xref: /openbmc/linux/kernel/sched/fair.c (revision 6aa7de05)
1 /*
2  * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
3  *
4  *  Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
5  *
6  *  Interactivity improvements by Mike Galbraith
7  *  (C) 2007 Mike Galbraith <efault@gmx.de>
8  *
9  *  Various enhancements by Dmitry Adamushko.
10  *  (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
11  *
12  *  Group scheduling enhancements by Srivatsa Vaddagiri
13  *  Copyright IBM Corporation, 2007
14  *  Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
15  *
16  *  Scaled math optimizations by Thomas Gleixner
17  *  Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
18  *
19  *  Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20  *  Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
21  */
22 
23 #include <linux/sched/mm.h>
24 #include <linux/sched/topology.h>
25 
26 #include <linux/latencytop.h>
27 #include <linux/cpumask.h>
28 #include <linux/cpuidle.h>
29 #include <linux/slab.h>
30 #include <linux/profile.h>
31 #include <linux/interrupt.h>
32 #include <linux/mempolicy.h>
33 #include <linux/migrate.h>
34 #include <linux/task_work.h>
35 
36 #include <trace/events/sched.h>
37 
38 #include "sched.h"
39 
40 /*
41  * Targeted preemption latency for CPU-bound tasks:
42  *
43  * NOTE: this latency value is not the same as the concept of
44  * 'timeslice length' - timeslices in CFS are of variable length
45  * and have no persistent notion like in traditional, time-slice
46  * based scheduling concepts.
47  *
48  * (to see the precise effective timeslice length of your workload,
49  *  run vmstat and monitor the context-switches (cs) field)
50  *
51  * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
52  */
53 unsigned int sysctl_sched_latency			= 6000000ULL;
54 unsigned int normalized_sysctl_sched_latency		= 6000000ULL;
55 
56 /*
57  * The initial- and re-scaling of tunables is configurable
58  *
59  * Options are:
60  *
61  *   SCHED_TUNABLESCALING_NONE - unscaled, always *1
62  *   SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
63  *   SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
64  *
65  * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
66  */
67 enum sched_tunable_scaling sysctl_sched_tunable_scaling = SCHED_TUNABLESCALING_LOG;
68 
69 /*
70  * Minimal preemption granularity for CPU-bound tasks:
71  *
72  * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
73  */
74 unsigned int sysctl_sched_min_granularity		= 750000ULL;
75 unsigned int normalized_sysctl_sched_min_granularity	= 750000ULL;
76 
77 /*
78  * This value is kept at sysctl_sched_latency/sysctl_sched_min_granularity
79  */
80 static unsigned int sched_nr_latency = 8;
81 
82 /*
83  * After fork, child runs first. If set to 0 (default) then
84  * parent will (try to) run first.
85  */
86 unsigned int sysctl_sched_child_runs_first __read_mostly;
87 
88 /*
89  * SCHED_OTHER wake-up granularity.
90  *
91  * This option delays the preemption effects of decoupled workloads
92  * and reduces their over-scheduling. Synchronous workloads will still
93  * have immediate wakeup/sleep latencies.
94  *
95  * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
96  */
97 unsigned int sysctl_sched_wakeup_granularity		= 1000000UL;
98 unsigned int normalized_sysctl_sched_wakeup_granularity	= 1000000UL;
99 
100 const_debug unsigned int sysctl_sched_migration_cost	= 500000UL;
101 
102 #ifdef CONFIG_SMP
103 /*
104  * For asym packing, by default the lower numbered cpu has higher priority.
105  */
106 int __weak arch_asym_cpu_priority(int cpu)
107 {
108 	return -cpu;
109 }
110 #endif
111 
112 #ifdef CONFIG_CFS_BANDWIDTH
113 /*
114  * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
115  * each time a cfs_rq requests quota.
116  *
117  * Note: in the case that the slice exceeds the runtime remaining (either due
118  * to consumption or the quota being specified to be smaller than the slice)
119  * we will always only issue the remaining available time.
120  *
121  * (default: 5 msec, units: microseconds)
122  */
123 unsigned int sysctl_sched_cfs_bandwidth_slice		= 5000UL;
124 #endif
125 
126 /*
127  * The margin used when comparing utilization with CPU capacity:
128  * util * margin < capacity * 1024
129  *
130  * (default: ~20%)
131  */
132 unsigned int capacity_margin				= 1280;
133 
134 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
135 {
136 	lw->weight += inc;
137 	lw->inv_weight = 0;
138 }
139 
140 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
141 {
142 	lw->weight -= dec;
143 	lw->inv_weight = 0;
144 }
145 
146 static inline void update_load_set(struct load_weight *lw, unsigned long w)
147 {
148 	lw->weight = w;
149 	lw->inv_weight = 0;
150 }
151 
152 /*
153  * Increase the granularity value when there are more CPUs,
154  * because with more CPUs the 'effective latency' as visible
155  * to users decreases. But the relationship is not linear,
156  * so pick a second-best guess by going with the log2 of the
157  * number of CPUs.
158  *
159  * This idea comes from the SD scheduler of Con Kolivas:
160  */
161 static unsigned int get_update_sysctl_factor(void)
162 {
163 	unsigned int cpus = min_t(unsigned int, num_online_cpus(), 8);
164 	unsigned int factor;
165 
166 	switch (sysctl_sched_tunable_scaling) {
167 	case SCHED_TUNABLESCALING_NONE:
168 		factor = 1;
169 		break;
170 	case SCHED_TUNABLESCALING_LINEAR:
171 		factor = cpus;
172 		break;
173 	case SCHED_TUNABLESCALING_LOG:
174 	default:
175 		factor = 1 + ilog2(cpus);
176 		break;
177 	}
178 
179 	return factor;
180 }
181 
182 static void update_sysctl(void)
183 {
184 	unsigned int factor = get_update_sysctl_factor();
185 
186 #define SET_SYSCTL(name) \
187 	(sysctl_##name = (factor) * normalized_sysctl_##name)
188 	SET_SYSCTL(sched_min_granularity);
189 	SET_SYSCTL(sched_latency);
190 	SET_SYSCTL(sched_wakeup_granularity);
191 #undef SET_SYSCTL
192 }
193 
194 void sched_init_granularity(void)
195 {
196 	update_sysctl();
197 }
198 
199 #define WMULT_CONST	(~0U)
200 #define WMULT_SHIFT	32
201 
202 static void __update_inv_weight(struct load_weight *lw)
203 {
204 	unsigned long w;
205 
206 	if (likely(lw->inv_weight))
207 		return;
208 
209 	w = scale_load_down(lw->weight);
210 
211 	if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
212 		lw->inv_weight = 1;
213 	else if (unlikely(!w))
214 		lw->inv_weight = WMULT_CONST;
215 	else
216 		lw->inv_weight = WMULT_CONST / w;
217 }
218 
219 /*
220  * delta_exec * weight / lw.weight
221  *   OR
222  * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
223  *
224  * Either weight := NICE_0_LOAD and lw \e sched_prio_to_wmult[], in which case
225  * we're guaranteed shift stays positive because inv_weight is guaranteed to
226  * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
227  *
228  * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
229  * weight/lw.weight <= 1, and therefore our shift will also be positive.
230  */
231 static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw)
232 {
233 	u64 fact = scale_load_down(weight);
234 	int shift = WMULT_SHIFT;
235 
236 	__update_inv_weight(lw);
237 
238 	if (unlikely(fact >> 32)) {
239 		while (fact >> 32) {
240 			fact >>= 1;
241 			shift--;
242 		}
243 	}
244 
245 	/* hint to use a 32x32->64 mul */
246 	fact = (u64)(u32)fact * lw->inv_weight;
247 
248 	while (fact >> 32) {
249 		fact >>= 1;
250 		shift--;
251 	}
252 
253 	return mul_u64_u32_shr(delta_exec, fact, shift);
254 }
255 
256 
257 const struct sched_class fair_sched_class;
258 
259 /**************************************************************
260  * CFS operations on generic schedulable entities:
261  */
262 
263 #ifdef CONFIG_FAIR_GROUP_SCHED
264 
265 /* cpu runqueue to which this cfs_rq is attached */
266 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
267 {
268 	return cfs_rq->rq;
269 }
270 
271 /* An entity is a task if it doesn't "own" a runqueue */
272 #define entity_is_task(se)	(!se->my_q)
273 
274 static inline struct task_struct *task_of(struct sched_entity *se)
275 {
276 	SCHED_WARN_ON(!entity_is_task(se));
277 	return container_of(se, struct task_struct, se);
278 }
279 
280 /* Walk up scheduling entities hierarchy */
281 #define for_each_sched_entity(se) \
282 		for (; se; se = se->parent)
283 
284 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
285 {
286 	return p->se.cfs_rq;
287 }
288 
289 /* runqueue on which this entity is (to be) queued */
290 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
291 {
292 	return se->cfs_rq;
293 }
294 
295 /* runqueue "owned" by this group */
296 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
297 {
298 	return grp->my_q;
299 }
300 
301 static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
302 {
303 	if (!cfs_rq->on_list) {
304 		struct rq *rq = rq_of(cfs_rq);
305 		int cpu = cpu_of(rq);
306 		/*
307 		 * Ensure we either appear before our parent (if already
308 		 * enqueued) or force our parent to appear after us when it is
309 		 * enqueued. The fact that we always enqueue bottom-up
310 		 * reduces this to two cases and a special case for the root
311 		 * cfs_rq. Furthermore, it also means that we will always reset
312 		 * tmp_alone_branch either when the branch is connected
313 		 * to a tree or when we reach the beg of the tree
314 		 */
315 		if (cfs_rq->tg->parent &&
316 		    cfs_rq->tg->parent->cfs_rq[cpu]->on_list) {
317 			/*
318 			 * If parent is already on the list, we add the child
319 			 * just before. Thanks to circular linked property of
320 			 * the list, this means to put the child at the tail
321 			 * of the list that starts by parent.
322 			 */
323 			list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
324 				&(cfs_rq->tg->parent->cfs_rq[cpu]->leaf_cfs_rq_list));
325 			/*
326 			 * The branch is now connected to its tree so we can
327 			 * reset tmp_alone_branch to the beginning of the
328 			 * list.
329 			 */
330 			rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
331 		} else if (!cfs_rq->tg->parent) {
332 			/*
333 			 * cfs rq without parent should be put
334 			 * at the tail of the list.
335 			 */
336 			list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
337 				&rq->leaf_cfs_rq_list);
338 			/*
339 			 * We have reach the beg of a tree so we can reset
340 			 * tmp_alone_branch to the beginning of the list.
341 			 */
342 			rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
343 		} else {
344 			/*
345 			 * The parent has not already been added so we want to
346 			 * make sure that it will be put after us.
347 			 * tmp_alone_branch points to the beg of the branch
348 			 * where we will add parent.
349 			 */
350 			list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
351 				rq->tmp_alone_branch);
352 			/*
353 			 * update tmp_alone_branch to points to the new beg
354 			 * of the branch
355 			 */
356 			rq->tmp_alone_branch = &cfs_rq->leaf_cfs_rq_list;
357 		}
358 
359 		cfs_rq->on_list = 1;
360 	}
361 }
362 
363 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
364 {
365 	if (cfs_rq->on_list) {
366 		list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
367 		cfs_rq->on_list = 0;
368 	}
369 }
370 
371 /* Iterate thr' all leaf cfs_rq's on a runqueue */
372 #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos)			\
373 	list_for_each_entry_safe(cfs_rq, pos, &rq->leaf_cfs_rq_list,	\
374 				 leaf_cfs_rq_list)
375 
376 /* Do the two (enqueued) entities belong to the same group ? */
377 static inline struct cfs_rq *
378 is_same_group(struct sched_entity *se, struct sched_entity *pse)
379 {
380 	if (se->cfs_rq == pse->cfs_rq)
381 		return se->cfs_rq;
382 
383 	return NULL;
384 }
385 
386 static inline struct sched_entity *parent_entity(struct sched_entity *se)
387 {
388 	return se->parent;
389 }
390 
391 static void
392 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
393 {
394 	int se_depth, pse_depth;
395 
396 	/*
397 	 * preemption test can be made between sibling entities who are in the
398 	 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
399 	 * both tasks until we find their ancestors who are siblings of common
400 	 * parent.
401 	 */
402 
403 	/* First walk up until both entities are at same depth */
404 	se_depth = (*se)->depth;
405 	pse_depth = (*pse)->depth;
406 
407 	while (se_depth > pse_depth) {
408 		se_depth--;
409 		*se = parent_entity(*se);
410 	}
411 
412 	while (pse_depth > se_depth) {
413 		pse_depth--;
414 		*pse = parent_entity(*pse);
415 	}
416 
417 	while (!is_same_group(*se, *pse)) {
418 		*se = parent_entity(*se);
419 		*pse = parent_entity(*pse);
420 	}
421 }
422 
423 #else	/* !CONFIG_FAIR_GROUP_SCHED */
424 
425 static inline struct task_struct *task_of(struct sched_entity *se)
426 {
427 	return container_of(se, struct task_struct, se);
428 }
429 
430 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
431 {
432 	return container_of(cfs_rq, struct rq, cfs);
433 }
434 
435 #define entity_is_task(se)	1
436 
437 #define for_each_sched_entity(se) \
438 		for (; se; se = NULL)
439 
440 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
441 {
442 	return &task_rq(p)->cfs;
443 }
444 
445 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
446 {
447 	struct task_struct *p = task_of(se);
448 	struct rq *rq = task_rq(p);
449 
450 	return &rq->cfs;
451 }
452 
453 /* runqueue "owned" by this group */
454 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
455 {
456 	return NULL;
457 }
458 
459 static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
460 {
461 }
462 
463 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
464 {
465 }
466 
467 #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos)	\
468 		for (cfs_rq = &rq->cfs, pos = NULL; cfs_rq; cfs_rq = pos)
469 
470 static inline struct sched_entity *parent_entity(struct sched_entity *se)
471 {
472 	return NULL;
473 }
474 
475 static inline void
476 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
477 {
478 }
479 
480 #endif	/* CONFIG_FAIR_GROUP_SCHED */
481 
482 static __always_inline
483 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec);
484 
485 /**************************************************************
486  * Scheduling class tree data structure manipulation methods:
487  */
488 
489 static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
490 {
491 	s64 delta = (s64)(vruntime - max_vruntime);
492 	if (delta > 0)
493 		max_vruntime = vruntime;
494 
495 	return max_vruntime;
496 }
497 
498 static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
499 {
500 	s64 delta = (s64)(vruntime - min_vruntime);
501 	if (delta < 0)
502 		min_vruntime = vruntime;
503 
504 	return min_vruntime;
505 }
506 
507 static inline int entity_before(struct sched_entity *a,
508 				struct sched_entity *b)
509 {
510 	return (s64)(a->vruntime - b->vruntime) < 0;
511 }
512 
513 static void update_min_vruntime(struct cfs_rq *cfs_rq)
514 {
515 	struct sched_entity *curr = cfs_rq->curr;
516 	struct rb_node *leftmost = rb_first_cached(&cfs_rq->tasks_timeline);
517 
518 	u64 vruntime = cfs_rq->min_vruntime;
519 
520 	if (curr) {
521 		if (curr->on_rq)
522 			vruntime = curr->vruntime;
523 		else
524 			curr = NULL;
525 	}
526 
527 	if (leftmost) { /* non-empty tree */
528 		struct sched_entity *se;
529 		se = rb_entry(leftmost, struct sched_entity, run_node);
530 
531 		if (!curr)
532 			vruntime = se->vruntime;
533 		else
534 			vruntime = min_vruntime(vruntime, se->vruntime);
535 	}
536 
537 	/* ensure we never gain time by being placed backwards. */
538 	cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
539 #ifndef CONFIG_64BIT
540 	smp_wmb();
541 	cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
542 #endif
543 }
544 
545 /*
546  * Enqueue an entity into the rb-tree:
547  */
548 static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
549 {
550 	struct rb_node **link = &cfs_rq->tasks_timeline.rb_root.rb_node;
551 	struct rb_node *parent = NULL;
552 	struct sched_entity *entry;
553 	bool leftmost = true;
554 
555 	/*
556 	 * Find the right place in the rbtree:
557 	 */
558 	while (*link) {
559 		parent = *link;
560 		entry = rb_entry(parent, struct sched_entity, run_node);
561 		/*
562 		 * We dont care about collisions. Nodes with
563 		 * the same key stay together.
564 		 */
565 		if (entity_before(se, entry)) {
566 			link = &parent->rb_left;
567 		} else {
568 			link = &parent->rb_right;
569 			leftmost = false;
570 		}
571 	}
572 
573 	rb_link_node(&se->run_node, parent, link);
574 	rb_insert_color_cached(&se->run_node,
575 			       &cfs_rq->tasks_timeline, leftmost);
576 }
577 
578 static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
579 {
580 	rb_erase_cached(&se->run_node, &cfs_rq->tasks_timeline);
581 }
582 
583 struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
584 {
585 	struct rb_node *left = rb_first_cached(&cfs_rq->tasks_timeline);
586 
587 	if (!left)
588 		return NULL;
589 
590 	return rb_entry(left, struct sched_entity, run_node);
591 }
592 
593 static struct sched_entity *__pick_next_entity(struct sched_entity *se)
594 {
595 	struct rb_node *next = rb_next(&se->run_node);
596 
597 	if (!next)
598 		return NULL;
599 
600 	return rb_entry(next, struct sched_entity, run_node);
601 }
602 
603 #ifdef CONFIG_SCHED_DEBUG
604 struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
605 {
606 	struct rb_node *last = rb_last(&cfs_rq->tasks_timeline.rb_root);
607 
608 	if (!last)
609 		return NULL;
610 
611 	return rb_entry(last, struct sched_entity, run_node);
612 }
613 
614 /**************************************************************
615  * Scheduling class statistics methods:
616  */
617 
618 int sched_proc_update_handler(struct ctl_table *table, int write,
619 		void __user *buffer, size_t *lenp,
620 		loff_t *ppos)
621 {
622 	int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
623 	unsigned int factor = get_update_sysctl_factor();
624 
625 	if (ret || !write)
626 		return ret;
627 
628 	sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
629 					sysctl_sched_min_granularity);
630 
631 #define WRT_SYSCTL(name) \
632 	(normalized_sysctl_##name = sysctl_##name / (factor))
633 	WRT_SYSCTL(sched_min_granularity);
634 	WRT_SYSCTL(sched_latency);
635 	WRT_SYSCTL(sched_wakeup_granularity);
636 #undef WRT_SYSCTL
637 
638 	return 0;
639 }
640 #endif
641 
642 /*
643  * delta /= w
644  */
645 static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
646 {
647 	if (unlikely(se->load.weight != NICE_0_LOAD))
648 		delta = __calc_delta(delta, NICE_0_LOAD, &se->load);
649 
650 	return delta;
651 }
652 
653 /*
654  * The idea is to set a period in which each task runs once.
655  *
656  * When there are too many tasks (sched_nr_latency) we have to stretch
657  * this period because otherwise the slices get too small.
658  *
659  * p = (nr <= nl) ? l : l*nr/nl
660  */
661 static u64 __sched_period(unsigned long nr_running)
662 {
663 	if (unlikely(nr_running > sched_nr_latency))
664 		return nr_running * sysctl_sched_min_granularity;
665 	else
666 		return sysctl_sched_latency;
667 }
668 
669 /*
670  * We calculate the wall-time slice from the period by taking a part
671  * proportional to the weight.
672  *
673  * s = p*P[w/rw]
674  */
675 static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
676 {
677 	u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
678 
679 	for_each_sched_entity(se) {
680 		struct load_weight *load;
681 		struct load_weight lw;
682 
683 		cfs_rq = cfs_rq_of(se);
684 		load = &cfs_rq->load;
685 
686 		if (unlikely(!se->on_rq)) {
687 			lw = cfs_rq->load;
688 
689 			update_load_add(&lw, se->load.weight);
690 			load = &lw;
691 		}
692 		slice = __calc_delta(slice, se->load.weight, load);
693 	}
694 	return slice;
695 }
696 
697 /*
698  * We calculate the vruntime slice of a to-be-inserted task.
699  *
700  * vs = s/w
701  */
702 static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
703 {
704 	return calc_delta_fair(sched_slice(cfs_rq, se), se);
705 }
706 
707 #ifdef CONFIG_SMP
708 
709 #include "sched-pelt.h"
710 
711 static int select_idle_sibling(struct task_struct *p, int prev_cpu, int cpu);
712 static unsigned long task_h_load(struct task_struct *p);
713 
714 /* Give new sched_entity start runnable values to heavy its load in infant time */
715 void init_entity_runnable_average(struct sched_entity *se)
716 {
717 	struct sched_avg *sa = &se->avg;
718 
719 	sa->last_update_time = 0;
720 	/*
721 	 * sched_avg's period_contrib should be strictly less then 1024, so
722 	 * we give it 1023 to make sure it is almost a period (1024us), and
723 	 * will definitely be update (after enqueue).
724 	 */
725 	sa->period_contrib = 1023;
726 	/*
727 	 * Tasks are intialized with full load to be seen as heavy tasks until
728 	 * they get a chance to stabilize to their real load level.
729 	 * Group entities are intialized with zero load to reflect the fact that
730 	 * nothing has been attached to the task group yet.
731 	 */
732 	if (entity_is_task(se))
733 		sa->load_avg = scale_load_down(se->load.weight);
734 	sa->load_sum = sa->load_avg * LOAD_AVG_MAX;
735 	/*
736 	 * At this point, util_avg won't be used in select_task_rq_fair anyway
737 	 */
738 	sa->util_avg = 0;
739 	sa->util_sum = 0;
740 	/* when this task enqueue'ed, it will contribute to its cfs_rq's load_avg */
741 }
742 
743 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq);
744 static void attach_entity_cfs_rq(struct sched_entity *se);
745 
746 /*
747  * With new tasks being created, their initial util_avgs are extrapolated
748  * based on the cfs_rq's current util_avg:
749  *
750  *   util_avg = cfs_rq->util_avg / (cfs_rq->load_avg + 1) * se.load.weight
751  *
752  * However, in many cases, the above util_avg does not give a desired
753  * value. Moreover, the sum of the util_avgs may be divergent, such
754  * as when the series is a harmonic series.
755  *
756  * To solve this problem, we also cap the util_avg of successive tasks to
757  * only 1/2 of the left utilization budget:
758  *
759  *   util_avg_cap = (1024 - cfs_rq->avg.util_avg) / 2^n
760  *
761  * where n denotes the nth task.
762  *
763  * For example, a simplest series from the beginning would be like:
764  *
765  *  task  util_avg: 512, 256, 128,  64,  32,   16,    8, ...
766  * cfs_rq util_avg: 512, 768, 896, 960, 992, 1008, 1016, ...
767  *
768  * Finally, that extrapolated util_avg is clamped to the cap (util_avg_cap)
769  * if util_avg > util_avg_cap.
770  */
771 void post_init_entity_util_avg(struct sched_entity *se)
772 {
773 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
774 	struct sched_avg *sa = &se->avg;
775 	long cap = (long)(SCHED_CAPACITY_SCALE - cfs_rq->avg.util_avg) / 2;
776 
777 	if (cap > 0) {
778 		if (cfs_rq->avg.util_avg != 0) {
779 			sa->util_avg  = cfs_rq->avg.util_avg * se->load.weight;
780 			sa->util_avg /= (cfs_rq->avg.load_avg + 1);
781 
782 			if (sa->util_avg > cap)
783 				sa->util_avg = cap;
784 		} else {
785 			sa->util_avg = cap;
786 		}
787 		sa->util_sum = sa->util_avg * LOAD_AVG_MAX;
788 	}
789 
790 	if (entity_is_task(se)) {
791 		struct task_struct *p = task_of(se);
792 		if (p->sched_class != &fair_sched_class) {
793 			/*
794 			 * For !fair tasks do:
795 			 *
796 			update_cfs_rq_load_avg(now, cfs_rq);
797 			attach_entity_load_avg(cfs_rq, se);
798 			switched_from_fair(rq, p);
799 			 *
800 			 * such that the next switched_to_fair() has the
801 			 * expected state.
802 			 */
803 			se->avg.last_update_time = cfs_rq_clock_task(cfs_rq);
804 			return;
805 		}
806 	}
807 
808 	attach_entity_cfs_rq(se);
809 }
810 
811 #else /* !CONFIG_SMP */
812 void init_entity_runnable_average(struct sched_entity *se)
813 {
814 }
815 void post_init_entity_util_avg(struct sched_entity *se)
816 {
817 }
818 static void update_tg_load_avg(struct cfs_rq *cfs_rq, int force)
819 {
820 }
821 #endif /* CONFIG_SMP */
822 
823 /*
824  * Update the current task's runtime statistics.
825  */
826 static void update_curr(struct cfs_rq *cfs_rq)
827 {
828 	struct sched_entity *curr = cfs_rq->curr;
829 	u64 now = rq_clock_task(rq_of(cfs_rq));
830 	u64 delta_exec;
831 
832 	if (unlikely(!curr))
833 		return;
834 
835 	delta_exec = now - curr->exec_start;
836 	if (unlikely((s64)delta_exec <= 0))
837 		return;
838 
839 	curr->exec_start = now;
840 
841 	schedstat_set(curr->statistics.exec_max,
842 		      max(delta_exec, curr->statistics.exec_max));
843 
844 	curr->sum_exec_runtime += delta_exec;
845 	schedstat_add(cfs_rq->exec_clock, delta_exec);
846 
847 	curr->vruntime += calc_delta_fair(delta_exec, curr);
848 	update_min_vruntime(cfs_rq);
849 
850 	if (entity_is_task(curr)) {
851 		struct task_struct *curtask = task_of(curr);
852 
853 		trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
854 		cpuacct_charge(curtask, delta_exec);
855 		account_group_exec_runtime(curtask, delta_exec);
856 	}
857 
858 	account_cfs_rq_runtime(cfs_rq, delta_exec);
859 }
860 
861 static void update_curr_fair(struct rq *rq)
862 {
863 	update_curr(cfs_rq_of(&rq->curr->se));
864 }
865 
866 static inline void
867 update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
868 {
869 	u64 wait_start, prev_wait_start;
870 
871 	if (!schedstat_enabled())
872 		return;
873 
874 	wait_start = rq_clock(rq_of(cfs_rq));
875 	prev_wait_start = schedstat_val(se->statistics.wait_start);
876 
877 	if (entity_is_task(se) && task_on_rq_migrating(task_of(se)) &&
878 	    likely(wait_start > prev_wait_start))
879 		wait_start -= prev_wait_start;
880 
881 	schedstat_set(se->statistics.wait_start, wait_start);
882 }
883 
884 static inline void
885 update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
886 {
887 	struct task_struct *p;
888 	u64 delta;
889 
890 	if (!schedstat_enabled())
891 		return;
892 
893 	delta = rq_clock(rq_of(cfs_rq)) - schedstat_val(se->statistics.wait_start);
894 
895 	if (entity_is_task(se)) {
896 		p = task_of(se);
897 		if (task_on_rq_migrating(p)) {
898 			/*
899 			 * Preserve migrating task's wait time so wait_start
900 			 * time stamp can be adjusted to accumulate wait time
901 			 * prior to migration.
902 			 */
903 			schedstat_set(se->statistics.wait_start, delta);
904 			return;
905 		}
906 		trace_sched_stat_wait(p, delta);
907 	}
908 
909 	schedstat_set(se->statistics.wait_max,
910 		      max(schedstat_val(se->statistics.wait_max), delta));
911 	schedstat_inc(se->statistics.wait_count);
912 	schedstat_add(se->statistics.wait_sum, delta);
913 	schedstat_set(se->statistics.wait_start, 0);
914 }
915 
916 static inline void
917 update_stats_enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
918 {
919 	struct task_struct *tsk = NULL;
920 	u64 sleep_start, block_start;
921 
922 	if (!schedstat_enabled())
923 		return;
924 
925 	sleep_start = schedstat_val(se->statistics.sleep_start);
926 	block_start = schedstat_val(se->statistics.block_start);
927 
928 	if (entity_is_task(se))
929 		tsk = task_of(se);
930 
931 	if (sleep_start) {
932 		u64 delta = rq_clock(rq_of(cfs_rq)) - sleep_start;
933 
934 		if ((s64)delta < 0)
935 			delta = 0;
936 
937 		if (unlikely(delta > schedstat_val(se->statistics.sleep_max)))
938 			schedstat_set(se->statistics.sleep_max, delta);
939 
940 		schedstat_set(se->statistics.sleep_start, 0);
941 		schedstat_add(se->statistics.sum_sleep_runtime, delta);
942 
943 		if (tsk) {
944 			account_scheduler_latency(tsk, delta >> 10, 1);
945 			trace_sched_stat_sleep(tsk, delta);
946 		}
947 	}
948 	if (block_start) {
949 		u64 delta = rq_clock(rq_of(cfs_rq)) - block_start;
950 
951 		if ((s64)delta < 0)
952 			delta = 0;
953 
954 		if (unlikely(delta > schedstat_val(se->statistics.block_max)))
955 			schedstat_set(se->statistics.block_max, delta);
956 
957 		schedstat_set(se->statistics.block_start, 0);
958 		schedstat_add(se->statistics.sum_sleep_runtime, delta);
959 
960 		if (tsk) {
961 			if (tsk->in_iowait) {
962 				schedstat_add(se->statistics.iowait_sum, delta);
963 				schedstat_inc(se->statistics.iowait_count);
964 				trace_sched_stat_iowait(tsk, delta);
965 			}
966 
967 			trace_sched_stat_blocked(tsk, delta);
968 
969 			/*
970 			 * Blocking time is in units of nanosecs, so shift by
971 			 * 20 to get a milliseconds-range estimation of the
972 			 * amount of time that the task spent sleeping:
973 			 */
974 			if (unlikely(prof_on == SLEEP_PROFILING)) {
975 				profile_hits(SLEEP_PROFILING,
976 						(void *)get_wchan(tsk),
977 						delta >> 20);
978 			}
979 			account_scheduler_latency(tsk, delta >> 10, 0);
980 		}
981 	}
982 }
983 
984 /*
985  * Task is being enqueued - update stats:
986  */
987 static inline void
988 update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
989 {
990 	if (!schedstat_enabled())
991 		return;
992 
993 	/*
994 	 * Are we enqueueing a waiting task? (for current tasks
995 	 * a dequeue/enqueue event is a NOP)
996 	 */
997 	if (se != cfs_rq->curr)
998 		update_stats_wait_start(cfs_rq, se);
999 
1000 	if (flags & ENQUEUE_WAKEUP)
1001 		update_stats_enqueue_sleeper(cfs_rq, se);
1002 }
1003 
1004 static inline void
1005 update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
1006 {
1007 
1008 	if (!schedstat_enabled())
1009 		return;
1010 
1011 	/*
1012 	 * Mark the end of the wait period if dequeueing a
1013 	 * waiting task:
1014 	 */
1015 	if (se != cfs_rq->curr)
1016 		update_stats_wait_end(cfs_rq, se);
1017 
1018 	if ((flags & DEQUEUE_SLEEP) && entity_is_task(se)) {
1019 		struct task_struct *tsk = task_of(se);
1020 
1021 		if (tsk->state & TASK_INTERRUPTIBLE)
1022 			schedstat_set(se->statistics.sleep_start,
1023 				      rq_clock(rq_of(cfs_rq)));
1024 		if (tsk->state & TASK_UNINTERRUPTIBLE)
1025 			schedstat_set(se->statistics.block_start,
1026 				      rq_clock(rq_of(cfs_rq)));
1027 	}
1028 }
1029 
1030 /*
1031  * We are picking a new current task - update its stats:
1032  */
1033 static inline void
1034 update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
1035 {
1036 	/*
1037 	 * We are starting a new run period:
1038 	 */
1039 	se->exec_start = rq_clock_task(rq_of(cfs_rq));
1040 }
1041 
1042 /**************************************************
1043  * Scheduling class queueing methods:
1044  */
1045 
1046 #ifdef CONFIG_NUMA_BALANCING
1047 /*
1048  * Approximate time to scan a full NUMA task in ms. The task scan period is
1049  * calculated based on the tasks virtual memory size and
1050  * numa_balancing_scan_size.
1051  */
1052 unsigned int sysctl_numa_balancing_scan_period_min = 1000;
1053 unsigned int sysctl_numa_balancing_scan_period_max = 60000;
1054 
1055 /* Portion of address space to scan in MB */
1056 unsigned int sysctl_numa_balancing_scan_size = 256;
1057 
1058 /* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
1059 unsigned int sysctl_numa_balancing_scan_delay = 1000;
1060 
1061 struct numa_group {
1062 	atomic_t refcount;
1063 
1064 	spinlock_t lock; /* nr_tasks, tasks */
1065 	int nr_tasks;
1066 	pid_t gid;
1067 	int active_nodes;
1068 
1069 	struct rcu_head rcu;
1070 	unsigned long total_faults;
1071 	unsigned long max_faults_cpu;
1072 	/*
1073 	 * Faults_cpu is used to decide whether memory should move
1074 	 * towards the CPU. As a consequence, these stats are weighted
1075 	 * more by CPU use than by memory faults.
1076 	 */
1077 	unsigned long *faults_cpu;
1078 	unsigned long faults[0];
1079 };
1080 
1081 static inline unsigned long group_faults_priv(struct numa_group *ng);
1082 static inline unsigned long group_faults_shared(struct numa_group *ng);
1083 
1084 static unsigned int task_nr_scan_windows(struct task_struct *p)
1085 {
1086 	unsigned long rss = 0;
1087 	unsigned long nr_scan_pages;
1088 
1089 	/*
1090 	 * Calculations based on RSS as non-present and empty pages are skipped
1091 	 * by the PTE scanner and NUMA hinting faults should be trapped based
1092 	 * on resident pages
1093 	 */
1094 	nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
1095 	rss = get_mm_rss(p->mm);
1096 	if (!rss)
1097 		rss = nr_scan_pages;
1098 
1099 	rss = round_up(rss, nr_scan_pages);
1100 	return rss / nr_scan_pages;
1101 }
1102 
1103 /* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
1104 #define MAX_SCAN_WINDOW 2560
1105 
1106 static unsigned int task_scan_min(struct task_struct *p)
1107 {
1108 	unsigned int scan_size = READ_ONCE(sysctl_numa_balancing_scan_size);
1109 	unsigned int scan, floor;
1110 	unsigned int windows = 1;
1111 
1112 	if (scan_size < MAX_SCAN_WINDOW)
1113 		windows = MAX_SCAN_WINDOW / scan_size;
1114 	floor = 1000 / windows;
1115 
1116 	scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
1117 	return max_t(unsigned int, floor, scan);
1118 }
1119 
1120 static unsigned int task_scan_start(struct task_struct *p)
1121 {
1122 	unsigned long smin = task_scan_min(p);
1123 	unsigned long period = smin;
1124 
1125 	/* Scale the maximum scan period with the amount of shared memory. */
1126 	if (p->numa_group) {
1127 		struct numa_group *ng = p->numa_group;
1128 		unsigned long shared = group_faults_shared(ng);
1129 		unsigned long private = group_faults_priv(ng);
1130 
1131 		period *= atomic_read(&ng->refcount);
1132 		period *= shared + 1;
1133 		period /= private + shared + 1;
1134 	}
1135 
1136 	return max(smin, period);
1137 }
1138 
1139 static unsigned int task_scan_max(struct task_struct *p)
1140 {
1141 	unsigned long smin = task_scan_min(p);
1142 	unsigned long smax;
1143 
1144 	/* Watch for min being lower than max due to floor calculations */
1145 	smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
1146 
1147 	/* Scale the maximum scan period with the amount of shared memory. */
1148 	if (p->numa_group) {
1149 		struct numa_group *ng = p->numa_group;
1150 		unsigned long shared = group_faults_shared(ng);
1151 		unsigned long private = group_faults_priv(ng);
1152 		unsigned long period = smax;
1153 
1154 		period *= atomic_read(&ng->refcount);
1155 		period *= shared + 1;
1156 		period /= private + shared + 1;
1157 
1158 		smax = max(smax, period);
1159 	}
1160 
1161 	return max(smin, smax);
1162 }
1163 
1164 static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
1165 {
1166 	rq->nr_numa_running += (p->numa_preferred_nid != -1);
1167 	rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
1168 }
1169 
1170 static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
1171 {
1172 	rq->nr_numa_running -= (p->numa_preferred_nid != -1);
1173 	rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
1174 }
1175 
1176 /* Shared or private faults. */
1177 #define NR_NUMA_HINT_FAULT_TYPES 2
1178 
1179 /* Memory and CPU locality */
1180 #define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2)
1181 
1182 /* Averaged statistics, and temporary buffers. */
1183 #define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2)
1184 
1185 pid_t task_numa_group_id(struct task_struct *p)
1186 {
1187 	return p->numa_group ? p->numa_group->gid : 0;
1188 }
1189 
1190 /*
1191  * The averaged statistics, shared & private, memory & cpu,
1192  * occupy the first half of the array. The second half of the
1193  * array is for current counters, which are averaged into the
1194  * first set by task_numa_placement.
1195  */
1196 static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv)
1197 {
1198 	return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv;
1199 }
1200 
1201 static inline unsigned long task_faults(struct task_struct *p, int nid)
1202 {
1203 	if (!p->numa_faults)
1204 		return 0;
1205 
1206 	return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1207 		p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)];
1208 }
1209 
1210 static inline unsigned long group_faults(struct task_struct *p, int nid)
1211 {
1212 	if (!p->numa_group)
1213 		return 0;
1214 
1215 	return p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1216 		p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 1)];
1217 }
1218 
1219 static inline unsigned long group_faults_cpu(struct numa_group *group, int nid)
1220 {
1221 	return group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 0)] +
1222 		group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 1)];
1223 }
1224 
1225 static inline unsigned long group_faults_priv(struct numa_group *ng)
1226 {
1227 	unsigned long faults = 0;
1228 	int node;
1229 
1230 	for_each_online_node(node) {
1231 		faults += ng->faults[task_faults_idx(NUMA_MEM, node, 1)];
1232 	}
1233 
1234 	return faults;
1235 }
1236 
1237 static inline unsigned long group_faults_shared(struct numa_group *ng)
1238 {
1239 	unsigned long faults = 0;
1240 	int node;
1241 
1242 	for_each_online_node(node) {
1243 		faults += ng->faults[task_faults_idx(NUMA_MEM, node, 0)];
1244 	}
1245 
1246 	return faults;
1247 }
1248 
1249 /*
1250  * A node triggering more than 1/3 as many NUMA faults as the maximum is
1251  * considered part of a numa group's pseudo-interleaving set. Migrations
1252  * between these nodes are slowed down, to allow things to settle down.
1253  */
1254 #define ACTIVE_NODE_FRACTION 3
1255 
1256 static bool numa_is_active_node(int nid, struct numa_group *ng)
1257 {
1258 	return group_faults_cpu(ng, nid) * ACTIVE_NODE_FRACTION > ng->max_faults_cpu;
1259 }
1260 
1261 /* Handle placement on systems where not all nodes are directly connected. */
1262 static unsigned long score_nearby_nodes(struct task_struct *p, int nid,
1263 					int maxdist, bool task)
1264 {
1265 	unsigned long score = 0;
1266 	int node;
1267 
1268 	/*
1269 	 * All nodes are directly connected, and the same distance
1270 	 * from each other. No need for fancy placement algorithms.
1271 	 */
1272 	if (sched_numa_topology_type == NUMA_DIRECT)
1273 		return 0;
1274 
1275 	/*
1276 	 * This code is called for each node, introducing N^2 complexity,
1277 	 * which should be ok given the number of nodes rarely exceeds 8.
1278 	 */
1279 	for_each_online_node(node) {
1280 		unsigned long faults;
1281 		int dist = node_distance(nid, node);
1282 
1283 		/*
1284 		 * The furthest away nodes in the system are not interesting
1285 		 * for placement; nid was already counted.
1286 		 */
1287 		if (dist == sched_max_numa_distance || node == nid)
1288 			continue;
1289 
1290 		/*
1291 		 * On systems with a backplane NUMA topology, compare groups
1292 		 * of nodes, and move tasks towards the group with the most
1293 		 * memory accesses. When comparing two nodes at distance
1294 		 * "hoplimit", only nodes closer by than "hoplimit" are part
1295 		 * of each group. Skip other nodes.
1296 		 */
1297 		if (sched_numa_topology_type == NUMA_BACKPLANE &&
1298 					dist > maxdist)
1299 			continue;
1300 
1301 		/* Add up the faults from nearby nodes. */
1302 		if (task)
1303 			faults = task_faults(p, node);
1304 		else
1305 			faults = group_faults(p, node);
1306 
1307 		/*
1308 		 * On systems with a glueless mesh NUMA topology, there are
1309 		 * no fixed "groups of nodes". Instead, nodes that are not
1310 		 * directly connected bounce traffic through intermediate
1311 		 * nodes; a numa_group can occupy any set of nodes.
1312 		 * The further away a node is, the less the faults count.
1313 		 * This seems to result in good task placement.
1314 		 */
1315 		if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
1316 			faults *= (sched_max_numa_distance - dist);
1317 			faults /= (sched_max_numa_distance - LOCAL_DISTANCE);
1318 		}
1319 
1320 		score += faults;
1321 	}
1322 
1323 	return score;
1324 }
1325 
1326 /*
1327  * These return the fraction of accesses done by a particular task, or
1328  * task group, on a particular numa node.  The group weight is given a
1329  * larger multiplier, in order to group tasks together that are almost
1330  * evenly spread out between numa nodes.
1331  */
1332 static inline unsigned long task_weight(struct task_struct *p, int nid,
1333 					int dist)
1334 {
1335 	unsigned long faults, total_faults;
1336 
1337 	if (!p->numa_faults)
1338 		return 0;
1339 
1340 	total_faults = p->total_numa_faults;
1341 
1342 	if (!total_faults)
1343 		return 0;
1344 
1345 	faults = task_faults(p, nid);
1346 	faults += score_nearby_nodes(p, nid, dist, true);
1347 
1348 	return 1000 * faults / total_faults;
1349 }
1350 
1351 static inline unsigned long group_weight(struct task_struct *p, int nid,
1352 					 int dist)
1353 {
1354 	unsigned long faults, total_faults;
1355 
1356 	if (!p->numa_group)
1357 		return 0;
1358 
1359 	total_faults = p->numa_group->total_faults;
1360 
1361 	if (!total_faults)
1362 		return 0;
1363 
1364 	faults = group_faults(p, nid);
1365 	faults += score_nearby_nodes(p, nid, dist, false);
1366 
1367 	return 1000 * faults / total_faults;
1368 }
1369 
1370 bool should_numa_migrate_memory(struct task_struct *p, struct page * page,
1371 				int src_nid, int dst_cpu)
1372 {
1373 	struct numa_group *ng = p->numa_group;
1374 	int dst_nid = cpu_to_node(dst_cpu);
1375 	int last_cpupid, this_cpupid;
1376 
1377 	this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid);
1378 
1379 	/*
1380 	 * Multi-stage node selection is used in conjunction with a periodic
1381 	 * migration fault to build a temporal task<->page relation. By using
1382 	 * a two-stage filter we remove short/unlikely relations.
1383 	 *
1384 	 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate
1385 	 * a task's usage of a particular page (n_p) per total usage of this
1386 	 * page (n_t) (in a given time-span) to a probability.
1387 	 *
1388 	 * Our periodic faults will sample this probability and getting the
1389 	 * same result twice in a row, given these samples are fully
1390 	 * independent, is then given by P(n)^2, provided our sample period
1391 	 * is sufficiently short compared to the usage pattern.
1392 	 *
1393 	 * This quadric squishes small probabilities, making it less likely we
1394 	 * act on an unlikely task<->page relation.
1395 	 */
1396 	last_cpupid = page_cpupid_xchg_last(page, this_cpupid);
1397 	if (!cpupid_pid_unset(last_cpupid) &&
1398 				cpupid_to_nid(last_cpupid) != dst_nid)
1399 		return false;
1400 
1401 	/* Always allow migrate on private faults */
1402 	if (cpupid_match_pid(p, last_cpupid))
1403 		return true;
1404 
1405 	/* A shared fault, but p->numa_group has not been set up yet. */
1406 	if (!ng)
1407 		return true;
1408 
1409 	/*
1410 	 * Destination node is much more heavily used than the source
1411 	 * node? Allow migration.
1412 	 */
1413 	if (group_faults_cpu(ng, dst_nid) > group_faults_cpu(ng, src_nid) *
1414 					ACTIVE_NODE_FRACTION)
1415 		return true;
1416 
1417 	/*
1418 	 * Distribute memory according to CPU & memory use on each node,
1419 	 * with 3/4 hysteresis to avoid unnecessary memory migrations:
1420 	 *
1421 	 * faults_cpu(dst)   3   faults_cpu(src)
1422 	 * --------------- * - > ---------------
1423 	 * faults_mem(dst)   4   faults_mem(src)
1424 	 */
1425 	return group_faults_cpu(ng, dst_nid) * group_faults(p, src_nid) * 3 >
1426 	       group_faults_cpu(ng, src_nid) * group_faults(p, dst_nid) * 4;
1427 }
1428 
1429 static unsigned long weighted_cpuload(struct rq *rq);
1430 static unsigned long source_load(int cpu, int type);
1431 static unsigned long target_load(int cpu, int type);
1432 static unsigned long capacity_of(int cpu);
1433 
1434 /* Cached statistics for all CPUs within a node */
1435 struct numa_stats {
1436 	unsigned long nr_running;
1437 	unsigned long load;
1438 
1439 	/* Total compute capacity of CPUs on a node */
1440 	unsigned long compute_capacity;
1441 
1442 	/* Approximate capacity in terms of runnable tasks on a node */
1443 	unsigned long task_capacity;
1444 	int has_free_capacity;
1445 };
1446 
1447 /*
1448  * XXX borrowed from update_sg_lb_stats
1449  */
1450 static void update_numa_stats(struct numa_stats *ns, int nid)
1451 {
1452 	int smt, cpu, cpus = 0;
1453 	unsigned long capacity;
1454 
1455 	memset(ns, 0, sizeof(*ns));
1456 	for_each_cpu(cpu, cpumask_of_node(nid)) {
1457 		struct rq *rq = cpu_rq(cpu);
1458 
1459 		ns->nr_running += rq->nr_running;
1460 		ns->load += weighted_cpuload(rq);
1461 		ns->compute_capacity += capacity_of(cpu);
1462 
1463 		cpus++;
1464 	}
1465 
1466 	/*
1467 	 * If we raced with hotplug and there are no CPUs left in our mask
1468 	 * the @ns structure is NULL'ed and task_numa_compare() will
1469 	 * not find this node attractive.
1470 	 *
1471 	 * We'll either bail at !has_free_capacity, or we'll detect a huge
1472 	 * imbalance and bail there.
1473 	 */
1474 	if (!cpus)
1475 		return;
1476 
1477 	/* smt := ceil(cpus / capacity), assumes: 1 < smt_power < 2 */
1478 	smt = DIV_ROUND_UP(SCHED_CAPACITY_SCALE * cpus, ns->compute_capacity);
1479 	capacity = cpus / smt; /* cores */
1480 
1481 	ns->task_capacity = min_t(unsigned, capacity,
1482 		DIV_ROUND_CLOSEST(ns->compute_capacity, SCHED_CAPACITY_SCALE));
1483 	ns->has_free_capacity = (ns->nr_running < ns->task_capacity);
1484 }
1485 
1486 struct task_numa_env {
1487 	struct task_struct *p;
1488 
1489 	int src_cpu, src_nid;
1490 	int dst_cpu, dst_nid;
1491 
1492 	struct numa_stats src_stats, dst_stats;
1493 
1494 	int imbalance_pct;
1495 	int dist;
1496 
1497 	struct task_struct *best_task;
1498 	long best_imp;
1499 	int best_cpu;
1500 };
1501 
1502 static void task_numa_assign(struct task_numa_env *env,
1503 			     struct task_struct *p, long imp)
1504 {
1505 	if (env->best_task)
1506 		put_task_struct(env->best_task);
1507 	if (p)
1508 		get_task_struct(p);
1509 
1510 	env->best_task = p;
1511 	env->best_imp = imp;
1512 	env->best_cpu = env->dst_cpu;
1513 }
1514 
1515 static bool load_too_imbalanced(long src_load, long dst_load,
1516 				struct task_numa_env *env)
1517 {
1518 	long imb, old_imb;
1519 	long orig_src_load, orig_dst_load;
1520 	long src_capacity, dst_capacity;
1521 
1522 	/*
1523 	 * The load is corrected for the CPU capacity available on each node.
1524 	 *
1525 	 * src_load        dst_load
1526 	 * ------------ vs ---------
1527 	 * src_capacity    dst_capacity
1528 	 */
1529 	src_capacity = env->src_stats.compute_capacity;
1530 	dst_capacity = env->dst_stats.compute_capacity;
1531 
1532 	/* We care about the slope of the imbalance, not the direction. */
1533 	if (dst_load < src_load)
1534 		swap(dst_load, src_load);
1535 
1536 	/* Is the difference below the threshold? */
1537 	imb = dst_load * src_capacity * 100 -
1538 	      src_load * dst_capacity * env->imbalance_pct;
1539 	if (imb <= 0)
1540 		return false;
1541 
1542 	/*
1543 	 * The imbalance is above the allowed threshold.
1544 	 * Compare it with the old imbalance.
1545 	 */
1546 	orig_src_load = env->src_stats.load;
1547 	orig_dst_load = env->dst_stats.load;
1548 
1549 	if (orig_dst_load < orig_src_load)
1550 		swap(orig_dst_load, orig_src_load);
1551 
1552 	old_imb = orig_dst_load * src_capacity * 100 -
1553 		  orig_src_load * dst_capacity * env->imbalance_pct;
1554 
1555 	/* Would this change make things worse? */
1556 	return (imb > old_imb);
1557 }
1558 
1559 /*
1560  * This checks if the overall compute and NUMA accesses of the system would
1561  * be improved if the source tasks was migrated to the target dst_cpu taking
1562  * into account that it might be best if task running on the dst_cpu should
1563  * be exchanged with the source task
1564  */
1565 static void task_numa_compare(struct task_numa_env *env,
1566 			      long taskimp, long groupimp)
1567 {
1568 	struct rq *src_rq = cpu_rq(env->src_cpu);
1569 	struct rq *dst_rq = cpu_rq(env->dst_cpu);
1570 	struct task_struct *cur;
1571 	long src_load, dst_load;
1572 	long load;
1573 	long imp = env->p->numa_group ? groupimp : taskimp;
1574 	long moveimp = imp;
1575 	int dist = env->dist;
1576 
1577 	rcu_read_lock();
1578 	cur = task_rcu_dereference(&dst_rq->curr);
1579 	if (cur && ((cur->flags & PF_EXITING) || is_idle_task(cur)))
1580 		cur = NULL;
1581 
1582 	/*
1583 	 * Because we have preemption enabled we can get migrated around and
1584 	 * end try selecting ourselves (current == env->p) as a swap candidate.
1585 	 */
1586 	if (cur == env->p)
1587 		goto unlock;
1588 
1589 	/*
1590 	 * "imp" is the fault differential for the source task between the
1591 	 * source and destination node. Calculate the total differential for
1592 	 * the source task and potential destination task. The more negative
1593 	 * the value is, the more rmeote accesses that would be expected to
1594 	 * be incurred if the tasks were swapped.
1595 	 */
1596 	if (cur) {
1597 		/* Skip this swap candidate if cannot move to the source cpu */
1598 		if (!cpumask_test_cpu(env->src_cpu, &cur->cpus_allowed))
1599 			goto unlock;
1600 
1601 		/*
1602 		 * If dst and source tasks are in the same NUMA group, or not
1603 		 * in any group then look only at task weights.
1604 		 */
1605 		if (cur->numa_group == env->p->numa_group) {
1606 			imp = taskimp + task_weight(cur, env->src_nid, dist) -
1607 			      task_weight(cur, env->dst_nid, dist);
1608 			/*
1609 			 * Add some hysteresis to prevent swapping the
1610 			 * tasks within a group over tiny differences.
1611 			 */
1612 			if (cur->numa_group)
1613 				imp -= imp/16;
1614 		} else {
1615 			/*
1616 			 * Compare the group weights. If a task is all by
1617 			 * itself (not part of a group), use the task weight
1618 			 * instead.
1619 			 */
1620 			if (cur->numa_group)
1621 				imp += group_weight(cur, env->src_nid, dist) -
1622 				       group_weight(cur, env->dst_nid, dist);
1623 			else
1624 				imp += task_weight(cur, env->src_nid, dist) -
1625 				       task_weight(cur, env->dst_nid, dist);
1626 		}
1627 	}
1628 
1629 	if (imp <= env->best_imp && moveimp <= env->best_imp)
1630 		goto unlock;
1631 
1632 	if (!cur) {
1633 		/* Is there capacity at our destination? */
1634 		if (env->src_stats.nr_running <= env->src_stats.task_capacity &&
1635 		    !env->dst_stats.has_free_capacity)
1636 			goto unlock;
1637 
1638 		goto balance;
1639 	}
1640 
1641 	/* Balance doesn't matter much if we're running a task per cpu */
1642 	if (imp > env->best_imp && src_rq->nr_running == 1 &&
1643 			dst_rq->nr_running == 1)
1644 		goto assign;
1645 
1646 	/*
1647 	 * In the overloaded case, try and keep the load balanced.
1648 	 */
1649 balance:
1650 	load = task_h_load(env->p);
1651 	dst_load = env->dst_stats.load + load;
1652 	src_load = env->src_stats.load - load;
1653 
1654 	if (moveimp > imp && moveimp > env->best_imp) {
1655 		/*
1656 		 * If the improvement from just moving env->p direction is
1657 		 * better than swapping tasks around, check if a move is
1658 		 * possible. Store a slightly smaller score than moveimp,
1659 		 * so an actually idle CPU will win.
1660 		 */
1661 		if (!load_too_imbalanced(src_load, dst_load, env)) {
1662 			imp = moveimp - 1;
1663 			cur = NULL;
1664 			goto assign;
1665 		}
1666 	}
1667 
1668 	if (imp <= env->best_imp)
1669 		goto unlock;
1670 
1671 	if (cur) {
1672 		load = task_h_load(cur);
1673 		dst_load -= load;
1674 		src_load += load;
1675 	}
1676 
1677 	if (load_too_imbalanced(src_load, dst_load, env))
1678 		goto unlock;
1679 
1680 	/*
1681 	 * One idle CPU per node is evaluated for a task numa move.
1682 	 * Call select_idle_sibling to maybe find a better one.
1683 	 */
1684 	if (!cur) {
1685 		/*
1686 		 * select_idle_siblings() uses an per-cpu cpumask that
1687 		 * can be used from IRQ context.
1688 		 */
1689 		local_irq_disable();
1690 		env->dst_cpu = select_idle_sibling(env->p, env->src_cpu,
1691 						   env->dst_cpu);
1692 		local_irq_enable();
1693 	}
1694 
1695 assign:
1696 	task_numa_assign(env, cur, imp);
1697 unlock:
1698 	rcu_read_unlock();
1699 }
1700 
1701 static void task_numa_find_cpu(struct task_numa_env *env,
1702 				long taskimp, long groupimp)
1703 {
1704 	int cpu;
1705 
1706 	for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
1707 		/* Skip this CPU if the source task cannot migrate */
1708 		if (!cpumask_test_cpu(cpu, &env->p->cpus_allowed))
1709 			continue;
1710 
1711 		env->dst_cpu = cpu;
1712 		task_numa_compare(env, taskimp, groupimp);
1713 	}
1714 }
1715 
1716 /* Only move tasks to a NUMA node less busy than the current node. */
1717 static bool numa_has_capacity(struct task_numa_env *env)
1718 {
1719 	struct numa_stats *src = &env->src_stats;
1720 	struct numa_stats *dst = &env->dst_stats;
1721 
1722 	if (src->has_free_capacity && !dst->has_free_capacity)
1723 		return false;
1724 
1725 	/*
1726 	 * Only consider a task move if the source has a higher load
1727 	 * than the destination, corrected for CPU capacity on each node.
1728 	 *
1729 	 *      src->load                dst->load
1730 	 * --------------------- vs ---------------------
1731 	 * src->compute_capacity    dst->compute_capacity
1732 	 */
1733 	if (src->load * dst->compute_capacity * env->imbalance_pct >
1734 
1735 	    dst->load * src->compute_capacity * 100)
1736 		return true;
1737 
1738 	return false;
1739 }
1740 
1741 static int task_numa_migrate(struct task_struct *p)
1742 {
1743 	struct task_numa_env env = {
1744 		.p = p,
1745 
1746 		.src_cpu = task_cpu(p),
1747 		.src_nid = task_node(p),
1748 
1749 		.imbalance_pct = 112,
1750 
1751 		.best_task = NULL,
1752 		.best_imp = 0,
1753 		.best_cpu = -1,
1754 	};
1755 	struct sched_domain *sd;
1756 	unsigned long taskweight, groupweight;
1757 	int nid, ret, dist;
1758 	long taskimp, groupimp;
1759 
1760 	/*
1761 	 * Pick the lowest SD_NUMA domain, as that would have the smallest
1762 	 * imbalance and would be the first to start moving tasks about.
1763 	 *
1764 	 * And we want to avoid any moving of tasks about, as that would create
1765 	 * random movement of tasks -- counter the numa conditions we're trying
1766 	 * to satisfy here.
1767 	 */
1768 	rcu_read_lock();
1769 	sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
1770 	if (sd)
1771 		env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
1772 	rcu_read_unlock();
1773 
1774 	/*
1775 	 * Cpusets can break the scheduler domain tree into smaller
1776 	 * balance domains, some of which do not cross NUMA boundaries.
1777 	 * Tasks that are "trapped" in such domains cannot be migrated
1778 	 * elsewhere, so there is no point in (re)trying.
1779 	 */
1780 	if (unlikely(!sd)) {
1781 		p->numa_preferred_nid = task_node(p);
1782 		return -EINVAL;
1783 	}
1784 
1785 	env.dst_nid = p->numa_preferred_nid;
1786 	dist = env.dist = node_distance(env.src_nid, env.dst_nid);
1787 	taskweight = task_weight(p, env.src_nid, dist);
1788 	groupweight = group_weight(p, env.src_nid, dist);
1789 	update_numa_stats(&env.src_stats, env.src_nid);
1790 	taskimp = task_weight(p, env.dst_nid, dist) - taskweight;
1791 	groupimp = group_weight(p, env.dst_nid, dist) - groupweight;
1792 	update_numa_stats(&env.dst_stats, env.dst_nid);
1793 
1794 	/* Try to find a spot on the preferred nid. */
1795 	if (numa_has_capacity(&env))
1796 		task_numa_find_cpu(&env, taskimp, groupimp);
1797 
1798 	/*
1799 	 * Look at other nodes in these cases:
1800 	 * - there is no space available on the preferred_nid
1801 	 * - the task is part of a numa_group that is interleaved across
1802 	 *   multiple NUMA nodes; in order to better consolidate the group,
1803 	 *   we need to check other locations.
1804 	 */
1805 	if (env.best_cpu == -1 || (p->numa_group && p->numa_group->active_nodes > 1)) {
1806 		for_each_online_node(nid) {
1807 			if (nid == env.src_nid || nid == p->numa_preferred_nid)
1808 				continue;
1809 
1810 			dist = node_distance(env.src_nid, env.dst_nid);
1811 			if (sched_numa_topology_type == NUMA_BACKPLANE &&
1812 						dist != env.dist) {
1813 				taskweight = task_weight(p, env.src_nid, dist);
1814 				groupweight = group_weight(p, env.src_nid, dist);
1815 			}
1816 
1817 			/* Only consider nodes where both task and groups benefit */
1818 			taskimp = task_weight(p, nid, dist) - taskweight;
1819 			groupimp = group_weight(p, nid, dist) - groupweight;
1820 			if (taskimp < 0 && groupimp < 0)
1821 				continue;
1822 
1823 			env.dist = dist;
1824 			env.dst_nid = nid;
1825 			update_numa_stats(&env.dst_stats, env.dst_nid);
1826 			if (numa_has_capacity(&env))
1827 				task_numa_find_cpu(&env, taskimp, groupimp);
1828 		}
1829 	}
1830 
1831 	/*
1832 	 * If the task is part of a workload that spans multiple NUMA nodes,
1833 	 * and is migrating into one of the workload's active nodes, remember
1834 	 * this node as the task's preferred numa node, so the workload can
1835 	 * settle down.
1836 	 * A task that migrated to a second choice node will be better off
1837 	 * trying for a better one later. Do not set the preferred node here.
1838 	 */
1839 	if (p->numa_group) {
1840 		struct numa_group *ng = p->numa_group;
1841 
1842 		if (env.best_cpu == -1)
1843 			nid = env.src_nid;
1844 		else
1845 			nid = env.dst_nid;
1846 
1847 		if (ng->active_nodes > 1 && numa_is_active_node(env.dst_nid, ng))
1848 			sched_setnuma(p, env.dst_nid);
1849 	}
1850 
1851 	/* No better CPU than the current one was found. */
1852 	if (env.best_cpu == -1)
1853 		return -EAGAIN;
1854 
1855 	/*
1856 	 * Reset the scan period if the task is being rescheduled on an
1857 	 * alternative node to recheck if the tasks is now properly placed.
1858 	 */
1859 	p->numa_scan_period = task_scan_start(p);
1860 
1861 	if (env.best_task == NULL) {
1862 		ret = migrate_task_to(p, env.best_cpu);
1863 		if (ret != 0)
1864 			trace_sched_stick_numa(p, env.src_cpu, env.best_cpu);
1865 		return ret;
1866 	}
1867 
1868 	ret = migrate_swap(p, env.best_task);
1869 	if (ret != 0)
1870 		trace_sched_stick_numa(p, env.src_cpu, task_cpu(env.best_task));
1871 	put_task_struct(env.best_task);
1872 	return ret;
1873 }
1874 
1875 /* Attempt to migrate a task to a CPU on the preferred node. */
1876 static void numa_migrate_preferred(struct task_struct *p)
1877 {
1878 	unsigned long interval = HZ;
1879 
1880 	/* This task has no NUMA fault statistics yet */
1881 	if (unlikely(p->numa_preferred_nid == -1 || !p->numa_faults))
1882 		return;
1883 
1884 	/* Periodically retry migrating the task to the preferred node */
1885 	interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16);
1886 	p->numa_migrate_retry = jiffies + interval;
1887 
1888 	/* Success if task is already running on preferred CPU */
1889 	if (task_node(p) == p->numa_preferred_nid)
1890 		return;
1891 
1892 	/* Otherwise, try migrate to a CPU on the preferred node */
1893 	task_numa_migrate(p);
1894 }
1895 
1896 /*
1897  * Find out how many nodes on the workload is actively running on. Do this by
1898  * tracking the nodes from which NUMA hinting faults are triggered. This can
1899  * be different from the set of nodes where the workload's memory is currently
1900  * located.
1901  */
1902 static void numa_group_count_active_nodes(struct numa_group *numa_group)
1903 {
1904 	unsigned long faults, max_faults = 0;
1905 	int nid, active_nodes = 0;
1906 
1907 	for_each_online_node(nid) {
1908 		faults = group_faults_cpu(numa_group, nid);
1909 		if (faults > max_faults)
1910 			max_faults = faults;
1911 	}
1912 
1913 	for_each_online_node(nid) {
1914 		faults = group_faults_cpu(numa_group, nid);
1915 		if (faults * ACTIVE_NODE_FRACTION > max_faults)
1916 			active_nodes++;
1917 	}
1918 
1919 	numa_group->max_faults_cpu = max_faults;
1920 	numa_group->active_nodes = active_nodes;
1921 }
1922 
1923 /*
1924  * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
1925  * increments. The more local the fault statistics are, the higher the scan
1926  * period will be for the next scan window. If local/(local+remote) ratio is
1927  * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS)
1928  * the scan period will decrease. Aim for 70% local accesses.
1929  */
1930 #define NUMA_PERIOD_SLOTS 10
1931 #define NUMA_PERIOD_THRESHOLD 7
1932 
1933 /*
1934  * Increase the scan period (slow down scanning) if the majority of
1935  * our memory is already on our local node, or if the majority of
1936  * the page accesses are shared with other processes.
1937  * Otherwise, decrease the scan period.
1938  */
1939 static void update_task_scan_period(struct task_struct *p,
1940 			unsigned long shared, unsigned long private)
1941 {
1942 	unsigned int period_slot;
1943 	int lr_ratio, ps_ratio;
1944 	int diff;
1945 
1946 	unsigned long remote = p->numa_faults_locality[0];
1947 	unsigned long local = p->numa_faults_locality[1];
1948 
1949 	/*
1950 	 * If there were no record hinting faults then either the task is
1951 	 * completely idle or all activity is areas that are not of interest
1952 	 * to automatic numa balancing. Related to that, if there were failed
1953 	 * migration then it implies we are migrating too quickly or the local
1954 	 * node is overloaded. In either case, scan slower
1955 	 */
1956 	if (local + shared == 0 || p->numa_faults_locality[2]) {
1957 		p->numa_scan_period = min(p->numa_scan_period_max,
1958 			p->numa_scan_period << 1);
1959 
1960 		p->mm->numa_next_scan = jiffies +
1961 			msecs_to_jiffies(p->numa_scan_period);
1962 
1963 		return;
1964 	}
1965 
1966 	/*
1967 	 * Prepare to scale scan period relative to the current period.
1968 	 *	 == NUMA_PERIOD_THRESHOLD scan period stays the same
1969 	 *       <  NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
1970 	 *	 >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
1971 	 */
1972 	period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
1973 	lr_ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
1974 	ps_ratio = (private * NUMA_PERIOD_SLOTS) / (private + shared);
1975 
1976 	if (ps_ratio >= NUMA_PERIOD_THRESHOLD) {
1977 		/*
1978 		 * Most memory accesses are local. There is no need to
1979 		 * do fast NUMA scanning, since memory is already local.
1980 		 */
1981 		int slot = ps_ratio - NUMA_PERIOD_THRESHOLD;
1982 		if (!slot)
1983 			slot = 1;
1984 		diff = slot * period_slot;
1985 	} else if (lr_ratio >= NUMA_PERIOD_THRESHOLD) {
1986 		/*
1987 		 * Most memory accesses are shared with other tasks.
1988 		 * There is no point in continuing fast NUMA scanning,
1989 		 * since other tasks may just move the memory elsewhere.
1990 		 */
1991 		int slot = lr_ratio - NUMA_PERIOD_THRESHOLD;
1992 		if (!slot)
1993 			slot = 1;
1994 		diff = slot * period_slot;
1995 	} else {
1996 		/*
1997 		 * Private memory faults exceed (SLOTS-THRESHOLD)/SLOTS,
1998 		 * yet they are not on the local NUMA node. Speed up
1999 		 * NUMA scanning to get the memory moved over.
2000 		 */
2001 		int ratio = max(lr_ratio, ps_ratio);
2002 		diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;
2003 	}
2004 
2005 	p->numa_scan_period = clamp(p->numa_scan_period + diff,
2006 			task_scan_min(p), task_scan_max(p));
2007 	memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
2008 }
2009 
2010 /*
2011  * Get the fraction of time the task has been running since the last
2012  * NUMA placement cycle. The scheduler keeps similar statistics, but
2013  * decays those on a 32ms period, which is orders of magnitude off
2014  * from the dozens-of-seconds NUMA balancing period. Use the scheduler
2015  * stats only if the task is so new there are no NUMA statistics yet.
2016  */
2017 static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period)
2018 {
2019 	u64 runtime, delta, now;
2020 	/* Use the start of this time slice to avoid calculations. */
2021 	now = p->se.exec_start;
2022 	runtime = p->se.sum_exec_runtime;
2023 
2024 	if (p->last_task_numa_placement) {
2025 		delta = runtime - p->last_sum_exec_runtime;
2026 		*period = now - p->last_task_numa_placement;
2027 	} else {
2028 		delta = p->se.avg.load_sum / p->se.load.weight;
2029 		*period = LOAD_AVG_MAX;
2030 	}
2031 
2032 	p->last_sum_exec_runtime = runtime;
2033 	p->last_task_numa_placement = now;
2034 
2035 	return delta;
2036 }
2037 
2038 /*
2039  * Determine the preferred nid for a task in a numa_group. This needs to
2040  * be done in a way that produces consistent results with group_weight,
2041  * otherwise workloads might not converge.
2042  */
2043 static int preferred_group_nid(struct task_struct *p, int nid)
2044 {
2045 	nodemask_t nodes;
2046 	int dist;
2047 
2048 	/* Direct connections between all NUMA nodes. */
2049 	if (sched_numa_topology_type == NUMA_DIRECT)
2050 		return nid;
2051 
2052 	/*
2053 	 * On a system with glueless mesh NUMA topology, group_weight
2054 	 * scores nodes according to the number of NUMA hinting faults on
2055 	 * both the node itself, and on nearby nodes.
2056 	 */
2057 	if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
2058 		unsigned long score, max_score = 0;
2059 		int node, max_node = nid;
2060 
2061 		dist = sched_max_numa_distance;
2062 
2063 		for_each_online_node(node) {
2064 			score = group_weight(p, node, dist);
2065 			if (score > max_score) {
2066 				max_score = score;
2067 				max_node = node;
2068 			}
2069 		}
2070 		return max_node;
2071 	}
2072 
2073 	/*
2074 	 * Finding the preferred nid in a system with NUMA backplane
2075 	 * interconnect topology is more involved. The goal is to locate
2076 	 * tasks from numa_groups near each other in the system, and
2077 	 * untangle workloads from different sides of the system. This requires
2078 	 * searching down the hierarchy of node groups, recursively searching
2079 	 * inside the highest scoring group of nodes. The nodemask tricks
2080 	 * keep the complexity of the search down.
2081 	 */
2082 	nodes = node_online_map;
2083 	for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) {
2084 		unsigned long max_faults = 0;
2085 		nodemask_t max_group = NODE_MASK_NONE;
2086 		int a, b;
2087 
2088 		/* Are there nodes at this distance from each other? */
2089 		if (!find_numa_distance(dist))
2090 			continue;
2091 
2092 		for_each_node_mask(a, nodes) {
2093 			unsigned long faults = 0;
2094 			nodemask_t this_group;
2095 			nodes_clear(this_group);
2096 
2097 			/* Sum group's NUMA faults; includes a==b case. */
2098 			for_each_node_mask(b, nodes) {
2099 				if (node_distance(a, b) < dist) {
2100 					faults += group_faults(p, b);
2101 					node_set(b, this_group);
2102 					node_clear(b, nodes);
2103 				}
2104 			}
2105 
2106 			/* Remember the top group. */
2107 			if (faults > max_faults) {
2108 				max_faults = faults;
2109 				max_group = this_group;
2110 				/*
2111 				 * subtle: at the smallest distance there is
2112 				 * just one node left in each "group", the
2113 				 * winner is the preferred nid.
2114 				 */
2115 				nid = a;
2116 			}
2117 		}
2118 		/* Next round, evaluate the nodes within max_group. */
2119 		if (!max_faults)
2120 			break;
2121 		nodes = max_group;
2122 	}
2123 	return nid;
2124 }
2125 
2126 static void task_numa_placement(struct task_struct *p)
2127 {
2128 	int seq, nid, max_nid = -1, max_group_nid = -1;
2129 	unsigned long max_faults = 0, max_group_faults = 0;
2130 	unsigned long fault_types[2] = { 0, 0 };
2131 	unsigned long total_faults;
2132 	u64 runtime, period;
2133 	spinlock_t *group_lock = NULL;
2134 
2135 	/*
2136 	 * The p->mm->numa_scan_seq field gets updated without
2137 	 * exclusive access. Use READ_ONCE() here to ensure
2138 	 * that the field is read in a single access:
2139 	 */
2140 	seq = READ_ONCE(p->mm->numa_scan_seq);
2141 	if (p->numa_scan_seq == seq)
2142 		return;
2143 	p->numa_scan_seq = seq;
2144 	p->numa_scan_period_max = task_scan_max(p);
2145 
2146 	total_faults = p->numa_faults_locality[0] +
2147 		       p->numa_faults_locality[1];
2148 	runtime = numa_get_avg_runtime(p, &period);
2149 
2150 	/* If the task is part of a group prevent parallel updates to group stats */
2151 	if (p->numa_group) {
2152 		group_lock = &p->numa_group->lock;
2153 		spin_lock_irq(group_lock);
2154 	}
2155 
2156 	/* Find the node with the highest number of faults */
2157 	for_each_online_node(nid) {
2158 		/* Keep track of the offsets in numa_faults array */
2159 		int mem_idx, membuf_idx, cpu_idx, cpubuf_idx;
2160 		unsigned long faults = 0, group_faults = 0;
2161 		int priv;
2162 
2163 		for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) {
2164 			long diff, f_diff, f_weight;
2165 
2166 			mem_idx = task_faults_idx(NUMA_MEM, nid, priv);
2167 			membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv);
2168 			cpu_idx = task_faults_idx(NUMA_CPU, nid, priv);
2169 			cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv);
2170 
2171 			/* Decay existing window, copy faults since last scan */
2172 			diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2;
2173 			fault_types[priv] += p->numa_faults[membuf_idx];
2174 			p->numa_faults[membuf_idx] = 0;
2175 
2176 			/*
2177 			 * Normalize the faults_from, so all tasks in a group
2178 			 * count according to CPU use, instead of by the raw
2179 			 * number of faults. Tasks with little runtime have
2180 			 * little over-all impact on throughput, and thus their
2181 			 * faults are less important.
2182 			 */
2183 			f_weight = div64_u64(runtime << 16, period + 1);
2184 			f_weight = (f_weight * p->numa_faults[cpubuf_idx]) /
2185 				   (total_faults + 1);
2186 			f_diff = f_weight - p->numa_faults[cpu_idx] / 2;
2187 			p->numa_faults[cpubuf_idx] = 0;
2188 
2189 			p->numa_faults[mem_idx] += diff;
2190 			p->numa_faults[cpu_idx] += f_diff;
2191 			faults += p->numa_faults[mem_idx];
2192 			p->total_numa_faults += diff;
2193 			if (p->numa_group) {
2194 				/*
2195 				 * safe because we can only change our own group
2196 				 *
2197 				 * mem_idx represents the offset for a given
2198 				 * nid and priv in a specific region because it
2199 				 * is at the beginning of the numa_faults array.
2200 				 */
2201 				p->numa_group->faults[mem_idx] += diff;
2202 				p->numa_group->faults_cpu[mem_idx] += f_diff;
2203 				p->numa_group->total_faults += diff;
2204 				group_faults += p->numa_group->faults[mem_idx];
2205 			}
2206 		}
2207 
2208 		if (faults > max_faults) {
2209 			max_faults = faults;
2210 			max_nid = nid;
2211 		}
2212 
2213 		if (group_faults > max_group_faults) {
2214 			max_group_faults = group_faults;
2215 			max_group_nid = nid;
2216 		}
2217 	}
2218 
2219 	update_task_scan_period(p, fault_types[0], fault_types[1]);
2220 
2221 	if (p->numa_group) {
2222 		numa_group_count_active_nodes(p->numa_group);
2223 		spin_unlock_irq(group_lock);
2224 		max_nid = preferred_group_nid(p, max_group_nid);
2225 	}
2226 
2227 	if (max_faults) {
2228 		/* Set the new preferred node */
2229 		if (max_nid != p->numa_preferred_nid)
2230 			sched_setnuma(p, max_nid);
2231 
2232 		if (task_node(p) != p->numa_preferred_nid)
2233 			numa_migrate_preferred(p);
2234 	}
2235 }
2236 
2237 static inline int get_numa_group(struct numa_group *grp)
2238 {
2239 	return atomic_inc_not_zero(&grp->refcount);
2240 }
2241 
2242 static inline void put_numa_group(struct numa_group *grp)
2243 {
2244 	if (atomic_dec_and_test(&grp->refcount))
2245 		kfree_rcu(grp, rcu);
2246 }
2247 
2248 static void task_numa_group(struct task_struct *p, int cpupid, int flags,
2249 			int *priv)
2250 {
2251 	struct numa_group *grp, *my_grp;
2252 	struct task_struct *tsk;
2253 	bool join = false;
2254 	int cpu = cpupid_to_cpu(cpupid);
2255 	int i;
2256 
2257 	if (unlikely(!p->numa_group)) {
2258 		unsigned int size = sizeof(struct numa_group) +
2259 				    4*nr_node_ids*sizeof(unsigned long);
2260 
2261 		grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
2262 		if (!grp)
2263 			return;
2264 
2265 		atomic_set(&grp->refcount, 1);
2266 		grp->active_nodes = 1;
2267 		grp->max_faults_cpu = 0;
2268 		spin_lock_init(&grp->lock);
2269 		grp->gid = p->pid;
2270 		/* Second half of the array tracks nids where faults happen */
2271 		grp->faults_cpu = grp->faults + NR_NUMA_HINT_FAULT_TYPES *
2272 						nr_node_ids;
2273 
2274 		for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
2275 			grp->faults[i] = p->numa_faults[i];
2276 
2277 		grp->total_faults = p->total_numa_faults;
2278 
2279 		grp->nr_tasks++;
2280 		rcu_assign_pointer(p->numa_group, grp);
2281 	}
2282 
2283 	rcu_read_lock();
2284 	tsk = READ_ONCE(cpu_rq(cpu)->curr);
2285 
2286 	if (!cpupid_match_pid(tsk, cpupid))
2287 		goto no_join;
2288 
2289 	grp = rcu_dereference(tsk->numa_group);
2290 	if (!grp)
2291 		goto no_join;
2292 
2293 	my_grp = p->numa_group;
2294 	if (grp == my_grp)
2295 		goto no_join;
2296 
2297 	/*
2298 	 * Only join the other group if its bigger; if we're the bigger group,
2299 	 * the other task will join us.
2300 	 */
2301 	if (my_grp->nr_tasks > grp->nr_tasks)
2302 		goto no_join;
2303 
2304 	/*
2305 	 * Tie-break on the grp address.
2306 	 */
2307 	if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
2308 		goto no_join;
2309 
2310 	/* Always join threads in the same process. */
2311 	if (tsk->mm == current->mm)
2312 		join = true;
2313 
2314 	/* Simple filter to avoid false positives due to PID collisions */
2315 	if (flags & TNF_SHARED)
2316 		join = true;
2317 
2318 	/* Update priv based on whether false sharing was detected */
2319 	*priv = !join;
2320 
2321 	if (join && !get_numa_group(grp))
2322 		goto no_join;
2323 
2324 	rcu_read_unlock();
2325 
2326 	if (!join)
2327 		return;
2328 
2329 	BUG_ON(irqs_disabled());
2330 	double_lock_irq(&my_grp->lock, &grp->lock);
2331 
2332 	for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) {
2333 		my_grp->faults[i] -= p->numa_faults[i];
2334 		grp->faults[i] += p->numa_faults[i];
2335 	}
2336 	my_grp->total_faults -= p->total_numa_faults;
2337 	grp->total_faults += p->total_numa_faults;
2338 
2339 	my_grp->nr_tasks--;
2340 	grp->nr_tasks++;
2341 
2342 	spin_unlock(&my_grp->lock);
2343 	spin_unlock_irq(&grp->lock);
2344 
2345 	rcu_assign_pointer(p->numa_group, grp);
2346 
2347 	put_numa_group(my_grp);
2348 	return;
2349 
2350 no_join:
2351 	rcu_read_unlock();
2352 	return;
2353 }
2354 
2355 void task_numa_free(struct task_struct *p)
2356 {
2357 	struct numa_group *grp = p->numa_group;
2358 	void *numa_faults = p->numa_faults;
2359 	unsigned long flags;
2360 	int i;
2361 
2362 	if (grp) {
2363 		spin_lock_irqsave(&grp->lock, flags);
2364 		for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
2365 			grp->faults[i] -= p->numa_faults[i];
2366 		grp->total_faults -= p->total_numa_faults;
2367 
2368 		grp->nr_tasks--;
2369 		spin_unlock_irqrestore(&grp->lock, flags);
2370 		RCU_INIT_POINTER(p->numa_group, NULL);
2371 		put_numa_group(grp);
2372 	}
2373 
2374 	p->numa_faults = NULL;
2375 	kfree(numa_faults);
2376 }
2377 
2378 /*
2379  * Got a PROT_NONE fault for a page on @node.
2380  */
2381 void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags)
2382 {
2383 	struct task_struct *p = current;
2384 	bool migrated = flags & TNF_MIGRATED;
2385 	int cpu_node = task_node(current);
2386 	int local = !!(flags & TNF_FAULT_LOCAL);
2387 	struct numa_group *ng;
2388 	int priv;
2389 
2390 	if (!static_branch_likely(&sched_numa_balancing))
2391 		return;
2392 
2393 	/* for example, ksmd faulting in a user's mm */
2394 	if (!p->mm)
2395 		return;
2396 
2397 	/* Allocate buffer to track faults on a per-node basis */
2398 	if (unlikely(!p->numa_faults)) {
2399 		int size = sizeof(*p->numa_faults) *
2400 			   NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids;
2401 
2402 		p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN);
2403 		if (!p->numa_faults)
2404 			return;
2405 
2406 		p->total_numa_faults = 0;
2407 		memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
2408 	}
2409 
2410 	/*
2411 	 * First accesses are treated as private, otherwise consider accesses
2412 	 * to be private if the accessing pid has not changed
2413 	 */
2414 	if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
2415 		priv = 1;
2416 	} else {
2417 		priv = cpupid_match_pid(p, last_cpupid);
2418 		if (!priv && !(flags & TNF_NO_GROUP))
2419 			task_numa_group(p, last_cpupid, flags, &priv);
2420 	}
2421 
2422 	/*
2423 	 * If a workload spans multiple NUMA nodes, a shared fault that
2424 	 * occurs wholly within the set of nodes that the workload is
2425 	 * actively using should be counted as local. This allows the
2426 	 * scan rate to slow down when a workload has settled down.
2427 	 */
2428 	ng = p->numa_group;
2429 	if (!priv && !local && ng && ng->active_nodes > 1 &&
2430 				numa_is_active_node(cpu_node, ng) &&
2431 				numa_is_active_node(mem_node, ng))
2432 		local = 1;
2433 
2434 	task_numa_placement(p);
2435 
2436 	/*
2437 	 * Retry task to preferred node migration periodically, in case it
2438 	 * case it previously failed, or the scheduler moved us.
2439 	 */
2440 	if (time_after(jiffies, p->numa_migrate_retry))
2441 		numa_migrate_preferred(p);
2442 
2443 	if (migrated)
2444 		p->numa_pages_migrated += pages;
2445 	if (flags & TNF_MIGRATE_FAIL)
2446 		p->numa_faults_locality[2] += pages;
2447 
2448 	p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages;
2449 	p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages;
2450 	p->numa_faults_locality[local] += pages;
2451 }
2452 
2453 static void reset_ptenuma_scan(struct task_struct *p)
2454 {
2455 	/*
2456 	 * We only did a read acquisition of the mmap sem, so
2457 	 * p->mm->numa_scan_seq is written to without exclusive access
2458 	 * and the update is not guaranteed to be atomic. That's not
2459 	 * much of an issue though, since this is just used for
2460 	 * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not
2461 	 * expensive, to avoid any form of compiler optimizations:
2462 	 */
2463 	WRITE_ONCE(p->mm->numa_scan_seq, READ_ONCE(p->mm->numa_scan_seq) + 1);
2464 	p->mm->numa_scan_offset = 0;
2465 }
2466 
2467 /*
2468  * The expensive part of numa migration is done from task_work context.
2469  * Triggered from task_tick_numa().
2470  */
2471 void task_numa_work(struct callback_head *work)
2472 {
2473 	unsigned long migrate, next_scan, now = jiffies;
2474 	struct task_struct *p = current;
2475 	struct mm_struct *mm = p->mm;
2476 	u64 runtime = p->se.sum_exec_runtime;
2477 	struct vm_area_struct *vma;
2478 	unsigned long start, end;
2479 	unsigned long nr_pte_updates = 0;
2480 	long pages, virtpages;
2481 
2482 	SCHED_WARN_ON(p != container_of(work, struct task_struct, numa_work));
2483 
2484 	work->next = work; /* protect against double add */
2485 	/*
2486 	 * Who cares about NUMA placement when they're dying.
2487 	 *
2488 	 * NOTE: make sure not to dereference p->mm before this check,
2489 	 * exit_task_work() happens _after_ exit_mm() so we could be called
2490 	 * without p->mm even though we still had it when we enqueued this
2491 	 * work.
2492 	 */
2493 	if (p->flags & PF_EXITING)
2494 		return;
2495 
2496 	if (!mm->numa_next_scan) {
2497 		mm->numa_next_scan = now +
2498 			msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
2499 	}
2500 
2501 	/*
2502 	 * Enforce maximal scan/migration frequency..
2503 	 */
2504 	migrate = mm->numa_next_scan;
2505 	if (time_before(now, migrate))
2506 		return;
2507 
2508 	if (p->numa_scan_period == 0) {
2509 		p->numa_scan_period_max = task_scan_max(p);
2510 		p->numa_scan_period = task_scan_start(p);
2511 	}
2512 
2513 	next_scan = now + msecs_to_jiffies(p->numa_scan_period);
2514 	if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
2515 		return;
2516 
2517 	/*
2518 	 * Delay this task enough that another task of this mm will likely win
2519 	 * the next time around.
2520 	 */
2521 	p->node_stamp += 2 * TICK_NSEC;
2522 
2523 	start = mm->numa_scan_offset;
2524 	pages = sysctl_numa_balancing_scan_size;
2525 	pages <<= 20 - PAGE_SHIFT; /* MB in pages */
2526 	virtpages = pages * 8;	   /* Scan up to this much virtual space */
2527 	if (!pages)
2528 		return;
2529 
2530 
2531 	if (!down_read_trylock(&mm->mmap_sem))
2532 		return;
2533 	vma = find_vma(mm, start);
2534 	if (!vma) {
2535 		reset_ptenuma_scan(p);
2536 		start = 0;
2537 		vma = mm->mmap;
2538 	}
2539 	for (; vma; vma = vma->vm_next) {
2540 		if (!vma_migratable(vma) || !vma_policy_mof(vma) ||
2541 			is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_MIXEDMAP)) {
2542 			continue;
2543 		}
2544 
2545 		/*
2546 		 * Shared library pages mapped by multiple processes are not
2547 		 * migrated as it is expected they are cache replicated. Avoid
2548 		 * hinting faults in read-only file-backed mappings or the vdso
2549 		 * as migrating the pages will be of marginal benefit.
2550 		 */
2551 		if (!vma->vm_mm ||
2552 		    (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ)))
2553 			continue;
2554 
2555 		/*
2556 		 * Skip inaccessible VMAs to avoid any confusion between
2557 		 * PROT_NONE and NUMA hinting ptes
2558 		 */
2559 		if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)))
2560 			continue;
2561 
2562 		do {
2563 			start = max(start, vma->vm_start);
2564 			end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
2565 			end = min(end, vma->vm_end);
2566 			nr_pte_updates = change_prot_numa(vma, start, end);
2567 
2568 			/*
2569 			 * Try to scan sysctl_numa_balancing_size worth of
2570 			 * hpages that have at least one present PTE that
2571 			 * is not already pte-numa. If the VMA contains
2572 			 * areas that are unused or already full of prot_numa
2573 			 * PTEs, scan up to virtpages, to skip through those
2574 			 * areas faster.
2575 			 */
2576 			if (nr_pte_updates)
2577 				pages -= (end - start) >> PAGE_SHIFT;
2578 			virtpages -= (end - start) >> PAGE_SHIFT;
2579 
2580 			start = end;
2581 			if (pages <= 0 || virtpages <= 0)
2582 				goto out;
2583 
2584 			cond_resched();
2585 		} while (end != vma->vm_end);
2586 	}
2587 
2588 out:
2589 	/*
2590 	 * It is possible to reach the end of the VMA list but the last few
2591 	 * VMAs are not guaranteed to the vma_migratable. If they are not, we
2592 	 * would find the !migratable VMA on the next scan but not reset the
2593 	 * scanner to the start so check it now.
2594 	 */
2595 	if (vma)
2596 		mm->numa_scan_offset = start;
2597 	else
2598 		reset_ptenuma_scan(p);
2599 	up_read(&mm->mmap_sem);
2600 
2601 	/*
2602 	 * Make sure tasks use at least 32x as much time to run other code
2603 	 * than they used here, to limit NUMA PTE scanning overhead to 3% max.
2604 	 * Usually update_task_scan_period slows down scanning enough; on an
2605 	 * overloaded system we need to limit overhead on a per task basis.
2606 	 */
2607 	if (unlikely(p->se.sum_exec_runtime != runtime)) {
2608 		u64 diff = p->se.sum_exec_runtime - runtime;
2609 		p->node_stamp += 32 * diff;
2610 	}
2611 }
2612 
2613 /*
2614  * Drive the periodic memory faults..
2615  */
2616 void task_tick_numa(struct rq *rq, struct task_struct *curr)
2617 {
2618 	struct callback_head *work = &curr->numa_work;
2619 	u64 period, now;
2620 
2621 	/*
2622 	 * We don't care about NUMA placement if we don't have memory.
2623 	 */
2624 	if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work)
2625 		return;
2626 
2627 	/*
2628 	 * Using runtime rather than walltime has the dual advantage that
2629 	 * we (mostly) drive the selection from busy threads and that the
2630 	 * task needs to have done some actual work before we bother with
2631 	 * NUMA placement.
2632 	 */
2633 	now = curr->se.sum_exec_runtime;
2634 	period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
2635 
2636 	if (now > curr->node_stamp + period) {
2637 		if (!curr->node_stamp)
2638 			curr->numa_scan_period = task_scan_start(curr);
2639 		curr->node_stamp += period;
2640 
2641 		if (!time_before(jiffies, curr->mm->numa_next_scan)) {
2642 			init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */
2643 			task_work_add(curr, work, true);
2644 		}
2645 	}
2646 }
2647 
2648 #else
2649 static void task_tick_numa(struct rq *rq, struct task_struct *curr)
2650 {
2651 }
2652 
2653 static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
2654 {
2655 }
2656 
2657 static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
2658 {
2659 }
2660 
2661 #endif /* CONFIG_NUMA_BALANCING */
2662 
2663 static void
2664 account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2665 {
2666 	update_load_add(&cfs_rq->load, se->load.weight);
2667 	if (!parent_entity(se))
2668 		update_load_add(&rq_of(cfs_rq)->load, se->load.weight);
2669 #ifdef CONFIG_SMP
2670 	if (entity_is_task(se)) {
2671 		struct rq *rq = rq_of(cfs_rq);
2672 
2673 		account_numa_enqueue(rq, task_of(se));
2674 		list_add(&se->group_node, &rq->cfs_tasks);
2675 	}
2676 #endif
2677 	cfs_rq->nr_running++;
2678 }
2679 
2680 static void
2681 account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2682 {
2683 	update_load_sub(&cfs_rq->load, se->load.weight);
2684 	if (!parent_entity(se))
2685 		update_load_sub(&rq_of(cfs_rq)->load, se->load.weight);
2686 #ifdef CONFIG_SMP
2687 	if (entity_is_task(se)) {
2688 		account_numa_dequeue(rq_of(cfs_rq), task_of(se));
2689 		list_del_init(&se->group_node);
2690 	}
2691 #endif
2692 	cfs_rq->nr_running--;
2693 }
2694 
2695 #ifdef CONFIG_FAIR_GROUP_SCHED
2696 # ifdef CONFIG_SMP
2697 static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
2698 {
2699 	long tg_weight, load, shares;
2700 
2701 	/*
2702 	 * This really should be: cfs_rq->avg.load_avg, but instead we use
2703 	 * cfs_rq->load.weight, which is its upper bound. This helps ramp up
2704 	 * the shares for small weight interactive tasks.
2705 	 */
2706 	load = scale_load_down(cfs_rq->load.weight);
2707 
2708 	tg_weight = atomic_long_read(&tg->load_avg);
2709 
2710 	/* Ensure tg_weight >= load */
2711 	tg_weight -= cfs_rq->tg_load_avg_contrib;
2712 	tg_weight += load;
2713 
2714 	shares = (tg->shares * load);
2715 	if (tg_weight)
2716 		shares /= tg_weight;
2717 
2718 	/*
2719 	 * MIN_SHARES has to be unscaled here to support per-CPU partitioning
2720 	 * of a group with small tg->shares value. It is a floor value which is
2721 	 * assigned as a minimum load.weight to the sched_entity representing
2722 	 * the group on a CPU.
2723 	 *
2724 	 * E.g. on 64-bit for a group with tg->shares of scale_load(15)=15*1024
2725 	 * on an 8-core system with 8 tasks each runnable on one CPU shares has
2726 	 * to be 15*1024*1/8=1920 instead of scale_load(MIN_SHARES)=2*1024. In
2727 	 * case no task is runnable on a CPU MIN_SHARES=2 should be returned
2728 	 * instead of 0.
2729 	 */
2730 	if (shares < MIN_SHARES)
2731 		shares = MIN_SHARES;
2732 	if (shares > tg->shares)
2733 		shares = tg->shares;
2734 
2735 	return shares;
2736 }
2737 # else /* CONFIG_SMP */
2738 static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
2739 {
2740 	return tg->shares;
2741 }
2742 # endif /* CONFIG_SMP */
2743 
2744 static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
2745 			    unsigned long weight)
2746 {
2747 	if (se->on_rq) {
2748 		/* commit outstanding execution time */
2749 		if (cfs_rq->curr == se)
2750 			update_curr(cfs_rq);
2751 		account_entity_dequeue(cfs_rq, se);
2752 	}
2753 
2754 	update_load_set(&se->load, weight);
2755 
2756 	if (se->on_rq)
2757 		account_entity_enqueue(cfs_rq, se);
2758 }
2759 
2760 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
2761 
2762 static void update_cfs_shares(struct sched_entity *se)
2763 {
2764 	struct cfs_rq *cfs_rq = group_cfs_rq(se);
2765 	struct task_group *tg;
2766 	long shares;
2767 
2768 	if (!cfs_rq)
2769 		return;
2770 
2771 	if (throttled_hierarchy(cfs_rq))
2772 		return;
2773 
2774 	tg = cfs_rq->tg;
2775 
2776 #ifndef CONFIG_SMP
2777 	if (likely(se->load.weight == tg->shares))
2778 		return;
2779 #endif
2780 	shares = calc_cfs_shares(cfs_rq, tg);
2781 
2782 	reweight_entity(cfs_rq_of(se), se, shares);
2783 }
2784 
2785 #else /* CONFIG_FAIR_GROUP_SCHED */
2786 static inline void update_cfs_shares(struct sched_entity *se)
2787 {
2788 }
2789 #endif /* CONFIG_FAIR_GROUP_SCHED */
2790 
2791 static inline void cfs_rq_util_change(struct cfs_rq *cfs_rq)
2792 {
2793 	struct rq *rq = rq_of(cfs_rq);
2794 
2795 	if (&rq->cfs == cfs_rq) {
2796 		/*
2797 		 * There are a few boundary cases this might miss but it should
2798 		 * get called often enough that that should (hopefully) not be
2799 		 * a real problem -- added to that it only calls on the local
2800 		 * CPU, so if we enqueue remotely we'll miss an update, but
2801 		 * the next tick/schedule should update.
2802 		 *
2803 		 * It will not get called when we go idle, because the idle
2804 		 * thread is a different class (!fair), nor will the utilization
2805 		 * number include things like RT tasks.
2806 		 *
2807 		 * As is, the util number is not freq-invariant (we'd have to
2808 		 * implement arch_scale_freq_capacity() for that).
2809 		 *
2810 		 * See cpu_util().
2811 		 */
2812 		cpufreq_update_util(rq, 0);
2813 	}
2814 }
2815 
2816 #ifdef CONFIG_SMP
2817 /*
2818  * Approximate:
2819  *   val * y^n,    where y^32 ~= 0.5 (~1 scheduling period)
2820  */
2821 static u64 decay_load(u64 val, u64 n)
2822 {
2823 	unsigned int local_n;
2824 
2825 	if (unlikely(n > LOAD_AVG_PERIOD * 63))
2826 		return 0;
2827 
2828 	/* after bounds checking we can collapse to 32-bit */
2829 	local_n = n;
2830 
2831 	/*
2832 	 * As y^PERIOD = 1/2, we can combine
2833 	 *    y^n = 1/2^(n/PERIOD) * y^(n%PERIOD)
2834 	 * With a look-up table which covers y^n (n<PERIOD)
2835 	 *
2836 	 * To achieve constant time decay_load.
2837 	 */
2838 	if (unlikely(local_n >= LOAD_AVG_PERIOD)) {
2839 		val >>= local_n / LOAD_AVG_PERIOD;
2840 		local_n %= LOAD_AVG_PERIOD;
2841 	}
2842 
2843 	val = mul_u64_u32_shr(val, runnable_avg_yN_inv[local_n], 32);
2844 	return val;
2845 }
2846 
2847 static u32 __accumulate_pelt_segments(u64 periods, u32 d1, u32 d3)
2848 {
2849 	u32 c1, c2, c3 = d3; /* y^0 == 1 */
2850 
2851 	/*
2852 	 * c1 = d1 y^p
2853 	 */
2854 	c1 = decay_load((u64)d1, periods);
2855 
2856 	/*
2857 	 *            p-1
2858 	 * c2 = 1024 \Sum y^n
2859 	 *            n=1
2860 	 *
2861 	 *              inf        inf
2862 	 *    = 1024 ( \Sum y^n - \Sum y^n - y^0 )
2863 	 *              n=0        n=p
2864 	 */
2865 	c2 = LOAD_AVG_MAX - decay_load(LOAD_AVG_MAX, periods) - 1024;
2866 
2867 	return c1 + c2 + c3;
2868 }
2869 
2870 #define cap_scale(v, s) ((v)*(s) >> SCHED_CAPACITY_SHIFT)
2871 
2872 /*
2873  * Accumulate the three separate parts of the sum; d1 the remainder
2874  * of the last (incomplete) period, d2 the span of full periods and d3
2875  * the remainder of the (incomplete) current period.
2876  *
2877  *           d1          d2           d3
2878  *           ^           ^            ^
2879  *           |           |            |
2880  *         |<->|<----------------->|<--->|
2881  * ... |---x---|------| ... |------|-----x (now)
2882  *
2883  *                           p-1
2884  * u' = (u + d1) y^p + 1024 \Sum y^n + d3 y^0
2885  *                           n=1
2886  *
2887  *    = u y^p +					(Step 1)
2888  *
2889  *                     p-1
2890  *      d1 y^p + 1024 \Sum y^n + d3 y^0		(Step 2)
2891  *                     n=1
2892  */
2893 static __always_inline u32
2894 accumulate_sum(u64 delta, int cpu, struct sched_avg *sa,
2895 	       unsigned long weight, int running, struct cfs_rq *cfs_rq)
2896 {
2897 	unsigned long scale_freq, scale_cpu;
2898 	u32 contrib = (u32)delta; /* p == 0 -> delta < 1024 */
2899 	u64 periods;
2900 
2901 	scale_freq = arch_scale_freq_capacity(NULL, cpu);
2902 	scale_cpu = arch_scale_cpu_capacity(NULL, cpu);
2903 
2904 	delta += sa->period_contrib;
2905 	periods = delta / 1024; /* A period is 1024us (~1ms) */
2906 
2907 	/*
2908 	 * Step 1: decay old *_sum if we crossed period boundaries.
2909 	 */
2910 	if (periods) {
2911 		sa->load_sum = decay_load(sa->load_sum, periods);
2912 		if (cfs_rq) {
2913 			cfs_rq->runnable_load_sum =
2914 				decay_load(cfs_rq->runnable_load_sum, periods);
2915 		}
2916 		sa->util_sum = decay_load((u64)(sa->util_sum), periods);
2917 
2918 		/*
2919 		 * Step 2
2920 		 */
2921 		delta %= 1024;
2922 		contrib = __accumulate_pelt_segments(periods,
2923 				1024 - sa->period_contrib, delta);
2924 	}
2925 	sa->period_contrib = delta;
2926 
2927 	contrib = cap_scale(contrib, scale_freq);
2928 	if (weight) {
2929 		sa->load_sum += weight * contrib;
2930 		if (cfs_rq)
2931 			cfs_rq->runnable_load_sum += weight * contrib;
2932 	}
2933 	if (running)
2934 		sa->util_sum += contrib * scale_cpu;
2935 
2936 	return periods;
2937 }
2938 
2939 /*
2940  * We can represent the historical contribution to runnable average as the
2941  * coefficients of a geometric series.  To do this we sub-divide our runnable
2942  * history into segments of approximately 1ms (1024us); label the segment that
2943  * occurred N-ms ago p_N, with p_0 corresponding to the current period, e.g.
2944  *
2945  * [<- 1024us ->|<- 1024us ->|<- 1024us ->| ...
2946  *      p0            p1           p2
2947  *     (now)       (~1ms ago)  (~2ms ago)
2948  *
2949  * Let u_i denote the fraction of p_i that the entity was runnable.
2950  *
2951  * We then designate the fractions u_i as our co-efficients, yielding the
2952  * following representation of historical load:
2953  *   u_0 + u_1*y + u_2*y^2 + u_3*y^3 + ...
2954  *
2955  * We choose y based on the with of a reasonably scheduling period, fixing:
2956  *   y^32 = 0.5
2957  *
2958  * This means that the contribution to load ~32ms ago (u_32) will be weighted
2959  * approximately half as much as the contribution to load within the last ms
2960  * (u_0).
2961  *
2962  * When a period "rolls over" and we have new u_0`, multiplying the previous
2963  * sum again by y is sufficient to update:
2964  *   load_avg = u_0` + y*(u_0 + u_1*y + u_2*y^2 + ... )
2965  *            = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1}]
2966  */
2967 static __always_inline int
2968 ___update_load_avg(u64 now, int cpu, struct sched_avg *sa,
2969 		  unsigned long weight, int running, struct cfs_rq *cfs_rq)
2970 {
2971 	u64 delta;
2972 
2973 	delta = now - sa->last_update_time;
2974 	/*
2975 	 * This should only happen when time goes backwards, which it
2976 	 * unfortunately does during sched clock init when we swap over to TSC.
2977 	 */
2978 	if ((s64)delta < 0) {
2979 		sa->last_update_time = now;
2980 		return 0;
2981 	}
2982 
2983 	/*
2984 	 * Use 1024ns as the unit of measurement since it's a reasonable
2985 	 * approximation of 1us and fast to compute.
2986 	 */
2987 	delta >>= 10;
2988 	if (!delta)
2989 		return 0;
2990 
2991 	sa->last_update_time += delta << 10;
2992 
2993 	/*
2994 	 * running is a subset of runnable (weight) so running can't be set if
2995 	 * runnable is clear. But there are some corner cases where the current
2996 	 * se has been already dequeued but cfs_rq->curr still points to it.
2997 	 * This means that weight will be 0 but not running for a sched_entity
2998 	 * but also for a cfs_rq if the latter becomes idle. As an example,
2999 	 * this happens during idle_balance() which calls
3000 	 * update_blocked_averages()
3001 	 */
3002 	if (!weight)
3003 		running = 0;
3004 
3005 	/*
3006 	 * Now we know we crossed measurement unit boundaries. The *_avg
3007 	 * accrues by two steps:
3008 	 *
3009 	 * Step 1: accumulate *_sum since last_update_time. If we haven't
3010 	 * crossed period boundaries, finish.
3011 	 */
3012 	if (!accumulate_sum(delta, cpu, sa, weight, running, cfs_rq))
3013 		return 0;
3014 
3015 	/*
3016 	 * Step 2: update *_avg.
3017 	 */
3018 	sa->load_avg = div_u64(sa->load_sum, LOAD_AVG_MAX - 1024 + sa->period_contrib);
3019 	if (cfs_rq) {
3020 		cfs_rq->runnable_load_avg =
3021 			div_u64(cfs_rq->runnable_load_sum, LOAD_AVG_MAX - 1024 + sa->period_contrib);
3022 	}
3023 	sa->util_avg = sa->util_sum / (LOAD_AVG_MAX - 1024 + sa->period_contrib);
3024 
3025 	return 1;
3026 }
3027 
3028 static int
3029 __update_load_avg_blocked_se(u64 now, int cpu, struct sched_entity *se)
3030 {
3031 	return ___update_load_avg(now, cpu, &se->avg, 0, 0, NULL);
3032 }
3033 
3034 static int
3035 __update_load_avg_se(u64 now, int cpu, struct cfs_rq *cfs_rq, struct sched_entity *se)
3036 {
3037 	return ___update_load_avg(now, cpu, &se->avg,
3038 				  se->on_rq * scale_load_down(se->load.weight),
3039 				  cfs_rq->curr == se, NULL);
3040 }
3041 
3042 static int
3043 __update_load_avg_cfs_rq(u64 now, int cpu, struct cfs_rq *cfs_rq)
3044 {
3045 	return ___update_load_avg(now, cpu, &cfs_rq->avg,
3046 			scale_load_down(cfs_rq->load.weight),
3047 			cfs_rq->curr != NULL, cfs_rq);
3048 }
3049 
3050 /*
3051  * Signed add and clamp on underflow.
3052  *
3053  * Explicitly do a load-store to ensure the intermediate value never hits
3054  * memory. This allows lockless observations without ever seeing the negative
3055  * values.
3056  */
3057 #define add_positive(_ptr, _val) do {                           \
3058 	typeof(_ptr) ptr = (_ptr);                              \
3059 	typeof(_val) val = (_val);                              \
3060 	typeof(*ptr) res, var = READ_ONCE(*ptr);                \
3061 								\
3062 	res = var + val;                                        \
3063 								\
3064 	if (val < 0 && res > var)                               \
3065 		res = 0;                                        \
3066 								\
3067 	WRITE_ONCE(*ptr, res);                                  \
3068 } while (0)
3069 
3070 #ifdef CONFIG_FAIR_GROUP_SCHED
3071 /**
3072  * update_tg_load_avg - update the tg's load avg
3073  * @cfs_rq: the cfs_rq whose avg changed
3074  * @force: update regardless of how small the difference
3075  *
3076  * This function 'ensures': tg->load_avg := \Sum tg->cfs_rq[]->avg.load.
3077  * However, because tg->load_avg is a global value there are performance
3078  * considerations.
3079  *
3080  * In order to avoid having to look at the other cfs_rq's, we use a
3081  * differential update where we store the last value we propagated. This in
3082  * turn allows skipping updates if the differential is 'small'.
3083  *
3084  * Updating tg's load_avg is necessary before update_cfs_share().
3085  */
3086 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force)
3087 {
3088 	long delta = cfs_rq->avg.load_avg - cfs_rq->tg_load_avg_contrib;
3089 
3090 	/*
3091 	 * No need to update load_avg for root_task_group as it is not used.
3092 	 */
3093 	if (cfs_rq->tg == &root_task_group)
3094 		return;
3095 
3096 	if (force || abs(delta) > cfs_rq->tg_load_avg_contrib / 64) {
3097 		atomic_long_add(delta, &cfs_rq->tg->load_avg);
3098 		cfs_rq->tg_load_avg_contrib = cfs_rq->avg.load_avg;
3099 	}
3100 }
3101 
3102 /*
3103  * Called within set_task_rq() right before setting a task's cpu. The
3104  * caller only guarantees p->pi_lock is held; no other assumptions,
3105  * including the state of rq->lock, should be made.
3106  */
3107 void set_task_rq_fair(struct sched_entity *se,
3108 		      struct cfs_rq *prev, struct cfs_rq *next)
3109 {
3110 	u64 p_last_update_time;
3111 	u64 n_last_update_time;
3112 
3113 	if (!sched_feat(ATTACH_AGE_LOAD))
3114 		return;
3115 
3116 	/*
3117 	 * We are supposed to update the task to "current" time, then its up to
3118 	 * date and ready to go to new CPU/cfs_rq. But we have difficulty in
3119 	 * getting what current time is, so simply throw away the out-of-date
3120 	 * time. This will result in the wakee task is less decayed, but giving
3121 	 * the wakee more load sounds not bad.
3122 	 */
3123 	if (!(se->avg.last_update_time && prev))
3124 		return;
3125 
3126 #ifndef CONFIG_64BIT
3127 	{
3128 		u64 p_last_update_time_copy;
3129 		u64 n_last_update_time_copy;
3130 
3131 		do {
3132 			p_last_update_time_copy = prev->load_last_update_time_copy;
3133 			n_last_update_time_copy = next->load_last_update_time_copy;
3134 
3135 			smp_rmb();
3136 
3137 			p_last_update_time = prev->avg.last_update_time;
3138 			n_last_update_time = next->avg.last_update_time;
3139 
3140 		} while (p_last_update_time != p_last_update_time_copy ||
3141 			 n_last_update_time != n_last_update_time_copy);
3142 	}
3143 #else
3144 	p_last_update_time = prev->avg.last_update_time;
3145 	n_last_update_time = next->avg.last_update_time;
3146 #endif
3147 	__update_load_avg_blocked_se(p_last_update_time, cpu_of(rq_of(prev)), se);
3148 	se->avg.last_update_time = n_last_update_time;
3149 }
3150 
3151 /* Take into account change of utilization of a child task group */
3152 static inline void
3153 update_tg_cfs_util(struct cfs_rq *cfs_rq, struct sched_entity *se)
3154 {
3155 	struct cfs_rq *gcfs_rq = group_cfs_rq(se);
3156 	long delta = gcfs_rq->avg.util_avg - se->avg.util_avg;
3157 
3158 	/* Nothing to update */
3159 	if (!delta)
3160 		return;
3161 
3162 	/* Set new sched_entity's utilization */
3163 	se->avg.util_avg = gcfs_rq->avg.util_avg;
3164 	se->avg.util_sum = se->avg.util_avg * LOAD_AVG_MAX;
3165 
3166 	/* Update parent cfs_rq utilization */
3167 	add_positive(&cfs_rq->avg.util_avg, delta);
3168 	cfs_rq->avg.util_sum = cfs_rq->avg.util_avg * LOAD_AVG_MAX;
3169 }
3170 
3171 /* Take into account change of load of a child task group */
3172 static inline void
3173 update_tg_cfs_load(struct cfs_rq *cfs_rq, struct sched_entity *se)
3174 {
3175 	struct cfs_rq *gcfs_rq = group_cfs_rq(se);
3176 	long delta, load = gcfs_rq->avg.load_avg;
3177 
3178 	/*
3179 	 * If the load of group cfs_rq is null, the load of the
3180 	 * sched_entity will also be null so we can skip the formula
3181 	 */
3182 	if (load) {
3183 		long tg_load;
3184 
3185 		/* Get tg's load and ensure tg_load > 0 */
3186 		tg_load = atomic_long_read(&gcfs_rq->tg->load_avg) + 1;
3187 
3188 		/* Ensure tg_load >= load and updated with current load*/
3189 		tg_load -= gcfs_rq->tg_load_avg_contrib;
3190 		tg_load += load;
3191 
3192 		/*
3193 		 * We need to compute a correction term in the case that the
3194 		 * task group is consuming more CPU than a task of equal
3195 		 * weight. A task with a weight equals to tg->shares will have
3196 		 * a load less or equal to scale_load_down(tg->shares).
3197 		 * Similarly, the sched_entities that represent the task group
3198 		 * at parent level, can't have a load higher than
3199 		 * scale_load_down(tg->shares). And the Sum of sched_entities'
3200 		 * load must be <= scale_load_down(tg->shares).
3201 		 */
3202 		if (tg_load > scale_load_down(gcfs_rq->tg->shares)) {
3203 			/* scale gcfs_rq's load into tg's shares*/
3204 			load *= scale_load_down(gcfs_rq->tg->shares);
3205 			load /= tg_load;
3206 		}
3207 	}
3208 
3209 	delta = load - se->avg.load_avg;
3210 
3211 	/* Nothing to update */
3212 	if (!delta)
3213 		return;
3214 
3215 	/* Set new sched_entity's load */
3216 	se->avg.load_avg = load;
3217 	se->avg.load_sum = se->avg.load_avg * LOAD_AVG_MAX;
3218 
3219 	/* Update parent cfs_rq load */
3220 	add_positive(&cfs_rq->avg.load_avg, delta);
3221 	cfs_rq->avg.load_sum = cfs_rq->avg.load_avg * LOAD_AVG_MAX;
3222 
3223 	/*
3224 	 * If the sched_entity is already enqueued, we also have to update the
3225 	 * runnable load avg.
3226 	 */
3227 	if (se->on_rq) {
3228 		/* Update parent cfs_rq runnable_load_avg */
3229 		add_positive(&cfs_rq->runnable_load_avg, delta);
3230 		cfs_rq->runnable_load_sum = cfs_rq->runnable_load_avg * LOAD_AVG_MAX;
3231 	}
3232 }
3233 
3234 static inline void set_tg_cfs_propagate(struct cfs_rq *cfs_rq)
3235 {
3236 	cfs_rq->propagate_avg = 1;
3237 }
3238 
3239 static inline int test_and_clear_tg_cfs_propagate(struct sched_entity *se)
3240 {
3241 	struct cfs_rq *cfs_rq = group_cfs_rq(se);
3242 
3243 	if (!cfs_rq->propagate_avg)
3244 		return 0;
3245 
3246 	cfs_rq->propagate_avg = 0;
3247 	return 1;
3248 }
3249 
3250 /* Update task and its cfs_rq load average */
3251 static inline int propagate_entity_load_avg(struct sched_entity *se)
3252 {
3253 	struct cfs_rq *cfs_rq;
3254 
3255 	if (entity_is_task(se))
3256 		return 0;
3257 
3258 	if (!test_and_clear_tg_cfs_propagate(se))
3259 		return 0;
3260 
3261 	cfs_rq = cfs_rq_of(se);
3262 
3263 	set_tg_cfs_propagate(cfs_rq);
3264 
3265 	update_tg_cfs_util(cfs_rq, se);
3266 	update_tg_cfs_load(cfs_rq, se);
3267 
3268 	return 1;
3269 }
3270 
3271 /*
3272  * Check if we need to update the load and the utilization of a blocked
3273  * group_entity:
3274  */
3275 static inline bool skip_blocked_update(struct sched_entity *se)
3276 {
3277 	struct cfs_rq *gcfs_rq = group_cfs_rq(se);
3278 
3279 	/*
3280 	 * If sched_entity still have not zero load or utilization, we have to
3281 	 * decay it:
3282 	 */
3283 	if (se->avg.load_avg || se->avg.util_avg)
3284 		return false;
3285 
3286 	/*
3287 	 * If there is a pending propagation, we have to update the load and
3288 	 * the utilization of the sched_entity:
3289 	 */
3290 	if (gcfs_rq->propagate_avg)
3291 		return false;
3292 
3293 	/*
3294 	 * Otherwise, the load and the utilization of the sched_entity is
3295 	 * already zero and there is no pending propagation, so it will be a
3296 	 * waste of time to try to decay it:
3297 	 */
3298 	return true;
3299 }
3300 
3301 #else /* CONFIG_FAIR_GROUP_SCHED */
3302 
3303 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force) {}
3304 
3305 static inline int propagate_entity_load_avg(struct sched_entity *se)
3306 {
3307 	return 0;
3308 }
3309 
3310 static inline void set_tg_cfs_propagate(struct cfs_rq *cfs_rq) {}
3311 
3312 #endif /* CONFIG_FAIR_GROUP_SCHED */
3313 
3314 /*
3315  * Unsigned subtract and clamp on underflow.
3316  *
3317  * Explicitly do a load-store to ensure the intermediate value never hits
3318  * memory. This allows lockless observations without ever seeing the negative
3319  * values.
3320  */
3321 #define sub_positive(_ptr, _val) do {				\
3322 	typeof(_ptr) ptr = (_ptr);				\
3323 	typeof(*ptr) val = (_val);				\
3324 	typeof(*ptr) res, var = READ_ONCE(*ptr);		\
3325 	res = var - val;					\
3326 	if (res > var)						\
3327 		res = 0;					\
3328 	WRITE_ONCE(*ptr, res);					\
3329 } while (0)
3330 
3331 /**
3332  * update_cfs_rq_load_avg - update the cfs_rq's load/util averages
3333  * @now: current time, as per cfs_rq_clock_task()
3334  * @cfs_rq: cfs_rq to update
3335  *
3336  * The cfs_rq avg is the direct sum of all its entities (blocked and runnable)
3337  * avg. The immediate corollary is that all (fair) tasks must be attached, see
3338  * post_init_entity_util_avg().
3339  *
3340  * cfs_rq->avg is used for task_h_load() and update_cfs_share() for example.
3341  *
3342  * Returns true if the load decayed or we removed load.
3343  *
3344  * Since both these conditions indicate a changed cfs_rq->avg.load we should
3345  * call update_tg_load_avg() when this function returns true.
3346  */
3347 static inline int
3348 update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq)
3349 {
3350 	struct sched_avg *sa = &cfs_rq->avg;
3351 	int decayed, removed_load = 0, removed_util = 0;
3352 
3353 	if (atomic_long_read(&cfs_rq->removed_load_avg)) {
3354 		s64 r = atomic_long_xchg(&cfs_rq->removed_load_avg, 0);
3355 		sub_positive(&sa->load_avg, r);
3356 		sub_positive(&sa->load_sum, r * LOAD_AVG_MAX);
3357 		removed_load = 1;
3358 		set_tg_cfs_propagate(cfs_rq);
3359 	}
3360 
3361 	if (atomic_long_read(&cfs_rq->removed_util_avg)) {
3362 		long r = atomic_long_xchg(&cfs_rq->removed_util_avg, 0);
3363 		sub_positive(&sa->util_avg, r);
3364 		sub_positive(&sa->util_sum, r * LOAD_AVG_MAX);
3365 		removed_util = 1;
3366 		set_tg_cfs_propagate(cfs_rq);
3367 	}
3368 
3369 	decayed = __update_load_avg_cfs_rq(now, cpu_of(rq_of(cfs_rq)), cfs_rq);
3370 
3371 #ifndef CONFIG_64BIT
3372 	smp_wmb();
3373 	cfs_rq->load_last_update_time_copy = sa->last_update_time;
3374 #endif
3375 
3376 	if (decayed || removed_util)
3377 		cfs_rq_util_change(cfs_rq);
3378 
3379 	return decayed || removed_load;
3380 }
3381 
3382 /*
3383  * Optional action to be done while updating the load average
3384  */
3385 #define UPDATE_TG	0x1
3386 #define SKIP_AGE_LOAD	0x2
3387 
3388 /* Update task and its cfs_rq load average */
3389 static inline void update_load_avg(struct sched_entity *se, int flags)
3390 {
3391 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
3392 	u64 now = cfs_rq_clock_task(cfs_rq);
3393 	struct rq *rq = rq_of(cfs_rq);
3394 	int cpu = cpu_of(rq);
3395 	int decayed;
3396 
3397 	/*
3398 	 * Track task load average for carrying it to new CPU after migrated, and
3399 	 * track group sched_entity load average for task_h_load calc in migration
3400 	 */
3401 	if (se->avg.last_update_time && !(flags & SKIP_AGE_LOAD))
3402 		__update_load_avg_se(now, cpu, cfs_rq, se);
3403 
3404 	decayed  = update_cfs_rq_load_avg(now, cfs_rq);
3405 	decayed |= propagate_entity_load_avg(se);
3406 
3407 	if (decayed && (flags & UPDATE_TG))
3408 		update_tg_load_avg(cfs_rq, 0);
3409 }
3410 
3411 /**
3412  * attach_entity_load_avg - attach this entity to its cfs_rq load avg
3413  * @cfs_rq: cfs_rq to attach to
3414  * @se: sched_entity to attach
3415  *
3416  * Must call update_cfs_rq_load_avg() before this, since we rely on
3417  * cfs_rq->avg.last_update_time being current.
3418  */
3419 static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3420 {
3421 	se->avg.last_update_time = cfs_rq->avg.last_update_time;
3422 	cfs_rq->avg.load_avg += se->avg.load_avg;
3423 	cfs_rq->avg.load_sum += se->avg.load_sum;
3424 	cfs_rq->avg.util_avg += se->avg.util_avg;
3425 	cfs_rq->avg.util_sum += se->avg.util_sum;
3426 	set_tg_cfs_propagate(cfs_rq);
3427 
3428 	cfs_rq_util_change(cfs_rq);
3429 }
3430 
3431 /**
3432  * detach_entity_load_avg - detach this entity from its cfs_rq load avg
3433  * @cfs_rq: cfs_rq to detach from
3434  * @se: sched_entity to detach
3435  *
3436  * Must call update_cfs_rq_load_avg() before this, since we rely on
3437  * cfs_rq->avg.last_update_time being current.
3438  */
3439 static void detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3440 {
3441 
3442 	sub_positive(&cfs_rq->avg.load_avg, se->avg.load_avg);
3443 	sub_positive(&cfs_rq->avg.load_sum, se->avg.load_sum);
3444 	sub_positive(&cfs_rq->avg.util_avg, se->avg.util_avg);
3445 	sub_positive(&cfs_rq->avg.util_sum, se->avg.util_sum);
3446 	set_tg_cfs_propagate(cfs_rq);
3447 
3448 	cfs_rq_util_change(cfs_rq);
3449 }
3450 
3451 /* Add the load generated by se into cfs_rq's load average */
3452 static inline void
3453 enqueue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3454 {
3455 	struct sched_avg *sa = &se->avg;
3456 
3457 	cfs_rq->runnable_load_avg += sa->load_avg;
3458 	cfs_rq->runnable_load_sum += sa->load_sum;
3459 
3460 	if (!sa->last_update_time) {
3461 		attach_entity_load_avg(cfs_rq, se);
3462 		update_tg_load_avg(cfs_rq, 0);
3463 	}
3464 }
3465 
3466 /* Remove the runnable load generated by se from cfs_rq's runnable load average */
3467 static inline void
3468 dequeue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3469 {
3470 	cfs_rq->runnable_load_avg =
3471 		max_t(long, cfs_rq->runnable_load_avg - se->avg.load_avg, 0);
3472 	cfs_rq->runnable_load_sum =
3473 		max_t(s64,  cfs_rq->runnable_load_sum - se->avg.load_sum, 0);
3474 }
3475 
3476 #ifndef CONFIG_64BIT
3477 static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
3478 {
3479 	u64 last_update_time_copy;
3480 	u64 last_update_time;
3481 
3482 	do {
3483 		last_update_time_copy = cfs_rq->load_last_update_time_copy;
3484 		smp_rmb();
3485 		last_update_time = cfs_rq->avg.last_update_time;
3486 	} while (last_update_time != last_update_time_copy);
3487 
3488 	return last_update_time;
3489 }
3490 #else
3491 static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
3492 {
3493 	return cfs_rq->avg.last_update_time;
3494 }
3495 #endif
3496 
3497 /*
3498  * Synchronize entity load avg of dequeued entity without locking
3499  * the previous rq.
3500  */
3501 void sync_entity_load_avg(struct sched_entity *se)
3502 {
3503 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
3504 	u64 last_update_time;
3505 
3506 	last_update_time = cfs_rq_last_update_time(cfs_rq);
3507 	__update_load_avg_blocked_se(last_update_time, cpu_of(rq_of(cfs_rq)), se);
3508 }
3509 
3510 /*
3511  * Task first catches up with cfs_rq, and then subtract
3512  * itself from the cfs_rq (task must be off the queue now).
3513  */
3514 void remove_entity_load_avg(struct sched_entity *se)
3515 {
3516 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
3517 
3518 	/*
3519 	 * tasks cannot exit without having gone through wake_up_new_task() ->
3520 	 * post_init_entity_util_avg() which will have added things to the
3521 	 * cfs_rq, so we can remove unconditionally.
3522 	 *
3523 	 * Similarly for groups, they will have passed through
3524 	 * post_init_entity_util_avg() before unregister_sched_fair_group()
3525 	 * calls this.
3526 	 */
3527 
3528 	sync_entity_load_avg(se);
3529 	atomic_long_add(se->avg.load_avg, &cfs_rq->removed_load_avg);
3530 	atomic_long_add(se->avg.util_avg, &cfs_rq->removed_util_avg);
3531 }
3532 
3533 static inline unsigned long cfs_rq_runnable_load_avg(struct cfs_rq *cfs_rq)
3534 {
3535 	return cfs_rq->runnable_load_avg;
3536 }
3537 
3538 static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq)
3539 {
3540 	return cfs_rq->avg.load_avg;
3541 }
3542 
3543 static int idle_balance(struct rq *this_rq, struct rq_flags *rf);
3544 
3545 #else /* CONFIG_SMP */
3546 
3547 static inline int
3548 update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq)
3549 {
3550 	return 0;
3551 }
3552 
3553 #define UPDATE_TG	0x0
3554 #define SKIP_AGE_LOAD	0x0
3555 
3556 static inline void update_load_avg(struct sched_entity *se, int not_used1)
3557 {
3558 	cfs_rq_util_change(cfs_rq_of(se));
3559 }
3560 
3561 static inline void
3562 enqueue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
3563 static inline void
3564 dequeue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
3565 static inline void remove_entity_load_avg(struct sched_entity *se) {}
3566 
3567 static inline void
3568 attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
3569 static inline void
3570 detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
3571 
3572 static inline int idle_balance(struct rq *rq, struct rq_flags *rf)
3573 {
3574 	return 0;
3575 }
3576 
3577 #endif /* CONFIG_SMP */
3578 
3579 static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
3580 {
3581 #ifdef CONFIG_SCHED_DEBUG
3582 	s64 d = se->vruntime - cfs_rq->min_vruntime;
3583 
3584 	if (d < 0)
3585 		d = -d;
3586 
3587 	if (d > 3*sysctl_sched_latency)
3588 		schedstat_inc(cfs_rq->nr_spread_over);
3589 #endif
3590 }
3591 
3592 static void
3593 place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
3594 {
3595 	u64 vruntime = cfs_rq->min_vruntime;
3596 
3597 	/*
3598 	 * The 'current' period is already promised to the current tasks,
3599 	 * however the extra weight of the new task will slow them down a
3600 	 * little, place the new task so that it fits in the slot that
3601 	 * stays open at the end.
3602 	 */
3603 	if (initial && sched_feat(START_DEBIT))
3604 		vruntime += sched_vslice(cfs_rq, se);
3605 
3606 	/* sleeps up to a single latency don't count. */
3607 	if (!initial) {
3608 		unsigned long thresh = sysctl_sched_latency;
3609 
3610 		/*
3611 		 * Halve their sleep time's effect, to allow
3612 		 * for a gentler effect of sleepers:
3613 		 */
3614 		if (sched_feat(GENTLE_FAIR_SLEEPERS))
3615 			thresh >>= 1;
3616 
3617 		vruntime -= thresh;
3618 	}
3619 
3620 	/* ensure we never gain time by being placed backwards. */
3621 	se->vruntime = max_vruntime(se->vruntime, vruntime);
3622 }
3623 
3624 static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
3625 
3626 static inline void check_schedstat_required(void)
3627 {
3628 #ifdef CONFIG_SCHEDSTATS
3629 	if (schedstat_enabled())
3630 		return;
3631 
3632 	/* Force schedstat enabled if a dependent tracepoint is active */
3633 	if (trace_sched_stat_wait_enabled()    ||
3634 			trace_sched_stat_sleep_enabled()   ||
3635 			trace_sched_stat_iowait_enabled()  ||
3636 			trace_sched_stat_blocked_enabled() ||
3637 			trace_sched_stat_runtime_enabled())  {
3638 		printk_deferred_once("Scheduler tracepoints stat_sleep, stat_iowait, "
3639 			     "stat_blocked and stat_runtime require the "
3640 			     "kernel parameter schedstats=enable or "
3641 			     "kernel.sched_schedstats=1\n");
3642 	}
3643 #endif
3644 }
3645 
3646 
3647 /*
3648  * MIGRATION
3649  *
3650  *	dequeue
3651  *	  update_curr()
3652  *	    update_min_vruntime()
3653  *	  vruntime -= min_vruntime
3654  *
3655  *	enqueue
3656  *	  update_curr()
3657  *	    update_min_vruntime()
3658  *	  vruntime += min_vruntime
3659  *
3660  * this way the vruntime transition between RQs is done when both
3661  * min_vruntime are up-to-date.
3662  *
3663  * WAKEUP (remote)
3664  *
3665  *	->migrate_task_rq_fair() (p->state == TASK_WAKING)
3666  *	  vruntime -= min_vruntime
3667  *
3668  *	enqueue
3669  *	  update_curr()
3670  *	    update_min_vruntime()
3671  *	  vruntime += min_vruntime
3672  *
3673  * this way we don't have the most up-to-date min_vruntime on the originating
3674  * CPU and an up-to-date min_vruntime on the destination CPU.
3675  */
3676 
3677 static void
3678 enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
3679 {
3680 	bool renorm = !(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_MIGRATED);
3681 	bool curr = cfs_rq->curr == se;
3682 
3683 	/*
3684 	 * If we're the current task, we must renormalise before calling
3685 	 * update_curr().
3686 	 */
3687 	if (renorm && curr)
3688 		se->vruntime += cfs_rq->min_vruntime;
3689 
3690 	update_curr(cfs_rq);
3691 
3692 	/*
3693 	 * Otherwise, renormalise after, such that we're placed at the current
3694 	 * moment in time, instead of some random moment in the past. Being
3695 	 * placed in the past could significantly boost this task to the
3696 	 * fairness detriment of existing tasks.
3697 	 */
3698 	if (renorm && !curr)
3699 		se->vruntime += cfs_rq->min_vruntime;
3700 
3701 	/*
3702 	 * When enqueuing a sched_entity, we must:
3703 	 *   - Update loads to have both entity and cfs_rq synced with now.
3704 	 *   - Add its load to cfs_rq->runnable_avg
3705 	 *   - For group_entity, update its weight to reflect the new share of
3706 	 *     its group cfs_rq
3707 	 *   - Add its new weight to cfs_rq->load.weight
3708 	 */
3709 	update_load_avg(se, UPDATE_TG);
3710 	enqueue_entity_load_avg(cfs_rq, se);
3711 	update_cfs_shares(se);
3712 	account_entity_enqueue(cfs_rq, se);
3713 
3714 	if (flags & ENQUEUE_WAKEUP)
3715 		place_entity(cfs_rq, se, 0);
3716 
3717 	check_schedstat_required();
3718 	update_stats_enqueue(cfs_rq, se, flags);
3719 	check_spread(cfs_rq, se);
3720 	if (!curr)
3721 		__enqueue_entity(cfs_rq, se);
3722 	se->on_rq = 1;
3723 
3724 	if (cfs_rq->nr_running == 1) {
3725 		list_add_leaf_cfs_rq(cfs_rq);
3726 		check_enqueue_throttle(cfs_rq);
3727 	}
3728 }
3729 
3730 static void __clear_buddies_last(struct sched_entity *se)
3731 {
3732 	for_each_sched_entity(se) {
3733 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
3734 		if (cfs_rq->last != se)
3735 			break;
3736 
3737 		cfs_rq->last = NULL;
3738 	}
3739 }
3740 
3741 static void __clear_buddies_next(struct sched_entity *se)
3742 {
3743 	for_each_sched_entity(se) {
3744 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
3745 		if (cfs_rq->next != se)
3746 			break;
3747 
3748 		cfs_rq->next = NULL;
3749 	}
3750 }
3751 
3752 static void __clear_buddies_skip(struct sched_entity *se)
3753 {
3754 	for_each_sched_entity(se) {
3755 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
3756 		if (cfs_rq->skip != se)
3757 			break;
3758 
3759 		cfs_rq->skip = NULL;
3760 	}
3761 }
3762 
3763 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
3764 {
3765 	if (cfs_rq->last == se)
3766 		__clear_buddies_last(se);
3767 
3768 	if (cfs_rq->next == se)
3769 		__clear_buddies_next(se);
3770 
3771 	if (cfs_rq->skip == se)
3772 		__clear_buddies_skip(se);
3773 }
3774 
3775 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
3776 
3777 static void
3778 dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
3779 {
3780 	/*
3781 	 * Update run-time statistics of the 'current'.
3782 	 */
3783 	update_curr(cfs_rq);
3784 
3785 	/*
3786 	 * When dequeuing a sched_entity, we must:
3787 	 *   - Update loads to have both entity and cfs_rq synced with now.
3788 	 *   - Substract its load from the cfs_rq->runnable_avg.
3789 	 *   - Substract its previous weight from cfs_rq->load.weight.
3790 	 *   - For group entity, update its weight to reflect the new share
3791 	 *     of its group cfs_rq.
3792 	 */
3793 	update_load_avg(se, UPDATE_TG);
3794 	dequeue_entity_load_avg(cfs_rq, se);
3795 
3796 	update_stats_dequeue(cfs_rq, se, flags);
3797 
3798 	clear_buddies(cfs_rq, se);
3799 
3800 	if (se != cfs_rq->curr)
3801 		__dequeue_entity(cfs_rq, se);
3802 	se->on_rq = 0;
3803 	account_entity_dequeue(cfs_rq, se);
3804 
3805 	/*
3806 	 * Normalize after update_curr(); which will also have moved
3807 	 * min_vruntime if @se is the one holding it back. But before doing
3808 	 * update_min_vruntime() again, which will discount @se's position and
3809 	 * can move min_vruntime forward still more.
3810 	 */
3811 	if (!(flags & DEQUEUE_SLEEP))
3812 		se->vruntime -= cfs_rq->min_vruntime;
3813 
3814 	/* return excess runtime on last dequeue */
3815 	return_cfs_rq_runtime(cfs_rq);
3816 
3817 	update_cfs_shares(se);
3818 
3819 	/*
3820 	 * Now advance min_vruntime if @se was the entity holding it back,
3821 	 * except when: DEQUEUE_SAVE && !DEQUEUE_MOVE, in this case we'll be
3822 	 * put back on, and if we advance min_vruntime, we'll be placed back
3823 	 * further than we started -- ie. we'll be penalized.
3824 	 */
3825 	if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) == DEQUEUE_SAVE)
3826 		update_min_vruntime(cfs_rq);
3827 }
3828 
3829 /*
3830  * Preempt the current task with a newly woken task if needed:
3831  */
3832 static void
3833 check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
3834 {
3835 	unsigned long ideal_runtime, delta_exec;
3836 	struct sched_entity *se;
3837 	s64 delta;
3838 
3839 	ideal_runtime = sched_slice(cfs_rq, curr);
3840 	delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
3841 	if (delta_exec > ideal_runtime) {
3842 		resched_curr(rq_of(cfs_rq));
3843 		/*
3844 		 * The current task ran long enough, ensure it doesn't get
3845 		 * re-elected due to buddy favours.
3846 		 */
3847 		clear_buddies(cfs_rq, curr);
3848 		return;
3849 	}
3850 
3851 	/*
3852 	 * Ensure that a task that missed wakeup preemption by a
3853 	 * narrow margin doesn't have to wait for a full slice.
3854 	 * This also mitigates buddy induced latencies under load.
3855 	 */
3856 	if (delta_exec < sysctl_sched_min_granularity)
3857 		return;
3858 
3859 	se = __pick_first_entity(cfs_rq);
3860 	delta = curr->vruntime - se->vruntime;
3861 
3862 	if (delta < 0)
3863 		return;
3864 
3865 	if (delta > ideal_runtime)
3866 		resched_curr(rq_of(cfs_rq));
3867 }
3868 
3869 static void
3870 set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
3871 {
3872 	/* 'current' is not kept within the tree. */
3873 	if (se->on_rq) {
3874 		/*
3875 		 * Any task has to be enqueued before it get to execute on
3876 		 * a CPU. So account for the time it spent waiting on the
3877 		 * runqueue.
3878 		 */
3879 		update_stats_wait_end(cfs_rq, se);
3880 		__dequeue_entity(cfs_rq, se);
3881 		update_load_avg(se, UPDATE_TG);
3882 	}
3883 
3884 	update_stats_curr_start(cfs_rq, se);
3885 	cfs_rq->curr = se;
3886 
3887 	/*
3888 	 * Track our maximum slice length, if the CPU's load is at
3889 	 * least twice that of our own weight (i.e. dont track it
3890 	 * when there are only lesser-weight tasks around):
3891 	 */
3892 	if (schedstat_enabled() && rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
3893 		schedstat_set(se->statistics.slice_max,
3894 			max((u64)schedstat_val(se->statistics.slice_max),
3895 			    se->sum_exec_runtime - se->prev_sum_exec_runtime));
3896 	}
3897 
3898 	se->prev_sum_exec_runtime = se->sum_exec_runtime;
3899 }
3900 
3901 static int
3902 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
3903 
3904 /*
3905  * Pick the next process, keeping these things in mind, in this order:
3906  * 1) keep things fair between processes/task groups
3907  * 2) pick the "next" process, since someone really wants that to run
3908  * 3) pick the "last" process, for cache locality
3909  * 4) do not run the "skip" process, if something else is available
3910  */
3911 static struct sched_entity *
3912 pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr)
3913 {
3914 	struct sched_entity *left = __pick_first_entity(cfs_rq);
3915 	struct sched_entity *se;
3916 
3917 	/*
3918 	 * If curr is set we have to see if its left of the leftmost entity
3919 	 * still in the tree, provided there was anything in the tree at all.
3920 	 */
3921 	if (!left || (curr && entity_before(curr, left)))
3922 		left = curr;
3923 
3924 	se = left; /* ideally we run the leftmost entity */
3925 
3926 	/*
3927 	 * Avoid running the skip buddy, if running something else can
3928 	 * be done without getting too unfair.
3929 	 */
3930 	if (cfs_rq->skip == se) {
3931 		struct sched_entity *second;
3932 
3933 		if (se == curr) {
3934 			second = __pick_first_entity(cfs_rq);
3935 		} else {
3936 			second = __pick_next_entity(se);
3937 			if (!second || (curr && entity_before(curr, second)))
3938 				second = curr;
3939 		}
3940 
3941 		if (second && wakeup_preempt_entity(second, left) < 1)
3942 			se = second;
3943 	}
3944 
3945 	/*
3946 	 * Prefer last buddy, try to return the CPU to a preempted task.
3947 	 */
3948 	if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
3949 		se = cfs_rq->last;
3950 
3951 	/*
3952 	 * Someone really wants this to run. If it's not unfair, run it.
3953 	 */
3954 	if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
3955 		se = cfs_rq->next;
3956 
3957 	clear_buddies(cfs_rq, se);
3958 
3959 	return se;
3960 }
3961 
3962 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
3963 
3964 static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
3965 {
3966 	/*
3967 	 * If still on the runqueue then deactivate_task()
3968 	 * was not called and update_curr() has to be done:
3969 	 */
3970 	if (prev->on_rq)
3971 		update_curr(cfs_rq);
3972 
3973 	/* throttle cfs_rqs exceeding runtime */
3974 	check_cfs_rq_runtime(cfs_rq);
3975 
3976 	check_spread(cfs_rq, prev);
3977 
3978 	if (prev->on_rq) {
3979 		update_stats_wait_start(cfs_rq, prev);
3980 		/* Put 'current' back into the tree. */
3981 		__enqueue_entity(cfs_rq, prev);
3982 		/* in !on_rq case, update occurred at dequeue */
3983 		update_load_avg(prev, 0);
3984 	}
3985 	cfs_rq->curr = NULL;
3986 }
3987 
3988 static void
3989 entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
3990 {
3991 	/*
3992 	 * Update run-time statistics of the 'current'.
3993 	 */
3994 	update_curr(cfs_rq);
3995 
3996 	/*
3997 	 * Ensure that runnable average is periodically updated.
3998 	 */
3999 	update_load_avg(curr, UPDATE_TG);
4000 	update_cfs_shares(curr);
4001 
4002 #ifdef CONFIG_SCHED_HRTICK
4003 	/*
4004 	 * queued ticks are scheduled to match the slice, so don't bother
4005 	 * validating it and just reschedule.
4006 	 */
4007 	if (queued) {
4008 		resched_curr(rq_of(cfs_rq));
4009 		return;
4010 	}
4011 	/*
4012 	 * don't let the period tick interfere with the hrtick preemption
4013 	 */
4014 	if (!sched_feat(DOUBLE_TICK) &&
4015 			hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
4016 		return;
4017 #endif
4018 
4019 	if (cfs_rq->nr_running > 1)
4020 		check_preempt_tick(cfs_rq, curr);
4021 }
4022 
4023 
4024 /**************************************************
4025  * CFS bandwidth control machinery
4026  */
4027 
4028 #ifdef CONFIG_CFS_BANDWIDTH
4029 
4030 #ifdef HAVE_JUMP_LABEL
4031 static struct static_key __cfs_bandwidth_used;
4032 
4033 static inline bool cfs_bandwidth_used(void)
4034 {
4035 	return static_key_false(&__cfs_bandwidth_used);
4036 }
4037 
4038 void cfs_bandwidth_usage_inc(void)
4039 {
4040 	static_key_slow_inc(&__cfs_bandwidth_used);
4041 }
4042 
4043 void cfs_bandwidth_usage_dec(void)
4044 {
4045 	static_key_slow_dec(&__cfs_bandwidth_used);
4046 }
4047 #else /* HAVE_JUMP_LABEL */
4048 static bool cfs_bandwidth_used(void)
4049 {
4050 	return true;
4051 }
4052 
4053 void cfs_bandwidth_usage_inc(void) {}
4054 void cfs_bandwidth_usage_dec(void) {}
4055 #endif /* HAVE_JUMP_LABEL */
4056 
4057 /*
4058  * default period for cfs group bandwidth.
4059  * default: 0.1s, units: nanoseconds
4060  */
4061 static inline u64 default_cfs_period(void)
4062 {
4063 	return 100000000ULL;
4064 }
4065 
4066 static inline u64 sched_cfs_bandwidth_slice(void)
4067 {
4068 	return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
4069 }
4070 
4071 /*
4072  * Replenish runtime according to assigned quota and update expiration time.
4073  * We use sched_clock_cpu directly instead of rq->clock to avoid adding
4074  * additional synchronization around rq->lock.
4075  *
4076  * requires cfs_b->lock
4077  */
4078 void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
4079 {
4080 	u64 now;
4081 
4082 	if (cfs_b->quota == RUNTIME_INF)
4083 		return;
4084 
4085 	now = sched_clock_cpu(smp_processor_id());
4086 	cfs_b->runtime = cfs_b->quota;
4087 	cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
4088 }
4089 
4090 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
4091 {
4092 	return &tg->cfs_bandwidth;
4093 }
4094 
4095 /* rq->task_clock normalized against any time this cfs_rq has spent throttled */
4096 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
4097 {
4098 	if (unlikely(cfs_rq->throttle_count))
4099 		return cfs_rq->throttled_clock_task - cfs_rq->throttled_clock_task_time;
4100 
4101 	return rq_clock_task(rq_of(cfs_rq)) - cfs_rq->throttled_clock_task_time;
4102 }
4103 
4104 /* returns 0 on failure to allocate runtime */
4105 static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4106 {
4107 	struct task_group *tg = cfs_rq->tg;
4108 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
4109 	u64 amount = 0, min_amount, expires;
4110 
4111 	/* note: this is a positive sum as runtime_remaining <= 0 */
4112 	min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;
4113 
4114 	raw_spin_lock(&cfs_b->lock);
4115 	if (cfs_b->quota == RUNTIME_INF)
4116 		amount = min_amount;
4117 	else {
4118 		start_cfs_bandwidth(cfs_b);
4119 
4120 		if (cfs_b->runtime > 0) {
4121 			amount = min(cfs_b->runtime, min_amount);
4122 			cfs_b->runtime -= amount;
4123 			cfs_b->idle = 0;
4124 		}
4125 	}
4126 	expires = cfs_b->runtime_expires;
4127 	raw_spin_unlock(&cfs_b->lock);
4128 
4129 	cfs_rq->runtime_remaining += amount;
4130 	/*
4131 	 * we may have advanced our local expiration to account for allowed
4132 	 * spread between our sched_clock and the one on which runtime was
4133 	 * issued.
4134 	 */
4135 	if ((s64)(expires - cfs_rq->runtime_expires) > 0)
4136 		cfs_rq->runtime_expires = expires;
4137 
4138 	return cfs_rq->runtime_remaining > 0;
4139 }
4140 
4141 /*
4142  * Note: This depends on the synchronization provided by sched_clock and the
4143  * fact that rq->clock snapshots this value.
4144  */
4145 static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4146 {
4147 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4148 
4149 	/* if the deadline is ahead of our clock, nothing to do */
4150 	if (likely((s64)(rq_clock(rq_of(cfs_rq)) - cfs_rq->runtime_expires) < 0))
4151 		return;
4152 
4153 	if (cfs_rq->runtime_remaining < 0)
4154 		return;
4155 
4156 	/*
4157 	 * If the local deadline has passed we have to consider the
4158 	 * possibility that our sched_clock is 'fast' and the global deadline
4159 	 * has not truly expired.
4160 	 *
4161 	 * Fortunately we can check determine whether this the case by checking
4162 	 * whether the global deadline has advanced. It is valid to compare
4163 	 * cfs_b->runtime_expires without any locks since we only care about
4164 	 * exact equality, so a partial write will still work.
4165 	 */
4166 
4167 	if (cfs_rq->runtime_expires != cfs_b->runtime_expires) {
4168 		/* extend local deadline, drift is bounded above by 2 ticks */
4169 		cfs_rq->runtime_expires += TICK_NSEC;
4170 	} else {
4171 		/* global deadline is ahead, expiration has passed */
4172 		cfs_rq->runtime_remaining = 0;
4173 	}
4174 }
4175 
4176 static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
4177 {
4178 	/* dock delta_exec before expiring quota (as it could span periods) */
4179 	cfs_rq->runtime_remaining -= delta_exec;
4180 	expire_cfs_rq_runtime(cfs_rq);
4181 
4182 	if (likely(cfs_rq->runtime_remaining > 0))
4183 		return;
4184 
4185 	/*
4186 	 * if we're unable to extend our runtime we resched so that the active
4187 	 * hierarchy can be throttled
4188 	 */
4189 	if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
4190 		resched_curr(rq_of(cfs_rq));
4191 }
4192 
4193 static __always_inline
4194 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
4195 {
4196 	if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
4197 		return;
4198 
4199 	__account_cfs_rq_runtime(cfs_rq, delta_exec);
4200 }
4201 
4202 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
4203 {
4204 	return cfs_bandwidth_used() && cfs_rq->throttled;
4205 }
4206 
4207 /* check whether cfs_rq, or any parent, is throttled */
4208 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
4209 {
4210 	return cfs_bandwidth_used() && cfs_rq->throttle_count;
4211 }
4212 
4213 /*
4214  * Ensure that neither of the group entities corresponding to src_cpu or
4215  * dest_cpu are members of a throttled hierarchy when performing group
4216  * load-balance operations.
4217  */
4218 static inline int throttled_lb_pair(struct task_group *tg,
4219 				    int src_cpu, int dest_cpu)
4220 {
4221 	struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
4222 
4223 	src_cfs_rq = tg->cfs_rq[src_cpu];
4224 	dest_cfs_rq = tg->cfs_rq[dest_cpu];
4225 
4226 	return throttled_hierarchy(src_cfs_rq) ||
4227 	       throttled_hierarchy(dest_cfs_rq);
4228 }
4229 
4230 /* updated child weight may affect parent so we have to do this bottom up */
4231 static int tg_unthrottle_up(struct task_group *tg, void *data)
4232 {
4233 	struct rq *rq = data;
4234 	struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
4235 
4236 	cfs_rq->throttle_count--;
4237 	if (!cfs_rq->throttle_count) {
4238 		/* adjust cfs_rq_clock_task() */
4239 		cfs_rq->throttled_clock_task_time += rq_clock_task(rq) -
4240 					     cfs_rq->throttled_clock_task;
4241 	}
4242 
4243 	return 0;
4244 }
4245 
4246 static int tg_throttle_down(struct task_group *tg, void *data)
4247 {
4248 	struct rq *rq = data;
4249 	struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
4250 
4251 	/* group is entering throttled state, stop time */
4252 	if (!cfs_rq->throttle_count)
4253 		cfs_rq->throttled_clock_task = rq_clock_task(rq);
4254 	cfs_rq->throttle_count++;
4255 
4256 	return 0;
4257 }
4258 
4259 static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
4260 {
4261 	struct rq *rq = rq_of(cfs_rq);
4262 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4263 	struct sched_entity *se;
4264 	long task_delta, dequeue = 1;
4265 	bool empty;
4266 
4267 	se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
4268 
4269 	/* freeze hierarchy runnable averages while throttled */
4270 	rcu_read_lock();
4271 	walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
4272 	rcu_read_unlock();
4273 
4274 	task_delta = cfs_rq->h_nr_running;
4275 	for_each_sched_entity(se) {
4276 		struct cfs_rq *qcfs_rq = cfs_rq_of(se);
4277 		/* throttled entity or throttle-on-deactivate */
4278 		if (!se->on_rq)
4279 			break;
4280 
4281 		if (dequeue)
4282 			dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
4283 		qcfs_rq->h_nr_running -= task_delta;
4284 
4285 		if (qcfs_rq->load.weight)
4286 			dequeue = 0;
4287 	}
4288 
4289 	if (!se)
4290 		sub_nr_running(rq, task_delta);
4291 
4292 	cfs_rq->throttled = 1;
4293 	cfs_rq->throttled_clock = rq_clock(rq);
4294 	raw_spin_lock(&cfs_b->lock);
4295 	empty = list_empty(&cfs_b->throttled_cfs_rq);
4296 
4297 	/*
4298 	 * Add to the _head_ of the list, so that an already-started
4299 	 * distribute_cfs_runtime will not see us
4300 	 */
4301 	list_add_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
4302 
4303 	/*
4304 	 * If we're the first throttled task, make sure the bandwidth
4305 	 * timer is running.
4306 	 */
4307 	if (empty)
4308 		start_cfs_bandwidth(cfs_b);
4309 
4310 	raw_spin_unlock(&cfs_b->lock);
4311 }
4312 
4313 void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
4314 {
4315 	struct rq *rq = rq_of(cfs_rq);
4316 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4317 	struct sched_entity *se;
4318 	int enqueue = 1;
4319 	long task_delta;
4320 
4321 	se = cfs_rq->tg->se[cpu_of(rq)];
4322 
4323 	cfs_rq->throttled = 0;
4324 
4325 	update_rq_clock(rq);
4326 
4327 	raw_spin_lock(&cfs_b->lock);
4328 	cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
4329 	list_del_rcu(&cfs_rq->throttled_list);
4330 	raw_spin_unlock(&cfs_b->lock);
4331 
4332 	/* update hierarchical throttle state */
4333 	walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
4334 
4335 	if (!cfs_rq->load.weight)
4336 		return;
4337 
4338 	task_delta = cfs_rq->h_nr_running;
4339 	for_each_sched_entity(se) {
4340 		if (se->on_rq)
4341 			enqueue = 0;
4342 
4343 		cfs_rq = cfs_rq_of(se);
4344 		if (enqueue)
4345 			enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
4346 		cfs_rq->h_nr_running += task_delta;
4347 
4348 		if (cfs_rq_throttled(cfs_rq))
4349 			break;
4350 	}
4351 
4352 	if (!se)
4353 		add_nr_running(rq, task_delta);
4354 
4355 	/* determine whether we need to wake up potentially idle cpu */
4356 	if (rq->curr == rq->idle && rq->cfs.nr_running)
4357 		resched_curr(rq);
4358 }
4359 
4360 static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
4361 		u64 remaining, u64 expires)
4362 {
4363 	struct cfs_rq *cfs_rq;
4364 	u64 runtime;
4365 	u64 starting_runtime = remaining;
4366 
4367 	rcu_read_lock();
4368 	list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
4369 				throttled_list) {
4370 		struct rq *rq = rq_of(cfs_rq);
4371 		struct rq_flags rf;
4372 
4373 		rq_lock(rq, &rf);
4374 		if (!cfs_rq_throttled(cfs_rq))
4375 			goto next;
4376 
4377 		runtime = -cfs_rq->runtime_remaining + 1;
4378 		if (runtime > remaining)
4379 			runtime = remaining;
4380 		remaining -= runtime;
4381 
4382 		cfs_rq->runtime_remaining += runtime;
4383 		cfs_rq->runtime_expires = expires;
4384 
4385 		/* we check whether we're throttled above */
4386 		if (cfs_rq->runtime_remaining > 0)
4387 			unthrottle_cfs_rq(cfs_rq);
4388 
4389 next:
4390 		rq_unlock(rq, &rf);
4391 
4392 		if (!remaining)
4393 			break;
4394 	}
4395 	rcu_read_unlock();
4396 
4397 	return starting_runtime - remaining;
4398 }
4399 
4400 /*
4401  * Responsible for refilling a task_group's bandwidth and unthrottling its
4402  * cfs_rqs as appropriate. If there has been no activity within the last
4403  * period the timer is deactivated until scheduling resumes; cfs_b->idle is
4404  * used to track this state.
4405  */
4406 static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
4407 {
4408 	u64 runtime, runtime_expires;
4409 	int throttled;
4410 
4411 	/* no need to continue the timer with no bandwidth constraint */
4412 	if (cfs_b->quota == RUNTIME_INF)
4413 		goto out_deactivate;
4414 
4415 	throttled = !list_empty(&cfs_b->throttled_cfs_rq);
4416 	cfs_b->nr_periods += overrun;
4417 
4418 	/*
4419 	 * idle depends on !throttled (for the case of a large deficit), and if
4420 	 * we're going inactive then everything else can be deferred
4421 	 */
4422 	if (cfs_b->idle && !throttled)
4423 		goto out_deactivate;
4424 
4425 	__refill_cfs_bandwidth_runtime(cfs_b);
4426 
4427 	if (!throttled) {
4428 		/* mark as potentially idle for the upcoming period */
4429 		cfs_b->idle = 1;
4430 		return 0;
4431 	}
4432 
4433 	/* account preceding periods in which throttling occurred */
4434 	cfs_b->nr_throttled += overrun;
4435 
4436 	runtime_expires = cfs_b->runtime_expires;
4437 
4438 	/*
4439 	 * This check is repeated as we are holding onto the new bandwidth while
4440 	 * we unthrottle. This can potentially race with an unthrottled group
4441 	 * trying to acquire new bandwidth from the global pool. This can result
4442 	 * in us over-using our runtime if it is all used during this loop, but
4443 	 * only by limited amounts in that extreme case.
4444 	 */
4445 	while (throttled && cfs_b->runtime > 0) {
4446 		runtime = cfs_b->runtime;
4447 		raw_spin_unlock(&cfs_b->lock);
4448 		/* we can't nest cfs_b->lock while distributing bandwidth */
4449 		runtime = distribute_cfs_runtime(cfs_b, runtime,
4450 						 runtime_expires);
4451 		raw_spin_lock(&cfs_b->lock);
4452 
4453 		throttled = !list_empty(&cfs_b->throttled_cfs_rq);
4454 
4455 		cfs_b->runtime -= min(runtime, cfs_b->runtime);
4456 	}
4457 
4458 	/*
4459 	 * While we are ensured activity in the period following an
4460 	 * unthrottle, this also covers the case in which the new bandwidth is
4461 	 * insufficient to cover the existing bandwidth deficit.  (Forcing the
4462 	 * timer to remain active while there are any throttled entities.)
4463 	 */
4464 	cfs_b->idle = 0;
4465 
4466 	return 0;
4467 
4468 out_deactivate:
4469 	return 1;
4470 }
4471 
4472 /* a cfs_rq won't donate quota below this amount */
4473 static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
4474 /* minimum remaining period time to redistribute slack quota */
4475 static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
4476 /* how long we wait to gather additional slack before distributing */
4477 static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
4478 
4479 /*
4480  * Are we near the end of the current quota period?
4481  *
4482  * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
4483  * hrtimer base being cleared by hrtimer_start. In the case of
4484  * migrate_hrtimers, base is never cleared, so we are fine.
4485  */
4486 static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
4487 {
4488 	struct hrtimer *refresh_timer = &cfs_b->period_timer;
4489 	u64 remaining;
4490 
4491 	/* if the call-back is running a quota refresh is already occurring */
4492 	if (hrtimer_callback_running(refresh_timer))
4493 		return 1;
4494 
4495 	/* is a quota refresh about to occur? */
4496 	remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
4497 	if (remaining < min_expire)
4498 		return 1;
4499 
4500 	return 0;
4501 }
4502 
4503 static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
4504 {
4505 	u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
4506 
4507 	/* if there's a quota refresh soon don't bother with slack */
4508 	if (runtime_refresh_within(cfs_b, min_left))
4509 		return;
4510 
4511 	hrtimer_start(&cfs_b->slack_timer,
4512 			ns_to_ktime(cfs_bandwidth_slack_period),
4513 			HRTIMER_MODE_REL);
4514 }
4515 
4516 /* we know any runtime found here is valid as update_curr() precedes return */
4517 static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4518 {
4519 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4520 	s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
4521 
4522 	if (slack_runtime <= 0)
4523 		return;
4524 
4525 	raw_spin_lock(&cfs_b->lock);
4526 	if (cfs_b->quota != RUNTIME_INF &&
4527 	    cfs_rq->runtime_expires == cfs_b->runtime_expires) {
4528 		cfs_b->runtime += slack_runtime;
4529 
4530 		/* we are under rq->lock, defer unthrottling using a timer */
4531 		if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
4532 		    !list_empty(&cfs_b->throttled_cfs_rq))
4533 			start_cfs_slack_bandwidth(cfs_b);
4534 	}
4535 	raw_spin_unlock(&cfs_b->lock);
4536 
4537 	/* even if it's not valid for return we don't want to try again */
4538 	cfs_rq->runtime_remaining -= slack_runtime;
4539 }
4540 
4541 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4542 {
4543 	if (!cfs_bandwidth_used())
4544 		return;
4545 
4546 	if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
4547 		return;
4548 
4549 	__return_cfs_rq_runtime(cfs_rq);
4550 }
4551 
4552 /*
4553  * This is done with a timer (instead of inline with bandwidth return) since
4554  * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
4555  */
4556 static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
4557 {
4558 	u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
4559 	u64 expires;
4560 
4561 	/* confirm we're still not at a refresh boundary */
4562 	raw_spin_lock(&cfs_b->lock);
4563 	if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
4564 		raw_spin_unlock(&cfs_b->lock);
4565 		return;
4566 	}
4567 
4568 	if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice)
4569 		runtime = cfs_b->runtime;
4570 
4571 	expires = cfs_b->runtime_expires;
4572 	raw_spin_unlock(&cfs_b->lock);
4573 
4574 	if (!runtime)
4575 		return;
4576 
4577 	runtime = distribute_cfs_runtime(cfs_b, runtime, expires);
4578 
4579 	raw_spin_lock(&cfs_b->lock);
4580 	if (expires == cfs_b->runtime_expires)
4581 		cfs_b->runtime -= min(runtime, cfs_b->runtime);
4582 	raw_spin_unlock(&cfs_b->lock);
4583 }
4584 
4585 /*
4586  * When a group wakes up we want to make sure that its quota is not already
4587  * expired/exceeded, otherwise it may be allowed to steal additional ticks of
4588  * runtime as update_curr() throttling can not not trigger until it's on-rq.
4589  */
4590 static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
4591 {
4592 	if (!cfs_bandwidth_used())
4593 		return;
4594 
4595 	/* an active group must be handled by the update_curr()->put() path */
4596 	if (!cfs_rq->runtime_enabled || cfs_rq->curr)
4597 		return;
4598 
4599 	/* ensure the group is not already throttled */
4600 	if (cfs_rq_throttled(cfs_rq))
4601 		return;
4602 
4603 	/* update runtime allocation */
4604 	account_cfs_rq_runtime(cfs_rq, 0);
4605 	if (cfs_rq->runtime_remaining <= 0)
4606 		throttle_cfs_rq(cfs_rq);
4607 }
4608 
4609 static void sync_throttle(struct task_group *tg, int cpu)
4610 {
4611 	struct cfs_rq *pcfs_rq, *cfs_rq;
4612 
4613 	if (!cfs_bandwidth_used())
4614 		return;
4615 
4616 	if (!tg->parent)
4617 		return;
4618 
4619 	cfs_rq = tg->cfs_rq[cpu];
4620 	pcfs_rq = tg->parent->cfs_rq[cpu];
4621 
4622 	cfs_rq->throttle_count = pcfs_rq->throttle_count;
4623 	cfs_rq->throttled_clock_task = rq_clock_task(cpu_rq(cpu));
4624 }
4625 
4626 /* conditionally throttle active cfs_rq's from put_prev_entity() */
4627 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4628 {
4629 	if (!cfs_bandwidth_used())
4630 		return false;
4631 
4632 	if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
4633 		return false;
4634 
4635 	/*
4636 	 * it's possible for a throttled entity to be forced into a running
4637 	 * state (e.g. set_curr_task), in this case we're finished.
4638 	 */
4639 	if (cfs_rq_throttled(cfs_rq))
4640 		return true;
4641 
4642 	throttle_cfs_rq(cfs_rq);
4643 	return true;
4644 }
4645 
4646 static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
4647 {
4648 	struct cfs_bandwidth *cfs_b =
4649 		container_of(timer, struct cfs_bandwidth, slack_timer);
4650 
4651 	do_sched_cfs_slack_timer(cfs_b);
4652 
4653 	return HRTIMER_NORESTART;
4654 }
4655 
4656 static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
4657 {
4658 	struct cfs_bandwidth *cfs_b =
4659 		container_of(timer, struct cfs_bandwidth, period_timer);
4660 	int overrun;
4661 	int idle = 0;
4662 
4663 	raw_spin_lock(&cfs_b->lock);
4664 	for (;;) {
4665 		overrun = hrtimer_forward_now(timer, cfs_b->period);
4666 		if (!overrun)
4667 			break;
4668 
4669 		idle = do_sched_cfs_period_timer(cfs_b, overrun);
4670 	}
4671 	if (idle)
4672 		cfs_b->period_active = 0;
4673 	raw_spin_unlock(&cfs_b->lock);
4674 
4675 	return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
4676 }
4677 
4678 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
4679 {
4680 	raw_spin_lock_init(&cfs_b->lock);
4681 	cfs_b->runtime = 0;
4682 	cfs_b->quota = RUNTIME_INF;
4683 	cfs_b->period = ns_to_ktime(default_cfs_period());
4684 
4685 	INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
4686 	hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
4687 	cfs_b->period_timer.function = sched_cfs_period_timer;
4688 	hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
4689 	cfs_b->slack_timer.function = sched_cfs_slack_timer;
4690 }
4691 
4692 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4693 {
4694 	cfs_rq->runtime_enabled = 0;
4695 	INIT_LIST_HEAD(&cfs_rq->throttled_list);
4696 }
4697 
4698 void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
4699 {
4700 	lockdep_assert_held(&cfs_b->lock);
4701 
4702 	if (!cfs_b->period_active) {
4703 		cfs_b->period_active = 1;
4704 		hrtimer_forward_now(&cfs_b->period_timer, cfs_b->period);
4705 		hrtimer_start_expires(&cfs_b->period_timer, HRTIMER_MODE_ABS_PINNED);
4706 	}
4707 }
4708 
4709 static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
4710 {
4711 	/* init_cfs_bandwidth() was not called */
4712 	if (!cfs_b->throttled_cfs_rq.next)
4713 		return;
4714 
4715 	hrtimer_cancel(&cfs_b->period_timer);
4716 	hrtimer_cancel(&cfs_b->slack_timer);
4717 }
4718 
4719 /*
4720  * Both these cpu hotplug callbacks race against unregister_fair_sched_group()
4721  *
4722  * The race is harmless, since modifying bandwidth settings of unhooked group
4723  * bits doesn't do much.
4724  */
4725 
4726 /* cpu online calback */
4727 static void __maybe_unused update_runtime_enabled(struct rq *rq)
4728 {
4729 	struct task_group *tg;
4730 
4731 	lockdep_assert_held(&rq->lock);
4732 
4733 	rcu_read_lock();
4734 	list_for_each_entry_rcu(tg, &task_groups, list) {
4735 		struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
4736 		struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
4737 
4738 		raw_spin_lock(&cfs_b->lock);
4739 		cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF;
4740 		raw_spin_unlock(&cfs_b->lock);
4741 	}
4742 	rcu_read_unlock();
4743 }
4744 
4745 /* cpu offline callback */
4746 static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
4747 {
4748 	struct task_group *tg;
4749 
4750 	lockdep_assert_held(&rq->lock);
4751 
4752 	rcu_read_lock();
4753 	list_for_each_entry_rcu(tg, &task_groups, list) {
4754 		struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
4755 
4756 		if (!cfs_rq->runtime_enabled)
4757 			continue;
4758 
4759 		/*
4760 		 * clock_task is not advancing so we just need to make sure
4761 		 * there's some valid quota amount
4762 		 */
4763 		cfs_rq->runtime_remaining = 1;
4764 		/*
4765 		 * Offline rq is schedulable till cpu is completely disabled
4766 		 * in take_cpu_down(), so we prevent new cfs throttling here.
4767 		 */
4768 		cfs_rq->runtime_enabled = 0;
4769 
4770 		if (cfs_rq_throttled(cfs_rq))
4771 			unthrottle_cfs_rq(cfs_rq);
4772 	}
4773 	rcu_read_unlock();
4774 }
4775 
4776 #else /* CONFIG_CFS_BANDWIDTH */
4777 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
4778 {
4779 	return rq_clock_task(rq_of(cfs_rq));
4780 }
4781 
4782 static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {}
4783 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; }
4784 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
4785 static inline void sync_throttle(struct task_group *tg, int cpu) {}
4786 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
4787 
4788 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
4789 {
4790 	return 0;
4791 }
4792 
4793 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
4794 {
4795 	return 0;
4796 }
4797 
4798 static inline int throttled_lb_pair(struct task_group *tg,
4799 				    int src_cpu, int dest_cpu)
4800 {
4801 	return 0;
4802 }
4803 
4804 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
4805 
4806 #ifdef CONFIG_FAIR_GROUP_SCHED
4807 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
4808 #endif
4809 
4810 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
4811 {
4812 	return NULL;
4813 }
4814 static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
4815 static inline void update_runtime_enabled(struct rq *rq) {}
4816 static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
4817 
4818 #endif /* CONFIG_CFS_BANDWIDTH */
4819 
4820 /**************************************************
4821  * CFS operations on tasks:
4822  */
4823 
4824 #ifdef CONFIG_SCHED_HRTICK
4825 static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
4826 {
4827 	struct sched_entity *se = &p->se;
4828 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
4829 
4830 	SCHED_WARN_ON(task_rq(p) != rq);
4831 
4832 	if (rq->cfs.h_nr_running > 1) {
4833 		u64 slice = sched_slice(cfs_rq, se);
4834 		u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
4835 		s64 delta = slice - ran;
4836 
4837 		if (delta < 0) {
4838 			if (rq->curr == p)
4839 				resched_curr(rq);
4840 			return;
4841 		}
4842 		hrtick_start(rq, delta);
4843 	}
4844 }
4845 
4846 /*
4847  * called from enqueue/dequeue and updates the hrtick when the
4848  * current task is from our class and nr_running is low enough
4849  * to matter.
4850  */
4851 static void hrtick_update(struct rq *rq)
4852 {
4853 	struct task_struct *curr = rq->curr;
4854 
4855 	if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
4856 		return;
4857 
4858 	if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
4859 		hrtick_start_fair(rq, curr);
4860 }
4861 #else /* !CONFIG_SCHED_HRTICK */
4862 static inline void
4863 hrtick_start_fair(struct rq *rq, struct task_struct *p)
4864 {
4865 }
4866 
4867 static inline void hrtick_update(struct rq *rq)
4868 {
4869 }
4870 #endif
4871 
4872 /*
4873  * The enqueue_task method is called before nr_running is
4874  * increased. Here we update the fair scheduling stats and
4875  * then put the task into the rbtree:
4876  */
4877 static void
4878 enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
4879 {
4880 	struct cfs_rq *cfs_rq;
4881 	struct sched_entity *se = &p->se;
4882 
4883 	/*
4884 	 * If in_iowait is set, the code below may not trigger any cpufreq
4885 	 * utilization updates, so do it here explicitly with the IOWAIT flag
4886 	 * passed.
4887 	 */
4888 	if (p->in_iowait)
4889 		cpufreq_update_util(rq, SCHED_CPUFREQ_IOWAIT);
4890 
4891 	for_each_sched_entity(se) {
4892 		if (se->on_rq)
4893 			break;
4894 		cfs_rq = cfs_rq_of(se);
4895 		enqueue_entity(cfs_rq, se, flags);
4896 
4897 		/*
4898 		 * end evaluation on encountering a throttled cfs_rq
4899 		 *
4900 		 * note: in the case of encountering a throttled cfs_rq we will
4901 		 * post the final h_nr_running increment below.
4902 		 */
4903 		if (cfs_rq_throttled(cfs_rq))
4904 			break;
4905 		cfs_rq->h_nr_running++;
4906 
4907 		flags = ENQUEUE_WAKEUP;
4908 	}
4909 
4910 	for_each_sched_entity(se) {
4911 		cfs_rq = cfs_rq_of(se);
4912 		cfs_rq->h_nr_running++;
4913 
4914 		if (cfs_rq_throttled(cfs_rq))
4915 			break;
4916 
4917 		update_load_avg(se, UPDATE_TG);
4918 		update_cfs_shares(se);
4919 	}
4920 
4921 	if (!se)
4922 		add_nr_running(rq, 1);
4923 
4924 	hrtick_update(rq);
4925 }
4926 
4927 static void set_next_buddy(struct sched_entity *se);
4928 
4929 /*
4930  * The dequeue_task method is called before nr_running is
4931  * decreased. We remove the task from the rbtree and
4932  * update the fair scheduling stats:
4933  */
4934 static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
4935 {
4936 	struct cfs_rq *cfs_rq;
4937 	struct sched_entity *se = &p->se;
4938 	int task_sleep = flags & DEQUEUE_SLEEP;
4939 
4940 	for_each_sched_entity(se) {
4941 		cfs_rq = cfs_rq_of(se);
4942 		dequeue_entity(cfs_rq, se, flags);
4943 
4944 		/*
4945 		 * end evaluation on encountering a throttled cfs_rq
4946 		 *
4947 		 * note: in the case of encountering a throttled cfs_rq we will
4948 		 * post the final h_nr_running decrement below.
4949 		*/
4950 		if (cfs_rq_throttled(cfs_rq))
4951 			break;
4952 		cfs_rq->h_nr_running--;
4953 
4954 		/* Don't dequeue parent if it has other entities besides us */
4955 		if (cfs_rq->load.weight) {
4956 			/* Avoid re-evaluating load for this entity: */
4957 			se = parent_entity(se);
4958 			/*
4959 			 * Bias pick_next to pick a task from this cfs_rq, as
4960 			 * p is sleeping when it is within its sched_slice.
4961 			 */
4962 			if (task_sleep && se && !throttled_hierarchy(cfs_rq))
4963 				set_next_buddy(se);
4964 			break;
4965 		}
4966 		flags |= DEQUEUE_SLEEP;
4967 	}
4968 
4969 	for_each_sched_entity(se) {
4970 		cfs_rq = cfs_rq_of(se);
4971 		cfs_rq->h_nr_running--;
4972 
4973 		if (cfs_rq_throttled(cfs_rq))
4974 			break;
4975 
4976 		update_load_avg(se, UPDATE_TG);
4977 		update_cfs_shares(se);
4978 	}
4979 
4980 	if (!se)
4981 		sub_nr_running(rq, 1);
4982 
4983 	hrtick_update(rq);
4984 }
4985 
4986 #ifdef CONFIG_SMP
4987 
4988 /* Working cpumask for: load_balance, load_balance_newidle. */
4989 DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
4990 DEFINE_PER_CPU(cpumask_var_t, select_idle_mask);
4991 
4992 #ifdef CONFIG_NO_HZ_COMMON
4993 /*
4994  * per rq 'load' arrray crap; XXX kill this.
4995  */
4996 
4997 /*
4998  * The exact cpuload calculated at every tick would be:
4999  *
5000  *   load' = (1 - 1/2^i) * load + (1/2^i) * cur_load
5001  *
5002  * If a cpu misses updates for n ticks (as it was idle) and update gets
5003  * called on the n+1-th tick when cpu may be busy, then we have:
5004  *
5005  *   load_n   = (1 - 1/2^i)^n * load_0
5006  *   load_n+1 = (1 - 1/2^i)   * load_n + (1/2^i) * cur_load
5007  *
5008  * decay_load_missed() below does efficient calculation of
5009  *
5010  *   load' = (1 - 1/2^i)^n * load
5011  *
5012  * Because x^(n+m) := x^n * x^m we can decompose any x^n in power-of-2 factors.
5013  * This allows us to precompute the above in said factors, thereby allowing the
5014  * reduction of an arbitrary n in O(log_2 n) steps. (See also
5015  * fixed_power_int())
5016  *
5017  * The calculation is approximated on a 128 point scale.
5018  */
5019 #define DEGRADE_SHIFT		7
5020 
5021 static const u8 degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
5022 static const u8 degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
5023 	{   0,   0,  0,  0,  0,  0, 0, 0 },
5024 	{  64,  32,  8,  0,  0,  0, 0, 0 },
5025 	{  96,  72, 40, 12,  1,  0, 0, 0 },
5026 	{ 112,  98, 75, 43, 15,  1, 0, 0 },
5027 	{ 120, 112, 98, 76, 45, 16, 2, 0 }
5028 };
5029 
5030 /*
5031  * Update cpu_load for any missed ticks, due to tickless idle. The backlog
5032  * would be when CPU is idle and so we just decay the old load without
5033  * adding any new load.
5034  */
5035 static unsigned long
5036 decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
5037 {
5038 	int j = 0;
5039 
5040 	if (!missed_updates)
5041 		return load;
5042 
5043 	if (missed_updates >= degrade_zero_ticks[idx])
5044 		return 0;
5045 
5046 	if (idx == 1)
5047 		return load >> missed_updates;
5048 
5049 	while (missed_updates) {
5050 		if (missed_updates % 2)
5051 			load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;
5052 
5053 		missed_updates >>= 1;
5054 		j++;
5055 	}
5056 	return load;
5057 }
5058 #endif /* CONFIG_NO_HZ_COMMON */
5059 
5060 /**
5061  * __cpu_load_update - update the rq->cpu_load[] statistics
5062  * @this_rq: The rq to update statistics for
5063  * @this_load: The current load
5064  * @pending_updates: The number of missed updates
5065  *
5066  * Update rq->cpu_load[] statistics. This function is usually called every
5067  * scheduler tick (TICK_NSEC).
5068  *
5069  * This function computes a decaying average:
5070  *
5071  *   load[i]' = (1 - 1/2^i) * load[i] + (1/2^i) * load
5072  *
5073  * Because of NOHZ it might not get called on every tick which gives need for
5074  * the @pending_updates argument.
5075  *
5076  *   load[i]_n = (1 - 1/2^i) * load[i]_n-1 + (1/2^i) * load_n-1
5077  *             = A * load[i]_n-1 + B ; A := (1 - 1/2^i), B := (1/2^i) * load
5078  *             = A * (A * load[i]_n-2 + B) + B
5079  *             = A * (A * (A * load[i]_n-3 + B) + B) + B
5080  *             = A^3 * load[i]_n-3 + (A^2 + A + 1) * B
5081  *             = A^n * load[i]_0 + (A^(n-1) + A^(n-2) + ... + 1) * B
5082  *             = A^n * load[i]_0 + ((1 - A^n) / (1 - A)) * B
5083  *             = (1 - 1/2^i)^n * (load[i]_0 - load) + load
5084  *
5085  * In the above we've assumed load_n := load, which is true for NOHZ_FULL as
5086  * any change in load would have resulted in the tick being turned back on.
5087  *
5088  * For regular NOHZ, this reduces to:
5089  *
5090  *   load[i]_n = (1 - 1/2^i)^n * load[i]_0
5091  *
5092  * see decay_load_misses(). For NOHZ_FULL we get to subtract and add the extra
5093  * term.
5094  */
5095 static void cpu_load_update(struct rq *this_rq, unsigned long this_load,
5096 			    unsigned long pending_updates)
5097 {
5098 	unsigned long __maybe_unused tickless_load = this_rq->cpu_load[0];
5099 	int i, scale;
5100 
5101 	this_rq->nr_load_updates++;
5102 
5103 	/* Update our load: */
5104 	this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
5105 	for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
5106 		unsigned long old_load, new_load;
5107 
5108 		/* scale is effectively 1 << i now, and >> i divides by scale */
5109 
5110 		old_load = this_rq->cpu_load[i];
5111 #ifdef CONFIG_NO_HZ_COMMON
5112 		old_load = decay_load_missed(old_load, pending_updates - 1, i);
5113 		if (tickless_load) {
5114 			old_load -= decay_load_missed(tickless_load, pending_updates - 1, i);
5115 			/*
5116 			 * old_load can never be a negative value because a
5117 			 * decayed tickless_load cannot be greater than the
5118 			 * original tickless_load.
5119 			 */
5120 			old_load += tickless_load;
5121 		}
5122 #endif
5123 		new_load = this_load;
5124 		/*
5125 		 * Round up the averaging division if load is increasing. This
5126 		 * prevents us from getting stuck on 9 if the load is 10, for
5127 		 * example.
5128 		 */
5129 		if (new_load > old_load)
5130 			new_load += scale - 1;
5131 
5132 		this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
5133 	}
5134 
5135 	sched_avg_update(this_rq);
5136 }
5137 
5138 /* Used instead of source_load when we know the type == 0 */
5139 static unsigned long weighted_cpuload(struct rq *rq)
5140 {
5141 	return cfs_rq_runnable_load_avg(&rq->cfs);
5142 }
5143 
5144 #ifdef CONFIG_NO_HZ_COMMON
5145 /*
5146  * There is no sane way to deal with nohz on smp when using jiffies because the
5147  * cpu doing the jiffies update might drift wrt the cpu doing the jiffy reading
5148  * causing off-by-one errors in observed deltas; {0,2} instead of {1,1}.
5149  *
5150  * Therefore we need to avoid the delta approach from the regular tick when
5151  * possible since that would seriously skew the load calculation. This is why we
5152  * use cpu_load_update_periodic() for CPUs out of nohz. However we'll rely on
5153  * jiffies deltas for updates happening while in nohz mode (idle ticks, idle
5154  * loop exit, nohz_idle_balance, nohz full exit...)
5155  *
5156  * This means we might still be one tick off for nohz periods.
5157  */
5158 
5159 static void cpu_load_update_nohz(struct rq *this_rq,
5160 				 unsigned long curr_jiffies,
5161 				 unsigned long load)
5162 {
5163 	unsigned long pending_updates;
5164 
5165 	pending_updates = curr_jiffies - this_rq->last_load_update_tick;
5166 	if (pending_updates) {
5167 		this_rq->last_load_update_tick = curr_jiffies;
5168 		/*
5169 		 * In the regular NOHZ case, we were idle, this means load 0.
5170 		 * In the NOHZ_FULL case, we were non-idle, we should consider
5171 		 * its weighted load.
5172 		 */
5173 		cpu_load_update(this_rq, load, pending_updates);
5174 	}
5175 }
5176 
5177 /*
5178  * Called from nohz_idle_balance() to update the load ratings before doing the
5179  * idle balance.
5180  */
5181 static void cpu_load_update_idle(struct rq *this_rq)
5182 {
5183 	/*
5184 	 * bail if there's load or we're actually up-to-date.
5185 	 */
5186 	if (weighted_cpuload(this_rq))
5187 		return;
5188 
5189 	cpu_load_update_nohz(this_rq, READ_ONCE(jiffies), 0);
5190 }
5191 
5192 /*
5193  * Record CPU load on nohz entry so we know the tickless load to account
5194  * on nohz exit. cpu_load[0] happens then to be updated more frequently
5195  * than other cpu_load[idx] but it should be fine as cpu_load readers
5196  * shouldn't rely into synchronized cpu_load[*] updates.
5197  */
5198 void cpu_load_update_nohz_start(void)
5199 {
5200 	struct rq *this_rq = this_rq();
5201 
5202 	/*
5203 	 * This is all lockless but should be fine. If weighted_cpuload changes
5204 	 * concurrently we'll exit nohz. And cpu_load write can race with
5205 	 * cpu_load_update_idle() but both updater would be writing the same.
5206 	 */
5207 	this_rq->cpu_load[0] = weighted_cpuload(this_rq);
5208 }
5209 
5210 /*
5211  * Account the tickless load in the end of a nohz frame.
5212  */
5213 void cpu_load_update_nohz_stop(void)
5214 {
5215 	unsigned long curr_jiffies = READ_ONCE(jiffies);
5216 	struct rq *this_rq = this_rq();
5217 	unsigned long load;
5218 	struct rq_flags rf;
5219 
5220 	if (curr_jiffies == this_rq->last_load_update_tick)
5221 		return;
5222 
5223 	load = weighted_cpuload(this_rq);
5224 	rq_lock(this_rq, &rf);
5225 	update_rq_clock(this_rq);
5226 	cpu_load_update_nohz(this_rq, curr_jiffies, load);
5227 	rq_unlock(this_rq, &rf);
5228 }
5229 #else /* !CONFIG_NO_HZ_COMMON */
5230 static inline void cpu_load_update_nohz(struct rq *this_rq,
5231 					unsigned long curr_jiffies,
5232 					unsigned long load) { }
5233 #endif /* CONFIG_NO_HZ_COMMON */
5234 
5235 static void cpu_load_update_periodic(struct rq *this_rq, unsigned long load)
5236 {
5237 #ifdef CONFIG_NO_HZ_COMMON
5238 	/* See the mess around cpu_load_update_nohz(). */
5239 	this_rq->last_load_update_tick = READ_ONCE(jiffies);
5240 #endif
5241 	cpu_load_update(this_rq, load, 1);
5242 }
5243 
5244 /*
5245  * Called from scheduler_tick()
5246  */
5247 void cpu_load_update_active(struct rq *this_rq)
5248 {
5249 	unsigned long load = weighted_cpuload(this_rq);
5250 
5251 	if (tick_nohz_tick_stopped())
5252 		cpu_load_update_nohz(this_rq, READ_ONCE(jiffies), load);
5253 	else
5254 		cpu_load_update_periodic(this_rq, load);
5255 }
5256 
5257 /*
5258  * Return a low guess at the load of a migration-source cpu weighted
5259  * according to the scheduling class and "nice" value.
5260  *
5261  * We want to under-estimate the load of migration sources, to
5262  * balance conservatively.
5263  */
5264 static unsigned long source_load(int cpu, int type)
5265 {
5266 	struct rq *rq = cpu_rq(cpu);
5267 	unsigned long total = weighted_cpuload(rq);
5268 
5269 	if (type == 0 || !sched_feat(LB_BIAS))
5270 		return total;
5271 
5272 	return min(rq->cpu_load[type-1], total);
5273 }
5274 
5275 /*
5276  * Return a high guess at the load of a migration-target cpu weighted
5277  * according to the scheduling class and "nice" value.
5278  */
5279 static unsigned long target_load(int cpu, int type)
5280 {
5281 	struct rq *rq = cpu_rq(cpu);
5282 	unsigned long total = weighted_cpuload(rq);
5283 
5284 	if (type == 0 || !sched_feat(LB_BIAS))
5285 		return total;
5286 
5287 	return max(rq->cpu_load[type-1], total);
5288 }
5289 
5290 static unsigned long capacity_of(int cpu)
5291 {
5292 	return cpu_rq(cpu)->cpu_capacity;
5293 }
5294 
5295 static unsigned long capacity_orig_of(int cpu)
5296 {
5297 	return cpu_rq(cpu)->cpu_capacity_orig;
5298 }
5299 
5300 static unsigned long cpu_avg_load_per_task(int cpu)
5301 {
5302 	struct rq *rq = cpu_rq(cpu);
5303 	unsigned long nr_running = READ_ONCE(rq->cfs.h_nr_running);
5304 	unsigned long load_avg = weighted_cpuload(rq);
5305 
5306 	if (nr_running)
5307 		return load_avg / nr_running;
5308 
5309 	return 0;
5310 }
5311 
5312 static void record_wakee(struct task_struct *p)
5313 {
5314 	/*
5315 	 * Only decay a single time; tasks that have less then 1 wakeup per
5316 	 * jiffy will not have built up many flips.
5317 	 */
5318 	if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) {
5319 		current->wakee_flips >>= 1;
5320 		current->wakee_flip_decay_ts = jiffies;
5321 	}
5322 
5323 	if (current->last_wakee != p) {
5324 		current->last_wakee = p;
5325 		current->wakee_flips++;
5326 	}
5327 }
5328 
5329 /*
5330  * Detect M:N waker/wakee relationships via a switching-frequency heuristic.
5331  *
5332  * A waker of many should wake a different task than the one last awakened
5333  * at a frequency roughly N times higher than one of its wakees.
5334  *
5335  * In order to determine whether we should let the load spread vs consolidating
5336  * to shared cache, we look for a minimum 'flip' frequency of llc_size in one
5337  * partner, and a factor of lls_size higher frequency in the other.
5338  *
5339  * With both conditions met, we can be relatively sure that the relationship is
5340  * non-monogamous, with partner count exceeding socket size.
5341  *
5342  * Waker/wakee being client/server, worker/dispatcher, interrupt source or
5343  * whatever is irrelevant, spread criteria is apparent partner count exceeds
5344  * socket size.
5345  */
5346 static int wake_wide(struct task_struct *p)
5347 {
5348 	unsigned int master = current->wakee_flips;
5349 	unsigned int slave = p->wakee_flips;
5350 	int factor = this_cpu_read(sd_llc_size);
5351 
5352 	if (master < slave)
5353 		swap(master, slave);
5354 	if (slave < factor || master < slave * factor)
5355 		return 0;
5356 	return 1;
5357 }
5358 
5359 /*
5360  * The purpose of wake_affine() is to quickly determine on which CPU we can run
5361  * soonest. For the purpose of speed we only consider the waking and previous
5362  * CPU.
5363  *
5364  * wake_affine_idle() - only considers 'now', it check if the waking CPU is (or
5365  *			will be) idle.
5366  *
5367  * wake_affine_weight() - considers the weight to reflect the average
5368  *			  scheduling latency of the CPUs. This seems to work
5369  *			  for the overloaded case.
5370  */
5371 
5372 static bool
5373 wake_affine_idle(struct sched_domain *sd, struct task_struct *p,
5374 		 int this_cpu, int prev_cpu, int sync)
5375 {
5376 	if (idle_cpu(this_cpu))
5377 		return true;
5378 
5379 	if (sync && cpu_rq(this_cpu)->nr_running == 1)
5380 		return true;
5381 
5382 	return false;
5383 }
5384 
5385 static bool
5386 wake_affine_weight(struct sched_domain *sd, struct task_struct *p,
5387 		   int this_cpu, int prev_cpu, int sync)
5388 {
5389 	s64 this_eff_load, prev_eff_load;
5390 	unsigned long task_load;
5391 
5392 	this_eff_load = target_load(this_cpu, sd->wake_idx);
5393 	prev_eff_load = source_load(prev_cpu, sd->wake_idx);
5394 
5395 	if (sync) {
5396 		unsigned long current_load = task_h_load(current);
5397 
5398 		if (current_load > this_eff_load)
5399 			return true;
5400 
5401 		this_eff_load -= current_load;
5402 	}
5403 
5404 	task_load = task_h_load(p);
5405 
5406 	this_eff_load += task_load;
5407 	if (sched_feat(WA_BIAS))
5408 		this_eff_load *= 100;
5409 	this_eff_load *= capacity_of(prev_cpu);
5410 
5411 	prev_eff_load -= task_load;
5412 	if (sched_feat(WA_BIAS))
5413 		prev_eff_load *= 100 + (sd->imbalance_pct - 100) / 2;
5414 	prev_eff_load *= capacity_of(this_cpu);
5415 
5416 	return this_eff_load <= prev_eff_load;
5417 }
5418 
5419 static int wake_affine(struct sched_domain *sd, struct task_struct *p,
5420 		       int prev_cpu, int sync)
5421 {
5422 	int this_cpu = smp_processor_id();
5423 	bool affine = false;
5424 
5425 	if (sched_feat(WA_IDLE) && !affine)
5426 		affine = wake_affine_idle(sd, p, this_cpu, prev_cpu, sync);
5427 
5428 	if (sched_feat(WA_WEIGHT) && !affine)
5429 		affine = wake_affine_weight(sd, p, this_cpu, prev_cpu, sync);
5430 
5431 	schedstat_inc(p->se.statistics.nr_wakeups_affine_attempts);
5432 	if (affine) {
5433 		schedstat_inc(sd->ttwu_move_affine);
5434 		schedstat_inc(p->se.statistics.nr_wakeups_affine);
5435 	}
5436 
5437 	return affine;
5438 }
5439 
5440 static inline int task_util(struct task_struct *p);
5441 static int cpu_util_wake(int cpu, struct task_struct *p);
5442 
5443 static unsigned long capacity_spare_wake(int cpu, struct task_struct *p)
5444 {
5445 	return capacity_orig_of(cpu) - cpu_util_wake(cpu, p);
5446 }
5447 
5448 /*
5449  * find_idlest_group finds and returns the least busy CPU group within the
5450  * domain.
5451  */
5452 static struct sched_group *
5453 find_idlest_group(struct sched_domain *sd, struct task_struct *p,
5454 		  int this_cpu, int sd_flag)
5455 {
5456 	struct sched_group *idlest = NULL, *group = sd->groups;
5457 	struct sched_group *most_spare_sg = NULL;
5458 	unsigned long min_runnable_load = ULONG_MAX, this_runnable_load = 0;
5459 	unsigned long min_avg_load = ULONG_MAX, this_avg_load = 0;
5460 	unsigned long most_spare = 0, this_spare = 0;
5461 	int load_idx = sd->forkexec_idx;
5462 	int imbalance_scale = 100 + (sd->imbalance_pct-100)/2;
5463 	unsigned long imbalance = scale_load_down(NICE_0_LOAD) *
5464 				(sd->imbalance_pct-100) / 100;
5465 
5466 	if (sd_flag & SD_BALANCE_WAKE)
5467 		load_idx = sd->wake_idx;
5468 
5469 	do {
5470 		unsigned long load, avg_load, runnable_load;
5471 		unsigned long spare_cap, max_spare_cap;
5472 		int local_group;
5473 		int i;
5474 
5475 		/* Skip over this group if it has no CPUs allowed */
5476 		if (!cpumask_intersects(sched_group_span(group),
5477 					&p->cpus_allowed))
5478 			continue;
5479 
5480 		local_group = cpumask_test_cpu(this_cpu,
5481 					       sched_group_span(group));
5482 
5483 		/*
5484 		 * Tally up the load of all CPUs in the group and find
5485 		 * the group containing the CPU with most spare capacity.
5486 		 */
5487 		avg_load = 0;
5488 		runnable_load = 0;
5489 		max_spare_cap = 0;
5490 
5491 		for_each_cpu(i, sched_group_span(group)) {
5492 			/* Bias balancing toward cpus of our domain */
5493 			if (local_group)
5494 				load = source_load(i, load_idx);
5495 			else
5496 				load = target_load(i, load_idx);
5497 
5498 			runnable_load += load;
5499 
5500 			avg_load += cfs_rq_load_avg(&cpu_rq(i)->cfs);
5501 
5502 			spare_cap = capacity_spare_wake(i, p);
5503 
5504 			if (spare_cap > max_spare_cap)
5505 				max_spare_cap = spare_cap;
5506 		}
5507 
5508 		/* Adjust by relative CPU capacity of the group */
5509 		avg_load = (avg_load * SCHED_CAPACITY_SCALE) /
5510 					group->sgc->capacity;
5511 		runnable_load = (runnable_load * SCHED_CAPACITY_SCALE) /
5512 					group->sgc->capacity;
5513 
5514 		if (local_group) {
5515 			this_runnable_load = runnable_load;
5516 			this_avg_load = avg_load;
5517 			this_spare = max_spare_cap;
5518 		} else {
5519 			if (min_runnable_load > (runnable_load + imbalance)) {
5520 				/*
5521 				 * The runnable load is significantly smaller
5522 				 * so we can pick this new cpu
5523 				 */
5524 				min_runnable_load = runnable_load;
5525 				min_avg_load = avg_load;
5526 				idlest = group;
5527 			} else if ((runnable_load < (min_runnable_load + imbalance)) &&
5528 				   (100*min_avg_load > imbalance_scale*avg_load)) {
5529 				/*
5530 				 * The runnable loads are close so take the
5531 				 * blocked load into account through avg_load.
5532 				 */
5533 				min_avg_load = avg_load;
5534 				idlest = group;
5535 			}
5536 
5537 			if (most_spare < max_spare_cap) {
5538 				most_spare = max_spare_cap;
5539 				most_spare_sg = group;
5540 			}
5541 		}
5542 	} while (group = group->next, group != sd->groups);
5543 
5544 	/*
5545 	 * The cross-over point between using spare capacity or least load
5546 	 * is too conservative for high utilization tasks on partially
5547 	 * utilized systems if we require spare_capacity > task_util(p),
5548 	 * so we allow for some task stuffing by using
5549 	 * spare_capacity > task_util(p)/2.
5550 	 *
5551 	 * Spare capacity can't be used for fork because the utilization has
5552 	 * not been set yet, we must first select a rq to compute the initial
5553 	 * utilization.
5554 	 */
5555 	if (sd_flag & SD_BALANCE_FORK)
5556 		goto skip_spare;
5557 
5558 	if (this_spare > task_util(p) / 2 &&
5559 	    imbalance_scale*this_spare > 100*most_spare)
5560 		return NULL;
5561 
5562 	if (most_spare > task_util(p) / 2)
5563 		return most_spare_sg;
5564 
5565 skip_spare:
5566 	if (!idlest)
5567 		return NULL;
5568 
5569 	if (min_runnable_load > (this_runnable_load + imbalance))
5570 		return NULL;
5571 
5572 	if ((this_runnable_load < (min_runnable_load + imbalance)) &&
5573 	     (100*this_avg_load < imbalance_scale*min_avg_load))
5574 		return NULL;
5575 
5576 	return idlest;
5577 }
5578 
5579 /*
5580  * find_idlest_cpu - find the idlest cpu among the cpus in group.
5581  */
5582 static int
5583 find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
5584 {
5585 	unsigned long load, min_load = ULONG_MAX;
5586 	unsigned int min_exit_latency = UINT_MAX;
5587 	u64 latest_idle_timestamp = 0;
5588 	int least_loaded_cpu = this_cpu;
5589 	int shallowest_idle_cpu = -1;
5590 	int i;
5591 
5592 	/* Check if we have any choice: */
5593 	if (group->group_weight == 1)
5594 		return cpumask_first(sched_group_span(group));
5595 
5596 	/* Traverse only the allowed CPUs */
5597 	for_each_cpu_and(i, sched_group_span(group), &p->cpus_allowed) {
5598 		if (idle_cpu(i)) {
5599 			struct rq *rq = cpu_rq(i);
5600 			struct cpuidle_state *idle = idle_get_state(rq);
5601 			if (idle && idle->exit_latency < min_exit_latency) {
5602 				/*
5603 				 * We give priority to a CPU whose idle state
5604 				 * has the smallest exit latency irrespective
5605 				 * of any idle timestamp.
5606 				 */
5607 				min_exit_latency = idle->exit_latency;
5608 				latest_idle_timestamp = rq->idle_stamp;
5609 				shallowest_idle_cpu = i;
5610 			} else if ((!idle || idle->exit_latency == min_exit_latency) &&
5611 				   rq->idle_stamp > latest_idle_timestamp) {
5612 				/*
5613 				 * If equal or no active idle state, then
5614 				 * the most recently idled CPU might have
5615 				 * a warmer cache.
5616 				 */
5617 				latest_idle_timestamp = rq->idle_stamp;
5618 				shallowest_idle_cpu = i;
5619 			}
5620 		} else if (shallowest_idle_cpu == -1) {
5621 			load = weighted_cpuload(cpu_rq(i));
5622 			if (load < min_load || (load == min_load && i == this_cpu)) {
5623 				min_load = load;
5624 				least_loaded_cpu = i;
5625 			}
5626 		}
5627 	}
5628 
5629 	return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu;
5630 }
5631 
5632 #ifdef CONFIG_SCHED_SMT
5633 
5634 static inline void set_idle_cores(int cpu, int val)
5635 {
5636 	struct sched_domain_shared *sds;
5637 
5638 	sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
5639 	if (sds)
5640 		WRITE_ONCE(sds->has_idle_cores, val);
5641 }
5642 
5643 static inline bool test_idle_cores(int cpu, bool def)
5644 {
5645 	struct sched_domain_shared *sds;
5646 
5647 	sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
5648 	if (sds)
5649 		return READ_ONCE(sds->has_idle_cores);
5650 
5651 	return def;
5652 }
5653 
5654 /*
5655  * Scans the local SMT mask to see if the entire core is idle, and records this
5656  * information in sd_llc_shared->has_idle_cores.
5657  *
5658  * Since SMT siblings share all cache levels, inspecting this limited remote
5659  * state should be fairly cheap.
5660  */
5661 void __update_idle_core(struct rq *rq)
5662 {
5663 	int core = cpu_of(rq);
5664 	int cpu;
5665 
5666 	rcu_read_lock();
5667 	if (test_idle_cores(core, true))
5668 		goto unlock;
5669 
5670 	for_each_cpu(cpu, cpu_smt_mask(core)) {
5671 		if (cpu == core)
5672 			continue;
5673 
5674 		if (!idle_cpu(cpu))
5675 			goto unlock;
5676 	}
5677 
5678 	set_idle_cores(core, 1);
5679 unlock:
5680 	rcu_read_unlock();
5681 }
5682 
5683 /*
5684  * Scan the entire LLC domain for idle cores; this dynamically switches off if
5685  * there are no idle cores left in the system; tracked through
5686  * sd_llc->shared->has_idle_cores and enabled through update_idle_core() above.
5687  */
5688 static int select_idle_core(struct task_struct *p, struct sched_domain *sd, int target)
5689 {
5690 	struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_idle_mask);
5691 	int core, cpu;
5692 
5693 	if (!static_branch_likely(&sched_smt_present))
5694 		return -1;
5695 
5696 	if (!test_idle_cores(target, false))
5697 		return -1;
5698 
5699 	cpumask_and(cpus, sched_domain_span(sd), &p->cpus_allowed);
5700 
5701 	for_each_cpu_wrap(core, cpus, target) {
5702 		bool idle = true;
5703 
5704 		for_each_cpu(cpu, cpu_smt_mask(core)) {
5705 			cpumask_clear_cpu(cpu, cpus);
5706 			if (!idle_cpu(cpu))
5707 				idle = false;
5708 		}
5709 
5710 		if (idle)
5711 			return core;
5712 	}
5713 
5714 	/*
5715 	 * Failed to find an idle core; stop looking for one.
5716 	 */
5717 	set_idle_cores(target, 0);
5718 
5719 	return -1;
5720 }
5721 
5722 /*
5723  * Scan the local SMT mask for idle CPUs.
5724  */
5725 static int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target)
5726 {
5727 	int cpu;
5728 
5729 	if (!static_branch_likely(&sched_smt_present))
5730 		return -1;
5731 
5732 	for_each_cpu(cpu, cpu_smt_mask(target)) {
5733 		if (!cpumask_test_cpu(cpu, &p->cpus_allowed))
5734 			continue;
5735 		if (idle_cpu(cpu))
5736 			return cpu;
5737 	}
5738 
5739 	return -1;
5740 }
5741 
5742 #else /* CONFIG_SCHED_SMT */
5743 
5744 static inline int select_idle_core(struct task_struct *p, struct sched_domain *sd, int target)
5745 {
5746 	return -1;
5747 }
5748 
5749 static inline int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target)
5750 {
5751 	return -1;
5752 }
5753 
5754 #endif /* CONFIG_SCHED_SMT */
5755 
5756 /*
5757  * Scan the LLC domain for idle CPUs; this is dynamically regulated by
5758  * comparing the average scan cost (tracked in sd->avg_scan_cost) against the
5759  * average idle time for this rq (as found in rq->avg_idle).
5760  */
5761 static int select_idle_cpu(struct task_struct *p, struct sched_domain *sd, int target)
5762 {
5763 	struct sched_domain *this_sd;
5764 	u64 avg_cost, avg_idle;
5765 	u64 time, cost;
5766 	s64 delta;
5767 	int cpu, nr = INT_MAX;
5768 
5769 	this_sd = rcu_dereference(*this_cpu_ptr(&sd_llc));
5770 	if (!this_sd)
5771 		return -1;
5772 
5773 	/*
5774 	 * Due to large variance we need a large fuzz factor; hackbench in
5775 	 * particularly is sensitive here.
5776 	 */
5777 	avg_idle = this_rq()->avg_idle / 512;
5778 	avg_cost = this_sd->avg_scan_cost + 1;
5779 
5780 	if (sched_feat(SIS_AVG_CPU) && avg_idle < avg_cost)
5781 		return -1;
5782 
5783 	if (sched_feat(SIS_PROP)) {
5784 		u64 span_avg = sd->span_weight * avg_idle;
5785 		if (span_avg > 4*avg_cost)
5786 			nr = div_u64(span_avg, avg_cost);
5787 		else
5788 			nr = 4;
5789 	}
5790 
5791 	time = local_clock();
5792 
5793 	for_each_cpu_wrap(cpu, sched_domain_span(sd), target) {
5794 		if (!--nr)
5795 			return -1;
5796 		if (!cpumask_test_cpu(cpu, &p->cpus_allowed))
5797 			continue;
5798 		if (idle_cpu(cpu))
5799 			break;
5800 	}
5801 
5802 	time = local_clock() - time;
5803 	cost = this_sd->avg_scan_cost;
5804 	delta = (s64)(time - cost) / 8;
5805 	this_sd->avg_scan_cost += delta;
5806 
5807 	return cpu;
5808 }
5809 
5810 /*
5811  * Try and locate an idle core/thread in the LLC cache domain.
5812  */
5813 static int select_idle_sibling(struct task_struct *p, int prev, int target)
5814 {
5815 	struct sched_domain *sd;
5816 	int i;
5817 
5818 	if (idle_cpu(target))
5819 		return target;
5820 
5821 	/*
5822 	 * If the previous cpu is cache affine and idle, don't be stupid.
5823 	 */
5824 	if (prev != target && cpus_share_cache(prev, target) && idle_cpu(prev))
5825 		return prev;
5826 
5827 	sd = rcu_dereference(per_cpu(sd_llc, target));
5828 	if (!sd)
5829 		return target;
5830 
5831 	i = select_idle_core(p, sd, target);
5832 	if ((unsigned)i < nr_cpumask_bits)
5833 		return i;
5834 
5835 	i = select_idle_cpu(p, sd, target);
5836 	if ((unsigned)i < nr_cpumask_bits)
5837 		return i;
5838 
5839 	i = select_idle_smt(p, sd, target);
5840 	if ((unsigned)i < nr_cpumask_bits)
5841 		return i;
5842 
5843 	return target;
5844 }
5845 
5846 /*
5847  * cpu_util returns the amount of capacity of a CPU that is used by CFS
5848  * tasks. The unit of the return value must be the one of capacity so we can
5849  * compare the utilization with the capacity of the CPU that is available for
5850  * CFS task (ie cpu_capacity).
5851  *
5852  * cfs_rq.avg.util_avg is the sum of running time of runnable tasks plus the
5853  * recent utilization of currently non-runnable tasks on a CPU. It represents
5854  * the amount of utilization of a CPU in the range [0..capacity_orig] where
5855  * capacity_orig is the cpu_capacity available at the highest frequency
5856  * (arch_scale_freq_capacity()).
5857  * The utilization of a CPU converges towards a sum equal to or less than the
5858  * current capacity (capacity_curr <= capacity_orig) of the CPU because it is
5859  * the running time on this CPU scaled by capacity_curr.
5860  *
5861  * Nevertheless, cfs_rq.avg.util_avg can be higher than capacity_curr or even
5862  * higher than capacity_orig because of unfortunate rounding in
5863  * cfs.avg.util_avg or just after migrating tasks and new task wakeups until
5864  * the average stabilizes with the new running time. We need to check that the
5865  * utilization stays within the range of [0..capacity_orig] and cap it if
5866  * necessary. Without utilization capping, a group could be seen as overloaded
5867  * (CPU0 utilization at 121% + CPU1 utilization at 80%) whereas CPU1 has 20% of
5868  * available capacity. We allow utilization to overshoot capacity_curr (but not
5869  * capacity_orig) as it useful for predicting the capacity required after task
5870  * migrations (scheduler-driven DVFS).
5871  */
5872 static int cpu_util(int cpu)
5873 {
5874 	unsigned long util = cpu_rq(cpu)->cfs.avg.util_avg;
5875 	unsigned long capacity = capacity_orig_of(cpu);
5876 
5877 	return (util >= capacity) ? capacity : util;
5878 }
5879 
5880 static inline int task_util(struct task_struct *p)
5881 {
5882 	return p->se.avg.util_avg;
5883 }
5884 
5885 /*
5886  * cpu_util_wake: Compute cpu utilization with any contributions from
5887  * the waking task p removed.
5888  */
5889 static int cpu_util_wake(int cpu, struct task_struct *p)
5890 {
5891 	unsigned long util, capacity;
5892 
5893 	/* Task has no contribution or is new */
5894 	if (cpu != task_cpu(p) || !p->se.avg.last_update_time)
5895 		return cpu_util(cpu);
5896 
5897 	capacity = capacity_orig_of(cpu);
5898 	util = max_t(long, cpu_rq(cpu)->cfs.avg.util_avg - task_util(p), 0);
5899 
5900 	return (util >= capacity) ? capacity : util;
5901 }
5902 
5903 /*
5904  * Disable WAKE_AFFINE in the case where task @p doesn't fit in the
5905  * capacity of either the waking CPU @cpu or the previous CPU @prev_cpu.
5906  *
5907  * In that case WAKE_AFFINE doesn't make sense and we'll let
5908  * BALANCE_WAKE sort things out.
5909  */
5910 static int wake_cap(struct task_struct *p, int cpu, int prev_cpu)
5911 {
5912 	long min_cap, max_cap;
5913 
5914 	min_cap = min(capacity_orig_of(prev_cpu), capacity_orig_of(cpu));
5915 	max_cap = cpu_rq(cpu)->rd->max_cpu_capacity;
5916 
5917 	/* Minimum capacity is close to max, no need to abort wake_affine */
5918 	if (max_cap - min_cap < max_cap >> 3)
5919 		return 0;
5920 
5921 	/* Bring task utilization in sync with prev_cpu */
5922 	sync_entity_load_avg(&p->se);
5923 
5924 	return min_cap * 1024 < task_util(p) * capacity_margin;
5925 }
5926 
5927 /*
5928  * select_task_rq_fair: Select target runqueue for the waking task in domains
5929  * that have the 'sd_flag' flag set. In practice, this is SD_BALANCE_WAKE,
5930  * SD_BALANCE_FORK, or SD_BALANCE_EXEC.
5931  *
5932  * Balances load by selecting the idlest cpu in the idlest group, or under
5933  * certain conditions an idle sibling cpu if the domain has SD_WAKE_AFFINE set.
5934  *
5935  * Returns the target cpu number.
5936  *
5937  * preempt must be disabled.
5938  */
5939 static int
5940 select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_flags)
5941 {
5942 	struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
5943 	int cpu = smp_processor_id();
5944 	int new_cpu = prev_cpu;
5945 	int want_affine = 0;
5946 	int sync = wake_flags & WF_SYNC;
5947 
5948 	if (sd_flag & SD_BALANCE_WAKE) {
5949 		record_wakee(p);
5950 		want_affine = !wake_wide(p) && !wake_cap(p, cpu, prev_cpu)
5951 			      && cpumask_test_cpu(cpu, &p->cpus_allowed);
5952 	}
5953 
5954 	rcu_read_lock();
5955 	for_each_domain(cpu, tmp) {
5956 		if (!(tmp->flags & SD_LOAD_BALANCE))
5957 			break;
5958 
5959 		/*
5960 		 * If both cpu and prev_cpu are part of this domain,
5961 		 * cpu is a valid SD_WAKE_AFFINE target.
5962 		 */
5963 		if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
5964 		    cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
5965 			affine_sd = tmp;
5966 			break;
5967 		}
5968 
5969 		if (tmp->flags & sd_flag)
5970 			sd = tmp;
5971 		else if (!want_affine)
5972 			break;
5973 	}
5974 
5975 	if (affine_sd) {
5976 		sd = NULL; /* Prefer wake_affine over balance flags */
5977 		if (cpu == prev_cpu)
5978 			goto pick_cpu;
5979 
5980 		if (wake_affine(affine_sd, p, prev_cpu, sync))
5981 			new_cpu = cpu;
5982 	}
5983 
5984 	if (!sd) {
5985  pick_cpu:
5986 		if (sd_flag & SD_BALANCE_WAKE) /* XXX always ? */
5987 			new_cpu = select_idle_sibling(p, prev_cpu, new_cpu);
5988 
5989 	} else while (sd) {
5990 		struct sched_group *group;
5991 		int weight;
5992 
5993 		if (!(sd->flags & sd_flag)) {
5994 			sd = sd->child;
5995 			continue;
5996 		}
5997 
5998 		group = find_idlest_group(sd, p, cpu, sd_flag);
5999 		if (!group) {
6000 			sd = sd->child;
6001 			continue;
6002 		}
6003 
6004 		new_cpu = find_idlest_cpu(group, p, cpu);
6005 		if (new_cpu == -1 || new_cpu == cpu) {
6006 			/* Now try balancing at a lower domain level of cpu */
6007 			sd = sd->child;
6008 			continue;
6009 		}
6010 
6011 		/* Now try balancing at a lower domain level of new_cpu */
6012 		cpu = new_cpu;
6013 		weight = sd->span_weight;
6014 		sd = NULL;
6015 		for_each_domain(cpu, tmp) {
6016 			if (weight <= tmp->span_weight)
6017 				break;
6018 			if (tmp->flags & sd_flag)
6019 				sd = tmp;
6020 		}
6021 		/* while loop will break here if sd == NULL */
6022 	}
6023 	rcu_read_unlock();
6024 
6025 	return new_cpu;
6026 }
6027 
6028 /*
6029  * Called immediately before a task is migrated to a new cpu; task_cpu(p) and
6030  * cfs_rq_of(p) references at time of call are still valid and identify the
6031  * previous cpu. The caller guarantees p->pi_lock or task_rq(p)->lock is held.
6032  */
6033 static void migrate_task_rq_fair(struct task_struct *p)
6034 {
6035 	/*
6036 	 * As blocked tasks retain absolute vruntime the migration needs to
6037 	 * deal with this by subtracting the old and adding the new
6038 	 * min_vruntime -- the latter is done by enqueue_entity() when placing
6039 	 * the task on the new runqueue.
6040 	 */
6041 	if (p->state == TASK_WAKING) {
6042 		struct sched_entity *se = &p->se;
6043 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
6044 		u64 min_vruntime;
6045 
6046 #ifndef CONFIG_64BIT
6047 		u64 min_vruntime_copy;
6048 
6049 		do {
6050 			min_vruntime_copy = cfs_rq->min_vruntime_copy;
6051 			smp_rmb();
6052 			min_vruntime = cfs_rq->min_vruntime;
6053 		} while (min_vruntime != min_vruntime_copy);
6054 #else
6055 		min_vruntime = cfs_rq->min_vruntime;
6056 #endif
6057 
6058 		se->vruntime -= min_vruntime;
6059 	}
6060 
6061 	/*
6062 	 * We are supposed to update the task to "current" time, then its up to date
6063 	 * and ready to go to new CPU/cfs_rq. But we have difficulty in getting
6064 	 * what current time is, so simply throw away the out-of-date time. This
6065 	 * will result in the wakee task is less decayed, but giving the wakee more
6066 	 * load sounds not bad.
6067 	 */
6068 	remove_entity_load_avg(&p->se);
6069 
6070 	/* Tell new CPU we are migrated */
6071 	p->se.avg.last_update_time = 0;
6072 
6073 	/* We have migrated, no longer consider this task hot */
6074 	p->se.exec_start = 0;
6075 }
6076 
6077 static void task_dead_fair(struct task_struct *p)
6078 {
6079 	remove_entity_load_avg(&p->se);
6080 }
6081 #endif /* CONFIG_SMP */
6082 
6083 static unsigned long
6084 wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
6085 {
6086 	unsigned long gran = sysctl_sched_wakeup_granularity;
6087 
6088 	/*
6089 	 * Since its curr running now, convert the gran from real-time
6090 	 * to virtual-time in his units.
6091 	 *
6092 	 * By using 'se' instead of 'curr' we penalize light tasks, so
6093 	 * they get preempted easier. That is, if 'se' < 'curr' then
6094 	 * the resulting gran will be larger, therefore penalizing the
6095 	 * lighter, if otoh 'se' > 'curr' then the resulting gran will
6096 	 * be smaller, again penalizing the lighter task.
6097 	 *
6098 	 * This is especially important for buddies when the leftmost
6099 	 * task is higher priority than the buddy.
6100 	 */
6101 	return calc_delta_fair(gran, se);
6102 }
6103 
6104 /*
6105  * Should 'se' preempt 'curr'.
6106  *
6107  *             |s1
6108  *        |s2
6109  *   |s3
6110  *         g
6111  *      |<--->|c
6112  *
6113  *  w(c, s1) = -1
6114  *  w(c, s2) =  0
6115  *  w(c, s3) =  1
6116  *
6117  */
6118 static int
6119 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
6120 {
6121 	s64 gran, vdiff = curr->vruntime - se->vruntime;
6122 
6123 	if (vdiff <= 0)
6124 		return -1;
6125 
6126 	gran = wakeup_gran(curr, se);
6127 	if (vdiff > gran)
6128 		return 1;
6129 
6130 	return 0;
6131 }
6132 
6133 static void set_last_buddy(struct sched_entity *se)
6134 {
6135 	if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
6136 		return;
6137 
6138 	for_each_sched_entity(se) {
6139 		if (SCHED_WARN_ON(!se->on_rq))
6140 			return;
6141 		cfs_rq_of(se)->last = se;
6142 	}
6143 }
6144 
6145 static void set_next_buddy(struct sched_entity *se)
6146 {
6147 	if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
6148 		return;
6149 
6150 	for_each_sched_entity(se) {
6151 		if (SCHED_WARN_ON(!se->on_rq))
6152 			return;
6153 		cfs_rq_of(se)->next = se;
6154 	}
6155 }
6156 
6157 static void set_skip_buddy(struct sched_entity *se)
6158 {
6159 	for_each_sched_entity(se)
6160 		cfs_rq_of(se)->skip = se;
6161 }
6162 
6163 /*
6164  * Preempt the current task with a newly woken task if needed:
6165  */
6166 static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
6167 {
6168 	struct task_struct *curr = rq->curr;
6169 	struct sched_entity *se = &curr->se, *pse = &p->se;
6170 	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
6171 	int scale = cfs_rq->nr_running >= sched_nr_latency;
6172 	int next_buddy_marked = 0;
6173 
6174 	if (unlikely(se == pse))
6175 		return;
6176 
6177 	/*
6178 	 * This is possible from callers such as attach_tasks(), in which we
6179 	 * unconditionally check_prempt_curr() after an enqueue (which may have
6180 	 * lead to a throttle).  This both saves work and prevents false
6181 	 * next-buddy nomination below.
6182 	 */
6183 	if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
6184 		return;
6185 
6186 	if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
6187 		set_next_buddy(pse);
6188 		next_buddy_marked = 1;
6189 	}
6190 
6191 	/*
6192 	 * We can come here with TIF_NEED_RESCHED already set from new task
6193 	 * wake up path.
6194 	 *
6195 	 * Note: this also catches the edge-case of curr being in a throttled
6196 	 * group (e.g. via set_curr_task), since update_curr() (in the
6197 	 * enqueue of curr) will have resulted in resched being set.  This
6198 	 * prevents us from potentially nominating it as a false LAST_BUDDY
6199 	 * below.
6200 	 */
6201 	if (test_tsk_need_resched(curr))
6202 		return;
6203 
6204 	/* Idle tasks are by definition preempted by non-idle tasks. */
6205 	if (unlikely(curr->policy == SCHED_IDLE) &&
6206 	    likely(p->policy != SCHED_IDLE))
6207 		goto preempt;
6208 
6209 	/*
6210 	 * Batch and idle tasks do not preempt non-idle tasks (their preemption
6211 	 * is driven by the tick):
6212 	 */
6213 	if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
6214 		return;
6215 
6216 	find_matching_se(&se, &pse);
6217 	update_curr(cfs_rq_of(se));
6218 	BUG_ON(!pse);
6219 	if (wakeup_preempt_entity(se, pse) == 1) {
6220 		/*
6221 		 * Bias pick_next to pick the sched entity that is
6222 		 * triggering this preemption.
6223 		 */
6224 		if (!next_buddy_marked)
6225 			set_next_buddy(pse);
6226 		goto preempt;
6227 	}
6228 
6229 	return;
6230 
6231 preempt:
6232 	resched_curr(rq);
6233 	/*
6234 	 * Only set the backward buddy when the current task is still
6235 	 * on the rq. This can happen when a wakeup gets interleaved
6236 	 * with schedule on the ->pre_schedule() or idle_balance()
6237 	 * point, either of which can * drop the rq lock.
6238 	 *
6239 	 * Also, during early boot the idle thread is in the fair class,
6240 	 * for obvious reasons its a bad idea to schedule back to it.
6241 	 */
6242 	if (unlikely(!se->on_rq || curr == rq->idle))
6243 		return;
6244 
6245 	if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
6246 		set_last_buddy(se);
6247 }
6248 
6249 static struct task_struct *
6250 pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
6251 {
6252 	struct cfs_rq *cfs_rq = &rq->cfs;
6253 	struct sched_entity *se;
6254 	struct task_struct *p;
6255 	int new_tasks;
6256 
6257 again:
6258 	if (!cfs_rq->nr_running)
6259 		goto idle;
6260 
6261 #ifdef CONFIG_FAIR_GROUP_SCHED
6262 	if (prev->sched_class != &fair_sched_class)
6263 		goto simple;
6264 
6265 	/*
6266 	 * Because of the set_next_buddy() in dequeue_task_fair() it is rather
6267 	 * likely that a next task is from the same cgroup as the current.
6268 	 *
6269 	 * Therefore attempt to avoid putting and setting the entire cgroup
6270 	 * hierarchy, only change the part that actually changes.
6271 	 */
6272 
6273 	do {
6274 		struct sched_entity *curr = cfs_rq->curr;
6275 
6276 		/*
6277 		 * Since we got here without doing put_prev_entity() we also
6278 		 * have to consider cfs_rq->curr. If it is still a runnable
6279 		 * entity, update_curr() will update its vruntime, otherwise
6280 		 * forget we've ever seen it.
6281 		 */
6282 		if (curr) {
6283 			if (curr->on_rq)
6284 				update_curr(cfs_rq);
6285 			else
6286 				curr = NULL;
6287 
6288 			/*
6289 			 * This call to check_cfs_rq_runtime() will do the
6290 			 * throttle and dequeue its entity in the parent(s).
6291 			 * Therefore the nr_running test will indeed
6292 			 * be correct.
6293 			 */
6294 			if (unlikely(check_cfs_rq_runtime(cfs_rq))) {
6295 				cfs_rq = &rq->cfs;
6296 
6297 				if (!cfs_rq->nr_running)
6298 					goto idle;
6299 
6300 				goto simple;
6301 			}
6302 		}
6303 
6304 		se = pick_next_entity(cfs_rq, curr);
6305 		cfs_rq = group_cfs_rq(se);
6306 	} while (cfs_rq);
6307 
6308 	p = task_of(se);
6309 
6310 	/*
6311 	 * Since we haven't yet done put_prev_entity and if the selected task
6312 	 * is a different task than we started out with, try and touch the
6313 	 * least amount of cfs_rqs.
6314 	 */
6315 	if (prev != p) {
6316 		struct sched_entity *pse = &prev->se;
6317 
6318 		while (!(cfs_rq = is_same_group(se, pse))) {
6319 			int se_depth = se->depth;
6320 			int pse_depth = pse->depth;
6321 
6322 			if (se_depth <= pse_depth) {
6323 				put_prev_entity(cfs_rq_of(pse), pse);
6324 				pse = parent_entity(pse);
6325 			}
6326 			if (se_depth >= pse_depth) {
6327 				set_next_entity(cfs_rq_of(se), se);
6328 				se = parent_entity(se);
6329 			}
6330 		}
6331 
6332 		put_prev_entity(cfs_rq, pse);
6333 		set_next_entity(cfs_rq, se);
6334 	}
6335 
6336 	if (hrtick_enabled(rq))
6337 		hrtick_start_fair(rq, p);
6338 
6339 	return p;
6340 simple:
6341 #endif
6342 
6343 	put_prev_task(rq, prev);
6344 
6345 	do {
6346 		se = pick_next_entity(cfs_rq, NULL);
6347 		set_next_entity(cfs_rq, se);
6348 		cfs_rq = group_cfs_rq(se);
6349 	} while (cfs_rq);
6350 
6351 	p = task_of(se);
6352 
6353 	if (hrtick_enabled(rq))
6354 		hrtick_start_fair(rq, p);
6355 
6356 	return p;
6357 
6358 idle:
6359 	new_tasks = idle_balance(rq, rf);
6360 
6361 	/*
6362 	 * Because idle_balance() releases (and re-acquires) rq->lock, it is
6363 	 * possible for any higher priority task to appear. In that case we
6364 	 * must re-start the pick_next_entity() loop.
6365 	 */
6366 	if (new_tasks < 0)
6367 		return RETRY_TASK;
6368 
6369 	if (new_tasks > 0)
6370 		goto again;
6371 
6372 	return NULL;
6373 }
6374 
6375 /*
6376  * Account for a descheduled task:
6377  */
6378 static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
6379 {
6380 	struct sched_entity *se = &prev->se;
6381 	struct cfs_rq *cfs_rq;
6382 
6383 	for_each_sched_entity(se) {
6384 		cfs_rq = cfs_rq_of(se);
6385 		put_prev_entity(cfs_rq, se);
6386 	}
6387 }
6388 
6389 /*
6390  * sched_yield() is very simple
6391  *
6392  * The magic of dealing with the ->skip buddy is in pick_next_entity.
6393  */
6394 static void yield_task_fair(struct rq *rq)
6395 {
6396 	struct task_struct *curr = rq->curr;
6397 	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
6398 	struct sched_entity *se = &curr->se;
6399 
6400 	/*
6401 	 * Are we the only task in the tree?
6402 	 */
6403 	if (unlikely(rq->nr_running == 1))
6404 		return;
6405 
6406 	clear_buddies(cfs_rq, se);
6407 
6408 	if (curr->policy != SCHED_BATCH) {
6409 		update_rq_clock(rq);
6410 		/*
6411 		 * Update run-time statistics of the 'current'.
6412 		 */
6413 		update_curr(cfs_rq);
6414 		/*
6415 		 * Tell update_rq_clock() that we've just updated,
6416 		 * so we don't do microscopic update in schedule()
6417 		 * and double the fastpath cost.
6418 		 */
6419 		rq_clock_skip_update(rq, true);
6420 	}
6421 
6422 	set_skip_buddy(se);
6423 }
6424 
6425 static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
6426 {
6427 	struct sched_entity *se = &p->se;
6428 
6429 	/* throttled hierarchies are not runnable */
6430 	if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
6431 		return false;
6432 
6433 	/* Tell the scheduler that we'd really like pse to run next. */
6434 	set_next_buddy(se);
6435 
6436 	yield_task_fair(rq);
6437 
6438 	return true;
6439 }
6440 
6441 #ifdef CONFIG_SMP
6442 /**************************************************
6443  * Fair scheduling class load-balancing methods.
6444  *
6445  * BASICS
6446  *
6447  * The purpose of load-balancing is to achieve the same basic fairness the
6448  * per-cpu scheduler provides, namely provide a proportional amount of compute
6449  * time to each task. This is expressed in the following equation:
6450  *
6451  *   W_i,n/P_i == W_j,n/P_j for all i,j                               (1)
6452  *
6453  * Where W_i,n is the n-th weight average for cpu i. The instantaneous weight
6454  * W_i,0 is defined as:
6455  *
6456  *   W_i,0 = \Sum_j w_i,j                                             (2)
6457  *
6458  * Where w_i,j is the weight of the j-th runnable task on cpu i. This weight
6459  * is derived from the nice value as per sched_prio_to_weight[].
6460  *
6461  * The weight average is an exponential decay average of the instantaneous
6462  * weight:
6463  *
6464  *   W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0               (3)
6465  *
6466  * C_i is the compute capacity of cpu i, typically it is the
6467  * fraction of 'recent' time available for SCHED_OTHER task execution. But it
6468  * can also include other factors [XXX].
6469  *
6470  * To achieve this balance we define a measure of imbalance which follows
6471  * directly from (1):
6472  *
6473  *   imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j }    (4)
6474  *
6475  * We them move tasks around to minimize the imbalance. In the continuous
6476  * function space it is obvious this converges, in the discrete case we get
6477  * a few fun cases generally called infeasible weight scenarios.
6478  *
6479  * [XXX expand on:
6480  *     - infeasible weights;
6481  *     - local vs global optima in the discrete case. ]
6482  *
6483  *
6484  * SCHED DOMAINS
6485  *
6486  * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
6487  * for all i,j solution, we create a tree of cpus that follows the hardware
6488  * topology where each level pairs two lower groups (or better). This results
6489  * in O(log n) layers. Furthermore we reduce the number of cpus going up the
6490  * tree to only the first of the previous level and we decrease the frequency
6491  * of load-balance at each level inv. proportional to the number of cpus in
6492  * the groups.
6493  *
6494  * This yields:
6495  *
6496  *     log_2 n     1     n
6497  *   \Sum       { --- * --- * 2^i } = O(n)                            (5)
6498  *     i = 0      2^i   2^i
6499  *                               `- size of each group
6500  *         |         |     `- number of cpus doing load-balance
6501  *         |         `- freq
6502  *         `- sum over all levels
6503  *
6504  * Coupled with a limit on how many tasks we can migrate every balance pass,
6505  * this makes (5) the runtime complexity of the balancer.
6506  *
6507  * An important property here is that each CPU is still (indirectly) connected
6508  * to every other cpu in at most O(log n) steps:
6509  *
6510  * The adjacency matrix of the resulting graph is given by:
6511  *
6512  *             log_2 n
6513  *   A_i,j = \Union     (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1)  (6)
6514  *             k = 0
6515  *
6516  * And you'll find that:
6517  *
6518  *   A^(log_2 n)_i,j != 0  for all i,j                                (7)
6519  *
6520  * Showing there's indeed a path between every cpu in at most O(log n) steps.
6521  * The task movement gives a factor of O(m), giving a convergence complexity
6522  * of:
6523  *
6524  *   O(nm log n),  n := nr_cpus, m := nr_tasks                        (8)
6525  *
6526  *
6527  * WORK CONSERVING
6528  *
6529  * In order to avoid CPUs going idle while there's still work to do, new idle
6530  * balancing is more aggressive and has the newly idle cpu iterate up the domain
6531  * tree itself instead of relying on other CPUs to bring it work.
6532  *
6533  * This adds some complexity to both (5) and (8) but it reduces the total idle
6534  * time.
6535  *
6536  * [XXX more?]
6537  *
6538  *
6539  * CGROUPS
6540  *
6541  * Cgroups make a horror show out of (2), instead of a simple sum we get:
6542  *
6543  *                                s_k,i
6544  *   W_i,0 = \Sum_j \Prod_k w_k * -----                               (9)
6545  *                                 S_k
6546  *
6547  * Where
6548  *
6549  *   s_k,i = \Sum_j w_i,j,k  and  S_k = \Sum_i s_k,i                 (10)
6550  *
6551  * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on cpu i.
6552  *
6553  * The big problem is S_k, its a global sum needed to compute a local (W_i)
6554  * property.
6555  *
6556  * [XXX write more on how we solve this.. _after_ merging pjt's patches that
6557  *      rewrite all of this once again.]
6558  */
6559 
6560 static unsigned long __read_mostly max_load_balance_interval = HZ/10;
6561 
6562 enum fbq_type { regular, remote, all };
6563 
6564 #define LBF_ALL_PINNED	0x01
6565 #define LBF_NEED_BREAK	0x02
6566 #define LBF_DST_PINNED  0x04
6567 #define LBF_SOME_PINNED	0x08
6568 
6569 struct lb_env {
6570 	struct sched_domain	*sd;
6571 
6572 	struct rq		*src_rq;
6573 	int			src_cpu;
6574 
6575 	int			dst_cpu;
6576 	struct rq		*dst_rq;
6577 
6578 	struct cpumask		*dst_grpmask;
6579 	int			new_dst_cpu;
6580 	enum cpu_idle_type	idle;
6581 	long			imbalance;
6582 	/* The set of CPUs under consideration for load-balancing */
6583 	struct cpumask		*cpus;
6584 
6585 	unsigned int		flags;
6586 
6587 	unsigned int		loop;
6588 	unsigned int		loop_break;
6589 	unsigned int		loop_max;
6590 
6591 	enum fbq_type		fbq_type;
6592 	struct list_head	tasks;
6593 };
6594 
6595 /*
6596  * Is this task likely cache-hot:
6597  */
6598 static int task_hot(struct task_struct *p, struct lb_env *env)
6599 {
6600 	s64 delta;
6601 
6602 	lockdep_assert_held(&env->src_rq->lock);
6603 
6604 	if (p->sched_class != &fair_sched_class)
6605 		return 0;
6606 
6607 	if (unlikely(p->policy == SCHED_IDLE))
6608 		return 0;
6609 
6610 	/*
6611 	 * Buddy candidates are cache hot:
6612 	 */
6613 	if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running &&
6614 			(&p->se == cfs_rq_of(&p->se)->next ||
6615 			 &p->se == cfs_rq_of(&p->se)->last))
6616 		return 1;
6617 
6618 	if (sysctl_sched_migration_cost == -1)
6619 		return 1;
6620 	if (sysctl_sched_migration_cost == 0)
6621 		return 0;
6622 
6623 	delta = rq_clock_task(env->src_rq) - p->se.exec_start;
6624 
6625 	return delta < (s64)sysctl_sched_migration_cost;
6626 }
6627 
6628 #ifdef CONFIG_NUMA_BALANCING
6629 /*
6630  * Returns 1, if task migration degrades locality
6631  * Returns 0, if task migration improves locality i.e migration preferred.
6632  * Returns -1, if task migration is not affected by locality.
6633  */
6634 static int migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
6635 {
6636 	struct numa_group *numa_group = rcu_dereference(p->numa_group);
6637 	unsigned long src_faults, dst_faults;
6638 	int src_nid, dst_nid;
6639 
6640 	if (!static_branch_likely(&sched_numa_balancing))
6641 		return -1;
6642 
6643 	if (!p->numa_faults || !(env->sd->flags & SD_NUMA))
6644 		return -1;
6645 
6646 	src_nid = cpu_to_node(env->src_cpu);
6647 	dst_nid = cpu_to_node(env->dst_cpu);
6648 
6649 	if (src_nid == dst_nid)
6650 		return -1;
6651 
6652 	/* Migrating away from the preferred node is always bad. */
6653 	if (src_nid == p->numa_preferred_nid) {
6654 		if (env->src_rq->nr_running > env->src_rq->nr_preferred_running)
6655 			return 1;
6656 		else
6657 			return -1;
6658 	}
6659 
6660 	/* Encourage migration to the preferred node. */
6661 	if (dst_nid == p->numa_preferred_nid)
6662 		return 0;
6663 
6664 	/* Leaving a core idle is often worse than degrading locality. */
6665 	if (env->idle != CPU_NOT_IDLE)
6666 		return -1;
6667 
6668 	if (numa_group) {
6669 		src_faults = group_faults(p, src_nid);
6670 		dst_faults = group_faults(p, dst_nid);
6671 	} else {
6672 		src_faults = task_faults(p, src_nid);
6673 		dst_faults = task_faults(p, dst_nid);
6674 	}
6675 
6676 	return dst_faults < src_faults;
6677 }
6678 
6679 #else
6680 static inline int migrate_degrades_locality(struct task_struct *p,
6681 					     struct lb_env *env)
6682 {
6683 	return -1;
6684 }
6685 #endif
6686 
6687 /*
6688  * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
6689  */
6690 static
6691 int can_migrate_task(struct task_struct *p, struct lb_env *env)
6692 {
6693 	int tsk_cache_hot;
6694 
6695 	lockdep_assert_held(&env->src_rq->lock);
6696 
6697 	/*
6698 	 * We do not migrate tasks that are:
6699 	 * 1) throttled_lb_pair, or
6700 	 * 2) cannot be migrated to this CPU due to cpus_allowed, or
6701 	 * 3) running (obviously), or
6702 	 * 4) are cache-hot on their current CPU.
6703 	 */
6704 	if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
6705 		return 0;
6706 
6707 	if (!cpumask_test_cpu(env->dst_cpu, &p->cpus_allowed)) {
6708 		int cpu;
6709 
6710 		schedstat_inc(p->se.statistics.nr_failed_migrations_affine);
6711 
6712 		env->flags |= LBF_SOME_PINNED;
6713 
6714 		/*
6715 		 * Remember if this task can be migrated to any other cpu in
6716 		 * our sched_group. We may want to revisit it if we couldn't
6717 		 * meet load balance goals by pulling other tasks on src_cpu.
6718 		 *
6719 		 * Avoid computing new_dst_cpu for NEWLY_IDLE or if we have
6720 		 * already computed one in current iteration.
6721 		 */
6722 		if (env->idle == CPU_NEWLY_IDLE || (env->flags & LBF_DST_PINNED))
6723 			return 0;
6724 
6725 		/* Prevent to re-select dst_cpu via env's cpus */
6726 		for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
6727 			if (cpumask_test_cpu(cpu, &p->cpus_allowed)) {
6728 				env->flags |= LBF_DST_PINNED;
6729 				env->new_dst_cpu = cpu;
6730 				break;
6731 			}
6732 		}
6733 
6734 		return 0;
6735 	}
6736 
6737 	/* Record that we found atleast one task that could run on dst_cpu */
6738 	env->flags &= ~LBF_ALL_PINNED;
6739 
6740 	if (task_running(env->src_rq, p)) {
6741 		schedstat_inc(p->se.statistics.nr_failed_migrations_running);
6742 		return 0;
6743 	}
6744 
6745 	/*
6746 	 * Aggressive migration if:
6747 	 * 1) destination numa is preferred
6748 	 * 2) task is cache cold, or
6749 	 * 3) too many balance attempts have failed.
6750 	 */
6751 	tsk_cache_hot = migrate_degrades_locality(p, env);
6752 	if (tsk_cache_hot == -1)
6753 		tsk_cache_hot = task_hot(p, env);
6754 
6755 	if (tsk_cache_hot <= 0 ||
6756 	    env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
6757 		if (tsk_cache_hot == 1) {
6758 			schedstat_inc(env->sd->lb_hot_gained[env->idle]);
6759 			schedstat_inc(p->se.statistics.nr_forced_migrations);
6760 		}
6761 		return 1;
6762 	}
6763 
6764 	schedstat_inc(p->se.statistics.nr_failed_migrations_hot);
6765 	return 0;
6766 }
6767 
6768 /*
6769  * detach_task() -- detach the task for the migration specified in env
6770  */
6771 static void detach_task(struct task_struct *p, struct lb_env *env)
6772 {
6773 	lockdep_assert_held(&env->src_rq->lock);
6774 
6775 	p->on_rq = TASK_ON_RQ_MIGRATING;
6776 	deactivate_task(env->src_rq, p, DEQUEUE_NOCLOCK);
6777 	set_task_cpu(p, env->dst_cpu);
6778 }
6779 
6780 /*
6781  * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as
6782  * part of active balancing operations within "domain".
6783  *
6784  * Returns a task if successful and NULL otherwise.
6785  */
6786 static struct task_struct *detach_one_task(struct lb_env *env)
6787 {
6788 	struct task_struct *p, *n;
6789 
6790 	lockdep_assert_held(&env->src_rq->lock);
6791 
6792 	list_for_each_entry_safe(p, n, &env->src_rq->cfs_tasks, se.group_node) {
6793 		if (!can_migrate_task(p, env))
6794 			continue;
6795 
6796 		detach_task(p, env);
6797 
6798 		/*
6799 		 * Right now, this is only the second place where
6800 		 * lb_gained[env->idle] is updated (other is detach_tasks)
6801 		 * so we can safely collect stats here rather than
6802 		 * inside detach_tasks().
6803 		 */
6804 		schedstat_inc(env->sd->lb_gained[env->idle]);
6805 		return p;
6806 	}
6807 	return NULL;
6808 }
6809 
6810 static const unsigned int sched_nr_migrate_break = 32;
6811 
6812 /*
6813  * detach_tasks() -- tries to detach up to imbalance weighted load from
6814  * busiest_rq, as part of a balancing operation within domain "sd".
6815  *
6816  * Returns number of detached tasks if successful and 0 otherwise.
6817  */
6818 static int detach_tasks(struct lb_env *env)
6819 {
6820 	struct list_head *tasks = &env->src_rq->cfs_tasks;
6821 	struct task_struct *p;
6822 	unsigned long load;
6823 	int detached = 0;
6824 
6825 	lockdep_assert_held(&env->src_rq->lock);
6826 
6827 	if (env->imbalance <= 0)
6828 		return 0;
6829 
6830 	while (!list_empty(tasks)) {
6831 		/*
6832 		 * We don't want to steal all, otherwise we may be treated likewise,
6833 		 * which could at worst lead to a livelock crash.
6834 		 */
6835 		if (env->idle != CPU_NOT_IDLE && env->src_rq->nr_running <= 1)
6836 			break;
6837 
6838 		p = list_first_entry(tasks, struct task_struct, se.group_node);
6839 
6840 		env->loop++;
6841 		/* We've more or less seen every task there is, call it quits */
6842 		if (env->loop > env->loop_max)
6843 			break;
6844 
6845 		/* take a breather every nr_migrate tasks */
6846 		if (env->loop > env->loop_break) {
6847 			env->loop_break += sched_nr_migrate_break;
6848 			env->flags |= LBF_NEED_BREAK;
6849 			break;
6850 		}
6851 
6852 		if (!can_migrate_task(p, env))
6853 			goto next;
6854 
6855 		load = task_h_load(p);
6856 
6857 		if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed)
6858 			goto next;
6859 
6860 		if ((load / 2) > env->imbalance)
6861 			goto next;
6862 
6863 		detach_task(p, env);
6864 		list_add(&p->se.group_node, &env->tasks);
6865 
6866 		detached++;
6867 		env->imbalance -= load;
6868 
6869 #ifdef CONFIG_PREEMPT
6870 		/*
6871 		 * NEWIDLE balancing is a source of latency, so preemptible
6872 		 * kernels will stop after the first task is detached to minimize
6873 		 * the critical section.
6874 		 */
6875 		if (env->idle == CPU_NEWLY_IDLE)
6876 			break;
6877 #endif
6878 
6879 		/*
6880 		 * We only want to steal up to the prescribed amount of
6881 		 * weighted load.
6882 		 */
6883 		if (env->imbalance <= 0)
6884 			break;
6885 
6886 		continue;
6887 next:
6888 		list_move_tail(&p->se.group_node, tasks);
6889 	}
6890 
6891 	/*
6892 	 * Right now, this is one of only two places we collect this stat
6893 	 * so we can safely collect detach_one_task() stats here rather
6894 	 * than inside detach_one_task().
6895 	 */
6896 	schedstat_add(env->sd->lb_gained[env->idle], detached);
6897 
6898 	return detached;
6899 }
6900 
6901 /*
6902  * attach_task() -- attach the task detached by detach_task() to its new rq.
6903  */
6904 static void attach_task(struct rq *rq, struct task_struct *p)
6905 {
6906 	lockdep_assert_held(&rq->lock);
6907 
6908 	BUG_ON(task_rq(p) != rq);
6909 	activate_task(rq, p, ENQUEUE_NOCLOCK);
6910 	p->on_rq = TASK_ON_RQ_QUEUED;
6911 	check_preempt_curr(rq, p, 0);
6912 }
6913 
6914 /*
6915  * attach_one_task() -- attaches the task returned from detach_one_task() to
6916  * its new rq.
6917  */
6918 static void attach_one_task(struct rq *rq, struct task_struct *p)
6919 {
6920 	struct rq_flags rf;
6921 
6922 	rq_lock(rq, &rf);
6923 	update_rq_clock(rq);
6924 	attach_task(rq, p);
6925 	rq_unlock(rq, &rf);
6926 }
6927 
6928 /*
6929  * attach_tasks() -- attaches all tasks detached by detach_tasks() to their
6930  * new rq.
6931  */
6932 static void attach_tasks(struct lb_env *env)
6933 {
6934 	struct list_head *tasks = &env->tasks;
6935 	struct task_struct *p;
6936 	struct rq_flags rf;
6937 
6938 	rq_lock(env->dst_rq, &rf);
6939 	update_rq_clock(env->dst_rq);
6940 
6941 	while (!list_empty(tasks)) {
6942 		p = list_first_entry(tasks, struct task_struct, se.group_node);
6943 		list_del_init(&p->se.group_node);
6944 
6945 		attach_task(env->dst_rq, p);
6946 	}
6947 
6948 	rq_unlock(env->dst_rq, &rf);
6949 }
6950 
6951 #ifdef CONFIG_FAIR_GROUP_SCHED
6952 
6953 static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq)
6954 {
6955 	if (cfs_rq->load.weight)
6956 		return false;
6957 
6958 	if (cfs_rq->avg.load_sum)
6959 		return false;
6960 
6961 	if (cfs_rq->avg.util_sum)
6962 		return false;
6963 
6964 	if (cfs_rq->runnable_load_sum)
6965 		return false;
6966 
6967 	return true;
6968 }
6969 
6970 static void update_blocked_averages(int cpu)
6971 {
6972 	struct rq *rq = cpu_rq(cpu);
6973 	struct cfs_rq *cfs_rq, *pos;
6974 	struct rq_flags rf;
6975 
6976 	rq_lock_irqsave(rq, &rf);
6977 	update_rq_clock(rq);
6978 
6979 	/*
6980 	 * Iterates the task_group tree in a bottom up fashion, see
6981 	 * list_add_leaf_cfs_rq() for details.
6982 	 */
6983 	for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) {
6984 		struct sched_entity *se;
6985 
6986 		/* throttled entities do not contribute to load */
6987 		if (throttled_hierarchy(cfs_rq))
6988 			continue;
6989 
6990 		if (update_cfs_rq_load_avg(cfs_rq_clock_task(cfs_rq), cfs_rq))
6991 			update_tg_load_avg(cfs_rq, 0);
6992 
6993 		/* Propagate pending load changes to the parent, if any: */
6994 		se = cfs_rq->tg->se[cpu];
6995 		if (se && !skip_blocked_update(se))
6996 			update_load_avg(se, 0);
6997 
6998 		/*
6999 		 * There can be a lot of idle CPU cgroups.  Don't let fully
7000 		 * decayed cfs_rqs linger on the list.
7001 		 */
7002 		if (cfs_rq_is_decayed(cfs_rq))
7003 			list_del_leaf_cfs_rq(cfs_rq);
7004 	}
7005 	rq_unlock_irqrestore(rq, &rf);
7006 }
7007 
7008 /*
7009  * Compute the hierarchical load factor for cfs_rq and all its ascendants.
7010  * This needs to be done in a top-down fashion because the load of a child
7011  * group is a fraction of its parents load.
7012  */
7013 static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
7014 {
7015 	struct rq *rq = rq_of(cfs_rq);
7016 	struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
7017 	unsigned long now = jiffies;
7018 	unsigned long load;
7019 
7020 	if (cfs_rq->last_h_load_update == now)
7021 		return;
7022 
7023 	cfs_rq->h_load_next = NULL;
7024 	for_each_sched_entity(se) {
7025 		cfs_rq = cfs_rq_of(se);
7026 		cfs_rq->h_load_next = se;
7027 		if (cfs_rq->last_h_load_update == now)
7028 			break;
7029 	}
7030 
7031 	if (!se) {
7032 		cfs_rq->h_load = cfs_rq_load_avg(cfs_rq);
7033 		cfs_rq->last_h_load_update = now;
7034 	}
7035 
7036 	while ((se = cfs_rq->h_load_next) != NULL) {
7037 		load = cfs_rq->h_load;
7038 		load = div64_ul(load * se->avg.load_avg,
7039 			cfs_rq_load_avg(cfs_rq) + 1);
7040 		cfs_rq = group_cfs_rq(se);
7041 		cfs_rq->h_load = load;
7042 		cfs_rq->last_h_load_update = now;
7043 	}
7044 }
7045 
7046 static unsigned long task_h_load(struct task_struct *p)
7047 {
7048 	struct cfs_rq *cfs_rq = task_cfs_rq(p);
7049 
7050 	update_cfs_rq_h_load(cfs_rq);
7051 	return div64_ul(p->se.avg.load_avg * cfs_rq->h_load,
7052 			cfs_rq_load_avg(cfs_rq) + 1);
7053 }
7054 #else
7055 static inline void update_blocked_averages(int cpu)
7056 {
7057 	struct rq *rq = cpu_rq(cpu);
7058 	struct cfs_rq *cfs_rq = &rq->cfs;
7059 	struct rq_flags rf;
7060 
7061 	rq_lock_irqsave(rq, &rf);
7062 	update_rq_clock(rq);
7063 	update_cfs_rq_load_avg(cfs_rq_clock_task(cfs_rq), cfs_rq);
7064 	rq_unlock_irqrestore(rq, &rf);
7065 }
7066 
7067 static unsigned long task_h_load(struct task_struct *p)
7068 {
7069 	return p->se.avg.load_avg;
7070 }
7071 #endif
7072 
7073 /********** Helpers for find_busiest_group ************************/
7074 
7075 enum group_type {
7076 	group_other = 0,
7077 	group_imbalanced,
7078 	group_overloaded,
7079 };
7080 
7081 /*
7082  * sg_lb_stats - stats of a sched_group required for load_balancing
7083  */
7084 struct sg_lb_stats {
7085 	unsigned long avg_load; /*Avg load across the CPUs of the group */
7086 	unsigned long group_load; /* Total load over the CPUs of the group */
7087 	unsigned long sum_weighted_load; /* Weighted load of group's tasks */
7088 	unsigned long load_per_task;
7089 	unsigned long group_capacity;
7090 	unsigned long group_util; /* Total utilization of the group */
7091 	unsigned int sum_nr_running; /* Nr tasks running in the group */
7092 	unsigned int idle_cpus;
7093 	unsigned int group_weight;
7094 	enum group_type group_type;
7095 	int group_no_capacity;
7096 #ifdef CONFIG_NUMA_BALANCING
7097 	unsigned int nr_numa_running;
7098 	unsigned int nr_preferred_running;
7099 #endif
7100 };
7101 
7102 /*
7103  * sd_lb_stats - Structure to store the statistics of a sched_domain
7104  *		 during load balancing.
7105  */
7106 struct sd_lb_stats {
7107 	struct sched_group *busiest;	/* Busiest group in this sd */
7108 	struct sched_group *local;	/* Local group in this sd */
7109 	unsigned long total_running;
7110 	unsigned long total_load;	/* Total load of all groups in sd */
7111 	unsigned long total_capacity;	/* Total capacity of all groups in sd */
7112 	unsigned long avg_load;	/* Average load across all groups in sd */
7113 
7114 	struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
7115 	struct sg_lb_stats local_stat;	/* Statistics of the local group */
7116 };
7117 
7118 static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
7119 {
7120 	/*
7121 	 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
7122 	 * local_stat because update_sg_lb_stats() does a full clear/assignment.
7123 	 * We must however clear busiest_stat::avg_load because
7124 	 * update_sd_pick_busiest() reads this before assignment.
7125 	 */
7126 	*sds = (struct sd_lb_stats){
7127 		.busiest = NULL,
7128 		.local = NULL,
7129 		.total_running = 0UL,
7130 		.total_load = 0UL,
7131 		.total_capacity = 0UL,
7132 		.busiest_stat = {
7133 			.avg_load = 0UL,
7134 			.sum_nr_running = 0,
7135 			.group_type = group_other,
7136 		},
7137 	};
7138 }
7139 
7140 /**
7141  * get_sd_load_idx - Obtain the load index for a given sched domain.
7142  * @sd: The sched_domain whose load_idx is to be obtained.
7143  * @idle: The idle status of the CPU for whose sd load_idx is obtained.
7144  *
7145  * Return: The load index.
7146  */
7147 static inline int get_sd_load_idx(struct sched_domain *sd,
7148 					enum cpu_idle_type idle)
7149 {
7150 	int load_idx;
7151 
7152 	switch (idle) {
7153 	case CPU_NOT_IDLE:
7154 		load_idx = sd->busy_idx;
7155 		break;
7156 
7157 	case CPU_NEWLY_IDLE:
7158 		load_idx = sd->newidle_idx;
7159 		break;
7160 	default:
7161 		load_idx = sd->idle_idx;
7162 		break;
7163 	}
7164 
7165 	return load_idx;
7166 }
7167 
7168 static unsigned long scale_rt_capacity(int cpu)
7169 {
7170 	struct rq *rq = cpu_rq(cpu);
7171 	u64 total, used, age_stamp, avg;
7172 	s64 delta;
7173 
7174 	/*
7175 	 * Since we're reading these variables without serialization make sure
7176 	 * we read them once before doing sanity checks on them.
7177 	 */
7178 	age_stamp = READ_ONCE(rq->age_stamp);
7179 	avg = READ_ONCE(rq->rt_avg);
7180 	delta = __rq_clock_broken(rq) - age_stamp;
7181 
7182 	if (unlikely(delta < 0))
7183 		delta = 0;
7184 
7185 	total = sched_avg_period() + delta;
7186 
7187 	used = div_u64(avg, total);
7188 
7189 	if (likely(used < SCHED_CAPACITY_SCALE))
7190 		return SCHED_CAPACITY_SCALE - used;
7191 
7192 	return 1;
7193 }
7194 
7195 static void update_cpu_capacity(struct sched_domain *sd, int cpu)
7196 {
7197 	unsigned long capacity = arch_scale_cpu_capacity(sd, cpu);
7198 	struct sched_group *sdg = sd->groups;
7199 
7200 	cpu_rq(cpu)->cpu_capacity_orig = capacity;
7201 
7202 	capacity *= scale_rt_capacity(cpu);
7203 	capacity >>= SCHED_CAPACITY_SHIFT;
7204 
7205 	if (!capacity)
7206 		capacity = 1;
7207 
7208 	cpu_rq(cpu)->cpu_capacity = capacity;
7209 	sdg->sgc->capacity = capacity;
7210 	sdg->sgc->min_capacity = capacity;
7211 }
7212 
7213 void update_group_capacity(struct sched_domain *sd, int cpu)
7214 {
7215 	struct sched_domain *child = sd->child;
7216 	struct sched_group *group, *sdg = sd->groups;
7217 	unsigned long capacity, min_capacity;
7218 	unsigned long interval;
7219 
7220 	interval = msecs_to_jiffies(sd->balance_interval);
7221 	interval = clamp(interval, 1UL, max_load_balance_interval);
7222 	sdg->sgc->next_update = jiffies + interval;
7223 
7224 	if (!child) {
7225 		update_cpu_capacity(sd, cpu);
7226 		return;
7227 	}
7228 
7229 	capacity = 0;
7230 	min_capacity = ULONG_MAX;
7231 
7232 	if (child->flags & SD_OVERLAP) {
7233 		/*
7234 		 * SD_OVERLAP domains cannot assume that child groups
7235 		 * span the current group.
7236 		 */
7237 
7238 		for_each_cpu(cpu, sched_group_span(sdg)) {
7239 			struct sched_group_capacity *sgc;
7240 			struct rq *rq = cpu_rq(cpu);
7241 
7242 			/*
7243 			 * build_sched_domains() -> init_sched_groups_capacity()
7244 			 * gets here before we've attached the domains to the
7245 			 * runqueues.
7246 			 *
7247 			 * Use capacity_of(), which is set irrespective of domains
7248 			 * in update_cpu_capacity().
7249 			 *
7250 			 * This avoids capacity from being 0 and
7251 			 * causing divide-by-zero issues on boot.
7252 			 */
7253 			if (unlikely(!rq->sd)) {
7254 				capacity += capacity_of(cpu);
7255 			} else {
7256 				sgc = rq->sd->groups->sgc;
7257 				capacity += sgc->capacity;
7258 			}
7259 
7260 			min_capacity = min(capacity, min_capacity);
7261 		}
7262 	} else  {
7263 		/*
7264 		 * !SD_OVERLAP domains can assume that child groups
7265 		 * span the current group.
7266 		 */
7267 
7268 		group = child->groups;
7269 		do {
7270 			struct sched_group_capacity *sgc = group->sgc;
7271 
7272 			capacity += sgc->capacity;
7273 			min_capacity = min(sgc->min_capacity, min_capacity);
7274 			group = group->next;
7275 		} while (group != child->groups);
7276 	}
7277 
7278 	sdg->sgc->capacity = capacity;
7279 	sdg->sgc->min_capacity = min_capacity;
7280 }
7281 
7282 /*
7283  * Check whether the capacity of the rq has been noticeably reduced by side
7284  * activity. The imbalance_pct is used for the threshold.
7285  * Return true is the capacity is reduced
7286  */
7287 static inline int
7288 check_cpu_capacity(struct rq *rq, struct sched_domain *sd)
7289 {
7290 	return ((rq->cpu_capacity * sd->imbalance_pct) <
7291 				(rq->cpu_capacity_orig * 100));
7292 }
7293 
7294 /*
7295  * Group imbalance indicates (and tries to solve) the problem where balancing
7296  * groups is inadequate due to ->cpus_allowed constraints.
7297  *
7298  * Imagine a situation of two groups of 4 cpus each and 4 tasks each with a
7299  * cpumask covering 1 cpu of the first group and 3 cpus of the second group.
7300  * Something like:
7301  *
7302  *	{ 0 1 2 3 } { 4 5 6 7 }
7303  *	        *     * * *
7304  *
7305  * If we were to balance group-wise we'd place two tasks in the first group and
7306  * two tasks in the second group. Clearly this is undesired as it will overload
7307  * cpu 3 and leave one of the cpus in the second group unused.
7308  *
7309  * The current solution to this issue is detecting the skew in the first group
7310  * by noticing the lower domain failed to reach balance and had difficulty
7311  * moving tasks due to affinity constraints.
7312  *
7313  * When this is so detected; this group becomes a candidate for busiest; see
7314  * update_sd_pick_busiest(). And calculate_imbalance() and
7315  * find_busiest_group() avoid some of the usual balance conditions to allow it
7316  * to create an effective group imbalance.
7317  *
7318  * This is a somewhat tricky proposition since the next run might not find the
7319  * group imbalance and decide the groups need to be balanced again. A most
7320  * subtle and fragile situation.
7321  */
7322 
7323 static inline int sg_imbalanced(struct sched_group *group)
7324 {
7325 	return group->sgc->imbalance;
7326 }
7327 
7328 /*
7329  * group_has_capacity returns true if the group has spare capacity that could
7330  * be used by some tasks.
7331  * We consider that a group has spare capacity if the  * number of task is
7332  * smaller than the number of CPUs or if the utilization is lower than the
7333  * available capacity for CFS tasks.
7334  * For the latter, we use a threshold to stabilize the state, to take into
7335  * account the variance of the tasks' load and to return true if the available
7336  * capacity in meaningful for the load balancer.
7337  * As an example, an available capacity of 1% can appear but it doesn't make
7338  * any benefit for the load balance.
7339  */
7340 static inline bool
7341 group_has_capacity(struct lb_env *env, struct sg_lb_stats *sgs)
7342 {
7343 	if (sgs->sum_nr_running < sgs->group_weight)
7344 		return true;
7345 
7346 	if ((sgs->group_capacity * 100) >
7347 			(sgs->group_util * env->sd->imbalance_pct))
7348 		return true;
7349 
7350 	return false;
7351 }
7352 
7353 /*
7354  *  group_is_overloaded returns true if the group has more tasks than it can
7355  *  handle.
7356  *  group_is_overloaded is not equals to !group_has_capacity because a group
7357  *  with the exact right number of tasks, has no more spare capacity but is not
7358  *  overloaded so both group_has_capacity and group_is_overloaded return
7359  *  false.
7360  */
7361 static inline bool
7362 group_is_overloaded(struct lb_env *env, struct sg_lb_stats *sgs)
7363 {
7364 	if (sgs->sum_nr_running <= sgs->group_weight)
7365 		return false;
7366 
7367 	if ((sgs->group_capacity * 100) <
7368 			(sgs->group_util * env->sd->imbalance_pct))
7369 		return true;
7370 
7371 	return false;
7372 }
7373 
7374 /*
7375  * group_smaller_cpu_capacity: Returns true if sched_group sg has smaller
7376  * per-CPU capacity than sched_group ref.
7377  */
7378 static inline bool
7379 group_smaller_cpu_capacity(struct sched_group *sg, struct sched_group *ref)
7380 {
7381 	return sg->sgc->min_capacity * capacity_margin <
7382 						ref->sgc->min_capacity * 1024;
7383 }
7384 
7385 static inline enum
7386 group_type group_classify(struct sched_group *group,
7387 			  struct sg_lb_stats *sgs)
7388 {
7389 	if (sgs->group_no_capacity)
7390 		return group_overloaded;
7391 
7392 	if (sg_imbalanced(group))
7393 		return group_imbalanced;
7394 
7395 	return group_other;
7396 }
7397 
7398 /**
7399  * update_sg_lb_stats - Update sched_group's statistics for load balancing.
7400  * @env: The load balancing environment.
7401  * @group: sched_group whose statistics are to be updated.
7402  * @load_idx: Load index of sched_domain of this_cpu for load calc.
7403  * @local_group: Does group contain this_cpu.
7404  * @sgs: variable to hold the statistics for this group.
7405  * @overload: Indicate more than one runnable task for any CPU.
7406  */
7407 static inline void update_sg_lb_stats(struct lb_env *env,
7408 			struct sched_group *group, int load_idx,
7409 			int local_group, struct sg_lb_stats *sgs,
7410 			bool *overload)
7411 {
7412 	unsigned long load;
7413 	int i, nr_running;
7414 
7415 	memset(sgs, 0, sizeof(*sgs));
7416 
7417 	for_each_cpu_and(i, sched_group_span(group), env->cpus) {
7418 		struct rq *rq = cpu_rq(i);
7419 
7420 		/* Bias balancing toward cpus of our domain */
7421 		if (local_group)
7422 			load = target_load(i, load_idx);
7423 		else
7424 			load = source_load(i, load_idx);
7425 
7426 		sgs->group_load += load;
7427 		sgs->group_util += cpu_util(i);
7428 		sgs->sum_nr_running += rq->cfs.h_nr_running;
7429 
7430 		nr_running = rq->nr_running;
7431 		if (nr_running > 1)
7432 			*overload = true;
7433 
7434 #ifdef CONFIG_NUMA_BALANCING
7435 		sgs->nr_numa_running += rq->nr_numa_running;
7436 		sgs->nr_preferred_running += rq->nr_preferred_running;
7437 #endif
7438 		sgs->sum_weighted_load += weighted_cpuload(rq);
7439 		/*
7440 		 * No need to call idle_cpu() if nr_running is not 0
7441 		 */
7442 		if (!nr_running && idle_cpu(i))
7443 			sgs->idle_cpus++;
7444 	}
7445 
7446 	/* Adjust by relative CPU capacity of the group */
7447 	sgs->group_capacity = group->sgc->capacity;
7448 	sgs->avg_load = (sgs->group_load*SCHED_CAPACITY_SCALE) / sgs->group_capacity;
7449 
7450 	if (sgs->sum_nr_running)
7451 		sgs->load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
7452 
7453 	sgs->group_weight = group->group_weight;
7454 
7455 	sgs->group_no_capacity = group_is_overloaded(env, sgs);
7456 	sgs->group_type = group_classify(group, sgs);
7457 }
7458 
7459 /**
7460  * update_sd_pick_busiest - return 1 on busiest group
7461  * @env: The load balancing environment.
7462  * @sds: sched_domain statistics
7463  * @sg: sched_group candidate to be checked for being the busiest
7464  * @sgs: sched_group statistics
7465  *
7466  * Determine if @sg is a busier group than the previously selected
7467  * busiest group.
7468  *
7469  * Return: %true if @sg is a busier group than the previously selected
7470  * busiest group. %false otherwise.
7471  */
7472 static bool update_sd_pick_busiest(struct lb_env *env,
7473 				   struct sd_lb_stats *sds,
7474 				   struct sched_group *sg,
7475 				   struct sg_lb_stats *sgs)
7476 {
7477 	struct sg_lb_stats *busiest = &sds->busiest_stat;
7478 
7479 	if (sgs->group_type > busiest->group_type)
7480 		return true;
7481 
7482 	if (sgs->group_type < busiest->group_type)
7483 		return false;
7484 
7485 	if (sgs->avg_load <= busiest->avg_load)
7486 		return false;
7487 
7488 	if (!(env->sd->flags & SD_ASYM_CPUCAPACITY))
7489 		goto asym_packing;
7490 
7491 	/*
7492 	 * Candidate sg has no more than one task per CPU and
7493 	 * has higher per-CPU capacity. Migrating tasks to less
7494 	 * capable CPUs may harm throughput. Maximize throughput,
7495 	 * power/energy consequences are not considered.
7496 	 */
7497 	if (sgs->sum_nr_running <= sgs->group_weight &&
7498 	    group_smaller_cpu_capacity(sds->local, sg))
7499 		return false;
7500 
7501 asym_packing:
7502 	/* This is the busiest node in its class. */
7503 	if (!(env->sd->flags & SD_ASYM_PACKING))
7504 		return true;
7505 
7506 	/* No ASYM_PACKING if target cpu is already busy */
7507 	if (env->idle == CPU_NOT_IDLE)
7508 		return true;
7509 	/*
7510 	 * ASYM_PACKING needs to move all the work to the highest
7511 	 * prority CPUs in the group, therefore mark all groups
7512 	 * of lower priority than ourself as busy.
7513 	 */
7514 	if (sgs->sum_nr_running &&
7515 	    sched_asym_prefer(env->dst_cpu, sg->asym_prefer_cpu)) {
7516 		if (!sds->busiest)
7517 			return true;
7518 
7519 		/* Prefer to move from lowest priority cpu's work */
7520 		if (sched_asym_prefer(sds->busiest->asym_prefer_cpu,
7521 				      sg->asym_prefer_cpu))
7522 			return true;
7523 	}
7524 
7525 	return false;
7526 }
7527 
7528 #ifdef CONFIG_NUMA_BALANCING
7529 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
7530 {
7531 	if (sgs->sum_nr_running > sgs->nr_numa_running)
7532 		return regular;
7533 	if (sgs->sum_nr_running > sgs->nr_preferred_running)
7534 		return remote;
7535 	return all;
7536 }
7537 
7538 static inline enum fbq_type fbq_classify_rq(struct rq *rq)
7539 {
7540 	if (rq->nr_running > rq->nr_numa_running)
7541 		return regular;
7542 	if (rq->nr_running > rq->nr_preferred_running)
7543 		return remote;
7544 	return all;
7545 }
7546 #else
7547 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
7548 {
7549 	return all;
7550 }
7551 
7552 static inline enum fbq_type fbq_classify_rq(struct rq *rq)
7553 {
7554 	return regular;
7555 }
7556 #endif /* CONFIG_NUMA_BALANCING */
7557 
7558 /**
7559  * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
7560  * @env: The load balancing environment.
7561  * @sds: variable to hold the statistics for this sched_domain.
7562  */
7563 static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
7564 {
7565 	struct sched_domain *child = env->sd->child;
7566 	struct sched_group *sg = env->sd->groups;
7567 	struct sg_lb_stats *local = &sds->local_stat;
7568 	struct sg_lb_stats tmp_sgs;
7569 	int load_idx, prefer_sibling = 0;
7570 	bool overload = false;
7571 
7572 	if (child && child->flags & SD_PREFER_SIBLING)
7573 		prefer_sibling = 1;
7574 
7575 	load_idx = get_sd_load_idx(env->sd, env->idle);
7576 
7577 	do {
7578 		struct sg_lb_stats *sgs = &tmp_sgs;
7579 		int local_group;
7580 
7581 		local_group = cpumask_test_cpu(env->dst_cpu, sched_group_span(sg));
7582 		if (local_group) {
7583 			sds->local = sg;
7584 			sgs = local;
7585 
7586 			if (env->idle != CPU_NEWLY_IDLE ||
7587 			    time_after_eq(jiffies, sg->sgc->next_update))
7588 				update_group_capacity(env->sd, env->dst_cpu);
7589 		}
7590 
7591 		update_sg_lb_stats(env, sg, load_idx, local_group, sgs,
7592 						&overload);
7593 
7594 		if (local_group)
7595 			goto next_group;
7596 
7597 		/*
7598 		 * In case the child domain prefers tasks go to siblings
7599 		 * first, lower the sg capacity so that we'll try
7600 		 * and move all the excess tasks away. We lower the capacity
7601 		 * of a group only if the local group has the capacity to fit
7602 		 * these excess tasks. The extra check prevents the case where
7603 		 * you always pull from the heaviest group when it is already
7604 		 * under-utilized (possible with a large weight task outweighs
7605 		 * the tasks on the system).
7606 		 */
7607 		if (prefer_sibling && sds->local &&
7608 		    group_has_capacity(env, local) &&
7609 		    (sgs->sum_nr_running > local->sum_nr_running + 1)) {
7610 			sgs->group_no_capacity = 1;
7611 			sgs->group_type = group_classify(sg, sgs);
7612 		}
7613 
7614 		if (update_sd_pick_busiest(env, sds, sg, sgs)) {
7615 			sds->busiest = sg;
7616 			sds->busiest_stat = *sgs;
7617 		}
7618 
7619 next_group:
7620 		/* Now, start updating sd_lb_stats */
7621 		sds->total_running += sgs->sum_nr_running;
7622 		sds->total_load += sgs->group_load;
7623 		sds->total_capacity += sgs->group_capacity;
7624 
7625 		sg = sg->next;
7626 	} while (sg != env->sd->groups);
7627 
7628 	if (env->sd->flags & SD_NUMA)
7629 		env->fbq_type = fbq_classify_group(&sds->busiest_stat);
7630 
7631 	if (!env->sd->parent) {
7632 		/* update overload indicator if we are at root domain */
7633 		if (env->dst_rq->rd->overload != overload)
7634 			env->dst_rq->rd->overload = overload;
7635 	}
7636 }
7637 
7638 /**
7639  * check_asym_packing - Check to see if the group is packed into the
7640  *			sched domain.
7641  *
7642  * This is primarily intended to used at the sibling level.  Some
7643  * cores like POWER7 prefer to use lower numbered SMT threads.  In the
7644  * case of POWER7, it can move to lower SMT modes only when higher
7645  * threads are idle.  When in lower SMT modes, the threads will
7646  * perform better since they share less core resources.  Hence when we
7647  * have idle threads, we want them to be the higher ones.
7648  *
7649  * This packing function is run on idle threads.  It checks to see if
7650  * the busiest CPU in this domain (core in the P7 case) has a higher
7651  * CPU number than the packing function is being run on.  Here we are
7652  * assuming lower CPU number will be equivalent to lower a SMT thread
7653  * number.
7654  *
7655  * Return: 1 when packing is required and a task should be moved to
7656  * this CPU.  The amount of the imbalance is returned in env->imbalance.
7657  *
7658  * @env: The load balancing environment.
7659  * @sds: Statistics of the sched_domain which is to be packed
7660  */
7661 static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds)
7662 {
7663 	int busiest_cpu;
7664 
7665 	if (!(env->sd->flags & SD_ASYM_PACKING))
7666 		return 0;
7667 
7668 	if (env->idle == CPU_NOT_IDLE)
7669 		return 0;
7670 
7671 	if (!sds->busiest)
7672 		return 0;
7673 
7674 	busiest_cpu = sds->busiest->asym_prefer_cpu;
7675 	if (sched_asym_prefer(busiest_cpu, env->dst_cpu))
7676 		return 0;
7677 
7678 	env->imbalance = DIV_ROUND_CLOSEST(
7679 		sds->busiest_stat.avg_load * sds->busiest_stat.group_capacity,
7680 		SCHED_CAPACITY_SCALE);
7681 
7682 	return 1;
7683 }
7684 
7685 /**
7686  * fix_small_imbalance - Calculate the minor imbalance that exists
7687  *			amongst the groups of a sched_domain, during
7688  *			load balancing.
7689  * @env: The load balancing environment.
7690  * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
7691  */
7692 static inline
7693 void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
7694 {
7695 	unsigned long tmp, capa_now = 0, capa_move = 0;
7696 	unsigned int imbn = 2;
7697 	unsigned long scaled_busy_load_per_task;
7698 	struct sg_lb_stats *local, *busiest;
7699 
7700 	local = &sds->local_stat;
7701 	busiest = &sds->busiest_stat;
7702 
7703 	if (!local->sum_nr_running)
7704 		local->load_per_task = cpu_avg_load_per_task(env->dst_cpu);
7705 	else if (busiest->load_per_task > local->load_per_task)
7706 		imbn = 1;
7707 
7708 	scaled_busy_load_per_task =
7709 		(busiest->load_per_task * SCHED_CAPACITY_SCALE) /
7710 		busiest->group_capacity;
7711 
7712 	if (busiest->avg_load + scaled_busy_load_per_task >=
7713 	    local->avg_load + (scaled_busy_load_per_task * imbn)) {
7714 		env->imbalance = busiest->load_per_task;
7715 		return;
7716 	}
7717 
7718 	/*
7719 	 * OK, we don't have enough imbalance to justify moving tasks,
7720 	 * however we may be able to increase total CPU capacity used by
7721 	 * moving them.
7722 	 */
7723 
7724 	capa_now += busiest->group_capacity *
7725 			min(busiest->load_per_task, busiest->avg_load);
7726 	capa_now += local->group_capacity *
7727 			min(local->load_per_task, local->avg_load);
7728 	capa_now /= SCHED_CAPACITY_SCALE;
7729 
7730 	/* Amount of load we'd subtract */
7731 	if (busiest->avg_load > scaled_busy_load_per_task) {
7732 		capa_move += busiest->group_capacity *
7733 			    min(busiest->load_per_task,
7734 				busiest->avg_load - scaled_busy_load_per_task);
7735 	}
7736 
7737 	/* Amount of load we'd add */
7738 	if (busiest->avg_load * busiest->group_capacity <
7739 	    busiest->load_per_task * SCHED_CAPACITY_SCALE) {
7740 		tmp = (busiest->avg_load * busiest->group_capacity) /
7741 		      local->group_capacity;
7742 	} else {
7743 		tmp = (busiest->load_per_task * SCHED_CAPACITY_SCALE) /
7744 		      local->group_capacity;
7745 	}
7746 	capa_move += local->group_capacity *
7747 		    min(local->load_per_task, local->avg_load + tmp);
7748 	capa_move /= SCHED_CAPACITY_SCALE;
7749 
7750 	/* Move if we gain throughput */
7751 	if (capa_move > capa_now)
7752 		env->imbalance = busiest->load_per_task;
7753 }
7754 
7755 /**
7756  * calculate_imbalance - Calculate the amount of imbalance present within the
7757  *			 groups of a given sched_domain during load balance.
7758  * @env: load balance environment
7759  * @sds: statistics of the sched_domain whose imbalance is to be calculated.
7760  */
7761 static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
7762 {
7763 	unsigned long max_pull, load_above_capacity = ~0UL;
7764 	struct sg_lb_stats *local, *busiest;
7765 
7766 	local = &sds->local_stat;
7767 	busiest = &sds->busiest_stat;
7768 
7769 	if (busiest->group_type == group_imbalanced) {
7770 		/*
7771 		 * In the group_imb case we cannot rely on group-wide averages
7772 		 * to ensure cpu-load equilibrium, look at wider averages. XXX
7773 		 */
7774 		busiest->load_per_task =
7775 			min(busiest->load_per_task, sds->avg_load);
7776 	}
7777 
7778 	/*
7779 	 * Avg load of busiest sg can be less and avg load of local sg can
7780 	 * be greater than avg load across all sgs of sd because avg load
7781 	 * factors in sg capacity and sgs with smaller group_type are
7782 	 * skipped when updating the busiest sg:
7783 	 */
7784 	if (busiest->avg_load <= sds->avg_load ||
7785 	    local->avg_load >= sds->avg_load) {
7786 		env->imbalance = 0;
7787 		return fix_small_imbalance(env, sds);
7788 	}
7789 
7790 	/*
7791 	 * If there aren't any idle cpus, avoid creating some.
7792 	 */
7793 	if (busiest->group_type == group_overloaded &&
7794 	    local->group_type   == group_overloaded) {
7795 		load_above_capacity = busiest->sum_nr_running * SCHED_CAPACITY_SCALE;
7796 		if (load_above_capacity > busiest->group_capacity) {
7797 			load_above_capacity -= busiest->group_capacity;
7798 			load_above_capacity *= scale_load_down(NICE_0_LOAD);
7799 			load_above_capacity /= busiest->group_capacity;
7800 		} else
7801 			load_above_capacity = ~0UL;
7802 	}
7803 
7804 	/*
7805 	 * We're trying to get all the cpus to the average_load, so we don't
7806 	 * want to push ourselves above the average load, nor do we wish to
7807 	 * reduce the max loaded cpu below the average load. At the same time,
7808 	 * we also don't want to reduce the group load below the group
7809 	 * capacity. Thus we look for the minimum possible imbalance.
7810 	 */
7811 	max_pull = min(busiest->avg_load - sds->avg_load, load_above_capacity);
7812 
7813 	/* How much load to actually move to equalise the imbalance */
7814 	env->imbalance = min(
7815 		max_pull * busiest->group_capacity,
7816 		(sds->avg_load - local->avg_load) * local->group_capacity
7817 	) / SCHED_CAPACITY_SCALE;
7818 
7819 	/*
7820 	 * if *imbalance is less than the average load per runnable task
7821 	 * there is no guarantee that any tasks will be moved so we'll have
7822 	 * a think about bumping its value to force at least one task to be
7823 	 * moved
7824 	 */
7825 	if (env->imbalance < busiest->load_per_task)
7826 		return fix_small_imbalance(env, sds);
7827 }
7828 
7829 /******* find_busiest_group() helpers end here *********************/
7830 
7831 /**
7832  * find_busiest_group - Returns the busiest group within the sched_domain
7833  * if there is an imbalance.
7834  *
7835  * Also calculates the amount of weighted load which should be moved
7836  * to restore balance.
7837  *
7838  * @env: The load balancing environment.
7839  *
7840  * Return:	- The busiest group if imbalance exists.
7841  */
7842 static struct sched_group *find_busiest_group(struct lb_env *env)
7843 {
7844 	struct sg_lb_stats *local, *busiest;
7845 	struct sd_lb_stats sds;
7846 
7847 	init_sd_lb_stats(&sds);
7848 
7849 	/*
7850 	 * Compute the various statistics relavent for load balancing at
7851 	 * this level.
7852 	 */
7853 	update_sd_lb_stats(env, &sds);
7854 	local = &sds.local_stat;
7855 	busiest = &sds.busiest_stat;
7856 
7857 	/* ASYM feature bypasses nice load balance check */
7858 	if (check_asym_packing(env, &sds))
7859 		return sds.busiest;
7860 
7861 	/* There is no busy sibling group to pull tasks from */
7862 	if (!sds.busiest || busiest->sum_nr_running == 0)
7863 		goto out_balanced;
7864 
7865 	/* XXX broken for overlapping NUMA groups */
7866 	sds.avg_load = (SCHED_CAPACITY_SCALE * sds.total_load)
7867 						/ sds.total_capacity;
7868 
7869 	/*
7870 	 * If the busiest group is imbalanced the below checks don't
7871 	 * work because they assume all things are equal, which typically
7872 	 * isn't true due to cpus_allowed constraints and the like.
7873 	 */
7874 	if (busiest->group_type == group_imbalanced)
7875 		goto force_balance;
7876 
7877 	/* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
7878 	if (env->idle == CPU_NEWLY_IDLE && group_has_capacity(env, local) &&
7879 	    busiest->group_no_capacity)
7880 		goto force_balance;
7881 
7882 	/*
7883 	 * If the local group is busier than the selected busiest group
7884 	 * don't try and pull any tasks.
7885 	 */
7886 	if (local->avg_load >= busiest->avg_load)
7887 		goto out_balanced;
7888 
7889 	/*
7890 	 * Don't pull any tasks if this group is already above the domain
7891 	 * average load.
7892 	 */
7893 	if (local->avg_load >= sds.avg_load)
7894 		goto out_balanced;
7895 
7896 	if (env->idle == CPU_IDLE) {
7897 		/*
7898 		 * This cpu is idle. If the busiest group is not overloaded
7899 		 * and there is no imbalance between this and busiest group
7900 		 * wrt idle cpus, it is balanced. The imbalance becomes
7901 		 * significant if the diff is greater than 1 otherwise we
7902 		 * might end up to just move the imbalance on another group
7903 		 */
7904 		if ((busiest->group_type != group_overloaded) &&
7905 				(local->idle_cpus <= (busiest->idle_cpus + 1)))
7906 			goto out_balanced;
7907 	} else {
7908 		/*
7909 		 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
7910 		 * imbalance_pct to be conservative.
7911 		 */
7912 		if (100 * busiest->avg_load <=
7913 				env->sd->imbalance_pct * local->avg_load)
7914 			goto out_balanced;
7915 	}
7916 
7917 force_balance:
7918 	/* Looks like there is an imbalance. Compute it */
7919 	calculate_imbalance(env, &sds);
7920 	return sds.busiest;
7921 
7922 out_balanced:
7923 	env->imbalance = 0;
7924 	return NULL;
7925 }
7926 
7927 /*
7928  * find_busiest_queue - find the busiest runqueue among the cpus in group.
7929  */
7930 static struct rq *find_busiest_queue(struct lb_env *env,
7931 				     struct sched_group *group)
7932 {
7933 	struct rq *busiest = NULL, *rq;
7934 	unsigned long busiest_load = 0, busiest_capacity = 1;
7935 	int i;
7936 
7937 	for_each_cpu_and(i, sched_group_span(group), env->cpus) {
7938 		unsigned long capacity, wl;
7939 		enum fbq_type rt;
7940 
7941 		rq = cpu_rq(i);
7942 		rt = fbq_classify_rq(rq);
7943 
7944 		/*
7945 		 * We classify groups/runqueues into three groups:
7946 		 *  - regular: there are !numa tasks
7947 		 *  - remote:  there are numa tasks that run on the 'wrong' node
7948 		 *  - all:     there is no distinction
7949 		 *
7950 		 * In order to avoid migrating ideally placed numa tasks,
7951 		 * ignore those when there's better options.
7952 		 *
7953 		 * If we ignore the actual busiest queue to migrate another
7954 		 * task, the next balance pass can still reduce the busiest
7955 		 * queue by moving tasks around inside the node.
7956 		 *
7957 		 * If we cannot move enough load due to this classification
7958 		 * the next pass will adjust the group classification and
7959 		 * allow migration of more tasks.
7960 		 *
7961 		 * Both cases only affect the total convergence complexity.
7962 		 */
7963 		if (rt > env->fbq_type)
7964 			continue;
7965 
7966 		capacity = capacity_of(i);
7967 
7968 		wl = weighted_cpuload(rq);
7969 
7970 		/*
7971 		 * When comparing with imbalance, use weighted_cpuload()
7972 		 * which is not scaled with the cpu capacity.
7973 		 */
7974 
7975 		if (rq->nr_running == 1 && wl > env->imbalance &&
7976 		    !check_cpu_capacity(rq, env->sd))
7977 			continue;
7978 
7979 		/*
7980 		 * For the load comparisons with the other cpu's, consider
7981 		 * the weighted_cpuload() scaled with the cpu capacity, so
7982 		 * that the load can be moved away from the cpu that is
7983 		 * potentially running at a lower capacity.
7984 		 *
7985 		 * Thus we're looking for max(wl_i / capacity_i), crosswise
7986 		 * multiplication to rid ourselves of the division works out
7987 		 * to: wl_i * capacity_j > wl_j * capacity_i;  where j is
7988 		 * our previous maximum.
7989 		 */
7990 		if (wl * busiest_capacity > busiest_load * capacity) {
7991 			busiest_load = wl;
7992 			busiest_capacity = capacity;
7993 			busiest = rq;
7994 		}
7995 	}
7996 
7997 	return busiest;
7998 }
7999 
8000 /*
8001  * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
8002  * so long as it is large enough.
8003  */
8004 #define MAX_PINNED_INTERVAL	512
8005 
8006 static int need_active_balance(struct lb_env *env)
8007 {
8008 	struct sched_domain *sd = env->sd;
8009 
8010 	if (env->idle == CPU_NEWLY_IDLE) {
8011 
8012 		/*
8013 		 * ASYM_PACKING needs to force migrate tasks from busy but
8014 		 * lower priority CPUs in order to pack all tasks in the
8015 		 * highest priority CPUs.
8016 		 */
8017 		if ((sd->flags & SD_ASYM_PACKING) &&
8018 		    sched_asym_prefer(env->dst_cpu, env->src_cpu))
8019 			return 1;
8020 	}
8021 
8022 	/*
8023 	 * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task.
8024 	 * It's worth migrating the task if the src_cpu's capacity is reduced
8025 	 * because of other sched_class or IRQs if more capacity stays
8026 	 * available on dst_cpu.
8027 	 */
8028 	if ((env->idle != CPU_NOT_IDLE) &&
8029 	    (env->src_rq->cfs.h_nr_running == 1)) {
8030 		if ((check_cpu_capacity(env->src_rq, sd)) &&
8031 		    (capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100))
8032 			return 1;
8033 	}
8034 
8035 	return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
8036 }
8037 
8038 static int active_load_balance_cpu_stop(void *data);
8039 
8040 static int should_we_balance(struct lb_env *env)
8041 {
8042 	struct sched_group *sg = env->sd->groups;
8043 	int cpu, balance_cpu = -1;
8044 
8045 	/*
8046 	 * Ensure the balancing environment is consistent; can happen
8047 	 * when the softirq triggers 'during' hotplug.
8048 	 */
8049 	if (!cpumask_test_cpu(env->dst_cpu, env->cpus))
8050 		return 0;
8051 
8052 	/*
8053 	 * In the newly idle case, we will allow all the cpu's
8054 	 * to do the newly idle load balance.
8055 	 */
8056 	if (env->idle == CPU_NEWLY_IDLE)
8057 		return 1;
8058 
8059 	/* Try to find first idle cpu */
8060 	for_each_cpu_and(cpu, group_balance_mask(sg), env->cpus) {
8061 		if (!idle_cpu(cpu))
8062 			continue;
8063 
8064 		balance_cpu = cpu;
8065 		break;
8066 	}
8067 
8068 	if (balance_cpu == -1)
8069 		balance_cpu = group_balance_cpu(sg);
8070 
8071 	/*
8072 	 * First idle cpu or the first cpu(busiest) in this sched group
8073 	 * is eligible for doing load balancing at this and above domains.
8074 	 */
8075 	return balance_cpu == env->dst_cpu;
8076 }
8077 
8078 /*
8079  * Check this_cpu to ensure it is balanced within domain. Attempt to move
8080  * tasks if there is an imbalance.
8081  */
8082 static int load_balance(int this_cpu, struct rq *this_rq,
8083 			struct sched_domain *sd, enum cpu_idle_type idle,
8084 			int *continue_balancing)
8085 {
8086 	int ld_moved, cur_ld_moved, active_balance = 0;
8087 	struct sched_domain *sd_parent = sd->parent;
8088 	struct sched_group *group;
8089 	struct rq *busiest;
8090 	struct rq_flags rf;
8091 	struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask);
8092 
8093 	struct lb_env env = {
8094 		.sd		= sd,
8095 		.dst_cpu	= this_cpu,
8096 		.dst_rq		= this_rq,
8097 		.dst_grpmask    = sched_group_span(sd->groups),
8098 		.idle		= idle,
8099 		.loop_break	= sched_nr_migrate_break,
8100 		.cpus		= cpus,
8101 		.fbq_type	= all,
8102 		.tasks		= LIST_HEAD_INIT(env.tasks),
8103 	};
8104 
8105 	cpumask_and(cpus, sched_domain_span(sd), cpu_active_mask);
8106 
8107 	schedstat_inc(sd->lb_count[idle]);
8108 
8109 redo:
8110 	if (!should_we_balance(&env)) {
8111 		*continue_balancing = 0;
8112 		goto out_balanced;
8113 	}
8114 
8115 	group = find_busiest_group(&env);
8116 	if (!group) {
8117 		schedstat_inc(sd->lb_nobusyg[idle]);
8118 		goto out_balanced;
8119 	}
8120 
8121 	busiest = find_busiest_queue(&env, group);
8122 	if (!busiest) {
8123 		schedstat_inc(sd->lb_nobusyq[idle]);
8124 		goto out_balanced;
8125 	}
8126 
8127 	BUG_ON(busiest == env.dst_rq);
8128 
8129 	schedstat_add(sd->lb_imbalance[idle], env.imbalance);
8130 
8131 	env.src_cpu = busiest->cpu;
8132 	env.src_rq = busiest;
8133 
8134 	ld_moved = 0;
8135 	if (busiest->nr_running > 1) {
8136 		/*
8137 		 * Attempt to move tasks. If find_busiest_group has found
8138 		 * an imbalance but busiest->nr_running <= 1, the group is
8139 		 * still unbalanced. ld_moved simply stays zero, so it is
8140 		 * correctly treated as an imbalance.
8141 		 */
8142 		env.flags |= LBF_ALL_PINNED;
8143 		env.loop_max  = min(sysctl_sched_nr_migrate, busiest->nr_running);
8144 
8145 more_balance:
8146 		rq_lock_irqsave(busiest, &rf);
8147 		update_rq_clock(busiest);
8148 
8149 		/*
8150 		 * cur_ld_moved - load moved in current iteration
8151 		 * ld_moved     - cumulative load moved across iterations
8152 		 */
8153 		cur_ld_moved = detach_tasks(&env);
8154 
8155 		/*
8156 		 * We've detached some tasks from busiest_rq. Every
8157 		 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely
8158 		 * unlock busiest->lock, and we are able to be sure
8159 		 * that nobody can manipulate the tasks in parallel.
8160 		 * See task_rq_lock() family for the details.
8161 		 */
8162 
8163 		rq_unlock(busiest, &rf);
8164 
8165 		if (cur_ld_moved) {
8166 			attach_tasks(&env);
8167 			ld_moved += cur_ld_moved;
8168 		}
8169 
8170 		local_irq_restore(rf.flags);
8171 
8172 		if (env.flags & LBF_NEED_BREAK) {
8173 			env.flags &= ~LBF_NEED_BREAK;
8174 			goto more_balance;
8175 		}
8176 
8177 		/*
8178 		 * Revisit (affine) tasks on src_cpu that couldn't be moved to
8179 		 * us and move them to an alternate dst_cpu in our sched_group
8180 		 * where they can run. The upper limit on how many times we
8181 		 * iterate on same src_cpu is dependent on number of cpus in our
8182 		 * sched_group.
8183 		 *
8184 		 * This changes load balance semantics a bit on who can move
8185 		 * load to a given_cpu. In addition to the given_cpu itself
8186 		 * (or a ilb_cpu acting on its behalf where given_cpu is
8187 		 * nohz-idle), we now have balance_cpu in a position to move
8188 		 * load to given_cpu. In rare situations, this may cause
8189 		 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
8190 		 * _independently_ and at _same_ time to move some load to
8191 		 * given_cpu) causing exceess load to be moved to given_cpu.
8192 		 * This however should not happen so much in practice and
8193 		 * moreover subsequent load balance cycles should correct the
8194 		 * excess load moved.
8195 		 */
8196 		if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
8197 
8198 			/* Prevent to re-select dst_cpu via env's cpus */
8199 			cpumask_clear_cpu(env.dst_cpu, env.cpus);
8200 
8201 			env.dst_rq	 = cpu_rq(env.new_dst_cpu);
8202 			env.dst_cpu	 = env.new_dst_cpu;
8203 			env.flags	&= ~LBF_DST_PINNED;
8204 			env.loop	 = 0;
8205 			env.loop_break	 = sched_nr_migrate_break;
8206 
8207 			/*
8208 			 * Go back to "more_balance" rather than "redo" since we
8209 			 * need to continue with same src_cpu.
8210 			 */
8211 			goto more_balance;
8212 		}
8213 
8214 		/*
8215 		 * We failed to reach balance because of affinity.
8216 		 */
8217 		if (sd_parent) {
8218 			int *group_imbalance = &sd_parent->groups->sgc->imbalance;
8219 
8220 			if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0)
8221 				*group_imbalance = 1;
8222 		}
8223 
8224 		/* All tasks on this runqueue were pinned by CPU affinity */
8225 		if (unlikely(env.flags & LBF_ALL_PINNED)) {
8226 			cpumask_clear_cpu(cpu_of(busiest), cpus);
8227 			/*
8228 			 * Attempting to continue load balancing at the current
8229 			 * sched_domain level only makes sense if there are
8230 			 * active CPUs remaining as possible busiest CPUs to
8231 			 * pull load from which are not contained within the
8232 			 * destination group that is receiving any migrated
8233 			 * load.
8234 			 */
8235 			if (!cpumask_subset(cpus, env.dst_grpmask)) {
8236 				env.loop = 0;
8237 				env.loop_break = sched_nr_migrate_break;
8238 				goto redo;
8239 			}
8240 			goto out_all_pinned;
8241 		}
8242 	}
8243 
8244 	if (!ld_moved) {
8245 		schedstat_inc(sd->lb_failed[idle]);
8246 		/*
8247 		 * Increment the failure counter only on periodic balance.
8248 		 * We do not want newidle balance, which can be very
8249 		 * frequent, pollute the failure counter causing
8250 		 * excessive cache_hot migrations and active balances.
8251 		 */
8252 		if (idle != CPU_NEWLY_IDLE)
8253 			sd->nr_balance_failed++;
8254 
8255 		if (need_active_balance(&env)) {
8256 			unsigned long flags;
8257 
8258 			raw_spin_lock_irqsave(&busiest->lock, flags);
8259 
8260 			/* don't kick the active_load_balance_cpu_stop,
8261 			 * if the curr task on busiest cpu can't be
8262 			 * moved to this_cpu
8263 			 */
8264 			if (!cpumask_test_cpu(this_cpu, &busiest->curr->cpus_allowed)) {
8265 				raw_spin_unlock_irqrestore(&busiest->lock,
8266 							    flags);
8267 				env.flags |= LBF_ALL_PINNED;
8268 				goto out_one_pinned;
8269 			}
8270 
8271 			/*
8272 			 * ->active_balance synchronizes accesses to
8273 			 * ->active_balance_work.  Once set, it's cleared
8274 			 * only after active load balance is finished.
8275 			 */
8276 			if (!busiest->active_balance) {
8277 				busiest->active_balance = 1;
8278 				busiest->push_cpu = this_cpu;
8279 				active_balance = 1;
8280 			}
8281 			raw_spin_unlock_irqrestore(&busiest->lock, flags);
8282 
8283 			if (active_balance) {
8284 				stop_one_cpu_nowait(cpu_of(busiest),
8285 					active_load_balance_cpu_stop, busiest,
8286 					&busiest->active_balance_work);
8287 			}
8288 
8289 			/* We've kicked active balancing, force task migration. */
8290 			sd->nr_balance_failed = sd->cache_nice_tries+1;
8291 		}
8292 	} else
8293 		sd->nr_balance_failed = 0;
8294 
8295 	if (likely(!active_balance)) {
8296 		/* We were unbalanced, so reset the balancing interval */
8297 		sd->balance_interval = sd->min_interval;
8298 	} else {
8299 		/*
8300 		 * If we've begun active balancing, start to back off. This
8301 		 * case may not be covered by the all_pinned logic if there
8302 		 * is only 1 task on the busy runqueue (because we don't call
8303 		 * detach_tasks).
8304 		 */
8305 		if (sd->balance_interval < sd->max_interval)
8306 			sd->balance_interval *= 2;
8307 	}
8308 
8309 	goto out;
8310 
8311 out_balanced:
8312 	/*
8313 	 * We reach balance although we may have faced some affinity
8314 	 * constraints. Clear the imbalance flag if it was set.
8315 	 */
8316 	if (sd_parent) {
8317 		int *group_imbalance = &sd_parent->groups->sgc->imbalance;
8318 
8319 		if (*group_imbalance)
8320 			*group_imbalance = 0;
8321 	}
8322 
8323 out_all_pinned:
8324 	/*
8325 	 * We reach balance because all tasks are pinned at this level so
8326 	 * we can't migrate them. Let the imbalance flag set so parent level
8327 	 * can try to migrate them.
8328 	 */
8329 	schedstat_inc(sd->lb_balanced[idle]);
8330 
8331 	sd->nr_balance_failed = 0;
8332 
8333 out_one_pinned:
8334 	/* tune up the balancing interval */
8335 	if (((env.flags & LBF_ALL_PINNED) &&
8336 			sd->balance_interval < MAX_PINNED_INTERVAL) ||
8337 			(sd->balance_interval < sd->max_interval))
8338 		sd->balance_interval *= 2;
8339 
8340 	ld_moved = 0;
8341 out:
8342 	return ld_moved;
8343 }
8344 
8345 static inline unsigned long
8346 get_sd_balance_interval(struct sched_domain *sd, int cpu_busy)
8347 {
8348 	unsigned long interval = sd->balance_interval;
8349 
8350 	if (cpu_busy)
8351 		interval *= sd->busy_factor;
8352 
8353 	/* scale ms to jiffies */
8354 	interval = msecs_to_jiffies(interval);
8355 	interval = clamp(interval, 1UL, max_load_balance_interval);
8356 
8357 	return interval;
8358 }
8359 
8360 static inline void
8361 update_next_balance(struct sched_domain *sd, unsigned long *next_balance)
8362 {
8363 	unsigned long interval, next;
8364 
8365 	/* used by idle balance, so cpu_busy = 0 */
8366 	interval = get_sd_balance_interval(sd, 0);
8367 	next = sd->last_balance + interval;
8368 
8369 	if (time_after(*next_balance, next))
8370 		*next_balance = next;
8371 }
8372 
8373 /*
8374  * idle_balance is called by schedule() if this_cpu is about to become
8375  * idle. Attempts to pull tasks from other CPUs.
8376  */
8377 static int idle_balance(struct rq *this_rq, struct rq_flags *rf)
8378 {
8379 	unsigned long next_balance = jiffies + HZ;
8380 	int this_cpu = this_rq->cpu;
8381 	struct sched_domain *sd;
8382 	int pulled_task = 0;
8383 	u64 curr_cost = 0;
8384 
8385 	/*
8386 	 * We must set idle_stamp _before_ calling idle_balance(), such that we
8387 	 * measure the duration of idle_balance() as idle time.
8388 	 */
8389 	this_rq->idle_stamp = rq_clock(this_rq);
8390 
8391 	/*
8392 	 * Do not pull tasks towards !active CPUs...
8393 	 */
8394 	if (!cpu_active(this_cpu))
8395 		return 0;
8396 
8397 	/*
8398 	 * This is OK, because current is on_cpu, which avoids it being picked
8399 	 * for load-balance and preemption/IRQs are still disabled avoiding
8400 	 * further scheduler activity on it and we're being very careful to
8401 	 * re-start the picking loop.
8402 	 */
8403 	rq_unpin_lock(this_rq, rf);
8404 
8405 	if (this_rq->avg_idle < sysctl_sched_migration_cost ||
8406 	    !this_rq->rd->overload) {
8407 		rcu_read_lock();
8408 		sd = rcu_dereference_check_sched_domain(this_rq->sd);
8409 		if (sd)
8410 			update_next_balance(sd, &next_balance);
8411 		rcu_read_unlock();
8412 
8413 		goto out;
8414 	}
8415 
8416 	raw_spin_unlock(&this_rq->lock);
8417 
8418 	update_blocked_averages(this_cpu);
8419 	rcu_read_lock();
8420 	for_each_domain(this_cpu, sd) {
8421 		int continue_balancing = 1;
8422 		u64 t0, domain_cost;
8423 
8424 		if (!(sd->flags & SD_LOAD_BALANCE))
8425 			continue;
8426 
8427 		if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) {
8428 			update_next_balance(sd, &next_balance);
8429 			break;
8430 		}
8431 
8432 		if (sd->flags & SD_BALANCE_NEWIDLE) {
8433 			t0 = sched_clock_cpu(this_cpu);
8434 
8435 			pulled_task = load_balance(this_cpu, this_rq,
8436 						   sd, CPU_NEWLY_IDLE,
8437 						   &continue_balancing);
8438 
8439 			domain_cost = sched_clock_cpu(this_cpu) - t0;
8440 			if (domain_cost > sd->max_newidle_lb_cost)
8441 				sd->max_newidle_lb_cost = domain_cost;
8442 
8443 			curr_cost += domain_cost;
8444 		}
8445 
8446 		update_next_balance(sd, &next_balance);
8447 
8448 		/*
8449 		 * Stop searching for tasks to pull if there are
8450 		 * now runnable tasks on this rq.
8451 		 */
8452 		if (pulled_task || this_rq->nr_running > 0)
8453 			break;
8454 	}
8455 	rcu_read_unlock();
8456 
8457 	raw_spin_lock(&this_rq->lock);
8458 
8459 	if (curr_cost > this_rq->max_idle_balance_cost)
8460 		this_rq->max_idle_balance_cost = curr_cost;
8461 
8462 	/*
8463 	 * While browsing the domains, we released the rq lock, a task could
8464 	 * have been enqueued in the meantime. Since we're not going idle,
8465 	 * pretend we pulled a task.
8466 	 */
8467 	if (this_rq->cfs.h_nr_running && !pulled_task)
8468 		pulled_task = 1;
8469 
8470 out:
8471 	/* Move the next balance forward */
8472 	if (time_after(this_rq->next_balance, next_balance))
8473 		this_rq->next_balance = next_balance;
8474 
8475 	/* Is there a task of a high priority class? */
8476 	if (this_rq->nr_running != this_rq->cfs.h_nr_running)
8477 		pulled_task = -1;
8478 
8479 	if (pulled_task)
8480 		this_rq->idle_stamp = 0;
8481 
8482 	rq_repin_lock(this_rq, rf);
8483 
8484 	return pulled_task;
8485 }
8486 
8487 /*
8488  * active_load_balance_cpu_stop is run by cpu stopper. It pushes
8489  * running tasks off the busiest CPU onto idle CPUs. It requires at
8490  * least 1 task to be running on each physical CPU where possible, and
8491  * avoids physical / logical imbalances.
8492  */
8493 static int active_load_balance_cpu_stop(void *data)
8494 {
8495 	struct rq *busiest_rq = data;
8496 	int busiest_cpu = cpu_of(busiest_rq);
8497 	int target_cpu = busiest_rq->push_cpu;
8498 	struct rq *target_rq = cpu_rq(target_cpu);
8499 	struct sched_domain *sd;
8500 	struct task_struct *p = NULL;
8501 	struct rq_flags rf;
8502 
8503 	rq_lock_irq(busiest_rq, &rf);
8504 	/*
8505 	 * Between queueing the stop-work and running it is a hole in which
8506 	 * CPUs can become inactive. We should not move tasks from or to
8507 	 * inactive CPUs.
8508 	 */
8509 	if (!cpu_active(busiest_cpu) || !cpu_active(target_cpu))
8510 		goto out_unlock;
8511 
8512 	/* make sure the requested cpu hasn't gone down in the meantime */
8513 	if (unlikely(busiest_cpu != smp_processor_id() ||
8514 		     !busiest_rq->active_balance))
8515 		goto out_unlock;
8516 
8517 	/* Is there any task to move? */
8518 	if (busiest_rq->nr_running <= 1)
8519 		goto out_unlock;
8520 
8521 	/*
8522 	 * This condition is "impossible", if it occurs
8523 	 * we need to fix it. Originally reported by
8524 	 * Bjorn Helgaas on a 128-cpu setup.
8525 	 */
8526 	BUG_ON(busiest_rq == target_rq);
8527 
8528 	/* Search for an sd spanning us and the target CPU. */
8529 	rcu_read_lock();
8530 	for_each_domain(target_cpu, sd) {
8531 		if ((sd->flags & SD_LOAD_BALANCE) &&
8532 		    cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
8533 				break;
8534 	}
8535 
8536 	if (likely(sd)) {
8537 		struct lb_env env = {
8538 			.sd		= sd,
8539 			.dst_cpu	= target_cpu,
8540 			.dst_rq		= target_rq,
8541 			.src_cpu	= busiest_rq->cpu,
8542 			.src_rq		= busiest_rq,
8543 			.idle		= CPU_IDLE,
8544 			/*
8545 			 * can_migrate_task() doesn't need to compute new_dst_cpu
8546 			 * for active balancing. Since we have CPU_IDLE, but no
8547 			 * @dst_grpmask we need to make that test go away with lying
8548 			 * about DST_PINNED.
8549 			 */
8550 			.flags		= LBF_DST_PINNED,
8551 		};
8552 
8553 		schedstat_inc(sd->alb_count);
8554 		update_rq_clock(busiest_rq);
8555 
8556 		p = detach_one_task(&env);
8557 		if (p) {
8558 			schedstat_inc(sd->alb_pushed);
8559 			/* Active balancing done, reset the failure counter. */
8560 			sd->nr_balance_failed = 0;
8561 		} else {
8562 			schedstat_inc(sd->alb_failed);
8563 		}
8564 	}
8565 	rcu_read_unlock();
8566 out_unlock:
8567 	busiest_rq->active_balance = 0;
8568 	rq_unlock(busiest_rq, &rf);
8569 
8570 	if (p)
8571 		attach_one_task(target_rq, p);
8572 
8573 	local_irq_enable();
8574 
8575 	return 0;
8576 }
8577 
8578 static inline int on_null_domain(struct rq *rq)
8579 {
8580 	return unlikely(!rcu_dereference_sched(rq->sd));
8581 }
8582 
8583 #ifdef CONFIG_NO_HZ_COMMON
8584 /*
8585  * idle load balancing details
8586  * - When one of the busy CPUs notice that there may be an idle rebalancing
8587  *   needed, they will kick the idle load balancer, which then does idle
8588  *   load balancing for all the idle CPUs.
8589  */
8590 static struct {
8591 	cpumask_var_t idle_cpus_mask;
8592 	atomic_t nr_cpus;
8593 	unsigned long next_balance;     /* in jiffy units */
8594 } nohz ____cacheline_aligned;
8595 
8596 static inline int find_new_ilb(void)
8597 {
8598 	int ilb = cpumask_first(nohz.idle_cpus_mask);
8599 
8600 	if (ilb < nr_cpu_ids && idle_cpu(ilb))
8601 		return ilb;
8602 
8603 	return nr_cpu_ids;
8604 }
8605 
8606 /*
8607  * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
8608  * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
8609  * CPU (if there is one).
8610  */
8611 static void nohz_balancer_kick(void)
8612 {
8613 	int ilb_cpu;
8614 
8615 	nohz.next_balance++;
8616 
8617 	ilb_cpu = find_new_ilb();
8618 
8619 	if (ilb_cpu >= nr_cpu_ids)
8620 		return;
8621 
8622 	if (test_and_set_bit(NOHZ_BALANCE_KICK, nohz_flags(ilb_cpu)))
8623 		return;
8624 	/*
8625 	 * Use smp_send_reschedule() instead of resched_cpu().
8626 	 * This way we generate a sched IPI on the target cpu which
8627 	 * is idle. And the softirq performing nohz idle load balance
8628 	 * will be run before returning from the IPI.
8629 	 */
8630 	smp_send_reschedule(ilb_cpu);
8631 	return;
8632 }
8633 
8634 void nohz_balance_exit_idle(unsigned int cpu)
8635 {
8636 	if (unlikely(test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))) {
8637 		/*
8638 		 * Completely isolated CPUs don't ever set, so we must test.
8639 		 */
8640 		if (likely(cpumask_test_cpu(cpu, nohz.idle_cpus_mask))) {
8641 			cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
8642 			atomic_dec(&nohz.nr_cpus);
8643 		}
8644 		clear_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
8645 	}
8646 }
8647 
8648 static inline void set_cpu_sd_state_busy(void)
8649 {
8650 	struct sched_domain *sd;
8651 	int cpu = smp_processor_id();
8652 
8653 	rcu_read_lock();
8654 	sd = rcu_dereference(per_cpu(sd_llc, cpu));
8655 
8656 	if (!sd || !sd->nohz_idle)
8657 		goto unlock;
8658 	sd->nohz_idle = 0;
8659 
8660 	atomic_inc(&sd->shared->nr_busy_cpus);
8661 unlock:
8662 	rcu_read_unlock();
8663 }
8664 
8665 void set_cpu_sd_state_idle(void)
8666 {
8667 	struct sched_domain *sd;
8668 	int cpu = smp_processor_id();
8669 
8670 	rcu_read_lock();
8671 	sd = rcu_dereference(per_cpu(sd_llc, cpu));
8672 
8673 	if (!sd || sd->nohz_idle)
8674 		goto unlock;
8675 	sd->nohz_idle = 1;
8676 
8677 	atomic_dec(&sd->shared->nr_busy_cpus);
8678 unlock:
8679 	rcu_read_unlock();
8680 }
8681 
8682 /*
8683  * This routine will record that the cpu is going idle with tick stopped.
8684  * This info will be used in performing idle load balancing in the future.
8685  */
8686 void nohz_balance_enter_idle(int cpu)
8687 {
8688 	/*
8689 	 * If this cpu is going down, then nothing needs to be done.
8690 	 */
8691 	if (!cpu_active(cpu))
8692 		return;
8693 
8694 	/* Spare idle load balancing on CPUs that don't want to be disturbed: */
8695 	if (!is_housekeeping_cpu(cpu))
8696 		return;
8697 
8698 	if (test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))
8699 		return;
8700 
8701 	/*
8702 	 * If we're a completely isolated CPU, we don't play.
8703 	 */
8704 	if (on_null_domain(cpu_rq(cpu)))
8705 		return;
8706 
8707 	cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
8708 	atomic_inc(&nohz.nr_cpus);
8709 	set_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
8710 }
8711 #endif
8712 
8713 static DEFINE_SPINLOCK(balancing);
8714 
8715 /*
8716  * Scale the max load_balance interval with the number of CPUs in the system.
8717  * This trades load-balance latency on larger machines for less cross talk.
8718  */
8719 void update_max_interval(void)
8720 {
8721 	max_load_balance_interval = HZ*num_online_cpus()/10;
8722 }
8723 
8724 /*
8725  * It checks each scheduling domain to see if it is due to be balanced,
8726  * and initiates a balancing operation if so.
8727  *
8728  * Balancing parameters are set up in init_sched_domains.
8729  */
8730 static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle)
8731 {
8732 	int continue_balancing = 1;
8733 	int cpu = rq->cpu;
8734 	unsigned long interval;
8735 	struct sched_domain *sd;
8736 	/* Earliest time when we have to do rebalance again */
8737 	unsigned long next_balance = jiffies + 60*HZ;
8738 	int update_next_balance = 0;
8739 	int need_serialize, need_decay = 0;
8740 	u64 max_cost = 0;
8741 
8742 	update_blocked_averages(cpu);
8743 
8744 	rcu_read_lock();
8745 	for_each_domain(cpu, sd) {
8746 		/*
8747 		 * Decay the newidle max times here because this is a regular
8748 		 * visit to all the domains. Decay ~1% per second.
8749 		 */
8750 		if (time_after(jiffies, sd->next_decay_max_lb_cost)) {
8751 			sd->max_newidle_lb_cost =
8752 				(sd->max_newidle_lb_cost * 253) / 256;
8753 			sd->next_decay_max_lb_cost = jiffies + HZ;
8754 			need_decay = 1;
8755 		}
8756 		max_cost += sd->max_newidle_lb_cost;
8757 
8758 		if (!(sd->flags & SD_LOAD_BALANCE))
8759 			continue;
8760 
8761 		/*
8762 		 * Stop the load balance at this level. There is another
8763 		 * CPU in our sched group which is doing load balancing more
8764 		 * actively.
8765 		 */
8766 		if (!continue_balancing) {
8767 			if (need_decay)
8768 				continue;
8769 			break;
8770 		}
8771 
8772 		interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
8773 
8774 		need_serialize = sd->flags & SD_SERIALIZE;
8775 		if (need_serialize) {
8776 			if (!spin_trylock(&balancing))
8777 				goto out;
8778 		}
8779 
8780 		if (time_after_eq(jiffies, sd->last_balance + interval)) {
8781 			if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
8782 				/*
8783 				 * The LBF_DST_PINNED logic could have changed
8784 				 * env->dst_cpu, so we can't know our idle
8785 				 * state even if we migrated tasks. Update it.
8786 				 */
8787 				idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
8788 			}
8789 			sd->last_balance = jiffies;
8790 			interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
8791 		}
8792 		if (need_serialize)
8793 			spin_unlock(&balancing);
8794 out:
8795 		if (time_after(next_balance, sd->last_balance + interval)) {
8796 			next_balance = sd->last_balance + interval;
8797 			update_next_balance = 1;
8798 		}
8799 	}
8800 	if (need_decay) {
8801 		/*
8802 		 * Ensure the rq-wide value also decays but keep it at a
8803 		 * reasonable floor to avoid funnies with rq->avg_idle.
8804 		 */
8805 		rq->max_idle_balance_cost =
8806 			max((u64)sysctl_sched_migration_cost, max_cost);
8807 	}
8808 	rcu_read_unlock();
8809 
8810 	/*
8811 	 * next_balance will be updated only when there is a need.
8812 	 * When the cpu is attached to null domain for ex, it will not be
8813 	 * updated.
8814 	 */
8815 	if (likely(update_next_balance)) {
8816 		rq->next_balance = next_balance;
8817 
8818 #ifdef CONFIG_NO_HZ_COMMON
8819 		/*
8820 		 * If this CPU has been elected to perform the nohz idle
8821 		 * balance. Other idle CPUs have already rebalanced with
8822 		 * nohz_idle_balance() and nohz.next_balance has been
8823 		 * updated accordingly. This CPU is now running the idle load
8824 		 * balance for itself and we need to update the
8825 		 * nohz.next_balance accordingly.
8826 		 */
8827 		if ((idle == CPU_IDLE) && time_after(nohz.next_balance, rq->next_balance))
8828 			nohz.next_balance = rq->next_balance;
8829 #endif
8830 	}
8831 }
8832 
8833 #ifdef CONFIG_NO_HZ_COMMON
8834 /*
8835  * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
8836  * rebalancing for all the cpus for whom scheduler ticks are stopped.
8837  */
8838 static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
8839 {
8840 	int this_cpu = this_rq->cpu;
8841 	struct rq *rq;
8842 	int balance_cpu;
8843 	/* Earliest time when we have to do rebalance again */
8844 	unsigned long next_balance = jiffies + 60*HZ;
8845 	int update_next_balance = 0;
8846 
8847 	if (idle != CPU_IDLE ||
8848 	    !test_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu)))
8849 		goto end;
8850 
8851 	for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
8852 		if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
8853 			continue;
8854 
8855 		/*
8856 		 * If this cpu gets work to do, stop the load balancing
8857 		 * work being done for other cpus. Next load
8858 		 * balancing owner will pick it up.
8859 		 */
8860 		if (need_resched())
8861 			break;
8862 
8863 		rq = cpu_rq(balance_cpu);
8864 
8865 		/*
8866 		 * If time for next balance is due,
8867 		 * do the balance.
8868 		 */
8869 		if (time_after_eq(jiffies, rq->next_balance)) {
8870 			struct rq_flags rf;
8871 
8872 			rq_lock_irq(rq, &rf);
8873 			update_rq_clock(rq);
8874 			cpu_load_update_idle(rq);
8875 			rq_unlock_irq(rq, &rf);
8876 
8877 			rebalance_domains(rq, CPU_IDLE);
8878 		}
8879 
8880 		if (time_after(next_balance, rq->next_balance)) {
8881 			next_balance = rq->next_balance;
8882 			update_next_balance = 1;
8883 		}
8884 	}
8885 
8886 	/*
8887 	 * next_balance will be updated only when there is a need.
8888 	 * When the CPU is attached to null domain for ex, it will not be
8889 	 * updated.
8890 	 */
8891 	if (likely(update_next_balance))
8892 		nohz.next_balance = next_balance;
8893 end:
8894 	clear_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu));
8895 }
8896 
8897 /*
8898  * Current heuristic for kicking the idle load balancer in the presence
8899  * of an idle cpu in the system.
8900  *   - This rq has more than one task.
8901  *   - This rq has at least one CFS task and the capacity of the CPU is
8902  *     significantly reduced because of RT tasks or IRQs.
8903  *   - At parent of LLC scheduler domain level, this cpu's scheduler group has
8904  *     multiple busy cpu.
8905  *   - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler
8906  *     domain span are idle.
8907  */
8908 static inline bool nohz_kick_needed(struct rq *rq)
8909 {
8910 	unsigned long now = jiffies;
8911 	struct sched_domain_shared *sds;
8912 	struct sched_domain *sd;
8913 	int nr_busy, i, cpu = rq->cpu;
8914 	bool kick = false;
8915 
8916 	if (unlikely(rq->idle_balance))
8917 		return false;
8918 
8919        /*
8920 	* We may be recently in ticked or tickless idle mode. At the first
8921 	* busy tick after returning from idle, we will update the busy stats.
8922 	*/
8923 	set_cpu_sd_state_busy();
8924 	nohz_balance_exit_idle(cpu);
8925 
8926 	/*
8927 	 * None are in tickless mode and hence no need for NOHZ idle load
8928 	 * balancing.
8929 	 */
8930 	if (likely(!atomic_read(&nohz.nr_cpus)))
8931 		return false;
8932 
8933 	if (time_before(now, nohz.next_balance))
8934 		return false;
8935 
8936 	if (rq->nr_running >= 2)
8937 		return true;
8938 
8939 	rcu_read_lock();
8940 	sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
8941 	if (sds) {
8942 		/*
8943 		 * XXX: write a coherent comment on why we do this.
8944 		 * See also: http://lkml.kernel.org/r/20111202010832.602203411@sbsiddha-desk.sc.intel.com
8945 		 */
8946 		nr_busy = atomic_read(&sds->nr_busy_cpus);
8947 		if (nr_busy > 1) {
8948 			kick = true;
8949 			goto unlock;
8950 		}
8951 
8952 	}
8953 
8954 	sd = rcu_dereference(rq->sd);
8955 	if (sd) {
8956 		if ((rq->cfs.h_nr_running >= 1) &&
8957 				check_cpu_capacity(rq, sd)) {
8958 			kick = true;
8959 			goto unlock;
8960 		}
8961 	}
8962 
8963 	sd = rcu_dereference(per_cpu(sd_asym, cpu));
8964 	if (sd) {
8965 		for_each_cpu(i, sched_domain_span(sd)) {
8966 			if (i == cpu ||
8967 			    !cpumask_test_cpu(i, nohz.idle_cpus_mask))
8968 				continue;
8969 
8970 			if (sched_asym_prefer(i, cpu)) {
8971 				kick = true;
8972 				goto unlock;
8973 			}
8974 		}
8975 	}
8976 unlock:
8977 	rcu_read_unlock();
8978 	return kick;
8979 }
8980 #else
8981 static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) { }
8982 #endif
8983 
8984 /*
8985  * run_rebalance_domains is triggered when needed from the scheduler tick.
8986  * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
8987  */
8988 static __latent_entropy void run_rebalance_domains(struct softirq_action *h)
8989 {
8990 	struct rq *this_rq = this_rq();
8991 	enum cpu_idle_type idle = this_rq->idle_balance ?
8992 						CPU_IDLE : CPU_NOT_IDLE;
8993 
8994 	/*
8995 	 * If this cpu has a pending nohz_balance_kick, then do the
8996 	 * balancing on behalf of the other idle cpus whose ticks are
8997 	 * stopped. Do nohz_idle_balance *before* rebalance_domains to
8998 	 * give the idle cpus a chance to load balance. Else we may
8999 	 * load balance only within the local sched_domain hierarchy
9000 	 * and abort nohz_idle_balance altogether if we pull some load.
9001 	 */
9002 	nohz_idle_balance(this_rq, idle);
9003 	rebalance_domains(this_rq, idle);
9004 }
9005 
9006 /*
9007  * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
9008  */
9009 void trigger_load_balance(struct rq *rq)
9010 {
9011 	/* Don't need to rebalance while attached to NULL domain */
9012 	if (unlikely(on_null_domain(rq)))
9013 		return;
9014 
9015 	if (time_after_eq(jiffies, rq->next_balance))
9016 		raise_softirq(SCHED_SOFTIRQ);
9017 #ifdef CONFIG_NO_HZ_COMMON
9018 	if (nohz_kick_needed(rq))
9019 		nohz_balancer_kick();
9020 #endif
9021 }
9022 
9023 static void rq_online_fair(struct rq *rq)
9024 {
9025 	update_sysctl();
9026 
9027 	update_runtime_enabled(rq);
9028 }
9029 
9030 static void rq_offline_fair(struct rq *rq)
9031 {
9032 	update_sysctl();
9033 
9034 	/* Ensure any throttled groups are reachable by pick_next_task */
9035 	unthrottle_offline_cfs_rqs(rq);
9036 }
9037 
9038 #endif /* CONFIG_SMP */
9039 
9040 /*
9041  * scheduler tick hitting a task of our scheduling class:
9042  */
9043 static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
9044 {
9045 	struct cfs_rq *cfs_rq;
9046 	struct sched_entity *se = &curr->se;
9047 
9048 	for_each_sched_entity(se) {
9049 		cfs_rq = cfs_rq_of(se);
9050 		entity_tick(cfs_rq, se, queued);
9051 	}
9052 
9053 	if (static_branch_unlikely(&sched_numa_balancing))
9054 		task_tick_numa(rq, curr);
9055 }
9056 
9057 /*
9058  * called on fork with the child task as argument from the parent's context
9059  *  - child not yet on the tasklist
9060  *  - preemption disabled
9061  */
9062 static void task_fork_fair(struct task_struct *p)
9063 {
9064 	struct cfs_rq *cfs_rq;
9065 	struct sched_entity *se = &p->se, *curr;
9066 	struct rq *rq = this_rq();
9067 	struct rq_flags rf;
9068 
9069 	rq_lock(rq, &rf);
9070 	update_rq_clock(rq);
9071 
9072 	cfs_rq = task_cfs_rq(current);
9073 	curr = cfs_rq->curr;
9074 	if (curr) {
9075 		update_curr(cfs_rq);
9076 		se->vruntime = curr->vruntime;
9077 	}
9078 	place_entity(cfs_rq, se, 1);
9079 
9080 	if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
9081 		/*
9082 		 * Upon rescheduling, sched_class::put_prev_task() will place
9083 		 * 'current' within the tree based on its new key value.
9084 		 */
9085 		swap(curr->vruntime, se->vruntime);
9086 		resched_curr(rq);
9087 	}
9088 
9089 	se->vruntime -= cfs_rq->min_vruntime;
9090 	rq_unlock(rq, &rf);
9091 }
9092 
9093 /*
9094  * Priority of the task has changed. Check to see if we preempt
9095  * the current task.
9096  */
9097 static void
9098 prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
9099 {
9100 	if (!task_on_rq_queued(p))
9101 		return;
9102 
9103 	/*
9104 	 * Reschedule if we are currently running on this runqueue and
9105 	 * our priority decreased, or if we are not currently running on
9106 	 * this runqueue and our priority is higher than the current's
9107 	 */
9108 	if (rq->curr == p) {
9109 		if (p->prio > oldprio)
9110 			resched_curr(rq);
9111 	} else
9112 		check_preempt_curr(rq, p, 0);
9113 }
9114 
9115 static inline bool vruntime_normalized(struct task_struct *p)
9116 {
9117 	struct sched_entity *se = &p->se;
9118 
9119 	/*
9120 	 * In both the TASK_ON_RQ_QUEUED and TASK_ON_RQ_MIGRATING cases,
9121 	 * the dequeue_entity(.flags=0) will already have normalized the
9122 	 * vruntime.
9123 	 */
9124 	if (p->on_rq)
9125 		return true;
9126 
9127 	/*
9128 	 * When !on_rq, vruntime of the task has usually NOT been normalized.
9129 	 * But there are some cases where it has already been normalized:
9130 	 *
9131 	 * - A forked child which is waiting for being woken up by
9132 	 *   wake_up_new_task().
9133 	 * - A task which has been woken up by try_to_wake_up() and
9134 	 *   waiting for actually being woken up by sched_ttwu_pending().
9135 	 */
9136 	if (!se->sum_exec_runtime || p->state == TASK_WAKING)
9137 		return true;
9138 
9139 	return false;
9140 }
9141 
9142 #ifdef CONFIG_FAIR_GROUP_SCHED
9143 /*
9144  * Propagate the changes of the sched_entity across the tg tree to make it
9145  * visible to the root
9146  */
9147 static void propagate_entity_cfs_rq(struct sched_entity *se)
9148 {
9149 	struct cfs_rq *cfs_rq;
9150 
9151 	/* Start to propagate at parent */
9152 	se = se->parent;
9153 
9154 	for_each_sched_entity(se) {
9155 		cfs_rq = cfs_rq_of(se);
9156 
9157 		if (cfs_rq_throttled(cfs_rq))
9158 			break;
9159 
9160 		update_load_avg(se, UPDATE_TG);
9161 	}
9162 }
9163 #else
9164 static void propagate_entity_cfs_rq(struct sched_entity *se) { }
9165 #endif
9166 
9167 static void detach_entity_cfs_rq(struct sched_entity *se)
9168 {
9169 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
9170 
9171 	/* Catch up with the cfs_rq and remove our load when we leave */
9172 	update_load_avg(se, 0);
9173 	detach_entity_load_avg(cfs_rq, se);
9174 	update_tg_load_avg(cfs_rq, false);
9175 	propagate_entity_cfs_rq(se);
9176 }
9177 
9178 static void attach_entity_cfs_rq(struct sched_entity *se)
9179 {
9180 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
9181 
9182 #ifdef CONFIG_FAIR_GROUP_SCHED
9183 	/*
9184 	 * Since the real-depth could have been changed (only FAIR
9185 	 * class maintain depth value), reset depth properly.
9186 	 */
9187 	se->depth = se->parent ? se->parent->depth + 1 : 0;
9188 #endif
9189 
9190 	/* Synchronize entity with its cfs_rq */
9191 	update_load_avg(se, sched_feat(ATTACH_AGE_LOAD) ? 0 : SKIP_AGE_LOAD);
9192 	attach_entity_load_avg(cfs_rq, se);
9193 	update_tg_load_avg(cfs_rq, false);
9194 	propagate_entity_cfs_rq(se);
9195 }
9196 
9197 static void detach_task_cfs_rq(struct task_struct *p)
9198 {
9199 	struct sched_entity *se = &p->se;
9200 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
9201 
9202 	if (!vruntime_normalized(p)) {
9203 		/*
9204 		 * Fix up our vruntime so that the current sleep doesn't
9205 		 * cause 'unlimited' sleep bonus.
9206 		 */
9207 		place_entity(cfs_rq, se, 0);
9208 		se->vruntime -= cfs_rq->min_vruntime;
9209 	}
9210 
9211 	detach_entity_cfs_rq(se);
9212 }
9213 
9214 static void attach_task_cfs_rq(struct task_struct *p)
9215 {
9216 	struct sched_entity *se = &p->se;
9217 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
9218 
9219 	attach_entity_cfs_rq(se);
9220 
9221 	if (!vruntime_normalized(p))
9222 		se->vruntime += cfs_rq->min_vruntime;
9223 }
9224 
9225 static void switched_from_fair(struct rq *rq, struct task_struct *p)
9226 {
9227 	detach_task_cfs_rq(p);
9228 }
9229 
9230 static void switched_to_fair(struct rq *rq, struct task_struct *p)
9231 {
9232 	attach_task_cfs_rq(p);
9233 
9234 	if (task_on_rq_queued(p)) {
9235 		/*
9236 		 * We were most likely switched from sched_rt, so
9237 		 * kick off the schedule if running, otherwise just see
9238 		 * if we can still preempt the current task.
9239 		 */
9240 		if (rq->curr == p)
9241 			resched_curr(rq);
9242 		else
9243 			check_preempt_curr(rq, p, 0);
9244 	}
9245 }
9246 
9247 /* Account for a task changing its policy or group.
9248  *
9249  * This routine is mostly called to set cfs_rq->curr field when a task
9250  * migrates between groups/classes.
9251  */
9252 static void set_curr_task_fair(struct rq *rq)
9253 {
9254 	struct sched_entity *se = &rq->curr->se;
9255 
9256 	for_each_sched_entity(se) {
9257 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
9258 
9259 		set_next_entity(cfs_rq, se);
9260 		/* ensure bandwidth has been allocated on our new cfs_rq */
9261 		account_cfs_rq_runtime(cfs_rq, 0);
9262 	}
9263 }
9264 
9265 void init_cfs_rq(struct cfs_rq *cfs_rq)
9266 {
9267 	cfs_rq->tasks_timeline = RB_ROOT_CACHED;
9268 	cfs_rq->min_vruntime = (u64)(-(1LL << 20));
9269 #ifndef CONFIG_64BIT
9270 	cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
9271 #endif
9272 #ifdef CONFIG_SMP
9273 #ifdef CONFIG_FAIR_GROUP_SCHED
9274 	cfs_rq->propagate_avg = 0;
9275 #endif
9276 	atomic_long_set(&cfs_rq->removed_load_avg, 0);
9277 	atomic_long_set(&cfs_rq->removed_util_avg, 0);
9278 #endif
9279 }
9280 
9281 #ifdef CONFIG_FAIR_GROUP_SCHED
9282 static void task_set_group_fair(struct task_struct *p)
9283 {
9284 	struct sched_entity *se = &p->se;
9285 
9286 	set_task_rq(p, task_cpu(p));
9287 	se->depth = se->parent ? se->parent->depth + 1 : 0;
9288 }
9289 
9290 static void task_move_group_fair(struct task_struct *p)
9291 {
9292 	detach_task_cfs_rq(p);
9293 	set_task_rq(p, task_cpu(p));
9294 
9295 #ifdef CONFIG_SMP
9296 	/* Tell se's cfs_rq has been changed -- migrated */
9297 	p->se.avg.last_update_time = 0;
9298 #endif
9299 	attach_task_cfs_rq(p);
9300 }
9301 
9302 static void task_change_group_fair(struct task_struct *p, int type)
9303 {
9304 	switch (type) {
9305 	case TASK_SET_GROUP:
9306 		task_set_group_fair(p);
9307 		break;
9308 
9309 	case TASK_MOVE_GROUP:
9310 		task_move_group_fair(p);
9311 		break;
9312 	}
9313 }
9314 
9315 void free_fair_sched_group(struct task_group *tg)
9316 {
9317 	int i;
9318 
9319 	destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
9320 
9321 	for_each_possible_cpu(i) {
9322 		if (tg->cfs_rq)
9323 			kfree(tg->cfs_rq[i]);
9324 		if (tg->se)
9325 			kfree(tg->se[i]);
9326 	}
9327 
9328 	kfree(tg->cfs_rq);
9329 	kfree(tg->se);
9330 }
9331 
9332 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
9333 {
9334 	struct sched_entity *se;
9335 	struct cfs_rq *cfs_rq;
9336 	int i;
9337 
9338 	tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
9339 	if (!tg->cfs_rq)
9340 		goto err;
9341 	tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
9342 	if (!tg->se)
9343 		goto err;
9344 
9345 	tg->shares = NICE_0_LOAD;
9346 
9347 	init_cfs_bandwidth(tg_cfs_bandwidth(tg));
9348 
9349 	for_each_possible_cpu(i) {
9350 		cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
9351 				      GFP_KERNEL, cpu_to_node(i));
9352 		if (!cfs_rq)
9353 			goto err;
9354 
9355 		se = kzalloc_node(sizeof(struct sched_entity),
9356 				  GFP_KERNEL, cpu_to_node(i));
9357 		if (!se)
9358 			goto err_free_rq;
9359 
9360 		init_cfs_rq(cfs_rq);
9361 		init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
9362 		init_entity_runnable_average(se);
9363 	}
9364 
9365 	return 1;
9366 
9367 err_free_rq:
9368 	kfree(cfs_rq);
9369 err:
9370 	return 0;
9371 }
9372 
9373 void online_fair_sched_group(struct task_group *tg)
9374 {
9375 	struct sched_entity *se;
9376 	struct rq *rq;
9377 	int i;
9378 
9379 	for_each_possible_cpu(i) {
9380 		rq = cpu_rq(i);
9381 		se = tg->se[i];
9382 
9383 		raw_spin_lock_irq(&rq->lock);
9384 		update_rq_clock(rq);
9385 		attach_entity_cfs_rq(se);
9386 		sync_throttle(tg, i);
9387 		raw_spin_unlock_irq(&rq->lock);
9388 	}
9389 }
9390 
9391 void unregister_fair_sched_group(struct task_group *tg)
9392 {
9393 	unsigned long flags;
9394 	struct rq *rq;
9395 	int cpu;
9396 
9397 	for_each_possible_cpu(cpu) {
9398 		if (tg->se[cpu])
9399 			remove_entity_load_avg(tg->se[cpu]);
9400 
9401 		/*
9402 		 * Only empty task groups can be destroyed; so we can speculatively
9403 		 * check on_list without danger of it being re-added.
9404 		 */
9405 		if (!tg->cfs_rq[cpu]->on_list)
9406 			continue;
9407 
9408 		rq = cpu_rq(cpu);
9409 
9410 		raw_spin_lock_irqsave(&rq->lock, flags);
9411 		list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
9412 		raw_spin_unlock_irqrestore(&rq->lock, flags);
9413 	}
9414 }
9415 
9416 void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
9417 			struct sched_entity *se, int cpu,
9418 			struct sched_entity *parent)
9419 {
9420 	struct rq *rq = cpu_rq(cpu);
9421 
9422 	cfs_rq->tg = tg;
9423 	cfs_rq->rq = rq;
9424 	init_cfs_rq_runtime(cfs_rq);
9425 
9426 	tg->cfs_rq[cpu] = cfs_rq;
9427 	tg->se[cpu] = se;
9428 
9429 	/* se could be NULL for root_task_group */
9430 	if (!se)
9431 		return;
9432 
9433 	if (!parent) {
9434 		se->cfs_rq = &rq->cfs;
9435 		se->depth = 0;
9436 	} else {
9437 		se->cfs_rq = parent->my_q;
9438 		se->depth = parent->depth + 1;
9439 	}
9440 
9441 	se->my_q = cfs_rq;
9442 	/* guarantee group entities always have weight */
9443 	update_load_set(&se->load, NICE_0_LOAD);
9444 	se->parent = parent;
9445 }
9446 
9447 static DEFINE_MUTEX(shares_mutex);
9448 
9449 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
9450 {
9451 	int i;
9452 
9453 	/*
9454 	 * We can't change the weight of the root cgroup.
9455 	 */
9456 	if (!tg->se[0])
9457 		return -EINVAL;
9458 
9459 	shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
9460 
9461 	mutex_lock(&shares_mutex);
9462 	if (tg->shares == shares)
9463 		goto done;
9464 
9465 	tg->shares = shares;
9466 	for_each_possible_cpu(i) {
9467 		struct rq *rq = cpu_rq(i);
9468 		struct sched_entity *se = tg->se[i];
9469 		struct rq_flags rf;
9470 
9471 		/* Propagate contribution to hierarchy */
9472 		rq_lock_irqsave(rq, &rf);
9473 		update_rq_clock(rq);
9474 		for_each_sched_entity(se) {
9475 			update_load_avg(se, UPDATE_TG);
9476 			update_cfs_shares(se);
9477 		}
9478 		rq_unlock_irqrestore(rq, &rf);
9479 	}
9480 
9481 done:
9482 	mutex_unlock(&shares_mutex);
9483 	return 0;
9484 }
9485 #else /* CONFIG_FAIR_GROUP_SCHED */
9486 
9487 void free_fair_sched_group(struct task_group *tg) { }
9488 
9489 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
9490 {
9491 	return 1;
9492 }
9493 
9494 void online_fair_sched_group(struct task_group *tg) { }
9495 
9496 void unregister_fair_sched_group(struct task_group *tg) { }
9497 
9498 #endif /* CONFIG_FAIR_GROUP_SCHED */
9499 
9500 
9501 static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
9502 {
9503 	struct sched_entity *se = &task->se;
9504 	unsigned int rr_interval = 0;
9505 
9506 	/*
9507 	 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
9508 	 * idle runqueue:
9509 	 */
9510 	if (rq->cfs.load.weight)
9511 		rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
9512 
9513 	return rr_interval;
9514 }
9515 
9516 /*
9517  * All the scheduling class methods:
9518  */
9519 const struct sched_class fair_sched_class = {
9520 	.next			= &idle_sched_class,
9521 	.enqueue_task		= enqueue_task_fair,
9522 	.dequeue_task		= dequeue_task_fair,
9523 	.yield_task		= yield_task_fair,
9524 	.yield_to_task		= yield_to_task_fair,
9525 
9526 	.check_preempt_curr	= check_preempt_wakeup,
9527 
9528 	.pick_next_task		= pick_next_task_fair,
9529 	.put_prev_task		= put_prev_task_fair,
9530 
9531 #ifdef CONFIG_SMP
9532 	.select_task_rq		= select_task_rq_fair,
9533 	.migrate_task_rq	= migrate_task_rq_fair,
9534 
9535 	.rq_online		= rq_online_fair,
9536 	.rq_offline		= rq_offline_fair,
9537 
9538 	.task_dead		= task_dead_fair,
9539 	.set_cpus_allowed	= set_cpus_allowed_common,
9540 #endif
9541 
9542 	.set_curr_task          = set_curr_task_fair,
9543 	.task_tick		= task_tick_fair,
9544 	.task_fork		= task_fork_fair,
9545 
9546 	.prio_changed		= prio_changed_fair,
9547 	.switched_from		= switched_from_fair,
9548 	.switched_to		= switched_to_fair,
9549 
9550 	.get_rr_interval	= get_rr_interval_fair,
9551 
9552 	.update_curr		= update_curr_fair,
9553 
9554 #ifdef CONFIG_FAIR_GROUP_SCHED
9555 	.task_change_group	= task_change_group_fair,
9556 #endif
9557 };
9558 
9559 #ifdef CONFIG_SCHED_DEBUG
9560 void print_cfs_stats(struct seq_file *m, int cpu)
9561 {
9562 	struct cfs_rq *cfs_rq, *pos;
9563 
9564 	rcu_read_lock();
9565 	for_each_leaf_cfs_rq_safe(cpu_rq(cpu), cfs_rq, pos)
9566 		print_cfs_rq(m, cpu, cfs_rq);
9567 	rcu_read_unlock();
9568 }
9569 
9570 #ifdef CONFIG_NUMA_BALANCING
9571 void show_numa_stats(struct task_struct *p, struct seq_file *m)
9572 {
9573 	int node;
9574 	unsigned long tsf = 0, tpf = 0, gsf = 0, gpf = 0;
9575 
9576 	for_each_online_node(node) {
9577 		if (p->numa_faults) {
9578 			tsf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 0)];
9579 			tpf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 1)];
9580 		}
9581 		if (p->numa_group) {
9582 			gsf = p->numa_group->faults[task_faults_idx(NUMA_MEM, node, 0)],
9583 			gpf = p->numa_group->faults[task_faults_idx(NUMA_MEM, node, 1)];
9584 		}
9585 		print_numa_stats(m, node, tsf, tpf, gsf, gpf);
9586 	}
9587 }
9588 #endif /* CONFIG_NUMA_BALANCING */
9589 #endif /* CONFIG_SCHED_DEBUG */
9590 
9591 __init void init_sched_fair_class(void)
9592 {
9593 #ifdef CONFIG_SMP
9594 	open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
9595 
9596 #ifdef CONFIG_NO_HZ_COMMON
9597 	nohz.next_balance = jiffies;
9598 	zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
9599 #endif
9600 #endif /* SMP */
9601 
9602 }
9603