1 /* 2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH) 3 * 4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com> 5 * 6 * Interactivity improvements by Mike Galbraith 7 * (C) 2007 Mike Galbraith <efault@gmx.de> 8 * 9 * Various enhancements by Dmitry Adamushko. 10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com> 11 * 12 * Group scheduling enhancements by Srivatsa Vaddagiri 13 * Copyright IBM Corporation, 2007 14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com> 15 * 16 * Scaled math optimizations by Thomas Gleixner 17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de> 18 * 19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra 20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra 21 */ 22 23 #include <linux/sched/mm.h> 24 #include <linux/sched/topology.h> 25 26 #include <linux/latencytop.h> 27 #include <linux/cpumask.h> 28 #include <linux/cpuidle.h> 29 #include <linux/slab.h> 30 #include <linux/profile.h> 31 #include <linux/interrupt.h> 32 #include <linux/mempolicy.h> 33 #include <linux/migrate.h> 34 #include <linux/task_work.h> 35 36 #include <trace/events/sched.h> 37 38 #include "sched.h" 39 40 /* 41 * Targeted preemption latency for CPU-bound tasks: 42 * 43 * NOTE: this latency value is not the same as the concept of 44 * 'timeslice length' - timeslices in CFS are of variable length 45 * and have no persistent notion like in traditional, time-slice 46 * based scheduling concepts. 47 * 48 * (to see the precise effective timeslice length of your workload, 49 * run vmstat and monitor the context-switches (cs) field) 50 * 51 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds) 52 */ 53 unsigned int sysctl_sched_latency = 6000000ULL; 54 unsigned int normalized_sysctl_sched_latency = 6000000ULL; 55 56 /* 57 * The initial- and re-scaling of tunables is configurable 58 * 59 * Options are: 60 * 61 * SCHED_TUNABLESCALING_NONE - unscaled, always *1 62 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus) 63 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus 64 * 65 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus)) 66 */ 67 enum sched_tunable_scaling sysctl_sched_tunable_scaling = SCHED_TUNABLESCALING_LOG; 68 69 /* 70 * Minimal preemption granularity for CPU-bound tasks: 71 * 72 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds) 73 */ 74 unsigned int sysctl_sched_min_granularity = 750000ULL; 75 unsigned int normalized_sysctl_sched_min_granularity = 750000ULL; 76 77 /* 78 * This value is kept at sysctl_sched_latency/sysctl_sched_min_granularity 79 */ 80 static unsigned int sched_nr_latency = 8; 81 82 /* 83 * After fork, child runs first. If set to 0 (default) then 84 * parent will (try to) run first. 85 */ 86 unsigned int sysctl_sched_child_runs_first __read_mostly; 87 88 /* 89 * SCHED_OTHER wake-up granularity. 90 * 91 * This option delays the preemption effects of decoupled workloads 92 * and reduces their over-scheduling. Synchronous workloads will still 93 * have immediate wakeup/sleep latencies. 94 * 95 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds) 96 */ 97 unsigned int sysctl_sched_wakeup_granularity = 1000000UL; 98 unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL; 99 100 const_debug unsigned int sysctl_sched_migration_cost = 500000UL; 101 102 #ifdef CONFIG_SMP 103 /* 104 * For asym packing, by default the lower numbered cpu has higher priority. 105 */ 106 int __weak arch_asym_cpu_priority(int cpu) 107 { 108 return -cpu; 109 } 110 #endif 111 112 #ifdef CONFIG_CFS_BANDWIDTH 113 /* 114 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool 115 * each time a cfs_rq requests quota. 116 * 117 * Note: in the case that the slice exceeds the runtime remaining (either due 118 * to consumption or the quota being specified to be smaller than the slice) 119 * we will always only issue the remaining available time. 120 * 121 * (default: 5 msec, units: microseconds) 122 */ 123 unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL; 124 #endif 125 126 /* 127 * The margin used when comparing utilization with CPU capacity: 128 * util * margin < capacity * 1024 129 * 130 * (default: ~20%) 131 */ 132 unsigned int capacity_margin = 1280; 133 134 static inline void update_load_add(struct load_weight *lw, unsigned long inc) 135 { 136 lw->weight += inc; 137 lw->inv_weight = 0; 138 } 139 140 static inline void update_load_sub(struct load_weight *lw, unsigned long dec) 141 { 142 lw->weight -= dec; 143 lw->inv_weight = 0; 144 } 145 146 static inline void update_load_set(struct load_weight *lw, unsigned long w) 147 { 148 lw->weight = w; 149 lw->inv_weight = 0; 150 } 151 152 /* 153 * Increase the granularity value when there are more CPUs, 154 * because with more CPUs the 'effective latency' as visible 155 * to users decreases. But the relationship is not linear, 156 * so pick a second-best guess by going with the log2 of the 157 * number of CPUs. 158 * 159 * This idea comes from the SD scheduler of Con Kolivas: 160 */ 161 static unsigned int get_update_sysctl_factor(void) 162 { 163 unsigned int cpus = min_t(unsigned int, num_online_cpus(), 8); 164 unsigned int factor; 165 166 switch (sysctl_sched_tunable_scaling) { 167 case SCHED_TUNABLESCALING_NONE: 168 factor = 1; 169 break; 170 case SCHED_TUNABLESCALING_LINEAR: 171 factor = cpus; 172 break; 173 case SCHED_TUNABLESCALING_LOG: 174 default: 175 factor = 1 + ilog2(cpus); 176 break; 177 } 178 179 return factor; 180 } 181 182 static void update_sysctl(void) 183 { 184 unsigned int factor = get_update_sysctl_factor(); 185 186 #define SET_SYSCTL(name) \ 187 (sysctl_##name = (factor) * normalized_sysctl_##name) 188 SET_SYSCTL(sched_min_granularity); 189 SET_SYSCTL(sched_latency); 190 SET_SYSCTL(sched_wakeup_granularity); 191 #undef SET_SYSCTL 192 } 193 194 void sched_init_granularity(void) 195 { 196 update_sysctl(); 197 } 198 199 #define WMULT_CONST (~0U) 200 #define WMULT_SHIFT 32 201 202 static void __update_inv_weight(struct load_weight *lw) 203 { 204 unsigned long w; 205 206 if (likely(lw->inv_weight)) 207 return; 208 209 w = scale_load_down(lw->weight); 210 211 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST)) 212 lw->inv_weight = 1; 213 else if (unlikely(!w)) 214 lw->inv_weight = WMULT_CONST; 215 else 216 lw->inv_weight = WMULT_CONST / w; 217 } 218 219 /* 220 * delta_exec * weight / lw.weight 221 * OR 222 * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT 223 * 224 * Either weight := NICE_0_LOAD and lw \e sched_prio_to_wmult[], in which case 225 * we're guaranteed shift stays positive because inv_weight is guaranteed to 226 * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22. 227 * 228 * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus 229 * weight/lw.weight <= 1, and therefore our shift will also be positive. 230 */ 231 static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw) 232 { 233 u64 fact = scale_load_down(weight); 234 int shift = WMULT_SHIFT; 235 236 __update_inv_weight(lw); 237 238 if (unlikely(fact >> 32)) { 239 while (fact >> 32) { 240 fact >>= 1; 241 shift--; 242 } 243 } 244 245 /* hint to use a 32x32->64 mul */ 246 fact = (u64)(u32)fact * lw->inv_weight; 247 248 while (fact >> 32) { 249 fact >>= 1; 250 shift--; 251 } 252 253 return mul_u64_u32_shr(delta_exec, fact, shift); 254 } 255 256 257 const struct sched_class fair_sched_class; 258 259 /************************************************************** 260 * CFS operations on generic schedulable entities: 261 */ 262 263 #ifdef CONFIG_FAIR_GROUP_SCHED 264 265 /* cpu runqueue to which this cfs_rq is attached */ 266 static inline struct rq *rq_of(struct cfs_rq *cfs_rq) 267 { 268 return cfs_rq->rq; 269 } 270 271 /* An entity is a task if it doesn't "own" a runqueue */ 272 #define entity_is_task(se) (!se->my_q) 273 274 static inline struct task_struct *task_of(struct sched_entity *se) 275 { 276 SCHED_WARN_ON(!entity_is_task(se)); 277 return container_of(se, struct task_struct, se); 278 } 279 280 /* Walk up scheduling entities hierarchy */ 281 #define for_each_sched_entity(se) \ 282 for (; se; se = se->parent) 283 284 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p) 285 { 286 return p->se.cfs_rq; 287 } 288 289 /* runqueue on which this entity is (to be) queued */ 290 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se) 291 { 292 return se->cfs_rq; 293 } 294 295 /* runqueue "owned" by this group */ 296 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp) 297 { 298 return grp->my_q; 299 } 300 301 static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq) 302 { 303 if (!cfs_rq->on_list) { 304 struct rq *rq = rq_of(cfs_rq); 305 int cpu = cpu_of(rq); 306 /* 307 * Ensure we either appear before our parent (if already 308 * enqueued) or force our parent to appear after us when it is 309 * enqueued. The fact that we always enqueue bottom-up 310 * reduces this to two cases and a special case for the root 311 * cfs_rq. Furthermore, it also means that we will always reset 312 * tmp_alone_branch either when the branch is connected 313 * to a tree or when we reach the beg of the tree 314 */ 315 if (cfs_rq->tg->parent && 316 cfs_rq->tg->parent->cfs_rq[cpu]->on_list) { 317 /* 318 * If parent is already on the list, we add the child 319 * just before. Thanks to circular linked property of 320 * the list, this means to put the child at the tail 321 * of the list that starts by parent. 322 */ 323 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list, 324 &(cfs_rq->tg->parent->cfs_rq[cpu]->leaf_cfs_rq_list)); 325 /* 326 * The branch is now connected to its tree so we can 327 * reset tmp_alone_branch to the beginning of the 328 * list. 329 */ 330 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list; 331 } else if (!cfs_rq->tg->parent) { 332 /* 333 * cfs rq without parent should be put 334 * at the tail of the list. 335 */ 336 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list, 337 &rq->leaf_cfs_rq_list); 338 /* 339 * We have reach the beg of a tree so we can reset 340 * tmp_alone_branch to the beginning of the list. 341 */ 342 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list; 343 } else { 344 /* 345 * The parent has not already been added so we want to 346 * make sure that it will be put after us. 347 * tmp_alone_branch points to the beg of the branch 348 * where we will add parent. 349 */ 350 list_add_rcu(&cfs_rq->leaf_cfs_rq_list, 351 rq->tmp_alone_branch); 352 /* 353 * update tmp_alone_branch to points to the new beg 354 * of the branch 355 */ 356 rq->tmp_alone_branch = &cfs_rq->leaf_cfs_rq_list; 357 } 358 359 cfs_rq->on_list = 1; 360 } 361 } 362 363 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq) 364 { 365 if (cfs_rq->on_list) { 366 list_del_rcu(&cfs_rq->leaf_cfs_rq_list); 367 cfs_rq->on_list = 0; 368 } 369 } 370 371 /* Iterate thr' all leaf cfs_rq's on a runqueue */ 372 #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) \ 373 list_for_each_entry_safe(cfs_rq, pos, &rq->leaf_cfs_rq_list, \ 374 leaf_cfs_rq_list) 375 376 /* Do the two (enqueued) entities belong to the same group ? */ 377 static inline struct cfs_rq * 378 is_same_group(struct sched_entity *se, struct sched_entity *pse) 379 { 380 if (se->cfs_rq == pse->cfs_rq) 381 return se->cfs_rq; 382 383 return NULL; 384 } 385 386 static inline struct sched_entity *parent_entity(struct sched_entity *se) 387 { 388 return se->parent; 389 } 390 391 static void 392 find_matching_se(struct sched_entity **se, struct sched_entity **pse) 393 { 394 int se_depth, pse_depth; 395 396 /* 397 * preemption test can be made between sibling entities who are in the 398 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of 399 * both tasks until we find their ancestors who are siblings of common 400 * parent. 401 */ 402 403 /* First walk up until both entities are at same depth */ 404 se_depth = (*se)->depth; 405 pse_depth = (*pse)->depth; 406 407 while (se_depth > pse_depth) { 408 se_depth--; 409 *se = parent_entity(*se); 410 } 411 412 while (pse_depth > se_depth) { 413 pse_depth--; 414 *pse = parent_entity(*pse); 415 } 416 417 while (!is_same_group(*se, *pse)) { 418 *se = parent_entity(*se); 419 *pse = parent_entity(*pse); 420 } 421 } 422 423 #else /* !CONFIG_FAIR_GROUP_SCHED */ 424 425 static inline struct task_struct *task_of(struct sched_entity *se) 426 { 427 return container_of(se, struct task_struct, se); 428 } 429 430 static inline struct rq *rq_of(struct cfs_rq *cfs_rq) 431 { 432 return container_of(cfs_rq, struct rq, cfs); 433 } 434 435 #define entity_is_task(se) 1 436 437 #define for_each_sched_entity(se) \ 438 for (; se; se = NULL) 439 440 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p) 441 { 442 return &task_rq(p)->cfs; 443 } 444 445 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se) 446 { 447 struct task_struct *p = task_of(se); 448 struct rq *rq = task_rq(p); 449 450 return &rq->cfs; 451 } 452 453 /* runqueue "owned" by this group */ 454 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp) 455 { 456 return NULL; 457 } 458 459 static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq) 460 { 461 } 462 463 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq) 464 { 465 } 466 467 #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) \ 468 for (cfs_rq = &rq->cfs, pos = NULL; cfs_rq; cfs_rq = pos) 469 470 static inline struct sched_entity *parent_entity(struct sched_entity *se) 471 { 472 return NULL; 473 } 474 475 static inline void 476 find_matching_se(struct sched_entity **se, struct sched_entity **pse) 477 { 478 } 479 480 #endif /* CONFIG_FAIR_GROUP_SCHED */ 481 482 static __always_inline 483 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec); 484 485 /************************************************************** 486 * Scheduling class tree data structure manipulation methods: 487 */ 488 489 static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime) 490 { 491 s64 delta = (s64)(vruntime - max_vruntime); 492 if (delta > 0) 493 max_vruntime = vruntime; 494 495 return max_vruntime; 496 } 497 498 static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime) 499 { 500 s64 delta = (s64)(vruntime - min_vruntime); 501 if (delta < 0) 502 min_vruntime = vruntime; 503 504 return min_vruntime; 505 } 506 507 static inline int entity_before(struct sched_entity *a, 508 struct sched_entity *b) 509 { 510 return (s64)(a->vruntime - b->vruntime) < 0; 511 } 512 513 static void update_min_vruntime(struct cfs_rq *cfs_rq) 514 { 515 struct sched_entity *curr = cfs_rq->curr; 516 struct rb_node *leftmost = rb_first_cached(&cfs_rq->tasks_timeline); 517 518 u64 vruntime = cfs_rq->min_vruntime; 519 520 if (curr) { 521 if (curr->on_rq) 522 vruntime = curr->vruntime; 523 else 524 curr = NULL; 525 } 526 527 if (leftmost) { /* non-empty tree */ 528 struct sched_entity *se; 529 se = rb_entry(leftmost, struct sched_entity, run_node); 530 531 if (!curr) 532 vruntime = se->vruntime; 533 else 534 vruntime = min_vruntime(vruntime, se->vruntime); 535 } 536 537 /* ensure we never gain time by being placed backwards. */ 538 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime); 539 #ifndef CONFIG_64BIT 540 smp_wmb(); 541 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime; 542 #endif 543 } 544 545 /* 546 * Enqueue an entity into the rb-tree: 547 */ 548 static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) 549 { 550 struct rb_node **link = &cfs_rq->tasks_timeline.rb_root.rb_node; 551 struct rb_node *parent = NULL; 552 struct sched_entity *entry; 553 bool leftmost = true; 554 555 /* 556 * Find the right place in the rbtree: 557 */ 558 while (*link) { 559 parent = *link; 560 entry = rb_entry(parent, struct sched_entity, run_node); 561 /* 562 * We dont care about collisions. Nodes with 563 * the same key stay together. 564 */ 565 if (entity_before(se, entry)) { 566 link = &parent->rb_left; 567 } else { 568 link = &parent->rb_right; 569 leftmost = false; 570 } 571 } 572 573 rb_link_node(&se->run_node, parent, link); 574 rb_insert_color_cached(&se->run_node, 575 &cfs_rq->tasks_timeline, leftmost); 576 } 577 578 static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) 579 { 580 rb_erase_cached(&se->run_node, &cfs_rq->tasks_timeline); 581 } 582 583 struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq) 584 { 585 struct rb_node *left = rb_first_cached(&cfs_rq->tasks_timeline); 586 587 if (!left) 588 return NULL; 589 590 return rb_entry(left, struct sched_entity, run_node); 591 } 592 593 static struct sched_entity *__pick_next_entity(struct sched_entity *se) 594 { 595 struct rb_node *next = rb_next(&se->run_node); 596 597 if (!next) 598 return NULL; 599 600 return rb_entry(next, struct sched_entity, run_node); 601 } 602 603 #ifdef CONFIG_SCHED_DEBUG 604 struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq) 605 { 606 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline.rb_root); 607 608 if (!last) 609 return NULL; 610 611 return rb_entry(last, struct sched_entity, run_node); 612 } 613 614 /************************************************************** 615 * Scheduling class statistics methods: 616 */ 617 618 int sched_proc_update_handler(struct ctl_table *table, int write, 619 void __user *buffer, size_t *lenp, 620 loff_t *ppos) 621 { 622 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 623 unsigned int factor = get_update_sysctl_factor(); 624 625 if (ret || !write) 626 return ret; 627 628 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency, 629 sysctl_sched_min_granularity); 630 631 #define WRT_SYSCTL(name) \ 632 (normalized_sysctl_##name = sysctl_##name / (factor)) 633 WRT_SYSCTL(sched_min_granularity); 634 WRT_SYSCTL(sched_latency); 635 WRT_SYSCTL(sched_wakeup_granularity); 636 #undef WRT_SYSCTL 637 638 return 0; 639 } 640 #endif 641 642 /* 643 * delta /= w 644 */ 645 static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se) 646 { 647 if (unlikely(se->load.weight != NICE_0_LOAD)) 648 delta = __calc_delta(delta, NICE_0_LOAD, &se->load); 649 650 return delta; 651 } 652 653 /* 654 * The idea is to set a period in which each task runs once. 655 * 656 * When there are too many tasks (sched_nr_latency) we have to stretch 657 * this period because otherwise the slices get too small. 658 * 659 * p = (nr <= nl) ? l : l*nr/nl 660 */ 661 static u64 __sched_period(unsigned long nr_running) 662 { 663 if (unlikely(nr_running > sched_nr_latency)) 664 return nr_running * sysctl_sched_min_granularity; 665 else 666 return sysctl_sched_latency; 667 } 668 669 /* 670 * We calculate the wall-time slice from the period by taking a part 671 * proportional to the weight. 672 * 673 * s = p*P[w/rw] 674 */ 675 static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se) 676 { 677 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq); 678 679 for_each_sched_entity(se) { 680 struct load_weight *load; 681 struct load_weight lw; 682 683 cfs_rq = cfs_rq_of(se); 684 load = &cfs_rq->load; 685 686 if (unlikely(!se->on_rq)) { 687 lw = cfs_rq->load; 688 689 update_load_add(&lw, se->load.weight); 690 load = &lw; 691 } 692 slice = __calc_delta(slice, se->load.weight, load); 693 } 694 return slice; 695 } 696 697 /* 698 * We calculate the vruntime slice of a to-be-inserted task. 699 * 700 * vs = s/w 701 */ 702 static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se) 703 { 704 return calc_delta_fair(sched_slice(cfs_rq, se), se); 705 } 706 707 #ifdef CONFIG_SMP 708 709 #include "sched-pelt.h" 710 711 static int select_idle_sibling(struct task_struct *p, int prev_cpu, int cpu); 712 static unsigned long task_h_load(struct task_struct *p); 713 714 /* Give new sched_entity start runnable values to heavy its load in infant time */ 715 void init_entity_runnable_average(struct sched_entity *se) 716 { 717 struct sched_avg *sa = &se->avg; 718 719 sa->last_update_time = 0; 720 /* 721 * sched_avg's period_contrib should be strictly less then 1024, so 722 * we give it 1023 to make sure it is almost a period (1024us), and 723 * will definitely be update (after enqueue). 724 */ 725 sa->period_contrib = 1023; 726 /* 727 * Tasks are intialized with full load to be seen as heavy tasks until 728 * they get a chance to stabilize to their real load level. 729 * Group entities are intialized with zero load to reflect the fact that 730 * nothing has been attached to the task group yet. 731 */ 732 if (entity_is_task(se)) 733 sa->load_avg = scale_load_down(se->load.weight); 734 sa->load_sum = sa->load_avg * LOAD_AVG_MAX; 735 /* 736 * At this point, util_avg won't be used in select_task_rq_fair anyway 737 */ 738 sa->util_avg = 0; 739 sa->util_sum = 0; 740 /* when this task enqueue'ed, it will contribute to its cfs_rq's load_avg */ 741 } 742 743 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq); 744 static void attach_entity_cfs_rq(struct sched_entity *se); 745 746 /* 747 * With new tasks being created, their initial util_avgs are extrapolated 748 * based on the cfs_rq's current util_avg: 749 * 750 * util_avg = cfs_rq->util_avg / (cfs_rq->load_avg + 1) * se.load.weight 751 * 752 * However, in many cases, the above util_avg does not give a desired 753 * value. Moreover, the sum of the util_avgs may be divergent, such 754 * as when the series is a harmonic series. 755 * 756 * To solve this problem, we also cap the util_avg of successive tasks to 757 * only 1/2 of the left utilization budget: 758 * 759 * util_avg_cap = (1024 - cfs_rq->avg.util_avg) / 2^n 760 * 761 * where n denotes the nth task. 762 * 763 * For example, a simplest series from the beginning would be like: 764 * 765 * task util_avg: 512, 256, 128, 64, 32, 16, 8, ... 766 * cfs_rq util_avg: 512, 768, 896, 960, 992, 1008, 1016, ... 767 * 768 * Finally, that extrapolated util_avg is clamped to the cap (util_avg_cap) 769 * if util_avg > util_avg_cap. 770 */ 771 void post_init_entity_util_avg(struct sched_entity *se) 772 { 773 struct cfs_rq *cfs_rq = cfs_rq_of(se); 774 struct sched_avg *sa = &se->avg; 775 long cap = (long)(SCHED_CAPACITY_SCALE - cfs_rq->avg.util_avg) / 2; 776 777 if (cap > 0) { 778 if (cfs_rq->avg.util_avg != 0) { 779 sa->util_avg = cfs_rq->avg.util_avg * se->load.weight; 780 sa->util_avg /= (cfs_rq->avg.load_avg + 1); 781 782 if (sa->util_avg > cap) 783 sa->util_avg = cap; 784 } else { 785 sa->util_avg = cap; 786 } 787 sa->util_sum = sa->util_avg * LOAD_AVG_MAX; 788 } 789 790 if (entity_is_task(se)) { 791 struct task_struct *p = task_of(se); 792 if (p->sched_class != &fair_sched_class) { 793 /* 794 * For !fair tasks do: 795 * 796 update_cfs_rq_load_avg(now, cfs_rq); 797 attach_entity_load_avg(cfs_rq, se); 798 switched_from_fair(rq, p); 799 * 800 * such that the next switched_to_fair() has the 801 * expected state. 802 */ 803 se->avg.last_update_time = cfs_rq_clock_task(cfs_rq); 804 return; 805 } 806 } 807 808 attach_entity_cfs_rq(se); 809 } 810 811 #else /* !CONFIG_SMP */ 812 void init_entity_runnable_average(struct sched_entity *se) 813 { 814 } 815 void post_init_entity_util_avg(struct sched_entity *se) 816 { 817 } 818 static void update_tg_load_avg(struct cfs_rq *cfs_rq, int force) 819 { 820 } 821 #endif /* CONFIG_SMP */ 822 823 /* 824 * Update the current task's runtime statistics. 825 */ 826 static void update_curr(struct cfs_rq *cfs_rq) 827 { 828 struct sched_entity *curr = cfs_rq->curr; 829 u64 now = rq_clock_task(rq_of(cfs_rq)); 830 u64 delta_exec; 831 832 if (unlikely(!curr)) 833 return; 834 835 delta_exec = now - curr->exec_start; 836 if (unlikely((s64)delta_exec <= 0)) 837 return; 838 839 curr->exec_start = now; 840 841 schedstat_set(curr->statistics.exec_max, 842 max(delta_exec, curr->statistics.exec_max)); 843 844 curr->sum_exec_runtime += delta_exec; 845 schedstat_add(cfs_rq->exec_clock, delta_exec); 846 847 curr->vruntime += calc_delta_fair(delta_exec, curr); 848 update_min_vruntime(cfs_rq); 849 850 if (entity_is_task(curr)) { 851 struct task_struct *curtask = task_of(curr); 852 853 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime); 854 cpuacct_charge(curtask, delta_exec); 855 account_group_exec_runtime(curtask, delta_exec); 856 } 857 858 account_cfs_rq_runtime(cfs_rq, delta_exec); 859 } 860 861 static void update_curr_fair(struct rq *rq) 862 { 863 update_curr(cfs_rq_of(&rq->curr->se)); 864 } 865 866 static inline void 867 update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se) 868 { 869 u64 wait_start, prev_wait_start; 870 871 if (!schedstat_enabled()) 872 return; 873 874 wait_start = rq_clock(rq_of(cfs_rq)); 875 prev_wait_start = schedstat_val(se->statistics.wait_start); 876 877 if (entity_is_task(se) && task_on_rq_migrating(task_of(se)) && 878 likely(wait_start > prev_wait_start)) 879 wait_start -= prev_wait_start; 880 881 schedstat_set(se->statistics.wait_start, wait_start); 882 } 883 884 static inline void 885 update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se) 886 { 887 struct task_struct *p; 888 u64 delta; 889 890 if (!schedstat_enabled()) 891 return; 892 893 delta = rq_clock(rq_of(cfs_rq)) - schedstat_val(se->statistics.wait_start); 894 895 if (entity_is_task(se)) { 896 p = task_of(se); 897 if (task_on_rq_migrating(p)) { 898 /* 899 * Preserve migrating task's wait time so wait_start 900 * time stamp can be adjusted to accumulate wait time 901 * prior to migration. 902 */ 903 schedstat_set(se->statistics.wait_start, delta); 904 return; 905 } 906 trace_sched_stat_wait(p, delta); 907 } 908 909 schedstat_set(se->statistics.wait_max, 910 max(schedstat_val(se->statistics.wait_max), delta)); 911 schedstat_inc(se->statistics.wait_count); 912 schedstat_add(se->statistics.wait_sum, delta); 913 schedstat_set(se->statistics.wait_start, 0); 914 } 915 916 static inline void 917 update_stats_enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se) 918 { 919 struct task_struct *tsk = NULL; 920 u64 sleep_start, block_start; 921 922 if (!schedstat_enabled()) 923 return; 924 925 sleep_start = schedstat_val(se->statistics.sleep_start); 926 block_start = schedstat_val(se->statistics.block_start); 927 928 if (entity_is_task(se)) 929 tsk = task_of(se); 930 931 if (sleep_start) { 932 u64 delta = rq_clock(rq_of(cfs_rq)) - sleep_start; 933 934 if ((s64)delta < 0) 935 delta = 0; 936 937 if (unlikely(delta > schedstat_val(se->statistics.sleep_max))) 938 schedstat_set(se->statistics.sleep_max, delta); 939 940 schedstat_set(se->statistics.sleep_start, 0); 941 schedstat_add(se->statistics.sum_sleep_runtime, delta); 942 943 if (tsk) { 944 account_scheduler_latency(tsk, delta >> 10, 1); 945 trace_sched_stat_sleep(tsk, delta); 946 } 947 } 948 if (block_start) { 949 u64 delta = rq_clock(rq_of(cfs_rq)) - block_start; 950 951 if ((s64)delta < 0) 952 delta = 0; 953 954 if (unlikely(delta > schedstat_val(se->statistics.block_max))) 955 schedstat_set(se->statistics.block_max, delta); 956 957 schedstat_set(se->statistics.block_start, 0); 958 schedstat_add(se->statistics.sum_sleep_runtime, delta); 959 960 if (tsk) { 961 if (tsk->in_iowait) { 962 schedstat_add(se->statistics.iowait_sum, delta); 963 schedstat_inc(se->statistics.iowait_count); 964 trace_sched_stat_iowait(tsk, delta); 965 } 966 967 trace_sched_stat_blocked(tsk, delta); 968 969 /* 970 * Blocking time is in units of nanosecs, so shift by 971 * 20 to get a milliseconds-range estimation of the 972 * amount of time that the task spent sleeping: 973 */ 974 if (unlikely(prof_on == SLEEP_PROFILING)) { 975 profile_hits(SLEEP_PROFILING, 976 (void *)get_wchan(tsk), 977 delta >> 20); 978 } 979 account_scheduler_latency(tsk, delta >> 10, 0); 980 } 981 } 982 } 983 984 /* 985 * Task is being enqueued - update stats: 986 */ 987 static inline void 988 update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 989 { 990 if (!schedstat_enabled()) 991 return; 992 993 /* 994 * Are we enqueueing a waiting task? (for current tasks 995 * a dequeue/enqueue event is a NOP) 996 */ 997 if (se != cfs_rq->curr) 998 update_stats_wait_start(cfs_rq, se); 999 1000 if (flags & ENQUEUE_WAKEUP) 1001 update_stats_enqueue_sleeper(cfs_rq, se); 1002 } 1003 1004 static inline void 1005 update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 1006 { 1007 1008 if (!schedstat_enabled()) 1009 return; 1010 1011 /* 1012 * Mark the end of the wait period if dequeueing a 1013 * waiting task: 1014 */ 1015 if (se != cfs_rq->curr) 1016 update_stats_wait_end(cfs_rq, se); 1017 1018 if ((flags & DEQUEUE_SLEEP) && entity_is_task(se)) { 1019 struct task_struct *tsk = task_of(se); 1020 1021 if (tsk->state & TASK_INTERRUPTIBLE) 1022 schedstat_set(se->statistics.sleep_start, 1023 rq_clock(rq_of(cfs_rq))); 1024 if (tsk->state & TASK_UNINTERRUPTIBLE) 1025 schedstat_set(se->statistics.block_start, 1026 rq_clock(rq_of(cfs_rq))); 1027 } 1028 } 1029 1030 /* 1031 * We are picking a new current task - update its stats: 1032 */ 1033 static inline void 1034 update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se) 1035 { 1036 /* 1037 * We are starting a new run period: 1038 */ 1039 se->exec_start = rq_clock_task(rq_of(cfs_rq)); 1040 } 1041 1042 /************************************************** 1043 * Scheduling class queueing methods: 1044 */ 1045 1046 #ifdef CONFIG_NUMA_BALANCING 1047 /* 1048 * Approximate time to scan a full NUMA task in ms. The task scan period is 1049 * calculated based on the tasks virtual memory size and 1050 * numa_balancing_scan_size. 1051 */ 1052 unsigned int sysctl_numa_balancing_scan_period_min = 1000; 1053 unsigned int sysctl_numa_balancing_scan_period_max = 60000; 1054 1055 /* Portion of address space to scan in MB */ 1056 unsigned int sysctl_numa_balancing_scan_size = 256; 1057 1058 /* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */ 1059 unsigned int sysctl_numa_balancing_scan_delay = 1000; 1060 1061 struct numa_group { 1062 atomic_t refcount; 1063 1064 spinlock_t lock; /* nr_tasks, tasks */ 1065 int nr_tasks; 1066 pid_t gid; 1067 int active_nodes; 1068 1069 struct rcu_head rcu; 1070 unsigned long total_faults; 1071 unsigned long max_faults_cpu; 1072 /* 1073 * Faults_cpu is used to decide whether memory should move 1074 * towards the CPU. As a consequence, these stats are weighted 1075 * more by CPU use than by memory faults. 1076 */ 1077 unsigned long *faults_cpu; 1078 unsigned long faults[0]; 1079 }; 1080 1081 static inline unsigned long group_faults_priv(struct numa_group *ng); 1082 static inline unsigned long group_faults_shared(struct numa_group *ng); 1083 1084 static unsigned int task_nr_scan_windows(struct task_struct *p) 1085 { 1086 unsigned long rss = 0; 1087 unsigned long nr_scan_pages; 1088 1089 /* 1090 * Calculations based on RSS as non-present and empty pages are skipped 1091 * by the PTE scanner and NUMA hinting faults should be trapped based 1092 * on resident pages 1093 */ 1094 nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT); 1095 rss = get_mm_rss(p->mm); 1096 if (!rss) 1097 rss = nr_scan_pages; 1098 1099 rss = round_up(rss, nr_scan_pages); 1100 return rss / nr_scan_pages; 1101 } 1102 1103 /* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */ 1104 #define MAX_SCAN_WINDOW 2560 1105 1106 static unsigned int task_scan_min(struct task_struct *p) 1107 { 1108 unsigned int scan_size = READ_ONCE(sysctl_numa_balancing_scan_size); 1109 unsigned int scan, floor; 1110 unsigned int windows = 1; 1111 1112 if (scan_size < MAX_SCAN_WINDOW) 1113 windows = MAX_SCAN_WINDOW / scan_size; 1114 floor = 1000 / windows; 1115 1116 scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p); 1117 return max_t(unsigned int, floor, scan); 1118 } 1119 1120 static unsigned int task_scan_start(struct task_struct *p) 1121 { 1122 unsigned long smin = task_scan_min(p); 1123 unsigned long period = smin; 1124 1125 /* Scale the maximum scan period with the amount of shared memory. */ 1126 if (p->numa_group) { 1127 struct numa_group *ng = p->numa_group; 1128 unsigned long shared = group_faults_shared(ng); 1129 unsigned long private = group_faults_priv(ng); 1130 1131 period *= atomic_read(&ng->refcount); 1132 period *= shared + 1; 1133 period /= private + shared + 1; 1134 } 1135 1136 return max(smin, period); 1137 } 1138 1139 static unsigned int task_scan_max(struct task_struct *p) 1140 { 1141 unsigned long smin = task_scan_min(p); 1142 unsigned long smax; 1143 1144 /* Watch for min being lower than max due to floor calculations */ 1145 smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p); 1146 1147 /* Scale the maximum scan period with the amount of shared memory. */ 1148 if (p->numa_group) { 1149 struct numa_group *ng = p->numa_group; 1150 unsigned long shared = group_faults_shared(ng); 1151 unsigned long private = group_faults_priv(ng); 1152 unsigned long period = smax; 1153 1154 period *= atomic_read(&ng->refcount); 1155 period *= shared + 1; 1156 period /= private + shared + 1; 1157 1158 smax = max(smax, period); 1159 } 1160 1161 return max(smin, smax); 1162 } 1163 1164 static void account_numa_enqueue(struct rq *rq, struct task_struct *p) 1165 { 1166 rq->nr_numa_running += (p->numa_preferred_nid != -1); 1167 rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p)); 1168 } 1169 1170 static void account_numa_dequeue(struct rq *rq, struct task_struct *p) 1171 { 1172 rq->nr_numa_running -= (p->numa_preferred_nid != -1); 1173 rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p)); 1174 } 1175 1176 /* Shared or private faults. */ 1177 #define NR_NUMA_HINT_FAULT_TYPES 2 1178 1179 /* Memory and CPU locality */ 1180 #define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2) 1181 1182 /* Averaged statistics, and temporary buffers. */ 1183 #define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2) 1184 1185 pid_t task_numa_group_id(struct task_struct *p) 1186 { 1187 return p->numa_group ? p->numa_group->gid : 0; 1188 } 1189 1190 /* 1191 * The averaged statistics, shared & private, memory & cpu, 1192 * occupy the first half of the array. The second half of the 1193 * array is for current counters, which are averaged into the 1194 * first set by task_numa_placement. 1195 */ 1196 static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv) 1197 { 1198 return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv; 1199 } 1200 1201 static inline unsigned long task_faults(struct task_struct *p, int nid) 1202 { 1203 if (!p->numa_faults) 1204 return 0; 1205 1206 return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] + 1207 p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)]; 1208 } 1209 1210 static inline unsigned long group_faults(struct task_struct *p, int nid) 1211 { 1212 if (!p->numa_group) 1213 return 0; 1214 1215 return p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 0)] + 1216 p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 1)]; 1217 } 1218 1219 static inline unsigned long group_faults_cpu(struct numa_group *group, int nid) 1220 { 1221 return group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 0)] + 1222 group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 1)]; 1223 } 1224 1225 static inline unsigned long group_faults_priv(struct numa_group *ng) 1226 { 1227 unsigned long faults = 0; 1228 int node; 1229 1230 for_each_online_node(node) { 1231 faults += ng->faults[task_faults_idx(NUMA_MEM, node, 1)]; 1232 } 1233 1234 return faults; 1235 } 1236 1237 static inline unsigned long group_faults_shared(struct numa_group *ng) 1238 { 1239 unsigned long faults = 0; 1240 int node; 1241 1242 for_each_online_node(node) { 1243 faults += ng->faults[task_faults_idx(NUMA_MEM, node, 0)]; 1244 } 1245 1246 return faults; 1247 } 1248 1249 /* 1250 * A node triggering more than 1/3 as many NUMA faults as the maximum is 1251 * considered part of a numa group's pseudo-interleaving set. Migrations 1252 * between these nodes are slowed down, to allow things to settle down. 1253 */ 1254 #define ACTIVE_NODE_FRACTION 3 1255 1256 static bool numa_is_active_node(int nid, struct numa_group *ng) 1257 { 1258 return group_faults_cpu(ng, nid) * ACTIVE_NODE_FRACTION > ng->max_faults_cpu; 1259 } 1260 1261 /* Handle placement on systems where not all nodes are directly connected. */ 1262 static unsigned long score_nearby_nodes(struct task_struct *p, int nid, 1263 int maxdist, bool task) 1264 { 1265 unsigned long score = 0; 1266 int node; 1267 1268 /* 1269 * All nodes are directly connected, and the same distance 1270 * from each other. No need for fancy placement algorithms. 1271 */ 1272 if (sched_numa_topology_type == NUMA_DIRECT) 1273 return 0; 1274 1275 /* 1276 * This code is called for each node, introducing N^2 complexity, 1277 * which should be ok given the number of nodes rarely exceeds 8. 1278 */ 1279 for_each_online_node(node) { 1280 unsigned long faults; 1281 int dist = node_distance(nid, node); 1282 1283 /* 1284 * The furthest away nodes in the system are not interesting 1285 * for placement; nid was already counted. 1286 */ 1287 if (dist == sched_max_numa_distance || node == nid) 1288 continue; 1289 1290 /* 1291 * On systems with a backplane NUMA topology, compare groups 1292 * of nodes, and move tasks towards the group with the most 1293 * memory accesses. When comparing two nodes at distance 1294 * "hoplimit", only nodes closer by than "hoplimit" are part 1295 * of each group. Skip other nodes. 1296 */ 1297 if (sched_numa_topology_type == NUMA_BACKPLANE && 1298 dist > maxdist) 1299 continue; 1300 1301 /* Add up the faults from nearby nodes. */ 1302 if (task) 1303 faults = task_faults(p, node); 1304 else 1305 faults = group_faults(p, node); 1306 1307 /* 1308 * On systems with a glueless mesh NUMA topology, there are 1309 * no fixed "groups of nodes". Instead, nodes that are not 1310 * directly connected bounce traffic through intermediate 1311 * nodes; a numa_group can occupy any set of nodes. 1312 * The further away a node is, the less the faults count. 1313 * This seems to result in good task placement. 1314 */ 1315 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) { 1316 faults *= (sched_max_numa_distance - dist); 1317 faults /= (sched_max_numa_distance - LOCAL_DISTANCE); 1318 } 1319 1320 score += faults; 1321 } 1322 1323 return score; 1324 } 1325 1326 /* 1327 * These return the fraction of accesses done by a particular task, or 1328 * task group, on a particular numa node. The group weight is given a 1329 * larger multiplier, in order to group tasks together that are almost 1330 * evenly spread out between numa nodes. 1331 */ 1332 static inline unsigned long task_weight(struct task_struct *p, int nid, 1333 int dist) 1334 { 1335 unsigned long faults, total_faults; 1336 1337 if (!p->numa_faults) 1338 return 0; 1339 1340 total_faults = p->total_numa_faults; 1341 1342 if (!total_faults) 1343 return 0; 1344 1345 faults = task_faults(p, nid); 1346 faults += score_nearby_nodes(p, nid, dist, true); 1347 1348 return 1000 * faults / total_faults; 1349 } 1350 1351 static inline unsigned long group_weight(struct task_struct *p, int nid, 1352 int dist) 1353 { 1354 unsigned long faults, total_faults; 1355 1356 if (!p->numa_group) 1357 return 0; 1358 1359 total_faults = p->numa_group->total_faults; 1360 1361 if (!total_faults) 1362 return 0; 1363 1364 faults = group_faults(p, nid); 1365 faults += score_nearby_nodes(p, nid, dist, false); 1366 1367 return 1000 * faults / total_faults; 1368 } 1369 1370 bool should_numa_migrate_memory(struct task_struct *p, struct page * page, 1371 int src_nid, int dst_cpu) 1372 { 1373 struct numa_group *ng = p->numa_group; 1374 int dst_nid = cpu_to_node(dst_cpu); 1375 int last_cpupid, this_cpupid; 1376 1377 this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid); 1378 1379 /* 1380 * Multi-stage node selection is used in conjunction with a periodic 1381 * migration fault to build a temporal task<->page relation. By using 1382 * a two-stage filter we remove short/unlikely relations. 1383 * 1384 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate 1385 * a task's usage of a particular page (n_p) per total usage of this 1386 * page (n_t) (in a given time-span) to a probability. 1387 * 1388 * Our periodic faults will sample this probability and getting the 1389 * same result twice in a row, given these samples are fully 1390 * independent, is then given by P(n)^2, provided our sample period 1391 * is sufficiently short compared to the usage pattern. 1392 * 1393 * This quadric squishes small probabilities, making it less likely we 1394 * act on an unlikely task<->page relation. 1395 */ 1396 last_cpupid = page_cpupid_xchg_last(page, this_cpupid); 1397 if (!cpupid_pid_unset(last_cpupid) && 1398 cpupid_to_nid(last_cpupid) != dst_nid) 1399 return false; 1400 1401 /* Always allow migrate on private faults */ 1402 if (cpupid_match_pid(p, last_cpupid)) 1403 return true; 1404 1405 /* A shared fault, but p->numa_group has not been set up yet. */ 1406 if (!ng) 1407 return true; 1408 1409 /* 1410 * Destination node is much more heavily used than the source 1411 * node? Allow migration. 1412 */ 1413 if (group_faults_cpu(ng, dst_nid) > group_faults_cpu(ng, src_nid) * 1414 ACTIVE_NODE_FRACTION) 1415 return true; 1416 1417 /* 1418 * Distribute memory according to CPU & memory use on each node, 1419 * with 3/4 hysteresis to avoid unnecessary memory migrations: 1420 * 1421 * faults_cpu(dst) 3 faults_cpu(src) 1422 * --------------- * - > --------------- 1423 * faults_mem(dst) 4 faults_mem(src) 1424 */ 1425 return group_faults_cpu(ng, dst_nid) * group_faults(p, src_nid) * 3 > 1426 group_faults_cpu(ng, src_nid) * group_faults(p, dst_nid) * 4; 1427 } 1428 1429 static unsigned long weighted_cpuload(struct rq *rq); 1430 static unsigned long source_load(int cpu, int type); 1431 static unsigned long target_load(int cpu, int type); 1432 static unsigned long capacity_of(int cpu); 1433 1434 /* Cached statistics for all CPUs within a node */ 1435 struct numa_stats { 1436 unsigned long nr_running; 1437 unsigned long load; 1438 1439 /* Total compute capacity of CPUs on a node */ 1440 unsigned long compute_capacity; 1441 1442 /* Approximate capacity in terms of runnable tasks on a node */ 1443 unsigned long task_capacity; 1444 int has_free_capacity; 1445 }; 1446 1447 /* 1448 * XXX borrowed from update_sg_lb_stats 1449 */ 1450 static void update_numa_stats(struct numa_stats *ns, int nid) 1451 { 1452 int smt, cpu, cpus = 0; 1453 unsigned long capacity; 1454 1455 memset(ns, 0, sizeof(*ns)); 1456 for_each_cpu(cpu, cpumask_of_node(nid)) { 1457 struct rq *rq = cpu_rq(cpu); 1458 1459 ns->nr_running += rq->nr_running; 1460 ns->load += weighted_cpuload(rq); 1461 ns->compute_capacity += capacity_of(cpu); 1462 1463 cpus++; 1464 } 1465 1466 /* 1467 * If we raced with hotplug and there are no CPUs left in our mask 1468 * the @ns structure is NULL'ed and task_numa_compare() will 1469 * not find this node attractive. 1470 * 1471 * We'll either bail at !has_free_capacity, or we'll detect a huge 1472 * imbalance and bail there. 1473 */ 1474 if (!cpus) 1475 return; 1476 1477 /* smt := ceil(cpus / capacity), assumes: 1 < smt_power < 2 */ 1478 smt = DIV_ROUND_UP(SCHED_CAPACITY_SCALE * cpus, ns->compute_capacity); 1479 capacity = cpus / smt; /* cores */ 1480 1481 ns->task_capacity = min_t(unsigned, capacity, 1482 DIV_ROUND_CLOSEST(ns->compute_capacity, SCHED_CAPACITY_SCALE)); 1483 ns->has_free_capacity = (ns->nr_running < ns->task_capacity); 1484 } 1485 1486 struct task_numa_env { 1487 struct task_struct *p; 1488 1489 int src_cpu, src_nid; 1490 int dst_cpu, dst_nid; 1491 1492 struct numa_stats src_stats, dst_stats; 1493 1494 int imbalance_pct; 1495 int dist; 1496 1497 struct task_struct *best_task; 1498 long best_imp; 1499 int best_cpu; 1500 }; 1501 1502 static void task_numa_assign(struct task_numa_env *env, 1503 struct task_struct *p, long imp) 1504 { 1505 if (env->best_task) 1506 put_task_struct(env->best_task); 1507 if (p) 1508 get_task_struct(p); 1509 1510 env->best_task = p; 1511 env->best_imp = imp; 1512 env->best_cpu = env->dst_cpu; 1513 } 1514 1515 static bool load_too_imbalanced(long src_load, long dst_load, 1516 struct task_numa_env *env) 1517 { 1518 long imb, old_imb; 1519 long orig_src_load, orig_dst_load; 1520 long src_capacity, dst_capacity; 1521 1522 /* 1523 * The load is corrected for the CPU capacity available on each node. 1524 * 1525 * src_load dst_load 1526 * ------------ vs --------- 1527 * src_capacity dst_capacity 1528 */ 1529 src_capacity = env->src_stats.compute_capacity; 1530 dst_capacity = env->dst_stats.compute_capacity; 1531 1532 /* We care about the slope of the imbalance, not the direction. */ 1533 if (dst_load < src_load) 1534 swap(dst_load, src_load); 1535 1536 /* Is the difference below the threshold? */ 1537 imb = dst_load * src_capacity * 100 - 1538 src_load * dst_capacity * env->imbalance_pct; 1539 if (imb <= 0) 1540 return false; 1541 1542 /* 1543 * The imbalance is above the allowed threshold. 1544 * Compare it with the old imbalance. 1545 */ 1546 orig_src_load = env->src_stats.load; 1547 orig_dst_load = env->dst_stats.load; 1548 1549 if (orig_dst_load < orig_src_load) 1550 swap(orig_dst_load, orig_src_load); 1551 1552 old_imb = orig_dst_load * src_capacity * 100 - 1553 orig_src_load * dst_capacity * env->imbalance_pct; 1554 1555 /* Would this change make things worse? */ 1556 return (imb > old_imb); 1557 } 1558 1559 /* 1560 * This checks if the overall compute and NUMA accesses of the system would 1561 * be improved if the source tasks was migrated to the target dst_cpu taking 1562 * into account that it might be best if task running on the dst_cpu should 1563 * be exchanged with the source task 1564 */ 1565 static void task_numa_compare(struct task_numa_env *env, 1566 long taskimp, long groupimp) 1567 { 1568 struct rq *src_rq = cpu_rq(env->src_cpu); 1569 struct rq *dst_rq = cpu_rq(env->dst_cpu); 1570 struct task_struct *cur; 1571 long src_load, dst_load; 1572 long load; 1573 long imp = env->p->numa_group ? groupimp : taskimp; 1574 long moveimp = imp; 1575 int dist = env->dist; 1576 1577 rcu_read_lock(); 1578 cur = task_rcu_dereference(&dst_rq->curr); 1579 if (cur && ((cur->flags & PF_EXITING) || is_idle_task(cur))) 1580 cur = NULL; 1581 1582 /* 1583 * Because we have preemption enabled we can get migrated around and 1584 * end try selecting ourselves (current == env->p) as a swap candidate. 1585 */ 1586 if (cur == env->p) 1587 goto unlock; 1588 1589 /* 1590 * "imp" is the fault differential for the source task between the 1591 * source and destination node. Calculate the total differential for 1592 * the source task and potential destination task. The more negative 1593 * the value is, the more rmeote accesses that would be expected to 1594 * be incurred if the tasks were swapped. 1595 */ 1596 if (cur) { 1597 /* Skip this swap candidate if cannot move to the source cpu */ 1598 if (!cpumask_test_cpu(env->src_cpu, &cur->cpus_allowed)) 1599 goto unlock; 1600 1601 /* 1602 * If dst and source tasks are in the same NUMA group, or not 1603 * in any group then look only at task weights. 1604 */ 1605 if (cur->numa_group == env->p->numa_group) { 1606 imp = taskimp + task_weight(cur, env->src_nid, dist) - 1607 task_weight(cur, env->dst_nid, dist); 1608 /* 1609 * Add some hysteresis to prevent swapping the 1610 * tasks within a group over tiny differences. 1611 */ 1612 if (cur->numa_group) 1613 imp -= imp/16; 1614 } else { 1615 /* 1616 * Compare the group weights. If a task is all by 1617 * itself (not part of a group), use the task weight 1618 * instead. 1619 */ 1620 if (cur->numa_group) 1621 imp += group_weight(cur, env->src_nid, dist) - 1622 group_weight(cur, env->dst_nid, dist); 1623 else 1624 imp += task_weight(cur, env->src_nid, dist) - 1625 task_weight(cur, env->dst_nid, dist); 1626 } 1627 } 1628 1629 if (imp <= env->best_imp && moveimp <= env->best_imp) 1630 goto unlock; 1631 1632 if (!cur) { 1633 /* Is there capacity at our destination? */ 1634 if (env->src_stats.nr_running <= env->src_stats.task_capacity && 1635 !env->dst_stats.has_free_capacity) 1636 goto unlock; 1637 1638 goto balance; 1639 } 1640 1641 /* Balance doesn't matter much if we're running a task per cpu */ 1642 if (imp > env->best_imp && src_rq->nr_running == 1 && 1643 dst_rq->nr_running == 1) 1644 goto assign; 1645 1646 /* 1647 * In the overloaded case, try and keep the load balanced. 1648 */ 1649 balance: 1650 load = task_h_load(env->p); 1651 dst_load = env->dst_stats.load + load; 1652 src_load = env->src_stats.load - load; 1653 1654 if (moveimp > imp && moveimp > env->best_imp) { 1655 /* 1656 * If the improvement from just moving env->p direction is 1657 * better than swapping tasks around, check if a move is 1658 * possible. Store a slightly smaller score than moveimp, 1659 * so an actually idle CPU will win. 1660 */ 1661 if (!load_too_imbalanced(src_load, dst_load, env)) { 1662 imp = moveimp - 1; 1663 cur = NULL; 1664 goto assign; 1665 } 1666 } 1667 1668 if (imp <= env->best_imp) 1669 goto unlock; 1670 1671 if (cur) { 1672 load = task_h_load(cur); 1673 dst_load -= load; 1674 src_load += load; 1675 } 1676 1677 if (load_too_imbalanced(src_load, dst_load, env)) 1678 goto unlock; 1679 1680 /* 1681 * One idle CPU per node is evaluated for a task numa move. 1682 * Call select_idle_sibling to maybe find a better one. 1683 */ 1684 if (!cur) { 1685 /* 1686 * select_idle_siblings() uses an per-cpu cpumask that 1687 * can be used from IRQ context. 1688 */ 1689 local_irq_disable(); 1690 env->dst_cpu = select_idle_sibling(env->p, env->src_cpu, 1691 env->dst_cpu); 1692 local_irq_enable(); 1693 } 1694 1695 assign: 1696 task_numa_assign(env, cur, imp); 1697 unlock: 1698 rcu_read_unlock(); 1699 } 1700 1701 static void task_numa_find_cpu(struct task_numa_env *env, 1702 long taskimp, long groupimp) 1703 { 1704 int cpu; 1705 1706 for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) { 1707 /* Skip this CPU if the source task cannot migrate */ 1708 if (!cpumask_test_cpu(cpu, &env->p->cpus_allowed)) 1709 continue; 1710 1711 env->dst_cpu = cpu; 1712 task_numa_compare(env, taskimp, groupimp); 1713 } 1714 } 1715 1716 /* Only move tasks to a NUMA node less busy than the current node. */ 1717 static bool numa_has_capacity(struct task_numa_env *env) 1718 { 1719 struct numa_stats *src = &env->src_stats; 1720 struct numa_stats *dst = &env->dst_stats; 1721 1722 if (src->has_free_capacity && !dst->has_free_capacity) 1723 return false; 1724 1725 /* 1726 * Only consider a task move if the source has a higher load 1727 * than the destination, corrected for CPU capacity on each node. 1728 * 1729 * src->load dst->load 1730 * --------------------- vs --------------------- 1731 * src->compute_capacity dst->compute_capacity 1732 */ 1733 if (src->load * dst->compute_capacity * env->imbalance_pct > 1734 1735 dst->load * src->compute_capacity * 100) 1736 return true; 1737 1738 return false; 1739 } 1740 1741 static int task_numa_migrate(struct task_struct *p) 1742 { 1743 struct task_numa_env env = { 1744 .p = p, 1745 1746 .src_cpu = task_cpu(p), 1747 .src_nid = task_node(p), 1748 1749 .imbalance_pct = 112, 1750 1751 .best_task = NULL, 1752 .best_imp = 0, 1753 .best_cpu = -1, 1754 }; 1755 struct sched_domain *sd; 1756 unsigned long taskweight, groupweight; 1757 int nid, ret, dist; 1758 long taskimp, groupimp; 1759 1760 /* 1761 * Pick the lowest SD_NUMA domain, as that would have the smallest 1762 * imbalance and would be the first to start moving tasks about. 1763 * 1764 * And we want to avoid any moving of tasks about, as that would create 1765 * random movement of tasks -- counter the numa conditions we're trying 1766 * to satisfy here. 1767 */ 1768 rcu_read_lock(); 1769 sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu)); 1770 if (sd) 1771 env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2; 1772 rcu_read_unlock(); 1773 1774 /* 1775 * Cpusets can break the scheduler domain tree into smaller 1776 * balance domains, some of which do not cross NUMA boundaries. 1777 * Tasks that are "trapped" in such domains cannot be migrated 1778 * elsewhere, so there is no point in (re)trying. 1779 */ 1780 if (unlikely(!sd)) { 1781 p->numa_preferred_nid = task_node(p); 1782 return -EINVAL; 1783 } 1784 1785 env.dst_nid = p->numa_preferred_nid; 1786 dist = env.dist = node_distance(env.src_nid, env.dst_nid); 1787 taskweight = task_weight(p, env.src_nid, dist); 1788 groupweight = group_weight(p, env.src_nid, dist); 1789 update_numa_stats(&env.src_stats, env.src_nid); 1790 taskimp = task_weight(p, env.dst_nid, dist) - taskweight; 1791 groupimp = group_weight(p, env.dst_nid, dist) - groupweight; 1792 update_numa_stats(&env.dst_stats, env.dst_nid); 1793 1794 /* Try to find a spot on the preferred nid. */ 1795 if (numa_has_capacity(&env)) 1796 task_numa_find_cpu(&env, taskimp, groupimp); 1797 1798 /* 1799 * Look at other nodes in these cases: 1800 * - there is no space available on the preferred_nid 1801 * - the task is part of a numa_group that is interleaved across 1802 * multiple NUMA nodes; in order to better consolidate the group, 1803 * we need to check other locations. 1804 */ 1805 if (env.best_cpu == -1 || (p->numa_group && p->numa_group->active_nodes > 1)) { 1806 for_each_online_node(nid) { 1807 if (nid == env.src_nid || nid == p->numa_preferred_nid) 1808 continue; 1809 1810 dist = node_distance(env.src_nid, env.dst_nid); 1811 if (sched_numa_topology_type == NUMA_BACKPLANE && 1812 dist != env.dist) { 1813 taskweight = task_weight(p, env.src_nid, dist); 1814 groupweight = group_weight(p, env.src_nid, dist); 1815 } 1816 1817 /* Only consider nodes where both task and groups benefit */ 1818 taskimp = task_weight(p, nid, dist) - taskweight; 1819 groupimp = group_weight(p, nid, dist) - groupweight; 1820 if (taskimp < 0 && groupimp < 0) 1821 continue; 1822 1823 env.dist = dist; 1824 env.dst_nid = nid; 1825 update_numa_stats(&env.dst_stats, env.dst_nid); 1826 if (numa_has_capacity(&env)) 1827 task_numa_find_cpu(&env, taskimp, groupimp); 1828 } 1829 } 1830 1831 /* 1832 * If the task is part of a workload that spans multiple NUMA nodes, 1833 * and is migrating into one of the workload's active nodes, remember 1834 * this node as the task's preferred numa node, so the workload can 1835 * settle down. 1836 * A task that migrated to a second choice node will be better off 1837 * trying for a better one later. Do not set the preferred node here. 1838 */ 1839 if (p->numa_group) { 1840 struct numa_group *ng = p->numa_group; 1841 1842 if (env.best_cpu == -1) 1843 nid = env.src_nid; 1844 else 1845 nid = env.dst_nid; 1846 1847 if (ng->active_nodes > 1 && numa_is_active_node(env.dst_nid, ng)) 1848 sched_setnuma(p, env.dst_nid); 1849 } 1850 1851 /* No better CPU than the current one was found. */ 1852 if (env.best_cpu == -1) 1853 return -EAGAIN; 1854 1855 /* 1856 * Reset the scan period if the task is being rescheduled on an 1857 * alternative node to recheck if the tasks is now properly placed. 1858 */ 1859 p->numa_scan_period = task_scan_start(p); 1860 1861 if (env.best_task == NULL) { 1862 ret = migrate_task_to(p, env.best_cpu); 1863 if (ret != 0) 1864 trace_sched_stick_numa(p, env.src_cpu, env.best_cpu); 1865 return ret; 1866 } 1867 1868 ret = migrate_swap(p, env.best_task); 1869 if (ret != 0) 1870 trace_sched_stick_numa(p, env.src_cpu, task_cpu(env.best_task)); 1871 put_task_struct(env.best_task); 1872 return ret; 1873 } 1874 1875 /* Attempt to migrate a task to a CPU on the preferred node. */ 1876 static void numa_migrate_preferred(struct task_struct *p) 1877 { 1878 unsigned long interval = HZ; 1879 1880 /* This task has no NUMA fault statistics yet */ 1881 if (unlikely(p->numa_preferred_nid == -1 || !p->numa_faults)) 1882 return; 1883 1884 /* Periodically retry migrating the task to the preferred node */ 1885 interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16); 1886 p->numa_migrate_retry = jiffies + interval; 1887 1888 /* Success if task is already running on preferred CPU */ 1889 if (task_node(p) == p->numa_preferred_nid) 1890 return; 1891 1892 /* Otherwise, try migrate to a CPU on the preferred node */ 1893 task_numa_migrate(p); 1894 } 1895 1896 /* 1897 * Find out how many nodes on the workload is actively running on. Do this by 1898 * tracking the nodes from which NUMA hinting faults are triggered. This can 1899 * be different from the set of nodes where the workload's memory is currently 1900 * located. 1901 */ 1902 static void numa_group_count_active_nodes(struct numa_group *numa_group) 1903 { 1904 unsigned long faults, max_faults = 0; 1905 int nid, active_nodes = 0; 1906 1907 for_each_online_node(nid) { 1908 faults = group_faults_cpu(numa_group, nid); 1909 if (faults > max_faults) 1910 max_faults = faults; 1911 } 1912 1913 for_each_online_node(nid) { 1914 faults = group_faults_cpu(numa_group, nid); 1915 if (faults * ACTIVE_NODE_FRACTION > max_faults) 1916 active_nodes++; 1917 } 1918 1919 numa_group->max_faults_cpu = max_faults; 1920 numa_group->active_nodes = active_nodes; 1921 } 1922 1923 /* 1924 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS 1925 * increments. The more local the fault statistics are, the higher the scan 1926 * period will be for the next scan window. If local/(local+remote) ratio is 1927 * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS) 1928 * the scan period will decrease. Aim for 70% local accesses. 1929 */ 1930 #define NUMA_PERIOD_SLOTS 10 1931 #define NUMA_PERIOD_THRESHOLD 7 1932 1933 /* 1934 * Increase the scan period (slow down scanning) if the majority of 1935 * our memory is already on our local node, or if the majority of 1936 * the page accesses are shared with other processes. 1937 * Otherwise, decrease the scan period. 1938 */ 1939 static void update_task_scan_period(struct task_struct *p, 1940 unsigned long shared, unsigned long private) 1941 { 1942 unsigned int period_slot; 1943 int lr_ratio, ps_ratio; 1944 int diff; 1945 1946 unsigned long remote = p->numa_faults_locality[0]; 1947 unsigned long local = p->numa_faults_locality[1]; 1948 1949 /* 1950 * If there were no record hinting faults then either the task is 1951 * completely idle or all activity is areas that are not of interest 1952 * to automatic numa balancing. Related to that, if there were failed 1953 * migration then it implies we are migrating too quickly or the local 1954 * node is overloaded. In either case, scan slower 1955 */ 1956 if (local + shared == 0 || p->numa_faults_locality[2]) { 1957 p->numa_scan_period = min(p->numa_scan_period_max, 1958 p->numa_scan_period << 1); 1959 1960 p->mm->numa_next_scan = jiffies + 1961 msecs_to_jiffies(p->numa_scan_period); 1962 1963 return; 1964 } 1965 1966 /* 1967 * Prepare to scale scan period relative to the current period. 1968 * == NUMA_PERIOD_THRESHOLD scan period stays the same 1969 * < NUMA_PERIOD_THRESHOLD scan period decreases (scan faster) 1970 * >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower) 1971 */ 1972 period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS); 1973 lr_ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote); 1974 ps_ratio = (private * NUMA_PERIOD_SLOTS) / (private + shared); 1975 1976 if (ps_ratio >= NUMA_PERIOD_THRESHOLD) { 1977 /* 1978 * Most memory accesses are local. There is no need to 1979 * do fast NUMA scanning, since memory is already local. 1980 */ 1981 int slot = ps_ratio - NUMA_PERIOD_THRESHOLD; 1982 if (!slot) 1983 slot = 1; 1984 diff = slot * period_slot; 1985 } else if (lr_ratio >= NUMA_PERIOD_THRESHOLD) { 1986 /* 1987 * Most memory accesses are shared with other tasks. 1988 * There is no point in continuing fast NUMA scanning, 1989 * since other tasks may just move the memory elsewhere. 1990 */ 1991 int slot = lr_ratio - NUMA_PERIOD_THRESHOLD; 1992 if (!slot) 1993 slot = 1; 1994 diff = slot * period_slot; 1995 } else { 1996 /* 1997 * Private memory faults exceed (SLOTS-THRESHOLD)/SLOTS, 1998 * yet they are not on the local NUMA node. Speed up 1999 * NUMA scanning to get the memory moved over. 2000 */ 2001 int ratio = max(lr_ratio, ps_ratio); 2002 diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot; 2003 } 2004 2005 p->numa_scan_period = clamp(p->numa_scan_period + diff, 2006 task_scan_min(p), task_scan_max(p)); 2007 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality)); 2008 } 2009 2010 /* 2011 * Get the fraction of time the task has been running since the last 2012 * NUMA placement cycle. The scheduler keeps similar statistics, but 2013 * decays those on a 32ms period, which is orders of magnitude off 2014 * from the dozens-of-seconds NUMA balancing period. Use the scheduler 2015 * stats only if the task is so new there are no NUMA statistics yet. 2016 */ 2017 static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period) 2018 { 2019 u64 runtime, delta, now; 2020 /* Use the start of this time slice to avoid calculations. */ 2021 now = p->se.exec_start; 2022 runtime = p->se.sum_exec_runtime; 2023 2024 if (p->last_task_numa_placement) { 2025 delta = runtime - p->last_sum_exec_runtime; 2026 *period = now - p->last_task_numa_placement; 2027 } else { 2028 delta = p->se.avg.load_sum / p->se.load.weight; 2029 *period = LOAD_AVG_MAX; 2030 } 2031 2032 p->last_sum_exec_runtime = runtime; 2033 p->last_task_numa_placement = now; 2034 2035 return delta; 2036 } 2037 2038 /* 2039 * Determine the preferred nid for a task in a numa_group. This needs to 2040 * be done in a way that produces consistent results with group_weight, 2041 * otherwise workloads might not converge. 2042 */ 2043 static int preferred_group_nid(struct task_struct *p, int nid) 2044 { 2045 nodemask_t nodes; 2046 int dist; 2047 2048 /* Direct connections between all NUMA nodes. */ 2049 if (sched_numa_topology_type == NUMA_DIRECT) 2050 return nid; 2051 2052 /* 2053 * On a system with glueless mesh NUMA topology, group_weight 2054 * scores nodes according to the number of NUMA hinting faults on 2055 * both the node itself, and on nearby nodes. 2056 */ 2057 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) { 2058 unsigned long score, max_score = 0; 2059 int node, max_node = nid; 2060 2061 dist = sched_max_numa_distance; 2062 2063 for_each_online_node(node) { 2064 score = group_weight(p, node, dist); 2065 if (score > max_score) { 2066 max_score = score; 2067 max_node = node; 2068 } 2069 } 2070 return max_node; 2071 } 2072 2073 /* 2074 * Finding the preferred nid in a system with NUMA backplane 2075 * interconnect topology is more involved. The goal is to locate 2076 * tasks from numa_groups near each other in the system, and 2077 * untangle workloads from different sides of the system. This requires 2078 * searching down the hierarchy of node groups, recursively searching 2079 * inside the highest scoring group of nodes. The nodemask tricks 2080 * keep the complexity of the search down. 2081 */ 2082 nodes = node_online_map; 2083 for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) { 2084 unsigned long max_faults = 0; 2085 nodemask_t max_group = NODE_MASK_NONE; 2086 int a, b; 2087 2088 /* Are there nodes at this distance from each other? */ 2089 if (!find_numa_distance(dist)) 2090 continue; 2091 2092 for_each_node_mask(a, nodes) { 2093 unsigned long faults = 0; 2094 nodemask_t this_group; 2095 nodes_clear(this_group); 2096 2097 /* Sum group's NUMA faults; includes a==b case. */ 2098 for_each_node_mask(b, nodes) { 2099 if (node_distance(a, b) < dist) { 2100 faults += group_faults(p, b); 2101 node_set(b, this_group); 2102 node_clear(b, nodes); 2103 } 2104 } 2105 2106 /* Remember the top group. */ 2107 if (faults > max_faults) { 2108 max_faults = faults; 2109 max_group = this_group; 2110 /* 2111 * subtle: at the smallest distance there is 2112 * just one node left in each "group", the 2113 * winner is the preferred nid. 2114 */ 2115 nid = a; 2116 } 2117 } 2118 /* Next round, evaluate the nodes within max_group. */ 2119 if (!max_faults) 2120 break; 2121 nodes = max_group; 2122 } 2123 return nid; 2124 } 2125 2126 static void task_numa_placement(struct task_struct *p) 2127 { 2128 int seq, nid, max_nid = -1, max_group_nid = -1; 2129 unsigned long max_faults = 0, max_group_faults = 0; 2130 unsigned long fault_types[2] = { 0, 0 }; 2131 unsigned long total_faults; 2132 u64 runtime, period; 2133 spinlock_t *group_lock = NULL; 2134 2135 /* 2136 * The p->mm->numa_scan_seq field gets updated without 2137 * exclusive access. Use READ_ONCE() here to ensure 2138 * that the field is read in a single access: 2139 */ 2140 seq = READ_ONCE(p->mm->numa_scan_seq); 2141 if (p->numa_scan_seq == seq) 2142 return; 2143 p->numa_scan_seq = seq; 2144 p->numa_scan_period_max = task_scan_max(p); 2145 2146 total_faults = p->numa_faults_locality[0] + 2147 p->numa_faults_locality[1]; 2148 runtime = numa_get_avg_runtime(p, &period); 2149 2150 /* If the task is part of a group prevent parallel updates to group stats */ 2151 if (p->numa_group) { 2152 group_lock = &p->numa_group->lock; 2153 spin_lock_irq(group_lock); 2154 } 2155 2156 /* Find the node with the highest number of faults */ 2157 for_each_online_node(nid) { 2158 /* Keep track of the offsets in numa_faults array */ 2159 int mem_idx, membuf_idx, cpu_idx, cpubuf_idx; 2160 unsigned long faults = 0, group_faults = 0; 2161 int priv; 2162 2163 for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) { 2164 long diff, f_diff, f_weight; 2165 2166 mem_idx = task_faults_idx(NUMA_MEM, nid, priv); 2167 membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv); 2168 cpu_idx = task_faults_idx(NUMA_CPU, nid, priv); 2169 cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv); 2170 2171 /* Decay existing window, copy faults since last scan */ 2172 diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2; 2173 fault_types[priv] += p->numa_faults[membuf_idx]; 2174 p->numa_faults[membuf_idx] = 0; 2175 2176 /* 2177 * Normalize the faults_from, so all tasks in a group 2178 * count according to CPU use, instead of by the raw 2179 * number of faults. Tasks with little runtime have 2180 * little over-all impact on throughput, and thus their 2181 * faults are less important. 2182 */ 2183 f_weight = div64_u64(runtime << 16, period + 1); 2184 f_weight = (f_weight * p->numa_faults[cpubuf_idx]) / 2185 (total_faults + 1); 2186 f_diff = f_weight - p->numa_faults[cpu_idx] / 2; 2187 p->numa_faults[cpubuf_idx] = 0; 2188 2189 p->numa_faults[mem_idx] += diff; 2190 p->numa_faults[cpu_idx] += f_diff; 2191 faults += p->numa_faults[mem_idx]; 2192 p->total_numa_faults += diff; 2193 if (p->numa_group) { 2194 /* 2195 * safe because we can only change our own group 2196 * 2197 * mem_idx represents the offset for a given 2198 * nid and priv in a specific region because it 2199 * is at the beginning of the numa_faults array. 2200 */ 2201 p->numa_group->faults[mem_idx] += diff; 2202 p->numa_group->faults_cpu[mem_idx] += f_diff; 2203 p->numa_group->total_faults += diff; 2204 group_faults += p->numa_group->faults[mem_idx]; 2205 } 2206 } 2207 2208 if (faults > max_faults) { 2209 max_faults = faults; 2210 max_nid = nid; 2211 } 2212 2213 if (group_faults > max_group_faults) { 2214 max_group_faults = group_faults; 2215 max_group_nid = nid; 2216 } 2217 } 2218 2219 update_task_scan_period(p, fault_types[0], fault_types[1]); 2220 2221 if (p->numa_group) { 2222 numa_group_count_active_nodes(p->numa_group); 2223 spin_unlock_irq(group_lock); 2224 max_nid = preferred_group_nid(p, max_group_nid); 2225 } 2226 2227 if (max_faults) { 2228 /* Set the new preferred node */ 2229 if (max_nid != p->numa_preferred_nid) 2230 sched_setnuma(p, max_nid); 2231 2232 if (task_node(p) != p->numa_preferred_nid) 2233 numa_migrate_preferred(p); 2234 } 2235 } 2236 2237 static inline int get_numa_group(struct numa_group *grp) 2238 { 2239 return atomic_inc_not_zero(&grp->refcount); 2240 } 2241 2242 static inline void put_numa_group(struct numa_group *grp) 2243 { 2244 if (atomic_dec_and_test(&grp->refcount)) 2245 kfree_rcu(grp, rcu); 2246 } 2247 2248 static void task_numa_group(struct task_struct *p, int cpupid, int flags, 2249 int *priv) 2250 { 2251 struct numa_group *grp, *my_grp; 2252 struct task_struct *tsk; 2253 bool join = false; 2254 int cpu = cpupid_to_cpu(cpupid); 2255 int i; 2256 2257 if (unlikely(!p->numa_group)) { 2258 unsigned int size = sizeof(struct numa_group) + 2259 4*nr_node_ids*sizeof(unsigned long); 2260 2261 grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN); 2262 if (!grp) 2263 return; 2264 2265 atomic_set(&grp->refcount, 1); 2266 grp->active_nodes = 1; 2267 grp->max_faults_cpu = 0; 2268 spin_lock_init(&grp->lock); 2269 grp->gid = p->pid; 2270 /* Second half of the array tracks nids where faults happen */ 2271 grp->faults_cpu = grp->faults + NR_NUMA_HINT_FAULT_TYPES * 2272 nr_node_ids; 2273 2274 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) 2275 grp->faults[i] = p->numa_faults[i]; 2276 2277 grp->total_faults = p->total_numa_faults; 2278 2279 grp->nr_tasks++; 2280 rcu_assign_pointer(p->numa_group, grp); 2281 } 2282 2283 rcu_read_lock(); 2284 tsk = READ_ONCE(cpu_rq(cpu)->curr); 2285 2286 if (!cpupid_match_pid(tsk, cpupid)) 2287 goto no_join; 2288 2289 grp = rcu_dereference(tsk->numa_group); 2290 if (!grp) 2291 goto no_join; 2292 2293 my_grp = p->numa_group; 2294 if (grp == my_grp) 2295 goto no_join; 2296 2297 /* 2298 * Only join the other group if its bigger; if we're the bigger group, 2299 * the other task will join us. 2300 */ 2301 if (my_grp->nr_tasks > grp->nr_tasks) 2302 goto no_join; 2303 2304 /* 2305 * Tie-break on the grp address. 2306 */ 2307 if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp) 2308 goto no_join; 2309 2310 /* Always join threads in the same process. */ 2311 if (tsk->mm == current->mm) 2312 join = true; 2313 2314 /* Simple filter to avoid false positives due to PID collisions */ 2315 if (flags & TNF_SHARED) 2316 join = true; 2317 2318 /* Update priv based on whether false sharing was detected */ 2319 *priv = !join; 2320 2321 if (join && !get_numa_group(grp)) 2322 goto no_join; 2323 2324 rcu_read_unlock(); 2325 2326 if (!join) 2327 return; 2328 2329 BUG_ON(irqs_disabled()); 2330 double_lock_irq(&my_grp->lock, &grp->lock); 2331 2332 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) { 2333 my_grp->faults[i] -= p->numa_faults[i]; 2334 grp->faults[i] += p->numa_faults[i]; 2335 } 2336 my_grp->total_faults -= p->total_numa_faults; 2337 grp->total_faults += p->total_numa_faults; 2338 2339 my_grp->nr_tasks--; 2340 grp->nr_tasks++; 2341 2342 spin_unlock(&my_grp->lock); 2343 spin_unlock_irq(&grp->lock); 2344 2345 rcu_assign_pointer(p->numa_group, grp); 2346 2347 put_numa_group(my_grp); 2348 return; 2349 2350 no_join: 2351 rcu_read_unlock(); 2352 return; 2353 } 2354 2355 void task_numa_free(struct task_struct *p) 2356 { 2357 struct numa_group *grp = p->numa_group; 2358 void *numa_faults = p->numa_faults; 2359 unsigned long flags; 2360 int i; 2361 2362 if (grp) { 2363 spin_lock_irqsave(&grp->lock, flags); 2364 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) 2365 grp->faults[i] -= p->numa_faults[i]; 2366 grp->total_faults -= p->total_numa_faults; 2367 2368 grp->nr_tasks--; 2369 spin_unlock_irqrestore(&grp->lock, flags); 2370 RCU_INIT_POINTER(p->numa_group, NULL); 2371 put_numa_group(grp); 2372 } 2373 2374 p->numa_faults = NULL; 2375 kfree(numa_faults); 2376 } 2377 2378 /* 2379 * Got a PROT_NONE fault for a page on @node. 2380 */ 2381 void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags) 2382 { 2383 struct task_struct *p = current; 2384 bool migrated = flags & TNF_MIGRATED; 2385 int cpu_node = task_node(current); 2386 int local = !!(flags & TNF_FAULT_LOCAL); 2387 struct numa_group *ng; 2388 int priv; 2389 2390 if (!static_branch_likely(&sched_numa_balancing)) 2391 return; 2392 2393 /* for example, ksmd faulting in a user's mm */ 2394 if (!p->mm) 2395 return; 2396 2397 /* Allocate buffer to track faults on a per-node basis */ 2398 if (unlikely(!p->numa_faults)) { 2399 int size = sizeof(*p->numa_faults) * 2400 NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids; 2401 2402 p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN); 2403 if (!p->numa_faults) 2404 return; 2405 2406 p->total_numa_faults = 0; 2407 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality)); 2408 } 2409 2410 /* 2411 * First accesses are treated as private, otherwise consider accesses 2412 * to be private if the accessing pid has not changed 2413 */ 2414 if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) { 2415 priv = 1; 2416 } else { 2417 priv = cpupid_match_pid(p, last_cpupid); 2418 if (!priv && !(flags & TNF_NO_GROUP)) 2419 task_numa_group(p, last_cpupid, flags, &priv); 2420 } 2421 2422 /* 2423 * If a workload spans multiple NUMA nodes, a shared fault that 2424 * occurs wholly within the set of nodes that the workload is 2425 * actively using should be counted as local. This allows the 2426 * scan rate to slow down when a workload has settled down. 2427 */ 2428 ng = p->numa_group; 2429 if (!priv && !local && ng && ng->active_nodes > 1 && 2430 numa_is_active_node(cpu_node, ng) && 2431 numa_is_active_node(mem_node, ng)) 2432 local = 1; 2433 2434 task_numa_placement(p); 2435 2436 /* 2437 * Retry task to preferred node migration periodically, in case it 2438 * case it previously failed, or the scheduler moved us. 2439 */ 2440 if (time_after(jiffies, p->numa_migrate_retry)) 2441 numa_migrate_preferred(p); 2442 2443 if (migrated) 2444 p->numa_pages_migrated += pages; 2445 if (flags & TNF_MIGRATE_FAIL) 2446 p->numa_faults_locality[2] += pages; 2447 2448 p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages; 2449 p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages; 2450 p->numa_faults_locality[local] += pages; 2451 } 2452 2453 static void reset_ptenuma_scan(struct task_struct *p) 2454 { 2455 /* 2456 * We only did a read acquisition of the mmap sem, so 2457 * p->mm->numa_scan_seq is written to without exclusive access 2458 * and the update is not guaranteed to be atomic. That's not 2459 * much of an issue though, since this is just used for 2460 * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not 2461 * expensive, to avoid any form of compiler optimizations: 2462 */ 2463 WRITE_ONCE(p->mm->numa_scan_seq, READ_ONCE(p->mm->numa_scan_seq) + 1); 2464 p->mm->numa_scan_offset = 0; 2465 } 2466 2467 /* 2468 * The expensive part of numa migration is done from task_work context. 2469 * Triggered from task_tick_numa(). 2470 */ 2471 void task_numa_work(struct callback_head *work) 2472 { 2473 unsigned long migrate, next_scan, now = jiffies; 2474 struct task_struct *p = current; 2475 struct mm_struct *mm = p->mm; 2476 u64 runtime = p->se.sum_exec_runtime; 2477 struct vm_area_struct *vma; 2478 unsigned long start, end; 2479 unsigned long nr_pte_updates = 0; 2480 long pages, virtpages; 2481 2482 SCHED_WARN_ON(p != container_of(work, struct task_struct, numa_work)); 2483 2484 work->next = work; /* protect against double add */ 2485 /* 2486 * Who cares about NUMA placement when they're dying. 2487 * 2488 * NOTE: make sure not to dereference p->mm before this check, 2489 * exit_task_work() happens _after_ exit_mm() so we could be called 2490 * without p->mm even though we still had it when we enqueued this 2491 * work. 2492 */ 2493 if (p->flags & PF_EXITING) 2494 return; 2495 2496 if (!mm->numa_next_scan) { 2497 mm->numa_next_scan = now + 2498 msecs_to_jiffies(sysctl_numa_balancing_scan_delay); 2499 } 2500 2501 /* 2502 * Enforce maximal scan/migration frequency.. 2503 */ 2504 migrate = mm->numa_next_scan; 2505 if (time_before(now, migrate)) 2506 return; 2507 2508 if (p->numa_scan_period == 0) { 2509 p->numa_scan_period_max = task_scan_max(p); 2510 p->numa_scan_period = task_scan_start(p); 2511 } 2512 2513 next_scan = now + msecs_to_jiffies(p->numa_scan_period); 2514 if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate) 2515 return; 2516 2517 /* 2518 * Delay this task enough that another task of this mm will likely win 2519 * the next time around. 2520 */ 2521 p->node_stamp += 2 * TICK_NSEC; 2522 2523 start = mm->numa_scan_offset; 2524 pages = sysctl_numa_balancing_scan_size; 2525 pages <<= 20 - PAGE_SHIFT; /* MB in pages */ 2526 virtpages = pages * 8; /* Scan up to this much virtual space */ 2527 if (!pages) 2528 return; 2529 2530 2531 if (!down_read_trylock(&mm->mmap_sem)) 2532 return; 2533 vma = find_vma(mm, start); 2534 if (!vma) { 2535 reset_ptenuma_scan(p); 2536 start = 0; 2537 vma = mm->mmap; 2538 } 2539 for (; vma; vma = vma->vm_next) { 2540 if (!vma_migratable(vma) || !vma_policy_mof(vma) || 2541 is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_MIXEDMAP)) { 2542 continue; 2543 } 2544 2545 /* 2546 * Shared library pages mapped by multiple processes are not 2547 * migrated as it is expected they are cache replicated. Avoid 2548 * hinting faults in read-only file-backed mappings or the vdso 2549 * as migrating the pages will be of marginal benefit. 2550 */ 2551 if (!vma->vm_mm || 2552 (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ))) 2553 continue; 2554 2555 /* 2556 * Skip inaccessible VMAs to avoid any confusion between 2557 * PROT_NONE and NUMA hinting ptes 2558 */ 2559 if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE))) 2560 continue; 2561 2562 do { 2563 start = max(start, vma->vm_start); 2564 end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE); 2565 end = min(end, vma->vm_end); 2566 nr_pte_updates = change_prot_numa(vma, start, end); 2567 2568 /* 2569 * Try to scan sysctl_numa_balancing_size worth of 2570 * hpages that have at least one present PTE that 2571 * is not already pte-numa. If the VMA contains 2572 * areas that are unused or already full of prot_numa 2573 * PTEs, scan up to virtpages, to skip through those 2574 * areas faster. 2575 */ 2576 if (nr_pte_updates) 2577 pages -= (end - start) >> PAGE_SHIFT; 2578 virtpages -= (end - start) >> PAGE_SHIFT; 2579 2580 start = end; 2581 if (pages <= 0 || virtpages <= 0) 2582 goto out; 2583 2584 cond_resched(); 2585 } while (end != vma->vm_end); 2586 } 2587 2588 out: 2589 /* 2590 * It is possible to reach the end of the VMA list but the last few 2591 * VMAs are not guaranteed to the vma_migratable. If they are not, we 2592 * would find the !migratable VMA on the next scan but not reset the 2593 * scanner to the start so check it now. 2594 */ 2595 if (vma) 2596 mm->numa_scan_offset = start; 2597 else 2598 reset_ptenuma_scan(p); 2599 up_read(&mm->mmap_sem); 2600 2601 /* 2602 * Make sure tasks use at least 32x as much time to run other code 2603 * than they used here, to limit NUMA PTE scanning overhead to 3% max. 2604 * Usually update_task_scan_period slows down scanning enough; on an 2605 * overloaded system we need to limit overhead on a per task basis. 2606 */ 2607 if (unlikely(p->se.sum_exec_runtime != runtime)) { 2608 u64 diff = p->se.sum_exec_runtime - runtime; 2609 p->node_stamp += 32 * diff; 2610 } 2611 } 2612 2613 /* 2614 * Drive the periodic memory faults.. 2615 */ 2616 void task_tick_numa(struct rq *rq, struct task_struct *curr) 2617 { 2618 struct callback_head *work = &curr->numa_work; 2619 u64 period, now; 2620 2621 /* 2622 * We don't care about NUMA placement if we don't have memory. 2623 */ 2624 if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work) 2625 return; 2626 2627 /* 2628 * Using runtime rather than walltime has the dual advantage that 2629 * we (mostly) drive the selection from busy threads and that the 2630 * task needs to have done some actual work before we bother with 2631 * NUMA placement. 2632 */ 2633 now = curr->se.sum_exec_runtime; 2634 period = (u64)curr->numa_scan_period * NSEC_PER_MSEC; 2635 2636 if (now > curr->node_stamp + period) { 2637 if (!curr->node_stamp) 2638 curr->numa_scan_period = task_scan_start(curr); 2639 curr->node_stamp += period; 2640 2641 if (!time_before(jiffies, curr->mm->numa_next_scan)) { 2642 init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */ 2643 task_work_add(curr, work, true); 2644 } 2645 } 2646 } 2647 2648 #else 2649 static void task_tick_numa(struct rq *rq, struct task_struct *curr) 2650 { 2651 } 2652 2653 static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p) 2654 { 2655 } 2656 2657 static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p) 2658 { 2659 } 2660 2661 #endif /* CONFIG_NUMA_BALANCING */ 2662 2663 static void 2664 account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se) 2665 { 2666 update_load_add(&cfs_rq->load, se->load.weight); 2667 if (!parent_entity(se)) 2668 update_load_add(&rq_of(cfs_rq)->load, se->load.weight); 2669 #ifdef CONFIG_SMP 2670 if (entity_is_task(se)) { 2671 struct rq *rq = rq_of(cfs_rq); 2672 2673 account_numa_enqueue(rq, task_of(se)); 2674 list_add(&se->group_node, &rq->cfs_tasks); 2675 } 2676 #endif 2677 cfs_rq->nr_running++; 2678 } 2679 2680 static void 2681 account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se) 2682 { 2683 update_load_sub(&cfs_rq->load, se->load.weight); 2684 if (!parent_entity(se)) 2685 update_load_sub(&rq_of(cfs_rq)->load, se->load.weight); 2686 #ifdef CONFIG_SMP 2687 if (entity_is_task(se)) { 2688 account_numa_dequeue(rq_of(cfs_rq), task_of(se)); 2689 list_del_init(&se->group_node); 2690 } 2691 #endif 2692 cfs_rq->nr_running--; 2693 } 2694 2695 #ifdef CONFIG_FAIR_GROUP_SCHED 2696 # ifdef CONFIG_SMP 2697 static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg) 2698 { 2699 long tg_weight, load, shares; 2700 2701 /* 2702 * This really should be: cfs_rq->avg.load_avg, but instead we use 2703 * cfs_rq->load.weight, which is its upper bound. This helps ramp up 2704 * the shares for small weight interactive tasks. 2705 */ 2706 load = scale_load_down(cfs_rq->load.weight); 2707 2708 tg_weight = atomic_long_read(&tg->load_avg); 2709 2710 /* Ensure tg_weight >= load */ 2711 tg_weight -= cfs_rq->tg_load_avg_contrib; 2712 tg_weight += load; 2713 2714 shares = (tg->shares * load); 2715 if (tg_weight) 2716 shares /= tg_weight; 2717 2718 /* 2719 * MIN_SHARES has to be unscaled here to support per-CPU partitioning 2720 * of a group with small tg->shares value. It is a floor value which is 2721 * assigned as a minimum load.weight to the sched_entity representing 2722 * the group on a CPU. 2723 * 2724 * E.g. on 64-bit for a group with tg->shares of scale_load(15)=15*1024 2725 * on an 8-core system with 8 tasks each runnable on one CPU shares has 2726 * to be 15*1024*1/8=1920 instead of scale_load(MIN_SHARES)=2*1024. In 2727 * case no task is runnable on a CPU MIN_SHARES=2 should be returned 2728 * instead of 0. 2729 */ 2730 if (shares < MIN_SHARES) 2731 shares = MIN_SHARES; 2732 if (shares > tg->shares) 2733 shares = tg->shares; 2734 2735 return shares; 2736 } 2737 # else /* CONFIG_SMP */ 2738 static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg) 2739 { 2740 return tg->shares; 2741 } 2742 # endif /* CONFIG_SMP */ 2743 2744 static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, 2745 unsigned long weight) 2746 { 2747 if (se->on_rq) { 2748 /* commit outstanding execution time */ 2749 if (cfs_rq->curr == se) 2750 update_curr(cfs_rq); 2751 account_entity_dequeue(cfs_rq, se); 2752 } 2753 2754 update_load_set(&se->load, weight); 2755 2756 if (se->on_rq) 2757 account_entity_enqueue(cfs_rq, se); 2758 } 2759 2760 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq); 2761 2762 static void update_cfs_shares(struct sched_entity *se) 2763 { 2764 struct cfs_rq *cfs_rq = group_cfs_rq(se); 2765 struct task_group *tg; 2766 long shares; 2767 2768 if (!cfs_rq) 2769 return; 2770 2771 if (throttled_hierarchy(cfs_rq)) 2772 return; 2773 2774 tg = cfs_rq->tg; 2775 2776 #ifndef CONFIG_SMP 2777 if (likely(se->load.weight == tg->shares)) 2778 return; 2779 #endif 2780 shares = calc_cfs_shares(cfs_rq, tg); 2781 2782 reweight_entity(cfs_rq_of(se), se, shares); 2783 } 2784 2785 #else /* CONFIG_FAIR_GROUP_SCHED */ 2786 static inline void update_cfs_shares(struct sched_entity *se) 2787 { 2788 } 2789 #endif /* CONFIG_FAIR_GROUP_SCHED */ 2790 2791 static inline void cfs_rq_util_change(struct cfs_rq *cfs_rq) 2792 { 2793 struct rq *rq = rq_of(cfs_rq); 2794 2795 if (&rq->cfs == cfs_rq) { 2796 /* 2797 * There are a few boundary cases this might miss but it should 2798 * get called often enough that that should (hopefully) not be 2799 * a real problem -- added to that it only calls on the local 2800 * CPU, so if we enqueue remotely we'll miss an update, but 2801 * the next tick/schedule should update. 2802 * 2803 * It will not get called when we go idle, because the idle 2804 * thread is a different class (!fair), nor will the utilization 2805 * number include things like RT tasks. 2806 * 2807 * As is, the util number is not freq-invariant (we'd have to 2808 * implement arch_scale_freq_capacity() for that). 2809 * 2810 * See cpu_util(). 2811 */ 2812 cpufreq_update_util(rq, 0); 2813 } 2814 } 2815 2816 #ifdef CONFIG_SMP 2817 /* 2818 * Approximate: 2819 * val * y^n, where y^32 ~= 0.5 (~1 scheduling period) 2820 */ 2821 static u64 decay_load(u64 val, u64 n) 2822 { 2823 unsigned int local_n; 2824 2825 if (unlikely(n > LOAD_AVG_PERIOD * 63)) 2826 return 0; 2827 2828 /* after bounds checking we can collapse to 32-bit */ 2829 local_n = n; 2830 2831 /* 2832 * As y^PERIOD = 1/2, we can combine 2833 * y^n = 1/2^(n/PERIOD) * y^(n%PERIOD) 2834 * With a look-up table which covers y^n (n<PERIOD) 2835 * 2836 * To achieve constant time decay_load. 2837 */ 2838 if (unlikely(local_n >= LOAD_AVG_PERIOD)) { 2839 val >>= local_n / LOAD_AVG_PERIOD; 2840 local_n %= LOAD_AVG_PERIOD; 2841 } 2842 2843 val = mul_u64_u32_shr(val, runnable_avg_yN_inv[local_n], 32); 2844 return val; 2845 } 2846 2847 static u32 __accumulate_pelt_segments(u64 periods, u32 d1, u32 d3) 2848 { 2849 u32 c1, c2, c3 = d3; /* y^0 == 1 */ 2850 2851 /* 2852 * c1 = d1 y^p 2853 */ 2854 c1 = decay_load((u64)d1, periods); 2855 2856 /* 2857 * p-1 2858 * c2 = 1024 \Sum y^n 2859 * n=1 2860 * 2861 * inf inf 2862 * = 1024 ( \Sum y^n - \Sum y^n - y^0 ) 2863 * n=0 n=p 2864 */ 2865 c2 = LOAD_AVG_MAX - decay_load(LOAD_AVG_MAX, periods) - 1024; 2866 2867 return c1 + c2 + c3; 2868 } 2869 2870 #define cap_scale(v, s) ((v)*(s) >> SCHED_CAPACITY_SHIFT) 2871 2872 /* 2873 * Accumulate the three separate parts of the sum; d1 the remainder 2874 * of the last (incomplete) period, d2 the span of full periods and d3 2875 * the remainder of the (incomplete) current period. 2876 * 2877 * d1 d2 d3 2878 * ^ ^ ^ 2879 * | | | 2880 * |<->|<----------------->|<--->| 2881 * ... |---x---|------| ... |------|-----x (now) 2882 * 2883 * p-1 2884 * u' = (u + d1) y^p + 1024 \Sum y^n + d3 y^0 2885 * n=1 2886 * 2887 * = u y^p + (Step 1) 2888 * 2889 * p-1 2890 * d1 y^p + 1024 \Sum y^n + d3 y^0 (Step 2) 2891 * n=1 2892 */ 2893 static __always_inline u32 2894 accumulate_sum(u64 delta, int cpu, struct sched_avg *sa, 2895 unsigned long weight, int running, struct cfs_rq *cfs_rq) 2896 { 2897 unsigned long scale_freq, scale_cpu; 2898 u32 contrib = (u32)delta; /* p == 0 -> delta < 1024 */ 2899 u64 periods; 2900 2901 scale_freq = arch_scale_freq_capacity(NULL, cpu); 2902 scale_cpu = arch_scale_cpu_capacity(NULL, cpu); 2903 2904 delta += sa->period_contrib; 2905 periods = delta / 1024; /* A period is 1024us (~1ms) */ 2906 2907 /* 2908 * Step 1: decay old *_sum if we crossed period boundaries. 2909 */ 2910 if (periods) { 2911 sa->load_sum = decay_load(sa->load_sum, periods); 2912 if (cfs_rq) { 2913 cfs_rq->runnable_load_sum = 2914 decay_load(cfs_rq->runnable_load_sum, periods); 2915 } 2916 sa->util_sum = decay_load((u64)(sa->util_sum), periods); 2917 2918 /* 2919 * Step 2 2920 */ 2921 delta %= 1024; 2922 contrib = __accumulate_pelt_segments(periods, 2923 1024 - sa->period_contrib, delta); 2924 } 2925 sa->period_contrib = delta; 2926 2927 contrib = cap_scale(contrib, scale_freq); 2928 if (weight) { 2929 sa->load_sum += weight * contrib; 2930 if (cfs_rq) 2931 cfs_rq->runnable_load_sum += weight * contrib; 2932 } 2933 if (running) 2934 sa->util_sum += contrib * scale_cpu; 2935 2936 return periods; 2937 } 2938 2939 /* 2940 * We can represent the historical contribution to runnable average as the 2941 * coefficients of a geometric series. To do this we sub-divide our runnable 2942 * history into segments of approximately 1ms (1024us); label the segment that 2943 * occurred N-ms ago p_N, with p_0 corresponding to the current period, e.g. 2944 * 2945 * [<- 1024us ->|<- 1024us ->|<- 1024us ->| ... 2946 * p0 p1 p2 2947 * (now) (~1ms ago) (~2ms ago) 2948 * 2949 * Let u_i denote the fraction of p_i that the entity was runnable. 2950 * 2951 * We then designate the fractions u_i as our co-efficients, yielding the 2952 * following representation of historical load: 2953 * u_0 + u_1*y + u_2*y^2 + u_3*y^3 + ... 2954 * 2955 * We choose y based on the with of a reasonably scheduling period, fixing: 2956 * y^32 = 0.5 2957 * 2958 * This means that the contribution to load ~32ms ago (u_32) will be weighted 2959 * approximately half as much as the contribution to load within the last ms 2960 * (u_0). 2961 * 2962 * When a period "rolls over" and we have new u_0`, multiplying the previous 2963 * sum again by y is sufficient to update: 2964 * load_avg = u_0` + y*(u_0 + u_1*y + u_2*y^2 + ... ) 2965 * = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1}] 2966 */ 2967 static __always_inline int 2968 ___update_load_avg(u64 now, int cpu, struct sched_avg *sa, 2969 unsigned long weight, int running, struct cfs_rq *cfs_rq) 2970 { 2971 u64 delta; 2972 2973 delta = now - sa->last_update_time; 2974 /* 2975 * This should only happen when time goes backwards, which it 2976 * unfortunately does during sched clock init when we swap over to TSC. 2977 */ 2978 if ((s64)delta < 0) { 2979 sa->last_update_time = now; 2980 return 0; 2981 } 2982 2983 /* 2984 * Use 1024ns as the unit of measurement since it's a reasonable 2985 * approximation of 1us and fast to compute. 2986 */ 2987 delta >>= 10; 2988 if (!delta) 2989 return 0; 2990 2991 sa->last_update_time += delta << 10; 2992 2993 /* 2994 * running is a subset of runnable (weight) so running can't be set if 2995 * runnable is clear. But there are some corner cases where the current 2996 * se has been already dequeued but cfs_rq->curr still points to it. 2997 * This means that weight will be 0 but not running for a sched_entity 2998 * but also for a cfs_rq if the latter becomes idle. As an example, 2999 * this happens during idle_balance() which calls 3000 * update_blocked_averages() 3001 */ 3002 if (!weight) 3003 running = 0; 3004 3005 /* 3006 * Now we know we crossed measurement unit boundaries. The *_avg 3007 * accrues by two steps: 3008 * 3009 * Step 1: accumulate *_sum since last_update_time. If we haven't 3010 * crossed period boundaries, finish. 3011 */ 3012 if (!accumulate_sum(delta, cpu, sa, weight, running, cfs_rq)) 3013 return 0; 3014 3015 /* 3016 * Step 2: update *_avg. 3017 */ 3018 sa->load_avg = div_u64(sa->load_sum, LOAD_AVG_MAX - 1024 + sa->period_contrib); 3019 if (cfs_rq) { 3020 cfs_rq->runnable_load_avg = 3021 div_u64(cfs_rq->runnable_load_sum, LOAD_AVG_MAX - 1024 + sa->period_contrib); 3022 } 3023 sa->util_avg = sa->util_sum / (LOAD_AVG_MAX - 1024 + sa->period_contrib); 3024 3025 return 1; 3026 } 3027 3028 static int 3029 __update_load_avg_blocked_se(u64 now, int cpu, struct sched_entity *se) 3030 { 3031 return ___update_load_avg(now, cpu, &se->avg, 0, 0, NULL); 3032 } 3033 3034 static int 3035 __update_load_avg_se(u64 now, int cpu, struct cfs_rq *cfs_rq, struct sched_entity *se) 3036 { 3037 return ___update_load_avg(now, cpu, &se->avg, 3038 se->on_rq * scale_load_down(se->load.weight), 3039 cfs_rq->curr == se, NULL); 3040 } 3041 3042 static int 3043 __update_load_avg_cfs_rq(u64 now, int cpu, struct cfs_rq *cfs_rq) 3044 { 3045 return ___update_load_avg(now, cpu, &cfs_rq->avg, 3046 scale_load_down(cfs_rq->load.weight), 3047 cfs_rq->curr != NULL, cfs_rq); 3048 } 3049 3050 /* 3051 * Signed add and clamp on underflow. 3052 * 3053 * Explicitly do a load-store to ensure the intermediate value never hits 3054 * memory. This allows lockless observations without ever seeing the negative 3055 * values. 3056 */ 3057 #define add_positive(_ptr, _val) do { \ 3058 typeof(_ptr) ptr = (_ptr); \ 3059 typeof(_val) val = (_val); \ 3060 typeof(*ptr) res, var = READ_ONCE(*ptr); \ 3061 \ 3062 res = var + val; \ 3063 \ 3064 if (val < 0 && res > var) \ 3065 res = 0; \ 3066 \ 3067 WRITE_ONCE(*ptr, res); \ 3068 } while (0) 3069 3070 #ifdef CONFIG_FAIR_GROUP_SCHED 3071 /** 3072 * update_tg_load_avg - update the tg's load avg 3073 * @cfs_rq: the cfs_rq whose avg changed 3074 * @force: update regardless of how small the difference 3075 * 3076 * This function 'ensures': tg->load_avg := \Sum tg->cfs_rq[]->avg.load. 3077 * However, because tg->load_avg is a global value there are performance 3078 * considerations. 3079 * 3080 * In order to avoid having to look at the other cfs_rq's, we use a 3081 * differential update where we store the last value we propagated. This in 3082 * turn allows skipping updates if the differential is 'small'. 3083 * 3084 * Updating tg's load_avg is necessary before update_cfs_share(). 3085 */ 3086 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force) 3087 { 3088 long delta = cfs_rq->avg.load_avg - cfs_rq->tg_load_avg_contrib; 3089 3090 /* 3091 * No need to update load_avg for root_task_group as it is not used. 3092 */ 3093 if (cfs_rq->tg == &root_task_group) 3094 return; 3095 3096 if (force || abs(delta) > cfs_rq->tg_load_avg_contrib / 64) { 3097 atomic_long_add(delta, &cfs_rq->tg->load_avg); 3098 cfs_rq->tg_load_avg_contrib = cfs_rq->avg.load_avg; 3099 } 3100 } 3101 3102 /* 3103 * Called within set_task_rq() right before setting a task's cpu. The 3104 * caller only guarantees p->pi_lock is held; no other assumptions, 3105 * including the state of rq->lock, should be made. 3106 */ 3107 void set_task_rq_fair(struct sched_entity *se, 3108 struct cfs_rq *prev, struct cfs_rq *next) 3109 { 3110 u64 p_last_update_time; 3111 u64 n_last_update_time; 3112 3113 if (!sched_feat(ATTACH_AGE_LOAD)) 3114 return; 3115 3116 /* 3117 * We are supposed to update the task to "current" time, then its up to 3118 * date and ready to go to new CPU/cfs_rq. But we have difficulty in 3119 * getting what current time is, so simply throw away the out-of-date 3120 * time. This will result in the wakee task is less decayed, but giving 3121 * the wakee more load sounds not bad. 3122 */ 3123 if (!(se->avg.last_update_time && prev)) 3124 return; 3125 3126 #ifndef CONFIG_64BIT 3127 { 3128 u64 p_last_update_time_copy; 3129 u64 n_last_update_time_copy; 3130 3131 do { 3132 p_last_update_time_copy = prev->load_last_update_time_copy; 3133 n_last_update_time_copy = next->load_last_update_time_copy; 3134 3135 smp_rmb(); 3136 3137 p_last_update_time = prev->avg.last_update_time; 3138 n_last_update_time = next->avg.last_update_time; 3139 3140 } while (p_last_update_time != p_last_update_time_copy || 3141 n_last_update_time != n_last_update_time_copy); 3142 } 3143 #else 3144 p_last_update_time = prev->avg.last_update_time; 3145 n_last_update_time = next->avg.last_update_time; 3146 #endif 3147 __update_load_avg_blocked_se(p_last_update_time, cpu_of(rq_of(prev)), se); 3148 se->avg.last_update_time = n_last_update_time; 3149 } 3150 3151 /* Take into account change of utilization of a child task group */ 3152 static inline void 3153 update_tg_cfs_util(struct cfs_rq *cfs_rq, struct sched_entity *se) 3154 { 3155 struct cfs_rq *gcfs_rq = group_cfs_rq(se); 3156 long delta = gcfs_rq->avg.util_avg - se->avg.util_avg; 3157 3158 /* Nothing to update */ 3159 if (!delta) 3160 return; 3161 3162 /* Set new sched_entity's utilization */ 3163 se->avg.util_avg = gcfs_rq->avg.util_avg; 3164 se->avg.util_sum = se->avg.util_avg * LOAD_AVG_MAX; 3165 3166 /* Update parent cfs_rq utilization */ 3167 add_positive(&cfs_rq->avg.util_avg, delta); 3168 cfs_rq->avg.util_sum = cfs_rq->avg.util_avg * LOAD_AVG_MAX; 3169 } 3170 3171 /* Take into account change of load of a child task group */ 3172 static inline void 3173 update_tg_cfs_load(struct cfs_rq *cfs_rq, struct sched_entity *se) 3174 { 3175 struct cfs_rq *gcfs_rq = group_cfs_rq(se); 3176 long delta, load = gcfs_rq->avg.load_avg; 3177 3178 /* 3179 * If the load of group cfs_rq is null, the load of the 3180 * sched_entity will also be null so we can skip the formula 3181 */ 3182 if (load) { 3183 long tg_load; 3184 3185 /* Get tg's load and ensure tg_load > 0 */ 3186 tg_load = atomic_long_read(&gcfs_rq->tg->load_avg) + 1; 3187 3188 /* Ensure tg_load >= load and updated with current load*/ 3189 tg_load -= gcfs_rq->tg_load_avg_contrib; 3190 tg_load += load; 3191 3192 /* 3193 * We need to compute a correction term in the case that the 3194 * task group is consuming more CPU than a task of equal 3195 * weight. A task with a weight equals to tg->shares will have 3196 * a load less or equal to scale_load_down(tg->shares). 3197 * Similarly, the sched_entities that represent the task group 3198 * at parent level, can't have a load higher than 3199 * scale_load_down(tg->shares). And the Sum of sched_entities' 3200 * load must be <= scale_load_down(tg->shares). 3201 */ 3202 if (tg_load > scale_load_down(gcfs_rq->tg->shares)) { 3203 /* scale gcfs_rq's load into tg's shares*/ 3204 load *= scale_load_down(gcfs_rq->tg->shares); 3205 load /= tg_load; 3206 } 3207 } 3208 3209 delta = load - se->avg.load_avg; 3210 3211 /* Nothing to update */ 3212 if (!delta) 3213 return; 3214 3215 /* Set new sched_entity's load */ 3216 se->avg.load_avg = load; 3217 se->avg.load_sum = se->avg.load_avg * LOAD_AVG_MAX; 3218 3219 /* Update parent cfs_rq load */ 3220 add_positive(&cfs_rq->avg.load_avg, delta); 3221 cfs_rq->avg.load_sum = cfs_rq->avg.load_avg * LOAD_AVG_MAX; 3222 3223 /* 3224 * If the sched_entity is already enqueued, we also have to update the 3225 * runnable load avg. 3226 */ 3227 if (se->on_rq) { 3228 /* Update parent cfs_rq runnable_load_avg */ 3229 add_positive(&cfs_rq->runnable_load_avg, delta); 3230 cfs_rq->runnable_load_sum = cfs_rq->runnable_load_avg * LOAD_AVG_MAX; 3231 } 3232 } 3233 3234 static inline void set_tg_cfs_propagate(struct cfs_rq *cfs_rq) 3235 { 3236 cfs_rq->propagate_avg = 1; 3237 } 3238 3239 static inline int test_and_clear_tg_cfs_propagate(struct sched_entity *se) 3240 { 3241 struct cfs_rq *cfs_rq = group_cfs_rq(se); 3242 3243 if (!cfs_rq->propagate_avg) 3244 return 0; 3245 3246 cfs_rq->propagate_avg = 0; 3247 return 1; 3248 } 3249 3250 /* Update task and its cfs_rq load average */ 3251 static inline int propagate_entity_load_avg(struct sched_entity *se) 3252 { 3253 struct cfs_rq *cfs_rq; 3254 3255 if (entity_is_task(se)) 3256 return 0; 3257 3258 if (!test_and_clear_tg_cfs_propagate(se)) 3259 return 0; 3260 3261 cfs_rq = cfs_rq_of(se); 3262 3263 set_tg_cfs_propagate(cfs_rq); 3264 3265 update_tg_cfs_util(cfs_rq, se); 3266 update_tg_cfs_load(cfs_rq, se); 3267 3268 return 1; 3269 } 3270 3271 /* 3272 * Check if we need to update the load and the utilization of a blocked 3273 * group_entity: 3274 */ 3275 static inline bool skip_blocked_update(struct sched_entity *se) 3276 { 3277 struct cfs_rq *gcfs_rq = group_cfs_rq(se); 3278 3279 /* 3280 * If sched_entity still have not zero load or utilization, we have to 3281 * decay it: 3282 */ 3283 if (se->avg.load_avg || se->avg.util_avg) 3284 return false; 3285 3286 /* 3287 * If there is a pending propagation, we have to update the load and 3288 * the utilization of the sched_entity: 3289 */ 3290 if (gcfs_rq->propagate_avg) 3291 return false; 3292 3293 /* 3294 * Otherwise, the load and the utilization of the sched_entity is 3295 * already zero and there is no pending propagation, so it will be a 3296 * waste of time to try to decay it: 3297 */ 3298 return true; 3299 } 3300 3301 #else /* CONFIG_FAIR_GROUP_SCHED */ 3302 3303 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force) {} 3304 3305 static inline int propagate_entity_load_avg(struct sched_entity *se) 3306 { 3307 return 0; 3308 } 3309 3310 static inline void set_tg_cfs_propagate(struct cfs_rq *cfs_rq) {} 3311 3312 #endif /* CONFIG_FAIR_GROUP_SCHED */ 3313 3314 /* 3315 * Unsigned subtract and clamp on underflow. 3316 * 3317 * Explicitly do a load-store to ensure the intermediate value never hits 3318 * memory. This allows lockless observations without ever seeing the negative 3319 * values. 3320 */ 3321 #define sub_positive(_ptr, _val) do { \ 3322 typeof(_ptr) ptr = (_ptr); \ 3323 typeof(*ptr) val = (_val); \ 3324 typeof(*ptr) res, var = READ_ONCE(*ptr); \ 3325 res = var - val; \ 3326 if (res > var) \ 3327 res = 0; \ 3328 WRITE_ONCE(*ptr, res); \ 3329 } while (0) 3330 3331 /** 3332 * update_cfs_rq_load_avg - update the cfs_rq's load/util averages 3333 * @now: current time, as per cfs_rq_clock_task() 3334 * @cfs_rq: cfs_rq to update 3335 * 3336 * The cfs_rq avg is the direct sum of all its entities (blocked and runnable) 3337 * avg. The immediate corollary is that all (fair) tasks must be attached, see 3338 * post_init_entity_util_avg(). 3339 * 3340 * cfs_rq->avg is used for task_h_load() and update_cfs_share() for example. 3341 * 3342 * Returns true if the load decayed or we removed load. 3343 * 3344 * Since both these conditions indicate a changed cfs_rq->avg.load we should 3345 * call update_tg_load_avg() when this function returns true. 3346 */ 3347 static inline int 3348 update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq) 3349 { 3350 struct sched_avg *sa = &cfs_rq->avg; 3351 int decayed, removed_load = 0, removed_util = 0; 3352 3353 if (atomic_long_read(&cfs_rq->removed_load_avg)) { 3354 s64 r = atomic_long_xchg(&cfs_rq->removed_load_avg, 0); 3355 sub_positive(&sa->load_avg, r); 3356 sub_positive(&sa->load_sum, r * LOAD_AVG_MAX); 3357 removed_load = 1; 3358 set_tg_cfs_propagate(cfs_rq); 3359 } 3360 3361 if (atomic_long_read(&cfs_rq->removed_util_avg)) { 3362 long r = atomic_long_xchg(&cfs_rq->removed_util_avg, 0); 3363 sub_positive(&sa->util_avg, r); 3364 sub_positive(&sa->util_sum, r * LOAD_AVG_MAX); 3365 removed_util = 1; 3366 set_tg_cfs_propagate(cfs_rq); 3367 } 3368 3369 decayed = __update_load_avg_cfs_rq(now, cpu_of(rq_of(cfs_rq)), cfs_rq); 3370 3371 #ifndef CONFIG_64BIT 3372 smp_wmb(); 3373 cfs_rq->load_last_update_time_copy = sa->last_update_time; 3374 #endif 3375 3376 if (decayed || removed_util) 3377 cfs_rq_util_change(cfs_rq); 3378 3379 return decayed || removed_load; 3380 } 3381 3382 /* 3383 * Optional action to be done while updating the load average 3384 */ 3385 #define UPDATE_TG 0x1 3386 #define SKIP_AGE_LOAD 0x2 3387 3388 /* Update task and its cfs_rq load average */ 3389 static inline void update_load_avg(struct sched_entity *se, int flags) 3390 { 3391 struct cfs_rq *cfs_rq = cfs_rq_of(se); 3392 u64 now = cfs_rq_clock_task(cfs_rq); 3393 struct rq *rq = rq_of(cfs_rq); 3394 int cpu = cpu_of(rq); 3395 int decayed; 3396 3397 /* 3398 * Track task load average for carrying it to new CPU after migrated, and 3399 * track group sched_entity load average for task_h_load calc in migration 3400 */ 3401 if (se->avg.last_update_time && !(flags & SKIP_AGE_LOAD)) 3402 __update_load_avg_se(now, cpu, cfs_rq, se); 3403 3404 decayed = update_cfs_rq_load_avg(now, cfs_rq); 3405 decayed |= propagate_entity_load_avg(se); 3406 3407 if (decayed && (flags & UPDATE_TG)) 3408 update_tg_load_avg(cfs_rq, 0); 3409 } 3410 3411 /** 3412 * attach_entity_load_avg - attach this entity to its cfs_rq load avg 3413 * @cfs_rq: cfs_rq to attach to 3414 * @se: sched_entity to attach 3415 * 3416 * Must call update_cfs_rq_load_avg() before this, since we rely on 3417 * cfs_rq->avg.last_update_time being current. 3418 */ 3419 static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) 3420 { 3421 se->avg.last_update_time = cfs_rq->avg.last_update_time; 3422 cfs_rq->avg.load_avg += se->avg.load_avg; 3423 cfs_rq->avg.load_sum += se->avg.load_sum; 3424 cfs_rq->avg.util_avg += se->avg.util_avg; 3425 cfs_rq->avg.util_sum += se->avg.util_sum; 3426 set_tg_cfs_propagate(cfs_rq); 3427 3428 cfs_rq_util_change(cfs_rq); 3429 } 3430 3431 /** 3432 * detach_entity_load_avg - detach this entity from its cfs_rq load avg 3433 * @cfs_rq: cfs_rq to detach from 3434 * @se: sched_entity to detach 3435 * 3436 * Must call update_cfs_rq_load_avg() before this, since we rely on 3437 * cfs_rq->avg.last_update_time being current. 3438 */ 3439 static void detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) 3440 { 3441 3442 sub_positive(&cfs_rq->avg.load_avg, se->avg.load_avg); 3443 sub_positive(&cfs_rq->avg.load_sum, se->avg.load_sum); 3444 sub_positive(&cfs_rq->avg.util_avg, se->avg.util_avg); 3445 sub_positive(&cfs_rq->avg.util_sum, se->avg.util_sum); 3446 set_tg_cfs_propagate(cfs_rq); 3447 3448 cfs_rq_util_change(cfs_rq); 3449 } 3450 3451 /* Add the load generated by se into cfs_rq's load average */ 3452 static inline void 3453 enqueue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) 3454 { 3455 struct sched_avg *sa = &se->avg; 3456 3457 cfs_rq->runnable_load_avg += sa->load_avg; 3458 cfs_rq->runnable_load_sum += sa->load_sum; 3459 3460 if (!sa->last_update_time) { 3461 attach_entity_load_avg(cfs_rq, se); 3462 update_tg_load_avg(cfs_rq, 0); 3463 } 3464 } 3465 3466 /* Remove the runnable load generated by se from cfs_rq's runnable load average */ 3467 static inline void 3468 dequeue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) 3469 { 3470 cfs_rq->runnable_load_avg = 3471 max_t(long, cfs_rq->runnable_load_avg - se->avg.load_avg, 0); 3472 cfs_rq->runnable_load_sum = 3473 max_t(s64, cfs_rq->runnable_load_sum - se->avg.load_sum, 0); 3474 } 3475 3476 #ifndef CONFIG_64BIT 3477 static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq) 3478 { 3479 u64 last_update_time_copy; 3480 u64 last_update_time; 3481 3482 do { 3483 last_update_time_copy = cfs_rq->load_last_update_time_copy; 3484 smp_rmb(); 3485 last_update_time = cfs_rq->avg.last_update_time; 3486 } while (last_update_time != last_update_time_copy); 3487 3488 return last_update_time; 3489 } 3490 #else 3491 static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq) 3492 { 3493 return cfs_rq->avg.last_update_time; 3494 } 3495 #endif 3496 3497 /* 3498 * Synchronize entity load avg of dequeued entity without locking 3499 * the previous rq. 3500 */ 3501 void sync_entity_load_avg(struct sched_entity *se) 3502 { 3503 struct cfs_rq *cfs_rq = cfs_rq_of(se); 3504 u64 last_update_time; 3505 3506 last_update_time = cfs_rq_last_update_time(cfs_rq); 3507 __update_load_avg_blocked_se(last_update_time, cpu_of(rq_of(cfs_rq)), se); 3508 } 3509 3510 /* 3511 * Task first catches up with cfs_rq, and then subtract 3512 * itself from the cfs_rq (task must be off the queue now). 3513 */ 3514 void remove_entity_load_avg(struct sched_entity *se) 3515 { 3516 struct cfs_rq *cfs_rq = cfs_rq_of(se); 3517 3518 /* 3519 * tasks cannot exit without having gone through wake_up_new_task() -> 3520 * post_init_entity_util_avg() which will have added things to the 3521 * cfs_rq, so we can remove unconditionally. 3522 * 3523 * Similarly for groups, they will have passed through 3524 * post_init_entity_util_avg() before unregister_sched_fair_group() 3525 * calls this. 3526 */ 3527 3528 sync_entity_load_avg(se); 3529 atomic_long_add(se->avg.load_avg, &cfs_rq->removed_load_avg); 3530 atomic_long_add(se->avg.util_avg, &cfs_rq->removed_util_avg); 3531 } 3532 3533 static inline unsigned long cfs_rq_runnable_load_avg(struct cfs_rq *cfs_rq) 3534 { 3535 return cfs_rq->runnable_load_avg; 3536 } 3537 3538 static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq) 3539 { 3540 return cfs_rq->avg.load_avg; 3541 } 3542 3543 static int idle_balance(struct rq *this_rq, struct rq_flags *rf); 3544 3545 #else /* CONFIG_SMP */ 3546 3547 static inline int 3548 update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq) 3549 { 3550 return 0; 3551 } 3552 3553 #define UPDATE_TG 0x0 3554 #define SKIP_AGE_LOAD 0x0 3555 3556 static inline void update_load_avg(struct sched_entity *se, int not_used1) 3557 { 3558 cfs_rq_util_change(cfs_rq_of(se)); 3559 } 3560 3561 static inline void 3562 enqueue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {} 3563 static inline void 3564 dequeue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {} 3565 static inline void remove_entity_load_avg(struct sched_entity *se) {} 3566 3567 static inline void 3568 attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {} 3569 static inline void 3570 detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {} 3571 3572 static inline int idle_balance(struct rq *rq, struct rq_flags *rf) 3573 { 3574 return 0; 3575 } 3576 3577 #endif /* CONFIG_SMP */ 3578 3579 static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se) 3580 { 3581 #ifdef CONFIG_SCHED_DEBUG 3582 s64 d = se->vruntime - cfs_rq->min_vruntime; 3583 3584 if (d < 0) 3585 d = -d; 3586 3587 if (d > 3*sysctl_sched_latency) 3588 schedstat_inc(cfs_rq->nr_spread_over); 3589 #endif 3590 } 3591 3592 static void 3593 place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial) 3594 { 3595 u64 vruntime = cfs_rq->min_vruntime; 3596 3597 /* 3598 * The 'current' period is already promised to the current tasks, 3599 * however the extra weight of the new task will slow them down a 3600 * little, place the new task so that it fits in the slot that 3601 * stays open at the end. 3602 */ 3603 if (initial && sched_feat(START_DEBIT)) 3604 vruntime += sched_vslice(cfs_rq, se); 3605 3606 /* sleeps up to a single latency don't count. */ 3607 if (!initial) { 3608 unsigned long thresh = sysctl_sched_latency; 3609 3610 /* 3611 * Halve their sleep time's effect, to allow 3612 * for a gentler effect of sleepers: 3613 */ 3614 if (sched_feat(GENTLE_FAIR_SLEEPERS)) 3615 thresh >>= 1; 3616 3617 vruntime -= thresh; 3618 } 3619 3620 /* ensure we never gain time by being placed backwards. */ 3621 se->vruntime = max_vruntime(se->vruntime, vruntime); 3622 } 3623 3624 static void check_enqueue_throttle(struct cfs_rq *cfs_rq); 3625 3626 static inline void check_schedstat_required(void) 3627 { 3628 #ifdef CONFIG_SCHEDSTATS 3629 if (schedstat_enabled()) 3630 return; 3631 3632 /* Force schedstat enabled if a dependent tracepoint is active */ 3633 if (trace_sched_stat_wait_enabled() || 3634 trace_sched_stat_sleep_enabled() || 3635 trace_sched_stat_iowait_enabled() || 3636 trace_sched_stat_blocked_enabled() || 3637 trace_sched_stat_runtime_enabled()) { 3638 printk_deferred_once("Scheduler tracepoints stat_sleep, stat_iowait, " 3639 "stat_blocked and stat_runtime require the " 3640 "kernel parameter schedstats=enable or " 3641 "kernel.sched_schedstats=1\n"); 3642 } 3643 #endif 3644 } 3645 3646 3647 /* 3648 * MIGRATION 3649 * 3650 * dequeue 3651 * update_curr() 3652 * update_min_vruntime() 3653 * vruntime -= min_vruntime 3654 * 3655 * enqueue 3656 * update_curr() 3657 * update_min_vruntime() 3658 * vruntime += min_vruntime 3659 * 3660 * this way the vruntime transition between RQs is done when both 3661 * min_vruntime are up-to-date. 3662 * 3663 * WAKEUP (remote) 3664 * 3665 * ->migrate_task_rq_fair() (p->state == TASK_WAKING) 3666 * vruntime -= min_vruntime 3667 * 3668 * enqueue 3669 * update_curr() 3670 * update_min_vruntime() 3671 * vruntime += min_vruntime 3672 * 3673 * this way we don't have the most up-to-date min_vruntime on the originating 3674 * CPU and an up-to-date min_vruntime on the destination CPU. 3675 */ 3676 3677 static void 3678 enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 3679 { 3680 bool renorm = !(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_MIGRATED); 3681 bool curr = cfs_rq->curr == se; 3682 3683 /* 3684 * If we're the current task, we must renormalise before calling 3685 * update_curr(). 3686 */ 3687 if (renorm && curr) 3688 se->vruntime += cfs_rq->min_vruntime; 3689 3690 update_curr(cfs_rq); 3691 3692 /* 3693 * Otherwise, renormalise after, such that we're placed at the current 3694 * moment in time, instead of some random moment in the past. Being 3695 * placed in the past could significantly boost this task to the 3696 * fairness detriment of existing tasks. 3697 */ 3698 if (renorm && !curr) 3699 se->vruntime += cfs_rq->min_vruntime; 3700 3701 /* 3702 * When enqueuing a sched_entity, we must: 3703 * - Update loads to have both entity and cfs_rq synced with now. 3704 * - Add its load to cfs_rq->runnable_avg 3705 * - For group_entity, update its weight to reflect the new share of 3706 * its group cfs_rq 3707 * - Add its new weight to cfs_rq->load.weight 3708 */ 3709 update_load_avg(se, UPDATE_TG); 3710 enqueue_entity_load_avg(cfs_rq, se); 3711 update_cfs_shares(se); 3712 account_entity_enqueue(cfs_rq, se); 3713 3714 if (flags & ENQUEUE_WAKEUP) 3715 place_entity(cfs_rq, se, 0); 3716 3717 check_schedstat_required(); 3718 update_stats_enqueue(cfs_rq, se, flags); 3719 check_spread(cfs_rq, se); 3720 if (!curr) 3721 __enqueue_entity(cfs_rq, se); 3722 se->on_rq = 1; 3723 3724 if (cfs_rq->nr_running == 1) { 3725 list_add_leaf_cfs_rq(cfs_rq); 3726 check_enqueue_throttle(cfs_rq); 3727 } 3728 } 3729 3730 static void __clear_buddies_last(struct sched_entity *se) 3731 { 3732 for_each_sched_entity(se) { 3733 struct cfs_rq *cfs_rq = cfs_rq_of(se); 3734 if (cfs_rq->last != se) 3735 break; 3736 3737 cfs_rq->last = NULL; 3738 } 3739 } 3740 3741 static void __clear_buddies_next(struct sched_entity *se) 3742 { 3743 for_each_sched_entity(se) { 3744 struct cfs_rq *cfs_rq = cfs_rq_of(se); 3745 if (cfs_rq->next != se) 3746 break; 3747 3748 cfs_rq->next = NULL; 3749 } 3750 } 3751 3752 static void __clear_buddies_skip(struct sched_entity *se) 3753 { 3754 for_each_sched_entity(se) { 3755 struct cfs_rq *cfs_rq = cfs_rq_of(se); 3756 if (cfs_rq->skip != se) 3757 break; 3758 3759 cfs_rq->skip = NULL; 3760 } 3761 } 3762 3763 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se) 3764 { 3765 if (cfs_rq->last == se) 3766 __clear_buddies_last(se); 3767 3768 if (cfs_rq->next == se) 3769 __clear_buddies_next(se); 3770 3771 if (cfs_rq->skip == se) 3772 __clear_buddies_skip(se); 3773 } 3774 3775 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq); 3776 3777 static void 3778 dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 3779 { 3780 /* 3781 * Update run-time statistics of the 'current'. 3782 */ 3783 update_curr(cfs_rq); 3784 3785 /* 3786 * When dequeuing a sched_entity, we must: 3787 * - Update loads to have both entity and cfs_rq synced with now. 3788 * - Substract its load from the cfs_rq->runnable_avg. 3789 * - Substract its previous weight from cfs_rq->load.weight. 3790 * - For group entity, update its weight to reflect the new share 3791 * of its group cfs_rq. 3792 */ 3793 update_load_avg(se, UPDATE_TG); 3794 dequeue_entity_load_avg(cfs_rq, se); 3795 3796 update_stats_dequeue(cfs_rq, se, flags); 3797 3798 clear_buddies(cfs_rq, se); 3799 3800 if (se != cfs_rq->curr) 3801 __dequeue_entity(cfs_rq, se); 3802 se->on_rq = 0; 3803 account_entity_dequeue(cfs_rq, se); 3804 3805 /* 3806 * Normalize after update_curr(); which will also have moved 3807 * min_vruntime if @se is the one holding it back. But before doing 3808 * update_min_vruntime() again, which will discount @se's position and 3809 * can move min_vruntime forward still more. 3810 */ 3811 if (!(flags & DEQUEUE_SLEEP)) 3812 se->vruntime -= cfs_rq->min_vruntime; 3813 3814 /* return excess runtime on last dequeue */ 3815 return_cfs_rq_runtime(cfs_rq); 3816 3817 update_cfs_shares(se); 3818 3819 /* 3820 * Now advance min_vruntime if @se was the entity holding it back, 3821 * except when: DEQUEUE_SAVE && !DEQUEUE_MOVE, in this case we'll be 3822 * put back on, and if we advance min_vruntime, we'll be placed back 3823 * further than we started -- ie. we'll be penalized. 3824 */ 3825 if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) == DEQUEUE_SAVE) 3826 update_min_vruntime(cfs_rq); 3827 } 3828 3829 /* 3830 * Preempt the current task with a newly woken task if needed: 3831 */ 3832 static void 3833 check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr) 3834 { 3835 unsigned long ideal_runtime, delta_exec; 3836 struct sched_entity *se; 3837 s64 delta; 3838 3839 ideal_runtime = sched_slice(cfs_rq, curr); 3840 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime; 3841 if (delta_exec > ideal_runtime) { 3842 resched_curr(rq_of(cfs_rq)); 3843 /* 3844 * The current task ran long enough, ensure it doesn't get 3845 * re-elected due to buddy favours. 3846 */ 3847 clear_buddies(cfs_rq, curr); 3848 return; 3849 } 3850 3851 /* 3852 * Ensure that a task that missed wakeup preemption by a 3853 * narrow margin doesn't have to wait for a full slice. 3854 * This also mitigates buddy induced latencies under load. 3855 */ 3856 if (delta_exec < sysctl_sched_min_granularity) 3857 return; 3858 3859 se = __pick_first_entity(cfs_rq); 3860 delta = curr->vruntime - se->vruntime; 3861 3862 if (delta < 0) 3863 return; 3864 3865 if (delta > ideal_runtime) 3866 resched_curr(rq_of(cfs_rq)); 3867 } 3868 3869 static void 3870 set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) 3871 { 3872 /* 'current' is not kept within the tree. */ 3873 if (se->on_rq) { 3874 /* 3875 * Any task has to be enqueued before it get to execute on 3876 * a CPU. So account for the time it spent waiting on the 3877 * runqueue. 3878 */ 3879 update_stats_wait_end(cfs_rq, se); 3880 __dequeue_entity(cfs_rq, se); 3881 update_load_avg(se, UPDATE_TG); 3882 } 3883 3884 update_stats_curr_start(cfs_rq, se); 3885 cfs_rq->curr = se; 3886 3887 /* 3888 * Track our maximum slice length, if the CPU's load is at 3889 * least twice that of our own weight (i.e. dont track it 3890 * when there are only lesser-weight tasks around): 3891 */ 3892 if (schedstat_enabled() && rq_of(cfs_rq)->load.weight >= 2*se->load.weight) { 3893 schedstat_set(se->statistics.slice_max, 3894 max((u64)schedstat_val(se->statistics.slice_max), 3895 se->sum_exec_runtime - se->prev_sum_exec_runtime)); 3896 } 3897 3898 se->prev_sum_exec_runtime = se->sum_exec_runtime; 3899 } 3900 3901 static int 3902 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se); 3903 3904 /* 3905 * Pick the next process, keeping these things in mind, in this order: 3906 * 1) keep things fair between processes/task groups 3907 * 2) pick the "next" process, since someone really wants that to run 3908 * 3) pick the "last" process, for cache locality 3909 * 4) do not run the "skip" process, if something else is available 3910 */ 3911 static struct sched_entity * 3912 pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr) 3913 { 3914 struct sched_entity *left = __pick_first_entity(cfs_rq); 3915 struct sched_entity *se; 3916 3917 /* 3918 * If curr is set we have to see if its left of the leftmost entity 3919 * still in the tree, provided there was anything in the tree at all. 3920 */ 3921 if (!left || (curr && entity_before(curr, left))) 3922 left = curr; 3923 3924 se = left; /* ideally we run the leftmost entity */ 3925 3926 /* 3927 * Avoid running the skip buddy, if running something else can 3928 * be done without getting too unfair. 3929 */ 3930 if (cfs_rq->skip == se) { 3931 struct sched_entity *second; 3932 3933 if (se == curr) { 3934 second = __pick_first_entity(cfs_rq); 3935 } else { 3936 second = __pick_next_entity(se); 3937 if (!second || (curr && entity_before(curr, second))) 3938 second = curr; 3939 } 3940 3941 if (second && wakeup_preempt_entity(second, left) < 1) 3942 se = second; 3943 } 3944 3945 /* 3946 * Prefer last buddy, try to return the CPU to a preempted task. 3947 */ 3948 if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1) 3949 se = cfs_rq->last; 3950 3951 /* 3952 * Someone really wants this to run. If it's not unfair, run it. 3953 */ 3954 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1) 3955 se = cfs_rq->next; 3956 3957 clear_buddies(cfs_rq, se); 3958 3959 return se; 3960 } 3961 3962 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq); 3963 3964 static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev) 3965 { 3966 /* 3967 * If still on the runqueue then deactivate_task() 3968 * was not called and update_curr() has to be done: 3969 */ 3970 if (prev->on_rq) 3971 update_curr(cfs_rq); 3972 3973 /* throttle cfs_rqs exceeding runtime */ 3974 check_cfs_rq_runtime(cfs_rq); 3975 3976 check_spread(cfs_rq, prev); 3977 3978 if (prev->on_rq) { 3979 update_stats_wait_start(cfs_rq, prev); 3980 /* Put 'current' back into the tree. */ 3981 __enqueue_entity(cfs_rq, prev); 3982 /* in !on_rq case, update occurred at dequeue */ 3983 update_load_avg(prev, 0); 3984 } 3985 cfs_rq->curr = NULL; 3986 } 3987 3988 static void 3989 entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued) 3990 { 3991 /* 3992 * Update run-time statistics of the 'current'. 3993 */ 3994 update_curr(cfs_rq); 3995 3996 /* 3997 * Ensure that runnable average is periodically updated. 3998 */ 3999 update_load_avg(curr, UPDATE_TG); 4000 update_cfs_shares(curr); 4001 4002 #ifdef CONFIG_SCHED_HRTICK 4003 /* 4004 * queued ticks are scheduled to match the slice, so don't bother 4005 * validating it and just reschedule. 4006 */ 4007 if (queued) { 4008 resched_curr(rq_of(cfs_rq)); 4009 return; 4010 } 4011 /* 4012 * don't let the period tick interfere with the hrtick preemption 4013 */ 4014 if (!sched_feat(DOUBLE_TICK) && 4015 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer)) 4016 return; 4017 #endif 4018 4019 if (cfs_rq->nr_running > 1) 4020 check_preempt_tick(cfs_rq, curr); 4021 } 4022 4023 4024 /************************************************** 4025 * CFS bandwidth control machinery 4026 */ 4027 4028 #ifdef CONFIG_CFS_BANDWIDTH 4029 4030 #ifdef HAVE_JUMP_LABEL 4031 static struct static_key __cfs_bandwidth_used; 4032 4033 static inline bool cfs_bandwidth_used(void) 4034 { 4035 return static_key_false(&__cfs_bandwidth_used); 4036 } 4037 4038 void cfs_bandwidth_usage_inc(void) 4039 { 4040 static_key_slow_inc(&__cfs_bandwidth_used); 4041 } 4042 4043 void cfs_bandwidth_usage_dec(void) 4044 { 4045 static_key_slow_dec(&__cfs_bandwidth_used); 4046 } 4047 #else /* HAVE_JUMP_LABEL */ 4048 static bool cfs_bandwidth_used(void) 4049 { 4050 return true; 4051 } 4052 4053 void cfs_bandwidth_usage_inc(void) {} 4054 void cfs_bandwidth_usage_dec(void) {} 4055 #endif /* HAVE_JUMP_LABEL */ 4056 4057 /* 4058 * default period for cfs group bandwidth. 4059 * default: 0.1s, units: nanoseconds 4060 */ 4061 static inline u64 default_cfs_period(void) 4062 { 4063 return 100000000ULL; 4064 } 4065 4066 static inline u64 sched_cfs_bandwidth_slice(void) 4067 { 4068 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC; 4069 } 4070 4071 /* 4072 * Replenish runtime according to assigned quota and update expiration time. 4073 * We use sched_clock_cpu directly instead of rq->clock to avoid adding 4074 * additional synchronization around rq->lock. 4075 * 4076 * requires cfs_b->lock 4077 */ 4078 void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b) 4079 { 4080 u64 now; 4081 4082 if (cfs_b->quota == RUNTIME_INF) 4083 return; 4084 4085 now = sched_clock_cpu(smp_processor_id()); 4086 cfs_b->runtime = cfs_b->quota; 4087 cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period); 4088 } 4089 4090 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg) 4091 { 4092 return &tg->cfs_bandwidth; 4093 } 4094 4095 /* rq->task_clock normalized against any time this cfs_rq has spent throttled */ 4096 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq) 4097 { 4098 if (unlikely(cfs_rq->throttle_count)) 4099 return cfs_rq->throttled_clock_task - cfs_rq->throttled_clock_task_time; 4100 4101 return rq_clock_task(rq_of(cfs_rq)) - cfs_rq->throttled_clock_task_time; 4102 } 4103 4104 /* returns 0 on failure to allocate runtime */ 4105 static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq) 4106 { 4107 struct task_group *tg = cfs_rq->tg; 4108 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg); 4109 u64 amount = 0, min_amount, expires; 4110 4111 /* note: this is a positive sum as runtime_remaining <= 0 */ 4112 min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining; 4113 4114 raw_spin_lock(&cfs_b->lock); 4115 if (cfs_b->quota == RUNTIME_INF) 4116 amount = min_amount; 4117 else { 4118 start_cfs_bandwidth(cfs_b); 4119 4120 if (cfs_b->runtime > 0) { 4121 amount = min(cfs_b->runtime, min_amount); 4122 cfs_b->runtime -= amount; 4123 cfs_b->idle = 0; 4124 } 4125 } 4126 expires = cfs_b->runtime_expires; 4127 raw_spin_unlock(&cfs_b->lock); 4128 4129 cfs_rq->runtime_remaining += amount; 4130 /* 4131 * we may have advanced our local expiration to account for allowed 4132 * spread between our sched_clock and the one on which runtime was 4133 * issued. 4134 */ 4135 if ((s64)(expires - cfs_rq->runtime_expires) > 0) 4136 cfs_rq->runtime_expires = expires; 4137 4138 return cfs_rq->runtime_remaining > 0; 4139 } 4140 4141 /* 4142 * Note: This depends on the synchronization provided by sched_clock and the 4143 * fact that rq->clock snapshots this value. 4144 */ 4145 static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq) 4146 { 4147 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 4148 4149 /* if the deadline is ahead of our clock, nothing to do */ 4150 if (likely((s64)(rq_clock(rq_of(cfs_rq)) - cfs_rq->runtime_expires) < 0)) 4151 return; 4152 4153 if (cfs_rq->runtime_remaining < 0) 4154 return; 4155 4156 /* 4157 * If the local deadline has passed we have to consider the 4158 * possibility that our sched_clock is 'fast' and the global deadline 4159 * has not truly expired. 4160 * 4161 * Fortunately we can check determine whether this the case by checking 4162 * whether the global deadline has advanced. It is valid to compare 4163 * cfs_b->runtime_expires without any locks since we only care about 4164 * exact equality, so a partial write will still work. 4165 */ 4166 4167 if (cfs_rq->runtime_expires != cfs_b->runtime_expires) { 4168 /* extend local deadline, drift is bounded above by 2 ticks */ 4169 cfs_rq->runtime_expires += TICK_NSEC; 4170 } else { 4171 /* global deadline is ahead, expiration has passed */ 4172 cfs_rq->runtime_remaining = 0; 4173 } 4174 } 4175 4176 static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) 4177 { 4178 /* dock delta_exec before expiring quota (as it could span periods) */ 4179 cfs_rq->runtime_remaining -= delta_exec; 4180 expire_cfs_rq_runtime(cfs_rq); 4181 4182 if (likely(cfs_rq->runtime_remaining > 0)) 4183 return; 4184 4185 /* 4186 * if we're unable to extend our runtime we resched so that the active 4187 * hierarchy can be throttled 4188 */ 4189 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr)) 4190 resched_curr(rq_of(cfs_rq)); 4191 } 4192 4193 static __always_inline 4194 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) 4195 { 4196 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled) 4197 return; 4198 4199 __account_cfs_rq_runtime(cfs_rq, delta_exec); 4200 } 4201 4202 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq) 4203 { 4204 return cfs_bandwidth_used() && cfs_rq->throttled; 4205 } 4206 4207 /* check whether cfs_rq, or any parent, is throttled */ 4208 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq) 4209 { 4210 return cfs_bandwidth_used() && cfs_rq->throttle_count; 4211 } 4212 4213 /* 4214 * Ensure that neither of the group entities corresponding to src_cpu or 4215 * dest_cpu are members of a throttled hierarchy when performing group 4216 * load-balance operations. 4217 */ 4218 static inline int throttled_lb_pair(struct task_group *tg, 4219 int src_cpu, int dest_cpu) 4220 { 4221 struct cfs_rq *src_cfs_rq, *dest_cfs_rq; 4222 4223 src_cfs_rq = tg->cfs_rq[src_cpu]; 4224 dest_cfs_rq = tg->cfs_rq[dest_cpu]; 4225 4226 return throttled_hierarchy(src_cfs_rq) || 4227 throttled_hierarchy(dest_cfs_rq); 4228 } 4229 4230 /* updated child weight may affect parent so we have to do this bottom up */ 4231 static int tg_unthrottle_up(struct task_group *tg, void *data) 4232 { 4233 struct rq *rq = data; 4234 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; 4235 4236 cfs_rq->throttle_count--; 4237 if (!cfs_rq->throttle_count) { 4238 /* adjust cfs_rq_clock_task() */ 4239 cfs_rq->throttled_clock_task_time += rq_clock_task(rq) - 4240 cfs_rq->throttled_clock_task; 4241 } 4242 4243 return 0; 4244 } 4245 4246 static int tg_throttle_down(struct task_group *tg, void *data) 4247 { 4248 struct rq *rq = data; 4249 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; 4250 4251 /* group is entering throttled state, stop time */ 4252 if (!cfs_rq->throttle_count) 4253 cfs_rq->throttled_clock_task = rq_clock_task(rq); 4254 cfs_rq->throttle_count++; 4255 4256 return 0; 4257 } 4258 4259 static void throttle_cfs_rq(struct cfs_rq *cfs_rq) 4260 { 4261 struct rq *rq = rq_of(cfs_rq); 4262 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 4263 struct sched_entity *se; 4264 long task_delta, dequeue = 1; 4265 bool empty; 4266 4267 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))]; 4268 4269 /* freeze hierarchy runnable averages while throttled */ 4270 rcu_read_lock(); 4271 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq); 4272 rcu_read_unlock(); 4273 4274 task_delta = cfs_rq->h_nr_running; 4275 for_each_sched_entity(se) { 4276 struct cfs_rq *qcfs_rq = cfs_rq_of(se); 4277 /* throttled entity or throttle-on-deactivate */ 4278 if (!se->on_rq) 4279 break; 4280 4281 if (dequeue) 4282 dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP); 4283 qcfs_rq->h_nr_running -= task_delta; 4284 4285 if (qcfs_rq->load.weight) 4286 dequeue = 0; 4287 } 4288 4289 if (!se) 4290 sub_nr_running(rq, task_delta); 4291 4292 cfs_rq->throttled = 1; 4293 cfs_rq->throttled_clock = rq_clock(rq); 4294 raw_spin_lock(&cfs_b->lock); 4295 empty = list_empty(&cfs_b->throttled_cfs_rq); 4296 4297 /* 4298 * Add to the _head_ of the list, so that an already-started 4299 * distribute_cfs_runtime will not see us 4300 */ 4301 list_add_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq); 4302 4303 /* 4304 * If we're the first throttled task, make sure the bandwidth 4305 * timer is running. 4306 */ 4307 if (empty) 4308 start_cfs_bandwidth(cfs_b); 4309 4310 raw_spin_unlock(&cfs_b->lock); 4311 } 4312 4313 void unthrottle_cfs_rq(struct cfs_rq *cfs_rq) 4314 { 4315 struct rq *rq = rq_of(cfs_rq); 4316 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 4317 struct sched_entity *se; 4318 int enqueue = 1; 4319 long task_delta; 4320 4321 se = cfs_rq->tg->se[cpu_of(rq)]; 4322 4323 cfs_rq->throttled = 0; 4324 4325 update_rq_clock(rq); 4326 4327 raw_spin_lock(&cfs_b->lock); 4328 cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock; 4329 list_del_rcu(&cfs_rq->throttled_list); 4330 raw_spin_unlock(&cfs_b->lock); 4331 4332 /* update hierarchical throttle state */ 4333 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq); 4334 4335 if (!cfs_rq->load.weight) 4336 return; 4337 4338 task_delta = cfs_rq->h_nr_running; 4339 for_each_sched_entity(se) { 4340 if (se->on_rq) 4341 enqueue = 0; 4342 4343 cfs_rq = cfs_rq_of(se); 4344 if (enqueue) 4345 enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP); 4346 cfs_rq->h_nr_running += task_delta; 4347 4348 if (cfs_rq_throttled(cfs_rq)) 4349 break; 4350 } 4351 4352 if (!se) 4353 add_nr_running(rq, task_delta); 4354 4355 /* determine whether we need to wake up potentially idle cpu */ 4356 if (rq->curr == rq->idle && rq->cfs.nr_running) 4357 resched_curr(rq); 4358 } 4359 4360 static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b, 4361 u64 remaining, u64 expires) 4362 { 4363 struct cfs_rq *cfs_rq; 4364 u64 runtime; 4365 u64 starting_runtime = remaining; 4366 4367 rcu_read_lock(); 4368 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq, 4369 throttled_list) { 4370 struct rq *rq = rq_of(cfs_rq); 4371 struct rq_flags rf; 4372 4373 rq_lock(rq, &rf); 4374 if (!cfs_rq_throttled(cfs_rq)) 4375 goto next; 4376 4377 runtime = -cfs_rq->runtime_remaining + 1; 4378 if (runtime > remaining) 4379 runtime = remaining; 4380 remaining -= runtime; 4381 4382 cfs_rq->runtime_remaining += runtime; 4383 cfs_rq->runtime_expires = expires; 4384 4385 /* we check whether we're throttled above */ 4386 if (cfs_rq->runtime_remaining > 0) 4387 unthrottle_cfs_rq(cfs_rq); 4388 4389 next: 4390 rq_unlock(rq, &rf); 4391 4392 if (!remaining) 4393 break; 4394 } 4395 rcu_read_unlock(); 4396 4397 return starting_runtime - remaining; 4398 } 4399 4400 /* 4401 * Responsible for refilling a task_group's bandwidth and unthrottling its 4402 * cfs_rqs as appropriate. If there has been no activity within the last 4403 * period the timer is deactivated until scheduling resumes; cfs_b->idle is 4404 * used to track this state. 4405 */ 4406 static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun) 4407 { 4408 u64 runtime, runtime_expires; 4409 int throttled; 4410 4411 /* no need to continue the timer with no bandwidth constraint */ 4412 if (cfs_b->quota == RUNTIME_INF) 4413 goto out_deactivate; 4414 4415 throttled = !list_empty(&cfs_b->throttled_cfs_rq); 4416 cfs_b->nr_periods += overrun; 4417 4418 /* 4419 * idle depends on !throttled (for the case of a large deficit), and if 4420 * we're going inactive then everything else can be deferred 4421 */ 4422 if (cfs_b->idle && !throttled) 4423 goto out_deactivate; 4424 4425 __refill_cfs_bandwidth_runtime(cfs_b); 4426 4427 if (!throttled) { 4428 /* mark as potentially idle for the upcoming period */ 4429 cfs_b->idle = 1; 4430 return 0; 4431 } 4432 4433 /* account preceding periods in which throttling occurred */ 4434 cfs_b->nr_throttled += overrun; 4435 4436 runtime_expires = cfs_b->runtime_expires; 4437 4438 /* 4439 * This check is repeated as we are holding onto the new bandwidth while 4440 * we unthrottle. This can potentially race with an unthrottled group 4441 * trying to acquire new bandwidth from the global pool. This can result 4442 * in us over-using our runtime if it is all used during this loop, but 4443 * only by limited amounts in that extreme case. 4444 */ 4445 while (throttled && cfs_b->runtime > 0) { 4446 runtime = cfs_b->runtime; 4447 raw_spin_unlock(&cfs_b->lock); 4448 /* we can't nest cfs_b->lock while distributing bandwidth */ 4449 runtime = distribute_cfs_runtime(cfs_b, runtime, 4450 runtime_expires); 4451 raw_spin_lock(&cfs_b->lock); 4452 4453 throttled = !list_empty(&cfs_b->throttled_cfs_rq); 4454 4455 cfs_b->runtime -= min(runtime, cfs_b->runtime); 4456 } 4457 4458 /* 4459 * While we are ensured activity in the period following an 4460 * unthrottle, this also covers the case in which the new bandwidth is 4461 * insufficient to cover the existing bandwidth deficit. (Forcing the 4462 * timer to remain active while there are any throttled entities.) 4463 */ 4464 cfs_b->idle = 0; 4465 4466 return 0; 4467 4468 out_deactivate: 4469 return 1; 4470 } 4471 4472 /* a cfs_rq won't donate quota below this amount */ 4473 static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC; 4474 /* minimum remaining period time to redistribute slack quota */ 4475 static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC; 4476 /* how long we wait to gather additional slack before distributing */ 4477 static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC; 4478 4479 /* 4480 * Are we near the end of the current quota period? 4481 * 4482 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the 4483 * hrtimer base being cleared by hrtimer_start. In the case of 4484 * migrate_hrtimers, base is never cleared, so we are fine. 4485 */ 4486 static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire) 4487 { 4488 struct hrtimer *refresh_timer = &cfs_b->period_timer; 4489 u64 remaining; 4490 4491 /* if the call-back is running a quota refresh is already occurring */ 4492 if (hrtimer_callback_running(refresh_timer)) 4493 return 1; 4494 4495 /* is a quota refresh about to occur? */ 4496 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer)); 4497 if (remaining < min_expire) 4498 return 1; 4499 4500 return 0; 4501 } 4502 4503 static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b) 4504 { 4505 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration; 4506 4507 /* if there's a quota refresh soon don't bother with slack */ 4508 if (runtime_refresh_within(cfs_b, min_left)) 4509 return; 4510 4511 hrtimer_start(&cfs_b->slack_timer, 4512 ns_to_ktime(cfs_bandwidth_slack_period), 4513 HRTIMER_MODE_REL); 4514 } 4515 4516 /* we know any runtime found here is valid as update_curr() precedes return */ 4517 static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq) 4518 { 4519 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 4520 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime; 4521 4522 if (slack_runtime <= 0) 4523 return; 4524 4525 raw_spin_lock(&cfs_b->lock); 4526 if (cfs_b->quota != RUNTIME_INF && 4527 cfs_rq->runtime_expires == cfs_b->runtime_expires) { 4528 cfs_b->runtime += slack_runtime; 4529 4530 /* we are under rq->lock, defer unthrottling using a timer */ 4531 if (cfs_b->runtime > sched_cfs_bandwidth_slice() && 4532 !list_empty(&cfs_b->throttled_cfs_rq)) 4533 start_cfs_slack_bandwidth(cfs_b); 4534 } 4535 raw_spin_unlock(&cfs_b->lock); 4536 4537 /* even if it's not valid for return we don't want to try again */ 4538 cfs_rq->runtime_remaining -= slack_runtime; 4539 } 4540 4541 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) 4542 { 4543 if (!cfs_bandwidth_used()) 4544 return; 4545 4546 if (!cfs_rq->runtime_enabled || cfs_rq->nr_running) 4547 return; 4548 4549 __return_cfs_rq_runtime(cfs_rq); 4550 } 4551 4552 /* 4553 * This is done with a timer (instead of inline with bandwidth return) since 4554 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs. 4555 */ 4556 static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b) 4557 { 4558 u64 runtime = 0, slice = sched_cfs_bandwidth_slice(); 4559 u64 expires; 4560 4561 /* confirm we're still not at a refresh boundary */ 4562 raw_spin_lock(&cfs_b->lock); 4563 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) { 4564 raw_spin_unlock(&cfs_b->lock); 4565 return; 4566 } 4567 4568 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice) 4569 runtime = cfs_b->runtime; 4570 4571 expires = cfs_b->runtime_expires; 4572 raw_spin_unlock(&cfs_b->lock); 4573 4574 if (!runtime) 4575 return; 4576 4577 runtime = distribute_cfs_runtime(cfs_b, runtime, expires); 4578 4579 raw_spin_lock(&cfs_b->lock); 4580 if (expires == cfs_b->runtime_expires) 4581 cfs_b->runtime -= min(runtime, cfs_b->runtime); 4582 raw_spin_unlock(&cfs_b->lock); 4583 } 4584 4585 /* 4586 * When a group wakes up we want to make sure that its quota is not already 4587 * expired/exceeded, otherwise it may be allowed to steal additional ticks of 4588 * runtime as update_curr() throttling can not not trigger until it's on-rq. 4589 */ 4590 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) 4591 { 4592 if (!cfs_bandwidth_used()) 4593 return; 4594 4595 /* an active group must be handled by the update_curr()->put() path */ 4596 if (!cfs_rq->runtime_enabled || cfs_rq->curr) 4597 return; 4598 4599 /* ensure the group is not already throttled */ 4600 if (cfs_rq_throttled(cfs_rq)) 4601 return; 4602 4603 /* update runtime allocation */ 4604 account_cfs_rq_runtime(cfs_rq, 0); 4605 if (cfs_rq->runtime_remaining <= 0) 4606 throttle_cfs_rq(cfs_rq); 4607 } 4608 4609 static void sync_throttle(struct task_group *tg, int cpu) 4610 { 4611 struct cfs_rq *pcfs_rq, *cfs_rq; 4612 4613 if (!cfs_bandwidth_used()) 4614 return; 4615 4616 if (!tg->parent) 4617 return; 4618 4619 cfs_rq = tg->cfs_rq[cpu]; 4620 pcfs_rq = tg->parent->cfs_rq[cpu]; 4621 4622 cfs_rq->throttle_count = pcfs_rq->throttle_count; 4623 cfs_rq->throttled_clock_task = rq_clock_task(cpu_rq(cpu)); 4624 } 4625 4626 /* conditionally throttle active cfs_rq's from put_prev_entity() */ 4627 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) 4628 { 4629 if (!cfs_bandwidth_used()) 4630 return false; 4631 4632 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0)) 4633 return false; 4634 4635 /* 4636 * it's possible for a throttled entity to be forced into a running 4637 * state (e.g. set_curr_task), in this case we're finished. 4638 */ 4639 if (cfs_rq_throttled(cfs_rq)) 4640 return true; 4641 4642 throttle_cfs_rq(cfs_rq); 4643 return true; 4644 } 4645 4646 static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer) 4647 { 4648 struct cfs_bandwidth *cfs_b = 4649 container_of(timer, struct cfs_bandwidth, slack_timer); 4650 4651 do_sched_cfs_slack_timer(cfs_b); 4652 4653 return HRTIMER_NORESTART; 4654 } 4655 4656 static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer) 4657 { 4658 struct cfs_bandwidth *cfs_b = 4659 container_of(timer, struct cfs_bandwidth, period_timer); 4660 int overrun; 4661 int idle = 0; 4662 4663 raw_spin_lock(&cfs_b->lock); 4664 for (;;) { 4665 overrun = hrtimer_forward_now(timer, cfs_b->period); 4666 if (!overrun) 4667 break; 4668 4669 idle = do_sched_cfs_period_timer(cfs_b, overrun); 4670 } 4671 if (idle) 4672 cfs_b->period_active = 0; 4673 raw_spin_unlock(&cfs_b->lock); 4674 4675 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART; 4676 } 4677 4678 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) 4679 { 4680 raw_spin_lock_init(&cfs_b->lock); 4681 cfs_b->runtime = 0; 4682 cfs_b->quota = RUNTIME_INF; 4683 cfs_b->period = ns_to_ktime(default_cfs_period()); 4684 4685 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq); 4686 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED); 4687 cfs_b->period_timer.function = sched_cfs_period_timer; 4688 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 4689 cfs_b->slack_timer.function = sched_cfs_slack_timer; 4690 } 4691 4692 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) 4693 { 4694 cfs_rq->runtime_enabled = 0; 4695 INIT_LIST_HEAD(&cfs_rq->throttled_list); 4696 } 4697 4698 void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b) 4699 { 4700 lockdep_assert_held(&cfs_b->lock); 4701 4702 if (!cfs_b->period_active) { 4703 cfs_b->period_active = 1; 4704 hrtimer_forward_now(&cfs_b->period_timer, cfs_b->period); 4705 hrtimer_start_expires(&cfs_b->period_timer, HRTIMER_MODE_ABS_PINNED); 4706 } 4707 } 4708 4709 static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) 4710 { 4711 /* init_cfs_bandwidth() was not called */ 4712 if (!cfs_b->throttled_cfs_rq.next) 4713 return; 4714 4715 hrtimer_cancel(&cfs_b->period_timer); 4716 hrtimer_cancel(&cfs_b->slack_timer); 4717 } 4718 4719 /* 4720 * Both these cpu hotplug callbacks race against unregister_fair_sched_group() 4721 * 4722 * The race is harmless, since modifying bandwidth settings of unhooked group 4723 * bits doesn't do much. 4724 */ 4725 4726 /* cpu online calback */ 4727 static void __maybe_unused update_runtime_enabled(struct rq *rq) 4728 { 4729 struct task_group *tg; 4730 4731 lockdep_assert_held(&rq->lock); 4732 4733 rcu_read_lock(); 4734 list_for_each_entry_rcu(tg, &task_groups, list) { 4735 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 4736 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; 4737 4738 raw_spin_lock(&cfs_b->lock); 4739 cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF; 4740 raw_spin_unlock(&cfs_b->lock); 4741 } 4742 rcu_read_unlock(); 4743 } 4744 4745 /* cpu offline callback */ 4746 static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq) 4747 { 4748 struct task_group *tg; 4749 4750 lockdep_assert_held(&rq->lock); 4751 4752 rcu_read_lock(); 4753 list_for_each_entry_rcu(tg, &task_groups, list) { 4754 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; 4755 4756 if (!cfs_rq->runtime_enabled) 4757 continue; 4758 4759 /* 4760 * clock_task is not advancing so we just need to make sure 4761 * there's some valid quota amount 4762 */ 4763 cfs_rq->runtime_remaining = 1; 4764 /* 4765 * Offline rq is schedulable till cpu is completely disabled 4766 * in take_cpu_down(), so we prevent new cfs throttling here. 4767 */ 4768 cfs_rq->runtime_enabled = 0; 4769 4770 if (cfs_rq_throttled(cfs_rq)) 4771 unthrottle_cfs_rq(cfs_rq); 4772 } 4773 rcu_read_unlock(); 4774 } 4775 4776 #else /* CONFIG_CFS_BANDWIDTH */ 4777 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq) 4778 { 4779 return rq_clock_task(rq_of(cfs_rq)); 4780 } 4781 4782 static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {} 4783 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; } 4784 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {} 4785 static inline void sync_throttle(struct task_group *tg, int cpu) {} 4786 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {} 4787 4788 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq) 4789 { 4790 return 0; 4791 } 4792 4793 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq) 4794 { 4795 return 0; 4796 } 4797 4798 static inline int throttled_lb_pair(struct task_group *tg, 4799 int src_cpu, int dest_cpu) 4800 { 4801 return 0; 4802 } 4803 4804 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {} 4805 4806 #ifdef CONFIG_FAIR_GROUP_SCHED 4807 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {} 4808 #endif 4809 4810 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg) 4811 { 4812 return NULL; 4813 } 4814 static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {} 4815 static inline void update_runtime_enabled(struct rq *rq) {} 4816 static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {} 4817 4818 #endif /* CONFIG_CFS_BANDWIDTH */ 4819 4820 /************************************************** 4821 * CFS operations on tasks: 4822 */ 4823 4824 #ifdef CONFIG_SCHED_HRTICK 4825 static void hrtick_start_fair(struct rq *rq, struct task_struct *p) 4826 { 4827 struct sched_entity *se = &p->se; 4828 struct cfs_rq *cfs_rq = cfs_rq_of(se); 4829 4830 SCHED_WARN_ON(task_rq(p) != rq); 4831 4832 if (rq->cfs.h_nr_running > 1) { 4833 u64 slice = sched_slice(cfs_rq, se); 4834 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime; 4835 s64 delta = slice - ran; 4836 4837 if (delta < 0) { 4838 if (rq->curr == p) 4839 resched_curr(rq); 4840 return; 4841 } 4842 hrtick_start(rq, delta); 4843 } 4844 } 4845 4846 /* 4847 * called from enqueue/dequeue and updates the hrtick when the 4848 * current task is from our class and nr_running is low enough 4849 * to matter. 4850 */ 4851 static void hrtick_update(struct rq *rq) 4852 { 4853 struct task_struct *curr = rq->curr; 4854 4855 if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class) 4856 return; 4857 4858 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency) 4859 hrtick_start_fair(rq, curr); 4860 } 4861 #else /* !CONFIG_SCHED_HRTICK */ 4862 static inline void 4863 hrtick_start_fair(struct rq *rq, struct task_struct *p) 4864 { 4865 } 4866 4867 static inline void hrtick_update(struct rq *rq) 4868 { 4869 } 4870 #endif 4871 4872 /* 4873 * The enqueue_task method is called before nr_running is 4874 * increased. Here we update the fair scheduling stats and 4875 * then put the task into the rbtree: 4876 */ 4877 static void 4878 enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags) 4879 { 4880 struct cfs_rq *cfs_rq; 4881 struct sched_entity *se = &p->se; 4882 4883 /* 4884 * If in_iowait is set, the code below may not trigger any cpufreq 4885 * utilization updates, so do it here explicitly with the IOWAIT flag 4886 * passed. 4887 */ 4888 if (p->in_iowait) 4889 cpufreq_update_util(rq, SCHED_CPUFREQ_IOWAIT); 4890 4891 for_each_sched_entity(se) { 4892 if (se->on_rq) 4893 break; 4894 cfs_rq = cfs_rq_of(se); 4895 enqueue_entity(cfs_rq, se, flags); 4896 4897 /* 4898 * end evaluation on encountering a throttled cfs_rq 4899 * 4900 * note: in the case of encountering a throttled cfs_rq we will 4901 * post the final h_nr_running increment below. 4902 */ 4903 if (cfs_rq_throttled(cfs_rq)) 4904 break; 4905 cfs_rq->h_nr_running++; 4906 4907 flags = ENQUEUE_WAKEUP; 4908 } 4909 4910 for_each_sched_entity(se) { 4911 cfs_rq = cfs_rq_of(se); 4912 cfs_rq->h_nr_running++; 4913 4914 if (cfs_rq_throttled(cfs_rq)) 4915 break; 4916 4917 update_load_avg(se, UPDATE_TG); 4918 update_cfs_shares(se); 4919 } 4920 4921 if (!se) 4922 add_nr_running(rq, 1); 4923 4924 hrtick_update(rq); 4925 } 4926 4927 static void set_next_buddy(struct sched_entity *se); 4928 4929 /* 4930 * The dequeue_task method is called before nr_running is 4931 * decreased. We remove the task from the rbtree and 4932 * update the fair scheduling stats: 4933 */ 4934 static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags) 4935 { 4936 struct cfs_rq *cfs_rq; 4937 struct sched_entity *se = &p->se; 4938 int task_sleep = flags & DEQUEUE_SLEEP; 4939 4940 for_each_sched_entity(se) { 4941 cfs_rq = cfs_rq_of(se); 4942 dequeue_entity(cfs_rq, se, flags); 4943 4944 /* 4945 * end evaluation on encountering a throttled cfs_rq 4946 * 4947 * note: in the case of encountering a throttled cfs_rq we will 4948 * post the final h_nr_running decrement below. 4949 */ 4950 if (cfs_rq_throttled(cfs_rq)) 4951 break; 4952 cfs_rq->h_nr_running--; 4953 4954 /* Don't dequeue parent if it has other entities besides us */ 4955 if (cfs_rq->load.weight) { 4956 /* Avoid re-evaluating load for this entity: */ 4957 se = parent_entity(se); 4958 /* 4959 * Bias pick_next to pick a task from this cfs_rq, as 4960 * p is sleeping when it is within its sched_slice. 4961 */ 4962 if (task_sleep && se && !throttled_hierarchy(cfs_rq)) 4963 set_next_buddy(se); 4964 break; 4965 } 4966 flags |= DEQUEUE_SLEEP; 4967 } 4968 4969 for_each_sched_entity(se) { 4970 cfs_rq = cfs_rq_of(se); 4971 cfs_rq->h_nr_running--; 4972 4973 if (cfs_rq_throttled(cfs_rq)) 4974 break; 4975 4976 update_load_avg(se, UPDATE_TG); 4977 update_cfs_shares(se); 4978 } 4979 4980 if (!se) 4981 sub_nr_running(rq, 1); 4982 4983 hrtick_update(rq); 4984 } 4985 4986 #ifdef CONFIG_SMP 4987 4988 /* Working cpumask for: load_balance, load_balance_newidle. */ 4989 DEFINE_PER_CPU(cpumask_var_t, load_balance_mask); 4990 DEFINE_PER_CPU(cpumask_var_t, select_idle_mask); 4991 4992 #ifdef CONFIG_NO_HZ_COMMON 4993 /* 4994 * per rq 'load' arrray crap; XXX kill this. 4995 */ 4996 4997 /* 4998 * The exact cpuload calculated at every tick would be: 4999 * 5000 * load' = (1 - 1/2^i) * load + (1/2^i) * cur_load 5001 * 5002 * If a cpu misses updates for n ticks (as it was idle) and update gets 5003 * called on the n+1-th tick when cpu may be busy, then we have: 5004 * 5005 * load_n = (1 - 1/2^i)^n * load_0 5006 * load_n+1 = (1 - 1/2^i) * load_n + (1/2^i) * cur_load 5007 * 5008 * decay_load_missed() below does efficient calculation of 5009 * 5010 * load' = (1 - 1/2^i)^n * load 5011 * 5012 * Because x^(n+m) := x^n * x^m we can decompose any x^n in power-of-2 factors. 5013 * This allows us to precompute the above in said factors, thereby allowing the 5014 * reduction of an arbitrary n in O(log_2 n) steps. (See also 5015 * fixed_power_int()) 5016 * 5017 * The calculation is approximated on a 128 point scale. 5018 */ 5019 #define DEGRADE_SHIFT 7 5020 5021 static const u8 degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128}; 5022 static const u8 degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = { 5023 { 0, 0, 0, 0, 0, 0, 0, 0 }, 5024 { 64, 32, 8, 0, 0, 0, 0, 0 }, 5025 { 96, 72, 40, 12, 1, 0, 0, 0 }, 5026 { 112, 98, 75, 43, 15, 1, 0, 0 }, 5027 { 120, 112, 98, 76, 45, 16, 2, 0 } 5028 }; 5029 5030 /* 5031 * Update cpu_load for any missed ticks, due to tickless idle. The backlog 5032 * would be when CPU is idle and so we just decay the old load without 5033 * adding any new load. 5034 */ 5035 static unsigned long 5036 decay_load_missed(unsigned long load, unsigned long missed_updates, int idx) 5037 { 5038 int j = 0; 5039 5040 if (!missed_updates) 5041 return load; 5042 5043 if (missed_updates >= degrade_zero_ticks[idx]) 5044 return 0; 5045 5046 if (idx == 1) 5047 return load >> missed_updates; 5048 5049 while (missed_updates) { 5050 if (missed_updates % 2) 5051 load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT; 5052 5053 missed_updates >>= 1; 5054 j++; 5055 } 5056 return load; 5057 } 5058 #endif /* CONFIG_NO_HZ_COMMON */ 5059 5060 /** 5061 * __cpu_load_update - update the rq->cpu_load[] statistics 5062 * @this_rq: The rq to update statistics for 5063 * @this_load: The current load 5064 * @pending_updates: The number of missed updates 5065 * 5066 * Update rq->cpu_load[] statistics. This function is usually called every 5067 * scheduler tick (TICK_NSEC). 5068 * 5069 * This function computes a decaying average: 5070 * 5071 * load[i]' = (1 - 1/2^i) * load[i] + (1/2^i) * load 5072 * 5073 * Because of NOHZ it might not get called on every tick which gives need for 5074 * the @pending_updates argument. 5075 * 5076 * load[i]_n = (1 - 1/2^i) * load[i]_n-1 + (1/2^i) * load_n-1 5077 * = A * load[i]_n-1 + B ; A := (1 - 1/2^i), B := (1/2^i) * load 5078 * = A * (A * load[i]_n-2 + B) + B 5079 * = A * (A * (A * load[i]_n-3 + B) + B) + B 5080 * = A^3 * load[i]_n-3 + (A^2 + A + 1) * B 5081 * = A^n * load[i]_0 + (A^(n-1) + A^(n-2) + ... + 1) * B 5082 * = A^n * load[i]_0 + ((1 - A^n) / (1 - A)) * B 5083 * = (1 - 1/2^i)^n * (load[i]_0 - load) + load 5084 * 5085 * In the above we've assumed load_n := load, which is true for NOHZ_FULL as 5086 * any change in load would have resulted in the tick being turned back on. 5087 * 5088 * For regular NOHZ, this reduces to: 5089 * 5090 * load[i]_n = (1 - 1/2^i)^n * load[i]_0 5091 * 5092 * see decay_load_misses(). For NOHZ_FULL we get to subtract and add the extra 5093 * term. 5094 */ 5095 static void cpu_load_update(struct rq *this_rq, unsigned long this_load, 5096 unsigned long pending_updates) 5097 { 5098 unsigned long __maybe_unused tickless_load = this_rq->cpu_load[0]; 5099 int i, scale; 5100 5101 this_rq->nr_load_updates++; 5102 5103 /* Update our load: */ 5104 this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */ 5105 for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) { 5106 unsigned long old_load, new_load; 5107 5108 /* scale is effectively 1 << i now, and >> i divides by scale */ 5109 5110 old_load = this_rq->cpu_load[i]; 5111 #ifdef CONFIG_NO_HZ_COMMON 5112 old_load = decay_load_missed(old_load, pending_updates - 1, i); 5113 if (tickless_load) { 5114 old_load -= decay_load_missed(tickless_load, pending_updates - 1, i); 5115 /* 5116 * old_load can never be a negative value because a 5117 * decayed tickless_load cannot be greater than the 5118 * original tickless_load. 5119 */ 5120 old_load += tickless_load; 5121 } 5122 #endif 5123 new_load = this_load; 5124 /* 5125 * Round up the averaging division if load is increasing. This 5126 * prevents us from getting stuck on 9 if the load is 10, for 5127 * example. 5128 */ 5129 if (new_load > old_load) 5130 new_load += scale - 1; 5131 5132 this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i; 5133 } 5134 5135 sched_avg_update(this_rq); 5136 } 5137 5138 /* Used instead of source_load when we know the type == 0 */ 5139 static unsigned long weighted_cpuload(struct rq *rq) 5140 { 5141 return cfs_rq_runnable_load_avg(&rq->cfs); 5142 } 5143 5144 #ifdef CONFIG_NO_HZ_COMMON 5145 /* 5146 * There is no sane way to deal with nohz on smp when using jiffies because the 5147 * cpu doing the jiffies update might drift wrt the cpu doing the jiffy reading 5148 * causing off-by-one errors in observed deltas; {0,2} instead of {1,1}. 5149 * 5150 * Therefore we need to avoid the delta approach from the regular tick when 5151 * possible since that would seriously skew the load calculation. This is why we 5152 * use cpu_load_update_periodic() for CPUs out of nohz. However we'll rely on 5153 * jiffies deltas for updates happening while in nohz mode (idle ticks, idle 5154 * loop exit, nohz_idle_balance, nohz full exit...) 5155 * 5156 * This means we might still be one tick off for nohz periods. 5157 */ 5158 5159 static void cpu_load_update_nohz(struct rq *this_rq, 5160 unsigned long curr_jiffies, 5161 unsigned long load) 5162 { 5163 unsigned long pending_updates; 5164 5165 pending_updates = curr_jiffies - this_rq->last_load_update_tick; 5166 if (pending_updates) { 5167 this_rq->last_load_update_tick = curr_jiffies; 5168 /* 5169 * In the regular NOHZ case, we were idle, this means load 0. 5170 * In the NOHZ_FULL case, we were non-idle, we should consider 5171 * its weighted load. 5172 */ 5173 cpu_load_update(this_rq, load, pending_updates); 5174 } 5175 } 5176 5177 /* 5178 * Called from nohz_idle_balance() to update the load ratings before doing the 5179 * idle balance. 5180 */ 5181 static void cpu_load_update_idle(struct rq *this_rq) 5182 { 5183 /* 5184 * bail if there's load or we're actually up-to-date. 5185 */ 5186 if (weighted_cpuload(this_rq)) 5187 return; 5188 5189 cpu_load_update_nohz(this_rq, READ_ONCE(jiffies), 0); 5190 } 5191 5192 /* 5193 * Record CPU load on nohz entry so we know the tickless load to account 5194 * on nohz exit. cpu_load[0] happens then to be updated more frequently 5195 * than other cpu_load[idx] but it should be fine as cpu_load readers 5196 * shouldn't rely into synchronized cpu_load[*] updates. 5197 */ 5198 void cpu_load_update_nohz_start(void) 5199 { 5200 struct rq *this_rq = this_rq(); 5201 5202 /* 5203 * This is all lockless but should be fine. If weighted_cpuload changes 5204 * concurrently we'll exit nohz. And cpu_load write can race with 5205 * cpu_load_update_idle() but both updater would be writing the same. 5206 */ 5207 this_rq->cpu_load[0] = weighted_cpuload(this_rq); 5208 } 5209 5210 /* 5211 * Account the tickless load in the end of a nohz frame. 5212 */ 5213 void cpu_load_update_nohz_stop(void) 5214 { 5215 unsigned long curr_jiffies = READ_ONCE(jiffies); 5216 struct rq *this_rq = this_rq(); 5217 unsigned long load; 5218 struct rq_flags rf; 5219 5220 if (curr_jiffies == this_rq->last_load_update_tick) 5221 return; 5222 5223 load = weighted_cpuload(this_rq); 5224 rq_lock(this_rq, &rf); 5225 update_rq_clock(this_rq); 5226 cpu_load_update_nohz(this_rq, curr_jiffies, load); 5227 rq_unlock(this_rq, &rf); 5228 } 5229 #else /* !CONFIG_NO_HZ_COMMON */ 5230 static inline void cpu_load_update_nohz(struct rq *this_rq, 5231 unsigned long curr_jiffies, 5232 unsigned long load) { } 5233 #endif /* CONFIG_NO_HZ_COMMON */ 5234 5235 static void cpu_load_update_periodic(struct rq *this_rq, unsigned long load) 5236 { 5237 #ifdef CONFIG_NO_HZ_COMMON 5238 /* See the mess around cpu_load_update_nohz(). */ 5239 this_rq->last_load_update_tick = READ_ONCE(jiffies); 5240 #endif 5241 cpu_load_update(this_rq, load, 1); 5242 } 5243 5244 /* 5245 * Called from scheduler_tick() 5246 */ 5247 void cpu_load_update_active(struct rq *this_rq) 5248 { 5249 unsigned long load = weighted_cpuload(this_rq); 5250 5251 if (tick_nohz_tick_stopped()) 5252 cpu_load_update_nohz(this_rq, READ_ONCE(jiffies), load); 5253 else 5254 cpu_load_update_periodic(this_rq, load); 5255 } 5256 5257 /* 5258 * Return a low guess at the load of a migration-source cpu weighted 5259 * according to the scheduling class and "nice" value. 5260 * 5261 * We want to under-estimate the load of migration sources, to 5262 * balance conservatively. 5263 */ 5264 static unsigned long source_load(int cpu, int type) 5265 { 5266 struct rq *rq = cpu_rq(cpu); 5267 unsigned long total = weighted_cpuload(rq); 5268 5269 if (type == 0 || !sched_feat(LB_BIAS)) 5270 return total; 5271 5272 return min(rq->cpu_load[type-1], total); 5273 } 5274 5275 /* 5276 * Return a high guess at the load of a migration-target cpu weighted 5277 * according to the scheduling class and "nice" value. 5278 */ 5279 static unsigned long target_load(int cpu, int type) 5280 { 5281 struct rq *rq = cpu_rq(cpu); 5282 unsigned long total = weighted_cpuload(rq); 5283 5284 if (type == 0 || !sched_feat(LB_BIAS)) 5285 return total; 5286 5287 return max(rq->cpu_load[type-1], total); 5288 } 5289 5290 static unsigned long capacity_of(int cpu) 5291 { 5292 return cpu_rq(cpu)->cpu_capacity; 5293 } 5294 5295 static unsigned long capacity_orig_of(int cpu) 5296 { 5297 return cpu_rq(cpu)->cpu_capacity_orig; 5298 } 5299 5300 static unsigned long cpu_avg_load_per_task(int cpu) 5301 { 5302 struct rq *rq = cpu_rq(cpu); 5303 unsigned long nr_running = READ_ONCE(rq->cfs.h_nr_running); 5304 unsigned long load_avg = weighted_cpuload(rq); 5305 5306 if (nr_running) 5307 return load_avg / nr_running; 5308 5309 return 0; 5310 } 5311 5312 static void record_wakee(struct task_struct *p) 5313 { 5314 /* 5315 * Only decay a single time; tasks that have less then 1 wakeup per 5316 * jiffy will not have built up many flips. 5317 */ 5318 if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) { 5319 current->wakee_flips >>= 1; 5320 current->wakee_flip_decay_ts = jiffies; 5321 } 5322 5323 if (current->last_wakee != p) { 5324 current->last_wakee = p; 5325 current->wakee_flips++; 5326 } 5327 } 5328 5329 /* 5330 * Detect M:N waker/wakee relationships via a switching-frequency heuristic. 5331 * 5332 * A waker of many should wake a different task than the one last awakened 5333 * at a frequency roughly N times higher than one of its wakees. 5334 * 5335 * In order to determine whether we should let the load spread vs consolidating 5336 * to shared cache, we look for a minimum 'flip' frequency of llc_size in one 5337 * partner, and a factor of lls_size higher frequency in the other. 5338 * 5339 * With both conditions met, we can be relatively sure that the relationship is 5340 * non-monogamous, with partner count exceeding socket size. 5341 * 5342 * Waker/wakee being client/server, worker/dispatcher, interrupt source or 5343 * whatever is irrelevant, spread criteria is apparent partner count exceeds 5344 * socket size. 5345 */ 5346 static int wake_wide(struct task_struct *p) 5347 { 5348 unsigned int master = current->wakee_flips; 5349 unsigned int slave = p->wakee_flips; 5350 int factor = this_cpu_read(sd_llc_size); 5351 5352 if (master < slave) 5353 swap(master, slave); 5354 if (slave < factor || master < slave * factor) 5355 return 0; 5356 return 1; 5357 } 5358 5359 /* 5360 * The purpose of wake_affine() is to quickly determine on which CPU we can run 5361 * soonest. For the purpose of speed we only consider the waking and previous 5362 * CPU. 5363 * 5364 * wake_affine_idle() - only considers 'now', it check if the waking CPU is (or 5365 * will be) idle. 5366 * 5367 * wake_affine_weight() - considers the weight to reflect the average 5368 * scheduling latency of the CPUs. This seems to work 5369 * for the overloaded case. 5370 */ 5371 5372 static bool 5373 wake_affine_idle(struct sched_domain *sd, struct task_struct *p, 5374 int this_cpu, int prev_cpu, int sync) 5375 { 5376 if (idle_cpu(this_cpu)) 5377 return true; 5378 5379 if (sync && cpu_rq(this_cpu)->nr_running == 1) 5380 return true; 5381 5382 return false; 5383 } 5384 5385 static bool 5386 wake_affine_weight(struct sched_domain *sd, struct task_struct *p, 5387 int this_cpu, int prev_cpu, int sync) 5388 { 5389 s64 this_eff_load, prev_eff_load; 5390 unsigned long task_load; 5391 5392 this_eff_load = target_load(this_cpu, sd->wake_idx); 5393 prev_eff_load = source_load(prev_cpu, sd->wake_idx); 5394 5395 if (sync) { 5396 unsigned long current_load = task_h_load(current); 5397 5398 if (current_load > this_eff_load) 5399 return true; 5400 5401 this_eff_load -= current_load; 5402 } 5403 5404 task_load = task_h_load(p); 5405 5406 this_eff_load += task_load; 5407 if (sched_feat(WA_BIAS)) 5408 this_eff_load *= 100; 5409 this_eff_load *= capacity_of(prev_cpu); 5410 5411 prev_eff_load -= task_load; 5412 if (sched_feat(WA_BIAS)) 5413 prev_eff_load *= 100 + (sd->imbalance_pct - 100) / 2; 5414 prev_eff_load *= capacity_of(this_cpu); 5415 5416 return this_eff_load <= prev_eff_load; 5417 } 5418 5419 static int wake_affine(struct sched_domain *sd, struct task_struct *p, 5420 int prev_cpu, int sync) 5421 { 5422 int this_cpu = smp_processor_id(); 5423 bool affine = false; 5424 5425 if (sched_feat(WA_IDLE) && !affine) 5426 affine = wake_affine_idle(sd, p, this_cpu, prev_cpu, sync); 5427 5428 if (sched_feat(WA_WEIGHT) && !affine) 5429 affine = wake_affine_weight(sd, p, this_cpu, prev_cpu, sync); 5430 5431 schedstat_inc(p->se.statistics.nr_wakeups_affine_attempts); 5432 if (affine) { 5433 schedstat_inc(sd->ttwu_move_affine); 5434 schedstat_inc(p->se.statistics.nr_wakeups_affine); 5435 } 5436 5437 return affine; 5438 } 5439 5440 static inline int task_util(struct task_struct *p); 5441 static int cpu_util_wake(int cpu, struct task_struct *p); 5442 5443 static unsigned long capacity_spare_wake(int cpu, struct task_struct *p) 5444 { 5445 return capacity_orig_of(cpu) - cpu_util_wake(cpu, p); 5446 } 5447 5448 /* 5449 * find_idlest_group finds and returns the least busy CPU group within the 5450 * domain. 5451 */ 5452 static struct sched_group * 5453 find_idlest_group(struct sched_domain *sd, struct task_struct *p, 5454 int this_cpu, int sd_flag) 5455 { 5456 struct sched_group *idlest = NULL, *group = sd->groups; 5457 struct sched_group *most_spare_sg = NULL; 5458 unsigned long min_runnable_load = ULONG_MAX, this_runnable_load = 0; 5459 unsigned long min_avg_load = ULONG_MAX, this_avg_load = 0; 5460 unsigned long most_spare = 0, this_spare = 0; 5461 int load_idx = sd->forkexec_idx; 5462 int imbalance_scale = 100 + (sd->imbalance_pct-100)/2; 5463 unsigned long imbalance = scale_load_down(NICE_0_LOAD) * 5464 (sd->imbalance_pct-100) / 100; 5465 5466 if (sd_flag & SD_BALANCE_WAKE) 5467 load_idx = sd->wake_idx; 5468 5469 do { 5470 unsigned long load, avg_load, runnable_load; 5471 unsigned long spare_cap, max_spare_cap; 5472 int local_group; 5473 int i; 5474 5475 /* Skip over this group if it has no CPUs allowed */ 5476 if (!cpumask_intersects(sched_group_span(group), 5477 &p->cpus_allowed)) 5478 continue; 5479 5480 local_group = cpumask_test_cpu(this_cpu, 5481 sched_group_span(group)); 5482 5483 /* 5484 * Tally up the load of all CPUs in the group and find 5485 * the group containing the CPU with most spare capacity. 5486 */ 5487 avg_load = 0; 5488 runnable_load = 0; 5489 max_spare_cap = 0; 5490 5491 for_each_cpu(i, sched_group_span(group)) { 5492 /* Bias balancing toward cpus of our domain */ 5493 if (local_group) 5494 load = source_load(i, load_idx); 5495 else 5496 load = target_load(i, load_idx); 5497 5498 runnable_load += load; 5499 5500 avg_load += cfs_rq_load_avg(&cpu_rq(i)->cfs); 5501 5502 spare_cap = capacity_spare_wake(i, p); 5503 5504 if (spare_cap > max_spare_cap) 5505 max_spare_cap = spare_cap; 5506 } 5507 5508 /* Adjust by relative CPU capacity of the group */ 5509 avg_load = (avg_load * SCHED_CAPACITY_SCALE) / 5510 group->sgc->capacity; 5511 runnable_load = (runnable_load * SCHED_CAPACITY_SCALE) / 5512 group->sgc->capacity; 5513 5514 if (local_group) { 5515 this_runnable_load = runnable_load; 5516 this_avg_load = avg_load; 5517 this_spare = max_spare_cap; 5518 } else { 5519 if (min_runnable_load > (runnable_load + imbalance)) { 5520 /* 5521 * The runnable load is significantly smaller 5522 * so we can pick this new cpu 5523 */ 5524 min_runnable_load = runnable_load; 5525 min_avg_load = avg_load; 5526 idlest = group; 5527 } else if ((runnable_load < (min_runnable_load + imbalance)) && 5528 (100*min_avg_load > imbalance_scale*avg_load)) { 5529 /* 5530 * The runnable loads are close so take the 5531 * blocked load into account through avg_load. 5532 */ 5533 min_avg_load = avg_load; 5534 idlest = group; 5535 } 5536 5537 if (most_spare < max_spare_cap) { 5538 most_spare = max_spare_cap; 5539 most_spare_sg = group; 5540 } 5541 } 5542 } while (group = group->next, group != sd->groups); 5543 5544 /* 5545 * The cross-over point between using spare capacity or least load 5546 * is too conservative for high utilization tasks on partially 5547 * utilized systems if we require spare_capacity > task_util(p), 5548 * so we allow for some task stuffing by using 5549 * spare_capacity > task_util(p)/2. 5550 * 5551 * Spare capacity can't be used for fork because the utilization has 5552 * not been set yet, we must first select a rq to compute the initial 5553 * utilization. 5554 */ 5555 if (sd_flag & SD_BALANCE_FORK) 5556 goto skip_spare; 5557 5558 if (this_spare > task_util(p) / 2 && 5559 imbalance_scale*this_spare > 100*most_spare) 5560 return NULL; 5561 5562 if (most_spare > task_util(p) / 2) 5563 return most_spare_sg; 5564 5565 skip_spare: 5566 if (!idlest) 5567 return NULL; 5568 5569 if (min_runnable_load > (this_runnable_load + imbalance)) 5570 return NULL; 5571 5572 if ((this_runnable_load < (min_runnable_load + imbalance)) && 5573 (100*this_avg_load < imbalance_scale*min_avg_load)) 5574 return NULL; 5575 5576 return idlest; 5577 } 5578 5579 /* 5580 * find_idlest_cpu - find the idlest cpu among the cpus in group. 5581 */ 5582 static int 5583 find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu) 5584 { 5585 unsigned long load, min_load = ULONG_MAX; 5586 unsigned int min_exit_latency = UINT_MAX; 5587 u64 latest_idle_timestamp = 0; 5588 int least_loaded_cpu = this_cpu; 5589 int shallowest_idle_cpu = -1; 5590 int i; 5591 5592 /* Check if we have any choice: */ 5593 if (group->group_weight == 1) 5594 return cpumask_first(sched_group_span(group)); 5595 5596 /* Traverse only the allowed CPUs */ 5597 for_each_cpu_and(i, sched_group_span(group), &p->cpus_allowed) { 5598 if (idle_cpu(i)) { 5599 struct rq *rq = cpu_rq(i); 5600 struct cpuidle_state *idle = idle_get_state(rq); 5601 if (idle && idle->exit_latency < min_exit_latency) { 5602 /* 5603 * We give priority to a CPU whose idle state 5604 * has the smallest exit latency irrespective 5605 * of any idle timestamp. 5606 */ 5607 min_exit_latency = idle->exit_latency; 5608 latest_idle_timestamp = rq->idle_stamp; 5609 shallowest_idle_cpu = i; 5610 } else if ((!idle || idle->exit_latency == min_exit_latency) && 5611 rq->idle_stamp > latest_idle_timestamp) { 5612 /* 5613 * If equal or no active idle state, then 5614 * the most recently idled CPU might have 5615 * a warmer cache. 5616 */ 5617 latest_idle_timestamp = rq->idle_stamp; 5618 shallowest_idle_cpu = i; 5619 } 5620 } else if (shallowest_idle_cpu == -1) { 5621 load = weighted_cpuload(cpu_rq(i)); 5622 if (load < min_load || (load == min_load && i == this_cpu)) { 5623 min_load = load; 5624 least_loaded_cpu = i; 5625 } 5626 } 5627 } 5628 5629 return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu; 5630 } 5631 5632 #ifdef CONFIG_SCHED_SMT 5633 5634 static inline void set_idle_cores(int cpu, int val) 5635 { 5636 struct sched_domain_shared *sds; 5637 5638 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu)); 5639 if (sds) 5640 WRITE_ONCE(sds->has_idle_cores, val); 5641 } 5642 5643 static inline bool test_idle_cores(int cpu, bool def) 5644 { 5645 struct sched_domain_shared *sds; 5646 5647 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu)); 5648 if (sds) 5649 return READ_ONCE(sds->has_idle_cores); 5650 5651 return def; 5652 } 5653 5654 /* 5655 * Scans the local SMT mask to see if the entire core is idle, and records this 5656 * information in sd_llc_shared->has_idle_cores. 5657 * 5658 * Since SMT siblings share all cache levels, inspecting this limited remote 5659 * state should be fairly cheap. 5660 */ 5661 void __update_idle_core(struct rq *rq) 5662 { 5663 int core = cpu_of(rq); 5664 int cpu; 5665 5666 rcu_read_lock(); 5667 if (test_idle_cores(core, true)) 5668 goto unlock; 5669 5670 for_each_cpu(cpu, cpu_smt_mask(core)) { 5671 if (cpu == core) 5672 continue; 5673 5674 if (!idle_cpu(cpu)) 5675 goto unlock; 5676 } 5677 5678 set_idle_cores(core, 1); 5679 unlock: 5680 rcu_read_unlock(); 5681 } 5682 5683 /* 5684 * Scan the entire LLC domain for idle cores; this dynamically switches off if 5685 * there are no idle cores left in the system; tracked through 5686 * sd_llc->shared->has_idle_cores and enabled through update_idle_core() above. 5687 */ 5688 static int select_idle_core(struct task_struct *p, struct sched_domain *sd, int target) 5689 { 5690 struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_idle_mask); 5691 int core, cpu; 5692 5693 if (!static_branch_likely(&sched_smt_present)) 5694 return -1; 5695 5696 if (!test_idle_cores(target, false)) 5697 return -1; 5698 5699 cpumask_and(cpus, sched_domain_span(sd), &p->cpus_allowed); 5700 5701 for_each_cpu_wrap(core, cpus, target) { 5702 bool idle = true; 5703 5704 for_each_cpu(cpu, cpu_smt_mask(core)) { 5705 cpumask_clear_cpu(cpu, cpus); 5706 if (!idle_cpu(cpu)) 5707 idle = false; 5708 } 5709 5710 if (idle) 5711 return core; 5712 } 5713 5714 /* 5715 * Failed to find an idle core; stop looking for one. 5716 */ 5717 set_idle_cores(target, 0); 5718 5719 return -1; 5720 } 5721 5722 /* 5723 * Scan the local SMT mask for idle CPUs. 5724 */ 5725 static int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target) 5726 { 5727 int cpu; 5728 5729 if (!static_branch_likely(&sched_smt_present)) 5730 return -1; 5731 5732 for_each_cpu(cpu, cpu_smt_mask(target)) { 5733 if (!cpumask_test_cpu(cpu, &p->cpus_allowed)) 5734 continue; 5735 if (idle_cpu(cpu)) 5736 return cpu; 5737 } 5738 5739 return -1; 5740 } 5741 5742 #else /* CONFIG_SCHED_SMT */ 5743 5744 static inline int select_idle_core(struct task_struct *p, struct sched_domain *sd, int target) 5745 { 5746 return -1; 5747 } 5748 5749 static inline int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target) 5750 { 5751 return -1; 5752 } 5753 5754 #endif /* CONFIG_SCHED_SMT */ 5755 5756 /* 5757 * Scan the LLC domain for idle CPUs; this is dynamically regulated by 5758 * comparing the average scan cost (tracked in sd->avg_scan_cost) against the 5759 * average idle time for this rq (as found in rq->avg_idle). 5760 */ 5761 static int select_idle_cpu(struct task_struct *p, struct sched_domain *sd, int target) 5762 { 5763 struct sched_domain *this_sd; 5764 u64 avg_cost, avg_idle; 5765 u64 time, cost; 5766 s64 delta; 5767 int cpu, nr = INT_MAX; 5768 5769 this_sd = rcu_dereference(*this_cpu_ptr(&sd_llc)); 5770 if (!this_sd) 5771 return -1; 5772 5773 /* 5774 * Due to large variance we need a large fuzz factor; hackbench in 5775 * particularly is sensitive here. 5776 */ 5777 avg_idle = this_rq()->avg_idle / 512; 5778 avg_cost = this_sd->avg_scan_cost + 1; 5779 5780 if (sched_feat(SIS_AVG_CPU) && avg_idle < avg_cost) 5781 return -1; 5782 5783 if (sched_feat(SIS_PROP)) { 5784 u64 span_avg = sd->span_weight * avg_idle; 5785 if (span_avg > 4*avg_cost) 5786 nr = div_u64(span_avg, avg_cost); 5787 else 5788 nr = 4; 5789 } 5790 5791 time = local_clock(); 5792 5793 for_each_cpu_wrap(cpu, sched_domain_span(sd), target) { 5794 if (!--nr) 5795 return -1; 5796 if (!cpumask_test_cpu(cpu, &p->cpus_allowed)) 5797 continue; 5798 if (idle_cpu(cpu)) 5799 break; 5800 } 5801 5802 time = local_clock() - time; 5803 cost = this_sd->avg_scan_cost; 5804 delta = (s64)(time - cost) / 8; 5805 this_sd->avg_scan_cost += delta; 5806 5807 return cpu; 5808 } 5809 5810 /* 5811 * Try and locate an idle core/thread in the LLC cache domain. 5812 */ 5813 static int select_idle_sibling(struct task_struct *p, int prev, int target) 5814 { 5815 struct sched_domain *sd; 5816 int i; 5817 5818 if (idle_cpu(target)) 5819 return target; 5820 5821 /* 5822 * If the previous cpu is cache affine and idle, don't be stupid. 5823 */ 5824 if (prev != target && cpus_share_cache(prev, target) && idle_cpu(prev)) 5825 return prev; 5826 5827 sd = rcu_dereference(per_cpu(sd_llc, target)); 5828 if (!sd) 5829 return target; 5830 5831 i = select_idle_core(p, sd, target); 5832 if ((unsigned)i < nr_cpumask_bits) 5833 return i; 5834 5835 i = select_idle_cpu(p, sd, target); 5836 if ((unsigned)i < nr_cpumask_bits) 5837 return i; 5838 5839 i = select_idle_smt(p, sd, target); 5840 if ((unsigned)i < nr_cpumask_bits) 5841 return i; 5842 5843 return target; 5844 } 5845 5846 /* 5847 * cpu_util returns the amount of capacity of a CPU that is used by CFS 5848 * tasks. The unit of the return value must be the one of capacity so we can 5849 * compare the utilization with the capacity of the CPU that is available for 5850 * CFS task (ie cpu_capacity). 5851 * 5852 * cfs_rq.avg.util_avg is the sum of running time of runnable tasks plus the 5853 * recent utilization of currently non-runnable tasks on a CPU. It represents 5854 * the amount of utilization of a CPU in the range [0..capacity_orig] where 5855 * capacity_orig is the cpu_capacity available at the highest frequency 5856 * (arch_scale_freq_capacity()). 5857 * The utilization of a CPU converges towards a sum equal to or less than the 5858 * current capacity (capacity_curr <= capacity_orig) of the CPU because it is 5859 * the running time on this CPU scaled by capacity_curr. 5860 * 5861 * Nevertheless, cfs_rq.avg.util_avg can be higher than capacity_curr or even 5862 * higher than capacity_orig because of unfortunate rounding in 5863 * cfs.avg.util_avg or just after migrating tasks and new task wakeups until 5864 * the average stabilizes with the new running time. We need to check that the 5865 * utilization stays within the range of [0..capacity_orig] and cap it if 5866 * necessary. Without utilization capping, a group could be seen as overloaded 5867 * (CPU0 utilization at 121% + CPU1 utilization at 80%) whereas CPU1 has 20% of 5868 * available capacity. We allow utilization to overshoot capacity_curr (but not 5869 * capacity_orig) as it useful for predicting the capacity required after task 5870 * migrations (scheduler-driven DVFS). 5871 */ 5872 static int cpu_util(int cpu) 5873 { 5874 unsigned long util = cpu_rq(cpu)->cfs.avg.util_avg; 5875 unsigned long capacity = capacity_orig_of(cpu); 5876 5877 return (util >= capacity) ? capacity : util; 5878 } 5879 5880 static inline int task_util(struct task_struct *p) 5881 { 5882 return p->se.avg.util_avg; 5883 } 5884 5885 /* 5886 * cpu_util_wake: Compute cpu utilization with any contributions from 5887 * the waking task p removed. 5888 */ 5889 static int cpu_util_wake(int cpu, struct task_struct *p) 5890 { 5891 unsigned long util, capacity; 5892 5893 /* Task has no contribution or is new */ 5894 if (cpu != task_cpu(p) || !p->se.avg.last_update_time) 5895 return cpu_util(cpu); 5896 5897 capacity = capacity_orig_of(cpu); 5898 util = max_t(long, cpu_rq(cpu)->cfs.avg.util_avg - task_util(p), 0); 5899 5900 return (util >= capacity) ? capacity : util; 5901 } 5902 5903 /* 5904 * Disable WAKE_AFFINE in the case where task @p doesn't fit in the 5905 * capacity of either the waking CPU @cpu or the previous CPU @prev_cpu. 5906 * 5907 * In that case WAKE_AFFINE doesn't make sense and we'll let 5908 * BALANCE_WAKE sort things out. 5909 */ 5910 static int wake_cap(struct task_struct *p, int cpu, int prev_cpu) 5911 { 5912 long min_cap, max_cap; 5913 5914 min_cap = min(capacity_orig_of(prev_cpu), capacity_orig_of(cpu)); 5915 max_cap = cpu_rq(cpu)->rd->max_cpu_capacity; 5916 5917 /* Minimum capacity is close to max, no need to abort wake_affine */ 5918 if (max_cap - min_cap < max_cap >> 3) 5919 return 0; 5920 5921 /* Bring task utilization in sync with prev_cpu */ 5922 sync_entity_load_avg(&p->se); 5923 5924 return min_cap * 1024 < task_util(p) * capacity_margin; 5925 } 5926 5927 /* 5928 * select_task_rq_fair: Select target runqueue for the waking task in domains 5929 * that have the 'sd_flag' flag set. In practice, this is SD_BALANCE_WAKE, 5930 * SD_BALANCE_FORK, or SD_BALANCE_EXEC. 5931 * 5932 * Balances load by selecting the idlest cpu in the idlest group, or under 5933 * certain conditions an idle sibling cpu if the domain has SD_WAKE_AFFINE set. 5934 * 5935 * Returns the target cpu number. 5936 * 5937 * preempt must be disabled. 5938 */ 5939 static int 5940 select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_flags) 5941 { 5942 struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL; 5943 int cpu = smp_processor_id(); 5944 int new_cpu = prev_cpu; 5945 int want_affine = 0; 5946 int sync = wake_flags & WF_SYNC; 5947 5948 if (sd_flag & SD_BALANCE_WAKE) { 5949 record_wakee(p); 5950 want_affine = !wake_wide(p) && !wake_cap(p, cpu, prev_cpu) 5951 && cpumask_test_cpu(cpu, &p->cpus_allowed); 5952 } 5953 5954 rcu_read_lock(); 5955 for_each_domain(cpu, tmp) { 5956 if (!(tmp->flags & SD_LOAD_BALANCE)) 5957 break; 5958 5959 /* 5960 * If both cpu and prev_cpu are part of this domain, 5961 * cpu is a valid SD_WAKE_AFFINE target. 5962 */ 5963 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) && 5964 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) { 5965 affine_sd = tmp; 5966 break; 5967 } 5968 5969 if (tmp->flags & sd_flag) 5970 sd = tmp; 5971 else if (!want_affine) 5972 break; 5973 } 5974 5975 if (affine_sd) { 5976 sd = NULL; /* Prefer wake_affine over balance flags */ 5977 if (cpu == prev_cpu) 5978 goto pick_cpu; 5979 5980 if (wake_affine(affine_sd, p, prev_cpu, sync)) 5981 new_cpu = cpu; 5982 } 5983 5984 if (!sd) { 5985 pick_cpu: 5986 if (sd_flag & SD_BALANCE_WAKE) /* XXX always ? */ 5987 new_cpu = select_idle_sibling(p, prev_cpu, new_cpu); 5988 5989 } else while (sd) { 5990 struct sched_group *group; 5991 int weight; 5992 5993 if (!(sd->flags & sd_flag)) { 5994 sd = sd->child; 5995 continue; 5996 } 5997 5998 group = find_idlest_group(sd, p, cpu, sd_flag); 5999 if (!group) { 6000 sd = sd->child; 6001 continue; 6002 } 6003 6004 new_cpu = find_idlest_cpu(group, p, cpu); 6005 if (new_cpu == -1 || new_cpu == cpu) { 6006 /* Now try balancing at a lower domain level of cpu */ 6007 sd = sd->child; 6008 continue; 6009 } 6010 6011 /* Now try balancing at a lower domain level of new_cpu */ 6012 cpu = new_cpu; 6013 weight = sd->span_weight; 6014 sd = NULL; 6015 for_each_domain(cpu, tmp) { 6016 if (weight <= tmp->span_weight) 6017 break; 6018 if (tmp->flags & sd_flag) 6019 sd = tmp; 6020 } 6021 /* while loop will break here if sd == NULL */ 6022 } 6023 rcu_read_unlock(); 6024 6025 return new_cpu; 6026 } 6027 6028 /* 6029 * Called immediately before a task is migrated to a new cpu; task_cpu(p) and 6030 * cfs_rq_of(p) references at time of call are still valid and identify the 6031 * previous cpu. The caller guarantees p->pi_lock or task_rq(p)->lock is held. 6032 */ 6033 static void migrate_task_rq_fair(struct task_struct *p) 6034 { 6035 /* 6036 * As blocked tasks retain absolute vruntime the migration needs to 6037 * deal with this by subtracting the old and adding the new 6038 * min_vruntime -- the latter is done by enqueue_entity() when placing 6039 * the task on the new runqueue. 6040 */ 6041 if (p->state == TASK_WAKING) { 6042 struct sched_entity *se = &p->se; 6043 struct cfs_rq *cfs_rq = cfs_rq_of(se); 6044 u64 min_vruntime; 6045 6046 #ifndef CONFIG_64BIT 6047 u64 min_vruntime_copy; 6048 6049 do { 6050 min_vruntime_copy = cfs_rq->min_vruntime_copy; 6051 smp_rmb(); 6052 min_vruntime = cfs_rq->min_vruntime; 6053 } while (min_vruntime != min_vruntime_copy); 6054 #else 6055 min_vruntime = cfs_rq->min_vruntime; 6056 #endif 6057 6058 se->vruntime -= min_vruntime; 6059 } 6060 6061 /* 6062 * We are supposed to update the task to "current" time, then its up to date 6063 * and ready to go to new CPU/cfs_rq. But we have difficulty in getting 6064 * what current time is, so simply throw away the out-of-date time. This 6065 * will result in the wakee task is less decayed, but giving the wakee more 6066 * load sounds not bad. 6067 */ 6068 remove_entity_load_avg(&p->se); 6069 6070 /* Tell new CPU we are migrated */ 6071 p->se.avg.last_update_time = 0; 6072 6073 /* We have migrated, no longer consider this task hot */ 6074 p->se.exec_start = 0; 6075 } 6076 6077 static void task_dead_fair(struct task_struct *p) 6078 { 6079 remove_entity_load_avg(&p->se); 6080 } 6081 #endif /* CONFIG_SMP */ 6082 6083 static unsigned long 6084 wakeup_gran(struct sched_entity *curr, struct sched_entity *se) 6085 { 6086 unsigned long gran = sysctl_sched_wakeup_granularity; 6087 6088 /* 6089 * Since its curr running now, convert the gran from real-time 6090 * to virtual-time in his units. 6091 * 6092 * By using 'se' instead of 'curr' we penalize light tasks, so 6093 * they get preempted easier. That is, if 'se' < 'curr' then 6094 * the resulting gran will be larger, therefore penalizing the 6095 * lighter, if otoh 'se' > 'curr' then the resulting gran will 6096 * be smaller, again penalizing the lighter task. 6097 * 6098 * This is especially important for buddies when the leftmost 6099 * task is higher priority than the buddy. 6100 */ 6101 return calc_delta_fair(gran, se); 6102 } 6103 6104 /* 6105 * Should 'se' preempt 'curr'. 6106 * 6107 * |s1 6108 * |s2 6109 * |s3 6110 * g 6111 * |<--->|c 6112 * 6113 * w(c, s1) = -1 6114 * w(c, s2) = 0 6115 * w(c, s3) = 1 6116 * 6117 */ 6118 static int 6119 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se) 6120 { 6121 s64 gran, vdiff = curr->vruntime - se->vruntime; 6122 6123 if (vdiff <= 0) 6124 return -1; 6125 6126 gran = wakeup_gran(curr, se); 6127 if (vdiff > gran) 6128 return 1; 6129 6130 return 0; 6131 } 6132 6133 static void set_last_buddy(struct sched_entity *se) 6134 { 6135 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE)) 6136 return; 6137 6138 for_each_sched_entity(se) { 6139 if (SCHED_WARN_ON(!se->on_rq)) 6140 return; 6141 cfs_rq_of(se)->last = se; 6142 } 6143 } 6144 6145 static void set_next_buddy(struct sched_entity *se) 6146 { 6147 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE)) 6148 return; 6149 6150 for_each_sched_entity(se) { 6151 if (SCHED_WARN_ON(!se->on_rq)) 6152 return; 6153 cfs_rq_of(se)->next = se; 6154 } 6155 } 6156 6157 static void set_skip_buddy(struct sched_entity *se) 6158 { 6159 for_each_sched_entity(se) 6160 cfs_rq_of(se)->skip = se; 6161 } 6162 6163 /* 6164 * Preempt the current task with a newly woken task if needed: 6165 */ 6166 static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags) 6167 { 6168 struct task_struct *curr = rq->curr; 6169 struct sched_entity *se = &curr->se, *pse = &p->se; 6170 struct cfs_rq *cfs_rq = task_cfs_rq(curr); 6171 int scale = cfs_rq->nr_running >= sched_nr_latency; 6172 int next_buddy_marked = 0; 6173 6174 if (unlikely(se == pse)) 6175 return; 6176 6177 /* 6178 * This is possible from callers such as attach_tasks(), in which we 6179 * unconditionally check_prempt_curr() after an enqueue (which may have 6180 * lead to a throttle). This both saves work and prevents false 6181 * next-buddy nomination below. 6182 */ 6183 if (unlikely(throttled_hierarchy(cfs_rq_of(pse)))) 6184 return; 6185 6186 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) { 6187 set_next_buddy(pse); 6188 next_buddy_marked = 1; 6189 } 6190 6191 /* 6192 * We can come here with TIF_NEED_RESCHED already set from new task 6193 * wake up path. 6194 * 6195 * Note: this also catches the edge-case of curr being in a throttled 6196 * group (e.g. via set_curr_task), since update_curr() (in the 6197 * enqueue of curr) will have resulted in resched being set. This 6198 * prevents us from potentially nominating it as a false LAST_BUDDY 6199 * below. 6200 */ 6201 if (test_tsk_need_resched(curr)) 6202 return; 6203 6204 /* Idle tasks are by definition preempted by non-idle tasks. */ 6205 if (unlikely(curr->policy == SCHED_IDLE) && 6206 likely(p->policy != SCHED_IDLE)) 6207 goto preempt; 6208 6209 /* 6210 * Batch and idle tasks do not preempt non-idle tasks (their preemption 6211 * is driven by the tick): 6212 */ 6213 if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION)) 6214 return; 6215 6216 find_matching_se(&se, &pse); 6217 update_curr(cfs_rq_of(se)); 6218 BUG_ON(!pse); 6219 if (wakeup_preempt_entity(se, pse) == 1) { 6220 /* 6221 * Bias pick_next to pick the sched entity that is 6222 * triggering this preemption. 6223 */ 6224 if (!next_buddy_marked) 6225 set_next_buddy(pse); 6226 goto preempt; 6227 } 6228 6229 return; 6230 6231 preempt: 6232 resched_curr(rq); 6233 /* 6234 * Only set the backward buddy when the current task is still 6235 * on the rq. This can happen when a wakeup gets interleaved 6236 * with schedule on the ->pre_schedule() or idle_balance() 6237 * point, either of which can * drop the rq lock. 6238 * 6239 * Also, during early boot the idle thread is in the fair class, 6240 * for obvious reasons its a bad idea to schedule back to it. 6241 */ 6242 if (unlikely(!se->on_rq || curr == rq->idle)) 6243 return; 6244 6245 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se)) 6246 set_last_buddy(se); 6247 } 6248 6249 static struct task_struct * 6250 pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf) 6251 { 6252 struct cfs_rq *cfs_rq = &rq->cfs; 6253 struct sched_entity *se; 6254 struct task_struct *p; 6255 int new_tasks; 6256 6257 again: 6258 if (!cfs_rq->nr_running) 6259 goto idle; 6260 6261 #ifdef CONFIG_FAIR_GROUP_SCHED 6262 if (prev->sched_class != &fair_sched_class) 6263 goto simple; 6264 6265 /* 6266 * Because of the set_next_buddy() in dequeue_task_fair() it is rather 6267 * likely that a next task is from the same cgroup as the current. 6268 * 6269 * Therefore attempt to avoid putting and setting the entire cgroup 6270 * hierarchy, only change the part that actually changes. 6271 */ 6272 6273 do { 6274 struct sched_entity *curr = cfs_rq->curr; 6275 6276 /* 6277 * Since we got here without doing put_prev_entity() we also 6278 * have to consider cfs_rq->curr. If it is still a runnable 6279 * entity, update_curr() will update its vruntime, otherwise 6280 * forget we've ever seen it. 6281 */ 6282 if (curr) { 6283 if (curr->on_rq) 6284 update_curr(cfs_rq); 6285 else 6286 curr = NULL; 6287 6288 /* 6289 * This call to check_cfs_rq_runtime() will do the 6290 * throttle and dequeue its entity in the parent(s). 6291 * Therefore the nr_running test will indeed 6292 * be correct. 6293 */ 6294 if (unlikely(check_cfs_rq_runtime(cfs_rq))) { 6295 cfs_rq = &rq->cfs; 6296 6297 if (!cfs_rq->nr_running) 6298 goto idle; 6299 6300 goto simple; 6301 } 6302 } 6303 6304 se = pick_next_entity(cfs_rq, curr); 6305 cfs_rq = group_cfs_rq(se); 6306 } while (cfs_rq); 6307 6308 p = task_of(se); 6309 6310 /* 6311 * Since we haven't yet done put_prev_entity and if the selected task 6312 * is a different task than we started out with, try and touch the 6313 * least amount of cfs_rqs. 6314 */ 6315 if (prev != p) { 6316 struct sched_entity *pse = &prev->se; 6317 6318 while (!(cfs_rq = is_same_group(se, pse))) { 6319 int se_depth = se->depth; 6320 int pse_depth = pse->depth; 6321 6322 if (se_depth <= pse_depth) { 6323 put_prev_entity(cfs_rq_of(pse), pse); 6324 pse = parent_entity(pse); 6325 } 6326 if (se_depth >= pse_depth) { 6327 set_next_entity(cfs_rq_of(se), se); 6328 se = parent_entity(se); 6329 } 6330 } 6331 6332 put_prev_entity(cfs_rq, pse); 6333 set_next_entity(cfs_rq, se); 6334 } 6335 6336 if (hrtick_enabled(rq)) 6337 hrtick_start_fair(rq, p); 6338 6339 return p; 6340 simple: 6341 #endif 6342 6343 put_prev_task(rq, prev); 6344 6345 do { 6346 se = pick_next_entity(cfs_rq, NULL); 6347 set_next_entity(cfs_rq, se); 6348 cfs_rq = group_cfs_rq(se); 6349 } while (cfs_rq); 6350 6351 p = task_of(se); 6352 6353 if (hrtick_enabled(rq)) 6354 hrtick_start_fair(rq, p); 6355 6356 return p; 6357 6358 idle: 6359 new_tasks = idle_balance(rq, rf); 6360 6361 /* 6362 * Because idle_balance() releases (and re-acquires) rq->lock, it is 6363 * possible for any higher priority task to appear. In that case we 6364 * must re-start the pick_next_entity() loop. 6365 */ 6366 if (new_tasks < 0) 6367 return RETRY_TASK; 6368 6369 if (new_tasks > 0) 6370 goto again; 6371 6372 return NULL; 6373 } 6374 6375 /* 6376 * Account for a descheduled task: 6377 */ 6378 static void put_prev_task_fair(struct rq *rq, struct task_struct *prev) 6379 { 6380 struct sched_entity *se = &prev->se; 6381 struct cfs_rq *cfs_rq; 6382 6383 for_each_sched_entity(se) { 6384 cfs_rq = cfs_rq_of(se); 6385 put_prev_entity(cfs_rq, se); 6386 } 6387 } 6388 6389 /* 6390 * sched_yield() is very simple 6391 * 6392 * The magic of dealing with the ->skip buddy is in pick_next_entity. 6393 */ 6394 static void yield_task_fair(struct rq *rq) 6395 { 6396 struct task_struct *curr = rq->curr; 6397 struct cfs_rq *cfs_rq = task_cfs_rq(curr); 6398 struct sched_entity *se = &curr->se; 6399 6400 /* 6401 * Are we the only task in the tree? 6402 */ 6403 if (unlikely(rq->nr_running == 1)) 6404 return; 6405 6406 clear_buddies(cfs_rq, se); 6407 6408 if (curr->policy != SCHED_BATCH) { 6409 update_rq_clock(rq); 6410 /* 6411 * Update run-time statistics of the 'current'. 6412 */ 6413 update_curr(cfs_rq); 6414 /* 6415 * Tell update_rq_clock() that we've just updated, 6416 * so we don't do microscopic update in schedule() 6417 * and double the fastpath cost. 6418 */ 6419 rq_clock_skip_update(rq, true); 6420 } 6421 6422 set_skip_buddy(se); 6423 } 6424 6425 static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt) 6426 { 6427 struct sched_entity *se = &p->se; 6428 6429 /* throttled hierarchies are not runnable */ 6430 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se))) 6431 return false; 6432 6433 /* Tell the scheduler that we'd really like pse to run next. */ 6434 set_next_buddy(se); 6435 6436 yield_task_fair(rq); 6437 6438 return true; 6439 } 6440 6441 #ifdef CONFIG_SMP 6442 /************************************************** 6443 * Fair scheduling class load-balancing methods. 6444 * 6445 * BASICS 6446 * 6447 * The purpose of load-balancing is to achieve the same basic fairness the 6448 * per-cpu scheduler provides, namely provide a proportional amount of compute 6449 * time to each task. This is expressed in the following equation: 6450 * 6451 * W_i,n/P_i == W_j,n/P_j for all i,j (1) 6452 * 6453 * Where W_i,n is the n-th weight average for cpu i. The instantaneous weight 6454 * W_i,0 is defined as: 6455 * 6456 * W_i,0 = \Sum_j w_i,j (2) 6457 * 6458 * Where w_i,j is the weight of the j-th runnable task on cpu i. This weight 6459 * is derived from the nice value as per sched_prio_to_weight[]. 6460 * 6461 * The weight average is an exponential decay average of the instantaneous 6462 * weight: 6463 * 6464 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3) 6465 * 6466 * C_i is the compute capacity of cpu i, typically it is the 6467 * fraction of 'recent' time available for SCHED_OTHER task execution. But it 6468 * can also include other factors [XXX]. 6469 * 6470 * To achieve this balance we define a measure of imbalance which follows 6471 * directly from (1): 6472 * 6473 * imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j } (4) 6474 * 6475 * We them move tasks around to minimize the imbalance. In the continuous 6476 * function space it is obvious this converges, in the discrete case we get 6477 * a few fun cases generally called infeasible weight scenarios. 6478 * 6479 * [XXX expand on: 6480 * - infeasible weights; 6481 * - local vs global optima in the discrete case. ] 6482 * 6483 * 6484 * SCHED DOMAINS 6485 * 6486 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2) 6487 * for all i,j solution, we create a tree of cpus that follows the hardware 6488 * topology where each level pairs two lower groups (or better). This results 6489 * in O(log n) layers. Furthermore we reduce the number of cpus going up the 6490 * tree to only the first of the previous level and we decrease the frequency 6491 * of load-balance at each level inv. proportional to the number of cpus in 6492 * the groups. 6493 * 6494 * This yields: 6495 * 6496 * log_2 n 1 n 6497 * \Sum { --- * --- * 2^i } = O(n) (5) 6498 * i = 0 2^i 2^i 6499 * `- size of each group 6500 * | | `- number of cpus doing load-balance 6501 * | `- freq 6502 * `- sum over all levels 6503 * 6504 * Coupled with a limit on how many tasks we can migrate every balance pass, 6505 * this makes (5) the runtime complexity of the balancer. 6506 * 6507 * An important property here is that each CPU is still (indirectly) connected 6508 * to every other cpu in at most O(log n) steps: 6509 * 6510 * The adjacency matrix of the resulting graph is given by: 6511 * 6512 * log_2 n 6513 * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6) 6514 * k = 0 6515 * 6516 * And you'll find that: 6517 * 6518 * A^(log_2 n)_i,j != 0 for all i,j (7) 6519 * 6520 * Showing there's indeed a path between every cpu in at most O(log n) steps. 6521 * The task movement gives a factor of O(m), giving a convergence complexity 6522 * of: 6523 * 6524 * O(nm log n), n := nr_cpus, m := nr_tasks (8) 6525 * 6526 * 6527 * WORK CONSERVING 6528 * 6529 * In order to avoid CPUs going idle while there's still work to do, new idle 6530 * balancing is more aggressive and has the newly idle cpu iterate up the domain 6531 * tree itself instead of relying on other CPUs to bring it work. 6532 * 6533 * This adds some complexity to both (5) and (8) but it reduces the total idle 6534 * time. 6535 * 6536 * [XXX more?] 6537 * 6538 * 6539 * CGROUPS 6540 * 6541 * Cgroups make a horror show out of (2), instead of a simple sum we get: 6542 * 6543 * s_k,i 6544 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9) 6545 * S_k 6546 * 6547 * Where 6548 * 6549 * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10) 6550 * 6551 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on cpu i. 6552 * 6553 * The big problem is S_k, its a global sum needed to compute a local (W_i) 6554 * property. 6555 * 6556 * [XXX write more on how we solve this.. _after_ merging pjt's patches that 6557 * rewrite all of this once again.] 6558 */ 6559 6560 static unsigned long __read_mostly max_load_balance_interval = HZ/10; 6561 6562 enum fbq_type { regular, remote, all }; 6563 6564 #define LBF_ALL_PINNED 0x01 6565 #define LBF_NEED_BREAK 0x02 6566 #define LBF_DST_PINNED 0x04 6567 #define LBF_SOME_PINNED 0x08 6568 6569 struct lb_env { 6570 struct sched_domain *sd; 6571 6572 struct rq *src_rq; 6573 int src_cpu; 6574 6575 int dst_cpu; 6576 struct rq *dst_rq; 6577 6578 struct cpumask *dst_grpmask; 6579 int new_dst_cpu; 6580 enum cpu_idle_type idle; 6581 long imbalance; 6582 /* The set of CPUs under consideration for load-balancing */ 6583 struct cpumask *cpus; 6584 6585 unsigned int flags; 6586 6587 unsigned int loop; 6588 unsigned int loop_break; 6589 unsigned int loop_max; 6590 6591 enum fbq_type fbq_type; 6592 struct list_head tasks; 6593 }; 6594 6595 /* 6596 * Is this task likely cache-hot: 6597 */ 6598 static int task_hot(struct task_struct *p, struct lb_env *env) 6599 { 6600 s64 delta; 6601 6602 lockdep_assert_held(&env->src_rq->lock); 6603 6604 if (p->sched_class != &fair_sched_class) 6605 return 0; 6606 6607 if (unlikely(p->policy == SCHED_IDLE)) 6608 return 0; 6609 6610 /* 6611 * Buddy candidates are cache hot: 6612 */ 6613 if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running && 6614 (&p->se == cfs_rq_of(&p->se)->next || 6615 &p->se == cfs_rq_of(&p->se)->last)) 6616 return 1; 6617 6618 if (sysctl_sched_migration_cost == -1) 6619 return 1; 6620 if (sysctl_sched_migration_cost == 0) 6621 return 0; 6622 6623 delta = rq_clock_task(env->src_rq) - p->se.exec_start; 6624 6625 return delta < (s64)sysctl_sched_migration_cost; 6626 } 6627 6628 #ifdef CONFIG_NUMA_BALANCING 6629 /* 6630 * Returns 1, if task migration degrades locality 6631 * Returns 0, if task migration improves locality i.e migration preferred. 6632 * Returns -1, if task migration is not affected by locality. 6633 */ 6634 static int migrate_degrades_locality(struct task_struct *p, struct lb_env *env) 6635 { 6636 struct numa_group *numa_group = rcu_dereference(p->numa_group); 6637 unsigned long src_faults, dst_faults; 6638 int src_nid, dst_nid; 6639 6640 if (!static_branch_likely(&sched_numa_balancing)) 6641 return -1; 6642 6643 if (!p->numa_faults || !(env->sd->flags & SD_NUMA)) 6644 return -1; 6645 6646 src_nid = cpu_to_node(env->src_cpu); 6647 dst_nid = cpu_to_node(env->dst_cpu); 6648 6649 if (src_nid == dst_nid) 6650 return -1; 6651 6652 /* Migrating away from the preferred node is always bad. */ 6653 if (src_nid == p->numa_preferred_nid) { 6654 if (env->src_rq->nr_running > env->src_rq->nr_preferred_running) 6655 return 1; 6656 else 6657 return -1; 6658 } 6659 6660 /* Encourage migration to the preferred node. */ 6661 if (dst_nid == p->numa_preferred_nid) 6662 return 0; 6663 6664 /* Leaving a core idle is often worse than degrading locality. */ 6665 if (env->idle != CPU_NOT_IDLE) 6666 return -1; 6667 6668 if (numa_group) { 6669 src_faults = group_faults(p, src_nid); 6670 dst_faults = group_faults(p, dst_nid); 6671 } else { 6672 src_faults = task_faults(p, src_nid); 6673 dst_faults = task_faults(p, dst_nid); 6674 } 6675 6676 return dst_faults < src_faults; 6677 } 6678 6679 #else 6680 static inline int migrate_degrades_locality(struct task_struct *p, 6681 struct lb_env *env) 6682 { 6683 return -1; 6684 } 6685 #endif 6686 6687 /* 6688 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu? 6689 */ 6690 static 6691 int can_migrate_task(struct task_struct *p, struct lb_env *env) 6692 { 6693 int tsk_cache_hot; 6694 6695 lockdep_assert_held(&env->src_rq->lock); 6696 6697 /* 6698 * We do not migrate tasks that are: 6699 * 1) throttled_lb_pair, or 6700 * 2) cannot be migrated to this CPU due to cpus_allowed, or 6701 * 3) running (obviously), or 6702 * 4) are cache-hot on their current CPU. 6703 */ 6704 if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu)) 6705 return 0; 6706 6707 if (!cpumask_test_cpu(env->dst_cpu, &p->cpus_allowed)) { 6708 int cpu; 6709 6710 schedstat_inc(p->se.statistics.nr_failed_migrations_affine); 6711 6712 env->flags |= LBF_SOME_PINNED; 6713 6714 /* 6715 * Remember if this task can be migrated to any other cpu in 6716 * our sched_group. We may want to revisit it if we couldn't 6717 * meet load balance goals by pulling other tasks on src_cpu. 6718 * 6719 * Avoid computing new_dst_cpu for NEWLY_IDLE or if we have 6720 * already computed one in current iteration. 6721 */ 6722 if (env->idle == CPU_NEWLY_IDLE || (env->flags & LBF_DST_PINNED)) 6723 return 0; 6724 6725 /* Prevent to re-select dst_cpu via env's cpus */ 6726 for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) { 6727 if (cpumask_test_cpu(cpu, &p->cpus_allowed)) { 6728 env->flags |= LBF_DST_PINNED; 6729 env->new_dst_cpu = cpu; 6730 break; 6731 } 6732 } 6733 6734 return 0; 6735 } 6736 6737 /* Record that we found atleast one task that could run on dst_cpu */ 6738 env->flags &= ~LBF_ALL_PINNED; 6739 6740 if (task_running(env->src_rq, p)) { 6741 schedstat_inc(p->se.statistics.nr_failed_migrations_running); 6742 return 0; 6743 } 6744 6745 /* 6746 * Aggressive migration if: 6747 * 1) destination numa is preferred 6748 * 2) task is cache cold, or 6749 * 3) too many balance attempts have failed. 6750 */ 6751 tsk_cache_hot = migrate_degrades_locality(p, env); 6752 if (tsk_cache_hot == -1) 6753 tsk_cache_hot = task_hot(p, env); 6754 6755 if (tsk_cache_hot <= 0 || 6756 env->sd->nr_balance_failed > env->sd->cache_nice_tries) { 6757 if (tsk_cache_hot == 1) { 6758 schedstat_inc(env->sd->lb_hot_gained[env->idle]); 6759 schedstat_inc(p->se.statistics.nr_forced_migrations); 6760 } 6761 return 1; 6762 } 6763 6764 schedstat_inc(p->se.statistics.nr_failed_migrations_hot); 6765 return 0; 6766 } 6767 6768 /* 6769 * detach_task() -- detach the task for the migration specified in env 6770 */ 6771 static void detach_task(struct task_struct *p, struct lb_env *env) 6772 { 6773 lockdep_assert_held(&env->src_rq->lock); 6774 6775 p->on_rq = TASK_ON_RQ_MIGRATING; 6776 deactivate_task(env->src_rq, p, DEQUEUE_NOCLOCK); 6777 set_task_cpu(p, env->dst_cpu); 6778 } 6779 6780 /* 6781 * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as 6782 * part of active balancing operations within "domain". 6783 * 6784 * Returns a task if successful and NULL otherwise. 6785 */ 6786 static struct task_struct *detach_one_task(struct lb_env *env) 6787 { 6788 struct task_struct *p, *n; 6789 6790 lockdep_assert_held(&env->src_rq->lock); 6791 6792 list_for_each_entry_safe(p, n, &env->src_rq->cfs_tasks, se.group_node) { 6793 if (!can_migrate_task(p, env)) 6794 continue; 6795 6796 detach_task(p, env); 6797 6798 /* 6799 * Right now, this is only the second place where 6800 * lb_gained[env->idle] is updated (other is detach_tasks) 6801 * so we can safely collect stats here rather than 6802 * inside detach_tasks(). 6803 */ 6804 schedstat_inc(env->sd->lb_gained[env->idle]); 6805 return p; 6806 } 6807 return NULL; 6808 } 6809 6810 static const unsigned int sched_nr_migrate_break = 32; 6811 6812 /* 6813 * detach_tasks() -- tries to detach up to imbalance weighted load from 6814 * busiest_rq, as part of a balancing operation within domain "sd". 6815 * 6816 * Returns number of detached tasks if successful and 0 otherwise. 6817 */ 6818 static int detach_tasks(struct lb_env *env) 6819 { 6820 struct list_head *tasks = &env->src_rq->cfs_tasks; 6821 struct task_struct *p; 6822 unsigned long load; 6823 int detached = 0; 6824 6825 lockdep_assert_held(&env->src_rq->lock); 6826 6827 if (env->imbalance <= 0) 6828 return 0; 6829 6830 while (!list_empty(tasks)) { 6831 /* 6832 * We don't want to steal all, otherwise we may be treated likewise, 6833 * which could at worst lead to a livelock crash. 6834 */ 6835 if (env->idle != CPU_NOT_IDLE && env->src_rq->nr_running <= 1) 6836 break; 6837 6838 p = list_first_entry(tasks, struct task_struct, se.group_node); 6839 6840 env->loop++; 6841 /* We've more or less seen every task there is, call it quits */ 6842 if (env->loop > env->loop_max) 6843 break; 6844 6845 /* take a breather every nr_migrate tasks */ 6846 if (env->loop > env->loop_break) { 6847 env->loop_break += sched_nr_migrate_break; 6848 env->flags |= LBF_NEED_BREAK; 6849 break; 6850 } 6851 6852 if (!can_migrate_task(p, env)) 6853 goto next; 6854 6855 load = task_h_load(p); 6856 6857 if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed) 6858 goto next; 6859 6860 if ((load / 2) > env->imbalance) 6861 goto next; 6862 6863 detach_task(p, env); 6864 list_add(&p->se.group_node, &env->tasks); 6865 6866 detached++; 6867 env->imbalance -= load; 6868 6869 #ifdef CONFIG_PREEMPT 6870 /* 6871 * NEWIDLE balancing is a source of latency, so preemptible 6872 * kernels will stop after the first task is detached to minimize 6873 * the critical section. 6874 */ 6875 if (env->idle == CPU_NEWLY_IDLE) 6876 break; 6877 #endif 6878 6879 /* 6880 * We only want to steal up to the prescribed amount of 6881 * weighted load. 6882 */ 6883 if (env->imbalance <= 0) 6884 break; 6885 6886 continue; 6887 next: 6888 list_move_tail(&p->se.group_node, tasks); 6889 } 6890 6891 /* 6892 * Right now, this is one of only two places we collect this stat 6893 * so we can safely collect detach_one_task() stats here rather 6894 * than inside detach_one_task(). 6895 */ 6896 schedstat_add(env->sd->lb_gained[env->idle], detached); 6897 6898 return detached; 6899 } 6900 6901 /* 6902 * attach_task() -- attach the task detached by detach_task() to its new rq. 6903 */ 6904 static void attach_task(struct rq *rq, struct task_struct *p) 6905 { 6906 lockdep_assert_held(&rq->lock); 6907 6908 BUG_ON(task_rq(p) != rq); 6909 activate_task(rq, p, ENQUEUE_NOCLOCK); 6910 p->on_rq = TASK_ON_RQ_QUEUED; 6911 check_preempt_curr(rq, p, 0); 6912 } 6913 6914 /* 6915 * attach_one_task() -- attaches the task returned from detach_one_task() to 6916 * its new rq. 6917 */ 6918 static void attach_one_task(struct rq *rq, struct task_struct *p) 6919 { 6920 struct rq_flags rf; 6921 6922 rq_lock(rq, &rf); 6923 update_rq_clock(rq); 6924 attach_task(rq, p); 6925 rq_unlock(rq, &rf); 6926 } 6927 6928 /* 6929 * attach_tasks() -- attaches all tasks detached by detach_tasks() to their 6930 * new rq. 6931 */ 6932 static void attach_tasks(struct lb_env *env) 6933 { 6934 struct list_head *tasks = &env->tasks; 6935 struct task_struct *p; 6936 struct rq_flags rf; 6937 6938 rq_lock(env->dst_rq, &rf); 6939 update_rq_clock(env->dst_rq); 6940 6941 while (!list_empty(tasks)) { 6942 p = list_first_entry(tasks, struct task_struct, se.group_node); 6943 list_del_init(&p->se.group_node); 6944 6945 attach_task(env->dst_rq, p); 6946 } 6947 6948 rq_unlock(env->dst_rq, &rf); 6949 } 6950 6951 #ifdef CONFIG_FAIR_GROUP_SCHED 6952 6953 static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq) 6954 { 6955 if (cfs_rq->load.weight) 6956 return false; 6957 6958 if (cfs_rq->avg.load_sum) 6959 return false; 6960 6961 if (cfs_rq->avg.util_sum) 6962 return false; 6963 6964 if (cfs_rq->runnable_load_sum) 6965 return false; 6966 6967 return true; 6968 } 6969 6970 static void update_blocked_averages(int cpu) 6971 { 6972 struct rq *rq = cpu_rq(cpu); 6973 struct cfs_rq *cfs_rq, *pos; 6974 struct rq_flags rf; 6975 6976 rq_lock_irqsave(rq, &rf); 6977 update_rq_clock(rq); 6978 6979 /* 6980 * Iterates the task_group tree in a bottom up fashion, see 6981 * list_add_leaf_cfs_rq() for details. 6982 */ 6983 for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) { 6984 struct sched_entity *se; 6985 6986 /* throttled entities do not contribute to load */ 6987 if (throttled_hierarchy(cfs_rq)) 6988 continue; 6989 6990 if (update_cfs_rq_load_avg(cfs_rq_clock_task(cfs_rq), cfs_rq)) 6991 update_tg_load_avg(cfs_rq, 0); 6992 6993 /* Propagate pending load changes to the parent, if any: */ 6994 se = cfs_rq->tg->se[cpu]; 6995 if (se && !skip_blocked_update(se)) 6996 update_load_avg(se, 0); 6997 6998 /* 6999 * There can be a lot of idle CPU cgroups. Don't let fully 7000 * decayed cfs_rqs linger on the list. 7001 */ 7002 if (cfs_rq_is_decayed(cfs_rq)) 7003 list_del_leaf_cfs_rq(cfs_rq); 7004 } 7005 rq_unlock_irqrestore(rq, &rf); 7006 } 7007 7008 /* 7009 * Compute the hierarchical load factor for cfs_rq and all its ascendants. 7010 * This needs to be done in a top-down fashion because the load of a child 7011 * group is a fraction of its parents load. 7012 */ 7013 static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq) 7014 { 7015 struct rq *rq = rq_of(cfs_rq); 7016 struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)]; 7017 unsigned long now = jiffies; 7018 unsigned long load; 7019 7020 if (cfs_rq->last_h_load_update == now) 7021 return; 7022 7023 cfs_rq->h_load_next = NULL; 7024 for_each_sched_entity(se) { 7025 cfs_rq = cfs_rq_of(se); 7026 cfs_rq->h_load_next = se; 7027 if (cfs_rq->last_h_load_update == now) 7028 break; 7029 } 7030 7031 if (!se) { 7032 cfs_rq->h_load = cfs_rq_load_avg(cfs_rq); 7033 cfs_rq->last_h_load_update = now; 7034 } 7035 7036 while ((se = cfs_rq->h_load_next) != NULL) { 7037 load = cfs_rq->h_load; 7038 load = div64_ul(load * se->avg.load_avg, 7039 cfs_rq_load_avg(cfs_rq) + 1); 7040 cfs_rq = group_cfs_rq(se); 7041 cfs_rq->h_load = load; 7042 cfs_rq->last_h_load_update = now; 7043 } 7044 } 7045 7046 static unsigned long task_h_load(struct task_struct *p) 7047 { 7048 struct cfs_rq *cfs_rq = task_cfs_rq(p); 7049 7050 update_cfs_rq_h_load(cfs_rq); 7051 return div64_ul(p->se.avg.load_avg * cfs_rq->h_load, 7052 cfs_rq_load_avg(cfs_rq) + 1); 7053 } 7054 #else 7055 static inline void update_blocked_averages(int cpu) 7056 { 7057 struct rq *rq = cpu_rq(cpu); 7058 struct cfs_rq *cfs_rq = &rq->cfs; 7059 struct rq_flags rf; 7060 7061 rq_lock_irqsave(rq, &rf); 7062 update_rq_clock(rq); 7063 update_cfs_rq_load_avg(cfs_rq_clock_task(cfs_rq), cfs_rq); 7064 rq_unlock_irqrestore(rq, &rf); 7065 } 7066 7067 static unsigned long task_h_load(struct task_struct *p) 7068 { 7069 return p->se.avg.load_avg; 7070 } 7071 #endif 7072 7073 /********** Helpers for find_busiest_group ************************/ 7074 7075 enum group_type { 7076 group_other = 0, 7077 group_imbalanced, 7078 group_overloaded, 7079 }; 7080 7081 /* 7082 * sg_lb_stats - stats of a sched_group required for load_balancing 7083 */ 7084 struct sg_lb_stats { 7085 unsigned long avg_load; /*Avg load across the CPUs of the group */ 7086 unsigned long group_load; /* Total load over the CPUs of the group */ 7087 unsigned long sum_weighted_load; /* Weighted load of group's tasks */ 7088 unsigned long load_per_task; 7089 unsigned long group_capacity; 7090 unsigned long group_util; /* Total utilization of the group */ 7091 unsigned int sum_nr_running; /* Nr tasks running in the group */ 7092 unsigned int idle_cpus; 7093 unsigned int group_weight; 7094 enum group_type group_type; 7095 int group_no_capacity; 7096 #ifdef CONFIG_NUMA_BALANCING 7097 unsigned int nr_numa_running; 7098 unsigned int nr_preferred_running; 7099 #endif 7100 }; 7101 7102 /* 7103 * sd_lb_stats - Structure to store the statistics of a sched_domain 7104 * during load balancing. 7105 */ 7106 struct sd_lb_stats { 7107 struct sched_group *busiest; /* Busiest group in this sd */ 7108 struct sched_group *local; /* Local group in this sd */ 7109 unsigned long total_running; 7110 unsigned long total_load; /* Total load of all groups in sd */ 7111 unsigned long total_capacity; /* Total capacity of all groups in sd */ 7112 unsigned long avg_load; /* Average load across all groups in sd */ 7113 7114 struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */ 7115 struct sg_lb_stats local_stat; /* Statistics of the local group */ 7116 }; 7117 7118 static inline void init_sd_lb_stats(struct sd_lb_stats *sds) 7119 { 7120 /* 7121 * Skimp on the clearing to avoid duplicate work. We can avoid clearing 7122 * local_stat because update_sg_lb_stats() does a full clear/assignment. 7123 * We must however clear busiest_stat::avg_load because 7124 * update_sd_pick_busiest() reads this before assignment. 7125 */ 7126 *sds = (struct sd_lb_stats){ 7127 .busiest = NULL, 7128 .local = NULL, 7129 .total_running = 0UL, 7130 .total_load = 0UL, 7131 .total_capacity = 0UL, 7132 .busiest_stat = { 7133 .avg_load = 0UL, 7134 .sum_nr_running = 0, 7135 .group_type = group_other, 7136 }, 7137 }; 7138 } 7139 7140 /** 7141 * get_sd_load_idx - Obtain the load index for a given sched domain. 7142 * @sd: The sched_domain whose load_idx is to be obtained. 7143 * @idle: The idle status of the CPU for whose sd load_idx is obtained. 7144 * 7145 * Return: The load index. 7146 */ 7147 static inline int get_sd_load_idx(struct sched_domain *sd, 7148 enum cpu_idle_type idle) 7149 { 7150 int load_idx; 7151 7152 switch (idle) { 7153 case CPU_NOT_IDLE: 7154 load_idx = sd->busy_idx; 7155 break; 7156 7157 case CPU_NEWLY_IDLE: 7158 load_idx = sd->newidle_idx; 7159 break; 7160 default: 7161 load_idx = sd->idle_idx; 7162 break; 7163 } 7164 7165 return load_idx; 7166 } 7167 7168 static unsigned long scale_rt_capacity(int cpu) 7169 { 7170 struct rq *rq = cpu_rq(cpu); 7171 u64 total, used, age_stamp, avg; 7172 s64 delta; 7173 7174 /* 7175 * Since we're reading these variables without serialization make sure 7176 * we read them once before doing sanity checks on them. 7177 */ 7178 age_stamp = READ_ONCE(rq->age_stamp); 7179 avg = READ_ONCE(rq->rt_avg); 7180 delta = __rq_clock_broken(rq) - age_stamp; 7181 7182 if (unlikely(delta < 0)) 7183 delta = 0; 7184 7185 total = sched_avg_period() + delta; 7186 7187 used = div_u64(avg, total); 7188 7189 if (likely(used < SCHED_CAPACITY_SCALE)) 7190 return SCHED_CAPACITY_SCALE - used; 7191 7192 return 1; 7193 } 7194 7195 static void update_cpu_capacity(struct sched_domain *sd, int cpu) 7196 { 7197 unsigned long capacity = arch_scale_cpu_capacity(sd, cpu); 7198 struct sched_group *sdg = sd->groups; 7199 7200 cpu_rq(cpu)->cpu_capacity_orig = capacity; 7201 7202 capacity *= scale_rt_capacity(cpu); 7203 capacity >>= SCHED_CAPACITY_SHIFT; 7204 7205 if (!capacity) 7206 capacity = 1; 7207 7208 cpu_rq(cpu)->cpu_capacity = capacity; 7209 sdg->sgc->capacity = capacity; 7210 sdg->sgc->min_capacity = capacity; 7211 } 7212 7213 void update_group_capacity(struct sched_domain *sd, int cpu) 7214 { 7215 struct sched_domain *child = sd->child; 7216 struct sched_group *group, *sdg = sd->groups; 7217 unsigned long capacity, min_capacity; 7218 unsigned long interval; 7219 7220 interval = msecs_to_jiffies(sd->balance_interval); 7221 interval = clamp(interval, 1UL, max_load_balance_interval); 7222 sdg->sgc->next_update = jiffies + interval; 7223 7224 if (!child) { 7225 update_cpu_capacity(sd, cpu); 7226 return; 7227 } 7228 7229 capacity = 0; 7230 min_capacity = ULONG_MAX; 7231 7232 if (child->flags & SD_OVERLAP) { 7233 /* 7234 * SD_OVERLAP domains cannot assume that child groups 7235 * span the current group. 7236 */ 7237 7238 for_each_cpu(cpu, sched_group_span(sdg)) { 7239 struct sched_group_capacity *sgc; 7240 struct rq *rq = cpu_rq(cpu); 7241 7242 /* 7243 * build_sched_domains() -> init_sched_groups_capacity() 7244 * gets here before we've attached the domains to the 7245 * runqueues. 7246 * 7247 * Use capacity_of(), which is set irrespective of domains 7248 * in update_cpu_capacity(). 7249 * 7250 * This avoids capacity from being 0 and 7251 * causing divide-by-zero issues on boot. 7252 */ 7253 if (unlikely(!rq->sd)) { 7254 capacity += capacity_of(cpu); 7255 } else { 7256 sgc = rq->sd->groups->sgc; 7257 capacity += sgc->capacity; 7258 } 7259 7260 min_capacity = min(capacity, min_capacity); 7261 } 7262 } else { 7263 /* 7264 * !SD_OVERLAP domains can assume that child groups 7265 * span the current group. 7266 */ 7267 7268 group = child->groups; 7269 do { 7270 struct sched_group_capacity *sgc = group->sgc; 7271 7272 capacity += sgc->capacity; 7273 min_capacity = min(sgc->min_capacity, min_capacity); 7274 group = group->next; 7275 } while (group != child->groups); 7276 } 7277 7278 sdg->sgc->capacity = capacity; 7279 sdg->sgc->min_capacity = min_capacity; 7280 } 7281 7282 /* 7283 * Check whether the capacity of the rq has been noticeably reduced by side 7284 * activity. The imbalance_pct is used for the threshold. 7285 * Return true is the capacity is reduced 7286 */ 7287 static inline int 7288 check_cpu_capacity(struct rq *rq, struct sched_domain *sd) 7289 { 7290 return ((rq->cpu_capacity * sd->imbalance_pct) < 7291 (rq->cpu_capacity_orig * 100)); 7292 } 7293 7294 /* 7295 * Group imbalance indicates (and tries to solve) the problem where balancing 7296 * groups is inadequate due to ->cpus_allowed constraints. 7297 * 7298 * Imagine a situation of two groups of 4 cpus each and 4 tasks each with a 7299 * cpumask covering 1 cpu of the first group and 3 cpus of the second group. 7300 * Something like: 7301 * 7302 * { 0 1 2 3 } { 4 5 6 7 } 7303 * * * * * 7304 * 7305 * If we were to balance group-wise we'd place two tasks in the first group and 7306 * two tasks in the second group. Clearly this is undesired as it will overload 7307 * cpu 3 and leave one of the cpus in the second group unused. 7308 * 7309 * The current solution to this issue is detecting the skew in the first group 7310 * by noticing the lower domain failed to reach balance and had difficulty 7311 * moving tasks due to affinity constraints. 7312 * 7313 * When this is so detected; this group becomes a candidate for busiest; see 7314 * update_sd_pick_busiest(). And calculate_imbalance() and 7315 * find_busiest_group() avoid some of the usual balance conditions to allow it 7316 * to create an effective group imbalance. 7317 * 7318 * This is a somewhat tricky proposition since the next run might not find the 7319 * group imbalance and decide the groups need to be balanced again. A most 7320 * subtle and fragile situation. 7321 */ 7322 7323 static inline int sg_imbalanced(struct sched_group *group) 7324 { 7325 return group->sgc->imbalance; 7326 } 7327 7328 /* 7329 * group_has_capacity returns true if the group has spare capacity that could 7330 * be used by some tasks. 7331 * We consider that a group has spare capacity if the * number of task is 7332 * smaller than the number of CPUs or if the utilization is lower than the 7333 * available capacity for CFS tasks. 7334 * For the latter, we use a threshold to stabilize the state, to take into 7335 * account the variance of the tasks' load and to return true if the available 7336 * capacity in meaningful for the load balancer. 7337 * As an example, an available capacity of 1% can appear but it doesn't make 7338 * any benefit for the load balance. 7339 */ 7340 static inline bool 7341 group_has_capacity(struct lb_env *env, struct sg_lb_stats *sgs) 7342 { 7343 if (sgs->sum_nr_running < sgs->group_weight) 7344 return true; 7345 7346 if ((sgs->group_capacity * 100) > 7347 (sgs->group_util * env->sd->imbalance_pct)) 7348 return true; 7349 7350 return false; 7351 } 7352 7353 /* 7354 * group_is_overloaded returns true if the group has more tasks than it can 7355 * handle. 7356 * group_is_overloaded is not equals to !group_has_capacity because a group 7357 * with the exact right number of tasks, has no more spare capacity but is not 7358 * overloaded so both group_has_capacity and group_is_overloaded return 7359 * false. 7360 */ 7361 static inline bool 7362 group_is_overloaded(struct lb_env *env, struct sg_lb_stats *sgs) 7363 { 7364 if (sgs->sum_nr_running <= sgs->group_weight) 7365 return false; 7366 7367 if ((sgs->group_capacity * 100) < 7368 (sgs->group_util * env->sd->imbalance_pct)) 7369 return true; 7370 7371 return false; 7372 } 7373 7374 /* 7375 * group_smaller_cpu_capacity: Returns true if sched_group sg has smaller 7376 * per-CPU capacity than sched_group ref. 7377 */ 7378 static inline bool 7379 group_smaller_cpu_capacity(struct sched_group *sg, struct sched_group *ref) 7380 { 7381 return sg->sgc->min_capacity * capacity_margin < 7382 ref->sgc->min_capacity * 1024; 7383 } 7384 7385 static inline enum 7386 group_type group_classify(struct sched_group *group, 7387 struct sg_lb_stats *sgs) 7388 { 7389 if (sgs->group_no_capacity) 7390 return group_overloaded; 7391 7392 if (sg_imbalanced(group)) 7393 return group_imbalanced; 7394 7395 return group_other; 7396 } 7397 7398 /** 7399 * update_sg_lb_stats - Update sched_group's statistics for load balancing. 7400 * @env: The load balancing environment. 7401 * @group: sched_group whose statistics are to be updated. 7402 * @load_idx: Load index of sched_domain of this_cpu for load calc. 7403 * @local_group: Does group contain this_cpu. 7404 * @sgs: variable to hold the statistics for this group. 7405 * @overload: Indicate more than one runnable task for any CPU. 7406 */ 7407 static inline void update_sg_lb_stats(struct lb_env *env, 7408 struct sched_group *group, int load_idx, 7409 int local_group, struct sg_lb_stats *sgs, 7410 bool *overload) 7411 { 7412 unsigned long load; 7413 int i, nr_running; 7414 7415 memset(sgs, 0, sizeof(*sgs)); 7416 7417 for_each_cpu_and(i, sched_group_span(group), env->cpus) { 7418 struct rq *rq = cpu_rq(i); 7419 7420 /* Bias balancing toward cpus of our domain */ 7421 if (local_group) 7422 load = target_load(i, load_idx); 7423 else 7424 load = source_load(i, load_idx); 7425 7426 sgs->group_load += load; 7427 sgs->group_util += cpu_util(i); 7428 sgs->sum_nr_running += rq->cfs.h_nr_running; 7429 7430 nr_running = rq->nr_running; 7431 if (nr_running > 1) 7432 *overload = true; 7433 7434 #ifdef CONFIG_NUMA_BALANCING 7435 sgs->nr_numa_running += rq->nr_numa_running; 7436 sgs->nr_preferred_running += rq->nr_preferred_running; 7437 #endif 7438 sgs->sum_weighted_load += weighted_cpuload(rq); 7439 /* 7440 * No need to call idle_cpu() if nr_running is not 0 7441 */ 7442 if (!nr_running && idle_cpu(i)) 7443 sgs->idle_cpus++; 7444 } 7445 7446 /* Adjust by relative CPU capacity of the group */ 7447 sgs->group_capacity = group->sgc->capacity; 7448 sgs->avg_load = (sgs->group_load*SCHED_CAPACITY_SCALE) / sgs->group_capacity; 7449 7450 if (sgs->sum_nr_running) 7451 sgs->load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running; 7452 7453 sgs->group_weight = group->group_weight; 7454 7455 sgs->group_no_capacity = group_is_overloaded(env, sgs); 7456 sgs->group_type = group_classify(group, sgs); 7457 } 7458 7459 /** 7460 * update_sd_pick_busiest - return 1 on busiest group 7461 * @env: The load balancing environment. 7462 * @sds: sched_domain statistics 7463 * @sg: sched_group candidate to be checked for being the busiest 7464 * @sgs: sched_group statistics 7465 * 7466 * Determine if @sg is a busier group than the previously selected 7467 * busiest group. 7468 * 7469 * Return: %true if @sg is a busier group than the previously selected 7470 * busiest group. %false otherwise. 7471 */ 7472 static bool update_sd_pick_busiest(struct lb_env *env, 7473 struct sd_lb_stats *sds, 7474 struct sched_group *sg, 7475 struct sg_lb_stats *sgs) 7476 { 7477 struct sg_lb_stats *busiest = &sds->busiest_stat; 7478 7479 if (sgs->group_type > busiest->group_type) 7480 return true; 7481 7482 if (sgs->group_type < busiest->group_type) 7483 return false; 7484 7485 if (sgs->avg_load <= busiest->avg_load) 7486 return false; 7487 7488 if (!(env->sd->flags & SD_ASYM_CPUCAPACITY)) 7489 goto asym_packing; 7490 7491 /* 7492 * Candidate sg has no more than one task per CPU and 7493 * has higher per-CPU capacity. Migrating tasks to less 7494 * capable CPUs may harm throughput. Maximize throughput, 7495 * power/energy consequences are not considered. 7496 */ 7497 if (sgs->sum_nr_running <= sgs->group_weight && 7498 group_smaller_cpu_capacity(sds->local, sg)) 7499 return false; 7500 7501 asym_packing: 7502 /* This is the busiest node in its class. */ 7503 if (!(env->sd->flags & SD_ASYM_PACKING)) 7504 return true; 7505 7506 /* No ASYM_PACKING if target cpu is already busy */ 7507 if (env->idle == CPU_NOT_IDLE) 7508 return true; 7509 /* 7510 * ASYM_PACKING needs to move all the work to the highest 7511 * prority CPUs in the group, therefore mark all groups 7512 * of lower priority than ourself as busy. 7513 */ 7514 if (sgs->sum_nr_running && 7515 sched_asym_prefer(env->dst_cpu, sg->asym_prefer_cpu)) { 7516 if (!sds->busiest) 7517 return true; 7518 7519 /* Prefer to move from lowest priority cpu's work */ 7520 if (sched_asym_prefer(sds->busiest->asym_prefer_cpu, 7521 sg->asym_prefer_cpu)) 7522 return true; 7523 } 7524 7525 return false; 7526 } 7527 7528 #ifdef CONFIG_NUMA_BALANCING 7529 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs) 7530 { 7531 if (sgs->sum_nr_running > sgs->nr_numa_running) 7532 return regular; 7533 if (sgs->sum_nr_running > sgs->nr_preferred_running) 7534 return remote; 7535 return all; 7536 } 7537 7538 static inline enum fbq_type fbq_classify_rq(struct rq *rq) 7539 { 7540 if (rq->nr_running > rq->nr_numa_running) 7541 return regular; 7542 if (rq->nr_running > rq->nr_preferred_running) 7543 return remote; 7544 return all; 7545 } 7546 #else 7547 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs) 7548 { 7549 return all; 7550 } 7551 7552 static inline enum fbq_type fbq_classify_rq(struct rq *rq) 7553 { 7554 return regular; 7555 } 7556 #endif /* CONFIG_NUMA_BALANCING */ 7557 7558 /** 7559 * update_sd_lb_stats - Update sched_domain's statistics for load balancing. 7560 * @env: The load balancing environment. 7561 * @sds: variable to hold the statistics for this sched_domain. 7562 */ 7563 static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds) 7564 { 7565 struct sched_domain *child = env->sd->child; 7566 struct sched_group *sg = env->sd->groups; 7567 struct sg_lb_stats *local = &sds->local_stat; 7568 struct sg_lb_stats tmp_sgs; 7569 int load_idx, prefer_sibling = 0; 7570 bool overload = false; 7571 7572 if (child && child->flags & SD_PREFER_SIBLING) 7573 prefer_sibling = 1; 7574 7575 load_idx = get_sd_load_idx(env->sd, env->idle); 7576 7577 do { 7578 struct sg_lb_stats *sgs = &tmp_sgs; 7579 int local_group; 7580 7581 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_span(sg)); 7582 if (local_group) { 7583 sds->local = sg; 7584 sgs = local; 7585 7586 if (env->idle != CPU_NEWLY_IDLE || 7587 time_after_eq(jiffies, sg->sgc->next_update)) 7588 update_group_capacity(env->sd, env->dst_cpu); 7589 } 7590 7591 update_sg_lb_stats(env, sg, load_idx, local_group, sgs, 7592 &overload); 7593 7594 if (local_group) 7595 goto next_group; 7596 7597 /* 7598 * In case the child domain prefers tasks go to siblings 7599 * first, lower the sg capacity so that we'll try 7600 * and move all the excess tasks away. We lower the capacity 7601 * of a group only if the local group has the capacity to fit 7602 * these excess tasks. The extra check prevents the case where 7603 * you always pull from the heaviest group when it is already 7604 * under-utilized (possible with a large weight task outweighs 7605 * the tasks on the system). 7606 */ 7607 if (prefer_sibling && sds->local && 7608 group_has_capacity(env, local) && 7609 (sgs->sum_nr_running > local->sum_nr_running + 1)) { 7610 sgs->group_no_capacity = 1; 7611 sgs->group_type = group_classify(sg, sgs); 7612 } 7613 7614 if (update_sd_pick_busiest(env, sds, sg, sgs)) { 7615 sds->busiest = sg; 7616 sds->busiest_stat = *sgs; 7617 } 7618 7619 next_group: 7620 /* Now, start updating sd_lb_stats */ 7621 sds->total_running += sgs->sum_nr_running; 7622 sds->total_load += sgs->group_load; 7623 sds->total_capacity += sgs->group_capacity; 7624 7625 sg = sg->next; 7626 } while (sg != env->sd->groups); 7627 7628 if (env->sd->flags & SD_NUMA) 7629 env->fbq_type = fbq_classify_group(&sds->busiest_stat); 7630 7631 if (!env->sd->parent) { 7632 /* update overload indicator if we are at root domain */ 7633 if (env->dst_rq->rd->overload != overload) 7634 env->dst_rq->rd->overload = overload; 7635 } 7636 } 7637 7638 /** 7639 * check_asym_packing - Check to see if the group is packed into the 7640 * sched domain. 7641 * 7642 * This is primarily intended to used at the sibling level. Some 7643 * cores like POWER7 prefer to use lower numbered SMT threads. In the 7644 * case of POWER7, it can move to lower SMT modes only when higher 7645 * threads are idle. When in lower SMT modes, the threads will 7646 * perform better since they share less core resources. Hence when we 7647 * have idle threads, we want them to be the higher ones. 7648 * 7649 * This packing function is run on idle threads. It checks to see if 7650 * the busiest CPU in this domain (core in the P7 case) has a higher 7651 * CPU number than the packing function is being run on. Here we are 7652 * assuming lower CPU number will be equivalent to lower a SMT thread 7653 * number. 7654 * 7655 * Return: 1 when packing is required and a task should be moved to 7656 * this CPU. The amount of the imbalance is returned in env->imbalance. 7657 * 7658 * @env: The load balancing environment. 7659 * @sds: Statistics of the sched_domain which is to be packed 7660 */ 7661 static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds) 7662 { 7663 int busiest_cpu; 7664 7665 if (!(env->sd->flags & SD_ASYM_PACKING)) 7666 return 0; 7667 7668 if (env->idle == CPU_NOT_IDLE) 7669 return 0; 7670 7671 if (!sds->busiest) 7672 return 0; 7673 7674 busiest_cpu = sds->busiest->asym_prefer_cpu; 7675 if (sched_asym_prefer(busiest_cpu, env->dst_cpu)) 7676 return 0; 7677 7678 env->imbalance = DIV_ROUND_CLOSEST( 7679 sds->busiest_stat.avg_load * sds->busiest_stat.group_capacity, 7680 SCHED_CAPACITY_SCALE); 7681 7682 return 1; 7683 } 7684 7685 /** 7686 * fix_small_imbalance - Calculate the minor imbalance that exists 7687 * amongst the groups of a sched_domain, during 7688 * load balancing. 7689 * @env: The load balancing environment. 7690 * @sds: Statistics of the sched_domain whose imbalance is to be calculated. 7691 */ 7692 static inline 7693 void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds) 7694 { 7695 unsigned long tmp, capa_now = 0, capa_move = 0; 7696 unsigned int imbn = 2; 7697 unsigned long scaled_busy_load_per_task; 7698 struct sg_lb_stats *local, *busiest; 7699 7700 local = &sds->local_stat; 7701 busiest = &sds->busiest_stat; 7702 7703 if (!local->sum_nr_running) 7704 local->load_per_task = cpu_avg_load_per_task(env->dst_cpu); 7705 else if (busiest->load_per_task > local->load_per_task) 7706 imbn = 1; 7707 7708 scaled_busy_load_per_task = 7709 (busiest->load_per_task * SCHED_CAPACITY_SCALE) / 7710 busiest->group_capacity; 7711 7712 if (busiest->avg_load + scaled_busy_load_per_task >= 7713 local->avg_load + (scaled_busy_load_per_task * imbn)) { 7714 env->imbalance = busiest->load_per_task; 7715 return; 7716 } 7717 7718 /* 7719 * OK, we don't have enough imbalance to justify moving tasks, 7720 * however we may be able to increase total CPU capacity used by 7721 * moving them. 7722 */ 7723 7724 capa_now += busiest->group_capacity * 7725 min(busiest->load_per_task, busiest->avg_load); 7726 capa_now += local->group_capacity * 7727 min(local->load_per_task, local->avg_load); 7728 capa_now /= SCHED_CAPACITY_SCALE; 7729 7730 /* Amount of load we'd subtract */ 7731 if (busiest->avg_load > scaled_busy_load_per_task) { 7732 capa_move += busiest->group_capacity * 7733 min(busiest->load_per_task, 7734 busiest->avg_load - scaled_busy_load_per_task); 7735 } 7736 7737 /* Amount of load we'd add */ 7738 if (busiest->avg_load * busiest->group_capacity < 7739 busiest->load_per_task * SCHED_CAPACITY_SCALE) { 7740 tmp = (busiest->avg_load * busiest->group_capacity) / 7741 local->group_capacity; 7742 } else { 7743 tmp = (busiest->load_per_task * SCHED_CAPACITY_SCALE) / 7744 local->group_capacity; 7745 } 7746 capa_move += local->group_capacity * 7747 min(local->load_per_task, local->avg_load + tmp); 7748 capa_move /= SCHED_CAPACITY_SCALE; 7749 7750 /* Move if we gain throughput */ 7751 if (capa_move > capa_now) 7752 env->imbalance = busiest->load_per_task; 7753 } 7754 7755 /** 7756 * calculate_imbalance - Calculate the amount of imbalance present within the 7757 * groups of a given sched_domain during load balance. 7758 * @env: load balance environment 7759 * @sds: statistics of the sched_domain whose imbalance is to be calculated. 7760 */ 7761 static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds) 7762 { 7763 unsigned long max_pull, load_above_capacity = ~0UL; 7764 struct sg_lb_stats *local, *busiest; 7765 7766 local = &sds->local_stat; 7767 busiest = &sds->busiest_stat; 7768 7769 if (busiest->group_type == group_imbalanced) { 7770 /* 7771 * In the group_imb case we cannot rely on group-wide averages 7772 * to ensure cpu-load equilibrium, look at wider averages. XXX 7773 */ 7774 busiest->load_per_task = 7775 min(busiest->load_per_task, sds->avg_load); 7776 } 7777 7778 /* 7779 * Avg load of busiest sg can be less and avg load of local sg can 7780 * be greater than avg load across all sgs of sd because avg load 7781 * factors in sg capacity and sgs with smaller group_type are 7782 * skipped when updating the busiest sg: 7783 */ 7784 if (busiest->avg_load <= sds->avg_load || 7785 local->avg_load >= sds->avg_load) { 7786 env->imbalance = 0; 7787 return fix_small_imbalance(env, sds); 7788 } 7789 7790 /* 7791 * If there aren't any idle cpus, avoid creating some. 7792 */ 7793 if (busiest->group_type == group_overloaded && 7794 local->group_type == group_overloaded) { 7795 load_above_capacity = busiest->sum_nr_running * SCHED_CAPACITY_SCALE; 7796 if (load_above_capacity > busiest->group_capacity) { 7797 load_above_capacity -= busiest->group_capacity; 7798 load_above_capacity *= scale_load_down(NICE_0_LOAD); 7799 load_above_capacity /= busiest->group_capacity; 7800 } else 7801 load_above_capacity = ~0UL; 7802 } 7803 7804 /* 7805 * We're trying to get all the cpus to the average_load, so we don't 7806 * want to push ourselves above the average load, nor do we wish to 7807 * reduce the max loaded cpu below the average load. At the same time, 7808 * we also don't want to reduce the group load below the group 7809 * capacity. Thus we look for the minimum possible imbalance. 7810 */ 7811 max_pull = min(busiest->avg_load - sds->avg_load, load_above_capacity); 7812 7813 /* How much load to actually move to equalise the imbalance */ 7814 env->imbalance = min( 7815 max_pull * busiest->group_capacity, 7816 (sds->avg_load - local->avg_load) * local->group_capacity 7817 ) / SCHED_CAPACITY_SCALE; 7818 7819 /* 7820 * if *imbalance is less than the average load per runnable task 7821 * there is no guarantee that any tasks will be moved so we'll have 7822 * a think about bumping its value to force at least one task to be 7823 * moved 7824 */ 7825 if (env->imbalance < busiest->load_per_task) 7826 return fix_small_imbalance(env, sds); 7827 } 7828 7829 /******* find_busiest_group() helpers end here *********************/ 7830 7831 /** 7832 * find_busiest_group - Returns the busiest group within the sched_domain 7833 * if there is an imbalance. 7834 * 7835 * Also calculates the amount of weighted load which should be moved 7836 * to restore balance. 7837 * 7838 * @env: The load balancing environment. 7839 * 7840 * Return: - The busiest group if imbalance exists. 7841 */ 7842 static struct sched_group *find_busiest_group(struct lb_env *env) 7843 { 7844 struct sg_lb_stats *local, *busiest; 7845 struct sd_lb_stats sds; 7846 7847 init_sd_lb_stats(&sds); 7848 7849 /* 7850 * Compute the various statistics relavent for load balancing at 7851 * this level. 7852 */ 7853 update_sd_lb_stats(env, &sds); 7854 local = &sds.local_stat; 7855 busiest = &sds.busiest_stat; 7856 7857 /* ASYM feature bypasses nice load balance check */ 7858 if (check_asym_packing(env, &sds)) 7859 return sds.busiest; 7860 7861 /* There is no busy sibling group to pull tasks from */ 7862 if (!sds.busiest || busiest->sum_nr_running == 0) 7863 goto out_balanced; 7864 7865 /* XXX broken for overlapping NUMA groups */ 7866 sds.avg_load = (SCHED_CAPACITY_SCALE * sds.total_load) 7867 / sds.total_capacity; 7868 7869 /* 7870 * If the busiest group is imbalanced the below checks don't 7871 * work because they assume all things are equal, which typically 7872 * isn't true due to cpus_allowed constraints and the like. 7873 */ 7874 if (busiest->group_type == group_imbalanced) 7875 goto force_balance; 7876 7877 /* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */ 7878 if (env->idle == CPU_NEWLY_IDLE && group_has_capacity(env, local) && 7879 busiest->group_no_capacity) 7880 goto force_balance; 7881 7882 /* 7883 * If the local group is busier than the selected busiest group 7884 * don't try and pull any tasks. 7885 */ 7886 if (local->avg_load >= busiest->avg_load) 7887 goto out_balanced; 7888 7889 /* 7890 * Don't pull any tasks if this group is already above the domain 7891 * average load. 7892 */ 7893 if (local->avg_load >= sds.avg_load) 7894 goto out_balanced; 7895 7896 if (env->idle == CPU_IDLE) { 7897 /* 7898 * This cpu is idle. If the busiest group is not overloaded 7899 * and there is no imbalance between this and busiest group 7900 * wrt idle cpus, it is balanced. The imbalance becomes 7901 * significant if the diff is greater than 1 otherwise we 7902 * might end up to just move the imbalance on another group 7903 */ 7904 if ((busiest->group_type != group_overloaded) && 7905 (local->idle_cpus <= (busiest->idle_cpus + 1))) 7906 goto out_balanced; 7907 } else { 7908 /* 7909 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use 7910 * imbalance_pct to be conservative. 7911 */ 7912 if (100 * busiest->avg_load <= 7913 env->sd->imbalance_pct * local->avg_load) 7914 goto out_balanced; 7915 } 7916 7917 force_balance: 7918 /* Looks like there is an imbalance. Compute it */ 7919 calculate_imbalance(env, &sds); 7920 return sds.busiest; 7921 7922 out_balanced: 7923 env->imbalance = 0; 7924 return NULL; 7925 } 7926 7927 /* 7928 * find_busiest_queue - find the busiest runqueue among the cpus in group. 7929 */ 7930 static struct rq *find_busiest_queue(struct lb_env *env, 7931 struct sched_group *group) 7932 { 7933 struct rq *busiest = NULL, *rq; 7934 unsigned long busiest_load = 0, busiest_capacity = 1; 7935 int i; 7936 7937 for_each_cpu_and(i, sched_group_span(group), env->cpus) { 7938 unsigned long capacity, wl; 7939 enum fbq_type rt; 7940 7941 rq = cpu_rq(i); 7942 rt = fbq_classify_rq(rq); 7943 7944 /* 7945 * We classify groups/runqueues into three groups: 7946 * - regular: there are !numa tasks 7947 * - remote: there are numa tasks that run on the 'wrong' node 7948 * - all: there is no distinction 7949 * 7950 * In order to avoid migrating ideally placed numa tasks, 7951 * ignore those when there's better options. 7952 * 7953 * If we ignore the actual busiest queue to migrate another 7954 * task, the next balance pass can still reduce the busiest 7955 * queue by moving tasks around inside the node. 7956 * 7957 * If we cannot move enough load due to this classification 7958 * the next pass will adjust the group classification and 7959 * allow migration of more tasks. 7960 * 7961 * Both cases only affect the total convergence complexity. 7962 */ 7963 if (rt > env->fbq_type) 7964 continue; 7965 7966 capacity = capacity_of(i); 7967 7968 wl = weighted_cpuload(rq); 7969 7970 /* 7971 * When comparing with imbalance, use weighted_cpuload() 7972 * which is not scaled with the cpu capacity. 7973 */ 7974 7975 if (rq->nr_running == 1 && wl > env->imbalance && 7976 !check_cpu_capacity(rq, env->sd)) 7977 continue; 7978 7979 /* 7980 * For the load comparisons with the other cpu's, consider 7981 * the weighted_cpuload() scaled with the cpu capacity, so 7982 * that the load can be moved away from the cpu that is 7983 * potentially running at a lower capacity. 7984 * 7985 * Thus we're looking for max(wl_i / capacity_i), crosswise 7986 * multiplication to rid ourselves of the division works out 7987 * to: wl_i * capacity_j > wl_j * capacity_i; where j is 7988 * our previous maximum. 7989 */ 7990 if (wl * busiest_capacity > busiest_load * capacity) { 7991 busiest_load = wl; 7992 busiest_capacity = capacity; 7993 busiest = rq; 7994 } 7995 } 7996 7997 return busiest; 7998 } 7999 8000 /* 8001 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but 8002 * so long as it is large enough. 8003 */ 8004 #define MAX_PINNED_INTERVAL 512 8005 8006 static int need_active_balance(struct lb_env *env) 8007 { 8008 struct sched_domain *sd = env->sd; 8009 8010 if (env->idle == CPU_NEWLY_IDLE) { 8011 8012 /* 8013 * ASYM_PACKING needs to force migrate tasks from busy but 8014 * lower priority CPUs in order to pack all tasks in the 8015 * highest priority CPUs. 8016 */ 8017 if ((sd->flags & SD_ASYM_PACKING) && 8018 sched_asym_prefer(env->dst_cpu, env->src_cpu)) 8019 return 1; 8020 } 8021 8022 /* 8023 * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task. 8024 * It's worth migrating the task if the src_cpu's capacity is reduced 8025 * because of other sched_class or IRQs if more capacity stays 8026 * available on dst_cpu. 8027 */ 8028 if ((env->idle != CPU_NOT_IDLE) && 8029 (env->src_rq->cfs.h_nr_running == 1)) { 8030 if ((check_cpu_capacity(env->src_rq, sd)) && 8031 (capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100)) 8032 return 1; 8033 } 8034 8035 return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2); 8036 } 8037 8038 static int active_load_balance_cpu_stop(void *data); 8039 8040 static int should_we_balance(struct lb_env *env) 8041 { 8042 struct sched_group *sg = env->sd->groups; 8043 int cpu, balance_cpu = -1; 8044 8045 /* 8046 * Ensure the balancing environment is consistent; can happen 8047 * when the softirq triggers 'during' hotplug. 8048 */ 8049 if (!cpumask_test_cpu(env->dst_cpu, env->cpus)) 8050 return 0; 8051 8052 /* 8053 * In the newly idle case, we will allow all the cpu's 8054 * to do the newly idle load balance. 8055 */ 8056 if (env->idle == CPU_NEWLY_IDLE) 8057 return 1; 8058 8059 /* Try to find first idle cpu */ 8060 for_each_cpu_and(cpu, group_balance_mask(sg), env->cpus) { 8061 if (!idle_cpu(cpu)) 8062 continue; 8063 8064 balance_cpu = cpu; 8065 break; 8066 } 8067 8068 if (balance_cpu == -1) 8069 balance_cpu = group_balance_cpu(sg); 8070 8071 /* 8072 * First idle cpu or the first cpu(busiest) in this sched group 8073 * is eligible for doing load balancing at this and above domains. 8074 */ 8075 return balance_cpu == env->dst_cpu; 8076 } 8077 8078 /* 8079 * Check this_cpu to ensure it is balanced within domain. Attempt to move 8080 * tasks if there is an imbalance. 8081 */ 8082 static int load_balance(int this_cpu, struct rq *this_rq, 8083 struct sched_domain *sd, enum cpu_idle_type idle, 8084 int *continue_balancing) 8085 { 8086 int ld_moved, cur_ld_moved, active_balance = 0; 8087 struct sched_domain *sd_parent = sd->parent; 8088 struct sched_group *group; 8089 struct rq *busiest; 8090 struct rq_flags rf; 8091 struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask); 8092 8093 struct lb_env env = { 8094 .sd = sd, 8095 .dst_cpu = this_cpu, 8096 .dst_rq = this_rq, 8097 .dst_grpmask = sched_group_span(sd->groups), 8098 .idle = idle, 8099 .loop_break = sched_nr_migrate_break, 8100 .cpus = cpus, 8101 .fbq_type = all, 8102 .tasks = LIST_HEAD_INIT(env.tasks), 8103 }; 8104 8105 cpumask_and(cpus, sched_domain_span(sd), cpu_active_mask); 8106 8107 schedstat_inc(sd->lb_count[idle]); 8108 8109 redo: 8110 if (!should_we_balance(&env)) { 8111 *continue_balancing = 0; 8112 goto out_balanced; 8113 } 8114 8115 group = find_busiest_group(&env); 8116 if (!group) { 8117 schedstat_inc(sd->lb_nobusyg[idle]); 8118 goto out_balanced; 8119 } 8120 8121 busiest = find_busiest_queue(&env, group); 8122 if (!busiest) { 8123 schedstat_inc(sd->lb_nobusyq[idle]); 8124 goto out_balanced; 8125 } 8126 8127 BUG_ON(busiest == env.dst_rq); 8128 8129 schedstat_add(sd->lb_imbalance[idle], env.imbalance); 8130 8131 env.src_cpu = busiest->cpu; 8132 env.src_rq = busiest; 8133 8134 ld_moved = 0; 8135 if (busiest->nr_running > 1) { 8136 /* 8137 * Attempt to move tasks. If find_busiest_group has found 8138 * an imbalance but busiest->nr_running <= 1, the group is 8139 * still unbalanced. ld_moved simply stays zero, so it is 8140 * correctly treated as an imbalance. 8141 */ 8142 env.flags |= LBF_ALL_PINNED; 8143 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running); 8144 8145 more_balance: 8146 rq_lock_irqsave(busiest, &rf); 8147 update_rq_clock(busiest); 8148 8149 /* 8150 * cur_ld_moved - load moved in current iteration 8151 * ld_moved - cumulative load moved across iterations 8152 */ 8153 cur_ld_moved = detach_tasks(&env); 8154 8155 /* 8156 * We've detached some tasks from busiest_rq. Every 8157 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely 8158 * unlock busiest->lock, and we are able to be sure 8159 * that nobody can manipulate the tasks in parallel. 8160 * See task_rq_lock() family for the details. 8161 */ 8162 8163 rq_unlock(busiest, &rf); 8164 8165 if (cur_ld_moved) { 8166 attach_tasks(&env); 8167 ld_moved += cur_ld_moved; 8168 } 8169 8170 local_irq_restore(rf.flags); 8171 8172 if (env.flags & LBF_NEED_BREAK) { 8173 env.flags &= ~LBF_NEED_BREAK; 8174 goto more_balance; 8175 } 8176 8177 /* 8178 * Revisit (affine) tasks on src_cpu that couldn't be moved to 8179 * us and move them to an alternate dst_cpu in our sched_group 8180 * where they can run. The upper limit on how many times we 8181 * iterate on same src_cpu is dependent on number of cpus in our 8182 * sched_group. 8183 * 8184 * This changes load balance semantics a bit on who can move 8185 * load to a given_cpu. In addition to the given_cpu itself 8186 * (or a ilb_cpu acting on its behalf where given_cpu is 8187 * nohz-idle), we now have balance_cpu in a position to move 8188 * load to given_cpu. In rare situations, this may cause 8189 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding 8190 * _independently_ and at _same_ time to move some load to 8191 * given_cpu) causing exceess load to be moved to given_cpu. 8192 * This however should not happen so much in practice and 8193 * moreover subsequent load balance cycles should correct the 8194 * excess load moved. 8195 */ 8196 if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) { 8197 8198 /* Prevent to re-select dst_cpu via env's cpus */ 8199 cpumask_clear_cpu(env.dst_cpu, env.cpus); 8200 8201 env.dst_rq = cpu_rq(env.new_dst_cpu); 8202 env.dst_cpu = env.new_dst_cpu; 8203 env.flags &= ~LBF_DST_PINNED; 8204 env.loop = 0; 8205 env.loop_break = sched_nr_migrate_break; 8206 8207 /* 8208 * Go back to "more_balance" rather than "redo" since we 8209 * need to continue with same src_cpu. 8210 */ 8211 goto more_balance; 8212 } 8213 8214 /* 8215 * We failed to reach balance because of affinity. 8216 */ 8217 if (sd_parent) { 8218 int *group_imbalance = &sd_parent->groups->sgc->imbalance; 8219 8220 if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0) 8221 *group_imbalance = 1; 8222 } 8223 8224 /* All tasks on this runqueue were pinned by CPU affinity */ 8225 if (unlikely(env.flags & LBF_ALL_PINNED)) { 8226 cpumask_clear_cpu(cpu_of(busiest), cpus); 8227 /* 8228 * Attempting to continue load balancing at the current 8229 * sched_domain level only makes sense if there are 8230 * active CPUs remaining as possible busiest CPUs to 8231 * pull load from which are not contained within the 8232 * destination group that is receiving any migrated 8233 * load. 8234 */ 8235 if (!cpumask_subset(cpus, env.dst_grpmask)) { 8236 env.loop = 0; 8237 env.loop_break = sched_nr_migrate_break; 8238 goto redo; 8239 } 8240 goto out_all_pinned; 8241 } 8242 } 8243 8244 if (!ld_moved) { 8245 schedstat_inc(sd->lb_failed[idle]); 8246 /* 8247 * Increment the failure counter only on periodic balance. 8248 * We do not want newidle balance, which can be very 8249 * frequent, pollute the failure counter causing 8250 * excessive cache_hot migrations and active balances. 8251 */ 8252 if (idle != CPU_NEWLY_IDLE) 8253 sd->nr_balance_failed++; 8254 8255 if (need_active_balance(&env)) { 8256 unsigned long flags; 8257 8258 raw_spin_lock_irqsave(&busiest->lock, flags); 8259 8260 /* don't kick the active_load_balance_cpu_stop, 8261 * if the curr task on busiest cpu can't be 8262 * moved to this_cpu 8263 */ 8264 if (!cpumask_test_cpu(this_cpu, &busiest->curr->cpus_allowed)) { 8265 raw_spin_unlock_irqrestore(&busiest->lock, 8266 flags); 8267 env.flags |= LBF_ALL_PINNED; 8268 goto out_one_pinned; 8269 } 8270 8271 /* 8272 * ->active_balance synchronizes accesses to 8273 * ->active_balance_work. Once set, it's cleared 8274 * only after active load balance is finished. 8275 */ 8276 if (!busiest->active_balance) { 8277 busiest->active_balance = 1; 8278 busiest->push_cpu = this_cpu; 8279 active_balance = 1; 8280 } 8281 raw_spin_unlock_irqrestore(&busiest->lock, flags); 8282 8283 if (active_balance) { 8284 stop_one_cpu_nowait(cpu_of(busiest), 8285 active_load_balance_cpu_stop, busiest, 8286 &busiest->active_balance_work); 8287 } 8288 8289 /* We've kicked active balancing, force task migration. */ 8290 sd->nr_balance_failed = sd->cache_nice_tries+1; 8291 } 8292 } else 8293 sd->nr_balance_failed = 0; 8294 8295 if (likely(!active_balance)) { 8296 /* We were unbalanced, so reset the balancing interval */ 8297 sd->balance_interval = sd->min_interval; 8298 } else { 8299 /* 8300 * If we've begun active balancing, start to back off. This 8301 * case may not be covered by the all_pinned logic if there 8302 * is only 1 task on the busy runqueue (because we don't call 8303 * detach_tasks). 8304 */ 8305 if (sd->balance_interval < sd->max_interval) 8306 sd->balance_interval *= 2; 8307 } 8308 8309 goto out; 8310 8311 out_balanced: 8312 /* 8313 * We reach balance although we may have faced some affinity 8314 * constraints. Clear the imbalance flag if it was set. 8315 */ 8316 if (sd_parent) { 8317 int *group_imbalance = &sd_parent->groups->sgc->imbalance; 8318 8319 if (*group_imbalance) 8320 *group_imbalance = 0; 8321 } 8322 8323 out_all_pinned: 8324 /* 8325 * We reach balance because all tasks are pinned at this level so 8326 * we can't migrate them. Let the imbalance flag set so parent level 8327 * can try to migrate them. 8328 */ 8329 schedstat_inc(sd->lb_balanced[idle]); 8330 8331 sd->nr_balance_failed = 0; 8332 8333 out_one_pinned: 8334 /* tune up the balancing interval */ 8335 if (((env.flags & LBF_ALL_PINNED) && 8336 sd->balance_interval < MAX_PINNED_INTERVAL) || 8337 (sd->balance_interval < sd->max_interval)) 8338 sd->balance_interval *= 2; 8339 8340 ld_moved = 0; 8341 out: 8342 return ld_moved; 8343 } 8344 8345 static inline unsigned long 8346 get_sd_balance_interval(struct sched_domain *sd, int cpu_busy) 8347 { 8348 unsigned long interval = sd->balance_interval; 8349 8350 if (cpu_busy) 8351 interval *= sd->busy_factor; 8352 8353 /* scale ms to jiffies */ 8354 interval = msecs_to_jiffies(interval); 8355 interval = clamp(interval, 1UL, max_load_balance_interval); 8356 8357 return interval; 8358 } 8359 8360 static inline void 8361 update_next_balance(struct sched_domain *sd, unsigned long *next_balance) 8362 { 8363 unsigned long interval, next; 8364 8365 /* used by idle balance, so cpu_busy = 0 */ 8366 interval = get_sd_balance_interval(sd, 0); 8367 next = sd->last_balance + interval; 8368 8369 if (time_after(*next_balance, next)) 8370 *next_balance = next; 8371 } 8372 8373 /* 8374 * idle_balance is called by schedule() if this_cpu is about to become 8375 * idle. Attempts to pull tasks from other CPUs. 8376 */ 8377 static int idle_balance(struct rq *this_rq, struct rq_flags *rf) 8378 { 8379 unsigned long next_balance = jiffies + HZ; 8380 int this_cpu = this_rq->cpu; 8381 struct sched_domain *sd; 8382 int pulled_task = 0; 8383 u64 curr_cost = 0; 8384 8385 /* 8386 * We must set idle_stamp _before_ calling idle_balance(), such that we 8387 * measure the duration of idle_balance() as idle time. 8388 */ 8389 this_rq->idle_stamp = rq_clock(this_rq); 8390 8391 /* 8392 * Do not pull tasks towards !active CPUs... 8393 */ 8394 if (!cpu_active(this_cpu)) 8395 return 0; 8396 8397 /* 8398 * This is OK, because current is on_cpu, which avoids it being picked 8399 * for load-balance and preemption/IRQs are still disabled avoiding 8400 * further scheduler activity on it and we're being very careful to 8401 * re-start the picking loop. 8402 */ 8403 rq_unpin_lock(this_rq, rf); 8404 8405 if (this_rq->avg_idle < sysctl_sched_migration_cost || 8406 !this_rq->rd->overload) { 8407 rcu_read_lock(); 8408 sd = rcu_dereference_check_sched_domain(this_rq->sd); 8409 if (sd) 8410 update_next_balance(sd, &next_balance); 8411 rcu_read_unlock(); 8412 8413 goto out; 8414 } 8415 8416 raw_spin_unlock(&this_rq->lock); 8417 8418 update_blocked_averages(this_cpu); 8419 rcu_read_lock(); 8420 for_each_domain(this_cpu, sd) { 8421 int continue_balancing = 1; 8422 u64 t0, domain_cost; 8423 8424 if (!(sd->flags & SD_LOAD_BALANCE)) 8425 continue; 8426 8427 if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) { 8428 update_next_balance(sd, &next_balance); 8429 break; 8430 } 8431 8432 if (sd->flags & SD_BALANCE_NEWIDLE) { 8433 t0 = sched_clock_cpu(this_cpu); 8434 8435 pulled_task = load_balance(this_cpu, this_rq, 8436 sd, CPU_NEWLY_IDLE, 8437 &continue_balancing); 8438 8439 domain_cost = sched_clock_cpu(this_cpu) - t0; 8440 if (domain_cost > sd->max_newidle_lb_cost) 8441 sd->max_newidle_lb_cost = domain_cost; 8442 8443 curr_cost += domain_cost; 8444 } 8445 8446 update_next_balance(sd, &next_balance); 8447 8448 /* 8449 * Stop searching for tasks to pull if there are 8450 * now runnable tasks on this rq. 8451 */ 8452 if (pulled_task || this_rq->nr_running > 0) 8453 break; 8454 } 8455 rcu_read_unlock(); 8456 8457 raw_spin_lock(&this_rq->lock); 8458 8459 if (curr_cost > this_rq->max_idle_balance_cost) 8460 this_rq->max_idle_balance_cost = curr_cost; 8461 8462 /* 8463 * While browsing the domains, we released the rq lock, a task could 8464 * have been enqueued in the meantime. Since we're not going idle, 8465 * pretend we pulled a task. 8466 */ 8467 if (this_rq->cfs.h_nr_running && !pulled_task) 8468 pulled_task = 1; 8469 8470 out: 8471 /* Move the next balance forward */ 8472 if (time_after(this_rq->next_balance, next_balance)) 8473 this_rq->next_balance = next_balance; 8474 8475 /* Is there a task of a high priority class? */ 8476 if (this_rq->nr_running != this_rq->cfs.h_nr_running) 8477 pulled_task = -1; 8478 8479 if (pulled_task) 8480 this_rq->idle_stamp = 0; 8481 8482 rq_repin_lock(this_rq, rf); 8483 8484 return pulled_task; 8485 } 8486 8487 /* 8488 * active_load_balance_cpu_stop is run by cpu stopper. It pushes 8489 * running tasks off the busiest CPU onto idle CPUs. It requires at 8490 * least 1 task to be running on each physical CPU where possible, and 8491 * avoids physical / logical imbalances. 8492 */ 8493 static int active_load_balance_cpu_stop(void *data) 8494 { 8495 struct rq *busiest_rq = data; 8496 int busiest_cpu = cpu_of(busiest_rq); 8497 int target_cpu = busiest_rq->push_cpu; 8498 struct rq *target_rq = cpu_rq(target_cpu); 8499 struct sched_domain *sd; 8500 struct task_struct *p = NULL; 8501 struct rq_flags rf; 8502 8503 rq_lock_irq(busiest_rq, &rf); 8504 /* 8505 * Between queueing the stop-work and running it is a hole in which 8506 * CPUs can become inactive. We should not move tasks from or to 8507 * inactive CPUs. 8508 */ 8509 if (!cpu_active(busiest_cpu) || !cpu_active(target_cpu)) 8510 goto out_unlock; 8511 8512 /* make sure the requested cpu hasn't gone down in the meantime */ 8513 if (unlikely(busiest_cpu != smp_processor_id() || 8514 !busiest_rq->active_balance)) 8515 goto out_unlock; 8516 8517 /* Is there any task to move? */ 8518 if (busiest_rq->nr_running <= 1) 8519 goto out_unlock; 8520 8521 /* 8522 * This condition is "impossible", if it occurs 8523 * we need to fix it. Originally reported by 8524 * Bjorn Helgaas on a 128-cpu setup. 8525 */ 8526 BUG_ON(busiest_rq == target_rq); 8527 8528 /* Search for an sd spanning us and the target CPU. */ 8529 rcu_read_lock(); 8530 for_each_domain(target_cpu, sd) { 8531 if ((sd->flags & SD_LOAD_BALANCE) && 8532 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd))) 8533 break; 8534 } 8535 8536 if (likely(sd)) { 8537 struct lb_env env = { 8538 .sd = sd, 8539 .dst_cpu = target_cpu, 8540 .dst_rq = target_rq, 8541 .src_cpu = busiest_rq->cpu, 8542 .src_rq = busiest_rq, 8543 .idle = CPU_IDLE, 8544 /* 8545 * can_migrate_task() doesn't need to compute new_dst_cpu 8546 * for active balancing. Since we have CPU_IDLE, but no 8547 * @dst_grpmask we need to make that test go away with lying 8548 * about DST_PINNED. 8549 */ 8550 .flags = LBF_DST_PINNED, 8551 }; 8552 8553 schedstat_inc(sd->alb_count); 8554 update_rq_clock(busiest_rq); 8555 8556 p = detach_one_task(&env); 8557 if (p) { 8558 schedstat_inc(sd->alb_pushed); 8559 /* Active balancing done, reset the failure counter. */ 8560 sd->nr_balance_failed = 0; 8561 } else { 8562 schedstat_inc(sd->alb_failed); 8563 } 8564 } 8565 rcu_read_unlock(); 8566 out_unlock: 8567 busiest_rq->active_balance = 0; 8568 rq_unlock(busiest_rq, &rf); 8569 8570 if (p) 8571 attach_one_task(target_rq, p); 8572 8573 local_irq_enable(); 8574 8575 return 0; 8576 } 8577 8578 static inline int on_null_domain(struct rq *rq) 8579 { 8580 return unlikely(!rcu_dereference_sched(rq->sd)); 8581 } 8582 8583 #ifdef CONFIG_NO_HZ_COMMON 8584 /* 8585 * idle load balancing details 8586 * - When one of the busy CPUs notice that there may be an idle rebalancing 8587 * needed, they will kick the idle load balancer, which then does idle 8588 * load balancing for all the idle CPUs. 8589 */ 8590 static struct { 8591 cpumask_var_t idle_cpus_mask; 8592 atomic_t nr_cpus; 8593 unsigned long next_balance; /* in jiffy units */ 8594 } nohz ____cacheline_aligned; 8595 8596 static inline int find_new_ilb(void) 8597 { 8598 int ilb = cpumask_first(nohz.idle_cpus_mask); 8599 8600 if (ilb < nr_cpu_ids && idle_cpu(ilb)) 8601 return ilb; 8602 8603 return nr_cpu_ids; 8604 } 8605 8606 /* 8607 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the 8608 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle 8609 * CPU (if there is one). 8610 */ 8611 static void nohz_balancer_kick(void) 8612 { 8613 int ilb_cpu; 8614 8615 nohz.next_balance++; 8616 8617 ilb_cpu = find_new_ilb(); 8618 8619 if (ilb_cpu >= nr_cpu_ids) 8620 return; 8621 8622 if (test_and_set_bit(NOHZ_BALANCE_KICK, nohz_flags(ilb_cpu))) 8623 return; 8624 /* 8625 * Use smp_send_reschedule() instead of resched_cpu(). 8626 * This way we generate a sched IPI on the target cpu which 8627 * is idle. And the softirq performing nohz idle load balance 8628 * will be run before returning from the IPI. 8629 */ 8630 smp_send_reschedule(ilb_cpu); 8631 return; 8632 } 8633 8634 void nohz_balance_exit_idle(unsigned int cpu) 8635 { 8636 if (unlikely(test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))) { 8637 /* 8638 * Completely isolated CPUs don't ever set, so we must test. 8639 */ 8640 if (likely(cpumask_test_cpu(cpu, nohz.idle_cpus_mask))) { 8641 cpumask_clear_cpu(cpu, nohz.idle_cpus_mask); 8642 atomic_dec(&nohz.nr_cpus); 8643 } 8644 clear_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)); 8645 } 8646 } 8647 8648 static inline void set_cpu_sd_state_busy(void) 8649 { 8650 struct sched_domain *sd; 8651 int cpu = smp_processor_id(); 8652 8653 rcu_read_lock(); 8654 sd = rcu_dereference(per_cpu(sd_llc, cpu)); 8655 8656 if (!sd || !sd->nohz_idle) 8657 goto unlock; 8658 sd->nohz_idle = 0; 8659 8660 atomic_inc(&sd->shared->nr_busy_cpus); 8661 unlock: 8662 rcu_read_unlock(); 8663 } 8664 8665 void set_cpu_sd_state_idle(void) 8666 { 8667 struct sched_domain *sd; 8668 int cpu = smp_processor_id(); 8669 8670 rcu_read_lock(); 8671 sd = rcu_dereference(per_cpu(sd_llc, cpu)); 8672 8673 if (!sd || sd->nohz_idle) 8674 goto unlock; 8675 sd->nohz_idle = 1; 8676 8677 atomic_dec(&sd->shared->nr_busy_cpus); 8678 unlock: 8679 rcu_read_unlock(); 8680 } 8681 8682 /* 8683 * This routine will record that the cpu is going idle with tick stopped. 8684 * This info will be used in performing idle load balancing in the future. 8685 */ 8686 void nohz_balance_enter_idle(int cpu) 8687 { 8688 /* 8689 * If this cpu is going down, then nothing needs to be done. 8690 */ 8691 if (!cpu_active(cpu)) 8692 return; 8693 8694 /* Spare idle load balancing on CPUs that don't want to be disturbed: */ 8695 if (!is_housekeeping_cpu(cpu)) 8696 return; 8697 8698 if (test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu))) 8699 return; 8700 8701 /* 8702 * If we're a completely isolated CPU, we don't play. 8703 */ 8704 if (on_null_domain(cpu_rq(cpu))) 8705 return; 8706 8707 cpumask_set_cpu(cpu, nohz.idle_cpus_mask); 8708 atomic_inc(&nohz.nr_cpus); 8709 set_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)); 8710 } 8711 #endif 8712 8713 static DEFINE_SPINLOCK(balancing); 8714 8715 /* 8716 * Scale the max load_balance interval with the number of CPUs in the system. 8717 * This trades load-balance latency on larger machines for less cross talk. 8718 */ 8719 void update_max_interval(void) 8720 { 8721 max_load_balance_interval = HZ*num_online_cpus()/10; 8722 } 8723 8724 /* 8725 * It checks each scheduling domain to see if it is due to be balanced, 8726 * and initiates a balancing operation if so. 8727 * 8728 * Balancing parameters are set up in init_sched_domains. 8729 */ 8730 static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle) 8731 { 8732 int continue_balancing = 1; 8733 int cpu = rq->cpu; 8734 unsigned long interval; 8735 struct sched_domain *sd; 8736 /* Earliest time when we have to do rebalance again */ 8737 unsigned long next_balance = jiffies + 60*HZ; 8738 int update_next_balance = 0; 8739 int need_serialize, need_decay = 0; 8740 u64 max_cost = 0; 8741 8742 update_blocked_averages(cpu); 8743 8744 rcu_read_lock(); 8745 for_each_domain(cpu, sd) { 8746 /* 8747 * Decay the newidle max times here because this is a regular 8748 * visit to all the domains. Decay ~1% per second. 8749 */ 8750 if (time_after(jiffies, sd->next_decay_max_lb_cost)) { 8751 sd->max_newidle_lb_cost = 8752 (sd->max_newidle_lb_cost * 253) / 256; 8753 sd->next_decay_max_lb_cost = jiffies + HZ; 8754 need_decay = 1; 8755 } 8756 max_cost += sd->max_newidle_lb_cost; 8757 8758 if (!(sd->flags & SD_LOAD_BALANCE)) 8759 continue; 8760 8761 /* 8762 * Stop the load balance at this level. There is another 8763 * CPU in our sched group which is doing load balancing more 8764 * actively. 8765 */ 8766 if (!continue_balancing) { 8767 if (need_decay) 8768 continue; 8769 break; 8770 } 8771 8772 interval = get_sd_balance_interval(sd, idle != CPU_IDLE); 8773 8774 need_serialize = sd->flags & SD_SERIALIZE; 8775 if (need_serialize) { 8776 if (!spin_trylock(&balancing)) 8777 goto out; 8778 } 8779 8780 if (time_after_eq(jiffies, sd->last_balance + interval)) { 8781 if (load_balance(cpu, rq, sd, idle, &continue_balancing)) { 8782 /* 8783 * The LBF_DST_PINNED logic could have changed 8784 * env->dst_cpu, so we can't know our idle 8785 * state even if we migrated tasks. Update it. 8786 */ 8787 idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE; 8788 } 8789 sd->last_balance = jiffies; 8790 interval = get_sd_balance_interval(sd, idle != CPU_IDLE); 8791 } 8792 if (need_serialize) 8793 spin_unlock(&balancing); 8794 out: 8795 if (time_after(next_balance, sd->last_balance + interval)) { 8796 next_balance = sd->last_balance + interval; 8797 update_next_balance = 1; 8798 } 8799 } 8800 if (need_decay) { 8801 /* 8802 * Ensure the rq-wide value also decays but keep it at a 8803 * reasonable floor to avoid funnies with rq->avg_idle. 8804 */ 8805 rq->max_idle_balance_cost = 8806 max((u64)sysctl_sched_migration_cost, max_cost); 8807 } 8808 rcu_read_unlock(); 8809 8810 /* 8811 * next_balance will be updated only when there is a need. 8812 * When the cpu is attached to null domain for ex, it will not be 8813 * updated. 8814 */ 8815 if (likely(update_next_balance)) { 8816 rq->next_balance = next_balance; 8817 8818 #ifdef CONFIG_NO_HZ_COMMON 8819 /* 8820 * If this CPU has been elected to perform the nohz idle 8821 * balance. Other idle CPUs have already rebalanced with 8822 * nohz_idle_balance() and nohz.next_balance has been 8823 * updated accordingly. This CPU is now running the idle load 8824 * balance for itself and we need to update the 8825 * nohz.next_balance accordingly. 8826 */ 8827 if ((idle == CPU_IDLE) && time_after(nohz.next_balance, rq->next_balance)) 8828 nohz.next_balance = rq->next_balance; 8829 #endif 8830 } 8831 } 8832 8833 #ifdef CONFIG_NO_HZ_COMMON 8834 /* 8835 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the 8836 * rebalancing for all the cpus for whom scheduler ticks are stopped. 8837 */ 8838 static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) 8839 { 8840 int this_cpu = this_rq->cpu; 8841 struct rq *rq; 8842 int balance_cpu; 8843 /* Earliest time when we have to do rebalance again */ 8844 unsigned long next_balance = jiffies + 60*HZ; 8845 int update_next_balance = 0; 8846 8847 if (idle != CPU_IDLE || 8848 !test_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu))) 8849 goto end; 8850 8851 for_each_cpu(balance_cpu, nohz.idle_cpus_mask) { 8852 if (balance_cpu == this_cpu || !idle_cpu(balance_cpu)) 8853 continue; 8854 8855 /* 8856 * If this cpu gets work to do, stop the load balancing 8857 * work being done for other cpus. Next load 8858 * balancing owner will pick it up. 8859 */ 8860 if (need_resched()) 8861 break; 8862 8863 rq = cpu_rq(balance_cpu); 8864 8865 /* 8866 * If time for next balance is due, 8867 * do the balance. 8868 */ 8869 if (time_after_eq(jiffies, rq->next_balance)) { 8870 struct rq_flags rf; 8871 8872 rq_lock_irq(rq, &rf); 8873 update_rq_clock(rq); 8874 cpu_load_update_idle(rq); 8875 rq_unlock_irq(rq, &rf); 8876 8877 rebalance_domains(rq, CPU_IDLE); 8878 } 8879 8880 if (time_after(next_balance, rq->next_balance)) { 8881 next_balance = rq->next_balance; 8882 update_next_balance = 1; 8883 } 8884 } 8885 8886 /* 8887 * next_balance will be updated only when there is a need. 8888 * When the CPU is attached to null domain for ex, it will not be 8889 * updated. 8890 */ 8891 if (likely(update_next_balance)) 8892 nohz.next_balance = next_balance; 8893 end: 8894 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu)); 8895 } 8896 8897 /* 8898 * Current heuristic for kicking the idle load balancer in the presence 8899 * of an idle cpu in the system. 8900 * - This rq has more than one task. 8901 * - This rq has at least one CFS task and the capacity of the CPU is 8902 * significantly reduced because of RT tasks or IRQs. 8903 * - At parent of LLC scheduler domain level, this cpu's scheduler group has 8904 * multiple busy cpu. 8905 * - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler 8906 * domain span are idle. 8907 */ 8908 static inline bool nohz_kick_needed(struct rq *rq) 8909 { 8910 unsigned long now = jiffies; 8911 struct sched_domain_shared *sds; 8912 struct sched_domain *sd; 8913 int nr_busy, i, cpu = rq->cpu; 8914 bool kick = false; 8915 8916 if (unlikely(rq->idle_balance)) 8917 return false; 8918 8919 /* 8920 * We may be recently in ticked or tickless idle mode. At the first 8921 * busy tick after returning from idle, we will update the busy stats. 8922 */ 8923 set_cpu_sd_state_busy(); 8924 nohz_balance_exit_idle(cpu); 8925 8926 /* 8927 * None are in tickless mode and hence no need for NOHZ idle load 8928 * balancing. 8929 */ 8930 if (likely(!atomic_read(&nohz.nr_cpus))) 8931 return false; 8932 8933 if (time_before(now, nohz.next_balance)) 8934 return false; 8935 8936 if (rq->nr_running >= 2) 8937 return true; 8938 8939 rcu_read_lock(); 8940 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu)); 8941 if (sds) { 8942 /* 8943 * XXX: write a coherent comment on why we do this. 8944 * See also: http://lkml.kernel.org/r/20111202010832.602203411@sbsiddha-desk.sc.intel.com 8945 */ 8946 nr_busy = atomic_read(&sds->nr_busy_cpus); 8947 if (nr_busy > 1) { 8948 kick = true; 8949 goto unlock; 8950 } 8951 8952 } 8953 8954 sd = rcu_dereference(rq->sd); 8955 if (sd) { 8956 if ((rq->cfs.h_nr_running >= 1) && 8957 check_cpu_capacity(rq, sd)) { 8958 kick = true; 8959 goto unlock; 8960 } 8961 } 8962 8963 sd = rcu_dereference(per_cpu(sd_asym, cpu)); 8964 if (sd) { 8965 for_each_cpu(i, sched_domain_span(sd)) { 8966 if (i == cpu || 8967 !cpumask_test_cpu(i, nohz.idle_cpus_mask)) 8968 continue; 8969 8970 if (sched_asym_prefer(i, cpu)) { 8971 kick = true; 8972 goto unlock; 8973 } 8974 } 8975 } 8976 unlock: 8977 rcu_read_unlock(); 8978 return kick; 8979 } 8980 #else 8981 static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) { } 8982 #endif 8983 8984 /* 8985 * run_rebalance_domains is triggered when needed from the scheduler tick. 8986 * Also triggered for nohz idle balancing (with nohz_balancing_kick set). 8987 */ 8988 static __latent_entropy void run_rebalance_domains(struct softirq_action *h) 8989 { 8990 struct rq *this_rq = this_rq(); 8991 enum cpu_idle_type idle = this_rq->idle_balance ? 8992 CPU_IDLE : CPU_NOT_IDLE; 8993 8994 /* 8995 * If this cpu has a pending nohz_balance_kick, then do the 8996 * balancing on behalf of the other idle cpus whose ticks are 8997 * stopped. Do nohz_idle_balance *before* rebalance_domains to 8998 * give the idle cpus a chance to load balance. Else we may 8999 * load balance only within the local sched_domain hierarchy 9000 * and abort nohz_idle_balance altogether if we pull some load. 9001 */ 9002 nohz_idle_balance(this_rq, idle); 9003 rebalance_domains(this_rq, idle); 9004 } 9005 9006 /* 9007 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing. 9008 */ 9009 void trigger_load_balance(struct rq *rq) 9010 { 9011 /* Don't need to rebalance while attached to NULL domain */ 9012 if (unlikely(on_null_domain(rq))) 9013 return; 9014 9015 if (time_after_eq(jiffies, rq->next_balance)) 9016 raise_softirq(SCHED_SOFTIRQ); 9017 #ifdef CONFIG_NO_HZ_COMMON 9018 if (nohz_kick_needed(rq)) 9019 nohz_balancer_kick(); 9020 #endif 9021 } 9022 9023 static void rq_online_fair(struct rq *rq) 9024 { 9025 update_sysctl(); 9026 9027 update_runtime_enabled(rq); 9028 } 9029 9030 static void rq_offline_fair(struct rq *rq) 9031 { 9032 update_sysctl(); 9033 9034 /* Ensure any throttled groups are reachable by pick_next_task */ 9035 unthrottle_offline_cfs_rqs(rq); 9036 } 9037 9038 #endif /* CONFIG_SMP */ 9039 9040 /* 9041 * scheduler tick hitting a task of our scheduling class: 9042 */ 9043 static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued) 9044 { 9045 struct cfs_rq *cfs_rq; 9046 struct sched_entity *se = &curr->se; 9047 9048 for_each_sched_entity(se) { 9049 cfs_rq = cfs_rq_of(se); 9050 entity_tick(cfs_rq, se, queued); 9051 } 9052 9053 if (static_branch_unlikely(&sched_numa_balancing)) 9054 task_tick_numa(rq, curr); 9055 } 9056 9057 /* 9058 * called on fork with the child task as argument from the parent's context 9059 * - child not yet on the tasklist 9060 * - preemption disabled 9061 */ 9062 static void task_fork_fair(struct task_struct *p) 9063 { 9064 struct cfs_rq *cfs_rq; 9065 struct sched_entity *se = &p->se, *curr; 9066 struct rq *rq = this_rq(); 9067 struct rq_flags rf; 9068 9069 rq_lock(rq, &rf); 9070 update_rq_clock(rq); 9071 9072 cfs_rq = task_cfs_rq(current); 9073 curr = cfs_rq->curr; 9074 if (curr) { 9075 update_curr(cfs_rq); 9076 se->vruntime = curr->vruntime; 9077 } 9078 place_entity(cfs_rq, se, 1); 9079 9080 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) { 9081 /* 9082 * Upon rescheduling, sched_class::put_prev_task() will place 9083 * 'current' within the tree based on its new key value. 9084 */ 9085 swap(curr->vruntime, se->vruntime); 9086 resched_curr(rq); 9087 } 9088 9089 se->vruntime -= cfs_rq->min_vruntime; 9090 rq_unlock(rq, &rf); 9091 } 9092 9093 /* 9094 * Priority of the task has changed. Check to see if we preempt 9095 * the current task. 9096 */ 9097 static void 9098 prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio) 9099 { 9100 if (!task_on_rq_queued(p)) 9101 return; 9102 9103 /* 9104 * Reschedule if we are currently running on this runqueue and 9105 * our priority decreased, or if we are not currently running on 9106 * this runqueue and our priority is higher than the current's 9107 */ 9108 if (rq->curr == p) { 9109 if (p->prio > oldprio) 9110 resched_curr(rq); 9111 } else 9112 check_preempt_curr(rq, p, 0); 9113 } 9114 9115 static inline bool vruntime_normalized(struct task_struct *p) 9116 { 9117 struct sched_entity *se = &p->se; 9118 9119 /* 9120 * In both the TASK_ON_RQ_QUEUED and TASK_ON_RQ_MIGRATING cases, 9121 * the dequeue_entity(.flags=0) will already have normalized the 9122 * vruntime. 9123 */ 9124 if (p->on_rq) 9125 return true; 9126 9127 /* 9128 * When !on_rq, vruntime of the task has usually NOT been normalized. 9129 * But there are some cases where it has already been normalized: 9130 * 9131 * - A forked child which is waiting for being woken up by 9132 * wake_up_new_task(). 9133 * - A task which has been woken up by try_to_wake_up() and 9134 * waiting for actually being woken up by sched_ttwu_pending(). 9135 */ 9136 if (!se->sum_exec_runtime || p->state == TASK_WAKING) 9137 return true; 9138 9139 return false; 9140 } 9141 9142 #ifdef CONFIG_FAIR_GROUP_SCHED 9143 /* 9144 * Propagate the changes of the sched_entity across the tg tree to make it 9145 * visible to the root 9146 */ 9147 static void propagate_entity_cfs_rq(struct sched_entity *se) 9148 { 9149 struct cfs_rq *cfs_rq; 9150 9151 /* Start to propagate at parent */ 9152 se = se->parent; 9153 9154 for_each_sched_entity(se) { 9155 cfs_rq = cfs_rq_of(se); 9156 9157 if (cfs_rq_throttled(cfs_rq)) 9158 break; 9159 9160 update_load_avg(se, UPDATE_TG); 9161 } 9162 } 9163 #else 9164 static void propagate_entity_cfs_rq(struct sched_entity *se) { } 9165 #endif 9166 9167 static void detach_entity_cfs_rq(struct sched_entity *se) 9168 { 9169 struct cfs_rq *cfs_rq = cfs_rq_of(se); 9170 9171 /* Catch up with the cfs_rq and remove our load when we leave */ 9172 update_load_avg(se, 0); 9173 detach_entity_load_avg(cfs_rq, se); 9174 update_tg_load_avg(cfs_rq, false); 9175 propagate_entity_cfs_rq(se); 9176 } 9177 9178 static void attach_entity_cfs_rq(struct sched_entity *se) 9179 { 9180 struct cfs_rq *cfs_rq = cfs_rq_of(se); 9181 9182 #ifdef CONFIG_FAIR_GROUP_SCHED 9183 /* 9184 * Since the real-depth could have been changed (only FAIR 9185 * class maintain depth value), reset depth properly. 9186 */ 9187 se->depth = se->parent ? se->parent->depth + 1 : 0; 9188 #endif 9189 9190 /* Synchronize entity with its cfs_rq */ 9191 update_load_avg(se, sched_feat(ATTACH_AGE_LOAD) ? 0 : SKIP_AGE_LOAD); 9192 attach_entity_load_avg(cfs_rq, se); 9193 update_tg_load_avg(cfs_rq, false); 9194 propagate_entity_cfs_rq(se); 9195 } 9196 9197 static void detach_task_cfs_rq(struct task_struct *p) 9198 { 9199 struct sched_entity *se = &p->se; 9200 struct cfs_rq *cfs_rq = cfs_rq_of(se); 9201 9202 if (!vruntime_normalized(p)) { 9203 /* 9204 * Fix up our vruntime so that the current sleep doesn't 9205 * cause 'unlimited' sleep bonus. 9206 */ 9207 place_entity(cfs_rq, se, 0); 9208 se->vruntime -= cfs_rq->min_vruntime; 9209 } 9210 9211 detach_entity_cfs_rq(se); 9212 } 9213 9214 static void attach_task_cfs_rq(struct task_struct *p) 9215 { 9216 struct sched_entity *se = &p->se; 9217 struct cfs_rq *cfs_rq = cfs_rq_of(se); 9218 9219 attach_entity_cfs_rq(se); 9220 9221 if (!vruntime_normalized(p)) 9222 se->vruntime += cfs_rq->min_vruntime; 9223 } 9224 9225 static void switched_from_fair(struct rq *rq, struct task_struct *p) 9226 { 9227 detach_task_cfs_rq(p); 9228 } 9229 9230 static void switched_to_fair(struct rq *rq, struct task_struct *p) 9231 { 9232 attach_task_cfs_rq(p); 9233 9234 if (task_on_rq_queued(p)) { 9235 /* 9236 * We were most likely switched from sched_rt, so 9237 * kick off the schedule if running, otherwise just see 9238 * if we can still preempt the current task. 9239 */ 9240 if (rq->curr == p) 9241 resched_curr(rq); 9242 else 9243 check_preempt_curr(rq, p, 0); 9244 } 9245 } 9246 9247 /* Account for a task changing its policy or group. 9248 * 9249 * This routine is mostly called to set cfs_rq->curr field when a task 9250 * migrates between groups/classes. 9251 */ 9252 static void set_curr_task_fair(struct rq *rq) 9253 { 9254 struct sched_entity *se = &rq->curr->se; 9255 9256 for_each_sched_entity(se) { 9257 struct cfs_rq *cfs_rq = cfs_rq_of(se); 9258 9259 set_next_entity(cfs_rq, se); 9260 /* ensure bandwidth has been allocated on our new cfs_rq */ 9261 account_cfs_rq_runtime(cfs_rq, 0); 9262 } 9263 } 9264 9265 void init_cfs_rq(struct cfs_rq *cfs_rq) 9266 { 9267 cfs_rq->tasks_timeline = RB_ROOT_CACHED; 9268 cfs_rq->min_vruntime = (u64)(-(1LL << 20)); 9269 #ifndef CONFIG_64BIT 9270 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime; 9271 #endif 9272 #ifdef CONFIG_SMP 9273 #ifdef CONFIG_FAIR_GROUP_SCHED 9274 cfs_rq->propagate_avg = 0; 9275 #endif 9276 atomic_long_set(&cfs_rq->removed_load_avg, 0); 9277 atomic_long_set(&cfs_rq->removed_util_avg, 0); 9278 #endif 9279 } 9280 9281 #ifdef CONFIG_FAIR_GROUP_SCHED 9282 static void task_set_group_fair(struct task_struct *p) 9283 { 9284 struct sched_entity *se = &p->se; 9285 9286 set_task_rq(p, task_cpu(p)); 9287 se->depth = se->parent ? se->parent->depth + 1 : 0; 9288 } 9289 9290 static void task_move_group_fair(struct task_struct *p) 9291 { 9292 detach_task_cfs_rq(p); 9293 set_task_rq(p, task_cpu(p)); 9294 9295 #ifdef CONFIG_SMP 9296 /* Tell se's cfs_rq has been changed -- migrated */ 9297 p->se.avg.last_update_time = 0; 9298 #endif 9299 attach_task_cfs_rq(p); 9300 } 9301 9302 static void task_change_group_fair(struct task_struct *p, int type) 9303 { 9304 switch (type) { 9305 case TASK_SET_GROUP: 9306 task_set_group_fair(p); 9307 break; 9308 9309 case TASK_MOVE_GROUP: 9310 task_move_group_fair(p); 9311 break; 9312 } 9313 } 9314 9315 void free_fair_sched_group(struct task_group *tg) 9316 { 9317 int i; 9318 9319 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg)); 9320 9321 for_each_possible_cpu(i) { 9322 if (tg->cfs_rq) 9323 kfree(tg->cfs_rq[i]); 9324 if (tg->se) 9325 kfree(tg->se[i]); 9326 } 9327 9328 kfree(tg->cfs_rq); 9329 kfree(tg->se); 9330 } 9331 9332 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent) 9333 { 9334 struct sched_entity *se; 9335 struct cfs_rq *cfs_rq; 9336 int i; 9337 9338 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL); 9339 if (!tg->cfs_rq) 9340 goto err; 9341 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL); 9342 if (!tg->se) 9343 goto err; 9344 9345 tg->shares = NICE_0_LOAD; 9346 9347 init_cfs_bandwidth(tg_cfs_bandwidth(tg)); 9348 9349 for_each_possible_cpu(i) { 9350 cfs_rq = kzalloc_node(sizeof(struct cfs_rq), 9351 GFP_KERNEL, cpu_to_node(i)); 9352 if (!cfs_rq) 9353 goto err; 9354 9355 se = kzalloc_node(sizeof(struct sched_entity), 9356 GFP_KERNEL, cpu_to_node(i)); 9357 if (!se) 9358 goto err_free_rq; 9359 9360 init_cfs_rq(cfs_rq); 9361 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]); 9362 init_entity_runnable_average(se); 9363 } 9364 9365 return 1; 9366 9367 err_free_rq: 9368 kfree(cfs_rq); 9369 err: 9370 return 0; 9371 } 9372 9373 void online_fair_sched_group(struct task_group *tg) 9374 { 9375 struct sched_entity *se; 9376 struct rq *rq; 9377 int i; 9378 9379 for_each_possible_cpu(i) { 9380 rq = cpu_rq(i); 9381 se = tg->se[i]; 9382 9383 raw_spin_lock_irq(&rq->lock); 9384 update_rq_clock(rq); 9385 attach_entity_cfs_rq(se); 9386 sync_throttle(tg, i); 9387 raw_spin_unlock_irq(&rq->lock); 9388 } 9389 } 9390 9391 void unregister_fair_sched_group(struct task_group *tg) 9392 { 9393 unsigned long flags; 9394 struct rq *rq; 9395 int cpu; 9396 9397 for_each_possible_cpu(cpu) { 9398 if (tg->se[cpu]) 9399 remove_entity_load_avg(tg->se[cpu]); 9400 9401 /* 9402 * Only empty task groups can be destroyed; so we can speculatively 9403 * check on_list without danger of it being re-added. 9404 */ 9405 if (!tg->cfs_rq[cpu]->on_list) 9406 continue; 9407 9408 rq = cpu_rq(cpu); 9409 9410 raw_spin_lock_irqsave(&rq->lock, flags); 9411 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]); 9412 raw_spin_unlock_irqrestore(&rq->lock, flags); 9413 } 9414 } 9415 9416 void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq, 9417 struct sched_entity *se, int cpu, 9418 struct sched_entity *parent) 9419 { 9420 struct rq *rq = cpu_rq(cpu); 9421 9422 cfs_rq->tg = tg; 9423 cfs_rq->rq = rq; 9424 init_cfs_rq_runtime(cfs_rq); 9425 9426 tg->cfs_rq[cpu] = cfs_rq; 9427 tg->se[cpu] = se; 9428 9429 /* se could be NULL for root_task_group */ 9430 if (!se) 9431 return; 9432 9433 if (!parent) { 9434 se->cfs_rq = &rq->cfs; 9435 se->depth = 0; 9436 } else { 9437 se->cfs_rq = parent->my_q; 9438 se->depth = parent->depth + 1; 9439 } 9440 9441 se->my_q = cfs_rq; 9442 /* guarantee group entities always have weight */ 9443 update_load_set(&se->load, NICE_0_LOAD); 9444 se->parent = parent; 9445 } 9446 9447 static DEFINE_MUTEX(shares_mutex); 9448 9449 int sched_group_set_shares(struct task_group *tg, unsigned long shares) 9450 { 9451 int i; 9452 9453 /* 9454 * We can't change the weight of the root cgroup. 9455 */ 9456 if (!tg->se[0]) 9457 return -EINVAL; 9458 9459 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES)); 9460 9461 mutex_lock(&shares_mutex); 9462 if (tg->shares == shares) 9463 goto done; 9464 9465 tg->shares = shares; 9466 for_each_possible_cpu(i) { 9467 struct rq *rq = cpu_rq(i); 9468 struct sched_entity *se = tg->se[i]; 9469 struct rq_flags rf; 9470 9471 /* Propagate contribution to hierarchy */ 9472 rq_lock_irqsave(rq, &rf); 9473 update_rq_clock(rq); 9474 for_each_sched_entity(se) { 9475 update_load_avg(se, UPDATE_TG); 9476 update_cfs_shares(se); 9477 } 9478 rq_unlock_irqrestore(rq, &rf); 9479 } 9480 9481 done: 9482 mutex_unlock(&shares_mutex); 9483 return 0; 9484 } 9485 #else /* CONFIG_FAIR_GROUP_SCHED */ 9486 9487 void free_fair_sched_group(struct task_group *tg) { } 9488 9489 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent) 9490 { 9491 return 1; 9492 } 9493 9494 void online_fair_sched_group(struct task_group *tg) { } 9495 9496 void unregister_fair_sched_group(struct task_group *tg) { } 9497 9498 #endif /* CONFIG_FAIR_GROUP_SCHED */ 9499 9500 9501 static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task) 9502 { 9503 struct sched_entity *se = &task->se; 9504 unsigned int rr_interval = 0; 9505 9506 /* 9507 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise 9508 * idle runqueue: 9509 */ 9510 if (rq->cfs.load.weight) 9511 rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se)); 9512 9513 return rr_interval; 9514 } 9515 9516 /* 9517 * All the scheduling class methods: 9518 */ 9519 const struct sched_class fair_sched_class = { 9520 .next = &idle_sched_class, 9521 .enqueue_task = enqueue_task_fair, 9522 .dequeue_task = dequeue_task_fair, 9523 .yield_task = yield_task_fair, 9524 .yield_to_task = yield_to_task_fair, 9525 9526 .check_preempt_curr = check_preempt_wakeup, 9527 9528 .pick_next_task = pick_next_task_fair, 9529 .put_prev_task = put_prev_task_fair, 9530 9531 #ifdef CONFIG_SMP 9532 .select_task_rq = select_task_rq_fair, 9533 .migrate_task_rq = migrate_task_rq_fair, 9534 9535 .rq_online = rq_online_fair, 9536 .rq_offline = rq_offline_fair, 9537 9538 .task_dead = task_dead_fair, 9539 .set_cpus_allowed = set_cpus_allowed_common, 9540 #endif 9541 9542 .set_curr_task = set_curr_task_fair, 9543 .task_tick = task_tick_fair, 9544 .task_fork = task_fork_fair, 9545 9546 .prio_changed = prio_changed_fair, 9547 .switched_from = switched_from_fair, 9548 .switched_to = switched_to_fair, 9549 9550 .get_rr_interval = get_rr_interval_fair, 9551 9552 .update_curr = update_curr_fair, 9553 9554 #ifdef CONFIG_FAIR_GROUP_SCHED 9555 .task_change_group = task_change_group_fair, 9556 #endif 9557 }; 9558 9559 #ifdef CONFIG_SCHED_DEBUG 9560 void print_cfs_stats(struct seq_file *m, int cpu) 9561 { 9562 struct cfs_rq *cfs_rq, *pos; 9563 9564 rcu_read_lock(); 9565 for_each_leaf_cfs_rq_safe(cpu_rq(cpu), cfs_rq, pos) 9566 print_cfs_rq(m, cpu, cfs_rq); 9567 rcu_read_unlock(); 9568 } 9569 9570 #ifdef CONFIG_NUMA_BALANCING 9571 void show_numa_stats(struct task_struct *p, struct seq_file *m) 9572 { 9573 int node; 9574 unsigned long tsf = 0, tpf = 0, gsf = 0, gpf = 0; 9575 9576 for_each_online_node(node) { 9577 if (p->numa_faults) { 9578 tsf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 0)]; 9579 tpf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 1)]; 9580 } 9581 if (p->numa_group) { 9582 gsf = p->numa_group->faults[task_faults_idx(NUMA_MEM, node, 0)], 9583 gpf = p->numa_group->faults[task_faults_idx(NUMA_MEM, node, 1)]; 9584 } 9585 print_numa_stats(m, node, tsf, tpf, gsf, gpf); 9586 } 9587 } 9588 #endif /* CONFIG_NUMA_BALANCING */ 9589 #endif /* CONFIG_SCHED_DEBUG */ 9590 9591 __init void init_sched_fair_class(void) 9592 { 9593 #ifdef CONFIG_SMP 9594 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains); 9595 9596 #ifdef CONFIG_NO_HZ_COMMON 9597 nohz.next_balance = jiffies; 9598 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT); 9599 #endif 9600 #endif /* SMP */ 9601 9602 } 9603