xref: /openbmc/linux/kernel/sched/fair.c (revision 63dc02bd)
1 /*
2  * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
3  *
4  *  Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
5  *
6  *  Interactivity improvements by Mike Galbraith
7  *  (C) 2007 Mike Galbraith <efault@gmx.de>
8  *
9  *  Various enhancements by Dmitry Adamushko.
10  *  (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
11  *
12  *  Group scheduling enhancements by Srivatsa Vaddagiri
13  *  Copyright IBM Corporation, 2007
14  *  Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
15  *
16  *  Scaled math optimizations by Thomas Gleixner
17  *  Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
18  *
19  *  Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20  *  Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
21  */
22 
23 #include <linux/latencytop.h>
24 #include <linux/sched.h>
25 #include <linux/cpumask.h>
26 #include <linux/slab.h>
27 #include <linux/profile.h>
28 #include <linux/interrupt.h>
29 
30 #include <trace/events/sched.h>
31 
32 #include "sched.h"
33 
34 /*
35  * Targeted preemption latency for CPU-bound tasks:
36  * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
37  *
38  * NOTE: this latency value is not the same as the concept of
39  * 'timeslice length' - timeslices in CFS are of variable length
40  * and have no persistent notion like in traditional, time-slice
41  * based scheduling concepts.
42  *
43  * (to see the precise effective timeslice length of your workload,
44  *  run vmstat and monitor the context-switches (cs) field)
45  */
46 unsigned int sysctl_sched_latency = 6000000ULL;
47 unsigned int normalized_sysctl_sched_latency = 6000000ULL;
48 
49 /*
50  * The initial- and re-scaling of tunables is configurable
51  * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
52  *
53  * Options are:
54  * SCHED_TUNABLESCALING_NONE - unscaled, always *1
55  * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
56  * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
57  */
58 enum sched_tunable_scaling sysctl_sched_tunable_scaling
59 	= SCHED_TUNABLESCALING_LOG;
60 
61 /*
62  * Minimal preemption granularity for CPU-bound tasks:
63  * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
64  */
65 unsigned int sysctl_sched_min_granularity = 750000ULL;
66 unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
67 
68 /*
69  * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
70  */
71 static unsigned int sched_nr_latency = 8;
72 
73 /*
74  * After fork, child runs first. If set to 0 (default) then
75  * parent will (try to) run first.
76  */
77 unsigned int sysctl_sched_child_runs_first __read_mostly;
78 
79 /*
80  * SCHED_OTHER wake-up granularity.
81  * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
82  *
83  * This option delays the preemption effects of decoupled workloads
84  * and reduces their over-scheduling. Synchronous workloads will still
85  * have immediate wakeup/sleep latencies.
86  */
87 unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
88 unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
89 
90 const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
91 
92 /*
93  * The exponential sliding  window over which load is averaged for shares
94  * distribution.
95  * (default: 10msec)
96  */
97 unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL;
98 
99 #ifdef CONFIG_CFS_BANDWIDTH
100 /*
101  * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
102  * each time a cfs_rq requests quota.
103  *
104  * Note: in the case that the slice exceeds the runtime remaining (either due
105  * to consumption or the quota being specified to be smaller than the slice)
106  * we will always only issue the remaining available time.
107  *
108  * default: 5 msec, units: microseconds
109   */
110 unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
111 #endif
112 
113 /*
114  * Increase the granularity value when there are more CPUs,
115  * because with more CPUs the 'effective latency' as visible
116  * to users decreases. But the relationship is not linear,
117  * so pick a second-best guess by going with the log2 of the
118  * number of CPUs.
119  *
120  * This idea comes from the SD scheduler of Con Kolivas:
121  */
122 static int get_update_sysctl_factor(void)
123 {
124 	unsigned int cpus = min_t(int, num_online_cpus(), 8);
125 	unsigned int factor;
126 
127 	switch (sysctl_sched_tunable_scaling) {
128 	case SCHED_TUNABLESCALING_NONE:
129 		factor = 1;
130 		break;
131 	case SCHED_TUNABLESCALING_LINEAR:
132 		factor = cpus;
133 		break;
134 	case SCHED_TUNABLESCALING_LOG:
135 	default:
136 		factor = 1 + ilog2(cpus);
137 		break;
138 	}
139 
140 	return factor;
141 }
142 
143 static void update_sysctl(void)
144 {
145 	unsigned int factor = get_update_sysctl_factor();
146 
147 #define SET_SYSCTL(name) \
148 	(sysctl_##name = (factor) * normalized_sysctl_##name)
149 	SET_SYSCTL(sched_min_granularity);
150 	SET_SYSCTL(sched_latency);
151 	SET_SYSCTL(sched_wakeup_granularity);
152 #undef SET_SYSCTL
153 }
154 
155 void sched_init_granularity(void)
156 {
157 	update_sysctl();
158 }
159 
160 #if BITS_PER_LONG == 32
161 # define WMULT_CONST	(~0UL)
162 #else
163 # define WMULT_CONST	(1UL << 32)
164 #endif
165 
166 #define WMULT_SHIFT	32
167 
168 /*
169  * Shift right and round:
170  */
171 #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
172 
173 /*
174  * delta *= weight / lw
175  */
176 static unsigned long
177 calc_delta_mine(unsigned long delta_exec, unsigned long weight,
178 		struct load_weight *lw)
179 {
180 	u64 tmp;
181 
182 	/*
183 	 * weight can be less than 2^SCHED_LOAD_RESOLUTION for task group sched
184 	 * entities since MIN_SHARES = 2. Treat weight as 1 if less than
185 	 * 2^SCHED_LOAD_RESOLUTION.
186 	 */
187 	if (likely(weight > (1UL << SCHED_LOAD_RESOLUTION)))
188 		tmp = (u64)delta_exec * scale_load_down(weight);
189 	else
190 		tmp = (u64)delta_exec;
191 
192 	if (!lw->inv_weight) {
193 		unsigned long w = scale_load_down(lw->weight);
194 
195 		if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
196 			lw->inv_weight = 1;
197 		else if (unlikely(!w))
198 			lw->inv_weight = WMULT_CONST;
199 		else
200 			lw->inv_weight = WMULT_CONST / w;
201 	}
202 
203 	/*
204 	 * Check whether we'd overflow the 64-bit multiplication:
205 	 */
206 	if (unlikely(tmp > WMULT_CONST))
207 		tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
208 			WMULT_SHIFT/2);
209 	else
210 		tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
211 
212 	return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
213 }
214 
215 
216 const struct sched_class fair_sched_class;
217 
218 /**************************************************************
219  * CFS operations on generic schedulable entities:
220  */
221 
222 #ifdef CONFIG_FAIR_GROUP_SCHED
223 
224 /* cpu runqueue to which this cfs_rq is attached */
225 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
226 {
227 	return cfs_rq->rq;
228 }
229 
230 /* An entity is a task if it doesn't "own" a runqueue */
231 #define entity_is_task(se)	(!se->my_q)
232 
233 static inline struct task_struct *task_of(struct sched_entity *se)
234 {
235 #ifdef CONFIG_SCHED_DEBUG
236 	WARN_ON_ONCE(!entity_is_task(se));
237 #endif
238 	return container_of(se, struct task_struct, se);
239 }
240 
241 /* Walk up scheduling entities hierarchy */
242 #define for_each_sched_entity(se) \
243 		for (; se; se = se->parent)
244 
245 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
246 {
247 	return p->se.cfs_rq;
248 }
249 
250 /* runqueue on which this entity is (to be) queued */
251 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
252 {
253 	return se->cfs_rq;
254 }
255 
256 /* runqueue "owned" by this group */
257 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
258 {
259 	return grp->my_q;
260 }
261 
262 static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
263 {
264 	if (!cfs_rq->on_list) {
265 		/*
266 		 * Ensure we either appear before our parent (if already
267 		 * enqueued) or force our parent to appear after us when it is
268 		 * enqueued.  The fact that we always enqueue bottom-up
269 		 * reduces this to two cases.
270 		 */
271 		if (cfs_rq->tg->parent &&
272 		    cfs_rq->tg->parent->cfs_rq[cpu_of(rq_of(cfs_rq))]->on_list) {
273 			list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
274 				&rq_of(cfs_rq)->leaf_cfs_rq_list);
275 		} else {
276 			list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
277 				&rq_of(cfs_rq)->leaf_cfs_rq_list);
278 		}
279 
280 		cfs_rq->on_list = 1;
281 	}
282 }
283 
284 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
285 {
286 	if (cfs_rq->on_list) {
287 		list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
288 		cfs_rq->on_list = 0;
289 	}
290 }
291 
292 /* Iterate thr' all leaf cfs_rq's on a runqueue */
293 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
294 	list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
295 
296 /* Do the two (enqueued) entities belong to the same group ? */
297 static inline int
298 is_same_group(struct sched_entity *se, struct sched_entity *pse)
299 {
300 	if (se->cfs_rq == pse->cfs_rq)
301 		return 1;
302 
303 	return 0;
304 }
305 
306 static inline struct sched_entity *parent_entity(struct sched_entity *se)
307 {
308 	return se->parent;
309 }
310 
311 /* return depth at which a sched entity is present in the hierarchy */
312 static inline int depth_se(struct sched_entity *se)
313 {
314 	int depth = 0;
315 
316 	for_each_sched_entity(se)
317 		depth++;
318 
319 	return depth;
320 }
321 
322 static void
323 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
324 {
325 	int se_depth, pse_depth;
326 
327 	/*
328 	 * preemption test can be made between sibling entities who are in the
329 	 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
330 	 * both tasks until we find their ancestors who are siblings of common
331 	 * parent.
332 	 */
333 
334 	/* First walk up until both entities are at same depth */
335 	se_depth = depth_se(*se);
336 	pse_depth = depth_se(*pse);
337 
338 	while (se_depth > pse_depth) {
339 		se_depth--;
340 		*se = parent_entity(*se);
341 	}
342 
343 	while (pse_depth > se_depth) {
344 		pse_depth--;
345 		*pse = parent_entity(*pse);
346 	}
347 
348 	while (!is_same_group(*se, *pse)) {
349 		*se = parent_entity(*se);
350 		*pse = parent_entity(*pse);
351 	}
352 }
353 
354 #else	/* !CONFIG_FAIR_GROUP_SCHED */
355 
356 static inline struct task_struct *task_of(struct sched_entity *se)
357 {
358 	return container_of(se, struct task_struct, se);
359 }
360 
361 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
362 {
363 	return container_of(cfs_rq, struct rq, cfs);
364 }
365 
366 #define entity_is_task(se)	1
367 
368 #define for_each_sched_entity(se) \
369 		for (; se; se = NULL)
370 
371 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
372 {
373 	return &task_rq(p)->cfs;
374 }
375 
376 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
377 {
378 	struct task_struct *p = task_of(se);
379 	struct rq *rq = task_rq(p);
380 
381 	return &rq->cfs;
382 }
383 
384 /* runqueue "owned" by this group */
385 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
386 {
387 	return NULL;
388 }
389 
390 static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
391 {
392 }
393 
394 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
395 {
396 }
397 
398 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
399 		for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
400 
401 static inline int
402 is_same_group(struct sched_entity *se, struct sched_entity *pse)
403 {
404 	return 1;
405 }
406 
407 static inline struct sched_entity *parent_entity(struct sched_entity *se)
408 {
409 	return NULL;
410 }
411 
412 static inline void
413 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
414 {
415 }
416 
417 #endif	/* CONFIG_FAIR_GROUP_SCHED */
418 
419 static __always_inline
420 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, unsigned long delta_exec);
421 
422 /**************************************************************
423  * Scheduling class tree data structure manipulation methods:
424  */
425 
426 static inline u64 max_vruntime(u64 min_vruntime, u64 vruntime)
427 {
428 	s64 delta = (s64)(vruntime - min_vruntime);
429 	if (delta > 0)
430 		min_vruntime = vruntime;
431 
432 	return min_vruntime;
433 }
434 
435 static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
436 {
437 	s64 delta = (s64)(vruntime - min_vruntime);
438 	if (delta < 0)
439 		min_vruntime = vruntime;
440 
441 	return min_vruntime;
442 }
443 
444 static inline int entity_before(struct sched_entity *a,
445 				struct sched_entity *b)
446 {
447 	return (s64)(a->vruntime - b->vruntime) < 0;
448 }
449 
450 static void update_min_vruntime(struct cfs_rq *cfs_rq)
451 {
452 	u64 vruntime = cfs_rq->min_vruntime;
453 
454 	if (cfs_rq->curr)
455 		vruntime = cfs_rq->curr->vruntime;
456 
457 	if (cfs_rq->rb_leftmost) {
458 		struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
459 						   struct sched_entity,
460 						   run_node);
461 
462 		if (!cfs_rq->curr)
463 			vruntime = se->vruntime;
464 		else
465 			vruntime = min_vruntime(vruntime, se->vruntime);
466 	}
467 
468 	cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
469 #ifndef CONFIG_64BIT
470 	smp_wmb();
471 	cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
472 #endif
473 }
474 
475 /*
476  * Enqueue an entity into the rb-tree:
477  */
478 static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
479 {
480 	struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
481 	struct rb_node *parent = NULL;
482 	struct sched_entity *entry;
483 	int leftmost = 1;
484 
485 	/*
486 	 * Find the right place in the rbtree:
487 	 */
488 	while (*link) {
489 		parent = *link;
490 		entry = rb_entry(parent, struct sched_entity, run_node);
491 		/*
492 		 * We dont care about collisions. Nodes with
493 		 * the same key stay together.
494 		 */
495 		if (entity_before(se, entry)) {
496 			link = &parent->rb_left;
497 		} else {
498 			link = &parent->rb_right;
499 			leftmost = 0;
500 		}
501 	}
502 
503 	/*
504 	 * Maintain a cache of leftmost tree entries (it is frequently
505 	 * used):
506 	 */
507 	if (leftmost)
508 		cfs_rq->rb_leftmost = &se->run_node;
509 
510 	rb_link_node(&se->run_node, parent, link);
511 	rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
512 }
513 
514 static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
515 {
516 	if (cfs_rq->rb_leftmost == &se->run_node) {
517 		struct rb_node *next_node;
518 
519 		next_node = rb_next(&se->run_node);
520 		cfs_rq->rb_leftmost = next_node;
521 	}
522 
523 	rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
524 }
525 
526 struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
527 {
528 	struct rb_node *left = cfs_rq->rb_leftmost;
529 
530 	if (!left)
531 		return NULL;
532 
533 	return rb_entry(left, struct sched_entity, run_node);
534 }
535 
536 static struct sched_entity *__pick_next_entity(struct sched_entity *se)
537 {
538 	struct rb_node *next = rb_next(&se->run_node);
539 
540 	if (!next)
541 		return NULL;
542 
543 	return rb_entry(next, struct sched_entity, run_node);
544 }
545 
546 #ifdef CONFIG_SCHED_DEBUG
547 struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
548 {
549 	struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
550 
551 	if (!last)
552 		return NULL;
553 
554 	return rb_entry(last, struct sched_entity, run_node);
555 }
556 
557 /**************************************************************
558  * Scheduling class statistics methods:
559  */
560 
561 int sched_proc_update_handler(struct ctl_table *table, int write,
562 		void __user *buffer, size_t *lenp,
563 		loff_t *ppos)
564 {
565 	int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
566 	int factor = get_update_sysctl_factor();
567 
568 	if (ret || !write)
569 		return ret;
570 
571 	sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
572 					sysctl_sched_min_granularity);
573 
574 #define WRT_SYSCTL(name) \
575 	(normalized_sysctl_##name = sysctl_##name / (factor))
576 	WRT_SYSCTL(sched_min_granularity);
577 	WRT_SYSCTL(sched_latency);
578 	WRT_SYSCTL(sched_wakeup_granularity);
579 #undef WRT_SYSCTL
580 
581 	return 0;
582 }
583 #endif
584 
585 /*
586  * delta /= w
587  */
588 static inline unsigned long
589 calc_delta_fair(unsigned long delta, struct sched_entity *se)
590 {
591 	if (unlikely(se->load.weight != NICE_0_LOAD))
592 		delta = calc_delta_mine(delta, NICE_0_LOAD, &se->load);
593 
594 	return delta;
595 }
596 
597 /*
598  * The idea is to set a period in which each task runs once.
599  *
600  * When there are too many tasks (sysctl_sched_nr_latency) we have to stretch
601  * this period because otherwise the slices get too small.
602  *
603  * p = (nr <= nl) ? l : l*nr/nl
604  */
605 static u64 __sched_period(unsigned long nr_running)
606 {
607 	u64 period = sysctl_sched_latency;
608 	unsigned long nr_latency = sched_nr_latency;
609 
610 	if (unlikely(nr_running > nr_latency)) {
611 		period = sysctl_sched_min_granularity;
612 		period *= nr_running;
613 	}
614 
615 	return period;
616 }
617 
618 /*
619  * We calculate the wall-time slice from the period by taking a part
620  * proportional to the weight.
621  *
622  * s = p*P[w/rw]
623  */
624 static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
625 {
626 	u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
627 
628 	for_each_sched_entity(se) {
629 		struct load_weight *load;
630 		struct load_weight lw;
631 
632 		cfs_rq = cfs_rq_of(se);
633 		load = &cfs_rq->load;
634 
635 		if (unlikely(!se->on_rq)) {
636 			lw = cfs_rq->load;
637 
638 			update_load_add(&lw, se->load.weight);
639 			load = &lw;
640 		}
641 		slice = calc_delta_mine(slice, se->load.weight, load);
642 	}
643 	return slice;
644 }
645 
646 /*
647  * We calculate the vruntime slice of a to be inserted task
648  *
649  * vs = s/w
650  */
651 static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
652 {
653 	return calc_delta_fair(sched_slice(cfs_rq, se), se);
654 }
655 
656 static void update_cfs_load(struct cfs_rq *cfs_rq, int global_update);
657 static void update_cfs_shares(struct cfs_rq *cfs_rq);
658 
659 /*
660  * Update the current task's runtime statistics. Skip current tasks that
661  * are not in our scheduling class.
662  */
663 static inline void
664 __update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr,
665 	      unsigned long delta_exec)
666 {
667 	unsigned long delta_exec_weighted;
668 
669 	schedstat_set(curr->statistics.exec_max,
670 		      max((u64)delta_exec, curr->statistics.exec_max));
671 
672 	curr->sum_exec_runtime += delta_exec;
673 	schedstat_add(cfs_rq, exec_clock, delta_exec);
674 	delta_exec_weighted = calc_delta_fair(delta_exec, curr);
675 
676 	curr->vruntime += delta_exec_weighted;
677 	update_min_vruntime(cfs_rq);
678 
679 #if defined CONFIG_SMP && defined CONFIG_FAIR_GROUP_SCHED
680 	cfs_rq->load_unacc_exec_time += delta_exec;
681 #endif
682 }
683 
684 static void update_curr(struct cfs_rq *cfs_rq)
685 {
686 	struct sched_entity *curr = cfs_rq->curr;
687 	u64 now = rq_of(cfs_rq)->clock_task;
688 	unsigned long delta_exec;
689 
690 	if (unlikely(!curr))
691 		return;
692 
693 	/*
694 	 * Get the amount of time the current task was running
695 	 * since the last time we changed load (this cannot
696 	 * overflow on 32 bits):
697 	 */
698 	delta_exec = (unsigned long)(now - curr->exec_start);
699 	if (!delta_exec)
700 		return;
701 
702 	__update_curr(cfs_rq, curr, delta_exec);
703 	curr->exec_start = now;
704 
705 	if (entity_is_task(curr)) {
706 		struct task_struct *curtask = task_of(curr);
707 
708 		trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
709 		cpuacct_charge(curtask, delta_exec);
710 		account_group_exec_runtime(curtask, delta_exec);
711 	}
712 
713 	account_cfs_rq_runtime(cfs_rq, delta_exec);
714 }
715 
716 static inline void
717 update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
718 {
719 	schedstat_set(se->statistics.wait_start, rq_of(cfs_rq)->clock);
720 }
721 
722 /*
723  * Task is being enqueued - update stats:
724  */
725 static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
726 {
727 	/*
728 	 * Are we enqueueing a waiting task? (for current tasks
729 	 * a dequeue/enqueue event is a NOP)
730 	 */
731 	if (se != cfs_rq->curr)
732 		update_stats_wait_start(cfs_rq, se);
733 }
734 
735 static void
736 update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
737 {
738 	schedstat_set(se->statistics.wait_max, max(se->statistics.wait_max,
739 			rq_of(cfs_rq)->clock - se->statistics.wait_start));
740 	schedstat_set(se->statistics.wait_count, se->statistics.wait_count + 1);
741 	schedstat_set(se->statistics.wait_sum, se->statistics.wait_sum +
742 			rq_of(cfs_rq)->clock - se->statistics.wait_start);
743 #ifdef CONFIG_SCHEDSTATS
744 	if (entity_is_task(se)) {
745 		trace_sched_stat_wait(task_of(se),
746 			rq_of(cfs_rq)->clock - se->statistics.wait_start);
747 	}
748 #endif
749 	schedstat_set(se->statistics.wait_start, 0);
750 }
751 
752 static inline void
753 update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
754 {
755 	/*
756 	 * Mark the end of the wait period if dequeueing a
757 	 * waiting task:
758 	 */
759 	if (se != cfs_rq->curr)
760 		update_stats_wait_end(cfs_rq, se);
761 }
762 
763 /*
764  * We are picking a new current task - update its stats:
765  */
766 static inline void
767 update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
768 {
769 	/*
770 	 * We are starting a new run period:
771 	 */
772 	se->exec_start = rq_of(cfs_rq)->clock_task;
773 }
774 
775 /**************************************************
776  * Scheduling class queueing methods:
777  */
778 
779 static void
780 account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
781 {
782 	update_load_add(&cfs_rq->load, se->load.weight);
783 	if (!parent_entity(se))
784 		update_load_add(&rq_of(cfs_rq)->load, se->load.weight);
785 #ifdef CONFIG_SMP
786 	if (entity_is_task(se))
787 		list_add(&se->group_node, &rq_of(cfs_rq)->cfs_tasks);
788 #endif
789 	cfs_rq->nr_running++;
790 }
791 
792 static void
793 account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
794 {
795 	update_load_sub(&cfs_rq->load, se->load.weight);
796 	if (!parent_entity(se))
797 		update_load_sub(&rq_of(cfs_rq)->load, se->load.weight);
798 	if (entity_is_task(se))
799 		list_del_init(&se->group_node);
800 	cfs_rq->nr_running--;
801 }
802 
803 #ifdef CONFIG_FAIR_GROUP_SCHED
804 /* we need this in update_cfs_load and load-balance functions below */
805 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
806 # ifdef CONFIG_SMP
807 static void update_cfs_rq_load_contribution(struct cfs_rq *cfs_rq,
808 					    int global_update)
809 {
810 	struct task_group *tg = cfs_rq->tg;
811 	long load_avg;
812 
813 	load_avg = div64_u64(cfs_rq->load_avg, cfs_rq->load_period+1);
814 	load_avg -= cfs_rq->load_contribution;
815 
816 	if (global_update || abs(load_avg) > cfs_rq->load_contribution / 8) {
817 		atomic_add(load_avg, &tg->load_weight);
818 		cfs_rq->load_contribution += load_avg;
819 	}
820 }
821 
822 static void update_cfs_load(struct cfs_rq *cfs_rq, int global_update)
823 {
824 	u64 period = sysctl_sched_shares_window;
825 	u64 now, delta;
826 	unsigned long load = cfs_rq->load.weight;
827 
828 	if (cfs_rq->tg == &root_task_group || throttled_hierarchy(cfs_rq))
829 		return;
830 
831 	now = rq_of(cfs_rq)->clock_task;
832 	delta = now - cfs_rq->load_stamp;
833 
834 	/* truncate load history at 4 idle periods */
835 	if (cfs_rq->load_stamp > cfs_rq->load_last &&
836 	    now - cfs_rq->load_last > 4 * period) {
837 		cfs_rq->load_period = 0;
838 		cfs_rq->load_avg = 0;
839 		delta = period - 1;
840 	}
841 
842 	cfs_rq->load_stamp = now;
843 	cfs_rq->load_unacc_exec_time = 0;
844 	cfs_rq->load_period += delta;
845 	if (load) {
846 		cfs_rq->load_last = now;
847 		cfs_rq->load_avg += delta * load;
848 	}
849 
850 	/* consider updating load contribution on each fold or truncate */
851 	if (global_update || cfs_rq->load_period > period
852 	    || !cfs_rq->load_period)
853 		update_cfs_rq_load_contribution(cfs_rq, global_update);
854 
855 	while (cfs_rq->load_period > period) {
856 		/*
857 		 * Inline assembly required to prevent the compiler
858 		 * optimising this loop into a divmod call.
859 		 * See __iter_div_u64_rem() for another example of this.
860 		 */
861 		asm("" : "+rm" (cfs_rq->load_period));
862 		cfs_rq->load_period /= 2;
863 		cfs_rq->load_avg /= 2;
864 	}
865 
866 	if (!cfs_rq->curr && !cfs_rq->nr_running && !cfs_rq->load_avg)
867 		list_del_leaf_cfs_rq(cfs_rq);
868 }
869 
870 static inline long calc_tg_weight(struct task_group *tg, struct cfs_rq *cfs_rq)
871 {
872 	long tg_weight;
873 
874 	/*
875 	 * Use this CPU's actual weight instead of the last load_contribution
876 	 * to gain a more accurate current total weight. See
877 	 * update_cfs_rq_load_contribution().
878 	 */
879 	tg_weight = atomic_read(&tg->load_weight);
880 	tg_weight -= cfs_rq->load_contribution;
881 	tg_weight += cfs_rq->load.weight;
882 
883 	return tg_weight;
884 }
885 
886 static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
887 {
888 	long tg_weight, load, shares;
889 
890 	tg_weight = calc_tg_weight(tg, cfs_rq);
891 	load = cfs_rq->load.weight;
892 
893 	shares = (tg->shares * load);
894 	if (tg_weight)
895 		shares /= tg_weight;
896 
897 	if (shares < MIN_SHARES)
898 		shares = MIN_SHARES;
899 	if (shares > tg->shares)
900 		shares = tg->shares;
901 
902 	return shares;
903 }
904 
905 static void update_entity_shares_tick(struct cfs_rq *cfs_rq)
906 {
907 	if (cfs_rq->load_unacc_exec_time > sysctl_sched_shares_window) {
908 		update_cfs_load(cfs_rq, 0);
909 		update_cfs_shares(cfs_rq);
910 	}
911 }
912 # else /* CONFIG_SMP */
913 static void update_cfs_load(struct cfs_rq *cfs_rq, int global_update)
914 {
915 }
916 
917 static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
918 {
919 	return tg->shares;
920 }
921 
922 static inline void update_entity_shares_tick(struct cfs_rq *cfs_rq)
923 {
924 }
925 # endif /* CONFIG_SMP */
926 static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
927 			    unsigned long weight)
928 {
929 	if (se->on_rq) {
930 		/* commit outstanding execution time */
931 		if (cfs_rq->curr == se)
932 			update_curr(cfs_rq);
933 		account_entity_dequeue(cfs_rq, se);
934 	}
935 
936 	update_load_set(&se->load, weight);
937 
938 	if (se->on_rq)
939 		account_entity_enqueue(cfs_rq, se);
940 }
941 
942 static void update_cfs_shares(struct cfs_rq *cfs_rq)
943 {
944 	struct task_group *tg;
945 	struct sched_entity *se;
946 	long shares;
947 
948 	tg = cfs_rq->tg;
949 	se = tg->se[cpu_of(rq_of(cfs_rq))];
950 	if (!se || throttled_hierarchy(cfs_rq))
951 		return;
952 #ifndef CONFIG_SMP
953 	if (likely(se->load.weight == tg->shares))
954 		return;
955 #endif
956 	shares = calc_cfs_shares(cfs_rq, tg);
957 
958 	reweight_entity(cfs_rq_of(se), se, shares);
959 }
960 #else /* CONFIG_FAIR_GROUP_SCHED */
961 static void update_cfs_load(struct cfs_rq *cfs_rq, int global_update)
962 {
963 }
964 
965 static inline void update_cfs_shares(struct cfs_rq *cfs_rq)
966 {
967 }
968 
969 static inline void update_entity_shares_tick(struct cfs_rq *cfs_rq)
970 {
971 }
972 #endif /* CONFIG_FAIR_GROUP_SCHED */
973 
974 static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
975 {
976 #ifdef CONFIG_SCHEDSTATS
977 	struct task_struct *tsk = NULL;
978 
979 	if (entity_is_task(se))
980 		tsk = task_of(se);
981 
982 	if (se->statistics.sleep_start) {
983 		u64 delta = rq_of(cfs_rq)->clock - se->statistics.sleep_start;
984 
985 		if ((s64)delta < 0)
986 			delta = 0;
987 
988 		if (unlikely(delta > se->statistics.sleep_max))
989 			se->statistics.sleep_max = delta;
990 
991 		se->statistics.sleep_start = 0;
992 		se->statistics.sum_sleep_runtime += delta;
993 
994 		if (tsk) {
995 			account_scheduler_latency(tsk, delta >> 10, 1);
996 			trace_sched_stat_sleep(tsk, delta);
997 		}
998 	}
999 	if (se->statistics.block_start) {
1000 		u64 delta = rq_of(cfs_rq)->clock - se->statistics.block_start;
1001 
1002 		if ((s64)delta < 0)
1003 			delta = 0;
1004 
1005 		if (unlikely(delta > se->statistics.block_max))
1006 			se->statistics.block_max = delta;
1007 
1008 		se->statistics.block_start = 0;
1009 		se->statistics.sum_sleep_runtime += delta;
1010 
1011 		if (tsk) {
1012 			if (tsk->in_iowait) {
1013 				se->statistics.iowait_sum += delta;
1014 				se->statistics.iowait_count++;
1015 				trace_sched_stat_iowait(tsk, delta);
1016 			}
1017 
1018 			trace_sched_stat_blocked(tsk, delta);
1019 
1020 			/*
1021 			 * Blocking time is in units of nanosecs, so shift by
1022 			 * 20 to get a milliseconds-range estimation of the
1023 			 * amount of time that the task spent sleeping:
1024 			 */
1025 			if (unlikely(prof_on == SLEEP_PROFILING)) {
1026 				profile_hits(SLEEP_PROFILING,
1027 						(void *)get_wchan(tsk),
1028 						delta >> 20);
1029 			}
1030 			account_scheduler_latency(tsk, delta >> 10, 0);
1031 		}
1032 	}
1033 #endif
1034 }
1035 
1036 static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
1037 {
1038 #ifdef CONFIG_SCHED_DEBUG
1039 	s64 d = se->vruntime - cfs_rq->min_vruntime;
1040 
1041 	if (d < 0)
1042 		d = -d;
1043 
1044 	if (d > 3*sysctl_sched_latency)
1045 		schedstat_inc(cfs_rq, nr_spread_over);
1046 #endif
1047 }
1048 
1049 static void
1050 place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
1051 {
1052 	u64 vruntime = cfs_rq->min_vruntime;
1053 
1054 	/*
1055 	 * The 'current' period is already promised to the current tasks,
1056 	 * however the extra weight of the new task will slow them down a
1057 	 * little, place the new task so that it fits in the slot that
1058 	 * stays open at the end.
1059 	 */
1060 	if (initial && sched_feat(START_DEBIT))
1061 		vruntime += sched_vslice(cfs_rq, se);
1062 
1063 	/* sleeps up to a single latency don't count. */
1064 	if (!initial) {
1065 		unsigned long thresh = sysctl_sched_latency;
1066 
1067 		/*
1068 		 * Halve their sleep time's effect, to allow
1069 		 * for a gentler effect of sleepers:
1070 		 */
1071 		if (sched_feat(GENTLE_FAIR_SLEEPERS))
1072 			thresh >>= 1;
1073 
1074 		vruntime -= thresh;
1075 	}
1076 
1077 	/* ensure we never gain time by being placed backwards. */
1078 	vruntime = max_vruntime(se->vruntime, vruntime);
1079 
1080 	se->vruntime = vruntime;
1081 }
1082 
1083 static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
1084 
1085 static void
1086 enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
1087 {
1088 	/*
1089 	 * Update the normalized vruntime before updating min_vruntime
1090 	 * through callig update_curr().
1091 	 */
1092 	if (!(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_WAKING))
1093 		se->vruntime += cfs_rq->min_vruntime;
1094 
1095 	/*
1096 	 * Update run-time statistics of the 'current'.
1097 	 */
1098 	update_curr(cfs_rq);
1099 	update_cfs_load(cfs_rq, 0);
1100 	account_entity_enqueue(cfs_rq, se);
1101 	update_cfs_shares(cfs_rq);
1102 
1103 	if (flags & ENQUEUE_WAKEUP) {
1104 		place_entity(cfs_rq, se, 0);
1105 		enqueue_sleeper(cfs_rq, se);
1106 	}
1107 
1108 	update_stats_enqueue(cfs_rq, se);
1109 	check_spread(cfs_rq, se);
1110 	if (se != cfs_rq->curr)
1111 		__enqueue_entity(cfs_rq, se);
1112 	se->on_rq = 1;
1113 
1114 	if (cfs_rq->nr_running == 1) {
1115 		list_add_leaf_cfs_rq(cfs_rq);
1116 		check_enqueue_throttle(cfs_rq);
1117 	}
1118 }
1119 
1120 static void __clear_buddies_last(struct sched_entity *se)
1121 {
1122 	for_each_sched_entity(se) {
1123 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
1124 		if (cfs_rq->last == se)
1125 			cfs_rq->last = NULL;
1126 		else
1127 			break;
1128 	}
1129 }
1130 
1131 static void __clear_buddies_next(struct sched_entity *se)
1132 {
1133 	for_each_sched_entity(se) {
1134 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
1135 		if (cfs_rq->next == se)
1136 			cfs_rq->next = NULL;
1137 		else
1138 			break;
1139 	}
1140 }
1141 
1142 static void __clear_buddies_skip(struct sched_entity *se)
1143 {
1144 	for_each_sched_entity(se) {
1145 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
1146 		if (cfs_rq->skip == se)
1147 			cfs_rq->skip = NULL;
1148 		else
1149 			break;
1150 	}
1151 }
1152 
1153 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
1154 {
1155 	if (cfs_rq->last == se)
1156 		__clear_buddies_last(se);
1157 
1158 	if (cfs_rq->next == se)
1159 		__clear_buddies_next(se);
1160 
1161 	if (cfs_rq->skip == se)
1162 		__clear_buddies_skip(se);
1163 }
1164 
1165 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
1166 
1167 static void
1168 dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
1169 {
1170 	/*
1171 	 * Update run-time statistics of the 'current'.
1172 	 */
1173 	update_curr(cfs_rq);
1174 
1175 	update_stats_dequeue(cfs_rq, se);
1176 	if (flags & DEQUEUE_SLEEP) {
1177 #ifdef CONFIG_SCHEDSTATS
1178 		if (entity_is_task(se)) {
1179 			struct task_struct *tsk = task_of(se);
1180 
1181 			if (tsk->state & TASK_INTERRUPTIBLE)
1182 				se->statistics.sleep_start = rq_of(cfs_rq)->clock;
1183 			if (tsk->state & TASK_UNINTERRUPTIBLE)
1184 				se->statistics.block_start = rq_of(cfs_rq)->clock;
1185 		}
1186 #endif
1187 	}
1188 
1189 	clear_buddies(cfs_rq, se);
1190 
1191 	if (se != cfs_rq->curr)
1192 		__dequeue_entity(cfs_rq, se);
1193 	se->on_rq = 0;
1194 	update_cfs_load(cfs_rq, 0);
1195 	account_entity_dequeue(cfs_rq, se);
1196 
1197 	/*
1198 	 * Normalize the entity after updating the min_vruntime because the
1199 	 * update can refer to the ->curr item and we need to reflect this
1200 	 * movement in our normalized position.
1201 	 */
1202 	if (!(flags & DEQUEUE_SLEEP))
1203 		se->vruntime -= cfs_rq->min_vruntime;
1204 
1205 	/* return excess runtime on last dequeue */
1206 	return_cfs_rq_runtime(cfs_rq);
1207 
1208 	update_min_vruntime(cfs_rq);
1209 	update_cfs_shares(cfs_rq);
1210 }
1211 
1212 /*
1213  * Preempt the current task with a newly woken task if needed:
1214  */
1215 static void
1216 check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
1217 {
1218 	unsigned long ideal_runtime, delta_exec;
1219 	struct sched_entity *se;
1220 	s64 delta;
1221 
1222 	ideal_runtime = sched_slice(cfs_rq, curr);
1223 	delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
1224 	if (delta_exec > ideal_runtime) {
1225 		resched_task(rq_of(cfs_rq)->curr);
1226 		/*
1227 		 * The current task ran long enough, ensure it doesn't get
1228 		 * re-elected due to buddy favours.
1229 		 */
1230 		clear_buddies(cfs_rq, curr);
1231 		return;
1232 	}
1233 
1234 	/*
1235 	 * Ensure that a task that missed wakeup preemption by a
1236 	 * narrow margin doesn't have to wait for a full slice.
1237 	 * This also mitigates buddy induced latencies under load.
1238 	 */
1239 	if (delta_exec < sysctl_sched_min_granularity)
1240 		return;
1241 
1242 	se = __pick_first_entity(cfs_rq);
1243 	delta = curr->vruntime - se->vruntime;
1244 
1245 	if (delta < 0)
1246 		return;
1247 
1248 	if (delta > ideal_runtime)
1249 		resched_task(rq_of(cfs_rq)->curr);
1250 }
1251 
1252 static void
1253 set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
1254 {
1255 	/* 'current' is not kept within the tree. */
1256 	if (se->on_rq) {
1257 		/*
1258 		 * Any task has to be enqueued before it get to execute on
1259 		 * a CPU. So account for the time it spent waiting on the
1260 		 * runqueue.
1261 		 */
1262 		update_stats_wait_end(cfs_rq, se);
1263 		__dequeue_entity(cfs_rq, se);
1264 	}
1265 
1266 	update_stats_curr_start(cfs_rq, se);
1267 	cfs_rq->curr = se;
1268 #ifdef CONFIG_SCHEDSTATS
1269 	/*
1270 	 * Track our maximum slice length, if the CPU's load is at
1271 	 * least twice that of our own weight (i.e. dont track it
1272 	 * when there are only lesser-weight tasks around):
1273 	 */
1274 	if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
1275 		se->statistics.slice_max = max(se->statistics.slice_max,
1276 			se->sum_exec_runtime - se->prev_sum_exec_runtime);
1277 	}
1278 #endif
1279 	se->prev_sum_exec_runtime = se->sum_exec_runtime;
1280 }
1281 
1282 static int
1283 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
1284 
1285 /*
1286  * Pick the next process, keeping these things in mind, in this order:
1287  * 1) keep things fair between processes/task groups
1288  * 2) pick the "next" process, since someone really wants that to run
1289  * 3) pick the "last" process, for cache locality
1290  * 4) do not run the "skip" process, if something else is available
1291  */
1292 static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
1293 {
1294 	struct sched_entity *se = __pick_first_entity(cfs_rq);
1295 	struct sched_entity *left = se;
1296 
1297 	/*
1298 	 * Avoid running the skip buddy, if running something else can
1299 	 * be done without getting too unfair.
1300 	 */
1301 	if (cfs_rq->skip == se) {
1302 		struct sched_entity *second = __pick_next_entity(se);
1303 		if (second && wakeup_preempt_entity(second, left) < 1)
1304 			se = second;
1305 	}
1306 
1307 	/*
1308 	 * Prefer last buddy, try to return the CPU to a preempted task.
1309 	 */
1310 	if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
1311 		se = cfs_rq->last;
1312 
1313 	/*
1314 	 * Someone really wants this to run. If it's not unfair, run it.
1315 	 */
1316 	if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
1317 		se = cfs_rq->next;
1318 
1319 	clear_buddies(cfs_rq, se);
1320 
1321 	return se;
1322 }
1323 
1324 static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
1325 
1326 static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
1327 {
1328 	/*
1329 	 * If still on the runqueue then deactivate_task()
1330 	 * was not called and update_curr() has to be done:
1331 	 */
1332 	if (prev->on_rq)
1333 		update_curr(cfs_rq);
1334 
1335 	/* throttle cfs_rqs exceeding runtime */
1336 	check_cfs_rq_runtime(cfs_rq);
1337 
1338 	check_spread(cfs_rq, prev);
1339 	if (prev->on_rq) {
1340 		update_stats_wait_start(cfs_rq, prev);
1341 		/* Put 'current' back into the tree. */
1342 		__enqueue_entity(cfs_rq, prev);
1343 	}
1344 	cfs_rq->curr = NULL;
1345 }
1346 
1347 static void
1348 entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
1349 {
1350 	/*
1351 	 * Update run-time statistics of the 'current'.
1352 	 */
1353 	update_curr(cfs_rq);
1354 
1355 	/*
1356 	 * Update share accounting for long-running entities.
1357 	 */
1358 	update_entity_shares_tick(cfs_rq);
1359 
1360 #ifdef CONFIG_SCHED_HRTICK
1361 	/*
1362 	 * queued ticks are scheduled to match the slice, so don't bother
1363 	 * validating it and just reschedule.
1364 	 */
1365 	if (queued) {
1366 		resched_task(rq_of(cfs_rq)->curr);
1367 		return;
1368 	}
1369 	/*
1370 	 * don't let the period tick interfere with the hrtick preemption
1371 	 */
1372 	if (!sched_feat(DOUBLE_TICK) &&
1373 			hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
1374 		return;
1375 #endif
1376 
1377 	if (cfs_rq->nr_running > 1)
1378 		check_preempt_tick(cfs_rq, curr);
1379 }
1380 
1381 
1382 /**************************************************
1383  * CFS bandwidth control machinery
1384  */
1385 
1386 #ifdef CONFIG_CFS_BANDWIDTH
1387 
1388 #ifdef HAVE_JUMP_LABEL
1389 static struct static_key __cfs_bandwidth_used;
1390 
1391 static inline bool cfs_bandwidth_used(void)
1392 {
1393 	return static_key_false(&__cfs_bandwidth_used);
1394 }
1395 
1396 void account_cfs_bandwidth_used(int enabled, int was_enabled)
1397 {
1398 	/* only need to count groups transitioning between enabled/!enabled */
1399 	if (enabled && !was_enabled)
1400 		static_key_slow_inc(&__cfs_bandwidth_used);
1401 	else if (!enabled && was_enabled)
1402 		static_key_slow_dec(&__cfs_bandwidth_used);
1403 }
1404 #else /* HAVE_JUMP_LABEL */
1405 static bool cfs_bandwidth_used(void)
1406 {
1407 	return true;
1408 }
1409 
1410 void account_cfs_bandwidth_used(int enabled, int was_enabled) {}
1411 #endif /* HAVE_JUMP_LABEL */
1412 
1413 /*
1414  * default period for cfs group bandwidth.
1415  * default: 0.1s, units: nanoseconds
1416  */
1417 static inline u64 default_cfs_period(void)
1418 {
1419 	return 100000000ULL;
1420 }
1421 
1422 static inline u64 sched_cfs_bandwidth_slice(void)
1423 {
1424 	return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
1425 }
1426 
1427 /*
1428  * Replenish runtime according to assigned quota and update expiration time.
1429  * We use sched_clock_cpu directly instead of rq->clock to avoid adding
1430  * additional synchronization around rq->lock.
1431  *
1432  * requires cfs_b->lock
1433  */
1434 void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
1435 {
1436 	u64 now;
1437 
1438 	if (cfs_b->quota == RUNTIME_INF)
1439 		return;
1440 
1441 	now = sched_clock_cpu(smp_processor_id());
1442 	cfs_b->runtime = cfs_b->quota;
1443 	cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
1444 }
1445 
1446 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
1447 {
1448 	return &tg->cfs_bandwidth;
1449 }
1450 
1451 /* returns 0 on failure to allocate runtime */
1452 static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
1453 {
1454 	struct task_group *tg = cfs_rq->tg;
1455 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
1456 	u64 amount = 0, min_amount, expires;
1457 
1458 	/* note: this is a positive sum as runtime_remaining <= 0 */
1459 	min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;
1460 
1461 	raw_spin_lock(&cfs_b->lock);
1462 	if (cfs_b->quota == RUNTIME_INF)
1463 		amount = min_amount;
1464 	else {
1465 		/*
1466 		 * If the bandwidth pool has become inactive, then at least one
1467 		 * period must have elapsed since the last consumption.
1468 		 * Refresh the global state and ensure bandwidth timer becomes
1469 		 * active.
1470 		 */
1471 		if (!cfs_b->timer_active) {
1472 			__refill_cfs_bandwidth_runtime(cfs_b);
1473 			__start_cfs_bandwidth(cfs_b);
1474 		}
1475 
1476 		if (cfs_b->runtime > 0) {
1477 			amount = min(cfs_b->runtime, min_amount);
1478 			cfs_b->runtime -= amount;
1479 			cfs_b->idle = 0;
1480 		}
1481 	}
1482 	expires = cfs_b->runtime_expires;
1483 	raw_spin_unlock(&cfs_b->lock);
1484 
1485 	cfs_rq->runtime_remaining += amount;
1486 	/*
1487 	 * we may have advanced our local expiration to account for allowed
1488 	 * spread between our sched_clock and the one on which runtime was
1489 	 * issued.
1490 	 */
1491 	if ((s64)(expires - cfs_rq->runtime_expires) > 0)
1492 		cfs_rq->runtime_expires = expires;
1493 
1494 	return cfs_rq->runtime_remaining > 0;
1495 }
1496 
1497 /*
1498  * Note: This depends on the synchronization provided by sched_clock and the
1499  * fact that rq->clock snapshots this value.
1500  */
1501 static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
1502 {
1503 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
1504 	struct rq *rq = rq_of(cfs_rq);
1505 
1506 	/* if the deadline is ahead of our clock, nothing to do */
1507 	if (likely((s64)(rq->clock - cfs_rq->runtime_expires) < 0))
1508 		return;
1509 
1510 	if (cfs_rq->runtime_remaining < 0)
1511 		return;
1512 
1513 	/*
1514 	 * If the local deadline has passed we have to consider the
1515 	 * possibility that our sched_clock is 'fast' and the global deadline
1516 	 * has not truly expired.
1517 	 *
1518 	 * Fortunately we can check determine whether this the case by checking
1519 	 * whether the global deadline has advanced.
1520 	 */
1521 
1522 	if ((s64)(cfs_rq->runtime_expires - cfs_b->runtime_expires) >= 0) {
1523 		/* extend local deadline, drift is bounded above by 2 ticks */
1524 		cfs_rq->runtime_expires += TICK_NSEC;
1525 	} else {
1526 		/* global deadline is ahead, expiration has passed */
1527 		cfs_rq->runtime_remaining = 0;
1528 	}
1529 }
1530 
1531 static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq,
1532 				     unsigned long delta_exec)
1533 {
1534 	/* dock delta_exec before expiring quota (as it could span periods) */
1535 	cfs_rq->runtime_remaining -= delta_exec;
1536 	expire_cfs_rq_runtime(cfs_rq);
1537 
1538 	if (likely(cfs_rq->runtime_remaining > 0))
1539 		return;
1540 
1541 	/*
1542 	 * if we're unable to extend our runtime we resched so that the active
1543 	 * hierarchy can be throttled
1544 	 */
1545 	if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
1546 		resched_task(rq_of(cfs_rq)->curr);
1547 }
1548 
1549 static __always_inline
1550 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, unsigned long delta_exec)
1551 {
1552 	if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
1553 		return;
1554 
1555 	__account_cfs_rq_runtime(cfs_rq, delta_exec);
1556 }
1557 
1558 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
1559 {
1560 	return cfs_bandwidth_used() && cfs_rq->throttled;
1561 }
1562 
1563 /* check whether cfs_rq, or any parent, is throttled */
1564 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
1565 {
1566 	return cfs_bandwidth_used() && cfs_rq->throttle_count;
1567 }
1568 
1569 /*
1570  * Ensure that neither of the group entities corresponding to src_cpu or
1571  * dest_cpu are members of a throttled hierarchy when performing group
1572  * load-balance operations.
1573  */
1574 static inline int throttled_lb_pair(struct task_group *tg,
1575 				    int src_cpu, int dest_cpu)
1576 {
1577 	struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
1578 
1579 	src_cfs_rq = tg->cfs_rq[src_cpu];
1580 	dest_cfs_rq = tg->cfs_rq[dest_cpu];
1581 
1582 	return throttled_hierarchy(src_cfs_rq) ||
1583 	       throttled_hierarchy(dest_cfs_rq);
1584 }
1585 
1586 /* updated child weight may affect parent so we have to do this bottom up */
1587 static int tg_unthrottle_up(struct task_group *tg, void *data)
1588 {
1589 	struct rq *rq = data;
1590 	struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
1591 
1592 	cfs_rq->throttle_count--;
1593 #ifdef CONFIG_SMP
1594 	if (!cfs_rq->throttle_count) {
1595 		u64 delta = rq->clock_task - cfs_rq->load_stamp;
1596 
1597 		/* leaving throttled state, advance shares averaging windows */
1598 		cfs_rq->load_stamp += delta;
1599 		cfs_rq->load_last += delta;
1600 
1601 		/* update entity weight now that we are on_rq again */
1602 		update_cfs_shares(cfs_rq);
1603 	}
1604 #endif
1605 
1606 	return 0;
1607 }
1608 
1609 static int tg_throttle_down(struct task_group *tg, void *data)
1610 {
1611 	struct rq *rq = data;
1612 	struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
1613 
1614 	/* group is entering throttled state, record last load */
1615 	if (!cfs_rq->throttle_count)
1616 		update_cfs_load(cfs_rq, 0);
1617 	cfs_rq->throttle_count++;
1618 
1619 	return 0;
1620 }
1621 
1622 static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
1623 {
1624 	struct rq *rq = rq_of(cfs_rq);
1625 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
1626 	struct sched_entity *se;
1627 	long task_delta, dequeue = 1;
1628 
1629 	se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
1630 
1631 	/* account load preceding throttle */
1632 	rcu_read_lock();
1633 	walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
1634 	rcu_read_unlock();
1635 
1636 	task_delta = cfs_rq->h_nr_running;
1637 	for_each_sched_entity(se) {
1638 		struct cfs_rq *qcfs_rq = cfs_rq_of(se);
1639 		/* throttled entity or throttle-on-deactivate */
1640 		if (!se->on_rq)
1641 			break;
1642 
1643 		if (dequeue)
1644 			dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
1645 		qcfs_rq->h_nr_running -= task_delta;
1646 
1647 		if (qcfs_rq->load.weight)
1648 			dequeue = 0;
1649 	}
1650 
1651 	if (!se)
1652 		rq->nr_running -= task_delta;
1653 
1654 	cfs_rq->throttled = 1;
1655 	cfs_rq->throttled_timestamp = rq->clock;
1656 	raw_spin_lock(&cfs_b->lock);
1657 	list_add_tail_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
1658 	raw_spin_unlock(&cfs_b->lock);
1659 }
1660 
1661 void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
1662 {
1663 	struct rq *rq = rq_of(cfs_rq);
1664 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
1665 	struct sched_entity *se;
1666 	int enqueue = 1;
1667 	long task_delta;
1668 
1669 	se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
1670 
1671 	cfs_rq->throttled = 0;
1672 	raw_spin_lock(&cfs_b->lock);
1673 	cfs_b->throttled_time += rq->clock - cfs_rq->throttled_timestamp;
1674 	list_del_rcu(&cfs_rq->throttled_list);
1675 	raw_spin_unlock(&cfs_b->lock);
1676 	cfs_rq->throttled_timestamp = 0;
1677 
1678 	update_rq_clock(rq);
1679 	/* update hierarchical throttle state */
1680 	walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
1681 
1682 	if (!cfs_rq->load.weight)
1683 		return;
1684 
1685 	task_delta = cfs_rq->h_nr_running;
1686 	for_each_sched_entity(se) {
1687 		if (se->on_rq)
1688 			enqueue = 0;
1689 
1690 		cfs_rq = cfs_rq_of(se);
1691 		if (enqueue)
1692 			enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
1693 		cfs_rq->h_nr_running += task_delta;
1694 
1695 		if (cfs_rq_throttled(cfs_rq))
1696 			break;
1697 	}
1698 
1699 	if (!se)
1700 		rq->nr_running += task_delta;
1701 
1702 	/* determine whether we need to wake up potentially idle cpu */
1703 	if (rq->curr == rq->idle && rq->cfs.nr_running)
1704 		resched_task(rq->curr);
1705 }
1706 
1707 static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
1708 		u64 remaining, u64 expires)
1709 {
1710 	struct cfs_rq *cfs_rq;
1711 	u64 runtime = remaining;
1712 
1713 	rcu_read_lock();
1714 	list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
1715 				throttled_list) {
1716 		struct rq *rq = rq_of(cfs_rq);
1717 
1718 		raw_spin_lock(&rq->lock);
1719 		if (!cfs_rq_throttled(cfs_rq))
1720 			goto next;
1721 
1722 		runtime = -cfs_rq->runtime_remaining + 1;
1723 		if (runtime > remaining)
1724 			runtime = remaining;
1725 		remaining -= runtime;
1726 
1727 		cfs_rq->runtime_remaining += runtime;
1728 		cfs_rq->runtime_expires = expires;
1729 
1730 		/* we check whether we're throttled above */
1731 		if (cfs_rq->runtime_remaining > 0)
1732 			unthrottle_cfs_rq(cfs_rq);
1733 
1734 next:
1735 		raw_spin_unlock(&rq->lock);
1736 
1737 		if (!remaining)
1738 			break;
1739 	}
1740 	rcu_read_unlock();
1741 
1742 	return remaining;
1743 }
1744 
1745 /*
1746  * Responsible for refilling a task_group's bandwidth and unthrottling its
1747  * cfs_rqs as appropriate. If there has been no activity within the last
1748  * period the timer is deactivated until scheduling resumes; cfs_b->idle is
1749  * used to track this state.
1750  */
1751 static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
1752 {
1753 	u64 runtime, runtime_expires;
1754 	int idle = 1, throttled;
1755 
1756 	raw_spin_lock(&cfs_b->lock);
1757 	/* no need to continue the timer with no bandwidth constraint */
1758 	if (cfs_b->quota == RUNTIME_INF)
1759 		goto out_unlock;
1760 
1761 	throttled = !list_empty(&cfs_b->throttled_cfs_rq);
1762 	/* idle depends on !throttled (for the case of a large deficit) */
1763 	idle = cfs_b->idle && !throttled;
1764 	cfs_b->nr_periods += overrun;
1765 
1766 	/* if we're going inactive then everything else can be deferred */
1767 	if (idle)
1768 		goto out_unlock;
1769 
1770 	__refill_cfs_bandwidth_runtime(cfs_b);
1771 
1772 	if (!throttled) {
1773 		/* mark as potentially idle for the upcoming period */
1774 		cfs_b->idle = 1;
1775 		goto out_unlock;
1776 	}
1777 
1778 	/* account preceding periods in which throttling occurred */
1779 	cfs_b->nr_throttled += overrun;
1780 
1781 	/*
1782 	 * There are throttled entities so we must first use the new bandwidth
1783 	 * to unthrottle them before making it generally available.  This
1784 	 * ensures that all existing debts will be paid before a new cfs_rq is
1785 	 * allowed to run.
1786 	 */
1787 	runtime = cfs_b->runtime;
1788 	runtime_expires = cfs_b->runtime_expires;
1789 	cfs_b->runtime = 0;
1790 
1791 	/*
1792 	 * This check is repeated as we are holding onto the new bandwidth
1793 	 * while we unthrottle.  This can potentially race with an unthrottled
1794 	 * group trying to acquire new bandwidth from the global pool.
1795 	 */
1796 	while (throttled && runtime > 0) {
1797 		raw_spin_unlock(&cfs_b->lock);
1798 		/* we can't nest cfs_b->lock while distributing bandwidth */
1799 		runtime = distribute_cfs_runtime(cfs_b, runtime,
1800 						 runtime_expires);
1801 		raw_spin_lock(&cfs_b->lock);
1802 
1803 		throttled = !list_empty(&cfs_b->throttled_cfs_rq);
1804 	}
1805 
1806 	/* return (any) remaining runtime */
1807 	cfs_b->runtime = runtime;
1808 	/*
1809 	 * While we are ensured activity in the period following an
1810 	 * unthrottle, this also covers the case in which the new bandwidth is
1811 	 * insufficient to cover the existing bandwidth deficit.  (Forcing the
1812 	 * timer to remain active while there are any throttled entities.)
1813 	 */
1814 	cfs_b->idle = 0;
1815 out_unlock:
1816 	if (idle)
1817 		cfs_b->timer_active = 0;
1818 	raw_spin_unlock(&cfs_b->lock);
1819 
1820 	return idle;
1821 }
1822 
1823 /* a cfs_rq won't donate quota below this amount */
1824 static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
1825 /* minimum remaining period time to redistribute slack quota */
1826 static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
1827 /* how long we wait to gather additional slack before distributing */
1828 static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
1829 
1830 /* are we near the end of the current quota period? */
1831 static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
1832 {
1833 	struct hrtimer *refresh_timer = &cfs_b->period_timer;
1834 	u64 remaining;
1835 
1836 	/* if the call-back is running a quota refresh is already occurring */
1837 	if (hrtimer_callback_running(refresh_timer))
1838 		return 1;
1839 
1840 	/* is a quota refresh about to occur? */
1841 	remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
1842 	if (remaining < min_expire)
1843 		return 1;
1844 
1845 	return 0;
1846 }
1847 
1848 static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
1849 {
1850 	u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
1851 
1852 	/* if there's a quota refresh soon don't bother with slack */
1853 	if (runtime_refresh_within(cfs_b, min_left))
1854 		return;
1855 
1856 	start_bandwidth_timer(&cfs_b->slack_timer,
1857 				ns_to_ktime(cfs_bandwidth_slack_period));
1858 }
1859 
1860 /* we know any runtime found here is valid as update_curr() precedes return */
1861 static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
1862 {
1863 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
1864 	s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
1865 
1866 	if (slack_runtime <= 0)
1867 		return;
1868 
1869 	raw_spin_lock(&cfs_b->lock);
1870 	if (cfs_b->quota != RUNTIME_INF &&
1871 	    cfs_rq->runtime_expires == cfs_b->runtime_expires) {
1872 		cfs_b->runtime += slack_runtime;
1873 
1874 		/* we are under rq->lock, defer unthrottling using a timer */
1875 		if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
1876 		    !list_empty(&cfs_b->throttled_cfs_rq))
1877 			start_cfs_slack_bandwidth(cfs_b);
1878 	}
1879 	raw_spin_unlock(&cfs_b->lock);
1880 
1881 	/* even if it's not valid for return we don't want to try again */
1882 	cfs_rq->runtime_remaining -= slack_runtime;
1883 }
1884 
1885 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
1886 {
1887 	if (!cfs_bandwidth_used())
1888 		return;
1889 
1890 	if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
1891 		return;
1892 
1893 	__return_cfs_rq_runtime(cfs_rq);
1894 }
1895 
1896 /*
1897  * This is done with a timer (instead of inline with bandwidth return) since
1898  * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
1899  */
1900 static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
1901 {
1902 	u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
1903 	u64 expires;
1904 
1905 	/* confirm we're still not at a refresh boundary */
1906 	if (runtime_refresh_within(cfs_b, min_bandwidth_expiration))
1907 		return;
1908 
1909 	raw_spin_lock(&cfs_b->lock);
1910 	if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice) {
1911 		runtime = cfs_b->runtime;
1912 		cfs_b->runtime = 0;
1913 	}
1914 	expires = cfs_b->runtime_expires;
1915 	raw_spin_unlock(&cfs_b->lock);
1916 
1917 	if (!runtime)
1918 		return;
1919 
1920 	runtime = distribute_cfs_runtime(cfs_b, runtime, expires);
1921 
1922 	raw_spin_lock(&cfs_b->lock);
1923 	if (expires == cfs_b->runtime_expires)
1924 		cfs_b->runtime = runtime;
1925 	raw_spin_unlock(&cfs_b->lock);
1926 }
1927 
1928 /*
1929  * When a group wakes up we want to make sure that its quota is not already
1930  * expired/exceeded, otherwise it may be allowed to steal additional ticks of
1931  * runtime as update_curr() throttling can not not trigger until it's on-rq.
1932  */
1933 static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
1934 {
1935 	if (!cfs_bandwidth_used())
1936 		return;
1937 
1938 	/* an active group must be handled by the update_curr()->put() path */
1939 	if (!cfs_rq->runtime_enabled || cfs_rq->curr)
1940 		return;
1941 
1942 	/* ensure the group is not already throttled */
1943 	if (cfs_rq_throttled(cfs_rq))
1944 		return;
1945 
1946 	/* update runtime allocation */
1947 	account_cfs_rq_runtime(cfs_rq, 0);
1948 	if (cfs_rq->runtime_remaining <= 0)
1949 		throttle_cfs_rq(cfs_rq);
1950 }
1951 
1952 /* conditionally throttle active cfs_rq's from put_prev_entity() */
1953 static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
1954 {
1955 	if (!cfs_bandwidth_used())
1956 		return;
1957 
1958 	if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
1959 		return;
1960 
1961 	/*
1962 	 * it's possible for a throttled entity to be forced into a running
1963 	 * state (e.g. set_curr_task), in this case we're finished.
1964 	 */
1965 	if (cfs_rq_throttled(cfs_rq))
1966 		return;
1967 
1968 	throttle_cfs_rq(cfs_rq);
1969 }
1970 
1971 static inline u64 default_cfs_period(void);
1972 static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun);
1973 static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b);
1974 
1975 static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
1976 {
1977 	struct cfs_bandwidth *cfs_b =
1978 		container_of(timer, struct cfs_bandwidth, slack_timer);
1979 	do_sched_cfs_slack_timer(cfs_b);
1980 
1981 	return HRTIMER_NORESTART;
1982 }
1983 
1984 static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
1985 {
1986 	struct cfs_bandwidth *cfs_b =
1987 		container_of(timer, struct cfs_bandwidth, period_timer);
1988 	ktime_t now;
1989 	int overrun;
1990 	int idle = 0;
1991 
1992 	for (;;) {
1993 		now = hrtimer_cb_get_time(timer);
1994 		overrun = hrtimer_forward(timer, now, cfs_b->period);
1995 
1996 		if (!overrun)
1997 			break;
1998 
1999 		idle = do_sched_cfs_period_timer(cfs_b, overrun);
2000 	}
2001 
2002 	return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
2003 }
2004 
2005 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
2006 {
2007 	raw_spin_lock_init(&cfs_b->lock);
2008 	cfs_b->runtime = 0;
2009 	cfs_b->quota = RUNTIME_INF;
2010 	cfs_b->period = ns_to_ktime(default_cfs_period());
2011 
2012 	INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
2013 	hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
2014 	cfs_b->period_timer.function = sched_cfs_period_timer;
2015 	hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
2016 	cfs_b->slack_timer.function = sched_cfs_slack_timer;
2017 }
2018 
2019 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
2020 {
2021 	cfs_rq->runtime_enabled = 0;
2022 	INIT_LIST_HEAD(&cfs_rq->throttled_list);
2023 }
2024 
2025 /* requires cfs_b->lock, may release to reprogram timer */
2026 void __start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
2027 {
2028 	/*
2029 	 * The timer may be active because we're trying to set a new bandwidth
2030 	 * period or because we're racing with the tear-down path
2031 	 * (timer_active==0 becomes visible before the hrtimer call-back
2032 	 * terminates).  In either case we ensure that it's re-programmed
2033 	 */
2034 	while (unlikely(hrtimer_active(&cfs_b->period_timer))) {
2035 		raw_spin_unlock(&cfs_b->lock);
2036 		/* ensure cfs_b->lock is available while we wait */
2037 		hrtimer_cancel(&cfs_b->period_timer);
2038 
2039 		raw_spin_lock(&cfs_b->lock);
2040 		/* if someone else restarted the timer then we're done */
2041 		if (cfs_b->timer_active)
2042 			return;
2043 	}
2044 
2045 	cfs_b->timer_active = 1;
2046 	start_bandwidth_timer(&cfs_b->period_timer, cfs_b->period);
2047 }
2048 
2049 static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
2050 {
2051 	hrtimer_cancel(&cfs_b->period_timer);
2052 	hrtimer_cancel(&cfs_b->slack_timer);
2053 }
2054 
2055 void unthrottle_offline_cfs_rqs(struct rq *rq)
2056 {
2057 	struct cfs_rq *cfs_rq;
2058 
2059 	for_each_leaf_cfs_rq(rq, cfs_rq) {
2060 		struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
2061 
2062 		if (!cfs_rq->runtime_enabled)
2063 			continue;
2064 
2065 		/*
2066 		 * clock_task is not advancing so we just need to make sure
2067 		 * there's some valid quota amount
2068 		 */
2069 		cfs_rq->runtime_remaining = cfs_b->quota;
2070 		if (cfs_rq_throttled(cfs_rq))
2071 			unthrottle_cfs_rq(cfs_rq);
2072 	}
2073 }
2074 
2075 #else /* CONFIG_CFS_BANDWIDTH */
2076 static __always_inline
2077 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, unsigned long delta_exec) {}
2078 static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
2079 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
2080 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
2081 
2082 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
2083 {
2084 	return 0;
2085 }
2086 
2087 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
2088 {
2089 	return 0;
2090 }
2091 
2092 static inline int throttled_lb_pair(struct task_group *tg,
2093 				    int src_cpu, int dest_cpu)
2094 {
2095 	return 0;
2096 }
2097 
2098 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
2099 
2100 #ifdef CONFIG_FAIR_GROUP_SCHED
2101 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
2102 #endif
2103 
2104 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
2105 {
2106 	return NULL;
2107 }
2108 static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
2109 void unthrottle_offline_cfs_rqs(struct rq *rq) {}
2110 
2111 #endif /* CONFIG_CFS_BANDWIDTH */
2112 
2113 /**************************************************
2114  * CFS operations on tasks:
2115  */
2116 
2117 #ifdef CONFIG_SCHED_HRTICK
2118 static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
2119 {
2120 	struct sched_entity *se = &p->se;
2121 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
2122 
2123 	WARN_ON(task_rq(p) != rq);
2124 
2125 	if (cfs_rq->nr_running > 1) {
2126 		u64 slice = sched_slice(cfs_rq, se);
2127 		u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
2128 		s64 delta = slice - ran;
2129 
2130 		if (delta < 0) {
2131 			if (rq->curr == p)
2132 				resched_task(p);
2133 			return;
2134 		}
2135 
2136 		/*
2137 		 * Don't schedule slices shorter than 10000ns, that just
2138 		 * doesn't make sense. Rely on vruntime for fairness.
2139 		 */
2140 		if (rq->curr != p)
2141 			delta = max_t(s64, 10000LL, delta);
2142 
2143 		hrtick_start(rq, delta);
2144 	}
2145 }
2146 
2147 /*
2148  * called from enqueue/dequeue and updates the hrtick when the
2149  * current task is from our class and nr_running is low enough
2150  * to matter.
2151  */
2152 static void hrtick_update(struct rq *rq)
2153 {
2154 	struct task_struct *curr = rq->curr;
2155 
2156 	if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
2157 		return;
2158 
2159 	if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
2160 		hrtick_start_fair(rq, curr);
2161 }
2162 #else /* !CONFIG_SCHED_HRTICK */
2163 static inline void
2164 hrtick_start_fair(struct rq *rq, struct task_struct *p)
2165 {
2166 }
2167 
2168 static inline void hrtick_update(struct rq *rq)
2169 {
2170 }
2171 #endif
2172 
2173 /*
2174  * The enqueue_task method is called before nr_running is
2175  * increased. Here we update the fair scheduling stats and
2176  * then put the task into the rbtree:
2177  */
2178 static void
2179 enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
2180 {
2181 	struct cfs_rq *cfs_rq;
2182 	struct sched_entity *se = &p->se;
2183 
2184 	for_each_sched_entity(se) {
2185 		if (se->on_rq)
2186 			break;
2187 		cfs_rq = cfs_rq_of(se);
2188 		enqueue_entity(cfs_rq, se, flags);
2189 
2190 		/*
2191 		 * end evaluation on encountering a throttled cfs_rq
2192 		 *
2193 		 * note: in the case of encountering a throttled cfs_rq we will
2194 		 * post the final h_nr_running increment below.
2195 		*/
2196 		if (cfs_rq_throttled(cfs_rq))
2197 			break;
2198 		cfs_rq->h_nr_running++;
2199 
2200 		flags = ENQUEUE_WAKEUP;
2201 	}
2202 
2203 	for_each_sched_entity(se) {
2204 		cfs_rq = cfs_rq_of(se);
2205 		cfs_rq->h_nr_running++;
2206 
2207 		if (cfs_rq_throttled(cfs_rq))
2208 			break;
2209 
2210 		update_cfs_load(cfs_rq, 0);
2211 		update_cfs_shares(cfs_rq);
2212 	}
2213 
2214 	if (!se)
2215 		inc_nr_running(rq);
2216 	hrtick_update(rq);
2217 }
2218 
2219 static void set_next_buddy(struct sched_entity *se);
2220 
2221 /*
2222  * The dequeue_task method is called before nr_running is
2223  * decreased. We remove the task from the rbtree and
2224  * update the fair scheduling stats:
2225  */
2226 static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
2227 {
2228 	struct cfs_rq *cfs_rq;
2229 	struct sched_entity *se = &p->se;
2230 	int task_sleep = flags & DEQUEUE_SLEEP;
2231 
2232 	for_each_sched_entity(se) {
2233 		cfs_rq = cfs_rq_of(se);
2234 		dequeue_entity(cfs_rq, se, flags);
2235 
2236 		/*
2237 		 * end evaluation on encountering a throttled cfs_rq
2238 		 *
2239 		 * note: in the case of encountering a throttled cfs_rq we will
2240 		 * post the final h_nr_running decrement below.
2241 		*/
2242 		if (cfs_rq_throttled(cfs_rq))
2243 			break;
2244 		cfs_rq->h_nr_running--;
2245 
2246 		/* Don't dequeue parent if it has other entities besides us */
2247 		if (cfs_rq->load.weight) {
2248 			/*
2249 			 * Bias pick_next to pick a task from this cfs_rq, as
2250 			 * p is sleeping when it is within its sched_slice.
2251 			 */
2252 			if (task_sleep && parent_entity(se))
2253 				set_next_buddy(parent_entity(se));
2254 
2255 			/* avoid re-evaluating load for this entity */
2256 			se = parent_entity(se);
2257 			break;
2258 		}
2259 		flags |= DEQUEUE_SLEEP;
2260 	}
2261 
2262 	for_each_sched_entity(se) {
2263 		cfs_rq = cfs_rq_of(se);
2264 		cfs_rq->h_nr_running--;
2265 
2266 		if (cfs_rq_throttled(cfs_rq))
2267 			break;
2268 
2269 		update_cfs_load(cfs_rq, 0);
2270 		update_cfs_shares(cfs_rq);
2271 	}
2272 
2273 	if (!se)
2274 		dec_nr_running(rq);
2275 	hrtick_update(rq);
2276 }
2277 
2278 #ifdef CONFIG_SMP
2279 /* Used instead of source_load when we know the type == 0 */
2280 static unsigned long weighted_cpuload(const int cpu)
2281 {
2282 	return cpu_rq(cpu)->load.weight;
2283 }
2284 
2285 /*
2286  * Return a low guess at the load of a migration-source cpu weighted
2287  * according to the scheduling class and "nice" value.
2288  *
2289  * We want to under-estimate the load of migration sources, to
2290  * balance conservatively.
2291  */
2292 static unsigned long source_load(int cpu, int type)
2293 {
2294 	struct rq *rq = cpu_rq(cpu);
2295 	unsigned long total = weighted_cpuload(cpu);
2296 
2297 	if (type == 0 || !sched_feat(LB_BIAS))
2298 		return total;
2299 
2300 	return min(rq->cpu_load[type-1], total);
2301 }
2302 
2303 /*
2304  * Return a high guess at the load of a migration-target cpu weighted
2305  * according to the scheduling class and "nice" value.
2306  */
2307 static unsigned long target_load(int cpu, int type)
2308 {
2309 	struct rq *rq = cpu_rq(cpu);
2310 	unsigned long total = weighted_cpuload(cpu);
2311 
2312 	if (type == 0 || !sched_feat(LB_BIAS))
2313 		return total;
2314 
2315 	return max(rq->cpu_load[type-1], total);
2316 }
2317 
2318 static unsigned long power_of(int cpu)
2319 {
2320 	return cpu_rq(cpu)->cpu_power;
2321 }
2322 
2323 static unsigned long cpu_avg_load_per_task(int cpu)
2324 {
2325 	struct rq *rq = cpu_rq(cpu);
2326 	unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
2327 
2328 	if (nr_running)
2329 		return rq->load.weight / nr_running;
2330 
2331 	return 0;
2332 }
2333 
2334 
2335 static void task_waking_fair(struct task_struct *p)
2336 {
2337 	struct sched_entity *se = &p->se;
2338 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
2339 	u64 min_vruntime;
2340 
2341 #ifndef CONFIG_64BIT
2342 	u64 min_vruntime_copy;
2343 
2344 	do {
2345 		min_vruntime_copy = cfs_rq->min_vruntime_copy;
2346 		smp_rmb();
2347 		min_vruntime = cfs_rq->min_vruntime;
2348 	} while (min_vruntime != min_vruntime_copy);
2349 #else
2350 	min_vruntime = cfs_rq->min_vruntime;
2351 #endif
2352 
2353 	se->vruntime -= min_vruntime;
2354 }
2355 
2356 #ifdef CONFIG_FAIR_GROUP_SCHED
2357 /*
2358  * effective_load() calculates the load change as seen from the root_task_group
2359  *
2360  * Adding load to a group doesn't make a group heavier, but can cause movement
2361  * of group shares between cpus. Assuming the shares were perfectly aligned one
2362  * can calculate the shift in shares.
2363  *
2364  * Calculate the effective load difference if @wl is added (subtracted) to @tg
2365  * on this @cpu and results in a total addition (subtraction) of @wg to the
2366  * total group weight.
2367  *
2368  * Given a runqueue weight distribution (rw_i) we can compute a shares
2369  * distribution (s_i) using:
2370  *
2371  *   s_i = rw_i / \Sum rw_j						(1)
2372  *
2373  * Suppose we have 4 CPUs and our @tg is a direct child of the root group and
2374  * has 7 equal weight tasks, distributed as below (rw_i), with the resulting
2375  * shares distribution (s_i):
2376  *
2377  *   rw_i = {   2,   4,   1,   0 }
2378  *   s_i  = { 2/7, 4/7, 1/7,   0 }
2379  *
2380  * As per wake_affine() we're interested in the load of two CPUs (the CPU the
2381  * task used to run on and the CPU the waker is running on), we need to
2382  * compute the effect of waking a task on either CPU and, in case of a sync
2383  * wakeup, compute the effect of the current task going to sleep.
2384  *
2385  * So for a change of @wl to the local @cpu with an overall group weight change
2386  * of @wl we can compute the new shares distribution (s'_i) using:
2387  *
2388  *   s'_i = (rw_i + @wl) / (@wg + \Sum rw_j)				(2)
2389  *
2390  * Suppose we're interested in CPUs 0 and 1, and want to compute the load
2391  * differences in waking a task to CPU 0. The additional task changes the
2392  * weight and shares distributions like:
2393  *
2394  *   rw'_i = {   3,   4,   1,   0 }
2395  *   s'_i  = { 3/8, 4/8, 1/8,   0 }
2396  *
2397  * We can then compute the difference in effective weight by using:
2398  *
2399  *   dw_i = S * (s'_i - s_i)						(3)
2400  *
2401  * Where 'S' is the group weight as seen by its parent.
2402  *
2403  * Therefore the effective change in loads on CPU 0 would be 5/56 (3/8 - 2/7)
2404  * times the weight of the group. The effect on CPU 1 would be -4/56 (4/8 -
2405  * 4/7) times the weight of the group.
2406  */
2407 static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
2408 {
2409 	struct sched_entity *se = tg->se[cpu];
2410 
2411 	if (!tg->parent)	/* the trivial, non-cgroup case */
2412 		return wl;
2413 
2414 	for_each_sched_entity(se) {
2415 		long w, W;
2416 
2417 		tg = se->my_q->tg;
2418 
2419 		/*
2420 		 * W = @wg + \Sum rw_j
2421 		 */
2422 		W = wg + calc_tg_weight(tg, se->my_q);
2423 
2424 		/*
2425 		 * w = rw_i + @wl
2426 		 */
2427 		w = se->my_q->load.weight + wl;
2428 
2429 		/*
2430 		 * wl = S * s'_i; see (2)
2431 		 */
2432 		if (W > 0 && w < W)
2433 			wl = (w * tg->shares) / W;
2434 		else
2435 			wl = tg->shares;
2436 
2437 		/*
2438 		 * Per the above, wl is the new se->load.weight value; since
2439 		 * those are clipped to [MIN_SHARES, ...) do so now. See
2440 		 * calc_cfs_shares().
2441 		 */
2442 		if (wl < MIN_SHARES)
2443 			wl = MIN_SHARES;
2444 
2445 		/*
2446 		 * wl = dw_i = S * (s'_i - s_i); see (3)
2447 		 */
2448 		wl -= se->load.weight;
2449 
2450 		/*
2451 		 * Recursively apply this logic to all parent groups to compute
2452 		 * the final effective load change on the root group. Since
2453 		 * only the @tg group gets extra weight, all parent groups can
2454 		 * only redistribute existing shares. @wl is the shift in shares
2455 		 * resulting from this level per the above.
2456 		 */
2457 		wg = 0;
2458 	}
2459 
2460 	return wl;
2461 }
2462 #else
2463 
2464 static inline unsigned long effective_load(struct task_group *tg, int cpu,
2465 		unsigned long wl, unsigned long wg)
2466 {
2467 	return wl;
2468 }
2469 
2470 #endif
2471 
2472 static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
2473 {
2474 	s64 this_load, load;
2475 	int idx, this_cpu, prev_cpu;
2476 	unsigned long tl_per_task;
2477 	struct task_group *tg;
2478 	unsigned long weight;
2479 	int balanced;
2480 
2481 	idx	  = sd->wake_idx;
2482 	this_cpu  = smp_processor_id();
2483 	prev_cpu  = task_cpu(p);
2484 	load	  = source_load(prev_cpu, idx);
2485 	this_load = target_load(this_cpu, idx);
2486 
2487 	/*
2488 	 * If sync wakeup then subtract the (maximum possible)
2489 	 * effect of the currently running task from the load
2490 	 * of the current CPU:
2491 	 */
2492 	if (sync) {
2493 		tg = task_group(current);
2494 		weight = current->se.load.weight;
2495 
2496 		this_load += effective_load(tg, this_cpu, -weight, -weight);
2497 		load += effective_load(tg, prev_cpu, 0, -weight);
2498 	}
2499 
2500 	tg = task_group(p);
2501 	weight = p->se.load.weight;
2502 
2503 	/*
2504 	 * In low-load situations, where prev_cpu is idle and this_cpu is idle
2505 	 * due to the sync cause above having dropped this_load to 0, we'll
2506 	 * always have an imbalance, but there's really nothing you can do
2507 	 * about that, so that's good too.
2508 	 *
2509 	 * Otherwise check if either cpus are near enough in load to allow this
2510 	 * task to be woken on this_cpu.
2511 	 */
2512 	if (this_load > 0) {
2513 		s64 this_eff_load, prev_eff_load;
2514 
2515 		this_eff_load = 100;
2516 		this_eff_load *= power_of(prev_cpu);
2517 		this_eff_load *= this_load +
2518 			effective_load(tg, this_cpu, weight, weight);
2519 
2520 		prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
2521 		prev_eff_load *= power_of(this_cpu);
2522 		prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight);
2523 
2524 		balanced = this_eff_load <= prev_eff_load;
2525 	} else
2526 		balanced = true;
2527 
2528 	/*
2529 	 * If the currently running task will sleep within
2530 	 * a reasonable amount of time then attract this newly
2531 	 * woken task:
2532 	 */
2533 	if (sync && balanced)
2534 		return 1;
2535 
2536 	schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts);
2537 	tl_per_task = cpu_avg_load_per_task(this_cpu);
2538 
2539 	if (balanced ||
2540 	    (this_load <= load &&
2541 	     this_load + target_load(prev_cpu, idx) <= tl_per_task)) {
2542 		/*
2543 		 * This domain has SD_WAKE_AFFINE and
2544 		 * p is cache cold in this domain, and
2545 		 * there is no bad imbalance.
2546 		 */
2547 		schedstat_inc(sd, ttwu_move_affine);
2548 		schedstat_inc(p, se.statistics.nr_wakeups_affine);
2549 
2550 		return 1;
2551 	}
2552 	return 0;
2553 }
2554 
2555 /*
2556  * find_idlest_group finds and returns the least busy CPU group within the
2557  * domain.
2558  */
2559 static struct sched_group *
2560 find_idlest_group(struct sched_domain *sd, struct task_struct *p,
2561 		  int this_cpu, int load_idx)
2562 {
2563 	struct sched_group *idlest = NULL, *group = sd->groups;
2564 	unsigned long min_load = ULONG_MAX, this_load = 0;
2565 	int imbalance = 100 + (sd->imbalance_pct-100)/2;
2566 
2567 	do {
2568 		unsigned long load, avg_load;
2569 		int local_group;
2570 		int i;
2571 
2572 		/* Skip over this group if it has no CPUs allowed */
2573 		if (!cpumask_intersects(sched_group_cpus(group),
2574 					tsk_cpus_allowed(p)))
2575 			continue;
2576 
2577 		local_group = cpumask_test_cpu(this_cpu,
2578 					       sched_group_cpus(group));
2579 
2580 		/* Tally up the load of all CPUs in the group */
2581 		avg_load = 0;
2582 
2583 		for_each_cpu(i, sched_group_cpus(group)) {
2584 			/* Bias balancing toward cpus of our domain */
2585 			if (local_group)
2586 				load = source_load(i, load_idx);
2587 			else
2588 				load = target_load(i, load_idx);
2589 
2590 			avg_load += load;
2591 		}
2592 
2593 		/* Adjust by relative CPU power of the group */
2594 		avg_load = (avg_load * SCHED_POWER_SCALE) / group->sgp->power;
2595 
2596 		if (local_group) {
2597 			this_load = avg_load;
2598 		} else if (avg_load < min_load) {
2599 			min_load = avg_load;
2600 			idlest = group;
2601 		}
2602 	} while (group = group->next, group != sd->groups);
2603 
2604 	if (!idlest || 100*this_load < imbalance*min_load)
2605 		return NULL;
2606 	return idlest;
2607 }
2608 
2609 /*
2610  * find_idlest_cpu - find the idlest cpu among the cpus in group.
2611  */
2612 static int
2613 find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
2614 {
2615 	unsigned long load, min_load = ULONG_MAX;
2616 	int idlest = -1;
2617 	int i;
2618 
2619 	/* Traverse only the allowed CPUs */
2620 	for_each_cpu_and(i, sched_group_cpus(group), tsk_cpus_allowed(p)) {
2621 		load = weighted_cpuload(i);
2622 
2623 		if (load < min_load || (load == min_load && i == this_cpu)) {
2624 			min_load = load;
2625 			idlest = i;
2626 		}
2627 	}
2628 
2629 	return idlest;
2630 }
2631 
2632 /*
2633  * Try and locate an idle CPU in the sched_domain.
2634  */
2635 static int select_idle_sibling(struct task_struct *p, int target)
2636 {
2637 	int cpu = smp_processor_id();
2638 	int prev_cpu = task_cpu(p);
2639 	struct sched_domain *sd;
2640 	struct sched_group *sg;
2641 	int i;
2642 
2643 	/*
2644 	 * If the task is going to be woken-up on this cpu and if it is
2645 	 * already idle, then it is the right target.
2646 	 */
2647 	if (target == cpu && idle_cpu(cpu))
2648 		return cpu;
2649 
2650 	/*
2651 	 * If the task is going to be woken-up on the cpu where it previously
2652 	 * ran and if it is currently idle, then it the right target.
2653 	 */
2654 	if (target == prev_cpu && idle_cpu(prev_cpu))
2655 		return prev_cpu;
2656 
2657 	/*
2658 	 * Otherwise, iterate the domains and find an elegible idle cpu.
2659 	 */
2660 	sd = rcu_dereference(per_cpu(sd_llc, target));
2661 	for_each_lower_domain(sd) {
2662 		sg = sd->groups;
2663 		do {
2664 			if (!cpumask_intersects(sched_group_cpus(sg),
2665 						tsk_cpus_allowed(p)))
2666 				goto next;
2667 
2668 			for_each_cpu(i, sched_group_cpus(sg)) {
2669 				if (!idle_cpu(i))
2670 					goto next;
2671 			}
2672 
2673 			target = cpumask_first_and(sched_group_cpus(sg),
2674 					tsk_cpus_allowed(p));
2675 			goto done;
2676 next:
2677 			sg = sg->next;
2678 		} while (sg != sd->groups);
2679 	}
2680 done:
2681 	return target;
2682 }
2683 
2684 /*
2685  * sched_balance_self: balance the current task (running on cpu) in domains
2686  * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
2687  * SD_BALANCE_EXEC.
2688  *
2689  * Balance, ie. select the least loaded group.
2690  *
2691  * Returns the target CPU number, or the same CPU if no balancing is needed.
2692  *
2693  * preempt must be disabled.
2694  */
2695 static int
2696 select_task_rq_fair(struct task_struct *p, int sd_flag, int wake_flags)
2697 {
2698 	struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
2699 	int cpu = smp_processor_id();
2700 	int prev_cpu = task_cpu(p);
2701 	int new_cpu = cpu;
2702 	int want_affine = 0;
2703 	int want_sd = 1;
2704 	int sync = wake_flags & WF_SYNC;
2705 
2706 	if (p->rt.nr_cpus_allowed == 1)
2707 		return prev_cpu;
2708 
2709 	if (sd_flag & SD_BALANCE_WAKE) {
2710 		if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p)))
2711 			want_affine = 1;
2712 		new_cpu = prev_cpu;
2713 	}
2714 
2715 	rcu_read_lock();
2716 	for_each_domain(cpu, tmp) {
2717 		if (!(tmp->flags & SD_LOAD_BALANCE))
2718 			continue;
2719 
2720 		/*
2721 		 * If power savings logic is enabled for a domain, see if we
2722 		 * are not overloaded, if so, don't balance wider.
2723 		 */
2724 		if (tmp->flags & (SD_POWERSAVINGS_BALANCE|SD_PREFER_LOCAL)) {
2725 			unsigned long power = 0;
2726 			unsigned long nr_running = 0;
2727 			unsigned long capacity;
2728 			int i;
2729 
2730 			for_each_cpu(i, sched_domain_span(tmp)) {
2731 				power += power_of(i);
2732 				nr_running += cpu_rq(i)->cfs.nr_running;
2733 			}
2734 
2735 			capacity = DIV_ROUND_CLOSEST(power, SCHED_POWER_SCALE);
2736 
2737 			if (tmp->flags & SD_POWERSAVINGS_BALANCE)
2738 				nr_running /= 2;
2739 
2740 			if (nr_running < capacity)
2741 				want_sd = 0;
2742 		}
2743 
2744 		/*
2745 		 * If both cpu and prev_cpu are part of this domain,
2746 		 * cpu is a valid SD_WAKE_AFFINE target.
2747 		 */
2748 		if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
2749 		    cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
2750 			affine_sd = tmp;
2751 			want_affine = 0;
2752 		}
2753 
2754 		if (!want_sd && !want_affine)
2755 			break;
2756 
2757 		if (!(tmp->flags & sd_flag))
2758 			continue;
2759 
2760 		if (want_sd)
2761 			sd = tmp;
2762 	}
2763 
2764 	if (affine_sd) {
2765 		if (cpu == prev_cpu || wake_affine(affine_sd, p, sync))
2766 			prev_cpu = cpu;
2767 
2768 		new_cpu = select_idle_sibling(p, prev_cpu);
2769 		goto unlock;
2770 	}
2771 
2772 	while (sd) {
2773 		int load_idx = sd->forkexec_idx;
2774 		struct sched_group *group;
2775 		int weight;
2776 
2777 		if (!(sd->flags & sd_flag)) {
2778 			sd = sd->child;
2779 			continue;
2780 		}
2781 
2782 		if (sd_flag & SD_BALANCE_WAKE)
2783 			load_idx = sd->wake_idx;
2784 
2785 		group = find_idlest_group(sd, p, cpu, load_idx);
2786 		if (!group) {
2787 			sd = sd->child;
2788 			continue;
2789 		}
2790 
2791 		new_cpu = find_idlest_cpu(group, p, cpu);
2792 		if (new_cpu == -1 || new_cpu == cpu) {
2793 			/* Now try balancing at a lower domain level of cpu */
2794 			sd = sd->child;
2795 			continue;
2796 		}
2797 
2798 		/* Now try balancing at a lower domain level of new_cpu */
2799 		cpu = new_cpu;
2800 		weight = sd->span_weight;
2801 		sd = NULL;
2802 		for_each_domain(cpu, tmp) {
2803 			if (weight <= tmp->span_weight)
2804 				break;
2805 			if (tmp->flags & sd_flag)
2806 				sd = tmp;
2807 		}
2808 		/* while loop will break here if sd == NULL */
2809 	}
2810 unlock:
2811 	rcu_read_unlock();
2812 
2813 	return new_cpu;
2814 }
2815 #endif /* CONFIG_SMP */
2816 
2817 static unsigned long
2818 wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
2819 {
2820 	unsigned long gran = sysctl_sched_wakeup_granularity;
2821 
2822 	/*
2823 	 * Since its curr running now, convert the gran from real-time
2824 	 * to virtual-time in his units.
2825 	 *
2826 	 * By using 'se' instead of 'curr' we penalize light tasks, so
2827 	 * they get preempted easier. That is, if 'se' < 'curr' then
2828 	 * the resulting gran will be larger, therefore penalizing the
2829 	 * lighter, if otoh 'se' > 'curr' then the resulting gran will
2830 	 * be smaller, again penalizing the lighter task.
2831 	 *
2832 	 * This is especially important for buddies when the leftmost
2833 	 * task is higher priority than the buddy.
2834 	 */
2835 	return calc_delta_fair(gran, se);
2836 }
2837 
2838 /*
2839  * Should 'se' preempt 'curr'.
2840  *
2841  *             |s1
2842  *        |s2
2843  *   |s3
2844  *         g
2845  *      |<--->|c
2846  *
2847  *  w(c, s1) = -1
2848  *  w(c, s2) =  0
2849  *  w(c, s3) =  1
2850  *
2851  */
2852 static int
2853 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
2854 {
2855 	s64 gran, vdiff = curr->vruntime - se->vruntime;
2856 
2857 	if (vdiff <= 0)
2858 		return -1;
2859 
2860 	gran = wakeup_gran(curr, se);
2861 	if (vdiff > gran)
2862 		return 1;
2863 
2864 	return 0;
2865 }
2866 
2867 static void set_last_buddy(struct sched_entity *se)
2868 {
2869 	if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
2870 		return;
2871 
2872 	for_each_sched_entity(se)
2873 		cfs_rq_of(se)->last = se;
2874 }
2875 
2876 static void set_next_buddy(struct sched_entity *se)
2877 {
2878 	if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
2879 		return;
2880 
2881 	for_each_sched_entity(se)
2882 		cfs_rq_of(se)->next = se;
2883 }
2884 
2885 static void set_skip_buddy(struct sched_entity *se)
2886 {
2887 	for_each_sched_entity(se)
2888 		cfs_rq_of(se)->skip = se;
2889 }
2890 
2891 /*
2892  * Preempt the current task with a newly woken task if needed:
2893  */
2894 static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
2895 {
2896 	struct task_struct *curr = rq->curr;
2897 	struct sched_entity *se = &curr->se, *pse = &p->se;
2898 	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
2899 	int scale = cfs_rq->nr_running >= sched_nr_latency;
2900 	int next_buddy_marked = 0;
2901 
2902 	if (unlikely(se == pse))
2903 		return;
2904 
2905 	/*
2906 	 * This is possible from callers such as move_task(), in which we
2907 	 * unconditionally check_prempt_curr() after an enqueue (which may have
2908 	 * lead to a throttle).  This both saves work and prevents false
2909 	 * next-buddy nomination below.
2910 	 */
2911 	if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
2912 		return;
2913 
2914 	if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
2915 		set_next_buddy(pse);
2916 		next_buddy_marked = 1;
2917 	}
2918 
2919 	/*
2920 	 * We can come here with TIF_NEED_RESCHED already set from new task
2921 	 * wake up path.
2922 	 *
2923 	 * Note: this also catches the edge-case of curr being in a throttled
2924 	 * group (e.g. via set_curr_task), since update_curr() (in the
2925 	 * enqueue of curr) will have resulted in resched being set.  This
2926 	 * prevents us from potentially nominating it as a false LAST_BUDDY
2927 	 * below.
2928 	 */
2929 	if (test_tsk_need_resched(curr))
2930 		return;
2931 
2932 	/* Idle tasks are by definition preempted by non-idle tasks. */
2933 	if (unlikely(curr->policy == SCHED_IDLE) &&
2934 	    likely(p->policy != SCHED_IDLE))
2935 		goto preempt;
2936 
2937 	/*
2938 	 * Batch and idle tasks do not preempt non-idle tasks (their preemption
2939 	 * is driven by the tick):
2940 	 */
2941 	if (unlikely(p->policy != SCHED_NORMAL))
2942 		return;
2943 
2944 	find_matching_se(&se, &pse);
2945 	update_curr(cfs_rq_of(se));
2946 	BUG_ON(!pse);
2947 	if (wakeup_preempt_entity(se, pse) == 1) {
2948 		/*
2949 		 * Bias pick_next to pick the sched entity that is
2950 		 * triggering this preemption.
2951 		 */
2952 		if (!next_buddy_marked)
2953 			set_next_buddy(pse);
2954 		goto preempt;
2955 	}
2956 
2957 	return;
2958 
2959 preempt:
2960 	resched_task(curr);
2961 	/*
2962 	 * Only set the backward buddy when the current task is still
2963 	 * on the rq. This can happen when a wakeup gets interleaved
2964 	 * with schedule on the ->pre_schedule() or idle_balance()
2965 	 * point, either of which can * drop the rq lock.
2966 	 *
2967 	 * Also, during early boot the idle thread is in the fair class,
2968 	 * for obvious reasons its a bad idea to schedule back to it.
2969 	 */
2970 	if (unlikely(!se->on_rq || curr == rq->idle))
2971 		return;
2972 
2973 	if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
2974 		set_last_buddy(se);
2975 }
2976 
2977 static struct task_struct *pick_next_task_fair(struct rq *rq)
2978 {
2979 	struct task_struct *p;
2980 	struct cfs_rq *cfs_rq = &rq->cfs;
2981 	struct sched_entity *se;
2982 
2983 	if (!cfs_rq->nr_running)
2984 		return NULL;
2985 
2986 	do {
2987 		se = pick_next_entity(cfs_rq);
2988 		set_next_entity(cfs_rq, se);
2989 		cfs_rq = group_cfs_rq(se);
2990 	} while (cfs_rq);
2991 
2992 	p = task_of(se);
2993 	if (hrtick_enabled(rq))
2994 		hrtick_start_fair(rq, p);
2995 
2996 	return p;
2997 }
2998 
2999 /*
3000  * Account for a descheduled task:
3001  */
3002 static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
3003 {
3004 	struct sched_entity *se = &prev->se;
3005 	struct cfs_rq *cfs_rq;
3006 
3007 	for_each_sched_entity(se) {
3008 		cfs_rq = cfs_rq_of(se);
3009 		put_prev_entity(cfs_rq, se);
3010 	}
3011 }
3012 
3013 /*
3014  * sched_yield() is very simple
3015  *
3016  * The magic of dealing with the ->skip buddy is in pick_next_entity.
3017  */
3018 static void yield_task_fair(struct rq *rq)
3019 {
3020 	struct task_struct *curr = rq->curr;
3021 	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
3022 	struct sched_entity *se = &curr->se;
3023 
3024 	/*
3025 	 * Are we the only task in the tree?
3026 	 */
3027 	if (unlikely(rq->nr_running == 1))
3028 		return;
3029 
3030 	clear_buddies(cfs_rq, se);
3031 
3032 	if (curr->policy != SCHED_BATCH) {
3033 		update_rq_clock(rq);
3034 		/*
3035 		 * Update run-time statistics of the 'current'.
3036 		 */
3037 		update_curr(cfs_rq);
3038 		/*
3039 		 * Tell update_rq_clock() that we've just updated,
3040 		 * so we don't do microscopic update in schedule()
3041 		 * and double the fastpath cost.
3042 		 */
3043 		 rq->skip_clock_update = 1;
3044 	}
3045 
3046 	set_skip_buddy(se);
3047 }
3048 
3049 static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
3050 {
3051 	struct sched_entity *se = &p->se;
3052 
3053 	/* throttled hierarchies are not runnable */
3054 	if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
3055 		return false;
3056 
3057 	/* Tell the scheduler that we'd really like pse to run next. */
3058 	set_next_buddy(se);
3059 
3060 	yield_task_fair(rq);
3061 
3062 	return true;
3063 }
3064 
3065 #ifdef CONFIG_SMP
3066 /**************************************************
3067  * Fair scheduling class load-balancing methods:
3068  */
3069 
3070 static unsigned long __read_mostly max_load_balance_interval = HZ/10;
3071 
3072 #define LBF_ALL_PINNED	0x01
3073 #define LBF_NEED_BREAK	0x02
3074 
3075 struct lb_env {
3076 	struct sched_domain	*sd;
3077 
3078 	int			src_cpu;
3079 	struct rq		*src_rq;
3080 
3081 	int			dst_cpu;
3082 	struct rq		*dst_rq;
3083 
3084 	enum cpu_idle_type	idle;
3085 	long			load_move;
3086 	unsigned int		flags;
3087 
3088 	unsigned int		loop;
3089 	unsigned int		loop_break;
3090 	unsigned int		loop_max;
3091 };
3092 
3093 /*
3094  * move_task - move a task from one runqueue to another runqueue.
3095  * Both runqueues must be locked.
3096  */
3097 static void move_task(struct task_struct *p, struct lb_env *env)
3098 {
3099 	deactivate_task(env->src_rq, p, 0);
3100 	set_task_cpu(p, env->dst_cpu);
3101 	activate_task(env->dst_rq, p, 0);
3102 	check_preempt_curr(env->dst_rq, p, 0);
3103 }
3104 
3105 /*
3106  * Is this task likely cache-hot:
3107  */
3108 static int
3109 task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
3110 {
3111 	s64 delta;
3112 
3113 	if (p->sched_class != &fair_sched_class)
3114 		return 0;
3115 
3116 	if (unlikely(p->policy == SCHED_IDLE))
3117 		return 0;
3118 
3119 	/*
3120 	 * Buddy candidates are cache hot:
3121 	 */
3122 	if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
3123 			(&p->se == cfs_rq_of(&p->se)->next ||
3124 			 &p->se == cfs_rq_of(&p->se)->last))
3125 		return 1;
3126 
3127 	if (sysctl_sched_migration_cost == -1)
3128 		return 1;
3129 	if (sysctl_sched_migration_cost == 0)
3130 		return 0;
3131 
3132 	delta = now - p->se.exec_start;
3133 
3134 	return delta < (s64)sysctl_sched_migration_cost;
3135 }
3136 
3137 /*
3138  * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
3139  */
3140 static
3141 int can_migrate_task(struct task_struct *p, struct lb_env *env)
3142 {
3143 	int tsk_cache_hot = 0;
3144 	/*
3145 	 * We do not migrate tasks that are:
3146 	 * 1) running (obviously), or
3147 	 * 2) cannot be migrated to this CPU due to cpus_allowed, or
3148 	 * 3) are cache-hot on their current CPU.
3149 	 */
3150 	if (!cpumask_test_cpu(env->dst_cpu, tsk_cpus_allowed(p))) {
3151 		schedstat_inc(p, se.statistics.nr_failed_migrations_affine);
3152 		return 0;
3153 	}
3154 	env->flags &= ~LBF_ALL_PINNED;
3155 
3156 	if (task_running(env->src_rq, p)) {
3157 		schedstat_inc(p, se.statistics.nr_failed_migrations_running);
3158 		return 0;
3159 	}
3160 
3161 	/*
3162 	 * Aggressive migration if:
3163 	 * 1) task is cache cold, or
3164 	 * 2) too many balance attempts have failed.
3165 	 */
3166 
3167 	tsk_cache_hot = task_hot(p, env->src_rq->clock_task, env->sd);
3168 	if (!tsk_cache_hot ||
3169 		env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
3170 #ifdef CONFIG_SCHEDSTATS
3171 		if (tsk_cache_hot) {
3172 			schedstat_inc(env->sd, lb_hot_gained[env->idle]);
3173 			schedstat_inc(p, se.statistics.nr_forced_migrations);
3174 		}
3175 #endif
3176 		return 1;
3177 	}
3178 
3179 	if (tsk_cache_hot) {
3180 		schedstat_inc(p, se.statistics.nr_failed_migrations_hot);
3181 		return 0;
3182 	}
3183 	return 1;
3184 }
3185 
3186 /*
3187  * move_one_task tries to move exactly one task from busiest to this_rq, as
3188  * part of active balancing operations within "domain".
3189  * Returns 1 if successful and 0 otherwise.
3190  *
3191  * Called with both runqueues locked.
3192  */
3193 static int move_one_task(struct lb_env *env)
3194 {
3195 	struct task_struct *p, *n;
3196 
3197 	list_for_each_entry_safe(p, n, &env->src_rq->cfs_tasks, se.group_node) {
3198 		if (throttled_lb_pair(task_group(p), env->src_rq->cpu, env->dst_cpu))
3199 			continue;
3200 
3201 		if (!can_migrate_task(p, env))
3202 			continue;
3203 
3204 		move_task(p, env);
3205 		/*
3206 		 * Right now, this is only the second place move_task()
3207 		 * is called, so we can safely collect move_task()
3208 		 * stats here rather than inside move_task().
3209 		 */
3210 		schedstat_inc(env->sd, lb_gained[env->idle]);
3211 		return 1;
3212 	}
3213 	return 0;
3214 }
3215 
3216 static unsigned long task_h_load(struct task_struct *p);
3217 
3218 static const unsigned int sched_nr_migrate_break = 32;
3219 
3220 /*
3221  * move_tasks tries to move up to load_move weighted load from busiest to
3222  * this_rq, as part of a balancing operation within domain "sd".
3223  * Returns 1 if successful and 0 otherwise.
3224  *
3225  * Called with both runqueues locked.
3226  */
3227 static int move_tasks(struct lb_env *env)
3228 {
3229 	struct list_head *tasks = &env->src_rq->cfs_tasks;
3230 	struct task_struct *p;
3231 	unsigned long load;
3232 	int pulled = 0;
3233 
3234 	if (env->load_move <= 0)
3235 		return 0;
3236 
3237 	while (!list_empty(tasks)) {
3238 		p = list_first_entry(tasks, struct task_struct, se.group_node);
3239 
3240 		env->loop++;
3241 		/* We've more or less seen every task there is, call it quits */
3242 		if (env->loop > env->loop_max)
3243 			break;
3244 
3245 		/* take a breather every nr_migrate tasks */
3246 		if (env->loop > env->loop_break) {
3247 			env->loop_break += sched_nr_migrate_break;
3248 			env->flags |= LBF_NEED_BREAK;
3249 			break;
3250 		}
3251 
3252 		if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
3253 			goto next;
3254 
3255 		load = task_h_load(p);
3256 
3257 		if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed)
3258 			goto next;
3259 
3260 		if ((load / 2) > env->load_move)
3261 			goto next;
3262 
3263 		if (!can_migrate_task(p, env))
3264 			goto next;
3265 
3266 		move_task(p, env);
3267 		pulled++;
3268 		env->load_move -= load;
3269 
3270 #ifdef CONFIG_PREEMPT
3271 		/*
3272 		 * NEWIDLE balancing is a source of latency, so preemptible
3273 		 * kernels will stop after the first task is pulled to minimize
3274 		 * the critical section.
3275 		 */
3276 		if (env->idle == CPU_NEWLY_IDLE)
3277 			break;
3278 #endif
3279 
3280 		/*
3281 		 * We only want to steal up to the prescribed amount of
3282 		 * weighted load.
3283 		 */
3284 		if (env->load_move <= 0)
3285 			break;
3286 
3287 		continue;
3288 next:
3289 		list_move_tail(&p->se.group_node, tasks);
3290 	}
3291 
3292 	/*
3293 	 * Right now, this is one of only two places move_task() is called,
3294 	 * so we can safely collect move_task() stats here rather than
3295 	 * inside move_task().
3296 	 */
3297 	schedstat_add(env->sd, lb_gained[env->idle], pulled);
3298 
3299 	return pulled;
3300 }
3301 
3302 #ifdef CONFIG_FAIR_GROUP_SCHED
3303 /*
3304  * update tg->load_weight by folding this cpu's load_avg
3305  */
3306 static int update_shares_cpu(struct task_group *tg, int cpu)
3307 {
3308 	struct cfs_rq *cfs_rq;
3309 	unsigned long flags;
3310 	struct rq *rq;
3311 
3312 	if (!tg->se[cpu])
3313 		return 0;
3314 
3315 	rq = cpu_rq(cpu);
3316 	cfs_rq = tg->cfs_rq[cpu];
3317 
3318 	raw_spin_lock_irqsave(&rq->lock, flags);
3319 
3320 	update_rq_clock(rq);
3321 	update_cfs_load(cfs_rq, 1);
3322 
3323 	/*
3324 	 * We need to update shares after updating tg->load_weight in
3325 	 * order to adjust the weight of groups with long running tasks.
3326 	 */
3327 	update_cfs_shares(cfs_rq);
3328 
3329 	raw_spin_unlock_irqrestore(&rq->lock, flags);
3330 
3331 	return 0;
3332 }
3333 
3334 static void update_shares(int cpu)
3335 {
3336 	struct cfs_rq *cfs_rq;
3337 	struct rq *rq = cpu_rq(cpu);
3338 
3339 	rcu_read_lock();
3340 	/*
3341 	 * Iterates the task_group tree in a bottom up fashion, see
3342 	 * list_add_leaf_cfs_rq() for details.
3343 	 */
3344 	for_each_leaf_cfs_rq(rq, cfs_rq) {
3345 		/* throttled entities do not contribute to load */
3346 		if (throttled_hierarchy(cfs_rq))
3347 			continue;
3348 
3349 		update_shares_cpu(cfs_rq->tg, cpu);
3350 	}
3351 	rcu_read_unlock();
3352 }
3353 
3354 /*
3355  * Compute the cpu's hierarchical load factor for each task group.
3356  * This needs to be done in a top-down fashion because the load of a child
3357  * group is a fraction of its parents load.
3358  */
3359 static int tg_load_down(struct task_group *tg, void *data)
3360 {
3361 	unsigned long load;
3362 	long cpu = (long)data;
3363 
3364 	if (!tg->parent) {
3365 		load = cpu_rq(cpu)->load.weight;
3366 	} else {
3367 		load = tg->parent->cfs_rq[cpu]->h_load;
3368 		load *= tg->se[cpu]->load.weight;
3369 		load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
3370 	}
3371 
3372 	tg->cfs_rq[cpu]->h_load = load;
3373 
3374 	return 0;
3375 }
3376 
3377 static void update_h_load(long cpu)
3378 {
3379 	rcu_read_lock();
3380 	walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
3381 	rcu_read_unlock();
3382 }
3383 
3384 static unsigned long task_h_load(struct task_struct *p)
3385 {
3386 	struct cfs_rq *cfs_rq = task_cfs_rq(p);
3387 	unsigned long load;
3388 
3389 	load = p->se.load.weight;
3390 	load = div_u64(load * cfs_rq->h_load, cfs_rq->load.weight + 1);
3391 
3392 	return load;
3393 }
3394 #else
3395 static inline void update_shares(int cpu)
3396 {
3397 }
3398 
3399 static inline void update_h_load(long cpu)
3400 {
3401 }
3402 
3403 static unsigned long task_h_load(struct task_struct *p)
3404 {
3405 	return p->se.load.weight;
3406 }
3407 #endif
3408 
3409 /********** Helpers for find_busiest_group ************************/
3410 /*
3411  * sd_lb_stats - Structure to store the statistics of a sched_domain
3412  * 		during load balancing.
3413  */
3414 struct sd_lb_stats {
3415 	struct sched_group *busiest; /* Busiest group in this sd */
3416 	struct sched_group *this;  /* Local group in this sd */
3417 	unsigned long total_load;  /* Total load of all groups in sd */
3418 	unsigned long total_pwr;   /*	Total power of all groups in sd */
3419 	unsigned long avg_load;	   /* Average load across all groups in sd */
3420 
3421 	/** Statistics of this group */
3422 	unsigned long this_load;
3423 	unsigned long this_load_per_task;
3424 	unsigned long this_nr_running;
3425 	unsigned long this_has_capacity;
3426 	unsigned int  this_idle_cpus;
3427 
3428 	/* Statistics of the busiest group */
3429 	unsigned int  busiest_idle_cpus;
3430 	unsigned long max_load;
3431 	unsigned long busiest_load_per_task;
3432 	unsigned long busiest_nr_running;
3433 	unsigned long busiest_group_capacity;
3434 	unsigned long busiest_has_capacity;
3435 	unsigned int  busiest_group_weight;
3436 
3437 	int group_imb; /* Is there imbalance in this sd */
3438 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3439 	int power_savings_balance; /* Is powersave balance needed for this sd */
3440 	struct sched_group *group_min; /* Least loaded group in sd */
3441 	struct sched_group *group_leader; /* Group which relieves group_min */
3442 	unsigned long min_load_per_task; /* load_per_task in group_min */
3443 	unsigned long leader_nr_running; /* Nr running of group_leader */
3444 	unsigned long min_nr_running; /* Nr running of group_min */
3445 #endif
3446 };
3447 
3448 /*
3449  * sg_lb_stats - stats of a sched_group required for load_balancing
3450  */
3451 struct sg_lb_stats {
3452 	unsigned long avg_load; /*Avg load across the CPUs of the group */
3453 	unsigned long group_load; /* Total load over the CPUs of the group */
3454 	unsigned long sum_nr_running; /* Nr tasks running in the group */
3455 	unsigned long sum_weighted_load; /* Weighted load of group's tasks */
3456 	unsigned long group_capacity;
3457 	unsigned long idle_cpus;
3458 	unsigned long group_weight;
3459 	int group_imb; /* Is there an imbalance in the group ? */
3460 	int group_has_capacity; /* Is there extra capacity in the group? */
3461 };
3462 
3463 /**
3464  * get_sd_load_idx - Obtain the load index for a given sched domain.
3465  * @sd: The sched_domain whose load_idx is to be obtained.
3466  * @idle: The Idle status of the CPU for whose sd load_icx is obtained.
3467  */
3468 static inline int get_sd_load_idx(struct sched_domain *sd,
3469 					enum cpu_idle_type idle)
3470 {
3471 	int load_idx;
3472 
3473 	switch (idle) {
3474 	case CPU_NOT_IDLE:
3475 		load_idx = sd->busy_idx;
3476 		break;
3477 
3478 	case CPU_NEWLY_IDLE:
3479 		load_idx = sd->newidle_idx;
3480 		break;
3481 	default:
3482 		load_idx = sd->idle_idx;
3483 		break;
3484 	}
3485 
3486 	return load_idx;
3487 }
3488 
3489 
3490 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3491 /**
3492  * init_sd_power_savings_stats - Initialize power savings statistics for
3493  * the given sched_domain, during load balancing.
3494  *
3495  * @sd: Sched domain whose power-savings statistics are to be initialized.
3496  * @sds: Variable containing the statistics for sd.
3497  * @idle: Idle status of the CPU at which we're performing load-balancing.
3498  */
3499 static inline void init_sd_power_savings_stats(struct sched_domain *sd,
3500 	struct sd_lb_stats *sds, enum cpu_idle_type idle)
3501 {
3502 	/*
3503 	 * Busy processors will not participate in power savings
3504 	 * balance.
3505 	 */
3506 	if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
3507 		sds->power_savings_balance = 0;
3508 	else {
3509 		sds->power_savings_balance = 1;
3510 		sds->min_nr_running = ULONG_MAX;
3511 		sds->leader_nr_running = 0;
3512 	}
3513 }
3514 
3515 /**
3516  * update_sd_power_savings_stats - Update the power saving stats for a
3517  * sched_domain while performing load balancing.
3518  *
3519  * @group: sched_group belonging to the sched_domain under consideration.
3520  * @sds: Variable containing the statistics of the sched_domain
3521  * @local_group: Does group contain the CPU for which we're performing
3522  * 		load balancing ?
3523  * @sgs: Variable containing the statistics of the group.
3524  */
3525 static inline void update_sd_power_savings_stats(struct sched_group *group,
3526 	struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
3527 {
3528 
3529 	if (!sds->power_savings_balance)
3530 		return;
3531 
3532 	/*
3533 	 * If the local group is idle or completely loaded
3534 	 * no need to do power savings balance at this domain
3535 	 */
3536 	if (local_group && (sds->this_nr_running >= sgs->group_capacity ||
3537 				!sds->this_nr_running))
3538 		sds->power_savings_balance = 0;
3539 
3540 	/*
3541 	 * If a group is already running at full capacity or idle,
3542 	 * don't include that group in power savings calculations
3543 	 */
3544 	if (!sds->power_savings_balance ||
3545 		sgs->sum_nr_running >= sgs->group_capacity ||
3546 		!sgs->sum_nr_running)
3547 		return;
3548 
3549 	/*
3550 	 * Calculate the group which has the least non-idle load.
3551 	 * This is the group from where we need to pick up the load
3552 	 * for saving power
3553 	 */
3554 	if ((sgs->sum_nr_running < sds->min_nr_running) ||
3555 	    (sgs->sum_nr_running == sds->min_nr_running &&
3556 	     group_first_cpu(group) > group_first_cpu(sds->group_min))) {
3557 		sds->group_min = group;
3558 		sds->min_nr_running = sgs->sum_nr_running;
3559 		sds->min_load_per_task = sgs->sum_weighted_load /
3560 						sgs->sum_nr_running;
3561 	}
3562 
3563 	/*
3564 	 * Calculate the group which is almost near its
3565 	 * capacity but still has some space to pick up some load
3566 	 * from other group and save more power
3567 	 */
3568 	if (sgs->sum_nr_running + 1 > sgs->group_capacity)
3569 		return;
3570 
3571 	if (sgs->sum_nr_running > sds->leader_nr_running ||
3572 	    (sgs->sum_nr_running == sds->leader_nr_running &&
3573 	     group_first_cpu(group) < group_first_cpu(sds->group_leader))) {
3574 		sds->group_leader = group;
3575 		sds->leader_nr_running = sgs->sum_nr_running;
3576 	}
3577 }
3578 
3579 /**
3580  * check_power_save_busiest_group - see if there is potential for some power-savings balance
3581  * @sds: Variable containing the statistics of the sched_domain
3582  *	under consideration.
3583  * @this_cpu: Cpu at which we're currently performing load-balancing.
3584  * @imbalance: Variable to store the imbalance.
3585  *
3586  * Description:
3587  * Check if we have potential to perform some power-savings balance.
3588  * If yes, set the busiest group to be the least loaded group in the
3589  * sched_domain, so that it's CPUs can be put to idle.
3590  *
3591  * Returns 1 if there is potential to perform power-savings balance.
3592  * Else returns 0.
3593  */
3594 static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
3595 					int this_cpu, unsigned long *imbalance)
3596 {
3597 	if (!sds->power_savings_balance)
3598 		return 0;
3599 
3600 	if (sds->this != sds->group_leader ||
3601 			sds->group_leader == sds->group_min)
3602 		return 0;
3603 
3604 	*imbalance = sds->min_load_per_task;
3605 	sds->busiest = sds->group_min;
3606 
3607 	return 1;
3608 
3609 }
3610 #else /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
3611 static inline void init_sd_power_savings_stats(struct sched_domain *sd,
3612 	struct sd_lb_stats *sds, enum cpu_idle_type idle)
3613 {
3614 	return;
3615 }
3616 
3617 static inline void update_sd_power_savings_stats(struct sched_group *group,
3618 	struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
3619 {
3620 	return;
3621 }
3622 
3623 static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
3624 					int this_cpu, unsigned long *imbalance)
3625 {
3626 	return 0;
3627 }
3628 #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
3629 
3630 
3631 unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu)
3632 {
3633 	return SCHED_POWER_SCALE;
3634 }
3635 
3636 unsigned long __weak arch_scale_freq_power(struct sched_domain *sd, int cpu)
3637 {
3638 	return default_scale_freq_power(sd, cpu);
3639 }
3640 
3641 unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu)
3642 {
3643 	unsigned long weight = sd->span_weight;
3644 	unsigned long smt_gain = sd->smt_gain;
3645 
3646 	smt_gain /= weight;
3647 
3648 	return smt_gain;
3649 }
3650 
3651 unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu)
3652 {
3653 	return default_scale_smt_power(sd, cpu);
3654 }
3655 
3656 unsigned long scale_rt_power(int cpu)
3657 {
3658 	struct rq *rq = cpu_rq(cpu);
3659 	u64 total, available;
3660 
3661 	total = sched_avg_period() + (rq->clock - rq->age_stamp);
3662 
3663 	if (unlikely(total < rq->rt_avg)) {
3664 		/* Ensures that power won't end up being negative */
3665 		available = 0;
3666 	} else {
3667 		available = total - rq->rt_avg;
3668 	}
3669 
3670 	if (unlikely((s64)total < SCHED_POWER_SCALE))
3671 		total = SCHED_POWER_SCALE;
3672 
3673 	total >>= SCHED_POWER_SHIFT;
3674 
3675 	return div_u64(available, total);
3676 }
3677 
3678 static void update_cpu_power(struct sched_domain *sd, int cpu)
3679 {
3680 	unsigned long weight = sd->span_weight;
3681 	unsigned long power = SCHED_POWER_SCALE;
3682 	struct sched_group *sdg = sd->groups;
3683 
3684 	if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
3685 		if (sched_feat(ARCH_POWER))
3686 			power *= arch_scale_smt_power(sd, cpu);
3687 		else
3688 			power *= default_scale_smt_power(sd, cpu);
3689 
3690 		power >>= SCHED_POWER_SHIFT;
3691 	}
3692 
3693 	sdg->sgp->power_orig = power;
3694 
3695 	if (sched_feat(ARCH_POWER))
3696 		power *= arch_scale_freq_power(sd, cpu);
3697 	else
3698 		power *= default_scale_freq_power(sd, cpu);
3699 
3700 	power >>= SCHED_POWER_SHIFT;
3701 
3702 	power *= scale_rt_power(cpu);
3703 	power >>= SCHED_POWER_SHIFT;
3704 
3705 	if (!power)
3706 		power = 1;
3707 
3708 	cpu_rq(cpu)->cpu_power = power;
3709 	sdg->sgp->power = power;
3710 }
3711 
3712 void update_group_power(struct sched_domain *sd, int cpu)
3713 {
3714 	struct sched_domain *child = sd->child;
3715 	struct sched_group *group, *sdg = sd->groups;
3716 	unsigned long power;
3717 	unsigned long interval;
3718 
3719 	interval = msecs_to_jiffies(sd->balance_interval);
3720 	interval = clamp(interval, 1UL, max_load_balance_interval);
3721 	sdg->sgp->next_update = jiffies + interval;
3722 
3723 	if (!child) {
3724 		update_cpu_power(sd, cpu);
3725 		return;
3726 	}
3727 
3728 	power = 0;
3729 
3730 	group = child->groups;
3731 	do {
3732 		power += group->sgp->power;
3733 		group = group->next;
3734 	} while (group != child->groups);
3735 
3736 	sdg->sgp->power = power;
3737 }
3738 
3739 /*
3740  * Try and fix up capacity for tiny siblings, this is needed when
3741  * things like SD_ASYM_PACKING need f_b_g to select another sibling
3742  * which on its own isn't powerful enough.
3743  *
3744  * See update_sd_pick_busiest() and check_asym_packing().
3745  */
3746 static inline int
3747 fix_small_capacity(struct sched_domain *sd, struct sched_group *group)
3748 {
3749 	/*
3750 	 * Only siblings can have significantly less than SCHED_POWER_SCALE
3751 	 */
3752 	if (!(sd->flags & SD_SHARE_CPUPOWER))
3753 		return 0;
3754 
3755 	/*
3756 	 * If ~90% of the cpu_power is still there, we're good.
3757 	 */
3758 	if (group->sgp->power * 32 > group->sgp->power_orig * 29)
3759 		return 1;
3760 
3761 	return 0;
3762 }
3763 
3764 /**
3765  * update_sg_lb_stats - Update sched_group's statistics for load balancing.
3766  * @sd: The sched_domain whose statistics are to be updated.
3767  * @group: sched_group whose statistics are to be updated.
3768  * @this_cpu: Cpu for which load balance is currently performed.
3769  * @idle: Idle status of this_cpu
3770  * @load_idx: Load index of sched_domain of this_cpu for load calc.
3771  * @local_group: Does group contain this_cpu.
3772  * @cpus: Set of cpus considered for load balancing.
3773  * @balance: Should we balance.
3774  * @sgs: variable to hold the statistics for this group.
3775  */
3776 static inline void update_sg_lb_stats(struct sched_domain *sd,
3777 			struct sched_group *group, int this_cpu,
3778 			enum cpu_idle_type idle, int load_idx,
3779 			int local_group, const struct cpumask *cpus,
3780 			int *balance, struct sg_lb_stats *sgs)
3781 {
3782 	unsigned long load, max_cpu_load, min_cpu_load, max_nr_running;
3783 	int i;
3784 	unsigned int balance_cpu = -1, first_idle_cpu = 0;
3785 	unsigned long avg_load_per_task = 0;
3786 
3787 	if (local_group)
3788 		balance_cpu = group_first_cpu(group);
3789 
3790 	/* Tally up the load of all CPUs in the group */
3791 	max_cpu_load = 0;
3792 	min_cpu_load = ~0UL;
3793 	max_nr_running = 0;
3794 
3795 	for_each_cpu_and(i, sched_group_cpus(group), cpus) {
3796 		struct rq *rq = cpu_rq(i);
3797 
3798 		/* Bias balancing toward cpus of our domain */
3799 		if (local_group) {
3800 			if (idle_cpu(i) && !first_idle_cpu) {
3801 				first_idle_cpu = 1;
3802 				balance_cpu = i;
3803 			}
3804 
3805 			load = target_load(i, load_idx);
3806 		} else {
3807 			load = source_load(i, load_idx);
3808 			if (load > max_cpu_load) {
3809 				max_cpu_load = load;
3810 				max_nr_running = rq->nr_running;
3811 			}
3812 			if (min_cpu_load > load)
3813 				min_cpu_load = load;
3814 		}
3815 
3816 		sgs->group_load += load;
3817 		sgs->sum_nr_running += rq->nr_running;
3818 		sgs->sum_weighted_load += weighted_cpuload(i);
3819 		if (idle_cpu(i))
3820 			sgs->idle_cpus++;
3821 	}
3822 
3823 	/*
3824 	 * First idle cpu or the first cpu(busiest) in this sched group
3825 	 * is eligible for doing load balancing at this and above
3826 	 * domains. In the newly idle case, we will allow all the cpu's
3827 	 * to do the newly idle load balance.
3828 	 */
3829 	if (local_group) {
3830 		if (idle != CPU_NEWLY_IDLE) {
3831 			if (balance_cpu != this_cpu) {
3832 				*balance = 0;
3833 				return;
3834 			}
3835 			update_group_power(sd, this_cpu);
3836 		} else if (time_after_eq(jiffies, group->sgp->next_update))
3837 			update_group_power(sd, this_cpu);
3838 	}
3839 
3840 	/* Adjust by relative CPU power of the group */
3841 	sgs->avg_load = (sgs->group_load*SCHED_POWER_SCALE) / group->sgp->power;
3842 
3843 	/*
3844 	 * Consider the group unbalanced when the imbalance is larger
3845 	 * than the average weight of a task.
3846 	 *
3847 	 * APZ: with cgroup the avg task weight can vary wildly and
3848 	 *      might not be a suitable number - should we keep a
3849 	 *      normalized nr_running number somewhere that negates
3850 	 *      the hierarchy?
3851 	 */
3852 	if (sgs->sum_nr_running)
3853 		avg_load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
3854 
3855 	if ((max_cpu_load - min_cpu_load) >= avg_load_per_task && max_nr_running > 1)
3856 		sgs->group_imb = 1;
3857 
3858 	sgs->group_capacity = DIV_ROUND_CLOSEST(group->sgp->power,
3859 						SCHED_POWER_SCALE);
3860 	if (!sgs->group_capacity)
3861 		sgs->group_capacity = fix_small_capacity(sd, group);
3862 	sgs->group_weight = group->group_weight;
3863 
3864 	if (sgs->group_capacity > sgs->sum_nr_running)
3865 		sgs->group_has_capacity = 1;
3866 }
3867 
3868 /**
3869  * update_sd_pick_busiest - return 1 on busiest group
3870  * @sd: sched_domain whose statistics are to be checked
3871  * @sds: sched_domain statistics
3872  * @sg: sched_group candidate to be checked for being the busiest
3873  * @sgs: sched_group statistics
3874  * @this_cpu: the current cpu
3875  *
3876  * Determine if @sg is a busier group than the previously selected
3877  * busiest group.
3878  */
3879 static bool update_sd_pick_busiest(struct sched_domain *sd,
3880 				   struct sd_lb_stats *sds,
3881 				   struct sched_group *sg,
3882 				   struct sg_lb_stats *sgs,
3883 				   int this_cpu)
3884 {
3885 	if (sgs->avg_load <= sds->max_load)
3886 		return false;
3887 
3888 	if (sgs->sum_nr_running > sgs->group_capacity)
3889 		return true;
3890 
3891 	if (sgs->group_imb)
3892 		return true;
3893 
3894 	/*
3895 	 * ASYM_PACKING needs to move all the work to the lowest
3896 	 * numbered CPUs in the group, therefore mark all groups
3897 	 * higher than ourself as busy.
3898 	 */
3899 	if ((sd->flags & SD_ASYM_PACKING) && sgs->sum_nr_running &&
3900 	    this_cpu < group_first_cpu(sg)) {
3901 		if (!sds->busiest)
3902 			return true;
3903 
3904 		if (group_first_cpu(sds->busiest) > group_first_cpu(sg))
3905 			return true;
3906 	}
3907 
3908 	return false;
3909 }
3910 
3911 /**
3912  * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
3913  * @sd: sched_domain whose statistics are to be updated.
3914  * @this_cpu: Cpu for which load balance is currently performed.
3915  * @idle: Idle status of this_cpu
3916  * @cpus: Set of cpus considered for load balancing.
3917  * @balance: Should we balance.
3918  * @sds: variable to hold the statistics for this sched_domain.
3919  */
3920 static inline void update_sd_lb_stats(struct sched_domain *sd, int this_cpu,
3921 			enum cpu_idle_type idle, const struct cpumask *cpus,
3922 			int *balance, struct sd_lb_stats *sds)
3923 {
3924 	struct sched_domain *child = sd->child;
3925 	struct sched_group *sg = sd->groups;
3926 	struct sg_lb_stats sgs;
3927 	int load_idx, prefer_sibling = 0;
3928 
3929 	if (child && child->flags & SD_PREFER_SIBLING)
3930 		prefer_sibling = 1;
3931 
3932 	init_sd_power_savings_stats(sd, sds, idle);
3933 	load_idx = get_sd_load_idx(sd, idle);
3934 
3935 	do {
3936 		int local_group;
3937 
3938 		local_group = cpumask_test_cpu(this_cpu, sched_group_cpus(sg));
3939 		memset(&sgs, 0, sizeof(sgs));
3940 		update_sg_lb_stats(sd, sg, this_cpu, idle, load_idx,
3941 				local_group, cpus, balance, &sgs);
3942 
3943 		if (local_group && !(*balance))
3944 			return;
3945 
3946 		sds->total_load += sgs.group_load;
3947 		sds->total_pwr += sg->sgp->power;
3948 
3949 		/*
3950 		 * In case the child domain prefers tasks go to siblings
3951 		 * first, lower the sg capacity to one so that we'll try
3952 		 * and move all the excess tasks away. We lower the capacity
3953 		 * of a group only if the local group has the capacity to fit
3954 		 * these excess tasks, i.e. nr_running < group_capacity. The
3955 		 * extra check prevents the case where you always pull from the
3956 		 * heaviest group when it is already under-utilized (possible
3957 		 * with a large weight task outweighs the tasks on the system).
3958 		 */
3959 		if (prefer_sibling && !local_group && sds->this_has_capacity)
3960 			sgs.group_capacity = min(sgs.group_capacity, 1UL);
3961 
3962 		if (local_group) {
3963 			sds->this_load = sgs.avg_load;
3964 			sds->this = sg;
3965 			sds->this_nr_running = sgs.sum_nr_running;
3966 			sds->this_load_per_task = sgs.sum_weighted_load;
3967 			sds->this_has_capacity = sgs.group_has_capacity;
3968 			sds->this_idle_cpus = sgs.idle_cpus;
3969 		} else if (update_sd_pick_busiest(sd, sds, sg, &sgs, this_cpu)) {
3970 			sds->max_load = sgs.avg_load;
3971 			sds->busiest = sg;
3972 			sds->busiest_nr_running = sgs.sum_nr_running;
3973 			sds->busiest_idle_cpus = sgs.idle_cpus;
3974 			sds->busiest_group_capacity = sgs.group_capacity;
3975 			sds->busiest_load_per_task = sgs.sum_weighted_load;
3976 			sds->busiest_has_capacity = sgs.group_has_capacity;
3977 			sds->busiest_group_weight = sgs.group_weight;
3978 			sds->group_imb = sgs.group_imb;
3979 		}
3980 
3981 		update_sd_power_savings_stats(sg, sds, local_group, &sgs);
3982 		sg = sg->next;
3983 	} while (sg != sd->groups);
3984 }
3985 
3986 /**
3987  * check_asym_packing - Check to see if the group is packed into the
3988  *			sched doman.
3989  *
3990  * This is primarily intended to used at the sibling level.  Some
3991  * cores like POWER7 prefer to use lower numbered SMT threads.  In the
3992  * case of POWER7, it can move to lower SMT modes only when higher
3993  * threads are idle.  When in lower SMT modes, the threads will
3994  * perform better since they share less core resources.  Hence when we
3995  * have idle threads, we want them to be the higher ones.
3996  *
3997  * This packing function is run on idle threads.  It checks to see if
3998  * the busiest CPU in this domain (core in the P7 case) has a higher
3999  * CPU number than the packing function is being run on.  Here we are
4000  * assuming lower CPU number will be equivalent to lower a SMT thread
4001  * number.
4002  *
4003  * Returns 1 when packing is required and a task should be moved to
4004  * this CPU.  The amount of the imbalance is returned in *imbalance.
4005  *
4006  * @sd: The sched_domain whose packing is to be checked.
4007  * @sds: Statistics of the sched_domain which is to be packed
4008  * @this_cpu: The cpu at whose sched_domain we're performing load-balance.
4009  * @imbalance: returns amount of imbalanced due to packing.
4010  */
4011 static int check_asym_packing(struct sched_domain *sd,
4012 			      struct sd_lb_stats *sds,
4013 			      int this_cpu, unsigned long *imbalance)
4014 {
4015 	int busiest_cpu;
4016 
4017 	if (!(sd->flags & SD_ASYM_PACKING))
4018 		return 0;
4019 
4020 	if (!sds->busiest)
4021 		return 0;
4022 
4023 	busiest_cpu = group_first_cpu(sds->busiest);
4024 	if (this_cpu > busiest_cpu)
4025 		return 0;
4026 
4027 	*imbalance = DIV_ROUND_CLOSEST(sds->max_load * sds->busiest->sgp->power,
4028 				       SCHED_POWER_SCALE);
4029 	return 1;
4030 }
4031 
4032 /**
4033  * fix_small_imbalance - Calculate the minor imbalance that exists
4034  *			amongst the groups of a sched_domain, during
4035  *			load balancing.
4036  * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
4037  * @this_cpu: The cpu at whose sched_domain we're performing load-balance.
4038  * @imbalance: Variable to store the imbalance.
4039  */
4040 static inline void fix_small_imbalance(struct sd_lb_stats *sds,
4041 				int this_cpu, unsigned long *imbalance)
4042 {
4043 	unsigned long tmp, pwr_now = 0, pwr_move = 0;
4044 	unsigned int imbn = 2;
4045 	unsigned long scaled_busy_load_per_task;
4046 
4047 	if (sds->this_nr_running) {
4048 		sds->this_load_per_task /= sds->this_nr_running;
4049 		if (sds->busiest_load_per_task >
4050 				sds->this_load_per_task)
4051 			imbn = 1;
4052 	} else
4053 		sds->this_load_per_task =
4054 			cpu_avg_load_per_task(this_cpu);
4055 
4056 	scaled_busy_load_per_task = sds->busiest_load_per_task
4057 					 * SCHED_POWER_SCALE;
4058 	scaled_busy_load_per_task /= sds->busiest->sgp->power;
4059 
4060 	if (sds->max_load - sds->this_load + scaled_busy_load_per_task >=
4061 			(scaled_busy_load_per_task * imbn)) {
4062 		*imbalance = sds->busiest_load_per_task;
4063 		return;
4064 	}
4065 
4066 	/*
4067 	 * OK, we don't have enough imbalance to justify moving tasks,
4068 	 * however we may be able to increase total CPU power used by
4069 	 * moving them.
4070 	 */
4071 
4072 	pwr_now += sds->busiest->sgp->power *
4073 			min(sds->busiest_load_per_task, sds->max_load);
4074 	pwr_now += sds->this->sgp->power *
4075 			min(sds->this_load_per_task, sds->this_load);
4076 	pwr_now /= SCHED_POWER_SCALE;
4077 
4078 	/* Amount of load we'd subtract */
4079 	tmp = (sds->busiest_load_per_task * SCHED_POWER_SCALE) /
4080 		sds->busiest->sgp->power;
4081 	if (sds->max_load > tmp)
4082 		pwr_move += sds->busiest->sgp->power *
4083 			min(sds->busiest_load_per_task, sds->max_load - tmp);
4084 
4085 	/* Amount of load we'd add */
4086 	if (sds->max_load * sds->busiest->sgp->power <
4087 		sds->busiest_load_per_task * SCHED_POWER_SCALE)
4088 		tmp = (sds->max_load * sds->busiest->sgp->power) /
4089 			sds->this->sgp->power;
4090 	else
4091 		tmp = (sds->busiest_load_per_task * SCHED_POWER_SCALE) /
4092 			sds->this->sgp->power;
4093 	pwr_move += sds->this->sgp->power *
4094 			min(sds->this_load_per_task, sds->this_load + tmp);
4095 	pwr_move /= SCHED_POWER_SCALE;
4096 
4097 	/* Move if we gain throughput */
4098 	if (pwr_move > pwr_now)
4099 		*imbalance = sds->busiest_load_per_task;
4100 }
4101 
4102 /**
4103  * calculate_imbalance - Calculate the amount of imbalance present within the
4104  *			 groups of a given sched_domain during load balance.
4105  * @sds: statistics of the sched_domain whose imbalance is to be calculated.
4106  * @this_cpu: Cpu for which currently load balance is being performed.
4107  * @imbalance: The variable to store the imbalance.
4108  */
4109 static inline void calculate_imbalance(struct sd_lb_stats *sds, int this_cpu,
4110 		unsigned long *imbalance)
4111 {
4112 	unsigned long max_pull, load_above_capacity = ~0UL;
4113 
4114 	sds->busiest_load_per_task /= sds->busiest_nr_running;
4115 	if (sds->group_imb) {
4116 		sds->busiest_load_per_task =
4117 			min(sds->busiest_load_per_task, sds->avg_load);
4118 	}
4119 
4120 	/*
4121 	 * In the presence of smp nice balancing, certain scenarios can have
4122 	 * max load less than avg load(as we skip the groups at or below
4123 	 * its cpu_power, while calculating max_load..)
4124 	 */
4125 	if (sds->max_load < sds->avg_load) {
4126 		*imbalance = 0;
4127 		return fix_small_imbalance(sds, this_cpu, imbalance);
4128 	}
4129 
4130 	if (!sds->group_imb) {
4131 		/*
4132 		 * Don't want to pull so many tasks that a group would go idle.
4133 		 */
4134 		load_above_capacity = (sds->busiest_nr_running -
4135 						sds->busiest_group_capacity);
4136 
4137 		load_above_capacity *= (SCHED_LOAD_SCALE * SCHED_POWER_SCALE);
4138 
4139 		load_above_capacity /= sds->busiest->sgp->power;
4140 	}
4141 
4142 	/*
4143 	 * We're trying to get all the cpus to the average_load, so we don't
4144 	 * want to push ourselves above the average load, nor do we wish to
4145 	 * reduce the max loaded cpu below the average load. At the same time,
4146 	 * we also don't want to reduce the group load below the group capacity
4147 	 * (so that we can implement power-savings policies etc). Thus we look
4148 	 * for the minimum possible imbalance.
4149 	 * Be careful of negative numbers as they'll appear as very large values
4150 	 * with unsigned longs.
4151 	 */
4152 	max_pull = min(sds->max_load - sds->avg_load, load_above_capacity);
4153 
4154 	/* How much load to actually move to equalise the imbalance */
4155 	*imbalance = min(max_pull * sds->busiest->sgp->power,
4156 		(sds->avg_load - sds->this_load) * sds->this->sgp->power)
4157 			/ SCHED_POWER_SCALE;
4158 
4159 	/*
4160 	 * if *imbalance is less than the average load per runnable task
4161 	 * there is no guarantee that any tasks will be moved so we'll have
4162 	 * a think about bumping its value to force at least one task to be
4163 	 * moved
4164 	 */
4165 	if (*imbalance < sds->busiest_load_per_task)
4166 		return fix_small_imbalance(sds, this_cpu, imbalance);
4167 
4168 }
4169 
4170 /******* find_busiest_group() helpers end here *********************/
4171 
4172 /**
4173  * find_busiest_group - Returns the busiest group within the sched_domain
4174  * if there is an imbalance. If there isn't an imbalance, and
4175  * the user has opted for power-savings, it returns a group whose
4176  * CPUs can be put to idle by rebalancing those tasks elsewhere, if
4177  * such a group exists.
4178  *
4179  * Also calculates the amount of weighted load which should be moved
4180  * to restore balance.
4181  *
4182  * @sd: The sched_domain whose busiest group is to be returned.
4183  * @this_cpu: The cpu for which load balancing is currently being performed.
4184  * @imbalance: Variable which stores amount of weighted load which should
4185  *		be moved to restore balance/put a group to idle.
4186  * @idle: The idle status of this_cpu.
4187  * @cpus: The set of CPUs under consideration for load-balancing.
4188  * @balance: Pointer to a variable indicating if this_cpu
4189  *	is the appropriate cpu to perform load balancing at this_level.
4190  *
4191  * Returns:	- the busiest group if imbalance exists.
4192  *		- If no imbalance and user has opted for power-savings balance,
4193  *		   return the least loaded group whose CPUs can be
4194  *		   put to idle by rebalancing its tasks onto our group.
4195  */
4196 static struct sched_group *
4197 find_busiest_group(struct sched_domain *sd, int this_cpu,
4198 		   unsigned long *imbalance, enum cpu_idle_type idle,
4199 		   const struct cpumask *cpus, int *balance)
4200 {
4201 	struct sd_lb_stats sds;
4202 
4203 	memset(&sds, 0, sizeof(sds));
4204 
4205 	/*
4206 	 * Compute the various statistics relavent for load balancing at
4207 	 * this level.
4208 	 */
4209 	update_sd_lb_stats(sd, this_cpu, idle, cpus, balance, &sds);
4210 
4211 	/*
4212 	 * this_cpu is not the appropriate cpu to perform load balancing at
4213 	 * this level.
4214 	 */
4215 	if (!(*balance))
4216 		goto ret;
4217 
4218 	if ((idle == CPU_IDLE || idle == CPU_NEWLY_IDLE) &&
4219 	    check_asym_packing(sd, &sds, this_cpu, imbalance))
4220 		return sds.busiest;
4221 
4222 	/* There is no busy sibling group to pull tasks from */
4223 	if (!sds.busiest || sds.busiest_nr_running == 0)
4224 		goto out_balanced;
4225 
4226 	sds.avg_load = (SCHED_POWER_SCALE * sds.total_load) / sds.total_pwr;
4227 
4228 	/*
4229 	 * If the busiest group is imbalanced the below checks don't
4230 	 * work because they assumes all things are equal, which typically
4231 	 * isn't true due to cpus_allowed constraints and the like.
4232 	 */
4233 	if (sds.group_imb)
4234 		goto force_balance;
4235 
4236 	/* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
4237 	if (idle == CPU_NEWLY_IDLE && sds.this_has_capacity &&
4238 			!sds.busiest_has_capacity)
4239 		goto force_balance;
4240 
4241 	/*
4242 	 * If the local group is more busy than the selected busiest group
4243 	 * don't try and pull any tasks.
4244 	 */
4245 	if (sds.this_load >= sds.max_load)
4246 		goto out_balanced;
4247 
4248 	/*
4249 	 * Don't pull any tasks if this group is already above the domain
4250 	 * average load.
4251 	 */
4252 	if (sds.this_load >= sds.avg_load)
4253 		goto out_balanced;
4254 
4255 	if (idle == CPU_IDLE) {
4256 		/*
4257 		 * This cpu is idle. If the busiest group load doesn't
4258 		 * have more tasks than the number of available cpu's and
4259 		 * there is no imbalance between this and busiest group
4260 		 * wrt to idle cpu's, it is balanced.
4261 		 */
4262 		if ((sds.this_idle_cpus <= sds.busiest_idle_cpus + 1) &&
4263 		    sds.busiest_nr_running <= sds.busiest_group_weight)
4264 			goto out_balanced;
4265 	} else {
4266 		/*
4267 		 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
4268 		 * imbalance_pct to be conservative.
4269 		 */
4270 		if (100 * sds.max_load <= sd->imbalance_pct * sds.this_load)
4271 			goto out_balanced;
4272 	}
4273 
4274 force_balance:
4275 	/* Looks like there is an imbalance. Compute it */
4276 	calculate_imbalance(&sds, this_cpu, imbalance);
4277 	return sds.busiest;
4278 
4279 out_balanced:
4280 	/*
4281 	 * There is no obvious imbalance. But check if we can do some balancing
4282 	 * to save power.
4283 	 */
4284 	if (check_power_save_busiest_group(&sds, this_cpu, imbalance))
4285 		return sds.busiest;
4286 ret:
4287 	*imbalance = 0;
4288 	return NULL;
4289 }
4290 
4291 /*
4292  * find_busiest_queue - find the busiest runqueue among the cpus in group.
4293  */
4294 static struct rq *
4295 find_busiest_queue(struct sched_domain *sd, struct sched_group *group,
4296 		   enum cpu_idle_type idle, unsigned long imbalance,
4297 		   const struct cpumask *cpus)
4298 {
4299 	struct rq *busiest = NULL, *rq;
4300 	unsigned long max_load = 0;
4301 	int i;
4302 
4303 	for_each_cpu(i, sched_group_cpus(group)) {
4304 		unsigned long power = power_of(i);
4305 		unsigned long capacity = DIV_ROUND_CLOSEST(power,
4306 							   SCHED_POWER_SCALE);
4307 		unsigned long wl;
4308 
4309 		if (!capacity)
4310 			capacity = fix_small_capacity(sd, group);
4311 
4312 		if (!cpumask_test_cpu(i, cpus))
4313 			continue;
4314 
4315 		rq = cpu_rq(i);
4316 		wl = weighted_cpuload(i);
4317 
4318 		/*
4319 		 * When comparing with imbalance, use weighted_cpuload()
4320 		 * which is not scaled with the cpu power.
4321 		 */
4322 		if (capacity && rq->nr_running == 1 && wl > imbalance)
4323 			continue;
4324 
4325 		/*
4326 		 * For the load comparisons with the other cpu's, consider
4327 		 * the weighted_cpuload() scaled with the cpu power, so that
4328 		 * the load can be moved away from the cpu that is potentially
4329 		 * running at a lower capacity.
4330 		 */
4331 		wl = (wl * SCHED_POWER_SCALE) / power;
4332 
4333 		if (wl > max_load) {
4334 			max_load = wl;
4335 			busiest = rq;
4336 		}
4337 	}
4338 
4339 	return busiest;
4340 }
4341 
4342 /*
4343  * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
4344  * so long as it is large enough.
4345  */
4346 #define MAX_PINNED_INTERVAL	512
4347 
4348 /* Working cpumask for load_balance and load_balance_newidle. */
4349 DEFINE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
4350 
4351 static int need_active_balance(struct sched_domain *sd, int idle,
4352 			       int busiest_cpu, int this_cpu)
4353 {
4354 	if (idle == CPU_NEWLY_IDLE) {
4355 
4356 		/*
4357 		 * ASYM_PACKING needs to force migrate tasks from busy but
4358 		 * higher numbered CPUs in order to pack all tasks in the
4359 		 * lowest numbered CPUs.
4360 		 */
4361 		if ((sd->flags & SD_ASYM_PACKING) && busiest_cpu > this_cpu)
4362 			return 1;
4363 
4364 		/*
4365 		 * The only task running in a non-idle cpu can be moved to this
4366 		 * cpu in an attempt to completely freeup the other CPU
4367 		 * package.
4368 		 *
4369 		 * The package power saving logic comes from
4370 		 * find_busiest_group(). If there are no imbalance, then
4371 		 * f_b_g() will return NULL. However when sched_mc={1,2} then
4372 		 * f_b_g() will select a group from which a running task may be
4373 		 * pulled to this cpu in order to make the other package idle.
4374 		 * If there is no opportunity to make a package idle and if
4375 		 * there are no imbalance, then f_b_g() will return NULL and no
4376 		 * action will be taken in load_balance_newidle().
4377 		 *
4378 		 * Under normal task pull operation due to imbalance, there
4379 		 * will be more than one task in the source run queue and
4380 		 * move_tasks() will succeed.  ld_moved will be true and this
4381 		 * active balance code will not be triggered.
4382 		 */
4383 		if (sched_mc_power_savings < POWERSAVINGS_BALANCE_WAKEUP)
4384 			return 0;
4385 	}
4386 
4387 	return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
4388 }
4389 
4390 static int active_load_balance_cpu_stop(void *data);
4391 
4392 /*
4393  * Check this_cpu to ensure it is balanced within domain. Attempt to move
4394  * tasks if there is an imbalance.
4395  */
4396 static int load_balance(int this_cpu, struct rq *this_rq,
4397 			struct sched_domain *sd, enum cpu_idle_type idle,
4398 			int *balance)
4399 {
4400 	int ld_moved, active_balance = 0;
4401 	struct sched_group *group;
4402 	unsigned long imbalance;
4403 	struct rq *busiest;
4404 	unsigned long flags;
4405 	struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
4406 
4407 	struct lb_env env = {
4408 		.sd		= sd,
4409 		.dst_cpu	= this_cpu,
4410 		.dst_rq		= this_rq,
4411 		.idle		= idle,
4412 		.loop_break	= sched_nr_migrate_break,
4413 	};
4414 
4415 	cpumask_copy(cpus, cpu_active_mask);
4416 
4417 	schedstat_inc(sd, lb_count[idle]);
4418 
4419 redo:
4420 	group = find_busiest_group(sd, this_cpu, &imbalance, idle,
4421 				   cpus, balance);
4422 
4423 	if (*balance == 0)
4424 		goto out_balanced;
4425 
4426 	if (!group) {
4427 		schedstat_inc(sd, lb_nobusyg[idle]);
4428 		goto out_balanced;
4429 	}
4430 
4431 	busiest = find_busiest_queue(sd, group, idle, imbalance, cpus);
4432 	if (!busiest) {
4433 		schedstat_inc(sd, lb_nobusyq[idle]);
4434 		goto out_balanced;
4435 	}
4436 
4437 	BUG_ON(busiest == this_rq);
4438 
4439 	schedstat_add(sd, lb_imbalance[idle], imbalance);
4440 
4441 	ld_moved = 0;
4442 	if (busiest->nr_running > 1) {
4443 		/*
4444 		 * Attempt to move tasks. If find_busiest_group has found
4445 		 * an imbalance but busiest->nr_running <= 1, the group is
4446 		 * still unbalanced. ld_moved simply stays zero, so it is
4447 		 * correctly treated as an imbalance.
4448 		 */
4449 		env.flags |= LBF_ALL_PINNED;
4450 		env.load_move	= imbalance;
4451 		env.src_cpu	= busiest->cpu;
4452 		env.src_rq	= busiest;
4453 		env.loop_max	= min_t(unsigned long, sysctl_sched_nr_migrate, busiest->nr_running);
4454 
4455 more_balance:
4456 		local_irq_save(flags);
4457 		double_rq_lock(this_rq, busiest);
4458 		if (!env.loop)
4459 			update_h_load(env.src_cpu);
4460 		ld_moved += move_tasks(&env);
4461 		double_rq_unlock(this_rq, busiest);
4462 		local_irq_restore(flags);
4463 
4464 		if (env.flags & LBF_NEED_BREAK) {
4465 			env.flags &= ~LBF_NEED_BREAK;
4466 			goto more_balance;
4467 		}
4468 
4469 		/*
4470 		 * some other cpu did the load balance for us.
4471 		 */
4472 		if (ld_moved && this_cpu != smp_processor_id())
4473 			resched_cpu(this_cpu);
4474 
4475 		/* All tasks on this runqueue were pinned by CPU affinity */
4476 		if (unlikely(env.flags & LBF_ALL_PINNED)) {
4477 			cpumask_clear_cpu(cpu_of(busiest), cpus);
4478 			if (!cpumask_empty(cpus))
4479 				goto redo;
4480 			goto out_balanced;
4481 		}
4482 	}
4483 
4484 	if (!ld_moved) {
4485 		schedstat_inc(sd, lb_failed[idle]);
4486 		/*
4487 		 * Increment the failure counter only on periodic balance.
4488 		 * We do not want newidle balance, which can be very
4489 		 * frequent, pollute the failure counter causing
4490 		 * excessive cache_hot migrations and active balances.
4491 		 */
4492 		if (idle != CPU_NEWLY_IDLE)
4493 			sd->nr_balance_failed++;
4494 
4495 		if (need_active_balance(sd, idle, cpu_of(busiest), this_cpu)) {
4496 			raw_spin_lock_irqsave(&busiest->lock, flags);
4497 
4498 			/* don't kick the active_load_balance_cpu_stop,
4499 			 * if the curr task on busiest cpu can't be
4500 			 * moved to this_cpu
4501 			 */
4502 			if (!cpumask_test_cpu(this_cpu,
4503 					tsk_cpus_allowed(busiest->curr))) {
4504 				raw_spin_unlock_irqrestore(&busiest->lock,
4505 							    flags);
4506 				env.flags |= LBF_ALL_PINNED;
4507 				goto out_one_pinned;
4508 			}
4509 
4510 			/*
4511 			 * ->active_balance synchronizes accesses to
4512 			 * ->active_balance_work.  Once set, it's cleared
4513 			 * only after active load balance is finished.
4514 			 */
4515 			if (!busiest->active_balance) {
4516 				busiest->active_balance = 1;
4517 				busiest->push_cpu = this_cpu;
4518 				active_balance = 1;
4519 			}
4520 			raw_spin_unlock_irqrestore(&busiest->lock, flags);
4521 
4522 			if (active_balance)
4523 				stop_one_cpu_nowait(cpu_of(busiest),
4524 					active_load_balance_cpu_stop, busiest,
4525 					&busiest->active_balance_work);
4526 
4527 			/*
4528 			 * We've kicked active balancing, reset the failure
4529 			 * counter.
4530 			 */
4531 			sd->nr_balance_failed = sd->cache_nice_tries+1;
4532 		}
4533 	} else
4534 		sd->nr_balance_failed = 0;
4535 
4536 	if (likely(!active_balance)) {
4537 		/* We were unbalanced, so reset the balancing interval */
4538 		sd->balance_interval = sd->min_interval;
4539 	} else {
4540 		/*
4541 		 * If we've begun active balancing, start to back off. This
4542 		 * case may not be covered by the all_pinned logic if there
4543 		 * is only 1 task on the busy runqueue (because we don't call
4544 		 * move_tasks).
4545 		 */
4546 		if (sd->balance_interval < sd->max_interval)
4547 			sd->balance_interval *= 2;
4548 	}
4549 
4550 	goto out;
4551 
4552 out_balanced:
4553 	schedstat_inc(sd, lb_balanced[idle]);
4554 
4555 	sd->nr_balance_failed = 0;
4556 
4557 out_one_pinned:
4558 	/* tune up the balancing interval */
4559 	if (((env.flags & LBF_ALL_PINNED) &&
4560 			sd->balance_interval < MAX_PINNED_INTERVAL) ||
4561 			(sd->balance_interval < sd->max_interval))
4562 		sd->balance_interval *= 2;
4563 
4564 	ld_moved = 0;
4565 out:
4566 	return ld_moved;
4567 }
4568 
4569 /*
4570  * idle_balance is called by schedule() if this_cpu is about to become
4571  * idle. Attempts to pull tasks from other CPUs.
4572  */
4573 void idle_balance(int this_cpu, struct rq *this_rq)
4574 {
4575 	struct sched_domain *sd;
4576 	int pulled_task = 0;
4577 	unsigned long next_balance = jiffies + HZ;
4578 
4579 	this_rq->idle_stamp = this_rq->clock;
4580 
4581 	if (this_rq->avg_idle < sysctl_sched_migration_cost)
4582 		return;
4583 
4584 	/*
4585 	 * Drop the rq->lock, but keep IRQ/preempt disabled.
4586 	 */
4587 	raw_spin_unlock(&this_rq->lock);
4588 
4589 	update_shares(this_cpu);
4590 	rcu_read_lock();
4591 	for_each_domain(this_cpu, sd) {
4592 		unsigned long interval;
4593 		int balance = 1;
4594 
4595 		if (!(sd->flags & SD_LOAD_BALANCE))
4596 			continue;
4597 
4598 		if (sd->flags & SD_BALANCE_NEWIDLE) {
4599 			/* If we've pulled tasks over stop searching: */
4600 			pulled_task = load_balance(this_cpu, this_rq,
4601 						   sd, CPU_NEWLY_IDLE, &balance);
4602 		}
4603 
4604 		interval = msecs_to_jiffies(sd->balance_interval);
4605 		if (time_after(next_balance, sd->last_balance + interval))
4606 			next_balance = sd->last_balance + interval;
4607 		if (pulled_task) {
4608 			this_rq->idle_stamp = 0;
4609 			break;
4610 		}
4611 	}
4612 	rcu_read_unlock();
4613 
4614 	raw_spin_lock(&this_rq->lock);
4615 
4616 	if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
4617 		/*
4618 		 * We are going idle. next_balance may be set based on
4619 		 * a busy processor. So reset next_balance.
4620 		 */
4621 		this_rq->next_balance = next_balance;
4622 	}
4623 }
4624 
4625 /*
4626  * active_load_balance_cpu_stop is run by cpu stopper. It pushes
4627  * running tasks off the busiest CPU onto idle CPUs. It requires at
4628  * least 1 task to be running on each physical CPU where possible, and
4629  * avoids physical / logical imbalances.
4630  */
4631 static int active_load_balance_cpu_stop(void *data)
4632 {
4633 	struct rq *busiest_rq = data;
4634 	int busiest_cpu = cpu_of(busiest_rq);
4635 	int target_cpu = busiest_rq->push_cpu;
4636 	struct rq *target_rq = cpu_rq(target_cpu);
4637 	struct sched_domain *sd;
4638 
4639 	raw_spin_lock_irq(&busiest_rq->lock);
4640 
4641 	/* make sure the requested cpu hasn't gone down in the meantime */
4642 	if (unlikely(busiest_cpu != smp_processor_id() ||
4643 		     !busiest_rq->active_balance))
4644 		goto out_unlock;
4645 
4646 	/* Is there any task to move? */
4647 	if (busiest_rq->nr_running <= 1)
4648 		goto out_unlock;
4649 
4650 	/*
4651 	 * This condition is "impossible", if it occurs
4652 	 * we need to fix it. Originally reported by
4653 	 * Bjorn Helgaas on a 128-cpu setup.
4654 	 */
4655 	BUG_ON(busiest_rq == target_rq);
4656 
4657 	/* move a task from busiest_rq to target_rq */
4658 	double_lock_balance(busiest_rq, target_rq);
4659 
4660 	/* Search for an sd spanning us and the target CPU. */
4661 	rcu_read_lock();
4662 	for_each_domain(target_cpu, sd) {
4663 		if ((sd->flags & SD_LOAD_BALANCE) &&
4664 		    cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
4665 				break;
4666 	}
4667 
4668 	if (likely(sd)) {
4669 		struct lb_env env = {
4670 			.sd		= sd,
4671 			.dst_cpu	= target_cpu,
4672 			.dst_rq		= target_rq,
4673 			.src_cpu	= busiest_rq->cpu,
4674 			.src_rq		= busiest_rq,
4675 			.idle		= CPU_IDLE,
4676 		};
4677 
4678 		schedstat_inc(sd, alb_count);
4679 
4680 		if (move_one_task(&env))
4681 			schedstat_inc(sd, alb_pushed);
4682 		else
4683 			schedstat_inc(sd, alb_failed);
4684 	}
4685 	rcu_read_unlock();
4686 	double_unlock_balance(busiest_rq, target_rq);
4687 out_unlock:
4688 	busiest_rq->active_balance = 0;
4689 	raw_spin_unlock_irq(&busiest_rq->lock);
4690 	return 0;
4691 }
4692 
4693 #ifdef CONFIG_NO_HZ
4694 /*
4695  * idle load balancing details
4696  * - When one of the busy CPUs notice that there may be an idle rebalancing
4697  *   needed, they will kick the idle load balancer, which then does idle
4698  *   load balancing for all the idle CPUs.
4699  */
4700 static struct {
4701 	cpumask_var_t idle_cpus_mask;
4702 	atomic_t nr_cpus;
4703 	unsigned long next_balance;     /* in jiffy units */
4704 } nohz ____cacheline_aligned;
4705 
4706 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
4707 /**
4708  * lowest_flag_domain - Return lowest sched_domain containing flag.
4709  * @cpu:	The cpu whose lowest level of sched domain is to
4710  *		be returned.
4711  * @flag:	The flag to check for the lowest sched_domain
4712  *		for the given cpu.
4713  *
4714  * Returns the lowest sched_domain of a cpu which contains the given flag.
4715  */
4716 static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
4717 {
4718 	struct sched_domain *sd;
4719 
4720 	for_each_domain(cpu, sd)
4721 		if (sd->flags & flag)
4722 			break;
4723 
4724 	return sd;
4725 }
4726 
4727 /**
4728  * for_each_flag_domain - Iterates over sched_domains containing the flag.
4729  * @cpu:	The cpu whose domains we're iterating over.
4730  * @sd:		variable holding the value of the power_savings_sd
4731  *		for cpu.
4732  * @flag:	The flag to filter the sched_domains to be iterated.
4733  *
4734  * Iterates over all the scheduler domains for a given cpu that has the 'flag'
4735  * set, starting from the lowest sched_domain to the highest.
4736  */
4737 #define for_each_flag_domain(cpu, sd, flag) \
4738 	for (sd = lowest_flag_domain(cpu, flag); \
4739 		(sd && (sd->flags & flag)); sd = sd->parent)
4740 
4741 /**
4742  * find_new_ilb - Finds the optimum idle load balancer for nomination.
4743  * @cpu:	The cpu which is nominating a new idle_load_balancer.
4744  *
4745  * Returns:	Returns the id of the idle load balancer if it exists,
4746  *		Else, returns >= nr_cpu_ids.
4747  *
4748  * This algorithm picks the idle load balancer such that it belongs to a
4749  * semi-idle powersavings sched_domain. The idea is to try and avoid
4750  * completely idle packages/cores just for the purpose of idle load balancing
4751  * when there are other idle cpu's which are better suited for that job.
4752  */
4753 static int find_new_ilb(int cpu)
4754 {
4755 	int ilb = cpumask_first(nohz.idle_cpus_mask);
4756 	struct sched_group *ilbg;
4757 	struct sched_domain *sd;
4758 
4759 	/*
4760 	 * Have idle load balancer selection from semi-idle packages only
4761 	 * when power-aware load balancing is enabled
4762 	 */
4763 	if (!(sched_smt_power_savings || sched_mc_power_savings))
4764 		goto out_done;
4765 
4766 	/*
4767 	 * Optimize for the case when we have no idle CPUs or only one
4768 	 * idle CPU. Don't walk the sched_domain hierarchy in such cases
4769 	 */
4770 	if (cpumask_weight(nohz.idle_cpus_mask) < 2)
4771 		goto out_done;
4772 
4773 	rcu_read_lock();
4774 	for_each_flag_domain(cpu, sd, SD_POWERSAVINGS_BALANCE) {
4775 		ilbg = sd->groups;
4776 
4777 		do {
4778 			if (ilbg->group_weight !=
4779 				atomic_read(&ilbg->sgp->nr_busy_cpus)) {
4780 				ilb = cpumask_first_and(nohz.idle_cpus_mask,
4781 							sched_group_cpus(ilbg));
4782 				goto unlock;
4783 			}
4784 
4785 			ilbg = ilbg->next;
4786 
4787 		} while (ilbg != sd->groups);
4788 	}
4789 unlock:
4790 	rcu_read_unlock();
4791 
4792 out_done:
4793 	if (ilb < nr_cpu_ids && idle_cpu(ilb))
4794 		return ilb;
4795 
4796 	return nr_cpu_ids;
4797 }
4798 #else /*  (CONFIG_SCHED_MC || CONFIG_SCHED_SMT) */
4799 static inline int find_new_ilb(int call_cpu)
4800 {
4801 	return nr_cpu_ids;
4802 }
4803 #endif
4804 
4805 /*
4806  * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
4807  * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
4808  * CPU (if there is one).
4809  */
4810 static void nohz_balancer_kick(int cpu)
4811 {
4812 	int ilb_cpu;
4813 
4814 	nohz.next_balance++;
4815 
4816 	ilb_cpu = find_new_ilb(cpu);
4817 
4818 	if (ilb_cpu >= nr_cpu_ids)
4819 		return;
4820 
4821 	if (test_and_set_bit(NOHZ_BALANCE_KICK, nohz_flags(ilb_cpu)))
4822 		return;
4823 	/*
4824 	 * Use smp_send_reschedule() instead of resched_cpu().
4825 	 * This way we generate a sched IPI on the target cpu which
4826 	 * is idle. And the softirq performing nohz idle load balance
4827 	 * will be run before returning from the IPI.
4828 	 */
4829 	smp_send_reschedule(ilb_cpu);
4830 	return;
4831 }
4832 
4833 static inline void clear_nohz_tick_stopped(int cpu)
4834 {
4835 	if (unlikely(test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))) {
4836 		cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
4837 		atomic_dec(&nohz.nr_cpus);
4838 		clear_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
4839 	}
4840 }
4841 
4842 static inline void set_cpu_sd_state_busy(void)
4843 {
4844 	struct sched_domain *sd;
4845 	int cpu = smp_processor_id();
4846 
4847 	if (!test_bit(NOHZ_IDLE, nohz_flags(cpu)))
4848 		return;
4849 	clear_bit(NOHZ_IDLE, nohz_flags(cpu));
4850 
4851 	rcu_read_lock();
4852 	for_each_domain(cpu, sd)
4853 		atomic_inc(&sd->groups->sgp->nr_busy_cpus);
4854 	rcu_read_unlock();
4855 }
4856 
4857 void set_cpu_sd_state_idle(void)
4858 {
4859 	struct sched_domain *sd;
4860 	int cpu = smp_processor_id();
4861 
4862 	if (test_bit(NOHZ_IDLE, nohz_flags(cpu)))
4863 		return;
4864 	set_bit(NOHZ_IDLE, nohz_flags(cpu));
4865 
4866 	rcu_read_lock();
4867 	for_each_domain(cpu, sd)
4868 		atomic_dec(&sd->groups->sgp->nr_busy_cpus);
4869 	rcu_read_unlock();
4870 }
4871 
4872 /*
4873  * This routine will record that this cpu is going idle with tick stopped.
4874  * This info will be used in performing idle load balancing in the future.
4875  */
4876 void select_nohz_load_balancer(int stop_tick)
4877 {
4878 	int cpu = smp_processor_id();
4879 
4880 	/*
4881 	 * If this cpu is going down, then nothing needs to be done.
4882 	 */
4883 	if (!cpu_active(cpu))
4884 		return;
4885 
4886 	if (stop_tick) {
4887 		if (test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))
4888 			return;
4889 
4890 		cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
4891 		atomic_inc(&nohz.nr_cpus);
4892 		set_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
4893 	}
4894 	return;
4895 }
4896 
4897 static int __cpuinit sched_ilb_notifier(struct notifier_block *nfb,
4898 					unsigned long action, void *hcpu)
4899 {
4900 	switch (action & ~CPU_TASKS_FROZEN) {
4901 	case CPU_DYING:
4902 		clear_nohz_tick_stopped(smp_processor_id());
4903 		return NOTIFY_OK;
4904 	default:
4905 		return NOTIFY_DONE;
4906 	}
4907 }
4908 #endif
4909 
4910 static DEFINE_SPINLOCK(balancing);
4911 
4912 /*
4913  * Scale the max load_balance interval with the number of CPUs in the system.
4914  * This trades load-balance latency on larger machines for less cross talk.
4915  */
4916 void update_max_interval(void)
4917 {
4918 	max_load_balance_interval = HZ*num_online_cpus()/10;
4919 }
4920 
4921 /*
4922  * It checks each scheduling domain to see if it is due to be balanced,
4923  * and initiates a balancing operation if so.
4924  *
4925  * Balancing parameters are set up in arch_init_sched_domains.
4926  */
4927 static void rebalance_domains(int cpu, enum cpu_idle_type idle)
4928 {
4929 	int balance = 1;
4930 	struct rq *rq = cpu_rq(cpu);
4931 	unsigned long interval;
4932 	struct sched_domain *sd;
4933 	/* Earliest time when we have to do rebalance again */
4934 	unsigned long next_balance = jiffies + 60*HZ;
4935 	int update_next_balance = 0;
4936 	int need_serialize;
4937 
4938 	update_shares(cpu);
4939 
4940 	rcu_read_lock();
4941 	for_each_domain(cpu, sd) {
4942 		if (!(sd->flags & SD_LOAD_BALANCE))
4943 			continue;
4944 
4945 		interval = sd->balance_interval;
4946 		if (idle != CPU_IDLE)
4947 			interval *= sd->busy_factor;
4948 
4949 		/* scale ms to jiffies */
4950 		interval = msecs_to_jiffies(interval);
4951 		interval = clamp(interval, 1UL, max_load_balance_interval);
4952 
4953 		need_serialize = sd->flags & SD_SERIALIZE;
4954 
4955 		if (need_serialize) {
4956 			if (!spin_trylock(&balancing))
4957 				goto out;
4958 		}
4959 
4960 		if (time_after_eq(jiffies, sd->last_balance + interval)) {
4961 			if (load_balance(cpu, rq, sd, idle, &balance)) {
4962 				/*
4963 				 * We've pulled tasks over so either we're no
4964 				 * longer idle.
4965 				 */
4966 				idle = CPU_NOT_IDLE;
4967 			}
4968 			sd->last_balance = jiffies;
4969 		}
4970 		if (need_serialize)
4971 			spin_unlock(&balancing);
4972 out:
4973 		if (time_after(next_balance, sd->last_balance + interval)) {
4974 			next_balance = sd->last_balance + interval;
4975 			update_next_balance = 1;
4976 		}
4977 
4978 		/*
4979 		 * Stop the load balance at this level. There is another
4980 		 * CPU in our sched group which is doing load balancing more
4981 		 * actively.
4982 		 */
4983 		if (!balance)
4984 			break;
4985 	}
4986 	rcu_read_unlock();
4987 
4988 	/*
4989 	 * next_balance will be updated only when there is a need.
4990 	 * When the cpu is attached to null domain for ex, it will not be
4991 	 * updated.
4992 	 */
4993 	if (likely(update_next_balance))
4994 		rq->next_balance = next_balance;
4995 }
4996 
4997 #ifdef CONFIG_NO_HZ
4998 /*
4999  * In CONFIG_NO_HZ case, the idle balance kickee will do the
5000  * rebalancing for all the cpus for whom scheduler ticks are stopped.
5001  */
5002 static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle)
5003 {
5004 	struct rq *this_rq = cpu_rq(this_cpu);
5005 	struct rq *rq;
5006 	int balance_cpu;
5007 
5008 	if (idle != CPU_IDLE ||
5009 	    !test_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu)))
5010 		goto end;
5011 
5012 	for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
5013 		if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
5014 			continue;
5015 
5016 		/*
5017 		 * If this cpu gets work to do, stop the load balancing
5018 		 * work being done for other cpus. Next load
5019 		 * balancing owner will pick it up.
5020 		 */
5021 		if (need_resched())
5022 			break;
5023 
5024 		raw_spin_lock_irq(&this_rq->lock);
5025 		update_rq_clock(this_rq);
5026 		update_cpu_load(this_rq);
5027 		raw_spin_unlock_irq(&this_rq->lock);
5028 
5029 		rebalance_domains(balance_cpu, CPU_IDLE);
5030 
5031 		rq = cpu_rq(balance_cpu);
5032 		if (time_after(this_rq->next_balance, rq->next_balance))
5033 			this_rq->next_balance = rq->next_balance;
5034 	}
5035 	nohz.next_balance = this_rq->next_balance;
5036 end:
5037 	clear_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu));
5038 }
5039 
5040 /*
5041  * Current heuristic for kicking the idle load balancer in the presence
5042  * of an idle cpu is the system.
5043  *   - This rq has more than one task.
5044  *   - At any scheduler domain level, this cpu's scheduler group has multiple
5045  *     busy cpu's exceeding the group's power.
5046  *   - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler
5047  *     domain span are idle.
5048  */
5049 static inline int nohz_kick_needed(struct rq *rq, int cpu)
5050 {
5051 	unsigned long now = jiffies;
5052 	struct sched_domain *sd;
5053 
5054 	if (unlikely(idle_cpu(cpu)))
5055 		return 0;
5056 
5057        /*
5058 	* We may be recently in ticked or tickless idle mode. At the first
5059 	* busy tick after returning from idle, we will update the busy stats.
5060 	*/
5061 	set_cpu_sd_state_busy();
5062 	clear_nohz_tick_stopped(cpu);
5063 
5064 	/*
5065 	 * None are in tickless mode and hence no need for NOHZ idle load
5066 	 * balancing.
5067 	 */
5068 	if (likely(!atomic_read(&nohz.nr_cpus)))
5069 		return 0;
5070 
5071 	if (time_before(now, nohz.next_balance))
5072 		return 0;
5073 
5074 	if (rq->nr_running >= 2)
5075 		goto need_kick;
5076 
5077 	rcu_read_lock();
5078 	for_each_domain(cpu, sd) {
5079 		struct sched_group *sg = sd->groups;
5080 		struct sched_group_power *sgp = sg->sgp;
5081 		int nr_busy = atomic_read(&sgp->nr_busy_cpus);
5082 
5083 		if (sd->flags & SD_SHARE_PKG_RESOURCES && nr_busy > 1)
5084 			goto need_kick_unlock;
5085 
5086 		if (sd->flags & SD_ASYM_PACKING && nr_busy != sg->group_weight
5087 		    && (cpumask_first_and(nohz.idle_cpus_mask,
5088 					  sched_domain_span(sd)) < cpu))
5089 			goto need_kick_unlock;
5090 
5091 		if (!(sd->flags & (SD_SHARE_PKG_RESOURCES | SD_ASYM_PACKING)))
5092 			break;
5093 	}
5094 	rcu_read_unlock();
5095 	return 0;
5096 
5097 need_kick_unlock:
5098 	rcu_read_unlock();
5099 need_kick:
5100 	return 1;
5101 }
5102 #else
5103 static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle) { }
5104 #endif
5105 
5106 /*
5107  * run_rebalance_domains is triggered when needed from the scheduler tick.
5108  * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
5109  */
5110 static void run_rebalance_domains(struct softirq_action *h)
5111 {
5112 	int this_cpu = smp_processor_id();
5113 	struct rq *this_rq = cpu_rq(this_cpu);
5114 	enum cpu_idle_type idle = this_rq->idle_balance ?
5115 						CPU_IDLE : CPU_NOT_IDLE;
5116 
5117 	rebalance_domains(this_cpu, idle);
5118 
5119 	/*
5120 	 * If this cpu has a pending nohz_balance_kick, then do the
5121 	 * balancing on behalf of the other idle cpus whose ticks are
5122 	 * stopped.
5123 	 */
5124 	nohz_idle_balance(this_cpu, idle);
5125 }
5126 
5127 static inline int on_null_domain(int cpu)
5128 {
5129 	return !rcu_dereference_sched(cpu_rq(cpu)->sd);
5130 }
5131 
5132 /*
5133  * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
5134  */
5135 void trigger_load_balance(struct rq *rq, int cpu)
5136 {
5137 	/* Don't need to rebalance while attached to NULL domain */
5138 	if (time_after_eq(jiffies, rq->next_balance) &&
5139 	    likely(!on_null_domain(cpu)))
5140 		raise_softirq(SCHED_SOFTIRQ);
5141 #ifdef CONFIG_NO_HZ
5142 	if (nohz_kick_needed(rq, cpu) && likely(!on_null_domain(cpu)))
5143 		nohz_balancer_kick(cpu);
5144 #endif
5145 }
5146 
5147 static void rq_online_fair(struct rq *rq)
5148 {
5149 	update_sysctl();
5150 }
5151 
5152 static void rq_offline_fair(struct rq *rq)
5153 {
5154 	update_sysctl();
5155 }
5156 
5157 #endif /* CONFIG_SMP */
5158 
5159 /*
5160  * scheduler tick hitting a task of our scheduling class:
5161  */
5162 static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
5163 {
5164 	struct cfs_rq *cfs_rq;
5165 	struct sched_entity *se = &curr->se;
5166 
5167 	for_each_sched_entity(se) {
5168 		cfs_rq = cfs_rq_of(se);
5169 		entity_tick(cfs_rq, se, queued);
5170 	}
5171 }
5172 
5173 /*
5174  * called on fork with the child task as argument from the parent's context
5175  *  - child not yet on the tasklist
5176  *  - preemption disabled
5177  */
5178 static void task_fork_fair(struct task_struct *p)
5179 {
5180 	struct cfs_rq *cfs_rq;
5181 	struct sched_entity *se = &p->se, *curr;
5182 	int this_cpu = smp_processor_id();
5183 	struct rq *rq = this_rq();
5184 	unsigned long flags;
5185 
5186 	raw_spin_lock_irqsave(&rq->lock, flags);
5187 
5188 	update_rq_clock(rq);
5189 
5190 	cfs_rq = task_cfs_rq(current);
5191 	curr = cfs_rq->curr;
5192 
5193 	if (unlikely(task_cpu(p) != this_cpu)) {
5194 		rcu_read_lock();
5195 		__set_task_cpu(p, this_cpu);
5196 		rcu_read_unlock();
5197 	}
5198 
5199 	update_curr(cfs_rq);
5200 
5201 	if (curr)
5202 		se->vruntime = curr->vruntime;
5203 	place_entity(cfs_rq, se, 1);
5204 
5205 	if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
5206 		/*
5207 		 * Upon rescheduling, sched_class::put_prev_task() will place
5208 		 * 'current' within the tree based on its new key value.
5209 		 */
5210 		swap(curr->vruntime, se->vruntime);
5211 		resched_task(rq->curr);
5212 	}
5213 
5214 	se->vruntime -= cfs_rq->min_vruntime;
5215 
5216 	raw_spin_unlock_irqrestore(&rq->lock, flags);
5217 }
5218 
5219 /*
5220  * Priority of the task has changed. Check to see if we preempt
5221  * the current task.
5222  */
5223 static void
5224 prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
5225 {
5226 	if (!p->se.on_rq)
5227 		return;
5228 
5229 	/*
5230 	 * Reschedule if we are currently running on this runqueue and
5231 	 * our priority decreased, or if we are not currently running on
5232 	 * this runqueue and our priority is higher than the current's
5233 	 */
5234 	if (rq->curr == p) {
5235 		if (p->prio > oldprio)
5236 			resched_task(rq->curr);
5237 	} else
5238 		check_preempt_curr(rq, p, 0);
5239 }
5240 
5241 static void switched_from_fair(struct rq *rq, struct task_struct *p)
5242 {
5243 	struct sched_entity *se = &p->se;
5244 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
5245 
5246 	/*
5247 	 * Ensure the task's vruntime is normalized, so that when its
5248 	 * switched back to the fair class the enqueue_entity(.flags=0) will
5249 	 * do the right thing.
5250 	 *
5251 	 * If it was on_rq, then the dequeue_entity(.flags=0) will already
5252 	 * have normalized the vruntime, if it was !on_rq, then only when
5253 	 * the task is sleeping will it still have non-normalized vruntime.
5254 	 */
5255 	if (!se->on_rq && p->state != TASK_RUNNING) {
5256 		/*
5257 		 * Fix up our vruntime so that the current sleep doesn't
5258 		 * cause 'unlimited' sleep bonus.
5259 		 */
5260 		place_entity(cfs_rq, se, 0);
5261 		se->vruntime -= cfs_rq->min_vruntime;
5262 	}
5263 }
5264 
5265 /*
5266  * We switched to the sched_fair class.
5267  */
5268 static void switched_to_fair(struct rq *rq, struct task_struct *p)
5269 {
5270 	if (!p->se.on_rq)
5271 		return;
5272 
5273 	/*
5274 	 * We were most likely switched from sched_rt, so
5275 	 * kick off the schedule if running, otherwise just see
5276 	 * if we can still preempt the current task.
5277 	 */
5278 	if (rq->curr == p)
5279 		resched_task(rq->curr);
5280 	else
5281 		check_preempt_curr(rq, p, 0);
5282 }
5283 
5284 /* Account for a task changing its policy or group.
5285  *
5286  * This routine is mostly called to set cfs_rq->curr field when a task
5287  * migrates between groups/classes.
5288  */
5289 static void set_curr_task_fair(struct rq *rq)
5290 {
5291 	struct sched_entity *se = &rq->curr->se;
5292 
5293 	for_each_sched_entity(se) {
5294 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
5295 
5296 		set_next_entity(cfs_rq, se);
5297 		/* ensure bandwidth has been allocated on our new cfs_rq */
5298 		account_cfs_rq_runtime(cfs_rq, 0);
5299 	}
5300 }
5301 
5302 void init_cfs_rq(struct cfs_rq *cfs_rq)
5303 {
5304 	cfs_rq->tasks_timeline = RB_ROOT;
5305 	cfs_rq->min_vruntime = (u64)(-(1LL << 20));
5306 #ifndef CONFIG_64BIT
5307 	cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
5308 #endif
5309 }
5310 
5311 #ifdef CONFIG_FAIR_GROUP_SCHED
5312 static void task_move_group_fair(struct task_struct *p, int on_rq)
5313 {
5314 	/*
5315 	 * If the task was not on the rq at the time of this cgroup movement
5316 	 * it must have been asleep, sleeping tasks keep their ->vruntime
5317 	 * absolute on their old rq until wakeup (needed for the fair sleeper
5318 	 * bonus in place_entity()).
5319 	 *
5320 	 * If it was on the rq, we've just 'preempted' it, which does convert
5321 	 * ->vruntime to a relative base.
5322 	 *
5323 	 * Make sure both cases convert their relative position when migrating
5324 	 * to another cgroup's rq. This does somewhat interfere with the
5325 	 * fair sleeper stuff for the first placement, but who cares.
5326 	 */
5327 	/*
5328 	 * When !on_rq, vruntime of the task has usually NOT been normalized.
5329 	 * But there are some cases where it has already been normalized:
5330 	 *
5331 	 * - Moving a forked child which is waiting for being woken up by
5332 	 *   wake_up_new_task().
5333 	 * - Moving a task which has been woken up by try_to_wake_up() and
5334 	 *   waiting for actually being woken up by sched_ttwu_pending().
5335 	 *
5336 	 * To prevent boost or penalty in the new cfs_rq caused by delta
5337 	 * min_vruntime between the two cfs_rqs, we skip vruntime adjustment.
5338 	 */
5339 	if (!on_rq && (!p->se.sum_exec_runtime || p->state == TASK_WAKING))
5340 		on_rq = 1;
5341 
5342 	if (!on_rq)
5343 		p->se.vruntime -= cfs_rq_of(&p->se)->min_vruntime;
5344 	set_task_rq(p, task_cpu(p));
5345 	if (!on_rq)
5346 		p->se.vruntime += cfs_rq_of(&p->se)->min_vruntime;
5347 }
5348 
5349 void free_fair_sched_group(struct task_group *tg)
5350 {
5351 	int i;
5352 
5353 	destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
5354 
5355 	for_each_possible_cpu(i) {
5356 		if (tg->cfs_rq)
5357 			kfree(tg->cfs_rq[i]);
5358 		if (tg->se)
5359 			kfree(tg->se[i]);
5360 	}
5361 
5362 	kfree(tg->cfs_rq);
5363 	kfree(tg->se);
5364 }
5365 
5366 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
5367 {
5368 	struct cfs_rq *cfs_rq;
5369 	struct sched_entity *se;
5370 	int i;
5371 
5372 	tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
5373 	if (!tg->cfs_rq)
5374 		goto err;
5375 	tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
5376 	if (!tg->se)
5377 		goto err;
5378 
5379 	tg->shares = NICE_0_LOAD;
5380 
5381 	init_cfs_bandwidth(tg_cfs_bandwidth(tg));
5382 
5383 	for_each_possible_cpu(i) {
5384 		cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
5385 				      GFP_KERNEL, cpu_to_node(i));
5386 		if (!cfs_rq)
5387 			goto err;
5388 
5389 		se = kzalloc_node(sizeof(struct sched_entity),
5390 				  GFP_KERNEL, cpu_to_node(i));
5391 		if (!se)
5392 			goto err_free_rq;
5393 
5394 		init_cfs_rq(cfs_rq);
5395 		init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
5396 	}
5397 
5398 	return 1;
5399 
5400 err_free_rq:
5401 	kfree(cfs_rq);
5402 err:
5403 	return 0;
5404 }
5405 
5406 void unregister_fair_sched_group(struct task_group *tg, int cpu)
5407 {
5408 	struct rq *rq = cpu_rq(cpu);
5409 	unsigned long flags;
5410 
5411 	/*
5412 	* Only empty task groups can be destroyed; so we can speculatively
5413 	* check on_list without danger of it being re-added.
5414 	*/
5415 	if (!tg->cfs_rq[cpu]->on_list)
5416 		return;
5417 
5418 	raw_spin_lock_irqsave(&rq->lock, flags);
5419 	list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
5420 	raw_spin_unlock_irqrestore(&rq->lock, flags);
5421 }
5422 
5423 void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
5424 			struct sched_entity *se, int cpu,
5425 			struct sched_entity *parent)
5426 {
5427 	struct rq *rq = cpu_rq(cpu);
5428 
5429 	cfs_rq->tg = tg;
5430 	cfs_rq->rq = rq;
5431 #ifdef CONFIG_SMP
5432 	/* allow initial update_cfs_load() to truncate */
5433 	cfs_rq->load_stamp = 1;
5434 #endif
5435 	init_cfs_rq_runtime(cfs_rq);
5436 
5437 	tg->cfs_rq[cpu] = cfs_rq;
5438 	tg->se[cpu] = se;
5439 
5440 	/* se could be NULL for root_task_group */
5441 	if (!se)
5442 		return;
5443 
5444 	if (!parent)
5445 		se->cfs_rq = &rq->cfs;
5446 	else
5447 		se->cfs_rq = parent->my_q;
5448 
5449 	se->my_q = cfs_rq;
5450 	update_load_set(&se->load, 0);
5451 	se->parent = parent;
5452 }
5453 
5454 static DEFINE_MUTEX(shares_mutex);
5455 
5456 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
5457 {
5458 	int i;
5459 	unsigned long flags;
5460 
5461 	/*
5462 	 * We can't change the weight of the root cgroup.
5463 	 */
5464 	if (!tg->se[0])
5465 		return -EINVAL;
5466 
5467 	shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
5468 
5469 	mutex_lock(&shares_mutex);
5470 	if (tg->shares == shares)
5471 		goto done;
5472 
5473 	tg->shares = shares;
5474 	for_each_possible_cpu(i) {
5475 		struct rq *rq = cpu_rq(i);
5476 		struct sched_entity *se;
5477 
5478 		se = tg->se[i];
5479 		/* Propagate contribution to hierarchy */
5480 		raw_spin_lock_irqsave(&rq->lock, flags);
5481 		for_each_sched_entity(se)
5482 			update_cfs_shares(group_cfs_rq(se));
5483 		raw_spin_unlock_irqrestore(&rq->lock, flags);
5484 	}
5485 
5486 done:
5487 	mutex_unlock(&shares_mutex);
5488 	return 0;
5489 }
5490 #else /* CONFIG_FAIR_GROUP_SCHED */
5491 
5492 void free_fair_sched_group(struct task_group *tg) { }
5493 
5494 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
5495 {
5496 	return 1;
5497 }
5498 
5499 void unregister_fair_sched_group(struct task_group *tg, int cpu) { }
5500 
5501 #endif /* CONFIG_FAIR_GROUP_SCHED */
5502 
5503 
5504 static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
5505 {
5506 	struct sched_entity *se = &task->se;
5507 	unsigned int rr_interval = 0;
5508 
5509 	/*
5510 	 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
5511 	 * idle runqueue:
5512 	 */
5513 	if (rq->cfs.load.weight)
5514 		rr_interval = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
5515 
5516 	return rr_interval;
5517 }
5518 
5519 /*
5520  * All the scheduling class methods:
5521  */
5522 const struct sched_class fair_sched_class = {
5523 	.next			= &idle_sched_class,
5524 	.enqueue_task		= enqueue_task_fair,
5525 	.dequeue_task		= dequeue_task_fair,
5526 	.yield_task		= yield_task_fair,
5527 	.yield_to_task		= yield_to_task_fair,
5528 
5529 	.check_preempt_curr	= check_preempt_wakeup,
5530 
5531 	.pick_next_task		= pick_next_task_fair,
5532 	.put_prev_task		= put_prev_task_fair,
5533 
5534 #ifdef CONFIG_SMP
5535 	.select_task_rq		= select_task_rq_fair,
5536 
5537 	.rq_online		= rq_online_fair,
5538 	.rq_offline		= rq_offline_fair,
5539 
5540 	.task_waking		= task_waking_fair,
5541 #endif
5542 
5543 	.set_curr_task          = set_curr_task_fair,
5544 	.task_tick		= task_tick_fair,
5545 	.task_fork		= task_fork_fair,
5546 
5547 	.prio_changed		= prio_changed_fair,
5548 	.switched_from		= switched_from_fair,
5549 	.switched_to		= switched_to_fair,
5550 
5551 	.get_rr_interval	= get_rr_interval_fair,
5552 
5553 #ifdef CONFIG_FAIR_GROUP_SCHED
5554 	.task_move_group	= task_move_group_fair,
5555 #endif
5556 };
5557 
5558 #ifdef CONFIG_SCHED_DEBUG
5559 void print_cfs_stats(struct seq_file *m, int cpu)
5560 {
5561 	struct cfs_rq *cfs_rq;
5562 
5563 	rcu_read_lock();
5564 	for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
5565 		print_cfs_rq(m, cpu, cfs_rq);
5566 	rcu_read_unlock();
5567 }
5568 #endif
5569 
5570 __init void init_sched_fair_class(void)
5571 {
5572 #ifdef CONFIG_SMP
5573 	open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
5574 
5575 #ifdef CONFIG_NO_HZ
5576 	nohz.next_balance = jiffies;
5577 	zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
5578 	cpu_notifier(sched_ilb_notifier, 0);
5579 #endif
5580 #endif /* SMP */
5581 
5582 }
5583