xref: /openbmc/linux/kernel/sched/fair.c (revision 65a0d3c1)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
4  *
5  *  Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
6  *
7  *  Interactivity improvements by Mike Galbraith
8  *  (C) 2007 Mike Galbraith <efault@gmx.de>
9  *
10  *  Various enhancements by Dmitry Adamushko.
11  *  (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
12  *
13  *  Group scheduling enhancements by Srivatsa Vaddagiri
14  *  Copyright IBM Corporation, 2007
15  *  Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
16  *
17  *  Scaled math optimizations by Thomas Gleixner
18  *  Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
19  *
20  *  Adaptive scheduling granularity, math enhancements by Peter Zijlstra
21  *  Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
22  */
23 #include "sched.h"
24 
25 /*
26  * Targeted preemption latency for CPU-bound tasks:
27  *
28  * NOTE: this latency value is not the same as the concept of
29  * 'timeslice length' - timeslices in CFS are of variable length
30  * and have no persistent notion like in traditional, time-slice
31  * based scheduling concepts.
32  *
33  * (to see the precise effective timeslice length of your workload,
34  *  run vmstat and monitor the context-switches (cs) field)
35  *
36  * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
37  */
38 unsigned int sysctl_sched_latency			= 6000000ULL;
39 static unsigned int normalized_sysctl_sched_latency	= 6000000ULL;
40 
41 /*
42  * The initial- and re-scaling of tunables is configurable
43  *
44  * Options are:
45  *
46  *   SCHED_TUNABLESCALING_NONE - unscaled, always *1
47  *   SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
48  *   SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
49  *
50  * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
51  */
52 unsigned int sysctl_sched_tunable_scaling = SCHED_TUNABLESCALING_LOG;
53 
54 /*
55  * Minimal preemption granularity for CPU-bound tasks:
56  *
57  * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
58  */
59 unsigned int sysctl_sched_min_granularity			= 750000ULL;
60 static unsigned int normalized_sysctl_sched_min_granularity	= 750000ULL;
61 
62 /*
63  * This value is kept at sysctl_sched_latency/sysctl_sched_min_granularity
64  */
65 static unsigned int sched_nr_latency = 8;
66 
67 /*
68  * After fork, child runs first. If set to 0 (default) then
69  * parent will (try to) run first.
70  */
71 unsigned int sysctl_sched_child_runs_first __read_mostly;
72 
73 /*
74  * SCHED_OTHER wake-up granularity.
75  *
76  * This option delays the preemption effects of decoupled workloads
77  * and reduces their over-scheduling. Synchronous workloads will still
78  * have immediate wakeup/sleep latencies.
79  *
80  * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
81  */
82 unsigned int sysctl_sched_wakeup_granularity			= 1000000UL;
83 static unsigned int normalized_sysctl_sched_wakeup_granularity	= 1000000UL;
84 
85 const_debug unsigned int sysctl_sched_migration_cost	= 500000UL;
86 
87 int sched_thermal_decay_shift;
88 static int __init setup_sched_thermal_decay_shift(char *str)
89 {
90 	int _shift = 0;
91 
92 	if (kstrtoint(str, 0, &_shift))
93 		pr_warn("Unable to set scheduler thermal pressure decay shift parameter\n");
94 
95 	sched_thermal_decay_shift = clamp(_shift, 0, 10);
96 	return 1;
97 }
98 __setup("sched_thermal_decay_shift=", setup_sched_thermal_decay_shift);
99 
100 #ifdef CONFIG_SMP
101 /*
102  * For asym packing, by default the lower numbered CPU has higher priority.
103  */
104 int __weak arch_asym_cpu_priority(int cpu)
105 {
106 	return -cpu;
107 }
108 
109 /*
110  * The margin used when comparing utilization with CPU capacity.
111  *
112  * (default: ~20%)
113  */
114 #define fits_capacity(cap, max)	((cap) * 1280 < (max) * 1024)
115 
116 /*
117  * The margin used when comparing CPU capacities.
118  * is 'cap1' noticeably greater than 'cap2'
119  *
120  * (default: ~5%)
121  */
122 #define capacity_greater(cap1, cap2) ((cap1) * 1024 > (cap2) * 1078)
123 #endif
124 
125 #ifdef CONFIG_CFS_BANDWIDTH
126 /*
127  * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
128  * each time a cfs_rq requests quota.
129  *
130  * Note: in the case that the slice exceeds the runtime remaining (either due
131  * to consumption or the quota being specified to be smaller than the slice)
132  * we will always only issue the remaining available time.
133  *
134  * (default: 5 msec, units: microseconds)
135  */
136 unsigned int sysctl_sched_cfs_bandwidth_slice		= 5000UL;
137 #endif
138 
139 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
140 {
141 	lw->weight += inc;
142 	lw->inv_weight = 0;
143 }
144 
145 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
146 {
147 	lw->weight -= dec;
148 	lw->inv_weight = 0;
149 }
150 
151 static inline void update_load_set(struct load_weight *lw, unsigned long w)
152 {
153 	lw->weight = w;
154 	lw->inv_weight = 0;
155 }
156 
157 /*
158  * Increase the granularity value when there are more CPUs,
159  * because with more CPUs the 'effective latency' as visible
160  * to users decreases. But the relationship is not linear,
161  * so pick a second-best guess by going with the log2 of the
162  * number of CPUs.
163  *
164  * This idea comes from the SD scheduler of Con Kolivas:
165  */
166 static unsigned int get_update_sysctl_factor(void)
167 {
168 	unsigned int cpus = min_t(unsigned int, num_online_cpus(), 8);
169 	unsigned int factor;
170 
171 	switch (sysctl_sched_tunable_scaling) {
172 	case SCHED_TUNABLESCALING_NONE:
173 		factor = 1;
174 		break;
175 	case SCHED_TUNABLESCALING_LINEAR:
176 		factor = cpus;
177 		break;
178 	case SCHED_TUNABLESCALING_LOG:
179 	default:
180 		factor = 1 + ilog2(cpus);
181 		break;
182 	}
183 
184 	return factor;
185 }
186 
187 static void update_sysctl(void)
188 {
189 	unsigned int factor = get_update_sysctl_factor();
190 
191 #define SET_SYSCTL(name) \
192 	(sysctl_##name = (factor) * normalized_sysctl_##name)
193 	SET_SYSCTL(sched_min_granularity);
194 	SET_SYSCTL(sched_latency);
195 	SET_SYSCTL(sched_wakeup_granularity);
196 #undef SET_SYSCTL
197 }
198 
199 void __init sched_init_granularity(void)
200 {
201 	update_sysctl();
202 }
203 
204 #define WMULT_CONST	(~0U)
205 #define WMULT_SHIFT	32
206 
207 static void __update_inv_weight(struct load_weight *lw)
208 {
209 	unsigned long w;
210 
211 	if (likely(lw->inv_weight))
212 		return;
213 
214 	w = scale_load_down(lw->weight);
215 
216 	if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
217 		lw->inv_weight = 1;
218 	else if (unlikely(!w))
219 		lw->inv_weight = WMULT_CONST;
220 	else
221 		lw->inv_weight = WMULT_CONST / w;
222 }
223 
224 /*
225  * delta_exec * weight / lw.weight
226  *   OR
227  * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
228  *
229  * Either weight := NICE_0_LOAD and lw \e sched_prio_to_wmult[], in which case
230  * we're guaranteed shift stays positive because inv_weight is guaranteed to
231  * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
232  *
233  * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
234  * weight/lw.weight <= 1, and therefore our shift will also be positive.
235  */
236 static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw)
237 {
238 	u64 fact = scale_load_down(weight);
239 	u32 fact_hi = (u32)(fact >> 32);
240 	int shift = WMULT_SHIFT;
241 	int fs;
242 
243 	__update_inv_weight(lw);
244 
245 	if (unlikely(fact_hi)) {
246 		fs = fls(fact_hi);
247 		shift -= fs;
248 		fact >>= fs;
249 	}
250 
251 	fact = mul_u32_u32(fact, lw->inv_weight);
252 
253 	fact_hi = (u32)(fact >> 32);
254 	if (fact_hi) {
255 		fs = fls(fact_hi);
256 		shift -= fs;
257 		fact >>= fs;
258 	}
259 
260 	return mul_u64_u32_shr(delta_exec, fact, shift);
261 }
262 
263 
264 const struct sched_class fair_sched_class;
265 
266 /**************************************************************
267  * CFS operations on generic schedulable entities:
268  */
269 
270 #ifdef CONFIG_FAIR_GROUP_SCHED
271 static inline struct task_struct *task_of(struct sched_entity *se)
272 {
273 	SCHED_WARN_ON(!entity_is_task(se));
274 	return container_of(se, struct task_struct, se);
275 }
276 
277 /* Walk up scheduling entities hierarchy */
278 #define for_each_sched_entity(se) \
279 		for (; se; se = se->parent)
280 
281 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
282 {
283 	return p->se.cfs_rq;
284 }
285 
286 /* runqueue on which this entity is (to be) queued */
287 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
288 {
289 	return se->cfs_rq;
290 }
291 
292 /* runqueue "owned" by this group */
293 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
294 {
295 	return grp->my_q;
296 }
297 
298 static inline void cfs_rq_tg_path(struct cfs_rq *cfs_rq, char *path, int len)
299 {
300 	if (!path)
301 		return;
302 
303 	if (cfs_rq && task_group_is_autogroup(cfs_rq->tg))
304 		autogroup_path(cfs_rq->tg, path, len);
305 	else if (cfs_rq && cfs_rq->tg->css.cgroup)
306 		cgroup_path(cfs_rq->tg->css.cgroup, path, len);
307 	else
308 		strlcpy(path, "(null)", len);
309 }
310 
311 static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
312 {
313 	struct rq *rq = rq_of(cfs_rq);
314 	int cpu = cpu_of(rq);
315 
316 	if (cfs_rq->on_list)
317 		return rq->tmp_alone_branch == &rq->leaf_cfs_rq_list;
318 
319 	cfs_rq->on_list = 1;
320 
321 	/*
322 	 * Ensure we either appear before our parent (if already
323 	 * enqueued) or force our parent to appear after us when it is
324 	 * enqueued. The fact that we always enqueue bottom-up
325 	 * reduces this to two cases and a special case for the root
326 	 * cfs_rq. Furthermore, it also means that we will always reset
327 	 * tmp_alone_branch either when the branch is connected
328 	 * to a tree or when we reach the top of the tree
329 	 */
330 	if (cfs_rq->tg->parent &&
331 	    cfs_rq->tg->parent->cfs_rq[cpu]->on_list) {
332 		/*
333 		 * If parent is already on the list, we add the child
334 		 * just before. Thanks to circular linked property of
335 		 * the list, this means to put the child at the tail
336 		 * of the list that starts by parent.
337 		 */
338 		list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
339 			&(cfs_rq->tg->parent->cfs_rq[cpu]->leaf_cfs_rq_list));
340 		/*
341 		 * The branch is now connected to its tree so we can
342 		 * reset tmp_alone_branch to the beginning of the
343 		 * list.
344 		 */
345 		rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
346 		return true;
347 	}
348 
349 	if (!cfs_rq->tg->parent) {
350 		/*
351 		 * cfs rq without parent should be put
352 		 * at the tail of the list.
353 		 */
354 		list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
355 			&rq->leaf_cfs_rq_list);
356 		/*
357 		 * We have reach the top of a tree so we can reset
358 		 * tmp_alone_branch to the beginning of the list.
359 		 */
360 		rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
361 		return true;
362 	}
363 
364 	/*
365 	 * The parent has not already been added so we want to
366 	 * make sure that it will be put after us.
367 	 * tmp_alone_branch points to the begin of the branch
368 	 * where we will add parent.
369 	 */
370 	list_add_rcu(&cfs_rq->leaf_cfs_rq_list, rq->tmp_alone_branch);
371 	/*
372 	 * update tmp_alone_branch to points to the new begin
373 	 * of the branch
374 	 */
375 	rq->tmp_alone_branch = &cfs_rq->leaf_cfs_rq_list;
376 	return false;
377 }
378 
379 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
380 {
381 	if (cfs_rq->on_list) {
382 		struct rq *rq = rq_of(cfs_rq);
383 
384 		/*
385 		 * With cfs_rq being unthrottled/throttled during an enqueue,
386 		 * it can happen the tmp_alone_branch points the a leaf that
387 		 * we finally want to del. In this case, tmp_alone_branch moves
388 		 * to the prev element but it will point to rq->leaf_cfs_rq_list
389 		 * at the end of the enqueue.
390 		 */
391 		if (rq->tmp_alone_branch == &cfs_rq->leaf_cfs_rq_list)
392 			rq->tmp_alone_branch = cfs_rq->leaf_cfs_rq_list.prev;
393 
394 		list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
395 		cfs_rq->on_list = 0;
396 	}
397 }
398 
399 static inline void assert_list_leaf_cfs_rq(struct rq *rq)
400 {
401 	SCHED_WARN_ON(rq->tmp_alone_branch != &rq->leaf_cfs_rq_list);
402 }
403 
404 /* Iterate thr' all leaf cfs_rq's on a runqueue */
405 #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos)			\
406 	list_for_each_entry_safe(cfs_rq, pos, &rq->leaf_cfs_rq_list,	\
407 				 leaf_cfs_rq_list)
408 
409 /* Do the two (enqueued) entities belong to the same group ? */
410 static inline struct cfs_rq *
411 is_same_group(struct sched_entity *se, struct sched_entity *pse)
412 {
413 	if (se->cfs_rq == pse->cfs_rq)
414 		return se->cfs_rq;
415 
416 	return NULL;
417 }
418 
419 static inline struct sched_entity *parent_entity(struct sched_entity *se)
420 {
421 	return se->parent;
422 }
423 
424 static void
425 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
426 {
427 	int se_depth, pse_depth;
428 
429 	/*
430 	 * preemption test can be made between sibling entities who are in the
431 	 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
432 	 * both tasks until we find their ancestors who are siblings of common
433 	 * parent.
434 	 */
435 
436 	/* First walk up until both entities are at same depth */
437 	se_depth = (*se)->depth;
438 	pse_depth = (*pse)->depth;
439 
440 	while (se_depth > pse_depth) {
441 		se_depth--;
442 		*se = parent_entity(*se);
443 	}
444 
445 	while (pse_depth > se_depth) {
446 		pse_depth--;
447 		*pse = parent_entity(*pse);
448 	}
449 
450 	while (!is_same_group(*se, *pse)) {
451 		*se = parent_entity(*se);
452 		*pse = parent_entity(*pse);
453 	}
454 }
455 
456 #else	/* !CONFIG_FAIR_GROUP_SCHED */
457 
458 static inline struct task_struct *task_of(struct sched_entity *se)
459 {
460 	return container_of(se, struct task_struct, se);
461 }
462 
463 #define for_each_sched_entity(se) \
464 		for (; se; se = NULL)
465 
466 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
467 {
468 	return &task_rq(p)->cfs;
469 }
470 
471 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
472 {
473 	struct task_struct *p = task_of(se);
474 	struct rq *rq = task_rq(p);
475 
476 	return &rq->cfs;
477 }
478 
479 /* runqueue "owned" by this group */
480 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
481 {
482 	return NULL;
483 }
484 
485 static inline void cfs_rq_tg_path(struct cfs_rq *cfs_rq, char *path, int len)
486 {
487 	if (path)
488 		strlcpy(path, "(null)", len);
489 }
490 
491 static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
492 {
493 	return true;
494 }
495 
496 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
497 {
498 }
499 
500 static inline void assert_list_leaf_cfs_rq(struct rq *rq)
501 {
502 }
503 
504 #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos)	\
505 		for (cfs_rq = &rq->cfs, pos = NULL; cfs_rq; cfs_rq = pos)
506 
507 static inline struct sched_entity *parent_entity(struct sched_entity *se)
508 {
509 	return NULL;
510 }
511 
512 static inline void
513 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
514 {
515 }
516 
517 #endif	/* CONFIG_FAIR_GROUP_SCHED */
518 
519 static __always_inline
520 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec);
521 
522 /**************************************************************
523  * Scheduling class tree data structure manipulation methods:
524  */
525 
526 static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
527 {
528 	s64 delta = (s64)(vruntime - max_vruntime);
529 	if (delta > 0)
530 		max_vruntime = vruntime;
531 
532 	return max_vruntime;
533 }
534 
535 static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
536 {
537 	s64 delta = (s64)(vruntime - min_vruntime);
538 	if (delta < 0)
539 		min_vruntime = vruntime;
540 
541 	return min_vruntime;
542 }
543 
544 static inline bool entity_before(struct sched_entity *a,
545 				struct sched_entity *b)
546 {
547 	return (s64)(a->vruntime - b->vruntime) < 0;
548 }
549 
550 #define __node_2_se(node) \
551 	rb_entry((node), struct sched_entity, run_node)
552 
553 static void update_min_vruntime(struct cfs_rq *cfs_rq)
554 {
555 	struct sched_entity *curr = cfs_rq->curr;
556 	struct rb_node *leftmost = rb_first_cached(&cfs_rq->tasks_timeline);
557 
558 	u64 vruntime = cfs_rq->min_vruntime;
559 
560 	if (curr) {
561 		if (curr->on_rq)
562 			vruntime = curr->vruntime;
563 		else
564 			curr = NULL;
565 	}
566 
567 	if (leftmost) { /* non-empty tree */
568 		struct sched_entity *se = __node_2_se(leftmost);
569 
570 		if (!curr)
571 			vruntime = se->vruntime;
572 		else
573 			vruntime = min_vruntime(vruntime, se->vruntime);
574 	}
575 
576 	/* ensure we never gain time by being placed backwards. */
577 	cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
578 #ifndef CONFIG_64BIT
579 	smp_wmb();
580 	cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
581 #endif
582 }
583 
584 static inline bool __entity_less(struct rb_node *a, const struct rb_node *b)
585 {
586 	return entity_before(__node_2_se(a), __node_2_se(b));
587 }
588 
589 /*
590  * Enqueue an entity into the rb-tree:
591  */
592 static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
593 {
594 	rb_add_cached(&se->run_node, &cfs_rq->tasks_timeline, __entity_less);
595 }
596 
597 static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
598 {
599 	rb_erase_cached(&se->run_node, &cfs_rq->tasks_timeline);
600 }
601 
602 struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
603 {
604 	struct rb_node *left = rb_first_cached(&cfs_rq->tasks_timeline);
605 
606 	if (!left)
607 		return NULL;
608 
609 	return __node_2_se(left);
610 }
611 
612 static struct sched_entity *__pick_next_entity(struct sched_entity *se)
613 {
614 	struct rb_node *next = rb_next(&se->run_node);
615 
616 	if (!next)
617 		return NULL;
618 
619 	return __node_2_se(next);
620 }
621 
622 #ifdef CONFIG_SCHED_DEBUG
623 struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
624 {
625 	struct rb_node *last = rb_last(&cfs_rq->tasks_timeline.rb_root);
626 
627 	if (!last)
628 		return NULL;
629 
630 	return __node_2_se(last);
631 }
632 
633 /**************************************************************
634  * Scheduling class statistics methods:
635  */
636 
637 int sched_update_scaling(void)
638 {
639 	unsigned int factor = get_update_sysctl_factor();
640 
641 	sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
642 					sysctl_sched_min_granularity);
643 
644 #define WRT_SYSCTL(name) \
645 	(normalized_sysctl_##name = sysctl_##name / (factor))
646 	WRT_SYSCTL(sched_min_granularity);
647 	WRT_SYSCTL(sched_latency);
648 	WRT_SYSCTL(sched_wakeup_granularity);
649 #undef WRT_SYSCTL
650 
651 	return 0;
652 }
653 #endif
654 
655 /*
656  * delta /= w
657  */
658 static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
659 {
660 	if (unlikely(se->load.weight != NICE_0_LOAD))
661 		delta = __calc_delta(delta, NICE_0_LOAD, &se->load);
662 
663 	return delta;
664 }
665 
666 /*
667  * The idea is to set a period in which each task runs once.
668  *
669  * When there are too many tasks (sched_nr_latency) we have to stretch
670  * this period because otherwise the slices get too small.
671  *
672  * p = (nr <= nl) ? l : l*nr/nl
673  */
674 static u64 __sched_period(unsigned long nr_running)
675 {
676 	if (unlikely(nr_running > sched_nr_latency))
677 		return nr_running * sysctl_sched_min_granularity;
678 	else
679 		return sysctl_sched_latency;
680 }
681 
682 /*
683  * We calculate the wall-time slice from the period by taking a part
684  * proportional to the weight.
685  *
686  * s = p*P[w/rw]
687  */
688 static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
689 {
690 	unsigned int nr_running = cfs_rq->nr_running;
691 	u64 slice;
692 
693 	if (sched_feat(ALT_PERIOD))
694 		nr_running = rq_of(cfs_rq)->cfs.h_nr_running;
695 
696 	slice = __sched_period(nr_running + !se->on_rq);
697 
698 	for_each_sched_entity(se) {
699 		struct load_weight *load;
700 		struct load_weight lw;
701 
702 		cfs_rq = cfs_rq_of(se);
703 		load = &cfs_rq->load;
704 
705 		if (unlikely(!se->on_rq)) {
706 			lw = cfs_rq->load;
707 
708 			update_load_add(&lw, se->load.weight);
709 			load = &lw;
710 		}
711 		slice = __calc_delta(slice, se->load.weight, load);
712 	}
713 
714 	if (sched_feat(BASE_SLICE))
715 		slice = max(slice, (u64)sysctl_sched_min_granularity);
716 
717 	return slice;
718 }
719 
720 /*
721  * We calculate the vruntime slice of a to-be-inserted task.
722  *
723  * vs = s/w
724  */
725 static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
726 {
727 	return calc_delta_fair(sched_slice(cfs_rq, se), se);
728 }
729 
730 #include "pelt.h"
731 #ifdef CONFIG_SMP
732 
733 static int select_idle_sibling(struct task_struct *p, int prev_cpu, int cpu);
734 static unsigned long task_h_load(struct task_struct *p);
735 static unsigned long capacity_of(int cpu);
736 
737 /* Give new sched_entity start runnable values to heavy its load in infant time */
738 void init_entity_runnable_average(struct sched_entity *se)
739 {
740 	struct sched_avg *sa = &se->avg;
741 
742 	memset(sa, 0, sizeof(*sa));
743 
744 	/*
745 	 * Tasks are initialized with full load to be seen as heavy tasks until
746 	 * they get a chance to stabilize to their real load level.
747 	 * Group entities are initialized with zero load to reflect the fact that
748 	 * nothing has been attached to the task group yet.
749 	 */
750 	if (entity_is_task(se))
751 		sa->load_avg = scale_load_down(se->load.weight);
752 
753 	/* when this task enqueue'ed, it will contribute to its cfs_rq's load_avg */
754 }
755 
756 static void attach_entity_cfs_rq(struct sched_entity *se);
757 
758 /*
759  * With new tasks being created, their initial util_avgs are extrapolated
760  * based on the cfs_rq's current util_avg:
761  *
762  *   util_avg = cfs_rq->util_avg / (cfs_rq->load_avg + 1) * se.load.weight
763  *
764  * However, in many cases, the above util_avg does not give a desired
765  * value. Moreover, the sum of the util_avgs may be divergent, such
766  * as when the series is a harmonic series.
767  *
768  * To solve this problem, we also cap the util_avg of successive tasks to
769  * only 1/2 of the left utilization budget:
770  *
771  *   util_avg_cap = (cpu_scale - cfs_rq->avg.util_avg) / 2^n
772  *
773  * where n denotes the nth task and cpu_scale the CPU capacity.
774  *
775  * For example, for a CPU with 1024 of capacity, a simplest series from
776  * the beginning would be like:
777  *
778  *  task  util_avg: 512, 256, 128,  64,  32,   16,    8, ...
779  * cfs_rq util_avg: 512, 768, 896, 960, 992, 1008, 1016, ...
780  *
781  * Finally, that extrapolated util_avg is clamped to the cap (util_avg_cap)
782  * if util_avg > util_avg_cap.
783  */
784 void post_init_entity_util_avg(struct task_struct *p)
785 {
786 	struct sched_entity *se = &p->se;
787 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
788 	struct sched_avg *sa = &se->avg;
789 	long cpu_scale = arch_scale_cpu_capacity(cpu_of(rq_of(cfs_rq)));
790 	long cap = (long)(cpu_scale - cfs_rq->avg.util_avg) / 2;
791 
792 	if (cap > 0) {
793 		if (cfs_rq->avg.util_avg != 0) {
794 			sa->util_avg  = cfs_rq->avg.util_avg * se->load.weight;
795 			sa->util_avg /= (cfs_rq->avg.load_avg + 1);
796 
797 			if (sa->util_avg > cap)
798 				sa->util_avg = cap;
799 		} else {
800 			sa->util_avg = cap;
801 		}
802 	}
803 
804 	sa->runnable_avg = sa->util_avg;
805 
806 	if (p->sched_class != &fair_sched_class) {
807 		/*
808 		 * For !fair tasks do:
809 		 *
810 		update_cfs_rq_load_avg(now, cfs_rq);
811 		attach_entity_load_avg(cfs_rq, se);
812 		switched_from_fair(rq, p);
813 		 *
814 		 * such that the next switched_to_fair() has the
815 		 * expected state.
816 		 */
817 		se->avg.last_update_time = cfs_rq_clock_pelt(cfs_rq);
818 		return;
819 	}
820 
821 	attach_entity_cfs_rq(se);
822 }
823 
824 #else /* !CONFIG_SMP */
825 void init_entity_runnable_average(struct sched_entity *se)
826 {
827 }
828 void post_init_entity_util_avg(struct task_struct *p)
829 {
830 }
831 static void update_tg_load_avg(struct cfs_rq *cfs_rq)
832 {
833 }
834 #endif /* CONFIG_SMP */
835 
836 /*
837  * Update the current task's runtime statistics.
838  */
839 static void update_curr(struct cfs_rq *cfs_rq)
840 {
841 	struct sched_entity *curr = cfs_rq->curr;
842 	u64 now = rq_clock_task(rq_of(cfs_rq));
843 	u64 delta_exec;
844 
845 	if (unlikely(!curr))
846 		return;
847 
848 	delta_exec = now - curr->exec_start;
849 	if (unlikely((s64)delta_exec <= 0))
850 		return;
851 
852 	curr->exec_start = now;
853 
854 	schedstat_set(curr->statistics.exec_max,
855 		      max(delta_exec, curr->statistics.exec_max));
856 
857 	curr->sum_exec_runtime += delta_exec;
858 	schedstat_add(cfs_rq->exec_clock, delta_exec);
859 
860 	curr->vruntime += calc_delta_fair(delta_exec, curr);
861 	update_min_vruntime(cfs_rq);
862 
863 	if (entity_is_task(curr)) {
864 		struct task_struct *curtask = task_of(curr);
865 
866 		trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
867 		cgroup_account_cputime(curtask, delta_exec);
868 		account_group_exec_runtime(curtask, delta_exec);
869 	}
870 
871 	account_cfs_rq_runtime(cfs_rq, delta_exec);
872 }
873 
874 static void update_curr_fair(struct rq *rq)
875 {
876 	update_curr(cfs_rq_of(&rq->curr->se));
877 }
878 
879 static inline void
880 update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
881 {
882 	u64 wait_start, prev_wait_start;
883 
884 	if (!schedstat_enabled())
885 		return;
886 
887 	wait_start = rq_clock(rq_of(cfs_rq));
888 	prev_wait_start = schedstat_val(se->statistics.wait_start);
889 
890 	if (entity_is_task(se) && task_on_rq_migrating(task_of(se)) &&
891 	    likely(wait_start > prev_wait_start))
892 		wait_start -= prev_wait_start;
893 
894 	__schedstat_set(se->statistics.wait_start, wait_start);
895 }
896 
897 static inline void
898 update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
899 {
900 	struct task_struct *p;
901 	u64 delta;
902 
903 	if (!schedstat_enabled())
904 		return;
905 
906 	/*
907 	 * When the sched_schedstat changes from 0 to 1, some sched se
908 	 * maybe already in the runqueue, the se->statistics.wait_start
909 	 * will be 0.So it will let the delta wrong. We need to avoid this
910 	 * scenario.
911 	 */
912 	if (unlikely(!schedstat_val(se->statistics.wait_start)))
913 		return;
914 
915 	delta = rq_clock(rq_of(cfs_rq)) - schedstat_val(se->statistics.wait_start);
916 
917 	if (entity_is_task(se)) {
918 		p = task_of(se);
919 		if (task_on_rq_migrating(p)) {
920 			/*
921 			 * Preserve migrating task's wait time so wait_start
922 			 * time stamp can be adjusted to accumulate wait time
923 			 * prior to migration.
924 			 */
925 			__schedstat_set(se->statistics.wait_start, delta);
926 			return;
927 		}
928 		trace_sched_stat_wait(p, delta);
929 	}
930 
931 	__schedstat_set(se->statistics.wait_max,
932 		      max(schedstat_val(se->statistics.wait_max), delta));
933 	__schedstat_inc(se->statistics.wait_count);
934 	__schedstat_add(se->statistics.wait_sum, delta);
935 	__schedstat_set(se->statistics.wait_start, 0);
936 }
937 
938 static inline void
939 update_stats_enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
940 {
941 	struct task_struct *tsk = NULL;
942 	u64 sleep_start, block_start;
943 
944 	if (!schedstat_enabled())
945 		return;
946 
947 	sleep_start = schedstat_val(se->statistics.sleep_start);
948 	block_start = schedstat_val(se->statistics.block_start);
949 
950 	if (entity_is_task(se))
951 		tsk = task_of(se);
952 
953 	if (sleep_start) {
954 		u64 delta = rq_clock(rq_of(cfs_rq)) - sleep_start;
955 
956 		if ((s64)delta < 0)
957 			delta = 0;
958 
959 		if (unlikely(delta > schedstat_val(se->statistics.sleep_max)))
960 			__schedstat_set(se->statistics.sleep_max, delta);
961 
962 		__schedstat_set(se->statistics.sleep_start, 0);
963 		__schedstat_add(se->statistics.sum_sleep_runtime, delta);
964 
965 		if (tsk) {
966 			account_scheduler_latency(tsk, delta >> 10, 1);
967 			trace_sched_stat_sleep(tsk, delta);
968 		}
969 	}
970 	if (block_start) {
971 		u64 delta = rq_clock(rq_of(cfs_rq)) - block_start;
972 
973 		if ((s64)delta < 0)
974 			delta = 0;
975 
976 		if (unlikely(delta > schedstat_val(se->statistics.block_max)))
977 			__schedstat_set(se->statistics.block_max, delta);
978 
979 		__schedstat_set(se->statistics.block_start, 0);
980 		__schedstat_add(se->statistics.sum_sleep_runtime, delta);
981 
982 		if (tsk) {
983 			if (tsk->in_iowait) {
984 				__schedstat_add(se->statistics.iowait_sum, delta);
985 				__schedstat_inc(se->statistics.iowait_count);
986 				trace_sched_stat_iowait(tsk, delta);
987 			}
988 
989 			trace_sched_stat_blocked(tsk, delta);
990 
991 			/*
992 			 * Blocking time is in units of nanosecs, so shift by
993 			 * 20 to get a milliseconds-range estimation of the
994 			 * amount of time that the task spent sleeping:
995 			 */
996 			if (unlikely(prof_on == SLEEP_PROFILING)) {
997 				profile_hits(SLEEP_PROFILING,
998 						(void *)get_wchan(tsk),
999 						delta >> 20);
1000 			}
1001 			account_scheduler_latency(tsk, delta >> 10, 0);
1002 		}
1003 	}
1004 }
1005 
1006 /*
1007  * Task is being enqueued - update stats:
1008  */
1009 static inline void
1010 update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
1011 {
1012 	if (!schedstat_enabled())
1013 		return;
1014 
1015 	/*
1016 	 * Are we enqueueing a waiting task? (for current tasks
1017 	 * a dequeue/enqueue event is a NOP)
1018 	 */
1019 	if (se != cfs_rq->curr)
1020 		update_stats_wait_start(cfs_rq, se);
1021 
1022 	if (flags & ENQUEUE_WAKEUP)
1023 		update_stats_enqueue_sleeper(cfs_rq, se);
1024 }
1025 
1026 static inline void
1027 update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
1028 {
1029 
1030 	if (!schedstat_enabled())
1031 		return;
1032 
1033 	/*
1034 	 * Mark the end of the wait period if dequeueing a
1035 	 * waiting task:
1036 	 */
1037 	if (se != cfs_rq->curr)
1038 		update_stats_wait_end(cfs_rq, se);
1039 
1040 	if ((flags & DEQUEUE_SLEEP) && entity_is_task(se)) {
1041 		struct task_struct *tsk = task_of(se);
1042 
1043 		if (tsk->state & TASK_INTERRUPTIBLE)
1044 			__schedstat_set(se->statistics.sleep_start,
1045 				      rq_clock(rq_of(cfs_rq)));
1046 		if (tsk->state & TASK_UNINTERRUPTIBLE)
1047 			__schedstat_set(se->statistics.block_start,
1048 				      rq_clock(rq_of(cfs_rq)));
1049 	}
1050 }
1051 
1052 /*
1053  * We are picking a new current task - update its stats:
1054  */
1055 static inline void
1056 update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
1057 {
1058 	/*
1059 	 * We are starting a new run period:
1060 	 */
1061 	se->exec_start = rq_clock_task(rq_of(cfs_rq));
1062 }
1063 
1064 /**************************************************
1065  * Scheduling class queueing methods:
1066  */
1067 
1068 #ifdef CONFIG_NUMA_BALANCING
1069 /*
1070  * Approximate time to scan a full NUMA task in ms. The task scan period is
1071  * calculated based on the tasks virtual memory size and
1072  * numa_balancing_scan_size.
1073  */
1074 unsigned int sysctl_numa_balancing_scan_period_min = 1000;
1075 unsigned int sysctl_numa_balancing_scan_period_max = 60000;
1076 
1077 /* Portion of address space to scan in MB */
1078 unsigned int sysctl_numa_balancing_scan_size = 256;
1079 
1080 /* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
1081 unsigned int sysctl_numa_balancing_scan_delay = 1000;
1082 
1083 struct numa_group {
1084 	refcount_t refcount;
1085 
1086 	spinlock_t lock; /* nr_tasks, tasks */
1087 	int nr_tasks;
1088 	pid_t gid;
1089 	int active_nodes;
1090 
1091 	struct rcu_head rcu;
1092 	unsigned long total_faults;
1093 	unsigned long max_faults_cpu;
1094 	/*
1095 	 * Faults_cpu is used to decide whether memory should move
1096 	 * towards the CPU. As a consequence, these stats are weighted
1097 	 * more by CPU use than by memory faults.
1098 	 */
1099 	unsigned long *faults_cpu;
1100 	unsigned long faults[];
1101 };
1102 
1103 /*
1104  * For functions that can be called in multiple contexts that permit reading
1105  * ->numa_group (see struct task_struct for locking rules).
1106  */
1107 static struct numa_group *deref_task_numa_group(struct task_struct *p)
1108 {
1109 	return rcu_dereference_check(p->numa_group, p == current ||
1110 		(lockdep_is_held(&task_rq(p)->lock) && !READ_ONCE(p->on_cpu)));
1111 }
1112 
1113 static struct numa_group *deref_curr_numa_group(struct task_struct *p)
1114 {
1115 	return rcu_dereference_protected(p->numa_group, p == current);
1116 }
1117 
1118 static inline unsigned long group_faults_priv(struct numa_group *ng);
1119 static inline unsigned long group_faults_shared(struct numa_group *ng);
1120 
1121 static unsigned int task_nr_scan_windows(struct task_struct *p)
1122 {
1123 	unsigned long rss = 0;
1124 	unsigned long nr_scan_pages;
1125 
1126 	/*
1127 	 * Calculations based on RSS as non-present and empty pages are skipped
1128 	 * by the PTE scanner and NUMA hinting faults should be trapped based
1129 	 * on resident pages
1130 	 */
1131 	nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
1132 	rss = get_mm_rss(p->mm);
1133 	if (!rss)
1134 		rss = nr_scan_pages;
1135 
1136 	rss = round_up(rss, nr_scan_pages);
1137 	return rss / nr_scan_pages;
1138 }
1139 
1140 /* For sanity's sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
1141 #define MAX_SCAN_WINDOW 2560
1142 
1143 static unsigned int task_scan_min(struct task_struct *p)
1144 {
1145 	unsigned int scan_size = READ_ONCE(sysctl_numa_balancing_scan_size);
1146 	unsigned int scan, floor;
1147 	unsigned int windows = 1;
1148 
1149 	if (scan_size < MAX_SCAN_WINDOW)
1150 		windows = MAX_SCAN_WINDOW / scan_size;
1151 	floor = 1000 / windows;
1152 
1153 	scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
1154 	return max_t(unsigned int, floor, scan);
1155 }
1156 
1157 static unsigned int task_scan_start(struct task_struct *p)
1158 {
1159 	unsigned long smin = task_scan_min(p);
1160 	unsigned long period = smin;
1161 	struct numa_group *ng;
1162 
1163 	/* Scale the maximum scan period with the amount of shared memory. */
1164 	rcu_read_lock();
1165 	ng = rcu_dereference(p->numa_group);
1166 	if (ng) {
1167 		unsigned long shared = group_faults_shared(ng);
1168 		unsigned long private = group_faults_priv(ng);
1169 
1170 		period *= refcount_read(&ng->refcount);
1171 		period *= shared + 1;
1172 		period /= private + shared + 1;
1173 	}
1174 	rcu_read_unlock();
1175 
1176 	return max(smin, period);
1177 }
1178 
1179 static unsigned int task_scan_max(struct task_struct *p)
1180 {
1181 	unsigned long smin = task_scan_min(p);
1182 	unsigned long smax;
1183 	struct numa_group *ng;
1184 
1185 	/* Watch for min being lower than max due to floor calculations */
1186 	smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
1187 
1188 	/* Scale the maximum scan period with the amount of shared memory. */
1189 	ng = deref_curr_numa_group(p);
1190 	if (ng) {
1191 		unsigned long shared = group_faults_shared(ng);
1192 		unsigned long private = group_faults_priv(ng);
1193 		unsigned long period = smax;
1194 
1195 		period *= refcount_read(&ng->refcount);
1196 		period *= shared + 1;
1197 		period /= private + shared + 1;
1198 
1199 		smax = max(smax, period);
1200 	}
1201 
1202 	return max(smin, smax);
1203 }
1204 
1205 static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
1206 {
1207 	rq->nr_numa_running += (p->numa_preferred_nid != NUMA_NO_NODE);
1208 	rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
1209 }
1210 
1211 static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
1212 {
1213 	rq->nr_numa_running -= (p->numa_preferred_nid != NUMA_NO_NODE);
1214 	rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
1215 }
1216 
1217 /* Shared or private faults. */
1218 #define NR_NUMA_HINT_FAULT_TYPES 2
1219 
1220 /* Memory and CPU locality */
1221 #define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2)
1222 
1223 /* Averaged statistics, and temporary buffers. */
1224 #define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2)
1225 
1226 pid_t task_numa_group_id(struct task_struct *p)
1227 {
1228 	struct numa_group *ng;
1229 	pid_t gid = 0;
1230 
1231 	rcu_read_lock();
1232 	ng = rcu_dereference(p->numa_group);
1233 	if (ng)
1234 		gid = ng->gid;
1235 	rcu_read_unlock();
1236 
1237 	return gid;
1238 }
1239 
1240 /*
1241  * The averaged statistics, shared & private, memory & CPU,
1242  * occupy the first half of the array. The second half of the
1243  * array is for current counters, which are averaged into the
1244  * first set by task_numa_placement.
1245  */
1246 static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv)
1247 {
1248 	return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv;
1249 }
1250 
1251 static inline unsigned long task_faults(struct task_struct *p, int nid)
1252 {
1253 	if (!p->numa_faults)
1254 		return 0;
1255 
1256 	return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1257 		p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)];
1258 }
1259 
1260 static inline unsigned long group_faults(struct task_struct *p, int nid)
1261 {
1262 	struct numa_group *ng = deref_task_numa_group(p);
1263 
1264 	if (!ng)
1265 		return 0;
1266 
1267 	return ng->faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1268 		ng->faults[task_faults_idx(NUMA_MEM, nid, 1)];
1269 }
1270 
1271 static inline unsigned long group_faults_cpu(struct numa_group *group, int nid)
1272 {
1273 	return group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 0)] +
1274 		group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 1)];
1275 }
1276 
1277 static inline unsigned long group_faults_priv(struct numa_group *ng)
1278 {
1279 	unsigned long faults = 0;
1280 	int node;
1281 
1282 	for_each_online_node(node) {
1283 		faults += ng->faults[task_faults_idx(NUMA_MEM, node, 1)];
1284 	}
1285 
1286 	return faults;
1287 }
1288 
1289 static inline unsigned long group_faults_shared(struct numa_group *ng)
1290 {
1291 	unsigned long faults = 0;
1292 	int node;
1293 
1294 	for_each_online_node(node) {
1295 		faults += ng->faults[task_faults_idx(NUMA_MEM, node, 0)];
1296 	}
1297 
1298 	return faults;
1299 }
1300 
1301 /*
1302  * A node triggering more than 1/3 as many NUMA faults as the maximum is
1303  * considered part of a numa group's pseudo-interleaving set. Migrations
1304  * between these nodes are slowed down, to allow things to settle down.
1305  */
1306 #define ACTIVE_NODE_FRACTION 3
1307 
1308 static bool numa_is_active_node(int nid, struct numa_group *ng)
1309 {
1310 	return group_faults_cpu(ng, nid) * ACTIVE_NODE_FRACTION > ng->max_faults_cpu;
1311 }
1312 
1313 /* Handle placement on systems where not all nodes are directly connected. */
1314 static unsigned long score_nearby_nodes(struct task_struct *p, int nid,
1315 					int maxdist, bool task)
1316 {
1317 	unsigned long score = 0;
1318 	int node;
1319 
1320 	/*
1321 	 * All nodes are directly connected, and the same distance
1322 	 * from each other. No need for fancy placement algorithms.
1323 	 */
1324 	if (sched_numa_topology_type == NUMA_DIRECT)
1325 		return 0;
1326 
1327 	/*
1328 	 * This code is called for each node, introducing N^2 complexity,
1329 	 * which should be ok given the number of nodes rarely exceeds 8.
1330 	 */
1331 	for_each_online_node(node) {
1332 		unsigned long faults;
1333 		int dist = node_distance(nid, node);
1334 
1335 		/*
1336 		 * The furthest away nodes in the system are not interesting
1337 		 * for placement; nid was already counted.
1338 		 */
1339 		if (dist == sched_max_numa_distance || node == nid)
1340 			continue;
1341 
1342 		/*
1343 		 * On systems with a backplane NUMA topology, compare groups
1344 		 * of nodes, and move tasks towards the group with the most
1345 		 * memory accesses. When comparing two nodes at distance
1346 		 * "hoplimit", only nodes closer by than "hoplimit" are part
1347 		 * of each group. Skip other nodes.
1348 		 */
1349 		if (sched_numa_topology_type == NUMA_BACKPLANE &&
1350 					dist >= maxdist)
1351 			continue;
1352 
1353 		/* Add up the faults from nearby nodes. */
1354 		if (task)
1355 			faults = task_faults(p, node);
1356 		else
1357 			faults = group_faults(p, node);
1358 
1359 		/*
1360 		 * On systems with a glueless mesh NUMA topology, there are
1361 		 * no fixed "groups of nodes". Instead, nodes that are not
1362 		 * directly connected bounce traffic through intermediate
1363 		 * nodes; a numa_group can occupy any set of nodes.
1364 		 * The further away a node is, the less the faults count.
1365 		 * This seems to result in good task placement.
1366 		 */
1367 		if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
1368 			faults *= (sched_max_numa_distance - dist);
1369 			faults /= (sched_max_numa_distance - LOCAL_DISTANCE);
1370 		}
1371 
1372 		score += faults;
1373 	}
1374 
1375 	return score;
1376 }
1377 
1378 /*
1379  * These return the fraction of accesses done by a particular task, or
1380  * task group, on a particular numa node.  The group weight is given a
1381  * larger multiplier, in order to group tasks together that are almost
1382  * evenly spread out between numa nodes.
1383  */
1384 static inline unsigned long task_weight(struct task_struct *p, int nid,
1385 					int dist)
1386 {
1387 	unsigned long faults, total_faults;
1388 
1389 	if (!p->numa_faults)
1390 		return 0;
1391 
1392 	total_faults = p->total_numa_faults;
1393 
1394 	if (!total_faults)
1395 		return 0;
1396 
1397 	faults = task_faults(p, nid);
1398 	faults += score_nearby_nodes(p, nid, dist, true);
1399 
1400 	return 1000 * faults / total_faults;
1401 }
1402 
1403 static inline unsigned long group_weight(struct task_struct *p, int nid,
1404 					 int dist)
1405 {
1406 	struct numa_group *ng = deref_task_numa_group(p);
1407 	unsigned long faults, total_faults;
1408 
1409 	if (!ng)
1410 		return 0;
1411 
1412 	total_faults = ng->total_faults;
1413 
1414 	if (!total_faults)
1415 		return 0;
1416 
1417 	faults = group_faults(p, nid);
1418 	faults += score_nearby_nodes(p, nid, dist, false);
1419 
1420 	return 1000 * faults / total_faults;
1421 }
1422 
1423 bool should_numa_migrate_memory(struct task_struct *p, struct page * page,
1424 				int src_nid, int dst_cpu)
1425 {
1426 	struct numa_group *ng = deref_curr_numa_group(p);
1427 	int dst_nid = cpu_to_node(dst_cpu);
1428 	int last_cpupid, this_cpupid;
1429 
1430 	this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid);
1431 	last_cpupid = page_cpupid_xchg_last(page, this_cpupid);
1432 
1433 	/*
1434 	 * Allow first faults or private faults to migrate immediately early in
1435 	 * the lifetime of a task. The magic number 4 is based on waiting for
1436 	 * two full passes of the "multi-stage node selection" test that is
1437 	 * executed below.
1438 	 */
1439 	if ((p->numa_preferred_nid == NUMA_NO_NODE || p->numa_scan_seq <= 4) &&
1440 	    (cpupid_pid_unset(last_cpupid) || cpupid_match_pid(p, last_cpupid)))
1441 		return true;
1442 
1443 	/*
1444 	 * Multi-stage node selection is used in conjunction with a periodic
1445 	 * migration fault to build a temporal task<->page relation. By using
1446 	 * a two-stage filter we remove short/unlikely relations.
1447 	 *
1448 	 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate
1449 	 * a task's usage of a particular page (n_p) per total usage of this
1450 	 * page (n_t) (in a given time-span) to a probability.
1451 	 *
1452 	 * Our periodic faults will sample this probability and getting the
1453 	 * same result twice in a row, given these samples are fully
1454 	 * independent, is then given by P(n)^2, provided our sample period
1455 	 * is sufficiently short compared to the usage pattern.
1456 	 *
1457 	 * This quadric squishes small probabilities, making it less likely we
1458 	 * act on an unlikely task<->page relation.
1459 	 */
1460 	if (!cpupid_pid_unset(last_cpupid) &&
1461 				cpupid_to_nid(last_cpupid) != dst_nid)
1462 		return false;
1463 
1464 	/* Always allow migrate on private faults */
1465 	if (cpupid_match_pid(p, last_cpupid))
1466 		return true;
1467 
1468 	/* A shared fault, but p->numa_group has not been set up yet. */
1469 	if (!ng)
1470 		return true;
1471 
1472 	/*
1473 	 * Destination node is much more heavily used than the source
1474 	 * node? Allow migration.
1475 	 */
1476 	if (group_faults_cpu(ng, dst_nid) > group_faults_cpu(ng, src_nid) *
1477 					ACTIVE_NODE_FRACTION)
1478 		return true;
1479 
1480 	/*
1481 	 * Distribute memory according to CPU & memory use on each node,
1482 	 * with 3/4 hysteresis to avoid unnecessary memory migrations:
1483 	 *
1484 	 * faults_cpu(dst)   3   faults_cpu(src)
1485 	 * --------------- * - > ---------------
1486 	 * faults_mem(dst)   4   faults_mem(src)
1487 	 */
1488 	return group_faults_cpu(ng, dst_nid) * group_faults(p, src_nid) * 3 >
1489 	       group_faults_cpu(ng, src_nid) * group_faults(p, dst_nid) * 4;
1490 }
1491 
1492 /*
1493  * 'numa_type' describes the node at the moment of load balancing.
1494  */
1495 enum numa_type {
1496 	/* The node has spare capacity that can be used to run more tasks.  */
1497 	node_has_spare = 0,
1498 	/*
1499 	 * The node is fully used and the tasks don't compete for more CPU
1500 	 * cycles. Nevertheless, some tasks might wait before running.
1501 	 */
1502 	node_fully_busy,
1503 	/*
1504 	 * The node is overloaded and can't provide expected CPU cycles to all
1505 	 * tasks.
1506 	 */
1507 	node_overloaded
1508 };
1509 
1510 /* Cached statistics for all CPUs within a node */
1511 struct numa_stats {
1512 	unsigned long load;
1513 	unsigned long runnable;
1514 	unsigned long util;
1515 	/* Total compute capacity of CPUs on a node */
1516 	unsigned long compute_capacity;
1517 	unsigned int nr_running;
1518 	unsigned int weight;
1519 	enum numa_type node_type;
1520 	int idle_cpu;
1521 };
1522 
1523 static inline bool is_core_idle(int cpu)
1524 {
1525 #ifdef CONFIG_SCHED_SMT
1526 	int sibling;
1527 
1528 	for_each_cpu(sibling, cpu_smt_mask(cpu)) {
1529 		if (cpu == sibling)
1530 			continue;
1531 
1532 		if (!idle_cpu(cpu))
1533 			return false;
1534 	}
1535 #endif
1536 
1537 	return true;
1538 }
1539 
1540 struct task_numa_env {
1541 	struct task_struct *p;
1542 
1543 	int src_cpu, src_nid;
1544 	int dst_cpu, dst_nid;
1545 
1546 	struct numa_stats src_stats, dst_stats;
1547 
1548 	int imbalance_pct;
1549 	int dist;
1550 
1551 	struct task_struct *best_task;
1552 	long best_imp;
1553 	int best_cpu;
1554 };
1555 
1556 static unsigned long cpu_load(struct rq *rq);
1557 static unsigned long cpu_runnable(struct rq *rq);
1558 static unsigned long cpu_util(int cpu);
1559 static inline long adjust_numa_imbalance(int imbalance,
1560 					int dst_running, int dst_weight);
1561 
1562 static inline enum
1563 numa_type numa_classify(unsigned int imbalance_pct,
1564 			 struct numa_stats *ns)
1565 {
1566 	if ((ns->nr_running > ns->weight) &&
1567 	    (((ns->compute_capacity * 100) < (ns->util * imbalance_pct)) ||
1568 	     ((ns->compute_capacity * imbalance_pct) < (ns->runnable * 100))))
1569 		return node_overloaded;
1570 
1571 	if ((ns->nr_running < ns->weight) ||
1572 	    (((ns->compute_capacity * 100) > (ns->util * imbalance_pct)) &&
1573 	     ((ns->compute_capacity * imbalance_pct) > (ns->runnable * 100))))
1574 		return node_has_spare;
1575 
1576 	return node_fully_busy;
1577 }
1578 
1579 #ifdef CONFIG_SCHED_SMT
1580 /* Forward declarations of select_idle_sibling helpers */
1581 static inline bool test_idle_cores(int cpu, bool def);
1582 static inline int numa_idle_core(int idle_core, int cpu)
1583 {
1584 	if (!static_branch_likely(&sched_smt_present) ||
1585 	    idle_core >= 0 || !test_idle_cores(cpu, false))
1586 		return idle_core;
1587 
1588 	/*
1589 	 * Prefer cores instead of packing HT siblings
1590 	 * and triggering future load balancing.
1591 	 */
1592 	if (is_core_idle(cpu))
1593 		idle_core = cpu;
1594 
1595 	return idle_core;
1596 }
1597 #else
1598 static inline int numa_idle_core(int idle_core, int cpu)
1599 {
1600 	return idle_core;
1601 }
1602 #endif
1603 
1604 /*
1605  * Gather all necessary information to make NUMA balancing placement
1606  * decisions that are compatible with standard load balancer. This
1607  * borrows code and logic from update_sg_lb_stats but sharing a
1608  * common implementation is impractical.
1609  */
1610 static void update_numa_stats(struct task_numa_env *env,
1611 			      struct numa_stats *ns, int nid,
1612 			      bool find_idle)
1613 {
1614 	int cpu, idle_core = -1;
1615 
1616 	memset(ns, 0, sizeof(*ns));
1617 	ns->idle_cpu = -1;
1618 
1619 	rcu_read_lock();
1620 	for_each_cpu(cpu, cpumask_of_node(nid)) {
1621 		struct rq *rq = cpu_rq(cpu);
1622 
1623 		ns->load += cpu_load(rq);
1624 		ns->runnable += cpu_runnable(rq);
1625 		ns->util += cpu_util(cpu);
1626 		ns->nr_running += rq->cfs.h_nr_running;
1627 		ns->compute_capacity += capacity_of(cpu);
1628 
1629 		if (find_idle && !rq->nr_running && idle_cpu(cpu)) {
1630 			if (READ_ONCE(rq->numa_migrate_on) ||
1631 			    !cpumask_test_cpu(cpu, env->p->cpus_ptr))
1632 				continue;
1633 
1634 			if (ns->idle_cpu == -1)
1635 				ns->idle_cpu = cpu;
1636 
1637 			idle_core = numa_idle_core(idle_core, cpu);
1638 		}
1639 	}
1640 	rcu_read_unlock();
1641 
1642 	ns->weight = cpumask_weight(cpumask_of_node(nid));
1643 
1644 	ns->node_type = numa_classify(env->imbalance_pct, ns);
1645 
1646 	if (idle_core >= 0)
1647 		ns->idle_cpu = idle_core;
1648 }
1649 
1650 static void task_numa_assign(struct task_numa_env *env,
1651 			     struct task_struct *p, long imp)
1652 {
1653 	struct rq *rq = cpu_rq(env->dst_cpu);
1654 
1655 	/* Check if run-queue part of active NUMA balance. */
1656 	if (env->best_cpu != env->dst_cpu && xchg(&rq->numa_migrate_on, 1)) {
1657 		int cpu;
1658 		int start = env->dst_cpu;
1659 
1660 		/* Find alternative idle CPU. */
1661 		for_each_cpu_wrap(cpu, cpumask_of_node(env->dst_nid), start) {
1662 			if (cpu == env->best_cpu || !idle_cpu(cpu) ||
1663 			    !cpumask_test_cpu(cpu, env->p->cpus_ptr)) {
1664 				continue;
1665 			}
1666 
1667 			env->dst_cpu = cpu;
1668 			rq = cpu_rq(env->dst_cpu);
1669 			if (!xchg(&rq->numa_migrate_on, 1))
1670 				goto assign;
1671 		}
1672 
1673 		/* Failed to find an alternative idle CPU */
1674 		return;
1675 	}
1676 
1677 assign:
1678 	/*
1679 	 * Clear previous best_cpu/rq numa-migrate flag, since task now
1680 	 * found a better CPU to move/swap.
1681 	 */
1682 	if (env->best_cpu != -1 && env->best_cpu != env->dst_cpu) {
1683 		rq = cpu_rq(env->best_cpu);
1684 		WRITE_ONCE(rq->numa_migrate_on, 0);
1685 	}
1686 
1687 	if (env->best_task)
1688 		put_task_struct(env->best_task);
1689 	if (p)
1690 		get_task_struct(p);
1691 
1692 	env->best_task = p;
1693 	env->best_imp = imp;
1694 	env->best_cpu = env->dst_cpu;
1695 }
1696 
1697 static bool load_too_imbalanced(long src_load, long dst_load,
1698 				struct task_numa_env *env)
1699 {
1700 	long imb, old_imb;
1701 	long orig_src_load, orig_dst_load;
1702 	long src_capacity, dst_capacity;
1703 
1704 	/*
1705 	 * The load is corrected for the CPU capacity available on each node.
1706 	 *
1707 	 * src_load        dst_load
1708 	 * ------------ vs ---------
1709 	 * src_capacity    dst_capacity
1710 	 */
1711 	src_capacity = env->src_stats.compute_capacity;
1712 	dst_capacity = env->dst_stats.compute_capacity;
1713 
1714 	imb = abs(dst_load * src_capacity - src_load * dst_capacity);
1715 
1716 	orig_src_load = env->src_stats.load;
1717 	orig_dst_load = env->dst_stats.load;
1718 
1719 	old_imb = abs(orig_dst_load * src_capacity - orig_src_load * dst_capacity);
1720 
1721 	/* Would this change make things worse? */
1722 	return (imb > old_imb);
1723 }
1724 
1725 /*
1726  * Maximum NUMA importance can be 1998 (2*999);
1727  * SMALLIMP @ 30 would be close to 1998/64.
1728  * Used to deter task migration.
1729  */
1730 #define SMALLIMP	30
1731 
1732 /*
1733  * This checks if the overall compute and NUMA accesses of the system would
1734  * be improved if the source tasks was migrated to the target dst_cpu taking
1735  * into account that it might be best if task running on the dst_cpu should
1736  * be exchanged with the source task
1737  */
1738 static bool task_numa_compare(struct task_numa_env *env,
1739 			      long taskimp, long groupimp, bool maymove)
1740 {
1741 	struct numa_group *cur_ng, *p_ng = deref_curr_numa_group(env->p);
1742 	struct rq *dst_rq = cpu_rq(env->dst_cpu);
1743 	long imp = p_ng ? groupimp : taskimp;
1744 	struct task_struct *cur;
1745 	long src_load, dst_load;
1746 	int dist = env->dist;
1747 	long moveimp = imp;
1748 	long load;
1749 	bool stopsearch = false;
1750 
1751 	if (READ_ONCE(dst_rq->numa_migrate_on))
1752 		return false;
1753 
1754 	rcu_read_lock();
1755 	cur = rcu_dereference(dst_rq->curr);
1756 	if (cur && ((cur->flags & PF_EXITING) || is_idle_task(cur)))
1757 		cur = NULL;
1758 
1759 	/*
1760 	 * Because we have preemption enabled we can get migrated around and
1761 	 * end try selecting ourselves (current == env->p) as a swap candidate.
1762 	 */
1763 	if (cur == env->p) {
1764 		stopsearch = true;
1765 		goto unlock;
1766 	}
1767 
1768 	if (!cur) {
1769 		if (maymove && moveimp >= env->best_imp)
1770 			goto assign;
1771 		else
1772 			goto unlock;
1773 	}
1774 
1775 	/* Skip this swap candidate if cannot move to the source cpu. */
1776 	if (!cpumask_test_cpu(env->src_cpu, cur->cpus_ptr))
1777 		goto unlock;
1778 
1779 	/*
1780 	 * Skip this swap candidate if it is not moving to its preferred
1781 	 * node and the best task is.
1782 	 */
1783 	if (env->best_task &&
1784 	    env->best_task->numa_preferred_nid == env->src_nid &&
1785 	    cur->numa_preferred_nid != env->src_nid) {
1786 		goto unlock;
1787 	}
1788 
1789 	/*
1790 	 * "imp" is the fault differential for the source task between the
1791 	 * source and destination node. Calculate the total differential for
1792 	 * the source task and potential destination task. The more negative
1793 	 * the value is, the more remote accesses that would be expected to
1794 	 * be incurred if the tasks were swapped.
1795 	 *
1796 	 * If dst and source tasks are in the same NUMA group, or not
1797 	 * in any group then look only at task weights.
1798 	 */
1799 	cur_ng = rcu_dereference(cur->numa_group);
1800 	if (cur_ng == p_ng) {
1801 		imp = taskimp + task_weight(cur, env->src_nid, dist) -
1802 		      task_weight(cur, env->dst_nid, dist);
1803 		/*
1804 		 * Add some hysteresis to prevent swapping the
1805 		 * tasks within a group over tiny differences.
1806 		 */
1807 		if (cur_ng)
1808 			imp -= imp / 16;
1809 	} else {
1810 		/*
1811 		 * Compare the group weights. If a task is all by itself
1812 		 * (not part of a group), use the task weight instead.
1813 		 */
1814 		if (cur_ng && p_ng)
1815 			imp += group_weight(cur, env->src_nid, dist) -
1816 			       group_weight(cur, env->dst_nid, dist);
1817 		else
1818 			imp += task_weight(cur, env->src_nid, dist) -
1819 			       task_weight(cur, env->dst_nid, dist);
1820 	}
1821 
1822 	/* Discourage picking a task already on its preferred node */
1823 	if (cur->numa_preferred_nid == env->dst_nid)
1824 		imp -= imp / 16;
1825 
1826 	/*
1827 	 * Encourage picking a task that moves to its preferred node.
1828 	 * This potentially makes imp larger than it's maximum of
1829 	 * 1998 (see SMALLIMP and task_weight for why) but in this
1830 	 * case, it does not matter.
1831 	 */
1832 	if (cur->numa_preferred_nid == env->src_nid)
1833 		imp += imp / 8;
1834 
1835 	if (maymove && moveimp > imp && moveimp > env->best_imp) {
1836 		imp = moveimp;
1837 		cur = NULL;
1838 		goto assign;
1839 	}
1840 
1841 	/*
1842 	 * Prefer swapping with a task moving to its preferred node over a
1843 	 * task that is not.
1844 	 */
1845 	if (env->best_task && cur->numa_preferred_nid == env->src_nid &&
1846 	    env->best_task->numa_preferred_nid != env->src_nid) {
1847 		goto assign;
1848 	}
1849 
1850 	/*
1851 	 * If the NUMA importance is less than SMALLIMP,
1852 	 * task migration might only result in ping pong
1853 	 * of tasks and also hurt performance due to cache
1854 	 * misses.
1855 	 */
1856 	if (imp < SMALLIMP || imp <= env->best_imp + SMALLIMP / 2)
1857 		goto unlock;
1858 
1859 	/*
1860 	 * In the overloaded case, try and keep the load balanced.
1861 	 */
1862 	load = task_h_load(env->p) - task_h_load(cur);
1863 	if (!load)
1864 		goto assign;
1865 
1866 	dst_load = env->dst_stats.load + load;
1867 	src_load = env->src_stats.load - load;
1868 
1869 	if (load_too_imbalanced(src_load, dst_load, env))
1870 		goto unlock;
1871 
1872 assign:
1873 	/* Evaluate an idle CPU for a task numa move. */
1874 	if (!cur) {
1875 		int cpu = env->dst_stats.idle_cpu;
1876 
1877 		/* Nothing cached so current CPU went idle since the search. */
1878 		if (cpu < 0)
1879 			cpu = env->dst_cpu;
1880 
1881 		/*
1882 		 * If the CPU is no longer truly idle and the previous best CPU
1883 		 * is, keep using it.
1884 		 */
1885 		if (!idle_cpu(cpu) && env->best_cpu >= 0 &&
1886 		    idle_cpu(env->best_cpu)) {
1887 			cpu = env->best_cpu;
1888 		}
1889 
1890 		env->dst_cpu = cpu;
1891 	}
1892 
1893 	task_numa_assign(env, cur, imp);
1894 
1895 	/*
1896 	 * If a move to idle is allowed because there is capacity or load
1897 	 * balance improves then stop the search. While a better swap
1898 	 * candidate may exist, a search is not free.
1899 	 */
1900 	if (maymove && !cur && env->best_cpu >= 0 && idle_cpu(env->best_cpu))
1901 		stopsearch = true;
1902 
1903 	/*
1904 	 * If a swap candidate must be identified and the current best task
1905 	 * moves its preferred node then stop the search.
1906 	 */
1907 	if (!maymove && env->best_task &&
1908 	    env->best_task->numa_preferred_nid == env->src_nid) {
1909 		stopsearch = true;
1910 	}
1911 unlock:
1912 	rcu_read_unlock();
1913 
1914 	return stopsearch;
1915 }
1916 
1917 static void task_numa_find_cpu(struct task_numa_env *env,
1918 				long taskimp, long groupimp)
1919 {
1920 	bool maymove = false;
1921 	int cpu;
1922 
1923 	/*
1924 	 * If dst node has spare capacity, then check if there is an
1925 	 * imbalance that would be overruled by the load balancer.
1926 	 */
1927 	if (env->dst_stats.node_type == node_has_spare) {
1928 		unsigned int imbalance;
1929 		int src_running, dst_running;
1930 
1931 		/*
1932 		 * Would movement cause an imbalance? Note that if src has
1933 		 * more running tasks that the imbalance is ignored as the
1934 		 * move improves the imbalance from the perspective of the
1935 		 * CPU load balancer.
1936 		 * */
1937 		src_running = env->src_stats.nr_running - 1;
1938 		dst_running = env->dst_stats.nr_running + 1;
1939 		imbalance = max(0, dst_running - src_running);
1940 		imbalance = adjust_numa_imbalance(imbalance, dst_running,
1941 							env->dst_stats.weight);
1942 
1943 		/* Use idle CPU if there is no imbalance */
1944 		if (!imbalance) {
1945 			maymove = true;
1946 			if (env->dst_stats.idle_cpu >= 0) {
1947 				env->dst_cpu = env->dst_stats.idle_cpu;
1948 				task_numa_assign(env, NULL, 0);
1949 				return;
1950 			}
1951 		}
1952 	} else {
1953 		long src_load, dst_load, load;
1954 		/*
1955 		 * If the improvement from just moving env->p direction is better
1956 		 * than swapping tasks around, check if a move is possible.
1957 		 */
1958 		load = task_h_load(env->p);
1959 		dst_load = env->dst_stats.load + load;
1960 		src_load = env->src_stats.load - load;
1961 		maymove = !load_too_imbalanced(src_load, dst_load, env);
1962 	}
1963 
1964 	for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
1965 		/* Skip this CPU if the source task cannot migrate */
1966 		if (!cpumask_test_cpu(cpu, env->p->cpus_ptr))
1967 			continue;
1968 
1969 		env->dst_cpu = cpu;
1970 		if (task_numa_compare(env, taskimp, groupimp, maymove))
1971 			break;
1972 	}
1973 }
1974 
1975 static int task_numa_migrate(struct task_struct *p)
1976 {
1977 	struct task_numa_env env = {
1978 		.p = p,
1979 
1980 		.src_cpu = task_cpu(p),
1981 		.src_nid = task_node(p),
1982 
1983 		.imbalance_pct = 112,
1984 
1985 		.best_task = NULL,
1986 		.best_imp = 0,
1987 		.best_cpu = -1,
1988 	};
1989 	unsigned long taskweight, groupweight;
1990 	struct sched_domain *sd;
1991 	long taskimp, groupimp;
1992 	struct numa_group *ng;
1993 	struct rq *best_rq;
1994 	int nid, ret, dist;
1995 
1996 	/*
1997 	 * Pick the lowest SD_NUMA domain, as that would have the smallest
1998 	 * imbalance and would be the first to start moving tasks about.
1999 	 *
2000 	 * And we want to avoid any moving of tasks about, as that would create
2001 	 * random movement of tasks -- counter the numa conditions we're trying
2002 	 * to satisfy here.
2003 	 */
2004 	rcu_read_lock();
2005 	sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
2006 	if (sd)
2007 		env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
2008 	rcu_read_unlock();
2009 
2010 	/*
2011 	 * Cpusets can break the scheduler domain tree into smaller
2012 	 * balance domains, some of which do not cross NUMA boundaries.
2013 	 * Tasks that are "trapped" in such domains cannot be migrated
2014 	 * elsewhere, so there is no point in (re)trying.
2015 	 */
2016 	if (unlikely(!sd)) {
2017 		sched_setnuma(p, task_node(p));
2018 		return -EINVAL;
2019 	}
2020 
2021 	env.dst_nid = p->numa_preferred_nid;
2022 	dist = env.dist = node_distance(env.src_nid, env.dst_nid);
2023 	taskweight = task_weight(p, env.src_nid, dist);
2024 	groupweight = group_weight(p, env.src_nid, dist);
2025 	update_numa_stats(&env, &env.src_stats, env.src_nid, false);
2026 	taskimp = task_weight(p, env.dst_nid, dist) - taskweight;
2027 	groupimp = group_weight(p, env.dst_nid, dist) - groupweight;
2028 	update_numa_stats(&env, &env.dst_stats, env.dst_nid, true);
2029 
2030 	/* Try to find a spot on the preferred nid. */
2031 	task_numa_find_cpu(&env, taskimp, groupimp);
2032 
2033 	/*
2034 	 * Look at other nodes in these cases:
2035 	 * - there is no space available on the preferred_nid
2036 	 * - the task is part of a numa_group that is interleaved across
2037 	 *   multiple NUMA nodes; in order to better consolidate the group,
2038 	 *   we need to check other locations.
2039 	 */
2040 	ng = deref_curr_numa_group(p);
2041 	if (env.best_cpu == -1 || (ng && ng->active_nodes > 1)) {
2042 		for_each_online_node(nid) {
2043 			if (nid == env.src_nid || nid == p->numa_preferred_nid)
2044 				continue;
2045 
2046 			dist = node_distance(env.src_nid, env.dst_nid);
2047 			if (sched_numa_topology_type == NUMA_BACKPLANE &&
2048 						dist != env.dist) {
2049 				taskweight = task_weight(p, env.src_nid, dist);
2050 				groupweight = group_weight(p, env.src_nid, dist);
2051 			}
2052 
2053 			/* Only consider nodes where both task and groups benefit */
2054 			taskimp = task_weight(p, nid, dist) - taskweight;
2055 			groupimp = group_weight(p, nid, dist) - groupweight;
2056 			if (taskimp < 0 && groupimp < 0)
2057 				continue;
2058 
2059 			env.dist = dist;
2060 			env.dst_nid = nid;
2061 			update_numa_stats(&env, &env.dst_stats, env.dst_nid, true);
2062 			task_numa_find_cpu(&env, taskimp, groupimp);
2063 		}
2064 	}
2065 
2066 	/*
2067 	 * If the task is part of a workload that spans multiple NUMA nodes,
2068 	 * and is migrating into one of the workload's active nodes, remember
2069 	 * this node as the task's preferred numa node, so the workload can
2070 	 * settle down.
2071 	 * A task that migrated to a second choice node will be better off
2072 	 * trying for a better one later. Do not set the preferred node here.
2073 	 */
2074 	if (ng) {
2075 		if (env.best_cpu == -1)
2076 			nid = env.src_nid;
2077 		else
2078 			nid = cpu_to_node(env.best_cpu);
2079 
2080 		if (nid != p->numa_preferred_nid)
2081 			sched_setnuma(p, nid);
2082 	}
2083 
2084 	/* No better CPU than the current one was found. */
2085 	if (env.best_cpu == -1) {
2086 		trace_sched_stick_numa(p, env.src_cpu, NULL, -1);
2087 		return -EAGAIN;
2088 	}
2089 
2090 	best_rq = cpu_rq(env.best_cpu);
2091 	if (env.best_task == NULL) {
2092 		ret = migrate_task_to(p, env.best_cpu);
2093 		WRITE_ONCE(best_rq->numa_migrate_on, 0);
2094 		if (ret != 0)
2095 			trace_sched_stick_numa(p, env.src_cpu, NULL, env.best_cpu);
2096 		return ret;
2097 	}
2098 
2099 	ret = migrate_swap(p, env.best_task, env.best_cpu, env.src_cpu);
2100 	WRITE_ONCE(best_rq->numa_migrate_on, 0);
2101 
2102 	if (ret != 0)
2103 		trace_sched_stick_numa(p, env.src_cpu, env.best_task, env.best_cpu);
2104 	put_task_struct(env.best_task);
2105 	return ret;
2106 }
2107 
2108 /* Attempt to migrate a task to a CPU on the preferred node. */
2109 static void numa_migrate_preferred(struct task_struct *p)
2110 {
2111 	unsigned long interval = HZ;
2112 
2113 	/* This task has no NUMA fault statistics yet */
2114 	if (unlikely(p->numa_preferred_nid == NUMA_NO_NODE || !p->numa_faults))
2115 		return;
2116 
2117 	/* Periodically retry migrating the task to the preferred node */
2118 	interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16);
2119 	p->numa_migrate_retry = jiffies + interval;
2120 
2121 	/* Success if task is already running on preferred CPU */
2122 	if (task_node(p) == p->numa_preferred_nid)
2123 		return;
2124 
2125 	/* Otherwise, try migrate to a CPU on the preferred node */
2126 	task_numa_migrate(p);
2127 }
2128 
2129 /*
2130  * Find out how many nodes on the workload is actively running on. Do this by
2131  * tracking the nodes from which NUMA hinting faults are triggered. This can
2132  * be different from the set of nodes where the workload's memory is currently
2133  * located.
2134  */
2135 static void numa_group_count_active_nodes(struct numa_group *numa_group)
2136 {
2137 	unsigned long faults, max_faults = 0;
2138 	int nid, active_nodes = 0;
2139 
2140 	for_each_online_node(nid) {
2141 		faults = group_faults_cpu(numa_group, nid);
2142 		if (faults > max_faults)
2143 			max_faults = faults;
2144 	}
2145 
2146 	for_each_online_node(nid) {
2147 		faults = group_faults_cpu(numa_group, nid);
2148 		if (faults * ACTIVE_NODE_FRACTION > max_faults)
2149 			active_nodes++;
2150 	}
2151 
2152 	numa_group->max_faults_cpu = max_faults;
2153 	numa_group->active_nodes = active_nodes;
2154 }
2155 
2156 /*
2157  * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
2158  * increments. The more local the fault statistics are, the higher the scan
2159  * period will be for the next scan window. If local/(local+remote) ratio is
2160  * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS)
2161  * the scan period will decrease. Aim for 70% local accesses.
2162  */
2163 #define NUMA_PERIOD_SLOTS 10
2164 #define NUMA_PERIOD_THRESHOLD 7
2165 
2166 /*
2167  * Increase the scan period (slow down scanning) if the majority of
2168  * our memory is already on our local node, or if the majority of
2169  * the page accesses are shared with other processes.
2170  * Otherwise, decrease the scan period.
2171  */
2172 static void update_task_scan_period(struct task_struct *p,
2173 			unsigned long shared, unsigned long private)
2174 {
2175 	unsigned int period_slot;
2176 	int lr_ratio, ps_ratio;
2177 	int diff;
2178 
2179 	unsigned long remote = p->numa_faults_locality[0];
2180 	unsigned long local = p->numa_faults_locality[1];
2181 
2182 	/*
2183 	 * If there were no record hinting faults then either the task is
2184 	 * completely idle or all activity is areas that are not of interest
2185 	 * to automatic numa balancing. Related to that, if there were failed
2186 	 * migration then it implies we are migrating too quickly or the local
2187 	 * node is overloaded. In either case, scan slower
2188 	 */
2189 	if (local + shared == 0 || p->numa_faults_locality[2]) {
2190 		p->numa_scan_period = min(p->numa_scan_period_max,
2191 			p->numa_scan_period << 1);
2192 
2193 		p->mm->numa_next_scan = jiffies +
2194 			msecs_to_jiffies(p->numa_scan_period);
2195 
2196 		return;
2197 	}
2198 
2199 	/*
2200 	 * Prepare to scale scan period relative to the current period.
2201 	 *	 == NUMA_PERIOD_THRESHOLD scan period stays the same
2202 	 *       <  NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
2203 	 *	 >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
2204 	 */
2205 	period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
2206 	lr_ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
2207 	ps_ratio = (private * NUMA_PERIOD_SLOTS) / (private + shared);
2208 
2209 	if (ps_ratio >= NUMA_PERIOD_THRESHOLD) {
2210 		/*
2211 		 * Most memory accesses are local. There is no need to
2212 		 * do fast NUMA scanning, since memory is already local.
2213 		 */
2214 		int slot = ps_ratio - NUMA_PERIOD_THRESHOLD;
2215 		if (!slot)
2216 			slot = 1;
2217 		diff = slot * period_slot;
2218 	} else if (lr_ratio >= NUMA_PERIOD_THRESHOLD) {
2219 		/*
2220 		 * Most memory accesses are shared with other tasks.
2221 		 * There is no point in continuing fast NUMA scanning,
2222 		 * since other tasks may just move the memory elsewhere.
2223 		 */
2224 		int slot = lr_ratio - NUMA_PERIOD_THRESHOLD;
2225 		if (!slot)
2226 			slot = 1;
2227 		diff = slot * period_slot;
2228 	} else {
2229 		/*
2230 		 * Private memory faults exceed (SLOTS-THRESHOLD)/SLOTS,
2231 		 * yet they are not on the local NUMA node. Speed up
2232 		 * NUMA scanning to get the memory moved over.
2233 		 */
2234 		int ratio = max(lr_ratio, ps_ratio);
2235 		diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;
2236 	}
2237 
2238 	p->numa_scan_period = clamp(p->numa_scan_period + diff,
2239 			task_scan_min(p), task_scan_max(p));
2240 	memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
2241 }
2242 
2243 /*
2244  * Get the fraction of time the task has been running since the last
2245  * NUMA placement cycle. The scheduler keeps similar statistics, but
2246  * decays those on a 32ms period, which is orders of magnitude off
2247  * from the dozens-of-seconds NUMA balancing period. Use the scheduler
2248  * stats only if the task is so new there are no NUMA statistics yet.
2249  */
2250 static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period)
2251 {
2252 	u64 runtime, delta, now;
2253 	/* Use the start of this time slice to avoid calculations. */
2254 	now = p->se.exec_start;
2255 	runtime = p->se.sum_exec_runtime;
2256 
2257 	if (p->last_task_numa_placement) {
2258 		delta = runtime - p->last_sum_exec_runtime;
2259 		*period = now - p->last_task_numa_placement;
2260 
2261 		/* Avoid time going backwards, prevent potential divide error: */
2262 		if (unlikely((s64)*period < 0))
2263 			*period = 0;
2264 	} else {
2265 		delta = p->se.avg.load_sum;
2266 		*period = LOAD_AVG_MAX;
2267 	}
2268 
2269 	p->last_sum_exec_runtime = runtime;
2270 	p->last_task_numa_placement = now;
2271 
2272 	return delta;
2273 }
2274 
2275 /*
2276  * Determine the preferred nid for a task in a numa_group. This needs to
2277  * be done in a way that produces consistent results with group_weight,
2278  * otherwise workloads might not converge.
2279  */
2280 static int preferred_group_nid(struct task_struct *p, int nid)
2281 {
2282 	nodemask_t nodes;
2283 	int dist;
2284 
2285 	/* Direct connections between all NUMA nodes. */
2286 	if (sched_numa_topology_type == NUMA_DIRECT)
2287 		return nid;
2288 
2289 	/*
2290 	 * On a system with glueless mesh NUMA topology, group_weight
2291 	 * scores nodes according to the number of NUMA hinting faults on
2292 	 * both the node itself, and on nearby nodes.
2293 	 */
2294 	if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
2295 		unsigned long score, max_score = 0;
2296 		int node, max_node = nid;
2297 
2298 		dist = sched_max_numa_distance;
2299 
2300 		for_each_online_node(node) {
2301 			score = group_weight(p, node, dist);
2302 			if (score > max_score) {
2303 				max_score = score;
2304 				max_node = node;
2305 			}
2306 		}
2307 		return max_node;
2308 	}
2309 
2310 	/*
2311 	 * Finding the preferred nid in a system with NUMA backplane
2312 	 * interconnect topology is more involved. The goal is to locate
2313 	 * tasks from numa_groups near each other in the system, and
2314 	 * untangle workloads from different sides of the system. This requires
2315 	 * searching down the hierarchy of node groups, recursively searching
2316 	 * inside the highest scoring group of nodes. The nodemask tricks
2317 	 * keep the complexity of the search down.
2318 	 */
2319 	nodes = node_online_map;
2320 	for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) {
2321 		unsigned long max_faults = 0;
2322 		nodemask_t max_group = NODE_MASK_NONE;
2323 		int a, b;
2324 
2325 		/* Are there nodes at this distance from each other? */
2326 		if (!find_numa_distance(dist))
2327 			continue;
2328 
2329 		for_each_node_mask(a, nodes) {
2330 			unsigned long faults = 0;
2331 			nodemask_t this_group;
2332 			nodes_clear(this_group);
2333 
2334 			/* Sum group's NUMA faults; includes a==b case. */
2335 			for_each_node_mask(b, nodes) {
2336 				if (node_distance(a, b) < dist) {
2337 					faults += group_faults(p, b);
2338 					node_set(b, this_group);
2339 					node_clear(b, nodes);
2340 				}
2341 			}
2342 
2343 			/* Remember the top group. */
2344 			if (faults > max_faults) {
2345 				max_faults = faults;
2346 				max_group = this_group;
2347 				/*
2348 				 * subtle: at the smallest distance there is
2349 				 * just one node left in each "group", the
2350 				 * winner is the preferred nid.
2351 				 */
2352 				nid = a;
2353 			}
2354 		}
2355 		/* Next round, evaluate the nodes within max_group. */
2356 		if (!max_faults)
2357 			break;
2358 		nodes = max_group;
2359 	}
2360 	return nid;
2361 }
2362 
2363 static void task_numa_placement(struct task_struct *p)
2364 {
2365 	int seq, nid, max_nid = NUMA_NO_NODE;
2366 	unsigned long max_faults = 0;
2367 	unsigned long fault_types[2] = { 0, 0 };
2368 	unsigned long total_faults;
2369 	u64 runtime, period;
2370 	spinlock_t *group_lock = NULL;
2371 	struct numa_group *ng;
2372 
2373 	/*
2374 	 * The p->mm->numa_scan_seq field gets updated without
2375 	 * exclusive access. Use READ_ONCE() here to ensure
2376 	 * that the field is read in a single access:
2377 	 */
2378 	seq = READ_ONCE(p->mm->numa_scan_seq);
2379 	if (p->numa_scan_seq == seq)
2380 		return;
2381 	p->numa_scan_seq = seq;
2382 	p->numa_scan_period_max = task_scan_max(p);
2383 
2384 	total_faults = p->numa_faults_locality[0] +
2385 		       p->numa_faults_locality[1];
2386 	runtime = numa_get_avg_runtime(p, &period);
2387 
2388 	/* If the task is part of a group prevent parallel updates to group stats */
2389 	ng = deref_curr_numa_group(p);
2390 	if (ng) {
2391 		group_lock = &ng->lock;
2392 		spin_lock_irq(group_lock);
2393 	}
2394 
2395 	/* Find the node with the highest number of faults */
2396 	for_each_online_node(nid) {
2397 		/* Keep track of the offsets in numa_faults array */
2398 		int mem_idx, membuf_idx, cpu_idx, cpubuf_idx;
2399 		unsigned long faults = 0, group_faults = 0;
2400 		int priv;
2401 
2402 		for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) {
2403 			long diff, f_diff, f_weight;
2404 
2405 			mem_idx = task_faults_idx(NUMA_MEM, nid, priv);
2406 			membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv);
2407 			cpu_idx = task_faults_idx(NUMA_CPU, nid, priv);
2408 			cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv);
2409 
2410 			/* Decay existing window, copy faults since last scan */
2411 			diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2;
2412 			fault_types[priv] += p->numa_faults[membuf_idx];
2413 			p->numa_faults[membuf_idx] = 0;
2414 
2415 			/*
2416 			 * Normalize the faults_from, so all tasks in a group
2417 			 * count according to CPU use, instead of by the raw
2418 			 * number of faults. Tasks with little runtime have
2419 			 * little over-all impact on throughput, and thus their
2420 			 * faults are less important.
2421 			 */
2422 			f_weight = div64_u64(runtime << 16, period + 1);
2423 			f_weight = (f_weight * p->numa_faults[cpubuf_idx]) /
2424 				   (total_faults + 1);
2425 			f_diff = f_weight - p->numa_faults[cpu_idx] / 2;
2426 			p->numa_faults[cpubuf_idx] = 0;
2427 
2428 			p->numa_faults[mem_idx] += diff;
2429 			p->numa_faults[cpu_idx] += f_diff;
2430 			faults += p->numa_faults[mem_idx];
2431 			p->total_numa_faults += diff;
2432 			if (ng) {
2433 				/*
2434 				 * safe because we can only change our own group
2435 				 *
2436 				 * mem_idx represents the offset for a given
2437 				 * nid and priv in a specific region because it
2438 				 * is at the beginning of the numa_faults array.
2439 				 */
2440 				ng->faults[mem_idx] += diff;
2441 				ng->faults_cpu[mem_idx] += f_diff;
2442 				ng->total_faults += diff;
2443 				group_faults += ng->faults[mem_idx];
2444 			}
2445 		}
2446 
2447 		if (!ng) {
2448 			if (faults > max_faults) {
2449 				max_faults = faults;
2450 				max_nid = nid;
2451 			}
2452 		} else if (group_faults > max_faults) {
2453 			max_faults = group_faults;
2454 			max_nid = nid;
2455 		}
2456 	}
2457 
2458 	if (ng) {
2459 		numa_group_count_active_nodes(ng);
2460 		spin_unlock_irq(group_lock);
2461 		max_nid = preferred_group_nid(p, max_nid);
2462 	}
2463 
2464 	if (max_faults) {
2465 		/* Set the new preferred node */
2466 		if (max_nid != p->numa_preferred_nid)
2467 			sched_setnuma(p, max_nid);
2468 	}
2469 
2470 	update_task_scan_period(p, fault_types[0], fault_types[1]);
2471 }
2472 
2473 static inline int get_numa_group(struct numa_group *grp)
2474 {
2475 	return refcount_inc_not_zero(&grp->refcount);
2476 }
2477 
2478 static inline void put_numa_group(struct numa_group *grp)
2479 {
2480 	if (refcount_dec_and_test(&grp->refcount))
2481 		kfree_rcu(grp, rcu);
2482 }
2483 
2484 static void task_numa_group(struct task_struct *p, int cpupid, int flags,
2485 			int *priv)
2486 {
2487 	struct numa_group *grp, *my_grp;
2488 	struct task_struct *tsk;
2489 	bool join = false;
2490 	int cpu = cpupid_to_cpu(cpupid);
2491 	int i;
2492 
2493 	if (unlikely(!deref_curr_numa_group(p))) {
2494 		unsigned int size = sizeof(struct numa_group) +
2495 				    4*nr_node_ids*sizeof(unsigned long);
2496 
2497 		grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
2498 		if (!grp)
2499 			return;
2500 
2501 		refcount_set(&grp->refcount, 1);
2502 		grp->active_nodes = 1;
2503 		grp->max_faults_cpu = 0;
2504 		spin_lock_init(&grp->lock);
2505 		grp->gid = p->pid;
2506 		/* Second half of the array tracks nids where faults happen */
2507 		grp->faults_cpu = grp->faults + NR_NUMA_HINT_FAULT_TYPES *
2508 						nr_node_ids;
2509 
2510 		for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
2511 			grp->faults[i] = p->numa_faults[i];
2512 
2513 		grp->total_faults = p->total_numa_faults;
2514 
2515 		grp->nr_tasks++;
2516 		rcu_assign_pointer(p->numa_group, grp);
2517 	}
2518 
2519 	rcu_read_lock();
2520 	tsk = READ_ONCE(cpu_rq(cpu)->curr);
2521 
2522 	if (!cpupid_match_pid(tsk, cpupid))
2523 		goto no_join;
2524 
2525 	grp = rcu_dereference(tsk->numa_group);
2526 	if (!grp)
2527 		goto no_join;
2528 
2529 	my_grp = deref_curr_numa_group(p);
2530 	if (grp == my_grp)
2531 		goto no_join;
2532 
2533 	/*
2534 	 * Only join the other group if its bigger; if we're the bigger group,
2535 	 * the other task will join us.
2536 	 */
2537 	if (my_grp->nr_tasks > grp->nr_tasks)
2538 		goto no_join;
2539 
2540 	/*
2541 	 * Tie-break on the grp address.
2542 	 */
2543 	if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
2544 		goto no_join;
2545 
2546 	/* Always join threads in the same process. */
2547 	if (tsk->mm == current->mm)
2548 		join = true;
2549 
2550 	/* Simple filter to avoid false positives due to PID collisions */
2551 	if (flags & TNF_SHARED)
2552 		join = true;
2553 
2554 	/* Update priv based on whether false sharing was detected */
2555 	*priv = !join;
2556 
2557 	if (join && !get_numa_group(grp))
2558 		goto no_join;
2559 
2560 	rcu_read_unlock();
2561 
2562 	if (!join)
2563 		return;
2564 
2565 	BUG_ON(irqs_disabled());
2566 	double_lock_irq(&my_grp->lock, &grp->lock);
2567 
2568 	for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) {
2569 		my_grp->faults[i] -= p->numa_faults[i];
2570 		grp->faults[i] += p->numa_faults[i];
2571 	}
2572 	my_grp->total_faults -= p->total_numa_faults;
2573 	grp->total_faults += p->total_numa_faults;
2574 
2575 	my_grp->nr_tasks--;
2576 	grp->nr_tasks++;
2577 
2578 	spin_unlock(&my_grp->lock);
2579 	spin_unlock_irq(&grp->lock);
2580 
2581 	rcu_assign_pointer(p->numa_group, grp);
2582 
2583 	put_numa_group(my_grp);
2584 	return;
2585 
2586 no_join:
2587 	rcu_read_unlock();
2588 	return;
2589 }
2590 
2591 /*
2592  * Get rid of NUMA statistics associated with a task (either current or dead).
2593  * If @final is set, the task is dead and has reached refcount zero, so we can
2594  * safely free all relevant data structures. Otherwise, there might be
2595  * concurrent reads from places like load balancing and procfs, and we should
2596  * reset the data back to default state without freeing ->numa_faults.
2597  */
2598 void task_numa_free(struct task_struct *p, bool final)
2599 {
2600 	/* safe: p either is current or is being freed by current */
2601 	struct numa_group *grp = rcu_dereference_raw(p->numa_group);
2602 	unsigned long *numa_faults = p->numa_faults;
2603 	unsigned long flags;
2604 	int i;
2605 
2606 	if (!numa_faults)
2607 		return;
2608 
2609 	if (grp) {
2610 		spin_lock_irqsave(&grp->lock, flags);
2611 		for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
2612 			grp->faults[i] -= p->numa_faults[i];
2613 		grp->total_faults -= p->total_numa_faults;
2614 
2615 		grp->nr_tasks--;
2616 		spin_unlock_irqrestore(&grp->lock, flags);
2617 		RCU_INIT_POINTER(p->numa_group, NULL);
2618 		put_numa_group(grp);
2619 	}
2620 
2621 	if (final) {
2622 		p->numa_faults = NULL;
2623 		kfree(numa_faults);
2624 	} else {
2625 		p->total_numa_faults = 0;
2626 		for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
2627 			numa_faults[i] = 0;
2628 	}
2629 }
2630 
2631 /*
2632  * Got a PROT_NONE fault for a page on @node.
2633  */
2634 void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags)
2635 {
2636 	struct task_struct *p = current;
2637 	bool migrated = flags & TNF_MIGRATED;
2638 	int cpu_node = task_node(current);
2639 	int local = !!(flags & TNF_FAULT_LOCAL);
2640 	struct numa_group *ng;
2641 	int priv;
2642 
2643 	if (!static_branch_likely(&sched_numa_balancing))
2644 		return;
2645 
2646 	/* for example, ksmd faulting in a user's mm */
2647 	if (!p->mm)
2648 		return;
2649 
2650 	/* Allocate buffer to track faults on a per-node basis */
2651 	if (unlikely(!p->numa_faults)) {
2652 		int size = sizeof(*p->numa_faults) *
2653 			   NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids;
2654 
2655 		p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN);
2656 		if (!p->numa_faults)
2657 			return;
2658 
2659 		p->total_numa_faults = 0;
2660 		memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
2661 	}
2662 
2663 	/*
2664 	 * First accesses are treated as private, otherwise consider accesses
2665 	 * to be private if the accessing pid has not changed
2666 	 */
2667 	if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
2668 		priv = 1;
2669 	} else {
2670 		priv = cpupid_match_pid(p, last_cpupid);
2671 		if (!priv && !(flags & TNF_NO_GROUP))
2672 			task_numa_group(p, last_cpupid, flags, &priv);
2673 	}
2674 
2675 	/*
2676 	 * If a workload spans multiple NUMA nodes, a shared fault that
2677 	 * occurs wholly within the set of nodes that the workload is
2678 	 * actively using should be counted as local. This allows the
2679 	 * scan rate to slow down when a workload has settled down.
2680 	 */
2681 	ng = deref_curr_numa_group(p);
2682 	if (!priv && !local && ng && ng->active_nodes > 1 &&
2683 				numa_is_active_node(cpu_node, ng) &&
2684 				numa_is_active_node(mem_node, ng))
2685 		local = 1;
2686 
2687 	/*
2688 	 * Retry to migrate task to preferred node periodically, in case it
2689 	 * previously failed, or the scheduler moved us.
2690 	 */
2691 	if (time_after(jiffies, p->numa_migrate_retry)) {
2692 		task_numa_placement(p);
2693 		numa_migrate_preferred(p);
2694 	}
2695 
2696 	if (migrated)
2697 		p->numa_pages_migrated += pages;
2698 	if (flags & TNF_MIGRATE_FAIL)
2699 		p->numa_faults_locality[2] += pages;
2700 
2701 	p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages;
2702 	p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages;
2703 	p->numa_faults_locality[local] += pages;
2704 }
2705 
2706 static void reset_ptenuma_scan(struct task_struct *p)
2707 {
2708 	/*
2709 	 * We only did a read acquisition of the mmap sem, so
2710 	 * p->mm->numa_scan_seq is written to without exclusive access
2711 	 * and the update is not guaranteed to be atomic. That's not
2712 	 * much of an issue though, since this is just used for
2713 	 * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not
2714 	 * expensive, to avoid any form of compiler optimizations:
2715 	 */
2716 	WRITE_ONCE(p->mm->numa_scan_seq, READ_ONCE(p->mm->numa_scan_seq) + 1);
2717 	p->mm->numa_scan_offset = 0;
2718 }
2719 
2720 /*
2721  * The expensive part of numa migration is done from task_work context.
2722  * Triggered from task_tick_numa().
2723  */
2724 static void task_numa_work(struct callback_head *work)
2725 {
2726 	unsigned long migrate, next_scan, now = jiffies;
2727 	struct task_struct *p = current;
2728 	struct mm_struct *mm = p->mm;
2729 	u64 runtime = p->se.sum_exec_runtime;
2730 	struct vm_area_struct *vma;
2731 	unsigned long start, end;
2732 	unsigned long nr_pte_updates = 0;
2733 	long pages, virtpages;
2734 
2735 	SCHED_WARN_ON(p != container_of(work, struct task_struct, numa_work));
2736 
2737 	work->next = work;
2738 	/*
2739 	 * Who cares about NUMA placement when they're dying.
2740 	 *
2741 	 * NOTE: make sure not to dereference p->mm before this check,
2742 	 * exit_task_work() happens _after_ exit_mm() so we could be called
2743 	 * without p->mm even though we still had it when we enqueued this
2744 	 * work.
2745 	 */
2746 	if (p->flags & PF_EXITING)
2747 		return;
2748 
2749 	if (!mm->numa_next_scan) {
2750 		mm->numa_next_scan = now +
2751 			msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
2752 	}
2753 
2754 	/*
2755 	 * Enforce maximal scan/migration frequency..
2756 	 */
2757 	migrate = mm->numa_next_scan;
2758 	if (time_before(now, migrate))
2759 		return;
2760 
2761 	if (p->numa_scan_period == 0) {
2762 		p->numa_scan_period_max = task_scan_max(p);
2763 		p->numa_scan_period = task_scan_start(p);
2764 	}
2765 
2766 	next_scan = now + msecs_to_jiffies(p->numa_scan_period);
2767 	if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
2768 		return;
2769 
2770 	/*
2771 	 * Delay this task enough that another task of this mm will likely win
2772 	 * the next time around.
2773 	 */
2774 	p->node_stamp += 2 * TICK_NSEC;
2775 
2776 	start = mm->numa_scan_offset;
2777 	pages = sysctl_numa_balancing_scan_size;
2778 	pages <<= 20 - PAGE_SHIFT; /* MB in pages */
2779 	virtpages = pages * 8;	   /* Scan up to this much virtual space */
2780 	if (!pages)
2781 		return;
2782 
2783 
2784 	if (!mmap_read_trylock(mm))
2785 		return;
2786 	vma = find_vma(mm, start);
2787 	if (!vma) {
2788 		reset_ptenuma_scan(p);
2789 		start = 0;
2790 		vma = mm->mmap;
2791 	}
2792 	for (; vma; vma = vma->vm_next) {
2793 		if (!vma_migratable(vma) || !vma_policy_mof(vma) ||
2794 			is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_MIXEDMAP)) {
2795 			continue;
2796 		}
2797 
2798 		/*
2799 		 * Shared library pages mapped by multiple processes are not
2800 		 * migrated as it is expected they are cache replicated. Avoid
2801 		 * hinting faults in read-only file-backed mappings or the vdso
2802 		 * as migrating the pages will be of marginal benefit.
2803 		 */
2804 		if (!vma->vm_mm ||
2805 		    (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ)))
2806 			continue;
2807 
2808 		/*
2809 		 * Skip inaccessible VMAs to avoid any confusion between
2810 		 * PROT_NONE and NUMA hinting ptes
2811 		 */
2812 		if (!vma_is_accessible(vma))
2813 			continue;
2814 
2815 		do {
2816 			start = max(start, vma->vm_start);
2817 			end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
2818 			end = min(end, vma->vm_end);
2819 			nr_pte_updates = change_prot_numa(vma, start, end);
2820 
2821 			/*
2822 			 * Try to scan sysctl_numa_balancing_size worth of
2823 			 * hpages that have at least one present PTE that
2824 			 * is not already pte-numa. If the VMA contains
2825 			 * areas that are unused or already full of prot_numa
2826 			 * PTEs, scan up to virtpages, to skip through those
2827 			 * areas faster.
2828 			 */
2829 			if (nr_pte_updates)
2830 				pages -= (end - start) >> PAGE_SHIFT;
2831 			virtpages -= (end - start) >> PAGE_SHIFT;
2832 
2833 			start = end;
2834 			if (pages <= 0 || virtpages <= 0)
2835 				goto out;
2836 
2837 			cond_resched();
2838 		} while (end != vma->vm_end);
2839 	}
2840 
2841 out:
2842 	/*
2843 	 * It is possible to reach the end of the VMA list but the last few
2844 	 * VMAs are not guaranteed to the vma_migratable. If they are not, we
2845 	 * would find the !migratable VMA on the next scan but not reset the
2846 	 * scanner to the start so check it now.
2847 	 */
2848 	if (vma)
2849 		mm->numa_scan_offset = start;
2850 	else
2851 		reset_ptenuma_scan(p);
2852 	mmap_read_unlock(mm);
2853 
2854 	/*
2855 	 * Make sure tasks use at least 32x as much time to run other code
2856 	 * than they used here, to limit NUMA PTE scanning overhead to 3% max.
2857 	 * Usually update_task_scan_period slows down scanning enough; on an
2858 	 * overloaded system we need to limit overhead on a per task basis.
2859 	 */
2860 	if (unlikely(p->se.sum_exec_runtime != runtime)) {
2861 		u64 diff = p->se.sum_exec_runtime - runtime;
2862 		p->node_stamp += 32 * diff;
2863 	}
2864 }
2865 
2866 void init_numa_balancing(unsigned long clone_flags, struct task_struct *p)
2867 {
2868 	int mm_users = 0;
2869 	struct mm_struct *mm = p->mm;
2870 
2871 	if (mm) {
2872 		mm_users = atomic_read(&mm->mm_users);
2873 		if (mm_users == 1) {
2874 			mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
2875 			mm->numa_scan_seq = 0;
2876 		}
2877 	}
2878 	p->node_stamp			= 0;
2879 	p->numa_scan_seq		= mm ? mm->numa_scan_seq : 0;
2880 	p->numa_scan_period		= sysctl_numa_balancing_scan_delay;
2881 	/* Protect against double add, see task_tick_numa and task_numa_work */
2882 	p->numa_work.next		= &p->numa_work;
2883 	p->numa_faults			= NULL;
2884 	RCU_INIT_POINTER(p->numa_group, NULL);
2885 	p->last_task_numa_placement	= 0;
2886 	p->last_sum_exec_runtime	= 0;
2887 
2888 	init_task_work(&p->numa_work, task_numa_work);
2889 
2890 	/* New address space, reset the preferred nid */
2891 	if (!(clone_flags & CLONE_VM)) {
2892 		p->numa_preferred_nid = NUMA_NO_NODE;
2893 		return;
2894 	}
2895 
2896 	/*
2897 	 * New thread, keep existing numa_preferred_nid which should be copied
2898 	 * already by arch_dup_task_struct but stagger when scans start.
2899 	 */
2900 	if (mm) {
2901 		unsigned int delay;
2902 
2903 		delay = min_t(unsigned int, task_scan_max(current),
2904 			current->numa_scan_period * mm_users * NSEC_PER_MSEC);
2905 		delay += 2 * TICK_NSEC;
2906 		p->node_stamp = delay;
2907 	}
2908 }
2909 
2910 /*
2911  * Drive the periodic memory faults..
2912  */
2913 static void task_tick_numa(struct rq *rq, struct task_struct *curr)
2914 {
2915 	struct callback_head *work = &curr->numa_work;
2916 	u64 period, now;
2917 
2918 	/*
2919 	 * We don't care about NUMA placement if we don't have memory.
2920 	 */
2921 	if ((curr->flags & (PF_EXITING | PF_KTHREAD)) || work->next != work)
2922 		return;
2923 
2924 	/*
2925 	 * Using runtime rather than walltime has the dual advantage that
2926 	 * we (mostly) drive the selection from busy threads and that the
2927 	 * task needs to have done some actual work before we bother with
2928 	 * NUMA placement.
2929 	 */
2930 	now = curr->se.sum_exec_runtime;
2931 	period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
2932 
2933 	if (now > curr->node_stamp + period) {
2934 		if (!curr->node_stamp)
2935 			curr->numa_scan_period = task_scan_start(curr);
2936 		curr->node_stamp += period;
2937 
2938 		if (!time_before(jiffies, curr->mm->numa_next_scan))
2939 			task_work_add(curr, work, TWA_RESUME);
2940 	}
2941 }
2942 
2943 static void update_scan_period(struct task_struct *p, int new_cpu)
2944 {
2945 	int src_nid = cpu_to_node(task_cpu(p));
2946 	int dst_nid = cpu_to_node(new_cpu);
2947 
2948 	if (!static_branch_likely(&sched_numa_balancing))
2949 		return;
2950 
2951 	if (!p->mm || !p->numa_faults || (p->flags & PF_EXITING))
2952 		return;
2953 
2954 	if (src_nid == dst_nid)
2955 		return;
2956 
2957 	/*
2958 	 * Allow resets if faults have been trapped before one scan
2959 	 * has completed. This is most likely due to a new task that
2960 	 * is pulled cross-node due to wakeups or load balancing.
2961 	 */
2962 	if (p->numa_scan_seq) {
2963 		/*
2964 		 * Avoid scan adjustments if moving to the preferred
2965 		 * node or if the task was not previously running on
2966 		 * the preferred node.
2967 		 */
2968 		if (dst_nid == p->numa_preferred_nid ||
2969 		    (p->numa_preferred_nid != NUMA_NO_NODE &&
2970 			src_nid != p->numa_preferred_nid))
2971 			return;
2972 	}
2973 
2974 	p->numa_scan_period = task_scan_start(p);
2975 }
2976 
2977 #else
2978 static void task_tick_numa(struct rq *rq, struct task_struct *curr)
2979 {
2980 }
2981 
2982 static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
2983 {
2984 }
2985 
2986 static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
2987 {
2988 }
2989 
2990 static inline void update_scan_period(struct task_struct *p, int new_cpu)
2991 {
2992 }
2993 
2994 #endif /* CONFIG_NUMA_BALANCING */
2995 
2996 static void
2997 account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2998 {
2999 	update_load_add(&cfs_rq->load, se->load.weight);
3000 #ifdef CONFIG_SMP
3001 	if (entity_is_task(se)) {
3002 		struct rq *rq = rq_of(cfs_rq);
3003 
3004 		account_numa_enqueue(rq, task_of(se));
3005 		list_add(&se->group_node, &rq->cfs_tasks);
3006 	}
3007 #endif
3008 	cfs_rq->nr_running++;
3009 }
3010 
3011 static void
3012 account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
3013 {
3014 	update_load_sub(&cfs_rq->load, se->load.weight);
3015 #ifdef CONFIG_SMP
3016 	if (entity_is_task(se)) {
3017 		account_numa_dequeue(rq_of(cfs_rq), task_of(se));
3018 		list_del_init(&se->group_node);
3019 	}
3020 #endif
3021 	cfs_rq->nr_running--;
3022 }
3023 
3024 /*
3025  * Signed add and clamp on underflow.
3026  *
3027  * Explicitly do a load-store to ensure the intermediate value never hits
3028  * memory. This allows lockless observations without ever seeing the negative
3029  * values.
3030  */
3031 #define add_positive(_ptr, _val) do {                           \
3032 	typeof(_ptr) ptr = (_ptr);                              \
3033 	typeof(_val) val = (_val);                              \
3034 	typeof(*ptr) res, var = READ_ONCE(*ptr);                \
3035 								\
3036 	res = var + val;                                        \
3037 								\
3038 	if (val < 0 && res > var)                               \
3039 		res = 0;                                        \
3040 								\
3041 	WRITE_ONCE(*ptr, res);                                  \
3042 } while (0)
3043 
3044 /*
3045  * Unsigned subtract and clamp on underflow.
3046  *
3047  * Explicitly do a load-store to ensure the intermediate value never hits
3048  * memory. This allows lockless observations without ever seeing the negative
3049  * values.
3050  */
3051 #define sub_positive(_ptr, _val) do {				\
3052 	typeof(_ptr) ptr = (_ptr);				\
3053 	typeof(*ptr) val = (_val);				\
3054 	typeof(*ptr) res, var = READ_ONCE(*ptr);		\
3055 	res = var - val;					\
3056 	if (res > var)						\
3057 		res = 0;					\
3058 	WRITE_ONCE(*ptr, res);					\
3059 } while (0)
3060 
3061 /*
3062  * Remove and clamp on negative, from a local variable.
3063  *
3064  * A variant of sub_positive(), which does not use explicit load-store
3065  * and is thus optimized for local variable updates.
3066  */
3067 #define lsub_positive(_ptr, _val) do {				\
3068 	typeof(_ptr) ptr = (_ptr);				\
3069 	*ptr -= min_t(typeof(*ptr), *ptr, _val);		\
3070 } while (0)
3071 
3072 #ifdef CONFIG_SMP
3073 static inline void
3074 enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3075 {
3076 	cfs_rq->avg.load_avg += se->avg.load_avg;
3077 	cfs_rq->avg.load_sum += se_weight(se) * se->avg.load_sum;
3078 }
3079 
3080 static inline void
3081 dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3082 {
3083 	sub_positive(&cfs_rq->avg.load_avg, se->avg.load_avg);
3084 	sub_positive(&cfs_rq->avg.load_sum, se_weight(se) * se->avg.load_sum);
3085 }
3086 #else
3087 static inline void
3088 enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
3089 static inline void
3090 dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
3091 #endif
3092 
3093 static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
3094 			    unsigned long weight)
3095 {
3096 	if (se->on_rq) {
3097 		/* commit outstanding execution time */
3098 		if (cfs_rq->curr == se)
3099 			update_curr(cfs_rq);
3100 		update_load_sub(&cfs_rq->load, se->load.weight);
3101 	}
3102 	dequeue_load_avg(cfs_rq, se);
3103 
3104 	update_load_set(&se->load, weight);
3105 
3106 #ifdef CONFIG_SMP
3107 	do {
3108 		u32 divider = get_pelt_divider(&se->avg);
3109 
3110 		se->avg.load_avg = div_u64(se_weight(se) * se->avg.load_sum, divider);
3111 	} while (0);
3112 #endif
3113 
3114 	enqueue_load_avg(cfs_rq, se);
3115 	if (se->on_rq)
3116 		update_load_add(&cfs_rq->load, se->load.weight);
3117 
3118 }
3119 
3120 void reweight_task(struct task_struct *p, int prio)
3121 {
3122 	struct sched_entity *se = &p->se;
3123 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
3124 	struct load_weight *load = &se->load;
3125 	unsigned long weight = scale_load(sched_prio_to_weight[prio]);
3126 
3127 	reweight_entity(cfs_rq, se, weight);
3128 	load->inv_weight = sched_prio_to_wmult[prio];
3129 }
3130 
3131 #ifdef CONFIG_FAIR_GROUP_SCHED
3132 #ifdef CONFIG_SMP
3133 /*
3134  * All this does is approximate the hierarchical proportion which includes that
3135  * global sum we all love to hate.
3136  *
3137  * That is, the weight of a group entity, is the proportional share of the
3138  * group weight based on the group runqueue weights. That is:
3139  *
3140  *                     tg->weight * grq->load.weight
3141  *   ge->load.weight = -----------------------------               (1)
3142  *			  \Sum grq->load.weight
3143  *
3144  * Now, because computing that sum is prohibitively expensive to compute (been
3145  * there, done that) we approximate it with this average stuff. The average
3146  * moves slower and therefore the approximation is cheaper and more stable.
3147  *
3148  * So instead of the above, we substitute:
3149  *
3150  *   grq->load.weight -> grq->avg.load_avg                         (2)
3151  *
3152  * which yields the following:
3153  *
3154  *                     tg->weight * grq->avg.load_avg
3155  *   ge->load.weight = ------------------------------              (3)
3156  *				tg->load_avg
3157  *
3158  * Where: tg->load_avg ~= \Sum grq->avg.load_avg
3159  *
3160  * That is shares_avg, and it is right (given the approximation (2)).
3161  *
3162  * The problem with it is that because the average is slow -- it was designed
3163  * to be exactly that of course -- this leads to transients in boundary
3164  * conditions. In specific, the case where the group was idle and we start the
3165  * one task. It takes time for our CPU's grq->avg.load_avg to build up,
3166  * yielding bad latency etc..
3167  *
3168  * Now, in that special case (1) reduces to:
3169  *
3170  *                     tg->weight * grq->load.weight
3171  *   ge->load.weight = ----------------------------- = tg->weight   (4)
3172  *			    grp->load.weight
3173  *
3174  * That is, the sum collapses because all other CPUs are idle; the UP scenario.
3175  *
3176  * So what we do is modify our approximation (3) to approach (4) in the (near)
3177  * UP case, like:
3178  *
3179  *   ge->load.weight =
3180  *
3181  *              tg->weight * grq->load.weight
3182  *     ---------------------------------------------------         (5)
3183  *     tg->load_avg - grq->avg.load_avg + grq->load.weight
3184  *
3185  * But because grq->load.weight can drop to 0, resulting in a divide by zero,
3186  * we need to use grq->avg.load_avg as its lower bound, which then gives:
3187  *
3188  *
3189  *                     tg->weight * grq->load.weight
3190  *   ge->load.weight = -----------------------------		   (6)
3191  *				tg_load_avg'
3192  *
3193  * Where:
3194  *
3195  *   tg_load_avg' = tg->load_avg - grq->avg.load_avg +
3196  *                  max(grq->load.weight, grq->avg.load_avg)
3197  *
3198  * And that is shares_weight and is icky. In the (near) UP case it approaches
3199  * (4) while in the normal case it approaches (3). It consistently
3200  * overestimates the ge->load.weight and therefore:
3201  *
3202  *   \Sum ge->load.weight >= tg->weight
3203  *
3204  * hence icky!
3205  */
3206 static long calc_group_shares(struct cfs_rq *cfs_rq)
3207 {
3208 	long tg_weight, tg_shares, load, shares;
3209 	struct task_group *tg = cfs_rq->tg;
3210 
3211 	tg_shares = READ_ONCE(tg->shares);
3212 
3213 	load = max(scale_load_down(cfs_rq->load.weight), cfs_rq->avg.load_avg);
3214 
3215 	tg_weight = atomic_long_read(&tg->load_avg);
3216 
3217 	/* Ensure tg_weight >= load */
3218 	tg_weight -= cfs_rq->tg_load_avg_contrib;
3219 	tg_weight += load;
3220 
3221 	shares = (tg_shares * load);
3222 	if (tg_weight)
3223 		shares /= tg_weight;
3224 
3225 	/*
3226 	 * MIN_SHARES has to be unscaled here to support per-CPU partitioning
3227 	 * of a group with small tg->shares value. It is a floor value which is
3228 	 * assigned as a minimum load.weight to the sched_entity representing
3229 	 * the group on a CPU.
3230 	 *
3231 	 * E.g. on 64-bit for a group with tg->shares of scale_load(15)=15*1024
3232 	 * on an 8-core system with 8 tasks each runnable on one CPU shares has
3233 	 * to be 15*1024*1/8=1920 instead of scale_load(MIN_SHARES)=2*1024. In
3234 	 * case no task is runnable on a CPU MIN_SHARES=2 should be returned
3235 	 * instead of 0.
3236 	 */
3237 	return clamp_t(long, shares, MIN_SHARES, tg_shares);
3238 }
3239 #endif /* CONFIG_SMP */
3240 
3241 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
3242 
3243 /*
3244  * Recomputes the group entity based on the current state of its group
3245  * runqueue.
3246  */
3247 static void update_cfs_group(struct sched_entity *se)
3248 {
3249 	struct cfs_rq *gcfs_rq = group_cfs_rq(se);
3250 	long shares;
3251 
3252 	if (!gcfs_rq)
3253 		return;
3254 
3255 	if (throttled_hierarchy(gcfs_rq))
3256 		return;
3257 
3258 #ifndef CONFIG_SMP
3259 	shares = READ_ONCE(gcfs_rq->tg->shares);
3260 
3261 	if (likely(se->load.weight == shares))
3262 		return;
3263 #else
3264 	shares   = calc_group_shares(gcfs_rq);
3265 #endif
3266 
3267 	reweight_entity(cfs_rq_of(se), se, shares);
3268 }
3269 
3270 #else /* CONFIG_FAIR_GROUP_SCHED */
3271 static inline void update_cfs_group(struct sched_entity *se)
3272 {
3273 }
3274 #endif /* CONFIG_FAIR_GROUP_SCHED */
3275 
3276 static inline void cfs_rq_util_change(struct cfs_rq *cfs_rq, int flags)
3277 {
3278 	struct rq *rq = rq_of(cfs_rq);
3279 
3280 	if (&rq->cfs == cfs_rq) {
3281 		/*
3282 		 * There are a few boundary cases this might miss but it should
3283 		 * get called often enough that that should (hopefully) not be
3284 		 * a real problem.
3285 		 *
3286 		 * It will not get called when we go idle, because the idle
3287 		 * thread is a different class (!fair), nor will the utilization
3288 		 * number include things like RT tasks.
3289 		 *
3290 		 * As is, the util number is not freq-invariant (we'd have to
3291 		 * implement arch_scale_freq_capacity() for that).
3292 		 *
3293 		 * See cpu_util().
3294 		 */
3295 		cpufreq_update_util(rq, flags);
3296 	}
3297 }
3298 
3299 #ifdef CONFIG_SMP
3300 #ifdef CONFIG_FAIR_GROUP_SCHED
3301 /*
3302  * Because list_add_leaf_cfs_rq always places a child cfs_rq on the list
3303  * immediately before a parent cfs_rq, and cfs_rqs are removed from the list
3304  * bottom-up, we only have to test whether the cfs_rq before us on the list
3305  * is our child.
3306  * If cfs_rq is not on the list, test whether a child needs its to be added to
3307  * connect a branch to the tree  * (see list_add_leaf_cfs_rq() for details).
3308  */
3309 static inline bool child_cfs_rq_on_list(struct cfs_rq *cfs_rq)
3310 {
3311 	struct cfs_rq *prev_cfs_rq;
3312 	struct list_head *prev;
3313 
3314 	if (cfs_rq->on_list) {
3315 		prev = cfs_rq->leaf_cfs_rq_list.prev;
3316 	} else {
3317 		struct rq *rq = rq_of(cfs_rq);
3318 
3319 		prev = rq->tmp_alone_branch;
3320 	}
3321 
3322 	prev_cfs_rq = container_of(prev, struct cfs_rq, leaf_cfs_rq_list);
3323 
3324 	return (prev_cfs_rq->tg->parent == cfs_rq->tg);
3325 }
3326 
3327 static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq)
3328 {
3329 	if (cfs_rq->load.weight)
3330 		return false;
3331 
3332 	if (cfs_rq->avg.load_sum)
3333 		return false;
3334 
3335 	if (cfs_rq->avg.util_sum)
3336 		return false;
3337 
3338 	if (cfs_rq->avg.runnable_sum)
3339 		return false;
3340 
3341 	if (child_cfs_rq_on_list(cfs_rq))
3342 		return false;
3343 
3344 	return true;
3345 }
3346 
3347 /**
3348  * update_tg_load_avg - update the tg's load avg
3349  * @cfs_rq: the cfs_rq whose avg changed
3350  *
3351  * This function 'ensures': tg->load_avg := \Sum tg->cfs_rq[]->avg.load.
3352  * However, because tg->load_avg is a global value there are performance
3353  * considerations.
3354  *
3355  * In order to avoid having to look at the other cfs_rq's, we use a
3356  * differential update where we store the last value we propagated. This in
3357  * turn allows skipping updates if the differential is 'small'.
3358  *
3359  * Updating tg's load_avg is necessary before update_cfs_share().
3360  */
3361 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq)
3362 {
3363 	long delta = cfs_rq->avg.load_avg - cfs_rq->tg_load_avg_contrib;
3364 
3365 	/*
3366 	 * No need to update load_avg for root_task_group as it is not used.
3367 	 */
3368 	if (cfs_rq->tg == &root_task_group)
3369 		return;
3370 
3371 	if (abs(delta) > cfs_rq->tg_load_avg_contrib / 64) {
3372 		atomic_long_add(delta, &cfs_rq->tg->load_avg);
3373 		cfs_rq->tg_load_avg_contrib = cfs_rq->avg.load_avg;
3374 	}
3375 }
3376 
3377 /*
3378  * Called within set_task_rq() right before setting a task's CPU. The
3379  * caller only guarantees p->pi_lock is held; no other assumptions,
3380  * including the state of rq->lock, should be made.
3381  */
3382 void set_task_rq_fair(struct sched_entity *se,
3383 		      struct cfs_rq *prev, struct cfs_rq *next)
3384 {
3385 	u64 p_last_update_time;
3386 	u64 n_last_update_time;
3387 
3388 	if (!sched_feat(ATTACH_AGE_LOAD))
3389 		return;
3390 
3391 	/*
3392 	 * We are supposed to update the task to "current" time, then its up to
3393 	 * date and ready to go to new CPU/cfs_rq. But we have difficulty in
3394 	 * getting what current time is, so simply throw away the out-of-date
3395 	 * time. This will result in the wakee task is less decayed, but giving
3396 	 * the wakee more load sounds not bad.
3397 	 */
3398 	if (!(se->avg.last_update_time && prev))
3399 		return;
3400 
3401 #ifndef CONFIG_64BIT
3402 	{
3403 		u64 p_last_update_time_copy;
3404 		u64 n_last_update_time_copy;
3405 
3406 		do {
3407 			p_last_update_time_copy = prev->load_last_update_time_copy;
3408 			n_last_update_time_copy = next->load_last_update_time_copy;
3409 
3410 			smp_rmb();
3411 
3412 			p_last_update_time = prev->avg.last_update_time;
3413 			n_last_update_time = next->avg.last_update_time;
3414 
3415 		} while (p_last_update_time != p_last_update_time_copy ||
3416 			 n_last_update_time != n_last_update_time_copy);
3417 	}
3418 #else
3419 	p_last_update_time = prev->avg.last_update_time;
3420 	n_last_update_time = next->avg.last_update_time;
3421 #endif
3422 	__update_load_avg_blocked_se(p_last_update_time, se);
3423 	se->avg.last_update_time = n_last_update_time;
3424 }
3425 
3426 
3427 /*
3428  * When on migration a sched_entity joins/leaves the PELT hierarchy, we need to
3429  * propagate its contribution. The key to this propagation is the invariant
3430  * that for each group:
3431  *
3432  *   ge->avg == grq->avg						(1)
3433  *
3434  * _IFF_ we look at the pure running and runnable sums. Because they
3435  * represent the very same entity, just at different points in the hierarchy.
3436  *
3437  * Per the above update_tg_cfs_util() and update_tg_cfs_runnable() are trivial
3438  * and simply copies the running/runnable sum over (but still wrong, because
3439  * the group entity and group rq do not have their PELT windows aligned).
3440  *
3441  * However, update_tg_cfs_load() is more complex. So we have:
3442  *
3443  *   ge->avg.load_avg = ge->load.weight * ge->avg.runnable_avg		(2)
3444  *
3445  * And since, like util, the runnable part should be directly transferable,
3446  * the following would _appear_ to be the straight forward approach:
3447  *
3448  *   grq->avg.load_avg = grq->load.weight * grq->avg.runnable_avg	(3)
3449  *
3450  * And per (1) we have:
3451  *
3452  *   ge->avg.runnable_avg == grq->avg.runnable_avg
3453  *
3454  * Which gives:
3455  *
3456  *                      ge->load.weight * grq->avg.load_avg
3457  *   ge->avg.load_avg = -----------------------------------		(4)
3458  *                               grq->load.weight
3459  *
3460  * Except that is wrong!
3461  *
3462  * Because while for entities historical weight is not important and we
3463  * really only care about our future and therefore can consider a pure
3464  * runnable sum, runqueues can NOT do this.
3465  *
3466  * We specifically want runqueues to have a load_avg that includes
3467  * historical weights. Those represent the blocked load, the load we expect
3468  * to (shortly) return to us. This only works by keeping the weights as
3469  * integral part of the sum. We therefore cannot decompose as per (3).
3470  *
3471  * Another reason this doesn't work is that runnable isn't a 0-sum entity.
3472  * Imagine a rq with 2 tasks that each are runnable 2/3 of the time. Then the
3473  * rq itself is runnable anywhere between 2/3 and 1 depending on how the
3474  * runnable section of these tasks overlap (or not). If they were to perfectly
3475  * align the rq as a whole would be runnable 2/3 of the time. If however we
3476  * always have at least 1 runnable task, the rq as a whole is always runnable.
3477  *
3478  * So we'll have to approximate.. :/
3479  *
3480  * Given the constraint:
3481  *
3482  *   ge->avg.running_sum <= ge->avg.runnable_sum <= LOAD_AVG_MAX
3483  *
3484  * We can construct a rule that adds runnable to a rq by assuming minimal
3485  * overlap.
3486  *
3487  * On removal, we'll assume each task is equally runnable; which yields:
3488  *
3489  *   grq->avg.runnable_sum = grq->avg.load_sum / grq->load.weight
3490  *
3491  * XXX: only do this for the part of runnable > running ?
3492  *
3493  */
3494 
3495 static inline void
3496 update_tg_cfs_util(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
3497 {
3498 	long delta = gcfs_rq->avg.util_avg - se->avg.util_avg;
3499 	u32 divider;
3500 
3501 	/* Nothing to update */
3502 	if (!delta)
3503 		return;
3504 
3505 	/*
3506 	 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
3507 	 * See ___update_load_avg() for details.
3508 	 */
3509 	divider = get_pelt_divider(&cfs_rq->avg);
3510 
3511 	/* Set new sched_entity's utilization */
3512 	se->avg.util_avg = gcfs_rq->avg.util_avg;
3513 	se->avg.util_sum = se->avg.util_avg * divider;
3514 
3515 	/* Update parent cfs_rq utilization */
3516 	add_positive(&cfs_rq->avg.util_avg, delta);
3517 	cfs_rq->avg.util_sum = cfs_rq->avg.util_avg * divider;
3518 }
3519 
3520 static inline void
3521 update_tg_cfs_runnable(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
3522 {
3523 	long delta = gcfs_rq->avg.runnable_avg - se->avg.runnable_avg;
3524 	u32 divider;
3525 
3526 	/* Nothing to update */
3527 	if (!delta)
3528 		return;
3529 
3530 	/*
3531 	 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
3532 	 * See ___update_load_avg() for details.
3533 	 */
3534 	divider = get_pelt_divider(&cfs_rq->avg);
3535 
3536 	/* Set new sched_entity's runnable */
3537 	se->avg.runnable_avg = gcfs_rq->avg.runnable_avg;
3538 	se->avg.runnable_sum = se->avg.runnable_avg * divider;
3539 
3540 	/* Update parent cfs_rq runnable */
3541 	add_positive(&cfs_rq->avg.runnable_avg, delta);
3542 	cfs_rq->avg.runnable_sum = cfs_rq->avg.runnable_avg * divider;
3543 }
3544 
3545 static inline void
3546 update_tg_cfs_load(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
3547 {
3548 	long delta, running_sum, runnable_sum = gcfs_rq->prop_runnable_sum;
3549 	unsigned long load_avg;
3550 	u64 load_sum = 0;
3551 	u32 divider;
3552 
3553 	if (!runnable_sum)
3554 		return;
3555 
3556 	gcfs_rq->prop_runnable_sum = 0;
3557 
3558 	/*
3559 	 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
3560 	 * See ___update_load_avg() for details.
3561 	 */
3562 	divider = get_pelt_divider(&cfs_rq->avg);
3563 
3564 	if (runnable_sum >= 0) {
3565 		/*
3566 		 * Add runnable; clip at LOAD_AVG_MAX. Reflects that until
3567 		 * the CPU is saturated running == runnable.
3568 		 */
3569 		runnable_sum += se->avg.load_sum;
3570 		runnable_sum = min_t(long, runnable_sum, divider);
3571 	} else {
3572 		/*
3573 		 * Estimate the new unweighted runnable_sum of the gcfs_rq by
3574 		 * assuming all tasks are equally runnable.
3575 		 */
3576 		if (scale_load_down(gcfs_rq->load.weight)) {
3577 			load_sum = div_s64(gcfs_rq->avg.load_sum,
3578 				scale_load_down(gcfs_rq->load.weight));
3579 		}
3580 
3581 		/* But make sure to not inflate se's runnable */
3582 		runnable_sum = min(se->avg.load_sum, load_sum);
3583 	}
3584 
3585 	/*
3586 	 * runnable_sum can't be lower than running_sum
3587 	 * Rescale running sum to be in the same range as runnable sum
3588 	 * running_sum is in [0 : LOAD_AVG_MAX <<  SCHED_CAPACITY_SHIFT]
3589 	 * runnable_sum is in [0 : LOAD_AVG_MAX]
3590 	 */
3591 	running_sum = se->avg.util_sum >> SCHED_CAPACITY_SHIFT;
3592 	runnable_sum = max(runnable_sum, running_sum);
3593 
3594 	load_sum = (s64)se_weight(se) * runnable_sum;
3595 	load_avg = div_s64(load_sum, divider);
3596 
3597 	delta = load_avg - se->avg.load_avg;
3598 
3599 	se->avg.load_sum = runnable_sum;
3600 	se->avg.load_avg = load_avg;
3601 
3602 	add_positive(&cfs_rq->avg.load_avg, delta);
3603 	cfs_rq->avg.load_sum = cfs_rq->avg.load_avg * divider;
3604 }
3605 
3606 static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum)
3607 {
3608 	cfs_rq->propagate = 1;
3609 	cfs_rq->prop_runnable_sum += runnable_sum;
3610 }
3611 
3612 /* Update task and its cfs_rq load average */
3613 static inline int propagate_entity_load_avg(struct sched_entity *se)
3614 {
3615 	struct cfs_rq *cfs_rq, *gcfs_rq;
3616 
3617 	if (entity_is_task(se))
3618 		return 0;
3619 
3620 	gcfs_rq = group_cfs_rq(se);
3621 	if (!gcfs_rq->propagate)
3622 		return 0;
3623 
3624 	gcfs_rq->propagate = 0;
3625 
3626 	cfs_rq = cfs_rq_of(se);
3627 
3628 	add_tg_cfs_propagate(cfs_rq, gcfs_rq->prop_runnable_sum);
3629 
3630 	update_tg_cfs_util(cfs_rq, se, gcfs_rq);
3631 	update_tg_cfs_runnable(cfs_rq, se, gcfs_rq);
3632 	update_tg_cfs_load(cfs_rq, se, gcfs_rq);
3633 
3634 	trace_pelt_cfs_tp(cfs_rq);
3635 	trace_pelt_se_tp(se);
3636 
3637 	return 1;
3638 }
3639 
3640 /*
3641  * Check if we need to update the load and the utilization of a blocked
3642  * group_entity:
3643  */
3644 static inline bool skip_blocked_update(struct sched_entity *se)
3645 {
3646 	struct cfs_rq *gcfs_rq = group_cfs_rq(se);
3647 
3648 	/*
3649 	 * If sched_entity still have not zero load or utilization, we have to
3650 	 * decay it:
3651 	 */
3652 	if (se->avg.load_avg || se->avg.util_avg)
3653 		return false;
3654 
3655 	/*
3656 	 * If there is a pending propagation, we have to update the load and
3657 	 * the utilization of the sched_entity:
3658 	 */
3659 	if (gcfs_rq->propagate)
3660 		return false;
3661 
3662 	/*
3663 	 * Otherwise, the load and the utilization of the sched_entity is
3664 	 * already zero and there is no pending propagation, so it will be a
3665 	 * waste of time to try to decay it:
3666 	 */
3667 	return true;
3668 }
3669 
3670 #else /* CONFIG_FAIR_GROUP_SCHED */
3671 
3672 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq) {}
3673 
3674 static inline int propagate_entity_load_avg(struct sched_entity *se)
3675 {
3676 	return 0;
3677 }
3678 
3679 static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum) {}
3680 
3681 #endif /* CONFIG_FAIR_GROUP_SCHED */
3682 
3683 /**
3684  * update_cfs_rq_load_avg - update the cfs_rq's load/util averages
3685  * @now: current time, as per cfs_rq_clock_pelt()
3686  * @cfs_rq: cfs_rq to update
3687  *
3688  * The cfs_rq avg is the direct sum of all its entities (blocked and runnable)
3689  * avg. The immediate corollary is that all (fair) tasks must be attached, see
3690  * post_init_entity_util_avg().
3691  *
3692  * cfs_rq->avg is used for task_h_load() and update_cfs_share() for example.
3693  *
3694  * Returns true if the load decayed or we removed load.
3695  *
3696  * Since both these conditions indicate a changed cfs_rq->avg.load we should
3697  * call update_tg_load_avg() when this function returns true.
3698  */
3699 static inline int
3700 update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq)
3701 {
3702 	unsigned long removed_load = 0, removed_util = 0, removed_runnable = 0;
3703 	struct sched_avg *sa = &cfs_rq->avg;
3704 	int decayed = 0;
3705 
3706 	if (cfs_rq->removed.nr) {
3707 		unsigned long r;
3708 		u32 divider = get_pelt_divider(&cfs_rq->avg);
3709 
3710 		raw_spin_lock(&cfs_rq->removed.lock);
3711 		swap(cfs_rq->removed.util_avg, removed_util);
3712 		swap(cfs_rq->removed.load_avg, removed_load);
3713 		swap(cfs_rq->removed.runnable_avg, removed_runnable);
3714 		cfs_rq->removed.nr = 0;
3715 		raw_spin_unlock(&cfs_rq->removed.lock);
3716 
3717 		r = removed_load;
3718 		sub_positive(&sa->load_avg, r);
3719 		sub_positive(&sa->load_sum, r * divider);
3720 
3721 		r = removed_util;
3722 		sub_positive(&sa->util_avg, r);
3723 		sub_positive(&sa->util_sum, r * divider);
3724 
3725 		r = removed_runnable;
3726 		sub_positive(&sa->runnable_avg, r);
3727 		sub_positive(&sa->runnable_sum, r * divider);
3728 
3729 		/*
3730 		 * removed_runnable is the unweighted version of removed_load so we
3731 		 * can use it to estimate removed_load_sum.
3732 		 */
3733 		add_tg_cfs_propagate(cfs_rq,
3734 			-(long)(removed_runnable * divider) >> SCHED_CAPACITY_SHIFT);
3735 
3736 		decayed = 1;
3737 	}
3738 
3739 	decayed |= __update_load_avg_cfs_rq(now, cfs_rq);
3740 
3741 #ifndef CONFIG_64BIT
3742 	smp_wmb();
3743 	cfs_rq->load_last_update_time_copy = sa->last_update_time;
3744 #endif
3745 
3746 	return decayed;
3747 }
3748 
3749 /**
3750  * attach_entity_load_avg - attach this entity to its cfs_rq load avg
3751  * @cfs_rq: cfs_rq to attach to
3752  * @se: sched_entity to attach
3753  *
3754  * Must call update_cfs_rq_load_avg() before this, since we rely on
3755  * cfs_rq->avg.last_update_time being current.
3756  */
3757 static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3758 {
3759 	/*
3760 	 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
3761 	 * See ___update_load_avg() for details.
3762 	 */
3763 	u32 divider = get_pelt_divider(&cfs_rq->avg);
3764 
3765 	/*
3766 	 * When we attach the @se to the @cfs_rq, we must align the decay
3767 	 * window because without that, really weird and wonderful things can
3768 	 * happen.
3769 	 *
3770 	 * XXX illustrate
3771 	 */
3772 	se->avg.last_update_time = cfs_rq->avg.last_update_time;
3773 	se->avg.period_contrib = cfs_rq->avg.period_contrib;
3774 
3775 	/*
3776 	 * Hell(o) Nasty stuff.. we need to recompute _sum based on the new
3777 	 * period_contrib. This isn't strictly correct, but since we're
3778 	 * entirely outside of the PELT hierarchy, nobody cares if we truncate
3779 	 * _sum a little.
3780 	 */
3781 	se->avg.util_sum = se->avg.util_avg * divider;
3782 
3783 	se->avg.runnable_sum = se->avg.runnable_avg * divider;
3784 
3785 	se->avg.load_sum = divider;
3786 	if (se_weight(se)) {
3787 		se->avg.load_sum =
3788 			div_u64(se->avg.load_avg * se->avg.load_sum, se_weight(se));
3789 	}
3790 
3791 	enqueue_load_avg(cfs_rq, se);
3792 	cfs_rq->avg.util_avg += se->avg.util_avg;
3793 	cfs_rq->avg.util_sum += se->avg.util_sum;
3794 	cfs_rq->avg.runnable_avg += se->avg.runnable_avg;
3795 	cfs_rq->avg.runnable_sum += se->avg.runnable_sum;
3796 
3797 	add_tg_cfs_propagate(cfs_rq, se->avg.load_sum);
3798 
3799 	cfs_rq_util_change(cfs_rq, 0);
3800 
3801 	trace_pelt_cfs_tp(cfs_rq);
3802 }
3803 
3804 /**
3805  * detach_entity_load_avg - detach this entity from its cfs_rq load avg
3806  * @cfs_rq: cfs_rq to detach from
3807  * @se: sched_entity to detach
3808  *
3809  * Must call update_cfs_rq_load_avg() before this, since we rely on
3810  * cfs_rq->avg.last_update_time being current.
3811  */
3812 static void detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3813 {
3814 	/*
3815 	 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
3816 	 * See ___update_load_avg() for details.
3817 	 */
3818 	u32 divider = get_pelt_divider(&cfs_rq->avg);
3819 
3820 	dequeue_load_avg(cfs_rq, se);
3821 	sub_positive(&cfs_rq->avg.util_avg, se->avg.util_avg);
3822 	cfs_rq->avg.util_sum = cfs_rq->avg.util_avg * divider;
3823 	sub_positive(&cfs_rq->avg.runnable_avg, se->avg.runnable_avg);
3824 	cfs_rq->avg.runnable_sum = cfs_rq->avg.runnable_avg * divider;
3825 
3826 	add_tg_cfs_propagate(cfs_rq, -se->avg.load_sum);
3827 
3828 	cfs_rq_util_change(cfs_rq, 0);
3829 
3830 	trace_pelt_cfs_tp(cfs_rq);
3831 }
3832 
3833 /*
3834  * Optional action to be done while updating the load average
3835  */
3836 #define UPDATE_TG	0x1
3837 #define SKIP_AGE_LOAD	0x2
3838 #define DO_ATTACH	0x4
3839 
3840 /* Update task and its cfs_rq load average */
3841 static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
3842 {
3843 	u64 now = cfs_rq_clock_pelt(cfs_rq);
3844 	int decayed;
3845 
3846 	/*
3847 	 * Track task load average for carrying it to new CPU after migrated, and
3848 	 * track group sched_entity load average for task_h_load calc in migration
3849 	 */
3850 	if (se->avg.last_update_time && !(flags & SKIP_AGE_LOAD))
3851 		__update_load_avg_se(now, cfs_rq, se);
3852 
3853 	decayed  = update_cfs_rq_load_avg(now, cfs_rq);
3854 	decayed |= propagate_entity_load_avg(se);
3855 
3856 	if (!se->avg.last_update_time && (flags & DO_ATTACH)) {
3857 
3858 		/*
3859 		 * DO_ATTACH means we're here from enqueue_entity().
3860 		 * !last_update_time means we've passed through
3861 		 * migrate_task_rq_fair() indicating we migrated.
3862 		 *
3863 		 * IOW we're enqueueing a task on a new CPU.
3864 		 */
3865 		attach_entity_load_avg(cfs_rq, se);
3866 		update_tg_load_avg(cfs_rq);
3867 
3868 	} else if (decayed) {
3869 		cfs_rq_util_change(cfs_rq, 0);
3870 
3871 		if (flags & UPDATE_TG)
3872 			update_tg_load_avg(cfs_rq);
3873 	}
3874 }
3875 
3876 #ifndef CONFIG_64BIT
3877 static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
3878 {
3879 	u64 last_update_time_copy;
3880 	u64 last_update_time;
3881 
3882 	do {
3883 		last_update_time_copy = cfs_rq->load_last_update_time_copy;
3884 		smp_rmb();
3885 		last_update_time = cfs_rq->avg.last_update_time;
3886 	} while (last_update_time != last_update_time_copy);
3887 
3888 	return last_update_time;
3889 }
3890 #else
3891 static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
3892 {
3893 	return cfs_rq->avg.last_update_time;
3894 }
3895 #endif
3896 
3897 /*
3898  * Synchronize entity load avg of dequeued entity without locking
3899  * the previous rq.
3900  */
3901 static void sync_entity_load_avg(struct sched_entity *se)
3902 {
3903 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
3904 	u64 last_update_time;
3905 
3906 	last_update_time = cfs_rq_last_update_time(cfs_rq);
3907 	__update_load_avg_blocked_se(last_update_time, se);
3908 }
3909 
3910 /*
3911  * Task first catches up with cfs_rq, and then subtract
3912  * itself from the cfs_rq (task must be off the queue now).
3913  */
3914 static void remove_entity_load_avg(struct sched_entity *se)
3915 {
3916 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
3917 	unsigned long flags;
3918 
3919 	/*
3920 	 * tasks cannot exit without having gone through wake_up_new_task() ->
3921 	 * post_init_entity_util_avg() which will have added things to the
3922 	 * cfs_rq, so we can remove unconditionally.
3923 	 */
3924 
3925 	sync_entity_load_avg(se);
3926 
3927 	raw_spin_lock_irqsave(&cfs_rq->removed.lock, flags);
3928 	++cfs_rq->removed.nr;
3929 	cfs_rq->removed.util_avg	+= se->avg.util_avg;
3930 	cfs_rq->removed.load_avg	+= se->avg.load_avg;
3931 	cfs_rq->removed.runnable_avg	+= se->avg.runnable_avg;
3932 	raw_spin_unlock_irqrestore(&cfs_rq->removed.lock, flags);
3933 }
3934 
3935 static inline unsigned long cfs_rq_runnable_avg(struct cfs_rq *cfs_rq)
3936 {
3937 	return cfs_rq->avg.runnable_avg;
3938 }
3939 
3940 static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq)
3941 {
3942 	return cfs_rq->avg.load_avg;
3943 }
3944 
3945 static int newidle_balance(struct rq *this_rq, struct rq_flags *rf);
3946 
3947 static inline unsigned long task_util(struct task_struct *p)
3948 {
3949 	return READ_ONCE(p->se.avg.util_avg);
3950 }
3951 
3952 static inline unsigned long _task_util_est(struct task_struct *p)
3953 {
3954 	struct util_est ue = READ_ONCE(p->se.avg.util_est);
3955 
3956 	return max(ue.ewma, (ue.enqueued & ~UTIL_AVG_UNCHANGED));
3957 }
3958 
3959 static inline unsigned long task_util_est(struct task_struct *p)
3960 {
3961 	return max(task_util(p), _task_util_est(p));
3962 }
3963 
3964 #ifdef CONFIG_UCLAMP_TASK
3965 static inline unsigned long uclamp_task_util(struct task_struct *p)
3966 {
3967 	return clamp(task_util_est(p),
3968 		     uclamp_eff_value(p, UCLAMP_MIN),
3969 		     uclamp_eff_value(p, UCLAMP_MAX));
3970 }
3971 #else
3972 static inline unsigned long uclamp_task_util(struct task_struct *p)
3973 {
3974 	return task_util_est(p);
3975 }
3976 #endif
3977 
3978 static inline void util_est_enqueue(struct cfs_rq *cfs_rq,
3979 				    struct task_struct *p)
3980 {
3981 	unsigned int enqueued;
3982 
3983 	if (!sched_feat(UTIL_EST))
3984 		return;
3985 
3986 	/* Update root cfs_rq's estimated utilization */
3987 	enqueued  = cfs_rq->avg.util_est.enqueued;
3988 	enqueued += _task_util_est(p);
3989 	WRITE_ONCE(cfs_rq->avg.util_est.enqueued, enqueued);
3990 
3991 	trace_sched_util_est_cfs_tp(cfs_rq);
3992 }
3993 
3994 static inline void util_est_dequeue(struct cfs_rq *cfs_rq,
3995 				    struct task_struct *p)
3996 {
3997 	unsigned int enqueued;
3998 
3999 	if (!sched_feat(UTIL_EST))
4000 		return;
4001 
4002 	/* Update root cfs_rq's estimated utilization */
4003 	enqueued  = cfs_rq->avg.util_est.enqueued;
4004 	enqueued -= min_t(unsigned int, enqueued, _task_util_est(p));
4005 	WRITE_ONCE(cfs_rq->avg.util_est.enqueued, enqueued);
4006 
4007 	trace_sched_util_est_cfs_tp(cfs_rq);
4008 }
4009 
4010 #define UTIL_EST_MARGIN (SCHED_CAPACITY_SCALE / 100)
4011 
4012 /*
4013  * Check if a (signed) value is within a specified (unsigned) margin,
4014  * based on the observation that:
4015  *
4016  *     abs(x) < y := (unsigned)(x + y - 1) < (2 * y - 1)
4017  *
4018  * NOTE: this only works when value + margin < INT_MAX.
4019  */
4020 static inline bool within_margin(int value, int margin)
4021 {
4022 	return ((unsigned int)(value + margin - 1) < (2 * margin - 1));
4023 }
4024 
4025 static inline void util_est_update(struct cfs_rq *cfs_rq,
4026 				   struct task_struct *p,
4027 				   bool task_sleep)
4028 {
4029 	long last_ewma_diff, last_enqueued_diff;
4030 	struct util_est ue;
4031 
4032 	if (!sched_feat(UTIL_EST))
4033 		return;
4034 
4035 	/*
4036 	 * Skip update of task's estimated utilization when the task has not
4037 	 * yet completed an activation, e.g. being migrated.
4038 	 */
4039 	if (!task_sleep)
4040 		return;
4041 
4042 	/*
4043 	 * If the PELT values haven't changed since enqueue time,
4044 	 * skip the util_est update.
4045 	 */
4046 	ue = p->se.avg.util_est;
4047 	if (ue.enqueued & UTIL_AVG_UNCHANGED)
4048 		return;
4049 
4050 	last_enqueued_diff = ue.enqueued;
4051 
4052 	/*
4053 	 * Reset EWMA on utilization increases, the moving average is used only
4054 	 * to smooth utilization decreases.
4055 	 */
4056 	ue.enqueued = task_util(p);
4057 	if (sched_feat(UTIL_EST_FASTUP)) {
4058 		if (ue.ewma < ue.enqueued) {
4059 			ue.ewma = ue.enqueued;
4060 			goto done;
4061 		}
4062 	}
4063 
4064 	/*
4065 	 * Skip update of task's estimated utilization when its members are
4066 	 * already ~1% close to its last activation value.
4067 	 */
4068 	last_ewma_diff = ue.enqueued - ue.ewma;
4069 	last_enqueued_diff -= ue.enqueued;
4070 	if (within_margin(last_ewma_diff, UTIL_EST_MARGIN)) {
4071 		if (!within_margin(last_enqueued_diff, UTIL_EST_MARGIN))
4072 			goto done;
4073 
4074 		return;
4075 	}
4076 
4077 	/*
4078 	 * To avoid overestimation of actual task utilization, skip updates if
4079 	 * we cannot grant there is idle time in this CPU.
4080 	 */
4081 	if (task_util(p) > capacity_orig_of(cpu_of(rq_of(cfs_rq))))
4082 		return;
4083 
4084 	/*
4085 	 * Update Task's estimated utilization
4086 	 *
4087 	 * When *p completes an activation we can consolidate another sample
4088 	 * of the task size. This is done by storing the current PELT value
4089 	 * as ue.enqueued and by using this value to update the Exponential
4090 	 * Weighted Moving Average (EWMA):
4091 	 *
4092 	 *  ewma(t) = w *  task_util(p) + (1-w) * ewma(t-1)
4093 	 *          = w *  task_util(p) +         ewma(t-1)  - w * ewma(t-1)
4094 	 *          = w * (task_util(p) -         ewma(t-1)) +     ewma(t-1)
4095 	 *          = w * (      last_ewma_diff            ) +     ewma(t-1)
4096 	 *          = w * (last_ewma_diff  +  ewma(t-1) / w)
4097 	 *
4098 	 * Where 'w' is the weight of new samples, which is configured to be
4099 	 * 0.25, thus making w=1/4 ( >>= UTIL_EST_WEIGHT_SHIFT)
4100 	 */
4101 	ue.ewma <<= UTIL_EST_WEIGHT_SHIFT;
4102 	ue.ewma  += last_ewma_diff;
4103 	ue.ewma >>= UTIL_EST_WEIGHT_SHIFT;
4104 done:
4105 	ue.enqueued |= UTIL_AVG_UNCHANGED;
4106 	WRITE_ONCE(p->se.avg.util_est, ue);
4107 
4108 	trace_sched_util_est_se_tp(&p->se);
4109 }
4110 
4111 static inline int task_fits_capacity(struct task_struct *p, long capacity)
4112 {
4113 	return fits_capacity(uclamp_task_util(p), capacity);
4114 }
4115 
4116 static inline void update_misfit_status(struct task_struct *p, struct rq *rq)
4117 {
4118 	if (!static_branch_unlikely(&sched_asym_cpucapacity))
4119 		return;
4120 
4121 	if (!p || p->nr_cpus_allowed == 1) {
4122 		rq->misfit_task_load = 0;
4123 		return;
4124 	}
4125 
4126 	if (task_fits_capacity(p, capacity_of(cpu_of(rq)))) {
4127 		rq->misfit_task_load = 0;
4128 		return;
4129 	}
4130 
4131 	/*
4132 	 * Make sure that misfit_task_load will not be null even if
4133 	 * task_h_load() returns 0.
4134 	 */
4135 	rq->misfit_task_load = max_t(unsigned long, task_h_load(p), 1);
4136 }
4137 
4138 #else /* CONFIG_SMP */
4139 
4140 static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq)
4141 {
4142 	return true;
4143 }
4144 
4145 #define UPDATE_TG	0x0
4146 #define SKIP_AGE_LOAD	0x0
4147 #define DO_ATTACH	0x0
4148 
4149 static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int not_used1)
4150 {
4151 	cfs_rq_util_change(cfs_rq, 0);
4152 }
4153 
4154 static inline void remove_entity_load_avg(struct sched_entity *se) {}
4155 
4156 static inline void
4157 attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
4158 static inline void
4159 detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
4160 
4161 static inline int newidle_balance(struct rq *rq, struct rq_flags *rf)
4162 {
4163 	return 0;
4164 }
4165 
4166 static inline void
4167 util_est_enqueue(struct cfs_rq *cfs_rq, struct task_struct *p) {}
4168 
4169 static inline void
4170 util_est_dequeue(struct cfs_rq *cfs_rq, struct task_struct *p) {}
4171 
4172 static inline void
4173 util_est_update(struct cfs_rq *cfs_rq, struct task_struct *p,
4174 		bool task_sleep) {}
4175 static inline void update_misfit_status(struct task_struct *p, struct rq *rq) {}
4176 
4177 #endif /* CONFIG_SMP */
4178 
4179 static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
4180 {
4181 #ifdef CONFIG_SCHED_DEBUG
4182 	s64 d = se->vruntime - cfs_rq->min_vruntime;
4183 
4184 	if (d < 0)
4185 		d = -d;
4186 
4187 	if (d > 3*sysctl_sched_latency)
4188 		schedstat_inc(cfs_rq->nr_spread_over);
4189 #endif
4190 }
4191 
4192 static void
4193 place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
4194 {
4195 	u64 vruntime = cfs_rq->min_vruntime;
4196 
4197 	/*
4198 	 * The 'current' period is already promised to the current tasks,
4199 	 * however the extra weight of the new task will slow them down a
4200 	 * little, place the new task so that it fits in the slot that
4201 	 * stays open at the end.
4202 	 */
4203 	if (initial && sched_feat(START_DEBIT))
4204 		vruntime += sched_vslice(cfs_rq, se);
4205 
4206 	/* sleeps up to a single latency don't count. */
4207 	if (!initial) {
4208 		unsigned long thresh = sysctl_sched_latency;
4209 
4210 		/*
4211 		 * Halve their sleep time's effect, to allow
4212 		 * for a gentler effect of sleepers:
4213 		 */
4214 		if (sched_feat(GENTLE_FAIR_SLEEPERS))
4215 			thresh >>= 1;
4216 
4217 		vruntime -= thresh;
4218 	}
4219 
4220 	/* ensure we never gain time by being placed backwards. */
4221 	se->vruntime = max_vruntime(se->vruntime, vruntime);
4222 }
4223 
4224 static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
4225 
4226 static inline void check_schedstat_required(void)
4227 {
4228 #ifdef CONFIG_SCHEDSTATS
4229 	if (schedstat_enabled())
4230 		return;
4231 
4232 	/* Force schedstat enabled if a dependent tracepoint is active */
4233 	if (trace_sched_stat_wait_enabled()    ||
4234 			trace_sched_stat_sleep_enabled()   ||
4235 			trace_sched_stat_iowait_enabled()  ||
4236 			trace_sched_stat_blocked_enabled() ||
4237 			trace_sched_stat_runtime_enabled())  {
4238 		printk_deferred_once("Scheduler tracepoints stat_sleep, stat_iowait, "
4239 			     "stat_blocked and stat_runtime require the "
4240 			     "kernel parameter schedstats=enable or "
4241 			     "kernel.sched_schedstats=1\n");
4242 	}
4243 #endif
4244 }
4245 
4246 static inline bool cfs_bandwidth_used(void);
4247 
4248 /*
4249  * MIGRATION
4250  *
4251  *	dequeue
4252  *	  update_curr()
4253  *	    update_min_vruntime()
4254  *	  vruntime -= min_vruntime
4255  *
4256  *	enqueue
4257  *	  update_curr()
4258  *	    update_min_vruntime()
4259  *	  vruntime += min_vruntime
4260  *
4261  * this way the vruntime transition between RQs is done when both
4262  * min_vruntime are up-to-date.
4263  *
4264  * WAKEUP (remote)
4265  *
4266  *	->migrate_task_rq_fair() (p->state == TASK_WAKING)
4267  *	  vruntime -= min_vruntime
4268  *
4269  *	enqueue
4270  *	  update_curr()
4271  *	    update_min_vruntime()
4272  *	  vruntime += min_vruntime
4273  *
4274  * this way we don't have the most up-to-date min_vruntime on the originating
4275  * CPU and an up-to-date min_vruntime on the destination CPU.
4276  */
4277 
4278 static void
4279 enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
4280 {
4281 	bool renorm = !(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_MIGRATED);
4282 	bool curr = cfs_rq->curr == se;
4283 
4284 	/*
4285 	 * If we're the current task, we must renormalise before calling
4286 	 * update_curr().
4287 	 */
4288 	if (renorm && curr)
4289 		se->vruntime += cfs_rq->min_vruntime;
4290 
4291 	update_curr(cfs_rq);
4292 
4293 	/*
4294 	 * Otherwise, renormalise after, such that we're placed at the current
4295 	 * moment in time, instead of some random moment in the past. Being
4296 	 * placed in the past could significantly boost this task to the
4297 	 * fairness detriment of existing tasks.
4298 	 */
4299 	if (renorm && !curr)
4300 		se->vruntime += cfs_rq->min_vruntime;
4301 
4302 	/*
4303 	 * When enqueuing a sched_entity, we must:
4304 	 *   - Update loads to have both entity and cfs_rq synced with now.
4305 	 *   - Add its load to cfs_rq->runnable_avg
4306 	 *   - For group_entity, update its weight to reflect the new share of
4307 	 *     its group cfs_rq
4308 	 *   - Add its new weight to cfs_rq->load.weight
4309 	 */
4310 	update_load_avg(cfs_rq, se, UPDATE_TG | DO_ATTACH);
4311 	se_update_runnable(se);
4312 	update_cfs_group(se);
4313 	account_entity_enqueue(cfs_rq, se);
4314 
4315 	if (flags & ENQUEUE_WAKEUP)
4316 		place_entity(cfs_rq, se, 0);
4317 
4318 	check_schedstat_required();
4319 	update_stats_enqueue(cfs_rq, se, flags);
4320 	check_spread(cfs_rq, se);
4321 	if (!curr)
4322 		__enqueue_entity(cfs_rq, se);
4323 	se->on_rq = 1;
4324 
4325 	/*
4326 	 * When bandwidth control is enabled, cfs might have been removed
4327 	 * because of a parent been throttled but cfs->nr_running > 1. Try to
4328 	 * add it unconditionally.
4329 	 */
4330 	if (cfs_rq->nr_running == 1 || cfs_bandwidth_used())
4331 		list_add_leaf_cfs_rq(cfs_rq);
4332 
4333 	if (cfs_rq->nr_running == 1)
4334 		check_enqueue_throttle(cfs_rq);
4335 }
4336 
4337 static void __clear_buddies_last(struct sched_entity *se)
4338 {
4339 	for_each_sched_entity(se) {
4340 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
4341 		if (cfs_rq->last != se)
4342 			break;
4343 
4344 		cfs_rq->last = NULL;
4345 	}
4346 }
4347 
4348 static void __clear_buddies_next(struct sched_entity *se)
4349 {
4350 	for_each_sched_entity(se) {
4351 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
4352 		if (cfs_rq->next != se)
4353 			break;
4354 
4355 		cfs_rq->next = NULL;
4356 	}
4357 }
4358 
4359 static void __clear_buddies_skip(struct sched_entity *se)
4360 {
4361 	for_each_sched_entity(se) {
4362 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
4363 		if (cfs_rq->skip != se)
4364 			break;
4365 
4366 		cfs_rq->skip = NULL;
4367 	}
4368 }
4369 
4370 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
4371 {
4372 	if (cfs_rq->last == se)
4373 		__clear_buddies_last(se);
4374 
4375 	if (cfs_rq->next == se)
4376 		__clear_buddies_next(se);
4377 
4378 	if (cfs_rq->skip == se)
4379 		__clear_buddies_skip(se);
4380 }
4381 
4382 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
4383 
4384 static void
4385 dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
4386 {
4387 	/*
4388 	 * Update run-time statistics of the 'current'.
4389 	 */
4390 	update_curr(cfs_rq);
4391 
4392 	/*
4393 	 * When dequeuing a sched_entity, we must:
4394 	 *   - Update loads to have both entity and cfs_rq synced with now.
4395 	 *   - Subtract its load from the cfs_rq->runnable_avg.
4396 	 *   - Subtract its previous weight from cfs_rq->load.weight.
4397 	 *   - For group entity, update its weight to reflect the new share
4398 	 *     of its group cfs_rq.
4399 	 */
4400 	update_load_avg(cfs_rq, se, UPDATE_TG);
4401 	se_update_runnable(se);
4402 
4403 	update_stats_dequeue(cfs_rq, se, flags);
4404 
4405 	clear_buddies(cfs_rq, se);
4406 
4407 	if (se != cfs_rq->curr)
4408 		__dequeue_entity(cfs_rq, se);
4409 	se->on_rq = 0;
4410 	account_entity_dequeue(cfs_rq, se);
4411 
4412 	/*
4413 	 * Normalize after update_curr(); which will also have moved
4414 	 * min_vruntime if @se is the one holding it back. But before doing
4415 	 * update_min_vruntime() again, which will discount @se's position and
4416 	 * can move min_vruntime forward still more.
4417 	 */
4418 	if (!(flags & DEQUEUE_SLEEP))
4419 		se->vruntime -= cfs_rq->min_vruntime;
4420 
4421 	/* return excess runtime on last dequeue */
4422 	return_cfs_rq_runtime(cfs_rq);
4423 
4424 	update_cfs_group(se);
4425 
4426 	/*
4427 	 * Now advance min_vruntime if @se was the entity holding it back,
4428 	 * except when: DEQUEUE_SAVE && !DEQUEUE_MOVE, in this case we'll be
4429 	 * put back on, and if we advance min_vruntime, we'll be placed back
4430 	 * further than we started -- ie. we'll be penalized.
4431 	 */
4432 	if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) != DEQUEUE_SAVE)
4433 		update_min_vruntime(cfs_rq);
4434 }
4435 
4436 /*
4437  * Preempt the current task with a newly woken task if needed:
4438  */
4439 static void
4440 check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
4441 {
4442 	unsigned long ideal_runtime, delta_exec;
4443 	struct sched_entity *se;
4444 	s64 delta;
4445 
4446 	ideal_runtime = sched_slice(cfs_rq, curr);
4447 	delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
4448 	if (delta_exec > ideal_runtime) {
4449 		resched_curr(rq_of(cfs_rq));
4450 		/*
4451 		 * The current task ran long enough, ensure it doesn't get
4452 		 * re-elected due to buddy favours.
4453 		 */
4454 		clear_buddies(cfs_rq, curr);
4455 		return;
4456 	}
4457 
4458 	/*
4459 	 * Ensure that a task that missed wakeup preemption by a
4460 	 * narrow margin doesn't have to wait for a full slice.
4461 	 * This also mitigates buddy induced latencies under load.
4462 	 */
4463 	if (delta_exec < sysctl_sched_min_granularity)
4464 		return;
4465 
4466 	se = __pick_first_entity(cfs_rq);
4467 	delta = curr->vruntime - se->vruntime;
4468 
4469 	if (delta < 0)
4470 		return;
4471 
4472 	if (delta > ideal_runtime)
4473 		resched_curr(rq_of(cfs_rq));
4474 }
4475 
4476 static void
4477 set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
4478 {
4479 	/* 'current' is not kept within the tree. */
4480 	if (se->on_rq) {
4481 		/*
4482 		 * Any task has to be enqueued before it get to execute on
4483 		 * a CPU. So account for the time it spent waiting on the
4484 		 * runqueue.
4485 		 */
4486 		update_stats_wait_end(cfs_rq, se);
4487 		__dequeue_entity(cfs_rq, se);
4488 		update_load_avg(cfs_rq, se, UPDATE_TG);
4489 	}
4490 
4491 	update_stats_curr_start(cfs_rq, se);
4492 	cfs_rq->curr = se;
4493 
4494 	/*
4495 	 * Track our maximum slice length, if the CPU's load is at
4496 	 * least twice that of our own weight (i.e. dont track it
4497 	 * when there are only lesser-weight tasks around):
4498 	 */
4499 	if (schedstat_enabled() &&
4500 	    rq_of(cfs_rq)->cfs.load.weight >= 2*se->load.weight) {
4501 		schedstat_set(se->statistics.slice_max,
4502 			max((u64)schedstat_val(se->statistics.slice_max),
4503 			    se->sum_exec_runtime - se->prev_sum_exec_runtime));
4504 	}
4505 
4506 	se->prev_sum_exec_runtime = se->sum_exec_runtime;
4507 }
4508 
4509 static int
4510 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
4511 
4512 /*
4513  * Pick the next process, keeping these things in mind, in this order:
4514  * 1) keep things fair between processes/task groups
4515  * 2) pick the "next" process, since someone really wants that to run
4516  * 3) pick the "last" process, for cache locality
4517  * 4) do not run the "skip" process, if something else is available
4518  */
4519 static struct sched_entity *
4520 pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr)
4521 {
4522 	struct sched_entity *left = __pick_first_entity(cfs_rq);
4523 	struct sched_entity *se;
4524 
4525 	/*
4526 	 * If curr is set we have to see if its left of the leftmost entity
4527 	 * still in the tree, provided there was anything in the tree at all.
4528 	 */
4529 	if (!left || (curr && entity_before(curr, left)))
4530 		left = curr;
4531 
4532 	se = left; /* ideally we run the leftmost entity */
4533 
4534 	/*
4535 	 * Avoid running the skip buddy, if running something else can
4536 	 * be done without getting too unfair.
4537 	 */
4538 	if (cfs_rq->skip == se) {
4539 		struct sched_entity *second;
4540 
4541 		if (se == curr) {
4542 			second = __pick_first_entity(cfs_rq);
4543 		} else {
4544 			second = __pick_next_entity(se);
4545 			if (!second || (curr && entity_before(curr, second)))
4546 				second = curr;
4547 		}
4548 
4549 		if (second && wakeup_preempt_entity(second, left) < 1)
4550 			se = second;
4551 	}
4552 
4553 	if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1) {
4554 		/*
4555 		 * Someone really wants this to run. If it's not unfair, run it.
4556 		 */
4557 		se = cfs_rq->next;
4558 	} else if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1) {
4559 		/*
4560 		 * Prefer last buddy, try to return the CPU to a preempted task.
4561 		 */
4562 		se = cfs_rq->last;
4563 	}
4564 
4565 	clear_buddies(cfs_rq, se);
4566 
4567 	return se;
4568 }
4569 
4570 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
4571 
4572 static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
4573 {
4574 	/*
4575 	 * If still on the runqueue then deactivate_task()
4576 	 * was not called and update_curr() has to be done:
4577 	 */
4578 	if (prev->on_rq)
4579 		update_curr(cfs_rq);
4580 
4581 	/* throttle cfs_rqs exceeding runtime */
4582 	check_cfs_rq_runtime(cfs_rq);
4583 
4584 	check_spread(cfs_rq, prev);
4585 
4586 	if (prev->on_rq) {
4587 		update_stats_wait_start(cfs_rq, prev);
4588 		/* Put 'current' back into the tree. */
4589 		__enqueue_entity(cfs_rq, prev);
4590 		/* in !on_rq case, update occurred at dequeue */
4591 		update_load_avg(cfs_rq, prev, 0);
4592 	}
4593 	cfs_rq->curr = NULL;
4594 }
4595 
4596 static void
4597 entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
4598 {
4599 	/*
4600 	 * Update run-time statistics of the 'current'.
4601 	 */
4602 	update_curr(cfs_rq);
4603 
4604 	/*
4605 	 * Ensure that runnable average is periodically updated.
4606 	 */
4607 	update_load_avg(cfs_rq, curr, UPDATE_TG);
4608 	update_cfs_group(curr);
4609 
4610 #ifdef CONFIG_SCHED_HRTICK
4611 	/*
4612 	 * queued ticks are scheduled to match the slice, so don't bother
4613 	 * validating it and just reschedule.
4614 	 */
4615 	if (queued) {
4616 		resched_curr(rq_of(cfs_rq));
4617 		return;
4618 	}
4619 	/*
4620 	 * don't let the period tick interfere with the hrtick preemption
4621 	 */
4622 	if (!sched_feat(DOUBLE_TICK) &&
4623 			hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
4624 		return;
4625 #endif
4626 
4627 	if (cfs_rq->nr_running > 1)
4628 		check_preempt_tick(cfs_rq, curr);
4629 }
4630 
4631 
4632 /**************************************************
4633  * CFS bandwidth control machinery
4634  */
4635 
4636 #ifdef CONFIG_CFS_BANDWIDTH
4637 
4638 #ifdef CONFIG_JUMP_LABEL
4639 static struct static_key __cfs_bandwidth_used;
4640 
4641 static inline bool cfs_bandwidth_used(void)
4642 {
4643 	return static_key_false(&__cfs_bandwidth_used);
4644 }
4645 
4646 void cfs_bandwidth_usage_inc(void)
4647 {
4648 	static_key_slow_inc_cpuslocked(&__cfs_bandwidth_used);
4649 }
4650 
4651 void cfs_bandwidth_usage_dec(void)
4652 {
4653 	static_key_slow_dec_cpuslocked(&__cfs_bandwidth_used);
4654 }
4655 #else /* CONFIG_JUMP_LABEL */
4656 static bool cfs_bandwidth_used(void)
4657 {
4658 	return true;
4659 }
4660 
4661 void cfs_bandwidth_usage_inc(void) {}
4662 void cfs_bandwidth_usage_dec(void) {}
4663 #endif /* CONFIG_JUMP_LABEL */
4664 
4665 /*
4666  * default period for cfs group bandwidth.
4667  * default: 0.1s, units: nanoseconds
4668  */
4669 static inline u64 default_cfs_period(void)
4670 {
4671 	return 100000000ULL;
4672 }
4673 
4674 static inline u64 sched_cfs_bandwidth_slice(void)
4675 {
4676 	return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
4677 }
4678 
4679 /*
4680  * Replenish runtime according to assigned quota. We use sched_clock_cpu
4681  * directly instead of rq->clock to avoid adding additional synchronization
4682  * around rq->lock.
4683  *
4684  * requires cfs_b->lock
4685  */
4686 void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
4687 {
4688 	if (cfs_b->quota != RUNTIME_INF)
4689 		cfs_b->runtime = cfs_b->quota;
4690 }
4691 
4692 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
4693 {
4694 	return &tg->cfs_bandwidth;
4695 }
4696 
4697 /* returns 0 on failure to allocate runtime */
4698 static int __assign_cfs_rq_runtime(struct cfs_bandwidth *cfs_b,
4699 				   struct cfs_rq *cfs_rq, u64 target_runtime)
4700 {
4701 	u64 min_amount, amount = 0;
4702 
4703 	lockdep_assert_held(&cfs_b->lock);
4704 
4705 	/* note: this is a positive sum as runtime_remaining <= 0 */
4706 	min_amount = target_runtime - cfs_rq->runtime_remaining;
4707 
4708 	if (cfs_b->quota == RUNTIME_INF)
4709 		amount = min_amount;
4710 	else {
4711 		start_cfs_bandwidth(cfs_b);
4712 
4713 		if (cfs_b->runtime > 0) {
4714 			amount = min(cfs_b->runtime, min_amount);
4715 			cfs_b->runtime -= amount;
4716 			cfs_b->idle = 0;
4717 		}
4718 	}
4719 
4720 	cfs_rq->runtime_remaining += amount;
4721 
4722 	return cfs_rq->runtime_remaining > 0;
4723 }
4724 
4725 /* returns 0 on failure to allocate runtime */
4726 static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4727 {
4728 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4729 	int ret;
4730 
4731 	raw_spin_lock(&cfs_b->lock);
4732 	ret = __assign_cfs_rq_runtime(cfs_b, cfs_rq, sched_cfs_bandwidth_slice());
4733 	raw_spin_unlock(&cfs_b->lock);
4734 
4735 	return ret;
4736 }
4737 
4738 static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
4739 {
4740 	/* dock delta_exec before expiring quota (as it could span periods) */
4741 	cfs_rq->runtime_remaining -= delta_exec;
4742 
4743 	if (likely(cfs_rq->runtime_remaining > 0))
4744 		return;
4745 
4746 	if (cfs_rq->throttled)
4747 		return;
4748 	/*
4749 	 * if we're unable to extend our runtime we resched so that the active
4750 	 * hierarchy can be throttled
4751 	 */
4752 	if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
4753 		resched_curr(rq_of(cfs_rq));
4754 }
4755 
4756 static __always_inline
4757 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
4758 {
4759 	if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
4760 		return;
4761 
4762 	__account_cfs_rq_runtime(cfs_rq, delta_exec);
4763 }
4764 
4765 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
4766 {
4767 	return cfs_bandwidth_used() && cfs_rq->throttled;
4768 }
4769 
4770 /* check whether cfs_rq, or any parent, is throttled */
4771 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
4772 {
4773 	return cfs_bandwidth_used() && cfs_rq->throttle_count;
4774 }
4775 
4776 /*
4777  * Ensure that neither of the group entities corresponding to src_cpu or
4778  * dest_cpu are members of a throttled hierarchy when performing group
4779  * load-balance operations.
4780  */
4781 static inline int throttled_lb_pair(struct task_group *tg,
4782 				    int src_cpu, int dest_cpu)
4783 {
4784 	struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
4785 
4786 	src_cfs_rq = tg->cfs_rq[src_cpu];
4787 	dest_cfs_rq = tg->cfs_rq[dest_cpu];
4788 
4789 	return throttled_hierarchy(src_cfs_rq) ||
4790 	       throttled_hierarchy(dest_cfs_rq);
4791 }
4792 
4793 static int tg_unthrottle_up(struct task_group *tg, void *data)
4794 {
4795 	struct rq *rq = data;
4796 	struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
4797 
4798 	cfs_rq->throttle_count--;
4799 	if (!cfs_rq->throttle_count) {
4800 		cfs_rq->throttled_clock_task_time += rq_clock_task(rq) -
4801 					     cfs_rq->throttled_clock_task;
4802 
4803 		/* Add cfs_rq with load or one or more already running entities to the list */
4804 		if (!cfs_rq_is_decayed(cfs_rq) || cfs_rq->nr_running)
4805 			list_add_leaf_cfs_rq(cfs_rq);
4806 	}
4807 
4808 	return 0;
4809 }
4810 
4811 static int tg_throttle_down(struct task_group *tg, void *data)
4812 {
4813 	struct rq *rq = data;
4814 	struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
4815 
4816 	/* group is entering throttled state, stop time */
4817 	if (!cfs_rq->throttle_count) {
4818 		cfs_rq->throttled_clock_task = rq_clock_task(rq);
4819 		list_del_leaf_cfs_rq(cfs_rq);
4820 	}
4821 	cfs_rq->throttle_count++;
4822 
4823 	return 0;
4824 }
4825 
4826 static bool throttle_cfs_rq(struct cfs_rq *cfs_rq)
4827 {
4828 	struct rq *rq = rq_of(cfs_rq);
4829 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4830 	struct sched_entity *se;
4831 	long task_delta, idle_task_delta, dequeue = 1;
4832 
4833 	raw_spin_lock(&cfs_b->lock);
4834 	/* This will start the period timer if necessary */
4835 	if (__assign_cfs_rq_runtime(cfs_b, cfs_rq, 1)) {
4836 		/*
4837 		 * We have raced with bandwidth becoming available, and if we
4838 		 * actually throttled the timer might not unthrottle us for an
4839 		 * entire period. We additionally needed to make sure that any
4840 		 * subsequent check_cfs_rq_runtime calls agree not to throttle
4841 		 * us, as we may commit to do cfs put_prev+pick_next, so we ask
4842 		 * for 1ns of runtime rather than just check cfs_b.
4843 		 */
4844 		dequeue = 0;
4845 	} else {
4846 		list_add_tail_rcu(&cfs_rq->throttled_list,
4847 				  &cfs_b->throttled_cfs_rq);
4848 	}
4849 	raw_spin_unlock(&cfs_b->lock);
4850 
4851 	if (!dequeue)
4852 		return false;  /* Throttle no longer required. */
4853 
4854 	se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
4855 
4856 	/* freeze hierarchy runnable averages while throttled */
4857 	rcu_read_lock();
4858 	walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
4859 	rcu_read_unlock();
4860 
4861 	task_delta = cfs_rq->h_nr_running;
4862 	idle_task_delta = cfs_rq->idle_h_nr_running;
4863 	for_each_sched_entity(se) {
4864 		struct cfs_rq *qcfs_rq = cfs_rq_of(se);
4865 		/* throttled entity or throttle-on-deactivate */
4866 		if (!se->on_rq)
4867 			goto done;
4868 
4869 		dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
4870 
4871 		qcfs_rq->h_nr_running -= task_delta;
4872 		qcfs_rq->idle_h_nr_running -= idle_task_delta;
4873 
4874 		if (qcfs_rq->load.weight) {
4875 			/* Avoid re-evaluating load for this entity: */
4876 			se = parent_entity(se);
4877 			break;
4878 		}
4879 	}
4880 
4881 	for_each_sched_entity(se) {
4882 		struct cfs_rq *qcfs_rq = cfs_rq_of(se);
4883 		/* throttled entity or throttle-on-deactivate */
4884 		if (!se->on_rq)
4885 			goto done;
4886 
4887 		update_load_avg(qcfs_rq, se, 0);
4888 		se_update_runnable(se);
4889 
4890 		qcfs_rq->h_nr_running -= task_delta;
4891 		qcfs_rq->idle_h_nr_running -= idle_task_delta;
4892 	}
4893 
4894 	/* At this point se is NULL and we are at root level*/
4895 	sub_nr_running(rq, task_delta);
4896 
4897 done:
4898 	/*
4899 	 * Note: distribution will already see us throttled via the
4900 	 * throttled-list.  rq->lock protects completion.
4901 	 */
4902 	cfs_rq->throttled = 1;
4903 	cfs_rq->throttled_clock = rq_clock(rq);
4904 	return true;
4905 }
4906 
4907 void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
4908 {
4909 	struct rq *rq = rq_of(cfs_rq);
4910 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4911 	struct sched_entity *se;
4912 	long task_delta, idle_task_delta;
4913 
4914 	se = cfs_rq->tg->se[cpu_of(rq)];
4915 
4916 	cfs_rq->throttled = 0;
4917 
4918 	update_rq_clock(rq);
4919 
4920 	raw_spin_lock(&cfs_b->lock);
4921 	cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
4922 	list_del_rcu(&cfs_rq->throttled_list);
4923 	raw_spin_unlock(&cfs_b->lock);
4924 
4925 	/* update hierarchical throttle state */
4926 	walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
4927 
4928 	if (!cfs_rq->load.weight)
4929 		return;
4930 
4931 	task_delta = cfs_rq->h_nr_running;
4932 	idle_task_delta = cfs_rq->idle_h_nr_running;
4933 	for_each_sched_entity(se) {
4934 		if (se->on_rq)
4935 			break;
4936 		cfs_rq = cfs_rq_of(se);
4937 		enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
4938 
4939 		cfs_rq->h_nr_running += task_delta;
4940 		cfs_rq->idle_h_nr_running += idle_task_delta;
4941 
4942 		/* end evaluation on encountering a throttled cfs_rq */
4943 		if (cfs_rq_throttled(cfs_rq))
4944 			goto unthrottle_throttle;
4945 	}
4946 
4947 	for_each_sched_entity(se) {
4948 		cfs_rq = cfs_rq_of(se);
4949 
4950 		update_load_avg(cfs_rq, se, UPDATE_TG);
4951 		se_update_runnable(se);
4952 
4953 		cfs_rq->h_nr_running += task_delta;
4954 		cfs_rq->idle_h_nr_running += idle_task_delta;
4955 
4956 
4957 		/* end evaluation on encountering a throttled cfs_rq */
4958 		if (cfs_rq_throttled(cfs_rq))
4959 			goto unthrottle_throttle;
4960 
4961 		/*
4962 		 * One parent has been throttled and cfs_rq removed from the
4963 		 * list. Add it back to not break the leaf list.
4964 		 */
4965 		if (throttled_hierarchy(cfs_rq))
4966 			list_add_leaf_cfs_rq(cfs_rq);
4967 	}
4968 
4969 	/* At this point se is NULL and we are at root level*/
4970 	add_nr_running(rq, task_delta);
4971 
4972 unthrottle_throttle:
4973 	/*
4974 	 * The cfs_rq_throttled() breaks in the above iteration can result in
4975 	 * incomplete leaf list maintenance, resulting in triggering the
4976 	 * assertion below.
4977 	 */
4978 	for_each_sched_entity(se) {
4979 		cfs_rq = cfs_rq_of(se);
4980 
4981 		if (list_add_leaf_cfs_rq(cfs_rq))
4982 			break;
4983 	}
4984 
4985 	assert_list_leaf_cfs_rq(rq);
4986 
4987 	/* Determine whether we need to wake up potentially idle CPU: */
4988 	if (rq->curr == rq->idle && rq->cfs.nr_running)
4989 		resched_curr(rq);
4990 }
4991 
4992 static void distribute_cfs_runtime(struct cfs_bandwidth *cfs_b)
4993 {
4994 	struct cfs_rq *cfs_rq;
4995 	u64 runtime, remaining = 1;
4996 
4997 	rcu_read_lock();
4998 	list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
4999 				throttled_list) {
5000 		struct rq *rq = rq_of(cfs_rq);
5001 		struct rq_flags rf;
5002 
5003 		rq_lock_irqsave(rq, &rf);
5004 		if (!cfs_rq_throttled(cfs_rq))
5005 			goto next;
5006 
5007 		/* By the above check, this should never be true */
5008 		SCHED_WARN_ON(cfs_rq->runtime_remaining > 0);
5009 
5010 		raw_spin_lock(&cfs_b->lock);
5011 		runtime = -cfs_rq->runtime_remaining + 1;
5012 		if (runtime > cfs_b->runtime)
5013 			runtime = cfs_b->runtime;
5014 		cfs_b->runtime -= runtime;
5015 		remaining = cfs_b->runtime;
5016 		raw_spin_unlock(&cfs_b->lock);
5017 
5018 		cfs_rq->runtime_remaining += runtime;
5019 
5020 		/* we check whether we're throttled above */
5021 		if (cfs_rq->runtime_remaining > 0)
5022 			unthrottle_cfs_rq(cfs_rq);
5023 
5024 next:
5025 		rq_unlock_irqrestore(rq, &rf);
5026 
5027 		if (!remaining)
5028 			break;
5029 	}
5030 	rcu_read_unlock();
5031 }
5032 
5033 /*
5034  * Responsible for refilling a task_group's bandwidth and unthrottling its
5035  * cfs_rqs as appropriate. If there has been no activity within the last
5036  * period the timer is deactivated until scheduling resumes; cfs_b->idle is
5037  * used to track this state.
5038  */
5039 static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun, unsigned long flags)
5040 {
5041 	int throttled;
5042 
5043 	/* no need to continue the timer with no bandwidth constraint */
5044 	if (cfs_b->quota == RUNTIME_INF)
5045 		goto out_deactivate;
5046 
5047 	throttled = !list_empty(&cfs_b->throttled_cfs_rq);
5048 	cfs_b->nr_periods += overrun;
5049 
5050 	/*
5051 	 * idle depends on !throttled (for the case of a large deficit), and if
5052 	 * we're going inactive then everything else can be deferred
5053 	 */
5054 	if (cfs_b->idle && !throttled)
5055 		goto out_deactivate;
5056 
5057 	__refill_cfs_bandwidth_runtime(cfs_b);
5058 
5059 	if (!throttled) {
5060 		/* mark as potentially idle for the upcoming period */
5061 		cfs_b->idle = 1;
5062 		return 0;
5063 	}
5064 
5065 	/* account preceding periods in which throttling occurred */
5066 	cfs_b->nr_throttled += overrun;
5067 
5068 	/*
5069 	 * This check is repeated as we release cfs_b->lock while we unthrottle.
5070 	 */
5071 	while (throttled && cfs_b->runtime > 0) {
5072 		raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
5073 		/* we can't nest cfs_b->lock while distributing bandwidth */
5074 		distribute_cfs_runtime(cfs_b);
5075 		raw_spin_lock_irqsave(&cfs_b->lock, flags);
5076 
5077 		throttled = !list_empty(&cfs_b->throttled_cfs_rq);
5078 	}
5079 
5080 	/*
5081 	 * While we are ensured activity in the period following an
5082 	 * unthrottle, this also covers the case in which the new bandwidth is
5083 	 * insufficient to cover the existing bandwidth deficit.  (Forcing the
5084 	 * timer to remain active while there are any throttled entities.)
5085 	 */
5086 	cfs_b->idle = 0;
5087 
5088 	return 0;
5089 
5090 out_deactivate:
5091 	return 1;
5092 }
5093 
5094 /* a cfs_rq won't donate quota below this amount */
5095 static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
5096 /* minimum remaining period time to redistribute slack quota */
5097 static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
5098 /* how long we wait to gather additional slack before distributing */
5099 static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
5100 
5101 /*
5102  * Are we near the end of the current quota period?
5103  *
5104  * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
5105  * hrtimer base being cleared by hrtimer_start. In the case of
5106  * migrate_hrtimers, base is never cleared, so we are fine.
5107  */
5108 static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
5109 {
5110 	struct hrtimer *refresh_timer = &cfs_b->period_timer;
5111 	u64 remaining;
5112 
5113 	/* if the call-back is running a quota refresh is already occurring */
5114 	if (hrtimer_callback_running(refresh_timer))
5115 		return 1;
5116 
5117 	/* is a quota refresh about to occur? */
5118 	remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
5119 	if (remaining < min_expire)
5120 		return 1;
5121 
5122 	return 0;
5123 }
5124 
5125 static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
5126 {
5127 	u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
5128 
5129 	/* if there's a quota refresh soon don't bother with slack */
5130 	if (runtime_refresh_within(cfs_b, min_left))
5131 		return;
5132 
5133 	/* don't push forwards an existing deferred unthrottle */
5134 	if (cfs_b->slack_started)
5135 		return;
5136 	cfs_b->slack_started = true;
5137 
5138 	hrtimer_start(&cfs_b->slack_timer,
5139 			ns_to_ktime(cfs_bandwidth_slack_period),
5140 			HRTIMER_MODE_REL);
5141 }
5142 
5143 /* we know any runtime found here is valid as update_curr() precedes return */
5144 static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
5145 {
5146 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
5147 	s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
5148 
5149 	if (slack_runtime <= 0)
5150 		return;
5151 
5152 	raw_spin_lock(&cfs_b->lock);
5153 	if (cfs_b->quota != RUNTIME_INF) {
5154 		cfs_b->runtime += slack_runtime;
5155 
5156 		/* we are under rq->lock, defer unthrottling using a timer */
5157 		if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
5158 		    !list_empty(&cfs_b->throttled_cfs_rq))
5159 			start_cfs_slack_bandwidth(cfs_b);
5160 	}
5161 	raw_spin_unlock(&cfs_b->lock);
5162 
5163 	/* even if it's not valid for return we don't want to try again */
5164 	cfs_rq->runtime_remaining -= slack_runtime;
5165 }
5166 
5167 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
5168 {
5169 	if (!cfs_bandwidth_used())
5170 		return;
5171 
5172 	if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
5173 		return;
5174 
5175 	__return_cfs_rq_runtime(cfs_rq);
5176 }
5177 
5178 /*
5179  * This is done with a timer (instead of inline with bandwidth return) since
5180  * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
5181  */
5182 static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
5183 {
5184 	u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
5185 	unsigned long flags;
5186 
5187 	/* confirm we're still not at a refresh boundary */
5188 	raw_spin_lock_irqsave(&cfs_b->lock, flags);
5189 	cfs_b->slack_started = false;
5190 
5191 	if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
5192 		raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
5193 		return;
5194 	}
5195 
5196 	if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice)
5197 		runtime = cfs_b->runtime;
5198 
5199 	raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
5200 
5201 	if (!runtime)
5202 		return;
5203 
5204 	distribute_cfs_runtime(cfs_b);
5205 }
5206 
5207 /*
5208  * When a group wakes up we want to make sure that its quota is not already
5209  * expired/exceeded, otherwise it may be allowed to steal additional ticks of
5210  * runtime as update_curr() throttling can not trigger until it's on-rq.
5211  */
5212 static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
5213 {
5214 	if (!cfs_bandwidth_used())
5215 		return;
5216 
5217 	/* an active group must be handled by the update_curr()->put() path */
5218 	if (!cfs_rq->runtime_enabled || cfs_rq->curr)
5219 		return;
5220 
5221 	/* ensure the group is not already throttled */
5222 	if (cfs_rq_throttled(cfs_rq))
5223 		return;
5224 
5225 	/* update runtime allocation */
5226 	account_cfs_rq_runtime(cfs_rq, 0);
5227 	if (cfs_rq->runtime_remaining <= 0)
5228 		throttle_cfs_rq(cfs_rq);
5229 }
5230 
5231 static void sync_throttle(struct task_group *tg, int cpu)
5232 {
5233 	struct cfs_rq *pcfs_rq, *cfs_rq;
5234 
5235 	if (!cfs_bandwidth_used())
5236 		return;
5237 
5238 	if (!tg->parent)
5239 		return;
5240 
5241 	cfs_rq = tg->cfs_rq[cpu];
5242 	pcfs_rq = tg->parent->cfs_rq[cpu];
5243 
5244 	cfs_rq->throttle_count = pcfs_rq->throttle_count;
5245 	cfs_rq->throttled_clock_task = rq_clock_task(cpu_rq(cpu));
5246 }
5247 
5248 /* conditionally throttle active cfs_rq's from put_prev_entity() */
5249 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
5250 {
5251 	if (!cfs_bandwidth_used())
5252 		return false;
5253 
5254 	if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
5255 		return false;
5256 
5257 	/*
5258 	 * it's possible for a throttled entity to be forced into a running
5259 	 * state (e.g. set_curr_task), in this case we're finished.
5260 	 */
5261 	if (cfs_rq_throttled(cfs_rq))
5262 		return true;
5263 
5264 	return throttle_cfs_rq(cfs_rq);
5265 }
5266 
5267 static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
5268 {
5269 	struct cfs_bandwidth *cfs_b =
5270 		container_of(timer, struct cfs_bandwidth, slack_timer);
5271 
5272 	do_sched_cfs_slack_timer(cfs_b);
5273 
5274 	return HRTIMER_NORESTART;
5275 }
5276 
5277 extern const u64 max_cfs_quota_period;
5278 
5279 static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
5280 {
5281 	struct cfs_bandwidth *cfs_b =
5282 		container_of(timer, struct cfs_bandwidth, period_timer);
5283 	unsigned long flags;
5284 	int overrun;
5285 	int idle = 0;
5286 	int count = 0;
5287 
5288 	raw_spin_lock_irqsave(&cfs_b->lock, flags);
5289 	for (;;) {
5290 		overrun = hrtimer_forward_now(timer, cfs_b->period);
5291 		if (!overrun)
5292 			break;
5293 
5294 		idle = do_sched_cfs_period_timer(cfs_b, overrun, flags);
5295 
5296 		if (++count > 3) {
5297 			u64 new, old = ktime_to_ns(cfs_b->period);
5298 
5299 			/*
5300 			 * Grow period by a factor of 2 to avoid losing precision.
5301 			 * Precision loss in the quota/period ratio can cause __cfs_schedulable
5302 			 * to fail.
5303 			 */
5304 			new = old * 2;
5305 			if (new < max_cfs_quota_period) {
5306 				cfs_b->period = ns_to_ktime(new);
5307 				cfs_b->quota *= 2;
5308 
5309 				pr_warn_ratelimited(
5310 	"cfs_period_timer[cpu%d]: period too short, scaling up (new cfs_period_us = %lld, cfs_quota_us = %lld)\n",
5311 					smp_processor_id(),
5312 					div_u64(new, NSEC_PER_USEC),
5313 					div_u64(cfs_b->quota, NSEC_PER_USEC));
5314 			} else {
5315 				pr_warn_ratelimited(
5316 	"cfs_period_timer[cpu%d]: period too short, but cannot scale up without losing precision (cfs_period_us = %lld, cfs_quota_us = %lld)\n",
5317 					smp_processor_id(),
5318 					div_u64(old, NSEC_PER_USEC),
5319 					div_u64(cfs_b->quota, NSEC_PER_USEC));
5320 			}
5321 
5322 			/* reset count so we don't come right back in here */
5323 			count = 0;
5324 		}
5325 	}
5326 	if (idle)
5327 		cfs_b->period_active = 0;
5328 	raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
5329 
5330 	return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
5331 }
5332 
5333 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
5334 {
5335 	raw_spin_lock_init(&cfs_b->lock);
5336 	cfs_b->runtime = 0;
5337 	cfs_b->quota = RUNTIME_INF;
5338 	cfs_b->period = ns_to_ktime(default_cfs_period());
5339 
5340 	INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
5341 	hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
5342 	cfs_b->period_timer.function = sched_cfs_period_timer;
5343 	hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
5344 	cfs_b->slack_timer.function = sched_cfs_slack_timer;
5345 	cfs_b->slack_started = false;
5346 }
5347 
5348 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
5349 {
5350 	cfs_rq->runtime_enabled = 0;
5351 	INIT_LIST_HEAD(&cfs_rq->throttled_list);
5352 }
5353 
5354 void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
5355 {
5356 	lockdep_assert_held(&cfs_b->lock);
5357 
5358 	if (cfs_b->period_active)
5359 		return;
5360 
5361 	cfs_b->period_active = 1;
5362 	hrtimer_forward_now(&cfs_b->period_timer, cfs_b->period);
5363 	hrtimer_start_expires(&cfs_b->period_timer, HRTIMER_MODE_ABS_PINNED);
5364 }
5365 
5366 static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
5367 {
5368 	/* init_cfs_bandwidth() was not called */
5369 	if (!cfs_b->throttled_cfs_rq.next)
5370 		return;
5371 
5372 	hrtimer_cancel(&cfs_b->period_timer);
5373 	hrtimer_cancel(&cfs_b->slack_timer);
5374 }
5375 
5376 /*
5377  * Both these CPU hotplug callbacks race against unregister_fair_sched_group()
5378  *
5379  * The race is harmless, since modifying bandwidth settings of unhooked group
5380  * bits doesn't do much.
5381  */
5382 
5383 /* cpu online callback */
5384 static void __maybe_unused update_runtime_enabled(struct rq *rq)
5385 {
5386 	struct task_group *tg;
5387 
5388 	lockdep_assert_held(&rq->lock);
5389 
5390 	rcu_read_lock();
5391 	list_for_each_entry_rcu(tg, &task_groups, list) {
5392 		struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
5393 		struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
5394 
5395 		raw_spin_lock(&cfs_b->lock);
5396 		cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF;
5397 		raw_spin_unlock(&cfs_b->lock);
5398 	}
5399 	rcu_read_unlock();
5400 }
5401 
5402 /* cpu offline callback */
5403 static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
5404 {
5405 	struct task_group *tg;
5406 
5407 	lockdep_assert_held(&rq->lock);
5408 
5409 	rcu_read_lock();
5410 	list_for_each_entry_rcu(tg, &task_groups, list) {
5411 		struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
5412 
5413 		if (!cfs_rq->runtime_enabled)
5414 			continue;
5415 
5416 		/*
5417 		 * clock_task is not advancing so we just need to make sure
5418 		 * there's some valid quota amount
5419 		 */
5420 		cfs_rq->runtime_remaining = 1;
5421 		/*
5422 		 * Offline rq is schedulable till CPU is completely disabled
5423 		 * in take_cpu_down(), so we prevent new cfs throttling here.
5424 		 */
5425 		cfs_rq->runtime_enabled = 0;
5426 
5427 		if (cfs_rq_throttled(cfs_rq))
5428 			unthrottle_cfs_rq(cfs_rq);
5429 	}
5430 	rcu_read_unlock();
5431 }
5432 
5433 #else /* CONFIG_CFS_BANDWIDTH */
5434 
5435 static inline bool cfs_bandwidth_used(void)
5436 {
5437 	return false;
5438 }
5439 
5440 static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {}
5441 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; }
5442 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
5443 static inline void sync_throttle(struct task_group *tg, int cpu) {}
5444 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
5445 
5446 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
5447 {
5448 	return 0;
5449 }
5450 
5451 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
5452 {
5453 	return 0;
5454 }
5455 
5456 static inline int throttled_lb_pair(struct task_group *tg,
5457 				    int src_cpu, int dest_cpu)
5458 {
5459 	return 0;
5460 }
5461 
5462 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
5463 
5464 #ifdef CONFIG_FAIR_GROUP_SCHED
5465 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
5466 #endif
5467 
5468 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
5469 {
5470 	return NULL;
5471 }
5472 static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
5473 static inline void update_runtime_enabled(struct rq *rq) {}
5474 static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
5475 
5476 #endif /* CONFIG_CFS_BANDWIDTH */
5477 
5478 /**************************************************
5479  * CFS operations on tasks:
5480  */
5481 
5482 #ifdef CONFIG_SCHED_HRTICK
5483 static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
5484 {
5485 	struct sched_entity *se = &p->se;
5486 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
5487 
5488 	SCHED_WARN_ON(task_rq(p) != rq);
5489 
5490 	if (rq->cfs.h_nr_running > 1) {
5491 		u64 slice = sched_slice(cfs_rq, se);
5492 		u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
5493 		s64 delta = slice - ran;
5494 
5495 		if (delta < 0) {
5496 			if (task_current(rq, p))
5497 				resched_curr(rq);
5498 			return;
5499 		}
5500 		hrtick_start(rq, delta);
5501 	}
5502 }
5503 
5504 /*
5505  * called from enqueue/dequeue and updates the hrtick when the
5506  * current task is from our class and nr_running is low enough
5507  * to matter.
5508  */
5509 static void hrtick_update(struct rq *rq)
5510 {
5511 	struct task_struct *curr = rq->curr;
5512 
5513 	if (!hrtick_enabled_fair(rq) || curr->sched_class != &fair_sched_class)
5514 		return;
5515 
5516 	if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
5517 		hrtick_start_fair(rq, curr);
5518 }
5519 #else /* !CONFIG_SCHED_HRTICK */
5520 static inline void
5521 hrtick_start_fair(struct rq *rq, struct task_struct *p)
5522 {
5523 }
5524 
5525 static inline void hrtick_update(struct rq *rq)
5526 {
5527 }
5528 #endif
5529 
5530 #ifdef CONFIG_SMP
5531 static inline unsigned long cpu_util(int cpu);
5532 
5533 static inline bool cpu_overutilized(int cpu)
5534 {
5535 	return !fits_capacity(cpu_util(cpu), capacity_of(cpu));
5536 }
5537 
5538 static inline void update_overutilized_status(struct rq *rq)
5539 {
5540 	if (!READ_ONCE(rq->rd->overutilized) && cpu_overutilized(rq->cpu)) {
5541 		WRITE_ONCE(rq->rd->overutilized, SG_OVERUTILIZED);
5542 		trace_sched_overutilized_tp(rq->rd, SG_OVERUTILIZED);
5543 	}
5544 }
5545 #else
5546 static inline void update_overutilized_status(struct rq *rq) { }
5547 #endif
5548 
5549 /* Runqueue only has SCHED_IDLE tasks enqueued */
5550 static int sched_idle_rq(struct rq *rq)
5551 {
5552 	return unlikely(rq->nr_running == rq->cfs.idle_h_nr_running &&
5553 			rq->nr_running);
5554 }
5555 
5556 #ifdef CONFIG_SMP
5557 static int sched_idle_cpu(int cpu)
5558 {
5559 	return sched_idle_rq(cpu_rq(cpu));
5560 }
5561 #endif
5562 
5563 /*
5564  * The enqueue_task method is called before nr_running is
5565  * increased. Here we update the fair scheduling stats and
5566  * then put the task into the rbtree:
5567  */
5568 static void
5569 enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
5570 {
5571 	struct cfs_rq *cfs_rq;
5572 	struct sched_entity *se = &p->se;
5573 	int idle_h_nr_running = task_has_idle_policy(p);
5574 	int task_new = !(flags & ENQUEUE_WAKEUP);
5575 
5576 	/*
5577 	 * The code below (indirectly) updates schedutil which looks at
5578 	 * the cfs_rq utilization to select a frequency.
5579 	 * Let's add the task's estimated utilization to the cfs_rq's
5580 	 * estimated utilization, before we update schedutil.
5581 	 */
5582 	util_est_enqueue(&rq->cfs, p);
5583 
5584 	/*
5585 	 * If in_iowait is set, the code below may not trigger any cpufreq
5586 	 * utilization updates, so do it here explicitly with the IOWAIT flag
5587 	 * passed.
5588 	 */
5589 	if (p->in_iowait)
5590 		cpufreq_update_util(rq, SCHED_CPUFREQ_IOWAIT);
5591 
5592 	for_each_sched_entity(se) {
5593 		if (se->on_rq)
5594 			break;
5595 		cfs_rq = cfs_rq_of(se);
5596 		enqueue_entity(cfs_rq, se, flags);
5597 
5598 		cfs_rq->h_nr_running++;
5599 		cfs_rq->idle_h_nr_running += idle_h_nr_running;
5600 
5601 		/* end evaluation on encountering a throttled cfs_rq */
5602 		if (cfs_rq_throttled(cfs_rq))
5603 			goto enqueue_throttle;
5604 
5605 		flags = ENQUEUE_WAKEUP;
5606 	}
5607 
5608 	for_each_sched_entity(se) {
5609 		cfs_rq = cfs_rq_of(se);
5610 
5611 		update_load_avg(cfs_rq, se, UPDATE_TG);
5612 		se_update_runnable(se);
5613 		update_cfs_group(se);
5614 
5615 		cfs_rq->h_nr_running++;
5616 		cfs_rq->idle_h_nr_running += idle_h_nr_running;
5617 
5618 		/* end evaluation on encountering a throttled cfs_rq */
5619 		if (cfs_rq_throttled(cfs_rq))
5620 			goto enqueue_throttle;
5621 
5622                /*
5623                 * One parent has been throttled and cfs_rq removed from the
5624                 * list. Add it back to not break the leaf list.
5625                 */
5626                if (throttled_hierarchy(cfs_rq))
5627                        list_add_leaf_cfs_rq(cfs_rq);
5628 	}
5629 
5630 	/* At this point se is NULL and we are at root level*/
5631 	add_nr_running(rq, 1);
5632 
5633 	/*
5634 	 * Since new tasks are assigned an initial util_avg equal to
5635 	 * half of the spare capacity of their CPU, tiny tasks have the
5636 	 * ability to cross the overutilized threshold, which will
5637 	 * result in the load balancer ruining all the task placement
5638 	 * done by EAS. As a way to mitigate that effect, do not account
5639 	 * for the first enqueue operation of new tasks during the
5640 	 * overutilized flag detection.
5641 	 *
5642 	 * A better way of solving this problem would be to wait for
5643 	 * the PELT signals of tasks to converge before taking them
5644 	 * into account, but that is not straightforward to implement,
5645 	 * and the following generally works well enough in practice.
5646 	 */
5647 	if (!task_new)
5648 		update_overutilized_status(rq);
5649 
5650 enqueue_throttle:
5651 	if (cfs_bandwidth_used()) {
5652 		/*
5653 		 * When bandwidth control is enabled; the cfs_rq_throttled()
5654 		 * breaks in the above iteration can result in incomplete
5655 		 * leaf list maintenance, resulting in triggering the assertion
5656 		 * below.
5657 		 */
5658 		for_each_sched_entity(se) {
5659 			cfs_rq = cfs_rq_of(se);
5660 
5661 			if (list_add_leaf_cfs_rq(cfs_rq))
5662 				break;
5663 		}
5664 	}
5665 
5666 	assert_list_leaf_cfs_rq(rq);
5667 
5668 	hrtick_update(rq);
5669 }
5670 
5671 static void set_next_buddy(struct sched_entity *se);
5672 
5673 /*
5674  * The dequeue_task method is called before nr_running is
5675  * decreased. We remove the task from the rbtree and
5676  * update the fair scheduling stats:
5677  */
5678 static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
5679 {
5680 	struct cfs_rq *cfs_rq;
5681 	struct sched_entity *se = &p->se;
5682 	int task_sleep = flags & DEQUEUE_SLEEP;
5683 	int idle_h_nr_running = task_has_idle_policy(p);
5684 	bool was_sched_idle = sched_idle_rq(rq);
5685 
5686 	util_est_dequeue(&rq->cfs, p);
5687 
5688 	for_each_sched_entity(se) {
5689 		cfs_rq = cfs_rq_of(se);
5690 		dequeue_entity(cfs_rq, se, flags);
5691 
5692 		cfs_rq->h_nr_running--;
5693 		cfs_rq->idle_h_nr_running -= idle_h_nr_running;
5694 
5695 		/* end evaluation on encountering a throttled cfs_rq */
5696 		if (cfs_rq_throttled(cfs_rq))
5697 			goto dequeue_throttle;
5698 
5699 		/* Don't dequeue parent if it has other entities besides us */
5700 		if (cfs_rq->load.weight) {
5701 			/* Avoid re-evaluating load for this entity: */
5702 			se = parent_entity(se);
5703 			/*
5704 			 * Bias pick_next to pick a task from this cfs_rq, as
5705 			 * p is sleeping when it is within its sched_slice.
5706 			 */
5707 			if (task_sleep && se && !throttled_hierarchy(cfs_rq))
5708 				set_next_buddy(se);
5709 			break;
5710 		}
5711 		flags |= DEQUEUE_SLEEP;
5712 	}
5713 
5714 	for_each_sched_entity(se) {
5715 		cfs_rq = cfs_rq_of(se);
5716 
5717 		update_load_avg(cfs_rq, se, UPDATE_TG);
5718 		se_update_runnable(se);
5719 		update_cfs_group(se);
5720 
5721 		cfs_rq->h_nr_running--;
5722 		cfs_rq->idle_h_nr_running -= idle_h_nr_running;
5723 
5724 		/* end evaluation on encountering a throttled cfs_rq */
5725 		if (cfs_rq_throttled(cfs_rq))
5726 			goto dequeue_throttle;
5727 
5728 	}
5729 
5730 	/* At this point se is NULL and we are at root level*/
5731 	sub_nr_running(rq, 1);
5732 
5733 	/* balance early to pull high priority tasks */
5734 	if (unlikely(!was_sched_idle && sched_idle_rq(rq)))
5735 		rq->next_balance = jiffies;
5736 
5737 dequeue_throttle:
5738 	util_est_update(&rq->cfs, p, task_sleep);
5739 	hrtick_update(rq);
5740 }
5741 
5742 #ifdef CONFIG_SMP
5743 
5744 /* Working cpumask for: load_balance, load_balance_newidle. */
5745 DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
5746 DEFINE_PER_CPU(cpumask_var_t, select_idle_mask);
5747 
5748 #ifdef CONFIG_NO_HZ_COMMON
5749 
5750 static struct {
5751 	cpumask_var_t idle_cpus_mask;
5752 	atomic_t nr_cpus;
5753 	int has_blocked;		/* Idle CPUS has blocked load */
5754 	unsigned long next_balance;     /* in jiffy units */
5755 	unsigned long next_blocked;	/* Next update of blocked load in jiffies */
5756 } nohz ____cacheline_aligned;
5757 
5758 #endif /* CONFIG_NO_HZ_COMMON */
5759 
5760 static unsigned long cpu_load(struct rq *rq)
5761 {
5762 	return cfs_rq_load_avg(&rq->cfs);
5763 }
5764 
5765 /*
5766  * cpu_load_without - compute CPU load without any contributions from *p
5767  * @cpu: the CPU which load is requested
5768  * @p: the task which load should be discounted
5769  *
5770  * The load of a CPU is defined by the load of tasks currently enqueued on that
5771  * CPU as well as tasks which are currently sleeping after an execution on that
5772  * CPU.
5773  *
5774  * This method returns the load of the specified CPU by discounting the load of
5775  * the specified task, whenever the task is currently contributing to the CPU
5776  * load.
5777  */
5778 static unsigned long cpu_load_without(struct rq *rq, struct task_struct *p)
5779 {
5780 	struct cfs_rq *cfs_rq;
5781 	unsigned int load;
5782 
5783 	/* Task has no contribution or is new */
5784 	if (cpu_of(rq) != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
5785 		return cpu_load(rq);
5786 
5787 	cfs_rq = &rq->cfs;
5788 	load = READ_ONCE(cfs_rq->avg.load_avg);
5789 
5790 	/* Discount task's util from CPU's util */
5791 	lsub_positive(&load, task_h_load(p));
5792 
5793 	return load;
5794 }
5795 
5796 static unsigned long cpu_runnable(struct rq *rq)
5797 {
5798 	return cfs_rq_runnable_avg(&rq->cfs);
5799 }
5800 
5801 static unsigned long cpu_runnable_without(struct rq *rq, struct task_struct *p)
5802 {
5803 	struct cfs_rq *cfs_rq;
5804 	unsigned int runnable;
5805 
5806 	/* Task has no contribution or is new */
5807 	if (cpu_of(rq) != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
5808 		return cpu_runnable(rq);
5809 
5810 	cfs_rq = &rq->cfs;
5811 	runnable = READ_ONCE(cfs_rq->avg.runnable_avg);
5812 
5813 	/* Discount task's runnable from CPU's runnable */
5814 	lsub_positive(&runnable, p->se.avg.runnable_avg);
5815 
5816 	return runnable;
5817 }
5818 
5819 static unsigned long capacity_of(int cpu)
5820 {
5821 	return cpu_rq(cpu)->cpu_capacity;
5822 }
5823 
5824 static void record_wakee(struct task_struct *p)
5825 {
5826 	/*
5827 	 * Only decay a single time; tasks that have less then 1 wakeup per
5828 	 * jiffy will not have built up many flips.
5829 	 */
5830 	if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) {
5831 		current->wakee_flips >>= 1;
5832 		current->wakee_flip_decay_ts = jiffies;
5833 	}
5834 
5835 	if (current->last_wakee != p) {
5836 		current->last_wakee = p;
5837 		current->wakee_flips++;
5838 	}
5839 }
5840 
5841 /*
5842  * Detect M:N waker/wakee relationships via a switching-frequency heuristic.
5843  *
5844  * A waker of many should wake a different task than the one last awakened
5845  * at a frequency roughly N times higher than one of its wakees.
5846  *
5847  * In order to determine whether we should let the load spread vs consolidating
5848  * to shared cache, we look for a minimum 'flip' frequency of llc_size in one
5849  * partner, and a factor of lls_size higher frequency in the other.
5850  *
5851  * With both conditions met, we can be relatively sure that the relationship is
5852  * non-monogamous, with partner count exceeding socket size.
5853  *
5854  * Waker/wakee being client/server, worker/dispatcher, interrupt source or
5855  * whatever is irrelevant, spread criteria is apparent partner count exceeds
5856  * socket size.
5857  */
5858 static int wake_wide(struct task_struct *p)
5859 {
5860 	unsigned int master = current->wakee_flips;
5861 	unsigned int slave = p->wakee_flips;
5862 	int factor = __this_cpu_read(sd_llc_size);
5863 
5864 	if (master < slave)
5865 		swap(master, slave);
5866 	if (slave < factor || master < slave * factor)
5867 		return 0;
5868 	return 1;
5869 }
5870 
5871 /*
5872  * The purpose of wake_affine() is to quickly determine on which CPU we can run
5873  * soonest. For the purpose of speed we only consider the waking and previous
5874  * CPU.
5875  *
5876  * wake_affine_idle() - only considers 'now', it check if the waking CPU is
5877  *			cache-affine and is (or	will be) idle.
5878  *
5879  * wake_affine_weight() - considers the weight to reflect the average
5880  *			  scheduling latency of the CPUs. This seems to work
5881  *			  for the overloaded case.
5882  */
5883 static int
5884 wake_affine_idle(int this_cpu, int prev_cpu, int sync)
5885 {
5886 	/*
5887 	 * If this_cpu is idle, it implies the wakeup is from interrupt
5888 	 * context. Only allow the move if cache is shared. Otherwise an
5889 	 * interrupt intensive workload could force all tasks onto one
5890 	 * node depending on the IO topology or IRQ affinity settings.
5891 	 *
5892 	 * If the prev_cpu is idle and cache affine then avoid a migration.
5893 	 * There is no guarantee that the cache hot data from an interrupt
5894 	 * is more important than cache hot data on the prev_cpu and from
5895 	 * a cpufreq perspective, it's better to have higher utilisation
5896 	 * on one CPU.
5897 	 */
5898 	if (available_idle_cpu(this_cpu) && cpus_share_cache(this_cpu, prev_cpu))
5899 		return available_idle_cpu(prev_cpu) ? prev_cpu : this_cpu;
5900 
5901 	if (sync && cpu_rq(this_cpu)->nr_running == 1)
5902 		return this_cpu;
5903 
5904 	if (available_idle_cpu(prev_cpu))
5905 		return prev_cpu;
5906 
5907 	return nr_cpumask_bits;
5908 }
5909 
5910 static int
5911 wake_affine_weight(struct sched_domain *sd, struct task_struct *p,
5912 		   int this_cpu, int prev_cpu, int sync)
5913 {
5914 	s64 this_eff_load, prev_eff_load;
5915 	unsigned long task_load;
5916 
5917 	this_eff_load = cpu_load(cpu_rq(this_cpu));
5918 
5919 	if (sync) {
5920 		unsigned long current_load = task_h_load(current);
5921 
5922 		if (current_load > this_eff_load)
5923 			return this_cpu;
5924 
5925 		this_eff_load -= current_load;
5926 	}
5927 
5928 	task_load = task_h_load(p);
5929 
5930 	this_eff_load += task_load;
5931 	if (sched_feat(WA_BIAS))
5932 		this_eff_load *= 100;
5933 	this_eff_load *= capacity_of(prev_cpu);
5934 
5935 	prev_eff_load = cpu_load(cpu_rq(prev_cpu));
5936 	prev_eff_load -= task_load;
5937 	if (sched_feat(WA_BIAS))
5938 		prev_eff_load *= 100 + (sd->imbalance_pct - 100) / 2;
5939 	prev_eff_load *= capacity_of(this_cpu);
5940 
5941 	/*
5942 	 * If sync, adjust the weight of prev_eff_load such that if
5943 	 * prev_eff == this_eff that select_idle_sibling() will consider
5944 	 * stacking the wakee on top of the waker if no other CPU is
5945 	 * idle.
5946 	 */
5947 	if (sync)
5948 		prev_eff_load += 1;
5949 
5950 	return this_eff_load < prev_eff_load ? this_cpu : nr_cpumask_bits;
5951 }
5952 
5953 static int wake_affine(struct sched_domain *sd, struct task_struct *p,
5954 		       int this_cpu, int prev_cpu, int sync)
5955 {
5956 	int target = nr_cpumask_bits;
5957 
5958 	if (sched_feat(WA_IDLE))
5959 		target = wake_affine_idle(this_cpu, prev_cpu, sync);
5960 
5961 	if (sched_feat(WA_WEIGHT) && target == nr_cpumask_bits)
5962 		target = wake_affine_weight(sd, p, this_cpu, prev_cpu, sync);
5963 
5964 	schedstat_inc(p->se.statistics.nr_wakeups_affine_attempts);
5965 	if (target == nr_cpumask_bits)
5966 		return prev_cpu;
5967 
5968 	schedstat_inc(sd->ttwu_move_affine);
5969 	schedstat_inc(p->se.statistics.nr_wakeups_affine);
5970 	return target;
5971 }
5972 
5973 static struct sched_group *
5974 find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu);
5975 
5976 /*
5977  * find_idlest_group_cpu - find the idlest CPU among the CPUs in the group.
5978  */
5979 static int
5980 find_idlest_group_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
5981 {
5982 	unsigned long load, min_load = ULONG_MAX;
5983 	unsigned int min_exit_latency = UINT_MAX;
5984 	u64 latest_idle_timestamp = 0;
5985 	int least_loaded_cpu = this_cpu;
5986 	int shallowest_idle_cpu = -1;
5987 	int i;
5988 
5989 	/* Check if we have any choice: */
5990 	if (group->group_weight == 1)
5991 		return cpumask_first(sched_group_span(group));
5992 
5993 	/* Traverse only the allowed CPUs */
5994 	for_each_cpu_and(i, sched_group_span(group), p->cpus_ptr) {
5995 		if (sched_idle_cpu(i))
5996 			return i;
5997 
5998 		if (available_idle_cpu(i)) {
5999 			struct rq *rq = cpu_rq(i);
6000 			struct cpuidle_state *idle = idle_get_state(rq);
6001 			if (idle && idle->exit_latency < min_exit_latency) {
6002 				/*
6003 				 * We give priority to a CPU whose idle state
6004 				 * has the smallest exit latency irrespective
6005 				 * of any idle timestamp.
6006 				 */
6007 				min_exit_latency = idle->exit_latency;
6008 				latest_idle_timestamp = rq->idle_stamp;
6009 				shallowest_idle_cpu = i;
6010 			} else if ((!idle || idle->exit_latency == min_exit_latency) &&
6011 				   rq->idle_stamp > latest_idle_timestamp) {
6012 				/*
6013 				 * If equal or no active idle state, then
6014 				 * the most recently idled CPU might have
6015 				 * a warmer cache.
6016 				 */
6017 				latest_idle_timestamp = rq->idle_stamp;
6018 				shallowest_idle_cpu = i;
6019 			}
6020 		} else if (shallowest_idle_cpu == -1) {
6021 			load = cpu_load(cpu_rq(i));
6022 			if (load < min_load) {
6023 				min_load = load;
6024 				least_loaded_cpu = i;
6025 			}
6026 		}
6027 	}
6028 
6029 	return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu;
6030 }
6031 
6032 static inline int find_idlest_cpu(struct sched_domain *sd, struct task_struct *p,
6033 				  int cpu, int prev_cpu, int sd_flag)
6034 {
6035 	int new_cpu = cpu;
6036 
6037 	if (!cpumask_intersects(sched_domain_span(sd), p->cpus_ptr))
6038 		return prev_cpu;
6039 
6040 	/*
6041 	 * We need task's util for cpu_util_without, sync it up to
6042 	 * prev_cpu's last_update_time.
6043 	 */
6044 	if (!(sd_flag & SD_BALANCE_FORK))
6045 		sync_entity_load_avg(&p->se);
6046 
6047 	while (sd) {
6048 		struct sched_group *group;
6049 		struct sched_domain *tmp;
6050 		int weight;
6051 
6052 		if (!(sd->flags & sd_flag)) {
6053 			sd = sd->child;
6054 			continue;
6055 		}
6056 
6057 		group = find_idlest_group(sd, p, cpu);
6058 		if (!group) {
6059 			sd = sd->child;
6060 			continue;
6061 		}
6062 
6063 		new_cpu = find_idlest_group_cpu(group, p, cpu);
6064 		if (new_cpu == cpu) {
6065 			/* Now try balancing at a lower domain level of 'cpu': */
6066 			sd = sd->child;
6067 			continue;
6068 		}
6069 
6070 		/* Now try balancing at a lower domain level of 'new_cpu': */
6071 		cpu = new_cpu;
6072 		weight = sd->span_weight;
6073 		sd = NULL;
6074 		for_each_domain(cpu, tmp) {
6075 			if (weight <= tmp->span_weight)
6076 				break;
6077 			if (tmp->flags & sd_flag)
6078 				sd = tmp;
6079 		}
6080 	}
6081 
6082 	return new_cpu;
6083 }
6084 
6085 static inline int __select_idle_cpu(int cpu)
6086 {
6087 	if (available_idle_cpu(cpu) || sched_idle_cpu(cpu))
6088 		return cpu;
6089 
6090 	return -1;
6091 }
6092 
6093 #ifdef CONFIG_SCHED_SMT
6094 DEFINE_STATIC_KEY_FALSE(sched_smt_present);
6095 EXPORT_SYMBOL_GPL(sched_smt_present);
6096 
6097 static inline void set_idle_cores(int cpu, int val)
6098 {
6099 	struct sched_domain_shared *sds;
6100 
6101 	sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
6102 	if (sds)
6103 		WRITE_ONCE(sds->has_idle_cores, val);
6104 }
6105 
6106 static inline bool test_idle_cores(int cpu, bool def)
6107 {
6108 	struct sched_domain_shared *sds;
6109 
6110 	sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
6111 	if (sds)
6112 		return READ_ONCE(sds->has_idle_cores);
6113 
6114 	return def;
6115 }
6116 
6117 /*
6118  * Scans the local SMT mask to see if the entire core is idle, and records this
6119  * information in sd_llc_shared->has_idle_cores.
6120  *
6121  * Since SMT siblings share all cache levels, inspecting this limited remote
6122  * state should be fairly cheap.
6123  */
6124 void __update_idle_core(struct rq *rq)
6125 {
6126 	int core = cpu_of(rq);
6127 	int cpu;
6128 
6129 	rcu_read_lock();
6130 	if (test_idle_cores(core, true))
6131 		goto unlock;
6132 
6133 	for_each_cpu(cpu, cpu_smt_mask(core)) {
6134 		if (cpu == core)
6135 			continue;
6136 
6137 		if (!available_idle_cpu(cpu))
6138 			goto unlock;
6139 	}
6140 
6141 	set_idle_cores(core, 1);
6142 unlock:
6143 	rcu_read_unlock();
6144 }
6145 
6146 /*
6147  * Scan the entire LLC domain for idle cores; this dynamically switches off if
6148  * there are no idle cores left in the system; tracked through
6149  * sd_llc->shared->has_idle_cores and enabled through update_idle_core() above.
6150  */
6151 static int select_idle_core(struct task_struct *p, int core, struct cpumask *cpus, int *idle_cpu)
6152 {
6153 	bool idle = true;
6154 	int cpu;
6155 
6156 	if (!static_branch_likely(&sched_smt_present))
6157 		return __select_idle_cpu(core);
6158 
6159 	for_each_cpu(cpu, cpu_smt_mask(core)) {
6160 		if (!available_idle_cpu(cpu)) {
6161 			idle = false;
6162 			if (*idle_cpu == -1) {
6163 				if (sched_idle_cpu(cpu) && cpumask_test_cpu(cpu, p->cpus_ptr)) {
6164 					*idle_cpu = cpu;
6165 					break;
6166 				}
6167 				continue;
6168 			}
6169 			break;
6170 		}
6171 		if (*idle_cpu == -1 && cpumask_test_cpu(cpu, p->cpus_ptr))
6172 			*idle_cpu = cpu;
6173 	}
6174 
6175 	if (idle)
6176 		return core;
6177 
6178 	cpumask_andnot(cpus, cpus, cpu_smt_mask(core));
6179 	return -1;
6180 }
6181 
6182 /*
6183  * Scan the local SMT mask for idle CPUs.
6184  */
6185 static int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target)
6186 {
6187 	int cpu;
6188 
6189 	for_each_cpu(cpu, cpu_smt_mask(target)) {
6190 		if (!cpumask_test_cpu(cpu, p->cpus_ptr) ||
6191 		    !cpumask_test_cpu(cpu, sched_domain_span(sd)))
6192 			continue;
6193 		if (available_idle_cpu(cpu) || sched_idle_cpu(cpu))
6194 			return cpu;
6195 	}
6196 
6197 	return -1;
6198 }
6199 
6200 #else /* CONFIG_SCHED_SMT */
6201 
6202 static inline void set_idle_cores(int cpu, int val)
6203 {
6204 }
6205 
6206 static inline bool test_idle_cores(int cpu, bool def)
6207 {
6208 	return def;
6209 }
6210 
6211 static inline int select_idle_core(struct task_struct *p, int core, struct cpumask *cpus, int *idle_cpu)
6212 {
6213 	return __select_idle_cpu(core);
6214 }
6215 
6216 static inline int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target)
6217 {
6218 	return -1;
6219 }
6220 
6221 #endif /* CONFIG_SCHED_SMT */
6222 
6223 /*
6224  * Scan the LLC domain for idle CPUs; this is dynamically regulated by
6225  * comparing the average scan cost (tracked in sd->avg_scan_cost) against the
6226  * average idle time for this rq (as found in rq->avg_idle).
6227  */
6228 static int select_idle_cpu(struct task_struct *p, struct sched_domain *sd, bool has_idle_core, int target)
6229 {
6230 	struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_idle_mask);
6231 	int i, cpu, idle_cpu = -1, nr = INT_MAX;
6232 	int this = smp_processor_id();
6233 	struct sched_domain *this_sd;
6234 	u64 time;
6235 
6236 	this_sd = rcu_dereference(*this_cpu_ptr(&sd_llc));
6237 	if (!this_sd)
6238 		return -1;
6239 
6240 	cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr);
6241 
6242 	if (sched_feat(SIS_PROP) && !has_idle_core) {
6243 		u64 avg_cost, avg_idle, span_avg;
6244 
6245 		/*
6246 		 * Due to large variance we need a large fuzz factor;
6247 		 * hackbench in particularly is sensitive here.
6248 		 */
6249 		avg_idle = this_rq()->avg_idle / 512;
6250 		avg_cost = this_sd->avg_scan_cost + 1;
6251 
6252 		span_avg = sd->span_weight * avg_idle;
6253 		if (span_avg > 4*avg_cost)
6254 			nr = div_u64(span_avg, avg_cost);
6255 		else
6256 			nr = 4;
6257 
6258 		time = cpu_clock(this);
6259 	}
6260 
6261 	for_each_cpu_wrap(cpu, cpus, target) {
6262 		if (has_idle_core) {
6263 			i = select_idle_core(p, cpu, cpus, &idle_cpu);
6264 			if ((unsigned int)i < nr_cpumask_bits)
6265 				return i;
6266 
6267 		} else {
6268 			if (!--nr)
6269 				return -1;
6270 			idle_cpu = __select_idle_cpu(cpu);
6271 			if ((unsigned int)idle_cpu < nr_cpumask_bits)
6272 				break;
6273 		}
6274 	}
6275 
6276 	if (has_idle_core)
6277 		set_idle_cores(target, false);
6278 
6279 	if (sched_feat(SIS_PROP) && !has_idle_core) {
6280 		time = cpu_clock(this) - time;
6281 		update_avg(&this_sd->avg_scan_cost, time);
6282 	}
6283 
6284 	return idle_cpu;
6285 }
6286 
6287 /*
6288  * Scan the asym_capacity domain for idle CPUs; pick the first idle one on which
6289  * the task fits. If no CPU is big enough, but there are idle ones, try to
6290  * maximize capacity.
6291  */
6292 static int
6293 select_idle_capacity(struct task_struct *p, struct sched_domain *sd, int target)
6294 {
6295 	unsigned long task_util, best_cap = 0;
6296 	int cpu, best_cpu = -1;
6297 	struct cpumask *cpus;
6298 
6299 	cpus = this_cpu_cpumask_var_ptr(select_idle_mask);
6300 	cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr);
6301 
6302 	task_util = uclamp_task_util(p);
6303 
6304 	for_each_cpu_wrap(cpu, cpus, target) {
6305 		unsigned long cpu_cap = capacity_of(cpu);
6306 
6307 		if (!available_idle_cpu(cpu) && !sched_idle_cpu(cpu))
6308 			continue;
6309 		if (fits_capacity(task_util, cpu_cap))
6310 			return cpu;
6311 
6312 		if (cpu_cap > best_cap) {
6313 			best_cap = cpu_cap;
6314 			best_cpu = cpu;
6315 		}
6316 	}
6317 
6318 	return best_cpu;
6319 }
6320 
6321 static inline bool asym_fits_capacity(int task_util, int cpu)
6322 {
6323 	if (static_branch_unlikely(&sched_asym_cpucapacity))
6324 		return fits_capacity(task_util, capacity_of(cpu));
6325 
6326 	return true;
6327 }
6328 
6329 /*
6330  * Try and locate an idle core/thread in the LLC cache domain.
6331  */
6332 static int select_idle_sibling(struct task_struct *p, int prev, int target)
6333 {
6334 	bool has_idle_core = false;
6335 	struct sched_domain *sd;
6336 	unsigned long task_util;
6337 	int i, recent_used_cpu;
6338 
6339 	/*
6340 	 * On asymmetric system, update task utilization because we will check
6341 	 * that the task fits with cpu's capacity.
6342 	 */
6343 	if (static_branch_unlikely(&sched_asym_cpucapacity)) {
6344 		sync_entity_load_avg(&p->se);
6345 		task_util = uclamp_task_util(p);
6346 	}
6347 
6348 	if ((available_idle_cpu(target) || sched_idle_cpu(target)) &&
6349 	    asym_fits_capacity(task_util, target))
6350 		return target;
6351 
6352 	/*
6353 	 * If the previous CPU is cache affine and idle, don't be stupid:
6354 	 */
6355 	if (prev != target && cpus_share_cache(prev, target) &&
6356 	    (available_idle_cpu(prev) || sched_idle_cpu(prev)) &&
6357 	    asym_fits_capacity(task_util, prev))
6358 		return prev;
6359 
6360 	/*
6361 	 * Allow a per-cpu kthread to stack with the wakee if the
6362 	 * kworker thread and the tasks previous CPUs are the same.
6363 	 * The assumption is that the wakee queued work for the
6364 	 * per-cpu kthread that is now complete and the wakeup is
6365 	 * essentially a sync wakeup. An obvious example of this
6366 	 * pattern is IO completions.
6367 	 */
6368 	if (is_per_cpu_kthread(current) &&
6369 	    prev == smp_processor_id() &&
6370 	    this_rq()->nr_running <= 1) {
6371 		return prev;
6372 	}
6373 
6374 	/* Check a recently used CPU as a potential idle candidate: */
6375 	recent_used_cpu = p->recent_used_cpu;
6376 	if (recent_used_cpu != prev &&
6377 	    recent_used_cpu != target &&
6378 	    cpus_share_cache(recent_used_cpu, target) &&
6379 	    (available_idle_cpu(recent_used_cpu) || sched_idle_cpu(recent_used_cpu)) &&
6380 	    cpumask_test_cpu(p->recent_used_cpu, p->cpus_ptr) &&
6381 	    asym_fits_capacity(task_util, recent_used_cpu)) {
6382 		/*
6383 		 * Replace recent_used_cpu with prev as it is a potential
6384 		 * candidate for the next wake:
6385 		 */
6386 		p->recent_used_cpu = prev;
6387 		return recent_used_cpu;
6388 	}
6389 
6390 	/*
6391 	 * For asymmetric CPU capacity systems, our domain of interest is
6392 	 * sd_asym_cpucapacity rather than sd_llc.
6393 	 */
6394 	if (static_branch_unlikely(&sched_asym_cpucapacity)) {
6395 		sd = rcu_dereference(per_cpu(sd_asym_cpucapacity, target));
6396 		/*
6397 		 * On an asymmetric CPU capacity system where an exclusive
6398 		 * cpuset defines a symmetric island (i.e. one unique
6399 		 * capacity_orig value through the cpuset), the key will be set
6400 		 * but the CPUs within that cpuset will not have a domain with
6401 		 * SD_ASYM_CPUCAPACITY. These should follow the usual symmetric
6402 		 * capacity path.
6403 		 */
6404 		if (sd) {
6405 			i = select_idle_capacity(p, sd, target);
6406 			return ((unsigned)i < nr_cpumask_bits) ? i : target;
6407 		}
6408 	}
6409 
6410 	sd = rcu_dereference(per_cpu(sd_llc, target));
6411 	if (!sd)
6412 		return target;
6413 
6414 	if (sched_smt_active()) {
6415 		has_idle_core = test_idle_cores(target, false);
6416 
6417 		if (!has_idle_core && cpus_share_cache(prev, target)) {
6418 			i = select_idle_smt(p, sd, prev);
6419 			if ((unsigned int)i < nr_cpumask_bits)
6420 				return i;
6421 		}
6422 	}
6423 
6424 	i = select_idle_cpu(p, sd, has_idle_core, target);
6425 	if ((unsigned)i < nr_cpumask_bits)
6426 		return i;
6427 
6428 	return target;
6429 }
6430 
6431 /**
6432  * cpu_util - Estimates the amount of capacity of a CPU used by CFS tasks.
6433  * @cpu: the CPU to get the utilization of
6434  *
6435  * The unit of the return value must be the one of capacity so we can compare
6436  * the utilization with the capacity of the CPU that is available for CFS task
6437  * (ie cpu_capacity).
6438  *
6439  * cfs_rq.avg.util_avg is the sum of running time of runnable tasks plus the
6440  * recent utilization of currently non-runnable tasks on a CPU. It represents
6441  * the amount of utilization of a CPU in the range [0..capacity_orig] where
6442  * capacity_orig is the cpu_capacity available at the highest frequency
6443  * (arch_scale_freq_capacity()).
6444  * The utilization of a CPU converges towards a sum equal to or less than the
6445  * current capacity (capacity_curr <= capacity_orig) of the CPU because it is
6446  * the running time on this CPU scaled by capacity_curr.
6447  *
6448  * The estimated utilization of a CPU is defined to be the maximum between its
6449  * cfs_rq.avg.util_avg and the sum of the estimated utilization of the tasks
6450  * currently RUNNABLE on that CPU.
6451  * This allows to properly represent the expected utilization of a CPU which
6452  * has just got a big task running since a long sleep period. At the same time
6453  * however it preserves the benefits of the "blocked utilization" in
6454  * describing the potential for other tasks waking up on the same CPU.
6455  *
6456  * Nevertheless, cfs_rq.avg.util_avg can be higher than capacity_curr or even
6457  * higher than capacity_orig because of unfortunate rounding in
6458  * cfs.avg.util_avg or just after migrating tasks and new task wakeups until
6459  * the average stabilizes with the new running time. We need to check that the
6460  * utilization stays within the range of [0..capacity_orig] and cap it if
6461  * necessary. Without utilization capping, a group could be seen as overloaded
6462  * (CPU0 utilization at 121% + CPU1 utilization at 80%) whereas CPU1 has 20% of
6463  * available capacity. We allow utilization to overshoot capacity_curr (but not
6464  * capacity_orig) as it useful for predicting the capacity required after task
6465  * migrations (scheduler-driven DVFS).
6466  *
6467  * Return: the (estimated) utilization for the specified CPU
6468  */
6469 static inline unsigned long cpu_util(int cpu)
6470 {
6471 	struct cfs_rq *cfs_rq;
6472 	unsigned int util;
6473 
6474 	cfs_rq = &cpu_rq(cpu)->cfs;
6475 	util = READ_ONCE(cfs_rq->avg.util_avg);
6476 
6477 	if (sched_feat(UTIL_EST))
6478 		util = max(util, READ_ONCE(cfs_rq->avg.util_est.enqueued));
6479 
6480 	return min_t(unsigned long, util, capacity_orig_of(cpu));
6481 }
6482 
6483 /*
6484  * cpu_util_without: compute cpu utilization without any contributions from *p
6485  * @cpu: the CPU which utilization is requested
6486  * @p: the task which utilization should be discounted
6487  *
6488  * The utilization of a CPU is defined by the utilization of tasks currently
6489  * enqueued on that CPU as well as tasks which are currently sleeping after an
6490  * execution on that CPU.
6491  *
6492  * This method returns the utilization of the specified CPU by discounting the
6493  * utilization of the specified task, whenever the task is currently
6494  * contributing to the CPU utilization.
6495  */
6496 static unsigned long cpu_util_without(int cpu, struct task_struct *p)
6497 {
6498 	struct cfs_rq *cfs_rq;
6499 	unsigned int util;
6500 
6501 	/* Task has no contribution or is new */
6502 	if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
6503 		return cpu_util(cpu);
6504 
6505 	cfs_rq = &cpu_rq(cpu)->cfs;
6506 	util = READ_ONCE(cfs_rq->avg.util_avg);
6507 
6508 	/* Discount task's util from CPU's util */
6509 	lsub_positive(&util, task_util(p));
6510 
6511 	/*
6512 	 * Covered cases:
6513 	 *
6514 	 * a) if *p is the only task sleeping on this CPU, then:
6515 	 *      cpu_util (== task_util) > util_est (== 0)
6516 	 *    and thus we return:
6517 	 *      cpu_util_without = (cpu_util - task_util) = 0
6518 	 *
6519 	 * b) if other tasks are SLEEPING on this CPU, which is now exiting
6520 	 *    IDLE, then:
6521 	 *      cpu_util >= task_util
6522 	 *      cpu_util > util_est (== 0)
6523 	 *    and thus we discount *p's blocked utilization to return:
6524 	 *      cpu_util_without = (cpu_util - task_util) >= 0
6525 	 *
6526 	 * c) if other tasks are RUNNABLE on that CPU and
6527 	 *      util_est > cpu_util
6528 	 *    then we use util_est since it returns a more restrictive
6529 	 *    estimation of the spare capacity on that CPU, by just
6530 	 *    considering the expected utilization of tasks already
6531 	 *    runnable on that CPU.
6532 	 *
6533 	 * Cases a) and b) are covered by the above code, while case c) is
6534 	 * covered by the following code when estimated utilization is
6535 	 * enabled.
6536 	 */
6537 	if (sched_feat(UTIL_EST)) {
6538 		unsigned int estimated =
6539 			READ_ONCE(cfs_rq->avg.util_est.enqueued);
6540 
6541 		/*
6542 		 * Despite the following checks we still have a small window
6543 		 * for a possible race, when an execl's select_task_rq_fair()
6544 		 * races with LB's detach_task():
6545 		 *
6546 		 *   detach_task()
6547 		 *     p->on_rq = TASK_ON_RQ_MIGRATING;
6548 		 *     ---------------------------------- A
6549 		 *     deactivate_task()                   \
6550 		 *       dequeue_task()                     + RaceTime
6551 		 *         util_est_dequeue()              /
6552 		 *     ---------------------------------- B
6553 		 *
6554 		 * The additional check on "current == p" it's required to
6555 		 * properly fix the execl regression and it helps in further
6556 		 * reducing the chances for the above race.
6557 		 */
6558 		if (unlikely(task_on_rq_queued(p) || current == p))
6559 			lsub_positive(&estimated, _task_util_est(p));
6560 
6561 		util = max(util, estimated);
6562 	}
6563 
6564 	/*
6565 	 * Utilization (estimated) can exceed the CPU capacity, thus let's
6566 	 * clamp to the maximum CPU capacity to ensure consistency with
6567 	 * the cpu_util call.
6568 	 */
6569 	return min_t(unsigned long, util, capacity_orig_of(cpu));
6570 }
6571 
6572 /*
6573  * Predicts what cpu_util(@cpu) would return if @p was migrated (and enqueued)
6574  * to @dst_cpu.
6575  */
6576 static unsigned long cpu_util_next(int cpu, struct task_struct *p, int dst_cpu)
6577 {
6578 	struct cfs_rq *cfs_rq = &cpu_rq(cpu)->cfs;
6579 	unsigned long util_est, util = READ_ONCE(cfs_rq->avg.util_avg);
6580 
6581 	/*
6582 	 * If @p migrates from @cpu to another, remove its contribution. Or,
6583 	 * if @p migrates from another CPU to @cpu, add its contribution. In
6584 	 * the other cases, @cpu is not impacted by the migration, so the
6585 	 * util_avg should already be correct.
6586 	 */
6587 	if (task_cpu(p) == cpu && dst_cpu != cpu)
6588 		lsub_positive(&util, task_util(p));
6589 	else if (task_cpu(p) != cpu && dst_cpu == cpu)
6590 		util += task_util(p);
6591 
6592 	if (sched_feat(UTIL_EST)) {
6593 		util_est = READ_ONCE(cfs_rq->avg.util_est.enqueued);
6594 
6595 		/*
6596 		 * During wake-up, the task isn't enqueued yet and doesn't
6597 		 * appear in the cfs_rq->avg.util_est.enqueued of any rq,
6598 		 * so just add it (if needed) to "simulate" what will be
6599 		 * cpu_util() after the task has been enqueued.
6600 		 */
6601 		if (dst_cpu == cpu)
6602 			util_est += _task_util_est(p);
6603 
6604 		util = max(util, util_est);
6605 	}
6606 
6607 	return min(util, capacity_orig_of(cpu));
6608 }
6609 
6610 /*
6611  * compute_energy(): Estimates the energy that @pd would consume if @p was
6612  * migrated to @dst_cpu. compute_energy() predicts what will be the utilization
6613  * landscape of @pd's CPUs after the task migration, and uses the Energy Model
6614  * to compute what would be the energy if we decided to actually migrate that
6615  * task.
6616  */
6617 static long
6618 compute_energy(struct task_struct *p, int dst_cpu, struct perf_domain *pd)
6619 {
6620 	struct cpumask *pd_mask = perf_domain_span(pd);
6621 	unsigned long cpu_cap = arch_scale_cpu_capacity(cpumask_first(pd_mask));
6622 	unsigned long max_util = 0, sum_util = 0;
6623 	int cpu;
6624 
6625 	/*
6626 	 * The capacity state of CPUs of the current rd can be driven by CPUs
6627 	 * of another rd if they belong to the same pd. So, account for the
6628 	 * utilization of these CPUs too by masking pd with cpu_online_mask
6629 	 * instead of the rd span.
6630 	 *
6631 	 * If an entire pd is outside of the current rd, it will not appear in
6632 	 * its pd list and will not be accounted by compute_energy().
6633 	 */
6634 	for_each_cpu_and(cpu, pd_mask, cpu_online_mask) {
6635 		unsigned long util_freq = cpu_util_next(cpu, p, dst_cpu);
6636 		unsigned long cpu_util, util_running = util_freq;
6637 		struct task_struct *tsk = NULL;
6638 
6639 		/*
6640 		 * When @p is placed on @cpu:
6641 		 *
6642 		 * util_running = max(cpu_util, cpu_util_est) +
6643 		 *		  max(task_util, _task_util_est)
6644 		 *
6645 		 * while cpu_util_next is: max(cpu_util + task_util,
6646 		 *			       cpu_util_est + _task_util_est)
6647 		 */
6648 		if (cpu == dst_cpu) {
6649 			tsk = p;
6650 			util_running =
6651 				cpu_util_next(cpu, p, -1) + task_util_est(p);
6652 		}
6653 
6654 		/*
6655 		 * Busy time computation: utilization clamping is not
6656 		 * required since the ratio (sum_util / cpu_capacity)
6657 		 * is already enough to scale the EM reported power
6658 		 * consumption at the (eventually clamped) cpu_capacity.
6659 		 */
6660 		sum_util += effective_cpu_util(cpu, util_running, cpu_cap,
6661 					       ENERGY_UTIL, NULL);
6662 
6663 		/*
6664 		 * Performance domain frequency: utilization clamping
6665 		 * must be considered since it affects the selection
6666 		 * of the performance domain frequency.
6667 		 * NOTE: in case RT tasks are running, by default the
6668 		 * FREQUENCY_UTIL's utilization can be max OPP.
6669 		 */
6670 		cpu_util = effective_cpu_util(cpu, util_freq, cpu_cap,
6671 					      FREQUENCY_UTIL, tsk);
6672 		max_util = max(max_util, cpu_util);
6673 	}
6674 
6675 	return em_cpu_energy(pd->em_pd, max_util, sum_util);
6676 }
6677 
6678 /*
6679  * find_energy_efficient_cpu(): Find most energy-efficient target CPU for the
6680  * waking task. find_energy_efficient_cpu() looks for the CPU with maximum
6681  * spare capacity in each performance domain and uses it as a potential
6682  * candidate to execute the task. Then, it uses the Energy Model to figure
6683  * out which of the CPU candidates is the most energy-efficient.
6684  *
6685  * The rationale for this heuristic is as follows. In a performance domain,
6686  * all the most energy efficient CPU candidates (according to the Energy
6687  * Model) are those for which we'll request a low frequency. When there are
6688  * several CPUs for which the frequency request will be the same, we don't
6689  * have enough data to break the tie between them, because the Energy Model
6690  * only includes active power costs. With this model, if we assume that
6691  * frequency requests follow utilization (e.g. using schedutil), the CPU with
6692  * the maximum spare capacity in a performance domain is guaranteed to be among
6693  * the best candidates of the performance domain.
6694  *
6695  * In practice, it could be preferable from an energy standpoint to pack
6696  * small tasks on a CPU in order to let other CPUs go in deeper idle states,
6697  * but that could also hurt our chances to go cluster idle, and we have no
6698  * ways to tell with the current Energy Model if this is actually a good
6699  * idea or not. So, find_energy_efficient_cpu() basically favors
6700  * cluster-packing, and spreading inside a cluster. That should at least be
6701  * a good thing for latency, and this is consistent with the idea that most
6702  * of the energy savings of EAS come from the asymmetry of the system, and
6703  * not so much from breaking the tie between identical CPUs. That's also the
6704  * reason why EAS is enabled in the topology code only for systems where
6705  * SD_ASYM_CPUCAPACITY is set.
6706  *
6707  * NOTE: Forkees are not accepted in the energy-aware wake-up path because
6708  * they don't have any useful utilization data yet and it's not possible to
6709  * forecast their impact on energy consumption. Consequently, they will be
6710  * placed by find_idlest_cpu() on the least loaded CPU, which might turn out
6711  * to be energy-inefficient in some use-cases. The alternative would be to
6712  * bias new tasks towards specific types of CPUs first, or to try to infer
6713  * their util_avg from the parent task, but those heuristics could hurt
6714  * other use-cases too. So, until someone finds a better way to solve this,
6715  * let's keep things simple by re-using the existing slow path.
6716  */
6717 static int find_energy_efficient_cpu(struct task_struct *p, int prev_cpu)
6718 {
6719 	unsigned long prev_delta = ULONG_MAX, best_delta = ULONG_MAX;
6720 	struct root_domain *rd = cpu_rq(smp_processor_id())->rd;
6721 	unsigned long cpu_cap, util, base_energy = 0;
6722 	int cpu, best_energy_cpu = prev_cpu;
6723 	struct sched_domain *sd;
6724 	struct perf_domain *pd;
6725 
6726 	rcu_read_lock();
6727 	pd = rcu_dereference(rd->pd);
6728 	if (!pd || READ_ONCE(rd->overutilized))
6729 		goto fail;
6730 
6731 	/*
6732 	 * Energy-aware wake-up happens on the lowest sched_domain starting
6733 	 * from sd_asym_cpucapacity spanning over this_cpu and prev_cpu.
6734 	 */
6735 	sd = rcu_dereference(*this_cpu_ptr(&sd_asym_cpucapacity));
6736 	while (sd && !cpumask_test_cpu(prev_cpu, sched_domain_span(sd)))
6737 		sd = sd->parent;
6738 	if (!sd)
6739 		goto fail;
6740 
6741 	sync_entity_load_avg(&p->se);
6742 	if (!task_util_est(p))
6743 		goto unlock;
6744 
6745 	for (; pd; pd = pd->next) {
6746 		unsigned long cur_delta, spare_cap, max_spare_cap = 0;
6747 		unsigned long base_energy_pd;
6748 		int max_spare_cap_cpu = -1;
6749 
6750 		/* Compute the 'base' energy of the pd, without @p */
6751 		base_energy_pd = compute_energy(p, -1, pd);
6752 		base_energy += base_energy_pd;
6753 
6754 		for_each_cpu_and(cpu, perf_domain_span(pd), sched_domain_span(sd)) {
6755 			if (!cpumask_test_cpu(cpu, p->cpus_ptr))
6756 				continue;
6757 
6758 			util = cpu_util_next(cpu, p, cpu);
6759 			cpu_cap = capacity_of(cpu);
6760 			spare_cap = cpu_cap;
6761 			lsub_positive(&spare_cap, util);
6762 
6763 			/*
6764 			 * Skip CPUs that cannot satisfy the capacity request.
6765 			 * IOW, placing the task there would make the CPU
6766 			 * overutilized. Take uclamp into account to see how
6767 			 * much capacity we can get out of the CPU; this is
6768 			 * aligned with sched_cpu_util().
6769 			 */
6770 			util = uclamp_rq_util_with(cpu_rq(cpu), util, p);
6771 			if (!fits_capacity(util, cpu_cap))
6772 				continue;
6773 
6774 			/* Always use prev_cpu as a candidate. */
6775 			if (cpu == prev_cpu) {
6776 				prev_delta = compute_energy(p, prev_cpu, pd);
6777 				prev_delta -= base_energy_pd;
6778 				best_delta = min(best_delta, prev_delta);
6779 			}
6780 
6781 			/*
6782 			 * Find the CPU with the maximum spare capacity in
6783 			 * the performance domain
6784 			 */
6785 			if (spare_cap > max_spare_cap) {
6786 				max_spare_cap = spare_cap;
6787 				max_spare_cap_cpu = cpu;
6788 			}
6789 		}
6790 
6791 		/* Evaluate the energy impact of using this CPU. */
6792 		if (max_spare_cap_cpu >= 0 && max_spare_cap_cpu != prev_cpu) {
6793 			cur_delta = compute_energy(p, max_spare_cap_cpu, pd);
6794 			cur_delta -= base_energy_pd;
6795 			if (cur_delta < best_delta) {
6796 				best_delta = cur_delta;
6797 				best_energy_cpu = max_spare_cap_cpu;
6798 			}
6799 		}
6800 	}
6801 unlock:
6802 	rcu_read_unlock();
6803 
6804 	/*
6805 	 * Pick the best CPU if prev_cpu cannot be used, or if it saves at
6806 	 * least 6% of the energy used by prev_cpu.
6807 	 */
6808 	if (prev_delta == ULONG_MAX)
6809 		return best_energy_cpu;
6810 
6811 	if ((prev_delta - best_delta) > ((prev_delta + base_energy) >> 4))
6812 		return best_energy_cpu;
6813 
6814 	return prev_cpu;
6815 
6816 fail:
6817 	rcu_read_unlock();
6818 
6819 	return -1;
6820 }
6821 
6822 /*
6823  * select_task_rq_fair: Select target runqueue for the waking task in domains
6824  * that have the relevant SD flag set. In practice, this is SD_BALANCE_WAKE,
6825  * SD_BALANCE_FORK, or SD_BALANCE_EXEC.
6826  *
6827  * Balances load by selecting the idlest CPU in the idlest group, or under
6828  * certain conditions an idle sibling CPU if the domain has SD_WAKE_AFFINE set.
6829  *
6830  * Returns the target CPU number.
6831  *
6832  * preempt must be disabled.
6833  */
6834 static int
6835 select_task_rq_fair(struct task_struct *p, int prev_cpu, int wake_flags)
6836 {
6837 	int sync = (wake_flags & WF_SYNC) && !(current->flags & PF_EXITING);
6838 	struct sched_domain *tmp, *sd = NULL;
6839 	int cpu = smp_processor_id();
6840 	int new_cpu = prev_cpu;
6841 	int want_affine = 0;
6842 	/* SD_flags and WF_flags share the first nibble */
6843 	int sd_flag = wake_flags & 0xF;
6844 
6845 	if (wake_flags & WF_TTWU) {
6846 		record_wakee(p);
6847 
6848 		if (sched_energy_enabled()) {
6849 			new_cpu = find_energy_efficient_cpu(p, prev_cpu);
6850 			if (new_cpu >= 0)
6851 				return new_cpu;
6852 			new_cpu = prev_cpu;
6853 		}
6854 
6855 		want_affine = !wake_wide(p) && cpumask_test_cpu(cpu, p->cpus_ptr);
6856 	}
6857 
6858 	rcu_read_lock();
6859 	for_each_domain(cpu, tmp) {
6860 		/*
6861 		 * If both 'cpu' and 'prev_cpu' are part of this domain,
6862 		 * cpu is a valid SD_WAKE_AFFINE target.
6863 		 */
6864 		if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
6865 		    cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
6866 			if (cpu != prev_cpu)
6867 				new_cpu = wake_affine(tmp, p, cpu, prev_cpu, sync);
6868 
6869 			sd = NULL; /* Prefer wake_affine over balance flags */
6870 			break;
6871 		}
6872 
6873 		if (tmp->flags & sd_flag)
6874 			sd = tmp;
6875 		else if (!want_affine)
6876 			break;
6877 	}
6878 
6879 	if (unlikely(sd)) {
6880 		/* Slow path */
6881 		new_cpu = find_idlest_cpu(sd, p, cpu, prev_cpu, sd_flag);
6882 	} else if (wake_flags & WF_TTWU) { /* XXX always ? */
6883 		/* Fast path */
6884 		new_cpu = select_idle_sibling(p, prev_cpu, new_cpu);
6885 
6886 		if (want_affine)
6887 			current->recent_used_cpu = cpu;
6888 	}
6889 	rcu_read_unlock();
6890 
6891 	return new_cpu;
6892 }
6893 
6894 static void detach_entity_cfs_rq(struct sched_entity *se);
6895 
6896 /*
6897  * Called immediately before a task is migrated to a new CPU; task_cpu(p) and
6898  * cfs_rq_of(p) references at time of call are still valid and identify the
6899  * previous CPU. The caller guarantees p->pi_lock or task_rq(p)->lock is held.
6900  */
6901 static void migrate_task_rq_fair(struct task_struct *p, int new_cpu)
6902 {
6903 	/*
6904 	 * As blocked tasks retain absolute vruntime the migration needs to
6905 	 * deal with this by subtracting the old and adding the new
6906 	 * min_vruntime -- the latter is done by enqueue_entity() when placing
6907 	 * the task on the new runqueue.
6908 	 */
6909 	if (p->state == TASK_WAKING) {
6910 		struct sched_entity *se = &p->se;
6911 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
6912 		u64 min_vruntime;
6913 
6914 #ifndef CONFIG_64BIT
6915 		u64 min_vruntime_copy;
6916 
6917 		do {
6918 			min_vruntime_copy = cfs_rq->min_vruntime_copy;
6919 			smp_rmb();
6920 			min_vruntime = cfs_rq->min_vruntime;
6921 		} while (min_vruntime != min_vruntime_copy);
6922 #else
6923 		min_vruntime = cfs_rq->min_vruntime;
6924 #endif
6925 
6926 		se->vruntime -= min_vruntime;
6927 	}
6928 
6929 	if (p->on_rq == TASK_ON_RQ_MIGRATING) {
6930 		/*
6931 		 * In case of TASK_ON_RQ_MIGRATING we in fact hold the 'old'
6932 		 * rq->lock and can modify state directly.
6933 		 */
6934 		lockdep_assert_held(&task_rq(p)->lock);
6935 		detach_entity_cfs_rq(&p->se);
6936 
6937 	} else {
6938 		/*
6939 		 * We are supposed to update the task to "current" time, then
6940 		 * its up to date and ready to go to new CPU/cfs_rq. But we
6941 		 * have difficulty in getting what current time is, so simply
6942 		 * throw away the out-of-date time. This will result in the
6943 		 * wakee task is less decayed, but giving the wakee more load
6944 		 * sounds not bad.
6945 		 */
6946 		remove_entity_load_avg(&p->se);
6947 	}
6948 
6949 	/* Tell new CPU we are migrated */
6950 	p->se.avg.last_update_time = 0;
6951 
6952 	/* We have migrated, no longer consider this task hot */
6953 	p->se.exec_start = 0;
6954 
6955 	update_scan_period(p, new_cpu);
6956 }
6957 
6958 static void task_dead_fair(struct task_struct *p)
6959 {
6960 	remove_entity_load_avg(&p->se);
6961 }
6962 
6963 static int
6964 balance_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
6965 {
6966 	if (rq->nr_running)
6967 		return 1;
6968 
6969 	return newidle_balance(rq, rf) != 0;
6970 }
6971 #endif /* CONFIG_SMP */
6972 
6973 static unsigned long wakeup_gran(struct sched_entity *se)
6974 {
6975 	unsigned long gran = sysctl_sched_wakeup_granularity;
6976 
6977 	/*
6978 	 * Since its curr running now, convert the gran from real-time
6979 	 * to virtual-time in his units.
6980 	 *
6981 	 * By using 'se' instead of 'curr' we penalize light tasks, so
6982 	 * they get preempted easier. That is, if 'se' < 'curr' then
6983 	 * the resulting gran will be larger, therefore penalizing the
6984 	 * lighter, if otoh 'se' > 'curr' then the resulting gran will
6985 	 * be smaller, again penalizing the lighter task.
6986 	 *
6987 	 * This is especially important for buddies when the leftmost
6988 	 * task is higher priority than the buddy.
6989 	 */
6990 	return calc_delta_fair(gran, se);
6991 }
6992 
6993 /*
6994  * Should 'se' preempt 'curr'.
6995  *
6996  *             |s1
6997  *        |s2
6998  *   |s3
6999  *         g
7000  *      |<--->|c
7001  *
7002  *  w(c, s1) = -1
7003  *  w(c, s2) =  0
7004  *  w(c, s3) =  1
7005  *
7006  */
7007 static int
7008 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
7009 {
7010 	s64 gran, vdiff = curr->vruntime - se->vruntime;
7011 
7012 	if (vdiff <= 0)
7013 		return -1;
7014 
7015 	gran = wakeup_gran(se);
7016 	if (vdiff > gran)
7017 		return 1;
7018 
7019 	return 0;
7020 }
7021 
7022 static void set_last_buddy(struct sched_entity *se)
7023 {
7024 	if (entity_is_task(se) && unlikely(task_has_idle_policy(task_of(se))))
7025 		return;
7026 
7027 	for_each_sched_entity(se) {
7028 		if (SCHED_WARN_ON(!se->on_rq))
7029 			return;
7030 		cfs_rq_of(se)->last = se;
7031 	}
7032 }
7033 
7034 static void set_next_buddy(struct sched_entity *se)
7035 {
7036 	if (entity_is_task(se) && unlikely(task_has_idle_policy(task_of(se))))
7037 		return;
7038 
7039 	for_each_sched_entity(se) {
7040 		if (SCHED_WARN_ON(!se->on_rq))
7041 			return;
7042 		cfs_rq_of(se)->next = se;
7043 	}
7044 }
7045 
7046 static void set_skip_buddy(struct sched_entity *se)
7047 {
7048 	for_each_sched_entity(se)
7049 		cfs_rq_of(se)->skip = se;
7050 }
7051 
7052 /*
7053  * Preempt the current task with a newly woken task if needed:
7054  */
7055 static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
7056 {
7057 	struct task_struct *curr = rq->curr;
7058 	struct sched_entity *se = &curr->se, *pse = &p->se;
7059 	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
7060 	int scale = cfs_rq->nr_running >= sched_nr_latency;
7061 	int next_buddy_marked = 0;
7062 
7063 	if (unlikely(se == pse))
7064 		return;
7065 
7066 	/*
7067 	 * This is possible from callers such as attach_tasks(), in which we
7068 	 * unconditionally check_preempt_curr() after an enqueue (which may have
7069 	 * lead to a throttle).  This both saves work and prevents false
7070 	 * next-buddy nomination below.
7071 	 */
7072 	if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
7073 		return;
7074 
7075 	if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
7076 		set_next_buddy(pse);
7077 		next_buddy_marked = 1;
7078 	}
7079 
7080 	/*
7081 	 * We can come here with TIF_NEED_RESCHED already set from new task
7082 	 * wake up path.
7083 	 *
7084 	 * Note: this also catches the edge-case of curr being in a throttled
7085 	 * group (e.g. via set_curr_task), since update_curr() (in the
7086 	 * enqueue of curr) will have resulted in resched being set.  This
7087 	 * prevents us from potentially nominating it as a false LAST_BUDDY
7088 	 * below.
7089 	 */
7090 	if (test_tsk_need_resched(curr))
7091 		return;
7092 
7093 	/* Idle tasks are by definition preempted by non-idle tasks. */
7094 	if (unlikely(task_has_idle_policy(curr)) &&
7095 	    likely(!task_has_idle_policy(p)))
7096 		goto preempt;
7097 
7098 	/*
7099 	 * Batch and idle tasks do not preempt non-idle tasks (their preemption
7100 	 * is driven by the tick):
7101 	 */
7102 	if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
7103 		return;
7104 
7105 	find_matching_se(&se, &pse);
7106 	update_curr(cfs_rq_of(se));
7107 	BUG_ON(!pse);
7108 	if (wakeup_preempt_entity(se, pse) == 1) {
7109 		/*
7110 		 * Bias pick_next to pick the sched entity that is
7111 		 * triggering this preemption.
7112 		 */
7113 		if (!next_buddy_marked)
7114 			set_next_buddy(pse);
7115 		goto preempt;
7116 	}
7117 
7118 	return;
7119 
7120 preempt:
7121 	resched_curr(rq);
7122 	/*
7123 	 * Only set the backward buddy when the current task is still
7124 	 * on the rq. This can happen when a wakeup gets interleaved
7125 	 * with schedule on the ->pre_schedule() or idle_balance()
7126 	 * point, either of which can * drop the rq lock.
7127 	 *
7128 	 * Also, during early boot the idle thread is in the fair class,
7129 	 * for obvious reasons its a bad idea to schedule back to it.
7130 	 */
7131 	if (unlikely(!se->on_rq || curr == rq->idle))
7132 		return;
7133 
7134 	if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
7135 		set_last_buddy(se);
7136 }
7137 
7138 struct task_struct *
7139 pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
7140 {
7141 	struct cfs_rq *cfs_rq = &rq->cfs;
7142 	struct sched_entity *se;
7143 	struct task_struct *p;
7144 	int new_tasks;
7145 
7146 again:
7147 	if (!sched_fair_runnable(rq))
7148 		goto idle;
7149 
7150 #ifdef CONFIG_FAIR_GROUP_SCHED
7151 	if (!prev || prev->sched_class != &fair_sched_class)
7152 		goto simple;
7153 
7154 	/*
7155 	 * Because of the set_next_buddy() in dequeue_task_fair() it is rather
7156 	 * likely that a next task is from the same cgroup as the current.
7157 	 *
7158 	 * Therefore attempt to avoid putting and setting the entire cgroup
7159 	 * hierarchy, only change the part that actually changes.
7160 	 */
7161 
7162 	do {
7163 		struct sched_entity *curr = cfs_rq->curr;
7164 
7165 		/*
7166 		 * Since we got here without doing put_prev_entity() we also
7167 		 * have to consider cfs_rq->curr. If it is still a runnable
7168 		 * entity, update_curr() will update its vruntime, otherwise
7169 		 * forget we've ever seen it.
7170 		 */
7171 		if (curr) {
7172 			if (curr->on_rq)
7173 				update_curr(cfs_rq);
7174 			else
7175 				curr = NULL;
7176 
7177 			/*
7178 			 * This call to check_cfs_rq_runtime() will do the
7179 			 * throttle and dequeue its entity in the parent(s).
7180 			 * Therefore the nr_running test will indeed
7181 			 * be correct.
7182 			 */
7183 			if (unlikely(check_cfs_rq_runtime(cfs_rq))) {
7184 				cfs_rq = &rq->cfs;
7185 
7186 				if (!cfs_rq->nr_running)
7187 					goto idle;
7188 
7189 				goto simple;
7190 			}
7191 		}
7192 
7193 		se = pick_next_entity(cfs_rq, curr);
7194 		cfs_rq = group_cfs_rq(se);
7195 	} while (cfs_rq);
7196 
7197 	p = task_of(se);
7198 
7199 	/*
7200 	 * Since we haven't yet done put_prev_entity and if the selected task
7201 	 * is a different task than we started out with, try and touch the
7202 	 * least amount of cfs_rqs.
7203 	 */
7204 	if (prev != p) {
7205 		struct sched_entity *pse = &prev->se;
7206 
7207 		while (!(cfs_rq = is_same_group(se, pse))) {
7208 			int se_depth = se->depth;
7209 			int pse_depth = pse->depth;
7210 
7211 			if (se_depth <= pse_depth) {
7212 				put_prev_entity(cfs_rq_of(pse), pse);
7213 				pse = parent_entity(pse);
7214 			}
7215 			if (se_depth >= pse_depth) {
7216 				set_next_entity(cfs_rq_of(se), se);
7217 				se = parent_entity(se);
7218 			}
7219 		}
7220 
7221 		put_prev_entity(cfs_rq, pse);
7222 		set_next_entity(cfs_rq, se);
7223 	}
7224 
7225 	goto done;
7226 simple:
7227 #endif
7228 	if (prev)
7229 		put_prev_task(rq, prev);
7230 
7231 	do {
7232 		se = pick_next_entity(cfs_rq, NULL);
7233 		set_next_entity(cfs_rq, se);
7234 		cfs_rq = group_cfs_rq(se);
7235 	} while (cfs_rq);
7236 
7237 	p = task_of(se);
7238 
7239 done: __maybe_unused;
7240 #ifdef CONFIG_SMP
7241 	/*
7242 	 * Move the next running task to the front of
7243 	 * the list, so our cfs_tasks list becomes MRU
7244 	 * one.
7245 	 */
7246 	list_move(&p->se.group_node, &rq->cfs_tasks);
7247 #endif
7248 
7249 	if (hrtick_enabled_fair(rq))
7250 		hrtick_start_fair(rq, p);
7251 
7252 	update_misfit_status(p, rq);
7253 
7254 	return p;
7255 
7256 idle:
7257 	if (!rf)
7258 		return NULL;
7259 
7260 	new_tasks = newidle_balance(rq, rf);
7261 
7262 	/*
7263 	 * Because newidle_balance() releases (and re-acquires) rq->lock, it is
7264 	 * possible for any higher priority task to appear. In that case we
7265 	 * must re-start the pick_next_entity() loop.
7266 	 */
7267 	if (new_tasks < 0)
7268 		return RETRY_TASK;
7269 
7270 	if (new_tasks > 0)
7271 		goto again;
7272 
7273 	/*
7274 	 * rq is about to be idle, check if we need to update the
7275 	 * lost_idle_time of clock_pelt
7276 	 */
7277 	update_idle_rq_clock_pelt(rq);
7278 
7279 	return NULL;
7280 }
7281 
7282 static struct task_struct *__pick_next_task_fair(struct rq *rq)
7283 {
7284 	return pick_next_task_fair(rq, NULL, NULL);
7285 }
7286 
7287 /*
7288  * Account for a descheduled task:
7289  */
7290 static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
7291 {
7292 	struct sched_entity *se = &prev->se;
7293 	struct cfs_rq *cfs_rq;
7294 
7295 	for_each_sched_entity(se) {
7296 		cfs_rq = cfs_rq_of(se);
7297 		put_prev_entity(cfs_rq, se);
7298 	}
7299 }
7300 
7301 /*
7302  * sched_yield() is very simple
7303  *
7304  * The magic of dealing with the ->skip buddy is in pick_next_entity.
7305  */
7306 static void yield_task_fair(struct rq *rq)
7307 {
7308 	struct task_struct *curr = rq->curr;
7309 	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
7310 	struct sched_entity *se = &curr->se;
7311 
7312 	/*
7313 	 * Are we the only task in the tree?
7314 	 */
7315 	if (unlikely(rq->nr_running == 1))
7316 		return;
7317 
7318 	clear_buddies(cfs_rq, se);
7319 
7320 	if (curr->policy != SCHED_BATCH) {
7321 		update_rq_clock(rq);
7322 		/*
7323 		 * Update run-time statistics of the 'current'.
7324 		 */
7325 		update_curr(cfs_rq);
7326 		/*
7327 		 * Tell update_rq_clock() that we've just updated,
7328 		 * so we don't do microscopic update in schedule()
7329 		 * and double the fastpath cost.
7330 		 */
7331 		rq_clock_skip_update(rq);
7332 	}
7333 
7334 	set_skip_buddy(se);
7335 }
7336 
7337 static bool yield_to_task_fair(struct rq *rq, struct task_struct *p)
7338 {
7339 	struct sched_entity *se = &p->se;
7340 
7341 	/* throttled hierarchies are not runnable */
7342 	if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
7343 		return false;
7344 
7345 	/* Tell the scheduler that we'd really like pse to run next. */
7346 	set_next_buddy(se);
7347 
7348 	yield_task_fair(rq);
7349 
7350 	return true;
7351 }
7352 
7353 #ifdef CONFIG_SMP
7354 /**************************************************
7355  * Fair scheduling class load-balancing methods.
7356  *
7357  * BASICS
7358  *
7359  * The purpose of load-balancing is to achieve the same basic fairness the
7360  * per-CPU scheduler provides, namely provide a proportional amount of compute
7361  * time to each task. This is expressed in the following equation:
7362  *
7363  *   W_i,n/P_i == W_j,n/P_j for all i,j                               (1)
7364  *
7365  * Where W_i,n is the n-th weight average for CPU i. The instantaneous weight
7366  * W_i,0 is defined as:
7367  *
7368  *   W_i,0 = \Sum_j w_i,j                                             (2)
7369  *
7370  * Where w_i,j is the weight of the j-th runnable task on CPU i. This weight
7371  * is derived from the nice value as per sched_prio_to_weight[].
7372  *
7373  * The weight average is an exponential decay average of the instantaneous
7374  * weight:
7375  *
7376  *   W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0               (3)
7377  *
7378  * C_i is the compute capacity of CPU i, typically it is the
7379  * fraction of 'recent' time available for SCHED_OTHER task execution. But it
7380  * can also include other factors [XXX].
7381  *
7382  * To achieve this balance we define a measure of imbalance which follows
7383  * directly from (1):
7384  *
7385  *   imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j }    (4)
7386  *
7387  * We them move tasks around to minimize the imbalance. In the continuous
7388  * function space it is obvious this converges, in the discrete case we get
7389  * a few fun cases generally called infeasible weight scenarios.
7390  *
7391  * [XXX expand on:
7392  *     - infeasible weights;
7393  *     - local vs global optima in the discrete case. ]
7394  *
7395  *
7396  * SCHED DOMAINS
7397  *
7398  * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
7399  * for all i,j solution, we create a tree of CPUs that follows the hardware
7400  * topology where each level pairs two lower groups (or better). This results
7401  * in O(log n) layers. Furthermore we reduce the number of CPUs going up the
7402  * tree to only the first of the previous level and we decrease the frequency
7403  * of load-balance at each level inv. proportional to the number of CPUs in
7404  * the groups.
7405  *
7406  * This yields:
7407  *
7408  *     log_2 n     1     n
7409  *   \Sum       { --- * --- * 2^i } = O(n)                            (5)
7410  *     i = 0      2^i   2^i
7411  *                               `- size of each group
7412  *         |         |     `- number of CPUs doing load-balance
7413  *         |         `- freq
7414  *         `- sum over all levels
7415  *
7416  * Coupled with a limit on how many tasks we can migrate every balance pass,
7417  * this makes (5) the runtime complexity of the balancer.
7418  *
7419  * An important property here is that each CPU is still (indirectly) connected
7420  * to every other CPU in at most O(log n) steps:
7421  *
7422  * The adjacency matrix of the resulting graph is given by:
7423  *
7424  *             log_2 n
7425  *   A_i,j = \Union     (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1)  (6)
7426  *             k = 0
7427  *
7428  * And you'll find that:
7429  *
7430  *   A^(log_2 n)_i,j != 0  for all i,j                                (7)
7431  *
7432  * Showing there's indeed a path between every CPU in at most O(log n) steps.
7433  * The task movement gives a factor of O(m), giving a convergence complexity
7434  * of:
7435  *
7436  *   O(nm log n),  n := nr_cpus, m := nr_tasks                        (8)
7437  *
7438  *
7439  * WORK CONSERVING
7440  *
7441  * In order to avoid CPUs going idle while there's still work to do, new idle
7442  * balancing is more aggressive and has the newly idle CPU iterate up the domain
7443  * tree itself instead of relying on other CPUs to bring it work.
7444  *
7445  * This adds some complexity to both (5) and (8) but it reduces the total idle
7446  * time.
7447  *
7448  * [XXX more?]
7449  *
7450  *
7451  * CGROUPS
7452  *
7453  * Cgroups make a horror show out of (2), instead of a simple sum we get:
7454  *
7455  *                                s_k,i
7456  *   W_i,0 = \Sum_j \Prod_k w_k * -----                               (9)
7457  *                                 S_k
7458  *
7459  * Where
7460  *
7461  *   s_k,i = \Sum_j w_i,j,k  and  S_k = \Sum_i s_k,i                 (10)
7462  *
7463  * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on CPU i.
7464  *
7465  * The big problem is S_k, its a global sum needed to compute a local (W_i)
7466  * property.
7467  *
7468  * [XXX write more on how we solve this.. _after_ merging pjt's patches that
7469  *      rewrite all of this once again.]
7470  */
7471 
7472 static unsigned long __read_mostly max_load_balance_interval = HZ/10;
7473 
7474 enum fbq_type { regular, remote, all };
7475 
7476 /*
7477  * 'group_type' describes the group of CPUs at the moment of load balancing.
7478  *
7479  * The enum is ordered by pulling priority, with the group with lowest priority
7480  * first so the group_type can simply be compared when selecting the busiest
7481  * group. See update_sd_pick_busiest().
7482  */
7483 enum group_type {
7484 	/* The group has spare capacity that can be used to run more tasks.  */
7485 	group_has_spare = 0,
7486 	/*
7487 	 * The group is fully used and the tasks don't compete for more CPU
7488 	 * cycles. Nevertheless, some tasks might wait before running.
7489 	 */
7490 	group_fully_busy,
7491 	/*
7492 	 * SD_ASYM_CPUCAPACITY only: One task doesn't fit with CPU's capacity
7493 	 * and must be migrated to a more powerful CPU.
7494 	 */
7495 	group_misfit_task,
7496 	/*
7497 	 * SD_ASYM_PACKING only: One local CPU with higher capacity is available,
7498 	 * and the task should be migrated to it instead of running on the
7499 	 * current CPU.
7500 	 */
7501 	group_asym_packing,
7502 	/*
7503 	 * The tasks' affinity constraints previously prevented the scheduler
7504 	 * from balancing the load across the system.
7505 	 */
7506 	group_imbalanced,
7507 	/*
7508 	 * The CPU is overloaded and can't provide expected CPU cycles to all
7509 	 * tasks.
7510 	 */
7511 	group_overloaded
7512 };
7513 
7514 enum migration_type {
7515 	migrate_load = 0,
7516 	migrate_util,
7517 	migrate_task,
7518 	migrate_misfit
7519 };
7520 
7521 #define LBF_ALL_PINNED	0x01
7522 #define LBF_NEED_BREAK	0x02
7523 #define LBF_DST_PINNED  0x04
7524 #define LBF_SOME_PINNED	0x08
7525 #define LBF_ACTIVE_LB	0x10
7526 
7527 struct lb_env {
7528 	struct sched_domain	*sd;
7529 
7530 	struct rq		*src_rq;
7531 	int			src_cpu;
7532 
7533 	int			dst_cpu;
7534 	struct rq		*dst_rq;
7535 
7536 	struct cpumask		*dst_grpmask;
7537 	int			new_dst_cpu;
7538 	enum cpu_idle_type	idle;
7539 	long			imbalance;
7540 	/* The set of CPUs under consideration for load-balancing */
7541 	struct cpumask		*cpus;
7542 
7543 	unsigned int		flags;
7544 
7545 	unsigned int		loop;
7546 	unsigned int		loop_break;
7547 	unsigned int		loop_max;
7548 
7549 	enum fbq_type		fbq_type;
7550 	enum migration_type	migration_type;
7551 	struct list_head	tasks;
7552 };
7553 
7554 /*
7555  * Is this task likely cache-hot:
7556  */
7557 static int task_hot(struct task_struct *p, struct lb_env *env)
7558 {
7559 	s64 delta;
7560 
7561 	lockdep_assert_held(&env->src_rq->lock);
7562 
7563 	if (p->sched_class != &fair_sched_class)
7564 		return 0;
7565 
7566 	if (unlikely(task_has_idle_policy(p)))
7567 		return 0;
7568 
7569 	/* SMT siblings share cache */
7570 	if (env->sd->flags & SD_SHARE_CPUCAPACITY)
7571 		return 0;
7572 
7573 	/*
7574 	 * Buddy candidates are cache hot:
7575 	 */
7576 	if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running &&
7577 			(&p->se == cfs_rq_of(&p->se)->next ||
7578 			 &p->se == cfs_rq_of(&p->se)->last))
7579 		return 1;
7580 
7581 	if (sysctl_sched_migration_cost == -1)
7582 		return 1;
7583 	if (sysctl_sched_migration_cost == 0)
7584 		return 0;
7585 
7586 	delta = rq_clock_task(env->src_rq) - p->se.exec_start;
7587 
7588 	return delta < (s64)sysctl_sched_migration_cost;
7589 }
7590 
7591 #ifdef CONFIG_NUMA_BALANCING
7592 /*
7593  * Returns 1, if task migration degrades locality
7594  * Returns 0, if task migration improves locality i.e migration preferred.
7595  * Returns -1, if task migration is not affected by locality.
7596  */
7597 static int migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
7598 {
7599 	struct numa_group *numa_group = rcu_dereference(p->numa_group);
7600 	unsigned long src_weight, dst_weight;
7601 	int src_nid, dst_nid, dist;
7602 
7603 	if (!static_branch_likely(&sched_numa_balancing))
7604 		return -1;
7605 
7606 	if (!p->numa_faults || !(env->sd->flags & SD_NUMA))
7607 		return -1;
7608 
7609 	src_nid = cpu_to_node(env->src_cpu);
7610 	dst_nid = cpu_to_node(env->dst_cpu);
7611 
7612 	if (src_nid == dst_nid)
7613 		return -1;
7614 
7615 	/* Migrating away from the preferred node is always bad. */
7616 	if (src_nid == p->numa_preferred_nid) {
7617 		if (env->src_rq->nr_running > env->src_rq->nr_preferred_running)
7618 			return 1;
7619 		else
7620 			return -1;
7621 	}
7622 
7623 	/* Encourage migration to the preferred node. */
7624 	if (dst_nid == p->numa_preferred_nid)
7625 		return 0;
7626 
7627 	/* Leaving a core idle is often worse than degrading locality. */
7628 	if (env->idle == CPU_IDLE)
7629 		return -1;
7630 
7631 	dist = node_distance(src_nid, dst_nid);
7632 	if (numa_group) {
7633 		src_weight = group_weight(p, src_nid, dist);
7634 		dst_weight = group_weight(p, dst_nid, dist);
7635 	} else {
7636 		src_weight = task_weight(p, src_nid, dist);
7637 		dst_weight = task_weight(p, dst_nid, dist);
7638 	}
7639 
7640 	return dst_weight < src_weight;
7641 }
7642 
7643 #else
7644 static inline int migrate_degrades_locality(struct task_struct *p,
7645 					     struct lb_env *env)
7646 {
7647 	return -1;
7648 }
7649 #endif
7650 
7651 /*
7652  * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
7653  */
7654 static
7655 int can_migrate_task(struct task_struct *p, struct lb_env *env)
7656 {
7657 	int tsk_cache_hot;
7658 
7659 	lockdep_assert_held(&env->src_rq->lock);
7660 
7661 	/*
7662 	 * We do not migrate tasks that are:
7663 	 * 1) throttled_lb_pair, or
7664 	 * 2) cannot be migrated to this CPU due to cpus_ptr, or
7665 	 * 3) running (obviously), or
7666 	 * 4) are cache-hot on their current CPU.
7667 	 */
7668 	if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
7669 		return 0;
7670 
7671 	/* Disregard pcpu kthreads; they are where they need to be. */
7672 	if (kthread_is_per_cpu(p))
7673 		return 0;
7674 
7675 	if (!cpumask_test_cpu(env->dst_cpu, p->cpus_ptr)) {
7676 		int cpu;
7677 
7678 		schedstat_inc(p->se.statistics.nr_failed_migrations_affine);
7679 
7680 		env->flags |= LBF_SOME_PINNED;
7681 
7682 		/*
7683 		 * Remember if this task can be migrated to any other CPU in
7684 		 * our sched_group. We may want to revisit it if we couldn't
7685 		 * meet load balance goals by pulling other tasks on src_cpu.
7686 		 *
7687 		 * Avoid computing new_dst_cpu
7688 		 * - for NEWLY_IDLE
7689 		 * - if we have already computed one in current iteration
7690 		 * - if it's an active balance
7691 		 */
7692 		if (env->idle == CPU_NEWLY_IDLE ||
7693 		    env->flags & (LBF_DST_PINNED | LBF_ACTIVE_LB))
7694 			return 0;
7695 
7696 		/* Prevent to re-select dst_cpu via env's CPUs: */
7697 		for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
7698 			if (cpumask_test_cpu(cpu, p->cpus_ptr)) {
7699 				env->flags |= LBF_DST_PINNED;
7700 				env->new_dst_cpu = cpu;
7701 				break;
7702 			}
7703 		}
7704 
7705 		return 0;
7706 	}
7707 
7708 	/* Record that we found at least one task that could run on dst_cpu */
7709 	env->flags &= ~LBF_ALL_PINNED;
7710 
7711 	if (task_running(env->src_rq, p)) {
7712 		schedstat_inc(p->se.statistics.nr_failed_migrations_running);
7713 		return 0;
7714 	}
7715 
7716 	/*
7717 	 * Aggressive migration if:
7718 	 * 1) active balance
7719 	 * 2) destination numa is preferred
7720 	 * 3) task is cache cold, or
7721 	 * 4) too many balance attempts have failed.
7722 	 */
7723 	if (env->flags & LBF_ACTIVE_LB)
7724 		return 1;
7725 
7726 	tsk_cache_hot = migrate_degrades_locality(p, env);
7727 	if (tsk_cache_hot == -1)
7728 		tsk_cache_hot = task_hot(p, env);
7729 
7730 	if (tsk_cache_hot <= 0 ||
7731 	    env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
7732 		if (tsk_cache_hot == 1) {
7733 			schedstat_inc(env->sd->lb_hot_gained[env->idle]);
7734 			schedstat_inc(p->se.statistics.nr_forced_migrations);
7735 		}
7736 		return 1;
7737 	}
7738 
7739 	schedstat_inc(p->se.statistics.nr_failed_migrations_hot);
7740 	return 0;
7741 }
7742 
7743 /*
7744  * detach_task() -- detach the task for the migration specified in env
7745  */
7746 static void detach_task(struct task_struct *p, struct lb_env *env)
7747 {
7748 	lockdep_assert_held(&env->src_rq->lock);
7749 
7750 	deactivate_task(env->src_rq, p, DEQUEUE_NOCLOCK);
7751 	set_task_cpu(p, env->dst_cpu);
7752 }
7753 
7754 /*
7755  * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as
7756  * part of active balancing operations within "domain".
7757  *
7758  * Returns a task if successful and NULL otherwise.
7759  */
7760 static struct task_struct *detach_one_task(struct lb_env *env)
7761 {
7762 	struct task_struct *p;
7763 
7764 	lockdep_assert_held(&env->src_rq->lock);
7765 
7766 	list_for_each_entry_reverse(p,
7767 			&env->src_rq->cfs_tasks, se.group_node) {
7768 		if (!can_migrate_task(p, env))
7769 			continue;
7770 
7771 		detach_task(p, env);
7772 
7773 		/*
7774 		 * Right now, this is only the second place where
7775 		 * lb_gained[env->idle] is updated (other is detach_tasks)
7776 		 * so we can safely collect stats here rather than
7777 		 * inside detach_tasks().
7778 		 */
7779 		schedstat_inc(env->sd->lb_gained[env->idle]);
7780 		return p;
7781 	}
7782 	return NULL;
7783 }
7784 
7785 static const unsigned int sched_nr_migrate_break = 32;
7786 
7787 /*
7788  * detach_tasks() -- tries to detach up to imbalance load/util/tasks from
7789  * busiest_rq, as part of a balancing operation within domain "sd".
7790  *
7791  * Returns number of detached tasks if successful and 0 otherwise.
7792  */
7793 static int detach_tasks(struct lb_env *env)
7794 {
7795 	struct list_head *tasks = &env->src_rq->cfs_tasks;
7796 	unsigned long util, load;
7797 	struct task_struct *p;
7798 	int detached = 0;
7799 
7800 	lockdep_assert_held(&env->src_rq->lock);
7801 
7802 	/*
7803 	 * Source run queue has been emptied by another CPU, clear
7804 	 * LBF_ALL_PINNED flag as we will not test any task.
7805 	 */
7806 	if (env->src_rq->nr_running <= 1) {
7807 		env->flags &= ~LBF_ALL_PINNED;
7808 		return 0;
7809 	}
7810 
7811 	if (env->imbalance <= 0)
7812 		return 0;
7813 
7814 	while (!list_empty(tasks)) {
7815 		/*
7816 		 * We don't want to steal all, otherwise we may be treated likewise,
7817 		 * which could at worst lead to a livelock crash.
7818 		 */
7819 		if (env->idle != CPU_NOT_IDLE && env->src_rq->nr_running <= 1)
7820 			break;
7821 
7822 		p = list_last_entry(tasks, struct task_struct, se.group_node);
7823 
7824 		env->loop++;
7825 		/* We've more or less seen every task there is, call it quits */
7826 		if (env->loop > env->loop_max)
7827 			break;
7828 
7829 		/* take a breather every nr_migrate tasks */
7830 		if (env->loop > env->loop_break) {
7831 			env->loop_break += sched_nr_migrate_break;
7832 			env->flags |= LBF_NEED_BREAK;
7833 			break;
7834 		}
7835 
7836 		if (!can_migrate_task(p, env))
7837 			goto next;
7838 
7839 		switch (env->migration_type) {
7840 		case migrate_load:
7841 			/*
7842 			 * Depending of the number of CPUs and tasks and the
7843 			 * cgroup hierarchy, task_h_load() can return a null
7844 			 * value. Make sure that env->imbalance decreases
7845 			 * otherwise detach_tasks() will stop only after
7846 			 * detaching up to loop_max tasks.
7847 			 */
7848 			load = max_t(unsigned long, task_h_load(p), 1);
7849 
7850 			if (sched_feat(LB_MIN) &&
7851 			    load < 16 && !env->sd->nr_balance_failed)
7852 				goto next;
7853 
7854 			/*
7855 			 * Make sure that we don't migrate too much load.
7856 			 * Nevertheless, let relax the constraint if
7857 			 * scheduler fails to find a good waiting task to
7858 			 * migrate.
7859 			 */
7860 			if (shr_bound(load, env->sd->nr_balance_failed) > env->imbalance)
7861 				goto next;
7862 
7863 			env->imbalance -= load;
7864 			break;
7865 
7866 		case migrate_util:
7867 			util = task_util_est(p);
7868 
7869 			if (util > env->imbalance)
7870 				goto next;
7871 
7872 			env->imbalance -= util;
7873 			break;
7874 
7875 		case migrate_task:
7876 			env->imbalance--;
7877 			break;
7878 
7879 		case migrate_misfit:
7880 			/* This is not a misfit task */
7881 			if (task_fits_capacity(p, capacity_of(env->src_cpu)))
7882 				goto next;
7883 
7884 			env->imbalance = 0;
7885 			break;
7886 		}
7887 
7888 		detach_task(p, env);
7889 		list_add(&p->se.group_node, &env->tasks);
7890 
7891 		detached++;
7892 
7893 #ifdef CONFIG_PREEMPTION
7894 		/*
7895 		 * NEWIDLE balancing is a source of latency, so preemptible
7896 		 * kernels will stop after the first task is detached to minimize
7897 		 * the critical section.
7898 		 */
7899 		if (env->idle == CPU_NEWLY_IDLE)
7900 			break;
7901 #endif
7902 
7903 		/*
7904 		 * We only want to steal up to the prescribed amount of
7905 		 * load/util/tasks.
7906 		 */
7907 		if (env->imbalance <= 0)
7908 			break;
7909 
7910 		continue;
7911 next:
7912 		list_move(&p->se.group_node, tasks);
7913 	}
7914 
7915 	/*
7916 	 * Right now, this is one of only two places we collect this stat
7917 	 * so we can safely collect detach_one_task() stats here rather
7918 	 * than inside detach_one_task().
7919 	 */
7920 	schedstat_add(env->sd->lb_gained[env->idle], detached);
7921 
7922 	return detached;
7923 }
7924 
7925 /*
7926  * attach_task() -- attach the task detached by detach_task() to its new rq.
7927  */
7928 static void attach_task(struct rq *rq, struct task_struct *p)
7929 {
7930 	lockdep_assert_held(&rq->lock);
7931 
7932 	BUG_ON(task_rq(p) != rq);
7933 	activate_task(rq, p, ENQUEUE_NOCLOCK);
7934 	check_preempt_curr(rq, p, 0);
7935 }
7936 
7937 /*
7938  * attach_one_task() -- attaches the task returned from detach_one_task() to
7939  * its new rq.
7940  */
7941 static void attach_one_task(struct rq *rq, struct task_struct *p)
7942 {
7943 	struct rq_flags rf;
7944 
7945 	rq_lock(rq, &rf);
7946 	update_rq_clock(rq);
7947 	attach_task(rq, p);
7948 	rq_unlock(rq, &rf);
7949 }
7950 
7951 /*
7952  * attach_tasks() -- attaches all tasks detached by detach_tasks() to their
7953  * new rq.
7954  */
7955 static void attach_tasks(struct lb_env *env)
7956 {
7957 	struct list_head *tasks = &env->tasks;
7958 	struct task_struct *p;
7959 	struct rq_flags rf;
7960 
7961 	rq_lock(env->dst_rq, &rf);
7962 	update_rq_clock(env->dst_rq);
7963 
7964 	while (!list_empty(tasks)) {
7965 		p = list_first_entry(tasks, struct task_struct, se.group_node);
7966 		list_del_init(&p->se.group_node);
7967 
7968 		attach_task(env->dst_rq, p);
7969 	}
7970 
7971 	rq_unlock(env->dst_rq, &rf);
7972 }
7973 
7974 #ifdef CONFIG_NO_HZ_COMMON
7975 static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq)
7976 {
7977 	if (cfs_rq->avg.load_avg)
7978 		return true;
7979 
7980 	if (cfs_rq->avg.util_avg)
7981 		return true;
7982 
7983 	return false;
7984 }
7985 
7986 static inline bool others_have_blocked(struct rq *rq)
7987 {
7988 	if (READ_ONCE(rq->avg_rt.util_avg))
7989 		return true;
7990 
7991 	if (READ_ONCE(rq->avg_dl.util_avg))
7992 		return true;
7993 
7994 	if (thermal_load_avg(rq))
7995 		return true;
7996 
7997 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ
7998 	if (READ_ONCE(rq->avg_irq.util_avg))
7999 		return true;
8000 #endif
8001 
8002 	return false;
8003 }
8004 
8005 static inline void update_blocked_load_tick(struct rq *rq)
8006 {
8007 	WRITE_ONCE(rq->last_blocked_load_update_tick, jiffies);
8008 }
8009 
8010 static inline void update_blocked_load_status(struct rq *rq, bool has_blocked)
8011 {
8012 	if (!has_blocked)
8013 		rq->has_blocked_load = 0;
8014 }
8015 #else
8016 static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq) { return false; }
8017 static inline bool others_have_blocked(struct rq *rq) { return false; }
8018 static inline void update_blocked_load_tick(struct rq *rq) {}
8019 static inline void update_blocked_load_status(struct rq *rq, bool has_blocked) {}
8020 #endif
8021 
8022 static bool __update_blocked_others(struct rq *rq, bool *done)
8023 {
8024 	const struct sched_class *curr_class;
8025 	u64 now = rq_clock_pelt(rq);
8026 	unsigned long thermal_pressure;
8027 	bool decayed;
8028 
8029 	/*
8030 	 * update_load_avg() can call cpufreq_update_util(). Make sure that RT,
8031 	 * DL and IRQ signals have been updated before updating CFS.
8032 	 */
8033 	curr_class = rq->curr->sched_class;
8034 
8035 	thermal_pressure = arch_scale_thermal_pressure(cpu_of(rq));
8036 
8037 	decayed = update_rt_rq_load_avg(now, rq, curr_class == &rt_sched_class) |
8038 		  update_dl_rq_load_avg(now, rq, curr_class == &dl_sched_class) |
8039 		  update_thermal_load_avg(rq_clock_thermal(rq), rq, thermal_pressure) |
8040 		  update_irq_load_avg(rq, 0);
8041 
8042 	if (others_have_blocked(rq))
8043 		*done = false;
8044 
8045 	return decayed;
8046 }
8047 
8048 #ifdef CONFIG_FAIR_GROUP_SCHED
8049 
8050 static bool __update_blocked_fair(struct rq *rq, bool *done)
8051 {
8052 	struct cfs_rq *cfs_rq, *pos;
8053 	bool decayed = false;
8054 	int cpu = cpu_of(rq);
8055 
8056 	/*
8057 	 * Iterates the task_group tree in a bottom up fashion, see
8058 	 * list_add_leaf_cfs_rq() for details.
8059 	 */
8060 	for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) {
8061 		struct sched_entity *se;
8062 
8063 		if (update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq)) {
8064 			update_tg_load_avg(cfs_rq);
8065 
8066 			if (cfs_rq == &rq->cfs)
8067 				decayed = true;
8068 		}
8069 
8070 		/* Propagate pending load changes to the parent, if any: */
8071 		se = cfs_rq->tg->se[cpu];
8072 		if (se && !skip_blocked_update(se))
8073 			update_load_avg(cfs_rq_of(se), se, UPDATE_TG);
8074 
8075 		/*
8076 		 * There can be a lot of idle CPU cgroups.  Don't let fully
8077 		 * decayed cfs_rqs linger on the list.
8078 		 */
8079 		if (cfs_rq_is_decayed(cfs_rq))
8080 			list_del_leaf_cfs_rq(cfs_rq);
8081 
8082 		/* Don't need periodic decay once load/util_avg are null */
8083 		if (cfs_rq_has_blocked(cfs_rq))
8084 			*done = false;
8085 	}
8086 
8087 	return decayed;
8088 }
8089 
8090 /*
8091  * Compute the hierarchical load factor for cfs_rq and all its ascendants.
8092  * This needs to be done in a top-down fashion because the load of a child
8093  * group is a fraction of its parents load.
8094  */
8095 static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
8096 {
8097 	struct rq *rq = rq_of(cfs_rq);
8098 	struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
8099 	unsigned long now = jiffies;
8100 	unsigned long load;
8101 
8102 	if (cfs_rq->last_h_load_update == now)
8103 		return;
8104 
8105 	WRITE_ONCE(cfs_rq->h_load_next, NULL);
8106 	for_each_sched_entity(se) {
8107 		cfs_rq = cfs_rq_of(se);
8108 		WRITE_ONCE(cfs_rq->h_load_next, se);
8109 		if (cfs_rq->last_h_load_update == now)
8110 			break;
8111 	}
8112 
8113 	if (!se) {
8114 		cfs_rq->h_load = cfs_rq_load_avg(cfs_rq);
8115 		cfs_rq->last_h_load_update = now;
8116 	}
8117 
8118 	while ((se = READ_ONCE(cfs_rq->h_load_next)) != NULL) {
8119 		load = cfs_rq->h_load;
8120 		load = div64_ul(load * se->avg.load_avg,
8121 			cfs_rq_load_avg(cfs_rq) + 1);
8122 		cfs_rq = group_cfs_rq(se);
8123 		cfs_rq->h_load = load;
8124 		cfs_rq->last_h_load_update = now;
8125 	}
8126 }
8127 
8128 static unsigned long task_h_load(struct task_struct *p)
8129 {
8130 	struct cfs_rq *cfs_rq = task_cfs_rq(p);
8131 
8132 	update_cfs_rq_h_load(cfs_rq);
8133 	return div64_ul(p->se.avg.load_avg * cfs_rq->h_load,
8134 			cfs_rq_load_avg(cfs_rq) + 1);
8135 }
8136 #else
8137 static bool __update_blocked_fair(struct rq *rq, bool *done)
8138 {
8139 	struct cfs_rq *cfs_rq = &rq->cfs;
8140 	bool decayed;
8141 
8142 	decayed = update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq);
8143 	if (cfs_rq_has_blocked(cfs_rq))
8144 		*done = false;
8145 
8146 	return decayed;
8147 }
8148 
8149 static unsigned long task_h_load(struct task_struct *p)
8150 {
8151 	return p->se.avg.load_avg;
8152 }
8153 #endif
8154 
8155 static void update_blocked_averages(int cpu)
8156 {
8157 	bool decayed = false, done = true;
8158 	struct rq *rq = cpu_rq(cpu);
8159 	struct rq_flags rf;
8160 
8161 	rq_lock_irqsave(rq, &rf);
8162 	update_blocked_load_tick(rq);
8163 	update_rq_clock(rq);
8164 
8165 	decayed |= __update_blocked_others(rq, &done);
8166 	decayed |= __update_blocked_fair(rq, &done);
8167 
8168 	update_blocked_load_status(rq, !done);
8169 	if (decayed)
8170 		cpufreq_update_util(rq, 0);
8171 	rq_unlock_irqrestore(rq, &rf);
8172 }
8173 
8174 /********** Helpers for find_busiest_group ************************/
8175 
8176 /*
8177  * sg_lb_stats - stats of a sched_group required for load_balancing
8178  */
8179 struct sg_lb_stats {
8180 	unsigned long avg_load; /*Avg load across the CPUs of the group */
8181 	unsigned long group_load; /* Total load over the CPUs of the group */
8182 	unsigned long group_capacity;
8183 	unsigned long group_util; /* Total utilization over the CPUs of the group */
8184 	unsigned long group_runnable; /* Total runnable time over the CPUs of the group */
8185 	unsigned int sum_nr_running; /* Nr of tasks running in the group */
8186 	unsigned int sum_h_nr_running; /* Nr of CFS tasks running in the group */
8187 	unsigned int idle_cpus;
8188 	unsigned int group_weight;
8189 	enum group_type group_type;
8190 	unsigned int group_asym_packing; /* Tasks should be moved to preferred CPU */
8191 	unsigned long group_misfit_task_load; /* A CPU has a task too big for its capacity */
8192 #ifdef CONFIG_NUMA_BALANCING
8193 	unsigned int nr_numa_running;
8194 	unsigned int nr_preferred_running;
8195 #endif
8196 };
8197 
8198 /*
8199  * sd_lb_stats - Structure to store the statistics of a sched_domain
8200  *		 during load balancing.
8201  */
8202 struct sd_lb_stats {
8203 	struct sched_group *busiest;	/* Busiest group in this sd */
8204 	struct sched_group *local;	/* Local group in this sd */
8205 	unsigned long total_load;	/* Total load of all groups in sd */
8206 	unsigned long total_capacity;	/* Total capacity of all groups in sd */
8207 	unsigned long avg_load;	/* Average load across all groups in sd */
8208 	unsigned int prefer_sibling; /* tasks should go to sibling first */
8209 
8210 	struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
8211 	struct sg_lb_stats local_stat;	/* Statistics of the local group */
8212 };
8213 
8214 static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
8215 {
8216 	/*
8217 	 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
8218 	 * local_stat because update_sg_lb_stats() does a full clear/assignment.
8219 	 * We must however set busiest_stat::group_type and
8220 	 * busiest_stat::idle_cpus to the worst busiest group because
8221 	 * update_sd_pick_busiest() reads these before assignment.
8222 	 */
8223 	*sds = (struct sd_lb_stats){
8224 		.busiest = NULL,
8225 		.local = NULL,
8226 		.total_load = 0UL,
8227 		.total_capacity = 0UL,
8228 		.busiest_stat = {
8229 			.idle_cpus = UINT_MAX,
8230 			.group_type = group_has_spare,
8231 		},
8232 	};
8233 }
8234 
8235 static unsigned long scale_rt_capacity(int cpu)
8236 {
8237 	struct rq *rq = cpu_rq(cpu);
8238 	unsigned long max = arch_scale_cpu_capacity(cpu);
8239 	unsigned long used, free;
8240 	unsigned long irq;
8241 
8242 	irq = cpu_util_irq(rq);
8243 
8244 	if (unlikely(irq >= max))
8245 		return 1;
8246 
8247 	/*
8248 	 * avg_rt.util_avg and avg_dl.util_avg track binary signals
8249 	 * (running and not running) with weights 0 and 1024 respectively.
8250 	 * avg_thermal.load_avg tracks thermal pressure and the weighted
8251 	 * average uses the actual delta max capacity(load).
8252 	 */
8253 	used = READ_ONCE(rq->avg_rt.util_avg);
8254 	used += READ_ONCE(rq->avg_dl.util_avg);
8255 	used += thermal_load_avg(rq);
8256 
8257 	if (unlikely(used >= max))
8258 		return 1;
8259 
8260 	free = max - used;
8261 
8262 	return scale_irq_capacity(free, irq, max);
8263 }
8264 
8265 static void update_cpu_capacity(struct sched_domain *sd, int cpu)
8266 {
8267 	unsigned long capacity = scale_rt_capacity(cpu);
8268 	struct sched_group *sdg = sd->groups;
8269 
8270 	cpu_rq(cpu)->cpu_capacity_orig = arch_scale_cpu_capacity(cpu);
8271 
8272 	if (!capacity)
8273 		capacity = 1;
8274 
8275 	cpu_rq(cpu)->cpu_capacity = capacity;
8276 	trace_sched_cpu_capacity_tp(cpu_rq(cpu));
8277 
8278 	sdg->sgc->capacity = capacity;
8279 	sdg->sgc->min_capacity = capacity;
8280 	sdg->sgc->max_capacity = capacity;
8281 }
8282 
8283 void update_group_capacity(struct sched_domain *sd, int cpu)
8284 {
8285 	struct sched_domain *child = sd->child;
8286 	struct sched_group *group, *sdg = sd->groups;
8287 	unsigned long capacity, min_capacity, max_capacity;
8288 	unsigned long interval;
8289 
8290 	interval = msecs_to_jiffies(sd->balance_interval);
8291 	interval = clamp(interval, 1UL, max_load_balance_interval);
8292 	sdg->sgc->next_update = jiffies + interval;
8293 
8294 	if (!child) {
8295 		update_cpu_capacity(sd, cpu);
8296 		return;
8297 	}
8298 
8299 	capacity = 0;
8300 	min_capacity = ULONG_MAX;
8301 	max_capacity = 0;
8302 
8303 	if (child->flags & SD_OVERLAP) {
8304 		/*
8305 		 * SD_OVERLAP domains cannot assume that child groups
8306 		 * span the current group.
8307 		 */
8308 
8309 		for_each_cpu(cpu, sched_group_span(sdg)) {
8310 			unsigned long cpu_cap = capacity_of(cpu);
8311 
8312 			capacity += cpu_cap;
8313 			min_capacity = min(cpu_cap, min_capacity);
8314 			max_capacity = max(cpu_cap, max_capacity);
8315 		}
8316 	} else  {
8317 		/*
8318 		 * !SD_OVERLAP domains can assume that child groups
8319 		 * span the current group.
8320 		 */
8321 
8322 		group = child->groups;
8323 		do {
8324 			struct sched_group_capacity *sgc = group->sgc;
8325 
8326 			capacity += sgc->capacity;
8327 			min_capacity = min(sgc->min_capacity, min_capacity);
8328 			max_capacity = max(sgc->max_capacity, max_capacity);
8329 			group = group->next;
8330 		} while (group != child->groups);
8331 	}
8332 
8333 	sdg->sgc->capacity = capacity;
8334 	sdg->sgc->min_capacity = min_capacity;
8335 	sdg->sgc->max_capacity = max_capacity;
8336 }
8337 
8338 /*
8339  * Check whether the capacity of the rq has been noticeably reduced by side
8340  * activity. The imbalance_pct is used for the threshold.
8341  * Return true is the capacity is reduced
8342  */
8343 static inline int
8344 check_cpu_capacity(struct rq *rq, struct sched_domain *sd)
8345 {
8346 	return ((rq->cpu_capacity * sd->imbalance_pct) <
8347 				(rq->cpu_capacity_orig * 100));
8348 }
8349 
8350 /*
8351  * Check whether a rq has a misfit task and if it looks like we can actually
8352  * help that task: we can migrate the task to a CPU of higher capacity, or
8353  * the task's current CPU is heavily pressured.
8354  */
8355 static inline int check_misfit_status(struct rq *rq, struct sched_domain *sd)
8356 {
8357 	return rq->misfit_task_load &&
8358 		(rq->cpu_capacity_orig < rq->rd->max_cpu_capacity ||
8359 		 check_cpu_capacity(rq, sd));
8360 }
8361 
8362 /*
8363  * Group imbalance indicates (and tries to solve) the problem where balancing
8364  * groups is inadequate due to ->cpus_ptr constraints.
8365  *
8366  * Imagine a situation of two groups of 4 CPUs each and 4 tasks each with a
8367  * cpumask covering 1 CPU of the first group and 3 CPUs of the second group.
8368  * Something like:
8369  *
8370  *	{ 0 1 2 3 } { 4 5 6 7 }
8371  *	        *     * * *
8372  *
8373  * If we were to balance group-wise we'd place two tasks in the first group and
8374  * two tasks in the second group. Clearly this is undesired as it will overload
8375  * cpu 3 and leave one of the CPUs in the second group unused.
8376  *
8377  * The current solution to this issue is detecting the skew in the first group
8378  * by noticing the lower domain failed to reach balance and had difficulty
8379  * moving tasks due to affinity constraints.
8380  *
8381  * When this is so detected; this group becomes a candidate for busiest; see
8382  * update_sd_pick_busiest(). And calculate_imbalance() and
8383  * find_busiest_group() avoid some of the usual balance conditions to allow it
8384  * to create an effective group imbalance.
8385  *
8386  * This is a somewhat tricky proposition since the next run might not find the
8387  * group imbalance and decide the groups need to be balanced again. A most
8388  * subtle and fragile situation.
8389  */
8390 
8391 static inline int sg_imbalanced(struct sched_group *group)
8392 {
8393 	return group->sgc->imbalance;
8394 }
8395 
8396 /*
8397  * group_has_capacity returns true if the group has spare capacity that could
8398  * be used by some tasks.
8399  * We consider that a group has spare capacity if the  * number of task is
8400  * smaller than the number of CPUs or if the utilization is lower than the
8401  * available capacity for CFS tasks.
8402  * For the latter, we use a threshold to stabilize the state, to take into
8403  * account the variance of the tasks' load and to return true if the available
8404  * capacity in meaningful for the load balancer.
8405  * As an example, an available capacity of 1% can appear but it doesn't make
8406  * any benefit for the load balance.
8407  */
8408 static inline bool
8409 group_has_capacity(unsigned int imbalance_pct, struct sg_lb_stats *sgs)
8410 {
8411 	if (sgs->sum_nr_running < sgs->group_weight)
8412 		return true;
8413 
8414 	if ((sgs->group_capacity * imbalance_pct) <
8415 			(sgs->group_runnable * 100))
8416 		return false;
8417 
8418 	if ((sgs->group_capacity * 100) >
8419 			(sgs->group_util * imbalance_pct))
8420 		return true;
8421 
8422 	return false;
8423 }
8424 
8425 /*
8426  *  group_is_overloaded returns true if the group has more tasks than it can
8427  *  handle.
8428  *  group_is_overloaded is not equals to !group_has_capacity because a group
8429  *  with the exact right number of tasks, has no more spare capacity but is not
8430  *  overloaded so both group_has_capacity and group_is_overloaded return
8431  *  false.
8432  */
8433 static inline bool
8434 group_is_overloaded(unsigned int imbalance_pct, struct sg_lb_stats *sgs)
8435 {
8436 	if (sgs->sum_nr_running <= sgs->group_weight)
8437 		return false;
8438 
8439 	if ((sgs->group_capacity * 100) <
8440 			(sgs->group_util * imbalance_pct))
8441 		return true;
8442 
8443 	if ((sgs->group_capacity * imbalance_pct) <
8444 			(sgs->group_runnable * 100))
8445 		return true;
8446 
8447 	return false;
8448 }
8449 
8450 static inline enum
8451 group_type group_classify(unsigned int imbalance_pct,
8452 			  struct sched_group *group,
8453 			  struct sg_lb_stats *sgs)
8454 {
8455 	if (group_is_overloaded(imbalance_pct, sgs))
8456 		return group_overloaded;
8457 
8458 	if (sg_imbalanced(group))
8459 		return group_imbalanced;
8460 
8461 	if (sgs->group_asym_packing)
8462 		return group_asym_packing;
8463 
8464 	if (sgs->group_misfit_task_load)
8465 		return group_misfit_task;
8466 
8467 	if (!group_has_capacity(imbalance_pct, sgs))
8468 		return group_fully_busy;
8469 
8470 	return group_has_spare;
8471 }
8472 
8473 /**
8474  * update_sg_lb_stats - Update sched_group's statistics for load balancing.
8475  * @env: The load balancing environment.
8476  * @group: sched_group whose statistics are to be updated.
8477  * @sgs: variable to hold the statistics for this group.
8478  * @sg_status: Holds flag indicating the status of the sched_group
8479  */
8480 static inline void update_sg_lb_stats(struct lb_env *env,
8481 				      struct sched_group *group,
8482 				      struct sg_lb_stats *sgs,
8483 				      int *sg_status)
8484 {
8485 	int i, nr_running, local_group;
8486 
8487 	memset(sgs, 0, sizeof(*sgs));
8488 
8489 	local_group = cpumask_test_cpu(env->dst_cpu, sched_group_span(group));
8490 
8491 	for_each_cpu_and(i, sched_group_span(group), env->cpus) {
8492 		struct rq *rq = cpu_rq(i);
8493 
8494 		sgs->group_load += cpu_load(rq);
8495 		sgs->group_util += cpu_util(i);
8496 		sgs->group_runnable += cpu_runnable(rq);
8497 		sgs->sum_h_nr_running += rq->cfs.h_nr_running;
8498 
8499 		nr_running = rq->nr_running;
8500 		sgs->sum_nr_running += nr_running;
8501 
8502 		if (nr_running > 1)
8503 			*sg_status |= SG_OVERLOAD;
8504 
8505 		if (cpu_overutilized(i))
8506 			*sg_status |= SG_OVERUTILIZED;
8507 
8508 #ifdef CONFIG_NUMA_BALANCING
8509 		sgs->nr_numa_running += rq->nr_numa_running;
8510 		sgs->nr_preferred_running += rq->nr_preferred_running;
8511 #endif
8512 		/*
8513 		 * No need to call idle_cpu() if nr_running is not 0
8514 		 */
8515 		if (!nr_running && idle_cpu(i)) {
8516 			sgs->idle_cpus++;
8517 			/* Idle cpu can't have misfit task */
8518 			continue;
8519 		}
8520 
8521 		if (local_group)
8522 			continue;
8523 
8524 		/* Check for a misfit task on the cpu */
8525 		if (env->sd->flags & SD_ASYM_CPUCAPACITY &&
8526 		    sgs->group_misfit_task_load < rq->misfit_task_load) {
8527 			sgs->group_misfit_task_load = rq->misfit_task_load;
8528 			*sg_status |= SG_OVERLOAD;
8529 		}
8530 	}
8531 
8532 	/* Check if dst CPU is idle and preferred to this group */
8533 	if (env->sd->flags & SD_ASYM_PACKING &&
8534 	    env->idle != CPU_NOT_IDLE &&
8535 	    sgs->sum_h_nr_running &&
8536 	    sched_asym_prefer(env->dst_cpu, group->asym_prefer_cpu)) {
8537 		sgs->group_asym_packing = 1;
8538 	}
8539 
8540 	sgs->group_capacity = group->sgc->capacity;
8541 
8542 	sgs->group_weight = group->group_weight;
8543 
8544 	sgs->group_type = group_classify(env->sd->imbalance_pct, group, sgs);
8545 
8546 	/* Computing avg_load makes sense only when group is overloaded */
8547 	if (sgs->group_type == group_overloaded)
8548 		sgs->avg_load = (sgs->group_load * SCHED_CAPACITY_SCALE) /
8549 				sgs->group_capacity;
8550 }
8551 
8552 /**
8553  * update_sd_pick_busiest - return 1 on busiest group
8554  * @env: The load balancing environment.
8555  * @sds: sched_domain statistics
8556  * @sg: sched_group candidate to be checked for being the busiest
8557  * @sgs: sched_group statistics
8558  *
8559  * Determine if @sg is a busier group than the previously selected
8560  * busiest group.
8561  *
8562  * Return: %true if @sg is a busier group than the previously selected
8563  * busiest group. %false otherwise.
8564  */
8565 static bool update_sd_pick_busiest(struct lb_env *env,
8566 				   struct sd_lb_stats *sds,
8567 				   struct sched_group *sg,
8568 				   struct sg_lb_stats *sgs)
8569 {
8570 	struct sg_lb_stats *busiest = &sds->busiest_stat;
8571 
8572 	/* Make sure that there is at least one task to pull */
8573 	if (!sgs->sum_h_nr_running)
8574 		return false;
8575 
8576 	/*
8577 	 * Don't try to pull misfit tasks we can't help.
8578 	 * We can use max_capacity here as reduction in capacity on some
8579 	 * CPUs in the group should either be possible to resolve
8580 	 * internally or be covered by avg_load imbalance (eventually).
8581 	 */
8582 	if (sgs->group_type == group_misfit_task &&
8583 	    (!capacity_greater(capacity_of(env->dst_cpu), sg->sgc->max_capacity) ||
8584 	     sds->local_stat.group_type != group_has_spare))
8585 		return false;
8586 
8587 	if (sgs->group_type > busiest->group_type)
8588 		return true;
8589 
8590 	if (sgs->group_type < busiest->group_type)
8591 		return false;
8592 
8593 	/*
8594 	 * The candidate and the current busiest group are the same type of
8595 	 * group. Let check which one is the busiest according to the type.
8596 	 */
8597 
8598 	switch (sgs->group_type) {
8599 	case group_overloaded:
8600 		/* Select the overloaded group with highest avg_load. */
8601 		if (sgs->avg_load <= busiest->avg_load)
8602 			return false;
8603 		break;
8604 
8605 	case group_imbalanced:
8606 		/*
8607 		 * Select the 1st imbalanced group as we don't have any way to
8608 		 * choose one more than another.
8609 		 */
8610 		return false;
8611 
8612 	case group_asym_packing:
8613 		/* Prefer to move from lowest priority CPU's work */
8614 		if (sched_asym_prefer(sg->asym_prefer_cpu, sds->busiest->asym_prefer_cpu))
8615 			return false;
8616 		break;
8617 
8618 	case group_misfit_task:
8619 		/*
8620 		 * If we have more than one misfit sg go with the biggest
8621 		 * misfit.
8622 		 */
8623 		if (sgs->group_misfit_task_load < busiest->group_misfit_task_load)
8624 			return false;
8625 		break;
8626 
8627 	case group_fully_busy:
8628 		/*
8629 		 * Select the fully busy group with highest avg_load. In
8630 		 * theory, there is no need to pull task from such kind of
8631 		 * group because tasks have all compute capacity that they need
8632 		 * but we can still improve the overall throughput by reducing
8633 		 * contention when accessing shared HW resources.
8634 		 *
8635 		 * XXX for now avg_load is not computed and always 0 so we
8636 		 * select the 1st one.
8637 		 */
8638 		if (sgs->avg_load <= busiest->avg_load)
8639 			return false;
8640 		break;
8641 
8642 	case group_has_spare:
8643 		/*
8644 		 * Select not overloaded group with lowest number of idle cpus
8645 		 * and highest number of running tasks. We could also compare
8646 		 * the spare capacity which is more stable but it can end up
8647 		 * that the group has less spare capacity but finally more idle
8648 		 * CPUs which means less opportunity to pull tasks.
8649 		 */
8650 		if (sgs->idle_cpus > busiest->idle_cpus)
8651 			return false;
8652 		else if ((sgs->idle_cpus == busiest->idle_cpus) &&
8653 			 (sgs->sum_nr_running <= busiest->sum_nr_running))
8654 			return false;
8655 
8656 		break;
8657 	}
8658 
8659 	/*
8660 	 * Candidate sg has no more than one task per CPU and has higher
8661 	 * per-CPU capacity. Migrating tasks to less capable CPUs may harm
8662 	 * throughput. Maximize throughput, power/energy consequences are not
8663 	 * considered.
8664 	 */
8665 	if ((env->sd->flags & SD_ASYM_CPUCAPACITY) &&
8666 	    (sgs->group_type <= group_fully_busy) &&
8667 	    (capacity_greater(sg->sgc->min_capacity, capacity_of(env->dst_cpu))))
8668 		return false;
8669 
8670 	return true;
8671 }
8672 
8673 #ifdef CONFIG_NUMA_BALANCING
8674 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
8675 {
8676 	if (sgs->sum_h_nr_running > sgs->nr_numa_running)
8677 		return regular;
8678 	if (sgs->sum_h_nr_running > sgs->nr_preferred_running)
8679 		return remote;
8680 	return all;
8681 }
8682 
8683 static inline enum fbq_type fbq_classify_rq(struct rq *rq)
8684 {
8685 	if (rq->nr_running > rq->nr_numa_running)
8686 		return regular;
8687 	if (rq->nr_running > rq->nr_preferred_running)
8688 		return remote;
8689 	return all;
8690 }
8691 #else
8692 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
8693 {
8694 	return all;
8695 }
8696 
8697 static inline enum fbq_type fbq_classify_rq(struct rq *rq)
8698 {
8699 	return regular;
8700 }
8701 #endif /* CONFIG_NUMA_BALANCING */
8702 
8703 
8704 struct sg_lb_stats;
8705 
8706 /*
8707  * task_running_on_cpu - return 1 if @p is running on @cpu.
8708  */
8709 
8710 static unsigned int task_running_on_cpu(int cpu, struct task_struct *p)
8711 {
8712 	/* Task has no contribution or is new */
8713 	if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
8714 		return 0;
8715 
8716 	if (task_on_rq_queued(p))
8717 		return 1;
8718 
8719 	return 0;
8720 }
8721 
8722 /**
8723  * idle_cpu_without - would a given CPU be idle without p ?
8724  * @cpu: the processor on which idleness is tested.
8725  * @p: task which should be ignored.
8726  *
8727  * Return: 1 if the CPU would be idle. 0 otherwise.
8728  */
8729 static int idle_cpu_without(int cpu, struct task_struct *p)
8730 {
8731 	struct rq *rq = cpu_rq(cpu);
8732 
8733 	if (rq->curr != rq->idle && rq->curr != p)
8734 		return 0;
8735 
8736 	/*
8737 	 * rq->nr_running can't be used but an updated version without the
8738 	 * impact of p on cpu must be used instead. The updated nr_running
8739 	 * be computed and tested before calling idle_cpu_without().
8740 	 */
8741 
8742 #ifdef CONFIG_SMP
8743 	if (rq->ttwu_pending)
8744 		return 0;
8745 #endif
8746 
8747 	return 1;
8748 }
8749 
8750 /*
8751  * update_sg_wakeup_stats - Update sched_group's statistics for wakeup.
8752  * @sd: The sched_domain level to look for idlest group.
8753  * @group: sched_group whose statistics are to be updated.
8754  * @sgs: variable to hold the statistics for this group.
8755  * @p: The task for which we look for the idlest group/CPU.
8756  */
8757 static inline void update_sg_wakeup_stats(struct sched_domain *sd,
8758 					  struct sched_group *group,
8759 					  struct sg_lb_stats *sgs,
8760 					  struct task_struct *p)
8761 {
8762 	int i, nr_running;
8763 
8764 	memset(sgs, 0, sizeof(*sgs));
8765 
8766 	for_each_cpu(i, sched_group_span(group)) {
8767 		struct rq *rq = cpu_rq(i);
8768 		unsigned int local;
8769 
8770 		sgs->group_load += cpu_load_without(rq, p);
8771 		sgs->group_util += cpu_util_without(i, p);
8772 		sgs->group_runnable += cpu_runnable_without(rq, p);
8773 		local = task_running_on_cpu(i, p);
8774 		sgs->sum_h_nr_running += rq->cfs.h_nr_running - local;
8775 
8776 		nr_running = rq->nr_running - local;
8777 		sgs->sum_nr_running += nr_running;
8778 
8779 		/*
8780 		 * No need to call idle_cpu_without() if nr_running is not 0
8781 		 */
8782 		if (!nr_running && idle_cpu_without(i, p))
8783 			sgs->idle_cpus++;
8784 
8785 	}
8786 
8787 	/* Check if task fits in the group */
8788 	if (sd->flags & SD_ASYM_CPUCAPACITY &&
8789 	    !task_fits_capacity(p, group->sgc->max_capacity)) {
8790 		sgs->group_misfit_task_load = 1;
8791 	}
8792 
8793 	sgs->group_capacity = group->sgc->capacity;
8794 
8795 	sgs->group_weight = group->group_weight;
8796 
8797 	sgs->group_type = group_classify(sd->imbalance_pct, group, sgs);
8798 
8799 	/*
8800 	 * Computing avg_load makes sense only when group is fully busy or
8801 	 * overloaded
8802 	 */
8803 	if (sgs->group_type == group_fully_busy ||
8804 		sgs->group_type == group_overloaded)
8805 		sgs->avg_load = (sgs->group_load * SCHED_CAPACITY_SCALE) /
8806 				sgs->group_capacity;
8807 }
8808 
8809 static bool update_pick_idlest(struct sched_group *idlest,
8810 			       struct sg_lb_stats *idlest_sgs,
8811 			       struct sched_group *group,
8812 			       struct sg_lb_stats *sgs)
8813 {
8814 	if (sgs->group_type < idlest_sgs->group_type)
8815 		return true;
8816 
8817 	if (sgs->group_type > idlest_sgs->group_type)
8818 		return false;
8819 
8820 	/*
8821 	 * The candidate and the current idlest group are the same type of
8822 	 * group. Let check which one is the idlest according to the type.
8823 	 */
8824 
8825 	switch (sgs->group_type) {
8826 	case group_overloaded:
8827 	case group_fully_busy:
8828 		/* Select the group with lowest avg_load. */
8829 		if (idlest_sgs->avg_load <= sgs->avg_load)
8830 			return false;
8831 		break;
8832 
8833 	case group_imbalanced:
8834 	case group_asym_packing:
8835 		/* Those types are not used in the slow wakeup path */
8836 		return false;
8837 
8838 	case group_misfit_task:
8839 		/* Select group with the highest max capacity */
8840 		if (idlest->sgc->max_capacity >= group->sgc->max_capacity)
8841 			return false;
8842 		break;
8843 
8844 	case group_has_spare:
8845 		/* Select group with most idle CPUs */
8846 		if (idlest_sgs->idle_cpus > sgs->idle_cpus)
8847 			return false;
8848 
8849 		/* Select group with lowest group_util */
8850 		if (idlest_sgs->idle_cpus == sgs->idle_cpus &&
8851 			idlest_sgs->group_util <= sgs->group_util)
8852 			return false;
8853 
8854 		break;
8855 	}
8856 
8857 	return true;
8858 }
8859 
8860 /*
8861  * Allow a NUMA imbalance if busy CPUs is less than 25% of the domain.
8862  * This is an approximation as the number of running tasks may not be
8863  * related to the number of busy CPUs due to sched_setaffinity.
8864  */
8865 static inline bool allow_numa_imbalance(int dst_running, int dst_weight)
8866 {
8867 	return (dst_running < (dst_weight >> 2));
8868 }
8869 
8870 /*
8871  * find_idlest_group() finds and returns the least busy CPU group within the
8872  * domain.
8873  *
8874  * Assumes p is allowed on at least one CPU in sd.
8875  */
8876 static struct sched_group *
8877 find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
8878 {
8879 	struct sched_group *idlest = NULL, *local = NULL, *group = sd->groups;
8880 	struct sg_lb_stats local_sgs, tmp_sgs;
8881 	struct sg_lb_stats *sgs;
8882 	unsigned long imbalance;
8883 	struct sg_lb_stats idlest_sgs = {
8884 			.avg_load = UINT_MAX,
8885 			.group_type = group_overloaded,
8886 	};
8887 
8888 	do {
8889 		int local_group;
8890 
8891 		/* Skip over this group if it has no CPUs allowed */
8892 		if (!cpumask_intersects(sched_group_span(group),
8893 					p->cpus_ptr))
8894 			continue;
8895 
8896 		local_group = cpumask_test_cpu(this_cpu,
8897 					       sched_group_span(group));
8898 
8899 		if (local_group) {
8900 			sgs = &local_sgs;
8901 			local = group;
8902 		} else {
8903 			sgs = &tmp_sgs;
8904 		}
8905 
8906 		update_sg_wakeup_stats(sd, group, sgs, p);
8907 
8908 		if (!local_group && update_pick_idlest(idlest, &idlest_sgs, group, sgs)) {
8909 			idlest = group;
8910 			idlest_sgs = *sgs;
8911 		}
8912 
8913 	} while (group = group->next, group != sd->groups);
8914 
8915 
8916 	/* There is no idlest group to push tasks to */
8917 	if (!idlest)
8918 		return NULL;
8919 
8920 	/* The local group has been skipped because of CPU affinity */
8921 	if (!local)
8922 		return idlest;
8923 
8924 	/*
8925 	 * If the local group is idler than the selected idlest group
8926 	 * don't try and push the task.
8927 	 */
8928 	if (local_sgs.group_type < idlest_sgs.group_type)
8929 		return NULL;
8930 
8931 	/*
8932 	 * If the local group is busier than the selected idlest group
8933 	 * try and push the task.
8934 	 */
8935 	if (local_sgs.group_type > idlest_sgs.group_type)
8936 		return idlest;
8937 
8938 	switch (local_sgs.group_type) {
8939 	case group_overloaded:
8940 	case group_fully_busy:
8941 
8942 		/* Calculate allowed imbalance based on load */
8943 		imbalance = scale_load_down(NICE_0_LOAD) *
8944 				(sd->imbalance_pct-100) / 100;
8945 
8946 		/*
8947 		 * When comparing groups across NUMA domains, it's possible for
8948 		 * the local domain to be very lightly loaded relative to the
8949 		 * remote domains but "imbalance" skews the comparison making
8950 		 * remote CPUs look much more favourable. When considering
8951 		 * cross-domain, add imbalance to the load on the remote node
8952 		 * and consider staying local.
8953 		 */
8954 
8955 		if ((sd->flags & SD_NUMA) &&
8956 		    ((idlest_sgs.avg_load + imbalance) >= local_sgs.avg_load))
8957 			return NULL;
8958 
8959 		/*
8960 		 * If the local group is less loaded than the selected
8961 		 * idlest group don't try and push any tasks.
8962 		 */
8963 		if (idlest_sgs.avg_load >= (local_sgs.avg_load + imbalance))
8964 			return NULL;
8965 
8966 		if (100 * local_sgs.avg_load <= sd->imbalance_pct * idlest_sgs.avg_load)
8967 			return NULL;
8968 		break;
8969 
8970 	case group_imbalanced:
8971 	case group_asym_packing:
8972 		/* Those type are not used in the slow wakeup path */
8973 		return NULL;
8974 
8975 	case group_misfit_task:
8976 		/* Select group with the highest max capacity */
8977 		if (local->sgc->max_capacity >= idlest->sgc->max_capacity)
8978 			return NULL;
8979 		break;
8980 
8981 	case group_has_spare:
8982 		if (sd->flags & SD_NUMA) {
8983 #ifdef CONFIG_NUMA_BALANCING
8984 			int idlest_cpu;
8985 			/*
8986 			 * If there is spare capacity at NUMA, try to select
8987 			 * the preferred node
8988 			 */
8989 			if (cpu_to_node(this_cpu) == p->numa_preferred_nid)
8990 				return NULL;
8991 
8992 			idlest_cpu = cpumask_first(sched_group_span(idlest));
8993 			if (cpu_to_node(idlest_cpu) == p->numa_preferred_nid)
8994 				return idlest;
8995 #endif
8996 			/*
8997 			 * Otherwise, keep the task on this node to stay close
8998 			 * its wakeup source and improve locality. If there is
8999 			 * a real need of migration, periodic load balance will
9000 			 * take care of it.
9001 			 */
9002 			if (allow_numa_imbalance(local_sgs.sum_nr_running, sd->span_weight))
9003 				return NULL;
9004 		}
9005 
9006 		/*
9007 		 * Select group with highest number of idle CPUs. We could also
9008 		 * compare the utilization which is more stable but it can end
9009 		 * up that the group has less spare capacity but finally more
9010 		 * idle CPUs which means more opportunity to run task.
9011 		 */
9012 		if (local_sgs.idle_cpus >= idlest_sgs.idle_cpus)
9013 			return NULL;
9014 		break;
9015 	}
9016 
9017 	return idlest;
9018 }
9019 
9020 /**
9021  * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
9022  * @env: The load balancing environment.
9023  * @sds: variable to hold the statistics for this sched_domain.
9024  */
9025 
9026 static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
9027 {
9028 	struct sched_domain *child = env->sd->child;
9029 	struct sched_group *sg = env->sd->groups;
9030 	struct sg_lb_stats *local = &sds->local_stat;
9031 	struct sg_lb_stats tmp_sgs;
9032 	int sg_status = 0;
9033 
9034 	do {
9035 		struct sg_lb_stats *sgs = &tmp_sgs;
9036 		int local_group;
9037 
9038 		local_group = cpumask_test_cpu(env->dst_cpu, sched_group_span(sg));
9039 		if (local_group) {
9040 			sds->local = sg;
9041 			sgs = local;
9042 
9043 			if (env->idle != CPU_NEWLY_IDLE ||
9044 			    time_after_eq(jiffies, sg->sgc->next_update))
9045 				update_group_capacity(env->sd, env->dst_cpu);
9046 		}
9047 
9048 		update_sg_lb_stats(env, sg, sgs, &sg_status);
9049 
9050 		if (local_group)
9051 			goto next_group;
9052 
9053 
9054 		if (update_sd_pick_busiest(env, sds, sg, sgs)) {
9055 			sds->busiest = sg;
9056 			sds->busiest_stat = *sgs;
9057 		}
9058 
9059 next_group:
9060 		/* Now, start updating sd_lb_stats */
9061 		sds->total_load += sgs->group_load;
9062 		sds->total_capacity += sgs->group_capacity;
9063 
9064 		sg = sg->next;
9065 	} while (sg != env->sd->groups);
9066 
9067 	/* Tag domain that child domain prefers tasks go to siblings first */
9068 	sds->prefer_sibling = child && child->flags & SD_PREFER_SIBLING;
9069 
9070 
9071 	if (env->sd->flags & SD_NUMA)
9072 		env->fbq_type = fbq_classify_group(&sds->busiest_stat);
9073 
9074 	if (!env->sd->parent) {
9075 		struct root_domain *rd = env->dst_rq->rd;
9076 
9077 		/* update overload indicator if we are at root domain */
9078 		WRITE_ONCE(rd->overload, sg_status & SG_OVERLOAD);
9079 
9080 		/* Update over-utilization (tipping point, U >= 0) indicator */
9081 		WRITE_ONCE(rd->overutilized, sg_status & SG_OVERUTILIZED);
9082 		trace_sched_overutilized_tp(rd, sg_status & SG_OVERUTILIZED);
9083 	} else if (sg_status & SG_OVERUTILIZED) {
9084 		struct root_domain *rd = env->dst_rq->rd;
9085 
9086 		WRITE_ONCE(rd->overutilized, SG_OVERUTILIZED);
9087 		trace_sched_overutilized_tp(rd, SG_OVERUTILIZED);
9088 	}
9089 }
9090 
9091 #define NUMA_IMBALANCE_MIN 2
9092 
9093 static inline long adjust_numa_imbalance(int imbalance,
9094 				int dst_running, int dst_weight)
9095 {
9096 	if (!allow_numa_imbalance(dst_running, dst_weight))
9097 		return imbalance;
9098 
9099 	/*
9100 	 * Allow a small imbalance based on a simple pair of communicating
9101 	 * tasks that remain local when the destination is lightly loaded.
9102 	 */
9103 	if (imbalance <= NUMA_IMBALANCE_MIN)
9104 		return 0;
9105 
9106 	return imbalance;
9107 }
9108 
9109 /**
9110  * calculate_imbalance - Calculate the amount of imbalance present within the
9111  *			 groups of a given sched_domain during load balance.
9112  * @env: load balance environment
9113  * @sds: statistics of the sched_domain whose imbalance is to be calculated.
9114  */
9115 static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
9116 {
9117 	struct sg_lb_stats *local, *busiest;
9118 
9119 	local = &sds->local_stat;
9120 	busiest = &sds->busiest_stat;
9121 
9122 	if (busiest->group_type == group_misfit_task) {
9123 		/* Set imbalance to allow misfit tasks to be balanced. */
9124 		env->migration_type = migrate_misfit;
9125 		env->imbalance = 1;
9126 		return;
9127 	}
9128 
9129 	if (busiest->group_type == group_asym_packing) {
9130 		/*
9131 		 * In case of asym capacity, we will try to migrate all load to
9132 		 * the preferred CPU.
9133 		 */
9134 		env->migration_type = migrate_task;
9135 		env->imbalance = busiest->sum_h_nr_running;
9136 		return;
9137 	}
9138 
9139 	if (busiest->group_type == group_imbalanced) {
9140 		/*
9141 		 * In the group_imb case we cannot rely on group-wide averages
9142 		 * to ensure CPU-load equilibrium, try to move any task to fix
9143 		 * the imbalance. The next load balance will take care of
9144 		 * balancing back the system.
9145 		 */
9146 		env->migration_type = migrate_task;
9147 		env->imbalance = 1;
9148 		return;
9149 	}
9150 
9151 	/*
9152 	 * Try to use spare capacity of local group without overloading it or
9153 	 * emptying busiest.
9154 	 */
9155 	if (local->group_type == group_has_spare) {
9156 		if ((busiest->group_type > group_fully_busy) &&
9157 		    !(env->sd->flags & SD_SHARE_PKG_RESOURCES)) {
9158 			/*
9159 			 * If busiest is overloaded, try to fill spare
9160 			 * capacity. This might end up creating spare capacity
9161 			 * in busiest or busiest still being overloaded but
9162 			 * there is no simple way to directly compute the
9163 			 * amount of load to migrate in order to balance the
9164 			 * system.
9165 			 */
9166 			env->migration_type = migrate_util;
9167 			env->imbalance = max(local->group_capacity, local->group_util) -
9168 					 local->group_util;
9169 
9170 			/*
9171 			 * In some cases, the group's utilization is max or even
9172 			 * higher than capacity because of migrations but the
9173 			 * local CPU is (newly) idle. There is at least one
9174 			 * waiting task in this overloaded busiest group. Let's
9175 			 * try to pull it.
9176 			 */
9177 			if (env->idle != CPU_NOT_IDLE && env->imbalance == 0) {
9178 				env->migration_type = migrate_task;
9179 				env->imbalance = 1;
9180 			}
9181 
9182 			return;
9183 		}
9184 
9185 		if (busiest->group_weight == 1 || sds->prefer_sibling) {
9186 			unsigned int nr_diff = busiest->sum_nr_running;
9187 			/*
9188 			 * When prefer sibling, evenly spread running tasks on
9189 			 * groups.
9190 			 */
9191 			env->migration_type = migrate_task;
9192 			lsub_positive(&nr_diff, local->sum_nr_running);
9193 			env->imbalance = nr_diff >> 1;
9194 		} else {
9195 
9196 			/*
9197 			 * If there is no overload, we just want to even the number of
9198 			 * idle cpus.
9199 			 */
9200 			env->migration_type = migrate_task;
9201 			env->imbalance = max_t(long, 0, (local->idle_cpus -
9202 						 busiest->idle_cpus) >> 1);
9203 		}
9204 
9205 		/* Consider allowing a small imbalance between NUMA groups */
9206 		if (env->sd->flags & SD_NUMA) {
9207 			env->imbalance = adjust_numa_imbalance(env->imbalance,
9208 				busiest->sum_nr_running, busiest->group_weight);
9209 		}
9210 
9211 		return;
9212 	}
9213 
9214 	/*
9215 	 * Local is fully busy but has to take more load to relieve the
9216 	 * busiest group
9217 	 */
9218 	if (local->group_type < group_overloaded) {
9219 		/*
9220 		 * Local will become overloaded so the avg_load metrics are
9221 		 * finally needed.
9222 		 */
9223 
9224 		local->avg_load = (local->group_load * SCHED_CAPACITY_SCALE) /
9225 				  local->group_capacity;
9226 
9227 		sds->avg_load = (sds->total_load * SCHED_CAPACITY_SCALE) /
9228 				sds->total_capacity;
9229 		/*
9230 		 * If the local group is more loaded than the selected
9231 		 * busiest group don't try to pull any tasks.
9232 		 */
9233 		if (local->avg_load >= busiest->avg_load) {
9234 			env->imbalance = 0;
9235 			return;
9236 		}
9237 	}
9238 
9239 	/*
9240 	 * Both group are or will become overloaded and we're trying to get all
9241 	 * the CPUs to the average_load, so we don't want to push ourselves
9242 	 * above the average load, nor do we wish to reduce the max loaded CPU
9243 	 * below the average load. At the same time, we also don't want to
9244 	 * reduce the group load below the group capacity. Thus we look for
9245 	 * the minimum possible imbalance.
9246 	 */
9247 	env->migration_type = migrate_load;
9248 	env->imbalance = min(
9249 		(busiest->avg_load - sds->avg_load) * busiest->group_capacity,
9250 		(sds->avg_load - local->avg_load) * local->group_capacity
9251 	) / SCHED_CAPACITY_SCALE;
9252 }
9253 
9254 /******* find_busiest_group() helpers end here *********************/
9255 
9256 /*
9257  * Decision matrix according to the local and busiest group type:
9258  *
9259  * busiest \ local has_spare fully_busy misfit asym imbalanced overloaded
9260  * has_spare        nr_idle   balanced   N/A    N/A  balanced   balanced
9261  * fully_busy       nr_idle   nr_idle    N/A    N/A  balanced   balanced
9262  * misfit_task      force     N/A        N/A    N/A  force      force
9263  * asym_packing     force     force      N/A    N/A  force      force
9264  * imbalanced       force     force      N/A    N/A  force      force
9265  * overloaded       force     force      N/A    N/A  force      avg_load
9266  *
9267  * N/A :      Not Applicable because already filtered while updating
9268  *            statistics.
9269  * balanced : The system is balanced for these 2 groups.
9270  * force :    Calculate the imbalance as load migration is probably needed.
9271  * avg_load : Only if imbalance is significant enough.
9272  * nr_idle :  dst_cpu is not busy and the number of idle CPUs is quite
9273  *            different in groups.
9274  */
9275 
9276 /**
9277  * find_busiest_group - Returns the busiest group within the sched_domain
9278  * if there is an imbalance.
9279  *
9280  * Also calculates the amount of runnable load which should be moved
9281  * to restore balance.
9282  *
9283  * @env: The load balancing environment.
9284  *
9285  * Return:	- The busiest group if imbalance exists.
9286  */
9287 static struct sched_group *find_busiest_group(struct lb_env *env)
9288 {
9289 	struct sg_lb_stats *local, *busiest;
9290 	struct sd_lb_stats sds;
9291 
9292 	init_sd_lb_stats(&sds);
9293 
9294 	/*
9295 	 * Compute the various statistics relevant for load balancing at
9296 	 * this level.
9297 	 */
9298 	update_sd_lb_stats(env, &sds);
9299 
9300 	if (sched_energy_enabled()) {
9301 		struct root_domain *rd = env->dst_rq->rd;
9302 
9303 		if (rcu_dereference(rd->pd) && !READ_ONCE(rd->overutilized))
9304 			goto out_balanced;
9305 	}
9306 
9307 	local = &sds.local_stat;
9308 	busiest = &sds.busiest_stat;
9309 
9310 	/* There is no busy sibling group to pull tasks from */
9311 	if (!sds.busiest)
9312 		goto out_balanced;
9313 
9314 	/* Misfit tasks should be dealt with regardless of the avg load */
9315 	if (busiest->group_type == group_misfit_task)
9316 		goto force_balance;
9317 
9318 	/* ASYM feature bypasses nice load balance check */
9319 	if (busiest->group_type == group_asym_packing)
9320 		goto force_balance;
9321 
9322 	/*
9323 	 * If the busiest group is imbalanced the below checks don't
9324 	 * work because they assume all things are equal, which typically
9325 	 * isn't true due to cpus_ptr constraints and the like.
9326 	 */
9327 	if (busiest->group_type == group_imbalanced)
9328 		goto force_balance;
9329 
9330 	/*
9331 	 * If the local group is busier than the selected busiest group
9332 	 * don't try and pull any tasks.
9333 	 */
9334 	if (local->group_type > busiest->group_type)
9335 		goto out_balanced;
9336 
9337 	/*
9338 	 * When groups are overloaded, use the avg_load to ensure fairness
9339 	 * between tasks.
9340 	 */
9341 	if (local->group_type == group_overloaded) {
9342 		/*
9343 		 * If the local group is more loaded than the selected
9344 		 * busiest group don't try to pull any tasks.
9345 		 */
9346 		if (local->avg_load >= busiest->avg_load)
9347 			goto out_balanced;
9348 
9349 		/* XXX broken for overlapping NUMA groups */
9350 		sds.avg_load = (sds.total_load * SCHED_CAPACITY_SCALE) /
9351 				sds.total_capacity;
9352 
9353 		/*
9354 		 * Don't pull any tasks if this group is already above the
9355 		 * domain average load.
9356 		 */
9357 		if (local->avg_load >= sds.avg_load)
9358 			goto out_balanced;
9359 
9360 		/*
9361 		 * If the busiest group is more loaded, use imbalance_pct to be
9362 		 * conservative.
9363 		 */
9364 		if (100 * busiest->avg_load <=
9365 				env->sd->imbalance_pct * local->avg_load)
9366 			goto out_balanced;
9367 	}
9368 
9369 	/* Try to move all excess tasks to child's sibling domain */
9370 	if (sds.prefer_sibling && local->group_type == group_has_spare &&
9371 	    busiest->sum_nr_running > local->sum_nr_running + 1)
9372 		goto force_balance;
9373 
9374 	if (busiest->group_type != group_overloaded) {
9375 		if (env->idle == CPU_NOT_IDLE)
9376 			/*
9377 			 * If the busiest group is not overloaded (and as a
9378 			 * result the local one too) but this CPU is already
9379 			 * busy, let another idle CPU try to pull task.
9380 			 */
9381 			goto out_balanced;
9382 
9383 		if (busiest->group_weight > 1 &&
9384 		    local->idle_cpus <= (busiest->idle_cpus + 1))
9385 			/*
9386 			 * If the busiest group is not overloaded
9387 			 * and there is no imbalance between this and busiest
9388 			 * group wrt idle CPUs, it is balanced. The imbalance
9389 			 * becomes significant if the diff is greater than 1
9390 			 * otherwise we might end up to just move the imbalance
9391 			 * on another group. Of course this applies only if
9392 			 * there is more than 1 CPU per group.
9393 			 */
9394 			goto out_balanced;
9395 
9396 		if (busiest->sum_h_nr_running == 1)
9397 			/*
9398 			 * busiest doesn't have any tasks waiting to run
9399 			 */
9400 			goto out_balanced;
9401 	}
9402 
9403 force_balance:
9404 	/* Looks like there is an imbalance. Compute it */
9405 	calculate_imbalance(env, &sds);
9406 	return env->imbalance ? sds.busiest : NULL;
9407 
9408 out_balanced:
9409 	env->imbalance = 0;
9410 	return NULL;
9411 }
9412 
9413 /*
9414  * find_busiest_queue - find the busiest runqueue among the CPUs in the group.
9415  */
9416 static struct rq *find_busiest_queue(struct lb_env *env,
9417 				     struct sched_group *group)
9418 {
9419 	struct rq *busiest = NULL, *rq;
9420 	unsigned long busiest_util = 0, busiest_load = 0, busiest_capacity = 1;
9421 	unsigned int busiest_nr = 0;
9422 	int i;
9423 
9424 	for_each_cpu_and(i, sched_group_span(group), env->cpus) {
9425 		unsigned long capacity, load, util;
9426 		unsigned int nr_running;
9427 		enum fbq_type rt;
9428 
9429 		rq = cpu_rq(i);
9430 		rt = fbq_classify_rq(rq);
9431 
9432 		/*
9433 		 * We classify groups/runqueues into three groups:
9434 		 *  - regular: there are !numa tasks
9435 		 *  - remote:  there are numa tasks that run on the 'wrong' node
9436 		 *  - all:     there is no distinction
9437 		 *
9438 		 * In order to avoid migrating ideally placed numa tasks,
9439 		 * ignore those when there's better options.
9440 		 *
9441 		 * If we ignore the actual busiest queue to migrate another
9442 		 * task, the next balance pass can still reduce the busiest
9443 		 * queue by moving tasks around inside the node.
9444 		 *
9445 		 * If we cannot move enough load due to this classification
9446 		 * the next pass will adjust the group classification and
9447 		 * allow migration of more tasks.
9448 		 *
9449 		 * Both cases only affect the total convergence complexity.
9450 		 */
9451 		if (rt > env->fbq_type)
9452 			continue;
9453 
9454 		nr_running = rq->cfs.h_nr_running;
9455 		if (!nr_running)
9456 			continue;
9457 
9458 		capacity = capacity_of(i);
9459 
9460 		/*
9461 		 * For ASYM_CPUCAPACITY domains, don't pick a CPU that could
9462 		 * eventually lead to active_balancing high->low capacity.
9463 		 * Higher per-CPU capacity is considered better than balancing
9464 		 * average load.
9465 		 */
9466 		if (env->sd->flags & SD_ASYM_CPUCAPACITY &&
9467 		    !capacity_greater(capacity_of(env->dst_cpu), capacity) &&
9468 		    nr_running == 1)
9469 			continue;
9470 
9471 		switch (env->migration_type) {
9472 		case migrate_load:
9473 			/*
9474 			 * When comparing with load imbalance, use cpu_load()
9475 			 * which is not scaled with the CPU capacity.
9476 			 */
9477 			load = cpu_load(rq);
9478 
9479 			if (nr_running == 1 && load > env->imbalance &&
9480 			    !check_cpu_capacity(rq, env->sd))
9481 				break;
9482 
9483 			/*
9484 			 * For the load comparisons with the other CPUs,
9485 			 * consider the cpu_load() scaled with the CPU
9486 			 * capacity, so that the load can be moved away
9487 			 * from the CPU that is potentially running at a
9488 			 * lower capacity.
9489 			 *
9490 			 * Thus we're looking for max(load_i / capacity_i),
9491 			 * crosswise multiplication to rid ourselves of the
9492 			 * division works out to:
9493 			 * load_i * capacity_j > load_j * capacity_i;
9494 			 * where j is our previous maximum.
9495 			 */
9496 			if (load * busiest_capacity > busiest_load * capacity) {
9497 				busiest_load = load;
9498 				busiest_capacity = capacity;
9499 				busiest = rq;
9500 			}
9501 			break;
9502 
9503 		case migrate_util:
9504 			util = cpu_util(cpu_of(rq));
9505 
9506 			/*
9507 			 * Don't try to pull utilization from a CPU with one
9508 			 * running task. Whatever its utilization, we will fail
9509 			 * detach the task.
9510 			 */
9511 			if (nr_running <= 1)
9512 				continue;
9513 
9514 			if (busiest_util < util) {
9515 				busiest_util = util;
9516 				busiest = rq;
9517 			}
9518 			break;
9519 
9520 		case migrate_task:
9521 			if (busiest_nr < nr_running) {
9522 				busiest_nr = nr_running;
9523 				busiest = rq;
9524 			}
9525 			break;
9526 
9527 		case migrate_misfit:
9528 			/*
9529 			 * For ASYM_CPUCAPACITY domains with misfit tasks we
9530 			 * simply seek the "biggest" misfit task.
9531 			 */
9532 			if (rq->misfit_task_load > busiest_load) {
9533 				busiest_load = rq->misfit_task_load;
9534 				busiest = rq;
9535 			}
9536 
9537 			break;
9538 
9539 		}
9540 	}
9541 
9542 	return busiest;
9543 }
9544 
9545 /*
9546  * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
9547  * so long as it is large enough.
9548  */
9549 #define MAX_PINNED_INTERVAL	512
9550 
9551 static inline bool
9552 asym_active_balance(struct lb_env *env)
9553 {
9554 	/*
9555 	 * ASYM_PACKING needs to force migrate tasks from busy but
9556 	 * lower priority CPUs in order to pack all tasks in the
9557 	 * highest priority CPUs.
9558 	 */
9559 	return env->idle != CPU_NOT_IDLE && (env->sd->flags & SD_ASYM_PACKING) &&
9560 	       sched_asym_prefer(env->dst_cpu, env->src_cpu);
9561 }
9562 
9563 static inline bool
9564 imbalanced_active_balance(struct lb_env *env)
9565 {
9566 	struct sched_domain *sd = env->sd;
9567 
9568 	/*
9569 	 * The imbalanced case includes the case of pinned tasks preventing a fair
9570 	 * distribution of the load on the system but also the even distribution of the
9571 	 * threads on a system with spare capacity
9572 	 */
9573 	if ((env->migration_type == migrate_task) &&
9574 	    (sd->nr_balance_failed > sd->cache_nice_tries+2))
9575 		return 1;
9576 
9577 	return 0;
9578 }
9579 
9580 static int need_active_balance(struct lb_env *env)
9581 {
9582 	struct sched_domain *sd = env->sd;
9583 
9584 	if (asym_active_balance(env))
9585 		return 1;
9586 
9587 	if (imbalanced_active_balance(env))
9588 		return 1;
9589 
9590 	/*
9591 	 * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task.
9592 	 * It's worth migrating the task if the src_cpu's capacity is reduced
9593 	 * because of other sched_class or IRQs if more capacity stays
9594 	 * available on dst_cpu.
9595 	 */
9596 	if ((env->idle != CPU_NOT_IDLE) &&
9597 	    (env->src_rq->cfs.h_nr_running == 1)) {
9598 		if ((check_cpu_capacity(env->src_rq, sd)) &&
9599 		    (capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100))
9600 			return 1;
9601 	}
9602 
9603 	if (env->migration_type == migrate_misfit)
9604 		return 1;
9605 
9606 	return 0;
9607 }
9608 
9609 static int active_load_balance_cpu_stop(void *data);
9610 
9611 static int should_we_balance(struct lb_env *env)
9612 {
9613 	struct sched_group *sg = env->sd->groups;
9614 	int cpu;
9615 
9616 	/*
9617 	 * Ensure the balancing environment is consistent; can happen
9618 	 * when the softirq triggers 'during' hotplug.
9619 	 */
9620 	if (!cpumask_test_cpu(env->dst_cpu, env->cpus))
9621 		return 0;
9622 
9623 	/*
9624 	 * In the newly idle case, we will allow all the CPUs
9625 	 * to do the newly idle load balance.
9626 	 */
9627 	if (env->idle == CPU_NEWLY_IDLE)
9628 		return 1;
9629 
9630 	/* Try to find first idle CPU */
9631 	for_each_cpu_and(cpu, group_balance_mask(sg), env->cpus) {
9632 		if (!idle_cpu(cpu))
9633 			continue;
9634 
9635 		/* Are we the first idle CPU? */
9636 		return cpu == env->dst_cpu;
9637 	}
9638 
9639 	/* Are we the first CPU of this group ? */
9640 	return group_balance_cpu(sg) == env->dst_cpu;
9641 }
9642 
9643 /*
9644  * Check this_cpu to ensure it is balanced within domain. Attempt to move
9645  * tasks if there is an imbalance.
9646  */
9647 static int load_balance(int this_cpu, struct rq *this_rq,
9648 			struct sched_domain *sd, enum cpu_idle_type idle,
9649 			int *continue_balancing)
9650 {
9651 	int ld_moved, cur_ld_moved, active_balance = 0;
9652 	struct sched_domain *sd_parent = sd->parent;
9653 	struct sched_group *group;
9654 	struct rq *busiest;
9655 	struct rq_flags rf;
9656 	struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask);
9657 
9658 	struct lb_env env = {
9659 		.sd		= sd,
9660 		.dst_cpu	= this_cpu,
9661 		.dst_rq		= this_rq,
9662 		.dst_grpmask    = sched_group_span(sd->groups),
9663 		.idle		= idle,
9664 		.loop_break	= sched_nr_migrate_break,
9665 		.cpus		= cpus,
9666 		.fbq_type	= all,
9667 		.tasks		= LIST_HEAD_INIT(env.tasks),
9668 	};
9669 
9670 	cpumask_and(cpus, sched_domain_span(sd), cpu_active_mask);
9671 
9672 	schedstat_inc(sd->lb_count[idle]);
9673 
9674 redo:
9675 	if (!should_we_balance(&env)) {
9676 		*continue_balancing = 0;
9677 		goto out_balanced;
9678 	}
9679 
9680 	group = find_busiest_group(&env);
9681 	if (!group) {
9682 		schedstat_inc(sd->lb_nobusyg[idle]);
9683 		goto out_balanced;
9684 	}
9685 
9686 	busiest = find_busiest_queue(&env, group);
9687 	if (!busiest) {
9688 		schedstat_inc(sd->lb_nobusyq[idle]);
9689 		goto out_balanced;
9690 	}
9691 
9692 	BUG_ON(busiest == env.dst_rq);
9693 
9694 	schedstat_add(sd->lb_imbalance[idle], env.imbalance);
9695 
9696 	env.src_cpu = busiest->cpu;
9697 	env.src_rq = busiest;
9698 
9699 	ld_moved = 0;
9700 	/* Clear this flag as soon as we find a pullable task */
9701 	env.flags |= LBF_ALL_PINNED;
9702 	if (busiest->nr_running > 1) {
9703 		/*
9704 		 * Attempt to move tasks. If find_busiest_group has found
9705 		 * an imbalance but busiest->nr_running <= 1, the group is
9706 		 * still unbalanced. ld_moved simply stays zero, so it is
9707 		 * correctly treated as an imbalance.
9708 		 */
9709 		env.loop_max  = min(sysctl_sched_nr_migrate, busiest->nr_running);
9710 
9711 more_balance:
9712 		rq_lock_irqsave(busiest, &rf);
9713 		update_rq_clock(busiest);
9714 
9715 		/*
9716 		 * cur_ld_moved - load moved in current iteration
9717 		 * ld_moved     - cumulative load moved across iterations
9718 		 */
9719 		cur_ld_moved = detach_tasks(&env);
9720 
9721 		/*
9722 		 * We've detached some tasks from busiest_rq. Every
9723 		 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely
9724 		 * unlock busiest->lock, and we are able to be sure
9725 		 * that nobody can manipulate the tasks in parallel.
9726 		 * See task_rq_lock() family for the details.
9727 		 */
9728 
9729 		rq_unlock(busiest, &rf);
9730 
9731 		if (cur_ld_moved) {
9732 			attach_tasks(&env);
9733 			ld_moved += cur_ld_moved;
9734 		}
9735 
9736 		local_irq_restore(rf.flags);
9737 
9738 		if (env.flags & LBF_NEED_BREAK) {
9739 			env.flags &= ~LBF_NEED_BREAK;
9740 			goto more_balance;
9741 		}
9742 
9743 		/*
9744 		 * Revisit (affine) tasks on src_cpu that couldn't be moved to
9745 		 * us and move them to an alternate dst_cpu in our sched_group
9746 		 * where they can run. The upper limit on how many times we
9747 		 * iterate on same src_cpu is dependent on number of CPUs in our
9748 		 * sched_group.
9749 		 *
9750 		 * This changes load balance semantics a bit on who can move
9751 		 * load to a given_cpu. In addition to the given_cpu itself
9752 		 * (or a ilb_cpu acting on its behalf where given_cpu is
9753 		 * nohz-idle), we now have balance_cpu in a position to move
9754 		 * load to given_cpu. In rare situations, this may cause
9755 		 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
9756 		 * _independently_ and at _same_ time to move some load to
9757 		 * given_cpu) causing excess load to be moved to given_cpu.
9758 		 * This however should not happen so much in practice and
9759 		 * moreover subsequent load balance cycles should correct the
9760 		 * excess load moved.
9761 		 */
9762 		if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
9763 
9764 			/* Prevent to re-select dst_cpu via env's CPUs */
9765 			__cpumask_clear_cpu(env.dst_cpu, env.cpus);
9766 
9767 			env.dst_rq	 = cpu_rq(env.new_dst_cpu);
9768 			env.dst_cpu	 = env.new_dst_cpu;
9769 			env.flags	&= ~LBF_DST_PINNED;
9770 			env.loop	 = 0;
9771 			env.loop_break	 = sched_nr_migrate_break;
9772 
9773 			/*
9774 			 * Go back to "more_balance" rather than "redo" since we
9775 			 * need to continue with same src_cpu.
9776 			 */
9777 			goto more_balance;
9778 		}
9779 
9780 		/*
9781 		 * We failed to reach balance because of affinity.
9782 		 */
9783 		if (sd_parent) {
9784 			int *group_imbalance = &sd_parent->groups->sgc->imbalance;
9785 
9786 			if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0)
9787 				*group_imbalance = 1;
9788 		}
9789 
9790 		/* All tasks on this runqueue were pinned by CPU affinity */
9791 		if (unlikely(env.flags & LBF_ALL_PINNED)) {
9792 			__cpumask_clear_cpu(cpu_of(busiest), cpus);
9793 			/*
9794 			 * Attempting to continue load balancing at the current
9795 			 * sched_domain level only makes sense if there are
9796 			 * active CPUs remaining as possible busiest CPUs to
9797 			 * pull load from which are not contained within the
9798 			 * destination group that is receiving any migrated
9799 			 * load.
9800 			 */
9801 			if (!cpumask_subset(cpus, env.dst_grpmask)) {
9802 				env.loop = 0;
9803 				env.loop_break = sched_nr_migrate_break;
9804 				goto redo;
9805 			}
9806 			goto out_all_pinned;
9807 		}
9808 	}
9809 
9810 	if (!ld_moved) {
9811 		schedstat_inc(sd->lb_failed[idle]);
9812 		/*
9813 		 * Increment the failure counter only on periodic balance.
9814 		 * We do not want newidle balance, which can be very
9815 		 * frequent, pollute the failure counter causing
9816 		 * excessive cache_hot migrations and active balances.
9817 		 */
9818 		if (idle != CPU_NEWLY_IDLE)
9819 			sd->nr_balance_failed++;
9820 
9821 		if (need_active_balance(&env)) {
9822 			unsigned long flags;
9823 
9824 			raw_spin_lock_irqsave(&busiest->lock, flags);
9825 
9826 			/*
9827 			 * Don't kick the active_load_balance_cpu_stop,
9828 			 * if the curr task on busiest CPU can't be
9829 			 * moved to this_cpu:
9830 			 */
9831 			if (!cpumask_test_cpu(this_cpu, busiest->curr->cpus_ptr)) {
9832 				raw_spin_unlock_irqrestore(&busiest->lock,
9833 							    flags);
9834 				goto out_one_pinned;
9835 			}
9836 
9837 			/* Record that we found at least one task that could run on this_cpu */
9838 			env.flags &= ~LBF_ALL_PINNED;
9839 
9840 			/*
9841 			 * ->active_balance synchronizes accesses to
9842 			 * ->active_balance_work.  Once set, it's cleared
9843 			 * only after active load balance is finished.
9844 			 */
9845 			if (!busiest->active_balance) {
9846 				busiest->active_balance = 1;
9847 				busiest->push_cpu = this_cpu;
9848 				active_balance = 1;
9849 			}
9850 			raw_spin_unlock_irqrestore(&busiest->lock, flags);
9851 
9852 			if (active_balance) {
9853 				stop_one_cpu_nowait(cpu_of(busiest),
9854 					active_load_balance_cpu_stop, busiest,
9855 					&busiest->active_balance_work);
9856 			}
9857 		}
9858 	} else {
9859 		sd->nr_balance_failed = 0;
9860 	}
9861 
9862 	if (likely(!active_balance) || need_active_balance(&env)) {
9863 		/* We were unbalanced, so reset the balancing interval */
9864 		sd->balance_interval = sd->min_interval;
9865 	}
9866 
9867 	goto out;
9868 
9869 out_balanced:
9870 	/*
9871 	 * We reach balance although we may have faced some affinity
9872 	 * constraints. Clear the imbalance flag only if other tasks got
9873 	 * a chance to move and fix the imbalance.
9874 	 */
9875 	if (sd_parent && !(env.flags & LBF_ALL_PINNED)) {
9876 		int *group_imbalance = &sd_parent->groups->sgc->imbalance;
9877 
9878 		if (*group_imbalance)
9879 			*group_imbalance = 0;
9880 	}
9881 
9882 out_all_pinned:
9883 	/*
9884 	 * We reach balance because all tasks are pinned at this level so
9885 	 * we can't migrate them. Let the imbalance flag set so parent level
9886 	 * can try to migrate them.
9887 	 */
9888 	schedstat_inc(sd->lb_balanced[idle]);
9889 
9890 	sd->nr_balance_failed = 0;
9891 
9892 out_one_pinned:
9893 	ld_moved = 0;
9894 
9895 	/*
9896 	 * newidle_balance() disregards balance intervals, so we could
9897 	 * repeatedly reach this code, which would lead to balance_interval
9898 	 * skyrocketing in a short amount of time. Skip the balance_interval
9899 	 * increase logic to avoid that.
9900 	 */
9901 	if (env.idle == CPU_NEWLY_IDLE)
9902 		goto out;
9903 
9904 	/* tune up the balancing interval */
9905 	if ((env.flags & LBF_ALL_PINNED &&
9906 	     sd->balance_interval < MAX_PINNED_INTERVAL) ||
9907 	    sd->balance_interval < sd->max_interval)
9908 		sd->balance_interval *= 2;
9909 out:
9910 	return ld_moved;
9911 }
9912 
9913 static inline unsigned long
9914 get_sd_balance_interval(struct sched_domain *sd, int cpu_busy)
9915 {
9916 	unsigned long interval = sd->balance_interval;
9917 
9918 	if (cpu_busy)
9919 		interval *= sd->busy_factor;
9920 
9921 	/* scale ms to jiffies */
9922 	interval = msecs_to_jiffies(interval);
9923 
9924 	/*
9925 	 * Reduce likelihood of busy balancing at higher domains racing with
9926 	 * balancing at lower domains by preventing their balancing periods
9927 	 * from being multiples of each other.
9928 	 */
9929 	if (cpu_busy)
9930 		interval -= 1;
9931 
9932 	interval = clamp(interval, 1UL, max_load_balance_interval);
9933 
9934 	return interval;
9935 }
9936 
9937 static inline void
9938 update_next_balance(struct sched_domain *sd, unsigned long *next_balance)
9939 {
9940 	unsigned long interval, next;
9941 
9942 	/* used by idle balance, so cpu_busy = 0 */
9943 	interval = get_sd_balance_interval(sd, 0);
9944 	next = sd->last_balance + interval;
9945 
9946 	if (time_after(*next_balance, next))
9947 		*next_balance = next;
9948 }
9949 
9950 /*
9951  * active_load_balance_cpu_stop is run by the CPU stopper. It pushes
9952  * running tasks off the busiest CPU onto idle CPUs. It requires at
9953  * least 1 task to be running on each physical CPU where possible, and
9954  * avoids physical / logical imbalances.
9955  */
9956 static int active_load_balance_cpu_stop(void *data)
9957 {
9958 	struct rq *busiest_rq = data;
9959 	int busiest_cpu = cpu_of(busiest_rq);
9960 	int target_cpu = busiest_rq->push_cpu;
9961 	struct rq *target_rq = cpu_rq(target_cpu);
9962 	struct sched_domain *sd;
9963 	struct task_struct *p = NULL;
9964 	struct rq_flags rf;
9965 
9966 	rq_lock_irq(busiest_rq, &rf);
9967 	/*
9968 	 * Between queueing the stop-work and running it is a hole in which
9969 	 * CPUs can become inactive. We should not move tasks from or to
9970 	 * inactive CPUs.
9971 	 */
9972 	if (!cpu_active(busiest_cpu) || !cpu_active(target_cpu))
9973 		goto out_unlock;
9974 
9975 	/* Make sure the requested CPU hasn't gone down in the meantime: */
9976 	if (unlikely(busiest_cpu != smp_processor_id() ||
9977 		     !busiest_rq->active_balance))
9978 		goto out_unlock;
9979 
9980 	/* Is there any task to move? */
9981 	if (busiest_rq->nr_running <= 1)
9982 		goto out_unlock;
9983 
9984 	/*
9985 	 * This condition is "impossible", if it occurs
9986 	 * we need to fix it. Originally reported by
9987 	 * Bjorn Helgaas on a 128-CPU setup.
9988 	 */
9989 	BUG_ON(busiest_rq == target_rq);
9990 
9991 	/* Search for an sd spanning us and the target CPU. */
9992 	rcu_read_lock();
9993 	for_each_domain(target_cpu, sd) {
9994 		if (cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
9995 			break;
9996 	}
9997 
9998 	if (likely(sd)) {
9999 		struct lb_env env = {
10000 			.sd		= sd,
10001 			.dst_cpu	= target_cpu,
10002 			.dst_rq		= target_rq,
10003 			.src_cpu	= busiest_rq->cpu,
10004 			.src_rq		= busiest_rq,
10005 			.idle		= CPU_IDLE,
10006 			.flags		= LBF_ACTIVE_LB,
10007 		};
10008 
10009 		schedstat_inc(sd->alb_count);
10010 		update_rq_clock(busiest_rq);
10011 
10012 		p = detach_one_task(&env);
10013 		if (p) {
10014 			schedstat_inc(sd->alb_pushed);
10015 			/* Active balancing done, reset the failure counter. */
10016 			sd->nr_balance_failed = 0;
10017 		} else {
10018 			schedstat_inc(sd->alb_failed);
10019 		}
10020 	}
10021 	rcu_read_unlock();
10022 out_unlock:
10023 	busiest_rq->active_balance = 0;
10024 	rq_unlock(busiest_rq, &rf);
10025 
10026 	if (p)
10027 		attach_one_task(target_rq, p);
10028 
10029 	local_irq_enable();
10030 
10031 	return 0;
10032 }
10033 
10034 static DEFINE_SPINLOCK(balancing);
10035 
10036 /*
10037  * Scale the max load_balance interval with the number of CPUs in the system.
10038  * This trades load-balance latency on larger machines for less cross talk.
10039  */
10040 void update_max_interval(void)
10041 {
10042 	max_load_balance_interval = HZ*num_online_cpus()/10;
10043 }
10044 
10045 /*
10046  * It checks each scheduling domain to see if it is due to be balanced,
10047  * and initiates a balancing operation if so.
10048  *
10049  * Balancing parameters are set up in init_sched_domains.
10050  */
10051 static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle)
10052 {
10053 	int continue_balancing = 1;
10054 	int cpu = rq->cpu;
10055 	int busy = idle != CPU_IDLE && !sched_idle_cpu(cpu);
10056 	unsigned long interval;
10057 	struct sched_domain *sd;
10058 	/* Earliest time when we have to do rebalance again */
10059 	unsigned long next_balance = jiffies + 60*HZ;
10060 	int update_next_balance = 0;
10061 	int need_serialize, need_decay = 0;
10062 	u64 max_cost = 0;
10063 
10064 	rcu_read_lock();
10065 	for_each_domain(cpu, sd) {
10066 		/*
10067 		 * Decay the newidle max times here because this is a regular
10068 		 * visit to all the domains. Decay ~1% per second.
10069 		 */
10070 		if (time_after(jiffies, sd->next_decay_max_lb_cost)) {
10071 			sd->max_newidle_lb_cost =
10072 				(sd->max_newidle_lb_cost * 253) / 256;
10073 			sd->next_decay_max_lb_cost = jiffies + HZ;
10074 			need_decay = 1;
10075 		}
10076 		max_cost += sd->max_newidle_lb_cost;
10077 
10078 		/*
10079 		 * Stop the load balance at this level. There is another
10080 		 * CPU in our sched group which is doing load balancing more
10081 		 * actively.
10082 		 */
10083 		if (!continue_balancing) {
10084 			if (need_decay)
10085 				continue;
10086 			break;
10087 		}
10088 
10089 		interval = get_sd_balance_interval(sd, busy);
10090 
10091 		need_serialize = sd->flags & SD_SERIALIZE;
10092 		if (need_serialize) {
10093 			if (!spin_trylock(&balancing))
10094 				goto out;
10095 		}
10096 
10097 		if (time_after_eq(jiffies, sd->last_balance + interval)) {
10098 			if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
10099 				/*
10100 				 * The LBF_DST_PINNED logic could have changed
10101 				 * env->dst_cpu, so we can't know our idle
10102 				 * state even if we migrated tasks. Update it.
10103 				 */
10104 				idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
10105 				busy = idle != CPU_IDLE && !sched_idle_cpu(cpu);
10106 			}
10107 			sd->last_balance = jiffies;
10108 			interval = get_sd_balance_interval(sd, busy);
10109 		}
10110 		if (need_serialize)
10111 			spin_unlock(&balancing);
10112 out:
10113 		if (time_after(next_balance, sd->last_balance + interval)) {
10114 			next_balance = sd->last_balance + interval;
10115 			update_next_balance = 1;
10116 		}
10117 	}
10118 	if (need_decay) {
10119 		/*
10120 		 * Ensure the rq-wide value also decays but keep it at a
10121 		 * reasonable floor to avoid funnies with rq->avg_idle.
10122 		 */
10123 		rq->max_idle_balance_cost =
10124 			max((u64)sysctl_sched_migration_cost, max_cost);
10125 	}
10126 	rcu_read_unlock();
10127 
10128 	/*
10129 	 * next_balance will be updated only when there is a need.
10130 	 * When the cpu is attached to null domain for ex, it will not be
10131 	 * updated.
10132 	 */
10133 	if (likely(update_next_balance))
10134 		rq->next_balance = next_balance;
10135 
10136 }
10137 
10138 static inline int on_null_domain(struct rq *rq)
10139 {
10140 	return unlikely(!rcu_dereference_sched(rq->sd));
10141 }
10142 
10143 #ifdef CONFIG_NO_HZ_COMMON
10144 /*
10145  * idle load balancing details
10146  * - When one of the busy CPUs notice that there may be an idle rebalancing
10147  *   needed, they will kick the idle load balancer, which then does idle
10148  *   load balancing for all the idle CPUs.
10149  * - HK_FLAG_MISC CPUs are used for this task, because HK_FLAG_SCHED not set
10150  *   anywhere yet.
10151  */
10152 
10153 static inline int find_new_ilb(void)
10154 {
10155 	int ilb;
10156 
10157 	for_each_cpu_and(ilb, nohz.idle_cpus_mask,
10158 			      housekeeping_cpumask(HK_FLAG_MISC)) {
10159 
10160 		if (ilb == smp_processor_id())
10161 			continue;
10162 
10163 		if (idle_cpu(ilb))
10164 			return ilb;
10165 	}
10166 
10167 	return nr_cpu_ids;
10168 }
10169 
10170 /*
10171  * Kick a CPU to do the nohz balancing, if it is time for it. We pick any
10172  * idle CPU in the HK_FLAG_MISC housekeeping set (if there is one).
10173  */
10174 static void kick_ilb(unsigned int flags)
10175 {
10176 	int ilb_cpu;
10177 
10178 	/*
10179 	 * Increase nohz.next_balance only when if full ilb is triggered but
10180 	 * not if we only update stats.
10181 	 */
10182 	if (flags & NOHZ_BALANCE_KICK)
10183 		nohz.next_balance = jiffies+1;
10184 
10185 	ilb_cpu = find_new_ilb();
10186 
10187 	if (ilb_cpu >= nr_cpu_ids)
10188 		return;
10189 
10190 	/*
10191 	 * Access to rq::nohz_csd is serialized by NOHZ_KICK_MASK; he who sets
10192 	 * the first flag owns it; cleared by nohz_csd_func().
10193 	 */
10194 	flags = atomic_fetch_or(flags, nohz_flags(ilb_cpu));
10195 	if (flags & NOHZ_KICK_MASK)
10196 		return;
10197 
10198 	/*
10199 	 * This way we generate an IPI on the target CPU which
10200 	 * is idle. And the softirq performing nohz idle load balance
10201 	 * will be run before returning from the IPI.
10202 	 */
10203 	smp_call_function_single_async(ilb_cpu, &cpu_rq(ilb_cpu)->nohz_csd);
10204 }
10205 
10206 /*
10207  * Current decision point for kicking the idle load balancer in the presence
10208  * of idle CPUs in the system.
10209  */
10210 static void nohz_balancer_kick(struct rq *rq)
10211 {
10212 	unsigned long now = jiffies;
10213 	struct sched_domain_shared *sds;
10214 	struct sched_domain *sd;
10215 	int nr_busy, i, cpu = rq->cpu;
10216 	unsigned int flags = 0;
10217 
10218 	if (unlikely(rq->idle_balance))
10219 		return;
10220 
10221 	/*
10222 	 * We may be recently in ticked or tickless idle mode. At the first
10223 	 * busy tick after returning from idle, we will update the busy stats.
10224 	 */
10225 	nohz_balance_exit_idle(rq);
10226 
10227 	/*
10228 	 * None are in tickless mode and hence no need for NOHZ idle load
10229 	 * balancing.
10230 	 */
10231 	if (likely(!atomic_read(&nohz.nr_cpus)))
10232 		return;
10233 
10234 	if (READ_ONCE(nohz.has_blocked) &&
10235 	    time_after(now, READ_ONCE(nohz.next_blocked)))
10236 		flags = NOHZ_STATS_KICK;
10237 
10238 	if (time_before(now, nohz.next_balance))
10239 		goto out;
10240 
10241 	if (rq->nr_running >= 2) {
10242 		flags = NOHZ_KICK_MASK;
10243 		goto out;
10244 	}
10245 
10246 	rcu_read_lock();
10247 
10248 	sd = rcu_dereference(rq->sd);
10249 	if (sd) {
10250 		/*
10251 		 * If there's a CFS task and the current CPU has reduced
10252 		 * capacity; kick the ILB to see if there's a better CPU to run
10253 		 * on.
10254 		 */
10255 		if (rq->cfs.h_nr_running >= 1 && check_cpu_capacity(rq, sd)) {
10256 			flags = NOHZ_KICK_MASK;
10257 			goto unlock;
10258 		}
10259 	}
10260 
10261 	sd = rcu_dereference(per_cpu(sd_asym_packing, cpu));
10262 	if (sd) {
10263 		/*
10264 		 * When ASYM_PACKING; see if there's a more preferred CPU
10265 		 * currently idle; in which case, kick the ILB to move tasks
10266 		 * around.
10267 		 */
10268 		for_each_cpu_and(i, sched_domain_span(sd), nohz.idle_cpus_mask) {
10269 			if (sched_asym_prefer(i, cpu)) {
10270 				flags = NOHZ_KICK_MASK;
10271 				goto unlock;
10272 			}
10273 		}
10274 	}
10275 
10276 	sd = rcu_dereference(per_cpu(sd_asym_cpucapacity, cpu));
10277 	if (sd) {
10278 		/*
10279 		 * When ASYM_CPUCAPACITY; see if there's a higher capacity CPU
10280 		 * to run the misfit task on.
10281 		 */
10282 		if (check_misfit_status(rq, sd)) {
10283 			flags = NOHZ_KICK_MASK;
10284 			goto unlock;
10285 		}
10286 
10287 		/*
10288 		 * For asymmetric systems, we do not want to nicely balance
10289 		 * cache use, instead we want to embrace asymmetry and only
10290 		 * ensure tasks have enough CPU capacity.
10291 		 *
10292 		 * Skip the LLC logic because it's not relevant in that case.
10293 		 */
10294 		goto unlock;
10295 	}
10296 
10297 	sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
10298 	if (sds) {
10299 		/*
10300 		 * If there is an imbalance between LLC domains (IOW we could
10301 		 * increase the overall cache use), we need some less-loaded LLC
10302 		 * domain to pull some load. Likewise, we may need to spread
10303 		 * load within the current LLC domain (e.g. packed SMT cores but
10304 		 * other CPUs are idle). We can't really know from here how busy
10305 		 * the others are - so just get a nohz balance going if it looks
10306 		 * like this LLC domain has tasks we could move.
10307 		 */
10308 		nr_busy = atomic_read(&sds->nr_busy_cpus);
10309 		if (nr_busy > 1) {
10310 			flags = NOHZ_KICK_MASK;
10311 			goto unlock;
10312 		}
10313 	}
10314 unlock:
10315 	rcu_read_unlock();
10316 out:
10317 	if (flags)
10318 		kick_ilb(flags);
10319 }
10320 
10321 static void set_cpu_sd_state_busy(int cpu)
10322 {
10323 	struct sched_domain *sd;
10324 
10325 	rcu_read_lock();
10326 	sd = rcu_dereference(per_cpu(sd_llc, cpu));
10327 
10328 	if (!sd || !sd->nohz_idle)
10329 		goto unlock;
10330 	sd->nohz_idle = 0;
10331 
10332 	atomic_inc(&sd->shared->nr_busy_cpus);
10333 unlock:
10334 	rcu_read_unlock();
10335 }
10336 
10337 void nohz_balance_exit_idle(struct rq *rq)
10338 {
10339 	SCHED_WARN_ON(rq != this_rq());
10340 
10341 	if (likely(!rq->nohz_tick_stopped))
10342 		return;
10343 
10344 	rq->nohz_tick_stopped = 0;
10345 	cpumask_clear_cpu(rq->cpu, nohz.idle_cpus_mask);
10346 	atomic_dec(&nohz.nr_cpus);
10347 
10348 	set_cpu_sd_state_busy(rq->cpu);
10349 }
10350 
10351 static void set_cpu_sd_state_idle(int cpu)
10352 {
10353 	struct sched_domain *sd;
10354 
10355 	rcu_read_lock();
10356 	sd = rcu_dereference(per_cpu(sd_llc, cpu));
10357 
10358 	if (!sd || sd->nohz_idle)
10359 		goto unlock;
10360 	sd->nohz_idle = 1;
10361 
10362 	atomic_dec(&sd->shared->nr_busy_cpus);
10363 unlock:
10364 	rcu_read_unlock();
10365 }
10366 
10367 /*
10368  * This routine will record that the CPU is going idle with tick stopped.
10369  * This info will be used in performing idle load balancing in the future.
10370  */
10371 void nohz_balance_enter_idle(int cpu)
10372 {
10373 	struct rq *rq = cpu_rq(cpu);
10374 
10375 	SCHED_WARN_ON(cpu != smp_processor_id());
10376 
10377 	/* If this CPU is going down, then nothing needs to be done: */
10378 	if (!cpu_active(cpu))
10379 		return;
10380 
10381 	/* Spare idle load balancing on CPUs that don't want to be disturbed: */
10382 	if (!housekeeping_cpu(cpu, HK_FLAG_SCHED))
10383 		return;
10384 
10385 	/*
10386 	 * Can be set safely without rq->lock held
10387 	 * If a clear happens, it will have evaluated last additions because
10388 	 * rq->lock is held during the check and the clear
10389 	 */
10390 	rq->has_blocked_load = 1;
10391 
10392 	/*
10393 	 * The tick is still stopped but load could have been added in the
10394 	 * meantime. We set the nohz.has_blocked flag to trig a check of the
10395 	 * *_avg. The CPU is already part of nohz.idle_cpus_mask so the clear
10396 	 * of nohz.has_blocked can only happen after checking the new load
10397 	 */
10398 	if (rq->nohz_tick_stopped)
10399 		goto out;
10400 
10401 	/* If we're a completely isolated CPU, we don't play: */
10402 	if (on_null_domain(rq))
10403 		return;
10404 
10405 	rq->nohz_tick_stopped = 1;
10406 
10407 	cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
10408 	atomic_inc(&nohz.nr_cpus);
10409 
10410 	/*
10411 	 * Ensures that if nohz_idle_balance() fails to observe our
10412 	 * @idle_cpus_mask store, it must observe the @has_blocked
10413 	 * store.
10414 	 */
10415 	smp_mb__after_atomic();
10416 
10417 	set_cpu_sd_state_idle(cpu);
10418 
10419 out:
10420 	/*
10421 	 * Each time a cpu enter idle, we assume that it has blocked load and
10422 	 * enable the periodic update of the load of idle cpus
10423 	 */
10424 	WRITE_ONCE(nohz.has_blocked, 1);
10425 }
10426 
10427 static bool update_nohz_stats(struct rq *rq)
10428 {
10429 	unsigned int cpu = rq->cpu;
10430 
10431 	if (!rq->has_blocked_load)
10432 		return false;
10433 
10434 	if (!cpumask_test_cpu(cpu, nohz.idle_cpus_mask))
10435 		return false;
10436 
10437 	if (!time_after(jiffies, READ_ONCE(rq->last_blocked_load_update_tick)))
10438 		return true;
10439 
10440 	update_blocked_averages(cpu);
10441 
10442 	return rq->has_blocked_load;
10443 }
10444 
10445 /*
10446  * Internal function that runs load balance for all idle cpus. The load balance
10447  * can be a simple update of blocked load or a complete load balance with
10448  * tasks movement depending of flags.
10449  */
10450 static void _nohz_idle_balance(struct rq *this_rq, unsigned int flags,
10451 			       enum cpu_idle_type idle)
10452 {
10453 	/* Earliest time when we have to do rebalance again */
10454 	unsigned long now = jiffies;
10455 	unsigned long next_balance = now + 60*HZ;
10456 	bool has_blocked_load = false;
10457 	int update_next_balance = 0;
10458 	int this_cpu = this_rq->cpu;
10459 	int balance_cpu;
10460 	struct rq *rq;
10461 
10462 	SCHED_WARN_ON((flags & NOHZ_KICK_MASK) == NOHZ_BALANCE_KICK);
10463 
10464 	/*
10465 	 * We assume there will be no idle load after this update and clear
10466 	 * the has_blocked flag. If a cpu enters idle in the mean time, it will
10467 	 * set the has_blocked flag and trig another update of idle load.
10468 	 * Because a cpu that becomes idle, is added to idle_cpus_mask before
10469 	 * setting the flag, we are sure to not clear the state and not
10470 	 * check the load of an idle cpu.
10471 	 */
10472 	WRITE_ONCE(nohz.has_blocked, 0);
10473 
10474 	/*
10475 	 * Ensures that if we miss the CPU, we must see the has_blocked
10476 	 * store from nohz_balance_enter_idle().
10477 	 */
10478 	smp_mb();
10479 
10480 	/*
10481 	 * Start with the next CPU after this_cpu so we will end with this_cpu and let a
10482 	 * chance for other idle cpu to pull load.
10483 	 */
10484 	for_each_cpu_wrap(balance_cpu,  nohz.idle_cpus_mask, this_cpu+1) {
10485 		if (!idle_cpu(balance_cpu))
10486 			continue;
10487 
10488 		/*
10489 		 * If this CPU gets work to do, stop the load balancing
10490 		 * work being done for other CPUs. Next load
10491 		 * balancing owner will pick it up.
10492 		 */
10493 		if (need_resched()) {
10494 			has_blocked_load = true;
10495 			goto abort;
10496 		}
10497 
10498 		rq = cpu_rq(balance_cpu);
10499 
10500 		has_blocked_load |= update_nohz_stats(rq);
10501 
10502 		/*
10503 		 * If time for next balance is due,
10504 		 * do the balance.
10505 		 */
10506 		if (time_after_eq(jiffies, rq->next_balance)) {
10507 			struct rq_flags rf;
10508 
10509 			rq_lock_irqsave(rq, &rf);
10510 			update_rq_clock(rq);
10511 			rq_unlock_irqrestore(rq, &rf);
10512 
10513 			if (flags & NOHZ_BALANCE_KICK)
10514 				rebalance_domains(rq, CPU_IDLE);
10515 		}
10516 
10517 		if (time_after(next_balance, rq->next_balance)) {
10518 			next_balance = rq->next_balance;
10519 			update_next_balance = 1;
10520 		}
10521 	}
10522 
10523 	/*
10524 	 * next_balance will be updated only when there is a need.
10525 	 * When the CPU is attached to null domain for ex, it will not be
10526 	 * updated.
10527 	 */
10528 	if (likely(update_next_balance))
10529 		nohz.next_balance = next_balance;
10530 
10531 	WRITE_ONCE(nohz.next_blocked,
10532 		now + msecs_to_jiffies(LOAD_AVG_PERIOD));
10533 
10534 abort:
10535 	/* There is still blocked load, enable periodic update */
10536 	if (has_blocked_load)
10537 		WRITE_ONCE(nohz.has_blocked, 1);
10538 }
10539 
10540 /*
10541  * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
10542  * rebalancing for all the cpus for whom scheduler ticks are stopped.
10543  */
10544 static bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
10545 {
10546 	unsigned int flags = this_rq->nohz_idle_balance;
10547 
10548 	if (!flags)
10549 		return false;
10550 
10551 	this_rq->nohz_idle_balance = 0;
10552 
10553 	if (idle != CPU_IDLE)
10554 		return false;
10555 
10556 	_nohz_idle_balance(this_rq, flags, idle);
10557 
10558 	return true;
10559 }
10560 
10561 /*
10562  * Check if we need to run the ILB for updating blocked load before entering
10563  * idle state.
10564  */
10565 void nohz_run_idle_balance(int cpu)
10566 {
10567 	unsigned int flags;
10568 
10569 	flags = atomic_fetch_andnot(NOHZ_NEWILB_KICK, nohz_flags(cpu));
10570 
10571 	/*
10572 	 * Update the blocked load only if no SCHED_SOFTIRQ is about to happen
10573 	 * (ie NOHZ_STATS_KICK set) and will do the same.
10574 	 */
10575 	if ((flags == NOHZ_NEWILB_KICK) && !need_resched())
10576 		_nohz_idle_balance(cpu_rq(cpu), NOHZ_STATS_KICK, CPU_IDLE);
10577 }
10578 
10579 static void nohz_newidle_balance(struct rq *this_rq)
10580 {
10581 	int this_cpu = this_rq->cpu;
10582 
10583 	/*
10584 	 * This CPU doesn't want to be disturbed by scheduler
10585 	 * housekeeping
10586 	 */
10587 	if (!housekeeping_cpu(this_cpu, HK_FLAG_SCHED))
10588 		return;
10589 
10590 	/* Will wake up very soon. No time for doing anything else*/
10591 	if (this_rq->avg_idle < sysctl_sched_migration_cost)
10592 		return;
10593 
10594 	/* Don't need to update blocked load of idle CPUs*/
10595 	if (!READ_ONCE(nohz.has_blocked) ||
10596 	    time_before(jiffies, READ_ONCE(nohz.next_blocked)))
10597 		return;
10598 
10599 	/*
10600 	 * Set the need to trigger ILB in order to update blocked load
10601 	 * before entering idle state.
10602 	 */
10603 	atomic_or(NOHZ_NEWILB_KICK, nohz_flags(this_cpu));
10604 }
10605 
10606 #else /* !CONFIG_NO_HZ_COMMON */
10607 static inline void nohz_balancer_kick(struct rq *rq) { }
10608 
10609 static inline bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
10610 {
10611 	return false;
10612 }
10613 
10614 static inline void nohz_newidle_balance(struct rq *this_rq) { }
10615 #endif /* CONFIG_NO_HZ_COMMON */
10616 
10617 /*
10618  * newidle_balance is called by schedule() if this_cpu is about to become
10619  * idle. Attempts to pull tasks from other CPUs.
10620  *
10621  * Returns:
10622  *   < 0 - we released the lock and there are !fair tasks present
10623  *     0 - failed, no new tasks
10624  *   > 0 - success, new (fair) tasks present
10625  */
10626 static int newidle_balance(struct rq *this_rq, struct rq_flags *rf)
10627 {
10628 	unsigned long next_balance = jiffies + HZ;
10629 	int this_cpu = this_rq->cpu;
10630 	struct sched_domain *sd;
10631 	int pulled_task = 0;
10632 	u64 curr_cost = 0;
10633 
10634 	update_misfit_status(NULL, this_rq);
10635 	/*
10636 	 * We must set idle_stamp _before_ calling idle_balance(), such that we
10637 	 * measure the duration of idle_balance() as idle time.
10638 	 */
10639 	this_rq->idle_stamp = rq_clock(this_rq);
10640 
10641 	/*
10642 	 * Do not pull tasks towards !active CPUs...
10643 	 */
10644 	if (!cpu_active(this_cpu))
10645 		return 0;
10646 
10647 	/*
10648 	 * This is OK, because current is on_cpu, which avoids it being picked
10649 	 * for load-balance and preemption/IRQs are still disabled avoiding
10650 	 * further scheduler activity on it and we're being very careful to
10651 	 * re-start the picking loop.
10652 	 */
10653 	rq_unpin_lock(this_rq, rf);
10654 
10655 	if (this_rq->avg_idle < sysctl_sched_migration_cost ||
10656 	    !READ_ONCE(this_rq->rd->overload)) {
10657 
10658 		rcu_read_lock();
10659 		sd = rcu_dereference_check_sched_domain(this_rq->sd);
10660 		if (sd)
10661 			update_next_balance(sd, &next_balance);
10662 		rcu_read_unlock();
10663 
10664 		goto out;
10665 	}
10666 
10667 	raw_spin_unlock(&this_rq->lock);
10668 
10669 	update_blocked_averages(this_cpu);
10670 	rcu_read_lock();
10671 	for_each_domain(this_cpu, sd) {
10672 		int continue_balancing = 1;
10673 		u64 t0, domain_cost;
10674 
10675 		if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) {
10676 			update_next_balance(sd, &next_balance);
10677 			break;
10678 		}
10679 
10680 		if (sd->flags & SD_BALANCE_NEWIDLE) {
10681 			t0 = sched_clock_cpu(this_cpu);
10682 
10683 			pulled_task = load_balance(this_cpu, this_rq,
10684 						   sd, CPU_NEWLY_IDLE,
10685 						   &continue_balancing);
10686 
10687 			domain_cost = sched_clock_cpu(this_cpu) - t0;
10688 			if (domain_cost > sd->max_newidle_lb_cost)
10689 				sd->max_newidle_lb_cost = domain_cost;
10690 
10691 			curr_cost += domain_cost;
10692 		}
10693 
10694 		update_next_balance(sd, &next_balance);
10695 
10696 		/*
10697 		 * Stop searching for tasks to pull if there are
10698 		 * now runnable tasks on this rq.
10699 		 */
10700 		if (pulled_task || this_rq->nr_running > 0)
10701 			break;
10702 	}
10703 	rcu_read_unlock();
10704 
10705 	raw_spin_lock(&this_rq->lock);
10706 
10707 	if (curr_cost > this_rq->max_idle_balance_cost)
10708 		this_rq->max_idle_balance_cost = curr_cost;
10709 
10710 	/*
10711 	 * While browsing the domains, we released the rq lock, a task could
10712 	 * have been enqueued in the meantime. Since we're not going idle,
10713 	 * pretend we pulled a task.
10714 	 */
10715 	if (this_rq->cfs.h_nr_running && !pulled_task)
10716 		pulled_task = 1;
10717 
10718 	/* Is there a task of a high priority class? */
10719 	if (this_rq->nr_running != this_rq->cfs.h_nr_running)
10720 		pulled_task = -1;
10721 
10722 out:
10723 	/* Move the next balance forward */
10724 	if (time_after(this_rq->next_balance, next_balance))
10725 		this_rq->next_balance = next_balance;
10726 
10727 	if (pulled_task)
10728 		this_rq->idle_stamp = 0;
10729 	else
10730 		nohz_newidle_balance(this_rq);
10731 
10732 	rq_repin_lock(this_rq, rf);
10733 
10734 	return pulled_task;
10735 }
10736 
10737 /*
10738  * run_rebalance_domains is triggered when needed from the scheduler tick.
10739  * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
10740  */
10741 static __latent_entropy void run_rebalance_domains(struct softirq_action *h)
10742 {
10743 	struct rq *this_rq = this_rq();
10744 	enum cpu_idle_type idle = this_rq->idle_balance ?
10745 						CPU_IDLE : CPU_NOT_IDLE;
10746 
10747 	/*
10748 	 * If this CPU has a pending nohz_balance_kick, then do the
10749 	 * balancing on behalf of the other idle CPUs whose ticks are
10750 	 * stopped. Do nohz_idle_balance *before* rebalance_domains to
10751 	 * give the idle CPUs a chance to load balance. Else we may
10752 	 * load balance only within the local sched_domain hierarchy
10753 	 * and abort nohz_idle_balance altogether if we pull some load.
10754 	 */
10755 	if (nohz_idle_balance(this_rq, idle))
10756 		return;
10757 
10758 	/* normal load balance */
10759 	update_blocked_averages(this_rq->cpu);
10760 	rebalance_domains(this_rq, idle);
10761 }
10762 
10763 /*
10764  * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
10765  */
10766 void trigger_load_balance(struct rq *rq)
10767 {
10768 	/*
10769 	 * Don't need to rebalance while attached to NULL domain or
10770 	 * runqueue CPU is not active
10771 	 */
10772 	if (unlikely(on_null_domain(rq) || !cpu_active(cpu_of(rq))))
10773 		return;
10774 
10775 	if (time_after_eq(jiffies, rq->next_balance))
10776 		raise_softirq(SCHED_SOFTIRQ);
10777 
10778 	nohz_balancer_kick(rq);
10779 }
10780 
10781 static void rq_online_fair(struct rq *rq)
10782 {
10783 	update_sysctl();
10784 
10785 	update_runtime_enabled(rq);
10786 }
10787 
10788 static void rq_offline_fair(struct rq *rq)
10789 {
10790 	update_sysctl();
10791 
10792 	/* Ensure any throttled groups are reachable by pick_next_task */
10793 	unthrottle_offline_cfs_rqs(rq);
10794 }
10795 
10796 #endif /* CONFIG_SMP */
10797 
10798 /*
10799  * scheduler tick hitting a task of our scheduling class.
10800  *
10801  * NOTE: This function can be called remotely by the tick offload that
10802  * goes along full dynticks. Therefore no local assumption can be made
10803  * and everything must be accessed through the @rq and @curr passed in
10804  * parameters.
10805  */
10806 static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
10807 {
10808 	struct cfs_rq *cfs_rq;
10809 	struct sched_entity *se = &curr->se;
10810 
10811 	for_each_sched_entity(se) {
10812 		cfs_rq = cfs_rq_of(se);
10813 		entity_tick(cfs_rq, se, queued);
10814 	}
10815 
10816 	if (static_branch_unlikely(&sched_numa_balancing))
10817 		task_tick_numa(rq, curr);
10818 
10819 	update_misfit_status(curr, rq);
10820 	update_overutilized_status(task_rq(curr));
10821 }
10822 
10823 /*
10824  * called on fork with the child task as argument from the parent's context
10825  *  - child not yet on the tasklist
10826  *  - preemption disabled
10827  */
10828 static void task_fork_fair(struct task_struct *p)
10829 {
10830 	struct cfs_rq *cfs_rq;
10831 	struct sched_entity *se = &p->se, *curr;
10832 	struct rq *rq = this_rq();
10833 	struct rq_flags rf;
10834 
10835 	rq_lock(rq, &rf);
10836 	update_rq_clock(rq);
10837 
10838 	cfs_rq = task_cfs_rq(current);
10839 	curr = cfs_rq->curr;
10840 	if (curr) {
10841 		update_curr(cfs_rq);
10842 		se->vruntime = curr->vruntime;
10843 	}
10844 	place_entity(cfs_rq, se, 1);
10845 
10846 	if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
10847 		/*
10848 		 * Upon rescheduling, sched_class::put_prev_task() will place
10849 		 * 'current' within the tree based on its new key value.
10850 		 */
10851 		swap(curr->vruntime, se->vruntime);
10852 		resched_curr(rq);
10853 	}
10854 
10855 	se->vruntime -= cfs_rq->min_vruntime;
10856 	rq_unlock(rq, &rf);
10857 }
10858 
10859 /*
10860  * Priority of the task has changed. Check to see if we preempt
10861  * the current task.
10862  */
10863 static void
10864 prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
10865 {
10866 	if (!task_on_rq_queued(p))
10867 		return;
10868 
10869 	if (rq->cfs.nr_running == 1)
10870 		return;
10871 
10872 	/*
10873 	 * Reschedule if we are currently running on this runqueue and
10874 	 * our priority decreased, or if we are not currently running on
10875 	 * this runqueue and our priority is higher than the current's
10876 	 */
10877 	if (task_current(rq, p)) {
10878 		if (p->prio > oldprio)
10879 			resched_curr(rq);
10880 	} else
10881 		check_preempt_curr(rq, p, 0);
10882 }
10883 
10884 static inline bool vruntime_normalized(struct task_struct *p)
10885 {
10886 	struct sched_entity *se = &p->se;
10887 
10888 	/*
10889 	 * In both the TASK_ON_RQ_QUEUED and TASK_ON_RQ_MIGRATING cases,
10890 	 * the dequeue_entity(.flags=0) will already have normalized the
10891 	 * vruntime.
10892 	 */
10893 	if (p->on_rq)
10894 		return true;
10895 
10896 	/*
10897 	 * When !on_rq, vruntime of the task has usually NOT been normalized.
10898 	 * But there are some cases where it has already been normalized:
10899 	 *
10900 	 * - A forked child which is waiting for being woken up by
10901 	 *   wake_up_new_task().
10902 	 * - A task which has been woken up by try_to_wake_up() and
10903 	 *   waiting for actually being woken up by sched_ttwu_pending().
10904 	 */
10905 	if (!se->sum_exec_runtime ||
10906 	    (p->state == TASK_WAKING && p->sched_remote_wakeup))
10907 		return true;
10908 
10909 	return false;
10910 }
10911 
10912 #ifdef CONFIG_FAIR_GROUP_SCHED
10913 /*
10914  * Propagate the changes of the sched_entity across the tg tree to make it
10915  * visible to the root
10916  */
10917 static void propagate_entity_cfs_rq(struct sched_entity *se)
10918 {
10919 	struct cfs_rq *cfs_rq;
10920 
10921 	list_add_leaf_cfs_rq(cfs_rq_of(se));
10922 
10923 	/* Start to propagate at parent */
10924 	se = se->parent;
10925 
10926 	for_each_sched_entity(se) {
10927 		cfs_rq = cfs_rq_of(se);
10928 
10929 		if (!cfs_rq_throttled(cfs_rq)){
10930 			update_load_avg(cfs_rq, se, UPDATE_TG);
10931 			list_add_leaf_cfs_rq(cfs_rq);
10932 			continue;
10933 		}
10934 
10935 		if (list_add_leaf_cfs_rq(cfs_rq))
10936 			break;
10937 	}
10938 }
10939 #else
10940 static void propagate_entity_cfs_rq(struct sched_entity *se) { }
10941 #endif
10942 
10943 static void detach_entity_cfs_rq(struct sched_entity *se)
10944 {
10945 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
10946 
10947 	/* Catch up with the cfs_rq and remove our load when we leave */
10948 	update_load_avg(cfs_rq, se, 0);
10949 	detach_entity_load_avg(cfs_rq, se);
10950 	update_tg_load_avg(cfs_rq);
10951 	propagate_entity_cfs_rq(se);
10952 }
10953 
10954 static void attach_entity_cfs_rq(struct sched_entity *se)
10955 {
10956 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
10957 
10958 #ifdef CONFIG_FAIR_GROUP_SCHED
10959 	/*
10960 	 * Since the real-depth could have been changed (only FAIR
10961 	 * class maintain depth value), reset depth properly.
10962 	 */
10963 	se->depth = se->parent ? se->parent->depth + 1 : 0;
10964 #endif
10965 
10966 	/* Synchronize entity with its cfs_rq */
10967 	update_load_avg(cfs_rq, se, sched_feat(ATTACH_AGE_LOAD) ? 0 : SKIP_AGE_LOAD);
10968 	attach_entity_load_avg(cfs_rq, se);
10969 	update_tg_load_avg(cfs_rq);
10970 	propagate_entity_cfs_rq(se);
10971 }
10972 
10973 static void detach_task_cfs_rq(struct task_struct *p)
10974 {
10975 	struct sched_entity *se = &p->se;
10976 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
10977 
10978 	if (!vruntime_normalized(p)) {
10979 		/*
10980 		 * Fix up our vruntime so that the current sleep doesn't
10981 		 * cause 'unlimited' sleep bonus.
10982 		 */
10983 		place_entity(cfs_rq, se, 0);
10984 		se->vruntime -= cfs_rq->min_vruntime;
10985 	}
10986 
10987 	detach_entity_cfs_rq(se);
10988 }
10989 
10990 static void attach_task_cfs_rq(struct task_struct *p)
10991 {
10992 	struct sched_entity *se = &p->se;
10993 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
10994 
10995 	attach_entity_cfs_rq(se);
10996 
10997 	if (!vruntime_normalized(p))
10998 		se->vruntime += cfs_rq->min_vruntime;
10999 }
11000 
11001 static void switched_from_fair(struct rq *rq, struct task_struct *p)
11002 {
11003 	detach_task_cfs_rq(p);
11004 }
11005 
11006 static void switched_to_fair(struct rq *rq, struct task_struct *p)
11007 {
11008 	attach_task_cfs_rq(p);
11009 
11010 	if (task_on_rq_queued(p)) {
11011 		/*
11012 		 * We were most likely switched from sched_rt, so
11013 		 * kick off the schedule if running, otherwise just see
11014 		 * if we can still preempt the current task.
11015 		 */
11016 		if (task_current(rq, p))
11017 			resched_curr(rq);
11018 		else
11019 			check_preempt_curr(rq, p, 0);
11020 	}
11021 }
11022 
11023 /* Account for a task changing its policy or group.
11024  *
11025  * This routine is mostly called to set cfs_rq->curr field when a task
11026  * migrates between groups/classes.
11027  */
11028 static void set_next_task_fair(struct rq *rq, struct task_struct *p, bool first)
11029 {
11030 	struct sched_entity *se = &p->se;
11031 
11032 #ifdef CONFIG_SMP
11033 	if (task_on_rq_queued(p)) {
11034 		/*
11035 		 * Move the next running task to the front of the list, so our
11036 		 * cfs_tasks list becomes MRU one.
11037 		 */
11038 		list_move(&se->group_node, &rq->cfs_tasks);
11039 	}
11040 #endif
11041 
11042 	for_each_sched_entity(se) {
11043 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
11044 
11045 		set_next_entity(cfs_rq, se);
11046 		/* ensure bandwidth has been allocated on our new cfs_rq */
11047 		account_cfs_rq_runtime(cfs_rq, 0);
11048 	}
11049 }
11050 
11051 void init_cfs_rq(struct cfs_rq *cfs_rq)
11052 {
11053 	cfs_rq->tasks_timeline = RB_ROOT_CACHED;
11054 	cfs_rq->min_vruntime = (u64)(-(1LL << 20));
11055 #ifndef CONFIG_64BIT
11056 	cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
11057 #endif
11058 #ifdef CONFIG_SMP
11059 	raw_spin_lock_init(&cfs_rq->removed.lock);
11060 #endif
11061 }
11062 
11063 #ifdef CONFIG_FAIR_GROUP_SCHED
11064 static void task_set_group_fair(struct task_struct *p)
11065 {
11066 	struct sched_entity *se = &p->se;
11067 
11068 	set_task_rq(p, task_cpu(p));
11069 	se->depth = se->parent ? se->parent->depth + 1 : 0;
11070 }
11071 
11072 static void task_move_group_fair(struct task_struct *p)
11073 {
11074 	detach_task_cfs_rq(p);
11075 	set_task_rq(p, task_cpu(p));
11076 
11077 #ifdef CONFIG_SMP
11078 	/* Tell se's cfs_rq has been changed -- migrated */
11079 	p->se.avg.last_update_time = 0;
11080 #endif
11081 	attach_task_cfs_rq(p);
11082 }
11083 
11084 static void task_change_group_fair(struct task_struct *p, int type)
11085 {
11086 	switch (type) {
11087 	case TASK_SET_GROUP:
11088 		task_set_group_fair(p);
11089 		break;
11090 
11091 	case TASK_MOVE_GROUP:
11092 		task_move_group_fair(p);
11093 		break;
11094 	}
11095 }
11096 
11097 void free_fair_sched_group(struct task_group *tg)
11098 {
11099 	int i;
11100 
11101 	destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
11102 
11103 	for_each_possible_cpu(i) {
11104 		if (tg->cfs_rq)
11105 			kfree(tg->cfs_rq[i]);
11106 		if (tg->se)
11107 			kfree(tg->se[i]);
11108 	}
11109 
11110 	kfree(tg->cfs_rq);
11111 	kfree(tg->se);
11112 }
11113 
11114 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
11115 {
11116 	struct sched_entity *se;
11117 	struct cfs_rq *cfs_rq;
11118 	int i;
11119 
11120 	tg->cfs_rq = kcalloc(nr_cpu_ids, sizeof(cfs_rq), GFP_KERNEL);
11121 	if (!tg->cfs_rq)
11122 		goto err;
11123 	tg->se = kcalloc(nr_cpu_ids, sizeof(se), GFP_KERNEL);
11124 	if (!tg->se)
11125 		goto err;
11126 
11127 	tg->shares = NICE_0_LOAD;
11128 
11129 	init_cfs_bandwidth(tg_cfs_bandwidth(tg));
11130 
11131 	for_each_possible_cpu(i) {
11132 		cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
11133 				      GFP_KERNEL, cpu_to_node(i));
11134 		if (!cfs_rq)
11135 			goto err;
11136 
11137 		se = kzalloc_node(sizeof(struct sched_entity),
11138 				  GFP_KERNEL, cpu_to_node(i));
11139 		if (!se)
11140 			goto err_free_rq;
11141 
11142 		init_cfs_rq(cfs_rq);
11143 		init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
11144 		init_entity_runnable_average(se);
11145 	}
11146 
11147 	return 1;
11148 
11149 err_free_rq:
11150 	kfree(cfs_rq);
11151 err:
11152 	return 0;
11153 }
11154 
11155 void online_fair_sched_group(struct task_group *tg)
11156 {
11157 	struct sched_entity *se;
11158 	struct rq_flags rf;
11159 	struct rq *rq;
11160 	int i;
11161 
11162 	for_each_possible_cpu(i) {
11163 		rq = cpu_rq(i);
11164 		se = tg->se[i];
11165 		rq_lock_irq(rq, &rf);
11166 		update_rq_clock(rq);
11167 		attach_entity_cfs_rq(se);
11168 		sync_throttle(tg, i);
11169 		rq_unlock_irq(rq, &rf);
11170 	}
11171 }
11172 
11173 void unregister_fair_sched_group(struct task_group *tg)
11174 {
11175 	unsigned long flags;
11176 	struct rq *rq;
11177 	int cpu;
11178 
11179 	for_each_possible_cpu(cpu) {
11180 		if (tg->se[cpu])
11181 			remove_entity_load_avg(tg->se[cpu]);
11182 
11183 		/*
11184 		 * Only empty task groups can be destroyed; so we can speculatively
11185 		 * check on_list without danger of it being re-added.
11186 		 */
11187 		if (!tg->cfs_rq[cpu]->on_list)
11188 			continue;
11189 
11190 		rq = cpu_rq(cpu);
11191 
11192 		raw_spin_lock_irqsave(&rq->lock, flags);
11193 		list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
11194 		raw_spin_unlock_irqrestore(&rq->lock, flags);
11195 	}
11196 }
11197 
11198 void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
11199 			struct sched_entity *se, int cpu,
11200 			struct sched_entity *parent)
11201 {
11202 	struct rq *rq = cpu_rq(cpu);
11203 
11204 	cfs_rq->tg = tg;
11205 	cfs_rq->rq = rq;
11206 	init_cfs_rq_runtime(cfs_rq);
11207 
11208 	tg->cfs_rq[cpu] = cfs_rq;
11209 	tg->se[cpu] = se;
11210 
11211 	/* se could be NULL for root_task_group */
11212 	if (!se)
11213 		return;
11214 
11215 	if (!parent) {
11216 		se->cfs_rq = &rq->cfs;
11217 		se->depth = 0;
11218 	} else {
11219 		se->cfs_rq = parent->my_q;
11220 		se->depth = parent->depth + 1;
11221 	}
11222 
11223 	se->my_q = cfs_rq;
11224 	/* guarantee group entities always have weight */
11225 	update_load_set(&se->load, NICE_0_LOAD);
11226 	se->parent = parent;
11227 }
11228 
11229 static DEFINE_MUTEX(shares_mutex);
11230 
11231 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
11232 {
11233 	int i;
11234 
11235 	/*
11236 	 * We can't change the weight of the root cgroup.
11237 	 */
11238 	if (!tg->se[0])
11239 		return -EINVAL;
11240 
11241 	shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
11242 
11243 	mutex_lock(&shares_mutex);
11244 	if (tg->shares == shares)
11245 		goto done;
11246 
11247 	tg->shares = shares;
11248 	for_each_possible_cpu(i) {
11249 		struct rq *rq = cpu_rq(i);
11250 		struct sched_entity *se = tg->se[i];
11251 		struct rq_flags rf;
11252 
11253 		/* Propagate contribution to hierarchy */
11254 		rq_lock_irqsave(rq, &rf);
11255 		update_rq_clock(rq);
11256 		for_each_sched_entity(se) {
11257 			update_load_avg(cfs_rq_of(se), se, UPDATE_TG);
11258 			update_cfs_group(se);
11259 		}
11260 		rq_unlock_irqrestore(rq, &rf);
11261 	}
11262 
11263 done:
11264 	mutex_unlock(&shares_mutex);
11265 	return 0;
11266 }
11267 #else /* CONFIG_FAIR_GROUP_SCHED */
11268 
11269 void free_fair_sched_group(struct task_group *tg) { }
11270 
11271 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
11272 {
11273 	return 1;
11274 }
11275 
11276 void online_fair_sched_group(struct task_group *tg) { }
11277 
11278 void unregister_fair_sched_group(struct task_group *tg) { }
11279 
11280 #endif /* CONFIG_FAIR_GROUP_SCHED */
11281 
11282 
11283 static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
11284 {
11285 	struct sched_entity *se = &task->se;
11286 	unsigned int rr_interval = 0;
11287 
11288 	/*
11289 	 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
11290 	 * idle runqueue:
11291 	 */
11292 	if (rq->cfs.load.weight)
11293 		rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
11294 
11295 	return rr_interval;
11296 }
11297 
11298 /*
11299  * All the scheduling class methods:
11300  */
11301 DEFINE_SCHED_CLASS(fair) = {
11302 
11303 	.enqueue_task		= enqueue_task_fair,
11304 	.dequeue_task		= dequeue_task_fair,
11305 	.yield_task		= yield_task_fair,
11306 	.yield_to_task		= yield_to_task_fair,
11307 
11308 	.check_preempt_curr	= check_preempt_wakeup,
11309 
11310 	.pick_next_task		= __pick_next_task_fair,
11311 	.put_prev_task		= put_prev_task_fair,
11312 	.set_next_task          = set_next_task_fair,
11313 
11314 #ifdef CONFIG_SMP
11315 	.balance		= balance_fair,
11316 	.select_task_rq		= select_task_rq_fair,
11317 	.migrate_task_rq	= migrate_task_rq_fair,
11318 
11319 	.rq_online		= rq_online_fair,
11320 	.rq_offline		= rq_offline_fair,
11321 
11322 	.task_dead		= task_dead_fair,
11323 	.set_cpus_allowed	= set_cpus_allowed_common,
11324 #endif
11325 
11326 	.task_tick		= task_tick_fair,
11327 	.task_fork		= task_fork_fair,
11328 
11329 	.prio_changed		= prio_changed_fair,
11330 	.switched_from		= switched_from_fair,
11331 	.switched_to		= switched_to_fair,
11332 
11333 	.get_rr_interval	= get_rr_interval_fair,
11334 
11335 	.update_curr		= update_curr_fair,
11336 
11337 #ifdef CONFIG_FAIR_GROUP_SCHED
11338 	.task_change_group	= task_change_group_fair,
11339 #endif
11340 
11341 #ifdef CONFIG_UCLAMP_TASK
11342 	.uclamp_enabled		= 1,
11343 #endif
11344 };
11345 
11346 #ifdef CONFIG_SCHED_DEBUG
11347 void print_cfs_stats(struct seq_file *m, int cpu)
11348 {
11349 	struct cfs_rq *cfs_rq, *pos;
11350 
11351 	rcu_read_lock();
11352 	for_each_leaf_cfs_rq_safe(cpu_rq(cpu), cfs_rq, pos)
11353 		print_cfs_rq(m, cpu, cfs_rq);
11354 	rcu_read_unlock();
11355 }
11356 
11357 #ifdef CONFIG_NUMA_BALANCING
11358 void show_numa_stats(struct task_struct *p, struct seq_file *m)
11359 {
11360 	int node;
11361 	unsigned long tsf = 0, tpf = 0, gsf = 0, gpf = 0;
11362 	struct numa_group *ng;
11363 
11364 	rcu_read_lock();
11365 	ng = rcu_dereference(p->numa_group);
11366 	for_each_online_node(node) {
11367 		if (p->numa_faults) {
11368 			tsf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 0)];
11369 			tpf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 1)];
11370 		}
11371 		if (ng) {
11372 			gsf = ng->faults[task_faults_idx(NUMA_MEM, node, 0)],
11373 			gpf = ng->faults[task_faults_idx(NUMA_MEM, node, 1)];
11374 		}
11375 		print_numa_stats(m, node, tsf, tpf, gsf, gpf);
11376 	}
11377 	rcu_read_unlock();
11378 }
11379 #endif /* CONFIG_NUMA_BALANCING */
11380 #endif /* CONFIG_SCHED_DEBUG */
11381 
11382 __init void init_sched_fair_class(void)
11383 {
11384 #ifdef CONFIG_SMP
11385 	open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
11386 
11387 #ifdef CONFIG_NO_HZ_COMMON
11388 	nohz.next_balance = jiffies;
11389 	nohz.next_blocked = jiffies;
11390 	zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
11391 #endif
11392 #endif /* SMP */
11393 
11394 }
11395 
11396 /*
11397  * Helper functions to facilitate extracting info from tracepoints.
11398  */
11399 
11400 const struct sched_avg *sched_trace_cfs_rq_avg(struct cfs_rq *cfs_rq)
11401 {
11402 #ifdef CONFIG_SMP
11403 	return cfs_rq ? &cfs_rq->avg : NULL;
11404 #else
11405 	return NULL;
11406 #endif
11407 }
11408 EXPORT_SYMBOL_GPL(sched_trace_cfs_rq_avg);
11409 
11410 char *sched_trace_cfs_rq_path(struct cfs_rq *cfs_rq, char *str, int len)
11411 {
11412 	if (!cfs_rq) {
11413 		if (str)
11414 			strlcpy(str, "(null)", len);
11415 		else
11416 			return NULL;
11417 	}
11418 
11419 	cfs_rq_tg_path(cfs_rq, str, len);
11420 	return str;
11421 }
11422 EXPORT_SYMBOL_GPL(sched_trace_cfs_rq_path);
11423 
11424 int sched_trace_cfs_rq_cpu(struct cfs_rq *cfs_rq)
11425 {
11426 	return cfs_rq ? cpu_of(rq_of(cfs_rq)) : -1;
11427 }
11428 EXPORT_SYMBOL_GPL(sched_trace_cfs_rq_cpu);
11429 
11430 const struct sched_avg *sched_trace_rq_avg_rt(struct rq *rq)
11431 {
11432 #ifdef CONFIG_SMP
11433 	return rq ? &rq->avg_rt : NULL;
11434 #else
11435 	return NULL;
11436 #endif
11437 }
11438 EXPORT_SYMBOL_GPL(sched_trace_rq_avg_rt);
11439 
11440 const struct sched_avg *sched_trace_rq_avg_dl(struct rq *rq)
11441 {
11442 #ifdef CONFIG_SMP
11443 	return rq ? &rq->avg_dl : NULL;
11444 #else
11445 	return NULL;
11446 #endif
11447 }
11448 EXPORT_SYMBOL_GPL(sched_trace_rq_avg_dl);
11449 
11450 const struct sched_avg *sched_trace_rq_avg_irq(struct rq *rq)
11451 {
11452 #if defined(CONFIG_SMP) && defined(CONFIG_HAVE_SCHED_AVG_IRQ)
11453 	return rq ? &rq->avg_irq : NULL;
11454 #else
11455 	return NULL;
11456 #endif
11457 }
11458 EXPORT_SYMBOL_GPL(sched_trace_rq_avg_irq);
11459 
11460 int sched_trace_rq_cpu(struct rq *rq)
11461 {
11462 	return rq ? cpu_of(rq) : -1;
11463 }
11464 EXPORT_SYMBOL_GPL(sched_trace_rq_cpu);
11465 
11466 int sched_trace_rq_cpu_capacity(struct rq *rq)
11467 {
11468 	return rq ?
11469 #ifdef CONFIG_SMP
11470 		rq->cpu_capacity
11471 #else
11472 		SCHED_CAPACITY_SCALE
11473 #endif
11474 		: -1;
11475 }
11476 EXPORT_SYMBOL_GPL(sched_trace_rq_cpu_capacity);
11477 
11478 const struct cpumask *sched_trace_rd_span(struct root_domain *rd)
11479 {
11480 #ifdef CONFIG_SMP
11481 	return rd ? rd->span : NULL;
11482 #else
11483 	return NULL;
11484 #endif
11485 }
11486 EXPORT_SYMBOL_GPL(sched_trace_rd_span);
11487 
11488 int sched_trace_rq_nr_running(struct rq *rq)
11489 {
11490         return rq ? rq->nr_running : -1;
11491 }
11492 EXPORT_SYMBOL_GPL(sched_trace_rq_nr_running);
11493