xref: /openbmc/linux/kernel/sched/fair.c (revision 6774def6)
1 /*
2  * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
3  *
4  *  Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
5  *
6  *  Interactivity improvements by Mike Galbraith
7  *  (C) 2007 Mike Galbraith <efault@gmx.de>
8  *
9  *  Various enhancements by Dmitry Adamushko.
10  *  (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
11  *
12  *  Group scheduling enhancements by Srivatsa Vaddagiri
13  *  Copyright IBM Corporation, 2007
14  *  Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
15  *
16  *  Scaled math optimizations by Thomas Gleixner
17  *  Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
18  *
19  *  Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20  *  Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
21  */
22 
23 #include <linux/latencytop.h>
24 #include <linux/sched.h>
25 #include <linux/cpumask.h>
26 #include <linux/cpuidle.h>
27 #include <linux/slab.h>
28 #include <linux/profile.h>
29 #include <linux/interrupt.h>
30 #include <linux/mempolicy.h>
31 #include <linux/migrate.h>
32 #include <linux/task_work.h>
33 
34 #include <trace/events/sched.h>
35 
36 #include "sched.h"
37 
38 /*
39  * Targeted preemption latency for CPU-bound tasks:
40  * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
41  *
42  * NOTE: this latency value is not the same as the concept of
43  * 'timeslice length' - timeslices in CFS are of variable length
44  * and have no persistent notion like in traditional, time-slice
45  * based scheduling concepts.
46  *
47  * (to see the precise effective timeslice length of your workload,
48  *  run vmstat and monitor the context-switches (cs) field)
49  */
50 unsigned int sysctl_sched_latency = 6000000ULL;
51 unsigned int normalized_sysctl_sched_latency = 6000000ULL;
52 
53 /*
54  * The initial- and re-scaling of tunables is configurable
55  * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
56  *
57  * Options are:
58  * SCHED_TUNABLESCALING_NONE - unscaled, always *1
59  * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
60  * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
61  */
62 enum sched_tunable_scaling sysctl_sched_tunable_scaling
63 	= SCHED_TUNABLESCALING_LOG;
64 
65 /*
66  * Minimal preemption granularity for CPU-bound tasks:
67  * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
68  */
69 unsigned int sysctl_sched_min_granularity = 750000ULL;
70 unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
71 
72 /*
73  * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
74  */
75 static unsigned int sched_nr_latency = 8;
76 
77 /*
78  * After fork, child runs first. If set to 0 (default) then
79  * parent will (try to) run first.
80  */
81 unsigned int sysctl_sched_child_runs_first __read_mostly;
82 
83 /*
84  * SCHED_OTHER wake-up granularity.
85  * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
86  *
87  * This option delays the preemption effects of decoupled workloads
88  * and reduces their over-scheduling. Synchronous workloads will still
89  * have immediate wakeup/sleep latencies.
90  */
91 unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
92 unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
93 
94 const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
95 
96 /*
97  * The exponential sliding  window over which load is averaged for shares
98  * distribution.
99  * (default: 10msec)
100  */
101 unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL;
102 
103 #ifdef CONFIG_CFS_BANDWIDTH
104 /*
105  * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
106  * each time a cfs_rq requests quota.
107  *
108  * Note: in the case that the slice exceeds the runtime remaining (either due
109  * to consumption or the quota being specified to be smaller than the slice)
110  * we will always only issue the remaining available time.
111  *
112  * default: 5 msec, units: microseconds
113   */
114 unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
115 #endif
116 
117 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
118 {
119 	lw->weight += inc;
120 	lw->inv_weight = 0;
121 }
122 
123 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
124 {
125 	lw->weight -= dec;
126 	lw->inv_weight = 0;
127 }
128 
129 static inline void update_load_set(struct load_weight *lw, unsigned long w)
130 {
131 	lw->weight = w;
132 	lw->inv_weight = 0;
133 }
134 
135 /*
136  * Increase the granularity value when there are more CPUs,
137  * because with more CPUs the 'effective latency' as visible
138  * to users decreases. But the relationship is not linear,
139  * so pick a second-best guess by going with the log2 of the
140  * number of CPUs.
141  *
142  * This idea comes from the SD scheduler of Con Kolivas:
143  */
144 static int get_update_sysctl_factor(void)
145 {
146 	unsigned int cpus = min_t(int, num_online_cpus(), 8);
147 	unsigned int factor;
148 
149 	switch (sysctl_sched_tunable_scaling) {
150 	case SCHED_TUNABLESCALING_NONE:
151 		factor = 1;
152 		break;
153 	case SCHED_TUNABLESCALING_LINEAR:
154 		factor = cpus;
155 		break;
156 	case SCHED_TUNABLESCALING_LOG:
157 	default:
158 		factor = 1 + ilog2(cpus);
159 		break;
160 	}
161 
162 	return factor;
163 }
164 
165 static void update_sysctl(void)
166 {
167 	unsigned int factor = get_update_sysctl_factor();
168 
169 #define SET_SYSCTL(name) \
170 	(sysctl_##name = (factor) * normalized_sysctl_##name)
171 	SET_SYSCTL(sched_min_granularity);
172 	SET_SYSCTL(sched_latency);
173 	SET_SYSCTL(sched_wakeup_granularity);
174 #undef SET_SYSCTL
175 }
176 
177 void sched_init_granularity(void)
178 {
179 	update_sysctl();
180 }
181 
182 #define WMULT_CONST	(~0U)
183 #define WMULT_SHIFT	32
184 
185 static void __update_inv_weight(struct load_weight *lw)
186 {
187 	unsigned long w;
188 
189 	if (likely(lw->inv_weight))
190 		return;
191 
192 	w = scale_load_down(lw->weight);
193 
194 	if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
195 		lw->inv_weight = 1;
196 	else if (unlikely(!w))
197 		lw->inv_weight = WMULT_CONST;
198 	else
199 		lw->inv_weight = WMULT_CONST / w;
200 }
201 
202 /*
203  * delta_exec * weight / lw.weight
204  *   OR
205  * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
206  *
207  * Either weight := NICE_0_LOAD and lw \e prio_to_wmult[], in which case
208  * we're guaranteed shift stays positive because inv_weight is guaranteed to
209  * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
210  *
211  * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
212  * weight/lw.weight <= 1, and therefore our shift will also be positive.
213  */
214 static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw)
215 {
216 	u64 fact = scale_load_down(weight);
217 	int shift = WMULT_SHIFT;
218 
219 	__update_inv_weight(lw);
220 
221 	if (unlikely(fact >> 32)) {
222 		while (fact >> 32) {
223 			fact >>= 1;
224 			shift--;
225 		}
226 	}
227 
228 	/* hint to use a 32x32->64 mul */
229 	fact = (u64)(u32)fact * lw->inv_weight;
230 
231 	while (fact >> 32) {
232 		fact >>= 1;
233 		shift--;
234 	}
235 
236 	return mul_u64_u32_shr(delta_exec, fact, shift);
237 }
238 
239 
240 const struct sched_class fair_sched_class;
241 
242 /**************************************************************
243  * CFS operations on generic schedulable entities:
244  */
245 
246 #ifdef CONFIG_FAIR_GROUP_SCHED
247 
248 /* cpu runqueue to which this cfs_rq is attached */
249 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
250 {
251 	return cfs_rq->rq;
252 }
253 
254 /* An entity is a task if it doesn't "own" a runqueue */
255 #define entity_is_task(se)	(!se->my_q)
256 
257 static inline struct task_struct *task_of(struct sched_entity *se)
258 {
259 #ifdef CONFIG_SCHED_DEBUG
260 	WARN_ON_ONCE(!entity_is_task(se));
261 #endif
262 	return container_of(se, struct task_struct, se);
263 }
264 
265 /* Walk up scheduling entities hierarchy */
266 #define for_each_sched_entity(se) \
267 		for (; se; se = se->parent)
268 
269 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
270 {
271 	return p->se.cfs_rq;
272 }
273 
274 /* runqueue on which this entity is (to be) queued */
275 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
276 {
277 	return se->cfs_rq;
278 }
279 
280 /* runqueue "owned" by this group */
281 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
282 {
283 	return grp->my_q;
284 }
285 
286 static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq,
287 				       int force_update);
288 
289 static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
290 {
291 	if (!cfs_rq->on_list) {
292 		/*
293 		 * Ensure we either appear before our parent (if already
294 		 * enqueued) or force our parent to appear after us when it is
295 		 * enqueued.  The fact that we always enqueue bottom-up
296 		 * reduces this to two cases.
297 		 */
298 		if (cfs_rq->tg->parent &&
299 		    cfs_rq->tg->parent->cfs_rq[cpu_of(rq_of(cfs_rq))]->on_list) {
300 			list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
301 				&rq_of(cfs_rq)->leaf_cfs_rq_list);
302 		} else {
303 			list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
304 				&rq_of(cfs_rq)->leaf_cfs_rq_list);
305 		}
306 
307 		cfs_rq->on_list = 1;
308 		/* We should have no load, but we need to update last_decay. */
309 		update_cfs_rq_blocked_load(cfs_rq, 0);
310 	}
311 }
312 
313 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
314 {
315 	if (cfs_rq->on_list) {
316 		list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
317 		cfs_rq->on_list = 0;
318 	}
319 }
320 
321 /* Iterate thr' all leaf cfs_rq's on a runqueue */
322 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
323 	list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
324 
325 /* Do the two (enqueued) entities belong to the same group ? */
326 static inline struct cfs_rq *
327 is_same_group(struct sched_entity *se, struct sched_entity *pse)
328 {
329 	if (se->cfs_rq == pse->cfs_rq)
330 		return se->cfs_rq;
331 
332 	return NULL;
333 }
334 
335 static inline struct sched_entity *parent_entity(struct sched_entity *se)
336 {
337 	return se->parent;
338 }
339 
340 static void
341 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
342 {
343 	int se_depth, pse_depth;
344 
345 	/*
346 	 * preemption test can be made between sibling entities who are in the
347 	 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
348 	 * both tasks until we find their ancestors who are siblings of common
349 	 * parent.
350 	 */
351 
352 	/* First walk up until both entities are at same depth */
353 	se_depth = (*se)->depth;
354 	pse_depth = (*pse)->depth;
355 
356 	while (se_depth > pse_depth) {
357 		se_depth--;
358 		*se = parent_entity(*se);
359 	}
360 
361 	while (pse_depth > se_depth) {
362 		pse_depth--;
363 		*pse = parent_entity(*pse);
364 	}
365 
366 	while (!is_same_group(*se, *pse)) {
367 		*se = parent_entity(*se);
368 		*pse = parent_entity(*pse);
369 	}
370 }
371 
372 #else	/* !CONFIG_FAIR_GROUP_SCHED */
373 
374 static inline struct task_struct *task_of(struct sched_entity *se)
375 {
376 	return container_of(se, struct task_struct, se);
377 }
378 
379 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
380 {
381 	return container_of(cfs_rq, struct rq, cfs);
382 }
383 
384 #define entity_is_task(se)	1
385 
386 #define for_each_sched_entity(se) \
387 		for (; se; se = NULL)
388 
389 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
390 {
391 	return &task_rq(p)->cfs;
392 }
393 
394 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
395 {
396 	struct task_struct *p = task_of(se);
397 	struct rq *rq = task_rq(p);
398 
399 	return &rq->cfs;
400 }
401 
402 /* runqueue "owned" by this group */
403 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
404 {
405 	return NULL;
406 }
407 
408 static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
409 {
410 }
411 
412 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
413 {
414 }
415 
416 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
417 		for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
418 
419 static inline struct sched_entity *parent_entity(struct sched_entity *se)
420 {
421 	return NULL;
422 }
423 
424 static inline void
425 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
426 {
427 }
428 
429 #endif	/* CONFIG_FAIR_GROUP_SCHED */
430 
431 static __always_inline
432 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec);
433 
434 /**************************************************************
435  * Scheduling class tree data structure manipulation methods:
436  */
437 
438 static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
439 {
440 	s64 delta = (s64)(vruntime - max_vruntime);
441 	if (delta > 0)
442 		max_vruntime = vruntime;
443 
444 	return max_vruntime;
445 }
446 
447 static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
448 {
449 	s64 delta = (s64)(vruntime - min_vruntime);
450 	if (delta < 0)
451 		min_vruntime = vruntime;
452 
453 	return min_vruntime;
454 }
455 
456 static inline int entity_before(struct sched_entity *a,
457 				struct sched_entity *b)
458 {
459 	return (s64)(a->vruntime - b->vruntime) < 0;
460 }
461 
462 static void update_min_vruntime(struct cfs_rq *cfs_rq)
463 {
464 	u64 vruntime = cfs_rq->min_vruntime;
465 
466 	if (cfs_rq->curr)
467 		vruntime = cfs_rq->curr->vruntime;
468 
469 	if (cfs_rq->rb_leftmost) {
470 		struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
471 						   struct sched_entity,
472 						   run_node);
473 
474 		if (!cfs_rq->curr)
475 			vruntime = se->vruntime;
476 		else
477 			vruntime = min_vruntime(vruntime, se->vruntime);
478 	}
479 
480 	/* ensure we never gain time by being placed backwards. */
481 	cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
482 #ifndef CONFIG_64BIT
483 	smp_wmb();
484 	cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
485 #endif
486 }
487 
488 /*
489  * Enqueue an entity into the rb-tree:
490  */
491 static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
492 {
493 	struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
494 	struct rb_node *parent = NULL;
495 	struct sched_entity *entry;
496 	int leftmost = 1;
497 
498 	/*
499 	 * Find the right place in the rbtree:
500 	 */
501 	while (*link) {
502 		parent = *link;
503 		entry = rb_entry(parent, struct sched_entity, run_node);
504 		/*
505 		 * We dont care about collisions. Nodes with
506 		 * the same key stay together.
507 		 */
508 		if (entity_before(se, entry)) {
509 			link = &parent->rb_left;
510 		} else {
511 			link = &parent->rb_right;
512 			leftmost = 0;
513 		}
514 	}
515 
516 	/*
517 	 * Maintain a cache of leftmost tree entries (it is frequently
518 	 * used):
519 	 */
520 	if (leftmost)
521 		cfs_rq->rb_leftmost = &se->run_node;
522 
523 	rb_link_node(&se->run_node, parent, link);
524 	rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
525 }
526 
527 static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
528 {
529 	if (cfs_rq->rb_leftmost == &se->run_node) {
530 		struct rb_node *next_node;
531 
532 		next_node = rb_next(&se->run_node);
533 		cfs_rq->rb_leftmost = next_node;
534 	}
535 
536 	rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
537 }
538 
539 struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
540 {
541 	struct rb_node *left = cfs_rq->rb_leftmost;
542 
543 	if (!left)
544 		return NULL;
545 
546 	return rb_entry(left, struct sched_entity, run_node);
547 }
548 
549 static struct sched_entity *__pick_next_entity(struct sched_entity *se)
550 {
551 	struct rb_node *next = rb_next(&se->run_node);
552 
553 	if (!next)
554 		return NULL;
555 
556 	return rb_entry(next, struct sched_entity, run_node);
557 }
558 
559 #ifdef CONFIG_SCHED_DEBUG
560 struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
561 {
562 	struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
563 
564 	if (!last)
565 		return NULL;
566 
567 	return rb_entry(last, struct sched_entity, run_node);
568 }
569 
570 /**************************************************************
571  * Scheduling class statistics methods:
572  */
573 
574 int sched_proc_update_handler(struct ctl_table *table, int write,
575 		void __user *buffer, size_t *lenp,
576 		loff_t *ppos)
577 {
578 	int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
579 	int factor = get_update_sysctl_factor();
580 
581 	if (ret || !write)
582 		return ret;
583 
584 	sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
585 					sysctl_sched_min_granularity);
586 
587 #define WRT_SYSCTL(name) \
588 	(normalized_sysctl_##name = sysctl_##name / (factor))
589 	WRT_SYSCTL(sched_min_granularity);
590 	WRT_SYSCTL(sched_latency);
591 	WRT_SYSCTL(sched_wakeup_granularity);
592 #undef WRT_SYSCTL
593 
594 	return 0;
595 }
596 #endif
597 
598 /*
599  * delta /= w
600  */
601 static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
602 {
603 	if (unlikely(se->load.weight != NICE_0_LOAD))
604 		delta = __calc_delta(delta, NICE_0_LOAD, &se->load);
605 
606 	return delta;
607 }
608 
609 /*
610  * The idea is to set a period in which each task runs once.
611  *
612  * When there are too many tasks (sched_nr_latency) we have to stretch
613  * this period because otherwise the slices get too small.
614  *
615  * p = (nr <= nl) ? l : l*nr/nl
616  */
617 static u64 __sched_period(unsigned long nr_running)
618 {
619 	u64 period = sysctl_sched_latency;
620 	unsigned long nr_latency = sched_nr_latency;
621 
622 	if (unlikely(nr_running > nr_latency)) {
623 		period = sysctl_sched_min_granularity;
624 		period *= nr_running;
625 	}
626 
627 	return period;
628 }
629 
630 /*
631  * We calculate the wall-time slice from the period by taking a part
632  * proportional to the weight.
633  *
634  * s = p*P[w/rw]
635  */
636 static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
637 {
638 	u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
639 
640 	for_each_sched_entity(se) {
641 		struct load_weight *load;
642 		struct load_weight lw;
643 
644 		cfs_rq = cfs_rq_of(se);
645 		load = &cfs_rq->load;
646 
647 		if (unlikely(!se->on_rq)) {
648 			lw = cfs_rq->load;
649 
650 			update_load_add(&lw, se->load.weight);
651 			load = &lw;
652 		}
653 		slice = __calc_delta(slice, se->load.weight, load);
654 	}
655 	return slice;
656 }
657 
658 /*
659  * We calculate the vruntime slice of a to-be-inserted task.
660  *
661  * vs = s/w
662  */
663 static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
664 {
665 	return calc_delta_fair(sched_slice(cfs_rq, se), se);
666 }
667 
668 #ifdef CONFIG_SMP
669 static int select_idle_sibling(struct task_struct *p, int cpu);
670 static unsigned long task_h_load(struct task_struct *p);
671 
672 static inline void __update_task_entity_contrib(struct sched_entity *se);
673 
674 /* Give new task start runnable values to heavy its load in infant time */
675 void init_task_runnable_average(struct task_struct *p)
676 {
677 	u32 slice;
678 
679 	p->se.avg.decay_count = 0;
680 	slice = sched_slice(task_cfs_rq(p), &p->se) >> 10;
681 	p->se.avg.runnable_avg_sum = slice;
682 	p->se.avg.runnable_avg_period = slice;
683 	__update_task_entity_contrib(&p->se);
684 }
685 #else
686 void init_task_runnable_average(struct task_struct *p)
687 {
688 }
689 #endif
690 
691 /*
692  * Update the current task's runtime statistics.
693  */
694 static void update_curr(struct cfs_rq *cfs_rq)
695 {
696 	struct sched_entity *curr = cfs_rq->curr;
697 	u64 now = rq_clock_task(rq_of(cfs_rq));
698 	u64 delta_exec;
699 
700 	if (unlikely(!curr))
701 		return;
702 
703 	delta_exec = now - curr->exec_start;
704 	if (unlikely((s64)delta_exec <= 0))
705 		return;
706 
707 	curr->exec_start = now;
708 
709 	schedstat_set(curr->statistics.exec_max,
710 		      max(delta_exec, curr->statistics.exec_max));
711 
712 	curr->sum_exec_runtime += delta_exec;
713 	schedstat_add(cfs_rq, exec_clock, delta_exec);
714 
715 	curr->vruntime += calc_delta_fair(delta_exec, curr);
716 	update_min_vruntime(cfs_rq);
717 
718 	if (entity_is_task(curr)) {
719 		struct task_struct *curtask = task_of(curr);
720 
721 		trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
722 		cpuacct_charge(curtask, delta_exec);
723 		account_group_exec_runtime(curtask, delta_exec);
724 	}
725 
726 	account_cfs_rq_runtime(cfs_rq, delta_exec);
727 }
728 
729 static inline void
730 update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
731 {
732 	schedstat_set(se->statistics.wait_start, rq_clock(rq_of(cfs_rq)));
733 }
734 
735 /*
736  * Task is being enqueued - update stats:
737  */
738 static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
739 {
740 	/*
741 	 * Are we enqueueing a waiting task? (for current tasks
742 	 * a dequeue/enqueue event is a NOP)
743 	 */
744 	if (se != cfs_rq->curr)
745 		update_stats_wait_start(cfs_rq, se);
746 }
747 
748 static void
749 update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
750 {
751 	schedstat_set(se->statistics.wait_max, max(se->statistics.wait_max,
752 			rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start));
753 	schedstat_set(se->statistics.wait_count, se->statistics.wait_count + 1);
754 	schedstat_set(se->statistics.wait_sum, se->statistics.wait_sum +
755 			rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start);
756 #ifdef CONFIG_SCHEDSTATS
757 	if (entity_is_task(se)) {
758 		trace_sched_stat_wait(task_of(se),
759 			rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start);
760 	}
761 #endif
762 	schedstat_set(se->statistics.wait_start, 0);
763 }
764 
765 static inline void
766 update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
767 {
768 	/*
769 	 * Mark the end of the wait period if dequeueing a
770 	 * waiting task:
771 	 */
772 	if (se != cfs_rq->curr)
773 		update_stats_wait_end(cfs_rq, se);
774 }
775 
776 /*
777  * We are picking a new current task - update its stats:
778  */
779 static inline void
780 update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
781 {
782 	/*
783 	 * We are starting a new run period:
784 	 */
785 	se->exec_start = rq_clock_task(rq_of(cfs_rq));
786 }
787 
788 /**************************************************
789  * Scheduling class queueing methods:
790  */
791 
792 #ifdef CONFIG_NUMA_BALANCING
793 /*
794  * Approximate time to scan a full NUMA task in ms. The task scan period is
795  * calculated based on the tasks virtual memory size and
796  * numa_balancing_scan_size.
797  */
798 unsigned int sysctl_numa_balancing_scan_period_min = 1000;
799 unsigned int sysctl_numa_balancing_scan_period_max = 60000;
800 
801 /* Portion of address space to scan in MB */
802 unsigned int sysctl_numa_balancing_scan_size = 256;
803 
804 /* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
805 unsigned int sysctl_numa_balancing_scan_delay = 1000;
806 
807 static unsigned int task_nr_scan_windows(struct task_struct *p)
808 {
809 	unsigned long rss = 0;
810 	unsigned long nr_scan_pages;
811 
812 	/*
813 	 * Calculations based on RSS as non-present and empty pages are skipped
814 	 * by the PTE scanner and NUMA hinting faults should be trapped based
815 	 * on resident pages
816 	 */
817 	nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
818 	rss = get_mm_rss(p->mm);
819 	if (!rss)
820 		rss = nr_scan_pages;
821 
822 	rss = round_up(rss, nr_scan_pages);
823 	return rss / nr_scan_pages;
824 }
825 
826 /* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
827 #define MAX_SCAN_WINDOW 2560
828 
829 static unsigned int task_scan_min(struct task_struct *p)
830 {
831 	unsigned int scan_size = ACCESS_ONCE(sysctl_numa_balancing_scan_size);
832 	unsigned int scan, floor;
833 	unsigned int windows = 1;
834 
835 	if (scan_size < MAX_SCAN_WINDOW)
836 		windows = MAX_SCAN_WINDOW / scan_size;
837 	floor = 1000 / windows;
838 
839 	scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
840 	return max_t(unsigned int, floor, scan);
841 }
842 
843 static unsigned int task_scan_max(struct task_struct *p)
844 {
845 	unsigned int smin = task_scan_min(p);
846 	unsigned int smax;
847 
848 	/* Watch for min being lower than max due to floor calculations */
849 	smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
850 	return max(smin, smax);
851 }
852 
853 static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
854 {
855 	rq->nr_numa_running += (p->numa_preferred_nid != -1);
856 	rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
857 }
858 
859 static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
860 {
861 	rq->nr_numa_running -= (p->numa_preferred_nid != -1);
862 	rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
863 }
864 
865 struct numa_group {
866 	atomic_t refcount;
867 
868 	spinlock_t lock; /* nr_tasks, tasks */
869 	int nr_tasks;
870 	pid_t gid;
871 	struct list_head task_list;
872 
873 	struct rcu_head rcu;
874 	nodemask_t active_nodes;
875 	unsigned long total_faults;
876 	/*
877 	 * Faults_cpu is used to decide whether memory should move
878 	 * towards the CPU. As a consequence, these stats are weighted
879 	 * more by CPU use than by memory faults.
880 	 */
881 	unsigned long *faults_cpu;
882 	unsigned long faults[0];
883 };
884 
885 /* Shared or private faults. */
886 #define NR_NUMA_HINT_FAULT_TYPES 2
887 
888 /* Memory and CPU locality */
889 #define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2)
890 
891 /* Averaged statistics, and temporary buffers. */
892 #define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2)
893 
894 pid_t task_numa_group_id(struct task_struct *p)
895 {
896 	return p->numa_group ? p->numa_group->gid : 0;
897 }
898 
899 static inline int task_faults_idx(int nid, int priv)
900 {
901 	return NR_NUMA_HINT_FAULT_TYPES * nid + priv;
902 }
903 
904 static inline unsigned long task_faults(struct task_struct *p, int nid)
905 {
906 	if (!p->numa_faults_memory)
907 		return 0;
908 
909 	return p->numa_faults_memory[task_faults_idx(nid, 0)] +
910 		p->numa_faults_memory[task_faults_idx(nid, 1)];
911 }
912 
913 static inline unsigned long group_faults(struct task_struct *p, int nid)
914 {
915 	if (!p->numa_group)
916 		return 0;
917 
918 	return p->numa_group->faults[task_faults_idx(nid, 0)] +
919 		p->numa_group->faults[task_faults_idx(nid, 1)];
920 }
921 
922 static inline unsigned long group_faults_cpu(struct numa_group *group, int nid)
923 {
924 	return group->faults_cpu[task_faults_idx(nid, 0)] +
925 		group->faults_cpu[task_faults_idx(nid, 1)];
926 }
927 
928 /*
929  * These return the fraction of accesses done by a particular task, or
930  * task group, on a particular numa node.  The group weight is given a
931  * larger multiplier, in order to group tasks together that are almost
932  * evenly spread out between numa nodes.
933  */
934 static inline unsigned long task_weight(struct task_struct *p, int nid)
935 {
936 	unsigned long total_faults;
937 
938 	if (!p->numa_faults_memory)
939 		return 0;
940 
941 	total_faults = p->total_numa_faults;
942 
943 	if (!total_faults)
944 		return 0;
945 
946 	return 1000 * task_faults(p, nid) / total_faults;
947 }
948 
949 static inline unsigned long group_weight(struct task_struct *p, int nid)
950 {
951 	if (!p->numa_group || !p->numa_group->total_faults)
952 		return 0;
953 
954 	return 1000 * group_faults(p, nid) / p->numa_group->total_faults;
955 }
956 
957 bool should_numa_migrate_memory(struct task_struct *p, struct page * page,
958 				int src_nid, int dst_cpu)
959 {
960 	struct numa_group *ng = p->numa_group;
961 	int dst_nid = cpu_to_node(dst_cpu);
962 	int last_cpupid, this_cpupid;
963 
964 	this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid);
965 
966 	/*
967 	 * Multi-stage node selection is used in conjunction with a periodic
968 	 * migration fault to build a temporal task<->page relation. By using
969 	 * a two-stage filter we remove short/unlikely relations.
970 	 *
971 	 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate
972 	 * a task's usage of a particular page (n_p) per total usage of this
973 	 * page (n_t) (in a given time-span) to a probability.
974 	 *
975 	 * Our periodic faults will sample this probability and getting the
976 	 * same result twice in a row, given these samples are fully
977 	 * independent, is then given by P(n)^2, provided our sample period
978 	 * is sufficiently short compared to the usage pattern.
979 	 *
980 	 * This quadric squishes small probabilities, making it less likely we
981 	 * act on an unlikely task<->page relation.
982 	 */
983 	last_cpupid = page_cpupid_xchg_last(page, this_cpupid);
984 	if (!cpupid_pid_unset(last_cpupid) &&
985 				cpupid_to_nid(last_cpupid) != dst_nid)
986 		return false;
987 
988 	/* Always allow migrate on private faults */
989 	if (cpupid_match_pid(p, last_cpupid))
990 		return true;
991 
992 	/* A shared fault, but p->numa_group has not been set up yet. */
993 	if (!ng)
994 		return true;
995 
996 	/*
997 	 * Do not migrate if the destination is not a node that
998 	 * is actively used by this numa group.
999 	 */
1000 	if (!node_isset(dst_nid, ng->active_nodes))
1001 		return false;
1002 
1003 	/*
1004 	 * Source is a node that is not actively used by this
1005 	 * numa group, while the destination is. Migrate.
1006 	 */
1007 	if (!node_isset(src_nid, ng->active_nodes))
1008 		return true;
1009 
1010 	/*
1011 	 * Both source and destination are nodes in active
1012 	 * use by this numa group. Maximize memory bandwidth
1013 	 * by migrating from more heavily used groups, to less
1014 	 * heavily used ones, spreading the load around.
1015 	 * Use a 1/4 hysteresis to avoid spurious page movement.
1016 	 */
1017 	return group_faults(p, dst_nid) < (group_faults(p, src_nid) * 3 / 4);
1018 }
1019 
1020 static unsigned long weighted_cpuload(const int cpu);
1021 static unsigned long source_load(int cpu, int type);
1022 static unsigned long target_load(int cpu, int type);
1023 static unsigned long capacity_of(int cpu);
1024 static long effective_load(struct task_group *tg, int cpu, long wl, long wg);
1025 
1026 /* Cached statistics for all CPUs within a node */
1027 struct numa_stats {
1028 	unsigned long nr_running;
1029 	unsigned long load;
1030 
1031 	/* Total compute capacity of CPUs on a node */
1032 	unsigned long compute_capacity;
1033 
1034 	/* Approximate capacity in terms of runnable tasks on a node */
1035 	unsigned long task_capacity;
1036 	int has_free_capacity;
1037 };
1038 
1039 /*
1040  * XXX borrowed from update_sg_lb_stats
1041  */
1042 static void update_numa_stats(struct numa_stats *ns, int nid)
1043 {
1044 	int smt, cpu, cpus = 0;
1045 	unsigned long capacity;
1046 
1047 	memset(ns, 0, sizeof(*ns));
1048 	for_each_cpu(cpu, cpumask_of_node(nid)) {
1049 		struct rq *rq = cpu_rq(cpu);
1050 
1051 		ns->nr_running += rq->nr_running;
1052 		ns->load += weighted_cpuload(cpu);
1053 		ns->compute_capacity += capacity_of(cpu);
1054 
1055 		cpus++;
1056 	}
1057 
1058 	/*
1059 	 * If we raced with hotplug and there are no CPUs left in our mask
1060 	 * the @ns structure is NULL'ed and task_numa_compare() will
1061 	 * not find this node attractive.
1062 	 *
1063 	 * We'll either bail at !has_free_capacity, or we'll detect a huge
1064 	 * imbalance and bail there.
1065 	 */
1066 	if (!cpus)
1067 		return;
1068 
1069 	/* smt := ceil(cpus / capacity), assumes: 1 < smt_power < 2 */
1070 	smt = DIV_ROUND_UP(SCHED_CAPACITY_SCALE * cpus, ns->compute_capacity);
1071 	capacity = cpus / smt; /* cores */
1072 
1073 	ns->task_capacity = min_t(unsigned, capacity,
1074 		DIV_ROUND_CLOSEST(ns->compute_capacity, SCHED_CAPACITY_SCALE));
1075 	ns->has_free_capacity = (ns->nr_running < ns->task_capacity);
1076 }
1077 
1078 struct task_numa_env {
1079 	struct task_struct *p;
1080 
1081 	int src_cpu, src_nid;
1082 	int dst_cpu, dst_nid;
1083 
1084 	struct numa_stats src_stats, dst_stats;
1085 
1086 	int imbalance_pct;
1087 
1088 	struct task_struct *best_task;
1089 	long best_imp;
1090 	int best_cpu;
1091 };
1092 
1093 static void task_numa_assign(struct task_numa_env *env,
1094 			     struct task_struct *p, long imp)
1095 {
1096 	if (env->best_task)
1097 		put_task_struct(env->best_task);
1098 	if (p)
1099 		get_task_struct(p);
1100 
1101 	env->best_task = p;
1102 	env->best_imp = imp;
1103 	env->best_cpu = env->dst_cpu;
1104 }
1105 
1106 static bool load_too_imbalanced(long src_load, long dst_load,
1107 				struct task_numa_env *env)
1108 {
1109 	long imb, old_imb;
1110 	long orig_src_load, orig_dst_load;
1111 	long src_capacity, dst_capacity;
1112 
1113 	/*
1114 	 * The load is corrected for the CPU capacity available on each node.
1115 	 *
1116 	 * src_load        dst_load
1117 	 * ------------ vs ---------
1118 	 * src_capacity    dst_capacity
1119 	 */
1120 	src_capacity = env->src_stats.compute_capacity;
1121 	dst_capacity = env->dst_stats.compute_capacity;
1122 
1123 	/* We care about the slope of the imbalance, not the direction. */
1124 	if (dst_load < src_load)
1125 		swap(dst_load, src_load);
1126 
1127 	/* Is the difference below the threshold? */
1128 	imb = dst_load * src_capacity * 100 -
1129 	      src_load * dst_capacity * env->imbalance_pct;
1130 	if (imb <= 0)
1131 		return false;
1132 
1133 	/*
1134 	 * The imbalance is above the allowed threshold.
1135 	 * Compare it with the old imbalance.
1136 	 */
1137 	orig_src_load = env->src_stats.load;
1138 	orig_dst_load = env->dst_stats.load;
1139 
1140 	if (orig_dst_load < orig_src_load)
1141 		swap(orig_dst_load, orig_src_load);
1142 
1143 	old_imb = orig_dst_load * src_capacity * 100 -
1144 		  orig_src_load * dst_capacity * env->imbalance_pct;
1145 
1146 	/* Would this change make things worse? */
1147 	return (imb > old_imb);
1148 }
1149 
1150 /*
1151  * This checks if the overall compute and NUMA accesses of the system would
1152  * be improved if the source tasks was migrated to the target dst_cpu taking
1153  * into account that it might be best if task running on the dst_cpu should
1154  * be exchanged with the source task
1155  */
1156 static void task_numa_compare(struct task_numa_env *env,
1157 			      long taskimp, long groupimp)
1158 {
1159 	struct rq *src_rq = cpu_rq(env->src_cpu);
1160 	struct rq *dst_rq = cpu_rq(env->dst_cpu);
1161 	struct task_struct *cur;
1162 	long src_load, dst_load;
1163 	long load;
1164 	long imp = env->p->numa_group ? groupimp : taskimp;
1165 	long moveimp = imp;
1166 
1167 	rcu_read_lock();
1168 
1169 	raw_spin_lock_irq(&dst_rq->lock);
1170 	cur = dst_rq->curr;
1171 	/*
1172 	 * No need to move the exiting task, and this ensures that ->curr
1173 	 * wasn't reaped and thus get_task_struct() in task_numa_assign()
1174 	 * is safe under RCU read lock.
1175 	 * Note that rcu_read_lock() itself can't protect from the final
1176 	 * put_task_struct() after the last schedule().
1177 	 */
1178 	if ((cur->flags & PF_EXITING) || is_idle_task(cur))
1179 		cur = NULL;
1180 	raw_spin_unlock_irq(&dst_rq->lock);
1181 
1182 	/*
1183 	 * "imp" is the fault differential for the source task between the
1184 	 * source and destination node. Calculate the total differential for
1185 	 * the source task and potential destination task. The more negative
1186 	 * the value is, the more rmeote accesses that would be expected to
1187 	 * be incurred if the tasks were swapped.
1188 	 */
1189 	if (cur) {
1190 		/* Skip this swap candidate if cannot move to the source cpu */
1191 		if (!cpumask_test_cpu(env->src_cpu, tsk_cpus_allowed(cur)))
1192 			goto unlock;
1193 
1194 		/*
1195 		 * If dst and source tasks are in the same NUMA group, or not
1196 		 * in any group then look only at task weights.
1197 		 */
1198 		if (cur->numa_group == env->p->numa_group) {
1199 			imp = taskimp + task_weight(cur, env->src_nid) -
1200 			      task_weight(cur, env->dst_nid);
1201 			/*
1202 			 * Add some hysteresis to prevent swapping the
1203 			 * tasks within a group over tiny differences.
1204 			 */
1205 			if (cur->numa_group)
1206 				imp -= imp/16;
1207 		} else {
1208 			/*
1209 			 * Compare the group weights. If a task is all by
1210 			 * itself (not part of a group), use the task weight
1211 			 * instead.
1212 			 */
1213 			if (cur->numa_group)
1214 				imp += group_weight(cur, env->src_nid) -
1215 				       group_weight(cur, env->dst_nid);
1216 			else
1217 				imp += task_weight(cur, env->src_nid) -
1218 				       task_weight(cur, env->dst_nid);
1219 		}
1220 	}
1221 
1222 	if (imp <= env->best_imp && moveimp <= env->best_imp)
1223 		goto unlock;
1224 
1225 	if (!cur) {
1226 		/* Is there capacity at our destination? */
1227 		if (env->src_stats.nr_running <= env->src_stats.task_capacity &&
1228 		    !env->dst_stats.has_free_capacity)
1229 			goto unlock;
1230 
1231 		goto balance;
1232 	}
1233 
1234 	/* Balance doesn't matter much if we're running a task per cpu */
1235 	if (imp > env->best_imp && src_rq->nr_running == 1 &&
1236 			dst_rq->nr_running == 1)
1237 		goto assign;
1238 
1239 	/*
1240 	 * In the overloaded case, try and keep the load balanced.
1241 	 */
1242 balance:
1243 	load = task_h_load(env->p);
1244 	dst_load = env->dst_stats.load + load;
1245 	src_load = env->src_stats.load - load;
1246 
1247 	if (moveimp > imp && moveimp > env->best_imp) {
1248 		/*
1249 		 * If the improvement from just moving env->p direction is
1250 		 * better than swapping tasks around, check if a move is
1251 		 * possible. Store a slightly smaller score than moveimp,
1252 		 * so an actually idle CPU will win.
1253 		 */
1254 		if (!load_too_imbalanced(src_load, dst_load, env)) {
1255 			imp = moveimp - 1;
1256 			cur = NULL;
1257 			goto assign;
1258 		}
1259 	}
1260 
1261 	if (imp <= env->best_imp)
1262 		goto unlock;
1263 
1264 	if (cur) {
1265 		load = task_h_load(cur);
1266 		dst_load -= load;
1267 		src_load += load;
1268 	}
1269 
1270 	if (load_too_imbalanced(src_load, dst_load, env))
1271 		goto unlock;
1272 
1273 	/*
1274 	 * One idle CPU per node is evaluated for a task numa move.
1275 	 * Call select_idle_sibling to maybe find a better one.
1276 	 */
1277 	if (!cur)
1278 		env->dst_cpu = select_idle_sibling(env->p, env->dst_cpu);
1279 
1280 assign:
1281 	task_numa_assign(env, cur, imp);
1282 unlock:
1283 	rcu_read_unlock();
1284 }
1285 
1286 static void task_numa_find_cpu(struct task_numa_env *env,
1287 				long taskimp, long groupimp)
1288 {
1289 	int cpu;
1290 
1291 	for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
1292 		/* Skip this CPU if the source task cannot migrate */
1293 		if (!cpumask_test_cpu(cpu, tsk_cpus_allowed(env->p)))
1294 			continue;
1295 
1296 		env->dst_cpu = cpu;
1297 		task_numa_compare(env, taskimp, groupimp);
1298 	}
1299 }
1300 
1301 static int task_numa_migrate(struct task_struct *p)
1302 {
1303 	struct task_numa_env env = {
1304 		.p = p,
1305 
1306 		.src_cpu = task_cpu(p),
1307 		.src_nid = task_node(p),
1308 
1309 		.imbalance_pct = 112,
1310 
1311 		.best_task = NULL,
1312 		.best_imp = 0,
1313 		.best_cpu = -1
1314 	};
1315 	struct sched_domain *sd;
1316 	unsigned long taskweight, groupweight;
1317 	int nid, ret;
1318 	long taskimp, groupimp;
1319 
1320 	/*
1321 	 * Pick the lowest SD_NUMA domain, as that would have the smallest
1322 	 * imbalance and would be the first to start moving tasks about.
1323 	 *
1324 	 * And we want to avoid any moving of tasks about, as that would create
1325 	 * random movement of tasks -- counter the numa conditions we're trying
1326 	 * to satisfy here.
1327 	 */
1328 	rcu_read_lock();
1329 	sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
1330 	if (sd)
1331 		env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
1332 	rcu_read_unlock();
1333 
1334 	/*
1335 	 * Cpusets can break the scheduler domain tree into smaller
1336 	 * balance domains, some of which do not cross NUMA boundaries.
1337 	 * Tasks that are "trapped" in such domains cannot be migrated
1338 	 * elsewhere, so there is no point in (re)trying.
1339 	 */
1340 	if (unlikely(!sd)) {
1341 		p->numa_preferred_nid = task_node(p);
1342 		return -EINVAL;
1343 	}
1344 
1345 	taskweight = task_weight(p, env.src_nid);
1346 	groupweight = group_weight(p, env.src_nid);
1347 	update_numa_stats(&env.src_stats, env.src_nid);
1348 	env.dst_nid = p->numa_preferred_nid;
1349 	taskimp = task_weight(p, env.dst_nid) - taskweight;
1350 	groupimp = group_weight(p, env.dst_nid) - groupweight;
1351 	update_numa_stats(&env.dst_stats, env.dst_nid);
1352 
1353 	/* Try to find a spot on the preferred nid. */
1354 	task_numa_find_cpu(&env, taskimp, groupimp);
1355 
1356 	/* No space available on the preferred nid. Look elsewhere. */
1357 	if (env.best_cpu == -1) {
1358 		for_each_online_node(nid) {
1359 			if (nid == env.src_nid || nid == p->numa_preferred_nid)
1360 				continue;
1361 
1362 			/* Only consider nodes where both task and groups benefit */
1363 			taskimp = task_weight(p, nid) - taskweight;
1364 			groupimp = group_weight(p, nid) - groupweight;
1365 			if (taskimp < 0 && groupimp < 0)
1366 				continue;
1367 
1368 			env.dst_nid = nid;
1369 			update_numa_stats(&env.dst_stats, env.dst_nid);
1370 			task_numa_find_cpu(&env, taskimp, groupimp);
1371 		}
1372 	}
1373 
1374 	/*
1375 	 * If the task is part of a workload that spans multiple NUMA nodes,
1376 	 * and is migrating into one of the workload's active nodes, remember
1377 	 * this node as the task's preferred numa node, so the workload can
1378 	 * settle down.
1379 	 * A task that migrated to a second choice node will be better off
1380 	 * trying for a better one later. Do not set the preferred node here.
1381 	 */
1382 	if (p->numa_group) {
1383 		if (env.best_cpu == -1)
1384 			nid = env.src_nid;
1385 		else
1386 			nid = env.dst_nid;
1387 
1388 		if (node_isset(nid, p->numa_group->active_nodes))
1389 			sched_setnuma(p, env.dst_nid);
1390 	}
1391 
1392 	/* No better CPU than the current one was found. */
1393 	if (env.best_cpu == -1)
1394 		return -EAGAIN;
1395 
1396 	/*
1397 	 * Reset the scan period if the task is being rescheduled on an
1398 	 * alternative node to recheck if the tasks is now properly placed.
1399 	 */
1400 	p->numa_scan_period = task_scan_min(p);
1401 
1402 	if (env.best_task == NULL) {
1403 		ret = migrate_task_to(p, env.best_cpu);
1404 		if (ret != 0)
1405 			trace_sched_stick_numa(p, env.src_cpu, env.best_cpu);
1406 		return ret;
1407 	}
1408 
1409 	ret = migrate_swap(p, env.best_task);
1410 	if (ret != 0)
1411 		trace_sched_stick_numa(p, env.src_cpu, task_cpu(env.best_task));
1412 	put_task_struct(env.best_task);
1413 	return ret;
1414 }
1415 
1416 /* Attempt to migrate a task to a CPU on the preferred node. */
1417 static void numa_migrate_preferred(struct task_struct *p)
1418 {
1419 	unsigned long interval = HZ;
1420 
1421 	/* This task has no NUMA fault statistics yet */
1422 	if (unlikely(p->numa_preferred_nid == -1 || !p->numa_faults_memory))
1423 		return;
1424 
1425 	/* Periodically retry migrating the task to the preferred node */
1426 	interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16);
1427 	p->numa_migrate_retry = jiffies + interval;
1428 
1429 	/* Success if task is already running on preferred CPU */
1430 	if (task_node(p) == p->numa_preferred_nid)
1431 		return;
1432 
1433 	/* Otherwise, try migrate to a CPU on the preferred node */
1434 	task_numa_migrate(p);
1435 }
1436 
1437 /*
1438  * Find the nodes on which the workload is actively running. We do this by
1439  * tracking the nodes from which NUMA hinting faults are triggered. This can
1440  * be different from the set of nodes where the workload's memory is currently
1441  * located.
1442  *
1443  * The bitmask is used to make smarter decisions on when to do NUMA page
1444  * migrations, To prevent flip-flopping, and excessive page migrations, nodes
1445  * are added when they cause over 6/16 of the maximum number of faults, but
1446  * only removed when they drop below 3/16.
1447  */
1448 static void update_numa_active_node_mask(struct numa_group *numa_group)
1449 {
1450 	unsigned long faults, max_faults = 0;
1451 	int nid;
1452 
1453 	for_each_online_node(nid) {
1454 		faults = group_faults_cpu(numa_group, nid);
1455 		if (faults > max_faults)
1456 			max_faults = faults;
1457 	}
1458 
1459 	for_each_online_node(nid) {
1460 		faults = group_faults_cpu(numa_group, nid);
1461 		if (!node_isset(nid, numa_group->active_nodes)) {
1462 			if (faults > max_faults * 6 / 16)
1463 				node_set(nid, numa_group->active_nodes);
1464 		} else if (faults < max_faults * 3 / 16)
1465 			node_clear(nid, numa_group->active_nodes);
1466 	}
1467 }
1468 
1469 /*
1470  * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
1471  * increments. The more local the fault statistics are, the higher the scan
1472  * period will be for the next scan window. If local/(local+remote) ratio is
1473  * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS)
1474  * the scan period will decrease. Aim for 70% local accesses.
1475  */
1476 #define NUMA_PERIOD_SLOTS 10
1477 #define NUMA_PERIOD_THRESHOLD 7
1478 
1479 /*
1480  * Increase the scan period (slow down scanning) if the majority of
1481  * our memory is already on our local node, or if the majority of
1482  * the page accesses are shared with other processes.
1483  * Otherwise, decrease the scan period.
1484  */
1485 static void update_task_scan_period(struct task_struct *p,
1486 			unsigned long shared, unsigned long private)
1487 {
1488 	unsigned int period_slot;
1489 	int ratio;
1490 	int diff;
1491 
1492 	unsigned long remote = p->numa_faults_locality[0];
1493 	unsigned long local = p->numa_faults_locality[1];
1494 
1495 	/*
1496 	 * If there were no record hinting faults then either the task is
1497 	 * completely idle or all activity is areas that are not of interest
1498 	 * to automatic numa balancing. Scan slower
1499 	 */
1500 	if (local + shared == 0) {
1501 		p->numa_scan_period = min(p->numa_scan_period_max,
1502 			p->numa_scan_period << 1);
1503 
1504 		p->mm->numa_next_scan = jiffies +
1505 			msecs_to_jiffies(p->numa_scan_period);
1506 
1507 		return;
1508 	}
1509 
1510 	/*
1511 	 * Prepare to scale scan period relative to the current period.
1512 	 *	 == NUMA_PERIOD_THRESHOLD scan period stays the same
1513 	 *       <  NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
1514 	 *	 >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
1515 	 */
1516 	period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
1517 	ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
1518 	if (ratio >= NUMA_PERIOD_THRESHOLD) {
1519 		int slot = ratio - NUMA_PERIOD_THRESHOLD;
1520 		if (!slot)
1521 			slot = 1;
1522 		diff = slot * period_slot;
1523 	} else {
1524 		diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;
1525 
1526 		/*
1527 		 * Scale scan rate increases based on sharing. There is an
1528 		 * inverse relationship between the degree of sharing and
1529 		 * the adjustment made to the scanning period. Broadly
1530 		 * speaking the intent is that there is little point
1531 		 * scanning faster if shared accesses dominate as it may
1532 		 * simply bounce migrations uselessly
1533 		 */
1534 		ratio = DIV_ROUND_UP(private * NUMA_PERIOD_SLOTS, (private + shared + 1));
1535 		diff = (diff * ratio) / NUMA_PERIOD_SLOTS;
1536 	}
1537 
1538 	p->numa_scan_period = clamp(p->numa_scan_period + diff,
1539 			task_scan_min(p), task_scan_max(p));
1540 	memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
1541 }
1542 
1543 /*
1544  * Get the fraction of time the task has been running since the last
1545  * NUMA placement cycle. The scheduler keeps similar statistics, but
1546  * decays those on a 32ms period, which is orders of magnitude off
1547  * from the dozens-of-seconds NUMA balancing period. Use the scheduler
1548  * stats only if the task is so new there are no NUMA statistics yet.
1549  */
1550 static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period)
1551 {
1552 	u64 runtime, delta, now;
1553 	/* Use the start of this time slice to avoid calculations. */
1554 	now = p->se.exec_start;
1555 	runtime = p->se.sum_exec_runtime;
1556 
1557 	if (p->last_task_numa_placement) {
1558 		delta = runtime - p->last_sum_exec_runtime;
1559 		*period = now - p->last_task_numa_placement;
1560 	} else {
1561 		delta = p->se.avg.runnable_avg_sum;
1562 		*period = p->se.avg.runnable_avg_period;
1563 	}
1564 
1565 	p->last_sum_exec_runtime = runtime;
1566 	p->last_task_numa_placement = now;
1567 
1568 	return delta;
1569 }
1570 
1571 static void task_numa_placement(struct task_struct *p)
1572 {
1573 	int seq, nid, max_nid = -1, max_group_nid = -1;
1574 	unsigned long max_faults = 0, max_group_faults = 0;
1575 	unsigned long fault_types[2] = { 0, 0 };
1576 	unsigned long total_faults;
1577 	u64 runtime, period;
1578 	spinlock_t *group_lock = NULL;
1579 
1580 	seq = ACCESS_ONCE(p->mm->numa_scan_seq);
1581 	if (p->numa_scan_seq == seq)
1582 		return;
1583 	p->numa_scan_seq = seq;
1584 	p->numa_scan_period_max = task_scan_max(p);
1585 
1586 	total_faults = p->numa_faults_locality[0] +
1587 		       p->numa_faults_locality[1];
1588 	runtime = numa_get_avg_runtime(p, &period);
1589 
1590 	/* If the task is part of a group prevent parallel updates to group stats */
1591 	if (p->numa_group) {
1592 		group_lock = &p->numa_group->lock;
1593 		spin_lock_irq(group_lock);
1594 	}
1595 
1596 	/* Find the node with the highest number of faults */
1597 	for_each_online_node(nid) {
1598 		unsigned long faults = 0, group_faults = 0;
1599 		int priv, i;
1600 
1601 		for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) {
1602 			long diff, f_diff, f_weight;
1603 
1604 			i = task_faults_idx(nid, priv);
1605 
1606 			/* Decay existing window, copy faults since last scan */
1607 			diff = p->numa_faults_buffer_memory[i] - p->numa_faults_memory[i] / 2;
1608 			fault_types[priv] += p->numa_faults_buffer_memory[i];
1609 			p->numa_faults_buffer_memory[i] = 0;
1610 
1611 			/*
1612 			 * Normalize the faults_from, so all tasks in a group
1613 			 * count according to CPU use, instead of by the raw
1614 			 * number of faults. Tasks with little runtime have
1615 			 * little over-all impact on throughput, and thus their
1616 			 * faults are less important.
1617 			 */
1618 			f_weight = div64_u64(runtime << 16, period + 1);
1619 			f_weight = (f_weight * p->numa_faults_buffer_cpu[i]) /
1620 				   (total_faults + 1);
1621 			f_diff = f_weight - p->numa_faults_cpu[i] / 2;
1622 			p->numa_faults_buffer_cpu[i] = 0;
1623 
1624 			p->numa_faults_memory[i] += diff;
1625 			p->numa_faults_cpu[i] += f_diff;
1626 			faults += p->numa_faults_memory[i];
1627 			p->total_numa_faults += diff;
1628 			if (p->numa_group) {
1629 				/* safe because we can only change our own group */
1630 				p->numa_group->faults[i] += diff;
1631 				p->numa_group->faults_cpu[i] += f_diff;
1632 				p->numa_group->total_faults += diff;
1633 				group_faults += p->numa_group->faults[i];
1634 			}
1635 		}
1636 
1637 		if (faults > max_faults) {
1638 			max_faults = faults;
1639 			max_nid = nid;
1640 		}
1641 
1642 		if (group_faults > max_group_faults) {
1643 			max_group_faults = group_faults;
1644 			max_group_nid = nid;
1645 		}
1646 	}
1647 
1648 	update_task_scan_period(p, fault_types[0], fault_types[1]);
1649 
1650 	if (p->numa_group) {
1651 		update_numa_active_node_mask(p->numa_group);
1652 		spin_unlock_irq(group_lock);
1653 		max_nid = max_group_nid;
1654 	}
1655 
1656 	if (max_faults) {
1657 		/* Set the new preferred node */
1658 		if (max_nid != p->numa_preferred_nid)
1659 			sched_setnuma(p, max_nid);
1660 
1661 		if (task_node(p) != p->numa_preferred_nid)
1662 			numa_migrate_preferred(p);
1663 	}
1664 }
1665 
1666 static inline int get_numa_group(struct numa_group *grp)
1667 {
1668 	return atomic_inc_not_zero(&grp->refcount);
1669 }
1670 
1671 static inline void put_numa_group(struct numa_group *grp)
1672 {
1673 	if (atomic_dec_and_test(&grp->refcount))
1674 		kfree_rcu(grp, rcu);
1675 }
1676 
1677 static void task_numa_group(struct task_struct *p, int cpupid, int flags,
1678 			int *priv)
1679 {
1680 	struct numa_group *grp, *my_grp;
1681 	struct task_struct *tsk;
1682 	bool join = false;
1683 	int cpu = cpupid_to_cpu(cpupid);
1684 	int i;
1685 
1686 	if (unlikely(!p->numa_group)) {
1687 		unsigned int size = sizeof(struct numa_group) +
1688 				    4*nr_node_ids*sizeof(unsigned long);
1689 
1690 		grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
1691 		if (!grp)
1692 			return;
1693 
1694 		atomic_set(&grp->refcount, 1);
1695 		spin_lock_init(&grp->lock);
1696 		INIT_LIST_HEAD(&grp->task_list);
1697 		grp->gid = p->pid;
1698 		/* Second half of the array tracks nids where faults happen */
1699 		grp->faults_cpu = grp->faults + NR_NUMA_HINT_FAULT_TYPES *
1700 						nr_node_ids;
1701 
1702 		node_set(task_node(current), grp->active_nodes);
1703 
1704 		for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
1705 			grp->faults[i] = p->numa_faults_memory[i];
1706 
1707 		grp->total_faults = p->total_numa_faults;
1708 
1709 		list_add(&p->numa_entry, &grp->task_list);
1710 		grp->nr_tasks++;
1711 		rcu_assign_pointer(p->numa_group, grp);
1712 	}
1713 
1714 	rcu_read_lock();
1715 	tsk = ACCESS_ONCE(cpu_rq(cpu)->curr);
1716 
1717 	if (!cpupid_match_pid(tsk, cpupid))
1718 		goto no_join;
1719 
1720 	grp = rcu_dereference(tsk->numa_group);
1721 	if (!grp)
1722 		goto no_join;
1723 
1724 	my_grp = p->numa_group;
1725 	if (grp == my_grp)
1726 		goto no_join;
1727 
1728 	/*
1729 	 * Only join the other group if its bigger; if we're the bigger group,
1730 	 * the other task will join us.
1731 	 */
1732 	if (my_grp->nr_tasks > grp->nr_tasks)
1733 		goto no_join;
1734 
1735 	/*
1736 	 * Tie-break on the grp address.
1737 	 */
1738 	if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
1739 		goto no_join;
1740 
1741 	/* Always join threads in the same process. */
1742 	if (tsk->mm == current->mm)
1743 		join = true;
1744 
1745 	/* Simple filter to avoid false positives due to PID collisions */
1746 	if (flags & TNF_SHARED)
1747 		join = true;
1748 
1749 	/* Update priv based on whether false sharing was detected */
1750 	*priv = !join;
1751 
1752 	if (join && !get_numa_group(grp))
1753 		goto no_join;
1754 
1755 	rcu_read_unlock();
1756 
1757 	if (!join)
1758 		return;
1759 
1760 	BUG_ON(irqs_disabled());
1761 	double_lock_irq(&my_grp->lock, &grp->lock);
1762 
1763 	for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) {
1764 		my_grp->faults[i] -= p->numa_faults_memory[i];
1765 		grp->faults[i] += p->numa_faults_memory[i];
1766 	}
1767 	my_grp->total_faults -= p->total_numa_faults;
1768 	grp->total_faults += p->total_numa_faults;
1769 
1770 	list_move(&p->numa_entry, &grp->task_list);
1771 	my_grp->nr_tasks--;
1772 	grp->nr_tasks++;
1773 
1774 	spin_unlock(&my_grp->lock);
1775 	spin_unlock_irq(&grp->lock);
1776 
1777 	rcu_assign_pointer(p->numa_group, grp);
1778 
1779 	put_numa_group(my_grp);
1780 	return;
1781 
1782 no_join:
1783 	rcu_read_unlock();
1784 	return;
1785 }
1786 
1787 void task_numa_free(struct task_struct *p)
1788 {
1789 	struct numa_group *grp = p->numa_group;
1790 	void *numa_faults = p->numa_faults_memory;
1791 	unsigned long flags;
1792 	int i;
1793 
1794 	if (grp) {
1795 		spin_lock_irqsave(&grp->lock, flags);
1796 		for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
1797 			grp->faults[i] -= p->numa_faults_memory[i];
1798 		grp->total_faults -= p->total_numa_faults;
1799 
1800 		list_del(&p->numa_entry);
1801 		grp->nr_tasks--;
1802 		spin_unlock_irqrestore(&grp->lock, flags);
1803 		RCU_INIT_POINTER(p->numa_group, NULL);
1804 		put_numa_group(grp);
1805 	}
1806 
1807 	p->numa_faults_memory = NULL;
1808 	p->numa_faults_buffer_memory = NULL;
1809 	p->numa_faults_cpu= NULL;
1810 	p->numa_faults_buffer_cpu = NULL;
1811 	kfree(numa_faults);
1812 }
1813 
1814 /*
1815  * Got a PROT_NONE fault for a page on @node.
1816  */
1817 void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags)
1818 {
1819 	struct task_struct *p = current;
1820 	bool migrated = flags & TNF_MIGRATED;
1821 	int cpu_node = task_node(current);
1822 	int local = !!(flags & TNF_FAULT_LOCAL);
1823 	int priv;
1824 
1825 	if (!numabalancing_enabled)
1826 		return;
1827 
1828 	/* for example, ksmd faulting in a user's mm */
1829 	if (!p->mm)
1830 		return;
1831 
1832 	/* Allocate buffer to track faults on a per-node basis */
1833 	if (unlikely(!p->numa_faults_memory)) {
1834 		int size = sizeof(*p->numa_faults_memory) *
1835 			   NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids;
1836 
1837 		p->numa_faults_memory = kzalloc(size, GFP_KERNEL|__GFP_NOWARN);
1838 		if (!p->numa_faults_memory)
1839 			return;
1840 
1841 		BUG_ON(p->numa_faults_buffer_memory);
1842 		/*
1843 		 * The averaged statistics, shared & private, memory & cpu,
1844 		 * occupy the first half of the array. The second half of the
1845 		 * array is for current counters, which are averaged into the
1846 		 * first set by task_numa_placement.
1847 		 */
1848 		p->numa_faults_cpu = p->numa_faults_memory + (2 * nr_node_ids);
1849 		p->numa_faults_buffer_memory = p->numa_faults_memory + (4 * nr_node_ids);
1850 		p->numa_faults_buffer_cpu = p->numa_faults_memory + (6 * nr_node_ids);
1851 		p->total_numa_faults = 0;
1852 		memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
1853 	}
1854 
1855 	/*
1856 	 * First accesses are treated as private, otherwise consider accesses
1857 	 * to be private if the accessing pid has not changed
1858 	 */
1859 	if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
1860 		priv = 1;
1861 	} else {
1862 		priv = cpupid_match_pid(p, last_cpupid);
1863 		if (!priv && !(flags & TNF_NO_GROUP))
1864 			task_numa_group(p, last_cpupid, flags, &priv);
1865 	}
1866 
1867 	/*
1868 	 * If a workload spans multiple NUMA nodes, a shared fault that
1869 	 * occurs wholly within the set of nodes that the workload is
1870 	 * actively using should be counted as local. This allows the
1871 	 * scan rate to slow down when a workload has settled down.
1872 	 */
1873 	if (!priv && !local && p->numa_group &&
1874 			node_isset(cpu_node, p->numa_group->active_nodes) &&
1875 			node_isset(mem_node, p->numa_group->active_nodes))
1876 		local = 1;
1877 
1878 	task_numa_placement(p);
1879 
1880 	/*
1881 	 * Retry task to preferred node migration periodically, in case it
1882 	 * case it previously failed, or the scheduler moved us.
1883 	 */
1884 	if (time_after(jiffies, p->numa_migrate_retry))
1885 		numa_migrate_preferred(p);
1886 
1887 	if (migrated)
1888 		p->numa_pages_migrated += pages;
1889 
1890 	p->numa_faults_buffer_memory[task_faults_idx(mem_node, priv)] += pages;
1891 	p->numa_faults_buffer_cpu[task_faults_idx(cpu_node, priv)] += pages;
1892 	p->numa_faults_locality[local] += pages;
1893 }
1894 
1895 static void reset_ptenuma_scan(struct task_struct *p)
1896 {
1897 	ACCESS_ONCE(p->mm->numa_scan_seq)++;
1898 	p->mm->numa_scan_offset = 0;
1899 }
1900 
1901 /*
1902  * The expensive part of numa migration is done from task_work context.
1903  * Triggered from task_tick_numa().
1904  */
1905 void task_numa_work(struct callback_head *work)
1906 {
1907 	unsigned long migrate, next_scan, now = jiffies;
1908 	struct task_struct *p = current;
1909 	struct mm_struct *mm = p->mm;
1910 	struct vm_area_struct *vma;
1911 	unsigned long start, end;
1912 	unsigned long nr_pte_updates = 0;
1913 	long pages;
1914 
1915 	WARN_ON_ONCE(p != container_of(work, struct task_struct, numa_work));
1916 
1917 	work->next = work; /* protect against double add */
1918 	/*
1919 	 * Who cares about NUMA placement when they're dying.
1920 	 *
1921 	 * NOTE: make sure not to dereference p->mm before this check,
1922 	 * exit_task_work() happens _after_ exit_mm() so we could be called
1923 	 * without p->mm even though we still had it when we enqueued this
1924 	 * work.
1925 	 */
1926 	if (p->flags & PF_EXITING)
1927 		return;
1928 
1929 	if (!mm->numa_next_scan) {
1930 		mm->numa_next_scan = now +
1931 			msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
1932 	}
1933 
1934 	/*
1935 	 * Enforce maximal scan/migration frequency..
1936 	 */
1937 	migrate = mm->numa_next_scan;
1938 	if (time_before(now, migrate))
1939 		return;
1940 
1941 	if (p->numa_scan_period == 0) {
1942 		p->numa_scan_period_max = task_scan_max(p);
1943 		p->numa_scan_period = task_scan_min(p);
1944 	}
1945 
1946 	next_scan = now + msecs_to_jiffies(p->numa_scan_period);
1947 	if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
1948 		return;
1949 
1950 	/*
1951 	 * Delay this task enough that another task of this mm will likely win
1952 	 * the next time around.
1953 	 */
1954 	p->node_stamp += 2 * TICK_NSEC;
1955 
1956 	start = mm->numa_scan_offset;
1957 	pages = sysctl_numa_balancing_scan_size;
1958 	pages <<= 20 - PAGE_SHIFT; /* MB in pages */
1959 	if (!pages)
1960 		return;
1961 
1962 	down_read(&mm->mmap_sem);
1963 	vma = find_vma(mm, start);
1964 	if (!vma) {
1965 		reset_ptenuma_scan(p);
1966 		start = 0;
1967 		vma = mm->mmap;
1968 	}
1969 	for (; vma; vma = vma->vm_next) {
1970 		if (!vma_migratable(vma) || !vma_policy_mof(vma))
1971 			continue;
1972 
1973 		/*
1974 		 * Shared library pages mapped by multiple processes are not
1975 		 * migrated as it is expected they are cache replicated. Avoid
1976 		 * hinting faults in read-only file-backed mappings or the vdso
1977 		 * as migrating the pages will be of marginal benefit.
1978 		 */
1979 		if (!vma->vm_mm ||
1980 		    (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ)))
1981 			continue;
1982 
1983 		/*
1984 		 * Skip inaccessible VMAs to avoid any confusion between
1985 		 * PROT_NONE and NUMA hinting ptes
1986 		 */
1987 		if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)))
1988 			continue;
1989 
1990 		do {
1991 			start = max(start, vma->vm_start);
1992 			end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
1993 			end = min(end, vma->vm_end);
1994 			nr_pte_updates += change_prot_numa(vma, start, end);
1995 
1996 			/*
1997 			 * Scan sysctl_numa_balancing_scan_size but ensure that
1998 			 * at least one PTE is updated so that unused virtual
1999 			 * address space is quickly skipped.
2000 			 */
2001 			if (nr_pte_updates)
2002 				pages -= (end - start) >> PAGE_SHIFT;
2003 
2004 			start = end;
2005 			if (pages <= 0)
2006 				goto out;
2007 
2008 			cond_resched();
2009 		} while (end != vma->vm_end);
2010 	}
2011 
2012 out:
2013 	/*
2014 	 * It is possible to reach the end of the VMA list but the last few
2015 	 * VMAs are not guaranteed to the vma_migratable. If they are not, we
2016 	 * would find the !migratable VMA on the next scan but not reset the
2017 	 * scanner to the start so check it now.
2018 	 */
2019 	if (vma)
2020 		mm->numa_scan_offset = start;
2021 	else
2022 		reset_ptenuma_scan(p);
2023 	up_read(&mm->mmap_sem);
2024 }
2025 
2026 /*
2027  * Drive the periodic memory faults..
2028  */
2029 void task_tick_numa(struct rq *rq, struct task_struct *curr)
2030 {
2031 	struct callback_head *work = &curr->numa_work;
2032 	u64 period, now;
2033 
2034 	/*
2035 	 * We don't care about NUMA placement if we don't have memory.
2036 	 */
2037 	if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work)
2038 		return;
2039 
2040 	/*
2041 	 * Using runtime rather than walltime has the dual advantage that
2042 	 * we (mostly) drive the selection from busy threads and that the
2043 	 * task needs to have done some actual work before we bother with
2044 	 * NUMA placement.
2045 	 */
2046 	now = curr->se.sum_exec_runtime;
2047 	period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
2048 
2049 	if (now - curr->node_stamp > period) {
2050 		if (!curr->node_stamp)
2051 			curr->numa_scan_period = task_scan_min(curr);
2052 		curr->node_stamp += period;
2053 
2054 		if (!time_before(jiffies, curr->mm->numa_next_scan)) {
2055 			init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */
2056 			task_work_add(curr, work, true);
2057 		}
2058 	}
2059 }
2060 #else
2061 static void task_tick_numa(struct rq *rq, struct task_struct *curr)
2062 {
2063 }
2064 
2065 static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
2066 {
2067 }
2068 
2069 static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
2070 {
2071 }
2072 #endif /* CONFIG_NUMA_BALANCING */
2073 
2074 static void
2075 account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2076 {
2077 	update_load_add(&cfs_rq->load, se->load.weight);
2078 	if (!parent_entity(se))
2079 		update_load_add(&rq_of(cfs_rq)->load, se->load.weight);
2080 #ifdef CONFIG_SMP
2081 	if (entity_is_task(se)) {
2082 		struct rq *rq = rq_of(cfs_rq);
2083 
2084 		account_numa_enqueue(rq, task_of(se));
2085 		list_add(&se->group_node, &rq->cfs_tasks);
2086 	}
2087 #endif
2088 	cfs_rq->nr_running++;
2089 }
2090 
2091 static void
2092 account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2093 {
2094 	update_load_sub(&cfs_rq->load, se->load.weight);
2095 	if (!parent_entity(se))
2096 		update_load_sub(&rq_of(cfs_rq)->load, se->load.weight);
2097 	if (entity_is_task(se)) {
2098 		account_numa_dequeue(rq_of(cfs_rq), task_of(se));
2099 		list_del_init(&se->group_node);
2100 	}
2101 	cfs_rq->nr_running--;
2102 }
2103 
2104 #ifdef CONFIG_FAIR_GROUP_SCHED
2105 # ifdef CONFIG_SMP
2106 static inline long calc_tg_weight(struct task_group *tg, struct cfs_rq *cfs_rq)
2107 {
2108 	long tg_weight;
2109 
2110 	/*
2111 	 * Use this CPU's actual weight instead of the last load_contribution
2112 	 * to gain a more accurate current total weight. See
2113 	 * update_cfs_rq_load_contribution().
2114 	 */
2115 	tg_weight = atomic_long_read(&tg->load_avg);
2116 	tg_weight -= cfs_rq->tg_load_contrib;
2117 	tg_weight += cfs_rq->load.weight;
2118 
2119 	return tg_weight;
2120 }
2121 
2122 static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
2123 {
2124 	long tg_weight, load, shares;
2125 
2126 	tg_weight = calc_tg_weight(tg, cfs_rq);
2127 	load = cfs_rq->load.weight;
2128 
2129 	shares = (tg->shares * load);
2130 	if (tg_weight)
2131 		shares /= tg_weight;
2132 
2133 	if (shares < MIN_SHARES)
2134 		shares = MIN_SHARES;
2135 	if (shares > tg->shares)
2136 		shares = tg->shares;
2137 
2138 	return shares;
2139 }
2140 # else /* CONFIG_SMP */
2141 static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
2142 {
2143 	return tg->shares;
2144 }
2145 # endif /* CONFIG_SMP */
2146 static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
2147 			    unsigned long weight)
2148 {
2149 	if (se->on_rq) {
2150 		/* commit outstanding execution time */
2151 		if (cfs_rq->curr == se)
2152 			update_curr(cfs_rq);
2153 		account_entity_dequeue(cfs_rq, se);
2154 	}
2155 
2156 	update_load_set(&se->load, weight);
2157 
2158 	if (se->on_rq)
2159 		account_entity_enqueue(cfs_rq, se);
2160 }
2161 
2162 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
2163 
2164 static void update_cfs_shares(struct cfs_rq *cfs_rq)
2165 {
2166 	struct task_group *tg;
2167 	struct sched_entity *se;
2168 	long shares;
2169 
2170 	tg = cfs_rq->tg;
2171 	se = tg->se[cpu_of(rq_of(cfs_rq))];
2172 	if (!se || throttled_hierarchy(cfs_rq))
2173 		return;
2174 #ifndef CONFIG_SMP
2175 	if (likely(se->load.weight == tg->shares))
2176 		return;
2177 #endif
2178 	shares = calc_cfs_shares(cfs_rq, tg);
2179 
2180 	reweight_entity(cfs_rq_of(se), se, shares);
2181 }
2182 #else /* CONFIG_FAIR_GROUP_SCHED */
2183 static inline void update_cfs_shares(struct cfs_rq *cfs_rq)
2184 {
2185 }
2186 #endif /* CONFIG_FAIR_GROUP_SCHED */
2187 
2188 #ifdef CONFIG_SMP
2189 /*
2190  * We choose a half-life close to 1 scheduling period.
2191  * Note: The tables below are dependent on this value.
2192  */
2193 #define LOAD_AVG_PERIOD 32
2194 #define LOAD_AVG_MAX 47742 /* maximum possible load avg */
2195 #define LOAD_AVG_MAX_N 345 /* number of full periods to produce LOAD_MAX_AVG */
2196 
2197 /* Precomputed fixed inverse multiplies for multiplication by y^n */
2198 static const u32 runnable_avg_yN_inv[] = {
2199 	0xffffffff, 0xfa83b2da, 0xf5257d14, 0xefe4b99a, 0xeac0c6e6, 0xe5b906e6,
2200 	0xe0ccdeeb, 0xdbfbb796, 0xd744fcc9, 0xd2a81d91, 0xce248c14, 0xc9b9bd85,
2201 	0xc5672a10, 0xc12c4cc9, 0xbd08a39e, 0xb8fbaf46, 0xb504f333, 0xb123f581,
2202 	0xad583ee9, 0xa9a15ab4, 0xa5fed6a9, 0xa2704302, 0x9ef5325f, 0x9b8d39b9,
2203 	0x9837f050, 0x94f4efa8, 0x91c3d373, 0x8ea4398a, 0x8b95c1e3, 0x88980e80,
2204 	0x85aac367, 0x82cd8698,
2205 };
2206 
2207 /*
2208  * Precomputed \Sum y^k { 1<=k<=n }.  These are floor(true_value) to prevent
2209  * over-estimates when re-combining.
2210  */
2211 static const u32 runnable_avg_yN_sum[] = {
2212 	    0, 1002, 1982, 2941, 3880, 4798, 5697, 6576, 7437, 8279, 9103,
2213 	 9909,10698,11470,12226,12966,13690,14398,15091,15769,16433,17082,
2214 	17718,18340,18949,19545,20128,20698,21256,21802,22336,22859,23371,
2215 };
2216 
2217 /*
2218  * Approximate:
2219  *   val * y^n,    where y^32 ~= 0.5 (~1 scheduling period)
2220  */
2221 static __always_inline u64 decay_load(u64 val, u64 n)
2222 {
2223 	unsigned int local_n;
2224 
2225 	if (!n)
2226 		return val;
2227 	else if (unlikely(n > LOAD_AVG_PERIOD * 63))
2228 		return 0;
2229 
2230 	/* after bounds checking we can collapse to 32-bit */
2231 	local_n = n;
2232 
2233 	/*
2234 	 * As y^PERIOD = 1/2, we can combine
2235 	 *    y^n = 1/2^(n/PERIOD) * y^(n%PERIOD)
2236 	 * With a look-up table which covers y^n (n<PERIOD)
2237 	 *
2238 	 * To achieve constant time decay_load.
2239 	 */
2240 	if (unlikely(local_n >= LOAD_AVG_PERIOD)) {
2241 		val >>= local_n / LOAD_AVG_PERIOD;
2242 		local_n %= LOAD_AVG_PERIOD;
2243 	}
2244 
2245 	val *= runnable_avg_yN_inv[local_n];
2246 	/* We don't use SRR here since we always want to round down. */
2247 	return val >> 32;
2248 }
2249 
2250 /*
2251  * For updates fully spanning n periods, the contribution to runnable
2252  * average will be: \Sum 1024*y^n
2253  *
2254  * We can compute this reasonably efficiently by combining:
2255  *   y^PERIOD = 1/2 with precomputed \Sum 1024*y^n {for  n <PERIOD}
2256  */
2257 static u32 __compute_runnable_contrib(u64 n)
2258 {
2259 	u32 contrib = 0;
2260 
2261 	if (likely(n <= LOAD_AVG_PERIOD))
2262 		return runnable_avg_yN_sum[n];
2263 	else if (unlikely(n >= LOAD_AVG_MAX_N))
2264 		return LOAD_AVG_MAX;
2265 
2266 	/* Compute \Sum k^n combining precomputed values for k^i, \Sum k^j */
2267 	do {
2268 		contrib /= 2; /* y^LOAD_AVG_PERIOD = 1/2 */
2269 		contrib += runnable_avg_yN_sum[LOAD_AVG_PERIOD];
2270 
2271 		n -= LOAD_AVG_PERIOD;
2272 	} while (n > LOAD_AVG_PERIOD);
2273 
2274 	contrib = decay_load(contrib, n);
2275 	return contrib + runnable_avg_yN_sum[n];
2276 }
2277 
2278 /*
2279  * We can represent the historical contribution to runnable average as the
2280  * coefficients of a geometric series.  To do this we sub-divide our runnable
2281  * history into segments of approximately 1ms (1024us); label the segment that
2282  * occurred N-ms ago p_N, with p_0 corresponding to the current period, e.g.
2283  *
2284  * [<- 1024us ->|<- 1024us ->|<- 1024us ->| ...
2285  *      p0            p1           p2
2286  *     (now)       (~1ms ago)  (~2ms ago)
2287  *
2288  * Let u_i denote the fraction of p_i that the entity was runnable.
2289  *
2290  * We then designate the fractions u_i as our co-efficients, yielding the
2291  * following representation of historical load:
2292  *   u_0 + u_1*y + u_2*y^2 + u_3*y^3 + ...
2293  *
2294  * We choose y based on the with of a reasonably scheduling period, fixing:
2295  *   y^32 = 0.5
2296  *
2297  * This means that the contribution to load ~32ms ago (u_32) will be weighted
2298  * approximately half as much as the contribution to load within the last ms
2299  * (u_0).
2300  *
2301  * When a period "rolls over" and we have new u_0`, multiplying the previous
2302  * sum again by y is sufficient to update:
2303  *   load_avg = u_0` + y*(u_0 + u_1*y + u_2*y^2 + ... )
2304  *            = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1}]
2305  */
2306 static __always_inline int __update_entity_runnable_avg(u64 now,
2307 							struct sched_avg *sa,
2308 							int runnable)
2309 {
2310 	u64 delta, periods;
2311 	u32 runnable_contrib;
2312 	int delta_w, decayed = 0;
2313 
2314 	delta = now - sa->last_runnable_update;
2315 	/*
2316 	 * This should only happen when time goes backwards, which it
2317 	 * unfortunately does during sched clock init when we swap over to TSC.
2318 	 */
2319 	if ((s64)delta < 0) {
2320 		sa->last_runnable_update = now;
2321 		return 0;
2322 	}
2323 
2324 	/*
2325 	 * Use 1024ns as the unit of measurement since it's a reasonable
2326 	 * approximation of 1us and fast to compute.
2327 	 */
2328 	delta >>= 10;
2329 	if (!delta)
2330 		return 0;
2331 	sa->last_runnable_update = now;
2332 
2333 	/* delta_w is the amount already accumulated against our next period */
2334 	delta_w = sa->runnable_avg_period % 1024;
2335 	if (delta + delta_w >= 1024) {
2336 		/* period roll-over */
2337 		decayed = 1;
2338 
2339 		/*
2340 		 * Now that we know we're crossing a period boundary, figure
2341 		 * out how much from delta we need to complete the current
2342 		 * period and accrue it.
2343 		 */
2344 		delta_w = 1024 - delta_w;
2345 		if (runnable)
2346 			sa->runnable_avg_sum += delta_w;
2347 		sa->runnable_avg_period += delta_w;
2348 
2349 		delta -= delta_w;
2350 
2351 		/* Figure out how many additional periods this update spans */
2352 		periods = delta / 1024;
2353 		delta %= 1024;
2354 
2355 		sa->runnable_avg_sum = decay_load(sa->runnable_avg_sum,
2356 						  periods + 1);
2357 		sa->runnable_avg_period = decay_load(sa->runnable_avg_period,
2358 						     periods + 1);
2359 
2360 		/* Efficiently calculate \sum (1..n_period) 1024*y^i */
2361 		runnable_contrib = __compute_runnable_contrib(periods);
2362 		if (runnable)
2363 			sa->runnable_avg_sum += runnable_contrib;
2364 		sa->runnable_avg_period += runnable_contrib;
2365 	}
2366 
2367 	/* Remainder of delta accrued against u_0` */
2368 	if (runnable)
2369 		sa->runnable_avg_sum += delta;
2370 	sa->runnable_avg_period += delta;
2371 
2372 	return decayed;
2373 }
2374 
2375 /* Synchronize an entity's decay with its parenting cfs_rq.*/
2376 static inline u64 __synchronize_entity_decay(struct sched_entity *se)
2377 {
2378 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
2379 	u64 decays = atomic64_read(&cfs_rq->decay_counter);
2380 
2381 	decays -= se->avg.decay_count;
2382 	if (!decays)
2383 		return 0;
2384 
2385 	se->avg.load_avg_contrib = decay_load(se->avg.load_avg_contrib, decays);
2386 	se->avg.decay_count = 0;
2387 
2388 	return decays;
2389 }
2390 
2391 #ifdef CONFIG_FAIR_GROUP_SCHED
2392 static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq,
2393 						 int force_update)
2394 {
2395 	struct task_group *tg = cfs_rq->tg;
2396 	long tg_contrib;
2397 
2398 	tg_contrib = cfs_rq->runnable_load_avg + cfs_rq->blocked_load_avg;
2399 	tg_contrib -= cfs_rq->tg_load_contrib;
2400 
2401 	if (!tg_contrib)
2402 		return;
2403 
2404 	if (force_update || abs(tg_contrib) > cfs_rq->tg_load_contrib / 8) {
2405 		atomic_long_add(tg_contrib, &tg->load_avg);
2406 		cfs_rq->tg_load_contrib += tg_contrib;
2407 	}
2408 }
2409 
2410 /*
2411  * Aggregate cfs_rq runnable averages into an equivalent task_group
2412  * representation for computing load contributions.
2413  */
2414 static inline void __update_tg_runnable_avg(struct sched_avg *sa,
2415 						  struct cfs_rq *cfs_rq)
2416 {
2417 	struct task_group *tg = cfs_rq->tg;
2418 	long contrib;
2419 
2420 	/* The fraction of a cpu used by this cfs_rq */
2421 	contrib = div_u64((u64)sa->runnable_avg_sum << NICE_0_SHIFT,
2422 			  sa->runnable_avg_period + 1);
2423 	contrib -= cfs_rq->tg_runnable_contrib;
2424 
2425 	if (abs(contrib) > cfs_rq->tg_runnable_contrib / 64) {
2426 		atomic_add(contrib, &tg->runnable_avg);
2427 		cfs_rq->tg_runnable_contrib += contrib;
2428 	}
2429 }
2430 
2431 static inline void __update_group_entity_contrib(struct sched_entity *se)
2432 {
2433 	struct cfs_rq *cfs_rq = group_cfs_rq(se);
2434 	struct task_group *tg = cfs_rq->tg;
2435 	int runnable_avg;
2436 
2437 	u64 contrib;
2438 
2439 	contrib = cfs_rq->tg_load_contrib * tg->shares;
2440 	se->avg.load_avg_contrib = div_u64(contrib,
2441 				     atomic_long_read(&tg->load_avg) + 1);
2442 
2443 	/*
2444 	 * For group entities we need to compute a correction term in the case
2445 	 * that they are consuming <1 cpu so that we would contribute the same
2446 	 * load as a task of equal weight.
2447 	 *
2448 	 * Explicitly co-ordinating this measurement would be expensive, but
2449 	 * fortunately the sum of each cpus contribution forms a usable
2450 	 * lower-bound on the true value.
2451 	 *
2452 	 * Consider the aggregate of 2 contributions.  Either they are disjoint
2453 	 * (and the sum represents true value) or they are disjoint and we are
2454 	 * understating by the aggregate of their overlap.
2455 	 *
2456 	 * Extending this to N cpus, for a given overlap, the maximum amount we
2457 	 * understand is then n_i(n_i+1)/2 * w_i where n_i is the number of
2458 	 * cpus that overlap for this interval and w_i is the interval width.
2459 	 *
2460 	 * On a small machine; the first term is well-bounded which bounds the
2461 	 * total error since w_i is a subset of the period.  Whereas on a
2462 	 * larger machine, while this first term can be larger, if w_i is the
2463 	 * of consequential size guaranteed to see n_i*w_i quickly converge to
2464 	 * our upper bound of 1-cpu.
2465 	 */
2466 	runnable_avg = atomic_read(&tg->runnable_avg);
2467 	if (runnable_avg < NICE_0_LOAD) {
2468 		se->avg.load_avg_contrib *= runnable_avg;
2469 		se->avg.load_avg_contrib >>= NICE_0_SHIFT;
2470 	}
2471 }
2472 
2473 static inline void update_rq_runnable_avg(struct rq *rq, int runnable)
2474 {
2475 	__update_entity_runnable_avg(rq_clock_task(rq), &rq->avg, runnable);
2476 	__update_tg_runnable_avg(&rq->avg, &rq->cfs);
2477 }
2478 #else /* CONFIG_FAIR_GROUP_SCHED */
2479 static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq,
2480 						 int force_update) {}
2481 static inline void __update_tg_runnable_avg(struct sched_avg *sa,
2482 						  struct cfs_rq *cfs_rq) {}
2483 static inline void __update_group_entity_contrib(struct sched_entity *se) {}
2484 static inline void update_rq_runnable_avg(struct rq *rq, int runnable) {}
2485 #endif /* CONFIG_FAIR_GROUP_SCHED */
2486 
2487 static inline void __update_task_entity_contrib(struct sched_entity *se)
2488 {
2489 	u32 contrib;
2490 
2491 	/* avoid overflowing a 32-bit type w/ SCHED_LOAD_SCALE */
2492 	contrib = se->avg.runnable_avg_sum * scale_load_down(se->load.weight);
2493 	contrib /= (se->avg.runnable_avg_period + 1);
2494 	se->avg.load_avg_contrib = scale_load(contrib);
2495 }
2496 
2497 /* Compute the current contribution to load_avg by se, return any delta */
2498 static long __update_entity_load_avg_contrib(struct sched_entity *se)
2499 {
2500 	long old_contrib = se->avg.load_avg_contrib;
2501 
2502 	if (entity_is_task(se)) {
2503 		__update_task_entity_contrib(se);
2504 	} else {
2505 		__update_tg_runnable_avg(&se->avg, group_cfs_rq(se));
2506 		__update_group_entity_contrib(se);
2507 	}
2508 
2509 	return se->avg.load_avg_contrib - old_contrib;
2510 }
2511 
2512 static inline void subtract_blocked_load_contrib(struct cfs_rq *cfs_rq,
2513 						 long load_contrib)
2514 {
2515 	if (likely(load_contrib < cfs_rq->blocked_load_avg))
2516 		cfs_rq->blocked_load_avg -= load_contrib;
2517 	else
2518 		cfs_rq->blocked_load_avg = 0;
2519 }
2520 
2521 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq);
2522 
2523 /* Update a sched_entity's runnable average */
2524 static inline void update_entity_load_avg(struct sched_entity *se,
2525 					  int update_cfs_rq)
2526 {
2527 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
2528 	long contrib_delta;
2529 	u64 now;
2530 
2531 	/*
2532 	 * For a group entity we need to use their owned cfs_rq_clock_task() in
2533 	 * case they are the parent of a throttled hierarchy.
2534 	 */
2535 	if (entity_is_task(se))
2536 		now = cfs_rq_clock_task(cfs_rq);
2537 	else
2538 		now = cfs_rq_clock_task(group_cfs_rq(se));
2539 
2540 	if (!__update_entity_runnable_avg(now, &se->avg, se->on_rq))
2541 		return;
2542 
2543 	contrib_delta = __update_entity_load_avg_contrib(se);
2544 
2545 	if (!update_cfs_rq)
2546 		return;
2547 
2548 	if (se->on_rq)
2549 		cfs_rq->runnable_load_avg += contrib_delta;
2550 	else
2551 		subtract_blocked_load_contrib(cfs_rq, -contrib_delta);
2552 }
2553 
2554 /*
2555  * Decay the load contributed by all blocked children and account this so that
2556  * their contribution may appropriately discounted when they wake up.
2557  */
2558 static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq, int force_update)
2559 {
2560 	u64 now = cfs_rq_clock_task(cfs_rq) >> 20;
2561 	u64 decays;
2562 
2563 	decays = now - cfs_rq->last_decay;
2564 	if (!decays && !force_update)
2565 		return;
2566 
2567 	if (atomic_long_read(&cfs_rq->removed_load)) {
2568 		unsigned long removed_load;
2569 		removed_load = atomic_long_xchg(&cfs_rq->removed_load, 0);
2570 		subtract_blocked_load_contrib(cfs_rq, removed_load);
2571 	}
2572 
2573 	if (decays) {
2574 		cfs_rq->blocked_load_avg = decay_load(cfs_rq->blocked_load_avg,
2575 						      decays);
2576 		atomic64_add(decays, &cfs_rq->decay_counter);
2577 		cfs_rq->last_decay = now;
2578 	}
2579 
2580 	__update_cfs_rq_tg_load_contrib(cfs_rq, force_update);
2581 }
2582 
2583 /* Add the load generated by se into cfs_rq's child load-average */
2584 static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq,
2585 						  struct sched_entity *se,
2586 						  int wakeup)
2587 {
2588 	/*
2589 	 * We track migrations using entity decay_count <= 0, on a wake-up
2590 	 * migration we use a negative decay count to track the remote decays
2591 	 * accumulated while sleeping.
2592 	 *
2593 	 * Newly forked tasks are enqueued with se->avg.decay_count == 0, they
2594 	 * are seen by enqueue_entity_load_avg() as a migration with an already
2595 	 * constructed load_avg_contrib.
2596 	 */
2597 	if (unlikely(se->avg.decay_count <= 0)) {
2598 		se->avg.last_runnable_update = rq_clock_task(rq_of(cfs_rq));
2599 		if (se->avg.decay_count) {
2600 			/*
2601 			 * In a wake-up migration we have to approximate the
2602 			 * time sleeping.  This is because we can't synchronize
2603 			 * clock_task between the two cpus, and it is not
2604 			 * guaranteed to be read-safe.  Instead, we can
2605 			 * approximate this using our carried decays, which are
2606 			 * explicitly atomically readable.
2607 			 */
2608 			se->avg.last_runnable_update -= (-se->avg.decay_count)
2609 							<< 20;
2610 			update_entity_load_avg(se, 0);
2611 			/* Indicate that we're now synchronized and on-rq */
2612 			se->avg.decay_count = 0;
2613 		}
2614 		wakeup = 0;
2615 	} else {
2616 		__synchronize_entity_decay(se);
2617 	}
2618 
2619 	/* migrated tasks did not contribute to our blocked load */
2620 	if (wakeup) {
2621 		subtract_blocked_load_contrib(cfs_rq, se->avg.load_avg_contrib);
2622 		update_entity_load_avg(se, 0);
2623 	}
2624 
2625 	cfs_rq->runnable_load_avg += se->avg.load_avg_contrib;
2626 	/* we force update consideration on load-balancer moves */
2627 	update_cfs_rq_blocked_load(cfs_rq, !wakeup);
2628 }
2629 
2630 /*
2631  * Remove se's load from this cfs_rq child load-average, if the entity is
2632  * transitioning to a blocked state we track its projected decay using
2633  * blocked_load_avg.
2634  */
2635 static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq,
2636 						  struct sched_entity *se,
2637 						  int sleep)
2638 {
2639 	update_entity_load_avg(se, 1);
2640 	/* we force update consideration on load-balancer moves */
2641 	update_cfs_rq_blocked_load(cfs_rq, !sleep);
2642 
2643 	cfs_rq->runnable_load_avg -= se->avg.load_avg_contrib;
2644 	if (sleep) {
2645 		cfs_rq->blocked_load_avg += se->avg.load_avg_contrib;
2646 		se->avg.decay_count = atomic64_read(&cfs_rq->decay_counter);
2647 	} /* migrations, e.g. sleep=0 leave decay_count == 0 */
2648 }
2649 
2650 /*
2651  * Update the rq's load with the elapsed running time before entering
2652  * idle. if the last scheduled task is not a CFS task, idle_enter will
2653  * be the only way to update the runnable statistic.
2654  */
2655 void idle_enter_fair(struct rq *this_rq)
2656 {
2657 	update_rq_runnable_avg(this_rq, 1);
2658 }
2659 
2660 /*
2661  * Update the rq's load with the elapsed idle time before a task is
2662  * scheduled. if the newly scheduled task is not a CFS task, idle_exit will
2663  * be the only way to update the runnable statistic.
2664  */
2665 void idle_exit_fair(struct rq *this_rq)
2666 {
2667 	update_rq_runnable_avg(this_rq, 0);
2668 }
2669 
2670 static int idle_balance(struct rq *this_rq);
2671 
2672 #else /* CONFIG_SMP */
2673 
2674 static inline void update_entity_load_avg(struct sched_entity *se,
2675 					  int update_cfs_rq) {}
2676 static inline void update_rq_runnable_avg(struct rq *rq, int runnable) {}
2677 static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq,
2678 					   struct sched_entity *se,
2679 					   int wakeup) {}
2680 static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq,
2681 					   struct sched_entity *se,
2682 					   int sleep) {}
2683 static inline void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq,
2684 					      int force_update) {}
2685 
2686 static inline int idle_balance(struct rq *rq)
2687 {
2688 	return 0;
2689 }
2690 
2691 #endif /* CONFIG_SMP */
2692 
2693 static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
2694 {
2695 #ifdef CONFIG_SCHEDSTATS
2696 	struct task_struct *tsk = NULL;
2697 
2698 	if (entity_is_task(se))
2699 		tsk = task_of(se);
2700 
2701 	if (se->statistics.sleep_start) {
2702 		u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.sleep_start;
2703 
2704 		if ((s64)delta < 0)
2705 			delta = 0;
2706 
2707 		if (unlikely(delta > se->statistics.sleep_max))
2708 			se->statistics.sleep_max = delta;
2709 
2710 		se->statistics.sleep_start = 0;
2711 		se->statistics.sum_sleep_runtime += delta;
2712 
2713 		if (tsk) {
2714 			account_scheduler_latency(tsk, delta >> 10, 1);
2715 			trace_sched_stat_sleep(tsk, delta);
2716 		}
2717 	}
2718 	if (se->statistics.block_start) {
2719 		u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.block_start;
2720 
2721 		if ((s64)delta < 0)
2722 			delta = 0;
2723 
2724 		if (unlikely(delta > se->statistics.block_max))
2725 			se->statistics.block_max = delta;
2726 
2727 		se->statistics.block_start = 0;
2728 		se->statistics.sum_sleep_runtime += delta;
2729 
2730 		if (tsk) {
2731 			if (tsk->in_iowait) {
2732 				se->statistics.iowait_sum += delta;
2733 				se->statistics.iowait_count++;
2734 				trace_sched_stat_iowait(tsk, delta);
2735 			}
2736 
2737 			trace_sched_stat_blocked(tsk, delta);
2738 
2739 			/*
2740 			 * Blocking time is in units of nanosecs, so shift by
2741 			 * 20 to get a milliseconds-range estimation of the
2742 			 * amount of time that the task spent sleeping:
2743 			 */
2744 			if (unlikely(prof_on == SLEEP_PROFILING)) {
2745 				profile_hits(SLEEP_PROFILING,
2746 						(void *)get_wchan(tsk),
2747 						delta >> 20);
2748 			}
2749 			account_scheduler_latency(tsk, delta >> 10, 0);
2750 		}
2751 	}
2752 #endif
2753 }
2754 
2755 static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
2756 {
2757 #ifdef CONFIG_SCHED_DEBUG
2758 	s64 d = se->vruntime - cfs_rq->min_vruntime;
2759 
2760 	if (d < 0)
2761 		d = -d;
2762 
2763 	if (d > 3*sysctl_sched_latency)
2764 		schedstat_inc(cfs_rq, nr_spread_over);
2765 #endif
2766 }
2767 
2768 static void
2769 place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
2770 {
2771 	u64 vruntime = cfs_rq->min_vruntime;
2772 
2773 	/*
2774 	 * The 'current' period is already promised to the current tasks,
2775 	 * however the extra weight of the new task will slow them down a
2776 	 * little, place the new task so that it fits in the slot that
2777 	 * stays open at the end.
2778 	 */
2779 	if (initial && sched_feat(START_DEBIT))
2780 		vruntime += sched_vslice(cfs_rq, se);
2781 
2782 	/* sleeps up to a single latency don't count. */
2783 	if (!initial) {
2784 		unsigned long thresh = sysctl_sched_latency;
2785 
2786 		/*
2787 		 * Halve their sleep time's effect, to allow
2788 		 * for a gentler effect of sleepers:
2789 		 */
2790 		if (sched_feat(GENTLE_FAIR_SLEEPERS))
2791 			thresh >>= 1;
2792 
2793 		vruntime -= thresh;
2794 	}
2795 
2796 	/* ensure we never gain time by being placed backwards. */
2797 	se->vruntime = max_vruntime(se->vruntime, vruntime);
2798 }
2799 
2800 static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
2801 
2802 static void
2803 enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
2804 {
2805 	/*
2806 	 * Update the normalized vruntime before updating min_vruntime
2807 	 * through calling update_curr().
2808 	 */
2809 	if (!(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_WAKING))
2810 		se->vruntime += cfs_rq->min_vruntime;
2811 
2812 	/*
2813 	 * Update run-time statistics of the 'current'.
2814 	 */
2815 	update_curr(cfs_rq);
2816 	enqueue_entity_load_avg(cfs_rq, se, flags & ENQUEUE_WAKEUP);
2817 	account_entity_enqueue(cfs_rq, se);
2818 	update_cfs_shares(cfs_rq);
2819 
2820 	if (flags & ENQUEUE_WAKEUP) {
2821 		place_entity(cfs_rq, se, 0);
2822 		enqueue_sleeper(cfs_rq, se);
2823 	}
2824 
2825 	update_stats_enqueue(cfs_rq, se);
2826 	check_spread(cfs_rq, se);
2827 	if (se != cfs_rq->curr)
2828 		__enqueue_entity(cfs_rq, se);
2829 	se->on_rq = 1;
2830 
2831 	if (cfs_rq->nr_running == 1) {
2832 		list_add_leaf_cfs_rq(cfs_rq);
2833 		check_enqueue_throttle(cfs_rq);
2834 	}
2835 }
2836 
2837 static void __clear_buddies_last(struct sched_entity *se)
2838 {
2839 	for_each_sched_entity(se) {
2840 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
2841 		if (cfs_rq->last != se)
2842 			break;
2843 
2844 		cfs_rq->last = NULL;
2845 	}
2846 }
2847 
2848 static void __clear_buddies_next(struct sched_entity *se)
2849 {
2850 	for_each_sched_entity(se) {
2851 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
2852 		if (cfs_rq->next != se)
2853 			break;
2854 
2855 		cfs_rq->next = NULL;
2856 	}
2857 }
2858 
2859 static void __clear_buddies_skip(struct sched_entity *se)
2860 {
2861 	for_each_sched_entity(se) {
2862 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
2863 		if (cfs_rq->skip != se)
2864 			break;
2865 
2866 		cfs_rq->skip = NULL;
2867 	}
2868 }
2869 
2870 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
2871 {
2872 	if (cfs_rq->last == se)
2873 		__clear_buddies_last(se);
2874 
2875 	if (cfs_rq->next == se)
2876 		__clear_buddies_next(se);
2877 
2878 	if (cfs_rq->skip == se)
2879 		__clear_buddies_skip(se);
2880 }
2881 
2882 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
2883 
2884 static void
2885 dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
2886 {
2887 	/*
2888 	 * Update run-time statistics of the 'current'.
2889 	 */
2890 	update_curr(cfs_rq);
2891 	dequeue_entity_load_avg(cfs_rq, se, flags & DEQUEUE_SLEEP);
2892 
2893 	update_stats_dequeue(cfs_rq, se);
2894 	if (flags & DEQUEUE_SLEEP) {
2895 #ifdef CONFIG_SCHEDSTATS
2896 		if (entity_is_task(se)) {
2897 			struct task_struct *tsk = task_of(se);
2898 
2899 			if (tsk->state & TASK_INTERRUPTIBLE)
2900 				se->statistics.sleep_start = rq_clock(rq_of(cfs_rq));
2901 			if (tsk->state & TASK_UNINTERRUPTIBLE)
2902 				se->statistics.block_start = rq_clock(rq_of(cfs_rq));
2903 		}
2904 #endif
2905 	}
2906 
2907 	clear_buddies(cfs_rq, se);
2908 
2909 	if (se != cfs_rq->curr)
2910 		__dequeue_entity(cfs_rq, se);
2911 	se->on_rq = 0;
2912 	account_entity_dequeue(cfs_rq, se);
2913 
2914 	/*
2915 	 * Normalize the entity after updating the min_vruntime because the
2916 	 * update can refer to the ->curr item and we need to reflect this
2917 	 * movement in our normalized position.
2918 	 */
2919 	if (!(flags & DEQUEUE_SLEEP))
2920 		se->vruntime -= cfs_rq->min_vruntime;
2921 
2922 	/* return excess runtime on last dequeue */
2923 	return_cfs_rq_runtime(cfs_rq);
2924 
2925 	update_min_vruntime(cfs_rq);
2926 	update_cfs_shares(cfs_rq);
2927 }
2928 
2929 /*
2930  * Preempt the current task with a newly woken task if needed:
2931  */
2932 static void
2933 check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
2934 {
2935 	unsigned long ideal_runtime, delta_exec;
2936 	struct sched_entity *se;
2937 	s64 delta;
2938 
2939 	ideal_runtime = sched_slice(cfs_rq, curr);
2940 	delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
2941 	if (delta_exec > ideal_runtime) {
2942 		resched_curr(rq_of(cfs_rq));
2943 		/*
2944 		 * The current task ran long enough, ensure it doesn't get
2945 		 * re-elected due to buddy favours.
2946 		 */
2947 		clear_buddies(cfs_rq, curr);
2948 		return;
2949 	}
2950 
2951 	/*
2952 	 * Ensure that a task that missed wakeup preemption by a
2953 	 * narrow margin doesn't have to wait for a full slice.
2954 	 * This also mitigates buddy induced latencies under load.
2955 	 */
2956 	if (delta_exec < sysctl_sched_min_granularity)
2957 		return;
2958 
2959 	se = __pick_first_entity(cfs_rq);
2960 	delta = curr->vruntime - se->vruntime;
2961 
2962 	if (delta < 0)
2963 		return;
2964 
2965 	if (delta > ideal_runtime)
2966 		resched_curr(rq_of(cfs_rq));
2967 }
2968 
2969 static void
2970 set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
2971 {
2972 	/* 'current' is not kept within the tree. */
2973 	if (se->on_rq) {
2974 		/*
2975 		 * Any task has to be enqueued before it get to execute on
2976 		 * a CPU. So account for the time it spent waiting on the
2977 		 * runqueue.
2978 		 */
2979 		update_stats_wait_end(cfs_rq, se);
2980 		__dequeue_entity(cfs_rq, se);
2981 	}
2982 
2983 	update_stats_curr_start(cfs_rq, se);
2984 	cfs_rq->curr = se;
2985 #ifdef CONFIG_SCHEDSTATS
2986 	/*
2987 	 * Track our maximum slice length, if the CPU's load is at
2988 	 * least twice that of our own weight (i.e. dont track it
2989 	 * when there are only lesser-weight tasks around):
2990 	 */
2991 	if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
2992 		se->statistics.slice_max = max(se->statistics.slice_max,
2993 			se->sum_exec_runtime - se->prev_sum_exec_runtime);
2994 	}
2995 #endif
2996 	se->prev_sum_exec_runtime = se->sum_exec_runtime;
2997 }
2998 
2999 static int
3000 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
3001 
3002 /*
3003  * Pick the next process, keeping these things in mind, in this order:
3004  * 1) keep things fair between processes/task groups
3005  * 2) pick the "next" process, since someone really wants that to run
3006  * 3) pick the "last" process, for cache locality
3007  * 4) do not run the "skip" process, if something else is available
3008  */
3009 static struct sched_entity *
3010 pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr)
3011 {
3012 	struct sched_entity *left = __pick_first_entity(cfs_rq);
3013 	struct sched_entity *se;
3014 
3015 	/*
3016 	 * If curr is set we have to see if its left of the leftmost entity
3017 	 * still in the tree, provided there was anything in the tree at all.
3018 	 */
3019 	if (!left || (curr && entity_before(curr, left)))
3020 		left = curr;
3021 
3022 	se = left; /* ideally we run the leftmost entity */
3023 
3024 	/*
3025 	 * Avoid running the skip buddy, if running something else can
3026 	 * be done without getting too unfair.
3027 	 */
3028 	if (cfs_rq->skip == se) {
3029 		struct sched_entity *second;
3030 
3031 		if (se == curr) {
3032 			second = __pick_first_entity(cfs_rq);
3033 		} else {
3034 			second = __pick_next_entity(se);
3035 			if (!second || (curr && entity_before(curr, second)))
3036 				second = curr;
3037 		}
3038 
3039 		if (second && wakeup_preempt_entity(second, left) < 1)
3040 			se = second;
3041 	}
3042 
3043 	/*
3044 	 * Prefer last buddy, try to return the CPU to a preempted task.
3045 	 */
3046 	if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
3047 		se = cfs_rq->last;
3048 
3049 	/*
3050 	 * Someone really wants this to run. If it's not unfair, run it.
3051 	 */
3052 	if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
3053 		se = cfs_rq->next;
3054 
3055 	clear_buddies(cfs_rq, se);
3056 
3057 	return se;
3058 }
3059 
3060 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
3061 
3062 static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
3063 {
3064 	/*
3065 	 * If still on the runqueue then deactivate_task()
3066 	 * was not called and update_curr() has to be done:
3067 	 */
3068 	if (prev->on_rq)
3069 		update_curr(cfs_rq);
3070 
3071 	/* throttle cfs_rqs exceeding runtime */
3072 	check_cfs_rq_runtime(cfs_rq);
3073 
3074 	check_spread(cfs_rq, prev);
3075 	if (prev->on_rq) {
3076 		update_stats_wait_start(cfs_rq, prev);
3077 		/* Put 'current' back into the tree. */
3078 		__enqueue_entity(cfs_rq, prev);
3079 		/* in !on_rq case, update occurred at dequeue */
3080 		update_entity_load_avg(prev, 1);
3081 	}
3082 	cfs_rq->curr = NULL;
3083 }
3084 
3085 static void
3086 entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
3087 {
3088 	/*
3089 	 * Update run-time statistics of the 'current'.
3090 	 */
3091 	update_curr(cfs_rq);
3092 
3093 	/*
3094 	 * Ensure that runnable average is periodically updated.
3095 	 */
3096 	update_entity_load_avg(curr, 1);
3097 	update_cfs_rq_blocked_load(cfs_rq, 1);
3098 	update_cfs_shares(cfs_rq);
3099 
3100 #ifdef CONFIG_SCHED_HRTICK
3101 	/*
3102 	 * queued ticks are scheduled to match the slice, so don't bother
3103 	 * validating it and just reschedule.
3104 	 */
3105 	if (queued) {
3106 		resched_curr(rq_of(cfs_rq));
3107 		return;
3108 	}
3109 	/*
3110 	 * don't let the period tick interfere with the hrtick preemption
3111 	 */
3112 	if (!sched_feat(DOUBLE_TICK) &&
3113 			hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
3114 		return;
3115 #endif
3116 
3117 	if (cfs_rq->nr_running > 1)
3118 		check_preempt_tick(cfs_rq, curr);
3119 }
3120 
3121 
3122 /**************************************************
3123  * CFS bandwidth control machinery
3124  */
3125 
3126 #ifdef CONFIG_CFS_BANDWIDTH
3127 
3128 #ifdef HAVE_JUMP_LABEL
3129 static struct static_key __cfs_bandwidth_used;
3130 
3131 static inline bool cfs_bandwidth_used(void)
3132 {
3133 	return static_key_false(&__cfs_bandwidth_used);
3134 }
3135 
3136 void cfs_bandwidth_usage_inc(void)
3137 {
3138 	static_key_slow_inc(&__cfs_bandwidth_used);
3139 }
3140 
3141 void cfs_bandwidth_usage_dec(void)
3142 {
3143 	static_key_slow_dec(&__cfs_bandwidth_used);
3144 }
3145 #else /* HAVE_JUMP_LABEL */
3146 static bool cfs_bandwidth_used(void)
3147 {
3148 	return true;
3149 }
3150 
3151 void cfs_bandwidth_usage_inc(void) {}
3152 void cfs_bandwidth_usage_dec(void) {}
3153 #endif /* HAVE_JUMP_LABEL */
3154 
3155 /*
3156  * default period for cfs group bandwidth.
3157  * default: 0.1s, units: nanoseconds
3158  */
3159 static inline u64 default_cfs_period(void)
3160 {
3161 	return 100000000ULL;
3162 }
3163 
3164 static inline u64 sched_cfs_bandwidth_slice(void)
3165 {
3166 	return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
3167 }
3168 
3169 /*
3170  * Replenish runtime according to assigned quota and update expiration time.
3171  * We use sched_clock_cpu directly instead of rq->clock to avoid adding
3172  * additional synchronization around rq->lock.
3173  *
3174  * requires cfs_b->lock
3175  */
3176 void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
3177 {
3178 	u64 now;
3179 
3180 	if (cfs_b->quota == RUNTIME_INF)
3181 		return;
3182 
3183 	now = sched_clock_cpu(smp_processor_id());
3184 	cfs_b->runtime = cfs_b->quota;
3185 	cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
3186 }
3187 
3188 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
3189 {
3190 	return &tg->cfs_bandwidth;
3191 }
3192 
3193 /* rq->task_clock normalized against any time this cfs_rq has spent throttled */
3194 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
3195 {
3196 	if (unlikely(cfs_rq->throttle_count))
3197 		return cfs_rq->throttled_clock_task;
3198 
3199 	return rq_clock_task(rq_of(cfs_rq)) - cfs_rq->throttled_clock_task_time;
3200 }
3201 
3202 /* returns 0 on failure to allocate runtime */
3203 static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3204 {
3205 	struct task_group *tg = cfs_rq->tg;
3206 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
3207 	u64 amount = 0, min_amount, expires;
3208 
3209 	/* note: this is a positive sum as runtime_remaining <= 0 */
3210 	min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;
3211 
3212 	raw_spin_lock(&cfs_b->lock);
3213 	if (cfs_b->quota == RUNTIME_INF)
3214 		amount = min_amount;
3215 	else {
3216 		/*
3217 		 * If the bandwidth pool has become inactive, then at least one
3218 		 * period must have elapsed since the last consumption.
3219 		 * Refresh the global state and ensure bandwidth timer becomes
3220 		 * active.
3221 		 */
3222 		if (!cfs_b->timer_active) {
3223 			__refill_cfs_bandwidth_runtime(cfs_b);
3224 			__start_cfs_bandwidth(cfs_b, false);
3225 		}
3226 
3227 		if (cfs_b->runtime > 0) {
3228 			amount = min(cfs_b->runtime, min_amount);
3229 			cfs_b->runtime -= amount;
3230 			cfs_b->idle = 0;
3231 		}
3232 	}
3233 	expires = cfs_b->runtime_expires;
3234 	raw_spin_unlock(&cfs_b->lock);
3235 
3236 	cfs_rq->runtime_remaining += amount;
3237 	/*
3238 	 * we may have advanced our local expiration to account for allowed
3239 	 * spread between our sched_clock and the one on which runtime was
3240 	 * issued.
3241 	 */
3242 	if ((s64)(expires - cfs_rq->runtime_expires) > 0)
3243 		cfs_rq->runtime_expires = expires;
3244 
3245 	return cfs_rq->runtime_remaining > 0;
3246 }
3247 
3248 /*
3249  * Note: This depends on the synchronization provided by sched_clock and the
3250  * fact that rq->clock snapshots this value.
3251  */
3252 static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3253 {
3254 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3255 
3256 	/* if the deadline is ahead of our clock, nothing to do */
3257 	if (likely((s64)(rq_clock(rq_of(cfs_rq)) - cfs_rq->runtime_expires) < 0))
3258 		return;
3259 
3260 	if (cfs_rq->runtime_remaining < 0)
3261 		return;
3262 
3263 	/*
3264 	 * If the local deadline has passed we have to consider the
3265 	 * possibility that our sched_clock is 'fast' and the global deadline
3266 	 * has not truly expired.
3267 	 *
3268 	 * Fortunately we can check determine whether this the case by checking
3269 	 * whether the global deadline has advanced. It is valid to compare
3270 	 * cfs_b->runtime_expires without any locks since we only care about
3271 	 * exact equality, so a partial write will still work.
3272 	 */
3273 
3274 	if (cfs_rq->runtime_expires != cfs_b->runtime_expires) {
3275 		/* extend local deadline, drift is bounded above by 2 ticks */
3276 		cfs_rq->runtime_expires += TICK_NSEC;
3277 	} else {
3278 		/* global deadline is ahead, expiration has passed */
3279 		cfs_rq->runtime_remaining = 0;
3280 	}
3281 }
3282 
3283 static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
3284 {
3285 	/* dock delta_exec before expiring quota (as it could span periods) */
3286 	cfs_rq->runtime_remaining -= delta_exec;
3287 	expire_cfs_rq_runtime(cfs_rq);
3288 
3289 	if (likely(cfs_rq->runtime_remaining > 0))
3290 		return;
3291 
3292 	/*
3293 	 * if we're unable to extend our runtime we resched so that the active
3294 	 * hierarchy can be throttled
3295 	 */
3296 	if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
3297 		resched_curr(rq_of(cfs_rq));
3298 }
3299 
3300 static __always_inline
3301 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
3302 {
3303 	if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
3304 		return;
3305 
3306 	__account_cfs_rq_runtime(cfs_rq, delta_exec);
3307 }
3308 
3309 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
3310 {
3311 	return cfs_bandwidth_used() && cfs_rq->throttled;
3312 }
3313 
3314 /* check whether cfs_rq, or any parent, is throttled */
3315 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
3316 {
3317 	return cfs_bandwidth_used() && cfs_rq->throttle_count;
3318 }
3319 
3320 /*
3321  * Ensure that neither of the group entities corresponding to src_cpu or
3322  * dest_cpu are members of a throttled hierarchy when performing group
3323  * load-balance operations.
3324  */
3325 static inline int throttled_lb_pair(struct task_group *tg,
3326 				    int src_cpu, int dest_cpu)
3327 {
3328 	struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
3329 
3330 	src_cfs_rq = tg->cfs_rq[src_cpu];
3331 	dest_cfs_rq = tg->cfs_rq[dest_cpu];
3332 
3333 	return throttled_hierarchy(src_cfs_rq) ||
3334 	       throttled_hierarchy(dest_cfs_rq);
3335 }
3336 
3337 /* updated child weight may affect parent so we have to do this bottom up */
3338 static int tg_unthrottle_up(struct task_group *tg, void *data)
3339 {
3340 	struct rq *rq = data;
3341 	struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
3342 
3343 	cfs_rq->throttle_count--;
3344 #ifdef CONFIG_SMP
3345 	if (!cfs_rq->throttle_count) {
3346 		/* adjust cfs_rq_clock_task() */
3347 		cfs_rq->throttled_clock_task_time += rq_clock_task(rq) -
3348 					     cfs_rq->throttled_clock_task;
3349 	}
3350 #endif
3351 
3352 	return 0;
3353 }
3354 
3355 static int tg_throttle_down(struct task_group *tg, void *data)
3356 {
3357 	struct rq *rq = data;
3358 	struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
3359 
3360 	/* group is entering throttled state, stop time */
3361 	if (!cfs_rq->throttle_count)
3362 		cfs_rq->throttled_clock_task = rq_clock_task(rq);
3363 	cfs_rq->throttle_count++;
3364 
3365 	return 0;
3366 }
3367 
3368 static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
3369 {
3370 	struct rq *rq = rq_of(cfs_rq);
3371 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3372 	struct sched_entity *se;
3373 	long task_delta, dequeue = 1;
3374 
3375 	se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
3376 
3377 	/* freeze hierarchy runnable averages while throttled */
3378 	rcu_read_lock();
3379 	walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
3380 	rcu_read_unlock();
3381 
3382 	task_delta = cfs_rq->h_nr_running;
3383 	for_each_sched_entity(se) {
3384 		struct cfs_rq *qcfs_rq = cfs_rq_of(se);
3385 		/* throttled entity or throttle-on-deactivate */
3386 		if (!se->on_rq)
3387 			break;
3388 
3389 		if (dequeue)
3390 			dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
3391 		qcfs_rq->h_nr_running -= task_delta;
3392 
3393 		if (qcfs_rq->load.weight)
3394 			dequeue = 0;
3395 	}
3396 
3397 	if (!se)
3398 		sub_nr_running(rq, task_delta);
3399 
3400 	cfs_rq->throttled = 1;
3401 	cfs_rq->throttled_clock = rq_clock(rq);
3402 	raw_spin_lock(&cfs_b->lock);
3403 	/*
3404 	 * Add to the _head_ of the list, so that an already-started
3405 	 * distribute_cfs_runtime will not see us
3406 	 */
3407 	list_add_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
3408 	if (!cfs_b->timer_active)
3409 		__start_cfs_bandwidth(cfs_b, false);
3410 	raw_spin_unlock(&cfs_b->lock);
3411 }
3412 
3413 void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
3414 {
3415 	struct rq *rq = rq_of(cfs_rq);
3416 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3417 	struct sched_entity *se;
3418 	int enqueue = 1;
3419 	long task_delta;
3420 
3421 	se = cfs_rq->tg->se[cpu_of(rq)];
3422 
3423 	cfs_rq->throttled = 0;
3424 
3425 	update_rq_clock(rq);
3426 
3427 	raw_spin_lock(&cfs_b->lock);
3428 	cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
3429 	list_del_rcu(&cfs_rq->throttled_list);
3430 	raw_spin_unlock(&cfs_b->lock);
3431 
3432 	/* update hierarchical throttle state */
3433 	walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
3434 
3435 	if (!cfs_rq->load.weight)
3436 		return;
3437 
3438 	task_delta = cfs_rq->h_nr_running;
3439 	for_each_sched_entity(se) {
3440 		if (se->on_rq)
3441 			enqueue = 0;
3442 
3443 		cfs_rq = cfs_rq_of(se);
3444 		if (enqueue)
3445 			enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
3446 		cfs_rq->h_nr_running += task_delta;
3447 
3448 		if (cfs_rq_throttled(cfs_rq))
3449 			break;
3450 	}
3451 
3452 	if (!se)
3453 		add_nr_running(rq, task_delta);
3454 
3455 	/* determine whether we need to wake up potentially idle cpu */
3456 	if (rq->curr == rq->idle && rq->cfs.nr_running)
3457 		resched_curr(rq);
3458 }
3459 
3460 static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
3461 		u64 remaining, u64 expires)
3462 {
3463 	struct cfs_rq *cfs_rq;
3464 	u64 runtime;
3465 	u64 starting_runtime = remaining;
3466 
3467 	rcu_read_lock();
3468 	list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
3469 				throttled_list) {
3470 		struct rq *rq = rq_of(cfs_rq);
3471 
3472 		raw_spin_lock(&rq->lock);
3473 		if (!cfs_rq_throttled(cfs_rq))
3474 			goto next;
3475 
3476 		runtime = -cfs_rq->runtime_remaining + 1;
3477 		if (runtime > remaining)
3478 			runtime = remaining;
3479 		remaining -= runtime;
3480 
3481 		cfs_rq->runtime_remaining += runtime;
3482 		cfs_rq->runtime_expires = expires;
3483 
3484 		/* we check whether we're throttled above */
3485 		if (cfs_rq->runtime_remaining > 0)
3486 			unthrottle_cfs_rq(cfs_rq);
3487 
3488 next:
3489 		raw_spin_unlock(&rq->lock);
3490 
3491 		if (!remaining)
3492 			break;
3493 	}
3494 	rcu_read_unlock();
3495 
3496 	return starting_runtime - remaining;
3497 }
3498 
3499 /*
3500  * Responsible for refilling a task_group's bandwidth and unthrottling its
3501  * cfs_rqs as appropriate. If there has been no activity within the last
3502  * period the timer is deactivated until scheduling resumes; cfs_b->idle is
3503  * used to track this state.
3504  */
3505 static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
3506 {
3507 	u64 runtime, runtime_expires;
3508 	int throttled;
3509 
3510 	/* no need to continue the timer with no bandwidth constraint */
3511 	if (cfs_b->quota == RUNTIME_INF)
3512 		goto out_deactivate;
3513 
3514 	throttled = !list_empty(&cfs_b->throttled_cfs_rq);
3515 	cfs_b->nr_periods += overrun;
3516 
3517 	/*
3518 	 * idle depends on !throttled (for the case of a large deficit), and if
3519 	 * we're going inactive then everything else can be deferred
3520 	 */
3521 	if (cfs_b->idle && !throttled)
3522 		goto out_deactivate;
3523 
3524 	/*
3525 	 * if we have relooped after returning idle once, we need to update our
3526 	 * status as actually running, so that other cpus doing
3527 	 * __start_cfs_bandwidth will stop trying to cancel us.
3528 	 */
3529 	cfs_b->timer_active = 1;
3530 
3531 	__refill_cfs_bandwidth_runtime(cfs_b);
3532 
3533 	if (!throttled) {
3534 		/* mark as potentially idle for the upcoming period */
3535 		cfs_b->idle = 1;
3536 		return 0;
3537 	}
3538 
3539 	/* account preceding periods in which throttling occurred */
3540 	cfs_b->nr_throttled += overrun;
3541 
3542 	runtime_expires = cfs_b->runtime_expires;
3543 
3544 	/*
3545 	 * This check is repeated as we are holding onto the new bandwidth while
3546 	 * we unthrottle. This can potentially race with an unthrottled group
3547 	 * trying to acquire new bandwidth from the global pool. This can result
3548 	 * in us over-using our runtime if it is all used during this loop, but
3549 	 * only by limited amounts in that extreme case.
3550 	 */
3551 	while (throttled && cfs_b->runtime > 0) {
3552 		runtime = cfs_b->runtime;
3553 		raw_spin_unlock(&cfs_b->lock);
3554 		/* we can't nest cfs_b->lock while distributing bandwidth */
3555 		runtime = distribute_cfs_runtime(cfs_b, runtime,
3556 						 runtime_expires);
3557 		raw_spin_lock(&cfs_b->lock);
3558 
3559 		throttled = !list_empty(&cfs_b->throttled_cfs_rq);
3560 
3561 		cfs_b->runtime -= min(runtime, cfs_b->runtime);
3562 	}
3563 
3564 	/*
3565 	 * While we are ensured activity in the period following an
3566 	 * unthrottle, this also covers the case in which the new bandwidth is
3567 	 * insufficient to cover the existing bandwidth deficit.  (Forcing the
3568 	 * timer to remain active while there are any throttled entities.)
3569 	 */
3570 	cfs_b->idle = 0;
3571 
3572 	return 0;
3573 
3574 out_deactivate:
3575 	cfs_b->timer_active = 0;
3576 	return 1;
3577 }
3578 
3579 /* a cfs_rq won't donate quota below this amount */
3580 static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
3581 /* minimum remaining period time to redistribute slack quota */
3582 static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
3583 /* how long we wait to gather additional slack before distributing */
3584 static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
3585 
3586 /*
3587  * Are we near the end of the current quota period?
3588  *
3589  * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
3590  * hrtimer base being cleared by __hrtimer_start_range_ns. In the case of
3591  * migrate_hrtimers, base is never cleared, so we are fine.
3592  */
3593 static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
3594 {
3595 	struct hrtimer *refresh_timer = &cfs_b->period_timer;
3596 	u64 remaining;
3597 
3598 	/* if the call-back is running a quota refresh is already occurring */
3599 	if (hrtimer_callback_running(refresh_timer))
3600 		return 1;
3601 
3602 	/* is a quota refresh about to occur? */
3603 	remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
3604 	if (remaining < min_expire)
3605 		return 1;
3606 
3607 	return 0;
3608 }
3609 
3610 static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
3611 {
3612 	u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
3613 
3614 	/* if there's a quota refresh soon don't bother with slack */
3615 	if (runtime_refresh_within(cfs_b, min_left))
3616 		return;
3617 
3618 	start_bandwidth_timer(&cfs_b->slack_timer,
3619 				ns_to_ktime(cfs_bandwidth_slack_period));
3620 }
3621 
3622 /* we know any runtime found here is valid as update_curr() precedes return */
3623 static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3624 {
3625 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3626 	s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
3627 
3628 	if (slack_runtime <= 0)
3629 		return;
3630 
3631 	raw_spin_lock(&cfs_b->lock);
3632 	if (cfs_b->quota != RUNTIME_INF &&
3633 	    cfs_rq->runtime_expires == cfs_b->runtime_expires) {
3634 		cfs_b->runtime += slack_runtime;
3635 
3636 		/* we are under rq->lock, defer unthrottling using a timer */
3637 		if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
3638 		    !list_empty(&cfs_b->throttled_cfs_rq))
3639 			start_cfs_slack_bandwidth(cfs_b);
3640 	}
3641 	raw_spin_unlock(&cfs_b->lock);
3642 
3643 	/* even if it's not valid for return we don't want to try again */
3644 	cfs_rq->runtime_remaining -= slack_runtime;
3645 }
3646 
3647 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3648 {
3649 	if (!cfs_bandwidth_used())
3650 		return;
3651 
3652 	if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
3653 		return;
3654 
3655 	__return_cfs_rq_runtime(cfs_rq);
3656 }
3657 
3658 /*
3659  * This is done with a timer (instead of inline with bandwidth return) since
3660  * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
3661  */
3662 static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
3663 {
3664 	u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
3665 	u64 expires;
3666 
3667 	/* confirm we're still not at a refresh boundary */
3668 	raw_spin_lock(&cfs_b->lock);
3669 	if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
3670 		raw_spin_unlock(&cfs_b->lock);
3671 		return;
3672 	}
3673 
3674 	if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice)
3675 		runtime = cfs_b->runtime;
3676 
3677 	expires = cfs_b->runtime_expires;
3678 	raw_spin_unlock(&cfs_b->lock);
3679 
3680 	if (!runtime)
3681 		return;
3682 
3683 	runtime = distribute_cfs_runtime(cfs_b, runtime, expires);
3684 
3685 	raw_spin_lock(&cfs_b->lock);
3686 	if (expires == cfs_b->runtime_expires)
3687 		cfs_b->runtime -= min(runtime, cfs_b->runtime);
3688 	raw_spin_unlock(&cfs_b->lock);
3689 }
3690 
3691 /*
3692  * When a group wakes up we want to make sure that its quota is not already
3693  * expired/exceeded, otherwise it may be allowed to steal additional ticks of
3694  * runtime as update_curr() throttling can not not trigger until it's on-rq.
3695  */
3696 static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
3697 {
3698 	if (!cfs_bandwidth_used())
3699 		return;
3700 
3701 	/* an active group must be handled by the update_curr()->put() path */
3702 	if (!cfs_rq->runtime_enabled || cfs_rq->curr)
3703 		return;
3704 
3705 	/* ensure the group is not already throttled */
3706 	if (cfs_rq_throttled(cfs_rq))
3707 		return;
3708 
3709 	/* update runtime allocation */
3710 	account_cfs_rq_runtime(cfs_rq, 0);
3711 	if (cfs_rq->runtime_remaining <= 0)
3712 		throttle_cfs_rq(cfs_rq);
3713 }
3714 
3715 /* conditionally throttle active cfs_rq's from put_prev_entity() */
3716 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3717 {
3718 	if (!cfs_bandwidth_used())
3719 		return false;
3720 
3721 	if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
3722 		return false;
3723 
3724 	/*
3725 	 * it's possible for a throttled entity to be forced into a running
3726 	 * state (e.g. set_curr_task), in this case we're finished.
3727 	 */
3728 	if (cfs_rq_throttled(cfs_rq))
3729 		return true;
3730 
3731 	throttle_cfs_rq(cfs_rq);
3732 	return true;
3733 }
3734 
3735 static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
3736 {
3737 	struct cfs_bandwidth *cfs_b =
3738 		container_of(timer, struct cfs_bandwidth, slack_timer);
3739 	do_sched_cfs_slack_timer(cfs_b);
3740 
3741 	return HRTIMER_NORESTART;
3742 }
3743 
3744 static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
3745 {
3746 	struct cfs_bandwidth *cfs_b =
3747 		container_of(timer, struct cfs_bandwidth, period_timer);
3748 	ktime_t now;
3749 	int overrun;
3750 	int idle = 0;
3751 
3752 	raw_spin_lock(&cfs_b->lock);
3753 	for (;;) {
3754 		now = hrtimer_cb_get_time(timer);
3755 		overrun = hrtimer_forward(timer, now, cfs_b->period);
3756 
3757 		if (!overrun)
3758 			break;
3759 
3760 		idle = do_sched_cfs_period_timer(cfs_b, overrun);
3761 	}
3762 	raw_spin_unlock(&cfs_b->lock);
3763 
3764 	return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
3765 }
3766 
3767 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
3768 {
3769 	raw_spin_lock_init(&cfs_b->lock);
3770 	cfs_b->runtime = 0;
3771 	cfs_b->quota = RUNTIME_INF;
3772 	cfs_b->period = ns_to_ktime(default_cfs_period());
3773 
3774 	INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
3775 	hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3776 	cfs_b->period_timer.function = sched_cfs_period_timer;
3777 	hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3778 	cfs_b->slack_timer.function = sched_cfs_slack_timer;
3779 }
3780 
3781 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3782 {
3783 	cfs_rq->runtime_enabled = 0;
3784 	INIT_LIST_HEAD(&cfs_rq->throttled_list);
3785 }
3786 
3787 /* requires cfs_b->lock, may release to reprogram timer */
3788 void __start_cfs_bandwidth(struct cfs_bandwidth *cfs_b, bool force)
3789 {
3790 	/*
3791 	 * The timer may be active because we're trying to set a new bandwidth
3792 	 * period or because we're racing with the tear-down path
3793 	 * (timer_active==0 becomes visible before the hrtimer call-back
3794 	 * terminates).  In either case we ensure that it's re-programmed
3795 	 */
3796 	while (unlikely(hrtimer_active(&cfs_b->period_timer)) &&
3797 	       hrtimer_try_to_cancel(&cfs_b->period_timer) < 0) {
3798 		/* bounce the lock to allow do_sched_cfs_period_timer to run */
3799 		raw_spin_unlock(&cfs_b->lock);
3800 		cpu_relax();
3801 		raw_spin_lock(&cfs_b->lock);
3802 		/* if someone else restarted the timer then we're done */
3803 		if (!force && cfs_b->timer_active)
3804 			return;
3805 	}
3806 
3807 	cfs_b->timer_active = 1;
3808 	start_bandwidth_timer(&cfs_b->period_timer, cfs_b->period);
3809 }
3810 
3811 static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
3812 {
3813 	hrtimer_cancel(&cfs_b->period_timer);
3814 	hrtimer_cancel(&cfs_b->slack_timer);
3815 }
3816 
3817 static void __maybe_unused update_runtime_enabled(struct rq *rq)
3818 {
3819 	struct cfs_rq *cfs_rq;
3820 
3821 	for_each_leaf_cfs_rq(rq, cfs_rq) {
3822 		struct cfs_bandwidth *cfs_b = &cfs_rq->tg->cfs_bandwidth;
3823 
3824 		raw_spin_lock(&cfs_b->lock);
3825 		cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF;
3826 		raw_spin_unlock(&cfs_b->lock);
3827 	}
3828 }
3829 
3830 static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
3831 {
3832 	struct cfs_rq *cfs_rq;
3833 
3834 	for_each_leaf_cfs_rq(rq, cfs_rq) {
3835 		if (!cfs_rq->runtime_enabled)
3836 			continue;
3837 
3838 		/*
3839 		 * clock_task is not advancing so we just need to make sure
3840 		 * there's some valid quota amount
3841 		 */
3842 		cfs_rq->runtime_remaining = 1;
3843 		/*
3844 		 * Offline rq is schedulable till cpu is completely disabled
3845 		 * in take_cpu_down(), so we prevent new cfs throttling here.
3846 		 */
3847 		cfs_rq->runtime_enabled = 0;
3848 
3849 		if (cfs_rq_throttled(cfs_rq))
3850 			unthrottle_cfs_rq(cfs_rq);
3851 	}
3852 }
3853 
3854 #else /* CONFIG_CFS_BANDWIDTH */
3855 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
3856 {
3857 	return rq_clock_task(rq_of(cfs_rq));
3858 }
3859 
3860 static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {}
3861 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; }
3862 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
3863 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
3864 
3865 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
3866 {
3867 	return 0;
3868 }
3869 
3870 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
3871 {
3872 	return 0;
3873 }
3874 
3875 static inline int throttled_lb_pair(struct task_group *tg,
3876 				    int src_cpu, int dest_cpu)
3877 {
3878 	return 0;
3879 }
3880 
3881 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
3882 
3883 #ifdef CONFIG_FAIR_GROUP_SCHED
3884 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
3885 #endif
3886 
3887 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
3888 {
3889 	return NULL;
3890 }
3891 static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
3892 static inline void update_runtime_enabled(struct rq *rq) {}
3893 static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
3894 
3895 #endif /* CONFIG_CFS_BANDWIDTH */
3896 
3897 /**************************************************
3898  * CFS operations on tasks:
3899  */
3900 
3901 #ifdef CONFIG_SCHED_HRTICK
3902 static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
3903 {
3904 	struct sched_entity *se = &p->se;
3905 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
3906 
3907 	WARN_ON(task_rq(p) != rq);
3908 
3909 	if (cfs_rq->nr_running > 1) {
3910 		u64 slice = sched_slice(cfs_rq, se);
3911 		u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
3912 		s64 delta = slice - ran;
3913 
3914 		if (delta < 0) {
3915 			if (rq->curr == p)
3916 				resched_curr(rq);
3917 			return;
3918 		}
3919 		hrtick_start(rq, delta);
3920 	}
3921 }
3922 
3923 /*
3924  * called from enqueue/dequeue and updates the hrtick when the
3925  * current task is from our class and nr_running is low enough
3926  * to matter.
3927  */
3928 static void hrtick_update(struct rq *rq)
3929 {
3930 	struct task_struct *curr = rq->curr;
3931 
3932 	if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
3933 		return;
3934 
3935 	if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
3936 		hrtick_start_fair(rq, curr);
3937 }
3938 #else /* !CONFIG_SCHED_HRTICK */
3939 static inline void
3940 hrtick_start_fair(struct rq *rq, struct task_struct *p)
3941 {
3942 }
3943 
3944 static inline void hrtick_update(struct rq *rq)
3945 {
3946 }
3947 #endif
3948 
3949 /*
3950  * The enqueue_task method is called before nr_running is
3951  * increased. Here we update the fair scheduling stats and
3952  * then put the task into the rbtree:
3953  */
3954 static void
3955 enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
3956 {
3957 	struct cfs_rq *cfs_rq;
3958 	struct sched_entity *se = &p->se;
3959 
3960 	for_each_sched_entity(se) {
3961 		if (se->on_rq)
3962 			break;
3963 		cfs_rq = cfs_rq_of(se);
3964 		enqueue_entity(cfs_rq, se, flags);
3965 
3966 		/*
3967 		 * end evaluation on encountering a throttled cfs_rq
3968 		 *
3969 		 * note: in the case of encountering a throttled cfs_rq we will
3970 		 * post the final h_nr_running increment below.
3971 		*/
3972 		if (cfs_rq_throttled(cfs_rq))
3973 			break;
3974 		cfs_rq->h_nr_running++;
3975 
3976 		flags = ENQUEUE_WAKEUP;
3977 	}
3978 
3979 	for_each_sched_entity(se) {
3980 		cfs_rq = cfs_rq_of(se);
3981 		cfs_rq->h_nr_running++;
3982 
3983 		if (cfs_rq_throttled(cfs_rq))
3984 			break;
3985 
3986 		update_cfs_shares(cfs_rq);
3987 		update_entity_load_avg(se, 1);
3988 	}
3989 
3990 	if (!se) {
3991 		update_rq_runnable_avg(rq, rq->nr_running);
3992 		add_nr_running(rq, 1);
3993 	}
3994 	hrtick_update(rq);
3995 }
3996 
3997 static void set_next_buddy(struct sched_entity *se);
3998 
3999 /*
4000  * The dequeue_task method is called before nr_running is
4001  * decreased. We remove the task from the rbtree and
4002  * update the fair scheduling stats:
4003  */
4004 static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
4005 {
4006 	struct cfs_rq *cfs_rq;
4007 	struct sched_entity *se = &p->se;
4008 	int task_sleep = flags & DEQUEUE_SLEEP;
4009 
4010 	for_each_sched_entity(se) {
4011 		cfs_rq = cfs_rq_of(se);
4012 		dequeue_entity(cfs_rq, se, flags);
4013 
4014 		/*
4015 		 * end evaluation on encountering a throttled cfs_rq
4016 		 *
4017 		 * note: in the case of encountering a throttled cfs_rq we will
4018 		 * post the final h_nr_running decrement below.
4019 		*/
4020 		if (cfs_rq_throttled(cfs_rq))
4021 			break;
4022 		cfs_rq->h_nr_running--;
4023 
4024 		/* Don't dequeue parent if it has other entities besides us */
4025 		if (cfs_rq->load.weight) {
4026 			/*
4027 			 * Bias pick_next to pick a task from this cfs_rq, as
4028 			 * p is sleeping when it is within its sched_slice.
4029 			 */
4030 			if (task_sleep && parent_entity(se))
4031 				set_next_buddy(parent_entity(se));
4032 
4033 			/* avoid re-evaluating load for this entity */
4034 			se = parent_entity(se);
4035 			break;
4036 		}
4037 		flags |= DEQUEUE_SLEEP;
4038 	}
4039 
4040 	for_each_sched_entity(se) {
4041 		cfs_rq = cfs_rq_of(se);
4042 		cfs_rq->h_nr_running--;
4043 
4044 		if (cfs_rq_throttled(cfs_rq))
4045 			break;
4046 
4047 		update_cfs_shares(cfs_rq);
4048 		update_entity_load_avg(se, 1);
4049 	}
4050 
4051 	if (!se) {
4052 		sub_nr_running(rq, 1);
4053 		update_rq_runnable_avg(rq, 1);
4054 	}
4055 	hrtick_update(rq);
4056 }
4057 
4058 #ifdef CONFIG_SMP
4059 /* Used instead of source_load when we know the type == 0 */
4060 static unsigned long weighted_cpuload(const int cpu)
4061 {
4062 	return cpu_rq(cpu)->cfs.runnable_load_avg;
4063 }
4064 
4065 /*
4066  * Return a low guess at the load of a migration-source cpu weighted
4067  * according to the scheduling class and "nice" value.
4068  *
4069  * We want to under-estimate the load of migration sources, to
4070  * balance conservatively.
4071  */
4072 static unsigned long source_load(int cpu, int type)
4073 {
4074 	struct rq *rq = cpu_rq(cpu);
4075 	unsigned long total = weighted_cpuload(cpu);
4076 
4077 	if (type == 0 || !sched_feat(LB_BIAS))
4078 		return total;
4079 
4080 	return min(rq->cpu_load[type-1], total);
4081 }
4082 
4083 /*
4084  * Return a high guess at the load of a migration-target cpu weighted
4085  * according to the scheduling class and "nice" value.
4086  */
4087 static unsigned long target_load(int cpu, int type)
4088 {
4089 	struct rq *rq = cpu_rq(cpu);
4090 	unsigned long total = weighted_cpuload(cpu);
4091 
4092 	if (type == 0 || !sched_feat(LB_BIAS))
4093 		return total;
4094 
4095 	return max(rq->cpu_load[type-1], total);
4096 }
4097 
4098 static unsigned long capacity_of(int cpu)
4099 {
4100 	return cpu_rq(cpu)->cpu_capacity;
4101 }
4102 
4103 static unsigned long cpu_avg_load_per_task(int cpu)
4104 {
4105 	struct rq *rq = cpu_rq(cpu);
4106 	unsigned long nr_running = ACCESS_ONCE(rq->cfs.h_nr_running);
4107 	unsigned long load_avg = rq->cfs.runnable_load_avg;
4108 
4109 	if (nr_running)
4110 		return load_avg / nr_running;
4111 
4112 	return 0;
4113 }
4114 
4115 static void record_wakee(struct task_struct *p)
4116 {
4117 	/*
4118 	 * Rough decay (wiping) for cost saving, don't worry
4119 	 * about the boundary, really active task won't care
4120 	 * about the loss.
4121 	 */
4122 	if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) {
4123 		current->wakee_flips >>= 1;
4124 		current->wakee_flip_decay_ts = jiffies;
4125 	}
4126 
4127 	if (current->last_wakee != p) {
4128 		current->last_wakee = p;
4129 		current->wakee_flips++;
4130 	}
4131 }
4132 
4133 static void task_waking_fair(struct task_struct *p)
4134 {
4135 	struct sched_entity *se = &p->se;
4136 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
4137 	u64 min_vruntime;
4138 
4139 #ifndef CONFIG_64BIT
4140 	u64 min_vruntime_copy;
4141 
4142 	do {
4143 		min_vruntime_copy = cfs_rq->min_vruntime_copy;
4144 		smp_rmb();
4145 		min_vruntime = cfs_rq->min_vruntime;
4146 	} while (min_vruntime != min_vruntime_copy);
4147 #else
4148 	min_vruntime = cfs_rq->min_vruntime;
4149 #endif
4150 
4151 	se->vruntime -= min_vruntime;
4152 	record_wakee(p);
4153 }
4154 
4155 #ifdef CONFIG_FAIR_GROUP_SCHED
4156 /*
4157  * effective_load() calculates the load change as seen from the root_task_group
4158  *
4159  * Adding load to a group doesn't make a group heavier, but can cause movement
4160  * of group shares between cpus. Assuming the shares were perfectly aligned one
4161  * can calculate the shift in shares.
4162  *
4163  * Calculate the effective load difference if @wl is added (subtracted) to @tg
4164  * on this @cpu and results in a total addition (subtraction) of @wg to the
4165  * total group weight.
4166  *
4167  * Given a runqueue weight distribution (rw_i) we can compute a shares
4168  * distribution (s_i) using:
4169  *
4170  *   s_i = rw_i / \Sum rw_j						(1)
4171  *
4172  * Suppose we have 4 CPUs and our @tg is a direct child of the root group and
4173  * has 7 equal weight tasks, distributed as below (rw_i), with the resulting
4174  * shares distribution (s_i):
4175  *
4176  *   rw_i = {   2,   4,   1,   0 }
4177  *   s_i  = { 2/7, 4/7, 1/7,   0 }
4178  *
4179  * As per wake_affine() we're interested in the load of two CPUs (the CPU the
4180  * task used to run on and the CPU the waker is running on), we need to
4181  * compute the effect of waking a task on either CPU and, in case of a sync
4182  * wakeup, compute the effect of the current task going to sleep.
4183  *
4184  * So for a change of @wl to the local @cpu with an overall group weight change
4185  * of @wl we can compute the new shares distribution (s'_i) using:
4186  *
4187  *   s'_i = (rw_i + @wl) / (@wg + \Sum rw_j)				(2)
4188  *
4189  * Suppose we're interested in CPUs 0 and 1, and want to compute the load
4190  * differences in waking a task to CPU 0. The additional task changes the
4191  * weight and shares distributions like:
4192  *
4193  *   rw'_i = {   3,   4,   1,   0 }
4194  *   s'_i  = { 3/8, 4/8, 1/8,   0 }
4195  *
4196  * We can then compute the difference in effective weight by using:
4197  *
4198  *   dw_i = S * (s'_i - s_i)						(3)
4199  *
4200  * Where 'S' is the group weight as seen by its parent.
4201  *
4202  * Therefore the effective change in loads on CPU 0 would be 5/56 (3/8 - 2/7)
4203  * times the weight of the group. The effect on CPU 1 would be -4/56 (4/8 -
4204  * 4/7) times the weight of the group.
4205  */
4206 static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
4207 {
4208 	struct sched_entity *se = tg->se[cpu];
4209 
4210 	if (!tg->parent)	/* the trivial, non-cgroup case */
4211 		return wl;
4212 
4213 	for_each_sched_entity(se) {
4214 		long w, W;
4215 
4216 		tg = se->my_q->tg;
4217 
4218 		/*
4219 		 * W = @wg + \Sum rw_j
4220 		 */
4221 		W = wg + calc_tg_weight(tg, se->my_q);
4222 
4223 		/*
4224 		 * w = rw_i + @wl
4225 		 */
4226 		w = se->my_q->load.weight + wl;
4227 
4228 		/*
4229 		 * wl = S * s'_i; see (2)
4230 		 */
4231 		if (W > 0 && w < W)
4232 			wl = (w * tg->shares) / W;
4233 		else
4234 			wl = tg->shares;
4235 
4236 		/*
4237 		 * Per the above, wl is the new se->load.weight value; since
4238 		 * those are clipped to [MIN_SHARES, ...) do so now. See
4239 		 * calc_cfs_shares().
4240 		 */
4241 		if (wl < MIN_SHARES)
4242 			wl = MIN_SHARES;
4243 
4244 		/*
4245 		 * wl = dw_i = S * (s'_i - s_i); see (3)
4246 		 */
4247 		wl -= se->load.weight;
4248 
4249 		/*
4250 		 * Recursively apply this logic to all parent groups to compute
4251 		 * the final effective load change on the root group. Since
4252 		 * only the @tg group gets extra weight, all parent groups can
4253 		 * only redistribute existing shares. @wl is the shift in shares
4254 		 * resulting from this level per the above.
4255 		 */
4256 		wg = 0;
4257 	}
4258 
4259 	return wl;
4260 }
4261 #else
4262 
4263 static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
4264 {
4265 	return wl;
4266 }
4267 
4268 #endif
4269 
4270 static int wake_wide(struct task_struct *p)
4271 {
4272 	int factor = this_cpu_read(sd_llc_size);
4273 
4274 	/*
4275 	 * Yeah, it's the switching-frequency, could means many wakee or
4276 	 * rapidly switch, use factor here will just help to automatically
4277 	 * adjust the loose-degree, so bigger node will lead to more pull.
4278 	 */
4279 	if (p->wakee_flips > factor) {
4280 		/*
4281 		 * wakee is somewhat hot, it needs certain amount of cpu
4282 		 * resource, so if waker is far more hot, prefer to leave
4283 		 * it alone.
4284 		 */
4285 		if (current->wakee_flips > (factor * p->wakee_flips))
4286 			return 1;
4287 	}
4288 
4289 	return 0;
4290 }
4291 
4292 static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
4293 {
4294 	s64 this_load, load;
4295 	s64 this_eff_load, prev_eff_load;
4296 	int idx, this_cpu, prev_cpu;
4297 	struct task_group *tg;
4298 	unsigned long weight;
4299 	int balanced;
4300 
4301 	/*
4302 	 * If we wake multiple tasks be careful to not bounce
4303 	 * ourselves around too much.
4304 	 */
4305 	if (wake_wide(p))
4306 		return 0;
4307 
4308 	idx	  = sd->wake_idx;
4309 	this_cpu  = smp_processor_id();
4310 	prev_cpu  = task_cpu(p);
4311 	load	  = source_load(prev_cpu, idx);
4312 	this_load = target_load(this_cpu, idx);
4313 
4314 	/*
4315 	 * If sync wakeup then subtract the (maximum possible)
4316 	 * effect of the currently running task from the load
4317 	 * of the current CPU:
4318 	 */
4319 	if (sync) {
4320 		tg = task_group(current);
4321 		weight = current->se.load.weight;
4322 
4323 		this_load += effective_load(tg, this_cpu, -weight, -weight);
4324 		load += effective_load(tg, prev_cpu, 0, -weight);
4325 	}
4326 
4327 	tg = task_group(p);
4328 	weight = p->se.load.weight;
4329 
4330 	/*
4331 	 * In low-load situations, where prev_cpu is idle and this_cpu is idle
4332 	 * due to the sync cause above having dropped this_load to 0, we'll
4333 	 * always have an imbalance, but there's really nothing you can do
4334 	 * about that, so that's good too.
4335 	 *
4336 	 * Otherwise check if either cpus are near enough in load to allow this
4337 	 * task to be woken on this_cpu.
4338 	 */
4339 	this_eff_load = 100;
4340 	this_eff_load *= capacity_of(prev_cpu);
4341 
4342 	prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
4343 	prev_eff_load *= capacity_of(this_cpu);
4344 
4345 	if (this_load > 0) {
4346 		this_eff_load *= this_load +
4347 			effective_load(tg, this_cpu, weight, weight);
4348 
4349 		prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight);
4350 	}
4351 
4352 	balanced = this_eff_load <= prev_eff_load;
4353 
4354 	schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts);
4355 
4356 	if (!balanced)
4357 		return 0;
4358 
4359 	schedstat_inc(sd, ttwu_move_affine);
4360 	schedstat_inc(p, se.statistics.nr_wakeups_affine);
4361 
4362 	return 1;
4363 }
4364 
4365 /*
4366  * find_idlest_group finds and returns the least busy CPU group within the
4367  * domain.
4368  */
4369 static struct sched_group *
4370 find_idlest_group(struct sched_domain *sd, struct task_struct *p,
4371 		  int this_cpu, int sd_flag)
4372 {
4373 	struct sched_group *idlest = NULL, *group = sd->groups;
4374 	unsigned long min_load = ULONG_MAX, this_load = 0;
4375 	int load_idx = sd->forkexec_idx;
4376 	int imbalance = 100 + (sd->imbalance_pct-100)/2;
4377 
4378 	if (sd_flag & SD_BALANCE_WAKE)
4379 		load_idx = sd->wake_idx;
4380 
4381 	do {
4382 		unsigned long load, avg_load;
4383 		int local_group;
4384 		int i;
4385 
4386 		/* Skip over this group if it has no CPUs allowed */
4387 		if (!cpumask_intersects(sched_group_cpus(group),
4388 					tsk_cpus_allowed(p)))
4389 			continue;
4390 
4391 		local_group = cpumask_test_cpu(this_cpu,
4392 					       sched_group_cpus(group));
4393 
4394 		/* Tally up the load of all CPUs in the group */
4395 		avg_load = 0;
4396 
4397 		for_each_cpu(i, sched_group_cpus(group)) {
4398 			/* Bias balancing toward cpus of our domain */
4399 			if (local_group)
4400 				load = source_load(i, load_idx);
4401 			else
4402 				load = target_load(i, load_idx);
4403 
4404 			avg_load += load;
4405 		}
4406 
4407 		/* Adjust by relative CPU capacity of the group */
4408 		avg_load = (avg_load * SCHED_CAPACITY_SCALE) / group->sgc->capacity;
4409 
4410 		if (local_group) {
4411 			this_load = avg_load;
4412 		} else if (avg_load < min_load) {
4413 			min_load = avg_load;
4414 			idlest = group;
4415 		}
4416 	} while (group = group->next, group != sd->groups);
4417 
4418 	if (!idlest || 100*this_load < imbalance*min_load)
4419 		return NULL;
4420 	return idlest;
4421 }
4422 
4423 /*
4424  * find_idlest_cpu - find the idlest cpu among the cpus in group.
4425  */
4426 static int
4427 find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
4428 {
4429 	unsigned long load, min_load = ULONG_MAX;
4430 	unsigned int min_exit_latency = UINT_MAX;
4431 	u64 latest_idle_timestamp = 0;
4432 	int least_loaded_cpu = this_cpu;
4433 	int shallowest_idle_cpu = -1;
4434 	int i;
4435 
4436 	/* Traverse only the allowed CPUs */
4437 	for_each_cpu_and(i, sched_group_cpus(group), tsk_cpus_allowed(p)) {
4438 		if (idle_cpu(i)) {
4439 			struct rq *rq = cpu_rq(i);
4440 			struct cpuidle_state *idle = idle_get_state(rq);
4441 			if (idle && idle->exit_latency < min_exit_latency) {
4442 				/*
4443 				 * We give priority to a CPU whose idle state
4444 				 * has the smallest exit latency irrespective
4445 				 * of any idle timestamp.
4446 				 */
4447 				min_exit_latency = idle->exit_latency;
4448 				latest_idle_timestamp = rq->idle_stamp;
4449 				shallowest_idle_cpu = i;
4450 			} else if ((!idle || idle->exit_latency == min_exit_latency) &&
4451 				   rq->idle_stamp > latest_idle_timestamp) {
4452 				/*
4453 				 * If equal or no active idle state, then
4454 				 * the most recently idled CPU might have
4455 				 * a warmer cache.
4456 				 */
4457 				latest_idle_timestamp = rq->idle_stamp;
4458 				shallowest_idle_cpu = i;
4459 			}
4460 		} else {
4461 			load = weighted_cpuload(i);
4462 			if (load < min_load || (load == min_load && i == this_cpu)) {
4463 				min_load = load;
4464 				least_loaded_cpu = i;
4465 			}
4466 		}
4467 	}
4468 
4469 	return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu;
4470 }
4471 
4472 /*
4473  * Try and locate an idle CPU in the sched_domain.
4474  */
4475 static int select_idle_sibling(struct task_struct *p, int target)
4476 {
4477 	struct sched_domain *sd;
4478 	struct sched_group *sg;
4479 	int i = task_cpu(p);
4480 
4481 	if (idle_cpu(target))
4482 		return target;
4483 
4484 	/*
4485 	 * If the prevous cpu is cache affine and idle, don't be stupid.
4486 	 */
4487 	if (i != target && cpus_share_cache(i, target) && idle_cpu(i))
4488 		return i;
4489 
4490 	/*
4491 	 * Otherwise, iterate the domains and find an elegible idle cpu.
4492 	 */
4493 	sd = rcu_dereference(per_cpu(sd_llc, target));
4494 	for_each_lower_domain(sd) {
4495 		sg = sd->groups;
4496 		do {
4497 			if (!cpumask_intersects(sched_group_cpus(sg),
4498 						tsk_cpus_allowed(p)))
4499 				goto next;
4500 
4501 			for_each_cpu(i, sched_group_cpus(sg)) {
4502 				if (i == target || !idle_cpu(i))
4503 					goto next;
4504 			}
4505 
4506 			target = cpumask_first_and(sched_group_cpus(sg),
4507 					tsk_cpus_allowed(p));
4508 			goto done;
4509 next:
4510 			sg = sg->next;
4511 		} while (sg != sd->groups);
4512 	}
4513 done:
4514 	return target;
4515 }
4516 
4517 /*
4518  * select_task_rq_fair: Select target runqueue for the waking task in domains
4519  * that have the 'sd_flag' flag set. In practice, this is SD_BALANCE_WAKE,
4520  * SD_BALANCE_FORK, or SD_BALANCE_EXEC.
4521  *
4522  * Balances load by selecting the idlest cpu in the idlest group, or under
4523  * certain conditions an idle sibling cpu if the domain has SD_WAKE_AFFINE set.
4524  *
4525  * Returns the target cpu number.
4526  *
4527  * preempt must be disabled.
4528  */
4529 static int
4530 select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_flags)
4531 {
4532 	struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
4533 	int cpu = smp_processor_id();
4534 	int new_cpu = cpu;
4535 	int want_affine = 0;
4536 	int sync = wake_flags & WF_SYNC;
4537 
4538 	if (p->nr_cpus_allowed == 1)
4539 		return prev_cpu;
4540 
4541 	if (sd_flag & SD_BALANCE_WAKE)
4542 		want_affine = cpumask_test_cpu(cpu, tsk_cpus_allowed(p));
4543 
4544 	rcu_read_lock();
4545 	for_each_domain(cpu, tmp) {
4546 		if (!(tmp->flags & SD_LOAD_BALANCE))
4547 			continue;
4548 
4549 		/*
4550 		 * If both cpu and prev_cpu are part of this domain,
4551 		 * cpu is a valid SD_WAKE_AFFINE target.
4552 		 */
4553 		if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
4554 		    cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
4555 			affine_sd = tmp;
4556 			break;
4557 		}
4558 
4559 		if (tmp->flags & sd_flag)
4560 			sd = tmp;
4561 	}
4562 
4563 	if (affine_sd && cpu != prev_cpu && wake_affine(affine_sd, p, sync))
4564 		prev_cpu = cpu;
4565 
4566 	if (sd_flag & SD_BALANCE_WAKE) {
4567 		new_cpu = select_idle_sibling(p, prev_cpu);
4568 		goto unlock;
4569 	}
4570 
4571 	while (sd) {
4572 		struct sched_group *group;
4573 		int weight;
4574 
4575 		if (!(sd->flags & sd_flag)) {
4576 			sd = sd->child;
4577 			continue;
4578 		}
4579 
4580 		group = find_idlest_group(sd, p, cpu, sd_flag);
4581 		if (!group) {
4582 			sd = sd->child;
4583 			continue;
4584 		}
4585 
4586 		new_cpu = find_idlest_cpu(group, p, cpu);
4587 		if (new_cpu == -1 || new_cpu == cpu) {
4588 			/* Now try balancing at a lower domain level of cpu */
4589 			sd = sd->child;
4590 			continue;
4591 		}
4592 
4593 		/* Now try balancing at a lower domain level of new_cpu */
4594 		cpu = new_cpu;
4595 		weight = sd->span_weight;
4596 		sd = NULL;
4597 		for_each_domain(cpu, tmp) {
4598 			if (weight <= tmp->span_weight)
4599 				break;
4600 			if (tmp->flags & sd_flag)
4601 				sd = tmp;
4602 		}
4603 		/* while loop will break here if sd == NULL */
4604 	}
4605 unlock:
4606 	rcu_read_unlock();
4607 
4608 	return new_cpu;
4609 }
4610 
4611 /*
4612  * Called immediately before a task is migrated to a new cpu; task_cpu(p) and
4613  * cfs_rq_of(p) references at time of call are still valid and identify the
4614  * previous cpu.  However, the caller only guarantees p->pi_lock is held; no
4615  * other assumptions, including the state of rq->lock, should be made.
4616  */
4617 static void
4618 migrate_task_rq_fair(struct task_struct *p, int next_cpu)
4619 {
4620 	struct sched_entity *se = &p->se;
4621 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
4622 
4623 	/*
4624 	 * Load tracking: accumulate removed load so that it can be processed
4625 	 * when we next update owning cfs_rq under rq->lock.  Tasks contribute
4626 	 * to blocked load iff they have a positive decay-count.  It can never
4627 	 * be negative here since on-rq tasks have decay-count == 0.
4628 	 */
4629 	if (se->avg.decay_count) {
4630 		se->avg.decay_count = -__synchronize_entity_decay(se);
4631 		atomic_long_add(se->avg.load_avg_contrib,
4632 						&cfs_rq->removed_load);
4633 	}
4634 
4635 	/* We have migrated, no longer consider this task hot */
4636 	se->exec_start = 0;
4637 }
4638 #endif /* CONFIG_SMP */
4639 
4640 static unsigned long
4641 wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
4642 {
4643 	unsigned long gran = sysctl_sched_wakeup_granularity;
4644 
4645 	/*
4646 	 * Since its curr running now, convert the gran from real-time
4647 	 * to virtual-time in his units.
4648 	 *
4649 	 * By using 'se' instead of 'curr' we penalize light tasks, so
4650 	 * they get preempted easier. That is, if 'se' < 'curr' then
4651 	 * the resulting gran will be larger, therefore penalizing the
4652 	 * lighter, if otoh 'se' > 'curr' then the resulting gran will
4653 	 * be smaller, again penalizing the lighter task.
4654 	 *
4655 	 * This is especially important for buddies when the leftmost
4656 	 * task is higher priority than the buddy.
4657 	 */
4658 	return calc_delta_fair(gran, se);
4659 }
4660 
4661 /*
4662  * Should 'se' preempt 'curr'.
4663  *
4664  *             |s1
4665  *        |s2
4666  *   |s3
4667  *         g
4668  *      |<--->|c
4669  *
4670  *  w(c, s1) = -1
4671  *  w(c, s2) =  0
4672  *  w(c, s3) =  1
4673  *
4674  */
4675 static int
4676 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
4677 {
4678 	s64 gran, vdiff = curr->vruntime - se->vruntime;
4679 
4680 	if (vdiff <= 0)
4681 		return -1;
4682 
4683 	gran = wakeup_gran(curr, se);
4684 	if (vdiff > gran)
4685 		return 1;
4686 
4687 	return 0;
4688 }
4689 
4690 static void set_last_buddy(struct sched_entity *se)
4691 {
4692 	if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
4693 		return;
4694 
4695 	for_each_sched_entity(se)
4696 		cfs_rq_of(se)->last = se;
4697 }
4698 
4699 static void set_next_buddy(struct sched_entity *se)
4700 {
4701 	if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
4702 		return;
4703 
4704 	for_each_sched_entity(se)
4705 		cfs_rq_of(se)->next = se;
4706 }
4707 
4708 static void set_skip_buddy(struct sched_entity *se)
4709 {
4710 	for_each_sched_entity(se)
4711 		cfs_rq_of(se)->skip = se;
4712 }
4713 
4714 /*
4715  * Preempt the current task with a newly woken task if needed:
4716  */
4717 static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
4718 {
4719 	struct task_struct *curr = rq->curr;
4720 	struct sched_entity *se = &curr->se, *pse = &p->se;
4721 	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
4722 	int scale = cfs_rq->nr_running >= sched_nr_latency;
4723 	int next_buddy_marked = 0;
4724 
4725 	if (unlikely(se == pse))
4726 		return;
4727 
4728 	/*
4729 	 * This is possible from callers such as attach_tasks(), in which we
4730 	 * unconditionally check_prempt_curr() after an enqueue (which may have
4731 	 * lead to a throttle).  This both saves work and prevents false
4732 	 * next-buddy nomination below.
4733 	 */
4734 	if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
4735 		return;
4736 
4737 	if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
4738 		set_next_buddy(pse);
4739 		next_buddy_marked = 1;
4740 	}
4741 
4742 	/*
4743 	 * We can come here with TIF_NEED_RESCHED already set from new task
4744 	 * wake up path.
4745 	 *
4746 	 * Note: this also catches the edge-case of curr being in a throttled
4747 	 * group (e.g. via set_curr_task), since update_curr() (in the
4748 	 * enqueue of curr) will have resulted in resched being set.  This
4749 	 * prevents us from potentially nominating it as a false LAST_BUDDY
4750 	 * below.
4751 	 */
4752 	if (test_tsk_need_resched(curr))
4753 		return;
4754 
4755 	/* Idle tasks are by definition preempted by non-idle tasks. */
4756 	if (unlikely(curr->policy == SCHED_IDLE) &&
4757 	    likely(p->policy != SCHED_IDLE))
4758 		goto preempt;
4759 
4760 	/*
4761 	 * Batch and idle tasks do not preempt non-idle tasks (their preemption
4762 	 * is driven by the tick):
4763 	 */
4764 	if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
4765 		return;
4766 
4767 	find_matching_se(&se, &pse);
4768 	update_curr(cfs_rq_of(se));
4769 	BUG_ON(!pse);
4770 	if (wakeup_preempt_entity(se, pse) == 1) {
4771 		/*
4772 		 * Bias pick_next to pick the sched entity that is
4773 		 * triggering this preemption.
4774 		 */
4775 		if (!next_buddy_marked)
4776 			set_next_buddy(pse);
4777 		goto preempt;
4778 	}
4779 
4780 	return;
4781 
4782 preempt:
4783 	resched_curr(rq);
4784 	/*
4785 	 * Only set the backward buddy when the current task is still
4786 	 * on the rq. This can happen when a wakeup gets interleaved
4787 	 * with schedule on the ->pre_schedule() or idle_balance()
4788 	 * point, either of which can * drop the rq lock.
4789 	 *
4790 	 * Also, during early boot the idle thread is in the fair class,
4791 	 * for obvious reasons its a bad idea to schedule back to it.
4792 	 */
4793 	if (unlikely(!se->on_rq || curr == rq->idle))
4794 		return;
4795 
4796 	if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
4797 		set_last_buddy(se);
4798 }
4799 
4800 static struct task_struct *
4801 pick_next_task_fair(struct rq *rq, struct task_struct *prev)
4802 {
4803 	struct cfs_rq *cfs_rq = &rq->cfs;
4804 	struct sched_entity *se;
4805 	struct task_struct *p;
4806 	int new_tasks;
4807 
4808 again:
4809 #ifdef CONFIG_FAIR_GROUP_SCHED
4810 	if (!cfs_rq->nr_running)
4811 		goto idle;
4812 
4813 	if (prev->sched_class != &fair_sched_class)
4814 		goto simple;
4815 
4816 	/*
4817 	 * Because of the set_next_buddy() in dequeue_task_fair() it is rather
4818 	 * likely that a next task is from the same cgroup as the current.
4819 	 *
4820 	 * Therefore attempt to avoid putting and setting the entire cgroup
4821 	 * hierarchy, only change the part that actually changes.
4822 	 */
4823 
4824 	do {
4825 		struct sched_entity *curr = cfs_rq->curr;
4826 
4827 		/*
4828 		 * Since we got here without doing put_prev_entity() we also
4829 		 * have to consider cfs_rq->curr. If it is still a runnable
4830 		 * entity, update_curr() will update its vruntime, otherwise
4831 		 * forget we've ever seen it.
4832 		 */
4833 		if (curr && curr->on_rq)
4834 			update_curr(cfs_rq);
4835 		else
4836 			curr = NULL;
4837 
4838 		/*
4839 		 * This call to check_cfs_rq_runtime() will do the throttle and
4840 		 * dequeue its entity in the parent(s). Therefore the 'simple'
4841 		 * nr_running test will indeed be correct.
4842 		 */
4843 		if (unlikely(check_cfs_rq_runtime(cfs_rq)))
4844 			goto simple;
4845 
4846 		se = pick_next_entity(cfs_rq, curr);
4847 		cfs_rq = group_cfs_rq(se);
4848 	} while (cfs_rq);
4849 
4850 	p = task_of(se);
4851 
4852 	/*
4853 	 * Since we haven't yet done put_prev_entity and if the selected task
4854 	 * is a different task than we started out with, try and touch the
4855 	 * least amount of cfs_rqs.
4856 	 */
4857 	if (prev != p) {
4858 		struct sched_entity *pse = &prev->se;
4859 
4860 		while (!(cfs_rq = is_same_group(se, pse))) {
4861 			int se_depth = se->depth;
4862 			int pse_depth = pse->depth;
4863 
4864 			if (se_depth <= pse_depth) {
4865 				put_prev_entity(cfs_rq_of(pse), pse);
4866 				pse = parent_entity(pse);
4867 			}
4868 			if (se_depth >= pse_depth) {
4869 				set_next_entity(cfs_rq_of(se), se);
4870 				se = parent_entity(se);
4871 			}
4872 		}
4873 
4874 		put_prev_entity(cfs_rq, pse);
4875 		set_next_entity(cfs_rq, se);
4876 	}
4877 
4878 	if (hrtick_enabled(rq))
4879 		hrtick_start_fair(rq, p);
4880 
4881 	return p;
4882 simple:
4883 	cfs_rq = &rq->cfs;
4884 #endif
4885 
4886 	if (!cfs_rq->nr_running)
4887 		goto idle;
4888 
4889 	put_prev_task(rq, prev);
4890 
4891 	do {
4892 		se = pick_next_entity(cfs_rq, NULL);
4893 		set_next_entity(cfs_rq, se);
4894 		cfs_rq = group_cfs_rq(se);
4895 	} while (cfs_rq);
4896 
4897 	p = task_of(se);
4898 
4899 	if (hrtick_enabled(rq))
4900 		hrtick_start_fair(rq, p);
4901 
4902 	return p;
4903 
4904 idle:
4905 	new_tasks = idle_balance(rq);
4906 	/*
4907 	 * Because idle_balance() releases (and re-acquires) rq->lock, it is
4908 	 * possible for any higher priority task to appear. In that case we
4909 	 * must re-start the pick_next_entity() loop.
4910 	 */
4911 	if (new_tasks < 0)
4912 		return RETRY_TASK;
4913 
4914 	if (new_tasks > 0)
4915 		goto again;
4916 
4917 	return NULL;
4918 }
4919 
4920 /*
4921  * Account for a descheduled task:
4922  */
4923 static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
4924 {
4925 	struct sched_entity *se = &prev->se;
4926 	struct cfs_rq *cfs_rq;
4927 
4928 	for_each_sched_entity(se) {
4929 		cfs_rq = cfs_rq_of(se);
4930 		put_prev_entity(cfs_rq, se);
4931 	}
4932 }
4933 
4934 /*
4935  * sched_yield() is very simple
4936  *
4937  * The magic of dealing with the ->skip buddy is in pick_next_entity.
4938  */
4939 static void yield_task_fair(struct rq *rq)
4940 {
4941 	struct task_struct *curr = rq->curr;
4942 	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
4943 	struct sched_entity *se = &curr->se;
4944 
4945 	/*
4946 	 * Are we the only task in the tree?
4947 	 */
4948 	if (unlikely(rq->nr_running == 1))
4949 		return;
4950 
4951 	clear_buddies(cfs_rq, se);
4952 
4953 	if (curr->policy != SCHED_BATCH) {
4954 		update_rq_clock(rq);
4955 		/*
4956 		 * Update run-time statistics of the 'current'.
4957 		 */
4958 		update_curr(cfs_rq);
4959 		/*
4960 		 * Tell update_rq_clock() that we've just updated,
4961 		 * so we don't do microscopic update in schedule()
4962 		 * and double the fastpath cost.
4963 		 */
4964 		 rq->skip_clock_update = 1;
4965 	}
4966 
4967 	set_skip_buddy(se);
4968 }
4969 
4970 static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
4971 {
4972 	struct sched_entity *se = &p->se;
4973 
4974 	/* throttled hierarchies are not runnable */
4975 	if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
4976 		return false;
4977 
4978 	/* Tell the scheduler that we'd really like pse to run next. */
4979 	set_next_buddy(se);
4980 
4981 	yield_task_fair(rq);
4982 
4983 	return true;
4984 }
4985 
4986 #ifdef CONFIG_SMP
4987 /**************************************************
4988  * Fair scheduling class load-balancing methods.
4989  *
4990  * BASICS
4991  *
4992  * The purpose of load-balancing is to achieve the same basic fairness the
4993  * per-cpu scheduler provides, namely provide a proportional amount of compute
4994  * time to each task. This is expressed in the following equation:
4995  *
4996  *   W_i,n/P_i == W_j,n/P_j for all i,j                               (1)
4997  *
4998  * Where W_i,n is the n-th weight average for cpu i. The instantaneous weight
4999  * W_i,0 is defined as:
5000  *
5001  *   W_i,0 = \Sum_j w_i,j                                             (2)
5002  *
5003  * Where w_i,j is the weight of the j-th runnable task on cpu i. This weight
5004  * is derived from the nice value as per prio_to_weight[].
5005  *
5006  * The weight average is an exponential decay average of the instantaneous
5007  * weight:
5008  *
5009  *   W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0               (3)
5010  *
5011  * C_i is the compute capacity of cpu i, typically it is the
5012  * fraction of 'recent' time available for SCHED_OTHER task execution. But it
5013  * can also include other factors [XXX].
5014  *
5015  * To achieve this balance we define a measure of imbalance which follows
5016  * directly from (1):
5017  *
5018  *   imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j }    (4)
5019  *
5020  * We them move tasks around to minimize the imbalance. In the continuous
5021  * function space it is obvious this converges, in the discrete case we get
5022  * a few fun cases generally called infeasible weight scenarios.
5023  *
5024  * [XXX expand on:
5025  *     - infeasible weights;
5026  *     - local vs global optima in the discrete case. ]
5027  *
5028  *
5029  * SCHED DOMAINS
5030  *
5031  * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
5032  * for all i,j solution, we create a tree of cpus that follows the hardware
5033  * topology where each level pairs two lower groups (or better). This results
5034  * in O(log n) layers. Furthermore we reduce the number of cpus going up the
5035  * tree to only the first of the previous level and we decrease the frequency
5036  * of load-balance at each level inv. proportional to the number of cpus in
5037  * the groups.
5038  *
5039  * This yields:
5040  *
5041  *     log_2 n     1     n
5042  *   \Sum       { --- * --- * 2^i } = O(n)                            (5)
5043  *     i = 0      2^i   2^i
5044  *                               `- size of each group
5045  *         |         |     `- number of cpus doing load-balance
5046  *         |         `- freq
5047  *         `- sum over all levels
5048  *
5049  * Coupled with a limit on how many tasks we can migrate every balance pass,
5050  * this makes (5) the runtime complexity of the balancer.
5051  *
5052  * An important property here is that each CPU is still (indirectly) connected
5053  * to every other cpu in at most O(log n) steps:
5054  *
5055  * The adjacency matrix of the resulting graph is given by:
5056  *
5057  *             log_2 n
5058  *   A_i,j = \Union     (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1)  (6)
5059  *             k = 0
5060  *
5061  * And you'll find that:
5062  *
5063  *   A^(log_2 n)_i,j != 0  for all i,j                                (7)
5064  *
5065  * Showing there's indeed a path between every cpu in at most O(log n) steps.
5066  * The task movement gives a factor of O(m), giving a convergence complexity
5067  * of:
5068  *
5069  *   O(nm log n),  n := nr_cpus, m := nr_tasks                        (8)
5070  *
5071  *
5072  * WORK CONSERVING
5073  *
5074  * In order to avoid CPUs going idle while there's still work to do, new idle
5075  * balancing is more aggressive and has the newly idle cpu iterate up the domain
5076  * tree itself instead of relying on other CPUs to bring it work.
5077  *
5078  * This adds some complexity to both (5) and (8) but it reduces the total idle
5079  * time.
5080  *
5081  * [XXX more?]
5082  *
5083  *
5084  * CGROUPS
5085  *
5086  * Cgroups make a horror show out of (2), instead of a simple sum we get:
5087  *
5088  *                                s_k,i
5089  *   W_i,0 = \Sum_j \Prod_k w_k * -----                               (9)
5090  *                                 S_k
5091  *
5092  * Where
5093  *
5094  *   s_k,i = \Sum_j w_i,j,k  and  S_k = \Sum_i s_k,i                 (10)
5095  *
5096  * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on cpu i.
5097  *
5098  * The big problem is S_k, its a global sum needed to compute a local (W_i)
5099  * property.
5100  *
5101  * [XXX write more on how we solve this.. _after_ merging pjt's patches that
5102  *      rewrite all of this once again.]
5103  */
5104 
5105 static unsigned long __read_mostly max_load_balance_interval = HZ/10;
5106 
5107 enum fbq_type { regular, remote, all };
5108 
5109 #define LBF_ALL_PINNED	0x01
5110 #define LBF_NEED_BREAK	0x02
5111 #define LBF_DST_PINNED  0x04
5112 #define LBF_SOME_PINNED	0x08
5113 
5114 struct lb_env {
5115 	struct sched_domain	*sd;
5116 
5117 	struct rq		*src_rq;
5118 	int			src_cpu;
5119 
5120 	int			dst_cpu;
5121 	struct rq		*dst_rq;
5122 
5123 	struct cpumask		*dst_grpmask;
5124 	int			new_dst_cpu;
5125 	enum cpu_idle_type	idle;
5126 	long			imbalance;
5127 	/* The set of CPUs under consideration for load-balancing */
5128 	struct cpumask		*cpus;
5129 
5130 	unsigned int		flags;
5131 
5132 	unsigned int		loop;
5133 	unsigned int		loop_break;
5134 	unsigned int		loop_max;
5135 
5136 	enum fbq_type		fbq_type;
5137 	struct list_head	tasks;
5138 };
5139 
5140 /*
5141  * Is this task likely cache-hot:
5142  */
5143 static int task_hot(struct task_struct *p, struct lb_env *env)
5144 {
5145 	s64 delta;
5146 
5147 	lockdep_assert_held(&env->src_rq->lock);
5148 
5149 	if (p->sched_class != &fair_sched_class)
5150 		return 0;
5151 
5152 	if (unlikely(p->policy == SCHED_IDLE))
5153 		return 0;
5154 
5155 	/*
5156 	 * Buddy candidates are cache hot:
5157 	 */
5158 	if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running &&
5159 			(&p->se == cfs_rq_of(&p->se)->next ||
5160 			 &p->se == cfs_rq_of(&p->se)->last))
5161 		return 1;
5162 
5163 	if (sysctl_sched_migration_cost == -1)
5164 		return 1;
5165 	if (sysctl_sched_migration_cost == 0)
5166 		return 0;
5167 
5168 	delta = rq_clock_task(env->src_rq) - p->se.exec_start;
5169 
5170 	return delta < (s64)sysctl_sched_migration_cost;
5171 }
5172 
5173 #ifdef CONFIG_NUMA_BALANCING
5174 /* Returns true if the destination node has incurred more faults */
5175 static bool migrate_improves_locality(struct task_struct *p, struct lb_env *env)
5176 {
5177 	struct numa_group *numa_group = rcu_dereference(p->numa_group);
5178 	int src_nid, dst_nid;
5179 
5180 	if (!sched_feat(NUMA_FAVOUR_HIGHER) || !p->numa_faults_memory ||
5181 	    !(env->sd->flags & SD_NUMA)) {
5182 		return false;
5183 	}
5184 
5185 	src_nid = cpu_to_node(env->src_cpu);
5186 	dst_nid = cpu_to_node(env->dst_cpu);
5187 
5188 	if (src_nid == dst_nid)
5189 		return false;
5190 
5191 	if (numa_group) {
5192 		/* Task is already in the group's interleave set. */
5193 		if (node_isset(src_nid, numa_group->active_nodes))
5194 			return false;
5195 
5196 		/* Task is moving into the group's interleave set. */
5197 		if (node_isset(dst_nid, numa_group->active_nodes))
5198 			return true;
5199 
5200 		return group_faults(p, dst_nid) > group_faults(p, src_nid);
5201 	}
5202 
5203 	/* Encourage migration to the preferred node. */
5204 	if (dst_nid == p->numa_preferred_nid)
5205 		return true;
5206 
5207 	return task_faults(p, dst_nid) > task_faults(p, src_nid);
5208 }
5209 
5210 
5211 static bool migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
5212 {
5213 	struct numa_group *numa_group = rcu_dereference(p->numa_group);
5214 	int src_nid, dst_nid;
5215 
5216 	if (!sched_feat(NUMA) || !sched_feat(NUMA_RESIST_LOWER))
5217 		return false;
5218 
5219 	if (!p->numa_faults_memory || !(env->sd->flags & SD_NUMA))
5220 		return false;
5221 
5222 	src_nid = cpu_to_node(env->src_cpu);
5223 	dst_nid = cpu_to_node(env->dst_cpu);
5224 
5225 	if (src_nid == dst_nid)
5226 		return false;
5227 
5228 	if (numa_group) {
5229 		/* Task is moving within/into the group's interleave set. */
5230 		if (node_isset(dst_nid, numa_group->active_nodes))
5231 			return false;
5232 
5233 		/* Task is moving out of the group's interleave set. */
5234 		if (node_isset(src_nid, numa_group->active_nodes))
5235 			return true;
5236 
5237 		return group_faults(p, dst_nid) < group_faults(p, src_nid);
5238 	}
5239 
5240 	/* Migrating away from the preferred node is always bad. */
5241 	if (src_nid == p->numa_preferred_nid)
5242 		return true;
5243 
5244 	return task_faults(p, dst_nid) < task_faults(p, src_nid);
5245 }
5246 
5247 #else
5248 static inline bool migrate_improves_locality(struct task_struct *p,
5249 					     struct lb_env *env)
5250 {
5251 	return false;
5252 }
5253 
5254 static inline bool migrate_degrades_locality(struct task_struct *p,
5255 					     struct lb_env *env)
5256 {
5257 	return false;
5258 }
5259 #endif
5260 
5261 /*
5262  * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
5263  */
5264 static
5265 int can_migrate_task(struct task_struct *p, struct lb_env *env)
5266 {
5267 	int tsk_cache_hot = 0;
5268 
5269 	lockdep_assert_held(&env->src_rq->lock);
5270 
5271 	/*
5272 	 * We do not migrate tasks that are:
5273 	 * 1) throttled_lb_pair, or
5274 	 * 2) cannot be migrated to this CPU due to cpus_allowed, or
5275 	 * 3) running (obviously), or
5276 	 * 4) are cache-hot on their current CPU.
5277 	 */
5278 	if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
5279 		return 0;
5280 
5281 	if (!cpumask_test_cpu(env->dst_cpu, tsk_cpus_allowed(p))) {
5282 		int cpu;
5283 
5284 		schedstat_inc(p, se.statistics.nr_failed_migrations_affine);
5285 
5286 		env->flags |= LBF_SOME_PINNED;
5287 
5288 		/*
5289 		 * Remember if this task can be migrated to any other cpu in
5290 		 * our sched_group. We may want to revisit it if we couldn't
5291 		 * meet load balance goals by pulling other tasks on src_cpu.
5292 		 *
5293 		 * Also avoid computing new_dst_cpu if we have already computed
5294 		 * one in current iteration.
5295 		 */
5296 		if (!env->dst_grpmask || (env->flags & LBF_DST_PINNED))
5297 			return 0;
5298 
5299 		/* Prevent to re-select dst_cpu via env's cpus */
5300 		for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
5301 			if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p))) {
5302 				env->flags |= LBF_DST_PINNED;
5303 				env->new_dst_cpu = cpu;
5304 				break;
5305 			}
5306 		}
5307 
5308 		return 0;
5309 	}
5310 
5311 	/* Record that we found atleast one task that could run on dst_cpu */
5312 	env->flags &= ~LBF_ALL_PINNED;
5313 
5314 	if (task_running(env->src_rq, p)) {
5315 		schedstat_inc(p, se.statistics.nr_failed_migrations_running);
5316 		return 0;
5317 	}
5318 
5319 	/*
5320 	 * Aggressive migration if:
5321 	 * 1) destination numa is preferred
5322 	 * 2) task is cache cold, or
5323 	 * 3) too many balance attempts have failed.
5324 	 */
5325 	tsk_cache_hot = task_hot(p, env);
5326 	if (!tsk_cache_hot)
5327 		tsk_cache_hot = migrate_degrades_locality(p, env);
5328 
5329 	if (migrate_improves_locality(p, env) || !tsk_cache_hot ||
5330 	    env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
5331 		if (tsk_cache_hot) {
5332 			schedstat_inc(env->sd, lb_hot_gained[env->idle]);
5333 			schedstat_inc(p, se.statistics.nr_forced_migrations);
5334 		}
5335 		return 1;
5336 	}
5337 
5338 	schedstat_inc(p, se.statistics.nr_failed_migrations_hot);
5339 	return 0;
5340 }
5341 
5342 /*
5343  * detach_task() -- detach the task for the migration specified in env
5344  */
5345 static void detach_task(struct task_struct *p, struct lb_env *env)
5346 {
5347 	lockdep_assert_held(&env->src_rq->lock);
5348 
5349 	deactivate_task(env->src_rq, p, 0);
5350 	p->on_rq = TASK_ON_RQ_MIGRATING;
5351 	set_task_cpu(p, env->dst_cpu);
5352 }
5353 
5354 /*
5355  * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as
5356  * part of active balancing operations within "domain".
5357  *
5358  * Returns a task if successful and NULL otherwise.
5359  */
5360 static struct task_struct *detach_one_task(struct lb_env *env)
5361 {
5362 	struct task_struct *p, *n;
5363 
5364 	lockdep_assert_held(&env->src_rq->lock);
5365 
5366 	list_for_each_entry_safe(p, n, &env->src_rq->cfs_tasks, se.group_node) {
5367 		if (!can_migrate_task(p, env))
5368 			continue;
5369 
5370 		detach_task(p, env);
5371 
5372 		/*
5373 		 * Right now, this is only the second place where
5374 		 * lb_gained[env->idle] is updated (other is detach_tasks)
5375 		 * so we can safely collect stats here rather than
5376 		 * inside detach_tasks().
5377 		 */
5378 		schedstat_inc(env->sd, lb_gained[env->idle]);
5379 		return p;
5380 	}
5381 	return NULL;
5382 }
5383 
5384 static const unsigned int sched_nr_migrate_break = 32;
5385 
5386 /*
5387  * detach_tasks() -- tries to detach up to imbalance weighted load from
5388  * busiest_rq, as part of a balancing operation within domain "sd".
5389  *
5390  * Returns number of detached tasks if successful and 0 otherwise.
5391  */
5392 static int detach_tasks(struct lb_env *env)
5393 {
5394 	struct list_head *tasks = &env->src_rq->cfs_tasks;
5395 	struct task_struct *p;
5396 	unsigned long load;
5397 	int detached = 0;
5398 
5399 	lockdep_assert_held(&env->src_rq->lock);
5400 
5401 	if (env->imbalance <= 0)
5402 		return 0;
5403 
5404 	while (!list_empty(tasks)) {
5405 		p = list_first_entry(tasks, struct task_struct, se.group_node);
5406 
5407 		env->loop++;
5408 		/* We've more or less seen every task there is, call it quits */
5409 		if (env->loop > env->loop_max)
5410 			break;
5411 
5412 		/* take a breather every nr_migrate tasks */
5413 		if (env->loop > env->loop_break) {
5414 			env->loop_break += sched_nr_migrate_break;
5415 			env->flags |= LBF_NEED_BREAK;
5416 			break;
5417 		}
5418 
5419 		if (!can_migrate_task(p, env))
5420 			goto next;
5421 
5422 		load = task_h_load(p);
5423 
5424 		if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed)
5425 			goto next;
5426 
5427 		if ((load / 2) > env->imbalance)
5428 			goto next;
5429 
5430 		detach_task(p, env);
5431 		list_add(&p->se.group_node, &env->tasks);
5432 
5433 		detached++;
5434 		env->imbalance -= load;
5435 
5436 #ifdef CONFIG_PREEMPT
5437 		/*
5438 		 * NEWIDLE balancing is a source of latency, so preemptible
5439 		 * kernels will stop after the first task is detached to minimize
5440 		 * the critical section.
5441 		 */
5442 		if (env->idle == CPU_NEWLY_IDLE)
5443 			break;
5444 #endif
5445 
5446 		/*
5447 		 * We only want to steal up to the prescribed amount of
5448 		 * weighted load.
5449 		 */
5450 		if (env->imbalance <= 0)
5451 			break;
5452 
5453 		continue;
5454 next:
5455 		list_move_tail(&p->se.group_node, tasks);
5456 	}
5457 
5458 	/*
5459 	 * Right now, this is one of only two places we collect this stat
5460 	 * so we can safely collect detach_one_task() stats here rather
5461 	 * than inside detach_one_task().
5462 	 */
5463 	schedstat_add(env->sd, lb_gained[env->idle], detached);
5464 
5465 	return detached;
5466 }
5467 
5468 /*
5469  * attach_task() -- attach the task detached by detach_task() to its new rq.
5470  */
5471 static void attach_task(struct rq *rq, struct task_struct *p)
5472 {
5473 	lockdep_assert_held(&rq->lock);
5474 
5475 	BUG_ON(task_rq(p) != rq);
5476 	p->on_rq = TASK_ON_RQ_QUEUED;
5477 	activate_task(rq, p, 0);
5478 	check_preempt_curr(rq, p, 0);
5479 }
5480 
5481 /*
5482  * attach_one_task() -- attaches the task returned from detach_one_task() to
5483  * its new rq.
5484  */
5485 static void attach_one_task(struct rq *rq, struct task_struct *p)
5486 {
5487 	raw_spin_lock(&rq->lock);
5488 	attach_task(rq, p);
5489 	raw_spin_unlock(&rq->lock);
5490 }
5491 
5492 /*
5493  * attach_tasks() -- attaches all tasks detached by detach_tasks() to their
5494  * new rq.
5495  */
5496 static void attach_tasks(struct lb_env *env)
5497 {
5498 	struct list_head *tasks = &env->tasks;
5499 	struct task_struct *p;
5500 
5501 	raw_spin_lock(&env->dst_rq->lock);
5502 
5503 	while (!list_empty(tasks)) {
5504 		p = list_first_entry(tasks, struct task_struct, se.group_node);
5505 		list_del_init(&p->se.group_node);
5506 
5507 		attach_task(env->dst_rq, p);
5508 	}
5509 
5510 	raw_spin_unlock(&env->dst_rq->lock);
5511 }
5512 
5513 #ifdef CONFIG_FAIR_GROUP_SCHED
5514 /*
5515  * update tg->load_weight by folding this cpu's load_avg
5516  */
5517 static void __update_blocked_averages_cpu(struct task_group *tg, int cpu)
5518 {
5519 	struct sched_entity *se = tg->se[cpu];
5520 	struct cfs_rq *cfs_rq = tg->cfs_rq[cpu];
5521 
5522 	/* throttled entities do not contribute to load */
5523 	if (throttled_hierarchy(cfs_rq))
5524 		return;
5525 
5526 	update_cfs_rq_blocked_load(cfs_rq, 1);
5527 
5528 	if (se) {
5529 		update_entity_load_avg(se, 1);
5530 		/*
5531 		 * We pivot on our runnable average having decayed to zero for
5532 		 * list removal.  This generally implies that all our children
5533 		 * have also been removed (modulo rounding error or bandwidth
5534 		 * control); however, such cases are rare and we can fix these
5535 		 * at enqueue.
5536 		 *
5537 		 * TODO: fix up out-of-order children on enqueue.
5538 		 */
5539 		if (!se->avg.runnable_avg_sum && !cfs_rq->nr_running)
5540 			list_del_leaf_cfs_rq(cfs_rq);
5541 	} else {
5542 		struct rq *rq = rq_of(cfs_rq);
5543 		update_rq_runnable_avg(rq, rq->nr_running);
5544 	}
5545 }
5546 
5547 static void update_blocked_averages(int cpu)
5548 {
5549 	struct rq *rq = cpu_rq(cpu);
5550 	struct cfs_rq *cfs_rq;
5551 	unsigned long flags;
5552 
5553 	raw_spin_lock_irqsave(&rq->lock, flags);
5554 	update_rq_clock(rq);
5555 	/*
5556 	 * Iterates the task_group tree in a bottom up fashion, see
5557 	 * list_add_leaf_cfs_rq() for details.
5558 	 */
5559 	for_each_leaf_cfs_rq(rq, cfs_rq) {
5560 		/*
5561 		 * Note: We may want to consider periodically releasing
5562 		 * rq->lock about these updates so that creating many task
5563 		 * groups does not result in continually extending hold time.
5564 		 */
5565 		__update_blocked_averages_cpu(cfs_rq->tg, rq->cpu);
5566 	}
5567 
5568 	raw_spin_unlock_irqrestore(&rq->lock, flags);
5569 }
5570 
5571 /*
5572  * Compute the hierarchical load factor for cfs_rq and all its ascendants.
5573  * This needs to be done in a top-down fashion because the load of a child
5574  * group is a fraction of its parents load.
5575  */
5576 static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
5577 {
5578 	struct rq *rq = rq_of(cfs_rq);
5579 	struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
5580 	unsigned long now = jiffies;
5581 	unsigned long load;
5582 
5583 	if (cfs_rq->last_h_load_update == now)
5584 		return;
5585 
5586 	cfs_rq->h_load_next = NULL;
5587 	for_each_sched_entity(se) {
5588 		cfs_rq = cfs_rq_of(se);
5589 		cfs_rq->h_load_next = se;
5590 		if (cfs_rq->last_h_load_update == now)
5591 			break;
5592 	}
5593 
5594 	if (!se) {
5595 		cfs_rq->h_load = cfs_rq->runnable_load_avg;
5596 		cfs_rq->last_h_load_update = now;
5597 	}
5598 
5599 	while ((se = cfs_rq->h_load_next) != NULL) {
5600 		load = cfs_rq->h_load;
5601 		load = div64_ul(load * se->avg.load_avg_contrib,
5602 				cfs_rq->runnable_load_avg + 1);
5603 		cfs_rq = group_cfs_rq(se);
5604 		cfs_rq->h_load = load;
5605 		cfs_rq->last_h_load_update = now;
5606 	}
5607 }
5608 
5609 static unsigned long task_h_load(struct task_struct *p)
5610 {
5611 	struct cfs_rq *cfs_rq = task_cfs_rq(p);
5612 
5613 	update_cfs_rq_h_load(cfs_rq);
5614 	return div64_ul(p->se.avg.load_avg_contrib * cfs_rq->h_load,
5615 			cfs_rq->runnable_load_avg + 1);
5616 }
5617 #else
5618 static inline void update_blocked_averages(int cpu)
5619 {
5620 }
5621 
5622 static unsigned long task_h_load(struct task_struct *p)
5623 {
5624 	return p->se.avg.load_avg_contrib;
5625 }
5626 #endif
5627 
5628 /********** Helpers for find_busiest_group ************************/
5629 
5630 enum group_type {
5631 	group_other = 0,
5632 	group_imbalanced,
5633 	group_overloaded,
5634 };
5635 
5636 /*
5637  * sg_lb_stats - stats of a sched_group required for load_balancing
5638  */
5639 struct sg_lb_stats {
5640 	unsigned long avg_load; /*Avg load across the CPUs of the group */
5641 	unsigned long group_load; /* Total load over the CPUs of the group */
5642 	unsigned long sum_weighted_load; /* Weighted load of group's tasks */
5643 	unsigned long load_per_task;
5644 	unsigned long group_capacity;
5645 	unsigned int sum_nr_running; /* Nr tasks running in the group */
5646 	unsigned int group_capacity_factor;
5647 	unsigned int idle_cpus;
5648 	unsigned int group_weight;
5649 	enum group_type group_type;
5650 	int group_has_free_capacity;
5651 #ifdef CONFIG_NUMA_BALANCING
5652 	unsigned int nr_numa_running;
5653 	unsigned int nr_preferred_running;
5654 #endif
5655 };
5656 
5657 /*
5658  * sd_lb_stats - Structure to store the statistics of a sched_domain
5659  *		 during load balancing.
5660  */
5661 struct sd_lb_stats {
5662 	struct sched_group *busiest;	/* Busiest group in this sd */
5663 	struct sched_group *local;	/* Local group in this sd */
5664 	unsigned long total_load;	/* Total load of all groups in sd */
5665 	unsigned long total_capacity;	/* Total capacity of all groups in sd */
5666 	unsigned long avg_load;	/* Average load across all groups in sd */
5667 
5668 	struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
5669 	struct sg_lb_stats local_stat;	/* Statistics of the local group */
5670 };
5671 
5672 static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
5673 {
5674 	/*
5675 	 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
5676 	 * local_stat because update_sg_lb_stats() does a full clear/assignment.
5677 	 * We must however clear busiest_stat::avg_load because
5678 	 * update_sd_pick_busiest() reads this before assignment.
5679 	 */
5680 	*sds = (struct sd_lb_stats){
5681 		.busiest = NULL,
5682 		.local = NULL,
5683 		.total_load = 0UL,
5684 		.total_capacity = 0UL,
5685 		.busiest_stat = {
5686 			.avg_load = 0UL,
5687 			.sum_nr_running = 0,
5688 			.group_type = group_other,
5689 		},
5690 	};
5691 }
5692 
5693 /**
5694  * get_sd_load_idx - Obtain the load index for a given sched domain.
5695  * @sd: The sched_domain whose load_idx is to be obtained.
5696  * @idle: The idle status of the CPU for whose sd load_idx is obtained.
5697  *
5698  * Return: The load index.
5699  */
5700 static inline int get_sd_load_idx(struct sched_domain *sd,
5701 					enum cpu_idle_type idle)
5702 {
5703 	int load_idx;
5704 
5705 	switch (idle) {
5706 	case CPU_NOT_IDLE:
5707 		load_idx = sd->busy_idx;
5708 		break;
5709 
5710 	case CPU_NEWLY_IDLE:
5711 		load_idx = sd->newidle_idx;
5712 		break;
5713 	default:
5714 		load_idx = sd->idle_idx;
5715 		break;
5716 	}
5717 
5718 	return load_idx;
5719 }
5720 
5721 static unsigned long default_scale_capacity(struct sched_domain *sd, int cpu)
5722 {
5723 	return SCHED_CAPACITY_SCALE;
5724 }
5725 
5726 unsigned long __weak arch_scale_freq_capacity(struct sched_domain *sd, int cpu)
5727 {
5728 	return default_scale_capacity(sd, cpu);
5729 }
5730 
5731 static unsigned long default_scale_cpu_capacity(struct sched_domain *sd, int cpu)
5732 {
5733 	if ((sd->flags & SD_SHARE_CPUCAPACITY) && (sd->span_weight > 1))
5734 		return sd->smt_gain / sd->span_weight;
5735 
5736 	return SCHED_CAPACITY_SCALE;
5737 }
5738 
5739 unsigned long __weak arch_scale_cpu_capacity(struct sched_domain *sd, int cpu)
5740 {
5741 	return default_scale_cpu_capacity(sd, cpu);
5742 }
5743 
5744 static unsigned long scale_rt_capacity(int cpu)
5745 {
5746 	struct rq *rq = cpu_rq(cpu);
5747 	u64 total, available, age_stamp, avg;
5748 	s64 delta;
5749 
5750 	/*
5751 	 * Since we're reading these variables without serialization make sure
5752 	 * we read them once before doing sanity checks on them.
5753 	 */
5754 	age_stamp = ACCESS_ONCE(rq->age_stamp);
5755 	avg = ACCESS_ONCE(rq->rt_avg);
5756 
5757 	delta = rq_clock(rq) - age_stamp;
5758 	if (unlikely(delta < 0))
5759 		delta = 0;
5760 
5761 	total = sched_avg_period() + delta;
5762 
5763 	if (unlikely(total < avg)) {
5764 		/* Ensures that capacity won't end up being negative */
5765 		available = 0;
5766 	} else {
5767 		available = total - avg;
5768 	}
5769 
5770 	if (unlikely((s64)total < SCHED_CAPACITY_SCALE))
5771 		total = SCHED_CAPACITY_SCALE;
5772 
5773 	total >>= SCHED_CAPACITY_SHIFT;
5774 
5775 	return div_u64(available, total);
5776 }
5777 
5778 static void update_cpu_capacity(struct sched_domain *sd, int cpu)
5779 {
5780 	unsigned long capacity = SCHED_CAPACITY_SCALE;
5781 	struct sched_group *sdg = sd->groups;
5782 
5783 	if (sched_feat(ARCH_CAPACITY))
5784 		capacity *= arch_scale_cpu_capacity(sd, cpu);
5785 	else
5786 		capacity *= default_scale_cpu_capacity(sd, cpu);
5787 
5788 	capacity >>= SCHED_CAPACITY_SHIFT;
5789 
5790 	sdg->sgc->capacity_orig = capacity;
5791 
5792 	if (sched_feat(ARCH_CAPACITY))
5793 		capacity *= arch_scale_freq_capacity(sd, cpu);
5794 	else
5795 		capacity *= default_scale_capacity(sd, cpu);
5796 
5797 	capacity >>= SCHED_CAPACITY_SHIFT;
5798 
5799 	capacity *= scale_rt_capacity(cpu);
5800 	capacity >>= SCHED_CAPACITY_SHIFT;
5801 
5802 	if (!capacity)
5803 		capacity = 1;
5804 
5805 	cpu_rq(cpu)->cpu_capacity = capacity;
5806 	sdg->sgc->capacity = capacity;
5807 }
5808 
5809 void update_group_capacity(struct sched_domain *sd, int cpu)
5810 {
5811 	struct sched_domain *child = sd->child;
5812 	struct sched_group *group, *sdg = sd->groups;
5813 	unsigned long capacity, capacity_orig;
5814 	unsigned long interval;
5815 
5816 	interval = msecs_to_jiffies(sd->balance_interval);
5817 	interval = clamp(interval, 1UL, max_load_balance_interval);
5818 	sdg->sgc->next_update = jiffies + interval;
5819 
5820 	if (!child) {
5821 		update_cpu_capacity(sd, cpu);
5822 		return;
5823 	}
5824 
5825 	capacity_orig = capacity = 0;
5826 
5827 	if (child->flags & SD_OVERLAP) {
5828 		/*
5829 		 * SD_OVERLAP domains cannot assume that child groups
5830 		 * span the current group.
5831 		 */
5832 
5833 		for_each_cpu(cpu, sched_group_cpus(sdg)) {
5834 			struct sched_group_capacity *sgc;
5835 			struct rq *rq = cpu_rq(cpu);
5836 
5837 			/*
5838 			 * build_sched_domains() -> init_sched_groups_capacity()
5839 			 * gets here before we've attached the domains to the
5840 			 * runqueues.
5841 			 *
5842 			 * Use capacity_of(), which is set irrespective of domains
5843 			 * in update_cpu_capacity().
5844 			 *
5845 			 * This avoids capacity/capacity_orig from being 0 and
5846 			 * causing divide-by-zero issues on boot.
5847 			 *
5848 			 * Runtime updates will correct capacity_orig.
5849 			 */
5850 			if (unlikely(!rq->sd)) {
5851 				capacity_orig += capacity_of(cpu);
5852 				capacity += capacity_of(cpu);
5853 				continue;
5854 			}
5855 
5856 			sgc = rq->sd->groups->sgc;
5857 			capacity_orig += sgc->capacity_orig;
5858 			capacity += sgc->capacity;
5859 		}
5860 	} else  {
5861 		/*
5862 		 * !SD_OVERLAP domains can assume that child groups
5863 		 * span the current group.
5864 		 */
5865 
5866 		group = child->groups;
5867 		do {
5868 			capacity_orig += group->sgc->capacity_orig;
5869 			capacity += group->sgc->capacity;
5870 			group = group->next;
5871 		} while (group != child->groups);
5872 	}
5873 
5874 	sdg->sgc->capacity_orig = capacity_orig;
5875 	sdg->sgc->capacity = capacity;
5876 }
5877 
5878 /*
5879  * Try and fix up capacity for tiny siblings, this is needed when
5880  * things like SD_ASYM_PACKING need f_b_g to select another sibling
5881  * which on its own isn't powerful enough.
5882  *
5883  * See update_sd_pick_busiest() and check_asym_packing().
5884  */
5885 static inline int
5886 fix_small_capacity(struct sched_domain *sd, struct sched_group *group)
5887 {
5888 	/*
5889 	 * Only siblings can have significantly less than SCHED_CAPACITY_SCALE
5890 	 */
5891 	if (!(sd->flags & SD_SHARE_CPUCAPACITY))
5892 		return 0;
5893 
5894 	/*
5895 	 * If ~90% of the cpu_capacity is still there, we're good.
5896 	 */
5897 	if (group->sgc->capacity * 32 > group->sgc->capacity_orig * 29)
5898 		return 1;
5899 
5900 	return 0;
5901 }
5902 
5903 /*
5904  * Group imbalance indicates (and tries to solve) the problem where balancing
5905  * groups is inadequate due to tsk_cpus_allowed() constraints.
5906  *
5907  * Imagine a situation of two groups of 4 cpus each and 4 tasks each with a
5908  * cpumask covering 1 cpu of the first group and 3 cpus of the second group.
5909  * Something like:
5910  *
5911  * 	{ 0 1 2 3 } { 4 5 6 7 }
5912  * 	        *     * * *
5913  *
5914  * If we were to balance group-wise we'd place two tasks in the first group and
5915  * two tasks in the second group. Clearly this is undesired as it will overload
5916  * cpu 3 and leave one of the cpus in the second group unused.
5917  *
5918  * The current solution to this issue is detecting the skew in the first group
5919  * by noticing the lower domain failed to reach balance and had difficulty
5920  * moving tasks due to affinity constraints.
5921  *
5922  * When this is so detected; this group becomes a candidate for busiest; see
5923  * update_sd_pick_busiest(). And calculate_imbalance() and
5924  * find_busiest_group() avoid some of the usual balance conditions to allow it
5925  * to create an effective group imbalance.
5926  *
5927  * This is a somewhat tricky proposition since the next run might not find the
5928  * group imbalance and decide the groups need to be balanced again. A most
5929  * subtle and fragile situation.
5930  */
5931 
5932 static inline int sg_imbalanced(struct sched_group *group)
5933 {
5934 	return group->sgc->imbalance;
5935 }
5936 
5937 /*
5938  * Compute the group capacity factor.
5939  *
5940  * Avoid the issue where N*frac(smt_capacity) >= 1 creates 'phantom' cores by
5941  * first dividing out the smt factor and computing the actual number of cores
5942  * and limit unit capacity with that.
5943  */
5944 static inline int sg_capacity_factor(struct lb_env *env, struct sched_group *group)
5945 {
5946 	unsigned int capacity_factor, smt, cpus;
5947 	unsigned int capacity, capacity_orig;
5948 
5949 	capacity = group->sgc->capacity;
5950 	capacity_orig = group->sgc->capacity_orig;
5951 	cpus = group->group_weight;
5952 
5953 	/* smt := ceil(cpus / capacity), assumes: 1 < smt_capacity < 2 */
5954 	smt = DIV_ROUND_UP(SCHED_CAPACITY_SCALE * cpus, capacity_orig);
5955 	capacity_factor = cpus / smt; /* cores */
5956 
5957 	capacity_factor = min_t(unsigned,
5958 		capacity_factor, DIV_ROUND_CLOSEST(capacity, SCHED_CAPACITY_SCALE));
5959 	if (!capacity_factor)
5960 		capacity_factor = fix_small_capacity(env->sd, group);
5961 
5962 	return capacity_factor;
5963 }
5964 
5965 static enum group_type
5966 group_classify(struct sched_group *group, struct sg_lb_stats *sgs)
5967 {
5968 	if (sgs->sum_nr_running > sgs->group_capacity_factor)
5969 		return group_overloaded;
5970 
5971 	if (sg_imbalanced(group))
5972 		return group_imbalanced;
5973 
5974 	return group_other;
5975 }
5976 
5977 /**
5978  * update_sg_lb_stats - Update sched_group's statistics for load balancing.
5979  * @env: The load balancing environment.
5980  * @group: sched_group whose statistics are to be updated.
5981  * @load_idx: Load index of sched_domain of this_cpu for load calc.
5982  * @local_group: Does group contain this_cpu.
5983  * @sgs: variable to hold the statistics for this group.
5984  * @overload: Indicate more than one runnable task for any CPU.
5985  */
5986 static inline void update_sg_lb_stats(struct lb_env *env,
5987 			struct sched_group *group, int load_idx,
5988 			int local_group, struct sg_lb_stats *sgs,
5989 			bool *overload)
5990 {
5991 	unsigned long load;
5992 	int i;
5993 
5994 	memset(sgs, 0, sizeof(*sgs));
5995 
5996 	for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
5997 		struct rq *rq = cpu_rq(i);
5998 
5999 		/* Bias balancing toward cpus of our domain */
6000 		if (local_group)
6001 			load = target_load(i, load_idx);
6002 		else
6003 			load = source_load(i, load_idx);
6004 
6005 		sgs->group_load += load;
6006 		sgs->sum_nr_running += rq->cfs.h_nr_running;
6007 
6008 		if (rq->nr_running > 1)
6009 			*overload = true;
6010 
6011 #ifdef CONFIG_NUMA_BALANCING
6012 		sgs->nr_numa_running += rq->nr_numa_running;
6013 		sgs->nr_preferred_running += rq->nr_preferred_running;
6014 #endif
6015 		sgs->sum_weighted_load += weighted_cpuload(i);
6016 		if (idle_cpu(i))
6017 			sgs->idle_cpus++;
6018 	}
6019 
6020 	/* Adjust by relative CPU capacity of the group */
6021 	sgs->group_capacity = group->sgc->capacity;
6022 	sgs->avg_load = (sgs->group_load*SCHED_CAPACITY_SCALE) / sgs->group_capacity;
6023 
6024 	if (sgs->sum_nr_running)
6025 		sgs->load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
6026 
6027 	sgs->group_weight = group->group_weight;
6028 	sgs->group_capacity_factor = sg_capacity_factor(env, group);
6029 	sgs->group_type = group_classify(group, sgs);
6030 
6031 	if (sgs->group_capacity_factor > sgs->sum_nr_running)
6032 		sgs->group_has_free_capacity = 1;
6033 }
6034 
6035 /**
6036  * update_sd_pick_busiest - return 1 on busiest group
6037  * @env: The load balancing environment.
6038  * @sds: sched_domain statistics
6039  * @sg: sched_group candidate to be checked for being the busiest
6040  * @sgs: sched_group statistics
6041  *
6042  * Determine if @sg is a busier group than the previously selected
6043  * busiest group.
6044  *
6045  * Return: %true if @sg is a busier group than the previously selected
6046  * busiest group. %false otherwise.
6047  */
6048 static bool update_sd_pick_busiest(struct lb_env *env,
6049 				   struct sd_lb_stats *sds,
6050 				   struct sched_group *sg,
6051 				   struct sg_lb_stats *sgs)
6052 {
6053 	struct sg_lb_stats *busiest = &sds->busiest_stat;
6054 
6055 	if (sgs->group_type > busiest->group_type)
6056 		return true;
6057 
6058 	if (sgs->group_type < busiest->group_type)
6059 		return false;
6060 
6061 	if (sgs->avg_load <= busiest->avg_load)
6062 		return false;
6063 
6064 	/* This is the busiest node in its class. */
6065 	if (!(env->sd->flags & SD_ASYM_PACKING))
6066 		return true;
6067 
6068 	/*
6069 	 * ASYM_PACKING needs to move all the work to the lowest
6070 	 * numbered CPUs in the group, therefore mark all groups
6071 	 * higher than ourself as busy.
6072 	 */
6073 	if (sgs->sum_nr_running && env->dst_cpu < group_first_cpu(sg)) {
6074 		if (!sds->busiest)
6075 			return true;
6076 
6077 		if (group_first_cpu(sds->busiest) > group_first_cpu(sg))
6078 			return true;
6079 	}
6080 
6081 	return false;
6082 }
6083 
6084 #ifdef CONFIG_NUMA_BALANCING
6085 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
6086 {
6087 	if (sgs->sum_nr_running > sgs->nr_numa_running)
6088 		return regular;
6089 	if (sgs->sum_nr_running > sgs->nr_preferred_running)
6090 		return remote;
6091 	return all;
6092 }
6093 
6094 static inline enum fbq_type fbq_classify_rq(struct rq *rq)
6095 {
6096 	if (rq->nr_running > rq->nr_numa_running)
6097 		return regular;
6098 	if (rq->nr_running > rq->nr_preferred_running)
6099 		return remote;
6100 	return all;
6101 }
6102 #else
6103 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
6104 {
6105 	return all;
6106 }
6107 
6108 static inline enum fbq_type fbq_classify_rq(struct rq *rq)
6109 {
6110 	return regular;
6111 }
6112 #endif /* CONFIG_NUMA_BALANCING */
6113 
6114 /**
6115  * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
6116  * @env: The load balancing environment.
6117  * @sds: variable to hold the statistics for this sched_domain.
6118  */
6119 static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
6120 {
6121 	struct sched_domain *child = env->sd->child;
6122 	struct sched_group *sg = env->sd->groups;
6123 	struct sg_lb_stats tmp_sgs;
6124 	int load_idx, prefer_sibling = 0;
6125 	bool overload = false;
6126 
6127 	if (child && child->flags & SD_PREFER_SIBLING)
6128 		prefer_sibling = 1;
6129 
6130 	load_idx = get_sd_load_idx(env->sd, env->idle);
6131 
6132 	do {
6133 		struct sg_lb_stats *sgs = &tmp_sgs;
6134 		int local_group;
6135 
6136 		local_group = cpumask_test_cpu(env->dst_cpu, sched_group_cpus(sg));
6137 		if (local_group) {
6138 			sds->local = sg;
6139 			sgs = &sds->local_stat;
6140 
6141 			if (env->idle != CPU_NEWLY_IDLE ||
6142 			    time_after_eq(jiffies, sg->sgc->next_update))
6143 				update_group_capacity(env->sd, env->dst_cpu);
6144 		}
6145 
6146 		update_sg_lb_stats(env, sg, load_idx, local_group, sgs,
6147 						&overload);
6148 
6149 		if (local_group)
6150 			goto next_group;
6151 
6152 		/*
6153 		 * In case the child domain prefers tasks go to siblings
6154 		 * first, lower the sg capacity factor to one so that we'll try
6155 		 * and move all the excess tasks away. We lower the capacity
6156 		 * of a group only if the local group has the capacity to fit
6157 		 * these excess tasks, i.e. nr_running < group_capacity_factor. The
6158 		 * extra check prevents the case where you always pull from the
6159 		 * heaviest group when it is already under-utilized (possible
6160 		 * with a large weight task outweighs the tasks on the system).
6161 		 */
6162 		if (prefer_sibling && sds->local &&
6163 		    sds->local_stat.group_has_free_capacity)
6164 			sgs->group_capacity_factor = min(sgs->group_capacity_factor, 1U);
6165 
6166 		if (update_sd_pick_busiest(env, sds, sg, sgs)) {
6167 			sds->busiest = sg;
6168 			sds->busiest_stat = *sgs;
6169 		}
6170 
6171 next_group:
6172 		/* Now, start updating sd_lb_stats */
6173 		sds->total_load += sgs->group_load;
6174 		sds->total_capacity += sgs->group_capacity;
6175 
6176 		sg = sg->next;
6177 	} while (sg != env->sd->groups);
6178 
6179 	if (env->sd->flags & SD_NUMA)
6180 		env->fbq_type = fbq_classify_group(&sds->busiest_stat);
6181 
6182 	if (!env->sd->parent) {
6183 		/* update overload indicator if we are at root domain */
6184 		if (env->dst_rq->rd->overload != overload)
6185 			env->dst_rq->rd->overload = overload;
6186 	}
6187 
6188 }
6189 
6190 /**
6191  * check_asym_packing - Check to see if the group is packed into the
6192  *			sched doman.
6193  *
6194  * This is primarily intended to used at the sibling level.  Some
6195  * cores like POWER7 prefer to use lower numbered SMT threads.  In the
6196  * case of POWER7, it can move to lower SMT modes only when higher
6197  * threads are idle.  When in lower SMT modes, the threads will
6198  * perform better since they share less core resources.  Hence when we
6199  * have idle threads, we want them to be the higher ones.
6200  *
6201  * This packing function is run on idle threads.  It checks to see if
6202  * the busiest CPU in this domain (core in the P7 case) has a higher
6203  * CPU number than the packing function is being run on.  Here we are
6204  * assuming lower CPU number will be equivalent to lower a SMT thread
6205  * number.
6206  *
6207  * Return: 1 when packing is required and a task should be moved to
6208  * this CPU.  The amount of the imbalance is returned in *imbalance.
6209  *
6210  * @env: The load balancing environment.
6211  * @sds: Statistics of the sched_domain which is to be packed
6212  */
6213 static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds)
6214 {
6215 	int busiest_cpu;
6216 
6217 	if (!(env->sd->flags & SD_ASYM_PACKING))
6218 		return 0;
6219 
6220 	if (!sds->busiest)
6221 		return 0;
6222 
6223 	busiest_cpu = group_first_cpu(sds->busiest);
6224 	if (env->dst_cpu > busiest_cpu)
6225 		return 0;
6226 
6227 	env->imbalance = DIV_ROUND_CLOSEST(
6228 		sds->busiest_stat.avg_load * sds->busiest_stat.group_capacity,
6229 		SCHED_CAPACITY_SCALE);
6230 
6231 	return 1;
6232 }
6233 
6234 /**
6235  * fix_small_imbalance - Calculate the minor imbalance that exists
6236  *			amongst the groups of a sched_domain, during
6237  *			load balancing.
6238  * @env: The load balancing environment.
6239  * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
6240  */
6241 static inline
6242 void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
6243 {
6244 	unsigned long tmp, capa_now = 0, capa_move = 0;
6245 	unsigned int imbn = 2;
6246 	unsigned long scaled_busy_load_per_task;
6247 	struct sg_lb_stats *local, *busiest;
6248 
6249 	local = &sds->local_stat;
6250 	busiest = &sds->busiest_stat;
6251 
6252 	if (!local->sum_nr_running)
6253 		local->load_per_task = cpu_avg_load_per_task(env->dst_cpu);
6254 	else if (busiest->load_per_task > local->load_per_task)
6255 		imbn = 1;
6256 
6257 	scaled_busy_load_per_task =
6258 		(busiest->load_per_task * SCHED_CAPACITY_SCALE) /
6259 		busiest->group_capacity;
6260 
6261 	if (busiest->avg_load + scaled_busy_load_per_task >=
6262 	    local->avg_load + (scaled_busy_load_per_task * imbn)) {
6263 		env->imbalance = busiest->load_per_task;
6264 		return;
6265 	}
6266 
6267 	/*
6268 	 * OK, we don't have enough imbalance to justify moving tasks,
6269 	 * however we may be able to increase total CPU capacity used by
6270 	 * moving them.
6271 	 */
6272 
6273 	capa_now += busiest->group_capacity *
6274 			min(busiest->load_per_task, busiest->avg_load);
6275 	capa_now += local->group_capacity *
6276 			min(local->load_per_task, local->avg_load);
6277 	capa_now /= SCHED_CAPACITY_SCALE;
6278 
6279 	/* Amount of load we'd subtract */
6280 	if (busiest->avg_load > scaled_busy_load_per_task) {
6281 		capa_move += busiest->group_capacity *
6282 			    min(busiest->load_per_task,
6283 				busiest->avg_load - scaled_busy_load_per_task);
6284 	}
6285 
6286 	/* Amount of load we'd add */
6287 	if (busiest->avg_load * busiest->group_capacity <
6288 	    busiest->load_per_task * SCHED_CAPACITY_SCALE) {
6289 		tmp = (busiest->avg_load * busiest->group_capacity) /
6290 		      local->group_capacity;
6291 	} else {
6292 		tmp = (busiest->load_per_task * SCHED_CAPACITY_SCALE) /
6293 		      local->group_capacity;
6294 	}
6295 	capa_move += local->group_capacity *
6296 		    min(local->load_per_task, local->avg_load + tmp);
6297 	capa_move /= SCHED_CAPACITY_SCALE;
6298 
6299 	/* Move if we gain throughput */
6300 	if (capa_move > capa_now)
6301 		env->imbalance = busiest->load_per_task;
6302 }
6303 
6304 /**
6305  * calculate_imbalance - Calculate the amount of imbalance present within the
6306  *			 groups of a given sched_domain during load balance.
6307  * @env: load balance environment
6308  * @sds: statistics of the sched_domain whose imbalance is to be calculated.
6309  */
6310 static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
6311 {
6312 	unsigned long max_pull, load_above_capacity = ~0UL;
6313 	struct sg_lb_stats *local, *busiest;
6314 
6315 	local = &sds->local_stat;
6316 	busiest = &sds->busiest_stat;
6317 
6318 	if (busiest->group_type == group_imbalanced) {
6319 		/*
6320 		 * In the group_imb case we cannot rely on group-wide averages
6321 		 * to ensure cpu-load equilibrium, look at wider averages. XXX
6322 		 */
6323 		busiest->load_per_task =
6324 			min(busiest->load_per_task, sds->avg_load);
6325 	}
6326 
6327 	/*
6328 	 * In the presence of smp nice balancing, certain scenarios can have
6329 	 * max load less than avg load(as we skip the groups at or below
6330 	 * its cpu_capacity, while calculating max_load..)
6331 	 */
6332 	if (busiest->avg_load <= sds->avg_load ||
6333 	    local->avg_load >= sds->avg_load) {
6334 		env->imbalance = 0;
6335 		return fix_small_imbalance(env, sds);
6336 	}
6337 
6338 	/*
6339 	 * If there aren't any idle cpus, avoid creating some.
6340 	 */
6341 	if (busiest->group_type == group_overloaded &&
6342 	    local->group_type   == group_overloaded) {
6343 		load_above_capacity =
6344 			(busiest->sum_nr_running - busiest->group_capacity_factor);
6345 
6346 		load_above_capacity *= (SCHED_LOAD_SCALE * SCHED_CAPACITY_SCALE);
6347 		load_above_capacity /= busiest->group_capacity;
6348 	}
6349 
6350 	/*
6351 	 * We're trying to get all the cpus to the average_load, so we don't
6352 	 * want to push ourselves above the average load, nor do we wish to
6353 	 * reduce the max loaded cpu below the average load. At the same time,
6354 	 * we also don't want to reduce the group load below the group capacity
6355 	 * (so that we can implement power-savings policies etc). Thus we look
6356 	 * for the minimum possible imbalance.
6357 	 */
6358 	max_pull = min(busiest->avg_load - sds->avg_load, load_above_capacity);
6359 
6360 	/* How much load to actually move to equalise the imbalance */
6361 	env->imbalance = min(
6362 		max_pull * busiest->group_capacity,
6363 		(sds->avg_load - local->avg_load) * local->group_capacity
6364 	) / SCHED_CAPACITY_SCALE;
6365 
6366 	/*
6367 	 * if *imbalance is less than the average load per runnable task
6368 	 * there is no guarantee that any tasks will be moved so we'll have
6369 	 * a think about bumping its value to force at least one task to be
6370 	 * moved
6371 	 */
6372 	if (env->imbalance < busiest->load_per_task)
6373 		return fix_small_imbalance(env, sds);
6374 }
6375 
6376 /******* find_busiest_group() helpers end here *********************/
6377 
6378 /**
6379  * find_busiest_group - Returns the busiest group within the sched_domain
6380  * if there is an imbalance. If there isn't an imbalance, and
6381  * the user has opted for power-savings, it returns a group whose
6382  * CPUs can be put to idle by rebalancing those tasks elsewhere, if
6383  * such a group exists.
6384  *
6385  * Also calculates the amount of weighted load which should be moved
6386  * to restore balance.
6387  *
6388  * @env: The load balancing environment.
6389  *
6390  * Return:	- The busiest group if imbalance exists.
6391  *		- If no imbalance and user has opted for power-savings balance,
6392  *		   return the least loaded group whose CPUs can be
6393  *		   put to idle by rebalancing its tasks onto our group.
6394  */
6395 static struct sched_group *find_busiest_group(struct lb_env *env)
6396 {
6397 	struct sg_lb_stats *local, *busiest;
6398 	struct sd_lb_stats sds;
6399 
6400 	init_sd_lb_stats(&sds);
6401 
6402 	/*
6403 	 * Compute the various statistics relavent for load balancing at
6404 	 * this level.
6405 	 */
6406 	update_sd_lb_stats(env, &sds);
6407 	local = &sds.local_stat;
6408 	busiest = &sds.busiest_stat;
6409 
6410 	if ((env->idle == CPU_IDLE || env->idle == CPU_NEWLY_IDLE) &&
6411 	    check_asym_packing(env, &sds))
6412 		return sds.busiest;
6413 
6414 	/* There is no busy sibling group to pull tasks from */
6415 	if (!sds.busiest || busiest->sum_nr_running == 0)
6416 		goto out_balanced;
6417 
6418 	sds.avg_load = (SCHED_CAPACITY_SCALE * sds.total_load)
6419 						/ sds.total_capacity;
6420 
6421 	/*
6422 	 * If the busiest group is imbalanced the below checks don't
6423 	 * work because they assume all things are equal, which typically
6424 	 * isn't true due to cpus_allowed constraints and the like.
6425 	 */
6426 	if (busiest->group_type == group_imbalanced)
6427 		goto force_balance;
6428 
6429 	/* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
6430 	if (env->idle == CPU_NEWLY_IDLE && local->group_has_free_capacity &&
6431 	    !busiest->group_has_free_capacity)
6432 		goto force_balance;
6433 
6434 	/*
6435 	 * If the local group is busier than the selected busiest group
6436 	 * don't try and pull any tasks.
6437 	 */
6438 	if (local->avg_load >= busiest->avg_load)
6439 		goto out_balanced;
6440 
6441 	/*
6442 	 * Don't pull any tasks if this group is already above the domain
6443 	 * average load.
6444 	 */
6445 	if (local->avg_load >= sds.avg_load)
6446 		goto out_balanced;
6447 
6448 	if (env->idle == CPU_IDLE) {
6449 		/*
6450 		 * This cpu is idle. If the busiest group is not overloaded
6451 		 * and there is no imbalance between this and busiest group
6452 		 * wrt idle cpus, it is balanced. The imbalance becomes
6453 		 * significant if the diff is greater than 1 otherwise we
6454 		 * might end up to just move the imbalance on another group
6455 		 */
6456 		if ((busiest->group_type != group_overloaded) &&
6457 				(local->idle_cpus <= (busiest->idle_cpus + 1)))
6458 			goto out_balanced;
6459 	} else {
6460 		/*
6461 		 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
6462 		 * imbalance_pct to be conservative.
6463 		 */
6464 		if (100 * busiest->avg_load <=
6465 				env->sd->imbalance_pct * local->avg_load)
6466 			goto out_balanced;
6467 	}
6468 
6469 force_balance:
6470 	/* Looks like there is an imbalance. Compute it */
6471 	calculate_imbalance(env, &sds);
6472 	return sds.busiest;
6473 
6474 out_balanced:
6475 	env->imbalance = 0;
6476 	return NULL;
6477 }
6478 
6479 /*
6480  * find_busiest_queue - find the busiest runqueue among the cpus in group.
6481  */
6482 static struct rq *find_busiest_queue(struct lb_env *env,
6483 				     struct sched_group *group)
6484 {
6485 	struct rq *busiest = NULL, *rq;
6486 	unsigned long busiest_load = 0, busiest_capacity = 1;
6487 	int i;
6488 
6489 	for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
6490 		unsigned long capacity, capacity_factor, wl;
6491 		enum fbq_type rt;
6492 
6493 		rq = cpu_rq(i);
6494 		rt = fbq_classify_rq(rq);
6495 
6496 		/*
6497 		 * We classify groups/runqueues into three groups:
6498 		 *  - regular: there are !numa tasks
6499 		 *  - remote:  there are numa tasks that run on the 'wrong' node
6500 		 *  - all:     there is no distinction
6501 		 *
6502 		 * In order to avoid migrating ideally placed numa tasks,
6503 		 * ignore those when there's better options.
6504 		 *
6505 		 * If we ignore the actual busiest queue to migrate another
6506 		 * task, the next balance pass can still reduce the busiest
6507 		 * queue by moving tasks around inside the node.
6508 		 *
6509 		 * If we cannot move enough load due to this classification
6510 		 * the next pass will adjust the group classification and
6511 		 * allow migration of more tasks.
6512 		 *
6513 		 * Both cases only affect the total convergence complexity.
6514 		 */
6515 		if (rt > env->fbq_type)
6516 			continue;
6517 
6518 		capacity = capacity_of(i);
6519 		capacity_factor = DIV_ROUND_CLOSEST(capacity, SCHED_CAPACITY_SCALE);
6520 		if (!capacity_factor)
6521 			capacity_factor = fix_small_capacity(env->sd, group);
6522 
6523 		wl = weighted_cpuload(i);
6524 
6525 		/*
6526 		 * When comparing with imbalance, use weighted_cpuload()
6527 		 * which is not scaled with the cpu capacity.
6528 		 */
6529 		if (capacity_factor && rq->nr_running == 1 && wl > env->imbalance)
6530 			continue;
6531 
6532 		/*
6533 		 * For the load comparisons with the other cpu's, consider
6534 		 * the weighted_cpuload() scaled with the cpu capacity, so
6535 		 * that the load can be moved away from the cpu that is
6536 		 * potentially running at a lower capacity.
6537 		 *
6538 		 * Thus we're looking for max(wl_i / capacity_i), crosswise
6539 		 * multiplication to rid ourselves of the division works out
6540 		 * to: wl_i * capacity_j > wl_j * capacity_i;  where j is
6541 		 * our previous maximum.
6542 		 */
6543 		if (wl * busiest_capacity > busiest_load * capacity) {
6544 			busiest_load = wl;
6545 			busiest_capacity = capacity;
6546 			busiest = rq;
6547 		}
6548 	}
6549 
6550 	return busiest;
6551 }
6552 
6553 /*
6554  * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
6555  * so long as it is large enough.
6556  */
6557 #define MAX_PINNED_INTERVAL	512
6558 
6559 /* Working cpumask for load_balance and load_balance_newidle. */
6560 DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
6561 
6562 static int need_active_balance(struct lb_env *env)
6563 {
6564 	struct sched_domain *sd = env->sd;
6565 
6566 	if (env->idle == CPU_NEWLY_IDLE) {
6567 
6568 		/*
6569 		 * ASYM_PACKING needs to force migrate tasks from busy but
6570 		 * higher numbered CPUs in order to pack all tasks in the
6571 		 * lowest numbered CPUs.
6572 		 */
6573 		if ((sd->flags & SD_ASYM_PACKING) && env->src_cpu > env->dst_cpu)
6574 			return 1;
6575 	}
6576 
6577 	return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
6578 }
6579 
6580 static int active_load_balance_cpu_stop(void *data);
6581 
6582 static int should_we_balance(struct lb_env *env)
6583 {
6584 	struct sched_group *sg = env->sd->groups;
6585 	struct cpumask *sg_cpus, *sg_mask;
6586 	int cpu, balance_cpu = -1;
6587 
6588 	/*
6589 	 * In the newly idle case, we will allow all the cpu's
6590 	 * to do the newly idle load balance.
6591 	 */
6592 	if (env->idle == CPU_NEWLY_IDLE)
6593 		return 1;
6594 
6595 	sg_cpus = sched_group_cpus(sg);
6596 	sg_mask = sched_group_mask(sg);
6597 	/* Try to find first idle cpu */
6598 	for_each_cpu_and(cpu, sg_cpus, env->cpus) {
6599 		if (!cpumask_test_cpu(cpu, sg_mask) || !idle_cpu(cpu))
6600 			continue;
6601 
6602 		balance_cpu = cpu;
6603 		break;
6604 	}
6605 
6606 	if (balance_cpu == -1)
6607 		balance_cpu = group_balance_cpu(sg);
6608 
6609 	/*
6610 	 * First idle cpu or the first cpu(busiest) in this sched group
6611 	 * is eligible for doing load balancing at this and above domains.
6612 	 */
6613 	return balance_cpu == env->dst_cpu;
6614 }
6615 
6616 /*
6617  * Check this_cpu to ensure it is balanced within domain. Attempt to move
6618  * tasks if there is an imbalance.
6619  */
6620 static int load_balance(int this_cpu, struct rq *this_rq,
6621 			struct sched_domain *sd, enum cpu_idle_type idle,
6622 			int *continue_balancing)
6623 {
6624 	int ld_moved, cur_ld_moved, active_balance = 0;
6625 	struct sched_domain *sd_parent = sd->parent;
6626 	struct sched_group *group;
6627 	struct rq *busiest;
6628 	unsigned long flags;
6629 	struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask);
6630 
6631 	struct lb_env env = {
6632 		.sd		= sd,
6633 		.dst_cpu	= this_cpu,
6634 		.dst_rq		= this_rq,
6635 		.dst_grpmask    = sched_group_cpus(sd->groups),
6636 		.idle		= idle,
6637 		.loop_break	= sched_nr_migrate_break,
6638 		.cpus		= cpus,
6639 		.fbq_type	= all,
6640 		.tasks		= LIST_HEAD_INIT(env.tasks),
6641 	};
6642 
6643 	/*
6644 	 * For NEWLY_IDLE load_balancing, we don't need to consider
6645 	 * other cpus in our group
6646 	 */
6647 	if (idle == CPU_NEWLY_IDLE)
6648 		env.dst_grpmask = NULL;
6649 
6650 	cpumask_copy(cpus, cpu_active_mask);
6651 
6652 	schedstat_inc(sd, lb_count[idle]);
6653 
6654 redo:
6655 	if (!should_we_balance(&env)) {
6656 		*continue_balancing = 0;
6657 		goto out_balanced;
6658 	}
6659 
6660 	group = find_busiest_group(&env);
6661 	if (!group) {
6662 		schedstat_inc(sd, lb_nobusyg[idle]);
6663 		goto out_balanced;
6664 	}
6665 
6666 	busiest = find_busiest_queue(&env, group);
6667 	if (!busiest) {
6668 		schedstat_inc(sd, lb_nobusyq[idle]);
6669 		goto out_balanced;
6670 	}
6671 
6672 	BUG_ON(busiest == env.dst_rq);
6673 
6674 	schedstat_add(sd, lb_imbalance[idle], env.imbalance);
6675 
6676 	ld_moved = 0;
6677 	if (busiest->nr_running > 1) {
6678 		/*
6679 		 * Attempt to move tasks. If find_busiest_group has found
6680 		 * an imbalance but busiest->nr_running <= 1, the group is
6681 		 * still unbalanced. ld_moved simply stays zero, so it is
6682 		 * correctly treated as an imbalance.
6683 		 */
6684 		env.flags |= LBF_ALL_PINNED;
6685 		env.src_cpu   = busiest->cpu;
6686 		env.src_rq    = busiest;
6687 		env.loop_max  = min(sysctl_sched_nr_migrate, busiest->nr_running);
6688 
6689 more_balance:
6690 		raw_spin_lock_irqsave(&busiest->lock, flags);
6691 
6692 		/*
6693 		 * cur_ld_moved - load moved in current iteration
6694 		 * ld_moved     - cumulative load moved across iterations
6695 		 */
6696 		cur_ld_moved = detach_tasks(&env);
6697 
6698 		/*
6699 		 * We've detached some tasks from busiest_rq. Every
6700 		 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely
6701 		 * unlock busiest->lock, and we are able to be sure
6702 		 * that nobody can manipulate the tasks in parallel.
6703 		 * See task_rq_lock() family for the details.
6704 		 */
6705 
6706 		raw_spin_unlock(&busiest->lock);
6707 
6708 		if (cur_ld_moved) {
6709 			attach_tasks(&env);
6710 			ld_moved += cur_ld_moved;
6711 		}
6712 
6713 		local_irq_restore(flags);
6714 
6715 		if (env.flags & LBF_NEED_BREAK) {
6716 			env.flags &= ~LBF_NEED_BREAK;
6717 			goto more_balance;
6718 		}
6719 
6720 		/*
6721 		 * Revisit (affine) tasks on src_cpu that couldn't be moved to
6722 		 * us and move them to an alternate dst_cpu in our sched_group
6723 		 * where they can run. The upper limit on how many times we
6724 		 * iterate on same src_cpu is dependent on number of cpus in our
6725 		 * sched_group.
6726 		 *
6727 		 * This changes load balance semantics a bit on who can move
6728 		 * load to a given_cpu. In addition to the given_cpu itself
6729 		 * (or a ilb_cpu acting on its behalf where given_cpu is
6730 		 * nohz-idle), we now have balance_cpu in a position to move
6731 		 * load to given_cpu. In rare situations, this may cause
6732 		 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
6733 		 * _independently_ and at _same_ time to move some load to
6734 		 * given_cpu) causing exceess load to be moved to given_cpu.
6735 		 * This however should not happen so much in practice and
6736 		 * moreover subsequent load balance cycles should correct the
6737 		 * excess load moved.
6738 		 */
6739 		if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
6740 
6741 			/* Prevent to re-select dst_cpu via env's cpus */
6742 			cpumask_clear_cpu(env.dst_cpu, env.cpus);
6743 
6744 			env.dst_rq	 = cpu_rq(env.new_dst_cpu);
6745 			env.dst_cpu	 = env.new_dst_cpu;
6746 			env.flags	&= ~LBF_DST_PINNED;
6747 			env.loop	 = 0;
6748 			env.loop_break	 = sched_nr_migrate_break;
6749 
6750 			/*
6751 			 * Go back to "more_balance" rather than "redo" since we
6752 			 * need to continue with same src_cpu.
6753 			 */
6754 			goto more_balance;
6755 		}
6756 
6757 		/*
6758 		 * We failed to reach balance because of affinity.
6759 		 */
6760 		if (sd_parent) {
6761 			int *group_imbalance = &sd_parent->groups->sgc->imbalance;
6762 
6763 			if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0)
6764 				*group_imbalance = 1;
6765 		}
6766 
6767 		/* All tasks on this runqueue were pinned by CPU affinity */
6768 		if (unlikely(env.flags & LBF_ALL_PINNED)) {
6769 			cpumask_clear_cpu(cpu_of(busiest), cpus);
6770 			if (!cpumask_empty(cpus)) {
6771 				env.loop = 0;
6772 				env.loop_break = sched_nr_migrate_break;
6773 				goto redo;
6774 			}
6775 			goto out_all_pinned;
6776 		}
6777 	}
6778 
6779 	if (!ld_moved) {
6780 		schedstat_inc(sd, lb_failed[idle]);
6781 		/*
6782 		 * Increment the failure counter only on periodic balance.
6783 		 * We do not want newidle balance, which can be very
6784 		 * frequent, pollute the failure counter causing
6785 		 * excessive cache_hot migrations and active balances.
6786 		 */
6787 		if (idle != CPU_NEWLY_IDLE)
6788 			sd->nr_balance_failed++;
6789 
6790 		if (need_active_balance(&env)) {
6791 			raw_spin_lock_irqsave(&busiest->lock, flags);
6792 
6793 			/* don't kick the active_load_balance_cpu_stop,
6794 			 * if the curr task on busiest cpu can't be
6795 			 * moved to this_cpu
6796 			 */
6797 			if (!cpumask_test_cpu(this_cpu,
6798 					tsk_cpus_allowed(busiest->curr))) {
6799 				raw_spin_unlock_irqrestore(&busiest->lock,
6800 							    flags);
6801 				env.flags |= LBF_ALL_PINNED;
6802 				goto out_one_pinned;
6803 			}
6804 
6805 			/*
6806 			 * ->active_balance synchronizes accesses to
6807 			 * ->active_balance_work.  Once set, it's cleared
6808 			 * only after active load balance is finished.
6809 			 */
6810 			if (!busiest->active_balance) {
6811 				busiest->active_balance = 1;
6812 				busiest->push_cpu = this_cpu;
6813 				active_balance = 1;
6814 			}
6815 			raw_spin_unlock_irqrestore(&busiest->lock, flags);
6816 
6817 			if (active_balance) {
6818 				stop_one_cpu_nowait(cpu_of(busiest),
6819 					active_load_balance_cpu_stop, busiest,
6820 					&busiest->active_balance_work);
6821 			}
6822 
6823 			/*
6824 			 * We've kicked active balancing, reset the failure
6825 			 * counter.
6826 			 */
6827 			sd->nr_balance_failed = sd->cache_nice_tries+1;
6828 		}
6829 	} else
6830 		sd->nr_balance_failed = 0;
6831 
6832 	if (likely(!active_balance)) {
6833 		/* We were unbalanced, so reset the balancing interval */
6834 		sd->balance_interval = sd->min_interval;
6835 	} else {
6836 		/*
6837 		 * If we've begun active balancing, start to back off. This
6838 		 * case may not be covered by the all_pinned logic if there
6839 		 * is only 1 task on the busy runqueue (because we don't call
6840 		 * detach_tasks).
6841 		 */
6842 		if (sd->balance_interval < sd->max_interval)
6843 			sd->balance_interval *= 2;
6844 	}
6845 
6846 	goto out;
6847 
6848 out_balanced:
6849 	/*
6850 	 * We reach balance although we may have faced some affinity
6851 	 * constraints. Clear the imbalance flag if it was set.
6852 	 */
6853 	if (sd_parent) {
6854 		int *group_imbalance = &sd_parent->groups->sgc->imbalance;
6855 
6856 		if (*group_imbalance)
6857 			*group_imbalance = 0;
6858 	}
6859 
6860 out_all_pinned:
6861 	/*
6862 	 * We reach balance because all tasks are pinned at this level so
6863 	 * we can't migrate them. Let the imbalance flag set so parent level
6864 	 * can try to migrate them.
6865 	 */
6866 	schedstat_inc(sd, lb_balanced[idle]);
6867 
6868 	sd->nr_balance_failed = 0;
6869 
6870 out_one_pinned:
6871 	/* tune up the balancing interval */
6872 	if (((env.flags & LBF_ALL_PINNED) &&
6873 			sd->balance_interval < MAX_PINNED_INTERVAL) ||
6874 			(sd->balance_interval < sd->max_interval))
6875 		sd->balance_interval *= 2;
6876 
6877 	ld_moved = 0;
6878 out:
6879 	return ld_moved;
6880 }
6881 
6882 static inline unsigned long
6883 get_sd_balance_interval(struct sched_domain *sd, int cpu_busy)
6884 {
6885 	unsigned long interval = sd->balance_interval;
6886 
6887 	if (cpu_busy)
6888 		interval *= sd->busy_factor;
6889 
6890 	/* scale ms to jiffies */
6891 	interval = msecs_to_jiffies(interval);
6892 	interval = clamp(interval, 1UL, max_load_balance_interval);
6893 
6894 	return interval;
6895 }
6896 
6897 static inline void
6898 update_next_balance(struct sched_domain *sd, int cpu_busy, unsigned long *next_balance)
6899 {
6900 	unsigned long interval, next;
6901 
6902 	interval = get_sd_balance_interval(sd, cpu_busy);
6903 	next = sd->last_balance + interval;
6904 
6905 	if (time_after(*next_balance, next))
6906 		*next_balance = next;
6907 }
6908 
6909 /*
6910  * idle_balance is called by schedule() if this_cpu is about to become
6911  * idle. Attempts to pull tasks from other CPUs.
6912  */
6913 static int idle_balance(struct rq *this_rq)
6914 {
6915 	unsigned long next_balance = jiffies + HZ;
6916 	int this_cpu = this_rq->cpu;
6917 	struct sched_domain *sd;
6918 	int pulled_task = 0;
6919 	u64 curr_cost = 0;
6920 
6921 	idle_enter_fair(this_rq);
6922 
6923 	/*
6924 	 * We must set idle_stamp _before_ calling idle_balance(), such that we
6925 	 * measure the duration of idle_balance() as idle time.
6926 	 */
6927 	this_rq->idle_stamp = rq_clock(this_rq);
6928 
6929 	if (this_rq->avg_idle < sysctl_sched_migration_cost ||
6930 	    !this_rq->rd->overload) {
6931 		rcu_read_lock();
6932 		sd = rcu_dereference_check_sched_domain(this_rq->sd);
6933 		if (sd)
6934 			update_next_balance(sd, 0, &next_balance);
6935 		rcu_read_unlock();
6936 
6937 		goto out;
6938 	}
6939 
6940 	/*
6941 	 * Drop the rq->lock, but keep IRQ/preempt disabled.
6942 	 */
6943 	raw_spin_unlock(&this_rq->lock);
6944 
6945 	update_blocked_averages(this_cpu);
6946 	rcu_read_lock();
6947 	for_each_domain(this_cpu, sd) {
6948 		int continue_balancing = 1;
6949 		u64 t0, domain_cost;
6950 
6951 		if (!(sd->flags & SD_LOAD_BALANCE))
6952 			continue;
6953 
6954 		if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) {
6955 			update_next_balance(sd, 0, &next_balance);
6956 			break;
6957 		}
6958 
6959 		if (sd->flags & SD_BALANCE_NEWIDLE) {
6960 			t0 = sched_clock_cpu(this_cpu);
6961 
6962 			pulled_task = load_balance(this_cpu, this_rq,
6963 						   sd, CPU_NEWLY_IDLE,
6964 						   &continue_balancing);
6965 
6966 			domain_cost = sched_clock_cpu(this_cpu) - t0;
6967 			if (domain_cost > sd->max_newidle_lb_cost)
6968 				sd->max_newidle_lb_cost = domain_cost;
6969 
6970 			curr_cost += domain_cost;
6971 		}
6972 
6973 		update_next_balance(sd, 0, &next_balance);
6974 
6975 		/*
6976 		 * Stop searching for tasks to pull if there are
6977 		 * now runnable tasks on this rq.
6978 		 */
6979 		if (pulled_task || this_rq->nr_running > 0)
6980 			break;
6981 	}
6982 	rcu_read_unlock();
6983 
6984 	raw_spin_lock(&this_rq->lock);
6985 
6986 	if (curr_cost > this_rq->max_idle_balance_cost)
6987 		this_rq->max_idle_balance_cost = curr_cost;
6988 
6989 	/*
6990 	 * While browsing the domains, we released the rq lock, a task could
6991 	 * have been enqueued in the meantime. Since we're not going idle,
6992 	 * pretend we pulled a task.
6993 	 */
6994 	if (this_rq->cfs.h_nr_running && !pulled_task)
6995 		pulled_task = 1;
6996 
6997 out:
6998 	/* Move the next balance forward */
6999 	if (time_after(this_rq->next_balance, next_balance))
7000 		this_rq->next_balance = next_balance;
7001 
7002 	/* Is there a task of a high priority class? */
7003 	if (this_rq->nr_running != this_rq->cfs.h_nr_running)
7004 		pulled_task = -1;
7005 
7006 	if (pulled_task) {
7007 		idle_exit_fair(this_rq);
7008 		this_rq->idle_stamp = 0;
7009 	}
7010 
7011 	return pulled_task;
7012 }
7013 
7014 /*
7015  * active_load_balance_cpu_stop is run by cpu stopper. It pushes
7016  * running tasks off the busiest CPU onto idle CPUs. It requires at
7017  * least 1 task to be running on each physical CPU where possible, and
7018  * avoids physical / logical imbalances.
7019  */
7020 static int active_load_balance_cpu_stop(void *data)
7021 {
7022 	struct rq *busiest_rq = data;
7023 	int busiest_cpu = cpu_of(busiest_rq);
7024 	int target_cpu = busiest_rq->push_cpu;
7025 	struct rq *target_rq = cpu_rq(target_cpu);
7026 	struct sched_domain *sd;
7027 	struct task_struct *p = NULL;
7028 
7029 	raw_spin_lock_irq(&busiest_rq->lock);
7030 
7031 	/* make sure the requested cpu hasn't gone down in the meantime */
7032 	if (unlikely(busiest_cpu != smp_processor_id() ||
7033 		     !busiest_rq->active_balance))
7034 		goto out_unlock;
7035 
7036 	/* Is there any task to move? */
7037 	if (busiest_rq->nr_running <= 1)
7038 		goto out_unlock;
7039 
7040 	/*
7041 	 * This condition is "impossible", if it occurs
7042 	 * we need to fix it. Originally reported by
7043 	 * Bjorn Helgaas on a 128-cpu setup.
7044 	 */
7045 	BUG_ON(busiest_rq == target_rq);
7046 
7047 	/* Search for an sd spanning us and the target CPU. */
7048 	rcu_read_lock();
7049 	for_each_domain(target_cpu, sd) {
7050 		if ((sd->flags & SD_LOAD_BALANCE) &&
7051 		    cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
7052 				break;
7053 	}
7054 
7055 	if (likely(sd)) {
7056 		struct lb_env env = {
7057 			.sd		= sd,
7058 			.dst_cpu	= target_cpu,
7059 			.dst_rq		= target_rq,
7060 			.src_cpu	= busiest_rq->cpu,
7061 			.src_rq		= busiest_rq,
7062 			.idle		= CPU_IDLE,
7063 		};
7064 
7065 		schedstat_inc(sd, alb_count);
7066 
7067 		p = detach_one_task(&env);
7068 		if (p)
7069 			schedstat_inc(sd, alb_pushed);
7070 		else
7071 			schedstat_inc(sd, alb_failed);
7072 	}
7073 	rcu_read_unlock();
7074 out_unlock:
7075 	busiest_rq->active_balance = 0;
7076 	raw_spin_unlock(&busiest_rq->lock);
7077 
7078 	if (p)
7079 		attach_one_task(target_rq, p);
7080 
7081 	local_irq_enable();
7082 
7083 	return 0;
7084 }
7085 
7086 static inline int on_null_domain(struct rq *rq)
7087 {
7088 	return unlikely(!rcu_dereference_sched(rq->sd));
7089 }
7090 
7091 #ifdef CONFIG_NO_HZ_COMMON
7092 /*
7093  * idle load balancing details
7094  * - When one of the busy CPUs notice that there may be an idle rebalancing
7095  *   needed, they will kick the idle load balancer, which then does idle
7096  *   load balancing for all the idle CPUs.
7097  */
7098 static struct {
7099 	cpumask_var_t idle_cpus_mask;
7100 	atomic_t nr_cpus;
7101 	unsigned long next_balance;     /* in jiffy units */
7102 } nohz ____cacheline_aligned;
7103 
7104 static inline int find_new_ilb(void)
7105 {
7106 	int ilb = cpumask_first(nohz.idle_cpus_mask);
7107 
7108 	if (ilb < nr_cpu_ids && idle_cpu(ilb))
7109 		return ilb;
7110 
7111 	return nr_cpu_ids;
7112 }
7113 
7114 /*
7115  * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
7116  * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
7117  * CPU (if there is one).
7118  */
7119 static void nohz_balancer_kick(void)
7120 {
7121 	int ilb_cpu;
7122 
7123 	nohz.next_balance++;
7124 
7125 	ilb_cpu = find_new_ilb();
7126 
7127 	if (ilb_cpu >= nr_cpu_ids)
7128 		return;
7129 
7130 	if (test_and_set_bit(NOHZ_BALANCE_KICK, nohz_flags(ilb_cpu)))
7131 		return;
7132 	/*
7133 	 * Use smp_send_reschedule() instead of resched_cpu().
7134 	 * This way we generate a sched IPI on the target cpu which
7135 	 * is idle. And the softirq performing nohz idle load balance
7136 	 * will be run before returning from the IPI.
7137 	 */
7138 	smp_send_reschedule(ilb_cpu);
7139 	return;
7140 }
7141 
7142 static inline void nohz_balance_exit_idle(int cpu)
7143 {
7144 	if (unlikely(test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))) {
7145 		/*
7146 		 * Completely isolated CPUs don't ever set, so we must test.
7147 		 */
7148 		if (likely(cpumask_test_cpu(cpu, nohz.idle_cpus_mask))) {
7149 			cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
7150 			atomic_dec(&nohz.nr_cpus);
7151 		}
7152 		clear_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
7153 	}
7154 }
7155 
7156 static inline void set_cpu_sd_state_busy(void)
7157 {
7158 	struct sched_domain *sd;
7159 	int cpu = smp_processor_id();
7160 
7161 	rcu_read_lock();
7162 	sd = rcu_dereference(per_cpu(sd_busy, cpu));
7163 
7164 	if (!sd || !sd->nohz_idle)
7165 		goto unlock;
7166 	sd->nohz_idle = 0;
7167 
7168 	atomic_inc(&sd->groups->sgc->nr_busy_cpus);
7169 unlock:
7170 	rcu_read_unlock();
7171 }
7172 
7173 void set_cpu_sd_state_idle(void)
7174 {
7175 	struct sched_domain *sd;
7176 	int cpu = smp_processor_id();
7177 
7178 	rcu_read_lock();
7179 	sd = rcu_dereference(per_cpu(sd_busy, cpu));
7180 
7181 	if (!sd || sd->nohz_idle)
7182 		goto unlock;
7183 	sd->nohz_idle = 1;
7184 
7185 	atomic_dec(&sd->groups->sgc->nr_busy_cpus);
7186 unlock:
7187 	rcu_read_unlock();
7188 }
7189 
7190 /*
7191  * This routine will record that the cpu is going idle with tick stopped.
7192  * This info will be used in performing idle load balancing in the future.
7193  */
7194 void nohz_balance_enter_idle(int cpu)
7195 {
7196 	/*
7197 	 * If this cpu is going down, then nothing needs to be done.
7198 	 */
7199 	if (!cpu_active(cpu))
7200 		return;
7201 
7202 	if (test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))
7203 		return;
7204 
7205 	/*
7206 	 * If we're a completely isolated CPU, we don't play.
7207 	 */
7208 	if (on_null_domain(cpu_rq(cpu)))
7209 		return;
7210 
7211 	cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
7212 	atomic_inc(&nohz.nr_cpus);
7213 	set_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
7214 }
7215 
7216 static int sched_ilb_notifier(struct notifier_block *nfb,
7217 					unsigned long action, void *hcpu)
7218 {
7219 	switch (action & ~CPU_TASKS_FROZEN) {
7220 	case CPU_DYING:
7221 		nohz_balance_exit_idle(smp_processor_id());
7222 		return NOTIFY_OK;
7223 	default:
7224 		return NOTIFY_DONE;
7225 	}
7226 }
7227 #endif
7228 
7229 static DEFINE_SPINLOCK(balancing);
7230 
7231 /*
7232  * Scale the max load_balance interval with the number of CPUs in the system.
7233  * This trades load-balance latency on larger machines for less cross talk.
7234  */
7235 void update_max_interval(void)
7236 {
7237 	max_load_balance_interval = HZ*num_online_cpus()/10;
7238 }
7239 
7240 /*
7241  * It checks each scheduling domain to see if it is due to be balanced,
7242  * and initiates a balancing operation if so.
7243  *
7244  * Balancing parameters are set up in init_sched_domains.
7245  */
7246 static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle)
7247 {
7248 	int continue_balancing = 1;
7249 	int cpu = rq->cpu;
7250 	unsigned long interval;
7251 	struct sched_domain *sd;
7252 	/* Earliest time when we have to do rebalance again */
7253 	unsigned long next_balance = jiffies + 60*HZ;
7254 	int update_next_balance = 0;
7255 	int need_serialize, need_decay = 0;
7256 	u64 max_cost = 0;
7257 
7258 	update_blocked_averages(cpu);
7259 
7260 	rcu_read_lock();
7261 	for_each_domain(cpu, sd) {
7262 		/*
7263 		 * Decay the newidle max times here because this is a regular
7264 		 * visit to all the domains. Decay ~1% per second.
7265 		 */
7266 		if (time_after(jiffies, sd->next_decay_max_lb_cost)) {
7267 			sd->max_newidle_lb_cost =
7268 				(sd->max_newidle_lb_cost * 253) / 256;
7269 			sd->next_decay_max_lb_cost = jiffies + HZ;
7270 			need_decay = 1;
7271 		}
7272 		max_cost += sd->max_newidle_lb_cost;
7273 
7274 		if (!(sd->flags & SD_LOAD_BALANCE))
7275 			continue;
7276 
7277 		/*
7278 		 * Stop the load balance at this level. There is another
7279 		 * CPU in our sched group which is doing load balancing more
7280 		 * actively.
7281 		 */
7282 		if (!continue_balancing) {
7283 			if (need_decay)
7284 				continue;
7285 			break;
7286 		}
7287 
7288 		interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
7289 
7290 		need_serialize = sd->flags & SD_SERIALIZE;
7291 		if (need_serialize) {
7292 			if (!spin_trylock(&balancing))
7293 				goto out;
7294 		}
7295 
7296 		if (time_after_eq(jiffies, sd->last_balance + interval)) {
7297 			if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
7298 				/*
7299 				 * The LBF_DST_PINNED logic could have changed
7300 				 * env->dst_cpu, so we can't know our idle
7301 				 * state even if we migrated tasks. Update it.
7302 				 */
7303 				idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
7304 			}
7305 			sd->last_balance = jiffies;
7306 			interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
7307 		}
7308 		if (need_serialize)
7309 			spin_unlock(&balancing);
7310 out:
7311 		if (time_after(next_balance, sd->last_balance + interval)) {
7312 			next_balance = sd->last_balance + interval;
7313 			update_next_balance = 1;
7314 		}
7315 	}
7316 	if (need_decay) {
7317 		/*
7318 		 * Ensure the rq-wide value also decays but keep it at a
7319 		 * reasonable floor to avoid funnies with rq->avg_idle.
7320 		 */
7321 		rq->max_idle_balance_cost =
7322 			max((u64)sysctl_sched_migration_cost, max_cost);
7323 	}
7324 	rcu_read_unlock();
7325 
7326 	/*
7327 	 * next_balance will be updated only when there is a need.
7328 	 * When the cpu is attached to null domain for ex, it will not be
7329 	 * updated.
7330 	 */
7331 	if (likely(update_next_balance))
7332 		rq->next_balance = next_balance;
7333 }
7334 
7335 #ifdef CONFIG_NO_HZ_COMMON
7336 /*
7337  * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
7338  * rebalancing for all the cpus for whom scheduler ticks are stopped.
7339  */
7340 static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
7341 {
7342 	int this_cpu = this_rq->cpu;
7343 	struct rq *rq;
7344 	int balance_cpu;
7345 
7346 	if (idle != CPU_IDLE ||
7347 	    !test_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu)))
7348 		goto end;
7349 
7350 	for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
7351 		if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
7352 			continue;
7353 
7354 		/*
7355 		 * If this cpu gets work to do, stop the load balancing
7356 		 * work being done for other cpus. Next load
7357 		 * balancing owner will pick it up.
7358 		 */
7359 		if (need_resched())
7360 			break;
7361 
7362 		rq = cpu_rq(balance_cpu);
7363 
7364 		/*
7365 		 * If time for next balance is due,
7366 		 * do the balance.
7367 		 */
7368 		if (time_after_eq(jiffies, rq->next_balance)) {
7369 			raw_spin_lock_irq(&rq->lock);
7370 			update_rq_clock(rq);
7371 			update_idle_cpu_load(rq);
7372 			raw_spin_unlock_irq(&rq->lock);
7373 			rebalance_domains(rq, CPU_IDLE);
7374 		}
7375 
7376 		if (time_after(this_rq->next_balance, rq->next_balance))
7377 			this_rq->next_balance = rq->next_balance;
7378 	}
7379 	nohz.next_balance = this_rq->next_balance;
7380 end:
7381 	clear_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu));
7382 }
7383 
7384 /*
7385  * Current heuristic for kicking the idle load balancer in the presence
7386  * of an idle cpu is the system.
7387  *   - This rq has more than one task.
7388  *   - At any scheduler domain level, this cpu's scheduler group has multiple
7389  *     busy cpu's exceeding the group's capacity.
7390  *   - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler
7391  *     domain span are idle.
7392  */
7393 static inline int nohz_kick_needed(struct rq *rq)
7394 {
7395 	unsigned long now = jiffies;
7396 	struct sched_domain *sd;
7397 	struct sched_group_capacity *sgc;
7398 	int nr_busy, cpu = rq->cpu;
7399 
7400 	if (unlikely(rq->idle_balance))
7401 		return 0;
7402 
7403        /*
7404 	* We may be recently in ticked or tickless idle mode. At the first
7405 	* busy tick after returning from idle, we will update the busy stats.
7406 	*/
7407 	set_cpu_sd_state_busy();
7408 	nohz_balance_exit_idle(cpu);
7409 
7410 	/*
7411 	 * None are in tickless mode and hence no need for NOHZ idle load
7412 	 * balancing.
7413 	 */
7414 	if (likely(!atomic_read(&nohz.nr_cpus)))
7415 		return 0;
7416 
7417 	if (time_before(now, nohz.next_balance))
7418 		return 0;
7419 
7420 	if (rq->nr_running >= 2)
7421 		goto need_kick;
7422 
7423 	rcu_read_lock();
7424 	sd = rcu_dereference(per_cpu(sd_busy, cpu));
7425 
7426 	if (sd) {
7427 		sgc = sd->groups->sgc;
7428 		nr_busy = atomic_read(&sgc->nr_busy_cpus);
7429 
7430 		if (nr_busy > 1)
7431 			goto need_kick_unlock;
7432 	}
7433 
7434 	sd = rcu_dereference(per_cpu(sd_asym, cpu));
7435 
7436 	if (sd && (cpumask_first_and(nohz.idle_cpus_mask,
7437 				  sched_domain_span(sd)) < cpu))
7438 		goto need_kick_unlock;
7439 
7440 	rcu_read_unlock();
7441 	return 0;
7442 
7443 need_kick_unlock:
7444 	rcu_read_unlock();
7445 need_kick:
7446 	return 1;
7447 }
7448 #else
7449 static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) { }
7450 #endif
7451 
7452 /*
7453  * run_rebalance_domains is triggered when needed from the scheduler tick.
7454  * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
7455  */
7456 static void run_rebalance_domains(struct softirq_action *h)
7457 {
7458 	struct rq *this_rq = this_rq();
7459 	enum cpu_idle_type idle = this_rq->idle_balance ?
7460 						CPU_IDLE : CPU_NOT_IDLE;
7461 
7462 	rebalance_domains(this_rq, idle);
7463 
7464 	/*
7465 	 * If this cpu has a pending nohz_balance_kick, then do the
7466 	 * balancing on behalf of the other idle cpus whose ticks are
7467 	 * stopped.
7468 	 */
7469 	nohz_idle_balance(this_rq, idle);
7470 }
7471 
7472 /*
7473  * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
7474  */
7475 void trigger_load_balance(struct rq *rq)
7476 {
7477 	/* Don't need to rebalance while attached to NULL domain */
7478 	if (unlikely(on_null_domain(rq)))
7479 		return;
7480 
7481 	if (time_after_eq(jiffies, rq->next_balance))
7482 		raise_softirq(SCHED_SOFTIRQ);
7483 #ifdef CONFIG_NO_HZ_COMMON
7484 	if (nohz_kick_needed(rq))
7485 		nohz_balancer_kick();
7486 #endif
7487 }
7488 
7489 static void rq_online_fair(struct rq *rq)
7490 {
7491 	update_sysctl();
7492 
7493 	update_runtime_enabled(rq);
7494 }
7495 
7496 static void rq_offline_fair(struct rq *rq)
7497 {
7498 	update_sysctl();
7499 
7500 	/* Ensure any throttled groups are reachable by pick_next_task */
7501 	unthrottle_offline_cfs_rqs(rq);
7502 }
7503 
7504 #endif /* CONFIG_SMP */
7505 
7506 /*
7507  * scheduler tick hitting a task of our scheduling class:
7508  */
7509 static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
7510 {
7511 	struct cfs_rq *cfs_rq;
7512 	struct sched_entity *se = &curr->se;
7513 
7514 	for_each_sched_entity(se) {
7515 		cfs_rq = cfs_rq_of(se);
7516 		entity_tick(cfs_rq, se, queued);
7517 	}
7518 
7519 	if (numabalancing_enabled)
7520 		task_tick_numa(rq, curr);
7521 
7522 	update_rq_runnable_avg(rq, 1);
7523 }
7524 
7525 /*
7526  * called on fork with the child task as argument from the parent's context
7527  *  - child not yet on the tasklist
7528  *  - preemption disabled
7529  */
7530 static void task_fork_fair(struct task_struct *p)
7531 {
7532 	struct cfs_rq *cfs_rq;
7533 	struct sched_entity *se = &p->se, *curr;
7534 	int this_cpu = smp_processor_id();
7535 	struct rq *rq = this_rq();
7536 	unsigned long flags;
7537 
7538 	raw_spin_lock_irqsave(&rq->lock, flags);
7539 
7540 	update_rq_clock(rq);
7541 
7542 	cfs_rq = task_cfs_rq(current);
7543 	curr = cfs_rq->curr;
7544 
7545 	/*
7546 	 * Not only the cpu but also the task_group of the parent might have
7547 	 * been changed after parent->se.parent,cfs_rq were copied to
7548 	 * child->se.parent,cfs_rq. So call __set_task_cpu() to make those
7549 	 * of child point to valid ones.
7550 	 */
7551 	rcu_read_lock();
7552 	__set_task_cpu(p, this_cpu);
7553 	rcu_read_unlock();
7554 
7555 	update_curr(cfs_rq);
7556 
7557 	if (curr)
7558 		se->vruntime = curr->vruntime;
7559 	place_entity(cfs_rq, se, 1);
7560 
7561 	if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
7562 		/*
7563 		 * Upon rescheduling, sched_class::put_prev_task() will place
7564 		 * 'current' within the tree based on its new key value.
7565 		 */
7566 		swap(curr->vruntime, se->vruntime);
7567 		resched_curr(rq);
7568 	}
7569 
7570 	se->vruntime -= cfs_rq->min_vruntime;
7571 
7572 	raw_spin_unlock_irqrestore(&rq->lock, flags);
7573 }
7574 
7575 /*
7576  * Priority of the task has changed. Check to see if we preempt
7577  * the current task.
7578  */
7579 static void
7580 prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
7581 {
7582 	if (!task_on_rq_queued(p))
7583 		return;
7584 
7585 	/*
7586 	 * Reschedule if we are currently running on this runqueue and
7587 	 * our priority decreased, or if we are not currently running on
7588 	 * this runqueue and our priority is higher than the current's
7589 	 */
7590 	if (rq->curr == p) {
7591 		if (p->prio > oldprio)
7592 			resched_curr(rq);
7593 	} else
7594 		check_preempt_curr(rq, p, 0);
7595 }
7596 
7597 static void switched_from_fair(struct rq *rq, struct task_struct *p)
7598 {
7599 	struct sched_entity *se = &p->se;
7600 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
7601 
7602 	/*
7603 	 * Ensure the task's vruntime is normalized, so that when it's
7604 	 * switched back to the fair class the enqueue_entity(.flags=0) will
7605 	 * do the right thing.
7606 	 *
7607 	 * If it's queued, then the dequeue_entity(.flags=0) will already
7608 	 * have normalized the vruntime, if it's !queued, then only when
7609 	 * the task is sleeping will it still have non-normalized vruntime.
7610 	 */
7611 	if (!task_on_rq_queued(p) && p->state != TASK_RUNNING) {
7612 		/*
7613 		 * Fix up our vruntime so that the current sleep doesn't
7614 		 * cause 'unlimited' sleep bonus.
7615 		 */
7616 		place_entity(cfs_rq, se, 0);
7617 		se->vruntime -= cfs_rq->min_vruntime;
7618 	}
7619 
7620 #ifdef CONFIG_SMP
7621 	/*
7622 	* Remove our load from contribution when we leave sched_fair
7623 	* and ensure we don't carry in an old decay_count if we
7624 	* switch back.
7625 	*/
7626 	if (se->avg.decay_count) {
7627 		__synchronize_entity_decay(se);
7628 		subtract_blocked_load_contrib(cfs_rq, se->avg.load_avg_contrib);
7629 	}
7630 #endif
7631 }
7632 
7633 /*
7634  * We switched to the sched_fair class.
7635  */
7636 static void switched_to_fair(struct rq *rq, struct task_struct *p)
7637 {
7638 #ifdef CONFIG_FAIR_GROUP_SCHED
7639 	struct sched_entity *se = &p->se;
7640 	/*
7641 	 * Since the real-depth could have been changed (only FAIR
7642 	 * class maintain depth value), reset depth properly.
7643 	 */
7644 	se->depth = se->parent ? se->parent->depth + 1 : 0;
7645 #endif
7646 	if (!task_on_rq_queued(p))
7647 		return;
7648 
7649 	/*
7650 	 * We were most likely switched from sched_rt, so
7651 	 * kick off the schedule if running, otherwise just see
7652 	 * if we can still preempt the current task.
7653 	 */
7654 	if (rq->curr == p)
7655 		resched_curr(rq);
7656 	else
7657 		check_preempt_curr(rq, p, 0);
7658 }
7659 
7660 /* Account for a task changing its policy or group.
7661  *
7662  * This routine is mostly called to set cfs_rq->curr field when a task
7663  * migrates between groups/classes.
7664  */
7665 static void set_curr_task_fair(struct rq *rq)
7666 {
7667 	struct sched_entity *se = &rq->curr->se;
7668 
7669 	for_each_sched_entity(se) {
7670 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
7671 
7672 		set_next_entity(cfs_rq, se);
7673 		/* ensure bandwidth has been allocated on our new cfs_rq */
7674 		account_cfs_rq_runtime(cfs_rq, 0);
7675 	}
7676 }
7677 
7678 void init_cfs_rq(struct cfs_rq *cfs_rq)
7679 {
7680 	cfs_rq->tasks_timeline = RB_ROOT;
7681 	cfs_rq->min_vruntime = (u64)(-(1LL << 20));
7682 #ifndef CONFIG_64BIT
7683 	cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
7684 #endif
7685 #ifdef CONFIG_SMP
7686 	atomic64_set(&cfs_rq->decay_counter, 1);
7687 	atomic_long_set(&cfs_rq->removed_load, 0);
7688 #endif
7689 }
7690 
7691 #ifdef CONFIG_FAIR_GROUP_SCHED
7692 static void task_move_group_fair(struct task_struct *p, int queued)
7693 {
7694 	struct sched_entity *se = &p->se;
7695 	struct cfs_rq *cfs_rq;
7696 
7697 	/*
7698 	 * If the task was not on the rq at the time of this cgroup movement
7699 	 * it must have been asleep, sleeping tasks keep their ->vruntime
7700 	 * absolute on their old rq until wakeup (needed for the fair sleeper
7701 	 * bonus in place_entity()).
7702 	 *
7703 	 * If it was on the rq, we've just 'preempted' it, which does convert
7704 	 * ->vruntime to a relative base.
7705 	 *
7706 	 * Make sure both cases convert their relative position when migrating
7707 	 * to another cgroup's rq. This does somewhat interfere with the
7708 	 * fair sleeper stuff for the first placement, but who cares.
7709 	 */
7710 	/*
7711 	 * When !queued, vruntime of the task has usually NOT been normalized.
7712 	 * But there are some cases where it has already been normalized:
7713 	 *
7714 	 * - Moving a forked child which is waiting for being woken up by
7715 	 *   wake_up_new_task().
7716 	 * - Moving a task which has been woken up by try_to_wake_up() and
7717 	 *   waiting for actually being woken up by sched_ttwu_pending().
7718 	 *
7719 	 * To prevent boost or penalty in the new cfs_rq caused by delta
7720 	 * min_vruntime between the two cfs_rqs, we skip vruntime adjustment.
7721 	 */
7722 	if (!queued && (!se->sum_exec_runtime || p->state == TASK_WAKING))
7723 		queued = 1;
7724 
7725 	if (!queued)
7726 		se->vruntime -= cfs_rq_of(se)->min_vruntime;
7727 	set_task_rq(p, task_cpu(p));
7728 	se->depth = se->parent ? se->parent->depth + 1 : 0;
7729 	if (!queued) {
7730 		cfs_rq = cfs_rq_of(se);
7731 		se->vruntime += cfs_rq->min_vruntime;
7732 #ifdef CONFIG_SMP
7733 		/*
7734 		 * migrate_task_rq_fair() will have removed our previous
7735 		 * contribution, but we must synchronize for ongoing future
7736 		 * decay.
7737 		 */
7738 		se->avg.decay_count = atomic64_read(&cfs_rq->decay_counter);
7739 		cfs_rq->blocked_load_avg += se->avg.load_avg_contrib;
7740 #endif
7741 	}
7742 }
7743 
7744 void free_fair_sched_group(struct task_group *tg)
7745 {
7746 	int i;
7747 
7748 	destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
7749 
7750 	for_each_possible_cpu(i) {
7751 		if (tg->cfs_rq)
7752 			kfree(tg->cfs_rq[i]);
7753 		if (tg->se)
7754 			kfree(tg->se[i]);
7755 	}
7756 
7757 	kfree(tg->cfs_rq);
7758 	kfree(tg->se);
7759 }
7760 
7761 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
7762 {
7763 	struct cfs_rq *cfs_rq;
7764 	struct sched_entity *se;
7765 	int i;
7766 
7767 	tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
7768 	if (!tg->cfs_rq)
7769 		goto err;
7770 	tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
7771 	if (!tg->se)
7772 		goto err;
7773 
7774 	tg->shares = NICE_0_LOAD;
7775 
7776 	init_cfs_bandwidth(tg_cfs_bandwidth(tg));
7777 
7778 	for_each_possible_cpu(i) {
7779 		cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
7780 				      GFP_KERNEL, cpu_to_node(i));
7781 		if (!cfs_rq)
7782 			goto err;
7783 
7784 		se = kzalloc_node(sizeof(struct sched_entity),
7785 				  GFP_KERNEL, cpu_to_node(i));
7786 		if (!se)
7787 			goto err_free_rq;
7788 
7789 		init_cfs_rq(cfs_rq);
7790 		init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
7791 	}
7792 
7793 	return 1;
7794 
7795 err_free_rq:
7796 	kfree(cfs_rq);
7797 err:
7798 	return 0;
7799 }
7800 
7801 void unregister_fair_sched_group(struct task_group *tg, int cpu)
7802 {
7803 	struct rq *rq = cpu_rq(cpu);
7804 	unsigned long flags;
7805 
7806 	/*
7807 	* Only empty task groups can be destroyed; so we can speculatively
7808 	* check on_list without danger of it being re-added.
7809 	*/
7810 	if (!tg->cfs_rq[cpu]->on_list)
7811 		return;
7812 
7813 	raw_spin_lock_irqsave(&rq->lock, flags);
7814 	list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
7815 	raw_spin_unlock_irqrestore(&rq->lock, flags);
7816 }
7817 
7818 void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
7819 			struct sched_entity *se, int cpu,
7820 			struct sched_entity *parent)
7821 {
7822 	struct rq *rq = cpu_rq(cpu);
7823 
7824 	cfs_rq->tg = tg;
7825 	cfs_rq->rq = rq;
7826 	init_cfs_rq_runtime(cfs_rq);
7827 
7828 	tg->cfs_rq[cpu] = cfs_rq;
7829 	tg->se[cpu] = se;
7830 
7831 	/* se could be NULL for root_task_group */
7832 	if (!se)
7833 		return;
7834 
7835 	if (!parent) {
7836 		se->cfs_rq = &rq->cfs;
7837 		se->depth = 0;
7838 	} else {
7839 		se->cfs_rq = parent->my_q;
7840 		se->depth = parent->depth + 1;
7841 	}
7842 
7843 	se->my_q = cfs_rq;
7844 	/* guarantee group entities always have weight */
7845 	update_load_set(&se->load, NICE_0_LOAD);
7846 	se->parent = parent;
7847 }
7848 
7849 static DEFINE_MUTEX(shares_mutex);
7850 
7851 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
7852 {
7853 	int i;
7854 	unsigned long flags;
7855 
7856 	/*
7857 	 * We can't change the weight of the root cgroup.
7858 	 */
7859 	if (!tg->se[0])
7860 		return -EINVAL;
7861 
7862 	shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
7863 
7864 	mutex_lock(&shares_mutex);
7865 	if (tg->shares == shares)
7866 		goto done;
7867 
7868 	tg->shares = shares;
7869 	for_each_possible_cpu(i) {
7870 		struct rq *rq = cpu_rq(i);
7871 		struct sched_entity *se;
7872 
7873 		se = tg->se[i];
7874 		/* Propagate contribution to hierarchy */
7875 		raw_spin_lock_irqsave(&rq->lock, flags);
7876 
7877 		/* Possible calls to update_curr() need rq clock */
7878 		update_rq_clock(rq);
7879 		for_each_sched_entity(se)
7880 			update_cfs_shares(group_cfs_rq(se));
7881 		raw_spin_unlock_irqrestore(&rq->lock, flags);
7882 	}
7883 
7884 done:
7885 	mutex_unlock(&shares_mutex);
7886 	return 0;
7887 }
7888 #else /* CONFIG_FAIR_GROUP_SCHED */
7889 
7890 void free_fair_sched_group(struct task_group *tg) { }
7891 
7892 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
7893 {
7894 	return 1;
7895 }
7896 
7897 void unregister_fair_sched_group(struct task_group *tg, int cpu) { }
7898 
7899 #endif /* CONFIG_FAIR_GROUP_SCHED */
7900 
7901 
7902 static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
7903 {
7904 	struct sched_entity *se = &task->se;
7905 	unsigned int rr_interval = 0;
7906 
7907 	/*
7908 	 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
7909 	 * idle runqueue:
7910 	 */
7911 	if (rq->cfs.load.weight)
7912 		rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
7913 
7914 	return rr_interval;
7915 }
7916 
7917 /*
7918  * All the scheduling class methods:
7919  */
7920 const struct sched_class fair_sched_class = {
7921 	.next			= &idle_sched_class,
7922 	.enqueue_task		= enqueue_task_fair,
7923 	.dequeue_task		= dequeue_task_fair,
7924 	.yield_task		= yield_task_fair,
7925 	.yield_to_task		= yield_to_task_fair,
7926 
7927 	.check_preempt_curr	= check_preempt_wakeup,
7928 
7929 	.pick_next_task		= pick_next_task_fair,
7930 	.put_prev_task		= put_prev_task_fair,
7931 
7932 #ifdef CONFIG_SMP
7933 	.select_task_rq		= select_task_rq_fair,
7934 	.migrate_task_rq	= migrate_task_rq_fair,
7935 
7936 	.rq_online		= rq_online_fair,
7937 	.rq_offline		= rq_offline_fair,
7938 
7939 	.task_waking		= task_waking_fair,
7940 #endif
7941 
7942 	.set_curr_task          = set_curr_task_fair,
7943 	.task_tick		= task_tick_fair,
7944 	.task_fork		= task_fork_fair,
7945 
7946 	.prio_changed		= prio_changed_fair,
7947 	.switched_from		= switched_from_fair,
7948 	.switched_to		= switched_to_fair,
7949 
7950 	.get_rr_interval	= get_rr_interval_fair,
7951 
7952 #ifdef CONFIG_FAIR_GROUP_SCHED
7953 	.task_move_group	= task_move_group_fair,
7954 #endif
7955 };
7956 
7957 #ifdef CONFIG_SCHED_DEBUG
7958 void print_cfs_stats(struct seq_file *m, int cpu)
7959 {
7960 	struct cfs_rq *cfs_rq;
7961 
7962 	rcu_read_lock();
7963 	for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
7964 		print_cfs_rq(m, cpu, cfs_rq);
7965 	rcu_read_unlock();
7966 }
7967 #endif
7968 
7969 __init void init_sched_fair_class(void)
7970 {
7971 #ifdef CONFIG_SMP
7972 	open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
7973 
7974 #ifdef CONFIG_NO_HZ_COMMON
7975 	nohz.next_balance = jiffies;
7976 	zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
7977 	cpu_notifier(sched_ilb_notifier, 0);
7978 #endif
7979 #endif /* SMP */
7980 
7981 }
7982