1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH) 4 * 5 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com> 6 * 7 * Interactivity improvements by Mike Galbraith 8 * (C) 2007 Mike Galbraith <efault@gmx.de> 9 * 10 * Various enhancements by Dmitry Adamushko. 11 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com> 12 * 13 * Group scheduling enhancements by Srivatsa Vaddagiri 14 * Copyright IBM Corporation, 2007 15 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com> 16 * 17 * Scaled math optimizations by Thomas Gleixner 18 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de> 19 * 20 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra 21 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra 22 */ 23 #include "sched.h" 24 25 /* 26 * Targeted preemption latency for CPU-bound tasks: 27 * 28 * NOTE: this latency value is not the same as the concept of 29 * 'timeslice length' - timeslices in CFS are of variable length 30 * and have no persistent notion like in traditional, time-slice 31 * based scheduling concepts. 32 * 33 * (to see the precise effective timeslice length of your workload, 34 * run vmstat and monitor the context-switches (cs) field) 35 * 36 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds) 37 */ 38 unsigned int sysctl_sched_latency = 6000000ULL; 39 static unsigned int normalized_sysctl_sched_latency = 6000000ULL; 40 41 /* 42 * The initial- and re-scaling of tunables is configurable 43 * 44 * Options are: 45 * 46 * SCHED_TUNABLESCALING_NONE - unscaled, always *1 47 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus) 48 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus 49 * 50 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus)) 51 */ 52 unsigned int sysctl_sched_tunable_scaling = SCHED_TUNABLESCALING_LOG; 53 54 /* 55 * Minimal preemption granularity for CPU-bound tasks: 56 * 57 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds) 58 */ 59 unsigned int sysctl_sched_min_granularity = 750000ULL; 60 static unsigned int normalized_sysctl_sched_min_granularity = 750000ULL; 61 62 /* 63 * Minimal preemption granularity for CPU-bound SCHED_IDLE tasks. 64 * Applies only when SCHED_IDLE tasks compete with normal tasks. 65 * 66 * (default: 0.75 msec) 67 */ 68 unsigned int sysctl_sched_idle_min_granularity = 750000ULL; 69 70 /* 71 * This value is kept at sysctl_sched_latency/sysctl_sched_min_granularity 72 */ 73 static unsigned int sched_nr_latency = 8; 74 75 /* 76 * After fork, child runs first. If set to 0 (default) then 77 * parent will (try to) run first. 78 */ 79 unsigned int sysctl_sched_child_runs_first __read_mostly; 80 81 /* 82 * SCHED_OTHER wake-up granularity. 83 * 84 * This option delays the preemption effects of decoupled workloads 85 * and reduces their over-scheduling. Synchronous workloads will still 86 * have immediate wakeup/sleep latencies. 87 * 88 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds) 89 */ 90 unsigned int sysctl_sched_wakeup_granularity = 1000000UL; 91 static unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL; 92 93 const_debug unsigned int sysctl_sched_migration_cost = 500000UL; 94 95 int sched_thermal_decay_shift; 96 static int __init setup_sched_thermal_decay_shift(char *str) 97 { 98 int _shift = 0; 99 100 if (kstrtoint(str, 0, &_shift)) 101 pr_warn("Unable to set scheduler thermal pressure decay shift parameter\n"); 102 103 sched_thermal_decay_shift = clamp(_shift, 0, 10); 104 return 1; 105 } 106 __setup("sched_thermal_decay_shift=", setup_sched_thermal_decay_shift); 107 108 #ifdef CONFIG_SMP 109 /* 110 * For asym packing, by default the lower numbered CPU has higher priority. 111 */ 112 int __weak arch_asym_cpu_priority(int cpu) 113 { 114 return -cpu; 115 } 116 117 /* 118 * The margin used when comparing utilization with CPU capacity. 119 * 120 * (default: ~20%) 121 */ 122 #define fits_capacity(cap, max) ((cap) * 1280 < (max) * 1024) 123 124 /* 125 * The margin used when comparing CPU capacities. 126 * is 'cap1' noticeably greater than 'cap2' 127 * 128 * (default: ~5%) 129 */ 130 #define capacity_greater(cap1, cap2) ((cap1) * 1024 > (cap2) * 1078) 131 #endif 132 133 #ifdef CONFIG_CFS_BANDWIDTH 134 /* 135 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool 136 * each time a cfs_rq requests quota. 137 * 138 * Note: in the case that the slice exceeds the runtime remaining (either due 139 * to consumption or the quota being specified to be smaller than the slice) 140 * we will always only issue the remaining available time. 141 * 142 * (default: 5 msec, units: microseconds) 143 */ 144 unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL; 145 #endif 146 147 static inline void update_load_add(struct load_weight *lw, unsigned long inc) 148 { 149 lw->weight += inc; 150 lw->inv_weight = 0; 151 } 152 153 static inline void update_load_sub(struct load_weight *lw, unsigned long dec) 154 { 155 lw->weight -= dec; 156 lw->inv_weight = 0; 157 } 158 159 static inline void update_load_set(struct load_weight *lw, unsigned long w) 160 { 161 lw->weight = w; 162 lw->inv_weight = 0; 163 } 164 165 /* 166 * Increase the granularity value when there are more CPUs, 167 * because with more CPUs the 'effective latency' as visible 168 * to users decreases. But the relationship is not linear, 169 * so pick a second-best guess by going with the log2 of the 170 * number of CPUs. 171 * 172 * This idea comes from the SD scheduler of Con Kolivas: 173 */ 174 static unsigned int get_update_sysctl_factor(void) 175 { 176 unsigned int cpus = min_t(unsigned int, num_online_cpus(), 8); 177 unsigned int factor; 178 179 switch (sysctl_sched_tunable_scaling) { 180 case SCHED_TUNABLESCALING_NONE: 181 factor = 1; 182 break; 183 case SCHED_TUNABLESCALING_LINEAR: 184 factor = cpus; 185 break; 186 case SCHED_TUNABLESCALING_LOG: 187 default: 188 factor = 1 + ilog2(cpus); 189 break; 190 } 191 192 return factor; 193 } 194 195 static void update_sysctl(void) 196 { 197 unsigned int factor = get_update_sysctl_factor(); 198 199 #define SET_SYSCTL(name) \ 200 (sysctl_##name = (factor) * normalized_sysctl_##name) 201 SET_SYSCTL(sched_min_granularity); 202 SET_SYSCTL(sched_latency); 203 SET_SYSCTL(sched_wakeup_granularity); 204 #undef SET_SYSCTL 205 } 206 207 void __init sched_init_granularity(void) 208 { 209 update_sysctl(); 210 } 211 212 #define WMULT_CONST (~0U) 213 #define WMULT_SHIFT 32 214 215 static void __update_inv_weight(struct load_weight *lw) 216 { 217 unsigned long w; 218 219 if (likely(lw->inv_weight)) 220 return; 221 222 w = scale_load_down(lw->weight); 223 224 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST)) 225 lw->inv_weight = 1; 226 else if (unlikely(!w)) 227 lw->inv_weight = WMULT_CONST; 228 else 229 lw->inv_weight = WMULT_CONST / w; 230 } 231 232 /* 233 * delta_exec * weight / lw.weight 234 * OR 235 * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT 236 * 237 * Either weight := NICE_0_LOAD and lw \e sched_prio_to_wmult[], in which case 238 * we're guaranteed shift stays positive because inv_weight is guaranteed to 239 * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22. 240 * 241 * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus 242 * weight/lw.weight <= 1, and therefore our shift will also be positive. 243 */ 244 static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw) 245 { 246 u64 fact = scale_load_down(weight); 247 u32 fact_hi = (u32)(fact >> 32); 248 int shift = WMULT_SHIFT; 249 int fs; 250 251 __update_inv_weight(lw); 252 253 if (unlikely(fact_hi)) { 254 fs = fls(fact_hi); 255 shift -= fs; 256 fact >>= fs; 257 } 258 259 fact = mul_u32_u32(fact, lw->inv_weight); 260 261 fact_hi = (u32)(fact >> 32); 262 if (fact_hi) { 263 fs = fls(fact_hi); 264 shift -= fs; 265 fact >>= fs; 266 } 267 268 return mul_u64_u32_shr(delta_exec, fact, shift); 269 } 270 271 272 const struct sched_class fair_sched_class; 273 274 /************************************************************** 275 * CFS operations on generic schedulable entities: 276 */ 277 278 #ifdef CONFIG_FAIR_GROUP_SCHED 279 280 /* Walk up scheduling entities hierarchy */ 281 #define for_each_sched_entity(se) \ 282 for (; se; se = se->parent) 283 284 static inline void cfs_rq_tg_path(struct cfs_rq *cfs_rq, char *path, int len) 285 { 286 if (!path) 287 return; 288 289 if (cfs_rq && task_group_is_autogroup(cfs_rq->tg)) 290 autogroup_path(cfs_rq->tg, path, len); 291 else if (cfs_rq && cfs_rq->tg->css.cgroup) 292 cgroup_path(cfs_rq->tg->css.cgroup, path, len); 293 else 294 strlcpy(path, "(null)", len); 295 } 296 297 static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq) 298 { 299 struct rq *rq = rq_of(cfs_rq); 300 int cpu = cpu_of(rq); 301 302 if (cfs_rq->on_list) 303 return rq->tmp_alone_branch == &rq->leaf_cfs_rq_list; 304 305 cfs_rq->on_list = 1; 306 307 /* 308 * Ensure we either appear before our parent (if already 309 * enqueued) or force our parent to appear after us when it is 310 * enqueued. The fact that we always enqueue bottom-up 311 * reduces this to two cases and a special case for the root 312 * cfs_rq. Furthermore, it also means that we will always reset 313 * tmp_alone_branch either when the branch is connected 314 * to a tree or when we reach the top of the tree 315 */ 316 if (cfs_rq->tg->parent && 317 cfs_rq->tg->parent->cfs_rq[cpu]->on_list) { 318 /* 319 * If parent is already on the list, we add the child 320 * just before. Thanks to circular linked property of 321 * the list, this means to put the child at the tail 322 * of the list that starts by parent. 323 */ 324 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list, 325 &(cfs_rq->tg->parent->cfs_rq[cpu]->leaf_cfs_rq_list)); 326 /* 327 * The branch is now connected to its tree so we can 328 * reset tmp_alone_branch to the beginning of the 329 * list. 330 */ 331 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list; 332 return true; 333 } 334 335 if (!cfs_rq->tg->parent) { 336 /* 337 * cfs rq without parent should be put 338 * at the tail of the list. 339 */ 340 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list, 341 &rq->leaf_cfs_rq_list); 342 /* 343 * We have reach the top of a tree so we can reset 344 * tmp_alone_branch to the beginning of the list. 345 */ 346 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list; 347 return true; 348 } 349 350 /* 351 * The parent has not already been added so we want to 352 * make sure that it will be put after us. 353 * tmp_alone_branch points to the begin of the branch 354 * where we will add parent. 355 */ 356 list_add_rcu(&cfs_rq->leaf_cfs_rq_list, rq->tmp_alone_branch); 357 /* 358 * update tmp_alone_branch to points to the new begin 359 * of the branch 360 */ 361 rq->tmp_alone_branch = &cfs_rq->leaf_cfs_rq_list; 362 return false; 363 } 364 365 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq) 366 { 367 if (cfs_rq->on_list) { 368 struct rq *rq = rq_of(cfs_rq); 369 370 /* 371 * With cfs_rq being unthrottled/throttled during an enqueue, 372 * it can happen the tmp_alone_branch points the a leaf that 373 * we finally want to del. In this case, tmp_alone_branch moves 374 * to the prev element but it will point to rq->leaf_cfs_rq_list 375 * at the end of the enqueue. 376 */ 377 if (rq->tmp_alone_branch == &cfs_rq->leaf_cfs_rq_list) 378 rq->tmp_alone_branch = cfs_rq->leaf_cfs_rq_list.prev; 379 380 list_del_rcu(&cfs_rq->leaf_cfs_rq_list); 381 cfs_rq->on_list = 0; 382 } 383 } 384 385 static inline void assert_list_leaf_cfs_rq(struct rq *rq) 386 { 387 SCHED_WARN_ON(rq->tmp_alone_branch != &rq->leaf_cfs_rq_list); 388 } 389 390 /* Iterate thr' all leaf cfs_rq's on a runqueue */ 391 #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) \ 392 list_for_each_entry_safe(cfs_rq, pos, &rq->leaf_cfs_rq_list, \ 393 leaf_cfs_rq_list) 394 395 /* Do the two (enqueued) entities belong to the same group ? */ 396 static inline struct cfs_rq * 397 is_same_group(struct sched_entity *se, struct sched_entity *pse) 398 { 399 if (se->cfs_rq == pse->cfs_rq) 400 return se->cfs_rq; 401 402 return NULL; 403 } 404 405 static inline struct sched_entity *parent_entity(struct sched_entity *se) 406 { 407 return se->parent; 408 } 409 410 static void 411 find_matching_se(struct sched_entity **se, struct sched_entity **pse) 412 { 413 int se_depth, pse_depth; 414 415 /* 416 * preemption test can be made between sibling entities who are in the 417 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of 418 * both tasks until we find their ancestors who are siblings of common 419 * parent. 420 */ 421 422 /* First walk up until both entities are at same depth */ 423 se_depth = (*se)->depth; 424 pse_depth = (*pse)->depth; 425 426 while (se_depth > pse_depth) { 427 se_depth--; 428 *se = parent_entity(*se); 429 } 430 431 while (pse_depth > se_depth) { 432 pse_depth--; 433 *pse = parent_entity(*pse); 434 } 435 436 while (!is_same_group(*se, *pse)) { 437 *se = parent_entity(*se); 438 *pse = parent_entity(*pse); 439 } 440 } 441 442 static int tg_is_idle(struct task_group *tg) 443 { 444 return tg->idle > 0; 445 } 446 447 static int cfs_rq_is_idle(struct cfs_rq *cfs_rq) 448 { 449 return cfs_rq->idle > 0; 450 } 451 452 static int se_is_idle(struct sched_entity *se) 453 { 454 if (entity_is_task(se)) 455 return task_has_idle_policy(task_of(se)); 456 return cfs_rq_is_idle(group_cfs_rq(se)); 457 } 458 459 #else /* !CONFIG_FAIR_GROUP_SCHED */ 460 461 #define for_each_sched_entity(se) \ 462 for (; se; se = NULL) 463 464 static inline void cfs_rq_tg_path(struct cfs_rq *cfs_rq, char *path, int len) 465 { 466 if (path) 467 strlcpy(path, "(null)", len); 468 } 469 470 static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq) 471 { 472 return true; 473 } 474 475 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq) 476 { 477 } 478 479 static inline void assert_list_leaf_cfs_rq(struct rq *rq) 480 { 481 } 482 483 #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) \ 484 for (cfs_rq = &rq->cfs, pos = NULL; cfs_rq; cfs_rq = pos) 485 486 static inline struct sched_entity *parent_entity(struct sched_entity *se) 487 { 488 return NULL; 489 } 490 491 static inline void 492 find_matching_se(struct sched_entity **se, struct sched_entity **pse) 493 { 494 } 495 496 static inline int tg_is_idle(struct task_group *tg) 497 { 498 return 0; 499 } 500 501 static int cfs_rq_is_idle(struct cfs_rq *cfs_rq) 502 { 503 return 0; 504 } 505 506 static int se_is_idle(struct sched_entity *se) 507 { 508 return 0; 509 } 510 511 #endif /* CONFIG_FAIR_GROUP_SCHED */ 512 513 static __always_inline 514 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec); 515 516 /************************************************************** 517 * Scheduling class tree data structure manipulation methods: 518 */ 519 520 static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime) 521 { 522 s64 delta = (s64)(vruntime - max_vruntime); 523 if (delta > 0) 524 max_vruntime = vruntime; 525 526 return max_vruntime; 527 } 528 529 static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime) 530 { 531 s64 delta = (s64)(vruntime - min_vruntime); 532 if (delta < 0) 533 min_vruntime = vruntime; 534 535 return min_vruntime; 536 } 537 538 static inline bool entity_before(struct sched_entity *a, 539 struct sched_entity *b) 540 { 541 return (s64)(a->vruntime - b->vruntime) < 0; 542 } 543 544 #define __node_2_se(node) \ 545 rb_entry((node), struct sched_entity, run_node) 546 547 static void update_min_vruntime(struct cfs_rq *cfs_rq) 548 { 549 struct sched_entity *curr = cfs_rq->curr; 550 struct rb_node *leftmost = rb_first_cached(&cfs_rq->tasks_timeline); 551 552 u64 vruntime = cfs_rq->min_vruntime; 553 554 if (curr) { 555 if (curr->on_rq) 556 vruntime = curr->vruntime; 557 else 558 curr = NULL; 559 } 560 561 if (leftmost) { /* non-empty tree */ 562 struct sched_entity *se = __node_2_se(leftmost); 563 564 if (!curr) 565 vruntime = se->vruntime; 566 else 567 vruntime = min_vruntime(vruntime, se->vruntime); 568 } 569 570 /* ensure we never gain time by being placed backwards. */ 571 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime); 572 #ifndef CONFIG_64BIT 573 smp_wmb(); 574 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime; 575 #endif 576 } 577 578 static inline bool __entity_less(struct rb_node *a, const struct rb_node *b) 579 { 580 return entity_before(__node_2_se(a), __node_2_se(b)); 581 } 582 583 /* 584 * Enqueue an entity into the rb-tree: 585 */ 586 static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) 587 { 588 rb_add_cached(&se->run_node, &cfs_rq->tasks_timeline, __entity_less); 589 } 590 591 static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) 592 { 593 rb_erase_cached(&se->run_node, &cfs_rq->tasks_timeline); 594 } 595 596 struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq) 597 { 598 struct rb_node *left = rb_first_cached(&cfs_rq->tasks_timeline); 599 600 if (!left) 601 return NULL; 602 603 return __node_2_se(left); 604 } 605 606 static struct sched_entity *__pick_next_entity(struct sched_entity *se) 607 { 608 struct rb_node *next = rb_next(&se->run_node); 609 610 if (!next) 611 return NULL; 612 613 return __node_2_se(next); 614 } 615 616 #ifdef CONFIG_SCHED_DEBUG 617 struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq) 618 { 619 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline.rb_root); 620 621 if (!last) 622 return NULL; 623 624 return __node_2_se(last); 625 } 626 627 /************************************************************** 628 * Scheduling class statistics methods: 629 */ 630 631 int sched_update_scaling(void) 632 { 633 unsigned int factor = get_update_sysctl_factor(); 634 635 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency, 636 sysctl_sched_min_granularity); 637 638 #define WRT_SYSCTL(name) \ 639 (normalized_sysctl_##name = sysctl_##name / (factor)) 640 WRT_SYSCTL(sched_min_granularity); 641 WRT_SYSCTL(sched_latency); 642 WRT_SYSCTL(sched_wakeup_granularity); 643 #undef WRT_SYSCTL 644 645 return 0; 646 } 647 #endif 648 649 /* 650 * delta /= w 651 */ 652 static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se) 653 { 654 if (unlikely(se->load.weight != NICE_0_LOAD)) 655 delta = __calc_delta(delta, NICE_0_LOAD, &se->load); 656 657 return delta; 658 } 659 660 /* 661 * The idea is to set a period in which each task runs once. 662 * 663 * When there are too many tasks (sched_nr_latency) we have to stretch 664 * this period because otherwise the slices get too small. 665 * 666 * p = (nr <= nl) ? l : l*nr/nl 667 */ 668 static u64 __sched_period(unsigned long nr_running) 669 { 670 if (unlikely(nr_running > sched_nr_latency)) 671 return nr_running * sysctl_sched_min_granularity; 672 else 673 return sysctl_sched_latency; 674 } 675 676 static bool sched_idle_cfs_rq(struct cfs_rq *cfs_rq); 677 678 /* 679 * We calculate the wall-time slice from the period by taking a part 680 * proportional to the weight. 681 * 682 * s = p*P[w/rw] 683 */ 684 static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se) 685 { 686 unsigned int nr_running = cfs_rq->nr_running; 687 struct sched_entity *init_se = se; 688 unsigned int min_gran; 689 u64 slice; 690 691 if (sched_feat(ALT_PERIOD)) 692 nr_running = rq_of(cfs_rq)->cfs.h_nr_running; 693 694 slice = __sched_period(nr_running + !se->on_rq); 695 696 for_each_sched_entity(se) { 697 struct load_weight *load; 698 struct load_weight lw; 699 struct cfs_rq *qcfs_rq; 700 701 qcfs_rq = cfs_rq_of(se); 702 load = &qcfs_rq->load; 703 704 if (unlikely(!se->on_rq)) { 705 lw = qcfs_rq->load; 706 707 update_load_add(&lw, se->load.weight); 708 load = &lw; 709 } 710 slice = __calc_delta(slice, se->load.weight, load); 711 } 712 713 if (sched_feat(BASE_SLICE)) { 714 if (se_is_idle(init_se) && !sched_idle_cfs_rq(cfs_rq)) 715 min_gran = sysctl_sched_idle_min_granularity; 716 else 717 min_gran = sysctl_sched_min_granularity; 718 719 slice = max_t(u64, slice, min_gran); 720 } 721 722 return slice; 723 } 724 725 /* 726 * We calculate the vruntime slice of a to-be-inserted task. 727 * 728 * vs = s/w 729 */ 730 static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se) 731 { 732 return calc_delta_fair(sched_slice(cfs_rq, se), se); 733 } 734 735 #include "pelt.h" 736 #ifdef CONFIG_SMP 737 738 static int select_idle_sibling(struct task_struct *p, int prev_cpu, int cpu); 739 static unsigned long task_h_load(struct task_struct *p); 740 static unsigned long capacity_of(int cpu); 741 742 /* Give new sched_entity start runnable values to heavy its load in infant time */ 743 void init_entity_runnable_average(struct sched_entity *se) 744 { 745 struct sched_avg *sa = &se->avg; 746 747 memset(sa, 0, sizeof(*sa)); 748 749 /* 750 * Tasks are initialized with full load to be seen as heavy tasks until 751 * they get a chance to stabilize to their real load level. 752 * Group entities are initialized with zero load to reflect the fact that 753 * nothing has been attached to the task group yet. 754 */ 755 if (entity_is_task(se)) 756 sa->load_avg = scale_load_down(se->load.weight); 757 758 /* when this task enqueue'ed, it will contribute to its cfs_rq's load_avg */ 759 } 760 761 static void attach_entity_cfs_rq(struct sched_entity *se); 762 763 /* 764 * With new tasks being created, their initial util_avgs are extrapolated 765 * based on the cfs_rq's current util_avg: 766 * 767 * util_avg = cfs_rq->util_avg / (cfs_rq->load_avg + 1) * se.load.weight 768 * 769 * However, in many cases, the above util_avg does not give a desired 770 * value. Moreover, the sum of the util_avgs may be divergent, such 771 * as when the series is a harmonic series. 772 * 773 * To solve this problem, we also cap the util_avg of successive tasks to 774 * only 1/2 of the left utilization budget: 775 * 776 * util_avg_cap = (cpu_scale - cfs_rq->avg.util_avg) / 2^n 777 * 778 * where n denotes the nth task and cpu_scale the CPU capacity. 779 * 780 * For example, for a CPU with 1024 of capacity, a simplest series from 781 * the beginning would be like: 782 * 783 * task util_avg: 512, 256, 128, 64, 32, 16, 8, ... 784 * cfs_rq util_avg: 512, 768, 896, 960, 992, 1008, 1016, ... 785 * 786 * Finally, that extrapolated util_avg is clamped to the cap (util_avg_cap) 787 * if util_avg > util_avg_cap. 788 */ 789 void post_init_entity_util_avg(struct task_struct *p) 790 { 791 struct sched_entity *se = &p->se; 792 struct cfs_rq *cfs_rq = cfs_rq_of(se); 793 struct sched_avg *sa = &se->avg; 794 long cpu_scale = arch_scale_cpu_capacity(cpu_of(rq_of(cfs_rq))); 795 long cap = (long)(cpu_scale - cfs_rq->avg.util_avg) / 2; 796 797 if (cap > 0) { 798 if (cfs_rq->avg.util_avg != 0) { 799 sa->util_avg = cfs_rq->avg.util_avg * se->load.weight; 800 sa->util_avg /= (cfs_rq->avg.load_avg + 1); 801 802 if (sa->util_avg > cap) 803 sa->util_avg = cap; 804 } else { 805 sa->util_avg = cap; 806 } 807 } 808 809 sa->runnable_avg = sa->util_avg; 810 811 if (p->sched_class != &fair_sched_class) { 812 /* 813 * For !fair tasks do: 814 * 815 update_cfs_rq_load_avg(now, cfs_rq); 816 attach_entity_load_avg(cfs_rq, se); 817 switched_from_fair(rq, p); 818 * 819 * such that the next switched_to_fair() has the 820 * expected state. 821 */ 822 se->avg.last_update_time = cfs_rq_clock_pelt(cfs_rq); 823 return; 824 } 825 826 attach_entity_cfs_rq(se); 827 } 828 829 #else /* !CONFIG_SMP */ 830 void init_entity_runnable_average(struct sched_entity *se) 831 { 832 } 833 void post_init_entity_util_avg(struct task_struct *p) 834 { 835 } 836 static void update_tg_load_avg(struct cfs_rq *cfs_rq) 837 { 838 } 839 #endif /* CONFIG_SMP */ 840 841 /* 842 * Update the current task's runtime statistics. 843 */ 844 static void update_curr(struct cfs_rq *cfs_rq) 845 { 846 struct sched_entity *curr = cfs_rq->curr; 847 u64 now = rq_clock_task(rq_of(cfs_rq)); 848 u64 delta_exec; 849 850 if (unlikely(!curr)) 851 return; 852 853 delta_exec = now - curr->exec_start; 854 if (unlikely((s64)delta_exec <= 0)) 855 return; 856 857 curr->exec_start = now; 858 859 if (schedstat_enabled()) { 860 struct sched_statistics *stats; 861 862 stats = __schedstats_from_se(curr); 863 __schedstat_set(stats->exec_max, 864 max(delta_exec, stats->exec_max)); 865 } 866 867 curr->sum_exec_runtime += delta_exec; 868 schedstat_add(cfs_rq->exec_clock, delta_exec); 869 870 curr->vruntime += calc_delta_fair(delta_exec, curr); 871 update_min_vruntime(cfs_rq); 872 873 if (entity_is_task(curr)) { 874 struct task_struct *curtask = task_of(curr); 875 876 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime); 877 cgroup_account_cputime(curtask, delta_exec); 878 account_group_exec_runtime(curtask, delta_exec); 879 } 880 881 account_cfs_rq_runtime(cfs_rq, delta_exec); 882 } 883 884 static void update_curr_fair(struct rq *rq) 885 { 886 update_curr(cfs_rq_of(&rq->curr->se)); 887 } 888 889 static inline void 890 update_stats_wait_start_fair(struct cfs_rq *cfs_rq, struct sched_entity *se) 891 { 892 struct sched_statistics *stats; 893 struct task_struct *p = NULL; 894 895 if (!schedstat_enabled()) 896 return; 897 898 stats = __schedstats_from_se(se); 899 900 if (entity_is_task(se)) 901 p = task_of(se); 902 903 __update_stats_wait_start(rq_of(cfs_rq), p, stats); 904 } 905 906 static inline void 907 update_stats_wait_end_fair(struct cfs_rq *cfs_rq, struct sched_entity *se) 908 { 909 struct sched_statistics *stats; 910 struct task_struct *p = NULL; 911 912 if (!schedstat_enabled()) 913 return; 914 915 stats = __schedstats_from_se(se); 916 917 /* 918 * When the sched_schedstat changes from 0 to 1, some sched se 919 * maybe already in the runqueue, the se->statistics.wait_start 920 * will be 0.So it will let the delta wrong. We need to avoid this 921 * scenario. 922 */ 923 if (unlikely(!schedstat_val(stats->wait_start))) 924 return; 925 926 if (entity_is_task(se)) 927 p = task_of(se); 928 929 __update_stats_wait_end(rq_of(cfs_rq), p, stats); 930 } 931 932 static inline void 933 update_stats_enqueue_sleeper_fair(struct cfs_rq *cfs_rq, struct sched_entity *se) 934 { 935 struct sched_statistics *stats; 936 struct task_struct *tsk = NULL; 937 938 if (!schedstat_enabled()) 939 return; 940 941 stats = __schedstats_from_se(se); 942 943 if (entity_is_task(se)) 944 tsk = task_of(se); 945 946 __update_stats_enqueue_sleeper(rq_of(cfs_rq), tsk, stats); 947 } 948 949 /* 950 * Task is being enqueued - update stats: 951 */ 952 static inline void 953 update_stats_enqueue_fair(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 954 { 955 if (!schedstat_enabled()) 956 return; 957 958 /* 959 * Are we enqueueing a waiting task? (for current tasks 960 * a dequeue/enqueue event is a NOP) 961 */ 962 if (se != cfs_rq->curr) 963 update_stats_wait_start_fair(cfs_rq, se); 964 965 if (flags & ENQUEUE_WAKEUP) 966 update_stats_enqueue_sleeper_fair(cfs_rq, se); 967 } 968 969 static inline void 970 update_stats_dequeue_fair(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 971 { 972 973 if (!schedstat_enabled()) 974 return; 975 976 /* 977 * Mark the end of the wait period if dequeueing a 978 * waiting task: 979 */ 980 if (se != cfs_rq->curr) 981 update_stats_wait_end_fair(cfs_rq, se); 982 983 if ((flags & DEQUEUE_SLEEP) && entity_is_task(se)) { 984 struct task_struct *tsk = task_of(se); 985 unsigned int state; 986 987 /* XXX racy against TTWU */ 988 state = READ_ONCE(tsk->__state); 989 if (state & TASK_INTERRUPTIBLE) 990 __schedstat_set(tsk->stats.sleep_start, 991 rq_clock(rq_of(cfs_rq))); 992 if (state & TASK_UNINTERRUPTIBLE) 993 __schedstat_set(tsk->stats.block_start, 994 rq_clock(rq_of(cfs_rq))); 995 } 996 } 997 998 /* 999 * We are picking a new current task - update its stats: 1000 */ 1001 static inline void 1002 update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se) 1003 { 1004 /* 1005 * We are starting a new run period: 1006 */ 1007 se->exec_start = rq_clock_task(rq_of(cfs_rq)); 1008 } 1009 1010 /************************************************** 1011 * Scheduling class queueing methods: 1012 */ 1013 1014 #ifdef CONFIG_NUMA_BALANCING 1015 /* 1016 * Approximate time to scan a full NUMA task in ms. The task scan period is 1017 * calculated based on the tasks virtual memory size and 1018 * numa_balancing_scan_size. 1019 */ 1020 unsigned int sysctl_numa_balancing_scan_period_min = 1000; 1021 unsigned int sysctl_numa_balancing_scan_period_max = 60000; 1022 1023 /* Portion of address space to scan in MB */ 1024 unsigned int sysctl_numa_balancing_scan_size = 256; 1025 1026 /* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */ 1027 unsigned int sysctl_numa_balancing_scan_delay = 1000; 1028 1029 struct numa_group { 1030 refcount_t refcount; 1031 1032 spinlock_t lock; /* nr_tasks, tasks */ 1033 int nr_tasks; 1034 pid_t gid; 1035 int active_nodes; 1036 1037 struct rcu_head rcu; 1038 unsigned long total_faults; 1039 unsigned long max_faults_cpu; 1040 /* 1041 * faults[] array is split into two regions: faults_mem and faults_cpu. 1042 * 1043 * Faults_cpu is used to decide whether memory should move 1044 * towards the CPU. As a consequence, these stats are weighted 1045 * more by CPU use than by memory faults. 1046 */ 1047 unsigned long faults[]; 1048 }; 1049 1050 /* 1051 * For functions that can be called in multiple contexts that permit reading 1052 * ->numa_group (see struct task_struct for locking rules). 1053 */ 1054 static struct numa_group *deref_task_numa_group(struct task_struct *p) 1055 { 1056 return rcu_dereference_check(p->numa_group, p == current || 1057 (lockdep_is_held(__rq_lockp(task_rq(p))) && !READ_ONCE(p->on_cpu))); 1058 } 1059 1060 static struct numa_group *deref_curr_numa_group(struct task_struct *p) 1061 { 1062 return rcu_dereference_protected(p->numa_group, p == current); 1063 } 1064 1065 static inline unsigned long group_faults_priv(struct numa_group *ng); 1066 static inline unsigned long group_faults_shared(struct numa_group *ng); 1067 1068 static unsigned int task_nr_scan_windows(struct task_struct *p) 1069 { 1070 unsigned long rss = 0; 1071 unsigned long nr_scan_pages; 1072 1073 /* 1074 * Calculations based on RSS as non-present and empty pages are skipped 1075 * by the PTE scanner and NUMA hinting faults should be trapped based 1076 * on resident pages 1077 */ 1078 nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT); 1079 rss = get_mm_rss(p->mm); 1080 if (!rss) 1081 rss = nr_scan_pages; 1082 1083 rss = round_up(rss, nr_scan_pages); 1084 return rss / nr_scan_pages; 1085 } 1086 1087 /* For sanity's sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */ 1088 #define MAX_SCAN_WINDOW 2560 1089 1090 static unsigned int task_scan_min(struct task_struct *p) 1091 { 1092 unsigned int scan_size = READ_ONCE(sysctl_numa_balancing_scan_size); 1093 unsigned int scan, floor; 1094 unsigned int windows = 1; 1095 1096 if (scan_size < MAX_SCAN_WINDOW) 1097 windows = MAX_SCAN_WINDOW / scan_size; 1098 floor = 1000 / windows; 1099 1100 scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p); 1101 return max_t(unsigned int, floor, scan); 1102 } 1103 1104 static unsigned int task_scan_start(struct task_struct *p) 1105 { 1106 unsigned long smin = task_scan_min(p); 1107 unsigned long period = smin; 1108 struct numa_group *ng; 1109 1110 /* Scale the maximum scan period with the amount of shared memory. */ 1111 rcu_read_lock(); 1112 ng = rcu_dereference(p->numa_group); 1113 if (ng) { 1114 unsigned long shared = group_faults_shared(ng); 1115 unsigned long private = group_faults_priv(ng); 1116 1117 period *= refcount_read(&ng->refcount); 1118 period *= shared + 1; 1119 period /= private + shared + 1; 1120 } 1121 rcu_read_unlock(); 1122 1123 return max(smin, period); 1124 } 1125 1126 static unsigned int task_scan_max(struct task_struct *p) 1127 { 1128 unsigned long smin = task_scan_min(p); 1129 unsigned long smax; 1130 struct numa_group *ng; 1131 1132 /* Watch for min being lower than max due to floor calculations */ 1133 smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p); 1134 1135 /* Scale the maximum scan period with the amount of shared memory. */ 1136 ng = deref_curr_numa_group(p); 1137 if (ng) { 1138 unsigned long shared = group_faults_shared(ng); 1139 unsigned long private = group_faults_priv(ng); 1140 unsigned long period = smax; 1141 1142 period *= refcount_read(&ng->refcount); 1143 period *= shared + 1; 1144 period /= private + shared + 1; 1145 1146 smax = max(smax, period); 1147 } 1148 1149 return max(smin, smax); 1150 } 1151 1152 static void account_numa_enqueue(struct rq *rq, struct task_struct *p) 1153 { 1154 rq->nr_numa_running += (p->numa_preferred_nid != NUMA_NO_NODE); 1155 rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p)); 1156 } 1157 1158 static void account_numa_dequeue(struct rq *rq, struct task_struct *p) 1159 { 1160 rq->nr_numa_running -= (p->numa_preferred_nid != NUMA_NO_NODE); 1161 rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p)); 1162 } 1163 1164 /* Shared or private faults. */ 1165 #define NR_NUMA_HINT_FAULT_TYPES 2 1166 1167 /* Memory and CPU locality */ 1168 #define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2) 1169 1170 /* Averaged statistics, and temporary buffers. */ 1171 #define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2) 1172 1173 pid_t task_numa_group_id(struct task_struct *p) 1174 { 1175 struct numa_group *ng; 1176 pid_t gid = 0; 1177 1178 rcu_read_lock(); 1179 ng = rcu_dereference(p->numa_group); 1180 if (ng) 1181 gid = ng->gid; 1182 rcu_read_unlock(); 1183 1184 return gid; 1185 } 1186 1187 /* 1188 * The averaged statistics, shared & private, memory & CPU, 1189 * occupy the first half of the array. The second half of the 1190 * array is for current counters, which are averaged into the 1191 * first set by task_numa_placement. 1192 */ 1193 static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv) 1194 { 1195 return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv; 1196 } 1197 1198 static inline unsigned long task_faults(struct task_struct *p, int nid) 1199 { 1200 if (!p->numa_faults) 1201 return 0; 1202 1203 return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] + 1204 p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)]; 1205 } 1206 1207 static inline unsigned long group_faults(struct task_struct *p, int nid) 1208 { 1209 struct numa_group *ng = deref_task_numa_group(p); 1210 1211 if (!ng) 1212 return 0; 1213 1214 return ng->faults[task_faults_idx(NUMA_MEM, nid, 0)] + 1215 ng->faults[task_faults_idx(NUMA_MEM, nid, 1)]; 1216 } 1217 1218 static inline unsigned long group_faults_cpu(struct numa_group *group, int nid) 1219 { 1220 return group->faults[task_faults_idx(NUMA_CPU, nid, 0)] + 1221 group->faults[task_faults_idx(NUMA_CPU, nid, 1)]; 1222 } 1223 1224 static inline unsigned long group_faults_priv(struct numa_group *ng) 1225 { 1226 unsigned long faults = 0; 1227 int node; 1228 1229 for_each_online_node(node) { 1230 faults += ng->faults[task_faults_idx(NUMA_MEM, node, 1)]; 1231 } 1232 1233 return faults; 1234 } 1235 1236 static inline unsigned long group_faults_shared(struct numa_group *ng) 1237 { 1238 unsigned long faults = 0; 1239 int node; 1240 1241 for_each_online_node(node) { 1242 faults += ng->faults[task_faults_idx(NUMA_MEM, node, 0)]; 1243 } 1244 1245 return faults; 1246 } 1247 1248 /* 1249 * A node triggering more than 1/3 as many NUMA faults as the maximum is 1250 * considered part of a numa group's pseudo-interleaving set. Migrations 1251 * between these nodes are slowed down, to allow things to settle down. 1252 */ 1253 #define ACTIVE_NODE_FRACTION 3 1254 1255 static bool numa_is_active_node(int nid, struct numa_group *ng) 1256 { 1257 return group_faults_cpu(ng, nid) * ACTIVE_NODE_FRACTION > ng->max_faults_cpu; 1258 } 1259 1260 /* Handle placement on systems where not all nodes are directly connected. */ 1261 static unsigned long score_nearby_nodes(struct task_struct *p, int nid, 1262 int maxdist, bool task) 1263 { 1264 unsigned long score = 0; 1265 int node; 1266 1267 /* 1268 * All nodes are directly connected, and the same distance 1269 * from each other. No need for fancy placement algorithms. 1270 */ 1271 if (sched_numa_topology_type == NUMA_DIRECT) 1272 return 0; 1273 1274 /* 1275 * This code is called for each node, introducing N^2 complexity, 1276 * which should be ok given the number of nodes rarely exceeds 8. 1277 */ 1278 for_each_online_node(node) { 1279 unsigned long faults; 1280 int dist = node_distance(nid, node); 1281 1282 /* 1283 * The furthest away nodes in the system are not interesting 1284 * for placement; nid was already counted. 1285 */ 1286 if (dist == sched_max_numa_distance || node == nid) 1287 continue; 1288 1289 /* 1290 * On systems with a backplane NUMA topology, compare groups 1291 * of nodes, and move tasks towards the group with the most 1292 * memory accesses. When comparing two nodes at distance 1293 * "hoplimit", only nodes closer by than "hoplimit" are part 1294 * of each group. Skip other nodes. 1295 */ 1296 if (sched_numa_topology_type == NUMA_BACKPLANE && 1297 dist >= maxdist) 1298 continue; 1299 1300 /* Add up the faults from nearby nodes. */ 1301 if (task) 1302 faults = task_faults(p, node); 1303 else 1304 faults = group_faults(p, node); 1305 1306 /* 1307 * On systems with a glueless mesh NUMA topology, there are 1308 * no fixed "groups of nodes". Instead, nodes that are not 1309 * directly connected bounce traffic through intermediate 1310 * nodes; a numa_group can occupy any set of nodes. 1311 * The further away a node is, the less the faults count. 1312 * This seems to result in good task placement. 1313 */ 1314 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) { 1315 faults *= (sched_max_numa_distance - dist); 1316 faults /= (sched_max_numa_distance - LOCAL_DISTANCE); 1317 } 1318 1319 score += faults; 1320 } 1321 1322 return score; 1323 } 1324 1325 /* 1326 * These return the fraction of accesses done by a particular task, or 1327 * task group, on a particular numa node. The group weight is given a 1328 * larger multiplier, in order to group tasks together that are almost 1329 * evenly spread out between numa nodes. 1330 */ 1331 static inline unsigned long task_weight(struct task_struct *p, int nid, 1332 int dist) 1333 { 1334 unsigned long faults, total_faults; 1335 1336 if (!p->numa_faults) 1337 return 0; 1338 1339 total_faults = p->total_numa_faults; 1340 1341 if (!total_faults) 1342 return 0; 1343 1344 faults = task_faults(p, nid); 1345 faults += score_nearby_nodes(p, nid, dist, true); 1346 1347 return 1000 * faults / total_faults; 1348 } 1349 1350 static inline unsigned long group_weight(struct task_struct *p, int nid, 1351 int dist) 1352 { 1353 struct numa_group *ng = deref_task_numa_group(p); 1354 unsigned long faults, total_faults; 1355 1356 if (!ng) 1357 return 0; 1358 1359 total_faults = ng->total_faults; 1360 1361 if (!total_faults) 1362 return 0; 1363 1364 faults = group_faults(p, nid); 1365 faults += score_nearby_nodes(p, nid, dist, false); 1366 1367 return 1000 * faults / total_faults; 1368 } 1369 1370 bool should_numa_migrate_memory(struct task_struct *p, struct page * page, 1371 int src_nid, int dst_cpu) 1372 { 1373 struct numa_group *ng = deref_curr_numa_group(p); 1374 int dst_nid = cpu_to_node(dst_cpu); 1375 int last_cpupid, this_cpupid; 1376 1377 this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid); 1378 last_cpupid = page_cpupid_xchg_last(page, this_cpupid); 1379 1380 /* 1381 * Allow first faults or private faults to migrate immediately early in 1382 * the lifetime of a task. The magic number 4 is based on waiting for 1383 * two full passes of the "multi-stage node selection" test that is 1384 * executed below. 1385 */ 1386 if ((p->numa_preferred_nid == NUMA_NO_NODE || p->numa_scan_seq <= 4) && 1387 (cpupid_pid_unset(last_cpupid) || cpupid_match_pid(p, last_cpupid))) 1388 return true; 1389 1390 /* 1391 * Multi-stage node selection is used in conjunction with a periodic 1392 * migration fault to build a temporal task<->page relation. By using 1393 * a two-stage filter we remove short/unlikely relations. 1394 * 1395 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate 1396 * a task's usage of a particular page (n_p) per total usage of this 1397 * page (n_t) (in a given time-span) to a probability. 1398 * 1399 * Our periodic faults will sample this probability and getting the 1400 * same result twice in a row, given these samples are fully 1401 * independent, is then given by P(n)^2, provided our sample period 1402 * is sufficiently short compared to the usage pattern. 1403 * 1404 * This quadric squishes small probabilities, making it less likely we 1405 * act on an unlikely task<->page relation. 1406 */ 1407 if (!cpupid_pid_unset(last_cpupid) && 1408 cpupid_to_nid(last_cpupid) != dst_nid) 1409 return false; 1410 1411 /* Always allow migrate on private faults */ 1412 if (cpupid_match_pid(p, last_cpupid)) 1413 return true; 1414 1415 /* A shared fault, but p->numa_group has not been set up yet. */ 1416 if (!ng) 1417 return true; 1418 1419 /* 1420 * Destination node is much more heavily used than the source 1421 * node? Allow migration. 1422 */ 1423 if (group_faults_cpu(ng, dst_nid) > group_faults_cpu(ng, src_nid) * 1424 ACTIVE_NODE_FRACTION) 1425 return true; 1426 1427 /* 1428 * Distribute memory according to CPU & memory use on each node, 1429 * with 3/4 hysteresis to avoid unnecessary memory migrations: 1430 * 1431 * faults_cpu(dst) 3 faults_cpu(src) 1432 * --------------- * - > --------------- 1433 * faults_mem(dst) 4 faults_mem(src) 1434 */ 1435 return group_faults_cpu(ng, dst_nid) * group_faults(p, src_nid) * 3 > 1436 group_faults_cpu(ng, src_nid) * group_faults(p, dst_nid) * 4; 1437 } 1438 1439 /* 1440 * 'numa_type' describes the node at the moment of load balancing. 1441 */ 1442 enum numa_type { 1443 /* The node has spare capacity that can be used to run more tasks. */ 1444 node_has_spare = 0, 1445 /* 1446 * The node is fully used and the tasks don't compete for more CPU 1447 * cycles. Nevertheless, some tasks might wait before running. 1448 */ 1449 node_fully_busy, 1450 /* 1451 * The node is overloaded and can't provide expected CPU cycles to all 1452 * tasks. 1453 */ 1454 node_overloaded 1455 }; 1456 1457 /* Cached statistics for all CPUs within a node */ 1458 struct numa_stats { 1459 unsigned long load; 1460 unsigned long runnable; 1461 unsigned long util; 1462 /* Total compute capacity of CPUs on a node */ 1463 unsigned long compute_capacity; 1464 unsigned int nr_running; 1465 unsigned int weight; 1466 enum numa_type node_type; 1467 int idle_cpu; 1468 }; 1469 1470 static inline bool is_core_idle(int cpu) 1471 { 1472 #ifdef CONFIG_SCHED_SMT 1473 int sibling; 1474 1475 for_each_cpu(sibling, cpu_smt_mask(cpu)) { 1476 if (cpu == sibling) 1477 continue; 1478 1479 if (!idle_cpu(sibling)) 1480 return false; 1481 } 1482 #endif 1483 1484 return true; 1485 } 1486 1487 struct task_numa_env { 1488 struct task_struct *p; 1489 1490 int src_cpu, src_nid; 1491 int dst_cpu, dst_nid; 1492 1493 struct numa_stats src_stats, dst_stats; 1494 1495 int imbalance_pct; 1496 int dist; 1497 1498 struct task_struct *best_task; 1499 long best_imp; 1500 int best_cpu; 1501 }; 1502 1503 static unsigned long cpu_load(struct rq *rq); 1504 static unsigned long cpu_runnable(struct rq *rq); 1505 static unsigned long cpu_util(int cpu); 1506 static inline long adjust_numa_imbalance(int imbalance, 1507 int dst_running, int dst_weight); 1508 1509 static inline enum 1510 numa_type numa_classify(unsigned int imbalance_pct, 1511 struct numa_stats *ns) 1512 { 1513 if ((ns->nr_running > ns->weight) && 1514 (((ns->compute_capacity * 100) < (ns->util * imbalance_pct)) || 1515 ((ns->compute_capacity * imbalance_pct) < (ns->runnable * 100)))) 1516 return node_overloaded; 1517 1518 if ((ns->nr_running < ns->weight) || 1519 (((ns->compute_capacity * 100) > (ns->util * imbalance_pct)) && 1520 ((ns->compute_capacity * imbalance_pct) > (ns->runnable * 100)))) 1521 return node_has_spare; 1522 1523 return node_fully_busy; 1524 } 1525 1526 #ifdef CONFIG_SCHED_SMT 1527 /* Forward declarations of select_idle_sibling helpers */ 1528 static inline bool test_idle_cores(int cpu, bool def); 1529 static inline int numa_idle_core(int idle_core, int cpu) 1530 { 1531 if (!static_branch_likely(&sched_smt_present) || 1532 idle_core >= 0 || !test_idle_cores(cpu, false)) 1533 return idle_core; 1534 1535 /* 1536 * Prefer cores instead of packing HT siblings 1537 * and triggering future load balancing. 1538 */ 1539 if (is_core_idle(cpu)) 1540 idle_core = cpu; 1541 1542 return idle_core; 1543 } 1544 #else 1545 static inline int numa_idle_core(int idle_core, int cpu) 1546 { 1547 return idle_core; 1548 } 1549 #endif 1550 1551 /* 1552 * Gather all necessary information to make NUMA balancing placement 1553 * decisions that are compatible with standard load balancer. This 1554 * borrows code and logic from update_sg_lb_stats but sharing a 1555 * common implementation is impractical. 1556 */ 1557 static void update_numa_stats(struct task_numa_env *env, 1558 struct numa_stats *ns, int nid, 1559 bool find_idle) 1560 { 1561 int cpu, idle_core = -1; 1562 1563 memset(ns, 0, sizeof(*ns)); 1564 ns->idle_cpu = -1; 1565 1566 rcu_read_lock(); 1567 for_each_cpu(cpu, cpumask_of_node(nid)) { 1568 struct rq *rq = cpu_rq(cpu); 1569 1570 ns->load += cpu_load(rq); 1571 ns->runnable += cpu_runnable(rq); 1572 ns->util += cpu_util(cpu); 1573 ns->nr_running += rq->cfs.h_nr_running; 1574 ns->compute_capacity += capacity_of(cpu); 1575 1576 if (find_idle && !rq->nr_running && idle_cpu(cpu)) { 1577 if (READ_ONCE(rq->numa_migrate_on) || 1578 !cpumask_test_cpu(cpu, env->p->cpus_ptr)) 1579 continue; 1580 1581 if (ns->idle_cpu == -1) 1582 ns->idle_cpu = cpu; 1583 1584 idle_core = numa_idle_core(idle_core, cpu); 1585 } 1586 } 1587 rcu_read_unlock(); 1588 1589 ns->weight = cpumask_weight(cpumask_of_node(nid)); 1590 1591 ns->node_type = numa_classify(env->imbalance_pct, ns); 1592 1593 if (idle_core >= 0) 1594 ns->idle_cpu = idle_core; 1595 } 1596 1597 static void task_numa_assign(struct task_numa_env *env, 1598 struct task_struct *p, long imp) 1599 { 1600 struct rq *rq = cpu_rq(env->dst_cpu); 1601 1602 /* Check if run-queue part of active NUMA balance. */ 1603 if (env->best_cpu != env->dst_cpu && xchg(&rq->numa_migrate_on, 1)) { 1604 int cpu; 1605 int start = env->dst_cpu; 1606 1607 /* Find alternative idle CPU. */ 1608 for_each_cpu_wrap(cpu, cpumask_of_node(env->dst_nid), start) { 1609 if (cpu == env->best_cpu || !idle_cpu(cpu) || 1610 !cpumask_test_cpu(cpu, env->p->cpus_ptr)) { 1611 continue; 1612 } 1613 1614 env->dst_cpu = cpu; 1615 rq = cpu_rq(env->dst_cpu); 1616 if (!xchg(&rq->numa_migrate_on, 1)) 1617 goto assign; 1618 } 1619 1620 /* Failed to find an alternative idle CPU */ 1621 return; 1622 } 1623 1624 assign: 1625 /* 1626 * Clear previous best_cpu/rq numa-migrate flag, since task now 1627 * found a better CPU to move/swap. 1628 */ 1629 if (env->best_cpu != -1 && env->best_cpu != env->dst_cpu) { 1630 rq = cpu_rq(env->best_cpu); 1631 WRITE_ONCE(rq->numa_migrate_on, 0); 1632 } 1633 1634 if (env->best_task) 1635 put_task_struct(env->best_task); 1636 if (p) 1637 get_task_struct(p); 1638 1639 env->best_task = p; 1640 env->best_imp = imp; 1641 env->best_cpu = env->dst_cpu; 1642 } 1643 1644 static bool load_too_imbalanced(long src_load, long dst_load, 1645 struct task_numa_env *env) 1646 { 1647 long imb, old_imb; 1648 long orig_src_load, orig_dst_load; 1649 long src_capacity, dst_capacity; 1650 1651 /* 1652 * The load is corrected for the CPU capacity available on each node. 1653 * 1654 * src_load dst_load 1655 * ------------ vs --------- 1656 * src_capacity dst_capacity 1657 */ 1658 src_capacity = env->src_stats.compute_capacity; 1659 dst_capacity = env->dst_stats.compute_capacity; 1660 1661 imb = abs(dst_load * src_capacity - src_load * dst_capacity); 1662 1663 orig_src_load = env->src_stats.load; 1664 orig_dst_load = env->dst_stats.load; 1665 1666 old_imb = abs(orig_dst_load * src_capacity - orig_src_load * dst_capacity); 1667 1668 /* Would this change make things worse? */ 1669 return (imb > old_imb); 1670 } 1671 1672 /* 1673 * Maximum NUMA importance can be 1998 (2*999); 1674 * SMALLIMP @ 30 would be close to 1998/64. 1675 * Used to deter task migration. 1676 */ 1677 #define SMALLIMP 30 1678 1679 /* 1680 * This checks if the overall compute and NUMA accesses of the system would 1681 * be improved if the source tasks was migrated to the target dst_cpu taking 1682 * into account that it might be best if task running on the dst_cpu should 1683 * be exchanged with the source task 1684 */ 1685 static bool task_numa_compare(struct task_numa_env *env, 1686 long taskimp, long groupimp, bool maymove) 1687 { 1688 struct numa_group *cur_ng, *p_ng = deref_curr_numa_group(env->p); 1689 struct rq *dst_rq = cpu_rq(env->dst_cpu); 1690 long imp = p_ng ? groupimp : taskimp; 1691 struct task_struct *cur; 1692 long src_load, dst_load; 1693 int dist = env->dist; 1694 long moveimp = imp; 1695 long load; 1696 bool stopsearch = false; 1697 1698 if (READ_ONCE(dst_rq->numa_migrate_on)) 1699 return false; 1700 1701 rcu_read_lock(); 1702 cur = rcu_dereference(dst_rq->curr); 1703 if (cur && ((cur->flags & PF_EXITING) || is_idle_task(cur))) 1704 cur = NULL; 1705 1706 /* 1707 * Because we have preemption enabled we can get migrated around and 1708 * end try selecting ourselves (current == env->p) as a swap candidate. 1709 */ 1710 if (cur == env->p) { 1711 stopsearch = true; 1712 goto unlock; 1713 } 1714 1715 if (!cur) { 1716 if (maymove && moveimp >= env->best_imp) 1717 goto assign; 1718 else 1719 goto unlock; 1720 } 1721 1722 /* Skip this swap candidate if cannot move to the source cpu. */ 1723 if (!cpumask_test_cpu(env->src_cpu, cur->cpus_ptr)) 1724 goto unlock; 1725 1726 /* 1727 * Skip this swap candidate if it is not moving to its preferred 1728 * node and the best task is. 1729 */ 1730 if (env->best_task && 1731 env->best_task->numa_preferred_nid == env->src_nid && 1732 cur->numa_preferred_nid != env->src_nid) { 1733 goto unlock; 1734 } 1735 1736 /* 1737 * "imp" is the fault differential for the source task between the 1738 * source and destination node. Calculate the total differential for 1739 * the source task and potential destination task. The more negative 1740 * the value is, the more remote accesses that would be expected to 1741 * be incurred if the tasks were swapped. 1742 * 1743 * If dst and source tasks are in the same NUMA group, or not 1744 * in any group then look only at task weights. 1745 */ 1746 cur_ng = rcu_dereference(cur->numa_group); 1747 if (cur_ng == p_ng) { 1748 imp = taskimp + task_weight(cur, env->src_nid, dist) - 1749 task_weight(cur, env->dst_nid, dist); 1750 /* 1751 * Add some hysteresis to prevent swapping the 1752 * tasks within a group over tiny differences. 1753 */ 1754 if (cur_ng) 1755 imp -= imp / 16; 1756 } else { 1757 /* 1758 * Compare the group weights. If a task is all by itself 1759 * (not part of a group), use the task weight instead. 1760 */ 1761 if (cur_ng && p_ng) 1762 imp += group_weight(cur, env->src_nid, dist) - 1763 group_weight(cur, env->dst_nid, dist); 1764 else 1765 imp += task_weight(cur, env->src_nid, dist) - 1766 task_weight(cur, env->dst_nid, dist); 1767 } 1768 1769 /* Discourage picking a task already on its preferred node */ 1770 if (cur->numa_preferred_nid == env->dst_nid) 1771 imp -= imp / 16; 1772 1773 /* 1774 * Encourage picking a task that moves to its preferred node. 1775 * This potentially makes imp larger than it's maximum of 1776 * 1998 (see SMALLIMP and task_weight for why) but in this 1777 * case, it does not matter. 1778 */ 1779 if (cur->numa_preferred_nid == env->src_nid) 1780 imp += imp / 8; 1781 1782 if (maymove && moveimp > imp && moveimp > env->best_imp) { 1783 imp = moveimp; 1784 cur = NULL; 1785 goto assign; 1786 } 1787 1788 /* 1789 * Prefer swapping with a task moving to its preferred node over a 1790 * task that is not. 1791 */ 1792 if (env->best_task && cur->numa_preferred_nid == env->src_nid && 1793 env->best_task->numa_preferred_nid != env->src_nid) { 1794 goto assign; 1795 } 1796 1797 /* 1798 * If the NUMA importance is less than SMALLIMP, 1799 * task migration might only result in ping pong 1800 * of tasks and also hurt performance due to cache 1801 * misses. 1802 */ 1803 if (imp < SMALLIMP || imp <= env->best_imp + SMALLIMP / 2) 1804 goto unlock; 1805 1806 /* 1807 * In the overloaded case, try and keep the load balanced. 1808 */ 1809 load = task_h_load(env->p) - task_h_load(cur); 1810 if (!load) 1811 goto assign; 1812 1813 dst_load = env->dst_stats.load + load; 1814 src_load = env->src_stats.load - load; 1815 1816 if (load_too_imbalanced(src_load, dst_load, env)) 1817 goto unlock; 1818 1819 assign: 1820 /* Evaluate an idle CPU for a task numa move. */ 1821 if (!cur) { 1822 int cpu = env->dst_stats.idle_cpu; 1823 1824 /* Nothing cached so current CPU went idle since the search. */ 1825 if (cpu < 0) 1826 cpu = env->dst_cpu; 1827 1828 /* 1829 * If the CPU is no longer truly idle and the previous best CPU 1830 * is, keep using it. 1831 */ 1832 if (!idle_cpu(cpu) && env->best_cpu >= 0 && 1833 idle_cpu(env->best_cpu)) { 1834 cpu = env->best_cpu; 1835 } 1836 1837 env->dst_cpu = cpu; 1838 } 1839 1840 task_numa_assign(env, cur, imp); 1841 1842 /* 1843 * If a move to idle is allowed because there is capacity or load 1844 * balance improves then stop the search. While a better swap 1845 * candidate may exist, a search is not free. 1846 */ 1847 if (maymove && !cur && env->best_cpu >= 0 && idle_cpu(env->best_cpu)) 1848 stopsearch = true; 1849 1850 /* 1851 * If a swap candidate must be identified and the current best task 1852 * moves its preferred node then stop the search. 1853 */ 1854 if (!maymove && env->best_task && 1855 env->best_task->numa_preferred_nid == env->src_nid) { 1856 stopsearch = true; 1857 } 1858 unlock: 1859 rcu_read_unlock(); 1860 1861 return stopsearch; 1862 } 1863 1864 static void task_numa_find_cpu(struct task_numa_env *env, 1865 long taskimp, long groupimp) 1866 { 1867 bool maymove = false; 1868 int cpu; 1869 1870 /* 1871 * If dst node has spare capacity, then check if there is an 1872 * imbalance that would be overruled by the load balancer. 1873 */ 1874 if (env->dst_stats.node_type == node_has_spare) { 1875 unsigned int imbalance; 1876 int src_running, dst_running; 1877 1878 /* 1879 * Would movement cause an imbalance? Note that if src has 1880 * more running tasks that the imbalance is ignored as the 1881 * move improves the imbalance from the perspective of the 1882 * CPU load balancer. 1883 * */ 1884 src_running = env->src_stats.nr_running - 1; 1885 dst_running = env->dst_stats.nr_running + 1; 1886 imbalance = max(0, dst_running - src_running); 1887 imbalance = adjust_numa_imbalance(imbalance, dst_running, 1888 env->dst_stats.weight); 1889 1890 /* Use idle CPU if there is no imbalance */ 1891 if (!imbalance) { 1892 maymove = true; 1893 if (env->dst_stats.idle_cpu >= 0) { 1894 env->dst_cpu = env->dst_stats.idle_cpu; 1895 task_numa_assign(env, NULL, 0); 1896 return; 1897 } 1898 } 1899 } else { 1900 long src_load, dst_load, load; 1901 /* 1902 * If the improvement from just moving env->p direction is better 1903 * than swapping tasks around, check if a move is possible. 1904 */ 1905 load = task_h_load(env->p); 1906 dst_load = env->dst_stats.load + load; 1907 src_load = env->src_stats.load - load; 1908 maymove = !load_too_imbalanced(src_load, dst_load, env); 1909 } 1910 1911 for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) { 1912 /* Skip this CPU if the source task cannot migrate */ 1913 if (!cpumask_test_cpu(cpu, env->p->cpus_ptr)) 1914 continue; 1915 1916 env->dst_cpu = cpu; 1917 if (task_numa_compare(env, taskimp, groupimp, maymove)) 1918 break; 1919 } 1920 } 1921 1922 static int task_numa_migrate(struct task_struct *p) 1923 { 1924 struct task_numa_env env = { 1925 .p = p, 1926 1927 .src_cpu = task_cpu(p), 1928 .src_nid = task_node(p), 1929 1930 .imbalance_pct = 112, 1931 1932 .best_task = NULL, 1933 .best_imp = 0, 1934 .best_cpu = -1, 1935 }; 1936 unsigned long taskweight, groupweight; 1937 struct sched_domain *sd; 1938 long taskimp, groupimp; 1939 struct numa_group *ng; 1940 struct rq *best_rq; 1941 int nid, ret, dist; 1942 1943 /* 1944 * Pick the lowest SD_NUMA domain, as that would have the smallest 1945 * imbalance and would be the first to start moving tasks about. 1946 * 1947 * And we want to avoid any moving of tasks about, as that would create 1948 * random movement of tasks -- counter the numa conditions we're trying 1949 * to satisfy here. 1950 */ 1951 rcu_read_lock(); 1952 sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu)); 1953 if (sd) 1954 env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2; 1955 rcu_read_unlock(); 1956 1957 /* 1958 * Cpusets can break the scheduler domain tree into smaller 1959 * balance domains, some of which do not cross NUMA boundaries. 1960 * Tasks that are "trapped" in such domains cannot be migrated 1961 * elsewhere, so there is no point in (re)trying. 1962 */ 1963 if (unlikely(!sd)) { 1964 sched_setnuma(p, task_node(p)); 1965 return -EINVAL; 1966 } 1967 1968 env.dst_nid = p->numa_preferred_nid; 1969 dist = env.dist = node_distance(env.src_nid, env.dst_nid); 1970 taskweight = task_weight(p, env.src_nid, dist); 1971 groupweight = group_weight(p, env.src_nid, dist); 1972 update_numa_stats(&env, &env.src_stats, env.src_nid, false); 1973 taskimp = task_weight(p, env.dst_nid, dist) - taskweight; 1974 groupimp = group_weight(p, env.dst_nid, dist) - groupweight; 1975 update_numa_stats(&env, &env.dst_stats, env.dst_nid, true); 1976 1977 /* Try to find a spot on the preferred nid. */ 1978 task_numa_find_cpu(&env, taskimp, groupimp); 1979 1980 /* 1981 * Look at other nodes in these cases: 1982 * - there is no space available on the preferred_nid 1983 * - the task is part of a numa_group that is interleaved across 1984 * multiple NUMA nodes; in order to better consolidate the group, 1985 * we need to check other locations. 1986 */ 1987 ng = deref_curr_numa_group(p); 1988 if (env.best_cpu == -1 || (ng && ng->active_nodes > 1)) { 1989 for_each_online_node(nid) { 1990 if (nid == env.src_nid || nid == p->numa_preferred_nid) 1991 continue; 1992 1993 dist = node_distance(env.src_nid, env.dst_nid); 1994 if (sched_numa_topology_type == NUMA_BACKPLANE && 1995 dist != env.dist) { 1996 taskweight = task_weight(p, env.src_nid, dist); 1997 groupweight = group_weight(p, env.src_nid, dist); 1998 } 1999 2000 /* Only consider nodes where both task and groups benefit */ 2001 taskimp = task_weight(p, nid, dist) - taskweight; 2002 groupimp = group_weight(p, nid, dist) - groupweight; 2003 if (taskimp < 0 && groupimp < 0) 2004 continue; 2005 2006 env.dist = dist; 2007 env.dst_nid = nid; 2008 update_numa_stats(&env, &env.dst_stats, env.dst_nid, true); 2009 task_numa_find_cpu(&env, taskimp, groupimp); 2010 } 2011 } 2012 2013 /* 2014 * If the task is part of a workload that spans multiple NUMA nodes, 2015 * and is migrating into one of the workload's active nodes, remember 2016 * this node as the task's preferred numa node, so the workload can 2017 * settle down. 2018 * A task that migrated to a second choice node will be better off 2019 * trying for a better one later. Do not set the preferred node here. 2020 */ 2021 if (ng) { 2022 if (env.best_cpu == -1) 2023 nid = env.src_nid; 2024 else 2025 nid = cpu_to_node(env.best_cpu); 2026 2027 if (nid != p->numa_preferred_nid) 2028 sched_setnuma(p, nid); 2029 } 2030 2031 /* No better CPU than the current one was found. */ 2032 if (env.best_cpu == -1) { 2033 trace_sched_stick_numa(p, env.src_cpu, NULL, -1); 2034 return -EAGAIN; 2035 } 2036 2037 best_rq = cpu_rq(env.best_cpu); 2038 if (env.best_task == NULL) { 2039 ret = migrate_task_to(p, env.best_cpu); 2040 WRITE_ONCE(best_rq->numa_migrate_on, 0); 2041 if (ret != 0) 2042 trace_sched_stick_numa(p, env.src_cpu, NULL, env.best_cpu); 2043 return ret; 2044 } 2045 2046 ret = migrate_swap(p, env.best_task, env.best_cpu, env.src_cpu); 2047 WRITE_ONCE(best_rq->numa_migrate_on, 0); 2048 2049 if (ret != 0) 2050 trace_sched_stick_numa(p, env.src_cpu, env.best_task, env.best_cpu); 2051 put_task_struct(env.best_task); 2052 return ret; 2053 } 2054 2055 /* Attempt to migrate a task to a CPU on the preferred node. */ 2056 static void numa_migrate_preferred(struct task_struct *p) 2057 { 2058 unsigned long interval = HZ; 2059 2060 /* This task has no NUMA fault statistics yet */ 2061 if (unlikely(p->numa_preferred_nid == NUMA_NO_NODE || !p->numa_faults)) 2062 return; 2063 2064 /* Periodically retry migrating the task to the preferred node */ 2065 interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16); 2066 p->numa_migrate_retry = jiffies + interval; 2067 2068 /* Success if task is already running on preferred CPU */ 2069 if (task_node(p) == p->numa_preferred_nid) 2070 return; 2071 2072 /* Otherwise, try migrate to a CPU on the preferred node */ 2073 task_numa_migrate(p); 2074 } 2075 2076 /* 2077 * Find out how many nodes the workload is actively running on. Do this by 2078 * tracking the nodes from which NUMA hinting faults are triggered. This can 2079 * be different from the set of nodes where the workload's memory is currently 2080 * located. 2081 */ 2082 static void numa_group_count_active_nodes(struct numa_group *numa_group) 2083 { 2084 unsigned long faults, max_faults = 0; 2085 int nid, active_nodes = 0; 2086 2087 for_each_online_node(nid) { 2088 faults = group_faults_cpu(numa_group, nid); 2089 if (faults > max_faults) 2090 max_faults = faults; 2091 } 2092 2093 for_each_online_node(nid) { 2094 faults = group_faults_cpu(numa_group, nid); 2095 if (faults * ACTIVE_NODE_FRACTION > max_faults) 2096 active_nodes++; 2097 } 2098 2099 numa_group->max_faults_cpu = max_faults; 2100 numa_group->active_nodes = active_nodes; 2101 } 2102 2103 /* 2104 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS 2105 * increments. The more local the fault statistics are, the higher the scan 2106 * period will be for the next scan window. If local/(local+remote) ratio is 2107 * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS) 2108 * the scan period will decrease. Aim for 70% local accesses. 2109 */ 2110 #define NUMA_PERIOD_SLOTS 10 2111 #define NUMA_PERIOD_THRESHOLD 7 2112 2113 /* 2114 * Increase the scan period (slow down scanning) if the majority of 2115 * our memory is already on our local node, or if the majority of 2116 * the page accesses are shared with other processes. 2117 * Otherwise, decrease the scan period. 2118 */ 2119 static void update_task_scan_period(struct task_struct *p, 2120 unsigned long shared, unsigned long private) 2121 { 2122 unsigned int period_slot; 2123 int lr_ratio, ps_ratio; 2124 int diff; 2125 2126 unsigned long remote = p->numa_faults_locality[0]; 2127 unsigned long local = p->numa_faults_locality[1]; 2128 2129 /* 2130 * If there were no record hinting faults then either the task is 2131 * completely idle or all activity is in areas that are not of interest 2132 * to automatic numa balancing. Related to that, if there were failed 2133 * migration then it implies we are migrating too quickly or the local 2134 * node is overloaded. In either case, scan slower 2135 */ 2136 if (local + shared == 0 || p->numa_faults_locality[2]) { 2137 p->numa_scan_period = min(p->numa_scan_period_max, 2138 p->numa_scan_period << 1); 2139 2140 p->mm->numa_next_scan = jiffies + 2141 msecs_to_jiffies(p->numa_scan_period); 2142 2143 return; 2144 } 2145 2146 /* 2147 * Prepare to scale scan period relative to the current period. 2148 * == NUMA_PERIOD_THRESHOLD scan period stays the same 2149 * < NUMA_PERIOD_THRESHOLD scan period decreases (scan faster) 2150 * >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower) 2151 */ 2152 period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS); 2153 lr_ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote); 2154 ps_ratio = (private * NUMA_PERIOD_SLOTS) / (private + shared); 2155 2156 if (ps_ratio >= NUMA_PERIOD_THRESHOLD) { 2157 /* 2158 * Most memory accesses are local. There is no need to 2159 * do fast NUMA scanning, since memory is already local. 2160 */ 2161 int slot = ps_ratio - NUMA_PERIOD_THRESHOLD; 2162 if (!slot) 2163 slot = 1; 2164 diff = slot * period_slot; 2165 } else if (lr_ratio >= NUMA_PERIOD_THRESHOLD) { 2166 /* 2167 * Most memory accesses are shared with other tasks. 2168 * There is no point in continuing fast NUMA scanning, 2169 * since other tasks may just move the memory elsewhere. 2170 */ 2171 int slot = lr_ratio - NUMA_PERIOD_THRESHOLD; 2172 if (!slot) 2173 slot = 1; 2174 diff = slot * period_slot; 2175 } else { 2176 /* 2177 * Private memory faults exceed (SLOTS-THRESHOLD)/SLOTS, 2178 * yet they are not on the local NUMA node. Speed up 2179 * NUMA scanning to get the memory moved over. 2180 */ 2181 int ratio = max(lr_ratio, ps_ratio); 2182 diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot; 2183 } 2184 2185 p->numa_scan_period = clamp(p->numa_scan_period + diff, 2186 task_scan_min(p), task_scan_max(p)); 2187 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality)); 2188 } 2189 2190 /* 2191 * Get the fraction of time the task has been running since the last 2192 * NUMA placement cycle. The scheduler keeps similar statistics, but 2193 * decays those on a 32ms period, which is orders of magnitude off 2194 * from the dozens-of-seconds NUMA balancing period. Use the scheduler 2195 * stats only if the task is so new there are no NUMA statistics yet. 2196 */ 2197 static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period) 2198 { 2199 u64 runtime, delta, now; 2200 /* Use the start of this time slice to avoid calculations. */ 2201 now = p->se.exec_start; 2202 runtime = p->se.sum_exec_runtime; 2203 2204 if (p->last_task_numa_placement) { 2205 delta = runtime - p->last_sum_exec_runtime; 2206 *period = now - p->last_task_numa_placement; 2207 2208 /* Avoid time going backwards, prevent potential divide error: */ 2209 if (unlikely((s64)*period < 0)) 2210 *period = 0; 2211 } else { 2212 delta = p->se.avg.load_sum; 2213 *period = LOAD_AVG_MAX; 2214 } 2215 2216 p->last_sum_exec_runtime = runtime; 2217 p->last_task_numa_placement = now; 2218 2219 return delta; 2220 } 2221 2222 /* 2223 * Determine the preferred nid for a task in a numa_group. This needs to 2224 * be done in a way that produces consistent results with group_weight, 2225 * otherwise workloads might not converge. 2226 */ 2227 static int preferred_group_nid(struct task_struct *p, int nid) 2228 { 2229 nodemask_t nodes; 2230 int dist; 2231 2232 /* Direct connections between all NUMA nodes. */ 2233 if (sched_numa_topology_type == NUMA_DIRECT) 2234 return nid; 2235 2236 /* 2237 * On a system with glueless mesh NUMA topology, group_weight 2238 * scores nodes according to the number of NUMA hinting faults on 2239 * both the node itself, and on nearby nodes. 2240 */ 2241 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) { 2242 unsigned long score, max_score = 0; 2243 int node, max_node = nid; 2244 2245 dist = sched_max_numa_distance; 2246 2247 for_each_online_node(node) { 2248 score = group_weight(p, node, dist); 2249 if (score > max_score) { 2250 max_score = score; 2251 max_node = node; 2252 } 2253 } 2254 return max_node; 2255 } 2256 2257 /* 2258 * Finding the preferred nid in a system with NUMA backplane 2259 * interconnect topology is more involved. The goal is to locate 2260 * tasks from numa_groups near each other in the system, and 2261 * untangle workloads from different sides of the system. This requires 2262 * searching down the hierarchy of node groups, recursively searching 2263 * inside the highest scoring group of nodes. The nodemask tricks 2264 * keep the complexity of the search down. 2265 */ 2266 nodes = node_online_map; 2267 for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) { 2268 unsigned long max_faults = 0; 2269 nodemask_t max_group = NODE_MASK_NONE; 2270 int a, b; 2271 2272 /* Are there nodes at this distance from each other? */ 2273 if (!find_numa_distance(dist)) 2274 continue; 2275 2276 for_each_node_mask(a, nodes) { 2277 unsigned long faults = 0; 2278 nodemask_t this_group; 2279 nodes_clear(this_group); 2280 2281 /* Sum group's NUMA faults; includes a==b case. */ 2282 for_each_node_mask(b, nodes) { 2283 if (node_distance(a, b) < dist) { 2284 faults += group_faults(p, b); 2285 node_set(b, this_group); 2286 node_clear(b, nodes); 2287 } 2288 } 2289 2290 /* Remember the top group. */ 2291 if (faults > max_faults) { 2292 max_faults = faults; 2293 max_group = this_group; 2294 /* 2295 * subtle: at the smallest distance there is 2296 * just one node left in each "group", the 2297 * winner is the preferred nid. 2298 */ 2299 nid = a; 2300 } 2301 } 2302 /* Next round, evaluate the nodes within max_group. */ 2303 if (!max_faults) 2304 break; 2305 nodes = max_group; 2306 } 2307 return nid; 2308 } 2309 2310 static void task_numa_placement(struct task_struct *p) 2311 { 2312 int seq, nid, max_nid = NUMA_NO_NODE; 2313 unsigned long max_faults = 0; 2314 unsigned long fault_types[2] = { 0, 0 }; 2315 unsigned long total_faults; 2316 u64 runtime, period; 2317 spinlock_t *group_lock = NULL; 2318 struct numa_group *ng; 2319 2320 /* 2321 * The p->mm->numa_scan_seq field gets updated without 2322 * exclusive access. Use READ_ONCE() here to ensure 2323 * that the field is read in a single access: 2324 */ 2325 seq = READ_ONCE(p->mm->numa_scan_seq); 2326 if (p->numa_scan_seq == seq) 2327 return; 2328 p->numa_scan_seq = seq; 2329 p->numa_scan_period_max = task_scan_max(p); 2330 2331 total_faults = p->numa_faults_locality[0] + 2332 p->numa_faults_locality[1]; 2333 runtime = numa_get_avg_runtime(p, &period); 2334 2335 /* If the task is part of a group prevent parallel updates to group stats */ 2336 ng = deref_curr_numa_group(p); 2337 if (ng) { 2338 group_lock = &ng->lock; 2339 spin_lock_irq(group_lock); 2340 } 2341 2342 /* Find the node with the highest number of faults */ 2343 for_each_online_node(nid) { 2344 /* Keep track of the offsets in numa_faults array */ 2345 int mem_idx, membuf_idx, cpu_idx, cpubuf_idx; 2346 unsigned long faults = 0, group_faults = 0; 2347 int priv; 2348 2349 for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) { 2350 long diff, f_diff, f_weight; 2351 2352 mem_idx = task_faults_idx(NUMA_MEM, nid, priv); 2353 membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv); 2354 cpu_idx = task_faults_idx(NUMA_CPU, nid, priv); 2355 cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv); 2356 2357 /* Decay existing window, copy faults since last scan */ 2358 diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2; 2359 fault_types[priv] += p->numa_faults[membuf_idx]; 2360 p->numa_faults[membuf_idx] = 0; 2361 2362 /* 2363 * Normalize the faults_from, so all tasks in a group 2364 * count according to CPU use, instead of by the raw 2365 * number of faults. Tasks with little runtime have 2366 * little over-all impact on throughput, and thus their 2367 * faults are less important. 2368 */ 2369 f_weight = div64_u64(runtime << 16, period + 1); 2370 f_weight = (f_weight * p->numa_faults[cpubuf_idx]) / 2371 (total_faults + 1); 2372 f_diff = f_weight - p->numa_faults[cpu_idx] / 2; 2373 p->numa_faults[cpubuf_idx] = 0; 2374 2375 p->numa_faults[mem_idx] += diff; 2376 p->numa_faults[cpu_idx] += f_diff; 2377 faults += p->numa_faults[mem_idx]; 2378 p->total_numa_faults += diff; 2379 if (ng) { 2380 /* 2381 * safe because we can only change our own group 2382 * 2383 * mem_idx represents the offset for a given 2384 * nid and priv in a specific region because it 2385 * is at the beginning of the numa_faults array. 2386 */ 2387 ng->faults[mem_idx] += diff; 2388 ng->faults[cpu_idx] += f_diff; 2389 ng->total_faults += diff; 2390 group_faults += ng->faults[mem_idx]; 2391 } 2392 } 2393 2394 if (!ng) { 2395 if (faults > max_faults) { 2396 max_faults = faults; 2397 max_nid = nid; 2398 } 2399 } else if (group_faults > max_faults) { 2400 max_faults = group_faults; 2401 max_nid = nid; 2402 } 2403 } 2404 2405 if (ng) { 2406 numa_group_count_active_nodes(ng); 2407 spin_unlock_irq(group_lock); 2408 max_nid = preferred_group_nid(p, max_nid); 2409 } 2410 2411 if (max_faults) { 2412 /* Set the new preferred node */ 2413 if (max_nid != p->numa_preferred_nid) 2414 sched_setnuma(p, max_nid); 2415 } 2416 2417 update_task_scan_period(p, fault_types[0], fault_types[1]); 2418 } 2419 2420 static inline int get_numa_group(struct numa_group *grp) 2421 { 2422 return refcount_inc_not_zero(&grp->refcount); 2423 } 2424 2425 static inline void put_numa_group(struct numa_group *grp) 2426 { 2427 if (refcount_dec_and_test(&grp->refcount)) 2428 kfree_rcu(grp, rcu); 2429 } 2430 2431 static void task_numa_group(struct task_struct *p, int cpupid, int flags, 2432 int *priv) 2433 { 2434 struct numa_group *grp, *my_grp; 2435 struct task_struct *tsk; 2436 bool join = false; 2437 int cpu = cpupid_to_cpu(cpupid); 2438 int i; 2439 2440 if (unlikely(!deref_curr_numa_group(p))) { 2441 unsigned int size = sizeof(struct numa_group) + 2442 NR_NUMA_HINT_FAULT_STATS * 2443 nr_node_ids * sizeof(unsigned long); 2444 2445 grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN); 2446 if (!grp) 2447 return; 2448 2449 refcount_set(&grp->refcount, 1); 2450 grp->active_nodes = 1; 2451 grp->max_faults_cpu = 0; 2452 spin_lock_init(&grp->lock); 2453 grp->gid = p->pid; 2454 2455 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) 2456 grp->faults[i] = p->numa_faults[i]; 2457 2458 grp->total_faults = p->total_numa_faults; 2459 2460 grp->nr_tasks++; 2461 rcu_assign_pointer(p->numa_group, grp); 2462 } 2463 2464 rcu_read_lock(); 2465 tsk = READ_ONCE(cpu_rq(cpu)->curr); 2466 2467 if (!cpupid_match_pid(tsk, cpupid)) 2468 goto no_join; 2469 2470 grp = rcu_dereference(tsk->numa_group); 2471 if (!grp) 2472 goto no_join; 2473 2474 my_grp = deref_curr_numa_group(p); 2475 if (grp == my_grp) 2476 goto no_join; 2477 2478 /* 2479 * Only join the other group if its bigger; if we're the bigger group, 2480 * the other task will join us. 2481 */ 2482 if (my_grp->nr_tasks > grp->nr_tasks) 2483 goto no_join; 2484 2485 /* 2486 * Tie-break on the grp address. 2487 */ 2488 if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp) 2489 goto no_join; 2490 2491 /* Always join threads in the same process. */ 2492 if (tsk->mm == current->mm) 2493 join = true; 2494 2495 /* Simple filter to avoid false positives due to PID collisions */ 2496 if (flags & TNF_SHARED) 2497 join = true; 2498 2499 /* Update priv based on whether false sharing was detected */ 2500 *priv = !join; 2501 2502 if (join && !get_numa_group(grp)) 2503 goto no_join; 2504 2505 rcu_read_unlock(); 2506 2507 if (!join) 2508 return; 2509 2510 BUG_ON(irqs_disabled()); 2511 double_lock_irq(&my_grp->lock, &grp->lock); 2512 2513 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) { 2514 my_grp->faults[i] -= p->numa_faults[i]; 2515 grp->faults[i] += p->numa_faults[i]; 2516 } 2517 my_grp->total_faults -= p->total_numa_faults; 2518 grp->total_faults += p->total_numa_faults; 2519 2520 my_grp->nr_tasks--; 2521 grp->nr_tasks++; 2522 2523 spin_unlock(&my_grp->lock); 2524 spin_unlock_irq(&grp->lock); 2525 2526 rcu_assign_pointer(p->numa_group, grp); 2527 2528 put_numa_group(my_grp); 2529 return; 2530 2531 no_join: 2532 rcu_read_unlock(); 2533 return; 2534 } 2535 2536 /* 2537 * Get rid of NUMA statistics associated with a task (either current or dead). 2538 * If @final is set, the task is dead and has reached refcount zero, so we can 2539 * safely free all relevant data structures. Otherwise, there might be 2540 * concurrent reads from places like load balancing and procfs, and we should 2541 * reset the data back to default state without freeing ->numa_faults. 2542 */ 2543 void task_numa_free(struct task_struct *p, bool final) 2544 { 2545 /* safe: p either is current or is being freed by current */ 2546 struct numa_group *grp = rcu_dereference_raw(p->numa_group); 2547 unsigned long *numa_faults = p->numa_faults; 2548 unsigned long flags; 2549 int i; 2550 2551 if (!numa_faults) 2552 return; 2553 2554 if (grp) { 2555 spin_lock_irqsave(&grp->lock, flags); 2556 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) 2557 grp->faults[i] -= p->numa_faults[i]; 2558 grp->total_faults -= p->total_numa_faults; 2559 2560 grp->nr_tasks--; 2561 spin_unlock_irqrestore(&grp->lock, flags); 2562 RCU_INIT_POINTER(p->numa_group, NULL); 2563 put_numa_group(grp); 2564 } 2565 2566 if (final) { 2567 p->numa_faults = NULL; 2568 kfree(numa_faults); 2569 } else { 2570 p->total_numa_faults = 0; 2571 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) 2572 numa_faults[i] = 0; 2573 } 2574 } 2575 2576 /* 2577 * Got a PROT_NONE fault for a page on @node. 2578 */ 2579 void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags) 2580 { 2581 struct task_struct *p = current; 2582 bool migrated = flags & TNF_MIGRATED; 2583 int cpu_node = task_node(current); 2584 int local = !!(flags & TNF_FAULT_LOCAL); 2585 struct numa_group *ng; 2586 int priv; 2587 2588 if (!static_branch_likely(&sched_numa_balancing)) 2589 return; 2590 2591 /* for example, ksmd faulting in a user's mm */ 2592 if (!p->mm) 2593 return; 2594 2595 /* Allocate buffer to track faults on a per-node basis */ 2596 if (unlikely(!p->numa_faults)) { 2597 int size = sizeof(*p->numa_faults) * 2598 NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids; 2599 2600 p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN); 2601 if (!p->numa_faults) 2602 return; 2603 2604 p->total_numa_faults = 0; 2605 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality)); 2606 } 2607 2608 /* 2609 * First accesses are treated as private, otherwise consider accesses 2610 * to be private if the accessing pid has not changed 2611 */ 2612 if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) { 2613 priv = 1; 2614 } else { 2615 priv = cpupid_match_pid(p, last_cpupid); 2616 if (!priv && !(flags & TNF_NO_GROUP)) 2617 task_numa_group(p, last_cpupid, flags, &priv); 2618 } 2619 2620 /* 2621 * If a workload spans multiple NUMA nodes, a shared fault that 2622 * occurs wholly within the set of nodes that the workload is 2623 * actively using should be counted as local. This allows the 2624 * scan rate to slow down when a workload has settled down. 2625 */ 2626 ng = deref_curr_numa_group(p); 2627 if (!priv && !local && ng && ng->active_nodes > 1 && 2628 numa_is_active_node(cpu_node, ng) && 2629 numa_is_active_node(mem_node, ng)) 2630 local = 1; 2631 2632 /* 2633 * Retry to migrate task to preferred node periodically, in case it 2634 * previously failed, or the scheduler moved us. 2635 */ 2636 if (time_after(jiffies, p->numa_migrate_retry)) { 2637 task_numa_placement(p); 2638 numa_migrate_preferred(p); 2639 } 2640 2641 if (migrated) 2642 p->numa_pages_migrated += pages; 2643 if (flags & TNF_MIGRATE_FAIL) 2644 p->numa_faults_locality[2] += pages; 2645 2646 p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages; 2647 p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages; 2648 p->numa_faults_locality[local] += pages; 2649 } 2650 2651 static void reset_ptenuma_scan(struct task_struct *p) 2652 { 2653 /* 2654 * We only did a read acquisition of the mmap sem, so 2655 * p->mm->numa_scan_seq is written to without exclusive access 2656 * and the update is not guaranteed to be atomic. That's not 2657 * much of an issue though, since this is just used for 2658 * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not 2659 * expensive, to avoid any form of compiler optimizations: 2660 */ 2661 WRITE_ONCE(p->mm->numa_scan_seq, READ_ONCE(p->mm->numa_scan_seq) + 1); 2662 p->mm->numa_scan_offset = 0; 2663 } 2664 2665 /* 2666 * The expensive part of numa migration is done from task_work context. 2667 * Triggered from task_tick_numa(). 2668 */ 2669 static void task_numa_work(struct callback_head *work) 2670 { 2671 unsigned long migrate, next_scan, now = jiffies; 2672 struct task_struct *p = current; 2673 struct mm_struct *mm = p->mm; 2674 u64 runtime = p->se.sum_exec_runtime; 2675 struct vm_area_struct *vma; 2676 unsigned long start, end; 2677 unsigned long nr_pte_updates = 0; 2678 long pages, virtpages; 2679 2680 SCHED_WARN_ON(p != container_of(work, struct task_struct, numa_work)); 2681 2682 work->next = work; 2683 /* 2684 * Who cares about NUMA placement when they're dying. 2685 * 2686 * NOTE: make sure not to dereference p->mm before this check, 2687 * exit_task_work() happens _after_ exit_mm() so we could be called 2688 * without p->mm even though we still had it when we enqueued this 2689 * work. 2690 */ 2691 if (p->flags & PF_EXITING) 2692 return; 2693 2694 if (!mm->numa_next_scan) { 2695 mm->numa_next_scan = now + 2696 msecs_to_jiffies(sysctl_numa_balancing_scan_delay); 2697 } 2698 2699 /* 2700 * Enforce maximal scan/migration frequency.. 2701 */ 2702 migrate = mm->numa_next_scan; 2703 if (time_before(now, migrate)) 2704 return; 2705 2706 if (p->numa_scan_period == 0) { 2707 p->numa_scan_period_max = task_scan_max(p); 2708 p->numa_scan_period = task_scan_start(p); 2709 } 2710 2711 next_scan = now + msecs_to_jiffies(p->numa_scan_period); 2712 if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate) 2713 return; 2714 2715 /* 2716 * Delay this task enough that another task of this mm will likely win 2717 * the next time around. 2718 */ 2719 p->node_stamp += 2 * TICK_NSEC; 2720 2721 start = mm->numa_scan_offset; 2722 pages = sysctl_numa_balancing_scan_size; 2723 pages <<= 20 - PAGE_SHIFT; /* MB in pages */ 2724 virtpages = pages * 8; /* Scan up to this much virtual space */ 2725 if (!pages) 2726 return; 2727 2728 2729 if (!mmap_read_trylock(mm)) 2730 return; 2731 vma = find_vma(mm, start); 2732 if (!vma) { 2733 reset_ptenuma_scan(p); 2734 start = 0; 2735 vma = mm->mmap; 2736 } 2737 for (; vma; vma = vma->vm_next) { 2738 if (!vma_migratable(vma) || !vma_policy_mof(vma) || 2739 is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_MIXEDMAP)) { 2740 continue; 2741 } 2742 2743 /* 2744 * Shared library pages mapped by multiple processes are not 2745 * migrated as it is expected they are cache replicated. Avoid 2746 * hinting faults in read-only file-backed mappings or the vdso 2747 * as migrating the pages will be of marginal benefit. 2748 */ 2749 if (!vma->vm_mm || 2750 (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ))) 2751 continue; 2752 2753 /* 2754 * Skip inaccessible VMAs to avoid any confusion between 2755 * PROT_NONE and NUMA hinting ptes 2756 */ 2757 if (!vma_is_accessible(vma)) 2758 continue; 2759 2760 do { 2761 start = max(start, vma->vm_start); 2762 end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE); 2763 end = min(end, vma->vm_end); 2764 nr_pte_updates = change_prot_numa(vma, start, end); 2765 2766 /* 2767 * Try to scan sysctl_numa_balancing_size worth of 2768 * hpages that have at least one present PTE that 2769 * is not already pte-numa. If the VMA contains 2770 * areas that are unused or already full of prot_numa 2771 * PTEs, scan up to virtpages, to skip through those 2772 * areas faster. 2773 */ 2774 if (nr_pte_updates) 2775 pages -= (end - start) >> PAGE_SHIFT; 2776 virtpages -= (end - start) >> PAGE_SHIFT; 2777 2778 start = end; 2779 if (pages <= 0 || virtpages <= 0) 2780 goto out; 2781 2782 cond_resched(); 2783 } while (end != vma->vm_end); 2784 } 2785 2786 out: 2787 /* 2788 * It is possible to reach the end of the VMA list but the last few 2789 * VMAs are not guaranteed to the vma_migratable. If they are not, we 2790 * would find the !migratable VMA on the next scan but not reset the 2791 * scanner to the start so check it now. 2792 */ 2793 if (vma) 2794 mm->numa_scan_offset = start; 2795 else 2796 reset_ptenuma_scan(p); 2797 mmap_read_unlock(mm); 2798 2799 /* 2800 * Make sure tasks use at least 32x as much time to run other code 2801 * than they used here, to limit NUMA PTE scanning overhead to 3% max. 2802 * Usually update_task_scan_period slows down scanning enough; on an 2803 * overloaded system we need to limit overhead on a per task basis. 2804 */ 2805 if (unlikely(p->se.sum_exec_runtime != runtime)) { 2806 u64 diff = p->se.sum_exec_runtime - runtime; 2807 p->node_stamp += 32 * diff; 2808 } 2809 } 2810 2811 void init_numa_balancing(unsigned long clone_flags, struct task_struct *p) 2812 { 2813 int mm_users = 0; 2814 struct mm_struct *mm = p->mm; 2815 2816 if (mm) { 2817 mm_users = atomic_read(&mm->mm_users); 2818 if (mm_users == 1) { 2819 mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay); 2820 mm->numa_scan_seq = 0; 2821 } 2822 } 2823 p->node_stamp = 0; 2824 p->numa_scan_seq = mm ? mm->numa_scan_seq : 0; 2825 p->numa_scan_period = sysctl_numa_balancing_scan_delay; 2826 /* Protect against double add, see task_tick_numa and task_numa_work */ 2827 p->numa_work.next = &p->numa_work; 2828 p->numa_faults = NULL; 2829 RCU_INIT_POINTER(p->numa_group, NULL); 2830 p->last_task_numa_placement = 0; 2831 p->last_sum_exec_runtime = 0; 2832 2833 init_task_work(&p->numa_work, task_numa_work); 2834 2835 /* New address space, reset the preferred nid */ 2836 if (!(clone_flags & CLONE_VM)) { 2837 p->numa_preferred_nid = NUMA_NO_NODE; 2838 return; 2839 } 2840 2841 /* 2842 * New thread, keep existing numa_preferred_nid which should be copied 2843 * already by arch_dup_task_struct but stagger when scans start. 2844 */ 2845 if (mm) { 2846 unsigned int delay; 2847 2848 delay = min_t(unsigned int, task_scan_max(current), 2849 current->numa_scan_period * mm_users * NSEC_PER_MSEC); 2850 delay += 2 * TICK_NSEC; 2851 p->node_stamp = delay; 2852 } 2853 } 2854 2855 /* 2856 * Drive the periodic memory faults.. 2857 */ 2858 static void task_tick_numa(struct rq *rq, struct task_struct *curr) 2859 { 2860 struct callback_head *work = &curr->numa_work; 2861 u64 period, now; 2862 2863 /* 2864 * We don't care about NUMA placement if we don't have memory. 2865 */ 2866 if ((curr->flags & (PF_EXITING | PF_KTHREAD)) || work->next != work) 2867 return; 2868 2869 /* 2870 * Using runtime rather than walltime has the dual advantage that 2871 * we (mostly) drive the selection from busy threads and that the 2872 * task needs to have done some actual work before we bother with 2873 * NUMA placement. 2874 */ 2875 now = curr->se.sum_exec_runtime; 2876 period = (u64)curr->numa_scan_period * NSEC_PER_MSEC; 2877 2878 if (now > curr->node_stamp + period) { 2879 if (!curr->node_stamp) 2880 curr->numa_scan_period = task_scan_start(curr); 2881 curr->node_stamp += period; 2882 2883 if (!time_before(jiffies, curr->mm->numa_next_scan)) 2884 task_work_add(curr, work, TWA_RESUME); 2885 } 2886 } 2887 2888 static void update_scan_period(struct task_struct *p, int new_cpu) 2889 { 2890 int src_nid = cpu_to_node(task_cpu(p)); 2891 int dst_nid = cpu_to_node(new_cpu); 2892 2893 if (!static_branch_likely(&sched_numa_balancing)) 2894 return; 2895 2896 if (!p->mm || !p->numa_faults || (p->flags & PF_EXITING)) 2897 return; 2898 2899 if (src_nid == dst_nid) 2900 return; 2901 2902 /* 2903 * Allow resets if faults have been trapped before one scan 2904 * has completed. This is most likely due to a new task that 2905 * is pulled cross-node due to wakeups or load balancing. 2906 */ 2907 if (p->numa_scan_seq) { 2908 /* 2909 * Avoid scan adjustments if moving to the preferred 2910 * node or if the task was not previously running on 2911 * the preferred node. 2912 */ 2913 if (dst_nid == p->numa_preferred_nid || 2914 (p->numa_preferred_nid != NUMA_NO_NODE && 2915 src_nid != p->numa_preferred_nid)) 2916 return; 2917 } 2918 2919 p->numa_scan_period = task_scan_start(p); 2920 } 2921 2922 #else 2923 static void task_tick_numa(struct rq *rq, struct task_struct *curr) 2924 { 2925 } 2926 2927 static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p) 2928 { 2929 } 2930 2931 static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p) 2932 { 2933 } 2934 2935 static inline void update_scan_period(struct task_struct *p, int new_cpu) 2936 { 2937 } 2938 2939 #endif /* CONFIG_NUMA_BALANCING */ 2940 2941 static void 2942 account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se) 2943 { 2944 update_load_add(&cfs_rq->load, se->load.weight); 2945 #ifdef CONFIG_SMP 2946 if (entity_is_task(se)) { 2947 struct rq *rq = rq_of(cfs_rq); 2948 2949 account_numa_enqueue(rq, task_of(se)); 2950 list_add(&se->group_node, &rq->cfs_tasks); 2951 } 2952 #endif 2953 cfs_rq->nr_running++; 2954 if (se_is_idle(se)) 2955 cfs_rq->idle_nr_running++; 2956 } 2957 2958 static void 2959 account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se) 2960 { 2961 update_load_sub(&cfs_rq->load, se->load.weight); 2962 #ifdef CONFIG_SMP 2963 if (entity_is_task(se)) { 2964 account_numa_dequeue(rq_of(cfs_rq), task_of(se)); 2965 list_del_init(&se->group_node); 2966 } 2967 #endif 2968 cfs_rq->nr_running--; 2969 if (se_is_idle(se)) 2970 cfs_rq->idle_nr_running--; 2971 } 2972 2973 /* 2974 * Signed add and clamp on underflow. 2975 * 2976 * Explicitly do a load-store to ensure the intermediate value never hits 2977 * memory. This allows lockless observations without ever seeing the negative 2978 * values. 2979 */ 2980 #define add_positive(_ptr, _val) do { \ 2981 typeof(_ptr) ptr = (_ptr); \ 2982 typeof(_val) val = (_val); \ 2983 typeof(*ptr) res, var = READ_ONCE(*ptr); \ 2984 \ 2985 res = var + val; \ 2986 \ 2987 if (val < 0 && res > var) \ 2988 res = 0; \ 2989 \ 2990 WRITE_ONCE(*ptr, res); \ 2991 } while (0) 2992 2993 /* 2994 * Unsigned subtract and clamp on underflow. 2995 * 2996 * Explicitly do a load-store to ensure the intermediate value never hits 2997 * memory. This allows lockless observations without ever seeing the negative 2998 * values. 2999 */ 3000 #define sub_positive(_ptr, _val) do { \ 3001 typeof(_ptr) ptr = (_ptr); \ 3002 typeof(*ptr) val = (_val); \ 3003 typeof(*ptr) res, var = READ_ONCE(*ptr); \ 3004 res = var - val; \ 3005 if (res > var) \ 3006 res = 0; \ 3007 WRITE_ONCE(*ptr, res); \ 3008 } while (0) 3009 3010 /* 3011 * Remove and clamp on negative, from a local variable. 3012 * 3013 * A variant of sub_positive(), which does not use explicit load-store 3014 * and is thus optimized for local variable updates. 3015 */ 3016 #define lsub_positive(_ptr, _val) do { \ 3017 typeof(_ptr) ptr = (_ptr); \ 3018 *ptr -= min_t(typeof(*ptr), *ptr, _val); \ 3019 } while (0) 3020 3021 #ifdef CONFIG_SMP 3022 static inline void 3023 enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) 3024 { 3025 cfs_rq->avg.load_avg += se->avg.load_avg; 3026 cfs_rq->avg.load_sum += se_weight(se) * se->avg.load_sum; 3027 } 3028 3029 static inline void 3030 dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) 3031 { 3032 u32 divider = get_pelt_divider(&se->avg); 3033 sub_positive(&cfs_rq->avg.load_avg, se->avg.load_avg); 3034 cfs_rq->avg.load_sum = cfs_rq->avg.load_avg * divider; 3035 } 3036 #else 3037 static inline void 3038 enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { } 3039 static inline void 3040 dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { } 3041 #endif 3042 3043 static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, 3044 unsigned long weight) 3045 { 3046 if (se->on_rq) { 3047 /* commit outstanding execution time */ 3048 if (cfs_rq->curr == se) 3049 update_curr(cfs_rq); 3050 update_load_sub(&cfs_rq->load, se->load.weight); 3051 } 3052 dequeue_load_avg(cfs_rq, se); 3053 3054 update_load_set(&se->load, weight); 3055 3056 #ifdef CONFIG_SMP 3057 do { 3058 u32 divider = get_pelt_divider(&se->avg); 3059 3060 se->avg.load_avg = div_u64(se_weight(se) * se->avg.load_sum, divider); 3061 } while (0); 3062 #endif 3063 3064 enqueue_load_avg(cfs_rq, se); 3065 if (se->on_rq) 3066 update_load_add(&cfs_rq->load, se->load.weight); 3067 3068 } 3069 3070 void reweight_task(struct task_struct *p, int prio) 3071 { 3072 struct sched_entity *se = &p->se; 3073 struct cfs_rq *cfs_rq = cfs_rq_of(se); 3074 struct load_weight *load = &se->load; 3075 unsigned long weight = scale_load(sched_prio_to_weight[prio]); 3076 3077 reweight_entity(cfs_rq, se, weight); 3078 load->inv_weight = sched_prio_to_wmult[prio]; 3079 } 3080 3081 #ifdef CONFIG_FAIR_GROUP_SCHED 3082 #ifdef CONFIG_SMP 3083 /* 3084 * All this does is approximate the hierarchical proportion which includes that 3085 * global sum we all love to hate. 3086 * 3087 * That is, the weight of a group entity, is the proportional share of the 3088 * group weight based on the group runqueue weights. That is: 3089 * 3090 * tg->weight * grq->load.weight 3091 * ge->load.weight = ----------------------------- (1) 3092 * \Sum grq->load.weight 3093 * 3094 * Now, because computing that sum is prohibitively expensive to compute (been 3095 * there, done that) we approximate it with this average stuff. The average 3096 * moves slower and therefore the approximation is cheaper and more stable. 3097 * 3098 * So instead of the above, we substitute: 3099 * 3100 * grq->load.weight -> grq->avg.load_avg (2) 3101 * 3102 * which yields the following: 3103 * 3104 * tg->weight * grq->avg.load_avg 3105 * ge->load.weight = ------------------------------ (3) 3106 * tg->load_avg 3107 * 3108 * Where: tg->load_avg ~= \Sum grq->avg.load_avg 3109 * 3110 * That is shares_avg, and it is right (given the approximation (2)). 3111 * 3112 * The problem with it is that because the average is slow -- it was designed 3113 * to be exactly that of course -- this leads to transients in boundary 3114 * conditions. In specific, the case where the group was idle and we start the 3115 * one task. It takes time for our CPU's grq->avg.load_avg to build up, 3116 * yielding bad latency etc.. 3117 * 3118 * Now, in that special case (1) reduces to: 3119 * 3120 * tg->weight * grq->load.weight 3121 * ge->load.weight = ----------------------------- = tg->weight (4) 3122 * grp->load.weight 3123 * 3124 * That is, the sum collapses because all other CPUs are idle; the UP scenario. 3125 * 3126 * So what we do is modify our approximation (3) to approach (4) in the (near) 3127 * UP case, like: 3128 * 3129 * ge->load.weight = 3130 * 3131 * tg->weight * grq->load.weight 3132 * --------------------------------------------------- (5) 3133 * tg->load_avg - grq->avg.load_avg + grq->load.weight 3134 * 3135 * But because grq->load.weight can drop to 0, resulting in a divide by zero, 3136 * we need to use grq->avg.load_avg as its lower bound, which then gives: 3137 * 3138 * 3139 * tg->weight * grq->load.weight 3140 * ge->load.weight = ----------------------------- (6) 3141 * tg_load_avg' 3142 * 3143 * Where: 3144 * 3145 * tg_load_avg' = tg->load_avg - grq->avg.load_avg + 3146 * max(grq->load.weight, grq->avg.load_avg) 3147 * 3148 * And that is shares_weight and is icky. In the (near) UP case it approaches 3149 * (4) while in the normal case it approaches (3). It consistently 3150 * overestimates the ge->load.weight and therefore: 3151 * 3152 * \Sum ge->load.weight >= tg->weight 3153 * 3154 * hence icky! 3155 */ 3156 static long calc_group_shares(struct cfs_rq *cfs_rq) 3157 { 3158 long tg_weight, tg_shares, load, shares; 3159 struct task_group *tg = cfs_rq->tg; 3160 3161 tg_shares = READ_ONCE(tg->shares); 3162 3163 load = max(scale_load_down(cfs_rq->load.weight), cfs_rq->avg.load_avg); 3164 3165 tg_weight = atomic_long_read(&tg->load_avg); 3166 3167 /* Ensure tg_weight >= load */ 3168 tg_weight -= cfs_rq->tg_load_avg_contrib; 3169 tg_weight += load; 3170 3171 shares = (tg_shares * load); 3172 if (tg_weight) 3173 shares /= tg_weight; 3174 3175 /* 3176 * MIN_SHARES has to be unscaled here to support per-CPU partitioning 3177 * of a group with small tg->shares value. It is a floor value which is 3178 * assigned as a minimum load.weight to the sched_entity representing 3179 * the group on a CPU. 3180 * 3181 * E.g. on 64-bit for a group with tg->shares of scale_load(15)=15*1024 3182 * on an 8-core system with 8 tasks each runnable on one CPU shares has 3183 * to be 15*1024*1/8=1920 instead of scale_load(MIN_SHARES)=2*1024. In 3184 * case no task is runnable on a CPU MIN_SHARES=2 should be returned 3185 * instead of 0. 3186 */ 3187 return clamp_t(long, shares, MIN_SHARES, tg_shares); 3188 } 3189 #endif /* CONFIG_SMP */ 3190 3191 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq); 3192 3193 /* 3194 * Recomputes the group entity based on the current state of its group 3195 * runqueue. 3196 */ 3197 static void update_cfs_group(struct sched_entity *se) 3198 { 3199 struct cfs_rq *gcfs_rq = group_cfs_rq(se); 3200 long shares; 3201 3202 if (!gcfs_rq) 3203 return; 3204 3205 if (throttled_hierarchy(gcfs_rq)) 3206 return; 3207 3208 #ifndef CONFIG_SMP 3209 shares = READ_ONCE(gcfs_rq->tg->shares); 3210 3211 if (likely(se->load.weight == shares)) 3212 return; 3213 #else 3214 shares = calc_group_shares(gcfs_rq); 3215 #endif 3216 3217 reweight_entity(cfs_rq_of(se), se, shares); 3218 } 3219 3220 #else /* CONFIG_FAIR_GROUP_SCHED */ 3221 static inline void update_cfs_group(struct sched_entity *se) 3222 { 3223 } 3224 #endif /* CONFIG_FAIR_GROUP_SCHED */ 3225 3226 static inline void cfs_rq_util_change(struct cfs_rq *cfs_rq, int flags) 3227 { 3228 struct rq *rq = rq_of(cfs_rq); 3229 3230 if (&rq->cfs == cfs_rq) { 3231 /* 3232 * There are a few boundary cases this might miss but it should 3233 * get called often enough that that should (hopefully) not be 3234 * a real problem. 3235 * 3236 * It will not get called when we go idle, because the idle 3237 * thread is a different class (!fair), nor will the utilization 3238 * number include things like RT tasks. 3239 * 3240 * As is, the util number is not freq-invariant (we'd have to 3241 * implement arch_scale_freq_capacity() for that). 3242 * 3243 * See cpu_util(). 3244 */ 3245 cpufreq_update_util(rq, flags); 3246 } 3247 } 3248 3249 #ifdef CONFIG_SMP 3250 #ifdef CONFIG_FAIR_GROUP_SCHED 3251 /* 3252 * Because list_add_leaf_cfs_rq always places a child cfs_rq on the list 3253 * immediately before a parent cfs_rq, and cfs_rqs are removed from the list 3254 * bottom-up, we only have to test whether the cfs_rq before us on the list 3255 * is our child. 3256 * If cfs_rq is not on the list, test whether a child needs its to be added to 3257 * connect a branch to the tree * (see list_add_leaf_cfs_rq() for details). 3258 */ 3259 static inline bool child_cfs_rq_on_list(struct cfs_rq *cfs_rq) 3260 { 3261 struct cfs_rq *prev_cfs_rq; 3262 struct list_head *prev; 3263 3264 if (cfs_rq->on_list) { 3265 prev = cfs_rq->leaf_cfs_rq_list.prev; 3266 } else { 3267 struct rq *rq = rq_of(cfs_rq); 3268 3269 prev = rq->tmp_alone_branch; 3270 } 3271 3272 prev_cfs_rq = container_of(prev, struct cfs_rq, leaf_cfs_rq_list); 3273 3274 return (prev_cfs_rq->tg->parent == cfs_rq->tg); 3275 } 3276 3277 static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq) 3278 { 3279 if (cfs_rq->load.weight) 3280 return false; 3281 3282 if (cfs_rq->avg.load_sum) 3283 return false; 3284 3285 if (cfs_rq->avg.util_sum) 3286 return false; 3287 3288 if (cfs_rq->avg.runnable_sum) 3289 return false; 3290 3291 if (child_cfs_rq_on_list(cfs_rq)) 3292 return false; 3293 3294 /* 3295 * _avg must be null when _sum are null because _avg = _sum / divider 3296 * Make sure that rounding and/or propagation of PELT values never 3297 * break this. 3298 */ 3299 SCHED_WARN_ON(cfs_rq->avg.load_avg || 3300 cfs_rq->avg.util_avg || 3301 cfs_rq->avg.runnable_avg); 3302 3303 return true; 3304 } 3305 3306 /** 3307 * update_tg_load_avg - update the tg's load avg 3308 * @cfs_rq: the cfs_rq whose avg changed 3309 * 3310 * This function 'ensures': tg->load_avg := \Sum tg->cfs_rq[]->avg.load. 3311 * However, because tg->load_avg is a global value there are performance 3312 * considerations. 3313 * 3314 * In order to avoid having to look at the other cfs_rq's, we use a 3315 * differential update where we store the last value we propagated. This in 3316 * turn allows skipping updates if the differential is 'small'. 3317 * 3318 * Updating tg's load_avg is necessary before update_cfs_share(). 3319 */ 3320 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq) 3321 { 3322 long delta = cfs_rq->avg.load_avg - cfs_rq->tg_load_avg_contrib; 3323 3324 /* 3325 * No need to update load_avg for root_task_group as it is not used. 3326 */ 3327 if (cfs_rq->tg == &root_task_group) 3328 return; 3329 3330 if (abs(delta) > cfs_rq->tg_load_avg_contrib / 64) { 3331 atomic_long_add(delta, &cfs_rq->tg->load_avg); 3332 cfs_rq->tg_load_avg_contrib = cfs_rq->avg.load_avg; 3333 } 3334 } 3335 3336 /* 3337 * Called within set_task_rq() right before setting a task's CPU. The 3338 * caller only guarantees p->pi_lock is held; no other assumptions, 3339 * including the state of rq->lock, should be made. 3340 */ 3341 void set_task_rq_fair(struct sched_entity *se, 3342 struct cfs_rq *prev, struct cfs_rq *next) 3343 { 3344 u64 p_last_update_time; 3345 u64 n_last_update_time; 3346 3347 if (!sched_feat(ATTACH_AGE_LOAD)) 3348 return; 3349 3350 /* 3351 * We are supposed to update the task to "current" time, then its up to 3352 * date and ready to go to new CPU/cfs_rq. But we have difficulty in 3353 * getting what current time is, so simply throw away the out-of-date 3354 * time. This will result in the wakee task is less decayed, but giving 3355 * the wakee more load sounds not bad. 3356 */ 3357 if (!(se->avg.last_update_time && prev)) 3358 return; 3359 3360 #ifndef CONFIG_64BIT 3361 { 3362 u64 p_last_update_time_copy; 3363 u64 n_last_update_time_copy; 3364 3365 do { 3366 p_last_update_time_copy = prev->load_last_update_time_copy; 3367 n_last_update_time_copy = next->load_last_update_time_copy; 3368 3369 smp_rmb(); 3370 3371 p_last_update_time = prev->avg.last_update_time; 3372 n_last_update_time = next->avg.last_update_time; 3373 3374 } while (p_last_update_time != p_last_update_time_copy || 3375 n_last_update_time != n_last_update_time_copy); 3376 } 3377 #else 3378 p_last_update_time = prev->avg.last_update_time; 3379 n_last_update_time = next->avg.last_update_time; 3380 #endif 3381 __update_load_avg_blocked_se(p_last_update_time, se); 3382 se->avg.last_update_time = n_last_update_time; 3383 } 3384 3385 3386 /* 3387 * When on migration a sched_entity joins/leaves the PELT hierarchy, we need to 3388 * propagate its contribution. The key to this propagation is the invariant 3389 * that for each group: 3390 * 3391 * ge->avg == grq->avg (1) 3392 * 3393 * _IFF_ we look at the pure running and runnable sums. Because they 3394 * represent the very same entity, just at different points in the hierarchy. 3395 * 3396 * Per the above update_tg_cfs_util() and update_tg_cfs_runnable() are trivial 3397 * and simply copies the running/runnable sum over (but still wrong, because 3398 * the group entity and group rq do not have their PELT windows aligned). 3399 * 3400 * However, update_tg_cfs_load() is more complex. So we have: 3401 * 3402 * ge->avg.load_avg = ge->load.weight * ge->avg.runnable_avg (2) 3403 * 3404 * And since, like util, the runnable part should be directly transferable, 3405 * the following would _appear_ to be the straight forward approach: 3406 * 3407 * grq->avg.load_avg = grq->load.weight * grq->avg.runnable_avg (3) 3408 * 3409 * And per (1) we have: 3410 * 3411 * ge->avg.runnable_avg == grq->avg.runnable_avg 3412 * 3413 * Which gives: 3414 * 3415 * ge->load.weight * grq->avg.load_avg 3416 * ge->avg.load_avg = ----------------------------------- (4) 3417 * grq->load.weight 3418 * 3419 * Except that is wrong! 3420 * 3421 * Because while for entities historical weight is not important and we 3422 * really only care about our future and therefore can consider a pure 3423 * runnable sum, runqueues can NOT do this. 3424 * 3425 * We specifically want runqueues to have a load_avg that includes 3426 * historical weights. Those represent the blocked load, the load we expect 3427 * to (shortly) return to us. This only works by keeping the weights as 3428 * integral part of the sum. We therefore cannot decompose as per (3). 3429 * 3430 * Another reason this doesn't work is that runnable isn't a 0-sum entity. 3431 * Imagine a rq with 2 tasks that each are runnable 2/3 of the time. Then the 3432 * rq itself is runnable anywhere between 2/3 and 1 depending on how the 3433 * runnable section of these tasks overlap (or not). If they were to perfectly 3434 * align the rq as a whole would be runnable 2/3 of the time. If however we 3435 * always have at least 1 runnable task, the rq as a whole is always runnable. 3436 * 3437 * So we'll have to approximate.. :/ 3438 * 3439 * Given the constraint: 3440 * 3441 * ge->avg.running_sum <= ge->avg.runnable_sum <= LOAD_AVG_MAX 3442 * 3443 * We can construct a rule that adds runnable to a rq by assuming minimal 3444 * overlap. 3445 * 3446 * On removal, we'll assume each task is equally runnable; which yields: 3447 * 3448 * grq->avg.runnable_sum = grq->avg.load_sum / grq->load.weight 3449 * 3450 * XXX: only do this for the part of runnable > running ? 3451 * 3452 */ 3453 3454 static inline void 3455 update_tg_cfs_util(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq) 3456 { 3457 long delta = gcfs_rq->avg.util_avg - se->avg.util_avg; 3458 u32 divider; 3459 3460 /* Nothing to update */ 3461 if (!delta) 3462 return; 3463 3464 /* 3465 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se. 3466 * See ___update_load_avg() for details. 3467 */ 3468 divider = get_pelt_divider(&cfs_rq->avg); 3469 3470 /* Set new sched_entity's utilization */ 3471 se->avg.util_avg = gcfs_rq->avg.util_avg; 3472 se->avg.util_sum = se->avg.util_avg * divider; 3473 3474 /* Update parent cfs_rq utilization */ 3475 add_positive(&cfs_rq->avg.util_avg, delta); 3476 cfs_rq->avg.util_sum = cfs_rq->avg.util_avg * divider; 3477 } 3478 3479 static inline void 3480 update_tg_cfs_runnable(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq) 3481 { 3482 long delta = gcfs_rq->avg.runnable_avg - se->avg.runnable_avg; 3483 u32 divider; 3484 3485 /* Nothing to update */ 3486 if (!delta) 3487 return; 3488 3489 /* 3490 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se. 3491 * See ___update_load_avg() for details. 3492 */ 3493 divider = get_pelt_divider(&cfs_rq->avg); 3494 3495 /* Set new sched_entity's runnable */ 3496 se->avg.runnable_avg = gcfs_rq->avg.runnable_avg; 3497 se->avg.runnable_sum = se->avg.runnable_avg * divider; 3498 3499 /* Update parent cfs_rq runnable */ 3500 add_positive(&cfs_rq->avg.runnable_avg, delta); 3501 cfs_rq->avg.runnable_sum = cfs_rq->avg.runnable_avg * divider; 3502 } 3503 3504 static inline void 3505 update_tg_cfs_load(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq) 3506 { 3507 long delta, running_sum, runnable_sum = gcfs_rq->prop_runnable_sum; 3508 unsigned long load_avg; 3509 u64 load_sum = 0; 3510 u32 divider; 3511 3512 if (!runnable_sum) 3513 return; 3514 3515 gcfs_rq->prop_runnable_sum = 0; 3516 3517 /* 3518 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se. 3519 * See ___update_load_avg() for details. 3520 */ 3521 divider = get_pelt_divider(&cfs_rq->avg); 3522 3523 if (runnable_sum >= 0) { 3524 /* 3525 * Add runnable; clip at LOAD_AVG_MAX. Reflects that until 3526 * the CPU is saturated running == runnable. 3527 */ 3528 runnable_sum += se->avg.load_sum; 3529 runnable_sum = min_t(long, runnable_sum, divider); 3530 } else { 3531 /* 3532 * Estimate the new unweighted runnable_sum of the gcfs_rq by 3533 * assuming all tasks are equally runnable. 3534 */ 3535 if (scale_load_down(gcfs_rq->load.weight)) { 3536 load_sum = div_s64(gcfs_rq->avg.load_sum, 3537 scale_load_down(gcfs_rq->load.weight)); 3538 } 3539 3540 /* But make sure to not inflate se's runnable */ 3541 runnable_sum = min(se->avg.load_sum, load_sum); 3542 } 3543 3544 /* 3545 * runnable_sum can't be lower than running_sum 3546 * Rescale running sum to be in the same range as runnable sum 3547 * running_sum is in [0 : LOAD_AVG_MAX << SCHED_CAPACITY_SHIFT] 3548 * runnable_sum is in [0 : LOAD_AVG_MAX] 3549 */ 3550 running_sum = se->avg.util_sum >> SCHED_CAPACITY_SHIFT; 3551 runnable_sum = max(runnable_sum, running_sum); 3552 3553 load_sum = (s64)se_weight(se) * runnable_sum; 3554 load_avg = div_s64(load_sum, divider); 3555 3556 se->avg.load_sum = runnable_sum; 3557 3558 delta = load_avg - se->avg.load_avg; 3559 if (!delta) 3560 return; 3561 3562 se->avg.load_avg = load_avg; 3563 3564 add_positive(&cfs_rq->avg.load_avg, delta); 3565 cfs_rq->avg.load_sum = cfs_rq->avg.load_avg * divider; 3566 } 3567 3568 static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum) 3569 { 3570 cfs_rq->propagate = 1; 3571 cfs_rq->prop_runnable_sum += runnable_sum; 3572 } 3573 3574 /* Update task and its cfs_rq load average */ 3575 static inline int propagate_entity_load_avg(struct sched_entity *se) 3576 { 3577 struct cfs_rq *cfs_rq, *gcfs_rq; 3578 3579 if (entity_is_task(se)) 3580 return 0; 3581 3582 gcfs_rq = group_cfs_rq(se); 3583 if (!gcfs_rq->propagate) 3584 return 0; 3585 3586 gcfs_rq->propagate = 0; 3587 3588 cfs_rq = cfs_rq_of(se); 3589 3590 add_tg_cfs_propagate(cfs_rq, gcfs_rq->prop_runnable_sum); 3591 3592 update_tg_cfs_util(cfs_rq, se, gcfs_rq); 3593 update_tg_cfs_runnable(cfs_rq, se, gcfs_rq); 3594 update_tg_cfs_load(cfs_rq, se, gcfs_rq); 3595 3596 trace_pelt_cfs_tp(cfs_rq); 3597 trace_pelt_se_tp(se); 3598 3599 return 1; 3600 } 3601 3602 /* 3603 * Check if we need to update the load and the utilization of a blocked 3604 * group_entity: 3605 */ 3606 static inline bool skip_blocked_update(struct sched_entity *se) 3607 { 3608 struct cfs_rq *gcfs_rq = group_cfs_rq(se); 3609 3610 /* 3611 * If sched_entity still have not zero load or utilization, we have to 3612 * decay it: 3613 */ 3614 if (se->avg.load_avg || se->avg.util_avg) 3615 return false; 3616 3617 /* 3618 * If there is a pending propagation, we have to update the load and 3619 * the utilization of the sched_entity: 3620 */ 3621 if (gcfs_rq->propagate) 3622 return false; 3623 3624 /* 3625 * Otherwise, the load and the utilization of the sched_entity is 3626 * already zero and there is no pending propagation, so it will be a 3627 * waste of time to try to decay it: 3628 */ 3629 return true; 3630 } 3631 3632 #else /* CONFIG_FAIR_GROUP_SCHED */ 3633 3634 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq) {} 3635 3636 static inline int propagate_entity_load_avg(struct sched_entity *se) 3637 { 3638 return 0; 3639 } 3640 3641 static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum) {} 3642 3643 #endif /* CONFIG_FAIR_GROUP_SCHED */ 3644 3645 /** 3646 * update_cfs_rq_load_avg - update the cfs_rq's load/util averages 3647 * @now: current time, as per cfs_rq_clock_pelt() 3648 * @cfs_rq: cfs_rq to update 3649 * 3650 * The cfs_rq avg is the direct sum of all its entities (blocked and runnable) 3651 * avg. The immediate corollary is that all (fair) tasks must be attached, see 3652 * post_init_entity_util_avg(). 3653 * 3654 * cfs_rq->avg is used for task_h_load() and update_cfs_share() for example. 3655 * 3656 * Returns true if the load decayed or we removed load. 3657 * 3658 * Since both these conditions indicate a changed cfs_rq->avg.load we should 3659 * call update_tg_load_avg() when this function returns true. 3660 */ 3661 static inline int 3662 update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq) 3663 { 3664 unsigned long removed_load = 0, removed_util = 0, removed_runnable = 0; 3665 struct sched_avg *sa = &cfs_rq->avg; 3666 int decayed = 0; 3667 3668 if (cfs_rq->removed.nr) { 3669 unsigned long r; 3670 u32 divider = get_pelt_divider(&cfs_rq->avg); 3671 3672 raw_spin_lock(&cfs_rq->removed.lock); 3673 swap(cfs_rq->removed.util_avg, removed_util); 3674 swap(cfs_rq->removed.load_avg, removed_load); 3675 swap(cfs_rq->removed.runnable_avg, removed_runnable); 3676 cfs_rq->removed.nr = 0; 3677 raw_spin_unlock(&cfs_rq->removed.lock); 3678 3679 r = removed_load; 3680 sub_positive(&sa->load_avg, r); 3681 sa->load_sum = sa->load_avg * divider; 3682 3683 r = removed_util; 3684 sub_positive(&sa->util_avg, r); 3685 sa->util_sum = sa->util_avg * divider; 3686 3687 r = removed_runnable; 3688 sub_positive(&sa->runnable_avg, r); 3689 sa->runnable_sum = sa->runnable_avg * divider; 3690 3691 /* 3692 * removed_runnable is the unweighted version of removed_load so we 3693 * can use it to estimate removed_load_sum. 3694 */ 3695 add_tg_cfs_propagate(cfs_rq, 3696 -(long)(removed_runnable * divider) >> SCHED_CAPACITY_SHIFT); 3697 3698 decayed = 1; 3699 } 3700 3701 decayed |= __update_load_avg_cfs_rq(now, cfs_rq); 3702 3703 #ifndef CONFIG_64BIT 3704 smp_wmb(); 3705 cfs_rq->load_last_update_time_copy = sa->last_update_time; 3706 #endif 3707 3708 return decayed; 3709 } 3710 3711 /** 3712 * attach_entity_load_avg - attach this entity to its cfs_rq load avg 3713 * @cfs_rq: cfs_rq to attach to 3714 * @se: sched_entity to attach 3715 * 3716 * Must call update_cfs_rq_load_avg() before this, since we rely on 3717 * cfs_rq->avg.last_update_time being current. 3718 */ 3719 static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) 3720 { 3721 /* 3722 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se. 3723 * See ___update_load_avg() for details. 3724 */ 3725 u32 divider = get_pelt_divider(&cfs_rq->avg); 3726 3727 /* 3728 * When we attach the @se to the @cfs_rq, we must align the decay 3729 * window because without that, really weird and wonderful things can 3730 * happen. 3731 * 3732 * XXX illustrate 3733 */ 3734 se->avg.last_update_time = cfs_rq->avg.last_update_time; 3735 se->avg.period_contrib = cfs_rq->avg.period_contrib; 3736 3737 /* 3738 * Hell(o) Nasty stuff.. we need to recompute _sum based on the new 3739 * period_contrib. This isn't strictly correct, but since we're 3740 * entirely outside of the PELT hierarchy, nobody cares if we truncate 3741 * _sum a little. 3742 */ 3743 se->avg.util_sum = se->avg.util_avg * divider; 3744 3745 se->avg.runnable_sum = se->avg.runnable_avg * divider; 3746 3747 se->avg.load_sum = divider; 3748 if (se_weight(se)) { 3749 se->avg.load_sum = 3750 div_u64(se->avg.load_avg * se->avg.load_sum, se_weight(se)); 3751 } 3752 3753 enqueue_load_avg(cfs_rq, se); 3754 cfs_rq->avg.util_avg += se->avg.util_avg; 3755 cfs_rq->avg.util_sum += se->avg.util_sum; 3756 cfs_rq->avg.runnable_avg += se->avg.runnable_avg; 3757 cfs_rq->avg.runnable_sum += se->avg.runnable_sum; 3758 3759 add_tg_cfs_propagate(cfs_rq, se->avg.load_sum); 3760 3761 cfs_rq_util_change(cfs_rq, 0); 3762 3763 trace_pelt_cfs_tp(cfs_rq); 3764 } 3765 3766 /** 3767 * detach_entity_load_avg - detach this entity from its cfs_rq load avg 3768 * @cfs_rq: cfs_rq to detach from 3769 * @se: sched_entity to detach 3770 * 3771 * Must call update_cfs_rq_load_avg() before this, since we rely on 3772 * cfs_rq->avg.last_update_time being current. 3773 */ 3774 static void detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) 3775 { 3776 /* 3777 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se. 3778 * See ___update_load_avg() for details. 3779 */ 3780 u32 divider = get_pelt_divider(&cfs_rq->avg); 3781 3782 dequeue_load_avg(cfs_rq, se); 3783 sub_positive(&cfs_rq->avg.util_avg, se->avg.util_avg); 3784 cfs_rq->avg.util_sum = cfs_rq->avg.util_avg * divider; 3785 sub_positive(&cfs_rq->avg.runnable_avg, se->avg.runnable_avg); 3786 cfs_rq->avg.runnable_sum = cfs_rq->avg.runnable_avg * divider; 3787 3788 add_tg_cfs_propagate(cfs_rq, -se->avg.load_sum); 3789 3790 cfs_rq_util_change(cfs_rq, 0); 3791 3792 trace_pelt_cfs_tp(cfs_rq); 3793 } 3794 3795 /* 3796 * Optional action to be done while updating the load average 3797 */ 3798 #define UPDATE_TG 0x1 3799 #define SKIP_AGE_LOAD 0x2 3800 #define DO_ATTACH 0x4 3801 3802 /* Update task and its cfs_rq load average */ 3803 static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 3804 { 3805 u64 now = cfs_rq_clock_pelt(cfs_rq); 3806 int decayed; 3807 3808 /* 3809 * Track task load average for carrying it to new CPU after migrated, and 3810 * track group sched_entity load average for task_h_load calc in migration 3811 */ 3812 if (se->avg.last_update_time && !(flags & SKIP_AGE_LOAD)) 3813 __update_load_avg_se(now, cfs_rq, se); 3814 3815 decayed = update_cfs_rq_load_avg(now, cfs_rq); 3816 decayed |= propagate_entity_load_avg(se); 3817 3818 if (!se->avg.last_update_time && (flags & DO_ATTACH)) { 3819 3820 /* 3821 * DO_ATTACH means we're here from enqueue_entity(). 3822 * !last_update_time means we've passed through 3823 * migrate_task_rq_fair() indicating we migrated. 3824 * 3825 * IOW we're enqueueing a task on a new CPU. 3826 */ 3827 attach_entity_load_avg(cfs_rq, se); 3828 update_tg_load_avg(cfs_rq); 3829 3830 } else if (decayed) { 3831 cfs_rq_util_change(cfs_rq, 0); 3832 3833 if (flags & UPDATE_TG) 3834 update_tg_load_avg(cfs_rq); 3835 } 3836 } 3837 3838 #ifndef CONFIG_64BIT 3839 static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq) 3840 { 3841 u64 last_update_time_copy; 3842 u64 last_update_time; 3843 3844 do { 3845 last_update_time_copy = cfs_rq->load_last_update_time_copy; 3846 smp_rmb(); 3847 last_update_time = cfs_rq->avg.last_update_time; 3848 } while (last_update_time != last_update_time_copy); 3849 3850 return last_update_time; 3851 } 3852 #else 3853 static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq) 3854 { 3855 return cfs_rq->avg.last_update_time; 3856 } 3857 #endif 3858 3859 /* 3860 * Synchronize entity load avg of dequeued entity without locking 3861 * the previous rq. 3862 */ 3863 static void sync_entity_load_avg(struct sched_entity *se) 3864 { 3865 struct cfs_rq *cfs_rq = cfs_rq_of(se); 3866 u64 last_update_time; 3867 3868 last_update_time = cfs_rq_last_update_time(cfs_rq); 3869 __update_load_avg_blocked_se(last_update_time, se); 3870 } 3871 3872 /* 3873 * Task first catches up with cfs_rq, and then subtract 3874 * itself from the cfs_rq (task must be off the queue now). 3875 */ 3876 static void remove_entity_load_avg(struct sched_entity *se) 3877 { 3878 struct cfs_rq *cfs_rq = cfs_rq_of(se); 3879 unsigned long flags; 3880 3881 /* 3882 * tasks cannot exit without having gone through wake_up_new_task() -> 3883 * post_init_entity_util_avg() which will have added things to the 3884 * cfs_rq, so we can remove unconditionally. 3885 */ 3886 3887 sync_entity_load_avg(se); 3888 3889 raw_spin_lock_irqsave(&cfs_rq->removed.lock, flags); 3890 ++cfs_rq->removed.nr; 3891 cfs_rq->removed.util_avg += se->avg.util_avg; 3892 cfs_rq->removed.load_avg += se->avg.load_avg; 3893 cfs_rq->removed.runnable_avg += se->avg.runnable_avg; 3894 raw_spin_unlock_irqrestore(&cfs_rq->removed.lock, flags); 3895 } 3896 3897 static inline unsigned long cfs_rq_runnable_avg(struct cfs_rq *cfs_rq) 3898 { 3899 return cfs_rq->avg.runnable_avg; 3900 } 3901 3902 static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq) 3903 { 3904 return cfs_rq->avg.load_avg; 3905 } 3906 3907 static int newidle_balance(struct rq *this_rq, struct rq_flags *rf); 3908 3909 static inline unsigned long task_util(struct task_struct *p) 3910 { 3911 return READ_ONCE(p->se.avg.util_avg); 3912 } 3913 3914 static inline unsigned long _task_util_est(struct task_struct *p) 3915 { 3916 struct util_est ue = READ_ONCE(p->se.avg.util_est); 3917 3918 return max(ue.ewma, (ue.enqueued & ~UTIL_AVG_UNCHANGED)); 3919 } 3920 3921 static inline unsigned long task_util_est(struct task_struct *p) 3922 { 3923 return max(task_util(p), _task_util_est(p)); 3924 } 3925 3926 #ifdef CONFIG_UCLAMP_TASK 3927 static inline unsigned long uclamp_task_util(struct task_struct *p) 3928 { 3929 return clamp(task_util_est(p), 3930 uclamp_eff_value(p, UCLAMP_MIN), 3931 uclamp_eff_value(p, UCLAMP_MAX)); 3932 } 3933 #else 3934 static inline unsigned long uclamp_task_util(struct task_struct *p) 3935 { 3936 return task_util_est(p); 3937 } 3938 #endif 3939 3940 static inline void util_est_enqueue(struct cfs_rq *cfs_rq, 3941 struct task_struct *p) 3942 { 3943 unsigned int enqueued; 3944 3945 if (!sched_feat(UTIL_EST)) 3946 return; 3947 3948 /* Update root cfs_rq's estimated utilization */ 3949 enqueued = cfs_rq->avg.util_est.enqueued; 3950 enqueued += _task_util_est(p); 3951 WRITE_ONCE(cfs_rq->avg.util_est.enqueued, enqueued); 3952 3953 trace_sched_util_est_cfs_tp(cfs_rq); 3954 } 3955 3956 static inline void util_est_dequeue(struct cfs_rq *cfs_rq, 3957 struct task_struct *p) 3958 { 3959 unsigned int enqueued; 3960 3961 if (!sched_feat(UTIL_EST)) 3962 return; 3963 3964 /* Update root cfs_rq's estimated utilization */ 3965 enqueued = cfs_rq->avg.util_est.enqueued; 3966 enqueued -= min_t(unsigned int, enqueued, _task_util_est(p)); 3967 WRITE_ONCE(cfs_rq->avg.util_est.enqueued, enqueued); 3968 3969 trace_sched_util_est_cfs_tp(cfs_rq); 3970 } 3971 3972 #define UTIL_EST_MARGIN (SCHED_CAPACITY_SCALE / 100) 3973 3974 /* 3975 * Check if a (signed) value is within a specified (unsigned) margin, 3976 * based on the observation that: 3977 * 3978 * abs(x) < y := (unsigned)(x + y - 1) < (2 * y - 1) 3979 * 3980 * NOTE: this only works when value + margin < INT_MAX. 3981 */ 3982 static inline bool within_margin(int value, int margin) 3983 { 3984 return ((unsigned int)(value + margin - 1) < (2 * margin - 1)); 3985 } 3986 3987 static inline void util_est_update(struct cfs_rq *cfs_rq, 3988 struct task_struct *p, 3989 bool task_sleep) 3990 { 3991 long last_ewma_diff, last_enqueued_diff; 3992 struct util_est ue; 3993 3994 if (!sched_feat(UTIL_EST)) 3995 return; 3996 3997 /* 3998 * Skip update of task's estimated utilization when the task has not 3999 * yet completed an activation, e.g. being migrated. 4000 */ 4001 if (!task_sleep) 4002 return; 4003 4004 /* 4005 * If the PELT values haven't changed since enqueue time, 4006 * skip the util_est update. 4007 */ 4008 ue = p->se.avg.util_est; 4009 if (ue.enqueued & UTIL_AVG_UNCHANGED) 4010 return; 4011 4012 last_enqueued_diff = ue.enqueued; 4013 4014 /* 4015 * Reset EWMA on utilization increases, the moving average is used only 4016 * to smooth utilization decreases. 4017 */ 4018 ue.enqueued = task_util(p); 4019 if (sched_feat(UTIL_EST_FASTUP)) { 4020 if (ue.ewma < ue.enqueued) { 4021 ue.ewma = ue.enqueued; 4022 goto done; 4023 } 4024 } 4025 4026 /* 4027 * Skip update of task's estimated utilization when its members are 4028 * already ~1% close to its last activation value. 4029 */ 4030 last_ewma_diff = ue.enqueued - ue.ewma; 4031 last_enqueued_diff -= ue.enqueued; 4032 if (within_margin(last_ewma_diff, UTIL_EST_MARGIN)) { 4033 if (!within_margin(last_enqueued_diff, UTIL_EST_MARGIN)) 4034 goto done; 4035 4036 return; 4037 } 4038 4039 /* 4040 * To avoid overestimation of actual task utilization, skip updates if 4041 * we cannot grant there is idle time in this CPU. 4042 */ 4043 if (task_util(p) > capacity_orig_of(cpu_of(rq_of(cfs_rq)))) 4044 return; 4045 4046 /* 4047 * Update Task's estimated utilization 4048 * 4049 * When *p completes an activation we can consolidate another sample 4050 * of the task size. This is done by storing the current PELT value 4051 * as ue.enqueued and by using this value to update the Exponential 4052 * Weighted Moving Average (EWMA): 4053 * 4054 * ewma(t) = w * task_util(p) + (1-w) * ewma(t-1) 4055 * = w * task_util(p) + ewma(t-1) - w * ewma(t-1) 4056 * = w * (task_util(p) - ewma(t-1)) + ewma(t-1) 4057 * = w * ( last_ewma_diff ) + ewma(t-1) 4058 * = w * (last_ewma_diff + ewma(t-1) / w) 4059 * 4060 * Where 'w' is the weight of new samples, which is configured to be 4061 * 0.25, thus making w=1/4 ( >>= UTIL_EST_WEIGHT_SHIFT) 4062 */ 4063 ue.ewma <<= UTIL_EST_WEIGHT_SHIFT; 4064 ue.ewma += last_ewma_diff; 4065 ue.ewma >>= UTIL_EST_WEIGHT_SHIFT; 4066 done: 4067 ue.enqueued |= UTIL_AVG_UNCHANGED; 4068 WRITE_ONCE(p->se.avg.util_est, ue); 4069 4070 trace_sched_util_est_se_tp(&p->se); 4071 } 4072 4073 static inline int task_fits_capacity(struct task_struct *p, long capacity) 4074 { 4075 return fits_capacity(uclamp_task_util(p), capacity); 4076 } 4077 4078 static inline void update_misfit_status(struct task_struct *p, struct rq *rq) 4079 { 4080 if (!static_branch_unlikely(&sched_asym_cpucapacity)) 4081 return; 4082 4083 if (!p || p->nr_cpus_allowed == 1) { 4084 rq->misfit_task_load = 0; 4085 return; 4086 } 4087 4088 if (task_fits_capacity(p, capacity_of(cpu_of(rq)))) { 4089 rq->misfit_task_load = 0; 4090 return; 4091 } 4092 4093 /* 4094 * Make sure that misfit_task_load will not be null even if 4095 * task_h_load() returns 0. 4096 */ 4097 rq->misfit_task_load = max_t(unsigned long, task_h_load(p), 1); 4098 } 4099 4100 #else /* CONFIG_SMP */ 4101 4102 static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq) 4103 { 4104 return true; 4105 } 4106 4107 #define UPDATE_TG 0x0 4108 #define SKIP_AGE_LOAD 0x0 4109 #define DO_ATTACH 0x0 4110 4111 static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int not_used1) 4112 { 4113 cfs_rq_util_change(cfs_rq, 0); 4114 } 4115 4116 static inline void remove_entity_load_avg(struct sched_entity *se) {} 4117 4118 static inline void 4119 attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {} 4120 static inline void 4121 detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {} 4122 4123 static inline int newidle_balance(struct rq *rq, struct rq_flags *rf) 4124 { 4125 return 0; 4126 } 4127 4128 static inline void 4129 util_est_enqueue(struct cfs_rq *cfs_rq, struct task_struct *p) {} 4130 4131 static inline void 4132 util_est_dequeue(struct cfs_rq *cfs_rq, struct task_struct *p) {} 4133 4134 static inline void 4135 util_est_update(struct cfs_rq *cfs_rq, struct task_struct *p, 4136 bool task_sleep) {} 4137 static inline void update_misfit_status(struct task_struct *p, struct rq *rq) {} 4138 4139 #endif /* CONFIG_SMP */ 4140 4141 static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se) 4142 { 4143 #ifdef CONFIG_SCHED_DEBUG 4144 s64 d = se->vruntime - cfs_rq->min_vruntime; 4145 4146 if (d < 0) 4147 d = -d; 4148 4149 if (d > 3*sysctl_sched_latency) 4150 schedstat_inc(cfs_rq->nr_spread_over); 4151 #endif 4152 } 4153 4154 static void 4155 place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial) 4156 { 4157 u64 vruntime = cfs_rq->min_vruntime; 4158 4159 /* 4160 * The 'current' period is already promised to the current tasks, 4161 * however the extra weight of the new task will slow them down a 4162 * little, place the new task so that it fits in the slot that 4163 * stays open at the end. 4164 */ 4165 if (initial && sched_feat(START_DEBIT)) 4166 vruntime += sched_vslice(cfs_rq, se); 4167 4168 /* sleeps up to a single latency don't count. */ 4169 if (!initial) { 4170 unsigned long thresh; 4171 4172 if (se_is_idle(se)) 4173 thresh = sysctl_sched_min_granularity; 4174 else 4175 thresh = sysctl_sched_latency; 4176 4177 /* 4178 * Halve their sleep time's effect, to allow 4179 * for a gentler effect of sleepers: 4180 */ 4181 if (sched_feat(GENTLE_FAIR_SLEEPERS)) 4182 thresh >>= 1; 4183 4184 vruntime -= thresh; 4185 } 4186 4187 /* ensure we never gain time by being placed backwards. */ 4188 se->vruntime = max_vruntime(se->vruntime, vruntime); 4189 } 4190 4191 static void check_enqueue_throttle(struct cfs_rq *cfs_rq); 4192 4193 static inline bool cfs_bandwidth_used(void); 4194 4195 /* 4196 * MIGRATION 4197 * 4198 * dequeue 4199 * update_curr() 4200 * update_min_vruntime() 4201 * vruntime -= min_vruntime 4202 * 4203 * enqueue 4204 * update_curr() 4205 * update_min_vruntime() 4206 * vruntime += min_vruntime 4207 * 4208 * this way the vruntime transition between RQs is done when both 4209 * min_vruntime are up-to-date. 4210 * 4211 * WAKEUP (remote) 4212 * 4213 * ->migrate_task_rq_fair() (p->state == TASK_WAKING) 4214 * vruntime -= min_vruntime 4215 * 4216 * enqueue 4217 * update_curr() 4218 * update_min_vruntime() 4219 * vruntime += min_vruntime 4220 * 4221 * this way we don't have the most up-to-date min_vruntime on the originating 4222 * CPU and an up-to-date min_vruntime on the destination CPU. 4223 */ 4224 4225 static void 4226 enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 4227 { 4228 bool renorm = !(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_MIGRATED); 4229 bool curr = cfs_rq->curr == se; 4230 4231 /* 4232 * If we're the current task, we must renormalise before calling 4233 * update_curr(). 4234 */ 4235 if (renorm && curr) 4236 se->vruntime += cfs_rq->min_vruntime; 4237 4238 update_curr(cfs_rq); 4239 4240 /* 4241 * Otherwise, renormalise after, such that we're placed at the current 4242 * moment in time, instead of some random moment in the past. Being 4243 * placed in the past could significantly boost this task to the 4244 * fairness detriment of existing tasks. 4245 */ 4246 if (renorm && !curr) 4247 se->vruntime += cfs_rq->min_vruntime; 4248 4249 /* 4250 * When enqueuing a sched_entity, we must: 4251 * - Update loads to have both entity and cfs_rq synced with now. 4252 * - Add its load to cfs_rq->runnable_avg 4253 * - For group_entity, update its weight to reflect the new share of 4254 * its group cfs_rq 4255 * - Add its new weight to cfs_rq->load.weight 4256 */ 4257 update_load_avg(cfs_rq, se, UPDATE_TG | DO_ATTACH); 4258 se_update_runnable(se); 4259 update_cfs_group(se); 4260 account_entity_enqueue(cfs_rq, se); 4261 4262 if (flags & ENQUEUE_WAKEUP) 4263 place_entity(cfs_rq, se, 0); 4264 4265 check_schedstat_required(); 4266 update_stats_enqueue_fair(cfs_rq, se, flags); 4267 check_spread(cfs_rq, se); 4268 if (!curr) 4269 __enqueue_entity(cfs_rq, se); 4270 se->on_rq = 1; 4271 4272 /* 4273 * When bandwidth control is enabled, cfs might have been removed 4274 * because of a parent been throttled but cfs->nr_running > 1. Try to 4275 * add it unconditionally. 4276 */ 4277 if (cfs_rq->nr_running == 1 || cfs_bandwidth_used()) 4278 list_add_leaf_cfs_rq(cfs_rq); 4279 4280 if (cfs_rq->nr_running == 1) 4281 check_enqueue_throttle(cfs_rq); 4282 } 4283 4284 static void __clear_buddies_last(struct sched_entity *se) 4285 { 4286 for_each_sched_entity(se) { 4287 struct cfs_rq *cfs_rq = cfs_rq_of(se); 4288 if (cfs_rq->last != se) 4289 break; 4290 4291 cfs_rq->last = NULL; 4292 } 4293 } 4294 4295 static void __clear_buddies_next(struct sched_entity *se) 4296 { 4297 for_each_sched_entity(se) { 4298 struct cfs_rq *cfs_rq = cfs_rq_of(se); 4299 if (cfs_rq->next != se) 4300 break; 4301 4302 cfs_rq->next = NULL; 4303 } 4304 } 4305 4306 static void __clear_buddies_skip(struct sched_entity *se) 4307 { 4308 for_each_sched_entity(se) { 4309 struct cfs_rq *cfs_rq = cfs_rq_of(se); 4310 if (cfs_rq->skip != se) 4311 break; 4312 4313 cfs_rq->skip = NULL; 4314 } 4315 } 4316 4317 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se) 4318 { 4319 if (cfs_rq->last == se) 4320 __clear_buddies_last(se); 4321 4322 if (cfs_rq->next == se) 4323 __clear_buddies_next(se); 4324 4325 if (cfs_rq->skip == se) 4326 __clear_buddies_skip(se); 4327 } 4328 4329 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq); 4330 4331 static void 4332 dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 4333 { 4334 /* 4335 * Update run-time statistics of the 'current'. 4336 */ 4337 update_curr(cfs_rq); 4338 4339 /* 4340 * When dequeuing a sched_entity, we must: 4341 * - Update loads to have both entity and cfs_rq synced with now. 4342 * - Subtract its load from the cfs_rq->runnable_avg. 4343 * - Subtract its previous weight from cfs_rq->load.weight. 4344 * - For group entity, update its weight to reflect the new share 4345 * of its group cfs_rq. 4346 */ 4347 update_load_avg(cfs_rq, se, UPDATE_TG); 4348 se_update_runnable(se); 4349 4350 update_stats_dequeue_fair(cfs_rq, se, flags); 4351 4352 clear_buddies(cfs_rq, se); 4353 4354 if (se != cfs_rq->curr) 4355 __dequeue_entity(cfs_rq, se); 4356 se->on_rq = 0; 4357 account_entity_dequeue(cfs_rq, se); 4358 4359 /* 4360 * Normalize after update_curr(); which will also have moved 4361 * min_vruntime if @se is the one holding it back. But before doing 4362 * update_min_vruntime() again, which will discount @se's position and 4363 * can move min_vruntime forward still more. 4364 */ 4365 if (!(flags & DEQUEUE_SLEEP)) 4366 se->vruntime -= cfs_rq->min_vruntime; 4367 4368 /* return excess runtime on last dequeue */ 4369 return_cfs_rq_runtime(cfs_rq); 4370 4371 update_cfs_group(se); 4372 4373 /* 4374 * Now advance min_vruntime if @se was the entity holding it back, 4375 * except when: DEQUEUE_SAVE && !DEQUEUE_MOVE, in this case we'll be 4376 * put back on, and if we advance min_vruntime, we'll be placed back 4377 * further than we started -- ie. we'll be penalized. 4378 */ 4379 if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) != DEQUEUE_SAVE) 4380 update_min_vruntime(cfs_rq); 4381 } 4382 4383 /* 4384 * Preempt the current task with a newly woken task if needed: 4385 */ 4386 static void 4387 check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr) 4388 { 4389 unsigned long ideal_runtime, delta_exec; 4390 struct sched_entity *se; 4391 s64 delta; 4392 4393 ideal_runtime = sched_slice(cfs_rq, curr); 4394 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime; 4395 if (delta_exec > ideal_runtime) { 4396 resched_curr(rq_of(cfs_rq)); 4397 /* 4398 * The current task ran long enough, ensure it doesn't get 4399 * re-elected due to buddy favours. 4400 */ 4401 clear_buddies(cfs_rq, curr); 4402 return; 4403 } 4404 4405 /* 4406 * Ensure that a task that missed wakeup preemption by a 4407 * narrow margin doesn't have to wait for a full slice. 4408 * This also mitigates buddy induced latencies under load. 4409 */ 4410 if (delta_exec < sysctl_sched_min_granularity) 4411 return; 4412 4413 se = __pick_first_entity(cfs_rq); 4414 delta = curr->vruntime - se->vruntime; 4415 4416 if (delta < 0) 4417 return; 4418 4419 if (delta > ideal_runtime) 4420 resched_curr(rq_of(cfs_rq)); 4421 } 4422 4423 static void 4424 set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) 4425 { 4426 clear_buddies(cfs_rq, se); 4427 4428 /* 'current' is not kept within the tree. */ 4429 if (se->on_rq) { 4430 /* 4431 * Any task has to be enqueued before it get to execute on 4432 * a CPU. So account for the time it spent waiting on the 4433 * runqueue. 4434 */ 4435 update_stats_wait_end_fair(cfs_rq, se); 4436 __dequeue_entity(cfs_rq, se); 4437 update_load_avg(cfs_rq, se, UPDATE_TG); 4438 } 4439 4440 update_stats_curr_start(cfs_rq, se); 4441 cfs_rq->curr = se; 4442 4443 /* 4444 * Track our maximum slice length, if the CPU's load is at 4445 * least twice that of our own weight (i.e. dont track it 4446 * when there are only lesser-weight tasks around): 4447 */ 4448 if (schedstat_enabled() && 4449 rq_of(cfs_rq)->cfs.load.weight >= 2*se->load.weight) { 4450 struct sched_statistics *stats; 4451 4452 stats = __schedstats_from_se(se); 4453 __schedstat_set(stats->slice_max, 4454 max((u64)stats->slice_max, 4455 se->sum_exec_runtime - se->prev_sum_exec_runtime)); 4456 } 4457 4458 se->prev_sum_exec_runtime = se->sum_exec_runtime; 4459 } 4460 4461 static int 4462 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se); 4463 4464 /* 4465 * Pick the next process, keeping these things in mind, in this order: 4466 * 1) keep things fair between processes/task groups 4467 * 2) pick the "next" process, since someone really wants that to run 4468 * 3) pick the "last" process, for cache locality 4469 * 4) do not run the "skip" process, if something else is available 4470 */ 4471 static struct sched_entity * 4472 pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr) 4473 { 4474 struct sched_entity *left = __pick_first_entity(cfs_rq); 4475 struct sched_entity *se; 4476 4477 /* 4478 * If curr is set we have to see if its left of the leftmost entity 4479 * still in the tree, provided there was anything in the tree at all. 4480 */ 4481 if (!left || (curr && entity_before(curr, left))) 4482 left = curr; 4483 4484 se = left; /* ideally we run the leftmost entity */ 4485 4486 /* 4487 * Avoid running the skip buddy, if running something else can 4488 * be done without getting too unfair. 4489 */ 4490 if (cfs_rq->skip && cfs_rq->skip == se) { 4491 struct sched_entity *second; 4492 4493 if (se == curr) { 4494 second = __pick_first_entity(cfs_rq); 4495 } else { 4496 second = __pick_next_entity(se); 4497 if (!second || (curr && entity_before(curr, second))) 4498 second = curr; 4499 } 4500 4501 if (second && wakeup_preempt_entity(second, left) < 1) 4502 se = second; 4503 } 4504 4505 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1) { 4506 /* 4507 * Someone really wants this to run. If it's not unfair, run it. 4508 */ 4509 se = cfs_rq->next; 4510 } else if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1) { 4511 /* 4512 * Prefer last buddy, try to return the CPU to a preempted task. 4513 */ 4514 se = cfs_rq->last; 4515 } 4516 4517 return se; 4518 } 4519 4520 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq); 4521 4522 static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev) 4523 { 4524 /* 4525 * If still on the runqueue then deactivate_task() 4526 * was not called and update_curr() has to be done: 4527 */ 4528 if (prev->on_rq) 4529 update_curr(cfs_rq); 4530 4531 /* throttle cfs_rqs exceeding runtime */ 4532 check_cfs_rq_runtime(cfs_rq); 4533 4534 check_spread(cfs_rq, prev); 4535 4536 if (prev->on_rq) { 4537 update_stats_wait_start_fair(cfs_rq, prev); 4538 /* Put 'current' back into the tree. */ 4539 __enqueue_entity(cfs_rq, prev); 4540 /* in !on_rq case, update occurred at dequeue */ 4541 update_load_avg(cfs_rq, prev, 0); 4542 } 4543 cfs_rq->curr = NULL; 4544 } 4545 4546 static void 4547 entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued) 4548 { 4549 /* 4550 * Update run-time statistics of the 'current'. 4551 */ 4552 update_curr(cfs_rq); 4553 4554 /* 4555 * Ensure that runnable average is periodically updated. 4556 */ 4557 update_load_avg(cfs_rq, curr, UPDATE_TG); 4558 update_cfs_group(curr); 4559 4560 #ifdef CONFIG_SCHED_HRTICK 4561 /* 4562 * queued ticks are scheduled to match the slice, so don't bother 4563 * validating it and just reschedule. 4564 */ 4565 if (queued) { 4566 resched_curr(rq_of(cfs_rq)); 4567 return; 4568 } 4569 /* 4570 * don't let the period tick interfere with the hrtick preemption 4571 */ 4572 if (!sched_feat(DOUBLE_TICK) && 4573 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer)) 4574 return; 4575 #endif 4576 4577 if (cfs_rq->nr_running > 1) 4578 check_preempt_tick(cfs_rq, curr); 4579 } 4580 4581 4582 /************************************************** 4583 * CFS bandwidth control machinery 4584 */ 4585 4586 #ifdef CONFIG_CFS_BANDWIDTH 4587 4588 #ifdef CONFIG_JUMP_LABEL 4589 static struct static_key __cfs_bandwidth_used; 4590 4591 static inline bool cfs_bandwidth_used(void) 4592 { 4593 return static_key_false(&__cfs_bandwidth_used); 4594 } 4595 4596 void cfs_bandwidth_usage_inc(void) 4597 { 4598 static_key_slow_inc_cpuslocked(&__cfs_bandwidth_used); 4599 } 4600 4601 void cfs_bandwidth_usage_dec(void) 4602 { 4603 static_key_slow_dec_cpuslocked(&__cfs_bandwidth_used); 4604 } 4605 #else /* CONFIG_JUMP_LABEL */ 4606 static bool cfs_bandwidth_used(void) 4607 { 4608 return true; 4609 } 4610 4611 void cfs_bandwidth_usage_inc(void) {} 4612 void cfs_bandwidth_usage_dec(void) {} 4613 #endif /* CONFIG_JUMP_LABEL */ 4614 4615 /* 4616 * default period for cfs group bandwidth. 4617 * default: 0.1s, units: nanoseconds 4618 */ 4619 static inline u64 default_cfs_period(void) 4620 { 4621 return 100000000ULL; 4622 } 4623 4624 static inline u64 sched_cfs_bandwidth_slice(void) 4625 { 4626 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC; 4627 } 4628 4629 /* 4630 * Replenish runtime according to assigned quota. We use sched_clock_cpu 4631 * directly instead of rq->clock to avoid adding additional synchronization 4632 * around rq->lock. 4633 * 4634 * requires cfs_b->lock 4635 */ 4636 void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b) 4637 { 4638 s64 runtime; 4639 4640 if (unlikely(cfs_b->quota == RUNTIME_INF)) 4641 return; 4642 4643 cfs_b->runtime += cfs_b->quota; 4644 runtime = cfs_b->runtime_snap - cfs_b->runtime; 4645 if (runtime > 0) { 4646 cfs_b->burst_time += runtime; 4647 cfs_b->nr_burst++; 4648 } 4649 4650 cfs_b->runtime = min(cfs_b->runtime, cfs_b->quota + cfs_b->burst); 4651 cfs_b->runtime_snap = cfs_b->runtime; 4652 } 4653 4654 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg) 4655 { 4656 return &tg->cfs_bandwidth; 4657 } 4658 4659 /* returns 0 on failure to allocate runtime */ 4660 static int __assign_cfs_rq_runtime(struct cfs_bandwidth *cfs_b, 4661 struct cfs_rq *cfs_rq, u64 target_runtime) 4662 { 4663 u64 min_amount, amount = 0; 4664 4665 lockdep_assert_held(&cfs_b->lock); 4666 4667 /* note: this is a positive sum as runtime_remaining <= 0 */ 4668 min_amount = target_runtime - cfs_rq->runtime_remaining; 4669 4670 if (cfs_b->quota == RUNTIME_INF) 4671 amount = min_amount; 4672 else { 4673 start_cfs_bandwidth(cfs_b); 4674 4675 if (cfs_b->runtime > 0) { 4676 amount = min(cfs_b->runtime, min_amount); 4677 cfs_b->runtime -= amount; 4678 cfs_b->idle = 0; 4679 } 4680 } 4681 4682 cfs_rq->runtime_remaining += amount; 4683 4684 return cfs_rq->runtime_remaining > 0; 4685 } 4686 4687 /* returns 0 on failure to allocate runtime */ 4688 static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq) 4689 { 4690 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 4691 int ret; 4692 4693 raw_spin_lock(&cfs_b->lock); 4694 ret = __assign_cfs_rq_runtime(cfs_b, cfs_rq, sched_cfs_bandwidth_slice()); 4695 raw_spin_unlock(&cfs_b->lock); 4696 4697 return ret; 4698 } 4699 4700 static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) 4701 { 4702 /* dock delta_exec before expiring quota (as it could span periods) */ 4703 cfs_rq->runtime_remaining -= delta_exec; 4704 4705 if (likely(cfs_rq->runtime_remaining > 0)) 4706 return; 4707 4708 if (cfs_rq->throttled) 4709 return; 4710 /* 4711 * if we're unable to extend our runtime we resched so that the active 4712 * hierarchy can be throttled 4713 */ 4714 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr)) 4715 resched_curr(rq_of(cfs_rq)); 4716 } 4717 4718 static __always_inline 4719 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) 4720 { 4721 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled) 4722 return; 4723 4724 __account_cfs_rq_runtime(cfs_rq, delta_exec); 4725 } 4726 4727 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq) 4728 { 4729 return cfs_bandwidth_used() && cfs_rq->throttled; 4730 } 4731 4732 /* check whether cfs_rq, or any parent, is throttled */ 4733 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq) 4734 { 4735 return cfs_bandwidth_used() && cfs_rq->throttle_count; 4736 } 4737 4738 /* 4739 * Ensure that neither of the group entities corresponding to src_cpu or 4740 * dest_cpu are members of a throttled hierarchy when performing group 4741 * load-balance operations. 4742 */ 4743 static inline int throttled_lb_pair(struct task_group *tg, 4744 int src_cpu, int dest_cpu) 4745 { 4746 struct cfs_rq *src_cfs_rq, *dest_cfs_rq; 4747 4748 src_cfs_rq = tg->cfs_rq[src_cpu]; 4749 dest_cfs_rq = tg->cfs_rq[dest_cpu]; 4750 4751 return throttled_hierarchy(src_cfs_rq) || 4752 throttled_hierarchy(dest_cfs_rq); 4753 } 4754 4755 static int tg_unthrottle_up(struct task_group *tg, void *data) 4756 { 4757 struct rq *rq = data; 4758 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; 4759 4760 cfs_rq->throttle_count--; 4761 if (!cfs_rq->throttle_count) { 4762 cfs_rq->throttled_clock_task_time += rq_clock_task(rq) - 4763 cfs_rq->throttled_clock_task; 4764 4765 /* Add cfs_rq with load or one or more already running entities to the list */ 4766 if (!cfs_rq_is_decayed(cfs_rq) || cfs_rq->nr_running) 4767 list_add_leaf_cfs_rq(cfs_rq); 4768 } 4769 4770 return 0; 4771 } 4772 4773 static int tg_throttle_down(struct task_group *tg, void *data) 4774 { 4775 struct rq *rq = data; 4776 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; 4777 4778 /* group is entering throttled state, stop time */ 4779 if (!cfs_rq->throttle_count) { 4780 cfs_rq->throttled_clock_task = rq_clock_task(rq); 4781 list_del_leaf_cfs_rq(cfs_rq); 4782 } 4783 cfs_rq->throttle_count++; 4784 4785 return 0; 4786 } 4787 4788 static bool throttle_cfs_rq(struct cfs_rq *cfs_rq) 4789 { 4790 struct rq *rq = rq_of(cfs_rq); 4791 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 4792 struct sched_entity *se; 4793 long task_delta, idle_task_delta, dequeue = 1; 4794 4795 raw_spin_lock(&cfs_b->lock); 4796 /* This will start the period timer if necessary */ 4797 if (__assign_cfs_rq_runtime(cfs_b, cfs_rq, 1)) { 4798 /* 4799 * We have raced with bandwidth becoming available, and if we 4800 * actually throttled the timer might not unthrottle us for an 4801 * entire period. We additionally needed to make sure that any 4802 * subsequent check_cfs_rq_runtime calls agree not to throttle 4803 * us, as we may commit to do cfs put_prev+pick_next, so we ask 4804 * for 1ns of runtime rather than just check cfs_b. 4805 */ 4806 dequeue = 0; 4807 } else { 4808 list_add_tail_rcu(&cfs_rq->throttled_list, 4809 &cfs_b->throttled_cfs_rq); 4810 } 4811 raw_spin_unlock(&cfs_b->lock); 4812 4813 if (!dequeue) 4814 return false; /* Throttle no longer required. */ 4815 4816 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))]; 4817 4818 /* freeze hierarchy runnable averages while throttled */ 4819 rcu_read_lock(); 4820 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq); 4821 rcu_read_unlock(); 4822 4823 task_delta = cfs_rq->h_nr_running; 4824 idle_task_delta = cfs_rq->idle_h_nr_running; 4825 for_each_sched_entity(se) { 4826 struct cfs_rq *qcfs_rq = cfs_rq_of(se); 4827 /* throttled entity or throttle-on-deactivate */ 4828 if (!se->on_rq) 4829 goto done; 4830 4831 dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP); 4832 4833 if (cfs_rq_is_idle(group_cfs_rq(se))) 4834 idle_task_delta = cfs_rq->h_nr_running; 4835 4836 qcfs_rq->h_nr_running -= task_delta; 4837 qcfs_rq->idle_h_nr_running -= idle_task_delta; 4838 4839 if (qcfs_rq->load.weight) { 4840 /* Avoid re-evaluating load for this entity: */ 4841 se = parent_entity(se); 4842 break; 4843 } 4844 } 4845 4846 for_each_sched_entity(se) { 4847 struct cfs_rq *qcfs_rq = cfs_rq_of(se); 4848 /* throttled entity or throttle-on-deactivate */ 4849 if (!se->on_rq) 4850 goto done; 4851 4852 update_load_avg(qcfs_rq, se, 0); 4853 se_update_runnable(se); 4854 4855 if (cfs_rq_is_idle(group_cfs_rq(se))) 4856 idle_task_delta = cfs_rq->h_nr_running; 4857 4858 qcfs_rq->h_nr_running -= task_delta; 4859 qcfs_rq->idle_h_nr_running -= idle_task_delta; 4860 } 4861 4862 /* At this point se is NULL and we are at root level*/ 4863 sub_nr_running(rq, task_delta); 4864 4865 done: 4866 /* 4867 * Note: distribution will already see us throttled via the 4868 * throttled-list. rq->lock protects completion. 4869 */ 4870 cfs_rq->throttled = 1; 4871 cfs_rq->throttled_clock = rq_clock(rq); 4872 return true; 4873 } 4874 4875 void unthrottle_cfs_rq(struct cfs_rq *cfs_rq) 4876 { 4877 struct rq *rq = rq_of(cfs_rq); 4878 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 4879 struct sched_entity *se; 4880 long task_delta, idle_task_delta; 4881 4882 se = cfs_rq->tg->se[cpu_of(rq)]; 4883 4884 cfs_rq->throttled = 0; 4885 4886 update_rq_clock(rq); 4887 4888 raw_spin_lock(&cfs_b->lock); 4889 cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock; 4890 list_del_rcu(&cfs_rq->throttled_list); 4891 raw_spin_unlock(&cfs_b->lock); 4892 4893 /* update hierarchical throttle state */ 4894 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq); 4895 4896 /* Nothing to run but something to decay (on_list)? Complete the branch */ 4897 if (!cfs_rq->load.weight) { 4898 if (cfs_rq->on_list) 4899 goto unthrottle_throttle; 4900 return; 4901 } 4902 4903 task_delta = cfs_rq->h_nr_running; 4904 idle_task_delta = cfs_rq->idle_h_nr_running; 4905 for_each_sched_entity(se) { 4906 struct cfs_rq *qcfs_rq = cfs_rq_of(se); 4907 4908 if (se->on_rq) 4909 break; 4910 enqueue_entity(qcfs_rq, se, ENQUEUE_WAKEUP); 4911 4912 if (cfs_rq_is_idle(group_cfs_rq(se))) 4913 idle_task_delta = cfs_rq->h_nr_running; 4914 4915 qcfs_rq->h_nr_running += task_delta; 4916 qcfs_rq->idle_h_nr_running += idle_task_delta; 4917 4918 /* end evaluation on encountering a throttled cfs_rq */ 4919 if (cfs_rq_throttled(qcfs_rq)) 4920 goto unthrottle_throttle; 4921 } 4922 4923 for_each_sched_entity(se) { 4924 struct cfs_rq *qcfs_rq = cfs_rq_of(se); 4925 4926 update_load_avg(qcfs_rq, se, UPDATE_TG); 4927 se_update_runnable(se); 4928 4929 if (cfs_rq_is_idle(group_cfs_rq(se))) 4930 idle_task_delta = cfs_rq->h_nr_running; 4931 4932 qcfs_rq->h_nr_running += task_delta; 4933 qcfs_rq->idle_h_nr_running += idle_task_delta; 4934 4935 /* end evaluation on encountering a throttled cfs_rq */ 4936 if (cfs_rq_throttled(qcfs_rq)) 4937 goto unthrottle_throttle; 4938 4939 /* 4940 * One parent has been throttled and cfs_rq removed from the 4941 * list. Add it back to not break the leaf list. 4942 */ 4943 if (throttled_hierarchy(qcfs_rq)) 4944 list_add_leaf_cfs_rq(qcfs_rq); 4945 } 4946 4947 /* At this point se is NULL and we are at root level*/ 4948 add_nr_running(rq, task_delta); 4949 4950 unthrottle_throttle: 4951 /* 4952 * The cfs_rq_throttled() breaks in the above iteration can result in 4953 * incomplete leaf list maintenance, resulting in triggering the 4954 * assertion below. 4955 */ 4956 for_each_sched_entity(se) { 4957 struct cfs_rq *qcfs_rq = cfs_rq_of(se); 4958 4959 if (list_add_leaf_cfs_rq(qcfs_rq)) 4960 break; 4961 } 4962 4963 assert_list_leaf_cfs_rq(rq); 4964 4965 /* Determine whether we need to wake up potentially idle CPU: */ 4966 if (rq->curr == rq->idle && rq->cfs.nr_running) 4967 resched_curr(rq); 4968 } 4969 4970 static void distribute_cfs_runtime(struct cfs_bandwidth *cfs_b) 4971 { 4972 struct cfs_rq *cfs_rq; 4973 u64 runtime, remaining = 1; 4974 4975 rcu_read_lock(); 4976 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq, 4977 throttled_list) { 4978 struct rq *rq = rq_of(cfs_rq); 4979 struct rq_flags rf; 4980 4981 rq_lock_irqsave(rq, &rf); 4982 if (!cfs_rq_throttled(cfs_rq)) 4983 goto next; 4984 4985 /* By the above check, this should never be true */ 4986 SCHED_WARN_ON(cfs_rq->runtime_remaining > 0); 4987 4988 raw_spin_lock(&cfs_b->lock); 4989 runtime = -cfs_rq->runtime_remaining + 1; 4990 if (runtime > cfs_b->runtime) 4991 runtime = cfs_b->runtime; 4992 cfs_b->runtime -= runtime; 4993 remaining = cfs_b->runtime; 4994 raw_spin_unlock(&cfs_b->lock); 4995 4996 cfs_rq->runtime_remaining += runtime; 4997 4998 /* we check whether we're throttled above */ 4999 if (cfs_rq->runtime_remaining > 0) 5000 unthrottle_cfs_rq(cfs_rq); 5001 5002 next: 5003 rq_unlock_irqrestore(rq, &rf); 5004 5005 if (!remaining) 5006 break; 5007 } 5008 rcu_read_unlock(); 5009 } 5010 5011 /* 5012 * Responsible for refilling a task_group's bandwidth and unthrottling its 5013 * cfs_rqs as appropriate. If there has been no activity within the last 5014 * period the timer is deactivated until scheduling resumes; cfs_b->idle is 5015 * used to track this state. 5016 */ 5017 static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun, unsigned long flags) 5018 { 5019 int throttled; 5020 5021 /* no need to continue the timer with no bandwidth constraint */ 5022 if (cfs_b->quota == RUNTIME_INF) 5023 goto out_deactivate; 5024 5025 throttled = !list_empty(&cfs_b->throttled_cfs_rq); 5026 cfs_b->nr_periods += overrun; 5027 5028 /* Refill extra burst quota even if cfs_b->idle */ 5029 __refill_cfs_bandwidth_runtime(cfs_b); 5030 5031 /* 5032 * idle depends on !throttled (for the case of a large deficit), and if 5033 * we're going inactive then everything else can be deferred 5034 */ 5035 if (cfs_b->idle && !throttled) 5036 goto out_deactivate; 5037 5038 if (!throttled) { 5039 /* mark as potentially idle for the upcoming period */ 5040 cfs_b->idle = 1; 5041 return 0; 5042 } 5043 5044 /* account preceding periods in which throttling occurred */ 5045 cfs_b->nr_throttled += overrun; 5046 5047 /* 5048 * This check is repeated as we release cfs_b->lock while we unthrottle. 5049 */ 5050 while (throttled && cfs_b->runtime > 0) { 5051 raw_spin_unlock_irqrestore(&cfs_b->lock, flags); 5052 /* we can't nest cfs_b->lock while distributing bandwidth */ 5053 distribute_cfs_runtime(cfs_b); 5054 raw_spin_lock_irqsave(&cfs_b->lock, flags); 5055 5056 throttled = !list_empty(&cfs_b->throttled_cfs_rq); 5057 } 5058 5059 /* 5060 * While we are ensured activity in the period following an 5061 * unthrottle, this also covers the case in which the new bandwidth is 5062 * insufficient to cover the existing bandwidth deficit. (Forcing the 5063 * timer to remain active while there are any throttled entities.) 5064 */ 5065 cfs_b->idle = 0; 5066 5067 return 0; 5068 5069 out_deactivate: 5070 return 1; 5071 } 5072 5073 /* a cfs_rq won't donate quota below this amount */ 5074 static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC; 5075 /* minimum remaining period time to redistribute slack quota */ 5076 static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC; 5077 /* how long we wait to gather additional slack before distributing */ 5078 static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC; 5079 5080 /* 5081 * Are we near the end of the current quota period? 5082 * 5083 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the 5084 * hrtimer base being cleared by hrtimer_start. In the case of 5085 * migrate_hrtimers, base is never cleared, so we are fine. 5086 */ 5087 static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire) 5088 { 5089 struct hrtimer *refresh_timer = &cfs_b->period_timer; 5090 s64 remaining; 5091 5092 /* if the call-back is running a quota refresh is already occurring */ 5093 if (hrtimer_callback_running(refresh_timer)) 5094 return 1; 5095 5096 /* is a quota refresh about to occur? */ 5097 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer)); 5098 if (remaining < (s64)min_expire) 5099 return 1; 5100 5101 return 0; 5102 } 5103 5104 static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b) 5105 { 5106 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration; 5107 5108 /* if there's a quota refresh soon don't bother with slack */ 5109 if (runtime_refresh_within(cfs_b, min_left)) 5110 return; 5111 5112 /* don't push forwards an existing deferred unthrottle */ 5113 if (cfs_b->slack_started) 5114 return; 5115 cfs_b->slack_started = true; 5116 5117 hrtimer_start(&cfs_b->slack_timer, 5118 ns_to_ktime(cfs_bandwidth_slack_period), 5119 HRTIMER_MODE_REL); 5120 } 5121 5122 /* we know any runtime found here is valid as update_curr() precedes return */ 5123 static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq) 5124 { 5125 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 5126 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime; 5127 5128 if (slack_runtime <= 0) 5129 return; 5130 5131 raw_spin_lock(&cfs_b->lock); 5132 if (cfs_b->quota != RUNTIME_INF) { 5133 cfs_b->runtime += slack_runtime; 5134 5135 /* we are under rq->lock, defer unthrottling using a timer */ 5136 if (cfs_b->runtime > sched_cfs_bandwidth_slice() && 5137 !list_empty(&cfs_b->throttled_cfs_rq)) 5138 start_cfs_slack_bandwidth(cfs_b); 5139 } 5140 raw_spin_unlock(&cfs_b->lock); 5141 5142 /* even if it's not valid for return we don't want to try again */ 5143 cfs_rq->runtime_remaining -= slack_runtime; 5144 } 5145 5146 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) 5147 { 5148 if (!cfs_bandwidth_used()) 5149 return; 5150 5151 if (!cfs_rq->runtime_enabled || cfs_rq->nr_running) 5152 return; 5153 5154 __return_cfs_rq_runtime(cfs_rq); 5155 } 5156 5157 /* 5158 * This is done with a timer (instead of inline with bandwidth return) since 5159 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs. 5160 */ 5161 static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b) 5162 { 5163 u64 runtime = 0, slice = sched_cfs_bandwidth_slice(); 5164 unsigned long flags; 5165 5166 /* confirm we're still not at a refresh boundary */ 5167 raw_spin_lock_irqsave(&cfs_b->lock, flags); 5168 cfs_b->slack_started = false; 5169 5170 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) { 5171 raw_spin_unlock_irqrestore(&cfs_b->lock, flags); 5172 return; 5173 } 5174 5175 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice) 5176 runtime = cfs_b->runtime; 5177 5178 raw_spin_unlock_irqrestore(&cfs_b->lock, flags); 5179 5180 if (!runtime) 5181 return; 5182 5183 distribute_cfs_runtime(cfs_b); 5184 } 5185 5186 /* 5187 * When a group wakes up we want to make sure that its quota is not already 5188 * expired/exceeded, otherwise it may be allowed to steal additional ticks of 5189 * runtime as update_curr() throttling can not trigger until it's on-rq. 5190 */ 5191 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) 5192 { 5193 if (!cfs_bandwidth_used()) 5194 return; 5195 5196 /* an active group must be handled by the update_curr()->put() path */ 5197 if (!cfs_rq->runtime_enabled || cfs_rq->curr) 5198 return; 5199 5200 /* ensure the group is not already throttled */ 5201 if (cfs_rq_throttled(cfs_rq)) 5202 return; 5203 5204 /* update runtime allocation */ 5205 account_cfs_rq_runtime(cfs_rq, 0); 5206 if (cfs_rq->runtime_remaining <= 0) 5207 throttle_cfs_rq(cfs_rq); 5208 } 5209 5210 static void sync_throttle(struct task_group *tg, int cpu) 5211 { 5212 struct cfs_rq *pcfs_rq, *cfs_rq; 5213 5214 if (!cfs_bandwidth_used()) 5215 return; 5216 5217 if (!tg->parent) 5218 return; 5219 5220 cfs_rq = tg->cfs_rq[cpu]; 5221 pcfs_rq = tg->parent->cfs_rq[cpu]; 5222 5223 cfs_rq->throttle_count = pcfs_rq->throttle_count; 5224 cfs_rq->throttled_clock_task = rq_clock_task(cpu_rq(cpu)); 5225 } 5226 5227 /* conditionally throttle active cfs_rq's from put_prev_entity() */ 5228 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) 5229 { 5230 if (!cfs_bandwidth_used()) 5231 return false; 5232 5233 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0)) 5234 return false; 5235 5236 /* 5237 * it's possible for a throttled entity to be forced into a running 5238 * state (e.g. set_curr_task), in this case we're finished. 5239 */ 5240 if (cfs_rq_throttled(cfs_rq)) 5241 return true; 5242 5243 return throttle_cfs_rq(cfs_rq); 5244 } 5245 5246 static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer) 5247 { 5248 struct cfs_bandwidth *cfs_b = 5249 container_of(timer, struct cfs_bandwidth, slack_timer); 5250 5251 do_sched_cfs_slack_timer(cfs_b); 5252 5253 return HRTIMER_NORESTART; 5254 } 5255 5256 extern const u64 max_cfs_quota_period; 5257 5258 static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer) 5259 { 5260 struct cfs_bandwidth *cfs_b = 5261 container_of(timer, struct cfs_bandwidth, period_timer); 5262 unsigned long flags; 5263 int overrun; 5264 int idle = 0; 5265 int count = 0; 5266 5267 raw_spin_lock_irqsave(&cfs_b->lock, flags); 5268 for (;;) { 5269 overrun = hrtimer_forward_now(timer, cfs_b->period); 5270 if (!overrun) 5271 break; 5272 5273 idle = do_sched_cfs_period_timer(cfs_b, overrun, flags); 5274 5275 if (++count > 3) { 5276 u64 new, old = ktime_to_ns(cfs_b->period); 5277 5278 /* 5279 * Grow period by a factor of 2 to avoid losing precision. 5280 * Precision loss in the quota/period ratio can cause __cfs_schedulable 5281 * to fail. 5282 */ 5283 new = old * 2; 5284 if (new < max_cfs_quota_period) { 5285 cfs_b->period = ns_to_ktime(new); 5286 cfs_b->quota *= 2; 5287 cfs_b->burst *= 2; 5288 5289 pr_warn_ratelimited( 5290 "cfs_period_timer[cpu%d]: period too short, scaling up (new cfs_period_us = %lld, cfs_quota_us = %lld)\n", 5291 smp_processor_id(), 5292 div_u64(new, NSEC_PER_USEC), 5293 div_u64(cfs_b->quota, NSEC_PER_USEC)); 5294 } else { 5295 pr_warn_ratelimited( 5296 "cfs_period_timer[cpu%d]: period too short, but cannot scale up without losing precision (cfs_period_us = %lld, cfs_quota_us = %lld)\n", 5297 smp_processor_id(), 5298 div_u64(old, NSEC_PER_USEC), 5299 div_u64(cfs_b->quota, NSEC_PER_USEC)); 5300 } 5301 5302 /* reset count so we don't come right back in here */ 5303 count = 0; 5304 } 5305 } 5306 if (idle) 5307 cfs_b->period_active = 0; 5308 raw_spin_unlock_irqrestore(&cfs_b->lock, flags); 5309 5310 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART; 5311 } 5312 5313 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) 5314 { 5315 raw_spin_lock_init(&cfs_b->lock); 5316 cfs_b->runtime = 0; 5317 cfs_b->quota = RUNTIME_INF; 5318 cfs_b->period = ns_to_ktime(default_cfs_period()); 5319 cfs_b->burst = 0; 5320 5321 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq); 5322 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED); 5323 cfs_b->period_timer.function = sched_cfs_period_timer; 5324 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 5325 cfs_b->slack_timer.function = sched_cfs_slack_timer; 5326 cfs_b->slack_started = false; 5327 } 5328 5329 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) 5330 { 5331 cfs_rq->runtime_enabled = 0; 5332 INIT_LIST_HEAD(&cfs_rq->throttled_list); 5333 } 5334 5335 void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b) 5336 { 5337 lockdep_assert_held(&cfs_b->lock); 5338 5339 if (cfs_b->period_active) 5340 return; 5341 5342 cfs_b->period_active = 1; 5343 hrtimer_forward_now(&cfs_b->period_timer, cfs_b->period); 5344 hrtimer_start_expires(&cfs_b->period_timer, HRTIMER_MODE_ABS_PINNED); 5345 } 5346 5347 static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) 5348 { 5349 /* init_cfs_bandwidth() was not called */ 5350 if (!cfs_b->throttled_cfs_rq.next) 5351 return; 5352 5353 hrtimer_cancel(&cfs_b->period_timer); 5354 hrtimer_cancel(&cfs_b->slack_timer); 5355 } 5356 5357 /* 5358 * Both these CPU hotplug callbacks race against unregister_fair_sched_group() 5359 * 5360 * The race is harmless, since modifying bandwidth settings of unhooked group 5361 * bits doesn't do much. 5362 */ 5363 5364 /* cpu online callback */ 5365 static void __maybe_unused update_runtime_enabled(struct rq *rq) 5366 { 5367 struct task_group *tg; 5368 5369 lockdep_assert_rq_held(rq); 5370 5371 rcu_read_lock(); 5372 list_for_each_entry_rcu(tg, &task_groups, list) { 5373 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 5374 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; 5375 5376 raw_spin_lock(&cfs_b->lock); 5377 cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF; 5378 raw_spin_unlock(&cfs_b->lock); 5379 } 5380 rcu_read_unlock(); 5381 } 5382 5383 /* cpu offline callback */ 5384 static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq) 5385 { 5386 struct task_group *tg; 5387 5388 lockdep_assert_rq_held(rq); 5389 5390 rcu_read_lock(); 5391 list_for_each_entry_rcu(tg, &task_groups, list) { 5392 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; 5393 5394 if (!cfs_rq->runtime_enabled) 5395 continue; 5396 5397 /* 5398 * clock_task is not advancing so we just need to make sure 5399 * there's some valid quota amount 5400 */ 5401 cfs_rq->runtime_remaining = 1; 5402 /* 5403 * Offline rq is schedulable till CPU is completely disabled 5404 * in take_cpu_down(), so we prevent new cfs throttling here. 5405 */ 5406 cfs_rq->runtime_enabled = 0; 5407 5408 if (cfs_rq_throttled(cfs_rq)) 5409 unthrottle_cfs_rq(cfs_rq); 5410 } 5411 rcu_read_unlock(); 5412 } 5413 5414 #else /* CONFIG_CFS_BANDWIDTH */ 5415 5416 static inline bool cfs_bandwidth_used(void) 5417 { 5418 return false; 5419 } 5420 5421 static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {} 5422 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; } 5423 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {} 5424 static inline void sync_throttle(struct task_group *tg, int cpu) {} 5425 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {} 5426 5427 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq) 5428 { 5429 return 0; 5430 } 5431 5432 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq) 5433 { 5434 return 0; 5435 } 5436 5437 static inline int throttled_lb_pair(struct task_group *tg, 5438 int src_cpu, int dest_cpu) 5439 { 5440 return 0; 5441 } 5442 5443 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {} 5444 5445 #ifdef CONFIG_FAIR_GROUP_SCHED 5446 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {} 5447 #endif 5448 5449 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg) 5450 { 5451 return NULL; 5452 } 5453 static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {} 5454 static inline void update_runtime_enabled(struct rq *rq) {} 5455 static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {} 5456 5457 #endif /* CONFIG_CFS_BANDWIDTH */ 5458 5459 /************************************************** 5460 * CFS operations on tasks: 5461 */ 5462 5463 #ifdef CONFIG_SCHED_HRTICK 5464 static void hrtick_start_fair(struct rq *rq, struct task_struct *p) 5465 { 5466 struct sched_entity *se = &p->se; 5467 struct cfs_rq *cfs_rq = cfs_rq_of(se); 5468 5469 SCHED_WARN_ON(task_rq(p) != rq); 5470 5471 if (rq->cfs.h_nr_running > 1) { 5472 u64 slice = sched_slice(cfs_rq, se); 5473 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime; 5474 s64 delta = slice - ran; 5475 5476 if (delta < 0) { 5477 if (task_current(rq, p)) 5478 resched_curr(rq); 5479 return; 5480 } 5481 hrtick_start(rq, delta); 5482 } 5483 } 5484 5485 /* 5486 * called from enqueue/dequeue and updates the hrtick when the 5487 * current task is from our class and nr_running is low enough 5488 * to matter. 5489 */ 5490 static void hrtick_update(struct rq *rq) 5491 { 5492 struct task_struct *curr = rq->curr; 5493 5494 if (!hrtick_enabled_fair(rq) || curr->sched_class != &fair_sched_class) 5495 return; 5496 5497 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency) 5498 hrtick_start_fair(rq, curr); 5499 } 5500 #else /* !CONFIG_SCHED_HRTICK */ 5501 static inline void 5502 hrtick_start_fair(struct rq *rq, struct task_struct *p) 5503 { 5504 } 5505 5506 static inline void hrtick_update(struct rq *rq) 5507 { 5508 } 5509 #endif 5510 5511 #ifdef CONFIG_SMP 5512 static inline unsigned long cpu_util(int cpu); 5513 5514 static inline bool cpu_overutilized(int cpu) 5515 { 5516 return !fits_capacity(cpu_util(cpu), capacity_of(cpu)); 5517 } 5518 5519 static inline void update_overutilized_status(struct rq *rq) 5520 { 5521 if (!READ_ONCE(rq->rd->overutilized) && cpu_overutilized(rq->cpu)) { 5522 WRITE_ONCE(rq->rd->overutilized, SG_OVERUTILIZED); 5523 trace_sched_overutilized_tp(rq->rd, SG_OVERUTILIZED); 5524 } 5525 } 5526 #else 5527 static inline void update_overutilized_status(struct rq *rq) { } 5528 #endif 5529 5530 /* Runqueue only has SCHED_IDLE tasks enqueued */ 5531 static int sched_idle_rq(struct rq *rq) 5532 { 5533 return unlikely(rq->nr_running == rq->cfs.idle_h_nr_running && 5534 rq->nr_running); 5535 } 5536 5537 /* 5538 * Returns true if cfs_rq only has SCHED_IDLE entities enqueued. Note the use 5539 * of idle_nr_running, which does not consider idle descendants of normal 5540 * entities. 5541 */ 5542 static bool sched_idle_cfs_rq(struct cfs_rq *cfs_rq) 5543 { 5544 return cfs_rq->nr_running && 5545 cfs_rq->nr_running == cfs_rq->idle_nr_running; 5546 } 5547 5548 #ifdef CONFIG_SMP 5549 static int sched_idle_cpu(int cpu) 5550 { 5551 return sched_idle_rq(cpu_rq(cpu)); 5552 } 5553 #endif 5554 5555 /* 5556 * The enqueue_task method is called before nr_running is 5557 * increased. Here we update the fair scheduling stats and 5558 * then put the task into the rbtree: 5559 */ 5560 static void 5561 enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags) 5562 { 5563 struct cfs_rq *cfs_rq; 5564 struct sched_entity *se = &p->se; 5565 int idle_h_nr_running = task_has_idle_policy(p); 5566 int task_new = !(flags & ENQUEUE_WAKEUP); 5567 5568 /* 5569 * The code below (indirectly) updates schedutil which looks at 5570 * the cfs_rq utilization to select a frequency. 5571 * Let's add the task's estimated utilization to the cfs_rq's 5572 * estimated utilization, before we update schedutil. 5573 */ 5574 util_est_enqueue(&rq->cfs, p); 5575 5576 /* 5577 * If in_iowait is set, the code below may not trigger any cpufreq 5578 * utilization updates, so do it here explicitly with the IOWAIT flag 5579 * passed. 5580 */ 5581 if (p->in_iowait) 5582 cpufreq_update_util(rq, SCHED_CPUFREQ_IOWAIT); 5583 5584 for_each_sched_entity(se) { 5585 if (se->on_rq) 5586 break; 5587 cfs_rq = cfs_rq_of(se); 5588 enqueue_entity(cfs_rq, se, flags); 5589 5590 cfs_rq->h_nr_running++; 5591 cfs_rq->idle_h_nr_running += idle_h_nr_running; 5592 5593 if (cfs_rq_is_idle(cfs_rq)) 5594 idle_h_nr_running = 1; 5595 5596 /* end evaluation on encountering a throttled cfs_rq */ 5597 if (cfs_rq_throttled(cfs_rq)) 5598 goto enqueue_throttle; 5599 5600 flags = ENQUEUE_WAKEUP; 5601 } 5602 5603 for_each_sched_entity(se) { 5604 cfs_rq = cfs_rq_of(se); 5605 5606 update_load_avg(cfs_rq, se, UPDATE_TG); 5607 se_update_runnable(se); 5608 update_cfs_group(se); 5609 5610 cfs_rq->h_nr_running++; 5611 cfs_rq->idle_h_nr_running += idle_h_nr_running; 5612 5613 if (cfs_rq_is_idle(cfs_rq)) 5614 idle_h_nr_running = 1; 5615 5616 /* end evaluation on encountering a throttled cfs_rq */ 5617 if (cfs_rq_throttled(cfs_rq)) 5618 goto enqueue_throttle; 5619 5620 /* 5621 * One parent has been throttled and cfs_rq removed from the 5622 * list. Add it back to not break the leaf list. 5623 */ 5624 if (throttled_hierarchy(cfs_rq)) 5625 list_add_leaf_cfs_rq(cfs_rq); 5626 } 5627 5628 /* At this point se is NULL and we are at root level*/ 5629 add_nr_running(rq, 1); 5630 5631 /* 5632 * Since new tasks are assigned an initial util_avg equal to 5633 * half of the spare capacity of their CPU, tiny tasks have the 5634 * ability to cross the overutilized threshold, which will 5635 * result in the load balancer ruining all the task placement 5636 * done by EAS. As a way to mitigate that effect, do not account 5637 * for the first enqueue operation of new tasks during the 5638 * overutilized flag detection. 5639 * 5640 * A better way of solving this problem would be to wait for 5641 * the PELT signals of tasks to converge before taking them 5642 * into account, but that is not straightforward to implement, 5643 * and the following generally works well enough in practice. 5644 */ 5645 if (!task_new) 5646 update_overutilized_status(rq); 5647 5648 enqueue_throttle: 5649 if (cfs_bandwidth_used()) { 5650 /* 5651 * When bandwidth control is enabled; the cfs_rq_throttled() 5652 * breaks in the above iteration can result in incomplete 5653 * leaf list maintenance, resulting in triggering the assertion 5654 * below. 5655 */ 5656 for_each_sched_entity(se) { 5657 cfs_rq = cfs_rq_of(se); 5658 5659 if (list_add_leaf_cfs_rq(cfs_rq)) 5660 break; 5661 } 5662 } 5663 5664 assert_list_leaf_cfs_rq(rq); 5665 5666 hrtick_update(rq); 5667 } 5668 5669 static void set_next_buddy(struct sched_entity *se); 5670 5671 /* 5672 * The dequeue_task method is called before nr_running is 5673 * decreased. We remove the task from the rbtree and 5674 * update the fair scheduling stats: 5675 */ 5676 static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags) 5677 { 5678 struct cfs_rq *cfs_rq; 5679 struct sched_entity *se = &p->se; 5680 int task_sleep = flags & DEQUEUE_SLEEP; 5681 int idle_h_nr_running = task_has_idle_policy(p); 5682 bool was_sched_idle = sched_idle_rq(rq); 5683 5684 util_est_dequeue(&rq->cfs, p); 5685 5686 for_each_sched_entity(se) { 5687 cfs_rq = cfs_rq_of(se); 5688 dequeue_entity(cfs_rq, se, flags); 5689 5690 cfs_rq->h_nr_running--; 5691 cfs_rq->idle_h_nr_running -= idle_h_nr_running; 5692 5693 if (cfs_rq_is_idle(cfs_rq)) 5694 idle_h_nr_running = 1; 5695 5696 /* end evaluation on encountering a throttled cfs_rq */ 5697 if (cfs_rq_throttled(cfs_rq)) 5698 goto dequeue_throttle; 5699 5700 /* Don't dequeue parent if it has other entities besides us */ 5701 if (cfs_rq->load.weight) { 5702 /* Avoid re-evaluating load for this entity: */ 5703 se = parent_entity(se); 5704 /* 5705 * Bias pick_next to pick a task from this cfs_rq, as 5706 * p is sleeping when it is within its sched_slice. 5707 */ 5708 if (task_sleep && se && !throttled_hierarchy(cfs_rq)) 5709 set_next_buddy(se); 5710 break; 5711 } 5712 flags |= DEQUEUE_SLEEP; 5713 } 5714 5715 for_each_sched_entity(se) { 5716 cfs_rq = cfs_rq_of(se); 5717 5718 update_load_avg(cfs_rq, se, UPDATE_TG); 5719 se_update_runnable(se); 5720 update_cfs_group(se); 5721 5722 cfs_rq->h_nr_running--; 5723 cfs_rq->idle_h_nr_running -= idle_h_nr_running; 5724 5725 if (cfs_rq_is_idle(cfs_rq)) 5726 idle_h_nr_running = 1; 5727 5728 /* end evaluation on encountering a throttled cfs_rq */ 5729 if (cfs_rq_throttled(cfs_rq)) 5730 goto dequeue_throttle; 5731 5732 } 5733 5734 /* At this point se is NULL and we are at root level*/ 5735 sub_nr_running(rq, 1); 5736 5737 /* balance early to pull high priority tasks */ 5738 if (unlikely(!was_sched_idle && sched_idle_rq(rq))) 5739 rq->next_balance = jiffies; 5740 5741 dequeue_throttle: 5742 util_est_update(&rq->cfs, p, task_sleep); 5743 hrtick_update(rq); 5744 } 5745 5746 #ifdef CONFIG_SMP 5747 5748 /* Working cpumask for: load_balance, load_balance_newidle. */ 5749 DEFINE_PER_CPU(cpumask_var_t, load_balance_mask); 5750 DEFINE_PER_CPU(cpumask_var_t, select_idle_mask); 5751 5752 #ifdef CONFIG_NO_HZ_COMMON 5753 5754 static struct { 5755 cpumask_var_t idle_cpus_mask; 5756 atomic_t nr_cpus; 5757 int has_blocked; /* Idle CPUS has blocked load */ 5758 int needs_update; /* Newly idle CPUs need their next_balance collated */ 5759 unsigned long next_balance; /* in jiffy units */ 5760 unsigned long next_blocked; /* Next update of blocked load in jiffies */ 5761 } nohz ____cacheline_aligned; 5762 5763 #endif /* CONFIG_NO_HZ_COMMON */ 5764 5765 static unsigned long cpu_load(struct rq *rq) 5766 { 5767 return cfs_rq_load_avg(&rq->cfs); 5768 } 5769 5770 /* 5771 * cpu_load_without - compute CPU load without any contributions from *p 5772 * @cpu: the CPU which load is requested 5773 * @p: the task which load should be discounted 5774 * 5775 * The load of a CPU is defined by the load of tasks currently enqueued on that 5776 * CPU as well as tasks which are currently sleeping after an execution on that 5777 * CPU. 5778 * 5779 * This method returns the load of the specified CPU by discounting the load of 5780 * the specified task, whenever the task is currently contributing to the CPU 5781 * load. 5782 */ 5783 static unsigned long cpu_load_without(struct rq *rq, struct task_struct *p) 5784 { 5785 struct cfs_rq *cfs_rq; 5786 unsigned int load; 5787 5788 /* Task has no contribution or is new */ 5789 if (cpu_of(rq) != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time)) 5790 return cpu_load(rq); 5791 5792 cfs_rq = &rq->cfs; 5793 load = READ_ONCE(cfs_rq->avg.load_avg); 5794 5795 /* Discount task's util from CPU's util */ 5796 lsub_positive(&load, task_h_load(p)); 5797 5798 return load; 5799 } 5800 5801 static unsigned long cpu_runnable(struct rq *rq) 5802 { 5803 return cfs_rq_runnable_avg(&rq->cfs); 5804 } 5805 5806 static unsigned long cpu_runnable_without(struct rq *rq, struct task_struct *p) 5807 { 5808 struct cfs_rq *cfs_rq; 5809 unsigned int runnable; 5810 5811 /* Task has no contribution or is new */ 5812 if (cpu_of(rq) != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time)) 5813 return cpu_runnable(rq); 5814 5815 cfs_rq = &rq->cfs; 5816 runnable = READ_ONCE(cfs_rq->avg.runnable_avg); 5817 5818 /* Discount task's runnable from CPU's runnable */ 5819 lsub_positive(&runnable, p->se.avg.runnable_avg); 5820 5821 return runnable; 5822 } 5823 5824 static unsigned long capacity_of(int cpu) 5825 { 5826 return cpu_rq(cpu)->cpu_capacity; 5827 } 5828 5829 static void record_wakee(struct task_struct *p) 5830 { 5831 /* 5832 * Only decay a single time; tasks that have less then 1 wakeup per 5833 * jiffy will not have built up many flips. 5834 */ 5835 if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) { 5836 current->wakee_flips >>= 1; 5837 current->wakee_flip_decay_ts = jiffies; 5838 } 5839 5840 if (current->last_wakee != p) { 5841 current->last_wakee = p; 5842 current->wakee_flips++; 5843 } 5844 } 5845 5846 /* 5847 * Detect M:N waker/wakee relationships via a switching-frequency heuristic. 5848 * 5849 * A waker of many should wake a different task than the one last awakened 5850 * at a frequency roughly N times higher than one of its wakees. 5851 * 5852 * In order to determine whether we should let the load spread vs consolidating 5853 * to shared cache, we look for a minimum 'flip' frequency of llc_size in one 5854 * partner, and a factor of lls_size higher frequency in the other. 5855 * 5856 * With both conditions met, we can be relatively sure that the relationship is 5857 * non-monogamous, with partner count exceeding socket size. 5858 * 5859 * Waker/wakee being client/server, worker/dispatcher, interrupt source or 5860 * whatever is irrelevant, spread criteria is apparent partner count exceeds 5861 * socket size. 5862 */ 5863 static int wake_wide(struct task_struct *p) 5864 { 5865 unsigned int master = current->wakee_flips; 5866 unsigned int slave = p->wakee_flips; 5867 int factor = __this_cpu_read(sd_llc_size); 5868 5869 if (master < slave) 5870 swap(master, slave); 5871 if (slave < factor || master < slave * factor) 5872 return 0; 5873 return 1; 5874 } 5875 5876 /* 5877 * The purpose of wake_affine() is to quickly determine on which CPU we can run 5878 * soonest. For the purpose of speed we only consider the waking and previous 5879 * CPU. 5880 * 5881 * wake_affine_idle() - only considers 'now', it check if the waking CPU is 5882 * cache-affine and is (or will be) idle. 5883 * 5884 * wake_affine_weight() - considers the weight to reflect the average 5885 * scheduling latency of the CPUs. This seems to work 5886 * for the overloaded case. 5887 */ 5888 static int 5889 wake_affine_idle(int this_cpu, int prev_cpu, int sync) 5890 { 5891 /* 5892 * If this_cpu is idle, it implies the wakeup is from interrupt 5893 * context. Only allow the move if cache is shared. Otherwise an 5894 * interrupt intensive workload could force all tasks onto one 5895 * node depending on the IO topology or IRQ affinity settings. 5896 * 5897 * If the prev_cpu is idle and cache affine then avoid a migration. 5898 * There is no guarantee that the cache hot data from an interrupt 5899 * is more important than cache hot data on the prev_cpu and from 5900 * a cpufreq perspective, it's better to have higher utilisation 5901 * on one CPU. 5902 */ 5903 if (available_idle_cpu(this_cpu) && cpus_share_cache(this_cpu, prev_cpu)) 5904 return available_idle_cpu(prev_cpu) ? prev_cpu : this_cpu; 5905 5906 if (sync && cpu_rq(this_cpu)->nr_running == 1) 5907 return this_cpu; 5908 5909 if (available_idle_cpu(prev_cpu)) 5910 return prev_cpu; 5911 5912 return nr_cpumask_bits; 5913 } 5914 5915 static int 5916 wake_affine_weight(struct sched_domain *sd, struct task_struct *p, 5917 int this_cpu, int prev_cpu, int sync) 5918 { 5919 s64 this_eff_load, prev_eff_load; 5920 unsigned long task_load; 5921 5922 this_eff_load = cpu_load(cpu_rq(this_cpu)); 5923 5924 if (sync) { 5925 unsigned long current_load = task_h_load(current); 5926 5927 if (current_load > this_eff_load) 5928 return this_cpu; 5929 5930 this_eff_load -= current_load; 5931 } 5932 5933 task_load = task_h_load(p); 5934 5935 this_eff_load += task_load; 5936 if (sched_feat(WA_BIAS)) 5937 this_eff_load *= 100; 5938 this_eff_load *= capacity_of(prev_cpu); 5939 5940 prev_eff_load = cpu_load(cpu_rq(prev_cpu)); 5941 prev_eff_load -= task_load; 5942 if (sched_feat(WA_BIAS)) 5943 prev_eff_load *= 100 + (sd->imbalance_pct - 100) / 2; 5944 prev_eff_load *= capacity_of(this_cpu); 5945 5946 /* 5947 * If sync, adjust the weight of prev_eff_load such that if 5948 * prev_eff == this_eff that select_idle_sibling() will consider 5949 * stacking the wakee on top of the waker if no other CPU is 5950 * idle. 5951 */ 5952 if (sync) 5953 prev_eff_load += 1; 5954 5955 return this_eff_load < prev_eff_load ? this_cpu : nr_cpumask_bits; 5956 } 5957 5958 static int wake_affine(struct sched_domain *sd, struct task_struct *p, 5959 int this_cpu, int prev_cpu, int sync) 5960 { 5961 int target = nr_cpumask_bits; 5962 5963 if (sched_feat(WA_IDLE)) 5964 target = wake_affine_idle(this_cpu, prev_cpu, sync); 5965 5966 if (sched_feat(WA_WEIGHT) && target == nr_cpumask_bits) 5967 target = wake_affine_weight(sd, p, this_cpu, prev_cpu, sync); 5968 5969 schedstat_inc(p->stats.nr_wakeups_affine_attempts); 5970 if (target == nr_cpumask_bits) 5971 return prev_cpu; 5972 5973 schedstat_inc(sd->ttwu_move_affine); 5974 schedstat_inc(p->stats.nr_wakeups_affine); 5975 return target; 5976 } 5977 5978 static struct sched_group * 5979 find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu); 5980 5981 /* 5982 * find_idlest_group_cpu - find the idlest CPU among the CPUs in the group. 5983 */ 5984 static int 5985 find_idlest_group_cpu(struct sched_group *group, struct task_struct *p, int this_cpu) 5986 { 5987 unsigned long load, min_load = ULONG_MAX; 5988 unsigned int min_exit_latency = UINT_MAX; 5989 u64 latest_idle_timestamp = 0; 5990 int least_loaded_cpu = this_cpu; 5991 int shallowest_idle_cpu = -1; 5992 int i; 5993 5994 /* Check if we have any choice: */ 5995 if (group->group_weight == 1) 5996 return cpumask_first(sched_group_span(group)); 5997 5998 /* Traverse only the allowed CPUs */ 5999 for_each_cpu_and(i, sched_group_span(group), p->cpus_ptr) { 6000 struct rq *rq = cpu_rq(i); 6001 6002 if (!sched_core_cookie_match(rq, p)) 6003 continue; 6004 6005 if (sched_idle_cpu(i)) 6006 return i; 6007 6008 if (available_idle_cpu(i)) { 6009 struct cpuidle_state *idle = idle_get_state(rq); 6010 if (idle && idle->exit_latency < min_exit_latency) { 6011 /* 6012 * We give priority to a CPU whose idle state 6013 * has the smallest exit latency irrespective 6014 * of any idle timestamp. 6015 */ 6016 min_exit_latency = idle->exit_latency; 6017 latest_idle_timestamp = rq->idle_stamp; 6018 shallowest_idle_cpu = i; 6019 } else if ((!idle || idle->exit_latency == min_exit_latency) && 6020 rq->idle_stamp > latest_idle_timestamp) { 6021 /* 6022 * If equal or no active idle state, then 6023 * the most recently idled CPU might have 6024 * a warmer cache. 6025 */ 6026 latest_idle_timestamp = rq->idle_stamp; 6027 shallowest_idle_cpu = i; 6028 } 6029 } else if (shallowest_idle_cpu == -1) { 6030 load = cpu_load(cpu_rq(i)); 6031 if (load < min_load) { 6032 min_load = load; 6033 least_loaded_cpu = i; 6034 } 6035 } 6036 } 6037 6038 return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu; 6039 } 6040 6041 static inline int find_idlest_cpu(struct sched_domain *sd, struct task_struct *p, 6042 int cpu, int prev_cpu, int sd_flag) 6043 { 6044 int new_cpu = cpu; 6045 6046 if (!cpumask_intersects(sched_domain_span(sd), p->cpus_ptr)) 6047 return prev_cpu; 6048 6049 /* 6050 * We need task's util for cpu_util_without, sync it up to 6051 * prev_cpu's last_update_time. 6052 */ 6053 if (!(sd_flag & SD_BALANCE_FORK)) 6054 sync_entity_load_avg(&p->se); 6055 6056 while (sd) { 6057 struct sched_group *group; 6058 struct sched_domain *tmp; 6059 int weight; 6060 6061 if (!(sd->flags & sd_flag)) { 6062 sd = sd->child; 6063 continue; 6064 } 6065 6066 group = find_idlest_group(sd, p, cpu); 6067 if (!group) { 6068 sd = sd->child; 6069 continue; 6070 } 6071 6072 new_cpu = find_idlest_group_cpu(group, p, cpu); 6073 if (new_cpu == cpu) { 6074 /* Now try balancing at a lower domain level of 'cpu': */ 6075 sd = sd->child; 6076 continue; 6077 } 6078 6079 /* Now try balancing at a lower domain level of 'new_cpu': */ 6080 cpu = new_cpu; 6081 weight = sd->span_weight; 6082 sd = NULL; 6083 for_each_domain(cpu, tmp) { 6084 if (weight <= tmp->span_weight) 6085 break; 6086 if (tmp->flags & sd_flag) 6087 sd = tmp; 6088 } 6089 } 6090 6091 return new_cpu; 6092 } 6093 6094 static inline int __select_idle_cpu(int cpu, struct task_struct *p) 6095 { 6096 if ((available_idle_cpu(cpu) || sched_idle_cpu(cpu)) && 6097 sched_cpu_cookie_match(cpu_rq(cpu), p)) 6098 return cpu; 6099 6100 return -1; 6101 } 6102 6103 #ifdef CONFIG_SCHED_SMT 6104 DEFINE_STATIC_KEY_FALSE(sched_smt_present); 6105 EXPORT_SYMBOL_GPL(sched_smt_present); 6106 6107 static inline void set_idle_cores(int cpu, int val) 6108 { 6109 struct sched_domain_shared *sds; 6110 6111 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu)); 6112 if (sds) 6113 WRITE_ONCE(sds->has_idle_cores, val); 6114 } 6115 6116 static inline bool test_idle_cores(int cpu, bool def) 6117 { 6118 struct sched_domain_shared *sds; 6119 6120 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu)); 6121 if (sds) 6122 return READ_ONCE(sds->has_idle_cores); 6123 6124 return def; 6125 } 6126 6127 /* 6128 * Scans the local SMT mask to see if the entire core is idle, and records this 6129 * information in sd_llc_shared->has_idle_cores. 6130 * 6131 * Since SMT siblings share all cache levels, inspecting this limited remote 6132 * state should be fairly cheap. 6133 */ 6134 void __update_idle_core(struct rq *rq) 6135 { 6136 int core = cpu_of(rq); 6137 int cpu; 6138 6139 rcu_read_lock(); 6140 if (test_idle_cores(core, true)) 6141 goto unlock; 6142 6143 for_each_cpu(cpu, cpu_smt_mask(core)) { 6144 if (cpu == core) 6145 continue; 6146 6147 if (!available_idle_cpu(cpu)) 6148 goto unlock; 6149 } 6150 6151 set_idle_cores(core, 1); 6152 unlock: 6153 rcu_read_unlock(); 6154 } 6155 6156 /* 6157 * Scan the entire LLC domain for idle cores; this dynamically switches off if 6158 * there are no idle cores left in the system; tracked through 6159 * sd_llc->shared->has_idle_cores and enabled through update_idle_core() above. 6160 */ 6161 static int select_idle_core(struct task_struct *p, int core, struct cpumask *cpus, int *idle_cpu) 6162 { 6163 bool idle = true; 6164 int cpu; 6165 6166 if (!static_branch_likely(&sched_smt_present)) 6167 return __select_idle_cpu(core, p); 6168 6169 for_each_cpu(cpu, cpu_smt_mask(core)) { 6170 if (!available_idle_cpu(cpu)) { 6171 idle = false; 6172 if (*idle_cpu == -1) { 6173 if (sched_idle_cpu(cpu) && cpumask_test_cpu(cpu, p->cpus_ptr)) { 6174 *idle_cpu = cpu; 6175 break; 6176 } 6177 continue; 6178 } 6179 break; 6180 } 6181 if (*idle_cpu == -1 && cpumask_test_cpu(cpu, p->cpus_ptr)) 6182 *idle_cpu = cpu; 6183 } 6184 6185 if (idle) 6186 return core; 6187 6188 cpumask_andnot(cpus, cpus, cpu_smt_mask(core)); 6189 return -1; 6190 } 6191 6192 /* 6193 * Scan the local SMT mask for idle CPUs. 6194 */ 6195 static int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target) 6196 { 6197 int cpu; 6198 6199 for_each_cpu(cpu, cpu_smt_mask(target)) { 6200 if (!cpumask_test_cpu(cpu, p->cpus_ptr) || 6201 !cpumask_test_cpu(cpu, sched_domain_span(sd))) 6202 continue; 6203 if (available_idle_cpu(cpu) || sched_idle_cpu(cpu)) 6204 return cpu; 6205 } 6206 6207 return -1; 6208 } 6209 6210 #else /* CONFIG_SCHED_SMT */ 6211 6212 static inline void set_idle_cores(int cpu, int val) 6213 { 6214 } 6215 6216 static inline bool test_idle_cores(int cpu, bool def) 6217 { 6218 return def; 6219 } 6220 6221 static inline int select_idle_core(struct task_struct *p, int core, struct cpumask *cpus, int *idle_cpu) 6222 { 6223 return __select_idle_cpu(core, p); 6224 } 6225 6226 static inline int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target) 6227 { 6228 return -1; 6229 } 6230 6231 #endif /* CONFIG_SCHED_SMT */ 6232 6233 /* 6234 * Scan the LLC domain for idle CPUs; this is dynamically regulated by 6235 * comparing the average scan cost (tracked in sd->avg_scan_cost) against the 6236 * average idle time for this rq (as found in rq->avg_idle). 6237 */ 6238 static int select_idle_cpu(struct task_struct *p, struct sched_domain *sd, bool has_idle_core, int target) 6239 { 6240 struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_idle_mask); 6241 int i, cpu, idle_cpu = -1, nr = INT_MAX; 6242 struct rq *this_rq = this_rq(); 6243 int this = smp_processor_id(); 6244 struct sched_domain *this_sd; 6245 u64 time = 0; 6246 6247 this_sd = rcu_dereference(*this_cpu_ptr(&sd_llc)); 6248 if (!this_sd) 6249 return -1; 6250 6251 cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr); 6252 6253 if (sched_feat(SIS_PROP) && !has_idle_core) { 6254 u64 avg_cost, avg_idle, span_avg; 6255 unsigned long now = jiffies; 6256 6257 /* 6258 * If we're busy, the assumption that the last idle period 6259 * predicts the future is flawed; age away the remaining 6260 * predicted idle time. 6261 */ 6262 if (unlikely(this_rq->wake_stamp < now)) { 6263 while (this_rq->wake_stamp < now && this_rq->wake_avg_idle) { 6264 this_rq->wake_stamp++; 6265 this_rq->wake_avg_idle >>= 1; 6266 } 6267 } 6268 6269 avg_idle = this_rq->wake_avg_idle; 6270 avg_cost = this_sd->avg_scan_cost + 1; 6271 6272 span_avg = sd->span_weight * avg_idle; 6273 if (span_avg > 4*avg_cost) 6274 nr = div_u64(span_avg, avg_cost); 6275 else 6276 nr = 4; 6277 6278 time = cpu_clock(this); 6279 } 6280 6281 for_each_cpu_wrap(cpu, cpus, target + 1) { 6282 if (has_idle_core) { 6283 i = select_idle_core(p, cpu, cpus, &idle_cpu); 6284 if ((unsigned int)i < nr_cpumask_bits) 6285 return i; 6286 6287 } else { 6288 if (!--nr) 6289 return -1; 6290 idle_cpu = __select_idle_cpu(cpu, p); 6291 if ((unsigned int)idle_cpu < nr_cpumask_bits) 6292 break; 6293 } 6294 } 6295 6296 if (has_idle_core) 6297 set_idle_cores(target, false); 6298 6299 if (sched_feat(SIS_PROP) && !has_idle_core) { 6300 time = cpu_clock(this) - time; 6301 6302 /* 6303 * Account for the scan cost of wakeups against the average 6304 * idle time. 6305 */ 6306 this_rq->wake_avg_idle -= min(this_rq->wake_avg_idle, time); 6307 6308 update_avg(&this_sd->avg_scan_cost, time); 6309 } 6310 6311 return idle_cpu; 6312 } 6313 6314 /* 6315 * Scan the asym_capacity domain for idle CPUs; pick the first idle one on which 6316 * the task fits. If no CPU is big enough, but there are idle ones, try to 6317 * maximize capacity. 6318 */ 6319 static int 6320 select_idle_capacity(struct task_struct *p, struct sched_domain *sd, int target) 6321 { 6322 unsigned long task_util, best_cap = 0; 6323 int cpu, best_cpu = -1; 6324 struct cpumask *cpus; 6325 6326 cpus = this_cpu_cpumask_var_ptr(select_idle_mask); 6327 cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr); 6328 6329 task_util = uclamp_task_util(p); 6330 6331 for_each_cpu_wrap(cpu, cpus, target) { 6332 unsigned long cpu_cap = capacity_of(cpu); 6333 6334 if (!available_idle_cpu(cpu) && !sched_idle_cpu(cpu)) 6335 continue; 6336 if (fits_capacity(task_util, cpu_cap)) 6337 return cpu; 6338 6339 if (cpu_cap > best_cap) { 6340 best_cap = cpu_cap; 6341 best_cpu = cpu; 6342 } 6343 } 6344 6345 return best_cpu; 6346 } 6347 6348 static inline bool asym_fits_capacity(int task_util, int cpu) 6349 { 6350 if (static_branch_unlikely(&sched_asym_cpucapacity)) 6351 return fits_capacity(task_util, capacity_of(cpu)); 6352 6353 return true; 6354 } 6355 6356 /* 6357 * Try and locate an idle core/thread in the LLC cache domain. 6358 */ 6359 static int select_idle_sibling(struct task_struct *p, int prev, int target) 6360 { 6361 bool has_idle_core = false; 6362 struct sched_domain *sd; 6363 unsigned long task_util; 6364 int i, recent_used_cpu; 6365 6366 /* 6367 * On asymmetric system, update task utilization because we will check 6368 * that the task fits with cpu's capacity. 6369 */ 6370 if (static_branch_unlikely(&sched_asym_cpucapacity)) { 6371 sync_entity_load_avg(&p->se); 6372 task_util = uclamp_task_util(p); 6373 } 6374 6375 /* 6376 * per-cpu select_idle_mask usage 6377 */ 6378 lockdep_assert_irqs_disabled(); 6379 6380 if ((available_idle_cpu(target) || sched_idle_cpu(target)) && 6381 asym_fits_capacity(task_util, target)) 6382 return target; 6383 6384 /* 6385 * If the previous CPU is cache affine and idle, don't be stupid: 6386 */ 6387 if (prev != target && cpus_share_cache(prev, target) && 6388 (available_idle_cpu(prev) || sched_idle_cpu(prev)) && 6389 asym_fits_capacity(task_util, prev)) 6390 return prev; 6391 6392 /* 6393 * Allow a per-cpu kthread to stack with the wakee if the 6394 * kworker thread and the tasks previous CPUs are the same. 6395 * The assumption is that the wakee queued work for the 6396 * per-cpu kthread that is now complete and the wakeup is 6397 * essentially a sync wakeup. An obvious example of this 6398 * pattern is IO completions. 6399 */ 6400 if (is_per_cpu_kthread(current) && 6401 prev == smp_processor_id() && 6402 this_rq()->nr_running <= 1) { 6403 return prev; 6404 } 6405 6406 /* Check a recently used CPU as a potential idle candidate: */ 6407 recent_used_cpu = p->recent_used_cpu; 6408 p->recent_used_cpu = prev; 6409 if (recent_used_cpu != prev && 6410 recent_used_cpu != target && 6411 cpus_share_cache(recent_used_cpu, target) && 6412 (available_idle_cpu(recent_used_cpu) || sched_idle_cpu(recent_used_cpu)) && 6413 cpumask_test_cpu(p->recent_used_cpu, p->cpus_ptr) && 6414 asym_fits_capacity(task_util, recent_used_cpu)) { 6415 return recent_used_cpu; 6416 } 6417 6418 /* 6419 * For asymmetric CPU capacity systems, our domain of interest is 6420 * sd_asym_cpucapacity rather than sd_llc. 6421 */ 6422 if (static_branch_unlikely(&sched_asym_cpucapacity)) { 6423 sd = rcu_dereference(per_cpu(sd_asym_cpucapacity, target)); 6424 /* 6425 * On an asymmetric CPU capacity system where an exclusive 6426 * cpuset defines a symmetric island (i.e. one unique 6427 * capacity_orig value through the cpuset), the key will be set 6428 * but the CPUs within that cpuset will not have a domain with 6429 * SD_ASYM_CPUCAPACITY. These should follow the usual symmetric 6430 * capacity path. 6431 */ 6432 if (sd) { 6433 i = select_idle_capacity(p, sd, target); 6434 return ((unsigned)i < nr_cpumask_bits) ? i : target; 6435 } 6436 } 6437 6438 sd = rcu_dereference(per_cpu(sd_llc, target)); 6439 if (!sd) 6440 return target; 6441 6442 if (sched_smt_active()) { 6443 has_idle_core = test_idle_cores(target, false); 6444 6445 if (!has_idle_core && cpus_share_cache(prev, target)) { 6446 i = select_idle_smt(p, sd, prev); 6447 if ((unsigned int)i < nr_cpumask_bits) 6448 return i; 6449 } 6450 } 6451 6452 i = select_idle_cpu(p, sd, has_idle_core, target); 6453 if ((unsigned)i < nr_cpumask_bits) 6454 return i; 6455 6456 return target; 6457 } 6458 6459 /** 6460 * cpu_util - Estimates the amount of capacity of a CPU used by CFS tasks. 6461 * @cpu: the CPU to get the utilization of 6462 * 6463 * The unit of the return value must be the one of capacity so we can compare 6464 * the utilization with the capacity of the CPU that is available for CFS task 6465 * (ie cpu_capacity). 6466 * 6467 * cfs_rq.avg.util_avg is the sum of running time of runnable tasks plus the 6468 * recent utilization of currently non-runnable tasks on a CPU. It represents 6469 * the amount of utilization of a CPU in the range [0..capacity_orig] where 6470 * capacity_orig is the cpu_capacity available at the highest frequency 6471 * (arch_scale_freq_capacity()). 6472 * The utilization of a CPU converges towards a sum equal to or less than the 6473 * current capacity (capacity_curr <= capacity_orig) of the CPU because it is 6474 * the running time on this CPU scaled by capacity_curr. 6475 * 6476 * The estimated utilization of a CPU is defined to be the maximum between its 6477 * cfs_rq.avg.util_avg and the sum of the estimated utilization of the tasks 6478 * currently RUNNABLE on that CPU. 6479 * This allows to properly represent the expected utilization of a CPU which 6480 * has just got a big task running since a long sleep period. At the same time 6481 * however it preserves the benefits of the "blocked utilization" in 6482 * describing the potential for other tasks waking up on the same CPU. 6483 * 6484 * Nevertheless, cfs_rq.avg.util_avg can be higher than capacity_curr or even 6485 * higher than capacity_orig because of unfortunate rounding in 6486 * cfs.avg.util_avg or just after migrating tasks and new task wakeups until 6487 * the average stabilizes with the new running time. We need to check that the 6488 * utilization stays within the range of [0..capacity_orig] and cap it if 6489 * necessary. Without utilization capping, a group could be seen as overloaded 6490 * (CPU0 utilization at 121% + CPU1 utilization at 80%) whereas CPU1 has 20% of 6491 * available capacity. We allow utilization to overshoot capacity_curr (but not 6492 * capacity_orig) as it useful for predicting the capacity required after task 6493 * migrations (scheduler-driven DVFS). 6494 * 6495 * Return: the (estimated) utilization for the specified CPU 6496 */ 6497 static inline unsigned long cpu_util(int cpu) 6498 { 6499 struct cfs_rq *cfs_rq; 6500 unsigned int util; 6501 6502 cfs_rq = &cpu_rq(cpu)->cfs; 6503 util = READ_ONCE(cfs_rq->avg.util_avg); 6504 6505 if (sched_feat(UTIL_EST)) 6506 util = max(util, READ_ONCE(cfs_rq->avg.util_est.enqueued)); 6507 6508 return min_t(unsigned long, util, capacity_orig_of(cpu)); 6509 } 6510 6511 /* 6512 * cpu_util_without: compute cpu utilization without any contributions from *p 6513 * @cpu: the CPU which utilization is requested 6514 * @p: the task which utilization should be discounted 6515 * 6516 * The utilization of a CPU is defined by the utilization of tasks currently 6517 * enqueued on that CPU as well as tasks which are currently sleeping after an 6518 * execution on that CPU. 6519 * 6520 * This method returns the utilization of the specified CPU by discounting the 6521 * utilization of the specified task, whenever the task is currently 6522 * contributing to the CPU utilization. 6523 */ 6524 static unsigned long cpu_util_without(int cpu, struct task_struct *p) 6525 { 6526 struct cfs_rq *cfs_rq; 6527 unsigned int util; 6528 6529 /* Task has no contribution or is new */ 6530 if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time)) 6531 return cpu_util(cpu); 6532 6533 cfs_rq = &cpu_rq(cpu)->cfs; 6534 util = READ_ONCE(cfs_rq->avg.util_avg); 6535 6536 /* Discount task's util from CPU's util */ 6537 lsub_positive(&util, task_util(p)); 6538 6539 /* 6540 * Covered cases: 6541 * 6542 * a) if *p is the only task sleeping on this CPU, then: 6543 * cpu_util (== task_util) > util_est (== 0) 6544 * and thus we return: 6545 * cpu_util_without = (cpu_util - task_util) = 0 6546 * 6547 * b) if other tasks are SLEEPING on this CPU, which is now exiting 6548 * IDLE, then: 6549 * cpu_util >= task_util 6550 * cpu_util > util_est (== 0) 6551 * and thus we discount *p's blocked utilization to return: 6552 * cpu_util_without = (cpu_util - task_util) >= 0 6553 * 6554 * c) if other tasks are RUNNABLE on that CPU and 6555 * util_est > cpu_util 6556 * then we use util_est since it returns a more restrictive 6557 * estimation of the spare capacity on that CPU, by just 6558 * considering the expected utilization of tasks already 6559 * runnable on that CPU. 6560 * 6561 * Cases a) and b) are covered by the above code, while case c) is 6562 * covered by the following code when estimated utilization is 6563 * enabled. 6564 */ 6565 if (sched_feat(UTIL_EST)) { 6566 unsigned int estimated = 6567 READ_ONCE(cfs_rq->avg.util_est.enqueued); 6568 6569 /* 6570 * Despite the following checks we still have a small window 6571 * for a possible race, when an execl's select_task_rq_fair() 6572 * races with LB's detach_task(): 6573 * 6574 * detach_task() 6575 * p->on_rq = TASK_ON_RQ_MIGRATING; 6576 * ---------------------------------- A 6577 * deactivate_task() \ 6578 * dequeue_task() + RaceTime 6579 * util_est_dequeue() / 6580 * ---------------------------------- B 6581 * 6582 * The additional check on "current == p" it's required to 6583 * properly fix the execl regression and it helps in further 6584 * reducing the chances for the above race. 6585 */ 6586 if (unlikely(task_on_rq_queued(p) || current == p)) 6587 lsub_positive(&estimated, _task_util_est(p)); 6588 6589 util = max(util, estimated); 6590 } 6591 6592 /* 6593 * Utilization (estimated) can exceed the CPU capacity, thus let's 6594 * clamp to the maximum CPU capacity to ensure consistency with 6595 * the cpu_util call. 6596 */ 6597 return min_t(unsigned long, util, capacity_orig_of(cpu)); 6598 } 6599 6600 /* 6601 * Predicts what cpu_util(@cpu) would return if @p was migrated (and enqueued) 6602 * to @dst_cpu. 6603 */ 6604 static unsigned long cpu_util_next(int cpu, struct task_struct *p, int dst_cpu) 6605 { 6606 struct cfs_rq *cfs_rq = &cpu_rq(cpu)->cfs; 6607 unsigned long util_est, util = READ_ONCE(cfs_rq->avg.util_avg); 6608 6609 /* 6610 * If @p migrates from @cpu to another, remove its contribution. Or, 6611 * if @p migrates from another CPU to @cpu, add its contribution. In 6612 * the other cases, @cpu is not impacted by the migration, so the 6613 * util_avg should already be correct. 6614 */ 6615 if (task_cpu(p) == cpu && dst_cpu != cpu) 6616 lsub_positive(&util, task_util(p)); 6617 else if (task_cpu(p) != cpu && dst_cpu == cpu) 6618 util += task_util(p); 6619 6620 if (sched_feat(UTIL_EST)) { 6621 util_est = READ_ONCE(cfs_rq->avg.util_est.enqueued); 6622 6623 /* 6624 * During wake-up, the task isn't enqueued yet and doesn't 6625 * appear in the cfs_rq->avg.util_est.enqueued of any rq, 6626 * so just add it (if needed) to "simulate" what will be 6627 * cpu_util() after the task has been enqueued. 6628 */ 6629 if (dst_cpu == cpu) 6630 util_est += _task_util_est(p); 6631 6632 util = max(util, util_est); 6633 } 6634 6635 return min(util, capacity_orig_of(cpu)); 6636 } 6637 6638 /* 6639 * compute_energy(): Estimates the energy that @pd would consume if @p was 6640 * migrated to @dst_cpu. compute_energy() predicts what will be the utilization 6641 * landscape of @pd's CPUs after the task migration, and uses the Energy Model 6642 * to compute what would be the energy if we decided to actually migrate that 6643 * task. 6644 */ 6645 static long 6646 compute_energy(struct task_struct *p, int dst_cpu, struct perf_domain *pd) 6647 { 6648 struct cpumask *pd_mask = perf_domain_span(pd); 6649 unsigned long cpu_cap = arch_scale_cpu_capacity(cpumask_first(pd_mask)); 6650 unsigned long max_util = 0, sum_util = 0; 6651 unsigned long _cpu_cap = cpu_cap; 6652 int cpu; 6653 6654 _cpu_cap -= arch_scale_thermal_pressure(cpumask_first(pd_mask)); 6655 6656 /* 6657 * The capacity state of CPUs of the current rd can be driven by CPUs 6658 * of another rd if they belong to the same pd. So, account for the 6659 * utilization of these CPUs too by masking pd with cpu_online_mask 6660 * instead of the rd span. 6661 * 6662 * If an entire pd is outside of the current rd, it will not appear in 6663 * its pd list and will not be accounted by compute_energy(). 6664 */ 6665 for_each_cpu_and(cpu, pd_mask, cpu_online_mask) { 6666 unsigned long util_freq = cpu_util_next(cpu, p, dst_cpu); 6667 unsigned long cpu_util, util_running = util_freq; 6668 struct task_struct *tsk = NULL; 6669 6670 /* 6671 * When @p is placed on @cpu: 6672 * 6673 * util_running = max(cpu_util, cpu_util_est) + 6674 * max(task_util, _task_util_est) 6675 * 6676 * while cpu_util_next is: max(cpu_util + task_util, 6677 * cpu_util_est + _task_util_est) 6678 */ 6679 if (cpu == dst_cpu) { 6680 tsk = p; 6681 util_running = 6682 cpu_util_next(cpu, p, -1) + task_util_est(p); 6683 } 6684 6685 /* 6686 * Busy time computation: utilization clamping is not 6687 * required since the ratio (sum_util / cpu_capacity) 6688 * is already enough to scale the EM reported power 6689 * consumption at the (eventually clamped) cpu_capacity. 6690 */ 6691 cpu_util = effective_cpu_util(cpu, util_running, cpu_cap, 6692 ENERGY_UTIL, NULL); 6693 6694 sum_util += min(cpu_util, _cpu_cap); 6695 6696 /* 6697 * Performance domain frequency: utilization clamping 6698 * must be considered since it affects the selection 6699 * of the performance domain frequency. 6700 * NOTE: in case RT tasks are running, by default the 6701 * FREQUENCY_UTIL's utilization can be max OPP. 6702 */ 6703 cpu_util = effective_cpu_util(cpu, util_freq, cpu_cap, 6704 FREQUENCY_UTIL, tsk); 6705 max_util = max(max_util, min(cpu_util, _cpu_cap)); 6706 } 6707 6708 return em_cpu_energy(pd->em_pd, max_util, sum_util, _cpu_cap); 6709 } 6710 6711 /* 6712 * find_energy_efficient_cpu(): Find most energy-efficient target CPU for the 6713 * waking task. find_energy_efficient_cpu() looks for the CPU with maximum 6714 * spare capacity in each performance domain and uses it as a potential 6715 * candidate to execute the task. Then, it uses the Energy Model to figure 6716 * out which of the CPU candidates is the most energy-efficient. 6717 * 6718 * The rationale for this heuristic is as follows. In a performance domain, 6719 * all the most energy efficient CPU candidates (according to the Energy 6720 * Model) are those for which we'll request a low frequency. When there are 6721 * several CPUs for which the frequency request will be the same, we don't 6722 * have enough data to break the tie between them, because the Energy Model 6723 * only includes active power costs. With this model, if we assume that 6724 * frequency requests follow utilization (e.g. using schedutil), the CPU with 6725 * the maximum spare capacity in a performance domain is guaranteed to be among 6726 * the best candidates of the performance domain. 6727 * 6728 * In practice, it could be preferable from an energy standpoint to pack 6729 * small tasks on a CPU in order to let other CPUs go in deeper idle states, 6730 * but that could also hurt our chances to go cluster idle, and we have no 6731 * ways to tell with the current Energy Model if this is actually a good 6732 * idea or not. So, find_energy_efficient_cpu() basically favors 6733 * cluster-packing, and spreading inside a cluster. That should at least be 6734 * a good thing for latency, and this is consistent with the idea that most 6735 * of the energy savings of EAS come from the asymmetry of the system, and 6736 * not so much from breaking the tie between identical CPUs. That's also the 6737 * reason why EAS is enabled in the topology code only for systems where 6738 * SD_ASYM_CPUCAPACITY is set. 6739 * 6740 * NOTE: Forkees are not accepted in the energy-aware wake-up path because 6741 * they don't have any useful utilization data yet and it's not possible to 6742 * forecast their impact on energy consumption. Consequently, they will be 6743 * placed by find_idlest_cpu() on the least loaded CPU, which might turn out 6744 * to be energy-inefficient in some use-cases. The alternative would be to 6745 * bias new tasks towards specific types of CPUs first, or to try to infer 6746 * their util_avg from the parent task, but those heuristics could hurt 6747 * other use-cases too. So, until someone finds a better way to solve this, 6748 * let's keep things simple by re-using the existing slow path. 6749 */ 6750 static int find_energy_efficient_cpu(struct task_struct *p, int prev_cpu) 6751 { 6752 unsigned long prev_delta = ULONG_MAX, best_delta = ULONG_MAX; 6753 struct root_domain *rd = cpu_rq(smp_processor_id())->rd; 6754 int cpu, best_energy_cpu = prev_cpu, target = -1; 6755 unsigned long cpu_cap, util, base_energy = 0; 6756 struct sched_domain *sd; 6757 struct perf_domain *pd; 6758 6759 rcu_read_lock(); 6760 pd = rcu_dereference(rd->pd); 6761 if (!pd || READ_ONCE(rd->overutilized)) 6762 goto unlock; 6763 6764 /* 6765 * Energy-aware wake-up happens on the lowest sched_domain starting 6766 * from sd_asym_cpucapacity spanning over this_cpu and prev_cpu. 6767 */ 6768 sd = rcu_dereference(*this_cpu_ptr(&sd_asym_cpucapacity)); 6769 while (sd && !cpumask_test_cpu(prev_cpu, sched_domain_span(sd))) 6770 sd = sd->parent; 6771 if (!sd) 6772 goto unlock; 6773 6774 target = prev_cpu; 6775 6776 sync_entity_load_avg(&p->se); 6777 if (!task_util_est(p)) 6778 goto unlock; 6779 6780 for (; pd; pd = pd->next) { 6781 unsigned long cur_delta, spare_cap, max_spare_cap = 0; 6782 bool compute_prev_delta = false; 6783 unsigned long base_energy_pd; 6784 int max_spare_cap_cpu = -1; 6785 6786 for_each_cpu_and(cpu, perf_domain_span(pd), sched_domain_span(sd)) { 6787 if (!cpumask_test_cpu(cpu, p->cpus_ptr)) 6788 continue; 6789 6790 util = cpu_util_next(cpu, p, cpu); 6791 cpu_cap = capacity_of(cpu); 6792 spare_cap = cpu_cap; 6793 lsub_positive(&spare_cap, util); 6794 6795 /* 6796 * Skip CPUs that cannot satisfy the capacity request. 6797 * IOW, placing the task there would make the CPU 6798 * overutilized. Take uclamp into account to see how 6799 * much capacity we can get out of the CPU; this is 6800 * aligned with sched_cpu_util(). 6801 */ 6802 util = uclamp_rq_util_with(cpu_rq(cpu), util, p); 6803 if (!fits_capacity(util, cpu_cap)) 6804 continue; 6805 6806 if (cpu == prev_cpu) { 6807 /* Always use prev_cpu as a candidate. */ 6808 compute_prev_delta = true; 6809 } else if (spare_cap > max_spare_cap) { 6810 /* 6811 * Find the CPU with the maximum spare capacity 6812 * in the performance domain. 6813 */ 6814 max_spare_cap = spare_cap; 6815 max_spare_cap_cpu = cpu; 6816 } 6817 } 6818 6819 if (max_spare_cap_cpu < 0 && !compute_prev_delta) 6820 continue; 6821 6822 /* Compute the 'base' energy of the pd, without @p */ 6823 base_energy_pd = compute_energy(p, -1, pd); 6824 base_energy += base_energy_pd; 6825 6826 /* Evaluate the energy impact of using prev_cpu. */ 6827 if (compute_prev_delta) { 6828 prev_delta = compute_energy(p, prev_cpu, pd); 6829 if (prev_delta < base_energy_pd) 6830 goto unlock; 6831 prev_delta -= base_energy_pd; 6832 best_delta = min(best_delta, prev_delta); 6833 } 6834 6835 /* Evaluate the energy impact of using max_spare_cap_cpu. */ 6836 if (max_spare_cap_cpu >= 0) { 6837 cur_delta = compute_energy(p, max_spare_cap_cpu, pd); 6838 if (cur_delta < base_energy_pd) 6839 goto unlock; 6840 cur_delta -= base_energy_pd; 6841 if (cur_delta < best_delta) { 6842 best_delta = cur_delta; 6843 best_energy_cpu = max_spare_cap_cpu; 6844 } 6845 } 6846 } 6847 rcu_read_unlock(); 6848 6849 /* 6850 * Pick the best CPU if prev_cpu cannot be used, or if it saves at 6851 * least 6% of the energy used by prev_cpu. 6852 */ 6853 if ((prev_delta == ULONG_MAX) || 6854 (prev_delta - best_delta) > ((prev_delta + base_energy) >> 4)) 6855 target = best_energy_cpu; 6856 6857 return target; 6858 6859 unlock: 6860 rcu_read_unlock(); 6861 6862 return target; 6863 } 6864 6865 /* 6866 * select_task_rq_fair: Select target runqueue for the waking task in domains 6867 * that have the relevant SD flag set. In practice, this is SD_BALANCE_WAKE, 6868 * SD_BALANCE_FORK, or SD_BALANCE_EXEC. 6869 * 6870 * Balances load by selecting the idlest CPU in the idlest group, or under 6871 * certain conditions an idle sibling CPU if the domain has SD_WAKE_AFFINE set. 6872 * 6873 * Returns the target CPU number. 6874 */ 6875 static int 6876 select_task_rq_fair(struct task_struct *p, int prev_cpu, int wake_flags) 6877 { 6878 int sync = (wake_flags & WF_SYNC) && !(current->flags & PF_EXITING); 6879 struct sched_domain *tmp, *sd = NULL; 6880 int cpu = smp_processor_id(); 6881 int new_cpu = prev_cpu; 6882 int want_affine = 0; 6883 /* SD_flags and WF_flags share the first nibble */ 6884 int sd_flag = wake_flags & 0xF; 6885 6886 /* 6887 * required for stable ->cpus_allowed 6888 */ 6889 lockdep_assert_held(&p->pi_lock); 6890 if (wake_flags & WF_TTWU) { 6891 record_wakee(p); 6892 6893 if (sched_energy_enabled()) { 6894 new_cpu = find_energy_efficient_cpu(p, prev_cpu); 6895 if (new_cpu >= 0) 6896 return new_cpu; 6897 new_cpu = prev_cpu; 6898 } 6899 6900 want_affine = !wake_wide(p) && cpumask_test_cpu(cpu, p->cpus_ptr); 6901 } 6902 6903 rcu_read_lock(); 6904 for_each_domain(cpu, tmp) { 6905 /* 6906 * If both 'cpu' and 'prev_cpu' are part of this domain, 6907 * cpu is a valid SD_WAKE_AFFINE target. 6908 */ 6909 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) && 6910 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) { 6911 if (cpu != prev_cpu) 6912 new_cpu = wake_affine(tmp, p, cpu, prev_cpu, sync); 6913 6914 sd = NULL; /* Prefer wake_affine over balance flags */ 6915 break; 6916 } 6917 6918 if (tmp->flags & sd_flag) 6919 sd = tmp; 6920 else if (!want_affine) 6921 break; 6922 } 6923 6924 if (unlikely(sd)) { 6925 /* Slow path */ 6926 new_cpu = find_idlest_cpu(sd, p, cpu, prev_cpu, sd_flag); 6927 } else if (wake_flags & WF_TTWU) { /* XXX always ? */ 6928 /* Fast path */ 6929 new_cpu = select_idle_sibling(p, prev_cpu, new_cpu); 6930 } 6931 rcu_read_unlock(); 6932 6933 return new_cpu; 6934 } 6935 6936 static void detach_entity_cfs_rq(struct sched_entity *se); 6937 6938 /* 6939 * Called immediately before a task is migrated to a new CPU; task_cpu(p) and 6940 * cfs_rq_of(p) references at time of call are still valid and identify the 6941 * previous CPU. The caller guarantees p->pi_lock or task_rq(p)->lock is held. 6942 */ 6943 static void migrate_task_rq_fair(struct task_struct *p, int new_cpu) 6944 { 6945 /* 6946 * As blocked tasks retain absolute vruntime the migration needs to 6947 * deal with this by subtracting the old and adding the new 6948 * min_vruntime -- the latter is done by enqueue_entity() when placing 6949 * the task on the new runqueue. 6950 */ 6951 if (READ_ONCE(p->__state) == TASK_WAKING) { 6952 struct sched_entity *se = &p->se; 6953 struct cfs_rq *cfs_rq = cfs_rq_of(se); 6954 u64 min_vruntime; 6955 6956 #ifndef CONFIG_64BIT 6957 u64 min_vruntime_copy; 6958 6959 do { 6960 min_vruntime_copy = cfs_rq->min_vruntime_copy; 6961 smp_rmb(); 6962 min_vruntime = cfs_rq->min_vruntime; 6963 } while (min_vruntime != min_vruntime_copy); 6964 #else 6965 min_vruntime = cfs_rq->min_vruntime; 6966 #endif 6967 6968 se->vruntime -= min_vruntime; 6969 } 6970 6971 if (p->on_rq == TASK_ON_RQ_MIGRATING) { 6972 /* 6973 * In case of TASK_ON_RQ_MIGRATING we in fact hold the 'old' 6974 * rq->lock and can modify state directly. 6975 */ 6976 lockdep_assert_rq_held(task_rq(p)); 6977 detach_entity_cfs_rq(&p->se); 6978 6979 } else { 6980 /* 6981 * We are supposed to update the task to "current" time, then 6982 * its up to date and ready to go to new CPU/cfs_rq. But we 6983 * have difficulty in getting what current time is, so simply 6984 * throw away the out-of-date time. This will result in the 6985 * wakee task is less decayed, but giving the wakee more load 6986 * sounds not bad. 6987 */ 6988 remove_entity_load_avg(&p->se); 6989 } 6990 6991 /* Tell new CPU we are migrated */ 6992 p->se.avg.last_update_time = 0; 6993 6994 /* We have migrated, no longer consider this task hot */ 6995 p->se.exec_start = 0; 6996 6997 update_scan_period(p, new_cpu); 6998 } 6999 7000 static void task_dead_fair(struct task_struct *p) 7001 { 7002 remove_entity_load_avg(&p->se); 7003 } 7004 7005 static int 7006 balance_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf) 7007 { 7008 if (rq->nr_running) 7009 return 1; 7010 7011 return newidle_balance(rq, rf) != 0; 7012 } 7013 #endif /* CONFIG_SMP */ 7014 7015 static unsigned long wakeup_gran(struct sched_entity *se) 7016 { 7017 unsigned long gran = sysctl_sched_wakeup_granularity; 7018 7019 /* 7020 * Since its curr running now, convert the gran from real-time 7021 * to virtual-time in his units. 7022 * 7023 * By using 'se' instead of 'curr' we penalize light tasks, so 7024 * they get preempted easier. That is, if 'se' < 'curr' then 7025 * the resulting gran will be larger, therefore penalizing the 7026 * lighter, if otoh 'se' > 'curr' then the resulting gran will 7027 * be smaller, again penalizing the lighter task. 7028 * 7029 * This is especially important for buddies when the leftmost 7030 * task is higher priority than the buddy. 7031 */ 7032 return calc_delta_fair(gran, se); 7033 } 7034 7035 /* 7036 * Should 'se' preempt 'curr'. 7037 * 7038 * |s1 7039 * |s2 7040 * |s3 7041 * g 7042 * |<--->|c 7043 * 7044 * w(c, s1) = -1 7045 * w(c, s2) = 0 7046 * w(c, s3) = 1 7047 * 7048 */ 7049 static int 7050 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se) 7051 { 7052 s64 gran, vdiff = curr->vruntime - se->vruntime; 7053 7054 if (vdiff <= 0) 7055 return -1; 7056 7057 gran = wakeup_gran(se); 7058 if (vdiff > gran) 7059 return 1; 7060 7061 return 0; 7062 } 7063 7064 static void set_last_buddy(struct sched_entity *se) 7065 { 7066 for_each_sched_entity(se) { 7067 if (SCHED_WARN_ON(!se->on_rq)) 7068 return; 7069 if (se_is_idle(se)) 7070 return; 7071 cfs_rq_of(se)->last = se; 7072 } 7073 } 7074 7075 static void set_next_buddy(struct sched_entity *se) 7076 { 7077 for_each_sched_entity(se) { 7078 if (SCHED_WARN_ON(!se->on_rq)) 7079 return; 7080 if (se_is_idle(se)) 7081 return; 7082 cfs_rq_of(se)->next = se; 7083 } 7084 } 7085 7086 static void set_skip_buddy(struct sched_entity *se) 7087 { 7088 for_each_sched_entity(se) 7089 cfs_rq_of(se)->skip = se; 7090 } 7091 7092 /* 7093 * Preempt the current task with a newly woken task if needed: 7094 */ 7095 static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags) 7096 { 7097 struct task_struct *curr = rq->curr; 7098 struct sched_entity *se = &curr->se, *pse = &p->se; 7099 struct cfs_rq *cfs_rq = task_cfs_rq(curr); 7100 int scale = cfs_rq->nr_running >= sched_nr_latency; 7101 int next_buddy_marked = 0; 7102 int cse_is_idle, pse_is_idle; 7103 7104 if (unlikely(se == pse)) 7105 return; 7106 7107 /* 7108 * This is possible from callers such as attach_tasks(), in which we 7109 * unconditionally check_preempt_curr() after an enqueue (which may have 7110 * lead to a throttle). This both saves work and prevents false 7111 * next-buddy nomination below. 7112 */ 7113 if (unlikely(throttled_hierarchy(cfs_rq_of(pse)))) 7114 return; 7115 7116 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) { 7117 set_next_buddy(pse); 7118 next_buddy_marked = 1; 7119 } 7120 7121 /* 7122 * We can come here with TIF_NEED_RESCHED already set from new task 7123 * wake up path. 7124 * 7125 * Note: this also catches the edge-case of curr being in a throttled 7126 * group (e.g. via set_curr_task), since update_curr() (in the 7127 * enqueue of curr) will have resulted in resched being set. This 7128 * prevents us from potentially nominating it as a false LAST_BUDDY 7129 * below. 7130 */ 7131 if (test_tsk_need_resched(curr)) 7132 return; 7133 7134 /* Idle tasks are by definition preempted by non-idle tasks. */ 7135 if (unlikely(task_has_idle_policy(curr)) && 7136 likely(!task_has_idle_policy(p))) 7137 goto preempt; 7138 7139 /* 7140 * Batch and idle tasks do not preempt non-idle tasks (their preemption 7141 * is driven by the tick): 7142 */ 7143 if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION)) 7144 return; 7145 7146 find_matching_se(&se, &pse); 7147 BUG_ON(!pse); 7148 7149 cse_is_idle = se_is_idle(se); 7150 pse_is_idle = se_is_idle(pse); 7151 7152 /* 7153 * Preempt an idle group in favor of a non-idle group (and don't preempt 7154 * in the inverse case). 7155 */ 7156 if (cse_is_idle && !pse_is_idle) 7157 goto preempt; 7158 if (cse_is_idle != pse_is_idle) 7159 return; 7160 7161 update_curr(cfs_rq_of(se)); 7162 if (wakeup_preempt_entity(se, pse) == 1) { 7163 /* 7164 * Bias pick_next to pick the sched entity that is 7165 * triggering this preemption. 7166 */ 7167 if (!next_buddy_marked) 7168 set_next_buddy(pse); 7169 goto preempt; 7170 } 7171 7172 return; 7173 7174 preempt: 7175 resched_curr(rq); 7176 /* 7177 * Only set the backward buddy when the current task is still 7178 * on the rq. This can happen when a wakeup gets interleaved 7179 * with schedule on the ->pre_schedule() or idle_balance() 7180 * point, either of which can * drop the rq lock. 7181 * 7182 * Also, during early boot the idle thread is in the fair class, 7183 * for obvious reasons its a bad idea to schedule back to it. 7184 */ 7185 if (unlikely(!se->on_rq || curr == rq->idle)) 7186 return; 7187 7188 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se)) 7189 set_last_buddy(se); 7190 } 7191 7192 #ifdef CONFIG_SMP 7193 static struct task_struct *pick_task_fair(struct rq *rq) 7194 { 7195 struct sched_entity *se; 7196 struct cfs_rq *cfs_rq; 7197 7198 again: 7199 cfs_rq = &rq->cfs; 7200 if (!cfs_rq->nr_running) 7201 return NULL; 7202 7203 do { 7204 struct sched_entity *curr = cfs_rq->curr; 7205 7206 /* When we pick for a remote RQ, we'll not have done put_prev_entity() */ 7207 if (curr) { 7208 if (curr->on_rq) 7209 update_curr(cfs_rq); 7210 else 7211 curr = NULL; 7212 7213 if (unlikely(check_cfs_rq_runtime(cfs_rq))) 7214 goto again; 7215 } 7216 7217 se = pick_next_entity(cfs_rq, curr); 7218 cfs_rq = group_cfs_rq(se); 7219 } while (cfs_rq); 7220 7221 return task_of(se); 7222 } 7223 #endif 7224 7225 struct task_struct * 7226 pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf) 7227 { 7228 struct cfs_rq *cfs_rq = &rq->cfs; 7229 struct sched_entity *se; 7230 struct task_struct *p; 7231 int new_tasks; 7232 7233 again: 7234 if (!sched_fair_runnable(rq)) 7235 goto idle; 7236 7237 #ifdef CONFIG_FAIR_GROUP_SCHED 7238 if (!prev || prev->sched_class != &fair_sched_class) 7239 goto simple; 7240 7241 /* 7242 * Because of the set_next_buddy() in dequeue_task_fair() it is rather 7243 * likely that a next task is from the same cgroup as the current. 7244 * 7245 * Therefore attempt to avoid putting and setting the entire cgroup 7246 * hierarchy, only change the part that actually changes. 7247 */ 7248 7249 do { 7250 struct sched_entity *curr = cfs_rq->curr; 7251 7252 /* 7253 * Since we got here without doing put_prev_entity() we also 7254 * have to consider cfs_rq->curr. If it is still a runnable 7255 * entity, update_curr() will update its vruntime, otherwise 7256 * forget we've ever seen it. 7257 */ 7258 if (curr) { 7259 if (curr->on_rq) 7260 update_curr(cfs_rq); 7261 else 7262 curr = NULL; 7263 7264 /* 7265 * This call to check_cfs_rq_runtime() will do the 7266 * throttle and dequeue its entity in the parent(s). 7267 * Therefore the nr_running test will indeed 7268 * be correct. 7269 */ 7270 if (unlikely(check_cfs_rq_runtime(cfs_rq))) { 7271 cfs_rq = &rq->cfs; 7272 7273 if (!cfs_rq->nr_running) 7274 goto idle; 7275 7276 goto simple; 7277 } 7278 } 7279 7280 se = pick_next_entity(cfs_rq, curr); 7281 cfs_rq = group_cfs_rq(se); 7282 } while (cfs_rq); 7283 7284 p = task_of(se); 7285 7286 /* 7287 * Since we haven't yet done put_prev_entity and if the selected task 7288 * is a different task than we started out with, try and touch the 7289 * least amount of cfs_rqs. 7290 */ 7291 if (prev != p) { 7292 struct sched_entity *pse = &prev->se; 7293 7294 while (!(cfs_rq = is_same_group(se, pse))) { 7295 int se_depth = se->depth; 7296 int pse_depth = pse->depth; 7297 7298 if (se_depth <= pse_depth) { 7299 put_prev_entity(cfs_rq_of(pse), pse); 7300 pse = parent_entity(pse); 7301 } 7302 if (se_depth >= pse_depth) { 7303 set_next_entity(cfs_rq_of(se), se); 7304 se = parent_entity(se); 7305 } 7306 } 7307 7308 put_prev_entity(cfs_rq, pse); 7309 set_next_entity(cfs_rq, se); 7310 } 7311 7312 goto done; 7313 simple: 7314 #endif 7315 if (prev) 7316 put_prev_task(rq, prev); 7317 7318 do { 7319 se = pick_next_entity(cfs_rq, NULL); 7320 set_next_entity(cfs_rq, se); 7321 cfs_rq = group_cfs_rq(se); 7322 } while (cfs_rq); 7323 7324 p = task_of(se); 7325 7326 done: __maybe_unused; 7327 #ifdef CONFIG_SMP 7328 /* 7329 * Move the next running task to the front of 7330 * the list, so our cfs_tasks list becomes MRU 7331 * one. 7332 */ 7333 list_move(&p->se.group_node, &rq->cfs_tasks); 7334 #endif 7335 7336 if (hrtick_enabled_fair(rq)) 7337 hrtick_start_fair(rq, p); 7338 7339 update_misfit_status(p, rq); 7340 7341 return p; 7342 7343 idle: 7344 if (!rf) 7345 return NULL; 7346 7347 new_tasks = newidle_balance(rq, rf); 7348 7349 /* 7350 * Because newidle_balance() releases (and re-acquires) rq->lock, it is 7351 * possible for any higher priority task to appear. In that case we 7352 * must re-start the pick_next_entity() loop. 7353 */ 7354 if (new_tasks < 0) 7355 return RETRY_TASK; 7356 7357 if (new_tasks > 0) 7358 goto again; 7359 7360 /* 7361 * rq is about to be idle, check if we need to update the 7362 * lost_idle_time of clock_pelt 7363 */ 7364 update_idle_rq_clock_pelt(rq); 7365 7366 return NULL; 7367 } 7368 7369 static struct task_struct *__pick_next_task_fair(struct rq *rq) 7370 { 7371 return pick_next_task_fair(rq, NULL, NULL); 7372 } 7373 7374 /* 7375 * Account for a descheduled task: 7376 */ 7377 static void put_prev_task_fair(struct rq *rq, struct task_struct *prev) 7378 { 7379 struct sched_entity *se = &prev->se; 7380 struct cfs_rq *cfs_rq; 7381 7382 for_each_sched_entity(se) { 7383 cfs_rq = cfs_rq_of(se); 7384 put_prev_entity(cfs_rq, se); 7385 } 7386 } 7387 7388 /* 7389 * sched_yield() is very simple 7390 * 7391 * The magic of dealing with the ->skip buddy is in pick_next_entity. 7392 */ 7393 static void yield_task_fair(struct rq *rq) 7394 { 7395 struct task_struct *curr = rq->curr; 7396 struct cfs_rq *cfs_rq = task_cfs_rq(curr); 7397 struct sched_entity *se = &curr->se; 7398 7399 /* 7400 * Are we the only task in the tree? 7401 */ 7402 if (unlikely(rq->nr_running == 1)) 7403 return; 7404 7405 clear_buddies(cfs_rq, se); 7406 7407 if (curr->policy != SCHED_BATCH) { 7408 update_rq_clock(rq); 7409 /* 7410 * Update run-time statistics of the 'current'. 7411 */ 7412 update_curr(cfs_rq); 7413 /* 7414 * Tell update_rq_clock() that we've just updated, 7415 * so we don't do microscopic update in schedule() 7416 * and double the fastpath cost. 7417 */ 7418 rq_clock_skip_update(rq); 7419 } 7420 7421 set_skip_buddy(se); 7422 } 7423 7424 static bool yield_to_task_fair(struct rq *rq, struct task_struct *p) 7425 { 7426 struct sched_entity *se = &p->se; 7427 7428 /* throttled hierarchies are not runnable */ 7429 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se))) 7430 return false; 7431 7432 /* Tell the scheduler that we'd really like pse to run next. */ 7433 set_next_buddy(se); 7434 7435 yield_task_fair(rq); 7436 7437 return true; 7438 } 7439 7440 #ifdef CONFIG_SMP 7441 /************************************************** 7442 * Fair scheduling class load-balancing methods. 7443 * 7444 * BASICS 7445 * 7446 * The purpose of load-balancing is to achieve the same basic fairness the 7447 * per-CPU scheduler provides, namely provide a proportional amount of compute 7448 * time to each task. This is expressed in the following equation: 7449 * 7450 * W_i,n/P_i == W_j,n/P_j for all i,j (1) 7451 * 7452 * Where W_i,n is the n-th weight average for CPU i. The instantaneous weight 7453 * W_i,0 is defined as: 7454 * 7455 * W_i,0 = \Sum_j w_i,j (2) 7456 * 7457 * Where w_i,j is the weight of the j-th runnable task on CPU i. This weight 7458 * is derived from the nice value as per sched_prio_to_weight[]. 7459 * 7460 * The weight average is an exponential decay average of the instantaneous 7461 * weight: 7462 * 7463 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3) 7464 * 7465 * C_i is the compute capacity of CPU i, typically it is the 7466 * fraction of 'recent' time available for SCHED_OTHER task execution. But it 7467 * can also include other factors [XXX]. 7468 * 7469 * To achieve this balance we define a measure of imbalance which follows 7470 * directly from (1): 7471 * 7472 * imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j } (4) 7473 * 7474 * We them move tasks around to minimize the imbalance. In the continuous 7475 * function space it is obvious this converges, in the discrete case we get 7476 * a few fun cases generally called infeasible weight scenarios. 7477 * 7478 * [XXX expand on: 7479 * - infeasible weights; 7480 * - local vs global optima in the discrete case. ] 7481 * 7482 * 7483 * SCHED DOMAINS 7484 * 7485 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2) 7486 * for all i,j solution, we create a tree of CPUs that follows the hardware 7487 * topology where each level pairs two lower groups (or better). This results 7488 * in O(log n) layers. Furthermore we reduce the number of CPUs going up the 7489 * tree to only the first of the previous level and we decrease the frequency 7490 * of load-balance at each level inv. proportional to the number of CPUs in 7491 * the groups. 7492 * 7493 * This yields: 7494 * 7495 * log_2 n 1 n 7496 * \Sum { --- * --- * 2^i } = O(n) (5) 7497 * i = 0 2^i 2^i 7498 * `- size of each group 7499 * | | `- number of CPUs doing load-balance 7500 * | `- freq 7501 * `- sum over all levels 7502 * 7503 * Coupled with a limit on how many tasks we can migrate every balance pass, 7504 * this makes (5) the runtime complexity of the balancer. 7505 * 7506 * An important property here is that each CPU is still (indirectly) connected 7507 * to every other CPU in at most O(log n) steps: 7508 * 7509 * The adjacency matrix of the resulting graph is given by: 7510 * 7511 * log_2 n 7512 * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6) 7513 * k = 0 7514 * 7515 * And you'll find that: 7516 * 7517 * A^(log_2 n)_i,j != 0 for all i,j (7) 7518 * 7519 * Showing there's indeed a path between every CPU in at most O(log n) steps. 7520 * The task movement gives a factor of O(m), giving a convergence complexity 7521 * of: 7522 * 7523 * O(nm log n), n := nr_cpus, m := nr_tasks (8) 7524 * 7525 * 7526 * WORK CONSERVING 7527 * 7528 * In order to avoid CPUs going idle while there's still work to do, new idle 7529 * balancing is more aggressive and has the newly idle CPU iterate up the domain 7530 * tree itself instead of relying on other CPUs to bring it work. 7531 * 7532 * This adds some complexity to both (5) and (8) but it reduces the total idle 7533 * time. 7534 * 7535 * [XXX more?] 7536 * 7537 * 7538 * CGROUPS 7539 * 7540 * Cgroups make a horror show out of (2), instead of a simple sum we get: 7541 * 7542 * s_k,i 7543 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9) 7544 * S_k 7545 * 7546 * Where 7547 * 7548 * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10) 7549 * 7550 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on CPU i. 7551 * 7552 * The big problem is S_k, its a global sum needed to compute a local (W_i) 7553 * property. 7554 * 7555 * [XXX write more on how we solve this.. _after_ merging pjt's patches that 7556 * rewrite all of this once again.] 7557 */ 7558 7559 static unsigned long __read_mostly max_load_balance_interval = HZ/10; 7560 7561 enum fbq_type { regular, remote, all }; 7562 7563 /* 7564 * 'group_type' describes the group of CPUs at the moment of load balancing. 7565 * 7566 * The enum is ordered by pulling priority, with the group with lowest priority 7567 * first so the group_type can simply be compared when selecting the busiest 7568 * group. See update_sd_pick_busiest(). 7569 */ 7570 enum group_type { 7571 /* The group has spare capacity that can be used to run more tasks. */ 7572 group_has_spare = 0, 7573 /* 7574 * The group is fully used and the tasks don't compete for more CPU 7575 * cycles. Nevertheless, some tasks might wait before running. 7576 */ 7577 group_fully_busy, 7578 /* 7579 * SD_ASYM_CPUCAPACITY only: One task doesn't fit with CPU's capacity 7580 * and must be migrated to a more powerful CPU. 7581 */ 7582 group_misfit_task, 7583 /* 7584 * SD_ASYM_PACKING only: One local CPU with higher capacity is available, 7585 * and the task should be migrated to it instead of running on the 7586 * current CPU. 7587 */ 7588 group_asym_packing, 7589 /* 7590 * The tasks' affinity constraints previously prevented the scheduler 7591 * from balancing the load across the system. 7592 */ 7593 group_imbalanced, 7594 /* 7595 * The CPU is overloaded and can't provide expected CPU cycles to all 7596 * tasks. 7597 */ 7598 group_overloaded 7599 }; 7600 7601 enum migration_type { 7602 migrate_load = 0, 7603 migrate_util, 7604 migrate_task, 7605 migrate_misfit 7606 }; 7607 7608 #define LBF_ALL_PINNED 0x01 7609 #define LBF_NEED_BREAK 0x02 7610 #define LBF_DST_PINNED 0x04 7611 #define LBF_SOME_PINNED 0x08 7612 #define LBF_ACTIVE_LB 0x10 7613 7614 struct lb_env { 7615 struct sched_domain *sd; 7616 7617 struct rq *src_rq; 7618 int src_cpu; 7619 7620 int dst_cpu; 7621 struct rq *dst_rq; 7622 7623 struct cpumask *dst_grpmask; 7624 int new_dst_cpu; 7625 enum cpu_idle_type idle; 7626 long imbalance; 7627 /* The set of CPUs under consideration for load-balancing */ 7628 struct cpumask *cpus; 7629 7630 unsigned int flags; 7631 7632 unsigned int loop; 7633 unsigned int loop_break; 7634 unsigned int loop_max; 7635 7636 enum fbq_type fbq_type; 7637 enum migration_type migration_type; 7638 struct list_head tasks; 7639 }; 7640 7641 /* 7642 * Is this task likely cache-hot: 7643 */ 7644 static int task_hot(struct task_struct *p, struct lb_env *env) 7645 { 7646 s64 delta; 7647 7648 lockdep_assert_rq_held(env->src_rq); 7649 7650 if (p->sched_class != &fair_sched_class) 7651 return 0; 7652 7653 if (unlikely(task_has_idle_policy(p))) 7654 return 0; 7655 7656 /* SMT siblings share cache */ 7657 if (env->sd->flags & SD_SHARE_CPUCAPACITY) 7658 return 0; 7659 7660 /* 7661 * Buddy candidates are cache hot: 7662 */ 7663 if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running && 7664 (&p->se == cfs_rq_of(&p->se)->next || 7665 &p->se == cfs_rq_of(&p->se)->last)) 7666 return 1; 7667 7668 if (sysctl_sched_migration_cost == -1) 7669 return 1; 7670 7671 /* 7672 * Don't migrate task if the task's cookie does not match 7673 * with the destination CPU's core cookie. 7674 */ 7675 if (!sched_core_cookie_match(cpu_rq(env->dst_cpu), p)) 7676 return 1; 7677 7678 if (sysctl_sched_migration_cost == 0) 7679 return 0; 7680 7681 delta = rq_clock_task(env->src_rq) - p->se.exec_start; 7682 7683 return delta < (s64)sysctl_sched_migration_cost; 7684 } 7685 7686 #ifdef CONFIG_NUMA_BALANCING 7687 /* 7688 * Returns 1, if task migration degrades locality 7689 * Returns 0, if task migration improves locality i.e migration preferred. 7690 * Returns -1, if task migration is not affected by locality. 7691 */ 7692 static int migrate_degrades_locality(struct task_struct *p, struct lb_env *env) 7693 { 7694 struct numa_group *numa_group = rcu_dereference(p->numa_group); 7695 unsigned long src_weight, dst_weight; 7696 int src_nid, dst_nid, dist; 7697 7698 if (!static_branch_likely(&sched_numa_balancing)) 7699 return -1; 7700 7701 if (!p->numa_faults || !(env->sd->flags & SD_NUMA)) 7702 return -1; 7703 7704 src_nid = cpu_to_node(env->src_cpu); 7705 dst_nid = cpu_to_node(env->dst_cpu); 7706 7707 if (src_nid == dst_nid) 7708 return -1; 7709 7710 /* Migrating away from the preferred node is always bad. */ 7711 if (src_nid == p->numa_preferred_nid) { 7712 if (env->src_rq->nr_running > env->src_rq->nr_preferred_running) 7713 return 1; 7714 else 7715 return -1; 7716 } 7717 7718 /* Encourage migration to the preferred node. */ 7719 if (dst_nid == p->numa_preferred_nid) 7720 return 0; 7721 7722 /* Leaving a core idle is often worse than degrading locality. */ 7723 if (env->idle == CPU_IDLE) 7724 return -1; 7725 7726 dist = node_distance(src_nid, dst_nid); 7727 if (numa_group) { 7728 src_weight = group_weight(p, src_nid, dist); 7729 dst_weight = group_weight(p, dst_nid, dist); 7730 } else { 7731 src_weight = task_weight(p, src_nid, dist); 7732 dst_weight = task_weight(p, dst_nid, dist); 7733 } 7734 7735 return dst_weight < src_weight; 7736 } 7737 7738 #else 7739 static inline int migrate_degrades_locality(struct task_struct *p, 7740 struct lb_env *env) 7741 { 7742 return -1; 7743 } 7744 #endif 7745 7746 /* 7747 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu? 7748 */ 7749 static 7750 int can_migrate_task(struct task_struct *p, struct lb_env *env) 7751 { 7752 int tsk_cache_hot; 7753 7754 lockdep_assert_rq_held(env->src_rq); 7755 7756 /* 7757 * We do not migrate tasks that are: 7758 * 1) throttled_lb_pair, or 7759 * 2) cannot be migrated to this CPU due to cpus_ptr, or 7760 * 3) running (obviously), or 7761 * 4) are cache-hot on their current CPU. 7762 */ 7763 if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu)) 7764 return 0; 7765 7766 /* Disregard pcpu kthreads; they are where they need to be. */ 7767 if (kthread_is_per_cpu(p)) 7768 return 0; 7769 7770 if (!cpumask_test_cpu(env->dst_cpu, p->cpus_ptr)) { 7771 int cpu; 7772 7773 schedstat_inc(p->stats.nr_failed_migrations_affine); 7774 7775 env->flags |= LBF_SOME_PINNED; 7776 7777 /* 7778 * Remember if this task can be migrated to any other CPU in 7779 * our sched_group. We may want to revisit it if we couldn't 7780 * meet load balance goals by pulling other tasks on src_cpu. 7781 * 7782 * Avoid computing new_dst_cpu 7783 * - for NEWLY_IDLE 7784 * - if we have already computed one in current iteration 7785 * - if it's an active balance 7786 */ 7787 if (env->idle == CPU_NEWLY_IDLE || 7788 env->flags & (LBF_DST_PINNED | LBF_ACTIVE_LB)) 7789 return 0; 7790 7791 /* Prevent to re-select dst_cpu via env's CPUs: */ 7792 for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) { 7793 if (cpumask_test_cpu(cpu, p->cpus_ptr)) { 7794 env->flags |= LBF_DST_PINNED; 7795 env->new_dst_cpu = cpu; 7796 break; 7797 } 7798 } 7799 7800 return 0; 7801 } 7802 7803 /* Record that we found at least one task that could run on dst_cpu */ 7804 env->flags &= ~LBF_ALL_PINNED; 7805 7806 if (task_running(env->src_rq, p)) { 7807 schedstat_inc(p->stats.nr_failed_migrations_running); 7808 return 0; 7809 } 7810 7811 /* 7812 * Aggressive migration if: 7813 * 1) active balance 7814 * 2) destination numa is preferred 7815 * 3) task is cache cold, or 7816 * 4) too many balance attempts have failed. 7817 */ 7818 if (env->flags & LBF_ACTIVE_LB) 7819 return 1; 7820 7821 tsk_cache_hot = migrate_degrades_locality(p, env); 7822 if (tsk_cache_hot == -1) 7823 tsk_cache_hot = task_hot(p, env); 7824 7825 if (tsk_cache_hot <= 0 || 7826 env->sd->nr_balance_failed > env->sd->cache_nice_tries) { 7827 if (tsk_cache_hot == 1) { 7828 schedstat_inc(env->sd->lb_hot_gained[env->idle]); 7829 schedstat_inc(p->stats.nr_forced_migrations); 7830 } 7831 return 1; 7832 } 7833 7834 schedstat_inc(p->stats.nr_failed_migrations_hot); 7835 return 0; 7836 } 7837 7838 /* 7839 * detach_task() -- detach the task for the migration specified in env 7840 */ 7841 static void detach_task(struct task_struct *p, struct lb_env *env) 7842 { 7843 lockdep_assert_rq_held(env->src_rq); 7844 7845 deactivate_task(env->src_rq, p, DEQUEUE_NOCLOCK); 7846 set_task_cpu(p, env->dst_cpu); 7847 } 7848 7849 /* 7850 * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as 7851 * part of active balancing operations within "domain". 7852 * 7853 * Returns a task if successful and NULL otherwise. 7854 */ 7855 static struct task_struct *detach_one_task(struct lb_env *env) 7856 { 7857 struct task_struct *p; 7858 7859 lockdep_assert_rq_held(env->src_rq); 7860 7861 list_for_each_entry_reverse(p, 7862 &env->src_rq->cfs_tasks, se.group_node) { 7863 if (!can_migrate_task(p, env)) 7864 continue; 7865 7866 detach_task(p, env); 7867 7868 /* 7869 * Right now, this is only the second place where 7870 * lb_gained[env->idle] is updated (other is detach_tasks) 7871 * so we can safely collect stats here rather than 7872 * inside detach_tasks(). 7873 */ 7874 schedstat_inc(env->sd->lb_gained[env->idle]); 7875 return p; 7876 } 7877 return NULL; 7878 } 7879 7880 static const unsigned int sched_nr_migrate_break = 32; 7881 7882 /* 7883 * detach_tasks() -- tries to detach up to imbalance load/util/tasks from 7884 * busiest_rq, as part of a balancing operation within domain "sd". 7885 * 7886 * Returns number of detached tasks if successful and 0 otherwise. 7887 */ 7888 static int detach_tasks(struct lb_env *env) 7889 { 7890 struct list_head *tasks = &env->src_rq->cfs_tasks; 7891 unsigned long util, load; 7892 struct task_struct *p; 7893 int detached = 0; 7894 7895 lockdep_assert_rq_held(env->src_rq); 7896 7897 /* 7898 * Source run queue has been emptied by another CPU, clear 7899 * LBF_ALL_PINNED flag as we will not test any task. 7900 */ 7901 if (env->src_rq->nr_running <= 1) { 7902 env->flags &= ~LBF_ALL_PINNED; 7903 return 0; 7904 } 7905 7906 if (env->imbalance <= 0) 7907 return 0; 7908 7909 while (!list_empty(tasks)) { 7910 /* 7911 * We don't want to steal all, otherwise we may be treated likewise, 7912 * which could at worst lead to a livelock crash. 7913 */ 7914 if (env->idle != CPU_NOT_IDLE && env->src_rq->nr_running <= 1) 7915 break; 7916 7917 p = list_last_entry(tasks, struct task_struct, se.group_node); 7918 7919 env->loop++; 7920 /* We've more or less seen every task there is, call it quits */ 7921 if (env->loop > env->loop_max) 7922 break; 7923 7924 /* take a breather every nr_migrate tasks */ 7925 if (env->loop > env->loop_break) { 7926 env->loop_break += sched_nr_migrate_break; 7927 env->flags |= LBF_NEED_BREAK; 7928 break; 7929 } 7930 7931 if (!can_migrate_task(p, env)) 7932 goto next; 7933 7934 switch (env->migration_type) { 7935 case migrate_load: 7936 /* 7937 * Depending of the number of CPUs and tasks and the 7938 * cgroup hierarchy, task_h_load() can return a null 7939 * value. Make sure that env->imbalance decreases 7940 * otherwise detach_tasks() will stop only after 7941 * detaching up to loop_max tasks. 7942 */ 7943 load = max_t(unsigned long, task_h_load(p), 1); 7944 7945 if (sched_feat(LB_MIN) && 7946 load < 16 && !env->sd->nr_balance_failed) 7947 goto next; 7948 7949 /* 7950 * Make sure that we don't migrate too much load. 7951 * Nevertheless, let relax the constraint if 7952 * scheduler fails to find a good waiting task to 7953 * migrate. 7954 */ 7955 if (shr_bound(load, env->sd->nr_balance_failed) > env->imbalance) 7956 goto next; 7957 7958 env->imbalance -= load; 7959 break; 7960 7961 case migrate_util: 7962 util = task_util_est(p); 7963 7964 if (util > env->imbalance) 7965 goto next; 7966 7967 env->imbalance -= util; 7968 break; 7969 7970 case migrate_task: 7971 env->imbalance--; 7972 break; 7973 7974 case migrate_misfit: 7975 /* This is not a misfit task */ 7976 if (task_fits_capacity(p, capacity_of(env->src_cpu))) 7977 goto next; 7978 7979 env->imbalance = 0; 7980 break; 7981 } 7982 7983 detach_task(p, env); 7984 list_add(&p->se.group_node, &env->tasks); 7985 7986 detached++; 7987 7988 #ifdef CONFIG_PREEMPTION 7989 /* 7990 * NEWIDLE balancing is a source of latency, so preemptible 7991 * kernels will stop after the first task is detached to minimize 7992 * the critical section. 7993 */ 7994 if (env->idle == CPU_NEWLY_IDLE) 7995 break; 7996 #endif 7997 7998 /* 7999 * We only want to steal up to the prescribed amount of 8000 * load/util/tasks. 8001 */ 8002 if (env->imbalance <= 0) 8003 break; 8004 8005 continue; 8006 next: 8007 list_move(&p->se.group_node, tasks); 8008 } 8009 8010 /* 8011 * Right now, this is one of only two places we collect this stat 8012 * so we can safely collect detach_one_task() stats here rather 8013 * than inside detach_one_task(). 8014 */ 8015 schedstat_add(env->sd->lb_gained[env->idle], detached); 8016 8017 return detached; 8018 } 8019 8020 /* 8021 * attach_task() -- attach the task detached by detach_task() to its new rq. 8022 */ 8023 static void attach_task(struct rq *rq, struct task_struct *p) 8024 { 8025 lockdep_assert_rq_held(rq); 8026 8027 BUG_ON(task_rq(p) != rq); 8028 activate_task(rq, p, ENQUEUE_NOCLOCK); 8029 check_preempt_curr(rq, p, 0); 8030 } 8031 8032 /* 8033 * attach_one_task() -- attaches the task returned from detach_one_task() to 8034 * its new rq. 8035 */ 8036 static void attach_one_task(struct rq *rq, struct task_struct *p) 8037 { 8038 struct rq_flags rf; 8039 8040 rq_lock(rq, &rf); 8041 update_rq_clock(rq); 8042 attach_task(rq, p); 8043 rq_unlock(rq, &rf); 8044 } 8045 8046 /* 8047 * attach_tasks() -- attaches all tasks detached by detach_tasks() to their 8048 * new rq. 8049 */ 8050 static void attach_tasks(struct lb_env *env) 8051 { 8052 struct list_head *tasks = &env->tasks; 8053 struct task_struct *p; 8054 struct rq_flags rf; 8055 8056 rq_lock(env->dst_rq, &rf); 8057 update_rq_clock(env->dst_rq); 8058 8059 while (!list_empty(tasks)) { 8060 p = list_first_entry(tasks, struct task_struct, se.group_node); 8061 list_del_init(&p->se.group_node); 8062 8063 attach_task(env->dst_rq, p); 8064 } 8065 8066 rq_unlock(env->dst_rq, &rf); 8067 } 8068 8069 #ifdef CONFIG_NO_HZ_COMMON 8070 static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq) 8071 { 8072 if (cfs_rq->avg.load_avg) 8073 return true; 8074 8075 if (cfs_rq->avg.util_avg) 8076 return true; 8077 8078 return false; 8079 } 8080 8081 static inline bool others_have_blocked(struct rq *rq) 8082 { 8083 if (READ_ONCE(rq->avg_rt.util_avg)) 8084 return true; 8085 8086 if (READ_ONCE(rq->avg_dl.util_avg)) 8087 return true; 8088 8089 if (thermal_load_avg(rq)) 8090 return true; 8091 8092 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ 8093 if (READ_ONCE(rq->avg_irq.util_avg)) 8094 return true; 8095 #endif 8096 8097 return false; 8098 } 8099 8100 static inline void update_blocked_load_tick(struct rq *rq) 8101 { 8102 WRITE_ONCE(rq->last_blocked_load_update_tick, jiffies); 8103 } 8104 8105 static inline void update_blocked_load_status(struct rq *rq, bool has_blocked) 8106 { 8107 if (!has_blocked) 8108 rq->has_blocked_load = 0; 8109 } 8110 #else 8111 static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq) { return false; } 8112 static inline bool others_have_blocked(struct rq *rq) { return false; } 8113 static inline void update_blocked_load_tick(struct rq *rq) {} 8114 static inline void update_blocked_load_status(struct rq *rq, bool has_blocked) {} 8115 #endif 8116 8117 static bool __update_blocked_others(struct rq *rq, bool *done) 8118 { 8119 const struct sched_class *curr_class; 8120 u64 now = rq_clock_pelt(rq); 8121 unsigned long thermal_pressure; 8122 bool decayed; 8123 8124 /* 8125 * update_load_avg() can call cpufreq_update_util(). Make sure that RT, 8126 * DL and IRQ signals have been updated before updating CFS. 8127 */ 8128 curr_class = rq->curr->sched_class; 8129 8130 thermal_pressure = arch_scale_thermal_pressure(cpu_of(rq)); 8131 8132 decayed = update_rt_rq_load_avg(now, rq, curr_class == &rt_sched_class) | 8133 update_dl_rq_load_avg(now, rq, curr_class == &dl_sched_class) | 8134 update_thermal_load_avg(rq_clock_thermal(rq), rq, thermal_pressure) | 8135 update_irq_load_avg(rq, 0); 8136 8137 if (others_have_blocked(rq)) 8138 *done = false; 8139 8140 return decayed; 8141 } 8142 8143 #ifdef CONFIG_FAIR_GROUP_SCHED 8144 8145 static bool __update_blocked_fair(struct rq *rq, bool *done) 8146 { 8147 struct cfs_rq *cfs_rq, *pos; 8148 bool decayed = false; 8149 int cpu = cpu_of(rq); 8150 8151 /* 8152 * Iterates the task_group tree in a bottom up fashion, see 8153 * list_add_leaf_cfs_rq() for details. 8154 */ 8155 for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) { 8156 struct sched_entity *se; 8157 8158 if (update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq)) { 8159 update_tg_load_avg(cfs_rq); 8160 8161 if (cfs_rq == &rq->cfs) 8162 decayed = true; 8163 } 8164 8165 /* Propagate pending load changes to the parent, if any: */ 8166 se = cfs_rq->tg->se[cpu]; 8167 if (se && !skip_blocked_update(se)) 8168 update_load_avg(cfs_rq_of(se), se, UPDATE_TG); 8169 8170 /* 8171 * There can be a lot of idle CPU cgroups. Don't let fully 8172 * decayed cfs_rqs linger on the list. 8173 */ 8174 if (cfs_rq_is_decayed(cfs_rq)) 8175 list_del_leaf_cfs_rq(cfs_rq); 8176 8177 /* Don't need periodic decay once load/util_avg are null */ 8178 if (cfs_rq_has_blocked(cfs_rq)) 8179 *done = false; 8180 } 8181 8182 return decayed; 8183 } 8184 8185 /* 8186 * Compute the hierarchical load factor for cfs_rq and all its ascendants. 8187 * This needs to be done in a top-down fashion because the load of a child 8188 * group is a fraction of its parents load. 8189 */ 8190 static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq) 8191 { 8192 struct rq *rq = rq_of(cfs_rq); 8193 struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)]; 8194 unsigned long now = jiffies; 8195 unsigned long load; 8196 8197 if (cfs_rq->last_h_load_update == now) 8198 return; 8199 8200 WRITE_ONCE(cfs_rq->h_load_next, NULL); 8201 for_each_sched_entity(se) { 8202 cfs_rq = cfs_rq_of(se); 8203 WRITE_ONCE(cfs_rq->h_load_next, se); 8204 if (cfs_rq->last_h_load_update == now) 8205 break; 8206 } 8207 8208 if (!se) { 8209 cfs_rq->h_load = cfs_rq_load_avg(cfs_rq); 8210 cfs_rq->last_h_load_update = now; 8211 } 8212 8213 while ((se = READ_ONCE(cfs_rq->h_load_next)) != NULL) { 8214 load = cfs_rq->h_load; 8215 load = div64_ul(load * se->avg.load_avg, 8216 cfs_rq_load_avg(cfs_rq) + 1); 8217 cfs_rq = group_cfs_rq(se); 8218 cfs_rq->h_load = load; 8219 cfs_rq->last_h_load_update = now; 8220 } 8221 } 8222 8223 static unsigned long task_h_load(struct task_struct *p) 8224 { 8225 struct cfs_rq *cfs_rq = task_cfs_rq(p); 8226 8227 update_cfs_rq_h_load(cfs_rq); 8228 return div64_ul(p->se.avg.load_avg * cfs_rq->h_load, 8229 cfs_rq_load_avg(cfs_rq) + 1); 8230 } 8231 #else 8232 static bool __update_blocked_fair(struct rq *rq, bool *done) 8233 { 8234 struct cfs_rq *cfs_rq = &rq->cfs; 8235 bool decayed; 8236 8237 decayed = update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq); 8238 if (cfs_rq_has_blocked(cfs_rq)) 8239 *done = false; 8240 8241 return decayed; 8242 } 8243 8244 static unsigned long task_h_load(struct task_struct *p) 8245 { 8246 return p->se.avg.load_avg; 8247 } 8248 #endif 8249 8250 static void update_blocked_averages(int cpu) 8251 { 8252 bool decayed = false, done = true; 8253 struct rq *rq = cpu_rq(cpu); 8254 struct rq_flags rf; 8255 8256 rq_lock_irqsave(rq, &rf); 8257 update_blocked_load_tick(rq); 8258 update_rq_clock(rq); 8259 8260 decayed |= __update_blocked_others(rq, &done); 8261 decayed |= __update_blocked_fair(rq, &done); 8262 8263 update_blocked_load_status(rq, !done); 8264 if (decayed) 8265 cpufreq_update_util(rq, 0); 8266 rq_unlock_irqrestore(rq, &rf); 8267 } 8268 8269 /********** Helpers for find_busiest_group ************************/ 8270 8271 /* 8272 * sg_lb_stats - stats of a sched_group required for load_balancing 8273 */ 8274 struct sg_lb_stats { 8275 unsigned long avg_load; /*Avg load across the CPUs of the group */ 8276 unsigned long group_load; /* Total load over the CPUs of the group */ 8277 unsigned long group_capacity; 8278 unsigned long group_util; /* Total utilization over the CPUs of the group */ 8279 unsigned long group_runnable; /* Total runnable time over the CPUs of the group */ 8280 unsigned int sum_nr_running; /* Nr of tasks running in the group */ 8281 unsigned int sum_h_nr_running; /* Nr of CFS tasks running in the group */ 8282 unsigned int idle_cpus; 8283 unsigned int group_weight; 8284 enum group_type group_type; 8285 unsigned int group_asym_packing; /* Tasks should be moved to preferred CPU */ 8286 unsigned long group_misfit_task_load; /* A CPU has a task too big for its capacity */ 8287 #ifdef CONFIG_NUMA_BALANCING 8288 unsigned int nr_numa_running; 8289 unsigned int nr_preferred_running; 8290 #endif 8291 }; 8292 8293 /* 8294 * sd_lb_stats - Structure to store the statistics of a sched_domain 8295 * during load balancing. 8296 */ 8297 struct sd_lb_stats { 8298 struct sched_group *busiest; /* Busiest group in this sd */ 8299 struct sched_group *local; /* Local group in this sd */ 8300 unsigned long total_load; /* Total load of all groups in sd */ 8301 unsigned long total_capacity; /* Total capacity of all groups in sd */ 8302 unsigned long avg_load; /* Average load across all groups in sd */ 8303 unsigned int prefer_sibling; /* tasks should go to sibling first */ 8304 8305 struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */ 8306 struct sg_lb_stats local_stat; /* Statistics of the local group */ 8307 }; 8308 8309 static inline void init_sd_lb_stats(struct sd_lb_stats *sds) 8310 { 8311 /* 8312 * Skimp on the clearing to avoid duplicate work. We can avoid clearing 8313 * local_stat because update_sg_lb_stats() does a full clear/assignment. 8314 * We must however set busiest_stat::group_type and 8315 * busiest_stat::idle_cpus to the worst busiest group because 8316 * update_sd_pick_busiest() reads these before assignment. 8317 */ 8318 *sds = (struct sd_lb_stats){ 8319 .busiest = NULL, 8320 .local = NULL, 8321 .total_load = 0UL, 8322 .total_capacity = 0UL, 8323 .busiest_stat = { 8324 .idle_cpus = UINT_MAX, 8325 .group_type = group_has_spare, 8326 }, 8327 }; 8328 } 8329 8330 static unsigned long scale_rt_capacity(int cpu) 8331 { 8332 struct rq *rq = cpu_rq(cpu); 8333 unsigned long max = arch_scale_cpu_capacity(cpu); 8334 unsigned long used, free; 8335 unsigned long irq; 8336 8337 irq = cpu_util_irq(rq); 8338 8339 if (unlikely(irq >= max)) 8340 return 1; 8341 8342 /* 8343 * avg_rt.util_avg and avg_dl.util_avg track binary signals 8344 * (running and not running) with weights 0 and 1024 respectively. 8345 * avg_thermal.load_avg tracks thermal pressure and the weighted 8346 * average uses the actual delta max capacity(load). 8347 */ 8348 used = READ_ONCE(rq->avg_rt.util_avg); 8349 used += READ_ONCE(rq->avg_dl.util_avg); 8350 used += thermal_load_avg(rq); 8351 8352 if (unlikely(used >= max)) 8353 return 1; 8354 8355 free = max - used; 8356 8357 return scale_irq_capacity(free, irq, max); 8358 } 8359 8360 static void update_cpu_capacity(struct sched_domain *sd, int cpu) 8361 { 8362 unsigned long capacity = scale_rt_capacity(cpu); 8363 struct sched_group *sdg = sd->groups; 8364 8365 cpu_rq(cpu)->cpu_capacity_orig = arch_scale_cpu_capacity(cpu); 8366 8367 if (!capacity) 8368 capacity = 1; 8369 8370 cpu_rq(cpu)->cpu_capacity = capacity; 8371 trace_sched_cpu_capacity_tp(cpu_rq(cpu)); 8372 8373 sdg->sgc->capacity = capacity; 8374 sdg->sgc->min_capacity = capacity; 8375 sdg->sgc->max_capacity = capacity; 8376 } 8377 8378 void update_group_capacity(struct sched_domain *sd, int cpu) 8379 { 8380 struct sched_domain *child = sd->child; 8381 struct sched_group *group, *sdg = sd->groups; 8382 unsigned long capacity, min_capacity, max_capacity; 8383 unsigned long interval; 8384 8385 interval = msecs_to_jiffies(sd->balance_interval); 8386 interval = clamp(interval, 1UL, max_load_balance_interval); 8387 sdg->sgc->next_update = jiffies + interval; 8388 8389 if (!child) { 8390 update_cpu_capacity(sd, cpu); 8391 return; 8392 } 8393 8394 capacity = 0; 8395 min_capacity = ULONG_MAX; 8396 max_capacity = 0; 8397 8398 if (child->flags & SD_OVERLAP) { 8399 /* 8400 * SD_OVERLAP domains cannot assume that child groups 8401 * span the current group. 8402 */ 8403 8404 for_each_cpu(cpu, sched_group_span(sdg)) { 8405 unsigned long cpu_cap = capacity_of(cpu); 8406 8407 capacity += cpu_cap; 8408 min_capacity = min(cpu_cap, min_capacity); 8409 max_capacity = max(cpu_cap, max_capacity); 8410 } 8411 } else { 8412 /* 8413 * !SD_OVERLAP domains can assume that child groups 8414 * span the current group. 8415 */ 8416 8417 group = child->groups; 8418 do { 8419 struct sched_group_capacity *sgc = group->sgc; 8420 8421 capacity += sgc->capacity; 8422 min_capacity = min(sgc->min_capacity, min_capacity); 8423 max_capacity = max(sgc->max_capacity, max_capacity); 8424 group = group->next; 8425 } while (group != child->groups); 8426 } 8427 8428 sdg->sgc->capacity = capacity; 8429 sdg->sgc->min_capacity = min_capacity; 8430 sdg->sgc->max_capacity = max_capacity; 8431 } 8432 8433 /* 8434 * Check whether the capacity of the rq has been noticeably reduced by side 8435 * activity. The imbalance_pct is used for the threshold. 8436 * Return true is the capacity is reduced 8437 */ 8438 static inline int 8439 check_cpu_capacity(struct rq *rq, struct sched_domain *sd) 8440 { 8441 return ((rq->cpu_capacity * sd->imbalance_pct) < 8442 (rq->cpu_capacity_orig * 100)); 8443 } 8444 8445 /* 8446 * Check whether a rq has a misfit task and if it looks like we can actually 8447 * help that task: we can migrate the task to a CPU of higher capacity, or 8448 * the task's current CPU is heavily pressured. 8449 */ 8450 static inline int check_misfit_status(struct rq *rq, struct sched_domain *sd) 8451 { 8452 return rq->misfit_task_load && 8453 (rq->cpu_capacity_orig < rq->rd->max_cpu_capacity || 8454 check_cpu_capacity(rq, sd)); 8455 } 8456 8457 /* 8458 * Group imbalance indicates (and tries to solve) the problem where balancing 8459 * groups is inadequate due to ->cpus_ptr constraints. 8460 * 8461 * Imagine a situation of two groups of 4 CPUs each and 4 tasks each with a 8462 * cpumask covering 1 CPU of the first group and 3 CPUs of the second group. 8463 * Something like: 8464 * 8465 * { 0 1 2 3 } { 4 5 6 7 } 8466 * * * * * 8467 * 8468 * If we were to balance group-wise we'd place two tasks in the first group and 8469 * two tasks in the second group. Clearly this is undesired as it will overload 8470 * cpu 3 and leave one of the CPUs in the second group unused. 8471 * 8472 * The current solution to this issue is detecting the skew in the first group 8473 * by noticing the lower domain failed to reach balance and had difficulty 8474 * moving tasks due to affinity constraints. 8475 * 8476 * When this is so detected; this group becomes a candidate for busiest; see 8477 * update_sd_pick_busiest(). And calculate_imbalance() and 8478 * find_busiest_group() avoid some of the usual balance conditions to allow it 8479 * to create an effective group imbalance. 8480 * 8481 * This is a somewhat tricky proposition since the next run might not find the 8482 * group imbalance and decide the groups need to be balanced again. A most 8483 * subtle and fragile situation. 8484 */ 8485 8486 static inline int sg_imbalanced(struct sched_group *group) 8487 { 8488 return group->sgc->imbalance; 8489 } 8490 8491 /* 8492 * group_has_capacity returns true if the group has spare capacity that could 8493 * be used by some tasks. 8494 * We consider that a group has spare capacity if the * number of task is 8495 * smaller than the number of CPUs or if the utilization is lower than the 8496 * available capacity for CFS tasks. 8497 * For the latter, we use a threshold to stabilize the state, to take into 8498 * account the variance of the tasks' load and to return true if the available 8499 * capacity in meaningful for the load balancer. 8500 * As an example, an available capacity of 1% can appear but it doesn't make 8501 * any benefit for the load balance. 8502 */ 8503 static inline bool 8504 group_has_capacity(unsigned int imbalance_pct, struct sg_lb_stats *sgs) 8505 { 8506 if (sgs->sum_nr_running < sgs->group_weight) 8507 return true; 8508 8509 if ((sgs->group_capacity * imbalance_pct) < 8510 (sgs->group_runnable * 100)) 8511 return false; 8512 8513 if ((sgs->group_capacity * 100) > 8514 (sgs->group_util * imbalance_pct)) 8515 return true; 8516 8517 return false; 8518 } 8519 8520 /* 8521 * group_is_overloaded returns true if the group has more tasks than it can 8522 * handle. 8523 * group_is_overloaded is not equals to !group_has_capacity because a group 8524 * with the exact right number of tasks, has no more spare capacity but is not 8525 * overloaded so both group_has_capacity and group_is_overloaded return 8526 * false. 8527 */ 8528 static inline bool 8529 group_is_overloaded(unsigned int imbalance_pct, struct sg_lb_stats *sgs) 8530 { 8531 if (sgs->sum_nr_running <= sgs->group_weight) 8532 return false; 8533 8534 if ((sgs->group_capacity * 100) < 8535 (sgs->group_util * imbalance_pct)) 8536 return true; 8537 8538 if ((sgs->group_capacity * imbalance_pct) < 8539 (sgs->group_runnable * 100)) 8540 return true; 8541 8542 return false; 8543 } 8544 8545 static inline enum 8546 group_type group_classify(unsigned int imbalance_pct, 8547 struct sched_group *group, 8548 struct sg_lb_stats *sgs) 8549 { 8550 if (group_is_overloaded(imbalance_pct, sgs)) 8551 return group_overloaded; 8552 8553 if (sg_imbalanced(group)) 8554 return group_imbalanced; 8555 8556 if (sgs->group_asym_packing) 8557 return group_asym_packing; 8558 8559 if (sgs->group_misfit_task_load) 8560 return group_misfit_task; 8561 8562 if (!group_has_capacity(imbalance_pct, sgs)) 8563 return group_fully_busy; 8564 8565 return group_has_spare; 8566 } 8567 8568 /** 8569 * asym_smt_can_pull_tasks - Check whether the load balancing CPU can pull tasks 8570 * @dst_cpu: Destination CPU of the load balancing 8571 * @sds: Load-balancing data with statistics of the local group 8572 * @sgs: Load-balancing statistics of the candidate busiest group 8573 * @sg: The candidate busiest group 8574 * 8575 * Check the state of the SMT siblings of both @sds::local and @sg and decide 8576 * if @dst_cpu can pull tasks. 8577 * 8578 * If @dst_cpu does not have SMT siblings, it can pull tasks if two or more of 8579 * the SMT siblings of @sg are busy. If only one CPU in @sg is busy, pull tasks 8580 * only if @dst_cpu has higher priority. 8581 * 8582 * If both @dst_cpu and @sg have SMT siblings, and @sg has exactly one more 8583 * busy CPU than @sds::local, let @dst_cpu pull tasks if it has higher priority. 8584 * Bigger imbalances in the number of busy CPUs will be dealt with in 8585 * update_sd_pick_busiest(). 8586 * 8587 * If @sg does not have SMT siblings, only pull tasks if all of the SMT siblings 8588 * of @dst_cpu are idle and @sg has lower priority. 8589 */ 8590 static bool asym_smt_can_pull_tasks(int dst_cpu, struct sd_lb_stats *sds, 8591 struct sg_lb_stats *sgs, 8592 struct sched_group *sg) 8593 { 8594 #ifdef CONFIG_SCHED_SMT 8595 bool local_is_smt, sg_is_smt; 8596 int sg_busy_cpus; 8597 8598 local_is_smt = sds->local->flags & SD_SHARE_CPUCAPACITY; 8599 sg_is_smt = sg->flags & SD_SHARE_CPUCAPACITY; 8600 8601 sg_busy_cpus = sgs->group_weight - sgs->idle_cpus; 8602 8603 if (!local_is_smt) { 8604 /* 8605 * If we are here, @dst_cpu is idle and does not have SMT 8606 * siblings. Pull tasks if candidate group has two or more 8607 * busy CPUs. 8608 */ 8609 if (sg_busy_cpus >= 2) /* implies sg_is_smt */ 8610 return true; 8611 8612 /* 8613 * @dst_cpu does not have SMT siblings. @sg may have SMT 8614 * siblings and only one is busy. In such case, @dst_cpu 8615 * can help if it has higher priority and is idle (i.e., 8616 * it has no running tasks). 8617 */ 8618 return sched_asym_prefer(dst_cpu, sg->asym_prefer_cpu); 8619 } 8620 8621 /* @dst_cpu has SMT siblings. */ 8622 8623 if (sg_is_smt) { 8624 int local_busy_cpus = sds->local->group_weight - 8625 sds->local_stat.idle_cpus; 8626 int busy_cpus_delta = sg_busy_cpus - local_busy_cpus; 8627 8628 if (busy_cpus_delta == 1) 8629 return sched_asym_prefer(dst_cpu, sg->asym_prefer_cpu); 8630 8631 return false; 8632 } 8633 8634 /* 8635 * @sg does not have SMT siblings. Ensure that @sds::local does not end 8636 * up with more than one busy SMT sibling and only pull tasks if there 8637 * are not busy CPUs (i.e., no CPU has running tasks). 8638 */ 8639 if (!sds->local_stat.sum_nr_running) 8640 return sched_asym_prefer(dst_cpu, sg->asym_prefer_cpu); 8641 8642 return false; 8643 #else 8644 /* Always return false so that callers deal with non-SMT cases. */ 8645 return false; 8646 #endif 8647 } 8648 8649 static inline bool 8650 sched_asym(struct lb_env *env, struct sd_lb_stats *sds, struct sg_lb_stats *sgs, 8651 struct sched_group *group) 8652 { 8653 /* Only do SMT checks if either local or candidate have SMT siblings */ 8654 if ((sds->local->flags & SD_SHARE_CPUCAPACITY) || 8655 (group->flags & SD_SHARE_CPUCAPACITY)) 8656 return asym_smt_can_pull_tasks(env->dst_cpu, sds, sgs, group); 8657 8658 return sched_asym_prefer(env->dst_cpu, group->asym_prefer_cpu); 8659 } 8660 8661 /** 8662 * update_sg_lb_stats - Update sched_group's statistics for load balancing. 8663 * @env: The load balancing environment. 8664 * @group: sched_group whose statistics are to be updated. 8665 * @sgs: variable to hold the statistics for this group. 8666 * @sg_status: Holds flag indicating the status of the sched_group 8667 */ 8668 static inline void update_sg_lb_stats(struct lb_env *env, 8669 struct sd_lb_stats *sds, 8670 struct sched_group *group, 8671 struct sg_lb_stats *sgs, 8672 int *sg_status) 8673 { 8674 int i, nr_running, local_group; 8675 8676 memset(sgs, 0, sizeof(*sgs)); 8677 8678 local_group = group == sds->local; 8679 8680 for_each_cpu_and(i, sched_group_span(group), env->cpus) { 8681 struct rq *rq = cpu_rq(i); 8682 8683 sgs->group_load += cpu_load(rq); 8684 sgs->group_util += cpu_util(i); 8685 sgs->group_runnable += cpu_runnable(rq); 8686 sgs->sum_h_nr_running += rq->cfs.h_nr_running; 8687 8688 nr_running = rq->nr_running; 8689 sgs->sum_nr_running += nr_running; 8690 8691 if (nr_running > 1) 8692 *sg_status |= SG_OVERLOAD; 8693 8694 if (cpu_overutilized(i)) 8695 *sg_status |= SG_OVERUTILIZED; 8696 8697 #ifdef CONFIG_NUMA_BALANCING 8698 sgs->nr_numa_running += rq->nr_numa_running; 8699 sgs->nr_preferred_running += rq->nr_preferred_running; 8700 #endif 8701 /* 8702 * No need to call idle_cpu() if nr_running is not 0 8703 */ 8704 if (!nr_running && idle_cpu(i)) { 8705 sgs->idle_cpus++; 8706 /* Idle cpu can't have misfit task */ 8707 continue; 8708 } 8709 8710 if (local_group) 8711 continue; 8712 8713 /* Check for a misfit task on the cpu */ 8714 if (env->sd->flags & SD_ASYM_CPUCAPACITY && 8715 sgs->group_misfit_task_load < rq->misfit_task_load) { 8716 sgs->group_misfit_task_load = rq->misfit_task_load; 8717 *sg_status |= SG_OVERLOAD; 8718 } 8719 } 8720 8721 sgs->group_capacity = group->sgc->capacity; 8722 8723 sgs->group_weight = group->group_weight; 8724 8725 /* Check if dst CPU is idle and preferred to this group */ 8726 if (!local_group && env->sd->flags & SD_ASYM_PACKING && 8727 env->idle != CPU_NOT_IDLE && sgs->sum_h_nr_running && 8728 sched_asym(env, sds, sgs, group)) { 8729 sgs->group_asym_packing = 1; 8730 } 8731 8732 sgs->group_type = group_classify(env->sd->imbalance_pct, group, sgs); 8733 8734 /* Computing avg_load makes sense only when group is overloaded */ 8735 if (sgs->group_type == group_overloaded) 8736 sgs->avg_load = (sgs->group_load * SCHED_CAPACITY_SCALE) / 8737 sgs->group_capacity; 8738 } 8739 8740 /** 8741 * update_sd_pick_busiest - return 1 on busiest group 8742 * @env: The load balancing environment. 8743 * @sds: sched_domain statistics 8744 * @sg: sched_group candidate to be checked for being the busiest 8745 * @sgs: sched_group statistics 8746 * 8747 * Determine if @sg is a busier group than the previously selected 8748 * busiest group. 8749 * 8750 * Return: %true if @sg is a busier group than the previously selected 8751 * busiest group. %false otherwise. 8752 */ 8753 static bool update_sd_pick_busiest(struct lb_env *env, 8754 struct sd_lb_stats *sds, 8755 struct sched_group *sg, 8756 struct sg_lb_stats *sgs) 8757 { 8758 struct sg_lb_stats *busiest = &sds->busiest_stat; 8759 8760 /* Make sure that there is at least one task to pull */ 8761 if (!sgs->sum_h_nr_running) 8762 return false; 8763 8764 /* 8765 * Don't try to pull misfit tasks we can't help. 8766 * We can use max_capacity here as reduction in capacity on some 8767 * CPUs in the group should either be possible to resolve 8768 * internally or be covered by avg_load imbalance (eventually). 8769 */ 8770 if (sgs->group_type == group_misfit_task && 8771 (!capacity_greater(capacity_of(env->dst_cpu), sg->sgc->max_capacity) || 8772 sds->local_stat.group_type != group_has_spare)) 8773 return false; 8774 8775 if (sgs->group_type > busiest->group_type) 8776 return true; 8777 8778 if (sgs->group_type < busiest->group_type) 8779 return false; 8780 8781 /* 8782 * The candidate and the current busiest group are the same type of 8783 * group. Let check which one is the busiest according to the type. 8784 */ 8785 8786 switch (sgs->group_type) { 8787 case group_overloaded: 8788 /* Select the overloaded group with highest avg_load. */ 8789 if (sgs->avg_load <= busiest->avg_load) 8790 return false; 8791 break; 8792 8793 case group_imbalanced: 8794 /* 8795 * Select the 1st imbalanced group as we don't have any way to 8796 * choose one more than another. 8797 */ 8798 return false; 8799 8800 case group_asym_packing: 8801 /* Prefer to move from lowest priority CPU's work */ 8802 if (sched_asym_prefer(sg->asym_prefer_cpu, sds->busiest->asym_prefer_cpu)) 8803 return false; 8804 break; 8805 8806 case group_misfit_task: 8807 /* 8808 * If we have more than one misfit sg go with the biggest 8809 * misfit. 8810 */ 8811 if (sgs->group_misfit_task_load < busiest->group_misfit_task_load) 8812 return false; 8813 break; 8814 8815 case group_fully_busy: 8816 /* 8817 * Select the fully busy group with highest avg_load. In 8818 * theory, there is no need to pull task from such kind of 8819 * group because tasks have all compute capacity that they need 8820 * but we can still improve the overall throughput by reducing 8821 * contention when accessing shared HW resources. 8822 * 8823 * XXX for now avg_load is not computed and always 0 so we 8824 * select the 1st one. 8825 */ 8826 if (sgs->avg_load <= busiest->avg_load) 8827 return false; 8828 break; 8829 8830 case group_has_spare: 8831 /* 8832 * Select not overloaded group with lowest number of idle cpus 8833 * and highest number of running tasks. We could also compare 8834 * the spare capacity which is more stable but it can end up 8835 * that the group has less spare capacity but finally more idle 8836 * CPUs which means less opportunity to pull tasks. 8837 */ 8838 if (sgs->idle_cpus > busiest->idle_cpus) 8839 return false; 8840 else if ((sgs->idle_cpus == busiest->idle_cpus) && 8841 (sgs->sum_nr_running <= busiest->sum_nr_running)) 8842 return false; 8843 8844 break; 8845 } 8846 8847 /* 8848 * Candidate sg has no more than one task per CPU and has higher 8849 * per-CPU capacity. Migrating tasks to less capable CPUs may harm 8850 * throughput. Maximize throughput, power/energy consequences are not 8851 * considered. 8852 */ 8853 if ((env->sd->flags & SD_ASYM_CPUCAPACITY) && 8854 (sgs->group_type <= group_fully_busy) && 8855 (capacity_greater(sg->sgc->min_capacity, capacity_of(env->dst_cpu)))) 8856 return false; 8857 8858 return true; 8859 } 8860 8861 #ifdef CONFIG_NUMA_BALANCING 8862 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs) 8863 { 8864 if (sgs->sum_h_nr_running > sgs->nr_numa_running) 8865 return regular; 8866 if (sgs->sum_h_nr_running > sgs->nr_preferred_running) 8867 return remote; 8868 return all; 8869 } 8870 8871 static inline enum fbq_type fbq_classify_rq(struct rq *rq) 8872 { 8873 if (rq->nr_running > rq->nr_numa_running) 8874 return regular; 8875 if (rq->nr_running > rq->nr_preferred_running) 8876 return remote; 8877 return all; 8878 } 8879 #else 8880 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs) 8881 { 8882 return all; 8883 } 8884 8885 static inline enum fbq_type fbq_classify_rq(struct rq *rq) 8886 { 8887 return regular; 8888 } 8889 #endif /* CONFIG_NUMA_BALANCING */ 8890 8891 8892 struct sg_lb_stats; 8893 8894 /* 8895 * task_running_on_cpu - return 1 if @p is running on @cpu. 8896 */ 8897 8898 static unsigned int task_running_on_cpu(int cpu, struct task_struct *p) 8899 { 8900 /* Task has no contribution or is new */ 8901 if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time)) 8902 return 0; 8903 8904 if (task_on_rq_queued(p)) 8905 return 1; 8906 8907 return 0; 8908 } 8909 8910 /** 8911 * idle_cpu_without - would a given CPU be idle without p ? 8912 * @cpu: the processor on which idleness is tested. 8913 * @p: task which should be ignored. 8914 * 8915 * Return: 1 if the CPU would be idle. 0 otherwise. 8916 */ 8917 static int idle_cpu_without(int cpu, struct task_struct *p) 8918 { 8919 struct rq *rq = cpu_rq(cpu); 8920 8921 if (rq->curr != rq->idle && rq->curr != p) 8922 return 0; 8923 8924 /* 8925 * rq->nr_running can't be used but an updated version without the 8926 * impact of p on cpu must be used instead. The updated nr_running 8927 * be computed and tested before calling idle_cpu_without(). 8928 */ 8929 8930 #ifdef CONFIG_SMP 8931 if (rq->ttwu_pending) 8932 return 0; 8933 #endif 8934 8935 return 1; 8936 } 8937 8938 /* 8939 * update_sg_wakeup_stats - Update sched_group's statistics for wakeup. 8940 * @sd: The sched_domain level to look for idlest group. 8941 * @group: sched_group whose statistics are to be updated. 8942 * @sgs: variable to hold the statistics for this group. 8943 * @p: The task for which we look for the idlest group/CPU. 8944 */ 8945 static inline void update_sg_wakeup_stats(struct sched_domain *sd, 8946 struct sched_group *group, 8947 struct sg_lb_stats *sgs, 8948 struct task_struct *p) 8949 { 8950 int i, nr_running; 8951 8952 memset(sgs, 0, sizeof(*sgs)); 8953 8954 for_each_cpu(i, sched_group_span(group)) { 8955 struct rq *rq = cpu_rq(i); 8956 unsigned int local; 8957 8958 sgs->group_load += cpu_load_without(rq, p); 8959 sgs->group_util += cpu_util_without(i, p); 8960 sgs->group_runnable += cpu_runnable_without(rq, p); 8961 local = task_running_on_cpu(i, p); 8962 sgs->sum_h_nr_running += rq->cfs.h_nr_running - local; 8963 8964 nr_running = rq->nr_running - local; 8965 sgs->sum_nr_running += nr_running; 8966 8967 /* 8968 * No need to call idle_cpu_without() if nr_running is not 0 8969 */ 8970 if (!nr_running && idle_cpu_without(i, p)) 8971 sgs->idle_cpus++; 8972 8973 } 8974 8975 /* Check if task fits in the group */ 8976 if (sd->flags & SD_ASYM_CPUCAPACITY && 8977 !task_fits_capacity(p, group->sgc->max_capacity)) { 8978 sgs->group_misfit_task_load = 1; 8979 } 8980 8981 sgs->group_capacity = group->sgc->capacity; 8982 8983 sgs->group_weight = group->group_weight; 8984 8985 sgs->group_type = group_classify(sd->imbalance_pct, group, sgs); 8986 8987 /* 8988 * Computing avg_load makes sense only when group is fully busy or 8989 * overloaded 8990 */ 8991 if (sgs->group_type == group_fully_busy || 8992 sgs->group_type == group_overloaded) 8993 sgs->avg_load = (sgs->group_load * SCHED_CAPACITY_SCALE) / 8994 sgs->group_capacity; 8995 } 8996 8997 static bool update_pick_idlest(struct sched_group *idlest, 8998 struct sg_lb_stats *idlest_sgs, 8999 struct sched_group *group, 9000 struct sg_lb_stats *sgs) 9001 { 9002 if (sgs->group_type < idlest_sgs->group_type) 9003 return true; 9004 9005 if (sgs->group_type > idlest_sgs->group_type) 9006 return false; 9007 9008 /* 9009 * The candidate and the current idlest group are the same type of 9010 * group. Let check which one is the idlest according to the type. 9011 */ 9012 9013 switch (sgs->group_type) { 9014 case group_overloaded: 9015 case group_fully_busy: 9016 /* Select the group with lowest avg_load. */ 9017 if (idlest_sgs->avg_load <= sgs->avg_load) 9018 return false; 9019 break; 9020 9021 case group_imbalanced: 9022 case group_asym_packing: 9023 /* Those types are not used in the slow wakeup path */ 9024 return false; 9025 9026 case group_misfit_task: 9027 /* Select group with the highest max capacity */ 9028 if (idlest->sgc->max_capacity >= group->sgc->max_capacity) 9029 return false; 9030 break; 9031 9032 case group_has_spare: 9033 /* Select group with most idle CPUs */ 9034 if (idlest_sgs->idle_cpus > sgs->idle_cpus) 9035 return false; 9036 9037 /* Select group with lowest group_util */ 9038 if (idlest_sgs->idle_cpus == sgs->idle_cpus && 9039 idlest_sgs->group_util <= sgs->group_util) 9040 return false; 9041 9042 break; 9043 } 9044 9045 return true; 9046 } 9047 9048 /* 9049 * Allow a NUMA imbalance if busy CPUs is less than 25% of the domain. 9050 * This is an approximation as the number of running tasks may not be 9051 * related to the number of busy CPUs due to sched_setaffinity. 9052 */ 9053 static inline bool allow_numa_imbalance(int dst_running, int dst_weight) 9054 { 9055 return (dst_running < (dst_weight >> 2)); 9056 } 9057 9058 /* 9059 * find_idlest_group() finds and returns the least busy CPU group within the 9060 * domain. 9061 * 9062 * Assumes p is allowed on at least one CPU in sd. 9063 */ 9064 static struct sched_group * 9065 find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu) 9066 { 9067 struct sched_group *idlest = NULL, *local = NULL, *group = sd->groups; 9068 struct sg_lb_stats local_sgs, tmp_sgs; 9069 struct sg_lb_stats *sgs; 9070 unsigned long imbalance; 9071 struct sg_lb_stats idlest_sgs = { 9072 .avg_load = UINT_MAX, 9073 .group_type = group_overloaded, 9074 }; 9075 9076 do { 9077 int local_group; 9078 9079 /* Skip over this group if it has no CPUs allowed */ 9080 if (!cpumask_intersects(sched_group_span(group), 9081 p->cpus_ptr)) 9082 continue; 9083 9084 /* Skip over this group if no cookie matched */ 9085 if (!sched_group_cookie_match(cpu_rq(this_cpu), p, group)) 9086 continue; 9087 9088 local_group = cpumask_test_cpu(this_cpu, 9089 sched_group_span(group)); 9090 9091 if (local_group) { 9092 sgs = &local_sgs; 9093 local = group; 9094 } else { 9095 sgs = &tmp_sgs; 9096 } 9097 9098 update_sg_wakeup_stats(sd, group, sgs, p); 9099 9100 if (!local_group && update_pick_idlest(idlest, &idlest_sgs, group, sgs)) { 9101 idlest = group; 9102 idlest_sgs = *sgs; 9103 } 9104 9105 } while (group = group->next, group != sd->groups); 9106 9107 9108 /* There is no idlest group to push tasks to */ 9109 if (!idlest) 9110 return NULL; 9111 9112 /* The local group has been skipped because of CPU affinity */ 9113 if (!local) 9114 return idlest; 9115 9116 /* 9117 * If the local group is idler than the selected idlest group 9118 * don't try and push the task. 9119 */ 9120 if (local_sgs.group_type < idlest_sgs.group_type) 9121 return NULL; 9122 9123 /* 9124 * If the local group is busier than the selected idlest group 9125 * try and push the task. 9126 */ 9127 if (local_sgs.group_type > idlest_sgs.group_type) 9128 return idlest; 9129 9130 switch (local_sgs.group_type) { 9131 case group_overloaded: 9132 case group_fully_busy: 9133 9134 /* Calculate allowed imbalance based on load */ 9135 imbalance = scale_load_down(NICE_0_LOAD) * 9136 (sd->imbalance_pct-100) / 100; 9137 9138 /* 9139 * When comparing groups across NUMA domains, it's possible for 9140 * the local domain to be very lightly loaded relative to the 9141 * remote domains but "imbalance" skews the comparison making 9142 * remote CPUs look much more favourable. When considering 9143 * cross-domain, add imbalance to the load on the remote node 9144 * and consider staying local. 9145 */ 9146 9147 if ((sd->flags & SD_NUMA) && 9148 ((idlest_sgs.avg_load + imbalance) >= local_sgs.avg_load)) 9149 return NULL; 9150 9151 /* 9152 * If the local group is less loaded than the selected 9153 * idlest group don't try and push any tasks. 9154 */ 9155 if (idlest_sgs.avg_load >= (local_sgs.avg_load + imbalance)) 9156 return NULL; 9157 9158 if (100 * local_sgs.avg_load <= sd->imbalance_pct * idlest_sgs.avg_load) 9159 return NULL; 9160 break; 9161 9162 case group_imbalanced: 9163 case group_asym_packing: 9164 /* Those type are not used in the slow wakeup path */ 9165 return NULL; 9166 9167 case group_misfit_task: 9168 /* Select group with the highest max capacity */ 9169 if (local->sgc->max_capacity >= idlest->sgc->max_capacity) 9170 return NULL; 9171 break; 9172 9173 case group_has_spare: 9174 if (sd->flags & SD_NUMA) { 9175 #ifdef CONFIG_NUMA_BALANCING 9176 int idlest_cpu; 9177 /* 9178 * If there is spare capacity at NUMA, try to select 9179 * the preferred node 9180 */ 9181 if (cpu_to_node(this_cpu) == p->numa_preferred_nid) 9182 return NULL; 9183 9184 idlest_cpu = cpumask_first(sched_group_span(idlest)); 9185 if (cpu_to_node(idlest_cpu) == p->numa_preferred_nid) 9186 return idlest; 9187 #endif 9188 /* 9189 * Otherwise, keep the task on this node to stay close 9190 * its wakeup source and improve locality. If there is 9191 * a real need of migration, periodic load balance will 9192 * take care of it. 9193 */ 9194 if (allow_numa_imbalance(local_sgs.sum_nr_running, sd->span_weight)) 9195 return NULL; 9196 } 9197 9198 /* 9199 * Select group with highest number of idle CPUs. We could also 9200 * compare the utilization which is more stable but it can end 9201 * up that the group has less spare capacity but finally more 9202 * idle CPUs which means more opportunity to run task. 9203 */ 9204 if (local_sgs.idle_cpus >= idlest_sgs.idle_cpus) 9205 return NULL; 9206 break; 9207 } 9208 9209 return idlest; 9210 } 9211 9212 /** 9213 * update_sd_lb_stats - Update sched_domain's statistics for load balancing. 9214 * @env: The load balancing environment. 9215 * @sds: variable to hold the statistics for this sched_domain. 9216 */ 9217 9218 static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds) 9219 { 9220 struct sched_domain *child = env->sd->child; 9221 struct sched_group *sg = env->sd->groups; 9222 struct sg_lb_stats *local = &sds->local_stat; 9223 struct sg_lb_stats tmp_sgs; 9224 int sg_status = 0; 9225 9226 do { 9227 struct sg_lb_stats *sgs = &tmp_sgs; 9228 int local_group; 9229 9230 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_span(sg)); 9231 if (local_group) { 9232 sds->local = sg; 9233 sgs = local; 9234 9235 if (env->idle != CPU_NEWLY_IDLE || 9236 time_after_eq(jiffies, sg->sgc->next_update)) 9237 update_group_capacity(env->sd, env->dst_cpu); 9238 } 9239 9240 update_sg_lb_stats(env, sds, sg, sgs, &sg_status); 9241 9242 if (local_group) 9243 goto next_group; 9244 9245 9246 if (update_sd_pick_busiest(env, sds, sg, sgs)) { 9247 sds->busiest = sg; 9248 sds->busiest_stat = *sgs; 9249 } 9250 9251 next_group: 9252 /* Now, start updating sd_lb_stats */ 9253 sds->total_load += sgs->group_load; 9254 sds->total_capacity += sgs->group_capacity; 9255 9256 sg = sg->next; 9257 } while (sg != env->sd->groups); 9258 9259 /* Tag domain that child domain prefers tasks go to siblings first */ 9260 sds->prefer_sibling = child && child->flags & SD_PREFER_SIBLING; 9261 9262 9263 if (env->sd->flags & SD_NUMA) 9264 env->fbq_type = fbq_classify_group(&sds->busiest_stat); 9265 9266 if (!env->sd->parent) { 9267 struct root_domain *rd = env->dst_rq->rd; 9268 9269 /* update overload indicator if we are at root domain */ 9270 WRITE_ONCE(rd->overload, sg_status & SG_OVERLOAD); 9271 9272 /* Update over-utilization (tipping point, U >= 0) indicator */ 9273 WRITE_ONCE(rd->overutilized, sg_status & SG_OVERUTILIZED); 9274 trace_sched_overutilized_tp(rd, sg_status & SG_OVERUTILIZED); 9275 } else if (sg_status & SG_OVERUTILIZED) { 9276 struct root_domain *rd = env->dst_rq->rd; 9277 9278 WRITE_ONCE(rd->overutilized, SG_OVERUTILIZED); 9279 trace_sched_overutilized_tp(rd, SG_OVERUTILIZED); 9280 } 9281 } 9282 9283 #define NUMA_IMBALANCE_MIN 2 9284 9285 static inline long adjust_numa_imbalance(int imbalance, 9286 int dst_running, int dst_weight) 9287 { 9288 if (!allow_numa_imbalance(dst_running, dst_weight)) 9289 return imbalance; 9290 9291 /* 9292 * Allow a small imbalance based on a simple pair of communicating 9293 * tasks that remain local when the destination is lightly loaded. 9294 */ 9295 if (imbalance <= NUMA_IMBALANCE_MIN) 9296 return 0; 9297 9298 return imbalance; 9299 } 9300 9301 /** 9302 * calculate_imbalance - Calculate the amount of imbalance present within the 9303 * groups of a given sched_domain during load balance. 9304 * @env: load balance environment 9305 * @sds: statistics of the sched_domain whose imbalance is to be calculated. 9306 */ 9307 static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds) 9308 { 9309 struct sg_lb_stats *local, *busiest; 9310 9311 local = &sds->local_stat; 9312 busiest = &sds->busiest_stat; 9313 9314 if (busiest->group_type == group_misfit_task) { 9315 /* Set imbalance to allow misfit tasks to be balanced. */ 9316 env->migration_type = migrate_misfit; 9317 env->imbalance = 1; 9318 return; 9319 } 9320 9321 if (busiest->group_type == group_asym_packing) { 9322 /* 9323 * In case of asym capacity, we will try to migrate all load to 9324 * the preferred CPU. 9325 */ 9326 env->migration_type = migrate_task; 9327 env->imbalance = busiest->sum_h_nr_running; 9328 return; 9329 } 9330 9331 if (busiest->group_type == group_imbalanced) { 9332 /* 9333 * In the group_imb case we cannot rely on group-wide averages 9334 * to ensure CPU-load equilibrium, try to move any task to fix 9335 * the imbalance. The next load balance will take care of 9336 * balancing back the system. 9337 */ 9338 env->migration_type = migrate_task; 9339 env->imbalance = 1; 9340 return; 9341 } 9342 9343 /* 9344 * Try to use spare capacity of local group without overloading it or 9345 * emptying busiest. 9346 */ 9347 if (local->group_type == group_has_spare) { 9348 if ((busiest->group_type > group_fully_busy) && 9349 !(env->sd->flags & SD_SHARE_PKG_RESOURCES)) { 9350 /* 9351 * If busiest is overloaded, try to fill spare 9352 * capacity. This might end up creating spare capacity 9353 * in busiest or busiest still being overloaded but 9354 * there is no simple way to directly compute the 9355 * amount of load to migrate in order to balance the 9356 * system. 9357 */ 9358 env->migration_type = migrate_util; 9359 env->imbalance = max(local->group_capacity, local->group_util) - 9360 local->group_util; 9361 9362 /* 9363 * In some cases, the group's utilization is max or even 9364 * higher than capacity because of migrations but the 9365 * local CPU is (newly) idle. There is at least one 9366 * waiting task in this overloaded busiest group. Let's 9367 * try to pull it. 9368 */ 9369 if (env->idle != CPU_NOT_IDLE && env->imbalance == 0) { 9370 env->migration_type = migrate_task; 9371 env->imbalance = 1; 9372 } 9373 9374 return; 9375 } 9376 9377 if (busiest->group_weight == 1 || sds->prefer_sibling) { 9378 unsigned int nr_diff = busiest->sum_nr_running; 9379 /* 9380 * When prefer sibling, evenly spread running tasks on 9381 * groups. 9382 */ 9383 env->migration_type = migrate_task; 9384 lsub_positive(&nr_diff, local->sum_nr_running); 9385 env->imbalance = nr_diff >> 1; 9386 } else { 9387 9388 /* 9389 * If there is no overload, we just want to even the number of 9390 * idle cpus. 9391 */ 9392 env->migration_type = migrate_task; 9393 env->imbalance = max_t(long, 0, (local->idle_cpus - 9394 busiest->idle_cpus) >> 1); 9395 } 9396 9397 /* Consider allowing a small imbalance between NUMA groups */ 9398 if (env->sd->flags & SD_NUMA) { 9399 env->imbalance = adjust_numa_imbalance(env->imbalance, 9400 busiest->sum_nr_running, busiest->group_weight); 9401 } 9402 9403 return; 9404 } 9405 9406 /* 9407 * Local is fully busy but has to take more load to relieve the 9408 * busiest group 9409 */ 9410 if (local->group_type < group_overloaded) { 9411 /* 9412 * Local will become overloaded so the avg_load metrics are 9413 * finally needed. 9414 */ 9415 9416 local->avg_load = (local->group_load * SCHED_CAPACITY_SCALE) / 9417 local->group_capacity; 9418 9419 sds->avg_load = (sds->total_load * SCHED_CAPACITY_SCALE) / 9420 sds->total_capacity; 9421 /* 9422 * If the local group is more loaded than the selected 9423 * busiest group don't try to pull any tasks. 9424 */ 9425 if (local->avg_load >= busiest->avg_load) { 9426 env->imbalance = 0; 9427 return; 9428 } 9429 } 9430 9431 /* 9432 * Both group are or will become overloaded and we're trying to get all 9433 * the CPUs to the average_load, so we don't want to push ourselves 9434 * above the average load, nor do we wish to reduce the max loaded CPU 9435 * below the average load. At the same time, we also don't want to 9436 * reduce the group load below the group capacity. Thus we look for 9437 * the minimum possible imbalance. 9438 */ 9439 env->migration_type = migrate_load; 9440 env->imbalance = min( 9441 (busiest->avg_load - sds->avg_load) * busiest->group_capacity, 9442 (sds->avg_load - local->avg_load) * local->group_capacity 9443 ) / SCHED_CAPACITY_SCALE; 9444 } 9445 9446 /******* find_busiest_group() helpers end here *********************/ 9447 9448 /* 9449 * Decision matrix according to the local and busiest group type: 9450 * 9451 * busiest \ local has_spare fully_busy misfit asym imbalanced overloaded 9452 * has_spare nr_idle balanced N/A N/A balanced balanced 9453 * fully_busy nr_idle nr_idle N/A N/A balanced balanced 9454 * misfit_task force N/A N/A N/A force force 9455 * asym_packing force force N/A N/A force force 9456 * imbalanced force force N/A N/A force force 9457 * overloaded force force N/A N/A force avg_load 9458 * 9459 * N/A : Not Applicable because already filtered while updating 9460 * statistics. 9461 * balanced : The system is balanced for these 2 groups. 9462 * force : Calculate the imbalance as load migration is probably needed. 9463 * avg_load : Only if imbalance is significant enough. 9464 * nr_idle : dst_cpu is not busy and the number of idle CPUs is quite 9465 * different in groups. 9466 */ 9467 9468 /** 9469 * find_busiest_group - Returns the busiest group within the sched_domain 9470 * if there is an imbalance. 9471 * 9472 * Also calculates the amount of runnable load which should be moved 9473 * to restore balance. 9474 * 9475 * @env: The load balancing environment. 9476 * 9477 * Return: - The busiest group if imbalance exists. 9478 */ 9479 static struct sched_group *find_busiest_group(struct lb_env *env) 9480 { 9481 struct sg_lb_stats *local, *busiest; 9482 struct sd_lb_stats sds; 9483 9484 init_sd_lb_stats(&sds); 9485 9486 /* 9487 * Compute the various statistics relevant for load balancing at 9488 * this level. 9489 */ 9490 update_sd_lb_stats(env, &sds); 9491 9492 if (sched_energy_enabled()) { 9493 struct root_domain *rd = env->dst_rq->rd; 9494 9495 if (rcu_dereference(rd->pd) && !READ_ONCE(rd->overutilized)) 9496 goto out_balanced; 9497 } 9498 9499 local = &sds.local_stat; 9500 busiest = &sds.busiest_stat; 9501 9502 /* There is no busy sibling group to pull tasks from */ 9503 if (!sds.busiest) 9504 goto out_balanced; 9505 9506 /* Misfit tasks should be dealt with regardless of the avg load */ 9507 if (busiest->group_type == group_misfit_task) 9508 goto force_balance; 9509 9510 /* ASYM feature bypasses nice load balance check */ 9511 if (busiest->group_type == group_asym_packing) 9512 goto force_balance; 9513 9514 /* 9515 * If the busiest group is imbalanced the below checks don't 9516 * work because they assume all things are equal, which typically 9517 * isn't true due to cpus_ptr constraints and the like. 9518 */ 9519 if (busiest->group_type == group_imbalanced) 9520 goto force_balance; 9521 9522 /* 9523 * If the local group is busier than the selected busiest group 9524 * don't try and pull any tasks. 9525 */ 9526 if (local->group_type > busiest->group_type) 9527 goto out_balanced; 9528 9529 /* 9530 * When groups are overloaded, use the avg_load to ensure fairness 9531 * between tasks. 9532 */ 9533 if (local->group_type == group_overloaded) { 9534 /* 9535 * If the local group is more loaded than the selected 9536 * busiest group don't try to pull any tasks. 9537 */ 9538 if (local->avg_load >= busiest->avg_load) 9539 goto out_balanced; 9540 9541 /* XXX broken for overlapping NUMA groups */ 9542 sds.avg_load = (sds.total_load * SCHED_CAPACITY_SCALE) / 9543 sds.total_capacity; 9544 9545 /* 9546 * Don't pull any tasks if this group is already above the 9547 * domain average load. 9548 */ 9549 if (local->avg_load >= sds.avg_load) 9550 goto out_balanced; 9551 9552 /* 9553 * If the busiest group is more loaded, use imbalance_pct to be 9554 * conservative. 9555 */ 9556 if (100 * busiest->avg_load <= 9557 env->sd->imbalance_pct * local->avg_load) 9558 goto out_balanced; 9559 } 9560 9561 /* Try to move all excess tasks to child's sibling domain */ 9562 if (sds.prefer_sibling && local->group_type == group_has_spare && 9563 busiest->sum_nr_running > local->sum_nr_running + 1) 9564 goto force_balance; 9565 9566 if (busiest->group_type != group_overloaded) { 9567 if (env->idle == CPU_NOT_IDLE) 9568 /* 9569 * If the busiest group is not overloaded (and as a 9570 * result the local one too) but this CPU is already 9571 * busy, let another idle CPU try to pull task. 9572 */ 9573 goto out_balanced; 9574 9575 if (busiest->group_weight > 1 && 9576 local->idle_cpus <= (busiest->idle_cpus + 1)) 9577 /* 9578 * If the busiest group is not overloaded 9579 * and there is no imbalance between this and busiest 9580 * group wrt idle CPUs, it is balanced. The imbalance 9581 * becomes significant if the diff is greater than 1 9582 * otherwise we might end up to just move the imbalance 9583 * on another group. Of course this applies only if 9584 * there is more than 1 CPU per group. 9585 */ 9586 goto out_balanced; 9587 9588 if (busiest->sum_h_nr_running == 1) 9589 /* 9590 * busiest doesn't have any tasks waiting to run 9591 */ 9592 goto out_balanced; 9593 } 9594 9595 force_balance: 9596 /* Looks like there is an imbalance. Compute it */ 9597 calculate_imbalance(env, &sds); 9598 return env->imbalance ? sds.busiest : NULL; 9599 9600 out_balanced: 9601 env->imbalance = 0; 9602 return NULL; 9603 } 9604 9605 /* 9606 * find_busiest_queue - find the busiest runqueue among the CPUs in the group. 9607 */ 9608 static struct rq *find_busiest_queue(struct lb_env *env, 9609 struct sched_group *group) 9610 { 9611 struct rq *busiest = NULL, *rq; 9612 unsigned long busiest_util = 0, busiest_load = 0, busiest_capacity = 1; 9613 unsigned int busiest_nr = 0; 9614 int i; 9615 9616 for_each_cpu_and(i, sched_group_span(group), env->cpus) { 9617 unsigned long capacity, load, util; 9618 unsigned int nr_running; 9619 enum fbq_type rt; 9620 9621 rq = cpu_rq(i); 9622 rt = fbq_classify_rq(rq); 9623 9624 /* 9625 * We classify groups/runqueues into three groups: 9626 * - regular: there are !numa tasks 9627 * - remote: there are numa tasks that run on the 'wrong' node 9628 * - all: there is no distinction 9629 * 9630 * In order to avoid migrating ideally placed numa tasks, 9631 * ignore those when there's better options. 9632 * 9633 * If we ignore the actual busiest queue to migrate another 9634 * task, the next balance pass can still reduce the busiest 9635 * queue by moving tasks around inside the node. 9636 * 9637 * If we cannot move enough load due to this classification 9638 * the next pass will adjust the group classification and 9639 * allow migration of more tasks. 9640 * 9641 * Both cases only affect the total convergence complexity. 9642 */ 9643 if (rt > env->fbq_type) 9644 continue; 9645 9646 nr_running = rq->cfs.h_nr_running; 9647 if (!nr_running) 9648 continue; 9649 9650 capacity = capacity_of(i); 9651 9652 /* 9653 * For ASYM_CPUCAPACITY domains, don't pick a CPU that could 9654 * eventually lead to active_balancing high->low capacity. 9655 * Higher per-CPU capacity is considered better than balancing 9656 * average load. 9657 */ 9658 if (env->sd->flags & SD_ASYM_CPUCAPACITY && 9659 !capacity_greater(capacity_of(env->dst_cpu), capacity) && 9660 nr_running == 1) 9661 continue; 9662 9663 /* Make sure we only pull tasks from a CPU of lower priority */ 9664 if ((env->sd->flags & SD_ASYM_PACKING) && 9665 sched_asym_prefer(i, env->dst_cpu) && 9666 nr_running == 1) 9667 continue; 9668 9669 switch (env->migration_type) { 9670 case migrate_load: 9671 /* 9672 * When comparing with load imbalance, use cpu_load() 9673 * which is not scaled with the CPU capacity. 9674 */ 9675 load = cpu_load(rq); 9676 9677 if (nr_running == 1 && load > env->imbalance && 9678 !check_cpu_capacity(rq, env->sd)) 9679 break; 9680 9681 /* 9682 * For the load comparisons with the other CPUs, 9683 * consider the cpu_load() scaled with the CPU 9684 * capacity, so that the load can be moved away 9685 * from the CPU that is potentially running at a 9686 * lower capacity. 9687 * 9688 * Thus we're looking for max(load_i / capacity_i), 9689 * crosswise multiplication to rid ourselves of the 9690 * division works out to: 9691 * load_i * capacity_j > load_j * capacity_i; 9692 * where j is our previous maximum. 9693 */ 9694 if (load * busiest_capacity > busiest_load * capacity) { 9695 busiest_load = load; 9696 busiest_capacity = capacity; 9697 busiest = rq; 9698 } 9699 break; 9700 9701 case migrate_util: 9702 util = cpu_util(cpu_of(rq)); 9703 9704 /* 9705 * Don't try to pull utilization from a CPU with one 9706 * running task. Whatever its utilization, we will fail 9707 * detach the task. 9708 */ 9709 if (nr_running <= 1) 9710 continue; 9711 9712 if (busiest_util < util) { 9713 busiest_util = util; 9714 busiest = rq; 9715 } 9716 break; 9717 9718 case migrate_task: 9719 if (busiest_nr < nr_running) { 9720 busiest_nr = nr_running; 9721 busiest = rq; 9722 } 9723 break; 9724 9725 case migrate_misfit: 9726 /* 9727 * For ASYM_CPUCAPACITY domains with misfit tasks we 9728 * simply seek the "biggest" misfit task. 9729 */ 9730 if (rq->misfit_task_load > busiest_load) { 9731 busiest_load = rq->misfit_task_load; 9732 busiest = rq; 9733 } 9734 9735 break; 9736 9737 } 9738 } 9739 9740 return busiest; 9741 } 9742 9743 /* 9744 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but 9745 * so long as it is large enough. 9746 */ 9747 #define MAX_PINNED_INTERVAL 512 9748 9749 static inline bool 9750 asym_active_balance(struct lb_env *env) 9751 { 9752 /* 9753 * ASYM_PACKING needs to force migrate tasks from busy but 9754 * lower priority CPUs in order to pack all tasks in the 9755 * highest priority CPUs. 9756 */ 9757 return env->idle != CPU_NOT_IDLE && (env->sd->flags & SD_ASYM_PACKING) && 9758 sched_asym_prefer(env->dst_cpu, env->src_cpu); 9759 } 9760 9761 static inline bool 9762 imbalanced_active_balance(struct lb_env *env) 9763 { 9764 struct sched_domain *sd = env->sd; 9765 9766 /* 9767 * The imbalanced case includes the case of pinned tasks preventing a fair 9768 * distribution of the load on the system but also the even distribution of the 9769 * threads on a system with spare capacity 9770 */ 9771 if ((env->migration_type == migrate_task) && 9772 (sd->nr_balance_failed > sd->cache_nice_tries+2)) 9773 return 1; 9774 9775 return 0; 9776 } 9777 9778 static int need_active_balance(struct lb_env *env) 9779 { 9780 struct sched_domain *sd = env->sd; 9781 9782 if (asym_active_balance(env)) 9783 return 1; 9784 9785 if (imbalanced_active_balance(env)) 9786 return 1; 9787 9788 /* 9789 * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task. 9790 * It's worth migrating the task if the src_cpu's capacity is reduced 9791 * because of other sched_class or IRQs if more capacity stays 9792 * available on dst_cpu. 9793 */ 9794 if ((env->idle != CPU_NOT_IDLE) && 9795 (env->src_rq->cfs.h_nr_running == 1)) { 9796 if ((check_cpu_capacity(env->src_rq, sd)) && 9797 (capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100)) 9798 return 1; 9799 } 9800 9801 if (env->migration_type == migrate_misfit) 9802 return 1; 9803 9804 return 0; 9805 } 9806 9807 static int active_load_balance_cpu_stop(void *data); 9808 9809 static int should_we_balance(struct lb_env *env) 9810 { 9811 struct sched_group *sg = env->sd->groups; 9812 int cpu; 9813 9814 /* 9815 * Ensure the balancing environment is consistent; can happen 9816 * when the softirq triggers 'during' hotplug. 9817 */ 9818 if (!cpumask_test_cpu(env->dst_cpu, env->cpus)) 9819 return 0; 9820 9821 /* 9822 * In the newly idle case, we will allow all the CPUs 9823 * to do the newly idle load balance. 9824 */ 9825 if (env->idle == CPU_NEWLY_IDLE) 9826 return 1; 9827 9828 /* Try to find first idle CPU */ 9829 for_each_cpu_and(cpu, group_balance_mask(sg), env->cpus) { 9830 if (!idle_cpu(cpu)) 9831 continue; 9832 9833 /* Are we the first idle CPU? */ 9834 return cpu == env->dst_cpu; 9835 } 9836 9837 /* Are we the first CPU of this group ? */ 9838 return group_balance_cpu(sg) == env->dst_cpu; 9839 } 9840 9841 /* 9842 * Check this_cpu to ensure it is balanced within domain. Attempt to move 9843 * tasks if there is an imbalance. 9844 */ 9845 static int load_balance(int this_cpu, struct rq *this_rq, 9846 struct sched_domain *sd, enum cpu_idle_type idle, 9847 int *continue_balancing) 9848 { 9849 int ld_moved, cur_ld_moved, active_balance = 0; 9850 struct sched_domain *sd_parent = sd->parent; 9851 struct sched_group *group; 9852 struct rq *busiest; 9853 struct rq_flags rf; 9854 struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask); 9855 9856 struct lb_env env = { 9857 .sd = sd, 9858 .dst_cpu = this_cpu, 9859 .dst_rq = this_rq, 9860 .dst_grpmask = sched_group_span(sd->groups), 9861 .idle = idle, 9862 .loop_break = sched_nr_migrate_break, 9863 .cpus = cpus, 9864 .fbq_type = all, 9865 .tasks = LIST_HEAD_INIT(env.tasks), 9866 }; 9867 9868 cpumask_and(cpus, sched_domain_span(sd), cpu_active_mask); 9869 9870 schedstat_inc(sd->lb_count[idle]); 9871 9872 redo: 9873 if (!should_we_balance(&env)) { 9874 *continue_balancing = 0; 9875 goto out_balanced; 9876 } 9877 9878 group = find_busiest_group(&env); 9879 if (!group) { 9880 schedstat_inc(sd->lb_nobusyg[idle]); 9881 goto out_balanced; 9882 } 9883 9884 busiest = find_busiest_queue(&env, group); 9885 if (!busiest) { 9886 schedstat_inc(sd->lb_nobusyq[idle]); 9887 goto out_balanced; 9888 } 9889 9890 BUG_ON(busiest == env.dst_rq); 9891 9892 schedstat_add(sd->lb_imbalance[idle], env.imbalance); 9893 9894 env.src_cpu = busiest->cpu; 9895 env.src_rq = busiest; 9896 9897 ld_moved = 0; 9898 /* Clear this flag as soon as we find a pullable task */ 9899 env.flags |= LBF_ALL_PINNED; 9900 if (busiest->nr_running > 1) { 9901 /* 9902 * Attempt to move tasks. If find_busiest_group has found 9903 * an imbalance but busiest->nr_running <= 1, the group is 9904 * still unbalanced. ld_moved simply stays zero, so it is 9905 * correctly treated as an imbalance. 9906 */ 9907 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running); 9908 9909 more_balance: 9910 rq_lock_irqsave(busiest, &rf); 9911 update_rq_clock(busiest); 9912 9913 /* 9914 * cur_ld_moved - load moved in current iteration 9915 * ld_moved - cumulative load moved across iterations 9916 */ 9917 cur_ld_moved = detach_tasks(&env); 9918 9919 /* 9920 * We've detached some tasks from busiest_rq. Every 9921 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely 9922 * unlock busiest->lock, and we are able to be sure 9923 * that nobody can manipulate the tasks in parallel. 9924 * See task_rq_lock() family for the details. 9925 */ 9926 9927 rq_unlock(busiest, &rf); 9928 9929 if (cur_ld_moved) { 9930 attach_tasks(&env); 9931 ld_moved += cur_ld_moved; 9932 } 9933 9934 local_irq_restore(rf.flags); 9935 9936 if (env.flags & LBF_NEED_BREAK) { 9937 env.flags &= ~LBF_NEED_BREAK; 9938 goto more_balance; 9939 } 9940 9941 /* 9942 * Revisit (affine) tasks on src_cpu that couldn't be moved to 9943 * us and move them to an alternate dst_cpu in our sched_group 9944 * where they can run. The upper limit on how many times we 9945 * iterate on same src_cpu is dependent on number of CPUs in our 9946 * sched_group. 9947 * 9948 * This changes load balance semantics a bit on who can move 9949 * load to a given_cpu. In addition to the given_cpu itself 9950 * (or a ilb_cpu acting on its behalf where given_cpu is 9951 * nohz-idle), we now have balance_cpu in a position to move 9952 * load to given_cpu. In rare situations, this may cause 9953 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding 9954 * _independently_ and at _same_ time to move some load to 9955 * given_cpu) causing excess load to be moved to given_cpu. 9956 * This however should not happen so much in practice and 9957 * moreover subsequent load balance cycles should correct the 9958 * excess load moved. 9959 */ 9960 if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) { 9961 9962 /* Prevent to re-select dst_cpu via env's CPUs */ 9963 __cpumask_clear_cpu(env.dst_cpu, env.cpus); 9964 9965 env.dst_rq = cpu_rq(env.new_dst_cpu); 9966 env.dst_cpu = env.new_dst_cpu; 9967 env.flags &= ~LBF_DST_PINNED; 9968 env.loop = 0; 9969 env.loop_break = sched_nr_migrate_break; 9970 9971 /* 9972 * Go back to "more_balance" rather than "redo" since we 9973 * need to continue with same src_cpu. 9974 */ 9975 goto more_balance; 9976 } 9977 9978 /* 9979 * We failed to reach balance because of affinity. 9980 */ 9981 if (sd_parent) { 9982 int *group_imbalance = &sd_parent->groups->sgc->imbalance; 9983 9984 if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0) 9985 *group_imbalance = 1; 9986 } 9987 9988 /* All tasks on this runqueue were pinned by CPU affinity */ 9989 if (unlikely(env.flags & LBF_ALL_PINNED)) { 9990 __cpumask_clear_cpu(cpu_of(busiest), cpus); 9991 /* 9992 * Attempting to continue load balancing at the current 9993 * sched_domain level only makes sense if there are 9994 * active CPUs remaining as possible busiest CPUs to 9995 * pull load from which are not contained within the 9996 * destination group that is receiving any migrated 9997 * load. 9998 */ 9999 if (!cpumask_subset(cpus, env.dst_grpmask)) { 10000 env.loop = 0; 10001 env.loop_break = sched_nr_migrate_break; 10002 goto redo; 10003 } 10004 goto out_all_pinned; 10005 } 10006 } 10007 10008 if (!ld_moved) { 10009 schedstat_inc(sd->lb_failed[idle]); 10010 /* 10011 * Increment the failure counter only on periodic balance. 10012 * We do not want newidle balance, which can be very 10013 * frequent, pollute the failure counter causing 10014 * excessive cache_hot migrations and active balances. 10015 */ 10016 if (idle != CPU_NEWLY_IDLE) 10017 sd->nr_balance_failed++; 10018 10019 if (need_active_balance(&env)) { 10020 unsigned long flags; 10021 10022 raw_spin_rq_lock_irqsave(busiest, flags); 10023 10024 /* 10025 * Don't kick the active_load_balance_cpu_stop, 10026 * if the curr task on busiest CPU can't be 10027 * moved to this_cpu: 10028 */ 10029 if (!cpumask_test_cpu(this_cpu, busiest->curr->cpus_ptr)) { 10030 raw_spin_rq_unlock_irqrestore(busiest, flags); 10031 goto out_one_pinned; 10032 } 10033 10034 /* Record that we found at least one task that could run on this_cpu */ 10035 env.flags &= ~LBF_ALL_PINNED; 10036 10037 /* 10038 * ->active_balance synchronizes accesses to 10039 * ->active_balance_work. Once set, it's cleared 10040 * only after active load balance is finished. 10041 */ 10042 if (!busiest->active_balance) { 10043 busiest->active_balance = 1; 10044 busiest->push_cpu = this_cpu; 10045 active_balance = 1; 10046 } 10047 raw_spin_rq_unlock_irqrestore(busiest, flags); 10048 10049 if (active_balance) { 10050 stop_one_cpu_nowait(cpu_of(busiest), 10051 active_load_balance_cpu_stop, busiest, 10052 &busiest->active_balance_work); 10053 } 10054 } 10055 } else { 10056 sd->nr_balance_failed = 0; 10057 } 10058 10059 if (likely(!active_balance) || need_active_balance(&env)) { 10060 /* We were unbalanced, so reset the balancing interval */ 10061 sd->balance_interval = sd->min_interval; 10062 } 10063 10064 goto out; 10065 10066 out_balanced: 10067 /* 10068 * We reach balance although we may have faced some affinity 10069 * constraints. Clear the imbalance flag only if other tasks got 10070 * a chance to move and fix the imbalance. 10071 */ 10072 if (sd_parent && !(env.flags & LBF_ALL_PINNED)) { 10073 int *group_imbalance = &sd_parent->groups->sgc->imbalance; 10074 10075 if (*group_imbalance) 10076 *group_imbalance = 0; 10077 } 10078 10079 out_all_pinned: 10080 /* 10081 * We reach balance because all tasks are pinned at this level so 10082 * we can't migrate them. Let the imbalance flag set so parent level 10083 * can try to migrate them. 10084 */ 10085 schedstat_inc(sd->lb_balanced[idle]); 10086 10087 sd->nr_balance_failed = 0; 10088 10089 out_one_pinned: 10090 ld_moved = 0; 10091 10092 /* 10093 * newidle_balance() disregards balance intervals, so we could 10094 * repeatedly reach this code, which would lead to balance_interval 10095 * skyrocketing in a short amount of time. Skip the balance_interval 10096 * increase logic to avoid that. 10097 */ 10098 if (env.idle == CPU_NEWLY_IDLE) 10099 goto out; 10100 10101 /* tune up the balancing interval */ 10102 if ((env.flags & LBF_ALL_PINNED && 10103 sd->balance_interval < MAX_PINNED_INTERVAL) || 10104 sd->balance_interval < sd->max_interval) 10105 sd->balance_interval *= 2; 10106 out: 10107 return ld_moved; 10108 } 10109 10110 static inline unsigned long 10111 get_sd_balance_interval(struct sched_domain *sd, int cpu_busy) 10112 { 10113 unsigned long interval = sd->balance_interval; 10114 10115 if (cpu_busy) 10116 interval *= sd->busy_factor; 10117 10118 /* scale ms to jiffies */ 10119 interval = msecs_to_jiffies(interval); 10120 10121 /* 10122 * Reduce likelihood of busy balancing at higher domains racing with 10123 * balancing at lower domains by preventing their balancing periods 10124 * from being multiples of each other. 10125 */ 10126 if (cpu_busy) 10127 interval -= 1; 10128 10129 interval = clamp(interval, 1UL, max_load_balance_interval); 10130 10131 return interval; 10132 } 10133 10134 static inline void 10135 update_next_balance(struct sched_domain *sd, unsigned long *next_balance) 10136 { 10137 unsigned long interval, next; 10138 10139 /* used by idle balance, so cpu_busy = 0 */ 10140 interval = get_sd_balance_interval(sd, 0); 10141 next = sd->last_balance + interval; 10142 10143 if (time_after(*next_balance, next)) 10144 *next_balance = next; 10145 } 10146 10147 /* 10148 * active_load_balance_cpu_stop is run by the CPU stopper. It pushes 10149 * running tasks off the busiest CPU onto idle CPUs. It requires at 10150 * least 1 task to be running on each physical CPU where possible, and 10151 * avoids physical / logical imbalances. 10152 */ 10153 static int active_load_balance_cpu_stop(void *data) 10154 { 10155 struct rq *busiest_rq = data; 10156 int busiest_cpu = cpu_of(busiest_rq); 10157 int target_cpu = busiest_rq->push_cpu; 10158 struct rq *target_rq = cpu_rq(target_cpu); 10159 struct sched_domain *sd; 10160 struct task_struct *p = NULL; 10161 struct rq_flags rf; 10162 10163 rq_lock_irq(busiest_rq, &rf); 10164 /* 10165 * Between queueing the stop-work and running it is a hole in which 10166 * CPUs can become inactive. We should not move tasks from or to 10167 * inactive CPUs. 10168 */ 10169 if (!cpu_active(busiest_cpu) || !cpu_active(target_cpu)) 10170 goto out_unlock; 10171 10172 /* Make sure the requested CPU hasn't gone down in the meantime: */ 10173 if (unlikely(busiest_cpu != smp_processor_id() || 10174 !busiest_rq->active_balance)) 10175 goto out_unlock; 10176 10177 /* Is there any task to move? */ 10178 if (busiest_rq->nr_running <= 1) 10179 goto out_unlock; 10180 10181 /* 10182 * This condition is "impossible", if it occurs 10183 * we need to fix it. Originally reported by 10184 * Bjorn Helgaas on a 128-CPU setup. 10185 */ 10186 BUG_ON(busiest_rq == target_rq); 10187 10188 /* Search for an sd spanning us and the target CPU. */ 10189 rcu_read_lock(); 10190 for_each_domain(target_cpu, sd) { 10191 if (cpumask_test_cpu(busiest_cpu, sched_domain_span(sd))) 10192 break; 10193 } 10194 10195 if (likely(sd)) { 10196 struct lb_env env = { 10197 .sd = sd, 10198 .dst_cpu = target_cpu, 10199 .dst_rq = target_rq, 10200 .src_cpu = busiest_rq->cpu, 10201 .src_rq = busiest_rq, 10202 .idle = CPU_IDLE, 10203 .flags = LBF_ACTIVE_LB, 10204 }; 10205 10206 schedstat_inc(sd->alb_count); 10207 update_rq_clock(busiest_rq); 10208 10209 p = detach_one_task(&env); 10210 if (p) { 10211 schedstat_inc(sd->alb_pushed); 10212 /* Active balancing done, reset the failure counter. */ 10213 sd->nr_balance_failed = 0; 10214 } else { 10215 schedstat_inc(sd->alb_failed); 10216 } 10217 } 10218 rcu_read_unlock(); 10219 out_unlock: 10220 busiest_rq->active_balance = 0; 10221 rq_unlock(busiest_rq, &rf); 10222 10223 if (p) 10224 attach_one_task(target_rq, p); 10225 10226 local_irq_enable(); 10227 10228 return 0; 10229 } 10230 10231 static DEFINE_SPINLOCK(balancing); 10232 10233 /* 10234 * Scale the max load_balance interval with the number of CPUs in the system. 10235 * This trades load-balance latency on larger machines for less cross talk. 10236 */ 10237 void update_max_interval(void) 10238 { 10239 max_load_balance_interval = HZ*num_online_cpus()/10; 10240 } 10241 10242 static inline bool update_newidle_cost(struct sched_domain *sd, u64 cost) 10243 { 10244 if (cost > sd->max_newidle_lb_cost) { 10245 /* 10246 * Track max cost of a domain to make sure to not delay the 10247 * next wakeup on the CPU. 10248 */ 10249 sd->max_newidle_lb_cost = cost; 10250 sd->last_decay_max_lb_cost = jiffies; 10251 } else if (time_after(jiffies, sd->last_decay_max_lb_cost + HZ)) { 10252 /* 10253 * Decay the newidle max times by ~1% per second to ensure that 10254 * it is not outdated and the current max cost is actually 10255 * shorter. 10256 */ 10257 sd->max_newidle_lb_cost = (sd->max_newidle_lb_cost * 253) / 256; 10258 sd->last_decay_max_lb_cost = jiffies; 10259 10260 return true; 10261 } 10262 10263 return false; 10264 } 10265 10266 /* 10267 * It checks each scheduling domain to see if it is due to be balanced, 10268 * and initiates a balancing operation if so. 10269 * 10270 * Balancing parameters are set up in init_sched_domains. 10271 */ 10272 static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle) 10273 { 10274 int continue_balancing = 1; 10275 int cpu = rq->cpu; 10276 int busy = idle != CPU_IDLE && !sched_idle_cpu(cpu); 10277 unsigned long interval; 10278 struct sched_domain *sd; 10279 /* Earliest time when we have to do rebalance again */ 10280 unsigned long next_balance = jiffies + 60*HZ; 10281 int update_next_balance = 0; 10282 int need_serialize, need_decay = 0; 10283 u64 max_cost = 0; 10284 10285 rcu_read_lock(); 10286 for_each_domain(cpu, sd) { 10287 /* 10288 * Decay the newidle max times here because this is a regular 10289 * visit to all the domains. 10290 */ 10291 need_decay = update_newidle_cost(sd, 0); 10292 max_cost += sd->max_newidle_lb_cost; 10293 10294 /* 10295 * Stop the load balance at this level. There is another 10296 * CPU in our sched group which is doing load balancing more 10297 * actively. 10298 */ 10299 if (!continue_balancing) { 10300 if (need_decay) 10301 continue; 10302 break; 10303 } 10304 10305 interval = get_sd_balance_interval(sd, busy); 10306 10307 need_serialize = sd->flags & SD_SERIALIZE; 10308 if (need_serialize) { 10309 if (!spin_trylock(&balancing)) 10310 goto out; 10311 } 10312 10313 if (time_after_eq(jiffies, sd->last_balance + interval)) { 10314 if (load_balance(cpu, rq, sd, idle, &continue_balancing)) { 10315 /* 10316 * The LBF_DST_PINNED logic could have changed 10317 * env->dst_cpu, so we can't know our idle 10318 * state even if we migrated tasks. Update it. 10319 */ 10320 idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE; 10321 busy = idle != CPU_IDLE && !sched_idle_cpu(cpu); 10322 } 10323 sd->last_balance = jiffies; 10324 interval = get_sd_balance_interval(sd, busy); 10325 } 10326 if (need_serialize) 10327 spin_unlock(&balancing); 10328 out: 10329 if (time_after(next_balance, sd->last_balance + interval)) { 10330 next_balance = sd->last_balance + interval; 10331 update_next_balance = 1; 10332 } 10333 } 10334 if (need_decay) { 10335 /* 10336 * Ensure the rq-wide value also decays but keep it at a 10337 * reasonable floor to avoid funnies with rq->avg_idle. 10338 */ 10339 rq->max_idle_balance_cost = 10340 max((u64)sysctl_sched_migration_cost, max_cost); 10341 } 10342 rcu_read_unlock(); 10343 10344 /* 10345 * next_balance will be updated only when there is a need. 10346 * When the cpu is attached to null domain for ex, it will not be 10347 * updated. 10348 */ 10349 if (likely(update_next_balance)) 10350 rq->next_balance = next_balance; 10351 10352 } 10353 10354 static inline int on_null_domain(struct rq *rq) 10355 { 10356 return unlikely(!rcu_dereference_sched(rq->sd)); 10357 } 10358 10359 #ifdef CONFIG_NO_HZ_COMMON 10360 /* 10361 * idle load balancing details 10362 * - When one of the busy CPUs notice that there may be an idle rebalancing 10363 * needed, they will kick the idle load balancer, which then does idle 10364 * load balancing for all the idle CPUs. 10365 * - HK_FLAG_MISC CPUs are used for this task, because HK_FLAG_SCHED not set 10366 * anywhere yet. 10367 */ 10368 10369 static inline int find_new_ilb(void) 10370 { 10371 int ilb; 10372 const struct cpumask *hk_mask; 10373 10374 hk_mask = housekeeping_cpumask(HK_FLAG_MISC); 10375 10376 for_each_cpu_and(ilb, nohz.idle_cpus_mask, hk_mask) { 10377 10378 if (ilb == smp_processor_id()) 10379 continue; 10380 10381 if (idle_cpu(ilb)) 10382 return ilb; 10383 } 10384 10385 return nr_cpu_ids; 10386 } 10387 10388 /* 10389 * Kick a CPU to do the nohz balancing, if it is time for it. We pick any 10390 * idle CPU in the HK_FLAG_MISC housekeeping set (if there is one). 10391 */ 10392 static void kick_ilb(unsigned int flags) 10393 { 10394 int ilb_cpu; 10395 10396 /* 10397 * Increase nohz.next_balance only when if full ilb is triggered but 10398 * not if we only update stats. 10399 */ 10400 if (flags & NOHZ_BALANCE_KICK) 10401 nohz.next_balance = jiffies+1; 10402 10403 ilb_cpu = find_new_ilb(); 10404 10405 if (ilb_cpu >= nr_cpu_ids) 10406 return; 10407 10408 /* 10409 * Access to rq::nohz_csd is serialized by NOHZ_KICK_MASK; he who sets 10410 * the first flag owns it; cleared by nohz_csd_func(). 10411 */ 10412 flags = atomic_fetch_or(flags, nohz_flags(ilb_cpu)); 10413 if (flags & NOHZ_KICK_MASK) 10414 return; 10415 10416 /* 10417 * This way we generate an IPI on the target CPU which 10418 * is idle. And the softirq performing nohz idle load balance 10419 * will be run before returning from the IPI. 10420 */ 10421 smp_call_function_single_async(ilb_cpu, &cpu_rq(ilb_cpu)->nohz_csd); 10422 } 10423 10424 /* 10425 * Current decision point for kicking the idle load balancer in the presence 10426 * of idle CPUs in the system. 10427 */ 10428 static void nohz_balancer_kick(struct rq *rq) 10429 { 10430 unsigned long now = jiffies; 10431 struct sched_domain_shared *sds; 10432 struct sched_domain *sd; 10433 int nr_busy, i, cpu = rq->cpu; 10434 unsigned int flags = 0; 10435 10436 if (unlikely(rq->idle_balance)) 10437 return; 10438 10439 /* 10440 * We may be recently in ticked or tickless idle mode. At the first 10441 * busy tick after returning from idle, we will update the busy stats. 10442 */ 10443 nohz_balance_exit_idle(rq); 10444 10445 /* 10446 * None are in tickless mode and hence no need for NOHZ idle load 10447 * balancing. 10448 */ 10449 if (likely(!atomic_read(&nohz.nr_cpus))) 10450 return; 10451 10452 if (READ_ONCE(nohz.has_blocked) && 10453 time_after(now, READ_ONCE(nohz.next_blocked))) 10454 flags = NOHZ_STATS_KICK; 10455 10456 if (time_before(now, nohz.next_balance)) 10457 goto out; 10458 10459 if (rq->nr_running >= 2) { 10460 flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK; 10461 goto out; 10462 } 10463 10464 rcu_read_lock(); 10465 10466 sd = rcu_dereference(rq->sd); 10467 if (sd) { 10468 /* 10469 * If there's a CFS task and the current CPU has reduced 10470 * capacity; kick the ILB to see if there's a better CPU to run 10471 * on. 10472 */ 10473 if (rq->cfs.h_nr_running >= 1 && check_cpu_capacity(rq, sd)) { 10474 flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK; 10475 goto unlock; 10476 } 10477 } 10478 10479 sd = rcu_dereference(per_cpu(sd_asym_packing, cpu)); 10480 if (sd) { 10481 /* 10482 * When ASYM_PACKING; see if there's a more preferred CPU 10483 * currently idle; in which case, kick the ILB to move tasks 10484 * around. 10485 */ 10486 for_each_cpu_and(i, sched_domain_span(sd), nohz.idle_cpus_mask) { 10487 if (sched_asym_prefer(i, cpu)) { 10488 flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK; 10489 goto unlock; 10490 } 10491 } 10492 } 10493 10494 sd = rcu_dereference(per_cpu(sd_asym_cpucapacity, cpu)); 10495 if (sd) { 10496 /* 10497 * When ASYM_CPUCAPACITY; see if there's a higher capacity CPU 10498 * to run the misfit task on. 10499 */ 10500 if (check_misfit_status(rq, sd)) { 10501 flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK; 10502 goto unlock; 10503 } 10504 10505 /* 10506 * For asymmetric systems, we do not want to nicely balance 10507 * cache use, instead we want to embrace asymmetry and only 10508 * ensure tasks have enough CPU capacity. 10509 * 10510 * Skip the LLC logic because it's not relevant in that case. 10511 */ 10512 goto unlock; 10513 } 10514 10515 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu)); 10516 if (sds) { 10517 /* 10518 * If there is an imbalance between LLC domains (IOW we could 10519 * increase the overall cache use), we need some less-loaded LLC 10520 * domain to pull some load. Likewise, we may need to spread 10521 * load within the current LLC domain (e.g. packed SMT cores but 10522 * other CPUs are idle). We can't really know from here how busy 10523 * the others are - so just get a nohz balance going if it looks 10524 * like this LLC domain has tasks we could move. 10525 */ 10526 nr_busy = atomic_read(&sds->nr_busy_cpus); 10527 if (nr_busy > 1) { 10528 flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK; 10529 goto unlock; 10530 } 10531 } 10532 unlock: 10533 rcu_read_unlock(); 10534 out: 10535 if (READ_ONCE(nohz.needs_update)) 10536 flags |= NOHZ_NEXT_KICK; 10537 10538 if (flags) 10539 kick_ilb(flags); 10540 } 10541 10542 static void set_cpu_sd_state_busy(int cpu) 10543 { 10544 struct sched_domain *sd; 10545 10546 rcu_read_lock(); 10547 sd = rcu_dereference(per_cpu(sd_llc, cpu)); 10548 10549 if (!sd || !sd->nohz_idle) 10550 goto unlock; 10551 sd->nohz_idle = 0; 10552 10553 atomic_inc(&sd->shared->nr_busy_cpus); 10554 unlock: 10555 rcu_read_unlock(); 10556 } 10557 10558 void nohz_balance_exit_idle(struct rq *rq) 10559 { 10560 SCHED_WARN_ON(rq != this_rq()); 10561 10562 if (likely(!rq->nohz_tick_stopped)) 10563 return; 10564 10565 rq->nohz_tick_stopped = 0; 10566 cpumask_clear_cpu(rq->cpu, nohz.idle_cpus_mask); 10567 atomic_dec(&nohz.nr_cpus); 10568 10569 set_cpu_sd_state_busy(rq->cpu); 10570 } 10571 10572 static void set_cpu_sd_state_idle(int cpu) 10573 { 10574 struct sched_domain *sd; 10575 10576 rcu_read_lock(); 10577 sd = rcu_dereference(per_cpu(sd_llc, cpu)); 10578 10579 if (!sd || sd->nohz_idle) 10580 goto unlock; 10581 sd->nohz_idle = 1; 10582 10583 atomic_dec(&sd->shared->nr_busy_cpus); 10584 unlock: 10585 rcu_read_unlock(); 10586 } 10587 10588 /* 10589 * This routine will record that the CPU is going idle with tick stopped. 10590 * This info will be used in performing idle load balancing in the future. 10591 */ 10592 void nohz_balance_enter_idle(int cpu) 10593 { 10594 struct rq *rq = cpu_rq(cpu); 10595 10596 SCHED_WARN_ON(cpu != smp_processor_id()); 10597 10598 /* If this CPU is going down, then nothing needs to be done: */ 10599 if (!cpu_active(cpu)) 10600 return; 10601 10602 /* Spare idle load balancing on CPUs that don't want to be disturbed: */ 10603 if (!housekeeping_cpu(cpu, HK_FLAG_SCHED)) 10604 return; 10605 10606 /* 10607 * Can be set safely without rq->lock held 10608 * If a clear happens, it will have evaluated last additions because 10609 * rq->lock is held during the check and the clear 10610 */ 10611 rq->has_blocked_load = 1; 10612 10613 /* 10614 * The tick is still stopped but load could have been added in the 10615 * meantime. We set the nohz.has_blocked flag to trig a check of the 10616 * *_avg. The CPU is already part of nohz.idle_cpus_mask so the clear 10617 * of nohz.has_blocked can only happen after checking the new load 10618 */ 10619 if (rq->nohz_tick_stopped) 10620 goto out; 10621 10622 /* If we're a completely isolated CPU, we don't play: */ 10623 if (on_null_domain(rq)) 10624 return; 10625 10626 rq->nohz_tick_stopped = 1; 10627 10628 cpumask_set_cpu(cpu, nohz.idle_cpus_mask); 10629 atomic_inc(&nohz.nr_cpus); 10630 10631 /* 10632 * Ensures that if nohz_idle_balance() fails to observe our 10633 * @idle_cpus_mask store, it must observe the @has_blocked 10634 * and @needs_update stores. 10635 */ 10636 smp_mb__after_atomic(); 10637 10638 set_cpu_sd_state_idle(cpu); 10639 10640 WRITE_ONCE(nohz.needs_update, 1); 10641 out: 10642 /* 10643 * Each time a cpu enter idle, we assume that it has blocked load and 10644 * enable the periodic update of the load of idle cpus 10645 */ 10646 WRITE_ONCE(nohz.has_blocked, 1); 10647 } 10648 10649 static bool update_nohz_stats(struct rq *rq) 10650 { 10651 unsigned int cpu = rq->cpu; 10652 10653 if (!rq->has_blocked_load) 10654 return false; 10655 10656 if (!cpumask_test_cpu(cpu, nohz.idle_cpus_mask)) 10657 return false; 10658 10659 if (!time_after(jiffies, READ_ONCE(rq->last_blocked_load_update_tick))) 10660 return true; 10661 10662 update_blocked_averages(cpu); 10663 10664 return rq->has_blocked_load; 10665 } 10666 10667 /* 10668 * Internal function that runs load balance for all idle cpus. The load balance 10669 * can be a simple update of blocked load or a complete load balance with 10670 * tasks movement depending of flags. 10671 */ 10672 static void _nohz_idle_balance(struct rq *this_rq, unsigned int flags, 10673 enum cpu_idle_type idle) 10674 { 10675 /* Earliest time when we have to do rebalance again */ 10676 unsigned long now = jiffies; 10677 unsigned long next_balance = now + 60*HZ; 10678 bool has_blocked_load = false; 10679 int update_next_balance = 0; 10680 int this_cpu = this_rq->cpu; 10681 int balance_cpu; 10682 struct rq *rq; 10683 10684 SCHED_WARN_ON((flags & NOHZ_KICK_MASK) == NOHZ_BALANCE_KICK); 10685 10686 /* 10687 * We assume there will be no idle load after this update and clear 10688 * the has_blocked flag. If a cpu enters idle in the mean time, it will 10689 * set the has_blocked flag and trigger another update of idle load. 10690 * Because a cpu that becomes idle, is added to idle_cpus_mask before 10691 * setting the flag, we are sure to not clear the state and not 10692 * check the load of an idle cpu. 10693 * 10694 * Same applies to idle_cpus_mask vs needs_update. 10695 */ 10696 if (flags & NOHZ_STATS_KICK) 10697 WRITE_ONCE(nohz.has_blocked, 0); 10698 if (flags & NOHZ_NEXT_KICK) 10699 WRITE_ONCE(nohz.needs_update, 0); 10700 10701 /* 10702 * Ensures that if we miss the CPU, we must see the has_blocked 10703 * store from nohz_balance_enter_idle(). 10704 */ 10705 smp_mb(); 10706 10707 /* 10708 * Start with the next CPU after this_cpu so we will end with this_cpu and let a 10709 * chance for other idle cpu to pull load. 10710 */ 10711 for_each_cpu_wrap(balance_cpu, nohz.idle_cpus_mask, this_cpu+1) { 10712 if (!idle_cpu(balance_cpu)) 10713 continue; 10714 10715 /* 10716 * If this CPU gets work to do, stop the load balancing 10717 * work being done for other CPUs. Next load 10718 * balancing owner will pick it up. 10719 */ 10720 if (need_resched()) { 10721 if (flags & NOHZ_STATS_KICK) 10722 has_blocked_load = true; 10723 if (flags & NOHZ_NEXT_KICK) 10724 WRITE_ONCE(nohz.needs_update, 1); 10725 goto abort; 10726 } 10727 10728 rq = cpu_rq(balance_cpu); 10729 10730 if (flags & NOHZ_STATS_KICK) 10731 has_blocked_load |= update_nohz_stats(rq); 10732 10733 /* 10734 * If time for next balance is due, 10735 * do the balance. 10736 */ 10737 if (time_after_eq(jiffies, rq->next_balance)) { 10738 struct rq_flags rf; 10739 10740 rq_lock_irqsave(rq, &rf); 10741 update_rq_clock(rq); 10742 rq_unlock_irqrestore(rq, &rf); 10743 10744 if (flags & NOHZ_BALANCE_KICK) 10745 rebalance_domains(rq, CPU_IDLE); 10746 } 10747 10748 if (time_after(next_balance, rq->next_balance)) { 10749 next_balance = rq->next_balance; 10750 update_next_balance = 1; 10751 } 10752 } 10753 10754 /* 10755 * next_balance will be updated only when there is a need. 10756 * When the CPU is attached to null domain for ex, it will not be 10757 * updated. 10758 */ 10759 if (likely(update_next_balance)) 10760 nohz.next_balance = next_balance; 10761 10762 if (flags & NOHZ_STATS_KICK) 10763 WRITE_ONCE(nohz.next_blocked, 10764 now + msecs_to_jiffies(LOAD_AVG_PERIOD)); 10765 10766 abort: 10767 /* There is still blocked load, enable periodic update */ 10768 if (has_blocked_load) 10769 WRITE_ONCE(nohz.has_blocked, 1); 10770 } 10771 10772 /* 10773 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the 10774 * rebalancing for all the cpus for whom scheduler ticks are stopped. 10775 */ 10776 static bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) 10777 { 10778 unsigned int flags = this_rq->nohz_idle_balance; 10779 10780 if (!flags) 10781 return false; 10782 10783 this_rq->nohz_idle_balance = 0; 10784 10785 if (idle != CPU_IDLE) 10786 return false; 10787 10788 _nohz_idle_balance(this_rq, flags, idle); 10789 10790 return true; 10791 } 10792 10793 /* 10794 * Check if we need to run the ILB for updating blocked load before entering 10795 * idle state. 10796 */ 10797 void nohz_run_idle_balance(int cpu) 10798 { 10799 unsigned int flags; 10800 10801 flags = atomic_fetch_andnot(NOHZ_NEWILB_KICK, nohz_flags(cpu)); 10802 10803 /* 10804 * Update the blocked load only if no SCHED_SOFTIRQ is about to happen 10805 * (ie NOHZ_STATS_KICK set) and will do the same. 10806 */ 10807 if ((flags == NOHZ_NEWILB_KICK) && !need_resched()) 10808 _nohz_idle_balance(cpu_rq(cpu), NOHZ_STATS_KICK, CPU_IDLE); 10809 } 10810 10811 static void nohz_newidle_balance(struct rq *this_rq) 10812 { 10813 int this_cpu = this_rq->cpu; 10814 10815 /* 10816 * This CPU doesn't want to be disturbed by scheduler 10817 * housekeeping 10818 */ 10819 if (!housekeeping_cpu(this_cpu, HK_FLAG_SCHED)) 10820 return; 10821 10822 /* Will wake up very soon. No time for doing anything else*/ 10823 if (this_rq->avg_idle < sysctl_sched_migration_cost) 10824 return; 10825 10826 /* Don't need to update blocked load of idle CPUs*/ 10827 if (!READ_ONCE(nohz.has_blocked) || 10828 time_before(jiffies, READ_ONCE(nohz.next_blocked))) 10829 return; 10830 10831 /* 10832 * Set the need to trigger ILB in order to update blocked load 10833 * before entering idle state. 10834 */ 10835 atomic_or(NOHZ_NEWILB_KICK, nohz_flags(this_cpu)); 10836 } 10837 10838 #else /* !CONFIG_NO_HZ_COMMON */ 10839 static inline void nohz_balancer_kick(struct rq *rq) { } 10840 10841 static inline bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) 10842 { 10843 return false; 10844 } 10845 10846 static inline void nohz_newidle_balance(struct rq *this_rq) { } 10847 #endif /* CONFIG_NO_HZ_COMMON */ 10848 10849 /* 10850 * newidle_balance is called by schedule() if this_cpu is about to become 10851 * idle. Attempts to pull tasks from other CPUs. 10852 * 10853 * Returns: 10854 * < 0 - we released the lock and there are !fair tasks present 10855 * 0 - failed, no new tasks 10856 * > 0 - success, new (fair) tasks present 10857 */ 10858 static int newidle_balance(struct rq *this_rq, struct rq_flags *rf) 10859 { 10860 unsigned long next_balance = jiffies + HZ; 10861 int this_cpu = this_rq->cpu; 10862 u64 t0, t1, curr_cost = 0; 10863 struct sched_domain *sd; 10864 int pulled_task = 0; 10865 10866 update_misfit_status(NULL, this_rq); 10867 10868 /* 10869 * There is a task waiting to run. No need to search for one. 10870 * Return 0; the task will be enqueued when switching to idle. 10871 */ 10872 if (this_rq->ttwu_pending) 10873 return 0; 10874 10875 /* 10876 * We must set idle_stamp _before_ calling idle_balance(), such that we 10877 * measure the duration of idle_balance() as idle time. 10878 */ 10879 this_rq->idle_stamp = rq_clock(this_rq); 10880 10881 /* 10882 * Do not pull tasks towards !active CPUs... 10883 */ 10884 if (!cpu_active(this_cpu)) 10885 return 0; 10886 10887 /* 10888 * This is OK, because current is on_cpu, which avoids it being picked 10889 * for load-balance and preemption/IRQs are still disabled avoiding 10890 * further scheduler activity on it and we're being very careful to 10891 * re-start the picking loop. 10892 */ 10893 rq_unpin_lock(this_rq, rf); 10894 10895 rcu_read_lock(); 10896 sd = rcu_dereference_check_sched_domain(this_rq->sd); 10897 10898 if (!READ_ONCE(this_rq->rd->overload) || 10899 (sd && this_rq->avg_idle < sd->max_newidle_lb_cost)) { 10900 10901 if (sd) 10902 update_next_balance(sd, &next_balance); 10903 rcu_read_unlock(); 10904 10905 goto out; 10906 } 10907 rcu_read_unlock(); 10908 10909 raw_spin_rq_unlock(this_rq); 10910 10911 t0 = sched_clock_cpu(this_cpu); 10912 update_blocked_averages(this_cpu); 10913 10914 rcu_read_lock(); 10915 for_each_domain(this_cpu, sd) { 10916 int continue_balancing = 1; 10917 u64 domain_cost; 10918 10919 update_next_balance(sd, &next_balance); 10920 10921 if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) 10922 break; 10923 10924 if (sd->flags & SD_BALANCE_NEWIDLE) { 10925 10926 pulled_task = load_balance(this_cpu, this_rq, 10927 sd, CPU_NEWLY_IDLE, 10928 &continue_balancing); 10929 10930 t1 = sched_clock_cpu(this_cpu); 10931 domain_cost = t1 - t0; 10932 update_newidle_cost(sd, domain_cost); 10933 10934 curr_cost += domain_cost; 10935 t0 = t1; 10936 } 10937 10938 /* 10939 * Stop searching for tasks to pull if there are 10940 * now runnable tasks on this rq. 10941 */ 10942 if (pulled_task || this_rq->nr_running > 0 || 10943 this_rq->ttwu_pending) 10944 break; 10945 } 10946 rcu_read_unlock(); 10947 10948 raw_spin_rq_lock(this_rq); 10949 10950 if (curr_cost > this_rq->max_idle_balance_cost) 10951 this_rq->max_idle_balance_cost = curr_cost; 10952 10953 /* 10954 * While browsing the domains, we released the rq lock, a task could 10955 * have been enqueued in the meantime. Since we're not going idle, 10956 * pretend we pulled a task. 10957 */ 10958 if (this_rq->cfs.h_nr_running && !pulled_task) 10959 pulled_task = 1; 10960 10961 /* Is there a task of a high priority class? */ 10962 if (this_rq->nr_running != this_rq->cfs.h_nr_running) 10963 pulled_task = -1; 10964 10965 out: 10966 /* Move the next balance forward */ 10967 if (time_after(this_rq->next_balance, next_balance)) 10968 this_rq->next_balance = next_balance; 10969 10970 if (pulled_task) 10971 this_rq->idle_stamp = 0; 10972 else 10973 nohz_newidle_balance(this_rq); 10974 10975 rq_repin_lock(this_rq, rf); 10976 10977 return pulled_task; 10978 } 10979 10980 /* 10981 * run_rebalance_domains is triggered when needed from the scheduler tick. 10982 * Also triggered for nohz idle balancing (with nohz_balancing_kick set). 10983 */ 10984 static __latent_entropy void run_rebalance_domains(struct softirq_action *h) 10985 { 10986 struct rq *this_rq = this_rq(); 10987 enum cpu_idle_type idle = this_rq->idle_balance ? 10988 CPU_IDLE : CPU_NOT_IDLE; 10989 10990 /* 10991 * If this CPU has a pending nohz_balance_kick, then do the 10992 * balancing on behalf of the other idle CPUs whose ticks are 10993 * stopped. Do nohz_idle_balance *before* rebalance_domains to 10994 * give the idle CPUs a chance to load balance. Else we may 10995 * load balance only within the local sched_domain hierarchy 10996 * and abort nohz_idle_balance altogether if we pull some load. 10997 */ 10998 if (nohz_idle_balance(this_rq, idle)) 10999 return; 11000 11001 /* normal load balance */ 11002 update_blocked_averages(this_rq->cpu); 11003 rebalance_domains(this_rq, idle); 11004 } 11005 11006 /* 11007 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing. 11008 */ 11009 void trigger_load_balance(struct rq *rq) 11010 { 11011 /* 11012 * Don't need to rebalance while attached to NULL domain or 11013 * runqueue CPU is not active 11014 */ 11015 if (unlikely(on_null_domain(rq) || !cpu_active(cpu_of(rq)))) 11016 return; 11017 11018 if (time_after_eq(jiffies, rq->next_balance)) 11019 raise_softirq(SCHED_SOFTIRQ); 11020 11021 nohz_balancer_kick(rq); 11022 } 11023 11024 static void rq_online_fair(struct rq *rq) 11025 { 11026 update_sysctl(); 11027 11028 update_runtime_enabled(rq); 11029 } 11030 11031 static void rq_offline_fair(struct rq *rq) 11032 { 11033 update_sysctl(); 11034 11035 /* Ensure any throttled groups are reachable by pick_next_task */ 11036 unthrottle_offline_cfs_rqs(rq); 11037 } 11038 11039 #endif /* CONFIG_SMP */ 11040 11041 #ifdef CONFIG_SCHED_CORE 11042 static inline bool 11043 __entity_slice_used(struct sched_entity *se, int min_nr_tasks) 11044 { 11045 u64 slice = sched_slice(cfs_rq_of(se), se); 11046 u64 rtime = se->sum_exec_runtime - se->prev_sum_exec_runtime; 11047 11048 return (rtime * min_nr_tasks > slice); 11049 } 11050 11051 #define MIN_NR_TASKS_DURING_FORCEIDLE 2 11052 static inline void task_tick_core(struct rq *rq, struct task_struct *curr) 11053 { 11054 if (!sched_core_enabled(rq)) 11055 return; 11056 11057 /* 11058 * If runqueue has only one task which used up its slice and 11059 * if the sibling is forced idle, then trigger schedule to 11060 * give forced idle task a chance. 11061 * 11062 * sched_slice() considers only this active rq and it gets the 11063 * whole slice. But during force idle, we have siblings acting 11064 * like a single runqueue and hence we need to consider runnable 11065 * tasks on this CPU and the forced idle CPU. Ideally, we should 11066 * go through the forced idle rq, but that would be a perf hit. 11067 * We can assume that the forced idle CPU has at least 11068 * MIN_NR_TASKS_DURING_FORCEIDLE - 1 tasks and use that to check 11069 * if we need to give up the CPU. 11070 */ 11071 if (rq->core->core_forceidle && rq->cfs.nr_running == 1 && 11072 __entity_slice_used(&curr->se, MIN_NR_TASKS_DURING_FORCEIDLE)) 11073 resched_curr(rq); 11074 } 11075 11076 /* 11077 * se_fi_update - Update the cfs_rq->min_vruntime_fi in a CFS hierarchy if needed. 11078 */ 11079 static void se_fi_update(struct sched_entity *se, unsigned int fi_seq, bool forceidle) 11080 { 11081 for_each_sched_entity(se) { 11082 struct cfs_rq *cfs_rq = cfs_rq_of(se); 11083 11084 if (forceidle) { 11085 if (cfs_rq->forceidle_seq == fi_seq) 11086 break; 11087 cfs_rq->forceidle_seq = fi_seq; 11088 } 11089 11090 cfs_rq->min_vruntime_fi = cfs_rq->min_vruntime; 11091 } 11092 } 11093 11094 void task_vruntime_update(struct rq *rq, struct task_struct *p, bool in_fi) 11095 { 11096 struct sched_entity *se = &p->se; 11097 11098 if (p->sched_class != &fair_sched_class) 11099 return; 11100 11101 se_fi_update(se, rq->core->core_forceidle_seq, in_fi); 11102 } 11103 11104 bool cfs_prio_less(struct task_struct *a, struct task_struct *b, bool in_fi) 11105 { 11106 struct rq *rq = task_rq(a); 11107 struct sched_entity *sea = &a->se; 11108 struct sched_entity *seb = &b->se; 11109 struct cfs_rq *cfs_rqa; 11110 struct cfs_rq *cfs_rqb; 11111 s64 delta; 11112 11113 SCHED_WARN_ON(task_rq(b)->core != rq->core); 11114 11115 #ifdef CONFIG_FAIR_GROUP_SCHED 11116 /* 11117 * Find an se in the hierarchy for tasks a and b, such that the se's 11118 * are immediate siblings. 11119 */ 11120 while (sea->cfs_rq->tg != seb->cfs_rq->tg) { 11121 int sea_depth = sea->depth; 11122 int seb_depth = seb->depth; 11123 11124 if (sea_depth >= seb_depth) 11125 sea = parent_entity(sea); 11126 if (sea_depth <= seb_depth) 11127 seb = parent_entity(seb); 11128 } 11129 11130 se_fi_update(sea, rq->core->core_forceidle_seq, in_fi); 11131 se_fi_update(seb, rq->core->core_forceidle_seq, in_fi); 11132 11133 cfs_rqa = sea->cfs_rq; 11134 cfs_rqb = seb->cfs_rq; 11135 #else 11136 cfs_rqa = &task_rq(a)->cfs; 11137 cfs_rqb = &task_rq(b)->cfs; 11138 #endif 11139 11140 /* 11141 * Find delta after normalizing se's vruntime with its cfs_rq's 11142 * min_vruntime_fi, which would have been updated in prior calls 11143 * to se_fi_update(). 11144 */ 11145 delta = (s64)(sea->vruntime - seb->vruntime) + 11146 (s64)(cfs_rqb->min_vruntime_fi - cfs_rqa->min_vruntime_fi); 11147 11148 return delta > 0; 11149 } 11150 #else 11151 static inline void task_tick_core(struct rq *rq, struct task_struct *curr) {} 11152 #endif 11153 11154 /* 11155 * scheduler tick hitting a task of our scheduling class. 11156 * 11157 * NOTE: This function can be called remotely by the tick offload that 11158 * goes along full dynticks. Therefore no local assumption can be made 11159 * and everything must be accessed through the @rq and @curr passed in 11160 * parameters. 11161 */ 11162 static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued) 11163 { 11164 struct cfs_rq *cfs_rq; 11165 struct sched_entity *se = &curr->se; 11166 11167 for_each_sched_entity(se) { 11168 cfs_rq = cfs_rq_of(se); 11169 entity_tick(cfs_rq, se, queued); 11170 } 11171 11172 if (static_branch_unlikely(&sched_numa_balancing)) 11173 task_tick_numa(rq, curr); 11174 11175 update_misfit_status(curr, rq); 11176 update_overutilized_status(task_rq(curr)); 11177 11178 task_tick_core(rq, curr); 11179 } 11180 11181 /* 11182 * called on fork with the child task as argument from the parent's context 11183 * - child not yet on the tasklist 11184 * - preemption disabled 11185 */ 11186 static void task_fork_fair(struct task_struct *p) 11187 { 11188 struct cfs_rq *cfs_rq; 11189 struct sched_entity *se = &p->se, *curr; 11190 struct rq *rq = this_rq(); 11191 struct rq_flags rf; 11192 11193 rq_lock(rq, &rf); 11194 update_rq_clock(rq); 11195 11196 cfs_rq = task_cfs_rq(current); 11197 curr = cfs_rq->curr; 11198 if (curr) { 11199 update_curr(cfs_rq); 11200 se->vruntime = curr->vruntime; 11201 } 11202 place_entity(cfs_rq, se, 1); 11203 11204 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) { 11205 /* 11206 * Upon rescheduling, sched_class::put_prev_task() will place 11207 * 'current' within the tree based on its new key value. 11208 */ 11209 swap(curr->vruntime, se->vruntime); 11210 resched_curr(rq); 11211 } 11212 11213 se->vruntime -= cfs_rq->min_vruntime; 11214 rq_unlock(rq, &rf); 11215 } 11216 11217 /* 11218 * Priority of the task has changed. Check to see if we preempt 11219 * the current task. 11220 */ 11221 static void 11222 prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio) 11223 { 11224 if (!task_on_rq_queued(p)) 11225 return; 11226 11227 if (rq->cfs.nr_running == 1) 11228 return; 11229 11230 /* 11231 * Reschedule if we are currently running on this runqueue and 11232 * our priority decreased, or if we are not currently running on 11233 * this runqueue and our priority is higher than the current's 11234 */ 11235 if (task_current(rq, p)) { 11236 if (p->prio > oldprio) 11237 resched_curr(rq); 11238 } else 11239 check_preempt_curr(rq, p, 0); 11240 } 11241 11242 static inline bool vruntime_normalized(struct task_struct *p) 11243 { 11244 struct sched_entity *se = &p->se; 11245 11246 /* 11247 * In both the TASK_ON_RQ_QUEUED and TASK_ON_RQ_MIGRATING cases, 11248 * the dequeue_entity(.flags=0) will already have normalized the 11249 * vruntime. 11250 */ 11251 if (p->on_rq) 11252 return true; 11253 11254 /* 11255 * When !on_rq, vruntime of the task has usually NOT been normalized. 11256 * But there are some cases where it has already been normalized: 11257 * 11258 * - A forked child which is waiting for being woken up by 11259 * wake_up_new_task(). 11260 * - A task which has been woken up by try_to_wake_up() and 11261 * waiting for actually being woken up by sched_ttwu_pending(). 11262 */ 11263 if (!se->sum_exec_runtime || 11264 (READ_ONCE(p->__state) == TASK_WAKING && p->sched_remote_wakeup)) 11265 return true; 11266 11267 return false; 11268 } 11269 11270 #ifdef CONFIG_FAIR_GROUP_SCHED 11271 /* 11272 * Propagate the changes of the sched_entity across the tg tree to make it 11273 * visible to the root 11274 */ 11275 static void propagate_entity_cfs_rq(struct sched_entity *se) 11276 { 11277 struct cfs_rq *cfs_rq; 11278 11279 list_add_leaf_cfs_rq(cfs_rq_of(se)); 11280 11281 /* Start to propagate at parent */ 11282 se = se->parent; 11283 11284 for_each_sched_entity(se) { 11285 cfs_rq = cfs_rq_of(se); 11286 11287 if (!cfs_rq_throttled(cfs_rq)){ 11288 update_load_avg(cfs_rq, se, UPDATE_TG); 11289 list_add_leaf_cfs_rq(cfs_rq); 11290 continue; 11291 } 11292 11293 if (list_add_leaf_cfs_rq(cfs_rq)) 11294 break; 11295 } 11296 } 11297 #else 11298 static void propagate_entity_cfs_rq(struct sched_entity *se) { } 11299 #endif 11300 11301 static void detach_entity_cfs_rq(struct sched_entity *se) 11302 { 11303 struct cfs_rq *cfs_rq = cfs_rq_of(se); 11304 11305 /* Catch up with the cfs_rq and remove our load when we leave */ 11306 update_load_avg(cfs_rq, se, 0); 11307 detach_entity_load_avg(cfs_rq, se); 11308 update_tg_load_avg(cfs_rq); 11309 propagate_entity_cfs_rq(se); 11310 } 11311 11312 static void attach_entity_cfs_rq(struct sched_entity *se) 11313 { 11314 struct cfs_rq *cfs_rq = cfs_rq_of(se); 11315 11316 #ifdef CONFIG_FAIR_GROUP_SCHED 11317 /* 11318 * Since the real-depth could have been changed (only FAIR 11319 * class maintain depth value), reset depth properly. 11320 */ 11321 se->depth = se->parent ? se->parent->depth + 1 : 0; 11322 #endif 11323 11324 /* Synchronize entity with its cfs_rq */ 11325 update_load_avg(cfs_rq, se, sched_feat(ATTACH_AGE_LOAD) ? 0 : SKIP_AGE_LOAD); 11326 attach_entity_load_avg(cfs_rq, se); 11327 update_tg_load_avg(cfs_rq); 11328 propagate_entity_cfs_rq(se); 11329 } 11330 11331 static void detach_task_cfs_rq(struct task_struct *p) 11332 { 11333 struct sched_entity *se = &p->se; 11334 struct cfs_rq *cfs_rq = cfs_rq_of(se); 11335 11336 if (!vruntime_normalized(p)) { 11337 /* 11338 * Fix up our vruntime so that the current sleep doesn't 11339 * cause 'unlimited' sleep bonus. 11340 */ 11341 place_entity(cfs_rq, se, 0); 11342 se->vruntime -= cfs_rq->min_vruntime; 11343 } 11344 11345 detach_entity_cfs_rq(se); 11346 } 11347 11348 static void attach_task_cfs_rq(struct task_struct *p) 11349 { 11350 struct sched_entity *se = &p->se; 11351 struct cfs_rq *cfs_rq = cfs_rq_of(se); 11352 11353 attach_entity_cfs_rq(se); 11354 11355 if (!vruntime_normalized(p)) 11356 se->vruntime += cfs_rq->min_vruntime; 11357 } 11358 11359 static void switched_from_fair(struct rq *rq, struct task_struct *p) 11360 { 11361 detach_task_cfs_rq(p); 11362 } 11363 11364 static void switched_to_fair(struct rq *rq, struct task_struct *p) 11365 { 11366 attach_task_cfs_rq(p); 11367 11368 if (task_on_rq_queued(p)) { 11369 /* 11370 * We were most likely switched from sched_rt, so 11371 * kick off the schedule if running, otherwise just see 11372 * if we can still preempt the current task. 11373 */ 11374 if (task_current(rq, p)) 11375 resched_curr(rq); 11376 else 11377 check_preempt_curr(rq, p, 0); 11378 } 11379 } 11380 11381 /* Account for a task changing its policy or group. 11382 * 11383 * This routine is mostly called to set cfs_rq->curr field when a task 11384 * migrates between groups/classes. 11385 */ 11386 static void set_next_task_fair(struct rq *rq, struct task_struct *p, bool first) 11387 { 11388 struct sched_entity *se = &p->se; 11389 11390 #ifdef CONFIG_SMP 11391 if (task_on_rq_queued(p)) { 11392 /* 11393 * Move the next running task to the front of the list, so our 11394 * cfs_tasks list becomes MRU one. 11395 */ 11396 list_move(&se->group_node, &rq->cfs_tasks); 11397 } 11398 #endif 11399 11400 for_each_sched_entity(se) { 11401 struct cfs_rq *cfs_rq = cfs_rq_of(se); 11402 11403 set_next_entity(cfs_rq, se); 11404 /* ensure bandwidth has been allocated on our new cfs_rq */ 11405 account_cfs_rq_runtime(cfs_rq, 0); 11406 } 11407 } 11408 11409 void init_cfs_rq(struct cfs_rq *cfs_rq) 11410 { 11411 cfs_rq->tasks_timeline = RB_ROOT_CACHED; 11412 cfs_rq->min_vruntime = (u64)(-(1LL << 20)); 11413 #ifndef CONFIG_64BIT 11414 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime; 11415 #endif 11416 #ifdef CONFIG_SMP 11417 raw_spin_lock_init(&cfs_rq->removed.lock); 11418 #endif 11419 } 11420 11421 #ifdef CONFIG_FAIR_GROUP_SCHED 11422 static void task_set_group_fair(struct task_struct *p) 11423 { 11424 struct sched_entity *se = &p->se; 11425 11426 set_task_rq(p, task_cpu(p)); 11427 se->depth = se->parent ? se->parent->depth + 1 : 0; 11428 } 11429 11430 static void task_move_group_fair(struct task_struct *p) 11431 { 11432 detach_task_cfs_rq(p); 11433 set_task_rq(p, task_cpu(p)); 11434 11435 #ifdef CONFIG_SMP 11436 /* Tell se's cfs_rq has been changed -- migrated */ 11437 p->se.avg.last_update_time = 0; 11438 #endif 11439 attach_task_cfs_rq(p); 11440 } 11441 11442 static void task_change_group_fair(struct task_struct *p, int type) 11443 { 11444 switch (type) { 11445 case TASK_SET_GROUP: 11446 task_set_group_fair(p); 11447 break; 11448 11449 case TASK_MOVE_GROUP: 11450 task_move_group_fair(p); 11451 break; 11452 } 11453 } 11454 11455 void free_fair_sched_group(struct task_group *tg) 11456 { 11457 int i; 11458 11459 for_each_possible_cpu(i) { 11460 if (tg->cfs_rq) 11461 kfree(tg->cfs_rq[i]); 11462 if (tg->se) 11463 kfree(tg->se[i]); 11464 } 11465 11466 kfree(tg->cfs_rq); 11467 kfree(tg->se); 11468 } 11469 11470 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent) 11471 { 11472 struct sched_entity *se; 11473 struct cfs_rq *cfs_rq; 11474 int i; 11475 11476 tg->cfs_rq = kcalloc(nr_cpu_ids, sizeof(cfs_rq), GFP_KERNEL); 11477 if (!tg->cfs_rq) 11478 goto err; 11479 tg->se = kcalloc(nr_cpu_ids, sizeof(se), GFP_KERNEL); 11480 if (!tg->se) 11481 goto err; 11482 11483 tg->shares = NICE_0_LOAD; 11484 11485 init_cfs_bandwidth(tg_cfs_bandwidth(tg)); 11486 11487 for_each_possible_cpu(i) { 11488 cfs_rq = kzalloc_node(sizeof(struct cfs_rq), 11489 GFP_KERNEL, cpu_to_node(i)); 11490 if (!cfs_rq) 11491 goto err; 11492 11493 se = kzalloc_node(sizeof(struct sched_entity_stats), 11494 GFP_KERNEL, cpu_to_node(i)); 11495 if (!se) 11496 goto err_free_rq; 11497 11498 init_cfs_rq(cfs_rq); 11499 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]); 11500 init_entity_runnable_average(se); 11501 } 11502 11503 return 1; 11504 11505 err_free_rq: 11506 kfree(cfs_rq); 11507 err: 11508 return 0; 11509 } 11510 11511 void online_fair_sched_group(struct task_group *tg) 11512 { 11513 struct sched_entity *se; 11514 struct rq_flags rf; 11515 struct rq *rq; 11516 int i; 11517 11518 for_each_possible_cpu(i) { 11519 rq = cpu_rq(i); 11520 se = tg->se[i]; 11521 rq_lock_irq(rq, &rf); 11522 update_rq_clock(rq); 11523 attach_entity_cfs_rq(se); 11524 sync_throttle(tg, i); 11525 rq_unlock_irq(rq, &rf); 11526 } 11527 } 11528 11529 void unregister_fair_sched_group(struct task_group *tg) 11530 { 11531 unsigned long flags; 11532 struct rq *rq; 11533 int cpu; 11534 11535 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg)); 11536 11537 for_each_possible_cpu(cpu) { 11538 if (tg->se[cpu]) 11539 remove_entity_load_avg(tg->se[cpu]); 11540 11541 /* 11542 * Only empty task groups can be destroyed; so we can speculatively 11543 * check on_list without danger of it being re-added. 11544 */ 11545 if (!tg->cfs_rq[cpu]->on_list) 11546 continue; 11547 11548 rq = cpu_rq(cpu); 11549 11550 raw_spin_rq_lock_irqsave(rq, flags); 11551 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]); 11552 raw_spin_rq_unlock_irqrestore(rq, flags); 11553 } 11554 } 11555 11556 void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq, 11557 struct sched_entity *se, int cpu, 11558 struct sched_entity *parent) 11559 { 11560 struct rq *rq = cpu_rq(cpu); 11561 11562 cfs_rq->tg = tg; 11563 cfs_rq->rq = rq; 11564 init_cfs_rq_runtime(cfs_rq); 11565 11566 tg->cfs_rq[cpu] = cfs_rq; 11567 tg->se[cpu] = se; 11568 11569 /* se could be NULL for root_task_group */ 11570 if (!se) 11571 return; 11572 11573 if (!parent) { 11574 se->cfs_rq = &rq->cfs; 11575 se->depth = 0; 11576 } else { 11577 se->cfs_rq = parent->my_q; 11578 se->depth = parent->depth + 1; 11579 } 11580 11581 se->my_q = cfs_rq; 11582 /* guarantee group entities always have weight */ 11583 update_load_set(&se->load, NICE_0_LOAD); 11584 se->parent = parent; 11585 } 11586 11587 static DEFINE_MUTEX(shares_mutex); 11588 11589 static int __sched_group_set_shares(struct task_group *tg, unsigned long shares) 11590 { 11591 int i; 11592 11593 lockdep_assert_held(&shares_mutex); 11594 11595 /* 11596 * We can't change the weight of the root cgroup. 11597 */ 11598 if (!tg->se[0]) 11599 return -EINVAL; 11600 11601 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES)); 11602 11603 if (tg->shares == shares) 11604 return 0; 11605 11606 tg->shares = shares; 11607 for_each_possible_cpu(i) { 11608 struct rq *rq = cpu_rq(i); 11609 struct sched_entity *se = tg->se[i]; 11610 struct rq_flags rf; 11611 11612 /* Propagate contribution to hierarchy */ 11613 rq_lock_irqsave(rq, &rf); 11614 update_rq_clock(rq); 11615 for_each_sched_entity(se) { 11616 update_load_avg(cfs_rq_of(se), se, UPDATE_TG); 11617 update_cfs_group(se); 11618 } 11619 rq_unlock_irqrestore(rq, &rf); 11620 } 11621 11622 return 0; 11623 } 11624 11625 int sched_group_set_shares(struct task_group *tg, unsigned long shares) 11626 { 11627 int ret; 11628 11629 mutex_lock(&shares_mutex); 11630 if (tg_is_idle(tg)) 11631 ret = -EINVAL; 11632 else 11633 ret = __sched_group_set_shares(tg, shares); 11634 mutex_unlock(&shares_mutex); 11635 11636 return ret; 11637 } 11638 11639 int sched_group_set_idle(struct task_group *tg, long idle) 11640 { 11641 int i; 11642 11643 if (tg == &root_task_group) 11644 return -EINVAL; 11645 11646 if (idle < 0 || idle > 1) 11647 return -EINVAL; 11648 11649 mutex_lock(&shares_mutex); 11650 11651 if (tg->idle == idle) { 11652 mutex_unlock(&shares_mutex); 11653 return 0; 11654 } 11655 11656 tg->idle = idle; 11657 11658 for_each_possible_cpu(i) { 11659 struct rq *rq = cpu_rq(i); 11660 struct sched_entity *se = tg->se[i]; 11661 struct cfs_rq *parent_cfs_rq, *grp_cfs_rq = tg->cfs_rq[i]; 11662 bool was_idle = cfs_rq_is_idle(grp_cfs_rq); 11663 long idle_task_delta; 11664 struct rq_flags rf; 11665 11666 rq_lock_irqsave(rq, &rf); 11667 11668 grp_cfs_rq->idle = idle; 11669 if (WARN_ON_ONCE(was_idle == cfs_rq_is_idle(grp_cfs_rq))) 11670 goto next_cpu; 11671 11672 if (se->on_rq) { 11673 parent_cfs_rq = cfs_rq_of(se); 11674 if (cfs_rq_is_idle(grp_cfs_rq)) 11675 parent_cfs_rq->idle_nr_running++; 11676 else 11677 parent_cfs_rq->idle_nr_running--; 11678 } 11679 11680 idle_task_delta = grp_cfs_rq->h_nr_running - 11681 grp_cfs_rq->idle_h_nr_running; 11682 if (!cfs_rq_is_idle(grp_cfs_rq)) 11683 idle_task_delta *= -1; 11684 11685 for_each_sched_entity(se) { 11686 struct cfs_rq *cfs_rq = cfs_rq_of(se); 11687 11688 if (!se->on_rq) 11689 break; 11690 11691 cfs_rq->idle_h_nr_running += idle_task_delta; 11692 11693 /* Already accounted at parent level and above. */ 11694 if (cfs_rq_is_idle(cfs_rq)) 11695 break; 11696 } 11697 11698 next_cpu: 11699 rq_unlock_irqrestore(rq, &rf); 11700 } 11701 11702 /* Idle groups have minimum weight. */ 11703 if (tg_is_idle(tg)) 11704 __sched_group_set_shares(tg, scale_load(WEIGHT_IDLEPRIO)); 11705 else 11706 __sched_group_set_shares(tg, NICE_0_LOAD); 11707 11708 mutex_unlock(&shares_mutex); 11709 return 0; 11710 } 11711 11712 #else /* CONFIG_FAIR_GROUP_SCHED */ 11713 11714 void free_fair_sched_group(struct task_group *tg) { } 11715 11716 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent) 11717 { 11718 return 1; 11719 } 11720 11721 void online_fair_sched_group(struct task_group *tg) { } 11722 11723 void unregister_fair_sched_group(struct task_group *tg) { } 11724 11725 #endif /* CONFIG_FAIR_GROUP_SCHED */ 11726 11727 11728 static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task) 11729 { 11730 struct sched_entity *se = &task->se; 11731 unsigned int rr_interval = 0; 11732 11733 /* 11734 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise 11735 * idle runqueue: 11736 */ 11737 if (rq->cfs.load.weight) 11738 rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se)); 11739 11740 return rr_interval; 11741 } 11742 11743 /* 11744 * All the scheduling class methods: 11745 */ 11746 DEFINE_SCHED_CLASS(fair) = { 11747 11748 .enqueue_task = enqueue_task_fair, 11749 .dequeue_task = dequeue_task_fair, 11750 .yield_task = yield_task_fair, 11751 .yield_to_task = yield_to_task_fair, 11752 11753 .check_preempt_curr = check_preempt_wakeup, 11754 11755 .pick_next_task = __pick_next_task_fair, 11756 .put_prev_task = put_prev_task_fair, 11757 .set_next_task = set_next_task_fair, 11758 11759 #ifdef CONFIG_SMP 11760 .balance = balance_fair, 11761 .pick_task = pick_task_fair, 11762 .select_task_rq = select_task_rq_fair, 11763 .migrate_task_rq = migrate_task_rq_fair, 11764 11765 .rq_online = rq_online_fair, 11766 .rq_offline = rq_offline_fair, 11767 11768 .task_dead = task_dead_fair, 11769 .set_cpus_allowed = set_cpus_allowed_common, 11770 #endif 11771 11772 .task_tick = task_tick_fair, 11773 .task_fork = task_fork_fair, 11774 11775 .prio_changed = prio_changed_fair, 11776 .switched_from = switched_from_fair, 11777 .switched_to = switched_to_fair, 11778 11779 .get_rr_interval = get_rr_interval_fair, 11780 11781 .update_curr = update_curr_fair, 11782 11783 #ifdef CONFIG_FAIR_GROUP_SCHED 11784 .task_change_group = task_change_group_fair, 11785 #endif 11786 11787 #ifdef CONFIG_UCLAMP_TASK 11788 .uclamp_enabled = 1, 11789 #endif 11790 }; 11791 11792 #ifdef CONFIG_SCHED_DEBUG 11793 void print_cfs_stats(struct seq_file *m, int cpu) 11794 { 11795 struct cfs_rq *cfs_rq, *pos; 11796 11797 rcu_read_lock(); 11798 for_each_leaf_cfs_rq_safe(cpu_rq(cpu), cfs_rq, pos) 11799 print_cfs_rq(m, cpu, cfs_rq); 11800 rcu_read_unlock(); 11801 } 11802 11803 #ifdef CONFIG_NUMA_BALANCING 11804 void show_numa_stats(struct task_struct *p, struct seq_file *m) 11805 { 11806 int node; 11807 unsigned long tsf = 0, tpf = 0, gsf = 0, gpf = 0; 11808 struct numa_group *ng; 11809 11810 rcu_read_lock(); 11811 ng = rcu_dereference(p->numa_group); 11812 for_each_online_node(node) { 11813 if (p->numa_faults) { 11814 tsf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 0)]; 11815 tpf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 1)]; 11816 } 11817 if (ng) { 11818 gsf = ng->faults[task_faults_idx(NUMA_MEM, node, 0)], 11819 gpf = ng->faults[task_faults_idx(NUMA_MEM, node, 1)]; 11820 } 11821 print_numa_stats(m, node, tsf, tpf, gsf, gpf); 11822 } 11823 rcu_read_unlock(); 11824 } 11825 #endif /* CONFIG_NUMA_BALANCING */ 11826 #endif /* CONFIG_SCHED_DEBUG */ 11827 11828 __init void init_sched_fair_class(void) 11829 { 11830 #ifdef CONFIG_SMP 11831 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains); 11832 11833 #ifdef CONFIG_NO_HZ_COMMON 11834 nohz.next_balance = jiffies; 11835 nohz.next_blocked = jiffies; 11836 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT); 11837 #endif 11838 #endif /* SMP */ 11839 11840 } 11841 11842 /* 11843 * Helper functions to facilitate extracting info from tracepoints. 11844 */ 11845 11846 const struct sched_avg *sched_trace_cfs_rq_avg(struct cfs_rq *cfs_rq) 11847 { 11848 #ifdef CONFIG_SMP 11849 return cfs_rq ? &cfs_rq->avg : NULL; 11850 #else 11851 return NULL; 11852 #endif 11853 } 11854 EXPORT_SYMBOL_GPL(sched_trace_cfs_rq_avg); 11855 11856 char *sched_trace_cfs_rq_path(struct cfs_rq *cfs_rq, char *str, int len) 11857 { 11858 if (!cfs_rq) { 11859 if (str) 11860 strlcpy(str, "(null)", len); 11861 else 11862 return NULL; 11863 } 11864 11865 cfs_rq_tg_path(cfs_rq, str, len); 11866 return str; 11867 } 11868 EXPORT_SYMBOL_GPL(sched_trace_cfs_rq_path); 11869 11870 int sched_trace_cfs_rq_cpu(struct cfs_rq *cfs_rq) 11871 { 11872 return cfs_rq ? cpu_of(rq_of(cfs_rq)) : -1; 11873 } 11874 EXPORT_SYMBOL_GPL(sched_trace_cfs_rq_cpu); 11875 11876 const struct sched_avg *sched_trace_rq_avg_rt(struct rq *rq) 11877 { 11878 #ifdef CONFIG_SMP 11879 return rq ? &rq->avg_rt : NULL; 11880 #else 11881 return NULL; 11882 #endif 11883 } 11884 EXPORT_SYMBOL_GPL(sched_trace_rq_avg_rt); 11885 11886 const struct sched_avg *sched_trace_rq_avg_dl(struct rq *rq) 11887 { 11888 #ifdef CONFIG_SMP 11889 return rq ? &rq->avg_dl : NULL; 11890 #else 11891 return NULL; 11892 #endif 11893 } 11894 EXPORT_SYMBOL_GPL(sched_trace_rq_avg_dl); 11895 11896 const struct sched_avg *sched_trace_rq_avg_irq(struct rq *rq) 11897 { 11898 #if defined(CONFIG_SMP) && defined(CONFIG_HAVE_SCHED_AVG_IRQ) 11899 return rq ? &rq->avg_irq : NULL; 11900 #else 11901 return NULL; 11902 #endif 11903 } 11904 EXPORT_SYMBOL_GPL(sched_trace_rq_avg_irq); 11905 11906 int sched_trace_rq_cpu(struct rq *rq) 11907 { 11908 return rq ? cpu_of(rq) : -1; 11909 } 11910 EXPORT_SYMBOL_GPL(sched_trace_rq_cpu); 11911 11912 int sched_trace_rq_cpu_capacity(struct rq *rq) 11913 { 11914 return rq ? 11915 #ifdef CONFIG_SMP 11916 rq->cpu_capacity 11917 #else 11918 SCHED_CAPACITY_SCALE 11919 #endif 11920 : -1; 11921 } 11922 EXPORT_SYMBOL_GPL(sched_trace_rq_cpu_capacity); 11923 11924 const struct cpumask *sched_trace_rd_span(struct root_domain *rd) 11925 { 11926 #ifdef CONFIG_SMP 11927 return rd ? rd->span : NULL; 11928 #else 11929 return NULL; 11930 #endif 11931 } 11932 EXPORT_SYMBOL_GPL(sched_trace_rd_span); 11933 11934 int sched_trace_rq_nr_running(struct rq *rq) 11935 { 11936 return rq ? rq->nr_running : -1; 11937 } 11938 EXPORT_SYMBOL_GPL(sched_trace_rq_nr_running); 11939