1 /* 2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH) 3 * 4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com> 5 * 6 * Interactivity improvements by Mike Galbraith 7 * (C) 2007 Mike Galbraith <efault@gmx.de> 8 * 9 * Various enhancements by Dmitry Adamushko. 10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com> 11 * 12 * Group scheduling enhancements by Srivatsa Vaddagiri 13 * Copyright IBM Corporation, 2007 14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com> 15 * 16 * Scaled math optimizations by Thomas Gleixner 17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de> 18 * 19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra 20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com> 21 */ 22 23 #include <linux/latencytop.h> 24 #include <linux/sched.h> 25 #include <linux/cpumask.h> 26 #include <linux/cpuidle.h> 27 #include <linux/slab.h> 28 #include <linux/profile.h> 29 #include <linux/interrupt.h> 30 #include <linux/mempolicy.h> 31 #include <linux/migrate.h> 32 #include <linux/task_work.h> 33 34 #include <trace/events/sched.h> 35 36 #include "sched.h" 37 38 /* 39 * Targeted preemption latency for CPU-bound tasks: 40 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds) 41 * 42 * NOTE: this latency value is not the same as the concept of 43 * 'timeslice length' - timeslices in CFS are of variable length 44 * and have no persistent notion like in traditional, time-slice 45 * based scheduling concepts. 46 * 47 * (to see the precise effective timeslice length of your workload, 48 * run vmstat and monitor the context-switches (cs) field) 49 */ 50 unsigned int sysctl_sched_latency = 6000000ULL; 51 unsigned int normalized_sysctl_sched_latency = 6000000ULL; 52 53 /* 54 * The initial- and re-scaling of tunables is configurable 55 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus)) 56 * 57 * Options are: 58 * SCHED_TUNABLESCALING_NONE - unscaled, always *1 59 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus) 60 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus 61 */ 62 enum sched_tunable_scaling sysctl_sched_tunable_scaling 63 = SCHED_TUNABLESCALING_LOG; 64 65 /* 66 * Minimal preemption granularity for CPU-bound tasks: 67 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds) 68 */ 69 unsigned int sysctl_sched_min_granularity = 750000ULL; 70 unsigned int normalized_sysctl_sched_min_granularity = 750000ULL; 71 72 /* 73 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity 74 */ 75 static unsigned int sched_nr_latency = 8; 76 77 /* 78 * After fork, child runs first. If set to 0 (default) then 79 * parent will (try to) run first. 80 */ 81 unsigned int sysctl_sched_child_runs_first __read_mostly; 82 83 /* 84 * SCHED_OTHER wake-up granularity. 85 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds) 86 * 87 * This option delays the preemption effects of decoupled workloads 88 * and reduces their over-scheduling. Synchronous workloads will still 89 * have immediate wakeup/sleep latencies. 90 */ 91 unsigned int sysctl_sched_wakeup_granularity = 1000000UL; 92 unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL; 93 94 const_debug unsigned int sysctl_sched_migration_cost = 500000UL; 95 96 /* 97 * The exponential sliding window over which load is averaged for shares 98 * distribution. 99 * (default: 10msec) 100 */ 101 unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL; 102 103 #ifdef CONFIG_CFS_BANDWIDTH 104 /* 105 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool 106 * each time a cfs_rq requests quota. 107 * 108 * Note: in the case that the slice exceeds the runtime remaining (either due 109 * to consumption or the quota being specified to be smaller than the slice) 110 * we will always only issue the remaining available time. 111 * 112 * default: 5 msec, units: microseconds 113 */ 114 unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL; 115 #endif 116 117 static inline void update_load_add(struct load_weight *lw, unsigned long inc) 118 { 119 lw->weight += inc; 120 lw->inv_weight = 0; 121 } 122 123 static inline void update_load_sub(struct load_weight *lw, unsigned long dec) 124 { 125 lw->weight -= dec; 126 lw->inv_weight = 0; 127 } 128 129 static inline void update_load_set(struct load_weight *lw, unsigned long w) 130 { 131 lw->weight = w; 132 lw->inv_weight = 0; 133 } 134 135 /* 136 * Increase the granularity value when there are more CPUs, 137 * because with more CPUs the 'effective latency' as visible 138 * to users decreases. But the relationship is not linear, 139 * so pick a second-best guess by going with the log2 of the 140 * number of CPUs. 141 * 142 * This idea comes from the SD scheduler of Con Kolivas: 143 */ 144 static int get_update_sysctl_factor(void) 145 { 146 unsigned int cpus = min_t(int, num_online_cpus(), 8); 147 unsigned int factor; 148 149 switch (sysctl_sched_tunable_scaling) { 150 case SCHED_TUNABLESCALING_NONE: 151 factor = 1; 152 break; 153 case SCHED_TUNABLESCALING_LINEAR: 154 factor = cpus; 155 break; 156 case SCHED_TUNABLESCALING_LOG: 157 default: 158 factor = 1 + ilog2(cpus); 159 break; 160 } 161 162 return factor; 163 } 164 165 static void update_sysctl(void) 166 { 167 unsigned int factor = get_update_sysctl_factor(); 168 169 #define SET_SYSCTL(name) \ 170 (sysctl_##name = (factor) * normalized_sysctl_##name) 171 SET_SYSCTL(sched_min_granularity); 172 SET_SYSCTL(sched_latency); 173 SET_SYSCTL(sched_wakeup_granularity); 174 #undef SET_SYSCTL 175 } 176 177 void sched_init_granularity(void) 178 { 179 update_sysctl(); 180 } 181 182 #define WMULT_CONST (~0U) 183 #define WMULT_SHIFT 32 184 185 static void __update_inv_weight(struct load_weight *lw) 186 { 187 unsigned long w; 188 189 if (likely(lw->inv_weight)) 190 return; 191 192 w = scale_load_down(lw->weight); 193 194 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST)) 195 lw->inv_weight = 1; 196 else if (unlikely(!w)) 197 lw->inv_weight = WMULT_CONST; 198 else 199 lw->inv_weight = WMULT_CONST / w; 200 } 201 202 /* 203 * delta_exec * weight / lw.weight 204 * OR 205 * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT 206 * 207 * Either weight := NICE_0_LOAD and lw \e prio_to_wmult[], in which case 208 * we're guaranteed shift stays positive because inv_weight is guaranteed to 209 * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22. 210 * 211 * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus 212 * weight/lw.weight <= 1, and therefore our shift will also be positive. 213 */ 214 static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw) 215 { 216 u64 fact = scale_load_down(weight); 217 int shift = WMULT_SHIFT; 218 219 __update_inv_weight(lw); 220 221 if (unlikely(fact >> 32)) { 222 while (fact >> 32) { 223 fact >>= 1; 224 shift--; 225 } 226 } 227 228 /* hint to use a 32x32->64 mul */ 229 fact = (u64)(u32)fact * lw->inv_weight; 230 231 while (fact >> 32) { 232 fact >>= 1; 233 shift--; 234 } 235 236 return mul_u64_u32_shr(delta_exec, fact, shift); 237 } 238 239 240 const struct sched_class fair_sched_class; 241 242 /************************************************************** 243 * CFS operations on generic schedulable entities: 244 */ 245 246 #ifdef CONFIG_FAIR_GROUP_SCHED 247 248 /* cpu runqueue to which this cfs_rq is attached */ 249 static inline struct rq *rq_of(struct cfs_rq *cfs_rq) 250 { 251 return cfs_rq->rq; 252 } 253 254 /* An entity is a task if it doesn't "own" a runqueue */ 255 #define entity_is_task(se) (!se->my_q) 256 257 static inline struct task_struct *task_of(struct sched_entity *se) 258 { 259 #ifdef CONFIG_SCHED_DEBUG 260 WARN_ON_ONCE(!entity_is_task(se)); 261 #endif 262 return container_of(se, struct task_struct, se); 263 } 264 265 /* Walk up scheduling entities hierarchy */ 266 #define for_each_sched_entity(se) \ 267 for (; se; se = se->parent) 268 269 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p) 270 { 271 return p->se.cfs_rq; 272 } 273 274 /* runqueue on which this entity is (to be) queued */ 275 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se) 276 { 277 return se->cfs_rq; 278 } 279 280 /* runqueue "owned" by this group */ 281 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp) 282 { 283 return grp->my_q; 284 } 285 286 static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq, 287 int force_update); 288 289 static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq) 290 { 291 if (!cfs_rq->on_list) { 292 /* 293 * Ensure we either appear before our parent (if already 294 * enqueued) or force our parent to appear after us when it is 295 * enqueued. The fact that we always enqueue bottom-up 296 * reduces this to two cases. 297 */ 298 if (cfs_rq->tg->parent && 299 cfs_rq->tg->parent->cfs_rq[cpu_of(rq_of(cfs_rq))]->on_list) { 300 list_add_rcu(&cfs_rq->leaf_cfs_rq_list, 301 &rq_of(cfs_rq)->leaf_cfs_rq_list); 302 } else { 303 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list, 304 &rq_of(cfs_rq)->leaf_cfs_rq_list); 305 } 306 307 cfs_rq->on_list = 1; 308 /* We should have no load, but we need to update last_decay. */ 309 update_cfs_rq_blocked_load(cfs_rq, 0); 310 } 311 } 312 313 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq) 314 { 315 if (cfs_rq->on_list) { 316 list_del_rcu(&cfs_rq->leaf_cfs_rq_list); 317 cfs_rq->on_list = 0; 318 } 319 } 320 321 /* Iterate thr' all leaf cfs_rq's on a runqueue */ 322 #define for_each_leaf_cfs_rq(rq, cfs_rq) \ 323 list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list) 324 325 /* Do the two (enqueued) entities belong to the same group ? */ 326 static inline struct cfs_rq * 327 is_same_group(struct sched_entity *se, struct sched_entity *pse) 328 { 329 if (se->cfs_rq == pse->cfs_rq) 330 return se->cfs_rq; 331 332 return NULL; 333 } 334 335 static inline struct sched_entity *parent_entity(struct sched_entity *se) 336 { 337 return se->parent; 338 } 339 340 static void 341 find_matching_se(struct sched_entity **se, struct sched_entity **pse) 342 { 343 int se_depth, pse_depth; 344 345 /* 346 * preemption test can be made between sibling entities who are in the 347 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of 348 * both tasks until we find their ancestors who are siblings of common 349 * parent. 350 */ 351 352 /* First walk up until both entities are at same depth */ 353 se_depth = (*se)->depth; 354 pse_depth = (*pse)->depth; 355 356 while (se_depth > pse_depth) { 357 se_depth--; 358 *se = parent_entity(*se); 359 } 360 361 while (pse_depth > se_depth) { 362 pse_depth--; 363 *pse = parent_entity(*pse); 364 } 365 366 while (!is_same_group(*se, *pse)) { 367 *se = parent_entity(*se); 368 *pse = parent_entity(*pse); 369 } 370 } 371 372 #else /* !CONFIG_FAIR_GROUP_SCHED */ 373 374 static inline struct task_struct *task_of(struct sched_entity *se) 375 { 376 return container_of(se, struct task_struct, se); 377 } 378 379 static inline struct rq *rq_of(struct cfs_rq *cfs_rq) 380 { 381 return container_of(cfs_rq, struct rq, cfs); 382 } 383 384 #define entity_is_task(se) 1 385 386 #define for_each_sched_entity(se) \ 387 for (; se; se = NULL) 388 389 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p) 390 { 391 return &task_rq(p)->cfs; 392 } 393 394 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se) 395 { 396 struct task_struct *p = task_of(se); 397 struct rq *rq = task_rq(p); 398 399 return &rq->cfs; 400 } 401 402 /* runqueue "owned" by this group */ 403 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp) 404 { 405 return NULL; 406 } 407 408 static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq) 409 { 410 } 411 412 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq) 413 { 414 } 415 416 #define for_each_leaf_cfs_rq(rq, cfs_rq) \ 417 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL) 418 419 static inline struct sched_entity *parent_entity(struct sched_entity *se) 420 { 421 return NULL; 422 } 423 424 static inline void 425 find_matching_se(struct sched_entity **se, struct sched_entity **pse) 426 { 427 } 428 429 #endif /* CONFIG_FAIR_GROUP_SCHED */ 430 431 static __always_inline 432 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec); 433 434 /************************************************************** 435 * Scheduling class tree data structure manipulation methods: 436 */ 437 438 static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime) 439 { 440 s64 delta = (s64)(vruntime - max_vruntime); 441 if (delta > 0) 442 max_vruntime = vruntime; 443 444 return max_vruntime; 445 } 446 447 static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime) 448 { 449 s64 delta = (s64)(vruntime - min_vruntime); 450 if (delta < 0) 451 min_vruntime = vruntime; 452 453 return min_vruntime; 454 } 455 456 static inline int entity_before(struct sched_entity *a, 457 struct sched_entity *b) 458 { 459 return (s64)(a->vruntime - b->vruntime) < 0; 460 } 461 462 static void update_min_vruntime(struct cfs_rq *cfs_rq) 463 { 464 u64 vruntime = cfs_rq->min_vruntime; 465 466 if (cfs_rq->curr) 467 vruntime = cfs_rq->curr->vruntime; 468 469 if (cfs_rq->rb_leftmost) { 470 struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost, 471 struct sched_entity, 472 run_node); 473 474 if (!cfs_rq->curr) 475 vruntime = se->vruntime; 476 else 477 vruntime = min_vruntime(vruntime, se->vruntime); 478 } 479 480 /* ensure we never gain time by being placed backwards. */ 481 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime); 482 #ifndef CONFIG_64BIT 483 smp_wmb(); 484 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime; 485 #endif 486 } 487 488 /* 489 * Enqueue an entity into the rb-tree: 490 */ 491 static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) 492 { 493 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node; 494 struct rb_node *parent = NULL; 495 struct sched_entity *entry; 496 int leftmost = 1; 497 498 /* 499 * Find the right place in the rbtree: 500 */ 501 while (*link) { 502 parent = *link; 503 entry = rb_entry(parent, struct sched_entity, run_node); 504 /* 505 * We dont care about collisions. Nodes with 506 * the same key stay together. 507 */ 508 if (entity_before(se, entry)) { 509 link = &parent->rb_left; 510 } else { 511 link = &parent->rb_right; 512 leftmost = 0; 513 } 514 } 515 516 /* 517 * Maintain a cache of leftmost tree entries (it is frequently 518 * used): 519 */ 520 if (leftmost) 521 cfs_rq->rb_leftmost = &se->run_node; 522 523 rb_link_node(&se->run_node, parent, link); 524 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline); 525 } 526 527 static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) 528 { 529 if (cfs_rq->rb_leftmost == &se->run_node) { 530 struct rb_node *next_node; 531 532 next_node = rb_next(&se->run_node); 533 cfs_rq->rb_leftmost = next_node; 534 } 535 536 rb_erase(&se->run_node, &cfs_rq->tasks_timeline); 537 } 538 539 struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq) 540 { 541 struct rb_node *left = cfs_rq->rb_leftmost; 542 543 if (!left) 544 return NULL; 545 546 return rb_entry(left, struct sched_entity, run_node); 547 } 548 549 static struct sched_entity *__pick_next_entity(struct sched_entity *se) 550 { 551 struct rb_node *next = rb_next(&se->run_node); 552 553 if (!next) 554 return NULL; 555 556 return rb_entry(next, struct sched_entity, run_node); 557 } 558 559 #ifdef CONFIG_SCHED_DEBUG 560 struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq) 561 { 562 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline); 563 564 if (!last) 565 return NULL; 566 567 return rb_entry(last, struct sched_entity, run_node); 568 } 569 570 /************************************************************** 571 * Scheduling class statistics methods: 572 */ 573 574 int sched_proc_update_handler(struct ctl_table *table, int write, 575 void __user *buffer, size_t *lenp, 576 loff_t *ppos) 577 { 578 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 579 int factor = get_update_sysctl_factor(); 580 581 if (ret || !write) 582 return ret; 583 584 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency, 585 sysctl_sched_min_granularity); 586 587 #define WRT_SYSCTL(name) \ 588 (normalized_sysctl_##name = sysctl_##name / (factor)) 589 WRT_SYSCTL(sched_min_granularity); 590 WRT_SYSCTL(sched_latency); 591 WRT_SYSCTL(sched_wakeup_granularity); 592 #undef WRT_SYSCTL 593 594 return 0; 595 } 596 #endif 597 598 /* 599 * delta /= w 600 */ 601 static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se) 602 { 603 if (unlikely(se->load.weight != NICE_0_LOAD)) 604 delta = __calc_delta(delta, NICE_0_LOAD, &se->load); 605 606 return delta; 607 } 608 609 /* 610 * The idea is to set a period in which each task runs once. 611 * 612 * When there are too many tasks (sched_nr_latency) we have to stretch 613 * this period because otherwise the slices get too small. 614 * 615 * p = (nr <= nl) ? l : l*nr/nl 616 */ 617 static u64 __sched_period(unsigned long nr_running) 618 { 619 u64 period = sysctl_sched_latency; 620 unsigned long nr_latency = sched_nr_latency; 621 622 if (unlikely(nr_running > nr_latency)) { 623 period = sysctl_sched_min_granularity; 624 period *= nr_running; 625 } 626 627 return period; 628 } 629 630 /* 631 * We calculate the wall-time slice from the period by taking a part 632 * proportional to the weight. 633 * 634 * s = p*P[w/rw] 635 */ 636 static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se) 637 { 638 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq); 639 640 for_each_sched_entity(se) { 641 struct load_weight *load; 642 struct load_weight lw; 643 644 cfs_rq = cfs_rq_of(se); 645 load = &cfs_rq->load; 646 647 if (unlikely(!se->on_rq)) { 648 lw = cfs_rq->load; 649 650 update_load_add(&lw, se->load.weight); 651 load = &lw; 652 } 653 slice = __calc_delta(slice, se->load.weight, load); 654 } 655 return slice; 656 } 657 658 /* 659 * We calculate the vruntime slice of a to-be-inserted task. 660 * 661 * vs = s/w 662 */ 663 static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se) 664 { 665 return calc_delta_fair(sched_slice(cfs_rq, se), se); 666 } 667 668 #ifdef CONFIG_SMP 669 static int select_idle_sibling(struct task_struct *p, int cpu); 670 static unsigned long task_h_load(struct task_struct *p); 671 672 static inline void __update_task_entity_contrib(struct sched_entity *se); 673 674 /* Give new task start runnable values to heavy its load in infant time */ 675 void init_task_runnable_average(struct task_struct *p) 676 { 677 u32 slice; 678 679 p->se.avg.decay_count = 0; 680 slice = sched_slice(task_cfs_rq(p), &p->se) >> 10; 681 p->se.avg.runnable_avg_sum = slice; 682 p->se.avg.runnable_avg_period = slice; 683 __update_task_entity_contrib(&p->se); 684 } 685 #else 686 void init_task_runnable_average(struct task_struct *p) 687 { 688 } 689 #endif 690 691 /* 692 * Update the current task's runtime statistics. 693 */ 694 static void update_curr(struct cfs_rq *cfs_rq) 695 { 696 struct sched_entity *curr = cfs_rq->curr; 697 u64 now = rq_clock_task(rq_of(cfs_rq)); 698 u64 delta_exec; 699 700 if (unlikely(!curr)) 701 return; 702 703 delta_exec = now - curr->exec_start; 704 if (unlikely((s64)delta_exec <= 0)) 705 return; 706 707 curr->exec_start = now; 708 709 schedstat_set(curr->statistics.exec_max, 710 max(delta_exec, curr->statistics.exec_max)); 711 712 curr->sum_exec_runtime += delta_exec; 713 schedstat_add(cfs_rq, exec_clock, delta_exec); 714 715 curr->vruntime += calc_delta_fair(delta_exec, curr); 716 update_min_vruntime(cfs_rq); 717 718 if (entity_is_task(curr)) { 719 struct task_struct *curtask = task_of(curr); 720 721 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime); 722 cpuacct_charge(curtask, delta_exec); 723 account_group_exec_runtime(curtask, delta_exec); 724 } 725 726 account_cfs_rq_runtime(cfs_rq, delta_exec); 727 } 728 729 static inline void 730 update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se) 731 { 732 schedstat_set(se->statistics.wait_start, rq_clock(rq_of(cfs_rq))); 733 } 734 735 /* 736 * Task is being enqueued - update stats: 737 */ 738 static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se) 739 { 740 /* 741 * Are we enqueueing a waiting task? (for current tasks 742 * a dequeue/enqueue event is a NOP) 743 */ 744 if (se != cfs_rq->curr) 745 update_stats_wait_start(cfs_rq, se); 746 } 747 748 static void 749 update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se) 750 { 751 schedstat_set(se->statistics.wait_max, max(se->statistics.wait_max, 752 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start)); 753 schedstat_set(se->statistics.wait_count, se->statistics.wait_count + 1); 754 schedstat_set(se->statistics.wait_sum, se->statistics.wait_sum + 755 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start); 756 #ifdef CONFIG_SCHEDSTATS 757 if (entity_is_task(se)) { 758 trace_sched_stat_wait(task_of(se), 759 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start); 760 } 761 #endif 762 schedstat_set(se->statistics.wait_start, 0); 763 } 764 765 static inline void 766 update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se) 767 { 768 /* 769 * Mark the end of the wait period if dequeueing a 770 * waiting task: 771 */ 772 if (se != cfs_rq->curr) 773 update_stats_wait_end(cfs_rq, se); 774 } 775 776 /* 777 * We are picking a new current task - update its stats: 778 */ 779 static inline void 780 update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se) 781 { 782 /* 783 * We are starting a new run period: 784 */ 785 se->exec_start = rq_clock_task(rq_of(cfs_rq)); 786 } 787 788 /************************************************** 789 * Scheduling class queueing methods: 790 */ 791 792 #ifdef CONFIG_NUMA_BALANCING 793 /* 794 * Approximate time to scan a full NUMA task in ms. The task scan period is 795 * calculated based on the tasks virtual memory size and 796 * numa_balancing_scan_size. 797 */ 798 unsigned int sysctl_numa_balancing_scan_period_min = 1000; 799 unsigned int sysctl_numa_balancing_scan_period_max = 60000; 800 801 /* Portion of address space to scan in MB */ 802 unsigned int sysctl_numa_balancing_scan_size = 256; 803 804 /* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */ 805 unsigned int sysctl_numa_balancing_scan_delay = 1000; 806 807 static unsigned int task_nr_scan_windows(struct task_struct *p) 808 { 809 unsigned long rss = 0; 810 unsigned long nr_scan_pages; 811 812 /* 813 * Calculations based on RSS as non-present and empty pages are skipped 814 * by the PTE scanner and NUMA hinting faults should be trapped based 815 * on resident pages 816 */ 817 nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT); 818 rss = get_mm_rss(p->mm); 819 if (!rss) 820 rss = nr_scan_pages; 821 822 rss = round_up(rss, nr_scan_pages); 823 return rss / nr_scan_pages; 824 } 825 826 /* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */ 827 #define MAX_SCAN_WINDOW 2560 828 829 static unsigned int task_scan_min(struct task_struct *p) 830 { 831 unsigned int scan_size = ACCESS_ONCE(sysctl_numa_balancing_scan_size); 832 unsigned int scan, floor; 833 unsigned int windows = 1; 834 835 if (scan_size < MAX_SCAN_WINDOW) 836 windows = MAX_SCAN_WINDOW / scan_size; 837 floor = 1000 / windows; 838 839 scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p); 840 return max_t(unsigned int, floor, scan); 841 } 842 843 static unsigned int task_scan_max(struct task_struct *p) 844 { 845 unsigned int smin = task_scan_min(p); 846 unsigned int smax; 847 848 /* Watch for min being lower than max due to floor calculations */ 849 smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p); 850 return max(smin, smax); 851 } 852 853 static void account_numa_enqueue(struct rq *rq, struct task_struct *p) 854 { 855 rq->nr_numa_running += (p->numa_preferred_nid != -1); 856 rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p)); 857 } 858 859 static void account_numa_dequeue(struct rq *rq, struct task_struct *p) 860 { 861 rq->nr_numa_running -= (p->numa_preferred_nid != -1); 862 rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p)); 863 } 864 865 struct numa_group { 866 atomic_t refcount; 867 868 spinlock_t lock; /* nr_tasks, tasks */ 869 int nr_tasks; 870 pid_t gid; 871 struct list_head task_list; 872 873 struct rcu_head rcu; 874 nodemask_t active_nodes; 875 unsigned long total_faults; 876 /* 877 * Faults_cpu is used to decide whether memory should move 878 * towards the CPU. As a consequence, these stats are weighted 879 * more by CPU use than by memory faults. 880 */ 881 unsigned long *faults_cpu; 882 unsigned long faults[0]; 883 }; 884 885 /* Shared or private faults. */ 886 #define NR_NUMA_HINT_FAULT_TYPES 2 887 888 /* Memory and CPU locality */ 889 #define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2) 890 891 /* Averaged statistics, and temporary buffers. */ 892 #define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2) 893 894 pid_t task_numa_group_id(struct task_struct *p) 895 { 896 return p->numa_group ? p->numa_group->gid : 0; 897 } 898 899 static inline int task_faults_idx(int nid, int priv) 900 { 901 return NR_NUMA_HINT_FAULT_TYPES * nid + priv; 902 } 903 904 static inline unsigned long task_faults(struct task_struct *p, int nid) 905 { 906 if (!p->numa_faults_memory) 907 return 0; 908 909 return p->numa_faults_memory[task_faults_idx(nid, 0)] + 910 p->numa_faults_memory[task_faults_idx(nid, 1)]; 911 } 912 913 static inline unsigned long group_faults(struct task_struct *p, int nid) 914 { 915 if (!p->numa_group) 916 return 0; 917 918 return p->numa_group->faults[task_faults_idx(nid, 0)] + 919 p->numa_group->faults[task_faults_idx(nid, 1)]; 920 } 921 922 static inline unsigned long group_faults_cpu(struct numa_group *group, int nid) 923 { 924 return group->faults_cpu[task_faults_idx(nid, 0)] + 925 group->faults_cpu[task_faults_idx(nid, 1)]; 926 } 927 928 /* 929 * These return the fraction of accesses done by a particular task, or 930 * task group, on a particular numa node. The group weight is given a 931 * larger multiplier, in order to group tasks together that are almost 932 * evenly spread out between numa nodes. 933 */ 934 static inline unsigned long task_weight(struct task_struct *p, int nid) 935 { 936 unsigned long total_faults; 937 938 if (!p->numa_faults_memory) 939 return 0; 940 941 total_faults = p->total_numa_faults; 942 943 if (!total_faults) 944 return 0; 945 946 return 1000 * task_faults(p, nid) / total_faults; 947 } 948 949 static inline unsigned long group_weight(struct task_struct *p, int nid) 950 { 951 if (!p->numa_group || !p->numa_group->total_faults) 952 return 0; 953 954 return 1000 * group_faults(p, nid) / p->numa_group->total_faults; 955 } 956 957 bool should_numa_migrate_memory(struct task_struct *p, struct page * page, 958 int src_nid, int dst_cpu) 959 { 960 struct numa_group *ng = p->numa_group; 961 int dst_nid = cpu_to_node(dst_cpu); 962 int last_cpupid, this_cpupid; 963 964 this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid); 965 966 /* 967 * Multi-stage node selection is used in conjunction with a periodic 968 * migration fault to build a temporal task<->page relation. By using 969 * a two-stage filter we remove short/unlikely relations. 970 * 971 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate 972 * a task's usage of a particular page (n_p) per total usage of this 973 * page (n_t) (in a given time-span) to a probability. 974 * 975 * Our periodic faults will sample this probability and getting the 976 * same result twice in a row, given these samples are fully 977 * independent, is then given by P(n)^2, provided our sample period 978 * is sufficiently short compared to the usage pattern. 979 * 980 * This quadric squishes small probabilities, making it less likely we 981 * act on an unlikely task<->page relation. 982 */ 983 last_cpupid = page_cpupid_xchg_last(page, this_cpupid); 984 if (!cpupid_pid_unset(last_cpupid) && 985 cpupid_to_nid(last_cpupid) != dst_nid) 986 return false; 987 988 /* Always allow migrate on private faults */ 989 if (cpupid_match_pid(p, last_cpupid)) 990 return true; 991 992 /* A shared fault, but p->numa_group has not been set up yet. */ 993 if (!ng) 994 return true; 995 996 /* 997 * Do not migrate if the destination is not a node that 998 * is actively used by this numa group. 999 */ 1000 if (!node_isset(dst_nid, ng->active_nodes)) 1001 return false; 1002 1003 /* 1004 * Source is a node that is not actively used by this 1005 * numa group, while the destination is. Migrate. 1006 */ 1007 if (!node_isset(src_nid, ng->active_nodes)) 1008 return true; 1009 1010 /* 1011 * Both source and destination are nodes in active 1012 * use by this numa group. Maximize memory bandwidth 1013 * by migrating from more heavily used groups, to less 1014 * heavily used ones, spreading the load around. 1015 * Use a 1/4 hysteresis to avoid spurious page movement. 1016 */ 1017 return group_faults(p, dst_nid) < (group_faults(p, src_nid) * 3 / 4); 1018 } 1019 1020 static unsigned long weighted_cpuload(const int cpu); 1021 static unsigned long source_load(int cpu, int type); 1022 static unsigned long target_load(int cpu, int type); 1023 static unsigned long capacity_of(int cpu); 1024 static long effective_load(struct task_group *tg, int cpu, long wl, long wg); 1025 1026 /* Cached statistics for all CPUs within a node */ 1027 struct numa_stats { 1028 unsigned long nr_running; 1029 unsigned long load; 1030 1031 /* Total compute capacity of CPUs on a node */ 1032 unsigned long compute_capacity; 1033 1034 /* Approximate capacity in terms of runnable tasks on a node */ 1035 unsigned long task_capacity; 1036 int has_free_capacity; 1037 }; 1038 1039 /* 1040 * XXX borrowed from update_sg_lb_stats 1041 */ 1042 static void update_numa_stats(struct numa_stats *ns, int nid) 1043 { 1044 int smt, cpu, cpus = 0; 1045 unsigned long capacity; 1046 1047 memset(ns, 0, sizeof(*ns)); 1048 for_each_cpu(cpu, cpumask_of_node(nid)) { 1049 struct rq *rq = cpu_rq(cpu); 1050 1051 ns->nr_running += rq->nr_running; 1052 ns->load += weighted_cpuload(cpu); 1053 ns->compute_capacity += capacity_of(cpu); 1054 1055 cpus++; 1056 } 1057 1058 /* 1059 * If we raced with hotplug and there are no CPUs left in our mask 1060 * the @ns structure is NULL'ed and task_numa_compare() will 1061 * not find this node attractive. 1062 * 1063 * We'll either bail at !has_free_capacity, or we'll detect a huge 1064 * imbalance and bail there. 1065 */ 1066 if (!cpus) 1067 return; 1068 1069 /* smt := ceil(cpus / capacity), assumes: 1 < smt_power < 2 */ 1070 smt = DIV_ROUND_UP(SCHED_CAPACITY_SCALE * cpus, ns->compute_capacity); 1071 capacity = cpus / smt; /* cores */ 1072 1073 ns->task_capacity = min_t(unsigned, capacity, 1074 DIV_ROUND_CLOSEST(ns->compute_capacity, SCHED_CAPACITY_SCALE)); 1075 ns->has_free_capacity = (ns->nr_running < ns->task_capacity); 1076 } 1077 1078 struct task_numa_env { 1079 struct task_struct *p; 1080 1081 int src_cpu, src_nid; 1082 int dst_cpu, dst_nid; 1083 1084 struct numa_stats src_stats, dst_stats; 1085 1086 int imbalance_pct; 1087 1088 struct task_struct *best_task; 1089 long best_imp; 1090 int best_cpu; 1091 }; 1092 1093 static void task_numa_assign(struct task_numa_env *env, 1094 struct task_struct *p, long imp) 1095 { 1096 if (env->best_task) 1097 put_task_struct(env->best_task); 1098 if (p) 1099 get_task_struct(p); 1100 1101 env->best_task = p; 1102 env->best_imp = imp; 1103 env->best_cpu = env->dst_cpu; 1104 } 1105 1106 static bool load_too_imbalanced(long src_load, long dst_load, 1107 struct task_numa_env *env) 1108 { 1109 long imb, old_imb; 1110 long orig_src_load, orig_dst_load; 1111 long src_capacity, dst_capacity; 1112 1113 /* 1114 * The load is corrected for the CPU capacity available on each node. 1115 * 1116 * src_load dst_load 1117 * ------------ vs --------- 1118 * src_capacity dst_capacity 1119 */ 1120 src_capacity = env->src_stats.compute_capacity; 1121 dst_capacity = env->dst_stats.compute_capacity; 1122 1123 /* We care about the slope of the imbalance, not the direction. */ 1124 if (dst_load < src_load) 1125 swap(dst_load, src_load); 1126 1127 /* Is the difference below the threshold? */ 1128 imb = dst_load * src_capacity * 100 - 1129 src_load * dst_capacity * env->imbalance_pct; 1130 if (imb <= 0) 1131 return false; 1132 1133 /* 1134 * The imbalance is above the allowed threshold. 1135 * Compare it with the old imbalance. 1136 */ 1137 orig_src_load = env->src_stats.load; 1138 orig_dst_load = env->dst_stats.load; 1139 1140 if (orig_dst_load < orig_src_load) 1141 swap(orig_dst_load, orig_src_load); 1142 1143 old_imb = orig_dst_load * src_capacity * 100 - 1144 orig_src_load * dst_capacity * env->imbalance_pct; 1145 1146 /* Would this change make things worse? */ 1147 return (imb > old_imb); 1148 } 1149 1150 /* 1151 * This checks if the overall compute and NUMA accesses of the system would 1152 * be improved if the source tasks was migrated to the target dst_cpu taking 1153 * into account that it might be best if task running on the dst_cpu should 1154 * be exchanged with the source task 1155 */ 1156 static void task_numa_compare(struct task_numa_env *env, 1157 long taskimp, long groupimp) 1158 { 1159 struct rq *src_rq = cpu_rq(env->src_cpu); 1160 struct rq *dst_rq = cpu_rq(env->dst_cpu); 1161 struct task_struct *cur; 1162 long src_load, dst_load; 1163 long load; 1164 long imp = env->p->numa_group ? groupimp : taskimp; 1165 long moveimp = imp; 1166 1167 rcu_read_lock(); 1168 1169 raw_spin_lock_irq(&dst_rq->lock); 1170 cur = dst_rq->curr; 1171 /* 1172 * No need to move the exiting task, and this ensures that ->curr 1173 * wasn't reaped and thus get_task_struct() in task_numa_assign() 1174 * is safe under RCU read lock. 1175 * Note that rcu_read_lock() itself can't protect from the final 1176 * put_task_struct() after the last schedule(). 1177 */ 1178 if ((cur->flags & PF_EXITING) || is_idle_task(cur)) 1179 cur = NULL; 1180 raw_spin_unlock_irq(&dst_rq->lock); 1181 1182 /* 1183 * "imp" is the fault differential for the source task between the 1184 * source and destination node. Calculate the total differential for 1185 * the source task and potential destination task. The more negative 1186 * the value is, the more rmeote accesses that would be expected to 1187 * be incurred if the tasks were swapped. 1188 */ 1189 if (cur) { 1190 /* Skip this swap candidate if cannot move to the source cpu */ 1191 if (!cpumask_test_cpu(env->src_cpu, tsk_cpus_allowed(cur))) 1192 goto unlock; 1193 1194 /* 1195 * If dst and source tasks are in the same NUMA group, or not 1196 * in any group then look only at task weights. 1197 */ 1198 if (cur->numa_group == env->p->numa_group) { 1199 imp = taskimp + task_weight(cur, env->src_nid) - 1200 task_weight(cur, env->dst_nid); 1201 /* 1202 * Add some hysteresis to prevent swapping the 1203 * tasks within a group over tiny differences. 1204 */ 1205 if (cur->numa_group) 1206 imp -= imp/16; 1207 } else { 1208 /* 1209 * Compare the group weights. If a task is all by 1210 * itself (not part of a group), use the task weight 1211 * instead. 1212 */ 1213 if (cur->numa_group) 1214 imp += group_weight(cur, env->src_nid) - 1215 group_weight(cur, env->dst_nid); 1216 else 1217 imp += task_weight(cur, env->src_nid) - 1218 task_weight(cur, env->dst_nid); 1219 } 1220 } 1221 1222 if (imp <= env->best_imp && moveimp <= env->best_imp) 1223 goto unlock; 1224 1225 if (!cur) { 1226 /* Is there capacity at our destination? */ 1227 if (env->src_stats.nr_running <= env->src_stats.task_capacity && 1228 !env->dst_stats.has_free_capacity) 1229 goto unlock; 1230 1231 goto balance; 1232 } 1233 1234 /* Balance doesn't matter much if we're running a task per cpu */ 1235 if (imp > env->best_imp && src_rq->nr_running == 1 && 1236 dst_rq->nr_running == 1) 1237 goto assign; 1238 1239 /* 1240 * In the overloaded case, try and keep the load balanced. 1241 */ 1242 balance: 1243 load = task_h_load(env->p); 1244 dst_load = env->dst_stats.load + load; 1245 src_load = env->src_stats.load - load; 1246 1247 if (moveimp > imp && moveimp > env->best_imp) { 1248 /* 1249 * If the improvement from just moving env->p direction is 1250 * better than swapping tasks around, check if a move is 1251 * possible. Store a slightly smaller score than moveimp, 1252 * so an actually idle CPU will win. 1253 */ 1254 if (!load_too_imbalanced(src_load, dst_load, env)) { 1255 imp = moveimp - 1; 1256 cur = NULL; 1257 goto assign; 1258 } 1259 } 1260 1261 if (imp <= env->best_imp) 1262 goto unlock; 1263 1264 if (cur) { 1265 load = task_h_load(cur); 1266 dst_load -= load; 1267 src_load += load; 1268 } 1269 1270 if (load_too_imbalanced(src_load, dst_load, env)) 1271 goto unlock; 1272 1273 /* 1274 * One idle CPU per node is evaluated for a task numa move. 1275 * Call select_idle_sibling to maybe find a better one. 1276 */ 1277 if (!cur) 1278 env->dst_cpu = select_idle_sibling(env->p, env->dst_cpu); 1279 1280 assign: 1281 task_numa_assign(env, cur, imp); 1282 unlock: 1283 rcu_read_unlock(); 1284 } 1285 1286 static void task_numa_find_cpu(struct task_numa_env *env, 1287 long taskimp, long groupimp) 1288 { 1289 int cpu; 1290 1291 for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) { 1292 /* Skip this CPU if the source task cannot migrate */ 1293 if (!cpumask_test_cpu(cpu, tsk_cpus_allowed(env->p))) 1294 continue; 1295 1296 env->dst_cpu = cpu; 1297 task_numa_compare(env, taskimp, groupimp); 1298 } 1299 } 1300 1301 static int task_numa_migrate(struct task_struct *p) 1302 { 1303 struct task_numa_env env = { 1304 .p = p, 1305 1306 .src_cpu = task_cpu(p), 1307 .src_nid = task_node(p), 1308 1309 .imbalance_pct = 112, 1310 1311 .best_task = NULL, 1312 .best_imp = 0, 1313 .best_cpu = -1 1314 }; 1315 struct sched_domain *sd; 1316 unsigned long taskweight, groupweight; 1317 int nid, ret; 1318 long taskimp, groupimp; 1319 1320 /* 1321 * Pick the lowest SD_NUMA domain, as that would have the smallest 1322 * imbalance and would be the first to start moving tasks about. 1323 * 1324 * And we want to avoid any moving of tasks about, as that would create 1325 * random movement of tasks -- counter the numa conditions we're trying 1326 * to satisfy here. 1327 */ 1328 rcu_read_lock(); 1329 sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu)); 1330 if (sd) 1331 env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2; 1332 rcu_read_unlock(); 1333 1334 /* 1335 * Cpusets can break the scheduler domain tree into smaller 1336 * balance domains, some of which do not cross NUMA boundaries. 1337 * Tasks that are "trapped" in such domains cannot be migrated 1338 * elsewhere, so there is no point in (re)trying. 1339 */ 1340 if (unlikely(!sd)) { 1341 p->numa_preferred_nid = task_node(p); 1342 return -EINVAL; 1343 } 1344 1345 taskweight = task_weight(p, env.src_nid); 1346 groupweight = group_weight(p, env.src_nid); 1347 update_numa_stats(&env.src_stats, env.src_nid); 1348 env.dst_nid = p->numa_preferred_nid; 1349 taskimp = task_weight(p, env.dst_nid) - taskweight; 1350 groupimp = group_weight(p, env.dst_nid) - groupweight; 1351 update_numa_stats(&env.dst_stats, env.dst_nid); 1352 1353 /* Try to find a spot on the preferred nid. */ 1354 task_numa_find_cpu(&env, taskimp, groupimp); 1355 1356 /* No space available on the preferred nid. Look elsewhere. */ 1357 if (env.best_cpu == -1) { 1358 for_each_online_node(nid) { 1359 if (nid == env.src_nid || nid == p->numa_preferred_nid) 1360 continue; 1361 1362 /* Only consider nodes where both task and groups benefit */ 1363 taskimp = task_weight(p, nid) - taskweight; 1364 groupimp = group_weight(p, nid) - groupweight; 1365 if (taskimp < 0 && groupimp < 0) 1366 continue; 1367 1368 env.dst_nid = nid; 1369 update_numa_stats(&env.dst_stats, env.dst_nid); 1370 task_numa_find_cpu(&env, taskimp, groupimp); 1371 } 1372 } 1373 1374 /* 1375 * If the task is part of a workload that spans multiple NUMA nodes, 1376 * and is migrating into one of the workload's active nodes, remember 1377 * this node as the task's preferred numa node, so the workload can 1378 * settle down. 1379 * A task that migrated to a second choice node will be better off 1380 * trying for a better one later. Do not set the preferred node here. 1381 */ 1382 if (p->numa_group) { 1383 if (env.best_cpu == -1) 1384 nid = env.src_nid; 1385 else 1386 nid = env.dst_nid; 1387 1388 if (node_isset(nid, p->numa_group->active_nodes)) 1389 sched_setnuma(p, env.dst_nid); 1390 } 1391 1392 /* No better CPU than the current one was found. */ 1393 if (env.best_cpu == -1) 1394 return -EAGAIN; 1395 1396 /* 1397 * Reset the scan period if the task is being rescheduled on an 1398 * alternative node to recheck if the tasks is now properly placed. 1399 */ 1400 p->numa_scan_period = task_scan_min(p); 1401 1402 if (env.best_task == NULL) { 1403 ret = migrate_task_to(p, env.best_cpu); 1404 if (ret != 0) 1405 trace_sched_stick_numa(p, env.src_cpu, env.best_cpu); 1406 return ret; 1407 } 1408 1409 ret = migrate_swap(p, env.best_task); 1410 if (ret != 0) 1411 trace_sched_stick_numa(p, env.src_cpu, task_cpu(env.best_task)); 1412 put_task_struct(env.best_task); 1413 return ret; 1414 } 1415 1416 /* Attempt to migrate a task to a CPU on the preferred node. */ 1417 static void numa_migrate_preferred(struct task_struct *p) 1418 { 1419 unsigned long interval = HZ; 1420 1421 /* This task has no NUMA fault statistics yet */ 1422 if (unlikely(p->numa_preferred_nid == -1 || !p->numa_faults_memory)) 1423 return; 1424 1425 /* Periodically retry migrating the task to the preferred node */ 1426 interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16); 1427 p->numa_migrate_retry = jiffies + interval; 1428 1429 /* Success if task is already running on preferred CPU */ 1430 if (task_node(p) == p->numa_preferred_nid) 1431 return; 1432 1433 /* Otherwise, try migrate to a CPU on the preferred node */ 1434 task_numa_migrate(p); 1435 } 1436 1437 /* 1438 * Find the nodes on which the workload is actively running. We do this by 1439 * tracking the nodes from which NUMA hinting faults are triggered. This can 1440 * be different from the set of nodes where the workload's memory is currently 1441 * located. 1442 * 1443 * The bitmask is used to make smarter decisions on when to do NUMA page 1444 * migrations, To prevent flip-flopping, and excessive page migrations, nodes 1445 * are added when they cause over 6/16 of the maximum number of faults, but 1446 * only removed when they drop below 3/16. 1447 */ 1448 static void update_numa_active_node_mask(struct numa_group *numa_group) 1449 { 1450 unsigned long faults, max_faults = 0; 1451 int nid; 1452 1453 for_each_online_node(nid) { 1454 faults = group_faults_cpu(numa_group, nid); 1455 if (faults > max_faults) 1456 max_faults = faults; 1457 } 1458 1459 for_each_online_node(nid) { 1460 faults = group_faults_cpu(numa_group, nid); 1461 if (!node_isset(nid, numa_group->active_nodes)) { 1462 if (faults > max_faults * 6 / 16) 1463 node_set(nid, numa_group->active_nodes); 1464 } else if (faults < max_faults * 3 / 16) 1465 node_clear(nid, numa_group->active_nodes); 1466 } 1467 } 1468 1469 /* 1470 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS 1471 * increments. The more local the fault statistics are, the higher the scan 1472 * period will be for the next scan window. If local/(local+remote) ratio is 1473 * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS) 1474 * the scan period will decrease. Aim for 70% local accesses. 1475 */ 1476 #define NUMA_PERIOD_SLOTS 10 1477 #define NUMA_PERIOD_THRESHOLD 7 1478 1479 /* 1480 * Increase the scan period (slow down scanning) if the majority of 1481 * our memory is already on our local node, or if the majority of 1482 * the page accesses are shared with other processes. 1483 * Otherwise, decrease the scan period. 1484 */ 1485 static void update_task_scan_period(struct task_struct *p, 1486 unsigned long shared, unsigned long private) 1487 { 1488 unsigned int period_slot; 1489 int ratio; 1490 int diff; 1491 1492 unsigned long remote = p->numa_faults_locality[0]; 1493 unsigned long local = p->numa_faults_locality[1]; 1494 1495 /* 1496 * If there were no record hinting faults then either the task is 1497 * completely idle or all activity is areas that are not of interest 1498 * to automatic numa balancing. Scan slower 1499 */ 1500 if (local + shared == 0) { 1501 p->numa_scan_period = min(p->numa_scan_period_max, 1502 p->numa_scan_period << 1); 1503 1504 p->mm->numa_next_scan = jiffies + 1505 msecs_to_jiffies(p->numa_scan_period); 1506 1507 return; 1508 } 1509 1510 /* 1511 * Prepare to scale scan period relative to the current period. 1512 * == NUMA_PERIOD_THRESHOLD scan period stays the same 1513 * < NUMA_PERIOD_THRESHOLD scan period decreases (scan faster) 1514 * >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower) 1515 */ 1516 period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS); 1517 ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote); 1518 if (ratio >= NUMA_PERIOD_THRESHOLD) { 1519 int slot = ratio - NUMA_PERIOD_THRESHOLD; 1520 if (!slot) 1521 slot = 1; 1522 diff = slot * period_slot; 1523 } else { 1524 diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot; 1525 1526 /* 1527 * Scale scan rate increases based on sharing. There is an 1528 * inverse relationship between the degree of sharing and 1529 * the adjustment made to the scanning period. Broadly 1530 * speaking the intent is that there is little point 1531 * scanning faster if shared accesses dominate as it may 1532 * simply bounce migrations uselessly 1533 */ 1534 ratio = DIV_ROUND_UP(private * NUMA_PERIOD_SLOTS, (private + shared + 1)); 1535 diff = (diff * ratio) / NUMA_PERIOD_SLOTS; 1536 } 1537 1538 p->numa_scan_period = clamp(p->numa_scan_period + diff, 1539 task_scan_min(p), task_scan_max(p)); 1540 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality)); 1541 } 1542 1543 /* 1544 * Get the fraction of time the task has been running since the last 1545 * NUMA placement cycle. The scheduler keeps similar statistics, but 1546 * decays those on a 32ms period, which is orders of magnitude off 1547 * from the dozens-of-seconds NUMA balancing period. Use the scheduler 1548 * stats only if the task is so new there are no NUMA statistics yet. 1549 */ 1550 static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period) 1551 { 1552 u64 runtime, delta, now; 1553 /* Use the start of this time slice to avoid calculations. */ 1554 now = p->se.exec_start; 1555 runtime = p->se.sum_exec_runtime; 1556 1557 if (p->last_task_numa_placement) { 1558 delta = runtime - p->last_sum_exec_runtime; 1559 *period = now - p->last_task_numa_placement; 1560 } else { 1561 delta = p->se.avg.runnable_avg_sum; 1562 *period = p->se.avg.runnable_avg_period; 1563 } 1564 1565 p->last_sum_exec_runtime = runtime; 1566 p->last_task_numa_placement = now; 1567 1568 return delta; 1569 } 1570 1571 static void task_numa_placement(struct task_struct *p) 1572 { 1573 int seq, nid, max_nid = -1, max_group_nid = -1; 1574 unsigned long max_faults = 0, max_group_faults = 0; 1575 unsigned long fault_types[2] = { 0, 0 }; 1576 unsigned long total_faults; 1577 u64 runtime, period; 1578 spinlock_t *group_lock = NULL; 1579 1580 seq = ACCESS_ONCE(p->mm->numa_scan_seq); 1581 if (p->numa_scan_seq == seq) 1582 return; 1583 p->numa_scan_seq = seq; 1584 p->numa_scan_period_max = task_scan_max(p); 1585 1586 total_faults = p->numa_faults_locality[0] + 1587 p->numa_faults_locality[1]; 1588 runtime = numa_get_avg_runtime(p, &period); 1589 1590 /* If the task is part of a group prevent parallel updates to group stats */ 1591 if (p->numa_group) { 1592 group_lock = &p->numa_group->lock; 1593 spin_lock_irq(group_lock); 1594 } 1595 1596 /* Find the node with the highest number of faults */ 1597 for_each_online_node(nid) { 1598 unsigned long faults = 0, group_faults = 0; 1599 int priv, i; 1600 1601 for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) { 1602 long diff, f_diff, f_weight; 1603 1604 i = task_faults_idx(nid, priv); 1605 1606 /* Decay existing window, copy faults since last scan */ 1607 diff = p->numa_faults_buffer_memory[i] - p->numa_faults_memory[i] / 2; 1608 fault_types[priv] += p->numa_faults_buffer_memory[i]; 1609 p->numa_faults_buffer_memory[i] = 0; 1610 1611 /* 1612 * Normalize the faults_from, so all tasks in a group 1613 * count according to CPU use, instead of by the raw 1614 * number of faults. Tasks with little runtime have 1615 * little over-all impact on throughput, and thus their 1616 * faults are less important. 1617 */ 1618 f_weight = div64_u64(runtime << 16, period + 1); 1619 f_weight = (f_weight * p->numa_faults_buffer_cpu[i]) / 1620 (total_faults + 1); 1621 f_diff = f_weight - p->numa_faults_cpu[i] / 2; 1622 p->numa_faults_buffer_cpu[i] = 0; 1623 1624 p->numa_faults_memory[i] += diff; 1625 p->numa_faults_cpu[i] += f_diff; 1626 faults += p->numa_faults_memory[i]; 1627 p->total_numa_faults += diff; 1628 if (p->numa_group) { 1629 /* safe because we can only change our own group */ 1630 p->numa_group->faults[i] += diff; 1631 p->numa_group->faults_cpu[i] += f_diff; 1632 p->numa_group->total_faults += diff; 1633 group_faults += p->numa_group->faults[i]; 1634 } 1635 } 1636 1637 if (faults > max_faults) { 1638 max_faults = faults; 1639 max_nid = nid; 1640 } 1641 1642 if (group_faults > max_group_faults) { 1643 max_group_faults = group_faults; 1644 max_group_nid = nid; 1645 } 1646 } 1647 1648 update_task_scan_period(p, fault_types[0], fault_types[1]); 1649 1650 if (p->numa_group) { 1651 update_numa_active_node_mask(p->numa_group); 1652 spin_unlock_irq(group_lock); 1653 max_nid = max_group_nid; 1654 } 1655 1656 if (max_faults) { 1657 /* Set the new preferred node */ 1658 if (max_nid != p->numa_preferred_nid) 1659 sched_setnuma(p, max_nid); 1660 1661 if (task_node(p) != p->numa_preferred_nid) 1662 numa_migrate_preferred(p); 1663 } 1664 } 1665 1666 static inline int get_numa_group(struct numa_group *grp) 1667 { 1668 return atomic_inc_not_zero(&grp->refcount); 1669 } 1670 1671 static inline void put_numa_group(struct numa_group *grp) 1672 { 1673 if (atomic_dec_and_test(&grp->refcount)) 1674 kfree_rcu(grp, rcu); 1675 } 1676 1677 static void task_numa_group(struct task_struct *p, int cpupid, int flags, 1678 int *priv) 1679 { 1680 struct numa_group *grp, *my_grp; 1681 struct task_struct *tsk; 1682 bool join = false; 1683 int cpu = cpupid_to_cpu(cpupid); 1684 int i; 1685 1686 if (unlikely(!p->numa_group)) { 1687 unsigned int size = sizeof(struct numa_group) + 1688 4*nr_node_ids*sizeof(unsigned long); 1689 1690 grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN); 1691 if (!grp) 1692 return; 1693 1694 atomic_set(&grp->refcount, 1); 1695 spin_lock_init(&grp->lock); 1696 INIT_LIST_HEAD(&grp->task_list); 1697 grp->gid = p->pid; 1698 /* Second half of the array tracks nids where faults happen */ 1699 grp->faults_cpu = grp->faults + NR_NUMA_HINT_FAULT_TYPES * 1700 nr_node_ids; 1701 1702 node_set(task_node(current), grp->active_nodes); 1703 1704 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) 1705 grp->faults[i] = p->numa_faults_memory[i]; 1706 1707 grp->total_faults = p->total_numa_faults; 1708 1709 list_add(&p->numa_entry, &grp->task_list); 1710 grp->nr_tasks++; 1711 rcu_assign_pointer(p->numa_group, grp); 1712 } 1713 1714 rcu_read_lock(); 1715 tsk = ACCESS_ONCE(cpu_rq(cpu)->curr); 1716 1717 if (!cpupid_match_pid(tsk, cpupid)) 1718 goto no_join; 1719 1720 grp = rcu_dereference(tsk->numa_group); 1721 if (!grp) 1722 goto no_join; 1723 1724 my_grp = p->numa_group; 1725 if (grp == my_grp) 1726 goto no_join; 1727 1728 /* 1729 * Only join the other group if its bigger; if we're the bigger group, 1730 * the other task will join us. 1731 */ 1732 if (my_grp->nr_tasks > grp->nr_tasks) 1733 goto no_join; 1734 1735 /* 1736 * Tie-break on the grp address. 1737 */ 1738 if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp) 1739 goto no_join; 1740 1741 /* Always join threads in the same process. */ 1742 if (tsk->mm == current->mm) 1743 join = true; 1744 1745 /* Simple filter to avoid false positives due to PID collisions */ 1746 if (flags & TNF_SHARED) 1747 join = true; 1748 1749 /* Update priv based on whether false sharing was detected */ 1750 *priv = !join; 1751 1752 if (join && !get_numa_group(grp)) 1753 goto no_join; 1754 1755 rcu_read_unlock(); 1756 1757 if (!join) 1758 return; 1759 1760 BUG_ON(irqs_disabled()); 1761 double_lock_irq(&my_grp->lock, &grp->lock); 1762 1763 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) { 1764 my_grp->faults[i] -= p->numa_faults_memory[i]; 1765 grp->faults[i] += p->numa_faults_memory[i]; 1766 } 1767 my_grp->total_faults -= p->total_numa_faults; 1768 grp->total_faults += p->total_numa_faults; 1769 1770 list_move(&p->numa_entry, &grp->task_list); 1771 my_grp->nr_tasks--; 1772 grp->nr_tasks++; 1773 1774 spin_unlock(&my_grp->lock); 1775 spin_unlock_irq(&grp->lock); 1776 1777 rcu_assign_pointer(p->numa_group, grp); 1778 1779 put_numa_group(my_grp); 1780 return; 1781 1782 no_join: 1783 rcu_read_unlock(); 1784 return; 1785 } 1786 1787 void task_numa_free(struct task_struct *p) 1788 { 1789 struct numa_group *grp = p->numa_group; 1790 void *numa_faults = p->numa_faults_memory; 1791 unsigned long flags; 1792 int i; 1793 1794 if (grp) { 1795 spin_lock_irqsave(&grp->lock, flags); 1796 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) 1797 grp->faults[i] -= p->numa_faults_memory[i]; 1798 grp->total_faults -= p->total_numa_faults; 1799 1800 list_del(&p->numa_entry); 1801 grp->nr_tasks--; 1802 spin_unlock_irqrestore(&grp->lock, flags); 1803 RCU_INIT_POINTER(p->numa_group, NULL); 1804 put_numa_group(grp); 1805 } 1806 1807 p->numa_faults_memory = NULL; 1808 p->numa_faults_buffer_memory = NULL; 1809 p->numa_faults_cpu= NULL; 1810 p->numa_faults_buffer_cpu = NULL; 1811 kfree(numa_faults); 1812 } 1813 1814 /* 1815 * Got a PROT_NONE fault for a page on @node. 1816 */ 1817 void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags) 1818 { 1819 struct task_struct *p = current; 1820 bool migrated = flags & TNF_MIGRATED; 1821 int cpu_node = task_node(current); 1822 int local = !!(flags & TNF_FAULT_LOCAL); 1823 int priv; 1824 1825 if (!numabalancing_enabled) 1826 return; 1827 1828 /* for example, ksmd faulting in a user's mm */ 1829 if (!p->mm) 1830 return; 1831 1832 /* Allocate buffer to track faults on a per-node basis */ 1833 if (unlikely(!p->numa_faults_memory)) { 1834 int size = sizeof(*p->numa_faults_memory) * 1835 NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids; 1836 1837 p->numa_faults_memory = kzalloc(size, GFP_KERNEL|__GFP_NOWARN); 1838 if (!p->numa_faults_memory) 1839 return; 1840 1841 BUG_ON(p->numa_faults_buffer_memory); 1842 /* 1843 * The averaged statistics, shared & private, memory & cpu, 1844 * occupy the first half of the array. The second half of the 1845 * array is for current counters, which are averaged into the 1846 * first set by task_numa_placement. 1847 */ 1848 p->numa_faults_cpu = p->numa_faults_memory + (2 * nr_node_ids); 1849 p->numa_faults_buffer_memory = p->numa_faults_memory + (4 * nr_node_ids); 1850 p->numa_faults_buffer_cpu = p->numa_faults_memory + (6 * nr_node_ids); 1851 p->total_numa_faults = 0; 1852 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality)); 1853 } 1854 1855 /* 1856 * First accesses are treated as private, otherwise consider accesses 1857 * to be private if the accessing pid has not changed 1858 */ 1859 if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) { 1860 priv = 1; 1861 } else { 1862 priv = cpupid_match_pid(p, last_cpupid); 1863 if (!priv && !(flags & TNF_NO_GROUP)) 1864 task_numa_group(p, last_cpupid, flags, &priv); 1865 } 1866 1867 /* 1868 * If a workload spans multiple NUMA nodes, a shared fault that 1869 * occurs wholly within the set of nodes that the workload is 1870 * actively using should be counted as local. This allows the 1871 * scan rate to slow down when a workload has settled down. 1872 */ 1873 if (!priv && !local && p->numa_group && 1874 node_isset(cpu_node, p->numa_group->active_nodes) && 1875 node_isset(mem_node, p->numa_group->active_nodes)) 1876 local = 1; 1877 1878 task_numa_placement(p); 1879 1880 /* 1881 * Retry task to preferred node migration periodically, in case it 1882 * case it previously failed, or the scheduler moved us. 1883 */ 1884 if (time_after(jiffies, p->numa_migrate_retry)) 1885 numa_migrate_preferred(p); 1886 1887 if (migrated) 1888 p->numa_pages_migrated += pages; 1889 1890 p->numa_faults_buffer_memory[task_faults_idx(mem_node, priv)] += pages; 1891 p->numa_faults_buffer_cpu[task_faults_idx(cpu_node, priv)] += pages; 1892 p->numa_faults_locality[local] += pages; 1893 } 1894 1895 static void reset_ptenuma_scan(struct task_struct *p) 1896 { 1897 ACCESS_ONCE(p->mm->numa_scan_seq)++; 1898 p->mm->numa_scan_offset = 0; 1899 } 1900 1901 /* 1902 * The expensive part of numa migration is done from task_work context. 1903 * Triggered from task_tick_numa(). 1904 */ 1905 void task_numa_work(struct callback_head *work) 1906 { 1907 unsigned long migrate, next_scan, now = jiffies; 1908 struct task_struct *p = current; 1909 struct mm_struct *mm = p->mm; 1910 struct vm_area_struct *vma; 1911 unsigned long start, end; 1912 unsigned long nr_pte_updates = 0; 1913 long pages; 1914 1915 WARN_ON_ONCE(p != container_of(work, struct task_struct, numa_work)); 1916 1917 work->next = work; /* protect against double add */ 1918 /* 1919 * Who cares about NUMA placement when they're dying. 1920 * 1921 * NOTE: make sure not to dereference p->mm before this check, 1922 * exit_task_work() happens _after_ exit_mm() so we could be called 1923 * without p->mm even though we still had it when we enqueued this 1924 * work. 1925 */ 1926 if (p->flags & PF_EXITING) 1927 return; 1928 1929 if (!mm->numa_next_scan) { 1930 mm->numa_next_scan = now + 1931 msecs_to_jiffies(sysctl_numa_balancing_scan_delay); 1932 } 1933 1934 /* 1935 * Enforce maximal scan/migration frequency.. 1936 */ 1937 migrate = mm->numa_next_scan; 1938 if (time_before(now, migrate)) 1939 return; 1940 1941 if (p->numa_scan_period == 0) { 1942 p->numa_scan_period_max = task_scan_max(p); 1943 p->numa_scan_period = task_scan_min(p); 1944 } 1945 1946 next_scan = now + msecs_to_jiffies(p->numa_scan_period); 1947 if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate) 1948 return; 1949 1950 /* 1951 * Delay this task enough that another task of this mm will likely win 1952 * the next time around. 1953 */ 1954 p->node_stamp += 2 * TICK_NSEC; 1955 1956 start = mm->numa_scan_offset; 1957 pages = sysctl_numa_balancing_scan_size; 1958 pages <<= 20 - PAGE_SHIFT; /* MB in pages */ 1959 if (!pages) 1960 return; 1961 1962 down_read(&mm->mmap_sem); 1963 vma = find_vma(mm, start); 1964 if (!vma) { 1965 reset_ptenuma_scan(p); 1966 start = 0; 1967 vma = mm->mmap; 1968 } 1969 for (; vma; vma = vma->vm_next) { 1970 if (!vma_migratable(vma) || !vma_policy_mof(vma)) 1971 continue; 1972 1973 /* 1974 * Shared library pages mapped by multiple processes are not 1975 * migrated as it is expected they are cache replicated. Avoid 1976 * hinting faults in read-only file-backed mappings or the vdso 1977 * as migrating the pages will be of marginal benefit. 1978 */ 1979 if (!vma->vm_mm || 1980 (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ))) 1981 continue; 1982 1983 /* 1984 * Skip inaccessible VMAs to avoid any confusion between 1985 * PROT_NONE and NUMA hinting ptes 1986 */ 1987 if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE))) 1988 continue; 1989 1990 do { 1991 start = max(start, vma->vm_start); 1992 end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE); 1993 end = min(end, vma->vm_end); 1994 nr_pte_updates += change_prot_numa(vma, start, end); 1995 1996 /* 1997 * Scan sysctl_numa_balancing_scan_size but ensure that 1998 * at least one PTE is updated so that unused virtual 1999 * address space is quickly skipped. 2000 */ 2001 if (nr_pte_updates) 2002 pages -= (end - start) >> PAGE_SHIFT; 2003 2004 start = end; 2005 if (pages <= 0) 2006 goto out; 2007 2008 cond_resched(); 2009 } while (end != vma->vm_end); 2010 } 2011 2012 out: 2013 /* 2014 * It is possible to reach the end of the VMA list but the last few 2015 * VMAs are not guaranteed to the vma_migratable. If they are not, we 2016 * would find the !migratable VMA on the next scan but not reset the 2017 * scanner to the start so check it now. 2018 */ 2019 if (vma) 2020 mm->numa_scan_offset = start; 2021 else 2022 reset_ptenuma_scan(p); 2023 up_read(&mm->mmap_sem); 2024 } 2025 2026 /* 2027 * Drive the periodic memory faults.. 2028 */ 2029 void task_tick_numa(struct rq *rq, struct task_struct *curr) 2030 { 2031 struct callback_head *work = &curr->numa_work; 2032 u64 period, now; 2033 2034 /* 2035 * We don't care about NUMA placement if we don't have memory. 2036 */ 2037 if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work) 2038 return; 2039 2040 /* 2041 * Using runtime rather than walltime has the dual advantage that 2042 * we (mostly) drive the selection from busy threads and that the 2043 * task needs to have done some actual work before we bother with 2044 * NUMA placement. 2045 */ 2046 now = curr->se.sum_exec_runtime; 2047 period = (u64)curr->numa_scan_period * NSEC_PER_MSEC; 2048 2049 if (now - curr->node_stamp > period) { 2050 if (!curr->node_stamp) 2051 curr->numa_scan_period = task_scan_min(curr); 2052 curr->node_stamp += period; 2053 2054 if (!time_before(jiffies, curr->mm->numa_next_scan)) { 2055 init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */ 2056 task_work_add(curr, work, true); 2057 } 2058 } 2059 } 2060 #else 2061 static void task_tick_numa(struct rq *rq, struct task_struct *curr) 2062 { 2063 } 2064 2065 static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p) 2066 { 2067 } 2068 2069 static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p) 2070 { 2071 } 2072 #endif /* CONFIG_NUMA_BALANCING */ 2073 2074 static void 2075 account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se) 2076 { 2077 update_load_add(&cfs_rq->load, se->load.weight); 2078 if (!parent_entity(se)) 2079 update_load_add(&rq_of(cfs_rq)->load, se->load.weight); 2080 #ifdef CONFIG_SMP 2081 if (entity_is_task(se)) { 2082 struct rq *rq = rq_of(cfs_rq); 2083 2084 account_numa_enqueue(rq, task_of(se)); 2085 list_add(&se->group_node, &rq->cfs_tasks); 2086 } 2087 #endif 2088 cfs_rq->nr_running++; 2089 } 2090 2091 static void 2092 account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se) 2093 { 2094 update_load_sub(&cfs_rq->load, se->load.weight); 2095 if (!parent_entity(se)) 2096 update_load_sub(&rq_of(cfs_rq)->load, se->load.weight); 2097 if (entity_is_task(se)) { 2098 account_numa_dequeue(rq_of(cfs_rq), task_of(se)); 2099 list_del_init(&se->group_node); 2100 } 2101 cfs_rq->nr_running--; 2102 } 2103 2104 #ifdef CONFIG_FAIR_GROUP_SCHED 2105 # ifdef CONFIG_SMP 2106 static inline long calc_tg_weight(struct task_group *tg, struct cfs_rq *cfs_rq) 2107 { 2108 long tg_weight; 2109 2110 /* 2111 * Use this CPU's actual weight instead of the last load_contribution 2112 * to gain a more accurate current total weight. See 2113 * update_cfs_rq_load_contribution(). 2114 */ 2115 tg_weight = atomic_long_read(&tg->load_avg); 2116 tg_weight -= cfs_rq->tg_load_contrib; 2117 tg_weight += cfs_rq->load.weight; 2118 2119 return tg_weight; 2120 } 2121 2122 static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg) 2123 { 2124 long tg_weight, load, shares; 2125 2126 tg_weight = calc_tg_weight(tg, cfs_rq); 2127 load = cfs_rq->load.weight; 2128 2129 shares = (tg->shares * load); 2130 if (tg_weight) 2131 shares /= tg_weight; 2132 2133 if (shares < MIN_SHARES) 2134 shares = MIN_SHARES; 2135 if (shares > tg->shares) 2136 shares = tg->shares; 2137 2138 return shares; 2139 } 2140 # else /* CONFIG_SMP */ 2141 static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg) 2142 { 2143 return tg->shares; 2144 } 2145 # endif /* CONFIG_SMP */ 2146 static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, 2147 unsigned long weight) 2148 { 2149 if (se->on_rq) { 2150 /* commit outstanding execution time */ 2151 if (cfs_rq->curr == se) 2152 update_curr(cfs_rq); 2153 account_entity_dequeue(cfs_rq, se); 2154 } 2155 2156 update_load_set(&se->load, weight); 2157 2158 if (se->on_rq) 2159 account_entity_enqueue(cfs_rq, se); 2160 } 2161 2162 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq); 2163 2164 static void update_cfs_shares(struct cfs_rq *cfs_rq) 2165 { 2166 struct task_group *tg; 2167 struct sched_entity *se; 2168 long shares; 2169 2170 tg = cfs_rq->tg; 2171 se = tg->se[cpu_of(rq_of(cfs_rq))]; 2172 if (!se || throttled_hierarchy(cfs_rq)) 2173 return; 2174 #ifndef CONFIG_SMP 2175 if (likely(se->load.weight == tg->shares)) 2176 return; 2177 #endif 2178 shares = calc_cfs_shares(cfs_rq, tg); 2179 2180 reweight_entity(cfs_rq_of(se), se, shares); 2181 } 2182 #else /* CONFIG_FAIR_GROUP_SCHED */ 2183 static inline void update_cfs_shares(struct cfs_rq *cfs_rq) 2184 { 2185 } 2186 #endif /* CONFIG_FAIR_GROUP_SCHED */ 2187 2188 #ifdef CONFIG_SMP 2189 /* 2190 * We choose a half-life close to 1 scheduling period. 2191 * Note: The tables below are dependent on this value. 2192 */ 2193 #define LOAD_AVG_PERIOD 32 2194 #define LOAD_AVG_MAX 47742 /* maximum possible load avg */ 2195 #define LOAD_AVG_MAX_N 345 /* number of full periods to produce LOAD_MAX_AVG */ 2196 2197 /* Precomputed fixed inverse multiplies for multiplication by y^n */ 2198 static const u32 runnable_avg_yN_inv[] = { 2199 0xffffffff, 0xfa83b2da, 0xf5257d14, 0xefe4b99a, 0xeac0c6e6, 0xe5b906e6, 2200 0xe0ccdeeb, 0xdbfbb796, 0xd744fcc9, 0xd2a81d91, 0xce248c14, 0xc9b9bd85, 2201 0xc5672a10, 0xc12c4cc9, 0xbd08a39e, 0xb8fbaf46, 0xb504f333, 0xb123f581, 2202 0xad583ee9, 0xa9a15ab4, 0xa5fed6a9, 0xa2704302, 0x9ef5325f, 0x9b8d39b9, 2203 0x9837f050, 0x94f4efa8, 0x91c3d373, 0x8ea4398a, 0x8b95c1e3, 0x88980e80, 2204 0x85aac367, 0x82cd8698, 2205 }; 2206 2207 /* 2208 * Precomputed \Sum y^k { 1<=k<=n }. These are floor(true_value) to prevent 2209 * over-estimates when re-combining. 2210 */ 2211 static const u32 runnable_avg_yN_sum[] = { 2212 0, 1002, 1982, 2941, 3880, 4798, 5697, 6576, 7437, 8279, 9103, 2213 9909,10698,11470,12226,12966,13690,14398,15091,15769,16433,17082, 2214 17718,18340,18949,19545,20128,20698,21256,21802,22336,22859,23371, 2215 }; 2216 2217 /* 2218 * Approximate: 2219 * val * y^n, where y^32 ~= 0.5 (~1 scheduling period) 2220 */ 2221 static __always_inline u64 decay_load(u64 val, u64 n) 2222 { 2223 unsigned int local_n; 2224 2225 if (!n) 2226 return val; 2227 else if (unlikely(n > LOAD_AVG_PERIOD * 63)) 2228 return 0; 2229 2230 /* after bounds checking we can collapse to 32-bit */ 2231 local_n = n; 2232 2233 /* 2234 * As y^PERIOD = 1/2, we can combine 2235 * y^n = 1/2^(n/PERIOD) * y^(n%PERIOD) 2236 * With a look-up table which covers y^n (n<PERIOD) 2237 * 2238 * To achieve constant time decay_load. 2239 */ 2240 if (unlikely(local_n >= LOAD_AVG_PERIOD)) { 2241 val >>= local_n / LOAD_AVG_PERIOD; 2242 local_n %= LOAD_AVG_PERIOD; 2243 } 2244 2245 val *= runnable_avg_yN_inv[local_n]; 2246 /* We don't use SRR here since we always want to round down. */ 2247 return val >> 32; 2248 } 2249 2250 /* 2251 * For updates fully spanning n periods, the contribution to runnable 2252 * average will be: \Sum 1024*y^n 2253 * 2254 * We can compute this reasonably efficiently by combining: 2255 * y^PERIOD = 1/2 with precomputed \Sum 1024*y^n {for n <PERIOD} 2256 */ 2257 static u32 __compute_runnable_contrib(u64 n) 2258 { 2259 u32 contrib = 0; 2260 2261 if (likely(n <= LOAD_AVG_PERIOD)) 2262 return runnable_avg_yN_sum[n]; 2263 else if (unlikely(n >= LOAD_AVG_MAX_N)) 2264 return LOAD_AVG_MAX; 2265 2266 /* Compute \Sum k^n combining precomputed values for k^i, \Sum k^j */ 2267 do { 2268 contrib /= 2; /* y^LOAD_AVG_PERIOD = 1/2 */ 2269 contrib += runnable_avg_yN_sum[LOAD_AVG_PERIOD]; 2270 2271 n -= LOAD_AVG_PERIOD; 2272 } while (n > LOAD_AVG_PERIOD); 2273 2274 contrib = decay_load(contrib, n); 2275 return contrib + runnable_avg_yN_sum[n]; 2276 } 2277 2278 /* 2279 * We can represent the historical contribution to runnable average as the 2280 * coefficients of a geometric series. To do this we sub-divide our runnable 2281 * history into segments of approximately 1ms (1024us); label the segment that 2282 * occurred N-ms ago p_N, with p_0 corresponding to the current period, e.g. 2283 * 2284 * [<- 1024us ->|<- 1024us ->|<- 1024us ->| ... 2285 * p0 p1 p2 2286 * (now) (~1ms ago) (~2ms ago) 2287 * 2288 * Let u_i denote the fraction of p_i that the entity was runnable. 2289 * 2290 * We then designate the fractions u_i as our co-efficients, yielding the 2291 * following representation of historical load: 2292 * u_0 + u_1*y + u_2*y^2 + u_3*y^3 + ... 2293 * 2294 * We choose y based on the with of a reasonably scheduling period, fixing: 2295 * y^32 = 0.5 2296 * 2297 * This means that the contribution to load ~32ms ago (u_32) will be weighted 2298 * approximately half as much as the contribution to load within the last ms 2299 * (u_0). 2300 * 2301 * When a period "rolls over" and we have new u_0`, multiplying the previous 2302 * sum again by y is sufficient to update: 2303 * load_avg = u_0` + y*(u_0 + u_1*y + u_2*y^2 + ... ) 2304 * = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1}] 2305 */ 2306 static __always_inline int __update_entity_runnable_avg(u64 now, 2307 struct sched_avg *sa, 2308 int runnable) 2309 { 2310 u64 delta, periods; 2311 u32 runnable_contrib; 2312 int delta_w, decayed = 0; 2313 2314 delta = now - sa->last_runnable_update; 2315 /* 2316 * This should only happen when time goes backwards, which it 2317 * unfortunately does during sched clock init when we swap over to TSC. 2318 */ 2319 if ((s64)delta < 0) { 2320 sa->last_runnable_update = now; 2321 return 0; 2322 } 2323 2324 /* 2325 * Use 1024ns as the unit of measurement since it's a reasonable 2326 * approximation of 1us and fast to compute. 2327 */ 2328 delta >>= 10; 2329 if (!delta) 2330 return 0; 2331 sa->last_runnable_update = now; 2332 2333 /* delta_w is the amount already accumulated against our next period */ 2334 delta_w = sa->runnable_avg_period % 1024; 2335 if (delta + delta_w >= 1024) { 2336 /* period roll-over */ 2337 decayed = 1; 2338 2339 /* 2340 * Now that we know we're crossing a period boundary, figure 2341 * out how much from delta we need to complete the current 2342 * period and accrue it. 2343 */ 2344 delta_w = 1024 - delta_w; 2345 if (runnable) 2346 sa->runnable_avg_sum += delta_w; 2347 sa->runnable_avg_period += delta_w; 2348 2349 delta -= delta_w; 2350 2351 /* Figure out how many additional periods this update spans */ 2352 periods = delta / 1024; 2353 delta %= 1024; 2354 2355 sa->runnable_avg_sum = decay_load(sa->runnable_avg_sum, 2356 periods + 1); 2357 sa->runnable_avg_period = decay_load(sa->runnable_avg_period, 2358 periods + 1); 2359 2360 /* Efficiently calculate \sum (1..n_period) 1024*y^i */ 2361 runnable_contrib = __compute_runnable_contrib(periods); 2362 if (runnable) 2363 sa->runnable_avg_sum += runnable_contrib; 2364 sa->runnable_avg_period += runnable_contrib; 2365 } 2366 2367 /* Remainder of delta accrued against u_0` */ 2368 if (runnable) 2369 sa->runnable_avg_sum += delta; 2370 sa->runnable_avg_period += delta; 2371 2372 return decayed; 2373 } 2374 2375 /* Synchronize an entity's decay with its parenting cfs_rq.*/ 2376 static inline u64 __synchronize_entity_decay(struct sched_entity *se) 2377 { 2378 struct cfs_rq *cfs_rq = cfs_rq_of(se); 2379 u64 decays = atomic64_read(&cfs_rq->decay_counter); 2380 2381 decays -= se->avg.decay_count; 2382 if (!decays) 2383 return 0; 2384 2385 se->avg.load_avg_contrib = decay_load(se->avg.load_avg_contrib, decays); 2386 se->avg.decay_count = 0; 2387 2388 return decays; 2389 } 2390 2391 #ifdef CONFIG_FAIR_GROUP_SCHED 2392 static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq, 2393 int force_update) 2394 { 2395 struct task_group *tg = cfs_rq->tg; 2396 long tg_contrib; 2397 2398 tg_contrib = cfs_rq->runnable_load_avg + cfs_rq->blocked_load_avg; 2399 tg_contrib -= cfs_rq->tg_load_contrib; 2400 2401 if (!tg_contrib) 2402 return; 2403 2404 if (force_update || abs(tg_contrib) > cfs_rq->tg_load_contrib / 8) { 2405 atomic_long_add(tg_contrib, &tg->load_avg); 2406 cfs_rq->tg_load_contrib += tg_contrib; 2407 } 2408 } 2409 2410 /* 2411 * Aggregate cfs_rq runnable averages into an equivalent task_group 2412 * representation for computing load contributions. 2413 */ 2414 static inline void __update_tg_runnable_avg(struct sched_avg *sa, 2415 struct cfs_rq *cfs_rq) 2416 { 2417 struct task_group *tg = cfs_rq->tg; 2418 long contrib; 2419 2420 /* The fraction of a cpu used by this cfs_rq */ 2421 contrib = div_u64((u64)sa->runnable_avg_sum << NICE_0_SHIFT, 2422 sa->runnable_avg_period + 1); 2423 contrib -= cfs_rq->tg_runnable_contrib; 2424 2425 if (abs(contrib) > cfs_rq->tg_runnable_contrib / 64) { 2426 atomic_add(contrib, &tg->runnable_avg); 2427 cfs_rq->tg_runnable_contrib += contrib; 2428 } 2429 } 2430 2431 static inline void __update_group_entity_contrib(struct sched_entity *se) 2432 { 2433 struct cfs_rq *cfs_rq = group_cfs_rq(se); 2434 struct task_group *tg = cfs_rq->tg; 2435 int runnable_avg; 2436 2437 u64 contrib; 2438 2439 contrib = cfs_rq->tg_load_contrib * tg->shares; 2440 se->avg.load_avg_contrib = div_u64(contrib, 2441 atomic_long_read(&tg->load_avg) + 1); 2442 2443 /* 2444 * For group entities we need to compute a correction term in the case 2445 * that they are consuming <1 cpu so that we would contribute the same 2446 * load as a task of equal weight. 2447 * 2448 * Explicitly co-ordinating this measurement would be expensive, but 2449 * fortunately the sum of each cpus contribution forms a usable 2450 * lower-bound on the true value. 2451 * 2452 * Consider the aggregate of 2 contributions. Either they are disjoint 2453 * (and the sum represents true value) or they are disjoint and we are 2454 * understating by the aggregate of their overlap. 2455 * 2456 * Extending this to N cpus, for a given overlap, the maximum amount we 2457 * understand is then n_i(n_i+1)/2 * w_i where n_i is the number of 2458 * cpus that overlap for this interval and w_i is the interval width. 2459 * 2460 * On a small machine; the first term is well-bounded which bounds the 2461 * total error since w_i is a subset of the period. Whereas on a 2462 * larger machine, while this first term can be larger, if w_i is the 2463 * of consequential size guaranteed to see n_i*w_i quickly converge to 2464 * our upper bound of 1-cpu. 2465 */ 2466 runnable_avg = atomic_read(&tg->runnable_avg); 2467 if (runnable_avg < NICE_0_LOAD) { 2468 se->avg.load_avg_contrib *= runnable_avg; 2469 se->avg.load_avg_contrib >>= NICE_0_SHIFT; 2470 } 2471 } 2472 2473 static inline void update_rq_runnable_avg(struct rq *rq, int runnable) 2474 { 2475 __update_entity_runnable_avg(rq_clock_task(rq), &rq->avg, runnable); 2476 __update_tg_runnable_avg(&rq->avg, &rq->cfs); 2477 } 2478 #else /* CONFIG_FAIR_GROUP_SCHED */ 2479 static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq, 2480 int force_update) {} 2481 static inline void __update_tg_runnable_avg(struct sched_avg *sa, 2482 struct cfs_rq *cfs_rq) {} 2483 static inline void __update_group_entity_contrib(struct sched_entity *se) {} 2484 static inline void update_rq_runnable_avg(struct rq *rq, int runnable) {} 2485 #endif /* CONFIG_FAIR_GROUP_SCHED */ 2486 2487 static inline void __update_task_entity_contrib(struct sched_entity *se) 2488 { 2489 u32 contrib; 2490 2491 /* avoid overflowing a 32-bit type w/ SCHED_LOAD_SCALE */ 2492 contrib = se->avg.runnable_avg_sum * scale_load_down(se->load.weight); 2493 contrib /= (se->avg.runnable_avg_period + 1); 2494 se->avg.load_avg_contrib = scale_load(contrib); 2495 } 2496 2497 /* Compute the current contribution to load_avg by se, return any delta */ 2498 static long __update_entity_load_avg_contrib(struct sched_entity *se) 2499 { 2500 long old_contrib = se->avg.load_avg_contrib; 2501 2502 if (entity_is_task(se)) { 2503 __update_task_entity_contrib(se); 2504 } else { 2505 __update_tg_runnable_avg(&se->avg, group_cfs_rq(se)); 2506 __update_group_entity_contrib(se); 2507 } 2508 2509 return se->avg.load_avg_contrib - old_contrib; 2510 } 2511 2512 static inline void subtract_blocked_load_contrib(struct cfs_rq *cfs_rq, 2513 long load_contrib) 2514 { 2515 if (likely(load_contrib < cfs_rq->blocked_load_avg)) 2516 cfs_rq->blocked_load_avg -= load_contrib; 2517 else 2518 cfs_rq->blocked_load_avg = 0; 2519 } 2520 2521 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq); 2522 2523 /* Update a sched_entity's runnable average */ 2524 static inline void update_entity_load_avg(struct sched_entity *se, 2525 int update_cfs_rq) 2526 { 2527 struct cfs_rq *cfs_rq = cfs_rq_of(se); 2528 long contrib_delta; 2529 u64 now; 2530 2531 /* 2532 * For a group entity we need to use their owned cfs_rq_clock_task() in 2533 * case they are the parent of a throttled hierarchy. 2534 */ 2535 if (entity_is_task(se)) 2536 now = cfs_rq_clock_task(cfs_rq); 2537 else 2538 now = cfs_rq_clock_task(group_cfs_rq(se)); 2539 2540 if (!__update_entity_runnable_avg(now, &se->avg, se->on_rq)) 2541 return; 2542 2543 contrib_delta = __update_entity_load_avg_contrib(se); 2544 2545 if (!update_cfs_rq) 2546 return; 2547 2548 if (se->on_rq) 2549 cfs_rq->runnable_load_avg += contrib_delta; 2550 else 2551 subtract_blocked_load_contrib(cfs_rq, -contrib_delta); 2552 } 2553 2554 /* 2555 * Decay the load contributed by all blocked children and account this so that 2556 * their contribution may appropriately discounted when they wake up. 2557 */ 2558 static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq, int force_update) 2559 { 2560 u64 now = cfs_rq_clock_task(cfs_rq) >> 20; 2561 u64 decays; 2562 2563 decays = now - cfs_rq->last_decay; 2564 if (!decays && !force_update) 2565 return; 2566 2567 if (atomic_long_read(&cfs_rq->removed_load)) { 2568 unsigned long removed_load; 2569 removed_load = atomic_long_xchg(&cfs_rq->removed_load, 0); 2570 subtract_blocked_load_contrib(cfs_rq, removed_load); 2571 } 2572 2573 if (decays) { 2574 cfs_rq->blocked_load_avg = decay_load(cfs_rq->blocked_load_avg, 2575 decays); 2576 atomic64_add(decays, &cfs_rq->decay_counter); 2577 cfs_rq->last_decay = now; 2578 } 2579 2580 __update_cfs_rq_tg_load_contrib(cfs_rq, force_update); 2581 } 2582 2583 /* Add the load generated by se into cfs_rq's child load-average */ 2584 static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq, 2585 struct sched_entity *se, 2586 int wakeup) 2587 { 2588 /* 2589 * We track migrations using entity decay_count <= 0, on a wake-up 2590 * migration we use a negative decay count to track the remote decays 2591 * accumulated while sleeping. 2592 * 2593 * Newly forked tasks are enqueued with se->avg.decay_count == 0, they 2594 * are seen by enqueue_entity_load_avg() as a migration with an already 2595 * constructed load_avg_contrib. 2596 */ 2597 if (unlikely(se->avg.decay_count <= 0)) { 2598 se->avg.last_runnable_update = rq_clock_task(rq_of(cfs_rq)); 2599 if (se->avg.decay_count) { 2600 /* 2601 * In a wake-up migration we have to approximate the 2602 * time sleeping. This is because we can't synchronize 2603 * clock_task between the two cpus, and it is not 2604 * guaranteed to be read-safe. Instead, we can 2605 * approximate this using our carried decays, which are 2606 * explicitly atomically readable. 2607 */ 2608 se->avg.last_runnable_update -= (-se->avg.decay_count) 2609 << 20; 2610 update_entity_load_avg(se, 0); 2611 /* Indicate that we're now synchronized and on-rq */ 2612 se->avg.decay_count = 0; 2613 } 2614 wakeup = 0; 2615 } else { 2616 __synchronize_entity_decay(se); 2617 } 2618 2619 /* migrated tasks did not contribute to our blocked load */ 2620 if (wakeup) { 2621 subtract_blocked_load_contrib(cfs_rq, se->avg.load_avg_contrib); 2622 update_entity_load_avg(se, 0); 2623 } 2624 2625 cfs_rq->runnable_load_avg += se->avg.load_avg_contrib; 2626 /* we force update consideration on load-balancer moves */ 2627 update_cfs_rq_blocked_load(cfs_rq, !wakeup); 2628 } 2629 2630 /* 2631 * Remove se's load from this cfs_rq child load-average, if the entity is 2632 * transitioning to a blocked state we track its projected decay using 2633 * blocked_load_avg. 2634 */ 2635 static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq, 2636 struct sched_entity *se, 2637 int sleep) 2638 { 2639 update_entity_load_avg(se, 1); 2640 /* we force update consideration on load-balancer moves */ 2641 update_cfs_rq_blocked_load(cfs_rq, !sleep); 2642 2643 cfs_rq->runnable_load_avg -= se->avg.load_avg_contrib; 2644 if (sleep) { 2645 cfs_rq->blocked_load_avg += se->avg.load_avg_contrib; 2646 se->avg.decay_count = atomic64_read(&cfs_rq->decay_counter); 2647 } /* migrations, e.g. sleep=0 leave decay_count == 0 */ 2648 } 2649 2650 /* 2651 * Update the rq's load with the elapsed running time before entering 2652 * idle. if the last scheduled task is not a CFS task, idle_enter will 2653 * be the only way to update the runnable statistic. 2654 */ 2655 void idle_enter_fair(struct rq *this_rq) 2656 { 2657 update_rq_runnable_avg(this_rq, 1); 2658 } 2659 2660 /* 2661 * Update the rq's load with the elapsed idle time before a task is 2662 * scheduled. if the newly scheduled task is not a CFS task, idle_exit will 2663 * be the only way to update the runnable statistic. 2664 */ 2665 void idle_exit_fair(struct rq *this_rq) 2666 { 2667 update_rq_runnable_avg(this_rq, 0); 2668 } 2669 2670 static int idle_balance(struct rq *this_rq); 2671 2672 #else /* CONFIG_SMP */ 2673 2674 static inline void update_entity_load_avg(struct sched_entity *se, 2675 int update_cfs_rq) {} 2676 static inline void update_rq_runnable_avg(struct rq *rq, int runnable) {} 2677 static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq, 2678 struct sched_entity *se, 2679 int wakeup) {} 2680 static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq, 2681 struct sched_entity *se, 2682 int sleep) {} 2683 static inline void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq, 2684 int force_update) {} 2685 2686 static inline int idle_balance(struct rq *rq) 2687 { 2688 return 0; 2689 } 2690 2691 #endif /* CONFIG_SMP */ 2692 2693 static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se) 2694 { 2695 #ifdef CONFIG_SCHEDSTATS 2696 struct task_struct *tsk = NULL; 2697 2698 if (entity_is_task(se)) 2699 tsk = task_of(se); 2700 2701 if (se->statistics.sleep_start) { 2702 u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.sleep_start; 2703 2704 if ((s64)delta < 0) 2705 delta = 0; 2706 2707 if (unlikely(delta > se->statistics.sleep_max)) 2708 se->statistics.sleep_max = delta; 2709 2710 se->statistics.sleep_start = 0; 2711 se->statistics.sum_sleep_runtime += delta; 2712 2713 if (tsk) { 2714 account_scheduler_latency(tsk, delta >> 10, 1); 2715 trace_sched_stat_sleep(tsk, delta); 2716 } 2717 } 2718 if (se->statistics.block_start) { 2719 u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.block_start; 2720 2721 if ((s64)delta < 0) 2722 delta = 0; 2723 2724 if (unlikely(delta > se->statistics.block_max)) 2725 se->statistics.block_max = delta; 2726 2727 se->statistics.block_start = 0; 2728 se->statistics.sum_sleep_runtime += delta; 2729 2730 if (tsk) { 2731 if (tsk->in_iowait) { 2732 se->statistics.iowait_sum += delta; 2733 se->statistics.iowait_count++; 2734 trace_sched_stat_iowait(tsk, delta); 2735 } 2736 2737 trace_sched_stat_blocked(tsk, delta); 2738 2739 /* 2740 * Blocking time is in units of nanosecs, so shift by 2741 * 20 to get a milliseconds-range estimation of the 2742 * amount of time that the task spent sleeping: 2743 */ 2744 if (unlikely(prof_on == SLEEP_PROFILING)) { 2745 profile_hits(SLEEP_PROFILING, 2746 (void *)get_wchan(tsk), 2747 delta >> 20); 2748 } 2749 account_scheduler_latency(tsk, delta >> 10, 0); 2750 } 2751 } 2752 #endif 2753 } 2754 2755 static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se) 2756 { 2757 #ifdef CONFIG_SCHED_DEBUG 2758 s64 d = se->vruntime - cfs_rq->min_vruntime; 2759 2760 if (d < 0) 2761 d = -d; 2762 2763 if (d > 3*sysctl_sched_latency) 2764 schedstat_inc(cfs_rq, nr_spread_over); 2765 #endif 2766 } 2767 2768 static void 2769 place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial) 2770 { 2771 u64 vruntime = cfs_rq->min_vruntime; 2772 2773 /* 2774 * The 'current' period is already promised to the current tasks, 2775 * however the extra weight of the new task will slow them down a 2776 * little, place the new task so that it fits in the slot that 2777 * stays open at the end. 2778 */ 2779 if (initial && sched_feat(START_DEBIT)) 2780 vruntime += sched_vslice(cfs_rq, se); 2781 2782 /* sleeps up to a single latency don't count. */ 2783 if (!initial) { 2784 unsigned long thresh = sysctl_sched_latency; 2785 2786 /* 2787 * Halve their sleep time's effect, to allow 2788 * for a gentler effect of sleepers: 2789 */ 2790 if (sched_feat(GENTLE_FAIR_SLEEPERS)) 2791 thresh >>= 1; 2792 2793 vruntime -= thresh; 2794 } 2795 2796 /* ensure we never gain time by being placed backwards. */ 2797 se->vruntime = max_vruntime(se->vruntime, vruntime); 2798 } 2799 2800 static void check_enqueue_throttle(struct cfs_rq *cfs_rq); 2801 2802 static void 2803 enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 2804 { 2805 /* 2806 * Update the normalized vruntime before updating min_vruntime 2807 * through calling update_curr(). 2808 */ 2809 if (!(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_WAKING)) 2810 se->vruntime += cfs_rq->min_vruntime; 2811 2812 /* 2813 * Update run-time statistics of the 'current'. 2814 */ 2815 update_curr(cfs_rq); 2816 enqueue_entity_load_avg(cfs_rq, se, flags & ENQUEUE_WAKEUP); 2817 account_entity_enqueue(cfs_rq, se); 2818 update_cfs_shares(cfs_rq); 2819 2820 if (flags & ENQUEUE_WAKEUP) { 2821 place_entity(cfs_rq, se, 0); 2822 enqueue_sleeper(cfs_rq, se); 2823 } 2824 2825 update_stats_enqueue(cfs_rq, se); 2826 check_spread(cfs_rq, se); 2827 if (se != cfs_rq->curr) 2828 __enqueue_entity(cfs_rq, se); 2829 se->on_rq = 1; 2830 2831 if (cfs_rq->nr_running == 1) { 2832 list_add_leaf_cfs_rq(cfs_rq); 2833 check_enqueue_throttle(cfs_rq); 2834 } 2835 } 2836 2837 static void __clear_buddies_last(struct sched_entity *se) 2838 { 2839 for_each_sched_entity(se) { 2840 struct cfs_rq *cfs_rq = cfs_rq_of(se); 2841 if (cfs_rq->last != se) 2842 break; 2843 2844 cfs_rq->last = NULL; 2845 } 2846 } 2847 2848 static void __clear_buddies_next(struct sched_entity *se) 2849 { 2850 for_each_sched_entity(se) { 2851 struct cfs_rq *cfs_rq = cfs_rq_of(se); 2852 if (cfs_rq->next != se) 2853 break; 2854 2855 cfs_rq->next = NULL; 2856 } 2857 } 2858 2859 static void __clear_buddies_skip(struct sched_entity *se) 2860 { 2861 for_each_sched_entity(se) { 2862 struct cfs_rq *cfs_rq = cfs_rq_of(se); 2863 if (cfs_rq->skip != se) 2864 break; 2865 2866 cfs_rq->skip = NULL; 2867 } 2868 } 2869 2870 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se) 2871 { 2872 if (cfs_rq->last == se) 2873 __clear_buddies_last(se); 2874 2875 if (cfs_rq->next == se) 2876 __clear_buddies_next(se); 2877 2878 if (cfs_rq->skip == se) 2879 __clear_buddies_skip(se); 2880 } 2881 2882 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq); 2883 2884 static void 2885 dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 2886 { 2887 /* 2888 * Update run-time statistics of the 'current'. 2889 */ 2890 update_curr(cfs_rq); 2891 dequeue_entity_load_avg(cfs_rq, se, flags & DEQUEUE_SLEEP); 2892 2893 update_stats_dequeue(cfs_rq, se); 2894 if (flags & DEQUEUE_SLEEP) { 2895 #ifdef CONFIG_SCHEDSTATS 2896 if (entity_is_task(se)) { 2897 struct task_struct *tsk = task_of(se); 2898 2899 if (tsk->state & TASK_INTERRUPTIBLE) 2900 se->statistics.sleep_start = rq_clock(rq_of(cfs_rq)); 2901 if (tsk->state & TASK_UNINTERRUPTIBLE) 2902 se->statistics.block_start = rq_clock(rq_of(cfs_rq)); 2903 } 2904 #endif 2905 } 2906 2907 clear_buddies(cfs_rq, se); 2908 2909 if (se != cfs_rq->curr) 2910 __dequeue_entity(cfs_rq, se); 2911 se->on_rq = 0; 2912 account_entity_dequeue(cfs_rq, se); 2913 2914 /* 2915 * Normalize the entity after updating the min_vruntime because the 2916 * update can refer to the ->curr item and we need to reflect this 2917 * movement in our normalized position. 2918 */ 2919 if (!(flags & DEQUEUE_SLEEP)) 2920 se->vruntime -= cfs_rq->min_vruntime; 2921 2922 /* return excess runtime on last dequeue */ 2923 return_cfs_rq_runtime(cfs_rq); 2924 2925 update_min_vruntime(cfs_rq); 2926 update_cfs_shares(cfs_rq); 2927 } 2928 2929 /* 2930 * Preempt the current task with a newly woken task if needed: 2931 */ 2932 static void 2933 check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr) 2934 { 2935 unsigned long ideal_runtime, delta_exec; 2936 struct sched_entity *se; 2937 s64 delta; 2938 2939 ideal_runtime = sched_slice(cfs_rq, curr); 2940 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime; 2941 if (delta_exec > ideal_runtime) { 2942 resched_curr(rq_of(cfs_rq)); 2943 /* 2944 * The current task ran long enough, ensure it doesn't get 2945 * re-elected due to buddy favours. 2946 */ 2947 clear_buddies(cfs_rq, curr); 2948 return; 2949 } 2950 2951 /* 2952 * Ensure that a task that missed wakeup preemption by a 2953 * narrow margin doesn't have to wait for a full slice. 2954 * This also mitigates buddy induced latencies under load. 2955 */ 2956 if (delta_exec < sysctl_sched_min_granularity) 2957 return; 2958 2959 se = __pick_first_entity(cfs_rq); 2960 delta = curr->vruntime - se->vruntime; 2961 2962 if (delta < 0) 2963 return; 2964 2965 if (delta > ideal_runtime) 2966 resched_curr(rq_of(cfs_rq)); 2967 } 2968 2969 static void 2970 set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) 2971 { 2972 /* 'current' is not kept within the tree. */ 2973 if (se->on_rq) { 2974 /* 2975 * Any task has to be enqueued before it get to execute on 2976 * a CPU. So account for the time it spent waiting on the 2977 * runqueue. 2978 */ 2979 update_stats_wait_end(cfs_rq, se); 2980 __dequeue_entity(cfs_rq, se); 2981 } 2982 2983 update_stats_curr_start(cfs_rq, se); 2984 cfs_rq->curr = se; 2985 #ifdef CONFIG_SCHEDSTATS 2986 /* 2987 * Track our maximum slice length, if the CPU's load is at 2988 * least twice that of our own weight (i.e. dont track it 2989 * when there are only lesser-weight tasks around): 2990 */ 2991 if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) { 2992 se->statistics.slice_max = max(se->statistics.slice_max, 2993 se->sum_exec_runtime - se->prev_sum_exec_runtime); 2994 } 2995 #endif 2996 se->prev_sum_exec_runtime = se->sum_exec_runtime; 2997 } 2998 2999 static int 3000 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se); 3001 3002 /* 3003 * Pick the next process, keeping these things in mind, in this order: 3004 * 1) keep things fair between processes/task groups 3005 * 2) pick the "next" process, since someone really wants that to run 3006 * 3) pick the "last" process, for cache locality 3007 * 4) do not run the "skip" process, if something else is available 3008 */ 3009 static struct sched_entity * 3010 pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr) 3011 { 3012 struct sched_entity *left = __pick_first_entity(cfs_rq); 3013 struct sched_entity *se; 3014 3015 /* 3016 * If curr is set we have to see if its left of the leftmost entity 3017 * still in the tree, provided there was anything in the tree at all. 3018 */ 3019 if (!left || (curr && entity_before(curr, left))) 3020 left = curr; 3021 3022 se = left; /* ideally we run the leftmost entity */ 3023 3024 /* 3025 * Avoid running the skip buddy, if running something else can 3026 * be done without getting too unfair. 3027 */ 3028 if (cfs_rq->skip == se) { 3029 struct sched_entity *second; 3030 3031 if (se == curr) { 3032 second = __pick_first_entity(cfs_rq); 3033 } else { 3034 second = __pick_next_entity(se); 3035 if (!second || (curr && entity_before(curr, second))) 3036 second = curr; 3037 } 3038 3039 if (second && wakeup_preempt_entity(second, left) < 1) 3040 se = second; 3041 } 3042 3043 /* 3044 * Prefer last buddy, try to return the CPU to a preempted task. 3045 */ 3046 if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1) 3047 se = cfs_rq->last; 3048 3049 /* 3050 * Someone really wants this to run. If it's not unfair, run it. 3051 */ 3052 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1) 3053 se = cfs_rq->next; 3054 3055 clear_buddies(cfs_rq, se); 3056 3057 return se; 3058 } 3059 3060 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq); 3061 3062 static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev) 3063 { 3064 /* 3065 * If still on the runqueue then deactivate_task() 3066 * was not called and update_curr() has to be done: 3067 */ 3068 if (prev->on_rq) 3069 update_curr(cfs_rq); 3070 3071 /* throttle cfs_rqs exceeding runtime */ 3072 check_cfs_rq_runtime(cfs_rq); 3073 3074 check_spread(cfs_rq, prev); 3075 if (prev->on_rq) { 3076 update_stats_wait_start(cfs_rq, prev); 3077 /* Put 'current' back into the tree. */ 3078 __enqueue_entity(cfs_rq, prev); 3079 /* in !on_rq case, update occurred at dequeue */ 3080 update_entity_load_avg(prev, 1); 3081 } 3082 cfs_rq->curr = NULL; 3083 } 3084 3085 static void 3086 entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued) 3087 { 3088 /* 3089 * Update run-time statistics of the 'current'. 3090 */ 3091 update_curr(cfs_rq); 3092 3093 /* 3094 * Ensure that runnable average is periodically updated. 3095 */ 3096 update_entity_load_avg(curr, 1); 3097 update_cfs_rq_blocked_load(cfs_rq, 1); 3098 update_cfs_shares(cfs_rq); 3099 3100 #ifdef CONFIG_SCHED_HRTICK 3101 /* 3102 * queued ticks are scheduled to match the slice, so don't bother 3103 * validating it and just reschedule. 3104 */ 3105 if (queued) { 3106 resched_curr(rq_of(cfs_rq)); 3107 return; 3108 } 3109 /* 3110 * don't let the period tick interfere with the hrtick preemption 3111 */ 3112 if (!sched_feat(DOUBLE_TICK) && 3113 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer)) 3114 return; 3115 #endif 3116 3117 if (cfs_rq->nr_running > 1) 3118 check_preempt_tick(cfs_rq, curr); 3119 } 3120 3121 3122 /************************************************** 3123 * CFS bandwidth control machinery 3124 */ 3125 3126 #ifdef CONFIG_CFS_BANDWIDTH 3127 3128 #ifdef HAVE_JUMP_LABEL 3129 static struct static_key __cfs_bandwidth_used; 3130 3131 static inline bool cfs_bandwidth_used(void) 3132 { 3133 return static_key_false(&__cfs_bandwidth_used); 3134 } 3135 3136 void cfs_bandwidth_usage_inc(void) 3137 { 3138 static_key_slow_inc(&__cfs_bandwidth_used); 3139 } 3140 3141 void cfs_bandwidth_usage_dec(void) 3142 { 3143 static_key_slow_dec(&__cfs_bandwidth_used); 3144 } 3145 #else /* HAVE_JUMP_LABEL */ 3146 static bool cfs_bandwidth_used(void) 3147 { 3148 return true; 3149 } 3150 3151 void cfs_bandwidth_usage_inc(void) {} 3152 void cfs_bandwidth_usage_dec(void) {} 3153 #endif /* HAVE_JUMP_LABEL */ 3154 3155 /* 3156 * default period for cfs group bandwidth. 3157 * default: 0.1s, units: nanoseconds 3158 */ 3159 static inline u64 default_cfs_period(void) 3160 { 3161 return 100000000ULL; 3162 } 3163 3164 static inline u64 sched_cfs_bandwidth_slice(void) 3165 { 3166 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC; 3167 } 3168 3169 /* 3170 * Replenish runtime according to assigned quota and update expiration time. 3171 * We use sched_clock_cpu directly instead of rq->clock to avoid adding 3172 * additional synchronization around rq->lock. 3173 * 3174 * requires cfs_b->lock 3175 */ 3176 void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b) 3177 { 3178 u64 now; 3179 3180 if (cfs_b->quota == RUNTIME_INF) 3181 return; 3182 3183 now = sched_clock_cpu(smp_processor_id()); 3184 cfs_b->runtime = cfs_b->quota; 3185 cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period); 3186 } 3187 3188 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg) 3189 { 3190 return &tg->cfs_bandwidth; 3191 } 3192 3193 /* rq->task_clock normalized against any time this cfs_rq has spent throttled */ 3194 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq) 3195 { 3196 if (unlikely(cfs_rq->throttle_count)) 3197 return cfs_rq->throttled_clock_task; 3198 3199 return rq_clock_task(rq_of(cfs_rq)) - cfs_rq->throttled_clock_task_time; 3200 } 3201 3202 /* returns 0 on failure to allocate runtime */ 3203 static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq) 3204 { 3205 struct task_group *tg = cfs_rq->tg; 3206 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg); 3207 u64 amount = 0, min_amount, expires; 3208 3209 /* note: this is a positive sum as runtime_remaining <= 0 */ 3210 min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining; 3211 3212 raw_spin_lock(&cfs_b->lock); 3213 if (cfs_b->quota == RUNTIME_INF) 3214 amount = min_amount; 3215 else { 3216 /* 3217 * If the bandwidth pool has become inactive, then at least one 3218 * period must have elapsed since the last consumption. 3219 * Refresh the global state and ensure bandwidth timer becomes 3220 * active. 3221 */ 3222 if (!cfs_b->timer_active) { 3223 __refill_cfs_bandwidth_runtime(cfs_b); 3224 __start_cfs_bandwidth(cfs_b, false); 3225 } 3226 3227 if (cfs_b->runtime > 0) { 3228 amount = min(cfs_b->runtime, min_amount); 3229 cfs_b->runtime -= amount; 3230 cfs_b->idle = 0; 3231 } 3232 } 3233 expires = cfs_b->runtime_expires; 3234 raw_spin_unlock(&cfs_b->lock); 3235 3236 cfs_rq->runtime_remaining += amount; 3237 /* 3238 * we may have advanced our local expiration to account for allowed 3239 * spread between our sched_clock and the one on which runtime was 3240 * issued. 3241 */ 3242 if ((s64)(expires - cfs_rq->runtime_expires) > 0) 3243 cfs_rq->runtime_expires = expires; 3244 3245 return cfs_rq->runtime_remaining > 0; 3246 } 3247 3248 /* 3249 * Note: This depends on the synchronization provided by sched_clock and the 3250 * fact that rq->clock snapshots this value. 3251 */ 3252 static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq) 3253 { 3254 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 3255 3256 /* if the deadline is ahead of our clock, nothing to do */ 3257 if (likely((s64)(rq_clock(rq_of(cfs_rq)) - cfs_rq->runtime_expires) < 0)) 3258 return; 3259 3260 if (cfs_rq->runtime_remaining < 0) 3261 return; 3262 3263 /* 3264 * If the local deadline has passed we have to consider the 3265 * possibility that our sched_clock is 'fast' and the global deadline 3266 * has not truly expired. 3267 * 3268 * Fortunately we can check determine whether this the case by checking 3269 * whether the global deadline has advanced. It is valid to compare 3270 * cfs_b->runtime_expires without any locks since we only care about 3271 * exact equality, so a partial write will still work. 3272 */ 3273 3274 if (cfs_rq->runtime_expires != cfs_b->runtime_expires) { 3275 /* extend local deadline, drift is bounded above by 2 ticks */ 3276 cfs_rq->runtime_expires += TICK_NSEC; 3277 } else { 3278 /* global deadline is ahead, expiration has passed */ 3279 cfs_rq->runtime_remaining = 0; 3280 } 3281 } 3282 3283 static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) 3284 { 3285 /* dock delta_exec before expiring quota (as it could span periods) */ 3286 cfs_rq->runtime_remaining -= delta_exec; 3287 expire_cfs_rq_runtime(cfs_rq); 3288 3289 if (likely(cfs_rq->runtime_remaining > 0)) 3290 return; 3291 3292 /* 3293 * if we're unable to extend our runtime we resched so that the active 3294 * hierarchy can be throttled 3295 */ 3296 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr)) 3297 resched_curr(rq_of(cfs_rq)); 3298 } 3299 3300 static __always_inline 3301 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) 3302 { 3303 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled) 3304 return; 3305 3306 __account_cfs_rq_runtime(cfs_rq, delta_exec); 3307 } 3308 3309 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq) 3310 { 3311 return cfs_bandwidth_used() && cfs_rq->throttled; 3312 } 3313 3314 /* check whether cfs_rq, or any parent, is throttled */ 3315 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq) 3316 { 3317 return cfs_bandwidth_used() && cfs_rq->throttle_count; 3318 } 3319 3320 /* 3321 * Ensure that neither of the group entities corresponding to src_cpu or 3322 * dest_cpu are members of a throttled hierarchy when performing group 3323 * load-balance operations. 3324 */ 3325 static inline int throttled_lb_pair(struct task_group *tg, 3326 int src_cpu, int dest_cpu) 3327 { 3328 struct cfs_rq *src_cfs_rq, *dest_cfs_rq; 3329 3330 src_cfs_rq = tg->cfs_rq[src_cpu]; 3331 dest_cfs_rq = tg->cfs_rq[dest_cpu]; 3332 3333 return throttled_hierarchy(src_cfs_rq) || 3334 throttled_hierarchy(dest_cfs_rq); 3335 } 3336 3337 /* updated child weight may affect parent so we have to do this bottom up */ 3338 static int tg_unthrottle_up(struct task_group *tg, void *data) 3339 { 3340 struct rq *rq = data; 3341 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; 3342 3343 cfs_rq->throttle_count--; 3344 #ifdef CONFIG_SMP 3345 if (!cfs_rq->throttle_count) { 3346 /* adjust cfs_rq_clock_task() */ 3347 cfs_rq->throttled_clock_task_time += rq_clock_task(rq) - 3348 cfs_rq->throttled_clock_task; 3349 } 3350 #endif 3351 3352 return 0; 3353 } 3354 3355 static int tg_throttle_down(struct task_group *tg, void *data) 3356 { 3357 struct rq *rq = data; 3358 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; 3359 3360 /* group is entering throttled state, stop time */ 3361 if (!cfs_rq->throttle_count) 3362 cfs_rq->throttled_clock_task = rq_clock_task(rq); 3363 cfs_rq->throttle_count++; 3364 3365 return 0; 3366 } 3367 3368 static void throttle_cfs_rq(struct cfs_rq *cfs_rq) 3369 { 3370 struct rq *rq = rq_of(cfs_rq); 3371 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 3372 struct sched_entity *se; 3373 long task_delta, dequeue = 1; 3374 3375 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))]; 3376 3377 /* freeze hierarchy runnable averages while throttled */ 3378 rcu_read_lock(); 3379 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq); 3380 rcu_read_unlock(); 3381 3382 task_delta = cfs_rq->h_nr_running; 3383 for_each_sched_entity(se) { 3384 struct cfs_rq *qcfs_rq = cfs_rq_of(se); 3385 /* throttled entity or throttle-on-deactivate */ 3386 if (!se->on_rq) 3387 break; 3388 3389 if (dequeue) 3390 dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP); 3391 qcfs_rq->h_nr_running -= task_delta; 3392 3393 if (qcfs_rq->load.weight) 3394 dequeue = 0; 3395 } 3396 3397 if (!se) 3398 sub_nr_running(rq, task_delta); 3399 3400 cfs_rq->throttled = 1; 3401 cfs_rq->throttled_clock = rq_clock(rq); 3402 raw_spin_lock(&cfs_b->lock); 3403 /* 3404 * Add to the _head_ of the list, so that an already-started 3405 * distribute_cfs_runtime will not see us 3406 */ 3407 list_add_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq); 3408 if (!cfs_b->timer_active) 3409 __start_cfs_bandwidth(cfs_b, false); 3410 raw_spin_unlock(&cfs_b->lock); 3411 } 3412 3413 void unthrottle_cfs_rq(struct cfs_rq *cfs_rq) 3414 { 3415 struct rq *rq = rq_of(cfs_rq); 3416 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 3417 struct sched_entity *se; 3418 int enqueue = 1; 3419 long task_delta; 3420 3421 se = cfs_rq->tg->se[cpu_of(rq)]; 3422 3423 cfs_rq->throttled = 0; 3424 3425 update_rq_clock(rq); 3426 3427 raw_spin_lock(&cfs_b->lock); 3428 cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock; 3429 list_del_rcu(&cfs_rq->throttled_list); 3430 raw_spin_unlock(&cfs_b->lock); 3431 3432 /* update hierarchical throttle state */ 3433 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq); 3434 3435 if (!cfs_rq->load.weight) 3436 return; 3437 3438 task_delta = cfs_rq->h_nr_running; 3439 for_each_sched_entity(se) { 3440 if (se->on_rq) 3441 enqueue = 0; 3442 3443 cfs_rq = cfs_rq_of(se); 3444 if (enqueue) 3445 enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP); 3446 cfs_rq->h_nr_running += task_delta; 3447 3448 if (cfs_rq_throttled(cfs_rq)) 3449 break; 3450 } 3451 3452 if (!se) 3453 add_nr_running(rq, task_delta); 3454 3455 /* determine whether we need to wake up potentially idle cpu */ 3456 if (rq->curr == rq->idle && rq->cfs.nr_running) 3457 resched_curr(rq); 3458 } 3459 3460 static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b, 3461 u64 remaining, u64 expires) 3462 { 3463 struct cfs_rq *cfs_rq; 3464 u64 runtime; 3465 u64 starting_runtime = remaining; 3466 3467 rcu_read_lock(); 3468 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq, 3469 throttled_list) { 3470 struct rq *rq = rq_of(cfs_rq); 3471 3472 raw_spin_lock(&rq->lock); 3473 if (!cfs_rq_throttled(cfs_rq)) 3474 goto next; 3475 3476 runtime = -cfs_rq->runtime_remaining + 1; 3477 if (runtime > remaining) 3478 runtime = remaining; 3479 remaining -= runtime; 3480 3481 cfs_rq->runtime_remaining += runtime; 3482 cfs_rq->runtime_expires = expires; 3483 3484 /* we check whether we're throttled above */ 3485 if (cfs_rq->runtime_remaining > 0) 3486 unthrottle_cfs_rq(cfs_rq); 3487 3488 next: 3489 raw_spin_unlock(&rq->lock); 3490 3491 if (!remaining) 3492 break; 3493 } 3494 rcu_read_unlock(); 3495 3496 return starting_runtime - remaining; 3497 } 3498 3499 /* 3500 * Responsible for refilling a task_group's bandwidth and unthrottling its 3501 * cfs_rqs as appropriate. If there has been no activity within the last 3502 * period the timer is deactivated until scheduling resumes; cfs_b->idle is 3503 * used to track this state. 3504 */ 3505 static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun) 3506 { 3507 u64 runtime, runtime_expires; 3508 int throttled; 3509 3510 /* no need to continue the timer with no bandwidth constraint */ 3511 if (cfs_b->quota == RUNTIME_INF) 3512 goto out_deactivate; 3513 3514 throttled = !list_empty(&cfs_b->throttled_cfs_rq); 3515 cfs_b->nr_periods += overrun; 3516 3517 /* 3518 * idle depends on !throttled (for the case of a large deficit), and if 3519 * we're going inactive then everything else can be deferred 3520 */ 3521 if (cfs_b->idle && !throttled) 3522 goto out_deactivate; 3523 3524 /* 3525 * if we have relooped after returning idle once, we need to update our 3526 * status as actually running, so that other cpus doing 3527 * __start_cfs_bandwidth will stop trying to cancel us. 3528 */ 3529 cfs_b->timer_active = 1; 3530 3531 __refill_cfs_bandwidth_runtime(cfs_b); 3532 3533 if (!throttled) { 3534 /* mark as potentially idle for the upcoming period */ 3535 cfs_b->idle = 1; 3536 return 0; 3537 } 3538 3539 /* account preceding periods in which throttling occurred */ 3540 cfs_b->nr_throttled += overrun; 3541 3542 runtime_expires = cfs_b->runtime_expires; 3543 3544 /* 3545 * This check is repeated as we are holding onto the new bandwidth while 3546 * we unthrottle. This can potentially race with an unthrottled group 3547 * trying to acquire new bandwidth from the global pool. This can result 3548 * in us over-using our runtime if it is all used during this loop, but 3549 * only by limited amounts in that extreme case. 3550 */ 3551 while (throttled && cfs_b->runtime > 0) { 3552 runtime = cfs_b->runtime; 3553 raw_spin_unlock(&cfs_b->lock); 3554 /* we can't nest cfs_b->lock while distributing bandwidth */ 3555 runtime = distribute_cfs_runtime(cfs_b, runtime, 3556 runtime_expires); 3557 raw_spin_lock(&cfs_b->lock); 3558 3559 throttled = !list_empty(&cfs_b->throttled_cfs_rq); 3560 3561 cfs_b->runtime -= min(runtime, cfs_b->runtime); 3562 } 3563 3564 /* 3565 * While we are ensured activity in the period following an 3566 * unthrottle, this also covers the case in which the new bandwidth is 3567 * insufficient to cover the existing bandwidth deficit. (Forcing the 3568 * timer to remain active while there are any throttled entities.) 3569 */ 3570 cfs_b->idle = 0; 3571 3572 return 0; 3573 3574 out_deactivate: 3575 cfs_b->timer_active = 0; 3576 return 1; 3577 } 3578 3579 /* a cfs_rq won't donate quota below this amount */ 3580 static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC; 3581 /* minimum remaining period time to redistribute slack quota */ 3582 static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC; 3583 /* how long we wait to gather additional slack before distributing */ 3584 static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC; 3585 3586 /* 3587 * Are we near the end of the current quota period? 3588 * 3589 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the 3590 * hrtimer base being cleared by __hrtimer_start_range_ns. In the case of 3591 * migrate_hrtimers, base is never cleared, so we are fine. 3592 */ 3593 static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire) 3594 { 3595 struct hrtimer *refresh_timer = &cfs_b->period_timer; 3596 u64 remaining; 3597 3598 /* if the call-back is running a quota refresh is already occurring */ 3599 if (hrtimer_callback_running(refresh_timer)) 3600 return 1; 3601 3602 /* is a quota refresh about to occur? */ 3603 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer)); 3604 if (remaining < min_expire) 3605 return 1; 3606 3607 return 0; 3608 } 3609 3610 static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b) 3611 { 3612 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration; 3613 3614 /* if there's a quota refresh soon don't bother with slack */ 3615 if (runtime_refresh_within(cfs_b, min_left)) 3616 return; 3617 3618 start_bandwidth_timer(&cfs_b->slack_timer, 3619 ns_to_ktime(cfs_bandwidth_slack_period)); 3620 } 3621 3622 /* we know any runtime found here is valid as update_curr() precedes return */ 3623 static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq) 3624 { 3625 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 3626 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime; 3627 3628 if (slack_runtime <= 0) 3629 return; 3630 3631 raw_spin_lock(&cfs_b->lock); 3632 if (cfs_b->quota != RUNTIME_INF && 3633 cfs_rq->runtime_expires == cfs_b->runtime_expires) { 3634 cfs_b->runtime += slack_runtime; 3635 3636 /* we are under rq->lock, defer unthrottling using a timer */ 3637 if (cfs_b->runtime > sched_cfs_bandwidth_slice() && 3638 !list_empty(&cfs_b->throttled_cfs_rq)) 3639 start_cfs_slack_bandwidth(cfs_b); 3640 } 3641 raw_spin_unlock(&cfs_b->lock); 3642 3643 /* even if it's not valid for return we don't want to try again */ 3644 cfs_rq->runtime_remaining -= slack_runtime; 3645 } 3646 3647 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) 3648 { 3649 if (!cfs_bandwidth_used()) 3650 return; 3651 3652 if (!cfs_rq->runtime_enabled || cfs_rq->nr_running) 3653 return; 3654 3655 __return_cfs_rq_runtime(cfs_rq); 3656 } 3657 3658 /* 3659 * This is done with a timer (instead of inline with bandwidth return) since 3660 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs. 3661 */ 3662 static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b) 3663 { 3664 u64 runtime = 0, slice = sched_cfs_bandwidth_slice(); 3665 u64 expires; 3666 3667 /* confirm we're still not at a refresh boundary */ 3668 raw_spin_lock(&cfs_b->lock); 3669 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) { 3670 raw_spin_unlock(&cfs_b->lock); 3671 return; 3672 } 3673 3674 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice) 3675 runtime = cfs_b->runtime; 3676 3677 expires = cfs_b->runtime_expires; 3678 raw_spin_unlock(&cfs_b->lock); 3679 3680 if (!runtime) 3681 return; 3682 3683 runtime = distribute_cfs_runtime(cfs_b, runtime, expires); 3684 3685 raw_spin_lock(&cfs_b->lock); 3686 if (expires == cfs_b->runtime_expires) 3687 cfs_b->runtime -= min(runtime, cfs_b->runtime); 3688 raw_spin_unlock(&cfs_b->lock); 3689 } 3690 3691 /* 3692 * When a group wakes up we want to make sure that its quota is not already 3693 * expired/exceeded, otherwise it may be allowed to steal additional ticks of 3694 * runtime as update_curr() throttling can not not trigger until it's on-rq. 3695 */ 3696 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) 3697 { 3698 if (!cfs_bandwidth_used()) 3699 return; 3700 3701 /* an active group must be handled by the update_curr()->put() path */ 3702 if (!cfs_rq->runtime_enabled || cfs_rq->curr) 3703 return; 3704 3705 /* ensure the group is not already throttled */ 3706 if (cfs_rq_throttled(cfs_rq)) 3707 return; 3708 3709 /* update runtime allocation */ 3710 account_cfs_rq_runtime(cfs_rq, 0); 3711 if (cfs_rq->runtime_remaining <= 0) 3712 throttle_cfs_rq(cfs_rq); 3713 } 3714 3715 /* conditionally throttle active cfs_rq's from put_prev_entity() */ 3716 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) 3717 { 3718 if (!cfs_bandwidth_used()) 3719 return false; 3720 3721 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0)) 3722 return false; 3723 3724 /* 3725 * it's possible for a throttled entity to be forced into a running 3726 * state (e.g. set_curr_task), in this case we're finished. 3727 */ 3728 if (cfs_rq_throttled(cfs_rq)) 3729 return true; 3730 3731 throttle_cfs_rq(cfs_rq); 3732 return true; 3733 } 3734 3735 static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer) 3736 { 3737 struct cfs_bandwidth *cfs_b = 3738 container_of(timer, struct cfs_bandwidth, slack_timer); 3739 do_sched_cfs_slack_timer(cfs_b); 3740 3741 return HRTIMER_NORESTART; 3742 } 3743 3744 static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer) 3745 { 3746 struct cfs_bandwidth *cfs_b = 3747 container_of(timer, struct cfs_bandwidth, period_timer); 3748 ktime_t now; 3749 int overrun; 3750 int idle = 0; 3751 3752 raw_spin_lock(&cfs_b->lock); 3753 for (;;) { 3754 now = hrtimer_cb_get_time(timer); 3755 overrun = hrtimer_forward(timer, now, cfs_b->period); 3756 3757 if (!overrun) 3758 break; 3759 3760 idle = do_sched_cfs_period_timer(cfs_b, overrun); 3761 } 3762 raw_spin_unlock(&cfs_b->lock); 3763 3764 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART; 3765 } 3766 3767 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) 3768 { 3769 raw_spin_lock_init(&cfs_b->lock); 3770 cfs_b->runtime = 0; 3771 cfs_b->quota = RUNTIME_INF; 3772 cfs_b->period = ns_to_ktime(default_cfs_period()); 3773 3774 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq); 3775 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 3776 cfs_b->period_timer.function = sched_cfs_period_timer; 3777 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 3778 cfs_b->slack_timer.function = sched_cfs_slack_timer; 3779 } 3780 3781 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) 3782 { 3783 cfs_rq->runtime_enabled = 0; 3784 INIT_LIST_HEAD(&cfs_rq->throttled_list); 3785 } 3786 3787 /* requires cfs_b->lock, may release to reprogram timer */ 3788 void __start_cfs_bandwidth(struct cfs_bandwidth *cfs_b, bool force) 3789 { 3790 /* 3791 * The timer may be active because we're trying to set a new bandwidth 3792 * period or because we're racing with the tear-down path 3793 * (timer_active==0 becomes visible before the hrtimer call-back 3794 * terminates). In either case we ensure that it's re-programmed 3795 */ 3796 while (unlikely(hrtimer_active(&cfs_b->period_timer)) && 3797 hrtimer_try_to_cancel(&cfs_b->period_timer) < 0) { 3798 /* bounce the lock to allow do_sched_cfs_period_timer to run */ 3799 raw_spin_unlock(&cfs_b->lock); 3800 cpu_relax(); 3801 raw_spin_lock(&cfs_b->lock); 3802 /* if someone else restarted the timer then we're done */ 3803 if (!force && cfs_b->timer_active) 3804 return; 3805 } 3806 3807 cfs_b->timer_active = 1; 3808 start_bandwidth_timer(&cfs_b->period_timer, cfs_b->period); 3809 } 3810 3811 static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) 3812 { 3813 hrtimer_cancel(&cfs_b->period_timer); 3814 hrtimer_cancel(&cfs_b->slack_timer); 3815 } 3816 3817 static void __maybe_unused update_runtime_enabled(struct rq *rq) 3818 { 3819 struct cfs_rq *cfs_rq; 3820 3821 for_each_leaf_cfs_rq(rq, cfs_rq) { 3822 struct cfs_bandwidth *cfs_b = &cfs_rq->tg->cfs_bandwidth; 3823 3824 raw_spin_lock(&cfs_b->lock); 3825 cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF; 3826 raw_spin_unlock(&cfs_b->lock); 3827 } 3828 } 3829 3830 static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq) 3831 { 3832 struct cfs_rq *cfs_rq; 3833 3834 for_each_leaf_cfs_rq(rq, cfs_rq) { 3835 if (!cfs_rq->runtime_enabled) 3836 continue; 3837 3838 /* 3839 * clock_task is not advancing so we just need to make sure 3840 * there's some valid quota amount 3841 */ 3842 cfs_rq->runtime_remaining = 1; 3843 /* 3844 * Offline rq is schedulable till cpu is completely disabled 3845 * in take_cpu_down(), so we prevent new cfs throttling here. 3846 */ 3847 cfs_rq->runtime_enabled = 0; 3848 3849 if (cfs_rq_throttled(cfs_rq)) 3850 unthrottle_cfs_rq(cfs_rq); 3851 } 3852 } 3853 3854 #else /* CONFIG_CFS_BANDWIDTH */ 3855 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq) 3856 { 3857 return rq_clock_task(rq_of(cfs_rq)); 3858 } 3859 3860 static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {} 3861 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; } 3862 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {} 3863 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {} 3864 3865 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq) 3866 { 3867 return 0; 3868 } 3869 3870 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq) 3871 { 3872 return 0; 3873 } 3874 3875 static inline int throttled_lb_pair(struct task_group *tg, 3876 int src_cpu, int dest_cpu) 3877 { 3878 return 0; 3879 } 3880 3881 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {} 3882 3883 #ifdef CONFIG_FAIR_GROUP_SCHED 3884 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {} 3885 #endif 3886 3887 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg) 3888 { 3889 return NULL; 3890 } 3891 static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {} 3892 static inline void update_runtime_enabled(struct rq *rq) {} 3893 static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {} 3894 3895 #endif /* CONFIG_CFS_BANDWIDTH */ 3896 3897 /************************************************** 3898 * CFS operations on tasks: 3899 */ 3900 3901 #ifdef CONFIG_SCHED_HRTICK 3902 static void hrtick_start_fair(struct rq *rq, struct task_struct *p) 3903 { 3904 struct sched_entity *se = &p->se; 3905 struct cfs_rq *cfs_rq = cfs_rq_of(se); 3906 3907 WARN_ON(task_rq(p) != rq); 3908 3909 if (cfs_rq->nr_running > 1) { 3910 u64 slice = sched_slice(cfs_rq, se); 3911 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime; 3912 s64 delta = slice - ran; 3913 3914 if (delta < 0) { 3915 if (rq->curr == p) 3916 resched_curr(rq); 3917 return; 3918 } 3919 hrtick_start(rq, delta); 3920 } 3921 } 3922 3923 /* 3924 * called from enqueue/dequeue and updates the hrtick when the 3925 * current task is from our class and nr_running is low enough 3926 * to matter. 3927 */ 3928 static void hrtick_update(struct rq *rq) 3929 { 3930 struct task_struct *curr = rq->curr; 3931 3932 if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class) 3933 return; 3934 3935 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency) 3936 hrtick_start_fair(rq, curr); 3937 } 3938 #else /* !CONFIG_SCHED_HRTICK */ 3939 static inline void 3940 hrtick_start_fair(struct rq *rq, struct task_struct *p) 3941 { 3942 } 3943 3944 static inline void hrtick_update(struct rq *rq) 3945 { 3946 } 3947 #endif 3948 3949 /* 3950 * The enqueue_task method is called before nr_running is 3951 * increased. Here we update the fair scheduling stats and 3952 * then put the task into the rbtree: 3953 */ 3954 static void 3955 enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags) 3956 { 3957 struct cfs_rq *cfs_rq; 3958 struct sched_entity *se = &p->se; 3959 3960 for_each_sched_entity(se) { 3961 if (se->on_rq) 3962 break; 3963 cfs_rq = cfs_rq_of(se); 3964 enqueue_entity(cfs_rq, se, flags); 3965 3966 /* 3967 * end evaluation on encountering a throttled cfs_rq 3968 * 3969 * note: in the case of encountering a throttled cfs_rq we will 3970 * post the final h_nr_running increment below. 3971 */ 3972 if (cfs_rq_throttled(cfs_rq)) 3973 break; 3974 cfs_rq->h_nr_running++; 3975 3976 flags = ENQUEUE_WAKEUP; 3977 } 3978 3979 for_each_sched_entity(se) { 3980 cfs_rq = cfs_rq_of(se); 3981 cfs_rq->h_nr_running++; 3982 3983 if (cfs_rq_throttled(cfs_rq)) 3984 break; 3985 3986 update_cfs_shares(cfs_rq); 3987 update_entity_load_avg(se, 1); 3988 } 3989 3990 if (!se) { 3991 update_rq_runnable_avg(rq, rq->nr_running); 3992 add_nr_running(rq, 1); 3993 } 3994 hrtick_update(rq); 3995 } 3996 3997 static void set_next_buddy(struct sched_entity *se); 3998 3999 /* 4000 * The dequeue_task method is called before nr_running is 4001 * decreased. We remove the task from the rbtree and 4002 * update the fair scheduling stats: 4003 */ 4004 static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags) 4005 { 4006 struct cfs_rq *cfs_rq; 4007 struct sched_entity *se = &p->se; 4008 int task_sleep = flags & DEQUEUE_SLEEP; 4009 4010 for_each_sched_entity(se) { 4011 cfs_rq = cfs_rq_of(se); 4012 dequeue_entity(cfs_rq, se, flags); 4013 4014 /* 4015 * end evaluation on encountering a throttled cfs_rq 4016 * 4017 * note: in the case of encountering a throttled cfs_rq we will 4018 * post the final h_nr_running decrement below. 4019 */ 4020 if (cfs_rq_throttled(cfs_rq)) 4021 break; 4022 cfs_rq->h_nr_running--; 4023 4024 /* Don't dequeue parent if it has other entities besides us */ 4025 if (cfs_rq->load.weight) { 4026 /* 4027 * Bias pick_next to pick a task from this cfs_rq, as 4028 * p is sleeping when it is within its sched_slice. 4029 */ 4030 if (task_sleep && parent_entity(se)) 4031 set_next_buddy(parent_entity(se)); 4032 4033 /* avoid re-evaluating load for this entity */ 4034 se = parent_entity(se); 4035 break; 4036 } 4037 flags |= DEQUEUE_SLEEP; 4038 } 4039 4040 for_each_sched_entity(se) { 4041 cfs_rq = cfs_rq_of(se); 4042 cfs_rq->h_nr_running--; 4043 4044 if (cfs_rq_throttled(cfs_rq)) 4045 break; 4046 4047 update_cfs_shares(cfs_rq); 4048 update_entity_load_avg(se, 1); 4049 } 4050 4051 if (!se) { 4052 sub_nr_running(rq, 1); 4053 update_rq_runnable_avg(rq, 1); 4054 } 4055 hrtick_update(rq); 4056 } 4057 4058 #ifdef CONFIG_SMP 4059 /* Used instead of source_load when we know the type == 0 */ 4060 static unsigned long weighted_cpuload(const int cpu) 4061 { 4062 return cpu_rq(cpu)->cfs.runnable_load_avg; 4063 } 4064 4065 /* 4066 * Return a low guess at the load of a migration-source cpu weighted 4067 * according to the scheduling class and "nice" value. 4068 * 4069 * We want to under-estimate the load of migration sources, to 4070 * balance conservatively. 4071 */ 4072 static unsigned long source_load(int cpu, int type) 4073 { 4074 struct rq *rq = cpu_rq(cpu); 4075 unsigned long total = weighted_cpuload(cpu); 4076 4077 if (type == 0 || !sched_feat(LB_BIAS)) 4078 return total; 4079 4080 return min(rq->cpu_load[type-1], total); 4081 } 4082 4083 /* 4084 * Return a high guess at the load of a migration-target cpu weighted 4085 * according to the scheduling class and "nice" value. 4086 */ 4087 static unsigned long target_load(int cpu, int type) 4088 { 4089 struct rq *rq = cpu_rq(cpu); 4090 unsigned long total = weighted_cpuload(cpu); 4091 4092 if (type == 0 || !sched_feat(LB_BIAS)) 4093 return total; 4094 4095 return max(rq->cpu_load[type-1], total); 4096 } 4097 4098 static unsigned long capacity_of(int cpu) 4099 { 4100 return cpu_rq(cpu)->cpu_capacity; 4101 } 4102 4103 static unsigned long cpu_avg_load_per_task(int cpu) 4104 { 4105 struct rq *rq = cpu_rq(cpu); 4106 unsigned long nr_running = ACCESS_ONCE(rq->cfs.h_nr_running); 4107 unsigned long load_avg = rq->cfs.runnable_load_avg; 4108 4109 if (nr_running) 4110 return load_avg / nr_running; 4111 4112 return 0; 4113 } 4114 4115 static void record_wakee(struct task_struct *p) 4116 { 4117 /* 4118 * Rough decay (wiping) for cost saving, don't worry 4119 * about the boundary, really active task won't care 4120 * about the loss. 4121 */ 4122 if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) { 4123 current->wakee_flips >>= 1; 4124 current->wakee_flip_decay_ts = jiffies; 4125 } 4126 4127 if (current->last_wakee != p) { 4128 current->last_wakee = p; 4129 current->wakee_flips++; 4130 } 4131 } 4132 4133 static void task_waking_fair(struct task_struct *p) 4134 { 4135 struct sched_entity *se = &p->se; 4136 struct cfs_rq *cfs_rq = cfs_rq_of(se); 4137 u64 min_vruntime; 4138 4139 #ifndef CONFIG_64BIT 4140 u64 min_vruntime_copy; 4141 4142 do { 4143 min_vruntime_copy = cfs_rq->min_vruntime_copy; 4144 smp_rmb(); 4145 min_vruntime = cfs_rq->min_vruntime; 4146 } while (min_vruntime != min_vruntime_copy); 4147 #else 4148 min_vruntime = cfs_rq->min_vruntime; 4149 #endif 4150 4151 se->vruntime -= min_vruntime; 4152 record_wakee(p); 4153 } 4154 4155 #ifdef CONFIG_FAIR_GROUP_SCHED 4156 /* 4157 * effective_load() calculates the load change as seen from the root_task_group 4158 * 4159 * Adding load to a group doesn't make a group heavier, but can cause movement 4160 * of group shares between cpus. Assuming the shares were perfectly aligned one 4161 * can calculate the shift in shares. 4162 * 4163 * Calculate the effective load difference if @wl is added (subtracted) to @tg 4164 * on this @cpu and results in a total addition (subtraction) of @wg to the 4165 * total group weight. 4166 * 4167 * Given a runqueue weight distribution (rw_i) we can compute a shares 4168 * distribution (s_i) using: 4169 * 4170 * s_i = rw_i / \Sum rw_j (1) 4171 * 4172 * Suppose we have 4 CPUs and our @tg is a direct child of the root group and 4173 * has 7 equal weight tasks, distributed as below (rw_i), with the resulting 4174 * shares distribution (s_i): 4175 * 4176 * rw_i = { 2, 4, 1, 0 } 4177 * s_i = { 2/7, 4/7, 1/7, 0 } 4178 * 4179 * As per wake_affine() we're interested in the load of two CPUs (the CPU the 4180 * task used to run on and the CPU the waker is running on), we need to 4181 * compute the effect of waking a task on either CPU and, in case of a sync 4182 * wakeup, compute the effect of the current task going to sleep. 4183 * 4184 * So for a change of @wl to the local @cpu with an overall group weight change 4185 * of @wl we can compute the new shares distribution (s'_i) using: 4186 * 4187 * s'_i = (rw_i + @wl) / (@wg + \Sum rw_j) (2) 4188 * 4189 * Suppose we're interested in CPUs 0 and 1, and want to compute the load 4190 * differences in waking a task to CPU 0. The additional task changes the 4191 * weight and shares distributions like: 4192 * 4193 * rw'_i = { 3, 4, 1, 0 } 4194 * s'_i = { 3/8, 4/8, 1/8, 0 } 4195 * 4196 * We can then compute the difference in effective weight by using: 4197 * 4198 * dw_i = S * (s'_i - s_i) (3) 4199 * 4200 * Where 'S' is the group weight as seen by its parent. 4201 * 4202 * Therefore the effective change in loads on CPU 0 would be 5/56 (3/8 - 2/7) 4203 * times the weight of the group. The effect on CPU 1 would be -4/56 (4/8 - 4204 * 4/7) times the weight of the group. 4205 */ 4206 static long effective_load(struct task_group *tg, int cpu, long wl, long wg) 4207 { 4208 struct sched_entity *se = tg->se[cpu]; 4209 4210 if (!tg->parent) /* the trivial, non-cgroup case */ 4211 return wl; 4212 4213 for_each_sched_entity(se) { 4214 long w, W; 4215 4216 tg = se->my_q->tg; 4217 4218 /* 4219 * W = @wg + \Sum rw_j 4220 */ 4221 W = wg + calc_tg_weight(tg, se->my_q); 4222 4223 /* 4224 * w = rw_i + @wl 4225 */ 4226 w = se->my_q->load.weight + wl; 4227 4228 /* 4229 * wl = S * s'_i; see (2) 4230 */ 4231 if (W > 0 && w < W) 4232 wl = (w * tg->shares) / W; 4233 else 4234 wl = tg->shares; 4235 4236 /* 4237 * Per the above, wl is the new se->load.weight value; since 4238 * those are clipped to [MIN_SHARES, ...) do so now. See 4239 * calc_cfs_shares(). 4240 */ 4241 if (wl < MIN_SHARES) 4242 wl = MIN_SHARES; 4243 4244 /* 4245 * wl = dw_i = S * (s'_i - s_i); see (3) 4246 */ 4247 wl -= se->load.weight; 4248 4249 /* 4250 * Recursively apply this logic to all parent groups to compute 4251 * the final effective load change on the root group. Since 4252 * only the @tg group gets extra weight, all parent groups can 4253 * only redistribute existing shares. @wl is the shift in shares 4254 * resulting from this level per the above. 4255 */ 4256 wg = 0; 4257 } 4258 4259 return wl; 4260 } 4261 #else 4262 4263 static long effective_load(struct task_group *tg, int cpu, long wl, long wg) 4264 { 4265 return wl; 4266 } 4267 4268 #endif 4269 4270 static int wake_wide(struct task_struct *p) 4271 { 4272 int factor = this_cpu_read(sd_llc_size); 4273 4274 /* 4275 * Yeah, it's the switching-frequency, could means many wakee or 4276 * rapidly switch, use factor here will just help to automatically 4277 * adjust the loose-degree, so bigger node will lead to more pull. 4278 */ 4279 if (p->wakee_flips > factor) { 4280 /* 4281 * wakee is somewhat hot, it needs certain amount of cpu 4282 * resource, so if waker is far more hot, prefer to leave 4283 * it alone. 4284 */ 4285 if (current->wakee_flips > (factor * p->wakee_flips)) 4286 return 1; 4287 } 4288 4289 return 0; 4290 } 4291 4292 static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync) 4293 { 4294 s64 this_load, load; 4295 s64 this_eff_load, prev_eff_load; 4296 int idx, this_cpu, prev_cpu; 4297 struct task_group *tg; 4298 unsigned long weight; 4299 int balanced; 4300 4301 /* 4302 * If we wake multiple tasks be careful to not bounce 4303 * ourselves around too much. 4304 */ 4305 if (wake_wide(p)) 4306 return 0; 4307 4308 idx = sd->wake_idx; 4309 this_cpu = smp_processor_id(); 4310 prev_cpu = task_cpu(p); 4311 load = source_load(prev_cpu, idx); 4312 this_load = target_load(this_cpu, idx); 4313 4314 /* 4315 * If sync wakeup then subtract the (maximum possible) 4316 * effect of the currently running task from the load 4317 * of the current CPU: 4318 */ 4319 if (sync) { 4320 tg = task_group(current); 4321 weight = current->se.load.weight; 4322 4323 this_load += effective_load(tg, this_cpu, -weight, -weight); 4324 load += effective_load(tg, prev_cpu, 0, -weight); 4325 } 4326 4327 tg = task_group(p); 4328 weight = p->se.load.weight; 4329 4330 /* 4331 * In low-load situations, where prev_cpu is idle and this_cpu is idle 4332 * due to the sync cause above having dropped this_load to 0, we'll 4333 * always have an imbalance, but there's really nothing you can do 4334 * about that, so that's good too. 4335 * 4336 * Otherwise check if either cpus are near enough in load to allow this 4337 * task to be woken on this_cpu. 4338 */ 4339 this_eff_load = 100; 4340 this_eff_load *= capacity_of(prev_cpu); 4341 4342 prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2; 4343 prev_eff_load *= capacity_of(this_cpu); 4344 4345 if (this_load > 0) { 4346 this_eff_load *= this_load + 4347 effective_load(tg, this_cpu, weight, weight); 4348 4349 prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight); 4350 } 4351 4352 balanced = this_eff_load <= prev_eff_load; 4353 4354 schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts); 4355 4356 if (!balanced) 4357 return 0; 4358 4359 schedstat_inc(sd, ttwu_move_affine); 4360 schedstat_inc(p, se.statistics.nr_wakeups_affine); 4361 4362 return 1; 4363 } 4364 4365 /* 4366 * find_idlest_group finds and returns the least busy CPU group within the 4367 * domain. 4368 */ 4369 static struct sched_group * 4370 find_idlest_group(struct sched_domain *sd, struct task_struct *p, 4371 int this_cpu, int sd_flag) 4372 { 4373 struct sched_group *idlest = NULL, *group = sd->groups; 4374 unsigned long min_load = ULONG_MAX, this_load = 0; 4375 int load_idx = sd->forkexec_idx; 4376 int imbalance = 100 + (sd->imbalance_pct-100)/2; 4377 4378 if (sd_flag & SD_BALANCE_WAKE) 4379 load_idx = sd->wake_idx; 4380 4381 do { 4382 unsigned long load, avg_load; 4383 int local_group; 4384 int i; 4385 4386 /* Skip over this group if it has no CPUs allowed */ 4387 if (!cpumask_intersects(sched_group_cpus(group), 4388 tsk_cpus_allowed(p))) 4389 continue; 4390 4391 local_group = cpumask_test_cpu(this_cpu, 4392 sched_group_cpus(group)); 4393 4394 /* Tally up the load of all CPUs in the group */ 4395 avg_load = 0; 4396 4397 for_each_cpu(i, sched_group_cpus(group)) { 4398 /* Bias balancing toward cpus of our domain */ 4399 if (local_group) 4400 load = source_load(i, load_idx); 4401 else 4402 load = target_load(i, load_idx); 4403 4404 avg_load += load; 4405 } 4406 4407 /* Adjust by relative CPU capacity of the group */ 4408 avg_load = (avg_load * SCHED_CAPACITY_SCALE) / group->sgc->capacity; 4409 4410 if (local_group) { 4411 this_load = avg_load; 4412 } else if (avg_load < min_load) { 4413 min_load = avg_load; 4414 idlest = group; 4415 } 4416 } while (group = group->next, group != sd->groups); 4417 4418 if (!idlest || 100*this_load < imbalance*min_load) 4419 return NULL; 4420 return idlest; 4421 } 4422 4423 /* 4424 * find_idlest_cpu - find the idlest cpu among the cpus in group. 4425 */ 4426 static int 4427 find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu) 4428 { 4429 unsigned long load, min_load = ULONG_MAX; 4430 unsigned int min_exit_latency = UINT_MAX; 4431 u64 latest_idle_timestamp = 0; 4432 int least_loaded_cpu = this_cpu; 4433 int shallowest_idle_cpu = -1; 4434 int i; 4435 4436 /* Traverse only the allowed CPUs */ 4437 for_each_cpu_and(i, sched_group_cpus(group), tsk_cpus_allowed(p)) { 4438 if (idle_cpu(i)) { 4439 struct rq *rq = cpu_rq(i); 4440 struct cpuidle_state *idle = idle_get_state(rq); 4441 if (idle && idle->exit_latency < min_exit_latency) { 4442 /* 4443 * We give priority to a CPU whose idle state 4444 * has the smallest exit latency irrespective 4445 * of any idle timestamp. 4446 */ 4447 min_exit_latency = idle->exit_latency; 4448 latest_idle_timestamp = rq->idle_stamp; 4449 shallowest_idle_cpu = i; 4450 } else if ((!idle || idle->exit_latency == min_exit_latency) && 4451 rq->idle_stamp > latest_idle_timestamp) { 4452 /* 4453 * If equal or no active idle state, then 4454 * the most recently idled CPU might have 4455 * a warmer cache. 4456 */ 4457 latest_idle_timestamp = rq->idle_stamp; 4458 shallowest_idle_cpu = i; 4459 } 4460 } else { 4461 load = weighted_cpuload(i); 4462 if (load < min_load || (load == min_load && i == this_cpu)) { 4463 min_load = load; 4464 least_loaded_cpu = i; 4465 } 4466 } 4467 } 4468 4469 return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu; 4470 } 4471 4472 /* 4473 * Try and locate an idle CPU in the sched_domain. 4474 */ 4475 static int select_idle_sibling(struct task_struct *p, int target) 4476 { 4477 struct sched_domain *sd; 4478 struct sched_group *sg; 4479 int i = task_cpu(p); 4480 4481 if (idle_cpu(target)) 4482 return target; 4483 4484 /* 4485 * If the prevous cpu is cache affine and idle, don't be stupid. 4486 */ 4487 if (i != target && cpus_share_cache(i, target) && idle_cpu(i)) 4488 return i; 4489 4490 /* 4491 * Otherwise, iterate the domains and find an elegible idle cpu. 4492 */ 4493 sd = rcu_dereference(per_cpu(sd_llc, target)); 4494 for_each_lower_domain(sd) { 4495 sg = sd->groups; 4496 do { 4497 if (!cpumask_intersects(sched_group_cpus(sg), 4498 tsk_cpus_allowed(p))) 4499 goto next; 4500 4501 for_each_cpu(i, sched_group_cpus(sg)) { 4502 if (i == target || !idle_cpu(i)) 4503 goto next; 4504 } 4505 4506 target = cpumask_first_and(sched_group_cpus(sg), 4507 tsk_cpus_allowed(p)); 4508 goto done; 4509 next: 4510 sg = sg->next; 4511 } while (sg != sd->groups); 4512 } 4513 done: 4514 return target; 4515 } 4516 4517 /* 4518 * select_task_rq_fair: Select target runqueue for the waking task in domains 4519 * that have the 'sd_flag' flag set. In practice, this is SD_BALANCE_WAKE, 4520 * SD_BALANCE_FORK, or SD_BALANCE_EXEC. 4521 * 4522 * Balances load by selecting the idlest cpu in the idlest group, or under 4523 * certain conditions an idle sibling cpu if the domain has SD_WAKE_AFFINE set. 4524 * 4525 * Returns the target cpu number. 4526 * 4527 * preempt must be disabled. 4528 */ 4529 static int 4530 select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_flags) 4531 { 4532 struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL; 4533 int cpu = smp_processor_id(); 4534 int new_cpu = cpu; 4535 int want_affine = 0; 4536 int sync = wake_flags & WF_SYNC; 4537 4538 if (p->nr_cpus_allowed == 1) 4539 return prev_cpu; 4540 4541 if (sd_flag & SD_BALANCE_WAKE) 4542 want_affine = cpumask_test_cpu(cpu, tsk_cpus_allowed(p)); 4543 4544 rcu_read_lock(); 4545 for_each_domain(cpu, tmp) { 4546 if (!(tmp->flags & SD_LOAD_BALANCE)) 4547 continue; 4548 4549 /* 4550 * If both cpu and prev_cpu are part of this domain, 4551 * cpu is a valid SD_WAKE_AFFINE target. 4552 */ 4553 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) && 4554 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) { 4555 affine_sd = tmp; 4556 break; 4557 } 4558 4559 if (tmp->flags & sd_flag) 4560 sd = tmp; 4561 } 4562 4563 if (affine_sd && cpu != prev_cpu && wake_affine(affine_sd, p, sync)) 4564 prev_cpu = cpu; 4565 4566 if (sd_flag & SD_BALANCE_WAKE) { 4567 new_cpu = select_idle_sibling(p, prev_cpu); 4568 goto unlock; 4569 } 4570 4571 while (sd) { 4572 struct sched_group *group; 4573 int weight; 4574 4575 if (!(sd->flags & sd_flag)) { 4576 sd = sd->child; 4577 continue; 4578 } 4579 4580 group = find_idlest_group(sd, p, cpu, sd_flag); 4581 if (!group) { 4582 sd = sd->child; 4583 continue; 4584 } 4585 4586 new_cpu = find_idlest_cpu(group, p, cpu); 4587 if (new_cpu == -1 || new_cpu == cpu) { 4588 /* Now try balancing at a lower domain level of cpu */ 4589 sd = sd->child; 4590 continue; 4591 } 4592 4593 /* Now try balancing at a lower domain level of new_cpu */ 4594 cpu = new_cpu; 4595 weight = sd->span_weight; 4596 sd = NULL; 4597 for_each_domain(cpu, tmp) { 4598 if (weight <= tmp->span_weight) 4599 break; 4600 if (tmp->flags & sd_flag) 4601 sd = tmp; 4602 } 4603 /* while loop will break here if sd == NULL */ 4604 } 4605 unlock: 4606 rcu_read_unlock(); 4607 4608 return new_cpu; 4609 } 4610 4611 /* 4612 * Called immediately before a task is migrated to a new cpu; task_cpu(p) and 4613 * cfs_rq_of(p) references at time of call are still valid and identify the 4614 * previous cpu. However, the caller only guarantees p->pi_lock is held; no 4615 * other assumptions, including the state of rq->lock, should be made. 4616 */ 4617 static void 4618 migrate_task_rq_fair(struct task_struct *p, int next_cpu) 4619 { 4620 struct sched_entity *se = &p->se; 4621 struct cfs_rq *cfs_rq = cfs_rq_of(se); 4622 4623 /* 4624 * Load tracking: accumulate removed load so that it can be processed 4625 * when we next update owning cfs_rq under rq->lock. Tasks contribute 4626 * to blocked load iff they have a positive decay-count. It can never 4627 * be negative here since on-rq tasks have decay-count == 0. 4628 */ 4629 if (se->avg.decay_count) { 4630 se->avg.decay_count = -__synchronize_entity_decay(se); 4631 atomic_long_add(se->avg.load_avg_contrib, 4632 &cfs_rq->removed_load); 4633 } 4634 4635 /* We have migrated, no longer consider this task hot */ 4636 se->exec_start = 0; 4637 } 4638 #endif /* CONFIG_SMP */ 4639 4640 static unsigned long 4641 wakeup_gran(struct sched_entity *curr, struct sched_entity *se) 4642 { 4643 unsigned long gran = sysctl_sched_wakeup_granularity; 4644 4645 /* 4646 * Since its curr running now, convert the gran from real-time 4647 * to virtual-time in his units. 4648 * 4649 * By using 'se' instead of 'curr' we penalize light tasks, so 4650 * they get preempted easier. That is, if 'se' < 'curr' then 4651 * the resulting gran will be larger, therefore penalizing the 4652 * lighter, if otoh 'se' > 'curr' then the resulting gran will 4653 * be smaller, again penalizing the lighter task. 4654 * 4655 * This is especially important for buddies when the leftmost 4656 * task is higher priority than the buddy. 4657 */ 4658 return calc_delta_fair(gran, se); 4659 } 4660 4661 /* 4662 * Should 'se' preempt 'curr'. 4663 * 4664 * |s1 4665 * |s2 4666 * |s3 4667 * g 4668 * |<--->|c 4669 * 4670 * w(c, s1) = -1 4671 * w(c, s2) = 0 4672 * w(c, s3) = 1 4673 * 4674 */ 4675 static int 4676 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se) 4677 { 4678 s64 gran, vdiff = curr->vruntime - se->vruntime; 4679 4680 if (vdiff <= 0) 4681 return -1; 4682 4683 gran = wakeup_gran(curr, se); 4684 if (vdiff > gran) 4685 return 1; 4686 4687 return 0; 4688 } 4689 4690 static void set_last_buddy(struct sched_entity *se) 4691 { 4692 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE)) 4693 return; 4694 4695 for_each_sched_entity(se) 4696 cfs_rq_of(se)->last = se; 4697 } 4698 4699 static void set_next_buddy(struct sched_entity *se) 4700 { 4701 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE)) 4702 return; 4703 4704 for_each_sched_entity(se) 4705 cfs_rq_of(se)->next = se; 4706 } 4707 4708 static void set_skip_buddy(struct sched_entity *se) 4709 { 4710 for_each_sched_entity(se) 4711 cfs_rq_of(se)->skip = se; 4712 } 4713 4714 /* 4715 * Preempt the current task with a newly woken task if needed: 4716 */ 4717 static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags) 4718 { 4719 struct task_struct *curr = rq->curr; 4720 struct sched_entity *se = &curr->se, *pse = &p->se; 4721 struct cfs_rq *cfs_rq = task_cfs_rq(curr); 4722 int scale = cfs_rq->nr_running >= sched_nr_latency; 4723 int next_buddy_marked = 0; 4724 4725 if (unlikely(se == pse)) 4726 return; 4727 4728 /* 4729 * This is possible from callers such as attach_tasks(), in which we 4730 * unconditionally check_prempt_curr() after an enqueue (which may have 4731 * lead to a throttle). This both saves work and prevents false 4732 * next-buddy nomination below. 4733 */ 4734 if (unlikely(throttled_hierarchy(cfs_rq_of(pse)))) 4735 return; 4736 4737 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) { 4738 set_next_buddy(pse); 4739 next_buddy_marked = 1; 4740 } 4741 4742 /* 4743 * We can come here with TIF_NEED_RESCHED already set from new task 4744 * wake up path. 4745 * 4746 * Note: this also catches the edge-case of curr being in a throttled 4747 * group (e.g. via set_curr_task), since update_curr() (in the 4748 * enqueue of curr) will have resulted in resched being set. This 4749 * prevents us from potentially nominating it as a false LAST_BUDDY 4750 * below. 4751 */ 4752 if (test_tsk_need_resched(curr)) 4753 return; 4754 4755 /* Idle tasks are by definition preempted by non-idle tasks. */ 4756 if (unlikely(curr->policy == SCHED_IDLE) && 4757 likely(p->policy != SCHED_IDLE)) 4758 goto preempt; 4759 4760 /* 4761 * Batch and idle tasks do not preempt non-idle tasks (their preemption 4762 * is driven by the tick): 4763 */ 4764 if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION)) 4765 return; 4766 4767 find_matching_se(&se, &pse); 4768 update_curr(cfs_rq_of(se)); 4769 BUG_ON(!pse); 4770 if (wakeup_preempt_entity(se, pse) == 1) { 4771 /* 4772 * Bias pick_next to pick the sched entity that is 4773 * triggering this preemption. 4774 */ 4775 if (!next_buddy_marked) 4776 set_next_buddy(pse); 4777 goto preempt; 4778 } 4779 4780 return; 4781 4782 preempt: 4783 resched_curr(rq); 4784 /* 4785 * Only set the backward buddy when the current task is still 4786 * on the rq. This can happen when a wakeup gets interleaved 4787 * with schedule on the ->pre_schedule() or idle_balance() 4788 * point, either of which can * drop the rq lock. 4789 * 4790 * Also, during early boot the idle thread is in the fair class, 4791 * for obvious reasons its a bad idea to schedule back to it. 4792 */ 4793 if (unlikely(!se->on_rq || curr == rq->idle)) 4794 return; 4795 4796 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se)) 4797 set_last_buddy(se); 4798 } 4799 4800 static struct task_struct * 4801 pick_next_task_fair(struct rq *rq, struct task_struct *prev) 4802 { 4803 struct cfs_rq *cfs_rq = &rq->cfs; 4804 struct sched_entity *se; 4805 struct task_struct *p; 4806 int new_tasks; 4807 4808 again: 4809 #ifdef CONFIG_FAIR_GROUP_SCHED 4810 if (!cfs_rq->nr_running) 4811 goto idle; 4812 4813 if (prev->sched_class != &fair_sched_class) 4814 goto simple; 4815 4816 /* 4817 * Because of the set_next_buddy() in dequeue_task_fair() it is rather 4818 * likely that a next task is from the same cgroup as the current. 4819 * 4820 * Therefore attempt to avoid putting and setting the entire cgroup 4821 * hierarchy, only change the part that actually changes. 4822 */ 4823 4824 do { 4825 struct sched_entity *curr = cfs_rq->curr; 4826 4827 /* 4828 * Since we got here without doing put_prev_entity() we also 4829 * have to consider cfs_rq->curr. If it is still a runnable 4830 * entity, update_curr() will update its vruntime, otherwise 4831 * forget we've ever seen it. 4832 */ 4833 if (curr && curr->on_rq) 4834 update_curr(cfs_rq); 4835 else 4836 curr = NULL; 4837 4838 /* 4839 * This call to check_cfs_rq_runtime() will do the throttle and 4840 * dequeue its entity in the parent(s). Therefore the 'simple' 4841 * nr_running test will indeed be correct. 4842 */ 4843 if (unlikely(check_cfs_rq_runtime(cfs_rq))) 4844 goto simple; 4845 4846 se = pick_next_entity(cfs_rq, curr); 4847 cfs_rq = group_cfs_rq(se); 4848 } while (cfs_rq); 4849 4850 p = task_of(se); 4851 4852 /* 4853 * Since we haven't yet done put_prev_entity and if the selected task 4854 * is a different task than we started out with, try and touch the 4855 * least amount of cfs_rqs. 4856 */ 4857 if (prev != p) { 4858 struct sched_entity *pse = &prev->se; 4859 4860 while (!(cfs_rq = is_same_group(se, pse))) { 4861 int se_depth = se->depth; 4862 int pse_depth = pse->depth; 4863 4864 if (se_depth <= pse_depth) { 4865 put_prev_entity(cfs_rq_of(pse), pse); 4866 pse = parent_entity(pse); 4867 } 4868 if (se_depth >= pse_depth) { 4869 set_next_entity(cfs_rq_of(se), se); 4870 se = parent_entity(se); 4871 } 4872 } 4873 4874 put_prev_entity(cfs_rq, pse); 4875 set_next_entity(cfs_rq, se); 4876 } 4877 4878 if (hrtick_enabled(rq)) 4879 hrtick_start_fair(rq, p); 4880 4881 return p; 4882 simple: 4883 cfs_rq = &rq->cfs; 4884 #endif 4885 4886 if (!cfs_rq->nr_running) 4887 goto idle; 4888 4889 put_prev_task(rq, prev); 4890 4891 do { 4892 se = pick_next_entity(cfs_rq, NULL); 4893 set_next_entity(cfs_rq, se); 4894 cfs_rq = group_cfs_rq(se); 4895 } while (cfs_rq); 4896 4897 p = task_of(se); 4898 4899 if (hrtick_enabled(rq)) 4900 hrtick_start_fair(rq, p); 4901 4902 return p; 4903 4904 idle: 4905 new_tasks = idle_balance(rq); 4906 /* 4907 * Because idle_balance() releases (and re-acquires) rq->lock, it is 4908 * possible for any higher priority task to appear. In that case we 4909 * must re-start the pick_next_entity() loop. 4910 */ 4911 if (new_tasks < 0) 4912 return RETRY_TASK; 4913 4914 if (new_tasks > 0) 4915 goto again; 4916 4917 return NULL; 4918 } 4919 4920 /* 4921 * Account for a descheduled task: 4922 */ 4923 static void put_prev_task_fair(struct rq *rq, struct task_struct *prev) 4924 { 4925 struct sched_entity *se = &prev->se; 4926 struct cfs_rq *cfs_rq; 4927 4928 for_each_sched_entity(se) { 4929 cfs_rq = cfs_rq_of(se); 4930 put_prev_entity(cfs_rq, se); 4931 } 4932 } 4933 4934 /* 4935 * sched_yield() is very simple 4936 * 4937 * The magic of dealing with the ->skip buddy is in pick_next_entity. 4938 */ 4939 static void yield_task_fair(struct rq *rq) 4940 { 4941 struct task_struct *curr = rq->curr; 4942 struct cfs_rq *cfs_rq = task_cfs_rq(curr); 4943 struct sched_entity *se = &curr->se; 4944 4945 /* 4946 * Are we the only task in the tree? 4947 */ 4948 if (unlikely(rq->nr_running == 1)) 4949 return; 4950 4951 clear_buddies(cfs_rq, se); 4952 4953 if (curr->policy != SCHED_BATCH) { 4954 update_rq_clock(rq); 4955 /* 4956 * Update run-time statistics of the 'current'. 4957 */ 4958 update_curr(cfs_rq); 4959 /* 4960 * Tell update_rq_clock() that we've just updated, 4961 * so we don't do microscopic update in schedule() 4962 * and double the fastpath cost. 4963 */ 4964 rq->skip_clock_update = 1; 4965 } 4966 4967 set_skip_buddy(se); 4968 } 4969 4970 static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt) 4971 { 4972 struct sched_entity *se = &p->se; 4973 4974 /* throttled hierarchies are not runnable */ 4975 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se))) 4976 return false; 4977 4978 /* Tell the scheduler that we'd really like pse to run next. */ 4979 set_next_buddy(se); 4980 4981 yield_task_fair(rq); 4982 4983 return true; 4984 } 4985 4986 #ifdef CONFIG_SMP 4987 /************************************************** 4988 * Fair scheduling class load-balancing methods. 4989 * 4990 * BASICS 4991 * 4992 * The purpose of load-balancing is to achieve the same basic fairness the 4993 * per-cpu scheduler provides, namely provide a proportional amount of compute 4994 * time to each task. This is expressed in the following equation: 4995 * 4996 * W_i,n/P_i == W_j,n/P_j for all i,j (1) 4997 * 4998 * Where W_i,n is the n-th weight average for cpu i. The instantaneous weight 4999 * W_i,0 is defined as: 5000 * 5001 * W_i,0 = \Sum_j w_i,j (2) 5002 * 5003 * Where w_i,j is the weight of the j-th runnable task on cpu i. This weight 5004 * is derived from the nice value as per prio_to_weight[]. 5005 * 5006 * The weight average is an exponential decay average of the instantaneous 5007 * weight: 5008 * 5009 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3) 5010 * 5011 * C_i is the compute capacity of cpu i, typically it is the 5012 * fraction of 'recent' time available for SCHED_OTHER task execution. But it 5013 * can also include other factors [XXX]. 5014 * 5015 * To achieve this balance we define a measure of imbalance which follows 5016 * directly from (1): 5017 * 5018 * imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j } (4) 5019 * 5020 * We them move tasks around to minimize the imbalance. In the continuous 5021 * function space it is obvious this converges, in the discrete case we get 5022 * a few fun cases generally called infeasible weight scenarios. 5023 * 5024 * [XXX expand on: 5025 * - infeasible weights; 5026 * - local vs global optima in the discrete case. ] 5027 * 5028 * 5029 * SCHED DOMAINS 5030 * 5031 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2) 5032 * for all i,j solution, we create a tree of cpus that follows the hardware 5033 * topology where each level pairs two lower groups (or better). This results 5034 * in O(log n) layers. Furthermore we reduce the number of cpus going up the 5035 * tree to only the first of the previous level and we decrease the frequency 5036 * of load-balance at each level inv. proportional to the number of cpus in 5037 * the groups. 5038 * 5039 * This yields: 5040 * 5041 * log_2 n 1 n 5042 * \Sum { --- * --- * 2^i } = O(n) (5) 5043 * i = 0 2^i 2^i 5044 * `- size of each group 5045 * | | `- number of cpus doing load-balance 5046 * | `- freq 5047 * `- sum over all levels 5048 * 5049 * Coupled with a limit on how many tasks we can migrate every balance pass, 5050 * this makes (5) the runtime complexity of the balancer. 5051 * 5052 * An important property here is that each CPU is still (indirectly) connected 5053 * to every other cpu in at most O(log n) steps: 5054 * 5055 * The adjacency matrix of the resulting graph is given by: 5056 * 5057 * log_2 n 5058 * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6) 5059 * k = 0 5060 * 5061 * And you'll find that: 5062 * 5063 * A^(log_2 n)_i,j != 0 for all i,j (7) 5064 * 5065 * Showing there's indeed a path between every cpu in at most O(log n) steps. 5066 * The task movement gives a factor of O(m), giving a convergence complexity 5067 * of: 5068 * 5069 * O(nm log n), n := nr_cpus, m := nr_tasks (8) 5070 * 5071 * 5072 * WORK CONSERVING 5073 * 5074 * In order to avoid CPUs going idle while there's still work to do, new idle 5075 * balancing is more aggressive and has the newly idle cpu iterate up the domain 5076 * tree itself instead of relying on other CPUs to bring it work. 5077 * 5078 * This adds some complexity to both (5) and (8) but it reduces the total idle 5079 * time. 5080 * 5081 * [XXX more?] 5082 * 5083 * 5084 * CGROUPS 5085 * 5086 * Cgroups make a horror show out of (2), instead of a simple sum we get: 5087 * 5088 * s_k,i 5089 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9) 5090 * S_k 5091 * 5092 * Where 5093 * 5094 * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10) 5095 * 5096 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on cpu i. 5097 * 5098 * The big problem is S_k, its a global sum needed to compute a local (W_i) 5099 * property. 5100 * 5101 * [XXX write more on how we solve this.. _after_ merging pjt's patches that 5102 * rewrite all of this once again.] 5103 */ 5104 5105 static unsigned long __read_mostly max_load_balance_interval = HZ/10; 5106 5107 enum fbq_type { regular, remote, all }; 5108 5109 #define LBF_ALL_PINNED 0x01 5110 #define LBF_NEED_BREAK 0x02 5111 #define LBF_DST_PINNED 0x04 5112 #define LBF_SOME_PINNED 0x08 5113 5114 struct lb_env { 5115 struct sched_domain *sd; 5116 5117 struct rq *src_rq; 5118 int src_cpu; 5119 5120 int dst_cpu; 5121 struct rq *dst_rq; 5122 5123 struct cpumask *dst_grpmask; 5124 int new_dst_cpu; 5125 enum cpu_idle_type idle; 5126 long imbalance; 5127 /* The set of CPUs under consideration for load-balancing */ 5128 struct cpumask *cpus; 5129 5130 unsigned int flags; 5131 5132 unsigned int loop; 5133 unsigned int loop_break; 5134 unsigned int loop_max; 5135 5136 enum fbq_type fbq_type; 5137 struct list_head tasks; 5138 }; 5139 5140 /* 5141 * Is this task likely cache-hot: 5142 */ 5143 static int task_hot(struct task_struct *p, struct lb_env *env) 5144 { 5145 s64 delta; 5146 5147 lockdep_assert_held(&env->src_rq->lock); 5148 5149 if (p->sched_class != &fair_sched_class) 5150 return 0; 5151 5152 if (unlikely(p->policy == SCHED_IDLE)) 5153 return 0; 5154 5155 /* 5156 * Buddy candidates are cache hot: 5157 */ 5158 if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running && 5159 (&p->se == cfs_rq_of(&p->se)->next || 5160 &p->se == cfs_rq_of(&p->se)->last)) 5161 return 1; 5162 5163 if (sysctl_sched_migration_cost == -1) 5164 return 1; 5165 if (sysctl_sched_migration_cost == 0) 5166 return 0; 5167 5168 delta = rq_clock_task(env->src_rq) - p->se.exec_start; 5169 5170 return delta < (s64)sysctl_sched_migration_cost; 5171 } 5172 5173 #ifdef CONFIG_NUMA_BALANCING 5174 /* Returns true if the destination node has incurred more faults */ 5175 static bool migrate_improves_locality(struct task_struct *p, struct lb_env *env) 5176 { 5177 struct numa_group *numa_group = rcu_dereference(p->numa_group); 5178 int src_nid, dst_nid; 5179 5180 if (!sched_feat(NUMA_FAVOUR_HIGHER) || !p->numa_faults_memory || 5181 !(env->sd->flags & SD_NUMA)) { 5182 return false; 5183 } 5184 5185 src_nid = cpu_to_node(env->src_cpu); 5186 dst_nid = cpu_to_node(env->dst_cpu); 5187 5188 if (src_nid == dst_nid) 5189 return false; 5190 5191 if (numa_group) { 5192 /* Task is already in the group's interleave set. */ 5193 if (node_isset(src_nid, numa_group->active_nodes)) 5194 return false; 5195 5196 /* Task is moving into the group's interleave set. */ 5197 if (node_isset(dst_nid, numa_group->active_nodes)) 5198 return true; 5199 5200 return group_faults(p, dst_nid) > group_faults(p, src_nid); 5201 } 5202 5203 /* Encourage migration to the preferred node. */ 5204 if (dst_nid == p->numa_preferred_nid) 5205 return true; 5206 5207 return task_faults(p, dst_nid) > task_faults(p, src_nid); 5208 } 5209 5210 5211 static bool migrate_degrades_locality(struct task_struct *p, struct lb_env *env) 5212 { 5213 struct numa_group *numa_group = rcu_dereference(p->numa_group); 5214 int src_nid, dst_nid; 5215 5216 if (!sched_feat(NUMA) || !sched_feat(NUMA_RESIST_LOWER)) 5217 return false; 5218 5219 if (!p->numa_faults_memory || !(env->sd->flags & SD_NUMA)) 5220 return false; 5221 5222 src_nid = cpu_to_node(env->src_cpu); 5223 dst_nid = cpu_to_node(env->dst_cpu); 5224 5225 if (src_nid == dst_nid) 5226 return false; 5227 5228 if (numa_group) { 5229 /* Task is moving within/into the group's interleave set. */ 5230 if (node_isset(dst_nid, numa_group->active_nodes)) 5231 return false; 5232 5233 /* Task is moving out of the group's interleave set. */ 5234 if (node_isset(src_nid, numa_group->active_nodes)) 5235 return true; 5236 5237 return group_faults(p, dst_nid) < group_faults(p, src_nid); 5238 } 5239 5240 /* Migrating away from the preferred node is always bad. */ 5241 if (src_nid == p->numa_preferred_nid) 5242 return true; 5243 5244 return task_faults(p, dst_nid) < task_faults(p, src_nid); 5245 } 5246 5247 #else 5248 static inline bool migrate_improves_locality(struct task_struct *p, 5249 struct lb_env *env) 5250 { 5251 return false; 5252 } 5253 5254 static inline bool migrate_degrades_locality(struct task_struct *p, 5255 struct lb_env *env) 5256 { 5257 return false; 5258 } 5259 #endif 5260 5261 /* 5262 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu? 5263 */ 5264 static 5265 int can_migrate_task(struct task_struct *p, struct lb_env *env) 5266 { 5267 int tsk_cache_hot = 0; 5268 5269 lockdep_assert_held(&env->src_rq->lock); 5270 5271 /* 5272 * We do not migrate tasks that are: 5273 * 1) throttled_lb_pair, or 5274 * 2) cannot be migrated to this CPU due to cpus_allowed, or 5275 * 3) running (obviously), or 5276 * 4) are cache-hot on their current CPU. 5277 */ 5278 if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu)) 5279 return 0; 5280 5281 if (!cpumask_test_cpu(env->dst_cpu, tsk_cpus_allowed(p))) { 5282 int cpu; 5283 5284 schedstat_inc(p, se.statistics.nr_failed_migrations_affine); 5285 5286 env->flags |= LBF_SOME_PINNED; 5287 5288 /* 5289 * Remember if this task can be migrated to any other cpu in 5290 * our sched_group. We may want to revisit it if we couldn't 5291 * meet load balance goals by pulling other tasks on src_cpu. 5292 * 5293 * Also avoid computing new_dst_cpu if we have already computed 5294 * one in current iteration. 5295 */ 5296 if (!env->dst_grpmask || (env->flags & LBF_DST_PINNED)) 5297 return 0; 5298 5299 /* Prevent to re-select dst_cpu via env's cpus */ 5300 for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) { 5301 if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p))) { 5302 env->flags |= LBF_DST_PINNED; 5303 env->new_dst_cpu = cpu; 5304 break; 5305 } 5306 } 5307 5308 return 0; 5309 } 5310 5311 /* Record that we found atleast one task that could run on dst_cpu */ 5312 env->flags &= ~LBF_ALL_PINNED; 5313 5314 if (task_running(env->src_rq, p)) { 5315 schedstat_inc(p, se.statistics.nr_failed_migrations_running); 5316 return 0; 5317 } 5318 5319 /* 5320 * Aggressive migration if: 5321 * 1) destination numa is preferred 5322 * 2) task is cache cold, or 5323 * 3) too many balance attempts have failed. 5324 */ 5325 tsk_cache_hot = task_hot(p, env); 5326 if (!tsk_cache_hot) 5327 tsk_cache_hot = migrate_degrades_locality(p, env); 5328 5329 if (migrate_improves_locality(p, env) || !tsk_cache_hot || 5330 env->sd->nr_balance_failed > env->sd->cache_nice_tries) { 5331 if (tsk_cache_hot) { 5332 schedstat_inc(env->sd, lb_hot_gained[env->idle]); 5333 schedstat_inc(p, se.statistics.nr_forced_migrations); 5334 } 5335 return 1; 5336 } 5337 5338 schedstat_inc(p, se.statistics.nr_failed_migrations_hot); 5339 return 0; 5340 } 5341 5342 /* 5343 * detach_task() -- detach the task for the migration specified in env 5344 */ 5345 static void detach_task(struct task_struct *p, struct lb_env *env) 5346 { 5347 lockdep_assert_held(&env->src_rq->lock); 5348 5349 deactivate_task(env->src_rq, p, 0); 5350 p->on_rq = TASK_ON_RQ_MIGRATING; 5351 set_task_cpu(p, env->dst_cpu); 5352 } 5353 5354 /* 5355 * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as 5356 * part of active balancing operations within "domain". 5357 * 5358 * Returns a task if successful and NULL otherwise. 5359 */ 5360 static struct task_struct *detach_one_task(struct lb_env *env) 5361 { 5362 struct task_struct *p, *n; 5363 5364 lockdep_assert_held(&env->src_rq->lock); 5365 5366 list_for_each_entry_safe(p, n, &env->src_rq->cfs_tasks, se.group_node) { 5367 if (!can_migrate_task(p, env)) 5368 continue; 5369 5370 detach_task(p, env); 5371 5372 /* 5373 * Right now, this is only the second place where 5374 * lb_gained[env->idle] is updated (other is detach_tasks) 5375 * so we can safely collect stats here rather than 5376 * inside detach_tasks(). 5377 */ 5378 schedstat_inc(env->sd, lb_gained[env->idle]); 5379 return p; 5380 } 5381 return NULL; 5382 } 5383 5384 static const unsigned int sched_nr_migrate_break = 32; 5385 5386 /* 5387 * detach_tasks() -- tries to detach up to imbalance weighted load from 5388 * busiest_rq, as part of a balancing operation within domain "sd". 5389 * 5390 * Returns number of detached tasks if successful and 0 otherwise. 5391 */ 5392 static int detach_tasks(struct lb_env *env) 5393 { 5394 struct list_head *tasks = &env->src_rq->cfs_tasks; 5395 struct task_struct *p; 5396 unsigned long load; 5397 int detached = 0; 5398 5399 lockdep_assert_held(&env->src_rq->lock); 5400 5401 if (env->imbalance <= 0) 5402 return 0; 5403 5404 while (!list_empty(tasks)) { 5405 p = list_first_entry(tasks, struct task_struct, se.group_node); 5406 5407 env->loop++; 5408 /* We've more or less seen every task there is, call it quits */ 5409 if (env->loop > env->loop_max) 5410 break; 5411 5412 /* take a breather every nr_migrate tasks */ 5413 if (env->loop > env->loop_break) { 5414 env->loop_break += sched_nr_migrate_break; 5415 env->flags |= LBF_NEED_BREAK; 5416 break; 5417 } 5418 5419 if (!can_migrate_task(p, env)) 5420 goto next; 5421 5422 load = task_h_load(p); 5423 5424 if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed) 5425 goto next; 5426 5427 if ((load / 2) > env->imbalance) 5428 goto next; 5429 5430 detach_task(p, env); 5431 list_add(&p->se.group_node, &env->tasks); 5432 5433 detached++; 5434 env->imbalance -= load; 5435 5436 #ifdef CONFIG_PREEMPT 5437 /* 5438 * NEWIDLE balancing is a source of latency, so preemptible 5439 * kernels will stop after the first task is detached to minimize 5440 * the critical section. 5441 */ 5442 if (env->idle == CPU_NEWLY_IDLE) 5443 break; 5444 #endif 5445 5446 /* 5447 * We only want to steal up to the prescribed amount of 5448 * weighted load. 5449 */ 5450 if (env->imbalance <= 0) 5451 break; 5452 5453 continue; 5454 next: 5455 list_move_tail(&p->se.group_node, tasks); 5456 } 5457 5458 /* 5459 * Right now, this is one of only two places we collect this stat 5460 * so we can safely collect detach_one_task() stats here rather 5461 * than inside detach_one_task(). 5462 */ 5463 schedstat_add(env->sd, lb_gained[env->idle], detached); 5464 5465 return detached; 5466 } 5467 5468 /* 5469 * attach_task() -- attach the task detached by detach_task() to its new rq. 5470 */ 5471 static void attach_task(struct rq *rq, struct task_struct *p) 5472 { 5473 lockdep_assert_held(&rq->lock); 5474 5475 BUG_ON(task_rq(p) != rq); 5476 p->on_rq = TASK_ON_RQ_QUEUED; 5477 activate_task(rq, p, 0); 5478 check_preempt_curr(rq, p, 0); 5479 } 5480 5481 /* 5482 * attach_one_task() -- attaches the task returned from detach_one_task() to 5483 * its new rq. 5484 */ 5485 static void attach_one_task(struct rq *rq, struct task_struct *p) 5486 { 5487 raw_spin_lock(&rq->lock); 5488 attach_task(rq, p); 5489 raw_spin_unlock(&rq->lock); 5490 } 5491 5492 /* 5493 * attach_tasks() -- attaches all tasks detached by detach_tasks() to their 5494 * new rq. 5495 */ 5496 static void attach_tasks(struct lb_env *env) 5497 { 5498 struct list_head *tasks = &env->tasks; 5499 struct task_struct *p; 5500 5501 raw_spin_lock(&env->dst_rq->lock); 5502 5503 while (!list_empty(tasks)) { 5504 p = list_first_entry(tasks, struct task_struct, se.group_node); 5505 list_del_init(&p->se.group_node); 5506 5507 attach_task(env->dst_rq, p); 5508 } 5509 5510 raw_spin_unlock(&env->dst_rq->lock); 5511 } 5512 5513 #ifdef CONFIG_FAIR_GROUP_SCHED 5514 /* 5515 * update tg->load_weight by folding this cpu's load_avg 5516 */ 5517 static void __update_blocked_averages_cpu(struct task_group *tg, int cpu) 5518 { 5519 struct sched_entity *se = tg->se[cpu]; 5520 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu]; 5521 5522 /* throttled entities do not contribute to load */ 5523 if (throttled_hierarchy(cfs_rq)) 5524 return; 5525 5526 update_cfs_rq_blocked_load(cfs_rq, 1); 5527 5528 if (se) { 5529 update_entity_load_avg(se, 1); 5530 /* 5531 * We pivot on our runnable average having decayed to zero for 5532 * list removal. This generally implies that all our children 5533 * have also been removed (modulo rounding error or bandwidth 5534 * control); however, such cases are rare and we can fix these 5535 * at enqueue. 5536 * 5537 * TODO: fix up out-of-order children on enqueue. 5538 */ 5539 if (!se->avg.runnable_avg_sum && !cfs_rq->nr_running) 5540 list_del_leaf_cfs_rq(cfs_rq); 5541 } else { 5542 struct rq *rq = rq_of(cfs_rq); 5543 update_rq_runnable_avg(rq, rq->nr_running); 5544 } 5545 } 5546 5547 static void update_blocked_averages(int cpu) 5548 { 5549 struct rq *rq = cpu_rq(cpu); 5550 struct cfs_rq *cfs_rq; 5551 unsigned long flags; 5552 5553 raw_spin_lock_irqsave(&rq->lock, flags); 5554 update_rq_clock(rq); 5555 /* 5556 * Iterates the task_group tree in a bottom up fashion, see 5557 * list_add_leaf_cfs_rq() for details. 5558 */ 5559 for_each_leaf_cfs_rq(rq, cfs_rq) { 5560 /* 5561 * Note: We may want to consider periodically releasing 5562 * rq->lock about these updates so that creating many task 5563 * groups does not result in continually extending hold time. 5564 */ 5565 __update_blocked_averages_cpu(cfs_rq->tg, rq->cpu); 5566 } 5567 5568 raw_spin_unlock_irqrestore(&rq->lock, flags); 5569 } 5570 5571 /* 5572 * Compute the hierarchical load factor for cfs_rq and all its ascendants. 5573 * This needs to be done in a top-down fashion because the load of a child 5574 * group is a fraction of its parents load. 5575 */ 5576 static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq) 5577 { 5578 struct rq *rq = rq_of(cfs_rq); 5579 struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)]; 5580 unsigned long now = jiffies; 5581 unsigned long load; 5582 5583 if (cfs_rq->last_h_load_update == now) 5584 return; 5585 5586 cfs_rq->h_load_next = NULL; 5587 for_each_sched_entity(se) { 5588 cfs_rq = cfs_rq_of(se); 5589 cfs_rq->h_load_next = se; 5590 if (cfs_rq->last_h_load_update == now) 5591 break; 5592 } 5593 5594 if (!se) { 5595 cfs_rq->h_load = cfs_rq->runnable_load_avg; 5596 cfs_rq->last_h_load_update = now; 5597 } 5598 5599 while ((se = cfs_rq->h_load_next) != NULL) { 5600 load = cfs_rq->h_load; 5601 load = div64_ul(load * se->avg.load_avg_contrib, 5602 cfs_rq->runnable_load_avg + 1); 5603 cfs_rq = group_cfs_rq(se); 5604 cfs_rq->h_load = load; 5605 cfs_rq->last_h_load_update = now; 5606 } 5607 } 5608 5609 static unsigned long task_h_load(struct task_struct *p) 5610 { 5611 struct cfs_rq *cfs_rq = task_cfs_rq(p); 5612 5613 update_cfs_rq_h_load(cfs_rq); 5614 return div64_ul(p->se.avg.load_avg_contrib * cfs_rq->h_load, 5615 cfs_rq->runnable_load_avg + 1); 5616 } 5617 #else 5618 static inline void update_blocked_averages(int cpu) 5619 { 5620 } 5621 5622 static unsigned long task_h_load(struct task_struct *p) 5623 { 5624 return p->se.avg.load_avg_contrib; 5625 } 5626 #endif 5627 5628 /********** Helpers for find_busiest_group ************************/ 5629 5630 enum group_type { 5631 group_other = 0, 5632 group_imbalanced, 5633 group_overloaded, 5634 }; 5635 5636 /* 5637 * sg_lb_stats - stats of a sched_group required for load_balancing 5638 */ 5639 struct sg_lb_stats { 5640 unsigned long avg_load; /*Avg load across the CPUs of the group */ 5641 unsigned long group_load; /* Total load over the CPUs of the group */ 5642 unsigned long sum_weighted_load; /* Weighted load of group's tasks */ 5643 unsigned long load_per_task; 5644 unsigned long group_capacity; 5645 unsigned int sum_nr_running; /* Nr tasks running in the group */ 5646 unsigned int group_capacity_factor; 5647 unsigned int idle_cpus; 5648 unsigned int group_weight; 5649 enum group_type group_type; 5650 int group_has_free_capacity; 5651 #ifdef CONFIG_NUMA_BALANCING 5652 unsigned int nr_numa_running; 5653 unsigned int nr_preferred_running; 5654 #endif 5655 }; 5656 5657 /* 5658 * sd_lb_stats - Structure to store the statistics of a sched_domain 5659 * during load balancing. 5660 */ 5661 struct sd_lb_stats { 5662 struct sched_group *busiest; /* Busiest group in this sd */ 5663 struct sched_group *local; /* Local group in this sd */ 5664 unsigned long total_load; /* Total load of all groups in sd */ 5665 unsigned long total_capacity; /* Total capacity of all groups in sd */ 5666 unsigned long avg_load; /* Average load across all groups in sd */ 5667 5668 struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */ 5669 struct sg_lb_stats local_stat; /* Statistics of the local group */ 5670 }; 5671 5672 static inline void init_sd_lb_stats(struct sd_lb_stats *sds) 5673 { 5674 /* 5675 * Skimp on the clearing to avoid duplicate work. We can avoid clearing 5676 * local_stat because update_sg_lb_stats() does a full clear/assignment. 5677 * We must however clear busiest_stat::avg_load because 5678 * update_sd_pick_busiest() reads this before assignment. 5679 */ 5680 *sds = (struct sd_lb_stats){ 5681 .busiest = NULL, 5682 .local = NULL, 5683 .total_load = 0UL, 5684 .total_capacity = 0UL, 5685 .busiest_stat = { 5686 .avg_load = 0UL, 5687 .sum_nr_running = 0, 5688 .group_type = group_other, 5689 }, 5690 }; 5691 } 5692 5693 /** 5694 * get_sd_load_idx - Obtain the load index for a given sched domain. 5695 * @sd: The sched_domain whose load_idx is to be obtained. 5696 * @idle: The idle status of the CPU for whose sd load_idx is obtained. 5697 * 5698 * Return: The load index. 5699 */ 5700 static inline int get_sd_load_idx(struct sched_domain *sd, 5701 enum cpu_idle_type idle) 5702 { 5703 int load_idx; 5704 5705 switch (idle) { 5706 case CPU_NOT_IDLE: 5707 load_idx = sd->busy_idx; 5708 break; 5709 5710 case CPU_NEWLY_IDLE: 5711 load_idx = sd->newidle_idx; 5712 break; 5713 default: 5714 load_idx = sd->idle_idx; 5715 break; 5716 } 5717 5718 return load_idx; 5719 } 5720 5721 static unsigned long default_scale_capacity(struct sched_domain *sd, int cpu) 5722 { 5723 return SCHED_CAPACITY_SCALE; 5724 } 5725 5726 unsigned long __weak arch_scale_freq_capacity(struct sched_domain *sd, int cpu) 5727 { 5728 return default_scale_capacity(sd, cpu); 5729 } 5730 5731 static unsigned long default_scale_cpu_capacity(struct sched_domain *sd, int cpu) 5732 { 5733 if ((sd->flags & SD_SHARE_CPUCAPACITY) && (sd->span_weight > 1)) 5734 return sd->smt_gain / sd->span_weight; 5735 5736 return SCHED_CAPACITY_SCALE; 5737 } 5738 5739 unsigned long __weak arch_scale_cpu_capacity(struct sched_domain *sd, int cpu) 5740 { 5741 return default_scale_cpu_capacity(sd, cpu); 5742 } 5743 5744 static unsigned long scale_rt_capacity(int cpu) 5745 { 5746 struct rq *rq = cpu_rq(cpu); 5747 u64 total, available, age_stamp, avg; 5748 s64 delta; 5749 5750 /* 5751 * Since we're reading these variables without serialization make sure 5752 * we read them once before doing sanity checks on them. 5753 */ 5754 age_stamp = ACCESS_ONCE(rq->age_stamp); 5755 avg = ACCESS_ONCE(rq->rt_avg); 5756 5757 delta = rq_clock(rq) - age_stamp; 5758 if (unlikely(delta < 0)) 5759 delta = 0; 5760 5761 total = sched_avg_period() + delta; 5762 5763 if (unlikely(total < avg)) { 5764 /* Ensures that capacity won't end up being negative */ 5765 available = 0; 5766 } else { 5767 available = total - avg; 5768 } 5769 5770 if (unlikely((s64)total < SCHED_CAPACITY_SCALE)) 5771 total = SCHED_CAPACITY_SCALE; 5772 5773 total >>= SCHED_CAPACITY_SHIFT; 5774 5775 return div_u64(available, total); 5776 } 5777 5778 static void update_cpu_capacity(struct sched_domain *sd, int cpu) 5779 { 5780 unsigned long capacity = SCHED_CAPACITY_SCALE; 5781 struct sched_group *sdg = sd->groups; 5782 5783 if (sched_feat(ARCH_CAPACITY)) 5784 capacity *= arch_scale_cpu_capacity(sd, cpu); 5785 else 5786 capacity *= default_scale_cpu_capacity(sd, cpu); 5787 5788 capacity >>= SCHED_CAPACITY_SHIFT; 5789 5790 sdg->sgc->capacity_orig = capacity; 5791 5792 if (sched_feat(ARCH_CAPACITY)) 5793 capacity *= arch_scale_freq_capacity(sd, cpu); 5794 else 5795 capacity *= default_scale_capacity(sd, cpu); 5796 5797 capacity >>= SCHED_CAPACITY_SHIFT; 5798 5799 capacity *= scale_rt_capacity(cpu); 5800 capacity >>= SCHED_CAPACITY_SHIFT; 5801 5802 if (!capacity) 5803 capacity = 1; 5804 5805 cpu_rq(cpu)->cpu_capacity = capacity; 5806 sdg->sgc->capacity = capacity; 5807 } 5808 5809 void update_group_capacity(struct sched_domain *sd, int cpu) 5810 { 5811 struct sched_domain *child = sd->child; 5812 struct sched_group *group, *sdg = sd->groups; 5813 unsigned long capacity, capacity_orig; 5814 unsigned long interval; 5815 5816 interval = msecs_to_jiffies(sd->balance_interval); 5817 interval = clamp(interval, 1UL, max_load_balance_interval); 5818 sdg->sgc->next_update = jiffies + interval; 5819 5820 if (!child) { 5821 update_cpu_capacity(sd, cpu); 5822 return; 5823 } 5824 5825 capacity_orig = capacity = 0; 5826 5827 if (child->flags & SD_OVERLAP) { 5828 /* 5829 * SD_OVERLAP domains cannot assume that child groups 5830 * span the current group. 5831 */ 5832 5833 for_each_cpu(cpu, sched_group_cpus(sdg)) { 5834 struct sched_group_capacity *sgc; 5835 struct rq *rq = cpu_rq(cpu); 5836 5837 /* 5838 * build_sched_domains() -> init_sched_groups_capacity() 5839 * gets here before we've attached the domains to the 5840 * runqueues. 5841 * 5842 * Use capacity_of(), which is set irrespective of domains 5843 * in update_cpu_capacity(). 5844 * 5845 * This avoids capacity/capacity_orig from being 0 and 5846 * causing divide-by-zero issues on boot. 5847 * 5848 * Runtime updates will correct capacity_orig. 5849 */ 5850 if (unlikely(!rq->sd)) { 5851 capacity_orig += capacity_of(cpu); 5852 capacity += capacity_of(cpu); 5853 continue; 5854 } 5855 5856 sgc = rq->sd->groups->sgc; 5857 capacity_orig += sgc->capacity_orig; 5858 capacity += sgc->capacity; 5859 } 5860 } else { 5861 /* 5862 * !SD_OVERLAP domains can assume that child groups 5863 * span the current group. 5864 */ 5865 5866 group = child->groups; 5867 do { 5868 capacity_orig += group->sgc->capacity_orig; 5869 capacity += group->sgc->capacity; 5870 group = group->next; 5871 } while (group != child->groups); 5872 } 5873 5874 sdg->sgc->capacity_orig = capacity_orig; 5875 sdg->sgc->capacity = capacity; 5876 } 5877 5878 /* 5879 * Try and fix up capacity for tiny siblings, this is needed when 5880 * things like SD_ASYM_PACKING need f_b_g to select another sibling 5881 * which on its own isn't powerful enough. 5882 * 5883 * See update_sd_pick_busiest() and check_asym_packing(). 5884 */ 5885 static inline int 5886 fix_small_capacity(struct sched_domain *sd, struct sched_group *group) 5887 { 5888 /* 5889 * Only siblings can have significantly less than SCHED_CAPACITY_SCALE 5890 */ 5891 if (!(sd->flags & SD_SHARE_CPUCAPACITY)) 5892 return 0; 5893 5894 /* 5895 * If ~90% of the cpu_capacity is still there, we're good. 5896 */ 5897 if (group->sgc->capacity * 32 > group->sgc->capacity_orig * 29) 5898 return 1; 5899 5900 return 0; 5901 } 5902 5903 /* 5904 * Group imbalance indicates (and tries to solve) the problem where balancing 5905 * groups is inadequate due to tsk_cpus_allowed() constraints. 5906 * 5907 * Imagine a situation of two groups of 4 cpus each and 4 tasks each with a 5908 * cpumask covering 1 cpu of the first group and 3 cpus of the second group. 5909 * Something like: 5910 * 5911 * { 0 1 2 3 } { 4 5 6 7 } 5912 * * * * * 5913 * 5914 * If we were to balance group-wise we'd place two tasks in the first group and 5915 * two tasks in the second group. Clearly this is undesired as it will overload 5916 * cpu 3 and leave one of the cpus in the second group unused. 5917 * 5918 * The current solution to this issue is detecting the skew in the first group 5919 * by noticing the lower domain failed to reach balance and had difficulty 5920 * moving tasks due to affinity constraints. 5921 * 5922 * When this is so detected; this group becomes a candidate for busiest; see 5923 * update_sd_pick_busiest(). And calculate_imbalance() and 5924 * find_busiest_group() avoid some of the usual balance conditions to allow it 5925 * to create an effective group imbalance. 5926 * 5927 * This is a somewhat tricky proposition since the next run might not find the 5928 * group imbalance and decide the groups need to be balanced again. A most 5929 * subtle and fragile situation. 5930 */ 5931 5932 static inline int sg_imbalanced(struct sched_group *group) 5933 { 5934 return group->sgc->imbalance; 5935 } 5936 5937 /* 5938 * Compute the group capacity factor. 5939 * 5940 * Avoid the issue where N*frac(smt_capacity) >= 1 creates 'phantom' cores by 5941 * first dividing out the smt factor and computing the actual number of cores 5942 * and limit unit capacity with that. 5943 */ 5944 static inline int sg_capacity_factor(struct lb_env *env, struct sched_group *group) 5945 { 5946 unsigned int capacity_factor, smt, cpus; 5947 unsigned int capacity, capacity_orig; 5948 5949 capacity = group->sgc->capacity; 5950 capacity_orig = group->sgc->capacity_orig; 5951 cpus = group->group_weight; 5952 5953 /* smt := ceil(cpus / capacity), assumes: 1 < smt_capacity < 2 */ 5954 smt = DIV_ROUND_UP(SCHED_CAPACITY_SCALE * cpus, capacity_orig); 5955 capacity_factor = cpus / smt; /* cores */ 5956 5957 capacity_factor = min_t(unsigned, 5958 capacity_factor, DIV_ROUND_CLOSEST(capacity, SCHED_CAPACITY_SCALE)); 5959 if (!capacity_factor) 5960 capacity_factor = fix_small_capacity(env->sd, group); 5961 5962 return capacity_factor; 5963 } 5964 5965 static enum group_type 5966 group_classify(struct sched_group *group, struct sg_lb_stats *sgs) 5967 { 5968 if (sgs->sum_nr_running > sgs->group_capacity_factor) 5969 return group_overloaded; 5970 5971 if (sg_imbalanced(group)) 5972 return group_imbalanced; 5973 5974 return group_other; 5975 } 5976 5977 /** 5978 * update_sg_lb_stats - Update sched_group's statistics for load balancing. 5979 * @env: The load balancing environment. 5980 * @group: sched_group whose statistics are to be updated. 5981 * @load_idx: Load index of sched_domain of this_cpu for load calc. 5982 * @local_group: Does group contain this_cpu. 5983 * @sgs: variable to hold the statistics for this group. 5984 * @overload: Indicate more than one runnable task for any CPU. 5985 */ 5986 static inline void update_sg_lb_stats(struct lb_env *env, 5987 struct sched_group *group, int load_idx, 5988 int local_group, struct sg_lb_stats *sgs, 5989 bool *overload) 5990 { 5991 unsigned long load; 5992 int i; 5993 5994 memset(sgs, 0, sizeof(*sgs)); 5995 5996 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) { 5997 struct rq *rq = cpu_rq(i); 5998 5999 /* Bias balancing toward cpus of our domain */ 6000 if (local_group) 6001 load = target_load(i, load_idx); 6002 else 6003 load = source_load(i, load_idx); 6004 6005 sgs->group_load += load; 6006 sgs->sum_nr_running += rq->cfs.h_nr_running; 6007 6008 if (rq->nr_running > 1) 6009 *overload = true; 6010 6011 #ifdef CONFIG_NUMA_BALANCING 6012 sgs->nr_numa_running += rq->nr_numa_running; 6013 sgs->nr_preferred_running += rq->nr_preferred_running; 6014 #endif 6015 sgs->sum_weighted_load += weighted_cpuload(i); 6016 if (idle_cpu(i)) 6017 sgs->idle_cpus++; 6018 } 6019 6020 /* Adjust by relative CPU capacity of the group */ 6021 sgs->group_capacity = group->sgc->capacity; 6022 sgs->avg_load = (sgs->group_load*SCHED_CAPACITY_SCALE) / sgs->group_capacity; 6023 6024 if (sgs->sum_nr_running) 6025 sgs->load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running; 6026 6027 sgs->group_weight = group->group_weight; 6028 sgs->group_capacity_factor = sg_capacity_factor(env, group); 6029 sgs->group_type = group_classify(group, sgs); 6030 6031 if (sgs->group_capacity_factor > sgs->sum_nr_running) 6032 sgs->group_has_free_capacity = 1; 6033 } 6034 6035 /** 6036 * update_sd_pick_busiest - return 1 on busiest group 6037 * @env: The load balancing environment. 6038 * @sds: sched_domain statistics 6039 * @sg: sched_group candidate to be checked for being the busiest 6040 * @sgs: sched_group statistics 6041 * 6042 * Determine if @sg is a busier group than the previously selected 6043 * busiest group. 6044 * 6045 * Return: %true if @sg is a busier group than the previously selected 6046 * busiest group. %false otherwise. 6047 */ 6048 static bool update_sd_pick_busiest(struct lb_env *env, 6049 struct sd_lb_stats *sds, 6050 struct sched_group *sg, 6051 struct sg_lb_stats *sgs) 6052 { 6053 struct sg_lb_stats *busiest = &sds->busiest_stat; 6054 6055 if (sgs->group_type > busiest->group_type) 6056 return true; 6057 6058 if (sgs->group_type < busiest->group_type) 6059 return false; 6060 6061 if (sgs->avg_load <= busiest->avg_load) 6062 return false; 6063 6064 /* This is the busiest node in its class. */ 6065 if (!(env->sd->flags & SD_ASYM_PACKING)) 6066 return true; 6067 6068 /* 6069 * ASYM_PACKING needs to move all the work to the lowest 6070 * numbered CPUs in the group, therefore mark all groups 6071 * higher than ourself as busy. 6072 */ 6073 if (sgs->sum_nr_running && env->dst_cpu < group_first_cpu(sg)) { 6074 if (!sds->busiest) 6075 return true; 6076 6077 if (group_first_cpu(sds->busiest) > group_first_cpu(sg)) 6078 return true; 6079 } 6080 6081 return false; 6082 } 6083 6084 #ifdef CONFIG_NUMA_BALANCING 6085 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs) 6086 { 6087 if (sgs->sum_nr_running > sgs->nr_numa_running) 6088 return regular; 6089 if (sgs->sum_nr_running > sgs->nr_preferred_running) 6090 return remote; 6091 return all; 6092 } 6093 6094 static inline enum fbq_type fbq_classify_rq(struct rq *rq) 6095 { 6096 if (rq->nr_running > rq->nr_numa_running) 6097 return regular; 6098 if (rq->nr_running > rq->nr_preferred_running) 6099 return remote; 6100 return all; 6101 } 6102 #else 6103 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs) 6104 { 6105 return all; 6106 } 6107 6108 static inline enum fbq_type fbq_classify_rq(struct rq *rq) 6109 { 6110 return regular; 6111 } 6112 #endif /* CONFIG_NUMA_BALANCING */ 6113 6114 /** 6115 * update_sd_lb_stats - Update sched_domain's statistics for load balancing. 6116 * @env: The load balancing environment. 6117 * @sds: variable to hold the statistics for this sched_domain. 6118 */ 6119 static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds) 6120 { 6121 struct sched_domain *child = env->sd->child; 6122 struct sched_group *sg = env->sd->groups; 6123 struct sg_lb_stats tmp_sgs; 6124 int load_idx, prefer_sibling = 0; 6125 bool overload = false; 6126 6127 if (child && child->flags & SD_PREFER_SIBLING) 6128 prefer_sibling = 1; 6129 6130 load_idx = get_sd_load_idx(env->sd, env->idle); 6131 6132 do { 6133 struct sg_lb_stats *sgs = &tmp_sgs; 6134 int local_group; 6135 6136 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_cpus(sg)); 6137 if (local_group) { 6138 sds->local = sg; 6139 sgs = &sds->local_stat; 6140 6141 if (env->idle != CPU_NEWLY_IDLE || 6142 time_after_eq(jiffies, sg->sgc->next_update)) 6143 update_group_capacity(env->sd, env->dst_cpu); 6144 } 6145 6146 update_sg_lb_stats(env, sg, load_idx, local_group, sgs, 6147 &overload); 6148 6149 if (local_group) 6150 goto next_group; 6151 6152 /* 6153 * In case the child domain prefers tasks go to siblings 6154 * first, lower the sg capacity factor to one so that we'll try 6155 * and move all the excess tasks away. We lower the capacity 6156 * of a group only if the local group has the capacity to fit 6157 * these excess tasks, i.e. nr_running < group_capacity_factor. The 6158 * extra check prevents the case where you always pull from the 6159 * heaviest group when it is already under-utilized (possible 6160 * with a large weight task outweighs the tasks on the system). 6161 */ 6162 if (prefer_sibling && sds->local && 6163 sds->local_stat.group_has_free_capacity) 6164 sgs->group_capacity_factor = min(sgs->group_capacity_factor, 1U); 6165 6166 if (update_sd_pick_busiest(env, sds, sg, sgs)) { 6167 sds->busiest = sg; 6168 sds->busiest_stat = *sgs; 6169 } 6170 6171 next_group: 6172 /* Now, start updating sd_lb_stats */ 6173 sds->total_load += sgs->group_load; 6174 sds->total_capacity += sgs->group_capacity; 6175 6176 sg = sg->next; 6177 } while (sg != env->sd->groups); 6178 6179 if (env->sd->flags & SD_NUMA) 6180 env->fbq_type = fbq_classify_group(&sds->busiest_stat); 6181 6182 if (!env->sd->parent) { 6183 /* update overload indicator if we are at root domain */ 6184 if (env->dst_rq->rd->overload != overload) 6185 env->dst_rq->rd->overload = overload; 6186 } 6187 6188 } 6189 6190 /** 6191 * check_asym_packing - Check to see if the group is packed into the 6192 * sched doman. 6193 * 6194 * This is primarily intended to used at the sibling level. Some 6195 * cores like POWER7 prefer to use lower numbered SMT threads. In the 6196 * case of POWER7, it can move to lower SMT modes only when higher 6197 * threads are idle. When in lower SMT modes, the threads will 6198 * perform better since they share less core resources. Hence when we 6199 * have idle threads, we want them to be the higher ones. 6200 * 6201 * This packing function is run on idle threads. It checks to see if 6202 * the busiest CPU in this domain (core in the P7 case) has a higher 6203 * CPU number than the packing function is being run on. Here we are 6204 * assuming lower CPU number will be equivalent to lower a SMT thread 6205 * number. 6206 * 6207 * Return: 1 when packing is required and a task should be moved to 6208 * this CPU. The amount of the imbalance is returned in *imbalance. 6209 * 6210 * @env: The load balancing environment. 6211 * @sds: Statistics of the sched_domain which is to be packed 6212 */ 6213 static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds) 6214 { 6215 int busiest_cpu; 6216 6217 if (!(env->sd->flags & SD_ASYM_PACKING)) 6218 return 0; 6219 6220 if (!sds->busiest) 6221 return 0; 6222 6223 busiest_cpu = group_first_cpu(sds->busiest); 6224 if (env->dst_cpu > busiest_cpu) 6225 return 0; 6226 6227 env->imbalance = DIV_ROUND_CLOSEST( 6228 sds->busiest_stat.avg_load * sds->busiest_stat.group_capacity, 6229 SCHED_CAPACITY_SCALE); 6230 6231 return 1; 6232 } 6233 6234 /** 6235 * fix_small_imbalance - Calculate the minor imbalance that exists 6236 * amongst the groups of a sched_domain, during 6237 * load balancing. 6238 * @env: The load balancing environment. 6239 * @sds: Statistics of the sched_domain whose imbalance is to be calculated. 6240 */ 6241 static inline 6242 void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds) 6243 { 6244 unsigned long tmp, capa_now = 0, capa_move = 0; 6245 unsigned int imbn = 2; 6246 unsigned long scaled_busy_load_per_task; 6247 struct sg_lb_stats *local, *busiest; 6248 6249 local = &sds->local_stat; 6250 busiest = &sds->busiest_stat; 6251 6252 if (!local->sum_nr_running) 6253 local->load_per_task = cpu_avg_load_per_task(env->dst_cpu); 6254 else if (busiest->load_per_task > local->load_per_task) 6255 imbn = 1; 6256 6257 scaled_busy_load_per_task = 6258 (busiest->load_per_task * SCHED_CAPACITY_SCALE) / 6259 busiest->group_capacity; 6260 6261 if (busiest->avg_load + scaled_busy_load_per_task >= 6262 local->avg_load + (scaled_busy_load_per_task * imbn)) { 6263 env->imbalance = busiest->load_per_task; 6264 return; 6265 } 6266 6267 /* 6268 * OK, we don't have enough imbalance to justify moving tasks, 6269 * however we may be able to increase total CPU capacity used by 6270 * moving them. 6271 */ 6272 6273 capa_now += busiest->group_capacity * 6274 min(busiest->load_per_task, busiest->avg_load); 6275 capa_now += local->group_capacity * 6276 min(local->load_per_task, local->avg_load); 6277 capa_now /= SCHED_CAPACITY_SCALE; 6278 6279 /* Amount of load we'd subtract */ 6280 if (busiest->avg_load > scaled_busy_load_per_task) { 6281 capa_move += busiest->group_capacity * 6282 min(busiest->load_per_task, 6283 busiest->avg_load - scaled_busy_load_per_task); 6284 } 6285 6286 /* Amount of load we'd add */ 6287 if (busiest->avg_load * busiest->group_capacity < 6288 busiest->load_per_task * SCHED_CAPACITY_SCALE) { 6289 tmp = (busiest->avg_load * busiest->group_capacity) / 6290 local->group_capacity; 6291 } else { 6292 tmp = (busiest->load_per_task * SCHED_CAPACITY_SCALE) / 6293 local->group_capacity; 6294 } 6295 capa_move += local->group_capacity * 6296 min(local->load_per_task, local->avg_load + tmp); 6297 capa_move /= SCHED_CAPACITY_SCALE; 6298 6299 /* Move if we gain throughput */ 6300 if (capa_move > capa_now) 6301 env->imbalance = busiest->load_per_task; 6302 } 6303 6304 /** 6305 * calculate_imbalance - Calculate the amount of imbalance present within the 6306 * groups of a given sched_domain during load balance. 6307 * @env: load balance environment 6308 * @sds: statistics of the sched_domain whose imbalance is to be calculated. 6309 */ 6310 static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds) 6311 { 6312 unsigned long max_pull, load_above_capacity = ~0UL; 6313 struct sg_lb_stats *local, *busiest; 6314 6315 local = &sds->local_stat; 6316 busiest = &sds->busiest_stat; 6317 6318 if (busiest->group_type == group_imbalanced) { 6319 /* 6320 * In the group_imb case we cannot rely on group-wide averages 6321 * to ensure cpu-load equilibrium, look at wider averages. XXX 6322 */ 6323 busiest->load_per_task = 6324 min(busiest->load_per_task, sds->avg_load); 6325 } 6326 6327 /* 6328 * In the presence of smp nice balancing, certain scenarios can have 6329 * max load less than avg load(as we skip the groups at or below 6330 * its cpu_capacity, while calculating max_load..) 6331 */ 6332 if (busiest->avg_load <= sds->avg_load || 6333 local->avg_load >= sds->avg_load) { 6334 env->imbalance = 0; 6335 return fix_small_imbalance(env, sds); 6336 } 6337 6338 /* 6339 * If there aren't any idle cpus, avoid creating some. 6340 */ 6341 if (busiest->group_type == group_overloaded && 6342 local->group_type == group_overloaded) { 6343 load_above_capacity = 6344 (busiest->sum_nr_running - busiest->group_capacity_factor); 6345 6346 load_above_capacity *= (SCHED_LOAD_SCALE * SCHED_CAPACITY_SCALE); 6347 load_above_capacity /= busiest->group_capacity; 6348 } 6349 6350 /* 6351 * We're trying to get all the cpus to the average_load, so we don't 6352 * want to push ourselves above the average load, nor do we wish to 6353 * reduce the max loaded cpu below the average load. At the same time, 6354 * we also don't want to reduce the group load below the group capacity 6355 * (so that we can implement power-savings policies etc). Thus we look 6356 * for the minimum possible imbalance. 6357 */ 6358 max_pull = min(busiest->avg_load - sds->avg_load, load_above_capacity); 6359 6360 /* How much load to actually move to equalise the imbalance */ 6361 env->imbalance = min( 6362 max_pull * busiest->group_capacity, 6363 (sds->avg_load - local->avg_load) * local->group_capacity 6364 ) / SCHED_CAPACITY_SCALE; 6365 6366 /* 6367 * if *imbalance is less than the average load per runnable task 6368 * there is no guarantee that any tasks will be moved so we'll have 6369 * a think about bumping its value to force at least one task to be 6370 * moved 6371 */ 6372 if (env->imbalance < busiest->load_per_task) 6373 return fix_small_imbalance(env, sds); 6374 } 6375 6376 /******* find_busiest_group() helpers end here *********************/ 6377 6378 /** 6379 * find_busiest_group - Returns the busiest group within the sched_domain 6380 * if there is an imbalance. If there isn't an imbalance, and 6381 * the user has opted for power-savings, it returns a group whose 6382 * CPUs can be put to idle by rebalancing those tasks elsewhere, if 6383 * such a group exists. 6384 * 6385 * Also calculates the amount of weighted load which should be moved 6386 * to restore balance. 6387 * 6388 * @env: The load balancing environment. 6389 * 6390 * Return: - The busiest group if imbalance exists. 6391 * - If no imbalance and user has opted for power-savings balance, 6392 * return the least loaded group whose CPUs can be 6393 * put to idle by rebalancing its tasks onto our group. 6394 */ 6395 static struct sched_group *find_busiest_group(struct lb_env *env) 6396 { 6397 struct sg_lb_stats *local, *busiest; 6398 struct sd_lb_stats sds; 6399 6400 init_sd_lb_stats(&sds); 6401 6402 /* 6403 * Compute the various statistics relavent for load balancing at 6404 * this level. 6405 */ 6406 update_sd_lb_stats(env, &sds); 6407 local = &sds.local_stat; 6408 busiest = &sds.busiest_stat; 6409 6410 if ((env->idle == CPU_IDLE || env->idle == CPU_NEWLY_IDLE) && 6411 check_asym_packing(env, &sds)) 6412 return sds.busiest; 6413 6414 /* There is no busy sibling group to pull tasks from */ 6415 if (!sds.busiest || busiest->sum_nr_running == 0) 6416 goto out_balanced; 6417 6418 sds.avg_load = (SCHED_CAPACITY_SCALE * sds.total_load) 6419 / sds.total_capacity; 6420 6421 /* 6422 * If the busiest group is imbalanced the below checks don't 6423 * work because they assume all things are equal, which typically 6424 * isn't true due to cpus_allowed constraints and the like. 6425 */ 6426 if (busiest->group_type == group_imbalanced) 6427 goto force_balance; 6428 6429 /* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */ 6430 if (env->idle == CPU_NEWLY_IDLE && local->group_has_free_capacity && 6431 !busiest->group_has_free_capacity) 6432 goto force_balance; 6433 6434 /* 6435 * If the local group is busier than the selected busiest group 6436 * don't try and pull any tasks. 6437 */ 6438 if (local->avg_load >= busiest->avg_load) 6439 goto out_balanced; 6440 6441 /* 6442 * Don't pull any tasks if this group is already above the domain 6443 * average load. 6444 */ 6445 if (local->avg_load >= sds.avg_load) 6446 goto out_balanced; 6447 6448 if (env->idle == CPU_IDLE) { 6449 /* 6450 * This cpu is idle. If the busiest group is not overloaded 6451 * and there is no imbalance between this and busiest group 6452 * wrt idle cpus, it is balanced. The imbalance becomes 6453 * significant if the diff is greater than 1 otherwise we 6454 * might end up to just move the imbalance on another group 6455 */ 6456 if ((busiest->group_type != group_overloaded) && 6457 (local->idle_cpus <= (busiest->idle_cpus + 1))) 6458 goto out_balanced; 6459 } else { 6460 /* 6461 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use 6462 * imbalance_pct to be conservative. 6463 */ 6464 if (100 * busiest->avg_load <= 6465 env->sd->imbalance_pct * local->avg_load) 6466 goto out_balanced; 6467 } 6468 6469 force_balance: 6470 /* Looks like there is an imbalance. Compute it */ 6471 calculate_imbalance(env, &sds); 6472 return sds.busiest; 6473 6474 out_balanced: 6475 env->imbalance = 0; 6476 return NULL; 6477 } 6478 6479 /* 6480 * find_busiest_queue - find the busiest runqueue among the cpus in group. 6481 */ 6482 static struct rq *find_busiest_queue(struct lb_env *env, 6483 struct sched_group *group) 6484 { 6485 struct rq *busiest = NULL, *rq; 6486 unsigned long busiest_load = 0, busiest_capacity = 1; 6487 int i; 6488 6489 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) { 6490 unsigned long capacity, capacity_factor, wl; 6491 enum fbq_type rt; 6492 6493 rq = cpu_rq(i); 6494 rt = fbq_classify_rq(rq); 6495 6496 /* 6497 * We classify groups/runqueues into three groups: 6498 * - regular: there are !numa tasks 6499 * - remote: there are numa tasks that run on the 'wrong' node 6500 * - all: there is no distinction 6501 * 6502 * In order to avoid migrating ideally placed numa tasks, 6503 * ignore those when there's better options. 6504 * 6505 * If we ignore the actual busiest queue to migrate another 6506 * task, the next balance pass can still reduce the busiest 6507 * queue by moving tasks around inside the node. 6508 * 6509 * If we cannot move enough load due to this classification 6510 * the next pass will adjust the group classification and 6511 * allow migration of more tasks. 6512 * 6513 * Both cases only affect the total convergence complexity. 6514 */ 6515 if (rt > env->fbq_type) 6516 continue; 6517 6518 capacity = capacity_of(i); 6519 capacity_factor = DIV_ROUND_CLOSEST(capacity, SCHED_CAPACITY_SCALE); 6520 if (!capacity_factor) 6521 capacity_factor = fix_small_capacity(env->sd, group); 6522 6523 wl = weighted_cpuload(i); 6524 6525 /* 6526 * When comparing with imbalance, use weighted_cpuload() 6527 * which is not scaled with the cpu capacity. 6528 */ 6529 if (capacity_factor && rq->nr_running == 1 && wl > env->imbalance) 6530 continue; 6531 6532 /* 6533 * For the load comparisons with the other cpu's, consider 6534 * the weighted_cpuload() scaled with the cpu capacity, so 6535 * that the load can be moved away from the cpu that is 6536 * potentially running at a lower capacity. 6537 * 6538 * Thus we're looking for max(wl_i / capacity_i), crosswise 6539 * multiplication to rid ourselves of the division works out 6540 * to: wl_i * capacity_j > wl_j * capacity_i; where j is 6541 * our previous maximum. 6542 */ 6543 if (wl * busiest_capacity > busiest_load * capacity) { 6544 busiest_load = wl; 6545 busiest_capacity = capacity; 6546 busiest = rq; 6547 } 6548 } 6549 6550 return busiest; 6551 } 6552 6553 /* 6554 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but 6555 * so long as it is large enough. 6556 */ 6557 #define MAX_PINNED_INTERVAL 512 6558 6559 /* Working cpumask for load_balance and load_balance_newidle. */ 6560 DEFINE_PER_CPU(cpumask_var_t, load_balance_mask); 6561 6562 static int need_active_balance(struct lb_env *env) 6563 { 6564 struct sched_domain *sd = env->sd; 6565 6566 if (env->idle == CPU_NEWLY_IDLE) { 6567 6568 /* 6569 * ASYM_PACKING needs to force migrate tasks from busy but 6570 * higher numbered CPUs in order to pack all tasks in the 6571 * lowest numbered CPUs. 6572 */ 6573 if ((sd->flags & SD_ASYM_PACKING) && env->src_cpu > env->dst_cpu) 6574 return 1; 6575 } 6576 6577 return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2); 6578 } 6579 6580 static int active_load_balance_cpu_stop(void *data); 6581 6582 static int should_we_balance(struct lb_env *env) 6583 { 6584 struct sched_group *sg = env->sd->groups; 6585 struct cpumask *sg_cpus, *sg_mask; 6586 int cpu, balance_cpu = -1; 6587 6588 /* 6589 * In the newly idle case, we will allow all the cpu's 6590 * to do the newly idle load balance. 6591 */ 6592 if (env->idle == CPU_NEWLY_IDLE) 6593 return 1; 6594 6595 sg_cpus = sched_group_cpus(sg); 6596 sg_mask = sched_group_mask(sg); 6597 /* Try to find first idle cpu */ 6598 for_each_cpu_and(cpu, sg_cpus, env->cpus) { 6599 if (!cpumask_test_cpu(cpu, sg_mask) || !idle_cpu(cpu)) 6600 continue; 6601 6602 balance_cpu = cpu; 6603 break; 6604 } 6605 6606 if (balance_cpu == -1) 6607 balance_cpu = group_balance_cpu(sg); 6608 6609 /* 6610 * First idle cpu or the first cpu(busiest) in this sched group 6611 * is eligible for doing load balancing at this and above domains. 6612 */ 6613 return balance_cpu == env->dst_cpu; 6614 } 6615 6616 /* 6617 * Check this_cpu to ensure it is balanced within domain. Attempt to move 6618 * tasks if there is an imbalance. 6619 */ 6620 static int load_balance(int this_cpu, struct rq *this_rq, 6621 struct sched_domain *sd, enum cpu_idle_type idle, 6622 int *continue_balancing) 6623 { 6624 int ld_moved, cur_ld_moved, active_balance = 0; 6625 struct sched_domain *sd_parent = sd->parent; 6626 struct sched_group *group; 6627 struct rq *busiest; 6628 unsigned long flags; 6629 struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask); 6630 6631 struct lb_env env = { 6632 .sd = sd, 6633 .dst_cpu = this_cpu, 6634 .dst_rq = this_rq, 6635 .dst_grpmask = sched_group_cpus(sd->groups), 6636 .idle = idle, 6637 .loop_break = sched_nr_migrate_break, 6638 .cpus = cpus, 6639 .fbq_type = all, 6640 .tasks = LIST_HEAD_INIT(env.tasks), 6641 }; 6642 6643 /* 6644 * For NEWLY_IDLE load_balancing, we don't need to consider 6645 * other cpus in our group 6646 */ 6647 if (idle == CPU_NEWLY_IDLE) 6648 env.dst_grpmask = NULL; 6649 6650 cpumask_copy(cpus, cpu_active_mask); 6651 6652 schedstat_inc(sd, lb_count[idle]); 6653 6654 redo: 6655 if (!should_we_balance(&env)) { 6656 *continue_balancing = 0; 6657 goto out_balanced; 6658 } 6659 6660 group = find_busiest_group(&env); 6661 if (!group) { 6662 schedstat_inc(sd, lb_nobusyg[idle]); 6663 goto out_balanced; 6664 } 6665 6666 busiest = find_busiest_queue(&env, group); 6667 if (!busiest) { 6668 schedstat_inc(sd, lb_nobusyq[idle]); 6669 goto out_balanced; 6670 } 6671 6672 BUG_ON(busiest == env.dst_rq); 6673 6674 schedstat_add(sd, lb_imbalance[idle], env.imbalance); 6675 6676 ld_moved = 0; 6677 if (busiest->nr_running > 1) { 6678 /* 6679 * Attempt to move tasks. If find_busiest_group has found 6680 * an imbalance but busiest->nr_running <= 1, the group is 6681 * still unbalanced. ld_moved simply stays zero, so it is 6682 * correctly treated as an imbalance. 6683 */ 6684 env.flags |= LBF_ALL_PINNED; 6685 env.src_cpu = busiest->cpu; 6686 env.src_rq = busiest; 6687 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running); 6688 6689 more_balance: 6690 raw_spin_lock_irqsave(&busiest->lock, flags); 6691 6692 /* 6693 * cur_ld_moved - load moved in current iteration 6694 * ld_moved - cumulative load moved across iterations 6695 */ 6696 cur_ld_moved = detach_tasks(&env); 6697 6698 /* 6699 * We've detached some tasks from busiest_rq. Every 6700 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely 6701 * unlock busiest->lock, and we are able to be sure 6702 * that nobody can manipulate the tasks in parallel. 6703 * See task_rq_lock() family for the details. 6704 */ 6705 6706 raw_spin_unlock(&busiest->lock); 6707 6708 if (cur_ld_moved) { 6709 attach_tasks(&env); 6710 ld_moved += cur_ld_moved; 6711 } 6712 6713 local_irq_restore(flags); 6714 6715 if (env.flags & LBF_NEED_BREAK) { 6716 env.flags &= ~LBF_NEED_BREAK; 6717 goto more_balance; 6718 } 6719 6720 /* 6721 * Revisit (affine) tasks on src_cpu that couldn't be moved to 6722 * us and move them to an alternate dst_cpu in our sched_group 6723 * where they can run. The upper limit on how many times we 6724 * iterate on same src_cpu is dependent on number of cpus in our 6725 * sched_group. 6726 * 6727 * This changes load balance semantics a bit on who can move 6728 * load to a given_cpu. In addition to the given_cpu itself 6729 * (or a ilb_cpu acting on its behalf where given_cpu is 6730 * nohz-idle), we now have balance_cpu in a position to move 6731 * load to given_cpu. In rare situations, this may cause 6732 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding 6733 * _independently_ and at _same_ time to move some load to 6734 * given_cpu) causing exceess load to be moved to given_cpu. 6735 * This however should not happen so much in practice and 6736 * moreover subsequent load balance cycles should correct the 6737 * excess load moved. 6738 */ 6739 if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) { 6740 6741 /* Prevent to re-select dst_cpu via env's cpus */ 6742 cpumask_clear_cpu(env.dst_cpu, env.cpus); 6743 6744 env.dst_rq = cpu_rq(env.new_dst_cpu); 6745 env.dst_cpu = env.new_dst_cpu; 6746 env.flags &= ~LBF_DST_PINNED; 6747 env.loop = 0; 6748 env.loop_break = sched_nr_migrate_break; 6749 6750 /* 6751 * Go back to "more_balance" rather than "redo" since we 6752 * need to continue with same src_cpu. 6753 */ 6754 goto more_balance; 6755 } 6756 6757 /* 6758 * We failed to reach balance because of affinity. 6759 */ 6760 if (sd_parent) { 6761 int *group_imbalance = &sd_parent->groups->sgc->imbalance; 6762 6763 if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0) 6764 *group_imbalance = 1; 6765 } 6766 6767 /* All tasks on this runqueue were pinned by CPU affinity */ 6768 if (unlikely(env.flags & LBF_ALL_PINNED)) { 6769 cpumask_clear_cpu(cpu_of(busiest), cpus); 6770 if (!cpumask_empty(cpus)) { 6771 env.loop = 0; 6772 env.loop_break = sched_nr_migrate_break; 6773 goto redo; 6774 } 6775 goto out_all_pinned; 6776 } 6777 } 6778 6779 if (!ld_moved) { 6780 schedstat_inc(sd, lb_failed[idle]); 6781 /* 6782 * Increment the failure counter only on periodic balance. 6783 * We do not want newidle balance, which can be very 6784 * frequent, pollute the failure counter causing 6785 * excessive cache_hot migrations and active balances. 6786 */ 6787 if (idle != CPU_NEWLY_IDLE) 6788 sd->nr_balance_failed++; 6789 6790 if (need_active_balance(&env)) { 6791 raw_spin_lock_irqsave(&busiest->lock, flags); 6792 6793 /* don't kick the active_load_balance_cpu_stop, 6794 * if the curr task on busiest cpu can't be 6795 * moved to this_cpu 6796 */ 6797 if (!cpumask_test_cpu(this_cpu, 6798 tsk_cpus_allowed(busiest->curr))) { 6799 raw_spin_unlock_irqrestore(&busiest->lock, 6800 flags); 6801 env.flags |= LBF_ALL_PINNED; 6802 goto out_one_pinned; 6803 } 6804 6805 /* 6806 * ->active_balance synchronizes accesses to 6807 * ->active_balance_work. Once set, it's cleared 6808 * only after active load balance is finished. 6809 */ 6810 if (!busiest->active_balance) { 6811 busiest->active_balance = 1; 6812 busiest->push_cpu = this_cpu; 6813 active_balance = 1; 6814 } 6815 raw_spin_unlock_irqrestore(&busiest->lock, flags); 6816 6817 if (active_balance) { 6818 stop_one_cpu_nowait(cpu_of(busiest), 6819 active_load_balance_cpu_stop, busiest, 6820 &busiest->active_balance_work); 6821 } 6822 6823 /* 6824 * We've kicked active balancing, reset the failure 6825 * counter. 6826 */ 6827 sd->nr_balance_failed = sd->cache_nice_tries+1; 6828 } 6829 } else 6830 sd->nr_balance_failed = 0; 6831 6832 if (likely(!active_balance)) { 6833 /* We were unbalanced, so reset the balancing interval */ 6834 sd->balance_interval = sd->min_interval; 6835 } else { 6836 /* 6837 * If we've begun active balancing, start to back off. This 6838 * case may not be covered by the all_pinned logic if there 6839 * is only 1 task on the busy runqueue (because we don't call 6840 * detach_tasks). 6841 */ 6842 if (sd->balance_interval < sd->max_interval) 6843 sd->balance_interval *= 2; 6844 } 6845 6846 goto out; 6847 6848 out_balanced: 6849 /* 6850 * We reach balance although we may have faced some affinity 6851 * constraints. Clear the imbalance flag if it was set. 6852 */ 6853 if (sd_parent) { 6854 int *group_imbalance = &sd_parent->groups->sgc->imbalance; 6855 6856 if (*group_imbalance) 6857 *group_imbalance = 0; 6858 } 6859 6860 out_all_pinned: 6861 /* 6862 * We reach balance because all tasks are pinned at this level so 6863 * we can't migrate them. Let the imbalance flag set so parent level 6864 * can try to migrate them. 6865 */ 6866 schedstat_inc(sd, lb_balanced[idle]); 6867 6868 sd->nr_balance_failed = 0; 6869 6870 out_one_pinned: 6871 /* tune up the balancing interval */ 6872 if (((env.flags & LBF_ALL_PINNED) && 6873 sd->balance_interval < MAX_PINNED_INTERVAL) || 6874 (sd->balance_interval < sd->max_interval)) 6875 sd->balance_interval *= 2; 6876 6877 ld_moved = 0; 6878 out: 6879 return ld_moved; 6880 } 6881 6882 static inline unsigned long 6883 get_sd_balance_interval(struct sched_domain *sd, int cpu_busy) 6884 { 6885 unsigned long interval = sd->balance_interval; 6886 6887 if (cpu_busy) 6888 interval *= sd->busy_factor; 6889 6890 /* scale ms to jiffies */ 6891 interval = msecs_to_jiffies(interval); 6892 interval = clamp(interval, 1UL, max_load_balance_interval); 6893 6894 return interval; 6895 } 6896 6897 static inline void 6898 update_next_balance(struct sched_domain *sd, int cpu_busy, unsigned long *next_balance) 6899 { 6900 unsigned long interval, next; 6901 6902 interval = get_sd_balance_interval(sd, cpu_busy); 6903 next = sd->last_balance + interval; 6904 6905 if (time_after(*next_balance, next)) 6906 *next_balance = next; 6907 } 6908 6909 /* 6910 * idle_balance is called by schedule() if this_cpu is about to become 6911 * idle. Attempts to pull tasks from other CPUs. 6912 */ 6913 static int idle_balance(struct rq *this_rq) 6914 { 6915 unsigned long next_balance = jiffies + HZ; 6916 int this_cpu = this_rq->cpu; 6917 struct sched_domain *sd; 6918 int pulled_task = 0; 6919 u64 curr_cost = 0; 6920 6921 idle_enter_fair(this_rq); 6922 6923 /* 6924 * We must set idle_stamp _before_ calling idle_balance(), such that we 6925 * measure the duration of idle_balance() as idle time. 6926 */ 6927 this_rq->idle_stamp = rq_clock(this_rq); 6928 6929 if (this_rq->avg_idle < sysctl_sched_migration_cost || 6930 !this_rq->rd->overload) { 6931 rcu_read_lock(); 6932 sd = rcu_dereference_check_sched_domain(this_rq->sd); 6933 if (sd) 6934 update_next_balance(sd, 0, &next_balance); 6935 rcu_read_unlock(); 6936 6937 goto out; 6938 } 6939 6940 /* 6941 * Drop the rq->lock, but keep IRQ/preempt disabled. 6942 */ 6943 raw_spin_unlock(&this_rq->lock); 6944 6945 update_blocked_averages(this_cpu); 6946 rcu_read_lock(); 6947 for_each_domain(this_cpu, sd) { 6948 int continue_balancing = 1; 6949 u64 t0, domain_cost; 6950 6951 if (!(sd->flags & SD_LOAD_BALANCE)) 6952 continue; 6953 6954 if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) { 6955 update_next_balance(sd, 0, &next_balance); 6956 break; 6957 } 6958 6959 if (sd->flags & SD_BALANCE_NEWIDLE) { 6960 t0 = sched_clock_cpu(this_cpu); 6961 6962 pulled_task = load_balance(this_cpu, this_rq, 6963 sd, CPU_NEWLY_IDLE, 6964 &continue_balancing); 6965 6966 domain_cost = sched_clock_cpu(this_cpu) - t0; 6967 if (domain_cost > sd->max_newidle_lb_cost) 6968 sd->max_newidle_lb_cost = domain_cost; 6969 6970 curr_cost += domain_cost; 6971 } 6972 6973 update_next_balance(sd, 0, &next_balance); 6974 6975 /* 6976 * Stop searching for tasks to pull if there are 6977 * now runnable tasks on this rq. 6978 */ 6979 if (pulled_task || this_rq->nr_running > 0) 6980 break; 6981 } 6982 rcu_read_unlock(); 6983 6984 raw_spin_lock(&this_rq->lock); 6985 6986 if (curr_cost > this_rq->max_idle_balance_cost) 6987 this_rq->max_idle_balance_cost = curr_cost; 6988 6989 /* 6990 * While browsing the domains, we released the rq lock, a task could 6991 * have been enqueued in the meantime. Since we're not going idle, 6992 * pretend we pulled a task. 6993 */ 6994 if (this_rq->cfs.h_nr_running && !pulled_task) 6995 pulled_task = 1; 6996 6997 out: 6998 /* Move the next balance forward */ 6999 if (time_after(this_rq->next_balance, next_balance)) 7000 this_rq->next_balance = next_balance; 7001 7002 /* Is there a task of a high priority class? */ 7003 if (this_rq->nr_running != this_rq->cfs.h_nr_running) 7004 pulled_task = -1; 7005 7006 if (pulled_task) { 7007 idle_exit_fair(this_rq); 7008 this_rq->idle_stamp = 0; 7009 } 7010 7011 return pulled_task; 7012 } 7013 7014 /* 7015 * active_load_balance_cpu_stop is run by cpu stopper. It pushes 7016 * running tasks off the busiest CPU onto idle CPUs. It requires at 7017 * least 1 task to be running on each physical CPU where possible, and 7018 * avoids physical / logical imbalances. 7019 */ 7020 static int active_load_balance_cpu_stop(void *data) 7021 { 7022 struct rq *busiest_rq = data; 7023 int busiest_cpu = cpu_of(busiest_rq); 7024 int target_cpu = busiest_rq->push_cpu; 7025 struct rq *target_rq = cpu_rq(target_cpu); 7026 struct sched_domain *sd; 7027 struct task_struct *p = NULL; 7028 7029 raw_spin_lock_irq(&busiest_rq->lock); 7030 7031 /* make sure the requested cpu hasn't gone down in the meantime */ 7032 if (unlikely(busiest_cpu != smp_processor_id() || 7033 !busiest_rq->active_balance)) 7034 goto out_unlock; 7035 7036 /* Is there any task to move? */ 7037 if (busiest_rq->nr_running <= 1) 7038 goto out_unlock; 7039 7040 /* 7041 * This condition is "impossible", if it occurs 7042 * we need to fix it. Originally reported by 7043 * Bjorn Helgaas on a 128-cpu setup. 7044 */ 7045 BUG_ON(busiest_rq == target_rq); 7046 7047 /* Search for an sd spanning us and the target CPU. */ 7048 rcu_read_lock(); 7049 for_each_domain(target_cpu, sd) { 7050 if ((sd->flags & SD_LOAD_BALANCE) && 7051 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd))) 7052 break; 7053 } 7054 7055 if (likely(sd)) { 7056 struct lb_env env = { 7057 .sd = sd, 7058 .dst_cpu = target_cpu, 7059 .dst_rq = target_rq, 7060 .src_cpu = busiest_rq->cpu, 7061 .src_rq = busiest_rq, 7062 .idle = CPU_IDLE, 7063 }; 7064 7065 schedstat_inc(sd, alb_count); 7066 7067 p = detach_one_task(&env); 7068 if (p) 7069 schedstat_inc(sd, alb_pushed); 7070 else 7071 schedstat_inc(sd, alb_failed); 7072 } 7073 rcu_read_unlock(); 7074 out_unlock: 7075 busiest_rq->active_balance = 0; 7076 raw_spin_unlock(&busiest_rq->lock); 7077 7078 if (p) 7079 attach_one_task(target_rq, p); 7080 7081 local_irq_enable(); 7082 7083 return 0; 7084 } 7085 7086 static inline int on_null_domain(struct rq *rq) 7087 { 7088 return unlikely(!rcu_dereference_sched(rq->sd)); 7089 } 7090 7091 #ifdef CONFIG_NO_HZ_COMMON 7092 /* 7093 * idle load balancing details 7094 * - When one of the busy CPUs notice that there may be an idle rebalancing 7095 * needed, they will kick the idle load balancer, which then does idle 7096 * load balancing for all the idle CPUs. 7097 */ 7098 static struct { 7099 cpumask_var_t idle_cpus_mask; 7100 atomic_t nr_cpus; 7101 unsigned long next_balance; /* in jiffy units */ 7102 } nohz ____cacheline_aligned; 7103 7104 static inline int find_new_ilb(void) 7105 { 7106 int ilb = cpumask_first(nohz.idle_cpus_mask); 7107 7108 if (ilb < nr_cpu_ids && idle_cpu(ilb)) 7109 return ilb; 7110 7111 return nr_cpu_ids; 7112 } 7113 7114 /* 7115 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the 7116 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle 7117 * CPU (if there is one). 7118 */ 7119 static void nohz_balancer_kick(void) 7120 { 7121 int ilb_cpu; 7122 7123 nohz.next_balance++; 7124 7125 ilb_cpu = find_new_ilb(); 7126 7127 if (ilb_cpu >= nr_cpu_ids) 7128 return; 7129 7130 if (test_and_set_bit(NOHZ_BALANCE_KICK, nohz_flags(ilb_cpu))) 7131 return; 7132 /* 7133 * Use smp_send_reschedule() instead of resched_cpu(). 7134 * This way we generate a sched IPI on the target cpu which 7135 * is idle. And the softirq performing nohz idle load balance 7136 * will be run before returning from the IPI. 7137 */ 7138 smp_send_reschedule(ilb_cpu); 7139 return; 7140 } 7141 7142 static inline void nohz_balance_exit_idle(int cpu) 7143 { 7144 if (unlikely(test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))) { 7145 /* 7146 * Completely isolated CPUs don't ever set, so we must test. 7147 */ 7148 if (likely(cpumask_test_cpu(cpu, nohz.idle_cpus_mask))) { 7149 cpumask_clear_cpu(cpu, nohz.idle_cpus_mask); 7150 atomic_dec(&nohz.nr_cpus); 7151 } 7152 clear_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)); 7153 } 7154 } 7155 7156 static inline void set_cpu_sd_state_busy(void) 7157 { 7158 struct sched_domain *sd; 7159 int cpu = smp_processor_id(); 7160 7161 rcu_read_lock(); 7162 sd = rcu_dereference(per_cpu(sd_busy, cpu)); 7163 7164 if (!sd || !sd->nohz_idle) 7165 goto unlock; 7166 sd->nohz_idle = 0; 7167 7168 atomic_inc(&sd->groups->sgc->nr_busy_cpus); 7169 unlock: 7170 rcu_read_unlock(); 7171 } 7172 7173 void set_cpu_sd_state_idle(void) 7174 { 7175 struct sched_domain *sd; 7176 int cpu = smp_processor_id(); 7177 7178 rcu_read_lock(); 7179 sd = rcu_dereference(per_cpu(sd_busy, cpu)); 7180 7181 if (!sd || sd->nohz_idle) 7182 goto unlock; 7183 sd->nohz_idle = 1; 7184 7185 atomic_dec(&sd->groups->sgc->nr_busy_cpus); 7186 unlock: 7187 rcu_read_unlock(); 7188 } 7189 7190 /* 7191 * This routine will record that the cpu is going idle with tick stopped. 7192 * This info will be used in performing idle load balancing in the future. 7193 */ 7194 void nohz_balance_enter_idle(int cpu) 7195 { 7196 /* 7197 * If this cpu is going down, then nothing needs to be done. 7198 */ 7199 if (!cpu_active(cpu)) 7200 return; 7201 7202 if (test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu))) 7203 return; 7204 7205 /* 7206 * If we're a completely isolated CPU, we don't play. 7207 */ 7208 if (on_null_domain(cpu_rq(cpu))) 7209 return; 7210 7211 cpumask_set_cpu(cpu, nohz.idle_cpus_mask); 7212 atomic_inc(&nohz.nr_cpus); 7213 set_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)); 7214 } 7215 7216 static int sched_ilb_notifier(struct notifier_block *nfb, 7217 unsigned long action, void *hcpu) 7218 { 7219 switch (action & ~CPU_TASKS_FROZEN) { 7220 case CPU_DYING: 7221 nohz_balance_exit_idle(smp_processor_id()); 7222 return NOTIFY_OK; 7223 default: 7224 return NOTIFY_DONE; 7225 } 7226 } 7227 #endif 7228 7229 static DEFINE_SPINLOCK(balancing); 7230 7231 /* 7232 * Scale the max load_balance interval with the number of CPUs in the system. 7233 * This trades load-balance latency on larger machines for less cross talk. 7234 */ 7235 void update_max_interval(void) 7236 { 7237 max_load_balance_interval = HZ*num_online_cpus()/10; 7238 } 7239 7240 /* 7241 * It checks each scheduling domain to see if it is due to be balanced, 7242 * and initiates a balancing operation if so. 7243 * 7244 * Balancing parameters are set up in init_sched_domains. 7245 */ 7246 static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle) 7247 { 7248 int continue_balancing = 1; 7249 int cpu = rq->cpu; 7250 unsigned long interval; 7251 struct sched_domain *sd; 7252 /* Earliest time when we have to do rebalance again */ 7253 unsigned long next_balance = jiffies + 60*HZ; 7254 int update_next_balance = 0; 7255 int need_serialize, need_decay = 0; 7256 u64 max_cost = 0; 7257 7258 update_blocked_averages(cpu); 7259 7260 rcu_read_lock(); 7261 for_each_domain(cpu, sd) { 7262 /* 7263 * Decay the newidle max times here because this is a regular 7264 * visit to all the domains. Decay ~1% per second. 7265 */ 7266 if (time_after(jiffies, sd->next_decay_max_lb_cost)) { 7267 sd->max_newidle_lb_cost = 7268 (sd->max_newidle_lb_cost * 253) / 256; 7269 sd->next_decay_max_lb_cost = jiffies + HZ; 7270 need_decay = 1; 7271 } 7272 max_cost += sd->max_newidle_lb_cost; 7273 7274 if (!(sd->flags & SD_LOAD_BALANCE)) 7275 continue; 7276 7277 /* 7278 * Stop the load balance at this level. There is another 7279 * CPU in our sched group which is doing load balancing more 7280 * actively. 7281 */ 7282 if (!continue_balancing) { 7283 if (need_decay) 7284 continue; 7285 break; 7286 } 7287 7288 interval = get_sd_balance_interval(sd, idle != CPU_IDLE); 7289 7290 need_serialize = sd->flags & SD_SERIALIZE; 7291 if (need_serialize) { 7292 if (!spin_trylock(&balancing)) 7293 goto out; 7294 } 7295 7296 if (time_after_eq(jiffies, sd->last_balance + interval)) { 7297 if (load_balance(cpu, rq, sd, idle, &continue_balancing)) { 7298 /* 7299 * The LBF_DST_PINNED logic could have changed 7300 * env->dst_cpu, so we can't know our idle 7301 * state even if we migrated tasks. Update it. 7302 */ 7303 idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE; 7304 } 7305 sd->last_balance = jiffies; 7306 interval = get_sd_balance_interval(sd, idle != CPU_IDLE); 7307 } 7308 if (need_serialize) 7309 spin_unlock(&balancing); 7310 out: 7311 if (time_after(next_balance, sd->last_balance + interval)) { 7312 next_balance = sd->last_balance + interval; 7313 update_next_balance = 1; 7314 } 7315 } 7316 if (need_decay) { 7317 /* 7318 * Ensure the rq-wide value also decays but keep it at a 7319 * reasonable floor to avoid funnies with rq->avg_idle. 7320 */ 7321 rq->max_idle_balance_cost = 7322 max((u64)sysctl_sched_migration_cost, max_cost); 7323 } 7324 rcu_read_unlock(); 7325 7326 /* 7327 * next_balance will be updated only when there is a need. 7328 * When the cpu is attached to null domain for ex, it will not be 7329 * updated. 7330 */ 7331 if (likely(update_next_balance)) 7332 rq->next_balance = next_balance; 7333 } 7334 7335 #ifdef CONFIG_NO_HZ_COMMON 7336 /* 7337 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the 7338 * rebalancing for all the cpus for whom scheduler ticks are stopped. 7339 */ 7340 static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) 7341 { 7342 int this_cpu = this_rq->cpu; 7343 struct rq *rq; 7344 int balance_cpu; 7345 7346 if (idle != CPU_IDLE || 7347 !test_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu))) 7348 goto end; 7349 7350 for_each_cpu(balance_cpu, nohz.idle_cpus_mask) { 7351 if (balance_cpu == this_cpu || !idle_cpu(balance_cpu)) 7352 continue; 7353 7354 /* 7355 * If this cpu gets work to do, stop the load balancing 7356 * work being done for other cpus. Next load 7357 * balancing owner will pick it up. 7358 */ 7359 if (need_resched()) 7360 break; 7361 7362 rq = cpu_rq(balance_cpu); 7363 7364 /* 7365 * If time for next balance is due, 7366 * do the balance. 7367 */ 7368 if (time_after_eq(jiffies, rq->next_balance)) { 7369 raw_spin_lock_irq(&rq->lock); 7370 update_rq_clock(rq); 7371 update_idle_cpu_load(rq); 7372 raw_spin_unlock_irq(&rq->lock); 7373 rebalance_domains(rq, CPU_IDLE); 7374 } 7375 7376 if (time_after(this_rq->next_balance, rq->next_balance)) 7377 this_rq->next_balance = rq->next_balance; 7378 } 7379 nohz.next_balance = this_rq->next_balance; 7380 end: 7381 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu)); 7382 } 7383 7384 /* 7385 * Current heuristic for kicking the idle load balancer in the presence 7386 * of an idle cpu is the system. 7387 * - This rq has more than one task. 7388 * - At any scheduler domain level, this cpu's scheduler group has multiple 7389 * busy cpu's exceeding the group's capacity. 7390 * - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler 7391 * domain span are idle. 7392 */ 7393 static inline int nohz_kick_needed(struct rq *rq) 7394 { 7395 unsigned long now = jiffies; 7396 struct sched_domain *sd; 7397 struct sched_group_capacity *sgc; 7398 int nr_busy, cpu = rq->cpu; 7399 7400 if (unlikely(rq->idle_balance)) 7401 return 0; 7402 7403 /* 7404 * We may be recently in ticked or tickless idle mode. At the first 7405 * busy tick after returning from idle, we will update the busy stats. 7406 */ 7407 set_cpu_sd_state_busy(); 7408 nohz_balance_exit_idle(cpu); 7409 7410 /* 7411 * None are in tickless mode and hence no need for NOHZ idle load 7412 * balancing. 7413 */ 7414 if (likely(!atomic_read(&nohz.nr_cpus))) 7415 return 0; 7416 7417 if (time_before(now, nohz.next_balance)) 7418 return 0; 7419 7420 if (rq->nr_running >= 2) 7421 goto need_kick; 7422 7423 rcu_read_lock(); 7424 sd = rcu_dereference(per_cpu(sd_busy, cpu)); 7425 7426 if (sd) { 7427 sgc = sd->groups->sgc; 7428 nr_busy = atomic_read(&sgc->nr_busy_cpus); 7429 7430 if (nr_busy > 1) 7431 goto need_kick_unlock; 7432 } 7433 7434 sd = rcu_dereference(per_cpu(sd_asym, cpu)); 7435 7436 if (sd && (cpumask_first_and(nohz.idle_cpus_mask, 7437 sched_domain_span(sd)) < cpu)) 7438 goto need_kick_unlock; 7439 7440 rcu_read_unlock(); 7441 return 0; 7442 7443 need_kick_unlock: 7444 rcu_read_unlock(); 7445 need_kick: 7446 return 1; 7447 } 7448 #else 7449 static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) { } 7450 #endif 7451 7452 /* 7453 * run_rebalance_domains is triggered when needed from the scheduler tick. 7454 * Also triggered for nohz idle balancing (with nohz_balancing_kick set). 7455 */ 7456 static void run_rebalance_domains(struct softirq_action *h) 7457 { 7458 struct rq *this_rq = this_rq(); 7459 enum cpu_idle_type idle = this_rq->idle_balance ? 7460 CPU_IDLE : CPU_NOT_IDLE; 7461 7462 rebalance_domains(this_rq, idle); 7463 7464 /* 7465 * If this cpu has a pending nohz_balance_kick, then do the 7466 * balancing on behalf of the other idle cpus whose ticks are 7467 * stopped. 7468 */ 7469 nohz_idle_balance(this_rq, idle); 7470 } 7471 7472 /* 7473 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing. 7474 */ 7475 void trigger_load_balance(struct rq *rq) 7476 { 7477 /* Don't need to rebalance while attached to NULL domain */ 7478 if (unlikely(on_null_domain(rq))) 7479 return; 7480 7481 if (time_after_eq(jiffies, rq->next_balance)) 7482 raise_softirq(SCHED_SOFTIRQ); 7483 #ifdef CONFIG_NO_HZ_COMMON 7484 if (nohz_kick_needed(rq)) 7485 nohz_balancer_kick(); 7486 #endif 7487 } 7488 7489 static void rq_online_fair(struct rq *rq) 7490 { 7491 update_sysctl(); 7492 7493 update_runtime_enabled(rq); 7494 } 7495 7496 static void rq_offline_fair(struct rq *rq) 7497 { 7498 update_sysctl(); 7499 7500 /* Ensure any throttled groups are reachable by pick_next_task */ 7501 unthrottle_offline_cfs_rqs(rq); 7502 } 7503 7504 #endif /* CONFIG_SMP */ 7505 7506 /* 7507 * scheduler tick hitting a task of our scheduling class: 7508 */ 7509 static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued) 7510 { 7511 struct cfs_rq *cfs_rq; 7512 struct sched_entity *se = &curr->se; 7513 7514 for_each_sched_entity(se) { 7515 cfs_rq = cfs_rq_of(se); 7516 entity_tick(cfs_rq, se, queued); 7517 } 7518 7519 if (numabalancing_enabled) 7520 task_tick_numa(rq, curr); 7521 7522 update_rq_runnable_avg(rq, 1); 7523 } 7524 7525 /* 7526 * called on fork with the child task as argument from the parent's context 7527 * - child not yet on the tasklist 7528 * - preemption disabled 7529 */ 7530 static void task_fork_fair(struct task_struct *p) 7531 { 7532 struct cfs_rq *cfs_rq; 7533 struct sched_entity *se = &p->se, *curr; 7534 int this_cpu = smp_processor_id(); 7535 struct rq *rq = this_rq(); 7536 unsigned long flags; 7537 7538 raw_spin_lock_irqsave(&rq->lock, flags); 7539 7540 update_rq_clock(rq); 7541 7542 cfs_rq = task_cfs_rq(current); 7543 curr = cfs_rq->curr; 7544 7545 /* 7546 * Not only the cpu but also the task_group of the parent might have 7547 * been changed after parent->se.parent,cfs_rq were copied to 7548 * child->se.parent,cfs_rq. So call __set_task_cpu() to make those 7549 * of child point to valid ones. 7550 */ 7551 rcu_read_lock(); 7552 __set_task_cpu(p, this_cpu); 7553 rcu_read_unlock(); 7554 7555 update_curr(cfs_rq); 7556 7557 if (curr) 7558 se->vruntime = curr->vruntime; 7559 place_entity(cfs_rq, se, 1); 7560 7561 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) { 7562 /* 7563 * Upon rescheduling, sched_class::put_prev_task() will place 7564 * 'current' within the tree based on its new key value. 7565 */ 7566 swap(curr->vruntime, se->vruntime); 7567 resched_curr(rq); 7568 } 7569 7570 se->vruntime -= cfs_rq->min_vruntime; 7571 7572 raw_spin_unlock_irqrestore(&rq->lock, flags); 7573 } 7574 7575 /* 7576 * Priority of the task has changed. Check to see if we preempt 7577 * the current task. 7578 */ 7579 static void 7580 prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio) 7581 { 7582 if (!task_on_rq_queued(p)) 7583 return; 7584 7585 /* 7586 * Reschedule if we are currently running on this runqueue and 7587 * our priority decreased, or if we are not currently running on 7588 * this runqueue and our priority is higher than the current's 7589 */ 7590 if (rq->curr == p) { 7591 if (p->prio > oldprio) 7592 resched_curr(rq); 7593 } else 7594 check_preempt_curr(rq, p, 0); 7595 } 7596 7597 static void switched_from_fair(struct rq *rq, struct task_struct *p) 7598 { 7599 struct sched_entity *se = &p->se; 7600 struct cfs_rq *cfs_rq = cfs_rq_of(se); 7601 7602 /* 7603 * Ensure the task's vruntime is normalized, so that when it's 7604 * switched back to the fair class the enqueue_entity(.flags=0) will 7605 * do the right thing. 7606 * 7607 * If it's queued, then the dequeue_entity(.flags=0) will already 7608 * have normalized the vruntime, if it's !queued, then only when 7609 * the task is sleeping will it still have non-normalized vruntime. 7610 */ 7611 if (!task_on_rq_queued(p) && p->state != TASK_RUNNING) { 7612 /* 7613 * Fix up our vruntime so that the current sleep doesn't 7614 * cause 'unlimited' sleep bonus. 7615 */ 7616 place_entity(cfs_rq, se, 0); 7617 se->vruntime -= cfs_rq->min_vruntime; 7618 } 7619 7620 #ifdef CONFIG_SMP 7621 /* 7622 * Remove our load from contribution when we leave sched_fair 7623 * and ensure we don't carry in an old decay_count if we 7624 * switch back. 7625 */ 7626 if (se->avg.decay_count) { 7627 __synchronize_entity_decay(se); 7628 subtract_blocked_load_contrib(cfs_rq, se->avg.load_avg_contrib); 7629 } 7630 #endif 7631 } 7632 7633 /* 7634 * We switched to the sched_fair class. 7635 */ 7636 static void switched_to_fair(struct rq *rq, struct task_struct *p) 7637 { 7638 #ifdef CONFIG_FAIR_GROUP_SCHED 7639 struct sched_entity *se = &p->se; 7640 /* 7641 * Since the real-depth could have been changed (only FAIR 7642 * class maintain depth value), reset depth properly. 7643 */ 7644 se->depth = se->parent ? se->parent->depth + 1 : 0; 7645 #endif 7646 if (!task_on_rq_queued(p)) 7647 return; 7648 7649 /* 7650 * We were most likely switched from sched_rt, so 7651 * kick off the schedule if running, otherwise just see 7652 * if we can still preempt the current task. 7653 */ 7654 if (rq->curr == p) 7655 resched_curr(rq); 7656 else 7657 check_preempt_curr(rq, p, 0); 7658 } 7659 7660 /* Account for a task changing its policy or group. 7661 * 7662 * This routine is mostly called to set cfs_rq->curr field when a task 7663 * migrates between groups/classes. 7664 */ 7665 static void set_curr_task_fair(struct rq *rq) 7666 { 7667 struct sched_entity *se = &rq->curr->se; 7668 7669 for_each_sched_entity(se) { 7670 struct cfs_rq *cfs_rq = cfs_rq_of(se); 7671 7672 set_next_entity(cfs_rq, se); 7673 /* ensure bandwidth has been allocated on our new cfs_rq */ 7674 account_cfs_rq_runtime(cfs_rq, 0); 7675 } 7676 } 7677 7678 void init_cfs_rq(struct cfs_rq *cfs_rq) 7679 { 7680 cfs_rq->tasks_timeline = RB_ROOT; 7681 cfs_rq->min_vruntime = (u64)(-(1LL << 20)); 7682 #ifndef CONFIG_64BIT 7683 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime; 7684 #endif 7685 #ifdef CONFIG_SMP 7686 atomic64_set(&cfs_rq->decay_counter, 1); 7687 atomic_long_set(&cfs_rq->removed_load, 0); 7688 #endif 7689 } 7690 7691 #ifdef CONFIG_FAIR_GROUP_SCHED 7692 static void task_move_group_fair(struct task_struct *p, int queued) 7693 { 7694 struct sched_entity *se = &p->se; 7695 struct cfs_rq *cfs_rq; 7696 7697 /* 7698 * If the task was not on the rq at the time of this cgroup movement 7699 * it must have been asleep, sleeping tasks keep their ->vruntime 7700 * absolute on their old rq until wakeup (needed for the fair sleeper 7701 * bonus in place_entity()). 7702 * 7703 * If it was on the rq, we've just 'preempted' it, which does convert 7704 * ->vruntime to a relative base. 7705 * 7706 * Make sure both cases convert their relative position when migrating 7707 * to another cgroup's rq. This does somewhat interfere with the 7708 * fair sleeper stuff for the first placement, but who cares. 7709 */ 7710 /* 7711 * When !queued, vruntime of the task has usually NOT been normalized. 7712 * But there are some cases where it has already been normalized: 7713 * 7714 * - Moving a forked child which is waiting for being woken up by 7715 * wake_up_new_task(). 7716 * - Moving a task which has been woken up by try_to_wake_up() and 7717 * waiting for actually being woken up by sched_ttwu_pending(). 7718 * 7719 * To prevent boost or penalty in the new cfs_rq caused by delta 7720 * min_vruntime between the two cfs_rqs, we skip vruntime adjustment. 7721 */ 7722 if (!queued && (!se->sum_exec_runtime || p->state == TASK_WAKING)) 7723 queued = 1; 7724 7725 if (!queued) 7726 se->vruntime -= cfs_rq_of(se)->min_vruntime; 7727 set_task_rq(p, task_cpu(p)); 7728 se->depth = se->parent ? se->parent->depth + 1 : 0; 7729 if (!queued) { 7730 cfs_rq = cfs_rq_of(se); 7731 se->vruntime += cfs_rq->min_vruntime; 7732 #ifdef CONFIG_SMP 7733 /* 7734 * migrate_task_rq_fair() will have removed our previous 7735 * contribution, but we must synchronize for ongoing future 7736 * decay. 7737 */ 7738 se->avg.decay_count = atomic64_read(&cfs_rq->decay_counter); 7739 cfs_rq->blocked_load_avg += se->avg.load_avg_contrib; 7740 #endif 7741 } 7742 } 7743 7744 void free_fair_sched_group(struct task_group *tg) 7745 { 7746 int i; 7747 7748 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg)); 7749 7750 for_each_possible_cpu(i) { 7751 if (tg->cfs_rq) 7752 kfree(tg->cfs_rq[i]); 7753 if (tg->se) 7754 kfree(tg->se[i]); 7755 } 7756 7757 kfree(tg->cfs_rq); 7758 kfree(tg->se); 7759 } 7760 7761 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent) 7762 { 7763 struct cfs_rq *cfs_rq; 7764 struct sched_entity *se; 7765 int i; 7766 7767 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL); 7768 if (!tg->cfs_rq) 7769 goto err; 7770 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL); 7771 if (!tg->se) 7772 goto err; 7773 7774 tg->shares = NICE_0_LOAD; 7775 7776 init_cfs_bandwidth(tg_cfs_bandwidth(tg)); 7777 7778 for_each_possible_cpu(i) { 7779 cfs_rq = kzalloc_node(sizeof(struct cfs_rq), 7780 GFP_KERNEL, cpu_to_node(i)); 7781 if (!cfs_rq) 7782 goto err; 7783 7784 se = kzalloc_node(sizeof(struct sched_entity), 7785 GFP_KERNEL, cpu_to_node(i)); 7786 if (!se) 7787 goto err_free_rq; 7788 7789 init_cfs_rq(cfs_rq); 7790 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]); 7791 } 7792 7793 return 1; 7794 7795 err_free_rq: 7796 kfree(cfs_rq); 7797 err: 7798 return 0; 7799 } 7800 7801 void unregister_fair_sched_group(struct task_group *tg, int cpu) 7802 { 7803 struct rq *rq = cpu_rq(cpu); 7804 unsigned long flags; 7805 7806 /* 7807 * Only empty task groups can be destroyed; so we can speculatively 7808 * check on_list without danger of it being re-added. 7809 */ 7810 if (!tg->cfs_rq[cpu]->on_list) 7811 return; 7812 7813 raw_spin_lock_irqsave(&rq->lock, flags); 7814 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]); 7815 raw_spin_unlock_irqrestore(&rq->lock, flags); 7816 } 7817 7818 void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq, 7819 struct sched_entity *se, int cpu, 7820 struct sched_entity *parent) 7821 { 7822 struct rq *rq = cpu_rq(cpu); 7823 7824 cfs_rq->tg = tg; 7825 cfs_rq->rq = rq; 7826 init_cfs_rq_runtime(cfs_rq); 7827 7828 tg->cfs_rq[cpu] = cfs_rq; 7829 tg->se[cpu] = se; 7830 7831 /* se could be NULL for root_task_group */ 7832 if (!se) 7833 return; 7834 7835 if (!parent) { 7836 se->cfs_rq = &rq->cfs; 7837 se->depth = 0; 7838 } else { 7839 se->cfs_rq = parent->my_q; 7840 se->depth = parent->depth + 1; 7841 } 7842 7843 se->my_q = cfs_rq; 7844 /* guarantee group entities always have weight */ 7845 update_load_set(&se->load, NICE_0_LOAD); 7846 se->parent = parent; 7847 } 7848 7849 static DEFINE_MUTEX(shares_mutex); 7850 7851 int sched_group_set_shares(struct task_group *tg, unsigned long shares) 7852 { 7853 int i; 7854 unsigned long flags; 7855 7856 /* 7857 * We can't change the weight of the root cgroup. 7858 */ 7859 if (!tg->se[0]) 7860 return -EINVAL; 7861 7862 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES)); 7863 7864 mutex_lock(&shares_mutex); 7865 if (tg->shares == shares) 7866 goto done; 7867 7868 tg->shares = shares; 7869 for_each_possible_cpu(i) { 7870 struct rq *rq = cpu_rq(i); 7871 struct sched_entity *se; 7872 7873 se = tg->se[i]; 7874 /* Propagate contribution to hierarchy */ 7875 raw_spin_lock_irqsave(&rq->lock, flags); 7876 7877 /* Possible calls to update_curr() need rq clock */ 7878 update_rq_clock(rq); 7879 for_each_sched_entity(se) 7880 update_cfs_shares(group_cfs_rq(se)); 7881 raw_spin_unlock_irqrestore(&rq->lock, flags); 7882 } 7883 7884 done: 7885 mutex_unlock(&shares_mutex); 7886 return 0; 7887 } 7888 #else /* CONFIG_FAIR_GROUP_SCHED */ 7889 7890 void free_fair_sched_group(struct task_group *tg) { } 7891 7892 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent) 7893 { 7894 return 1; 7895 } 7896 7897 void unregister_fair_sched_group(struct task_group *tg, int cpu) { } 7898 7899 #endif /* CONFIG_FAIR_GROUP_SCHED */ 7900 7901 7902 static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task) 7903 { 7904 struct sched_entity *se = &task->se; 7905 unsigned int rr_interval = 0; 7906 7907 /* 7908 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise 7909 * idle runqueue: 7910 */ 7911 if (rq->cfs.load.weight) 7912 rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se)); 7913 7914 return rr_interval; 7915 } 7916 7917 /* 7918 * All the scheduling class methods: 7919 */ 7920 const struct sched_class fair_sched_class = { 7921 .next = &idle_sched_class, 7922 .enqueue_task = enqueue_task_fair, 7923 .dequeue_task = dequeue_task_fair, 7924 .yield_task = yield_task_fair, 7925 .yield_to_task = yield_to_task_fair, 7926 7927 .check_preempt_curr = check_preempt_wakeup, 7928 7929 .pick_next_task = pick_next_task_fair, 7930 .put_prev_task = put_prev_task_fair, 7931 7932 #ifdef CONFIG_SMP 7933 .select_task_rq = select_task_rq_fair, 7934 .migrate_task_rq = migrate_task_rq_fair, 7935 7936 .rq_online = rq_online_fair, 7937 .rq_offline = rq_offline_fair, 7938 7939 .task_waking = task_waking_fair, 7940 #endif 7941 7942 .set_curr_task = set_curr_task_fair, 7943 .task_tick = task_tick_fair, 7944 .task_fork = task_fork_fair, 7945 7946 .prio_changed = prio_changed_fair, 7947 .switched_from = switched_from_fair, 7948 .switched_to = switched_to_fair, 7949 7950 .get_rr_interval = get_rr_interval_fair, 7951 7952 #ifdef CONFIG_FAIR_GROUP_SCHED 7953 .task_move_group = task_move_group_fair, 7954 #endif 7955 }; 7956 7957 #ifdef CONFIG_SCHED_DEBUG 7958 void print_cfs_stats(struct seq_file *m, int cpu) 7959 { 7960 struct cfs_rq *cfs_rq; 7961 7962 rcu_read_lock(); 7963 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq) 7964 print_cfs_rq(m, cpu, cfs_rq); 7965 rcu_read_unlock(); 7966 } 7967 #endif 7968 7969 __init void init_sched_fair_class(void) 7970 { 7971 #ifdef CONFIG_SMP 7972 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains); 7973 7974 #ifdef CONFIG_NO_HZ_COMMON 7975 nohz.next_balance = jiffies; 7976 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT); 7977 cpu_notifier(sched_ilb_notifier, 0); 7978 #endif 7979 #endif /* SMP */ 7980 7981 } 7982