1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH) 4 * 5 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com> 6 * 7 * Interactivity improvements by Mike Galbraith 8 * (C) 2007 Mike Galbraith <efault@gmx.de> 9 * 10 * Various enhancements by Dmitry Adamushko. 11 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com> 12 * 13 * Group scheduling enhancements by Srivatsa Vaddagiri 14 * Copyright IBM Corporation, 2007 15 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com> 16 * 17 * Scaled math optimizations by Thomas Gleixner 18 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de> 19 * 20 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra 21 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra 22 */ 23 #include "sched.h" 24 25 /* 26 * Targeted preemption latency for CPU-bound tasks: 27 * 28 * NOTE: this latency value is not the same as the concept of 29 * 'timeslice length' - timeslices in CFS are of variable length 30 * and have no persistent notion like in traditional, time-slice 31 * based scheduling concepts. 32 * 33 * (to see the precise effective timeslice length of your workload, 34 * run vmstat and monitor the context-switches (cs) field) 35 * 36 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds) 37 */ 38 unsigned int sysctl_sched_latency = 6000000ULL; 39 static unsigned int normalized_sysctl_sched_latency = 6000000ULL; 40 41 /* 42 * The initial- and re-scaling of tunables is configurable 43 * 44 * Options are: 45 * 46 * SCHED_TUNABLESCALING_NONE - unscaled, always *1 47 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus) 48 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus 49 * 50 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus)) 51 */ 52 enum sched_tunable_scaling sysctl_sched_tunable_scaling = SCHED_TUNABLESCALING_LOG; 53 54 /* 55 * Minimal preemption granularity for CPU-bound tasks: 56 * 57 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds) 58 */ 59 unsigned int sysctl_sched_min_granularity = 750000ULL; 60 static unsigned int normalized_sysctl_sched_min_granularity = 750000ULL; 61 62 /* 63 * This value is kept at sysctl_sched_latency/sysctl_sched_min_granularity 64 */ 65 static unsigned int sched_nr_latency = 8; 66 67 /* 68 * After fork, child runs first. If set to 0 (default) then 69 * parent will (try to) run first. 70 */ 71 unsigned int sysctl_sched_child_runs_first __read_mostly; 72 73 /* 74 * SCHED_OTHER wake-up granularity. 75 * 76 * This option delays the preemption effects of decoupled workloads 77 * and reduces their over-scheduling. Synchronous workloads will still 78 * have immediate wakeup/sleep latencies. 79 * 80 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds) 81 */ 82 unsigned int sysctl_sched_wakeup_granularity = 1000000UL; 83 static unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL; 84 85 const_debug unsigned int sysctl_sched_migration_cost = 500000UL; 86 87 int sched_thermal_decay_shift; 88 static int __init setup_sched_thermal_decay_shift(char *str) 89 { 90 int _shift = 0; 91 92 if (kstrtoint(str, 0, &_shift)) 93 pr_warn("Unable to set scheduler thermal pressure decay shift parameter\n"); 94 95 sched_thermal_decay_shift = clamp(_shift, 0, 10); 96 return 1; 97 } 98 __setup("sched_thermal_decay_shift=", setup_sched_thermal_decay_shift); 99 100 #ifdef CONFIG_SMP 101 /* 102 * For asym packing, by default the lower numbered CPU has higher priority. 103 */ 104 int __weak arch_asym_cpu_priority(int cpu) 105 { 106 return -cpu; 107 } 108 109 /* 110 * The margin used when comparing utilization with CPU capacity. 111 * 112 * (default: ~20%) 113 */ 114 #define fits_capacity(cap, max) ((cap) * 1280 < (max) * 1024) 115 116 #endif 117 118 #ifdef CONFIG_CFS_BANDWIDTH 119 /* 120 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool 121 * each time a cfs_rq requests quota. 122 * 123 * Note: in the case that the slice exceeds the runtime remaining (either due 124 * to consumption or the quota being specified to be smaller than the slice) 125 * we will always only issue the remaining available time. 126 * 127 * (default: 5 msec, units: microseconds) 128 */ 129 unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL; 130 #endif 131 132 static inline void update_load_add(struct load_weight *lw, unsigned long inc) 133 { 134 lw->weight += inc; 135 lw->inv_weight = 0; 136 } 137 138 static inline void update_load_sub(struct load_weight *lw, unsigned long dec) 139 { 140 lw->weight -= dec; 141 lw->inv_weight = 0; 142 } 143 144 static inline void update_load_set(struct load_weight *lw, unsigned long w) 145 { 146 lw->weight = w; 147 lw->inv_weight = 0; 148 } 149 150 /* 151 * Increase the granularity value when there are more CPUs, 152 * because with more CPUs the 'effective latency' as visible 153 * to users decreases. But the relationship is not linear, 154 * so pick a second-best guess by going with the log2 of the 155 * number of CPUs. 156 * 157 * This idea comes from the SD scheduler of Con Kolivas: 158 */ 159 static unsigned int get_update_sysctl_factor(void) 160 { 161 unsigned int cpus = min_t(unsigned int, num_online_cpus(), 8); 162 unsigned int factor; 163 164 switch (sysctl_sched_tunable_scaling) { 165 case SCHED_TUNABLESCALING_NONE: 166 factor = 1; 167 break; 168 case SCHED_TUNABLESCALING_LINEAR: 169 factor = cpus; 170 break; 171 case SCHED_TUNABLESCALING_LOG: 172 default: 173 factor = 1 + ilog2(cpus); 174 break; 175 } 176 177 return factor; 178 } 179 180 static void update_sysctl(void) 181 { 182 unsigned int factor = get_update_sysctl_factor(); 183 184 #define SET_SYSCTL(name) \ 185 (sysctl_##name = (factor) * normalized_sysctl_##name) 186 SET_SYSCTL(sched_min_granularity); 187 SET_SYSCTL(sched_latency); 188 SET_SYSCTL(sched_wakeup_granularity); 189 #undef SET_SYSCTL 190 } 191 192 void __init sched_init_granularity(void) 193 { 194 update_sysctl(); 195 } 196 197 #define WMULT_CONST (~0U) 198 #define WMULT_SHIFT 32 199 200 static void __update_inv_weight(struct load_weight *lw) 201 { 202 unsigned long w; 203 204 if (likely(lw->inv_weight)) 205 return; 206 207 w = scale_load_down(lw->weight); 208 209 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST)) 210 lw->inv_weight = 1; 211 else if (unlikely(!w)) 212 lw->inv_weight = WMULT_CONST; 213 else 214 lw->inv_weight = WMULT_CONST / w; 215 } 216 217 /* 218 * delta_exec * weight / lw.weight 219 * OR 220 * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT 221 * 222 * Either weight := NICE_0_LOAD and lw \e sched_prio_to_wmult[], in which case 223 * we're guaranteed shift stays positive because inv_weight is guaranteed to 224 * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22. 225 * 226 * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus 227 * weight/lw.weight <= 1, and therefore our shift will also be positive. 228 */ 229 static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw) 230 { 231 u64 fact = scale_load_down(weight); 232 int shift = WMULT_SHIFT; 233 234 __update_inv_weight(lw); 235 236 if (unlikely(fact >> 32)) { 237 while (fact >> 32) { 238 fact >>= 1; 239 shift--; 240 } 241 } 242 243 fact = mul_u32_u32(fact, lw->inv_weight); 244 245 while (fact >> 32) { 246 fact >>= 1; 247 shift--; 248 } 249 250 return mul_u64_u32_shr(delta_exec, fact, shift); 251 } 252 253 254 const struct sched_class fair_sched_class; 255 256 /************************************************************** 257 * CFS operations on generic schedulable entities: 258 */ 259 260 #ifdef CONFIG_FAIR_GROUP_SCHED 261 static inline struct task_struct *task_of(struct sched_entity *se) 262 { 263 SCHED_WARN_ON(!entity_is_task(se)); 264 return container_of(se, struct task_struct, se); 265 } 266 267 /* Walk up scheduling entities hierarchy */ 268 #define for_each_sched_entity(se) \ 269 for (; se; se = se->parent) 270 271 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p) 272 { 273 return p->se.cfs_rq; 274 } 275 276 /* runqueue on which this entity is (to be) queued */ 277 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se) 278 { 279 return se->cfs_rq; 280 } 281 282 /* runqueue "owned" by this group */ 283 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp) 284 { 285 return grp->my_q; 286 } 287 288 static inline void cfs_rq_tg_path(struct cfs_rq *cfs_rq, char *path, int len) 289 { 290 if (!path) 291 return; 292 293 if (cfs_rq && task_group_is_autogroup(cfs_rq->tg)) 294 autogroup_path(cfs_rq->tg, path, len); 295 else if (cfs_rq && cfs_rq->tg->css.cgroup) 296 cgroup_path(cfs_rq->tg->css.cgroup, path, len); 297 else 298 strlcpy(path, "(null)", len); 299 } 300 301 static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq) 302 { 303 struct rq *rq = rq_of(cfs_rq); 304 int cpu = cpu_of(rq); 305 306 if (cfs_rq->on_list) 307 return rq->tmp_alone_branch == &rq->leaf_cfs_rq_list; 308 309 cfs_rq->on_list = 1; 310 311 /* 312 * Ensure we either appear before our parent (if already 313 * enqueued) or force our parent to appear after us when it is 314 * enqueued. The fact that we always enqueue bottom-up 315 * reduces this to two cases and a special case for the root 316 * cfs_rq. Furthermore, it also means that we will always reset 317 * tmp_alone_branch either when the branch is connected 318 * to a tree or when we reach the top of the tree 319 */ 320 if (cfs_rq->tg->parent && 321 cfs_rq->tg->parent->cfs_rq[cpu]->on_list) { 322 /* 323 * If parent is already on the list, we add the child 324 * just before. Thanks to circular linked property of 325 * the list, this means to put the child at the tail 326 * of the list that starts by parent. 327 */ 328 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list, 329 &(cfs_rq->tg->parent->cfs_rq[cpu]->leaf_cfs_rq_list)); 330 /* 331 * The branch is now connected to its tree so we can 332 * reset tmp_alone_branch to the beginning of the 333 * list. 334 */ 335 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list; 336 return true; 337 } 338 339 if (!cfs_rq->tg->parent) { 340 /* 341 * cfs rq without parent should be put 342 * at the tail of the list. 343 */ 344 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list, 345 &rq->leaf_cfs_rq_list); 346 /* 347 * We have reach the top of a tree so we can reset 348 * tmp_alone_branch to the beginning of the list. 349 */ 350 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list; 351 return true; 352 } 353 354 /* 355 * The parent has not already been added so we want to 356 * make sure that it will be put after us. 357 * tmp_alone_branch points to the begin of the branch 358 * where we will add parent. 359 */ 360 list_add_rcu(&cfs_rq->leaf_cfs_rq_list, rq->tmp_alone_branch); 361 /* 362 * update tmp_alone_branch to points to the new begin 363 * of the branch 364 */ 365 rq->tmp_alone_branch = &cfs_rq->leaf_cfs_rq_list; 366 return false; 367 } 368 369 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq) 370 { 371 if (cfs_rq->on_list) { 372 struct rq *rq = rq_of(cfs_rq); 373 374 /* 375 * With cfs_rq being unthrottled/throttled during an enqueue, 376 * it can happen the tmp_alone_branch points the a leaf that 377 * we finally want to del. In this case, tmp_alone_branch moves 378 * to the prev element but it will point to rq->leaf_cfs_rq_list 379 * at the end of the enqueue. 380 */ 381 if (rq->tmp_alone_branch == &cfs_rq->leaf_cfs_rq_list) 382 rq->tmp_alone_branch = cfs_rq->leaf_cfs_rq_list.prev; 383 384 list_del_rcu(&cfs_rq->leaf_cfs_rq_list); 385 cfs_rq->on_list = 0; 386 } 387 } 388 389 static inline void assert_list_leaf_cfs_rq(struct rq *rq) 390 { 391 SCHED_WARN_ON(rq->tmp_alone_branch != &rq->leaf_cfs_rq_list); 392 } 393 394 /* Iterate thr' all leaf cfs_rq's on a runqueue */ 395 #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) \ 396 list_for_each_entry_safe(cfs_rq, pos, &rq->leaf_cfs_rq_list, \ 397 leaf_cfs_rq_list) 398 399 /* Do the two (enqueued) entities belong to the same group ? */ 400 static inline struct cfs_rq * 401 is_same_group(struct sched_entity *se, struct sched_entity *pse) 402 { 403 if (se->cfs_rq == pse->cfs_rq) 404 return se->cfs_rq; 405 406 return NULL; 407 } 408 409 static inline struct sched_entity *parent_entity(struct sched_entity *se) 410 { 411 return se->parent; 412 } 413 414 static void 415 find_matching_se(struct sched_entity **se, struct sched_entity **pse) 416 { 417 int se_depth, pse_depth; 418 419 /* 420 * preemption test can be made between sibling entities who are in the 421 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of 422 * both tasks until we find their ancestors who are siblings of common 423 * parent. 424 */ 425 426 /* First walk up until both entities are at same depth */ 427 se_depth = (*se)->depth; 428 pse_depth = (*pse)->depth; 429 430 while (se_depth > pse_depth) { 431 se_depth--; 432 *se = parent_entity(*se); 433 } 434 435 while (pse_depth > se_depth) { 436 pse_depth--; 437 *pse = parent_entity(*pse); 438 } 439 440 while (!is_same_group(*se, *pse)) { 441 *se = parent_entity(*se); 442 *pse = parent_entity(*pse); 443 } 444 } 445 446 #else /* !CONFIG_FAIR_GROUP_SCHED */ 447 448 static inline struct task_struct *task_of(struct sched_entity *se) 449 { 450 return container_of(se, struct task_struct, se); 451 } 452 453 #define for_each_sched_entity(se) \ 454 for (; se; se = NULL) 455 456 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p) 457 { 458 return &task_rq(p)->cfs; 459 } 460 461 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se) 462 { 463 struct task_struct *p = task_of(se); 464 struct rq *rq = task_rq(p); 465 466 return &rq->cfs; 467 } 468 469 /* runqueue "owned" by this group */ 470 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp) 471 { 472 return NULL; 473 } 474 475 static inline void cfs_rq_tg_path(struct cfs_rq *cfs_rq, char *path, int len) 476 { 477 if (path) 478 strlcpy(path, "(null)", len); 479 } 480 481 static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq) 482 { 483 return true; 484 } 485 486 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq) 487 { 488 } 489 490 static inline void assert_list_leaf_cfs_rq(struct rq *rq) 491 { 492 } 493 494 #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) \ 495 for (cfs_rq = &rq->cfs, pos = NULL; cfs_rq; cfs_rq = pos) 496 497 static inline struct sched_entity *parent_entity(struct sched_entity *se) 498 { 499 return NULL; 500 } 501 502 static inline void 503 find_matching_se(struct sched_entity **se, struct sched_entity **pse) 504 { 505 } 506 507 #endif /* CONFIG_FAIR_GROUP_SCHED */ 508 509 static __always_inline 510 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec); 511 512 /************************************************************** 513 * Scheduling class tree data structure manipulation methods: 514 */ 515 516 static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime) 517 { 518 s64 delta = (s64)(vruntime - max_vruntime); 519 if (delta > 0) 520 max_vruntime = vruntime; 521 522 return max_vruntime; 523 } 524 525 static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime) 526 { 527 s64 delta = (s64)(vruntime - min_vruntime); 528 if (delta < 0) 529 min_vruntime = vruntime; 530 531 return min_vruntime; 532 } 533 534 static inline bool entity_before(struct sched_entity *a, 535 struct sched_entity *b) 536 { 537 return (s64)(a->vruntime - b->vruntime) < 0; 538 } 539 540 #define __node_2_se(node) \ 541 rb_entry((node), struct sched_entity, run_node) 542 543 static void update_min_vruntime(struct cfs_rq *cfs_rq) 544 { 545 struct sched_entity *curr = cfs_rq->curr; 546 struct rb_node *leftmost = rb_first_cached(&cfs_rq->tasks_timeline); 547 548 u64 vruntime = cfs_rq->min_vruntime; 549 550 if (curr) { 551 if (curr->on_rq) 552 vruntime = curr->vruntime; 553 else 554 curr = NULL; 555 } 556 557 if (leftmost) { /* non-empty tree */ 558 struct sched_entity *se = __node_2_se(leftmost); 559 560 if (!curr) 561 vruntime = se->vruntime; 562 else 563 vruntime = min_vruntime(vruntime, se->vruntime); 564 } 565 566 /* ensure we never gain time by being placed backwards. */ 567 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime); 568 #ifndef CONFIG_64BIT 569 smp_wmb(); 570 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime; 571 #endif 572 } 573 574 static inline bool __entity_less(struct rb_node *a, const struct rb_node *b) 575 { 576 return entity_before(__node_2_se(a), __node_2_se(b)); 577 } 578 579 /* 580 * Enqueue an entity into the rb-tree: 581 */ 582 static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) 583 { 584 rb_add_cached(&se->run_node, &cfs_rq->tasks_timeline, __entity_less); 585 } 586 587 static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) 588 { 589 rb_erase_cached(&se->run_node, &cfs_rq->tasks_timeline); 590 } 591 592 struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq) 593 { 594 struct rb_node *left = rb_first_cached(&cfs_rq->tasks_timeline); 595 596 if (!left) 597 return NULL; 598 599 return __node_2_se(left); 600 } 601 602 static struct sched_entity *__pick_next_entity(struct sched_entity *se) 603 { 604 struct rb_node *next = rb_next(&se->run_node); 605 606 if (!next) 607 return NULL; 608 609 return __node_2_se(next); 610 } 611 612 #ifdef CONFIG_SCHED_DEBUG 613 struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq) 614 { 615 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline.rb_root); 616 617 if (!last) 618 return NULL; 619 620 return __node_2_se(last); 621 } 622 623 /************************************************************** 624 * Scheduling class statistics methods: 625 */ 626 627 int sched_proc_update_handler(struct ctl_table *table, int write, 628 void *buffer, size_t *lenp, loff_t *ppos) 629 { 630 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 631 unsigned int factor = get_update_sysctl_factor(); 632 633 if (ret || !write) 634 return ret; 635 636 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency, 637 sysctl_sched_min_granularity); 638 639 #define WRT_SYSCTL(name) \ 640 (normalized_sysctl_##name = sysctl_##name / (factor)) 641 WRT_SYSCTL(sched_min_granularity); 642 WRT_SYSCTL(sched_latency); 643 WRT_SYSCTL(sched_wakeup_granularity); 644 #undef WRT_SYSCTL 645 646 return 0; 647 } 648 #endif 649 650 /* 651 * delta /= w 652 */ 653 static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se) 654 { 655 if (unlikely(se->load.weight != NICE_0_LOAD)) 656 delta = __calc_delta(delta, NICE_0_LOAD, &se->load); 657 658 return delta; 659 } 660 661 /* 662 * The idea is to set a period in which each task runs once. 663 * 664 * When there are too many tasks (sched_nr_latency) we have to stretch 665 * this period because otherwise the slices get too small. 666 * 667 * p = (nr <= nl) ? l : l*nr/nl 668 */ 669 static u64 __sched_period(unsigned long nr_running) 670 { 671 if (unlikely(nr_running > sched_nr_latency)) 672 return nr_running * sysctl_sched_min_granularity; 673 else 674 return sysctl_sched_latency; 675 } 676 677 /* 678 * We calculate the wall-time slice from the period by taking a part 679 * proportional to the weight. 680 * 681 * s = p*P[w/rw] 682 */ 683 static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se) 684 { 685 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq); 686 687 for_each_sched_entity(se) { 688 struct load_weight *load; 689 struct load_weight lw; 690 691 cfs_rq = cfs_rq_of(se); 692 load = &cfs_rq->load; 693 694 if (unlikely(!se->on_rq)) { 695 lw = cfs_rq->load; 696 697 update_load_add(&lw, se->load.weight); 698 load = &lw; 699 } 700 slice = __calc_delta(slice, se->load.weight, load); 701 } 702 return slice; 703 } 704 705 /* 706 * We calculate the vruntime slice of a to-be-inserted task. 707 * 708 * vs = s/w 709 */ 710 static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se) 711 { 712 return calc_delta_fair(sched_slice(cfs_rq, se), se); 713 } 714 715 #include "pelt.h" 716 #ifdef CONFIG_SMP 717 718 static int select_idle_sibling(struct task_struct *p, int prev_cpu, int cpu); 719 static unsigned long task_h_load(struct task_struct *p); 720 static unsigned long capacity_of(int cpu); 721 722 /* Give new sched_entity start runnable values to heavy its load in infant time */ 723 void init_entity_runnable_average(struct sched_entity *se) 724 { 725 struct sched_avg *sa = &se->avg; 726 727 memset(sa, 0, sizeof(*sa)); 728 729 /* 730 * Tasks are initialized with full load to be seen as heavy tasks until 731 * they get a chance to stabilize to their real load level. 732 * Group entities are initialized with zero load to reflect the fact that 733 * nothing has been attached to the task group yet. 734 */ 735 if (entity_is_task(se)) 736 sa->load_avg = scale_load_down(se->load.weight); 737 738 /* when this task enqueue'ed, it will contribute to its cfs_rq's load_avg */ 739 } 740 741 static void attach_entity_cfs_rq(struct sched_entity *se); 742 743 /* 744 * With new tasks being created, their initial util_avgs are extrapolated 745 * based on the cfs_rq's current util_avg: 746 * 747 * util_avg = cfs_rq->util_avg / (cfs_rq->load_avg + 1) * se.load.weight 748 * 749 * However, in many cases, the above util_avg does not give a desired 750 * value. Moreover, the sum of the util_avgs may be divergent, such 751 * as when the series is a harmonic series. 752 * 753 * To solve this problem, we also cap the util_avg of successive tasks to 754 * only 1/2 of the left utilization budget: 755 * 756 * util_avg_cap = (cpu_scale - cfs_rq->avg.util_avg) / 2^n 757 * 758 * where n denotes the nth task and cpu_scale the CPU capacity. 759 * 760 * For example, for a CPU with 1024 of capacity, a simplest series from 761 * the beginning would be like: 762 * 763 * task util_avg: 512, 256, 128, 64, 32, 16, 8, ... 764 * cfs_rq util_avg: 512, 768, 896, 960, 992, 1008, 1016, ... 765 * 766 * Finally, that extrapolated util_avg is clamped to the cap (util_avg_cap) 767 * if util_avg > util_avg_cap. 768 */ 769 void post_init_entity_util_avg(struct task_struct *p) 770 { 771 struct sched_entity *se = &p->se; 772 struct cfs_rq *cfs_rq = cfs_rq_of(se); 773 struct sched_avg *sa = &se->avg; 774 long cpu_scale = arch_scale_cpu_capacity(cpu_of(rq_of(cfs_rq))); 775 long cap = (long)(cpu_scale - cfs_rq->avg.util_avg) / 2; 776 777 if (cap > 0) { 778 if (cfs_rq->avg.util_avg != 0) { 779 sa->util_avg = cfs_rq->avg.util_avg * se->load.weight; 780 sa->util_avg /= (cfs_rq->avg.load_avg + 1); 781 782 if (sa->util_avg > cap) 783 sa->util_avg = cap; 784 } else { 785 sa->util_avg = cap; 786 } 787 } 788 789 sa->runnable_avg = sa->util_avg; 790 791 if (p->sched_class != &fair_sched_class) { 792 /* 793 * For !fair tasks do: 794 * 795 update_cfs_rq_load_avg(now, cfs_rq); 796 attach_entity_load_avg(cfs_rq, se); 797 switched_from_fair(rq, p); 798 * 799 * such that the next switched_to_fair() has the 800 * expected state. 801 */ 802 se->avg.last_update_time = cfs_rq_clock_pelt(cfs_rq); 803 return; 804 } 805 806 attach_entity_cfs_rq(se); 807 } 808 809 #else /* !CONFIG_SMP */ 810 void init_entity_runnable_average(struct sched_entity *se) 811 { 812 } 813 void post_init_entity_util_avg(struct task_struct *p) 814 { 815 } 816 static void update_tg_load_avg(struct cfs_rq *cfs_rq) 817 { 818 } 819 #endif /* CONFIG_SMP */ 820 821 /* 822 * Update the current task's runtime statistics. 823 */ 824 static void update_curr(struct cfs_rq *cfs_rq) 825 { 826 struct sched_entity *curr = cfs_rq->curr; 827 u64 now = rq_clock_task(rq_of(cfs_rq)); 828 u64 delta_exec; 829 830 if (unlikely(!curr)) 831 return; 832 833 delta_exec = now - curr->exec_start; 834 if (unlikely((s64)delta_exec <= 0)) 835 return; 836 837 curr->exec_start = now; 838 839 schedstat_set(curr->statistics.exec_max, 840 max(delta_exec, curr->statistics.exec_max)); 841 842 curr->sum_exec_runtime += delta_exec; 843 schedstat_add(cfs_rq->exec_clock, delta_exec); 844 845 curr->vruntime += calc_delta_fair(delta_exec, curr); 846 update_min_vruntime(cfs_rq); 847 848 if (entity_is_task(curr)) { 849 struct task_struct *curtask = task_of(curr); 850 851 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime); 852 cgroup_account_cputime(curtask, delta_exec); 853 account_group_exec_runtime(curtask, delta_exec); 854 } 855 856 account_cfs_rq_runtime(cfs_rq, delta_exec); 857 } 858 859 static void update_curr_fair(struct rq *rq) 860 { 861 update_curr(cfs_rq_of(&rq->curr->se)); 862 } 863 864 static inline void 865 update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se) 866 { 867 u64 wait_start, prev_wait_start; 868 869 if (!schedstat_enabled()) 870 return; 871 872 wait_start = rq_clock(rq_of(cfs_rq)); 873 prev_wait_start = schedstat_val(se->statistics.wait_start); 874 875 if (entity_is_task(se) && task_on_rq_migrating(task_of(se)) && 876 likely(wait_start > prev_wait_start)) 877 wait_start -= prev_wait_start; 878 879 __schedstat_set(se->statistics.wait_start, wait_start); 880 } 881 882 static inline void 883 update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se) 884 { 885 struct task_struct *p; 886 u64 delta; 887 888 if (!schedstat_enabled()) 889 return; 890 891 /* 892 * When the sched_schedstat changes from 0 to 1, some sched se 893 * maybe already in the runqueue, the se->statistics.wait_start 894 * will be 0.So it will let the delta wrong. We need to avoid this 895 * scenario. 896 */ 897 if (unlikely(!schedstat_val(se->statistics.wait_start))) 898 return; 899 900 delta = rq_clock(rq_of(cfs_rq)) - schedstat_val(se->statistics.wait_start); 901 902 if (entity_is_task(se)) { 903 p = task_of(se); 904 if (task_on_rq_migrating(p)) { 905 /* 906 * Preserve migrating task's wait time so wait_start 907 * time stamp can be adjusted to accumulate wait time 908 * prior to migration. 909 */ 910 __schedstat_set(se->statistics.wait_start, delta); 911 return; 912 } 913 trace_sched_stat_wait(p, delta); 914 } 915 916 __schedstat_set(se->statistics.wait_max, 917 max(schedstat_val(se->statistics.wait_max), delta)); 918 __schedstat_inc(se->statistics.wait_count); 919 __schedstat_add(se->statistics.wait_sum, delta); 920 __schedstat_set(se->statistics.wait_start, 0); 921 } 922 923 static inline void 924 update_stats_enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se) 925 { 926 struct task_struct *tsk = NULL; 927 u64 sleep_start, block_start; 928 929 if (!schedstat_enabled()) 930 return; 931 932 sleep_start = schedstat_val(se->statistics.sleep_start); 933 block_start = schedstat_val(se->statistics.block_start); 934 935 if (entity_is_task(se)) 936 tsk = task_of(se); 937 938 if (sleep_start) { 939 u64 delta = rq_clock(rq_of(cfs_rq)) - sleep_start; 940 941 if ((s64)delta < 0) 942 delta = 0; 943 944 if (unlikely(delta > schedstat_val(se->statistics.sleep_max))) 945 __schedstat_set(se->statistics.sleep_max, delta); 946 947 __schedstat_set(se->statistics.sleep_start, 0); 948 __schedstat_add(se->statistics.sum_sleep_runtime, delta); 949 950 if (tsk) { 951 account_scheduler_latency(tsk, delta >> 10, 1); 952 trace_sched_stat_sleep(tsk, delta); 953 } 954 } 955 if (block_start) { 956 u64 delta = rq_clock(rq_of(cfs_rq)) - block_start; 957 958 if ((s64)delta < 0) 959 delta = 0; 960 961 if (unlikely(delta > schedstat_val(se->statistics.block_max))) 962 __schedstat_set(se->statistics.block_max, delta); 963 964 __schedstat_set(se->statistics.block_start, 0); 965 __schedstat_add(se->statistics.sum_sleep_runtime, delta); 966 967 if (tsk) { 968 if (tsk->in_iowait) { 969 __schedstat_add(se->statistics.iowait_sum, delta); 970 __schedstat_inc(se->statistics.iowait_count); 971 trace_sched_stat_iowait(tsk, delta); 972 } 973 974 trace_sched_stat_blocked(tsk, delta); 975 976 /* 977 * Blocking time is in units of nanosecs, so shift by 978 * 20 to get a milliseconds-range estimation of the 979 * amount of time that the task spent sleeping: 980 */ 981 if (unlikely(prof_on == SLEEP_PROFILING)) { 982 profile_hits(SLEEP_PROFILING, 983 (void *)get_wchan(tsk), 984 delta >> 20); 985 } 986 account_scheduler_latency(tsk, delta >> 10, 0); 987 } 988 } 989 } 990 991 /* 992 * Task is being enqueued - update stats: 993 */ 994 static inline void 995 update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 996 { 997 if (!schedstat_enabled()) 998 return; 999 1000 /* 1001 * Are we enqueueing a waiting task? (for current tasks 1002 * a dequeue/enqueue event is a NOP) 1003 */ 1004 if (se != cfs_rq->curr) 1005 update_stats_wait_start(cfs_rq, se); 1006 1007 if (flags & ENQUEUE_WAKEUP) 1008 update_stats_enqueue_sleeper(cfs_rq, se); 1009 } 1010 1011 static inline void 1012 update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 1013 { 1014 1015 if (!schedstat_enabled()) 1016 return; 1017 1018 /* 1019 * Mark the end of the wait period if dequeueing a 1020 * waiting task: 1021 */ 1022 if (se != cfs_rq->curr) 1023 update_stats_wait_end(cfs_rq, se); 1024 1025 if ((flags & DEQUEUE_SLEEP) && entity_is_task(se)) { 1026 struct task_struct *tsk = task_of(se); 1027 1028 if (tsk->state & TASK_INTERRUPTIBLE) 1029 __schedstat_set(se->statistics.sleep_start, 1030 rq_clock(rq_of(cfs_rq))); 1031 if (tsk->state & TASK_UNINTERRUPTIBLE) 1032 __schedstat_set(se->statistics.block_start, 1033 rq_clock(rq_of(cfs_rq))); 1034 } 1035 } 1036 1037 /* 1038 * We are picking a new current task - update its stats: 1039 */ 1040 static inline void 1041 update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se) 1042 { 1043 /* 1044 * We are starting a new run period: 1045 */ 1046 se->exec_start = rq_clock_task(rq_of(cfs_rq)); 1047 } 1048 1049 /************************************************** 1050 * Scheduling class queueing methods: 1051 */ 1052 1053 #ifdef CONFIG_NUMA_BALANCING 1054 /* 1055 * Approximate time to scan a full NUMA task in ms. The task scan period is 1056 * calculated based on the tasks virtual memory size and 1057 * numa_balancing_scan_size. 1058 */ 1059 unsigned int sysctl_numa_balancing_scan_period_min = 1000; 1060 unsigned int sysctl_numa_balancing_scan_period_max = 60000; 1061 1062 /* Portion of address space to scan in MB */ 1063 unsigned int sysctl_numa_balancing_scan_size = 256; 1064 1065 /* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */ 1066 unsigned int sysctl_numa_balancing_scan_delay = 1000; 1067 1068 struct numa_group { 1069 refcount_t refcount; 1070 1071 spinlock_t lock; /* nr_tasks, tasks */ 1072 int nr_tasks; 1073 pid_t gid; 1074 int active_nodes; 1075 1076 struct rcu_head rcu; 1077 unsigned long total_faults; 1078 unsigned long max_faults_cpu; 1079 /* 1080 * Faults_cpu is used to decide whether memory should move 1081 * towards the CPU. As a consequence, these stats are weighted 1082 * more by CPU use than by memory faults. 1083 */ 1084 unsigned long *faults_cpu; 1085 unsigned long faults[]; 1086 }; 1087 1088 /* 1089 * For functions that can be called in multiple contexts that permit reading 1090 * ->numa_group (see struct task_struct for locking rules). 1091 */ 1092 static struct numa_group *deref_task_numa_group(struct task_struct *p) 1093 { 1094 return rcu_dereference_check(p->numa_group, p == current || 1095 (lockdep_is_held(&task_rq(p)->lock) && !READ_ONCE(p->on_cpu))); 1096 } 1097 1098 static struct numa_group *deref_curr_numa_group(struct task_struct *p) 1099 { 1100 return rcu_dereference_protected(p->numa_group, p == current); 1101 } 1102 1103 static inline unsigned long group_faults_priv(struct numa_group *ng); 1104 static inline unsigned long group_faults_shared(struct numa_group *ng); 1105 1106 static unsigned int task_nr_scan_windows(struct task_struct *p) 1107 { 1108 unsigned long rss = 0; 1109 unsigned long nr_scan_pages; 1110 1111 /* 1112 * Calculations based on RSS as non-present and empty pages are skipped 1113 * by the PTE scanner and NUMA hinting faults should be trapped based 1114 * on resident pages 1115 */ 1116 nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT); 1117 rss = get_mm_rss(p->mm); 1118 if (!rss) 1119 rss = nr_scan_pages; 1120 1121 rss = round_up(rss, nr_scan_pages); 1122 return rss / nr_scan_pages; 1123 } 1124 1125 /* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */ 1126 #define MAX_SCAN_WINDOW 2560 1127 1128 static unsigned int task_scan_min(struct task_struct *p) 1129 { 1130 unsigned int scan_size = READ_ONCE(sysctl_numa_balancing_scan_size); 1131 unsigned int scan, floor; 1132 unsigned int windows = 1; 1133 1134 if (scan_size < MAX_SCAN_WINDOW) 1135 windows = MAX_SCAN_WINDOW / scan_size; 1136 floor = 1000 / windows; 1137 1138 scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p); 1139 return max_t(unsigned int, floor, scan); 1140 } 1141 1142 static unsigned int task_scan_start(struct task_struct *p) 1143 { 1144 unsigned long smin = task_scan_min(p); 1145 unsigned long period = smin; 1146 struct numa_group *ng; 1147 1148 /* Scale the maximum scan period with the amount of shared memory. */ 1149 rcu_read_lock(); 1150 ng = rcu_dereference(p->numa_group); 1151 if (ng) { 1152 unsigned long shared = group_faults_shared(ng); 1153 unsigned long private = group_faults_priv(ng); 1154 1155 period *= refcount_read(&ng->refcount); 1156 period *= shared + 1; 1157 period /= private + shared + 1; 1158 } 1159 rcu_read_unlock(); 1160 1161 return max(smin, period); 1162 } 1163 1164 static unsigned int task_scan_max(struct task_struct *p) 1165 { 1166 unsigned long smin = task_scan_min(p); 1167 unsigned long smax; 1168 struct numa_group *ng; 1169 1170 /* Watch for min being lower than max due to floor calculations */ 1171 smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p); 1172 1173 /* Scale the maximum scan period with the amount of shared memory. */ 1174 ng = deref_curr_numa_group(p); 1175 if (ng) { 1176 unsigned long shared = group_faults_shared(ng); 1177 unsigned long private = group_faults_priv(ng); 1178 unsigned long period = smax; 1179 1180 period *= refcount_read(&ng->refcount); 1181 period *= shared + 1; 1182 period /= private + shared + 1; 1183 1184 smax = max(smax, period); 1185 } 1186 1187 return max(smin, smax); 1188 } 1189 1190 static void account_numa_enqueue(struct rq *rq, struct task_struct *p) 1191 { 1192 rq->nr_numa_running += (p->numa_preferred_nid != NUMA_NO_NODE); 1193 rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p)); 1194 } 1195 1196 static void account_numa_dequeue(struct rq *rq, struct task_struct *p) 1197 { 1198 rq->nr_numa_running -= (p->numa_preferred_nid != NUMA_NO_NODE); 1199 rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p)); 1200 } 1201 1202 /* Shared or private faults. */ 1203 #define NR_NUMA_HINT_FAULT_TYPES 2 1204 1205 /* Memory and CPU locality */ 1206 #define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2) 1207 1208 /* Averaged statistics, and temporary buffers. */ 1209 #define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2) 1210 1211 pid_t task_numa_group_id(struct task_struct *p) 1212 { 1213 struct numa_group *ng; 1214 pid_t gid = 0; 1215 1216 rcu_read_lock(); 1217 ng = rcu_dereference(p->numa_group); 1218 if (ng) 1219 gid = ng->gid; 1220 rcu_read_unlock(); 1221 1222 return gid; 1223 } 1224 1225 /* 1226 * The averaged statistics, shared & private, memory & CPU, 1227 * occupy the first half of the array. The second half of the 1228 * array is for current counters, which are averaged into the 1229 * first set by task_numa_placement. 1230 */ 1231 static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv) 1232 { 1233 return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv; 1234 } 1235 1236 static inline unsigned long task_faults(struct task_struct *p, int nid) 1237 { 1238 if (!p->numa_faults) 1239 return 0; 1240 1241 return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] + 1242 p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)]; 1243 } 1244 1245 static inline unsigned long group_faults(struct task_struct *p, int nid) 1246 { 1247 struct numa_group *ng = deref_task_numa_group(p); 1248 1249 if (!ng) 1250 return 0; 1251 1252 return ng->faults[task_faults_idx(NUMA_MEM, nid, 0)] + 1253 ng->faults[task_faults_idx(NUMA_MEM, nid, 1)]; 1254 } 1255 1256 static inline unsigned long group_faults_cpu(struct numa_group *group, int nid) 1257 { 1258 return group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 0)] + 1259 group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 1)]; 1260 } 1261 1262 static inline unsigned long group_faults_priv(struct numa_group *ng) 1263 { 1264 unsigned long faults = 0; 1265 int node; 1266 1267 for_each_online_node(node) { 1268 faults += ng->faults[task_faults_idx(NUMA_MEM, node, 1)]; 1269 } 1270 1271 return faults; 1272 } 1273 1274 static inline unsigned long group_faults_shared(struct numa_group *ng) 1275 { 1276 unsigned long faults = 0; 1277 int node; 1278 1279 for_each_online_node(node) { 1280 faults += ng->faults[task_faults_idx(NUMA_MEM, node, 0)]; 1281 } 1282 1283 return faults; 1284 } 1285 1286 /* 1287 * A node triggering more than 1/3 as many NUMA faults as the maximum is 1288 * considered part of a numa group's pseudo-interleaving set. Migrations 1289 * between these nodes are slowed down, to allow things to settle down. 1290 */ 1291 #define ACTIVE_NODE_FRACTION 3 1292 1293 static bool numa_is_active_node(int nid, struct numa_group *ng) 1294 { 1295 return group_faults_cpu(ng, nid) * ACTIVE_NODE_FRACTION > ng->max_faults_cpu; 1296 } 1297 1298 /* Handle placement on systems where not all nodes are directly connected. */ 1299 static unsigned long score_nearby_nodes(struct task_struct *p, int nid, 1300 int maxdist, bool task) 1301 { 1302 unsigned long score = 0; 1303 int node; 1304 1305 /* 1306 * All nodes are directly connected, and the same distance 1307 * from each other. No need for fancy placement algorithms. 1308 */ 1309 if (sched_numa_topology_type == NUMA_DIRECT) 1310 return 0; 1311 1312 /* 1313 * This code is called for each node, introducing N^2 complexity, 1314 * which should be ok given the number of nodes rarely exceeds 8. 1315 */ 1316 for_each_online_node(node) { 1317 unsigned long faults; 1318 int dist = node_distance(nid, node); 1319 1320 /* 1321 * The furthest away nodes in the system are not interesting 1322 * for placement; nid was already counted. 1323 */ 1324 if (dist == sched_max_numa_distance || node == nid) 1325 continue; 1326 1327 /* 1328 * On systems with a backplane NUMA topology, compare groups 1329 * of nodes, and move tasks towards the group with the most 1330 * memory accesses. When comparing two nodes at distance 1331 * "hoplimit", only nodes closer by than "hoplimit" are part 1332 * of each group. Skip other nodes. 1333 */ 1334 if (sched_numa_topology_type == NUMA_BACKPLANE && 1335 dist >= maxdist) 1336 continue; 1337 1338 /* Add up the faults from nearby nodes. */ 1339 if (task) 1340 faults = task_faults(p, node); 1341 else 1342 faults = group_faults(p, node); 1343 1344 /* 1345 * On systems with a glueless mesh NUMA topology, there are 1346 * no fixed "groups of nodes". Instead, nodes that are not 1347 * directly connected bounce traffic through intermediate 1348 * nodes; a numa_group can occupy any set of nodes. 1349 * The further away a node is, the less the faults count. 1350 * This seems to result in good task placement. 1351 */ 1352 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) { 1353 faults *= (sched_max_numa_distance - dist); 1354 faults /= (sched_max_numa_distance - LOCAL_DISTANCE); 1355 } 1356 1357 score += faults; 1358 } 1359 1360 return score; 1361 } 1362 1363 /* 1364 * These return the fraction of accesses done by a particular task, or 1365 * task group, on a particular numa node. The group weight is given a 1366 * larger multiplier, in order to group tasks together that are almost 1367 * evenly spread out between numa nodes. 1368 */ 1369 static inline unsigned long task_weight(struct task_struct *p, int nid, 1370 int dist) 1371 { 1372 unsigned long faults, total_faults; 1373 1374 if (!p->numa_faults) 1375 return 0; 1376 1377 total_faults = p->total_numa_faults; 1378 1379 if (!total_faults) 1380 return 0; 1381 1382 faults = task_faults(p, nid); 1383 faults += score_nearby_nodes(p, nid, dist, true); 1384 1385 return 1000 * faults / total_faults; 1386 } 1387 1388 static inline unsigned long group_weight(struct task_struct *p, int nid, 1389 int dist) 1390 { 1391 struct numa_group *ng = deref_task_numa_group(p); 1392 unsigned long faults, total_faults; 1393 1394 if (!ng) 1395 return 0; 1396 1397 total_faults = ng->total_faults; 1398 1399 if (!total_faults) 1400 return 0; 1401 1402 faults = group_faults(p, nid); 1403 faults += score_nearby_nodes(p, nid, dist, false); 1404 1405 return 1000 * faults / total_faults; 1406 } 1407 1408 bool should_numa_migrate_memory(struct task_struct *p, struct page * page, 1409 int src_nid, int dst_cpu) 1410 { 1411 struct numa_group *ng = deref_curr_numa_group(p); 1412 int dst_nid = cpu_to_node(dst_cpu); 1413 int last_cpupid, this_cpupid; 1414 1415 this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid); 1416 last_cpupid = page_cpupid_xchg_last(page, this_cpupid); 1417 1418 /* 1419 * Allow first faults or private faults to migrate immediately early in 1420 * the lifetime of a task. The magic number 4 is based on waiting for 1421 * two full passes of the "multi-stage node selection" test that is 1422 * executed below. 1423 */ 1424 if ((p->numa_preferred_nid == NUMA_NO_NODE || p->numa_scan_seq <= 4) && 1425 (cpupid_pid_unset(last_cpupid) || cpupid_match_pid(p, last_cpupid))) 1426 return true; 1427 1428 /* 1429 * Multi-stage node selection is used in conjunction with a periodic 1430 * migration fault to build a temporal task<->page relation. By using 1431 * a two-stage filter we remove short/unlikely relations. 1432 * 1433 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate 1434 * a task's usage of a particular page (n_p) per total usage of this 1435 * page (n_t) (in a given time-span) to a probability. 1436 * 1437 * Our periodic faults will sample this probability and getting the 1438 * same result twice in a row, given these samples are fully 1439 * independent, is then given by P(n)^2, provided our sample period 1440 * is sufficiently short compared to the usage pattern. 1441 * 1442 * This quadric squishes small probabilities, making it less likely we 1443 * act on an unlikely task<->page relation. 1444 */ 1445 if (!cpupid_pid_unset(last_cpupid) && 1446 cpupid_to_nid(last_cpupid) != dst_nid) 1447 return false; 1448 1449 /* Always allow migrate on private faults */ 1450 if (cpupid_match_pid(p, last_cpupid)) 1451 return true; 1452 1453 /* A shared fault, but p->numa_group has not been set up yet. */ 1454 if (!ng) 1455 return true; 1456 1457 /* 1458 * Destination node is much more heavily used than the source 1459 * node? Allow migration. 1460 */ 1461 if (group_faults_cpu(ng, dst_nid) > group_faults_cpu(ng, src_nid) * 1462 ACTIVE_NODE_FRACTION) 1463 return true; 1464 1465 /* 1466 * Distribute memory according to CPU & memory use on each node, 1467 * with 3/4 hysteresis to avoid unnecessary memory migrations: 1468 * 1469 * faults_cpu(dst) 3 faults_cpu(src) 1470 * --------------- * - > --------------- 1471 * faults_mem(dst) 4 faults_mem(src) 1472 */ 1473 return group_faults_cpu(ng, dst_nid) * group_faults(p, src_nid) * 3 > 1474 group_faults_cpu(ng, src_nid) * group_faults(p, dst_nid) * 4; 1475 } 1476 1477 /* 1478 * 'numa_type' describes the node at the moment of load balancing. 1479 */ 1480 enum numa_type { 1481 /* The node has spare capacity that can be used to run more tasks. */ 1482 node_has_spare = 0, 1483 /* 1484 * The node is fully used and the tasks don't compete for more CPU 1485 * cycles. Nevertheless, some tasks might wait before running. 1486 */ 1487 node_fully_busy, 1488 /* 1489 * The node is overloaded and can't provide expected CPU cycles to all 1490 * tasks. 1491 */ 1492 node_overloaded 1493 }; 1494 1495 /* Cached statistics for all CPUs within a node */ 1496 struct numa_stats { 1497 unsigned long load; 1498 unsigned long runnable; 1499 unsigned long util; 1500 /* Total compute capacity of CPUs on a node */ 1501 unsigned long compute_capacity; 1502 unsigned int nr_running; 1503 unsigned int weight; 1504 enum numa_type node_type; 1505 int idle_cpu; 1506 }; 1507 1508 static inline bool is_core_idle(int cpu) 1509 { 1510 #ifdef CONFIG_SCHED_SMT 1511 int sibling; 1512 1513 for_each_cpu(sibling, cpu_smt_mask(cpu)) { 1514 if (cpu == sibling) 1515 continue; 1516 1517 if (!idle_cpu(cpu)) 1518 return false; 1519 } 1520 #endif 1521 1522 return true; 1523 } 1524 1525 struct task_numa_env { 1526 struct task_struct *p; 1527 1528 int src_cpu, src_nid; 1529 int dst_cpu, dst_nid; 1530 1531 struct numa_stats src_stats, dst_stats; 1532 1533 int imbalance_pct; 1534 int dist; 1535 1536 struct task_struct *best_task; 1537 long best_imp; 1538 int best_cpu; 1539 }; 1540 1541 static unsigned long cpu_load(struct rq *rq); 1542 static unsigned long cpu_runnable(struct rq *rq); 1543 static unsigned long cpu_util(int cpu); 1544 static inline long adjust_numa_imbalance(int imbalance, 1545 int dst_running, int dst_weight); 1546 1547 static inline enum 1548 numa_type numa_classify(unsigned int imbalance_pct, 1549 struct numa_stats *ns) 1550 { 1551 if ((ns->nr_running > ns->weight) && 1552 (((ns->compute_capacity * 100) < (ns->util * imbalance_pct)) || 1553 ((ns->compute_capacity * imbalance_pct) < (ns->runnable * 100)))) 1554 return node_overloaded; 1555 1556 if ((ns->nr_running < ns->weight) || 1557 (((ns->compute_capacity * 100) > (ns->util * imbalance_pct)) && 1558 ((ns->compute_capacity * imbalance_pct) > (ns->runnable * 100)))) 1559 return node_has_spare; 1560 1561 return node_fully_busy; 1562 } 1563 1564 #ifdef CONFIG_SCHED_SMT 1565 /* Forward declarations of select_idle_sibling helpers */ 1566 static inline bool test_idle_cores(int cpu, bool def); 1567 static inline int numa_idle_core(int idle_core, int cpu) 1568 { 1569 if (!static_branch_likely(&sched_smt_present) || 1570 idle_core >= 0 || !test_idle_cores(cpu, false)) 1571 return idle_core; 1572 1573 /* 1574 * Prefer cores instead of packing HT siblings 1575 * and triggering future load balancing. 1576 */ 1577 if (is_core_idle(cpu)) 1578 idle_core = cpu; 1579 1580 return idle_core; 1581 } 1582 #else 1583 static inline int numa_idle_core(int idle_core, int cpu) 1584 { 1585 return idle_core; 1586 } 1587 #endif 1588 1589 /* 1590 * Gather all necessary information to make NUMA balancing placement 1591 * decisions that are compatible with standard load balancer. This 1592 * borrows code and logic from update_sg_lb_stats but sharing a 1593 * common implementation is impractical. 1594 */ 1595 static void update_numa_stats(struct task_numa_env *env, 1596 struct numa_stats *ns, int nid, 1597 bool find_idle) 1598 { 1599 int cpu, idle_core = -1; 1600 1601 memset(ns, 0, sizeof(*ns)); 1602 ns->idle_cpu = -1; 1603 1604 rcu_read_lock(); 1605 for_each_cpu(cpu, cpumask_of_node(nid)) { 1606 struct rq *rq = cpu_rq(cpu); 1607 1608 ns->load += cpu_load(rq); 1609 ns->runnable += cpu_runnable(rq); 1610 ns->util += cpu_util(cpu); 1611 ns->nr_running += rq->cfs.h_nr_running; 1612 ns->compute_capacity += capacity_of(cpu); 1613 1614 if (find_idle && !rq->nr_running && idle_cpu(cpu)) { 1615 if (READ_ONCE(rq->numa_migrate_on) || 1616 !cpumask_test_cpu(cpu, env->p->cpus_ptr)) 1617 continue; 1618 1619 if (ns->idle_cpu == -1) 1620 ns->idle_cpu = cpu; 1621 1622 idle_core = numa_idle_core(idle_core, cpu); 1623 } 1624 } 1625 rcu_read_unlock(); 1626 1627 ns->weight = cpumask_weight(cpumask_of_node(nid)); 1628 1629 ns->node_type = numa_classify(env->imbalance_pct, ns); 1630 1631 if (idle_core >= 0) 1632 ns->idle_cpu = idle_core; 1633 } 1634 1635 static void task_numa_assign(struct task_numa_env *env, 1636 struct task_struct *p, long imp) 1637 { 1638 struct rq *rq = cpu_rq(env->dst_cpu); 1639 1640 /* Check if run-queue part of active NUMA balance. */ 1641 if (env->best_cpu != env->dst_cpu && xchg(&rq->numa_migrate_on, 1)) { 1642 int cpu; 1643 int start = env->dst_cpu; 1644 1645 /* Find alternative idle CPU. */ 1646 for_each_cpu_wrap(cpu, cpumask_of_node(env->dst_nid), start) { 1647 if (cpu == env->best_cpu || !idle_cpu(cpu) || 1648 !cpumask_test_cpu(cpu, env->p->cpus_ptr)) { 1649 continue; 1650 } 1651 1652 env->dst_cpu = cpu; 1653 rq = cpu_rq(env->dst_cpu); 1654 if (!xchg(&rq->numa_migrate_on, 1)) 1655 goto assign; 1656 } 1657 1658 /* Failed to find an alternative idle CPU */ 1659 return; 1660 } 1661 1662 assign: 1663 /* 1664 * Clear previous best_cpu/rq numa-migrate flag, since task now 1665 * found a better CPU to move/swap. 1666 */ 1667 if (env->best_cpu != -1 && env->best_cpu != env->dst_cpu) { 1668 rq = cpu_rq(env->best_cpu); 1669 WRITE_ONCE(rq->numa_migrate_on, 0); 1670 } 1671 1672 if (env->best_task) 1673 put_task_struct(env->best_task); 1674 if (p) 1675 get_task_struct(p); 1676 1677 env->best_task = p; 1678 env->best_imp = imp; 1679 env->best_cpu = env->dst_cpu; 1680 } 1681 1682 static bool load_too_imbalanced(long src_load, long dst_load, 1683 struct task_numa_env *env) 1684 { 1685 long imb, old_imb; 1686 long orig_src_load, orig_dst_load; 1687 long src_capacity, dst_capacity; 1688 1689 /* 1690 * The load is corrected for the CPU capacity available on each node. 1691 * 1692 * src_load dst_load 1693 * ------------ vs --------- 1694 * src_capacity dst_capacity 1695 */ 1696 src_capacity = env->src_stats.compute_capacity; 1697 dst_capacity = env->dst_stats.compute_capacity; 1698 1699 imb = abs(dst_load * src_capacity - src_load * dst_capacity); 1700 1701 orig_src_load = env->src_stats.load; 1702 orig_dst_load = env->dst_stats.load; 1703 1704 old_imb = abs(orig_dst_load * src_capacity - orig_src_load * dst_capacity); 1705 1706 /* Would this change make things worse? */ 1707 return (imb > old_imb); 1708 } 1709 1710 /* 1711 * Maximum NUMA importance can be 1998 (2*999); 1712 * SMALLIMP @ 30 would be close to 1998/64. 1713 * Used to deter task migration. 1714 */ 1715 #define SMALLIMP 30 1716 1717 /* 1718 * This checks if the overall compute and NUMA accesses of the system would 1719 * be improved if the source tasks was migrated to the target dst_cpu taking 1720 * into account that it might be best if task running on the dst_cpu should 1721 * be exchanged with the source task 1722 */ 1723 static bool task_numa_compare(struct task_numa_env *env, 1724 long taskimp, long groupimp, bool maymove) 1725 { 1726 struct numa_group *cur_ng, *p_ng = deref_curr_numa_group(env->p); 1727 struct rq *dst_rq = cpu_rq(env->dst_cpu); 1728 long imp = p_ng ? groupimp : taskimp; 1729 struct task_struct *cur; 1730 long src_load, dst_load; 1731 int dist = env->dist; 1732 long moveimp = imp; 1733 long load; 1734 bool stopsearch = false; 1735 1736 if (READ_ONCE(dst_rq->numa_migrate_on)) 1737 return false; 1738 1739 rcu_read_lock(); 1740 cur = rcu_dereference(dst_rq->curr); 1741 if (cur && ((cur->flags & PF_EXITING) || is_idle_task(cur))) 1742 cur = NULL; 1743 1744 /* 1745 * Because we have preemption enabled we can get migrated around and 1746 * end try selecting ourselves (current == env->p) as a swap candidate. 1747 */ 1748 if (cur == env->p) { 1749 stopsearch = true; 1750 goto unlock; 1751 } 1752 1753 if (!cur) { 1754 if (maymove && moveimp >= env->best_imp) 1755 goto assign; 1756 else 1757 goto unlock; 1758 } 1759 1760 /* Skip this swap candidate if cannot move to the source cpu. */ 1761 if (!cpumask_test_cpu(env->src_cpu, cur->cpus_ptr)) 1762 goto unlock; 1763 1764 /* 1765 * Skip this swap candidate if it is not moving to its preferred 1766 * node and the best task is. 1767 */ 1768 if (env->best_task && 1769 env->best_task->numa_preferred_nid == env->src_nid && 1770 cur->numa_preferred_nid != env->src_nid) { 1771 goto unlock; 1772 } 1773 1774 /* 1775 * "imp" is the fault differential for the source task between the 1776 * source and destination node. Calculate the total differential for 1777 * the source task and potential destination task. The more negative 1778 * the value is, the more remote accesses that would be expected to 1779 * be incurred if the tasks were swapped. 1780 * 1781 * If dst and source tasks are in the same NUMA group, or not 1782 * in any group then look only at task weights. 1783 */ 1784 cur_ng = rcu_dereference(cur->numa_group); 1785 if (cur_ng == p_ng) { 1786 imp = taskimp + task_weight(cur, env->src_nid, dist) - 1787 task_weight(cur, env->dst_nid, dist); 1788 /* 1789 * Add some hysteresis to prevent swapping the 1790 * tasks within a group over tiny differences. 1791 */ 1792 if (cur_ng) 1793 imp -= imp / 16; 1794 } else { 1795 /* 1796 * Compare the group weights. If a task is all by itself 1797 * (not part of a group), use the task weight instead. 1798 */ 1799 if (cur_ng && p_ng) 1800 imp += group_weight(cur, env->src_nid, dist) - 1801 group_weight(cur, env->dst_nid, dist); 1802 else 1803 imp += task_weight(cur, env->src_nid, dist) - 1804 task_weight(cur, env->dst_nid, dist); 1805 } 1806 1807 /* Discourage picking a task already on its preferred node */ 1808 if (cur->numa_preferred_nid == env->dst_nid) 1809 imp -= imp / 16; 1810 1811 /* 1812 * Encourage picking a task that moves to its preferred node. 1813 * This potentially makes imp larger than it's maximum of 1814 * 1998 (see SMALLIMP and task_weight for why) but in this 1815 * case, it does not matter. 1816 */ 1817 if (cur->numa_preferred_nid == env->src_nid) 1818 imp += imp / 8; 1819 1820 if (maymove && moveimp > imp && moveimp > env->best_imp) { 1821 imp = moveimp; 1822 cur = NULL; 1823 goto assign; 1824 } 1825 1826 /* 1827 * Prefer swapping with a task moving to its preferred node over a 1828 * task that is not. 1829 */ 1830 if (env->best_task && cur->numa_preferred_nid == env->src_nid && 1831 env->best_task->numa_preferred_nid != env->src_nid) { 1832 goto assign; 1833 } 1834 1835 /* 1836 * If the NUMA importance is less than SMALLIMP, 1837 * task migration might only result in ping pong 1838 * of tasks and also hurt performance due to cache 1839 * misses. 1840 */ 1841 if (imp < SMALLIMP || imp <= env->best_imp + SMALLIMP / 2) 1842 goto unlock; 1843 1844 /* 1845 * In the overloaded case, try and keep the load balanced. 1846 */ 1847 load = task_h_load(env->p) - task_h_load(cur); 1848 if (!load) 1849 goto assign; 1850 1851 dst_load = env->dst_stats.load + load; 1852 src_load = env->src_stats.load - load; 1853 1854 if (load_too_imbalanced(src_load, dst_load, env)) 1855 goto unlock; 1856 1857 assign: 1858 /* Evaluate an idle CPU for a task numa move. */ 1859 if (!cur) { 1860 int cpu = env->dst_stats.idle_cpu; 1861 1862 /* Nothing cached so current CPU went idle since the search. */ 1863 if (cpu < 0) 1864 cpu = env->dst_cpu; 1865 1866 /* 1867 * If the CPU is no longer truly idle and the previous best CPU 1868 * is, keep using it. 1869 */ 1870 if (!idle_cpu(cpu) && env->best_cpu >= 0 && 1871 idle_cpu(env->best_cpu)) { 1872 cpu = env->best_cpu; 1873 } 1874 1875 env->dst_cpu = cpu; 1876 } 1877 1878 task_numa_assign(env, cur, imp); 1879 1880 /* 1881 * If a move to idle is allowed because there is capacity or load 1882 * balance improves then stop the search. While a better swap 1883 * candidate may exist, a search is not free. 1884 */ 1885 if (maymove && !cur && env->best_cpu >= 0 && idle_cpu(env->best_cpu)) 1886 stopsearch = true; 1887 1888 /* 1889 * If a swap candidate must be identified and the current best task 1890 * moves its preferred node then stop the search. 1891 */ 1892 if (!maymove && env->best_task && 1893 env->best_task->numa_preferred_nid == env->src_nid) { 1894 stopsearch = true; 1895 } 1896 unlock: 1897 rcu_read_unlock(); 1898 1899 return stopsearch; 1900 } 1901 1902 static void task_numa_find_cpu(struct task_numa_env *env, 1903 long taskimp, long groupimp) 1904 { 1905 bool maymove = false; 1906 int cpu; 1907 1908 /* 1909 * If dst node has spare capacity, then check if there is an 1910 * imbalance that would be overruled by the load balancer. 1911 */ 1912 if (env->dst_stats.node_type == node_has_spare) { 1913 unsigned int imbalance; 1914 int src_running, dst_running; 1915 1916 /* 1917 * Would movement cause an imbalance? Note that if src has 1918 * more running tasks that the imbalance is ignored as the 1919 * move improves the imbalance from the perspective of the 1920 * CPU load balancer. 1921 * */ 1922 src_running = env->src_stats.nr_running - 1; 1923 dst_running = env->dst_stats.nr_running + 1; 1924 imbalance = max(0, dst_running - src_running); 1925 imbalance = adjust_numa_imbalance(imbalance, dst_running, 1926 env->dst_stats.weight); 1927 1928 /* Use idle CPU if there is no imbalance */ 1929 if (!imbalance) { 1930 maymove = true; 1931 if (env->dst_stats.idle_cpu >= 0) { 1932 env->dst_cpu = env->dst_stats.idle_cpu; 1933 task_numa_assign(env, NULL, 0); 1934 return; 1935 } 1936 } 1937 } else { 1938 long src_load, dst_load, load; 1939 /* 1940 * If the improvement from just moving env->p direction is better 1941 * than swapping tasks around, check if a move is possible. 1942 */ 1943 load = task_h_load(env->p); 1944 dst_load = env->dst_stats.load + load; 1945 src_load = env->src_stats.load - load; 1946 maymove = !load_too_imbalanced(src_load, dst_load, env); 1947 } 1948 1949 for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) { 1950 /* Skip this CPU if the source task cannot migrate */ 1951 if (!cpumask_test_cpu(cpu, env->p->cpus_ptr)) 1952 continue; 1953 1954 env->dst_cpu = cpu; 1955 if (task_numa_compare(env, taskimp, groupimp, maymove)) 1956 break; 1957 } 1958 } 1959 1960 static int task_numa_migrate(struct task_struct *p) 1961 { 1962 struct task_numa_env env = { 1963 .p = p, 1964 1965 .src_cpu = task_cpu(p), 1966 .src_nid = task_node(p), 1967 1968 .imbalance_pct = 112, 1969 1970 .best_task = NULL, 1971 .best_imp = 0, 1972 .best_cpu = -1, 1973 }; 1974 unsigned long taskweight, groupweight; 1975 struct sched_domain *sd; 1976 long taskimp, groupimp; 1977 struct numa_group *ng; 1978 struct rq *best_rq; 1979 int nid, ret, dist; 1980 1981 /* 1982 * Pick the lowest SD_NUMA domain, as that would have the smallest 1983 * imbalance and would be the first to start moving tasks about. 1984 * 1985 * And we want to avoid any moving of tasks about, as that would create 1986 * random movement of tasks -- counter the numa conditions we're trying 1987 * to satisfy here. 1988 */ 1989 rcu_read_lock(); 1990 sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu)); 1991 if (sd) 1992 env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2; 1993 rcu_read_unlock(); 1994 1995 /* 1996 * Cpusets can break the scheduler domain tree into smaller 1997 * balance domains, some of which do not cross NUMA boundaries. 1998 * Tasks that are "trapped" in such domains cannot be migrated 1999 * elsewhere, so there is no point in (re)trying. 2000 */ 2001 if (unlikely(!sd)) { 2002 sched_setnuma(p, task_node(p)); 2003 return -EINVAL; 2004 } 2005 2006 env.dst_nid = p->numa_preferred_nid; 2007 dist = env.dist = node_distance(env.src_nid, env.dst_nid); 2008 taskweight = task_weight(p, env.src_nid, dist); 2009 groupweight = group_weight(p, env.src_nid, dist); 2010 update_numa_stats(&env, &env.src_stats, env.src_nid, false); 2011 taskimp = task_weight(p, env.dst_nid, dist) - taskweight; 2012 groupimp = group_weight(p, env.dst_nid, dist) - groupweight; 2013 update_numa_stats(&env, &env.dst_stats, env.dst_nid, true); 2014 2015 /* Try to find a spot on the preferred nid. */ 2016 task_numa_find_cpu(&env, taskimp, groupimp); 2017 2018 /* 2019 * Look at other nodes in these cases: 2020 * - there is no space available on the preferred_nid 2021 * - the task is part of a numa_group that is interleaved across 2022 * multiple NUMA nodes; in order to better consolidate the group, 2023 * we need to check other locations. 2024 */ 2025 ng = deref_curr_numa_group(p); 2026 if (env.best_cpu == -1 || (ng && ng->active_nodes > 1)) { 2027 for_each_online_node(nid) { 2028 if (nid == env.src_nid || nid == p->numa_preferred_nid) 2029 continue; 2030 2031 dist = node_distance(env.src_nid, env.dst_nid); 2032 if (sched_numa_topology_type == NUMA_BACKPLANE && 2033 dist != env.dist) { 2034 taskweight = task_weight(p, env.src_nid, dist); 2035 groupweight = group_weight(p, env.src_nid, dist); 2036 } 2037 2038 /* Only consider nodes where both task and groups benefit */ 2039 taskimp = task_weight(p, nid, dist) - taskweight; 2040 groupimp = group_weight(p, nid, dist) - groupweight; 2041 if (taskimp < 0 && groupimp < 0) 2042 continue; 2043 2044 env.dist = dist; 2045 env.dst_nid = nid; 2046 update_numa_stats(&env, &env.dst_stats, env.dst_nid, true); 2047 task_numa_find_cpu(&env, taskimp, groupimp); 2048 } 2049 } 2050 2051 /* 2052 * If the task is part of a workload that spans multiple NUMA nodes, 2053 * and is migrating into one of the workload's active nodes, remember 2054 * this node as the task's preferred numa node, so the workload can 2055 * settle down. 2056 * A task that migrated to a second choice node will be better off 2057 * trying for a better one later. Do not set the preferred node here. 2058 */ 2059 if (ng) { 2060 if (env.best_cpu == -1) 2061 nid = env.src_nid; 2062 else 2063 nid = cpu_to_node(env.best_cpu); 2064 2065 if (nid != p->numa_preferred_nid) 2066 sched_setnuma(p, nid); 2067 } 2068 2069 /* No better CPU than the current one was found. */ 2070 if (env.best_cpu == -1) { 2071 trace_sched_stick_numa(p, env.src_cpu, NULL, -1); 2072 return -EAGAIN; 2073 } 2074 2075 best_rq = cpu_rq(env.best_cpu); 2076 if (env.best_task == NULL) { 2077 ret = migrate_task_to(p, env.best_cpu); 2078 WRITE_ONCE(best_rq->numa_migrate_on, 0); 2079 if (ret != 0) 2080 trace_sched_stick_numa(p, env.src_cpu, NULL, env.best_cpu); 2081 return ret; 2082 } 2083 2084 ret = migrate_swap(p, env.best_task, env.best_cpu, env.src_cpu); 2085 WRITE_ONCE(best_rq->numa_migrate_on, 0); 2086 2087 if (ret != 0) 2088 trace_sched_stick_numa(p, env.src_cpu, env.best_task, env.best_cpu); 2089 put_task_struct(env.best_task); 2090 return ret; 2091 } 2092 2093 /* Attempt to migrate a task to a CPU on the preferred node. */ 2094 static void numa_migrate_preferred(struct task_struct *p) 2095 { 2096 unsigned long interval = HZ; 2097 2098 /* This task has no NUMA fault statistics yet */ 2099 if (unlikely(p->numa_preferred_nid == NUMA_NO_NODE || !p->numa_faults)) 2100 return; 2101 2102 /* Periodically retry migrating the task to the preferred node */ 2103 interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16); 2104 p->numa_migrate_retry = jiffies + interval; 2105 2106 /* Success if task is already running on preferred CPU */ 2107 if (task_node(p) == p->numa_preferred_nid) 2108 return; 2109 2110 /* Otherwise, try migrate to a CPU on the preferred node */ 2111 task_numa_migrate(p); 2112 } 2113 2114 /* 2115 * Find out how many nodes on the workload is actively running on. Do this by 2116 * tracking the nodes from which NUMA hinting faults are triggered. This can 2117 * be different from the set of nodes where the workload's memory is currently 2118 * located. 2119 */ 2120 static void numa_group_count_active_nodes(struct numa_group *numa_group) 2121 { 2122 unsigned long faults, max_faults = 0; 2123 int nid, active_nodes = 0; 2124 2125 for_each_online_node(nid) { 2126 faults = group_faults_cpu(numa_group, nid); 2127 if (faults > max_faults) 2128 max_faults = faults; 2129 } 2130 2131 for_each_online_node(nid) { 2132 faults = group_faults_cpu(numa_group, nid); 2133 if (faults * ACTIVE_NODE_FRACTION > max_faults) 2134 active_nodes++; 2135 } 2136 2137 numa_group->max_faults_cpu = max_faults; 2138 numa_group->active_nodes = active_nodes; 2139 } 2140 2141 /* 2142 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS 2143 * increments. The more local the fault statistics are, the higher the scan 2144 * period will be for the next scan window. If local/(local+remote) ratio is 2145 * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS) 2146 * the scan period will decrease. Aim for 70% local accesses. 2147 */ 2148 #define NUMA_PERIOD_SLOTS 10 2149 #define NUMA_PERIOD_THRESHOLD 7 2150 2151 /* 2152 * Increase the scan period (slow down scanning) if the majority of 2153 * our memory is already on our local node, or if the majority of 2154 * the page accesses are shared with other processes. 2155 * Otherwise, decrease the scan period. 2156 */ 2157 static void update_task_scan_period(struct task_struct *p, 2158 unsigned long shared, unsigned long private) 2159 { 2160 unsigned int period_slot; 2161 int lr_ratio, ps_ratio; 2162 int diff; 2163 2164 unsigned long remote = p->numa_faults_locality[0]; 2165 unsigned long local = p->numa_faults_locality[1]; 2166 2167 /* 2168 * If there were no record hinting faults then either the task is 2169 * completely idle or all activity is areas that are not of interest 2170 * to automatic numa balancing. Related to that, if there were failed 2171 * migration then it implies we are migrating too quickly or the local 2172 * node is overloaded. In either case, scan slower 2173 */ 2174 if (local + shared == 0 || p->numa_faults_locality[2]) { 2175 p->numa_scan_period = min(p->numa_scan_period_max, 2176 p->numa_scan_period << 1); 2177 2178 p->mm->numa_next_scan = jiffies + 2179 msecs_to_jiffies(p->numa_scan_period); 2180 2181 return; 2182 } 2183 2184 /* 2185 * Prepare to scale scan period relative to the current period. 2186 * == NUMA_PERIOD_THRESHOLD scan period stays the same 2187 * < NUMA_PERIOD_THRESHOLD scan period decreases (scan faster) 2188 * >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower) 2189 */ 2190 period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS); 2191 lr_ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote); 2192 ps_ratio = (private * NUMA_PERIOD_SLOTS) / (private + shared); 2193 2194 if (ps_ratio >= NUMA_PERIOD_THRESHOLD) { 2195 /* 2196 * Most memory accesses are local. There is no need to 2197 * do fast NUMA scanning, since memory is already local. 2198 */ 2199 int slot = ps_ratio - NUMA_PERIOD_THRESHOLD; 2200 if (!slot) 2201 slot = 1; 2202 diff = slot * period_slot; 2203 } else if (lr_ratio >= NUMA_PERIOD_THRESHOLD) { 2204 /* 2205 * Most memory accesses are shared with other tasks. 2206 * There is no point in continuing fast NUMA scanning, 2207 * since other tasks may just move the memory elsewhere. 2208 */ 2209 int slot = lr_ratio - NUMA_PERIOD_THRESHOLD; 2210 if (!slot) 2211 slot = 1; 2212 diff = slot * period_slot; 2213 } else { 2214 /* 2215 * Private memory faults exceed (SLOTS-THRESHOLD)/SLOTS, 2216 * yet they are not on the local NUMA node. Speed up 2217 * NUMA scanning to get the memory moved over. 2218 */ 2219 int ratio = max(lr_ratio, ps_ratio); 2220 diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot; 2221 } 2222 2223 p->numa_scan_period = clamp(p->numa_scan_period + diff, 2224 task_scan_min(p), task_scan_max(p)); 2225 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality)); 2226 } 2227 2228 /* 2229 * Get the fraction of time the task has been running since the last 2230 * NUMA placement cycle. The scheduler keeps similar statistics, but 2231 * decays those on a 32ms period, which is orders of magnitude off 2232 * from the dozens-of-seconds NUMA balancing period. Use the scheduler 2233 * stats only if the task is so new there are no NUMA statistics yet. 2234 */ 2235 static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period) 2236 { 2237 u64 runtime, delta, now; 2238 /* Use the start of this time slice to avoid calculations. */ 2239 now = p->se.exec_start; 2240 runtime = p->se.sum_exec_runtime; 2241 2242 if (p->last_task_numa_placement) { 2243 delta = runtime - p->last_sum_exec_runtime; 2244 *period = now - p->last_task_numa_placement; 2245 2246 /* Avoid time going backwards, prevent potential divide error: */ 2247 if (unlikely((s64)*period < 0)) 2248 *period = 0; 2249 } else { 2250 delta = p->se.avg.load_sum; 2251 *period = LOAD_AVG_MAX; 2252 } 2253 2254 p->last_sum_exec_runtime = runtime; 2255 p->last_task_numa_placement = now; 2256 2257 return delta; 2258 } 2259 2260 /* 2261 * Determine the preferred nid for a task in a numa_group. This needs to 2262 * be done in a way that produces consistent results with group_weight, 2263 * otherwise workloads might not converge. 2264 */ 2265 static int preferred_group_nid(struct task_struct *p, int nid) 2266 { 2267 nodemask_t nodes; 2268 int dist; 2269 2270 /* Direct connections between all NUMA nodes. */ 2271 if (sched_numa_topology_type == NUMA_DIRECT) 2272 return nid; 2273 2274 /* 2275 * On a system with glueless mesh NUMA topology, group_weight 2276 * scores nodes according to the number of NUMA hinting faults on 2277 * both the node itself, and on nearby nodes. 2278 */ 2279 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) { 2280 unsigned long score, max_score = 0; 2281 int node, max_node = nid; 2282 2283 dist = sched_max_numa_distance; 2284 2285 for_each_online_node(node) { 2286 score = group_weight(p, node, dist); 2287 if (score > max_score) { 2288 max_score = score; 2289 max_node = node; 2290 } 2291 } 2292 return max_node; 2293 } 2294 2295 /* 2296 * Finding the preferred nid in a system with NUMA backplane 2297 * interconnect topology is more involved. The goal is to locate 2298 * tasks from numa_groups near each other in the system, and 2299 * untangle workloads from different sides of the system. This requires 2300 * searching down the hierarchy of node groups, recursively searching 2301 * inside the highest scoring group of nodes. The nodemask tricks 2302 * keep the complexity of the search down. 2303 */ 2304 nodes = node_online_map; 2305 for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) { 2306 unsigned long max_faults = 0; 2307 nodemask_t max_group = NODE_MASK_NONE; 2308 int a, b; 2309 2310 /* Are there nodes at this distance from each other? */ 2311 if (!find_numa_distance(dist)) 2312 continue; 2313 2314 for_each_node_mask(a, nodes) { 2315 unsigned long faults = 0; 2316 nodemask_t this_group; 2317 nodes_clear(this_group); 2318 2319 /* Sum group's NUMA faults; includes a==b case. */ 2320 for_each_node_mask(b, nodes) { 2321 if (node_distance(a, b) < dist) { 2322 faults += group_faults(p, b); 2323 node_set(b, this_group); 2324 node_clear(b, nodes); 2325 } 2326 } 2327 2328 /* Remember the top group. */ 2329 if (faults > max_faults) { 2330 max_faults = faults; 2331 max_group = this_group; 2332 /* 2333 * subtle: at the smallest distance there is 2334 * just one node left in each "group", the 2335 * winner is the preferred nid. 2336 */ 2337 nid = a; 2338 } 2339 } 2340 /* Next round, evaluate the nodes within max_group. */ 2341 if (!max_faults) 2342 break; 2343 nodes = max_group; 2344 } 2345 return nid; 2346 } 2347 2348 static void task_numa_placement(struct task_struct *p) 2349 { 2350 int seq, nid, max_nid = NUMA_NO_NODE; 2351 unsigned long max_faults = 0; 2352 unsigned long fault_types[2] = { 0, 0 }; 2353 unsigned long total_faults; 2354 u64 runtime, period; 2355 spinlock_t *group_lock = NULL; 2356 struct numa_group *ng; 2357 2358 /* 2359 * The p->mm->numa_scan_seq field gets updated without 2360 * exclusive access. Use READ_ONCE() here to ensure 2361 * that the field is read in a single access: 2362 */ 2363 seq = READ_ONCE(p->mm->numa_scan_seq); 2364 if (p->numa_scan_seq == seq) 2365 return; 2366 p->numa_scan_seq = seq; 2367 p->numa_scan_period_max = task_scan_max(p); 2368 2369 total_faults = p->numa_faults_locality[0] + 2370 p->numa_faults_locality[1]; 2371 runtime = numa_get_avg_runtime(p, &period); 2372 2373 /* If the task is part of a group prevent parallel updates to group stats */ 2374 ng = deref_curr_numa_group(p); 2375 if (ng) { 2376 group_lock = &ng->lock; 2377 spin_lock_irq(group_lock); 2378 } 2379 2380 /* Find the node with the highest number of faults */ 2381 for_each_online_node(nid) { 2382 /* Keep track of the offsets in numa_faults array */ 2383 int mem_idx, membuf_idx, cpu_idx, cpubuf_idx; 2384 unsigned long faults = 0, group_faults = 0; 2385 int priv; 2386 2387 for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) { 2388 long diff, f_diff, f_weight; 2389 2390 mem_idx = task_faults_idx(NUMA_MEM, nid, priv); 2391 membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv); 2392 cpu_idx = task_faults_idx(NUMA_CPU, nid, priv); 2393 cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv); 2394 2395 /* Decay existing window, copy faults since last scan */ 2396 diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2; 2397 fault_types[priv] += p->numa_faults[membuf_idx]; 2398 p->numa_faults[membuf_idx] = 0; 2399 2400 /* 2401 * Normalize the faults_from, so all tasks in a group 2402 * count according to CPU use, instead of by the raw 2403 * number of faults. Tasks with little runtime have 2404 * little over-all impact on throughput, and thus their 2405 * faults are less important. 2406 */ 2407 f_weight = div64_u64(runtime << 16, period + 1); 2408 f_weight = (f_weight * p->numa_faults[cpubuf_idx]) / 2409 (total_faults + 1); 2410 f_diff = f_weight - p->numa_faults[cpu_idx] / 2; 2411 p->numa_faults[cpubuf_idx] = 0; 2412 2413 p->numa_faults[mem_idx] += diff; 2414 p->numa_faults[cpu_idx] += f_diff; 2415 faults += p->numa_faults[mem_idx]; 2416 p->total_numa_faults += diff; 2417 if (ng) { 2418 /* 2419 * safe because we can only change our own group 2420 * 2421 * mem_idx represents the offset for a given 2422 * nid and priv in a specific region because it 2423 * is at the beginning of the numa_faults array. 2424 */ 2425 ng->faults[mem_idx] += diff; 2426 ng->faults_cpu[mem_idx] += f_diff; 2427 ng->total_faults += diff; 2428 group_faults += ng->faults[mem_idx]; 2429 } 2430 } 2431 2432 if (!ng) { 2433 if (faults > max_faults) { 2434 max_faults = faults; 2435 max_nid = nid; 2436 } 2437 } else if (group_faults > max_faults) { 2438 max_faults = group_faults; 2439 max_nid = nid; 2440 } 2441 } 2442 2443 if (ng) { 2444 numa_group_count_active_nodes(ng); 2445 spin_unlock_irq(group_lock); 2446 max_nid = preferred_group_nid(p, max_nid); 2447 } 2448 2449 if (max_faults) { 2450 /* Set the new preferred node */ 2451 if (max_nid != p->numa_preferred_nid) 2452 sched_setnuma(p, max_nid); 2453 } 2454 2455 update_task_scan_period(p, fault_types[0], fault_types[1]); 2456 } 2457 2458 static inline int get_numa_group(struct numa_group *grp) 2459 { 2460 return refcount_inc_not_zero(&grp->refcount); 2461 } 2462 2463 static inline void put_numa_group(struct numa_group *grp) 2464 { 2465 if (refcount_dec_and_test(&grp->refcount)) 2466 kfree_rcu(grp, rcu); 2467 } 2468 2469 static void task_numa_group(struct task_struct *p, int cpupid, int flags, 2470 int *priv) 2471 { 2472 struct numa_group *grp, *my_grp; 2473 struct task_struct *tsk; 2474 bool join = false; 2475 int cpu = cpupid_to_cpu(cpupid); 2476 int i; 2477 2478 if (unlikely(!deref_curr_numa_group(p))) { 2479 unsigned int size = sizeof(struct numa_group) + 2480 4*nr_node_ids*sizeof(unsigned long); 2481 2482 grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN); 2483 if (!grp) 2484 return; 2485 2486 refcount_set(&grp->refcount, 1); 2487 grp->active_nodes = 1; 2488 grp->max_faults_cpu = 0; 2489 spin_lock_init(&grp->lock); 2490 grp->gid = p->pid; 2491 /* Second half of the array tracks nids where faults happen */ 2492 grp->faults_cpu = grp->faults + NR_NUMA_HINT_FAULT_TYPES * 2493 nr_node_ids; 2494 2495 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) 2496 grp->faults[i] = p->numa_faults[i]; 2497 2498 grp->total_faults = p->total_numa_faults; 2499 2500 grp->nr_tasks++; 2501 rcu_assign_pointer(p->numa_group, grp); 2502 } 2503 2504 rcu_read_lock(); 2505 tsk = READ_ONCE(cpu_rq(cpu)->curr); 2506 2507 if (!cpupid_match_pid(tsk, cpupid)) 2508 goto no_join; 2509 2510 grp = rcu_dereference(tsk->numa_group); 2511 if (!grp) 2512 goto no_join; 2513 2514 my_grp = deref_curr_numa_group(p); 2515 if (grp == my_grp) 2516 goto no_join; 2517 2518 /* 2519 * Only join the other group if its bigger; if we're the bigger group, 2520 * the other task will join us. 2521 */ 2522 if (my_grp->nr_tasks > grp->nr_tasks) 2523 goto no_join; 2524 2525 /* 2526 * Tie-break on the grp address. 2527 */ 2528 if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp) 2529 goto no_join; 2530 2531 /* Always join threads in the same process. */ 2532 if (tsk->mm == current->mm) 2533 join = true; 2534 2535 /* Simple filter to avoid false positives due to PID collisions */ 2536 if (flags & TNF_SHARED) 2537 join = true; 2538 2539 /* Update priv based on whether false sharing was detected */ 2540 *priv = !join; 2541 2542 if (join && !get_numa_group(grp)) 2543 goto no_join; 2544 2545 rcu_read_unlock(); 2546 2547 if (!join) 2548 return; 2549 2550 BUG_ON(irqs_disabled()); 2551 double_lock_irq(&my_grp->lock, &grp->lock); 2552 2553 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) { 2554 my_grp->faults[i] -= p->numa_faults[i]; 2555 grp->faults[i] += p->numa_faults[i]; 2556 } 2557 my_grp->total_faults -= p->total_numa_faults; 2558 grp->total_faults += p->total_numa_faults; 2559 2560 my_grp->nr_tasks--; 2561 grp->nr_tasks++; 2562 2563 spin_unlock(&my_grp->lock); 2564 spin_unlock_irq(&grp->lock); 2565 2566 rcu_assign_pointer(p->numa_group, grp); 2567 2568 put_numa_group(my_grp); 2569 return; 2570 2571 no_join: 2572 rcu_read_unlock(); 2573 return; 2574 } 2575 2576 /* 2577 * Get rid of NUMA staticstics associated with a task (either current or dead). 2578 * If @final is set, the task is dead and has reached refcount zero, so we can 2579 * safely free all relevant data structures. Otherwise, there might be 2580 * concurrent reads from places like load balancing and procfs, and we should 2581 * reset the data back to default state without freeing ->numa_faults. 2582 */ 2583 void task_numa_free(struct task_struct *p, bool final) 2584 { 2585 /* safe: p either is current or is being freed by current */ 2586 struct numa_group *grp = rcu_dereference_raw(p->numa_group); 2587 unsigned long *numa_faults = p->numa_faults; 2588 unsigned long flags; 2589 int i; 2590 2591 if (!numa_faults) 2592 return; 2593 2594 if (grp) { 2595 spin_lock_irqsave(&grp->lock, flags); 2596 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) 2597 grp->faults[i] -= p->numa_faults[i]; 2598 grp->total_faults -= p->total_numa_faults; 2599 2600 grp->nr_tasks--; 2601 spin_unlock_irqrestore(&grp->lock, flags); 2602 RCU_INIT_POINTER(p->numa_group, NULL); 2603 put_numa_group(grp); 2604 } 2605 2606 if (final) { 2607 p->numa_faults = NULL; 2608 kfree(numa_faults); 2609 } else { 2610 p->total_numa_faults = 0; 2611 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) 2612 numa_faults[i] = 0; 2613 } 2614 } 2615 2616 /* 2617 * Got a PROT_NONE fault for a page on @node. 2618 */ 2619 void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags) 2620 { 2621 struct task_struct *p = current; 2622 bool migrated = flags & TNF_MIGRATED; 2623 int cpu_node = task_node(current); 2624 int local = !!(flags & TNF_FAULT_LOCAL); 2625 struct numa_group *ng; 2626 int priv; 2627 2628 if (!static_branch_likely(&sched_numa_balancing)) 2629 return; 2630 2631 /* for example, ksmd faulting in a user's mm */ 2632 if (!p->mm) 2633 return; 2634 2635 /* Allocate buffer to track faults on a per-node basis */ 2636 if (unlikely(!p->numa_faults)) { 2637 int size = sizeof(*p->numa_faults) * 2638 NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids; 2639 2640 p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN); 2641 if (!p->numa_faults) 2642 return; 2643 2644 p->total_numa_faults = 0; 2645 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality)); 2646 } 2647 2648 /* 2649 * First accesses are treated as private, otherwise consider accesses 2650 * to be private if the accessing pid has not changed 2651 */ 2652 if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) { 2653 priv = 1; 2654 } else { 2655 priv = cpupid_match_pid(p, last_cpupid); 2656 if (!priv && !(flags & TNF_NO_GROUP)) 2657 task_numa_group(p, last_cpupid, flags, &priv); 2658 } 2659 2660 /* 2661 * If a workload spans multiple NUMA nodes, a shared fault that 2662 * occurs wholly within the set of nodes that the workload is 2663 * actively using should be counted as local. This allows the 2664 * scan rate to slow down when a workload has settled down. 2665 */ 2666 ng = deref_curr_numa_group(p); 2667 if (!priv && !local && ng && ng->active_nodes > 1 && 2668 numa_is_active_node(cpu_node, ng) && 2669 numa_is_active_node(mem_node, ng)) 2670 local = 1; 2671 2672 /* 2673 * Retry to migrate task to preferred node periodically, in case it 2674 * previously failed, or the scheduler moved us. 2675 */ 2676 if (time_after(jiffies, p->numa_migrate_retry)) { 2677 task_numa_placement(p); 2678 numa_migrate_preferred(p); 2679 } 2680 2681 if (migrated) 2682 p->numa_pages_migrated += pages; 2683 if (flags & TNF_MIGRATE_FAIL) 2684 p->numa_faults_locality[2] += pages; 2685 2686 p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages; 2687 p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages; 2688 p->numa_faults_locality[local] += pages; 2689 } 2690 2691 static void reset_ptenuma_scan(struct task_struct *p) 2692 { 2693 /* 2694 * We only did a read acquisition of the mmap sem, so 2695 * p->mm->numa_scan_seq is written to without exclusive access 2696 * and the update is not guaranteed to be atomic. That's not 2697 * much of an issue though, since this is just used for 2698 * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not 2699 * expensive, to avoid any form of compiler optimizations: 2700 */ 2701 WRITE_ONCE(p->mm->numa_scan_seq, READ_ONCE(p->mm->numa_scan_seq) + 1); 2702 p->mm->numa_scan_offset = 0; 2703 } 2704 2705 /* 2706 * The expensive part of numa migration is done from task_work context. 2707 * Triggered from task_tick_numa(). 2708 */ 2709 static void task_numa_work(struct callback_head *work) 2710 { 2711 unsigned long migrate, next_scan, now = jiffies; 2712 struct task_struct *p = current; 2713 struct mm_struct *mm = p->mm; 2714 u64 runtime = p->se.sum_exec_runtime; 2715 struct vm_area_struct *vma; 2716 unsigned long start, end; 2717 unsigned long nr_pte_updates = 0; 2718 long pages, virtpages; 2719 2720 SCHED_WARN_ON(p != container_of(work, struct task_struct, numa_work)); 2721 2722 work->next = work; 2723 /* 2724 * Who cares about NUMA placement when they're dying. 2725 * 2726 * NOTE: make sure not to dereference p->mm before this check, 2727 * exit_task_work() happens _after_ exit_mm() so we could be called 2728 * without p->mm even though we still had it when we enqueued this 2729 * work. 2730 */ 2731 if (p->flags & PF_EXITING) 2732 return; 2733 2734 if (!mm->numa_next_scan) { 2735 mm->numa_next_scan = now + 2736 msecs_to_jiffies(sysctl_numa_balancing_scan_delay); 2737 } 2738 2739 /* 2740 * Enforce maximal scan/migration frequency.. 2741 */ 2742 migrate = mm->numa_next_scan; 2743 if (time_before(now, migrate)) 2744 return; 2745 2746 if (p->numa_scan_period == 0) { 2747 p->numa_scan_period_max = task_scan_max(p); 2748 p->numa_scan_period = task_scan_start(p); 2749 } 2750 2751 next_scan = now + msecs_to_jiffies(p->numa_scan_period); 2752 if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate) 2753 return; 2754 2755 /* 2756 * Delay this task enough that another task of this mm will likely win 2757 * the next time around. 2758 */ 2759 p->node_stamp += 2 * TICK_NSEC; 2760 2761 start = mm->numa_scan_offset; 2762 pages = sysctl_numa_balancing_scan_size; 2763 pages <<= 20 - PAGE_SHIFT; /* MB in pages */ 2764 virtpages = pages * 8; /* Scan up to this much virtual space */ 2765 if (!pages) 2766 return; 2767 2768 2769 if (!mmap_read_trylock(mm)) 2770 return; 2771 vma = find_vma(mm, start); 2772 if (!vma) { 2773 reset_ptenuma_scan(p); 2774 start = 0; 2775 vma = mm->mmap; 2776 } 2777 for (; vma; vma = vma->vm_next) { 2778 if (!vma_migratable(vma) || !vma_policy_mof(vma) || 2779 is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_MIXEDMAP)) { 2780 continue; 2781 } 2782 2783 /* 2784 * Shared library pages mapped by multiple processes are not 2785 * migrated as it is expected they are cache replicated. Avoid 2786 * hinting faults in read-only file-backed mappings or the vdso 2787 * as migrating the pages will be of marginal benefit. 2788 */ 2789 if (!vma->vm_mm || 2790 (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ))) 2791 continue; 2792 2793 /* 2794 * Skip inaccessible VMAs to avoid any confusion between 2795 * PROT_NONE and NUMA hinting ptes 2796 */ 2797 if (!vma_is_accessible(vma)) 2798 continue; 2799 2800 do { 2801 start = max(start, vma->vm_start); 2802 end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE); 2803 end = min(end, vma->vm_end); 2804 nr_pte_updates = change_prot_numa(vma, start, end); 2805 2806 /* 2807 * Try to scan sysctl_numa_balancing_size worth of 2808 * hpages that have at least one present PTE that 2809 * is not already pte-numa. If the VMA contains 2810 * areas that are unused or already full of prot_numa 2811 * PTEs, scan up to virtpages, to skip through those 2812 * areas faster. 2813 */ 2814 if (nr_pte_updates) 2815 pages -= (end - start) >> PAGE_SHIFT; 2816 virtpages -= (end - start) >> PAGE_SHIFT; 2817 2818 start = end; 2819 if (pages <= 0 || virtpages <= 0) 2820 goto out; 2821 2822 cond_resched(); 2823 } while (end != vma->vm_end); 2824 } 2825 2826 out: 2827 /* 2828 * It is possible to reach the end of the VMA list but the last few 2829 * VMAs are not guaranteed to the vma_migratable. If they are not, we 2830 * would find the !migratable VMA on the next scan but not reset the 2831 * scanner to the start so check it now. 2832 */ 2833 if (vma) 2834 mm->numa_scan_offset = start; 2835 else 2836 reset_ptenuma_scan(p); 2837 mmap_read_unlock(mm); 2838 2839 /* 2840 * Make sure tasks use at least 32x as much time to run other code 2841 * than they used here, to limit NUMA PTE scanning overhead to 3% max. 2842 * Usually update_task_scan_period slows down scanning enough; on an 2843 * overloaded system we need to limit overhead on a per task basis. 2844 */ 2845 if (unlikely(p->se.sum_exec_runtime != runtime)) { 2846 u64 diff = p->se.sum_exec_runtime - runtime; 2847 p->node_stamp += 32 * diff; 2848 } 2849 } 2850 2851 void init_numa_balancing(unsigned long clone_flags, struct task_struct *p) 2852 { 2853 int mm_users = 0; 2854 struct mm_struct *mm = p->mm; 2855 2856 if (mm) { 2857 mm_users = atomic_read(&mm->mm_users); 2858 if (mm_users == 1) { 2859 mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay); 2860 mm->numa_scan_seq = 0; 2861 } 2862 } 2863 p->node_stamp = 0; 2864 p->numa_scan_seq = mm ? mm->numa_scan_seq : 0; 2865 p->numa_scan_period = sysctl_numa_balancing_scan_delay; 2866 /* Protect against double add, see task_tick_numa and task_numa_work */ 2867 p->numa_work.next = &p->numa_work; 2868 p->numa_faults = NULL; 2869 RCU_INIT_POINTER(p->numa_group, NULL); 2870 p->last_task_numa_placement = 0; 2871 p->last_sum_exec_runtime = 0; 2872 2873 init_task_work(&p->numa_work, task_numa_work); 2874 2875 /* New address space, reset the preferred nid */ 2876 if (!(clone_flags & CLONE_VM)) { 2877 p->numa_preferred_nid = NUMA_NO_NODE; 2878 return; 2879 } 2880 2881 /* 2882 * New thread, keep existing numa_preferred_nid which should be copied 2883 * already by arch_dup_task_struct but stagger when scans start. 2884 */ 2885 if (mm) { 2886 unsigned int delay; 2887 2888 delay = min_t(unsigned int, task_scan_max(current), 2889 current->numa_scan_period * mm_users * NSEC_PER_MSEC); 2890 delay += 2 * TICK_NSEC; 2891 p->node_stamp = delay; 2892 } 2893 } 2894 2895 /* 2896 * Drive the periodic memory faults.. 2897 */ 2898 static void task_tick_numa(struct rq *rq, struct task_struct *curr) 2899 { 2900 struct callback_head *work = &curr->numa_work; 2901 u64 period, now; 2902 2903 /* 2904 * We don't care about NUMA placement if we don't have memory. 2905 */ 2906 if ((curr->flags & (PF_EXITING | PF_KTHREAD)) || work->next != work) 2907 return; 2908 2909 /* 2910 * Using runtime rather than walltime has the dual advantage that 2911 * we (mostly) drive the selection from busy threads and that the 2912 * task needs to have done some actual work before we bother with 2913 * NUMA placement. 2914 */ 2915 now = curr->se.sum_exec_runtime; 2916 period = (u64)curr->numa_scan_period * NSEC_PER_MSEC; 2917 2918 if (now > curr->node_stamp + period) { 2919 if (!curr->node_stamp) 2920 curr->numa_scan_period = task_scan_start(curr); 2921 curr->node_stamp += period; 2922 2923 if (!time_before(jiffies, curr->mm->numa_next_scan)) 2924 task_work_add(curr, work, TWA_RESUME); 2925 } 2926 } 2927 2928 static void update_scan_period(struct task_struct *p, int new_cpu) 2929 { 2930 int src_nid = cpu_to_node(task_cpu(p)); 2931 int dst_nid = cpu_to_node(new_cpu); 2932 2933 if (!static_branch_likely(&sched_numa_balancing)) 2934 return; 2935 2936 if (!p->mm || !p->numa_faults || (p->flags & PF_EXITING)) 2937 return; 2938 2939 if (src_nid == dst_nid) 2940 return; 2941 2942 /* 2943 * Allow resets if faults have been trapped before one scan 2944 * has completed. This is most likely due to a new task that 2945 * is pulled cross-node due to wakeups or load balancing. 2946 */ 2947 if (p->numa_scan_seq) { 2948 /* 2949 * Avoid scan adjustments if moving to the preferred 2950 * node or if the task was not previously running on 2951 * the preferred node. 2952 */ 2953 if (dst_nid == p->numa_preferred_nid || 2954 (p->numa_preferred_nid != NUMA_NO_NODE && 2955 src_nid != p->numa_preferred_nid)) 2956 return; 2957 } 2958 2959 p->numa_scan_period = task_scan_start(p); 2960 } 2961 2962 #else 2963 static void task_tick_numa(struct rq *rq, struct task_struct *curr) 2964 { 2965 } 2966 2967 static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p) 2968 { 2969 } 2970 2971 static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p) 2972 { 2973 } 2974 2975 static inline void update_scan_period(struct task_struct *p, int new_cpu) 2976 { 2977 } 2978 2979 #endif /* CONFIG_NUMA_BALANCING */ 2980 2981 static void 2982 account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se) 2983 { 2984 update_load_add(&cfs_rq->load, se->load.weight); 2985 #ifdef CONFIG_SMP 2986 if (entity_is_task(se)) { 2987 struct rq *rq = rq_of(cfs_rq); 2988 2989 account_numa_enqueue(rq, task_of(se)); 2990 list_add(&se->group_node, &rq->cfs_tasks); 2991 } 2992 #endif 2993 cfs_rq->nr_running++; 2994 } 2995 2996 static void 2997 account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se) 2998 { 2999 update_load_sub(&cfs_rq->load, se->load.weight); 3000 #ifdef CONFIG_SMP 3001 if (entity_is_task(se)) { 3002 account_numa_dequeue(rq_of(cfs_rq), task_of(se)); 3003 list_del_init(&se->group_node); 3004 } 3005 #endif 3006 cfs_rq->nr_running--; 3007 } 3008 3009 /* 3010 * Signed add and clamp on underflow. 3011 * 3012 * Explicitly do a load-store to ensure the intermediate value never hits 3013 * memory. This allows lockless observations without ever seeing the negative 3014 * values. 3015 */ 3016 #define add_positive(_ptr, _val) do { \ 3017 typeof(_ptr) ptr = (_ptr); \ 3018 typeof(_val) val = (_val); \ 3019 typeof(*ptr) res, var = READ_ONCE(*ptr); \ 3020 \ 3021 res = var + val; \ 3022 \ 3023 if (val < 0 && res > var) \ 3024 res = 0; \ 3025 \ 3026 WRITE_ONCE(*ptr, res); \ 3027 } while (0) 3028 3029 /* 3030 * Unsigned subtract and clamp on underflow. 3031 * 3032 * Explicitly do a load-store to ensure the intermediate value never hits 3033 * memory. This allows lockless observations without ever seeing the negative 3034 * values. 3035 */ 3036 #define sub_positive(_ptr, _val) do { \ 3037 typeof(_ptr) ptr = (_ptr); \ 3038 typeof(*ptr) val = (_val); \ 3039 typeof(*ptr) res, var = READ_ONCE(*ptr); \ 3040 res = var - val; \ 3041 if (res > var) \ 3042 res = 0; \ 3043 WRITE_ONCE(*ptr, res); \ 3044 } while (0) 3045 3046 /* 3047 * Remove and clamp on negative, from a local variable. 3048 * 3049 * A variant of sub_positive(), which does not use explicit load-store 3050 * and is thus optimized for local variable updates. 3051 */ 3052 #define lsub_positive(_ptr, _val) do { \ 3053 typeof(_ptr) ptr = (_ptr); \ 3054 *ptr -= min_t(typeof(*ptr), *ptr, _val); \ 3055 } while (0) 3056 3057 #ifdef CONFIG_SMP 3058 static inline void 3059 enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) 3060 { 3061 cfs_rq->avg.load_avg += se->avg.load_avg; 3062 cfs_rq->avg.load_sum += se_weight(se) * se->avg.load_sum; 3063 } 3064 3065 static inline void 3066 dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) 3067 { 3068 sub_positive(&cfs_rq->avg.load_avg, se->avg.load_avg); 3069 sub_positive(&cfs_rq->avg.load_sum, se_weight(se) * se->avg.load_sum); 3070 } 3071 #else 3072 static inline void 3073 enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { } 3074 static inline void 3075 dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { } 3076 #endif 3077 3078 static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, 3079 unsigned long weight) 3080 { 3081 if (se->on_rq) { 3082 /* commit outstanding execution time */ 3083 if (cfs_rq->curr == se) 3084 update_curr(cfs_rq); 3085 update_load_sub(&cfs_rq->load, se->load.weight); 3086 } 3087 dequeue_load_avg(cfs_rq, se); 3088 3089 update_load_set(&se->load, weight); 3090 3091 #ifdef CONFIG_SMP 3092 do { 3093 u32 divider = get_pelt_divider(&se->avg); 3094 3095 se->avg.load_avg = div_u64(se_weight(se) * se->avg.load_sum, divider); 3096 } while (0); 3097 #endif 3098 3099 enqueue_load_avg(cfs_rq, se); 3100 if (se->on_rq) 3101 update_load_add(&cfs_rq->load, se->load.weight); 3102 3103 } 3104 3105 void reweight_task(struct task_struct *p, int prio) 3106 { 3107 struct sched_entity *se = &p->se; 3108 struct cfs_rq *cfs_rq = cfs_rq_of(se); 3109 struct load_weight *load = &se->load; 3110 unsigned long weight = scale_load(sched_prio_to_weight[prio]); 3111 3112 reweight_entity(cfs_rq, se, weight); 3113 load->inv_weight = sched_prio_to_wmult[prio]; 3114 } 3115 3116 #ifdef CONFIG_FAIR_GROUP_SCHED 3117 #ifdef CONFIG_SMP 3118 /* 3119 * All this does is approximate the hierarchical proportion which includes that 3120 * global sum we all love to hate. 3121 * 3122 * That is, the weight of a group entity, is the proportional share of the 3123 * group weight based on the group runqueue weights. That is: 3124 * 3125 * tg->weight * grq->load.weight 3126 * ge->load.weight = ----------------------------- (1) 3127 * \Sum grq->load.weight 3128 * 3129 * Now, because computing that sum is prohibitively expensive to compute (been 3130 * there, done that) we approximate it with this average stuff. The average 3131 * moves slower and therefore the approximation is cheaper and more stable. 3132 * 3133 * So instead of the above, we substitute: 3134 * 3135 * grq->load.weight -> grq->avg.load_avg (2) 3136 * 3137 * which yields the following: 3138 * 3139 * tg->weight * grq->avg.load_avg 3140 * ge->load.weight = ------------------------------ (3) 3141 * tg->load_avg 3142 * 3143 * Where: tg->load_avg ~= \Sum grq->avg.load_avg 3144 * 3145 * That is shares_avg, and it is right (given the approximation (2)). 3146 * 3147 * The problem with it is that because the average is slow -- it was designed 3148 * to be exactly that of course -- this leads to transients in boundary 3149 * conditions. In specific, the case where the group was idle and we start the 3150 * one task. It takes time for our CPU's grq->avg.load_avg to build up, 3151 * yielding bad latency etc.. 3152 * 3153 * Now, in that special case (1) reduces to: 3154 * 3155 * tg->weight * grq->load.weight 3156 * ge->load.weight = ----------------------------- = tg->weight (4) 3157 * grp->load.weight 3158 * 3159 * That is, the sum collapses because all other CPUs are idle; the UP scenario. 3160 * 3161 * So what we do is modify our approximation (3) to approach (4) in the (near) 3162 * UP case, like: 3163 * 3164 * ge->load.weight = 3165 * 3166 * tg->weight * grq->load.weight 3167 * --------------------------------------------------- (5) 3168 * tg->load_avg - grq->avg.load_avg + grq->load.weight 3169 * 3170 * But because grq->load.weight can drop to 0, resulting in a divide by zero, 3171 * we need to use grq->avg.load_avg as its lower bound, which then gives: 3172 * 3173 * 3174 * tg->weight * grq->load.weight 3175 * ge->load.weight = ----------------------------- (6) 3176 * tg_load_avg' 3177 * 3178 * Where: 3179 * 3180 * tg_load_avg' = tg->load_avg - grq->avg.load_avg + 3181 * max(grq->load.weight, grq->avg.load_avg) 3182 * 3183 * And that is shares_weight and is icky. In the (near) UP case it approaches 3184 * (4) while in the normal case it approaches (3). It consistently 3185 * overestimates the ge->load.weight and therefore: 3186 * 3187 * \Sum ge->load.weight >= tg->weight 3188 * 3189 * hence icky! 3190 */ 3191 static long calc_group_shares(struct cfs_rq *cfs_rq) 3192 { 3193 long tg_weight, tg_shares, load, shares; 3194 struct task_group *tg = cfs_rq->tg; 3195 3196 tg_shares = READ_ONCE(tg->shares); 3197 3198 load = max(scale_load_down(cfs_rq->load.weight), cfs_rq->avg.load_avg); 3199 3200 tg_weight = atomic_long_read(&tg->load_avg); 3201 3202 /* Ensure tg_weight >= load */ 3203 tg_weight -= cfs_rq->tg_load_avg_contrib; 3204 tg_weight += load; 3205 3206 shares = (tg_shares * load); 3207 if (tg_weight) 3208 shares /= tg_weight; 3209 3210 /* 3211 * MIN_SHARES has to be unscaled here to support per-CPU partitioning 3212 * of a group with small tg->shares value. It is a floor value which is 3213 * assigned as a minimum load.weight to the sched_entity representing 3214 * the group on a CPU. 3215 * 3216 * E.g. on 64-bit for a group with tg->shares of scale_load(15)=15*1024 3217 * on an 8-core system with 8 tasks each runnable on one CPU shares has 3218 * to be 15*1024*1/8=1920 instead of scale_load(MIN_SHARES)=2*1024. In 3219 * case no task is runnable on a CPU MIN_SHARES=2 should be returned 3220 * instead of 0. 3221 */ 3222 return clamp_t(long, shares, MIN_SHARES, tg_shares); 3223 } 3224 #endif /* CONFIG_SMP */ 3225 3226 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq); 3227 3228 /* 3229 * Recomputes the group entity based on the current state of its group 3230 * runqueue. 3231 */ 3232 static void update_cfs_group(struct sched_entity *se) 3233 { 3234 struct cfs_rq *gcfs_rq = group_cfs_rq(se); 3235 long shares; 3236 3237 if (!gcfs_rq) 3238 return; 3239 3240 if (throttled_hierarchy(gcfs_rq)) 3241 return; 3242 3243 #ifndef CONFIG_SMP 3244 shares = READ_ONCE(gcfs_rq->tg->shares); 3245 3246 if (likely(se->load.weight == shares)) 3247 return; 3248 #else 3249 shares = calc_group_shares(gcfs_rq); 3250 #endif 3251 3252 reweight_entity(cfs_rq_of(se), se, shares); 3253 } 3254 3255 #else /* CONFIG_FAIR_GROUP_SCHED */ 3256 static inline void update_cfs_group(struct sched_entity *se) 3257 { 3258 } 3259 #endif /* CONFIG_FAIR_GROUP_SCHED */ 3260 3261 static inline void cfs_rq_util_change(struct cfs_rq *cfs_rq, int flags) 3262 { 3263 struct rq *rq = rq_of(cfs_rq); 3264 3265 if (&rq->cfs == cfs_rq) { 3266 /* 3267 * There are a few boundary cases this might miss but it should 3268 * get called often enough that that should (hopefully) not be 3269 * a real problem. 3270 * 3271 * It will not get called when we go idle, because the idle 3272 * thread is a different class (!fair), nor will the utilization 3273 * number include things like RT tasks. 3274 * 3275 * As is, the util number is not freq-invariant (we'd have to 3276 * implement arch_scale_freq_capacity() for that). 3277 * 3278 * See cpu_util(). 3279 */ 3280 cpufreq_update_util(rq, flags); 3281 } 3282 } 3283 3284 #ifdef CONFIG_SMP 3285 #ifdef CONFIG_FAIR_GROUP_SCHED 3286 /** 3287 * update_tg_load_avg - update the tg's load avg 3288 * @cfs_rq: the cfs_rq whose avg changed 3289 * 3290 * This function 'ensures': tg->load_avg := \Sum tg->cfs_rq[]->avg.load. 3291 * However, because tg->load_avg is a global value there are performance 3292 * considerations. 3293 * 3294 * In order to avoid having to look at the other cfs_rq's, we use a 3295 * differential update where we store the last value we propagated. This in 3296 * turn allows skipping updates if the differential is 'small'. 3297 * 3298 * Updating tg's load_avg is necessary before update_cfs_share(). 3299 */ 3300 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq) 3301 { 3302 long delta = cfs_rq->avg.load_avg - cfs_rq->tg_load_avg_contrib; 3303 3304 /* 3305 * No need to update load_avg for root_task_group as it is not used. 3306 */ 3307 if (cfs_rq->tg == &root_task_group) 3308 return; 3309 3310 if (abs(delta) > cfs_rq->tg_load_avg_contrib / 64) { 3311 atomic_long_add(delta, &cfs_rq->tg->load_avg); 3312 cfs_rq->tg_load_avg_contrib = cfs_rq->avg.load_avg; 3313 } 3314 } 3315 3316 /* 3317 * Called within set_task_rq() right before setting a task's CPU. The 3318 * caller only guarantees p->pi_lock is held; no other assumptions, 3319 * including the state of rq->lock, should be made. 3320 */ 3321 void set_task_rq_fair(struct sched_entity *se, 3322 struct cfs_rq *prev, struct cfs_rq *next) 3323 { 3324 u64 p_last_update_time; 3325 u64 n_last_update_time; 3326 3327 if (!sched_feat(ATTACH_AGE_LOAD)) 3328 return; 3329 3330 /* 3331 * We are supposed to update the task to "current" time, then its up to 3332 * date and ready to go to new CPU/cfs_rq. But we have difficulty in 3333 * getting what current time is, so simply throw away the out-of-date 3334 * time. This will result in the wakee task is less decayed, but giving 3335 * the wakee more load sounds not bad. 3336 */ 3337 if (!(se->avg.last_update_time && prev)) 3338 return; 3339 3340 #ifndef CONFIG_64BIT 3341 { 3342 u64 p_last_update_time_copy; 3343 u64 n_last_update_time_copy; 3344 3345 do { 3346 p_last_update_time_copy = prev->load_last_update_time_copy; 3347 n_last_update_time_copy = next->load_last_update_time_copy; 3348 3349 smp_rmb(); 3350 3351 p_last_update_time = prev->avg.last_update_time; 3352 n_last_update_time = next->avg.last_update_time; 3353 3354 } while (p_last_update_time != p_last_update_time_copy || 3355 n_last_update_time != n_last_update_time_copy); 3356 } 3357 #else 3358 p_last_update_time = prev->avg.last_update_time; 3359 n_last_update_time = next->avg.last_update_time; 3360 #endif 3361 __update_load_avg_blocked_se(p_last_update_time, se); 3362 se->avg.last_update_time = n_last_update_time; 3363 } 3364 3365 3366 /* 3367 * When on migration a sched_entity joins/leaves the PELT hierarchy, we need to 3368 * propagate its contribution. The key to this propagation is the invariant 3369 * that for each group: 3370 * 3371 * ge->avg == grq->avg (1) 3372 * 3373 * _IFF_ we look at the pure running and runnable sums. Because they 3374 * represent the very same entity, just at different points in the hierarchy. 3375 * 3376 * Per the above update_tg_cfs_util() and update_tg_cfs_runnable() are trivial 3377 * and simply copies the running/runnable sum over (but still wrong, because 3378 * the group entity and group rq do not have their PELT windows aligned). 3379 * 3380 * However, update_tg_cfs_load() is more complex. So we have: 3381 * 3382 * ge->avg.load_avg = ge->load.weight * ge->avg.runnable_avg (2) 3383 * 3384 * And since, like util, the runnable part should be directly transferable, 3385 * the following would _appear_ to be the straight forward approach: 3386 * 3387 * grq->avg.load_avg = grq->load.weight * grq->avg.runnable_avg (3) 3388 * 3389 * And per (1) we have: 3390 * 3391 * ge->avg.runnable_avg == grq->avg.runnable_avg 3392 * 3393 * Which gives: 3394 * 3395 * ge->load.weight * grq->avg.load_avg 3396 * ge->avg.load_avg = ----------------------------------- (4) 3397 * grq->load.weight 3398 * 3399 * Except that is wrong! 3400 * 3401 * Because while for entities historical weight is not important and we 3402 * really only care about our future and therefore can consider a pure 3403 * runnable sum, runqueues can NOT do this. 3404 * 3405 * We specifically want runqueues to have a load_avg that includes 3406 * historical weights. Those represent the blocked load, the load we expect 3407 * to (shortly) return to us. This only works by keeping the weights as 3408 * integral part of the sum. We therefore cannot decompose as per (3). 3409 * 3410 * Another reason this doesn't work is that runnable isn't a 0-sum entity. 3411 * Imagine a rq with 2 tasks that each are runnable 2/3 of the time. Then the 3412 * rq itself is runnable anywhere between 2/3 and 1 depending on how the 3413 * runnable section of these tasks overlap (or not). If they were to perfectly 3414 * align the rq as a whole would be runnable 2/3 of the time. If however we 3415 * always have at least 1 runnable task, the rq as a whole is always runnable. 3416 * 3417 * So we'll have to approximate.. :/ 3418 * 3419 * Given the constraint: 3420 * 3421 * ge->avg.running_sum <= ge->avg.runnable_sum <= LOAD_AVG_MAX 3422 * 3423 * We can construct a rule that adds runnable to a rq by assuming minimal 3424 * overlap. 3425 * 3426 * On removal, we'll assume each task is equally runnable; which yields: 3427 * 3428 * grq->avg.runnable_sum = grq->avg.load_sum / grq->load.weight 3429 * 3430 * XXX: only do this for the part of runnable > running ? 3431 * 3432 */ 3433 3434 static inline void 3435 update_tg_cfs_util(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq) 3436 { 3437 long delta = gcfs_rq->avg.util_avg - se->avg.util_avg; 3438 u32 divider; 3439 3440 /* Nothing to update */ 3441 if (!delta) 3442 return; 3443 3444 /* 3445 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se. 3446 * See ___update_load_avg() for details. 3447 */ 3448 divider = get_pelt_divider(&cfs_rq->avg); 3449 3450 /* Set new sched_entity's utilization */ 3451 se->avg.util_avg = gcfs_rq->avg.util_avg; 3452 se->avg.util_sum = se->avg.util_avg * divider; 3453 3454 /* Update parent cfs_rq utilization */ 3455 add_positive(&cfs_rq->avg.util_avg, delta); 3456 cfs_rq->avg.util_sum = cfs_rq->avg.util_avg * divider; 3457 } 3458 3459 static inline void 3460 update_tg_cfs_runnable(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq) 3461 { 3462 long delta = gcfs_rq->avg.runnable_avg - se->avg.runnable_avg; 3463 u32 divider; 3464 3465 /* Nothing to update */ 3466 if (!delta) 3467 return; 3468 3469 /* 3470 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se. 3471 * See ___update_load_avg() for details. 3472 */ 3473 divider = get_pelt_divider(&cfs_rq->avg); 3474 3475 /* Set new sched_entity's runnable */ 3476 se->avg.runnable_avg = gcfs_rq->avg.runnable_avg; 3477 se->avg.runnable_sum = se->avg.runnable_avg * divider; 3478 3479 /* Update parent cfs_rq runnable */ 3480 add_positive(&cfs_rq->avg.runnable_avg, delta); 3481 cfs_rq->avg.runnable_sum = cfs_rq->avg.runnable_avg * divider; 3482 } 3483 3484 static inline void 3485 update_tg_cfs_load(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq) 3486 { 3487 long delta_avg, running_sum, runnable_sum = gcfs_rq->prop_runnable_sum; 3488 unsigned long load_avg; 3489 u64 load_sum = 0; 3490 s64 delta_sum; 3491 u32 divider; 3492 3493 if (!runnable_sum) 3494 return; 3495 3496 gcfs_rq->prop_runnable_sum = 0; 3497 3498 /* 3499 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se. 3500 * See ___update_load_avg() for details. 3501 */ 3502 divider = get_pelt_divider(&cfs_rq->avg); 3503 3504 if (runnable_sum >= 0) { 3505 /* 3506 * Add runnable; clip at LOAD_AVG_MAX. Reflects that until 3507 * the CPU is saturated running == runnable. 3508 */ 3509 runnable_sum += se->avg.load_sum; 3510 runnable_sum = min_t(long, runnable_sum, divider); 3511 } else { 3512 /* 3513 * Estimate the new unweighted runnable_sum of the gcfs_rq by 3514 * assuming all tasks are equally runnable. 3515 */ 3516 if (scale_load_down(gcfs_rq->load.weight)) { 3517 load_sum = div_s64(gcfs_rq->avg.load_sum, 3518 scale_load_down(gcfs_rq->load.weight)); 3519 } 3520 3521 /* But make sure to not inflate se's runnable */ 3522 runnable_sum = min(se->avg.load_sum, load_sum); 3523 } 3524 3525 /* 3526 * runnable_sum can't be lower than running_sum 3527 * Rescale running sum to be in the same range as runnable sum 3528 * running_sum is in [0 : LOAD_AVG_MAX << SCHED_CAPACITY_SHIFT] 3529 * runnable_sum is in [0 : LOAD_AVG_MAX] 3530 */ 3531 running_sum = se->avg.util_sum >> SCHED_CAPACITY_SHIFT; 3532 runnable_sum = max(runnable_sum, running_sum); 3533 3534 load_sum = (s64)se_weight(se) * runnable_sum; 3535 load_avg = div_s64(load_sum, divider); 3536 3537 delta_sum = load_sum - (s64)se_weight(se) * se->avg.load_sum; 3538 delta_avg = load_avg - se->avg.load_avg; 3539 3540 se->avg.load_sum = runnable_sum; 3541 se->avg.load_avg = load_avg; 3542 add_positive(&cfs_rq->avg.load_avg, delta_avg); 3543 add_positive(&cfs_rq->avg.load_sum, delta_sum); 3544 } 3545 3546 static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum) 3547 { 3548 cfs_rq->propagate = 1; 3549 cfs_rq->prop_runnable_sum += runnable_sum; 3550 } 3551 3552 /* Update task and its cfs_rq load average */ 3553 static inline int propagate_entity_load_avg(struct sched_entity *se) 3554 { 3555 struct cfs_rq *cfs_rq, *gcfs_rq; 3556 3557 if (entity_is_task(se)) 3558 return 0; 3559 3560 gcfs_rq = group_cfs_rq(se); 3561 if (!gcfs_rq->propagate) 3562 return 0; 3563 3564 gcfs_rq->propagate = 0; 3565 3566 cfs_rq = cfs_rq_of(se); 3567 3568 add_tg_cfs_propagate(cfs_rq, gcfs_rq->prop_runnable_sum); 3569 3570 update_tg_cfs_util(cfs_rq, se, gcfs_rq); 3571 update_tg_cfs_runnable(cfs_rq, se, gcfs_rq); 3572 update_tg_cfs_load(cfs_rq, se, gcfs_rq); 3573 3574 trace_pelt_cfs_tp(cfs_rq); 3575 trace_pelt_se_tp(se); 3576 3577 return 1; 3578 } 3579 3580 /* 3581 * Check if we need to update the load and the utilization of a blocked 3582 * group_entity: 3583 */ 3584 static inline bool skip_blocked_update(struct sched_entity *se) 3585 { 3586 struct cfs_rq *gcfs_rq = group_cfs_rq(se); 3587 3588 /* 3589 * If sched_entity still have not zero load or utilization, we have to 3590 * decay it: 3591 */ 3592 if (se->avg.load_avg || se->avg.util_avg) 3593 return false; 3594 3595 /* 3596 * If there is a pending propagation, we have to update the load and 3597 * the utilization of the sched_entity: 3598 */ 3599 if (gcfs_rq->propagate) 3600 return false; 3601 3602 /* 3603 * Otherwise, the load and the utilization of the sched_entity is 3604 * already zero and there is no pending propagation, so it will be a 3605 * waste of time to try to decay it: 3606 */ 3607 return true; 3608 } 3609 3610 #else /* CONFIG_FAIR_GROUP_SCHED */ 3611 3612 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq) {} 3613 3614 static inline int propagate_entity_load_avg(struct sched_entity *se) 3615 { 3616 return 0; 3617 } 3618 3619 static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum) {} 3620 3621 #endif /* CONFIG_FAIR_GROUP_SCHED */ 3622 3623 /** 3624 * update_cfs_rq_load_avg - update the cfs_rq's load/util averages 3625 * @now: current time, as per cfs_rq_clock_pelt() 3626 * @cfs_rq: cfs_rq to update 3627 * 3628 * The cfs_rq avg is the direct sum of all its entities (blocked and runnable) 3629 * avg. The immediate corollary is that all (fair) tasks must be attached, see 3630 * post_init_entity_util_avg(). 3631 * 3632 * cfs_rq->avg is used for task_h_load() and update_cfs_share() for example. 3633 * 3634 * Returns true if the load decayed or we removed load. 3635 * 3636 * Since both these conditions indicate a changed cfs_rq->avg.load we should 3637 * call update_tg_load_avg() when this function returns true. 3638 */ 3639 static inline int 3640 update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq) 3641 { 3642 unsigned long removed_load = 0, removed_util = 0, removed_runnable = 0; 3643 struct sched_avg *sa = &cfs_rq->avg; 3644 int decayed = 0; 3645 3646 if (cfs_rq->removed.nr) { 3647 unsigned long r; 3648 u32 divider = get_pelt_divider(&cfs_rq->avg); 3649 3650 raw_spin_lock(&cfs_rq->removed.lock); 3651 swap(cfs_rq->removed.util_avg, removed_util); 3652 swap(cfs_rq->removed.load_avg, removed_load); 3653 swap(cfs_rq->removed.runnable_avg, removed_runnable); 3654 cfs_rq->removed.nr = 0; 3655 raw_spin_unlock(&cfs_rq->removed.lock); 3656 3657 r = removed_load; 3658 sub_positive(&sa->load_avg, r); 3659 sub_positive(&sa->load_sum, r * divider); 3660 3661 r = removed_util; 3662 sub_positive(&sa->util_avg, r); 3663 sub_positive(&sa->util_sum, r * divider); 3664 3665 r = removed_runnable; 3666 sub_positive(&sa->runnable_avg, r); 3667 sub_positive(&sa->runnable_sum, r * divider); 3668 3669 /* 3670 * removed_runnable is the unweighted version of removed_load so we 3671 * can use it to estimate removed_load_sum. 3672 */ 3673 add_tg_cfs_propagate(cfs_rq, 3674 -(long)(removed_runnable * divider) >> SCHED_CAPACITY_SHIFT); 3675 3676 decayed = 1; 3677 } 3678 3679 decayed |= __update_load_avg_cfs_rq(now, cfs_rq); 3680 3681 #ifndef CONFIG_64BIT 3682 smp_wmb(); 3683 cfs_rq->load_last_update_time_copy = sa->last_update_time; 3684 #endif 3685 3686 return decayed; 3687 } 3688 3689 /** 3690 * attach_entity_load_avg - attach this entity to its cfs_rq load avg 3691 * @cfs_rq: cfs_rq to attach to 3692 * @se: sched_entity to attach 3693 * 3694 * Must call update_cfs_rq_load_avg() before this, since we rely on 3695 * cfs_rq->avg.last_update_time being current. 3696 */ 3697 static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) 3698 { 3699 /* 3700 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se. 3701 * See ___update_load_avg() for details. 3702 */ 3703 u32 divider = get_pelt_divider(&cfs_rq->avg); 3704 3705 /* 3706 * When we attach the @se to the @cfs_rq, we must align the decay 3707 * window because without that, really weird and wonderful things can 3708 * happen. 3709 * 3710 * XXX illustrate 3711 */ 3712 se->avg.last_update_time = cfs_rq->avg.last_update_time; 3713 se->avg.period_contrib = cfs_rq->avg.period_contrib; 3714 3715 /* 3716 * Hell(o) Nasty stuff.. we need to recompute _sum based on the new 3717 * period_contrib. This isn't strictly correct, but since we're 3718 * entirely outside of the PELT hierarchy, nobody cares if we truncate 3719 * _sum a little. 3720 */ 3721 se->avg.util_sum = se->avg.util_avg * divider; 3722 3723 se->avg.runnable_sum = se->avg.runnable_avg * divider; 3724 3725 se->avg.load_sum = divider; 3726 if (se_weight(se)) { 3727 se->avg.load_sum = 3728 div_u64(se->avg.load_avg * se->avg.load_sum, se_weight(se)); 3729 } 3730 3731 enqueue_load_avg(cfs_rq, se); 3732 cfs_rq->avg.util_avg += se->avg.util_avg; 3733 cfs_rq->avg.util_sum += se->avg.util_sum; 3734 cfs_rq->avg.runnable_avg += se->avg.runnable_avg; 3735 cfs_rq->avg.runnable_sum += se->avg.runnable_sum; 3736 3737 add_tg_cfs_propagate(cfs_rq, se->avg.load_sum); 3738 3739 cfs_rq_util_change(cfs_rq, 0); 3740 3741 trace_pelt_cfs_tp(cfs_rq); 3742 } 3743 3744 /** 3745 * detach_entity_load_avg - detach this entity from its cfs_rq load avg 3746 * @cfs_rq: cfs_rq to detach from 3747 * @se: sched_entity to detach 3748 * 3749 * Must call update_cfs_rq_load_avg() before this, since we rely on 3750 * cfs_rq->avg.last_update_time being current. 3751 */ 3752 static void detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) 3753 { 3754 dequeue_load_avg(cfs_rq, se); 3755 sub_positive(&cfs_rq->avg.util_avg, se->avg.util_avg); 3756 sub_positive(&cfs_rq->avg.util_sum, se->avg.util_sum); 3757 sub_positive(&cfs_rq->avg.runnable_avg, se->avg.runnable_avg); 3758 sub_positive(&cfs_rq->avg.runnable_sum, se->avg.runnable_sum); 3759 3760 add_tg_cfs_propagate(cfs_rq, -se->avg.load_sum); 3761 3762 cfs_rq_util_change(cfs_rq, 0); 3763 3764 trace_pelt_cfs_tp(cfs_rq); 3765 } 3766 3767 /* 3768 * Optional action to be done while updating the load average 3769 */ 3770 #define UPDATE_TG 0x1 3771 #define SKIP_AGE_LOAD 0x2 3772 #define DO_ATTACH 0x4 3773 3774 /* Update task and its cfs_rq load average */ 3775 static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 3776 { 3777 u64 now = cfs_rq_clock_pelt(cfs_rq); 3778 int decayed; 3779 3780 /* 3781 * Track task load average for carrying it to new CPU after migrated, and 3782 * track group sched_entity load average for task_h_load calc in migration 3783 */ 3784 if (se->avg.last_update_time && !(flags & SKIP_AGE_LOAD)) 3785 __update_load_avg_se(now, cfs_rq, se); 3786 3787 decayed = update_cfs_rq_load_avg(now, cfs_rq); 3788 decayed |= propagate_entity_load_avg(se); 3789 3790 if (!se->avg.last_update_time && (flags & DO_ATTACH)) { 3791 3792 /* 3793 * DO_ATTACH means we're here from enqueue_entity(). 3794 * !last_update_time means we've passed through 3795 * migrate_task_rq_fair() indicating we migrated. 3796 * 3797 * IOW we're enqueueing a task on a new CPU. 3798 */ 3799 attach_entity_load_avg(cfs_rq, se); 3800 update_tg_load_avg(cfs_rq); 3801 3802 } else if (decayed) { 3803 cfs_rq_util_change(cfs_rq, 0); 3804 3805 if (flags & UPDATE_TG) 3806 update_tg_load_avg(cfs_rq); 3807 } 3808 } 3809 3810 #ifndef CONFIG_64BIT 3811 static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq) 3812 { 3813 u64 last_update_time_copy; 3814 u64 last_update_time; 3815 3816 do { 3817 last_update_time_copy = cfs_rq->load_last_update_time_copy; 3818 smp_rmb(); 3819 last_update_time = cfs_rq->avg.last_update_time; 3820 } while (last_update_time != last_update_time_copy); 3821 3822 return last_update_time; 3823 } 3824 #else 3825 static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq) 3826 { 3827 return cfs_rq->avg.last_update_time; 3828 } 3829 #endif 3830 3831 /* 3832 * Synchronize entity load avg of dequeued entity without locking 3833 * the previous rq. 3834 */ 3835 static void sync_entity_load_avg(struct sched_entity *se) 3836 { 3837 struct cfs_rq *cfs_rq = cfs_rq_of(se); 3838 u64 last_update_time; 3839 3840 last_update_time = cfs_rq_last_update_time(cfs_rq); 3841 __update_load_avg_blocked_se(last_update_time, se); 3842 } 3843 3844 /* 3845 * Task first catches up with cfs_rq, and then subtract 3846 * itself from the cfs_rq (task must be off the queue now). 3847 */ 3848 static void remove_entity_load_avg(struct sched_entity *se) 3849 { 3850 struct cfs_rq *cfs_rq = cfs_rq_of(se); 3851 unsigned long flags; 3852 3853 /* 3854 * tasks cannot exit without having gone through wake_up_new_task() -> 3855 * post_init_entity_util_avg() which will have added things to the 3856 * cfs_rq, so we can remove unconditionally. 3857 */ 3858 3859 sync_entity_load_avg(se); 3860 3861 raw_spin_lock_irqsave(&cfs_rq->removed.lock, flags); 3862 ++cfs_rq->removed.nr; 3863 cfs_rq->removed.util_avg += se->avg.util_avg; 3864 cfs_rq->removed.load_avg += se->avg.load_avg; 3865 cfs_rq->removed.runnable_avg += se->avg.runnable_avg; 3866 raw_spin_unlock_irqrestore(&cfs_rq->removed.lock, flags); 3867 } 3868 3869 static inline unsigned long cfs_rq_runnable_avg(struct cfs_rq *cfs_rq) 3870 { 3871 return cfs_rq->avg.runnable_avg; 3872 } 3873 3874 static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq) 3875 { 3876 return cfs_rq->avg.load_avg; 3877 } 3878 3879 static int newidle_balance(struct rq *this_rq, struct rq_flags *rf); 3880 3881 static inline unsigned long task_util(struct task_struct *p) 3882 { 3883 return READ_ONCE(p->se.avg.util_avg); 3884 } 3885 3886 static inline unsigned long _task_util_est(struct task_struct *p) 3887 { 3888 struct util_est ue = READ_ONCE(p->se.avg.util_est); 3889 3890 return (max(ue.ewma, ue.enqueued) | UTIL_AVG_UNCHANGED); 3891 } 3892 3893 static inline unsigned long task_util_est(struct task_struct *p) 3894 { 3895 return max(task_util(p), _task_util_est(p)); 3896 } 3897 3898 #ifdef CONFIG_UCLAMP_TASK 3899 static inline unsigned long uclamp_task_util(struct task_struct *p) 3900 { 3901 return clamp(task_util_est(p), 3902 uclamp_eff_value(p, UCLAMP_MIN), 3903 uclamp_eff_value(p, UCLAMP_MAX)); 3904 } 3905 #else 3906 static inline unsigned long uclamp_task_util(struct task_struct *p) 3907 { 3908 return task_util_est(p); 3909 } 3910 #endif 3911 3912 static inline void util_est_enqueue(struct cfs_rq *cfs_rq, 3913 struct task_struct *p) 3914 { 3915 unsigned int enqueued; 3916 3917 if (!sched_feat(UTIL_EST)) 3918 return; 3919 3920 /* Update root cfs_rq's estimated utilization */ 3921 enqueued = cfs_rq->avg.util_est.enqueued; 3922 enqueued += _task_util_est(p); 3923 WRITE_ONCE(cfs_rq->avg.util_est.enqueued, enqueued); 3924 3925 trace_sched_util_est_cfs_tp(cfs_rq); 3926 } 3927 3928 static inline void util_est_dequeue(struct cfs_rq *cfs_rq, 3929 struct task_struct *p) 3930 { 3931 unsigned int enqueued; 3932 3933 if (!sched_feat(UTIL_EST)) 3934 return; 3935 3936 /* Update root cfs_rq's estimated utilization */ 3937 enqueued = cfs_rq->avg.util_est.enqueued; 3938 enqueued -= min_t(unsigned int, enqueued, _task_util_est(p)); 3939 WRITE_ONCE(cfs_rq->avg.util_est.enqueued, enqueued); 3940 3941 trace_sched_util_est_cfs_tp(cfs_rq); 3942 } 3943 3944 /* 3945 * Check if a (signed) value is within a specified (unsigned) margin, 3946 * based on the observation that: 3947 * 3948 * abs(x) < y := (unsigned)(x + y - 1) < (2 * y - 1) 3949 * 3950 * NOTE: this only works when value + maring < INT_MAX. 3951 */ 3952 static inline bool within_margin(int value, int margin) 3953 { 3954 return ((unsigned int)(value + margin - 1) < (2 * margin - 1)); 3955 } 3956 3957 static inline void util_est_update(struct cfs_rq *cfs_rq, 3958 struct task_struct *p, 3959 bool task_sleep) 3960 { 3961 long last_ewma_diff; 3962 struct util_est ue; 3963 3964 if (!sched_feat(UTIL_EST)) 3965 return; 3966 3967 /* 3968 * Skip update of task's estimated utilization when the task has not 3969 * yet completed an activation, e.g. being migrated. 3970 */ 3971 if (!task_sleep) 3972 return; 3973 3974 /* 3975 * If the PELT values haven't changed since enqueue time, 3976 * skip the util_est update. 3977 */ 3978 ue = p->se.avg.util_est; 3979 if (ue.enqueued & UTIL_AVG_UNCHANGED) 3980 return; 3981 3982 /* 3983 * Reset EWMA on utilization increases, the moving average is used only 3984 * to smooth utilization decreases. 3985 */ 3986 ue.enqueued = (task_util(p) | UTIL_AVG_UNCHANGED); 3987 if (sched_feat(UTIL_EST_FASTUP)) { 3988 if (ue.ewma < ue.enqueued) { 3989 ue.ewma = ue.enqueued; 3990 goto done; 3991 } 3992 } 3993 3994 /* 3995 * Skip update of task's estimated utilization when its EWMA is 3996 * already ~1% close to its last activation value. 3997 */ 3998 last_ewma_diff = ue.enqueued - ue.ewma; 3999 if (within_margin(last_ewma_diff, (SCHED_CAPACITY_SCALE / 100))) 4000 return; 4001 4002 /* 4003 * To avoid overestimation of actual task utilization, skip updates if 4004 * we cannot grant there is idle time in this CPU. 4005 */ 4006 if (task_util(p) > capacity_orig_of(cpu_of(rq_of(cfs_rq)))) 4007 return; 4008 4009 /* 4010 * Update Task's estimated utilization 4011 * 4012 * When *p completes an activation we can consolidate another sample 4013 * of the task size. This is done by storing the current PELT value 4014 * as ue.enqueued and by using this value to update the Exponential 4015 * Weighted Moving Average (EWMA): 4016 * 4017 * ewma(t) = w * task_util(p) + (1-w) * ewma(t-1) 4018 * = w * task_util(p) + ewma(t-1) - w * ewma(t-1) 4019 * = w * (task_util(p) - ewma(t-1)) + ewma(t-1) 4020 * = w * ( last_ewma_diff ) + ewma(t-1) 4021 * = w * (last_ewma_diff + ewma(t-1) / w) 4022 * 4023 * Where 'w' is the weight of new samples, which is configured to be 4024 * 0.25, thus making w=1/4 ( >>= UTIL_EST_WEIGHT_SHIFT) 4025 */ 4026 ue.ewma <<= UTIL_EST_WEIGHT_SHIFT; 4027 ue.ewma += last_ewma_diff; 4028 ue.ewma >>= UTIL_EST_WEIGHT_SHIFT; 4029 done: 4030 WRITE_ONCE(p->se.avg.util_est, ue); 4031 4032 trace_sched_util_est_se_tp(&p->se); 4033 } 4034 4035 static inline int task_fits_capacity(struct task_struct *p, long capacity) 4036 { 4037 return fits_capacity(uclamp_task_util(p), capacity); 4038 } 4039 4040 static inline void update_misfit_status(struct task_struct *p, struct rq *rq) 4041 { 4042 if (!static_branch_unlikely(&sched_asym_cpucapacity)) 4043 return; 4044 4045 if (!p || p->nr_cpus_allowed == 1) { 4046 rq->misfit_task_load = 0; 4047 return; 4048 } 4049 4050 if (task_fits_capacity(p, capacity_of(cpu_of(rq)))) { 4051 rq->misfit_task_load = 0; 4052 return; 4053 } 4054 4055 /* 4056 * Make sure that misfit_task_load will not be null even if 4057 * task_h_load() returns 0. 4058 */ 4059 rq->misfit_task_load = max_t(unsigned long, task_h_load(p), 1); 4060 } 4061 4062 #else /* CONFIG_SMP */ 4063 4064 #define UPDATE_TG 0x0 4065 #define SKIP_AGE_LOAD 0x0 4066 #define DO_ATTACH 0x0 4067 4068 static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int not_used1) 4069 { 4070 cfs_rq_util_change(cfs_rq, 0); 4071 } 4072 4073 static inline void remove_entity_load_avg(struct sched_entity *se) {} 4074 4075 static inline void 4076 attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {} 4077 static inline void 4078 detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {} 4079 4080 static inline int newidle_balance(struct rq *rq, struct rq_flags *rf) 4081 { 4082 return 0; 4083 } 4084 4085 static inline void 4086 util_est_enqueue(struct cfs_rq *cfs_rq, struct task_struct *p) {} 4087 4088 static inline void 4089 util_est_dequeue(struct cfs_rq *cfs_rq, struct task_struct *p) {} 4090 4091 static inline void 4092 util_est_update(struct cfs_rq *cfs_rq, struct task_struct *p, 4093 bool task_sleep) {} 4094 static inline void update_misfit_status(struct task_struct *p, struct rq *rq) {} 4095 4096 #endif /* CONFIG_SMP */ 4097 4098 static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se) 4099 { 4100 #ifdef CONFIG_SCHED_DEBUG 4101 s64 d = se->vruntime - cfs_rq->min_vruntime; 4102 4103 if (d < 0) 4104 d = -d; 4105 4106 if (d > 3*sysctl_sched_latency) 4107 schedstat_inc(cfs_rq->nr_spread_over); 4108 #endif 4109 } 4110 4111 static void 4112 place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial) 4113 { 4114 u64 vruntime = cfs_rq->min_vruntime; 4115 4116 /* 4117 * The 'current' period is already promised to the current tasks, 4118 * however the extra weight of the new task will slow them down a 4119 * little, place the new task so that it fits in the slot that 4120 * stays open at the end. 4121 */ 4122 if (initial && sched_feat(START_DEBIT)) 4123 vruntime += sched_vslice(cfs_rq, se); 4124 4125 /* sleeps up to a single latency don't count. */ 4126 if (!initial) { 4127 unsigned long thresh = sysctl_sched_latency; 4128 4129 /* 4130 * Halve their sleep time's effect, to allow 4131 * for a gentler effect of sleepers: 4132 */ 4133 if (sched_feat(GENTLE_FAIR_SLEEPERS)) 4134 thresh >>= 1; 4135 4136 vruntime -= thresh; 4137 } 4138 4139 /* ensure we never gain time by being placed backwards. */ 4140 se->vruntime = max_vruntime(se->vruntime, vruntime); 4141 } 4142 4143 static void check_enqueue_throttle(struct cfs_rq *cfs_rq); 4144 4145 static inline void check_schedstat_required(void) 4146 { 4147 #ifdef CONFIG_SCHEDSTATS 4148 if (schedstat_enabled()) 4149 return; 4150 4151 /* Force schedstat enabled if a dependent tracepoint is active */ 4152 if (trace_sched_stat_wait_enabled() || 4153 trace_sched_stat_sleep_enabled() || 4154 trace_sched_stat_iowait_enabled() || 4155 trace_sched_stat_blocked_enabled() || 4156 trace_sched_stat_runtime_enabled()) { 4157 printk_deferred_once("Scheduler tracepoints stat_sleep, stat_iowait, " 4158 "stat_blocked and stat_runtime require the " 4159 "kernel parameter schedstats=enable or " 4160 "kernel.sched_schedstats=1\n"); 4161 } 4162 #endif 4163 } 4164 4165 static inline bool cfs_bandwidth_used(void); 4166 4167 /* 4168 * MIGRATION 4169 * 4170 * dequeue 4171 * update_curr() 4172 * update_min_vruntime() 4173 * vruntime -= min_vruntime 4174 * 4175 * enqueue 4176 * update_curr() 4177 * update_min_vruntime() 4178 * vruntime += min_vruntime 4179 * 4180 * this way the vruntime transition between RQs is done when both 4181 * min_vruntime are up-to-date. 4182 * 4183 * WAKEUP (remote) 4184 * 4185 * ->migrate_task_rq_fair() (p->state == TASK_WAKING) 4186 * vruntime -= min_vruntime 4187 * 4188 * enqueue 4189 * update_curr() 4190 * update_min_vruntime() 4191 * vruntime += min_vruntime 4192 * 4193 * this way we don't have the most up-to-date min_vruntime on the originating 4194 * CPU and an up-to-date min_vruntime on the destination CPU. 4195 */ 4196 4197 static void 4198 enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 4199 { 4200 bool renorm = !(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_MIGRATED); 4201 bool curr = cfs_rq->curr == se; 4202 4203 /* 4204 * If we're the current task, we must renormalise before calling 4205 * update_curr(). 4206 */ 4207 if (renorm && curr) 4208 se->vruntime += cfs_rq->min_vruntime; 4209 4210 update_curr(cfs_rq); 4211 4212 /* 4213 * Otherwise, renormalise after, such that we're placed at the current 4214 * moment in time, instead of some random moment in the past. Being 4215 * placed in the past could significantly boost this task to the 4216 * fairness detriment of existing tasks. 4217 */ 4218 if (renorm && !curr) 4219 se->vruntime += cfs_rq->min_vruntime; 4220 4221 /* 4222 * When enqueuing a sched_entity, we must: 4223 * - Update loads to have both entity and cfs_rq synced with now. 4224 * - Add its load to cfs_rq->runnable_avg 4225 * - For group_entity, update its weight to reflect the new share of 4226 * its group cfs_rq 4227 * - Add its new weight to cfs_rq->load.weight 4228 */ 4229 update_load_avg(cfs_rq, se, UPDATE_TG | DO_ATTACH); 4230 se_update_runnable(se); 4231 update_cfs_group(se); 4232 account_entity_enqueue(cfs_rq, se); 4233 4234 if (flags & ENQUEUE_WAKEUP) 4235 place_entity(cfs_rq, se, 0); 4236 4237 check_schedstat_required(); 4238 update_stats_enqueue(cfs_rq, se, flags); 4239 check_spread(cfs_rq, se); 4240 if (!curr) 4241 __enqueue_entity(cfs_rq, se); 4242 se->on_rq = 1; 4243 4244 /* 4245 * When bandwidth control is enabled, cfs might have been removed 4246 * because of a parent been throttled but cfs->nr_running > 1. Try to 4247 * add it unconditionnally. 4248 */ 4249 if (cfs_rq->nr_running == 1 || cfs_bandwidth_used()) 4250 list_add_leaf_cfs_rq(cfs_rq); 4251 4252 if (cfs_rq->nr_running == 1) 4253 check_enqueue_throttle(cfs_rq); 4254 } 4255 4256 static void __clear_buddies_last(struct sched_entity *se) 4257 { 4258 for_each_sched_entity(se) { 4259 struct cfs_rq *cfs_rq = cfs_rq_of(se); 4260 if (cfs_rq->last != se) 4261 break; 4262 4263 cfs_rq->last = NULL; 4264 } 4265 } 4266 4267 static void __clear_buddies_next(struct sched_entity *se) 4268 { 4269 for_each_sched_entity(se) { 4270 struct cfs_rq *cfs_rq = cfs_rq_of(se); 4271 if (cfs_rq->next != se) 4272 break; 4273 4274 cfs_rq->next = NULL; 4275 } 4276 } 4277 4278 static void __clear_buddies_skip(struct sched_entity *se) 4279 { 4280 for_each_sched_entity(se) { 4281 struct cfs_rq *cfs_rq = cfs_rq_of(se); 4282 if (cfs_rq->skip != se) 4283 break; 4284 4285 cfs_rq->skip = NULL; 4286 } 4287 } 4288 4289 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se) 4290 { 4291 if (cfs_rq->last == se) 4292 __clear_buddies_last(se); 4293 4294 if (cfs_rq->next == se) 4295 __clear_buddies_next(se); 4296 4297 if (cfs_rq->skip == se) 4298 __clear_buddies_skip(se); 4299 } 4300 4301 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq); 4302 4303 static void 4304 dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 4305 { 4306 /* 4307 * Update run-time statistics of the 'current'. 4308 */ 4309 update_curr(cfs_rq); 4310 4311 /* 4312 * When dequeuing a sched_entity, we must: 4313 * - Update loads to have both entity and cfs_rq synced with now. 4314 * - Subtract its load from the cfs_rq->runnable_avg. 4315 * - Subtract its previous weight from cfs_rq->load.weight. 4316 * - For group entity, update its weight to reflect the new share 4317 * of its group cfs_rq. 4318 */ 4319 update_load_avg(cfs_rq, se, UPDATE_TG); 4320 se_update_runnable(se); 4321 4322 update_stats_dequeue(cfs_rq, se, flags); 4323 4324 clear_buddies(cfs_rq, se); 4325 4326 if (se != cfs_rq->curr) 4327 __dequeue_entity(cfs_rq, se); 4328 se->on_rq = 0; 4329 account_entity_dequeue(cfs_rq, se); 4330 4331 /* 4332 * Normalize after update_curr(); which will also have moved 4333 * min_vruntime if @se is the one holding it back. But before doing 4334 * update_min_vruntime() again, which will discount @se's position and 4335 * can move min_vruntime forward still more. 4336 */ 4337 if (!(flags & DEQUEUE_SLEEP)) 4338 se->vruntime -= cfs_rq->min_vruntime; 4339 4340 /* return excess runtime on last dequeue */ 4341 return_cfs_rq_runtime(cfs_rq); 4342 4343 update_cfs_group(se); 4344 4345 /* 4346 * Now advance min_vruntime if @se was the entity holding it back, 4347 * except when: DEQUEUE_SAVE && !DEQUEUE_MOVE, in this case we'll be 4348 * put back on, and if we advance min_vruntime, we'll be placed back 4349 * further than we started -- ie. we'll be penalized. 4350 */ 4351 if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) != DEQUEUE_SAVE) 4352 update_min_vruntime(cfs_rq); 4353 } 4354 4355 /* 4356 * Preempt the current task with a newly woken task if needed: 4357 */ 4358 static void 4359 check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr) 4360 { 4361 unsigned long ideal_runtime, delta_exec; 4362 struct sched_entity *se; 4363 s64 delta; 4364 4365 ideal_runtime = sched_slice(cfs_rq, curr); 4366 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime; 4367 if (delta_exec > ideal_runtime) { 4368 resched_curr(rq_of(cfs_rq)); 4369 /* 4370 * The current task ran long enough, ensure it doesn't get 4371 * re-elected due to buddy favours. 4372 */ 4373 clear_buddies(cfs_rq, curr); 4374 return; 4375 } 4376 4377 /* 4378 * Ensure that a task that missed wakeup preemption by a 4379 * narrow margin doesn't have to wait for a full slice. 4380 * This also mitigates buddy induced latencies under load. 4381 */ 4382 if (delta_exec < sysctl_sched_min_granularity) 4383 return; 4384 4385 se = __pick_first_entity(cfs_rq); 4386 delta = curr->vruntime - se->vruntime; 4387 4388 if (delta < 0) 4389 return; 4390 4391 if (delta > ideal_runtime) 4392 resched_curr(rq_of(cfs_rq)); 4393 } 4394 4395 static void 4396 set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) 4397 { 4398 /* 'current' is not kept within the tree. */ 4399 if (se->on_rq) { 4400 /* 4401 * Any task has to be enqueued before it get to execute on 4402 * a CPU. So account for the time it spent waiting on the 4403 * runqueue. 4404 */ 4405 update_stats_wait_end(cfs_rq, se); 4406 __dequeue_entity(cfs_rq, se); 4407 update_load_avg(cfs_rq, se, UPDATE_TG); 4408 } 4409 4410 update_stats_curr_start(cfs_rq, se); 4411 cfs_rq->curr = se; 4412 4413 /* 4414 * Track our maximum slice length, if the CPU's load is at 4415 * least twice that of our own weight (i.e. dont track it 4416 * when there are only lesser-weight tasks around): 4417 */ 4418 if (schedstat_enabled() && 4419 rq_of(cfs_rq)->cfs.load.weight >= 2*se->load.weight) { 4420 schedstat_set(se->statistics.slice_max, 4421 max((u64)schedstat_val(se->statistics.slice_max), 4422 se->sum_exec_runtime - se->prev_sum_exec_runtime)); 4423 } 4424 4425 se->prev_sum_exec_runtime = se->sum_exec_runtime; 4426 } 4427 4428 static int 4429 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se); 4430 4431 /* 4432 * Pick the next process, keeping these things in mind, in this order: 4433 * 1) keep things fair between processes/task groups 4434 * 2) pick the "next" process, since someone really wants that to run 4435 * 3) pick the "last" process, for cache locality 4436 * 4) do not run the "skip" process, if something else is available 4437 */ 4438 static struct sched_entity * 4439 pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr) 4440 { 4441 struct sched_entity *left = __pick_first_entity(cfs_rq); 4442 struct sched_entity *se; 4443 4444 /* 4445 * If curr is set we have to see if its left of the leftmost entity 4446 * still in the tree, provided there was anything in the tree at all. 4447 */ 4448 if (!left || (curr && entity_before(curr, left))) 4449 left = curr; 4450 4451 se = left; /* ideally we run the leftmost entity */ 4452 4453 /* 4454 * Avoid running the skip buddy, if running something else can 4455 * be done without getting too unfair. 4456 */ 4457 if (cfs_rq->skip == se) { 4458 struct sched_entity *second; 4459 4460 if (se == curr) { 4461 second = __pick_first_entity(cfs_rq); 4462 } else { 4463 second = __pick_next_entity(se); 4464 if (!second || (curr && entity_before(curr, second))) 4465 second = curr; 4466 } 4467 4468 if (second && wakeup_preempt_entity(second, left) < 1) 4469 se = second; 4470 } 4471 4472 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1) { 4473 /* 4474 * Someone really wants this to run. If it's not unfair, run it. 4475 */ 4476 se = cfs_rq->next; 4477 } else if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1) { 4478 /* 4479 * Prefer last buddy, try to return the CPU to a preempted task. 4480 */ 4481 se = cfs_rq->last; 4482 } 4483 4484 clear_buddies(cfs_rq, se); 4485 4486 return se; 4487 } 4488 4489 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq); 4490 4491 static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev) 4492 { 4493 /* 4494 * If still on the runqueue then deactivate_task() 4495 * was not called and update_curr() has to be done: 4496 */ 4497 if (prev->on_rq) 4498 update_curr(cfs_rq); 4499 4500 /* throttle cfs_rqs exceeding runtime */ 4501 check_cfs_rq_runtime(cfs_rq); 4502 4503 check_spread(cfs_rq, prev); 4504 4505 if (prev->on_rq) { 4506 update_stats_wait_start(cfs_rq, prev); 4507 /* Put 'current' back into the tree. */ 4508 __enqueue_entity(cfs_rq, prev); 4509 /* in !on_rq case, update occurred at dequeue */ 4510 update_load_avg(cfs_rq, prev, 0); 4511 } 4512 cfs_rq->curr = NULL; 4513 } 4514 4515 static void 4516 entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued) 4517 { 4518 /* 4519 * Update run-time statistics of the 'current'. 4520 */ 4521 update_curr(cfs_rq); 4522 4523 /* 4524 * Ensure that runnable average is periodically updated. 4525 */ 4526 update_load_avg(cfs_rq, curr, UPDATE_TG); 4527 update_cfs_group(curr); 4528 4529 #ifdef CONFIG_SCHED_HRTICK 4530 /* 4531 * queued ticks are scheduled to match the slice, so don't bother 4532 * validating it and just reschedule. 4533 */ 4534 if (queued) { 4535 resched_curr(rq_of(cfs_rq)); 4536 return; 4537 } 4538 /* 4539 * don't let the period tick interfere with the hrtick preemption 4540 */ 4541 if (!sched_feat(DOUBLE_TICK) && 4542 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer)) 4543 return; 4544 #endif 4545 4546 if (cfs_rq->nr_running > 1) 4547 check_preempt_tick(cfs_rq, curr); 4548 } 4549 4550 4551 /************************************************** 4552 * CFS bandwidth control machinery 4553 */ 4554 4555 #ifdef CONFIG_CFS_BANDWIDTH 4556 4557 #ifdef CONFIG_JUMP_LABEL 4558 static struct static_key __cfs_bandwidth_used; 4559 4560 static inline bool cfs_bandwidth_used(void) 4561 { 4562 return static_key_false(&__cfs_bandwidth_used); 4563 } 4564 4565 void cfs_bandwidth_usage_inc(void) 4566 { 4567 static_key_slow_inc_cpuslocked(&__cfs_bandwidth_used); 4568 } 4569 4570 void cfs_bandwidth_usage_dec(void) 4571 { 4572 static_key_slow_dec_cpuslocked(&__cfs_bandwidth_used); 4573 } 4574 #else /* CONFIG_JUMP_LABEL */ 4575 static bool cfs_bandwidth_used(void) 4576 { 4577 return true; 4578 } 4579 4580 void cfs_bandwidth_usage_inc(void) {} 4581 void cfs_bandwidth_usage_dec(void) {} 4582 #endif /* CONFIG_JUMP_LABEL */ 4583 4584 /* 4585 * default period for cfs group bandwidth. 4586 * default: 0.1s, units: nanoseconds 4587 */ 4588 static inline u64 default_cfs_period(void) 4589 { 4590 return 100000000ULL; 4591 } 4592 4593 static inline u64 sched_cfs_bandwidth_slice(void) 4594 { 4595 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC; 4596 } 4597 4598 /* 4599 * Replenish runtime according to assigned quota. We use sched_clock_cpu 4600 * directly instead of rq->clock to avoid adding additional synchronization 4601 * around rq->lock. 4602 * 4603 * requires cfs_b->lock 4604 */ 4605 void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b) 4606 { 4607 if (cfs_b->quota != RUNTIME_INF) 4608 cfs_b->runtime = cfs_b->quota; 4609 } 4610 4611 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg) 4612 { 4613 return &tg->cfs_bandwidth; 4614 } 4615 4616 /* returns 0 on failure to allocate runtime */ 4617 static int __assign_cfs_rq_runtime(struct cfs_bandwidth *cfs_b, 4618 struct cfs_rq *cfs_rq, u64 target_runtime) 4619 { 4620 u64 min_amount, amount = 0; 4621 4622 lockdep_assert_held(&cfs_b->lock); 4623 4624 /* note: this is a positive sum as runtime_remaining <= 0 */ 4625 min_amount = target_runtime - cfs_rq->runtime_remaining; 4626 4627 if (cfs_b->quota == RUNTIME_INF) 4628 amount = min_amount; 4629 else { 4630 start_cfs_bandwidth(cfs_b); 4631 4632 if (cfs_b->runtime > 0) { 4633 amount = min(cfs_b->runtime, min_amount); 4634 cfs_b->runtime -= amount; 4635 cfs_b->idle = 0; 4636 } 4637 } 4638 4639 cfs_rq->runtime_remaining += amount; 4640 4641 return cfs_rq->runtime_remaining > 0; 4642 } 4643 4644 /* returns 0 on failure to allocate runtime */ 4645 static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq) 4646 { 4647 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 4648 int ret; 4649 4650 raw_spin_lock(&cfs_b->lock); 4651 ret = __assign_cfs_rq_runtime(cfs_b, cfs_rq, sched_cfs_bandwidth_slice()); 4652 raw_spin_unlock(&cfs_b->lock); 4653 4654 return ret; 4655 } 4656 4657 static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) 4658 { 4659 /* dock delta_exec before expiring quota (as it could span periods) */ 4660 cfs_rq->runtime_remaining -= delta_exec; 4661 4662 if (likely(cfs_rq->runtime_remaining > 0)) 4663 return; 4664 4665 if (cfs_rq->throttled) 4666 return; 4667 /* 4668 * if we're unable to extend our runtime we resched so that the active 4669 * hierarchy can be throttled 4670 */ 4671 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr)) 4672 resched_curr(rq_of(cfs_rq)); 4673 } 4674 4675 static __always_inline 4676 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) 4677 { 4678 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled) 4679 return; 4680 4681 __account_cfs_rq_runtime(cfs_rq, delta_exec); 4682 } 4683 4684 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq) 4685 { 4686 return cfs_bandwidth_used() && cfs_rq->throttled; 4687 } 4688 4689 /* check whether cfs_rq, or any parent, is throttled */ 4690 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq) 4691 { 4692 return cfs_bandwidth_used() && cfs_rq->throttle_count; 4693 } 4694 4695 /* 4696 * Ensure that neither of the group entities corresponding to src_cpu or 4697 * dest_cpu are members of a throttled hierarchy when performing group 4698 * load-balance operations. 4699 */ 4700 static inline int throttled_lb_pair(struct task_group *tg, 4701 int src_cpu, int dest_cpu) 4702 { 4703 struct cfs_rq *src_cfs_rq, *dest_cfs_rq; 4704 4705 src_cfs_rq = tg->cfs_rq[src_cpu]; 4706 dest_cfs_rq = tg->cfs_rq[dest_cpu]; 4707 4708 return throttled_hierarchy(src_cfs_rq) || 4709 throttled_hierarchy(dest_cfs_rq); 4710 } 4711 4712 static int tg_unthrottle_up(struct task_group *tg, void *data) 4713 { 4714 struct rq *rq = data; 4715 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; 4716 4717 cfs_rq->throttle_count--; 4718 if (!cfs_rq->throttle_count) { 4719 cfs_rq->throttled_clock_task_time += rq_clock_task(rq) - 4720 cfs_rq->throttled_clock_task; 4721 4722 /* Add cfs_rq with already running entity in the list */ 4723 if (cfs_rq->nr_running >= 1) 4724 list_add_leaf_cfs_rq(cfs_rq); 4725 } 4726 4727 return 0; 4728 } 4729 4730 static int tg_throttle_down(struct task_group *tg, void *data) 4731 { 4732 struct rq *rq = data; 4733 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; 4734 4735 /* group is entering throttled state, stop time */ 4736 if (!cfs_rq->throttle_count) { 4737 cfs_rq->throttled_clock_task = rq_clock_task(rq); 4738 list_del_leaf_cfs_rq(cfs_rq); 4739 } 4740 cfs_rq->throttle_count++; 4741 4742 return 0; 4743 } 4744 4745 static bool throttle_cfs_rq(struct cfs_rq *cfs_rq) 4746 { 4747 struct rq *rq = rq_of(cfs_rq); 4748 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 4749 struct sched_entity *se; 4750 long task_delta, idle_task_delta, dequeue = 1; 4751 4752 raw_spin_lock(&cfs_b->lock); 4753 /* This will start the period timer if necessary */ 4754 if (__assign_cfs_rq_runtime(cfs_b, cfs_rq, 1)) { 4755 /* 4756 * We have raced with bandwidth becoming available, and if we 4757 * actually throttled the timer might not unthrottle us for an 4758 * entire period. We additionally needed to make sure that any 4759 * subsequent check_cfs_rq_runtime calls agree not to throttle 4760 * us, as we may commit to do cfs put_prev+pick_next, so we ask 4761 * for 1ns of runtime rather than just check cfs_b. 4762 */ 4763 dequeue = 0; 4764 } else { 4765 list_add_tail_rcu(&cfs_rq->throttled_list, 4766 &cfs_b->throttled_cfs_rq); 4767 } 4768 raw_spin_unlock(&cfs_b->lock); 4769 4770 if (!dequeue) 4771 return false; /* Throttle no longer required. */ 4772 4773 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))]; 4774 4775 /* freeze hierarchy runnable averages while throttled */ 4776 rcu_read_lock(); 4777 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq); 4778 rcu_read_unlock(); 4779 4780 task_delta = cfs_rq->h_nr_running; 4781 idle_task_delta = cfs_rq->idle_h_nr_running; 4782 for_each_sched_entity(se) { 4783 struct cfs_rq *qcfs_rq = cfs_rq_of(se); 4784 /* throttled entity or throttle-on-deactivate */ 4785 if (!se->on_rq) 4786 goto done; 4787 4788 dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP); 4789 4790 qcfs_rq->h_nr_running -= task_delta; 4791 qcfs_rq->idle_h_nr_running -= idle_task_delta; 4792 4793 if (qcfs_rq->load.weight) { 4794 /* Avoid re-evaluating load for this entity: */ 4795 se = parent_entity(se); 4796 break; 4797 } 4798 } 4799 4800 for_each_sched_entity(se) { 4801 struct cfs_rq *qcfs_rq = cfs_rq_of(se); 4802 /* throttled entity or throttle-on-deactivate */ 4803 if (!se->on_rq) 4804 goto done; 4805 4806 update_load_avg(qcfs_rq, se, 0); 4807 se_update_runnable(se); 4808 4809 qcfs_rq->h_nr_running -= task_delta; 4810 qcfs_rq->idle_h_nr_running -= idle_task_delta; 4811 } 4812 4813 /* At this point se is NULL and we are at root level*/ 4814 sub_nr_running(rq, task_delta); 4815 4816 done: 4817 /* 4818 * Note: distribution will already see us throttled via the 4819 * throttled-list. rq->lock protects completion. 4820 */ 4821 cfs_rq->throttled = 1; 4822 cfs_rq->throttled_clock = rq_clock(rq); 4823 return true; 4824 } 4825 4826 void unthrottle_cfs_rq(struct cfs_rq *cfs_rq) 4827 { 4828 struct rq *rq = rq_of(cfs_rq); 4829 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 4830 struct sched_entity *se; 4831 long task_delta, idle_task_delta; 4832 4833 se = cfs_rq->tg->se[cpu_of(rq)]; 4834 4835 cfs_rq->throttled = 0; 4836 4837 update_rq_clock(rq); 4838 4839 raw_spin_lock(&cfs_b->lock); 4840 cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock; 4841 list_del_rcu(&cfs_rq->throttled_list); 4842 raw_spin_unlock(&cfs_b->lock); 4843 4844 /* update hierarchical throttle state */ 4845 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq); 4846 4847 if (!cfs_rq->load.weight) 4848 return; 4849 4850 task_delta = cfs_rq->h_nr_running; 4851 idle_task_delta = cfs_rq->idle_h_nr_running; 4852 for_each_sched_entity(se) { 4853 if (se->on_rq) 4854 break; 4855 cfs_rq = cfs_rq_of(se); 4856 enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP); 4857 4858 cfs_rq->h_nr_running += task_delta; 4859 cfs_rq->idle_h_nr_running += idle_task_delta; 4860 4861 /* end evaluation on encountering a throttled cfs_rq */ 4862 if (cfs_rq_throttled(cfs_rq)) 4863 goto unthrottle_throttle; 4864 } 4865 4866 for_each_sched_entity(se) { 4867 cfs_rq = cfs_rq_of(se); 4868 4869 update_load_avg(cfs_rq, se, UPDATE_TG); 4870 se_update_runnable(se); 4871 4872 cfs_rq->h_nr_running += task_delta; 4873 cfs_rq->idle_h_nr_running += idle_task_delta; 4874 4875 4876 /* end evaluation on encountering a throttled cfs_rq */ 4877 if (cfs_rq_throttled(cfs_rq)) 4878 goto unthrottle_throttle; 4879 4880 /* 4881 * One parent has been throttled and cfs_rq removed from the 4882 * list. Add it back to not break the leaf list. 4883 */ 4884 if (throttled_hierarchy(cfs_rq)) 4885 list_add_leaf_cfs_rq(cfs_rq); 4886 } 4887 4888 /* At this point se is NULL and we are at root level*/ 4889 add_nr_running(rq, task_delta); 4890 4891 unthrottle_throttle: 4892 /* 4893 * The cfs_rq_throttled() breaks in the above iteration can result in 4894 * incomplete leaf list maintenance, resulting in triggering the 4895 * assertion below. 4896 */ 4897 for_each_sched_entity(se) { 4898 cfs_rq = cfs_rq_of(se); 4899 4900 if (list_add_leaf_cfs_rq(cfs_rq)) 4901 break; 4902 } 4903 4904 assert_list_leaf_cfs_rq(rq); 4905 4906 /* Determine whether we need to wake up potentially idle CPU: */ 4907 if (rq->curr == rq->idle && rq->cfs.nr_running) 4908 resched_curr(rq); 4909 } 4910 4911 static void distribute_cfs_runtime(struct cfs_bandwidth *cfs_b) 4912 { 4913 struct cfs_rq *cfs_rq; 4914 u64 runtime, remaining = 1; 4915 4916 rcu_read_lock(); 4917 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq, 4918 throttled_list) { 4919 struct rq *rq = rq_of(cfs_rq); 4920 struct rq_flags rf; 4921 4922 rq_lock_irqsave(rq, &rf); 4923 if (!cfs_rq_throttled(cfs_rq)) 4924 goto next; 4925 4926 /* By the above check, this should never be true */ 4927 SCHED_WARN_ON(cfs_rq->runtime_remaining > 0); 4928 4929 raw_spin_lock(&cfs_b->lock); 4930 runtime = -cfs_rq->runtime_remaining + 1; 4931 if (runtime > cfs_b->runtime) 4932 runtime = cfs_b->runtime; 4933 cfs_b->runtime -= runtime; 4934 remaining = cfs_b->runtime; 4935 raw_spin_unlock(&cfs_b->lock); 4936 4937 cfs_rq->runtime_remaining += runtime; 4938 4939 /* we check whether we're throttled above */ 4940 if (cfs_rq->runtime_remaining > 0) 4941 unthrottle_cfs_rq(cfs_rq); 4942 4943 next: 4944 rq_unlock_irqrestore(rq, &rf); 4945 4946 if (!remaining) 4947 break; 4948 } 4949 rcu_read_unlock(); 4950 } 4951 4952 /* 4953 * Responsible for refilling a task_group's bandwidth and unthrottling its 4954 * cfs_rqs as appropriate. If there has been no activity within the last 4955 * period the timer is deactivated until scheduling resumes; cfs_b->idle is 4956 * used to track this state. 4957 */ 4958 static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun, unsigned long flags) 4959 { 4960 int throttled; 4961 4962 /* no need to continue the timer with no bandwidth constraint */ 4963 if (cfs_b->quota == RUNTIME_INF) 4964 goto out_deactivate; 4965 4966 throttled = !list_empty(&cfs_b->throttled_cfs_rq); 4967 cfs_b->nr_periods += overrun; 4968 4969 /* 4970 * idle depends on !throttled (for the case of a large deficit), and if 4971 * we're going inactive then everything else can be deferred 4972 */ 4973 if (cfs_b->idle && !throttled) 4974 goto out_deactivate; 4975 4976 __refill_cfs_bandwidth_runtime(cfs_b); 4977 4978 if (!throttled) { 4979 /* mark as potentially idle for the upcoming period */ 4980 cfs_b->idle = 1; 4981 return 0; 4982 } 4983 4984 /* account preceding periods in which throttling occurred */ 4985 cfs_b->nr_throttled += overrun; 4986 4987 /* 4988 * This check is repeated as we release cfs_b->lock while we unthrottle. 4989 */ 4990 while (throttled && cfs_b->runtime > 0) { 4991 raw_spin_unlock_irqrestore(&cfs_b->lock, flags); 4992 /* we can't nest cfs_b->lock while distributing bandwidth */ 4993 distribute_cfs_runtime(cfs_b); 4994 raw_spin_lock_irqsave(&cfs_b->lock, flags); 4995 4996 throttled = !list_empty(&cfs_b->throttled_cfs_rq); 4997 } 4998 4999 /* 5000 * While we are ensured activity in the period following an 5001 * unthrottle, this also covers the case in which the new bandwidth is 5002 * insufficient to cover the existing bandwidth deficit. (Forcing the 5003 * timer to remain active while there are any throttled entities.) 5004 */ 5005 cfs_b->idle = 0; 5006 5007 return 0; 5008 5009 out_deactivate: 5010 return 1; 5011 } 5012 5013 /* a cfs_rq won't donate quota below this amount */ 5014 static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC; 5015 /* minimum remaining period time to redistribute slack quota */ 5016 static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC; 5017 /* how long we wait to gather additional slack before distributing */ 5018 static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC; 5019 5020 /* 5021 * Are we near the end of the current quota period? 5022 * 5023 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the 5024 * hrtimer base being cleared by hrtimer_start. In the case of 5025 * migrate_hrtimers, base is never cleared, so we are fine. 5026 */ 5027 static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire) 5028 { 5029 struct hrtimer *refresh_timer = &cfs_b->period_timer; 5030 u64 remaining; 5031 5032 /* if the call-back is running a quota refresh is already occurring */ 5033 if (hrtimer_callback_running(refresh_timer)) 5034 return 1; 5035 5036 /* is a quota refresh about to occur? */ 5037 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer)); 5038 if (remaining < min_expire) 5039 return 1; 5040 5041 return 0; 5042 } 5043 5044 static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b) 5045 { 5046 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration; 5047 5048 /* if there's a quota refresh soon don't bother with slack */ 5049 if (runtime_refresh_within(cfs_b, min_left)) 5050 return; 5051 5052 /* don't push forwards an existing deferred unthrottle */ 5053 if (cfs_b->slack_started) 5054 return; 5055 cfs_b->slack_started = true; 5056 5057 hrtimer_start(&cfs_b->slack_timer, 5058 ns_to_ktime(cfs_bandwidth_slack_period), 5059 HRTIMER_MODE_REL); 5060 } 5061 5062 /* we know any runtime found here is valid as update_curr() precedes return */ 5063 static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq) 5064 { 5065 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 5066 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime; 5067 5068 if (slack_runtime <= 0) 5069 return; 5070 5071 raw_spin_lock(&cfs_b->lock); 5072 if (cfs_b->quota != RUNTIME_INF) { 5073 cfs_b->runtime += slack_runtime; 5074 5075 /* we are under rq->lock, defer unthrottling using a timer */ 5076 if (cfs_b->runtime > sched_cfs_bandwidth_slice() && 5077 !list_empty(&cfs_b->throttled_cfs_rq)) 5078 start_cfs_slack_bandwidth(cfs_b); 5079 } 5080 raw_spin_unlock(&cfs_b->lock); 5081 5082 /* even if it's not valid for return we don't want to try again */ 5083 cfs_rq->runtime_remaining -= slack_runtime; 5084 } 5085 5086 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) 5087 { 5088 if (!cfs_bandwidth_used()) 5089 return; 5090 5091 if (!cfs_rq->runtime_enabled || cfs_rq->nr_running) 5092 return; 5093 5094 __return_cfs_rq_runtime(cfs_rq); 5095 } 5096 5097 /* 5098 * This is done with a timer (instead of inline with bandwidth return) since 5099 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs. 5100 */ 5101 static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b) 5102 { 5103 u64 runtime = 0, slice = sched_cfs_bandwidth_slice(); 5104 unsigned long flags; 5105 5106 /* confirm we're still not at a refresh boundary */ 5107 raw_spin_lock_irqsave(&cfs_b->lock, flags); 5108 cfs_b->slack_started = false; 5109 5110 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) { 5111 raw_spin_unlock_irqrestore(&cfs_b->lock, flags); 5112 return; 5113 } 5114 5115 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice) 5116 runtime = cfs_b->runtime; 5117 5118 raw_spin_unlock_irqrestore(&cfs_b->lock, flags); 5119 5120 if (!runtime) 5121 return; 5122 5123 distribute_cfs_runtime(cfs_b); 5124 } 5125 5126 /* 5127 * When a group wakes up we want to make sure that its quota is not already 5128 * expired/exceeded, otherwise it may be allowed to steal additional ticks of 5129 * runtime as update_curr() throttling can not trigger until it's on-rq. 5130 */ 5131 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) 5132 { 5133 if (!cfs_bandwidth_used()) 5134 return; 5135 5136 /* an active group must be handled by the update_curr()->put() path */ 5137 if (!cfs_rq->runtime_enabled || cfs_rq->curr) 5138 return; 5139 5140 /* ensure the group is not already throttled */ 5141 if (cfs_rq_throttled(cfs_rq)) 5142 return; 5143 5144 /* update runtime allocation */ 5145 account_cfs_rq_runtime(cfs_rq, 0); 5146 if (cfs_rq->runtime_remaining <= 0) 5147 throttle_cfs_rq(cfs_rq); 5148 } 5149 5150 static void sync_throttle(struct task_group *tg, int cpu) 5151 { 5152 struct cfs_rq *pcfs_rq, *cfs_rq; 5153 5154 if (!cfs_bandwidth_used()) 5155 return; 5156 5157 if (!tg->parent) 5158 return; 5159 5160 cfs_rq = tg->cfs_rq[cpu]; 5161 pcfs_rq = tg->parent->cfs_rq[cpu]; 5162 5163 cfs_rq->throttle_count = pcfs_rq->throttle_count; 5164 cfs_rq->throttled_clock_task = rq_clock_task(cpu_rq(cpu)); 5165 } 5166 5167 /* conditionally throttle active cfs_rq's from put_prev_entity() */ 5168 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) 5169 { 5170 if (!cfs_bandwidth_used()) 5171 return false; 5172 5173 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0)) 5174 return false; 5175 5176 /* 5177 * it's possible for a throttled entity to be forced into a running 5178 * state (e.g. set_curr_task), in this case we're finished. 5179 */ 5180 if (cfs_rq_throttled(cfs_rq)) 5181 return true; 5182 5183 return throttle_cfs_rq(cfs_rq); 5184 } 5185 5186 static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer) 5187 { 5188 struct cfs_bandwidth *cfs_b = 5189 container_of(timer, struct cfs_bandwidth, slack_timer); 5190 5191 do_sched_cfs_slack_timer(cfs_b); 5192 5193 return HRTIMER_NORESTART; 5194 } 5195 5196 extern const u64 max_cfs_quota_period; 5197 5198 static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer) 5199 { 5200 struct cfs_bandwidth *cfs_b = 5201 container_of(timer, struct cfs_bandwidth, period_timer); 5202 unsigned long flags; 5203 int overrun; 5204 int idle = 0; 5205 int count = 0; 5206 5207 raw_spin_lock_irqsave(&cfs_b->lock, flags); 5208 for (;;) { 5209 overrun = hrtimer_forward_now(timer, cfs_b->period); 5210 if (!overrun) 5211 break; 5212 5213 idle = do_sched_cfs_period_timer(cfs_b, overrun, flags); 5214 5215 if (++count > 3) { 5216 u64 new, old = ktime_to_ns(cfs_b->period); 5217 5218 /* 5219 * Grow period by a factor of 2 to avoid losing precision. 5220 * Precision loss in the quota/period ratio can cause __cfs_schedulable 5221 * to fail. 5222 */ 5223 new = old * 2; 5224 if (new < max_cfs_quota_period) { 5225 cfs_b->period = ns_to_ktime(new); 5226 cfs_b->quota *= 2; 5227 5228 pr_warn_ratelimited( 5229 "cfs_period_timer[cpu%d]: period too short, scaling up (new cfs_period_us = %lld, cfs_quota_us = %lld)\n", 5230 smp_processor_id(), 5231 div_u64(new, NSEC_PER_USEC), 5232 div_u64(cfs_b->quota, NSEC_PER_USEC)); 5233 } else { 5234 pr_warn_ratelimited( 5235 "cfs_period_timer[cpu%d]: period too short, but cannot scale up without losing precision (cfs_period_us = %lld, cfs_quota_us = %lld)\n", 5236 smp_processor_id(), 5237 div_u64(old, NSEC_PER_USEC), 5238 div_u64(cfs_b->quota, NSEC_PER_USEC)); 5239 } 5240 5241 /* reset count so we don't come right back in here */ 5242 count = 0; 5243 } 5244 } 5245 if (idle) 5246 cfs_b->period_active = 0; 5247 raw_spin_unlock_irqrestore(&cfs_b->lock, flags); 5248 5249 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART; 5250 } 5251 5252 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) 5253 { 5254 raw_spin_lock_init(&cfs_b->lock); 5255 cfs_b->runtime = 0; 5256 cfs_b->quota = RUNTIME_INF; 5257 cfs_b->period = ns_to_ktime(default_cfs_period()); 5258 5259 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq); 5260 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED); 5261 cfs_b->period_timer.function = sched_cfs_period_timer; 5262 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 5263 cfs_b->slack_timer.function = sched_cfs_slack_timer; 5264 cfs_b->slack_started = false; 5265 } 5266 5267 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) 5268 { 5269 cfs_rq->runtime_enabled = 0; 5270 INIT_LIST_HEAD(&cfs_rq->throttled_list); 5271 } 5272 5273 void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b) 5274 { 5275 lockdep_assert_held(&cfs_b->lock); 5276 5277 if (cfs_b->period_active) 5278 return; 5279 5280 cfs_b->period_active = 1; 5281 hrtimer_forward_now(&cfs_b->period_timer, cfs_b->period); 5282 hrtimer_start_expires(&cfs_b->period_timer, HRTIMER_MODE_ABS_PINNED); 5283 } 5284 5285 static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) 5286 { 5287 /* init_cfs_bandwidth() was not called */ 5288 if (!cfs_b->throttled_cfs_rq.next) 5289 return; 5290 5291 hrtimer_cancel(&cfs_b->period_timer); 5292 hrtimer_cancel(&cfs_b->slack_timer); 5293 } 5294 5295 /* 5296 * Both these CPU hotplug callbacks race against unregister_fair_sched_group() 5297 * 5298 * The race is harmless, since modifying bandwidth settings of unhooked group 5299 * bits doesn't do much. 5300 */ 5301 5302 /* cpu online calback */ 5303 static void __maybe_unused update_runtime_enabled(struct rq *rq) 5304 { 5305 struct task_group *tg; 5306 5307 lockdep_assert_held(&rq->lock); 5308 5309 rcu_read_lock(); 5310 list_for_each_entry_rcu(tg, &task_groups, list) { 5311 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 5312 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; 5313 5314 raw_spin_lock(&cfs_b->lock); 5315 cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF; 5316 raw_spin_unlock(&cfs_b->lock); 5317 } 5318 rcu_read_unlock(); 5319 } 5320 5321 /* cpu offline callback */ 5322 static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq) 5323 { 5324 struct task_group *tg; 5325 5326 lockdep_assert_held(&rq->lock); 5327 5328 rcu_read_lock(); 5329 list_for_each_entry_rcu(tg, &task_groups, list) { 5330 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; 5331 5332 if (!cfs_rq->runtime_enabled) 5333 continue; 5334 5335 /* 5336 * clock_task is not advancing so we just need to make sure 5337 * there's some valid quota amount 5338 */ 5339 cfs_rq->runtime_remaining = 1; 5340 /* 5341 * Offline rq is schedulable till CPU is completely disabled 5342 * in take_cpu_down(), so we prevent new cfs throttling here. 5343 */ 5344 cfs_rq->runtime_enabled = 0; 5345 5346 if (cfs_rq_throttled(cfs_rq)) 5347 unthrottle_cfs_rq(cfs_rq); 5348 } 5349 rcu_read_unlock(); 5350 } 5351 5352 #else /* CONFIG_CFS_BANDWIDTH */ 5353 5354 static inline bool cfs_bandwidth_used(void) 5355 { 5356 return false; 5357 } 5358 5359 static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {} 5360 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; } 5361 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {} 5362 static inline void sync_throttle(struct task_group *tg, int cpu) {} 5363 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {} 5364 5365 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq) 5366 { 5367 return 0; 5368 } 5369 5370 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq) 5371 { 5372 return 0; 5373 } 5374 5375 static inline int throttled_lb_pair(struct task_group *tg, 5376 int src_cpu, int dest_cpu) 5377 { 5378 return 0; 5379 } 5380 5381 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {} 5382 5383 #ifdef CONFIG_FAIR_GROUP_SCHED 5384 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {} 5385 #endif 5386 5387 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg) 5388 { 5389 return NULL; 5390 } 5391 static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {} 5392 static inline void update_runtime_enabled(struct rq *rq) {} 5393 static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {} 5394 5395 #endif /* CONFIG_CFS_BANDWIDTH */ 5396 5397 /************************************************** 5398 * CFS operations on tasks: 5399 */ 5400 5401 #ifdef CONFIG_SCHED_HRTICK 5402 static void hrtick_start_fair(struct rq *rq, struct task_struct *p) 5403 { 5404 struct sched_entity *se = &p->se; 5405 struct cfs_rq *cfs_rq = cfs_rq_of(se); 5406 5407 SCHED_WARN_ON(task_rq(p) != rq); 5408 5409 if (rq->cfs.h_nr_running > 1) { 5410 u64 slice = sched_slice(cfs_rq, se); 5411 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime; 5412 s64 delta = slice - ran; 5413 5414 if (delta < 0) { 5415 if (task_current(rq, p)) 5416 resched_curr(rq); 5417 return; 5418 } 5419 hrtick_start(rq, delta); 5420 } 5421 } 5422 5423 /* 5424 * called from enqueue/dequeue and updates the hrtick when the 5425 * current task is from our class and nr_running is low enough 5426 * to matter. 5427 */ 5428 static void hrtick_update(struct rq *rq) 5429 { 5430 struct task_struct *curr = rq->curr; 5431 5432 if (!hrtick_enabled_fair(rq) || curr->sched_class != &fair_sched_class) 5433 return; 5434 5435 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency) 5436 hrtick_start_fair(rq, curr); 5437 } 5438 #else /* !CONFIG_SCHED_HRTICK */ 5439 static inline void 5440 hrtick_start_fair(struct rq *rq, struct task_struct *p) 5441 { 5442 } 5443 5444 static inline void hrtick_update(struct rq *rq) 5445 { 5446 } 5447 #endif 5448 5449 #ifdef CONFIG_SMP 5450 static inline unsigned long cpu_util(int cpu); 5451 5452 static inline bool cpu_overutilized(int cpu) 5453 { 5454 return !fits_capacity(cpu_util(cpu), capacity_of(cpu)); 5455 } 5456 5457 static inline void update_overutilized_status(struct rq *rq) 5458 { 5459 if (!READ_ONCE(rq->rd->overutilized) && cpu_overutilized(rq->cpu)) { 5460 WRITE_ONCE(rq->rd->overutilized, SG_OVERUTILIZED); 5461 trace_sched_overutilized_tp(rq->rd, SG_OVERUTILIZED); 5462 } 5463 } 5464 #else 5465 static inline void update_overutilized_status(struct rq *rq) { } 5466 #endif 5467 5468 /* Runqueue only has SCHED_IDLE tasks enqueued */ 5469 static int sched_idle_rq(struct rq *rq) 5470 { 5471 return unlikely(rq->nr_running == rq->cfs.idle_h_nr_running && 5472 rq->nr_running); 5473 } 5474 5475 #ifdef CONFIG_SMP 5476 static int sched_idle_cpu(int cpu) 5477 { 5478 return sched_idle_rq(cpu_rq(cpu)); 5479 } 5480 #endif 5481 5482 /* 5483 * The enqueue_task method is called before nr_running is 5484 * increased. Here we update the fair scheduling stats and 5485 * then put the task into the rbtree: 5486 */ 5487 static void 5488 enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags) 5489 { 5490 struct cfs_rq *cfs_rq; 5491 struct sched_entity *se = &p->se; 5492 int idle_h_nr_running = task_has_idle_policy(p); 5493 int task_new = !(flags & ENQUEUE_WAKEUP); 5494 5495 /* 5496 * The code below (indirectly) updates schedutil which looks at 5497 * the cfs_rq utilization to select a frequency. 5498 * Let's add the task's estimated utilization to the cfs_rq's 5499 * estimated utilization, before we update schedutil. 5500 */ 5501 util_est_enqueue(&rq->cfs, p); 5502 5503 /* 5504 * If in_iowait is set, the code below may not trigger any cpufreq 5505 * utilization updates, so do it here explicitly with the IOWAIT flag 5506 * passed. 5507 */ 5508 if (p->in_iowait) 5509 cpufreq_update_util(rq, SCHED_CPUFREQ_IOWAIT); 5510 5511 for_each_sched_entity(se) { 5512 if (se->on_rq) 5513 break; 5514 cfs_rq = cfs_rq_of(se); 5515 enqueue_entity(cfs_rq, se, flags); 5516 5517 cfs_rq->h_nr_running++; 5518 cfs_rq->idle_h_nr_running += idle_h_nr_running; 5519 5520 /* end evaluation on encountering a throttled cfs_rq */ 5521 if (cfs_rq_throttled(cfs_rq)) 5522 goto enqueue_throttle; 5523 5524 flags = ENQUEUE_WAKEUP; 5525 } 5526 5527 for_each_sched_entity(se) { 5528 cfs_rq = cfs_rq_of(se); 5529 5530 update_load_avg(cfs_rq, se, UPDATE_TG); 5531 se_update_runnable(se); 5532 update_cfs_group(se); 5533 5534 cfs_rq->h_nr_running++; 5535 cfs_rq->idle_h_nr_running += idle_h_nr_running; 5536 5537 /* end evaluation on encountering a throttled cfs_rq */ 5538 if (cfs_rq_throttled(cfs_rq)) 5539 goto enqueue_throttle; 5540 5541 /* 5542 * One parent has been throttled and cfs_rq removed from the 5543 * list. Add it back to not break the leaf list. 5544 */ 5545 if (throttled_hierarchy(cfs_rq)) 5546 list_add_leaf_cfs_rq(cfs_rq); 5547 } 5548 5549 /* At this point se is NULL and we are at root level*/ 5550 add_nr_running(rq, 1); 5551 5552 /* 5553 * Since new tasks are assigned an initial util_avg equal to 5554 * half of the spare capacity of their CPU, tiny tasks have the 5555 * ability to cross the overutilized threshold, which will 5556 * result in the load balancer ruining all the task placement 5557 * done by EAS. As a way to mitigate that effect, do not account 5558 * for the first enqueue operation of new tasks during the 5559 * overutilized flag detection. 5560 * 5561 * A better way of solving this problem would be to wait for 5562 * the PELT signals of tasks to converge before taking them 5563 * into account, but that is not straightforward to implement, 5564 * and the following generally works well enough in practice. 5565 */ 5566 if (!task_new) 5567 update_overutilized_status(rq); 5568 5569 enqueue_throttle: 5570 if (cfs_bandwidth_used()) { 5571 /* 5572 * When bandwidth control is enabled; the cfs_rq_throttled() 5573 * breaks in the above iteration can result in incomplete 5574 * leaf list maintenance, resulting in triggering the assertion 5575 * below. 5576 */ 5577 for_each_sched_entity(se) { 5578 cfs_rq = cfs_rq_of(se); 5579 5580 if (list_add_leaf_cfs_rq(cfs_rq)) 5581 break; 5582 } 5583 } 5584 5585 assert_list_leaf_cfs_rq(rq); 5586 5587 hrtick_update(rq); 5588 } 5589 5590 static void set_next_buddy(struct sched_entity *se); 5591 5592 /* 5593 * The dequeue_task method is called before nr_running is 5594 * decreased. We remove the task from the rbtree and 5595 * update the fair scheduling stats: 5596 */ 5597 static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags) 5598 { 5599 struct cfs_rq *cfs_rq; 5600 struct sched_entity *se = &p->se; 5601 int task_sleep = flags & DEQUEUE_SLEEP; 5602 int idle_h_nr_running = task_has_idle_policy(p); 5603 bool was_sched_idle = sched_idle_rq(rq); 5604 5605 util_est_dequeue(&rq->cfs, p); 5606 5607 for_each_sched_entity(se) { 5608 cfs_rq = cfs_rq_of(se); 5609 dequeue_entity(cfs_rq, se, flags); 5610 5611 cfs_rq->h_nr_running--; 5612 cfs_rq->idle_h_nr_running -= idle_h_nr_running; 5613 5614 /* end evaluation on encountering a throttled cfs_rq */ 5615 if (cfs_rq_throttled(cfs_rq)) 5616 goto dequeue_throttle; 5617 5618 /* Don't dequeue parent if it has other entities besides us */ 5619 if (cfs_rq->load.weight) { 5620 /* Avoid re-evaluating load for this entity: */ 5621 se = parent_entity(se); 5622 /* 5623 * Bias pick_next to pick a task from this cfs_rq, as 5624 * p is sleeping when it is within its sched_slice. 5625 */ 5626 if (task_sleep && se && !throttled_hierarchy(cfs_rq)) 5627 set_next_buddy(se); 5628 break; 5629 } 5630 flags |= DEQUEUE_SLEEP; 5631 } 5632 5633 for_each_sched_entity(se) { 5634 cfs_rq = cfs_rq_of(se); 5635 5636 update_load_avg(cfs_rq, se, UPDATE_TG); 5637 se_update_runnable(se); 5638 update_cfs_group(se); 5639 5640 cfs_rq->h_nr_running--; 5641 cfs_rq->idle_h_nr_running -= idle_h_nr_running; 5642 5643 /* end evaluation on encountering a throttled cfs_rq */ 5644 if (cfs_rq_throttled(cfs_rq)) 5645 goto dequeue_throttle; 5646 5647 } 5648 5649 /* At this point se is NULL and we are at root level*/ 5650 sub_nr_running(rq, 1); 5651 5652 /* balance early to pull high priority tasks */ 5653 if (unlikely(!was_sched_idle && sched_idle_rq(rq))) 5654 rq->next_balance = jiffies; 5655 5656 dequeue_throttle: 5657 util_est_update(&rq->cfs, p, task_sleep); 5658 hrtick_update(rq); 5659 } 5660 5661 #ifdef CONFIG_SMP 5662 5663 /* Working cpumask for: load_balance, load_balance_newidle. */ 5664 DEFINE_PER_CPU(cpumask_var_t, load_balance_mask); 5665 DEFINE_PER_CPU(cpumask_var_t, select_idle_mask); 5666 5667 #ifdef CONFIG_NO_HZ_COMMON 5668 5669 static struct { 5670 cpumask_var_t idle_cpus_mask; 5671 atomic_t nr_cpus; 5672 int has_blocked; /* Idle CPUS has blocked load */ 5673 unsigned long next_balance; /* in jiffy units */ 5674 unsigned long next_blocked; /* Next update of blocked load in jiffies */ 5675 } nohz ____cacheline_aligned; 5676 5677 #endif /* CONFIG_NO_HZ_COMMON */ 5678 5679 static unsigned long cpu_load(struct rq *rq) 5680 { 5681 return cfs_rq_load_avg(&rq->cfs); 5682 } 5683 5684 /* 5685 * cpu_load_without - compute CPU load without any contributions from *p 5686 * @cpu: the CPU which load is requested 5687 * @p: the task which load should be discounted 5688 * 5689 * The load of a CPU is defined by the load of tasks currently enqueued on that 5690 * CPU as well as tasks which are currently sleeping after an execution on that 5691 * CPU. 5692 * 5693 * This method returns the load of the specified CPU by discounting the load of 5694 * the specified task, whenever the task is currently contributing to the CPU 5695 * load. 5696 */ 5697 static unsigned long cpu_load_without(struct rq *rq, struct task_struct *p) 5698 { 5699 struct cfs_rq *cfs_rq; 5700 unsigned int load; 5701 5702 /* Task has no contribution or is new */ 5703 if (cpu_of(rq) != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time)) 5704 return cpu_load(rq); 5705 5706 cfs_rq = &rq->cfs; 5707 load = READ_ONCE(cfs_rq->avg.load_avg); 5708 5709 /* Discount task's util from CPU's util */ 5710 lsub_positive(&load, task_h_load(p)); 5711 5712 return load; 5713 } 5714 5715 static unsigned long cpu_runnable(struct rq *rq) 5716 { 5717 return cfs_rq_runnable_avg(&rq->cfs); 5718 } 5719 5720 static unsigned long cpu_runnable_without(struct rq *rq, struct task_struct *p) 5721 { 5722 struct cfs_rq *cfs_rq; 5723 unsigned int runnable; 5724 5725 /* Task has no contribution or is new */ 5726 if (cpu_of(rq) != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time)) 5727 return cpu_runnable(rq); 5728 5729 cfs_rq = &rq->cfs; 5730 runnable = READ_ONCE(cfs_rq->avg.runnable_avg); 5731 5732 /* Discount task's runnable from CPU's runnable */ 5733 lsub_positive(&runnable, p->se.avg.runnable_avg); 5734 5735 return runnable; 5736 } 5737 5738 static unsigned long capacity_of(int cpu) 5739 { 5740 return cpu_rq(cpu)->cpu_capacity; 5741 } 5742 5743 static void record_wakee(struct task_struct *p) 5744 { 5745 /* 5746 * Only decay a single time; tasks that have less then 1 wakeup per 5747 * jiffy will not have built up many flips. 5748 */ 5749 if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) { 5750 current->wakee_flips >>= 1; 5751 current->wakee_flip_decay_ts = jiffies; 5752 } 5753 5754 if (current->last_wakee != p) { 5755 current->last_wakee = p; 5756 current->wakee_flips++; 5757 } 5758 } 5759 5760 /* 5761 * Detect M:N waker/wakee relationships via a switching-frequency heuristic. 5762 * 5763 * A waker of many should wake a different task than the one last awakened 5764 * at a frequency roughly N times higher than one of its wakees. 5765 * 5766 * In order to determine whether we should let the load spread vs consolidating 5767 * to shared cache, we look for a minimum 'flip' frequency of llc_size in one 5768 * partner, and a factor of lls_size higher frequency in the other. 5769 * 5770 * With both conditions met, we can be relatively sure that the relationship is 5771 * non-monogamous, with partner count exceeding socket size. 5772 * 5773 * Waker/wakee being client/server, worker/dispatcher, interrupt source or 5774 * whatever is irrelevant, spread criteria is apparent partner count exceeds 5775 * socket size. 5776 */ 5777 static int wake_wide(struct task_struct *p) 5778 { 5779 unsigned int master = current->wakee_flips; 5780 unsigned int slave = p->wakee_flips; 5781 int factor = __this_cpu_read(sd_llc_size); 5782 5783 if (master < slave) 5784 swap(master, slave); 5785 if (slave < factor || master < slave * factor) 5786 return 0; 5787 return 1; 5788 } 5789 5790 /* 5791 * The purpose of wake_affine() is to quickly determine on which CPU we can run 5792 * soonest. For the purpose of speed we only consider the waking and previous 5793 * CPU. 5794 * 5795 * wake_affine_idle() - only considers 'now', it check if the waking CPU is 5796 * cache-affine and is (or will be) idle. 5797 * 5798 * wake_affine_weight() - considers the weight to reflect the average 5799 * scheduling latency of the CPUs. This seems to work 5800 * for the overloaded case. 5801 */ 5802 static int 5803 wake_affine_idle(int this_cpu, int prev_cpu, int sync) 5804 { 5805 /* 5806 * If this_cpu is idle, it implies the wakeup is from interrupt 5807 * context. Only allow the move if cache is shared. Otherwise an 5808 * interrupt intensive workload could force all tasks onto one 5809 * node depending on the IO topology or IRQ affinity settings. 5810 * 5811 * If the prev_cpu is idle and cache affine then avoid a migration. 5812 * There is no guarantee that the cache hot data from an interrupt 5813 * is more important than cache hot data on the prev_cpu and from 5814 * a cpufreq perspective, it's better to have higher utilisation 5815 * on one CPU. 5816 */ 5817 if (available_idle_cpu(this_cpu) && cpus_share_cache(this_cpu, prev_cpu)) 5818 return available_idle_cpu(prev_cpu) ? prev_cpu : this_cpu; 5819 5820 if (sync && cpu_rq(this_cpu)->nr_running == 1) 5821 return this_cpu; 5822 5823 if (available_idle_cpu(prev_cpu)) 5824 return prev_cpu; 5825 5826 return nr_cpumask_bits; 5827 } 5828 5829 static int 5830 wake_affine_weight(struct sched_domain *sd, struct task_struct *p, 5831 int this_cpu, int prev_cpu, int sync) 5832 { 5833 s64 this_eff_load, prev_eff_load; 5834 unsigned long task_load; 5835 5836 this_eff_load = cpu_load(cpu_rq(this_cpu)); 5837 5838 if (sync) { 5839 unsigned long current_load = task_h_load(current); 5840 5841 if (current_load > this_eff_load) 5842 return this_cpu; 5843 5844 this_eff_load -= current_load; 5845 } 5846 5847 task_load = task_h_load(p); 5848 5849 this_eff_load += task_load; 5850 if (sched_feat(WA_BIAS)) 5851 this_eff_load *= 100; 5852 this_eff_load *= capacity_of(prev_cpu); 5853 5854 prev_eff_load = cpu_load(cpu_rq(prev_cpu)); 5855 prev_eff_load -= task_load; 5856 if (sched_feat(WA_BIAS)) 5857 prev_eff_load *= 100 + (sd->imbalance_pct - 100) / 2; 5858 prev_eff_load *= capacity_of(this_cpu); 5859 5860 /* 5861 * If sync, adjust the weight of prev_eff_load such that if 5862 * prev_eff == this_eff that select_idle_sibling() will consider 5863 * stacking the wakee on top of the waker if no other CPU is 5864 * idle. 5865 */ 5866 if (sync) 5867 prev_eff_load += 1; 5868 5869 return this_eff_load < prev_eff_load ? this_cpu : nr_cpumask_bits; 5870 } 5871 5872 static int wake_affine(struct sched_domain *sd, struct task_struct *p, 5873 int this_cpu, int prev_cpu, int sync) 5874 { 5875 int target = nr_cpumask_bits; 5876 5877 if (sched_feat(WA_IDLE)) 5878 target = wake_affine_idle(this_cpu, prev_cpu, sync); 5879 5880 if (sched_feat(WA_WEIGHT) && target == nr_cpumask_bits) 5881 target = wake_affine_weight(sd, p, this_cpu, prev_cpu, sync); 5882 5883 schedstat_inc(p->se.statistics.nr_wakeups_affine_attempts); 5884 if (target == nr_cpumask_bits) 5885 return prev_cpu; 5886 5887 schedstat_inc(sd->ttwu_move_affine); 5888 schedstat_inc(p->se.statistics.nr_wakeups_affine); 5889 return target; 5890 } 5891 5892 static struct sched_group * 5893 find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu); 5894 5895 /* 5896 * find_idlest_group_cpu - find the idlest CPU among the CPUs in the group. 5897 */ 5898 static int 5899 find_idlest_group_cpu(struct sched_group *group, struct task_struct *p, int this_cpu) 5900 { 5901 unsigned long load, min_load = ULONG_MAX; 5902 unsigned int min_exit_latency = UINT_MAX; 5903 u64 latest_idle_timestamp = 0; 5904 int least_loaded_cpu = this_cpu; 5905 int shallowest_idle_cpu = -1; 5906 int i; 5907 5908 /* Check if we have any choice: */ 5909 if (group->group_weight == 1) 5910 return cpumask_first(sched_group_span(group)); 5911 5912 /* Traverse only the allowed CPUs */ 5913 for_each_cpu_and(i, sched_group_span(group), p->cpus_ptr) { 5914 if (sched_idle_cpu(i)) 5915 return i; 5916 5917 if (available_idle_cpu(i)) { 5918 struct rq *rq = cpu_rq(i); 5919 struct cpuidle_state *idle = idle_get_state(rq); 5920 if (idle && idle->exit_latency < min_exit_latency) { 5921 /* 5922 * We give priority to a CPU whose idle state 5923 * has the smallest exit latency irrespective 5924 * of any idle timestamp. 5925 */ 5926 min_exit_latency = idle->exit_latency; 5927 latest_idle_timestamp = rq->idle_stamp; 5928 shallowest_idle_cpu = i; 5929 } else if ((!idle || idle->exit_latency == min_exit_latency) && 5930 rq->idle_stamp > latest_idle_timestamp) { 5931 /* 5932 * If equal or no active idle state, then 5933 * the most recently idled CPU might have 5934 * a warmer cache. 5935 */ 5936 latest_idle_timestamp = rq->idle_stamp; 5937 shallowest_idle_cpu = i; 5938 } 5939 } else if (shallowest_idle_cpu == -1) { 5940 load = cpu_load(cpu_rq(i)); 5941 if (load < min_load) { 5942 min_load = load; 5943 least_loaded_cpu = i; 5944 } 5945 } 5946 } 5947 5948 return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu; 5949 } 5950 5951 static inline int find_idlest_cpu(struct sched_domain *sd, struct task_struct *p, 5952 int cpu, int prev_cpu, int sd_flag) 5953 { 5954 int new_cpu = cpu; 5955 5956 if (!cpumask_intersects(sched_domain_span(sd), p->cpus_ptr)) 5957 return prev_cpu; 5958 5959 /* 5960 * We need task's util for cpu_util_without, sync it up to 5961 * prev_cpu's last_update_time. 5962 */ 5963 if (!(sd_flag & SD_BALANCE_FORK)) 5964 sync_entity_load_avg(&p->se); 5965 5966 while (sd) { 5967 struct sched_group *group; 5968 struct sched_domain *tmp; 5969 int weight; 5970 5971 if (!(sd->flags & sd_flag)) { 5972 sd = sd->child; 5973 continue; 5974 } 5975 5976 group = find_idlest_group(sd, p, cpu); 5977 if (!group) { 5978 sd = sd->child; 5979 continue; 5980 } 5981 5982 new_cpu = find_idlest_group_cpu(group, p, cpu); 5983 if (new_cpu == cpu) { 5984 /* Now try balancing at a lower domain level of 'cpu': */ 5985 sd = sd->child; 5986 continue; 5987 } 5988 5989 /* Now try balancing at a lower domain level of 'new_cpu': */ 5990 cpu = new_cpu; 5991 weight = sd->span_weight; 5992 sd = NULL; 5993 for_each_domain(cpu, tmp) { 5994 if (weight <= tmp->span_weight) 5995 break; 5996 if (tmp->flags & sd_flag) 5997 sd = tmp; 5998 } 5999 } 6000 6001 return new_cpu; 6002 } 6003 6004 static inline int __select_idle_cpu(int cpu) 6005 { 6006 if (available_idle_cpu(cpu) || sched_idle_cpu(cpu)) 6007 return cpu; 6008 6009 return -1; 6010 } 6011 6012 #ifdef CONFIG_SCHED_SMT 6013 DEFINE_STATIC_KEY_FALSE(sched_smt_present); 6014 EXPORT_SYMBOL_GPL(sched_smt_present); 6015 6016 static inline void set_idle_cores(int cpu, int val) 6017 { 6018 struct sched_domain_shared *sds; 6019 6020 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu)); 6021 if (sds) 6022 WRITE_ONCE(sds->has_idle_cores, val); 6023 } 6024 6025 static inline bool test_idle_cores(int cpu, bool def) 6026 { 6027 struct sched_domain_shared *sds; 6028 6029 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu)); 6030 if (sds) 6031 return READ_ONCE(sds->has_idle_cores); 6032 6033 return def; 6034 } 6035 6036 /* 6037 * Scans the local SMT mask to see if the entire core is idle, and records this 6038 * information in sd_llc_shared->has_idle_cores. 6039 * 6040 * Since SMT siblings share all cache levels, inspecting this limited remote 6041 * state should be fairly cheap. 6042 */ 6043 void __update_idle_core(struct rq *rq) 6044 { 6045 int core = cpu_of(rq); 6046 int cpu; 6047 6048 rcu_read_lock(); 6049 if (test_idle_cores(core, true)) 6050 goto unlock; 6051 6052 for_each_cpu(cpu, cpu_smt_mask(core)) { 6053 if (cpu == core) 6054 continue; 6055 6056 if (!available_idle_cpu(cpu)) 6057 goto unlock; 6058 } 6059 6060 set_idle_cores(core, 1); 6061 unlock: 6062 rcu_read_unlock(); 6063 } 6064 6065 /* 6066 * Scan the entire LLC domain for idle cores; this dynamically switches off if 6067 * there are no idle cores left in the system; tracked through 6068 * sd_llc->shared->has_idle_cores and enabled through update_idle_core() above. 6069 */ 6070 static int select_idle_core(struct task_struct *p, int core, struct cpumask *cpus, int *idle_cpu) 6071 { 6072 bool idle = true; 6073 int cpu; 6074 6075 if (!static_branch_likely(&sched_smt_present)) 6076 return __select_idle_cpu(core); 6077 6078 for_each_cpu(cpu, cpu_smt_mask(core)) { 6079 if (!available_idle_cpu(cpu)) { 6080 idle = false; 6081 if (*idle_cpu == -1) { 6082 if (sched_idle_cpu(cpu) && cpumask_test_cpu(cpu, p->cpus_ptr)) { 6083 *idle_cpu = cpu; 6084 break; 6085 } 6086 continue; 6087 } 6088 break; 6089 } 6090 if (*idle_cpu == -1 && cpumask_test_cpu(cpu, p->cpus_ptr)) 6091 *idle_cpu = cpu; 6092 } 6093 6094 if (idle) 6095 return core; 6096 6097 cpumask_andnot(cpus, cpus, cpu_smt_mask(core)); 6098 return -1; 6099 } 6100 6101 #else /* CONFIG_SCHED_SMT */ 6102 6103 static inline void set_idle_cores(int cpu, int val) 6104 { 6105 } 6106 6107 static inline bool test_idle_cores(int cpu, bool def) 6108 { 6109 return def; 6110 } 6111 6112 static inline int select_idle_core(struct task_struct *p, int core, struct cpumask *cpus, int *idle_cpu) 6113 { 6114 return __select_idle_cpu(core); 6115 } 6116 6117 #endif /* CONFIG_SCHED_SMT */ 6118 6119 /* 6120 * Scan the LLC domain for idle CPUs; this is dynamically regulated by 6121 * comparing the average scan cost (tracked in sd->avg_scan_cost) against the 6122 * average idle time for this rq (as found in rq->avg_idle). 6123 */ 6124 static int select_idle_cpu(struct task_struct *p, struct sched_domain *sd, int target) 6125 { 6126 struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_idle_mask); 6127 int i, cpu, idle_cpu = -1, nr = INT_MAX; 6128 bool smt = test_idle_cores(target, false); 6129 int this = smp_processor_id(); 6130 struct sched_domain *this_sd; 6131 u64 time; 6132 6133 this_sd = rcu_dereference(*this_cpu_ptr(&sd_llc)); 6134 if (!this_sd) 6135 return -1; 6136 6137 cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr); 6138 6139 if (sched_feat(SIS_PROP) && !smt) { 6140 u64 avg_cost, avg_idle, span_avg; 6141 6142 /* 6143 * Due to large variance we need a large fuzz factor; 6144 * hackbench in particularly is sensitive here. 6145 */ 6146 avg_idle = this_rq()->avg_idle / 512; 6147 avg_cost = this_sd->avg_scan_cost + 1; 6148 6149 span_avg = sd->span_weight * avg_idle; 6150 if (span_avg > 4*avg_cost) 6151 nr = div_u64(span_avg, avg_cost); 6152 else 6153 nr = 4; 6154 6155 time = cpu_clock(this); 6156 } 6157 6158 for_each_cpu_wrap(cpu, cpus, target) { 6159 if (smt) { 6160 i = select_idle_core(p, cpu, cpus, &idle_cpu); 6161 if ((unsigned int)i < nr_cpumask_bits) 6162 return i; 6163 6164 } else { 6165 if (!--nr) 6166 return -1; 6167 idle_cpu = __select_idle_cpu(cpu); 6168 if ((unsigned int)idle_cpu < nr_cpumask_bits) 6169 break; 6170 } 6171 } 6172 6173 if (smt) 6174 set_idle_cores(this, false); 6175 6176 if (sched_feat(SIS_PROP) && !smt) { 6177 time = cpu_clock(this) - time; 6178 update_avg(&this_sd->avg_scan_cost, time); 6179 } 6180 6181 return idle_cpu; 6182 } 6183 6184 /* 6185 * Scan the asym_capacity domain for idle CPUs; pick the first idle one on which 6186 * the task fits. If no CPU is big enough, but there are idle ones, try to 6187 * maximize capacity. 6188 */ 6189 static int 6190 select_idle_capacity(struct task_struct *p, struct sched_domain *sd, int target) 6191 { 6192 unsigned long task_util, best_cap = 0; 6193 int cpu, best_cpu = -1; 6194 struct cpumask *cpus; 6195 6196 cpus = this_cpu_cpumask_var_ptr(select_idle_mask); 6197 cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr); 6198 6199 task_util = uclamp_task_util(p); 6200 6201 for_each_cpu_wrap(cpu, cpus, target) { 6202 unsigned long cpu_cap = capacity_of(cpu); 6203 6204 if (!available_idle_cpu(cpu) && !sched_idle_cpu(cpu)) 6205 continue; 6206 if (fits_capacity(task_util, cpu_cap)) 6207 return cpu; 6208 6209 if (cpu_cap > best_cap) { 6210 best_cap = cpu_cap; 6211 best_cpu = cpu; 6212 } 6213 } 6214 6215 return best_cpu; 6216 } 6217 6218 static inline bool asym_fits_capacity(int task_util, int cpu) 6219 { 6220 if (static_branch_unlikely(&sched_asym_cpucapacity)) 6221 return fits_capacity(task_util, capacity_of(cpu)); 6222 6223 return true; 6224 } 6225 6226 /* 6227 * Try and locate an idle core/thread in the LLC cache domain. 6228 */ 6229 static int select_idle_sibling(struct task_struct *p, int prev, int target) 6230 { 6231 struct sched_domain *sd; 6232 unsigned long task_util; 6233 int i, recent_used_cpu; 6234 6235 /* 6236 * On asymmetric system, update task utilization because we will check 6237 * that the task fits with cpu's capacity. 6238 */ 6239 if (static_branch_unlikely(&sched_asym_cpucapacity)) { 6240 sync_entity_load_avg(&p->se); 6241 task_util = uclamp_task_util(p); 6242 } 6243 6244 if ((available_idle_cpu(target) || sched_idle_cpu(target)) && 6245 asym_fits_capacity(task_util, target)) 6246 return target; 6247 6248 /* 6249 * If the previous CPU is cache affine and idle, don't be stupid: 6250 */ 6251 if (prev != target && cpus_share_cache(prev, target) && 6252 (available_idle_cpu(prev) || sched_idle_cpu(prev)) && 6253 asym_fits_capacity(task_util, prev)) 6254 return prev; 6255 6256 /* 6257 * Allow a per-cpu kthread to stack with the wakee if the 6258 * kworker thread and the tasks previous CPUs are the same. 6259 * The assumption is that the wakee queued work for the 6260 * per-cpu kthread that is now complete and the wakeup is 6261 * essentially a sync wakeup. An obvious example of this 6262 * pattern is IO completions. 6263 */ 6264 if (is_per_cpu_kthread(current) && 6265 prev == smp_processor_id() && 6266 this_rq()->nr_running <= 1) { 6267 return prev; 6268 } 6269 6270 /* Check a recently used CPU as a potential idle candidate: */ 6271 recent_used_cpu = p->recent_used_cpu; 6272 if (recent_used_cpu != prev && 6273 recent_used_cpu != target && 6274 cpus_share_cache(recent_used_cpu, target) && 6275 (available_idle_cpu(recent_used_cpu) || sched_idle_cpu(recent_used_cpu)) && 6276 cpumask_test_cpu(p->recent_used_cpu, p->cpus_ptr) && 6277 asym_fits_capacity(task_util, recent_used_cpu)) { 6278 /* 6279 * Replace recent_used_cpu with prev as it is a potential 6280 * candidate for the next wake: 6281 */ 6282 p->recent_used_cpu = prev; 6283 return recent_used_cpu; 6284 } 6285 6286 /* 6287 * For asymmetric CPU capacity systems, our domain of interest is 6288 * sd_asym_cpucapacity rather than sd_llc. 6289 */ 6290 if (static_branch_unlikely(&sched_asym_cpucapacity)) { 6291 sd = rcu_dereference(per_cpu(sd_asym_cpucapacity, target)); 6292 /* 6293 * On an asymmetric CPU capacity system where an exclusive 6294 * cpuset defines a symmetric island (i.e. one unique 6295 * capacity_orig value through the cpuset), the key will be set 6296 * but the CPUs within that cpuset will not have a domain with 6297 * SD_ASYM_CPUCAPACITY. These should follow the usual symmetric 6298 * capacity path. 6299 */ 6300 if (sd) { 6301 i = select_idle_capacity(p, sd, target); 6302 return ((unsigned)i < nr_cpumask_bits) ? i : target; 6303 } 6304 } 6305 6306 sd = rcu_dereference(per_cpu(sd_llc, target)); 6307 if (!sd) 6308 return target; 6309 6310 i = select_idle_cpu(p, sd, target); 6311 if ((unsigned)i < nr_cpumask_bits) 6312 return i; 6313 6314 return target; 6315 } 6316 6317 /** 6318 * cpu_util - Estimates the amount of capacity of a CPU used by CFS tasks. 6319 * @cpu: the CPU to get the utilization of 6320 * 6321 * The unit of the return value must be the one of capacity so we can compare 6322 * the utilization with the capacity of the CPU that is available for CFS task 6323 * (ie cpu_capacity). 6324 * 6325 * cfs_rq.avg.util_avg is the sum of running time of runnable tasks plus the 6326 * recent utilization of currently non-runnable tasks on a CPU. It represents 6327 * the amount of utilization of a CPU in the range [0..capacity_orig] where 6328 * capacity_orig is the cpu_capacity available at the highest frequency 6329 * (arch_scale_freq_capacity()). 6330 * The utilization of a CPU converges towards a sum equal to or less than the 6331 * current capacity (capacity_curr <= capacity_orig) of the CPU because it is 6332 * the running time on this CPU scaled by capacity_curr. 6333 * 6334 * The estimated utilization of a CPU is defined to be the maximum between its 6335 * cfs_rq.avg.util_avg and the sum of the estimated utilization of the tasks 6336 * currently RUNNABLE on that CPU. 6337 * This allows to properly represent the expected utilization of a CPU which 6338 * has just got a big task running since a long sleep period. At the same time 6339 * however it preserves the benefits of the "blocked utilization" in 6340 * describing the potential for other tasks waking up on the same CPU. 6341 * 6342 * Nevertheless, cfs_rq.avg.util_avg can be higher than capacity_curr or even 6343 * higher than capacity_orig because of unfortunate rounding in 6344 * cfs.avg.util_avg or just after migrating tasks and new task wakeups until 6345 * the average stabilizes with the new running time. We need to check that the 6346 * utilization stays within the range of [0..capacity_orig] and cap it if 6347 * necessary. Without utilization capping, a group could be seen as overloaded 6348 * (CPU0 utilization at 121% + CPU1 utilization at 80%) whereas CPU1 has 20% of 6349 * available capacity. We allow utilization to overshoot capacity_curr (but not 6350 * capacity_orig) as it useful for predicting the capacity required after task 6351 * migrations (scheduler-driven DVFS). 6352 * 6353 * Return: the (estimated) utilization for the specified CPU 6354 */ 6355 static inline unsigned long cpu_util(int cpu) 6356 { 6357 struct cfs_rq *cfs_rq; 6358 unsigned int util; 6359 6360 cfs_rq = &cpu_rq(cpu)->cfs; 6361 util = READ_ONCE(cfs_rq->avg.util_avg); 6362 6363 if (sched_feat(UTIL_EST)) 6364 util = max(util, READ_ONCE(cfs_rq->avg.util_est.enqueued)); 6365 6366 return min_t(unsigned long, util, capacity_orig_of(cpu)); 6367 } 6368 6369 /* 6370 * cpu_util_without: compute cpu utilization without any contributions from *p 6371 * @cpu: the CPU which utilization is requested 6372 * @p: the task which utilization should be discounted 6373 * 6374 * The utilization of a CPU is defined by the utilization of tasks currently 6375 * enqueued on that CPU as well as tasks which are currently sleeping after an 6376 * execution on that CPU. 6377 * 6378 * This method returns the utilization of the specified CPU by discounting the 6379 * utilization of the specified task, whenever the task is currently 6380 * contributing to the CPU utilization. 6381 */ 6382 static unsigned long cpu_util_without(int cpu, struct task_struct *p) 6383 { 6384 struct cfs_rq *cfs_rq; 6385 unsigned int util; 6386 6387 /* Task has no contribution or is new */ 6388 if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time)) 6389 return cpu_util(cpu); 6390 6391 cfs_rq = &cpu_rq(cpu)->cfs; 6392 util = READ_ONCE(cfs_rq->avg.util_avg); 6393 6394 /* Discount task's util from CPU's util */ 6395 lsub_positive(&util, task_util(p)); 6396 6397 /* 6398 * Covered cases: 6399 * 6400 * a) if *p is the only task sleeping on this CPU, then: 6401 * cpu_util (== task_util) > util_est (== 0) 6402 * and thus we return: 6403 * cpu_util_without = (cpu_util - task_util) = 0 6404 * 6405 * b) if other tasks are SLEEPING on this CPU, which is now exiting 6406 * IDLE, then: 6407 * cpu_util >= task_util 6408 * cpu_util > util_est (== 0) 6409 * and thus we discount *p's blocked utilization to return: 6410 * cpu_util_without = (cpu_util - task_util) >= 0 6411 * 6412 * c) if other tasks are RUNNABLE on that CPU and 6413 * util_est > cpu_util 6414 * then we use util_est since it returns a more restrictive 6415 * estimation of the spare capacity on that CPU, by just 6416 * considering the expected utilization of tasks already 6417 * runnable on that CPU. 6418 * 6419 * Cases a) and b) are covered by the above code, while case c) is 6420 * covered by the following code when estimated utilization is 6421 * enabled. 6422 */ 6423 if (sched_feat(UTIL_EST)) { 6424 unsigned int estimated = 6425 READ_ONCE(cfs_rq->avg.util_est.enqueued); 6426 6427 /* 6428 * Despite the following checks we still have a small window 6429 * for a possible race, when an execl's select_task_rq_fair() 6430 * races with LB's detach_task(): 6431 * 6432 * detach_task() 6433 * p->on_rq = TASK_ON_RQ_MIGRATING; 6434 * ---------------------------------- A 6435 * deactivate_task() \ 6436 * dequeue_task() + RaceTime 6437 * util_est_dequeue() / 6438 * ---------------------------------- B 6439 * 6440 * The additional check on "current == p" it's required to 6441 * properly fix the execl regression and it helps in further 6442 * reducing the chances for the above race. 6443 */ 6444 if (unlikely(task_on_rq_queued(p) || current == p)) 6445 lsub_positive(&estimated, _task_util_est(p)); 6446 6447 util = max(util, estimated); 6448 } 6449 6450 /* 6451 * Utilization (estimated) can exceed the CPU capacity, thus let's 6452 * clamp to the maximum CPU capacity to ensure consistency with 6453 * the cpu_util call. 6454 */ 6455 return min_t(unsigned long, util, capacity_orig_of(cpu)); 6456 } 6457 6458 /* 6459 * Predicts what cpu_util(@cpu) would return if @p was migrated (and enqueued) 6460 * to @dst_cpu. 6461 */ 6462 static unsigned long cpu_util_next(int cpu, struct task_struct *p, int dst_cpu) 6463 { 6464 struct cfs_rq *cfs_rq = &cpu_rq(cpu)->cfs; 6465 unsigned long util_est, util = READ_ONCE(cfs_rq->avg.util_avg); 6466 6467 /* 6468 * If @p migrates from @cpu to another, remove its contribution. Or, 6469 * if @p migrates from another CPU to @cpu, add its contribution. In 6470 * the other cases, @cpu is not impacted by the migration, so the 6471 * util_avg should already be correct. 6472 */ 6473 if (task_cpu(p) == cpu && dst_cpu != cpu) 6474 sub_positive(&util, task_util(p)); 6475 else if (task_cpu(p) != cpu && dst_cpu == cpu) 6476 util += task_util(p); 6477 6478 if (sched_feat(UTIL_EST)) { 6479 util_est = READ_ONCE(cfs_rq->avg.util_est.enqueued); 6480 6481 /* 6482 * During wake-up, the task isn't enqueued yet and doesn't 6483 * appear in the cfs_rq->avg.util_est.enqueued of any rq, 6484 * so just add it (if needed) to "simulate" what will be 6485 * cpu_util() after the task has been enqueued. 6486 */ 6487 if (dst_cpu == cpu) 6488 util_est += _task_util_est(p); 6489 6490 util = max(util, util_est); 6491 } 6492 6493 return min(util, capacity_orig_of(cpu)); 6494 } 6495 6496 /* 6497 * compute_energy(): Estimates the energy that @pd would consume if @p was 6498 * migrated to @dst_cpu. compute_energy() predicts what will be the utilization 6499 * landscape of @pd's CPUs after the task migration, and uses the Energy Model 6500 * to compute what would be the energy if we decided to actually migrate that 6501 * task. 6502 */ 6503 static long 6504 compute_energy(struct task_struct *p, int dst_cpu, struct perf_domain *pd) 6505 { 6506 struct cpumask *pd_mask = perf_domain_span(pd); 6507 unsigned long cpu_cap = arch_scale_cpu_capacity(cpumask_first(pd_mask)); 6508 unsigned long max_util = 0, sum_util = 0; 6509 int cpu; 6510 6511 /* 6512 * The capacity state of CPUs of the current rd can be driven by CPUs 6513 * of another rd if they belong to the same pd. So, account for the 6514 * utilization of these CPUs too by masking pd with cpu_online_mask 6515 * instead of the rd span. 6516 * 6517 * If an entire pd is outside of the current rd, it will not appear in 6518 * its pd list and will not be accounted by compute_energy(). 6519 */ 6520 for_each_cpu_and(cpu, pd_mask, cpu_online_mask) { 6521 unsigned long cpu_util, util_cfs = cpu_util_next(cpu, p, dst_cpu); 6522 struct task_struct *tsk = cpu == dst_cpu ? p : NULL; 6523 6524 /* 6525 * Busy time computation: utilization clamping is not 6526 * required since the ratio (sum_util / cpu_capacity) 6527 * is already enough to scale the EM reported power 6528 * consumption at the (eventually clamped) cpu_capacity. 6529 */ 6530 sum_util += effective_cpu_util(cpu, util_cfs, cpu_cap, 6531 ENERGY_UTIL, NULL); 6532 6533 /* 6534 * Performance domain frequency: utilization clamping 6535 * must be considered since it affects the selection 6536 * of the performance domain frequency. 6537 * NOTE: in case RT tasks are running, by default the 6538 * FREQUENCY_UTIL's utilization can be max OPP. 6539 */ 6540 cpu_util = effective_cpu_util(cpu, util_cfs, cpu_cap, 6541 FREQUENCY_UTIL, tsk); 6542 max_util = max(max_util, cpu_util); 6543 } 6544 6545 return em_cpu_energy(pd->em_pd, max_util, sum_util); 6546 } 6547 6548 /* 6549 * find_energy_efficient_cpu(): Find most energy-efficient target CPU for the 6550 * waking task. find_energy_efficient_cpu() looks for the CPU with maximum 6551 * spare capacity in each performance domain and uses it as a potential 6552 * candidate to execute the task. Then, it uses the Energy Model to figure 6553 * out which of the CPU candidates is the most energy-efficient. 6554 * 6555 * The rationale for this heuristic is as follows. In a performance domain, 6556 * all the most energy efficient CPU candidates (according to the Energy 6557 * Model) are those for which we'll request a low frequency. When there are 6558 * several CPUs for which the frequency request will be the same, we don't 6559 * have enough data to break the tie between them, because the Energy Model 6560 * only includes active power costs. With this model, if we assume that 6561 * frequency requests follow utilization (e.g. using schedutil), the CPU with 6562 * the maximum spare capacity in a performance domain is guaranteed to be among 6563 * the best candidates of the performance domain. 6564 * 6565 * In practice, it could be preferable from an energy standpoint to pack 6566 * small tasks on a CPU in order to let other CPUs go in deeper idle states, 6567 * but that could also hurt our chances to go cluster idle, and we have no 6568 * ways to tell with the current Energy Model if this is actually a good 6569 * idea or not. So, find_energy_efficient_cpu() basically favors 6570 * cluster-packing, and spreading inside a cluster. That should at least be 6571 * a good thing for latency, and this is consistent with the idea that most 6572 * of the energy savings of EAS come from the asymmetry of the system, and 6573 * not so much from breaking the tie between identical CPUs. That's also the 6574 * reason why EAS is enabled in the topology code only for systems where 6575 * SD_ASYM_CPUCAPACITY is set. 6576 * 6577 * NOTE: Forkees are not accepted in the energy-aware wake-up path because 6578 * they don't have any useful utilization data yet and it's not possible to 6579 * forecast their impact on energy consumption. Consequently, they will be 6580 * placed by find_idlest_cpu() on the least loaded CPU, which might turn out 6581 * to be energy-inefficient in some use-cases. The alternative would be to 6582 * bias new tasks towards specific types of CPUs first, or to try to infer 6583 * their util_avg from the parent task, but those heuristics could hurt 6584 * other use-cases too. So, until someone finds a better way to solve this, 6585 * let's keep things simple by re-using the existing slow path. 6586 */ 6587 static int find_energy_efficient_cpu(struct task_struct *p, int prev_cpu) 6588 { 6589 unsigned long prev_delta = ULONG_MAX, best_delta = ULONG_MAX; 6590 struct root_domain *rd = cpu_rq(smp_processor_id())->rd; 6591 unsigned long cpu_cap, util, base_energy = 0; 6592 int cpu, best_energy_cpu = prev_cpu; 6593 struct sched_domain *sd; 6594 struct perf_domain *pd; 6595 6596 rcu_read_lock(); 6597 pd = rcu_dereference(rd->pd); 6598 if (!pd || READ_ONCE(rd->overutilized)) 6599 goto fail; 6600 6601 /* 6602 * Energy-aware wake-up happens on the lowest sched_domain starting 6603 * from sd_asym_cpucapacity spanning over this_cpu and prev_cpu. 6604 */ 6605 sd = rcu_dereference(*this_cpu_ptr(&sd_asym_cpucapacity)); 6606 while (sd && !cpumask_test_cpu(prev_cpu, sched_domain_span(sd))) 6607 sd = sd->parent; 6608 if (!sd) 6609 goto fail; 6610 6611 sync_entity_load_avg(&p->se); 6612 if (!task_util_est(p)) 6613 goto unlock; 6614 6615 for (; pd; pd = pd->next) { 6616 unsigned long cur_delta, spare_cap, max_spare_cap = 0; 6617 unsigned long base_energy_pd; 6618 int max_spare_cap_cpu = -1; 6619 6620 /* Compute the 'base' energy of the pd, without @p */ 6621 base_energy_pd = compute_energy(p, -1, pd); 6622 base_energy += base_energy_pd; 6623 6624 for_each_cpu_and(cpu, perf_domain_span(pd), sched_domain_span(sd)) { 6625 if (!cpumask_test_cpu(cpu, p->cpus_ptr)) 6626 continue; 6627 6628 util = cpu_util_next(cpu, p, cpu); 6629 cpu_cap = capacity_of(cpu); 6630 spare_cap = cpu_cap; 6631 lsub_positive(&spare_cap, util); 6632 6633 /* 6634 * Skip CPUs that cannot satisfy the capacity request. 6635 * IOW, placing the task there would make the CPU 6636 * overutilized. Take uclamp into account to see how 6637 * much capacity we can get out of the CPU; this is 6638 * aligned with sched_cpu_util(). 6639 */ 6640 util = uclamp_rq_util_with(cpu_rq(cpu), util, p); 6641 if (!fits_capacity(util, cpu_cap)) 6642 continue; 6643 6644 /* Always use prev_cpu as a candidate. */ 6645 if (cpu == prev_cpu) { 6646 prev_delta = compute_energy(p, prev_cpu, pd); 6647 prev_delta -= base_energy_pd; 6648 best_delta = min(best_delta, prev_delta); 6649 } 6650 6651 /* 6652 * Find the CPU with the maximum spare capacity in 6653 * the performance domain 6654 */ 6655 if (spare_cap > max_spare_cap) { 6656 max_spare_cap = spare_cap; 6657 max_spare_cap_cpu = cpu; 6658 } 6659 } 6660 6661 /* Evaluate the energy impact of using this CPU. */ 6662 if (max_spare_cap_cpu >= 0 && max_spare_cap_cpu != prev_cpu) { 6663 cur_delta = compute_energy(p, max_spare_cap_cpu, pd); 6664 cur_delta -= base_energy_pd; 6665 if (cur_delta < best_delta) { 6666 best_delta = cur_delta; 6667 best_energy_cpu = max_spare_cap_cpu; 6668 } 6669 } 6670 } 6671 unlock: 6672 rcu_read_unlock(); 6673 6674 /* 6675 * Pick the best CPU if prev_cpu cannot be used, or if it saves at 6676 * least 6% of the energy used by prev_cpu. 6677 */ 6678 if (prev_delta == ULONG_MAX) 6679 return best_energy_cpu; 6680 6681 if ((prev_delta - best_delta) > ((prev_delta + base_energy) >> 4)) 6682 return best_energy_cpu; 6683 6684 return prev_cpu; 6685 6686 fail: 6687 rcu_read_unlock(); 6688 6689 return -1; 6690 } 6691 6692 /* 6693 * select_task_rq_fair: Select target runqueue for the waking task in domains 6694 * that have the relevant SD flag set. In practice, this is SD_BALANCE_WAKE, 6695 * SD_BALANCE_FORK, or SD_BALANCE_EXEC. 6696 * 6697 * Balances load by selecting the idlest CPU in the idlest group, or under 6698 * certain conditions an idle sibling CPU if the domain has SD_WAKE_AFFINE set. 6699 * 6700 * Returns the target CPU number. 6701 * 6702 * preempt must be disabled. 6703 */ 6704 static int 6705 select_task_rq_fair(struct task_struct *p, int prev_cpu, int wake_flags) 6706 { 6707 int sync = (wake_flags & WF_SYNC) && !(current->flags & PF_EXITING); 6708 struct sched_domain *tmp, *sd = NULL; 6709 int cpu = smp_processor_id(); 6710 int new_cpu = prev_cpu; 6711 int want_affine = 0; 6712 /* SD_flags and WF_flags share the first nibble */ 6713 int sd_flag = wake_flags & 0xF; 6714 6715 if (wake_flags & WF_TTWU) { 6716 record_wakee(p); 6717 6718 if (sched_energy_enabled()) { 6719 new_cpu = find_energy_efficient_cpu(p, prev_cpu); 6720 if (new_cpu >= 0) 6721 return new_cpu; 6722 new_cpu = prev_cpu; 6723 } 6724 6725 want_affine = !wake_wide(p) && cpumask_test_cpu(cpu, p->cpus_ptr); 6726 } 6727 6728 rcu_read_lock(); 6729 for_each_domain(cpu, tmp) { 6730 /* 6731 * If both 'cpu' and 'prev_cpu' are part of this domain, 6732 * cpu is a valid SD_WAKE_AFFINE target. 6733 */ 6734 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) && 6735 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) { 6736 if (cpu != prev_cpu) 6737 new_cpu = wake_affine(tmp, p, cpu, prev_cpu, sync); 6738 6739 sd = NULL; /* Prefer wake_affine over balance flags */ 6740 break; 6741 } 6742 6743 if (tmp->flags & sd_flag) 6744 sd = tmp; 6745 else if (!want_affine) 6746 break; 6747 } 6748 6749 if (unlikely(sd)) { 6750 /* Slow path */ 6751 new_cpu = find_idlest_cpu(sd, p, cpu, prev_cpu, sd_flag); 6752 } else if (wake_flags & WF_TTWU) { /* XXX always ? */ 6753 /* Fast path */ 6754 new_cpu = select_idle_sibling(p, prev_cpu, new_cpu); 6755 6756 if (want_affine) 6757 current->recent_used_cpu = cpu; 6758 } 6759 rcu_read_unlock(); 6760 6761 return new_cpu; 6762 } 6763 6764 static void detach_entity_cfs_rq(struct sched_entity *se); 6765 6766 /* 6767 * Called immediately before a task is migrated to a new CPU; task_cpu(p) and 6768 * cfs_rq_of(p) references at time of call are still valid and identify the 6769 * previous CPU. The caller guarantees p->pi_lock or task_rq(p)->lock is held. 6770 */ 6771 static void migrate_task_rq_fair(struct task_struct *p, int new_cpu) 6772 { 6773 /* 6774 * As blocked tasks retain absolute vruntime the migration needs to 6775 * deal with this by subtracting the old and adding the new 6776 * min_vruntime -- the latter is done by enqueue_entity() when placing 6777 * the task on the new runqueue. 6778 */ 6779 if (p->state == TASK_WAKING) { 6780 struct sched_entity *se = &p->se; 6781 struct cfs_rq *cfs_rq = cfs_rq_of(se); 6782 u64 min_vruntime; 6783 6784 #ifndef CONFIG_64BIT 6785 u64 min_vruntime_copy; 6786 6787 do { 6788 min_vruntime_copy = cfs_rq->min_vruntime_copy; 6789 smp_rmb(); 6790 min_vruntime = cfs_rq->min_vruntime; 6791 } while (min_vruntime != min_vruntime_copy); 6792 #else 6793 min_vruntime = cfs_rq->min_vruntime; 6794 #endif 6795 6796 se->vruntime -= min_vruntime; 6797 } 6798 6799 if (p->on_rq == TASK_ON_RQ_MIGRATING) { 6800 /* 6801 * In case of TASK_ON_RQ_MIGRATING we in fact hold the 'old' 6802 * rq->lock and can modify state directly. 6803 */ 6804 lockdep_assert_held(&task_rq(p)->lock); 6805 detach_entity_cfs_rq(&p->se); 6806 6807 } else { 6808 /* 6809 * We are supposed to update the task to "current" time, then 6810 * its up to date and ready to go to new CPU/cfs_rq. But we 6811 * have difficulty in getting what current time is, so simply 6812 * throw away the out-of-date time. This will result in the 6813 * wakee task is less decayed, but giving the wakee more load 6814 * sounds not bad. 6815 */ 6816 remove_entity_load_avg(&p->se); 6817 } 6818 6819 /* Tell new CPU we are migrated */ 6820 p->se.avg.last_update_time = 0; 6821 6822 /* We have migrated, no longer consider this task hot */ 6823 p->se.exec_start = 0; 6824 6825 update_scan_period(p, new_cpu); 6826 } 6827 6828 static void task_dead_fair(struct task_struct *p) 6829 { 6830 remove_entity_load_avg(&p->se); 6831 } 6832 6833 static int 6834 balance_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf) 6835 { 6836 if (rq->nr_running) 6837 return 1; 6838 6839 return newidle_balance(rq, rf) != 0; 6840 } 6841 #endif /* CONFIG_SMP */ 6842 6843 static unsigned long wakeup_gran(struct sched_entity *se) 6844 { 6845 unsigned long gran = sysctl_sched_wakeup_granularity; 6846 6847 /* 6848 * Since its curr running now, convert the gran from real-time 6849 * to virtual-time in his units. 6850 * 6851 * By using 'se' instead of 'curr' we penalize light tasks, so 6852 * they get preempted easier. That is, if 'se' < 'curr' then 6853 * the resulting gran will be larger, therefore penalizing the 6854 * lighter, if otoh 'se' > 'curr' then the resulting gran will 6855 * be smaller, again penalizing the lighter task. 6856 * 6857 * This is especially important for buddies when the leftmost 6858 * task is higher priority than the buddy. 6859 */ 6860 return calc_delta_fair(gran, se); 6861 } 6862 6863 /* 6864 * Should 'se' preempt 'curr'. 6865 * 6866 * |s1 6867 * |s2 6868 * |s3 6869 * g 6870 * |<--->|c 6871 * 6872 * w(c, s1) = -1 6873 * w(c, s2) = 0 6874 * w(c, s3) = 1 6875 * 6876 */ 6877 static int 6878 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se) 6879 { 6880 s64 gran, vdiff = curr->vruntime - se->vruntime; 6881 6882 if (vdiff <= 0) 6883 return -1; 6884 6885 gran = wakeup_gran(se); 6886 if (vdiff > gran) 6887 return 1; 6888 6889 return 0; 6890 } 6891 6892 static void set_last_buddy(struct sched_entity *se) 6893 { 6894 if (entity_is_task(se) && unlikely(task_has_idle_policy(task_of(se)))) 6895 return; 6896 6897 for_each_sched_entity(se) { 6898 if (SCHED_WARN_ON(!se->on_rq)) 6899 return; 6900 cfs_rq_of(se)->last = se; 6901 } 6902 } 6903 6904 static void set_next_buddy(struct sched_entity *se) 6905 { 6906 if (entity_is_task(se) && unlikely(task_has_idle_policy(task_of(se)))) 6907 return; 6908 6909 for_each_sched_entity(se) { 6910 if (SCHED_WARN_ON(!se->on_rq)) 6911 return; 6912 cfs_rq_of(se)->next = se; 6913 } 6914 } 6915 6916 static void set_skip_buddy(struct sched_entity *se) 6917 { 6918 for_each_sched_entity(se) 6919 cfs_rq_of(se)->skip = se; 6920 } 6921 6922 /* 6923 * Preempt the current task with a newly woken task if needed: 6924 */ 6925 static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags) 6926 { 6927 struct task_struct *curr = rq->curr; 6928 struct sched_entity *se = &curr->se, *pse = &p->se; 6929 struct cfs_rq *cfs_rq = task_cfs_rq(curr); 6930 int scale = cfs_rq->nr_running >= sched_nr_latency; 6931 int next_buddy_marked = 0; 6932 6933 if (unlikely(se == pse)) 6934 return; 6935 6936 /* 6937 * This is possible from callers such as attach_tasks(), in which we 6938 * unconditionally check_prempt_curr() after an enqueue (which may have 6939 * lead to a throttle). This both saves work and prevents false 6940 * next-buddy nomination below. 6941 */ 6942 if (unlikely(throttled_hierarchy(cfs_rq_of(pse)))) 6943 return; 6944 6945 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) { 6946 set_next_buddy(pse); 6947 next_buddy_marked = 1; 6948 } 6949 6950 /* 6951 * We can come here with TIF_NEED_RESCHED already set from new task 6952 * wake up path. 6953 * 6954 * Note: this also catches the edge-case of curr being in a throttled 6955 * group (e.g. via set_curr_task), since update_curr() (in the 6956 * enqueue of curr) will have resulted in resched being set. This 6957 * prevents us from potentially nominating it as a false LAST_BUDDY 6958 * below. 6959 */ 6960 if (test_tsk_need_resched(curr)) 6961 return; 6962 6963 /* Idle tasks are by definition preempted by non-idle tasks. */ 6964 if (unlikely(task_has_idle_policy(curr)) && 6965 likely(!task_has_idle_policy(p))) 6966 goto preempt; 6967 6968 /* 6969 * Batch and idle tasks do not preempt non-idle tasks (their preemption 6970 * is driven by the tick): 6971 */ 6972 if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION)) 6973 return; 6974 6975 find_matching_se(&se, &pse); 6976 update_curr(cfs_rq_of(se)); 6977 BUG_ON(!pse); 6978 if (wakeup_preempt_entity(se, pse) == 1) { 6979 /* 6980 * Bias pick_next to pick the sched entity that is 6981 * triggering this preemption. 6982 */ 6983 if (!next_buddy_marked) 6984 set_next_buddy(pse); 6985 goto preempt; 6986 } 6987 6988 return; 6989 6990 preempt: 6991 resched_curr(rq); 6992 /* 6993 * Only set the backward buddy when the current task is still 6994 * on the rq. This can happen when a wakeup gets interleaved 6995 * with schedule on the ->pre_schedule() or idle_balance() 6996 * point, either of which can * drop the rq lock. 6997 * 6998 * Also, during early boot the idle thread is in the fair class, 6999 * for obvious reasons its a bad idea to schedule back to it. 7000 */ 7001 if (unlikely(!se->on_rq || curr == rq->idle)) 7002 return; 7003 7004 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se)) 7005 set_last_buddy(se); 7006 } 7007 7008 struct task_struct * 7009 pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf) 7010 { 7011 struct cfs_rq *cfs_rq = &rq->cfs; 7012 struct sched_entity *se; 7013 struct task_struct *p; 7014 int new_tasks; 7015 7016 again: 7017 if (!sched_fair_runnable(rq)) 7018 goto idle; 7019 7020 #ifdef CONFIG_FAIR_GROUP_SCHED 7021 if (!prev || prev->sched_class != &fair_sched_class) 7022 goto simple; 7023 7024 /* 7025 * Because of the set_next_buddy() in dequeue_task_fair() it is rather 7026 * likely that a next task is from the same cgroup as the current. 7027 * 7028 * Therefore attempt to avoid putting and setting the entire cgroup 7029 * hierarchy, only change the part that actually changes. 7030 */ 7031 7032 do { 7033 struct sched_entity *curr = cfs_rq->curr; 7034 7035 /* 7036 * Since we got here without doing put_prev_entity() we also 7037 * have to consider cfs_rq->curr. If it is still a runnable 7038 * entity, update_curr() will update its vruntime, otherwise 7039 * forget we've ever seen it. 7040 */ 7041 if (curr) { 7042 if (curr->on_rq) 7043 update_curr(cfs_rq); 7044 else 7045 curr = NULL; 7046 7047 /* 7048 * This call to check_cfs_rq_runtime() will do the 7049 * throttle and dequeue its entity in the parent(s). 7050 * Therefore the nr_running test will indeed 7051 * be correct. 7052 */ 7053 if (unlikely(check_cfs_rq_runtime(cfs_rq))) { 7054 cfs_rq = &rq->cfs; 7055 7056 if (!cfs_rq->nr_running) 7057 goto idle; 7058 7059 goto simple; 7060 } 7061 } 7062 7063 se = pick_next_entity(cfs_rq, curr); 7064 cfs_rq = group_cfs_rq(se); 7065 } while (cfs_rq); 7066 7067 p = task_of(se); 7068 7069 /* 7070 * Since we haven't yet done put_prev_entity and if the selected task 7071 * is a different task than we started out with, try and touch the 7072 * least amount of cfs_rqs. 7073 */ 7074 if (prev != p) { 7075 struct sched_entity *pse = &prev->se; 7076 7077 while (!(cfs_rq = is_same_group(se, pse))) { 7078 int se_depth = se->depth; 7079 int pse_depth = pse->depth; 7080 7081 if (se_depth <= pse_depth) { 7082 put_prev_entity(cfs_rq_of(pse), pse); 7083 pse = parent_entity(pse); 7084 } 7085 if (se_depth >= pse_depth) { 7086 set_next_entity(cfs_rq_of(se), se); 7087 se = parent_entity(se); 7088 } 7089 } 7090 7091 put_prev_entity(cfs_rq, pse); 7092 set_next_entity(cfs_rq, se); 7093 } 7094 7095 goto done; 7096 simple: 7097 #endif 7098 if (prev) 7099 put_prev_task(rq, prev); 7100 7101 do { 7102 se = pick_next_entity(cfs_rq, NULL); 7103 set_next_entity(cfs_rq, se); 7104 cfs_rq = group_cfs_rq(se); 7105 } while (cfs_rq); 7106 7107 p = task_of(se); 7108 7109 done: __maybe_unused; 7110 #ifdef CONFIG_SMP 7111 /* 7112 * Move the next running task to the front of 7113 * the list, so our cfs_tasks list becomes MRU 7114 * one. 7115 */ 7116 list_move(&p->se.group_node, &rq->cfs_tasks); 7117 #endif 7118 7119 if (hrtick_enabled_fair(rq)) 7120 hrtick_start_fair(rq, p); 7121 7122 update_misfit_status(p, rq); 7123 7124 return p; 7125 7126 idle: 7127 if (!rf) 7128 return NULL; 7129 7130 new_tasks = newidle_balance(rq, rf); 7131 7132 /* 7133 * Because newidle_balance() releases (and re-acquires) rq->lock, it is 7134 * possible for any higher priority task to appear. In that case we 7135 * must re-start the pick_next_entity() loop. 7136 */ 7137 if (new_tasks < 0) 7138 return RETRY_TASK; 7139 7140 if (new_tasks > 0) 7141 goto again; 7142 7143 /* 7144 * rq is about to be idle, check if we need to update the 7145 * lost_idle_time of clock_pelt 7146 */ 7147 update_idle_rq_clock_pelt(rq); 7148 7149 return NULL; 7150 } 7151 7152 static struct task_struct *__pick_next_task_fair(struct rq *rq) 7153 { 7154 return pick_next_task_fair(rq, NULL, NULL); 7155 } 7156 7157 /* 7158 * Account for a descheduled task: 7159 */ 7160 static void put_prev_task_fair(struct rq *rq, struct task_struct *prev) 7161 { 7162 struct sched_entity *se = &prev->se; 7163 struct cfs_rq *cfs_rq; 7164 7165 for_each_sched_entity(se) { 7166 cfs_rq = cfs_rq_of(se); 7167 put_prev_entity(cfs_rq, se); 7168 } 7169 } 7170 7171 /* 7172 * sched_yield() is very simple 7173 * 7174 * The magic of dealing with the ->skip buddy is in pick_next_entity. 7175 */ 7176 static void yield_task_fair(struct rq *rq) 7177 { 7178 struct task_struct *curr = rq->curr; 7179 struct cfs_rq *cfs_rq = task_cfs_rq(curr); 7180 struct sched_entity *se = &curr->se; 7181 7182 /* 7183 * Are we the only task in the tree? 7184 */ 7185 if (unlikely(rq->nr_running == 1)) 7186 return; 7187 7188 clear_buddies(cfs_rq, se); 7189 7190 if (curr->policy != SCHED_BATCH) { 7191 update_rq_clock(rq); 7192 /* 7193 * Update run-time statistics of the 'current'. 7194 */ 7195 update_curr(cfs_rq); 7196 /* 7197 * Tell update_rq_clock() that we've just updated, 7198 * so we don't do microscopic update in schedule() 7199 * and double the fastpath cost. 7200 */ 7201 rq_clock_skip_update(rq); 7202 } 7203 7204 set_skip_buddy(se); 7205 } 7206 7207 static bool yield_to_task_fair(struct rq *rq, struct task_struct *p) 7208 { 7209 struct sched_entity *se = &p->se; 7210 7211 /* throttled hierarchies are not runnable */ 7212 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se))) 7213 return false; 7214 7215 /* Tell the scheduler that we'd really like pse to run next. */ 7216 set_next_buddy(se); 7217 7218 yield_task_fair(rq); 7219 7220 return true; 7221 } 7222 7223 #ifdef CONFIG_SMP 7224 /************************************************** 7225 * Fair scheduling class load-balancing methods. 7226 * 7227 * BASICS 7228 * 7229 * The purpose of load-balancing is to achieve the same basic fairness the 7230 * per-CPU scheduler provides, namely provide a proportional amount of compute 7231 * time to each task. This is expressed in the following equation: 7232 * 7233 * W_i,n/P_i == W_j,n/P_j for all i,j (1) 7234 * 7235 * Where W_i,n is the n-th weight average for CPU i. The instantaneous weight 7236 * W_i,0 is defined as: 7237 * 7238 * W_i,0 = \Sum_j w_i,j (2) 7239 * 7240 * Where w_i,j is the weight of the j-th runnable task on CPU i. This weight 7241 * is derived from the nice value as per sched_prio_to_weight[]. 7242 * 7243 * The weight average is an exponential decay average of the instantaneous 7244 * weight: 7245 * 7246 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3) 7247 * 7248 * C_i is the compute capacity of CPU i, typically it is the 7249 * fraction of 'recent' time available for SCHED_OTHER task execution. But it 7250 * can also include other factors [XXX]. 7251 * 7252 * To achieve this balance we define a measure of imbalance which follows 7253 * directly from (1): 7254 * 7255 * imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j } (4) 7256 * 7257 * We them move tasks around to minimize the imbalance. In the continuous 7258 * function space it is obvious this converges, in the discrete case we get 7259 * a few fun cases generally called infeasible weight scenarios. 7260 * 7261 * [XXX expand on: 7262 * - infeasible weights; 7263 * - local vs global optima in the discrete case. ] 7264 * 7265 * 7266 * SCHED DOMAINS 7267 * 7268 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2) 7269 * for all i,j solution, we create a tree of CPUs that follows the hardware 7270 * topology where each level pairs two lower groups (or better). This results 7271 * in O(log n) layers. Furthermore we reduce the number of CPUs going up the 7272 * tree to only the first of the previous level and we decrease the frequency 7273 * of load-balance at each level inv. proportional to the number of CPUs in 7274 * the groups. 7275 * 7276 * This yields: 7277 * 7278 * log_2 n 1 n 7279 * \Sum { --- * --- * 2^i } = O(n) (5) 7280 * i = 0 2^i 2^i 7281 * `- size of each group 7282 * | | `- number of CPUs doing load-balance 7283 * | `- freq 7284 * `- sum over all levels 7285 * 7286 * Coupled with a limit on how many tasks we can migrate every balance pass, 7287 * this makes (5) the runtime complexity of the balancer. 7288 * 7289 * An important property here is that each CPU is still (indirectly) connected 7290 * to every other CPU in at most O(log n) steps: 7291 * 7292 * The adjacency matrix of the resulting graph is given by: 7293 * 7294 * log_2 n 7295 * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6) 7296 * k = 0 7297 * 7298 * And you'll find that: 7299 * 7300 * A^(log_2 n)_i,j != 0 for all i,j (7) 7301 * 7302 * Showing there's indeed a path between every CPU in at most O(log n) steps. 7303 * The task movement gives a factor of O(m), giving a convergence complexity 7304 * of: 7305 * 7306 * O(nm log n), n := nr_cpus, m := nr_tasks (8) 7307 * 7308 * 7309 * WORK CONSERVING 7310 * 7311 * In order to avoid CPUs going idle while there's still work to do, new idle 7312 * balancing is more aggressive and has the newly idle CPU iterate up the domain 7313 * tree itself instead of relying on other CPUs to bring it work. 7314 * 7315 * This adds some complexity to both (5) and (8) but it reduces the total idle 7316 * time. 7317 * 7318 * [XXX more?] 7319 * 7320 * 7321 * CGROUPS 7322 * 7323 * Cgroups make a horror show out of (2), instead of a simple sum we get: 7324 * 7325 * s_k,i 7326 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9) 7327 * S_k 7328 * 7329 * Where 7330 * 7331 * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10) 7332 * 7333 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on CPU i. 7334 * 7335 * The big problem is S_k, its a global sum needed to compute a local (W_i) 7336 * property. 7337 * 7338 * [XXX write more on how we solve this.. _after_ merging pjt's patches that 7339 * rewrite all of this once again.] 7340 */ 7341 7342 static unsigned long __read_mostly max_load_balance_interval = HZ/10; 7343 7344 enum fbq_type { regular, remote, all }; 7345 7346 /* 7347 * 'group_type' describes the group of CPUs at the moment of load balancing. 7348 * 7349 * The enum is ordered by pulling priority, with the group with lowest priority 7350 * first so the group_type can simply be compared when selecting the busiest 7351 * group. See update_sd_pick_busiest(). 7352 */ 7353 enum group_type { 7354 /* The group has spare capacity that can be used to run more tasks. */ 7355 group_has_spare = 0, 7356 /* 7357 * The group is fully used and the tasks don't compete for more CPU 7358 * cycles. Nevertheless, some tasks might wait before running. 7359 */ 7360 group_fully_busy, 7361 /* 7362 * SD_ASYM_CPUCAPACITY only: One task doesn't fit with CPU's capacity 7363 * and must be migrated to a more powerful CPU. 7364 */ 7365 group_misfit_task, 7366 /* 7367 * SD_ASYM_PACKING only: One local CPU with higher capacity is available, 7368 * and the task should be migrated to it instead of running on the 7369 * current CPU. 7370 */ 7371 group_asym_packing, 7372 /* 7373 * The tasks' affinity constraints previously prevented the scheduler 7374 * from balancing the load across the system. 7375 */ 7376 group_imbalanced, 7377 /* 7378 * The CPU is overloaded and can't provide expected CPU cycles to all 7379 * tasks. 7380 */ 7381 group_overloaded 7382 }; 7383 7384 enum migration_type { 7385 migrate_load = 0, 7386 migrate_util, 7387 migrate_task, 7388 migrate_misfit 7389 }; 7390 7391 #define LBF_ALL_PINNED 0x01 7392 #define LBF_NEED_BREAK 0x02 7393 #define LBF_DST_PINNED 0x04 7394 #define LBF_SOME_PINNED 0x08 7395 #define LBF_NOHZ_STATS 0x10 7396 #define LBF_NOHZ_AGAIN 0x20 7397 7398 struct lb_env { 7399 struct sched_domain *sd; 7400 7401 struct rq *src_rq; 7402 int src_cpu; 7403 7404 int dst_cpu; 7405 struct rq *dst_rq; 7406 7407 struct cpumask *dst_grpmask; 7408 int new_dst_cpu; 7409 enum cpu_idle_type idle; 7410 long imbalance; 7411 /* The set of CPUs under consideration for load-balancing */ 7412 struct cpumask *cpus; 7413 7414 unsigned int flags; 7415 7416 unsigned int loop; 7417 unsigned int loop_break; 7418 unsigned int loop_max; 7419 7420 enum fbq_type fbq_type; 7421 enum migration_type migration_type; 7422 struct list_head tasks; 7423 }; 7424 7425 /* 7426 * Is this task likely cache-hot: 7427 */ 7428 static int task_hot(struct task_struct *p, struct lb_env *env) 7429 { 7430 s64 delta; 7431 7432 lockdep_assert_held(&env->src_rq->lock); 7433 7434 if (p->sched_class != &fair_sched_class) 7435 return 0; 7436 7437 if (unlikely(task_has_idle_policy(p))) 7438 return 0; 7439 7440 /* SMT siblings share cache */ 7441 if (env->sd->flags & SD_SHARE_CPUCAPACITY) 7442 return 0; 7443 7444 /* 7445 * Buddy candidates are cache hot: 7446 */ 7447 if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running && 7448 (&p->se == cfs_rq_of(&p->se)->next || 7449 &p->se == cfs_rq_of(&p->se)->last)) 7450 return 1; 7451 7452 if (sysctl_sched_migration_cost == -1) 7453 return 1; 7454 if (sysctl_sched_migration_cost == 0) 7455 return 0; 7456 7457 delta = rq_clock_task(env->src_rq) - p->se.exec_start; 7458 7459 return delta < (s64)sysctl_sched_migration_cost; 7460 } 7461 7462 #ifdef CONFIG_NUMA_BALANCING 7463 /* 7464 * Returns 1, if task migration degrades locality 7465 * Returns 0, if task migration improves locality i.e migration preferred. 7466 * Returns -1, if task migration is not affected by locality. 7467 */ 7468 static int migrate_degrades_locality(struct task_struct *p, struct lb_env *env) 7469 { 7470 struct numa_group *numa_group = rcu_dereference(p->numa_group); 7471 unsigned long src_weight, dst_weight; 7472 int src_nid, dst_nid, dist; 7473 7474 if (!static_branch_likely(&sched_numa_balancing)) 7475 return -1; 7476 7477 if (!p->numa_faults || !(env->sd->flags & SD_NUMA)) 7478 return -1; 7479 7480 src_nid = cpu_to_node(env->src_cpu); 7481 dst_nid = cpu_to_node(env->dst_cpu); 7482 7483 if (src_nid == dst_nid) 7484 return -1; 7485 7486 /* Migrating away from the preferred node is always bad. */ 7487 if (src_nid == p->numa_preferred_nid) { 7488 if (env->src_rq->nr_running > env->src_rq->nr_preferred_running) 7489 return 1; 7490 else 7491 return -1; 7492 } 7493 7494 /* Encourage migration to the preferred node. */ 7495 if (dst_nid == p->numa_preferred_nid) 7496 return 0; 7497 7498 /* Leaving a core idle is often worse than degrading locality. */ 7499 if (env->idle == CPU_IDLE) 7500 return -1; 7501 7502 dist = node_distance(src_nid, dst_nid); 7503 if (numa_group) { 7504 src_weight = group_weight(p, src_nid, dist); 7505 dst_weight = group_weight(p, dst_nid, dist); 7506 } else { 7507 src_weight = task_weight(p, src_nid, dist); 7508 dst_weight = task_weight(p, dst_nid, dist); 7509 } 7510 7511 return dst_weight < src_weight; 7512 } 7513 7514 #else 7515 static inline int migrate_degrades_locality(struct task_struct *p, 7516 struct lb_env *env) 7517 { 7518 return -1; 7519 } 7520 #endif 7521 7522 /* 7523 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu? 7524 */ 7525 static 7526 int can_migrate_task(struct task_struct *p, struct lb_env *env) 7527 { 7528 int tsk_cache_hot; 7529 7530 lockdep_assert_held(&env->src_rq->lock); 7531 7532 /* 7533 * We do not migrate tasks that are: 7534 * 1) throttled_lb_pair, or 7535 * 2) cannot be migrated to this CPU due to cpus_ptr, or 7536 * 3) running (obviously), or 7537 * 4) are cache-hot on their current CPU. 7538 */ 7539 if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu)) 7540 return 0; 7541 7542 if (!cpumask_test_cpu(env->dst_cpu, p->cpus_ptr)) { 7543 int cpu; 7544 7545 schedstat_inc(p->se.statistics.nr_failed_migrations_affine); 7546 7547 env->flags |= LBF_SOME_PINNED; 7548 7549 /* 7550 * Remember if this task can be migrated to any other CPU in 7551 * our sched_group. We may want to revisit it if we couldn't 7552 * meet load balance goals by pulling other tasks on src_cpu. 7553 * 7554 * Avoid computing new_dst_cpu for NEWLY_IDLE or if we have 7555 * already computed one in current iteration. 7556 */ 7557 if (env->idle == CPU_NEWLY_IDLE || (env->flags & LBF_DST_PINNED)) 7558 return 0; 7559 7560 /* Prevent to re-select dst_cpu via env's CPUs: */ 7561 for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) { 7562 if (cpumask_test_cpu(cpu, p->cpus_ptr)) { 7563 env->flags |= LBF_DST_PINNED; 7564 env->new_dst_cpu = cpu; 7565 break; 7566 } 7567 } 7568 7569 return 0; 7570 } 7571 7572 /* Record that we found atleast one task that could run on dst_cpu */ 7573 env->flags &= ~LBF_ALL_PINNED; 7574 7575 if (task_running(env->src_rq, p)) { 7576 schedstat_inc(p->se.statistics.nr_failed_migrations_running); 7577 return 0; 7578 } 7579 7580 /* 7581 * Aggressive migration if: 7582 * 1) destination numa is preferred 7583 * 2) task is cache cold, or 7584 * 3) too many balance attempts have failed. 7585 */ 7586 tsk_cache_hot = migrate_degrades_locality(p, env); 7587 if (tsk_cache_hot == -1) 7588 tsk_cache_hot = task_hot(p, env); 7589 7590 if (tsk_cache_hot <= 0 || 7591 env->sd->nr_balance_failed > env->sd->cache_nice_tries) { 7592 if (tsk_cache_hot == 1) { 7593 schedstat_inc(env->sd->lb_hot_gained[env->idle]); 7594 schedstat_inc(p->se.statistics.nr_forced_migrations); 7595 } 7596 return 1; 7597 } 7598 7599 schedstat_inc(p->se.statistics.nr_failed_migrations_hot); 7600 return 0; 7601 } 7602 7603 /* 7604 * detach_task() -- detach the task for the migration specified in env 7605 */ 7606 static void detach_task(struct task_struct *p, struct lb_env *env) 7607 { 7608 lockdep_assert_held(&env->src_rq->lock); 7609 7610 deactivate_task(env->src_rq, p, DEQUEUE_NOCLOCK); 7611 set_task_cpu(p, env->dst_cpu); 7612 } 7613 7614 /* 7615 * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as 7616 * part of active balancing operations within "domain". 7617 * 7618 * Returns a task if successful and NULL otherwise. 7619 */ 7620 static struct task_struct *detach_one_task(struct lb_env *env) 7621 { 7622 struct task_struct *p; 7623 7624 lockdep_assert_held(&env->src_rq->lock); 7625 7626 list_for_each_entry_reverse(p, 7627 &env->src_rq->cfs_tasks, se.group_node) { 7628 if (!can_migrate_task(p, env)) 7629 continue; 7630 7631 detach_task(p, env); 7632 7633 /* 7634 * Right now, this is only the second place where 7635 * lb_gained[env->idle] is updated (other is detach_tasks) 7636 * so we can safely collect stats here rather than 7637 * inside detach_tasks(). 7638 */ 7639 schedstat_inc(env->sd->lb_gained[env->idle]); 7640 return p; 7641 } 7642 return NULL; 7643 } 7644 7645 static const unsigned int sched_nr_migrate_break = 32; 7646 7647 /* 7648 * detach_tasks() -- tries to detach up to imbalance load/util/tasks from 7649 * busiest_rq, as part of a balancing operation within domain "sd". 7650 * 7651 * Returns number of detached tasks if successful and 0 otherwise. 7652 */ 7653 static int detach_tasks(struct lb_env *env) 7654 { 7655 struct list_head *tasks = &env->src_rq->cfs_tasks; 7656 unsigned long util, load; 7657 struct task_struct *p; 7658 int detached = 0; 7659 7660 lockdep_assert_held(&env->src_rq->lock); 7661 7662 if (env->imbalance <= 0) 7663 return 0; 7664 7665 while (!list_empty(tasks)) { 7666 /* 7667 * We don't want to steal all, otherwise we may be treated likewise, 7668 * which could at worst lead to a livelock crash. 7669 */ 7670 if (env->idle != CPU_NOT_IDLE && env->src_rq->nr_running <= 1) 7671 break; 7672 7673 p = list_last_entry(tasks, struct task_struct, se.group_node); 7674 7675 env->loop++; 7676 /* We've more or less seen every task there is, call it quits */ 7677 if (env->loop > env->loop_max) 7678 break; 7679 7680 /* take a breather every nr_migrate tasks */ 7681 if (env->loop > env->loop_break) { 7682 env->loop_break += sched_nr_migrate_break; 7683 env->flags |= LBF_NEED_BREAK; 7684 break; 7685 } 7686 7687 if (!can_migrate_task(p, env)) 7688 goto next; 7689 7690 switch (env->migration_type) { 7691 case migrate_load: 7692 /* 7693 * Depending of the number of CPUs and tasks and the 7694 * cgroup hierarchy, task_h_load() can return a null 7695 * value. Make sure that env->imbalance decreases 7696 * otherwise detach_tasks() will stop only after 7697 * detaching up to loop_max tasks. 7698 */ 7699 load = max_t(unsigned long, task_h_load(p), 1); 7700 7701 if (sched_feat(LB_MIN) && 7702 load < 16 && !env->sd->nr_balance_failed) 7703 goto next; 7704 7705 /* 7706 * Make sure that we don't migrate too much load. 7707 * Nevertheless, let relax the constraint if 7708 * scheduler fails to find a good waiting task to 7709 * migrate. 7710 */ 7711 7712 if ((load >> env->sd->nr_balance_failed) > env->imbalance) 7713 goto next; 7714 7715 env->imbalance -= load; 7716 break; 7717 7718 case migrate_util: 7719 util = task_util_est(p); 7720 7721 if (util > env->imbalance) 7722 goto next; 7723 7724 env->imbalance -= util; 7725 break; 7726 7727 case migrate_task: 7728 env->imbalance--; 7729 break; 7730 7731 case migrate_misfit: 7732 /* This is not a misfit task */ 7733 if (task_fits_capacity(p, capacity_of(env->src_cpu))) 7734 goto next; 7735 7736 env->imbalance = 0; 7737 break; 7738 } 7739 7740 detach_task(p, env); 7741 list_add(&p->se.group_node, &env->tasks); 7742 7743 detached++; 7744 7745 #ifdef CONFIG_PREEMPTION 7746 /* 7747 * NEWIDLE balancing is a source of latency, so preemptible 7748 * kernels will stop after the first task is detached to minimize 7749 * the critical section. 7750 */ 7751 if (env->idle == CPU_NEWLY_IDLE) 7752 break; 7753 #endif 7754 7755 /* 7756 * We only want to steal up to the prescribed amount of 7757 * load/util/tasks. 7758 */ 7759 if (env->imbalance <= 0) 7760 break; 7761 7762 continue; 7763 next: 7764 list_move(&p->se.group_node, tasks); 7765 } 7766 7767 /* 7768 * Right now, this is one of only two places we collect this stat 7769 * so we can safely collect detach_one_task() stats here rather 7770 * than inside detach_one_task(). 7771 */ 7772 schedstat_add(env->sd->lb_gained[env->idle], detached); 7773 7774 return detached; 7775 } 7776 7777 /* 7778 * attach_task() -- attach the task detached by detach_task() to its new rq. 7779 */ 7780 static void attach_task(struct rq *rq, struct task_struct *p) 7781 { 7782 lockdep_assert_held(&rq->lock); 7783 7784 BUG_ON(task_rq(p) != rq); 7785 activate_task(rq, p, ENQUEUE_NOCLOCK); 7786 check_preempt_curr(rq, p, 0); 7787 } 7788 7789 /* 7790 * attach_one_task() -- attaches the task returned from detach_one_task() to 7791 * its new rq. 7792 */ 7793 static void attach_one_task(struct rq *rq, struct task_struct *p) 7794 { 7795 struct rq_flags rf; 7796 7797 rq_lock(rq, &rf); 7798 update_rq_clock(rq); 7799 attach_task(rq, p); 7800 rq_unlock(rq, &rf); 7801 } 7802 7803 /* 7804 * attach_tasks() -- attaches all tasks detached by detach_tasks() to their 7805 * new rq. 7806 */ 7807 static void attach_tasks(struct lb_env *env) 7808 { 7809 struct list_head *tasks = &env->tasks; 7810 struct task_struct *p; 7811 struct rq_flags rf; 7812 7813 rq_lock(env->dst_rq, &rf); 7814 update_rq_clock(env->dst_rq); 7815 7816 while (!list_empty(tasks)) { 7817 p = list_first_entry(tasks, struct task_struct, se.group_node); 7818 list_del_init(&p->se.group_node); 7819 7820 attach_task(env->dst_rq, p); 7821 } 7822 7823 rq_unlock(env->dst_rq, &rf); 7824 } 7825 7826 #ifdef CONFIG_NO_HZ_COMMON 7827 static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq) 7828 { 7829 if (cfs_rq->avg.load_avg) 7830 return true; 7831 7832 if (cfs_rq->avg.util_avg) 7833 return true; 7834 7835 return false; 7836 } 7837 7838 static inline bool others_have_blocked(struct rq *rq) 7839 { 7840 if (READ_ONCE(rq->avg_rt.util_avg)) 7841 return true; 7842 7843 if (READ_ONCE(rq->avg_dl.util_avg)) 7844 return true; 7845 7846 if (thermal_load_avg(rq)) 7847 return true; 7848 7849 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ 7850 if (READ_ONCE(rq->avg_irq.util_avg)) 7851 return true; 7852 #endif 7853 7854 return false; 7855 } 7856 7857 static inline void update_blocked_load_status(struct rq *rq, bool has_blocked) 7858 { 7859 rq->last_blocked_load_update_tick = jiffies; 7860 7861 if (!has_blocked) 7862 rq->has_blocked_load = 0; 7863 } 7864 #else 7865 static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq) { return false; } 7866 static inline bool others_have_blocked(struct rq *rq) { return false; } 7867 static inline void update_blocked_load_status(struct rq *rq, bool has_blocked) {} 7868 #endif 7869 7870 static bool __update_blocked_others(struct rq *rq, bool *done) 7871 { 7872 const struct sched_class *curr_class; 7873 u64 now = rq_clock_pelt(rq); 7874 unsigned long thermal_pressure; 7875 bool decayed; 7876 7877 /* 7878 * update_load_avg() can call cpufreq_update_util(). Make sure that RT, 7879 * DL and IRQ signals have been updated before updating CFS. 7880 */ 7881 curr_class = rq->curr->sched_class; 7882 7883 thermal_pressure = arch_scale_thermal_pressure(cpu_of(rq)); 7884 7885 decayed = update_rt_rq_load_avg(now, rq, curr_class == &rt_sched_class) | 7886 update_dl_rq_load_avg(now, rq, curr_class == &dl_sched_class) | 7887 update_thermal_load_avg(rq_clock_thermal(rq), rq, thermal_pressure) | 7888 update_irq_load_avg(rq, 0); 7889 7890 if (others_have_blocked(rq)) 7891 *done = false; 7892 7893 return decayed; 7894 } 7895 7896 #ifdef CONFIG_FAIR_GROUP_SCHED 7897 7898 static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq) 7899 { 7900 if (cfs_rq->load.weight) 7901 return false; 7902 7903 if (cfs_rq->avg.load_sum) 7904 return false; 7905 7906 if (cfs_rq->avg.util_sum) 7907 return false; 7908 7909 if (cfs_rq->avg.runnable_sum) 7910 return false; 7911 7912 return true; 7913 } 7914 7915 static bool __update_blocked_fair(struct rq *rq, bool *done) 7916 { 7917 struct cfs_rq *cfs_rq, *pos; 7918 bool decayed = false; 7919 int cpu = cpu_of(rq); 7920 7921 /* 7922 * Iterates the task_group tree in a bottom up fashion, see 7923 * list_add_leaf_cfs_rq() for details. 7924 */ 7925 for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) { 7926 struct sched_entity *se; 7927 7928 if (update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq)) { 7929 update_tg_load_avg(cfs_rq); 7930 7931 if (cfs_rq == &rq->cfs) 7932 decayed = true; 7933 } 7934 7935 /* Propagate pending load changes to the parent, if any: */ 7936 se = cfs_rq->tg->se[cpu]; 7937 if (se && !skip_blocked_update(se)) 7938 update_load_avg(cfs_rq_of(se), se, 0); 7939 7940 /* 7941 * There can be a lot of idle CPU cgroups. Don't let fully 7942 * decayed cfs_rqs linger on the list. 7943 */ 7944 if (cfs_rq_is_decayed(cfs_rq)) 7945 list_del_leaf_cfs_rq(cfs_rq); 7946 7947 /* Don't need periodic decay once load/util_avg are null */ 7948 if (cfs_rq_has_blocked(cfs_rq)) 7949 *done = false; 7950 } 7951 7952 return decayed; 7953 } 7954 7955 /* 7956 * Compute the hierarchical load factor for cfs_rq and all its ascendants. 7957 * This needs to be done in a top-down fashion because the load of a child 7958 * group is a fraction of its parents load. 7959 */ 7960 static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq) 7961 { 7962 struct rq *rq = rq_of(cfs_rq); 7963 struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)]; 7964 unsigned long now = jiffies; 7965 unsigned long load; 7966 7967 if (cfs_rq->last_h_load_update == now) 7968 return; 7969 7970 WRITE_ONCE(cfs_rq->h_load_next, NULL); 7971 for_each_sched_entity(se) { 7972 cfs_rq = cfs_rq_of(se); 7973 WRITE_ONCE(cfs_rq->h_load_next, se); 7974 if (cfs_rq->last_h_load_update == now) 7975 break; 7976 } 7977 7978 if (!se) { 7979 cfs_rq->h_load = cfs_rq_load_avg(cfs_rq); 7980 cfs_rq->last_h_load_update = now; 7981 } 7982 7983 while ((se = READ_ONCE(cfs_rq->h_load_next)) != NULL) { 7984 load = cfs_rq->h_load; 7985 load = div64_ul(load * se->avg.load_avg, 7986 cfs_rq_load_avg(cfs_rq) + 1); 7987 cfs_rq = group_cfs_rq(se); 7988 cfs_rq->h_load = load; 7989 cfs_rq->last_h_load_update = now; 7990 } 7991 } 7992 7993 static unsigned long task_h_load(struct task_struct *p) 7994 { 7995 struct cfs_rq *cfs_rq = task_cfs_rq(p); 7996 7997 update_cfs_rq_h_load(cfs_rq); 7998 return div64_ul(p->se.avg.load_avg * cfs_rq->h_load, 7999 cfs_rq_load_avg(cfs_rq) + 1); 8000 } 8001 #else 8002 static bool __update_blocked_fair(struct rq *rq, bool *done) 8003 { 8004 struct cfs_rq *cfs_rq = &rq->cfs; 8005 bool decayed; 8006 8007 decayed = update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq); 8008 if (cfs_rq_has_blocked(cfs_rq)) 8009 *done = false; 8010 8011 return decayed; 8012 } 8013 8014 static unsigned long task_h_load(struct task_struct *p) 8015 { 8016 return p->se.avg.load_avg; 8017 } 8018 #endif 8019 8020 static void update_blocked_averages(int cpu) 8021 { 8022 bool decayed = false, done = true; 8023 struct rq *rq = cpu_rq(cpu); 8024 struct rq_flags rf; 8025 8026 rq_lock_irqsave(rq, &rf); 8027 update_rq_clock(rq); 8028 8029 decayed |= __update_blocked_others(rq, &done); 8030 decayed |= __update_blocked_fair(rq, &done); 8031 8032 update_blocked_load_status(rq, !done); 8033 if (decayed) 8034 cpufreq_update_util(rq, 0); 8035 rq_unlock_irqrestore(rq, &rf); 8036 } 8037 8038 /********** Helpers for find_busiest_group ************************/ 8039 8040 /* 8041 * sg_lb_stats - stats of a sched_group required for load_balancing 8042 */ 8043 struct sg_lb_stats { 8044 unsigned long avg_load; /*Avg load across the CPUs of the group */ 8045 unsigned long group_load; /* Total load over the CPUs of the group */ 8046 unsigned long group_capacity; 8047 unsigned long group_util; /* Total utilization over the CPUs of the group */ 8048 unsigned long group_runnable; /* Total runnable time over the CPUs of the group */ 8049 unsigned int sum_nr_running; /* Nr of tasks running in the group */ 8050 unsigned int sum_h_nr_running; /* Nr of CFS tasks running in the group */ 8051 unsigned int idle_cpus; 8052 unsigned int group_weight; 8053 enum group_type group_type; 8054 unsigned int group_asym_packing; /* Tasks should be moved to preferred CPU */ 8055 unsigned long group_misfit_task_load; /* A CPU has a task too big for its capacity */ 8056 #ifdef CONFIG_NUMA_BALANCING 8057 unsigned int nr_numa_running; 8058 unsigned int nr_preferred_running; 8059 #endif 8060 }; 8061 8062 /* 8063 * sd_lb_stats - Structure to store the statistics of a sched_domain 8064 * during load balancing. 8065 */ 8066 struct sd_lb_stats { 8067 struct sched_group *busiest; /* Busiest group in this sd */ 8068 struct sched_group *local; /* Local group in this sd */ 8069 unsigned long total_load; /* Total load of all groups in sd */ 8070 unsigned long total_capacity; /* Total capacity of all groups in sd */ 8071 unsigned long avg_load; /* Average load across all groups in sd */ 8072 unsigned int prefer_sibling; /* tasks should go to sibling first */ 8073 8074 struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */ 8075 struct sg_lb_stats local_stat; /* Statistics of the local group */ 8076 }; 8077 8078 static inline void init_sd_lb_stats(struct sd_lb_stats *sds) 8079 { 8080 /* 8081 * Skimp on the clearing to avoid duplicate work. We can avoid clearing 8082 * local_stat because update_sg_lb_stats() does a full clear/assignment. 8083 * We must however set busiest_stat::group_type and 8084 * busiest_stat::idle_cpus to the worst busiest group because 8085 * update_sd_pick_busiest() reads these before assignment. 8086 */ 8087 *sds = (struct sd_lb_stats){ 8088 .busiest = NULL, 8089 .local = NULL, 8090 .total_load = 0UL, 8091 .total_capacity = 0UL, 8092 .busiest_stat = { 8093 .idle_cpus = UINT_MAX, 8094 .group_type = group_has_spare, 8095 }, 8096 }; 8097 } 8098 8099 static unsigned long scale_rt_capacity(int cpu) 8100 { 8101 struct rq *rq = cpu_rq(cpu); 8102 unsigned long max = arch_scale_cpu_capacity(cpu); 8103 unsigned long used, free; 8104 unsigned long irq; 8105 8106 irq = cpu_util_irq(rq); 8107 8108 if (unlikely(irq >= max)) 8109 return 1; 8110 8111 /* 8112 * avg_rt.util_avg and avg_dl.util_avg track binary signals 8113 * (running and not running) with weights 0 and 1024 respectively. 8114 * avg_thermal.load_avg tracks thermal pressure and the weighted 8115 * average uses the actual delta max capacity(load). 8116 */ 8117 used = READ_ONCE(rq->avg_rt.util_avg); 8118 used += READ_ONCE(rq->avg_dl.util_avg); 8119 used += thermal_load_avg(rq); 8120 8121 if (unlikely(used >= max)) 8122 return 1; 8123 8124 free = max - used; 8125 8126 return scale_irq_capacity(free, irq, max); 8127 } 8128 8129 static void update_cpu_capacity(struct sched_domain *sd, int cpu) 8130 { 8131 unsigned long capacity = scale_rt_capacity(cpu); 8132 struct sched_group *sdg = sd->groups; 8133 8134 cpu_rq(cpu)->cpu_capacity_orig = arch_scale_cpu_capacity(cpu); 8135 8136 if (!capacity) 8137 capacity = 1; 8138 8139 cpu_rq(cpu)->cpu_capacity = capacity; 8140 trace_sched_cpu_capacity_tp(cpu_rq(cpu)); 8141 8142 sdg->sgc->capacity = capacity; 8143 sdg->sgc->min_capacity = capacity; 8144 sdg->sgc->max_capacity = capacity; 8145 } 8146 8147 void update_group_capacity(struct sched_domain *sd, int cpu) 8148 { 8149 struct sched_domain *child = sd->child; 8150 struct sched_group *group, *sdg = sd->groups; 8151 unsigned long capacity, min_capacity, max_capacity; 8152 unsigned long interval; 8153 8154 interval = msecs_to_jiffies(sd->balance_interval); 8155 interval = clamp(interval, 1UL, max_load_balance_interval); 8156 sdg->sgc->next_update = jiffies + interval; 8157 8158 if (!child) { 8159 update_cpu_capacity(sd, cpu); 8160 return; 8161 } 8162 8163 capacity = 0; 8164 min_capacity = ULONG_MAX; 8165 max_capacity = 0; 8166 8167 if (child->flags & SD_OVERLAP) { 8168 /* 8169 * SD_OVERLAP domains cannot assume that child groups 8170 * span the current group. 8171 */ 8172 8173 for_each_cpu(cpu, sched_group_span(sdg)) { 8174 unsigned long cpu_cap = capacity_of(cpu); 8175 8176 capacity += cpu_cap; 8177 min_capacity = min(cpu_cap, min_capacity); 8178 max_capacity = max(cpu_cap, max_capacity); 8179 } 8180 } else { 8181 /* 8182 * !SD_OVERLAP domains can assume that child groups 8183 * span the current group. 8184 */ 8185 8186 group = child->groups; 8187 do { 8188 struct sched_group_capacity *sgc = group->sgc; 8189 8190 capacity += sgc->capacity; 8191 min_capacity = min(sgc->min_capacity, min_capacity); 8192 max_capacity = max(sgc->max_capacity, max_capacity); 8193 group = group->next; 8194 } while (group != child->groups); 8195 } 8196 8197 sdg->sgc->capacity = capacity; 8198 sdg->sgc->min_capacity = min_capacity; 8199 sdg->sgc->max_capacity = max_capacity; 8200 } 8201 8202 /* 8203 * Check whether the capacity of the rq has been noticeably reduced by side 8204 * activity. The imbalance_pct is used for the threshold. 8205 * Return true is the capacity is reduced 8206 */ 8207 static inline int 8208 check_cpu_capacity(struct rq *rq, struct sched_domain *sd) 8209 { 8210 return ((rq->cpu_capacity * sd->imbalance_pct) < 8211 (rq->cpu_capacity_orig * 100)); 8212 } 8213 8214 /* 8215 * Check whether a rq has a misfit task and if it looks like we can actually 8216 * help that task: we can migrate the task to a CPU of higher capacity, or 8217 * the task's current CPU is heavily pressured. 8218 */ 8219 static inline int check_misfit_status(struct rq *rq, struct sched_domain *sd) 8220 { 8221 return rq->misfit_task_load && 8222 (rq->cpu_capacity_orig < rq->rd->max_cpu_capacity || 8223 check_cpu_capacity(rq, sd)); 8224 } 8225 8226 /* 8227 * Group imbalance indicates (and tries to solve) the problem where balancing 8228 * groups is inadequate due to ->cpus_ptr constraints. 8229 * 8230 * Imagine a situation of two groups of 4 CPUs each and 4 tasks each with a 8231 * cpumask covering 1 CPU of the first group and 3 CPUs of the second group. 8232 * Something like: 8233 * 8234 * { 0 1 2 3 } { 4 5 6 7 } 8235 * * * * * 8236 * 8237 * If we were to balance group-wise we'd place two tasks in the first group and 8238 * two tasks in the second group. Clearly this is undesired as it will overload 8239 * cpu 3 and leave one of the CPUs in the second group unused. 8240 * 8241 * The current solution to this issue is detecting the skew in the first group 8242 * by noticing the lower domain failed to reach balance and had difficulty 8243 * moving tasks due to affinity constraints. 8244 * 8245 * When this is so detected; this group becomes a candidate for busiest; see 8246 * update_sd_pick_busiest(). And calculate_imbalance() and 8247 * find_busiest_group() avoid some of the usual balance conditions to allow it 8248 * to create an effective group imbalance. 8249 * 8250 * This is a somewhat tricky proposition since the next run might not find the 8251 * group imbalance and decide the groups need to be balanced again. A most 8252 * subtle and fragile situation. 8253 */ 8254 8255 static inline int sg_imbalanced(struct sched_group *group) 8256 { 8257 return group->sgc->imbalance; 8258 } 8259 8260 /* 8261 * group_has_capacity returns true if the group has spare capacity that could 8262 * be used by some tasks. 8263 * We consider that a group has spare capacity if the * number of task is 8264 * smaller than the number of CPUs or if the utilization is lower than the 8265 * available capacity for CFS tasks. 8266 * For the latter, we use a threshold to stabilize the state, to take into 8267 * account the variance of the tasks' load and to return true if the available 8268 * capacity in meaningful for the load balancer. 8269 * As an example, an available capacity of 1% can appear but it doesn't make 8270 * any benefit for the load balance. 8271 */ 8272 static inline bool 8273 group_has_capacity(unsigned int imbalance_pct, struct sg_lb_stats *sgs) 8274 { 8275 if (sgs->sum_nr_running < sgs->group_weight) 8276 return true; 8277 8278 if ((sgs->group_capacity * imbalance_pct) < 8279 (sgs->group_runnable * 100)) 8280 return false; 8281 8282 if ((sgs->group_capacity * 100) > 8283 (sgs->group_util * imbalance_pct)) 8284 return true; 8285 8286 return false; 8287 } 8288 8289 /* 8290 * group_is_overloaded returns true if the group has more tasks than it can 8291 * handle. 8292 * group_is_overloaded is not equals to !group_has_capacity because a group 8293 * with the exact right number of tasks, has no more spare capacity but is not 8294 * overloaded so both group_has_capacity and group_is_overloaded return 8295 * false. 8296 */ 8297 static inline bool 8298 group_is_overloaded(unsigned int imbalance_pct, struct sg_lb_stats *sgs) 8299 { 8300 if (sgs->sum_nr_running <= sgs->group_weight) 8301 return false; 8302 8303 if ((sgs->group_capacity * 100) < 8304 (sgs->group_util * imbalance_pct)) 8305 return true; 8306 8307 if ((sgs->group_capacity * imbalance_pct) < 8308 (sgs->group_runnable * 100)) 8309 return true; 8310 8311 return false; 8312 } 8313 8314 /* 8315 * group_smaller_min_cpu_capacity: Returns true if sched_group sg has smaller 8316 * per-CPU capacity than sched_group ref. 8317 */ 8318 static inline bool 8319 group_smaller_min_cpu_capacity(struct sched_group *sg, struct sched_group *ref) 8320 { 8321 return fits_capacity(sg->sgc->min_capacity, ref->sgc->min_capacity); 8322 } 8323 8324 /* 8325 * group_smaller_max_cpu_capacity: Returns true if sched_group sg has smaller 8326 * per-CPU capacity_orig than sched_group ref. 8327 */ 8328 static inline bool 8329 group_smaller_max_cpu_capacity(struct sched_group *sg, struct sched_group *ref) 8330 { 8331 return fits_capacity(sg->sgc->max_capacity, ref->sgc->max_capacity); 8332 } 8333 8334 static inline enum 8335 group_type group_classify(unsigned int imbalance_pct, 8336 struct sched_group *group, 8337 struct sg_lb_stats *sgs) 8338 { 8339 if (group_is_overloaded(imbalance_pct, sgs)) 8340 return group_overloaded; 8341 8342 if (sg_imbalanced(group)) 8343 return group_imbalanced; 8344 8345 if (sgs->group_asym_packing) 8346 return group_asym_packing; 8347 8348 if (sgs->group_misfit_task_load) 8349 return group_misfit_task; 8350 8351 if (!group_has_capacity(imbalance_pct, sgs)) 8352 return group_fully_busy; 8353 8354 return group_has_spare; 8355 } 8356 8357 static bool update_nohz_stats(struct rq *rq, bool force) 8358 { 8359 #ifdef CONFIG_NO_HZ_COMMON 8360 unsigned int cpu = rq->cpu; 8361 8362 if (!rq->has_blocked_load) 8363 return false; 8364 8365 if (!cpumask_test_cpu(cpu, nohz.idle_cpus_mask)) 8366 return false; 8367 8368 if (!force && !time_after(jiffies, rq->last_blocked_load_update_tick)) 8369 return true; 8370 8371 update_blocked_averages(cpu); 8372 8373 return rq->has_blocked_load; 8374 #else 8375 return false; 8376 #endif 8377 } 8378 8379 /** 8380 * update_sg_lb_stats - Update sched_group's statistics for load balancing. 8381 * @env: The load balancing environment. 8382 * @group: sched_group whose statistics are to be updated. 8383 * @sgs: variable to hold the statistics for this group. 8384 * @sg_status: Holds flag indicating the status of the sched_group 8385 */ 8386 static inline void update_sg_lb_stats(struct lb_env *env, 8387 struct sched_group *group, 8388 struct sg_lb_stats *sgs, 8389 int *sg_status) 8390 { 8391 int i, nr_running, local_group; 8392 8393 memset(sgs, 0, sizeof(*sgs)); 8394 8395 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_span(group)); 8396 8397 for_each_cpu_and(i, sched_group_span(group), env->cpus) { 8398 struct rq *rq = cpu_rq(i); 8399 8400 if ((env->flags & LBF_NOHZ_STATS) && update_nohz_stats(rq, false)) 8401 env->flags |= LBF_NOHZ_AGAIN; 8402 8403 sgs->group_load += cpu_load(rq); 8404 sgs->group_util += cpu_util(i); 8405 sgs->group_runnable += cpu_runnable(rq); 8406 sgs->sum_h_nr_running += rq->cfs.h_nr_running; 8407 8408 nr_running = rq->nr_running; 8409 sgs->sum_nr_running += nr_running; 8410 8411 if (nr_running > 1) 8412 *sg_status |= SG_OVERLOAD; 8413 8414 if (cpu_overutilized(i)) 8415 *sg_status |= SG_OVERUTILIZED; 8416 8417 #ifdef CONFIG_NUMA_BALANCING 8418 sgs->nr_numa_running += rq->nr_numa_running; 8419 sgs->nr_preferred_running += rq->nr_preferred_running; 8420 #endif 8421 /* 8422 * No need to call idle_cpu() if nr_running is not 0 8423 */ 8424 if (!nr_running && idle_cpu(i)) { 8425 sgs->idle_cpus++; 8426 /* Idle cpu can't have misfit task */ 8427 continue; 8428 } 8429 8430 if (local_group) 8431 continue; 8432 8433 /* Check for a misfit task on the cpu */ 8434 if (env->sd->flags & SD_ASYM_CPUCAPACITY && 8435 sgs->group_misfit_task_load < rq->misfit_task_load) { 8436 sgs->group_misfit_task_load = rq->misfit_task_load; 8437 *sg_status |= SG_OVERLOAD; 8438 } 8439 } 8440 8441 /* Check if dst CPU is idle and preferred to this group */ 8442 if (env->sd->flags & SD_ASYM_PACKING && 8443 env->idle != CPU_NOT_IDLE && 8444 sgs->sum_h_nr_running && 8445 sched_asym_prefer(env->dst_cpu, group->asym_prefer_cpu)) { 8446 sgs->group_asym_packing = 1; 8447 } 8448 8449 sgs->group_capacity = group->sgc->capacity; 8450 8451 sgs->group_weight = group->group_weight; 8452 8453 sgs->group_type = group_classify(env->sd->imbalance_pct, group, sgs); 8454 8455 /* Computing avg_load makes sense only when group is overloaded */ 8456 if (sgs->group_type == group_overloaded) 8457 sgs->avg_load = (sgs->group_load * SCHED_CAPACITY_SCALE) / 8458 sgs->group_capacity; 8459 } 8460 8461 /** 8462 * update_sd_pick_busiest - return 1 on busiest group 8463 * @env: The load balancing environment. 8464 * @sds: sched_domain statistics 8465 * @sg: sched_group candidate to be checked for being the busiest 8466 * @sgs: sched_group statistics 8467 * 8468 * Determine if @sg is a busier group than the previously selected 8469 * busiest group. 8470 * 8471 * Return: %true if @sg is a busier group than the previously selected 8472 * busiest group. %false otherwise. 8473 */ 8474 static bool update_sd_pick_busiest(struct lb_env *env, 8475 struct sd_lb_stats *sds, 8476 struct sched_group *sg, 8477 struct sg_lb_stats *sgs) 8478 { 8479 struct sg_lb_stats *busiest = &sds->busiest_stat; 8480 8481 /* Make sure that there is at least one task to pull */ 8482 if (!sgs->sum_h_nr_running) 8483 return false; 8484 8485 /* 8486 * Don't try to pull misfit tasks we can't help. 8487 * We can use max_capacity here as reduction in capacity on some 8488 * CPUs in the group should either be possible to resolve 8489 * internally or be covered by avg_load imbalance (eventually). 8490 */ 8491 if (sgs->group_type == group_misfit_task && 8492 (!group_smaller_max_cpu_capacity(sg, sds->local) || 8493 sds->local_stat.group_type != group_has_spare)) 8494 return false; 8495 8496 if (sgs->group_type > busiest->group_type) 8497 return true; 8498 8499 if (sgs->group_type < busiest->group_type) 8500 return false; 8501 8502 /* 8503 * The candidate and the current busiest group are the same type of 8504 * group. Let check which one is the busiest according to the type. 8505 */ 8506 8507 switch (sgs->group_type) { 8508 case group_overloaded: 8509 /* Select the overloaded group with highest avg_load. */ 8510 if (sgs->avg_load <= busiest->avg_load) 8511 return false; 8512 break; 8513 8514 case group_imbalanced: 8515 /* 8516 * Select the 1st imbalanced group as we don't have any way to 8517 * choose one more than another. 8518 */ 8519 return false; 8520 8521 case group_asym_packing: 8522 /* Prefer to move from lowest priority CPU's work */ 8523 if (sched_asym_prefer(sg->asym_prefer_cpu, sds->busiest->asym_prefer_cpu)) 8524 return false; 8525 break; 8526 8527 case group_misfit_task: 8528 /* 8529 * If we have more than one misfit sg go with the biggest 8530 * misfit. 8531 */ 8532 if (sgs->group_misfit_task_load < busiest->group_misfit_task_load) 8533 return false; 8534 break; 8535 8536 case group_fully_busy: 8537 /* 8538 * Select the fully busy group with highest avg_load. In 8539 * theory, there is no need to pull task from such kind of 8540 * group because tasks have all compute capacity that they need 8541 * but we can still improve the overall throughput by reducing 8542 * contention when accessing shared HW resources. 8543 * 8544 * XXX for now avg_load is not computed and always 0 so we 8545 * select the 1st one. 8546 */ 8547 if (sgs->avg_load <= busiest->avg_load) 8548 return false; 8549 break; 8550 8551 case group_has_spare: 8552 /* 8553 * Select not overloaded group with lowest number of idle cpus 8554 * and highest number of running tasks. We could also compare 8555 * the spare capacity which is more stable but it can end up 8556 * that the group has less spare capacity but finally more idle 8557 * CPUs which means less opportunity to pull tasks. 8558 */ 8559 if (sgs->idle_cpus > busiest->idle_cpus) 8560 return false; 8561 else if ((sgs->idle_cpus == busiest->idle_cpus) && 8562 (sgs->sum_nr_running <= busiest->sum_nr_running)) 8563 return false; 8564 8565 break; 8566 } 8567 8568 /* 8569 * Candidate sg has no more than one task per CPU and has higher 8570 * per-CPU capacity. Migrating tasks to less capable CPUs may harm 8571 * throughput. Maximize throughput, power/energy consequences are not 8572 * considered. 8573 */ 8574 if ((env->sd->flags & SD_ASYM_CPUCAPACITY) && 8575 (sgs->group_type <= group_fully_busy) && 8576 (group_smaller_min_cpu_capacity(sds->local, sg))) 8577 return false; 8578 8579 return true; 8580 } 8581 8582 #ifdef CONFIG_NUMA_BALANCING 8583 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs) 8584 { 8585 if (sgs->sum_h_nr_running > sgs->nr_numa_running) 8586 return regular; 8587 if (sgs->sum_h_nr_running > sgs->nr_preferred_running) 8588 return remote; 8589 return all; 8590 } 8591 8592 static inline enum fbq_type fbq_classify_rq(struct rq *rq) 8593 { 8594 if (rq->nr_running > rq->nr_numa_running) 8595 return regular; 8596 if (rq->nr_running > rq->nr_preferred_running) 8597 return remote; 8598 return all; 8599 } 8600 #else 8601 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs) 8602 { 8603 return all; 8604 } 8605 8606 static inline enum fbq_type fbq_classify_rq(struct rq *rq) 8607 { 8608 return regular; 8609 } 8610 #endif /* CONFIG_NUMA_BALANCING */ 8611 8612 8613 struct sg_lb_stats; 8614 8615 /* 8616 * task_running_on_cpu - return 1 if @p is running on @cpu. 8617 */ 8618 8619 static unsigned int task_running_on_cpu(int cpu, struct task_struct *p) 8620 { 8621 /* Task has no contribution or is new */ 8622 if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time)) 8623 return 0; 8624 8625 if (task_on_rq_queued(p)) 8626 return 1; 8627 8628 return 0; 8629 } 8630 8631 /** 8632 * idle_cpu_without - would a given CPU be idle without p ? 8633 * @cpu: the processor on which idleness is tested. 8634 * @p: task which should be ignored. 8635 * 8636 * Return: 1 if the CPU would be idle. 0 otherwise. 8637 */ 8638 static int idle_cpu_without(int cpu, struct task_struct *p) 8639 { 8640 struct rq *rq = cpu_rq(cpu); 8641 8642 if (rq->curr != rq->idle && rq->curr != p) 8643 return 0; 8644 8645 /* 8646 * rq->nr_running can't be used but an updated version without the 8647 * impact of p on cpu must be used instead. The updated nr_running 8648 * be computed and tested before calling idle_cpu_without(). 8649 */ 8650 8651 #ifdef CONFIG_SMP 8652 if (rq->ttwu_pending) 8653 return 0; 8654 #endif 8655 8656 return 1; 8657 } 8658 8659 /* 8660 * update_sg_wakeup_stats - Update sched_group's statistics for wakeup. 8661 * @sd: The sched_domain level to look for idlest group. 8662 * @group: sched_group whose statistics are to be updated. 8663 * @sgs: variable to hold the statistics for this group. 8664 * @p: The task for which we look for the idlest group/CPU. 8665 */ 8666 static inline void update_sg_wakeup_stats(struct sched_domain *sd, 8667 struct sched_group *group, 8668 struct sg_lb_stats *sgs, 8669 struct task_struct *p) 8670 { 8671 int i, nr_running; 8672 8673 memset(sgs, 0, sizeof(*sgs)); 8674 8675 for_each_cpu(i, sched_group_span(group)) { 8676 struct rq *rq = cpu_rq(i); 8677 unsigned int local; 8678 8679 sgs->group_load += cpu_load_without(rq, p); 8680 sgs->group_util += cpu_util_without(i, p); 8681 sgs->group_runnable += cpu_runnable_without(rq, p); 8682 local = task_running_on_cpu(i, p); 8683 sgs->sum_h_nr_running += rq->cfs.h_nr_running - local; 8684 8685 nr_running = rq->nr_running - local; 8686 sgs->sum_nr_running += nr_running; 8687 8688 /* 8689 * No need to call idle_cpu_without() if nr_running is not 0 8690 */ 8691 if (!nr_running && idle_cpu_without(i, p)) 8692 sgs->idle_cpus++; 8693 8694 } 8695 8696 /* Check if task fits in the group */ 8697 if (sd->flags & SD_ASYM_CPUCAPACITY && 8698 !task_fits_capacity(p, group->sgc->max_capacity)) { 8699 sgs->group_misfit_task_load = 1; 8700 } 8701 8702 sgs->group_capacity = group->sgc->capacity; 8703 8704 sgs->group_weight = group->group_weight; 8705 8706 sgs->group_type = group_classify(sd->imbalance_pct, group, sgs); 8707 8708 /* 8709 * Computing avg_load makes sense only when group is fully busy or 8710 * overloaded 8711 */ 8712 if (sgs->group_type == group_fully_busy || 8713 sgs->group_type == group_overloaded) 8714 sgs->avg_load = (sgs->group_load * SCHED_CAPACITY_SCALE) / 8715 sgs->group_capacity; 8716 } 8717 8718 static bool update_pick_idlest(struct sched_group *idlest, 8719 struct sg_lb_stats *idlest_sgs, 8720 struct sched_group *group, 8721 struct sg_lb_stats *sgs) 8722 { 8723 if (sgs->group_type < idlest_sgs->group_type) 8724 return true; 8725 8726 if (sgs->group_type > idlest_sgs->group_type) 8727 return false; 8728 8729 /* 8730 * The candidate and the current idlest group are the same type of 8731 * group. Let check which one is the idlest according to the type. 8732 */ 8733 8734 switch (sgs->group_type) { 8735 case group_overloaded: 8736 case group_fully_busy: 8737 /* Select the group with lowest avg_load. */ 8738 if (idlest_sgs->avg_load <= sgs->avg_load) 8739 return false; 8740 break; 8741 8742 case group_imbalanced: 8743 case group_asym_packing: 8744 /* Those types are not used in the slow wakeup path */ 8745 return false; 8746 8747 case group_misfit_task: 8748 /* Select group with the highest max capacity */ 8749 if (idlest->sgc->max_capacity >= group->sgc->max_capacity) 8750 return false; 8751 break; 8752 8753 case group_has_spare: 8754 /* Select group with most idle CPUs */ 8755 if (idlest_sgs->idle_cpus > sgs->idle_cpus) 8756 return false; 8757 8758 /* Select group with lowest group_util */ 8759 if (idlest_sgs->idle_cpus == sgs->idle_cpus && 8760 idlest_sgs->group_util <= sgs->group_util) 8761 return false; 8762 8763 break; 8764 } 8765 8766 return true; 8767 } 8768 8769 /* 8770 * Allow a NUMA imbalance if busy CPUs is less than 25% of the domain. 8771 * This is an approximation as the number of running tasks may not be 8772 * related to the number of busy CPUs due to sched_setaffinity. 8773 */ 8774 static inline bool allow_numa_imbalance(int dst_running, int dst_weight) 8775 { 8776 return (dst_running < (dst_weight >> 2)); 8777 } 8778 8779 /* 8780 * find_idlest_group() finds and returns the least busy CPU group within the 8781 * domain. 8782 * 8783 * Assumes p is allowed on at least one CPU in sd. 8784 */ 8785 static struct sched_group * 8786 find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu) 8787 { 8788 struct sched_group *idlest = NULL, *local = NULL, *group = sd->groups; 8789 struct sg_lb_stats local_sgs, tmp_sgs; 8790 struct sg_lb_stats *sgs; 8791 unsigned long imbalance; 8792 struct sg_lb_stats idlest_sgs = { 8793 .avg_load = UINT_MAX, 8794 .group_type = group_overloaded, 8795 }; 8796 8797 do { 8798 int local_group; 8799 8800 /* Skip over this group if it has no CPUs allowed */ 8801 if (!cpumask_intersects(sched_group_span(group), 8802 p->cpus_ptr)) 8803 continue; 8804 8805 local_group = cpumask_test_cpu(this_cpu, 8806 sched_group_span(group)); 8807 8808 if (local_group) { 8809 sgs = &local_sgs; 8810 local = group; 8811 } else { 8812 sgs = &tmp_sgs; 8813 } 8814 8815 update_sg_wakeup_stats(sd, group, sgs, p); 8816 8817 if (!local_group && update_pick_idlest(idlest, &idlest_sgs, group, sgs)) { 8818 idlest = group; 8819 idlest_sgs = *sgs; 8820 } 8821 8822 } while (group = group->next, group != sd->groups); 8823 8824 8825 /* There is no idlest group to push tasks to */ 8826 if (!idlest) 8827 return NULL; 8828 8829 /* The local group has been skipped because of CPU affinity */ 8830 if (!local) 8831 return idlest; 8832 8833 /* 8834 * If the local group is idler than the selected idlest group 8835 * don't try and push the task. 8836 */ 8837 if (local_sgs.group_type < idlest_sgs.group_type) 8838 return NULL; 8839 8840 /* 8841 * If the local group is busier than the selected idlest group 8842 * try and push the task. 8843 */ 8844 if (local_sgs.group_type > idlest_sgs.group_type) 8845 return idlest; 8846 8847 switch (local_sgs.group_type) { 8848 case group_overloaded: 8849 case group_fully_busy: 8850 8851 /* Calculate allowed imbalance based on load */ 8852 imbalance = scale_load_down(NICE_0_LOAD) * 8853 (sd->imbalance_pct-100) / 100; 8854 8855 /* 8856 * When comparing groups across NUMA domains, it's possible for 8857 * the local domain to be very lightly loaded relative to the 8858 * remote domains but "imbalance" skews the comparison making 8859 * remote CPUs look much more favourable. When considering 8860 * cross-domain, add imbalance to the load on the remote node 8861 * and consider staying local. 8862 */ 8863 8864 if ((sd->flags & SD_NUMA) && 8865 ((idlest_sgs.avg_load + imbalance) >= local_sgs.avg_load)) 8866 return NULL; 8867 8868 /* 8869 * If the local group is less loaded than the selected 8870 * idlest group don't try and push any tasks. 8871 */ 8872 if (idlest_sgs.avg_load >= (local_sgs.avg_load + imbalance)) 8873 return NULL; 8874 8875 if (100 * local_sgs.avg_load <= sd->imbalance_pct * idlest_sgs.avg_load) 8876 return NULL; 8877 break; 8878 8879 case group_imbalanced: 8880 case group_asym_packing: 8881 /* Those type are not used in the slow wakeup path */ 8882 return NULL; 8883 8884 case group_misfit_task: 8885 /* Select group with the highest max capacity */ 8886 if (local->sgc->max_capacity >= idlest->sgc->max_capacity) 8887 return NULL; 8888 break; 8889 8890 case group_has_spare: 8891 if (sd->flags & SD_NUMA) { 8892 #ifdef CONFIG_NUMA_BALANCING 8893 int idlest_cpu; 8894 /* 8895 * If there is spare capacity at NUMA, try to select 8896 * the preferred node 8897 */ 8898 if (cpu_to_node(this_cpu) == p->numa_preferred_nid) 8899 return NULL; 8900 8901 idlest_cpu = cpumask_first(sched_group_span(idlest)); 8902 if (cpu_to_node(idlest_cpu) == p->numa_preferred_nid) 8903 return idlest; 8904 #endif 8905 /* 8906 * Otherwise, keep the task on this node to stay close 8907 * its wakeup source and improve locality. If there is 8908 * a real need of migration, periodic load balance will 8909 * take care of it. 8910 */ 8911 if (allow_numa_imbalance(local_sgs.sum_nr_running, sd->span_weight)) 8912 return NULL; 8913 } 8914 8915 /* 8916 * Select group with highest number of idle CPUs. We could also 8917 * compare the utilization which is more stable but it can end 8918 * up that the group has less spare capacity but finally more 8919 * idle CPUs which means more opportunity to run task. 8920 */ 8921 if (local_sgs.idle_cpus >= idlest_sgs.idle_cpus) 8922 return NULL; 8923 break; 8924 } 8925 8926 return idlest; 8927 } 8928 8929 /** 8930 * update_sd_lb_stats - Update sched_domain's statistics for load balancing. 8931 * @env: The load balancing environment. 8932 * @sds: variable to hold the statistics for this sched_domain. 8933 */ 8934 8935 static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds) 8936 { 8937 struct sched_domain *child = env->sd->child; 8938 struct sched_group *sg = env->sd->groups; 8939 struct sg_lb_stats *local = &sds->local_stat; 8940 struct sg_lb_stats tmp_sgs; 8941 int sg_status = 0; 8942 8943 #ifdef CONFIG_NO_HZ_COMMON 8944 if (env->idle == CPU_NEWLY_IDLE && READ_ONCE(nohz.has_blocked)) 8945 env->flags |= LBF_NOHZ_STATS; 8946 #endif 8947 8948 do { 8949 struct sg_lb_stats *sgs = &tmp_sgs; 8950 int local_group; 8951 8952 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_span(sg)); 8953 if (local_group) { 8954 sds->local = sg; 8955 sgs = local; 8956 8957 if (env->idle != CPU_NEWLY_IDLE || 8958 time_after_eq(jiffies, sg->sgc->next_update)) 8959 update_group_capacity(env->sd, env->dst_cpu); 8960 } 8961 8962 update_sg_lb_stats(env, sg, sgs, &sg_status); 8963 8964 if (local_group) 8965 goto next_group; 8966 8967 8968 if (update_sd_pick_busiest(env, sds, sg, sgs)) { 8969 sds->busiest = sg; 8970 sds->busiest_stat = *sgs; 8971 } 8972 8973 next_group: 8974 /* Now, start updating sd_lb_stats */ 8975 sds->total_load += sgs->group_load; 8976 sds->total_capacity += sgs->group_capacity; 8977 8978 sg = sg->next; 8979 } while (sg != env->sd->groups); 8980 8981 /* Tag domain that child domain prefers tasks go to siblings first */ 8982 sds->prefer_sibling = child && child->flags & SD_PREFER_SIBLING; 8983 8984 #ifdef CONFIG_NO_HZ_COMMON 8985 if ((env->flags & LBF_NOHZ_AGAIN) && 8986 cpumask_subset(nohz.idle_cpus_mask, sched_domain_span(env->sd))) { 8987 8988 WRITE_ONCE(nohz.next_blocked, 8989 jiffies + msecs_to_jiffies(LOAD_AVG_PERIOD)); 8990 } 8991 #endif 8992 8993 if (env->sd->flags & SD_NUMA) 8994 env->fbq_type = fbq_classify_group(&sds->busiest_stat); 8995 8996 if (!env->sd->parent) { 8997 struct root_domain *rd = env->dst_rq->rd; 8998 8999 /* update overload indicator if we are at root domain */ 9000 WRITE_ONCE(rd->overload, sg_status & SG_OVERLOAD); 9001 9002 /* Update over-utilization (tipping point, U >= 0) indicator */ 9003 WRITE_ONCE(rd->overutilized, sg_status & SG_OVERUTILIZED); 9004 trace_sched_overutilized_tp(rd, sg_status & SG_OVERUTILIZED); 9005 } else if (sg_status & SG_OVERUTILIZED) { 9006 struct root_domain *rd = env->dst_rq->rd; 9007 9008 WRITE_ONCE(rd->overutilized, SG_OVERUTILIZED); 9009 trace_sched_overutilized_tp(rd, SG_OVERUTILIZED); 9010 } 9011 } 9012 9013 #define NUMA_IMBALANCE_MIN 2 9014 9015 static inline long adjust_numa_imbalance(int imbalance, 9016 int dst_running, int dst_weight) 9017 { 9018 if (!allow_numa_imbalance(dst_running, dst_weight)) 9019 return imbalance; 9020 9021 /* 9022 * Allow a small imbalance based on a simple pair of communicating 9023 * tasks that remain local when the destination is lightly loaded. 9024 */ 9025 if (imbalance <= NUMA_IMBALANCE_MIN) 9026 return 0; 9027 9028 return imbalance; 9029 } 9030 9031 /** 9032 * calculate_imbalance - Calculate the amount of imbalance present within the 9033 * groups of a given sched_domain during load balance. 9034 * @env: load balance environment 9035 * @sds: statistics of the sched_domain whose imbalance is to be calculated. 9036 */ 9037 static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds) 9038 { 9039 struct sg_lb_stats *local, *busiest; 9040 9041 local = &sds->local_stat; 9042 busiest = &sds->busiest_stat; 9043 9044 if (busiest->group_type == group_misfit_task) { 9045 /* Set imbalance to allow misfit tasks to be balanced. */ 9046 env->migration_type = migrate_misfit; 9047 env->imbalance = 1; 9048 return; 9049 } 9050 9051 if (busiest->group_type == group_asym_packing) { 9052 /* 9053 * In case of asym capacity, we will try to migrate all load to 9054 * the preferred CPU. 9055 */ 9056 env->migration_type = migrate_task; 9057 env->imbalance = busiest->sum_h_nr_running; 9058 return; 9059 } 9060 9061 if (busiest->group_type == group_imbalanced) { 9062 /* 9063 * In the group_imb case we cannot rely on group-wide averages 9064 * to ensure CPU-load equilibrium, try to move any task to fix 9065 * the imbalance. The next load balance will take care of 9066 * balancing back the system. 9067 */ 9068 env->migration_type = migrate_task; 9069 env->imbalance = 1; 9070 return; 9071 } 9072 9073 /* 9074 * Try to use spare capacity of local group without overloading it or 9075 * emptying busiest. 9076 */ 9077 if (local->group_type == group_has_spare) { 9078 if ((busiest->group_type > group_fully_busy) && 9079 !(env->sd->flags & SD_SHARE_PKG_RESOURCES)) { 9080 /* 9081 * If busiest is overloaded, try to fill spare 9082 * capacity. This might end up creating spare capacity 9083 * in busiest or busiest still being overloaded but 9084 * there is no simple way to directly compute the 9085 * amount of load to migrate in order to balance the 9086 * system. 9087 */ 9088 env->migration_type = migrate_util; 9089 env->imbalance = max(local->group_capacity, local->group_util) - 9090 local->group_util; 9091 9092 /* 9093 * In some cases, the group's utilization is max or even 9094 * higher than capacity because of migrations but the 9095 * local CPU is (newly) idle. There is at least one 9096 * waiting task in this overloaded busiest group. Let's 9097 * try to pull it. 9098 */ 9099 if (env->idle != CPU_NOT_IDLE && env->imbalance == 0) { 9100 env->migration_type = migrate_task; 9101 env->imbalance = 1; 9102 } 9103 9104 return; 9105 } 9106 9107 if (busiest->group_weight == 1 || sds->prefer_sibling) { 9108 unsigned int nr_diff = busiest->sum_nr_running; 9109 /* 9110 * When prefer sibling, evenly spread running tasks on 9111 * groups. 9112 */ 9113 env->migration_type = migrate_task; 9114 lsub_positive(&nr_diff, local->sum_nr_running); 9115 env->imbalance = nr_diff >> 1; 9116 } else { 9117 9118 /* 9119 * If there is no overload, we just want to even the number of 9120 * idle cpus. 9121 */ 9122 env->migration_type = migrate_task; 9123 env->imbalance = max_t(long, 0, (local->idle_cpus - 9124 busiest->idle_cpus) >> 1); 9125 } 9126 9127 /* Consider allowing a small imbalance between NUMA groups */ 9128 if (env->sd->flags & SD_NUMA) { 9129 env->imbalance = adjust_numa_imbalance(env->imbalance, 9130 busiest->sum_nr_running, busiest->group_weight); 9131 } 9132 9133 return; 9134 } 9135 9136 /* 9137 * Local is fully busy but has to take more load to relieve the 9138 * busiest group 9139 */ 9140 if (local->group_type < group_overloaded) { 9141 /* 9142 * Local will become overloaded so the avg_load metrics are 9143 * finally needed. 9144 */ 9145 9146 local->avg_load = (local->group_load * SCHED_CAPACITY_SCALE) / 9147 local->group_capacity; 9148 9149 sds->avg_load = (sds->total_load * SCHED_CAPACITY_SCALE) / 9150 sds->total_capacity; 9151 /* 9152 * If the local group is more loaded than the selected 9153 * busiest group don't try to pull any tasks. 9154 */ 9155 if (local->avg_load >= busiest->avg_load) { 9156 env->imbalance = 0; 9157 return; 9158 } 9159 } 9160 9161 /* 9162 * Both group are or will become overloaded and we're trying to get all 9163 * the CPUs to the average_load, so we don't want to push ourselves 9164 * above the average load, nor do we wish to reduce the max loaded CPU 9165 * below the average load. At the same time, we also don't want to 9166 * reduce the group load below the group capacity. Thus we look for 9167 * the minimum possible imbalance. 9168 */ 9169 env->migration_type = migrate_load; 9170 env->imbalance = min( 9171 (busiest->avg_load - sds->avg_load) * busiest->group_capacity, 9172 (sds->avg_load - local->avg_load) * local->group_capacity 9173 ) / SCHED_CAPACITY_SCALE; 9174 } 9175 9176 /******* find_busiest_group() helpers end here *********************/ 9177 9178 /* 9179 * Decision matrix according to the local and busiest group type: 9180 * 9181 * busiest \ local has_spare fully_busy misfit asym imbalanced overloaded 9182 * has_spare nr_idle balanced N/A N/A balanced balanced 9183 * fully_busy nr_idle nr_idle N/A N/A balanced balanced 9184 * misfit_task force N/A N/A N/A force force 9185 * asym_packing force force N/A N/A force force 9186 * imbalanced force force N/A N/A force force 9187 * overloaded force force N/A N/A force avg_load 9188 * 9189 * N/A : Not Applicable because already filtered while updating 9190 * statistics. 9191 * balanced : The system is balanced for these 2 groups. 9192 * force : Calculate the imbalance as load migration is probably needed. 9193 * avg_load : Only if imbalance is significant enough. 9194 * nr_idle : dst_cpu is not busy and the number of idle CPUs is quite 9195 * different in groups. 9196 */ 9197 9198 /** 9199 * find_busiest_group - Returns the busiest group within the sched_domain 9200 * if there is an imbalance. 9201 * 9202 * Also calculates the amount of runnable load which should be moved 9203 * to restore balance. 9204 * 9205 * @env: The load balancing environment. 9206 * 9207 * Return: - The busiest group if imbalance exists. 9208 */ 9209 static struct sched_group *find_busiest_group(struct lb_env *env) 9210 { 9211 struct sg_lb_stats *local, *busiest; 9212 struct sd_lb_stats sds; 9213 9214 init_sd_lb_stats(&sds); 9215 9216 /* 9217 * Compute the various statistics relevant for load balancing at 9218 * this level. 9219 */ 9220 update_sd_lb_stats(env, &sds); 9221 9222 if (sched_energy_enabled()) { 9223 struct root_domain *rd = env->dst_rq->rd; 9224 9225 if (rcu_dereference(rd->pd) && !READ_ONCE(rd->overutilized)) 9226 goto out_balanced; 9227 } 9228 9229 local = &sds.local_stat; 9230 busiest = &sds.busiest_stat; 9231 9232 /* There is no busy sibling group to pull tasks from */ 9233 if (!sds.busiest) 9234 goto out_balanced; 9235 9236 /* Misfit tasks should be dealt with regardless of the avg load */ 9237 if (busiest->group_type == group_misfit_task) 9238 goto force_balance; 9239 9240 /* ASYM feature bypasses nice load balance check */ 9241 if (busiest->group_type == group_asym_packing) 9242 goto force_balance; 9243 9244 /* 9245 * If the busiest group is imbalanced the below checks don't 9246 * work because they assume all things are equal, which typically 9247 * isn't true due to cpus_ptr constraints and the like. 9248 */ 9249 if (busiest->group_type == group_imbalanced) 9250 goto force_balance; 9251 9252 /* 9253 * If the local group is busier than the selected busiest group 9254 * don't try and pull any tasks. 9255 */ 9256 if (local->group_type > busiest->group_type) 9257 goto out_balanced; 9258 9259 /* 9260 * When groups are overloaded, use the avg_load to ensure fairness 9261 * between tasks. 9262 */ 9263 if (local->group_type == group_overloaded) { 9264 /* 9265 * If the local group is more loaded than the selected 9266 * busiest group don't try to pull any tasks. 9267 */ 9268 if (local->avg_load >= busiest->avg_load) 9269 goto out_balanced; 9270 9271 /* XXX broken for overlapping NUMA groups */ 9272 sds.avg_load = (sds.total_load * SCHED_CAPACITY_SCALE) / 9273 sds.total_capacity; 9274 9275 /* 9276 * Don't pull any tasks if this group is already above the 9277 * domain average load. 9278 */ 9279 if (local->avg_load >= sds.avg_load) 9280 goto out_balanced; 9281 9282 /* 9283 * If the busiest group is more loaded, use imbalance_pct to be 9284 * conservative. 9285 */ 9286 if (100 * busiest->avg_load <= 9287 env->sd->imbalance_pct * local->avg_load) 9288 goto out_balanced; 9289 } 9290 9291 /* Try to move all excess tasks to child's sibling domain */ 9292 if (sds.prefer_sibling && local->group_type == group_has_spare && 9293 busiest->sum_nr_running > local->sum_nr_running + 1) 9294 goto force_balance; 9295 9296 if (busiest->group_type != group_overloaded) { 9297 if (env->idle == CPU_NOT_IDLE) 9298 /* 9299 * If the busiest group is not overloaded (and as a 9300 * result the local one too) but this CPU is already 9301 * busy, let another idle CPU try to pull task. 9302 */ 9303 goto out_balanced; 9304 9305 if (busiest->group_weight > 1 && 9306 local->idle_cpus <= (busiest->idle_cpus + 1)) 9307 /* 9308 * If the busiest group is not overloaded 9309 * and there is no imbalance between this and busiest 9310 * group wrt idle CPUs, it is balanced. The imbalance 9311 * becomes significant if the diff is greater than 1 9312 * otherwise we might end up to just move the imbalance 9313 * on another group. Of course this applies only if 9314 * there is more than 1 CPU per group. 9315 */ 9316 goto out_balanced; 9317 9318 if (busiest->sum_h_nr_running == 1) 9319 /* 9320 * busiest doesn't have any tasks waiting to run 9321 */ 9322 goto out_balanced; 9323 } 9324 9325 force_balance: 9326 /* Looks like there is an imbalance. Compute it */ 9327 calculate_imbalance(env, &sds); 9328 return env->imbalance ? sds.busiest : NULL; 9329 9330 out_balanced: 9331 env->imbalance = 0; 9332 return NULL; 9333 } 9334 9335 /* 9336 * find_busiest_queue - find the busiest runqueue among the CPUs in the group. 9337 */ 9338 static struct rq *find_busiest_queue(struct lb_env *env, 9339 struct sched_group *group) 9340 { 9341 struct rq *busiest = NULL, *rq; 9342 unsigned long busiest_util = 0, busiest_load = 0, busiest_capacity = 1; 9343 unsigned int busiest_nr = 0; 9344 int i; 9345 9346 for_each_cpu_and(i, sched_group_span(group), env->cpus) { 9347 unsigned long capacity, load, util; 9348 unsigned int nr_running; 9349 enum fbq_type rt; 9350 9351 rq = cpu_rq(i); 9352 rt = fbq_classify_rq(rq); 9353 9354 /* 9355 * We classify groups/runqueues into three groups: 9356 * - regular: there are !numa tasks 9357 * - remote: there are numa tasks that run on the 'wrong' node 9358 * - all: there is no distinction 9359 * 9360 * In order to avoid migrating ideally placed numa tasks, 9361 * ignore those when there's better options. 9362 * 9363 * If we ignore the actual busiest queue to migrate another 9364 * task, the next balance pass can still reduce the busiest 9365 * queue by moving tasks around inside the node. 9366 * 9367 * If we cannot move enough load due to this classification 9368 * the next pass will adjust the group classification and 9369 * allow migration of more tasks. 9370 * 9371 * Both cases only affect the total convergence complexity. 9372 */ 9373 if (rt > env->fbq_type) 9374 continue; 9375 9376 nr_running = rq->cfs.h_nr_running; 9377 if (!nr_running) 9378 continue; 9379 9380 capacity = capacity_of(i); 9381 9382 /* 9383 * For ASYM_CPUCAPACITY domains, don't pick a CPU that could 9384 * eventually lead to active_balancing high->low capacity. 9385 * Higher per-CPU capacity is considered better than balancing 9386 * average load. 9387 */ 9388 if (env->sd->flags & SD_ASYM_CPUCAPACITY && 9389 capacity_of(env->dst_cpu) < capacity && 9390 nr_running == 1) 9391 continue; 9392 9393 switch (env->migration_type) { 9394 case migrate_load: 9395 /* 9396 * When comparing with load imbalance, use cpu_load() 9397 * which is not scaled with the CPU capacity. 9398 */ 9399 load = cpu_load(rq); 9400 9401 if (nr_running == 1 && load > env->imbalance && 9402 !check_cpu_capacity(rq, env->sd)) 9403 break; 9404 9405 /* 9406 * For the load comparisons with the other CPUs, 9407 * consider the cpu_load() scaled with the CPU 9408 * capacity, so that the load can be moved away 9409 * from the CPU that is potentially running at a 9410 * lower capacity. 9411 * 9412 * Thus we're looking for max(load_i / capacity_i), 9413 * crosswise multiplication to rid ourselves of the 9414 * division works out to: 9415 * load_i * capacity_j > load_j * capacity_i; 9416 * where j is our previous maximum. 9417 */ 9418 if (load * busiest_capacity > busiest_load * capacity) { 9419 busiest_load = load; 9420 busiest_capacity = capacity; 9421 busiest = rq; 9422 } 9423 break; 9424 9425 case migrate_util: 9426 util = cpu_util(cpu_of(rq)); 9427 9428 /* 9429 * Don't try to pull utilization from a CPU with one 9430 * running task. Whatever its utilization, we will fail 9431 * detach the task. 9432 */ 9433 if (nr_running <= 1) 9434 continue; 9435 9436 if (busiest_util < util) { 9437 busiest_util = util; 9438 busiest = rq; 9439 } 9440 break; 9441 9442 case migrate_task: 9443 if (busiest_nr < nr_running) { 9444 busiest_nr = nr_running; 9445 busiest = rq; 9446 } 9447 break; 9448 9449 case migrate_misfit: 9450 /* 9451 * For ASYM_CPUCAPACITY domains with misfit tasks we 9452 * simply seek the "biggest" misfit task. 9453 */ 9454 if (rq->misfit_task_load > busiest_load) { 9455 busiest_load = rq->misfit_task_load; 9456 busiest = rq; 9457 } 9458 9459 break; 9460 9461 } 9462 } 9463 9464 return busiest; 9465 } 9466 9467 /* 9468 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but 9469 * so long as it is large enough. 9470 */ 9471 #define MAX_PINNED_INTERVAL 512 9472 9473 static inline bool 9474 asym_active_balance(struct lb_env *env) 9475 { 9476 /* 9477 * ASYM_PACKING needs to force migrate tasks from busy but 9478 * lower priority CPUs in order to pack all tasks in the 9479 * highest priority CPUs. 9480 */ 9481 return env->idle != CPU_NOT_IDLE && (env->sd->flags & SD_ASYM_PACKING) && 9482 sched_asym_prefer(env->dst_cpu, env->src_cpu); 9483 } 9484 9485 static inline bool 9486 imbalanced_active_balance(struct lb_env *env) 9487 { 9488 struct sched_domain *sd = env->sd; 9489 9490 /* 9491 * The imbalanced case includes the case of pinned tasks preventing a fair 9492 * distribution of the load on the system but also the even distribution of the 9493 * threads on a system with spare capacity 9494 */ 9495 if ((env->migration_type == migrate_task) && 9496 (sd->nr_balance_failed > sd->cache_nice_tries+2)) 9497 return 1; 9498 9499 return 0; 9500 } 9501 9502 static int need_active_balance(struct lb_env *env) 9503 { 9504 struct sched_domain *sd = env->sd; 9505 9506 if (asym_active_balance(env)) 9507 return 1; 9508 9509 if (imbalanced_active_balance(env)) 9510 return 1; 9511 9512 /* 9513 * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task. 9514 * It's worth migrating the task if the src_cpu's capacity is reduced 9515 * because of other sched_class or IRQs if more capacity stays 9516 * available on dst_cpu. 9517 */ 9518 if ((env->idle != CPU_NOT_IDLE) && 9519 (env->src_rq->cfs.h_nr_running == 1)) { 9520 if ((check_cpu_capacity(env->src_rq, sd)) && 9521 (capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100)) 9522 return 1; 9523 } 9524 9525 if (env->migration_type == migrate_misfit) 9526 return 1; 9527 9528 return 0; 9529 } 9530 9531 static int active_load_balance_cpu_stop(void *data); 9532 9533 static int should_we_balance(struct lb_env *env) 9534 { 9535 struct sched_group *sg = env->sd->groups; 9536 int cpu; 9537 9538 /* 9539 * Ensure the balancing environment is consistent; can happen 9540 * when the softirq triggers 'during' hotplug. 9541 */ 9542 if (!cpumask_test_cpu(env->dst_cpu, env->cpus)) 9543 return 0; 9544 9545 /* 9546 * In the newly idle case, we will allow all the CPUs 9547 * to do the newly idle load balance. 9548 */ 9549 if (env->idle == CPU_NEWLY_IDLE) 9550 return 1; 9551 9552 /* Try to find first idle CPU */ 9553 for_each_cpu_and(cpu, group_balance_mask(sg), env->cpus) { 9554 if (!idle_cpu(cpu)) 9555 continue; 9556 9557 /* Are we the first idle CPU? */ 9558 return cpu == env->dst_cpu; 9559 } 9560 9561 /* Are we the first CPU of this group ? */ 9562 return group_balance_cpu(sg) == env->dst_cpu; 9563 } 9564 9565 /* 9566 * Check this_cpu to ensure it is balanced within domain. Attempt to move 9567 * tasks if there is an imbalance. 9568 */ 9569 static int load_balance(int this_cpu, struct rq *this_rq, 9570 struct sched_domain *sd, enum cpu_idle_type idle, 9571 int *continue_balancing) 9572 { 9573 int ld_moved, cur_ld_moved, active_balance = 0; 9574 struct sched_domain *sd_parent = sd->parent; 9575 struct sched_group *group; 9576 struct rq *busiest; 9577 struct rq_flags rf; 9578 struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask); 9579 9580 struct lb_env env = { 9581 .sd = sd, 9582 .dst_cpu = this_cpu, 9583 .dst_rq = this_rq, 9584 .dst_grpmask = sched_group_span(sd->groups), 9585 .idle = idle, 9586 .loop_break = sched_nr_migrate_break, 9587 .cpus = cpus, 9588 .fbq_type = all, 9589 .tasks = LIST_HEAD_INIT(env.tasks), 9590 }; 9591 9592 cpumask_and(cpus, sched_domain_span(sd), cpu_active_mask); 9593 9594 schedstat_inc(sd->lb_count[idle]); 9595 9596 redo: 9597 if (!should_we_balance(&env)) { 9598 *continue_balancing = 0; 9599 goto out_balanced; 9600 } 9601 9602 group = find_busiest_group(&env); 9603 if (!group) { 9604 schedstat_inc(sd->lb_nobusyg[idle]); 9605 goto out_balanced; 9606 } 9607 9608 busiest = find_busiest_queue(&env, group); 9609 if (!busiest) { 9610 schedstat_inc(sd->lb_nobusyq[idle]); 9611 goto out_balanced; 9612 } 9613 9614 BUG_ON(busiest == env.dst_rq); 9615 9616 schedstat_add(sd->lb_imbalance[idle], env.imbalance); 9617 9618 env.src_cpu = busiest->cpu; 9619 env.src_rq = busiest; 9620 9621 ld_moved = 0; 9622 /* Clear this flag as soon as we find a pullable task */ 9623 env.flags |= LBF_ALL_PINNED; 9624 if (busiest->nr_running > 1) { 9625 /* 9626 * Attempt to move tasks. If find_busiest_group has found 9627 * an imbalance but busiest->nr_running <= 1, the group is 9628 * still unbalanced. ld_moved simply stays zero, so it is 9629 * correctly treated as an imbalance. 9630 */ 9631 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running); 9632 9633 more_balance: 9634 rq_lock_irqsave(busiest, &rf); 9635 update_rq_clock(busiest); 9636 9637 /* 9638 * cur_ld_moved - load moved in current iteration 9639 * ld_moved - cumulative load moved across iterations 9640 */ 9641 cur_ld_moved = detach_tasks(&env); 9642 9643 /* 9644 * We've detached some tasks from busiest_rq. Every 9645 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely 9646 * unlock busiest->lock, and we are able to be sure 9647 * that nobody can manipulate the tasks in parallel. 9648 * See task_rq_lock() family for the details. 9649 */ 9650 9651 rq_unlock(busiest, &rf); 9652 9653 if (cur_ld_moved) { 9654 attach_tasks(&env); 9655 ld_moved += cur_ld_moved; 9656 } 9657 9658 local_irq_restore(rf.flags); 9659 9660 if (env.flags & LBF_NEED_BREAK) { 9661 env.flags &= ~LBF_NEED_BREAK; 9662 goto more_balance; 9663 } 9664 9665 /* 9666 * Revisit (affine) tasks on src_cpu that couldn't be moved to 9667 * us and move them to an alternate dst_cpu in our sched_group 9668 * where they can run. The upper limit on how many times we 9669 * iterate on same src_cpu is dependent on number of CPUs in our 9670 * sched_group. 9671 * 9672 * This changes load balance semantics a bit on who can move 9673 * load to a given_cpu. In addition to the given_cpu itself 9674 * (or a ilb_cpu acting on its behalf where given_cpu is 9675 * nohz-idle), we now have balance_cpu in a position to move 9676 * load to given_cpu. In rare situations, this may cause 9677 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding 9678 * _independently_ and at _same_ time to move some load to 9679 * given_cpu) causing exceess load to be moved to given_cpu. 9680 * This however should not happen so much in practice and 9681 * moreover subsequent load balance cycles should correct the 9682 * excess load moved. 9683 */ 9684 if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) { 9685 9686 /* Prevent to re-select dst_cpu via env's CPUs */ 9687 __cpumask_clear_cpu(env.dst_cpu, env.cpus); 9688 9689 env.dst_rq = cpu_rq(env.new_dst_cpu); 9690 env.dst_cpu = env.new_dst_cpu; 9691 env.flags &= ~LBF_DST_PINNED; 9692 env.loop = 0; 9693 env.loop_break = sched_nr_migrate_break; 9694 9695 /* 9696 * Go back to "more_balance" rather than "redo" since we 9697 * need to continue with same src_cpu. 9698 */ 9699 goto more_balance; 9700 } 9701 9702 /* 9703 * We failed to reach balance because of affinity. 9704 */ 9705 if (sd_parent) { 9706 int *group_imbalance = &sd_parent->groups->sgc->imbalance; 9707 9708 if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0) 9709 *group_imbalance = 1; 9710 } 9711 9712 /* All tasks on this runqueue were pinned by CPU affinity */ 9713 if (unlikely(env.flags & LBF_ALL_PINNED)) { 9714 __cpumask_clear_cpu(cpu_of(busiest), cpus); 9715 /* 9716 * Attempting to continue load balancing at the current 9717 * sched_domain level only makes sense if there are 9718 * active CPUs remaining as possible busiest CPUs to 9719 * pull load from which are not contained within the 9720 * destination group that is receiving any migrated 9721 * load. 9722 */ 9723 if (!cpumask_subset(cpus, env.dst_grpmask)) { 9724 env.loop = 0; 9725 env.loop_break = sched_nr_migrate_break; 9726 goto redo; 9727 } 9728 goto out_all_pinned; 9729 } 9730 } 9731 9732 if (!ld_moved) { 9733 schedstat_inc(sd->lb_failed[idle]); 9734 /* 9735 * Increment the failure counter only on periodic balance. 9736 * We do not want newidle balance, which can be very 9737 * frequent, pollute the failure counter causing 9738 * excessive cache_hot migrations and active balances. 9739 */ 9740 if (idle != CPU_NEWLY_IDLE) 9741 sd->nr_balance_failed++; 9742 9743 if (need_active_balance(&env)) { 9744 unsigned long flags; 9745 9746 raw_spin_lock_irqsave(&busiest->lock, flags); 9747 9748 /* 9749 * Don't kick the active_load_balance_cpu_stop, 9750 * if the curr task on busiest CPU can't be 9751 * moved to this_cpu: 9752 */ 9753 if (!cpumask_test_cpu(this_cpu, busiest->curr->cpus_ptr)) { 9754 raw_spin_unlock_irqrestore(&busiest->lock, 9755 flags); 9756 goto out_one_pinned; 9757 } 9758 9759 /* Record that we found at least one task that could run on this_cpu */ 9760 env.flags &= ~LBF_ALL_PINNED; 9761 9762 /* 9763 * ->active_balance synchronizes accesses to 9764 * ->active_balance_work. Once set, it's cleared 9765 * only after active load balance is finished. 9766 */ 9767 if (!busiest->active_balance) { 9768 busiest->active_balance = 1; 9769 busiest->push_cpu = this_cpu; 9770 active_balance = 1; 9771 } 9772 raw_spin_unlock_irqrestore(&busiest->lock, flags); 9773 9774 if (active_balance) { 9775 stop_one_cpu_nowait(cpu_of(busiest), 9776 active_load_balance_cpu_stop, busiest, 9777 &busiest->active_balance_work); 9778 } 9779 9780 /* We've kicked active balancing, force task migration. */ 9781 sd->nr_balance_failed = sd->cache_nice_tries+1; 9782 } 9783 } else { 9784 sd->nr_balance_failed = 0; 9785 } 9786 9787 if (likely(!active_balance) || need_active_balance(&env)) { 9788 /* We were unbalanced, so reset the balancing interval */ 9789 sd->balance_interval = sd->min_interval; 9790 } 9791 9792 goto out; 9793 9794 out_balanced: 9795 /* 9796 * We reach balance although we may have faced some affinity 9797 * constraints. Clear the imbalance flag only if other tasks got 9798 * a chance to move and fix the imbalance. 9799 */ 9800 if (sd_parent && !(env.flags & LBF_ALL_PINNED)) { 9801 int *group_imbalance = &sd_parent->groups->sgc->imbalance; 9802 9803 if (*group_imbalance) 9804 *group_imbalance = 0; 9805 } 9806 9807 out_all_pinned: 9808 /* 9809 * We reach balance because all tasks are pinned at this level so 9810 * we can't migrate them. Let the imbalance flag set so parent level 9811 * can try to migrate them. 9812 */ 9813 schedstat_inc(sd->lb_balanced[idle]); 9814 9815 sd->nr_balance_failed = 0; 9816 9817 out_one_pinned: 9818 ld_moved = 0; 9819 9820 /* 9821 * newidle_balance() disregards balance intervals, so we could 9822 * repeatedly reach this code, which would lead to balance_interval 9823 * skyrocketting in a short amount of time. Skip the balance_interval 9824 * increase logic to avoid that. 9825 */ 9826 if (env.idle == CPU_NEWLY_IDLE) 9827 goto out; 9828 9829 /* tune up the balancing interval */ 9830 if ((env.flags & LBF_ALL_PINNED && 9831 sd->balance_interval < MAX_PINNED_INTERVAL) || 9832 sd->balance_interval < sd->max_interval) 9833 sd->balance_interval *= 2; 9834 out: 9835 return ld_moved; 9836 } 9837 9838 static inline unsigned long 9839 get_sd_balance_interval(struct sched_domain *sd, int cpu_busy) 9840 { 9841 unsigned long interval = sd->balance_interval; 9842 9843 if (cpu_busy) 9844 interval *= sd->busy_factor; 9845 9846 /* scale ms to jiffies */ 9847 interval = msecs_to_jiffies(interval); 9848 9849 /* 9850 * Reduce likelihood of busy balancing at higher domains racing with 9851 * balancing at lower domains by preventing their balancing periods 9852 * from being multiples of each other. 9853 */ 9854 if (cpu_busy) 9855 interval -= 1; 9856 9857 interval = clamp(interval, 1UL, max_load_balance_interval); 9858 9859 return interval; 9860 } 9861 9862 static inline void 9863 update_next_balance(struct sched_domain *sd, unsigned long *next_balance) 9864 { 9865 unsigned long interval, next; 9866 9867 /* used by idle balance, so cpu_busy = 0 */ 9868 interval = get_sd_balance_interval(sd, 0); 9869 next = sd->last_balance + interval; 9870 9871 if (time_after(*next_balance, next)) 9872 *next_balance = next; 9873 } 9874 9875 /* 9876 * active_load_balance_cpu_stop is run by the CPU stopper. It pushes 9877 * running tasks off the busiest CPU onto idle CPUs. It requires at 9878 * least 1 task to be running on each physical CPU where possible, and 9879 * avoids physical / logical imbalances. 9880 */ 9881 static int active_load_balance_cpu_stop(void *data) 9882 { 9883 struct rq *busiest_rq = data; 9884 int busiest_cpu = cpu_of(busiest_rq); 9885 int target_cpu = busiest_rq->push_cpu; 9886 struct rq *target_rq = cpu_rq(target_cpu); 9887 struct sched_domain *sd; 9888 struct task_struct *p = NULL; 9889 struct rq_flags rf; 9890 9891 rq_lock_irq(busiest_rq, &rf); 9892 /* 9893 * Between queueing the stop-work and running it is a hole in which 9894 * CPUs can become inactive. We should not move tasks from or to 9895 * inactive CPUs. 9896 */ 9897 if (!cpu_active(busiest_cpu) || !cpu_active(target_cpu)) 9898 goto out_unlock; 9899 9900 /* Make sure the requested CPU hasn't gone down in the meantime: */ 9901 if (unlikely(busiest_cpu != smp_processor_id() || 9902 !busiest_rq->active_balance)) 9903 goto out_unlock; 9904 9905 /* Is there any task to move? */ 9906 if (busiest_rq->nr_running <= 1) 9907 goto out_unlock; 9908 9909 /* 9910 * This condition is "impossible", if it occurs 9911 * we need to fix it. Originally reported by 9912 * Bjorn Helgaas on a 128-CPU setup. 9913 */ 9914 BUG_ON(busiest_rq == target_rq); 9915 9916 /* Search for an sd spanning us and the target CPU. */ 9917 rcu_read_lock(); 9918 for_each_domain(target_cpu, sd) { 9919 if (cpumask_test_cpu(busiest_cpu, sched_domain_span(sd))) 9920 break; 9921 } 9922 9923 if (likely(sd)) { 9924 struct lb_env env = { 9925 .sd = sd, 9926 .dst_cpu = target_cpu, 9927 .dst_rq = target_rq, 9928 .src_cpu = busiest_rq->cpu, 9929 .src_rq = busiest_rq, 9930 .idle = CPU_IDLE, 9931 /* 9932 * can_migrate_task() doesn't need to compute new_dst_cpu 9933 * for active balancing. Since we have CPU_IDLE, but no 9934 * @dst_grpmask we need to make that test go away with lying 9935 * about DST_PINNED. 9936 */ 9937 .flags = LBF_DST_PINNED, 9938 }; 9939 9940 schedstat_inc(sd->alb_count); 9941 update_rq_clock(busiest_rq); 9942 9943 p = detach_one_task(&env); 9944 if (p) { 9945 schedstat_inc(sd->alb_pushed); 9946 /* Active balancing done, reset the failure counter. */ 9947 sd->nr_balance_failed = 0; 9948 } else { 9949 schedstat_inc(sd->alb_failed); 9950 } 9951 } 9952 rcu_read_unlock(); 9953 out_unlock: 9954 busiest_rq->active_balance = 0; 9955 rq_unlock(busiest_rq, &rf); 9956 9957 if (p) 9958 attach_one_task(target_rq, p); 9959 9960 local_irq_enable(); 9961 9962 return 0; 9963 } 9964 9965 static DEFINE_SPINLOCK(balancing); 9966 9967 /* 9968 * Scale the max load_balance interval with the number of CPUs in the system. 9969 * This trades load-balance latency on larger machines for less cross talk. 9970 */ 9971 void update_max_interval(void) 9972 { 9973 max_load_balance_interval = HZ*num_online_cpus()/10; 9974 } 9975 9976 /* 9977 * It checks each scheduling domain to see if it is due to be balanced, 9978 * and initiates a balancing operation if so. 9979 * 9980 * Balancing parameters are set up in init_sched_domains. 9981 */ 9982 static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle) 9983 { 9984 int continue_balancing = 1; 9985 int cpu = rq->cpu; 9986 int busy = idle != CPU_IDLE && !sched_idle_cpu(cpu); 9987 unsigned long interval; 9988 struct sched_domain *sd; 9989 /* Earliest time when we have to do rebalance again */ 9990 unsigned long next_balance = jiffies + 60*HZ; 9991 int update_next_balance = 0; 9992 int need_serialize, need_decay = 0; 9993 u64 max_cost = 0; 9994 9995 rcu_read_lock(); 9996 for_each_domain(cpu, sd) { 9997 /* 9998 * Decay the newidle max times here because this is a regular 9999 * visit to all the domains. Decay ~1% per second. 10000 */ 10001 if (time_after(jiffies, sd->next_decay_max_lb_cost)) { 10002 sd->max_newidle_lb_cost = 10003 (sd->max_newidle_lb_cost * 253) / 256; 10004 sd->next_decay_max_lb_cost = jiffies + HZ; 10005 need_decay = 1; 10006 } 10007 max_cost += sd->max_newidle_lb_cost; 10008 10009 /* 10010 * Stop the load balance at this level. There is another 10011 * CPU in our sched group which is doing load balancing more 10012 * actively. 10013 */ 10014 if (!continue_balancing) { 10015 if (need_decay) 10016 continue; 10017 break; 10018 } 10019 10020 interval = get_sd_balance_interval(sd, busy); 10021 10022 need_serialize = sd->flags & SD_SERIALIZE; 10023 if (need_serialize) { 10024 if (!spin_trylock(&balancing)) 10025 goto out; 10026 } 10027 10028 if (time_after_eq(jiffies, sd->last_balance + interval)) { 10029 if (load_balance(cpu, rq, sd, idle, &continue_balancing)) { 10030 /* 10031 * The LBF_DST_PINNED logic could have changed 10032 * env->dst_cpu, so we can't know our idle 10033 * state even if we migrated tasks. Update it. 10034 */ 10035 idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE; 10036 busy = idle != CPU_IDLE && !sched_idle_cpu(cpu); 10037 } 10038 sd->last_balance = jiffies; 10039 interval = get_sd_balance_interval(sd, busy); 10040 } 10041 if (need_serialize) 10042 spin_unlock(&balancing); 10043 out: 10044 if (time_after(next_balance, sd->last_balance + interval)) { 10045 next_balance = sd->last_balance + interval; 10046 update_next_balance = 1; 10047 } 10048 } 10049 if (need_decay) { 10050 /* 10051 * Ensure the rq-wide value also decays but keep it at a 10052 * reasonable floor to avoid funnies with rq->avg_idle. 10053 */ 10054 rq->max_idle_balance_cost = 10055 max((u64)sysctl_sched_migration_cost, max_cost); 10056 } 10057 rcu_read_unlock(); 10058 10059 /* 10060 * next_balance will be updated only when there is a need. 10061 * When the cpu is attached to null domain for ex, it will not be 10062 * updated. 10063 */ 10064 if (likely(update_next_balance)) { 10065 rq->next_balance = next_balance; 10066 10067 #ifdef CONFIG_NO_HZ_COMMON 10068 /* 10069 * If this CPU has been elected to perform the nohz idle 10070 * balance. Other idle CPUs have already rebalanced with 10071 * nohz_idle_balance() and nohz.next_balance has been 10072 * updated accordingly. This CPU is now running the idle load 10073 * balance for itself and we need to update the 10074 * nohz.next_balance accordingly. 10075 */ 10076 if ((idle == CPU_IDLE) && time_after(nohz.next_balance, rq->next_balance)) 10077 nohz.next_balance = rq->next_balance; 10078 #endif 10079 } 10080 } 10081 10082 static inline int on_null_domain(struct rq *rq) 10083 { 10084 return unlikely(!rcu_dereference_sched(rq->sd)); 10085 } 10086 10087 #ifdef CONFIG_NO_HZ_COMMON 10088 /* 10089 * idle load balancing details 10090 * - When one of the busy CPUs notice that there may be an idle rebalancing 10091 * needed, they will kick the idle load balancer, which then does idle 10092 * load balancing for all the idle CPUs. 10093 * - HK_FLAG_MISC CPUs are used for this task, because HK_FLAG_SCHED not set 10094 * anywhere yet. 10095 */ 10096 10097 static inline int find_new_ilb(void) 10098 { 10099 int ilb; 10100 10101 for_each_cpu_and(ilb, nohz.idle_cpus_mask, 10102 housekeeping_cpumask(HK_FLAG_MISC)) { 10103 10104 if (ilb == smp_processor_id()) 10105 continue; 10106 10107 if (idle_cpu(ilb)) 10108 return ilb; 10109 } 10110 10111 return nr_cpu_ids; 10112 } 10113 10114 /* 10115 * Kick a CPU to do the nohz balancing, if it is time for it. We pick any 10116 * idle CPU in the HK_FLAG_MISC housekeeping set (if there is one). 10117 */ 10118 static void kick_ilb(unsigned int flags) 10119 { 10120 int ilb_cpu; 10121 10122 /* 10123 * Increase nohz.next_balance only when if full ilb is triggered but 10124 * not if we only update stats. 10125 */ 10126 if (flags & NOHZ_BALANCE_KICK) 10127 nohz.next_balance = jiffies+1; 10128 10129 ilb_cpu = find_new_ilb(); 10130 10131 if (ilb_cpu >= nr_cpu_ids) 10132 return; 10133 10134 /* 10135 * Access to rq::nohz_csd is serialized by NOHZ_KICK_MASK; he who sets 10136 * the first flag owns it; cleared by nohz_csd_func(). 10137 */ 10138 flags = atomic_fetch_or(flags, nohz_flags(ilb_cpu)); 10139 if (flags & NOHZ_KICK_MASK) 10140 return; 10141 10142 /* 10143 * This way we generate an IPI on the target CPU which 10144 * is idle. And the softirq performing nohz idle load balance 10145 * will be run before returning from the IPI. 10146 */ 10147 smp_call_function_single_async(ilb_cpu, &cpu_rq(ilb_cpu)->nohz_csd); 10148 } 10149 10150 /* 10151 * Current decision point for kicking the idle load balancer in the presence 10152 * of idle CPUs in the system. 10153 */ 10154 static void nohz_balancer_kick(struct rq *rq) 10155 { 10156 unsigned long now = jiffies; 10157 struct sched_domain_shared *sds; 10158 struct sched_domain *sd; 10159 int nr_busy, i, cpu = rq->cpu; 10160 unsigned int flags = 0; 10161 10162 if (unlikely(rq->idle_balance)) 10163 return; 10164 10165 /* 10166 * We may be recently in ticked or tickless idle mode. At the first 10167 * busy tick after returning from idle, we will update the busy stats. 10168 */ 10169 nohz_balance_exit_idle(rq); 10170 10171 /* 10172 * None are in tickless mode and hence no need for NOHZ idle load 10173 * balancing. 10174 */ 10175 if (likely(!atomic_read(&nohz.nr_cpus))) 10176 return; 10177 10178 if (READ_ONCE(nohz.has_blocked) && 10179 time_after(now, READ_ONCE(nohz.next_blocked))) 10180 flags = NOHZ_STATS_KICK; 10181 10182 if (time_before(now, nohz.next_balance)) 10183 goto out; 10184 10185 if (rq->nr_running >= 2) { 10186 flags = NOHZ_KICK_MASK; 10187 goto out; 10188 } 10189 10190 rcu_read_lock(); 10191 10192 sd = rcu_dereference(rq->sd); 10193 if (sd) { 10194 /* 10195 * If there's a CFS task and the current CPU has reduced 10196 * capacity; kick the ILB to see if there's a better CPU to run 10197 * on. 10198 */ 10199 if (rq->cfs.h_nr_running >= 1 && check_cpu_capacity(rq, sd)) { 10200 flags = NOHZ_KICK_MASK; 10201 goto unlock; 10202 } 10203 } 10204 10205 sd = rcu_dereference(per_cpu(sd_asym_packing, cpu)); 10206 if (sd) { 10207 /* 10208 * When ASYM_PACKING; see if there's a more preferred CPU 10209 * currently idle; in which case, kick the ILB to move tasks 10210 * around. 10211 */ 10212 for_each_cpu_and(i, sched_domain_span(sd), nohz.idle_cpus_mask) { 10213 if (sched_asym_prefer(i, cpu)) { 10214 flags = NOHZ_KICK_MASK; 10215 goto unlock; 10216 } 10217 } 10218 } 10219 10220 sd = rcu_dereference(per_cpu(sd_asym_cpucapacity, cpu)); 10221 if (sd) { 10222 /* 10223 * When ASYM_CPUCAPACITY; see if there's a higher capacity CPU 10224 * to run the misfit task on. 10225 */ 10226 if (check_misfit_status(rq, sd)) { 10227 flags = NOHZ_KICK_MASK; 10228 goto unlock; 10229 } 10230 10231 /* 10232 * For asymmetric systems, we do not want to nicely balance 10233 * cache use, instead we want to embrace asymmetry and only 10234 * ensure tasks have enough CPU capacity. 10235 * 10236 * Skip the LLC logic because it's not relevant in that case. 10237 */ 10238 goto unlock; 10239 } 10240 10241 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu)); 10242 if (sds) { 10243 /* 10244 * If there is an imbalance between LLC domains (IOW we could 10245 * increase the overall cache use), we need some less-loaded LLC 10246 * domain to pull some load. Likewise, we may need to spread 10247 * load within the current LLC domain (e.g. packed SMT cores but 10248 * other CPUs are idle). We can't really know from here how busy 10249 * the others are - so just get a nohz balance going if it looks 10250 * like this LLC domain has tasks we could move. 10251 */ 10252 nr_busy = atomic_read(&sds->nr_busy_cpus); 10253 if (nr_busy > 1) { 10254 flags = NOHZ_KICK_MASK; 10255 goto unlock; 10256 } 10257 } 10258 unlock: 10259 rcu_read_unlock(); 10260 out: 10261 if (flags) 10262 kick_ilb(flags); 10263 } 10264 10265 static void set_cpu_sd_state_busy(int cpu) 10266 { 10267 struct sched_domain *sd; 10268 10269 rcu_read_lock(); 10270 sd = rcu_dereference(per_cpu(sd_llc, cpu)); 10271 10272 if (!sd || !sd->nohz_idle) 10273 goto unlock; 10274 sd->nohz_idle = 0; 10275 10276 atomic_inc(&sd->shared->nr_busy_cpus); 10277 unlock: 10278 rcu_read_unlock(); 10279 } 10280 10281 void nohz_balance_exit_idle(struct rq *rq) 10282 { 10283 SCHED_WARN_ON(rq != this_rq()); 10284 10285 if (likely(!rq->nohz_tick_stopped)) 10286 return; 10287 10288 rq->nohz_tick_stopped = 0; 10289 cpumask_clear_cpu(rq->cpu, nohz.idle_cpus_mask); 10290 atomic_dec(&nohz.nr_cpus); 10291 10292 set_cpu_sd_state_busy(rq->cpu); 10293 } 10294 10295 static void set_cpu_sd_state_idle(int cpu) 10296 { 10297 struct sched_domain *sd; 10298 10299 rcu_read_lock(); 10300 sd = rcu_dereference(per_cpu(sd_llc, cpu)); 10301 10302 if (!sd || sd->nohz_idle) 10303 goto unlock; 10304 sd->nohz_idle = 1; 10305 10306 atomic_dec(&sd->shared->nr_busy_cpus); 10307 unlock: 10308 rcu_read_unlock(); 10309 } 10310 10311 /* 10312 * This routine will record that the CPU is going idle with tick stopped. 10313 * This info will be used in performing idle load balancing in the future. 10314 */ 10315 void nohz_balance_enter_idle(int cpu) 10316 { 10317 struct rq *rq = cpu_rq(cpu); 10318 10319 SCHED_WARN_ON(cpu != smp_processor_id()); 10320 10321 /* If this CPU is going down, then nothing needs to be done: */ 10322 if (!cpu_active(cpu)) 10323 return; 10324 10325 /* Spare idle load balancing on CPUs that don't want to be disturbed: */ 10326 if (!housekeeping_cpu(cpu, HK_FLAG_SCHED)) 10327 return; 10328 10329 /* 10330 * Can be set safely without rq->lock held 10331 * If a clear happens, it will have evaluated last additions because 10332 * rq->lock is held during the check and the clear 10333 */ 10334 rq->has_blocked_load = 1; 10335 10336 /* 10337 * The tick is still stopped but load could have been added in the 10338 * meantime. We set the nohz.has_blocked flag to trig a check of the 10339 * *_avg. The CPU is already part of nohz.idle_cpus_mask so the clear 10340 * of nohz.has_blocked can only happen after checking the new load 10341 */ 10342 if (rq->nohz_tick_stopped) 10343 goto out; 10344 10345 /* If we're a completely isolated CPU, we don't play: */ 10346 if (on_null_domain(rq)) 10347 return; 10348 10349 rq->nohz_tick_stopped = 1; 10350 10351 cpumask_set_cpu(cpu, nohz.idle_cpus_mask); 10352 atomic_inc(&nohz.nr_cpus); 10353 10354 /* 10355 * Ensures that if nohz_idle_balance() fails to observe our 10356 * @idle_cpus_mask store, it must observe the @has_blocked 10357 * store. 10358 */ 10359 smp_mb__after_atomic(); 10360 10361 set_cpu_sd_state_idle(cpu); 10362 10363 out: 10364 /* 10365 * Each time a cpu enter idle, we assume that it has blocked load and 10366 * enable the periodic update of the load of idle cpus 10367 */ 10368 WRITE_ONCE(nohz.has_blocked, 1); 10369 } 10370 10371 /* 10372 * Internal function that runs load balance for all idle cpus. The load balance 10373 * can be a simple update of blocked load or a complete load balance with 10374 * tasks movement depending of flags. 10375 * The function returns false if the loop has stopped before running 10376 * through all idle CPUs. 10377 */ 10378 static bool _nohz_idle_balance(struct rq *this_rq, unsigned int flags, 10379 enum cpu_idle_type idle) 10380 { 10381 /* Earliest time when we have to do rebalance again */ 10382 unsigned long now = jiffies; 10383 unsigned long next_balance = now + 60*HZ; 10384 bool has_blocked_load = false; 10385 int update_next_balance = 0; 10386 int this_cpu = this_rq->cpu; 10387 int balance_cpu; 10388 int ret = false; 10389 struct rq *rq; 10390 10391 SCHED_WARN_ON((flags & NOHZ_KICK_MASK) == NOHZ_BALANCE_KICK); 10392 10393 /* 10394 * We assume there will be no idle load after this update and clear 10395 * the has_blocked flag. If a cpu enters idle in the mean time, it will 10396 * set the has_blocked flag and trig another update of idle load. 10397 * Because a cpu that becomes idle, is added to idle_cpus_mask before 10398 * setting the flag, we are sure to not clear the state and not 10399 * check the load of an idle cpu. 10400 */ 10401 WRITE_ONCE(nohz.has_blocked, 0); 10402 10403 /* 10404 * Ensures that if we miss the CPU, we must see the has_blocked 10405 * store from nohz_balance_enter_idle(). 10406 */ 10407 smp_mb(); 10408 10409 for_each_cpu(balance_cpu, nohz.idle_cpus_mask) { 10410 if (balance_cpu == this_cpu || !idle_cpu(balance_cpu)) 10411 continue; 10412 10413 /* 10414 * If this CPU gets work to do, stop the load balancing 10415 * work being done for other CPUs. Next load 10416 * balancing owner will pick it up. 10417 */ 10418 if (need_resched()) { 10419 has_blocked_load = true; 10420 goto abort; 10421 } 10422 10423 rq = cpu_rq(balance_cpu); 10424 10425 has_blocked_load |= update_nohz_stats(rq, true); 10426 10427 /* 10428 * If time for next balance is due, 10429 * do the balance. 10430 */ 10431 if (time_after_eq(jiffies, rq->next_balance)) { 10432 struct rq_flags rf; 10433 10434 rq_lock_irqsave(rq, &rf); 10435 update_rq_clock(rq); 10436 rq_unlock_irqrestore(rq, &rf); 10437 10438 if (flags & NOHZ_BALANCE_KICK) 10439 rebalance_domains(rq, CPU_IDLE); 10440 } 10441 10442 if (time_after(next_balance, rq->next_balance)) { 10443 next_balance = rq->next_balance; 10444 update_next_balance = 1; 10445 } 10446 } 10447 10448 /* 10449 * next_balance will be updated only when there is a need. 10450 * When the CPU is attached to null domain for ex, it will not be 10451 * updated. 10452 */ 10453 if (likely(update_next_balance)) 10454 nohz.next_balance = next_balance; 10455 10456 /* Newly idle CPU doesn't need an update */ 10457 if (idle != CPU_NEWLY_IDLE) { 10458 update_blocked_averages(this_cpu); 10459 has_blocked_load |= this_rq->has_blocked_load; 10460 } 10461 10462 if (flags & NOHZ_BALANCE_KICK) 10463 rebalance_domains(this_rq, CPU_IDLE); 10464 10465 WRITE_ONCE(nohz.next_blocked, 10466 now + msecs_to_jiffies(LOAD_AVG_PERIOD)); 10467 10468 /* The full idle balance loop has been done */ 10469 ret = true; 10470 10471 abort: 10472 /* There is still blocked load, enable periodic update */ 10473 if (has_blocked_load) 10474 WRITE_ONCE(nohz.has_blocked, 1); 10475 10476 return ret; 10477 } 10478 10479 /* 10480 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the 10481 * rebalancing for all the cpus for whom scheduler ticks are stopped. 10482 */ 10483 static bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) 10484 { 10485 unsigned int flags = this_rq->nohz_idle_balance; 10486 10487 if (!flags) 10488 return false; 10489 10490 this_rq->nohz_idle_balance = 0; 10491 10492 if (idle != CPU_IDLE) 10493 return false; 10494 10495 _nohz_idle_balance(this_rq, flags, idle); 10496 10497 return true; 10498 } 10499 10500 static void nohz_newidle_balance(struct rq *this_rq) 10501 { 10502 int this_cpu = this_rq->cpu; 10503 10504 /* 10505 * This CPU doesn't want to be disturbed by scheduler 10506 * housekeeping 10507 */ 10508 if (!housekeeping_cpu(this_cpu, HK_FLAG_SCHED)) 10509 return; 10510 10511 /* Will wake up very soon. No time for doing anything else*/ 10512 if (this_rq->avg_idle < sysctl_sched_migration_cost) 10513 return; 10514 10515 /* Don't need to update blocked load of idle CPUs*/ 10516 if (!READ_ONCE(nohz.has_blocked) || 10517 time_before(jiffies, READ_ONCE(nohz.next_blocked))) 10518 return; 10519 10520 raw_spin_unlock(&this_rq->lock); 10521 /* 10522 * This CPU is going to be idle and blocked load of idle CPUs 10523 * need to be updated. Run the ilb locally as it is a good 10524 * candidate for ilb instead of waking up another idle CPU. 10525 * Kick an normal ilb if we failed to do the update. 10526 */ 10527 if (!_nohz_idle_balance(this_rq, NOHZ_STATS_KICK, CPU_NEWLY_IDLE)) 10528 kick_ilb(NOHZ_STATS_KICK); 10529 raw_spin_lock(&this_rq->lock); 10530 } 10531 10532 #else /* !CONFIG_NO_HZ_COMMON */ 10533 static inline void nohz_balancer_kick(struct rq *rq) { } 10534 10535 static inline bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) 10536 { 10537 return false; 10538 } 10539 10540 static inline void nohz_newidle_balance(struct rq *this_rq) { } 10541 #endif /* CONFIG_NO_HZ_COMMON */ 10542 10543 /* 10544 * newidle_balance is called by schedule() if this_cpu is about to become 10545 * idle. Attempts to pull tasks from other CPUs. 10546 * 10547 * Returns: 10548 * < 0 - we released the lock and there are !fair tasks present 10549 * 0 - failed, no new tasks 10550 * > 0 - success, new (fair) tasks present 10551 */ 10552 static int newidle_balance(struct rq *this_rq, struct rq_flags *rf) 10553 { 10554 unsigned long next_balance = jiffies + HZ; 10555 int this_cpu = this_rq->cpu; 10556 struct sched_domain *sd; 10557 int pulled_task = 0; 10558 u64 curr_cost = 0; 10559 10560 update_misfit_status(NULL, this_rq); 10561 /* 10562 * We must set idle_stamp _before_ calling idle_balance(), such that we 10563 * measure the duration of idle_balance() as idle time. 10564 */ 10565 this_rq->idle_stamp = rq_clock(this_rq); 10566 10567 /* 10568 * Do not pull tasks towards !active CPUs... 10569 */ 10570 if (!cpu_active(this_cpu)) 10571 return 0; 10572 10573 /* 10574 * This is OK, because current is on_cpu, which avoids it being picked 10575 * for load-balance and preemption/IRQs are still disabled avoiding 10576 * further scheduler activity on it and we're being very careful to 10577 * re-start the picking loop. 10578 */ 10579 rq_unpin_lock(this_rq, rf); 10580 10581 if (this_rq->avg_idle < sysctl_sched_migration_cost || 10582 !READ_ONCE(this_rq->rd->overload)) { 10583 10584 rcu_read_lock(); 10585 sd = rcu_dereference_check_sched_domain(this_rq->sd); 10586 if (sd) 10587 update_next_balance(sd, &next_balance); 10588 rcu_read_unlock(); 10589 10590 nohz_newidle_balance(this_rq); 10591 10592 goto out; 10593 } 10594 10595 raw_spin_unlock(&this_rq->lock); 10596 10597 update_blocked_averages(this_cpu); 10598 rcu_read_lock(); 10599 for_each_domain(this_cpu, sd) { 10600 int continue_balancing = 1; 10601 u64 t0, domain_cost; 10602 10603 if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) { 10604 update_next_balance(sd, &next_balance); 10605 break; 10606 } 10607 10608 if (sd->flags & SD_BALANCE_NEWIDLE) { 10609 t0 = sched_clock_cpu(this_cpu); 10610 10611 pulled_task = load_balance(this_cpu, this_rq, 10612 sd, CPU_NEWLY_IDLE, 10613 &continue_balancing); 10614 10615 domain_cost = sched_clock_cpu(this_cpu) - t0; 10616 if (domain_cost > sd->max_newidle_lb_cost) 10617 sd->max_newidle_lb_cost = domain_cost; 10618 10619 curr_cost += domain_cost; 10620 } 10621 10622 update_next_balance(sd, &next_balance); 10623 10624 /* 10625 * Stop searching for tasks to pull if there are 10626 * now runnable tasks on this rq. 10627 */ 10628 if (pulled_task || this_rq->nr_running > 0) 10629 break; 10630 } 10631 rcu_read_unlock(); 10632 10633 raw_spin_lock(&this_rq->lock); 10634 10635 if (curr_cost > this_rq->max_idle_balance_cost) 10636 this_rq->max_idle_balance_cost = curr_cost; 10637 10638 out: 10639 /* 10640 * While browsing the domains, we released the rq lock, a task could 10641 * have been enqueued in the meantime. Since we're not going idle, 10642 * pretend we pulled a task. 10643 */ 10644 if (this_rq->cfs.h_nr_running && !pulled_task) 10645 pulled_task = 1; 10646 10647 /* Move the next balance forward */ 10648 if (time_after(this_rq->next_balance, next_balance)) 10649 this_rq->next_balance = next_balance; 10650 10651 /* Is there a task of a high priority class? */ 10652 if (this_rq->nr_running != this_rq->cfs.h_nr_running) 10653 pulled_task = -1; 10654 10655 if (pulled_task) 10656 this_rq->idle_stamp = 0; 10657 10658 rq_repin_lock(this_rq, rf); 10659 10660 return pulled_task; 10661 } 10662 10663 /* 10664 * run_rebalance_domains is triggered when needed from the scheduler tick. 10665 * Also triggered for nohz idle balancing (with nohz_balancing_kick set). 10666 */ 10667 static __latent_entropy void run_rebalance_domains(struct softirq_action *h) 10668 { 10669 struct rq *this_rq = this_rq(); 10670 enum cpu_idle_type idle = this_rq->idle_balance ? 10671 CPU_IDLE : CPU_NOT_IDLE; 10672 10673 /* 10674 * If this CPU has a pending nohz_balance_kick, then do the 10675 * balancing on behalf of the other idle CPUs whose ticks are 10676 * stopped. Do nohz_idle_balance *before* rebalance_domains to 10677 * give the idle CPUs a chance to load balance. Else we may 10678 * load balance only within the local sched_domain hierarchy 10679 * and abort nohz_idle_balance altogether if we pull some load. 10680 */ 10681 if (nohz_idle_balance(this_rq, idle)) 10682 return; 10683 10684 /* normal load balance */ 10685 update_blocked_averages(this_rq->cpu); 10686 rebalance_domains(this_rq, idle); 10687 } 10688 10689 /* 10690 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing. 10691 */ 10692 void trigger_load_balance(struct rq *rq) 10693 { 10694 /* 10695 * Don't need to rebalance while attached to NULL domain or 10696 * runqueue CPU is not active 10697 */ 10698 if (unlikely(on_null_domain(rq) || !cpu_active(cpu_of(rq)))) 10699 return; 10700 10701 if (time_after_eq(jiffies, rq->next_balance)) 10702 raise_softirq(SCHED_SOFTIRQ); 10703 10704 nohz_balancer_kick(rq); 10705 } 10706 10707 static void rq_online_fair(struct rq *rq) 10708 { 10709 update_sysctl(); 10710 10711 update_runtime_enabled(rq); 10712 } 10713 10714 static void rq_offline_fair(struct rq *rq) 10715 { 10716 update_sysctl(); 10717 10718 /* Ensure any throttled groups are reachable by pick_next_task */ 10719 unthrottle_offline_cfs_rqs(rq); 10720 } 10721 10722 #endif /* CONFIG_SMP */ 10723 10724 /* 10725 * scheduler tick hitting a task of our scheduling class. 10726 * 10727 * NOTE: This function can be called remotely by the tick offload that 10728 * goes along full dynticks. Therefore no local assumption can be made 10729 * and everything must be accessed through the @rq and @curr passed in 10730 * parameters. 10731 */ 10732 static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued) 10733 { 10734 struct cfs_rq *cfs_rq; 10735 struct sched_entity *se = &curr->se; 10736 10737 for_each_sched_entity(se) { 10738 cfs_rq = cfs_rq_of(se); 10739 entity_tick(cfs_rq, se, queued); 10740 } 10741 10742 if (static_branch_unlikely(&sched_numa_balancing)) 10743 task_tick_numa(rq, curr); 10744 10745 update_misfit_status(curr, rq); 10746 update_overutilized_status(task_rq(curr)); 10747 } 10748 10749 /* 10750 * called on fork with the child task as argument from the parent's context 10751 * - child not yet on the tasklist 10752 * - preemption disabled 10753 */ 10754 static void task_fork_fair(struct task_struct *p) 10755 { 10756 struct cfs_rq *cfs_rq; 10757 struct sched_entity *se = &p->se, *curr; 10758 struct rq *rq = this_rq(); 10759 struct rq_flags rf; 10760 10761 rq_lock(rq, &rf); 10762 update_rq_clock(rq); 10763 10764 cfs_rq = task_cfs_rq(current); 10765 curr = cfs_rq->curr; 10766 if (curr) { 10767 update_curr(cfs_rq); 10768 se->vruntime = curr->vruntime; 10769 } 10770 place_entity(cfs_rq, se, 1); 10771 10772 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) { 10773 /* 10774 * Upon rescheduling, sched_class::put_prev_task() will place 10775 * 'current' within the tree based on its new key value. 10776 */ 10777 swap(curr->vruntime, se->vruntime); 10778 resched_curr(rq); 10779 } 10780 10781 se->vruntime -= cfs_rq->min_vruntime; 10782 rq_unlock(rq, &rf); 10783 } 10784 10785 /* 10786 * Priority of the task has changed. Check to see if we preempt 10787 * the current task. 10788 */ 10789 static void 10790 prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio) 10791 { 10792 if (!task_on_rq_queued(p)) 10793 return; 10794 10795 if (rq->cfs.nr_running == 1) 10796 return; 10797 10798 /* 10799 * Reschedule if we are currently running on this runqueue and 10800 * our priority decreased, or if we are not currently running on 10801 * this runqueue and our priority is higher than the current's 10802 */ 10803 if (task_current(rq, p)) { 10804 if (p->prio > oldprio) 10805 resched_curr(rq); 10806 } else 10807 check_preempt_curr(rq, p, 0); 10808 } 10809 10810 static inline bool vruntime_normalized(struct task_struct *p) 10811 { 10812 struct sched_entity *se = &p->se; 10813 10814 /* 10815 * In both the TASK_ON_RQ_QUEUED and TASK_ON_RQ_MIGRATING cases, 10816 * the dequeue_entity(.flags=0) will already have normalized the 10817 * vruntime. 10818 */ 10819 if (p->on_rq) 10820 return true; 10821 10822 /* 10823 * When !on_rq, vruntime of the task has usually NOT been normalized. 10824 * But there are some cases where it has already been normalized: 10825 * 10826 * - A forked child which is waiting for being woken up by 10827 * wake_up_new_task(). 10828 * - A task which has been woken up by try_to_wake_up() and 10829 * waiting for actually being woken up by sched_ttwu_pending(). 10830 */ 10831 if (!se->sum_exec_runtime || 10832 (p->state == TASK_WAKING && p->sched_remote_wakeup)) 10833 return true; 10834 10835 return false; 10836 } 10837 10838 #ifdef CONFIG_FAIR_GROUP_SCHED 10839 /* 10840 * Propagate the changes of the sched_entity across the tg tree to make it 10841 * visible to the root 10842 */ 10843 static void propagate_entity_cfs_rq(struct sched_entity *se) 10844 { 10845 struct cfs_rq *cfs_rq; 10846 10847 /* Start to propagate at parent */ 10848 se = se->parent; 10849 10850 for_each_sched_entity(se) { 10851 cfs_rq = cfs_rq_of(se); 10852 10853 if (cfs_rq_throttled(cfs_rq)) 10854 break; 10855 10856 update_load_avg(cfs_rq, se, UPDATE_TG); 10857 } 10858 } 10859 #else 10860 static void propagate_entity_cfs_rq(struct sched_entity *se) { } 10861 #endif 10862 10863 static void detach_entity_cfs_rq(struct sched_entity *se) 10864 { 10865 struct cfs_rq *cfs_rq = cfs_rq_of(se); 10866 10867 /* Catch up with the cfs_rq and remove our load when we leave */ 10868 update_load_avg(cfs_rq, se, 0); 10869 detach_entity_load_avg(cfs_rq, se); 10870 update_tg_load_avg(cfs_rq); 10871 propagate_entity_cfs_rq(se); 10872 } 10873 10874 static void attach_entity_cfs_rq(struct sched_entity *se) 10875 { 10876 struct cfs_rq *cfs_rq = cfs_rq_of(se); 10877 10878 #ifdef CONFIG_FAIR_GROUP_SCHED 10879 /* 10880 * Since the real-depth could have been changed (only FAIR 10881 * class maintain depth value), reset depth properly. 10882 */ 10883 se->depth = se->parent ? se->parent->depth + 1 : 0; 10884 #endif 10885 10886 /* Synchronize entity with its cfs_rq */ 10887 update_load_avg(cfs_rq, se, sched_feat(ATTACH_AGE_LOAD) ? 0 : SKIP_AGE_LOAD); 10888 attach_entity_load_avg(cfs_rq, se); 10889 update_tg_load_avg(cfs_rq); 10890 propagate_entity_cfs_rq(se); 10891 } 10892 10893 static void detach_task_cfs_rq(struct task_struct *p) 10894 { 10895 struct sched_entity *se = &p->se; 10896 struct cfs_rq *cfs_rq = cfs_rq_of(se); 10897 10898 if (!vruntime_normalized(p)) { 10899 /* 10900 * Fix up our vruntime so that the current sleep doesn't 10901 * cause 'unlimited' sleep bonus. 10902 */ 10903 place_entity(cfs_rq, se, 0); 10904 se->vruntime -= cfs_rq->min_vruntime; 10905 } 10906 10907 detach_entity_cfs_rq(se); 10908 } 10909 10910 static void attach_task_cfs_rq(struct task_struct *p) 10911 { 10912 struct sched_entity *se = &p->se; 10913 struct cfs_rq *cfs_rq = cfs_rq_of(se); 10914 10915 attach_entity_cfs_rq(se); 10916 10917 if (!vruntime_normalized(p)) 10918 se->vruntime += cfs_rq->min_vruntime; 10919 } 10920 10921 static void switched_from_fair(struct rq *rq, struct task_struct *p) 10922 { 10923 detach_task_cfs_rq(p); 10924 } 10925 10926 static void switched_to_fair(struct rq *rq, struct task_struct *p) 10927 { 10928 attach_task_cfs_rq(p); 10929 10930 if (task_on_rq_queued(p)) { 10931 /* 10932 * We were most likely switched from sched_rt, so 10933 * kick off the schedule if running, otherwise just see 10934 * if we can still preempt the current task. 10935 */ 10936 if (task_current(rq, p)) 10937 resched_curr(rq); 10938 else 10939 check_preempt_curr(rq, p, 0); 10940 } 10941 } 10942 10943 /* Account for a task changing its policy or group. 10944 * 10945 * This routine is mostly called to set cfs_rq->curr field when a task 10946 * migrates between groups/classes. 10947 */ 10948 static void set_next_task_fair(struct rq *rq, struct task_struct *p, bool first) 10949 { 10950 struct sched_entity *se = &p->se; 10951 10952 #ifdef CONFIG_SMP 10953 if (task_on_rq_queued(p)) { 10954 /* 10955 * Move the next running task to the front of the list, so our 10956 * cfs_tasks list becomes MRU one. 10957 */ 10958 list_move(&se->group_node, &rq->cfs_tasks); 10959 } 10960 #endif 10961 10962 for_each_sched_entity(se) { 10963 struct cfs_rq *cfs_rq = cfs_rq_of(se); 10964 10965 set_next_entity(cfs_rq, se); 10966 /* ensure bandwidth has been allocated on our new cfs_rq */ 10967 account_cfs_rq_runtime(cfs_rq, 0); 10968 } 10969 } 10970 10971 void init_cfs_rq(struct cfs_rq *cfs_rq) 10972 { 10973 cfs_rq->tasks_timeline = RB_ROOT_CACHED; 10974 cfs_rq->min_vruntime = (u64)(-(1LL << 20)); 10975 #ifndef CONFIG_64BIT 10976 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime; 10977 #endif 10978 #ifdef CONFIG_SMP 10979 raw_spin_lock_init(&cfs_rq->removed.lock); 10980 #endif 10981 } 10982 10983 #ifdef CONFIG_FAIR_GROUP_SCHED 10984 static void task_set_group_fair(struct task_struct *p) 10985 { 10986 struct sched_entity *se = &p->se; 10987 10988 set_task_rq(p, task_cpu(p)); 10989 se->depth = se->parent ? se->parent->depth + 1 : 0; 10990 } 10991 10992 static void task_move_group_fair(struct task_struct *p) 10993 { 10994 detach_task_cfs_rq(p); 10995 set_task_rq(p, task_cpu(p)); 10996 10997 #ifdef CONFIG_SMP 10998 /* Tell se's cfs_rq has been changed -- migrated */ 10999 p->se.avg.last_update_time = 0; 11000 #endif 11001 attach_task_cfs_rq(p); 11002 } 11003 11004 static void task_change_group_fair(struct task_struct *p, int type) 11005 { 11006 switch (type) { 11007 case TASK_SET_GROUP: 11008 task_set_group_fair(p); 11009 break; 11010 11011 case TASK_MOVE_GROUP: 11012 task_move_group_fair(p); 11013 break; 11014 } 11015 } 11016 11017 void free_fair_sched_group(struct task_group *tg) 11018 { 11019 int i; 11020 11021 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg)); 11022 11023 for_each_possible_cpu(i) { 11024 if (tg->cfs_rq) 11025 kfree(tg->cfs_rq[i]); 11026 if (tg->se) 11027 kfree(tg->se[i]); 11028 } 11029 11030 kfree(tg->cfs_rq); 11031 kfree(tg->se); 11032 } 11033 11034 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent) 11035 { 11036 struct sched_entity *se; 11037 struct cfs_rq *cfs_rq; 11038 int i; 11039 11040 tg->cfs_rq = kcalloc(nr_cpu_ids, sizeof(cfs_rq), GFP_KERNEL); 11041 if (!tg->cfs_rq) 11042 goto err; 11043 tg->se = kcalloc(nr_cpu_ids, sizeof(se), GFP_KERNEL); 11044 if (!tg->se) 11045 goto err; 11046 11047 tg->shares = NICE_0_LOAD; 11048 11049 init_cfs_bandwidth(tg_cfs_bandwidth(tg)); 11050 11051 for_each_possible_cpu(i) { 11052 cfs_rq = kzalloc_node(sizeof(struct cfs_rq), 11053 GFP_KERNEL, cpu_to_node(i)); 11054 if (!cfs_rq) 11055 goto err; 11056 11057 se = kzalloc_node(sizeof(struct sched_entity), 11058 GFP_KERNEL, cpu_to_node(i)); 11059 if (!se) 11060 goto err_free_rq; 11061 11062 init_cfs_rq(cfs_rq); 11063 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]); 11064 init_entity_runnable_average(se); 11065 } 11066 11067 return 1; 11068 11069 err_free_rq: 11070 kfree(cfs_rq); 11071 err: 11072 return 0; 11073 } 11074 11075 void online_fair_sched_group(struct task_group *tg) 11076 { 11077 struct sched_entity *se; 11078 struct rq_flags rf; 11079 struct rq *rq; 11080 int i; 11081 11082 for_each_possible_cpu(i) { 11083 rq = cpu_rq(i); 11084 se = tg->se[i]; 11085 rq_lock_irq(rq, &rf); 11086 update_rq_clock(rq); 11087 attach_entity_cfs_rq(se); 11088 sync_throttle(tg, i); 11089 rq_unlock_irq(rq, &rf); 11090 } 11091 } 11092 11093 void unregister_fair_sched_group(struct task_group *tg) 11094 { 11095 unsigned long flags; 11096 struct rq *rq; 11097 int cpu; 11098 11099 for_each_possible_cpu(cpu) { 11100 if (tg->se[cpu]) 11101 remove_entity_load_avg(tg->se[cpu]); 11102 11103 /* 11104 * Only empty task groups can be destroyed; so we can speculatively 11105 * check on_list without danger of it being re-added. 11106 */ 11107 if (!tg->cfs_rq[cpu]->on_list) 11108 continue; 11109 11110 rq = cpu_rq(cpu); 11111 11112 raw_spin_lock_irqsave(&rq->lock, flags); 11113 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]); 11114 raw_spin_unlock_irqrestore(&rq->lock, flags); 11115 } 11116 } 11117 11118 void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq, 11119 struct sched_entity *se, int cpu, 11120 struct sched_entity *parent) 11121 { 11122 struct rq *rq = cpu_rq(cpu); 11123 11124 cfs_rq->tg = tg; 11125 cfs_rq->rq = rq; 11126 init_cfs_rq_runtime(cfs_rq); 11127 11128 tg->cfs_rq[cpu] = cfs_rq; 11129 tg->se[cpu] = se; 11130 11131 /* se could be NULL for root_task_group */ 11132 if (!se) 11133 return; 11134 11135 if (!parent) { 11136 se->cfs_rq = &rq->cfs; 11137 se->depth = 0; 11138 } else { 11139 se->cfs_rq = parent->my_q; 11140 se->depth = parent->depth + 1; 11141 } 11142 11143 se->my_q = cfs_rq; 11144 /* guarantee group entities always have weight */ 11145 update_load_set(&se->load, NICE_0_LOAD); 11146 se->parent = parent; 11147 } 11148 11149 static DEFINE_MUTEX(shares_mutex); 11150 11151 int sched_group_set_shares(struct task_group *tg, unsigned long shares) 11152 { 11153 int i; 11154 11155 /* 11156 * We can't change the weight of the root cgroup. 11157 */ 11158 if (!tg->se[0]) 11159 return -EINVAL; 11160 11161 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES)); 11162 11163 mutex_lock(&shares_mutex); 11164 if (tg->shares == shares) 11165 goto done; 11166 11167 tg->shares = shares; 11168 for_each_possible_cpu(i) { 11169 struct rq *rq = cpu_rq(i); 11170 struct sched_entity *se = tg->se[i]; 11171 struct rq_flags rf; 11172 11173 /* Propagate contribution to hierarchy */ 11174 rq_lock_irqsave(rq, &rf); 11175 update_rq_clock(rq); 11176 for_each_sched_entity(se) { 11177 update_load_avg(cfs_rq_of(se), se, UPDATE_TG); 11178 update_cfs_group(se); 11179 } 11180 rq_unlock_irqrestore(rq, &rf); 11181 } 11182 11183 done: 11184 mutex_unlock(&shares_mutex); 11185 return 0; 11186 } 11187 #else /* CONFIG_FAIR_GROUP_SCHED */ 11188 11189 void free_fair_sched_group(struct task_group *tg) { } 11190 11191 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent) 11192 { 11193 return 1; 11194 } 11195 11196 void online_fair_sched_group(struct task_group *tg) { } 11197 11198 void unregister_fair_sched_group(struct task_group *tg) { } 11199 11200 #endif /* CONFIG_FAIR_GROUP_SCHED */ 11201 11202 11203 static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task) 11204 { 11205 struct sched_entity *se = &task->se; 11206 unsigned int rr_interval = 0; 11207 11208 /* 11209 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise 11210 * idle runqueue: 11211 */ 11212 if (rq->cfs.load.weight) 11213 rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se)); 11214 11215 return rr_interval; 11216 } 11217 11218 /* 11219 * All the scheduling class methods: 11220 */ 11221 DEFINE_SCHED_CLASS(fair) = { 11222 11223 .enqueue_task = enqueue_task_fair, 11224 .dequeue_task = dequeue_task_fair, 11225 .yield_task = yield_task_fair, 11226 .yield_to_task = yield_to_task_fair, 11227 11228 .check_preempt_curr = check_preempt_wakeup, 11229 11230 .pick_next_task = __pick_next_task_fair, 11231 .put_prev_task = put_prev_task_fair, 11232 .set_next_task = set_next_task_fair, 11233 11234 #ifdef CONFIG_SMP 11235 .balance = balance_fair, 11236 .select_task_rq = select_task_rq_fair, 11237 .migrate_task_rq = migrate_task_rq_fair, 11238 11239 .rq_online = rq_online_fair, 11240 .rq_offline = rq_offline_fair, 11241 11242 .task_dead = task_dead_fair, 11243 .set_cpus_allowed = set_cpus_allowed_common, 11244 #endif 11245 11246 .task_tick = task_tick_fair, 11247 .task_fork = task_fork_fair, 11248 11249 .prio_changed = prio_changed_fair, 11250 .switched_from = switched_from_fair, 11251 .switched_to = switched_to_fair, 11252 11253 .get_rr_interval = get_rr_interval_fair, 11254 11255 .update_curr = update_curr_fair, 11256 11257 #ifdef CONFIG_FAIR_GROUP_SCHED 11258 .task_change_group = task_change_group_fair, 11259 #endif 11260 11261 #ifdef CONFIG_UCLAMP_TASK 11262 .uclamp_enabled = 1, 11263 #endif 11264 }; 11265 11266 #ifdef CONFIG_SCHED_DEBUG 11267 void print_cfs_stats(struct seq_file *m, int cpu) 11268 { 11269 struct cfs_rq *cfs_rq, *pos; 11270 11271 rcu_read_lock(); 11272 for_each_leaf_cfs_rq_safe(cpu_rq(cpu), cfs_rq, pos) 11273 print_cfs_rq(m, cpu, cfs_rq); 11274 rcu_read_unlock(); 11275 } 11276 11277 #ifdef CONFIG_NUMA_BALANCING 11278 void show_numa_stats(struct task_struct *p, struct seq_file *m) 11279 { 11280 int node; 11281 unsigned long tsf = 0, tpf = 0, gsf = 0, gpf = 0; 11282 struct numa_group *ng; 11283 11284 rcu_read_lock(); 11285 ng = rcu_dereference(p->numa_group); 11286 for_each_online_node(node) { 11287 if (p->numa_faults) { 11288 tsf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 0)]; 11289 tpf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 1)]; 11290 } 11291 if (ng) { 11292 gsf = ng->faults[task_faults_idx(NUMA_MEM, node, 0)], 11293 gpf = ng->faults[task_faults_idx(NUMA_MEM, node, 1)]; 11294 } 11295 print_numa_stats(m, node, tsf, tpf, gsf, gpf); 11296 } 11297 rcu_read_unlock(); 11298 } 11299 #endif /* CONFIG_NUMA_BALANCING */ 11300 #endif /* CONFIG_SCHED_DEBUG */ 11301 11302 __init void init_sched_fair_class(void) 11303 { 11304 #ifdef CONFIG_SMP 11305 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains); 11306 11307 #ifdef CONFIG_NO_HZ_COMMON 11308 nohz.next_balance = jiffies; 11309 nohz.next_blocked = jiffies; 11310 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT); 11311 #endif 11312 #endif /* SMP */ 11313 11314 } 11315 11316 /* 11317 * Helper functions to facilitate extracting info from tracepoints. 11318 */ 11319 11320 const struct sched_avg *sched_trace_cfs_rq_avg(struct cfs_rq *cfs_rq) 11321 { 11322 #ifdef CONFIG_SMP 11323 return cfs_rq ? &cfs_rq->avg : NULL; 11324 #else 11325 return NULL; 11326 #endif 11327 } 11328 EXPORT_SYMBOL_GPL(sched_trace_cfs_rq_avg); 11329 11330 char *sched_trace_cfs_rq_path(struct cfs_rq *cfs_rq, char *str, int len) 11331 { 11332 if (!cfs_rq) { 11333 if (str) 11334 strlcpy(str, "(null)", len); 11335 else 11336 return NULL; 11337 } 11338 11339 cfs_rq_tg_path(cfs_rq, str, len); 11340 return str; 11341 } 11342 EXPORT_SYMBOL_GPL(sched_trace_cfs_rq_path); 11343 11344 int sched_trace_cfs_rq_cpu(struct cfs_rq *cfs_rq) 11345 { 11346 return cfs_rq ? cpu_of(rq_of(cfs_rq)) : -1; 11347 } 11348 EXPORT_SYMBOL_GPL(sched_trace_cfs_rq_cpu); 11349 11350 const struct sched_avg *sched_trace_rq_avg_rt(struct rq *rq) 11351 { 11352 #ifdef CONFIG_SMP 11353 return rq ? &rq->avg_rt : NULL; 11354 #else 11355 return NULL; 11356 #endif 11357 } 11358 EXPORT_SYMBOL_GPL(sched_trace_rq_avg_rt); 11359 11360 const struct sched_avg *sched_trace_rq_avg_dl(struct rq *rq) 11361 { 11362 #ifdef CONFIG_SMP 11363 return rq ? &rq->avg_dl : NULL; 11364 #else 11365 return NULL; 11366 #endif 11367 } 11368 EXPORT_SYMBOL_GPL(sched_trace_rq_avg_dl); 11369 11370 const struct sched_avg *sched_trace_rq_avg_irq(struct rq *rq) 11371 { 11372 #if defined(CONFIG_SMP) && defined(CONFIG_HAVE_SCHED_AVG_IRQ) 11373 return rq ? &rq->avg_irq : NULL; 11374 #else 11375 return NULL; 11376 #endif 11377 } 11378 EXPORT_SYMBOL_GPL(sched_trace_rq_avg_irq); 11379 11380 int sched_trace_rq_cpu(struct rq *rq) 11381 { 11382 return rq ? cpu_of(rq) : -1; 11383 } 11384 EXPORT_SYMBOL_GPL(sched_trace_rq_cpu); 11385 11386 int sched_trace_rq_cpu_capacity(struct rq *rq) 11387 { 11388 return rq ? 11389 #ifdef CONFIG_SMP 11390 rq->cpu_capacity 11391 #else 11392 SCHED_CAPACITY_SCALE 11393 #endif 11394 : -1; 11395 } 11396 EXPORT_SYMBOL_GPL(sched_trace_rq_cpu_capacity); 11397 11398 const struct cpumask *sched_trace_rd_span(struct root_domain *rd) 11399 { 11400 #ifdef CONFIG_SMP 11401 return rd ? rd->span : NULL; 11402 #else 11403 return NULL; 11404 #endif 11405 } 11406 EXPORT_SYMBOL_GPL(sched_trace_rd_span); 11407 11408 int sched_trace_rq_nr_running(struct rq *rq) 11409 { 11410 return rq ? rq->nr_running : -1; 11411 } 11412 EXPORT_SYMBOL_GPL(sched_trace_rq_nr_running); 11413