1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH) 4 * 5 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com> 6 * 7 * Interactivity improvements by Mike Galbraith 8 * (C) 2007 Mike Galbraith <efault@gmx.de> 9 * 10 * Various enhancements by Dmitry Adamushko. 11 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com> 12 * 13 * Group scheduling enhancements by Srivatsa Vaddagiri 14 * Copyright IBM Corporation, 2007 15 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com> 16 * 17 * Scaled math optimizations by Thomas Gleixner 18 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de> 19 * 20 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra 21 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra 22 */ 23 #include "sched.h" 24 25 /* 26 * Targeted preemption latency for CPU-bound tasks: 27 * 28 * NOTE: this latency value is not the same as the concept of 29 * 'timeslice length' - timeslices in CFS are of variable length 30 * and have no persistent notion like in traditional, time-slice 31 * based scheduling concepts. 32 * 33 * (to see the precise effective timeslice length of your workload, 34 * run vmstat and monitor the context-switches (cs) field) 35 * 36 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds) 37 */ 38 unsigned int sysctl_sched_latency = 6000000ULL; 39 static unsigned int normalized_sysctl_sched_latency = 6000000ULL; 40 41 /* 42 * The initial- and re-scaling of tunables is configurable 43 * 44 * Options are: 45 * 46 * SCHED_TUNABLESCALING_NONE - unscaled, always *1 47 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus) 48 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus 49 * 50 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus)) 51 */ 52 unsigned int sysctl_sched_tunable_scaling = SCHED_TUNABLESCALING_LOG; 53 54 /* 55 * Minimal preemption granularity for CPU-bound tasks: 56 * 57 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds) 58 */ 59 unsigned int sysctl_sched_min_granularity = 750000ULL; 60 static unsigned int normalized_sysctl_sched_min_granularity = 750000ULL; 61 62 /* 63 * This value is kept at sysctl_sched_latency/sysctl_sched_min_granularity 64 */ 65 static unsigned int sched_nr_latency = 8; 66 67 /* 68 * After fork, child runs first. If set to 0 (default) then 69 * parent will (try to) run first. 70 */ 71 unsigned int sysctl_sched_child_runs_first __read_mostly; 72 73 /* 74 * SCHED_OTHER wake-up granularity. 75 * 76 * This option delays the preemption effects of decoupled workloads 77 * and reduces their over-scheduling. Synchronous workloads will still 78 * have immediate wakeup/sleep latencies. 79 * 80 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds) 81 */ 82 unsigned int sysctl_sched_wakeup_granularity = 1000000UL; 83 static unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL; 84 85 const_debug unsigned int sysctl_sched_migration_cost = 500000UL; 86 87 int sched_thermal_decay_shift; 88 static int __init setup_sched_thermal_decay_shift(char *str) 89 { 90 int _shift = 0; 91 92 if (kstrtoint(str, 0, &_shift)) 93 pr_warn("Unable to set scheduler thermal pressure decay shift parameter\n"); 94 95 sched_thermal_decay_shift = clamp(_shift, 0, 10); 96 return 1; 97 } 98 __setup("sched_thermal_decay_shift=", setup_sched_thermal_decay_shift); 99 100 #ifdef CONFIG_SMP 101 /* 102 * For asym packing, by default the lower numbered CPU has higher priority. 103 */ 104 int __weak arch_asym_cpu_priority(int cpu) 105 { 106 return -cpu; 107 } 108 109 /* 110 * The margin used when comparing utilization with CPU capacity. 111 * 112 * (default: ~20%) 113 */ 114 #define fits_capacity(cap, max) ((cap) * 1280 < (max) * 1024) 115 116 /* 117 * The margin used when comparing CPU capacities. 118 * is 'cap1' noticeably greater than 'cap2' 119 * 120 * (default: ~5%) 121 */ 122 #define capacity_greater(cap1, cap2) ((cap1) * 1024 > (cap2) * 1078) 123 #endif 124 125 #ifdef CONFIG_CFS_BANDWIDTH 126 /* 127 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool 128 * each time a cfs_rq requests quota. 129 * 130 * Note: in the case that the slice exceeds the runtime remaining (either due 131 * to consumption or the quota being specified to be smaller than the slice) 132 * we will always only issue the remaining available time. 133 * 134 * (default: 5 msec, units: microseconds) 135 */ 136 unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL; 137 #endif 138 139 static inline void update_load_add(struct load_weight *lw, unsigned long inc) 140 { 141 lw->weight += inc; 142 lw->inv_weight = 0; 143 } 144 145 static inline void update_load_sub(struct load_weight *lw, unsigned long dec) 146 { 147 lw->weight -= dec; 148 lw->inv_weight = 0; 149 } 150 151 static inline void update_load_set(struct load_weight *lw, unsigned long w) 152 { 153 lw->weight = w; 154 lw->inv_weight = 0; 155 } 156 157 /* 158 * Increase the granularity value when there are more CPUs, 159 * because with more CPUs the 'effective latency' as visible 160 * to users decreases. But the relationship is not linear, 161 * so pick a second-best guess by going with the log2 of the 162 * number of CPUs. 163 * 164 * This idea comes from the SD scheduler of Con Kolivas: 165 */ 166 static unsigned int get_update_sysctl_factor(void) 167 { 168 unsigned int cpus = min_t(unsigned int, num_online_cpus(), 8); 169 unsigned int factor; 170 171 switch (sysctl_sched_tunable_scaling) { 172 case SCHED_TUNABLESCALING_NONE: 173 factor = 1; 174 break; 175 case SCHED_TUNABLESCALING_LINEAR: 176 factor = cpus; 177 break; 178 case SCHED_TUNABLESCALING_LOG: 179 default: 180 factor = 1 + ilog2(cpus); 181 break; 182 } 183 184 return factor; 185 } 186 187 static void update_sysctl(void) 188 { 189 unsigned int factor = get_update_sysctl_factor(); 190 191 #define SET_SYSCTL(name) \ 192 (sysctl_##name = (factor) * normalized_sysctl_##name) 193 SET_SYSCTL(sched_min_granularity); 194 SET_SYSCTL(sched_latency); 195 SET_SYSCTL(sched_wakeup_granularity); 196 #undef SET_SYSCTL 197 } 198 199 void __init sched_init_granularity(void) 200 { 201 update_sysctl(); 202 } 203 204 #define WMULT_CONST (~0U) 205 #define WMULT_SHIFT 32 206 207 static void __update_inv_weight(struct load_weight *lw) 208 { 209 unsigned long w; 210 211 if (likely(lw->inv_weight)) 212 return; 213 214 w = scale_load_down(lw->weight); 215 216 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST)) 217 lw->inv_weight = 1; 218 else if (unlikely(!w)) 219 lw->inv_weight = WMULT_CONST; 220 else 221 lw->inv_weight = WMULT_CONST / w; 222 } 223 224 /* 225 * delta_exec * weight / lw.weight 226 * OR 227 * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT 228 * 229 * Either weight := NICE_0_LOAD and lw \e sched_prio_to_wmult[], in which case 230 * we're guaranteed shift stays positive because inv_weight is guaranteed to 231 * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22. 232 * 233 * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus 234 * weight/lw.weight <= 1, and therefore our shift will also be positive. 235 */ 236 static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw) 237 { 238 u64 fact = scale_load_down(weight); 239 u32 fact_hi = (u32)(fact >> 32); 240 int shift = WMULT_SHIFT; 241 int fs; 242 243 __update_inv_weight(lw); 244 245 if (unlikely(fact_hi)) { 246 fs = fls(fact_hi); 247 shift -= fs; 248 fact >>= fs; 249 } 250 251 fact = mul_u32_u32(fact, lw->inv_weight); 252 253 fact_hi = (u32)(fact >> 32); 254 if (fact_hi) { 255 fs = fls(fact_hi); 256 shift -= fs; 257 fact >>= fs; 258 } 259 260 return mul_u64_u32_shr(delta_exec, fact, shift); 261 } 262 263 264 const struct sched_class fair_sched_class; 265 266 /************************************************************** 267 * CFS operations on generic schedulable entities: 268 */ 269 270 #ifdef CONFIG_FAIR_GROUP_SCHED 271 static inline struct task_struct *task_of(struct sched_entity *se) 272 { 273 SCHED_WARN_ON(!entity_is_task(se)); 274 return container_of(se, struct task_struct, se); 275 } 276 277 /* Walk up scheduling entities hierarchy */ 278 #define for_each_sched_entity(se) \ 279 for (; se; se = se->parent) 280 281 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p) 282 { 283 return p->se.cfs_rq; 284 } 285 286 /* runqueue on which this entity is (to be) queued */ 287 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se) 288 { 289 return se->cfs_rq; 290 } 291 292 /* runqueue "owned" by this group */ 293 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp) 294 { 295 return grp->my_q; 296 } 297 298 static inline void cfs_rq_tg_path(struct cfs_rq *cfs_rq, char *path, int len) 299 { 300 if (!path) 301 return; 302 303 if (cfs_rq && task_group_is_autogroup(cfs_rq->tg)) 304 autogroup_path(cfs_rq->tg, path, len); 305 else if (cfs_rq && cfs_rq->tg->css.cgroup) 306 cgroup_path(cfs_rq->tg->css.cgroup, path, len); 307 else 308 strlcpy(path, "(null)", len); 309 } 310 311 static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq) 312 { 313 struct rq *rq = rq_of(cfs_rq); 314 int cpu = cpu_of(rq); 315 316 if (cfs_rq->on_list) 317 return rq->tmp_alone_branch == &rq->leaf_cfs_rq_list; 318 319 cfs_rq->on_list = 1; 320 321 /* 322 * Ensure we either appear before our parent (if already 323 * enqueued) or force our parent to appear after us when it is 324 * enqueued. The fact that we always enqueue bottom-up 325 * reduces this to two cases and a special case for the root 326 * cfs_rq. Furthermore, it also means that we will always reset 327 * tmp_alone_branch either when the branch is connected 328 * to a tree or when we reach the top of the tree 329 */ 330 if (cfs_rq->tg->parent && 331 cfs_rq->tg->parent->cfs_rq[cpu]->on_list) { 332 /* 333 * If parent is already on the list, we add the child 334 * just before. Thanks to circular linked property of 335 * the list, this means to put the child at the tail 336 * of the list that starts by parent. 337 */ 338 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list, 339 &(cfs_rq->tg->parent->cfs_rq[cpu]->leaf_cfs_rq_list)); 340 /* 341 * The branch is now connected to its tree so we can 342 * reset tmp_alone_branch to the beginning of the 343 * list. 344 */ 345 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list; 346 return true; 347 } 348 349 if (!cfs_rq->tg->parent) { 350 /* 351 * cfs rq without parent should be put 352 * at the tail of the list. 353 */ 354 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list, 355 &rq->leaf_cfs_rq_list); 356 /* 357 * We have reach the top of a tree so we can reset 358 * tmp_alone_branch to the beginning of the list. 359 */ 360 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list; 361 return true; 362 } 363 364 /* 365 * The parent has not already been added so we want to 366 * make sure that it will be put after us. 367 * tmp_alone_branch points to the begin of the branch 368 * where we will add parent. 369 */ 370 list_add_rcu(&cfs_rq->leaf_cfs_rq_list, rq->tmp_alone_branch); 371 /* 372 * update tmp_alone_branch to points to the new begin 373 * of the branch 374 */ 375 rq->tmp_alone_branch = &cfs_rq->leaf_cfs_rq_list; 376 return false; 377 } 378 379 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq) 380 { 381 if (cfs_rq->on_list) { 382 struct rq *rq = rq_of(cfs_rq); 383 384 /* 385 * With cfs_rq being unthrottled/throttled during an enqueue, 386 * it can happen the tmp_alone_branch points the a leaf that 387 * we finally want to del. In this case, tmp_alone_branch moves 388 * to the prev element but it will point to rq->leaf_cfs_rq_list 389 * at the end of the enqueue. 390 */ 391 if (rq->tmp_alone_branch == &cfs_rq->leaf_cfs_rq_list) 392 rq->tmp_alone_branch = cfs_rq->leaf_cfs_rq_list.prev; 393 394 list_del_rcu(&cfs_rq->leaf_cfs_rq_list); 395 cfs_rq->on_list = 0; 396 } 397 } 398 399 static inline void assert_list_leaf_cfs_rq(struct rq *rq) 400 { 401 SCHED_WARN_ON(rq->tmp_alone_branch != &rq->leaf_cfs_rq_list); 402 } 403 404 /* Iterate thr' all leaf cfs_rq's on a runqueue */ 405 #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) \ 406 list_for_each_entry_safe(cfs_rq, pos, &rq->leaf_cfs_rq_list, \ 407 leaf_cfs_rq_list) 408 409 /* Do the two (enqueued) entities belong to the same group ? */ 410 static inline struct cfs_rq * 411 is_same_group(struct sched_entity *se, struct sched_entity *pse) 412 { 413 if (se->cfs_rq == pse->cfs_rq) 414 return se->cfs_rq; 415 416 return NULL; 417 } 418 419 static inline struct sched_entity *parent_entity(struct sched_entity *se) 420 { 421 return se->parent; 422 } 423 424 static void 425 find_matching_se(struct sched_entity **se, struct sched_entity **pse) 426 { 427 int se_depth, pse_depth; 428 429 /* 430 * preemption test can be made between sibling entities who are in the 431 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of 432 * both tasks until we find their ancestors who are siblings of common 433 * parent. 434 */ 435 436 /* First walk up until both entities are at same depth */ 437 se_depth = (*se)->depth; 438 pse_depth = (*pse)->depth; 439 440 while (se_depth > pse_depth) { 441 se_depth--; 442 *se = parent_entity(*se); 443 } 444 445 while (pse_depth > se_depth) { 446 pse_depth--; 447 *pse = parent_entity(*pse); 448 } 449 450 while (!is_same_group(*se, *pse)) { 451 *se = parent_entity(*se); 452 *pse = parent_entity(*pse); 453 } 454 } 455 456 #else /* !CONFIG_FAIR_GROUP_SCHED */ 457 458 static inline struct task_struct *task_of(struct sched_entity *se) 459 { 460 return container_of(se, struct task_struct, se); 461 } 462 463 #define for_each_sched_entity(se) \ 464 for (; se; se = NULL) 465 466 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p) 467 { 468 return &task_rq(p)->cfs; 469 } 470 471 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se) 472 { 473 struct task_struct *p = task_of(se); 474 struct rq *rq = task_rq(p); 475 476 return &rq->cfs; 477 } 478 479 /* runqueue "owned" by this group */ 480 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp) 481 { 482 return NULL; 483 } 484 485 static inline void cfs_rq_tg_path(struct cfs_rq *cfs_rq, char *path, int len) 486 { 487 if (path) 488 strlcpy(path, "(null)", len); 489 } 490 491 static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq) 492 { 493 return true; 494 } 495 496 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq) 497 { 498 } 499 500 static inline void assert_list_leaf_cfs_rq(struct rq *rq) 501 { 502 } 503 504 #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) \ 505 for (cfs_rq = &rq->cfs, pos = NULL; cfs_rq; cfs_rq = pos) 506 507 static inline struct sched_entity *parent_entity(struct sched_entity *se) 508 { 509 return NULL; 510 } 511 512 static inline void 513 find_matching_se(struct sched_entity **se, struct sched_entity **pse) 514 { 515 } 516 517 #endif /* CONFIG_FAIR_GROUP_SCHED */ 518 519 static __always_inline 520 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec); 521 522 /************************************************************** 523 * Scheduling class tree data structure manipulation methods: 524 */ 525 526 static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime) 527 { 528 s64 delta = (s64)(vruntime - max_vruntime); 529 if (delta > 0) 530 max_vruntime = vruntime; 531 532 return max_vruntime; 533 } 534 535 static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime) 536 { 537 s64 delta = (s64)(vruntime - min_vruntime); 538 if (delta < 0) 539 min_vruntime = vruntime; 540 541 return min_vruntime; 542 } 543 544 static inline bool entity_before(struct sched_entity *a, 545 struct sched_entity *b) 546 { 547 return (s64)(a->vruntime - b->vruntime) < 0; 548 } 549 550 #define __node_2_se(node) \ 551 rb_entry((node), struct sched_entity, run_node) 552 553 static void update_min_vruntime(struct cfs_rq *cfs_rq) 554 { 555 struct sched_entity *curr = cfs_rq->curr; 556 struct rb_node *leftmost = rb_first_cached(&cfs_rq->tasks_timeline); 557 558 u64 vruntime = cfs_rq->min_vruntime; 559 560 if (curr) { 561 if (curr->on_rq) 562 vruntime = curr->vruntime; 563 else 564 curr = NULL; 565 } 566 567 if (leftmost) { /* non-empty tree */ 568 struct sched_entity *se = __node_2_se(leftmost); 569 570 if (!curr) 571 vruntime = se->vruntime; 572 else 573 vruntime = min_vruntime(vruntime, se->vruntime); 574 } 575 576 /* ensure we never gain time by being placed backwards. */ 577 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime); 578 #ifndef CONFIG_64BIT 579 smp_wmb(); 580 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime; 581 #endif 582 } 583 584 static inline bool __entity_less(struct rb_node *a, const struct rb_node *b) 585 { 586 return entity_before(__node_2_se(a), __node_2_se(b)); 587 } 588 589 /* 590 * Enqueue an entity into the rb-tree: 591 */ 592 static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) 593 { 594 rb_add_cached(&se->run_node, &cfs_rq->tasks_timeline, __entity_less); 595 } 596 597 static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) 598 { 599 rb_erase_cached(&se->run_node, &cfs_rq->tasks_timeline); 600 } 601 602 struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq) 603 { 604 struct rb_node *left = rb_first_cached(&cfs_rq->tasks_timeline); 605 606 if (!left) 607 return NULL; 608 609 return __node_2_se(left); 610 } 611 612 static struct sched_entity *__pick_next_entity(struct sched_entity *se) 613 { 614 struct rb_node *next = rb_next(&se->run_node); 615 616 if (!next) 617 return NULL; 618 619 return __node_2_se(next); 620 } 621 622 #ifdef CONFIG_SCHED_DEBUG 623 struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq) 624 { 625 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline.rb_root); 626 627 if (!last) 628 return NULL; 629 630 return __node_2_se(last); 631 } 632 633 /************************************************************** 634 * Scheduling class statistics methods: 635 */ 636 637 int sched_update_scaling(void) 638 { 639 unsigned int factor = get_update_sysctl_factor(); 640 641 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency, 642 sysctl_sched_min_granularity); 643 644 #define WRT_SYSCTL(name) \ 645 (normalized_sysctl_##name = sysctl_##name / (factor)) 646 WRT_SYSCTL(sched_min_granularity); 647 WRT_SYSCTL(sched_latency); 648 WRT_SYSCTL(sched_wakeup_granularity); 649 #undef WRT_SYSCTL 650 651 return 0; 652 } 653 #endif 654 655 /* 656 * delta /= w 657 */ 658 static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se) 659 { 660 if (unlikely(se->load.weight != NICE_0_LOAD)) 661 delta = __calc_delta(delta, NICE_0_LOAD, &se->load); 662 663 return delta; 664 } 665 666 /* 667 * The idea is to set a period in which each task runs once. 668 * 669 * When there are too many tasks (sched_nr_latency) we have to stretch 670 * this period because otherwise the slices get too small. 671 * 672 * p = (nr <= nl) ? l : l*nr/nl 673 */ 674 static u64 __sched_period(unsigned long nr_running) 675 { 676 if (unlikely(nr_running > sched_nr_latency)) 677 return nr_running * sysctl_sched_min_granularity; 678 else 679 return sysctl_sched_latency; 680 } 681 682 /* 683 * We calculate the wall-time slice from the period by taking a part 684 * proportional to the weight. 685 * 686 * s = p*P[w/rw] 687 */ 688 static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se) 689 { 690 unsigned int nr_running = cfs_rq->nr_running; 691 u64 slice; 692 693 if (sched_feat(ALT_PERIOD)) 694 nr_running = rq_of(cfs_rq)->cfs.h_nr_running; 695 696 slice = __sched_period(nr_running + !se->on_rq); 697 698 for_each_sched_entity(se) { 699 struct load_weight *load; 700 struct load_weight lw; 701 702 cfs_rq = cfs_rq_of(se); 703 load = &cfs_rq->load; 704 705 if (unlikely(!se->on_rq)) { 706 lw = cfs_rq->load; 707 708 update_load_add(&lw, se->load.weight); 709 load = &lw; 710 } 711 slice = __calc_delta(slice, se->load.weight, load); 712 } 713 714 if (sched_feat(BASE_SLICE)) 715 slice = max(slice, (u64)sysctl_sched_min_granularity); 716 717 return slice; 718 } 719 720 /* 721 * We calculate the vruntime slice of a to-be-inserted task. 722 * 723 * vs = s/w 724 */ 725 static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se) 726 { 727 return calc_delta_fair(sched_slice(cfs_rq, se), se); 728 } 729 730 #include "pelt.h" 731 #ifdef CONFIG_SMP 732 733 static int select_idle_sibling(struct task_struct *p, int prev_cpu, int cpu); 734 static unsigned long task_h_load(struct task_struct *p); 735 static unsigned long capacity_of(int cpu); 736 737 /* Give new sched_entity start runnable values to heavy its load in infant time */ 738 void init_entity_runnable_average(struct sched_entity *se) 739 { 740 struct sched_avg *sa = &se->avg; 741 742 memset(sa, 0, sizeof(*sa)); 743 744 /* 745 * Tasks are initialized with full load to be seen as heavy tasks until 746 * they get a chance to stabilize to their real load level. 747 * Group entities are initialized with zero load to reflect the fact that 748 * nothing has been attached to the task group yet. 749 */ 750 if (entity_is_task(se)) 751 sa->load_avg = scale_load_down(se->load.weight); 752 753 /* when this task enqueue'ed, it will contribute to its cfs_rq's load_avg */ 754 } 755 756 static void attach_entity_cfs_rq(struct sched_entity *se); 757 758 /* 759 * With new tasks being created, their initial util_avgs are extrapolated 760 * based on the cfs_rq's current util_avg: 761 * 762 * util_avg = cfs_rq->util_avg / (cfs_rq->load_avg + 1) * se.load.weight 763 * 764 * However, in many cases, the above util_avg does not give a desired 765 * value. Moreover, the sum of the util_avgs may be divergent, such 766 * as when the series is a harmonic series. 767 * 768 * To solve this problem, we also cap the util_avg of successive tasks to 769 * only 1/2 of the left utilization budget: 770 * 771 * util_avg_cap = (cpu_scale - cfs_rq->avg.util_avg) / 2^n 772 * 773 * where n denotes the nth task and cpu_scale the CPU capacity. 774 * 775 * For example, for a CPU with 1024 of capacity, a simplest series from 776 * the beginning would be like: 777 * 778 * task util_avg: 512, 256, 128, 64, 32, 16, 8, ... 779 * cfs_rq util_avg: 512, 768, 896, 960, 992, 1008, 1016, ... 780 * 781 * Finally, that extrapolated util_avg is clamped to the cap (util_avg_cap) 782 * if util_avg > util_avg_cap. 783 */ 784 void post_init_entity_util_avg(struct task_struct *p) 785 { 786 struct sched_entity *se = &p->se; 787 struct cfs_rq *cfs_rq = cfs_rq_of(se); 788 struct sched_avg *sa = &se->avg; 789 long cpu_scale = arch_scale_cpu_capacity(cpu_of(rq_of(cfs_rq))); 790 long cap = (long)(cpu_scale - cfs_rq->avg.util_avg) / 2; 791 792 if (cap > 0) { 793 if (cfs_rq->avg.util_avg != 0) { 794 sa->util_avg = cfs_rq->avg.util_avg * se->load.weight; 795 sa->util_avg /= (cfs_rq->avg.load_avg + 1); 796 797 if (sa->util_avg > cap) 798 sa->util_avg = cap; 799 } else { 800 sa->util_avg = cap; 801 } 802 } 803 804 sa->runnable_avg = sa->util_avg; 805 806 if (p->sched_class != &fair_sched_class) { 807 /* 808 * For !fair tasks do: 809 * 810 update_cfs_rq_load_avg(now, cfs_rq); 811 attach_entity_load_avg(cfs_rq, se); 812 switched_from_fair(rq, p); 813 * 814 * such that the next switched_to_fair() has the 815 * expected state. 816 */ 817 se->avg.last_update_time = cfs_rq_clock_pelt(cfs_rq); 818 return; 819 } 820 821 attach_entity_cfs_rq(se); 822 } 823 824 #else /* !CONFIG_SMP */ 825 void init_entity_runnable_average(struct sched_entity *se) 826 { 827 } 828 void post_init_entity_util_avg(struct task_struct *p) 829 { 830 } 831 static void update_tg_load_avg(struct cfs_rq *cfs_rq) 832 { 833 } 834 #endif /* CONFIG_SMP */ 835 836 /* 837 * Update the current task's runtime statistics. 838 */ 839 static void update_curr(struct cfs_rq *cfs_rq) 840 { 841 struct sched_entity *curr = cfs_rq->curr; 842 u64 now = rq_clock_task(rq_of(cfs_rq)); 843 u64 delta_exec; 844 845 if (unlikely(!curr)) 846 return; 847 848 delta_exec = now - curr->exec_start; 849 if (unlikely((s64)delta_exec <= 0)) 850 return; 851 852 curr->exec_start = now; 853 854 schedstat_set(curr->statistics.exec_max, 855 max(delta_exec, curr->statistics.exec_max)); 856 857 curr->sum_exec_runtime += delta_exec; 858 schedstat_add(cfs_rq->exec_clock, delta_exec); 859 860 curr->vruntime += calc_delta_fair(delta_exec, curr); 861 update_min_vruntime(cfs_rq); 862 863 if (entity_is_task(curr)) { 864 struct task_struct *curtask = task_of(curr); 865 866 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime); 867 cgroup_account_cputime(curtask, delta_exec); 868 account_group_exec_runtime(curtask, delta_exec); 869 } 870 871 account_cfs_rq_runtime(cfs_rq, delta_exec); 872 } 873 874 static void update_curr_fair(struct rq *rq) 875 { 876 update_curr(cfs_rq_of(&rq->curr->se)); 877 } 878 879 static inline void 880 update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se) 881 { 882 u64 wait_start, prev_wait_start; 883 884 if (!schedstat_enabled()) 885 return; 886 887 wait_start = rq_clock(rq_of(cfs_rq)); 888 prev_wait_start = schedstat_val(se->statistics.wait_start); 889 890 if (entity_is_task(se) && task_on_rq_migrating(task_of(se)) && 891 likely(wait_start > prev_wait_start)) 892 wait_start -= prev_wait_start; 893 894 __schedstat_set(se->statistics.wait_start, wait_start); 895 } 896 897 static inline void 898 update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se) 899 { 900 struct task_struct *p; 901 u64 delta; 902 903 if (!schedstat_enabled()) 904 return; 905 906 /* 907 * When the sched_schedstat changes from 0 to 1, some sched se 908 * maybe already in the runqueue, the se->statistics.wait_start 909 * will be 0.So it will let the delta wrong. We need to avoid this 910 * scenario. 911 */ 912 if (unlikely(!schedstat_val(se->statistics.wait_start))) 913 return; 914 915 delta = rq_clock(rq_of(cfs_rq)) - schedstat_val(se->statistics.wait_start); 916 917 if (entity_is_task(se)) { 918 p = task_of(se); 919 if (task_on_rq_migrating(p)) { 920 /* 921 * Preserve migrating task's wait time so wait_start 922 * time stamp can be adjusted to accumulate wait time 923 * prior to migration. 924 */ 925 __schedstat_set(se->statistics.wait_start, delta); 926 return; 927 } 928 trace_sched_stat_wait(p, delta); 929 } 930 931 __schedstat_set(se->statistics.wait_max, 932 max(schedstat_val(se->statistics.wait_max), delta)); 933 __schedstat_inc(se->statistics.wait_count); 934 __schedstat_add(se->statistics.wait_sum, delta); 935 __schedstat_set(se->statistics.wait_start, 0); 936 } 937 938 static inline void 939 update_stats_enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se) 940 { 941 struct task_struct *tsk = NULL; 942 u64 sleep_start, block_start; 943 944 if (!schedstat_enabled()) 945 return; 946 947 sleep_start = schedstat_val(se->statistics.sleep_start); 948 block_start = schedstat_val(se->statistics.block_start); 949 950 if (entity_is_task(se)) 951 tsk = task_of(se); 952 953 if (sleep_start) { 954 u64 delta = rq_clock(rq_of(cfs_rq)) - sleep_start; 955 956 if ((s64)delta < 0) 957 delta = 0; 958 959 if (unlikely(delta > schedstat_val(se->statistics.sleep_max))) 960 __schedstat_set(se->statistics.sleep_max, delta); 961 962 __schedstat_set(se->statistics.sleep_start, 0); 963 __schedstat_add(se->statistics.sum_sleep_runtime, delta); 964 965 if (tsk) { 966 account_scheduler_latency(tsk, delta >> 10, 1); 967 trace_sched_stat_sleep(tsk, delta); 968 } 969 } 970 if (block_start) { 971 u64 delta = rq_clock(rq_of(cfs_rq)) - block_start; 972 973 if ((s64)delta < 0) 974 delta = 0; 975 976 if (unlikely(delta > schedstat_val(se->statistics.block_max))) 977 __schedstat_set(se->statistics.block_max, delta); 978 979 __schedstat_set(se->statistics.block_start, 0); 980 __schedstat_add(se->statistics.sum_sleep_runtime, delta); 981 982 if (tsk) { 983 if (tsk->in_iowait) { 984 __schedstat_add(se->statistics.iowait_sum, delta); 985 __schedstat_inc(se->statistics.iowait_count); 986 trace_sched_stat_iowait(tsk, delta); 987 } 988 989 trace_sched_stat_blocked(tsk, delta); 990 991 /* 992 * Blocking time is in units of nanosecs, so shift by 993 * 20 to get a milliseconds-range estimation of the 994 * amount of time that the task spent sleeping: 995 */ 996 if (unlikely(prof_on == SLEEP_PROFILING)) { 997 profile_hits(SLEEP_PROFILING, 998 (void *)get_wchan(tsk), 999 delta >> 20); 1000 } 1001 account_scheduler_latency(tsk, delta >> 10, 0); 1002 } 1003 } 1004 } 1005 1006 /* 1007 * Task is being enqueued - update stats: 1008 */ 1009 static inline void 1010 update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 1011 { 1012 if (!schedstat_enabled()) 1013 return; 1014 1015 /* 1016 * Are we enqueueing a waiting task? (for current tasks 1017 * a dequeue/enqueue event is a NOP) 1018 */ 1019 if (se != cfs_rq->curr) 1020 update_stats_wait_start(cfs_rq, se); 1021 1022 if (flags & ENQUEUE_WAKEUP) 1023 update_stats_enqueue_sleeper(cfs_rq, se); 1024 } 1025 1026 static inline void 1027 update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 1028 { 1029 1030 if (!schedstat_enabled()) 1031 return; 1032 1033 /* 1034 * Mark the end of the wait period if dequeueing a 1035 * waiting task: 1036 */ 1037 if (se != cfs_rq->curr) 1038 update_stats_wait_end(cfs_rq, se); 1039 1040 if ((flags & DEQUEUE_SLEEP) && entity_is_task(se)) { 1041 struct task_struct *tsk = task_of(se); 1042 1043 if (tsk->state & TASK_INTERRUPTIBLE) 1044 __schedstat_set(se->statistics.sleep_start, 1045 rq_clock(rq_of(cfs_rq))); 1046 if (tsk->state & TASK_UNINTERRUPTIBLE) 1047 __schedstat_set(se->statistics.block_start, 1048 rq_clock(rq_of(cfs_rq))); 1049 } 1050 } 1051 1052 /* 1053 * We are picking a new current task - update its stats: 1054 */ 1055 static inline void 1056 update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se) 1057 { 1058 /* 1059 * We are starting a new run period: 1060 */ 1061 se->exec_start = rq_clock_task(rq_of(cfs_rq)); 1062 } 1063 1064 /************************************************** 1065 * Scheduling class queueing methods: 1066 */ 1067 1068 #ifdef CONFIG_NUMA_BALANCING 1069 /* 1070 * Approximate time to scan a full NUMA task in ms. The task scan period is 1071 * calculated based on the tasks virtual memory size and 1072 * numa_balancing_scan_size. 1073 */ 1074 unsigned int sysctl_numa_balancing_scan_period_min = 1000; 1075 unsigned int sysctl_numa_balancing_scan_period_max = 60000; 1076 1077 /* Portion of address space to scan in MB */ 1078 unsigned int sysctl_numa_balancing_scan_size = 256; 1079 1080 /* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */ 1081 unsigned int sysctl_numa_balancing_scan_delay = 1000; 1082 1083 struct numa_group { 1084 refcount_t refcount; 1085 1086 spinlock_t lock; /* nr_tasks, tasks */ 1087 int nr_tasks; 1088 pid_t gid; 1089 int active_nodes; 1090 1091 struct rcu_head rcu; 1092 unsigned long total_faults; 1093 unsigned long max_faults_cpu; 1094 /* 1095 * Faults_cpu is used to decide whether memory should move 1096 * towards the CPU. As a consequence, these stats are weighted 1097 * more by CPU use than by memory faults. 1098 */ 1099 unsigned long *faults_cpu; 1100 unsigned long faults[]; 1101 }; 1102 1103 /* 1104 * For functions that can be called in multiple contexts that permit reading 1105 * ->numa_group (see struct task_struct for locking rules). 1106 */ 1107 static struct numa_group *deref_task_numa_group(struct task_struct *p) 1108 { 1109 return rcu_dereference_check(p->numa_group, p == current || 1110 (lockdep_is_held(&task_rq(p)->lock) && !READ_ONCE(p->on_cpu))); 1111 } 1112 1113 static struct numa_group *deref_curr_numa_group(struct task_struct *p) 1114 { 1115 return rcu_dereference_protected(p->numa_group, p == current); 1116 } 1117 1118 static inline unsigned long group_faults_priv(struct numa_group *ng); 1119 static inline unsigned long group_faults_shared(struct numa_group *ng); 1120 1121 static unsigned int task_nr_scan_windows(struct task_struct *p) 1122 { 1123 unsigned long rss = 0; 1124 unsigned long nr_scan_pages; 1125 1126 /* 1127 * Calculations based on RSS as non-present and empty pages are skipped 1128 * by the PTE scanner and NUMA hinting faults should be trapped based 1129 * on resident pages 1130 */ 1131 nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT); 1132 rss = get_mm_rss(p->mm); 1133 if (!rss) 1134 rss = nr_scan_pages; 1135 1136 rss = round_up(rss, nr_scan_pages); 1137 return rss / nr_scan_pages; 1138 } 1139 1140 /* For sanity's sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */ 1141 #define MAX_SCAN_WINDOW 2560 1142 1143 static unsigned int task_scan_min(struct task_struct *p) 1144 { 1145 unsigned int scan_size = READ_ONCE(sysctl_numa_balancing_scan_size); 1146 unsigned int scan, floor; 1147 unsigned int windows = 1; 1148 1149 if (scan_size < MAX_SCAN_WINDOW) 1150 windows = MAX_SCAN_WINDOW / scan_size; 1151 floor = 1000 / windows; 1152 1153 scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p); 1154 return max_t(unsigned int, floor, scan); 1155 } 1156 1157 static unsigned int task_scan_start(struct task_struct *p) 1158 { 1159 unsigned long smin = task_scan_min(p); 1160 unsigned long period = smin; 1161 struct numa_group *ng; 1162 1163 /* Scale the maximum scan period with the amount of shared memory. */ 1164 rcu_read_lock(); 1165 ng = rcu_dereference(p->numa_group); 1166 if (ng) { 1167 unsigned long shared = group_faults_shared(ng); 1168 unsigned long private = group_faults_priv(ng); 1169 1170 period *= refcount_read(&ng->refcount); 1171 period *= shared + 1; 1172 period /= private + shared + 1; 1173 } 1174 rcu_read_unlock(); 1175 1176 return max(smin, period); 1177 } 1178 1179 static unsigned int task_scan_max(struct task_struct *p) 1180 { 1181 unsigned long smin = task_scan_min(p); 1182 unsigned long smax; 1183 struct numa_group *ng; 1184 1185 /* Watch for min being lower than max due to floor calculations */ 1186 smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p); 1187 1188 /* Scale the maximum scan period with the amount of shared memory. */ 1189 ng = deref_curr_numa_group(p); 1190 if (ng) { 1191 unsigned long shared = group_faults_shared(ng); 1192 unsigned long private = group_faults_priv(ng); 1193 unsigned long period = smax; 1194 1195 period *= refcount_read(&ng->refcount); 1196 period *= shared + 1; 1197 period /= private + shared + 1; 1198 1199 smax = max(smax, period); 1200 } 1201 1202 return max(smin, smax); 1203 } 1204 1205 static void account_numa_enqueue(struct rq *rq, struct task_struct *p) 1206 { 1207 rq->nr_numa_running += (p->numa_preferred_nid != NUMA_NO_NODE); 1208 rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p)); 1209 } 1210 1211 static void account_numa_dequeue(struct rq *rq, struct task_struct *p) 1212 { 1213 rq->nr_numa_running -= (p->numa_preferred_nid != NUMA_NO_NODE); 1214 rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p)); 1215 } 1216 1217 /* Shared or private faults. */ 1218 #define NR_NUMA_HINT_FAULT_TYPES 2 1219 1220 /* Memory and CPU locality */ 1221 #define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2) 1222 1223 /* Averaged statistics, and temporary buffers. */ 1224 #define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2) 1225 1226 pid_t task_numa_group_id(struct task_struct *p) 1227 { 1228 struct numa_group *ng; 1229 pid_t gid = 0; 1230 1231 rcu_read_lock(); 1232 ng = rcu_dereference(p->numa_group); 1233 if (ng) 1234 gid = ng->gid; 1235 rcu_read_unlock(); 1236 1237 return gid; 1238 } 1239 1240 /* 1241 * The averaged statistics, shared & private, memory & CPU, 1242 * occupy the first half of the array. The second half of the 1243 * array is for current counters, which are averaged into the 1244 * first set by task_numa_placement. 1245 */ 1246 static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv) 1247 { 1248 return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv; 1249 } 1250 1251 static inline unsigned long task_faults(struct task_struct *p, int nid) 1252 { 1253 if (!p->numa_faults) 1254 return 0; 1255 1256 return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] + 1257 p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)]; 1258 } 1259 1260 static inline unsigned long group_faults(struct task_struct *p, int nid) 1261 { 1262 struct numa_group *ng = deref_task_numa_group(p); 1263 1264 if (!ng) 1265 return 0; 1266 1267 return ng->faults[task_faults_idx(NUMA_MEM, nid, 0)] + 1268 ng->faults[task_faults_idx(NUMA_MEM, nid, 1)]; 1269 } 1270 1271 static inline unsigned long group_faults_cpu(struct numa_group *group, int nid) 1272 { 1273 return group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 0)] + 1274 group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 1)]; 1275 } 1276 1277 static inline unsigned long group_faults_priv(struct numa_group *ng) 1278 { 1279 unsigned long faults = 0; 1280 int node; 1281 1282 for_each_online_node(node) { 1283 faults += ng->faults[task_faults_idx(NUMA_MEM, node, 1)]; 1284 } 1285 1286 return faults; 1287 } 1288 1289 static inline unsigned long group_faults_shared(struct numa_group *ng) 1290 { 1291 unsigned long faults = 0; 1292 int node; 1293 1294 for_each_online_node(node) { 1295 faults += ng->faults[task_faults_idx(NUMA_MEM, node, 0)]; 1296 } 1297 1298 return faults; 1299 } 1300 1301 /* 1302 * A node triggering more than 1/3 as many NUMA faults as the maximum is 1303 * considered part of a numa group's pseudo-interleaving set. Migrations 1304 * between these nodes are slowed down, to allow things to settle down. 1305 */ 1306 #define ACTIVE_NODE_FRACTION 3 1307 1308 static bool numa_is_active_node(int nid, struct numa_group *ng) 1309 { 1310 return group_faults_cpu(ng, nid) * ACTIVE_NODE_FRACTION > ng->max_faults_cpu; 1311 } 1312 1313 /* Handle placement on systems where not all nodes are directly connected. */ 1314 static unsigned long score_nearby_nodes(struct task_struct *p, int nid, 1315 int maxdist, bool task) 1316 { 1317 unsigned long score = 0; 1318 int node; 1319 1320 /* 1321 * All nodes are directly connected, and the same distance 1322 * from each other. No need for fancy placement algorithms. 1323 */ 1324 if (sched_numa_topology_type == NUMA_DIRECT) 1325 return 0; 1326 1327 /* 1328 * This code is called for each node, introducing N^2 complexity, 1329 * which should be ok given the number of nodes rarely exceeds 8. 1330 */ 1331 for_each_online_node(node) { 1332 unsigned long faults; 1333 int dist = node_distance(nid, node); 1334 1335 /* 1336 * The furthest away nodes in the system are not interesting 1337 * for placement; nid was already counted. 1338 */ 1339 if (dist == sched_max_numa_distance || node == nid) 1340 continue; 1341 1342 /* 1343 * On systems with a backplane NUMA topology, compare groups 1344 * of nodes, and move tasks towards the group with the most 1345 * memory accesses. When comparing two nodes at distance 1346 * "hoplimit", only nodes closer by than "hoplimit" are part 1347 * of each group. Skip other nodes. 1348 */ 1349 if (sched_numa_topology_type == NUMA_BACKPLANE && 1350 dist >= maxdist) 1351 continue; 1352 1353 /* Add up the faults from nearby nodes. */ 1354 if (task) 1355 faults = task_faults(p, node); 1356 else 1357 faults = group_faults(p, node); 1358 1359 /* 1360 * On systems with a glueless mesh NUMA topology, there are 1361 * no fixed "groups of nodes". Instead, nodes that are not 1362 * directly connected bounce traffic through intermediate 1363 * nodes; a numa_group can occupy any set of nodes. 1364 * The further away a node is, the less the faults count. 1365 * This seems to result in good task placement. 1366 */ 1367 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) { 1368 faults *= (sched_max_numa_distance - dist); 1369 faults /= (sched_max_numa_distance - LOCAL_DISTANCE); 1370 } 1371 1372 score += faults; 1373 } 1374 1375 return score; 1376 } 1377 1378 /* 1379 * These return the fraction of accesses done by a particular task, or 1380 * task group, on a particular numa node. The group weight is given a 1381 * larger multiplier, in order to group tasks together that are almost 1382 * evenly spread out between numa nodes. 1383 */ 1384 static inline unsigned long task_weight(struct task_struct *p, int nid, 1385 int dist) 1386 { 1387 unsigned long faults, total_faults; 1388 1389 if (!p->numa_faults) 1390 return 0; 1391 1392 total_faults = p->total_numa_faults; 1393 1394 if (!total_faults) 1395 return 0; 1396 1397 faults = task_faults(p, nid); 1398 faults += score_nearby_nodes(p, nid, dist, true); 1399 1400 return 1000 * faults / total_faults; 1401 } 1402 1403 static inline unsigned long group_weight(struct task_struct *p, int nid, 1404 int dist) 1405 { 1406 struct numa_group *ng = deref_task_numa_group(p); 1407 unsigned long faults, total_faults; 1408 1409 if (!ng) 1410 return 0; 1411 1412 total_faults = ng->total_faults; 1413 1414 if (!total_faults) 1415 return 0; 1416 1417 faults = group_faults(p, nid); 1418 faults += score_nearby_nodes(p, nid, dist, false); 1419 1420 return 1000 * faults / total_faults; 1421 } 1422 1423 bool should_numa_migrate_memory(struct task_struct *p, struct page * page, 1424 int src_nid, int dst_cpu) 1425 { 1426 struct numa_group *ng = deref_curr_numa_group(p); 1427 int dst_nid = cpu_to_node(dst_cpu); 1428 int last_cpupid, this_cpupid; 1429 1430 this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid); 1431 last_cpupid = page_cpupid_xchg_last(page, this_cpupid); 1432 1433 /* 1434 * Allow first faults or private faults to migrate immediately early in 1435 * the lifetime of a task. The magic number 4 is based on waiting for 1436 * two full passes of the "multi-stage node selection" test that is 1437 * executed below. 1438 */ 1439 if ((p->numa_preferred_nid == NUMA_NO_NODE || p->numa_scan_seq <= 4) && 1440 (cpupid_pid_unset(last_cpupid) || cpupid_match_pid(p, last_cpupid))) 1441 return true; 1442 1443 /* 1444 * Multi-stage node selection is used in conjunction with a periodic 1445 * migration fault to build a temporal task<->page relation. By using 1446 * a two-stage filter we remove short/unlikely relations. 1447 * 1448 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate 1449 * a task's usage of a particular page (n_p) per total usage of this 1450 * page (n_t) (in a given time-span) to a probability. 1451 * 1452 * Our periodic faults will sample this probability and getting the 1453 * same result twice in a row, given these samples are fully 1454 * independent, is then given by P(n)^2, provided our sample period 1455 * is sufficiently short compared to the usage pattern. 1456 * 1457 * This quadric squishes small probabilities, making it less likely we 1458 * act on an unlikely task<->page relation. 1459 */ 1460 if (!cpupid_pid_unset(last_cpupid) && 1461 cpupid_to_nid(last_cpupid) != dst_nid) 1462 return false; 1463 1464 /* Always allow migrate on private faults */ 1465 if (cpupid_match_pid(p, last_cpupid)) 1466 return true; 1467 1468 /* A shared fault, but p->numa_group has not been set up yet. */ 1469 if (!ng) 1470 return true; 1471 1472 /* 1473 * Destination node is much more heavily used than the source 1474 * node? Allow migration. 1475 */ 1476 if (group_faults_cpu(ng, dst_nid) > group_faults_cpu(ng, src_nid) * 1477 ACTIVE_NODE_FRACTION) 1478 return true; 1479 1480 /* 1481 * Distribute memory according to CPU & memory use on each node, 1482 * with 3/4 hysteresis to avoid unnecessary memory migrations: 1483 * 1484 * faults_cpu(dst) 3 faults_cpu(src) 1485 * --------------- * - > --------------- 1486 * faults_mem(dst) 4 faults_mem(src) 1487 */ 1488 return group_faults_cpu(ng, dst_nid) * group_faults(p, src_nid) * 3 > 1489 group_faults_cpu(ng, src_nid) * group_faults(p, dst_nid) * 4; 1490 } 1491 1492 /* 1493 * 'numa_type' describes the node at the moment of load balancing. 1494 */ 1495 enum numa_type { 1496 /* The node has spare capacity that can be used to run more tasks. */ 1497 node_has_spare = 0, 1498 /* 1499 * The node is fully used and the tasks don't compete for more CPU 1500 * cycles. Nevertheless, some tasks might wait before running. 1501 */ 1502 node_fully_busy, 1503 /* 1504 * The node is overloaded and can't provide expected CPU cycles to all 1505 * tasks. 1506 */ 1507 node_overloaded 1508 }; 1509 1510 /* Cached statistics for all CPUs within a node */ 1511 struct numa_stats { 1512 unsigned long load; 1513 unsigned long runnable; 1514 unsigned long util; 1515 /* Total compute capacity of CPUs on a node */ 1516 unsigned long compute_capacity; 1517 unsigned int nr_running; 1518 unsigned int weight; 1519 enum numa_type node_type; 1520 int idle_cpu; 1521 }; 1522 1523 static inline bool is_core_idle(int cpu) 1524 { 1525 #ifdef CONFIG_SCHED_SMT 1526 int sibling; 1527 1528 for_each_cpu(sibling, cpu_smt_mask(cpu)) { 1529 if (cpu == sibling) 1530 continue; 1531 1532 if (!idle_cpu(cpu)) 1533 return false; 1534 } 1535 #endif 1536 1537 return true; 1538 } 1539 1540 struct task_numa_env { 1541 struct task_struct *p; 1542 1543 int src_cpu, src_nid; 1544 int dst_cpu, dst_nid; 1545 1546 struct numa_stats src_stats, dst_stats; 1547 1548 int imbalance_pct; 1549 int dist; 1550 1551 struct task_struct *best_task; 1552 long best_imp; 1553 int best_cpu; 1554 }; 1555 1556 static unsigned long cpu_load(struct rq *rq); 1557 static unsigned long cpu_runnable(struct rq *rq); 1558 static unsigned long cpu_util(int cpu); 1559 static inline long adjust_numa_imbalance(int imbalance, 1560 int dst_running, int dst_weight); 1561 1562 static inline enum 1563 numa_type numa_classify(unsigned int imbalance_pct, 1564 struct numa_stats *ns) 1565 { 1566 if ((ns->nr_running > ns->weight) && 1567 (((ns->compute_capacity * 100) < (ns->util * imbalance_pct)) || 1568 ((ns->compute_capacity * imbalance_pct) < (ns->runnable * 100)))) 1569 return node_overloaded; 1570 1571 if ((ns->nr_running < ns->weight) || 1572 (((ns->compute_capacity * 100) > (ns->util * imbalance_pct)) && 1573 ((ns->compute_capacity * imbalance_pct) > (ns->runnable * 100)))) 1574 return node_has_spare; 1575 1576 return node_fully_busy; 1577 } 1578 1579 #ifdef CONFIG_SCHED_SMT 1580 /* Forward declarations of select_idle_sibling helpers */ 1581 static inline bool test_idle_cores(int cpu, bool def); 1582 static inline int numa_idle_core(int idle_core, int cpu) 1583 { 1584 if (!static_branch_likely(&sched_smt_present) || 1585 idle_core >= 0 || !test_idle_cores(cpu, false)) 1586 return idle_core; 1587 1588 /* 1589 * Prefer cores instead of packing HT siblings 1590 * and triggering future load balancing. 1591 */ 1592 if (is_core_idle(cpu)) 1593 idle_core = cpu; 1594 1595 return idle_core; 1596 } 1597 #else 1598 static inline int numa_idle_core(int idle_core, int cpu) 1599 { 1600 return idle_core; 1601 } 1602 #endif 1603 1604 /* 1605 * Gather all necessary information to make NUMA balancing placement 1606 * decisions that are compatible with standard load balancer. This 1607 * borrows code and logic from update_sg_lb_stats but sharing a 1608 * common implementation is impractical. 1609 */ 1610 static void update_numa_stats(struct task_numa_env *env, 1611 struct numa_stats *ns, int nid, 1612 bool find_idle) 1613 { 1614 int cpu, idle_core = -1; 1615 1616 memset(ns, 0, sizeof(*ns)); 1617 ns->idle_cpu = -1; 1618 1619 rcu_read_lock(); 1620 for_each_cpu(cpu, cpumask_of_node(nid)) { 1621 struct rq *rq = cpu_rq(cpu); 1622 1623 ns->load += cpu_load(rq); 1624 ns->runnable += cpu_runnable(rq); 1625 ns->util += cpu_util(cpu); 1626 ns->nr_running += rq->cfs.h_nr_running; 1627 ns->compute_capacity += capacity_of(cpu); 1628 1629 if (find_idle && !rq->nr_running && idle_cpu(cpu)) { 1630 if (READ_ONCE(rq->numa_migrate_on) || 1631 !cpumask_test_cpu(cpu, env->p->cpus_ptr)) 1632 continue; 1633 1634 if (ns->idle_cpu == -1) 1635 ns->idle_cpu = cpu; 1636 1637 idle_core = numa_idle_core(idle_core, cpu); 1638 } 1639 } 1640 rcu_read_unlock(); 1641 1642 ns->weight = cpumask_weight(cpumask_of_node(nid)); 1643 1644 ns->node_type = numa_classify(env->imbalance_pct, ns); 1645 1646 if (idle_core >= 0) 1647 ns->idle_cpu = idle_core; 1648 } 1649 1650 static void task_numa_assign(struct task_numa_env *env, 1651 struct task_struct *p, long imp) 1652 { 1653 struct rq *rq = cpu_rq(env->dst_cpu); 1654 1655 /* Check if run-queue part of active NUMA balance. */ 1656 if (env->best_cpu != env->dst_cpu && xchg(&rq->numa_migrate_on, 1)) { 1657 int cpu; 1658 int start = env->dst_cpu; 1659 1660 /* Find alternative idle CPU. */ 1661 for_each_cpu_wrap(cpu, cpumask_of_node(env->dst_nid), start) { 1662 if (cpu == env->best_cpu || !idle_cpu(cpu) || 1663 !cpumask_test_cpu(cpu, env->p->cpus_ptr)) { 1664 continue; 1665 } 1666 1667 env->dst_cpu = cpu; 1668 rq = cpu_rq(env->dst_cpu); 1669 if (!xchg(&rq->numa_migrate_on, 1)) 1670 goto assign; 1671 } 1672 1673 /* Failed to find an alternative idle CPU */ 1674 return; 1675 } 1676 1677 assign: 1678 /* 1679 * Clear previous best_cpu/rq numa-migrate flag, since task now 1680 * found a better CPU to move/swap. 1681 */ 1682 if (env->best_cpu != -1 && env->best_cpu != env->dst_cpu) { 1683 rq = cpu_rq(env->best_cpu); 1684 WRITE_ONCE(rq->numa_migrate_on, 0); 1685 } 1686 1687 if (env->best_task) 1688 put_task_struct(env->best_task); 1689 if (p) 1690 get_task_struct(p); 1691 1692 env->best_task = p; 1693 env->best_imp = imp; 1694 env->best_cpu = env->dst_cpu; 1695 } 1696 1697 static bool load_too_imbalanced(long src_load, long dst_load, 1698 struct task_numa_env *env) 1699 { 1700 long imb, old_imb; 1701 long orig_src_load, orig_dst_load; 1702 long src_capacity, dst_capacity; 1703 1704 /* 1705 * The load is corrected for the CPU capacity available on each node. 1706 * 1707 * src_load dst_load 1708 * ------------ vs --------- 1709 * src_capacity dst_capacity 1710 */ 1711 src_capacity = env->src_stats.compute_capacity; 1712 dst_capacity = env->dst_stats.compute_capacity; 1713 1714 imb = abs(dst_load * src_capacity - src_load * dst_capacity); 1715 1716 orig_src_load = env->src_stats.load; 1717 orig_dst_load = env->dst_stats.load; 1718 1719 old_imb = abs(orig_dst_load * src_capacity - orig_src_load * dst_capacity); 1720 1721 /* Would this change make things worse? */ 1722 return (imb > old_imb); 1723 } 1724 1725 /* 1726 * Maximum NUMA importance can be 1998 (2*999); 1727 * SMALLIMP @ 30 would be close to 1998/64. 1728 * Used to deter task migration. 1729 */ 1730 #define SMALLIMP 30 1731 1732 /* 1733 * This checks if the overall compute and NUMA accesses of the system would 1734 * be improved if the source tasks was migrated to the target dst_cpu taking 1735 * into account that it might be best if task running on the dst_cpu should 1736 * be exchanged with the source task 1737 */ 1738 static bool task_numa_compare(struct task_numa_env *env, 1739 long taskimp, long groupimp, bool maymove) 1740 { 1741 struct numa_group *cur_ng, *p_ng = deref_curr_numa_group(env->p); 1742 struct rq *dst_rq = cpu_rq(env->dst_cpu); 1743 long imp = p_ng ? groupimp : taskimp; 1744 struct task_struct *cur; 1745 long src_load, dst_load; 1746 int dist = env->dist; 1747 long moveimp = imp; 1748 long load; 1749 bool stopsearch = false; 1750 1751 if (READ_ONCE(dst_rq->numa_migrate_on)) 1752 return false; 1753 1754 rcu_read_lock(); 1755 cur = rcu_dereference(dst_rq->curr); 1756 if (cur && ((cur->flags & PF_EXITING) || is_idle_task(cur))) 1757 cur = NULL; 1758 1759 /* 1760 * Because we have preemption enabled we can get migrated around and 1761 * end try selecting ourselves (current == env->p) as a swap candidate. 1762 */ 1763 if (cur == env->p) { 1764 stopsearch = true; 1765 goto unlock; 1766 } 1767 1768 if (!cur) { 1769 if (maymove && moveimp >= env->best_imp) 1770 goto assign; 1771 else 1772 goto unlock; 1773 } 1774 1775 /* Skip this swap candidate if cannot move to the source cpu. */ 1776 if (!cpumask_test_cpu(env->src_cpu, cur->cpus_ptr)) 1777 goto unlock; 1778 1779 /* 1780 * Skip this swap candidate if it is not moving to its preferred 1781 * node and the best task is. 1782 */ 1783 if (env->best_task && 1784 env->best_task->numa_preferred_nid == env->src_nid && 1785 cur->numa_preferred_nid != env->src_nid) { 1786 goto unlock; 1787 } 1788 1789 /* 1790 * "imp" is the fault differential for the source task between the 1791 * source and destination node. Calculate the total differential for 1792 * the source task and potential destination task. The more negative 1793 * the value is, the more remote accesses that would be expected to 1794 * be incurred if the tasks were swapped. 1795 * 1796 * If dst and source tasks are in the same NUMA group, or not 1797 * in any group then look only at task weights. 1798 */ 1799 cur_ng = rcu_dereference(cur->numa_group); 1800 if (cur_ng == p_ng) { 1801 imp = taskimp + task_weight(cur, env->src_nid, dist) - 1802 task_weight(cur, env->dst_nid, dist); 1803 /* 1804 * Add some hysteresis to prevent swapping the 1805 * tasks within a group over tiny differences. 1806 */ 1807 if (cur_ng) 1808 imp -= imp / 16; 1809 } else { 1810 /* 1811 * Compare the group weights. If a task is all by itself 1812 * (not part of a group), use the task weight instead. 1813 */ 1814 if (cur_ng && p_ng) 1815 imp += group_weight(cur, env->src_nid, dist) - 1816 group_weight(cur, env->dst_nid, dist); 1817 else 1818 imp += task_weight(cur, env->src_nid, dist) - 1819 task_weight(cur, env->dst_nid, dist); 1820 } 1821 1822 /* Discourage picking a task already on its preferred node */ 1823 if (cur->numa_preferred_nid == env->dst_nid) 1824 imp -= imp / 16; 1825 1826 /* 1827 * Encourage picking a task that moves to its preferred node. 1828 * This potentially makes imp larger than it's maximum of 1829 * 1998 (see SMALLIMP and task_weight for why) but in this 1830 * case, it does not matter. 1831 */ 1832 if (cur->numa_preferred_nid == env->src_nid) 1833 imp += imp / 8; 1834 1835 if (maymove && moveimp > imp && moveimp > env->best_imp) { 1836 imp = moveimp; 1837 cur = NULL; 1838 goto assign; 1839 } 1840 1841 /* 1842 * Prefer swapping with a task moving to its preferred node over a 1843 * task that is not. 1844 */ 1845 if (env->best_task && cur->numa_preferred_nid == env->src_nid && 1846 env->best_task->numa_preferred_nid != env->src_nid) { 1847 goto assign; 1848 } 1849 1850 /* 1851 * If the NUMA importance is less than SMALLIMP, 1852 * task migration might only result in ping pong 1853 * of tasks and also hurt performance due to cache 1854 * misses. 1855 */ 1856 if (imp < SMALLIMP || imp <= env->best_imp + SMALLIMP / 2) 1857 goto unlock; 1858 1859 /* 1860 * In the overloaded case, try and keep the load balanced. 1861 */ 1862 load = task_h_load(env->p) - task_h_load(cur); 1863 if (!load) 1864 goto assign; 1865 1866 dst_load = env->dst_stats.load + load; 1867 src_load = env->src_stats.load - load; 1868 1869 if (load_too_imbalanced(src_load, dst_load, env)) 1870 goto unlock; 1871 1872 assign: 1873 /* Evaluate an idle CPU for a task numa move. */ 1874 if (!cur) { 1875 int cpu = env->dst_stats.idle_cpu; 1876 1877 /* Nothing cached so current CPU went idle since the search. */ 1878 if (cpu < 0) 1879 cpu = env->dst_cpu; 1880 1881 /* 1882 * If the CPU is no longer truly idle and the previous best CPU 1883 * is, keep using it. 1884 */ 1885 if (!idle_cpu(cpu) && env->best_cpu >= 0 && 1886 idle_cpu(env->best_cpu)) { 1887 cpu = env->best_cpu; 1888 } 1889 1890 env->dst_cpu = cpu; 1891 } 1892 1893 task_numa_assign(env, cur, imp); 1894 1895 /* 1896 * If a move to idle is allowed because there is capacity or load 1897 * balance improves then stop the search. While a better swap 1898 * candidate may exist, a search is not free. 1899 */ 1900 if (maymove && !cur && env->best_cpu >= 0 && idle_cpu(env->best_cpu)) 1901 stopsearch = true; 1902 1903 /* 1904 * If a swap candidate must be identified and the current best task 1905 * moves its preferred node then stop the search. 1906 */ 1907 if (!maymove && env->best_task && 1908 env->best_task->numa_preferred_nid == env->src_nid) { 1909 stopsearch = true; 1910 } 1911 unlock: 1912 rcu_read_unlock(); 1913 1914 return stopsearch; 1915 } 1916 1917 static void task_numa_find_cpu(struct task_numa_env *env, 1918 long taskimp, long groupimp) 1919 { 1920 bool maymove = false; 1921 int cpu; 1922 1923 /* 1924 * If dst node has spare capacity, then check if there is an 1925 * imbalance that would be overruled by the load balancer. 1926 */ 1927 if (env->dst_stats.node_type == node_has_spare) { 1928 unsigned int imbalance; 1929 int src_running, dst_running; 1930 1931 /* 1932 * Would movement cause an imbalance? Note that if src has 1933 * more running tasks that the imbalance is ignored as the 1934 * move improves the imbalance from the perspective of the 1935 * CPU load balancer. 1936 * */ 1937 src_running = env->src_stats.nr_running - 1; 1938 dst_running = env->dst_stats.nr_running + 1; 1939 imbalance = max(0, dst_running - src_running); 1940 imbalance = adjust_numa_imbalance(imbalance, dst_running, 1941 env->dst_stats.weight); 1942 1943 /* Use idle CPU if there is no imbalance */ 1944 if (!imbalance) { 1945 maymove = true; 1946 if (env->dst_stats.idle_cpu >= 0) { 1947 env->dst_cpu = env->dst_stats.idle_cpu; 1948 task_numa_assign(env, NULL, 0); 1949 return; 1950 } 1951 } 1952 } else { 1953 long src_load, dst_load, load; 1954 /* 1955 * If the improvement from just moving env->p direction is better 1956 * than swapping tasks around, check if a move is possible. 1957 */ 1958 load = task_h_load(env->p); 1959 dst_load = env->dst_stats.load + load; 1960 src_load = env->src_stats.load - load; 1961 maymove = !load_too_imbalanced(src_load, dst_load, env); 1962 } 1963 1964 for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) { 1965 /* Skip this CPU if the source task cannot migrate */ 1966 if (!cpumask_test_cpu(cpu, env->p->cpus_ptr)) 1967 continue; 1968 1969 env->dst_cpu = cpu; 1970 if (task_numa_compare(env, taskimp, groupimp, maymove)) 1971 break; 1972 } 1973 } 1974 1975 static int task_numa_migrate(struct task_struct *p) 1976 { 1977 struct task_numa_env env = { 1978 .p = p, 1979 1980 .src_cpu = task_cpu(p), 1981 .src_nid = task_node(p), 1982 1983 .imbalance_pct = 112, 1984 1985 .best_task = NULL, 1986 .best_imp = 0, 1987 .best_cpu = -1, 1988 }; 1989 unsigned long taskweight, groupweight; 1990 struct sched_domain *sd; 1991 long taskimp, groupimp; 1992 struct numa_group *ng; 1993 struct rq *best_rq; 1994 int nid, ret, dist; 1995 1996 /* 1997 * Pick the lowest SD_NUMA domain, as that would have the smallest 1998 * imbalance and would be the first to start moving tasks about. 1999 * 2000 * And we want to avoid any moving of tasks about, as that would create 2001 * random movement of tasks -- counter the numa conditions we're trying 2002 * to satisfy here. 2003 */ 2004 rcu_read_lock(); 2005 sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu)); 2006 if (sd) 2007 env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2; 2008 rcu_read_unlock(); 2009 2010 /* 2011 * Cpusets can break the scheduler domain tree into smaller 2012 * balance domains, some of which do not cross NUMA boundaries. 2013 * Tasks that are "trapped" in such domains cannot be migrated 2014 * elsewhere, so there is no point in (re)trying. 2015 */ 2016 if (unlikely(!sd)) { 2017 sched_setnuma(p, task_node(p)); 2018 return -EINVAL; 2019 } 2020 2021 env.dst_nid = p->numa_preferred_nid; 2022 dist = env.dist = node_distance(env.src_nid, env.dst_nid); 2023 taskweight = task_weight(p, env.src_nid, dist); 2024 groupweight = group_weight(p, env.src_nid, dist); 2025 update_numa_stats(&env, &env.src_stats, env.src_nid, false); 2026 taskimp = task_weight(p, env.dst_nid, dist) - taskweight; 2027 groupimp = group_weight(p, env.dst_nid, dist) - groupweight; 2028 update_numa_stats(&env, &env.dst_stats, env.dst_nid, true); 2029 2030 /* Try to find a spot on the preferred nid. */ 2031 task_numa_find_cpu(&env, taskimp, groupimp); 2032 2033 /* 2034 * Look at other nodes in these cases: 2035 * - there is no space available on the preferred_nid 2036 * - the task is part of a numa_group that is interleaved across 2037 * multiple NUMA nodes; in order to better consolidate the group, 2038 * we need to check other locations. 2039 */ 2040 ng = deref_curr_numa_group(p); 2041 if (env.best_cpu == -1 || (ng && ng->active_nodes > 1)) { 2042 for_each_online_node(nid) { 2043 if (nid == env.src_nid || nid == p->numa_preferred_nid) 2044 continue; 2045 2046 dist = node_distance(env.src_nid, env.dst_nid); 2047 if (sched_numa_topology_type == NUMA_BACKPLANE && 2048 dist != env.dist) { 2049 taskweight = task_weight(p, env.src_nid, dist); 2050 groupweight = group_weight(p, env.src_nid, dist); 2051 } 2052 2053 /* Only consider nodes where both task and groups benefit */ 2054 taskimp = task_weight(p, nid, dist) - taskweight; 2055 groupimp = group_weight(p, nid, dist) - groupweight; 2056 if (taskimp < 0 && groupimp < 0) 2057 continue; 2058 2059 env.dist = dist; 2060 env.dst_nid = nid; 2061 update_numa_stats(&env, &env.dst_stats, env.dst_nid, true); 2062 task_numa_find_cpu(&env, taskimp, groupimp); 2063 } 2064 } 2065 2066 /* 2067 * If the task is part of a workload that spans multiple NUMA nodes, 2068 * and is migrating into one of the workload's active nodes, remember 2069 * this node as the task's preferred numa node, so the workload can 2070 * settle down. 2071 * A task that migrated to a second choice node will be better off 2072 * trying for a better one later. Do not set the preferred node here. 2073 */ 2074 if (ng) { 2075 if (env.best_cpu == -1) 2076 nid = env.src_nid; 2077 else 2078 nid = cpu_to_node(env.best_cpu); 2079 2080 if (nid != p->numa_preferred_nid) 2081 sched_setnuma(p, nid); 2082 } 2083 2084 /* No better CPU than the current one was found. */ 2085 if (env.best_cpu == -1) { 2086 trace_sched_stick_numa(p, env.src_cpu, NULL, -1); 2087 return -EAGAIN; 2088 } 2089 2090 best_rq = cpu_rq(env.best_cpu); 2091 if (env.best_task == NULL) { 2092 ret = migrate_task_to(p, env.best_cpu); 2093 WRITE_ONCE(best_rq->numa_migrate_on, 0); 2094 if (ret != 0) 2095 trace_sched_stick_numa(p, env.src_cpu, NULL, env.best_cpu); 2096 return ret; 2097 } 2098 2099 ret = migrate_swap(p, env.best_task, env.best_cpu, env.src_cpu); 2100 WRITE_ONCE(best_rq->numa_migrate_on, 0); 2101 2102 if (ret != 0) 2103 trace_sched_stick_numa(p, env.src_cpu, env.best_task, env.best_cpu); 2104 put_task_struct(env.best_task); 2105 return ret; 2106 } 2107 2108 /* Attempt to migrate a task to a CPU on the preferred node. */ 2109 static void numa_migrate_preferred(struct task_struct *p) 2110 { 2111 unsigned long interval = HZ; 2112 2113 /* This task has no NUMA fault statistics yet */ 2114 if (unlikely(p->numa_preferred_nid == NUMA_NO_NODE || !p->numa_faults)) 2115 return; 2116 2117 /* Periodically retry migrating the task to the preferred node */ 2118 interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16); 2119 p->numa_migrate_retry = jiffies + interval; 2120 2121 /* Success if task is already running on preferred CPU */ 2122 if (task_node(p) == p->numa_preferred_nid) 2123 return; 2124 2125 /* Otherwise, try migrate to a CPU on the preferred node */ 2126 task_numa_migrate(p); 2127 } 2128 2129 /* 2130 * Find out how many nodes on the workload is actively running on. Do this by 2131 * tracking the nodes from which NUMA hinting faults are triggered. This can 2132 * be different from the set of nodes where the workload's memory is currently 2133 * located. 2134 */ 2135 static void numa_group_count_active_nodes(struct numa_group *numa_group) 2136 { 2137 unsigned long faults, max_faults = 0; 2138 int nid, active_nodes = 0; 2139 2140 for_each_online_node(nid) { 2141 faults = group_faults_cpu(numa_group, nid); 2142 if (faults > max_faults) 2143 max_faults = faults; 2144 } 2145 2146 for_each_online_node(nid) { 2147 faults = group_faults_cpu(numa_group, nid); 2148 if (faults * ACTIVE_NODE_FRACTION > max_faults) 2149 active_nodes++; 2150 } 2151 2152 numa_group->max_faults_cpu = max_faults; 2153 numa_group->active_nodes = active_nodes; 2154 } 2155 2156 /* 2157 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS 2158 * increments. The more local the fault statistics are, the higher the scan 2159 * period will be for the next scan window. If local/(local+remote) ratio is 2160 * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS) 2161 * the scan period will decrease. Aim for 70% local accesses. 2162 */ 2163 #define NUMA_PERIOD_SLOTS 10 2164 #define NUMA_PERIOD_THRESHOLD 7 2165 2166 /* 2167 * Increase the scan period (slow down scanning) if the majority of 2168 * our memory is already on our local node, or if the majority of 2169 * the page accesses are shared with other processes. 2170 * Otherwise, decrease the scan period. 2171 */ 2172 static void update_task_scan_period(struct task_struct *p, 2173 unsigned long shared, unsigned long private) 2174 { 2175 unsigned int period_slot; 2176 int lr_ratio, ps_ratio; 2177 int diff; 2178 2179 unsigned long remote = p->numa_faults_locality[0]; 2180 unsigned long local = p->numa_faults_locality[1]; 2181 2182 /* 2183 * If there were no record hinting faults then either the task is 2184 * completely idle or all activity is areas that are not of interest 2185 * to automatic numa balancing. Related to that, if there were failed 2186 * migration then it implies we are migrating too quickly or the local 2187 * node is overloaded. In either case, scan slower 2188 */ 2189 if (local + shared == 0 || p->numa_faults_locality[2]) { 2190 p->numa_scan_period = min(p->numa_scan_period_max, 2191 p->numa_scan_period << 1); 2192 2193 p->mm->numa_next_scan = jiffies + 2194 msecs_to_jiffies(p->numa_scan_period); 2195 2196 return; 2197 } 2198 2199 /* 2200 * Prepare to scale scan period relative to the current period. 2201 * == NUMA_PERIOD_THRESHOLD scan period stays the same 2202 * < NUMA_PERIOD_THRESHOLD scan period decreases (scan faster) 2203 * >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower) 2204 */ 2205 period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS); 2206 lr_ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote); 2207 ps_ratio = (private * NUMA_PERIOD_SLOTS) / (private + shared); 2208 2209 if (ps_ratio >= NUMA_PERIOD_THRESHOLD) { 2210 /* 2211 * Most memory accesses are local. There is no need to 2212 * do fast NUMA scanning, since memory is already local. 2213 */ 2214 int slot = ps_ratio - NUMA_PERIOD_THRESHOLD; 2215 if (!slot) 2216 slot = 1; 2217 diff = slot * period_slot; 2218 } else if (lr_ratio >= NUMA_PERIOD_THRESHOLD) { 2219 /* 2220 * Most memory accesses are shared with other tasks. 2221 * There is no point in continuing fast NUMA scanning, 2222 * since other tasks may just move the memory elsewhere. 2223 */ 2224 int slot = lr_ratio - NUMA_PERIOD_THRESHOLD; 2225 if (!slot) 2226 slot = 1; 2227 diff = slot * period_slot; 2228 } else { 2229 /* 2230 * Private memory faults exceed (SLOTS-THRESHOLD)/SLOTS, 2231 * yet they are not on the local NUMA node. Speed up 2232 * NUMA scanning to get the memory moved over. 2233 */ 2234 int ratio = max(lr_ratio, ps_ratio); 2235 diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot; 2236 } 2237 2238 p->numa_scan_period = clamp(p->numa_scan_period + diff, 2239 task_scan_min(p), task_scan_max(p)); 2240 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality)); 2241 } 2242 2243 /* 2244 * Get the fraction of time the task has been running since the last 2245 * NUMA placement cycle. The scheduler keeps similar statistics, but 2246 * decays those on a 32ms period, which is orders of magnitude off 2247 * from the dozens-of-seconds NUMA balancing period. Use the scheduler 2248 * stats only if the task is so new there are no NUMA statistics yet. 2249 */ 2250 static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period) 2251 { 2252 u64 runtime, delta, now; 2253 /* Use the start of this time slice to avoid calculations. */ 2254 now = p->se.exec_start; 2255 runtime = p->se.sum_exec_runtime; 2256 2257 if (p->last_task_numa_placement) { 2258 delta = runtime - p->last_sum_exec_runtime; 2259 *period = now - p->last_task_numa_placement; 2260 2261 /* Avoid time going backwards, prevent potential divide error: */ 2262 if (unlikely((s64)*period < 0)) 2263 *period = 0; 2264 } else { 2265 delta = p->se.avg.load_sum; 2266 *period = LOAD_AVG_MAX; 2267 } 2268 2269 p->last_sum_exec_runtime = runtime; 2270 p->last_task_numa_placement = now; 2271 2272 return delta; 2273 } 2274 2275 /* 2276 * Determine the preferred nid for a task in a numa_group. This needs to 2277 * be done in a way that produces consistent results with group_weight, 2278 * otherwise workloads might not converge. 2279 */ 2280 static int preferred_group_nid(struct task_struct *p, int nid) 2281 { 2282 nodemask_t nodes; 2283 int dist; 2284 2285 /* Direct connections between all NUMA nodes. */ 2286 if (sched_numa_topology_type == NUMA_DIRECT) 2287 return nid; 2288 2289 /* 2290 * On a system with glueless mesh NUMA topology, group_weight 2291 * scores nodes according to the number of NUMA hinting faults on 2292 * both the node itself, and on nearby nodes. 2293 */ 2294 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) { 2295 unsigned long score, max_score = 0; 2296 int node, max_node = nid; 2297 2298 dist = sched_max_numa_distance; 2299 2300 for_each_online_node(node) { 2301 score = group_weight(p, node, dist); 2302 if (score > max_score) { 2303 max_score = score; 2304 max_node = node; 2305 } 2306 } 2307 return max_node; 2308 } 2309 2310 /* 2311 * Finding the preferred nid in a system with NUMA backplane 2312 * interconnect topology is more involved. The goal is to locate 2313 * tasks from numa_groups near each other in the system, and 2314 * untangle workloads from different sides of the system. This requires 2315 * searching down the hierarchy of node groups, recursively searching 2316 * inside the highest scoring group of nodes. The nodemask tricks 2317 * keep the complexity of the search down. 2318 */ 2319 nodes = node_online_map; 2320 for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) { 2321 unsigned long max_faults = 0; 2322 nodemask_t max_group = NODE_MASK_NONE; 2323 int a, b; 2324 2325 /* Are there nodes at this distance from each other? */ 2326 if (!find_numa_distance(dist)) 2327 continue; 2328 2329 for_each_node_mask(a, nodes) { 2330 unsigned long faults = 0; 2331 nodemask_t this_group; 2332 nodes_clear(this_group); 2333 2334 /* Sum group's NUMA faults; includes a==b case. */ 2335 for_each_node_mask(b, nodes) { 2336 if (node_distance(a, b) < dist) { 2337 faults += group_faults(p, b); 2338 node_set(b, this_group); 2339 node_clear(b, nodes); 2340 } 2341 } 2342 2343 /* Remember the top group. */ 2344 if (faults > max_faults) { 2345 max_faults = faults; 2346 max_group = this_group; 2347 /* 2348 * subtle: at the smallest distance there is 2349 * just one node left in each "group", the 2350 * winner is the preferred nid. 2351 */ 2352 nid = a; 2353 } 2354 } 2355 /* Next round, evaluate the nodes within max_group. */ 2356 if (!max_faults) 2357 break; 2358 nodes = max_group; 2359 } 2360 return nid; 2361 } 2362 2363 static void task_numa_placement(struct task_struct *p) 2364 { 2365 int seq, nid, max_nid = NUMA_NO_NODE; 2366 unsigned long max_faults = 0; 2367 unsigned long fault_types[2] = { 0, 0 }; 2368 unsigned long total_faults; 2369 u64 runtime, period; 2370 spinlock_t *group_lock = NULL; 2371 struct numa_group *ng; 2372 2373 /* 2374 * The p->mm->numa_scan_seq field gets updated without 2375 * exclusive access. Use READ_ONCE() here to ensure 2376 * that the field is read in a single access: 2377 */ 2378 seq = READ_ONCE(p->mm->numa_scan_seq); 2379 if (p->numa_scan_seq == seq) 2380 return; 2381 p->numa_scan_seq = seq; 2382 p->numa_scan_period_max = task_scan_max(p); 2383 2384 total_faults = p->numa_faults_locality[0] + 2385 p->numa_faults_locality[1]; 2386 runtime = numa_get_avg_runtime(p, &period); 2387 2388 /* If the task is part of a group prevent parallel updates to group stats */ 2389 ng = deref_curr_numa_group(p); 2390 if (ng) { 2391 group_lock = &ng->lock; 2392 spin_lock_irq(group_lock); 2393 } 2394 2395 /* Find the node with the highest number of faults */ 2396 for_each_online_node(nid) { 2397 /* Keep track of the offsets in numa_faults array */ 2398 int mem_idx, membuf_idx, cpu_idx, cpubuf_idx; 2399 unsigned long faults = 0, group_faults = 0; 2400 int priv; 2401 2402 for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) { 2403 long diff, f_diff, f_weight; 2404 2405 mem_idx = task_faults_idx(NUMA_MEM, nid, priv); 2406 membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv); 2407 cpu_idx = task_faults_idx(NUMA_CPU, nid, priv); 2408 cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv); 2409 2410 /* Decay existing window, copy faults since last scan */ 2411 diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2; 2412 fault_types[priv] += p->numa_faults[membuf_idx]; 2413 p->numa_faults[membuf_idx] = 0; 2414 2415 /* 2416 * Normalize the faults_from, so all tasks in a group 2417 * count according to CPU use, instead of by the raw 2418 * number of faults. Tasks with little runtime have 2419 * little over-all impact on throughput, and thus their 2420 * faults are less important. 2421 */ 2422 f_weight = div64_u64(runtime << 16, period + 1); 2423 f_weight = (f_weight * p->numa_faults[cpubuf_idx]) / 2424 (total_faults + 1); 2425 f_diff = f_weight - p->numa_faults[cpu_idx] / 2; 2426 p->numa_faults[cpubuf_idx] = 0; 2427 2428 p->numa_faults[mem_idx] += diff; 2429 p->numa_faults[cpu_idx] += f_diff; 2430 faults += p->numa_faults[mem_idx]; 2431 p->total_numa_faults += diff; 2432 if (ng) { 2433 /* 2434 * safe because we can only change our own group 2435 * 2436 * mem_idx represents the offset for a given 2437 * nid and priv in a specific region because it 2438 * is at the beginning of the numa_faults array. 2439 */ 2440 ng->faults[mem_idx] += diff; 2441 ng->faults_cpu[mem_idx] += f_diff; 2442 ng->total_faults += diff; 2443 group_faults += ng->faults[mem_idx]; 2444 } 2445 } 2446 2447 if (!ng) { 2448 if (faults > max_faults) { 2449 max_faults = faults; 2450 max_nid = nid; 2451 } 2452 } else if (group_faults > max_faults) { 2453 max_faults = group_faults; 2454 max_nid = nid; 2455 } 2456 } 2457 2458 if (ng) { 2459 numa_group_count_active_nodes(ng); 2460 spin_unlock_irq(group_lock); 2461 max_nid = preferred_group_nid(p, max_nid); 2462 } 2463 2464 if (max_faults) { 2465 /* Set the new preferred node */ 2466 if (max_nid != p->numa_preferred_nid) 2467 sched_setnuma(p, max_nid); 2468 } 2469 2470 update_task_scan_period(p, fault_types[0], fault_types[1]); 2471 } 2472 2473 static inline int get_numa_group(struct numa_group *grp) 2474 { 2475 return refcount_inc_not_zero(&grp->refcount); 2476 } 2477 2478 static inline void put_numa_group(struct numa_group *grp) 2479 { 2480 if (refcount_dec_and_test(&grp->refcount)) 2481 kfree_rcu(grp, rcu); 2482 } 2483 2484 static void task_numa_group(struct task_struct *p, int cpupid, int flags, 2485 int *priv) 2486 { 2487 struct numa_group *grp, *my_grp; 2488 struct task_struct *tsk; 2489 bool join = false; 2490 int cpu = cpupid_to_cpu(cpupid); 2491 int i; 2492 2493 if (unlikely(!deref_curr_numa_group(p))) { 2494 unsigned int size = sizeof(struct numa_group) + 2495 4*nr_node_ids*sizeof(unsigned long); 2496 2497 grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN); 2498 if (!grp) 2499 return; 2500 2501 refcount_set(&grp->refcount, 1); 2502 grp->active_nodes = 1; 2503 grp->max_faults_cpu = 0; 2504 spin_lock_init(&grp->lock); 2505 grp->gid = p->pid; 2506 /* Second half of the array tracks nids where faults happen */ 2507 grp->faults_cpu = grp->faults + NR_NUMA_HINT_FAULT_TYPES * 2508 nr_node_ids; 2509 2510 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) 2511 grp->faults[i] = p->numa_faults[i]; 2512 2513 grp->total_faults = p->total_numa_faults; 2514 2515 grp->nr_tasks++; 2516 rcu_assign_pointer(p->numa_group, grp); 2517 } 2518 2519 rcu_read_lock(); 2520 tsk = READ_ONCE(cpu_rq(cpu)->curr); 2521 2522 if (!cpupid_match_pid(tsk, cpupid)) 2523 goto no_join; 2524 2525 grp = rcu_dereference(tsk->numa_group); 2526 if (!grp) 2527 goto no_join; 2528 2529 my_grp = deref_curr_numa_group(p); 2530 if (grp == my_grp) 2531 goto no_join; 2532 2533 /* 2534 * Only join the other group if its bigger; if we're the bigger group, 2535 * the other task will join us. 2536 */ 2537 if (my_grp->nr_tasks > grp->nr_tasks) 2538 goto no_join; 2539 2540 /* 2541 * Tie-break on the grp address. 2542 */ 2543 if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp) 2544 goto no_join; 2545 2546 /* Always join threads in the same process. */ 2547 if (tsk->mm == current->mm) 2548 join = true; 2549 2550 /* Simple filter to avoid false positives due to PID collisions */ 2551 if (flags & TNF_SHARED) 2552 join = true; 2553 2554 /* Update priv based on whether false sharing was detected */ 2555 *priv = !join; 2556 2557 if (join && !get_numa_group(grp)) 2558 goto no_join; 2559 2560 rcu_read_unlock(); 2561 2562 if (!join) 2563 return; 2564 2565 BUG_ON(irqs_disabled()); 2566 double_lock_irq(&my_grp->lock, &grp->lock); 2567 2568 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) { 2569 my_grp->faults[i] -= p->numa_faults[i]; 2570 grp->faults[i] += p->numa_faults[i]; 2571 } 2572 my_grp->total_faults -= p->total_numa_faults; 2573 grp->total_faults += p->total_numa_faults; 2574 2575 my_grp->nr_tasks--; 2576 grp->nr_tasks++; 2577 2578 spin_unlock(&my_grp->lock); 2579 spin_unlock_irq(&grp->lock); 2580 2581 rcu_assign_pointer(p->numa_group, grp); 2582 2583 put_numa_group(my_grp); 2584 return; 2585 2586 no_join: 2587 rcu_read_unlock(); 2588 return; 2589 } 2590 2591 /* 2592 * Get rid of NUMA statistics associated with a task (either current or dead). 2593 * If @final is set, the task is dead and has reached refcount zero, so we can 2594 * safely free all relevant data structures. Otherwise, there might be 2595 * concurrent reads from places like load balancing and procfs, and we should 2596 * reset the data back to default state without freeing ->numa_faults. 2597 */ 2598 void task_numa_free(struct task_struct *p, bool final) 2599 { 2600 /* safe: p either is current or is being freed by current */ 2601 struct numa_group *grp = rcu_dereference_raw(p->numa_group); 2602 unsigned long *numa_faults = p->numa_faults; 2603 unsigned long flags; 2604 int i; 2605 2606 if (!numa_faults) 2607 return; 2608 2609 if (grp) { 2610 spin_lock_irqsave(&grp->lock, flags); 2611 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) 2612 grp->faults[i] -= p->numa_faults[i]; 2613 grp->total_faults -= p->total_numa_faults; 2614 2615 grp->nr_tasks--; 2616 spin_unlock_irqrestore(&grp->lock, flags); 2617 RCU_INIT_POINTER(p->numa_group, NULL); 2618 put_numa_group(grp); 2619 } 2620 2621 if (final) { 2622 p->numa_faults = NULL; 2623 kfree(numa_faults); 2624 } else { 2625 p->total_numa_faults = 0; 2626 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) 2627 numa_faults[i] = 0; 2628 } 2629 } 2630 2631 /* 2632 * Got a PROT_NONE fault for a page on @node. 2633 */ 2634 void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags) 2635 { 2636 struct task_struct *p = current; 2637 bool migrated = flags & TNF_MIGRATED; 2638 int cpu_node = task_node(current); 2639 int local = !!(flags & TNF_FAULT_LOCAL); 2640 struct numa_group *ng; 2641 int priv; 2642 2643 if (!static_branch_likely(&sched_numa_balancing)) 2644 return; 2645 2646 /* for example, ksmd faulting in a user's mm */ 2647 if (!p->mm) 2648 return; 2649 2650 /* Allocate buffer to track faults on a per-node basis */ 2651 if (unlikely(!p->numa_faults)) { 2652 int size = sizeof(*p->numa_faults) * 2653 NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids; 2654 2655 p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN); 2656 if (!p->numa_faults) 2657 return; 2658 2659 p->total_numa_faults = 0; 2660 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality)); 2661 } 2662 2663 /* 2664 * First accesses are treated as private, otherwise consider accesses 2665 * to be private if the accessing pid has not changed 2666 */ 2667 if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) { 2668 priv = 1; 2669 } else { 2670 priv = cpupid_match_pid(p, last_cpupid); 2671 if (!priv && !(flags & TNF_NO_GROUP)) 2672 task_numa_group(p, last_cpupid, flags, &priv); 2673 } 2674 2675 /* 2676 * If a workload spans multiple NUMA nodes, a shared fault that 2677 * occurs wholly within the set of nodes that the workload is 2678 * actively using should be counted as local. This allows the 2679 * scan rate to slow down when a workload has settled down. 2680 */ 2681 ng = deref_curr_numa_group(p); 2682 if (!priv && !local && ng && ng->active_nodes > 1 && 2683 numa_is_active_node(cpu_node, ng) && 2684 numa_is_active_node(mem_node, ng)) 2685 local = 1; 2686 2687 /* 2688 * Retry to migrate task to preferred node periodically, in case it 2689 * previously failed, or the scheduler moved us. 2690 */ 2691 if (time_after(jiffies, p->numa_migrate_retry)) { 2692 task_numa_placement(p); 2693 numa_migrate_preferred(p); 2694 } 2695 2696 if (migrated) 2697 p->numa_pages_migrated += pages; 2698 if (flags & TNF_MIGRATE_FAIL) 2699 p->numa_faults_locality[2] += pages; 2700 2701 p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages; 2702 p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages; 2703 p->numa_faults_locality[local] += pages; 2704 } 2705 2706 static void reset_ptenuma_scan(struct task_struct *p) 2707 { 2708 /* 2709 * We only did a read acquisition of the mmap sem, so 2710 * p->mm->numa_scan_seq is written to without exclusive access 2711 * and the update is not guaranteed to be atomic. That's not 2712 * much of an issue though, since this is just used for 2713 * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not 2714 * expensive, to avoid any form of compiler optimizations: 2715 */ 2716 WRITE_ONCE(p->mm->numa_scan_seq, READ_ONCE(p->mm->numa_scan_seq) + 1); 2717 p->mm->numa_scan_offset = 0; 2718 } 2719 2720 /* 2721 * The expensive part of numa migration is done from task_work context. 2722 * Triggered from task_tick_numa(). 2723 */ 2724 static void task_numa_work(struct callback_head *work) 2725 { 2726 unsigned long migrate, next_scan, now = jiffies; 2727 struct task_struct *p = current; 2728 struct mm_struct *mm = p->mm; 2729 u64 runtime = p->se.sum_exec_runtime; 2730 struct vm_area_struct *vma; 2731 unsigned long start, end; 2732 unsigned long nr_pte_updates = 0; 2733 long pages, virtpages; 2734 2735 SCHED_WARN_ON(p != container_of(work, struct task_struct, numa_work)); 2736 2737 work->next = work; 2738 /* 2739 * Who cares about NUMA placement when they're dying. 2740 * 2741 * NOTE: make sure not to dereference p->mm before this check, 2742 * exit_task_work() happens _after_ exit_mm() so we could be called 2743 * without p->mm even though we still had it when we enqueued this 2744 * work. 2745 */ 2746 if (p->flags & PF_EXITING) 2747 return; 2748 2749 if (!mm->numa_next_scan) { 2750 mm->numa_next_scan = now + 2751 msecs_to_jiffies(sysctl_numa_balancing_scan_delay); 2752 } 2753 2754 /* 2755 * Enforce maximal scan/migration frequency.. 2756 */ 2757 migrate = mm->numa_next_scan; 2758 if (time_before(now, migrate)) 2759 return; 2760 2761 if (p->numa_scan_period == 0) { 2762 p->numa_scan_period_max = task_scan_max(p); 2763 p->numa_scan_period = task_scan_start(p); 2764 } 2765 2766 next_scan = now + msecs_to_jiffies(p->numa_scan_period); 2767 if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate) 2768 return; 2769 2770 /* 2771 * Delay this task enough that another task of this mm will likely win 2772 * the next time around. 2773 */ 2774 p->node_stamp += 2 * TICK_NSEC; 2775 2776 start = mm->numa_scan_offset; 2777 pages = sysctl_numa_balancing_scan_size; 2778 pages <<= 20 - PAGE_SHIFT; /* MB in pages */ 2779 virtpages = pages * 8; /* Scan up to this much virtual space */ 2780 if (!pages) 2781 return; 2782 2783 2784 if (!mmap_read_trylock(mm)) 2785 return; 2786 vma = find_vma(mm, start); 2787 if (!vma) { 2788 reset_ptenuma_scan(p); 2789 start = 0; 2790 vma = mm->mmap; 2791 } 2792 for (; vma; vma = vma->vm_next) { 2793 if (!vma_migratable(vma) || !vma_policy_mof(vma) || 2794 is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_MIXEDMAP)) { 2795 continue; 2796 } 2797 2798 /* 2799 * Shared library pages mapped by multiple processes are not 2800 * migrated as it is expected they are cache replicated. Avoid 2801 * hinting faults in read-only file-backed mappings or the vdso 2802 * as migrating the pages will be of marginal benefit. 2803 */ 2804 if (!vma->vm_mm || 2805 (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ))) 2806 continue; 2807 2808 /* 2809 * Skip inaccessible VMAs to avoid any confusion between 2810 * PROT_NONE and NUMA hinting ptes 2811 */ 2812 if (!vma_is_accessible(vma)) 2813 continue; 2814 2815 do { 2816 start = max(start, vma->vm_start); 2817 end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE); 2818 end = min(end, vma->vm_end); 2819 nr_pte_updates = change_prot_numa(vma, start, end); 2820 2821 /* 2822 * Try to scan sysctl_numa_balancing_size worth of 2823 * hpages that have at least one present PTE that 2824 * is not already pte-numa. If the VMA contains 2825 * areas that are unused or already full of prot_numa 2826 * PTEs, scan up to virtpages, to skip through those 2827 * areas faster. 2828 */ 2829 if (nr_pte_updates) 2830 pages -= (end - start) >> PAGE_SHIFT; 2831 virtpages -= (end - start) >> PAGE_SHIFT; 2832 2833 start = end; 2834 if (pages <= 0 || virtpages <= 0) 2835 goto out; 2836 2837 cond_resched(); 2838 } while (end != vma->vm_end); 2839 } 2840 2841 out: 2842 /* 2843 * It is possible to reach the end of the VMA list but the last few 2844 * VMAs are not guaranteed to the vma_migratable. If they are not, we 2845 * would find the !migratable VMA on the next scan but not reset the 2846 * scanner to the start so check it now. 2847 */ 2848 if (vma) 2849 mm->numa_scan_offset = start; 2850 else 2851 reset_ptenuma_scan(p); 2852 mmap_read_unlock(mm); 2853 2854 /* 2855 * Make sure tasks use at least 32x as much time to run other code 2856 * than they used here, to limit NUMA PTE scanning overhead to 3% max. 2857 * Usually update_task_scan_period slows down scanning enough; on an 2858 * overloaded system we need to limit overhead on a per task basis. 2859 */ 2860 if (unlikely(p->se.sum_exec_runtime != runtime)) { 2861 u64 diff = p->se.sum_exec_runtime - runtime; 2862 p->node_stamp += 32 * diff; 2863 } 2864 } 2865 2866 void init_numa_balancing(unsigned long clone_flags, struct task_struct *p) 2867 { 2868 int mm_users = 0; 2869 struct mm_struct *mm = p->mm; 2870 2871 if (mm) { 2872 mm_users = atomic_read(&mm->mm_users); 2873 if (mm_users == 1) { 2874 mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay); 2875 mm->numa_scan_seq = 0; 2876 } 2877 } 2878 p->node_stamp = 0; 2879 p->numa_scan_seq = mm ? mm->numa_scan_seq : 0; 2880 p->numa_scan_period = sysctl_numa_balancing_scan_delay; 2881 /* Protect against double add, see task_tick_numa and task_numa_work */ 2882 p->numa_work.next = &p->numa_work; 2883 p->numa_faults = NULL; 2884 RCU_INIT_POINTER(p->numa_group, NULL); 2885 p->last_task_numa_placement = 0; 2886 p->last_sum_exec_runtime = 0; 2887 2888 init_task_work(&p->numa_work, task_numa_work); 2889 2890 /* New address space, reset the preferred nid */ 2891 if (!(clone_flags & CLONE_VM)) { 2892 p->numa_preferred_nid = NUMA_NO_NODE; 2893 return; 2894 } 2895 2896 /* 2897 * New thread, keep existing numa_preferred_nid which should be copied 2898 * already by arch_dup_task_struct but stagger when scans start. 2899 */ 2900 if (mm) { 2901 unsigned int delay; 2902 2903 delay = min_t(unsigned int, task_scan_max(current), 2904 current->numa_scan_period * mm_users * NSEC_PER_MSEC); 2905 delay += 2 * TICK_NSEC; 2906 p->node_stamp = delay; 2907 } 2908 } 2909 2910 /* 2911 * Drive the periodic memory faults.. 2912 */ 2913 static void task_tick_numa(struct rq *rq, struct task_struct *curr) 2914 { 2915 struct callback_head *work = &curr->numa_work; 2916 u64 period, now; 2917 2918 /* 2919 * We don't care about NUMA placement if we don't have memory. 2920 */ 2921 if ((curr->flags & (PF_EXITING | PF_KTHREAD)) || work->next != work) 2922 return; 2923 2924 /* 2925 * Using runtime rather than walltime has the dual advantage that 2926 * we (mostly) drive the selection from busy threads and that the 2927 * task needs to have done some actual work before we bother with 2928 * NUMA placement. 2929 */ 2930 now = curr->se.sum_exec_runtime; 2931 period = (u64)curr->numa_scan_period * NSEC_PER_MSEC; 2932 2933 if (now > curr->node_stamp + period) { 2934 if (!curr->node_stamp) 2935 curr->numa_scan_period = task_scan_start(curr); 2936 curr->node_stamp += period; 2937 2938 if (!time_before(jiffies, curr->mm->numa_next_scan)) 2939 task_work_add(curr, work, TWA_RESUME); 2940 } 2941 } 2942 2943 static void update_scan_period(struct task_struct *p, int new_cpu) 2944 { 2945 int src_nid = cpu_to_node(task_cpu(p)); 2946 int dst_nid = cpu_to_node(new_cpu); 2947 2948 if (!static_branch_likely(&sched_numa_balancing)) 2949 return; 2950 2951 if (!p->mm || !p->numa_faults || (p->flags & PF_EXITING)) 2952 return; 2953 2954 if (src_nid == dst_nid) 2955 return; 2956 2957 /* 2958 * Allow resets if faults have been trapped before one scan 2959 * has completed. This is most likely due to a new task that 2960 * is pulled cross-node due to wakeups or load balancing. 2961 */ 2962 if (p->numa_scan_seq) { 2963 /* 2964 * Avoid scan adjustments if moving to the preferred 2965 * node or if the task was not previously running on 2966 * the preferred node. 2967 */ 2968 if (dst_nid == p->numa_preferred_nid || 2969 (p->numa_preferred_nid != NUMA_NO_NODE && 2970 src_nid != p->numa_preferred_nid)) 2971 return; 2972 } 2973 2974 p->numa_scan_period = task_scan_start(p); 2975 } 2976 2977 #else 2978 static void task_tick_numa(struct rq *rq, struct task_struct *curr) 2979 { 2980 } 2981 2982 static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p) 2983 { 2984 } 2985 2986 static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p) 2987 { 2988 } 2989 2990 static inline void update_scan_period(struct task_struct *p, int new_cpu) 2991 { 2992 } 2993 2994 #endif /* CONFIG_NUMA_BALANCING */ 2995 2996 static void 2997 account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se) 2998 { 2999 update_load_add(&cfs_rq->load, se->load.weight); 3000 #ifdef CONFIG_SMP 3001 if (entity_is_task(se)) { 3002 struct rq *rq = rq_of(cfs_rq); 3003 3004 account_numa_enqueue(rq, task_of(se)); 3005 list_add(&se->group_node, &rq->cfs_tasks); 3006 } 3007 #endif 3008 cfs_rq->nr_running++; 3009 } 3010 3011 static void 3012 account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se) 3013 { 3014 update_load_sub(&cfs_rq->load, se->load.weight); 3015 #ifdef CONFIG_SMP 3016 if (entity_is_task(se)) { 3017 account_numa_dequeue(rq_of(cfs_rq), task_of(se)); 3018 list_del_init(&se->group_node); 3019 } 3020 #endif 3021 cfs_rq->nr_running--; 3022 } 3023 3024 /* 3025 * Signed add and clamp on underflow. 3026 * 3027 * Explicitly do a load-store to ensure the intermediate value never hits 3028 * memory. This allows lockless observations without ever seeing the negative 3029 * values. 3030 */ 3031 #define add_positive(_ptr, _val) do { \ 3032 typeof(_ptr) ptr = (_ptr); \ 3033 typeof(_val) val = (_val); \ 3034 typeof(*ptr) res, var = READ_ONCE(*ptr); \ 3035 \ 3036 res = var + val; \ 3037 \ 3038 if (val < 0 && res > var) \ 3039 res = 0; \ 3040 \ 3041 WRITE_ONCE(*ptr, res); \ 3042 } while (0) 3043 3044 /* 3045 * Unsigned subtract and clamp on underflow. 3046 * 3047 * Explicitly do a load-store to ensure the intermediate value never hits 3048 * memory. This allows lockless observations without ever seeing the negative 3049 * values. 3050 */ 3051 #define sub_positive(_ptr, _val) do { \ 3052 typeof(_ptr) ptr = (_ptr); \ 3053 typeof(*ptr) val = (_val); \ 3054 typeof(*ptr) res, var = READ_ONCE(*ptr); \ 3055 res = var - val; \ 3056 if (res > var) \ 3057 res = 0; \ 3058 WRITE_ONCE(*ptr, res); \ 3059 } while (0) 3060 3061 /* 3062 * Remove and clamp on negative, from a local variable. 3063 * 3064 * A variant of sub_positive(), which does not use explicit load-store 3065 * and is thus optimized for local variable updates. 3066 */ 3067 #define lsub_positive(_ptr, _val) do { \ 3068 typeof(_ptr) ptr = (_ptr); \ 3069 *ptr -= min_t(typeof(*ptr), *ptr, _val); \ 3070 } while (0) 3071 3072 #ifdef CONFIG_SMP 3073 static inline void 3074 enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) 3075 { 3076 cfs_rq->avg.load_avg += se->avg.load_avg; 3077 cfs_rq->avg.load_sum += se_weight(se) * se->avg.load_sum; 3078 } 3079 3080 static inline void 3081 dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) 3082 { 3083 sub_positive(&cfs_rq->avg.load_avg, se->avg.load_avg); 3084 sub_positive(&cfs_rq->avg.load_sum, se_weight(se) * se->avg.load_sum); 3085 } 3086 #else 3087 static inline void 3088 enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { } 3089 static inline void 3090 dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { } 3091 #endif 3092 3093 static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, 3094 unsigned long weight) 3095 { 3096 if (se->on_rq) { 3097 /* commit outstanding execution time */ 3098 if (cfs_rq->curr == se) 3099 update_curr(cfs_rq); 3100 update_load_sub(&cfs_rq->load, se->load.weight); 3101 } 3102 dequeue_load_avg(cfs_rq, se); 3103 3104 update_load_set(&se->load, weight); 3105 3106 #ifdef CONFIG_SMP 3107 do { 3108 u32 divider = get_pelt_divider(&se->avg); 3109 3110 se->avg.load_avg = div_u64(se_weight(se) * se->avg.load_sum, divider); 3111 } while (0); 3112 #endif 3113 3114 enqueue_load_avg(cfs_rq, se); 3115 if (se->on_rq) 3116 update_load_add(&cfs_rq->load, se->load.weight); 3117 3118 } 3119 3120 void reweight_task(struct task_struct *p, int prio) 3121 { 3122 struct sched_entity *se = &p->se; 3123 struct cfs_rq *cfs_rq = cfs_rq_of(se); 3124 struct load_weight *load = &se->load; 3125 unsigned long weight = scale_load(sched_prio_to_weight[prio]); 3126 3127 reweight_entity(cfs_rq, se, weight); 3128 load->inv_weight = sched_prio_to_wmult[prio]; 3129 } 3130 3131 #ifdef CONFIG_FAIR_GROUP_SCHED 3132 #ifdef CONFIG_SMP 3133 /* 3134 * All this does is approximate the hierarchical proportion which includes that 3135 * global sum we all love to hate. 3136 * 3137 * That is, the weight of a group entity, is the proportional share of the 3138 * group weight based on the group runqueue weights. That is: 3139 * 3140 * tg->weight * grq->load.weight 3141 * ge->load.weight = ----------------------------- (1) 3142 * \Sum grq->load.weight 3143 * 3144 * Now, because computing that sum is prohibitively expensive to compute (been 3145 * there, done that) we approximate it with this average stuff. The average 3146 * moves slower and therefore the approximation is cheaper and more stable. 3147 * 3148 * So instead of the above, we substitute: 3149 * 3150 * grq->load.weight -> grq->avg.load_avg (2) 3151 * 3152 * which yields the following: 3153 * 3154 * tg->weight * grq->avg.load_avg 3155 * ge->load.weight = ------------------------------ (3) 3156 * tg->load_avg 3157 * 3158 * Where: tg->load_avg ~= \Sum grq->avg.load_avg 3159 * 3160 * That is shares_avg, and it is right (given the approximation (2)). 3161 * 3162 * The problem with it is that because the average is slow -- it was designed 3163 * to be exactly that of course -- this leads to transients in boundary 3164 * conditions. In specific, the case where the group was idle and we start the 3165 * one task. It takes time for our CPU's grq->avg.load_avg to build up, 3166 * yielding bad latency etc.. 3167 * 3168 * Now, in that special case (1) reduces to: 3169 * 3170 * tg->weight * grq->load.weight 3171 * ge->load.weight = ----------------------------- = tg->weight (4) 3172 * grp->load.weight 3173 * 3174 * That is, the sum collapses because all other CPUs are idle; the UP scenario. 3175 * 3176 * So what we do is modify our approximation (3) to approach (4) in the (near) 3177 * UP case, like: 3178 * 3179 * ge->load.weight = 3180 * 3181 * tg->weight * grq->load.weight 3182 * --------------------------------------------------- (5) 3183 * tg->load_avg - grq->avg.load_avg + grq->load.weight 3184 * 3185 * But because grq->load.weight can drop to 0, resulting in a divide by zero, 3186 * we need to use grq->avg.load_avg as its lower bound, which then gives: 3187 * 3188 * 3189 * tg->weight * grq->load.weight 3190 * ge->load.weight = ----------------------------- (6) 3191 * tg_load_avg' 3192 * 3193 * Where: 3194 * 3195 * tg_load_avg' = tg->load_avg - grq->avg.load_avg + 3196 * max(grq->load.weight, grq->avg.load_avg) 3197 * 3198 * And that is shares_weight and is icky. In the (near) UP case it approaches 3199 * (4) while in the normal case it approaches (3). It consistently 3200 * overestimates the ge->load.weight and therefore: 3201 * 3202 * \Sum ge->load.weight >= tg->weight 3203 * 3204 * hence icky! 3205 */ 3206 static long calc_group_shares(struct cfs_rq *cfs_rq) 3207 { 3208 long tg_weight, tg_shares, load, shares; 3209 struct task_group *tg = cfs_rq->tg; 3210 3211 tg_shares = READ_ONCE(tg->shares); 3212 3213 load = max(scale_load_down(cfs_rq->load.weight), cfs_rq->avg.load_avg); 3214 3215 tg_weight = atomic_long_read(&tg->load_avg); 3216 3217 /* Ensure tg_weight >= load */ 3218 tg_weight -= cfs_rq->tg_load_avg_contrib; 3219 tg_weight += load; 3220 3221 shares = (tg_shares * load); 3222 if (tg_weight) 3223 shares /= tg_weight; 3224 3225 /* 3226 * MIN_SHARES has to be unscaled here to support per-CPU partitioning 3227 * of a group with small tg->shares value. It is a floor value which is 3228 * assigned as a minimum load.weight to the sched_entity representing 3229 * the group on a CPU. 3230 * 3231 * E.g. on 64-bit for a group with tg->shares of scale_load(15)=15*1024 3232 * on an 8-core system with 8 tasks each runnable on one CPU shares has 3233 * to be 15*1024*1/8=1920 instead of scale_load(MIN_SHARES)=2*1024. In 3234 * case no task is runnable on a CPU MIN_SHARES=2 should be returned 3235 * instead of 0. 3236 */ 3237 return clamp_t(long, shares, MIN_SHARES, tg_shares); 3238 } 3239 #endif /* CONFIG_SMP */ 3240 3241 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq); 3242 3243 /* 3244 * Recomputes the group entity based on the current state of its group 3245 * runqueue. 3246 */ 3247 static void update_cfs_group(struct sched_entity *se) 3248 { 3249 struct cfs_rq *gcfs_rq = group_cfs_rq(se); 3250 long shares; 3251 3252 if (!gcfs_rq) 3253 return; 3254 3255 if (throttled_hierarchy(gcfs_rq)) 3256 return; 3257 3258 #ifndef CONFIG_SMP 3259 shares = READ_ONCE(gcfs_rq->tg->shares); 3260 3261 if (likely(se->load.weight == shares)) 3262 return; 3263 #else 3264 shares = calc_group_shares(gcfs_rq); 3265 #endif 3266 3267 reweight_entity(cfs_rq_of(se), se, shares); 3268 } 3269 3270 #else /* CONFIG_FAIR_GROUP_SCHED */ 3271 static inline void update_cfs_group(struct sched_entity *se) 3272 { 3273 } 3274 #endif /* CONFIG_FAIR_GROUP_SCHED */ 3275 3276 static inline void cfs_rq_util_change(struct cfs_rq *cfs_rq, int flags) 3277 { 3278 struct rq *rq = rq_of(cfs_rq); 3279 3280 if (&rq->cfs == cfs_rq) { 3281 /* 3282 * There are a few boundary cases this might miss but it should 3283 * get called often enough that that should (hopefully) not be 3284 * a real problem. 3285 * 3286 * It will not get called when we go idle, because the idle 3287 * thread is a different class (!fair), nor will the utilization 3288 * number include things like RT tasks. 3289 * 3290 * As is, the util number is not freq-invariant (we'd have to 3291 * implement arch_scale_freq_capacity() for that). 3292 * 3293 * See cpu_util(). 3294 */ 3295 cpufreq_update_util(rq, flags); 3296 } 3297 } 3298 3299 #ifdef CONFIG_SMP 3300 #ifdef CONFIG_FAIR_GROUP_SCHED 3301 /* 3302 * Because list_add_leaf_cfs_rq always places a child cfs_rq on the list 3303 * immediately before a parent cfs_rq, and cfs_rqs are removed from the list 3304 * bottom-up, we only have to test whether the cfs_rq before us on the list 3305 * is our child. 3306 * If cfs_rq is not on the list, test whether a child needs its to be added to 3307 * connect a branch to the tree * (see list_add_leaf_cfs_rq() for details). 3308 */ 3309 static inline bool child_cfs_rq_on_list(struct cfs_rq *cfs_rq) 3310 { 3311 struct cfs_rq *prev_cfs_rq; 3312 struct list_head *prev; 3313 3314 if (cfs_rq->on_list) { 3315 prev = cfs_rq->leaf_cfs_rq_list.prev; 3316 } else { 3317 struct rq *rq = rq_of(cfs_rq); 3318 3319 prev = rq->tmp_alone_branch; 3320 } 3321 3322 prev_cfs_rq = container_of(prev, struct cfs_rq, leaf_cfs_rq_list); 3323 3324 return (prev_cfs_rq->tg->parent == cfs_rq->tg); 3325 } 3326 3327 static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq) 3328 { 3329 if (cfs_rq->load.weight) 3330 return false; 3331 3332 if (cfs_rq->avg.load_sum) 3333 return false; 3334 3335 if (cfs_rq->avg.util_sum) 3336 return false; 3337 3338 if (cfs_rq->avg.runnable_sum) 3339 return false; 3340 3341 if (child_cfs_rq_on_list(cfs_rq)) 3342 return false; 3343 3344 return true; 3345 } 3346 3347 /** 3348 * update_tg_load_avg - update the tg's load avg 3349 * @cfs_rq: the cfs_rq whose avg changed 3350 * 3351 * This function 'ensures': tg->load_avg := \Sum tg->cfs_rq[]->avg.load. 3352 * However, because tg->load_avg is a global value there are performance 3353 * considerations. 3354 * 3355 * In order to avoid having to look at the other cfs_rq's, we use a 3356 * differential update where we store the last value we propagated. This in 3357 * turn allows skipping updates if the differential is 'small'. 3358 * 3359 * Updating tg's load_avg is necessary before update_cfs_share(). 3360 */ 3361 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq) 3362 { 3363 long delta = cfs_rq->avg.load_avg - cfs_rq->tg_load_avg_contrib; 3364 3365 /* 3366 * No need to update load_avg for root_task_group as it is not used. 3367 */ 3368 if (cfs_rq->tg == &root_task_group) 3369 return; 3370 3371 if (abs(delta) > cfs_rq->tg_load_avg_contrib / 64) { 3372 atomic_long_add(delta, &cfs_rq->tg->load_avg); 3373 cfs_rq->tg_load_avg_contrib = cfs_rq->avg.load_avg; 3374 } 3375 } 3376 3377 /* 3378 * Called within set_task_rq() right before setting a task's CPU. The 3379 * caller only guarantees p->pi_lock is held; no other assumptions, 3380 * including the state of rq->lock, should be made. 3381 */ 3382 void set_task_rq_fair(struct sched_entity *se, 3383 struct cfs_rq *prev, struct cfs_rq *next) 3384 { 3385 u64 p_last_update_time; 3386 u64 n_last_update_time; 3387 3388 if (!sched_feat(ATTACH_AGE_LOAD)) 3389 return; 3390 3391 /* 3392 * We are supposed to update the task to "current" time, then its up to 3393 * date and ready to go to new CPU/cfs_rq. But we have difficulty in 3394 * getting what current time is, so simply throw away the out-of-date 3395 * time. This will result in the wakee task is less decayed, but giving 3396 * the wakee more load sounds not bad. 3397 */ 3398 if (!(se->avg.last_update_time && prev)) 3399 return; 3400 3401 #ifndef CONFIG_64BIT 3402 { 3403 u64 p_last_update_time_copy; 3404 u64 n_last_update_time_copy; 3405 3406 do { 3407 p_last_update_time_copy = prev->load_last_update_time_copy; 3408 n_last_update_time_copy = next->load_last_update_time_copy; 3409 3410 smp_rmb(); 3411 3412 p_last_update_time = prev->avg.last_update_time; 3413 n_last_update_time = next->avg.last_update_time; 3414 3415 } while (p_last_update_time != p_last_update_time_copy || 3416 n_last_update_time != n_last_update_time_copy); 3417 } 3418 #else 3419 p_last_update_time = prev->avg.last_update_time; 3420 n_last_update_time = next->avg.last_update_time; 3421 #endif 3422 __update_load_avg_blocked_se(p_last_update_time, se); 3423 se->avg.last_update_time = n_last_update_time; 3424 } 3425 3426 3427 /* 3428 * When on migration a sched_entity joins/leaves the PELT hierarchy, we need to 3429 * propagate its contribution. The key to this propagation is the invariant 3430 * that for each group: 3431 * 3432 * ge->avg == grq->avg (1) 3433 * 3434 * _IFF_ we look at the pure running and runnable sums. Because they 3435 * represent the very same entity, just at different points in the hierarchy. 3436 * 3437 * Per the above update_tg_cfs_util() and update_tg_cfs_runnable() are trivial 3438 * and simply copies the running/runnable sum over (but still wrong, because 3439 * the group entity and group rq do not have their PELT windows aligned). 3440 * 3441 * However, update_tg_cfs_load() is more complex. So we have: 3442 * 3443 * ge->avg.load_avg = ge->load.weight * ge->avg.runnable_avg (2) 3444 * 3445 * And since, like util, the runnable part should be directly transferable, 3446 * the following would _appear_ to be the straight forward approach: 3447 * 3448 * grq->avg.load_avg = grq->load.weight * grq->avg.runnable_avg (3) 3449 * 3450 * And per (1) we have: 3451 * 3452 * ge->avg.runnable_avg == grq->avg.runnable_avg 3453 * 3454 * Which gives: 3455 * 3456 * ge->load.weight * grq->avg.load_avg 3457 * ge->avg.load_avg = ----------------------------------- (4) 3458 * grq->load.weight 3459 * 3460 * Except that is wrong! 3461 * 3462 * Because while for entities historical weight is not important and we 3463 * really only care about our future and therefore can consider a pure 3464 * runnable sum, runqueues can NOT do this. 3465 * 3466 * We specifically want runqueues to have a load_avg that includes 3467 * historical weights. Those represent the blocked load, the load we expect 3468 * to (shortly) return to us. This only works by keeping the weights as 3469 * integral part of the sum. We therefore cannot decompose as per (3). 3470 * 3471 * Another reason this doesn't work is that runnable isn't a 0-sum entity. 3472 * Imagine a rq with 2 tasks that each are runnable 2/3 of the time. Then the 3473 * rq itself is runnable anywhere between 2/3 and 1 depending on how the 3474 * runnable section of these tasks overlap (or not). If they were to perfectly 3475 * align the rq as a whole would be runnable 2/3 of the time. If however we 3476 * always have at least 1 runnable task, the rq as a whole is always runnable. 3477 * 3478 * So we'll have to approximate.. :/ 3479 * 3480 * Given the constraint: 3481 * 3482 * ge->avg.running_sum <= ge->avg.runnable_sum <= LOAD_AVG_MAX 3483 * 3484 * We can construct a rule that adds runnable to a rq by assuming minimal 3485 * overlap. 3486 * 3487 * On removal, we'll assume each task is equally runnable; which yields: 3488 * 3489 * grq->avg.runnable_sum = grq->avg.load_sum / grq->load.weight 3490 * 3491 * XXX: only do this for the part of runnable > running ? 3492 * 3493 */ 3494 3495 static inline void 3496 update_tg_cfs_util(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq) 3497 { 3498 long delta = gcfs_rq->avg.util_avg - se->avg.util_avg; 3499 u32 divider; 3500 3501 /* Nothing to update */ 3502 if (!delta) 3503 return; 3504 3505 /* 3506 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se. 3507 * See ___update_load_avg() for details. 3508 */ 3509 divider = get_pelt_divider(&cfs_rq->avg); 3510 3511 /* Set new sched_entity's utilization */ 3512 se->avg.util_avg = gcfs_rq->avg.util_avg; 3513 se->avg.util_sum = se->avg.util_avg * divider; 3514 3515 /* Update parent cfs_rq utilization */ 3516 add_positive(&cfs_rq->avg.util_avg, delta); 3517 cfs_rq->avg.util_sum = cfs_rq->avg.util_avg * divider; 3518 } 3519 3520 static inline void 3521 update_tg_cfs_runnable(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq) 3522 { 3523 long delta = gcfs_rq->avg.runnable_avg - se->avg.runnable_avg; 3524 u32 divider; 3525 3526 /* Nothing to update */ 3527 if (!delta) 3528 return; 3529 3530 /* 3531 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se. 3532 * See ___update_load_avg() for details. 3533 */ 3534 divider = get_pelt_divider(&cfs_rq->avg); 3535 3536 /* Set new sched_entity's runnable */ 3537 se->avg.runnable_avg = gcfs_rq->avg.runnable_avg; 3538 se->avg.runnable_sum = se->avg.runnable_avg * divider; 3539 3540 /* Update parent cfs_rq runnable */ 3541 add_positive(&cfs_rq->avg.runnable_avg, delta); 3542 cfs_rq->avg.runnable_sum = cfs_rq->avg.runnable_avg * divider; 3543 } 3544 3545 static inline void 3546 update_tg_cfs_load(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq) 3547 { 3548 long delta, running_sum, runnable_sum = gcfs_rq->prop_runnable_sum; 3549 unsigned long load_avg; 3550 u64 load_sum = 0; 3551 u32 divider; 3552 3553 if (!runnable_sum) 3554 return; 3555 3556 gcfs_rq->prop_runnable_sum = 0; 3557 3558 /* 3559 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se. 3560 * See ___update_load_avg() for details. 3561 */ 3562 divider = get_pelt_divider(&cfs_rq->avg); 3563 3564 if (runnable_sum >= 0) { 3565 /* 3566 * Add runnable; clip at LOAD_AVG_MAX. Reflects that until 3567 * the CPU is saturated running == runnable. 3568 */ 3569 runnable_sum += se->avg.load_sum; 3570 runnable_sum = min_t(long, runnable_sum, divider); 3571 } else { 3572 /* 3573 * Estimate the new unweighted runnable_sum of the gcfs_rq by 3574 * assuming all tasks are equally runnable. 3575 */ 3576 if (scale_load_down(gcfs_rq->load.weight)) { 3577 load_sum = div_s64(gcfs_rq->avg.load_sum, 3578 scale_load_down(gcfs_rq->load.weight)); 3579 } 3580 3581 /* But make sure to not inflate se's runnable */ 3582 runnable_sum = min(se->avg.load_sum, load_sum); 3583 } 3584 3585 /* 3586 * runnable_sum can't be lower than running_sum 3587 * Rescale running sum to be in the same range as runnable sum 3588 * running_sum is in [0 : LOAD_AVG_MAX << SCHED_CAPACITY_SHIFT] 3589 * runnable_sum is in [0 : LOAD_AVG_MAX] 3590 */ 3591 running_sum = se->avg.util_sum >> SCHED_CAPACITY_SHIFT; 3592 runnable_sum = max(runnable_sum, running_sum); 3593 3594 load_sum = (s64)se_weight(se) * runnable_sum; 3595 load_avg = div_s64(load_sum, divider); 3596 3597 delta = load_avg - se->avg.load_avg; 3598 3599 se->avg.load_sum = runnable_sum; 3600 se->avg.load_avg = load_avg; 3601 3602 add_positive(&cfs_rq->avg.load_avg, delta); 3603 cfs_rq->avg.load_sum = cfs_rq->avg.load_avg * divider; 3604 } 3605 3606 static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum) 3607 { 3608 cfs_rq->propagate = 1; 3609 cfs_rq->prop_runnable_sum += runnable_sum; 3610 } 3611 3612 /* Update task and its cfs_rq load average */ 3613 static inline int propagate_entity_load_avg(struct sched_entity *se) 3614 { 3615 struct cfs_rq *cfs_rq, *gcfs_rq; 3616 3617 if (entity_is_task(se)) 3618 return 0; 3619 3620 gcfs_rq = group_cfs_rq(se); 3621 if (!gcfs_rq->propagate) 3622 return 0; 3623 3624 gcfs_rq->propagate = 0; 3625 3626 cfs_rq = cfs_rq_of(se); 3627 3628 add_tg_cfs_propagate(cfs_rq, gcfs_rq->prop_runnable_sum); 3629 3630 update_tg_cfs_util(cfs_rq, se, gcfs_rq); 3631 update_tg_cfs_runnable(cfs_rq, se, gcfs_rq); 3632 update_tg_cfs_load(cfs_rq, se, gcfs_rq); 3633 3634 trace_pelt_cfs_tp(cfs_rq); 3635 trace_pelt_se_tp(se); 3636 3637 return 1; 3638 } 3639 3640 /* 3641 * Check if we need to update the load and the utilization of a blocked 3642 * group_entity: 3643 */ 3644 static inline bool skip_blocked_update(struct sched_entity *se) 3645 { 3646 struct cfs_rq *gcfs_rq = group_cfs_rq(se); 3647 3648 /* 3649 * If sched_entity still have not zero load or utilization, we have to 3650 * decay it: 3651 */ 3652 if (se->avg.load_avg || se->avg.util_avg) 3653 return false; 3654 3655 /* 3656 * If there is a pending propagation, we have to update the load and 3657 * the utilization of the sched_entity: 3658 */ 3659 if (gcfs_rq->propagate) 3660 return false; 3661 3662 /* 3663 * Otherwise, the load and the utilization of the sched_entity is 3664 * already zero and there is no pending propagation, so it will be a 3665 * waste of time to try to decay it: 3666 */ 3667 return true; 3668 } 3669 3670 #else /* CONFIG_FAIR_GROUP_SCHED */ 3671 3672 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq) {} 3673 3674 static inline int propagate_entity_load_avg(struct sched_entity *se) 3675 { 3676 return 0; 3677 } 3678 3679 static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum) {} 3680 3681 #endif /* CONFIG_FAIR_GROUP_SCHED */ 3682 3683 /** 3684 * update_cfs_rq_load_avg - update the cfs_rq's load/util averages 3685 * @now: current time, as per cfs_rq_clock_pelt() 3686 * @cfs_rq: cfs_rq to update 3687 * 3688 * The cfs_rq avg is the direct sum of all its entities (blocked and runnable) 3689 * avg. The immediate corollary is that all (fair) tasks must be attached, see 3690 * post_init_entity_util_avg(). 3691 * 3692 * cfs_rq->avg is used for task_h_load() and update_cfs_share() for example. 3693 * 3694 * Returns true if the load decayed or we removed load. 3695 * 3696 * Since both these conditions indicate a changed cfs_rq->avg.load we should 3697 * call update_tg_load_avg() when this function returns true. 3698 */ 3699 static inline int 3700 update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq) 3701 { 3702 unsigned long removed_load = 0, removed_util = 0, removed_runnable = 0; 3703 struct sched_avg *sa = &cfs_rq->avg; 3704 int decayed = 0; 3705 3706 if (cfs_rq->removed.nr) { 3707 unsigned long r; 3708 u32 divider = get_pelt_divider(&cfs_rq->avg); 3709 3710 raw_spin_lock(&cfs_rq->removed.lock); 3711 swap(cfs_rq->removed.util_avg, removed_util); 3712 swap(cfs_rq->removed.load_avg, removed_load); 3713 swap(cfs_rq->removed.runnable_avg, removed_runnable); 3714 cfs_rq->removed.nr = 0; 3715 raw_spin_unlock(&cfs_rq->removed.lock); 3716 3717 r = removed_load; 3718 sub_positive(&sa->load_avg, r); 3719 sub_positive(&sa->load_sum, r * divider); 3720 3721 r = removed_util; 3722 sub_positive(&sa->util_avg, r); 3723 sub_positive(&sa->util_sum, r * divider); 3724 3725 r = removed_runnable; 3726 sub_positive(&sa->runnable_avg, r); 3727 sub_positive(&sa->runnable_sum, r * divider); 3728 3729 /* 3730 * removed_runnable is the unweighted version of removed_load so we 3731 * can use it to estimate removed_load_sum. 3732 */ 3733 add_tg_cfs_propagate(cfs_rq, 3734 -(long)(removed_runnable * divider) >> SCHED_CAPACITY_SHIFT); 3735 3736 decayed = 1; 3737 } 3738 3739 decayed |= __update_load_avg_cfs_rq(now, cfs_rq); 3740 3741 #ifndef CONFIG_64BIT 3742 smp_wmb(); 3743 cfs_rq->load_last_update_time_copy = sa->last_update_time; 3744 #endif 3745 3746 return decayed; 3747 } 3748 3749 /** 3750 * attach_entity_load_avg - attach this entity to its cfs_rq load avg 3751 * @cfs_rq: cfs_rq to attach to 3752 * @se: sched_entity to attach 3753 * 3754 * Must call update_cfs_rq_load_avg() before this, since we rely on 3755 * cfs_rq->avg.last_update_time being current. 3756 */ 3757 static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) 3758 { 3759 /* 3760 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se. 3761 * See ___update_load_avg() for details. 3762 */ 3763 u32 divider = get_pelt_divider(&cfs_rq->avg); 3764 3765 /* 3766 * When we attach the @se to the @cfs_rq, we must align the decay 3767 * window because without that, really weird and wonderful things can 3768 * happen. 3769 * 3770 * XXX illustrate 3771 */ 3772 se->avg.last_update_time = cfs_rq->avg.last_update_time; 3773 se->avg.period_contrib = cfs_rq->avg.period_contrib; 3774 3775 /* 3776 * Hell(o) Nasty stuff.. we need to recompute _sum based on the new 3777 * period_contrib. This isn't strictly correct, but since we're 3778 * entirely outside of the PELT hierarchy, nobody cares if we truncate 3779 * _sum a little. 3780 */ 3781 se->avg.util_sum = se->avg.util_avg * divider; 3782 3783 se->avg.runnable_sum = se->avg.runnable_avg * divider; 3784 3785 se->avg.load_sum = divider; 3786 if (se_weight(se)) { 3787 se->avg.load_sum = 3788 div_u64(se->avg.load_avg * se->avg.load_sum, se_weight(se)); 3789 } 3790 3791 enqueue_load_avg(cfs_rq, se); 3792 cfs_rq->avg.util_avg += se->avg.util_avg; 3793 cfs_rq->avg.util_sum += se->avg.util_sum; 3794 cfs_rq->avg.runnable_avg += se->avg.runnable_avg; 3795 cfs_rq->avg.runnable_sum += se->avg.runnable_sum; 3796 3797 add_tg_cfs_propagate(cfs_rq, se->avg.load_sum); 3798 3799 cfs_rq_util_change(cfs_rq, 0); 3800 3801 trace_pelt_cfs_tp(cfs_rq); 3802 } 3803 3804 /** 3805 * detach_entity_load_avg - detach this entity from its cfs_rq load avg 3806 * @cfs_rq: cfs_rq to detach from 3807 * @se: sched_entity to detach 3808 * 3809 * Must call update_cfs_rq_load_avg() before this, since we rely on 3810 * cfs_rq->avg.last_update_time being current. 3811 */ 3812 static void detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) 3813 { 3814 /* 3815 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se. 3816 * See ___update_load_avg() for details. 3817 */ 3818 u32 divider = get_pelt_divider(&cfs_rq->avg); 3819 3820 dequeue_load_avg(cfs_rq, se); 3821 sub_positive(&cfs_rq->avg.util_avg, se->avg.util_avg); 3822 cfs_rq->avg.util_sum = cfs_rq->avg.util_avg * divider; 3823 sub_positive(&cfs_rq->avg.runnable_avg, se->avg.runnable_avg); 3824 cfs_rq->avg.runnable_sum = cfs_rq->avg.runnable_avg * divider; 3825 3826 add_tg_cfs_propagate(cfs_rq, -se->avg.load_sum); 3827 3828 cfs_rq_util_change(cfs_rq, 0); 3829 3830 trace_pelt_cfs_tp(cfs_rq); 3831 } 3832 3833 /* 3834 * Optional action to be done while updating the load average 3835 */ 3836 #define UPDATE_TG 0x1 3837 #define SKIP_AGE_LOAD 0x2 3838 #define DO_ATTACH 0x4 3839 3840 /* Update task and its cfs_rq load average */ 3841 static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 3842 { 3843 u64 now = cfs_rq_clock_pelt(cfs_rq); 3844 int decayed; 3845 3846 /* 3847 * Track task load average for carrying it to new CPU after migrated, and 3848 * track group sched_entity load average for task_h_load calc in migration 3849 */ 3850 if (se->avg.last_update_time && !(flags & SKIP_AGE_LOAD)) 3851 __update_load_avg_se(now, cfs_rq, se); 3852 3853 decayed = update_cfs_rq_load_avg(now, cfs_rq); 3854 decayed |= propagate_entity_load_avg(se); 3855 3856 if (!se->avg.last_update_time && (flags & DO_ATTACH)) { 3857 3858 /* 3859 * DO_ATTACH means we're here from enqueue_entity(). 3860 * !last_update_time means we've passed through 3861 * migrate_task_rq_fair() indicating we migrated. 3862 * 3863 * IOW we're enqueueing a task on a new CPU. 3864 */ 3865 attach_entity_load_avg(cfs_rq, se); 3866 update_tg_load_avg(cfs_rq); 3867 3868 } else if (decayed) { 3869 cfs_rq_util_change(cfs_rq, 0); 3870 3871 if (flags & UPDATE_TG) 3872 update_tg_load_avg(cfs_rq); 3873 } 3874 } 3875 3876 #ifndef CONFIG_64BIT 3877 static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq) 3878 { 3879 u64 last_update_time_copy; 3880 u64 last_update_time; 3881 3882 do { 3883 last_update_time_copy = cfs_rq->load_last_update_time_copy; 3884 smp_rmb(); 3885 last_update_time = cfs_rq->avg.last_update_time; 3886 } while (last_update_time != last_update_time_copy); 3887 3888 return last_update_time; 3889 } 3890 #else 3891 static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq) 3892 { 3893 return cfs_rq->avg.last_update_time; 3894 } 3895 #endif 3896 3897 /* 3898 * Synchronize entity load avg of dequeued entity without locking 3899 * the previous rq. 3900 */ 3901 static void sync_entity_load_avg(struct sched_entity *se) 3902 { 3903 struct cfs_rq *cfs_rq = cfs_rq_of(se); 3904 u64 last_update_time; 3905 3906 last_update_time = cfs_rq_last_update_time(cfs_rq); 3907 __update_load_avg_blocked_se(last_update_time, se); 3908 } 3909 3910 /* 3911 * Task first catches up with cfs_rq, and then subtract 3912 * itself from the cfs_rq (task must be off the queue now). 3913 */ 3914 static void remove_entity_load_avg(struct sched_entity *se) 3915 { 3916 struct cfs_rq *cfs_rq = cfs_rq_of(se); 3917 unsigned long flags; 3918 3919 /* 3920 * tasks cannot exit without having gone through wake_up_new_task() -> 3921 * post_init_entity_util_avg() which will have added things to the 3922 * cfs_rq, so we can remove unconditionally. 3923 */ 3924 3925 sync_entity_load_avg(se); 3926 3927 raw_spin_lock_irqsave(&cfs_rq->removed.lock, flags); 3928 ++cfs_rq->removed.nr; 3929 cfs_rq->removed.util_avg += se->avg.util_avg; 3930 cfs_rq->removed.load_avg += se->avg.load_avg; 3931 cfs_rq->removed.runnable_avg += se->avg.runnable_avg; 3932 raw_spin_unlock_irqrestore(&cfs_rq->removed.lock, flags); 3933 } 3934 3935 static inline unsigned long cfs_rq_runnable_avg(struct cfs_rq *cfs_rq) 3936 { 3937 return cfs_rq->avg.runnable_avg; 3938 } 3939 3940 static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq) 3941 { 3942 return cfs_rq->avg.load_avg; 3943 } 3944 3945 static int newidle_balance(struct rq *this_rq, struct rq_flags *rf); 3946 3947 static inline unsigned long task_util(struct task_struct *p) 3948 { 3949 return READ_ONCE(p->se.avg.util_avg); 3950 } 3951 3952 static inline unsigned long _task_util_est(struct task_struct *p) 3953 { 3954 struct util_est ue = READ_ONCE(p->se.avg.util_est); 3955 3956 return max(ue.ewma, (ue.enqueued & ~UTIL_AVG_UNCHANGED)); 3957 } 3958 3959 static inline unsigned long task_util_est(struct task_struct *p) 3960 { 3961 return max(task_util(p), _task_util_est(p)); 3962 } 3963 3964 #ifdef CONFIG_UCLAMP_TASK 3965 static inline unsigned long uclamp_task_util(struct task_struct *p) 3966 { 3967 return clamp(task_util_est(p), 3968 uclamp_eff_value(p, UCLAMP_MIN), 3969 uclamp_eff_value(p, UCLAMP_MAX)); 3970 } 3971 #else 3972 static inline unsigned long uclamp_task_util(struct task_struct *p) 3973 { 3974 return task_util_est(p); 3975 } 3976 #endif 3977 3978 static inline void util_est_enqueue(struct cfs_rq *cfs_rq, 3979 struct task_struct *p) 3980 { 3981 unsigned int enqueued; 3982 3983 if (!sched_feat(UTIL_EST)) 3984 return; 3985 3986 /* Update root cfs_rq's estimated utilization */ 3987 enqueued = cfs_rq->avg.util_est.enqueued; 3988 enqueued += _task_util_est(p); 3989 WRITE_ONCE(cfs_rq->avg.util_est.enqueued, enqueued); 3990 3991 trace_sched_util_est_cfs_tp(cfs_rq); 3992 } 3993 3994 static inline void util_est_dequeue(struct cfs_rq *cfs_rq, 3995 struct task_struct *p) 3996 { 3997 unsigned int enqueued; 3998 3999 if (!sched_feat(UTIL_EST)) 4000 return; 4001 4002 /* Update root cfs_rq's estimated utilization */ 4003 enqueued = cfs_rq->avg.util_est.enqueued; 4004 enqueued -= min_t(unsigned int, enqueued, _task_util_est(p)); 4005 WRITE_ONCE(cfs_rq->avg.util_est.enqueued, enqueued); 4006 4007 trace_sched_util_est_cfs_tp(cfs_rq); 4008 } 4009 4010 #define UTIL_EST_MARGIN (SCHED_CAPACITY_SCALE / 100) 4011 4012 /* 4013 * Check if a (signed) value is within a specified (unsigned) margin, 4014 * based on the observation that: 4015 * 4016 * abs(x) < y := (unsigned)(x + y - 1) < (2 * y - 1) 4017 * 4018 * NOTE: this only works when value + margin < INT_MAX. 4019 */ 4020 static inline bool within_margin(int value, int margin) 4021 { 4022 return ((unsigned int)(value + margin - 1) < (2 * margin - 1)); 4023 } 4024 4025 static inline void util_est_update(struct cfs_rq *cfs_rq, 4026 struct task_struct *p, 4027 bool task_sleep) 4028 { 4029 long last_ewma_diff, last_enqueued_diff; 4030 struct util_est ue; 4031 4032 if (!sched_feat(UTIL_EST)) 4033 return; 4034 4035 /* 4036 * Skip update of task's estimated utilization when the task has not 4037 * yet completed an activation, e.g. being migrated. 4038 */ 4039 if (!task_sleep) 4040 return; 4041 4042 /* 4043 * If the PELT values haven't changed since enqueue time, 4044 * skip the util_est update. 4045 */ 4046 ue = p->se.avg.util_est; 4047 if (ue.enqueued & UTIL_AVG_UNCHANGED) 4048 return; 4049 4050 last_enqueued_diff = ue.enqueued; 4051 4052 /* 4053 * Reset EWMA on utilization increases, the moving average is used only 4054 * to smooth utilization decreases. 4055 */ 4056 ue.enqueued = task_util(p); 4057 if (sched_feat(UTIL_EST_FASTUP)) { 4058 if (ue.ewma < ue.enqueued) { 4059 ue.ewma = ue.enqueued; 4060 goto done; 4061 } 4062 } 4063 4064 /* 4065 * Skip update of task's estimated utilization when its members are 4066 * already ~1% close to its last activation value. 4067 */ 4068 last_ewma_diff = ue.enqueued - ue.ewma; 4069 last_enqueued_diff -= ue.enqueued; 4070 if (within_margin(last_ewma_diff, UTIL_EST_MARGIN)) { 4071 if (!within_margin(last_enqueued_diff, UTIL_EST_MARGIN)) 4072 goto done; 4073 4074 return; 4075 } 4076 4077 /* 4078 * To avoid overestimation of actual task utilization, skip updates if 4079 * we cannot grant there is idle time in this CPU. 4080 */ 4081 if (task_util(p) > capacity_orig_of(cpu_of(rq_of(cfs_rq)))) 4082 return; 4083 4084 /* 4085 * Update Task's estimated utilization 4086 * 4087 * When *p completes an activation we can consolidate another sample 4088 * of the task size. This is done by storing the current PELT value 4089 * as ue.enqueued and by using this value to update the Exponential 4090 * Weighted Moving Average (EWMA): 4091 * 4092 * ewma(t) = w * task_util(p) + (1-w) * ewma(t-1) 4093 * = w * task_util(p) + ewma(t-1) - w * ewma(t-1) 4094 * = w * (task_util(p) - ewma(t-1)) + ewma(t-1) 4095 * = w * ( last_ewma_diff ) + ewma(t-1) 4096 * = w * (last_ewma_diff + ewma(t-1) / w) 4097 * 4098 * Where 'w' is the weight of new samples, which is configured to be 4099 * 0.25, thus making w=1/4 ( >>= UTIL_EST_WEIGHT_SHIFT) 4100 */ 4101 ue.ewma <<= UTIL_EST_WEIGHT_SHIFT; 4102 ue.ewma += last_ewma_diff; 4103 ue.ewma >>= UTIL_EST_WEIGHT_SHIFT; 4104 done: 4105 ue.enqueued |= UTIL_AVG_UNCHANGED; 4106 WRITE_ONCE(p->se.avg.util_est, ue); 4107 4108 trace_sched_util_est_se_tp(&p->se); 4109 } 4110 4111 static inline int task_fits_capacity(struct task_struct *p, long capacity) 4112 { 4113 return fits_capacity(uclamp_task_util(p), capacity); 4114 } 4115 4116 static inline void update_misfit_status(struct task_struct *p, struct rq *rq) 4117 { 4118 if (!static_branch_unlikely(&sched_asym_cpucapacity)) 4119 return; 4120 4121 if (!p || p->nr_cpus_allowed == 1) { 4122 rq->misfit_task_load = 0; 4123 return; 4124 } 4125 4126 if (task_fits_capacity(p, capacity_of(cpu_of(rq)))) { 4127 rq->misfit_task_load = 0; 4128 return; 4129 } 4130 4131 /* 4132 * Make sure that misfit_task_load will not be null even if 4133 * task_h_load() returns 0. 4134 */ 4135 rq->misfit_task_load = max_t(unsigned long, task_h_load(p), 1); 4136 } 4137 4138 #else /* CONFIG_SMP */ 4139 4140 static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq) 4141 { 4142 return true; 4143 } 4144 4145 #define UPDATE_TG 0x0 4146 #define SKIP_AGE_LOAD 0x0 4147 #define DO_ATTACH 0x0 4148 4149 static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int not_used1) 4150 { 4151 cfs_rq_util_change(cfs_rq, 0); 4152 } 4153 4154 static inline void remove_entity_load_avg(struct sched_entity *se) {} 4155 4156 static inline void 4157 attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {} 4158 static inline void 4159 detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {} 4160 4161 static inline int newidle_balance(struct rq *rq, struct rq_flags *rf) 4162 { 4163 return 0; 4164 } 4165 4166 static inline void 4167 util_est_enqueue(struct cfs_rq *cfs_rq, struct task_struct *p) {} 4168 4169 static inline void 4170 util_est_dequeue(struct cfs_rq *cfs_rq, struct task_struct *p) {} 4171 4172 static inline void 4173 util_est_update(struct cfs_rq *cfs_rq, struct task_struct *p, 4174 bool task_sleep) {} 4175 static inline void update_misfit_status(struct task_struct *p, struct rq *rq) {} 4176 4177 #endif /* CONFIG_SMP */ 4178 4179 static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se) 4180 { 4181 #ifdef CONFIG_SCHED_DEBUG 4182 s64 d = se->vruntime - cfs_rq->min_vruntime; 4183 4184 if (d < 0) 4185 d = -d; 4186 4187 if (d > 3*sysctl_sched_latency) 4188 schedstat_inc(cfs_rq->nr_spread_over); 4189 #endif 4190 } 4191 4192 static void 4193 place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial) 4194 { 4195 u64 vruntime = cfs_rq->min_vruntime; 4196 4197 /* 4198 * The 'current' period is already promised to the current tasks, 4199 * however the extra weight of the new task will slow them down a 4200 * little, place the new task so that it fits in the slot that 4201 * stays open at the end. 4202 */ 4203 if (initial && sched_feat(START_DEBIT)) 4204 vruntime += sched_vslice(cfs_rq, se); 4205 4206 /* sleeps up to a single latency don't count. */ 4207 if (!initial) { 4208 unsigned long thresh = sysctl_sched_latency; 4209 4210 /* 4211 * Halve their sleep time's effect, to allow 4212 * for a gentler effect of sleepers: 4213 */ 4214 if (sched_feat(GENTLE_FAIR_SLEEPERS)) 4215 thresh >>= 1; 4216 4217 vruntime -= thresh; 4218 } 4219 4220 /* ensure we never gain time by being placed backwards. */ 4221 se->vruntime = max_vruntime(se->vruntime, vruntime); 4222 } 4223 4224 static void check_enqueue_throttle(struct cfs_rq *cfs_rq); 4225 4226 static inline void check_schedstat_required(void) 4227 { 4228 #ifdef CONFIG_SCHEDSTATS 4229 if (schedstat_enabled()) 4230 return; 4231 4232 /* Force schedstat enabled if a dependent tracepoint is active */ 4233 if (trace_sched_stat_wait_enabled() || 4234 trace_sched_stat_sleep_enabled() || 4235 trace_sched_stat_iowait_enabled() || 4236 trace_sched_stat_blocked_enabled() || 4237 trace_sched_stat_runtime_enabled()) { 4238 printk_deferred_once("Scheduler tracepoints stat_sleep, stat_iowait, " 4239 "stat_blocked and stat_runtime require the " 4240 "kernel parameter schedstats=enable or " 4241 "kernel.sched_schedstats=1\n"); 4242 } 4243 #endif 4244 } 4245 4246 static inline bool cfs_bandwidth_used(void); 4247 4248 /* 4249 * MIGRATION 4250 * 4251 * dequeue 4252 * update_curr() 4253 * update_min_vruntime() 4254 * vruntime -= min_vruntime 4255 * 4256 * enqueue 4257 * update_curr() 4258 * update_min_vruntime() 4259 * vruntime += min_vruntime 4260 * 4261 * this way the vruntime transition between RQs is done when both 4262 * min_vruntime are up-to-date. 4263 * 4264 * WAKEUP (remote) 4265 * 4266 * ->migrate_task_rq_fair() (p->state == TASK_WAKING) 4267 * vruntime -= min_vruntime 4268 * 4269 * enqueue 4270 * update_curr() 4271 * update_min_vruntime() 4272 * vruntime += min_vruntime 4273 * 4274 * this way we don't have the most up-to-date min_vruntime on the originating 4275 * CPU and an up-to-date min_vruntime on the destination CPU. 4276 */ 4277 4278 static void 4279 enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 4280 { 4281 bool renorm = !(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_MIGRATED); 4282 bool curr = cfs_rq->curr == se; 4283 4284 /* 4285 * If we're the current task, we must renormalise before calling 4286 * update_curr(). 4287 */ 4288 if (renorm && curr) 4289 se->vruntime += cfs_rq->min_vruntime; 4290 4291 update_curr(cfs_rq); 4292 4293 /* 4294 * Otherwise, renormalise after, such that we're placed at the current 4295 * moment in time, instead of some random moment in the past. Being 4296 * placed in the past could significantly boost this task to the 4297 * fairness detriment of existing tasks. 4298 */ 4299 if (renorm && !curr) 4300 se->vruntime += cfs_rq->min_vruntime; 4301 4302 /* 4303 * When enqueuing a sched_entity, we must: 4304 * - Update loads to have both entity and cfs_rq synced with now. 4305 * - Add its load to cfs_rq->runnable_avg 4306 * - For group_entity, update its weight to reflect the new share of 4307 * its group cfs_rq 4308 * - Add its new weight to cfs_rq->load.weight 4309 */ 4310 update_load_avg(cfs_rq, se, UPDATE_TG | DO_ATTACH); 4311 se_update_runnable(se); 4312 update_cfs_group(se); 4313 account_entity_enqueue(cfs_rq, se); 4314 4315 if (flags & ENQUEUE_WAKEUP) 4316 place_entity(cfs_rq, se, 0); 4317 4318 check_schedstat_required(); 4319 update_stats_enqueue(cfs_rq, se, flags); 4320 check_spread(cfs_rq, se); 4321 if (!curr) 4322 __enqueue_entity(cfs_rq, se); 4323 se->on_rq = 1; 4324 4325 /* 4326 * When bandwidth control is enabled, cfs might have been removed 4327 * because of a parent been throttled but cfs->nr_running > 1. Try to 4328 * add it unconditionally. 4329 */ 4330 if (cfs_rq->nr_running == 1 || cfs_bandwidth_used()) 4331 list_add_leaf_cfs_rq(cfs_rq); 4332 4333 if (cfs_rq->nr_running == 1) 4334 check_enqueue_throttle(cfs_rq); 4335 } 4336 4337 static void __clear_buddies_last(struct sched_entity *se) 4338 { 4339 for_each_sched_entity(se) { 4340 struct cfs_rq *cfs_rq = cfs_rq_of(se); 4341 if (cfs_rq->last != se) 4342 break; 4343 4344 cfs_rq->last = NULL; 4345 } 4346 } 4347 4348 static void __clear_buddies_next(struct sched_entity *se) 4349 { 4350 for_each_sched_entity(se) { 4351 struct cfs_rq *cfs_rq = cfs_rq_of(se); 4352 if (cfs_rq->next != se) 4353 break; 4354 4355 cfs_rq->next = NULL; 4356 } 4357 } 4358 4359 static void __clear_buddies_skip(struct sched_entity *se) 4360 { 4361 for_each_sched_entity(se) { 4362 struct cfs_rq *cfs_rq = cfs_rq_of(se); 4363 if (cfs_rq->skip != se) 4364 break; 4365 4366 cfs_rq->skip = NULL; 4367 } 4368 } 4369 4370 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se) 4371 { 4372 if (cfs_rq->last == se) 4373 __clear_buddies_last(se); 4374 4375 if (cfs_rq->next == se) 4376 __clear_buddies_next(se); 4377 4378 if (cfs_rq->skip == se) 4379 __clear_buddies_skip(se); 4380 } 4381 4382 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq); 4383 4384 static void 4385 dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 4386 { 4387 /* 4388 * Update run-time statistics of the 'current'. 4389 */ 4390 update_curr(cfs_rq); 4391 4392 /* 4393 * When dequeuing a sched_entity, we must: 4394 * - Update loads to have both entity and cfs_rq synced with now. 4395 * - Subtract its load from the cfs_rq->runnable_avg. 4396 * - Subtract its previous weight from cfs_rq->load.weight. 4397 * - For group entity, update its weight to reflect the new share 4398 * of its group cfs_rq. 4399 */ 4400 update_load_avg(cfs_rq, se, UPDATE_TG); 4401 se_update_runnable(se); 4402 4403 update_stats_dequeue(cfs_rq, se, flags); 4404 4405 clear_buddies(cfs_rq, se); 4406 4407 if (se != cfs_rq->curr) 4408 __dequeue_entity(cfs_rq, se); 4409 se->on_rq = 0; 4410 account_entity_dequeue(cfs_rq, se); 4411 4412 /* 4413 * Normalize after update_curr(); which will also have moved 4414 * min_vruntime if @se is the one holding it back. But before doing 4415 * update_min_vruntime() again, which will discount @se's position and 4416 * can move min_vruntime forward still more. 4417 */ 4418 if (!(flags & DEQUEUE_SLEEP)) 4419 se->vruntime -= cfs_rq->min_vruntime; 4420 4421 /* return excess runtime on last dequeue */ 4422 return_cfs_rq_runtime(cfs_rq); 4423 4424 update_cfs_group(se); 4425 4426 /* 4427 * Now advance min_vruntime if @se was the entity holding it back, 4428 * except when: DEQUEUE_SAVE && !DEQUEUE_MOVE, in this case we'll be 4429 * put back on, and if we advance min_vruntime, we'll be placed back 4430 * further than we started -- ie. we'll be penalized. 4431 */ 4432 if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) != DEQUEUE_SAVE) 4433 update_min_vruntime(cfs_rq); 4434 } 4435 4436 /* 4437 * Preempt the current task with a newly woken task if needed: 4438 */ 4439 static void 4440 check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr) 4441 { 4442 unsigned long ideal_runtime, delta_exec; 4443 struct sched_entity *se; 4444 s64 delta; 4445 4446 ideal_runtime = sched_slice(cfs_rq, curr); 4447 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime; 4448 if (delta_exec > ideal_runtime) { 4449 resched_curr(rq_of(cfs_rq)); 4450 /* 4451 * The current task ran long enough, ensure it doesn't get 4452 * re-elected due to buddy favours. 4453 */ 4454 clear_buddies(cfs_rq, curr); 4455 return; 4456 } 4457 4458 /* 4459 * Ensure that a task that missed wakeup preemption by a 4460 * narrow margin doesn't have to wait for a full slice. 4461 * This also mitigates buddy induced latencies under load. 4462 */ 4463 if (delta_exec < sysctl_sched_min_granularity) 4464 return; 4465 4466 se = __pick_first_entity(cfs_rq); 4467 delta = curr->vruntime - se->vruntime; 4468 4469 if (delta < 0) 4470 return; 4471 4472 if (delta > ideal_runtime) 4473 resched_curr(rq_of(cfs_rq)); 4474 } 4475 4476 static void 4477 set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) 4478 { 4479 /* 'current' is not kept within the tree. */ 4480 if (se->on_rq) { 4481 /* 4482 * Any task has to be enqueued before it get to execute on 4483 * a CPU. So account for the time it spent waiting on the 4484 * runqueue. 4485 */ 4486 update_stats_wait_end(cfs_rq, se); 4487 __dequeue_entity(cfs_rq, se); 4488 update_load_avg(cfs_rq, se, UPDATE_TG); 4489 } 4490 4491 update_stats_curr_start(cfs_rq, se); 4492 cfs_rq->curr = se; 4493 4494 /* 4495 * Track our maximum slice length, if the CPU's load is at 4496 * least twice that of our own weight (i.e. dont track it 4497 * when there are only lesser-weight tasks around): 4498 */ 4499 if (schedstat_enabled() && 4500 rq_of(cfs_rq)->cfs.load.weight >= 2*se->load.weight) { 4501 schedstat_set(se->statistics.slice_max, 4502 max((u64)schedstat_val(se->statistics.slice_max), 4503 se->sum_exec_runtime - se->prev_sum_exec_runtime)); 4504 } 4505 4506 se->prev_sum_exec_runtime = se->sum_exec_runtime; 4507 } 4508 4509 static int 4510 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se); 4511 4512 /* 4513 * Pick the next process, keeping these things in mind, in this order: 4514 * 1) keep things fair between processes/task groups 4515 * 2) pick the "next" process, since someone really wants that to run 4516 * 3) pick the "last" process, for cache locality 4517 * 4) do not run the "skip" process, if something else is available 4518 */ 4519 static struct sched_entity * 4520 pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr) 4521 { 4522 struct sched_entity *left = __pick_first_entity(cfs_rq); 4523 struct sched_entity *se; 4524 4525 /* 4526 * If curr is set we have to see if its left of the leftmost entity 4527 * still in the tree, provided there was anything in the tree at all. 4528 */ 4529 if (!left || (curr && entity_before(curr, left))) 4530 left = curr; 4531 4532 se = left; /* ideally we run the leftmost entity */ 4533 4534 /* 4535 * Avoid running the skip buddy, if running something else can 4536 * be done without getting too unfair. 4537 */ 4538 if (cfs_rq->skip == se) { 4539 struct sched_entity *second; 4540 4541 if (se == curr) { 4542 second = __pick_first_entity(cfs_rq); 4543 } else { 4544 second = __pick_next_entity(se); 4545 if (!second || (curr && entity_before(curr, second))) 4546 second = curr; 4547 } 4548 4549 if (second && wakeup_preempt_entity(second, left) < 1) 4550 se = second; 4551 } 4552 4553 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1) { 4554 /* 4555 * Someone really wants this to run. If it's not unfair, run it. 4556 */ 4557 se = cfs_rq->next; 4558 } else if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1) { 4559 /* 4560 * Prefer last buddy, try to return the CPU to a preempted task. 4561 */ 4562 se = cfs_rq->last; 4563 } 4564 4565 clear_buddies(cfs_rq, se); 4566 4567 return se; 4568 } 4569 4570 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq); 4571 4572 static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev) 4573 { 4574 /* 4575 * If still on the runqueue then deactivate_task() 4576 * was not called and update_curr() has to be done: 4577 */ 4578 if (prev->on_rq) 4579 update_curr(cfs_rq); 4580 4581 /* throttle cfs_rqs exceeding runtime */ 4582 check_cfs_rq_runtime(cfs_rq); 4583 4584 check_spread(cfs_rq, prev); 4585 4586 if (prev->on_rq) { 4587 update_stats_wait_start(cfs_rq, prev); 4588 /* Put 'current' back into the tree. */ 4589 __enqueue_entity(cfs_rq, prev); 4590 /* in !on_rq case, update occurred at dequeue */ 4591 update_load_avg(cfs_rq, prev, 0); 4592 } 4593 cfs_rq->curr = NULL; 4594 } 4595 4596 static void 4597 entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued) 4598 { 4599 /* 4600 * Update run-time statistics of the 'current'. 4601 */ 4602 update_curr(cfs_rq); 4603 4604 /* 4605 * Ensure that runnable average is periodically updated. 4606 */ 4607 update_load_avg(cfs_rq, curr, UPDATE_TG); 4608 update_cfs_group(curr); 4609 4610 #ifdef CONFIG_SCHED_HRTICK 4611 /* 4612 * queued ticks are scheduled to match the slice, so don't bother 4613 * validating it and just reschedule. 4614 */ 4615 if (queued) { 4616 resched_curr(rq_of(cfs_rq)); 4617 return; 4618 } 4619 /* 4620 * don't let the period tick interfere with the hrtick preemption 4621 */ 4622 if (!sched_feat(DOUBLE_TICK) && 4623 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer)) 4624 return; 4625 #endif 4626 4627 if (cfs_rq->nr_running > 1) 4628 check_preempt_tick(cfs_rq, curr); 4629 } 4630 4631 4632 /************************************************** 4633 * CFS bandwidth control machinery 4634 */ 4635 4636 #ifdef CONFIG_CFS_BANDWIDTH 4637 4638 #ifdef CONFIG_JUMP_LABEL 4639 static struct static_key __cfs_bandwidth_used; 4640 4641 static inline bool cfs_bandwidth_used(void) 4642 { 4643 return static_key_false(&__cfs_bandwidth_used); 4644 } 4645 4646 void cfs_bandwidth_usage_inc(void) 4647 { 4648 static_key_slow_inc_cpuslocked(&__cfs_bandwidth_used); 4649 } 4650 4651 void cfs_bandwidth_usage_dec(void) 4652 { 4653 static_key_slow_dec_cpuslocked(&__cfs_bandwidth_used); 4654 } 4655 #else /* CONFIG_JUMP_LABEL */ 4656 static bool cfs_bandwidth_used(void) 4657 { 4658 return true; 4659 } 4660 4661 void cfs_bandwidth_usage_inc(void) {} 4662 void cfs_bandwidth_usage_dec(void) {} 4663 #endif /* CONFIG_JUMP_LABEL */ 4664 4665 /* 4666 * default period for cfs group bandwidth. 4667 * default: 0.1s, units: nanoseconds 4668 */ 4669 static inline u64 default_cfs_period(void) 4670 { 4671 return 100000000ULL; 4672 } 4673 4674 static inline u64 sched_cfs_bandwidth_slice(void) 4675 { 4676 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC; 4677 } 4678 4679 /* 4680 * Replenish runtime according to assigned quota. We use sched_clock_cpu 4681 * directly instead of rq->clock to avoid adding additional synchronization 4682 * around rq->lock. 4683 * 4684 * requires cfs_b->lock 4685 */ 4686 void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b) 4687 { 4688 if (cfs_b->quota != RUNTIME_INF) 4689 cfs_b->runtime = cfs_b->quota; 4690 } 4691 4692 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg) 4693 { 4694 return &tg->cfs_bandwidth; 4695 } 4696 4697 /* returns 0 on failure to allocate runtime */ 4698 static int __assign_cfs_rq_runtime(struct cfs_bandwidth *cfs_b, 4699 struct cfs_rq *cfs_rq, u64 target_runtime) 4700 { 4701 u64 min_amount, amount = 0; 4702 4703 lockdep_assert_held(&cfs_b->lock); 4704 4705 /* note: this is a positive sum as runtime_remaining <= 0 */ 4706 min_amount = target_runtime - cfs_rq->runtime_remaining; 4707 4708 if (cfs_b->quota == RUNTIME_INF) 4709 amount = min_amount; 4710 else { 4711 start_cfs_bandwidth(cfs_b); 4712 4713 if (cfs_b->runtime > 0) { 4714 amount = min(cfs_b->runtime, min_amount); 4715 cfs_b->runtime -= amount; 4716 cfs_b->idle = 0; 4717 } 4718 } 4719 4720 cfs_rq->runtime_remaining += amount; 4721 4722 return cfs_rq->runtime_remaining > 0; 4723 } 4724 4725 /* returns 0 on failure to allocate runtime */ 4726 static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq) 4727 { 4728 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 4729 int ret; 4730 4731 raw_spin_lock(&cfs_b->lock); 4732 ret = __assign_cfs_rq_runtime(cfs_b, cfs_rq, sched_cfs_bandwidth_slice()); 4733 raw_spin_unlock(&cfs_b->lock); 4734 4735 return ret; 4736 } 4737 4738 static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) 4739 { 4740 /* dock delta_exec before expiring quota (as it could span periods) */ 4741 cfs_rq->runtime_remaining -= delta_exec; 4742 4743 if (likely(cfs_rq->runtime_remaining > 0)) 4744 return; 4745 4746 if (cfs_rq->throttled) 4747 return; 4748 /* 4749 * if we're unable to extend our runtime we resched so that the active 4750 * hierarchy can be throttled 4751 */ 4752 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr)) 4753 resched_curr(rq_of(cfs_rq)); 4754 } 4755 4756 static __always_inline 4757 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) 4758 { 4759 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled) 4760 return; 4761 4762 __account_cfs_rq_runtime(cfs_rq, delta_exec); 4763 } 4764 4765 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq) 4766 { 4767 return cfs_bandwidth_used() && cfs_rq->throttled; 4768 } 4769 4770 /* check whether cfs_rq, or any parent, is throttled */ 4771 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq) 4772 { 4773 return cfs_bandwidth_used() && cfs_rq->throttle_count; 4774 } 4775 4776 /* 4777 * Ensure that neither of the group entities corresponding to src_cpu or 4778 * dest_cpu are members of a throttled hierarchy when performing group 4779 * load-balance operations. 4780 */ 4781 static inline int throttled_lb_pair(struct task_group *tg, 4782 int src_cpu, int dest_cpu) 4783 { 4784 struct cfs_rq *src_cfs_rq, *dest_cfs_rq; 4785 4786 src_cfs_rq = tg->cfs_rq[src_cpu]; 4787 dest_cfs_rq = tg->cfs_rq[dest_cpu]; 4788 4789 return throttled_hierarchy(src_cfs_rq) || 4790 throttled_hierarchy(dest_cfs_rq); 4791 } 4792 4793 static int tg_unthrottle_up(struct task_group *tg, void *data) 4794 { 4795 struct rq *rq = data; 4796 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; 4797 4798 cfs_rq->throttle_count--; 4799 if (!cfs_rq->throttle_count) { 4800 cfs_rq->throttled_clock_task_time += rq_clock_task(rq) - 4801 cfs_rq->throttled_clock_task; 4802 4803 /* Add cfs_rq with load or one or more already running entities to the list */ 4804 if (!cfs_rq_is_decayed(cfs_rq) || cfs_rq->nr_running) 4805 list_add_leaf_cfs_rq(cfs_rq); 4806 } 4807 4808 return 0; 4809 } 4810 4811 static int tg_throttle_down(struct task_group *tg, void *data) 4812 { 4813 struct rq *rq = data; 4814 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; 4815 4816 /* group is entering throttled state, stop time */ 4817 if (!cfs_rq->throttle_count) { 4818 cfs_rq->throttled_clock_task = rq_clock_task(rq); 4819 list_del_leaf_cfs_rq(cfs_rq); 4820 } 4821 cfs_rq->throttle_count++; 4822 4823 return 0; 4824 } 4825 4826 static bool throttle_cfs_rq(struct cfs_rq *cfs_rq) 4827 { 4828 struct rq *rq = rq_of(cfs_rq); 4829 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 4830 struct sched_entity *se; 4831 long task_delta, idle_task_delta, dequeue = 1; 4832 4833 raw_spin_lock(&cfs_b->lock); 4834 /* This will start the period timer if necessary */ 4835 if (__assign_cfs_rq_runtime(cfs_b, cfs_rq, 1)) { 4836 /* 4837 * We have raced with bandwidth becoming available, and if we 4838 * actually throttled the timer might not unthrottle us for an 4839 * entire period. We additionally needed to make sure that any 4840 * subsequent check_cfs_rq_runtime calls agree not to throttle 4841 * us, as we may commit to do cfs put_prev+pick_next, so we ask 4842 * for 1ns of runtime rather than just check cfs_b. 4843 */ 4844 dequeue = 0; 4845 } else { 4846 list_add_tail_rcu(&cfs_rq->throttled_list, 4847 &cfs_b->throttled_cfs_rq); 4848 } 4849 raw_spin_unlock(&cfs_b->lock); 4850 4851 if (!dequeue) 4852 return false; /* Throttle no longer required. */ 4853 4854 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))]; 4855 4856 /* freeze hierarchy runnable averages while throttled */ 4857 rcu_read_lock(); 4858 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq); 4859 rcu_read_unlock(); 4860 4861 task_delta = cfs_rq->h_nr_running; 4862 idle_task_delta = cfs_rq->idle_h_nr_running; 4863 for_each_sched_entity(se) { 4864 struct cfs_rq *qcfs_rq = cfs_rq_of(se); 4865 /* throttled entity or throttle-on-deactivate */ 4866 if (!se->on_rq) 4867 goto done; 4868 4869 dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP); 4870 4871 qcfs_rq->h_nr_running -= task_delta; 4872 qcfs_rq->idle_h_nr_running -= idle_task_delta; 4873 4874 if (qcfs_rq->load.weight) { 4875 /* Avoid re-evaluating load for this entity: */ 4876 se = parent_entity(se); 4877 break; 4878 } 4879 } 4880 4881 for_each_sched_entity(se) { 4882 struct cfs_rq *qcfs_rq = cfs_rq_of(se); 4883 /* throttled entity or throttle-on-deactivate */ 4884 if (!se->on_rq) 4885 goto done; 4886 4887 update_load_avg(qcfs_rq, se, 0); 4888 se_update_runnable(se); 4889 4890 qcfs_rq->h_nr_running -= task_delta; 4891 qcfs_rq->idle_h_nr_running -= idle_task_delta; 4892 } 4893 4894 /* At this point se is NULL and we are at root level*/ 4895 sub_nr_running(rq, task_delta); 4896 4897 done: 4898 /* 4899 * Note: distribution will already see us throttled via the 4900 * throttled-list. rq->lock protects completion. 4901 */ 4902 cfs_rq->throttled = 1; 4903 cfs_rq->throttled_clock = rq_clock(rq); 4904 return true; 4905 } 4906 4907 void unthrottle_cfs_rq(struct cfs_rq *cfs_rq) 4908 { 4909 struct rq *rq = rq_of(cfs_rq); 4910 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 4911 struct sched_entity *se; 4912 long task_delta, idle_task_delta; 4913 4914 se = cfs_rq->tg->se[cpu_of(rq)]; 4915 4916 cfs_rq->throttled = 0; 4917 4918 update_rq_clock(rq); 4919 4920 raw_spin_lock(&cfs_b->lock); 4921 cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock; 4922 list_del_rcu(&cfs_rq->throttled_list); 4923 raw_spin_unlock(&cfs_b->lock); 4924 4925 /* update hierarchical throttle state */ 4926 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq); 4927 4928 if (!cfs_rq->load.weight) 4929 return; 4930 4931 task_delta = cfs_rq->h_nr_running; 4932 idle_task_delta = cfs_rq->idle_h_nr_running; 4933 for_each_sched_entity(se) { 4934 if (se->on_rq) 4935 break; 4936 cfs_rq = cfs_rq_of(se); 4937 enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP); 4938 4939 cfs_rq->h_nr_running += task_delta; 4940 cfs_rq->idle_h_nr_running += idle_task_delta; 4941 4942 /* end evaluation on encountering a throttled cfs_rq */ 4943 if (cfs_rq_throttled(cfs_rq)) 4944 goto unthrottle_throttle; 4945 } 4946 4947 for_each_sched_entity(se) { 4948 cfs_rq = cfs_rq_of(se); 4949 4950 update_load_avg(cfs_rq, se, UPDATE_TG); 4951 se_update_runnable(se); 4952 4953 cfs_rq->h_nr_running += task_delta; 4954 cfs_rq->idle_h_nr_running += idle_task_delta; 4955 4956 4957 /* end evaluation on encountering a throttled cfs_rq */ 4958 if (cfs_rq_throttled(cfs_rq)) 4959 goto unthrottle_throttle; 4960 4961 /* 4962 * One parent has been throttled and cfs_rq removed from the 4963 * list. Add it back to not break the leaf list. 4964 */ 4965 if (throttled_hierarchy(cfs_rq)) 4966 list_add_leaf_cfs_rq(cfs_rq); 4967 } 4968 4969 /* At this point se is NULL and we are at root level*/ 4970 add_nr_running(rq, task_delta); 4971 4972 unthrottle_throttle: 4973 /* 4974 * The cfs_rq_throttled() breaks in the above iteration can result in 4975 * incomplete leaf list maintenance, resulting in triggering the 4976 * assertion below. 4977 */ 4978 for_each_sched_entity(se) { 4979 cfs_rq = cfs_rq_of(se); 4980 4981 if (list_add_leaf_cfs_rq(cfs_rq)) 4982 break; 4983 } 4984 4985 assert_list_leaf_cfs_rq(rq); 4986 4987 /* Determine whether we need to wake up potentially idle CPU: */ 4988 if (rq->curr == rq->idle && rq->cfs.nr_running) 4989 resched_curr(rq); 4990 } 4991 4992 static void distribute_cfs_runtime(struct cfs_bandwidth *cfs_b) 4993 { 4994 struct cfs_rq *cfs_rq; 4995 u64 runtime, remaining = 1; 4996 4997 rcu_read_lock(); 4998 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq, 4999 throttled_list) { 5000 struct rq *rq = rq_of(cfs_rq); 5001 struct rq_flags rf; 5002 5003 rq_lock_irqsave(rq, &rf); 5004 if (!cfs_rq_throttled(cfs_rq)) 5005 goto next; 5006 5007 /* By the above check, this should never be true */ 5008 SCHED_WARN_ON(cfs_rq->runtime_remaining > 0); 5009 5010 raw_spin_lock(&cfs_b->lock); 5011 runtime = -cfs_rq->runtime_remaining + 1; 5012 if (runtime > cfs_b->runtime) 5013 runtime = cfs_b->runtime; 5014 cfs_b->runtime -= runtime; 5015 remaining = cfs_b->runtime; 5016 raw_spin_unlock(&cfs_b->lock); 5017 5018 cfs_rq->runtime_remaining += runtime; 5019 5020 /* we check whether we're throttled above */ 5021 if (cfs_rq->runtime_remaining > 0) 5022 unthrottle_cfs_rq(cfs_rq); 5023 5024 next: 5025 rq_unlock_irqrestore(rq, &rf); 5026 5027 if (!remaining) 5028 break; 5029 } 5030 rcu_read_unlock(); 5031 } 5032 5033 /* 5034 * Responsible for refilling a task_group's bandwidth and unthrottling its 5035 * cfs_rqs as appropriate. If there has been no activity within the last 5036 * period the timer is deactivated until scheduling resumes; cfs_b->idle is 5037 * used to track this state. 5038 */ 5039 static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun, unsigned long flags) 5040 { 5041 int throttled; 5042 5043 /* no need to continue the timer with no bandwidth constraint */ 5044 if (cfs_b->quota == RUNTIME_INF) 5045 goto out_deactivate; 5046 5047 throttled = !list_empty(&cfs_b->throttled_cfs_rq); 5048 cfs_b->nr_periods += overrun; 5049 5050 /* 5051 * idle depends on !throttled (for the case of a large deficit), and if 5052 * we're going inactive then everything else can be deferred 5053 */ 5054 if (cfs_b->idle && !throttled) 5055 goto out_deactivate; 5056 5057 __refill_cfs_bandwidth_runtime(cfs_b); 5058 5059 if (!throttled) { 5060 /* mark as potentially idle for the upcoming period */ 5061 cfs_b->idle = 1; 5062 return 0; 5063 } 5064 5065 /* account preceding periods in which throttling occurred */ 5066 cfs_b->nr_throttled += overrun; 5067 5068 /* 5069 * This check is repeated as we release cfs_b->lock while we unthrottle. 5070 */ 5071 while (throttled && cfs_b->runtime > 0) { 5072 raw_spin_unlock_irqrestore(&cfs_b->lock, flags); 5073 /* we can't nest cfs_b->lock while distributing bandwidth */ 5074 distribute_cfs_runtime(cfs_b); 5075 raw_spin_lock_irqsave(&cfs_b->lock, flags); 5076 5077 throttled = !list_empty(&cfs_b->throttled_cfs_rq); 5078 } 5079 5080 /* 5081 * While we are ensured activity in the period following an 5082 * unthrottle, this also covers the case in which the new bandwidth is 5083 * insufficient to cover the existing bandwidth deficit. (Forcing the 5084 * timer to remain active while there are any throttled entities.) 5085 */ 5086 cfs_b->idle = 0; 5087 5088 return 0; 5089 5090 out_deactivate: 5091 return 1; 5092 } 5093 5094 /* a cfs_rq won't donate quota below this amount */ 5095 static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC; 5096 /* minimum remaining period time to redistribute slack quota */ 5097 static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC; 5098 /* how long we wait to gather additional slack before distributing */ 5099 static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC; 5100 5101 /* 5102 * Are we near the end of the current quota period? 5103 * 5104 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the 5105 * hrtimer base being cleared by hrtimer_start. In the case of 5106 * migrate_hrtimers, base is never cleared, so we are fine. 5107 */ 5108 static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire) 5109 { 5110 struct hrtimer *refresh_timer = &cfs_b->period_timer; 5111 u64 remaining; 5112 5113 /* if the call-back is running a quota refresh is already occurring */ 5114 if (hrtimer_callback_running(refresh_timer)) 5115 return 1; 5116 5117 /* is a quota refresh about to occur? */ 5118 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer)); 5119 if (remaining < min_expire) 5120 return 1; 5121 5122 return 0; 5123 } 5124 5125 static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b) 5126 { 5127 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration; 5128 5129 /* if there's a quota refresh soon don't bother with slack */ 5130 if (runtime_refresh_within(cfs_b, min_left)) 5131 return; 5132 5133 /* don't push forwards an existing deferred unthrottle */ 5134 if (cfs_b->slack_started) 5135 return; 5136 cfs_b->slack_started = true; 5137 5138 hrtimer_start(&cfs_b->slack_timer, 5139 ns_to_ktime(cfs_bandwidth_slack_period), 5140 HRTIMER_MODE_REL); 5141 } 5142 5143 /* we know any runtime found here is valid as update_curr() precedes return */ 5144 static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq) 5145 { 5146 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 5147 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime; 5148 5149 if (slack_runtime <= 0) 5150 return; 5151 5152 raw_spin_lock(&cfs_b->lock); 5153 if (cfs_b->quota != RUNTIME_INF) { 5154 cfs_b->runtime += slack_runtime; 5155 5156 /* we are under rq->lock, defer unthrottling using a timer */ 5157 if (cfs_b->runtime > sched_cfs_bandwidth_slice() && 5158 !list_empty(&cfs_b->throttled_cfs_rq)) 5159 start_cfs_slack_bandwidth(cfs_b); 5160 } 5161 raw_spin_unlock(&cfs_b->lock); 5162 5163 /* even if it's not valid for return we don't want to try again */ 5164 cfs_rq->runtime_remaining -= slack_runtime; 5165 } 5166 5167 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) 5168 { 5169 if (!cfs_bandwidth_used()) 5170 return; 5171 5172 if (!cfs_rq->runtime_enabled || cfs_rq->nr_running) 5173 return; 5174 5175 __return_cfs_rq_runtime(cfs_rq); 5176 } 5177 5178 /* 5179 * This is done with a timer (instead of inline with bandwidth return) since 5180 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs. 5181 */ 5182 static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b) 5183 { 5184 u64 runtime = 0, slice = sched_cfs_bandwidth_slice(); 5185 unsigned long flags; 5186 5187 /* confirm we're still not at a refresh boundary */ 5188 raw_spin_lock_irqsave(&cfs_b->lock, flags); 5189 cfs_b->slack_started = false; 5190 5191 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) { 5192 raw_spin_unlock_irqrestore(&cfs_b->lock, flags); 5193 return; 5194 } 5195 5196 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice) 5197 runtime = cfs_b->runtime; 5198 5199 raw_spin_unlock_irqrestore(&cfs_b->lock, flags); 5200 5201 if (!runtime) 5202 return; 5203 5204 distribute_cfs_runtime(cfs_b); 5205 } 5206 5207 /* 5208 * When a group wakes up we want to make sure that its quota is not already 5209 * expired/exceeded, otherwise it may be allowed to steal additional ticks of 5210 * runtime as update_curr() throttling can not trigger until it's on-rq. 5211 */ 5212 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) 5213 { 5214 if (!cfs_bandwidth_used()) 5215 return; 5216 5217 /* an active group must be handled by the update_curr()->put() path */ 5218 if (!cfs_rq->runtime_enabled || cfs_rq->curr) 5219 return; 5220 5221 /* ensure the group is not already throttled */ 5222 if (cfs_rq_throttled(cfs_rq)) 5223 return; 5224 5225 /* update runtime allocation */ 5226 account_cfs_rq_runtime(cfs_rq, 0); 5227 if (cfs_rq->runtime_remaining <= 0) 5228 throttle_cfs_rq(cfs_rq); 5229 } 5230 5231 static void sync_throttle(struct task_group *tg, int cpu) 5232 { 5233 struct cfs_rq *pcfs_rq, *cfs_rq; 5234 5235 if (!cfs_bandwidth_used()) 5236 return; 5237 5238 if (!tg->parent) 5239 return; 5240 5241 cfs_rq = tg->cfs_rq[cpu]; 5242 pcfs_rq = tg->parent->cfs_rq[cpu]; 5243 5244 cfs_rq->throttle_count = pcfs_rq->throttle_count; 5245 cfs_rq->throttled_clock_task = rq_clock_task(cpu_rq(cpu)); 5246 } 5247 5248 /* conditionally throttle active cfs_rq's from put_prev_entity() */ 5249 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) 5250 { 5251 if (!cfs_bandwidth_used()) 5252 return false; 5253 5254 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0)) 5255 return false; 5256 5257 /* 5258 * it's possible for a throttled entity to be forced into a running 5259 * state (e.g. set_curr_task), in this case we're finished. 5260 */ 5261 if (cfs_rq_throttled(cfs_rq)) 5262 return true; 5263 5264 return throttle_cfs_rq(cfs_rq); 5265 } 5266 5267 static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer) 5268 { 5269 struct cfs_bandwidth *cfs_b = 5270 container_of(timer, struct cfs_bandwidth, slack_timer); 5271 5272 do_sched_cfs_slack_timer(cfs_b); 5273 5274 return HRTIMER_NORESTART; 5275 } 5276 5277 extern const u64 max_cfs_quota_period; 5278 5279 static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer) 5280 { 5281 struct cfs_bandwidth *cfs_b = 5282 container_of(timer, struct cfs_bandwidth, period_timer); 5283 unsigned long flags; 5284 int overrun; 5285 int idle = 0; 5286 int count = 0; 5287 5288 raw_spin_lock_irqsave(&cfs_b->lock, flags); 5289 for (;;) { 5290 overrun = hrtimer_forward_now(timer, cfs_b->period); 5291 if (!overrun) 5292 break; 5293 5294 idle = do_sched_cfs_period_timer(cfs_b, overrun, flags); 5295 5296 if (++count > 3) { 5297 u64 new, old = ktime_to_ns(cfs_b->period); 5298 5299 /* 5300 * Grow period by a factor of 2 to avoid losing precision. 5301 * Precision loss in the quota/period ratio can cause __cfs_schedulable 5302 * to fail. 5303 */ 5304 new = old * 2; 5305 if (new < max_cfs_quota_period) { 5306 cfs_b->period = ns_to_ktime(new); 5307 cfs_b->quota *= 2; 5308 5309 pr_warn_ratelimited( 5310 "cfs_period_timer[cpu%d]: period too short, scaling up (new cfs_period_us = %lld, cfs_quota_us = %lld)\n", 5311 smp_processor_id(), 5312 div_u64(new, NSEC_PER_USEC), 5313 div_u64(cfs_b->quota, NSEC_PER_USEC)); 5314 } else { 5315 pr_warn_ratelimited( 5316 "cfs_period_timer[cpu%d]: period too short, but cannot scale up without losing precision (cfs_period_us = %lld, cfs_quota_us = %lld)\n", 5317 smp_processor_id(), 5318 div_u64(old, NSEC_PER_USEC), 5319 div_u64(cfs_b->quota, NSEC_PER_USEC)); 5320 } 5321 5322 /* reset count so we don't come right back in here */ 5323 count = 0; 5324 } 5325 } 5326 if (idle) 5327 cfs_b->period_active = 0; 5328 raw_spin_unlock_irqrestore(&cfs_b->lock, flags); 5329 5330 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART; 5331 } 5332 5333 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) 5334 { 5335 raw_spin_lock_init(&cfs_b->lock); 5336 cfs_b->runtime = 0; 5337 cfs_b->quota = RUNTIME_INF; 5338 cfs_b->period = ns_to_ktime(default_cfs_period()); 5339 5340 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq); 5341 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED); 5342 cfs_b->period_timer.function = sched_cfs_period_timer; 5343 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 5344 cfs_b->slack_timer.function = sched_cfs_slack_timer; 5345 cfs_b->slack_started = false; 5346 } 5347 5348 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) 5349 { 5350 cfs_rq->runtime_enabled = 0; 5351 INIT_LIST_HEAD(&cfs_rq->throttled_list); 5352 } 5353 5354 void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b) 5355 { 5356 lockdep_assert_held(&cfs_b->lock); 5357 5358 if (cfs_b->period_active) 5359 return; 5360 5361 cfs_b->period_active = 1; 5362 hrtimer_forward_now(&cfs_b->period_timer, cfs_b->period); 5363 hrtimer_start_expires(&cfs_b->period_timer, HRTIMER_MODE_ABS_PINNED); 5364 } 5365 5366 static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) 5367 { 5368 /* init_cfs_bandwidth() was not called */ 5369 if (!cfs_b->throttled_cfs_rq.next) 5370 return; 5371 5372 hrtimer_cancel(&cfs_b->period_timer); 5373 hrtimer_cancel(&cfs_b->slack_timer); 5374 } 5375 5376 /* 5377 * Both these CPU hotplug callbacks race against unregister_fair_sched_group() 5378 * 5379 * The race is harmless, since modifying bandwidth settings of unhooked group 5380 * bits doesn't do much. 5381 */ 5382 5383 /* cpu online callback */ 5384 static void __maybe_unused update_runtime_enabled(struct rq *rq) 5385 { 5386 struct task_group *tg; 5387 5388 lockdep_assert_held(&rq->lock); 5389 5390 rcu_read_lock(); 5391 list_for_each_entry_rcu(tg, &task_groups, list) { 5392 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 5393 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; 5394 5395 raw_spin_lock(&cfs_b->lock); 5396 cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF; 5397 raw_spin_unlock(&cfs_b->lock); 5398 } 5399 rcu_read_unlock(); 5400 } 5401 5402 /* cpu offline callback */ 5403 static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq) 5404 { 5405 struct task_group *tg; 5406 5407 lockdep_assert_held(&rq->lock); 5408 5409 rcu_read_lock(); 5410 list_for_each_entry_rcu(tg, &task_groups, list) { 5411 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; 5412 5413 if (!cfs_rq->runtime_enabled) 5414 continue; 5415 5416 /* 5417 * clock_task is not advancing so we just need to make sure 5418 * there's some valid quota amount 5419 */ 5420 cfs_rq->runtime_remaining = 1; 5421 /* 5422 * Offline rq is schedulable till CPU is completely disabled 5423 * in take_cpu_down(), so we prevent new cfs throttling here. 5424 */ 5425 cfs_rq->runtime_enabled = 0; 5426 5427 if (cfs_rq_throttled(cfs_rq)) 5428 unthrottle_cfs_rq(cfs_rq); 5429 } 5430 rcu_read_unlock(); 5431 } 5432 5433 #else /* CONFIG_CFS_BANDWIDTH */ 5434 5435 static inline bool cfs_bandwidth_used(void) 5436 { 5437 return false; 5438 } 5439 5440 static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {} 5441 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; } 5442 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {} 5443 static inline void sync_throttle(struct task_group *tg, int cpu) {} 5444 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {} 5445 5446 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq) 5447 { 5448 return 0; 5449 } 5450 5451 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq) 5452 { 5453 return 0; 5454 } 5455 5456 static inline int throttled_lb_pair(struct task_group *tg, 5457 int src_cpu, int dest_cpu) 5458 { 5459 return 0; 5460 } 5461 5462 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {} 5463 5464 #ifdef CONFIG_FAIR_GROUP_SCHED 5465 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {} 5466 #endif 5467 5468 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg) 5469 { 5470 return NULL; 5471 } 5472 static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {} 5473 static inline void update_runtime_enabled(struct rq *rq) {} 5474 static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {} 5475 5476 #endif /* CONFIG_CFS_BANDWIDTH */ 5477 5478 /************************************************** 5479 * CFS operations on tasks: 5480 */ 5481 5482 #ifdef CONFIG_SCHED_HRTICK 5483 static void hrtick_start_fair(struct rq *rq, struct task_struct *p) 5484 { 5485 struct sched_entity *se = &p->se; 5486 struct cfs_rq *cfs_rq = cfs_rq_of(se); 5487 5488 SCHED_WARN_ON(task_rq(p) != rq); 5489 5490 if (rq->cfs.h_nr_running > 1) { 5491 u64 slice = sched_slice(cfs_rq, se); 5492 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime; 5493 s64 delta = slice - ran; 5494 5495 if (delta < 0) { 5496 if (task_current(rq, p)) 5497 resched_curr(rq); 5498 return; 5499 } 5500 hrtick_start(rq, delta); 5501 } 5502 } 5503 5504 /* 5505 * called from enqueue/dequeue and updates the hrtick when the 5506 * current task is from our class and nr_running is low enough 5507 * to matter. 5508 */ 5509 static void hrtick_update(struct rq *rq) 5510 { 5511 struct task_struct *curr = rq->curr; 5512 5513 if (!hrtick_enabled_fair(rq) || curr->sched_class != &fair_sched_class) 5514 return; 5515 5516 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency) 5517 hrtick_start_fair(rq, curr); 5518 } 5519 #else /* !CONFIG_SCHED_HRTICK */ 5520 static inline void 5521 hrtick_start_fair(struct rq *rq, struct task_struct *p) 5522 { 5523 } 5524 5525 static inline void hrtick_update(struct rq *rq) 5526 { 5527 } 5528 #endif 5529 5530 #ifdef CONFIG_SMP 5531 static inline unsigned long cpu_util(int cpu); 5532 5533 static inline bool cpu_overutilized(int cpu) 5534 { 5535 return !fits_capacity(cpu_util(cpu), capacity_of(cpu)); 5536 } 5537 5538 static inline void update_overutilized_status(struct rq *rq) 5539 { 5540 if (!READ_ONCE(rq->rd->overutilized) && cpu_overutilized(rq->cpu)) { 5541 WRITE_ONCE(rq->rd->overutilized, SG_OVERUTILIZED); 5542 trace_sched_overutilized_tp(rq->rd, SG_OVERUTILIZED); 5543 } 5544 } 5545 #else 5546 static inline void update_overutilized_status(struct rq *rq) { } 5547 #endif 5548 5549 /* Runqueue only has SCHED_IDLE tasks enqueued */ 5550 static int sched_idle_rq(struct rq *rq) 5551 { 5552 return unlikely(rq->nr_running == rq->cfs.idle_h_nr_running && 5553 rq->nr_running); 5554 } 5555 5556 #ifdef CONFIG_SMP 5557 static int sched_idle_cpu(int cpu) 5558 { 5559 return sched_idle_rq(cpu_rq(cpu)); 5560 } 5561 #endif 5562 5563 /* 5564 * The enqueue_task method is called before nr_running is 5565 * increased. Here we update the fair scheduling stats and 5566 * then put the task into the rbtree: 5567 */ 5568 static void 5569 enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags) 5570 { 5571 struct cfs_rq *cfs_rq; 5572 struct sched_entity *se = &p->se; 5573 int idle_h_nr_running = task_has_idle_policy(p); 5574 int task_new = !(flags & ENQUEUE_WAKEUP); 5575 5576 /* 5577 * The code below (indirectly) updates schedutil which looks at 5578 * the cfs_rq utilization to select a frequency. 5579 * Let's add the task's estimated utilization to the cfs_rq's 5580 * estimated utilization, before we update schedutil. 5581 */ 5582 util_est_enqueue(&rq->cfs, p); 5583 5584 /* 5585 * If in_iowait is set, the code below may not trigger any cpufreq 5586 * utilization updates, so do it here explicitly with the IOWAIT flag 5587 * passed. 5588 */ 5589 if (p->in_iowait) 5590 cpufreq_update_util(rq, SCHED_CPUFREQ_IOWAIT); 5591 5592 for_each_sched_entity(se) { 5593 if (se->on_rq) 5594 break; 5595 cfs_rq = cfs_rq_of(se); 5596 enqueue_entity(cfs_rq, se, flags); 5597 5598 cfs_rq->h_nr_running++; 5599 cfs_rq->idle_h_nr_running += idle_h_nr_running; 5600 5601 /* end evaluation on encountering a throttled cfs_rq */ 5602 if (cfs_rq_throttled(cfs_rq)) 5603 goto enqueue_throttle; 5604 5605 flags = ENQUEUE_WAKEUP; 5606 } 5607 5608 for_each_sched_entity(se) { 5609 cfs_rq = cfs_rq_of(se); 5610 5611 update_load_avg(cfs_rq, se, UPDATE_TG); 5612 se_update_runnable(se); 5613 update_cfs_group(se); 5614 5615 cfs_rq->h_nr_running++; 5616 cfs_rq->idle_h_nr_running += idle_h_nr_running; 5617 5618 /* end evaluation on encountering a throttled cfs_rq */ 5619 if (cfs_rq_throttled(cfs_rq)) 5620 goto enqueue_throttle; 5621 5622 /* 5623 * One parent has been throttled and cfs_rq removed from the 5624 * list. Add it back to not break the leaf list. 5625 */ 5626 if (throttled_hierarchy(cfs_rq)) 5627 list_add_leaf_cfs_rq(cfs_rq); 5628 } 5629 5630 /* At this point se is NULL and we are at root level*/ 5631 add_nr_running(rq, 1); 5632 5633 /* 5634 * Since new tasks are assigned an initial util_avg equal to 5635 * half of the spare capacity of their CPU, tiny tasks have the 5636 * ability to cross the overutilized threshold, which will 5637 * result in the load balancer ruining all the task placement 5638 * done by EAS. As a way to mitigate that effect, do not account 5639 * for the first enqueue operation of new tasks during the 5640 * overutilized flag detection. 5641 * 5642 * A better way of solving this problem would be to wait for 5643 * the PELT signals of tasks to converge before taking them 5644 * into account, but that is not straightforward to implement, 5645 * and the following generally works well enough in practice. 5646 */ 5647 if (!task_new) 5648 update_overutilized_status(rq); 5649 5650 enqueue_throttle: 5651 if (cfs_bandwidth_used()) { 5652 /* 5653 * When bandwidth control is enabled; the cfs_rq_throttled() 5654 * breaks in the above iteration can result in incomplete 5655 * leaf list maintenance, resulting in triggering the assertion 5656 * below. 5657 */ 5658 for_each_sched_entity(se) { 5659 cfs_rq = cfs_rq_of(se); 5660 5661 if (list_add_leaf_cfs_rq(cfs_rq)) 5662 break; 5663 } 5664 } 5665 5666 assert_list_leaf_cfs_rq(rq); 5667 5668 hrtick_update(rq); 5669 } 5670 5671 static void set_next_buddy(struct sched_entity *se); 5672 5673 /* 5674 * The dequeue_task method is called before nr_running is 5675 * decreased. We remove the task from the rbtree and 5676 * update the fair scheduling stats: 5677 */ 5678 static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags) 5679 { 5680 struct cfs_rq *cfs_rq; 5681 struct sched_entity *se = &p->se; 5682 int task_sleep = flags & DEQUEUE_SLEEP; 5683 int idle_h_nr_running = task_has_idle_policy(p); 5684 bool was_sched_idle = sched_idle_rq(rq); 5685 5686 util_est_dequeue(&rq->cfs, p); 5687 5688 for_each_sched_entity(se) { 5689 cfs_rq = cfs_rq_of(se); 5690 dequeue_entity(cfs_rq, se, flags); 5691 5692 cfs_rq->h_nr_running--; 5693 cfs_rq->idle_h_nr_running -= idle_h_nr_running; 5694 5695 /* end evaluation on encountering a throttled cfs_rq */ 5696 if (cfs_rq_throttled(cfs_rq)) 5697 goto dequeue_throttle; 5698 5699 /* Don't dequeue parent if it has other entities besides us */ 5700 if (cfs_rq->load.weight) { 5701 /* Avoid re-evaluating load for this entity: */ 5702 se = parent_entity(se); 5703 /* 5704 * Bias pick_next to pick a task from this cfs_rq, as 5705 * p is sleeping when it is within its sched_slice. 5706 */ 5707 if (task_sleep && se && !throttled_hierarchy(cfs_rq)) 5708 set_next_buddy(se); 5709 break; 5710 } 5711 flags |= DEQUEUE_SLEEP; 5712 } 5713 5714 for_each_sched_entity(se) { 5715 cfs_rq = cfs_rq_of(se); 5716 5717 update_load_avg(cfs_rq, se, UPDATE_TG); 5718 se_update_runnable(se); 5719 update_cfs_group(se); 5720 5721 cfs_rq->h_nr_running--; 5722 cfs_rq->idle_h_nr_running -= idle_h_nr_running; 5723 5724 /* end evaluation on encountering a throttled cfs_rq */ 5725 if (cfs_rq_throttled(cfs_rq)) 5726 goto dequeue_throttle; 5727 5728 } 5729 5730 /* At this point se is NULL and we are at root level*/ 5731 sub_nr_running(rq, 1); 5732 5733 /* balance early to pull high priority tasks */ 5734 if (unlikely(!was_sched_idle && sched_idle_rq(rq))) 5735 rq->next_balance = jiffies; 5736 5737 dequeue_throttle: 5738 util_est_update(&rq->cfs, p, task_sleep); 5739 hrtick_update(rq); 5740 } 5741 5742 #ifdef CONFIG_SMP 5743 5744 /* Working cpumask for: load_balance, load_balance_newidle. */ 5745 DEFINE_PER_CPU(cpumask_var_t, load_balance_mask); 5746 DEFINE_PER_CPU(cpumask_var_t, select_idle_mask); 5747 5748 #ifdef CONFIG_NO_HZ_COMMON 5749 5750 static struct { 5751 cpumask_var_t idle_cpus_mask; 5752 atomic_t nr_cpus; 5753 int has_blocked; /* Idle CPUS has blocked load */ 5754 unsigned long next_balance; /* in jiffy units */ 5755 unsigned long next_blocked; /* Next update of blocked load in jiffies */ 5756 } nohz ____cacheline_aligned; 5757 5758 #endif /* CONFIG_NO_HZ_COMMON */ 5759 5760 static unsigned long cpu_load(struct rq *rq) 5761 { 5762 return cfs_rq_load_avg(&rq->cfs); 5763 } 5764 5765 /* 5766 * cpu_load_without - compute CPU load without any contributions from *p 5767 * @cpu: the CPU which load is requested 5768 * @p: the task which load should be discounted 5769 * 5770 * The load of a CPU is defined by the load of tasks currently enqueued on that 5771 * CPU as well as tasks which are currently sleeping after an execution on that 5772 * CPU. 5773 * 5774 * This method returns the load of the specified CPU by discounting the load of 5775 * the specified task, whenever the task is currently contributing to the CPU 5776 * load. 5777 */ 5778 static unsigned long cpu_load_without(struct rq *rq, struct task_struct *p) 5779 { 5780 struct cfs_rq *cfs_rq; 5781 unsigned int load; 5782 5783 /* Task has no contribution or is new */ 5784 if (cpu_of(rq) != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time)) 5785 return cpu_load(rq); 5786 5787 cfs_rq = &rq->cfs; 5788 load = READ_ONCE(cfs_rq->avg.load_avg); 5789 5790 /* Discount task's util from CPU's util */ 5791 lsub_positive(&load, task_h_load(p)); 5792 5793 return load; 5794 } 5795 5796 static unsigned long cpu_runnable(struct rq *rq) 5797 { 5798 return cfs_rq_runnable_avg(&rq->cfs); 5799 } 5800 5801 static unsigned long cpu_runnable_without(struct rq *rq, struct task_struct *p) 5802 { 5803 struct cfs_rq *cfs_rq; 5804 unsigned int runnable; 5805 5806 /* Task has no contribution or is new */ 5807 if (cpu_of(rq) != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time)) 5808 return cpu_runnable(rq); 5809 5810 cfs_rq = &rq->cfs; 5811 runnable = READ_ONCE(cfs_rq->avg.runnable_avg); 5812 5813 /* Discount task's runnable from CPU's runnable */ 5814 lsub_positive(&runnable, p->se.avg.runnable_avg); 5815 5816 return runnable; 5817 } 5818 5819 static unsigned long capacity_of(int cpu) 5820 { 5821 return cpu_rq(cpu)->cpu_capacity; 5822 } 5823 5824 static void record_wakee(struct task_struct *p) 5825 { 5826 /* 5827 * Only decay a single time; tasks that have less then 1 wakeup per 5828 * jiffy will not have built up many flips. 5829 */ 5830 if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) { 5831 current->wakee_flips >>= 1; 5832 current->wakee_flip_decay_ts = jiffies; 5833 } 5834 5835 if (current->last_wakee != p) { 5836 current->last_wakee = p; 5837 current->wakee_flips++; 5838 } 5839 } 5840 5841 /* 5842 * Detect M:N waker/wakee relationships via a switching-frequency heuristic. 5843 * 5844 * A waker of many should wake a different task than the one last awakened 5845 * at a frequency roughly N times higher than one of its wakees. 5846 * 5847 * In order to determine whether we should let the load spread vs consolidating 5848 * to shared cache, we look for a minimum 'flip' frequency of llc_size in one 5849 * partner, and a factor of lls_size higher frequency in the other. 5850 * 5851 * With both conditions met, we can be relatively sure that the relationship is 5852 * non-monogamous, with partner count exceeding socket size. 5853 * 5854 * Waker/wakee being client/server, worker/dispatcher, interrupt source or 5855 * whatever is irrelevant, spread criteria is apparent partner count exceeds 5856 * socket size. 5857 */ 5858 static int wake_wide(struct task_struct *p) 5859 { 5860 unsigned int master = current->wakee_flips; 5861 unsigned int slave = p->wakee_flips; 5862 int factor = __this_cpu_read(sd_llc_size); 5863 5864 if (master < slave) 5865 swap(master, slave); 5866 if (slave < factor || master < slave * factor) 5867 return 0; 5868 return 1; 5869 } 5870 5871 /* 5872 * The purpose of wake_affine() is to quickly determine on which CPU we can run 5873 * soonest. For the purpose of speed we only consider the waking and previous 5874 * CPU. 5875 * 5876 * wake_affine_idle() - only considers 'now', it check if the waking CPU is 5877 * cache-affine and is (or will be) idle. 5878 * 5879 * wake_affine_weight() - considers the weight to reflect the average 5880 * scheduling latency of the CPUs. This seems to work 5881 * for the overloaded case. 5882 */ 5883 static int 5884 wake_affine_idle(int this_cpu, int prev_cpu, int sync) 5885 { 5886 /* 5887 * If this_cpu is idle, it implies the wakeup is from interrupt 5888 * context. Only allow the move if cache is shared. Otherwise an 5889 * interrupt intensive workload could force all tasks onto one 5890 * node depending on the IO topology or IRQ affinity settings. 5891 * 5892 * If the prev_cpu is idle and cache affine then avoid a migration. 5893 * There is no guarantee that the cache hot data from an interrupt 5894 * is more important than cache hot data on the prev_cpu and from 5895 * a cpufreq perspective, it's better to have higher utilisation 5896 * on one CPU. 5897 */ 5898 if (available_idle_cpu(this_cpu) && cpus_share_cache(this_cpu, prev_cpu)) 5899 return available_idle_cpu(prev_cpu) ? prev_cpu : this_cpu; 5900 5901 if (sync && cpu_rq(this_cpu)->nr_running == 1) 5902 return this_cpu; 5903 5904 if (available_idle_cpu(prev_cpu)) 5905 return prev_cpu; 5906 5907 return nr_cpumask_bits; 5908 } 5909 5910 static int 5911 wake_affine_weight(struct sched_domain *sd, struct task_struct *p, 5912 int this_cpu, int prev_cpu, int sync) 5913 { 5914 s64 this_eff_load, prev_eff_load; 5915 unsigned long task_load; 5916 5917 this_eff_load = cpu_load(cpu_rq(this_cpu)); 5918 5919 if (sync) { 5920 unsigned long current_load = task_h_load(current); 5921 5922 if (current_load > this_eff_load) 5923 return this_cpu; 5924 5925 this_eff_load -= current_load; 5926 } 5927 5928 task_load = task_h_load(p); 5929 5930 this_eff_load += task_load; 5931 if (sched_feat(WA_BIAS)) 5932 this_eff_load *= 100; 5933 this_eff_load *= capacity_of(prev_cpu); 5934 5935 prev_eff_load = cpu_load(cpu_rq(prev_cpu)); 5936 prev_eff_load -= task_load; 5937 if (sched_feat(WA_BIAS)) 5938 prev_eff_load *= 100 + (sd->imbalance_pct - 100) / 2; 5939 prev_eff_load *= capacity_of(this_cpu); 5940 5941 /* 5942 * If sync, adjust the weight of prev_eff_load such that if 5943 * prev_eff == this_eff that select_idle_sibling() will consider 5944 * stacking the wakee on top of the waker if no other CPU is 5945 * idle. 5946 */ 5947 if (sync) 5948 prev_eff_load += 1; 5949 5950 return this_eff_load < prev_eff_load ? this_cpu : nr_cpumask_bits; 5951 } 5952 5953 static int wake_affine(struct sched_domain *sd, struct task_struct *p, 5954 int this_cpu, int prev_cpu, int sync) 5955 { 5956 int target = nr_cpumask_bits; 5957 5958 if (sched_feat(WA_IDLE)) 5959 target = wake_affine_idle(this_cpu, prev_cpu, sync); 5960 5961 if (sched_feat(WA_WEIGHT) && target == nr_cpumask_bits) 5962 target = wake_affine_weight(sd, p, this_cpu, prev_cpu, sync); 5963 5964 schedstat_inc(p->se.statistics.nr_wakeups_affine_attempts); 5965 if (target == nr_cpumask_bits) 5966 return prev_cpu; 5967 5968 schedstat_inc(sd->ttwu_move_affine); 5969 schedstat_inc(p->se.statistics.nr_wakeups_affine); 5970 return target; 5971 } 5972 5973 static struct sched_group * 5974 find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu); 5975 5976 /* 5977 * find_idlest_group_cpu - find the idlest CPU among the CPUs in the group. 5978 */ 5979 static int 5980 find_idlest_group_cpu(struct sched_group *group, struct task_struct *p, int this_cpu) 5981 { 5982 unsigned long load, min_load = ULONG_MAX; 5983 unsigned int min_exit_latency = UINT_MAX; 5984 u64 latest_idle_timestamp = 0; 5985 int least_loaded_cpu = this_cpu; 5986 int shallowest_idle_cpu = -1; 5987 int i; 5988 5989 /* Check if we have any choice: */ 5990 if (group->group_weight == 1) 5991 return cpumask_first(sched_group_span(group)); 5992 5993 /* Traverse only the allowed CPUs */ 5994 for_each_cpu_and(i, sched_group_span(group), p->cpus_ptr) { 5995 if (sched_idle_cpu(i)) 5996 return i; 5997 5998 if (available_idle_cpu(i)) { 5999 struct rq *rq = cpu_rq(i); 6000 struct cpuidle_state *idle = idle_get_state(rq); 6001 if (idle && idle->exit_latency < min_exit_latency) { 6002 /* 6003 * We give priority to a CPU whose idle state 6004 * has the smallest exit latency irrespective 6005 * of any idle timestamp. 6006 */ 6007 min_exit_latency = idle->exit_latency; 6008 latest_idle_timestamp = rq->idle_stamp; 6009 shallowest_idle_cpu = i; 6010 } else if ((!idle || idle->exit_latency == min_exit_latency) && 6011 rq->idle_stamp > latest_idle_timestamp) { 6012 /* 6013 * If equal or no active idle state, then 6014 * the most recently idled CPU might have 6015 * a warmer cache. 6016 */ 6017 latest_idle_timestamp = rq->idle_stamp; 6018 shallowest_idle_cpu = i; 6019 } 6020 } else if (shallowest_idle_cpu == -1) { 6021 load = cpu_load(cpu_rq(i)); 6022 if (load < min_load) { 6023 min_load = load; 6024 least_loaded_cpu = i; 6025 } 6026 } 6027 } 6028 6029 return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu; 6030 } 6031 6032 static inline int find_idlest_cpu(struct sched_domain *sd, struct task_struct *p, 6033 int cpu, int prev_cpu, int sd_flag) 6034 { 6035 int new_cpu = cpu; 6036 6037 if (!cpumask_intersects(sched_domain_span(sd), p->cpus_ptr)) 6038 return prev_cpu; 6039 6040 /* 6041 * We need task's util for cpu_util_without, sync it up to 6042 * prev_cpu's last_update_time. 6043 */ 6044 if (!(sd_flag & SD_BALANCE_FORK)) 6045 sync_entity_load_avg(&p->se); 6046 6047 while (sd) { 6048 struct sched_group *group; 6049 struct sched_domain *tmp; 6050 int weight; 6051 6052 if (!(sd->flags & sd_flag)) { 6053 sd = sd->child; 6054 continue; 6055 } 6056 6057 group = find_idlest_group(sd, p, cpu); 6058 if (!group) { 6059 sd = sd->child; 6060 continue; 6061 } 6062 6063 new_cpu = find_idlest_group_cpu(group, p, cpu); 6064 if (new_cpu == cpu) { 6065 /* Now try balancing at a lower domain level of 'cpu': */ 6066 sd = sd->child; 6067 continue; 6068 } 6069 6070 /* Now try balancing at a lower domain level of 'new_cpu': */ 6071 cpu = new_cpu; 6072 weight = sd->span_weight; 6073 sd = NULL; 6074 for_each_domain(cpu, tmp) { 6075 if (weight <= tmp->span_weight) 6076 break; 6077 if (tmp->flags & sd_flag) 6078 sd = tmp; 6079 } 6080 } 6081 6082 return new_cpu; 6083 } 6084 6085 static inline int __select_idle_cpu(int cpu) 6086 { 6087 if (available_idle_cpu(cpu) || sched_idle_cpu(cpu)) 6088 return cpu; 6089 6090 return -1; 6091 } 6092 6093 #ifdef CONFIG_SCHED_SMT 6094 DEFINE_STATIC_KEY_FALSE(sched_smt_present); 6095 EXPORT_SYMBOL_GPL(sched_smt_present); 6096 6097 static inline void set_idle_cores(int cpu, int val) 6098 { 6099 struct sched_domain_shared *sds; 6100 6101 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu)); 6102 if (sds) 6103 WRITE_ONCE(sds->has_idle_cores, val); 6104 } 6105 6106 static inline bool test_idle_cores(int cpu, bool def) 6107 { 6108 struct sched_domain_shared *sds; 6109 6110 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu)); 6111 if (sds) 6112 return READ_ONCE(sds->has_idle_cores); 6113 6114 return def; 6115 } 6116 6117 /* 6118 * Scans the local SMT mask to see if the entire core is idle, and records this 6119 * information in sd_llc_shared->has_idle_cores. 6120 * 6121 * Since SMT siblings share all cache levels, inspecting this limited remote 6122 * state should be fairly cheap. 6123 */ 6124 void __update_idle_core(struct rq *rq) 6125 { 6126 int core = cpu_of(rq); 6127 int cpu; 6128 6129 rcu_read_lock(); 6130 if (test_idle_cores(core, true)) 6131 goto unlock; 6132 6133 for_each_cpu(cpu, cpu_smt_mask(core)) { 6134 if (cpu == core) 6135 continue; 6136 6137 if (!available_idle_cpu(cpu)) 6138 goto unlock; 6139 } 6140 6141 set_idle_cores(core, 1); 6142 unlock: 6143 rcu_read_unlock(); 6144 } 6145 6146 /* 6147 * Scan the entire LLC domain for idle cores; this dynamically switches off if 6148 * there are no idle cores left in the system; tracked through 6149 * sd_llc->shared->has_idle_cores and enabled through update_idle_core() above. 6150 */ 6151 static int select_idle_core(struct task_struct *p, int core, struct cpumask *cpus, int *idle_cpu) 6152 { 6153 bool idle = true; 6154 int cpu; 6155 6156 if (!static_branch_likely(&sched_smt_present)) 6157 return __select_idle_cpu(core); 6158 6159 for_each_cpu(cpu, cpu_smt_mask(core)) { 6160 if (!available_idle_cpu(cpu)) { 6161 idle = false; 6162 if (*idle_cpu == -1) { 6163 if (sched_idle_cpu(cpu) && cpumask_test_cpu(cpu, p->cpus_ptr)) { 6164 *idle_cpu = cpu; 6165 break; 6166 } 6167 continue; 6168 } 6169 break; 6170 } 6171 if (*idle_cpu == -1 && cpumask_test_cpu(cpu, p->cpus_ptr)) 6172 *idle_cpu = cpu; 6173 } 6174 6175 if (idle) 6176 return core; 6177 6178 cpumask_andnot(cpus, cpus, cpu_smt_mask(core)); 6179 return -1; 6180 } 6181 6182 /* 6183 * Scan the local SMT mask for idle CPUs. 6184 */ 6185 static int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target) 6186 { 6187 int cpu; 6188 6189 for_each_cpu(cpu, cpu_smt_mask(target)) { 6190 if (!cpumask_test_cpu(cpu, p->cpus_ptr) || 6191 !cpumask_test_cpu(cpu, sched_domain_span(sd))) 6192 continue; 6193 if (available_idle_cpu(cpu) || sched_idle_cpu(cpu)) 6194 return cpu; 6195 } 6196 6197 return -1; 6198 } 6199 6200 #else /* CONFIG_SCHED_SMT */ 6201 6202 static inline void set_idle_cores(int cpu, int val) 6203 { 6204 } 6205 6206 static inline bool test_idle_cores(int cpu, bool def) 6207 { 6208 return def; 6209 } 6210 6211 static inline int select_idle_core(struct task_struct *p, int core, struct cpumask *cpus, int *idle_cpu) 6212 { 6213 return __select_idle_cpu(core); 6214 } 6215 6216 static inline int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target) 6217 { 6218 return -1; 6219 } 6220 6221 #endif /* CONFIG_SCHED_SMT */ 6222 6223 /* 6224 * Scan the LLC domain for idle CPUs; this is dynamically regulated by 6225 * comparing the average scan cost (tracked in sd->avg_scan_cost) against the 6226 * average idle time for this rq (as found in rq->avg_idle). 6227 */ 6228 static int select_idle_cpu(struct task_struct *p, struct sched_domain *sd, bool has_idle_core, int target) 6229 { 6230 struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_idle_mask); 6231 int i, cpu, idle_cpu = -1, nr = INT_MAX; 6232 int this = smp_processor_id(); 6233 struct sched_domain *this_sd; 6234 u64 time; 6235 6236 this_sd = rcu_dereference(*this_cpu_ptr(&sd_llc)); 6237 if (!this_sd) 6238 return -1; 6239 6240 cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr); 6241 6242 if (sched_feat(SIS_PROP) && !has_idle_core) { 6243 u64 avg_cost, avg_idle, span_avg; 6244 6245 /* 6246 * Due to large variance we need a large fuzz factor; 6247 * hackbench in particularly is sensitive here. 6248 */ 6249 avg_idle = this_rq()->avg_idle / 512; 6250 avg_cost = this_sd->avg_scan_cost + 1; 6251 6252 span_avg = sd->span_weight * avg_idle; 6253 if (span_avg > 4*avg_cost) 6254 nr = div_u64(span_avg, avg_cost); 6255 else 6256 nr = 4; 6257 6258 time = cpu_clock(this); 6259 } 6260 6261 for_each_cpu_wrap(cpu, cpus, target) { 6262 if (has_idle_core) { 6263 i = select_idle_core(p, cpu, cpus, &idle_cpu); 6264 if ((unsigned int)i < nr_cpumask_bits) 6265 return i; 6266 6267 } else { 6268 if (!--nr) 6269 return -1; 6270 idle_cpu = __select_idle_cpu(cpu); 6271 if ((unsigned int)idle_cpu < nr_cpumask_bits) 6272 break; 6273 } 6274 } 6275 6276 if (has_idle_core) 6277 set_idle_cores(target, false); 6278 6279 if (sched_feat(SIS_PROP) && !has_idle_core) { 6280 time = cpu_clock(this) - time; 6281 update_avg(&this_sd->avg_scan_cost, time); 6282 } 6283 6284 return idle_cpu; 6285 } 6286 6287 /* 6288 * Scan the asym_capacity domain for idle CPUs; pick the first idle one on which 6289 * the task fits. If no CPU is big enough, but there are idle ones, try to 6290 * maximize capacity. 6291 */ 6292 static int 6293 select_idle_capacity(struct task_struct *p, struct sched_domain *sd, int target) 6294 { 6295 unsigned long task_util, best_cap = 0; 6296 int cpu, best_cpu = -1; 6297 struct cpumask *cpus; 6298 6299 cpus = this_cpu_cpumask_var_ptr(select_idle_mask); 6300 cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr); 6301 6302 task_util = uclamp_task_util(p); 6303 6304 for_each_cpu_wrap(cpu, cpus, target) { 6305 unsigned long cpu_cap = capacity_of(cpu); 6306 6307 if (!available_idle_cpu(cpu) && !sched_idle_cpu(cpu)) 6308 continue; 6309 if (fits_capacity(task_util, cpu_cap)) 6310 return cpu; 6311 6312 if (cpu_cap > best_cap) { 6313 best_cap = cpu_cap; 6314 best_cpu = cpu; 6315 } 6316 } 6317 6318 return best_cpu; 6319 } 6320 6321 static inline bool asym_fits_capacity(int task_util, int cpu) 6322 { 6323 if (static_branch_unlikely(&sched_asym_cpucapacity)) 6324 return fits_capacity(task_util, capacity_of(cpu)); 6325 6326 return true; 6327 } 6328 6329 /* 6330 * Try and locate an idle core/thread in the LLC cache domain. 6331 */ 6332 static int select_idle_sibling(struct task_struct *p, int prev, int target) 6333 { 6334 bool has_idle_core = false; 6335 struct sched_domain *sd; 6336 unsigned long task_util; 6337 int i, recent_used_cpu; 6338 6339 /* 6340 * On asymmetric system, update task utilization because we will check 6341 * that the task fits with cpu's capacity. 6342 */ 6343 if (static_branch_unlikely(&sched_asym_cpucapacity)) { 6344 sync_entity_load_avg(&p->se); 6345 task_util = uclamp_task_util(p); 6346 } 6347 6348 if ((available_idle_cpu(target) || sched_idle_cpu(target)) && 6349 asym_fits_capacity(task_util, target)) 6350 return target; 6351 6352 /* 6353 * If the previous CPU is cache affine and idle, don't be stupid: 6354 */ 6355 if (prev != target && cpus_share_cache(prev, target) && 6356 (available_idle_cpu(prev) || sched_idle_cpu(prev)) && 6357 asym_fits_capacity(task_util, prev)) 6358 return prev; 6359 6360 /* 6361 * Allow a per-cpu kthread to stack with the wakee if the 6362 * kworker thread and the tasks previous CPUs are the same. 6363 * The assumption is that the wakee queued work for the 6364 * per-cpu kthread that is now complete and the wakeup is 6365 * essentially a sync wakeup. An obvious example of this 6366 * pattern is IO completions. 6367 */ 6368 if (is_per_cpu_kthread(current) && 6369 prev == smp_processor_id() && 6370 this_rq()->nr_running <= 1) { 6371 return prev; 6372 } 6373 6374 /* Check a recently used CPU as a potential idle candidate: */ 6375 recent_used_cpu = p->recent_used_cpu; 6376 if (recent_used_cpu != prev && 6377 recent_used_cpu != target && 6378 cpus_share_cache(recent_used_cpu, target) && 6379 (available_idle_cpu(recent_used_cpu) || sched_idle_cpu(recent_used_cpu)) && 6380 cpumask_test_cpu(p->recent_used_cpu, p->cpus_ptr) && 6381 asym_fits_capacity(task_util, recent_used_cpu)) { 6382 /* 6383 * Replace recent_used_cpu with prev as it is a potential 6384 * candidate for the next wake: 6385 */ 6386 p->recent_used_cpu = prev; 6387 return recent_used_cpu; 6388 } 6389 6390 /* 6391 * For asymmetric CPU capacity systems, our domain of interest is 6392 * sd_asym_cpucapacity rather than sd_llc. 6393 */ 6394 if (static_branch_unlikely(&sched_asym_cpucapacity)) { 6395 sd = rcu_dereference(per_cpu(sd_asym_cpucapacity, target)); 6396 /* 6397 * On an asymmetric CPU capacity system where an exclusive 6398 * cpuset defines a symmetric island (i.e. one unique 6399 * capacity_orig value through the cpuset), the key will be set 6400 * but the CPUs within that cpuset will not have a domain with 6401 * SD_ASYM_CPUCAPACITY. These should follow the usual symmetric 6402 * capacity path. 6403 */ 6404 if (sd) { 6405 i = select_idle_capacity(p, sd, target); 6406 return ((unsigned)i < nr_cpumask_bits) ? i : target; 6407 } 6408 } 6409 6410 sd = rcu_dereference(per_cpu(sd_llc, target)); 6411 if (!sd) 6412 return target; 6413 6414 if (sched_smt_active()) { 6415 has_idle_core = test_idle_cores(target, false); 6416 6417 if (!has_idle_core && cpus_share_cache(prev, target)) { 6418 i = select_idle_smt(p, sd, prev); 6419 if ((unsigned int)i < nr_cpumask_bits) 6420 return i; 6421 } 6422 } 6423 6424 i = select_idle_cpu(p, sd, has_idle_core, target); 6425 if ((unsigned)i < nr_cpumask_bits) 6426 return i; 6427 6428 return target; 6429 } 6430 6431 /** 6432 * cpu_util - Estimates the amount of capacity of a CPU used by CFS tasks. 6433 * @cpu: the CPU to get the utilization of 6434 * 6435 * The unit of the return value must be the one of capacity so we can compare 6436 * the utilization with the capacity of the CPU that is available for CFS task 6437 * (ie cpu_capacity). 6438 * 6439 * cfs_rq.avg.util_avg is the sum of running time of runnable tasks plus the 6440 * recent utilization of currently non-runnable tasks on a CPU. It represents 6441 * the amount of utilization of a CPU in the range [0..capacity_orig] where 6442 * capacity_orig is the cpu_capacity available at the highest frequency 6443 * (arch_scale_freq_capacity()). 6444 * The utilization of a CPU converges towards a sum equal to or less than the 6445 * current capacity (capacity_curr <= capacity_orig) of the CPU because it is 6446 * the running time on this CPU scaled by capacity_curr. 6447 * 6448 * The estimated utilization of a CPU is defined to be the maximum between its 6449 * cfs_rq.avg.util_avg and the sum of the estimated utilization of the tasks 6450 * currently RUNNABLE on that CPU. 6451 * This allows to properly represent the expected utilization of a CPU which 6452 * has just got a big task running since a long sleep period. At the same time 6453 * however it preserves the benefits of the "blocked utilization" in 6454 * describing the potential for other tasks waking up on the same CPU. 6455 * 6456 * Nevertheless, cfs_rq.avg.util_avg can be higher than capacity_curr or even 6457 * higher than capacity_orig because of unfortunate rounding in 6458 * cfs.avg.util_avg or just after migrating tasks and new task wakeups until 6459 * the average stabilizes with the new running time. We need to check that the 6460 * utilization stays within the range of [0..capacity_orig] and cap it if 6461 * necessary. Without utilization capping, a group could be seen as overloaded 6462 * (CPU0 utilization at 121% + CPU1 utilization at 80%) whereas CPU1 has 20% of 6463 * available capacity. We allow utilization to overshoot capacity_curr (but not 6464 * capacity_orig) as it useful for predicting the capacity required after task 6465 * migrations (scheduler-driven DVFS). 6466 * 6467 * Return: the (estimated) utilization for the specified CPU 6468 */ 6469 static inline unsigned long cpu_util(int cpu) 6470 { 6471 struct cfs_rq *cfs_rq; 6472 unsigned int util; 6473 6474 cfs_rq = &cpu_rq(cpu)->cfs; 6475 util = READ_ONCE(cfs_rq->avg.util_avg); 6476 6477 if (sched_feat(UTIL_EST)) 6478 util = max(util, READ_ONCE(cfs_rq->avg.util_est.enqueued)); 6479 6480 return min_t(unsigned long, util, capacity_orig_of(cpu)); 6481 } 6482 6483 /* 6484 * cpu_util_without: compute cpu utilization without any contributions from *p 6485 * @cpu: the CPU which utilization is requested 6486 * @p: the task which utilization should be discounted 6487 * 6488 * The utilization of a CPU is defined by the utilization of tasks currently 6489 * enqueued on that CPU as well as tasks which are currently sleeping after an 6490 * execution on that CPU. 6491 * 6492 * This method returns the utilization of the specified CPU by discounting the 6493 * utilization of the specified task, whenever the task is currently 6494 * contributing to the CPU utilization. 6495 */ 6496 static unsigned long cpu_util_without(int cpu, struct task_struct *p) 6497 { 6498 struct cfs_rq *cfs_rq; 6499 unsigned int util; 6500 6501 /* Task has no contribution or is new */ 6502 if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time)) 6503 return cpu_util(cpu); 6504 6505 cfs_rq = &cpu_rq(cpu)->cfs; 6506 util = READ_ONCE(cfs_rq->avg.util_avg); 6507 6508 /* Discount task's util from CPU's util */ 6509 lsub_positive(&util, task_util(p)); 6510 6511 /* 6512 * Covered cases: 6513 * 6514 * a) if *p is the only task sleeping on this CPU, then: 6515 * cpu_util (== task_util) > util_est (== 0) 6516 * and thus we return: 6517 * cpu_util_without = (cpu_util - task_util) = 0 6518 * 6519 * b) if other tasks are SLEEPING on this CPU, which is now exiting 6520 * IDLE, then: 6521 * cpu_util >= task_util 6522 * cpu_util > util_est (== 0) 6523 * and thus we discount *p's blocked utilization to return: 6524 * cpu_util_without = (cpu_util - task_util) >= 0 6525 * 6526 * c) if other tasks are RUNNABLE on that CPU and 6527 * util_est > cpu_util 6528 * then we use util_est since it returns a more restrictive 6529 * estimation of the spare capacity on that CPU, by just 6530 * considering the expected utilization of tasks already 6531 * runnable on that CPU. 6532 * 6533 * Cases a) and b) are covered by the above code, while case c) is 6534 * covered by the following code when estimated utilization is 6535 * enabled. 6536 */ 6537 if (sched_feat(UTIL_EST)) { 6538 unsigned int estimated = 6539 READ_ONCE(cfs_rq->avg.util_est.enqueued); 6540 6541 /* 6542 * Despite the following checks we still have a small window 6543 * for a possible race, when an execl's select_task_rq_fair() 6544 * races with LB's detach_task(): 6545 * 6546 * detach_task() 6547 * p->on_rq = TASK_ON_RQ_MIGRATING; 6548 * ---------------------------------- A 6549 * deactivate_task() \ 6550 * dequeue_task() + RaceTime 6551 * util_est_dequeue() / 6552 * ---------------------------------- B 6553 * 6554 * The additional check on "current == p" it's required to 6555 * properly fix the execl regression and it helps in further 6556 * reducing the chances for the above race. 6557 */ 6558 if (unlikely(task_on_rq_queued(p) || current == p)) 6559 lsub_positive(&estimated, _task_util_est(p)); 6560 6561 util = max(util, estimated); 6562 } 6563 6564 /* 6565 * Utilization (estimated) can exceed the CPU capacity, thus let's 6566 * clamp to the maximum CPU capacity to ensure consistency with 6567 * the cpu_util call. 6568 */ 6569 return min_t(unsigned long, util, capacity_orig_of(cpu)); 6570 } 6571 6572 /* 6573 * Predicts what cpu_util(@cpu) would return if @p was migrated (and enqueued) 6574 * to @dst_cpu. 6575 */ 6576 static unsigned long cpu_util_next(int cpu, struct task_struct *p, int dst_cpu) 6577 { 6578 struct cfs_rq *cfs_rq = &cpu_rq(cpu)->cfs; 6579 unsigned long util_est, util = READ_ONCE(cfs_rq->avg.util_avg); 6580 6581 /* 6582 * If @p migrates from @cpu to another, remove its contribution. Or, 6583 * if @p migrates from another CPU to @cpu, add its contribution. In 6584 * the other cases, @cpu is not impacted by the migration, so the 6585 * util_avg should already be correct. 6586 */ 6587 if (task_cpu(p) == cpu && dst_cpu != cpu) 6588 lsub_positive(&util, task_util(p)); 6589 else if (task_cpu(p) != cpu && dst_cpu == cpu) 6590 util += task_util(p); 6591 6592 if (sched_feat(UTIL_EST)) { 6593 util_est = READ_ONCE(cfs_rq->avg.util_est.enqueued); 6594 6595 /* 6596 * During wake-up, the task isn't enqueued yet and doesn't 6597 * appear in the cfs_rq->avg.util_est.enqueued of any rq, 6598 * so just add it (if needed) to "simulate" what will be 6599 * cpu_util() after the task has been enqueued. 6600 */ 6601 if (dst_cpu == cpu) 6602 util_est += _task_util_est(p); 6603 6604 util = max(util, util_est); 6605 } 6606 6607 return min(util, capacity_orig_of(cpu)); 6608 } 6609 6610 /* 6611 * compute_energy(): Estimates the energy that @pd would consume if @p was 6612 * migrated to @dst_cpu. compute_energy() predicts what will be the utilization 6613 * landscape of @pd's CPUs after the task migration, and uses the Energy Model 6614 * to compute what would be the energy if we decided to actually migrate that 6615 * task. 6616 */ 6617 static long 6618 compute_energy(struct task_struct *p, int dst_cpu, struct perf_domain *pd) 6619 { 6620 struct cpumask *pd_mask = perf_domain_span(pd); 6621 unsigned long cpu_cap = arch_scale_cpu_capacity(cpumask_first(pd_mask)); 6622 unsigned long max_util = 0, sum_util = 0; 6623 int cpu; 6624 6625 /* 6626 * The capacity state of CPUs of the current rd can be driven by CPUs 6627 * of another rd if they belong to the same pd. So, account for the 6628 * utilization of these CPUs too by masking pd with cpu_online_mask 6629 * instead of the rd span. 6630 * 6631 * If an entire pd is outside of the current rd, it will not appear in 6632 * its pd list and will not be accounted by compute_energy(). 6633 */ 6634 for_each_cpu_and(cpu, pd_mask, cpu_online_mask) { 6635 unsigned long util_freq = cpu_util_next(cpu, p, dst_cpu); 6636 unsigned long cpu_util, util_running = util_freq; 6637 struct task_struct *tsk = NULL; 6638 6639 /* 6640 * When @p is placed on @cpu: 6641 * 6642 * util_running = max(cpu_util, cpu_util_est) + 6643 * max(task_util, _task_util_est) 6644 * 6645 * while cpu_util_next is: max(cpu_util + task_util, 6646 * cpu_util_est + _task_util_est) 6647 */ 6648 if (cpu == dst_cpu) { 6649 tsk = p; 6650 util_running = 6651 cpu_util_next(cpu, p, -1) + task_util_est(p); 6652 } 6653 6654 /* 6655 * Busy time computation: utilization clamping is not 6656 * required since the ratio (sum_util / cpu_capacity) 6657 * is already enough to scale the EM reported power 6658 * consumption at the (eventually clamped) cpu_capacity. 6659 */ 6660 sum_util += effective_cpu_util(cpu, util_running, cpu_cap, 6661 ENERGY_UTIL, NULL); 6662 6663 /* 6664 * Performance domain frequency: utilization clamping 6665 * must be considered since it affects the selection 6666 * of the performance domain frequency. 6667 * NOTE: in case RT tasks are running, by default the 6668 * FREQUENCY_UTIL's utilization can be max OPP. 6669 */ 6670 cpu_util = effective_cpu_util(cpu, util_freq, cpu_cap, 6671 FREQUENCY_UTIL, tsk); 6672 max_util = max(max_util, cpu_util); 6673 } 6674 6675 return em_cpu_energy(pd->em_pd, max_util, sum_util); 6676 } 6677 6678 /* 6679 * find_energy_efficient_cpu(): Find most energy-efficient target CPU for the 6680 * waking task. find_energy_efficient_cpu() looks for the CPU with maximum 6681 * spare capacity in each performance domain and uses it as a potential 6682 * candidate to execute the task. Then, it uses the Energy Model to figure 6683 * out which of the CPU candidates is the most energy-efficient. 6684 * 6685 * The rationale for this heuristic is as follows. In a performance domain, 6686 * all the most energy efficient CPU candidates (according to the Energy 6687 * Model) are those for which we'll request a low frequency. When there are 6688 * several CPUs for which the frequency request will be the same, we don't 6689 * have enough data to break the tie between them, because the Energy Model 6690 * only includes active power costs. With this model, if we assume that 6691 * frequency requests follow utilization (e.g. using schedutil), the CPU with 6692 * the maximum spare capacity in a performance domain is guaranteed to be among 6693 * the best candidates of the performance domain. 6694 * 6695 * In practice, it could be preferable from an energy standpoint to pack 6696 * small tasks on a CPU in order to let other CPUs go in deeper idle states, 6697 * but that could also hurt our chances to go cluster idle, and we have no 6698 * ways to tell with the current Energy Model if this is actually a good 6699 * idea or not. So, find_energy_efficient_cpu() basically favors 6700 * cluster-packing, and spreading inside a cluster. That should at least be 6701 * a good thing for latency, and this is consistent with the idea that most 6702 * of the energy savings of EAS come from the asymmetry of the system, and 6703 * not so much from breaking the tie between identical CPUs. That's also the 6704 * reason why EAS is enabled in the topology code only for systems where 6705 * SD_ASYM_CPUCAPACITY is set. 6706 * 6707 * NOTE: Forkees are not accepted in the energy-aware wake-up path because 6708 * they don't have any useful utilization data yet and it's not possible to 6709 * forecast their impact on energy consumption. Consequently, they will be 6710 * placed by find_idlest_cpu() on the least loaded CPU, which might turn out 6711 * to be energy-inefficient in some use-cases. The alternative would be to 6712 * bias new tasks towards specific types of CPUs first, or to try to infer 6713 * their util_avg from the parent task, but those heuristics could hurt 6714 * other use-cases too. So, until someone finds a better way to solve this, 6715 * let's keep things simple by re-using the existing slow path. 6716 */ 6717 static int find_energy_efficient_cpu(struct task_struct *p, int prev_cpu) 6718 { 6719 unsigned long prev_delta = ULONG_MAX, best_delta = ULONG_MAX; 6720 struct root_domain *rd = cpu_rq(smp_processor_id())->rd; 6721 unsigned long cpu_cap, util, base_energy = 0; 6722 int cpu, best_energy_cpu = prev_cpu; 6723 struct sched_domain *sd; 6724 struct perf_domain *pd; 6725 6726 rcu_read_lock(); 6727 pd = rcu_dereference(rd->pd); 6728 if (!pd || READ_ONCE(rd->overutilized)) 6729 goto fail; 6730 6731 /* 6732 * Energy-aware wake-up happens on the lowest sched_domain starting 6733 * from sd_asym_cpucapacity spanning over this_cpu and prev_cpu. 6734 */ 6735 sd = rcu_dereference(*this_cpu_ptr(&sd_asym_cpucapacity)); 6736 while (sd && !cpumask_test_cpu(prev_cpu, sched_domain_span(sd))) 6737 sd = sd->parent; 6738 if (!sd) 6739 goto fail; 6740 6741 sync_entity_load_avg(&p->se); 6742 if (!task_util_est(p)) 6743 goto unlock; 6744 6745 for (; pd; pd = pd->next) { 6746 unsigned long cur_delta, spare_cap, max_spare_cap = 0; 6747 unsigned long base_energy_pd; 6748 int max_spare_cap_cpu = -1; 6749 6750 /* Compute the 'base' energy of the pd, without @p */ 6751 base_energy_pd = compute_energy(p, -1, pd); 6752 base_energy += base_energy_pd; 6753 6754 for_each_cpu_and(cpu, perf_domain_span(pd), sched_domain_span(sd)) { 6755 if (!cpumask_test_cpu(cpu, p->cpus_ptr)) 6756 continue; 6757 6758 util = cpu_util_next(cpu, p, cpu); 6759 cpu_cap = capacity_of(cpu); 6760 spare_cap = cpu_cap; 6761 lsub_positive(&spare_cap, util); 6762 6763 /* 6764 * Skip CPUs that cannot satisfy the capacity request. 6765 * IOW, placing the task there would make the CPU 6766 * overutilized. Take uclamp into account to see how 6767 * much capacity we can get out of the CPU; this is 6768 * aligned with sched_cpu_util(). 6769 */ 6770 util = uclamp_rq_util_with(cpu_rq(cpu), util, p); 6771 if (!fits_capacity(util, cpu_cap)) 6772 continue; 6773 6774 /* Always use prev_cpu as a candidate. */ 6775 if (cpu == prev_cpu) { 6776 prev_delta = compute_energy(p, prev_cpu, pd); 6777 prev_delta -= base_energy_pd; 6778 best_delta = min(best_delta, prev_delta); 6779 } 6780 6781 /* 6782 * Find the CPU with the maximum spare capacity in 6783 * the performance domain 6784 */ 6785 if (spare_cap > max_spare_cap) { 6786 max_spare_cap = spare_cap; 6787 max_spare_cap_cpu = cpu; 6788 } 6789 } 6790 6791 /* Evaluate the energy impact of using this CPU. */ 6792 if (max_spare_cap_cpu >= 0 && max_spare_cap_cpu != prev_cpu) { 6793 cur_delta = compute_energy(p, max_spare_cap_cpu, pd); 6794 cur_delta -= base_energy_pd; 6795 if (cur_delta < best_delta) { 6796 best_delta = cur_delta; 6797 best_energy_cpu = max_spare_cap_cpu; 6798 } 6799 } 6800 } 6801 unlock: 6802 rcu_read_unlock(); 6803 6804 /* 6805 * Pick the best CPU if prev_cpu cannot be used, or if it saves at 6806 * least 6% of the energy used by prev_cpu. 6807 */ 6808 if (prev_delta == ULONG_MAX) 6809 return best_energy_cpu; 6810 6811 if ((prev_delta - best_delta) > ((prev_delta + base_energy) >> 4)) 6812 return best_energy_cpu; 6813 6814 return prev_cpu; 6815 6816 fail: 6817 rcu_read_unlock(); 6818 6819 return -1; 6820 } 6821 6822 /* 6823 * select_task_rq_fair: Select target runqueue for the waking task in domains 6824 * that have the relevant SD flag set. In practice, this is SD_BALANCE_WAKE, 6825 * SD_BALANCE_FORK, or SD_BALANCE_EXEC. 6826 * 6827 * Balances load by selecting the idlest CPU in the idlest group, or under 6828 * certain conditions an idle sibling CPU if the domain has SD_WAKE_AFFINE set. 6829 * 6830 * Returns the target CPU number. 6831 * 6832 * preempt must be disabled. 6833 */ 6834 static int 6835 select_task_rq_fair(struct task_struct *p, int prev_cpu, int wake_flags) 6836 { 6837 int sync = (wake_flags & WF_SYNC) && !(current->flags & PF_EXITING); 6838 struct sched_domain *tmp, *sd = NULL; 6839 int cpu = smp_processor_id(); 6840 int new_cpu = prev_cpu; 6841 int want_affine = 0; 6842 /* SD_flags and WF_flags share the first nibble */ 6843 int sd_flag = wake_flags & 0xF; 6844 6845 if (wake_flags & WF_TTWU) { 6846 record_wakee(p); 6847 6848 if (sched_energy_enabled()) { 6849 new_cpu = find_energy_efficient_cpu(p, prev_cpu); 6850 if (new_cpu >= 0) 6851 return new_cpu; 6852 new_cpu = prev_cpu; 6853 } 6854 6855 want_affine = !wake_wide(p) && cpumask_test_cpu(cpu, p->cpus_ptr); 6856 } 6857 6858 rcu_read_lock(); 6859 for_each_domain(cpu, tmp) { 6860 /* 6861 * If both 'cpu' and 'prev_cpu' are part of this domain, 6862 * cpu is a valid SD_WAKE_AFFINE target. 6863 */ 6864 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) && 6865 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) { 6866 if (cpu != prev_cpu) 6867 new_cpu = wake_affine(tmp, p, cpu, prev_cpu, sync); 6868 6869 sd = NULL; /* Prefer wake_affine over balance flags */ 6870 break; 6871 } 6872 6873 if (tmp->flags & sd_flag) 6874 sd = tmp; 6875 else if (!want_affine) 6876 break; 6877 } 6878 6879 if (unlikely(sd)) { 6880 /* Slow path */ 6881 new_cpu = find_idlest_cpu(sd, p, cpu, prev_cpu, sd_flag); 6882 } else if (wake_flags & WF_TTWU) { /* XXX always ? */ 6883 /* Fast path */ 6884 new_cpu = select_idle_sibling(p, prev_cpu, new_cpu); 6885 6886 if (want_affine) 6887 current->recent_used_cpu = cpu; 6888 } 6889 rcu_read_unlock(); 6890 6891 return new_cpu; 6892 } 6893 6894 static void detach_entity_cfs_rq(struct sched_entity *se); 6895 6896 /* 6897 * Called immediately before a task is migrated to a new CPU; task_cpu(p) and 6898 * cfs_rq_of(p) references at time of call are still valid and identify the 6899 * previous CPU. The caller guarantees p->pi_lock or task_rq(p)->lock is held. 6900 */ 6901 static void migrate_task_rq_fair(struct task_struct *p, int new_cpu) 6902 { 6903 /* 6904 * As blocked tasks retain absolute vruntime the migration needs to 6905 * deal with this by subtracting the old and adding the new 6906 * min_vruntime -- the latter is done by enqueue_entity() when placing 6907 * the task on the new runqueue. 6908 */ 6909 if (p->state == TASK_WAKING) { 6910 struct sched_entity *se = &p->se; 6911 struct cfs_rq *cfs_rq = cfs_rq_of(se); 6912 u64 min_vruntime; 6913 6914 #ifndef CONFIG_64BIT 6915 u64 min_vruntime_copy; 6916 6917 do { 6918 min_vruntime_copy = cfs_rq->min_vruntime_copy; 6919 smp_rmb(); 6920 min_vruntime = cfs_rq->min_vruntime; 6921 } while (min_vruntime != min_vruntime_copy); 6922 #else 6923 min_vruntime = cfs_rq->min_vruntime; 6924 #endif 6925 6926 se->vruntime -= min_vruntime; 6927 } 6928 6929 if (p->on_rq == TASK_ON_RQ_MIGRATING) { 6930 /* 6931 * In case of TASK_ON_RQ_MIGRATING we in fact hold the 'old' 6932 * rq->lock and can modify state directly. 6933 */ 6934 lockdep_assert_held(&task_rq(p)->lock); 6935 detach_entity_cfs_rq(&p->se); 6936 6937 } else { 6938 /* 6939 * We are supposed to update the task to "current" time, then 6940 * its up to date and ready to go to new CPU/cfs_rq. But we 6941 * have difficulty in getting what current time is, so simply 6942 * throw away the out-of-date time. This will result in the 6943 * wakee task is less decayed, but giving the wakee more load 6944 * sounds not bad. 6945 */ 6946 remove_entity_load_avg(&p->se); 6947 } 6948 6949 /* Tell new CPU we are migrated */ 6950 p->se.avg.last_update_time = 0; 6951 6952 /* We have migrated, no longer consider this task hot */ 6953 p->se.exec_start = 0; 6954 6955 update_scan_period(p, new_cpu); 6956 } 6957 6958 static void task_dead_fair(struct task_struct *p) 6959 { 6960 remove_entity_load_avg(&p->se); 6961 } 6962 6963 static int 6964 balance_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf) 6965 { 6966 if (rq->nr_running) 6967 return 1; 6968 6969 return newidle_balance(rq, rf) != 0; 6970 } 6971 #endif /* CONFIG_SMP */ 6972 6973 static unsigned long wakeup_gran(struct sched_entity *se) 6974 { 6975 unsigned long gran = sysctl_sched_wakeup_granularity; 6976 6977 /* 6978 * Since its curr running now, convert the gran from real-time 6979 * to virtual-time in his units. 6980 * 6981 * By using 'se' instead of 'curr' we penalize light tasks, so 6982 * they get preempted easier. That is, if 'se' < 'curr' then 6983 * the resulting gran will be larger, therefore penalizing the 6984 * lighter, if otoh 'se' > 'curr' then the resulting gran will 6985 * be smaller, again penalizing the lighter task. 6986 * 6987 * This is especially important for buddies when the leftmost 6988 * task is higher priority than the buddy. 6989 */ 6990 return calc_delta_fair(gran, se); 6991 } 6992 6993 /* 6994 * Should 'se' preempt 'curr'. 6995 * 6996 * |s1 6997 * |s2 6998 * |s3 6999 * g 7000 * |<--->|c 7001 * 7002 * w(c, s1) = -1 7003 * w(c, s2) = 0 7004 * w(c, s3) = 1 7005 * 7006 */ 7007 static int 7008 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se) 7009 { 7010 s64 gran, vdiff = curr->vruntime - se->vruntime; 7011 7012 if (vdiff <= 0) 7013 return -1; 7014 7015 gran = wakeup_gran(se); 7016 if (vdiff > gran) 7017 return 1; 7018 7019 return 0; 7020 } 7021 7022 static void set_last_buddy(struct sched_entity *se) 7023 { 7024 if (entity_is_task(se) && unlikely(task_has_idle_policy(task_of(se)))) 7025 return; 7026 7027 for_each_sched_entity(se) { 7028 if (SCHED_WARN_ON(!se->on_rq)) 7029 return; 7030 cfs_rq_of(se)->last = se; 7031 } 7032 } 7033 7034 static void set_next_buddy(struct sched_entity *se) 7035 { 7036 if (entity_is_task(se) && unlikely(task_has_idle_policy(task_of(se)))) 7037 return; 7038 7039 for_each_sched_entity(se) { 7040 if (SCHED_WARN_ON(!se->on_rq)) 7041 return; 7042 cfs_rq_of(se)->next = se; 7043 } 7044 } 7045 7046 static void set_skip_buddy(struct sched_entity *se) 7047 { 7048 for_each_sched_entity(se) 7049 cfs_rq_of(se)->skip = se; 7050 } 7051 7052 /* 7053 * Preempt the current task with a newly woken task if needed: 7054 */ 7055 static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags) 7056 { 7057 struct task_struct *curr = rq->curr; 7058 struct sched_entity *se = &curr->se, *pse = &p->se; 7059 struct cfs_rq *cfs_rq = task_cfs_rq(curr); 7060 int scale = cfs_rq->nr_running >= sched_nr_latency; 7061 int next_buddy_marked = 0; 7062 7063 if (unlikely(se == pse)) 7064 return; 7065 7066 /* 7067 * This is possible from callers such as attach_tasks(), in which we 7068 * unconditionally check_preempt_curr() after an enqueue (which may have 7069 * lead to a throttle). This both saves work and prevents false 7070 * next-buddy nomination below. 7071 */ 7072 if (unlikely(throttled_hierarchy(cfs_rq_of(pse)))) 7073 return; 7074 7075 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) { 7076 set_next_buddy(pse); 7077 next_buddy_marked = 1; 7078 } 7079 7080 /* 7081 * We can come here with TIF_NEED_RESCHED already set from new task 7082 * wake up path. 7083 * 7084 * Note: this also catches the edge-case of curr being in a throttled 7085 * group (e.g. via set_curr_task), since update_curr() (in the 7086 * enqueue of curr) will have resulted in resched being set. This 7087 * prevents us from potentially nominating it as a false LAST_BUDDY 7088 * below. 7089 */ 7090 if (test_tsk_need_resched(curr)) 7091 return; 7092 7093 /* Idle tasks are by definition preempted by non-idle tasks. */ 7094 if (unlikely(task_has_idle_policy(curr)) && 7095 likely(!task_has_idle_policy(p))) 7096 goto preempt; 7097 7098 /* 7099 * Batch and idle tasks do not preempt non-idle tasks (their preemption 7100 * is driven by the tick): 7101 */ 7102 if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION)) 7103 return; 7104 7105 find_matching_se(&se, &pse); 7106 update_curr(cfs_rq_of(se)); 7107 BUG_ON(!pse); 7108 if (wakeup_preempt_entity(se, pse) == 1) { 7109 /* 7110 * Bias pick_next to pick the sched entity that is 7111 * triggering this preemption. 7112 */ 7113 if (!next_buddy_marked) 7114 set_next_buddy(pse); 7115 goto preempt; 7116 } 7117 7118 return; 7119 7120 preempt: 7121 resched_curr(rq); 7122 /* 7123 * Only set the backward buddy when the current task is still 7124 * on the rq. This can happen when a wakeup gets interleaved 7125 * with schedule on the ->pre_schedule() or idle_balance() 7126 * point, either of which can * drop the rq lock. 7127 * 7128 * Also, during early boot the idle thread is in the fair class, 7129 * for obvious reasons its a bad idea to schedule back to it. 7130 */ 7131 if (unlikely(!se->on_rq || curr == rq->idle)) 7132 return; 7133 7134 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se)) 7135 set_last_buddy(se); 7136 } 7137 7138 struct task_struct * 7139 pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf) 7140 { 7141 struct cfs_rq *cfs_rq = &rq->cfs; 7142 struct sched_entity *se; 7143 struct task_struct *p; 7144 int new_tasks; 7145 7146 again: 7147 if (!sched_fair_runnable(rq)) 7148 goto idle; 7149 7150 #ifdef CONFIG_FAIR_GROUP_SCHED 7151 if (!prev || prev->sched_class != &fair_sched_class) 7152 goto simple; 7153 7154 /* 7155 * Because of the set_next_buddy() in dequeue_task_fair() it is rather 7156 * likely that a next task is from the same cgroup as the current. 7157 * 7158 * Therefore attempt to avoid putting and setting the entire cgroup 7159 * hierarchy, only change the part that actually changes. 7160 */ 7161 7162 do { 7163 struct sched_entity *curr = cfs_rq->curr; 7164 7165 /* 7166 * Since we got here without doing put_prev_entity() we also 7167 * have to consider cfs_rq->curr. If it is still a runnable 7168 * entity, update_curr() will update its vruntime, otherwise 7169 * forget we've ever seen it. 7170 */ 7171 if (curr) { 7172 if (curr->on_rq) 7173 update_curr(cfs_rq); 7174 else 7175 curr = NULL; 7176 7177 /* 7178 * This call to check_cfs_rq_runtime() will do the 7179 * throttle and dequeue its entity in the parent(s). 7180 * Therefore the nr_running test will indeed 7181 * be correct. 7182 */ 7183 if (unlikely(check_cfs_rq_runtime(cfs_rq))) { 7184 cfs_rq = &rq->cfs; 7185 7186 if (!cfs_rq->nr_running) 7187 goto idle; 7188 7189 goto simple; 7190 } 7191 } 7192 7193 se = pick_next_entity(cfs_rq, curr); 7194 cfs_rq = group_cfs_rq(se); 7195 } while (cfs_rq); 7196 7197 p = task_of(se); 7198 7199 /* 7200 * Since we haven't yet done put_prev_entity and if the selected task 7201 * is a different task than we started out with, try and touch the 7202 * least amount of cfs_rqs. 7203 */ 7204 if (prev != p) { 7205 struct sched_entity *pse = &prev->se; 7206 7207 while (!(cfs_rq = is_same_group(se, pse))) { 7208 int se_depth = se->depth; 7209 int pse_depth = pse->depth; 7210 7211 if (se_depth <= pse_depth) { 7212 put_prev_entity(cfs_rq_of(pse), pse); 7213 pse = parent_entity(pse); 7214 } 7215 if (se_depth >= pse_depth) { 7216 set_next_entity(cfs_rq_of(se), se); 7217 se = parent_entity(se); 7218 } 7219 } 7220 7221 put_prev_entity(cfs_rq, pse); 7222 set_next_entity(cfs_rq, se); 7223 } 7224 7225 goto done; 7226 simple: 7227 #endif 7228 if (prev) 7229 put_prev_task(rq, prev); 7230 7231 do { 7232 se = pick_next_entity(cfs_rq, NULL); 7233 set_next_entity(cfs_rq, se); 7234 cfs_rq = group_cfs_rq(se); 7235 } while (cfs_rq); 7236 7237 p = task_of(se); 7238 7239 done: __maybe_unused; 7240 #ifdef CONFIG_SMP 7241 /* 7242 * Move the next running task to the front of 7243 * the list, so our cfs_tasks list becomes MRU 7244 * one. 7245 */ 7246 list_move(&p->se.group_node, &rq->cfs_tasks); 7247 #endif 7248 7249 if (hrtick_enabled_fair(rq)) 7250 hrtick_start_fair(rq, p); 7251 7252 update_misfit_status(p, rq); 7253 7254 return p; 7255 7256 idle: 7257 if (!rf) 7258 return NULL; 7259 7260 new_tasks = newidle_balance(rq, rf); 7261 7262 /* 7263 * Because newidle_balance() releases (and re-acquires) rq->lock, it is 7264 * possible for any higher priority task to appear. In that case we 7265 * must re-start the pick_next_entity() loop. 7266 */ 7267 if (new_tasks < 0) 7268 return RETRY_TASK; 7269 7270 if (new_tasks > 0) 7271 goto again; 7272 7273 /* 7274 * rq is about to be idle, check if we need to update the 7275 * lost_idle_time of clock_pelt 7276 */ 7277 update_idle_rq_clock_pelt(rq); 7278 7279 return NULL; 7280 } 7281 7282 static struct task_struct *__pick_next_task_fair(struct rq *rq) 7283 { 7284 return pick_next_task_fair(rq, NULL, NULL); 7285 } 7286 7287 /* 7288 * Account for a descheduled task: 7289 */ 7290 static void put_prev_task_fair(struct rq *rq, struct task_struct *prev) 7291 { 7292 struct sched_entity *se = &prev->se; 7293 struct cfs_rq *cfs_rq; 7294 7295 for_each_sched_entity(se) { 7296 cfs_rq = cfs_rq_of(se); 7297 put_prev_entity(cfs_rq, se); 7298 } 7299 } 7300 7301 /* 7302 * sched_yield() is very simple 7303 * 7304 * The magic of dealing with the ->skip buddy is in pick_next_entity. 7305 */ 7306 static void yield_task_fair(struct rq *rq) 7307 { 7308 struct task_struct *curr = rq->curr; 7309 struct cfs_rq *cfs_rq = task_cfs_rq(curr); 7310 struct sched_entity *se = &curr->se; 7311 7312 /* 7313 * Are we the only task in the tree? 7314 */ 7315 if (unlikely(rq->nr_running == 1)) 7316 return; 7317 7318 clear_buddies(cfs_rq, se); 7319 7320 if (curr->policy != SCHED_BATCH) { 7321 update_rq_clock(rq); 7322 /* 7323 * Update run-time statistics of the 'current'. 7324 */ 7325 update_curr(cfs_rq); 7326 /* 7327 * Tell update_rq_clock() that we've just updated, 7328 * so we don't do microscopic update in schedule() 7329 * and double the fastpath cost. 7330 */ 7331 rq_clock_skip_update(rq); 7332 } 7333 7334 set_skip_buddy(se); 7335 } 7336 7337 static bool yield_to_task_fair(struct rq *rq, struct task_struct *p) 7338 { 7339 struct sched_entity *se = &p->se; 7340 7341 /* throttled hierarchies are not runnable */ 7342 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se))) 7343 return false; 7344 7345 /* Tell the scheduler that we'd really like pse to run next. */ 7346 set_next_buddy(se); 7347 7348 yield_task_fair(rq); 7349 7350 return true; 7351 } 7352 7353 #ifdef CONFIG_SMP 7354 /************************************************** 7355 * Fair scheduling class load-balancing methods. 7356 * 7357 * BASICS 7358 * 7359 * The purpose of load-balancing is to achieve the same basic fairness the 7360 * per-CPU scheduler provides, namely provide a proportional amount of compute 7361 * time to each task. This is expressed in the following equation: 7362 * 7363 * W_i,n/P_i == W_j,n/P_j for all i,j (1) 7364 * 7365 * Where W_i,n is the n-th weight average for CPU i. The instantaneous weight 7366 * W_i,0 is defined as: 7367 * 7368 * W_i,0 = \Sum_j w_i,j (2) 7369 * 7370 * Where w_i,j is the weight of the j-th runnable task on CPU i. This weight 7371 * is derived from the nice value as per sched_prio_to_weight[]. 7372 * 7373 * The weight average is an exponential decay average of the instantaneous 7374 * weight: 7375 * 7376 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3) 7377 * 7378 * C_i is the compute capacity of CPU i, typically it is the 7379 * fraction of 'recent' time available for SCHED_OTHER task execution. But it 7380 * can also include other factors [XXX]. 7381 * 7382 * To achieve this balance we define a measure of imbalance which follows 7383 * directly from (1): 7384 * 7385 * imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j } (4) 7386 * 7387 * We them move tasks around to minimize the imbalance. In the continuous 7388 * function space it is obvious this converges, in the discrete case we get 7389 * a few fun cases generally called infeasible weight scenarios. 7390 * 7391 * [XXX expand on: 7392 * - infeasible weights; 7393 * - local vs global optima in the discrete case. ] 7394 * 7395 * 7396 * SCHED DOMAINS 7397 * 7398 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2) 7399 * for all i,j solution, we create a tree of CPUs that follows the hardware 7400 * topology where each level pairs two lower groups (or better). This results 7401 * in O(log n) layers. Furthermore we reduce the number of CPUs going up the 7402 * tree to only the first of the previous level and we decrease the frequency 7403 * of load-balance at each level inv. proportional to the number of CPUs in 7404 * the groups. 7405 * 7406 * This yields: 7407 * 7408 * log_2 n 1 n 7409 * \Sum { --- * --- * 2^i } = O(n) (5) 7410 * i = 0 2^i 2^i 7411 * `- size of each group 7412 * | | `- number of CPUs doing load-balance 7413 * | `- freq 7414 * `- sum over all levels 7415 * 7416 * Coupled with a limit on how many tasks we can migrate every balance pass, 7417 * this makes (5) the runtime complexity of the balancer. 7418 * 7419 * An important property here is that each CPU is still (indirectly) connected 7420 * to every other CPU in at most O(log n) steps: 7421 * 7422 * The adjacency matrix of the resulting graph is given by: 7423 * 7424 * log_2 n 7425 * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6) 7426 * k = 0 7427 * 7428 * And you'll find that: 7429 * 7430 * A^(log_2 n)_i,j != 0 for all i,j (7) 7431 * 7432 * Showing there's indeed a path between every CPU in at most O(log n) steps. 7433 * The task movement gives a factor of O(m), giving a convergence complexity 7434 * of: 7435 * 7436 * O(nm log n), n := nr_cpus, m := nr_tasks (8) 7437 * 7438 * 7439 * WORK CONSERVING 7440 * 7441 * In order to avoid CPUs going idle while there's still work to do, new idle 7442 * balancing is more aggressive and has the newly idle CPU iterate up the domain 7443 * tree itself instead of relying on other CPUs to bring it work. 7444 * 7445 * This adds some complexity to both (5) and (8) but it reduces the total idle 7446 * time. 7447 * 7448 * [XXX more?] 7449 * 7450 * 7451 * CGROUPS 7452 * 7453 * Cgroups make a horror show out of (2), instead of a simple sum we get: 7454 * 7455 * s_k,i 7456 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9) 7457 * S_k 7458 * 7459 * Where 7460 * 7461 * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10) 7462 * 7463 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on CPU i. 7464 * 7465 * The big problem is S_k, its a global sum needed to compute a local (W_i) 7466 * property. 7467 * 7468 * [XXX write more on how we solve this.. _after_ merging pjt's patches that 7469 * rewrite all of this once again.] 7470 */ 7471 7472 static unsigned long __read_mostly max_load_balance_interval = HZ/10; 7473 7474 enum fbq_type { regular, remote, all }; 7475 7476 /* 7477 * 'group_type' describes the group of CPUs at the moment of load balancing. 7478 * 7479 * The enum is ordered by pulling priority, with the group with lowest priority 7480 * first so the group_type can simply be compared when selecting the busiest 7481 * group. See update_sd_pick_busiest(). 7482 */ 7483 enum group_type { 7484 /* The group has spare capacity that can be used to run more tasks. */ 7485 group_has_spare = 0, 7486 /* 7487 * The group is fully used and the tasks don't compete for more CPU 7488 * cycles. Nevertheless, some tasks might wait before running. 7489 */ 7490 group_fully_busy, 7491 /* 7492 * SD_ASYM_CPUCAPACITY only: One task doesn't fit with CPU's capacity 7493 * and must be migrated to a more powerful CPU. 7494 */ 7495 group_misfit_task, 7496 /* 7497 * SD_ASYM_PACKING only: One local CPU with higher capacity is available, 7498 * and the task should be migrated to it instead of running on the 7499 * current CPU. 7500 */ 7501 group_asym_packing, 7502 /* 7503 * The tasks' affinity constraints previously prevented the scheduler 7504 * from balancing the load across the system. 7505 */ 7506 group_imbalanced, 7507 /* 7508 * The CPU is overloaded and can't provide expected CPU cycles to all 7509 * tasks. 7510 */ 7511 group_overloaded 7512 }; 7513 7514 enum migration_type { 7515 migrate_load = 0, 7516 migrate_util, 7517 migrate_task, 7518 migrate_misfit 7519 }; 7520 7521 #define LBF_ALL_PINNED 0x01 7522 #define LBF_NEED_BREAK 0x02 7523 #define LBF_DST_PINNED 0x04 7524 #define LBF_SOME_PINNED 0x08 7525 #define LBF_ACTIVE_LB 0x10 7526 7527 struct lb_env { 7528 struct sched_domain *sd; 7529 7530 struct rq *src_rq; 7531 int src_cpu; 7532 7533 int dst_cpu; 7534 struct rq *dst_rq; 7535 7536 struct cpumask *dst_grpmask; 7537 int new_dst_cpu; 7538 enum cpu_idle_type idle; 7539 long imbalance; 7540 /* The set of CPUs under consideration for load-balancing */ 7541 struct cpumask *cpus; 7542 7543 unsigned int flags; 7544 7545 unsigned int loop; 7546 unsigned int loop_break; 7547 unsigned int loop_max; 7548 7549 enum fbq_type fbq_type; 7550 enum migration_type migration_type; 7551 struct list_head tasks; 7552 }; 7553 7554 /* 7555 * Is this task likely cache-hot: 7556 */ 7557 static int task_hot(struct task_struct *p, struct lb_env *env) 7558 { 7559 s64 delta; 7560 7561 lockdep_assert_held(&env->src_rq->lock); 7562 7563 if (p->sched_class != &fair_sched_class) 7564 return 0; 7565 7566 if (unlikely(task_has_idle_policy(p))) 7567 return 0; 7568 7569 /* SMT siblings share cache */ 7570 if (env->sd->flags & SD_SHARE_CPUCAPACITY) 7571 return 0; 7572 7573 /* 7574 * Buddy candidates are cache hot: 7575 */ 7576 if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running && 7577 (&p->se == cfs_rq_of(&p->se)->next || 7578 &p->se == cfs_rq_of(&p->se)->last)) 7579 return 1; 7580 7581 if (sysctl_sched_migration_cost == -1) 7582 return 1; 7583 if (sysctl_sched_migration_cost == 0) 7584 return 0; 7585 7586 delta = rq_clock_task(env->src_rq) - p->se.exec_start; 7587 7588 return delta < (s64)sysctl_sched_migration_cost; 7589 } 7590 7591 #ifdef CONFIG_NUMA_BALANCING 7592 /* 7593 * Returns 1, if task migration degrades locality 7594 * Returns 0, if task migration improves locality i.e migration preferred. 7595 * Returns -1, if task migration is not affected by locality. 7596 */ 7597 static int migrate_degrades_locality(struct task_struct *p, struct lb_env *env) 7598 { 7599 struct numa_group *numa_group = rcu_dereference(p->numa_group); 7600 unsigned long src_weight, dst_weight; 7601 int src_nid, dst_nid, dist; 7602 7603 if (!static_branch_likely(&sched_numa_balancing)) 7604 return -1; 7605 7606 if (!p->numa_faults || !(env->sd->flags & SD_NUMA)) 7607 return -1; 7608 7609 src_nid = cpu_to_node(env->src_cpu); 7610 dst_nid = cpu_to_node(env->dst_cpu); 7611 7612 if (src_nid == dst_nid) 7613 return -1; 7614 7615 /* Migrating away from the preferred node is always bad. */ 7616 if (src_nid == p->numa_preferred_nid) { 7617 if (env->src_rq->nr_running > env->src_rq->nr_preferred_running) 7618 return 1; 7619 else 7620 return -1; 7621 } 7622 7623 /* Encourage migration to the preferred node. */ 7624 if (dst_nid == p->numa_preferred_nid) 7625 return 0; 7626 7627 /* Leaving a core idle is often worse than degrading locality. */ 7628 if (env->idle == CPU_IDLE) 7629 return -1; 7630 7631 dist = node_distance(src_nid, dst_nid); 7632 if (numa_group) { 7633 src_weight = group_weight(p, src_nid, dist); 7634 dst_weight = group_weight(p, dst_nid, dist); 7635 } else { 7636 src_weight = task_weight(p, src_nid, dist); 7637 dst_weight = task_weight(p, dst_nid, dist); 7638 } 7639 7640 return dst_weight < src_weight; 7641 } 7642 7643 #else 7644 static inline int migrate_degrades_locality(struct task_struct *p, 7645 struct lb_env *env) 7646 { 7647 return -1; 7648 } 7649 #endif 7650 7651 /* 7652 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu? 7653 */ 7654 static 7655 int can_migrate_task(struct task_struct *p, struct lb_env *env) 7656 { 7657 int tsk_cache_hot; 7658 7659 lockdep_assert_held(&env->src_rq->lock); 7660 7661 /* 7662 * We do not migrate tasks that are: 7663 * 1) throttled_lb_pair, or 7664 * 2) cannot be migrated to this CPU due to cpus_ptr, or 7665 * 3) running (obviously), or 7666 * 4) are cache-hot on their current CPU. 7667 */ 7668 if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu)) 7669 return 0; 7670 7671 /* Disregard pcpu kthreads; they are where they need to be. */ 7672 if (kthread_is_per_cpu(p)) 7673 return 0; 7674 7675 if (!cpumask_test_cpu(env->dst_cpu, p->cpus_ptr)) { 7676 int cpu; 7677 7678 schedstat_inc(p->se.statistics.nr_failed_migrations_affine); 7679 7680 env->flags |= LBF_SOME_PINNED; 7681 7682 /* 7683 * Remember if this task can be migrated to any other CPU in 7684 * our sched_group. We may want to revisit it if we couldn't 7685 * meet load balance goals by pulling other tasks on src_cpu. 7686 * 7687 * Avoid computing new_dst_cpu 7688 * - for NEWLY_IDLE 7689 * - if we have already computed one in current iteration 7690 * - if it's an active balance 7691 */ 7692 if (env->idle == CPU_NEWLY_IDLE || 7693 env->flags & (LBF_DST_PINNED | LBF_ACTIVE_LB)) 7694 return 0; 7695 7696 /* Prevent to re-select dst_cpu via env's CPUs: */ 7697 for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) { 7698 if (cpumask_test_cpu(cpu, p->cpus_ptr)) { 7699 env->flags |= LBF_DST_PINNED; 7700 env->new_dst_cpu = cpu; 7701 break; 7702 } 7703 } 7704 7705 return 0; 7706 } 7707 7708 /* Record that we found at least one task that could run on dst_cpu */ 7709 env->flags &= ~LBF_ALL_PINNED; 7710 7711 if (task_running(env->src_rq, p)) { 7712 schedstat_inc(p->se.statistics.nr_failed_migrations_running); 7713 return 0; 7714 } 7715 7716 /* 7717 * Aggressive migration if: 7718 * 1) active balance 7719 * 2) destination numa is preferred 7720 * 3) task is cache cold, or 7721 * 4) too many balance attempts have failed. 7722 */ 7723 if (env->flags & LBF_ACTIVE_LB) 7724 return 1; 7725 7726 tsk_cache_hot = migrate_degrades_locality(p, env); 7727 if (tsk_cache_hot == -1) 7728 tsk_cache_hot = task_hot(p, env); 7729 7730 if (tsk_cache_hot <= 0 || 7731 env->sd->nr_balance_failed > env->sd->cache_nice_tries) { 7732 if (tsk_cache_hot == 1) { 7733 schedstat_inc(env->sd->lb_hot_gained[env->idle]); 7734 schedstat_inc(p->se.statistics.nr_forced_migrations); 7735 } 7736 return 1; 7737 } 7738 7739 schedstat_inc(p->se.statistics.nr_failed_migrations_hot); 7740 return 0; 7741 } 7742 7743 /* 7744 * detach_task() -- detach the task for the migration specified in env 7745 */ 7746 static void detach_task(struct task_struct *p, struct lb_env *env) 7747 { 7748 lockdep_assert_held(&env->src_rq->lock); 7749 7750 deactivate_task(env->src_rq, p, DEQUEUE_NOCLOCK); 7751 set_task_cpu(p, env->dst_cpu); 7752 } 7753 7754 /* 7755 * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as 7756 * part of active balancing operations within "domain". 7757 * 7758 * Returns a task if successful and NULL otherwise. 7759 */ 7760 static struct task_struct *detach_one_task(struct lb_env *env) 7761 { 7762 struct task_struct *p; 7763 7764 lockdep_assert_held(&env->src_rq->lock); 7765 7766 list_for_each_entry_reverse(p, 7767 &env->src_rq->cfs_tasks, se.group_node) { 7768 if (!can_migrate_task(p, env)) 7769 continue; 7770 7771 detach_task(p, env); 7772 7773 /* 7774 * Right now, this is only the second place where 7775 * lb_gained[env->idle] is updated (other is detach_tasks) 7776 * so we can safely collect stats here rather than 7777 * inside detach_tasks(). 7778 */ 7779 schedstat_inc(env->sd->lb_gained[env->idle]); 7780 return p; 7781 } 7782 return NULL; 7783 } 7784 7785 static const unsigned int sched_nr_migrate_break = 32; 7786 7787 /* 7788 * detach_tasks() -- tries to detach up to imbalance load/util/tasks from 7789 * busiest_rq, as part of a balancing operation within domain "sd". 7790 * 7791 * Returns number of detached tasks if successful and 0 otherwise. 7792 */ 7793 static int detach_tasks(struct lb_env *env) 7794 { 7795 struct list_head *tasks = &env->src_rq->cfs_tasks; 7796 unsigned long util, load; 7797 struct task_struct *p; 7798 int detached = 0; 7799 7800 lockdep_assert_held(&env->src_rq->lock); 7801 7802 /* 7803 * Source run queue has been emptied by another CPU, clear 7804 * LBF_ALL_PINNED flag as we will not test any task. 7805 */ 7806 if (env->src_rq->nr_running <= 1) { 7807 env->flags &= ~LBF_ALL_PINNED; 7808 return 0; 7809 } 7810 7811 if (env->imbalance <= 0) 7812 return 0; 7813 7814 while (!list_empty(tasks)) { 7815 /* 7816 * We don't want to steal all, otherwise we may be treated likewise, 7817 * which could at worst lead to a livelock crash. 7818 */ 7819 if (env->idle != CPU_NOT_IDLE && env->src_rq->nr_running <= 1) 7820 break; 7821 7822 p = list_last_entry(tasks, struct task_struct, se.group_node); 7823 7824 env->loop++; 7825 /* We've more or less seen every task there is, call it quits */ 7826 if (env->loop > env->loop_max) 7827 break; 7828 7829 /* take a breather every nr_migrate tasks */ 7830 if (env->loop > env->loop_break) { 7831 env->loop_break += sched_nr_migrate_break; 7832 env->flags |= LBF_NEED_BREAK; 7833 break; 7834 } 7835 7836 if (!can_migrate_task(p, env)) 7837 goto next; 7838 7839 switch (env->migration_type) { 7840 case migrate_load: 7841 /* 7842 * Depending of the number of CPUs and tasks and the 7843 * cgroup hierarchy, task_h_load() can return a null 7844 * value. Make sure that env->imbalance decreases 7845 * otherwise detach_tasks() will stop only after 7846 * detaching up to loop_max tasks. 7847 */ 7848 load = max_t(unsigned long, task_h_load(p), 1); 7849 7850 if (sched_feat(LB_MIN) && 7851 load < 16 && !env->sd->nr_balance_failed) 7852 goto next; 7853 7854 /* 7855 * Make sure that we don't migrate too much load. 7856 * Nevertheless, let relax the constraint if 7857 * scheduler fails to find a good waiting task to 7858 * migrate. 7859 */ 7860 if (shr_bound(load, env->sd->nr_balance_failed) > env->imbalance) 7861 goto next; 7862 7863 env->imbalance -= load; 7864 break; 7865 7866 case migrate_util: 7867 util = task_util_est(p); 7868 7869 if (util > env->imbalance) 7870 goto next; 7871 7872 env->imbalance -= util; 7873 break; 7874 7875 case migrate_task: 7876 env->imbalance--; 7877 break; 7878 7879 case migrate_misfit: 7880 /* This is not a misfit task */ 7881 if (task_fits_capacity(p, capacity_of(env->src_cpu))) 7882 goto next; 7883 7884 env->imbalance = 0; 7885 break; 7886 } 7887 7888 detach_task(p, env); 7889 list_add(&p->se.group_node, &env->tasks); 7890 7891 detached++; 7892 7893 #ifdef CONFIG_PREEMPTION 7894 /* 7895 * NEWIDLE balancing is a source of latency, so preemptible 7896 * kernels will stop after the first task is detached to minimize 7897 * the critical section. 7898 */ 7899 if (env->idle == CPU_NEWLY_IDLE) 7900 break; 7901 #endif 7902 7903 /* 7904 * We only want to steal up to the prescribed amount of 7905 * load/util/tasks. 7906 */ 7907 if (env->imbalance <= 0) 7908 break; 7909 7910 continue; 7911 next: 7912 list_move(&p->se.group_node, tasks); 7913 } 7914 7915 /* 7916 * Right now, this is one of only two places we collect this stat 7917 * so we can safely collect detach_one_task() stats here rather 7918 * than inside detach_one_task(). 7919 */ 7920 schedstat_add(env->sd->lb_gained[env->idle], detached); 7921 7922 return detached; 7923 } 7924 7925 /* 7926 * attach_task() -- attach the task detached by detach_task() to its new rq. 7927 */ 7928 static void attach_task(struct rq *rq, struct task_struct *p) 7929 { 7930 lockdep_assert_held(&rq->lock); 7931 7932 BUG_ON(task_rq(p) != rq); 7933 activate_task(rq, p, ENQUEUE_NOCLOCK); 7934 check_preempt_curr(rq, p, 0); 7935 } 7936 7937 /* 7938 * attach_one_task() -- attaches the task returned from detach_one_task() to 7939 * its new rq. 7940 */ 7941 static void attach_one_task(struct rq *rq, struct task_struct *p) 7942 { 7943 struct rq_flags rf; 7944 7945 rq_lock(rq, &rf); 7946 update_rq_clock(rq); 7947 attach_task(rq, p); 7948 rq_unlock(rq, &rf); 7949 } 7950 7951 /* 7952 * attach_tasks() -- attaches all tasks detached by detach_tasks() to their 7953 * new rq. 7954 */ 7955 static void attach_tasks(struct lb_env *env) 7956 { 7957 struct list_head *tasks = &env->tasks; 7958 struct task_struct *p; 7959 struct rq_flags rf; 7960 7961 rq_lock(env->dst_rq, &rf); 7962 update_rq_clock(env->dst_rq); 7963 7964 while (!list_empty(tasks)) { 7965 p = list_first_entry(tasks, struct task_struct, se.group_node); 7966 list_del_init(&p->se.group_node); 7967 7968 attach_task(env->dst_rq, p); 7969 } 7970 7971 rq_unlock(env->dst_rq, &rf); 7972 } 7973 7974 #ifdef CONFIG_NO_HZ_COMMON 7975 static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq) 7976 { 7977 if (cfs_rq->avg.load_avg) 7978 return true; 7979 7980 if (cfs_rq->avg.util_avg) 7981 return true; 7982 7983 return false; 7984 } 7985 7986 static inline bool others_have_blocked(struct rq *rq) 7987 { 7988 if (READ_ONCE(rq->avg_rt.util_avg)) 7989 return true; 7990 7991 if (READ_ONCE(rq->avg_dl.util_avg)) 7992 return true; 7993 7994 if (thermal_load_avg(rq)) 7995 return true; 7996 7997 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ 7998 if (READ_ONCE(rq->avg_irq.util_avg)) 7999 return true; 8000 #endif 8001 8002 return false; 8003 } 8004 8005 static inline void update_blocked_load_tick(struct rq *rq) 8006 { 8007 WRITE_ONCE(rq->last_blocked_load_update_tick, jiffies); 8008 } 8009 8010 static inline void update_blocked_load_status(struct rq *rq, bool has_blocked) 8011 { 8012 if (!has_blocked) 8013 rq->has_blocked_load = 0; 8014 } 8015 #else 8016 static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq) { return false; } 8017 static inline bool others_have_blocked(struct rq *rq) { return false; } 8018 static inline void update_blocked_load_tick(struct rq *rq) {} 8019 static inline void update_blocked_load_status(struct rq *rq, bool has_blocked) {} 8020 #endif 8021 8022 static bool __update_blocked_others(struct rq *rq, bool *done) 8023 { 8024 const struct sched_class *curr_class; 8025 u64 now = rq_clock_pelt(rq); 8026 unsigned long thermal_pressure; 8027 bool decayed; 8028 8029 /* 8030 * update_load_avg() can call cpufreq_update_util(). Make sure that RT, 8031 * DL and IRQ signals have been updated before updating CFS. 8032 */ 8033 curr_class = rq->curr->sched_class; 8034 8035 thermal_pressure = arch_scale_thermal_pressure(cpu_of(rq)); 8036 8037 decayed = update_rt_rq_load_avg(now, rq, curr_class == &rt_sched_class) | 8038 update_dl_rq_load_avg(now, rq, curr_class == &dl_sched_class) | 8039 update_thermal_load_avg(rq_clock_thermal(rq), rq, thermal_pressure) | 8040 update_irq_load_avg(rq, 0); 8041 8042 if (others_have_blocked(rq)) 8043 *done = false; 8044 8045 return decayed; 8046 } 8047 8048 #ifdef CONFIG_FAIR_GROUP_SCHED 8049 8050 static bool __update_blocked_fair(struct rq *rq, bool *done) 8051 { 8052 struct cfs_rq *cfs_rq, *pos; 8053 bool decayed = false; 8054 int cpu = cpu_of(rq); 8055 8056 /* 8057 * Iterates the task_group tree in a bottom up fashion, see 8058 * list_add_leaf_cfs_rq() for details. 8059 */ 8060 for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) { 8061 struct sched_entity *se; 8062 8063 if (update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq)) { 8064 update_tg_load_avg(cfs_rq); 8065 8066 if (cfs_rq == &rq->cfs) 8067 decayed = true; 8068 } 8069 8070 /* Propagate pending load changes to the parent, if any: */ 8071 se = cfs_rq->tg->se[cpu]; 8072 if (se && !skip_blocked_update(se)) 8073 update_load_avg(cfs_rq_of(se), se, UPDATE_TG); 8074 8075 /* 8076 * There can be a lot of idle CPU cgroups. Don't let fully 8077 * decayed cfs_rqs linger on the list. 8078 */ 8079 if (cfs_rq_is_decayed(cfs_rq)) 8080 list_del_leaf_cfs_rq(cfs_rq); 8081 8082 /* Don't need periodic decay once load/util_avg are null */ 8083 if (cfs_rq_has_blocked(cfs_rq)) 8084 *done = false; 8085 } 8086 8087 return decayed; 8088 } 8089 8090 /* 8091 * Compute the hierarchical load factor for cfs_rq and all its ascendants. 8092 * This needs to be done in a top-down fashion because the load of a child 8093 * group is a fraction of its parents load. 8094 */ 8095 static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq) 8096 { 8097 struct rq *rq = rq_of(cfs_rq); 8098 struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)]; 8099 unsigned long now = jiffies; 8100 unsigned long load; 8101 8102 if (cfs_rq->last_h_load_update == now) 8103 return; 8104 8105 WRITE_ONCE(cfs_rq->h_load_next, NULL); 8106 for_each_sched_entity(se) { 8107 cfs_rq = cfs_rq_of(se); 8108 WRITE_ONCE(cfs_rq->h_load_next, se); 8109 if (cfs_rq->last_h_load_update == now) 8110 break; 8111 } 8112 8113 if (!se) { 8114 cfs_rq->h_load = cfs_rq_load_avg(cfs_rq); 8115 cfs_rq->last_h_load_update = now; 8116 } 8117 8118 while ((se = READ_ONCE(cfs_rq->h_load_next)) != NULL) { 8119 load = cfs_rq->h_load; 8120 load = div64_ul(load * se->avg.load_avg, 8121 cfs_rq_load_avg(cfs_rq) + 1); 8122 cfs_rq = group_cfs_rq(se); 8123 cfs_rq->h_load = load; 8124 cfs_rq->last_h_load_update = now; 8125 } 8126 } 8127 8128 static unsigned long task_h_load(struct task_struct *p) 8129 { 8130 struct cfs_rq *cfs_rq = task_cfs_rq(p); 8131 8132 update_cfs_rq_h_load(cfs_rq); 8133 return div64_ul(p->se.avg.load_avg * cfs_rq->h_load, 8134 cfs_rq_load_avg(cfs_rq) + 1); 8135 } 8136 #else 8137 static bool __update_blocked_fair(struct rq *rq, bool *done) 8138 { 8139 struct cfs_rq *cfs_rq = &rq->cfs; 8140 bool decayed; 8141 8142 decayed = update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq); 8143 if (cfs_rq_has_blocked(cfs_rq)) 8144 *done = false; 8145 8146 return decayed; 8147 } 8148 8149 static unsigned long task_h_load(struct task_struct *p) 8150 { 8151 return p->se.avg.load_avg; 8152 } 8153 #endif 8154 8155 static void update_blocked_averages(int cpu) 8156 { 8157 bool decayed = false, done = true; 8158 struct rq *rq = cpu_rq(cpu); 8159 struct rq_flags rf; 8160 8161 rq_lock_irqsave(rq, &rf); 8162 update_blocked_load_tick(rq); 8163 update_rq_clock(rq); 8164 8165 decayed |= __update_blocked_others(rq, &done); 8166 decayed |= __update_blocked_fair(rq, &done); 8167 8168 update_blocked_load_status(rq, !done); 8169 if (decayed) 8170 cpufreq_update_util(rq, 0); 8171 rq_unlock_irqrestore(rq, &rf); 8172 } 8173 8174 /********** Helpers for find_busiest_group ************************/ 8175 8176 /* 8177 * sg_lb_stats - stats of a sched_group required for load_balancing 8178 */ 8179 struct sg_lb_stats { 8180 unsigned long avg_load; /*Avg load across the CPUs of the group */ 8181 unsigned long group_load; /* Total load over the CPUs of the group */ 8182 unsigned long group_capacity; 8183 unsigned long group_util; /* Total utilization over the CPUs of the group */ 8184 unsigned long group_runnable; /* Total runnable time over the CPUs of the group */ 8185 unsigned int sum_nr_running; /* Nr of tasks running in the group */ 8186 unsigned int sum_h_nr_running; /* Nr of CFS tasks running in the group */ 8187 unsigned int idle_cpus; 8188 unsigned int group_weight; 8189 enum group_type group_type; 8190 unsigned int group_asym_packing; /* Tasks should be moved to preferred CPU */ 8191 unsigned long group_misfit_task_load; /* A CPU has a task too big for its capacity */ 8192 #ifdef CONFIG_NUMA_BALANCING 8193 unsigned int nr_numa_running; 8194 unsigned int nr_preferred_running; 8195 #endif 8196 }; 8197 8198 /* 8199 * sd_lb_stats - Structure to store the statistics of a sched_domain 8200 * during load balancing. 8201 */ 8202 struct sd_lb_stats { 8203 struct sched_group *busiest; /* Busiest group in this sd */ 8204 struct sched_group *local; /* Local group in this sd */ 8205 unsigned long total_load; /* Total load of all groups in sd */ 8206 unsigned long total_capacity; /* Total capacity of all groups in sd */ 8207 unsigned long avg_load; /* Average load across all groups in sd */ 8208 unsigned int prefer_sibling; /* tasks should go to sibling first */ 8209 8210 struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */ 8211 struct sg_lb_stats local_stat; /* Statistics of the local group */ 8212 }; 8213 8214 static inline void init_sd_lb_stats(struct sd_lb_stats *sds) 8215 { 8216 /* 8217 * Skimp on the clearing to avoid duplicate work. We can avoid clearing 8218 * local_stat because update_sg_lb_stats() does a full clear/assignment. 8219 * We must however set busiest_stat::group_type and 8220 * busiest_stat::idle_cpus to the worst busiest group because 8221 * update_sd_pick_busiest() reads these before assignment. 8222 */ 8223 *sds = (struct sd_lb_stats){ 8224 .busiest = NULL, 8225 .local = NULL, 8226 .total_load = 0UL, 8227 .total_capacity = 0UL, 8228 .busiest_stat = { 8229 .idle_cpus = UINT_MAX, 8230 .group_type = group_has_spare, 8231 }, 8232 }; 8233 } 8234 8235 static unsigned long scale_rt_capacity(int cpu) 8236 { 8237 struct rq *rq = cpu_rq(cpu); 8238 unsigned long max = arch_scale_cpu_capacity(cpu); 8239 unsigned long used, free; 8240 unsigned long irq; 8241 8242 irq = cpu_util_irq(rq); 8243 8244 if (unlikely(irq >= max)) 8245 return 1; 8246 8247 /* 8248 * avg_rt.util_avg and avg_dl.util_avg track binary signals 8249 * (running and not running) with weights 0 and 1024 respectively. 8250 * avg_thermal.load_avg tracks thermal pressure and the weighted 8251 * average uses the actual delta max capacity(load). 8252 */ 8253 used = READ_ONCE(rq->avg_rt.util_avg); 8254 used += READ_ONCE(rq->avg_dl.util_avg); 8255 used += thermal_load_avg(rq); 8256 8257 if (unlikely(used >= max)) 8258 return 1; 8259 8260 free = max - used; 8261 8262 return scale_irq_capacity(free, irq, max); 8263 } 8264 8265 static void update_cpu_capacity(struct sched_domain *sd, int cpu) 8266 { 8267 unsigned long capacity = scale_rt_capacity(cpu); 8268 struct sched_group *sdg = sd->groups; 8269 8270 cpu_rq(cpu)->cpu_capacity_orig = arch_scale_cpu_capacity(cpu); 8271 8272 if (!capacity) 8273 capacity = 1; 8274 8275 cpu_rq(cpu)->cpu_capacity = capacity; 8276 trace_sched_cpu_capacity_tp(cpu_rq(cpu)); 8277 8278 sdg->sgc->capacity = capacity; 8279 sdg->sgc->min_capacity = capacity; 8280 sdg->sgc->max_capacity = capacity; 8281 } 8282 8283 void update_group_capacity(struct sched_domain *sd, int cpu) 8284 { 8285 struct sched_domain *child = sd->child; 8286 struct sched_group *group, *sdg = sd->groups; 8287 unsigned long capacity, min_capacity, max_capacity; 8288 unsigned long interval; 8289 8290 interval = msecs_to_jiffies(sd->balance_interval); 8291 interval = clamp(interval, 1UL, max_load_balance_interval); 8292 sdg->sgc->next_update = jiffies + interval; 8293 8294 if (!child) { 8295 update_cpu_capacity(sd, cpu); 8296 return; 8297 } 8298 8299 capacity = 0; 8300 min_capacity = ULONG_MAX; 8301 max_capacity = 0; 8302 8303 if (child->flags & SD_OVERLAP) { 8304 /* 8305 * SD_OVERLAP domains cannot assume that child groups 8306 * span the current group. 8307 */ 8308 8309 for_each_cpu(cpu, sched_group_span(sdg)) { 8310 unsigned long cpu_cap = capacity_of(cpu); 8311 8312 capacity += cpu_cap; 8313 min_capacity = min(cpu_cap, min_capacity); 8314 max_capacity = max(cpu_cap, max_capacity); 8315 } 8316 } else { 8317 /* 8318 * !SD_OVERLAP domains can assume that child groups 8319 * span the current group. 8320 */ 8321 8322 group = child->groups; 8323 do { 8324 struct sched_group_capacity *sgc = group->sgc; 8325 8326 capacity += sgc->capacity; 8327 min_capacity = min(sgc->min_capacity, min_capacity); 8328 max_capacity = max(sgc->max_capacity, max_capacity); 8329 group = group->next; 8330 } while (group != child->groups); 8331 } 8332 8333 sdg->sgc->capacity = capacity; 8334 sdg->sgc->min_capacity = min_capacity; 8335 sdg->sgc->max_capacity = max_capacity; 8336 } 8337 8338 /* 8339 * Check whether the capacity of the rq has been noticeably reduced by side 8340 * activity. The imbalance_pct is used for the threshold. 8341 * Return true is the capacity is reduced 8342 */ 8343 static inline int 8344 check_cpu_capacity(struct rq *rq, struct sched_domain *sd) 8345 { 8346 return ((rq->cpu_capacity * sd->imbalance_pct) < 8347 (rq->cpu_capacity_orig * 100)); 8348 } 8349 8350 /* 8351 * Check whether a rq has a misfit task and if it looks like we can actually 8352 * help that task: we can migrate the task to a CPU of higher capacity, or 8353 * the task's current CPU is heavily pressured. 8354 */ 8355 static inline int check_misfit_status(struct rq *rq, struct sched_domain *sd) 8356 { 8357 return rq->misfit_task_load && 8358 (rq->cpu_capacity_orig < rq->rd->max_cpu_capacity || 8359 check_cpu_capacity(rq, sd)); 8360 } 8361 8362 /* 8363 * Group imbalance indicates (and tries to solve) the problem where balancing 8364 * groups is inadequate due to ->cpus_ptr constraints. 8365 * 8366 * Imagine a situation of two groups of 4 CPUs each and 4 tasks each with a 8367 * cpumask covering 1 CPU of the first group and 3 CPUs of the second group. 8368 * Something like: 8369 * 8370 * { 0 1 2 3 } { 4 5 6 7 } 8371 * * * * * 8372 * 8373 * If we were to balance group-wise we'd place two tasks in the first group and 8374 * two tasks in the second group. Clearly this is undesired as it will overload 8375 * cpu 3 and leave one of the CPUs in the second group unused. 8376 * 8377 * The current solution to this issue is detecting the skew in the first group 8378 * by noticing the lower domain failed to reach balance and had difficulty 8379 * moving tasks due to affinity constraints. 8380 * 8381 * When this is so detected; this group becomes a candidate for busiest; see 8382 * update_sd_pick_busiest(). And calculate_imbalance() and 8383 * find_busiest_group() avoid some of the usual balance conditions to allow it 8384 * to create an effective group imbalance. 8385 * 8386 * This is a somewhat tricky proposition since the next run might not find the 8387 * group imbalance and decide the groups need to be balanced again. A most 8388 * subtle and fragile situation. 8389 */ 8390 8391 static inline int sg_imbalanced(struct sched_group *group) 8392 { 8393 return group->sgc->imbalance; 8394 } 8395 8396 /* 8397 * group_has_capacity returns true if the group has spare capacity that could 8398 * be used by some tasks. 8399 * We consider that a group has spare capacity if the * number of task is 8400 * smaller than the number of CPUs or if the utilization is lower than the 8401 * available capacity for CFS tasks. 8402 * For the latter, we use a threshold to stabilize the state, to take into 8403 * account the variance of the tasks' load and to return true if the available 8404 * capacity in meaningful for the load balancer. 8405 * As an example, an available capacity of 1% can appear but it doesn't make 8406 * any benefit for the load balance. 8407 */ 8408 static inline bool 8409 group_has_capacity(unsigned int imbalance_pct, struct sg_lb_stats *sgs) 8410 { 8411 if (sgs->sum_nr_running < sgs->group_weight) 8412 return true; 8413 8414 if ((sgs->group_capacity * imbalance_pct) < 8415 (sgs->group_runnable * 100)) 8416 return false; 8417 8418 if ((sgs->group_capacity * 100) > 8419 (sgs->group_util * imbalance_pct)) 8420 return true; 8421 8422 return false; 8423 } 8424 8425 /* 8426 * group_is_overloaded returns true if the group has more tasks than it can 8427 * handle. 8428 * group_is_overloaded is not equals to !group_has_capacity because a group 8429 * with the exact right number of tasks, has no more spare capacity but is not 8430 * overloaded so both group_has_capacity and group_is_overloaded return 8431 * false. 8432 */ 8433 static inline bool 8434 group_is_overloaded(unsigned int imbalance_pct, struct sg_lb_stats *sgs) 8435 { 8436 if (sgs->sum_nr_running <= sgs->group_weight) 8437 return false; 8438 8439 if ((sgs->group_capacity * 100) < 8440 (sgs->group_util * imbalance_pct)) 8441 return true; 8442 8443 if ((sgs->group_capacity * imbalance_pct) < 8444 (sgs->group_runnable * 100)) 8445 return true; 8446 8447 return false; 8448 } 8449 8450 static inline enum 8451 group_type group_classify(unsigned int imbalance_pct, 8452 struct sched_group *group, 8453 struct sg_lb_stats *sgs) 8454 { 8455 if (group_is_overloaded(imbalance_pct, sgs)) 8456 return group_overloaded; 8457 8458 if (sg_imbalanced(group)) 8459 return group_imbalanced; 8460 8461 if (sgs->group_asym_packing) 8462 return group_asym_packing; 8463 8464 if (sgs->group_misfit_task_load) 8465 return group_misfit_task; 8466 8467 if (!group_has_capacity(imbalance_pct, sgs)) 8468 return group_fully_busy; 8469 8470 return group_has_spare; 8471 } 8472 8473 /** 8474 * update_sg_lb_stats - Update sched_group's statistics for load balancing. 8475 * @env: The load balancing environment. 8476 * @group: sched_group whose statistics are to be updated. 8477 * @sgs: variable to hold the statistics for this group. 8478 * @sg_status: Holds flag indicating the status of the sched_group 8479 */ 8480 static inline void update_sg_lb_stats(struct lb_env *env, 8481 struct sched_group *group, 8482 struct sg_lb_stats *sgs, 8483 int *sg_status) 8484 { 8485 int i, nr_running, local_group; 8486 8487 memset(sgs, 0, sizeof(*sgs)); 8488 8489 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_span(group)); 8490 8491 for_each_cpu_and(i, sched_group_span(group), env->cpus) { 8492 struct rq *rq = cpu_rq(i); 8493 8494 sgs->group_load += cpu_load(rq); 8495 sgs->group_util += cpu_util(i); 8496 sgs->group_runnable += cpu_runnable(rq); 8497 sgs->sum_h_nr_running += rq->cfs.h_nr_running; 8498 8499 nr_running = rq->nr_running; 8500 sgs->sum_nr_running += nr_running; 8501 8502 if (nr_running > 1) 8503 *sg_status |= SG_OVERLOAD; 8504 8505 if (cpu_overutilized(i)) 8506 *sg_status |= SG_OVERUTILIZED; 8507 8508 #ifdef CONFIG_NUMA_BALANCING 8509 sgs->nr_numa_running += rq->nr_numa_running; 8510 sgs->nr_preferred_running += rq->nr_preferred_running; 8511 #endif 8512 /* 8513 * No need to call idle_cpu() if nr_running is not 0 8514 */ 8515 if (!nr_running && idle_cpu(i)) { 8516 sgs->idle_cpus++; 8517 /* Idle cpu can't have misfit task */ 8518 continue; 8519 } 8520 8521 if (local_group) 8522 continue; 8523 8524 /* Check for a misfit task on the cpu */ 8525 if (env->sd->flags & SD_ASYM_CPUCAPACITY && 8526 sgs->group_misfit_task_load < rq->misfit_task_load) { 8527 sgs->group_misfit_task_load = rq->misfit_task_load; 8528 *sg_status |= SG_OVERLOAD; 8529 } 8530 } 8531 8532 /* Check if dst CPU is idle and preferred to this group */ 8533 if (env->sd->flags & SD_ASYM_PACKING && 8534 env->idle != CPU_NOT_IDLE && 8535 sgs->sum_h_nr_running && 8536 sched_asym_prefer(env->dst_cpu, group->asym_prefer_cpu)) { 8537 sgs->group_asym_packing = 1; 8538 } 8539 8540 sgs->group_capacity = group->sgc->capacity; 8541 8542 sgs->group_weight = group->group_weight; 8543 8544 sgs->group_type = group_classify(env->sd->imbalance_pct, group, sgs); 8545 8546 /* Computing avg_load makes sense only when group is overloaded */ 8547 if (sgs->group_type == group_overloaded) 8548 sgs->avg_load = (sgs->group_load * SCHED_CAPACITY_SCALE) / 8549 sgs->group_capacity; 8550 } 8551 8552 /** 8553 * update_sd_pick_busiest - return 1 on busiest group 8554 * @env: The load balancing environment. 8555 * @sds: sched_domain statistics 8556 * @sg: sched_group candidate to be checked for being the busiest 8557 * @sgs: sched_group statistics 8558 * 8559 * Determine if @sg is a busier group than the previously selected 8560 * busiest group. 8561 * 8562 * Return: %true if @sg is a busier group than the previously selected 8563 * busiest group. %false otherwise. 8564 */ 8565 static bool update_sd_pick_busiest(struct lb_env *env, 8566 struct sd_lb_stats *sds, 8567 struct sched_group *sg, 8568 struct sg_lb_stats *sgs) 8569 { 8570 struct sg_lb_stats *busiest = &sds->busiest_stat; 8571 8572 /* Make sure that there is at least one task to pull */ 8573 if (!sgs->sum_h_nr_running) 8574 return false; 8575 8576 /* 8577 * Don't try to pull misfit tasks we can't help. 8578 * We can use max_capacity here as reduction in capacity on some 8579 * CPUs in the group should either be possible to resolve 8580 * internally or be covered by avg_load imbalance (eventually). 8581 */ 8582 if (sgs->group_type == group_misfit_task && 8583 (!capacity_greater(capacity_of(env->dst_cpu), sg->sgc->max_capacity) || 8584 sds->local_stat.group_type != group_has_spare)) 8585 return false; 8586 8587 if (sgs->group_type > busiest->group_type) 8588 return true; 8589 8590 if (sgs->group_type < busiest->group_type) 8591 return false; 8592 8593 /* 8594 * The candidate and the current busiest group are the same type of 8595 * group. Let check which one is the busiest according to the type. 8596 */ 8597 8598 switch (sgs->group_type) { 8599 case group_overloaded: 8600 /* Select the overloaded group with highest avg_load. */ 8601 if (sgs->avg_load <= busiest->avg_load) 8602 return false; 8603 break; 8604 8605 case group_imbalanced: 8606 /* 8607 * Select the 1st imbalanced group as we don't have any way to 8608 * choose one more than another. 8609 */ 8610 return false; 8611 8612 case group_asym_packing: 8613 /* Prefer to move from lowest priority CPU's work */ 8614 if (sched_asym_prefer(sg->asym_prefer_cpu, sds->busiest->asym_prefer_cpu)) 8615 return false; 8616 break; 8617 8618 case group_misfit_task: 8619 /* 8620 * If we have more than one misfit sg go with the biggest 8621 * misfit. 8622 */ 8623 if (sgs->group_misfit_task_load < busiest->group_misfit_task_load) 8624 return false; 8625 break; 8626 8627 case group_fully_busy: 8628 /* 8629 * Select the fully busy group with highest avg_load. In 8630 * theory, there is no need to pull task from such kind of 8631 * group because tasks have all compute capacity that they need 8632 * but we can still improve the overall throughput by reducing 8633 * contention when accessing shared HW resources. 8634 * 8635 * XXX for now avg_load is not computed and always 0 so we 8636 * select the 1st one. 8637 */ 8638 if (sgs->avg_load <= busiest->avg_load) 8639 return false; 8640 break; 8641 8642 case group_has_spare: 8643 /* 8644 * Select not overloaded group with lowest number of idle cpus 8645 * and highest number of running tasks. We could also compare 8646 * the spare capacity which is more stable but it can end up 8647 * that the group has less spare capacity but finally more idle 8648 * CPUs which means less opportunity to pull tasks. 8649 */ 8650 if (sgs->idle_cpus > busiest->idle_cpus) 8651 return false; 8652 else if ((sgs->idle_cpus == busiest->idle_cpus) && 8653 (sgs->sum_nr_running <= busiest->sum_nr_running)) 8654 return false; 8655 8656 break; 8657 } 8658 8659 /* 8660 * Candidate sg has no more than one task per CPU and has higher 8661 * per-CPU capacity. Migrating tasks to less capable CPUs may harm 8662 * throughput. Maximize throughput, power/energy consequences are not 8663 * considered. 8664 */ 8665 if ((env->sd->flags & SD_ASYM_CPUCAPACITY) && 8666 (sgs->group_type <= group_fully_busy) && 8667 (capacity_greater(sg->sgc->min_capacity, capacity_of(env->dst_cpu)))) 8668 return false; 8669 8670 return true; 8671 } 8672 8673 #ifdef CONFIG_NUMA_BALANCING 8674 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs) 8675 { 8676 if (sgs->sum_h_nr_running > sgs->nr_numa_running) 8677 return regular; 8678 if (sgs->sum_h_nr_running > sgs->nr_preferred_running) 8679 return remote; 8680 return all; 8681 } 8682 8683 static inline enum fbq_type fbq_classify_rq(struct rq *rq) 8684 { 8685 if (rq->nr_running > rq->nr_numa_running) 8686 return regular; 8687 if (rq->nr_running > rq->nr_preferred_running) 8688 return remote; 8689 return all; 8690 } 8691 #else 8692 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs) 8693 { 8694 return all; 8695 } 8696 8697 static inline enum fbq_type fbq_classify_rq(struct rq *rq) 8698 { 8699 return regular; 8700 } 8701 #endif /* CONFIG_NUMA_BALANCING */ 8702 8703 8704 struct sg_lb_stats; 8705 8706 /* 8707 * task_running_on_cpu - return 1 if @p is running on @cpu. 8708 */ 8709 8710 static unsigned int task_running_on_cpu(int cpu, struct task_struct *p) 8711 { 8712 /* Task has no contribution or is new */ 8713 if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time)) 8714 return 0; 8715 8716 if (task_on_rq_queued(p)) 8717 return 1; 8718 8719 return 0; 8720 } 8721 8722 /** 8723 * idle_cpu_without - would a given CPU be idle without p ? 8724 * @cpu: the processor on which idleness is tested. 8725 * @p: task which should be ignored. 8726 * 8727 * Return: 1 if the CPU would be idle. 0 otherwise. 8728 */ 8729 static int idle_cpu_without(int cpu, struct task_struct *p) 8730 { 8731 struct rq *rq = cpu_rq(cpu); 8732 8733 if (rq->curr != rq->idle && rq->curr != p) 8734 return 0; 8735 8736 /* 8737 * rq->nr_running can't be used but an updated version without the 8738 * impact of p on cpu must be used instead. The updated nr_running 8739 * be computed and tested before calling idle_cpu_without(). 8740 */ 8741 8742 #ifdef CONFIG_SMP 8743 if (rq->ttwu_pending) 8744 return 0; 8745 #endif 8746 8747 return 1; 8748 } 8749 8750 /* 8751 * update_sg_wakeup_stats - Update sched_group's statistics for wakeup. 8752 * @sd: The sched_domain level to look for idlest group. 8753 * @group: sched_group whose statistics are to be updated. 8754 * @sgs: variable to hold the statistics for this group. 8755 * @p: The task for which we look for the idlest group/CPU. 8756 */ 8757 static inline void update_sg_wakeup_stats(struct sched_domain *sd, 8758 struct sched_group *group, 8759 struct sg_lb_stats *sgs, 8760 struct task_struct *p) 8761 { 8762 int i, nr_running; 8763 8764 memset(sgs, 0, sizeof(*sgs)); 8765 8766 for_each_cpu(i, sched_group_span(group)) { 8767 struct rq *rq = cpu_rq(i); 8768 unsigned int local; 8769 8770 sgs->group_load += cpu_load_without(rq, p); 8771 sgs->group_util += cpu_util_without(i, p); 8772 sgs->group_runnable += cpu_runnable_without(rq, p); 8773 local = task_running_on_cpu(i, p); 8774 sgs->sum_h_nr_running += rq->cfs.h_nr_running - local; 8775 8776 nr_running = rq->nr_running - local; 8777 sgs->sum_nr_running += nr_running; 8778 8779 /* 8780 * No need to call idle_cpu_without() if nr_running is not 0 8781 */ 8782 if (!nr_running && idle_cpu_without(i, p)) 8783 sgs->idle_cpus++; 8784 8785 } 8786 8787 /* Check if task fits in the group */ 8788 if (sd->flags & SD_ASYM_CPUCAPACITY && 8789 !task_fits_capacity(p, group->sgc->max_capacity)) { 8790 sgs->group_misfit_task_load = 1; 8791 } 8792 8793 sgs->group_capacity = group->sgc->capacity; 8794 8795 sgs->group_weight = group->group_weight; 8796 8797 sgs->group_type = group_classify(sd->imbalance_pct, group, sgs); 8798 8799 /* 8800 * Computing avg_load makes sense only when group is fully busy or 8801 * overloaded 8802 */ 8803 if (sgs->group_type == group_fully_busy || 8804 sgs->group_type == group_overloaded) 8805 sgs->avg_load = (sgs->group_load * SCHED_CAPACITY_SCALE) / 8806 sgs->group_capacity; 8807 } 8808 8809 static bool update_pick_idlest(struct sched_group *idlest, 8810 struct sg_lb_stats *idlest_sgs, 8811 struct sched_group *group, 8812 struct sg_lb_stats *sgs) 8813 { 8814 if (sgs->group_type < idlest_sgs->group_type) 8815 return true; 8816 8817 if (sgs->group_type > idlest_sgs->group_type) 8818 return false; 8819 8820 /* 8821 * The candidate and the current idlest group are the same type of 8822 * group. Let check which one is the idlest according to the type. 8823 */ 8824 8825 switch (sgs->group_type) { 8826 case group_overloaded: 8827 case group_fully_busy: 8828 /* Select the group with lowest avg_load. */ 8829 if (idlest_sgs->avg_load <= sgs->avg_load) 8830 return false; 8831 break; 8832 8833 case group_imbalanced: 8834 case group_asym_packing: 8835 /* Those types are not used in the slow wakeup path */ 8836 return false; 8837 8838 case group_misfit_task: 8839 /* Select group with the highest max capacity */ 8840 if (idlest->sgc->max_capacity >= group->sgc->max_capacity) 8841 return false; 8842 break; 8843 8844 case group_has_spare: 8845 /* Select group with most idle CPUs */ 8846 if (idlest_sgs->idle_cpus > sgs->idle_cpus) 8847 return false; 8848 8849 /* Select group with lowest group_util */ 8850 if (idlest_sgs->idle_cpus == sgs->idle_cpus && 8851 idlest_sgs->group_util <= sgs->group_util) 8852 return false; 8853 8854 break; 8855 } 8856 8857 return true; 8858 } 8859 8860 /* 8861 * Allow a NUMA imbalance if busy CPUs is less than 25% of the domain. 8862 * This is an approximation as the number of running tasks may not be 8863 * related to the number of busy CPUs due to sched_setaffinity. 8864 */ 8865 static inline bool allow_numa_imbalance(int dst_running, int dst_weight) 8866 { 8867 return (dst_running < (dst_weight >> 2)); 8868 } 8869 8870 /* 8871 * find_idlest_group() finds and returns the least busy CPU group within the 8872 * domain. 8873 * 8874 * Assumes p is allowed on at least one CPU in sd. 8875 */ 8876 static struct sched_group * 8877 find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu) 8878 { 8879 struct sched_group *idlest = NULL, *local = NULL, *group = sd->groups; 8880 struct sg_lb_stats local_sgs, tmp_sgs; 8881 struct sg_lb_stats *sgs; 8882 unsigned long imbalance; 8883 struct sg_lb_stats idlest_sgs = { 8884 .avg_load = UINT_MAX, 8885 .group_type = group_overloaded, 8886 }; 8887 8888 do { 8889 int local_group; 8890 8891 /* Skip over this group if it has no CPUs allowed */ 8892 if (!cpumask_intersects(sched_group_span(group), 8893 p->cpus_ptr)) 8894 continue; 8895 8896 local_group = cpumask_test_cpu(this_cpu, 8897 sched_group_span(group)); 8898 8899 if (local_group) { 8900 sgs = &local_sgs; 8901 local = group; 8902 } else { 8903 sgs = &tmp_sgs; 8904 } 8905 8906 update_sg_wakeup_stats(sd, group, sgs, p); 8907 8908 if (!local_group && update_pick_idlest(idlest, &idlest_sgs, group, sgs)) { 8909 idlest = group; 8910 idlest_sgs = *sgs; 8911 } 8912 8913 } while (group = group->next, group != sd->groups); 8914 8915 8916 /* There is no idlest group to push tasks to */ 8917 if (!idlest) 8918 return NULL; 8919 8920 /* The local group has been skipped because of CPU affinity */ 8921 if (!local) 8922 return idlest; 8923 8924 /* 8925 * If the local group is idler than the selected idlest group 8926 * don't try and push the task. 8927 */ 8928 if (local_sgs.group_type < idlest_sgs.group_type) 8929 return NULL; 8930 8931 /* 8932 * If the local group is busier than the selected idlest group 8933 * try and push the task. 8934 */ 8935 if (local_sgs.group_type > idlest_sgs.group_type) 8936 return idlest; 8937 8938 switch (local_sgs.group_type) { 8939 case group_overloaded: 8940 case group_fully_busy: 8941 8942 /* Calculate allowed imbalance based on load */ 8943 imbalance = scale_load_down(NICE_0_LOAD) * 8944 (sd->imbalance_pct-100) / 100; 8945 8946 /* 8947 * When comparing groups across NUMA domains, it's possible for 8948 * the local domain to be very lightly loaded relative to the 8949 * remote domains but "imbalance" skews the comparison making 8950 * remote CPUs look much more favourable. When considering 8951 * cross-domain, add imbalance to the load on the remote node 8952 * and consider staying local. 8953 */ 8954 8955 if ((sd->flags & SD_NUMA) && 8956 ((idlest_sgs.avg_load + imbalance) >= local_sgs.avg_load)) 8957 return NULL; 8958 8959 /* 8960 * If the local group is less loaded than the selected 8961 * idlest group don't try and push any tasks. 8962 */ 8963 if (idlest_sgs.avg_load >= (local_sgs.avg_load + imbalance)) 8964 return NULL; 8965 8966 if (100 * local_sgs.avg_load <= sd->imbalance_pct * idlest_sgs.avg_load) 8967 return NULL; 8968 break; 8969 8970 case group_imbalanced: 8971 case group_asym_packing: 8972 /* Those type are not used in the slow wakeup path */ 8973 return NULL; 8974 8975 case group_misfit_task: 8976 /* Select group with the highest max capacity */ 8977 if (local->sgc->max_capacity >= idlest->sgc->max_capacity) 8978 return NULL; 8979 break; 8980 8981 case group_has_spare: 8982 if (sd->flags & SD_NUMA) { 8983 #ifdef CONFIG_NUMA_BALANCING 8984 int idlest_cpu; 8985 /* 8986 * If there is spare capacity at NUMA, try to select 8987 * the preferred node 8988 */ 8989 if (cpu_to_node(this_cpu) == p->numa_preferred_nid) 8990 return NULL; 8991 8992 idlest_cpu = cpumask_first(sched_group_span(idlest)); 8993 if (cpu_to_node(idlest_cpu) == p->numa_preferred_nid) 8994 return idlest; 8995 #endif 8996 /* 8997 * Otherwise, keep the task on this node to stay close 8998 * its wakeup source and improve locality. If there is 8999 * a real need of migration, periodic load balance will 9000 * take care of it. 9001 */ 9002 if (allow_numa_imbalance(local_sgs.sum_nr_running, sd->span_weight)) 9003 return NULL; 9004 } 9005 9006 /* 9007 * Select group with highest number of idle CPUs. We could also 9008 * compare the utilization which is more stable but it can end 9009 * up that the group has less spare capacity but finally more 9010 * idle CPUs which means more opportunity to run task. 9011 */ 9012 if (local_sgs.idle_cpus >= idlest_sgs.idle_cpus) 9013 return NULL; 9014 break; 9015 } 9016 9017 return idlest; 9018 } 9019 9020 /** 9021 * update_sd_lb_stats - Update sched_domain's statistics for load balancing. 9022 * @env: The load balancing environment. 9023 * @sds: variable to hold the statistics for this sched_domain. 9024 */ 9025 9026 static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds) 9027 { 9028 struct sched_domain *child = env->sd->child; 9029 struct sched_group *sg = env->sd->groups; 9030 struct sg_lb_stats *local = &sds->local_stat; 9031 struct sg_lb_stats tmp_sgs; 9032 int sg_status = 0; 9033 9034 do { 9035 struct sg_lb_stats *sgs = &tmp_sgs; 9036 int local_group; 9037 9038 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_span(sg)); 9039 if (local_group) { 9040 sds->local = sg; 9041 sgs = local; 9042 9043 if (env->idle != CPU_NEWLY_IDLE || 9044 time_after_eq(jiffies, sg->sgc->next_update)) 9045 update_group_capacity(env->sd, env->dst_cpu); 9046 } 9047 9048 update_sg_lb_stats(env, sg, sgs, &sg_status); 9049 9050 if (local_group) 9051 goto next_group; 9052 9053 9054 if (update_sd_pick_busiest(env, sds, sg, sgs)) { 9055 sds->busiest = sg; 9056 sds->busiest_stat = *sgs; 9057 } 9058 9059 next_group: 9060 /* Now, start updating sd_lb_stats */ 9061 sds->total_load += sgs->group_load; 9062 sds->total_capacity += sgs->group_capacity; 9063 9064 sg = sg->next; 9065 } while (sg != env->sd->groups); 9066 9067 /* Tag domain that child domain prefers tasks go to siblings first */ 9068 sds->prefer_sibling = child && child->flags & SD_PREFER_SIBLING; 9069 9070 9071 if (env->sd->flags & SD_NUMA) 9072 env->fbq_type = fbq_classify_group(&sds->busiest_stat); 9073 9074 if (!env->sd->parent) { 9075 struct root_domain *rd = env->dst_rq->rd; 9076 9077 /* update overload indicator if we are at root domain */ 9078 WRITE_ONCE(rd->overload, sg_status & SG_OVERLOAD); 9079 9080 /* Update over-utilization (tipping point, U >= 0) indicator */ 9081 WRITE_ONCE(rd->overutilized, sg_status & SG_OVERUTILIZED); 9082 trace_sched_overutilized_tp(rd, sg_status & SG_OVERUTILIZED); 9083 } else if (sg_status & SG_OVERUTILIZED) { 9084 struct root_domain *rd = env->dst_rq->rd; 9085 9086 WRITE_ONCE(rd->overutilized, SG_OVERUTILIZED); 9087 trace_sched_overutilized_tp(rd, SG_OVERUTILIZED); 9088 } 9089 } 9090 9091 #define NUMA_IMBALANCE_MIN 2 9092 9093 static inline long adjust_numa_imbalance(int imbalance, 9094 int dst_running, int dst_weight) 9095 { 9096 if (!allow_numa_imbalance(dst_running, dst_weight)) 9097 return imbalance; 9098 9099 /* 9100 * Allow a small imbalance based on a simple pair of communicating 9101 * tasks that remain local when the destination is lightly loaded. 9102 */ 9103 if (imbalance <= NUMA_IMBALANCE_MIN) 9104 return 0; 9105 9106 return imbalance; 9107 } 9108 9109 /** 9110 * calculate_imbalance - Calculate the amount of imbalance present within the 9111 * groups of a given sched_domain during load balance. 9112 * @env: load balance environment 9113 * @sds: statistics of the sched_domain whose imbalance is to be calculated. 9114 */ 9115 static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds) 9116 { 9117 struct sg_lb_stats *local, *busiest; 9118 9119 local = &sds->local_stat; 9120 busiest = &sds->busiest_stat; 9121 9122 if (busiest->group_type == group_misfit_task) { 9123 /* Set imbalance to allow misfit tasks to be balanced. */ 9124 env->migration_type = migrate_misfit; 9125 env->imbalance = 1; 9126 return; 9127 } 9128 9129 if (busiest->group_type == group_asym_packing) { 9130 /* 9131 * In case of asym capacity, we will try to migrate all load to 9132 * the preferred CPU. 9133 */ 9134 env->migration_type = migrate_task; 9135 env->imbalance = busiest->sum_h_nr_running; 9136 return; 9137 } 9138 9139 if (busiest->group_type == group_imbalanced) { 9140 /* 9141 * In the group_imb case we cannot rely on group-wide averages 9142 * to ensure CPU-load equilibrium, try to move any task to fix 9143 * the imbalance. The next load balance will take care of 9144 * balancing back the system. 9145 */ 9146 env->migration_type = migrate_task; 9147 env->imbalance = 1; 9148 return; 9149 } 9150 9151 /* 9152 * Try to use spare capacity of local group without overloading it or 9153 * emptying busiest. 9154 */ 9155 if (local->group_type == group_has_spare) { 9156 if ((busiest->group_type > group_fully_busy) && 9157 !(env->sd->flags & SD_SHARE_PKG_RESOURCES)) { 9158 /* 9159 * If busiest is overloaded, try to fill spare 9160 * capacity. This might end up creating spare capacity 9161 * in busiest or busiest still being overloaded but 9162 * there is no simple way to directly compute the 9163 * amount of load to migrate in order to balance the 9164 * system. 9165 */ 9166 env->migration_type = migrate_util; 9167 env->imbalance = max(local->group_capacity, local->group_util) - 9168 local->group_util; 9169 9170 /* 9171 * In some cases, the group's utilization is max or even 9172 * higher than capacity because of migrations but the 9173 * local CPU is (newly) idle. There is at least one 9174 * waiting task in this overloaded busiest group. Let's 9175 * try to pull it. 9176 */ 9177 if (env->idle != CPU_NOT_IDLE && env->imbalance == 0) { 9178 env->migration_type = migrate_task; 9179 env->imbalance = 1; 9180 } 9181 9182 return; 9183 } 9184 9185 if (busiest->group_weight == 1 || sds->prefer_sibling) { 9186 unsigned int nr_diff = busiest->sum_nr_running; 9187 /* 9188 * When prefer sibling, evenly spread running tasks on 9189 * groups. 9190 */ 9191 env->migration_type = migrate_task; 9192 lsub_positive(&nr_diff, local->sum_nr_running); 9193 env->imbalance = nr_diff >> 1; 9194 } else { 9195 9196 /* 9197 * If there is no overload, we just want to even the number of 9198 * idle cpus. 9199 */ 9200 env->migration_type = migrate_task; 9201 env->imbalance = max_t(long, 0, (local->idle_cpus - 9202 busiest->idle_cpus) >> 1); 9203 } 9204 9205 /* Consider allowing a small imbalance between NUMA groups */ 9206 if (env->sd->flags & SD_NUMA) { 9207 env->imbalance = adjust_numa_imbalance(env->imbalance, 9208 busiest->sum_nr_running, busiest->group_weight); 9209 } 9210 9211 return; 9212 } 9213 9214 /* 9215 * Local is fully busy but has to take more load to relieve the 9216 * busiest group 9217 */ 9218 if (local->group_type < group_overloaded) { 9219 /* 9220 * Local will become overloaded so the avg_load metrics are 9221 * finally needed. 9222 */ 9223 9224 local->avg_load = (local->group_load * SCHED_CAPACITY_SCALE) / 9225 local->group_capacity; 9226 9227 sds->avg_load = (sds->total_load * SCHED_CAPACITY_SCALE) / 9228 sds->total_capacity; 9229 /* 9230 * If the local group is more loaded than the selected 9231 * busiest group don't try to pull any tasks. 9232 */ 9233 if (local->avg_load >= busiest->avg_load) { 9234 env->imbalance = 0; 9235 return; 9236 } 9237 } 9238 9239 /* 9240 * Both group are or will become overloaded and we're trying to get all 9241 * the CPUs to the average_load, so we don't want to push ourselves 9242 * above the average load, nor do we wish to reduce the max loaded CPU 9243 * below the average load. At the same time, we also don't want to 9244 * reduce the group load below the group capacity. Thus we look for 9245 * the minimum possible imbalance. 9246 */ 9247 env->migration_type = migrate_load; 9248 env->imbalance = min( 9249 (busiest->avg_load - sds->avg_load) * busiest->group_capacity, 9250 (sds->avg_load - local->avg_load) * local->group_capacity 9251 ) / SCHED_CAPACITY_SCALE; 9252 } 9253 9254 /******* find_busiest_group() helpers end here *********************/ 9255 9256 /* 9257 * Decision matrix according to the local and busiest group type: 9258 * 9259 * busiest \ local has_spare fully_busy misfit asym imbalanced overloaded 9260 * has_spare nr_idle balanced N/A N/A balanced balanced 9261 * fully_busy nr_idle nr_idle N/A N/A balanced balanced 9262 * misfit_task force N/A N/A N/A force force 9263 * asym_packing force force N/A N/A force force 9264 * imbalanced force force N/A N/A force force 9265 * overloaded force force N/A N/A force avg_load 9266 * 9267 * N/A : Not Applicable because already filtered while updating 9268 * statistics. 9269 * balanced : The system is balanced for these 2 groups. 9270 * force : Calculate the imbalance as load migration is probably needed. 9271 * avg_load : Only if imbalance is significant enough. 9272 * nr_idle : dst_cpu is not busy and the number of idle CPUs is quite 9273 * different in groups. 9274 */ 9275 9276 /** 9277 * find_busiest_group - Returns the busiest group within the sched_domain 9278 * if there is an imbalance. 9279 * 9280 * Also calculates the amount of runnable load which should be moved 9281 * to restore balance. 9282 * 9283 * @env: The load balancing environment. 9284 * 9285 * Return: - The busiest group if imbalance exists. 9286 */ 9287 static struct sched_group *find_busiest_group(struct lb_env *env) 9288 { 9289 struct sg_lb_stats *local, *busiest; 9290 struct sd_lb_stats sds; 9291 9292 init_sd_lb_stats(&sds); 9293 9294 /* 9295 * Compute the various statistics relevant for load balancing at 9296 * this level. 9297 */ 9298 update_sd_lb_stats(env, &sds); 9299 9300 if (sched_energy_enabled()) { 9301 struct root_domain *rd = env->dst_rq->rd; 9302 9303 if (rcu_dereference(rd->pd) && !READ_ONCE(rd->overutilized)) 9304 goto out_balanced; 9305 } 9306 9307 local = &sds.local_stat; 9308 busiest = &sds.busiest_stat; 9309 9310 /* There is no busy sibling group to pull tasks from */ 9311 if (!sds.busiest) 9312 goto out_balanced; 9313 9314 /* Misfit tasks should be dealt with regardless of the avg load */ 9315 if (busiest->group_type == group_misfit_task) 9316 goto force_balance; 9317 9318 /* ASYM feature bypasses nice load balance check */ 9319 if (busiest->group_type == group_asym_packing) 9320 goto force_balance; 9321 9322 /* 9323 * If the busiest group is imbalanced the below checks don't 9324 * work because they assume all things are equal, which typically 9325 * isn't true due to cpus_ptr constraints and the like. 9326 */ 9327 if (busiest->group_type == group_imbalanced) 9328 goto force_balance; 9329 9330 /* 9331 * If the local group is busier than the selected busiest group 9332 * don't try and pull any tasks. 9333 */ 9334 if (local->group_type > busiest->group_type) 9335 goto out_balanced; 9336 9337 /* 9338 * When groups are overloaded, use the avg_load to ensure fairness 9339 * between tasks. 9340 */ 9341 if (local->group_type == group_overloaded) { 9342 /* 9343 * If the local group is more loaded than the selected 9344 * busiest group don't try to pull any tasks. 9345 */ 9346 if (local->avg_load >= busiest->avg_load) 9347 goto out_balanced; 9348 9349 /* XXX broken for overlapping NUMA groups */ 9350 sds.avg_load = (sds.total_load * SCHED_CAPACITY_SCALE) / 9351 sds.total_capacity; 9352 9353 /* 9354 * Don't pull any tasks if this group is already above the 9355 * domain average load. 9356 */ 9357 if (local->avg_load >= sds.avg_load) 9358 goto out_balanced; 9359 9360 /* 9361 * If the busiest group is more loaded, use imbalance_pct to be 9362 * conservative. 9363 */ 9364 if (100 * busiest->avg_load <= 9365 env->sd->imbalance_pct * local->avg_load) 9366 goto out_balanced; 9367 } 9368 9369 /* Try to move all excess tasks to child's sibling domain */ 9370 if (sds.prefer_sibling && local->group_type == group_has_spare && 9371 busiest->sum_nr_running > local->sum_nr_running + 1) 9372 goto force_balance; 9373 9374 if (busiest->group_type != group_overloaded) { 9375 if (env->idle == CPU_NOT_IDLE) 9376 /* 9377 * If the busiest group is not overloaded (and as a 9378 * result the local one too) but this CPU is already 9379 * busy, let another idle CPU try to pull task. 9380 */ 9381 goto out_balanced; 9382 9383 if (busiest->group_weight > 1 && 9384 local->idle_cpus <= (busiest->idle_cpus + 1)) 9385 /* 9386 * If the busiest group is not overloaded 9387 * and there is no imbalance between this and busiest 9388 * group wrt idle CPUs, it is balanced. The imbalance 9389 * becomes significant if the diff is greater than 1 9390 * otherwise we might end up to just move the imbalance 9391 * on another group. Of course this applies only if 9392 * there is more than 1 CPU per group. 9393 */ 9394 goto out_balanced; 9395 9396 if (busiest->sum_h_nr_running == 1) 9397 /* 9398 * busiest doesn't have any tasks waiting to run 9399 */ 9400 goto out_balanced; 9401 } 9402 9403 force_balance: 9404 /* Looks like there is an imbalance. Compute it */ 9405 calculate_imbalance(env, &sds); 9406 return env->imbalance ? sds.busiest : NULL; 9407 9408 out_balanced: 9409 env->imbalance = 0; 9410 return NULL; 9411 } 9412 9413 /* 9414 * find_busiest_queue - find the busiest runqueue among the CPUs in the group. 9415 */ 9416 static struct rq *find_busiest_queue(struct lb_env *env, 9417 struct sched_group *group) 9418 { 9419 struct rq *busiest = NULL, *rq; 9420 unsigned long busiest_util = 0, busiest_load = 0, busiest_capacity = 1; 9421 unsigned int busiest_nr = 0; 9422 int i; 9423 9424 for_each_cpu_and(i, sched_group_span(group), env->cpus) { 9425 unsigned long capacity, load, util; 9426 unsigned int nr_running; 9427 enum fbq_type rt; 9428 9429 rq = cpu_rq(i); 9430 rt = fbq_classify_rq(rq); 9431 9432 /* 9433 * We classify groups/runqueues into three groups: 9434 * - regular: there are !numa tasks 9435 * - remote: there are numa tasks that run on the 'wrong' node 9436 * - all: there is no distinction 9437 * 9438 * In order to avoid migrating ideally placed numa tasks, 9439 * ignore those when there's better options. 9440 * 9441 * If we ignore the actual busiest queue to migrate another 9442 * task, the next balance pass can still reduce the busiest 9443 * queue by moving tasks around inside the node. 9444 * 9445 * If we cannot move enough load due to this classification 9446 * the next pass will adjust the group classification and 9447 * allow migration of more tasks. 9448 * 9449 * Both cases only affect the total convergence complexity. 9450 */ 9451 if (rt > env->fbq_type) 9452 continue; 9453 9454 nr_running = rq->cfs.h_nr_running; 9455 if (!nr_running) 9456 continue; 9457 9458 capacity = capacity_of(i); 9459 9460 /* 9461 * For ASYM_CPUCAPACITY domains, don't pick a CPU that could 9462 * eventually lead to active_balancing high->low capacity. 9463 * Higher per-CPU capacity is considered better than balancing 9464 * average load. 9465 */ 9466 if (env->sd->flags & SD_ASYM_CPUCAPACITY && 9467 !capacity_greater(capacity_of(env->dst_cpu), capacity) && 9468 nr_running == 1) 9469 continue; 9470 9471 switch (env->migration_type) { 9472 case migrate_load: 9473 /* 9474 * When comparing with load imbalance, use cpu_load() 9475 * which is not scaled with the CPU capacity. 9476 */ 9477 load = cpu_load(rq); 9478 9479 if (nr_running == 1 && load > env->imbalance && 9480 !check_cpu_capacity(rq, env->sd)) 9481 break; 9482 9483 /* 9484 * For the load comparisons with the other CPUs, 9485 * consider the cpu_load() scaled with the CPU 9486 * capacity, so that the load can be moved away 9487 * from the CPU that is potentially running at a 9488 * lower capacity. 9489 * 9490 * Thus we're looking for max(load_i / capacity_i), 9491 * crosswise multiplication to rid ourselves of the 9492 * division works out to: 9493 * load_i * capacity_j > load_j * capacity_i; 9494 * where j is our previous maximum. 9495 */ 9496 if (load * busiest_capacity > busiest_load * capacity) { 9497 busiest_load = load; 9498 busiest_capacity = capacity; 9499 busiest = rq; 9500 } 9501 break; 9502 9503 case migrate_util: 9504 util = cpu_util(cpu_of(rq)); 9505 9506 /* 9507 * Don't try to pull utilization from a CPU with one 9508 * running task. Whatever its utilization, we will fail 9509 * detach the task. 9510 */ 9511 if (nr_running <= 1) 9512 continue; 9513 9514 if (busiest_util < util) { 9515 busiest_util = util; 9516 busiest = rq; 9517 } 9518 break; 9519 9520 case migrate_task: 9521 if (busiest_nr < nr_running) { 9522 busiest_nr = nr_running; 9523 busiest = rq; 9524 } 9525 break; 9526 9527 case migrate_misfit: 9528 /* 9529 * For ASYM_CPUCAPACITY domains with misfit tasks we 9530 * simply seek the "biggest" misfit task. 9531 */ 9532 if (rq->misfit_task_load > busiest_load) { 9533 busiest_load = rq->misfit_task_load; 9534 busiest = rq; 9535 } 9536 9537 break; 9538 9539 } 9540 } 9541 9542 return busiest; 9543 } 9544 9545 /* 9546 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but 9547 * so long as it is large enough. 9548 */ 9549 #define MAX_PINNED_INTERVAL 512 9550 9551 static inline bool 9552 asym_active_balance(struct lb_env *env) 9553 { 9554 /* 9555 * ASYM_PACKING needs to force migrate tasks from busy but 9556 * lower priority CPUs in order to pack all tasks in the 9557 * highest priority CPUs. 9558 */ 9559 return env->idle != CPU_NOT_IDLE && (env->sd->flags & SD_ASYM_PACKING) && 9560 sched_asym_prefer(env->dst_cpu, env->src_cpu); 9561 } 9562 9563 static inline bool 9564 imbalanced_active_balance(struct lb_env *env) 9565 { 9566 struct sched_domain *sd = env->sd; 9567 9568 /* 9569 * The imbalanced case includes the case of pinned tasks preventing a fair 9570 * distribution of the load on the system but also the even distribution of the 9571 * threads on a system with spare capacity 9572 */ 9573 if ((env->migration_type == migrate_task) && 9574 (sd->nr_balance_failed > sd->cache_nice_tries+2)) 9575 return 1; 9576 9577 return 0; 9578 } 9579 9580 static int need_active_balance(struct lb_env *env) 9581 { 9582 struct sched_domain *sd = env->sd; 9583 9584 if (asym_active_balance(env)) 9585 return 1; 9586 9587 if (imbalanced_active_balance(env)) 9588 return 1; 9589 9590 /* 9591 * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task. 9592 * It's worth migrating the task if the src_cpu's capacity is reduced 9593 * because of other sched_class or IRQs if more capacity stays 9594 * available on dst_cpu. 9595 */ 9596 if ((env->idle != CPU_NOT_IDLE) && 9597 (env->src_rq->cfs.h_nr_running == 1)) { 9598 if ((check_cpu_capacity(env->src_rq, sd)) && 9599 (capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100)) 9600 return 1; 9601 } 9602 9603 if (env->migration_type == migrate_misfit) 9604 return 1; 9605 9606 return 0; 9607 } 9608 9609 static int active_load_balance_cpu_stop(void *data); 9610 9611 static int should_we_balance(struct lb_env *env) 9612 { 9613 struct sched_group *sg = env->sd->groups; 9614 int cpu; 9615 9616 /* 9617 * Ensure the balancing environment is consistent; can happen 9618 * when the softirq triggers 'during' hotplug. 9619 */ 9620 if (!cpumask_test_cpu(env->dst_cpu, env->cpus)) 9621 return 0; 9622 9623 /* 9624 * In the newly idle case, we will allow all the CPUs 9625 * to do the newly idle load balance. 9626 */ 9627 if (env->idle == CPU_NEWLY_IDLE) 9628 return 1; 9629 9630 /* Try to find first idle CPU */ 9631 for_each_cpu_and(cpu, group_balance_mask(sg), env->cpus) { 9632 if (!idle_cpu(cpu)) 9633 continue; 9634 9635 /* Are we the first idle CPU? */ 9636 return cpu == env->dst_cpu; 9637 } 9638 9639 /* Are we the first CPU of this group ? */ 9640 return group_balance_cpu(sg) == env->dst_cpu; 9641 } 9642 9643 /* 9644 * Check this_cpu to ensure it is balanced within domain. Attempt to move 9645 * tasks if there is an imbalance. 9646 */ 9647 static int load_balance(int this_cpu, struct rq *this_rq, 9648 struct sched_domain *sd, enum cpu_idle_type idle, 9649 int *continue_balancing) 9650 { 9651 int ld_moved, cur_ld_moved, active_balance = 0; 9652 struct sched_domain *sd_parent = sd->parent; 9653 struct sched_group *group; 9654 struct rq *busiest; 9655 struct rq_flags rf; 9656 struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask); 9657 9658 struct lb_env env = { 9659 .sd = sd, 9660 .dst_cpu = this_cpu, 9661 .dst_rq = this_rq, 9662 .dst_grpmask = sched_group_span(sd->groups), 9663 .idle = idle, 9664 .loop_break = sched_nr_migrate_break, 9665 .cpus = cpus, 9666 .fbq_type = all, 9667 .tasks = LIST_HEAD_INIT(env.tasks), 9668 }; 9669 9670 cpumask_and(cpus, sched_domain_span(sd), cpu_active_mask); 9671 9672 schedstat_inc(sd->lb_count[idle]); 9673 9674 redo: 9675 if (!should_we_balance(&env)) { 9676 *continue_balancing = 0; 9677 goto out_balanced; 9678 } 9679 9680 group = find_busiest_group(&env); 9681 if (!group) { 9682 schedstat_inc(sd->lb_nobusyg[idle]); 9683 goto out_balanced; 9684 } 9685 9686 busiest = find_busiest_queue(&env, group); 9687 if (!busiest) { 9688 schedstat_inc(sd->lb_nobusyq[idle]); 9689 goto out_balanced; 9690 } 9691 9692 BUG_ON(busiest == env.dst_rq); 9693 9694 schedstat_add(sd->lb_imbalance[idle], env.imbalance); 9695 9696 env.src_cpu = busiest->cpu; 9697 env.src_rq = busiest; 9698 9699 ld_moved = 0; 9700 /* Clear this flag as soon as we find a pullable task */ 9701 env.flags |= LBF_ALL_PINNED; 9702 if (busiest->nr_running > 1) { 9703 /* 9704 * Attempt to move tasks. If find_busiest_group has found 9705 * an imbalance but busiest->nr_running <= 1, the group is 9706 * still unbalanced. ld_moved simply stays zero, so it is 9707 * correctly treated as an imbalance. 9708 */ 9709 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running); 9710 9711 more_balance: 9712 rq_lock_irqsave(busiest, &rf); 9713 update_rq_clock(busiest); 9714 9715 /* 9716 * cur_ld_moved - load moved in current iteration 9717 * ld_moved - cumulative load moved across iterations 9718 */ 9719 cur_ld_moved = detach_tasks(&env); 9720 9721 /* 9722 * We've detached some tasks from busiest_rq. Every 9723 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely 9724 * unlock busiest->lock, and we are able to be sure 9725 * that nobody can manipulate the tasks in parallel. 9726 * See task_rq_lock() family for the details. 9727 */ 9728 9729 rq_unlock(busiest, &rf); 9730 9731 if (cur_ld_moved) { 9732 attach_tasks(&env); 9733 ld_moved += cur_ld_moved; 9734 } 9735 9736 local_irq_restore(rf.flags); 9737 9738 if (env.flags & LBF_NEED_BREAK) { 9739 env.flags &= ~LBF_NEED_BREAK; 9740 goto more_balance; 9741 } 9742 9743 /* 9744 * Revisit (affine) tasks on src_cpu that couldn't be moved to 9745 * us and move them to an alternate dst_cpu in our sched_group 9746 * where they can run. The upper limit on how many times we 9747 * iterate on same src_cpu is dependent on number of CPUs in our 9748 * sched_group. 9749 * 9750 * This changes load balance semantics a bit on who can move 9751 * load to a given_cpu. In addition to the given_cpu itself 9752 * (or a ilb_cpu acting on its behalf where given_cpu is 9753 * nohz-idle), we now have balance_cpu in a position to move 9754 * load to given_cpu. In rare situations, this may cause 9755 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding 9756 * _independently_ and at _same_ time to move some load to 9757 * given_cpu) causing excess load to be moved to given_cpu. 9758 * This however should not happen so much in practice and 9759 * moreover subsequent load balance cycles should correct the 9760 * excess load moved. 9761 */ 9762 if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) { 9763 9764 /* Prevent to re-select dst_cpu via env's CPUs */ 9765 __cpumask_clear_cpu(env.dst_cpu, env.cpus); 9766 9767 env.dst_rq = cpu_rq(env.new_dst_cpu); 9768 env.dst_cpu = env.new_dst_cpu; 9769 env.flags &= ~LBF_DST_PINNED; 9770 env.loop = 0; 9771 env.loop_break = sched_nr_migrate_break; 9772 9773 /* 9774 * Go back to "more_balance" rather than "redo" since we 9775 * need to continue with same src_cpu. 9776 */ 9777 goto more_balance; 9778 } 9779 9780 /* 9781 * We failed to reach balance because of affinity. 9782 */ 9783 if (sd_parent) { 9784 int *group_imbalance = &sd_parent->groups->sgc->imbalance; 9785 9786 if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0) 9787 *group_imbalance = 1; 9788 } 9789 9790 /* All tasks on this runqueue were pinned by CPU affinity */ 9791 if (unlikely(env.flags & LBF_ALL_PINNED)) { 9792 __cpumask_clear_cpu(cpu_of(busiest), cpus); 9793 /* 9794 * Attempting to continue load balancing at the current 9795 * sched_domain level only makes sense if there are 9796 * active CPUs remaining as possible busiest CPUs to 9797 * pull load from which are not contained within the 9798 * destination group that is receiving any migrated 9799 * load. 9800 */ 9801 if (!cpumask_subset(cpus, env.dst_grpmask)) { 9802 env.loop = 0; 9803 env.loop_break = sched_nr_migrate_break; 9804 goto redo; 9805 } 9806 goto out_all_pinned; 9807 } 9808 } 9809 9810 if (!ld_moved) { 9811 schedstat_inc(sd->lb_failed[idle]); 9812 /* 9813 * Increment the failure counter only on periodic balance. 9814 * We do not want newidle balance, which can be very 9815 * frequent, pollute the failure counter causing 9816 * excessive cache_hot migrations and active balances. 9817 */ 9818 if (idle != CPU_NEWLY_IDLE) 9819 sd->nr_balance_failed++; 9820 9821 if (need_active_balance(&env)) { 9822 unsigned long flags; 9823 9824 raw_spin_lock_irqsave(&busiest->lock, flags); 9825 9826 /* 9827 * Don't kick the active_load_balance_cpu_stop, 9828 * if the curr task on busiest CPU can't be 9829 * moved to this_cpu: 9830 */ 9831 if (!cpumask_test_cpu(this_cpu, busiest->curr->cpus_ptr)) { 9832 raw_spin_unlock_irqrestore(&busiest->lock, 9833 flags); 9834 goto out_one_pinned; 9835 } 9836 9837 /* Record that we found at least one task that could run on this_cpu */ 9838 env.flags &= ~LBF_ALL_PINNED; 9839 9840 /* 9841 * ->active_balance synchronizes accesses to 9842 * ->active_balance_work. Once set, it's cleared 9843 * only after active load balance is finished. 9844 */ 9845 if (!busiest->active_balance) { 9846 busiest->active_balance = 1; 9847 busiest->push_cpu = this_cpu; 9848 active_balance = 1; 9849 } 9850 raw_spin_unlock_irqrestore(&busiest->lock, flags); 9851 9852 if (active_balance) { 9853 stop_one_cpu_nowait(cpu_of(busiest), 9854 active_load_balance_cpu_stop, busiest, 9855 &busiest->active_balance_work); 9856 } 9857 } 9858 } else { 9859 sd->nr_balance_failed = 0; 9860 } 9861 9862 if (likely(!active_balance) || need_active_balance(&env)) { 9863 /* We were unbalanced, so reset the balancing interval */ 9864 sd->balance_interval = sd->min_interval; 9865 } 9866 9867 goto out; 9868 9869 out_balanced: 9870 /* 9871 * We reach balance although we may have faced some affinity 9872 * constraints. Clear the imbalance flag only if other tasks got 9873 * a chance to move and fix the imbalance. 9874 */ 9875 if (sd_parent && !(env.flags & LBF_ALL_PINNED)) { 9876 int *group_imbalance = &sd_parent->groups->sgc->imbalance; 9877 9878 if (*group_imbalance) 9879 *group_imbalance = 0; 9880 } 9881 9882 out_all_pinned: 9883 /* 9884 * We reach balance because all tasks are pinned at this level so 9885 * we can't migrate them. Let the imbalance flag set so parent level 9886 * can try to migrate them. 9887 */ 9888 schedstat_inc(sd->lb_balanced[idle]); 9889 9890 sd->nr_balance_failed = 0; 9891 9892 out_one_pinned: 9893 ld_moved = 0; 9894 9895 /* 9896 * newidle_balance() disregards balance intervals, so we could 9897 * repeatedly reach this code, which would lead to balance_interval 9898 * skyrocketing in a short amount of time. Skip the balance_interval 9899 * increase logic to avoid that. 9900 */ 9901 if (env.idle == CPU_NEWLY_IDLE) 9902 goto out; 9903 9904 /* tune up the balancing interval */ 9905 if ((env.flags & LBF_ALL_PINNED && 9906 sd->balance_interval < MAX_PINNED_INTERVAL) || 9907 sd->balance_interval < sd->max_interval) 9908 sd->balance_interval *= 2; 9909 out: 9910 return ld_moved; 9911 } 9912 9913 static inline unsigned long 9914 get_sd_balance_interval(struct sched_domain *sd, int cpu_busy) 9915 { 9916 unsigned long interval = sd->balance_interval; 9917 9918 if (cpu_busy) 9919 interval *= sd->busy_factor; 9920 9921 /* scale ms to jiffies */ 9922 interval = msecs_to_jiffies(interval); 9923 9924 /* 9925 * Reduce likelihood of busy balancing at higher domains racing with 9926 * balancing at lower domains by preventing their balancing periods 9927 * from being multiples of each other. 9928 */ 9929 if (cpu_busy) 9930 interval -= 1; 9931 9932 interval = clamp(interval, 1UL, max_load_balance_interval); 9933 9934 return interval; 9935 } 9936 9937 static inline void 9938 update_next_balance(struct sched_domain *sd, unsigned long *next_balance) 9939 { 9940 unsigned long interval, next; 9941 9942 /* used by idle balance, so cpu_busy = 0 */ 9943 interval = get_sd_balance_interval(sd, 0); 9944 next = sd->last_balance + interval; 9945 9946 if (time_after(*next_balance, next)) 9947 *next_balance = next; 9948 } 9949 9950 /* 9951 * active_load_balance_cpu_stop is run by the CPU stopper. It pushes 9952 * running tasks off the busiest CPU onto idle CPUs. It requires at 9953 * least 1 task to be running on each physical CPU where possible, and 9954 * avoids physical / logical imbalances. 9955 */ 9956 static int active_load_balance_cpu_stop(void *data) 9957 { 9958 struct rq *busiest_rq = data; 9959 int busiest_cpu = cpu_of(busiest_rq); 9960 int target_cpu = busiest_rq->push_cpu; 9961 struct rq *target_rq = cpu_rq(target_cpu); 9962 struct sched_domain *sd; 9963 struct task_struct *p = NULL; 9964 struct rq_flags rf; 9965 9966 rq_lock_irq(busiest_rq, &rf); 9967 /* 9968 * Between queueing the stop-work and running it is a hole in which 9969 * CPUs can become inactive. We should not move tasks from or to 9970 * inactive CPUs. 9971 */ 9972 if (!cpu_active(busiest_cpu) || !cpu_active(target_cpu)) 9973 goto out_unlock; 9974 9975 /* Make sure the requested CPU hasn't gone down in the meantime: */ 9976 if (unlikely(busiest_cpu != smp_processor_id() || 9977 !busiest_rq->active_balance)) 9978 goto out_unlock; 9979 9980 /* Is there any task to move? */ 9981 if (busiest_rq->nr_running <= 1) 9982 goto out_unlock; 9983 9984 /* 9985 * This condition is "impossible", if it occurs 9986 * we need to fix it. Originally reported by 9987 * Bjorn Helgaas on a 128-CPU setup. 9988 */ 9989 BUG_ON(busiest_rq == target_rq); 9990 9991 /* Search for an sd spanning us and the target CPU. */ 9992 rcu_read_lock(); 9993 for_each_domain(target_cpu, sd) { 9994 if (cpumask_test_cpu(busiest_cpu, sched_domain_span(sd))) 9995 break; 9996 } 9997 9998 if (likely(sd)) { 9999 struct lb_env env = { 10000 .sd = sd, 10001 .dst_cpu = target_cpu, 10002 .dst_rq = target_rq, 10003 .src_cpu = busiest_rq->cpu, 10004 .src_rq = busiest_rq, 10005 .idle = CPU_IDLE, 10006 .flags = LBF_ACTIVE_LB, 10007 }; 10008 10009 schedstat_inc(sd->alb_count); 10010 update_rq_clock(busiest_rq); 10011 10012 p = detach_one_task(&env); 10013 if (p) { 10014 schedstat_inc(sd->alb_pushed); 10015 /* Active balancing done, reset the failure counter. */ 10016 sd->nr_balance_failed = 0; 10017 } else { 10018 schedstat_inc(sd->alb_failed); 10019 } 10020 } 10021 rcu_read_unlock(); 10022 out_unlock: 10023 busiest_rq->active_balance = 0; 10024 rq_unlock(busiest_rq, &rf); 10025 10026 if (p) 10027 attach_one_task(target_rq, p); 10028 10029 local_irq_enable(); 10030 10031 return 0; 10032 } 10033 10034 static DEFINE_SPINLOCK(balancing); 10035 10036 /* 10037 * Scale the max load_balance interval with the number of CPUs in the system. 10038 * This trades load-balance latency on larger machines for less cross talk. 10039 */ 10040 void update_max_interval(void) 10041 { 10042 max_load_balance_interval = HZ*num_online_cpus()/10; 10043 } 10044 10045 /* 10046 * It checks each scheduling domain to see if it is due to be balanced, 10047 * and initiates a balancing operation if so. 10048 * 10049 * Balancing parameters are set up in init_sched_domains. 10050 */ 10051 static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle) 10052 { 10053 int continue_balancing = 1; 10054 int cpu = rq->cpu; 10055 int busy = idle != CPU_IDLE && !sched_idle_cpu(cpu); 10056 unsigned long interval; 10057 struct sched_domain *sd; 10058 /* Earliest time when we have to do rebalance again */ 10059 unsigned long next_balance = jiffies + 60*HZ; 10060 int update_next_balance = 0; 10061 int need_serialize, need_decay = 0; 10062 u64 max_cost = 0; 10063 10064 rcu_read_lock(); 10065 for_each_domain(cpu, sd) { 10066 /* 10067 * Decay the newidle max times here because this is a regular 10068 * visit to all the domains. Decay ~1% per second. 10069 */ 10070 if (time_after(jiffies, sd->next_decay_max_lb_cost)) { 10071 sd->max_newidle_lb_cost = 10072 (sd->max_newidle_lb_cost * 253) / 256; 10073 sd->next_decay_max_lb_cost = jiffies + HZ; 10074 need_decay = 1; 10075 } 10076 max_cost += sd->max_newidle_lb_cost; 10077 10078 /* 10079 * Stop the load balance at this level. There is another 10080 * CPU in our sched group which is doing load balancing more 10081 * actively. 10082 */ 10083 if (!continue_balancing) { 10084 if (need_decay) 10085 continue; 10086 break; 10087 } 10088 10089 interval = get_sd_balance_interval(sd, busy); 10090 10091 need_serialize = sd->flags & SD_SERIALIZE; 10092 if (need_serialize) { 10093 if (!spin_trylock(&balancing)) 10094 goto out; 10095 } 10096 10097 if (time_after_eq(jiffies, sd->last_balance + interval)) { 10098 if (load_balance(cpu, rq, sd, idle, &continue_balancing)) { 10099 /* 10100 * The LBF_DST_PINNED logic could have changed 10101 * env->dst_cpu, so we can't know our idle 10102 * state even if we migrated tasks. Update it. 10103 */ 10104 idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE; 10105 busy = idle != CPU_IDLE && !sched_idle_cpu(cpu); 10106 } 10107 sd->last_balance = jiffies; 10108 interval = get_sd_balance_interval(sd, busy); 10109 } 10110 if (need_serialize) 10111 spin_unlock(&balancing); 10112 out: 10113 if (time_after(next_balance, sd->last_balance + interval)) { 10114 next_balance = sd->last_balance + interval; 10115 update_next_balance = 1; 10116 } 10117 } 10118 if (need_decay) { 10119 /* 10120 * Ensure the rq-wide value also decays but keep it at a 10121 * reasonable floor to avoid funnies with rq->avg_idle. 10122 */ 10123 rq->max_idle_balance_cost = 10124 max((u64)sysctl_sched_migration_cost, max_cost); 10125 } 10126 rcu_read_unlock(); 10127 10128 /* 10129 * next_balance will be updated only when there is a need. 10130 * When the cpu is attached to null domain for ex, it will not be 10131 * updated. 10132 */ 10133 if (likely(update_next_balance)) 10134 rq->next_balance = next_balance; 10135 10136 } 10137 10138 static inline int on_null_domain(struct rq *rq) 10139 { 10140 return unlikely(!rcu_dereference_sched(rq->sd)); 10141 } 10142 10143 #ifdef CONFIG_NO_HZ_COMMON 10144 /* 10145 * idle load balancing details 10146 * - When one of the busy CPUs notice that there may be an idle rebalancing 10147 * needed, they will kick the idle load balancer, which then does idle 10148 * load balancing for all the idle CPUs. 10149 * - HK_FLAG_MISC CPUs are used for this task, because HK_FLAG_SCHED not set 10150 * anywhere yet. 10151 */ 10152 10153 static inline int find_new_ilb(void) 10154 { 10155 int ilb; 10156 10157 for_each_cpu_and(ilb, nohz.idle_cpus_mask, 10158 housekeeping_cpumask(HK_FLAG_MISC)) { 10159 10160 if (ilb == smp_processor_id()) 10161 continue; 10162 10163 if (idle_cpu(ilb)) 10164 return ilb; 10165 } 10166 10167 return nr_cpu_ids; 10168 } 10169 10170 /* 10171 * Kick a CPU to do the nohz balancing, if it is time for it. We pick any 10172 * idle CPU in the HK_FLAG_MISC housekeeping set (if there is one). 10173 */ 10174 static void kick_ilb(unsigned int flags) 10175 { 10176 int ilb_cpu; 10177 10178 /* 10179 * Increase nohz.next_balance only when if full ilb is triggered but 10180 * not if we only update stats. 10181 */ 10182 if (flags & NOHZ_BALANCE_KICK) 10183 nohz.next_balance = jiffies+1; 10184 10185 ilb_cpu = find_new_ilb(); 10186 10187 if (ilb_cpu >= nr_cpu_ids) 10188 return; 10189 10190 /* 10191 * Access to rq::nohz_csd is serialized by NOHZ_KICK_MASK; he who sets 10192 * the first flag owns it; cleared by nohz_csd_func(). 10193 */ 10194 flags = atomic_fetch_or(flags, nohz_flags(ilb_cpu)); 10195 if (flags & NOHZ_KICK_MASK) 10196 return; 10197 10198 /* 10199 * This way we generate an IPI on the target CPU which 10200 * is idle. And the softirq performing nohz idle load balance 10201 * will be run before returning from the IPI. 10202 */ 10203 smp_call_function_single_async(ilb_cpu, &cpu_rq(ilb_cpu)->nohz_csd); 10204 } 10205 10206 /* 10207 * Current decision point for kicking the idle load balancer in the presence 10208 * of idle CPUs in the system. 10209 */ 10210 static void nohz_balancer_kick(struct rq *rq) 10211 { 10212 unsigned long now = jiffies; 10213 struct sched_domain_shared *sds; 10214 struct sched_domain *sd; 10215 int nr_busy, i, cpu = rq->cpu; 10216 unsigned int flags = 0; 10217 10218 if (unlikely(rq->idle_balance)) 10219 return; 10220 10221 /* 10222 * We may be recently in ticked or tickless idle mode. At the first 10223 * busy tick after returning from idle, we will update the busy stats. 10224 */ 10225 nohz_balance_exit_idle(rq); 10226 10227 /* 10228 * None are in tickless mode and hence no need for NOHZ idle load 10229 * balancing. 10230 */ 10231 if (likely(!atomic_read(&nohz.nr_cpus))) 10232 return; 10233 10234 if (READ_ONCE(nohz.has_blocked) && 10235 time_after(now, READ_ONCE(nohz.next_blocked))) 10236 flags = NOHZ_STATS_KICK; 10237 10238 if (time_before(now, nohz.next_balance)) 10239 goto out; 10240 10241 if (rq->nr_running >= 2) { 10242 flags = NOHZ_KICK_MASK; 10243 goto out; 10244 } 10245 10246 rcu_read_lock(); 10247 10248 sd = rcu_dereference(rq->sd); 10249 if (sd) { 10250 /* 10251 * If there's a CFS task and the current CPU has reduced 10252 * capacity; kick the ILB to see if there's a better CPU to run 10253 * on. 10254 */ 10255 if (rq->cfs.h_nr_running >= 1 && check_cpu_capacity(rq, sd)) { 10256 flags = NOHZ_KICK_MASK; 10257 goto unlock; 10258 } 10259 } 10260 10261 sd = rcu_dereference(per_cpu(sd_asym_packing, cpu)); 10262 if (sd) { 10263 /* 10264 * When ASYM_PACKING; see if there's a more preferred CPU 10265 * currently idle; in which case, kick the ILB to move tasks 10266 * around. 10267 */ 10268 for_each_cpu_and(i, sched_domain_span(sd), nohz.idle_cpus_mask) { 10269 if (sched_asym_prefer(i, cpu)) { 10270 flags = NOHZ_KICK_MASK; 10271 goto unlock; 10272 } 10273 } 10274 } 10275 10276 sd = rcu_dereference(per_cpu(sd_asym_cpucapacity, cpu)); 10277 if (sd) { 10278 /* 10279 * When ASYM_CPUCAPACITY; see if there's a higher capacity CPU 10280 * to run the misfit task on. 10281 */ 10282 if (check_misfit_status(rq, sd)) { 10283 flags = NOHZ_KICK_MASK; 10284 goto unlock; 10285 } 10286 10287 /* 10288 * For asymmetric systems, we do not want to nicely balance 10289 * cache use, instead we want to embrace asymmetry and only 10290 * ensure tasks have enough CPU capacity. 10291 * 10292 * Skip the LLC logic because it's not relevant in that case. 10293 */ 10294 goto unlock; 10295 } 10296 10297 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu)); 10298 if (sds) { 10299 /* 10300 * If there is an imbalance between LLC domains (IOW we could 10301 * increase the overall cache use), we need some less-loaded LLC 10302 * domain to pull some load. Likewise, we may need to spread 10303 * load within the current LLC domain (e.g. packed SMT cores but 10304 * other CPUs are idle). We can't really know from here how busy 10305 * the others are - so just get a nohz balance going if it looks 10306 * like this LLC domain has tasks we could move. 10307 */ 10308 nr_busy = atomic_read(&sds->nr_busy_cpus); 10309 if (nr_busy > 1) { 10310 flags = NOHZ_KICK_MASK; 10311 goto unlock; 10312 } 10313 } 10314 unlock: 10315 rcu_read_unlock(); 10316 out: 10317 if (flags) 10318 kick_ilb(flags); 10319 } 10320 10321 static void set_cpu_sd_state_busy(int cpu) 10322 { 10323 struct sched_domain *sd; 10324 10325 rcu_read_lock(); 10326 sd = rcu_dereference(per_cpu(sd_llc, cpu)); 10327 10328 if (!sd || !sd->nohz_idle) 10329 goto unlock; 10330 sd->nohz_idle = 0; 10331 10332 atomic_inc(&sd->shared->nr_busy_cpus); 10333 unlock: 10334 rcu_read_unlock(); 10335 } 10336 10337 void nohz_balance_exit_idle(struct rq *rq) 10338 { 10339 SCHED_WARN_ON(rq != this_rq()); 10340 10341 if (likely(!rq->nohz_tick_stopped)) 10342 return; 10343 10344 rq->nohz_tick_stopped = 0; 10345 cpumask_clear_cpu(rq->cpu, nohz.idle_cpus_mask); 10346 atomic_dec(&nohz.nr_cpus); 10347 10348 set_cpu_sd_state_busy(rq->cpu); 10349 } 10350 10351 static void set_cpu_sd_state_idle(int cpu) 10352 { 10353 struct sched_domain *sd; 10354 10355 rcu_read_lock(); 10356 sd = rcu_dereference(per_cpu(sd_llc, cpu)); 10357 10358 if (!sd || sd->nohz_idle) 10359 goto unlock; 10360 sd->nohz_idle = 1; 10361 10362 atomic_dec(&sd->shared->nr_busy_cpus); 10363 unlock: 10364 rcu_read_unlock(); 10365 } 10366 10367 /* 10368 * This routine will record that the CPU is going idle with tick stopped. 10369 * This info will be used in performing idle load balancing in the future. 10370 */ 10371 void nohz_balance_enter_idle(int cpu) 10372 { 10373 struct rq *rq = cpu_rq(cpu); 10374 10375 SCHED_WARN_ON(cpu != smp_processor_id()); 10376 10377 /* If this CPU is going down, then nothing needs to be done: */ 10378 if (!cpu_active(cpu)) 10379 return; 10380 10381 /* Spare idle load balancing on CPUs that don't want to be disturbed: */ 10382 if (!housekeeping_cpu(cpu, HK_FLAG_SCHED)) 10383 return; 10384 10385 /* 10386 * Can be set safely without rq->lock held 10387 * If a clear happens, it will have evaluated last additions because 10388 * rq->lock is held during the check and the clear 10389 */ 10390 rq->has_blocked_load = 1; 10391 10392 /* 10393 * The tick is still stopped but load could have been added in the 10394 * meantime. We set the nohz.has_blocked flag to trig a check of the 10395 * *_avg. The CPU is already part of nohz.idle_cpus_mask so the clear 10396 * of nohz.has_blocked can only happen after checking the new load 10397 */ 10398 if (rq->nohz_tick_stopped) 10399 goto out; 10400 10401 /* If we're a completely isolated CPU, we don't play: */ 10402 if (on_null_domain(rq)) 10403 return; 10404 10405 rq->nohz_tick_stopped = 1; 10406 10407 cpumask_set_cpu(cpu, nohz.idle_cpus_mask); 10408 atomic_inc(&nohz.nr_cpus); 10409 10410 /* 10411 * Ensures that if nohz_idle_balance() fails to observe our 10412 * @idle_cpus_mask store, it must observe the @has_blocked 10413 * store. 10414 */ 10415 smp_mb__after_atomic(); 10416 10417 set_cpu_sd_state_idle(cpu); 10418 10419 out: 10420 /* 10421 * Each time a cpu enter idle, we assume that it has blocked load and 10422 * enable the periodic update of the load of idle cpus 10423 */ 10424 WRITE_ONCE(nohz.has_blocked, 1); 10425 } 10426 10427 static bool update_nohz_stats(struct rq *rq) 10428 { 10429 unsigned int cpu = rq->cpu; 10430 10431 if (!rq->has_blocked_load) 10432 return false; 10433 10434 if (!cpumask_test_cpu(cpu, nohz.idle_cpus_mask)) 10435 return false; 10436 10437 if (!time_after(jiffies, READ_ONCE(rq->last_blocked_load_update_tick))) 10438 return true; 10439 10440 update_blocked_averages(cpu); 10441 10442 return rq->has_blocked_load; 10443 } 10444 10445 /* 10446 * Internal function that runs load balance for all idle cpus. The load balance 10447 * can be a simple update of blocked load or a complete load balance with 10448 * tasks movement depending of flags. 10449 */ 10450 static void _nohz_idle_balance(struct rq *this_rq, unsigned int flags, 10451 enum cpu_idle_type idle) 10452 { 10453 /* Earliest time when we have to do rebalance again */ 10454 unsigned long now = jiffies; 10455 unsigned long next_balance = now + 60*HZ; 10456 bool has_blocked_load = false; 10457 int update_next_balance = 0; 10458 int this_cpu = this_rq->cpu; 10459 int balance_cpu; 10460 struct rq *rq; 10461 10462 SCHED_WARN_ON((flags & NOHZ_KICK_MASK) == NOHZ_BALANCE_KICK); 10463 10464 /* 10465 * We assume there will be no idle load after this update and clear 10466 * the has_blocked flag. If a cpu enters idle in the mean time, it will 10467 * set the has_blocked flag and trig another update of idle load. 10468 * Because a cpu that becomes idle, is added to idle_cpus_mask before 10469 * setting the flag, we are sure to not clear the state and not 10470 * check the load of an idle cpu. 10471 */ 10472 WRITE_ONCE(nohz.has_blocked, 0); 10473 10474 /* 10475 * Ensures that if we miss the CPU, we must see the has_blocked 10476 * store from nohz_balance_enter_idle(). 10477 */ 10478 smp_mb(); 10479 10480 /* 10481 * Start with the next CPU after this_cpu so we will end with this_cpu and let a 10482 * chance for other idle cpu to pull load. 10483 */ 10484 for_each_cpu_wrap(balance_cpu, nohz.idle_cpus_mask, this_cpu+1) { 10485 if (!idle_cpu(balance_cpu)) 10486 continue; 10487 10488 /* 10489 * If this CPU gets work to do, stop the load balancing 10490 * work being done for other CPUs. Next load 10491 * balancing owner will pick it up. 10492 */ 10493 if (need_resched()) { 10494 has_blocked_load = true; 10495 goto abort; 10496 } 10497 10498 rq = cpu_rq(balance_cpu); 10499 10500 has_blocked_load |= update_nohz_stats(rq); 10501 10502 /* 10503 * If time for next balance is due, 10504 * do the balance. 10505 */ 10506 if (time_after_eq(jiffies, rq->next_balance)) { 10507 struct rq_flags rf; 10508 10509 rq_lock_irqsave(rq, &rf); 10510 update_rq_clock(rq); 10511 rq_unlock_irqrestore(rq, &rf); 10512 10513 if (flags & NOHZ_BALANCE_KICK) 10514 rebalance_domains(rq, CPU_IDLE); 10515 } 10516 10517 if (time_after(next_balance, rq->next_balance)) { 10518 next_balance = rq->next_balance; 10519 update_next_balance = 1; 10520 } 10521 } 10522 10523 /* 10524 * next_balance will be updated only when there is a need. 10525 * When the CPU is attached to null domain for ex, it will not be 10526 * updated. 10527 */ 10528 if (likely(update_next_balance)) 10529 nohz.next_balance = next_balance; 10530 10531 WRITE_ONCE(nohz.next_blocked, 10532 now + msecs_to_jiffies(LOAD_AVG_PERIOD)); 10533 10534 abort: 10535 /* There is still blocked load, enable periodic update */ 10536 if (has_blocked_load) 10537 WRITE_ONCE(nohz.has_blocked, 1); 10538 } 10539 10540 /* 10541 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the 10542 * rebalancing for all the cpus for whom scheduler ticks are stopped. 10543 */ 10544 static bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) 10545 { 10546 unsigned int flags = this_rq->nohz_idle_balance; 10547 10548 if (!flags) 10549 return false; 10550 10551 this_rq->nohz_idle_balance = 0; 10552 10553 if (idle != CPU_IDLE) 10554 return false; 10555 10556 _nohz_idle_balance(this_rq, flags, idle); 10557 10558 return true; 10559 } 10560 10561 /* 10562 * Check if we need to run the ILB for updating blocked load before entering 10563 * idle state. 10564 */ 10565 void nohz_run_idle_balance(int cpu) 10566 { 10567 unsigned int flags; 10568 10569 flags = atomic_fetch_andnot(NOHZ_NEWILB_KICK, nohz_flags(cpu)); 10570 10571 /* 10572 * Update the blocked load only if no SCHED_SOFTIRQ is about to happen 10573 * (ie NOHZ_STATS_KICK set) and will do the same. 10574 */ 10575 if ((flags == NOHZ_NEWILB_KICK) && !need_resched()) 10576 _nohz_idle_balance(cpu_rq(cpu), NOHZ_STATS_KICK, CPU_IDLE); 10577 } 10578 10579 static void nohz_newidle_balance(struct rq *this_rq) 10580 { 10581 int this_cpu = this_rq->cpu; 10582 10583 /* 10584 * This CPU doesn't want to be disturbed by scheduler 10585 * housekeeping 10586 */ 10587 if (!housekeeping_cpu(this_cpu, HK_FLAG_SCHED)) 10588 return; 10589 10590 /* Will wake up very soon. No time for doing anything else*/ 10591 if (this_rq->avg_idle < sysctl_sched_migration_cost) 10592 return; 10593 10594 /* Don't need to update blocked load of idle CPUs*/ 10595 if (!READ_ONCE(nohz.has_blocked) || 10596 time_before(jiffies, READ_ONCE(nohz.next_blocked))) 10597 return; 10598 10599 /* 10600 * Set the need to trigger ILB in order to update blocked load 10601 * before entering idle state. 10602 */ 10603 atomic_or(NOHZ_NEWILB_KICK, nohz_flags(this_cpu)); 10604 } 10605 10606 #else /* !CONFIG_NO_HZ_COMMON */ 10607 static inline void nohz_balancer_kick(struct rq *rq) { } 10608 10609 static inline bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) 10610 { 10611 return false; 10612 } 10613 10614 static inline void nohz_newidle_balance(struct rq *this_rq) { } 10615 #endif /* CONFIG_NO_HZ_COMMON */ 10616 10617 /* 10618 * newidle_balance is called by schedule() if this_cpu is about to become 10619 * idle. Attempts to pull tasks from other CPUs. 10620 * 10621 * Returns: 10622 * < 0 - we released the lock and there are !fair tasks present 10623 * 0 - failed, no new tasks 10624 * > 0 - success, new (fair) tasks present 10625 */ 10626 static int newidle_balance(struct rq *this_rq, struct rq_flags *rf) 10627 { 10628 unsigned long next_balance = jiffies + HZ; 10629 int this_cpu = this_rq->cpu; 10630 struct sched_domain *sd; 10631 int pulled_task = 0; 10632 u64 curr_cost = 0; 10633 10634 update_misfit_status(NULL, this_rq); 10635 /* 10636 * We must set idle_stamp _before_ calling idle_balance(), such that we 10637 * measure the duration of idle_balance() as idle time. 10638 */ 10639 this_rq->idle_stamp = rq_clock(this_rq); 10640 10641 /* 10642 * Do not pull tasks towards !active CPUs... 10643 */ 10644 if (!cpu_active(this_cpu)) 10645 return 0; 10646 10647 /* 10648 * This is OK, because current is on_cpu, which avoids it being picked 10649 * for load-balance and preemption/IRQs are still disabled avoiding 10650 * further scheduler activity on it and we're being very careful to 10651 * re-start the picking loop. 10652 */ 10653 rq_unpin_lock(this_rq, rf); 10654 10655 if (this_rq->avg_idle < sysctl_sched_migration_cost || 10656 !READ_ONCE(this_rq->rd->overload)) { 10657 10658 rcu_read_lock(); 10659 sd = rcu_dereference_check_sched_domain(this_rq->sd); 10660 if (sd) 10661 update_next_balance(sd, &next_balance); 10662 rcu_read_unlock(); 10663 10664 goto out; 10665 } 10666 10667 raw_spin_unlock(&this_rq->lock); 10668 10669 update_blocked_averages(this_cpu); 10670 rcu_read_lock(); 10671 for_each_domain(this_cpu, sd) { 10672 int continue_balancing = 1; 10673 u64 t0, domain_cost; 10674 10675 if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) { 10676 update_next_balance(sd, &next_balance); 10677 break; 10678 } 10679 10680 if (sd->flags & SD_BALANCE_NEWIDLE) { 10681 t0 = sched_clock_cpu(this_cpu); 10682 10683 pulled_task = load_balance(this_cpu, this_rq, 10684 sd, CPU_NEWLY_IDLE, 10685 &continue_balancing); 10686 10687 domain_cost = sched_clock_cpu(this_cpu) - t0; 10688 if (domain_cost > sd->max_newidle_lb_cost) 10689 sd->max_newidle_lb_cost = domain_cost; 10690 10691 curr_cost += domain_cost; 10692 } 10693 10694 update_next_balance(sd, &next_balance); 10695 10696 /* 10697 * Stop searching for tasks to pull if there are 10698 * now runnable tasks on this rq. 10699 */ 10700 if (pulled_task || this_rq->nr_running > 0) 10701 break; 10702 } 10703 rcu_read_unlock(); 10704 10705 raw_spin_lock(&this_rq->lock); 10706 10707 if (curr_cost > this_rq->max_idle_balance_cost) 10708 this_rq->max_idle_balance_cost = curr_cost; 10709 10710 /* 10711 * While browsing the domains, we released the rq lock, a task could 10712 * have been enqueued in the meantime. Since we're not going idle, 10713 * pretend we pulled a task. 10714 */ 10715 if (this_rq->cfs.h_nr_running && !pulled_task) 10716 pulled_task = 1; 10717 10718 /* Is there a task of a high priority class? */ 10719 if (this_rq->nr_running != this_rq->cfs.h_nr_running) 10720 pulled_task = -1; 10721 10722 out: 10723 /* Move the next balance forward */ 10724 if (time_after(this_rq->next_balance, next_balance)) 10725 this_rq->next_balance = next_balance; 10726 10727 if (pulled_task) 10728 this_rq->idle_stamp = 0; 10729 else 10730 nohz_newidle_balance(this_rq); 10731 10732 rq_repin_lock(this_rq, rf); 10733 10734 return pulled_task; 10735 } 10736 10737 /* 10738 * run_rebalance_domains is triggered when needed from the scheduler tick. 10739 * Also triggered for nohz idle balancing (with nohz_balancing_kick set). 10740 */ 10741 static __latent_entropy void run_rebalance_domains(struct softirq_action *h) 10742 { 10743 struct rq *this_rq = this_rq(); 10744 enum cpu_idle_type idle = this_rq->idle_balance ? 10745 CPU_IDLE : CPU_NOT_IDLE; 10746 10747 /* 10748 * If this CPU has a pending nohz_balance_kick, then do the 10749 * balancing on behalf of the other idle CPUs whose ticks are 10750 * stopped. Do nohz_idle_balance *before* rebalance_domains to 10751 * give the idle CPUs a chance to load balance. Else we may 10752 * load balance only within the local sched_domain hierarchy 10753 * and abort nohz_idle_balance altogether if we pull some load. 10754 */ 10755 if (nohz_idle_balance(this_rq, idle)) 10756 return; 10757 10758 /* normal load balance */ 10759 update_blocked_averages(this_rq->cpu); 10760 rebalance_domains(this_rq, idle); 10761 } 10762 10763 /* 10764 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing. 10765 */ 10766 void trigger_load_balance(struct rq *rq) 10767 { 10768 /* 10769 * Don't need to rebalance while attached to NULL domain or 10770 * runqueue CPU is not active 10771 */ 10772 if (unlikely(on_null_domain(rq) || !cpu_active(cpu_of(rq)))) 10773 return; 10774 10775 if (time_after_eq(jiffies, rq->next_balance)) 10776 raise_softirq(SCHED_SOFTIRQ); 10777 10778 nohz_balancer_kick(rq); 10779 } 10780 10781 static void rq_online_fair(struct rq *rq) 10782 { 10783 update_sysctl(); 10784 10785 update_runtime_enabled(rq); 10786 } 10787 10788 static void rq_offline_fair(struct rq *rq) 10789 { 10790 update_sysctl(); 10791 10792 /* Ensure any throttled groups are reachable by pick_next_task */ 10793 unthrottle_offline_cfs_rqs(rq); 10794 } 10795 10796 #endif /* CONFIG_SMP */ 10797 10798 /* 10799 * scheduler tick hitting a task of our scheduling class. 10800 * 10801 * NOTE: This function can be called remotely by the tick offload that 10802 * goes along full dynticks. Therefore no local assumption can be made 10803 * and everything must be accessed through the @rq and @curr passed in 10804 * parameters. 10805 */ 10806 static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued) 10807 { 10808 struct cfs_rq *cfs_rq; 10809 struct sched_entity *se = &curr->se; 10810 10811 for_each_sched_entity(se) { 10812 cfs_rq = cfs_rq_of(se); 10813 entity_tick(cfs_rq, se, queued); 10814 } 10815 10816 if (static_branch_unlikely(&sched_numa_balancing)) 10817 task_tick_numa(rq, curr); 10818 10819 update_misfit_status(curr, rq); 10820 update_overutilized_status(task_rq(curr)); 10821 } 10822 10823 /* 10824 * called on fork with the child task as argument from the parent's context 10825 * - child not yet on the tasklist 10826 * - preemption disabled 10827 */ 10828 static void task_fork_fair(struct task_struct *p) 10829 { 10830 struct cfs_rq *cfs_rq; 10831 struct sched_entity *se = &p->se, *curr; 10832 struct rq *rq = this_rq(); 10833 struct rq_flags rf; 10834 10835 rq_lock(rq, &rf); 10836 update_rq_clock(rq); 10837 10838 cfs_rq = task_cfs_rq(current); 10839 curr = cfs_rq->curr; 10840 if (curr) { 10841 update_curr(cfs_rq); 10842 se->vruntime = curr->vruntime; 10843 } 10844 place_entity(cfs_rq, se, 1); 10845 10846 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) { 10847 /* 10848 * Upon rescheduling, sched_class::put_prev_task() will place 10849 * 'current' within the tree based on its new key value. 10850 */ 10851 swap(curr->vruntime, se->vruntime); 10852 resched_curr(rq); 10853 } 10854 10855 se->vruntime -= cfs_rq->min_vruntime; 10856 rq_unlock(rq, &rf); 10857 } 10858 10859 /* 10860 * Priority of the task has changed. Check to see if we preempt 10861 * the current task. 10862 */ 10863 static void 10864 prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio) 10865 { 10866 if (!task_on_rq_queued(p)) 10867 return; 10868 10869 if (rq->cfs.nr_running == 1) 10870 return; 10871 10872 /* 10873 * Reschedule if we are currently running on this runqueue and 10874 * our priority decreased, or if we are not currently running on 10875 * this runqueue and our priority is higher than the current's 10876 */ 10877 if (task_current(rq, p)) { 10878 if (p->prio > oldprio) 10879 resched_curr(rq); 10880 } else 10881 check_preempt_curr(rq, p, 0); 10882 } 10883 10884 static inline bool vruntime_normalized(struct task_struct *p) 10885 { 10886 struct sched_entity *se = &p->se; 10887 10888 /* 10889 * In both the TASK_ON_RQ_QUEUED and TASK_ON_RQ_MIGRATING cases, 10890 * the dequeue_entity(.flags=0) will already have normalized the 10891 * vruntime. 10892 */ 10893 if (p->on_rq) 10894 return true; 10895 10896 /* 10897 * When !on_rq, vruntime of the task has usually NOT been normalized. 10898 * But there are some cases where it has already been normalized: 10899 * 10900 * - A forked child which is waiting for being woken up by 10901 * wake_up_new_task(). 10902 * - A task which has been woken up by try_to_wake_up() and 10903 * waiting for actually being woken up by sched_ttwu_pending(). 10904 */ 10905 if (!se->sum_exec_runtime || 10906 (p->state == TASK_WAKING && p->sched_remote_wakeup)) 10907 return true; 10908 10909 return false; 10910 } 10911 10912 #ifdef CONFIG_FAIR_GROUP_SCHED 10913 /* 10914 * Propagate the changes of the sched_entity across the tg tree to make it 10915 * visible to the root 10916 */ 10917 static void propagate_entity_cfs_rq(struct sched_entity *se) 10918 { 10919 struct cfs_rq *cfs_rq; 10920 10921 list_add_leaf_cfs_rq(cfs_rq_of(se)); 10922 10923 /* Start to propagate at parent */ 10924 se = se->parent; 10925 10926 for_each_sched_entity(se) { 10927 cfs_rq = cfs_rq_of(se); 10928 10929 if (!cfs_rq_throttled(cfs_rq)){ 10930 update_load_avg(cfs_rq, se, UPDATE_TG); 10931 list_add_leaf_cfs_rq(cfs_rq); 10932 continue; 10933 } 10934 10935 if (list_add_leaf_cfs_rq(cfs_rq)) 10936 break; 10937 } 10938 } 10939 #else 10940 static void propagate_entity_cfs_rq(struct sched_entity *se) { } 10941 #endif 10942 10943 static void detach_entity_cfs_rq(struct sched_entity *se) 10944 { 10945 struct cfs_rq *cfs_rq = cfs_rq_of(se); 10946 10947 /* Catch up with the cfs_rq and remove our load when we leave */ 10948 update_load_avg(cfs_rq, se, 0); 10949 detach_entity_load_avg(cfs_rq, se); 10950 update_tg_load_avg(cfs_rq); 10951 propagate_entity_cfs_rq(se); 10952 } 10953 10954 static void attach_entity_cfs_rq(struct sched_entity *se) 10955 { 10956 struct cfs_rq *cfs_rq = cfs_rq_of(se); 10957 10958 #ifdef CONFIG_FAIR_GROUP_SCHED 10959 /* 10960 * Since the real-depth could have been changed (only FAIR 10961 * class maintain depth value), reset depth properly. 10962 */ 10963 se->depth = se->parent ? se->parent->depth + 1 : 0; 10964 #endif 10965 10966 /* Synchronize entity with its cfs_rq */ 10967 update_load_avg(cfs_rq, se, sched_feat(ATTACH_AGE_LOAD) ? 0 : SKIP_AGE_LOAD); 10968 attach_entity_load_avg(cfs_rq, se); 10969 update_tg_load_avg(cfs_rq); 10970 propagate_entity_cfs_rq(se); 10971 } 10972 10973 static void detach_task_cfs_rq(struct task_struct *p) 10974 { 10975 struct sched_entity *se = &p->se; 10976 struct cfs_rq *cfs_rq = cfs_rq_of(se); 10977 10978 if (!vruntime_normalized(p)) { 10979 /* 10980 * Fix up our vruntime so that the current sleep doesn't 10981 * cause 'unlimited' sleep bonus. 10982 */ 10983 place_entity(cfs_rq, se, 0); 10984 se->vruntime -= cfs_rq->min_vruntime; 10985 } 10986 10987 detach_entity_cfs_rq(se); 10988 } 10989 10990 static void attach_task_cfs_rq(struct task_struct *p) 10991 { 10992 struct sched_entity *se = &p->se; 10993 struct cfs_rq *cfs_rq = cfs_rq_of(se); 10994 10995 attach_entity_cfs_rq(se); 10996 10997 if (!vruntime_normalized(p)) 10998 se->vruntime += cfs_rq->min_vruntime; 10999 } 11000 11001 static void switched_from_fair(struct rq *rq, struct task_struct *p) 11002 { 11003 detach_task_cfs_rq(p); 11004 } 11005 11006 static void switched_to_fair(struct rq *rq, struct task_struct *p) 11007 { 11008 attach_task_cfs_rq(p); 11009 11010 if (task_on_rq_queued(p)) { 11011 /* 11012 * We were most likely switched from sched_rt, so 11013 * kick off the schedule if running, otherwise just see 11014 * if we can still preempt the current task. 11015 */ 11016 if (task_current(rq, p)) 11017 resched_curr(rq); 11018 else 11019 check_preempt_curr(rq, p, 0); 11020 } 11021 } 11022 11023 /* Account for a task changing its policy or group. 11024 * 11025 * This routine is mostly called to set cfs_rq->curr field when a task 11026 * migrates between groups/classes. 11027 */ 11028 static void set_next_task_fair(struct rq *rq, struct task_struct *p, bool first) 11029 { 11030 struct sched_entity *se = &p->se; 11031 11032 #ifdef CONFIG_SMP 11033 if (task_on_rq_queued(p)) { 11034 /* 11035 * Move the next running task to the front of the list, so our 11036 * cfs_tasks list becomes MRU one. 11037 */ 11038 list_move(&se->group_node, &rq->cfs_tasks); 11039 } 11040 #endif 11041 11042 for_each_sched_entity(se) { 11043 struct cfs_rq *cfs_rq = cfs_rq_of(se); 11044 11045 set_next_entity(cfs_rq, se); 11046 /* ensure bandwidth has been allocated on our new cfs_rq */ 11047 account_cfs_rq_runtime(cfs_rq, 0); 11048 } 11049 } 11050 11051 void init_cfs_rq(struct cfs_rq *cfs_rq) 11052 { 11053 cfs_rq->tasks_timeline = RB_ROOT_CACHED; 11054 cfs_rq->min_vruntime = (u64)(-(1LL << 20)); 11055 #ifndef CONFIG_64BIT 11056 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime; 11057 #endif 11058 #ifdef CONFIG_SMP 11059 raw_spin_lock_init(&cfs_rq->removed.lock); 11060 #endif 11061 } 11062 11063 #ifdef CONFIG_FAIR_GROUP_SCHED 11064 static void task_set_group_fair(struct task_struct *p) 11065 { 11066 struct sched_entity *se = &p->se; 11067 11068 set_task_rq(p, task_cpu(p)); 11069 se->depth = se->parent ? se->parent->depth + 1 : 0; 11070 } 11071 11072 static void task_move_group_fair(struct task_struct *p) 11073 { 11074 detach_task_cfs_rq(p); 11075 set_task_rq(p, task_cpu(p)); 11076 11077 #ifdef CONFIG_SMP 11078 /* Tell se's cfs_rq has been changed -- migrated */ 11079 p->se.avg.last_update_time = 0; 11080 #endif 11081 attach_task_cfs_rq(p); 11082 } 11083 11084 static void task_change_group_fair(struct task_struct *p, int type) 11085 { 11086 switch (type) { 11087 case TASK_SET_GROUP: 11088 task_set_group_fair(p); 11089 break; 11090 11091 case TASK_MOVE_GROUP: 11092 task_move_group_fair(p); 11093 break; 11094 } 11095 } 11096 11097 void free_fair_sched_group(struct task_group *tg) 11098 { 11099 int i; 11100 11101 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg)); 11102 11103 for_each_possible_cpu(i) { 11104 if (tg->cfs_rq) 11105 kfree(tg->cfs_rq[i]); 11106 if (tg->se) 11107 kfree(tg->se[i]); 11108 } 11109 11110 kfree(tg->cfs_rq); 11111 kfree(tg->se); 11112 } 11113 11114 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent) 11115 { 11116 struct sched_entity *se; 11117 struct cfs_rq *cfs_rq; 11118 int i; 11119 11120 tg->cfs_rq = kcalloc(nr_cpu_ids, sizeof(cfs_rq), GFP_KERNEL); 11121 if (!tg->cfs_rq) 11122 goto err; 11123 tg->se = kcalloc(nr_cpu_ids, sizeof(se), GFP_KERNEL); 11124 if (!tg->se) 11125 goto err; 11126 11127 tg->shares = NICE_0_LOAD; 11128 11129 init_cfs_bandwidth(tg_cfs_bandwidth(tg)); 11130 11131 for_each_possible_cpu(i) { 11132 cfs_rq = kzalloc_node(sizeof(struct cfs_rq), 11133 GFP_KERNEL, cpu_to_node(i)); 11134 if (!cfs_rq) 11135 goto err; 11136 11137 se = kzalloc_node(sizeof(struct sched_entity), 11138 GFP_KERNEL, cpu_to_node(i)); 11139 if (!se) 11140 goto err_free_rq; 11141 11142 init_cfs_rq(cfs_rq); 11143 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]); 11144 init_entity_runnable_average(se); 11145 } 11146 11147 return 1; 11148 11149 err_free_rq: 11150 kfree(cfs_rq); 11151 err: 11152 return 0; 11153 } 11154 11155 void online_fair_sched_group(struct task_group *tg) 11156 { 11157 struct sched_entity *se; 11158 struct rq_flags rf; 11159 struct rq *rq; 11160 int i; 11161 11162 for_each_possible_cpu(i) { 11163 rq = cpu_rq(i); 11164 se = tg->se[i]; 11165 rq_lock_irq(rq, &rf); 11166 update_rq_clock(rq); 11167 attach_entity_cfs_rq(se); 11168 sync_throttle(tg, i); 11169 rq_unlock_irq(rq, &rf); 11170 } 11171 } 11172 11173 void unregister_fair_sched_group(struct task_group *tg) 11174 { 11175 unsigned long flags; 11176 struct rq *rq; 11177 int cpu; 11178 11179 for_each_possible_cpu(cpu) { 11180 if (tg->se[cpu]) 11181 remove_entity_load_avg(tg->se[cpu]); 11182 11183 /* 11184 * Only empty task groups can be destroyed; so we can speculatively 11185 * check on_list without danger of it being re-added. 11186 */ 11187 if (!tg->cfs_rq[cpu]->on_list) 11188 continue; 11189 11190 rq = cpu_rq(cpu); 11191 11192 raw_spin_lock_irqsave(&rq->lock, flags); 11193 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]); 11194 raw_spin_unlock_irqrestore(&rq->lock, flags); 11195 } 11196 } 11197 11198 void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq, 11199 struct sched_entity *se, int cpu, 11200 struct sched_entity *parent) 11201 { 11202 struct rq *rq = cpu_rq(cpu); 11203 11204 cfs_rq->tg = tg; 11205 cfs_rq->rq = rq; 11206 init_cfs_rq_runtime(cfs_rq); 11207 11208 tg->cfs_rq[cpu] = cfs_rq; 11209 tg->se[cpu] = se; 11210 11211 /* se could be NULL for root_task_group */ 11212 if (!se) 11213 return; 11214 11215 if (!parent) { 11216 se->cfs_rq = &rq->cfs; 11217 se->depth = 0; 11218 } else { 11219 se->cfs_rq = parent->my_q; 11220 se->depth = parent->depth + 1; 11221 } 11222 11223 se->my_q = cfs_rq; 11224 /* guarantee group entities always have weight */ 11225 update_load_set(&se->load, NICE_0_LOAD); 11226 se->parent = parent; 11227 } 11228 11229 static DEFINE_MUTEX(shares_mutex); 11230 11231 int sched_group_set_shares(struct task_group *tg, unsigned long shares) 11232 { 11233 int i; 11234 11235 /* 11236 * We can't change the weight of the root cgroup. 11237 */ 11238 if (!tg->se[0]) 11239 return -EINVAL; 11240 11241 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES)); 11242 11243 mutex_lock(&shares_mutex); 11244 if (tg->shares == shares) 11245 goto done; 11246 11247 tg->shares = shares; 11248 for_each_possible_cpu(i) { 11249 struct rq *rq = cpu_rq(i); 11250 struct sched_entity *se = tg->se[i]; 11251 struct rq_flags rf; 11252 11253 /* Propagate contribution to hierarchy */ 11254 rq_lock_irqsave(rq, &rf); 11255 update_rq_clock(rq); 11256 for_each_sched_entity(se) { 11257 update_load_avg(cfs_rq_of(se), se, UPDATE_TG); 11258 update_cfs_group(se); 11259 } 11260 rq_unlock_irqrestore(rq, &rf); 11261 } 11262 11263 done: 11264 mutex_unlock(&shares_mutex); 11265 return 0; 11266 } 11267 #else /* CONFIG_FAIR_GROUP_SCHED */ 11268 11269 void free_fair_sched_group(struct task_group *tg) { } 11270 11271 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent) 11272 { 11273 return 1; 11274 } 11275 11276 void online_fair_sched_group(struct task_group *tg) { } 11277 11278 void unregister_fair_sched_group(struct task_group *tg) { } 11279 11280 #endif /* CONFIG_FAIR_GROUP_SCHED */ 11281 11282 11283 static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task) 11284 { 11285 struct sched_entity *se = &task->se; 11286 unsigned int rr_interval = 0; 11287 11288 /* 11289 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise 11290 * idle runqueue: 11291 */ 11292 if (rq->cfs.load.weight) 11293 rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se)); 11294 11295 return rr_interval; 11296 } 11297 11298 /* 11299 * All the scheduling class methods: 11300 */ 11301 DEFINE_SCHED_CLASS(fair) = { 11302 11303 .enqueue_task = enqueue_task_fair, 11304 .dequeue_task = dequeue_task_fair, 11305 .yield_task = yield_task_fair, 11306 .yield_to_task = yield_to_task_fair, 11307 11308 .check_preempt_curr = check_preempt_wakeup, 11309 11310 .pick_next_task = __pick_next_task_fair, 11311 .put_prev_task = put_prev_task_fair, 11312 .set_next_task = set_next_task_fair, 11313 11314 #ifdef CONFIG_SMP 11315 .balance = balance_fair, 11316 .select_task_rq = select_task_rq_fair, 11317 .migrate_task_rq = migrate_task_rq_fair, 11318 11319 .rq_online = rq_online_fair, 11320 .rq_offline = rq_offline_fair, 11321 11322 .task_dead = task_dead_fair, 11323 .set_cpus_allowed = set_cpus_allowed_common, 11324 #endif 11325 11326 .task_tick = task_tick_fair, 11327 .task_fork = task_fork_fair, 11328 11329 .prio_changed = prio_changed_fair, 11330 .switched_from = switched_from_fair, 11331 .switched_to = switched_to_fair, 11332 11333 .get_rr_interval = get_rr_interval_fair, 11334 11335 .update_curr = update_curr_fair, 11336 11337 #ifdef CONFIG_FAIR_GROUP_SCHED 11338 .task_change_group = task_change_group_fair, 11339 #endif 11340 11341 #ifdef CONFIG_UCLAMP_TASK 11342 .uclamp_enabled = 1, 11343 #endif 11344 }; 11345 11346 #ifdef CONFIG_SCHED_DEBUG 11347 void print_cfs_stats(struct seq_file *m, int cpu) 11348 { 11349 struct cfs_rq *cfs_rq, *pos; 11350 11351 rcu_read_lock(); 11352 for_each_leaf_cfs_rq_safe(cpu_rq(cpu), cfs_rq, pos) 11353 print_cfs_rq(m, cpu, cfs_rq); 11354 rcu_read_unlock(); 11355 } 11356 11357 #ifdef CONFIG_NUMA_BALANCING 11358 void show_numa_stats(struct task_struct *p, struct seq_file *m) 11359 { 11360 int node; 11361 unsigned long tsf = 0, tpf = 0, gsf = 0, gpf = 0; 11362 struct numa_group *ng; 11363 11364 rcu_read_lock(); 11365 ng = rcu_dereference(p->numa_group); 11366 for_each_online_node(node) { 11367 if (p->numa_faults) { 11368 tsf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 0)]; 11369 tpf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 1)]; 11370 } 11371 if (ng) { 11372 gsf = ng->faults[task_faults_idx(NUMA_MEM, node, 0)], 11373 gpf = ng->faults[task_faults_idx(NUMA_MEM, node, 1)]; 11374 } 11375 print_numa_stats(m, node, tsf, tpf, gsf, gpf); 11376 } 11377 rcu_read_unlock(); 11378 } 11379 #endif /* CONFIG_NUMA_BALANCING */ 11380 #endif /* CONFIG_SCHED_DEBUG */ 11381 11382 __init void init_sched_fair_class(void) 11383 { 11384 #ifdef CONFIG_SMP 11385 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains); 11386 11387 #ifdef CONFIG_NO_HZ_COMMON 11388 nohz.next_balance = jiffies; 11389 nohz.next_blocked = jiffies; 11390 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT); 11391 #endif 11392 #endif /* SMP */ 11393 11394 } 11395 11396 /* 11397 * Helper functions to facilitate extracting info from tracepoints. 11398 */ 11399 11400 const struct sched_avg *sched_trace_cfs_rq_avg(struct cfs_rq *cfs_rq) 11401 { 11402 #ifdef CONFIG_SMP 11403 return cfs_rq ? &cfs_rq->avg : NULL; 11404 #else 11405 return NULL; 11406 #endif 11407 } 11408 EXPORT_SYMBOL_GPL(sched_trace_cfs_rq_avg); 11409 11410 char *sched_trace_cfs_rq_path(struct cfs_rq *cfs_rq, char *str, int len) 11411 { 11412 if (!cfs_rq) { 11413 if (str) 11414 strlcpy(str, "(null)", len); 11415 else 11416 return NULL; 11417 } 11418 11419 cfs_rq_tg_path(cfs_rq, str, len); 11420 return str; 11421 } 11422 EXPORT_SYMBOL_GPL(sched_trace_cfs_rq_path); 11423 11424 int sched_trace_cfs_rq_cpu(struct cfs_rq *cfs_rq) 11425 { 11426 return cfs_rq ? cpu_of(rq_of(cfs_rq)) : -1; 11427 } 11428 EXPORT_SYMBOL_GPL(sched_trace_cfs_rq_cpu); 11429 11430 const struct sched_avg *sched_trace_rq_avg_rt(struct rq *rq) 11431 { 11432 #ifdef CONFIG_SMP 11433 return rq ? &rq->avg_rt : NULL; 11434 #else 11435 return NULL; 11436 #endif 11437 } 11438 EXPORT_SYMBOL_GPL(sched_trace_rq_avg_rt); 11439 11440 const struct sched_avg *sched_trace_rq_avg_dl(struct rq *rq) 11441 { 11442 #ifdef CONFIG_SMP 11443 return rq ? &rq->avg_dl : NULL; 11444 #else 11445 return NULL; 11446 #endif 11447 } 11448 EXPORT_SYMBOL_GPL(sched_trace_rq_avg_dl); 11449 11450 const struct sched_avg *sched_trace_rq_avg_irq(struct rq *rq) 11451 { 11452 #if defined(CONFIG_SMP) && defined(CONFIG_HAVE_SCHED_AVG_IRQ) 11453 return rq ? &rq->avg_irq : NULL; 11454 #else 11455 return NULL; 11456 #endif 11457 } 11458 EXPORT_SYMBOL_GPL(sched_trace_rq_avg_irq); 11459 11460 int sched_trace_rq_cpu(struct rq *rq) 11461 { 11462 return rq ? cpu_of(rq) : -1; 11463 } 11464 EXPORT_SYMBOL_GPL(sched_trace_rq_cpu); 11465 11466 int sched_trace_rq_cpu_capacity(struct rq *rq) 11467 { 11468 return rq ? 11469 #ifdef CONFIG_SMP 11470 rq->cpu_capacity 11471 #else 11472 SCHED_CAPACITY_SCALE 11473 #endif 11474 : -1; 11475 } 11476 EXPORT_SYMBOL_GPL(sched_trace_rq_cpu_capacity); 11477 11478 const struct cpumask *sched_trace_rd_span(struct root_domain *rd) 11479 { 11480 #ifdef CONFIG_SMP 11481 return rd ? rd->span : NULL; 11482 #else 11483 return NULL; 11484 #endif 11485 } 11486 EXPORT_SYMBOL_GPL(sched_trace_rd_span); 11487 11488 int sched_trace_rq_nr_running(struct rq *rq) 11489 { 11490 return rq ? rq->nr_running : -1; 11491 } 11492 EXPORT_SYMBOL_GPL(sched_trace_rq_nr_running); 11493