xref: /openbmc/linux/kernel/sched/fair.c (revision 6355592e)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
4  *
5  *  Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
6  *
7  *  Interactivity improvements by Mike Galbraith
8  *  (C) 2007 Mike Galbraith <efault@gmx.de>
9  *
10  *  Various enhancements by Dmitry Adamushko.
11  *  (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
12  *
13  *  Group scheduling enhancements by Srivatsa Vaddagiri
14  *  Copyright IBM Corporation, 2007
15  *  Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
16  *
17  *  Scaled math optimizations by Thomas Gleixner
18  *  Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
19  *
20  *  Adaptive scheduling granularity, math enhancements by Peter Zijlstra
21  *  Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
22  */
23 #include "sched.h"
24 
25 #include <trace/events/sched.h>
26 
27 /*
28  * Targeted preemption latency for CPU-bound tasks:
29  *
30  * NOTE: this latency value is not the same as the concept of
31  * 'timeslice length' - timeslices in CFS are of variable length
32  * and have no persistent notion like in traditional, time-slice
33  * based scheduling concepts.
34  *
35  * (to see the precise effective timeslice length of your workload,
36  *  run vmstat and monitor the context-switches (cs) field)
37  *
38  * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
39  */
40 unsigned int sysctl_sched_latency			= 6000000ULL;
41 static unsigned int normalized_sysctl_sched_latency	= 6000000ULL;
42 
43 /*
44  * The initial- and re-scaling of tunables is configurable
45  *
46  * Options are:
47  *
48  *   SCHED_TUNABLESCALING_NONE - unscaled, always *1
49  *   SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
50  *   SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
51  *
52  * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
53  */
54 enum sched_tunable_scaling sysctl_sched_tunable_scaling = SCHED_TUNABLESCALING_LOG;
55 
56 /*
57  * Minimal preemption granularity for CPU-bound tasks:
58  *
59  * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
60  */
61 unsigned int sysctl_sched_min_granularity			= 750000ULL;
62 static unsigned int normalized_sysctl_sched_min_granularity	= 750000ULL;
63 
64 /*
65  * This value is kept at sysctl_sched_latency/sysctl_sched_min_granularity
66  */
67 static unsigned int sched_nr_latency = 8;
68 
69 /*
70  * After fork, child runs first. If set to 0 (default) then
71  * parent will (try to) run first.
72  */
73 unsigned int sysctl_sched_child_runs_first __read_mostly;
74 
75 /*
76  * SCHED_OTHER wake-up granularity.
77  *
78  * This option delays the preemption effects of decoupled workloads
79  * and reduces their over-scheduling. Synchronous workloads will still
80  * have immediate wakeup/sleep latencies.
81  *
82  * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
83  */
84 unsigned int sysctl_sched_wakeup_granularity			= 1000000UL;
85 static unsigned int normalized_sysctl_sched_wakeup_granularity	= 1000000UL;
86 
87 const_debug unsigned int sysctl_sched_migration_cost	= 500000UL;
88 
89 #ifdef CONFIG_SMP
90 /*
91  * For asym packing, by default the lower numbered CPU has higher priority.
92  */
93 int __weak arch_asym_cpu_priority(int cpu)
94 {
95 	return -cpu;
96 }
97 
98 /*
99  * The margin used when comparing utilization with CPU capacity.
100  *
101  * (default: ~20%)
102  */
103 #define fits_capacity(cap, max)	((cap) * 1280 < (max) * 1024)
104 
105 #endif
106 
107 #ifdef CONFIG_CFS_BANDWIDTH
108 /*
109  * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
110  * each time a cfs_rq requests quota.
111  *
112  * Note: in the case that the slice exceeds the runtime remaining (either due
113  * to consumption or the quota being specified to be smaller than the slice)
114  * we will always only issue the remaining available time.
115  *
116  * (default: 5 msec, units: microseconds)
117  */
118 unsigned int sysctl_sched_cfs_bandwidth_slice		= 5000UL;
119 #endif
120 
121 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
122 {
123 	lw->weight += inc;
124 	lw->inv_weight = 0;
125 }
126 
127 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
128 {
129 	lw->weight -= dec;
130 	lw->inv_weight = 0;
131 }
132 
133 static inline void update_load_set(struct load_weight *lw, unsigned long w)
134 {
135 	lw->weight = w;
136 	lw->inv_weight = 0;
137 }
138 
139 /*
140  * Increase the granularity value when there are more CPUs,
141  * because with more CPUs the 'effective latency' as visible
142  * to users decreases. But the relationship is not linear,
143  * so pick a second-best guess by going with the log2 of the
144  * number of CPUs.
145  *
146  * This idea comes from the SD scheduler of Con Kolivas:
147  */
148 static unsigned int get_update_sysctl_factor(void)
149 {
150 	unsigned int cpus = min_t(unsigned int, num_online_cpus(), 8);
151 	unsigned int factor;
152 
153 	switch (sysctl_sched_tunable_scaling) {
154 	case SCHED_TUNABLESCALING_NONE:
155 		factor = 1;
156 		break;
157 	case SCHED_TUNABLESCALING_LINEAR:
158 		factor = cpus;
159 		break;
160 	case SCHED_TUNABLESCALING_LOG:
161 	default:
162 		factor = 1 + ilog2(cpus);
163 		break;
164 	}
165 
166 	return factor;
167 }
168 
169 static void update_sysctl(void)
170 {
171 	unsigned int factor = get_update_sysctl_factor();
172 
173 #define SET_SYSCTL(name) \
174 	(sysctl_##name = (factor) * normalized_sysctl_##name)
175 	SET_SYSCTL(sched_min_granularity);
176 	SET_SYSCTL(sched_latency);
177 	SET_SYSCTL(sched_wakeup_granularity);
178 #undef SET_SYSCTL
179 }
180 
181 void sched_init_granularity(void)
182 {
183 	update_sysctl();
184 }
185 
186 #define WMULT_CONST	(~0U)
187 #define WMULT_SHIFT	32
188 
189 static void __update_inv_weight(struct load_weight *lw)
190 {
191 	unsigned long w;
192 
193 	if (likely(lw->inv_weight))
194 		return;
195 
196 	w = scale_load_down(lw->weight);
197 
198 	if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
199 		lw->inv_weight = 1;
200 	else if (unlikely(!w))
201 		lw->inv_weight = WMULT_CONST;
202 	else
203 		lw->inv_weight = WMULT_CONST / w;
204 }
205 
206 /*
207  * delta_exec * weight / lw.weight
208  *   OR
209  * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
210  *
211  * Either weight := NICE_0_LOAD and lw \e sched_prio_to_wmult[], in which case
212  * we're guaranteed shift stays positive because inv_weight is guaranteed to
213  * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
214  *
215  * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
216  * weight/lw.weight <= 1, and therefore our shift will also be positive.
217  */
218 static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw)
219 {
220 	u64 fact = scale_load_down(weight);
221 	int shift = WMULT_SHIFT;
222 
223 	__update_inv_weight(lw);
224 
225 	if (unlikely(fact >> 32)) {
226 		while (fact >> 32) {
227 			fact >>= 1;
228 			shift--;
229 		}
230 	}
231 
232 	/* hint to use a 32x32->64 mul */
233 	fact = (u64)(u32)fact * lw->inv_weight;
234 
235 	while (fact >> 32) {
236 		fact >>= 1;
237 		shift--;
238 	}
239 
240 	return mul_u64_u32_shr(delta_exec, fact, shift);
241 }
242 
243 
244 const struct sched_class fair_sched_class;
245 
246 /**************************************************************
247  * CFS operations on generic schedulable entities:
248  */
249 
250 #ifdef CONFIG_FAIR_GROUP_SCHED
251 static inline struct task_struct *task_of(struct sched_entity *se)
252 {
253 	SCHED_WARN_ON(!entity_is_task(se));
254 	return container_of(se, struct task_struct, se);
255 }
256 
257 /* Walk up scheduling entities hierarchy */
258 #define for_each_sched_entity(se) \
259 		for (; se; se = se->parent)
260 
261 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
262 {
263 	return p->se.cfs_rq;
264 }
265 
266 /* runqueue on which this entity is (to be) queued */
267 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
268 {
269 	return se->cfs_rq;
270 }
271 
272 /* runqueue "owned" by this group */
273 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
274 {
275 	return grp->my_q;
276 }
277 
278 static inline void cfs_rq_tg_path(struct cfs_rq *cfs_rq, char *path, int len)
279 {
280 	if (!path)
281 		return;
282 
283 	if (cfs_rq && task_group_is_autogroup(cfs_rq->tg))
284 		autogroup_path(cfs_rq->tg, path, len);
285 	else if (cfs_rq && cfs_rq->tg->css.cgroup)
286 		cgroup_path(cfs_rq->tg->css.cgroup, path, len);
287 	else
288 		strlcpy(path, "(null)", len);
289 }
290 
291 static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
292 {
293 	struct rq *rq = rq_of(cfs_rq);
294 	int cpu = cpu_of(rq);
295 
296 	if (cfs_rq->on_list)
297 		return rq->tmp_alone_branch == &rq->leaf_cfs_rq_list;
298 
299 	cfs_rq->on_list = 1;
300 
301 	/*
302 	 * Ensure we either appear before our parent (if already
303 	 * enqueued) or force our parent to appear after us when it is
304 	 * enqueued. The fact that we always enqueue bottom-up
305 	 * reduces this to two cases and a special case for the root
306 	 * cfs_rq. Furthermore, it also means that we will always reset
307 	 * tmp_alone_branch either when the branch is connected
308 	 * to a tree or when we reach the top of the tree
309 	 */
310 	if (cfs_rq->tg->parent &&
311 	    cfs_rq->tg->parent->cfs_rq[cpu]->on_list) {
312 		/*
313 		 * If parent is already on the list, we add the child
314 		 * just before. Thanks to circular linked property of
315 		 * the list, this means to put the child at the tail
316 		 * of the list that starts by parent.
317 		 */
318 		list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
319 			&(cfs_rq->tg->parent->cfs_rq[cpu]->leaf_cfs_rq_list));
320 		/*
321 		 * The branch is now connected to its tree so we can
322 		 * reset tmp_alone_branch to the beginning of the
323 		 * list.
324 		 */
325 		rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
326 		return true;
327 	}
328 
329 	if (!cfs_rq->tg->parent) {
330 		/*
331 		 * cfs rq without parent should be put
332 		 * at the tail of the list.
333 		 */
334 		list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
335 			&rq->leaf_cfs_rq_list);
336 		/*
337 		 * We have reach the top of a tree so we can reset
338 		 * tmp_alone_branch to the beginning of the list.
339 		 */
340 		rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
341 		return true;
342 	}
343 
344 	/*
345 	 * The parent has not already been added so we want to
346 	 * make sure that it will be put after us.
347 	 * tmp_alone_branch points to the begin of the branch
348 	 * where we will add parent.
349 	 */
350 	list_add_rcu(&cfs_rq->leaf_cfs_rq_list, rq->tmp_alone_branch);
351 	/*
352 	 * update tmp_alone_branch to points to the new begin
353 	 * of the branch
354 	 */
355 	rq->tmp_alone_branch = &cfs_rq->leaf_cfs_rq_list;
356 	return false;
357 }
358 
359 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
360 {
361 	if (cfs_rq->on_list) {
362 		struct rq *rq = rq_of(cfs_rq);
363 
364 		/*
365 		 * With cfs_rq being unthrottled/throttled during an enqueue,
366 		 * it can happen the tmp_alone_branch points the a leaf that
367 		 * we finally want to del. In this case, tmp_alone_branch moves
368 		 * to the prev element but it will point to rq->leaf_cfs_rq_list
369 		 * at the end of the enqueue.
370 		 */
371 		if (rq->tmp_alone_branch == &cfs_rq->leaf_cfs_rq_list)
372 			rq->tmp_alone_branch = cfs_rq->leaf_cfs_rq_list.prev;
373 
374 		list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
375 		cfs_rq->on_list = 0;
376 	}
377 }
378 
379 static inline void assert_list_leaf_cfs_rq(struct rq *rq)
380 {
381 	SCHED_WARN_ON(rq->tmp_alone_branch != &rq->leaf_cfs_rq_list);
382 }
383 
384 /* Iterate thr' all leaf cfs_rq's on a runqueue */
385 #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos)			\
386 	list_for_each_entry_safe(cfs_rq, pos, &rq->leaf_cfs_rq_list,	\
387 				 leaf_cfs_rq_list)
388 
389 /* Do the two (enqueued) entities belong to the same group ? */
390 static inline struct cfs_rq *
391 is_same_group(struct sched_entity *se, struct sched_entity *pse)
392 {
393 	if (se->cfs_rq == pse->cfs_rq)
394 		return se->cfs_rq;
395 
396 	return NULL;
397 }
398 
399 static inline struct sched_entity *parent_entity(struct sched_entity *se)
400 {
401 	return se->parent;
402 }
403 
404 static void
405 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
406 {
407 	int se_depth, pse_depth;
408 
409 	/*
410 	 * preemption test can be made between sibling entities who are in the
411 	 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
412 	 * both tasks until we find their ancestors who are siblings of common
413 	 * parent.
414 	 */
415 
416 	/* First walk up until both entities are at same depth */
417 	se_depth = (*se)->depth;
418 	pse_depth = (*pse)->depth;
419 
420 	while (se_depth > pse_depth) {
421 		se_depth--;
422 		*se = parent_entity(*se);
423 	}
424 
425 	while (pse_depth > se_depth) {
426 		pse_depth--;
427 		*pse = parent_entity(*pse);
428 	}
429 
430 	while (!is_same_group(*se, *pse)) {
431 		*se = parent_entity(*se);
432 		*pse = parent_entity(*pse);
433 	}
434 }
435 
436 #else	/* !CONFIG_FAIR_GROUP_SCHED */
437 
438 static inline struct task_struct *task_of(struct sched_entity *se)
439 {
440 	return container_of(se, struct task_struct, se);
441 }
442 
443 #define for_each_sched_entity(se) \
444 		for (; se; se = NULL)
445 
446 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
447 {
448 	return &task_rq(p)->cfs;
449 }
450 
451 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
452 {
453 	struct task_struct *p = task_of(se);
454 	struct rq *rq = task_rq(p);
455 
456 	return &rq->cfs;
457 }
458 
459 /* runqueue "owned" by this group */
460 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
461 {
462 	return NULL;
463 }
464 
465 static inline void cfs_rq_tg_path(struct cfs_rq *cfs_rq, char *path, int len)
466 {
467 	if (path)
468 		strlcpy(path, "(null)", len);
469 }
470 
471 static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
472 {
473 	return true;
474 }
475 
476 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
477 {
478 }
479 
480 static inline void assert_list_leaf_cfs_rq(struct rq *rq)
481 {
482 }
483 
484 #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos)	\
485 		for (cfs_rq = &rq->cfs, pos = NULL; cfs_rq; cfs_rq = pos)
486 
487 static inline struct sched_entity *parent_entity(struct sched_entity *se)
488 {
489 	return NULL;
490 }
491 
492 static inline void
493 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
494 {
495 }
496 
497 #endif	/* CONFIG_FAIR_GROUP_SCHED */
498 
499 static __always_inline
500 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec);
501 
502 /**************************************************************
503  * Scheduling class tree data structure manipulation methods:
504  */
505 
506 static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
507 {
508 	s64 delta = (s64)(vruntime - max_vruntime);
509 	if (delta > 0)
510 		max_vruntime = vruntime;
511 
512 	return max_vruntime;
513 }
514 
515 static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
516 {
517 	s64 delta = (s64)(vruntime - min_vruntime);
518 	if (delta < 0)
519 		min_vruntime = vruntime;
520 
521 	return min_vruntime;
522 }
523 
524 static inline int entity_before(struct sched_entity *a,
525 				struct sched_entity *b)
526 {
527 	return (s64)(a->vruntime - b->vruntime) < 0;
528 }
529 
530 static void update_min_vruntime(struct cfs_rq *cfs_rq)
531 {
532 	struct sched_entity *curr = cfs_rq->curr;
533 	struct rb_node *leftmost = rb_first_cached(&cfs_rq->tasks_timeline);
534 
535 	u64 vruntime = cfs_rq->min_vruntime;
536 
537 	if (curr) {
538 		if (curr->on_rq)
539 			vruntime = curr->vruntime;
540 		else
541 			curr = NULL;
542 	}
543 
544 	if (leftmost) { /* non-empty tree */
545 		struct sched_entity *se;
546 		se = rb_entry(leftmost, struct sched_entity, run_node);
547 
548 		if (!curr)
549 			vruntime = se->vruntime;
550 		else
551 			vruntime = min_vruntime(vruntime, se->vruntime);
552 	}
553 
554 	/* ensure we never gain time by being placed backwards. */
555 	cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
556 #ifndef CONFIG_64BIT
557 	smp_wmb();
558 	cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
559 #endif
560 }
561 
562 /*
563  * Enqueue an entity into the rb-tree:
564  */
565 static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
566 {
567 	struct rb_node **link = &cfs_rq->tasks_timeline.rb_root.rb_node;
568 	struct rb_node *parent = NULL;
569 	struct sched_entity *entry;
570 	bool leftmost = true;
571 
572 	/*
573 	 * Find the right place in the rbtree:
574 	 */
575 	while (*link) {
576 		parent = *link;
577 		entry = rb_entry(parent, struct sched_entity, run_node);
578 		/*
579 		 * We dont care about collisions. Nodes with
580 		 * the same key stay together.
581 		 */
582 		if (entity_before(se, entry)) {
583 			link = &parent->rb_left;
584 		} else {
585 			link = &parent->rb_right;
586 			leftmost = false;
587 		}
588 	}
589 
590 	rb_link_node(&se->run_node, parent, link);
591 	rb_insert_color_cached(&se->run_node,
592 			       &cfs_rq->tasks_timeline, leftmost);
593 }
594 
595 static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
596 {
597 	rb_erase_cached(&se->run_node, &cfs_rq->tasks_timeline);
598 }
599 
600 struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
601 {
602 	struct rb_node *left = rb_first_cached(&cfs_rq->tasks_timeline);
603 
604 	if (!left)
605 		return NULL;
606 
607 	return rb_entry(left, struct sched_entity, run_node);
608 }
609 
610 static struct sched_entity *__pick_next_entity(struct sched_entity *se)
611 {
612 	struct rb_node *next = rb_next(&se->run_node);
613 
614 	if (!next)
615 		return NULL;
616 
617 	return rb_entry(next, struct sched_entity, run_node);
618 }
619 
620 #ifdef CONFIG_SCHED_DEBUG
621 struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
622 {
623 	struct rb_node *last = rb_last(&cfs_rq->tasks_timeline.rb_root);
624 
625 	if (!last)
626 		return NULL;
627 
628 	return rb_entry(last, struct sched_entity, run_node);
629 }
630 
631 /**************************************************************
632  * Scheduling class statistics methods:
633  */
634 
635 int sched_proc_update_handler(struct ctl_table *table, int write,
636 		void __user *buffer, size_t *lenp,
637 		loff_t *ppos)
638 {
639 	int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
640 	unsigned int factor = get_update_sysctl_factor();
641 
642 	if (ret || !write)
643 		return ret;
644 
645 	sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
646 					sysctl_sched_min_granularity);
647 
648 #define WRT_SYSCTL(name) \
649 	(normalized_sysctl_##name = sysctl_##name / (factor))
650 	WRT_SYSCTL(sched_min_granularity);
651 	WRT_SYSCTL(sched_latency);
652 	WRT_SYSCTL(sched_wakeup_granularity);
653 #undef WRT_SYSCTL
654 
655 	return 0;
656 }
657 #endif
658 
659 /*
660  * delta /= w
661  */
662 static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
663 {
664 	if (unlikely(se->load.weight != NICE_0_LOAD))
665 		delta = __calc_delta(delta, NICE_0_LOAD, &se->load);
666 
667 	return delta;
668 }
669 
670 /*
671  * The idea is to set a period in which each task runs once.
672  *
673  * When there are too many tasks (sched_nr_latency) we have to stretch
674  * this period because otherwise the slices get too small.
675  *
676  * p = (nr <= nl) ? l : l*nr/nl
677  */
678 static u64 __sched_period(unsigned long nr_running)
679 {
680 	if (unlikely(nr_running > sched_nr_latency))
681 		return nr_running * sysctl_sched_min_granularity;
682 	else
683 		return sysctl_sched_latency;
684 }
685 
686 /*
687  * We calculate the wall-time slice from the period by taking a part
688  * proportional to the weight.
689  *
690  * s = p*P[w/rw]
691  */
692 static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
693 {
694 	u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
695 
696 	for_each_sched_entity(se) {
697 		struct load_weight *load;
698 		struct load_weight lw;
699 
700 		cfs_rq = cfs_rq_of(se);
701 		load = &cfs_rq->load;
702 
703 		if (unlikely(!se->on_rq)) {
704 			lw = cfs_rq->load;
705 
706 			update_load_add(&lw, se->load.weight);
707 			load = &lw;
708 		}
709 		slice = __calc_delta(slice, se->load.weight, load);
710 	}
711 	return slice;
712 }
713 
714 /*
715  * We calculate the vruntime slice of a to-be-inserted task.
716  *
717  * vs = s/w
718  */
719 static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
720 {
721 	return calc_delta_fair(sched_slice(cfs_rq, se), se);
722 }
723 
724 #include "pelt.h"
725 #ifdef CONFIG_SMP
726 
727 static int select_idle_sibling(struct task_struct *p, int prev_cpu, int cpu);
728 static unsigned long task_h_load(struct task_struct *p);
729 static unsigned long capacity_of(int cpu);
730 
731 /* Give new sched_entity start runnable values to heavy its load in infant time */
732 void init_entity_runnable_average(struct sched_entity *se)
733 {
734 	struct sched_avg *sa = &se->avg;
735 
736 	memset(sa, 0, sizeof(*sa));
737 
738 	/*
739 	 * Tasks are initialized with full load to be seen as heavy tasks until
740 	 * they get a chance to stabilize to their real load level.
741 	 * Group entities are initialized with zero load to reflect the fact that
742 	 * nothing has been attached to the task group yet.
743 	 */
744 	if (entity_is_task(se))
745 		sa->runnable_load_avg = sa->load_avg = scale_load_down(se->load.weight);
746 
747 	se->runnable_weight = se->load.weight;
748 
749 	/* when this task enqueue'ed, it will contribute to its cfs_rq's load_avg */
750 }
751 
752 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq);
753 static void attach_entity_cfs_rq(struct sched_entity *se);
754 
755 /*
756  * With new tasks being created, their initial util_avgs are extrapolated
757  * based on the cfs_rq's current util_avg:
758  *
759  *   util_avg = cfs_rq->util_avg / (cfs_rq->load_avg + 1) * se.load.weight
760  *
761  * However, in many cases, the above util_avg does not give a desired
762  * value. Moreover, the sum of the util_avgs may be divergent, such
763  * as when the series is a harmonic series.
764  *
765  * To solve this problem, we also cap the util_avg of successive tasks to
766  * only 1/2 of the left utilization budget:
767  *
768  *   util_avg_cap = (cpu_scale - cfs_rq->avg.util_avg) / 2^n
769  *
770  * where n denotes the nth task and cpu_scale the CPU capacity.
771  *
772  * For example, for a CPU with 1024 of capacity, a simplest series from
773  * the beginning would be like:
774  *
775  *  task  util_avg: 512, 256, 128,  64,  32,   16,    8, ...
776  * cfs_rq util_avg: 512, 768, 896, 960, 992, 1008, 1016, ...
777  *
778  * Finally, that extrapolated util_avg is clamped to the cap (util_avg_cap)
779  * if util_avg > util_avg_cap.
780  */
781 void post_init_entity_util_avg(struct task_struct *p)
782 {
783 	struct sched_entity *se = &p->se;
784 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
785 	struct sched_avg *sa = &se->avg;
786 	long cpu_scale = arch_scale_cpu_capacity(cpu_of(rq_of(cfs_rq)));
787 	long cap = (long)(cpu_scale - cfs_rq->avg.util_avg) / 2;
788 
789 	if (cap > 0) {
790 		if (cfs_rq->avg.util_avg != 0) {
791 			sa->util_avg  = cfs_rq->avg.util_avg * se->load.weight;
792 			sa->util_avg /= (cfs_rq->avg.load_avg + 1);
793 
794 			if (sa->util_avg > cap)
795 				sa->util_avg = cap;
796 		} else {
797 			sa->util_avg = cap;
798 		}
799 	}
800 
801 	if (p->sched_class != &fair_sched_class) {
802 		/*
803 		 * For !fair tasks do:
804 		 *
805 		update_cfs_rq_load_avg(now, cfs_rq);
806 		attach_entity_load_avg(cfs_rq, se, 0);
807 		switched_from_fair(rq, p);
808 		 *
809 		 * such that the next switched_to_fair() has the
810 		 * expected state.
811 		 */
812 		se->avg.last_update_time = cfs_rq_clock_pelt(cfs_rq);
813 		return;
814 	}
815 
816 	attach_entity_cfs_rq(se);
817 }
818 
819 #else /* !CONFIG_SMP */
820 void init_entity_runnable_average(struct sched_entity *se)
821 {
822 }
823 void post_init_entity_util_avg(struct task_struct *p)
824 {
825 }
826 static void update_tg_load_avg(struct cfs_rq *cfs_rq, int force)
827 {
828 }
829 #endif /* CONFIG_SMP */
830 
831 /*
832  * Update the current task's runtime statistics.
833  */
834 static void update_curr(struct cfs_rq *cfs_rq)
835 {
836 	struct sched_entity *curr = cfs_rq->curr;
837 	u64 now = rq_clock_task(rq_of(cfs_rq));
838 	u64 delta_exec;
839 
840 	if (unlikely(!curr))
841 		return;
842 
843 	delta_exec = now - curr->exec_start;
844 	if (unlikely((s64)delta_exec <= 0))
845 		return;
846 
847 	curr->exec_start = now;
848 
849 	schedstat_set(curr->statistics.exec_max,
850 		      max(delta_exec, curr->statistics.exec_max));
851 
852 	curr->sum_exec_runtime += delta_exec;
853 	schedstat_add(cfs_rq->exec_clock, delta_exec);
854 
855 	curr->vruntime += calc_delta_fair(delta_exec, curr);
856 	update_min_vruntime(cfs_rq);
857 
858 	if (entity_is_task(curr)) {
859 		struct task_struct *curtask = task_of(curr);
860 
861 		trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
862 		cgroup_account_cputime(curtask, delta_exec);
863 		account_group_exec_runtime(curtask, delta_exec);
864 	}
865 
866 	account_cfs_rq_runtime(cfs_rq, delta_exec);
867 }
868 
869 static void update_curr_fair(struct rq *rq)
870 {
871 	update_curr(cfs_rq_of(&rq->curr->se));
872 }
873 
874 static inline void
875 update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
876 {
877 	u64 wait_start, prev_wait_start;
878 
879 	if (!schedstat_enabled())
880 		return;
881 
882 	wait_start = rq_clock(rq_of(cfs_rq));
883 	prev_wait_start = schedstat_val(se->statistics.wait_start);
884 
885 	if (entity_is_task(se) && task_on_rq_migrating(task_of(se)) &&
886 	    likely(wait_start > prev_wait_start))
887 		wait_start -= prev_wait_start;
888 
889 	__schedstat_set(se->statistics.wait_start, wait_start);
890 }
891 
892 static inline void
893 update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
894 {
895 	struct task_struct *p;
896 	u64 delta;
897 
898 	if (!schedstat_enabled())
899 		return;
900 
901 	delta = rq_clock(rq_of(cfs_rq)) - schedstat_val(se->statistics.wait_start);
902 
903 	if (entity_is_task(se)) {
904 		p = task_of(se);
905 		if (task_on_rq_migrating(p)) {
906 			/*
907 			 * Preserve migrating task's wait time so wait_start
908 			 * time stamp can be adjusted to accumulate wait time
909 			 * prior to migration.
910 			 */
911 			__schedstat_set(se->statistics.wait_start, delta);
912 			return;
913 		}
914 		trace_sched_stat_wait(p, delta);
915 	}
916 
917 	__schedstat_set(se->statistics.wait_max,
918 		      max(schedstat_val(se->statistics.wait_max), delta));
919 	__schedstat_inc(se->statistics.wait_count);
920 	__schedstat_add(se->statistics.wait_sum, delta);
921 	__schedstat_set(se->statistics.wait_start, 0);
922 }
923 
924 static inline void
925 update_stats_enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
926 {
927 	struct task_struct *tsk = NULL;
928 	u64 sleep_start, block_start;
929 
930 	if (!schedstat_enabled())
931 		return;
932 
933 	sleep_start = schedstat_val(se->statistics.sleep_start);
934 	block_start = schedstat_val(se->statistics.block_start);
935 
936 	if (entity_is_task(se))
937 		tsk = task_of(se);
938 
939 	if (sleep_start) {
940 		u64 delta = rq_clock(rq_of(cfs_rq)) - sleep_start;
941 
942 		if ((s64)delta < 0)
943 			delta = 0;
944 
945 		if (unlikely(delta > schedstat_val(se->statistics.sleep_max)))
946 			__schedstat_set(se->statistics.sleep_max, delta);
947 
948 		__schedstat_set(se->statistics.sleep_start, 0);
949 		__schedstat_add(se->statistics.sum_sleep_runtime, delta);
950 
951 		if (tsk) {
952 			account_scheduler_latency(tsk, delta >> 10, 1);
953 			trace_sched_stat_sleep(tsk, delta);
954 		}
955 	}
956 	if (block_start) {
957 		u64 delta = rq_clock(rq_of(cfs_rq)) - block_start;
958 
959 		if ((s64)delta < 0)
960 			delta = 0;
961 
962 		if (unlikely(delta > schedstat_val(se->statistics.block_max)))
963 			__schedstat_set(se->statistics.block_max, delta);
964 
965 		__schedstat_set(se->statistics.block_start, 0);
966 		__schedstat_add(se->statistics.sum_sleep_runtime, delta);
967 
968 		if (tsk) {
969 			if (tsk->in_iowait) {
970 				__schedstat_add(se->statistics.iowait_sum, delta);
971 				__schedstat_inc(se->statistics.iowait_count);
972 				trace_sched_stat_iowait(tsk, delta);
973 			}
974 
975 			trace_sched_stat_blocked(tsk, delta);
976 
977 			/*
978 			 * Blocking time is in units of nanosecs, so shift by
979 			 * 20 to get a milliseconds-range estimation of the
980 			 * amount of time that the task spent sleeping:
981 			 */
982 			if (unlikely(prof_on == SLEEP_PROFILING)) {
983 				profile_hits(SLEEP_PROFILING,
984 						(void *)get_wchan(tsk),
985 						delta >> 20);
986 			}
987 			account_scheduler_latency(tsk, delta >> 10, 0);
988 		}
989 	}
990 }
991 
992 /*
993  * Task is being enqueued - update stats:
994  */
995 static inline void
996 update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
997 {
998 	if (!schedstat_enabled())
999 		return;
1000 
1001 	/*
1002 	 * Are we enqueueing a waiting task? (for current tasks
1003 	 * a dequeue/enqueue event is a NOP)
1004 	 */
1005 	if (se != cfs_rq->curr)
1006 		update_stats_wait_start(cfs_rq, se);
1007 
1008 	if (flags & ENQUEUE_WAKEUP)
1009 		update_stats_enqueue_sleeper(cfs_rq, se);
1010 }
1011 
1012 static inline void
1013 update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
1014 {
1015 
1016 	if (!schedstat_enabled())
1017 		return;
1018 
1019 	/*
1020 	 * Mark the end of the wait period if dequeueing a
1021 	 * waiting task:
1022 	 */
1023 	if (se != cfs_rq->curr)
1024 		update_stats_wait_end(cfs_rq, se);
1025 
1026 	if ((flags & DEQUEUE_SLEEP) && entity_is_task(se)) {
1027 		struct task_struct *tsk = task_of(se);
1028 
1029 		if (tsk->state & TASK_INTERRUPTIBLE)
1030 			__schedstat_set(se->statistics.sleep_start,
1031 				      rq_clock(rq_of(cfs_rq)));
1032 		if (tsk->state & TASK_UNINTERRUPTIBLE)
1033 			__schedstat_set(se->statistics.block_start,
1034 				      rq_clock(rq_of(cfs_rq)));
1035 	}
1036 }
1037 
1038 /*
1039  * We are picking a new current task - update its stats:
1040  */
1041 static inline void
1042 update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
1043 {
1044 	/*
1045 	 * We are starting a new run period:
1046 	 */
1047 	se->exec_start = rq_clock_task(rq_of(cfs_rq));
1048 }
1049 
1050 /**************************************************
1051  * Scheduling class queueing methods:
1052  */
1053 
1054 #ifdef CONFIG_NUMA_BALANCING
1055 /*
1056  * Approximate time to scan a full NUMA task in ms. The task scan period is
1057  * calculated based on the tasks virtual memory size and
1058  * numa_balancing_scan_size.
1059  */
1060 unsigned int sysctl_numa_balancing_scan_period_min = 1000;
1061 unsigned int sysctl_numa_balancing_scan_period_max = 60000;
1062 
1063 /* Portion of address space to scan in MB */
1064 unsigned int sysctl_numa_balancing_scan_size = 256;
1065 
1066 /* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
1067 unsigned int sysctl_numa_balancing_scan_delay = 1000;
1068 
1069 struct numa_group {
1070 	refcount_t refcount;
1071 
1072 	spinlock_t lock; /* nr_tasks, tasks */
1073 	int nr_tasks;
1074 	pid_t gid;
1075 	int active_nodes;
1076 
1077 	struct rcu_head rcu;
1078 	unsigned long total_faults;
1079 	unsigned long max_faults_cpu;
1080 	/*
1081 	 * Faults_cpu is used to decide whether memory should move
1082 	 * towards the CPU. As a consequence, these stats are weighted
1083 	 * more by CPU use than by memory faults.
1084 	 */
1085 	unsigned long *faults_cpu;
1086 	unsigned long faults[0];
1087 };
1088 
1089 /*
1090  * For functions that can be called in multiple contexts that permit reading
1091  * ->numa_group (see struct task_struct for locking rules).
1092  */
1093 static struct numa_group *deref_task_numa_group(struct task_struct *p)
1094 {
1095 	return rcu_dereference_check(p->numa_group, p == current ||
1096 		(lockdep_is_held(&task_rq(p)->lock) && !READ_ONCE(p->on_cpu)));
1097 }
1098 
1099 static struct numa_group *deref_curr_numa_group(struct task_struct *p)
1100 {
1101 	return rcu_dereference_protected(p->numa_group, p == current);
1102 }
1103 
1104 static inline unsigned long group_faults_priv(struct numa_group *ng);
1105 static inline unsigned long group_faults_shared(struct numa_group *ng);
1106 
1107 static unsigned int task_nr_scan_windows(struct task_struct *p)
1108 {
1109 	unsigned long rss = 0;
1110 	unsigned long nr_scan_pages;
1111 
1112 	/*
1113 	 * Calculations based on RSS as non-present and empty pages are skipped
1114 	 * by the PTE scanner and NUMA hinting faults should be trapped based
1115 	 * on resident pages
1116 	 */
1117 	nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
1118 	rss = get_mm_rss(p->mm);
1119 	if (!rss)
1120 		rss = nr_scan_pages;
1121 
1122 	rss = round_up(rss, nr_scan_pages);
1123 	return rss / nr_scan_pages;
1124 }
1125 
1126 /* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
1127 #define MAX_SCAN_WINDOW 2560
1128 
1129 static unsigned int task_scan_min(struct task_struct *p)
1130 {
1131 	unsigned int scan_size = READ_ONCE(sysctl_numa_balancing_scan_size);
1132 	unsigned int scan, floor;
1133 	unsigned int windows = 1;
1134 
1135 	if (scan_size < MAX_SCAN_WINDOW)
1136 		windows = MAX_SCAN_WINDOW / scan_size;
1137 	floor = 1000 / windows;
1138 
1139 	scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
1140 	return max_t(unsigned int, floor, scan);
1141 }
1142 
1143 static unsigned int task_scan_start(struct task_struct *p)
1144 {
1145 	unsigned long smin = task_scan_min(p);
1146 	unsigned long period = smin;
1147 	struct numa_group *ng;
1148 
1149 	/* Scale the maximum scan period with the amount of shared memory. */
1150 	rcu_read_lock();
1151 	ng = rcu_dereference(p->numa_group);
1152 	if (ng) {
1153 		unsigned long shared = group_faults_shared(ng);
1154 		unsigned long private = group_faults_priv(ng);
1155 
1156 		period *= refcount_read(&ng->refcount);
1157 		period *= shared + 1;
1158 		period /= private + shared + 1;
1159 	}
1160 	rcu_read_unlock();
1161 
1162 	return max(smin, period);
1163 }
1164 
1165 static unsigned int task_scan_max(struct task_struct *p)
1166 {
1167 	unsigned long smin = task_scan_min(p);
1168 	unsigned long smax;
1169 	struct numa_group *ng;
1170 
1171 	/* Watch for min being lower than max due to floor calculations */
1172 	smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
1173 
1174 	/* Scale the maximum scan period with the amount of shared memory. */
1175 	ng = deref_curr_numa_group(p);
1176 	if (ng) {
1177 		unsigned long shared = group_faults_shared(ng);
1178 		unsigned long private = group_faults_priv(ng);
1179 		unsigned long period = smax;
1180 
1181 		period *= refcount_read(&ng->refcount);
1182 		period *= shared + 1;
1183 		period /= private + shared + 1;
1184 
1185 		smax = max(smax, period);
1186 	}
1187 
1188 	return max(smin, smax);
1189 }
1190 
1191 static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
1192 {
1193 	rq->nr_numa_running += (p->numa_preferred_nid != NUMA_NO_NODE);
1194 	rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
1195 }
1196 
1197 static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
1198 {
1199 	rq->nr_numa_running -= (p->numa_preferred_nid != NUMA_NO_NODE);
1200 	rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
1201 }
1202 
1203 /* Shared or private faults. */
1204 #define NR_NUMA_HINT_FAULT_TYPES 2
1205 
1206 /* Memory and CPU locality */
1207 #define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2)
1208 
1209 /* Averaged statistics, and temporary buffers. */
1210 #define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2)
1211 
1212 pid_t task_numa_group_id(struct task_struct *p)
1213 {
1214 	struct numa_group *ng;
1215 	pid_t gid = 0;
1216 
1217 	rcu_read_lock();
1218 	ng = rcu_dereference(p->numa_group);
1219 	if (ng)
1220 		gid = ng->gid;
1221 	rcu_read_unlock();
1222 
1223 	return gid;
1224 }
1225 
1226 /*
1227  * The averaged statistics, shared & private, memory & CPU,
1228  * occupy the first half of the array. The second half of the
1229  * array is for current counters, which are averaged into the
1230  * first set by task_numa_placement.
1231  */
1232 static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv)
1233 {
1234 	return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv;
1235 }
1236 
1237 static inline unsigned long task_faults(struct task_struct *p, int nid)
1238 {
1239 	if (!p->numa_faults)
1240 		return 0;
1241 
1242 	return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1243 		p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)];
1244 }
1245 
1246 static inline unsigned long group_faults(struct task_struct *p, int nid)
1247 {
1248 	struct numa_group *ng = deref_task_numa_group(p);
1249 
1250 	if (!ng)
1251 		return 0;
1252 
1253 	return ng->faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1254 		ng->faults[task_faults_idx(NUMA_MEM, nid, 1)];
1255 }
1256 
1257 static inline unsigned long group_faults_cpu(struct numa_group *group, int nid)
1258 {
1259 	return group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 0)] +
1260 		group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 1)];
1261 }
1262 
1263 static inline unsigned long group_faults_priv(struct numa_group *ng)
1264 {
1265 	unsigned long faults = 0;
1266 	int node;
1267 
1268 	for_each_online_node(node) {
1269 		faults += ng->faults[task_faults_idx(NUMA_MEM, node, 1)];
1270 	}
1271 
1272 	return faults;
1273 }
1274 
1275 static inline unsigned long group_faults_shared(struct numa_group *ng)
1276 {
1277 	unsigned long faults = 0;
1278 	int node;
1279 
1280 	for_each_online_node(node) {
1281 		faults += ng->faults[task_faults_idx(NUMA_MEM, node, 0)];
1282 	}
1283 
1284 	return faults;
1285 }
1286 
1287 /*
1288  * A node triggering more than 1/3 as many NUMA faults as the maximum is
1289  * considered part of a numa group's pseudo-interleaving set. Migrations
1290  * between these nodes are slowed down, to allow things to settle down.
1291  */
1292 #define ACTIVE_NODE_FRACTION 3
1293 
1294 static bool numa_is_active_node(int nid, struct numa_group *ng)
1295 {
1296 	return group_faults_cpu(ng, nid) * ACTIVE_NODE_FRACTION > ng->max_faults_cpu;
1297 }
1298 
1299 /* Handle placement on systems where not all nodes are directly connected. */
1300 static unsigned long score_nearby_nodes(struct task_struct *p, int nid,
1301 					int maxdist, bool task)
1302 {
1303 	unsigned long score = 0;
1304 	int node;
1305 
1306 	/*
1307 	 * All nodes are directly connected, and the same distance
1308 	 * from each other. No need for fancy placement algorithms.
1309 	 */
1310 	if (sched_numa_topology_type == NUMA_DIRECT)
1311 		return 0;
1312 
1313 	/*
1314 	 * This code is called for each node, introducing N^2 complexity,
1315 	 * which should be ok given the number of nodes rarely exceeds 8.
1316 	 */
1317 	for_each_online_node(node) {
1318 		unsigned long faults;
1319 		int dist = node_distance(nid, node);
1320 
1321 		/*
1322 		 * The furthest away nodes in the system are not interesting
1323 		 * for placement; nid was already counted.
1324 		 */
1325 		if (dist == sched_max_numa_distance || node == nid)
1326 			continue;
1327 
1328 		/*
1329 		 * On systems with a backplane NUMA topology, compare groups
1330 		 * of nodes, and move tasks towards the group with the most
1331 		 * memory accesses. When comparing two nodes at distance
1332 		 * "hoplimit", only nodes closer by than "hoplimit" are part
1333 		 * of each group. Skip other nodes.
1334 		 */
1335 		if (sched_numa_topology_type == NUMA_BACKPLANE &&
1336 					dist >= maxdist)
1337 			continue;
1338 
1339 		/* Add up the faults from nearby nodes. */
1340 		if (task)
1341 			faults = task_faults(p, node);
1342 		else
1343 			faults = group_faults(p, node);
1344 
1345 		/*
1346 		 * On systems with a glueless mesh NUMA topology, there are
1347 		 * no fixed "groups of nodes". Instead, nodes that are not
1348 		 * directly connected bounce traffic through intermediate
1349 		 * nodes; a numa_group can occupy any set of nodes.
1350 		 * The further away a node is, the less the faults count.
1351 		 * This seems to result in good task placement.
1352 		 */
1353 		if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
1354 			faults *= (sched_max_numa_distance - dist);
1355 			faults /= (sched_max_numa_distance - LOCAL_DISTANCE);
1356 		}
1357 
1358 		score += faults;
1359 	}
1360 
1361 	return score;
1362 }
1363 
1364 /*
1365  * These return the fraction of accesses done by a particular task, or
1366  * task group, on a particular numa node.  The group weight is given a
1367  * larger multiplier, in order to group tasks together that are almost
1368  * evenly spread out between numa nodes.
1369  */
1370 static inline unsigned long task_weight(struct task_struct *p, int nid,
1371 					int dist)
1372 {
1373 	unsigned long faults, total_faults;
1374 
1375 	if (!p->numa_faults)
1376 		return 0;
1377 
1378 	total_faults = p->total_numa_faults;
1379 
1380 	if (!total_faults)
1381 		return 0;
1382 
1383 	faults = task_faults(p, nid);
1384 	faults += score_nearby_nodes(p, nid, dist, true);
1385 
1386 	return 1000 * faults / total_faults;
1387 }
1388 
1389 static inline unsigned long group_weight(struct task_struct *p, int nid,
1390 					 int dist)
1391 {
1392 	struct numa_group *ng = deref_task_numa_group(p);
1393 	unsigned long faults, total_faults;
1394 
1395 	if (!ng)
1396 		return 0;
1397 
1398 	total_faults = ng->total_faults;
1399 
1400 	if (!total_faults)
1401 		return 0;
1402 
1403 	faults = group_faults(p, nid);
1404 	faults += score_nearby_nodes(p, nid, dist, false);
1405 
1406 	return 1000 * faults / total_faults;
1407 }
1408 
1409 bool should_numa_migrate_memory(struct task_struct *p, struct page * page,
1410 				int src_nid, int dst_cpu)
1411 {
1412 	struct numa_group *ng = deref_curr_numa_group(p);
1413 	int dst_nid = cpu_to_node(dst_cpu);
1414 	int last_cpupid, this_cpupid;
1415 
1416 	this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid);
1417 	last_cpupid = page_cpupid_xchg_last(page, this_cpupid);
1418 
1419 	/*
1420 	 * Allow first faults or private faults to migrate immediately early in
1421 	 * the lifetime of a task. The magic number 4 is based on waiting for
1422 	 * two full passes of the "multi-stage node selection" test that is
1423 	 * executed below.
1424 	 */
1425 	if ((p->numa_preferred_nid == NUMA_NO_NODE || p->numa_scan_seq <= 4) &&
1426 	    (cpupid_pid_unset(last_cpupid) || cpupid_match_pid(p, last_cpupid)))
1427 		return true;
1428 
1429 	/*
1430 	 * Multi-stage node selection is used in conjunction with a periodic
1431 	 * migration fault to build a temporal task<->page relation. By using
1432 	 * a two-stage filter we remove short/unlikely relations.
1433 	 *
1434 	 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate
1435 	 * a task's usage of a particular page (n_p) per total usage of this
1436 	 * page (n_t) (in a given time-span) to a probability.
1437 	 *
1438 	 * Our periodic faults will sample this probability and getting the
1439 	 * same result twice in a row, given these samples are fully
1440 	 * independent, is then given by P(n)^2, provided our sample period
1441 	 * is sufficiently short compared to the usage pattern.
1442 	 *
1443 	 * This quadric squishes small probabilities, making it less likely we
1444 	 * act on an unlikely task<->page relation.
1445 	 */
1446 	if (!cpupid_pid_unset(last_cpupid) &&
1447 				cpupid_to_nid(last_cpupid) != dst_nid)
1448 		return false;
1449 
1450 	/* Always allow migrate on private faults */
1451 	if (cpupid_match_pid(p, last_cpupid))
1452 		return true;
1453 
1454 	/* A shared fault, but p->numa_group has not been set up yet. */
1455 	if (!ng)
1456 		return true;
1457 
1458 	/*
1459 	 * Destination node is much more heavily used than the source
1460 	 * node? Allow migration.
1461 	 */
1462 	if (group_faults_cpu(ng, dst_nid) > group_faults_cpu(ng, src_nid) *
1463 					ACTIVE_NODE_FRACTION)
1464 		return true;
1465 
1466 	/*
1467 	 * Distribute memory according to CPU & memory use on each node,
1468 	 * with 3/4 hysteresis to avoid unnecessary memory migrations:
1469 	 *
1470 	 * faults_cpu(dst)   3   faults_cpu(src)
1471 	 * --------------- * - > ---------------
1472 	 * faults_mem(dst)   4   faults_mem(src)
1473 	 */
1474 	return group_faults_cpu(ng, dst_nid) * group_faults(p, src_nid) * 3 >
1475 	       group_faults_cpu(ng, src_nid) * group_faults(p, dst_nid) * 4;
1476 }
1477 
1478 static unsigned long cpu_runnable_load(struct rq *rq);
1479 
1480 /* Cached statistics for all CPUs within a node */
1481 struct numa_stats {
1482 	unsigned long load;
1483 
1484 	/* Total compute capacity of CPUs on a node */
1485 	unsigned long compute_capacity;
1486 };
1487 
1488 /*
1489  * XXX borrowed from update_sg_lb_stats
1490  */
1491 static void update_numa_stats(struct numa_stats *ns, int nid)
1492 {
1493 	int cpu;
1494 
1495 	memset(ns, 0, sizeof(*ns));
1496 	for_each_cpu(cpu, cpumask_of_node(nid)) {
1497 		struct rq *rq = cpu_rq(cpu);
1498 
1499 		ns->load += cpu_runnable_load(rq);
1500 		ns->compute_capacity += capacity_of(cpu);
1501 	}
1502 
1503 }
1504 
1505 struct task_numa_env {
1506 	struct task_struct *p;
1507 
1508 	int src_cpu, src_nid;
1509 	int dst_cpu, dst_nid;
1510 
1511 	struct numa_stats src_stats, dst_stats;
1512 
1513 	int imbalance_pct;
1514 	int dist;
1515 
1516 	struct task_struct *best_task;
1517 	long best_imp;
1518 	int best_cpu;
1519 };
1520 
1521 static void task_numa_assign(struct task_numa_env *env,
1522 			     struct task_struct *p, long imp)
1523 {
1524 	struct rq *rq = cpu_rq(env->dst_cpu);
1525 
1526 	/* Bail out if run-queue part of active NUMA balance. */
1527 	if (xchg(&rq->numa_migrate_on, 1))
1528 		return;
1529 
1530 	/*
1531 	 * Clear previous best_cpu/rq numa-migrate flag, since task now
1532 	 * found a better CPU to move/swap.
1533 	 */
1534 	if (env->best_cpu != -1) {
1535 		rq = cpu_rq(env->best_cpu);
1536 		WRITE_ONCE(rq->numa_migrate_on, 0);
1537 	}
1538 
1539 	if (env->best_task)
1540 		put_task_struct(env->best_task);
1541 	if (p)
1542 		get_task_struct(p);
1543 
1544 	env->best_task = p;
1545 	env->best_imp = imp;
1546 	env->best_cpu = env->dst_cpu;
1547 }
1548 
1549 static bool load_too_imbalanced(long src_load, long dst_load,
1550 				struct task_numa_env *env)
1551 {
1552 	long imb, old_imb;
1553 	long orig_src_load, orig_dst_load;
1554 	long src_capacity, dst_capacity;
1555 
1556 	/*
1557 	 * The load is corrected for the CPU capacity available on each node.
1558 	 *
1559 	 * src_load        dst_load
1560 	 * ------------ vs ---------
1561 	 * src_capacity    dst_capacity
1562 	 */
1563 	src_capacity = env->src_stats.compute_capacity;
1564 	dst_capacity = env->dst_stats.compute_capacity;
1565 
1566 	imb = abs(dst_load * src_capacity - src_load * dst_capacity);
1567 
1568 	orig_src_load = env->src_stats.load;
1569 	orig_dst_load = env->dst_stats.load;
1570 
1571 	old_imb = abs(orig_dst_load * src_capacity - orig_src_load * dst_capacity);
1572 
1573 	/* Would this change make things worse? */
1574 	return (imb > old_imb);
1575 }
1576 
1577 /*
1578  * Maximum NUMA importance can be 1998 (2*999);
1579  * SMALLIMP @ 30 would be close to 1998/64.
1580  * Used to deter task migration.
1581  */
1582 #define SMALLIMP	30
1583 
1584 /*
1585  * This checks if the overall compute and NUMA accesses of the system would
1586  * be improved if the source tasks was migrated to the target dst_cpu taking
1587  * into account that it might be best if task running on the dst_cpu should
1588  * be exchanged with the source task
1589  */
1590 static void task_numa_compare(struct task_numa_env *env,
1591 			      long taskimp, long groupimp, bool maymove)
1592 {
1593 	struct numa_group *cur_ng, *p_ng = deref_curr_numa_group(env->p);
1594 	struct rq *dst_rq = cpu_rq(env->dst_cpu);
1595 	long imp = p_ng ? groupimp : taskimp;
1596 	struct task_struct *cur;
1597 	long src_load, dst_load;
1598 	int dist = env->dist;
1599 	long moveimp = imp;
1600 	long load;
1601 
1602 	if (READ_ONCE(dst_rq->numa_migrate_on))
1603 		return;
1604 
1605 	rcu_read_lock();
1606 	cur = task_rcu_dereference(&dst_rq->curr);
1607 	if (cur && ((cur->flags & PF_EXITING) || is_idle_task(cur)))
1608 		cur = NULL;
1609 
1610 	/*
1611 	 * Because we have preemption enabled we can get migrated around and
1612 	 * end try selecting ourselves (current == env->p) as a swap candidate.
1613 	 */
1614 	if (cur == env->p)
1615 		goto unlock;
1616 
1617 	if (!cur) {
1618 		if (maymove && moveimp >= env->best_imp)
1619 			goto assign;
1620 		else
1621 			goto unlock;
1622 	}
1623 
1624 	/*
1625 	 * "imp" is the fault differential for the source task between the
1626 	 * source and destination node. Calculate the total differential for
1627 	 * the source task and potential destination task. The more negative
1628 	 * the value is, the more remote accesses that would be expected to
1629 	 * be incurred if the tasks were swapped.
1630 	 */
1631 	/* Skip this swap candidate if cannot move to the source cpu */
1632 	if (!cpumask_test_cpu(env->src_cpu, cur->cpus_ptr))
1633 		goto unlock;
1634 
1635 	/*
1636 	 * If dst and source tasks are in the same NUMA group, or not
1637 	 * in any group then look only at task weights.
1638 	 */
1639 	cur_ng = rcu_dereference(cur->numa_group);
1640 	if (cur_ng == p_ng) {
1641 		imp = taskimp + task_weight(cur, env->src_nid, dist) -
1642 		      task_weight(cur, env->dst_nid, dist);
1643 		/*
1644 		 * Add some hysteresis to prevent swapping the
1645 		 * tasks within a group over tiny differences.
1646 		 */
1647 		if (cur_ng)
1648 			imp -= imp / 16;
1649 	} else {
1650 		/*
1651 		 * Compare the group weights. If a task is all by itself
1652 		 * (not part of a group), use the task weight instead.
1653 		 */
1654 		if (cur_ng && p_ng)
1655 			imp += group_weight(cur, env->src_nid, dist) -
1656 			       group_weight(cur, env->dst_nid, dist);
1657 		else
1658 			imp += task_weight(cur, env->src_nid, dist) -
1659 			       task_weight(cur, env->dst_nid, dist);
1660 	}
1661 
1662 	if (maymove && moveimp > imp && moveimp > env->best_imp) {
1663 		imp = moveimp;
1664 		cur = NULL;
1665 		goto assign;
1666 	}
1667 
1668 	/*
1669 	 * If the NUMA importance is less than SMALLIMP,
1670 	 * task migration might only result in ping pong
1671 	 * of tasks and also hurt performance due to cache
1672 	 * misses.
1673 	 */
1674 	if (imp < SMALLIMP || imp <= env->best_imp + SMALLIMP / 2)
1675 		goto unlock;
1676 
1677 	/*
1678 	 * In the overloaded case, try and keep the load balanced.
1679 	 */
1680 	load = task_h_load(env->p) - task_h_load(cur);
1681 	if (!load)
1682 		goto assign;
1683 
1684 	dst_load = env->dst_stats.load + load;
1685 	src_load = env->src_stats.load - load;
1686 
1687 	if (load_too_imbalanced(src_load, dst_load, env))
1688 		goto unlock;
1689 
1690 assign:
1691 	/*
1692 	 * One idle CPU per node is evaluated for a task numa move.
1693 	 * Call select_idle_sibling to maybe find a better one.
1694 	 */
1695 	if (!cur) {
1696 		/*
1697 		 * select_idle_siblings() uses an per-CPU cpumask that
1698 		 * can be used from IRQ context.
1699 		 */
1700 		local_irq_disable();
1701 		env->dst_cpu = select_idle_sibling(env->p, env->src_cpu,
1702 						   env->dst_cpu);
1703 		local_irq_enable();
1704 	}
1705 
1706 	task_numa_assign(env, cur, imp);
1707 unlock:
1708 	rcu_read_unlock();
1709 }
1710 
1711 static void task_numa_find_cpu(struct task_numa_env *env,
1712 				long taskimp, long groupimp)
1713 {
1714 	long src_load, dst_load, load;
1715 	bool maymove = false;
1716 	int cpu;
1717 
1718 	load = task_h_load(env->p);
1719 	dst_load = env->dst_stats.load + load;
1720 	src_load = env->src_stats.load - load;
1721 
1722 	/*
1723 	 * If the improvement from just moving env->p direction is better
1724 	 * than swapping tasks around, check if a move is possible.
1725 	 */
1726 	maymove = !load_too_imbalanced(src_load, dst_load, env);
1727 
1728 	for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
1729 		/* Skip this CPU if the source task cannot migrate */
1730 		if (!cpumask_test_cpu(cpu, env->p->cpus_ptr))
1731 			continue;
1732 
1733 		env->dst_cpu = cpu;
1734 		task_numa_compare(env, taskimp, groupimp, maymove);
1735 	}
1736 }
1737 
1738 static int task_numa_migrate(struct task_struct *p)
1739 {
1740 	struct task_numa_env env = {
1741 		.p = p,
1742 
1743 		.src_cpu = task_cpu(p),
1744 		.src_nid = task_node(p),
1745 
1746 		.imbalance_pct = 112,
1747 
1748 		.best_task = NULL,
1749 		.best_imp = 0,
1750 		.best_cpu = -1,
1751 	};
1752 	unsigned long taskweight, groupweight;
1753 	struct sched_domain *sd;
1754 	long taskimp, groupimp;
1755 	struct numa_group *ng;
1756 	struct rq *best_rq;
1757 	int nid, ret, dist;
1758 
1759 	/*
1760 	 * Pick the lowest SD_NUMA domain, as that would have the smallest
1761 	 * imbalance and would be the first to start moving tasks about.
1762 	 *
1763 	 * And we want to avoid any moving of tasks about, as that would create
1764 	 * random movement of tasks -- counter the numa conditions we're trying
1765 	 * to satisfy here.
1766 	 */
1767 	rcu_read_lock();
1768 	sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
1769 	if (sd)
1770 		env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
1771 	rcu_read_unlock();
1772 
1773 	/*
1774 	 * Cpusets can break the scheduler domain tree into smaller
1775 	 * balance domains, some of which do not cross NUMA boundaries.
1776 	 * Tasks that are "trapped" in such domains cannot be migrated
1777 	 * elsewhere, so there is no point in (re)trying.
1778 	 */
1779 	if (unlikely(!sd)) {
1780 		sched_setnuma(p, task_node(p));
1781 		return -EINVAL;
1782 	}
1783 
1784 	env.dst_nid = p->numa_preferred_nid;
1785 	dist = env.dist = node_distance(env.src_nid, env.dst_nid);
1786 	taskweight = task_weight(p, env.src_nid, dist);
1787 	groupweight = group_weight(p, env.src_nid, dist);
1788 	update_numa_stats(&env.src_stats, env.src_nid);
1789 	taskimp = task_weight(p, env.dst_nid, dist) - taskweight;
1790 	groupimp = group_weight(p, env.dst_nid, dist) - groupweight;
1791 	update_numa_stats(&env.dst_stats, env.dst_nid);
1792 
1793 	/* Try to find a spot on the preferred nid. */
1794 	task_numa_find_cpu(&env, taskimp, groupimp);
1795 
1796 	/*
1797 	 * Look at other nodes in these cases:
1798 	 * - there is no space available on the preferred_nid
1799 	 * - the task is part of a numa_group that is interleaved across
1800 	 *   multiple NUMA nodes; in order to better consolidate the group,
1801 	 *   we need to check other locations.
1802 	 */
1803 	ng = deref_curr_numa_group(p);
1804 	if (env.best_cpu == -1 || (ng && ng->active_nodes > 1)) {
1805 		for_each_online_node(nid) {
1806 			if (nid == env.src_nid || nid == p->numa_preferred_nid)
1807 				continue;
1808 
1809 			dist = node_distance(env.src_nid, env.dst_nid);
1810 			if (sched_numa_topology_type == NUMA_BACKPLANE &&
1811 						dist != env.dist) {
1812 				taskweight = task_weight(p, env.src_nid, dist);
1813 				groupweight = group_weight(p, env.src_nid, dist);
1814 			}
1815 
1816 			/* Only consider nodes where both task and groups benefit */
1817 			taskimp = task_weight(p, nid, dist) - taskweight;
1818 			groupimp = group_weight(p, nid, dist) - groupweight;
1819 			if (taskimp < 0 && groupimp < 0)
1820 				continue;
1821 
1822 			env.dist = dist;
1823 			env.dst_nid = nid;
1824 			update_numa_stats(&env.dst_stats, env.dst_nid);
1825 			task_numa_find_cpu(&env, taskimp, groupimp);
1826 		}
1827 	}
1828 
1829 	/*
1830 	 * If the task is part of a workload that spans multiple NUMA nodes,
1831 	 * and is migrating into one of the workload's active nodes, remember
1832 	 * this node as the task's preferred numa node, so the workload can
1833 	 * settle down.
1834 	 * A task that migrated to a second choice node will be better off
1835 	 * trying for a better one later. Do not set the preferred node here.
1836 	 */
1837 	if (ng) {
1838 		if (env.best_cpu == -1)
1839 			nid = env.src_nid;
1840 		else
1841 			nid = cpu_to_node(env.best_cpu);
1842 
1843 		if (nid != p->numa_preferred_nid)
1844 			sched_setnuma(p, nid);
1845 	}
1846 
1847 	/* No better CPU than the current one was found. */
1848 	if (env.best_cpu == -1)
1849 		return -EAGAIN;
1850 
1851 	best_rq = cpu_rq(env.best_cpu);
1852 	if (env.best_task == NULL) {
1853 		ret = migrate_task_to(p, env.best_cpu);
1854 		WRITE_ONCE(best_rq->numa_migrate_on, 0);
1855 		if (ret != 0)
1856 			trace_sched_stick_numa(p, env.src_cpu, env.best_cpu);
1857 		return ret;
1858 	}
1859 
1860 	ret = migrate_swap(p, env.best_task, env.best_cpu, env.src_cpu);
1861 	WRITE_ONCE(best_rq->numa_migrate_on, 0);
1862 
1863 	if (ret != 0)
1864 		trace_sched_stick_numa(p, env.src_cpu, task_cpu(env.best_task));
1865 	put_task_struct(env.best_task);
1866 	return ret;
1867 }
1868 
1869 /* Attempt to migrate a task to a CPU on the preferred node. */
1870 static void numa_migrate_preferred(struct task_struct *p)
1871 {
1872 	unsigned long interval = HZ;
1873 
1874 	/* This task has no NUMA fault statistics yet */
1875 	if (unlikely(p->numa_preferred_nid == NUMA_NO_NODE || !p->numa_faults))
1876 		return;
1877 
1878 	/* Periodically retry migrating the task to the preferred node */
1879 	interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16);
1880 	p->numa_migrate_retry = jiffies + interval;
1881 
1882 	/* Success if task is already running on preferred CPU */
1883 	if (task_node(p) == p->numa_preferred_nid)
1884 		return;
1885 
1886 	/* Otherwise, try migrate to a CPU on the preferred node */
1887 	task_numa_migrate(p);
1888 }
1889 
1890 /*
1891  * Find out how many nodes on the workload is actively running on. Do this by
1892  * tracking the nodes from which NUMA hinting faults are triggered. This can
1893  * be different from the set of nodes where the workload's memory is currently
1894  * located.
1895  */
1896 static void numa_group_count_active_nodes(struct numa_group *numa_group)
1897 {
1898 	unsigned long faults, max_faults = 0;
1899 	int nid, active_nodes = 0;
1900 
1901 	for_each_online_node(nid) {
1902 		faults = group_faults_cpu(numa_group, nid);
1903 		if (faults > max_faults)
1904 			max_faults = faults;
1905 	}
1906 
1907 	for_each_online_node(nid) {
1908 		faults = group_faults_cpu(numa_group, nid);
1909 		if (faults * ACTIVE_NODE_FRACTION > max_faults)
1910 			active_nodes++;
1911 	}
1912 
1913 	numa_group->max_faults_cpu = max_faults;
1914 	numa_group->active_nodes = active_nodes;
1915 }
1916 
1917 /*
1918  * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
1919  * increments. The more local the fault statistics are, the higher the scan
1920  * period will be for the next scan window. If local/(local+remote) ratio is
1921  * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS)
1922  * the scan period will decrease. Aim for 70% local accesses.
1923  */
1924 #define NUMA_PERIOD_SLOTS 10
1925 #define NUMA_PERIOD_THRESHOLD 7
1926 
1927 /*
1928  * Increase the scan period (slow down scanning) if the majority of
1929  * our memory is already on our local node, or if the majority of
1930  * the page accesses are shared with other processes.
1931  * Otherwise, decrease the scan period.
1932  */
1933 static void update_task_scan_period(struct task_struct *p,
1934 			unsigned long shared, unsigned long private)
1935 {
1936 	unsigned int period_slot;
1937 	int lr_ratio, ps_ratio;
1938 	int diff;
1939 
1940 	unsigned long remote = p->numa_faults_locality[0];
1941 	unsigned long local = p->numa_faults_locality[1];
1942 
1943 	/*
1944 	 * If there were no record hinting faults then either the task is
1945 	 * completely idle or all activity is areas that are not of interest
1946 	 * to automatic numa balancing. Related to that, if there were failed
1947 	 * migration then it implies we are migrating too quickly or the local
1948 	 * node is overloaded. In either case, scan slower
1949 	 */
1950 	if (local + shared == 0 || p->numa_faults_locality[2]) {
1951 		p->numa_scan_period = min(p->numa_scan_period_max,
1952 			p->numa_scan_period << 1);
1953 
1954 		p->mm->numa_next_scan = jiffies +
1955 			msecs_to_jiffies(p->numa_scan_period);
1956 
1957 		return;
1958 	}
1959 
1960 	/*
1961 	 * Prepare to scale scan period relative to the current period.
1962 	 *	 == NUMA_PERIOD_THRESHOLD scan period stays the same
1963 	 *       <  NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
1964 	 *	 >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
1965 	 */
1966 	period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
1967 	lr_ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
1968 	ps_ratio = (private * NUMA_PERIOD_SLOTS) / (private + shared);
1969 
1970 	if (ps_ratio >= NUMA_PERIOD_THRESHOLD) {
1971 		/*
1972 		 * Most memory accesses are local. There is no need to
1973 		 * do fast NUMA scanning, since memory is already local.
1974 		 */
1975 		int slot = ps_ratio - NUMA_PERIOD_THRESHOLD;
1976 		if (!slot)
1977 			slot = 1;
1978 		diff = slot * period_slot;
1979 	} else if (lr_ratio >= NUMA_PERIOD_THRESHOLD) {
1980 		/*
1981 		 * Most memory accesses are shared with other tasks.
1982 		 * There is no point in continuing fast NUMA scanning,
1983 		 * since other tasks may just move the memory elsewhere.
1984 		 */
1985 		int slot = lr_ratio - NUMA_PERIOD_THRESHOLD;
1986 		if (!slot)
1987 			slot = 1;
1988 		diff = slot * period_slot;
1989 	} else {
1990 		/*
1991 		 * Private memory faults exceed (SLOTS-THRESHOLD)/SLOTS,
1992 		 * yet they are not on the local NUMA node. Speed up
1993 		 * NUMA scanning to get the memory moved over.
1994 		 */
1995 		int ratio = max(lr_ratio, ps_ratio);
1996 		diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;
1997 	}
1998 
1999 	p->numa_scan_period = clamp(p->numa_scan_period + diff,
2000 			task_scan_min(p), task_scan_max(p));
2001 	memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
2002 }
2003 
2004 /*
2005  * Get the fraction of time the task has been running since the last
2006  * NUMA placement cycle. The scheduler keeps similar statistics, but
2007  * decays those on a 32ms period, which is orders of magnitude off
2008  * from the dozens-of-seconds NUMA balancing period. Use the scheduler
2009  * stats only if the task is so new there are no NUMA statistics yet.
2010  */
2011 static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period)
2012 {
2013 	u64 runtime, delta, now;
2014 	/* Use the start of this time slice to avoid calculations. */
2015 	now = p->se.exec_start;
2016 	runtime = p->se.sum_exec_runtime;
2017 
2018 	if (p->last_task_numa_placement) {
2019 		delta = runtime - p->last_sum_exec_runtime;
2020 		*period = now - p->last_task_numa_placement;
2021 
2022 		/* Avoid time going backwards, prevent potential divide error: */
2023 		if (unlikely((s64)*period < 0))
2024 			*period = 0;
2025 	} else {
2026 		delta = p->se.avg.load_sum;
2027 		*period = LOAD_AVG_MAX;
2028 	}
2029 
2030 	p->last_sum_exec_runtime = runtime;
2031 	p->last_task_numa_placement = now;
2032 
2033 	return delta;
2034 }
2035 
2036 /*
2037  * Determine the preferred nid for a task in a numa_group. This needs to
2038  * be done in a way that produces consistent results with group_weight,
2039  * otherwise workloads might not converge.
2040  */
2041 static int preferred_group_nid(struct task_struct *p, int nid)
2042 {
2043 	nodemask_t nodes;
2044 	int dist;
2045 
2046 	/* Direct connections between all NUMA nodes. */
2047 	if (sched_numa_topology_type == NUMA_DIRECT)
2048 		return nid;
2049 
2050 	/*
2051 	 * On a system with glueless mesh NUMA topology, group_weight
2052 	 * scores nodes according to the number of NUMA hinting faults on
2053 	 * both the node itself, and on nearby nodes.
2054 	 */
2055 	if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
2056 		unsigned long score, max_score = 0;
2057 		int node, max_node = nid;
2058 
2059 		dist = sched_max_numa_distance;
2060 
2061 		for_each_online_node(node) {
2062 			score = group_weight(p, node, dist);
2063 			if (score > max_score) {
2064 				max_score = score;
2065 				max_node = node;
2066 			}
2067 		}
2068 		return max_node;
2069 	}
2070 
2071 	/*
2072 	 * Finding the preferred nid in a system with NUMA backplane
2073 	 * interconnect topology is more involved. The goal is to locate
2074 	 * tasks from numa_groups near each other in the system, and
2075 	 * untangle workloads from different sides of the system. This requires
2076 	 * searching down the hierarchy of node groups, recursively searching
2077 	 * inside the highest scoring group of nodes. The nodemask tricks
2078 	 * keep the complexity of the search down.
2079 	 */
2080 	nodes = node_online_map;
2081 	for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) {
2082 		unsigned long max_faults = 0;
2083 		nodemask_t max_group = NODE_MASK_NONE;
2084 		int a, b;
2085 
2086 		/* Are there nodes at this distance from each other? */
2087 		if (!find_numa_distance(dist))
2088 			continue;
2089 
2090 		for_each_node_mask(a, nodes) {
2091 			unsigned long faults = 0;
2092 			nodemask_t this_group;
2093 			nodes_clear(this_group);
2094 
2095 			/* Sum group's NUMA faults; includes a==b case. */
2096 			for_each_node_mask(b, nodes) {
2097 				if (node_distance(a, b) < dist) {
2098 					faults += group_faults(p, b);
2099 					node_set(b, this_group);
2100 					node_clear(b, nodes);
2101 				}
2102 			}
2103 
2104 			/* Remember the top group. */
2105 			if (faults > max_faults) {
2106 				max_faults = faults;
2107 				max_group = this_group;
2108 				/*
2109 				 * subtle: at the smallest distance there is
2110 				 * just one node left in each "group", the
2111 				 * winner is the preferred nid.
2112 				 */
2113 				nid = a;
2114 			}
2115 		}
2116 		/* Next round, evaluate the nodes within max_group. */
2117 		if (!max_faults)
2118 			break;
2119 		nodes = max_group;
2120 	}
2121 	return nid;
2122 }
2123 
2124 static void task_numa_placement(struct task_struct *p)
2125 {
2126 	int seq, nid, max_nid = NUMA_NO_NODE;
2127 	unsigned long max_faults = 0;
2128 	unsigned long fault_types[2] = { 0, 0 };
2129 	unsigned long total_faults;
2130 	u64 runtime, period;
2131 	spinlock_t *group_lock = NULL;
2132 	struct numa_group *ng;
2133 
2134 	/*
2135 	 * The p->mm->numa_scan_seq field gets updated without
2136 	 * exclusive access. Use READ_ONCE() here to ensure
2137 	 * that the field is read in a single access:
2138 	 */
2139 	seq = READ_ONCE(p->mm->numa_scan_seq);
2140 	if (p->numa_scan_seq == seq)
2141 		return;
2142 	p->numa_scan_seq = seq;
2143 	p->numa_scan_period_max = task_scan_max(p);
2144 
2145 	total_faults = p->numa_faults_locality[0] +
2146 		       p->numa_faults_locality[1];
2147 	runtime = numa_get_avg_runtime(p, &period);
2148 
2149 	/* If the task is part of a group prevent parallel updates to group stats */
2150 	ng = deref_curr_numa_group(p);
2151 	if (ng) {
2152 		group_lock = &ng->lock;
2153 		spin_lock_irq(group_lock);
2154 	}
2155 
2156 	/* Find the node with the highest number of faults */
2157 	for_each_online_node(nid) {
2158 		/* Keep track of the offsets in numa_faults array */
2159 		int mem_idx, membuf_idx, cpu_idx, cpubuf_idx;
2160 		unsigned long faults = 0, group_faults = 0;
2161 		int priv;
2162 
2163 		for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) {
2164 			long diff, f_diff, f_weight;
2165 
2166 			mem_idx = task_faults_idx(NUMA_MEM, nid, priv);
2167 			membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv);
2168 			cpu_idx = task_faults_idx(NUMA_CPU, nid, priv);
2169 			cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv);
2170 
2171 			/* Decay existing window, copy faults since last scan */
2172 			diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2;
2173 			fault_types[priv] += p->numa_faults[membuf_idx];
2174 			p->numa_faults[membuf_idx] = 0;
2175 
2176 			/*
2177 			 * Normalize the faults_from, so all tasks in a group
2178 			 * count according to CPU use, instead of by the raw
2179 			 * number of faults. Tasks with little runtime have
2180 			 * little over-all impact on throughput, and thus their
2181 			 * faults are less important.
2182 			 */
2183 			f_weight = div64_u64(runtime << 16, period + 1);
2184 			f_weight = (f_weight * p->numa_faults[cpubuf_idx]) /
2185 				   (total_faults + 1);
2186 			f_diff = f_weight - p->numa_faults[cpu_idx] / 2;
2187 			p->numa_faults[cpubuf_idx] = 0;
2188 
2189 			p->numa_faults[mem_idx] += diff;
2190 			p->numa_faults[cpu_idx] += f_diff;
2191 			faults += p->numa_faults[mem_idx];
2192 			p->total_numa_faults += diff;
2193 			if (ng) {
2194 				/*
2195 				 * safe because we can only change our own group
2196 				 *
2197 				 * mem_idx represents the offset for a given
2198 				 * nid and priv in a specific region because it
2199 				 * is at the beginning of the numa_faults array.
2200 				 */
2201 				ng->faults[mem_idx] += diff;
2202 				ng->faults_cpu[mem_idx] += f_diff;
2203 				ng->total_faults += diff;
2204 				group_faults += ng->faults[mem_idx];
2205 			}
2206 		}
2207 
2208 		if (!ng) {
2209 			if (faults > max_faults) {
2210 				max_faults = faults;
2211 				max_nid = nid;
2212 			}
2213 		} else if (group_faults > max_faults) {
2214 			max_faults = group_faults;
2215 			max_nid = nid;
2216 		}
2217 	}
2218 
2219 	if (ng) {
2220 		numa_group_count_active_nodes(ng);
2221 		spin_unlock_irq(group_lock);
2222 		max_nid = preferred_group_nid(p, max_nid);
2223 	}
2224 
2225 	if (max_faults) {
2226 		/* Set the new preferred node */
2227 		if (max_nid != p->numa_preferred_nid)
2228 			sched_setnuma(p, max_nid);
2229 	}
2230 
2231 	update_task_scan_period(p, fault_types[0], fault_types[1]);
2232 }
2233 
2234 static inline int get_numa_group(struct numa_group *grp)
2235 {
2236 	return refcount_inc_not_zero(&grp->refcount);
2237 }
2238 
2239 static inline void put_numa_group(struct numa_group *grp)
2240 {
2241 	if (refcount_dec_and_test(&grp->refcount))
2242 		kfree_rcu(grp, rcu);
2243 }
2244 
2245 static void task_numa_group(struct task_struct *p, int cpupid, int flags,
2246 			int *priv)
2247 {
2248 	struct numa_group *grp, *my_grp;
2249 	struct task_struct *tsk;
2250 	bool join = false;
2251 	int cpu = cpupid_to_cpu(cpupid);
2252 	int i;
2253 
2254 	if (unlikely(!deref_curr_numa_group(p))) {
2255 		unsigned int size = sizeof(struct numa_group) +
2256 				    4*nr_node_ids*sizeof(unsigned long);
2257 
2258 		grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
2259 		if (!grp)
2260 			return;
2261 
2262 		refcount_set(&grp->refcount, 1);
2263 		grp->active_nodes = 1;
2264 		grp->max_faults_cpu = 0;
2265 		spin_lock_init(&grp->lock);
2266 		grp->gid = p->pid;
2267 		/* Second half of the array tracks nids where faults happen */
2268 		grp->faults_cpu = grp->faults + NR_NUMA_HINT_FAULT_TYPES *
2269 						nr_node_ids;
2270 
2271 		for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
2272 			grp->faults[i] = p->numa_faults[i];
2273 
2274 		grp->total_faults = p->total_numa_faults;
2275 
2276 		grp->nr_tasks++;
2277 		rcu_assign_pointer(p->numa_group, grp);
2278 	}
2279 
2280 	rcu_read_lock();
2281 	tsk = READ_ONCE(cpu_rq(cpu)->curr);
2282 
2283 	if (!cpupid_match_pid(tsk, cpupid))
2284 		goto no_join;
2285 
2286 	grp = rcu_dereference(tsk->numa_group);
2287 	if (!grp)
2288 		goto no_join;
2289 
2290 	my_grp = deref_curr_numa_group(p);
2291 	if (grp == my_grp)
2292 		goto no_join;
2293 
2294 	/*
2295 	 * Only join the other group if its bigger; if we're the bigger group,
2296 	 * the other task will join us.
2297 	 */
2298 	if (my_grp->nr_tasks > grp->nr_tasks)
2299 		goto no_join;
2300 
2301 	/*
2302 	 * Tie-break on the grp address.
2303 	 */
2304 	if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
2305 		goto no_join;
2306 
2307 	/* Always join threads in the same process. */
2308 	if (tsk->mm == current->mm)
2309 		join = true;
2310 
2311 	/* Simple filter to avoid false positives due to PID collisions */
2312 	if (flags & TNF_SHARED)
2313 		join = true;
2314 
2315 	/* Update priv based on whether false sharing was detected */
2316 	*priv = !join;
2317 
2318 	if (join && !get_numa_group(grp))
2319 		goto no_join;
2320 
2321 	rcu_read_unlock();
2322 
2323 	if (!join)
2324 		return;
2325 
2326 	BUG_ON(irqs_disabled());
2327 	double_lock_irq(&my_grp->lock, &grp->lock);
2328 
2329 	for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) {
2330 		my_grp->faults[i] -= p->numa_faults[i];
2331 		grp->faults[i] += p->numa_faults[i];
2332 	}
2333 	my_grp->total_faults -= p->total_numa_faults;
2334 	grp->total_faults += p->total_numa_faults;
2335 
2336 	my_grp->nr_tasks--;
2337 	grp->nr_tasks++;
2338 
2339 	spin_unlock(&my_grp->lock);
2340 	spin_unlock_irq(&grp->lock);
2341 
2342 	rcu_assign_pointer(p->numa_group, grp);
2343 
2344 	put_numa_group(my_grp);
2345 	return;
2346 
2347 no_join:
2348 	rcu_read_unlock();
2349 	return;
2350 }
2351 
2352 /*
2353  * Get rid of NUMA staticstics associated with a task (either current or dead).
2354  * If @final is set, the task is dead and has reached refcount zero, so we can
2355  * safely free all relevant data structures. Otherwise, there might be
2356  * concurrent reads from places like load balancing and procfs, and we should
2357  * reset the data back to default state without freeing ->numa_faults.
2358  */
2359 void task_numa_free(struct task_struct *p, bool final)
2360 {
2361 	/* safe: p either is current or is being freed by current */
2362 	struct numa_group *grp = rcu_dereference_raw(p->numa_group);
2363 	unsigned long *numa_faults = p->numa_faults;
2364 	unsigned long flags;
2365 	int i;
2366 
2367 	if (!numa_faults)
2368 		return;
2369 
2370 	if (grp) {
2371 		spin_lock_irqsave(&grp->lock, flags);
2372 		for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
2373 			grp->faults[i] -= p->numa_faults[i];
2374 		grp->total_faults -= p->total_numa_faults;
2375 
2376 		grp->nr_tasks--;
2377 		spin_unlock_irqrestore(&grp->lock, flags);
2378 		RCU_INIT_POINTER(p->numa_group, NULL);
2379 		put_numa_group(grp);
2380 	}
2381 
2382 	if (final) {
2383 		p->numa_faults = NULL;
2384 		kfree(numa_faults);
2385 	} else {
2386 		p->total_numa_faults = 0;
2387 		for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
2388 			numa_faults[i] = 0;
2389 	}
2390 }
2391 
2392 /*
2393  * Got a PROT_NONE fault for a page on @node.
2394  */
2395 void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags)
2396 {
2397 	struct task_struct *p = current;
2398 	bool migrated = flags & TNF_MIGRATED;
2399 	int cpu_node = task_node(current);
2400 	int local = !!(flags & TNF_FAULT_LOCAL);
2401 	struct numa_group *ng;
2402 	int priv;
2403 
2404 	if (!static_branch_likely(&sched_numa_balancing))
2405 		return;
2406 
2407 	/* for example, ksmd faulting in a user's mm */
2408 	if (!p->mm)
2409 		return;
2410 
2411 	/* Allocate buffer to track faults on a per-node basis */
2412 	if (unlikely(!p->numa_faults)) {
2413 		int size = sizeof(*p->numa_faults) *
2414 			   NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids;
2415 
2416 		p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN);
2417 		if (!p->numa_faults)
2418 			return;
2419 
2420 		p->total_numa_faults = 0;
2421 		memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
2422 	}
2423 
2424 	/*
2425 	 * First accesses are treated as private, otherwise consider accesses
2426 	 * to be private if the accessing pid has not changed
2427 	 */
2428 	if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
2429 		priv = 1;
2430 	} else {
2431 		priv = cpupid_match_pid(p, last_cpupid);
2432 		if (!priv && !(flags & TNF_NO_GROUP))
2433 			task_numa_group(p, last_cpupid, flags, &priv);
2434 	}
2435 
2436 	/*
2437 	 * If a workload spans multiple NUMA nodes, a shared fault that
2438 	 * occurs wholly within the set of nodes that the workload is
2439 	 * actively using should be counted as local. This allows the
2440 	 * scan rate to slow down when a workload has settled down.
2441 	 */
2442 	ng = deref_curr_numa_group(p);
2443 	if (!priv && !local && ng && ng->active_nodes > 1 &&
2444 				numa_is_active_node(cpu_node, ng) &&
2445 				numa_is_active_node(mem_node, ng))
2446 		local = 1;
2447 
2448 	/*
2449 	 * Retry to migrate task to preferred node periodically, in case it
2450 	 * previously failed, or the scheduler moved us.
2451 	 */
2452 	if (time_after(jiffies, p->numa_migrate_retry)) {
2453 		task_numa_placement(p);
2454 		numa_migrate_preferred(p);
2455 	}
2456 
2457 	if (migrated)
2458 		p->numa_pages_migrated += pages;
2459 	if (flags & TNF_MIGRATE_FAIL)
2460 		p->numa_faults_locality[2] += pages;
2461 
2462 	p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages;
2463 	p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages;
2464 	p->numa_faults_locality[local] += pages;
2465 }
2466 
2467 static void reset_ptenuma_scan(struct task_struct *p)
2468 {
2469 	/*
2470 	 * We only did a read acquisition of the mmap sem, so
2471 	 * p->mm->numa_scan_seq is written to without exclusive access
2472 	 * and the update is not guaranteed to be atomic. That's not
2473 	 * much of an issue though, since this is just used for
2474 	 * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not
2475 	 * expensive, to avoid any form of compiler optimizations:
2476 	 */
2477 	WRITE_ONCE(p->mm->numa_scan_seq, READ_ONCE(p->mm->numa_scan_seq) + 1);
2478 	p->mm->numa_scan_offset = 0;
2479 }
2480 
2481 /*
2482  * The expensive part of numa migration is done from task_work context.
2483  * Triggered from task_tick_numa().
2484  */
2485 static void task_numa_work(struct callback_head *work)
2486 {
2487 	unsigned long migrate, next_scan, now = jiffies;
2488 	struct task_struct *p = current;
2489 	struct mm_struct *mm = p->mm;
2490 	u64 runtime = p->se.sum_exec_runtime;
2491 	struct vm_area_struct *vma;
2492 	unsigned long start, end;
2493 	unsigned long nr_pte_updates = 0;
2494 	long pages, virtpages;
2495 
2496 	SCHED_WARN_ON(p != container_of(work, struct task_struct, numa_work));
2497 
2498 	work->next = work;
2499 	/*
2500 	 * Who cares about NUMA placement when they're dying.
2501 	 *
2502 	 * NOTE: make sure not to dereference p->mm before this check,
2503 	 * exit_task_work() happens _after_ exit_mm() so we could be called
2504 	 * without p->mm even though we still had it when we enqueued this
2505 	 * work.
2506 	 */
2507 	if (p->flags & PF_EXITING)
2508 		return;
2509 
2510 	if (!mm->numa_next_scan) {
2511 		mm->numa_next_scan = now +
2512 			msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
2513 	}
2514 
2515 	/*
2516 	 * Enforce maximal scan/migration frequency..
2517 	 */
2518 	migrate = mm->numa_next_scan;
2519 	if (time_before(now, migrate))
2520 		return;
2521 
2522 	if (p->numa_scan_period == 0) {
2523 		p->numa_scan_period_max = task_scan_max(p);
2524 		p->numa_scan_period = task_scan_start(p);
2525 	}
2526 
2527 	next_scan = now + msecs_to_jiffies(p->numa_scan_period);
2528 	if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
2529 		return;
2530 
2531 	/*
2532 	 * Delay this task enough that another task of this mm will likely win
2533 	 * the next time around.
2534 	 */
2535 	p->node_stamp += 2 * TICK_NSEC;
2536 
2537 	start = mm->numa_scan_offset;
2538 	pages = sysctl_numa_balancing_scan_size;
2539 	pages <<= 20 - PAGE_SHIFT; /* MB in pages */
2540 	virtpages = pages * 8;	   /* Scan up to this much virtual space */
2541 	if (!pages)
2542 		return;
2543 
2544 
2545 	if (!down_read_trylock(&mm->mmap_sem))
2546 		return;
2547 	vma = find_vma(mm, start);
2548 	if (!vma) {
2549 		reset_ptenuma_scan(p);
2550 		start = 0;
2551 		vma = mm->mmap;
2552 	}
2553 	for (; vma; vma = vma->vm_next) {
2554 		if (!vma_migratable(vma) || !vma_policy_mof(vma) ||
2555 			is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_MIXEDMAP)) {
2556 			continue;
2557 		}
2558 
2559 		/*
2560 		 * Shared library pages mapped by multiple processes are not
2561 		 * migrated as it is expected they are cache replicated. Avoid
2562 		 * hinting faults in read-only file-backed mappings or the vdso
2563 		 * as migrating the pages will be of marginal benefit.
2564 		 */
2565 		if (!vma->vm_mm ||
2566 		    (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ)))
2567 			continue;
2568 
2569 		/*
2570 		 * Skip inaccessible VMAs to avoid any confusion between
2571 		 * PROT_NONE and NUMA hinting ptes
2572 		 */
2573 		if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)))
2574 			continue;
2575 
2576 		do {
2577 			start = max(start, vma->vm_start);
2578 			end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
2579 			end = min(end, vma->vm_end);
2580 			nr_pte_updates = change_prot_numa(vma, start, end);
2581 
2582 			/*
2583 			 * Try to scan sysctl_numa_balancing_size worth of
2584 			 * hpages that have at least one present PTE that
2585 			 * is not already pte-numa. If the VMA contains
2586 			 * areas that are unused or already full of prot_numa
2587 			 * PTEs, scan up to virtpages, to skip through those
2588 			 * areas faster.
2589 			 */
2590 			if (nr_pte_updates)
2591 				pages -= (end - start) >> PAGE_SHIFT;
2592 			virtpages -= (end - start) >> PAGE_SHIFT;
2593 
2594 			start = end;
2595 			if (pages <= 0 || virtpages <= 0)
2596 				goto out;
2597 
2598 			cond_resched();
2599 		} while (end != vma->vm_end);
2600 	}
2601 
2602 out:
2603 	/*
2604 	 * It is possible to reach the end of the VMA list but the last few
2605 	 * VMAs are not guaranteed to the vma_migratable. If they are not, we
2606 	 * would find the !migratable VMA on the next scan but not reset the
2607 	 * scanner to the start so check it now.
2608 	 */
2609 	if (vma)
2610 		mm->numa_scan_offset = start;
2611 	else
2612 		reset_ptenuma_scan(p);
2613 	up_read(&mm->mmap_sem);
2614 
2615 	/*
2616 	 * Make sure tasks use at least 32x as much time to run other code
2617 	 * than they used here, to limit NUMA PTE scanning overhead to 3% max.
2618 	 * Usually update_task_scan_period slows down scanning enough; on an
2619 	 * overloaded system we need to limit overhead on a per task basis.
2620 	 */
2621 	if (unlikely(p->se.sum_exec_runtime != runtime)) {
2622 		u64 diff = p->se.sum_exec_runtime - runtime;
2623 		p->node_stamp += 32 * diff;
2624 	}
2625 }
2626 
2627 void init_numa_balancing(unsigned long clone_flags, struct task_struct *p)
2628 {
2629 	int mm_users = 0;
2630 	struct mm_struct *mm = p->mm;
2631 
2632 	if (mm) {
2633 		mm_users = atomic_read(&mm->mm_users);
2634 		if (mm_users == 1) {
2635 			mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
2636 			mm->numa_scan_seq = 0;
2637 		}
2638 	}
2639 	p->node_stamp			= 0;
2640 	p->numa_scan_seq		= mm ? mm->numa_scan_seq : 0;
2641 	p->numa_scan_period		= sysctl_numa_balancing_scan_delay;
2642 	/* Protect against double add, see task_tick_numa and task_numa_work */
2643 	p->numa_work.next		= &p->numa_work;
2644 	p->numa_faults			= NULL;
2645 	RCU_INIT_POINTER(p->numa_group, NULL);
2646 	p->last_task_numa_placement	= 0;
2647 	p->last_sum_exec_runtime	= 0;
2648 
2649 	init_task_work(&p->numa_work, task_numa_work);
2650 
2651 	/* New address space, reset the preferred nid */
2652 	if (!(clone_flags & CLONE_VM)) {
2653 		p->numa_preferred_nid = NUMA_NO_NODE;
2654 		return;
2655 	}
2656 
2657 	/*
2658 	 * New thread, keep existing numa_preferred_nid which should be copied
2659 	 * already by arch_dup_task_struct but stagger when scans start.
2660 	 */
2661 	if (mm) {
2662 		unsigned int delay;
2663 
2664 		delay = min_t(unsigned int, task_scan_max(current),
2665 			current->numa_scan_period * mm_users * NSEC_PER_MSEC);
2666 		delay += 2 * TICK_NSEC;
2667 		p->node_stamp = delay;
2668 	}
2669 }
2670 
2671 /*
2672  * Drive the periodic memory faults..
2673  */
2674 static void task_tick_numa(struct rq *rq, struct task_struct *curr)
2675 {
2676 	struct callback_head *work = &curr->numa_work;
2677 	u64 period, now;
2678 
2679 	/*
2680 	 * We don't care about NUMA placement if we don't have memory.
2681 	 */
2682 	if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work)
2683 		return;
2684 
2685 	/*
2686 	 * Using runtime rather than walltime has the dual advantage that
2687 	 * we (mostly) drive the selection from busy threads and that the
2688 	 * task needs to have done some actual work before we bother with
2689 	 * NUMA placement.
2690 	 */
2691 	now = curr->se.sum_exec_runtime;
2692 	period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
2693 
2694 	if (now > curr->node_stamp + period) {
2695 		if (!curr->node_stamp)
2696 			curr->numa_scan_period = task_scan_start(curr);
2697 		curr->node_stamp += period;
2698 
2699 		if (!time_before(jiffies, curr->mm->numa_next_scan))
2700 			task_work_add(curr, work, true);
2701 	}
2702 }
2703 
2704 static void update_scan_period(struct task_struct *p, int new_cpu)
2705 {
2706 	int src_nid = cpu_to_node(task_cpu(p));
2707 	int dst_nid = cpu_to_node(new_cpu);
2708 
2709 	if (!static_branch_likely(&sched_numa_balancing))
2710 		return;
2711 
2712 	if (!p->mm || !p->numa_faults || (p->flags & PF_EXITING))
2713 		return;
2714 
2715 	if (src_nid == dst_nid)
2716 		return;
2717 
2718 	/*
2719 	 * Allow resets if faults have been trapped before one scan
2720 	 * has completed. This is most likely due to a new task that
2721 	 * is pulled cross-node due to wakeups or load balancing.
2722 	 */
2723 	if (p->numa_scan_seq) {
2724 		/*
2725 		 * Avoid scan adjustments if moving to the preferred
2726 		 * node or if the task was not previously running on
2727 		 * the preferred node.
2728 		 */
2729 		if (dst_nid == p->numa_preferred_nid ||
2730 		    (p->numa_preferred_nid != NUMA_NO_NODE &&
2731 			src_nid != p->numa_preferred_nid))
2732 			return;
2733 	}
2734 
2735 	p->numa_scan_period = task_scan_start(p);
2736 }
2737 
2738 #else
2739 static void task_tick_numa(struct rq *rq, struct task_struct *curr)
2740 {
2741 }
2742 
2743 static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
2744 {
2745 }
2746 
2747 static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
2748 {
2749 }
2750 
2751 static inline void update_scan_period(struct task_struct *p, int new_cpu)
2752 {
2753 }
2754 
2755 #endif /* CONFIG_NUMA_BALANCING */
2756 
2757 static void
2758 account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2759 {
2760 	update_load_add(&cfs_rq->load, se->load.weight);
2761 #ifdef CONFIG_SMP
2762 	if (entity_is_task(se)) {
2763 		struct rq *rq = rq_of(cfs_rq);
2764 
2765 		account_numa_enqueue(rq, task_of(se));
2766 		list_add(&se->group_node, &rq->cfs_tasks);
2767 	}
2768 #endif
2769 	cfs_rq->nr_running++;
2770 }
2771 
2772 static void
2773 account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2774 {
2775 	update_load_sub(&cfs_rq->load, se->load.weight);
2776 #ifdef CONFIG_SMP
2777 	if (entity_is_task(se)) {
2778 		account_numa_dequeue(rq_of(cfs_rq), task_of(se));
2779 		list_del_init(&se->group_node);
2780 	}
2781 #endif
2782 	cfs_rq->nr_running--;
2783 }
2784 
2785 /*
2786  * Signed add and clamp on underflow.
2787  *
2788  * Explicitly do a load-store to ensure the intermediate value never hits
2789  * memory. This allows lockless observations without ever seeing the negative
2790  * values.
2791  */
2792 #define add_positive(_ptr, _val) do {                           \
2793 	typeof(_ptr) ptr = (_ptr);                              \
2794 	typeof(_val) val = (_val);                              \
2795 	typeof(*ptr) res, var = READ_ONCE(*ptr);                \
2796 								\
2797 	res = var + val;                                        \
2798 								\
2799 	if (val < 0 && res > var)                               \
2800 		res = 0;                                        \
2801 								\
2802 	WRITE_ONCE(*ptr, res);                                  \
2803 } while (0)
2804 
2805 /*
2806  * Unsigned subtract and clamp on underflow.
2807  *
2808  * Explicitly do a load-store to ensure the intermediate value never hits
2809  * memory. This allows lockless observations without ever seeing the negative
2810  * values.
2811  */
2812 #define sub_positive(_ptr, _val) do {				\
2813 	typeof(_ptr) ptr = (_ptr);				\
2814 	typeof(*ptr) val = (_val);				\
2815 	typeof(*ptr) res, var = READ_ONCE(*ptr);		\
2816 	res = var - val;					\
2817 	if (res > var)						\
2818 		res = 0;					\
2819 	WRITE_ONCE(*ptr, res);					\
2820 } while (0)
2821 
2822 /*
2823  * Remove and clamp on negative, from a local variable.
2824  *
2825  * A variant of sub_positive(), which does not use explicit load-store
2826  * and is thus optimized for local variable updates.
2827  */
2828 #define lsub_positive(_ptr, _val) do {				\
2829 	typeof(_ptr) ptr = (_ptr);				\
2830 	*ptr -= min_t(typeof(*ptr), *ptr, _val);		\
2831 } while (0)
2832 
2833 #ifdef CONFIG_SMP
2834 static inline void
2835 enqueue_runnable_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
2836 {
2837 	cfs_rq->runnable_weight += se->runnable_weight;
2838 
2839 	cfs_rq->avg.runnable_load_avg += se->avg.runnable_load_avg;
2840 	cfs_rq->avg.runnable_load_sum += se_runnable(se) * se->avg.runnable_load_sum;
2841 }
2842 
2843 static inline void
2844 dequeue_runnable_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
2845 {
2846 	cfs_rq->runnable_weight -= se->runnable_weight;
2847 
2848 	sub_positive(&cfs_rq->avg.runnable_load_avg, se->avg.runnable_load_avg);
2849 	sub_positive(&cfs_rq->avg.runnable_load_sum,
2850 		     se_runnable(se) * se->avg.runnable_load_sum);
2851 }
2852 
2853 static inline void
2854 enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
2855 {
2856 	cfs_rq->avg.load_avg += se->avg.load_avg;
2857 	cfs_rq->avg.load_sum += se_weight(se) * se->avg.load_sum;
2858 }
2859 
2860 static inline void
2861 dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
2862 {
2863 	sub_positive(&cfs_rq->avg.load_avg, se->avg.load_avg);
2864 	sub_positive(&cfs_rq->avg.load_sum, se_weight(se) * se->avg.load_sum);
2865 }
2866 #else
2867 static inline void
2868 enqueue_runnable_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
2869 static inline void
2870 dequeue_runnable_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
2871 static inline void
2872 enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
2873 static inline void
2874 dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
2875 #endif
2876 
2877 static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
2878 			    unsigned long weight, unsigned long runnable)
2879 {
2880 	if (se->on_rq) {
2881 		/* commit outstanding execution time */
2882 		if (cfs_rq->curr == se)
2883 			update_curr(cfs_rq);
2884 		account_entity_dequeue(cfs_rq, se);
2885 		dequeue_runnable_load_avg(cfs_rq, se);
2886 	}
2887 	dequeue_load_avg(cfs_rq, se);
2888 
2889 	se->runnable_weight = runnable;
2890 	update_load_set(&se->load, weight);
2891 
2892 #ifdef CONFIG_SMP
2893 	do {
2894 		u32 divider = LOAD_AVG_MAX - 1024 + se->avg.period_contrib;
2895 
2896 		se->avg.load_avg = div_u64(se_weight(se) * se->avg.load_sum, divider);
2897 		se->avg.runnable_load_avg =
2898 			div_u64(se_runnable(se) * se->avg.runnable_load_sum, divider);
2899 	} while (0);
2900 #endif
2901 
2902 	enqueue_load_avg(cfs_rq, se);
2903 	if (se->on_rq) {
2904 		account_entity_enqueue(cfs_rq, se);
2905 		enqueue_runnable_load_avg(cfs_rq, se);
2906 	}
2907 }
2908 
2909 void reweight_task(struct task_struct *p, int prio)
2910 {
2911 	struct sched_entity *se = &p->se;
2912 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
2913 	struct load_weight *load = &se->load;
2914 	unsigned long weight = scale_load(sched_prio_to_weight[prio]);
2915 
2916 	reweight_entity(cfs_rq, se, weight, weight);
2917 	load->inv_weight = sched_prio_to_wmult[prio];
2918 }
2919 
2920 #ifdef CONFIG_FAIR_GROUP_SCHED
2921 #ifdef CONFIG_SMP
2922 /*
2923  * All this does is approximate the hierarchical proportion which includes that
2924  * global sum we all love to hate.
2925  *
2926  * That is, the weight of a group entity, is the proportional share of the
2927  * group weight based on the group runqueue weights. That is:
2928  *
2929  *                     tg->weight * grq->load.weight
2930  *   ge->load.weight = -----------------------------               (1)
2931  *			  \Sum grq->load.weight
2932  *
2933  * Now, because computing that sum is prohibitively expensive to compute (been
2934  * there, done that) we approximate it with this average stuff. The average
2935  * moves slower and therefore the approximation is cheaper and more stable.
2936  *
2937  * So instead of the above, we substitute:
2938  *
2939  *   grq->load.weight -> grq->avg.load_avg                         (2)
2940  *
2941  * which yields the following:
2942  *
2943  *                     tg->weight * grq->avg.load_avg
2944  *   ge->load.weight = ------------------------------              (3)
2945  *				tg->load_avg
2946  *
2947  * Where: tg->load_avg ~= \Sum grq->avg.load_avg
2948  *
2949  * That is shares_avg, and it is right (given the approximation (2)).
2950  *
2951  * The problem with it is that because the average is slow -- it was designed
2952  * to be exactly that of course -- this leads to transients in boundary
2953  * conditions. In specific, the case where the group was idle and we start the
2954  * one task. It takes time for our CPU's grq->avg.load_avg to build up,
2955  * yielding bad latency etc..
2956  *
2957  * Now, in that special case (1) reduces to:
2958  *
2959  *                     tg->weight * grq->load.weight
2960  *   ge->load.weight = ----------------------------- = tg->weight   (4)
2961  *			    grp->load.weight
2962  *
2963  * That is, the sum collapses because all other CPUs are idle; the UP scenario.
2964  *
2965  * So what we do is modify our approximation (3) to approach (4) in the (near)
2966  * UP case, like:
2967  *
2968  *   ge->load.weight =
2969  *
2970  *              tg->weight * grq->load.weight
2971  *     ---------------------------------------------------         (5)
2972  *     tg->load_avg - grq->avg.load_avg + grq->load.weight
2973  *
2974  * But because grq->load.weight can drop to 0, resulting in a divide by zero,
2975  * we need to use grq->avg.load_avg as its lower bound, which then gives:
2976  *
2977  *
2978  *                     tg->weight * grq->load.weight
2979  *   ge->load.weight = -----------------------------		   (6)
2980  *				tg_load_avg'
2981  *
2982  * Where:
2983  *
2984  *   tg_load_avg' = tg->load_avg - grq->avg.load_avg +
2985  *                  max(grq->load.weight, grq->avg.load_avg)
2986  *
2987  * And that is shares_weight and is icky. In the (near) UP case it approaches
2988  * (4) while in the normal case it approaches (3). It consistently
2989  * overestimates the ge->load.weight and therefore:
2990  *
2991  *   \Sum ge->load.weight >= tg->weight
2992  *
2993  * hence icky!
2994  */
2995 static long calc_group_shares(struct cfs_rq *cfs_rq)
2996 {
2997 	long tg_weight, tg_shares, load, shares;
2998 	struct task_group *tg = cfs_rq->tg;
2999 
3000 	tg_shares = READ_ONCE(tg->shares);
3001 
3002 	load = max(scale_load_down(cfs_rq->load.weight), cfs_rq->avg.load_avg);
3003 
3004 	tg_weight = atomic_long_read(&tg->load_avg);
3005 
3006 	/* Ensure tg_weight >= load */
3007 	tg_weight -= cfs_rq->tg_load_avg_contrib;
3008 	tg_weight += load;
3009 
3010 	shares = (tg_shares * load);
3011 	if (tg_weight)
3012 		shares /= tg_weight;
3013 
3014 	/*
3015 	 * MIN_SHARES has to be unscaled here to support per-CPU partitioning
3016 	 * of a group with small tg->shares value. It is a floor value which is
3017 	 * assigned as a minimum load.weight to the sched_entity representing
3018 	 * the group on a CPU.
3019 	 *
3020 	 * E.g. on 64-bit for a group with tg->shares of scale_load(15)=15*1024
3021 	 * on an 8-core system with 8 tasks each runnable on one CPU shares has
3022 	 * to be 15*1024*1/8=1920 instead of scale_load(MIN_SHARES)=2*1024. In
3023 	 * case no task is runnable on a CPU MIN_SHARES=2 should be returned
3024 	 * instead of 0.
3025 	 */
3026 	return clamp_t(long, shares, MIN_SHARES, tg_shares);
3027 }
3028 
3029 /*
3030  * This calculates the effective runnable weight for a group entity based on
3031  * the group entity weight calculated above.
3032  *
3033  * Because of the above approximation (2), our group entity weight is
3034  * an load_avg based ratio (3). This means that it includes blocked load and
3035  * does not represent the runnable weight.
3036  *
3037  * Approximate the group entity's runnable weight per ratio from the group
3038  * runqueue:
3039  *
3040  *					     grq->avg.runnable_load_avg
3041  *   ge->runnable_weight = ge->load.weight * -------------------------- (7)
3042  *						 grq->avg.load_avg
3043  *
3044  * However, analogous to above, since the avg numbers are slow, this leads to
3045  * transients in the from-idle case. Instead we use:
3046  *
3047  *   ge->runnable_weight = ge->load.weight *
3048  *
3049  *		max(grq->avg.runnable_load_avg, grq->runnable_weight)
3050  *		-----------------------------------------------------	(8)
3051  *		      max(grq->avg.load_avg, grq->load.weight)
3052  *
3053  * Where these max() serve both to use the 'instant' values to fix the slow
3054  * from-idle and avoid the /0 on to-idle, similar to (6).
3055  */
3056 static long calc_group_runnable(struct cfs_rq *cfs_rq, long shares)
3057 {
3058 	long runnable, load_avg;
3059 
3060 	load_avg = max(cfs_rq->avg.load_avg,
3061 		       scale_load_down(cfs_rq->load.weight));
3062 
3063 	runnable = max(cfs_rq->avg.runnable_load_avg,
3064 		       scale_load_down(cfs_rq->runnable_weight));
3065 
3066 	runnable *= shares;
3067 	if (load_avg)
3068 		runnable /= load_avg;
3069 
3070 	return clamp_t(long, runnable, MIN_SHARES, shares);
3071 }
3072 #endif /* CONFIG_SMP */
3073 
3074 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
3075 
3076 /*
3077  * Recomputes the group entity based on the current state of its group
3078  * runqueue.
3079  */
3080 static void update_cfs_group(struct sched_entity *se)
3081 {
3082 	struct cfs_rq *gcfs_rq = group_cfs_rq(se);
3083 	long shares, runnable;
3084 
3085 	if (!gcfs_rq)
3086 		return;
3087 
3088 	if (throttled_hierarchy(gcfs_rq))
3089 		return;
3090 
3091 #ifndef CONFIG_SMP
3092 	runnable = shares = READ_ONCE(gcfs_rq->tg->shares);
3093 
3094 	if (likely(se->load.weight == shares))
3095 		return;
3096 #else
3097 	shares   = calc_group_shares(gcfs_rq);
3098 	runnable = calc_group_runnable(gcfs_rq, shares);
3099 #endif
3100 
3101 	reweight_entity(cfs_rq_of(se), se, shares, runnable);
3102 }
3103 
3104 #else /* CONFIG_FAIR_GROUP_SCHED */
3105 static inline void update_cfs_group(struct sched_entity *se)
3106 {
3107 }
3108 #endif /* CONFIG_FAIR_GROUP_SCHED */
3109 
3110 static inline void cfs_rq_util_change(struct cfs_rq *cfs_rq, int flags)
3111 {
3112 	struct rq *rq = rq_of(cfs_rq);
3113 
3114 	if (&rq->cfs == cfs_rq || (flags & SCHED_CPUFREQ_MIGRATION)) {
3115 		/*
3116 		 * There are a few boundary cases this might miss but it should
3117 		 * get called often enough that that should (hopefully) not be
3118 		 * a real problem.
3119 		 *
3120 		 * It will not get called when we go idle, because the idle
3121 		 * thread is a different class (!fair), nor will the utilization
3122 		 * number include things like RT tasks.
3123 		 *
3124 		 * As is, the util number is not freq-invariant (we'd have to
3125 		 * implement arch_scale_freq_capacity() for that).
3126 		 *
3127 		 * See cpu_util().
3128 		 */
3129 		cpufreq_update_util(rq, flags);
3130 	}
3131 }
3132 
3133 #ifdef CONFIG_SMP
3134 #ifdef CONFIG_FAIR_GROUP_SCHED
3135 /**
3136  * update_tg_load_avg - update the tg's load avg
3137  * @cfs_rq: the cfs_rq whose avg changed
3138  * @force: update regardless of how small the difference
3139  *
3140  * This function 'ensures': tg->load_avg := \Sum tg->cfs_rq[]->avg.load.
3141  * However, because tg->load_avg is a global value there are performance
3142  * considerations.
3143  *
3144  * In order to avoid having to look at the other cfs_rq's, we use a
3145  * differential update where we store the last value we propagated. This in
3146  * turn allows skipping updates if the differential is 'small'.
3147  *
3148  * Updating tg's load_avg is necessary before update_cfs_share().
3149  */
3150 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force)
3151 {
3152 	long delta = cfs_rq->avg.load_avg - cfs_rq->tg_load_avg_contrib;
3153 
3154 	/*
3155 	 * No need to update load_avg for root_task_group as it is not used.
3156 	 */
3157 	if (cfs_rq->tg == &root_task_group)
3158 		return;
3159 
3160 	if (force || abs(delta) > cfs_rq->tg_load_avg_contrib / 64) {
3161 		atomic_long_add(delta, &cfs_rq->tg->load_avg);
3162 		cfs_rq->tg_load_avg_contrib = cfs_rq->avg.load_avg;
3163 	}
3164 }
3165 
3166 /*
3167  * Called within set_task_rq() right before setting a task's CPU. The
3168  * caller only guarantees p->pi_lock is held; no other assumptions,
3169  * including the state of rq->lock, should be made.
3170  */
3171 void set_task_rq_fair(struct sched_entity *se,
3172 		      struct cfs_rq *prev, struct cfs_rq *next)
3173 {
3174 	u64 p_last_update_time;
3175 	u64 n_last_update_time;
3176 
3177 	if (!sched_feat(ATTACH_AGE_LOAD))
3178 		return;
3179 
3180 	/*
3181 	 * We are supposed to update the task to "current" time, then its up to
3182 	 * date and ready to go to new CPU/cfs_rq. But we have difficulty in
3183 	 * getting what current time is, so simply throw away the out-of-date
3184 	 * time. This will result in the wakee task is less decayed, but giving
3185 	 * the wakee more load sounds not bad.
3186 	 */
3187 	if (!(se->avg.last_update_time && prev))
3188 		return;
3189 
3190 #ifndef CONFIG_64BIT
3191 	{
3192 		u64 p_last_update_time_copy;
3193 		u64 n_last_update_time_copy;
3194 
3195 		do {
3196 			p_last_update_time_copy = prev->load_last_update_time_copy;
3197 			n_last_update_time_copy = next->load_last_update_time_copy;
3198 
3199 			smp_rmb();
3200 
3201 			p_last_update_time = prev->avg.last_update_time;
3202 			n_last_update_time = next->avg.last_update_time;
3203 
3204 		} while (p_last_update_time != p_last_update_time_copy ||
3205 			 n_last_update_time != n_last_update_time_copy);
3206 	}
3207 #else
3208 	p_last_update_time = prev->avg.last_update_time;
3209 	n_last_update_time = next->avg.last_update_time;
3210 #endif
3211 	__update_load_avg_blocked_se(p_last_update_time, se);
3212 	se->avg.last_update_time = n_last_update_time;
3213 }
3214 
3215 
3216 /*
3217  * When on migration a sched_entity joins/leaves the PELT hierarchy, we need to
3218  * propagate its contribution. The key to this propagation is the invariant
3219  * that for each group:
3220  *
3221  *   ge->avg == grq->avg						(1)
3222  *
3223  * _IFF_ we look at the pure running and runnable sums. Because they
3224  * represent the very same entity, just at different points in the hierarchy.
3225  *
3226  * Per the above update_tg_cfs_util() is trivial and simply copies the running
3227  * sum over (but still wrong, because the group entity and group rq do not have
3228  * their PELT windows aligned).
3229  *
3230  * However, update_tg_cfs_runnable() is more complex. So we have:
3231  *
3232  *   ge->avg.load_avg = ge->load.weight * ge->avg.runnable_avg		(2)
3233  *
3234  * And since, like util, the runnable part should be directly transferable,
3235  * the following would _appear_ to be the straight forward approach:
3236  *
3237  *   grq->avg.load_avg = grq->load.weight * grq->avg.runnable_avg	(3)
3238  *
3239  * And per (1) we have:
3240  *
3241  *   ge->avg.runnable_avg == grq->avg.runnable_avg
3242  *
3243  * Which gives:
3244  *
3245  *                      ge->load.weight * grq->avg.load_avg
3246  *   ge->avg.load_avg = -----------------------------------		(4)
3247  *                               grq->load.weight
3248  *
3249  * Except that is wrong!
3250  *
3251  * Because while for entities historical weight is not important and we
3252  * really only care about our future and therefore can consider a pure
3253  * runnable sum, runqueues can NOT do this.
3254  *
3255  * We specifically want runqueues to have a load_avg that includes
3256  * historical weights. Those represent the blocked load, the load we expect
3257  * to (shortly) return to us. This only works by keeping the weights as
3258  * integral part of the sum. We therefore cannot decompose as per (3).
3259  *
3260  * Another reason this doesn't work is that runnable isn't a 0-sum entity.
3261  * Imagine a rq with 2 tasks that each are runnable 2/3 of the time. Then the
3262  * rq itself is runnable anywhere between 2/3 and 1 depending on how the
3263  * runnable section of these tasks overlap (or not). If they were to perfectly
3264  * align the rq as a whole would be runnable 2/3 of the time. If however we
3265  * always have at least 1 runnable task, the rq as a whole is always runnable.
3266  *
3267  * So we'll have to approximate.. :/
3268  *
3269  * Given the constraint:
3270  *
3271  *   ge->avg.running_sum <= ge->avg.runnable_sum <= LOAD_AVG_MAX
3272  *
3273  * We can construct a rule that adds runnable to a rq by assuming minimal
3274  * overlap.
3275  *
3276  * On removal, we'll assume each task is equally runnable; which yields:
3277  *
3278  *   grq->avg.runnable_sum = grq->avg.load_sum / grq->load.weight
3279  *
3280  * XXX: only do this for the part of runnable > running ?
3281  *
3282  */
3283 
3284 static inline void
3285 update_tg_cfs_util(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
3286 {
3287 	long delta = gcfs_rq->avg.util_avg - se->avg.util_avg;
3288 
3289 	/* Nothing to update */
3290 	if (!delta)
3291 		return;
3292 
3293 	/*
3294 	 * The relation between sum and avg is:
3295 	 *
3296 	 *   LOAD_AVG_MAX - 1024 + sa->period_contrib
3297 	 *
3298 	 * however, the PELT windows are not aligned between grq and gse.
3299 	 */
3300 
3301 	/* Set new sched_entity's utilization */
3302 	se->avg.util_avg = gcfs_rq->avg.util_avg;
3303 	se->avg.util_sum = se->avg.util_avg * LOAD_AVG_MAX;
3304 
3305 	/* Update parent cfs_rq utilization */
3306 	add_positive(&cfs_rq->avg.util_avg, delta);
3307 	cfs_rq->avg.util_sum = cfs_rq->avg.util_avg * LOAD_AVG_MAX;
3308 }
3309 
3310 static inline void
3311 update_tg_cfs_runnable(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
3312 {
3313 	long delta_avg, running_sum, runnable_sum = gcfs_rq->prop_runnable_sum;
3314 	unsigned long runnable_load_avg, load_avg;
3315 	u64 runnable_load_sum, load_sum = 0;
3316 	s64 delta_sum;
3317 
3318 	if (!runnable_sum)
3319 		return;
3320 
3321 	gcfs_rq->prop_runnable_sum = 0;
3322 
3323 	if (runnable_sum >= 0) {
3324 		/*
3325 		 * Add runnable; clip at LOAD_AVG_MAX. Reflects that until
3326 		 * the CPU is saturated running == runnable.
3327 		 */
3328 		runnable_sum += se->avg.load_sum;
3329 		runnable_sum = min(runnable_sum, (long)LOAD_AVG_MAX);
3330 	} else {
3331 		/*
3332 		 * Estimate the new unweighted runnable_sum of the gcfs_rq by
3333 		 * assuming all tasks are equally runnable.
3334 		 */
3335 		if (scale_load_down(gcfs_rq->load.weight)) {
3336 			load_sum = div_s64(gcfs_rq->avg.load_sum,
3337 				scale_load_down(gcfs_rq->load.weight));
3338 		}
3339 
3340 		/* But make sure to not inflate se's runnable */
3341 		runnable_sum = min(se->avg.load_sum, load_sum);
3342 	}
3343 
3344 	/*
3345 	 * runnable_sum can't be lower than running_sum
3346 	 * Rescale running sum to be in the same range as runnable sum
3347 	 * running_sum is in [0 : LOAD_AVG_MAX <<  SCHED_CAPACITY_SHIFT]
3348 	 * runnable_sum is in [0 : LOAD_AVG_MAX]
3349 	 */
3350 	running_sum = se->avg.util_sum >> SCHED_CAPACITY_SHIFT;
3351 	runnable_sum = max(runnable_sum, running_sum);
3352 
3353 	load_sum = (s64)se_weight(se) * runnable_sum;
3354 	load_avg = div_s64(load_sum, LOAD_AVG_MAX);
3355 
3356 	delta_sum = load_sum - (s64)se_weight(se) * se->avg.load_sum;
3357 	delta_avg = load_avg - se->avg.load_avg;
3358 
3359 	se->avg.load_sum = runnable_sum;
3360 	se->avg.load_avg = load_avg;
3361 	add_positive(&cfs_rq->avg.load_avg, delta_avg);
3362 	add_positive(&cfs_rq->avg.load_sum, delta_sum);
3363 
3364 	runnable_load_sum = (s64)se_runnable(se) * runnable_sum;
3365 	runnable_load_avg = div_s64(runnable_load_sum, LOAD_AVG_MAX);
3366 	delta_sum = runnable_load_sum - se_weight(se) * se->avg.runnable_load_sum;
3367 	delta_avg = runnable_load_avg - se->avg.runnable_load_avg;
3368 
3369 	se->avg.runnable_load_sum = runnable_sum;
3370 	se->avg.runnable_load_avg = runnable_load_avg;
3371 
3372 	if (se->on_rq) {
3373 		add_positive(&cfs_rq->avg.runnable_load_avg, delta_avg);
3374 		add_positive(&cfs_rq->avg.runnable_load_sum, delta_sum);
3375 	}
3376 }
3377 
3378 static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum)
3379 {
3380 	cfs_rq->propagate = 1;
3381 	cfs_rq->prop_runnable_sum += runnable_sum;
3382 }
3383 
3384 /* Update task and its cfs_rq load average */
3385 static inline int propagate_entity_load_avg(struct sched_entity *se)
3386 {
3387 	struct cfs_rq *cfs_rq, *gcfs_rq;
3388 
3389 	if (entity_is_task(se))
3390 		return 0;
3391 
3392 	gcfs_rq = group_cfs_rq(se);
3393 	if (!gcfs_rq->propagate)
3394 		return 0;
3395 
3396 	gcfs_rq->propagate = 0;
3397 
3398 	cfs_rq = cfs_rq_of(se);
3399 
3400 	add_tg_cfs_propagate(cfs_rq, gcfs_rq->prop_runnable_sum);
3401 
3402 	update_tg_cfs_util(cfs_rq, se, gcfs_rq);
3403 	update_tg_cfs_runnable(cfs_rq, se, gcfs_rq);
3404 
3405 	trace_pelt_cfs_tp(cfs_rq);
3406 	trace_pelt_se_tp(se);
3407 
3408 	return 1;
3409 }
3410 
3411 /*
3412  * Check if we need to update the load and the utilization of a blocked
3413  * group_entity:
3414  */
3415 static inline bool skip_blocked_update(struct sched_entity *se)
3416 {
3417 	struct cfs_rq *gcfs_rq = group_cfs_rq(se);
3418 
3419 	/*
3420 	 * If sched_entity still have not zero load or utilization, we have to
3421 	 * decay it:
3422 	 */
3423 	if (se->avg.load_avg || se->avg.util_avg)
3424 		return false;
3425 
3426 	/*
3427 	 * If there is a pending propagation, we have to update the load and
3428 	 * the utilization of the sched_entity:
3429 	 */
3430 	if (gcfs_rq->propagate)
3431 		return false;
3432 
3433 	/*
3434 	 * Otherwise, the load and the utilization of the sched_entity is
3435 	 * already zero and there is no pending propagation, so it will be a
3436 	 * waste of time to try to decay it:
3437 	 */
3438 	return true;
3439 }
3440 
3441 #else /* CONFIG_FAIR_GROUP_SCHED */
3442 
3443 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force) {}
3444 
3445 static inline int propagate_entity_load_avg(struct sched_entity *se)
3446 {
3447 	return 0;
3448 }
3449 
3450 static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum) {}
3451 
3452 #endif /* CONFIG_FAIR_GROUP_SCHED */
3453 
3454 /**
3455  * update_cfs_rq_load_avg - update the cfs_rq's load/util averages
3456  * @now: current time, as per cfs_rq_clock_pelt()
3457  * @cfs_rq: cfs_rq to update
3458  *
3459  * The cfs_rq avg is the direct sum of all its entities (blocked and runnable)
3460  * avg. The immediate corollary is that all (fair) tasks must be attached, see
3461  * post_init_entity_util_avg().
3462  *
3463  * cfs_rq->avg is used for task_h_load() and update_cfs_share() for example.
3464  *
3465  * Returns true if the load decayed or we removed load.
3466  *
3467  * Since both these conditions indicate a changed cfs_rq->avg.load we should
3468  * call update_tg_load_avg() when this function returns true.
3469  */
3470 static inline int
3471 update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq)
3472 {
3473 	unsigned long removed_load = 0, removed_util = 0, removed_runnable_sum = 0;
3474 	struct sched_avg *sa = &cfs_rq->avg;
3475 	int decayed = 0;
3476 
3477 	if (cfs_rq->removed.nr) {
3478 		unsigned long r;
3479 		u32 divider = LOAD_AVG_MAX - 1024 + sa->period_contrib;
3480 
3481 		raw_spin_lock(&cfs_rq->removed.lock);
3482 		swap(cfs_rq->removed.util_avg, removed_util);
3483 		swap(cfs_rq->removed.load_avg, removed_load);
3484 		swap(cfs_rq->removed.runnable_sum, removed_runnable_sum);
3485 		cfs_rq->removed.nr = 0;
3486 		raw_spin_unlock(&cfs_rq->removed.lock);
3487 
3488 		r = removed_load;
3489 		sub_positive(&sa->load_avg, r);
3490 		sub_positive(&sa->load_sum, r * divider);
3491 
3492 		r = removed_util;
3493 		sub_positive(&sa->util_avg, r);
3494 		sub_positive(&sa->util_sum, r * divider);
3495 
3496 		add_tg_cfs_propagate(cfs_rq, -(long)removed_runnable_sum);
3497 
3498 		decayed = 1;
3499 	}
3500 
3501 	decayed |= __update_load_avg_cfs_rq(now, cfs_rq);
3502 
3503 #ifndef CONFIG_64BIT
3504 	smp_wmb();
3505 	cfs_rq->load_last_update_time_copy = sa->last_update_time;
3506 #endif
3507 
3508 	if (decayed)
3509 		cfs_rq_util_change(cfs_rq, 0);
3510 
3511 	return decayed;
3512 }
3513 
3514 /**
3515  * attach_entity_load_avg - attach this entity to its cfs_rq load avg
3516  * @cfs_rq: cfs_rq to attach to
3517  * @se: sched_entity to attach
3518  * @flags: migration hints
3519  *
3520  * Must call update_cfs_rq_load_avg() before this, since we rely on
3521  * cfs_rq->avg.last_update_time being current.
3522  */
3523 static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
3524 {
3525 	u32 divider = LOAD_AVG_MAX - 1024 + cfs_rq->avg.period_contrib;
3526 
3527 	/*
3528 	 * When we attach the @se to the @cfs_rq, we must align the decay
3529 	 * window because without that, really weird and wonderful things can
3530 	 * happen.
3531 	 *
3532 	 * XXX illustrate
3533 	 */
3534 	se->avg.last_update_time = cfs_rq->avg.last_update_time;
3535 	se->avg.period_contrib = cfs_rq->avg.period_contrib;
3536 
3537 	/*
3538 	 * Hell(o) Nasty stuff.. we need to recompute _sum based on the new
3539 	 * period_contrib. This isn't strictly correct, but since we're
3540 	 * entirely outside of the PELT hierarchy, nobody cares if we truncate
3541 	 * _sum a little.
3542 	 */
3543 	se->avg.util_sum = se->avg.util_avg * divider;
3544 
3545 	se->avg.load_sum = divider;
3546 	if (se_weight(se)) {
3547 		se->avg.load_sum =
3548 			div_u64(se->avg.load_avg * se->avg.load_sum, se_weight(se));
3549 	}
3550 
3551 	se->avg.runnable_load_sum = se->avg.load_sum;
3552 
3553 	enqueue_load_avg(cfs_rq, se);
3554 	cfs_rq->avg.util_avg += se->avg.util_avg;
3555 	cfs_rq->avg.util_sum += se->avg.util_sum;
3556 
3557 	add_tg_cfs_propagate(cfs_rq, se->avg.load_sum);
3558 
3559 	cfs_rq_util_change(cfs_rq, flags);
3560 
3561 	trace_pelt_cfs_tp(cfs_rq);
3562 }
3563 
3564 /**
3565  * detach_entity_load_avg - detach this entity from its cfs_rq load avg
3566  * @cfs_rq: cfs_rq to detach from
3567  * @se: sched_entity to detach
3568  *
3569  * Must call update_cfs_rq_load_avg() before this, since we rely on
3570  * cfs_rq->avg.last_update_time being current.
3571  */
3572 static void detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3573 {
3574 	dequeue_load_avg(cfs_rq, se);
3575 	sub_positive(&cfs_rq->avg.util_avg, se->avg.util_avg);
3576 	sub_positive(&cfs_rq->avg.util_sum, se->avg.util_sum);
3577 
3578 	add_tg_cfs_propagate(cfs_rq, -se->avg.load_sum);
3579 
3580 	cfs_rq_util_change(cfs_rq, 0);
3581 
3582 	trace_pelt_cfs_tp(cfs_rq);
3583 }
3584 
3585 /*
3586  * Optional action to be done while updating the load average
3587  */
3588 #define UPDATE_TG	0x1
3589 #define SKIP_AGE_LOAD	0x2
3590 #define DO_ATTACH	0x4
3591 
3592 /* Update task and its cfs_rq load average */
3593 static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
3594 {
3595 	u64 now = cfs_rq_clock_pelt(cfs_rq);
3596 	int decayed;
3597 
3598 	/*
3599 	 * Track task load average for carrying it to new CPU after migrated, and
3600 	 * track group sched_entity load average for task_h_load calc in migration
3601 	 */
3602 	if (se->avg.last_update_time && !(flags & SKIP_AGE_LOAD))
3603 		__update_load_avg_se(now, cfs_rq, se);
3604 
3605 	decayed  = update_cfs_rq_load_avg(now, cfs_rq);
3606 	decayed |= propagate_entity_load_avg(se);
3607 
3608 	if (!se->avg.last_update_time && (flags & DO_ATTACH)) {
3609 
3610 		/*
3611 		 * DO_ATTACH means we're here from enqueue_entity().
3612 		 * !last_update_time means we've passed through
3613 		 * migrate_task_rq_fair() indicating we migrated.
3614 		 *
3615 		 * IOW we're enqueueing a task on a new CPU.
3616 		 */
3617 		attach_entity_load_avg(cfs_rq, se, SCHED_CPUFREQ_MIGRATION);
3618 		update_tg_load_avg(cfs_rq, 0);
3619 
3620 	} else if (decayed && (flags & UPDATE_TG))
3621 		update_tg_load_avg(cfs_rq, 0);
3622 }
3623 
3624 #ifndef CONFIG_64BIT
3625 static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
3626 {
3627 	u64 last_update_time_copy;
3628 	u64 last_update_time;
3629 
3630 	do {
3631 		last_update_time_copy = cfs_rq->load_last_update_time_copy;
3632 		smp_rmb();
3633 		last_update_time = cfs_rq->avg.last_update_time;
3634 	} while (last_update_time != last_update_time_copy);
3635 
3636 	return last_update_time;
3637 }
3638 #else
3639 static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
3640 {
3641 	return cfs_rq->avg.last_update_time;
3642 }
3643 #endif
3644 
3645 /*
3646  * Synchronize entity load avg of dequeued entity without locking
3647  * the previous rq.
3648  */
3649 static void sync_entity_load_avg(struct sched_entity *se)
3650 {
3651 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
3652 	u64 last_update_time;
3653 
3654 	last_update_time = cfs_rq_last_update_time(cfs_rq);
3655 	__update_load_avg_blocked_se(last_update_time, se);
3656 }
3657 
3658 /*
3659  * Task first catches up with cfs_rq, and then subtract
3660  * itself from the cfs_rq (task must be off the queue now).
3661  */
3662 static void remove_entity_load_avg(struct sched_entity *se)
3663 {
3664 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
3665 	unsigned long flags;
3666 
3667 	/*
3668 	 * tasks cannot exit without having gone through wake_up_new_task() ->
3669 	 * post_init_entity_util_avg() which will have added things to the
3670 	 * cfs_rq, so we can remove unconditionally.
3671 	 */
3672 
3673 	sync_entity_load_avg(se);
3674 
3675 	raw_spin_lock_irqsave(&cfs_rq->removed.lock, flags);
3676 	++cfs_rq->removed.nr;
3677 	cfs_rq->removed.util_avg	+= se->avg.util_avg;
3678 	cfs_rq->removed.load_avg	+= se->avg.load_avg;
3679 	cfs_rq->removed.runnable_sum	+= se->avg.load_sum; /* == runnable_sum */
3680 	raw_spin_unlock_irqrestore(&cfs_rq->removed.lock, flags);
3681 }
3682 
3683 static inline unsigned long cfs_rq_runnable_load_avg(struct cfs_rq *cfs_rq)
3684 {
3685 	return cfs_rq->avg.runnable_load_avg;
3686 }
3687 
3688 static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq)
3689 {
3690 	return cfs_rq->avg.load_avg;
3691 }
3692 
3693 static inline unsigned long task_util(struct task_struct *p)
3694 {
3695 	return READ_ONCE(p->se.avg.util_avg);
3696 }
3697 
3698 static inline unsigned long _task_util_est(struct task_struct *p)
3699 {
3700 	struct util_est ue = READ_ONCE(p->se.avg.util_est);
3701 
3702 	return (max(ue.ewma, ue.enqueued) | UTIL_AVG_UNCHANGED);
3703 }
3704 
3705 static inline unsigned long task_util_est(struct task_struct *p)
3706 {
3707 	return max(task_util(p), _task_util_est(p));
3708 }
3709 
3710 static inline void util_est_enqueue(struct cfs_rq *cfs_rq,
3711 				    struct task_struct *p)
3712 {
3713 	unsigned int enqueued;
3714 
3715 	if (!sched_feat(UTIL_EST))
3716 		return;
3717 
3718 	/* Update root cfs_rq's estimated utilization */
3719 	enqueued  = cfs_rq->avg.util_est.enqueued;
3720 	enqueued += _task_util_est(p);
3721 	WRITE_ONCE(cfs_rq->avg.util_est.enqueued, enqueued);
3722 }
3723 
3724 /*
3725  * Check if a (signed) value is within a specified (unsigned) margin,
3726  * based on the observation that:
3727  *
3728  *     abs(x) < y := (unsigned)(x + y - 1) < (2 * y - 1)
3729  *
3730  * NOTE: this only works when value + maring < INT_MAX.
3731  */
3732 static inline bool within_margin(int value, int margin)
3733 {
3734 	return ((unsigned int)(value + margin - 1) < (2 * margin - 1));
3735 }
3736 
3737 static void
3738 util_est_dequeue(struct cfs_rq *cfs_rq, struct task_struct *p, bool task_sleep)
3739 {
3740 	long last_ewma_diff;
3741 	struct util_est ue;
3742 	int cpu;
3743 
3744 	if (!sched_feat(UTIL_EST))
3745 		return;
3746 
3747 	/* Update root cfs_rq's estimated utilization */
3748 	ue.enqueued  = cfs_rq->avg.util_est.enqueued;
3749 	ue.enqueued -= min_t(unsigned int, ue.enqueued, _task_util_est(p));
3750 	WRITE_ONCE(cfs_rq->avg.util_est.enqueued, ue.enqueued);
3751 
3752 	/*
3753 	 * Skip update of task's estimated utilization when the task has not
3754 	 * yet completed an activation, e.g. being migrated.
3755 	 */
3756 	if (!task_sleep)
3757 		return;
3758 
3759 	/*
3760 	 * If the PELT values haven't changed since enqueue time,
3761 	 * skip the util_est update.
3762 	 */
3763 	ue = p->se.avg.util_est;
3764 	if (ue.enqueued & UTIL_AVG_UNCHANGED)
3765 		return;
3766 
3767 	/*
3768 	 * Skip update of task's estimated utilization when its EWMA is
3769 	 * already ~1% close to its last activation value.
3770 	 */
3771 	ue.enqueued = (task_util(p) | UTIL_AVG_UNCHANGED);
3772 	last_ewma_diff = ue.enqueued - ue.ewma;
3773 	if (within_margin(last_ewma_diff, (SCHED_CAPACITY_SCALE / 100)))
3774 		return;
3775 
3776 	/*
3777 	 * To avoid overestimation of actual task utilization, skip updates if
3778 	 * we cannot grant there is idle time in this CPU.
3779 	 */
3780 	cpu = cpu_of(rq_of(cfs_rq));
3781 	if (task_util(p) > capacity_orig_of(cpu))
3782 		return;
3783 
3784 	/*
3785 	 * Update Task's estimated utilization
3786 	 *
3787 	 * When *p completes an activation we can consolidate another sample
3788 	 * of the task size. This is done by storing the current PELT value
3789 	 * as ue.enqueued and by using this value to update the Exponential
3790 	 * Weighted Moving Average (EWMA):
3791 	 *
3792 	 *  ewma(t) = w *  task_util(p) + (1-w) * ewma(t-1)
3793 	 *          = w *  task_util(p) +         ewma(t-1)  - w * ewma(t-1)
3794 	 *          = w * (task_util(p) -         ewma(t-1)) +     ewma(t-1)
3795 	 *          = w * (      last_ewma_diff            ) +     ewma(t-1)
3796 	 *          = w * (last_ewma_diff  +  ewma(t-1) / w)
3797 	 *
3798 	 * Where 'w' is the weight of new samples, which is configured to be
3799 	 * 0.25, thus making w=1/4 ( >>= UTIL_EST_WEIGHT_SHIFT)
3800 	 */
3801 	ue.ewma <<= UTIL_EST_WEIGHT_SHIFT;
3802 	ue.ewma  += last_ewma_diff;
3803 	ue.ewma >>= UTIL_EST_WEIGHT_SHIFT;
3804 	WRITE_ONCE(p->se.avg.util_est, ue);
3805 }
3806 
3807 static inline int task_fits_capacity(struct task_struct *p, long capacity)
3808 {
3809 	return fits_capacity(task_util_est(p), capacity);
3810 }
3811 
3812 static inline void update_misfit_status(struct task_struct *p, struct rq *rq)
3813 {
3814 	if (!static_branch_unlikely(&sched_asym_cpucapacity))
3815 		return;
3816 
3817 	if (!p) {
3818 		rq->misfit_task_load = 0;
3819 		return;
3820 	}
3821 
3822 	if (task_fits_capacity(p, capacity_of(cpu_of(rq)))) {
3823 		rq->misfit_task_load = 0;
3824 		return;
3825 	}
3826 
3827 	rq->misfit_task_load = task_h_load(p);
3828 }
3829 
3830 #else /* CONFIG_SMP */
3831 
3832 #define UPDATE_TG	0x0
3833 #define SKIP_AGE_LOAD	0x0
3834 #define DO_ATTACH	0x0
3835 
3836 static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int not_used1)
3837 {
3838 	cfs_rq_util_change(cfs_rq, 0);
3839 }
3840 
3841 static inline void remove_entity_load_avg(struct sched_entity *se) {}
3842 
3843 static inline void
3844 attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) {}
3845 static inline void
3846 detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
3847 
3848 static inline int idle_balance(struct rq *rq, struct rq_flags *rf)
3849 {
3850 	return 0;
3851 }
3852 
3853 static inline void
3854 util_est_enqueue(struct cfs_rq *cfs_rq, struct task_struct *p) {}
3855 
3856 static inline void
3857 util_est_dequeue(struct cfs_rq *cfs_rq, struct task_struct *p,
3858 		 bool task_sleep) {}
3859 static inline void update_misfit_status(struct task_struct *p, struct rq *rq) {}
3860 
3861 #endif /* CONFIG_SMP */
3862 
3863 static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
3864 {
3865 #ifdef CONFIG_SCHED_DEBUG
3866 	s64 d = se->vruntime - cfs_rq->min_vruntime;
3867 
3868 	if (d < 0)
3869 		d = -d;
3870 
3871 	if (d > 3*sysctl_sched_latency)
3872 		schedstat_inc(cfs_rq->nr_spread_over);
3873 #endif
3874 }
3875 
3876 static void
3877 place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
3878 {
3879 	u64 vruntime = cfs_rq->min_vruntime;
3880 
3881 	/*
3882 	 * The 'current' period is already promised to the current tasks,
3883 	 * however the extra weight of the new task will slow them down a
3884 	 * little, place the new task so that it fits in the slot that
3885 	 * stays open at the end.
3886 	 */
3887 	if (initial && sched_feat(START_DEBIT))
3888 		vruntime += sched_vslice(cfs_rq, se);
3889 
3890 	/* sleeps up to a single latency don't count. */
3891 	if (!initial) {
3892 		unsigned long thresh = sysctl_sched_latency;
3893 
3894 		/*
3895 		 * Halve their sleep time's effect, to allow
3896 		 * for a gentler effect of sleepers:
3897 		 */
3898 		if (sched_feat(GENTLE_FAIR_SLEEPERS))
3899 			thresh >>= 1;
3900 
3901 		vruntime -= thresh;
3902 	}
3903 
3904 	/* ensure we never gain time by being placed backwards. */
3905 	se->vruntime = max_vruntime(se->vruntime, vruntime);
3906 }
3907 
3908 static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
3909 
3910 static inline void check_schedstat_required(void)
3911 {
3912 #ifdef CONFIG_SCHEDSTATS
3913 	if (schedstat_enabled())
3914 		return;
3915 
3916 	/* Force schedstat enabled if a dependent tracepoint is active */
3917 	if (trace_sched_stat_wait_enabled()    ||
3918 			trace_sched_stat_sleep_enabled()   ||
3919 			trace_sched_stat_iowait_enabled()  ||
3920 			trace_sched_stat_blocked_enabled() ||
3921 			trace_sched_stat_runtime_enabled())  {
3922 		printk_deferred_once("Scheduler tracepoints stat_sleep, stat_iowait, "
3923 			     "stat_blocked and stat_runtime require the "
3924 			     "kernel parameter schedstats=enable or "
3925 			     "kernel.sched_schedstats=1\n");
3926 	}
3927 #endif
3928 }
3929 
3930 
3931 /*
3932  * MIGRATION
3933  *
3934  *	dequeue
3935  *	  update_curr()
3936  *	    update_min_vruntime()
3937  *	  vruntime -= min_vruntime
3938  *
3939  *	enqueue
3940  *	  update_curr()
3941  *	    update_min_vruntime()
3942  *	  vruntime += min_vruntime
3943  *
3944  * this way the vruntime transition between RQs is done when both
3945  * min_vruntime are up-to-date.
3946  *
3947  * WAKEUP (remote)
3948  *
3949  *	->migrate_task_rq_fair() (p->state == TASK_WAKING)
3950  *	  vruntime -= min_vruntime
3951  *
3952  *	enqueue
3953  *	  update_curr()
3954  *	    update_min_vruntime()
3955  *	  vruntime += min_vruntime
3956  *
3957  * this way we don't have the most up-to-date min_vruntime on the originating
3958  * CPU and an up-to-date min_vruntime on the destination CPU.
3959  */
3960 
3961 static void
3962 enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
3963 {
3964 	bool renorm = !(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_MIGRATED);
3965 	bool curr = cfs_rq->curr == se;
3966 
3967 	/*
3968 	 * If we're the current task, we must renormalise before calling
3969 	 * update_curr().
3970 	 */
3971 	if (renorm && curr)
3972 		se->vruntime += cfs_rq->min_vruntime;
3973 
3974 	update_curr(cfs_rq);
3975 
3976 	/*
3977 	 * Otherwise, renormalise after, such that we're placed at the current
3978 	 * moment in time, instead of some random moment in the past. Being
3979 	 * placed in the past could significantly boost this task to the
3980 	 * fairness detriment of existing tasks.
3981 	 */
3982 	if (renorm && !curr)
3983 		se->vruntime += cfs_rq->min_vruntime;
3984 
3985 	/*
3986 	 * When enqueuing a sched_entity, we must:
3987 	 *   - Update loads to have both entity and cfs_rq synced with now.
3988 	 *   - Add its load to cfs_rq->runnable_avg
3989 	 *   - For group_entity, update its weight to reflect the new share of
3990 	 *     its group cfs_rq
3991 	 *   - Add its new weight to cfs_rq->load.weight
3992 	 */
3993 	update_load_avg(cfs_rq, se, UPDATE_TG | DO_ATTACH);
3994 	update_cfs_group(se);
3995 	enqueue_runnable_load_avg(cfs_rq, se);
3996 	account_entity_enqueue(cfs_rq, se);
3997 
3998 	if (flags & ENQUEUE_WAKEUP)
3999 		place_entity(cfs_rq, se, 0);
4000 
4001 	check_schedstat_required();
4002 	update_stats_enqueue(cfs_rq, se, flags);
4003 	check_spread(cfs_rq, se);
4004 	if (!curr)
4005 		__enqueue_entity(cfs_rq, se);
4006 	se->on_rq = 1;
4007 
4008 	if (cfs_rq->nr_running == 1) {
4009 		list_add_leaf_cfs_rq(cfs_rq);
4010 		check_enqueue_throttle(cfs_rq);
4011 	}
4012 }
4013 
4014 static void __clear_buddies_last(struct sched_entity *se)
4015 {
4016 	for_each_sched_entity(se) {
4017 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
4018 		if (cfs_rq->last != se)
4019 			break;
4020 
4021 		cfs_rq->last = NULL;
4022 	}
4023 }
4024 
4025 static void __clear_buddies_next(struct sched_entity *se)
4026 {
4027 	for_each_sched_entity(se) {
4028 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
4029 		if (cfs_rq->next != se)
4030 			break;
4031 
4032 		cfs_rq->next = NULL;
4033 	}
4034 }
4035 
4036 static void __clear_buddies_skip(struct sched_entity *se)
4037 {
4038 	for_each_sched_entity(se) {
4039 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
4040 		if (cfs_rq->skip != se)
4041 			break;
4042 
4043 		cfs_rq->skip = NULL;
4044 	}
4045 }
4046 
4047 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
4048 {
4049 	if (cfs_rq->last == se)
4050 		__clear_buddies_last(se);
4051 
4052 	if (cfs_rq->next == se)
4053 		__clear_buddies_next(se);
4054 
4055 	if (cfs_rq->skip == se)
4056 		__clear_buddies_skip(se);
4057 }
4058 
4059 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
4060 
4061 static void
4062 dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
4063 {
4064 	/*
4065 	 * Update run-time statistics of the 'current'.
4066 	 */
4067 	update_curr(cfs_rq);
4068 
4069 	/*
4070 	 * When dequeuing a sched_entity, we must:
4071 	 *   - Update loads to have both entity and cfs_rq synced with now.
4072 	 *   - Subtract its load from the cfs_rq->runnable_avg.
4073 	 *   - Subtract its previous weight from cfs_rq->load.weight.
4074 	 *   - For group entity, update its weight to reflect the new share
4075 	 *     of its group cfs_rq.
4076 	 */
4077 	update_load_avg(cfs_rq, se, UPDATE_TG);
4078 	dequeue_runnable_load_avg(cfs_rq, se);
4079 
4080 	update_stats_dequeue(cfs_rq, se, flags);
4081 
4082 	clear_buddies(cfs_rq, se);
4083 
4084 	if (se != cfs_rq->curr)
4085 		__dequeue_entity(cfs_rq, se);
4086 	se->on_rq = 0;
4087 	account_entity_dequeue(cfs_rq, se);
4088 
4089 	/*
4090 	 * Normalize after update_curr(); which will also have moved
4091 	 * min_vruntime if @se is the one holding it back. But before doing
4092 	 * update_min_vruntime() again, which will discount @se's position and
4093 	 * can move min_vruntime forward still more.
4094 	 */
4095 	if (!(flags & DEQUEUE_SLEEP))
4096 		se->vruntime -= cfs_rq->min_vruntime;
4097 
4098 	/* return excess runtime on last dequeue */
4099 	return_cfs_rq_runtime(cfs_rq);
4100 
4101 	update_cfs_group(se);
4102 
4103 	/*
4104 	 * Now advance min_vruntime if @se was the entity holding it back,
4105 	 * except when: DEQUEUE_SAVE && !DEQUEUE_MOVE, in this case we'll be
4106 	 * put back on, and if we advance min_vruntime, we'll be placed back
4107 	 * further than we started -- ie. we'll be penalized.
4108 	 */
4109 	if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) != DEQUEUE_SAVE)
4110 		update_min_vruntime(cfs_rq);
4111 }
4112 
4113 /*
4114  * Preempt the current task with a newly woken task if needed:
4115  */
4116 static void
4117 check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
4118 {
4119 	unsigned long ideal_runtime, delta_exec;
4120 	struct sched_entity *se;
4121 	s64 delta;
4122 
4123 	ideal_runtime = sched_slice(cfs_rq, curr);
4124 	delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
4125 	if (delta_exec > ideal_runtime) {
4126 		resched_curr(rq_of(cfs_rq));
4127 		/*
4128 		 * The current task ran long enough, ensure it doesn't get
4129 		 * re-elected due to buddy favours.
4130 		 */
4131 		clear_buddies(cfs_rq, curr);
4132 		return;
4133 	}
4134 
4135 	/*
4136 	 * Ensure that a task that missed wakeup preemption by a
4137 	 * narrow margin doesn't have to wait for a full slice.
4138 	 * This also mitigates buddy induced latencies under load.
4139 	 */
4140 	if (delta_exec < sysctl_sched_min_granularity)
4141 		return;
4142 
4143 	se = __pick_first_entity(cfs_rq);
4144 	delta = curr->vruntime - se->vruntime;
4145 
4146 	if (delta < 0)
4147 		return;
4148 
4149 	if (delta > ideal_runtime)
4150 		resched_curr(rq_of(cfs_rq));
4151 }
4152 
4153 static void
4154 set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
4155 {
4156 	/* 'current' is not kept within the tree. */
4157 	if (se->on_rq) {
4158 		/*
4159 		 * Any task has to be enqueued before it get to execute on
4160 		 * a CPU. So account for the time it spent waiting on the
4161 		 * runqueue.
4162 		 */
4163 		update_stats_wait_end(cfs_rq, se);
4164 		__dequeue_entity(cfs_rq, se);
4165 		update_load_avg(cfs_rq, se, UPDATE_TG);
4166 	}
4167 
4168 	update_stats_curr_start(cfs_rq, se);
4169 	cfs_rq->curr = se;
4170 
4171 	/*
4172 	 * Track our maximum slice length, if the CPU's load is at
4173 	 * least twice that of our own weight (i.e. dont track it
4174 	 * when there are only lesser-weight tasks around):
4175 	 */
4176 	if (schedstat_enabled() &&
4177 	    rq_of(cfs_rq)->cfs.load.weight >= 2*se->load.weight) {
4178 		schedstat_set(se->statistics.slice_max,
4179 			max((u64)schedstat_val(se->statistics.slice_max),
4180 			    se->sum_exec_runtime - se->prev_sum_exec_runtime));
4181 	}
4182 
4183 	se->prev_sum_exec_runtime = se->sum_exec_runtime;
4184 }
4185 
4186 static int
4187 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
4188 
4189 /*
4190  * Pick the next process, keeping these things in mind, in this order:
4191  * 1) keep things fair between processes/task groups
4192  * 2) pick the "next" process, since someone really wants that to run
4193  * 3) pick the "last" process, for cache locality
4194  * 4) do not run the "skip" process, if something else is available
4195  */
4196 static struct sched_entity *
4197 pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr)
4198 {
4199 	struct sched_entity *left = __pick_first_entity(cfs_rq);
4200 	struct sched_entity *se;
4201 
4202 	/*
4203 	 * If curr is set we have to see if its left of the leftmost entity
4204 	 * still in the tree, provided there was anything in the tree at all.
4205 	 */
4206 	if (!left || (curr && entity_before(curr, left)))
4207 		left = curr;
4208 
4209 	se = left; /* ideally we run the leftmost entity */
4210 
4211 	/*
4212 	 * Avoid running the skip buddy, if running something else can
4213 	 * be done without getting too unfair.
4214 	 */
4215 	if (cfs_rq->skip == se) {
4216 		struct sched_entity *second;
4217 
4218 		if (se == curr) {
4219 			second = __pick_first_entity(cfs_rq);
4220 		} else {
4221 			second = __pick_next_entity(se);
4222 			if (!second || (curr && entity_before(curr, second)))
4223 				second = curr;
4224 		}
4225 
4226 		if (second && wakeup_preempt_entity(second, left) < 1)
4227 			se = second;
4228 	}
4229 
4230 	/*
4231 	 * Prefer last buddy, try to return the CPU to a preempted task.
4232 	 */
4233 	if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
4234 		se = cfs_rq->last;
4235 
4236 	/*
4237 	 * Someone really wants this to run. If it's not unfair, run it.
4238 	 */
4239 	if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
4240 		se = cfs_rq->next;
4241 
4242 	clear_buddies(cfs_rq, se);
4243 
4244 	return se;
4245 }
4246 
4247 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
4248 
4249 static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
4250 {
4251 	/*
4252 	 * If still on the runqueue then deactivate_task()
4253 	 * was not called and update_curr() has to be done:
4254 	 */
4255 	if (prev->on_rq)
4256 		update_curr(cfs_rq);
4257 
4258 	/* throttle cfs_rqs exceeding runtime */
4259 	check_cfs_rq_runtime(cfs_rq);
4260 
4261 	check_spread(cfs_rq, prev);
4262 
4263 	if (prev->on_rq) {
4264 		update_stats_wait_start(cfs_rq, prev);
4265 		/* Put 'current' back into the tree. */
4266 		__enqueue_entity(cfs_rq, prev);
4267 		/* in !on_rq case, update occurred at dequeue */
4268 		update_load_avg(cfs_rq, prev, 0);
4269 	}
4270 	cfs_rq->curr = NULL;
4271 }
4272 
4273 static void
4274 entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
4275 {
4276 	/*
4277 	 * Update run-time statistics of the 'current'.
4278 	 */
4279 	update_curr(cfs_rq);
4280 
4281 	/*
4282 	 * Ensure that runnable average is periodically updated.
4283 	 */
4284 	update_load_avg(cfs_rq, curr, UPDATE_TG);
4285 	update_cfs_group(curr);
4286 
4287 #ifdef CONFIG_SCHED_HRTICK
4288 	/*
4289 	 * queued ticks are scheduled to match the slice, so don't bother
4290 	 * validating it and just reschedule.
4291 	 */
4292 	if (queued) {
4293 		resched_curr(rq_of(cfs_rq));
4294 		return;
4295 	}
4296 	/*
4297 	 * don't let the period tick interfere with the hrtick preemption
4298 	 */
4299 	if (!sched_feat(DOUBLE_TICK) &&
4300 			hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
4301 		return;
4302 #endif
4303 
4304 	if (cfs_rq->nr_running > 1)
4305 		check_preempt_tick(cfs_rq, curr);
4306 }
4307 
4308 
4309 /**************************************************
4310  * CFS bandwidth control machinery
4311  */
4312 
4313 #ifdef CONFIG_CFS_BANDWIDTH
4314 
4315 #ifdef CONFIG_JUMP_LABEL
4316 static struct static_key __cfs_bandwidth_used;
4317 
4318 static inline bool cfs_bandwidth_used(void)
4319 {
4320 	return static_key_false(&__cfs_bandwidth_used);
4321 }
4322 
4323 void cfs_bandwidth_usage_inc(void)
4324 {
4325 	static_key_slow_inc_cpuslocked(&__cfs_bandwidth_used);
4326 }
4327 
4328 void cfs_bandwidth_usage_dec(void)
4329 {
4330 	static_key_slow_dec_cpuslocked(&__cfs_bandwidth_used);
4331 }
4332 #else /* CONFIG_JUMP_LABEL */
4333 static bool cfs_bandwidth_used(void)
4334 {
4335 	return true;
4336 }
4337 
4338 void cfs_bandwidth_usage_inc(void) {}
4339 void cfs_bandwidth_usage_dec(void) {}
4340 #endif /* CONFIG_JUMP_LABEL */
4341 
4342 /*
4343  * default period for cfs group bandwidth.
4344  * default: 0.1s, units: nanoseconds
4345  */
4346 static inline u64 default_cfs_period(void)
4347 {
4348 	return 100000000ULL;
4349 }
4350 
4351 static inline u64 sched_cfs_bandwidth_slice(void)
4352 {
4353 	return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
4354 }
4355 
4356 /*
4357  * Replenish runtime according to assigned quota and update expiration time.
4358  * We use sched_clock_cpu directly instead of rq->clock to avoid adding
4359  * additional synchronization around rq->lock.
4360  *
4361  * requires cfs_b->lock
4362  */
4363 void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
4364 {
4365 	u64 now;
4366 
4367 	if (cfs_b->quota == RUNTIME_INF)
4368 		return;
4369 
4370 	now = sched_clock_cpu(smp_processor_id());
4371 	cfs_b->runtime = cfs_b->quota;
4372 }
4373 
4374 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
4375 {
4376 	return &tg->cfs_bandwidth;
4377 }
4378 
4379 /* rq->task_clock normalized against any time this cfs_rq has spent throttled */
4380 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
4381 {
4382 	if (unlikely(cfs_rq->throttle_count))
4383 		return cfs_rq->throttled_clock_task - cfs_rq->throttled_clock_task_time;
4384 
4385 	return rq_clock_task(rq_of(cfs_rq)) - cfs_rq->throttled_clock_task_time;
4386 }
4387 
4388 /* returns 0 on failure to allocate runtime */
4389 static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4390 {
4391 	struct task_group *tg = cfs_rq->tg;
4392 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
4393 	u64 amount = 0, min_amount;
4394 
4395 	/* note: this is a positive sum as runtime_remaining <= 0 */
4396 	min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;
4397 
4398 	raw_spin_lock(&cfs_b->lock);
4399 	if (cfs_b->quota == RUNTIME_INF)
4400 		amount = min_amount;
4401 	else {
4402 		start_cfs_bandwidth(cfs_b);
4403 
4404 		if (cfs_b->runtime > 0) {
4405 			amount = min(cfs_b->runtime, min_amount);
4406 			cfs_b->runtime -= amount;
4407 			cfs_b->idle = 0;
4408 		}
4409 	}
4410 	raw_spin_unlock(&cfs_b->lock);
4411 
4412 	cfs_rq->runtime_remaining += amount;
4413 
4414 	return cfs_rq->runtime_remaining > 0;
4415 }
4416 
4417 static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
4418 {
4419 	/* dock delta_exec before expiring quota (as it could span periods) */
4420 	cfs_rq->runtime_remaining -= delta_exec;
4421 
4422 	if (likely(cfs_rq->runtime_remaining > 0))
4423 		return;
4424 
4425 	if (cfs_rq->throttled)
4426 		return;
4427 	/*
4428 	 * if we're unable to extend our runtime we resched so that the active
4429 	 * hierarchy can be throttled
4430 	 */
4431 	if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
4432 		resched_curr(rq_of(cfs_rq));
4433 }
4434 
4435 static __always_inline
4436 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
4437 {
4438 	if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
4439 		return;
4440 
4441 	__account_cfs_rq_runtime(cfs_rq, delta_exec);
4442 }
4443 
4444 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
4445 {
4446 	return cfs_bandwidth_used() && cfs_rq->throttled;
4447 }
4448 
4449 /* check whether cfs_rq, or any parent, is throttled */
4450 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
4451 {
4452 	return cfs_bandwidth_used() && cfs_rq->throttle_count;
4453 }
4454 
4455 /*
4456  * Ensure that neither of the group entities corresponding to src_cpu or
4457  * dest_cpu are members of a throttled hierarchy when performing group
4458  * load-balance operations.
4459  */
4460 static inline int throttled_lb_pair(struct task_group *tg,
4461 				    int src_cpu, int dest_cpu)
4462 {
4463 	struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
4464 
4465 	src_cfs_rq = tg->cfs_rq[src_cpu];
4466 	dest_cfs_rq = tg->cfs_rq[dest_cpu];
4467 
4468 	return throttled_hierarchy(src_cfs_rq) ||
4469 	       throttled_hierarchy(dest_cfs_rq);
4470 }
4471 
4472 static int tg_unthrottle_up(struct task_group *tg, void *data)
4473 {
4474 	struct rq *rq = data;
4475 	struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
4476 
4477 	cfs_rq->throttle_count--;
4478 	if (!cfs_rq->throttle_count) {
4479 		/* adjust cfs_rq_clock_task() */
4480 		cfs_rq->throttled_clock_task_time += rq_clock_task(rq) -
4481 					     cfs_rq->throttled_clock_task;
4482 
4483 		/* Add cfs_rq with already running entity in the list */
4484 		if (cfs_rq->nr_running >= 1)
4485 			list_add_leaf_cfs_rq(cfs_rq);
4486 	}
4487 
4488 	return 0;
4489 }
4490 
4491 static int tg_throttle_down(struct task_group *tg, void *data)
4492 {
4493 	struct rq *rq = data;
4494 	struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
4495 
4496 	/* group is entering throttled state, stop time */
4497 	if (!cfs_rq->throttle_count) {
4498 		cfs_rq->throttled_clock_task = rq_clock_task(rq);
4499 		list_del_leaf_cfs_rq(cfs_rq);
4500 	}
4501 	cfs_rq->throttle_count++;
4502 
4503 	return 0;
4504 }
4505 
4506 static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
4507 {
4508 	struct rq *rq = rq_of(cfs_rq);
4509 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4510 	struct sched_entity *se;
4511 	long task_delta, idle_task_delta, dequeue = 1;
4512 	bool empty;
4513 
4514 	se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
4515 
4516 	/* freeze hierarchy runnable averages while throttled */
4517 	rcu_read_lock();
4518 	walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
4519 	rcu_read_unlock();
4520 
4521 	task_delta = cfs_rq->h_nr_running;
4522 	idle_task_delta = cfs_rq->idle_h_nr_running;
4523 	for_each_sched_entity(se) {
4524 		struct cfs_rq *qcfs_rq = cfs_rq_of(se);
4525 		/* throttled entity or throttle-on-deactivate */
4526 		if (!se->on_rq)
4527 			break;
4528 
4529 		if (dequeue)
4530 			dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
4531 		qcfs_rq->h_nr_running -= task_delta;
4532 		qcfs_rq->idle_h_nr_running -= idle_task_delta;
4533 
4534 		if (qcfs_rq->load.weight)
4535 			dequeue = 0;
4536 	}
4537 
4538 	if (!se)
4539 		sub_nr_running(rq, task_delta);
4540 
4541 	cfs_rq->throttled = 1;
4542 	cfs_rq->throttled_clock = rq_clock(rq);
4543 	raw_spin_lock(&cfs_b->lock);
4544 	empty = list_empty(&cfs_b->throttled_cfs_rq);
4545 
4546 	/*
4547 	 * Add to the _head_ of the list, so that an already-started
4548 	 * distribute_cfs_runtime will not see us. If disribute_cfs_runtime is
4549 	 * not running add to the tail so that later runqueues don't get starved.
4550 	 */
4551 	if (cfs_b->distribute_running)
4552 		list_add_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
4553 	else
4554 		list_add_tail_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
4555 
4556 	/*
4557 	 * If we're the first throttled task, make sure the bandwidth
4558 	 * timer is running.
4559 	 */
4560 	if (empty)
4561 		start_cfs_bandwidth(cfs_b);
4562 
4563 	raw_spin_unlock(&cfs_b->lock);
4564 }
4565 
4566 void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
4567 {
4568 	struct rq *rq = rq_of(cfs_rq);
4569 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4570 	struct sched_entity *se;
4571 	int enqueue = 1;
4572 	long task_delta, idle_task_delta;
4573 
4574 	se = cfs_rq->tg->se[cpu_of(rq)];
4575 
4576 	cfs_rq->throttled = 0;
4577 
4578 	update_rq_clock(rq);
4579 
4580 	raw_spin_lock(&cfs_b->lock);
4581 	cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
4582 	list_del_rcu(&cfs_rq->throttled_list);
4583 	raw_spin_unlock(&cfs_b->lock);
4584 
4585 	/* update hierarchical throttle state */
4586 	walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
4587 
4588 	if (!cfs_rq->load.weight)
4589 		return;
4590 
4591 	task_delta = cfs_rq->h_nr_running;
4592 	idle_task_delta = cfs_rq->idle_h_nr_running;
4593 	for_each_sched_entity(se) {
4594 		if (se->on_rq)
4595 			enqueue = 0;
4596 
4597 		cfs_rq = cfs_rq_of(se);
4598 		if (enqueue)
4599 			enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
4600 		cfs_rq->h_nr_running += task_delta;
4601 		cfs_rq->idle_h_nr_running += idle_task_delta;
4602 
4603 		if (cfs_rq_throttled(cfs_rq))
4604 			break;
4605 	}
4606 
4607 	assert_list_leaf_cfs_rq(rq);
4608 
4609 	if (!se)
4610 		add_nr_running(rq, task_delta);
4611 
4612 	/* Determine whether we need to wake up potentially idle CPU: */
4613 	if (rq->curr == rq->idle && rq->cfs.nr_running)
4614 		resched_curr(rq);
4615 }
4616 
4617 static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b, u64 remaining)
4618 {
4619 	struct cfs_rq *cfs_rq;
4620 	u64 runtime;
4621 	u64 starting_runtime = remaining;
4622 
4623 	rcu_read_lock();
4624 	list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
4625 				throttled_list) {
4626 		struct rq *rq = rq_of(cfs_rq);
4627 		struct rq_flags rf;
4628 
4629 		rq_lock_irqsave(rq, &rf);
4630 		if (!cfs_rq_throttled(cfs_rq))
4631 			goto next;
4632 
4633 		/* By the above check, this should never be true */
4634 		SCHED_WARN_ON(cfs_rq->runtime_remaining > 0);
4635 
4636 		runtime = -cfs_rq->runtime_remaining + 1;
4637 		if (runtime > remaining)
4638 			runtime = remaining;
4639 		remaining -= runtime;
4640 
4641 		cfs_rq->runtime_remaining += runtime;
4642 
4643 		/* we check whether we're throttled above */
4644 		if (cfs_rq->runtime_remaining > 0)
4645 			unthrottle_cfs_rq(cfs_rq);
4646 
4647 next:
4648 		rq_unlock_irqrestore(rq, &rf);
4649 
4650 		if (!remaining)
4651 			break;
4652 	}
4653 	rcu_read_unlock();
4654 
4655 	return starting_runtime - remaining;
4656 }
4657 
4658 /*
4659  * Responsible for refilling a task_group's bandwidth and unthrottling its
4660  * cfs_rqs as appropriate. If there has been no activity within the last
4661  * period the timer is deactivated until scheduling resumes; cfs_b->idle is
4662  * used to track this state.
4663  */
4664 static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun, unsigned long flags)
4665 {
4666 	u64 runtime;
4667 	int throttled;
4668 
4669 	/* no need to continue the timer with no bandwidth constraint */
4670 	if (cfs_b->quota == RUNTIME_INF)
4671 		goto out_deactivate;
4672 
4673 	throttled = !list_empty(&cfs_b->throttled_cfs_rq);
4674 	cfs_b->nr_periods += overrun;
4675 
4676 	/*
4677 	 * idle depends on !throttled (for the case of a large deficit), and if
4678 	 * we're going inactive then everything else can be deferred
4679 	 */
4680 	if (cfs_b->idle && !throttled)
4681 		goto out_deactivate;
4682 
4683 	__refill_cfs_bandwidth_runtime(cfs_b);
4684 
4685 	if (!throttled) {
4686 		/* mark as potentially idle for the upcoming period */
4687 		cfs_b->idle = 1;
4688 		return 0;
4689 	}
4690 
4691 	/* account preceding periods in which throttling occurred */
4692 	cfs_b->nr_throttled += overrun;
4693 
4694 	/*
4695 	 * This check is repeated as we are holding onto the new bandwidth while
4696 	 * we unthrottle. This can potentially race with an unthrottled group
4697 	 * trying to acquire new bandwidth from the global pool. This can result
4698 	 * in us over-using our runtime if it is all used during this loop, but
4699 	 * only by limited amounts in that extreme case.
4700 	 */
4701 	while (throttled && cfs_b->runtime > 0 && !cfs_b->distribute_running) {
4702 		runtime = cfs_b->runtime;
4703 		cfs_b->distribute_running = 1;
4704 		raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
4705 		/* we can't nest cfs_b->lock while distributing bandwidth */
4706 		runtime = distribute_cfs_runtime(cfs_b, runtime);
4707 		raw_spin_lock_irqsave(&cfs_b->lock, flags);
4708 
4709 		cfs_b->distribute_running = 0;
4710 		throttled = !list_empty(&cfs_b->throttled_cfs_rq);
4711 
4712 		lsub_positive(&cfs_b->runtime, runtime);
4713 	}
4714 
4715 	/*
4716 	 * While we are ensured activity in the period following an
4717 	 * unthrottle, this also covers the case in which the new bandwidth is
4718 	 * insufficient to cover the existing bandwidth deficit.  (Forcing the
4719 	 * timer to remain active while there are any throttled entities.)
4720 	 */
4721 	cfs_b->idle = 0;
4722 
4723 	return 0;
4724 
4725 out_deactivate:
4726 	return 1;
4727 }
4728 
4729 /* a cfs_rq won't donate quota below this amount */
4730 static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
4731 /* minimum remaining period time to redistribute slack quota */
4732 static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
4733 /* how long we wait to gather additional slack before distributing */
4734 static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
4735 
4736 /*
4737  * Are we near the end of the current quota period?
4738  *
4739  * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
4740  * hrtimer base being cleared by hrtimer_start. In the case of
4741  * migrate_hrtimers, base is never cleared, so we are fine.
4742  */
4743 static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
4744 {
4745 	struct hrtimer *refresh_timer = &cfs_b->period_timer;
4746 	u64 remaining;
4747 
4748 	/* if the call-back is running a quota refresh is already occurring */
4749 	if (hrtimer_callback_running(refresh_timer))
4750 		return 1;
4751 
4752 	/* is a quota refresh about to occur? */
4753 	remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
4754 	if (remaining < min_expire)
4755 		return 1;
4756 
4757 	return 0;
4758 }
4759 
4760 static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
4761 {
4762 	u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
4763 
4764 	/* if there's a quota refresh soon don't bother with slack */
4765 	if (runtime_refresh_within(cfs_b, min_left))
4766 		return;
4767 
4768 	/* don't push forwards an existing deferred unthrottle */
4769 	if (cfs_b->slack_started)
4770 		return;
4771 	cfs_b->slack_started = true;
4772 
4773 	hrtimer_start(&cfs_b->slack_timer,
4774 			ns_to_ktime(cfs_bandwidth_slack_period),
4775 			HRTIMER_MODE_REL);
4776 }
4777 
4778 /* we know any runtime found here is valid as update_curr() precedes return */
4779 static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4780 {
4781 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4782 	s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
4783 
4784 	if (slack_runtime <= 0)
4785 		return;
4786 
4787 	raw_spin_lock(&cfs_b->lock);
4788 	if (cfs_b->quota != RUNTIME_INF) {
4789 		cfs_b->runtime += slack_runtime;
4790 
4791 		/* we are under rq->lock, defer unthrottling using a timer */
4792 		if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
4793 		    !list_empty(&cfs_b->throttled_cfs_rq))
4794 			start_cfs_slack_bandwidth(cfs_b);
4795 	}
4796 	raw_spin_unlock(&cfs_b->lock);
4797 
4798 	/* even if it's not valid for return we don't want to try again */
4799 	cfs_rq->runtime_remaining -= slack_runtime;
4800 }
4801 
4802 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4803 {
4804 	if (!cfs_bandwidth_used())
4805 		return;
4806 
4807 	if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
4808 		return;
4809 
4810 	__return_cfs_rq_runtime(cfs_rq);
4811 }
4812 
4813 /*
4814  * This is done with a timer (instead of inline with bandwidth return) since
4815  * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
4816  */
4817 static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
4818 {
4819 	u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
4820 	unsigned long flags;
4821 
4822 	/* confirm we're still not at a refresh boundary */
4823 	raw_spin_lock_irqsave(&cfs_b->lock, flags);
4824 	cfs_b->slack_started = false;
4825 	if (cfs_b->distribute_running) {
4826 		raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
4827 		return;
4828 	}
4829 
4830 	if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
4831 		raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
4832 		return;
4833 	}
4834 
4835 	if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice)
4836 		runtime = cfs_b->runtime;
4837 
4838 	if (runtime)
4839 		cfs_b->distribute_running = 1;
4840 
4841 	raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
4842 
4843 	if (!runtime)
4844 		return;
4845 
4846 	runtime = distribute_cfs_runtime(cfs_b, runtime);
4847 
4848 	raw_spin_lock_irqsave(&cfs_b->lock, flags);
4849 	lsub_positive(&cfs_b->runtime, runtime);
4850 	cfs_b->distribute_running = 0;
4851 	raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
4852 }
4853 
4854 /*
4855  * When a group wakes up we want to make sure that its quota is not already
4856  * expired/exceeded, otherwise it may be allowed to steal additional ticks of
4857  * runtime as update_curr() throttling can not not trigger until it's on-rq.
4858  */
4859 static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
4860 {
4861 	if (!cfs_bandwidth_used())
4862 		return;
4863 
4864 	/* an active group must be handled by the update_curr()->put() path */
4865 	if (!cfs_rq->runtime_enabled || cfs_rq->curr)
4866 		return;
4867 
4868 	/* ensure the group is not already throttled */
4869 	if (cfs_rq_throttled(cfs_rq))
4870 		return;
4871 
4872 	/* update runtime allocation */
4873 	account_cfs_rq_runtime(cfs_rq, 0);
4874 	if (cfs_rq->runtime_remaining <= 0)
4875 		throttle_cfs_rq(cfs_rq);
4876 }
4877 
4878 static void sync_throttle(struct task_group *tg, int cpu)
4879 {
4880 	struct cfs_rq *pcfs_rq, *cfs_rq;
4881 
4882 	if (!cfs_bandwidth_used())
4883 		return;
4884 
4885 	if (!tg->parent)
4886 		return;
4887 
4888 	cfs_rq = tg->cfs_rq[cpu];
4889 	pcfs_rq = tg->parent->cfs_rq[cpu];
4890 
4891 	cfs_rq->throttle_count = pcfs_rq->throttle_count;
4892 	cfs_rq->throttled_clock_task = rq_clock_task(cpu_rq(cpu));
4893 }
4894 
4895 /* conditionally throttle active cfs_rq's from put_prev_entity() */
4896 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4897 {
4898 	if (!cfs_bandwidth_used())
4899 		return false;
4900 
4901 	if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
4902 		return false;
4903 
4904 	/*
4905 	 * it's possible for a throttled entity to be forced into a running
4906 	 * state (e.g. set_curr_task), in this case we're finished.
4907 	 */
4908 	if (cfs_rq_throttled(cfs_rq))
4909 		return true;
4910 
4911 	throttle_cfs_rq(cfs_rq);
4912 	return true;
4913 }
4914 
4915 static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
4916 {
4917 	struct cfs_bandwidth *cfs_b =
4918 		container_of(timer, struct cfs_bandwidth, slack_timer);
4919 
4920 	do_sched_cfs_slack_timer(cfs_b);
4921 
4922 	return HRTIMER_NORESTART;
4923 }
4924 
4925 extern const u64 max_cfs_quota_period;
4926 
4927 static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
4928 {
4929 	struct cfs_bandwidth *cfs_b =
4930 		container_of(timer, struct cfs_bandwidth, period_timer);
4931 	unsigned long flags;
4932 	int overrun;
4933 	int idle = 0;
4934 	int count = 0;
4935 
4936 	raw_spin_lock_irqsave(&cfs_b->lock, flags);
4937 	for (;;) {
4938 		overrun = hrtimer_forward_now(timer, cfs_b->period);
4939 		if (!overrun)
4940 			break;
4941 
4942 		if (++count > 3) {
4943 			u64 new, old = ktime_to_ns(cfs_b->period);
4944 
4945 			new = (old * 147) / 128; /* ~115% */
4946 			new = min(new, max_cfs_quota_period);
4947 
4948 			cfs_b->period = ns_to_ktime(new);
4949 
4950 			/* since max is 1s, this is limited to 1e9^2, which fits in u64 */
4951 			cfs_b->quota *= new;
4952 			cfs_b->quota = div64_u64(cfs_b->quota, old);
4953 
4954 			pr_warn_ratelimited(
4955 	"cfs_period_timer[cpu%d]: period too short, scaling up (new cfs_period_us %lld, cfs_quota_us = %lld)\n",
4956 				smp_processor_id(),
4957 				div_u64(new, NSEC_PER_USEC),
4958 				div_u64(cfs_b->quota, NSEC_PER_USEC));
4959 
4960 			/* reset count so we don't come right back in here */
4961 			count = 0;
4962 		}
4963 
4964 		idle = do_sched_cfs_period_timer(cfs_b, overrun, flags);
4965 	}
4966 	if (idle)
4967 		cfs_b->period_active = 0;
4968 	raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
4969 
4970 	return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
4971 }
4972 
4973 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
4974 {
4975 	raw_spin_lock_init(&cfs_b->lock);
4976 	cfs_b->runtime = 0;
4977 	cfs_b->quota = RUNTIME_INF;
4978 	cfs_b->period = ns_to_ktime(default_cfs_period());
4979 
4980 	INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
4981 	hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
4982 	cfs_b->period_timer.function = sched_cfs_period_timer;
4983 	hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
4984 	cfs_b->slack_timer.function = sched_cfs_slack_timer;
4985 	cfs_b->distribute_running = 0;
4986 	cfs_b->slack_started = false;
4987 }
4988 
4989 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4990 {
4991 	cfs_rq->runtime_enabled = 0;
4992 	INIT_LIST_HEAD(&cfs_rq->throttled_list);
4993 }
4994 
4995 void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
4996 {
4997 	u64 overrun;
4998 
4999 	lockdep_assert_held(&cfs_b->lock);
5000 
5001 	if (cfs_b->period_active)
5002 		return;
5003 
5004 	cfs_b->period_active = 1;
5005 	overrun = hrtimer_forward_now(&cfs_b->period_timer, cfs_b->period);
5006 	hrtimer_start_expires(&cfs_b->period_timer, HRTIMER_MODE_ABS_PINNED);
5007 }
5008 
5009 static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
5010 {
5011 	/* init_cfs_bandwidth() was not called */
5012 	if (!cfs_b->throttled_cfs_rq.next)
5013 		return;
5014 
5015 	hrtimer_cancel(&cfs_b->period_timer);
5016 	hrtimer_cancel(&cfs_b->slack_timer);
5017 }
5018 
5019 /*
5020  * Both these CPU hotplug callbacks race against unregister_fair_sched_group()
5021  *
5022  * The race is harmless, since modifying bandwidth settings of unhooked group
5023  * bits doesn't do much.
5024  */
5025 
5026 /* cpu online calback */
5027 static void __maybe_unused update_runtime_enabled(struct rq *rq)
5028 {
5029 	struct task_group *tg;
5030 
5031 	lockdep_assert_held(&rq->lock);
5032 
5033 	rcu_read_lock();
5034 	list_for_each_entry_rcu(tg, &task_groups, list) {
5035 		struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
5036 		struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
5037 
5038 		raw_spin_lock(&cfs_b->lock);
5039 		cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF;
5040 		raw_spin_unlock(&cfs_b->lock);
5041 	}
5042 	rcu_read_unlock();
5043 }
5044 
5045 /* cpu offline callback */
5046 static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
5047 {
5048 	struct task_group *tg;
5049 
5050 	lockdep_assert_held(&rq->lock);
5051 
5052 	rcu_read_lock();
5053 	list_for_each_entry_rcu(tg, &task_groups, list) {
5054 		struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
5055 
5056 		if (!cfs_rq->runtime_enabled)
5057 			continue;
5058 
5059 		/*
5060 		 * clock_task is not advancing so we just need to make sure
5061 		 * there's some valid quota amount
5062 		 */
5063 		cfs_rq->runtime_remaining = 1;
5064 		/*
5065 		 * Offline rq is schedulable till CPU is completely disabled
5066 		 * in take_cpu_down(), so we prevent new cfs throttling here.
5067 		 */
5068 		cfs_rq->runtime_enabled = 0;
5069 
5070 		if (cfs_rq_throttled(cfs_rq))
5071 			unthrottle_cfs_rq(cfs_rq);
5072 	}
5073 	rcu_read_unlock();
5074 }
5075 
5076 #else /* CONFIG_CFS_BANDWIDTH */
5077 
5078 static inline bool cfs_bandwidth_used(void)
5079 {
5080 	return false;
5081 }
5082 
5083 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
5084 {
5085 	return rq_clock_task(rq_of(cfs_rq));
5086 }
5087 
5088 static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {}
5089 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; }
5090 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
5091 static inline void sync_throttle(struct task_group *tg, int cpu) {}
5092 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
5093 
5094 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
5095 {
5096 	return 0;
5097 }
5098 
5099 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
5100 {
5101 	return 0;
5102 }
5103 
5104 static inline int throttled_lb_pair(struct task_group *tg,
5105 				    int src_cpu, int dest_cpu)
5106 {
5107 	return 0;
5108 }
5109 
5110 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
5111 
5112 #ifdef CONFIG_FAIR_GROUP_SCHED
5113 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
5114 #endif
5115 
5116 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
5117 {
5118 	return NULL;
5119 }
5120 static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
5121 static inline void update_runtime_enabled(struct rq *rq) {}
5122 static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
5123 
5124 #endif /* CONFIG_CFS_BANDWIDTH */
5125 
5126 /**************************************************
5127  * CFS operations on tasks:
5128  */
5129 
5130 #ifdef CONFIG_SCHED_HRTICK
5131 static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
5132 {
5133 	struct sched_entity *se = &p->se;
5134 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
5135 
5136 	SCHED_WARN_ON(task_rq(p) != rq);
5137 
5138 	if (rq->cfs.h_nr_running > 1) {
5139 		u64 slice = sched_slice(cfs_rq, se);
5140 		u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
5141 		s64 delta = slice - ran;
5142 
5143 		if (delta < 0) {
5144 			if (rq->curr == p)
5145 				resched_curr(rq);
5146 			return;
5147 		}
5148 		hrtick_start(rq, delta);
5149 	}
5150 }
5151 
5152 /*
5153  * called from enqueue/dequeue and updates the hrtick when the
5154  * current task is from our class and nr_running is low enough
5155  * to matter.
5156  */
5157 static void hrtick_update(struct rq *rq)
5158 {
5159 	struct task_struct *curr = rq->curr;
5160 
5161 	if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
5162 		return;
5163 
5164 	if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
5165 		hrtick_start_fair(rq, curr);
5166 }
5167 #else /* !CONFIG_SCHED_HRTICK */
5168 static inline void
5169 hrtick_start_fair(struct rq *rq, struct task_struct *p)
5170 {
5171 }
5172 
5173 static inline void hrtick_update(struct rq *rq)
5174 {
5175 }
5176 #endif
5177 
5178 #ifdef CONFIG_SMP
5179 static inline unsigned long cpu_util(int cpu);
5180 
5181 static inline bool cpu_overutilized(int cpu)
5182 {
5183 	return !fits_capacity(cpu_util(cpu), capacity_of(cpu));
5184 }
5185 
5186 static inline void update_overutilized_status(struct rq *rq)
5187 {
5188 	if (!READ_ONCE(rq->rd->overutilized) && cpu_overutilized(rq->cpu)) {
5189 		WRITE_ONCE(rq->rd->overutilized, SG_OVERUTILIZED);
5190 		trace_sched_overutilized_tp(rq->rd, SG_OVERUTILIZED);
5191 	}
5192 }
5193 #else
5194 static inline void update_overutilized_status(struct rq *rq) { }
5195 #endif
5196 
5197 /*
5198  * The enqueue_task method is called before nr_running is
5199  * increased. Here we update the fair scheduling stats and
5200  * then put the task into the rbtree:
5201  */
5202 static void
5203 enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
5204 {
5205 	struct cfs_rq *cfs_rq;
5206 	struct sched_entity *se = &p->se;
5207 	int idle_h_nr_running = task_has_idle_policy(p);
5208 
5209 	/*
5210 	 * The code below (indirectly) updates schedutil which looks at
5211 	 * the cfs_rq utilization to select a frequency.
5212 	 * Let's add the task's estimated utilization to the cfs_rq's
5213 	 * estimated utilization, before we update schedutil.
5214 	 */
5215 	util_est_enqueue(&rq->cfs, p);
5216 
5217 	/*
5218 	 * If in_iowait is set, the code below may not trigger any cpufreq
5219 	 * utilization updates, so do it here explicitly with the IOWAIT flag
5220 	 * passed.
5221 	 */
5222 	if (p->in_iowait)
5223 		cpufreq_update_util(rq, SCHED_CPUFREQ_IOWAIT);
5224 
5225 	for_each_sched_entity(se) {
5226 		if (se->on_rq)
5227 			break;
5228 		cfs_rq = cfs_rq_of(se);
5229 		enqueue_entity(cfs_rq, se, flags);
5230 
5231 		/*
5232 		 * end evaluation on encountering a throttled cfs_rq
5233 		 *
5234 		 * note: in the case of encountering a throttled cfs_rq we will
5235 		 * post the final h_nr_running increment below.
5236 		 */
5237 		if (cfs_rq_throttled(cfs_rq))
5238 			break;
5239 		cfs_rq->h_nr_running++;
5240 		cfs_rq->idle_h_nr_running += idle_h_nr_running;
5241 
5242 		flags = ENQUEUE_WAKEUP;
5243 	}
5244 
5245 	for_each_sched_entity(se) {
5246 		cfs_rq = cfs_rq_of(se);
5247 		cfs_rq->h_nr_running++;
5248 		cfs_rq->idle_h_nr_running += idle_h_nr_running;
5249 
5250 		if (cfs_rq_throttled(cfs_rq))
5251 			break;
5252 
5253 		update_load_avg(cfs_rq, se, UPDATE_TG);
5254 		update_cfs_group(se);
5255 	}
5256 
5257 	if (!se) {
5258 		add_nr_running(rq, 1);
5259 		/*
5260 		 * Since new tasks are assigned an initial util_avg equal to
5261 		 * half of the spare capacity of their CPU, tiny tasks have the
5262 		 * ability to cross the overutilized threshold, which will
5263 		 * result in the load balancer ruining all the task placement
5264 		 * done by EAS. As a way to mitigate that effect, do not account
5265 		 * for the first enqueue operation of new tasks during the
5266 		 * overutilized flag detection.
5267 		 *
5268 		 * A better way of solving this problem would be to wait for
5269 		 * the PELT signals of tasks to converge before taking them
5270 		 * into account, but that is not straightforward to implement,
5271 		 * and the following generally works well enough in practice.
5272 		 */
5273 		if (flags & ENQUEUE_WAKEUP)
5274 			update_overutilized_status(rq);
5275 
5276 	}
5277 
5278 	if (cfs_bandwidth_used()) {
5279 		/*
5280 		 * When bandwidth control is enabled; the cfs_rq_throttled()
5281 		 * breaks in the above iteration can result in incomplete
5282 		 * leaf list maintenance, resulting in triggering the assertion
5283 		 * below.
5284 		 */
5285 		for_each_sched_entity(se) {
5286 			cfs_rq = cfs_rq_of(se);
5287 
5288 			if (list_add_leaf_cfs_rq(cfs_rq))
5289 				break;
5290 		}
5291 	}
5292 
5293 	assert_list_leaf_cfs_rq(rq);
5294 
5295 	hrtick_update(rq);
5296 }
5297 
5298 static void set_next_buddy(struct sched_entity *se);
5299 
5300 /*
5301  * The dequeue_task method is called before nr_running is
5302  * decreased. We remove the task from the rbtree and
5303  * update the fair scheduling stats:
5304  */
5305 static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
5306 {
5307 	struct cfs_rq *cfs_rq;
5308 	struct sched_entity *se = &p->se;
5309 	int task_sleep = flags & DEQUEUE_SLEEP;
5310 	int idle_h_nr_running = task_has_idle_policy(p);
5311 
5312 	for_each_sched_entity(se) {
5313 		cfs_rq = cfs_rq_of(se);
5314 		dequeue_entity(cfs_rq, se, flags);
5315 
5316 		/*
5317 		 * end evaluation on encountering a throttled cfs_rq
5318 		 *
5319 		 * note: in the case of encountering a throttled cfs_rq we will
5320 		 * post the final h_nr_running decrement below.
5321 		*/
5322 		if (cfs_rq_throttled(cfs_rq))
5323 			break;
5324 		cfs_rq->h_nr_running--;
5325 		cfs_rq->idle_h_nr_running -= idle_h_nr_running;
5326 
5327 		/* Don't dequeue parent if it has other entities besides us */
5328 		if (cfs_rq->load.weight) {
5329 			/* Avoid re-evaluating load for this entity: */
5330 			se = parent_entity(se);
5331 			/*
5332 			 * Bias pick_next to pick a task from this cfs_rq, as
5333 			 * p is sleeping when it is within its sched_slice.
5334 			 */
5335 			if (task_sleep && se && !throttled_hierarchy(cfs_rq))
5336 				set_next_buddy(se);
5337 			break;
5338 		}
5339 		flags |= DEQUEUE_SLEEP;
5340 	}
5341 
5342 	for_each_sched_entity(se) {
5343 		cfs_rq = cfs_rq_of(se);
5344 		cfs_rq->h_nr_running--;
5345 		cfs_rq->idle_h_nr_running -= idle_h_nr_running;
5346 
5347 		if (cfs_rq_throttled(cfs_rq))
5348 			break;
5349 
5350 		update_load_avg(cfs_rq, se, UPDATE_TG);
5351 		update_cfs_group(se);
5352 	}
5353 
5354 	if (!se)
5355 		sub_nr_running(rq, 1);
5356 
5357 	util_est_dequeue(&rq->cfs, p, task_sleep);
5358 	hrtick_update(rq);
5359 }
5360 
5361 #ifdef CONFIG_SMP
5362 
5363 /* Working cpumask for: load_balance, load_balance_newidle. */
5364 DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
5365 DEFINE_PER_CPU(cpumask_var_t, select_idle_mask);
5366 
5367 #ifdef CONFIG_NO_HZ_COMMON
5368 
5369 static struct {
5370 	cpumask_var_t idle_cpus_mask;
5371 	atomic_t nr_cpus;
5372 	int has_blocked;		/* Idle CPUS has blocked load */
5373 	unsigned long next_balance;     /* in jiffy units */
5374 	unsigned long next_blocked;	/* Next update of blocked load in jiffies */
5375 } nohz ____cacheline_aligned;
5376 
5377 #endif /* CONFIG_NO_HZ_COMMON */
5378 
5379 /* CPU only has SCHED_IDLE tasks enqueued */
5380 static int sched_idle_cpu(int cpu)
5381 {
5382 	struct rq *rq = cpu_rq(cpu);
5383 
5384 	return unlikely(rq->nr_running == rq->cfs.idle_h_nr_running &&
5385 			rq->nr_running);
5386 }
5387 
5388 static unsigned long cpu_runnable_load(struct rq *rq)
5389 {
5390 	return cfs_rq_runnable_load_avg(&rq->cfs);
5391 }
5392 
5393 static unsigned long capacity_of(int cpu)
5394 {
5395 	return cpu_rq(cpu)->cpu_capacity;
5396 }
5397 
5398 static unsigned long cpu_avg_load_per_task(int cpu)
5399 {
5400 	struct rq *rq = cpu_rq(cpu);
5401 	unsigned long nr_running = READ_ONCE(rq->cfs.h_nr_running);
5402 	unsigned long load_avg = cpu_runnable_load(rq);
5403 
5404 	if (nr_running)
5405 		return load_avg / nr_running;
5406 
5407 	return 0;
5408 }
5409 
5410 static void record_wakee(struct task_struct *p)
5411 {
5412 	/*
5413 	 * Only decay a single time; tasks that have less then 1 wakeup per
5414 	 * jiffy will not have built up many flips.
5415 	 */
5416 	if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) {
5417 		current->wakee_flips >>= 1;
5418 		current->wakee_flip_decay_ts = jiffies;
5419 	}
5420 
5421 	if (current->last_wakee != p) {
5422 		current->last_wakee = p;
5423 		current->wakee_flips++;
5424 	}
5425 }
5426 
5427 /*
5428  * Detect M:N waker/wakee relationships via a switching-frequency heuristic.
5429  *
5430  * A waker of many should wake a different task than the one last awakened
5431  * at a frequency roughly N times higher than one of its wakees.
5432  *
5433  * In order to determine whether we should let the load spread vs consolidating
5434  * to shared cache, we look for a minimum 'flip' frequency of llc_size in one
5435  * partner, and a factor of lls_size higher frequency in the other.
5436  *
5437  * With both conditions met, we can be relatively sure that the relationship is
5438  * non-monogamous, with partner count exceeding socket size.
5439  *
5440  * Waker/wakee being client/server, worker/dispatcher, interrupt source or
5441  * whatever is irrelevant, spread criteria is apparent partner count exceeds
5442  * socket size.
5443  */
5444 static int wake_wide(struct task_struct *p)
5445 {
5446 	unsigned int master = current->wakee_flips;
5447 	unsigned int slave = p->wakee_flips;
5448 	int factor = this_cpu_read(sd_llc_size);
5449 
5450 	if (master < slave)
5451 		swap(master, slave);
5452 	if (slave < factor || master < slave * factor)
5453 		return 0;
5454 	return 1;
5455 }
5456 
5457 /*
5458  * The purpose of wake_affine() is to quickly determine on which CPU we can run
5459  * soonest. For the purpose of speed we only consider the waking and previous
5460  * CPU.
5461  *
5462  * wake_affine_idle() - only considers 'now', it check if the waking CPU is
5463  *			cache-affine and is (or	will be) idle.
5464  *
5465  * wake_affine_weight() - considers the weight to reflect the average
5466  *			  scheduling latency of the CPUs. This seems to work
5467  *			  for the overloaded case.
5468  */
5469 static int
5470 wake_affine_idle(int this_cpu, int prev_cpu, int sync)
5471 {
5472 	/*
5473 	 * If this_cpu is idle, it implies the wakeup is from interrupt
5474 	 * context. Only allow the move if cache is shared. Otherwise an
5475 	 * interrupt intensive workload could force all tasks onto one
5476 	 * node depending on the IO topology or IRQ affinity settings.
5477 	 *
5478 	 * If the prev_cpu is idle and cache affine then avoid a migration.
5479 	 * There is no guarantee that the cache hot data from an interrupt
5480 	 * is more important than cache hot data on the prev_cpu and from
5481 	 * a cpufreq perspective, it's better to have higher utilisation
5482 	 * on one CPU.
5483 	 */
5484 	if (available_idle_cpu(this_cpu) && cpus_share_cache(this_cpu, prev_cpu))
5485 		return available_idle_cpu(prev_cpu) ? prev_cpu : this_cpu;
5486 
5487 	if (sync && cpu_rq(this_cpu)->nr_running == 1)
5488 		return this_cpu;
5489 
5490 	return nr_cpumask_bits;
5491 }
5492 
5493 static int
5494 wake_affine_weight(struct sched_domain *sd, struct task_struct *p,
5495 		   int this_cpu, int prev_cpu, int sync)
5496 {
5497 	s64 this_eff_load, prev_eff_load;
5498 	unsigned long task_load;
5499 
5500 	this_eff_load = cpu_runnable_load(cpu_rq(this_cpu));
5501 
5502 	if (sync) {
5503 		unsigned long current_load = task_h_load(current);
5504 
5505 		if (current_load > this_eff_load)
5506 			return this_cpu;
5507 
5508 		this_eff_load -= current_load;
5509 	}
5510 
5511 	task_load = task_h_load(p);
5512 
5513 	this_eff_load += task_load;
5514 	if (sched_feat(WA_BIAS))
5515 		this_eff_load *= 100;
5516 	this_eff_load *= capacity_of(prev_cpu);
5517 
5518 	prev_eff_load = cpu_runnable_load(cpu_rq(prev_cpu));
5519 	prev_eff_load -= task_load;
5520 	if (sched_feat(WA_BIAS))
5521 		prev_eff_load *= 100 + (sd->imbalance_pct - 100) / 2;
5522 	prev_eff_load *= capacity_of(this_cpu);
5523 
5524 	/*
5525 	 * If sync, adjust the weight of prev_eff_load such that if
5526 	 * prev_eff == this_eff that select_idle_sibling() will consider
5527 	 * stacking the wakee on top of the waker if no other CPU is
5528 	 * idle.
5529 	 */
5530 	if (sync)
5531 		prev_eff_load += 1;
5532 
5533 	return this_eff_load < prev_eff_load ? this_cpu : nr_cpumask_bits;
5534 }
5535 
5536 static int wake_affine(struct sched_domain *sd, struct task_struct *p,
5537 		       int this_cpu, int prev_cpu, int sync)
5538 {
5539 	int target = nr_cpumask_bits;
5540 
5541 	if (sched_feat(WA_IDLE))
5542 		target = wake_affine_idle(this_cpu, prev_cpu, sync);
5543 
5544 	if (sched_feat(WA_WEIGHT) && target == nr_cpumask_bits)
5545 		target = wake_affine_weight(sd, p, this_cpu, prev_cpu, sync);
5546 
5547 	schedstat_inc(p->se.statistics.nr_wakeups_affine_attempts);
5548 	if (target == nr_cpumask_bits)
5549 		return prev_cpu;
5550 
5551 	schedstat_inc(sd->ttwu_move_affine);
5552 	schedstat_inc(p->se.statistics.nr_wakeups_affine);
5553 	return target;
5554 }
5555 
5556 static unsigned long cpu_util_without(int cpu, struct task_struct *p);
5557 
5558 static unsigned long capacity_spare_without(int cpu, struct task_struct *p)
5559 {
5560 	return max_t(long, capacity_of(cpu) - cpu_util_without(cpu, p), 0);
5561 }
5562 
5563 /*
5564  * find_idlest_group finds and returns the least busy CPU group within the
5565  * domain.
5566  *
5567  * Assumes p is allowed on at least one CPU in sd.
5568  */
5569 static struct sched_group *
5570 find_idlest_group(struct sched_domain *sd, struct task_struct *p,
5571 		  int this_cpu, int sd_flag)
5572 {
5573 	struct sched_group *idlest = NULL, *group = sd->groups;
5574 	struct sched_group *most_spare_sg = NULL;
5575 	unsigned long min_runnable_load = ULONG_MAX;
5576 	unsigned long this_runnable_load = ULONG_MAX;
5577 	unsigned long min_avg_load = ULONG_MAX, this_avg_load = ULONG_MAX;
5578 	unsigned long most_spare = 0, this_spare = 0;
5579 	int imbalance_scale = 100 + (sd->imbalance_pct-100)/2;
5580 	unsigned long imbalance = scale_load_down(NICE_0_LOAD) *
5581 				(sd->imbalance_pct-100) / 100;
5582 
5583 	do {
5584 		unsigned long load, avg_load, runnable_load;
5585 		unsigned long spare_cap, max_spare_cap;
5586 		int local_group;
5587 		int i;
5588 
5589 		/* Skip over this group if it has no CPUs allowed */
5590 		if (!cpumask_intersects(sched_group_span(group),
5591 					p->cpus_ptr))
5592 			continue;
5593 
5594 		local_group = cpumask_test_cpu(this_cpu,
5595 					       sched_group_span(group));
5596 
5597 		/*
5598 		 * Tally up the load of all CPUs in the group and find
5599 		 * the group containing the CPU with most spare capacity.
5600 		 */
5601 		avg_load = 0;
5602 		runnable_load = 0;
5603 		max_spare_cap = 0;
5604 
5605 		for_each_cpu(i, sched_group_span(group)) {
5606 			load = cpu_runnable_load(cpu_rq(i));
5607 			runnable_load += load;
5608 
5609 			avg_load += cfs_rq_load_avg(&cpu_rq(i)->cfs);
5610 
5611 			spare_cap = capacity_spare_without(i, p);
5612 
5613 			if (spare_cap > max_spare_cap)
5614 				max_spare_cap = spare_cap;
5615 		}
5616 
5617 		/* Adjust by relative CPU capacity of the group */
5618 		avg_load = (avg_load * SCHED_CAPACITY_SCALE) /
5619 					group->sgc->capacity;
5620 		runnable_load = (runnable_load * SCHED_CAPACITY_SCALE) /
5621 					group->sgc->capacity;
5622 
5623 		if (local_group) {
5624 			this_runnable_load = runnable_load;
5625 			this_avg_load = avg_load;
5626 			this_spare = max_spare_cap;
5627 		} else {
5628 			if (min_runnable_load > (runnable_load + imbalance)) {
5629 				/*
5630 				 * The runnable load is significantly smaller
5631 				 * so we can pick this new CPU:
5632 				 */
5633 				min_runnable_load = runnable_load;
5634 				min_avg_load = avg_load;
5635 				idlest = group;
5636 			} else if ((runnable_load < (min_runnable_load + imbalance)) &&
5637 				   (100*min_avg_load > imbalance_scale*avg_load)) {
5638 				/*
5639 				 * The runnable loads are close so take the
5640 				 * blocked load into account through avg_load:
5641 				 */
5642 				min_avg_load = avg_load;
5643 				idlest = group;
5644 			}
5645 
5646 			if (most_spare < max_spare_cap) {
5647 				most_spare = max_spare_cap;
5648 				most_spare_sg = group;
5649 			}
5650 		}
5651 	} while (group = group->next, group != sd->groups);
5652 
5653 	/*
5654 	 * The cross-over point between using spare capacity or least load
5655 	 * is too conservative for high utilization tasks on partially
5656 	 * utilized systems if we require spare_capacity > task_util(p),
5657 	 * so we allow for some task stuffing by using
5658 	 * spare_capacity > task_util(p)/2.
5659 	 *
5660 	 * Spare capacity can't be used for fork because the utilization has
5661 	 * not been set yet, we must first select a rq to compute the initial
5662 	 * utilization.
5663 	 */
5664 	if (sd_flag & SD_BALANCE_FORK)
5665 		goto skip_spare;
5666 
5667 	if (this_spare > task_util(p) / 2 &&
5668 	    imbalance_scale*this_spare > 100*most_spare)
5669 		return NULL;
5670 
5671 	if (most_spare > task_util(p) / 2)
5672 		return most_spare_sg;
5673 
5674 skip_spare:
5675 	if (!idlest)
5676 		return NULL;
5677 
5678 	/*
5679 	 * When comparing groups across NUMA domains, it's possible for the
5680 	 * local domain to be very lightly loaded relative to the remote
5681 	 * domains but "imbalance" skews the comparison making remote CPUs
5682 	 * look much more favourable. When considering cross-domain, add
5683 	 * imbalance to the runnable load on the remote node and consider
5684 	 * staying local.
5685 	 */
5686 	if ((sd->flags & SD_NUMA) &&
5687 	    min_runnable_load + imbalance >= this_runnable_load)
5688 		return NULL;
5689 
5690 	if (min_runnable_load > (this_runnable_load + imbalance))
5691 		return NULL;
5692 
5693 	if ((this_runnable_load < (min_runnable_load + imbalance)) &&
5694 	     (100*this_avg_load < imbalance_scale*min_avg_load))
5695 		return NULL;
5696 
5697 	return idlest;
5698 }
5699 
5700 /*
5701  * find_idlest_group_cpu - find the idlest CPU among the CPUs in the group.
5702  */
5703 static int
5704 find_idlest_group_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
5705 {
5706 	unsigned long load, min_load = ULONG_MAX;
5707 	unsigned int min_exit_latency = UINT_MAX;
5708 	u64 latest_idle_timestamp = 0;
5709 	int least_loaded_cpu = this_cpu;
5710 	int shallowest_idle_cpu = -1, si_cpu = -1;
5711 	int i;
5712 
5713 	/* Check if we have any choice: */
5714 	if (group->group_weight == 1)
5715 		return cpumask_first(sched_group_span(group));
5716 
5717 	/* Traverse only the allowed CPUs */
5718 	for_each_cpu_and(i, sched_group_span(group), p->cpus_ptr) {
5719 		if (available_idle_cpu(i)) {
5720 			struct rq *rq = cpu_rq(i);
5721 			struct cpuidle_state *idle = idle_get_state(rq);
5722 			if (idle && idle->exit_latency < min_exit_latency) {
5723 				/*
5724 				 * We give priority to a CPU whose idle state
5725 				 * has the smallest exit latency irrespective
5726 				 * of any idle timestamp.
5727 				 */
5728 				min_exit_latency = idle->exit_latency;
5729 				latest_idle_timestamp = rq->idle_stamp;
5730 				shallowest_idle_cpu = i;
5731 			} else if ((!idle || idle->exit_latency == min_exit_latency) &&
5732 				   rq->idle_stamp > latest_idle_timestamp) {
5733 				/*
5734 				 * If equal or no active idle state, then
5735 				 * the most recently idled CPU might have
5736 				 * a warmer cache.
5737 				 */
5738 				latest_idle_timestamp = rq->idle_stamp;
5739 				shallowest_idle_cpu = i;
5740 			}
5741 		} else if (shallowest_idle_cpu == -1 && si_cpu == -1) {
5742 			if (sched_idle_cpu(i)) {
5743 				si_cpu = i;
5744 				continue;
5745 			}
5746 
5747 			load = cpu_runnable_load(cpu_rq(i));
5748 			if (load < min_load) {
5749 				min_load = load;
5750 				least_loaded_cpu = i;
5751 			}
5752 		}
5753 	}
5754 
5755 	if (shallowest_idle_cpu != -1)
5756 		return shallowest_idle_cpu;
5757 	if (si_cpu != -1)
5758 		return si_cpu;
5759 	return least_loaded_cpu;
5760 }
5761 
5762 static inline int find_idlest_cpu(struct sched_domain *sd, struct task_struct *p,
5763 				  int cpu, int prev_cpu, int sd_flag)
5764 {
5765 	int new_cpu = cpu;
5766 
5767 	if (!cpumask_intersects(sched_domain_span(sd), p->cpus_ptr))
5768 		return prev_cpu;
5769 
5770 	/*
5771 	 * We need task's util for capacity_spare_without, sync it up to
5772 	 * prev_cpu's last_update_time.
5773 	 */
5774 	if (!(sd_flag & SD_BALANCE_FORK))
5775 		sync_entity_load_avg(&p->se);
5776 
5777 	while (sd) {
5778 		struct sched_group *group;
5779 		struct sched_domain *tmp;
5780 		int weight;
5781 
5782 		if (!(sd->flags & sd_flag)) {
5783 			sd = sd->child;
5784 			continue;
5785 		}
5786 
5787 		group = find_idlest_group(sd, p, cpu, sd_flag);
5788 		if (!group) {
5789 			sd = sd->child;
5790 			continue;
5791 		}
5792 
5793 		new_cpu = find_idlest_group_cpu(group, p, cpu);
5794 		if (new_cpu == cpu) {
5795 			/* Now try balancing at a lower domain level of 'cpu': */
5796 			sd = sd->child;
5797 			continue;
5798 		}
5799 
5800 		/* Now try balancing at a lower domain level of 'new_cpu': */
5801 		cpu = new_cpu;
5802 		weight = sd->span_weight;
5803 		sd = NULL;
5804 		for_each_domain(cpu, tmp) {
5805 			if (weight <= tmp->span_weight)
5806 				break;
5807 			if (tmp->flags & sd_flag)
5808 				sd = tmp;
5809 		}
5810 	}
5811 
5812 	return new_cpu;
5813 }
5814 
5815 #ifdef CONFIG_SCHED_SMT
5816 DEFINE_STATIC_KEY_FALSE(sched_smt_present);
5817 EXPORT_SYMBOL_GPL(sched_smt_present);
5818 
5819 static inline void set_idle_cores(int cpu, int val)
5820 {
5821 	struct sched_domain_shared *sds;
5822 
5823 	sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
5824 	if (sds)
5825 		WRITE_ONCE(sds->has_idle_cores, val);
5826 }
5827 
5828 static inline bool test_idle_cores(int cpu, bool def)
5829 {
5830 	struct sched_domain_shared *sds;
5831 
5832 	sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
5833 	if (sds)
5834 		return READ_ONCE(sds->has_idle_cores);
5835 
5836 	return def;
5837 }
5838 
5839 /*
5840  * Scans the local SMT mask to see if the entire core is idle, and records this
5841  * information in sd_llc_shared->has_idle_cores.
5842  *
5843  * Since SMT siblings share all cache levels, inspecting this limited remote
5844  * state should be fairly cheap.
5845  */
5846 void __update_idle_core(struct rq *rq)
5847 {
5848 	int core = cpu_of(rq);
5849 	int cpu;
5850 
5851 	rcu_read_lock();
5852 	if (test_idle_cores(core, true))
5853 		goto unlock;
5854 
5855 	for_each_cpu(cpu, cpu_smt_mask(core)) {
5856 		if (cpu == core)
5857 			continue;
5858 
5859 		if (!available_idle_cpu(cpu))
5860 			goto unlock;
5861 	}
5862 
5863 	set_idle_cores(core, 1);
5864 unlock:
5865 	rcu_read_unlock();
5866 }
5867 
5868 /*
5869  * Scan the entire LLC domain for idle cores; this dynamically switches off if
5870  * there are no idle cores left in the system; tracked through
5871  * sd_llc->shared->has_idle_cores and enabled through update_idle_core() above.
5872  */
5873 static int select_idle_core(struct task_struct *p, struct sched_domain *sd, int target)
5874 {
5875 	struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_idle_mask);
5876 	int core, cpu;
5877 
5878 	if (!static_branch_likely(&sched_smt_present))
5879 		return -1;
5880 
5881 	if (!test_idle_cores(target, false))
5882 		return -1;
5883 
5884 	cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr);
5885 
5886 	for_each_cpu_wrap(core, cpus, target) {
5887 		bool idle = true;
5888 
5889 		for_each_cpu(cpu, cpu_smt_mask(core)) {
5890 			__cpumask_clear_cpu(cpu, cpus);
5891 			if (!available_idle_cpu(cpu))
5892 				idle = false;
5893 		}
5894 
5895 		if (idle)
5896 			return core;
5897 	}
5898 
5899 	/*
5900 	 * Failed to find an idle core; stop looking for one.
5901 	 */
5902 	set_idle_cores(target, 0);
5903 
5904 	return -1;
5905 }
5906 
5907 /*
5908  * Scan the local SMT mask for idle CPUs.
5909  */
5910 static int select_idle_smt(struct task_struct *p, int target)
5911 {
5912 	int cpu, si_cpu = -1;
5913 
5914 	if (!static_branch_likely(&sched_smt_present))
5915 		return -1;
5916 
5917 	for_each_cpu(cpu, cpu_smt_mask(target)) {
5918 		if (!cpumask_test_cpu(cpu, p->cpus_ptr))
5919 			continue;
5920 		if (available_idle_cpu(cpu))
5921 			return cpu;
5922 		if (si_cpu == -1 && sched_idle_cpu(cpu))
5923 			si_cpu = cpu;
5924 	}
5925 
5926 	return si_cpu;
5927 }
5928 
5929 #else /* CONFIG_SCHED_SMT */
5930 
5931 static inline int select_idle_core(struct task_struct *p, struct sched_domain *sd, int target)
5932 {
5933 	return -1;
5934 }
5935 
5936 static inline int select_idle_smt(struct task_struct *p, int target)
5937 {
5938 	return -1;
5939 }
5940 
5941 #endif /* CONFIG_SCHED_SMT */
5942 
5943 /*
5944  * Scan the LLC domain for idle CPUs; this is dynamically regulated by
5945  * comparing the average scan cost (tracked in sd->avg_scan_cost) against the
5946  * average idle time for this rq (as found in rq->avg_idle).
5947  */
5948 static int select_idle_cpu(struct task_struct *p, struct sched_domain *sd, int target)
5949 {
5950 	struct sched_domain *this_sd;
5951 	u64 avg_cost, avg_idle;
5952 	u64 time, cost;
5953 	s64 delta;
5954 	int this = smp_processor_id();
5955 	int cpu, nr = INT_MAX, si_cpu = -1;
5956 
5957 	this_sd = rcu_dereference(*this_cpu_ptr(&sd_llc));
5958 	if (!this_sd)
5959 		return -1;
5960 
5961 	/*
5962 	 * Due to large variance we need a large fuzz factor; hackbench in
5963 	 * particularly is sensitive here.
5964 	 */
5965 	avg_idle = this_rq()->avg_idle / 512;
5966 	avg_cost = this_sd->avg_scan_cost + 1;
5967 
5968 	if (sched_feat(SIS_AVG_CPU) && avg_idle < avg_cost)
5969 		return -1;
5970 
5971 	if (sched_feat(SIS_PROP)) {
5972 		u64 span_avg = sd->span_weight * avg_idle;
5973 		if (span_avg > 4*avg_cost)
5974 			nr = div_u64(span_avg, avg_cost);
5975 		else
5976 			nr = 4;
5977 	}
5978 
5979 	time = cpu_clock(this);
5980 
5981 	for_each_cpu_wrap(cpu, sched_domain_span(sd), target) {
5982 		if (!--nr)
5983 			return si_cpu;
5984 		if (!cpumask_test_cpu(cpu, p->cpus_ptr))
5985 			continue;
5986 		if (available_idle_cpu(cpu))
5987 			break;
5988 		if (si_cpu == -1 && sched_idle_cpu(cpu))
5989 			si_cpu = cpu;
5990 	}
5991 
5992 	time = cpu_clock(this) - time;
5993 	cost = this_sd->avg_scan_cost;
5994 	delta = (s64)(time - cost) / 8;
5995 	this_sd->avg_scan_cost += delta;
5996 
5997 	return cpu;
5998 }
5999 
6000 /*
6001  * Try and locate an idle core/thread in the LLC cache domain.
6002  */
6003 static int select_idle_sibling(struct task_struct *p, int prev, int target)
6004 {
6005 	struct sched_domain *sd;
6006 	int i, recent_used_cpu;
6007 
6008 	if (available_idle_cpu(target) || sched_idle_cpu(target))
6009 		return target;
6010 
6011 	/*
6012 	 * If the previous CPU is cache affine and idle, don't be stupid:
6013 	 */
6014 	if (prev != target && cpus_share_cache(prev, target) &&
6015 	    (available_idle_cpu(prev) || sched_idle_cpu(prev)))
6016 		return prev;
6017 
6018 	/* Check a recently used CPU as a potential idle candidate: */
6019 	recent_used_cpu = p->recent_used_cpu;
6020 	if (recent_used_cpu != prev &&
6021 	    recent_used_cpu != target &&
6022 	    cpus_share_cache(recent_used_cpu, target) &&
6023 	    (available_idle_cpu(recent_used_cpu) || sched_idle_cpu(recent_used_cpu)) &&
6024 	    cpumask_test_cpu(p->recent_used_cpu, p->cpus_ptr)) {
6025 		/*
6026 		 * Replace recent_used_cpu with prev as it is a potential
6027 		 * candidate for the next wake:
6028 		 */
6029 		p->recent_used_cpu = prev;
6030 		return recent_used_cpu;
6031 	}
6032 
6033 	sd = rcu_dereference(per_cpu(sd_llc, target));
6034 	if (!sd)
6035 		return target;
6036 
6037 	i = select_idle_core(p, sd, target);
6038 	if ((unsigned)i < nr_cpumask_bits)
6039 		return i;
6040 
6041 	i = select_idle_cpu(p, sd, target);
6042 	if ((unsigned)i < nr_cpumask_bits)
6043 		return i;
6044 
6045 	i = select_idle_smt(p, target);
6046 	if ((unsigned)i < nr_cpumask_bits)
6047 		return i;
6048 
6049 	return target;
6050 }
6051 
6052 /**
6053  * Amount of capacity of a CPU that is (estimated to be) used by CFS tasks
6054  * @cpu: the CPU to get the utilization of
6055  *
6056  * The unit of the return value must be the one of capacity so we can compare
6057  * the utilization with the capacity of the CPU that is available for CFS task
6058  * (ie cpu_capacity).
6059  *
6060  * cfs_rq.avg.util_avg is the sum of running time of runnable tasks plus the
6061  * recent utilization of currently non-runnable tasks on a CPU. It represents
6062  * the amount of utilization of a CPU in the range [0..capacity_orig] where
6063  * capacity_orig is the cpu_capacity available at the highest frequency
6064  * (arch_scale_freq_capacity()).
6065  * The utilization of a CPU converges towards a sum equal to or less than the
6066  * current capacity (capacity_curr <= capacity_orig) of the CPU because it is
6067  * the running time on this CPU scaled by capacity_curr.
6068  *
6069  * The estimated utilization of a CPU is defined to be the maximum between its
6070  * cfs_rq.avg.util_avg and the sum of the estimated utilization of the tasks
6071  * currently RUNNABLE on that CPU.
6072  * This allows to properly represent the expected utilization of a CPU which
6073  * has just got a big task running since a long sleep period. At the same time
6074  * however it preserves the benefits of the "blocked utilization" in
6075  * describing the potential for other tasks waking up on the same CPU.
6076  *
6077  * Nevertheless, cfs_rq.avg.util_avg can be higher than capacity_curr or even
6078  * higher than capacity_orig because of unfortunate rounding in
6079  * cfs.avg.util_avg or just after migrating tasks and new task wakeups until
6080  * the average stabilizes with the new running time. We need to check that the
6081  * utilization stays within the range of [0..capacity_orig] and cap it if
6082  * necessary. Without utilization capping, a group could be seen as overloaded
6083  * (CPU0 utilization at 121% + CPU1 utilization at 80%) whereas CPU1 has 20% of
6084  * available capacity. We allow utilization to overshoot capacity_curr (but not
6085  * capacity_orig) as it useful for predicting the capacity required after task
6086  * migrations (scheduler-driven DVFS).
6087  *
6088  * Return: the (estimated) utilization for the specified CPU
6089  */
6090 static inline unsigned long cpu_util(int cpu)
6091 {
6092 	struct cfs_rq *cfs_rq;
6093 	unsigned int util;
6094 
6095 	cfs_rq = &cpu_rq(cpu)->cfs;
6096 	util = READ_ONCE(cfs_rq->avg.util_avg);
6097 
6098 	if (sched_feat(UTIL_EST))
6099 		util = max(util, READ_ONCE(cfs_rq->avg.util_est.enqueued));
6100 
6101 	return min_t(unsigned long, util, capacity_orig_of(cpu));
6102 }
6103 
6104 /*
6105  * cpu_util_without: compute cpu utilization without any contributions from *p
6106  * @cpu: the CPU which utilization is requested
6107  * @p: the task which utilization should be discounted
6108  *
6109  * The utilization of a CPU is defined by the utilization of tasks currently
6110  * enqueued on that CPU as well as tasks which are currently sleeping after an
6111  * execution on that CPU.
6112  *
6113  * This method returns the utilization of the specified CPU by discounting the
6114  * utilization of the specified task, whenever the task is currently
6115  * contributing to the CPU utilization.
6116  */
6117 static unsigned long cpu_util_without(int cpu, struct task_struct *p)
6118 {
6119 	struct cfs_rq *cfs_rq;
6120 	unsigned int util;
6121 
6122 	/* Task has no contribution or is new */
6123 	if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
6124 		return cpu_util(cpu);
6125 
6126 	cfs_rq = &cpu_rq(cpu)->cfs;
6127 	util = READ_ONCE(cfs_rq->avg.util_avg);
6128 
6129 	/* Discount task's util from CPU's util */
6130 	lsub_positive(&util, task_util(p));
6131 
6132 	/*
6133 	 * Covered cases:
6134 	 *
6135 	 * a) if *p is the only task sleeping on this CPU, then:
6136 	 *      cpu_util (== task_util) > util_est (== 0)
6137 	 *    and thus we return:
6138 	 *      cpu_util_without = (cpu_util - task_util) = 0
6139 	 *
6140 	 * b) if other tasks are SLEEPING on this CPU, which is now exiting
6141 	 *    IDLE, then:
6142 	 *      cpu_util >= task_util
6143 	 *      cpu_util > util_est (== 0)
6144 	 *    and thus we discount *p's blocked utilization to return:
6145 	 *      cpu_util_without = (cpu_util - task_util) >= 0
6146 	 *
6147 	 * c) if other tasks are RUNNABLE on that CPU and
6148 	 *      util_est > cpu_util
6149 	 *    then we use util_est since it returns a more restrictive
6150 	 *    estimation of the spare capacity on that CPU, by just
6151 	 *    considering the expected utilization of tasks already
6152 	 *    runnable on that CPU.
6153 	 *
6154 	 * Cases a) and b) are covered by the above code, while case c) is
6155 	 * covered by the following code when estimated utilization is
6156 	 * enabled.
6157 	 */
6158 	if (sched_feat(UTIL_EST)) {
6159 		unsigned int estimated =
6160 			READ_ONCE(cfs_rq->avg.util_est.enqueued);
6161 
6162 		/*
6163 		 * Despite the following checks we still have a small window
6164 		 * for a possible race, when an execl's select_task_rq_fair()
6165 		 * races with LB's detach_task():
6166 		 *
6167 		 *   detach_task()
6168 		 *     p->on_rq = TASK_ON_RQ_MIGRATING;
6169 		 *     ---------------------------------- A
6170 		 *     deactivate_task()                   \
6171 		 *       dequeue_task()                     + RaceTime
6172 		 *         util_est_dequeue()              /
6173 		 *     ---------------------------------- B
6174 		 *
6175 		 * The additional check on "current == p" it's required to
6176 		 * properly fix the execl regression and it helps in further
6177 		 * reducing the chances for the above race.
6178 		 */
6179 		if (unlikely(task_on_rq_queued(p) || current == p))
6180 			lsub_positive(&estimated, _task_util_est(p));
6181 
6182 		util = max(util, estimated);
6183 	}
6184 
6185 	/*
6186 	 * Utilization (estimated) can exceed the CPU capacity, thus let's
6187 	 * clamp to the maximum CPU capacity to ensure consistency with
6188 	 * the cpu_util call.
6189 	 */
6190 	return min_t(unsigned long, util, capacity_orig_of(cpu));
6191 }
6192 
6193 /*
6194  * Disable WAKE_AFFINE in the case where task @p doesn't fit in the
6195  * capacity of either the waking CPU @cpu or the previous CPU @prev_cpu.
6196  *
6197  * In that case WAKE_AFFINE doesn't make sense and we'll let
6198  * BALANCE_WAKE sort things out.
6199  */
6200 static int wake_cap(struct task_struct *p, int cpu, int prev_cpu)
6201 {
6202 	long min_cap, max_cap;
6203 
6204 	if (!static_branch_unlikely(&sched_asym_cpucapacity))
6205 		return 0;
6206 
6207 	min_cap = min(capacity_orig_of(prev_cpu), capacity_orig_of(cpu));
6208 	max_cap = cpu_rq(cpu)->rd->max_cpu_capacity;
6209 
6210 	/* Minimum capacity is close to max, no need to abort wake_affine */
6211 	if (max_cap - min_cap < max_cap >> 3)
6212 		return 0;
6213 
6214 	/* Bring task utilization in sync with prev_cpu */
6215 	sync_entity_load_avg(&p->se);
6216 
6217 	return !task_fits_capacity(p, min_cap);
6218 }
6219 
6220 /*
6221  * Predicts what cpu_util(@cpu) would return if @p was migrated (and enqueued)
6222  * to @dst_cpu.
6223  */
6224 static unsigned long cpu_util_next(int cpu, struct task_struct *p, int dst_cpu)
6225 {
6226 	struct cfs_rq *cfs_rq = &cpu_rq(cpu)->cfs;
6227 	unsigned long util_est, util = READ_ONCE(cfs_rq->avg.util_avg);
6228 
6229 	/*
6230 	 * If @p migrates from @cpu to another, remove its contribution. Or,
6231 	 * if @p migrates from another CPU to @cpu, add its contribution. In
6232 	 * the other cases, @cpu is not impacted by the migration, so the
6233 	 * util_avg should already be correct.
6234 	 */
6235 	if (task_cpu(p) == cpu && dst_cpu != cpu)
6236 		sub_positive(&util, task_util(p));
6237 	else if (task_cpu(p) != cpu && dst_cpu == cpu)
6238 		util += task_util(p);
6239 
6240 	if (sched_feat(UTIL_EST)) {
6241 		util_est = READ_ONCE(cfs_rq->avg.util_est.enqueued);
6242 
6243 		/*
6244 		 * During wake-up, the task isn't enqueued yet and doesn't
6245 		 * appear in the cfs_rq->avg.util_est.enqueued of any rq,
6246 		 * so just add it (if needed) to "simulate" what will be
6247 		 * cpu_util() after the task has been enqueued.
6248 		 */
6249 		if (dst_cpu == cpu)
6250 			util_est += _task_util_est(p);
6251 
6252 		util = max(util, util_est);
6253 	}
6254 
6255 	return min(util, capacity_orig_of(cpu));
6256 }
6257 
6258 /*
6259  * compute_energy(): Estimates the energy that @pd would consume if @p was
6260  * migrated to @dst_cpu. compute_energy() predicts what will be the utilization
6261  * landscape of @pd's CPUs after the task migration, and uses the Energy Model
6262  * to compute what would be the energy if we decided to actually migrate that
6263  * task.
6264  */
6265 static long
6266 compute_energy(struct task_struct *p, int dst_cpu, struct perf_domain *pd)
6267 {
6268 	struct cpumask *pd_mask = perf_domain_span(pd);
6269 	unsigned long cpu_cap = arch_scale_cpu_capacity(cpumask_first(pd_mask));
6270 	unsigned long max_util = 0, sum_util = 0;
6271 	int cpu;
6272 
6273 	/*
6274 	 * The capacity state of CPUs of the current rd can be driven by CPUs
6275 	 * of another rd if they belong to the same pd. So, account for the
6276 	 * utilization of these CPUs too by masking pd with cpu_online_mask
6277 	 * instead of the rd span.
6278 	 *
6279 	 * If an entire pd is outside of the current rd, it will not appear in
6280 	 * its pd list and will not be accounted by compute_energy().
6281 	 */
6282 	for_each_cpu_and(cpu, pd_mask, cpu_online_mask) {
6283 		unsigned long cpu_util, util_cfs = cpu_util_next(cpu, p, dst_cpu);
6284 		struct task_struct *tsk = cpu == dst_cpu ? p : NULL;
6285 
6286 		/*
6287 		 * Busy time computation: utilization clamping is not
6288 		 * required since the ratio (sum_util / cpu_capacity)
6289 		 * is already enough to scale the EM reported power
6290 		 * consumption at the (eventually clamped) cpu_capacity.
6291 		 */
6292 		sum_util += schedutil_cpu_util(cpu, util_cfs, cpu_cap,
6293 					       ENERGY_UTIL, NULL);
6294 
6295 		/*
6296 		 * Performance domain frequency: utilization clamping
6297 		 * must be considered since it affects the selection
6298 		 * of the performance domain frequency.
6299 		 * NOTE: in case RT tasks are running, by default the
6300 		 * FREQUENCY_UTIL's utilization can be max OPP.
6301 		 */
6302 		cpu_util = schedutil_cpu_util(cpu, util_cfs, cpu_cap,
6303 					      FREQUENCY_UTIL, tsk);
6304 		max_util = max(max_util, cpu_util);
6305 	}
6306 
6307 	return em_pd_energy(pd->em_pd, max_util, sum_util);
6308 }
6309 
6310 /*
6311  * find_energy_efficient_cpu(): Find most energy-efficient target CPU for the
6312  * waking task. find_energy_efficient_cpu() looks for the CPU with maximum
6313  * spare capacity in each performance domain and uses it as a potential
6314  * candidate to execute the task. Then, it uses the Energy Model to figure
6315  * out which of the CPU candidates is the most energy-efficient.
6316  *
6317  * The rationale for this heuristic is as follows. In a performance domain,
6318  * all the most energy efficient CPU candidates (according to the Energy
6319  * Model) are those for which we'll request a low frequency. When there are
6320  * several CPUs for which the frequency request will be the same, we don't
6321  * have enough data to break the tie between them, because the Energy Model
6322  * only includes active power costs. With this model, if we assume that
6323  * frequency requests follow utilization (e.g. using schedutil), the CPU with
6324  * the maximum spare capacity in a performance domain is guaranteed to be among
6325  * the best candidates of the performance domain.
6326  *
6327  * In practice, it could be preferable from an energy standpoint to pack
6328  * small tasks on a CPU in order to let other CPUs go in deeper idle states,
6329  * but that could also hurt our chances to go cluster idle, and we have no
6330  * ways to tell with the current Energy Model if this is actually a good
6331  * idea or not. So, find_energy_efficient_cpu() basically favors
6332  * cluster-packing, and spreading inside a cluster. That should at least be
6333  * a good thing for latency, and this is consistent with the idea that most
6334  * of the energy savings of EAS come from the asymmetry of the system, and
6335  * not so much from breaking the tie between identical CPUs. That's also the
6336  * reason why EAS is enabled in the topology code only for systems where
6337  * SD_ASYM_CPUCAPACITY is set.
6338  *
6339  * NOTE: Forkees are not accepted in the energy-aware wake-up path because
6340  * they don't have any useful utilization data yet and it's not possible to
6341  * forecast their impact on energy consumption. Consequently, they will be
6342  * placed by find_idlest_cpu() on the least loaded CPU, which might turn out
6343  * to be energy-inefficient in some use-cases. The alternative would be to
6344  * bias new tasks towards specific types of CPUs first, or to try to infer
6345  * their util_avg from the parent task, but those heuristics could hurt
6346  * other use-cases too. So, until someone finds a better way to solve this,
6347  * let's keep things simple by re-using the existing slow path.
6348  */
6349 static int find_energy_efficient_cpu(struct task_struct *p, int prev_cpu)
6350 {
6351 	unsigned long prev_delta = ULONG_MAX, best_delta = ULONG_MAX;
6352 	struct root_domain *rd = cpu_rq(smp_processor_id())->rd;
6353 	unsigned long cpu_cap, util, base_energy = 0;
6354 	int cpu, best_energy_cpu = prev_cpu;
6355 	struct sched_domain *sd;
6356 	struct perf_domain *pd;
6357 
6358 	rcu_read_lock();
6359 	pd = rcu_dereference(rd->pd);
6360 	if (!pd || READ_ONCE(rd->overutilized))
6361 		goto fail;
6362 
6363 	/*
6364 	 * Energy-aware wake-up happens on the lowest sched_domain starting
6365 	 * from sd_asym_cpucapacity spanning over this_cpu and prev_cpu.
6366 	 */
6367 	sd = rcu_dereference(*this_cpu_ptr(&sd_asym_cpucapacity));
6368 	while (sd && !cpumask_test_cpu(prev_cpu, sched_domain_span(sd)))
6369 		sd = sd->parent;
6370 	if (!sd)
6371 		goto fail;
6372 
6373 	sync_entity_load_avg(&p->se);
6374 	if (!task_util_est(p))
6375 		goto unlock;
6376 
6377 	for (; pd; pd = pd->next) {
6378 		unsigned long cur_delta, spare_cap, max_spare_cap = 0;
6379 		unsigned long base_energy_pd;
6380 		int max_spare_cap_cpu = -1;
6381 
6382 		/* Compute the 'base' energy of the pd, without @p */
6383 		base_energy_pd = compute_energy(p, -1, pd);
6384 		base_energy += base_energy_pd;
6385 
6386 		for_each_cpu_and(cpu, perf_domain_span(pd), sched_domain_span(sd)) {
6387 			if (!cpumask_test_cpu(cpu, p->cpus_ptr))
6388 				continue;
6389 
6390 			/* Skip CPUs that will be overutilized. */
6391 			util = cpu_util_next(cpu, p, cpu);
6392 			cpu_cap = capacity_of(cpu);
6393 			if (!fits_capacity(util, cpu_cap))
6394 				continue;
6395 
6396 			/* Always use prev_cpu as a candidate. */
6397 			if (cpu == prev_cpu) {
6398 				prev_delta = compute_energy(p, prev_cpu, pd);
6399 				prev_delta -= base_energy_pd;
6400 				best_delta = min(best_delta, prev_delta);
6401 			}
6402 
6403 			/*
6404 			 * Find the CPU with the maximum spare capacity in
6405 			 * the performance domain
6406 			 */
6407 			spare_cap = cpu_cap - util;
6408 			if (spare_cap > max_spare_cap) {
6409 				max_spare_cap = spare_cap;
6410 				max_spare_cap_cpu = cpu;
6411 			}
6412 		}
6413 
6414 		/* Evaluate the energy impact of using this CPU. */
6415 		if (max_spare_cap_cpu >= 0) {
6416 			cur_delta = compute_energy(p, max_spare_cap_cpu, pd);
6417 			cur_delta -= base_energy_pd;
6418 			if (cur_delta < best_delta) {
6419 				best_delta = cur_delta;
6420 				best_energy_cpu = max_spare_cap_cpu;
6421 			}
6422 		}
6423 	}
6424 unlock:
6425 	rcu_read_unlock();
6426 
6427 	/*
6428 	 * Pick the best CPU if prev_cpu cannot be used, or if it saves at
6429 	 * least 6% of the energy used by prev_cpu.
6430 	 */
6431 	if (prev_delta == ULONG_MAX)
6432 		return best_energy_cpu;
6433 
6434 	if ((prev_delta - best_delta) > ((prev_delta + base_energy) >> 4))
6435 		return best_energy_cpu;
6436 
6437 	return prev_cpu;
6438 
6439 fail:
6440 	rcu_read_unlock();
6441 
6442 	return -1;
6443 }
6444 
6445 /*
6446  * select_task_rq_fair: Select target runqueue for the waking task in domains
6447  * that have the 'sd_flag' flag set. In practice, this is SD_BALANCE_WAKE,
6448  * SD_BALANCE_FORK, or SD_BALANCE_EXEC.
6449  *
6450  * Balances load by selecting the idlest CPU in the idlest group, or under
6451  * certain conditions an idle sibling CPU if the domain has SD_WAKE_AFFINE set.
6452  *
6453  * Returns the target CPU number.
6454  *
6455  * preempt must be disabled.
6456  */
6457 static int
6458 select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_flags)
6459 {
6460 	struct sched_domain *tmp, *sd = NULL;
6461 	int cpu = smp_processor_id();
6462 	int new_cpu = prev_cpu;
6463 	int want_affine = 0;
6464 	int sync = (wake_flags & WF_SYNC) && !(current->flags & PF_EXITING);
6465 
6466 	if (sd_flag & SD_BALANCE_WAKE) {
6467 		record_wakee(p);
6468 
6469 		if (sched_energy_enabled()) {
6470 			new_cpu = find_energy_efficient_cpu(p, prev_cpu);
6471 			if (new_cpu >= 0)
6472 				return new_cpu;
6473 			new_cpu = prev_cpu;
6474 		}
6475 
6476 		want_affine = !wake_wide(p) && !wake_cap(p, cpu, prev_cpu) &&
6477 			      cpumask_test_cpu(cpu, p->cpus_ptr);
6478 	}
6479 
6480 	rcu_read_lock();
6481 	for_each_domain(cpu, tmp) {
6482 		if (!(tmp->flags & SD_LOAD_BALANCE))
6483 			break;
6484 
6485 		/*
6486 		 * If both 'cpu' and 'prev_cpu' are part of this domain,
6487 		 * cpu is a valid SD_WAKE_AFFINE target.
6488 		 */
6489 		if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
6490 		    cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
6491 			if (cpu != prev_cpu)
6492 				new_cpu = wake_affine(tmp, p, cpu, prev_cpu, sync);
6493 
6494 			sd = NULL; /* Prefer wake_affine over balance flags */
6495 			break;
6496 		}
6497 
6498 		if (tmp->flags & sd_flag)
6499 			sd = tmp;
6500 		else if (!want_affine)
6501 			break;
6502 	}
6503 
6504 	if (unlikely(sd)) {
6505 		/* Slow path */
6506 		new_cpu = find_idlest_cpu(sd, p, cpu, prev_cpu, sd_flag);
6507 	} else if (sd_flag & SD_BALANCE_WAKE) { /* XXX always ? */
6508 		/* Fast path */
6509 
6510 		new_cpu = select_idle_sibling(p, prev_cpu, new_cpu);
6511 
6512 		if (want_affine)
6513 			current->recent_used_cpu = cpu;
6514 	}
6515 	rcu_read_unlock();
6516 
6517 	return new_cpu;
6518 }
6519 
6520 static void detach_entity_cfs_rq(struct sched_entity *se);
6521 
6522 /*
6523  * Called immediately before a task is migrated to a new CPU; task_cpu(p) and
6524  * cfs_rq_of(p) references at time of call are still valid and identify the
6525  * previous CPU. The caller guarantees p->pi_lock or task_rq(p)->lock is held.
6526  */
6527 static void migrate_task_rq_fair(struct task_struct *p, int new_cpu)
6528 {
6529 	/*
6530 	 * As blocked tasks retain absolute vruntime the migration needs to
6531 	 * deal with this by subtracting the old and adding the new
6532 	 * min_vruntime -- the latter is done by enqueue_entity() when placing
6533 	 * the task on the new runqueue.
6534 	 */
6535 	if (p->state == TASK_WAKING) {
6536 		struct sched_entity *se = &p->se;
6537 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
6538 		u64 min_vruntime;
6539 
6540 #ifndef CONFIG_64BIT
6541 		u64 min_vruntime_copy;
6542 
6543 		do {
6544 			min_vruntime_copy = cfs_rq->min_vruntime_copy;
6545 			smp_rmb();
6546 			min_vruntime = cfs_rq->min_vruntime;
6547 		} while (min_vruntime != min_vruntime_copy);
6548 #else
6549 		min_vruntime = cfs_rq->min_vruntime;
6550 #endif
6551 
6552 		se->vruntime -= min_vruntime;
6553 	}
6554 
6555 	if (p->on_rq == TASK_ON_RQ_MIGRATING) {
6556 		/*
6557 		 * In case of TASK_ON_RQ_MIGRATING we in fact hold the 'old'
6558 		 * rq->lock and can modify state directly.
6559 		 */
6560 		lockdep_assert_held(&task_rq(p)->lock);
6561 		detach_entity_cfs_rq(&p->se);
6562 
6563 	} else {
6564 		/*
6565 		 * We are supposed to update the task to "current" time, then
6566 		 * its up to date and ready to go to new CPU/cfs_rq. But we
6567 		 * have difficulty in getting what current time is, so simply
6568 		 * throw away the out-of-date time. This will result in the
6569 		 * wakee task is less decayed, but giving the wakee more load
6570 		 * sounds not bad.
6571 		 */
6572 		remove_entity_load_avg(&p->se);
6573 	}
6574 
6575 	/* Tell new CPU we are migrated */
6576 	p->se.avg.last_update_time = 0;
6577 
6578 	/* We have migrated, no longer consider this task hot */
6579 	p->se.exec_start = 0;
6580 
6581 	update_scan_period(p, new_cpu);
6582 }
6583 
6584 static void task_dead_fair(struct task_struct *p)
6585 {
6586 	remove_entity_load_avg(&p->se);
6587 }
6588 #endif /* CONFIG_SMP */
6589 
6590 static unsigned long wakeup_gran(struct sched_entity *se)
6591 {
6592 	unsigned long gran = sysctl_sched_wakeup_granularity;
6593 
6594 	/*
6595 	 * Since its curr running now, convert the gran from real-time
6596 	 * to virtual-time in his units.
6597 	 *
6598 	 * By using 'se' instead of 'curr' we penalize light tasks, so
6599 	 * they get preempted easier. That is, if 'se' < 'curr' then
6600 	 * the resulting gran will be larger, therefore penalizing the
6601 	 * lighter, if otoh 'se' > 'curr' then the resulting gran will
6602 	 * be smaller, again penalizing the lighter task.
6603 	 *
6604 	 * This is especially important for buddies when the leftmost
6605 	 * task is higher priority than the buddy.
6606 	 */
6607 	return calc_delta_fair(gran, se);
6608 }
6609 
6610 /*
6611  * Should 'se' preempt 'curr'.
6612  *
6613  *             |s1
6614  *        |s2
6615  *   |s3
6616  *         g
6617  *      |<--->|c
6618  *
6619  *  w(c, s1) = -1
6620  *  w(c, s2) =  0
6621  *  w(c, s3) =  1
6622  *
6623  */
6624 static int
6625 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
6626 {
6627 	s64 gran, vdiff = curr->vruntime - se->vruntime;
6628 
6629 	if (vdiff <= 0)
6630 		return -1;
6631 
6632 	gran = wakeup_gran(se);
6633 	if (vdiff > gran)
6634 		return 1;
6635 
6636 	return 0;
6637 }
6638 
6639 static void set_last_buddy(struct sched_entity *se)
6640 {
6641 	if (entity_is_task(se) && unlikely(task_has_idle_policy(task_of(se))))
6642 		return;
6643 
6644 	for_each_sched_entity(se) {
6645 		if (SCHED_WARN_ON(!se->on_rq))
6646 			return;
6647 		cfs_rq_of(se)->last = se;
6648 	}
6649 }
6650 
6651 static void set_next_buddy(struct sched_entity *se)
6652 {
6653 	if (entity_is_task(se) && unlikely(task_has_idle_policy(task_of(se))))
6654 		return;
6655 
6656 	for_each_sched_entity(se) {
6657 		if (SCHED_WARN_ON(!se->on_rq))
6658 			return;
6659 		cfs_rq_of(se)->next = se;
6660 	}
6661 }
6662 
6663 static void set_skip_buddy(struct sched_entity *se)
6664 {
6665 	for_each_sched_entity(se)
6666 		cfs_rq_of(se)->skip = se;
6667 }
6668 
6669 /*
6670  * Preempt the current task with a newly woken task if needed:
6671  */
6672 static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
6673 {
6674 	struct task_struct *curr = rq->curr;
6675 	struct sched_entity *se = &curr->se, *pse = &p->se;
6676 	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
6677 	int scale = cfs_rq->nr_running >= sched_nr_latency;
6678 	int next_buddy_marked = 0;
6679 
6680 	if (unlikely(se == pse))
6681 		return;
6682 
6683 	/*
6684 	 * This is possible from callers such as attach_tasks(), in which we
6685 	 * unconditionally check_prempt_curr() after an enqueue (which may have
6686 	 * lead to a throttle).  This both saves work and prevents false
6687 	 * next-buddy nomination below.
6688 	 */
6689 	if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
6690 		return;
6691 
6692 	if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
6693 		set_next_buddy(pse);
6694 		next_buddy_marked = 1;
6695 	}
6696 
6697 	/*
6698 	 * We can come here with TIF_NEED_RESCHED already set from new task
6699 	 * wake up path.
6700 	 *
6701 	 * Note: this also catches the edge-case of curr being in a throttled
6702 	 * group (e.g. via set_curr_task), since update_curr() (in the
6703 	 * enqueue of curr) will have resulted in resched being set.  This
6704 	 * prevents us from potentially nominating it as a false LAST_BUDDY
6705 	 * below.
6706 	 */
6707 	if (test_tsk_need_resched(curr))
6708 		return;
6709 
6710 	/* Idle tasks are by definition preempted by non-idle tasks. */
6711 	if (unlikely(task_has_idle_policy(curr)) &&
6712 	    likely(!task_has_idle_policy(p)))
6713 		goto preempt;
6714 
6715 	/*
6716 	 * Batch and idle tasks do not preempt non-idle tasks (their preemption
6717 	 * is driven by the tick):
6718 	 */
6719 	if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
6720 		return;
6721 
6722 	find_matching_se(&se, &pse);
6723 	update_curr(cfs_rq_of(se));
6724 	BUG_ON(!pse);
6725 	if (wakeup_preempt_entity(se, pse) == 1) {
6726 		/*
6727 		 * Bias pick_next to pick the sched entity that is
6728 		 * triggering this preemption.
6729 		 */
6730 		if (!next_buddy_marked)
6731 			set_next_buddy(pse);
6732 		goto preempt;
6733 	}
6734 
6735 	return;
6736 
6737 preempt:
6738 	resched_curr(rq);
6739 	/*
6740 	 * Only set the backward buddy when the current task is still
6741 	 * on the rq. This can happen when a wakeup gets interleaved
6742 	 * with schedule on the ->pre_schedule() or idle_balance()
6743 	 * point, either of which can * drop the rq lock.
6744 	 *
6745 	 * Also, during early boot the idle thread is in the fair class,
6746 	 * for obvious reasons its a bad idea to schedule back to it.
6747 	 */
6748 	if (unlikely(!se->on_rq || curr == rq->idle))
6749 		return;
6750 
6751 	if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
6752 		set_last_buddy(se);
6753 }
6754 
6755 static struct task_struct *
6756 pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
6757 {
6758 	struct cfs_rq *cfs_rq = &rq->cfs;
6759 	struct sched_entity *se;
6760 	struct task_struct *p;
6761 	int new_tasks;
6762 
6763 again:
6764 	if (!cfs_rq->nr_running)
6765 		goto idle;
6766 
6767 #ifdef CONFIG_FAIR_GROUP_SCHED
6768 	if (!prev || prev->sched_class != &fair_sched_class)
6769 		goto simple;
6770 
6771 	/*
6772 	 * Because of the set_next_buddy() in dequeue_task_fair() it is rather
6773 	 * likely that a next task is from the same cgroup as the current.
6774 	 *
6775 	 * Therefore attempt to avoid putting and setting the entire cgroup
6776 	 * hierarchy, only change the part that actually changes.
6777 	 */
6778 
6779 	do {
6780 		struct sched_entity *curr = cfs_rq->curr;
6781 
6782 		/*
6783 		 * Since we got here without doing put_prev_entity() we also
6784 		 * have to consider cfs_rq->curr. If it is still a runnable
6785 		 * entity, update_curr() will update its vruntime, otherwise
6786 		 * forget we've ever seen it.
6787 		 */
6788 		if (curr) {
6789 			if (curr->on_rq)
6790 				update_curr(cfs_rq);
6791 			else
6792 				curr = NULL;
6793 
6794 			/*
6795 			 * This call to check_cfs_rq_runtime() will do the
6796 			 * throttle and dequeue its entity in the parent(s).
6797 			 * Therefore the nr_running test will indeed
6798 			 * be correct.
6799 			 */
6800 			if (unlikely(check_cfs_rq_runtime(cfs_rq))) {
6801 				cfs_rq = &rq->cfs;
6802 
6803 				if (!cfs_rq->nr_running)
6804 					goto idle;
6805 
6806 				goto simple;
6807 			}
6808 		}
6809 
6810 		se = pick_next_entity(cfs_rq, curr);
6811 		cfs_rq = group_cfs_rq(se);
6812 	} while (cfs_rq);
6813 
6814 	p = task_of(se);
6815 
6816 	/*
6817 	 * Since we haven't yet done put_prev_entity and if the selected task
6818 	 * is a different task than we started out with, try and touch the
6819 	 * least amount of cfs_rqs.
6820 	 */
6821 	if (prev != p) {
6822 		struct sched_entity *pse = &prev->se;
6823 
6824 		while (!(cfs_rq = is_same_group(se, pse))) {
6825 			int se_depth = se->depth;
6826 			int pse_depth = pse->depth;
6827 
6828 			if (se_depth <= pse_depth) {
6829 				put_prev_entity(cfs_rq_of(pse), pse);
6830 				pse = parent_entity(pse);
6831 			}
6832 			if (se_depth >= pse_depth) {
6833 				set_next_entity(cfs_rq_of(se), se);
6834 				se = parent_entity(se);
6835 			}
6836 		}
6837 
6838 		put_prev_entity(cfs_rq, pse);
6839 		set_next_entity(cfs_rq, se);
6840 	}
6841 
6842 	goto done;
6843 simple:
6844 #endif
6845 	if (prev)
6846 		put_prev_task(rq, prev);
6847 
6848 	do {
6849 		se = pick_next_entity(cfs_rq, NULL);
6850 		set_next_entity(cfs_rq, se);
6851 		cfs_rq = group_cfs_rq(se);
6852 	} while (cfs_rq);
6853 
6854 	p = task_of(se);
6855 
6856 done: __maybe_unused;
6857 #ifdef CONFIG_SMP
6858 	/*
6859 	 * Move the next running task to the front of
6860 	 * the list, so our cfs_tasks list becomes MRU
6861 	 * one.
6862 	 */
6863 	list_move(&p->se.group_node, &rq->cfs_tasks);
6864 #endif
6865 
6866 	if (hrtick_enabled(rq))
6867 		hrtick_start_fair(rq, p);
6868 
6869 	update_misfit_status(p, rq);
6870 
6871 	return p;
6872 
6873 idle:
6874 	if (!rf)
6875 		return NULL;
6876 
6877 	new_tasks = newidle_balance(rq, rf);
6878 
6879 	/*
6880 	 * Because newidle_balance() releases (and re-acquires) rq->lock, it is
6881 	 * possible for any higher priority task to appear. In that case we
6882 	 * must re-start the pick_next_entity() loop.
6883 	 */
6884 	if (new_tasks < 0)
6885 		return RETRY_TASK;
6886 
6887 	if (new_tasks > 0)
6888 		goto again;
6889 
6890 	/*
6891 	 * rq is about to be idle, check if we need to update the
6892 	 * lost_idle_time of clock_pelt
6893 	 */
6894 	update_idle_rq_clock_pelt(rq);
6895 
6896 	return NULL;
6897 }
6898 
6899 /*
6900  * Account for a descheduled task:
6901  */
6902 static void put_prev_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
6903 {
6904 	struct sched_entity *se = &prev->se;
6905 	struct cfs_rq *cfs_rq;
6906 
6907 	for_each_sched_entity(se) {
6908 		cfs_rq = cfs_rq_of(se);
6909 		put_prev_entity(cfs_rq, se);
6910 	}
6911 }
6912 
6913 /*
6914  * sched_yield() is very simple
6915  *
6916  * The magic of dealing with the ->skip buddy is in pick_next_entity.
6917  */
6918 static void yield_task_fair(struct rq *rq)
6919 {
6920 	struct task_struct *curr = rq->curr;
6921 	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
6922 	struct sched_entity *se = &curr->se;
6923 
6924 	/*
6925 	 * Are we the only task in the tree?
6926 	 */
6927 	if (unlikely(rq->nr_running == 1))
6928 		return;
6929 
6930 	clear_buddies(cfs_rq, se);
6931 
6932 	if (curr->policy != SCHED_BATCH) {
6933 		update_rq_clock(rq);
6934 		/*
6935 		 * Update run-time statistics of the 'current'.
6936 		 */
6937 		update_curr(cfs_rq);
6938 		/*
6939 		 * Tell update_rq_clock() that we've just updated,
6940 		 * so we don't do microscopic update in schedule()
6941 		 * and double the fastpath cost.
6942 		 */
6943 		rq_clock_skip_update(rq);
6944 	}
6945 
6946 	set_skip_buddy(se);
6947 }
6948 
6949 static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
6950 {
6951 	struct sched_entity *se = &p->se;
6952 
6953 	/* throttled hierarchies are not runnable */
6954 	if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
6955 		return false;
6956 
6957 	/* Tell the scheduler that we'd really like pse to run next. */
6958 	set_next_buddy(se);
6959 
6960 	yield_task_fair(rq);
6961 
6962 	return true;
6963 }
6964 
6965 #ifdef CONFIG_SMP
6966 /**************************************************
6967  * Fair scheduling class load-balancing methods.
6968  *
6969  * BASICS
6970  *
6971  * The purpose of load-balancing is to achieve the same basic fairness the
6972  * per-CPU scheduler provides, namely provide a proportional amount of compute
6973  * time to each task. This is expressed in the following equation:
6974  *
6975  *   W_i,n/P_i == W_j,n/P_j for all i,j                               (1)
6976  *
6977  * Where W_i,n is the n-th weight average for CPU i. The instantaneous weight
6978  * W_i,0 is defined as:
6979  *
6980  *   W_i,0 = \Sum_j w_i,j                                             (2)
6981  *
6982  * Where w_i,j is the weight of the j-th runnable task on CPU i. This weight
6983  * is derived from the nice value as per sched_prio_to_weight[].
6984  *
6985  * The weight average is an exponential decay average of the instantaneous
6986  * weight:
6987  *
6988  *   W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0               (3)
6989  *
6990  * C_i is the compute capacity of CPU i, typically it is the
6991  * fraction of 'recent' time available for SCHED_OTHER task execution. But it
6992  * can also include other factors [XXX].
6993  *
6994  * To achieve this balance we define a measure of imbalance which follows
6995  * directly from (1):
6996  *
6997  *   imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j }    (4)
6998  *
6999  * We them move tasks around to minimize the imbalance. In the continuous
7000  * function space it is obvious this converges, in the discrete case we get
7001  * a few fun cases generally called infeasible weight scenarios.
7002  *
7003  * [XXX expand on:
7004  *     - infeasible weights;
7005  *     - local vs global optima in the discrete case. ]
7006  *
7007  *
7008  * SCHED DOMAINS
7009  *
7010  * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
7011  * for all i,j solution, we create a tree of CPUs that follows the hardware
7012  * topology where each level pairs two lower groups (or better). This results
7013  * in O(log n) layers. Furthermore we reduce the number of CPUs going up the
7014  * tree to only the first of the previous level and we decrease the frequency
7015  * of load-balance at each level inv. proportional to the number of CPUs in
7016  * the groups.
7017  *
7018  * This yields:
7019  *
7020  *     log_2 n     1     n
7021  *   \Sum       { --- * --- * 2^i } = O(n)                            (5)
7022  *     i = 0      2^i   2^i
7023  *                               `- size of each group
7024  *         |         |     `- number of CPUs doing load-balance
7025  *         |         `- freq
7026  *         `- sum over all levels
7027  *
7028  * Coupled with a limit on how many tasks we can migrate every balance pass,
7029  * this makes (5) the runtime complexity of the balancer.
7030  *
7031  * An important property here is that each CPU is still (indirectly) connected
7032  * to every other CPU in at most O(log n) steps:
7033  *
7034  * The adjacency matrix of the resulting graph is given by:
7035  *
7036  *             log_2 n
7037  *   A_i,j = \Union     (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1)  (6)
7038  *             k = 0
7039  *
7040  * And you'll find that:
7041  *
7042  *   A^(log_2 n)_i,j != 0  for all i,j                                (7)
7043  *
7044  * Showing there's indeed a path between every CPU in at most O(log n) steps.
7045  * The task movement gives a factor of O(m), giving a convergence complexity
7046  * of:
7047  *
7048  *   O(nm log n),  n := nr_cpus, m := nr_tasks                        (8)
7049  *
7050  *
7051  * WORK CONSERVING
7052  *
7053  * In order to avoid CPUs going idle while there's still work to do, new idle
7054  * balancing is more aggressive and has the newly idle CPU iterate up the domain
7055  * tree itself instead of relying on other CPUs to bring it work.
7056  *
7057  * This adds some complexity to both (5) and (8) but it reduces the total idle
7058  * time.
7059  *
7060  * [XXX more?]
7061  *
7062  *
7063  * CGROUPS
7064  *
7065  * Cgroups make a horror show out of (2), instead of a simple sum we get:
7066  *
7067  *                                s_k,i
7068  *   W_i,0 = \Sum_j \Prod_k w_k * -----                               (9)
7069  *                                 S_k
7070  *
7071  * Where
7072  *
7073  *   s_k,i = \Sum_j w_i,j,k  and  S_k = \Sum_i s_k,i                 (10)
7074  *
7075  * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on CPU i.
7076  *
7077  * The big problem is S_k, its a global sum needed to compute a local (W_i)
7078  * property.
7079  *
7080  * [XXX write more on how we solve this.. _after_ merging pjt's patches that
7081  *      rewrite all of this once again.]
7082  */
7083 
7084 static unsigned long __read_mostly max_load_balance_interval = HZ/10;
7085 
7086 enum fbq_type { regular, remote, all };
7087 
7088 enum group_type {
7089 	group_other = 0,
7090 	group_misfit_task,
7091 	group_imbalanced,
7092 	group_overloaded,
7093 };
7094 
7095 #define LBF_ALL_PINNED	0x01
7096 #define LBF_NEED_BREAK	0x02
7097 #define LBF_DST_PINNED  0x04
7098 #define LBF_SOME_PINNED	0x08
7099 #define LBF_NOHZ_STATS	0x10
7100 #define LBF_NOHZ_AGAIN	0x20
7101 
7102 struct lb_env {
7103 	struct sched_domain	*sd;
7104 
7105 	struct rq		*src_rq;
7106 	int			src_cpu;
7107 
7108 	int			dst_cpu;
7109 	struct rq		*dst_rq;
7110 
7111 	struct cpumask		*dst_grpmask;
7112 	int			new_dst_cpu;
7113 	enum cpu_idle_type	idle;
7114 	long			imbalance;
7115 	/* The set of CPUs under consideration for load-balancing */
7116 	struct cpumask		*cpus;
7117 
7118 	unsigned int		flags;
7119 
7120 	unsigned int		loop;
7121 	unsigned int		loop_break;
7122 	unsigned int		loop_max;
7123 
7124 	enum fbq_type		fbq_type;
7125 	enum group_type		src_grp_type;
7126 	struct list_head	tasks;
7127 };
7128 
7129 /*
7130  * Is this task likely cache-hot:
7131  */
7132 static int task_hot(struct task_struct *p, struct lb_env *env)
7133 {
7134 	s64 delta;
7135 
7136 	lockdep_assert_held(&env->src_rq->lock);
7137 
7138 	if (p->sched_class != &fair_sched_class)
7139 		return 0;
7140 
7141 	if (unlikely(task_has_idle_policy(p)))
7142 		return 0;
7143 
7144 	/*
7145 	 * Buddy candidates are cache hot:
7146 	 */
7147 	if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running &&
7148 			(&p->se == cfs_rq_of(&p->se)->next ||
7149 			 &p->se == cfs_rq_of(&p->se)->last))
7150 		return 1;
7151 
7152 	if (sysctl_sched_migration_cost == -1)
7153 		return 1;
7154 	if (sysctl_sched_migration_cost == 0)
7155 		return 0;
7156 
7157 	delta = rq_clock_task(env->src_rq) - p->se.exec_start;
7158 
7159 	return delta < (s64)sysctl_sched_migration_cost;
7160 }
7161 
7162 #ifdef CONFIG_NUMA_BALANCING
7163 /*
7164  * Returns 1, if task migration degrades locality
7165  * Returns 0, if task migration improves locality i.e migration preferred.
7166  * Returns -1, if task migration is not affected by locality.
7167  */
7168 static int migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
7169 {
7170 	struct numa_group *numa_group = rcu_dereference(p->numa_group);
7171 	unsigned long src_weight, dst_weight;
7172 	int src_nid, dst_nid, dist;
7173 
7174 	if (!static_branch_likely(&sched_numa_balancing))
7175 		return -1;
7176 
7177 	if (!p->numa_faults || !(env->sd->flags & SD_NUMA))
7178 		return -1;
7179 
7180 	src_nid = cpu_to_node(env->src_cpu);
7181 	dst_nid = cpu_to_node(env->dst_cpu);
7182 
7183 	if (src_nid == dst_nid)
7184 		return -1;
7185 
7186 	/* Migrating away from the preferred node is always bad. */
7187 	if (src_nid == p->numa_preferred_nid) {
7188 		if (env->src_rq->nr_running > env->src_rq->nr_preferred_running)
7189 			return 1;
7190 		else
7191 			return -1;
7192 	}
7193 
7194 	/* Encourage migration to the preferred node. */
7195 	if (dst_nid == p->numa_preferred_nid)
7196 		return 0;
7197 
7198 	/* Leaving a core idle is often worse than degrading locality. */
7199 	if (env->idle == CPU_IDLE)
7200 		return -1;
7201 
7202 	dist = node_distance(src_nid, dst_nid);
7203 	if (numa_group) {
7204 		src_weight = group_weight(p, src_nid, dist);
7205 		dst_weight = group_weight(p, dst_nid, dist);
7206 	} else {
7207 		src_weight = task_weight(p, src_nid, dist);
7208 		dst_weight = task_weight(p, dst_nid, dist);
7209 	}
7210 
7211 	return dst_weight < src_weight;
7212 }
7213 
7214 #else
7215 static inline int migrate_degrades_locality(struct task_struct *p,
7216 					     struct lb_env *env)
7217 {
7218 	return -1;
7219 }
7220 #endif
7221 
7222 /*
7223  * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
7224  */
7225 static
7226 int can_migrate_task(struct task_struct *p, struct lb_env *env)
7227 {
7228 	int tsk_cache_hot;
7229 
7230 	lockdep_assert_held(&env->src_rq->lock);
7231 
7232 	/*
7233 	 * We do not migrate tasks that are:
7234 	 * 1) throttled_lb_pair, or
7235 	 * 2) cannot be migrated to this CPU due to cpus_ptr, or
7236 	 * 3) running (obviously), or
7237 	 * 4) are cache-hot on their current CPU.
7238 	 */
7239 	if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
7240 		return 0;
7241 
7242 	if (!cpumask_test_cpu(env->dst_cpu, p->cpus_ptr)) {
7243 		int cpu;
7244 
7245 		schedstat_inc(p->se.statistics.nr_failed_migrations_affine);
7246 
7247 		env->flags |= LBF_SOME_PINNED;
7248 
7249 		/*
7250 		 * Remember if this task can be migrated to any other CPU in
7251 		 * our sched_group. We may want to revisit it if we couldn't
7252 		 * meet load balance goals by pulling other tasks on src_cpu.
7253 		 *
7254 		 * Avoid computing new_dst_cpu for NEWLY_IDLE or if we have
7255 		 * already computed one in current iteration.
7256 		 */
7257 		if (env->idle == CPU_NEWLY_IDLE || (env->flags & LBF_DST_PINNED))
7258 			return 0;
7259 
7260 		/* Prevent to re-select dst_cpu via env's CPUs: */
7261 		for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
7262 			if (cpumask_test_cpu(cpu, p->cpus_ptr)) {
7263 				env->flags |= LBF_DST_PINNED;
7264 				env->new_dst_cpu = cpu;
7265 				break;
7266 			}
7267 		}
7268 
7269 		return 0;
7270 	}
7271 
7272 	/* Record that we found atleast one task that could run on dst_cpu */
7273 	env->flags &= ~LBF_ALL_PINNED;
7274 
7275 	if (task_running(env->src_rq, p)) {
7276 		schedstat_inc(p->se.statistics.nr_failed_migrations_running);
7277 		return 0;
7278 	}
7279 
7280 	/*
7281 	 * Aggressive migration if:
7282 	 * 1) destination numa is preferred
7283 	 * 2) task is cache cold, or
7284 	 * 3) too many balance attempts have failed.
7285 	 */
7286 	tsk_cache_hot = migrate_degrades_locality(p, env);
7287 	if (tsk_cache_hot == -1)
7288 		tsk_cache_hot = task_hot(p, env);
7289 
7290 	if (tsk_cache_hot <= 0 ||
7291 	    env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
7292 		if (tsk_cache_hot == 1) {
7293 			schedstat_inc(env->sd->lb_hot_gained[env->idle]);
7294 			schedstat_inc(p->se.statistics.nr_forced_migrations);
7295 		}
7296 		return 1;
7297 	}
7298 
7299 	schedstat_inc(p->se.statistics.nr_failed_migrations_hot);
7300 	return 0;
7301 }
7302 
7303 /*
7304  * detach_task() -- detach the task for the migration specified in env
7305  */
7306 static void detach_task(struct task_struct *p, struct lb_env *env)
7307 {
7308 	lockdep_assert_held(&env->src_rq->lock);
7309 
7310 	deactivate_task(env->src_rq, p, DEQUEUE_NOCLOCK);
7311 	set_task_cpu(p, env->dst_cpu);
7312 }
7313 
7314 /*
7315  * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as
7316  * part of active balancing operations within "domain".
7317  *
7318  * Returns a task if successful and NULL otherwise.
7319  */
7320 static struct task_struct *detach_one_task(struct lb_env *env)
7321 {
7322 	struct task_struct *p;
7323 
7324 	lockdep_assert_held(&env->src_rq->lock);
7325 
7326 	list_for_each_entry_reverse(p,
7327 			&env->src_rq->cfs_tasks, se.group_node) {
7328 		if (!can_migrate_task(p, env))
7329 			continue;
7330 
7331 		detach_task(p, env);
7332 
7333 		/*
7334 		 * Right now, this is only the second place where
7335 		 * lb_gained[env->idle] is updated (other is detach_tasks)
7336 		 * so we can safely collect stats here rather than
7337 		 * inside detach_tasks().
7338 		 */
7339 		schedstat_inc(env->sd->lb_gained[env->idle]);
7340 		return p;
7341 	}
7342 	return NULL;
7343 }
7344 
7345 static const unsigned int sched_nr_migrate_break = 32;
7346 
7347 /*
7348  * detach_tasks() -- tries to detach up to imbalance runnable load from
7349  * busiest_rq, as part of a balancing operation within domain "sd".
7350  *
7351  * Returns number of detached tasks if successful and 0 otherwise.
7352  */
7353 static int detach_tasks(struct lb_env *env)
7354 {
7355 	struct list_head *tasks = &env->src_rq->cfs_tasks;
7356 	struct task_struct *p;
7357 	unsigned long load;
7358 	int detached = 0;
7359 
7360 	lockdep_assert_held(&env->src_rq->lock);
7361 
7362 	if (env->imbalance <= 0)
7363 		return 0;
7364 
7365 	while (!list_empty(tasks)) {
7366 		/*
7367 		 * We don't want to steal all, otherwise we may be treated likewise,
7368 		 * which could at worst lead to a livelock crash.
7369 		 */
7370 		if (env->idle != CPU_NOT_IDLE && env->src_rq->nr_running <= 1)
7371 			break;
7372 
7373 		p = list_last_entry(tasks, struct task_struct, se.group_node);
7374 
7375 		env->loop++;
7376 		/* We've more or less seen every task there is, call it quits */
7377 		if (env->loop > env->loop_max)
7378 			break;
7379 
7380 		/* take a breather every nr_migrate tasks */
7381 		if (env->loop > env->loop_break) {
7382 			env->loop_break += sched_nr_migrate_break;
7383 			env->flags |= LBF_NEED_BREAK;
7384 			break;
7385 		}
7386 
7387 		if (!can_migrate_task(p, env))
7388 			goto next;
7389 
7390 		load = task_h_load(p);
7391 
7392 		if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed)
7393 			goto next;
7394 
7395 		if ((load / 2) > env->imbalance)
7396 			goto next;
7397 
7398 		detach_task(p, env);
7399 		list_add(&p->se.group_node, &env->tasks);
7400 
7401 		detached++;
7402 		env->imbalance -= load;
7403 
7404 #ifdef CONFIG_PREEMPTION
7405 		/*
7406 		 * NEWIDLE balancing is a source of latency, so preemptible
7407 		 * kernels will stop after the first task is detached to minimize
7408 		 * the critical section.
7409 		 */
7410 		if (env->idle == CPU_NEWLY_IDLE)
7411 			break;
7412 #endif
7413 
7414 		/*
7415 		 * We only want to steal up to the prescribed amount of
7416 		 * runnable load.
7417 		 */
7418 		if (env->imbalance <= 0)
7419 			break;
7420 
7421 		continue;
7422 next:
7423 		list_move(&p->se.group_node, tasks);
7424 	}
7425 
7426 	/*
7427 	 * Right now, this is one of only two places we collect this stat
7428 	 * so we can safely collect detach_one_task() stats here rather
7429 	 * than inside detach_one_task().
7430 	 */
7431 	schedstat_add(env->sd->lb_gained[env->idle], detached);
7432 
7433 	return detached;
7434 }
7435 
7436 /*
7437  * attach_task() -- attach the task detached by detach_task() to its new rq.
7438  */
7439 static void attach_task(struct rq *rq, struct task_struct *p)
7440 {
7441 	lockdep_assert_held(&rq->lock);
7442 
7443 	BUG_ON(task_rq(p) != rq);
7444 	activate_task(rq, p, ENQUEUE_NOCLOCK);
7445 	check_preempt_curr(rq, p, 0);
7446 }
7447 
7448 /*
7449  * attach_one_task() -- attaches the task returned from detach_one_task() to
7450  * its new rq.
7451  */
7452 static void attach_one_task(struct rq *rq, struct task_struct *p)
7453 {
7454 	struct rq_flags rf;
7455 
7456 	rq_lock(rq, &rf);
7457 	update_rq_clock(rq);
7458 	attach_task(rq, p);
7459 	rq_unlock(rq, &rf);
7460 }
7461 
7462 /*
7463  * attach_tasks() -- attaches all tasks detached by detach_tasks() to their
7464  * new rq.
7465  */
7466 static void attach_tasks(struct lb_env *env)
7467 {
7468 	struct list_head *tasks = &env->tasks;
7469 	struct task_struct *p;
7470 	struct rq_flags rf;
7471 
7472 	rq_lock(env->dst_rq, &rf);
7473 	update_rq_clock(env->dst_rq);
7474 
7475 	while (!list_empty(tasks)) {
7476 		p = list_first_entry(tasks, struct task_struct, se.group_node);
7477 		list_del_init(&p->se.group_node);
7478 
7479 		attach_task(env->dst_rq, p);
7480 	}
7481 
7482 	rq_unlock(env->dst_rq, &rf);
7483 }
7484 
7485 #ifdef CONFIG_NO_HZ_COMMON
7486 static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq)
7487 {
7488 	if (cfs_rq->avg.load_avg)
7489 		return true;
7490 
7491 	if (cfs_rq->avg.util_avg)
7492 		return true;
7493 
7494 	return false;
7495 }
7496 
7497 static inline bool others_have_blocked(struct rq *rq)
7498 {
7499 	if (READ_ONCE(rq->avg_rt.util_avg))
7500 		return true;
7501 
7502 	if (READ_ONCE(rq->avg_dl.util_avg))
7503 		return true;
7504 
7505 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ
7506 	if (READ_ONCE(rq->avg_irq.util_avg))
7507 		return true;
7508 #endif
7509 
7510 	return false;
7511 }
7512 
7513 static inline void update_blocked_load_status(struct rq *rq, bool has_blocked)
7514 {
7515 	rq->last_blocked_load_update_tick = jiffies;
7516 
7517 	if (!has_blocked)
7518 		rq->has_blocked_load = 0;
7519 }
7520 #else
7521 static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq) { return false; }
7522 static inline bool others_have_blocked(struct rq *rq) { return false; }
7523 static inline void update_blocked_load_status(struct rq *rq, bool has_blocked) {}
7524 #endif
7525 
7526 #ifdef CONFIG_FAIR_GROUP_SCHED
7527 
7528 static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq)
7529 {
7530 	if (cfs_rq->load.weight)
7531 		return false;
7532 
7533 	if (cfs_rq->avg.load_sum)
7534 		return false;
7535 
7536 	if (cfs_rq->avg.util_sum)
7537 		return false;
7538 
7539 	if (cfs_rq->avg.runnable_load_sum)
7540 		return false;
7541 
7542 	return true;
7543 }
7544 
7545 static void update_blocked_averages(int cpu)
7546 {
7547 	struct rq *rq = cpu_rq(cpu);
7548 	struct cfs_rq *cfs_rq, *pos;
7549 	const struct sched_class *curr_class;
7550 	struct rq_flags rf;
7551 	bool done = true;
7552 
7553 	rq_lock_irqsave(rq, &rf);
7554 	update_rq_clock(rq);
7555 
7556 	/*
7557 	 * Iterates the task_group tree in a bottom up fashion, see
7558 	 * list_add_leaf_cfs_rq() for details.
7559 	 */
7560 	for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) {
7561 		struct sched_entity *se;
7562 
7563 		if (update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq))
7564 			update_tg_load_avg(cfs_rq, 0);
7565 
7566 		/* Propagate pending load changes to the parent, if any: */
7567 		se = cfs_rq->tg->se[cpu];
7568 		if (se && !skip_blocked_update(se))
7569 			update_load_avg(cfs_rq_of(se), se, 0);
7570 
7571 		/*
7572 		 * There can be a lot of idle CPU cgroups.  Don't let fully
7573 		 * decayed cfs_rqs linger on the list.
7574 		 */
7575 		if (cfs_rq_is_decayed(cfs_rq))
7576 			list_del_leaf_cfs_rq(cfs_rq);
7577 
7578 		/* Don't need periodic decay once load/util_avg are null */
7579 		if (cfs_rq_has_blocked(cfs_rq))
7580 			done = false;
7581 	}
7582 
7583 	curr_class = rq->curr->sched_class;
7584 	update_rt_rq_load_avg(rq_clock_pelt(rq), rq, curr_class == &rt_sched_class);
7585 	update_dl_rq_load_avg(rq_clock_pelt(rq), rq, curr_class == &dl_sched_class);
7586 	update_irq_load_avg(rq, 0);
7587 	/* Don't need periodic decay once load/util_avg are null */
7588 	if (others_have_blocked(rq))
7589 		done = false;
7590 
7591 	update_blocked_load_status(rq, !done);
7592 	rq_unlock_irqrestore(rq, &rf);
7593 }
7594 
7595 /*
7596  * Compute the hierarchical load factor for cfs_rq and all its ascendants.
7597  * This needs to be done in a top-down fashion because the load of a child
7598  * group is a fraction of its parents load.
7599  */
7600 static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
7601 {
7602 	struct rq *rq = rq_of(cfs_rq);
7603 	struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
7604 	unsigned long now = jiffies;
7605 	unsigned long load;
7606 
7607 	if (cfs_rq->last_h_load_update == now)
7608 		return;
7609 
7610 	WRITE_ONCE(cfs_rq->h_load_next, NULL);
7611 	for_each_sched_entity(se) {
7612 		cfs_rq = cfs_rq_of(se);
7613 		WRITE_ONCE(cfs_rq->h_load_next, se);
7614 		if (cfs_rq->last_h_load_update == now)
7615 			break;
7616 	}
7617 
7618 	if (!se) {
7619 		cfs_rq->h_load = cfs_rq_load_avg(cfs_rq);
7620 		cfs_rq->last_h_load_update = now;
7621 	}
7622 
7623 	while ((se = READ_ONCE(cfs_rq->h_load_next)) != NULL) {
7624 		load = cfs_rq->h_load;
7625 		load = div64_ul(load * se->avg.load_avg,
7626 			cfs_rq_load_avg(cfs_rq) + 1);
7627 		cfs_rq = group_cfs_rq(se);
7628 		cfs_rq->h_load = load;
7629 		cfs_rq->last_h_load_update = now;
7630 	}
7631 }
7632 
7633 static unsigned long task_h_load(struct task_struct *p)
7634 {
7635 	struct cfs_rq *cfs_rq = task_cfs_rq(p);
7636 
7637 	update_cfs_rq_h_load(cfs_rq);
7638 	return div64_ul(p->se.avg.load_avg * cfs_rq->h_load,
7639 			cfs_rq_load_avg(cfs_rq) + 1);
7640 }
7641 #else
7642 static inline void update_blocked_averages(int cpu)
7643 {
7644 	struct rq *rq = cpu_rq(cpu);
7645 	struct cfs_rq *cfs_rq = &rq->cfs;
7646 	const struct sched_class *curr_class;
7647 	struct rq_flags rf;
7648 
7649 	rq_lock_irqsave(rq, &rf);
7650 	update_rq_clock(rq);
7651 	update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq);
7652 
7653 	curr_class = rq->curr->sched_class;
7654 	update_rt_rq_load_avg(rq_clock_pelt(rq), rq, curr_class == &rt_sched_class);
7655 	update_dl_rq_load_avg(rq_clock_pelt(rq), rq, curr_class == &dl_sched_class);
7656 	update_irq_load_avg(rq, 0);
7657 	update_blocked_load_status(rq, cfs_rq_has_blocked(cfs_rq) || others_have_blocked(rq));
7658 	rq_unlock_irqrestore(rq, &rf);
7659 }
7660 
7661 static unsigned long task_h_load(struct task_struct *p)
7662 {
7663 	return p->se.avg.load_avg;
7664 }
7665 #endif
7666 
7667 /********** Helpers for find_busiest_group ************************/
7668 
7669 /*
7670  * sg_lb_stats - stats of a sched_group required for load_balancing
7671  */
7672 struct sg_lb_stats {
7673 	unsigned long avg_load; /*Avg load across the CPUs of the group */
7674 	unsigned long group_load; /* Total load over the CPUs of the group */
7675 	unsigned long load_per_task;
7676 	unsigned long group_capacity;
7677 	unsigned long group_util; /* Total utilization of the group */
7678 	unsigned int sum_nr_running; /* Nr tasks running in the group */
7679 	unsigned int idle_cpus;
7680 	unsigned int group_weight;
7681 	enum group_type group_type;
7682 	int group_no_capacity;
7683 	unsigned long group_misfit_task_load; /* A CPU has a task too big for its capacity */
7684 #ifdef CONFIG_NUMA_BALANCING
7685 	unsigned int nr_numa_running;
7686 	unsigned int nr_preferred_running;
7687 #endif
7688 };
7689 
7690 /*
7691  * sd_lb_stats - Structure to store the statistics of a sched_domain
7692  *		 during load balancing.
7693  */
7694 struct sd_lb_stats {
7695 	struct sched_group *busiest;	/* Busiest group in this sd */
7696 	struct sched_group *local;	/* Local group in this sd */
7697 	unsigned long total_running;
7698 	unsigned long total_load;	/* Total load of all groups in sd */
7699 	unsigned long total_capacity;	/* Total capacity of all groups in sd */
7700 	unsigned long avg_load;	/* Average load across all groups in sd */
7701 
7702 	struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
7703 	struct sg_lb_stats local_stat;	/* Statistics of the local group */
7704 };
7705 
7706 static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
7707 {
7708 	/*
7709 	 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
7710 	 * local_stat because update_sg_lb_stats() does a full clear/assignment.
7711 	 * We must however clear busiest_stat::avg_load because
7712 	 * update_sd_pick_busiest() reads this before assignment.
7713 	 */
7714 	*sds = (struct sd_lb_stats){
7715 		.busiest = NULL,
7716 		.local = NULL,
7717 		.total_running = 0UL,
7718 		.total_load = 0UL,
7719 		.total_capacity = 0UL,
7720 		.busiest_stat = {
7721 			.avg_load = 0UL,
7722 			.sum_nr_running = 0,
7723 			.group_type = group_other,
7724 		},
7725 	};
7726 }
7727 
7728 static unsigned long scale_rt_capacity(struct sched_domain *sd, int cpu)
7729 {
7730 	struct rq *rq = cpu_rq(cpu);
7731 	unsigned long max = arch_scale_cpu_capacity(cpu);
7732 	unsigned long used, free;
7733 	unsigned long irq;
7734 
7735 	irq = cpu_util_irq(rq);
7736 
7737 	if (unlikely(irq >= max))
7738 		return 1;
7739 
7740 	used = READ_ONCE(rq->avg_rt.util_avg);
7741 	used += READ_ONCE(rq->avg_dl.util_avg);
7742 
7743 	if (unlikely(used >= max))
7744 		return 1;
7745 
7746 	free = max - used;
7747 
7748 	return scale_irq_capacity(free, irq, max);
7749 }
7750 
7751 static void update_cpu_capacity(struct sched_domain *sd, int cpu)
7752 {
7753 	unsigned long capacity = scale_rt_capacity(sd, cpu);
7754 	struct sched_group *sdg = sd->groups;
7755 
7756 	cpu_rq(cpu)->cpu_capacity_orig = arch_scale_cpu_capacity(cpu);
7757 
7758 	if (!capacity)
7759 		capacity = 1;
7760 
7761 	cpu_rq(cpu)->cpu_capacity = capacity;
7762 	sdg->sgc->capacity = capacity;
7763 	sdg->sgc->min_capacity = capacity;
7764 	sdg->sgc->max_capacity = capacity;
7765 }
7766 
7767 void update_group_capacity(struct sched_domain *sd, int cpu)
7768 {
7769 	struct sched_domain *child = sd->child;
7770 	struct sched_group *group, *sdg = sd->groups;
7771 	unsigned long capacity, min_capacity, max_capacity;
7772 	unsigned long interval;
7773 
7774 	interval = msecs_to_jiffies(sd->balance_interval);
7775 	interval = clamp(interval, 1UL, max_load_balance_interval);
7776 	sdg->sgc->next_update = jiffies + interval;
7777 
7778 	if (!child) {
7779 		update_cpu_capacity(sd, cpu);
7780 		return;
7781 	}
7782 
7783 	capacity = 0;
7784 	min_capacity = ULONG_MAX;
7785 	max_capacity = 0;
7786 
7787 	if (child->flags & SD_OVERLAP) {
7788 		/*
7789 		 * SD_OVERLAP domains cannot assume that child groups
7790 		 * span the current group.
7791 		 */
7792 
7793 		for_each_cpu(cpu, sched_group_span(sdg)) {
7794 			struct sched_group_capacity *sgc;
7795 			struct rq *rq = cpu_rq(cpu);
7796 
7797 			/*
7798 			 * build_sched_domains() -> init_sched_groups_capacity()
7799 			 * gets here before we've attached the domains to the
7800 			 * runqueues.
7801 			 *
7802 			 * Use capacity_of(), which is set irrespective of domains
7803 			 * in update_cpu_capacity().
7804 			 *
7805 			 * This avoids capacity from being 0 and
7806 			 * causing divide-by-zero issues on boot.
7807 			 */
7808 			if (unlikely(!rq->sd)) {
7809 				capacity += capacity_of(cpu);
7810 			} else {
7811 				sgc = rq->sd->groups->sgc;
7812 				capacity += sgc->capacity;
7813 			}
7814 
7815 			min_capacity = min(capacity, min_capacity);
7816 			max_capacity = max(capacity, max_capacity);
7817 		}
7818 	} else  {
7819 		/*
7820 		 * !SD_OVERLAP domains can assume that child groups
7821 		 * span the current group.
7822 		 */
7823 
7824 		group = child->groups;
7825 		do {
7826 			struct sched_group_capacity *sgc = group->sgc;
7827 
7828 			capacity += sgc->capacity;
7829 			min_capacity = min(sgc->min_capacity, min_capacity);
7830 			max_capacity = max(sgc->max_capacity, max_capacity);
7831 			group = group->next;
7832 		} while (group != child->groups);
7833 	}
7834 
7835 	sdg->sgc->capacity = capacity;
7836 	sdg->sgc->min_capacity = min_capacity;
7837 	sdg->sgc->max_capacity = max_capacity;
7838 }
7839 
7840 /*
7841  * Check whether the capacity of the rq has been noticeably reduced by side
7842  * activity. The imbalance_pct is used for the threshold.
7843  * Return true is the capacity is reduced
7844  */
7845 static inline int
7846 check_cpu_capacity(struct rq *rq, struct sched_domain *sd)
7847 {
7848 	return ((rq->cpu_capacity * sd->imbalance_pct) <
7849 				(rq->cpu_capacity_orig * 100));
7850 }
7851 
7852 /*
7853  * Check whether a rq has a misfit task and if it looks like we can actually
7854  * help that task: we can migrate the task to a CPU of higher capacity, or
7855  * the task's current CPU is heavily pressured.
7856  */
7857 static inline int check_misfit_status(struct rq *rq, struct sched_domain *sd)
7858 {
7859 	return rq->misfit_task_load &&
7860 		(rq->cpu_capacity_orig < rq->rd->max_cpu_capacity ||
7861 		 check_cpu_capacity(rq, sd));
7862 }
7863 
7864 /*
7865  * Group imbalance indicates (and tries to solve) the problem where balancing
7866  * groups is inadequate due to ->cpus_ptr constraints.
7867  *
7868  * Imagine a situation of two groups of 4 CPUs each and 4 tasks each with a
7869  * cpumask covering 1 CPU of the first group and 3 CPUs of the second group.
7870  * Something like:
7871  *
7872  *	{ 0 1 2 3 } { 4 5 6 7 }
7873  *	        *     * * *
7874  *
7875  * If we were to balance group-wise we'd place two tasks in the first group and
7876  * two tasks in the second group. Clearly this is undesired as it will overload
7877  * cpu 3 and leave one of the CPUs in the second group unused.
7878  *
7879  * The current solution to this issue is detecting the skew in the first group
7880  * by noticing the lower domain failed to reach balance and had difficulty
7881  * moving tasks due to affinity constraints.
7882  *
7883  * When this is so detected; this group becomes a candidate for busiest; see
7884  * update_sd_pick_busiest(). And calculate_imbalance() and
7885  * find_busiest_group() avoid some of the usual balance conditions to allow it
7886  * to create an effective group imbalance.
7887  *
7888  * This is a somewhat tricky proposition since the next run might not find the
7889  * group imbalance and decide the groups need to be balanced again. A most
7890  * subtle and fragile situation.
7891  */
7892 
7893 static inline int sg_imbalanced(struct sched_group *group)
7894 {
7895 	return group->sgc->imbalance;
7896 }
7897 
7898 /*
7899  * group_has_capacity returns true if the group has spare capacity that could
7900  * be used by some tasks.
7901  * We consider that a group has spare capacity if the  * number of task is
7902  * smaller than the number of CPUs or if the utilization is lower than the
7903  * available capacity for CFS tasks.
7904  * For the latter, we use a threshold to stabilize the state, to take into
7905  * account the variance of the tasks' load and to return true if the available
7906  * capacity in meaningful for the load balancer.
7907  * As an example, an available capacity of 1% can appear but it doesn't make
7908  * any benefit for the load balance.
7909  */
7910 static inline bool
7911 group_has_capacity(struct lb_env *env, struct sg_lb_stats *sgs)
7912 {
7913 	if (sgs->sum_nr_running < sgs->group_weight)
7914 		return true;
7915 
7916 	if ((sgs->group_capacity * 100) >
7917 			(sgs->group_util * env->sd->imbalance_pct))
7918 		return true;
7919 
7920 	return false;
7921 }
7922 
7923 /*
7924  *  group_is_overloaded returns true if the group has more tasks than it can
7925  *  handle.
7926  *  group_is_overloaded is not equals to !group_has_capacity because a group
7927  *  with the exact right number of tasks, has no more spare capacity but is not
7928  *  overloaded so both group_has_capacity and group_is_overloaded return
7929  *  false.
7930  */
7931 static inline bool
7932 group_is_overloaded(struct lb_env *env, struct sg_lb_stats *sgs)
7933 {
7934 	if (sgs->sum_nr_running <= sgs->group_weight)
7935 		return false;
7936 
7937 	if ((sgs->group_capacity * 100) <
7938 			(sgs->group_util * env->sd->imbalance_pct))
7939 		return true;
7940 
7941 	return false;
7942 }
7943 
7944 /*
7945  * group_smaller_min_cpu_capacity: Returns true if sched_group sg has smaller
7946  * per-CPU capacity than sched_group ref.
7947  */
7948 static inline bool
7949 group_smaller_min_cpu_capacity(struct sched_group *sg, struct sched_group *ref)
7950 {
7951 	return fits_capacity(sg->sgc->min_capacity, ref->sgc->min_capacity);
7952 }
7953 
7954 /*
7955  * group_smaller_max_cpu_capacity: Returns true if sched_group sg has smaller
7956  * per-CPU capacity_orig than sched_group ref.
7957  */
7958 static inline bool
7959 group_smaller_max_cpu_capacity(struct sched_group *sg, struct sched_group *ref)
7960 {
7961 	return fits_capacity(sg->sgc->max_capacity, ref->sgc->max_capacity);
7962 }
7963 
7964 static inline enum
7965 group_type group_classify(struct sched_group *group,
7966 			  struct sg_lb_stats *sgs)
7967 {
7968 	if (sgs->group_no_capacity)
7969 		return group_overloaded;
7970 
7971 	if (sg_imbalanced(group))
7972 		return group_imbalanced;
7973 
7974 	if (sgs->group_misfit_task_load)
7975 		return group_misfit_task;
7976 
7977 	return group_other;
7978 }
7979 
7980 static bool update_nohz_stats(struct rq *rq, bool force)
7981 {
7982 #ifdef CONFIG_NO_HZ_COMMON
7983 	unsigned int cpu = rq->cpu;
7984 
7985 	if (!rq->has_blocked_load)
7986 		return false;
7987 
7988 	if (!cpumask_test_cpu(cpu, nohz.idle_cpus_mask))
7989 		return false;
7990 
7991 	if (!force && !time_after(jiffies, rq->last_blocked_load_update_tick))
7992 		return true;
7993 
7994 	update_blocked_averages(cpu);
7995 
7996 	return rq->has_blocked_load;
7997 #else
7998 	return false;
7999 #endif
8000 }
8001 
8002 /**
8003  * update_sg_lb_stats - Update sched_group's statistics for load balancing.
8004  * @env: The load balancing environment.
8005  * @group: sched_group whose statistics are to be updated.
8006  * @sgs: variable to hold the statistics for this group.
8007  * @sg_status: Holds flag indicating the status of the sched_group
8008  */
8009 static inline void update_sg_lb_stats(struct lb_env *env,
8010 				      struct sched_group *group,
8011 				      struct sg_lb_stats *sgs,
8012 				      int *sg_status)
8013 {
8014 	int i, nr_running;
8015 
8016 	memset(sgs, 0, sizeof(*sgs));
8017 
8018 	for_each_cpu_and(i, sched_group_span(group), env->cpus) {
8019 		struct rq *rq = cpu_rq(i);
8020 
8021 		if ((env->flags & LBF_NOHZ_STATS) && update_nohz_stats(rq, false))
8022 			env->flags |= LBF_NOHZ_AGAIN;
8023 
8024 		sgs->group_load += cpu_runnable_load(rq);
8025 		sgs->group_util += cpu_util(i);
8026 		sgs->sum_nr_running += rq->cfs.h_nr_running;
8027 
8028 		nr_running = rq->nr_running;
8029 		if (nr_running > 1)
8030 			*sg_status |= SG_OVERLOAD;
8031 
8032 		if (cpu_overutilized(i))
8033 			*sg_status |= SG_OVERUTILIZED;
8034 
8035 #ifdef CONFIG_NUMA_BALANCING
8036 		sgs->nr_numa_running += rq->nr_numa_running;
8037 		sgs->nr_preferred_running += rq->nr_preferred_running;
8038 #endif
8039 		/*
8040 		 * No need to call idle_cpu() if nr_running is not 0
8041 		 */
8042 		if (!nr_running && idle_cpu(i))
8043 			sgs->idle_cpus++;
8044 
8045 		if (env->sd->flags & SD_ASYM_CPUCAPACITY &&
8046 		    sgs->group_misfit_task_load < rq->misfit_task_load) {
8047 			sgs->group_misfit_task_load = rq->misfit_task_load;
8048 			*sg_status |= SG_OVERLOAD;
8049 		}
8050 	}
8051 
8052 	/* Adjust by relative CPU capacity of the group */
8053 	sgs->group_capacity = group->sgc->capacity;
8054 	sgs->avg_load = (sgs->group_load*SCHED_CAPACITY_SCALE) / sgs->group_capacity;
8055 
8056 	if (sgs->sum_nr_running)
8057 		sgs->load_per_task = sgs->group_load / sgs->sum_nr_running;
8058 
8059 	sgs->group_weight = group->group_weight;
8060 
8061 	sgs->group_no_capacity = group_is_overloaded(env, sgs);
8062 	sgs->group_type = group_classify(group, sgs);
8063 }
8064 
8065 /**
8066  * update_sd_pick_busiest - return 1 on busiest group
8067  * @env: The load balancing environment.
8068  * @sds: sched_domain statistics
8069  * @sg: sched_group candidate to be checked for being the busiest
8070  * @sgs: sched_group statistics
8071  *
8072  * Determine if @sg is a busier group than the previously selected
8073  * busiest group.
8074  *
8075  * Return: %true if @sg is a busier group than the previously selected
8076  * busiest group. %false otherwise.
8077  */
8078 static bool update_sd_pick_busiest(struct lb_env *env,
8079 				   struct sd_lb_stats *sds,
8080 				   struct sched_group *sg,
8081 				   struct sg_lb_stats *sgs)
8082 {
8083 	struct sg_lb_stats *busiest = &sds->busiest_stat;
8084 
8085 	/*
8086 	 * Don't try to pull misfit tasks we can't help.
8087 	 * We can use max_capacity here as reduction in capacity on some
8088 	 * CPUs in the group should either be possible to resolve
8089 	 * internally or be covered by avg_load imbalance (eventually).
8090 	 */
8091 	if (sgs->group_type == group_misfit_task &&
8092 	    (!group_smaller_max_cpu_capacity(sg, sds->local) ||
8093 	     !group_has_capacity(env, &sds->local_stat)))
8094 		return false;
8095 
8096 	if (sgs->group_type > busiest->group_type)
8097 		return true;
8098 
8099 	if (sgs->group_type < busiest->group_type)
8100 		return false;
8101 
8102 	if (sgs->avg_load <= busiest->avg_load)
8103 		return false;
8104 
8105 	if (!(env->sd->flags & SD_ASYM_CPUCAPACITY))
8106 		goto asym_packing;
8107 
8108 	/*
8109 	 * Candidate sg has no more than one task per CPU and
8110 	 * has higher per-CPU capacity. Migrating tasks to less
8111 	 * capable CPUs may harm throughput. Maximize throughput,
8112 	 * power/energy consequences are not considered.
8113 	 */
8114 	if (sgs->sum_nr_running <= sgs->group_weight &&
8115 	    group_smaller_min_cpu_capacity(sds->local, sg))
8116 		return false;
8117 
8118 	/*
8119 	 * If we have more than one misfit sg go with the biggest misfit.
8120 	 */
8121 	if (sgs->group_type == group_misfit_task &&
8122 	    sgs->group_misfit_task_load < busiest->group_misfit_task_load)
8123 		return false;
8124 
8125 asym_packing:
8126 	/* This is the busiest node in its class. */
8127 	if (!(env->sd->flags & SD_ASYM_PACKING))
8128 		return true;
8129 
8130 	/* No ASYM_PACKING if target CPU is already busy */
8131 	if (env->idle == CPU_NOT_IDLE)
8132 		return true;
8133 	/*
8134 	 * ASYM_PACKING needs to move all the work to the highest
8135 	 * prority CPUs in the group, therefore mark all groups
8136 	 * of lower priority than ourself as busy.
8137 	 */
8138 	if (sgs->sum_nr_running &&
8139 	    sched_asym_prefer(env->dst_cpu, sg->asym_prefer_cpu)) {
8140 		if (!sds->busiest)
8141 			return true;
8142 
8143 		/* Prefer to move from lowest priority CPU's work */
8144 		if (sched_asym_prefer(sds->busiest->asym_prefer_cpu,
8145 				      sg->asym_prefer_cpu))
8146 			return true;
8147 	}
8148 
8149 	return false;
8150 }
8151 
8152 #ifdef CONFIG_NUMA_BALANCING
8153 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
8154 {
8155 	if (sgs->sum_nr_running > sgs->nr_numa_running)
8156 		return regular;
8157 	if (sgs->sum_nr_running > sgs->nr_preferred_running)
8158 		return remote;
8159 	return all;
8160 }
8161 
8162 static inline enum fbq_type fbq_classify_rq(struct rq *rq)
8163 {
8164 	if (rq->nr_running > rq->nr_numa_running)
8165 		return regular;
8166 	if (rq->nr_running > rq->nr_preferred_running)
8167 		return remote;
8168 	return all;
8169 }
8170 #else
8171 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
8172 {
8173 	return all;
8174 }
8175 
8176 static inline enum fbq_type fbq_classify_rq(struct rq *rq)
8177 {
8178 	return regular;
8179 }
8180 #endif /* CONFIG_NUMA_BALANCING */
8181 
8182 /**
8183  * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
8184  * @env: The load balancing environment.
8185  * @sds: variable to hold the statistics for this sched_domain.
8186  */
8187 static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
8188 {
8189 	struct sched_domain *child = env->sd->child;
8190 	struct sched_group *sg = env->sd->groups;
8191 	struct sg_lb_stats *local = &sds->local_stat;
8192 	struct sg_lb_stats tmp_sgs;
8193 	bool prefer_sibling = child && child->flags & SD_PREFER_SIBLING;
8194 	int sg_status = 0;
8195 
8196 #ifdef CONFIG_NO_HZ_COMMON
8197 	if (env->idle == CPU_NEWLY_IDLE && READ_ONCE(nohz.has_blocked))
8198 		env->flags |= LBF_NOHZ_STATS;
8199 #endif
8200 
8201 	do {
8202 		struct sg_lb_stats *sgs = &tmp_sgs;
8203 		int local_group;
8204 
8205 		local_group = cpumask_test_cpu(env->dst_cpu, sched_group_span(sg));
8206 		if (local_group) {
8207 			sds->local = sg;
8208 			sgs = local;
8209 
8210 			if (env->idle != CPU_NEWLY_IDLE ||
8211 			    time_after_eq(jiffies, sg->sgc->next_update))
8212 				update_group_capacity(env->sd, env->dst_cpu);
8213 		}
8214 
8215 		update_sg_lb_stats(env, sg, sgs, &sg_status);
8216 
8217 		if (local_group)
8218 			goto next_group;
8219 
8220 		/*
8221 		 * In case the child domain prefers tasks go to siblings
8222 		 * first, lower the sg capacity so that we'll try
8223 		 * and move all the excess tasks away. We lower the capacity
8224 		 * of a group only if the local group has the capacity to fit
8225 		 * these excess tasks. The extra check prevents the case where
8226 		 * you always pull from the heaviest group when it is already
8227 		 * under-utilized (possible with a large weight task outweighs
8228 		 * the tasks on the system).
8229 		 */
8230 		if (prefer_sibling && sds->local &&
8231 		    group_has_capacity(env, local) &&
8232 		    (sgs->sum_nr_running > local->sum_nr_running + 1)) {
8233 			sgs->group_no_capacity = 1;
8234 			sgs->group_type = group_classify(sg, sgs);
8235 		}
8236 
8237 		if (update_sd_pick_busiest(env, sds, sg, sgs)) {
8238 			sds->busiest = sg;
8239 			sds->busiest_stat = *sgs;
8240 		}
8241 
8242 next_group:
8243 		/* Now, start updating sd_lb_stats */
8244 		sds->total_running += sgs->sum_nr_running;
8245 		sds->total_load += sgs->group_load;
8246 		sds->total_capacity += sgs->group_capacity;
8247 
8248 		sg = sg->next;
8249 	} while (sg != env->sd->groups);
8250 
8251 #ifdef CONFIG_NO_HZ_COMMON
8252 	if ((env->flags & LBF_NOHZ_AGAIN) &&
8253 	    cpumask_subset(nohz.idle_cpus_mask, sched_domain_span(env->sd))) {
8254 
8255 		WRITE_ONCE(nohz.next_blocked,
8256 			   jiffies + msecs_to_jiffies(LOAD_AVG_PERIOD));
8257 	}
8258 #endif
8259 
8260 	if (env->sd->flags & SD_NUMA)
8261 		env->fbq_type = fbq_classify_group(&sds->busiest_stat);
8262 
8263 	if (!env->sd->parent) {
8264 		struct root_domain *rd = env->dst_rq->rd;
8265 
8266 		/* update overload indicator if we are at root domain */
8267 		WRITE_ONCE(rd->overload, sg_status & SG_OVERLOAD);
8268 
8269 		/* Update over-utilization (tipping point, U >= 0) indicator */
8270 		WRITE_ONCE(rd->overutilized, sg_status & SG_OVERUTILIZED);
8271 		trace_sched_overutilized_tp(rd, sg_status & SG_OVERUTILIZED);
8272 	} else if (sg_status & SG_OVERUTILIZED) {
8273 		struct root_domain *rd = env->dst_rq->rd;
8274 
8275 		WRITE_ONCE(rd->overutilized, SG_OVERUTILIZED);
8276 		trace_sched_overutilized_tp(rd, SG_OVERUTILIZED);
8277 	}
8278 }
8279 
8280 /**
8281  * check_asym_packing - Check to see if the group is packed into the
8282  *			sched domain.
8283  *
8284  * This is primarily intended to used at the sibling level.  Some
8285  * cores like POWER7 prefer to use lower numbered SMT threads.  In the
8286  * case of POWER7, it can move to lower SMT modes only when higher
8287  * threads are idle.  When in lower SMT modes, the threads will
8288  * perform better since they share less core resources.  Hence when we
8289  * have idle threads, we want them to be the higher ones.
8290  *
8291  * This packing function is run on idle threads.  It checks to see if
8292  * the busiest CPU in this domain (core in the P7 case) has a higher
8293  * CPU number than the packing function is being run on.  Here we are
8294  * assuming lower CPU number will be equivalent to lower a SMT thread
8295  * number.
8296  *
8297  * Return: 1 when packing is required and a task should be moved to
8298  * this CPU.  The amount of the imbalance is returned in env->imbalance.
8299  *
8300  * @env: The load balancing environment.
8301  * @sds: Statistics of the sched_domain which is to be packed
8302  */
8303 static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds)
8304 {
8305 	int busiest_cpu;
8306 
8307 	if (!(env->sd->flags & SD_ASYM_PACKING))
8308 		return 0;
8309 
8310 	if (env->idle == CPU_NOT_IDLE)
8311 		return 0;
8312 
8313 	if (!sds->busiest)
8314 		return 0;
8315 
8316 	busiest_cpu = sds->busiest->asym_prefer_cpu;
8317 	if (sched_asym_prefer(busiest_cpu, env->dst_cpu))
8318 		return 0;
8319 
8320 	env->imbalance = sds->busiest_stat.group_load;
8321 
8322 	return 1;
8323 }
8324 
8325 /**
8326  * fix_small_imbalance - Calculate the minor imbalance that exists
8327  *			amongst the groups of a sched_domain, during
8328  *			load balancing.
8329  * @env: The load balancing environment.
8330  * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
8331  */
8332 static inline
8333 void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
8334 {
8335 	unsigned long tmp, capa_now = 0, capa_move = 0;
8336 	unsigned int imbn = 2;
8337 	unsigned long scaled_busy_load_per_task;
8338 	struct sg_lb_stats *local, *busiest;
8339 
8340 	local = &sds->local_stat;
8341 	busiest = &sds->busiest_stat;
8342 
8343 	if (!local->sum_nr_running)
8344 		local->load_per_task = cpu_avg_load_per_task(env->dst_cpu);
8345 	else if (busiest->load_per_task > local->load_per_task)
8346 		imbn = 1;
8347 
8348 	scaled_busy_load_per_task =
8349 		(busiest->load_per_task * SCHED_CAPACITY_SCALE) /
8350 		busiest->group_capacity;
8351 
8352 	if (busiest->avg_load + scaled_busy_load_per_task >=
8353 	    local->avg_load + (scaled_busy_load_per_task * imbn)) {
8354 		env->imbalance = busiest->load_per_task;
8355 		return;
8356 	}
8357 
8358 	/*
8359 	 * OK, we don't have enough imbalance to justify moving tasks,
8360 	 * however we may be able to increase total CPU capacity used by
8361 	 * moving them.
8362 	 */
8363 
8364 	capa_now += busiest->group_capacity *
8365 			min(busiest->load_per_task, busiest->avg_load);
8366 	capa_now += local->group_capacity *
8367 			min(local->load_per_task, local->avg_load);
8368 	capa_now /= SCHED_CAPACITY_SCALE;
8369 
8370 	/* Amount of load we'd subtract */
8371 	if (busiest->avg_load > scaled_busy_load_per_task) {
8372 		capa_move += busiest->group_capacity *
8373 			    min(busiest->load_per_task,
8374 				busiest->avg_load - scaled_busy_load_per_task);
8375 	}
8376 
8377 	/* Amount of load we'd add */
8378 	if (busiest->avg_load * busiest->group_capacity <
8379 	    busiest->load_per_task * SCHED_CAPACITY_SCALE) {
8380 		tmp = (busiest->avg_load * busiest->group_capacity) /
8381 		      local->group_capacity;
8382 	} else {
8383 		tmp = (busiest->load_per_task * SCHED_CAPACITY_SCALE) /
8384 		      local->group_capacity;
8385 	}
8386 	capa_move += local->group_capacity *
8387 		    min(local->load_per_task, local->avg_load + tmp);
8388 	capa_move /= SCHED_CAPACITY_SCALE;
8389 
8390 	/* Move if we gain throughput */
8391 	if (capa_move > capa_now)
8392 		env->imbalance = busiest->load_per_task;
8393 }
8394 
8395 /**
8396  * calculate_imbalance - Calculate the amount of imbalance present within the
8397  *			 groups of a given sched_domain during load balance.
8398  * @env: load balance environment
8399  * @sds: statistics of the sched_domain whose imbalance is to be calculated.
8400  */
8401 static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
8402 {
8403 	unsigned long max_pull, load_above_capacity = ~0UL;
8404 	struct sg_lb_stats *local, *busiest;
8405 
8406 	local = &sds->local_stat;
8407 	busiest = &sds->busiest_stat;
8408 
8409 	if (busiest->group_type == group_imbalanced) {
8410 		/*
8411 		 * In the group_imb case we cannot rely on group-wide averages
8412 		 * to ensure CPU-load equilibrium, look at wider averages. XXX
8413 		 */
8414 		busiest->load_per_task =
8415 			min(busiest->load_per_task, sds->avg_load);
8416 	}
8417 
8418 	/*
8419 	 * Avg load of busiest sg can be less and avg load of local sg can
8420 	 * be greater than avg load across all sgs of sd because avg load
8421 	 * factors in sg capacity and sgs with smaller group_type are
8422 	 * skipped when updating the busiest sg:
8423 	 */
8424 	if (busiest->group_type != group_misfit_task &&
8425 	    (busiest->avg_load <= sds->avg_load ||
8426 	     local->avg_load >= sds->avg_load)) {
8427 		env->imbalance = 0;
8428 		return fix_small_imbalance(env, sds);
8429 	}
8430 
8431 	/*
8432 	 * If there aren't any idle CPUs, avoid creating some.
8433 	 */
8434 	if (busiest->group_type == group_overloaded &&
8435 	    local->group_type   == group_overloaded) {
8436 		load_above_capacity = busiest->sum_nr_running * SCHED_CAPACITY_SCALE;
8437 		if (load_above_capacity > busiest->group_capacity) {
8438 			load_above_capacity -= busiest->group_capacity;
8439 			load_above_capacity *= scale_load_down(NICE_0_LOAD);
8440 			load_above_capacity /= busiest->group_capacity;
8441 		} else
8442 			load_above_capacity = ~0UL;
8443 	}
8444 
8445 	/*
8446 	 * We're trying to get all the CPUs to the average_load, so we don't
8447 	 * want to push ourselves above the average load, nor do we wish to
8448 	 * reduce the max loaded CPU below the average load. At the same time,
8449 	 * we also don't want to reduce the group load below the group
8450 	 * capacity. Thus we look for the minimum possible imbalance.
8451 	 */
8452 	max_pull = min(busiest->avg_load - sds->avg_load, load_above_capacity);
8453 
8454 	/* How much load to actually move to equalise the imbalance */
8455 	env->imbalance = min(
8456 		max_pull * busiest->group_capacity,
8457 		(sds->avg_load - local->avg_load) * local->group_capacity
8458 	) / SCHED_CAPACITY_SCALE;
8459 
8460 	/* Boost imbalance to allow misfit task to be balanced. */
8461 	if (busiest->group_type == group_misfit_task) {
8462 		env->imbalance = max_t(long, env->imbalance,
8463 				       busiest->group_misfit_task_load);
8464 	}
8465 
8466 	/*
8467 	 * if *imbalance is less than the average load per runnable task
8468 	 * there is no guarantee that any tasks will be moved so we'll have
8469 	 * a think about bumping its value to force at least one task to be
8470 	 * moved
8471 	 */
8472 	if (env->imbalance < busiest->load_per_task)
8473 		return fix_small_imbalance(env, sds);
8474 }
8475 
8476 /******* find_busiest_group() helpers end here *********************/
8477 
8478 /**
8479  * find_busiest_group - Returns the busiest group within the sched_domain
8480  * if there is an imbalance.
8481  *
8482  * Also calculates the amount of runnable load which should be moved
8483  * to restore balance.
8484  *
8485  * @env: The load balancing environment.
8486  *
8487  * Return:	- The busiest group if imbalance exists.
8488  */
8489 static struct sched_group *find_busiest_group(struct lb_env *env)
8490 {
8491 	struct sg_lb_stats *local, *busiest;
8492 	struct sd_lb_stats sds;
8493 
8494 	init_sd_lb_stats(&sds);
8495 
8496 	/*
8497 	 * Compute the various statistics relavent for load balancing at
8498 	 * this level.
8499 	 */
8500 	update_sd_lb_stats(env, &sds);
8501 
8502 	if (sched_energy_enabled()) {
8503 		struct root_domain *rd = env->dst_rq->rd;
8504 
8505 		if (rcu_dereference(rd->pd) && !READ_ONCE(rd->overutilized))
8506 			goto out_balanced;
8507 	}
8508 
8509 	local = &sds.local_stat;
8510 	busiest = &sds.busiest_stat;
8511 
8512 	/* ASYM feature bypasses nice load balance check */
8513 	if (check_asym_packing(env, &sds))
8514 		return sds.busiest;
8515 
8516 	/* There is no busy sibling group to pull tasks from */
8517 	if (!sds.busiest || busiest->sum_nr_running == 0)
8518 		goto out_balanced;
8519 
8520 	/* XXX broken for overlapping NUMA groups */
8521 	sds.avg_load = (SCHED_CAPACITY_SCALE * sds.total_load)
8522 						/ sds.total_capacity;
8523 
8524 	/*
8525 	 * If the busiest group is imbalanced the below checks don't
8526 	 * work because they assume all things are equal, which typically
8527 	 * isn't true due to cpus_ptr constraints and the like.
8528 	 */
8529 	if (busiest->group_type == group_imbalanced)
8530 		goto force_balance;
8531 
8532 	/*
8533 	 * When dst_cpu is idle, prevent SMP nice and/or asymmetric group
8534 	 * capacities from resulting in underutilization due to avg_load.
8535 	 */
8536 	if (env->idle != CPU_NOT_IDLE && group_has_capacity(env, local) &&
8537 	    busiest->group_no_capacity)
8538 		goto force_balance;
8539 
8540 	/* Misfit tasks should be dealt with regardless of the avg load */
8541 	if (busiest->group_type == group_misfit_task)
8542 		goto force_balance;
8543 
8544 	/*
8545 	 * If the local group is busier than the selected busiest group
8546 	 * don't try and pull any tasks.
8547 	 */
8548 	if (local->avg_load >= busiest->avg_load)
8549 		goto out_balanced;
8550 
8551 	/*
8552 	 * Don't pull any tasks if this group is already above the domain
8553 	 * average load.
8554 	 */
8555 	if (local->avg_load >= sds.avg_load)
8556 		goto out_balanced;
8557 
8558 	if (env->idle == CPU_IDLE) {
8559 		/*
8560 		 * This CPU is idle. If the busiest group is not overloaded
8561 		 * and there is no imbalance between this and busiest group
8562 		 * wrt idle CPUs, it is balanced. The imbalance becomes
8563 		 * significant if the diff is greater than 1 otherwise we
8564 		 * might end up to just move the imbalance on another group
8565 		 */
8566 		if ((busiest->group_type != group_overloaded) &&
8567 				(local->idle_cpus <= (busiest->idle_cpus + 1)))
8568 			goto out_balanced;
8569 	} else {
8570 		/*
8571 		 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
8572 		 * imbalance_pct to be conservative.
8573 		 */
8574 		if (100 * busiest->avg_load <=
8575 				env->sd->imbalance_pct * local->avg_load)
8576 			goto out_balanced;
8577 	}
8578 
8579 force_balance:
8580 	/* Looks like there is an imbalance. Compute it */
8581 	env->src_grp_type = busiest->group_type;
8582 	calculate_imbalance(env, &sds);
8583 	return env->imbalance ? sds.busiest : NULL;
8584 
8585 out_balanced:
8586 	env->imbalance = 0;
8587 	return NULL;
8588 }
8589 
8590 /*
8591  * find_busiest_queue - find the busiest runqueue among the CPUs in the group.
8592  */
8593 static struct rq *find_busiest_queue(struct lb_env *env,
8594 				     struct sched_group *group)
8595 {
8596 	struct rq *busiest = NULL, *rq;
8597 	unsigned long busiest_load = 0, busiest_capacity = 1;
8598 	int i;
8599 
8600 	for_each_cpu_and(i, sched_group_span(group), env->cpus) {
8601 		unsigned long capacity, load;
8602 		enum fbq_type rt;
8603 
8604 		rq = cpu_rq(i);
8605 		rt = fbq_classify_rq(rq);
8606 
8607 		/*
8608 		 * We classify groups/runqueues into three groups:
8609 		 *  - regular: there are !numa tasks
8610 		 *  - remote:  there are numa tasks that run on the 'wrong' node
8611 		 *  - all:     there is no distinction
8612 		 *
8613 		 * In order to avoid migrating ideally placed numa tasks,
8614 		 * ignore those when there's better options.
8615 		 *
8616 		 * If we ignore the actual busiest queue to migrate another
8617 		 * task, the next balance pass can still reduce the busiest
8618 		 * queue by moving tasks around inside the node.
8619 		 *
8620 		 * If we cannot move enough load due to this classification
8621 		 * the next pass will adjust the group classification and
8622 		 * allow migration of more tasks.
8623 		 *
8624 		 * Both cases only affect the total convergence complexity.
8625 		 */
8626 		if (rt > env->fbq_type)
8627 			continue;
8628 
8629 		/*
8630 		 * For ASYM_CPUCAPACITY domains with misfit tasks we simply
8631 		 * seek the "biggest" misfit task.
8632 		 */
8633 		if (env->src_grp_type == group_misfit_task) {
8634 			if (rq->misfit_task_load > busiest_load) {
8635 				busiest_load = rq->misfit_task_load;
8636 				busiest = rq;
8637 			}
8638 
8639 			continue;
8640 		}
8641 
8642 		capacity = capacity_of(i);
8643 
8644 		/*
8645 		 * For ASYM_CPUCAPACITY domains, don't pick a CPU that could
8646 		 * eventually lead to active_balancing high->low capacity.
8647 		 * Higher per-CPU capacity is considered better than balancing
8648 		 * average load.
8649 		 */
8650 		if (env->sd->flags & SD_ASYM_CPUCAPACITY &&
8651 		    capacity_of(env->dst_cpu) < capacity &&
8652 		    rq->nr_running == 1)
8653 			continue;
8654 
8655 		load = cpu_runnable_load(rq);
8656 
8657 		/*
8658 		 * When comparing with imbalance, use cpu_runnable_load()
8659 		 * which is not scaled with the CPU capacity.
8660 		 */
8661 
8662 		if (rq->nr_running == 1 && load > env->imbalance &&
8663 		    !check_cpu_capacity(rq, env->sd))
8664 			continue;
8665 
8666 		/*
8667 		 * For the load comparisons with the other CPU's, consider
8668 		 * the cpu_runnable_load() scaled with the CPU capacity, so
8669 		 * that the load can be moved away from the CPU that is
8670 		 * potentially running at a lower capacity.
8671 		 *
8672 		 * Thus we're looking for max(load_i / capacity_i), crosswise
8673 		 * multiplication to rid ourselves of the division works out
8674 		 * to: load_i * capacity_j > load_j * capacity_i;  where j is
8675 		 * our previous maximum.
8676 		 */
8677 		if (load * busiest_capacity > busiest_load * capacity) {
8678 			busiest_load = load;
8679 			busiest_capacity = capacity;
8680 			busiest = rq;
8681 		}
8682 	}
8683 
8684 	return busiest;
8685 }
8686 
8687 /*
8688  * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
8689  * so long as it is large enough.
8690  */
8691 #define MAX_PINNED_INTERVAL	512
8692 
8693 static inline bool
8694 asym_active_balance(struct lb_env *env)
8695 {
8696 	/*
8697 	 * ASYM_PACKING needs to force migrate tasks from busy but
8698 	 * lower priority CPUs in order to pack all tasks in the
8699 	 * highest priority CPUs.
8700 	 */
8701 	return env->idle != CPU_NOT_IDLE && (env->sd->flags & SD_ASYM_PACKING) &&
8702 	       sched_asym_prefer(env->dst_cpu, env->src_cpu);
8703 }
8704 
8705 static inline bool
8706 voluntary_active_balance(struct lb_env *env)
8707 {
8708 	struct sched_domain *sd = env->sd;
8709 
8710 	if (asym_active_balance(env))
8711 		return 1;
8712 
8713 	/*
8714 	 * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task.
8715 	 * It's worth migrating the task if the src_cpu's capacity is reduced
8716 	 * because of other sched_class or IRQs if more capacity stays
8717 	 * available on dst_cpu.
8718 	 */
8719 	if ((env->idle != CPU_NOT_IDLE) &&
8720 	    (env->src_rq->cfs.h_nr_running == 1)) {
8721 		if ((check_cpu_capacity(env->src_rq, sd)) &&
8722 		    (capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100))
8723 			return 1;
8724 	}
8725 
8726 	if (env->src_grp_type == group_misfit_task)
8727 		return 1;
8728 
8729 	return 0;
8730 }
8731 
8732 static int need_active_balance(struct lb_env *env)
8733 {
8734 	struct sched_domain *sd = env->sd;
8735 
8736 	if (voluntary_active_balance(env))
8737 		return 1;
8738 
8739 	return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
8740 }
8741 
8742 static int active_load_balance_cpu_stop(void *data);
8743 
8744 static int should_we_balance(struct lb_env *env)
8745 {
8746 	struct sched_group *sg = env->sd->groups;
8747 	int cpu, balance_cpu = -1;
8748 
8749 	/*
8750 	 * Ensure the balancing environment is consistent; can happen
8751 	 * when the softirq triggers 'during' hotplug.
8752 	 */
8753 	if (!cpumask_test_cpu(env->dst_cpu, env->cpus))
8754 		return 0;
8755 
8756 	/*
8757 	 * In the newly idle case, we will allow all the CPUs
8758 	 * to do the newly idle load balance.
8759 	 */
8760 	if (env->idle == CPU_NEWLY_IDLE)
8761 		return 1;
8762 
8763 	/* Try to find first idle CPU */
8764 	for_each_cpu_and(cpu, group_balance_mask(sg), env->cpus) {
8765 		if (!idle_cpu(cpu))
8766 			continue;
8767 
8768 		balance_cpu = cpu;
8769 		break;
8770 	}
8771 
8772 	if (balance_cpu == -1)
8773 		balance_cpu = group_balance_cpu(sg);
8774 
8775 	/*
8776 	 * First idle CPU or the first CPU(busiest) in this sched group
8777 	 * is eligible for doing load balancing at this and above domains.
8778 	 */
8779 	return balance_cpu == env->dst_cpu;
8780 }
8781 
8782 /*
8783  * Check this_cpu to ensure it is balanced within domain. Attempt to move
8784  * tasks if there is an imbalance.
8785  */
8786 static int load_balance(int this_cpu, struct rq *this_rq,
8787 			struct sched_domain *sd, enum cpu_idle_type idle,
8788 			int *continue_balancing)
8789 {
8790 	int ld_moved, cur_ld_moved, active_balance = 0;
8791 	struct sched_domain *sd_parent = sd->parent;
8792 	struct sched_group *group;
8793 	struct rq *busiest;
8794 	struct rq_flags rf;
8795 	struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask);
8796 
8797 	struct lb_env env = {
8798 		.sd		= sd,
8799 		.dst_cpu	= this_cpu,
8800 		.dst_rq		= this_rq,
8801 		.dst_grpmask    = sched_group_span(sd->groups),
8802 		.idle		= idle,
8803 		.loop_break	= sched_nr_migrate_break,
8804 		.cpus		= cpus,
8805 		.fbq_type	= all,
8806 		.tasks		= LIST_HEAD_INIT(env.tasks),
8807 	};
8808 
8809 	cpumask_and(cpus, sched_domain_span(sd), cpu_active_mask);
8810 
8811 	schedstat_inc(sd->lb_count[idle]);
8812 
8813 redo:
8814 	if (!should_we_balance(&env)) {
8815 		*continue_balancing = 0;
8816 		goto out_balanced;
8817 	}
8818 
8819 	group = find_busiest_group(&env);
8820 	if (!group) {
8821 		schedstat_inc(sd->lb_nobusyg[idle]);
8822 		goto out_balanced;
8823 	}
8824 
8825 	busiest = find_busiest_queue(&env, group);
8826 	if (!busiest) {
8827 		schedstat_inc(sd->lb_nobusyq[idle]);
8828 		goto out_balanced;
8829 	}
8830 
8831 	BUG_ON(busiest == env.dst_rq);
8832 
8833 	schedstat_add(sd->lb_imbalance[idle], env.imbalance);
8834 
8835 	env.src_cpu = busiest->cpu;
8836 	env.src_rq = busiest;
8837 
8838 	ld_moved = 0;
8839 	if (busiest->nr_running > 1) {
8840 		/*
8841 		 * Attempt to move tasks. If find_busiest_group has found
8842 		 * an imbalance but busiest->nr_running <= 1, the group is
8843 		 * still unbalanced. ld_moved simply stays zero, so it is
8844 		 * correctly treated as an imbalance.
8845 		 */
8846 		env.flags |= LBF_ALL_PINNED;
8847 		env.loop_max  = min(sysctl_sched_nr_migrate, busiest->nr_running);
8848 
8849 more_balance:
8850 		rq_lock_irqsave(busiest, &rf);
8851 		update_rq_clock(busiest);
8852 
8853 		/*
8854 		 * cur_ld_moved - load moved in current iteration
8855 		 * ld_moved     - cumulative load moved across iterations
8856 		 */
8857 		cur_ld_moved = detach_tasks(&env);
8858 
8859 		/*
8860 		 * We've detached some tasks from busiest_rq. Every
8861 		 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely
8862 		 * unlock busiest->lock, and we are able to be sure
8863 		 * that nobody can manipulate the tasks in parallel.
8864 		 * See task_rq_lock() family for the details.
8865 		 */
8866 
8867 		rq_unlock(busiest, &rf);
8868 
8869 		if (cur_ld_moved) {
8870 			attach_tasks(&env);
8871 			ld_moved += cur_ld_moved;
8872 		}
8873 
8874 		local_irq_restore(rf.flags);
8875 
8876 		if (env.flags & LBF_NEED_BREAK) {
8877 			env.flags &= ~LBF_NEED_BREAK;
8878 			goto more_balance;
8879 		}
8880 
8881 		/*
8882 		 * Revisit (affine) tasks on src_cpu that couldn't be moved to
8883 		 * us and move them to an alternate dst_cpu in our sched_group
8884 		 * where they can run. The upper limit on how many times we
8885 		 * iterate on same src_cpu is dependent on number of CPUs in our
8886 		 * sched_group.
8887 		 *
8888 		 * This changes load balance semantics a bit on who can move
8889 		 * load to a given_cpu. In addition to the given_cpu itself
8890 		 * (or a ilb_cpu acting on its behalf where given_cpu is
8891 		 * nohz-idle), we now have balance_cpu in a position to move
8892 		 * load to given_cpu. In rare situations, this may cause
8893 		 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
8894 		 * _independently_ and at _same_ time to move some load to
8895 		 * given_cpu) causing exceess load to be moved to given_cpu.
8896 		 * This however should not happen so much in practice and
8897 		 * moreover subsequent load balance cycles should correct the
8898 		 * excess load moved.
8899 		 */
8900 		if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
8901 
8902 			/* Prevent to re-select dst_cpu via env's CPUs */
8903 			__cpumask_clear_cpu(env.dst_cpu, env.cpus);
8904 
8905 			env.dst_rq	 = cpu_rq(env.new_dst_cpu);
8906 			env.dst_cpu	 = env.new_dst_cpu;
8907 			env.flags	&= ~LBF_DST_PINNED;
8908 			env.loop	 = 0;
8909 			env.loop_break	 = sched_nr_migrate_break;
8910 
8911 			/*
8912 			 * Go back to "more_balance" rather than "redo" since we
8913 			 * need to continue with same src_cpu.
8914 			 */
8915 			goto more_balance;
8916 		}
8917 
8918 		/*
8919 		 * We failed to reach balance because of affinity.
8920 		 */
8921 		if (sd_parent) {
8922 			int *group_imbalance = &sd_parent->groups->sgc->imbalance;
8923 
8924 			if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0)
8925 				*group_imbalance = 1;
8926 		}
8927 
8928 		/* All tasks on this runqueue were pinned by CPU affinity */
8929 		if (unlikely(env.flags & LBF_ALL_PINNED)) {
8930 			__cpumask_clear_cpu(cpu_of(busiest), cpus);
8931 			/*
8932 			 * Attempting to continue load balancing at the current
8933 			 * sched_domain level only makes sense if there are
8934 			 * active CPUs remaining as possible busiest CPUs to
8935 			 * pull load from which are not contained within the
8936 			 * destination group that is receiving any migrated
8937 			 * load.
8938 			 */
8939 			if (!cpumask_subset(cpus, env.dst_grpmask)) {
8940 				env.loop = 0;
8941 				env.loop_break = sched_nr_migrate_break;
8942 				goto redo;
8943 			}
8944 			goto out_all_pinned;
8945 		}
8946 	}
8947 
8948 	if (!ld_moved) {
8949 		schedstat_inc(sd->lb_failed[idle]);
8950 		/*
8951 		 * Increment the failure counter only on periodic balance.
8952 		 * We do not want newidle balance, which can be very
8953 		 * frequent, pollute the failure counter causing
8954 		 * excessive cache_hot migrations and active balances.
8955 		 */
8956 		if (idle != CPU_NEWLY_IDLE)
8957 			sd->nr_balance_failed++;
8958 
8959 		if (need_active_balance(&env)) {
8960 			unsigned long flags;
8961 
8962 			raw_spin_lock_irqsave(&busiest->lock, flags);
8963 
8964 			/*
8965 			 * Don't kick the active_load_balance_cpu_stop,
8966 			 * if the curr task on busiest CPU can't be
8967 			 * moved to this_cpu:
8968 			 */
8969 			if (!cpumask_test_cpu(this_cpu, busiest->curr->cpus_ptr)) {
8970 				raw_spin_unlock_irqrestore(&busiest->lock,
8971 							    flags);
8972 				env.flags |= LBF_ALL_PINNED;
8973 				goto out_one_pinned;
8974 			}
8975 
8976 			/*
8977 			 * ->active_balance synchronizes accesses to
8978 			 * ->active_balance_work.  Once set, it's cleared
8979 			 * only after active load balance is finished.
8980 			 */
8981 			if (!busiest->active_balance) {
8982 				busiest->active_balance = 1;
8983 				busiest->push_cpu = this_cpu;
8984 				active_balance = 1;
8985 			}
8986 			raw_spin_unlock_irqrestore(&busiest->lock, flags);
8987 
8988 			if (active_balance) {
8989 				stop_one_cpu_nowait(cpu_of(busiest),
8990 					active_load_balance_cpu_stop, busiest,
8991 					&busiest->active_balance_work);
8992 			}
8993 
8994 			/* We've kicked active balancing, force task migration. */
8995 			sd->nr_balance_failed = sd->cache_nice_tries+1;
8996 		}
8997 	} else
8998 		sd->nr_balance_failed = 0;
8999 
9000 	if (likely(!active_balance) || voluntary_active_balance(&env)) {
9001 		/* We were unbalanced, so reset the balancing interval */
9002 		sd->balance_interval = sd->min_interval;
9003 	} else {
9004 		/*
9005 		 * If we've begun active balancing, start to back off. This
9006 		 * case may not be covered by the all_pinned logic if there
9007 		 * is only 1 task on the busy runqueue (because we don't call
9008 		 * detach_tasks).
9009 		 */
9010 		if (sd->balance_interval < sd->max_interval)
9011 			sd->balance_interval *= 2;
9012 	}
9013 
9014 	goto out;
9015 
9016 out_balanced:
9017 	/*
9018 	 * We reach balance although we may have faced some affinity
9019 	 * constraints. Clear the imbalance flag only if other tasks got
9020 	 * a chance to move and fix the imbalance.
9021 	 */
9022 	if (sd_parent && !(env.flags & LBF_ALL_PINNED)) {
9023 		int *group_imbalance = &sd_parent->groups->sgc->imbalance;
9024 
9025 		if (*group_imbalance)
9026 			*group_imbalance = 0;
9027 	}
9028 
9029 out_all_pinned:
9030 	/*
9031 	 * We reach balance because all tasks are pinned at this level so
9032 	 * we can't migrate them. Let the imbalance flag set so parent level
9033 	 * can try to migrate them.
9034 	 */
9035 	schedstat_inc(sd->lb_balanced[idle]);
9036 
9037 	sd->nr_balance_failed = 0;
9038 
9039 out_one_pinned:
9040 	ld_moved = 0;
9041 
9042 	/*
9043 	 * newidle_balance() disregards balance intervals, so we could
9044 	 * repeatedly reach this code, which would lead to balance_interval
9045 	 * skyrocketting in a short amount of time. Skip the balance_interval
9046 	 * increase logic to avoid that.
9047 	 */
9048 	if (env.idle == CPU_NEWLY_IDLE)
9049 		goto out;
9050 
9051 	/* tune up the balancing interval */
9052 	if ((env.flags & LBF_ALL_PINNED &&
9053 	     sd->balance_interval < MAX_PINNED_INTERVAL) ||
9054 	    sd->balance_interval < sd->max_interval)
9055 		sd->balance_interval *= 2;
9056 out:
9057 	return ld_moved;
9058 }
9059 
9060 static inline unsigned long
9061 get_sd_balance_interval(struct sched_domain *sd, int cpu_busy)
9062 {
9063 	unsigned long interval = sd->balance_interval;
9064 
9065 	if (cpu_busy)
9066 		interval *= sd->busy_factor;
9067 
9068 	/* scale ms to jiffies */
9069 	interval = msecs_to_jiffies(interval);
9070 	interval = clamp(interval, 1UL, max_load_balance_interval);
9071 
9072 	return interval;
9073 }
9074 
9075 static inline void
9076 update_next_balance(struct sched_domain *sd, unsigned long *next_balance)
9077 {
9078 	unsigned long interval, next;
9079 
9080 	/* used by idle balance, so cpu_busy = 0 */
9081 	interval = get_sd_balance_interval(sd, 0);
9082 	next = sd->last_balance + interval;
9083 
9084 	if (time_after(*next_balance, next))
9085 		*next_balance = next;
9086 }
9087 
9088 /*
9089  * active_load_balance_cpu_stop is run by the CPU stopper. It pushes
9090  * running tasks off the busiest CPU onto idle CPUs. It requires at
9091  * least 1 task to be running on each physical CPU where possible, and
9092  * avoids physical / logical imbalances.
9093  */
9094 static int active_load_balance_cpu_stop(void *data)
9095 {
9096 	struct rq *busiest_rq = data;
9097 	int busiest_cpu = cpu_of(busiest_rq);
9098 	int target_cpu = busiest_rq->push_cpu;
9099 	struct rq *target_rq = cpu_rq(target_cpu);
9100 	struct sched_domain *sd;
9101 	struct task_struct *p = NULL;
9102 	struct rq_flags rf;
9103 
9104 	rq_lock_irq(busiest_rq, &rf);
9105 	/*
9106 	 * Between queueing the stop-work and running it is a hole in which
9107 	 * CPUs can become inactive. We should not move tasks from or to
9108 	 * inactive CPUs.
9109 	 */
9110 	if (!cpu_active(busiest_cpu) || !cpu_active(target_cpu))
9111 		goto out_unlock;
9112 
9113 	/* Make sure the requested CPU hasn't gone down in the meantime: */
9114 	if (unlikely(busiest_cpu != smp_processor_id() ||
9115 		     !busiest_rq->active_balance))
9116 		goto out_unlock;
9117 
9118 	/* Is there any task to move? */
9119 	if (busiest_rq->nr_running <= 1)
9120 		goto out_unlock;
9121 
9122 	/*
9123 	 * This condition is "impossible", if it occurs
9124 	 * we need to fix it. Originally reported by
9125 	 * Bjorn Helgaas on a 128-CPU setup.
9126 	 */
9127 	BUG_ON(busiest_rq == target_rq);
9128 
9129 	/* Search for an sd spanning us and the target CPU. */
9130 	rcu_read_lock();
9131 	for_each_domain(target_cpu, sd) {
9132 		if ((sd->flags & SD_LOAD_BALANCE) &&
9133 		    cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
9134 				break;
9135 	}
9136 
9137 	if (likely(sd)) {
9138 		struct lb_env env = {
9139 			.sd		= sd,
9140 			.dst_cpu	= target_cpu,
9141 			.dst_rq		= target_rq,
9142 			.src_cpu	= busiest_rq->cpu,
9143 			.src_rq		= busiest_rq,
9144 			.idle		= CPU_IDLE,
9145 			/*
9146 			 * can_migrate_task() doesn't need to compute new_dst_cpu
9147 			 * for active balancing. Since we have CPU_IDLE, but no
9148 			 * @dst_grpmask we need to make that test go away with lying
9149 			 * about DST_PINNED.
9150 			 */
9151 			.flags		= LBF_DST_PINNED,
9152 		};
9153 
9154 		schedstat_inc(sd->alb_count);
9155 		update_rq_clock(busiest_rq);
9156 
9157 		p = detach_one_task(&env);
9158 		if (p) {
9159 			schedstat_inc(sd->alb_pushed);
9160 			/* Active balancing done, reset the failure counter. */
9161 			sd->nr_balance_failed = 0;
9162 		} else {
9163 			schedstat_inc(sd->alb_failed);
9164 		}
9165 	}
9166 	rcu_read_unlock();
9167 out_unlock:
9168 	busiest_rq->active_balance = 0;
9169 	rq_unlock(busiest_rq, &rf);
9170 
9171 	if (p)
9172 		attach_one_task(target_rq, p);
9173 
9174 	local_irq_enable();
9175 
9176 	return 0;
9177 }
9178 
9179 static DEFINE_SPINLOCK(balancing);
9180 
9181 /*
9182  * Scale the max load_balance interval with the number of CPUs in the system.
9183  * This trades load-balance latency on larger machines for less cross talk.
9184  */
9185 void update_max_interval(void)
9186 {
9187 	max_load_balance_interval = HZ*num_online_cpus()/10;
9188 }
9189 
9190 /*
9191  * It checks each scheduling domain to see if it is due to be balanced,
9192  * and initiates a balancing operation if so.
9193  *
9194  * Balancing parameters are set up in init_sched_domains.
9195  */
9196 static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle)
9197 {
9198 	int continue_balancing = 1;
9199 	int cpu = rq->cpu;
9200 	unsigned long interval;
9201 	struct sched_domain *sd;
9202 	/* Earliest time when we have to do rebalance again */
9203 	unsigned long next_balance = jiffies + 60*HZ;
9204 	int update_next_balance = 0;
9205 	int need_serialize, need_decay = 0;
9206 	u64 max_cost = 0;
9207 
9208 	rcu_read_lock();
9209 	for_each_domain(cpu, sd) {
9210 		/*
9211 		 * Decay the newidle max times here because this is a regular
9212 		 * visit to all the domains. Decay ~1% per second.
9213 		 */
9214 		if (time_after(jiffies, sd->next_decay_max_lb_cost)) {
9215 			sd->max_newidle_lb_cost =
9216 				(sd->max_newidle_lb_cost * 253) / 256;
9217 			sd->next_decay_max_lb_cost = jiffies + HZ;
9218 			need_decay = 1;
9219 		}
9220 		max_cost += sd->max_newidle_lb_cost;
9221 
9222 		if (!(sd->flags & SD_LOAD_BALANCE))
9223 			continue;
9224 
9225 		/*
9226 		 * Stop the load balance at this level. There is another
9227 		 * CPU in our sched group which is doing load balancing more
9228 		 * actively.
9229 		 */
9230 		if (!continue_balancing) {
9231 			if (need_decay)
9232 				continue;
9233 			break;
9234 		}
9235 
9236 		interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
9237 
9238 		need_serialize = sd->flags & SD_SERIALIZE;
9239 		if (need_serialize) {
9240 			if (!spin_trylock(&balancing))
9241 				goto out;
9242 		}
9243 
9244 		if (time_after_eq(jiffies, sd->last_balance + interval)) {
9245 			if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
9246 				/*
9247 				 * The LBF_DST_PINNED logic could have changed
9248 				 * env->dst_cpu, so we can't know our idle
9249 				 * state even if we migrated tasks. Update it.
9250 				 */
9251 				idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
9252 			}
9253 			sd->last_balance = jiffies;
9254 			interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
9255 		}
9256 		if (need_serialize)
9257 			spin_unlock(&balancing);
9258 out:
9259 		if (time_after(next_balance, sd->last_balance + interval)) {
9260 			next_balance = sd->last_balance + interval;
9261 			update_next_balance = 1;
9262 		}
9263 	}
9264 	if (need_decay) {
9265 		/*
9266 		 * Ensure the rq-wide value also decays but keep it at a
9267 		 * reasonable floor to avoid funnies with rq->avg_idle.
9268 		 */
9269 		rq->max_idle_balance_cost =
9270 			max((u64)sysctl_sched_migration_cost, max_cost);
9271 	}
9272 	rcu_read_unlock();
9273 
9274 	/*
9275 	 * next_balance will be updated only when there is a need.
9276 	 * When the cpu is attached to null domain for ex, it will not be
9277 	 * updated.
9278 	 */
9279 	if (likely(update_next_balance)) {
9280 		rq->next_balance = next_balance;
9281 
9282 #ifdef CONFIG_NO_HZ_COMMON
9283 		/*
9284 		 * If this CPU has been elected to perform the nohz idle
9285 		 * balance. Other idle CPUs have already rebalanced with
9286 		 * nohz_idle_balance() and nohz.next_balance has been
9287 		 * updated accordingly. This CPU is now running the idle load
9288 		 * balance for itself and we need to update the
9289 		 * nohz.next_balance accordingly.
9290 		 */
9291 		if ((idle == CPU_IDLE) && time_after(nohz.next_balance, rq->next_balance))
9292 			nohz.next_balance = rq->next_balance;
9293 #endif
9294 	}
9295 }
9296 
9297 static inline int on_null_domain(struct rq *rq)
9298 {
9299 	return unlikely(!rcu_dereference_sched(rq->sd));
9300 }
9301 
9302 #ifdef CONFIG_NO_HZ_COMMON
9303 /*
9304  * idle load balancing details
9305  * - When one of the busy CPUs notice that there may be an idle rebalancing
9306  *   needed, they will kick the idle load balancer, which then does idle
9307  *   load balancing for all the idle CPUs.
9308  * - HK_FLAG_MISC CPUs are used for this task, because HK_FLAG_SCHED not set
9309  *   anywhere yet.
9310  */
9311 
9312 static inline int find_new_ilb(void)
9313 {
9314 	int ilb;
9315 
9316 	for_each_cpu_and(ilb, nohz.idle_cpus_mask,
9317 			      housekeeping_cpumask(HK_FLAG_MISC)) {
9318 		if (idle_cpu(ilb))
9319 			return ilb;
9320 	}
9321 
9322 	return nr_cpu_ids;
9323 }
9324 
9325 /*
9326  * Kick a CPU to do the nohz balancing, if it is time for it. We pick any
9327  * idle CPU in the HK_FLAG_MISC housekeeping set (if there is one).
9328  */
9329 static void kick_ilb(unsigned int flags)
9330 {
9331 	int ilb_cpu;
9332 
9333 	nohz.next_balance++;
9334 
9335 	ilb_cpu = find_new_ilb();
9336 
9337 	if (ilb_cpu >= nr_cpu_ids)
9338 		return;
9339 
9340 	flags = atomic_fetch_or(flags, nohz_flags(ilb_cpu));
9341 	if (flags & NOHZ_KICK_MASK)
9342 		return;
9343 
9344 	/*
9345 	 * Use smp_send_reschedule() instead of resched_cpu().
9346 	 * This way we generate a sched IPI on the target CPU which
9347 	 * is idle. And the softirq performing nohz idle load balance
9348 	 * will be run before returning from the IPI.
9349 	 */
9350 	smp_send_reschedule(ilb_cpu);
9351 }
9352 
9353 /*
9354  * Current decision point for kicking the idle load balancer in the presence
9355  * of idle CPUs in the system.
9356  */
9357 static void nohz_balancer_kick(struct rq *rq)
9358 {
9359 	unsigned long now = jiffies;
9360 	struct sched_domain_shared *sds;
9361 	struct sched_domain *sd;
9362 	int nr_busy, i, cpu = rq->cpu;
9363 	unsigned int flags = 0;
9364 
9365 	if (unlikely(rq->idle_balance))
9366 		return;
9367 
9368 	/*
9369 	 * We may be recently in ticked or tickless idle mode. At the first
9370 	 * busy tick after returning from idle, we will update the busy stats.
9371 	 */
9372 	nohz_balance_exit_idle(rq);
9373 
9374 	/*
9375 	 * None are in tickless mode and hence no need for NOHZ idle load
9376 	 * balancing.
9377 	 */
9378 	if (likely(!atomic_read(&nohz.nr_cpus)))
9379 		return;
9380 
9381 	if (READ_ONCE(nohz.has_blocked) &&
9382 	    time_after(now, READ_ONCE(nohz.next_blocked)))
9383 		flags = NOHZ_STATS_KICK;
9384 
9385 	if (time_before(now, nohz.next_balance))
9386 		goto out;
9387 
9388 	if (rq->nr_running >= 2) {
9389 		flags = NOHZ_KICK_MASK;
9390 		goto out;
9391 	}
9392 
9393 	rcu_read_lock();
9394 
9395 	sd = rcu_dereference(rq->sd);
9396 	if (sd) {
9397 		/*
9398 		 * If there's a CFS task and the current CPU has reduced
9399 		 * capacity; kick the ILB to see if there's a better CPU to run
9400 		 * on.
9401 		 */
9402 		if (rq->cfs.h_nr_running >= 1 && check_cpu_capacity(rq, sd)) {
9403 			flags = NOHZ_KICK_MASK;
9404 			goto unlock;
9405 		}
9406 	}
9407 
9408 	sd = rcu_dereference(per_cpu(sd_asym_packing, cpu));
9409 	if (sd) {
9410 		/*
9411 		 * When ASYM_PACKING; see if there's a more preferred CPU
9412 		 * currently idle; in which case, kick the ILB to move tasks
9413 		 * around.
9414 		 */
9415 		for_each_cpu_and(i, sched_domain_span(sd), nohz.idle_cpus_mask) {
9416 			if (sched_asym_prefer(i, cpu)) {
9417 				flags = NOHZ_KICK_MASK;
9418 				goto unlock;
9419 			}
9420 		}
9421 	}
9422 
9423 	sd = rcu_dereference(per_cpu(sd_asym_cpucapacity, cpu));
9424 	if (sd) {
9425 		/*
9426 		 * When ASYM_CPUCAPACITY; see if there's a higher capacity CPU
9427 		 * to run the misfit task on.
9428 		 */
9429 		if (check_misfit_status(rq, sd)) {
9430 			flags = NOHZ_KICK_MASK;
9431 			goto unlock;
9432 		}
9433 
9434 		/*
9435 		 * For asymmetric systems, we do not want to nicely balance
9436 		 * cache use, instead we want to embrace asymmetry and only
9437 		 * ensure tasks have enough CPU capacity.
9438 		 *
9439 		 * Skip the LLC logic because it's not relevant in that case.
9440 		 */
9441 		goto unlock;
9442 	}
9443 
9444 	sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
9445 	if (sds) {
9446 		/*
9447 		 * If there is an imbalance between LLC domains (IOW we could
9448 		 * increase the overall cache use), we need some less-loaded LLC
9449 		 * domain to pull some load. Likewise, we may need to spread
9450 		 * load within the current LLC domain (e.g. packed SMT cores but
9451 		 * other CPUs are idle). We can't really know from here how busy
9452 		 * the others are - so just get a nohz balance going if it looks
9453 		 * like this LLC domain has tasks we could move.
9454 		 */
9455 		nr_busy = atomic_read(&sds->nr_busy_cpus);
9456 		if (nr_busy > 1) {
9457 			flags = NOHZ_KICK_MASK;
9458 			goto unlock;
9459 		}
9460 	}
9461 unlock:
9462 	rcu_read_unlock();
9463 out:
9464 	if (flags)
9465 		kick_ilb(flags);
9466 }
9467 
9468 static void set_cpu_sd_state_busy(int cpu)
9469 {
9470 	struct sched_domain *sd;
9471 
9472 	rcu_read_lock();
9473 	sd = rcu_dereference(per_cpu(sd_llc, cpu));
9474 
9475 	if (!sd || !sd->nohz_idle)
9476 		goto unlock;
9477 	sd->nohz_idle = 0;
9478 
9479 	atomic_inc(&sd->shared->nr_busy_cpus);
9480 unlock:
9481 	rcu_read_unlock();
9482 }
9483 
9484 void nohz_balance_exit_idle(struct rq *rq)
9485 {
9486 	SCHED_WARN_ON(rq != this_rq());
9487 
9488 	if (likely(!rq->nohz_tick_stopped))
9489 		return;
9490 
9491 	rq->nohz_tick_stopped = 0;
9492 	cpumask_clear_cpu(rq->cpu, nohz.idle_cpus_mask);
9493 	atomic_dec(&nohz.nr_cpus);
9494 
9495 	set_cpu_sd_state_busy(rq->cpu);
9496 }
9497 
9498 static void set_cpu_sd_state_idle(int cpu)
9499 {
9500 	struct sched_domain *sd;
9501 
9502 	rcu_read_lock();
9503 	sd = rcu_dereference(per_cpu(sd_llc, cpu));
9504 
9505 	if (!sd || sd->nohz_idle)
9506 		goto unlock;
9507 	sd->nohz_idle = 1;
9508 
9509 	atomic_dec(&sd->shared->nr_busy_cpus);
9510 unlock:
9511 	rcu_read_unlock();
9512 }
9513 
9514 /*
9515  * This routine will record that the CPU is going idle with tick stopped.
9516  * This info will be used in performing idle load balancing in the future.
9517  */
9518 void nohz_balance_enter_idle(int cpu)
9519 {
9520 	struct rq *rq = cpu_rq(cpu);
9521 
9522 	SCHED_WARN_ON(cpu != smp_processor_id());
9523 
9524 	/* If this CPU is going down, then nothing needs to be done: */
9525 	if (!cpu_active(cpu))
9526 		return;
9527 
9528 	/* Spare idle load balancing on CPUs that don't want to be disturbed: */
9529 	if (!housekeeping_cpu(cpu, HK_FLAG_SCHED))
9530 		return;
9531 
9532 	/*
9533 	 * Can be set safely without rq->lock held
9534 	 * If a clear happens, it will have evaluated last additions because
9535 	 * rq->lock is held during the check and the clear
9536 	 */
9537 	rq->has_blocked_load = 1;
9538 
9539 	/*
9540 	 * The tick is still stopped but load could have been added in the
9541 	 * meantime. We set the nohz.has_blocked flag to trig a check of the
9542 	 * *_avg. The CPU is already part of nohz.idle_cpus_mask so the clear
9543 	 * of nohz.has_blocked can only happen after checking the new load
9544 	 */
9545 	if (rq->nohz_tick_stopped)
9546 		goto out;
9547 
9548 	/* If we're a completely isolated CPU, we don't play: */
9549 	if (on_null_domain(rq))
9550 		return;
9551 
9552 	rq->nohz_tick_stopped = 1;
9553 
9554 	cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
9555 	atomic_inc(&nohz.nr_cpus);
9556 
9557 	/*
9558 	 * Ensures that if nohz_idle_balance() fails to observe our
9559 	 * @idle_cpus_mask store, it must observe the @has_blocked
9560 	 * store.
9561 	 */
9562 	smp_mb__after_atomic();
9563 
9564 	set_cpu_sd_state_idle(cpu);
9565 
9566 out:
9567 	/*
9568 	 * Each time a cpu enter idle, we assume that it has blocked load and
9569 	 * enable the periodic update of the load of idle cpus
9570 	 */
9571 	WRITE_ONCE(nohz.has_blocked, 1);
9572 }
9573 
9574 /*
9575  * Internal function that runs load balance for all idle cpus. The load balance
9576  * can be a simple update of blocked load or a complete load balance with
9577  * tasks movement depending of flags.
9578  * The function returns false if the loop has stopped before running
9579  * through all idle CPUs.
9580  */
9581 static bool _nohz_idle_balance(struct rq *this_rq, unsigned int flags,
9582 			       enum cpu_idle_type idle)
9583 {
9584 	/* Earliest time when we have to do rebalance again */
9585 	unsigned long now = jiffies;
9586 	unsigned long next_balance = now + 60*HZ;
9587 	bool has_blocked_load = false;
9588 	int update_next_balance = 0;
9589 	int this_cpu = this_rq->cpu;
9590 	int balance_cpu;
9591 	int ret = false;
9592 	struct rq *rq;
9593 
9594 	SCHED_WARN_ON((flags & NOHZ_KICK_MASK) == NOHZ_BALANCE_KICK);
9595 
9596 	/*
9597 	 * We assume there will be no idle load after this update and clear
9598 	 * the has_blocked flag. If a cpu enters idle in the mean time, it will
9599 	 * set the has_blocked flag and trig another update of idle load.
9600 	 * Because a cpu that becomes idle, is added to idle_cpus_mask before
9601 	 * setting the flag, we are sure to not clear the state and not
9602 	 * check the load of an idle cpu.
9603 	 */
9604 	WRITE_ONCE(nohz.has_blocked, 0);
9605 
9606 	/*
9607 	 * Ensures that if we miss the CPU, we must see the has_blocked
9608 	 * store from nohz_balance_enter_idle().
9609 	 */
9610 	smp_mb();
9611 
9612 	for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
9613 		if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
9614 			continue;
9615 
9616 		/*
9617 		 * If this CPU gets work to do, stop the load balancing
9618 		 * work being done for other CPUs. Next load
9619 		 * balancing owner will pick it up.
9620 		 */
9621 		if (need_resched()) {
9622 			has_blocked_load = true;
9623 			goto abort;
9624 		}
9625 
9626 		rq = cpu_rq(balance_cpu);
9627 
9628 		has_blocked_load |= update_nohz_stats(rq, true);
9629 
9630 		/*
9631 		 * If time for next balance is due,
9632 		 * do the balance.
9633 		 */
9634 		if (time_after_eq(jiffies, rq->next_balance)) {
9635 			struct rq_flags rf;
9636 
9637 			rq_lock_irqsave(rq, &rf);
9638 			update_rq_clock(rq);
9639 			rq_unlock_irqrestore(rq, &rf);
9640 
9641 			if (flags & NOHZ_BALANCE_KICK)
9642 				rebalance_domains(rq, CPU_IDLE);
9643 		}
9644 
9645 		if (time_after(next_balance, rq->next_balance)) {
9646 			next_balance = rq->next_balance;
9647 			update_next_balance = 1;
9648 		}
9649 	}
9650 
9651 	/* Newly idle CPU doesn't need an update */
9652 	if (idle != CPU_NEWLY_IDLE) {
9653 		update_blocked_averages(this_cpu);
9654 		has_blocked_load |= this_rq->has_blocked_load;
9655 	}
9656 
9657 	if (flags & NOHZ_BALANCE_KICK)
9658 		rebalance_domains(this_rq, CPU_IDLE);
9659 
9660 	WRITE_ONCE(nohz.next_blocked,
9661 		now + msecs_to_jiffies(LOAD_AVG_PERIOD));
9662 
9663 	/* The full idle balance loop has been done */
9664 	ret = true;
9665 
9666 abort:
9667 	/* There is still blocked load, enable periodic update */
9668 	if (has_blocked_load)
9669 		WRITE_ONCE(nohz.has_blocked, 1);
9670 
9671 	/*
9672 	 * next_balance will be updated only when there is a need.
9673 	 * When the CPU is attached to null domain for ex, it will not be
9674 	 * updated.
9675 	 */
9676 	if (likely(update_next_balance))
9677 		nohz.next_balance = next_balance;
9678 
9679 	return ret;
9680 }
9681 
9682 /*
9683  * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
9684  * rebalancing for all the cpus for whom scheduler ticks are stopped.
9685  */
9686 static bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
9687 {
9688 	int this_cpu = this_rq->cpu;
9689 	unsigned int flags;
9690 
9691 	if (!(atomic_read(nohz_flags(this_cpu)) & NOHZ_KICK_MASK))
9692 		return false;
9693 
9694 	if (idle != CPU_IDLE) {
9695 		atomic_andnot(NOHZ_KICK_MASK, nohz_flags(this_cpu));
9696 		return false;
9697 	}
9698 
9699 	/* could be _relaxed() */
9700 	flags = atomic_fetch_andnot(NOHZ_KICK_MASK, nohz_flags(this_cpu));
9701 	if (!(flags & NOHZ_KICK_MASK))
9702 		return false;
9703 
9704 	_nohz_idle_balance(this_rq, flags, idle);
9705 
9706 	return true;
9707 }
9708 
9709 static void nohz_newidle_balance(struct rq *this_rq)
9710 {
9711 	int this_cpu = this_rq->cpu;
9712 
9713 	/*
9714 	 * This CPU doesn't want to be disturbed by scheduler
9715 	 * housekeeping
9716 	 */
9717 	if (!housekeeping_cpu(this_cpu, HK_FLAG_SCHED))
9718 		return;
9719 
9720 	/* Will wake up very soon. No time for doing anything else*/
9721 	if (this_rq->avg_idle < sysctl_sched_migration_cost)
9722 		return;
9723 
9724 	/* Don't need to update blocked load of idle CPUs*/
9725 	if (!READ_ONCE(nohz.has_blocked) ||
9726 	    time_before(jiffies, READ_ONCE(nohz.next_blocked)))
9727 		return;
9728 
9729 	raw_spin_unlock(&this_rq->lock);
9730 	/*
9731 	 * This CPU is going to be idle and blocked load of idle CPUs
9732 	 * need to be updated. Run the ilb locally as it is a good
9733 	 * candidate for ilb instead of waking up another idle CPU.
9734 	 * Kick an normal ilb if we failed to do the update.
9735 	 */
9736 	if (!_nohz_idle_balance(this_rq, NOHZ_STATS_KICK, CPU_NEWLY_IDLE))
9737 		kick_ilb(NOHZ_STATS_KICK);
9738 	raw_spin_lock(&this_rq->lock);
9739 }
9740 
9741 #else /* !CONFIG_NO_HZ_COMMON */
9742 static inline void nohz_balancer_kick(struct rq *rq) { }
9743 
9744 static inline bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
9745 {
9746 	return false;
9747 }
9748 
9749 static inline void nohz_newidle_balance(struct rq *this_rq) { }
9750 #endif /* CONFIG_NO_HZ_COMMON */
9751 
9752 /*
9753  * idle_balance is called by schedule() if this_cpu is about to become
9754  * idle. Attempts to pull tasks from other CPUs.
9755  */
9756 int newidle_balance(struct rq *this_rq, struct rq_flags *rf)
9757 {
9758 	unsigned long next_balance = jiffies + HZ;
9759 	int this_cpu = this_rq->cpu;
9760 	struct sched_domain *sd;
9761 	int pulled_task = 0;
9762 	u64 curr_cost = 0;
9763 
9764 	update_misfit_status(NULL, this_rq);
9765 	/*
9766 	 * We must set idle_stamp _before_ calling idle_balance(), such that we
9767 	 * measure the duration of idle_balance() as idle time.
9768 	 */
9769 	this_rq->idle_stamp = rq_clock(this_rq);
9770 
9771 	/*
9772 	 * Do not pull tasks towards !active CPUs...
9773 	 */
9774 	if (!cpu_active(this_cpu))
9775 		return 0;
9776 
9777 	/*
9778 	 * This is OK, because current is on_cpu, which avoids it being picked
9779 	 * for load-balance and preemption/IRQs are still disabled avoiding
9780 	 * further scheduler activity on it and we're being very careful to
9781 	 * re-start the picking loop.
9782 	 */
9783 	rq_unpin_lock(this_rq, rf);
9784 
9785 	if (this_rq->avg_idle < sysctl_sched_migration_cost ||
9786 	    !READ_ONCE(this_rq->rd->overload)) {
9787 
9788 		rcu_read_lock();
9789 		sd = rcu_dereference_check_sched_domain(this_rq->sd);
9790 		if (sd)
9791 			update_next_balance(sd, &next_balance);
9792 		rcu_read_unlock();
9793 
9794 		nohz_newidle_balance(this_rq);
9795 
9796 		goto out;
9797 	}
9798 
9799 	raw_spin_unlock(&this_rq->lock);
9800 
9801 	update_blocked_averages(this_cpu);
9802 	rcu_read_lock();
9803 	for_each_domain(this_cpu, sd) {
9804 		int continue_balancing = 1;
9805 		u64 t0, domain_cost;
9806 
9807 		if (!(sd->flags & SD_LOAD_BALANCE))
9808 			continue;
9809 
9810 		if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) {
9811 			update_next_balance(sd, &next_balance);
9812 			break;
9813 		}
9814 
9815 		if (sd->flags & SD_BALANCE_NEWIDLE) {
9816 			t0 = sched_clock_cpu(this_cpu);
9817 
9818 			pulled_task = load_balance(this_cpu, this_rq,
9819 						   sd, CPU_NEWLY_IDLE,
9820 						   &continue_balancing);
9821 
9822 			domain_cost = sched_clock_cpu(this_cpu) - t0;
9823 			if (domain_cost > sd->max_newidle_lb_cost)
9824 				sd->max_newidle_lb_cost = domain_cost;
9825 
9826 			curr_cost += domain_cost;
9827 		}
9828 
9829 		update_next_balance(sd, &next_balance);
9830 
9831 		/*
9832 		 * Stop searching for tasks to pull if there are
9833 		 * now runnable tasks on this rq.
9834 		 */
9835 		if (pulled_task || this_rq->nr_running > 0)
9836 			break;
9837 	}
9838 	rcu_read_unlock();
9839 
9840 	raw_spin_lock(&this_rq->lock);
9841 
9842 	if (curr_cost > this_rq->max_idle_balance_cost)
9843 		this_rq->max_idle_balance_cost = curr_cost;
9844 
9845 out:
9846 	/*
9847 	 * While browsing the domains, we released the rq lock, a task could
9848 	 * have been enqueued in the meantime. Since we're not going idle,
9849 	 * pretend we pulled a task.
9850 	 */
9851 	if (this_rq->cfs.h_nr_running && !pulled_task)
9852 		pulled_task = 1;
9853 
9854 	/* Move the next balance forward */
9855 	if (time_after(this_rq->next_balance, next_balance))
9856 		this_rq->next_balance = next_balance;
9857 
9858 	/* Is there a task of a high priority class? */
9859 	if (this_rq->nr_running != this_rq->cfs.h_nr_running)
9860 		pulled_task = -1;
9861 
9862 	if (pulled_task)
9863 		this_rq->idle_stamp = 0;
9864 
9865 	rq_repin_lock(this_rq, rf);
9866 
9867 	return pulled_task;
9868 }
9869 
9870 /*
9871  * run_rebalance_domains is triggered when needed from the scheduler tick.
9872  * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
9873  */
9874 static __latent_entropy void run_rebalance_domains(struct softirq_action *h)
9875 {
9876 	struct rq *this_rq = this_rq();
9877 	enum cpu_idle_type idle = this_rq->idle_balance ?
9878 						CPU_IDLE : CPU_NOT_IDLE;
9879 
9880 	/*
9881 	 * If this CPU has a pending nohz_balance_kick, then do the
9882 	 * balancing on behalf of the other idle CPUs whose ticks are
9883 	 * stopped. Do nohz_idle_balance *before* rebalance_domains to
9884 	 * give the idle CPUs a chance to load balance. Else we may
9885 	 * load balance only within the local sched_domain hierarchy
9886 	 * and abort nohz_idle_balance altogether if we pull some load.
9887 	 */
9888 	if (nohz_idle_balance(this_rq, idle))
9889 		return;
9890 
9891 	/* normal load balance */
9892 	update_blocked_averages(this_rq->cpu);
9893 	rebalance_domains(this_rq, idle);
9894 }
9895 
9896 /*
9897  * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
9898  */
9899 void trigger_load_balance(struct rq *rq)
9900 {
9901 	/* Don't need to rebalance while attached to NULL domain */
9902 	if (unlikely(on_null_domain(rq)))
9903 		return;
9904 
9905 	if (time_after_eq(jiffies, rq->next_balance))
9906 		raise_softirq(SCHED_SOFTIRQ);
9907 
9908 	nohz_balancer_kick(rq);
9909 }
9910 
9911 static void rq_online_fair(struct rq *rq)
9912 {
9913 	update_sysctl();
9914 
9915 	update_runtime_enabled(rq);
9916 }
9917 
9918 static void rq_offline_fair(struct rq *rq)
9919 {
9920 	update_sysctl();
9921 
9922 	/* Ensure any throttled groups are reachable by pick_next_task */
9923 	unthrottle_offline_cfs_rqs(rq);
9924 }
9925 
9926 #endif /* CONFIG_SMP */
9927 
9928 /*
9929  * scheduler tick hitting a task of our scheduling class.
9930  *
9931  * NOTE: This function can be called remotely by the tick offload that
9932  * goes along full dynticks. Therefore no local assumption can be made
9933  * and everything must be accessed through the @rq and @curr passed in
9934  * parameters.
9935  */
9936 static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
9937 {
9938 	struct cfs_rq *cfs_rq;
9939 	struct sched_entity *se = &curr->se;
9940 
9941 	for_each_sched_entity(se) {
9942 		cfs_rq = cfs_rq_of(se);
9943 		entity_tick(cfs_rq, se, queued);
9944 	}
9945 
9946 	if (static_branch_unlikely(&sched_numa_balancing))
9947 		task_tick_numa(rq, curr);
9948 
9949 	update_misfit_status(curr, rq);
9950 	update_overutilized_status(task_rq(curr));
9951 }
9952 
9953 /*
9954  * called on fork with the child task as argument from the parent's context
9955  *  - child not yet on the tasklist
9956  *  - preemption disabled
9957  */
9958 static void task_fork_fair(struct task_struct *p)
9959 {
9960 	struct cfs_rq *cfs_rq;
9961 	struct sched_entity *se = &p->se, *curr;
9962 	struct rq *rq = this_rq();
9963 	struct rq_flags rf;
9964 
9965 	rq_lock(rq, &rf);
9966 	update_rq_clock(rq);
9967 
9968 	cfs_rq = task_cfs_rq(current);
9969 	curr = cfs_rq->curr;
9970 	if (curr) {
9971 		update_curr(cfs_rq);
9972 		se->vruntime = curr->vruntime;
9973 	}
9974 	place_entity(cfs_rq, se, 1);
9975 
9976 	if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
9977 		/*
9978 		 * Upon rescheduling, sched_class::put_prev_task() will place
9979 		 * 'current' within the tree based on its new key value.
9980 		 */
9981 		swap(curr->vruntime, se->vruntime);
9982 		resched_curr(rq);
9983 	}
9984 
9985 	se->vruntime -= cfs_rq->min_vruntime;
9986 	rq_unlock(rq, &rf);
9987 }
9988 
9989 /*
9990  * Priority of the task has changed. Check to see if we preempt
9991  * the current task.
9992  */
9993 static void
9994 prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
9995 {
9996 	if (!task_on_rq_queued(p))
9997 		return;
9998 
9999 	/*
10000 	 * Reschedule if we are currently running on this runqueue and
10001 	 * our priority decreased, or if we are not currently running on
10002 	 * this runqueue and our priority is higher than the current's
10003 	 */
10004 	if (rq->curr == p) {
10005 		if (p->prio > oldprio)
10006 			resched_curr(rq);
10007 	} else
10008 		check_preempt_curr(rq, p, 0);
10009 }
10010 
10011 static inline bool vruntime_normalized(struct task_struct *p)
10012 {
10013 	struct sched_entity *se = &p->se;
10014 
10015 	/*
10016 	 * In both the TASK_ON_RQ_QUEUED and TASK_ON_RQ_MIGRATING cases,
10017 	 * the dequeue_entity(.flags=0) will already have normalized the
10018 	 * vruntime.
10019 	 */
10020 	if (p->on_rq)
10021 		return true;
10022 
10023 	/*
10024 	 * When !on_rq, vruntime of the task has usually NOT been normalized.
10025 	 * But there are some cases where it has already been normalized:
10026 	 *
10027 	 * - A forked child which is waiting for being woken up by
10028 	 *   wake_up_new_task().
10029 	 * - A task which has been woken up by try_to_wake_up() and
10030 	 *   waiting for actually being woken up by sched_ttwu_pending().
10031 	 */
10032 	if (!se->sum_exec_runtime ||
10033 	    (p->state == TASK_WAKING && p->sched_remote_wakeup))
10034 		return true;
10035 
10036 	return false;
10037 }
10038 
10039 #ifdef CONFIG_FAIR_GROUP_SCHED
10040 /*
10041  * Propagate the changes of the sched_entity across the tg tree to make it
10042  * visible to the root
10043  */
10044 static void propagate_entity_cfs_rq(struct sched_entity *se)
10045 {
10046 	struct cfs_rq *cfs_rq;
10047 
10048 	/* Start to propagate at parent */
10049 	se = se->parent;
10050 
10051 	for_each_sched_entity(se) {
10052 		cfs_rq = cfs_rq_of(se);
10053 
10054 		if (cfs_rq_throttled(cfs_rq))
10055 			break;
10056 
10057 		update_load_avg(cfs_rq, se, UPDATE_TG);
10058 	}
10059 }
10060 #else
10061 static void propagate_entity_cfs_rq(struct sched_entity *se) { }
10062 #endif
10063 
10064 static void detach_entity_cfs_rq(struct sched_entity *se)
10065 {
10066 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
10067 
10068 	/* Catch up with the cfs_rq and remove our load when we leave */
10069 	update_load_avg(cfs_rq, se, 0);
10070 	detach_entity_load_avg(cfs_rq, se);
10071 	update_tg_load_avg(cfs_rq, false);
10072 	propagate_entity_cfs_rq(se);
10073 }
10074 
10075 static void attach_entity_cfs_rq(struct sched_entity *se)
10076 {
10077 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
10078 
10079 #ifdef CONFIG_FAIR_GROUP_SCHED
10080 	/*
10081 	 * Since the real-depth could have been changed (only FAIR
10082 	 * class maintain depth value), reset depth properly.
10083 	 */
10084 	se->depth = se->parent ? se->parent->depth + 1 : 0;
10085 #endif
10086 
10087 	/* Synchronize entity with its cfs_rq */
10088 	update_load_avg(cfs_rq, se, sched_feat(ATTACH_AGE_LOAD) ? 0 : SKIP_AGE_LOAD);
10089 	attach_entity_load_avg(cfs_rq, se, 0);
10090 	update_tg_load_avg(cfs_rq, false);
10091 	propagate_entity_cfs_rq(se);
10092 }
10093 
10094 static void detach_task_cfs_rq(struct task_struct *p)
10095 {
10096 	struct sched_entity *se = &p->se;
10097 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
10098 
10099 	if (!vruntime_normalized(p)) {
10100 		/*
10101 		 * Fix up our vruntime so that the current sleep doesn't
10102 		 * cause 'unlimited' sleep bonus.
10103 		 */
10104 		place_entity(cfs_rq, se, 0);
10105 		se->vruntime -= cfs_rq->min_vruntime;
10106 	}
10107 
10108 	detach_entity_cfs_rq(se);
10109 }
10110 
10111 static void attach_task_cfs_rq(struct task_struct *p)
10112 {
10113 	struct sched_entity *se = &p->se;
10114 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
10115 
10116 	attach_entity_cfs_rq(se);
10117 
10118 	if (!vruntime_normalized(p))
10119 		se->vruntime += cfs_rq->min_vruntime;
10120 }
10121 
10122 static void switched_from_fair(struct rq *rq, struct task_struct *p)
10123 {
10124 	detach_task_cfs_rq(p);
10125 }
10126 
10127 static void switched_to_fair(struct rq *rq, struct task_struct *p)
10128 {
10129 	attach_task_cfs_rq(p);
10130 
10131 	if (task_on_rq_queued(p)) {
10132 		/*
10133 		 * We were most likely switched from sched_rt, so
10134 		 * kick off the schedule if running, otherwise just see
10135 		 * if we can still preempt the current task.
10136 		 */
10137 		if (rq->curr == p)
10138 			resched_curr(rq);
10139 		else
10140 			check_preempt_curr(rq, p, 0);
10141 	}
10142 }
10143 
10144 /* Account for a task changing its policy or group.
10145  *
10146  * This routine is mostly called to set cfs_rq->curr field when a task
10147  * migrates between groups/classes.
10148  */
10149 static void set_next_task_fair(struct rq *rq, struct task_struct *p)
10150 {
10151 	struct sched_entity *se = &p->se;
10152 
10153 #ifdef CONFIG_SMP
10154 	if (task_on_rq_queued(p)) {
10155 		/*
10156 		 * Move the next running task to the front of the list, so our
10157 		 * cfs_tasks list becomes MRU one.
10158 		 */
10159 		list_move(&se->group_node, &rq->cfs_tasks);
10160 	}
10161 #endif
10162 
10163 	for_each_sched_entity(se) {
10164 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
10165 
10166 		set_next_entity(cfs_rq, se);
10167 		/* ensure bandwidth has been allocated on our new cfs_rq */
10168 		account_cfs_rq_runtime(cfs_rq, 0);
10169 	}
10170 }
10171 
10172 void init_cfs_rq(struct cfs_rq *cfs_rq)
10173 {
10174 	cfs_rq->tasks_timeline = RB_ROOT_CACHED;
10175 	cfs_rq->min_vruntime = (u64)(-(1LL << 20));
10176 #ifndef CONFIG_64BIT
10177 	cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
10178 #endif
10179 #ifdef CONFIG_SMP
10180 	raw_spin_lock_init(&cfs_rq->removed.lock);
10181 #endif
10182 }
10183 
10184 #ifdef CONFIG_FAIR_GROUP_SCHED
10185 static void task_set_group_fair(struct task_struct *p)
10186 {
10187 	struct sched_entity *se = &p->se;
10188 
10189 	set_task_rq(p, task_cpu(p));
10190 	se->depth = se->parent ? se->parent->depth + 1 : 0;
10191 }
10192 
10193 static void task_move_group_fair(struct task_struct *p)
10194 {
10195 	detach_task_cfs_rq(p);
10196 	set_task_rq(p, task_cpu(p));
10197 
10198 #ifdef CONFIG_SMP
10199 	/* Tell se's cfs_rq has been changed -- migrated */
10200 	p->se.avg.last_update_time = 0;
10201 #endif
10202 	attach_task_cfs_rq(p);
10203 }
10204 
10205 static void task_change_group_fair(struct task_struct *p, int type)
10206 {
10207 	switch (type) {
10208 	case TASK_SET_GROUP:
10209 		task_set_group_fair(p);
10210 		break;
10211 
10212 	case TASK_MOVE_GROUP:
10213 		task_move_group_fair(p);
10214 		break;
10215 	}
10216 }
10217 
10218 void free_fair_sched_group(struct task_group *tg)
10219 {
10220 	int i;
10221 
10222 	destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
10223 
10224 	for_each_possible_cpu(i) {
10225 		if (tg->cfs_rq)
10226 			kfree(tg->cfs_rq[i]);
10227 		if (tg->se)
10228 			kfree(tg->se[i]);
10229 	}
10230 
10231 	kfree(tg->cfs_rq);
10232 	kfree(tg->se);
10233 }
10234 
10235 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
10236 {
10237 	struct sched_entity *se;
10238 	struct cfs_rq *cfs_rq;
10239 	int i;
10240 
10241 	tg->cfs_rq = kcalloc(nr_cpu_ids, sizeof(cfs_rq), GFP_KERNEL);
10242 	if (!tg->cfs_rq)
10243 		goto err;
10244 	tg->se = kcalloc(nr_cpu_ids, sizeof(se), GFP_KERNEL);
10245 	if (!tg->se)
10246 		goto err;
10247 
10248 	tg->shares = NICE_0_LOAD;
10249 
10250 	init_cfs_bandwidth(tg_cfs_bandwidth(tg));
10251 
10252 	for_each_possible_cpu(i) {
10253 		cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
10254 				      GFP_KERNEL, cpu_to_node(i));
10255 		if (!cfs_rq)
10256 			goto err;
10257 
10258 		se = kzalloc_node(sizeof(struct sched_entity),
10259 				  GFP_KERNEL, cpu_to_node(i));
10260 		if (!se)
10261 			goto err_free_rq;
10262 
10263 		init_cfs_rq(cfs_rq);
10264 		init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
10265 		init_entity_runnable_average(se);
10266 	}
10267 
10268 	return 1;
10269 
10270 err_free_rq:
10271 	kfree(cfs_rq);
10272 err:
10273 	return 0;
10274 }
10275 
10276 void online_fair_sched_group(struct task_group *tg)
10277 {
10278 	struct sched_entity *se;
10279 	struct rq_flags rf;
10280 	struct rq *rq;
10281 	int i;
10282 
10283 	for_each_possible_cpu(i) {
10284 		rq = cpu_rq(i);
10285 		se = tg->se[i];
10286 		rq_lock_irq(rq, &rf);
10287 		update_rq_clock(rq);
10288 		attach_entity_cfs_rq(se);
10289 		sync_throttle(tg, i);
10290 		rq_unlock_irq(rq, &rf);
10291 	}
10292 }
10293 
10294 void unregister_fair_sched_group(struct task_group *tg)
10295 {
10296 	unsigned long flags;
10297 	struct rq *rq;
10298 	int cpu;
10299 
10300 	for_each_possible_cpu(cpu) {
10301 		if (tg->se[cpu])
10302 			remove_entity_load_avg(tg->se[cpu]);
10303 
10304 		/*
10305 		 * Only empty task groups can be destroyed; so we can speculatively
10306 		 * check on_list without danger of it being re-added.
10307 		 */
10308 		if (!tg->cfs_rq[cpu]->on_list)
10309 			continue;
10310 
10311 		rq = cpu_rq(cpu);
10312 
10313 		raw_spin_lock_irqsave(&rq->lock, flags);
10314 		list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
10315 		raw_spin_unlock_irqrestore(&rq->lock, flags);
10316 	}
10317 }
10318 
10319 void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
10320 			struct sched_entity *se, int cpu,
10321 			struct sched_entity *parent)
10322 {
10323 	struct rq *rq = cpu_rq(cpu);
10324 
10325 	cfs_rq->tg = tg;
10326 	cfs_rq->rq = rq;
10327 	init_cfs_rq_runtime(cfs_rq);
10328 
10329 	tg->cfs_rq[cpu] = cfs_rq;
10330 	tg->se[cpu] = se;
10331 
10332 	/* se could be NULL for root_task_group */
10333 	if (!se)
10334 		return;
10335 
10336 	if (!parent) {
10337 		se->cfs_rq = &rq->cfs;
10338 		se->depth = 0;
10339 	} else {
10340 		se->cfs_rq = parent->my_q;
10341 		se->depth = parent->depth + 1;
10342 	}
10343 
10344 	se->my_q = cfs_rq;
10345 	/* guarantee group entities always have weight */
10346 	update_load_set(&se->load, NICE_0_LOAD);
10347 	se->parent = parent;
10348 }
10349 
10350 static DEFINE_MUTEX(shares_mutex);
10351 
10352 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
10353 {
10354 	int i;
10355 
10356 	/*
10357 	 * We can't change the weight of the root cgroup.
10358 	 */
10359 	if (!tg->se[0])
10360 		return -EINVAL;
10361 
10362 	shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
10363 
10364 	mutex_lock(&shares_mutex);
10365 	if (tg->shares == shares)
10366 		goto done;
10367 
10368 	tg->shares = shares;
10369 	for_each_possible_cpu(i) {
10370 		struct rq *rq = cpu_rq(i);
10371 		struct sched_entity *se = tg->se[i];
10372 		struct rq_flags rf;
10373 
10374 		/* Propagate contribution to hierarchy */
10375 		rq_lock_irqsave(rq, &rf);
10376 		update_rq_clock(rq);
10377 		for_each_sched_entity(se) {
10378 			update_load_avg(cfs_rq_of(se), se, UPDATE_TG);
10379 			update_cfs_group(se);
10380 		}
10381 		rq_unlock_irqrestore(rq, &rf);
10382 	}
10383 
10384 done:
10385 	mutex_unlock(&shares_mutex);
10386 	return 0;
10387 }
10388 #else /* CONFIG_FAIR_GROUP_SCHED */
10389 
10390 void free_fair_sched_group(struct task_group *tg) { }
10391 
10392 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
10393 {
10394 	return 1;
10395 }
10396 
10397 void online_fair_sched_group(struct task_group *tg) { }
10398 
10399 void unregister_fair_sched_group(struct task_group *tg) { }
10400 
10401 #endif /* CONFIG_FAIR_GROUP_SCHED */
10402 
10403 
10404 static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
10405 {
10406 	struct sched_entity *se = &task->se;
10407 	unsigned int rr_interval = 0;
10408 
10409 	/*
10410 	 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
10411 	 * idle runqueue:
10412 	 */
10413 	if (rq->cfs.load.weight)
10414 		rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
10415 
10416 	return rr_interval;
10417 }
10418 
10419 /*
10420  * All the scheduling class methods:
10421  */
10422 const struct sched_class fair_sched_class = {
10423 	.next			= &idle_sched_class,
10424 	.enqueue_task		= enqueue_task_fair,
10425 	.dequeue_task		= dequeue_task_fair,
10426 	.yield_task		= yield_task_fair,
10427 	.yield_to_task		= yield_to_task_fair,
10428 
10429 	.check_preempt_curr	= check_preempt_wakeup,
10430 
10431 	.pick_next_task		= pick_next_task_fair,
10432 
10433 	.put_prev_task		= put_prev_task_fair,
10434 	.set_next_task          = set_next_task_fair,
10435 
10436 #ifdef CONFIG_SMP
10437 	.select_task_rq		= select_task_rq_fair,
10438 	.migrate_task_rq	= migrate_task_rq_fair,
10439 
10440 	.rq_online		= rq_online_fair,
10441 	.rq_offline		= rq_offline_fair,
10442 
10443 	.task_dead		= task_dead_fair,
10444 	.set_cpus_allowed	= set_cpus_allowed_common,
10445 #endif
10446 
10447 	.task_tick		= task_tick_fair,
10448 	.task_fork		= task_fork_fair,
10449 
10450 	.prio_changed		= prio_changed_fair,
10451 	.switched_from		= switched_from_fair,
10452 	.switched_to		= switched_to_fair,
10453 
10454 	.get_rr_interval	= get_rr_interval_fair,
10455 
10456 	.update_curr		= update_curr_fair,
10457 
10458 #ifdef CONFIG_FAIR_GROUP_SCHED
10459 	.task_change_group	= task_change_group_fair,
10460 #endif
10461 
10462 #ifdef CONFIG_UCLAMP_TASK
10463 	.uclamp_enabled		= 1,
10464 #endif
10465 };
10466 
10467 #ifdef CONFIG_SCHED_DEBUG
10468 void print_cfs_stats(struct seq_file *m, int cpu)
10469 {
10470 	struct cfs_rq *cfs_rq, *pos;
10471 
10472 	rcu_read_lock();
10473 	for_each_leaf_cfs_rq_safe(cpu_rq(cpu), cfs_rq, pos)
10474 		print_cfs_rq(m, cpu, cfs_rq);
10475 	rcu_read_unlock();
10476 }
10477 
10478 #ifdef CONFIG_NUMA_BALANCING
10479 void show_numa_stats(struct task_struct *p, struct seq_file *m)
10480 {
10481 	int node;
10482 	unsigned long tsf = 0, tpf = 0, gsf = 0, gpf = 0;
10483 	struct numa_group *ng;
10484 
10485 	rcu_read_lock();
10486 	ng = rcu_dereference(p->numa_group);
10487 	for_each_online_node(node) {
10488 		if (p->numa_faults) {
10489 			tsf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 0)];
10490 			tpf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 1)];
10491 		}
10492 		if (ng) {
10493 			gsf = ng->faults[task_faults_idx(NUMA_MEM, node, 0)],
10494 			gpf = ng->faults[task_faults_idx(NUMA_MEM, node, 1)];
10495 		}
10496 		print_numa_stats(m, node, tsf, tpf, gsf, gpf);
10497 	}
10498 	rcu_read_unlock();
10499 }
10500 #endif /* CONFIG_NUMA_BALANCING */
10501 #endif /* CONFIG_SCHED_DEBUG */
10502 
10503 __init void init_sched_fair_class(void)
10504 {
10505 #ifdef CONFIG_SMP
10506 	open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
10507 
10508 #ifdef CONFIG_NO_HZ_COMMON
10509 	nohz.next_balance = jiffies;
10510 	nohz.next_blocked = jiffies;
10511 	zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
10512 #endif
10513 #endif /* SMP */
10514 
10515 }
10516 
10517 /*
10518  * Helper functions to facilitate extracting info from tracepoints.
10519  */
10520 
10521 const struct sched_avg *sched_trace_cfs_rq_avg(struct cfs_rq *cfs_rq)
10522 {
10523 #ifdef CONFIG_SMP
10524 	return cfs_rq ? &cfs_rq->avg : NULL;
10525 #else
10526 	return NULL;
10527 #endif
10528 }
10529 EXPORT_SYMBOL_GPL(sched_trace_cfs_rq_avg);
10530 
10531 char *sched_trace_cfs_rq_path(struct cfs_rq *cfs_rq, char *str, int len)
10532 {
10533 	if (!cfs_rq) {
10534 		if (str)
10535 			strlcpy(str, "(null)", len);
10536 		else
10537 			return NULL;
10538 	}
10539 
10540 	cfs_rq_tg_path(cfs_rq, str, len);
10541 	return str;
10542 }
10543 EXPORT_SYMBOL_GPL(sched_trace_cfs_rq_path);
10544 
10545 int sched_trace_cfs_rq_cpu(struct cfs_rq *cfs_rq)
10546 {
10547 	return cfs_rq ? cpu_of(rq_of(cfs_rq)) : -1;
10548 }
10549 EXPORT_SYMBOL_GPL(sched_trace_cfs_rq_cpu);
10550 
10551 const struct sched_avg *sched_trace_rq_avg_rt(struct rq *rq)
10552 {
10553 #ifdef CONFIG_SMP
10554 	return rq ? &rq->avg_rt : NULL;
10555 #else
10556 	return NULL;
10557 #endif
10558 }
10559 EXPORT_SYMBOL_GPL(sched_trace_rq_avg_rt);
10560 
10561 const struct sched_avg *sched_trace_rq_avg_dl(struct rq *rq)
10562 {
10563 #ifdef CONFIG_SMP
10564 	return rq ? &rq->avg_dl : NULL;
10565 #else
10566 	return NULL;
10567 #endif
10568 }
10569 EXPORT_SYMBOL_GPL(sched_trace_rq_avg_dl);
10570 
10571 const struct sched_avg *sched_trace_rq_avg_irq(struct rq *rq)
10572 {
10573 #if defined(CONFIG_SMP) && defined(CONFIG_HAVE_SCHED_AVG_IRQ)
10574 	return rq ? &rq->avg_irq : NULL;
10575 #else
10576 	return NULL;
10577 #endif
10578 }
10579 EXPORT_SYMBOL_GPL(sched_trace_rq_avg_irq);
10580 
10581 int sched_trace_rq_cpu(struct rq *rq)
10582 {
10583 	return rq ? cpu_of(rq) : -1;
10584 }
10585 EXPORT_SYMBOL_GPL(sched_trace_rq_cpu);
10586 
10587 const struct cpumask *sched_trace_rd_span(struct root_domain *rd)
10588 {
10589 #ifdef CONFIG_SMP
10590 	return rd ? rd->span : NULL;
10591 #else
10592 	return NULL;
10593 #endif
10594 }
10595 EXPORT_SYMBOL_GPL(sched_trace_rd_span);
10596