinery
4216  */
4217 
4218 #ifdef CONFIG_CFS_BANDWIDTH
4219 
4220 #ifdef CONFIG_JUMP_LABEL
4221 static struct static_key __cfs_bandwidth_used;
4222 
4223 static inline bool cfs_bandwidth_used(void)
4224 {
4225 	return static_key_false(&__cfs_bandwidth_used);
4226 }
4227 
4228 void cfs_bandwidth_usage_inc(void)
4229 {
4230 	static_key_slow_inc_cpuslocked(&__cfs_bandwidth_used);
4231 }
4232 
4233 void cfs_bandwidth_usage_dec(void)
4234 {
4235 	static_key_slow_dec_cpuslocked(&__cfs_bandwidth_used);
4236 }
4237 #else /* CONFIG_JUMP_LABEL */
4238 static bool cfs_bandwidth_used(void)
4239 {
4240 	return true;
4241 }
4242 
4243 void cfs_bandwidth_usage_inc(void) {}
4244 void cfs_bandwidth_usage_dec(void) {}
4245 #endif /* CONFIG_JUMP_LABEL */
4246 
4247 /*
4248  * default period for cfs group bandwidth.
4249  * default: 0.1s, units: nanoseconds
4250  */
4251 static inline u64 default_cfs_period(void)
4252 {
4253 	return 100000000ULL;
4254 }
4255 
4256 static inline u64 sched_cfs_bandwidth_slice(void)
4257 {
4258 	return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
4259 }
4260 
4261 /*
4262  * Replenish runtime according to assigned quota and update expiration time.
4263  * We use sched_clock_cpu directly instead of rq->clock to avoid adding
4264  * additional synchronization around rq->lock.
4265  *
4266  * requires cfs_b->lock
4267  */
4268 void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
4269 {
4270 	u64 now;
4271 
4272 	if (cfs_b->quota == RUNTIME_INF)
4273 		return;
4274 
4275 	now = sched_clock_cpu(smp_processor_id());
4276 	cfs_b->runtime = cfs_b->quota;
4277 	cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
4278 	cfs_b->expires_seq++;
4279 }
4280 
4281 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
4282 {
4283 	return &tg->cfs_bandwidth;
4284 }
4285 
4286 /* rq->task_clock normalized against any time this cfs_rq has spent throttled */
4287 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
4288 {
4289 	if (unlikely(cfs_rq->throttle_count))
4290 		return cfs_rq->throttled_clock_task - cfs_rq->throttled_clock_task_time;
4291 
4292 	return rq_clock_task(rq_of(cfs_rq)) - cfs_rq->throttled_clock_task_time;
4293 }
4294 
4295 /* returns 0 on failure to allocate runtime */
4296 static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4297 {
4298 	struct task_group *tg = cfs_rq->tg;
4299 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
4300 	u64 amount = 0, min_amount, expires;
4301 	int expires_seq;
4302 
4303 	/* note: this is a positive sum as runtime_remaining <= 0 */
4304 	min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;
4305 
4306 	raw_spin_lock(&cfs_b->lock);
4307 	if (cfs_b->quota == RUNTIME_INF)
4308 		amount = min_amount;
4309 	else {
4310 		start_cfs_bandwidth(cfs_b);
4311 
4312 		if (cfs_b->runtime > 0) {
4313 			amount = min(cfs_b->runtime, min_amount);
4314 			cfs_b->runtime -= amount;
4315 			cfs_b->idle = 0;
4316 		}
4317 	}
4318 	expires_seq = cfs_b->expires_seq;
4319 	expires = cfs_b->runtime_expires;
4320 	raw_spin_unlock(&cfs_b->lock);
4321 
4322 	cfs_rq->runtime_remaining += amount;
4323 	/*
4324 	 * we may have advanced our local expiration to account for allowed
4325 	 * spread between our sched_clock and the one on which runtime was
4326 	 * issued.
4327 	 */
4328 	if (cfs_rq->expires_seq != expires_seq) {
4329 		cfs_rq->expires_seq = expires_seq;
4330 		cfs_rq->runtime_expires = expires;
4331 	}
4332 
4333 	return cfs_rq->runtime_remaining > 0;
4334 }
4335 
4336 /*
4337  * Note: This depends on the synchronization provided by sched_clock and the
4338  * fact that rq->clock snapshots this value.
4339  */
4340 static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4341 {
4342 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4343 
4344 	/* if the deadline is ahead of our clock, nothing to do */
4345 	if (likely((s64)(rq_clock(rq_of(cfs_rq)) - cfs_rq->runtime_expires) < 0))
4346 		return;
4347 
4348 	if (cfs_rq->runtime_remaining < 0)
4349 		return;
4350 
4351 	/*
4352 	 * If the local deadline has passed we have to consider the
4353 	 * possibility that our sched_clock is 'fast' and the global deadline
4354 	 * has not truly expired.
4355 	 *
4356 	 * Fortunately we can check determine whether this the case by checking
4357 	 * whether the global deadline(cfs_b->expires_seq) has advanced.
4358 	 */
4359 	if (cfs_rq->expires_seq == cfs_b->expires_seq) {
4360 		/* extend local deadline, drift is bounded above by 2 ticks */
4361 		cfs_rq->runtime_expires += TICK_NSEC;
4362 	} else {
4363 		/* global deadline is ahead, expiration has passed */
4364 		cfs_rq->runtime_remaining = 0;
4365 	}
4366 }
4367 
4368 static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
4369 {
4370 	/* dock delta_exec before expiring quota (as it could span periods) */
4371 	cfs_rq->runtime_remaining -= delta_exec;
4372 	expire_cfs_rq_runtime(cfs_rq);
4373 
4374 	if (likely(cfs_rq->runtime_remaining > 0))
4375 		return;
4376 
4377 	/*
4378 	 * if we're unable to extend our runtime we resched so that the active
4379 	 * hierarchy can be throttled
4380 	 */
4381 	if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
4382 		resched_curr(rq_of(cfs_rq));
4383 }
4384 
4385 static __always_inline
4386 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
4387 {
4388 	if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
4389 		return;
4390 
4391 	__account_cfs_rq_runtime(cfs_rq, delta_exec);
4392 }
4393 
4394 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
4395 {
4396 	return cfs_bandwidth_used() && cfs_rq->throttled;
4397 }
4398 
4399 /* check whether cfs_rq, or any parent, is throttled */
4400 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
4401 {
4402 	return cfs_bandwidth_used() && cfs_rq->throttle_count;
4403 }
4404 
4405 /*
4406  * Ensure that neither of the group entities corresponding to src_cpu or
4407  * dest_cpu are members of a throttled hierarchy when performing group
4408  * load-balance operations.
4409  */
4410 static inline int throttled_lb_pair(struct task_group *tg,
4411 				    int src_cpu, int dest_cpu)
4412 {
4413 	struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
4414 
4415 	src_cfs_rq = tg->cfs_rq[src_cpu];
4416 	dest_cfs_rq = tg->cfs_rq[dest_cpu];
4417 
4418 	return throttled_hierarchy(src_cfs_rq) ||
4419 	       throttled_hierarchy(dest_cfs_rq);
4420 }
4421 
4422 static int tg_unthrottle_up(struct task_group *tg, void *data)
4423 {
4424 	struct rq *rq = data;
4425 	struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
4426 
4427 	cfs_rq->throttle_count--;
4428 	if (!cfs_rq->throttle_count) {
4429 		/* adjust cfs_rq_clock_task() */
4430 		cfs_rq->throttled_clock_task_time += rq_clock_task(rq) -
4431 					     cfs_rq->throttled_clock_task;
4432 	}
4433 
4434 	return 0;
4435 }
4436 
4437 static int tg_throttle_down(struct task_group *tg, void *data)
4438 {
4439 	struct rq *rq = data;
4440 	struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
4441 
4442 	/* group is entering throttled state, stop time */
4443 	if (!cfs_rq->throttle_count)
4444 		cfs_rq->throttled_clock_task = rq_clock_task(rq);
4445 	cfs_rq->throttle_count++;
4446 
4447 	return 0;
4448 }
4449 
4450 static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
4451 {
4452 	struct rq *rq = rq_of(cfs_rq);
4453 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4454 	struct sched_entity *se;
4455 	long task_delta, dequeue = 1;
4456 	bool empty;
4457 
4458 	se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
4459 
4460 	/* freeze hierarchy runnable averages while throttled */
4461 	rcu_read_lock();
4462 	walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
4463 	rcu_read_unlock();
4464 
4465 	task_delta = cfs_rq->h_nr_running;
4466 	for_each_sched_entity(se) {
4467 		struct cfs_rq *qcfs_rq = cfs_rq_of(se);
4468 		/* throttled entity or throttle-on-deactivate */
4469 		if (!se->on_rq)
4470 			break;
4471 
4472 		if (dequeue)
4473 			dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
4474 		qcfs_rq->h_nr_running -= task_delta;
4475 
4476 		if (qcfs_rq->load.weight)
4477 			dequeue = 0;
4478 	}
4479 
4480 	if (!se)
4481 		sub_nr_running(rq, task_delta);
4482 
4483 	cfs_rq->throttled = 1;
4484 	cfs_rq->throttled_clock = rq_clock(rq);
4485 	raw_spin_lock(&cfs_b->lock);
4486 	empty = list_empty(&cfs_b->throttled_cfs_rq);
4487 
4488 	/*
4489 	 * Add to the _head_ of the list, so that an already-started
4490 	 * distribute_cfs_runtime will not see us. If disribute_cfs_runtime is
4491 	 * not running add to the tail so that later runqueues don't get starved.
4492 	 */
4493 	if (cfs_b->distribute_running)
4494 		list_add_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
4495 	else
4496 		list_add_tail_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
4497 
4498 	/*
4499 	 * If we're the first throttled task, make sure the bandwidth
4500 	 * timer is running.
4501 	 */
4502 	if (empty)
4503 		start_cfs_bandwidth(cfs_b);
4504 
4505 	raw_spin_unlock(&cfs_b->lock);
4506 }
4507 
4508 void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
4509 {
4510 	struct rq *rq = rq_of(cfs_rq);
4511 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4512 	struct sched_entity *se;
4513 	int enqueue = 1;
4514 	long task_delta;
4515 
4516 	se = cfs_rq->tg->se[cpu_of(rq)];
4517 
4518 	cfs_rq->throttled = 0;
4519 
4520 	update_rq_clock(rq);
4521 
4522 	raw_spin_lock(&cfs_b->lock);
4523 	cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
4524 	list_del_rcu(&cfs_rq->throttled_list);
4525 	raw_spin_unlock(&cfs_b->lock);
4526 
4527 	/* update hierarchical throttle state */
4528 	walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
4529 
4530 	if (!cfs_rq->load.weight)
4531 		return;
4532 
4533 	task_delta = cfs_rq->h_nr_running;
4534 	for_each_sched_entity(se) {
4535 		if (se->on_rq)
4536 			enqueue = 0;
4537 
4538 		cfs_rq = cfs_rq_of(se);
4539 		if (enqueue)
4540 			enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
4541 		cfs_rq->h_nr_running += task_delta;
4542 
4543 		if (cfs_rq_throttled(cfs_rq))
4544 			break;
4545 	}
4546 
4547 	if (!se)
4548 		add_nr_running(rq, task_delta);
4549 
4550 	/* Determine whether we need to wake up potentially idle CPU: */
4551 	if (rq->curr == rq->idle && rq->cfs.nr_running)
4552 		resched_curr(rq);
4553 }
4554 
4555 static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
4556 		u64 remaining, u64 expires)
4557 {
4558 	struct cfs_rq *cfs_rq;
4559 	u64 runtime;
4560 	u64 starting_runtime = remaining;
4561 
4562 	rcu_read_lock();
4563 	list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
4564 				throttled_list) {
4565 		struct rq *rq = rq_of(cfs_rq);
4566 		struct rq_flags rf;
4567 
4568 		rq_lock(rq, &rf);
4569 		if (!cfs_rq_throttled(cfs_rq))
4570 			goto next;
4571 
4572 		runtime = -cfs_rq->runtime_remaining + 1;
4573 		if (runtime > remaining)
4574 			runtime = remaining;
4575 		remaining -= runtime;
4576 
4577 		cfs_rq->runtime_remaining += runtime;
4578 		cfs_rq->runtime_expires = expires;
4579 
4580 		/* we check whether we're throttled above */
4581 		if (cfs_rq->runtime_remaining > 0)
4582 			unthrottle_cfs_rq(cfs_rq);
4583 
4584 next:
4585 		rq_unlock(rq, &rf);
4586 
4587 		if (!remaining)
4588 			break;
4589 	}
4590 	rcu_read_unlock();
4591 
4592 	return starting_runtime - remaining;
4593 }
4594 
4595 /*
4596  * Responsible for refilling a task_group's bandwidth and unthrottling its
4597  * cfs_rqs as appropriate. If there has been no activity within the last
4598  * period the timer is deactivated until scheduling resumes; cfs_b->idle is
4599  * used to track this state.
4600  */
4601 static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
4602 {
4603 	u64 runtime, runtime_expires;
4604 	int throttled;
4605 
4606 	/* no need to continue the timer with no bandwidth constraint */
4607 	if (cfs_b->quota == RUNTIME_INF)
4608 		goto out_deactivate;
4609 
4610 	throttled = !list_empty(&cfs_b->throttled_cfs_rq);
4611 	cfs_b->nr_periods += overrun;
4612 
4613 	/*
4614 	 * idle depends on !throttled (for the case of a large deficit), and if
4615 	 * we're going inactive then everything else can be deferred
4616 	 */
4617 	if (cfs_b->idle && !throttled)
4618 		goto out_deactivate;
4619 
4620 	__refill_cfs_bandwidth_runtime(cfs_b);
4621 
4622 	if (!throttled) {
4623 		/* mark as potentially idle for the upcoming period */
4624 		cfs_b->idle = 1;
4625 		return 0;
4626 	}
4627 
4628 	/* account preceding periods in which throttling occurred */
4629 	cfs_b->nr_throttled += overrun;
4630 
4631 	runtime_expires = cfs_b->runtime_expires;
4632 
4633 	/*
4634 	 * This check is repeated as we are holding onto the new bandwidth while
4635 	 * we unthrottle. This can potentially race with an unthrottled group
4636 	 * trying to acquire new bandwidth from the global pool. This can result
4637 	 * in us over-using our runtime if it is all used during this loop, but
4638 	 * only by limited amounts in that extreme case.
4639 	 */
4640 	while (throttled && cfs_b->runtime > 0 && !cfs_b->distribute_running) {
4641 		runtime = cfs_b->runtime;
4642 		cfs_b->distribute_running = 1;
4643 		raw_spin_unlock(&cfs_b->lock);
4644 		/* we can't nest cfs_b->lock while distributing bandwidth */
4645 		runtime = distribute_cfs_runtime(cfs_b, runtime,
4646 						 runtime_expires);
4647 		raw_spin_lock(&cfs_b->lock);
4648 
4649 		cfs_b->distribute_running = 0;
4650 		throttled = !list_empty(&cfs_b->throttled_cfs_rq);
4651 
4652 		lsub_positive(&cfs_b->runtime, runtime);
4653 	}
4654 
4655 	/*
4656 	 * While we are ensured activity in the period following an
4657 	 * unthrottle, this also covers the case in which the new bandwidth is
4658 	 * insufficient to cover the existing bandwidth deficit.  (Forcing the
4659 	 * timer to remain active while there are any throttled entities.)
4660 	 */
4661 	cfs_b->idle = 0;
4662 
4663 	return 0;
4664 
4665 out_deactivate:
4666 	return 1;
4667 }
4668 
4669 /* a cfs_rq won't donate quota below this amount */
4670 static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
4671 /* minimum remaining period time to redistribute slack quota */
4672 static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
4673 /* how long we wait to gather additional slack before distributing */
4674 static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
4675 
4676 /*
4677  * Are we near the end of the current quota period?
4678  *
4679  * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
4680  * hrtimer base being cleared by hrtimer_start. In the case of
4681  * migrate_hrtimers, base is never cleared, so we are fine.
4682  */
4683 static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
4684 {
4685 	struct hrtimer *refresh_timer = &cfs_b->period_timer;
4686 	u64 remaining;
4687 
4688 	/* if the call-back is running a quota refresh is already occurring */
4689 	if (hrtimer_callback_running(refresh_timer))
4690 		return 1;
4691 
4692 	/* is a quota refresh about to occur? */
4693 	remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
4694 	if (remaining < min_expire)
4695 		return 1;
4696 
4697 	return 0;
4698 }
4699 
4700 static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
4701 {
4702 	u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
4703 
4704 	/* if there's a quota refresh soon don't bother with slack */
4705 	if (runtime_refresh_within(cfs_b, min_left))
4706 		return;
4707 
4708 	hrtimer_start(&cfs_b->slack_timer,
4709 			ns_to_ktime(cfs_bandwidth_slack_period),
4710 			HRTIMER_MODE_REL);
4711 }
4712 
4713 /* we know any runtime found here is valid as update_curr() precedes return */
4714 static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4715 {
4716 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4717 	s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
4718 
4719 	if (slack_runtime <= 0)
4720 		return;
4721 
4722 	raw_spin_lock(&cfs_b->lock);
4723 	if (cfs_b->quota != RUNTIME_INF &&
4724 	    cfs_rq->runtime_expires == cfs_b->runtime_expires) {
4725 		cfs_b->runtime += slack_runtime;
4726 
4727 		/* we are under rq->lock, defer unthrottling using a timer */
4728 		if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
4729 		    !list_empty(&cfs_b->throttled_cfs_rq))
4730 			start_cfs_slack_bandwidth(cfs_b);
4731 	}
4732 	raw_spin_unlock(&cfs_b->lock);
4733 
4734 	/* even if it's not valid for return we don't want to try again */
4735 	cfs_rq->runtime_remaining -= slack_runtime;
4736 }
4737 
4738 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4739 {
4740 	if (!cfs_bandwidth_used())
4741 		return;
4742 
4743 	if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
4744 		return;
4745 
4746 	__return_cfs_rq_runtime(cfs_rq);
4747 }
4748 
4749 /*
4750  * This is done with a timer (instead of inline with bandwidth return) since
4751  * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
4752  */
4753 static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
4754 {
4755 	u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
4756 	u64 expires;
4757 
4758 	/* confirm we're still not at a refresh boundary */
4759 	raw_spin_lock(&cfs_b->lock);
4760 	if (cfs_b->distribute_running) {
4761 		raw_spin_unlock(&cfs_b->lock);
4762 		return;
4763 	}
4764 
4765 	if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
4766 		raw_spin_unlock(&cfs_b->lock);
4767 		return;
4768 	}
4769 
4770 	if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice)
4771 		runtime = cfs_b->runtime;
4772 
4773 	expires = cfs_b->runtime_expires;
4774 	if (runtime)
4775 		cfs_b->distribute_running = 1;
4776 
4777 	raw_spin_unlock(&cfs_b->lock);
4778 
4779 	if (!runtime)
4780 		return;
4781 
4782 	runtime = distribute_cfs_runtime(cfs_b, runtime, expires);
4783 
4784 	raw_spin_lock(&cfs_b->lock);
4785 	if (expires == cfs_b->runtime_expires)
4786 		lsub_positive(&cfs_b->runtime, runtime);
4787 	cfs_b->distribute_running = 0;
4788 	raw_spin_unlock(&cfs_b->lock);
4789 }
4790 
4791 /*
4792  * When a group wakes up we want to make sure that its quota is not already
4793  * expired/exceeded, otherwise it may be allowed to steal additional ticks of
4794  * runtime as update_curr() throttling can not not trigger until it's on-rq.
4795  */
4796 static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
4797 {
4798 	if (!cfs_bandwidth_used())
4799 		return;
4800 
4801 	/* an active group must be handled by the update_curr()->put() path */
4802 	if (!cfs_rq->runtime_enabled || cfs_rq->curr)
4803 		return;
4804 
4805 	/* ensure the group is not already throttled */
4806 	if (cfs_rq_throttled(cfs_rq))
4807 		return;
4808 
4809 	/* update runtime allocation */
4810 	account_cfs_rq_runtime(cfs_rq, 0);
4811 	if (cfs_rq->runtime_remaining <= 0)
4812 		throttle_cfs_rq(cfs_rq);
4813 }
4814 
4815 static void sync_throttle(struct task_group *tg, int cpu)
4816 {
4817 	struct cfs_rq *pcfs_rq, *cfs_rq;
4818 
4819 	if (!cfs_bandwidth_used())
4820 		return;
4821 
4822 	if (!tg->parent)
4823 		return;
4824 
4825 	cfs_rq = tg->cfs_rq[cpu];
4826 	pcfs_rq = tg->parent->cfs_rq[cpu];
4827 
4828 	cfs_rq->throttle_count = pcfs_rq->throttle_count;
4829 	cfs_rq->throttled_clock_task = rq_clock_task(cpu_rq(cpu));
4830 }
4831 
4832 /* conditionally throttle active cfs_rq's from put_prev_entity() */
4833 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4834 {
4835 	if (!cfs_bandwidth_used())
4836 		return false;
4837 
4838 	if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
4839 		return false;
4840 
4841 	/*
4842 	 * it's possible for a throttled entity to be forced into a running
4843 	 * state (e.g. set_curr_task), in this case we're finished.
4844 	 */
4845 	if (cfs_rq_throttled(cfs_rq))
4846 		return true;
4847 
4848 	throttle_cfs_rq(cfs_rq);
4849 	return true;
4850 }
4851 
4852 static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
4853 {
4854 	struct cfs_bandwidth *cfs_b =
4855 		container_of(timer, struct cfs_bandwidth, slack_timer);
4856 
4857 	do_sched_cfs_slack_timer(cfs_b);
4858 
4859 	return HRTIMER_NORESTART;
4860 }
4861 
4862 static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
4863 {
4864 	struct cfs_bandwidth *cfs_b =
4865 		container_of(timer, struct cfs_bandwidth, period_timer);
4866 	int overrun;
4867 	int idle = 0;
4868 
4869 	raw_spin_lock(&cfs_b->lock);
4870 	for (;;) {
4871 		overrun = hrtimer_forward_now(timer, cfs_b->period);
4872 		if (!overrun)
4873 			break;
4874 
4875 		idle = do_sched_cfs_period_timer(cfs_b, overrun);
4876 	}
4877 	if (idle)
4878 		cfs_b->period_active = 0;
4879 	raw_spin_unlock(&cfs_b->lock);
4880 
4881 	return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
4882 }
4883 
4884 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
4885 {
4886 	raw_spin_lock_init(&cfs_b->lock);
4887 	cfs_b->runtime = 0;
4888 	cfs_b->quota = RUNTIME_INF;
4889 	cfs_b->period = ns_to_ktime(default_cfs_period());
4890 
4891 	INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
4892 	hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
4893 	cfs_b->period_timer.function = sched_cfs_period_timer;
4894 	hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
4895 	cfs_b->slack_timer.function = sched_cfs_slack_timer;
4896 	cfs_b->distribute_running = 0;
4897 }
4898 
4899 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4900 {
4901 	cfs_rq->runtime_enabled = 0;
4902 	INIT_LIST_HEAD(&cfs_rq->throttled_list);
4903 }
4904 
4905 void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
4906 {
4907 	u64 overrun;
4908 
4909 	lockdep_assert_held(&cfs_b->lock);
4910 
4911 	if (cfs_b->period_active)
4912 		return;
4913 
4914 	cfs_b->period_active = 1;
4915 	overrun = hrtimer_forward_now(&cfs_b->period_timer, cfs_b->period);
4916 	cfs_b->runtime_expires += (overrun + 1) * ktime_to_ns(cfs_b->period);
4917 	cfs_b->expires_seq++;
4918 	hrtimer_start_expires(&cfs_b->period_timer, HRTIMER_MODE_ABS_PINNED);
4919 }
4920 
4921 static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
4922 {
4923 	/* init_cfs_bandwidth() was not called */
4924 	if (!cfs_b->throttled_cfs_rq.next)
4925 		return;
4926 
4927 	hrtimer_cancel(&cfs_b->period_timer);
4928 	hrtimer_cancel(&cfs_b->slack_timer);
4929 }
4930 
4931 /*
4932  * Both these CPU hotplug callbacks race against unregister_fair_sched_group()
4933  *
4934  * The race is harmless, since modifying bandwidth settings of unhooked group
4935  * bits doesn't do much.
4936  */
4937 
4938 /* cpu online calback */
4939 static void __maybe_unused update_runtime_enabled(struct rq *rq)
4940 {
4941 	struct task_group *tg;
4942 
4943 	lockdep_assert_held(&rq->lock);
4944 
4945 	rcu_read_lock();
4946 	list_for_each_entry_rcu(tg, &task_groups, list) {
4947 		struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
4948 		struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
4949 
4950 		raw_spin_lock(&cfs_b->lock);
4951 		cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF;
4952 		raw_spin_unlock(&cfs_b->lock);
4953 	}
4954 	rcu_read_unlock();
4955 }
4956 
4957 /* cpu offline callback */
4958 static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
4959 {
4960 	struct task_group *tg;
4961 
4962 	lockdep_assert_held(&rq->lock);
4963 
4964 	rcu_read_lock();
4965 	list_for_each_entry_rcu(tg, &task_groups, list) {
4966 		struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
4967 
4968 		if (!cfs_rq->runtime_enabled)
4969 			continue;
4970 
4971 		/*
4972 		 * clock_task is not advancing so we just need to make sure
4973 		 * there's some valid quota amount
4974 		 */
4975 		cfs_rq->runtime_remaining = 1;
4976 		/*
4977 		 * Offline rq is schedulable till CPU is completely disabled
4978 		 * in take_cpu_down(), so we prevent new cfs throttling here.
4979 		 */
4980 		cfs_rq->runtime_enabled = 0;
4981 
4982 		if (cfs_rq_throttled(cfs_rq))
4983 			unthrottle_cfs_rq(cfs_rq);
4984 	}
4985 	rcu_read_unlock();
4986 }
4987 
4988 #else /* CONFIG_CFS_BANDWIDTH */
4989 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
4990 {
4991 	return rq_clock_task(rq_of(cfs_rq));
4992 }
4993 
4994 static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {}
4995 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; }
4996 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
4997 static inline void sync_throttle(struct task_group *tg, int cpu) {}
4998 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
4999 
5000 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
5001 {
5002 	return 0;
5003 }
5004 
5005 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
5006 {
5007 	return 0;
5008 }
5009 
5010 static inline int throttled_lb_pair(struct task_group *tg,
5011 				    int src_cpu, int dest_cpu)
5012 {
5013 	return 0;
5014 }
5015 
5016 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
5017 
5018 #ifdef CONFIG_FAIR_GROUP_SCHED
5019 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
5020 #endif
5021 
5022 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
5023 {
5024 	return NULL;
5025 }
5026 static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
5027 static inline void update_runtime_enabled(struct rq *rq) {}
5028 static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
5029 
5030 #endif /* CONFIG_CFS_BANDWIDTH */
5031 
5032 /**************************************************
5033  * CFS operations on tasks:
5034  */
5035 
5036 #ifdef CONFIG_SCHED_HRTICK
5037 static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
5038 {
5039 	struct sched_entity *se = &p->se;
5040 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
5041 
5042 	SCHED_WARN_ON(task_rq(p) != rq);
5043 
5044 	if (rq->cfs.h_nr_running > 1) {
5045 		u64 slice = sched_slice(cfs_rq, se);
5046 		u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
5047 		s64 delta = slice - ran;
5048 
5049 		if (delta < 0) {
5050 			if (rq->curr == p)
5051 				resched_curr(rq);
5052 			return;
5053 		}
5054 		hrtick_start(rq, delta);
5055 	}
5056 }
5057 
5058 /*
5059  * called from enqueue/dequeue and updates the hrtick when the
5060  * current task is from our class and nr_running is low enough
5061  * to matter.
5062  */
5063 static void hrtick_update(struct rq *rq)
5064 {
5065 	struct task_struct *curr = rq->curr;
5066 
5067 	if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
5068 		return;
5069 
5070 	if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
5071 		hrtick_start_fair(rq, curr);
5072 }
5073 #else /* !CONFIG_SCHED_HRTICK */
5074 static inline void
5075 hrtick_start_fair(struct rq *rq, struct task_struct *p)
5076 {
5077 }
5078 
5079 static inline void hrtick_update(struct rq *rq)
5080 {
5081 }
5082 #endif
5083 
5084 #ifdef CONFIG_SMP
5085 static inline unsigned long cpu_util(int cpu);
5086 static unsigned long capacity_of(int cpu);
5087 
5088 static inline bool cpu_overutilized(int cpu)
5089 {
5090 	return (capacity_of(cpu) * 1024) < (cpu_util(cpu) * capacity_margin);
5091 }
5092 
5093 static inline void update_overutilized_status(struct rq *rq)
5094 {
5095 	if (!READ_ONCE(rq->rd->overutilized) && cpu_overutilized(rq->cpu))
5096 		WRITE_ONCE(rq->rd->overutilized, SG_OVERUTILIZED);
5097 }
5098 #else
5099 static inline void update_overutilized_status(struct rq *rq) { }
5100 #endif
5101 
5102 /*
5103  * The enqueue_task method is called before nr_running is
5104  * increased. Here we update the fair scheduling stats and
5105  * then put the task into the rbtree:
5106  */
5107 static void
5108 enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
5109 {
5110 	struct cfs_rq *cfs_rq;
5111 	struct sched_entity *se = &p->se;
5112 
5113 	/*
5114 	 * The code below (indirectly) updates schedutil which looks at
5115 	 * the cfs_rq utilization to select a frequency.
5116 	 * Let's add the task's estimated utilization to the cfs_rq's
5117 	 * estimated utilization, before we update schedutil.
5118 	 */
5119 	util_est_enqueue(&rq->cfs, p);
5120 
5121 	/*
5122 	 * If in_iowait is set, the code below may not trigger any cpufreq
5123 	 * utilization updates, so do it here explicitly with the IOWAIT flag
5124 	 * passed.
5125 	 */
5126 	if (p->in_iowait)
5127 		cpufreq_update_util(rq, SCHED_CPUFREQ_IOWAIT);
5128 
5129 	for_each_sched_entity(se) {
5130 		if (se->on_rq)
5131 			break;
5132 		cfs_rq = cfs_rq_of(se);
5133 		enqueue_entity(cfs_rq, se, flags);
5134 
5135 		/*
5136 		 * end evaluation on encountering a throttled cfs_rq
5137 		 *
5138 		 * note: in the case of encountering a throttled cfs_rq we will
5139 		 * post the final h_nr_running increment below.
5140 		 */
5141 		if (cfs_rq_throttled(cfs_rq))
5142 			break;
5143 		cfs_rq->h_nr_running++;
5144 
5145 		flags = ENQUEUE_WAKEUP;
5146 	}
5147 
5148 	for_each_sched_entity(se) {
5149 		cfs_rq = cfs_rq_of(se);
5150 		cfs_rq->h_nr_running++;
5151 
5152 		if (cfs_rq_throttled(cfs_rq))
5153 			break;
5154 
5155 		update_load_avg(cfs_rq, se, UPDATE_TG);
5156 		update_cfs_group(se);
5157 	}
5158 
5159 	if (!se) {
5160 		add_nr_running(rq, 1);
5161 		/*
5162 		 * Since new tasks are assigned an initial util_avg equal to
5163 		 * half of the spare capacity of their CPU, tiny tasks have the
5164 		 * ability to cross the overutilized threshold, which will
5165 		 * result in the load balancer ruining all the task placement
5166 		 * done by EAS. As a way to mitigate that effect, do not account
5167 		 * for the first enqueue operation of new tasks during the
5168 		 * overutilized flag detection.
5169 		 *
5170 		 * A better way of solving this problem would be to wait for
5171 		 * the PELT signals of tasks to converge before taking them
5172 		 * into account, but that is not straightforward to implement,
5173 		 * and the following generally works well enough in practice.
5174 		 */
5175 		if (flags & ENQUEUE_WAKEUP)
5176 			update_overutilized_status(rq);
5177 
5178 	}
5179 
5180 	hrtick_update(rq);
5181 }
5182 
5183 static void set_next_buddy(struct sched_entity *se);
5184 
5185 /*
5186  * The dequeue_task method is called before nr_running is
5187  * decreased. We remove the task from the rbtree and
5188  * update the fair scheduling stats:
5189  */
5190 static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
5191 {
5192 	struct cfs_rq *cfs_rq;
5193 	struct sched_entity *se = &p->se;
5194 	int task_sleep = flags & DEQUEUE_SLEEP;
5195 
5196 	for_each_sched_entity(se) {
5197 		cfs_rq = cfs_rq_of(se);
5198 		dequeue_entity(cfs_rq, se, flags);
5199 
5200 		/*
5201 		 * end evaluation on encountering a throttled cfs_rq
5202 		 *
5203 		 * note: in the case of encountering a throttled cfs_rq we will
5204 		 * post the final h_nr_running decrement below.
5205 		*/
5206 		if (cfs_rq_throttled(cfs_rq))
5207 			break;
5208 		cfs_rq->h_nr_running--;
5209 
5210 		/* Don't dequeue parent if it has other entities besides us */
5211 		if (cfs_rq->load.weight) {
5212 			/* Avoid re-evaluating load for this entity: */
5213 			se = parent_entity(se);
5214 			/*
5215 			 * Bias pick_next to pick a task from this cfs_rq, as
5216 			 * p is sleeping when it is within its sched_slice.
5217 			 */
5218 			if (task_sleep && se && !throttled_hierarchy(cfs_rq))
5219 				set_next_buddy(se);
5220 			break;
5221 		}
5222 		flags |= DEQUEUE_SLEEP;
5223 	}
5224 
5225 	for_each_sched_entity(se) {
5226 		cfs_rq = cfs_rq_of(se);
5227 		cfs_rq->h_nr_running--;
5228 
5229 		if (cfs_rq_throttled(cfs_rq))
5230 			break;
5231 
5232 		update_load_avg(cfs_rq, se, UPDATE_TG);
5233 		update_cfs_group(se);
5234 	}
5235 
5236 	if (!se)
5237 		sub_nr_running(rq, 1);
5238 
5239 	util_est_dequeue(&rq->cfs, p, task_sleep);
5240 	hrtick_update(rq);
5241 }
5242 
5243 #ifdef CONFIG_SMP
5244 
5245 /* Working cpumask for: load_balance, load_balance_newidle. */
5246 DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
5247 DEFINE_PER_CPU(cpumask_var_t, select_idle_mask);
5248 
5249 #ifdef CONFIG_NO_HZ_COMMON
5250 /*
5251  * per rq 'load' arrray crap; XXX kill this.
5252  */
5253 
5254 /*
5255  * The exact cpuload calculated at every tick would be:
5256  *
5257  *   load' = (1 - 1/2^i) * load + (1/2^i) * cur_load
5258  *
5259  * If a CPU misses updates for n ticks (as it was idle) and update gets
5260  * called on the n+1-th tick when CPU may be busy, then we have:
5261  *
5262  *   load_n   = (1 - 1/2^i)^n * load_0
5263  *   load_n+1 = (1 - 1/2^i)   * load_n + (1/2^i) * cur_load
5264  *
5265  * decay_load_missed() below does efficient calculation of
5266  *
5267  *   load' = (1 - 1/2^i)^n * load
5268  *
5269  * Because x^(n+m) := x^n * x^m we can decompose any x^n in power-of-2 factors.
5270  * This allows us to precompute the above in said factors, thereby allowing the
5271  * reduction of an arbitrary n in O(log_2 n) steps. (See also
5272  * fixed_power_int())
5273  *
5274  * The calculation is approximated on a 128 point scale.
5275  */
5276 #define DEGRADE_SHIFT		7
5277 
5278 static const u8 degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
5279 static const u8 degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
5280 	{   0,   0,  0,  0,  0,  0, 0, 0 },
5281 	{  64,  32,  8,  0,  0,  0, 0, 0 },
5282 	{  96,  72, 40, 12,  1,  0, 0, 0 },
5283 	{ 112,  98, 75, 43, 15,  1, 0, 0 },
5284 	{ 120, 112, 98, 76, 45, 16, 2, 0 }
5285 };
5286 
5287 /*
5288  * Update cpu_load for any missed ticks, due to tickless idle. The backlog
5289  * would be when CPU is idle and so we just decay the old load without
5290  * adding any new load.
5291  */
5292 static unsigned long
5293 decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
5294 {
5295 	int j = 0;
5296 
5297 	if (!missed_updates)
5298 		return load;
5299 
5300 	if (missed_updates >= degrade_zero_ticks[idx])
5301 		return 0;
5302 
5303 	if (idx == 1)
5304 		return load >> missed_updates;
5305 
5306 	while (missed_updates) {
5307 		if (missed_updates % 2)
5308 			load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;
5309 
5310 		missed_updates >>= 1;
5311 		j++;
5312 	}
5313 	return load;
5314 }
5315 
5316 static struct {
5317 	cpumask_var_t idle_cpus_mask;
5318 	atomic_t nr_cpus;
5319 	int has_blocked;		/* Idle CPUS has blocked load */
5320 	unsigned long next_balance;     /* in jiffy units */
5321 	unsigned long next_blocked;	/* Next update of blocked load in jiffies */
5322 } nohz ____cacheline_aligned;
5323 
5324 #endif /* CONFIG_NO_HZ_COMMON */
5325 
5326 /**
5327  * __cpu_load_update - update the rq->cpu_load[] statistics
5328  * @this_rq: The rq to update statistics for
5329  * @this_load: The current load
5330  * @pending_updates: The number of missed updates
5331  *
5332  * Update rq->cpu_load[] statistics. This function is usually called every
5333  * scheduler tick (TICK_NSEC).
5334  *
5335  * This function computes a decaying average:
5336  *
5337  *   load[i]' = (1 - 1/2^i) * load[i] + (1/2^i) * load
5338  *
5339  * Because of NOHZ it might not get called on every tick which gives need for
5340  * the @pending_updates argument.
5341  *
5342  *   load[i]_n = (1 - 1/2^i) * load[i]_n-1 + (1/2^i) * load_n-1
5343  *             = A * load[i]_n-1 + B ; A := (1 - 1/2^i), B := (1/2^i) * load
5344  *             = A * (A * load[i]_n-2 + B) + B
5345  *             = A * (A * (A * load[i]_n-3 + B) + B) + B
5346  *             = A^3 * load[i]_n-3 + (A^2 + A + 1) * B
5347  *             = A^n * load[i]_0 + (A^(n-1) + A^(n-2) + ... + 1) * B
5348  *             = A^n * load[i]_0 + ((1 - A^n) / (1 - A)) * B
5349  *             = (1 - 1/2^i)^n * (load[i]_0 - load) + load
5350  *
5351  * In the above we've assumed load_n := load, which is true for NOHZ_FULL as
5352  * any change in load would have resulted in the tick being turned back on.
5353  *
5354  * For regular NOHZ, this reduces to:
5355  *
5356  *   load[i]_n = (1 - 1/2^i)^n * load[i]_0
5357  *
5358  * see decay_load_misses(). For NOHZ_FULL we get to subtract and add the extra
5359  * term.
5360  */
5361 static void cpu_load_update(struct rq *this_rq, unsigned long this_load,
5362 			    unsigned long pending_updates)
5363 {
5364 	unsigned long __maybe_unused tickless_load = this_rq->cpu_load[0];
5365 	int i, scale;
5366 
5367 	this_rq->nr_load_updates++;
5368 
5369 	/* Update our load: */
5370 	this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
5371 	for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
5372 		unsigned long old_load, new_load;
5373 
5374 		/* scale is effectively 1 << i now, and >> i divides by scale */
5375 
5376 		old_load = this_rq->cpu_load[i];
5377 #ifdef CONFIG_NO_HZ_COMMON
5378 		old_load = decay_load_missed(old_load, pending_updates - 1, i);
5379 		if (tickless_load) {
5380 			old_load -= decay_load_missed(tickless_load, pending_updates - 1, i);
5381 			/*
5382 			 * old_load can never be a negative value because a
5383 			 * decayed tickless_load cannot be greater than the
5384 			 * original tickless_load.
5385 			 */
5386 			old_load += tickless_load;
5387 		}
5388 #endif
5389 		new_load = this_load;
5390 		/*
5391 		 * Round up the averaging division if load is increasing. This
5392 		 * prevents us from getting stuck on 9 if the load is 10, for
5393 		 * example.
5394 		 */
5395 		if (new_load > old_load)
5396 			new_load += scale - 1;
5397 
5398 		this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
5399 	}
5400 }
5401 
5402 /* Used instead of source_load when we know the type == 0 */
5403 static unsigned long weighted_cpuload(struct rq *rq)
5404 {
5405 	return cfs_rq_runnable_load_avg(&rq->cfs);
5406 }
5407 
5408 #ifdef CONFIG_NO_HZ_COMMON
5409 /*
5410  * There is no sane way to deal with nohz on smp when using jiffies because the
5411  * CPU doing the jiffies update might drift wrt the CPU doing the jiffy reading
5412  * causing off-by-one errors in observed deltas; {0,2} instead of {1,1}.
5413  *
5414  * Therefore we need to avoid the delta approach from the regular tick when
5415  * possible since that would seriously skew the load calculation. This is why we
5416  * use cpu_load_update_periodic() for CPUs out of nohz. However we'll rely on
5417  * jiffies deltas for updates happening while in nohz mode (idle ticks, idle
5418  * loop exit, nohz_idle_balance, nohz full exit...)
5419  *
5420  * This means we might still be one tick off for nohz periods.
5421  */
5422 
5423 static void cpu_load_update_nohz(struct rq *this_rq,
5424 				 unsigned long curr_jiffies,
5425 				 unsigned long load)
5426 {
5427 	unsigned long pending_updates;
5428 
5429 	pending_updates = curr_jiffies - this_rq->last_load_update_tick;
5430 	if (pending_updates) {
5431 		this_rq->last_load_update_tick = curr_jiffies;
5432 		/*
5433 		 * In the regular NOHZ case, we were idle, this means load 0.
5434 		 * In the NOHZ_FULL case, we were non-idle, we should consider
5435 		 * its weighted load.
5436 		 */
5437 		cpu_load_update(this_rq, load, pending_updates);
5438 	}
5439 }
5440 
5441 /*
5442  * Called from nohz_idle_balance() to update the load ratings before doing the
5443  * idle balance.
5444  */
5445 static void cpu_load_update_idle(struct rq *this_rq)
5446 {
5447 	/*
5448 	 * bail if there's load or we're actually up-to-date.
5449 	 */
5450 	if (weighted_cpuload(this_rq))
5451 		return;
5452 
5453 	cpu_load_update_nohz(this_rq, READ_ONCE(jiffies), 0);
5454 }
5455 
5456 /*
5457  * Record CPU load on nohz entry so we know the tickless load to account
5458  * on nohz exit. cpu_load[0] happens then to be updated more frequently
5459  * than other cpu_load[idx] but it should be fine as cpu_load readers
5460  * shouldn't rely into synchronized cpu_load[*] updates.
5461  */
5462 void cpu_load_update_nohz_start(void)
5463 {
5464 	struct rq *this_rq = this_rq();
5465 
5466 	/*
5467 	 * This is all lockless but should be fine. If weighted_cpuload changes
5468 	 * concurrently we'll exit nohz. And cpu_load write can race with
5469 	 * cpu_load_update_idle() but both updater would be writing the same.
5470 	 */
5471 	this_rq->cpu_load[0] = weighted_cpuload(this_rq);
5472 }
5473 
5474 /*
5475  * Account the tickless load in the end of a nohz frame.
5476  */
5477 void cpu_load_update_nohz_stop(void)
5478 {
5479 	unsigned long curr_jiffies = READ_ONCE(jiffies);
5480 	struct rq *this_rq = this_rq();
5481 	unsigned long load;
5482 	struct rq_flags rf;
5483 
5484 	if (curr_jiffies == this_rq->last_load_update_tick)
5485 		return;
5486 
5487 	load = weighted_cpuload(this_rq);
5488 	rq_lock(this_rq, &rf);
5489 	update_rq_clock(this_rq);
5490 	cpu_load_update_nohz(this_rq, curr_jiffies, load);
5491 	rq_unlock(this_rq, &rf);
5492 }
5493 #else /* !CONFIG_NO_HZ_COMMON */
5494 static inline void cpu_load_update_nohz(struct rq *this_rq,
5495 					unsigned long curr_jiffies,
5496 					unsigned long load) { }
5497 #endif /* CONFIG_NO_HZ_COMMON */
5498 
5499 static void cpu_load_update_periodic(struct rq *this_rq, unsigned long load)
5500 {
5501 #ifdef CONFIG_NO_HZ_COMMON
5502 	/* See the mess around cpu_load_update_nohz(). */
5503 	this_rq->last_load_update_tick = READ_ONCE(jiffies);
5504 #endif
5505 	cpu_load_update(this_rq, load, 1);
5506 }
5507 
5508 /*
5509  * Called from scheduler_tick()
5510  */
5511 void cpu_load_update_active(struct rq *this_rq)
5512 {
5513 	unsigned long load = weighted_cpuload(this_rq);
5514 
5515 	if (tick_nohz_tick_stopped())
5516 		cpu_load_update_nohz(this_rq, READ_ONCE(jiffies), load);
5517 	else
5518 		cpu_load_update_periodic(this_rq, load);
5519 }
5520 
5521 /*
5522  * Return a low guess at the load of a migration-source CPU weighted
5523  * according to the scheduling class and "nice" value.
5524  *
5525  * We want to under-estimate the load of migration sources, to
5526  * balance conservatively.
5527  */
5528 static unsigned long source_load(int cpu, int type)
5529 {
5530 	struct rq *rq = cpu_rq(cpu);
5531 	unsigned long total = weighted_cpuload(rq);
5532 
5533 	if (type == 0 || !sched_feat(LB_BIAS))
5534 		return total;
5535 
5536 	return min(rq->cpu_load[type-1], total);
5537 }
5538 
5539 /*
5540  * Return a high guess at the load of a migration-target CPU weighted
5541  * according to the scheduling class and "nice" value.
5542  */
5543 static unsigned long target_load(int cpu, int type)
5544 {
5545 	struct rq *rq = cpu_rq(cpu);
5546 	unsigned long total = weighted_cpuload(rq);
5547 
5548 	if (type == 0 || !sched_feat(LB_BIAS))
5549 		return total;
5550 
5551 	return max(rq->cpu_load[type-1], total);
5552 }
5553 
5554 static unsigned long capacity_of(int cpu)
5555 {
5556 	return cpu_rq(cpu)->cpu_capacity;
5557 }
5558 
5559 static unsigned long capacity_orig_of(int cpu)
5560 {
5561 	return cpu_rq(cpu)->cpu_capacity_orig;
5562 }
5563 
5564 static unsigned long cpu_avg_load_per_task(int cpu)
5565 {
5566 	struct rq *rq = cpu_rq(cpu);
5567 	unsigned long nr_running = READ_ONCE(rq->cfs.h_nr_running);
5568 	unsigned long load_avg = weighted_cpuload(rq);
5569 
5570 	if (nr_running)
5571 		return load_avg / nr_running;
5572 
5573 	return 0;
5574 }
5575 
5576 static void record_wakee(struct task_struct *p)
5577 {
5578 	/*
5579 	 * Only decay a single time; tasks that have less then 1 wakeup per
5580 	 * jiffy will not have built up many flips.
5581 	 */
5582 	if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) {
5583 		current->wakee_flips >>= 1;
5584 		current->wakee_flip_decay_ts = jiffies;
5585 	}
5586 
5587 	if (current->last_wakee != p) {
5588 		current->last_wakee = p;
5589 		current->wakee_flips++;
5590 	}
5591 }
5592 
5593 /*
5594  * Detect M:N waker/wakee relationships via a switching-frequency heuristic.
5595  *
5596  * A waker of many should wake a different task than the one last awakened
5597  * at a frequency roughly N times higher than one of its wakees.
5598  *
5599  * In order to determine whether we should let the load spread vs consolidating
5600  * to shared cache, we look for a minimum 'flip' frequency of llc_size in one
5601  * partner, and a factor of lls_size higher frequency in the other.
5602  *
5603  * With both conditions met, we can be relatively sure that the relationship is
5604  * non-monogamous, with partner count exceeding socket size.
5605  *
5606  * Waker/wakee being client/server, worker/dispatcher, interrupt source or
5607  * whatever is irrelevant, spread criteria is apparent partner count exceeds
5608  * socket size.
5609  */
5610 static int wake_wide(struct task_struct *p)
5611 {
5612 	unsigned int master = current->wakee_flips;
5613 	unsigned int slave = p->wakee_flips;
5614 	int factor = this_cpu_read(sd_llc_size);
5615 
5616 	if (master < slave)
5617 		swap(master, slave);
5618 	if (slave < factor || master < slave * factor)
5619 		return 0;
5620 	return 1;
5621 }
5622 
5623 /*
5624  * The purpose of wake_affine() is to quickly determine on which CPU we can run
5625  * soonest. For the purpose of speed we only consider the waking and previous
5626  * CPU.
5627  *
5628  * wake_affine_idle() - only considers 'now', it check if the waking CPU is
5629  *			cache-affine and is (or	will be) idle.
5630  *
5631  * wake_affine_weight() - considers the weight to reflect the average
5632  *			  scheduling latency of the CPUs. This seems to work
5633  *			  for the overloaded case.
5634  */
5635 static int
5636 wake_affine_idle(int this_cpu, int prev_cpu, int sync)
5637 {
5638 	/*
5639 	 * If this_cpu is idle, it implies the wakeup is from interrupt
5640 	 * context. Only allow the move if cache is shared. Otherwise an
5641 	 * interrupt intensive workload could force all tasks onto one
5642 	 * node depending on the IO topology or IRQ affinity settings.
5643 	 *
5644 	 * If the prev_cpu is idle and cache affine then avoid a migration.
5645 	 * There is no guarantee that the cache hot data from an interrupt
5646 	 * is more important than cache hot data on the prev_cpu and from
5647 	 * a cpufreq perspective, it's better to have higher utilisation
5648 	 * on one CPU.
5649 	 */
5650 	if (available_idle_cpu(this_cpu) && cpus_share_cache(this_cpu, prev_cpu))
5651 		return available_idle_cpu(prev_cpu) ? prev_cpu : this_cpu;
5652 
5653 	if (sync && cpu_rq(this_cpu)->nr_running == 1)
5654 		return this_cpu;
5655 
5656 	return nr_cpumask_bits;
5657 }
5658 
5659 static int
5660 wake_affine_weight(struct sched_domain *sd, struct task_struct *p,
5661 		   int this_cpu, int prev_cpu, int sync)
5662 {
5663 	s64 this_eff_load, prev_eff_load;
5664 	unsigned long task_load;
5665 
5666 	this_eff_load = target_load(this_cpu, sd->wake_idx);
5667 
5668 	if (sync) {
5669 		unsigned long current_load = task_h_load(current);
5670 
5671 		if (current_load > this_eff_load)
5672 			return this_cpu;
5673 
5674 		this_eff_load -= current_load;
5675 	}
5676 
5677 	task_load = task_h_load(p);
5678 
5679 	this_eff_load += task_load;
5680 	if (sched_feat(WA_BIAS))
5681 		this_eff_load *= 100;
5682 	this_eff_load *= capacity_of(prev_cpu);
5683 
5684 	prev_eff_load = source_load(prev_cpu, sd->wake_idx);
5685 	prev_eff_load -= task_load;
5686 	if (sched_feat(WA_BIAS))
5687 		prev_eff_load *= 100 + (sd->imbalance_pct - 100) / 2;
5688 	prev_eff_load *= capacity_of(this_cpu);
5689 
5690 	/*
5691 	 * If sync, adjust the weight of prev_eff_load such that if
5692 	 * prev_eff == this_eff that select_idle_sibling() will consider
5693 	 * stacking the wakee on top of the waker if no other CPU is
5694 	 * idle.
5695 	 */
5696 	if (sync)
5697 		prev_eff_load += 1;
5698 
5699 	return this_eff_load < prev_eff_load ? this_cpu : nr_cpumask_bits;
5700 }
5701 
5702 static int wake_affine(struct sched_domain *sd, struct task_struct *p,
5703 		       int this_cpu, int prev_cpu, int sync)
5704 {
5705 	int target = nr_cpumask_bits;
5706 
5707 	if (sched_feat(WA_IDLE))
5708 		target = wake_affine_idle(this_cpu, prev_cpu, sync);
5709 
5710 	if (sched_feat(WA_WEIGHT) && target == nr_cpumask_bits)
5711 		target = wake_affine_weight(sd, p, this_cpu, prev_cpu, sync);
5712 
5713 	schedstat_inc(p->se.statistics.nr_wakeups_affine_attempts);
5714 	if (target == nr_cpumask_bits)
5715 		return prev_cpu;
5716 
5717 	schedstat_inc(sd->ttwu_move_affine);
5718 	schedstat_inc(p->se.statistics.nr_wakeups_affine);
5719 	return target;
5720 }
5721 
5722 static unsigned long cpu_util_without(int cpu, struct task_struct *p);
5723 
5724 static unsigned long capacity_spare_without(int cpu, struct task_struct *p)
5725 {
5726 	return max_t(long, capacity_of(cpu) - cpu_util_without(cpu, p), 0);
5727 }
5728 
5729 /*
5730  * find_idlest_group finds and returns the least busy CPU group within the
5731  * domain.
5732  *
5733  * Assumes p is allowed on at least one CPU in sd.
5734  */
5735 static struct sched_group *
5736 find_idlest_group(struct sched_domain *sd, struct task_struct *p,
5737 		  int this_cpu, int sd_flag)
5738 {
5739 	struct sched_group *idlest = NULL, *group = sd->groups;
5740 	struct sched_group *most_spare_sg = NULL;
5741 	unsigned long min_runnable_load = ULONG_MAX;
5742 	unsigned long this_runnable_load = ULONG_MAX;
5743 	unsigned long min_avg_load = ULONG_MAX, this_avg_load = ULONG_MAX;
5744 	unsigned long most_spare = 0, this_spare = 0;
5745 	int load_idx = sd->forkexec_idx;
5746 	int imbalance_scale = 100 + (sd->imbalance_pct-100)/2;
5747 	unsigned long imbalance = scale_load_down(NICE_0_LOAD) *
5748 				(sd->imbalance_pct-100) / 100;
5749 
5750 	if (sd_flag & SD_BALANCE_WAKE)
5751 		load_idx = sd->wake_idx;
5752 
5753 	do {
5754 		unsigned long load, avg_load, runnable_load;
5755 		unsigned long spare_cap, max_spare_cap;
5756 		int local_group;
5757 		int i;
5758 
5759 		/* Skip over this group if it has no CPUs allowed */
5760 		if (!cpumask_intersects(sched_group_span(group),
5761 					&p->cpus_allowed))
5762 			continue;
5763 
5764 		local_group = cpumask_test_cpu(this_cpu,
5765 					       sched_group_span(group));
5766 
5767 		/*
5768 		 * Tally up the load of all CPUs in the group and find
5769 		 * the group containing the CPU with most spare capacity.
5770 		 */
5771 		avg_load = 0;
5772 		runnable_load = 0;
5773 		max_spare_cap = 0;
5774 
5775 		for_each_cpu(i, sched_group_span(group)) {
5776 			/* Bias balancing toward CPUs of our domain */
5777 			if (local_group)
5778 				load = source_load(i, load_idx);
5779 			else
5780 				load = target_load(i, load_idx);
5781 
5782 			runnable_load += load;
5783 
5784 			avg_load += cfs_rq_load_avg(&cpu_rq(i)->cfs);
5785 
5786 			spare_cap = capacity_spare_without(i, p);
5787 
5788 			if (spare_cap > max_spare_cap)
5789 				max_spare_cap = spare_cap;
5790 		}
5791 
5792 		/* Adjust by relative CPU capacity of the group */
5793 		avg_load = (avg_load * SCHED_CAPACITY_SCALE) /
5794 					group->sgc->capacity;
5795 		runnable_load = (runnable_load * SCHED_CAPACITY_SCALE) /
5796 					group->sgc->capacity;
5797 
5798 		if (local_group) {
5799 			this_runnable_load = runnable_load;
5800 			this_avg_load = avg_load;
5801 			this_spare = max_spare_cap;
5802 		} else {
5803 			if (min_runnable_load > (runnable_load + imbalance)) {
5804 				/*
5805 				 * The runnable load is significantly smaller
5806 				 * so we can pick this new CPU:
5807 				 */
5808 				min_runnable_load = runnable_load;
5809 				min_avg_load = avg_load;
5810 				idlest = group;
5811 			} else if ((runnable_load < (min_runnable_load + imbalance)) &&
5812 				   (100*min_avg_load > imbalance_scale*avg_load)) {
5813 				/*
5814 				 * The runnable loads are close so take the
5815 				 * blocked load into account through avg_load:
5816 				 */
5817 				min_avg_load = avg_load;
5818 				idlest = group;
5819 			}
5820 
5821 			if (most_spare < max_spare_cap) {
5822 				most_spare = max_spare_cap;
5823 				most_spare_sg = group;
5824 			}
5825 		}
5826 	} while (group = group->next, group != sd->groups);
5827 
5828 	/*
5829 	 * The cross-over point between using spare capacity or least load
5830 	 * is too conservative for high utilization tasks on partially
5831 	 * utilized systems if we require spare_capacity > task_util(p),
5832 	 * so we allow for some task stuffing by using
5833 	 * spare_capacity > task_util(p)/2.
5834 	 *
5835 	 * Spare capacity can't be used for fork because the utilization has
5836 	 * not been set yet, we must first select a rq to compute the initial
5837 	 * utilization.
5838 	 */
5839 	if (sd_flag & SD_BALANCE_FORK)
5840 		goto skip_spare;
5841 
5842 	if (this_spare > task_util(p) / 2 &&
5843 	    imbalance_scale*this_spare > 100*most_spare)
5844 		return NULL;
5845 
5846 	if (most_spare > task_util(p) / 2)
5847 		return most_spare_sg;
5848 
5849 skip_spare:
5850 	if (!idlest)
5851 		return NULL;
5852 
5853 	/*
5854 	 * When comparing groups across NUMA domains, it's possible for the
5855 	 * local domain to be very lightly loaded relative to the remote
5856 	 * domains but "imbalance" skews the comparison making remote CPUs
5857 	 * look much more favourable. When considering cross-domain, add
5858 	 * imbalance to the runnable load on the remote node and consider
5859 	 * staying local.
5860 	 */
5861 	if ((sd->flags & SD_NUMA) &&
5862 	    min_runnable_load + imbalance >= this_runnable_load)
5863 		return NULL;
5864 
5865 	if (min_runnable_load > (this_runnable_load + imbalance))
5866 		return NULL;
5867 
5868 	if ((this_runnable_load < (min_runnable_load + imbalance)) &&
5869 	     (100*this_avg_load < imbalance_scale*min_avg_load))
5870 		return NULL;
5871 
5872 	return idlest;
5873 }
5874 
5875 /*
5876  * find_idlest_group_cpu - find the idlest CPU among the CPUs in the group.
5877  */
5878 static int
5879 find_idlest_group_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
5880 {
5881 	unsigned long load, min_load = ULONG_MAX;
5882 	unsigned int min_exit_latency = UINT_MAX;
5883 	u64 latest_idle_timestamp = 0;
5884 	int least_loaded_cpu = this_cpu;
5885 	int shallowest_idle_cpu = -1;
5886 	int i;
5887 
5888 	/* Check if we have any choice: */
5889 	if (group->group_weight == 1)
5890 		return cpumask_first(sched_group_span(group));
5891 
5892 	/* Traverse only the allowed CPUs */
5893 	for_each_cpu_and(i, sched_group_span(group), &p->cpus_allowed) {
5894 		if (available_idle_cpu(i)) {
5895 			struct rq *rq = cpu_rq(i);
5896 			struct cpuidle_state *idle = idle_get_state(rq);
5897 			if (idle && idle->exit_latency < min_exit_latency) {
5898 				/*
5899 				 * We give priority to a CPU whose idle state
5900 				 * has the smallest exit latency irrespective
5901 				 * of any idle timestamp.
5902 				 */
5903 				min_exit_latency = idle->exit_latency;
5904 				latest_idle_timestamp = rq->idle_stamp;
5905 				shallowest_idle_cpu = i;
5906 			} else if ((!idle || idle->exit_latency == min_exit_latency) &&
5907 				   rq->idle_stamp > latest_idle_timestamp) {
5908 				/*
5909 				 * If equal or no active idle state, then
5910 				 * the most recently idled CPU might have
5911 				 * a warmer cache.
5912 				 */
5913 				latest_idle_timestamp = rq->idle_stamp;
5914 				shallowest_idle_cpu = i;
5915 			}
5916 		} else if (shallowest_idle_cpu == -1) {
5917 			load = weighted_cpuload(cpu_rq(i));
5918 			if (load < min_load) {
5919 				min_load = load;
5920 				least_loaded_cpu = i;
5921 			}
5922 		}
5923 	}
5924 
5925 	return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu;
5926 }
5927 
5928 static inline int find_idlest_cpu(struct sched_domain *sd, struct task_struct *p,
5929 				  int cpu, int prev_cpu, int sd_flag)
5930 {
5931 	int new_cpu = cpu;
5932 
5933 	if (!cpumask_intersects(sched_domain_span(sd), &p->cpus_allowed))
5934 		return prev_cpu;
5935 
5936 	/*
5937 	 * We need task's util for capacity_spare_without, sync it up to
5938 	 * prev_cpu's last_update_time.
5939 	 */
5940 	if (!(sd_flag & SD_BALANCE_FORK))
5941 		sync_entity_load_avg(&p->se);
5942 
5943 	while (sd) {
5944 		struct sched_group *group;
5945 		struct sched_domain *tmp;
5946 		int weight;
5947 
5948 		if (!(sd->flags & sd_flag)) {
5949 			sd = sd->child;
5950 			continue;
5951 		}
5952 
5953 		group = find_idlest_group(sd, p, cpu, sd_flag);
5954 		if (!group) {
5955 			sd = sd->child;
5956 			continue;
5957 		}
5958 
5959 		new_cpu = find_idlest_group_cpu(group, p, cpu);
5960 		if (new_cpu == cpu) {
5961 			/* Now try balancing at a lower domain level of 'cpu': */
5962 			sd = sd->child;
5963 			continue;
5964 		}
5965 
5966 		/* Now try balancing at a lower domain level of 'new_cpu': */
5967 		cpu = new_cpu;
5968 		weight = sd->span_weight;
5969 		sd = NULL;
5970 		for_each_domain(cpu, tmp) {
5971 			if (weight <= tmp->span_weight)
5972 				break;
5973 			if (tmp->flags & sd_flag)
5974 				sd = tmp;
5975 		}
5976 	}
5977 
5978 	return new_cpu;
5979 }
5980 
5981 #ifdef CONFIG_SCHED_SMT
5982 DEFINE_STATIC_KEY_FALSE(sched_smt_present);
5983 
5984 static inline void set_idle_cores(int cpu, int val)
5985 {
5986 	struct sched_domain_shared *sds;
5987 
5988 	sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
5989 	if (sds)
5990 		WRITE_ONCE(sds->has_idle_cores, val);
5991 }
5992 
5993 static inline bool test_idle_cores(int cpu, bool def)
5994 {
5995 	struct sched_domain_shared *sds;
5996 
5997 	sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
5998 	if (sds)
5999 		return READ_ONCE(sds->has_idle_cores);
6000 
6001 	return def;
6002 }
6003 
6004 /*
6005  * Scans the local SMT mask to see if the entire core is idle, and records this
6006  * information in sd_llc_shared->has_idle_cores.
6007  *
6008  * Since SMT siblings share all cache levels, inspecting this limited remote
6009  * state should be fairly cheap.
6010  */
6011 void __update_idle_core(struct rq *rq)
6012 {
6013 	int core = cpu_of(rq);
6014 	int cpu;
6015 
6016 	rcu_read_lock();
6017 	if (test_idle_cores(core, true))
6018 		goto unlock;
6019 
6020 	for_each_cpu(cpu, cpu_smt_mask(core)) {
6021 		if (cpu == core)
6022 			continue;
6023 
6024 		if (!available_idle_cpu(cpu))
6025 			goto unlock;
6026 	}
6027 
6028 	set_idle_cores(core, 1);
6029 unlock:
6030 	rcu_read_unlock();
6031 }
6032 
6033 /*
6034  * Scan the entire LLC domain for idle cores; this dynamically switches off if
6035  * there are no idle cores left in the system; tracked through
6036  * sd_llc->shared->has_idle_cores and enabled through update_idle_core() above.
6037  */
6038 static int select_idle_core(struct task_struct *p, struct sched_domain *sd, int target)
6039 {
6040 	struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_idle_mask);
6041 	int core, cpu;
6042 
6043 	if (!static_branch_likely(&sched_smt_present))
6044 		return -1;
6045 
6046 	if (!test_idle_cores(target, false))
6047 		return -1;
6048 
6049 	cpumask_and(cpus, sched_domain_span(sd), &p->cpus_allowed);
6050 
6051 	for_each_cpu_wrap(core, cpus, target) {
6052 		bool idle = true;
6053 
6054 		for_each_cpu(cpu, cpu_smt_mask(core)) {
6055 			cpumask_clear_cpu(cpu, cpus);
6056 			if (!available_idle_cpu(cpu))
6057 				idle = false;
6058 		}
6059 
6060 		if (idle)
6061 			return core;
6062 	}
6063 
6064 	/*
6065 	 * Failed to find an idle core; stop looking for one.
6066 	 */
6067 	set_idle_cores(target, 0);
6068 
6069 	return -1;
6070 }
6071 
6072 /*
6073  * Scan the local SMT mask for idle CPUs.
6074  */
6075 static int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target)
6076 {
6077 	int cpu;
6078 
6079 	if (!static_branch_likely(&sched_smt_present))
6080 		return -1;
6081 
6082 	for_each_cpu(cpu, cpu_smt_mask(target)) {
6083 		if (!cpumask_test_cpu(cpu, &p->cpus_allowed))
6084 			continue;
6085 		if (available_idle_cpu(cpu))
6086 			return cpu;
6087 	}
6088 
6089 	return -1;
6090 }
6091 
6092 #else /* CONFIG_SCHED_SMT */
6093 
6094 static inline int select_idle_core(struct task_struct *p, struct sched_domain *sd, int target)
6095 {
6096 	return -1;
6097 }
6098 
6099 static inline int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target)
6100 {
6101 	return -1;
6102 }
6103 
6104 #endif /* CONFIG_SCHED_SMT */
6105 
6106 /*
6107  * Scan the LLC domain for idle CPUs; this is dynamically regulated by
6108  * comparing the average scan cost (tracked in sd->avg_scan_cost) against the
6109  * average idle time for this rq (as found in rq->avg_idle).
6110  */
6111 static int select_idle_cpu(struct task_struct *p, struct sched_domain *sd, int target)
6112 {
6113 	struct sched_domain *this_sd;
6114 	u64 avg_cost, avg_idle;
6115 	u64 time, cost;
6116 	s64 delta;
6117 	int cpu, nr = INT_MAX;
6118 
6119 	this_sd = rcu_dereference(*this_cpu_ptr(&sd_llc));
6120 	if (!this_sd)
6121 		return -1;
6122 
6123 	/*
6124 	 * Due to large variance we need a large fuzz factor; hackbench in
6125 	 * particularly is sensitive here.
6126 	 */
6127 	avg_idle = this_rq()->avg_idle / 512;
6128 	avg_cost = this_sd->avg_scan_cost + 1;
6129 
6130 	if (sched_feat(SIS_AVG_CPU) && avg_idle < avg_cost)
6131 		return -1;
6132 
6133 	if (sched_feat(SIS_PROP)) {
6134 		u64 span_avg = sd->span_weight * avg_idle;
6135 		if (span_avg > 4*avg_cost)
6136 			nr = div_u64(span_avg, avg_cost);
6137 		else
6138 			nr = 4;
6139 	}
6140 
6141 	time = local_clock();
6142 
6143 	for_each_cpu_wrap(cpu, sched_domain_span(sd), target) {
6144 		if (!--nr)
6145 			return -1;
6146 		if (!cpumask_test_cpu(cpu, &p->cpus_allowed))
6147 			continue;
6148 		if (available_idle_cpu(cpu))
6149 			break;
6150 	}
6151 
6152 	time = local_clock() - time;
6153 	cost = this_sd->avg_scan_cost;
6154 	delta = (s64)(time - cost) / 8;
6155 	this_sd->avg_scan_cost += delta;
6156 
6157 	return cpu;
6158 }
6159 
6160 /*
6161  * Try and locate an idle core/thread in the LLC cache domain.
6162  */
6163 static int select_idle_sibling(struct task_struct *p, int prev, int target)
6164 {
6165 	struct sched_domain *sd;
6166 	int i, recent_used_cpu;
6167 
6168 	if (available_idle_cpu(target))
6169 		return target;
6170 
6171 	/*
6172 	 * If the previous CPU is cache affine and idle, don't be stupid:
6173 	 */
6174 	if (prev != target && cpus_share_cache(prev, target) && available_idle_cpu(prev))
6175 		return prev;
6176 
6177 	/* Check a recently used CPU as a potential idle candidate: */
6178 	recent_used_cpu = p->recent_used_cpu;
6179 	if (recent_used_cpu != prev &&
6180 	    recent_used_cpu != target &&
6181 	    cpus_share_cache(recent_used_cpu, target) &&
6182 	    available_idle_cpu(recent_used_cpu) &&
6183 	    cpumask_test_cpu(p->recent_used_cpu, &p->cpus_allowed)) {
6184 		/*
6185 		 * Replace recent_used_cpu with prev as it is a potential
6186 		 * candidate for the next wake:
6187 		 */
6188 		p->recent_used_cpu = prev;
6189 		return recent_used_cpu;
6190 	}
6191 
6192 	sd = rcu_dereference(per_cpu(sd_llc, target));
6193 	if (!sd)
6194 		return target;
6195 
6196 	i = select_idle_core(p, sd, target);
6197 	if ((unsigned)i < nr_cpumask_bits)
6198 		return i;
6199 
6200 	i = select_idle_cpu(p, sd, target);
6201 	if ((unsigned)i < nr_cpumask_bits)
6202 		return i;
6203 
6204 	i = select_idle_smt(p, sd, target);
6205 	if ((unsigned)i < nr_cpumask_bits)
6206 		return i;
6207 
6208 	return target;
6209 }
6210 
6211 /**
6212  * Amount of capacity of a CPU that is (estimated to be) used by CFS tasks
6213  * @cpu: the CPU to get the utilization of
6214  *
6215  * The unit of the return value must be the one of capacity so we can compare
6216  * the utilization with the capacity of the CPU that is available for CFS task
6217  * (ie cpu_capacity).
6218  *
6219  * cfs_rq.avg.util_avg is the sum of running time of runnable tasks plus the
6220  * recent utilization of currently non-runnable tasks on a CPU. It represents
6221  * the amount of utilization of a CPU in the range [0..capacity_orig] where
6222  * capacity_orig is the cpu_capacity available at the highest frequency
6223  * (arch_scale_freq_capacity()).
6224  * The utilization of a CPU converges towards a sum equal to or less than the
6225  * current capacity (capacity_curr <= capacity_orig) of the CPU because it is
6226  * the running time on this CPU scaled by capacity_curr.
6227  *
6228  * The estimated utilization of a CPU is defined to be the maximum between its
6229  * cfs_rq.avg.util_avg and the sum of the estimated utilization of the tasks
6230  * currently RUNNABLE on that CPU.
6231  * This allows to properly represent the expected utilization of a CPU which
6232  * has just got a big task running since a long sleep period. At the same time
6233  * however it preserves the benefits of the "blocked utilization" in
6234  * describing the potential for other tasks waking up on the same CPU.
6235  *
6236  * Nevertheless, cfs_rq.avg.util_avg can be higher than capacity_curr or even
6237  * higher than capacity_orig because of unfortunate rounding in
6238  * cfs.avg.util_avg or just after migrating tasks and new task wakeups until
6239  * the average stabilizes with the new running time. We need to check that the
6240  * utilization stays within the range of [0..capacity_orig] and cap it if
6241  * necessary. Without utilization capping, a group could be seen as overloaded
6242  * (CPU0 utilization at 121% + CPU1 utilization at 80%) whereas CPU1 has 20% of
6243  * available capacity. We allow utilization to overshoot capacity_curr (but not
6244  * capacity_orig) as it useful for predicting the capacity required after task
6245  * migrations (scheduler-driven DVFS).
6246  *
6247  * Return: the (estimated) utilization for the specified CPU
6248  */
6249 static inline unsigned long cpu_util(int cpu)
6250 {
6251 	struct cfs_rq *cfs_rq;
6252 	unsigned int util;
6253 
6254 	cfs_rq = &cpu_rq(cpu)->cfs;
6255 	util = READ_ONCE(cfs_rq->avg.util_avg);
6256 
6257 	if (sched_feat(UTIL_EST))
6258 		util = max(util, READ_ONCE(cfs_rq->avg.util_est.enqueued));
6259 
6260 	return min_t(unsigned long, util, capacity_orig_of(cpu));
6261 }
6262 
6263 /*
6264  * cpu_util_without: compute cpu utilization without any contributions from *p
6265  * @cpu: the CPU which utilization is requested
6266  * @p: the task which utilization should be discounted
6267  *
6268  * The utilization of a CPU is defined by the utilization of tasks currently
6269  * enqueued on that CPU as well as tasks which are currently sleeping after an
6270  * execution on that CPU.
6271  *
6272  * This method returns the utilization of the specified CPU by discounting the
6273  * utilization of the specified task, whenever the task is currently
6274  * contributing to the CPU utilization.
6275  */
6276 static unsigned long cpu_util_without(int cpu, struct task_struct *p)
6277 {
6278 	struct cfs_rq *cfs_rq;
6279 	unsigned int util;
6280 
6281 	/* Task has no contribution or is new */
6282 	if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
6283 		return cpu_util(cpu);
6284 
6285 	cfs_rq = &cpu_rq(cpu)->cfs;
6286 	util = READ_ONCE(cfs_rq->avg.util_avg);
6287 
6288 	/* Discount task's util from CPU's util */
6289 	lsub_positive(&util, task_util(p));
6290 
6291 	/*
6292 	 * Covered cases:
6293 	 *
6294 	 * a) if *p is the only task sleeping on this CPU, then:
6295 	 *      cpu_util (== task_util) > util_est (== 0)
6296 	 *    and thus we return:
6297 	 *      cpu_util_without = (cpu_util - task_util) = 0
6298 	 *
6299 	 * b) if other tasks are SLEEPING on this CPU, which is now exiting
6300 	 *    IDLE, then:
6301 	 *      cpu_util >= task_util
6302 	 *      cpu_util > util_est (== 0)
6303 	 *    and thus we discount *p's blocked utilization to return:
6304 	 *      cpu_util_without = (cpu_util - task_util) >= 0
6305 	 *
6306 	 * c) if other tasks are RUNNABLE on that CPU and
6307 	 *      util_est > cpu_util
6308 	 *    then we use util_est since it returns a more restrictive
6309 	 *    estimation of the spare capacity on that CPU, by just
6310 	 *    considering the expected utilization of tasks already
6311 	 *    runnable on that CPU.
6312 	 *
6313 	 * Cases a) and b) are covered by the above code, while case c) is
6314 	 * covered by the following code when estimated utilization is
6315 	 * enabled.
6316 	 */
6317 	if (sched_feat(UTIL_EST)) {
6318 		unsigned int estimated =
6319 			READ_ONCE(cfs_rq->avg.util_est.enqueued);
6320 
6321 		/*
6322 		 * Despite the following checks we still have a small window
6323 		 * for a possible race, when an execl's select_task_rq_fair()
6324 		 * races with LB's detach_task():
6325 		 *
6326 		 *   detach_task()
6327 		 *     p->on_rq = TASK_ON_RQ_MIGRATING;
6328 		 *     ---------------------------------- A
6329 		 *     deactivate_task()                   \
6330 		 *       dequeue_task()                     + RaceTime
6331 		 *         util_est_dequeue()              /
6332 		 *     ---------------------------------- B
6333 		 *
6334 		 * The additional check on "current == p" it's required to
6335 		 * properly fix the execl regression and it helps in further
6336 		 * reducing the chances for the above race.
6337 		 */
6338 		if (unlikely(task_on_rq_queued(p) || current == p))
6339 			lsub_positive(&estimated, _task_util_est(p));
6340 
6341 		util = max(util, estimated);
6342 	}
6343 
6344 	/*
6345 	 * Utilization (estimated) can exceed the CPU capacity, thus let's
6346 	 * clamp to the maximum CPU capacity to ensure consistency with
6347 	 * the cpu_util call.
6348 	 */
6349 	return min_t(unsigned long, util, capacity_orig_of(cpu));
6350 }
6351 
6352 /*
6353  * Disable WAKE_AFFINE in the case where task @p doesn't fit in the
6354  * capacity of either the waking CPU @cpu or the previous CPU @prev_cpu.
6355  *
6356  * In that case WAKE_AFFINE doesn't make sense and we'll let
6357  * BALANCE_WAKE sort things out.
6358  */
6359 static int wake_cap(struct task_struct *p, int cpu, int prev_cpu)
6360 {
6361 	long min_cap, max_cap;
6362 
6363 	if (!static_branch_unlikely(&sched_asym_cpucapacity))
6364 		return 0;
6365 
6366 	min_cap = min(capacity_orig_of(prev_cpu), capacity_orig_of(cpu));
6367 	max_cap = cpu_rq(cpu)->rd->max_cpu_capacity;
6368 
6369 	/* Minimum capacity is close to max, no need to abort wake_affine */
6370 	if (max_cap - min_cap < max_cap >> 3)
6371 		return 0;
6372 
6373 	/* Bring task utilization in sync with prev_cpu */
6374 	sync_entity_load_avg(&p->se);
6375 
6376 	return !task_fits_capacity(p, min_cap);
6377 }
6378 
6379 /*
6380  * Predicts what cpu_util(@cpu) would return if @p was migrated (and enqueued)
6381  * to @dst_cpu.
6382  */
6383 static unsigned long cpu_util_next(int cpu, struct task_struct *p, int dst_cpu)
6384 {
6385 	struct cfs_rq *cfs_rq = &cpu_rq(cpu)->cfs;
6386 	unsigned long util_est, util = READ_ONCE(cfs_rq->avg.util_avg);
6387 
6388 	/*
6389 	 * If @p migrates from @cpu to another, remove its contribution. Or,
6390 	 * if @p migrates from another CPU to @cpu, add its contribution. In
6391 	 * the other cases, @cpu is not impacted by the migration, so the
6392 	 * util_avg should already be correct.
6393 	 */
6394 	if (task_cpu(p) == cpu && dst_cpu != cpu)
6395 		sub_positive(&util, task_util(p));
6396 	else if (task_cpu(p) != cpu && dst_cpu == cpu)
6397 		util += task_util(p);
6398 
6399 	if (sched_feat(UTIL_EST)) {
6400 		util_est = READ_ONCE(cfs_rq->avg.util_est.enqueued);
6401 
6402 		/*
6403 		 * During wake-up, the task isn't enqueued yet and doesn't
6404 		 * appear in the cfs_rq->avg.util_est.enqueued of any rq,
6405 		 * so just add it (if needed) to "simulate" what will be
6406 		 * cpu_util() after the task has been enqueued.
6407 		 */
6408 		if (dst_cpu == cpu)
6409 			util_est += _task_util_est(p);
6410 
6411 		util = max(util, util_est);
6412 	}
6413 
6414 	return min(util, capacity_orig_of(cpu));
6415 }
6416 
6417 /*
6418  * compute_energy(): Estimates the energy that would be consumed if @p was
6419  * migrated to @dst_cpu. compute_energy() predicts what will be the utilization
6420  * landscape of the * CPUs after the task migration, and uses the Energy Model
6421  * to compute what would be the energy if we decided to actually migrate that
6422  * task.
6423  */
6424 static long
6425 compute_energy(struct task_struct *p, int dst_cpu, struct perf_domain *pd)
6426 {
6427 	long util, max_util, sum_util, energy = 0;
6428 	int cpu;
6429 
6430 	for (; pd; pd = pd->next) {
6431 		max_util = sum_util = 0;
6432 		/*
6433 		 * The capacity state of CPUs of the current rd can be driven by
6434 		 * CPUs of another rd if they belong to the same performance
6435 		 * domain. So, account for the utilization of these CPUs too
6436 		 * by masking pd with cpu_online_mask instead of the rd span.
6437 		 *
6438 		 * If an entire performance domain is outside of the current rd,
6439 		 * it will not appear in its pd list and will not be accounted
6440 		 * by compute_energy().
6441 		 */
6442 		for_each_cpu_and(cpu, perf_domain_span(pd), cpu_online_mask) {
6443 			util = cpu_util_next(cpu, p, dst_cpu);
6444 			util = schedutil_energy_util(cpu, util);
6445 			max_util = max(util, max_util);
6446 			sum_util += util;
6447 		}
6448 
6449 		energy += em_pd_energy(pd->em_pd, max_util, sum_util);
6450 	}
6451 
6452 	return energy;
6453 }
6454 
6455 /*
6456  * find_energy_efficient_cpu(): Find most energy-efficient target CPU for the
6457  * waking task. find_energy_efficient_cpu() looks for the CPU with maximum
6458  * spare capacity in each performance domain and uses it as a potential
6459  * candidate to execute the task. Then, it uses the Energy Model to figure
6460  * out which of the CPU candidates is the most energy-efficient.
6461  *
6462  * The rationale for this heuristic is as follows. In a performance domain,
6463  * all the most energy efficient CPU candidates (according to the Energy
6464  * Model) are those for which we'll request a low frequency. When there are
6465  * several CPUs for which the frequency request will be the same, we don't
6466  * have enough data to break the tie between them, because the Energy Model
6467  * only includes active power costs. With this model, if we assume that
6468  * frequency requests follow utilization (e.g. using schedutil), the CPU with
6469  * the maximum spare capacity in a performance domain is guaranteed to be among
6470  * the best candidates of the performance domain.
6471  *
6472  * In practice, it could be preferable from an energy standpoint to pack
6473  * small tasks on a CPU in order to let other CPUs go in deeper idle states,
6474  * but that could also hurt our chances to go cluster idle, and we have no
6475  * ways to tell with the current Energy Model if this is actually a good
6476  * idea or not. So, find_energy_efficient_cpu() basically favors
6477  * cluster-packing, and spreading inside a cluster. That should at least be
6478  * a good thing for latency, and this is consistent with the idea that most
6479  * of the energy savings of EAS come from the asymmetry of the system, and
6480  * not so much from breaking the tie between identical CPUs. That's also the
6481  * reason why EAS is enabled in the topology code only for systems where
6482  * SD_ASYM_CPUCAPACITY is set.
6483  *
6484  * NOTE: Forkees are not accepted in the energy-aware wake-up path because
6485  * they don't have any useful utilization data yet and it's not possible to
6486  * forecast their impact on energy consumption. Consequently, they will be
6487  * placed by find_idlest_cpu() on the least loaded CPU, which might turn out
6488  * to be energy-inefficient in some use-cases. The alternative would be to
6489  * bias new tasks towards specific types of CPUs first, or to try to infer
6490  * their util_avg from the parent task, but those heuristics could hurt
6491  * other use-cases too. So, until someone finds a better way to solve this,
6492  * let's keep things simple by re-using the existing slow path.
6493  */
6494 
6495 static int find_energy_efficient_cpu(struct task_struct *p, int prev_cpu)
6496 {
6497 	unsigned long prev_energy = ULONG_MAX, best_energy = ULONG_MAX;
6498 	struct root_domain *rd = cpu_rq(smp_processor_id())->rd;
6499 	int cpu, best_energy_cpu = prev_cpu;
6500 	struct perf_domain *head, *pd;
6501 	unsigned long cpu_cap, util;
6502 	struct sched_domain *sd;
6503 
6504 	rcu_read_lock();
6505 	pd = rcu_dereference(rd->pd);
6506 	if (!pd || READ_ONCE(rd->overutilized))
6507 		goto fail;
6508 	head = pd;
6509 
6510 	/*
6511 	 * Energy-aware wake-up happens on the lowest sched_domain starting
6512 	 * from sd_asym_cpucapacity spanning over this_cpu and prev_cpu.
6513 	 */
6514 	sd = rcu_dereference(*this_cpu_ptr(&sd_asym_cpucapacity));
6515 	while (sd && !cpumask_test_cpu(prev_cpu, sched_domain_span(sd)))
6516 		sd = sd->parent;
6517 	if (!sd)
6518 		goto fail;
6519 
6520 	sync_entity_load_avg(&p->se);
6521 	if (!task_util_est(p))
6522 		goto unlock;
6523 
6524 	for (; pd; pd = pd->next) {
6525 		unsigned long cur_energy, spare_cap, max_spare_cap = 0;
6526 		int max_spare_cap_cpu = -1;
6527 
6528 		for_each_cpu_and(cpu, perf_domain_span(pd), sched_domain_span(sd)) {
6529 			if (!cpumask_test_cpu(cpu, &p->cpus_allowed))
6530 				continue;
6531 
6532 			/* Skip CPUs that will be overutilized. */
6533 			util = cpu_util_next(cpu, p, cpu);
6534 			cpu_cap = capacity_of(cpu);
6535 			if (cpu_cap * 1024 < util * capacity_margin)
6536 				continue;
6537 
6538 			/* Always use prev_cpu as a candidate. */
6539 			if (cpu == prev_cpu) {
6540 				prev_energy = compute_energy(p, prev_cpu, head);
6541 				best_energy = min(best_energy, prev_energy);
6542 				continue;
6543 			}
6544 
6545 			/*
6546 			 * Find the CPU with the maximum spare capacity in
6547 			 * the performance domain
6548 			 */
6549 			spare_cap = cpu_cap - util;
6550 			if (spare_cap > max_spare_cap) {
6551 				max_spare_cap = spare_cap;
6552 				max_spare_cap_cpu = cpu;
6553 			}
6554 		}
6555 
6556 		/* Evaluate the energy impact of using this CPU. */
6557 		if (max_spare_cap_cpu >= 0) {
6558 			cur_energy = compute_energy(p, max_spare_cap_cpu, head);
6559 			if (cur_energy < best_energy) {
6560 				best_energy = cur_energy;
6561 				best_energy_cpu = max_spare_cap_cpu;
6562 			}
6563 		}
6564 	}
6565 unlock:
6566 	rcu_read_unlock();
6567 
6568 	/*
6569 	 * Pick the best CPU if prev_cpu cannot be used, or if it saves at
6570 	 * least 6% of the energy used by prev_cpu.
6571 	 */
6572 	if (prev_energy == ULONG_MAX)
6573 		return best_energy_cpu;
6574 
6575 	if ((prev_energy - best_energy) > (prev_energy >> 4))
6576 		return best_energy_cpu;
6577 
6578 	return prev_cpu;
6579 
6580 fail:
6581 	rcu_read_unlock();
6582 
6583 	return -1;
6584 }
6585 
6586 /*
6587  * select_task_rq_fair: Select target runqueue for the waking task in domains
6588  * that have the 'sd_flag' flag set. In practice, this is SD_BALANCE_WAKE,
6589  * SD_BALANCE_FORK, or SD_BALANCE_EXEC.
6590  *
6591  * Balances load by selecting the idlest CPU in the idlest group, or under
6592  * certain conditions an idle sibling CPU if the domain has SD_WAKE_AFFINE set.
6593  *
6594  * Returns the target CPU number.
6595  *
6596  * preempt must be disabled.
6597  */
6598 static int
6599 select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_flags)
6600 {
6601 	struct sched_domain *tmp, *sd = NULL;
6602 	int cpu = smp_processor_id();
6603 	int new_cpu = prev_cpu;
6604 	int want_affine = 0;
6605 	int sync = (wake_flags & WF_SYNC) && !(current->flags & PF_EXITING);
6606 
6607 	if (sd_flag & SD_BALANCE_WAKE) {
6608 		record_wakee(p);
6609 
6610 		if (static_branch_unlikely(&sched_energy_present)) {
6611 			new_cpu = find_energy_efficient_cpu(p, prev_cpu);
6612 			if (new_cpu >= 0)
6613 				return new_cpu;
6614 			new_cpu = prev_cpu;
6615 		}
6616 
6617 		want_affine = !wake_wide(p) && !wake_cap(p, cpu, prev_cpu) &&
6618 			      cpumask_test_cpu(cpu, &p->cpus_allowed);
6619 	}
6620 
6621 	rcu_read_lock();
6622 	for_each_domain(cpu, tmp) {
6623 		if (!(tmp->flags & SD_LOAD_BALANCE))
6624 			break;
6625 
6626 		/*
6627 		 * If both 'cpu' and 'prev_cpu' are part of this domain,
6628 		 * cpu is a valid SD_WAKE_AFFINE target.
6629 		 */
6630 		if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
6631 		    cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
6632 			if (cpu != prev_cpu)
6633 				new_cpu = wake_affine(tmp, p, cpu, prev_cpu, sync);
6634 
6635 			sd = NULL; /* Prefer wake_affine over balance flags */
6636 			break;
6637 		}
6638 
6639 		if (tmp->flags & sd_flag)
6640 			sd = tmp;
6641 		else if (!want_affine)
6642 			break;
6643 	}
6644 
6645 	if (unlikely(sd)) {
6646 		/* Slow path */
6647 		new_cpu = find_idlest_cpu(sd, p, cpu, prev_cpu, sd_flag);
6648 	} else if (sd_flag & SD_BALANCE_WAKE) { /* XXX always ? */
6649 		/* Fast path */
6650 
6651 		new_cpu = select_idle_sibling(p, prev_cpu, new_cpu);
6652 
6653 		if (want_affine)
6654 			current->recent_used_cpu = cpu;
6655 	}
6656 	rcu_read_unlock();
6657 
6658 	return new_cpu;
6659 }
6660 
6661 static void detach_entity_cfs_rq(struct sched_entity *se);
6662 
6663 /*
6664  * Called immediately before a task is migrated to a new CPU; task_cpu(p) and
6665  * cfs_rq_of(p) references at time of call are still valid and identify the
6666  * previous CPU. The caller guarantees p->pi_lock or task_rq(p)->lock is held.
6667  */
6668 static void migrate_task_rq_fair(struct task_struct *p, int new_cpu)
6669 {
6670 	/*
6671 	 * As blocked tasks retain absolute vruntime the migration needs to
6672 	 * deal with this by subtracting the old and adding the new
6673 	 * min_vruntime -- the latter is done by enqueue_entity() when placing
6674 	 * the task on the new runqueue.
6675 	 */
6676 	if (p->state == TASK_WAKING) {
6677 		struct sched_entity *se = &p->se;
6678 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
6679 		u64 min_vruntime;
6680 
6681 #ifndef CONFIG_64BIT
6682 		u64 min_vruntime_copy;
6683 
6684 		do {
6685 			min_vruntime_copy = cfs_rq->min_vruntime_copy;
6686 			smp_rmb();
6687 			min_vruntime = cfs_rq->min_vruntime;
6688 		} while (min_vruntime != min_vruntime_copy);
6689 #else
6690 		min_vruntime = cfs_rq->min_vruntime;
6691 #endif
6692 
6693 		se->vruntime -= min_vruntime;
6694 	}
6695 
6696 	if (p->on_rq == TASK_ON_RQ_MIGRATING) {
6697 		/*
6698 		 * In case of TASK_ON_RQ_MIGRATING we in fact hold the 'old'
6699 		 * rq->lock and can modify state directly.
6700 		 */
6701 		lockdep_assert_held(&task_rq(p)->lock);
6702 		detach_entity_cfs_rq(&p->se);
6703 
6704 	} else {
6705 		/*
6706 		 * We are supposed to update the task to "current" time, then
6707 		 * its up to date and ready to go to new CPU/cfs_rq. But we
6708 		 * have difficulty in getting what current time is, so simply
6709 		 * throw away the out-of-date time. This will result in the
6710 		 * wakee task is less decayed, but giving the wakee more load
6711 		 * sounds not bad.
6712 		 */
6713 		remove_entity_load_avg(&p->se);
6714 	}
6715 
6716 	/* Tell new CPU we are migrated */
6717 	p->se.avg.last_update_time = 0;
6718 
6719 	/* We have migrated, no longer consider this task hot */
6720 	p->se.exec_start = 0;
6721 
6722 	update_scan_period(p, new_cpu);
6723 }
6724 
6725 static void task_dead_fair(struct task_struct *p)
6726 {
6727 	remove_entity_load_avg(&p->se);
6728 }
6729 #endif /* CONFIG_SMP */
6730 
6731 static unsigned long wakeup_gran(struct sched_entity *se)
6732 {
6733 	unsigned long gran = sysctl_sched_wakeup_granularity;
6734 
6735 	/*
6736 	 * Since its curr running now, convert the gran from real-time
6737 	 * to virtual-time in his units.
6738 	 *
6739 	 * By using 'se' instead of 'curr' we penalize light tasks, so
6740 	 * they get preempted easier. That is, if 'se' < 'curr' then
6741 	 * the resulting gran will be larger, therefore penalizing the
6742 	 * lighter, if otoh 'se' > 'curr' then the resulting gran will
6743 	 * be smaller, again penalizing the lighter task.
6744 	 *
6745 	 * This is especially important for buddies when the leftmost
6746 	 * task is higher priority than the buddy.
6747 	 */
6748 	return calc_delta_fair(gran, se);
6749 }
6750 
6751 /*
6752  * Should 'se' preempt 'curr'.
6753  *
6754  *             |s1
6755  *        |s2
6756  *   |s3
6757  *         g
6758  *      |<--->|c
6759  *
6760  *  w(c, s1) = -1
6761  *  w(c, s2) =  0
6762  *  w(c, s3) =  1
6763  *
6764  */
6765 static int
6766 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
6767 {
6768 	s64 gran, vdiff = curr->vruntime - se->vruntime;
6769 
6770 	if (vdiff <= 0)
6771 		return -1;
6772 
6773 	gran = wakeup_gran(se);
6774 	if (vdiff > gran)
6775 		return 1;
6776 
6777 	return 0;
6778 }
6779 
6780 static void set_last_buddy(struct sched_entity *se)
6781 {
6782 	if (entity_is_task(se) && unlikely(task_has_idle_policy(task_of(se))))
6783 		return;
6784 
6785 	for_each_sched_entity(se) {
6786 		if (SCHED_WARN_ON(!se->on_rq))
6787 			return;
6788 		cfs_rq_of(se)->last = se;
6789 	}
6790 }
6791 
6792 static void set_next_buddy(struct sched_entity *se)
6793 {
6794 	if (entity_is_task(se) && unlikely(task_has_idle_policy(task_of(se))))
6795 		return;
6796 
6797 	for_each_sched_entity(se) {
6798 		if (SCHED_WARN_ON(!se->on_rq))
6799 			return;
6800 		cfs_rq_of(se)->next = se;
6801 	}
6802 }
6803 
6804 static void set_skip_buddy(struct sched_entity *se)
6805 {
6806 	for_each_sched_entity(se)
6807 		cfs_rq_of(se)->skip = se;
6808 }
6809 
6810 /*
6811  * Preempt the current task with a newly woken task if needed:
6812  */
6813 static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
6814 {
6815 	struct task_struct *curr = rq->curr;
6816 	struct sched_entity *se = &curr->se, *pse = &p->se;
6817 	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
6818 	int scale = cfs_rq->nr_running >= sched_nr_latency;
6819 	int next_buddy_marked = 0;
6820 
6821 	if (unlikely(se == pse))
6822 		return;
6823 
6824 	/*
6825 	 * This is possible from callers such as attach_tasks(), in which we
6826 	 * unconditionally check_prempt_curr() after an enqueue (which may have
6827 	 * lead to a throttle).  This both saves work and prevents false
6828 	 * next-buddy nomination below.
6829 	 */
6830 	if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
6831 		return;
6832 
6833 	if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
6834 		set_next_buddy(pse);
6835 		next_buddy_marked = 1;
6836 	}
6837 
6838 	/*
6839 	 * We can come here with TIF_NEED_RESCHED already set from new task
6840 	 * wake up path.
6841 	 *
6842 	 * Note: this also catches the edge-case of curr being in a throttled
6843 	 * group (e.g. via set_curr_task), since update_curr() (in the
6844 	 * enqueue of curr) will have resulted in resched being set.  This
6845 	 * prevents us from potentially nominating it as a false LAST_BUDDY
6846 	 * below.
6847 	 */
6848 	if (test_tsk_need_resched(curr))
6849 		return;
6850 
6851 	/* Idle tasks are by definition preempted by non-idle tasks. */
6852 	if (unlikely(task_has_idle_policy(curr)) &&
6853 	    likely(!task_has_idle_policy(p)))
6854 		goto preempt;
6855 
6856 	/*
6857 	 * Batch and idle tasks do not preempt non-idle tasks (their preemption
6858 	 * is driven by the tick):
6859 	 */
6860 	if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
6861 		return;
6862 
6863 	find_matching_se(&se, &pse);
6864 	update_curr(cfs_rq_of(se));
6865 	BUG_ON(!pse);
6866 	if (wakeup_preempt_entity(se, pse) == 1) {
6867 		/*
6868 		 * Bias pick_next to pick the sched entity that is
6869 		 * triggering this preemption.
6870 		 */
6871 		if (!next_buddy_marked)
6872 			set_next_buddy(pse);
6873 		goto preempt;
6874 	}
6875 
6876 	return;
6877 
6878 preempt:
6879 	resched_curr(rq);
6880 	/*
6881 	 * Only set the backward buddy when the current task is still
6882 	 * on the rq. This can happen when a wakeup gets interleaved
6883 	 * with schedule on the ->pre_schedule() or idle_balance()
6884 	 * point, either of which can * drop the rq lock.
6885 	 *
6886 	 * Also, during early boot the idle thread is in the fair class,
6887 	 * for obvious reasons its a bad idea to schedule back to it.
6888 	 */
6889 	if (unlikely(!se->on_rq || curr == rq->idle))
6890 		return;
6891 
6892 	if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
6893 		set_last_buddy(se);
6894 }
6895 
6896 static struct task_struct *
6897 pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
6898 {
6899 	struct cfs_rq *cfs_rq = &rq->cfs;
6900 	struct sched_entity *se;
6901 	struct task_struct *p;
6902 	int new_tasks;
6903 
6904 again:
6905 	if (!cfs_rq->nr_running)
6906 		goto idle;
6907 
6908 #ifdef CONFIG_FAIR_GROUP_SCHED
6909 	if (prev->sched_class != &fair_sched_class)
6910 		goto simple;
6911 
6912 	/*
6913 	 * Because of the set_next_buddy() in dequeue_task_fair() it is rather
6914 	 * likely that a next task is from the same cgroup as the current.
6915 	 *
6916 	 * Therefore attempt to avoid putting and setting the entire cgroup
6917 	 * hierarchy, only change the part that actually changes.
6918 	 */
6919 
6920 	do {
6921 		struct sched_entity *curr = cfs_rq->curr;
6922 
6923 		/*
6924 		 * Since we got here without doing put_prev_entity() we also
6925 		 * have to consider cfs_rq->curr. If it is still a runnable
6926 		 * entity, update_curr() will update its vruntime, otherwise
6927 		 * forget we've ever seen it.
6928 		 */
6929 		if (curr) {
6930 			if (curr->on_rq)
6931 				update_curr(cfs_rq);
6932 			else
6933 				curr = NULL;
6934 
6935 			/*
6936 			 * This call to check_cfs_rq_runtime() will do the
6937 			 * throttle and dequeue its entity in the parent(s).
6938 			 * Therefore the nr_running test will indeed
6939 			 * be correct.
6940 			 */
6941 			if (unlikely(check_cfs_rq_runtime(cfs_rq))) {
6942 				cfs_rq = &rq->cfs;
6943 
6944 				if (!cfs_rq->nr_running)
6945 					goto idle;
6946 
6947 				goto simple;
6948 			}
6949 		}
6950 
6951 		se = pick_next_entity(cfs_rq, curr);
6952 		cfs_rq = group_cfs_rq(se);
6953 	} while (cfs_rq);
6954 
6955 	p = task_of(se);
6956 
6957 	/*
6958 	 * Since we haven't yet done put_prev_entity and if the selected task
6959 	 * is a different task than we started out with, try and touch the
6960 	 * least amount of cfs_rqs.
6961 	 */
6962 	if (prev != p) {
6963 		struct sched_entity *pse = &prev->se;
6964 
6965 		while (!(cfs_rq = is_same_group(se, pse))) {
6966 			int se_depth = se->depth;
6967 			int pse_depth = pse->depth;
6968 
6969 			if (se_depth <= pse_depth) {
6970 				put_prev_entity(cfs_rq_of(pse), pse);
6971 				pse = parent_entity(pse);
6972 			}
6973 			if (se_depth >= pse_depth) {
6974 				set_next_entity(cfs_rq_of(se), se);
6975 				se = parent_entity(se);
6976 			}
6977 		}
6978 
6979 		put_prev_entity(cfs_rq, pse);
6980 		set_next_entity(cfs_rq, se);
6981 	}
6982 
6983 	goto done;
6984 simple:
6985 #endif
6986 
6987 	put_prev_task(rq, prev);
6988 
6989 	do {
6990 		se = pick_next_entity(cfs_rq, NULL);
6991 		set_next_entity(cfs_rq, se);
6992 		cfs_rq = group_cfs_rq(se);
6993 	} while (cfs_rq);
6994 
6995 	p = task_of(se);
6996 
6997 done: __maybe_unused;
6998 #ifdef CONFIG_SMP
6999 	/*
7000 	 * Move the next running task to the front of
7001 	 * the list, so our cfs_tasks list becomes MRU
7002 	 * one.
7003 	 */
7004 	list_move(&p->se.group_node, &rq->cfs_tasks);
7005 #endif
7006 
7007 	if (hrtick_enabled(rq))
7008 		hrtick_start_fair(rq, p);
7009 
7010 	update_misfit_status(p, rq);
7011 
7012 	return p;
7013 
7014 idle:
7015 	update_misfit_status(NULL, rq);
7016 	new_tasks = idle_balance(rq, rf);
7017 
7018 	/*
7019 	 * Because idle_balance() releases (and re-acquires) rq->lock, it is
7020 	 * possible for any higher priority task to appear. In that case we
7021 	 * must re-start the pick_next_entity() loop.
7022 	 */
7023 	if (new_tasks < 0)
7024 		return RETRY_TASK;
7025 
7026 	if (new_tasks > 0)
7027 		goto again;
7028 
7029 	return NULL;
7030 }
7031 
7032 /*
7033  * Account for a descheduled task:
7034  */
7035 static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
7036 {
7037 	struct sched_entity *se = &prev->se;
7038 	struct cfs_rq *cfs_rq;
7039 
7040 	for_each_sched_entity(se) {
7041 		cfs_rq = cfs_rq_of(se);
7042 		put_prev_entity(cfs_rq, se);
7043 	}
7044 }
7045 
7046 /*
7047  * sched_yield() is very simple
7048  *
7049  * The magic of dealing with the ->skip buddy is in pick_next_entity.
7050  */
7051 static void yield_task_fair(struct rq *rq)
7052 {
7053 	struct task_struct *curr = rq->curr;
7054 	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
7055 	struct sched_entity *se = &curr->se;
7056 
7057 	/*
7058 	 * Are we the only task in the tree?
7059 	 */
7060 	if (unlikely(rq->nr_running == 1))
7061 		return;
7062 
7063 	clear_buddies(cfs_rq, se);
7064 
7065 	if (curr->policy != SCHED_BATCH) {
7066 		update_rq_clock(rq);
7067 		/*
7068 		 * Update run-time statistics of the 'current'.
7069 		 */
7070 		update_curr(cfs_rq);
7071 		/*
7072 		 * Tell update_rq_clock() that we've just updated,
7073 		 * so we don't do microscopic update in schedule()
7074 		 * and double the fastpath cost.
7075 		 */
7076 		rq_clock_skip_update(rq);
7077 	}
7078 
7079 	set_skip_buddy(se);
7080 }
7081 
7082 static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
7083 {
7084 	struct sched_entity *se = &p->se;
7085 
7086 	/* throttled hierarchies are not runnable */
7087 	if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
7088 		return false;
7089 
7090 	/* Tell the scheduler that we'd really like pse to run next. */
7091 	set_next_buddy(se);
7092 
7093 	yield_task_fair(rq);
7094 
7095 	return true;
7096 }
7097 
7098 #ifdef CONFIG_SMP
7099 /**************************************************
7100  * Fair scheduling class load-balancing methods.
7101  *
7102  * BASICS
7103  *
7104  * The purpose of load-balancing is to achieve the same basic fairness the
7105  * per-CPU scheduler provides, namely provide a proportional amount of compute
7106  * time to each task. This is expressed in the following equation:
7107  *
7108  *   W_i,n/P_i == W_j,n/P_j for all i,j                               (1)
7109  *
7110  * Where W_i,n is the n-th weight average for CPU i. The instantaneous weight
7111  * W_i,0 is defined as:
7112  *
7113  *   W_i,0 = \Sum_j w_i,j                                             (2)
7114  *
7115  * Where w_i,j is the weight of the j-th runnable task on CPU i. This weight
7116  * is derived from the nice value as per sched_prio_to_weight[].
7117  *
7118  * The weight average is an exponential decay average of the instantaneous
7119  * weight:
7120  *
7121  *   W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0               (3)
7122  *
7123  * C_i is the compute capacity of CPU i, typically it is the
7124  * fraction of 'recent' time available for SCHED_OTHER task execution. But it
7125  * can also include other factors [XXX].
7126  *
7127  * To achieve this balance we define a measure of imbalance which follows
7128  * directly from (1):
7129  *
7130  *   imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j }    (4)
7131  *
7132  * We them move tasks around to minimize the imbalance. In the continuous
7133  * function space it is obvious this converges, in the discrete case we get
7134  * a few fun cases generally called infeasible weight scenarios.
7135  *
7136  * [XXX expand on:
7137  *     - infeasible weights;
7138  *     - local vs global optima in the discrete case. ]
7139  *
7140  *
7141  * SCHED DOMAINS
7142  *
7143  * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
7144  * for all i,j solution, we create a tree of CPUs that follows the hardware
7145  * topology where each level pairs two lower groups (or better). This results
7146  * in O(log n) layers. Furthermore we reduce the number of CPUs going up the
7147  * tree to only the first of the previous level and we decrease the frequency
7148  * of load-balance at each level inv. proportional to the number of CPUs in
7149  * the groups.
7150  *
7151  * This yields:
7152  *
7153  *     log_2 n     1     n
7154  *   \Sum       { --- * --- * 2^i } = O(n)                            (5)
7155  *     i = 0      2^i   2^i
7156  *                               `- size of each group
7157  *         |         |     `- number of CPUs doing load-balance
7158  *         |         `- freq
7159  *         `- sum over all levels
7160  *
7161  * Coupled with a limit on how many tasks we can migrate every balance pass,
7162  * this makes (5) the runtime complexity of the balancer.
7163  *
7164  * An important property here is that each CPU is still (indirectly) connected
7165  * to every other CPU in at most O(log n) steps:
7166  *
7167  * The adjacency matrix of the resulting graph is given by:
7168  *
7169  *             log_2 n
7170  *   A_i,j = \Union     (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1)  (6)
7171  *             k = 0
7172  *
7173  * And you'll find that:
7174  *
7175  *   A^(log_2 n)_i,j != 0  for all i,j                                (7)
7176  *
7177  * Showing there's indeed a path between every CPU in at most O(log n) steps.
7178  * The task movement gives a factor of O(m), giving a convergence complexity
7179  * of:
7180  *
7181  *   O(nm log n),  n := nr_cpus, m := nr_tasks                        (8)
7182  *
7183  *
7184  * WORK CONSERVING
7185  *
7186  * In order to avoid CPUs going idle while there's still work to do, new idle
7187  * balancing is more aggressive and has the newly idle CPU iterate up the domain
7188  * tree itself instead of relying on other CPUs to bring it work.
7189  *
7190  * This adds some complexity to both (5) and (8) but it reduces the total idle
7191  * time.
7192  *
7193  * [XXX more?]
7194  *
7195  *
7196  * CGROUPS
7197  *
7198  * Cgroups make a horror show out of (2), instead of a simple sum we get:
7199  *
7200  *                                s_k,i
7201  *   W_i,0 = \Sum_j \Prod_k w_k * -----                               (9)
7202  *                                 S_k
7203  *
7204  * Where
7205  *
7206  *   s_k,i = \Sum_j w_i,j,k  and  S_k = \Sum_i s_k,i                 (10)
7207  *
7208  * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on CPU i.
7209  *
7210  * The big problem is S_k, its a global sum needed to compute a local (W_i)
7211  * property.
7212  *
7213  * [XXX write more on how we solve this.. _after_ merging pjt's patches that
7214  *      rewrite all of this once again.]
7215  */
7216 
7217 static unsigned long __read_mostly max_load_balance_interval = HZ/10;
7218 
7219 enum fbq_type { regular, remote, all };
7220 
7221 enum group_type {
7222 	group_other = 0,
7223 	group_misfit_task,
7224 	group_imbalanced,
7225 	group_overloaded,
7226 };
7227 
7228 #define LBF_ALL_PINNED	0x01
7229 #define LBF_NEED_BREAK	0x02
7230 #define LBF_DST_PINNED  0x04
7231 #define LBF_SOME_PINNED	0x08
7232 #define LBF_NOHZ_STATS	0x10
7233 #define LBF_NOHZ_AGAIN	0x20
7234 
7235 struct lb_env {
7236 	struct sched_domain	*sd;
7237 
7238 	struct rq		*src_rq;
7239 	int			src_cpu;
7240 
7241 	int			dst_cpu;
7242 	struct rq		*dst_rq;
7243 
7244 	struct cpumask		*dst_grpmask;
7245 	int			new_dst_cpu;
7246 	enum cpu_idle_type	idle;
7247 	long			imbalance;
7248 	/* The set of CPUs under consideration for load-balancing */
7249 	struct cpumask		*cpus;
7250 
7251 	unsigned int		flags;
7252 
7253 	unsigned int		loop;
7254 	unsigned int		loop_break;
7255 	unsigned int		loop_max;
7256 
7257 	enum fbq_type		fbq_type;
7258 	enum group_type		src_grp_type;
7259 	struct list_head	tasks;
7260 };
7261 
7262 /*
7263  * Is this task likely cache-hot:
7264  */
7265 static int task_hot(struct task_struct *p, struct lb_env *env)
7266 {
7267 	s64 delta;
7268 
7269 	lockdep_assert_held(&env->src_rq->lock);
7270 
7271 	if (p->sched_class != &fair_sched_class)
7272 		return 0;
7273 
7274 	if (unlikely(task_has_idle_policy(p)))
7275 		return 0;
7276 
7277 	/*
7278 	 * Buddy candidates are cache hot:
7279 	 */
7280 	if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running &&
7281 			(&p->se == cfs_rq_of(&p->se)->next ||
7282 			 &p->se == cfs_rq_of(&p->se)->last))
7283 		return 1;
7284 
7285 	if (sysctl_sched_migration_cost == -1)
7286 		return 1;
7287 	if (sysctl_sched_migration_cost == 0)
7288 		return 0;
7289 
7290 	delta = rq_clock_task(env->src_rq) - p->se.exec_start;
7291 
7292 	return delta < (s64)sysctl_sched_migration_cost;
7293 }
7294 
7295 #ifdef CONFIG_NUMA_BALANCING
7296 /*
7297  * Returns 1, if task migration degrades locality
7298  * Returns 0, if task migration improves locality i.e migration preferred.
7299  * Returns -1, if task migration is not affected by locality.
7300  */
7301 static int migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
7302 {
7303 	struct numa_group *numa_group = rcu_dereference(p->numa_group);
7304 	unsigned long src_weight, dst_weight;
7305 	int src_nid, dst_nid, dist;
7306 
7307 	if (!static_branch_likely(&sched_numa_balancing))
7308 		return -1;
7309 
7310 	if (!p->numa_faults || !(env->sd->flags & SD_NUMA))
7311 		return -1;
7312 
7313 	src_nid = cpu_to_node(env->src_cpu);
7314 	dst_nid = cpu_to_node(env->dst_cpu);
7315 
7316 	if (src_nid == dst_nid)
7317 		return -1;
7318 
7319 	/* Migrating away from the preferred node is always bad. */
7320 	if (src_nid == p->numa_preferred_nid) {
7321 		if (env->src_rq->nr_running > env->src_rq->nr_preferred_running)
7322 			return 1;
7323 		else
7324 			return -1;
7325 	}
7326 
7327 	/* Encourage migration to the preferred node. */
7328 	if (dst_nid == p->numa_preferred_nid)
7329 		return 0;
7330 
7331 	/* Leaving a core idle is often worse than degrading locality. */
7332 	if (env->idle == CPU_IDLE)
7333 		return -1;
7334 
7335 	dist = node_distance(src_nid, dst_nid);
7336 	if (numa_group) {
7337 		src_weight = group_weight(p, src_nid, dist);
7338 		dst_weight = group_weight(p, dst_nid, dist);
7339 	} else {
7340 		src_weight = task_weight(p, src_nid, dist);
7341 		dst_weight = task_weight(p, dst_nid, dist);
7342 	}
7343 
7344 	return dst_weight < src_weight;
7345 }
7346 
7347 #else
7348 static inline int migrate_degrades_locality(struct task_struct *p,
7349 					     struct lb_env *env)
7350 {
7351 	return -1;
7352 }
7353 #endif
7354 
7355 /*
7356  * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
7357  */
7358 static
7359 int can_migrate_task(struct task_struct *p, struct lb_env *env)
7360 {
7361 	int tsk_cache_hot;
7362 
7363 	lockdep_assert_held(&env->src_rq->lock);
7364 
7365 	/*
7366 	 * We do not migrate tasks that are:
7367 	 * 1) throttled_lb_pair, or
7368 	 * 2) cannot be migrated to this CPU due to cpus_allowed, or
7369 	 * 3) running (obviously), or
7370 	 * 4) are cache-hot on their current CPU.
7371 	 */
7372 	if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
7373 		return 0;
7374 
7375 	if (!cpumask_test_cpu(env->dst_cpu, &p->cpus_allowed)) {
7376 		int cpu;
7377 
7378 		schedstat_inc(p->se.statistics.nr_failed_migrations_affine);
7379 
7380 		env->flags |= LBF_SOME_PINNED;
7381 
7382 		/*
7383 		 * Remember if this task can be migrated to any other CPU in
7384 		 * our sched_group. We may want to revisit it if we couldn't
7385 		 * meet load balance goals by pulling other tasks on src_cpu.
7386 		 *
7387 		 * Avoid computing new_dst_cpu for NEWLY_IDLE or if we have
7388 		 * already computed one in current iteration.
7389 		 */
7390 		if (env->idle == CPU_NEWLY_IDLE || (env->flags & LBF_DST_PINNED))
7391 			return 0;
7392 
7393 		/* Prevent to re-select dst_cpu via env's CPUs: */
7394 		for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
7395 			if (cpumask_test_cpu(cpu, &p->cpus_allowed)) {
7396 				env->flags |= LBF_DST_PINNED;
7397 				env->new_dst_cpu = cpu;
7398 				break;
7399 			}
7400 		}
7401 
7402 		return 0;
7403 	}
7404 
7405 	/* Record that we found atleast one task that could run on dst_cpu */
7406 	env->flags &= ~LBF_ALL_PINNED;
7407 
7408 	if (task_running(env->src_rq, p)) {
7409 		schedstat_inc(p->se.statistics.nr_failed_migrations_running);
7410 		return 0;
7411 	}
7412 
7413 	/*
7414 	 * Aggressive migration if:
7415 	 * 1) destination numa is preferred
7416 	 * 2) task is cache cold, or
7417 	 * 3) too many balance attempts have failed.
7418 	 */
7419 	tsk_cache_hot = migrate_degrades_locality(p, env);
7420 	if (tsk_cache_hot == -1)
7421 		tsk_cache_hot = task_hot(p, env);
7422 
7423 	if (tsk_cache_hot <= 0 ||
7424 	    env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
7425 		if (tsk_cache_hot == 1) {
7426 			schedstat_inc(env->sd->lb_hot_gained[env->idle]);
7427 			schedstat_inc(p->se.statistics.nr_forced_migrations);
7428 		}
7429 		return 1;
7430 	}
7431 
7432 	schedstat_inc(p->se.statistics.nr_failed_migrations_hot);
7433 	return 0;
7434 }
7435 
7436 /*
7437  * detach_task() -- detach the task for the migration specified in env
7438  */
7439 static void detach_task(struct task_struct *p, struct lb_env *env)
7440 {
7441 	lockdep_assert_held(&env->src_rq->lock);
7442 
7443 	p->on_rq = TASK_ON_RQ_MIGRATING;
7444 	deactivate_task(env->src_rq, p, DEQUEUE_NOCLOCK);
7445 	set_task_cpu(p, env->dst_cpu);
7446 }
7447 
7448 /*
7449  * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as
7450  * part of active balancing operations within "domain".
7451  *
7452  * Returns a task if successful and NULL otherwise.
7453  */
7454 static struct task_struct *detach_one_task(struct lb_env *env)
7455 {
7456 	struct task_struct *p;
7457 
7458 	lockdep_assert_held(&env->src_rq->lock);
7459 
7460 	list_for_each_entry_reverse(p,
7461 			&env->src_rq->cfs_tasks, se.group_node) {
7462 		if (!can_migrate_task(p, env))
7463 			continue;
7464 
7465 		detach_task(p, env);
7466 
7467 		/*
7468 		 * Right now, this is only the second place where
7469 		 * lb_gained[env->idle] is updated (other is detach_tasks)
7470 		 * so we can safely collect stats here rather than
7471 		 * inside detach_tasks().
7472 		 */
7473 		schedstat_inc(env->sd->lb_gained[env->idle]);
7474 		return p;
7475 	}
7476 	return NULL;
7477 }
7478 
7479 static const unsigned int sched_nr_migrate_break = 32;
7480 
7481 /*
7482  * detach_tasks() -- tries to detach up to imbalance weighted load from
7483  * busiest_rq, as part of a balancing operation within domain "sd".
7484  *
7485  * Returns number of detached tasks if successful and 0 otherwise.
7486  */
7487 static int detach_tasks(struct lb_env *env)
7488 {
7489 	struct list_head *tasks = &env->src_rq->cfs_tasks;
7490 	struct task_struct *p;
7491 	unsigned long load;
7492 	int detached = 0;
7493 
7494 	lockdep_assert_held(&env->src_rq->lock);
7495 
7496 	if (env->imbalance <= 0)
7497 		return 0;
7498 
7499 	while (!list_empty(tasks)) {
7500 		/*
7501 		 * We don't want to steal all, otherwise we may be treated likewise,
7502 		 * which could at worst lead to a livelock crash.
7503 		 */
7504 		if (env->idle != CPU_NOT_IDLE && env->src_rq->nr_running <= 1)
7505 			break;
7506 
7507 		p = list_last_entry(tasks, struct task_struct, se.group_node);
7508 
7509 		env->loop++;
7510 		/* We've more or less seen every task there is, call it quits */
7511 		if (env->loop > env->loop_max)
7512 			break;
7513 
7514 		/* take a breather every nr_migrate tasks */
7515 		if (env->loop > env->loop_break) {
7516 			env->loop_break += sched_nr_migrate_break;
7517 			env->flags |= LBF_NEED_BREAK;
7518 			break;
7519 		}
7520 
7521 		if (!can_migrate_task(p, env))
7522 			goto next;
7523 
7524 		load = task_h_load(p);
7525 
7526 		if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed)
7527 			goto next;
7528 
7529 		if ((load / 2) > env->imbalance)
7530 			goto next;
7531 
7532 		detach_task(p, env);
7533 		list_add(&p->se.group_node, &env->tasks);
7534 
7535 		detached++;
7536 		env->imbalance -= load;
7537 
7538 #ifdef CONFIG_PREEMPT
7539 		/*
7540 		 * NEWIDLE balancing is a source of latency, so preemptible
7541 		 * kernels will stop after the first task is detached to minimize
7542 		 * the critical section.
7543 		 */
7544 		if (env->idle == CPU_NEWLY_IDLE)
7545 			break;
7546 #endif
7547 
7548 		/*
7549 		 * We only want to steal up to the prescribed amount of
7550 		 * weighted load.
7551 		 */
7552 		if (env->imbalance <= 0)
7553 			break;
7554 
7555 		continue;
7556 next:
7557 		list_move(&p->se.group_node, tasks);
7558 	}
7559 
7560 	/*
7561 	 * Right now, this is one of only two places we collect this stat
7562 	 * so we can safely collect detach_one_task() stats here rather
7563 	 * than inside detach_one_task().
7564 	 */
7565 	schedstat_add(env->sd->lb_gained[env->idle], detached);
7566 
7567 	return detached;
7568 }
7569 
7570 /*
7571  * attach_task() -- attach the task detached by detach_task() to its new rq.
7572  */
7573 static void attach_task(struct rq *rq, struct task_struct *p)
7574 {
7575 	lockdep_assert_held(&rq->lock);
7576 
7577 	BUG_ON(task_rq(p) != rq);
7578 	activate_task(rq, p, ENQUEUE_NOCLOCK);
7579 	p->on_rq = TASK_ON_RQ_QUEUED;
7580 	check_preempt_curr(rq, p, 0);
7581 }
7582 
7583 /*
7584  * attach_one_task() -- attaches the task returned from detach_one_task() to
7585  * its new rq.
7586  */
7587 static void attach_one_task(struct rq *rq, struct task_struct *p)
7588 {
7589 	struct rq_flags rf;
7590 
7591 	rq_lock(rq, &rf);
7592 	update_rq_clock(rq);
7593 	attach_task(rq, p);
7594 	rq_unlock(rq, &rf);
7595 }
7596 
7597 /*
7598  * attach_tasks() -- attaches all tasks detached by detach_tasks() to their
7599  * new rq.
7600  */
7601 static void attach_tasks(struct lb_env *env)
7602 {
7603 	struct list_head *tasks = &env->tasks;
7604 	struct task_struct *p;
7605 	struct rq_flags rf;
7606 
7607 	rq_lock(env->dst_rq, &rf);
7608 	update_rq_clock(env->dst_rq);
7609 
7610 	while (!list_empty(tasks)) {
7611 		p = list_first_entry(tasks, struct task_struct, se.group_node);
7612 		list_del_init(&p->se.group_node);
7613 
7614 		attach_task(env->dst_rq, p);
7615 	}
7616 
7617 	rq_unlock(env->dst_rq, &rf);
7618 }
7619 
7620 static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq)
7621 {
7622 	if (cfs_rq->avg.load_avg)
7623 		return true;
7624 
7625 	if (cfs_rq->avg.util_avg)
7626 		return true;
7627 
7628 	return false;
7629 }
7630 
7631 static inline bool others_have_blocked(struct rq *rq)
7632 {
7633 	if (READ_ONCE(rq->avg_rt.util_avg))
7634 		return true;
7635 
7636 	if (READ_ONCE(rq->avg_dl.util_avg))
7637 		return true;
7638 
7639 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ
7640 	if (READ_ONCE(rq->avg_irq.util_avg))
7641 		return true;
7642 #endif
7643 
7644 	return false;
7645 }
7646 
7647 #ifdef CONFIG_FAIR_GROUP_SCHED
7648 
7649 static void update_blocked_averages(int cpu)
7650 {
7651 	struct rq *rq = cpu_rq(cpu);
7652 	struct cfs_rq *cfs_rq;
7653 	const struct sched_class *curr_class;
7654 	struct rq_flags rf;
7655 	bool done = true;
7656 
7657 	rq_lock_irqsave(rq, &rf);
7658 	update_rq_clock(rq);
7659 
7660 	/*
7661 	 * Iterates the task_group tree in a bottom up fashion, see
7662 	 * list_add_leaf_cfs_rq() for details.
7663 	 */
7664 	for_each_leaf_cfs_rq(rq, cfs_rq) {
7665 		struct sched_entity *se;
7666 
7667 		/* throttled entities do not contribute to load */
7668 		if (throttled_hierarchy(cfs_rq))
7669 			continue;
7670 
7671 		if (update_cfs_rq_load_avg(cfs_rq_clock_task(cfs_rq), cfs_rq))
7672 			update_tg_load_avg(cfs_rq, 0);
7673 
7674 		/* Propagate pending load changes to the parent, if any: */
7675 		se = cfs_rq->tg->se[cpu];
7676 		if (se && !skip_blocked_update(se))
7677 			update_load_avg(cfs_rq_of(se), se, 0);
7678 
7679 		/* Don't need periodic decay once load/util_avg are null */
7680 		if (cfs_rq_has_blocked(cfs_rq))
7681 			done = false;
7682 	}
7683 
7684 	curr_class = rq->curr->sched_class;
7685 	update_rt_rq_load_avg(rq_clock_task(rq), rq, curr_class == &rt_sched_class);
7686 	update_dl_rq_load_avg(rq_clock_task(rq), rq, curr_class == &dl_sched_class);
7687 	update_irq_load_avg(rq, 0);
7688 	/* Don't need periodic decay once load/util_avg are null */
7689 	if (others_have_blocked(rq))
7690 		done = false;
7691 
7692 #ifdef CONFIG_NO_HZ_COMMON
7693 	rq->last_blocked_load_update_tick = jiffies;
7694 	if (done)
7695 		rq->has_blocked_load = 0;
7696 #endif
7697 	rq_unlock_irqrestore(rq, &rf);
7698 }
7699 
7700 /*
7701  * Compute the hierarchical load factor for cfs_rq and all its ascendants.
7702  * This needs to be done in a top-down fashion because the load of a child
7703  * group is a fraction of its parents load.
7704  */
7705 static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
7706 {
7707 	struct rq *rq = rq_of(cfs_rq);
7708 	struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
7709 	unsigned long now = jiffies;
7710 	unsigned long load;
7711 
7712 	if (cfs_rq->last_h_load_update == now)
7713 		return;
7714 
7715 	cfs_rq->h_load_next = NULL;
7716 	for_each_sched_entity(se) {
7717 		cfs_rq = cfs_rq_of(se);
7718 		cfs_rq->h_load_next = se;
7719 		if (cfs_rq->last_h_load_update == now)
7720 			break;
7721 	}
7722 
7723 	if (!se) {
7724 		cfs_rq->h_load = cfs_rq_load_avg(cfs_rq);
7725 		cfs_rq->last_h_load_update = now;
7726 	}
7727 
7728 	while ((se = cfs_rq->h_load_next) != NULL) {
7729 		load = cfs_rq->h_load;
7730 		load = div64_ul(load * se->avg.load_avg,
7731 			cfs_rq_load_avg(cfs_rq) + 1);
7732 		cfs_rq = group_cfs_rq(se);
7733 		cfs_rq->h_load = load;
7734 		cfs_rq->last_h_load_update = now;
7735 	}
7736 }
7737 
7738 static unsigned long task_h_load(struct task_struct *p)
7739 {
7740 	struct cfs_rq *cfs_rq = task_cfs_rq(p);
7741 
7742 	update_cfs_rq_h_load(cfs_rq);
7743 	return div64_ul(p->se.avg.load_avg * cfs_rq->h_load,
7744 			cfs_rq_load_avg(cfs_rq) + 1);
7745 }
7746 #else
7747 static inline void update_blocked_averages(int cpu)
7748 {
7749 	struct rq *rq = cpu_rq(cpu);
7750 	struct cfs_rq *cfs_rq = &rq->cfs;
7751 	const struct sched_class *curr_class;
7752 	struct rq_flags rf;
7753 
7754 	rq_lock_irqsave(rq, &rf);
7755 	update_rq_clock(rq);
7756 	update_cfs_rq_load_avg(cfs_rq_clock_task(cfs_rq), cfs_rq);
7757 
7758 	curr_class = rq->curr->sched_class;
7759 	update_rt_rq_load_avg(rq_clock_task(rq), rq, curr_class == &rt_sched_class);
7760 	update_dl_rq_load_avg(rq_clock_task(rq), rq, curr_class == &dl_sched_class);
7761 	update_irq_load_avg(rq, 0);
7762 #ifdef CONFIG_NO_HZ_COMMON
7763 	rq->last_blocked_load_update_tick = jiffies;
7764 	if (!cfs_rq_has_blocked(cfs_rq) && !others_have_blocked(rq))
7765 		rq->has_blocked_load = 0;
7766 #endif
7767 	rq_unlock_irqrestore(rq, &rf);
7768 }
7769 
7770 static unsigned long task_h_load(struct task_struct *p)
7771 {
7772 	return p->se.avg.load_avg;
7773 }
7774 #endif
7775 
7776 /********** Helpers for find_busiest_group ************************/
7777 
7778 /*
7779  * sg_lb_stats - stats of a sched_group required for load_balancing
7780  */
7781 struct sg_lb_stats {
7782 	unsigned long avg_load; /*Avg load across the CPUs of the group */
7783 	unsigned long group_load; /* Total load over the CPUs of the group */
7784 	unsigned long sum_weighted_load; /* Weighted load of group's tasks */
7785 	unsigned long load_per_task;
7786 	unsigned long group_capacity;
7787 	unsigned long group_util; /* Total utilization of the group */
7788 	unsigned int sum_nr_running; /* Nr tasks running in the group */
7789 	unsigned int idle_cpus;
7790 	unsigned int group_weight;
7791 	enum group_type group_type;
7792 	int group_no_capacity;
7793 	unsigned long group_misfit_task_load; /* A CPU has a task too big for its capacity */
7794 #ifdef CONFIG_NUMA_BALANCING
7795 	unsigned int nr_numa_running;
7796 	unsigned int nr_preferred_running;
7797 #endif
7798 };
7799 
7800 /*
7801  * sd_lb_stats - Structure to store the statistics of a sched_domain
7802  *		 during load balancing.
7803  */
7804 struct sd_lb_stats {
7805 	struct sched_group *busiest;	/* Busiest group in this sd */
7806 	struct sched_group *local;	/* Local group in this sd */
7807 	unsigned long total_running;
7808 	unsigned long total_load;	/* Total load of all groups in sd */
7809 	unsigned long total_capacity;	/* Total capacity of all groups in sd */
7810 	unsigned long avg_load;	/* Average load across all groups in sd */
7811 
7812 	struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
7813 	struct sg_lb_stats local_stat;	/* Statistics of the local group */
7814 };
7815 
7816 static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
7817 {
7818 	/*
7819 	 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
7820 	 * local_stat because update_sg_lb_stats() does a full clear/assignment.
7821 	 * We must however clear busiest_stat::avg_load because
7822 	 * update_sd_pick_busiest() reads this before assignment.
7823 	 */
7824 	*sds = (struct sd_lb_stats){
7825 		.busiest = NULL,
7826 		.local = NULL,
7827 		.total_running = 0UL,
7828 		.total_load = 0UL,
7829 		.total_capacity = 0UL,
7830 		.busiest_stat = {
7831 			.avg_load = 0UL,
7832 			.sum_nr_running = 0,
7833 			.group_type = group_other,
7834 		},
7835 	};
7836 }
7837 
7838 /**
7839  * get_sd_load_idx - Obtain the load index for a given sched domain.
7840  * @sd: The sched_domain whose load_idx is to be obtained.
7841  * @idle: The idle status of the CPU for whose sd load_idx is obtained.
7842  *
7843  * Return: The load index.
7844  */
7845 static inline int get_sd_load_idx(struct sched_domain *sd,
7846 					enum cpu_idle_type idle)
7847 {
7848 	int load_idx;
7849 
7850 	switch (idle) {
7851 	case CPU_NOT_IDLE:
7852 		load_idx = sd->busy_idx;
7853 		break;
7854 
7855 	case CPU_NEWLY_IDLE:
7856 		load_idx = sd->newidle_idx;
7857 		break;
7858 	default:
7859 		load_idx = sd->idle_idx;
7860 		break;
7861 	}
7862 
7863 	return load_idx;
7864 }
7865 
7866 static unsigned long scale_rt_capacity(struct sched_domain *sd, int cpu)
7867 {
7868 	struct rq *rq = cpu_rq(cpu);
7869 	unsigned long max = arch_scale_cpu_capacity(sd, cpu);
7870 	unsigned long used, free;
7871 	unsigned long irq;
7872 
7873 	irq = cpu_util_irq(rq);
7874 
7875 	if (unlikely(irq >= max))
7876 		return 1;
7877 
7878 	used = READ_ONCE(rq->avg_rt.util_avg);
7879 	used += READ_ONCE(rq->avg_dl.util_avg);
7880 
7881 	if (unlikely(used >= max))
7882 		return 1;
7883 
7884 	free = max - used;
7885 
7886 	return scale_irq_capacity(free, irq, max);
7887 }
7888 
7889 static void update_cpu_capacity(struct sched_domain *sd, int cpu)
7890 {
7891 	unsigned long capacity = scale_rt_capacity(sd, cpu);
7892 	struct sched_group *sdg = sd->groups;
7893 
7894 	cpu_rq(cpu)->cpu_capacity_orig = arch_scale_cpu_capacity(sd, cpu);
7895 
7896 	if (!capacity)
7897 		capacity = 1;
7898 
7899 	cpu_rq(cpu)->cpu_capacity = capacity;
7900 	sdg->sgc->capacity = capacity;
7901 	sdg->sgc->min_capacity = capacity;
7902 	sdg->sgc->max_capacity = capacity;
7903 }
7904 
7905 void update_group_capacity(struct sched_domain *sd, int cpu)
7906 {
7907 	struct sched_domain *child = sd->child;
7908 	struct sched_group *group, *sdg = sd->groups;
7909 	unsigned long capacity, min_capacity, max_capacity;
7910 	unsigned long interval;
7911 
7912 	interval = msecs_to_jiffies(sd->balance_interval);
7913 	interval = clamp(interval, 1UL, max_load_balance_interval);
7914 	sdg->sgc->next_update = jiffies + interval;
7915 
7916 	if (!child) {
7917 		update_cpu_capacity(sd, cpu);
7918 		return;
7919 	}
7920 
7921 	capacity = 0;
7922 	min_capacity = ULONG_MAX;
7923 	max_capacity = 0;
7924 
7925 	if (child->flags & SD_OVERLAP) {
7926 		/*
7927 		 * SD_OVERLAP domains cannot assume that child groups
7928 		 * span the current group.
7929 		 */
7930 
7931 		for_each_cpu(cpu, sched_group_span(sdg)) {
7932 			struct sched_group_capacity *sgc;
7933 			struct rq *rq = cpu_rq(cpu);
7934 
7935 			/*
7936 			 * build_sched_domains() -> init_sched_groups_capacity()
7937 			 * gets here before we've attached the domains to the
7938 			 * runqueues.
7939 			 *
7940 			 * Use capacity_of(), which is set irrespective of domains
7941 			 * in update_cpu_capacity().
7942 			 *
7943 			 * This avoids capacity from being 0 and
7944 			 * causing divide-by-zero issues on boot.
7945 			 */
7946 			if (unlikely(!rq->sd)) {
7947 				capacity += capacity_of(cpu);
7948 			} else {
7949 				sgc = rq->sd->groups->sgc;
7950 				capacity += sgc->capacity;
7951 			}
7952 
7953 			min_capacity = min(capacity, min_capacity);
7954 			max_capacity = max(capacity, max_capacity);
7955 		}
7956 	} else  {
7957 		/*
7958 		 * !SD_OVERLAP domains can assume that child groups
7959 		 * span the current group.
7960 		 */
7961 
7962 		group = child->groups;
7963 		do {
7964 			struct sched_group_capacity *sgc = group->sgc;
7965 
7966 			capacity += sgc->capacity;
7967 			min_capacity = min(sgc->min_capacity, min_capacity);
7968 			max_capacity = max(sgc->max_capacity, max_capacity);
7969 			group = group->next;
7970 		} while (group != child->groups);
7971 	}
7972 
7973 	sdg->sgc->capacity = capacity;
7974 	sdg->sgc->min_capacity = min_capacity;
7975 	sdg->sgc->max_capacity = max_capacity;
7976 }
7977 
7978 /*
7979  * Check whether the capacity of the rq has been noticeably reduced by side
7980  * activity. The imbalance_pct is used for the threshold.
7981  * Return true is the capacity is reduced
7982  */
7983 static inline int
7984 check_cpu_capacity(struct rq *rq, struct sched_domain *sd)
7985 {
7986 	return ((rq->cpu_capacity * sd->imbalance_pct) <
7987 				(rq->cpu_capacity_orig * 100));
7988 }
7989 
7990 /*
7991  * Group imbalance indicates (and tries to solve) the problem where balancing
7992  * groups is inadequate due to ->cpus_allowed constraints.
7993  *
7994  * Imagine a situation of two groups of 4 CPUs each and 4 tasks each with a
7995  * cpumask covering 1 CPU of the first group and 3 CPUs of the second group.
7996  * Something like:
7997  *
7998  *	{ 0 1 2 3 } { 4 5 6 7 }
7999  *	        *     * * *
8000  *
8001  * If we were to balance group-wise we'd place two tasks in the first group and
8002  * two tasks in the second group. Clearly this is undesired as it will overload
8003  * cpu 3 and leave one of the CPUs in the second group unused.
8004  *
8005  * The current solution to this issue is detecting the skew in the first group
8006  * by noticing the lower domain failed to reach balance and had difficulty
8007  * moving tasks due to affinity constraints.
8008  *
8009  * When this is so detected; this group becomes a candidate for busiest; see
8010  * update_sd_pick_busiest(). And calculate_imbalance() and
8011  * find_busiest_group() avoid some of the usual balance conditions to allow it
8012  * to create an effective group imbalance.
8013  *
8014  * This is a somewhat tricky proposition since the next run might not find the
8015  * group imbalance and decide the groups need to be balanced again. A most
8016  * subtle and fragile situation.
8017  */
8018 
8019 static inline int sg_imbalanced(struct sched_group *group)
8020 {
8021 	return group->sgc->imbalance;
8022 }
8023 
8024 /*
8025  * group_has_capacity returns true if the group has spare capacity that could
8026  * be used by some tasks.
8027  * We consider that a group has spare capacity if the  * number of task is
8028  * smaller than the number of CPUs or if the utilization is lower than the
8029  * available capacity for CFS tasks.
8030  * For the latter, we use a threshold to stabilize the state, to take into
8031  * account the variance of the tasks' load and to return true if the available
8032  * capacity in meaningful for the load balancer.
8033  * As an example, an available capacity of 1% can appear but it doesn't make
8034  * any benefit for the load balance.
8035  */
8036 static inline bool
8037 group_has_capacity(struct lb_env *env, struct sg_lb_stats *sgs)
8038 {
8039 	if (sgs->sum_nr_running < sgs->group_weight)
8040 		return true;
8041 
8042 	if ((sgs->group_capacity * 100) >
8043 			(sgs->group_util * env->sd->imbalance_pct))
8044 		return true;
8045 
8046 	return false;
8047 }
8048 
8049 /*
8050  *  group_is_overloaded returns true if the group has more tasks than it can
8051  *  handle.
8052  *  group_is_overloaded is not equals to !group_has_capacity because a group
8053  *  with the exact right number of tasks, has no more spare capacity but is not
8054  *  overloaded so both group_has_capacity and group_is_overloaded return
8055  *  false.
8056  */
8057 static inline bool
8058 group_is_overloaded(struct lb_env *env, struct sg_lb_stats *sgs)
8059 {
8060 	if (sgs->sum_nr_running <= sgs->group_weight)
8061 		return false;
8062 
8063 	if ((sgs->group_capacity * 100) <
8064 			(sgs->group_util * env->sd->imbalance_pct))
8065 		return true;
8066 
8067 	return false;
8068 }
8069 
8070 /*
8071  * group_smaller_min_cpu_capacity: Returns true if sched_group sg has smaller
8072  * per-CPU capacity than sched_group ref.
8073  */
8074 static inline bool
8075 group_smaller_min_cpu_capacity(struct sched_group *sg, struct sched_group *ref)
8076 {
8077 	return sg->sgc->min_capacity * capacity_margin <
8078 						ref->sgc->min_capacity * 1024;
8079 }
8080 
8081 /*
8082  * group_smaller_max_cpu_capacity: Returns true if sched_group sg has smaller
8083  * per-CPU capacity_orig than sched_group ref.
8084  */
8085 static inline bool
8086 group_smaller_max_cpu_capacity(struct sched_group *sg, struct sched_group *ref)
8087 {
8088 	return sg->sgc->max_capacity * capacity_margin <
8089 						ref->sgc->max_capacity * 1024;
8090 }
8091 
8092 static inline enum
8093 group_type group_classify(struct sched_group *group,
8094 			  struct sg_lb_stats *sgs)
8095 {
8096 	if (sgs->group_no_capacity)
8097 		return group_overloaded;
8098 
8099 	if (sg_imbalanced(group))
8100 		return group_imbalanced;
8101 
8102 	if (sgs->group_misfit_task_load)
8103 		return group_misfit_task;
8104 
8105 	return group_other;
8106 }
8107 
8108 static bool update_nohz_stats(struct rq *rq, bool force)
8109 {
8110 #ifdef CONFIG_NO_HZ_COMMON
8111 	unsigned int cpu = rq->cpu;
8112 
8113 	if (!rq->has_blocked_load)
8114 		return false;
8115 
8116 	if (!cpumask_test_cpu(cpu, nohz.idle_cpus_mask))
8117 		return false;
8118 
8119 	if (!force && !time_after(jiffies, rq->last_blocked_load_update_tick))
8120 		return true;
8121 
8122 	update_blocked_averages(cpu);
8123 
8124 	return rq->has_blocked_load;
8125 #else
8126 	return false;
8127 #endif
8128 }
8129 
8130 /**
8131  * update_sg_lb_stats - Update sched_group's statistics for load balancing.
8132  * @env: The load balancing environment.
8133  * @group: sched_group whose statistics are to be updated.
8134  * @sgs: variable to hold the statistics for this group.
8135  * @sg_status: Holds flag indicating the status of the sched_group
8136  */
8137 static inline void update_sg_lb_stats(struct lb_env *env,
8138 				      struct sched_group *group,
8139 				      struct sg_lb_stats *sgs,
8140 				      int *sg_status)
8141 {
8142 	int local_group = cpumask_test_cpu(env->dst_cpu, sched_group_span(group));
8143 	int load_idx = get_sd_load_idx(env->sd, env->idle);
8144 	unsigned long load;
8145 	int i, nr_running;
8146 
8147 	memset(sgs, 0, sizeof(*sgs));
8148 
8149 	for_each_cpu_and(i, sched_group_span(group), env->cpus) {
8150 		struct rq *rq = cpu_rq(i);
8151 
8152 		if ((env->flags & LBF_NOHZ_STATS) && update_nohz_stats(rq, false))
8153 			env->flags |= LBF_NOHZ_AGAIN;
8154 
8155 		/* Bias balancing toward CPUs of our domain: */
8156 		if (local_group)
8157 			load = target_load(i, load_idx);
8158 		else
8159 			load = source_load(i, load_idx);
8160 
8161 		sgs->group_load += load;
8162 		sgs->group_util += cpu_util(i);
8163 		sgs->sum_nr_running += rq->cfs.h_nr_running;
8164 
8165 		nr_running = rq->nr_running;
8166 		if (nr_running > 1)
8167 			*sg_status |= SG_OVERLOAD;
8168 
8169 		if (cpu_overutilized(i))
8170 			*sg_status |= SG_OVERUTILIZED;
8171 
8172 #ifdef CONFIG_NUMA_BALANCING
8173 		sgs->nr_numa_running += rq->nr_numa_running;
8174 		sgs->nr_preferred_running += rq->nr_preferred_running;
8175 #endif
8176 		sgs->sum_weighted_load += weighted_cpuload(rq);
8177 		/*
8178 		 * No need to call idle_cpu() if nr_running is not 0
8179 		 */
8180 		if (!nr_running && idle_cpu(i))
8181 			sgs->idle_cpus++;
8182 
8183 		if (env->sd->flags & SD_ASYM_CPUCAPACITY &&
8184 		    sgs->group_misfit_task_load < rq->misfit_task_load) {
8185 			sgs->group_misfit_task_load = rq->misfit_task_load;
8186 			*sg_status |= SG_OVERLOAD;
8187 		}
8188 	}
8189 
8190 	/* Adjust by relative CPU capacity of the group */
8191 	sgs->group_capacity = group->sgc->capacity;
8192 	sgs->avg_load = (sgs->group_load*SCHED_CAPACITY_SCALE) / sgs->group_capacity;
8193 
8194 	if (sgs->sum_nr_running)
8195 		sgs->load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
8196 
8197 	sgs->group_weight = group->group_weight;
8198 
8199 	sgs->group_no_capacity = group_is_overloaded(env, sgs);
8200 	sgs->group_type = group_classify(group, sgs);
8201 }
8202 
8203 /**
8204  * update_sd_pick_busiest - return 1 on busiest group
8205  * @env: The load balancing environment.
8206  * @sds: sched_domain statistics
8207  * @sg: sched_group candidate to be checked for being the busiest
8208  * @sgs: sched_group statistics
8209  *
8210  * Determine if @sg is a busier group than the previously selected
8211  * busiest group.
8212  *
8213  * Return: %true if @sg is a busier group than the previously selected
8214  * busiest group. %false otherwise.
8215  */
8216 static bool update_sd_pick_busiest(struct lb_env *env,
8217 				   struct sd_lb_stats *sds,
8218 				   struct sched_group *sg,
8219 				   struct sg_lb_stats *sgs)
8220 {
8221 	struct sg_lb_stats *busiest = &sds->busiest_stat;
8222 
8223 	/*
8224 	 * Don't try to pull misfit tasks we can't help.
8225 	 * We can use max_capacity here as reduction in capacity on some
8226 	 * CPUs in the group should either be possible to resolve
8227 	 * internally or be covered by avg_load imbalance (eventually).
8228 	 */
8229 	if (sgs->group_type == group_misfit_task &&
8230 	    (!group_smaller_max_cpu_capacity(sg, sds->local) ||
8231 	     !group_has_capacity(env, &sds->local_stat)))
8232 		return false;
8233 
8234 	if (sgs->group_type > busiest->group_type)
8235 		return true;
8236 
8237 	if (sgs->group_type < busiest->group_type)
8238 		return false;
8239 
8240 	if (sgs->avg_load <= busiest->avg_load)
8241 		return false;
8242 
8243 	if (!(env->sd->flags & SD_ASYM_CPUCAPACITY))
8244 		goto asym_packing;
8245 
8246 	/*
8247 	 * Candidate sg has no more than one task per CPU and
8248 	 * has higher per-CPU capacity. Migrating tasks to less
8249 	 * capable CPUs may harm throughput. Maximize throughput,
8250 	 * power/energy consequences are not considered.
8251 	 */
8252 	if (sgs->sum_nr_running <= sgs->group_weight &&
8253 	    group_smaller_min_cpu_capacity(sds->local, sg))
8254 		return false;
8255 
8256 	/*
8257 	 * If we have more than one misfit sg go with the biggest misfit.
8258 	 */
8259 	if (sgs->group_type == group_misfit_task &&
8260 	    sgs->group_misfit_task_load < busiest->group_misfit_task_load)
8261 		return false;
8262 
8263 asym_packing:
8264 	/* This is the busiest node in its class. */
8265 	if (!(env->sd->flags & SD_ASYM_PACKING))
8266 		return true;
8267 
8268 	/* No ASYM_PACKING if target CPU is already busy */
8269 	if (env->idle == CPU_NOT_IDLE)
8270 		return true;
8271 	/*
8272 	 * ASYM_PACKING needs to move all the work to the highest
8273 	 * prority CPUs in the group, therefore mark all groups
8274 	 * of lower priority than ourself as busy.
8275 	 */
8276 	if (sgs->sum_nr_running &&
8277 	    sched_asym_prefer(env->dst_cpu, sg->asym_prefer_cpu)) {
8278 		if (!sds->busiest)
8279 			return true;
8280 
8281 		/* Prefer to move from lowest priority CPU's work */
8282 		if (sched_asym_prefer(sds->busiest->asym_prefer_cpu,
8283 				      sg->asym_prefer_cpu))
8284 			return true;
8285 	}
8286 
8287 	return false;
8288 }
8289 
8290 #ifdef CONFIG_NUMA_BALANCING
8291 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
8292 {
8293 	if (sgs->sum_nr_running > sgs->nr_numa_running)
8294 		return regular;
8295 	if (sgs->sum_nr_running > sgs->nr_preferred_running)
8296 		return remote;
8297 	return all;
8298 }
8299 
8300 static inline enum fbq_type fbq_classify_rq(struct rq *rq)
8301 {
8302 	if (rq->nr_running > rq->nr_numa_running)
8303 		return regular;
8304 	if (rq->nr_running > rq->nr_preferred_running)
8305 		return remote;
8306 	return all;
8307 }
8308 #else
8309 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
8310 {
8311 	return all;
8312 }
8313 
8314 static inline enum fbq_type fbq_classify_rq(struct rq *rq)
8315 {
8316 	return regular;
8317 }
8318 #endif /* CONFIG_NUMA_BALANCING */
8319 
8320 /**
8321  * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
8322  * @env: The load balancing environment.
8323  * @sds: variable to hold the statistics for this sched_domain.
8324  */
8325 static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
8326 {
8327 	struct sched_domain *child = env->sd->child;
8328 	struct sched_group *sg = env->sd->groups;
8329 	struct sg_lb_stats *local = &sds->local_stat;
8330 	struct sg_lb_stats tmp_sgs;
8331 	bool prefer_sibling = child && child->flags & SD_PREFER_SIBLING;
8332 	int sg_status = 0;
8333 
8334 #ifdef CONFIG_NO_HZ_COMMON
8335 	if (env->idle == CPU_NEWLY_IDLE && READ_ONCE(nohz.has_blocked))
8336 		env->flags |= LBF_NOHZ_STATS;
8337 #endif
8338 
8339 	do {
8340 		struct sg_lb_stats *sgs = &tmp_sgs;
8341 		int local_group;
8342 
8343 		local_group = cpumask_test_cpu(env->dst_cpu, sched_group_span(sg));
8344 		if (local_group) {
8345 			sds->local = sg;
8346 			sgs = local;
8347 
8348 			if (env->idle != CPU_NEWLY_IDLE ||
8349 			    time_after_eq(jiffies, sg->sgc->next_update))
8350 				update_group_capacity(env->sd, env->dst_cpu);
8351 		}
8352 
8353 		update_sg_lb_stats(env, sg, sgs, &sg_status);
8354 
8355 		if (local_group)
8356 			goto next_group;
8357 
8358 		/*
8359 		 * In case the child domain prefers tasks go to siblings
8360 		 * first, lower the sg capacity so that we'll try
8361 		 * and move all the excess tasks away. We lower the capacity
8362 		 * of a group only if the local group has the capacity to fit
8363 		 * these excess tasks. The extra check prevents the case where
8364 		 * you always pull from the heaviest group when it is already
8365 		 * under-utilized (possible with a large weight task outweighs
8366 		 * the tasks on the system).
8367 		 */
8368 		if (prefer_sibling && sds->local &&
8369 		    group_has_capacity(env, local) &&
8370 		    (sgs->sum_nr_running > local->sum_nr_running + 1)) {
8371 			sgs->group_no_capacity = 1;
8372 			sgs->group_type = group_classify(sg, sgs);
8373 		}
8374 
8375 		if (update_sd_pick_busiest(env, sds, sg, sgs)) {
8376 			sds->busiest = sg;
8377 			sds->busiest_stat = *sgs;
8378 		}
8379 
8380 next_group:
8381 		/* Now, start updating sd_lb_stats */
8382 		sds->total_running += sgs->sum_nr_running;
8383 		sds->total_load += sgs->group_load;
8384 		sds->total_capacity += sgs->group_capacity;
8385 
8386 		sg = sg->next;
8387 	} while (sg != env->sd->groups);
8388 
8389 #ifdef CONFIG_NO_HZ_COMMON
8390 	if ((env->flags & LBF_NOHZ_AGAIN) &&
8391 	    cpumask_subset(nohz.idle_cpus_mask, sched_domain_span(env->sd))) {
8392 
8393 		WRITE_ONCE(nohz.next_blocked,
8394 			   jiffies + msecs_to_jiffies(LOAD_AVG_PERIOD));
8395 	}
8396 #endif
8397 
8398 	if (env->sd->flags & SD_NUMA)
8399 		env->fbq_type = fbq_classify_group(&sds->busiest_stat);
8400 
8401 	if (!env->sd->parent) {
8402 		struct root_domain *rd = env->dst_rq->rd;
8403 
8404 		/* update overload indicator if we are at root domain */
8405 		WRITE_ONCE(rd->overload, sg_status & SG_OVERLOAD);
8406 
8407 		/* Update over-utilization (tipping point, U >= 0) indicator */
8408 		WRITE_ONCE(rd->overutilized, sg_status & SG_OVERUTILIZED);
8409 	} else if (sg_status & SG_OVERUTILIZED) {
8410 		WRITE_ONCE(env->dst_rq->rd->overutilized, SG_OVERUTILIZED);
8411 	}
8412 }
8413 
8414 /**
8415  * check_asym_packing - Check to see if the group is packed into the
8416  *			sched domain.
8417  *
8418  * This is primarily intended to used at the sibling level.  Some
8419  * cores like POWER7 prefer to use lower numbered SMT threads.  In the
8420  * case of POWER7, it can move to lower SMT modes only when higher
8421  * threads are idle.  When in lower SMT modes, the threads will
8422  * perform better since they share less core resources.  Hence when we
8423  * have idle threads, we want them to be the higher ones.
8424  *
8425  * This packing function is run on idle threads.  It checks to see if
8426  * the busiest CPU in this domain (core in the P7 case) has a higher
8427  * CPU number than the packing function is being run on.  Here we are
8428  * assuming lower CPU number will be equivalent to lower a SMT thread
8429  * number.
8430  *
8431  * Return: 1 when packing is required and a task should be moved to
8432  * this CPU.  The amount of the imbalance is returned in env->imbalance.
8433  *
8434  * @env: The load balancing environment.
8435  * @sds: Statistics of the sched_domain which is to be packed
8436  */
8437 static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds)
8438 {
8439 	int busiest_cpu;
8440 
8441 	if (!(env->sd->flags & SD_ASYM_PACKING))
8442 		return 0;
8443 
8444 	if (env->idle == CPU_NOT_IDLE)
8445 		return 0;
8446 
8447 	if (!sds->busiest)
8448 		return 0;
8449 
8450 	busiest_cpu = sds->busiest->asym_prefer_cpu;
8451 	if (sched_asym_prefer(busiest_cpu, env->dst_cpu))
8452 		return 0;
8453 
8454 	env->imbalance = DIV_ROUND_CLOSEST(
8455 		sds->busiest_stat.avg_load * sds->busiest_stat.group_capacity,
8456 		SCHED_CAPACITY_SCALE);
8457 
8458 	return 1;
8459 }
8460 
8461 /**
8462  * fix_small_imbalance - Calculate the minor imbalance that exists
8463  *			amongst the groups of a sched_domain, during
8464  *			load balancing.
8465  * @env: The load balancing environment.
8466  * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
8467  */
8468 static inline
8469 void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
8470 {
8471 	unsigned long tmp, capa_now = 0, capa_move = 0;
8472 	unsigned int imbn = 2;
8473 	unsigned long scaled_busy_load_per_task;
8474 	struct sg_lb_stats *local, *busiest;
8475 
8476 	local = &sds->local_stat;
8477 	busiest = &sds->busiest_stat;
8478 
8479 	if (!local->sum_nr_running)
8480 		local->load_per_task = cpu_avg_load_per_task(env->dst_cpu);
8481 	else if (busiest->load_per_task > local->load_per_task)
8482 		imbn = 1;
8483 
8484 	scaled_busy_load_per_task =
8485 		(busiest->load_per_task * SCHED_CAPACITY_SCALE) /
8486 		busiest->group_capacity;
8487 
8488 	if (busiest->avg_load + scaled_busy_load_per_task >=
8489 	    local->avg_load + (scaled_busy_load_per_task * imbn)) {
8490 		env->imbalance = busiest->load_per_task;
8491 		return;
8492 	}
8493 
8494 	/*
8495 	 * OK, we don't have enough imbalance to justify moving tasks,
8496 	 * however we may be able to increase total CPU capacity used by
8497 	 * moving them.
8498 	 */
8499 
8500 	capa_now += busiest->group_capacity *
8501 			min(busiest->load_per_task, busiest->avg_load);
8502 	capa_now += local->group_capacity *
8503 			min(local->load_per_task, local->avg_load);
8504 	capa_now /= SCHED_CAPACITY_SCALE;
8505 
8506 	/* Amount of load we'd subtract */
8507 	if (busiest->avg_load > scaled_busy_load_per_task) {
8508 		capa_move += busiest->group_capacity *
8509 			    min(busiest->load_per_task,
8510 				busiest->avg_load - scaled_busy_load_per_task);
8511 	}
8512 
8513 	/* Amount of load we'd add */
8514 	if (busiest->avg_load * busiest->group_capacity <
8515 	    busiest->load_per_task * SCHED_CAPACITY_SCALE) {
8516 		tmp = (busiest->avg_load * busiest->group_capacity) /
8517 		      local->group_capacity;
8518 	} else {
8519 		tmp = (busiest->load_per_task * SCHED_CAPACITY_SCALE) /
8520 		      local->group_capacity;
8521 	}
8522 	capa_move += local->group_capacity *
8523 		    min(local->load_per_task, local->avg_load + tmp);
8524 	capa_move /= SCHED_CAPACITY_SCALE;
8525 
8526 	/* Move if we gain throughput */
8527 	if (capa_move > capa_now)
8528 		env->imbalance = busiest->load_per_task;
8529 }
8530 
8531 /**
8532  * calculate_imbalance - Calculate the amount of imbalance present within the
8533  *			 groups of a given sched_domain during load balance.
8534  * @env: load balance environment
8535  * @sds: statistics of the sched_domain whose imbalance is to be calculated.
8536  */
8537 static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
8538 {
8539 	unsigned long max_pull, load_above_capacity = ~0UL;
8540 	struct sg_lb_stats *local, *busiest;
8541 
8542 	local = &sds->local_stat;
8543 	busiest = &sds->busiest_stat;
8544 
8545 	if (busiest->group_type == group_imbalanced) {
8546 		/*
8547 		 * In the group_imb case we cannot rely on group-wide averages
8548 		 * to ensure CPU-load equilibrium, look at wider averages. XXX
8549 		 */
8550 		busiest->load_per_task =
8551 			min(busiest->load_per_task, sds->avg_load);
8552 	}
8553 
8554 	/*
8555 	 * Avg load of busiest sg can be less and avg load of local sg can
8556 	 * be greater than avg load across all sgs of sd because avg load
8557 	 * factors in sg capacity and sgs with smaller group_type are
8558 	 * skipped when updating the busiest sg:
8559 	 */
8560 	if (busiest->group_type != group_misfit_task &&
8561 	    (busiest->avg_load <= sds->avg_load ||
8562 	     local->avg_load >= sds->avg_load)) {
8563 		env->imbalance = 0;
8564 		return fix_small_imbalance(env, sds);
8565 	}
8566 
8567 	/*
8568 	 * If there aren't any idle CPUs, avoid creating some.
8569 	 */
8570 	if (busiest->group_type == group_overloaded &&
8571 	    local->group_type   == group_overloaded) {
8572 		load_above_capacity = busiest->sum_nr_running * SCHED_CAPACITY_SCALE;
8573 		if (load_above_capacity > busiest->group_capacity) {
8574 			load_above_capacity -= busiest->group_capacity;
8575 			load_above_capacity *= scale_load_down(NICE_0_LOAD);
8576 			load_above_capacity /= busiest->group_capacity;
8577 		} else
8578 			load_above_capacity = ~0UL;
8579 	}
8580 
8581 	/*
8582 	 * We're trying to get all the CPUs to the average_load, so we don't
8583 	 * want to push ourselves above the average load, nor do we wish to
8584 	 * reduce the max loaded CPU below the average load. At the same time,
8585 	 * we also don't want to reduce the group load below the group
8586 	 * capacity. Thus we look for the minimum possible imbalance.
8587 	 */
8588 	max_pull = min(busiest->avg_load - sds->avg_load, load_above_capacity);
8589 
8590 	/* How much load to actually move to equalise the imbalance */
8591 	env->imbalance = min(
8592 		max_pull * busiest->group_capacity,
8593 		(sds->avg_load - local->avg_load) * local->group_capacity
8594 	) / SCHED_CAPACITY_SCALE;
8595 
8596 	/* Boost imbalance to allow misfit task to be balanced. */
8597 	if (busiest->group_type == group_misfit_task) {
8598 		env->imbalance = max_t(long, env->imbalance,
8599 				       busiest->group_misfit_task_load);
8600 	}
8601 
8602 	/*
8603 	 * if *imbalance is less than the average load per runnable task
8604 	 * there is no guarantee that any tasks will be moved so we'll have
8605 	 * a think about bumping its value to force at least one task to be
8606 	 * moved
8607 	 */
8608 	if (env->imbalance < busiest->load_per_task)
8609 		return fix_small_imbalance(env, sds);
8610 }
8611 
8612 /******* find_busiest_group() helpers end here *********************/
8613 
8614 /**
8615  * find_busiest_group - Returns the busiest group within the sched_domain
8616  * if there is an imbalance.
8617  *
8618  * Also calculates the amount of weighted load which should be moved
8619  * to restore balance.
8620  *
8621  * @env: The load balancing environment.
8622  *
8623  * Return:	- The busiest group if imbalance exists.
8624  */
8625 static struct sched_group *find_busiest_group(struct lb_env *env)
8626 {
8627 	struct sg_lb_stats *local, *busiest;
8628 	struct sd_lb_stats sds;
8629 
8630 	init_sd_lb_stats(&sds);
8631 
8632 	/*
8633 	 * Compute the various statistics relavent for load balancing at
8634 	 * this level.
8635 	 */
8636 	update_sd_lb_stats(env, &sds);
8637 
8638 	if (static_branch_unlikely(&sched_energy_present)) {
8639 		struct root_domain *rd = env->dst_rq->rd;
8640 
8641 		if (rcu_dereference(rd->pd) && !READ_ONCE(rd->overutilized))
8642 			goto out_balanced;
8643 	}
8644 
8645 	local = &sds.local_stat;
8646 	busiest = &sds.busiest_stat;
8647 
8648 	/* ASYM feature bypasses nice load balance check */
8649 	if (check_asym_packing(env, &sds))
8650 		return sds.busiest;
8651 
8652 	/* There is no busy sibling group to pull tasks from */
8653 	if (!sds.busiest || busiest->sum_nr_running == 0)
8654 		goto out_balanced;
8655 
8656 	/* XXX broken for overlapping NUMA groups */
8657 	sds.avg_load = (SCHED_CAPACITY_SCALE * sds.total_load)
8658 						/ sds.total_capacity;
8659 
8660 	/*
8661 	 * If the busiest group is imbalanced the below checks don't
8662 	 * work because they assume all things are equal, which typically
8663 	 * isn't true due to cpus_allowed constraints and the like.
8664 	 */
8665 	if (busiest->group_type == group_imbalanced)
8666 		goto force_balance;
8667 
8668 	/*
8669 	 * When dst_cpu is idle, prevent SMP nice and/or asymmetric group
8670 	 * capacities from resulting in underutilization due to avg_load.
8671 	 */
8672 	if (env->idle != CPU_NOT_IDLE && group_has_capacity(env, local) &&
8673 	    busiest->group_no_capacity)
8674 		goto force_balance;
8675 
8676 	/* Misfit tasks should be dealt with regardless of the avg load */
8677 	if (busiest->group_type == group_misfit_task)
8678 		goto force_balance;
8679 
8680 	/*
8681 	 * If the local group is busier than the selected busiest group
8682 	 * don't try and pull any tasks.
8683 	 */
8684 	if (local->avg_load >= busiest->avg_load)
8685 		goto out_balanced;
8686 
8687 	/*
8688 	 * Don't pull any tasks if this group is already above the domain
8689 	 * average load.
8690 	 */
8691 	if (local->avg_load >= sds.avg_load)
8692 		goto out_balanced;
8693 
8694 	if (env->idle == CPU_IDLE) {
8695 		/*
8696 		 * This CPU is idle. If the busiest group is not overloaded
8697 		 * and there is no imbalance between this and busiest group
8698 		 * wrt idle CPUs, it is balanced. The imbalance becomes
8699 		 * significant if the diff is greater than 1 otherwise we
8700 		 * might end up to just move the imbalance on another group
8701 		 */
8702 		if ((busiest->group_type != group_overloaded) &&
8703 				(local->idle_cpus <= (busiest->idle_cpus + 1)))
8704 			goto out_balanced;
8705 	} else {
8706 		/*
8707 		 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
8708 		 * imbalance_pct to be conservative.
8709 		 */
8710 		if (100 * busiest->avg_load <=
8711 				env->sd->imbalance_pct * local->avg_load)
8712 			goto out_balanced;
8713 	}
8714 
8715 force_balance:
8716 	/* Looks like there is an imbalance. Compute it */
8717 	env->src_grp_type = busiest->group_type;
8718 	calculate_imbalance(env, &sds);
8719 	return env->imbalance ? sds.busiest : NULL;
8720 
8721 out_balanced:
8722 	env->imbalance = 0;
8723 	return NULL;
8724 }
8725 
8726 /*
8727  * find_busiest_queue - find the busiest runqueue among the CPUs in the group.
8728  */
8729 static struct rq *find_busiest_queue(struct lb_env *env,
8730 				     struct sched_group *group)
8731 {
8732 	struct rq *busiest = NULL, *rq;
8733 	unsigned long busiest_load = 0, busiest_capacity = 1;
8734 	int i;
8735 
8736 	for_each_cpu_and(i, sched_group_span(group), env->cpus) {
8737 		unsigned long capacity, wl;
8738 		enum fbq_type rt;
8739 
8740 		rq = cpu_rq(i);
8741 		rt = fbq_classify_rq(rq);
8742 
8743 		/*
8744 		 * We classify groups/runqueues into three groups:
8745 		 *  - regular: there are !numa tasks
8746 		 *  - remote:  there are numa tasks that run on the 'wrong' node
8747 		 *  - all:     there is no distinction
8748 		 *
8749 		 * In order to avoid migrating ideally placed numa tasks,
8750 		 * ignore those when there's better options.
8751 		 *
8752 		 * If we ignore the actual busiest queue to migrate another
8753 		 * task, the next balance pass can still reduce the busiest
8754 		 * queue by moving tasks around inside the node.
8755 		 *
8756 		 * If we cannot move enough load due to this classification
8757 		 * the next pass will adjust the group classification and
8758 		 * allow migration of more tasks.
8759 		 *
8760 		 * Both cases only affect the total convergence complexity.
8761 		 */
8762 		if (rt > env->fbq_type)
8763 			continue;
8764 
8765 		/*
8766 		 * For ASYM_CPUCAPACITY domains with misfit tasks we simply
8767 		 * seek the "biggest" misfit task.
8768 		 */
8769 		if (env->src_grp_type == group_misfit_task) {
8770 			if (rq->misfit_task_load > busiest_load) {
8771 				busiest_load = rq->misfit_task_load;
8772 				busiest = rq;
8773 			}
8774 
8775 			continue;
8776 		}
8777 
8778 		capacity = capacity_of(i);
8779 
8780 		/*
8781 		 * For ASYM_CPUCAPACITY domains, don't pick a CPU that could
8782 		 * eventually lead to active_balancing high->low capacity.
8783 		 * Higher per-CPU capacity is considered better than balancing
8784 		 * average load.
8785 		 */
8786 		if (env->sd->flags & SD_ASYM_CPUCAPACITY &&
8787 		    capacity_of(env->dst_cpu) < capacity &&
8788 		    rq->nr_running == 1)
8789 			continue;
8790 
8791 		wl = weighted_cpuload(rq);
8792 
8793 		/*
8794 		 * When comparing with imbalance, use weighted_cpuload()
8795 		 * which is not scaled with the CPU capacity.
8796 		 */
8797 
8798 		if (rq->nr_running == 1 && wl > env->imbalance &&
8799 		    !check_cpu_capacity(rq, env->sd))
8800 			continue;
8801 
8802 		/*
8803 		 * For the load comparisons with the other CPU's, consider
8804 		 * the weighted_cpuload() scaled with the CPU capacity, so
8805 		 * that the load can be moved away from the CPU that is
8806 		 * potentially running at a lower capacity.
8807 		 *
8808 		 * Thus we're looking for max(wl_i / capacity_i), crosswise
8809 		 * multiplication to rid ourselves of the division works out
8810 		 * to: wl_i * capacity_j > wl_j * capacity_i;  where j is
8811 		 * our previous maximum.
8812 		 */
8813 		if (wl * busiest_capacity > busiest_load * capacity) {
8814 			busiest_load = wl;
8815 			busiest_capacity = capacity;
8816 			busiest = rq;
8817 		}
8818 	}
8819 
8820 	return busiest;
8821 }
8822 
8823 /*
8824  * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
8825  * so long as it is large enough.
8826  */
8827 #define MAX_PINNED_INTERVAL	512
8828 
8829 static int need_active_balance(struct lb_env *env)
8830 {
8831 	struct sched_domain *sd = env->sd;
8832 
8833 	if (env->idle == CPU_NEWLY_IDLE) {
8834 
8835 		/*
8836 		 * ASYM_PACKING needs to force migrate tasks from busy but
8837 		 * lower priority CPUs in order to pack all tasks in the
8838 		 * highest priority CPUs.
8839 		 */
8840 		if ((sd->flags & SD_ASYM_PACKING) &&
8841 		    sched_asym_prefer(env->dst_cpu, env->src_cpu))
8842 			return 1;
8843 	}
8844 
8845 	/*
8846 	 * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task.
8847 	 * It's worth migrating the task if the src_cpu's capacity is reduced
8848 	 * because of other sched_class or IRQs if more capacity stays
8849 	 * available on dst_cpu.
8850 	 */
8851 	if ((env->idle != CPU_NOT_IDLE) &&
8852 	    (env->src_rq->cfs.h_nr_running == 1)) {
8853 		if ((check_cpu_capacity(env->src_rq, sd)) &&
8854 		    (capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100))
8855 			return 1;
8856 	}
8857 
8858 	if (env->src_grp_type == group_misfit_task)
8859 		return 1;
8860 
8861 	return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
8862 }
8863 
8864 static int active_load_balance_cpu_stop(void *data);
8865 
8866 static int should_we_balance(struct lb_env *env)
8867 {
8868 	struct sched_group *sg = env->sd->groups;
8869 	int cpu, balance_cpu = -1;
8870 
8871 	/*
8872 	 * Ensure the balancing environment is consistent; can happen
8873 	 * when the softirq triggers 'during' hotplug.
8874 	 */
8875 	if (!cpumask_test_cpu(env->dst_cpu, env->cpus))
8876 		return 0;
8877 
8878 	/*
8879 	 * In the newly idle case, we will allow all the CPUs
8880 	 * to do the newly idle load balance.
8881 	 */
8882 	if (env->idle == CPU_NEWLY_IDLE)
8883 		return 1;
8884 
8885 	/* Try to find first idle CPU */
8886 	for_each_cpu_and(cpu, group_balance_mask(sg), env->cpus) {
8887 		if (!idle_cpu(cpu))
8888 			continue;
8889 
8890 		balance_cpu = cpu;
8891 		break;
8892 	}
8893 
8894 	if (balance_cpu == -1)
8895 		balance_cpu = group_balance_cpu(sg);
8896 
8897 	/*
8898 	 * First idle CPU or the first CPU(busiest) in this sched group
8899 	 * is eligible for doing load balancing at this and above domains.
8900 	 */
8901 	return balance_cpu == env->dst_cpu;
8902 }
8903 
8904 /*
8905  * Check this_cpu to ensure it is balanced within domain. Attempt to move
8906  * tasks if there is an imbalance.
8907  */
8908 static int load_balance(int this_cpu, struct rq *this_rq,
8909 			struct sched_domain *sd, enum cpu_idle_type idle,
8910 			int *continue_balancing)
8911 {
8912 	int ld_moved, cur_ld_moved, active_balance = 0;
8913 	struct sched_domain *sd_parent = sd->parent;
8914 	struct sched_group *group;
8915 	struct rq *busiest;
8916 	struct rq_flags rf;
8917 	struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask);
8918 
8919 	struct lb_env env = {
8920 		.sd		= sd,
8921 		.dst_cpu	= this_cpu,
8922 		.dst_rq		= this_rq,
8923 		.dst_grpmask    = sched_group_span(sd->groups),
8924 		.idle		= idle,
8925 		.loop_break	= sched_nr_migrate_break,
8926 		.cpus		= cpus,
8927 		.fbq_type	= all,
8928 		.tasks		= LIST_HEAD_INIT(env.tasks),
8929 	};
8930 
8931 	cpumask_and(cpus, sched_domain_span(sd), cpu_active_mask);
8932 
8933 	schedstat_inc(sd->lb_count[idle]);
8934 
8935 redo:
8936 	if (!should_we_balance(&env)) {
8937 		*continue_balancing = 0;
8938 		goto out_balanced;
8939 	}
8940 
8941 	group = find_busiest_group(&env);
8942 	if (!group) {
8943 		schedstat_inc(sd->lb_nobusyg[idle]);
8944 		goto out_balanced;
8945 	}
8946 
8947 	busiest = find_busiest_queue(&env, group);
8948 	if (!busiest) {
8949 		schedstat_inc(sd->lb_nobusyq[idle]);
8950 		goto out_balanced;
8951 	}
8952 
8953 	BUG_ON(busiest == env.dst_rq);
8954 
8955 	schedstat_add(sd->lb_imbalance[idle], env.imbalance);
8956 
8957 	env.src_cpu = busiest->cpu;
8958 	env.src_rq = busiest;
8959 
8960 	ld_moved = 0;
8961 	if (busiest->nr_running > 1) {
8962 		/*
8963 		 * Attempt to move tasks. If find_busiest_group has found
8964 		 * an imbalance but busiest->nr_running <= 1, the group is
8965 		 * still unbalanced. ld_moved simply stays zero, so it is
8966 		 * correctly treated as an imbalance.
8967 		 */
8968 		env.flags |= LBF_ALL_PINNED;
8969 		env.loop_max  = min(sysctl_sched_nr_migrate, busiest->nr_running);
8970 
8971 more_balance:
8972 		rq_lock_irqsave(busiest, &rf);
8973 		update_rq_clock(busiest);
8974 
8975 		/*
8976 		 * cur_ld_moved - load moved in current iteration
8977 		 * ld_moved     - cumulative load moved across iterations
8978 		 */
8979 		cur_ld_moved = detach_tasks(&env);
8980 
8981 		/*
8982 		 * We've detached some tasks from busiest_rq. Every
8983 		 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely
8984 		 * unlock busiest->lock, and we are able to be sure
8985 		 * that nobody can manipulate the tasks in parallel.
8986 		 * See task_rq_lock() family for the details.
8987 		 */
8988 
8989 		rq_unlock(busiest, &rf);
8990 
8991 		if (cur_ld_moved) {
8992 			attach_tasks(&env);
8993 			ld_moved += cur_ld_moved;
8994 		}
8995 
8996 		local_irq_restore(rf.flags);
8997 
8998 		if (env.flags & LBF_NEED_BREAK) {
8999 			env.flags &= ~LBF_NEED_BREAK;
9000 			goto more_balance;
9001 		}
9002 
9003 		/*
9004 		 * Revisit (affine) tasks on src_cpu that couldn't be moved to
9005 		 * us and move them to an alternate dst_cpu in our sched_group
9006 		 * where they can run. The upper limit on how many times we
9007 		 * iterate on same src_cpu is dependent on number of CPUs in our
9008 		 * sched_group.
9009 		 *
9010 		 * This changes load balance semantics a bit on who can move
9011 		 * load to a given_cpu. In addition to the given_cpu itself
9012 		 * (or a ilb_cpu acting on its behalf where given_cpu is
9013 		 * nohz-idle), we now have balance_cpu in a position to move
9014 		 * load to given_cpu. In rare situations, this may cause
9015 		 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
9016 		 * _independently_ and at _same_ time to move some load to
9017 		 * given_cpu) causing exceess load to be moved to given_cpu.
9018 		 * This however should not happen so much in practice and
9019 		 * moreover subsequent load balance cycles should correct the
9020 		 * excess load moved.
9021 		 */
9022 		if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
9023 
9024 			/* Prevent to re-select dst_cpu via env's CPUs */
9025 			cpumask_clear_cpu(env.dst_cpu, env.cpus);
9026 
9027 			env.dst_rq	 = cpu_rq(env.new_dst_cpu);
9028 			env.dst_cpu	 = env.new_dst_cpu;
9029 			env.flags	&= ~LBF_DST_PINNED;
9030 			env.loop	 = 0;
9031 			env.loop_break	 = sched_nr_migrate_break;
9032 
9033 			/*
9034 			 * Go back to "more_balance" rather than "redo" since we
9035 			 * need to continue with same src_cpu.
9036 			 */
9037 			goto more_balance;
9038 		}
9039 
9040 		/*
9041 		 * We failed to reach balance because of affinity.
9042 		 */
9043 		if (sd_parent) {
9044 			int *group_imbalance = &sd_parent->groups->sgc->imbalance;
9045 
9046 			if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0)
9047 				*group_imbalance = 1;
9048 		}
9049 
9050 		/* All tasks on this runqueue were pinned by CPU affinity */
9051 		if (unlikely(env.flags & LBF_ALL_PINNED)) {
9052 			cpumask_clear_cpu(cpu_of(busiest), cpus);
9053 			/*
9054 			 * Attempting to continue load balancing at the current
9055 			 * sched_domain level only makes sense if there are
9056 			 * active CPUs remaining as possible busiest CPUs to
9057 			 * pull load from which are not contained within the
9058 			 * destination group that is receiving any migrated
9059 			 * load.
9060 			 */
9061 			if (!cpumask_subset(cpus, env.dst_grpmask)) {
9062 				env.loop = 0;
9063 				env.loop_break = sched_nr_migrate_break;
9064 				goto redo;
9065 			}
9066 			goto out_all_pinned;
9067 		}
9068 	}
9069 
9070 	if (!ld_moved) {
9071 		schedstat_inc(sd->lb_failed[idle]);
9072 		/*
9073 		 * Increment the failure counter only on periodic balance.
9074 		 * We do not want newidle balance, which can be very
9075 		 * frequent, pollute the failure counter causing
9076 		 * excessive cache_hot migrations and active balances.
9077 		 */
9078 		if (idle != CPU_NEWLY_IDLE)
9079 			sd->nr_balance_failed++;
9080 
9081 		if (need_active_balance(&env)) {
9082 			unsigned long flags;
9083 
9084 			raw_spin_lock_irqsave(&busiest->lock, flags);
9085 
9086 			/*
9087 			 * Don't kick the active_load_balance_cpu_stop,
9088 			 * if the curr task on busiest CPU can't be
9089 			 * moved to this_cpu:
9090 			 */
9091 			if (!cpumask_test_cpu(this_cpu, &busiest->curr->cpus_allowed)) {
9092 				raw_spin_unlock_irqrestore(&busiest->lock,
9093 							    flags);
9094 				env.flags |= LBF_ALL_PINNED;
9095 				goto out_one_pinned;
9096 			}
9097 
9098 			/*
9099 			 * ->active_balance synchronizes accesses to
9100 			 * ->active_balance_work.  Once set, it's cleared
9101 			 * only after active load balance is finished.
9102 			 */
9103 			if (!busiest->active_balance) {
9104 				busiest->active_balance = 1;
9105 				busiest->push_cpu = this_cpu;
9106 				active_balance = 1;
9107 			}
9108 			raw_spin_unlock_irqrestore(&busiest->lock, flags);
9109 
9110 			if (active_balance) {
9111 				stop_one_cpu_nowait(cpu_of(busiest),
9112 					active_load_balance_cpu_stop, busiest,
9113 					&busiest->active_balance_work);
9114 			}
9115 
9116 			/* We've kicked active balancing, force task migration. */
9117 			sd->nr_balance_failed = sd->cache_nice_tries+1;
9118 		}
9119 	} else
9120 		sd->nr_balance_failed = 0;
9121 
9122 	if (likely(!active_balance)) {
9123 		/* We were unbalanced, so reset the balancing interval */
9124 		sd->balance_interval = sd->min_interval;
9125 	} else {
9126 		/*
9127 		 * If we've begun active balancing, start to back off. This
9128 		 * case may not be covered by the all_pinned logic if there
9129 		 * is only 1 task on the busy runqueue (because we don't call
9130 		 * detach_tasks).
9131 		 */
9132 		if (sd->balance_interval < sd->max_interval)
9133 			sd->balance_interval *= 2;
9134 	}
9135 
9136 	goto out;
9137 
9138 out_balanced:
9139 	/*
9140 	 * We reach balance although we may have faced some affinity
9141 	 * constraints. Clear the imbalance flag if it was set.
9142 	 */
9143 	if (sd_parent) {
9144 		int *group_imbalance = &sd_parent->groups->sgc->imbalance;
9145 
9146 		if (*group_imbalance)
9147 			*group_imbalance = 0;
9148 	}
9149 
9150 out_all_pinned:
9151 	/*
9152 	 * We reach balance because all tasks are pinned at this level so
9153 	 * we can't migrate them. Let the imbalance flag set so parent level
9154 	 * can try to migrate them.
9155 	 */
9156 	schedstat_inc(sd->lb_balanced[idle]);
9157 
9158 	sd->nr_balance_failed = 0;
9159 
9160 out_one_pinned:
9161 	ld_moved = 0;
9162 
9163 	/*
9164 	 * idle_balance() disregards balance intervals, so we could repeatedly
9165 	 * reach this code, which would lead to balance_interval skyrocketting
9166 	 * in a short amount of time. Skip the balance_interval increase logic
9167 	 * to avoid that.
9168 	 */
9169 	if (env.idle == CPU_NEWLY_IDLE)
9170 		goto out;
9171 
9172 	/* tune up the balancing interval */
9173 	if ((env.flags & LBF_ALL_PINNED &&
9174 	     sd->balance_interval < MAX_PINNED_INTERVAL) ||
9175 	    sd->balance_interval < sd->max_interval)
9176 		sd->balance_interval *= 2;
9177 out:
9178 	return ld_moved;
9179 }
9180 
9181 static inline unsigned long
9182 get_sd_balance_interval(struct sched_domain *sd, int cpu_busy)
9183 {
9184 	unsigned long interval = sd->balance_interval;
9185 
9186 	if (cpu_busy)
9187 		interval *= sd->busy_factor;
9188 
9189 	/* scale ms to jiffies */
9190 	interval = msecs_to_jiffies(interval);
9191 	interval = clamp(interval, 1UL, max_load_balance_interval);
9192 
9193 	return interval;
9194 }
9195 
9196 static inline void
9197 update_next_balance(struct sched_domain *sd, unsigned long *next_balance)
9198 {
9199 	unsigned long interval, next;
9200 
9201 	/* used by idle balance, so cpu_busy = 0 */
9202 	interval = get_sd_balance_interval(sd, 0);
9203 	next = sd->last_balance + interval;
9204 
9205 	if (time_after(*next_balance, next))
9206 		*next_balance = next;
9207 }
9208 
9209 /*
9210  * active_load_balance_cpu_stop is run by the CPU stopper. It pushes
9211  * running tasks off the busiest CPU onto idle CPUs. It requires at
9212  * least 1 task to be running on each physical CPU where possible, and
9213  * avoids physical / logical imbalances.
9214  */
9215 static int active_load_balance_cpu_stop(void *data)
9216 {
9217 	struct rq *busiest_rq = data;
9218 	int busiest_cpu = cpu_of(busiest_rq);
9219 	int target_cpu = busiest_rq->push_cpu;
9220 	struct rq *target_rq = cpu_rq(target_cpu);
9221 	struct sched_domain *sd;
9222 	struct task_struct *p = NULL;
9223 	struct rq_flags rf;
9224 
9225 	rq_lock_irq(busiest_rq, &rf);
9226 	/*
9227 	 * Between queueing the stop-work and running it is a hole in which
9228 	 * CPUs can become inactive. We should not move tasks from or to
9229 	 * inactive CPUs.
9230 	 */
9231 	if (!cpu_active(busiest_cpu) || !cpu_active(target_cpu))
9232 		goto out_unlock;
9233 
9234 	/* Make sure the requested CPU hasn't gone down in the meantime: */
9235 	if (unlikely(busiest_cpu != smp_processor_id() ||
9236 		     !busiest_rq->active_balance))
9237 		goto out_unlock;
9238 
9239 	/* Is there any task to move? */
9240 	if (busiest_rq->nr_running <= 1)
9241 		goto out_unlock;
9242 
9243 	/*
9244 	 * This condition is "impossible", if it occurs
9245 	 * we need to fix it. Originally reported by
9246 	 * Bjorn Helgaas on a 128-CPU setup.
9247 	 */
9248 	BUG_ON(busiest_rq == target_rq);
9249 
9250 	/* Search for an sd spanning us and the target CPU. */
9251 	rcu_read_lock();
9252 	for_each_domain(target_cpu, sd) {
9253 		if ((sd->flags & SD_LOAD_BALANCE) &&
9254 		    cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
9255 				break;
9256 	}
9257 
9258 	if (likely(sd)) {
9259 		struct lb_env env = {
9260 			.sd		= sd,
9261 			.dst_cpu	= target_cpu,
9262 			.dst_rq		= target_rq,
9263 			.src_cpu	= busiest_rq->cpu,
9264 			.src_rq		= busiest_rq,
9265 			.idle		= CPU_IDLE,
9266 			/*
9267 			 * can_migrate_task() doesn't need to compute new_dst_cpu
9268 			 * for active balancing. Since we have CPU_IDLE, but no
9269 			 * @dst_grpmask we need to make that test go away with lying
9270 			 * about DST_PINNED.
9271 			 */
9272 			.flags		= LBF_DST_PINNED,
9273 		};
9274 
9275 		schedstat_inc(sd->alb_count);
9276 		update_rq_clock(busiest_rq);
9277 
9278 		p = detach_one_task(&env);
9279 		if (p) {
9280 			schedstat_inc(sd->alb_pushed);
9281 			/* Active balancing done, reset the failure counter. */
9282 			sd->nr_balance_failed = 0;
9283 		} else {
9284 			schedstat_inc(sd->alb_failed);
9285 		}
9286 	}
9287 	rcu_read_unlock();
9288 out_unlock:
9289 	busiest_rq->active_balance = 0;
9290 	rq_unlock(busiest_rq, &rf);
9291 
9292 	if (p)
9293 		attach_one_task(target_rq, p);
9294 
9295 	local_irq_enable();
9296 
9297 	return 0;
9298 }
9299 
9300 static DEFINE_SPINLOCK(balancing);
9301 
9302 /*
9303  * Scale the max load_balance interval with the number of CPUs in the system.
9304  * This trades load-balance latency on larger machines for less cross talk.
9305  */
9306 void update_max_interval(void)
9307 {
9308 	max_load_balance_interval = HZ*num_online_cpus()/10;
9309 }
9310 
9311 /*
9312  * It checks each scheduling domain to see if it is due to be balanced,
9313  * and initiates a balancing operation if so.
9314  *
9315  * Balancing parameters are set up in init_sched_domains.
9316  */
9317 static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle)
9318 {
9319 	int continue_balancing = 1;
9320 	int cpu = rq->cpu;
9321 	unsigned long interval;
9322 	struct sched_domain *sd;
9323 	/* Earliest time when we have to do rebalance again */
9324 	unsigned long next_balance = jiffies + 60*HZ;
9325 	int update_next_balance = 0;
9326 	int need_serialize, need_decay = 0;
9327 	u64 max_cost = 0;
9328 
9329 	rcu_read_lock();
9330 	for_each_domain(cpu, sd) {
9331 		/*
9332 		 * Decay the newidle max times here because this is a regular
9333 		 * visit to all the domains. Decay ~1% per second.
9334 		 */
9335 		if (time_after(jiffies, sd->next_decay_max_lb_cost)) {
9336 			sd->max_newidle_lb_cost =
9337 				(sd->max_newidle_lb_cost * 253) / 256;
9338 			sd->next_decay_max_lb_cost = jiffies + HZ;
9339 			need_decay = 1;
9340 		}
9341 		max_cost += sd->max_newidle_lb_cost;
9342 
9343 		if (!(sd->flags & SD_LOAD_BALANCE))
9344 			continue;
9345 
9346 		/*
9347 		 * Stop the load balance at this level. There is another
9348 		 * CPU in our sched group which is doing load balancing more
9349 		 * actively.
9350 		 */
9351 		if (!continue_balancing) {
9352 			if (need_decay)
9353 				continue;
9354 			break;
9355 		}
9356 
9357 		interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
9358 
9359 		need_serialize = sd->flags & SD_SERIALIZE;
9360 		if (need_serialize) {
9361 			if (!spin_trylock(&balancing))
9362 				goto out;
9363 		}
9364 
9365 		if (time_after_eq(jiffies, sd->last_balance + interval)) {
9366 			if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
9367 				/*
9368 				 * The LBF_DST_PINNED logic could have changed
9369 				 * env->dst_cpu, so we can't know our idle
9370 				 * state even if we migrated tasks. Update it.
9371 				 */
9372 				idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
9373 			}
9374 			sd->last_balance = jiffies;
9375 			interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
9376 		}
9377 		if (need_serialize)
9378 			spin_unlock(&balancing);
9379 out:
9380 		if (time_after(next_balance, sd->last_balance + interval)) {
9381 			next_balance = sd->last_balance + interval;
9382 			update_next_balance = 1;
9383 		}
9384 	}
9385 	if (need_decay) {
9386 		/*
9387 		 * Ensure the rq-wide value also decays but keep it at a
9388 		 * reasonable floor to avoid funnies with rq->avg_idle.
9389 		 */
9390 		rq->max_idle_balance_cost =
9391 			max((u64)sysctl_sched_migration_cost, max_cost);
9392 	}
9393 	rcu_read_unlock();
9394 
9395 	/*
9396 	 * next_balance will be updated only when there is a need.
9397 	 * When the cpu is attached to null domain for ex, it will not be
9398 	 * updated.
9399 	 */
9400 	if (likely(update_next_balance)) {
9401 		rq->next_balance = next_balance;
9402 
9403 #ifdef CONFIG_NO_HZ_COMMON
9404 		/*
9405 		 * If this CPU has been elected to perform the nohz idle
9406 		 * balance. Other idle CPUs have already rebalanced with
9407 		 * nohz_idle_balance() and nohz.next_balance has been
9408 		 * updated accordingly. This CPU is now running the idle load
9409 		 * balance for itself and we need to update the
9410 		 * nohz.next_balance accordingly.
9411 		 */
9412 		if ((idle == CPU_IDLE) && time_after(nohz.next_balance, rq->next_balance))
9413 			nohz.next_balance = rq->next_balance;
9414 #endif
9415 	}
9416 }
9417 
9418 static inline int on_null_domain(struct rq *rq)
9419 {
9420 	return unlikely(!rcu_dereference_sched(rq->sd));
9421 }
9422 
9423 #ifdef CONFIG_NO_HZ_COMMON
9424 /*
9425  * idle load balancing details
9426  * - When one of the busy CPUs notice that there may be an idle rebalancing
9427  *   needed, they will kick the idle load balancer, which then does idle
9428  *   load balancing for all the idle CPUs.
9429  */
9430 
9431 static inline int find_new_ilb(void)
9432 {
9433 	int ilb = cpumask_first(nohz.idle_cpus_mask);
9434 
9435 	if (ilb < nr_cpu_ids && idle_cpu(ilb))
9436 		return ilb;
9437 
9438 	return nr_cpu_ids;
9439 }
9440 
9441 /*
9442  * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
9443  * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
9444  * CPU (if there is one).
9445  */
9446 static void kick_ilb(unsigned int flags)
9447 {
9448 	int ilb_cpu;
9449 
9450 	nohz.next_balance++;
9451 
9452 	ilb_cpu = find_new_ilb();
9453 
9454 	if (ilb_cpu >= nr_cpu_ids)
9455 		return;
9456 
9457 	flags = atomic_fetch_or(flags, nohz_flags(ilb_cpu));
9458 	if (flags & NOHZ_KICK_MASK)
9459 		return;
9460 
9461 	/*
9462 	 * Use smp_send_reschedule() instead of resched_cpu().
9463 	 * This way we generate a sched IPI on the target CPU which
9464 	 * is idle. And the softirq performing nohz idle load balance
9465 	 * will be run before returning from the IPI.
9466 	 */
9467 	smp_send_reschedule(ilb_cpu);
9468 }
9469 
9470 /*
9471  * Current heuristic for kicking the idle load balancer in the presence
9472  * of an idle cpu in the system.
9473  *   - This rq has more than one task.
9474  *   - This rq has at least one CFS task and the capacity of the CPU is
9475  *     significantly reduced because of RT tasks or IRQs.
9476  *   - At parent of LLC scheduler domain level, this cpu's scheduler group has
9477  *     multiple busy cpu.
9478  *   - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler
9479  *     domain span are idle.
9480  */
9481 static void nohz_balancer_kick(struct rq *rq)
9482 {
9483 	unsigned long now = jiffies;
9484 	struct sched_domain_shared *sds;
9485 	struct sched_domain *sd;
9486 	int nr_busy, i, cpu = rq->cpu;
9487 	unsigned int flags = 0;
9488 
9489 	if (unlikely(rq->idle_balance))
9490 		return;
9491 
9492 	/*
9493 	 * We may be recently in ticked or tickless idle mode. At the first
9494 	 * busy tick after returning from idle, we will update the busy stats.
9495 	 */
9496 	nohz_balance_exit_idle(rq);
9497 
9498 	/*
9499 	 * None are in tickless mode and hence no need for NOHZ idle load
9500 	 * balancing.
9501 	 */
9502 	if (likely(!atomic_read(&nohz.nr_cpus)))
9503 		return;
9504 
9505 	if (READ_ONCE(nohz.has_blocked) &&
9506 	    time_after(now, READ_ONCE(nohz.next_blocked)))
9507 		flags = NOHZ_STATS_KICK;
9508 
9509 	if (time_before(now, nohz.next_balance))
9510 		goto out;
9511 
9512 	if (rq->nr_running >= 2 || rq->misfit_task_load) {
9513 		flags = NOHZ_KICK_MASK;
9514 		goto out;
9515 	}
9516 
9517 	rcu_read_lock();
9518 	sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
9519 	if (sds) {
9520 		/*
9521 		 * XXX: write a coherent comment on why we do this.
9522 		 * See also: http://lkml.kernel.org/r/20111202010832.602203411@sbsiddha-desk.sc.intel.com
9523 		 */
9524 		nr_busy = atomic_read(&sds->nr_busy_cpus);
9525 		if (nr_busy > 1) {
9526 			flags = NOHZ_KICK_MASK;
9527 			goto unlock;
9528 		}
9529 
9530 	}
9531 
9532 	sd = rcu_dereference(rq->sd);
9533 	if (sd) {
9534 		if ((rq->cfs.h_nr_running >= 1) &&
9535 				check_cpu_capacity(rq, sd)) {
9536 			flags = NOHZ_KICK_MASK;
9537 			goto unlock;
9538 		}
9539 	}
9540 
9541 	sd = rcu_dereference(per_cpu(sd_asym_packing, cpu));
9542 	if (sd) {
9543 		for_each_cpu(i, sched_domain_span(sd)) {
9544 			if (i == cpu ||
9545 			    !cpumask_test_cpu(i, nohz.idle_cpus_mask))
9546 				continue;
9547 
9548 			if (sched_asym_prefer(i, cpu)) {
9549 				flags = NOHZ_KICK_MASK;
9550 				goto unlock;
9551 			}
9552 		}
9553 	}
9554 unlock:
9555 	rcu_read_unlock();
9556 out:
9557 	if (flags)
9558 		kick_ilb(flags);
9559 }
9560 
9561 static void set_cpu_sd_state_busy(int cpu)
9562 {
9563 	struct sched_domain *sd;
9564 
9565 	rcu_read_lock();
9566 	sd = rcu_dereference(per_cpu(sd_llc, cpu));
9567 
9568 	if (!sd || !sd->nohz_idle)
9569 		goto unlock;
9570 	sd->nohz_idle = 0;
9571 
9572 	atomic_inc(&sd->shared->nr_busy_cpus);
9573 unlock:
9574 	rcu_read_unlock();
9575 }
9576 
9577 void nohz_balance_exit_idle(struct rq *rq)
9578 {
9579 	SCHED_WARN_ON(rq != this_rq());
9580 
9581 	if (likely(!rq->nohz_tick_stopped))
9582 		return;
9583 
9584 	rq->nohz_tick_stopped = 0;
9585 	cpumask_clear_cpu(rq->cpu, nohz.idle_cpus_mask);
9586 	atomic_dec(&nohz.nr_cpus);
9587 
9588 	set_cpu_sd_state_busy(rq->cpu);
9589 }
9590 
9591 static void set_cpu_sd_state_idle(int cpu)
9592 {
9593 	struct sched_domain *sd;
9594 
9595 	rcu_read_lock();
9596 	sd = rcu_dereference(per_cpu(sd_llc, cpu));
9597 
9598 	if (!sd || sd->nohz_idle)
9599 		goto unlock;
9600 	sd->nohz_idle = 1;
9601 
9602 	atomic_dec(&sd->shared->nr_busy_cpus);
9603 unlock:
9604 	rcu_read_unlock();
9605 }
9606 
9607 /*
9608  * This routine will record that the CPU is going idle with tick stopped.
9609  * This info will be used in performing idle load balancing in the future.
9610  */
9611 void nohz_balance_enter_idle(int cpu)
9612 {
9613 	struct rq *rq = cpu_rq(cpu);
9614 
9615 	SCHED_WARN_ON(cpu != smp_processor_id());
9616 
9617 	/* If this CPU is going down, then nothing needs to be done: */
9618 	if (!cpu_active(cpu))
9619 		return;
9620 
9621 	/* Spare idle load balancing on CPUs that don't want to be disturbed: */
9622 	if (!housekeeping_cpu(cpu, HK_FLAG_SCHED))
9623 		return;
9624 
9625 	/*
9626 	 * Can be set safely without rq->lock held
9627 	 * If a clear happens, it will have evaluated last additions because
9628 	 * rq->lock is held during the check and the clear
9629 	 */
9630 	rq->has_blocked_load = 1;
9631 
9632 	/*
9633 	 * The tick is still stopped but load could have been added in the
9634 	 * meantime. We set the nohz.has_blocked flag to trig a check of the
9635 	 * *_avg. The CPU is already part of nohz.idle_cpus_mask so the clear
9636 	 * of nohz.has_blocked can only happen after checking the new load
9637 	 */
9638 	if (rq->nohz_tick_stopped)
9639 		goto out;
9640 
9641 	/* If we're a completely isolated CPU, we don't play: */
9642 	if (on_null_domain(rq))
9643 		return;
9644 
9645 	rq->nohz_tick_stopped = 1;
9646 
9647 	cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
9648 	atomic_inc(&nohz.nr_cpus);
9649 
9650 	/*
9651 	 * Ensures that if nohz_idle_balance() fails to observe our
9652 	 * @idle_cpus_mask store, it must observe the @has_blocked
9653 	 * store.
9654 	 */
9655 	smp_mb__after_atomic();
9656 
9657 	set_cpu_sd_state_idle(cpu);
9658 
9659 out:
9660 	/*
9661 	 * Each time a cpu enter idle, we assume that it has blocked load and
9662 	 * enable the periodic update of the load of idle cpus
9663 	 */
9664 	WRITE_ONCE(nohz.has_blocked, 1);
9665 }
9666 
9667 /*
9668  * Internal function that runs load balance for all idle cpus. The load balance
9669  * can be a simple update of blocked load or a complete load balance with
9670  * tasks movement depending of flags.
9671  * The function returns false if the loop has stopped before running
9672  * through all idle CPUs.
9673  */
9674 static bool _nohz_idle_balance(struct rq *this_rq, unsigned int flags,
9675 			       enum cpu_idle_type idle)
9676 {
9677 	/* Earliest time when we have to do rebalance again */
9678 	unsigned long now = jiffies;
9679 	unsigned long next_balance = now + 60*HZ;
9680 	bool has_blocked_load = false;
9681 	int update_next_balance = 0;
9682 	int this_cpu = this_rq->cpu;
9683 	int balance_cpu;
9684 	int ret = false;
9685 	struct rq *rq;
9686 
9687 	SCHED_WARN_ON((flags & NOHZ_KICK_MASK) == NOHZ_BALANCE_KICK);
9688 
9689 	/*
9690 	 * We assume there will be no idle load after this update and clear
9691 	 * the has_blocked flag. If a cpu enters idle in the mean time, it will
9692 	 * set the has_blocked flag and trig another update of idle load.
9693 	 * Because a cpu that becomes idle, is added to idle_cpus_mask before
9694 	 * setting the flag, we are sure to not clear the state and not
9695 	 * check the load of an idle cpu.
9696 	 */
9697 	WRITE_ONCE(nohz.has_blocked, 0);
9698 
9699 	/*
9700 	 * Ensures that if we miss the CPU, we must see the has_blocked
9701 	 * store from nohz_balance_enter_idle().
9702 	 */
9703 	smp_mb();
9704 
9705 	for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
9706 		if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
9707 			continue;
9708 
9709 		/*
9710 		 * If this CPU gets work to do, stop the load balancing
9711 		 * work being done for other CPUs. Next load
9712 		 * balancing owner will pick it up.
9713 		 */
9714 		if (need_resched()) {
9715 			has_blocked_load = true;
9716 			goto abort;
9717 		}
9718 
9719 		rq = cpu_rq(balance_cpu);
9720 
9721 		has_blocked_load |= update_nohz_stats(rq, true);
9722 
9723 		/*
9724 		 * If time for next balance is due,
9725 		 * do the balance.
9726 		 */
9727 		if (time_after_eq(jiffies, rq->next_balance)) {
9728 			struct rq_flags rf;
9729 
9730 			rq_lock_irqsave(rq, &rf);
9731 			update_rq_clock(rq);
9732 			cpu_load_update_idle(rq);
9733 			rq_unlock_irqrestore(rq, &rf);
9734 
9735 			if (flags & NOHZ_BALANCE_KICK)
9736 				rebalance_domains(rq, CPU_IDLE);
9737 		}
9738 
9739 		if (time_after(next_balance, rq->next_balance)) {
9740 			next_balance = rq->next_balance;
9741 			update_next_balance = 1;
9742 		}
9743 	}
9744 
9745 	/* Newly idle CPU doesn't need an update */
9746 	if (idle != CPU_NEWLY_IDLE) {
9747 		update_blocked_averages(this_cpu);
9748 		has_blocked_load |= this_rq->has_blocked_load;
9749 	}
9750 
9751 	if (flags & NOHZ_BALANCE_KICK)
9752 		rebalance_domains(this_rq, CPU_IDLE);
9753 
9754 	WRITE_ONCE(nohz.next_blocked,
9755 		now + msecs_to_jiffies(LOAD_AVG_PERIOD));
9756 
9757 	/* The full idle balance loop has been done */
9758 	ret = true;
9759 
9760 abort:
9761 	/* There is still blocked load, enable periodic update */
9762 	if (has_blocked_load)
9763 		WRITE_ONCE(nohz.has_blocked, 1);
9764 
9765 	/*
9766 	 * next_balance will be updated only when there is a need.
9767 	 * When the CPU is attached to null domain for ex, it will not be
9768 	 * updated.
9769 	 */
9770 	if (likely(update_next_balance))
9771 		nohz.next_balance = next_balance;
9772 
9773 	return ret;
9774 }
9775 
9776 /*
9777  * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
9778  * rebalancing for all the cpus for whom scheduler ticks are stopped.
9779  */
9780 static bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
9781 {
9782 	int this_cpu = this_rq->cpu;
9783 	unsigned int flags;
9784 
9785 	if (!(atomic_read(nohz_flags(this_cpu)) & NOHZ_KICK_MASK))
9786 		return false;
9787 
9788 	if (idle != CPU_IDLE) {
9789 		atomic_andnot(NOHZ_KICK_MASK, nohz_flags(this_cpu));
9790 		return false;
9791 	}
9792 
9793 	/* could be _relaxed() */
9794 	flags = atomic_fetch_andnot(NOHZ_KICK_MASK, nohz_flags(this_cpu));
9795 	if (!(flags & NOHZ_KICK_MASK))
9796 		return false;
9797 
9798 	_nohz_idle_balance(this_rq, flags, idle);
9799 
9800 	return true;
9801 }
9802 
9803 static void nohz_newidle_balance(struct rq *this_rq)
9804 {
9805 	int this_cpu = this_rq->cpu;
9806 
9807 	/*
9808 	 * This CPU doesn't want to be disturbed by scheduler
9809 	 * housekeeping
9810 	 */
9811 	if (!housekeeping_cpu(this_cpu, HK_FLAG_SCHED))
9812 		return;
9813 
9814 	/* Will wake up very soon. No time for doing anything else*/
9815 	if (this_rq->avg_idle < sysctl_sched_migration_cost)
9816 		return;
9817 
9818 	/* Don't need to update blocked load of idle CPUs*/
9819 	if (!READ_ONCE(nohz.has_blocked) ||
9820 	    time_before(jiffies, READ_ONCE(nohz.next_blocked)))
9821 		return;
9822 
9823 	raw_spin_unlock(&this_rq->lock);
9824 	/*
9825 	 * This CPU is going to be idle and blocked load of idle CPUs
9826 	 * need to be updated. Run the ilb locally as it is a good
9827 	 * candidate for ilb instead of waking up another idle CPU.
9828 	 * Kick an normal ilb if we failed to do the update.
9829 	 */
9830 	if (!_nohz_idle_balance(this_rq, NOHZ_STATS_KICK, CPU_NEWLY_IDLE))
9831 		kick_ilb(NOHZ_STATS_KICK);
9832 	raw_spin_lock(&this_rq->lock);
9833 }
9834 
9835 #else /* !CONFIG_NO_HZ_COMMON */
9836 static inline void nohz_balancer_kick(struct rq *rq) { }
9837 
9838 static inline bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
9839 {
9840 	return false;
9841 }
9842 
9843 static inline void nohz_newidle_balance(struct rq *this_rq) { }
9844 #endif /* CONFIG_NO_HZ_COMMON */
9845 
9846 /*
9847  * idle_balance is called by schedule() if this_cpu is about to become
9848  * idle. Attempts to pull tasks from other CPUs.
9849  */
9850 static int idle_balance(struct rq *this_rq, struct rq_flags *rf)
9851 {
9852 	unsigned long next_balance = jiffies + HZ;
9853 	int this_cpu = this_rq->cpu;
9854 	struct sched_domain *sd;
9855 	int pulled_task = 0;
9856 	u64 curr_cost = 0;
9857 
9858 	/*
9859 	 * We must set idle_stamp _before_ calling idle_balance(), such that we
9860 	 * measure the duration of idle_balance() as idle time.
9861 	 */
9862 	this_rq->idle_stamp = rq_clock(this_rq);
9863 
9864 	/*
9865 	 * Do not pull tasks towards !active CPUs...
9866 	 */
9867 	if (!cpu_active(this_cpu))
9868 		return 0;
9869 
9870 	/*
9871 	 * This is OK, because current is on_cpu, which avoids it being picked
9872 	 * for load-balance and preemption/IRQs are still disabled avoiding
9873 	 * further scheduler activity on it and we're being very careful to
9874 	 * re-start the picking loop.
9875 	 */
9876 	rq_unpin_lock(this_rq, rf);
9877 
9878 	if (this_rq->avg_idle < sysctl_sched_migration_cost ||
9879 	    !READ_ONCE(this_rq->rd->overload)) {
9880 
9881 		rcu_read_lock();
9882 		sd = rcu_dereference_check_sched_domain(this_rq->sd);
9883 		if (sd)
9884 			update_next_balance(sd, &next_balance);
9885 		rcu_read_unlock();
9886 
9887 		nohz_newidle_balance(this_rq);
9888 
9889 		goto out;
9890 	}
9891 
9892 	raw_spin_unlock(&this_rq->lock);
9893 
9894 	update_blocked_averages(this_cpu);
9895 	rcu_read_lock();
9896 	for_each_domain(this_cpu, sd) {
9897 		int continue_balancing = 1;
9898 		u64 t0, domain_cost;
9899 
9900 		if (!(sd->flags & SD_LOAD_BALANCE))
9901 			continue;
9902 
9903 		if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) {
9904 			update_next_balance(sd, &next_balance);
9905 			break;
9906 		}
9907 
9908 		if (sd->flags & SD_BALANCE_NEWIDLE) {
9909 			t0 = sched_clock_cpu(this_cpu);
9910 
9911 			pulled_task = load_balance(this_cpu, this_rq,
9912 						   sd, CPU_NEWLY_IDLE,
9913 						   &continue_balancing);
9914 
9915 			domain_cost = sched_clock_cpu(this_cpu) - t0;
9916 			if (domain_cost > sd->max_newidle_lb_cost)
9917 				sd->max_newidle_lb_cost = domain_cost;
9918 
9919 			curr_cost += domain_cost;
9920 		}
9921 
9922 		update_next_balance(sd, &next_balance);
9923 
9924 		/*
9925 		 * Stop searching for tasks to pull if there are
9926 		 * now runnable tasks on this rq.
9927 		 */
9928 		if (pulled_task || this_rq->nr_running > 0)
9929 			break;
9930 	}
9931 	rcu_read_unlock();
9932 
9933 	raw_spin_lock(&this_rq->lock);
9934 
9935 	if (curr_cost > this_rq->max_idle_balance_cost)
9936 		this_rq->max_idle_balance_cost = curr_cost;
9937 
9938 out:
9939 	/*
9940 	 * While browsing the domains, we released the rq lock, a task could
9941 	 * have been enqueued in the meantime. Since we're not going idle,
9942 	 * pretend we pulled a task.
9943 	 */
9944 	if (this_rq->cfs.h_nr_running && !pulled_task)
9945 		pulled_task = 1;
9946 
9947 	/* Move the next balance forward */
9948 	if (time_after(this_rq->next_balance, next_balance))
9949 		this_rq->next_balance = next_balance;
9950 
9951 	/* Is there a task of a high priority class? */
9952 	if (this_rq->nr_running != this_rq->cfs.h_nr_running)
9953 		pulled_task = -1;
9954 
9955 	if (pulled_task)
9956 		this_rq->idle_stamp = 0;
9957 
9958 	rq_repin_lock(this_rq, rf);
9959 
9960 	return pulled_task;
9961 }
9962 
9963 /*
9964  * run_rebalance_domains is triggered when needed from the scheduler tick.
9965  * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
9966  */
9967 static __latent_entropy void run_rebalance_domains(struct softirq_action *h)
9968 {
9969 	struct rq *this_rq = this_rq();
9970 	enum cpu_idle_type idle = this_rq->idle_balance ?
9971 						CPU_IDLE : CPU_NOT_IDLE;
9972 
9973 	/*
9974 	 * If this CPU has a pending nohz_balance_kick, then do the
9975 	 * balancing on behalf of the other idle CPUs whose ticks are
9976 	 * stopped. Do nohz_idle_balance *before* rebalance_domains to
9977 	 * give the idle CPUs a chance to load balance. Else we may
9978 	 * load balance only within the local sched_domain hierarchy
9979 	 * and abort nohz_idle_balance altogether if we pull some load.
9980 	 */
9981 	if (nohz_idle_balance(this_rq, idle))
9982 		return;
9983 
9984 	/* normal load balance */
9985 	update_blocked_averages(this_rq->cpu);
9986 	rebalance_domains(this_rq, idle);
9987 }
9988 
9989 /*
9990  * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
9991  */
9992 void trigger_load_balance(struct rq *rq)
9993 {
9994 	/* Don't need to rebalance while attached to NULL domain */
9995 	if (unlikely(on_null_domain(rq)))
9996 		return;
9997 
9998 	if (time_after_eq(jiffies, rq->next_balance))
9999 		raise_softirq(SCHED_SOFTIRQ);
10000 
10001 	nohz_balancer_kick(rq);
10002 }
10003 
10004 static void rq_online_fair(struct rq *rq)
10005 {
10006 	update_sysctl();
10007 
10008 	update_runtime_enabled(rq);
10009 }
10010 
10011 static void rq_offline_fair(struct rq *rq)
10012 {
10013 	update_sysctl();
10014 
10015 	/* Ensure any throttled groups are reachable by pick_next_task */
10016 	unthrottle_offline_cfs_rqs(rq);
10017 }
10018 
10019 #endif /* CONFIG_SMP */
10020 
10021 /*
10022  * scheduler tick hitting a task of our scheduling class.
10023  *
10024  * NOTE: This function can be called remotely by the tick offload that
10025  * goes along full dynticks. Therefore no local assumption can be made
10026  * and everything must be accessed through the @rq and @curr passed in
10027  * parameters.
10028  */
10029 static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
10030 {
10031 	struct cfs_rq *cfs_rq;
10032 	struct sched_entity *se = &curr->se;
10033 
10034 	for_each_sched_entity(se) {
10035 		cfs_rq = cfs_rq_of(se);
10036 		entity_tick(cfs_rq, se, queued);
10037 	}
10038 
10039 	if (static_branch_unlikely(&sched_numa_balancing))
10040 		task_tick_numa(rq, curr);
10041 
10042 	update_misfit_status(curr, rq);
10043 	update_overutilized_status(task_rq(curr));
10044 }
10045 
10046 /*
10047  * called on fork with the child task as argument from the parent's context
10048  *  - child not yet on the tasklist
10049  *  - preemption disabled
10050  */
10051 static void task_fork_fair(struct task_struct *p)
10052 {
10053 	struct cfs_rq *cfs_rq;
10054 	struct sched_entity *se = &p->se, *curr;
10055 	struct rq *rq = this_rq();
10056 	struct rq_flags rf;
10057 
10058 	rq_lock(rq, &rf);
10059 	update_rq_clock(rq);
10060 
10061 	cfs_rq = task_cfs_rq(current);
10062 	curr = cfs_rq->curr;
10063 	if (curr) {
10064 		update_curr(cfs_rq);
10065 		se->vruntime = curr->vruntime;
10066 	}
10067 	place_entity(cfs_rq, se, 1);
10068 
10069 	if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
10070 		/*
10071 		 * Upon rescheduling, sched_class::put_prev_task() will place
10072 		 * 'current' within the tree based on its new key value.
10073 		 */
10074 		swap(curr->vruntime, se->vruntime);
10075 		resched_curr(rq);
10076 	}
10077 
10078 	se->vruntime -= cfs_rq->min_vruntime;
10079 	rq_unlock(rq, &rf);
10080 }
10081 
10082 /*
10083  * Priority of the task has changed. Check to see if we preempt
10084  * the current task.
10085  */
10086 static void
10087 prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
10088 {
10089 	if (!task_on_rq_queued(p))
10090 		return;
10091 
10092 	/*
10093 	 * Reschedule if we are currently running on this runqueue and
10094 	 * our priority decreased, or if we are not currently running on
10095 	 * this runqueue and our priority is higher than the current's
10096 	 */
10097 	if (rq->curr == p) {
10098 		if (p->prio > oldprio)
10099 			resched_curr(rq);
10100 	} else
10101 		check_preempt_curr(rq, p, 0);
10102 }
10103 
10104 static inline bool vruntime_normalized(struct task_struct *p)
10105 {
10106 	struct sched_entity *se = &p->se;
10107 
10108 	/*
10109 	 * In both the TASK_ON_RQ_QUEUED and TASK_ON_RQ_MIGRATING cases,
10110 	 * the dequeue_entity(.flags=0) will already have normalized the
10111 	 * vruntime.
10112 	 */
10113 	if (p->on_rq)
10114 		return true;
10115 
10116 	/*
10117 	 * When !on_rq, vruntime of the task has usually NOT been normalized.
10118 	 * But there are some cases where it has already been normalized:
10119 	 *
10120 	 * - A forked child which is waiting for being woken up by
10121 	 *   wake_up_new_task().
10122 	 * - A task which has been woken up by try_to_wake_up() and
10123 	 *   waiting for actually being woken up by sched_ttwu_pending().
10124 	 */
10125 	if (!se->sum_exec_runtime ||
10126 	    (p->state == TASK_WAKING && p->sched_remote_wakeup))
10127 		return true;
10128 
10129 	return false;
10130 }
10131 
10132 #ifdef CONFIG_FAIR_GROUP_SCHED
10133 /*
10134  * Propagate the changes of the sched_entity across the tg tree to make it
10135  * visible to the root
10136  */
10137 static void propagate_entity_cfs_rq(struct sched_entity *se)
10138 {
10139 	struct cfs_rq *cfs_rq;
10140 
10141 	/* Start to propagate at parent */
10142 	se = se->parent;
10143 
10144 	for_each_sched_entity(se) {
10145 		cfs_rq = cfs_rq_of(se);
10146 
10147 		if (cfs_rq_throttled(cfs_rq))
10148 			break;
10149 
10150 		update_load_avg(cfs_rq, se, UPDATE_TG);
10151 	}
10152 }
10153 #else
10154 static void propagate_entity_cfs_rq(struct sched_entity *se) { }
10155 #endif
10156 
10157 static void detach_entity_cfs_rq(struct sched_entity *se)
10158 {
10159 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
10160 
10161 	/* Catch up with the cfs_rq and remove our load when we leave */
10162 	update_load_avg(cfs_rq, se, 0);
10163 	detach_entity_load_avg(cfs_rq, se);
10164 	update_tg_load_avg(cfs_rq, false);
10165 	propagate_entity_cfs_rq(se);
10166 }
10167 
10168 static void attach_entity_cfs_rq(struct sched_entity *se)
10169 {
10170 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
10171 
10172 #ifdef CONFIG_FAIR_GROUP_SCHED
10173 	/*
10174 	 * Since the real-depth could have been changed (only FAIR
10175 	 * class maintain depth value), reset depth properly.
10176 	 */
10177 	se->depth = se->parent ? se->parent->depth + 1 : 0;
10178 #endif
10179 
10180 	/* Synchronize entity with its cfs_rq */
10181 	update_load_avg(cfs_rq, se, sched_feat(ATTACH_AGE_LOAD) ? 0 : SKIP_AGE_LOAD);
10182 	attach_entity_load_avg(cfs_rq, se, 0);
10183 	update_tg_load_avg(cfs_rq, false);
10184 	propagate_entity_cfs_rq(se);
10185 }
10186 
10187 static void detach_task_cfs_rq(struct task_struct *p)
10188 {
10189 	struct sched_entity *se = &p->se;
10190 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
10191 
10192 	if (!vruntime_normalized(p)) {
10193 		/*
10194 		 * Fix up our vruntime so that the current sleep doesn't
10195 		 * cause 'unlimited' sleep bonus.
10196 		 */
10197 		place_entity(cfs_rq, se, 0);
10198 		se->vruntime -= cfs_rq->min_vruntime;
10199 	}
10200 
10201 	detach_entity_cfs_rq(se);
10202 }
10203 
10204 static void attach_task_cfs_rq(struct task_struct *p)
10205 {
10206 	struct sched_entity *se = &p->se;
10207 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
10208 
10209 	attach_entity_cfs_rq(se);
10210 
10211 	if (!vruntime_normalized(p))
10212 		se->vruntime += cfs_rq->min_vruntime;
10213 }
10214 
10215 static void switched_from_fair(struct rq *rq, struct task_struct *p)
10216 {
10217 	detach_task_cfs_rq(p);
10218 }
10219 
10220 static void switched_to_fair(struct rq *rq, struct task_struct *p)
10221 {
10222 	attach_task_cfs_rq(p);
10223 
10224 	if (task_on_rq_queued(p)) {
10225 		/*
10226 		 * We were most likely switched from sched_rt, so
10227 		 * kick off the schedule if running, otherwise just see
10228 		 * if we can still preempt the current task.
10229 		 */
10230 		if (rq->curr == p)
10231 			resched_curr(rq);
10232 		else
10233 			check_preempt_curr(rq, p, 0);
10234 	}
10235 }
10236 
10237 /* Account for a task changing its policy or group.
10238  *
10239  * This routine is mostly called to set cfs_rq->curr field when a task
10240  * migrates between groups/classes.
10241  */
10242 static void set_curr_task_fair(struct rq *rq)
10243 {
10244 	struct sched_entity *se = &rq->curr->se;
10245 
10246 	for_each_sched_entity(se) {
10247 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
10248 
10249 		set_next_entity(cfs_rq, se);
10250 		/* ensure bandwidth has been allocated on our new cfs_rq */
10251 		account_cfs_rq_runtime(cfs_rq, 0);
10252 	}
10253 }
10254 
10255 void init_cfs_rq(struct cfs_rq *cfs_rq)
10256 {
10257 	cfs_rq->tasks_timeline = RB_ROOT_CACHED;
10258 	cfs_rq->min_vruntime = (u64)(-(1LL << 20));
10259 #ifndef CONFIG_64BIT
10260 	cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
10261 #endif
10262 #ifdef CONFIG_SMP
10263 	raw_spin_lock_init(&cfs_rq->removed.lock);
10264 #endif
10265 }
10266 
10267 #ifdef CONFIG_FAIR_GROUP_SCHED
10268 static void task_set_group_fair(struct task_struct *p)
10269 {
10270 	struct sched_entity *se = &p->se;
10271 
10272 	set_task_rq(p, task_cpu(p));
10273 	se->depth = se->parent ? se->parent->depth + 1 : 0;
10274 }
10275 
10276 static void task_move_group_fair(struct task_struct *p)
10277 {
10278 	detach_task_cfs_rq(p);
10279 	set_task_rq(p, task_cpu(p));
10280 
10281 #ifdef CONFIG_SMP
10282 	/* Tell se's cfs_rq has been changed -- migrated */
10283 	p->se.avg.last_update_time = 0;
10284 #endif
10285 	attach_task_cfs_rq(p);
10286 }
10287 
10288 static void task_change_group_fair(struct task_struct *p, int type)
10289 {
10290 	switch (type) {
10291 	case TASK_SET_GROUP:
10292 		task_set_group_fair(p);
10293 		break;
10294 
10295 	case TASK_MOVE_GROUP:
10296 		task_move_group_fair(p);
10297 		break;
10298 	}
10299 }
10300 
10301 void free_fair_sched_group(struct task_group *tg)
10302 {
10303 	int i;
10304 
10305 	destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
10306 
10307 	for_each_possible_cpu(i) {
10308 		if (tg->cfs_rq)
10309 			kfree(tg->cfs_rq[i]);
10310 		if (tg->se)
10311 			kfree(tg->se[i]);
10312 	}
10313 
10314 	kfree(tg->cfs_rq);
10315 	kfree(tg->se);
10316 }
10317 
10318 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
10319 {
10320 	struct sched_entity *se;
10321 	struct cfs_rq *cfs_rq;
10322 	int i;
10323 
10324 	tg->cfs_rq = kcalloc(nr_cpu_ids, sizeof(cfs_rq), GFP_KERNEL);
10325 	if (!tg->cfs_rq)
10326 		goto err;
10327 	tg->se = kcalloc(nr_cpu_ids, sizeof(se), GFP_KERNEL);
10328 	if (!tg->se)
10329 		goto err;
10330 
10331 	tg->shares = NICE_0_LOAD;
10332 
10333 	init_cfs_bandwidth(tg_cfs_bandwidth(tg));
10334 
10335 	for_each_possible_cpu(i) {
10336 		cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
10337 				      GFP_KERNEL, cpu_to_node(i));
10338 		if (!cfs_rq)
10339 			goto err;
10340 
10341 		se = kzalloc_node(sizeof(struct sched_entity),
10342 				  GFP_KERNEL, cpu_to_node(i));
10343 		if (!se)
10344 			goto err_free_rq;
10345 
10346 		init_cfs_rq(cfs_rq);
10347 		init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
10348 		init_entity_runnable_average(se);
10349 	}
10350 
10351 	return 1;
10352 
10353 err_free_rq:
10354 	kfree(cfs_rq);
10355 err:
10356 	return 0;
10357 }
10358 
10359 void online_fair_sched_group(struct task_group *tg)
10360 {
10361 	struct sched_entity *se;
10362 	struct rq *rq;
10363 	int i;
10364 
10365 	for_each_possible_cpu(i) {
10366 		rq = cpu_rq(i);
10367 		se = tg->se[i];
10368 
10369 		raw_spin_lock_irq(&rq->lock);
10370 		update_rq_clock(rq);
10371 		attach_entity_cfs_rq(se);
10372 		sync_throttle(tg, i);
10373 		raw_spin_unlock_irq(&rq->lock);
10374 	}
10375 }
10376 
10377 void unregister_fair_sched_group(struct task_group *tg)
10378 {
10379 	unsigned long flags;
10380 	struct rq *rq;
10381 	int cpu;
10382 
10383 	for_each_possible_cpu(cpu) {
10384 		if (tg->se[cpu])
10385 			remove_entity_load_avg(tg->se[cpu]);
10386 
10387 		/*
10388 		 * Only empty task groups can be destroyed; so we can speculatively
10389 		 * check on_list without danger of it being re-added.
10390 		 */
10391 		if (!tg->cfs_rq[cpu]->on_list)
10392 			continue;
10393 
10394 		rq = cpu_rq(cpu);
10395 
10396 		raw_spin_lock_irqsave(&rq->lock, flags);
10397 		list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
10398 		raw_spin_unlock_irqrestore(&rq->lock, flags);
10399 	}
10400 }
10401 
10402 void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
10403 			struct sched_entity *se, int cpu,
10404 			struct sched_entity *parent)
10405 {
10406 	struct rq *rq = cpu_rq(cpu);
10407 
10408 	cfs_rq->tg = tg;
10409 	cfs_rq->rq = rq;
10410 	init_cfs_rq_runtime(cfs_rq);
10411 
10412 	tg->cfs_rq[cpu] = cfs_rq;
10413 	tg->se[cpu] = se;
10414 
10415 	/* se could be NULL for root_task_group */
10416 	if (!se)
10417 		return;
10418 
10419 	if (!parent) {
10420 		se->cfs_rq = &rq->cfs;
10421 		se->depth = 0;
10422 	} else {
10423 		se->cfs_rq = parent->my_q;
10424 		se->depth = parent->depth + 1;
10425 	}
10426 
10427 	se->my_q = cfs_rq;
10428 	/* guarantee group entities always have weight */
10429 	update_load_set(&se->load, NICE_0_LOAD);
10430 	se->parent = parent;
10431 }
10432 
10433 static DEFINE_MUTEX(shares_mutex);
10434 
10435 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
10436 {
10437 	int i;
10438 
10439 	/*
10440 	 * We can't change the weight of the root cgroup.
10441 	 */
10442 	if (!tg->se[0])
10443 		return -EINVAL;
10444 
10445 	shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
10446 
10447 	mutex_lock(&shares_mutex);
10448 	if (tg->shares == shares)
10449 		goto done;
10450 
10451 	tg->shares = shares;
10452 	for_each_possible_cpu(i) {
10453 		struct rq *rq = cpu_rq(i);
10454 		struct sched_entity *se = tg->se[i];
10455 		struct rq_flags rf;
10456 
10457 		/* Propagate contribution to hierarchy */
10458 		rq_lock_irqsave(rq, &rf);
10459 		update_rq_clock(rq);
10460 		for_each_sched_entity(se) {
10461 			update_load_avg(cfs_rq_of(se), se, UPDATE_TG);
10462 			update_cfs_group(se);
10463 		}
10464 		rq_unlock_irqrestore(rq, &rf);
10465 	}
10466 
10467 done:
10468 	mutex_unlock(&shares_mutex);
10469 	return 0;
10470 }
10471 #else /* CONFIG_FAIR_GROUP_SCHED */
10472 
10473 void free_fair_sched_group(struct task_group *tg) { }
10474 
10475 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
10476 {
10477 	return 1;
10478 }
10479 
10480 void online_fair_sched_group(struct task_group *tg) { }
10481 
10482 void unregister_fair_sched_group(struct task_group *tg) { }
10483 
10484 #endif /* CONFIG_FAIR_GROUP_SCHED */
10485 
10486 
10487 static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
10488 {
10489 	struct sched_entity *se = &task->se;
10490 	unsigned int rr_interval = 0;
10491 
10492 	/*
10493 	 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
10494 	 * idle runqueue:
10495 	 */
10496 	if (rq->cfs.load.weight)
10497 		rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
10498 
10499 	return rr_interval;
10500 }
10501 
10502 /*
10503  * All the scheduling class methods:
10504  */
10505 const struct sched_class fair_sched_class = {
10506 	.next			= &idle_sched_class,
10507 	.enqueue_task		= enqueue_task_fair,
10508 	.dequeue_task		= dequeue_task_fair,
10509 	.yield_task		= yield_task_fair,
10510 	.yield_to_task		= yield_to_task_fair,
10511 
10512 	.check_preempt_curr	= check_preempt_wakeup,
10513 
10514 	.pick_next_task		= pick_next_task_fair,
10515 	.put_prev_task		= put_prev_task_fair,
10516 
10517 #ifdef CONFIG_SMP
10518 	.select_task_rq		= select_task_rq_fair,
10519 	.migrate_task_rq	= migrate_task_rq_fair,
10520 
10521 	.rq_online		= rq_online_fair,
10522 	.rq_offline		= rq_offline_fair,
10523 
10524 	.task_dead		= task_dead_fair,
10525 	.set_cpus_allowed	= set_cpus_allowed_common,
10526 #endif
10527 
10528 	.set_curr_task          = set_curr_task_fair,
10529 	.task_tick		= task_tick_fair,
10530 	.task_fork		= task_fork_fair,
10531 
10532 	.prio_changed		= prio_changed_fair,
10533 	.switched_from		= switched_from_fair,
10534 	.switched_to		= switched_to_fair,
10535 
10536 	.get_rr_interval	= get_rr_interval_fair,
10537 
10538 	.update_curr		= update_curr_fair,
10539 
10540 #ifdef CONFIG_FAIR_GROUP_SCHED
10541 	.task_change_group	= task_change_group_fair,
10542 #endif
10543 };
10544 
10545 #ifdef CONFIG_SCHED_DEBUG
10546 void print_cfs_stats(struct seq_file *m, int cpu)
10547 {
10548 	struct cfs_rq *cfs_rq;
10549 
10550 	rcu_read_lock();
10551 	for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
10552 		print_cfs_rq(m, cpu, cfs_rq);
10553 	rcu_read_unlock();
10554 }
10555 
10556 #ifdef CONFIG_NUMA_BALANCING
10557 void show_numa_stats(struct task_struct *p, struct seq_file *m)
10558 {
10559 	int node;
10560 	unsigned long tsf = 0, tpf = 0, gsf = 0, gpf = 0;
10561 
10562 	for_each_online_node(node) {
10563 		if (p->numa_faults) {
10564 			tsf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 0)];
10565 			tpf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 1)];
10566 		}
10567 		if (p->numa_group) {
10568 			gsf = p->numa_group->faults[task_faults_idx(NUMA_MEM, node, 0)],
10569 			gpf = p->numa_group->faults[task_faults_idx(NUMA_MEM, node, 1)];
10570 		}
10571 		print_numa_stats(m, node, tsf, tpf, gsf, gpf);
10572 	}
10573 }
10574 #endif /* CONFIG_NUMA_BALANCING */
10575 #endif /* CONFIG_SCHED_DEBUG */
10576 
10577 __init void init_sched_fair_class(void)
10578 {
10579 #ifdef CONFIG_SMP
10580 	open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
10581 
10582 #ifdef CONFIG_NO_HZ_COMMON
10583 	nohz.next_balance = jiffies;
10584 	nohz.next_blocked = jiffies;
10585 	zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
10586 #endif
10587 #endif /* SMP */
10588 
10589 }
10590