1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH) 4 * 5 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com> 6 * 7 * Interactivity improvements by Mike Galbraith 8 * (C) 2007 Mike Galbraith <efault@gmx.de> 9 * 10 * Various enhancements by Dmitry Adamushko. 11 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com> 12 * 13 * Group scheduling enhancements by Srivatsa Vaddagiri 14 * Copyright IBM Corporation, 2007 15 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com> 16 * 17 * Scaled math optimizations by Thomas Gleixner 18 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de> 19 * 20 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra 21 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra 22 */ 23 #include "sched.h" 24 25 #include <trace/events/sched.h> 26 27 /* 28 * Targeted preemption latency for CPU-bound tasks: 29 * 30 * NOTE: this latency value is not the same as the concept of 31 * 'timeslice length' - timeslices in CFS are of variable length 32 * and have no persistent notion like in traditional, time-slice 33 * based scheduling concepts. 34 * 35 * (to see the precise effective timeslice length of your workload, 36 * run vmstat and monitor the context-switches (cs) field) 37 * 38 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds) 39 */ 40 unsigned int sysctl_sched_latency = 6000000ULL; 41 static unsigned int normalized_sysctl_sched_latency = 6000000ULL; 42 43 /* 44 * The initial- and re-scaling of tunables is configurable 45 * 46 * Options are: 47 * 48 * SCHED_TUNABLESCALING_NONE - unscaled, always *1 49 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus) 50 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus 51 * 52 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus)) 53 */ 54 enum sched_tunable_scaling sysctl_sched_tunable_scaling = SCHED_TUNABLESCALING_LOG; 55 56 /* 57 * Minimal preemption granularity for CPU-bound tasks: 58 * 59 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds) 60 */ 61 unsigned int sysctl_sched_min_granularity = 750000ULL; 62 static unsigned int normalized_sysctl_sched_min_granularity = 750000ULL; 63 64 /* 65 * This value is kept at sysctl_sched_latency/sysctl_sched_min_granularity 66 */ 67 static unsigned int sched_nr_latency = 8; 68 69 /* 70 * After fork, child runs first. If set to 0 (default) then 71 * parent will (try to) run first. 72 */ 73 unsigned int sysctl_sched_child_runs_first __read_mostly; 74 75 /* 76 * SCHED_OTHER wake-up granularity. 77 * 78 * This option delays the preemption effects of decoupled workloads 79 * and reduces their over-scheduling. Synchronous workloads will still 80 * have immediate wakeup/sleep latencies. 81 * 82 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds) 83 */ 84 unsigned int sysctl_sched_wakeup_granularity = 1000000UL; 85 static unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL; 86 87 const_debug unsigned int sysctl_sched_migration_cost = 500000UL; 88 89 #ifdef CONFIG_SMP 90 /* 91 * For asym packing, by default the lower numbered CPU has higher priority. 92 */ 93 int __weak arch_asym_cpu_priority(int cpu) 94 { 95 return -cpu; 96 } 97 98 /* 99 * The margin used when comparing utilization with CPU capacity. 100 * 101 * (default: ~20%) 102 */ 103 #define fits_capacity(cap, max) ((cap) * 1280 < (max) * 1024) 104 105 #endif 106 107 #ifdef CONFIG_CFS_BANDWIDTH 108 /* 109 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool 110 * each time a cfs_rq requests quota. 111 * 112 * Note: in the case that the slice exceeds the runtime remaining (either due 113 * to consumption or the quota being specified to be smaller than the slice) 114 * we will always only issue the remaining available time. 115 * 116 * (default: 5 msec, units: microseconds) 117 */ 118 unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL; 119 #endif 120 121 static inline void update_load_add(struct load_weight *lw, unsigned long inc) 122 { 123 lw->weight += inc; 124 lw->inv_weight = 0; 125 } 126 127 static inline void update_load_sub(struct load_weight *lw, unsigned long dec) 128 { 129 lw->weight -= dec; 130 lw->inv_weight = 0; 131 } 132 133 static inline void update_load_set(struct load_weight *lw, unsigned long w) 134 { 135 lw->weight = w; 136 lw->inv_weight = 0; 137 } 138 139 /* 140 * Increase the granularity value when there are more CPUs, 141 * because with more CPUs the 'effective latency' as visible 142 * to users decreases. But the relationship is not linear, 143 * so pick a second-best guess by going with the log2 of the 144 * number of CPUs. 145 * 146 * This idea comes from the SD scheduler of Con Kolivas: 147 */ 148 static unsigned int get_update_sysctl_factor(void) 149 { 150 unsigned int cpus = min_t(unsigned int, num_online_cpus(), 8); 151 unsigned int factor; 152 153 switch (sysctl_sched_tunable_scaling) { 154 case SCHED_TUNABLESCALING_NONE: 155 factor = 1; 156 break; 157 case SCHED_TUNABLESCALING_LINEAR: 158 factor = cpus; 159 break; 160 case SCHED_TUNABLESCALING_LOG: 161 default: 162 factor = 1 + ilog2(cpus); 163 break; 164 } 165 166 return factor; 167 } 168 169 static void update_sysctl(void) 170 { 171 unsigned int factor = get_update_sysctl_factor(); 172 173 #define SET_SYSCTL(name) \ 174 (sysctl_##name = (factor) * normalized_sysctl_##name) 175 SET_SYSCTL(sched_min_granularity); 176 SET_SYSCTL(sched_latency); 177 SET_SYSCTL(sched_wakeup_granularity); 178 #undef SET_SYSCTL 179 } 180 181 void sched_init_granularity(void) 182 { 183 update_sysctl(); 184 } 185 186 #define WMULT_CONST (~0U) 187 #define WMULT_SHIFT 32 188 189 static void __update_inv_weight(struct load_weight *lw) 190 { 191 unsigned long w; 192 193 if (likely(lw->inv_weight)) 194 return; 195 196 w = scale_load_down(lw->weight); 197 198 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST)) 199 lw->inv_weight = 1; 200 else if (unlikely(!w)) 201 lw->inv_weight = WMULT_CONST; 202 else 203 lw->inv_weight = WMULT_CONST / w; 204 } 205 206 /* 207 * delta_exec * weight / lw.weight 208 * OR 209 * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT 210 * 211 * Either weight := NICE_0_LOAD and lw \e sched_prio_to_wmult[], in which case 212 * we're guaranteed shift stays positive because inv_weight is guaranteed to 213 * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22. 214 * 215 * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus 216 * weight/lw.weight <= 1, and therefore our shift will also be positive. 217 */ 218 static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw) 219 { 220 u64 fact = scale_load_down(weight); 221 int shift = WMULT_SHIFT; 222 223 __update_inv_weight(lw); 224 225 if (unlikely(fact >> 32)) { 226 while (fact >> 32) { 227 fact >>= 1; 228 shift--; 229 } 230 } 231 232 /* hint to use a 32x32->64 mul */ 233 fact = (u64)(u32)fact * lw->inv_weight; 234 235 while (fact >> 32) { 236 fact >>= 1; 237 shift--; 238 } 239 240 return mul_u64_u32_shr(delta_exec, fact, shift); 241 } 242 243 244 const struct sched_class fair_sched_class; 245 246 /************************************************************** 247 * CFS operations on generic schedulable entities: 248 */ 249 250 #ifdef CONFIG_FAIR_GROUP_SCHED 251 static inline struct task_struct *task_of(struct sched_entity *se) 252 { 253 SCHED_WARN_ON(!entity_is_task(se)); 254 return container_of(se, struct task_struct, se); 255 } 256 257 /* Walk up scheduling entities hierarchy */ 258 #define for_each_sched_entity(se) \ 259 for (; se; se = se->parent) 260 261 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p) 262 { 263 return p->se.cfs_rq; 264 } 265 266 /* runqueue on which this entity is (to be) queued */ 267 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se) 268 { 269 return se->cfs_rq; 270 } 271 272 /* runqueue "owned" by this group */ 273 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp) 274 { 275 return grp->my_q; 276 } 277 278 static inline void cfs_rq_tg_path(struct cfs_rq *cfs_rq, char *path, int len) 279 { 280 if (!path) 281 return; 282 283 if (cfs_rq && task_group_is_autogroup(cfs_rq->tg)) 284 autogroup_path(cfs_rq->tg, path, len); 285 else if (cfs_rq && cfs_rq->tg->css.cgroup) 286 cgroup_path(cfs_rq->tg->css.cgroup, path, len); 287 else 288 strlcpy(path, "(null)", len); 289 } 290 291 static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq) 292 { 293 struct rq *rq = rq_of(cfs_rq); 294 int cpu = cpu_of(rq); 295 296 if (cfs_rq->on_list) 297 return rq->tmp_alone_branch == &rq->leaf_cfs_rq_list; 298 299 cfs_rq->on_list = 1; 300 301 /* 302 * Ensure we either appear before our parent (if already 303 * enqueued) or force our parent to appear after us when it is 304 * enqueued. The fact that we always enqueue bottom-up 305 * reduces this to two cases and a special case for the root 306 * cfs_rq. Furthermore, it also means that we will always reset 307 * tmp_alone_branch either when the branch is connected 308 * to a tree or when we reach the top of the tree 309 */ 310 if (cfs_rq->tg->parent && 311 cfs_rq->tg->parent->cfs_rq[cpu]->on_list) { 312 /* 313 * If parent is already on the list, we add the child 314 * just before. Thanks to circular linked property of 315 * the list, this means to put the child at the tail 316 * of the list that starts by parent. 317 */ 318 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list, 319 &(cfs_rq->tg->parent->cfs_rq[cpu]->leaf_cfs_rq_list)); 320 /* 321 * The branch is now connected to its tree so we can 322 * reset tmp_alone_branch to the beginning of the 323 * list. 324 */ 325 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list; 326 return true; 327 } 328 329 if (!cfs_rq->tg->parent) { 330 /* 331 * cfs rq without parent should be put 332 * at the tail of the list. 333 */ 334 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list, 335 &rq->leaf_cfs_rq_list); 336 /* 337 * We have reach the top of a tree so we can reset 338 * tmp_alone_branch to the beginning of the list. 339 */ 340 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list; 341 return true; 342 } 343 344 /* 345 * The parent has not already been added so we want to 346 * make sure that it will be put after us. 347 * tmp_alone_branch points to the begin of the branch 348 * where we will add parent. 349 */ 350 list_add_rcu(&cfs_rq->leaf_cfs_rq_list, rq->tmp_alone_branch); 351 /* 352 * update tmp_alone_branch to points to the new begin 353 * of the branch 354 */ 355 rq->tmp_alone_branch = &cfs_rq->leaf_cfs_rq_list; 356 return false; 357 } 358 359 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq) 360 { 361 if (cfs_rq->on_list) { 362 struct rq *rq = rq_of(cfs_rq); 363 364 /* 365 * With cfs_rq being unthrottled/throttled during an enqueue, 366 * it can happen the tmp_alone_branch points the a leaf that 367 * we finally want to del. In this case, tmp_alone_branch moves 368 * to the prev element but it will point to rq->leaf_cfs_rq_list 369 * at the end of the enqueue. 370 */ 371 if (rq->tmp_alone_branch == &cfs_rq->leaf_cfs_rq_list) 372 rq->tmp_alone_branch = cfs_rq->leaf_cfs_rq_list.prev; 373 374 list_del_rcu(&cfs_rq->leaf_cfs_rq_list); 375 cfs_rq->on_list = 0; 376 } 377 } 378 379 static inline void assert_list_leaf_cfs_rq(struct rq *rq) 380 { 381 SCHED_WARN_ON(rq->tmp_alone_branch != &rq->leaf_cfs_rq_list); 382 } 383 384 /* Iterate thr' all leaf cfs_rq's on a runqueue */ 385 #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) \ 386 list_for_each_entry_safe(cfs_rq, pos, &rq->leaf_cfs_rq_list, \ 387 leaf_cfs_rq_list) 388 389 /* Do the two (enqueued) entities belong to the same group ? */ 390 static inline struct cfs_rq * 391 is_same_group(struct sched_entity *se, struct sched_entity *pse) 392 { 393 if (se->cfs_rq == pse->cfs_rq) 394 return se->cfs_rq; 395 396 return NULL; 397 } 398 399 static inline struct sched_entity *parent_entity(struct sched_entity *se) 400 { 401 return se->parent; 402 } 403 404 static void 405 find_matching_se(struct sched_entity **se, struct sched_entity **pse) 406 { 407 int se_depth, pse_depth; 408 409 /* 410 * preemption test can be made between sibling entities who are in the 411 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of 412 * both tasks until we find their ancestors who are siblings of common 413 * parent. 414 */ 415 416 /* First walk up until both entities are at same depth */ 417 se_depth = (*se)->depth; 418 pse_depth = (*pse)->depth; 419 420 while (se_depth > pse_depth) { 421 se_depth--; 422 *se = parent_entity(*se); 423 } 424 425 while (pse_depth > se_depth) { 426 pse_depth--; 427 *pse = parent_entity(*pse); 428 } 429 430 while (!is_same_group(*se, *pse)) { 431 *se = parent_entity(*se); 432 *pse = parent_entity(*pse); 433 } 434 } 435 436 #else /* !CONFIG_FAIR_GROUP_SCHED */ 437 438 static inline struct task_struct *task_of(struct sched_entity *se) 439 { 440 return container_of(se, struct task_struct, se); 441 } 442 443 #define for_each_sched_entity(se) \ 444 for (; se; se = NULL) 445 446 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p) 447 { 448 return &task_rq(p)->cfs; 449 } 450 451 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se) 452 { 453 struct task_struct *p = task_of(se); 454 struct rq *rq = task_rq(p); 455 456 return &rq->cfs; 457 } 458 459 /* runqueue "owned" by this group */ 460 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp) 461 { 462 return NULL; 463 } 464 465 static inline void cfs_rq_tg_path(struct cfs_rq *cfs_rq, char *path, int len) 466 { 467 if (path) 468 strlcpy(path, "(null)", len); 469 } 470 471 static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq) 472 { 473 return true; 474 } 475 476 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq) 477 { 478 } 479 480 static inline void assert_list_leaf_cfs_rq(struct rq *rq) 481 { 482 } 483 484 #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) \ 485 for (cfs_rq = &rq->cfs, pos = NULL; cfs_rq; cfs_rq = pos) 486 487 static inline struct sched_entity *parent_entity(struct sched_entity *se) 488 { 489 return NULL; 490 } 491 492 static inline void 493 find_matching_se(struct sched_entity **se, struct sched_entity **pse) 494 { 495 } 496 497 #endif /* CONFIG_FAIR_GROUP_SCHED */ 498 499 static __always_inline 500 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec); 501 502 /************************************************************** 503 * Scheduling class tree data structure manipulation methods: 504 */ 505 506 static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime) 507 { 508 s64 delta = (s64)(vruntime - max_vruntime); 509 if (delta > 0) 510 max_vruntime = vruntime; 511 512 return max_vruntime; 513 } 514 515 static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime) 516 { 517 s64 delta = (s64)(vruntime - min_vruntime); 518 if (delta < 0) 519 min_vruntime = vruntime; 520 521 return min_vruntime; 522 } 523 524 static inline int entity_before(struct sched_entity *a, 525 struct sched_entity *b) 526 { 527 return (s64)(a->vruntime - b->vruntime) < 0; 528 } 529 530 static void update_min_vruntime(struct cfs_rq *cfs_rq) 531 { 532 struct sched_entity *curr = cfs_rq->curr; 533 struct rb_node *leftmost = rb_first_cached(&cfs_rq->tasks_timeline); 534 535 u64 vruntime = cfs_rq->min_vruntime; 536 537 if (curr) { 538 if (curr->on_rq) 539 vruntime = curr->vruntime; 540 else 541 curr = NULL; 542 } 543 544 if (leftmost) { /* non-empty tree */ 545 struct sched_entity *se; 546 se = rb_entry(leftmost, struct sched_entity, run_node); 547 548 if (!curr) 549 vruntime = se->vruntime; 550 else 551 vruntime = min_vruntime(vruntime, se->vruntime); 552 } 553 554 /* ensure we never gain time by being placed backwards. */ 555 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime); 556 #ifndef CONFIG_64BIT 557 smp_wmb(); 558 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime; 559 #endif 560 } 561 562 /* 563 * Enqueue an entity into the rb-tree: 564 */ 565 static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) 566 { 567 struct rb_node **link = &cfs_rq->tasks_timeline.rb_root.rb_node; 568 struct rb_node *parent = NULL; 569 struct sched_entity *entry; 570 bool leftmost = true; 571 572 /* 573 * Find the right place in the rbtree: 574 */ 575 while (*link) { 576 parent = *link; 577 entry = rb_entry(parent, struct sched_entity, run_node); 578 /* 579 * We dont care about collisions. Nodes with 580 * the same key stay together. 581 */ 582 if (entity_before(se, entry)) { 583 link = &parent->rb_left; 584 } else { 585 link = &parent->rb_right; 586 leftmost = false; 587 } 588 } 589 590 rb_link_node(&se->run_node, parent, link); 591 rb_insert_color_cached(&se->run_node, 592 &cfs_rq->tasks_timeline, leftmost); 593 } 594 595 static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) 596 { 597 rb_erase_cached(&se->run_node, &cfs_rq->tasks_timeline); 598 } 599 600 struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq) 601 { 602 struct rb_node *left = rb_first_cached(&cfs_rq->tasks_timeline); 603 604 if (!left) 605 return NULL; 606 607 return rb_entry(left, struct sched_entity, run_node); 608 } 609 610 static struct sched_entity *__pick_next_entity(struct sched_entity *se) 611 { 612 struct rb_node *next = rb_next(&se->run_node); 613 614 if (!next) 615 return NULL; 616 617 return rb_entry(next, struct sched_entity, run_node); 618 } 619 620 #ifdef CONFIG_SCHED_DEBUG 621 struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq) 622 { 623 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline.rb_root); 624 625 if (!last) 626 return NULL; 627 628 return rb_entry(last, struct sched_entity, run_node); 629 } 630 631 /************************************************************** 632 * Scheduling class statistics methods: 633 */ 634 635 int sched_proc_update_handler(struct ctl_table *table, int write, 636 void __user *buffer, size_t *lenp, 637 loff_t *ppos) 638 { 639 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 640 unsigned int factor = get_update_sysctl_factor(); 641 642 if (ret || !write) 643 return ret; 644 645 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency, 646 sysctl_sched_min_granularity); 647 648 #define WRT_SYSCTL(name) \ 649 (normalized_sysctl_##name = sysctl_##name / (factor)) 650 WRT_SYSCTL(sched_min_granularity); 651 WRT_SYSCTL(sched_latency); 652 WRT_SYSCTL(sched_wakeup_granularity); 653 #undef WRT_SYSCTL 654 655 return 0; 656 } 657 #endif 658 659 /* 660 * delta /= w 661 */ 662 static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se) 663 { 664 if (unlikely(se->load.weight != NICE_0_LOAD)) 665 delta = __calc_delta(delta, NICE_0_LOAD, &se->load); 666 667 return delta; 668 } 669 670 /* 671 * The idea is to set a period in which each task runs once. 672 * 673 * When there are too many tasks (sched_nr_latency) we have to stretch 674 * this period because otherwise the slices get too small. 675 * 676 * p = (nr <= nl) ? l : l*nr/nl 677 */ 678 static u64 __sched_period(unsigned long nr_running) 679 { 680 if (unlikely(nr_running > sched_nr_latency)) 681 return nr_running * sysctl_sched_min_granularity; 682 else 683 return sysctl_sched_latency; 684 } 685 686 /* 687 * We calculate the wall-time slice from the period by taking a part 688 * proportional to the weight. 689 * 690 * s = p*P[w/rw] 691 */ 692 static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se) 693 { 694 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq); 695 696 for_each_sched_entity(se) { 697 struct load_weight *load; 698 struct load_weight lw; 699 700 cfs_rq = cfs_rq_of(se); 701 load = &cfs_rq->load; 702 703 if (unlikely(!se->on_rq)) { 704 lw = cfs_rq->load; 705 706 update_load_add(&lw, se->load.weight); 707 load = &lw; 708 } 709 slice = __calc_delta(slice, se->load.weight, load); 710 } 711 return slice; 712 } 713 714 /* 715 * We calculate the vruntime slice of a to-be-inserted task. 716 * 717 * vs = s/w 718 */ 719 static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se) 720 { 721 return calc_delta_fair(sched_slice(cfs_rq, se), se); 722 } 723 724 #include "pelt.h" 725 #ifdef CONFIG_SMP 726 727 static int select_idle_sibling(struct task_struct *p, int prev_cpu, int cpu); 728 static unsigned long task_h_load(struct task_struct *p); 729 static unsigned long capacity_of(int cpu); 730 731 /* Give new sched_entity start runnable values to heavy its load in infant time */ 732 void init_entity_runnable_average(struct sched_entity *se) 733 { 734 struct sched_avg *sa = &se->avg; 735 736 memset(sa, 0, sizeof(*sa)); 737 738 /* 739 * Tasks are initialized with full load to be seen as heavy tasks until 740 * they get a chance to stabilize to their real load level. 741 * Group entities are initialized with zero load to reflect the fact that 742 * nothing has been attached to the task group yet. 743 */ 744 if (entity_is_task(se)) 745 sa->runnable_load_avg = sa->load_avg = scale_load_down(se->load.weight); 746 747 se->runnable_weight = se->load.weight; 748 749 /* when this task enqueue'ed, it will contribute to its cfs_rq's load_avg */ 750 } 751 752 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq); 753 static void attach_entity_cfs_rq(struct sched_entity *se); 754 755 /* 756 * With new tasks being created, their initial util_avgs are extrapolated 757 * based on the cfs_rq's current util_avg: 758 * 759 * util_avg = cfs_rq->util_avg / (cfs_rq->load_avg + 1) * se.load.weight 760 * 761 * However, in many cases, the above util_avg does not give a desired 762 * value. Moreover, the sum of the util_avgs may be divergent, such 763 * as when the series is a harmonic series. 764 * 765 * To solve this problem, we also cap the util_avg of successive tasks to 766 * only 1/2 of the left utilization budget: 767 * 768 * util_avg_cap = (cpu_scale - cfs_rq->avg.util_avg) / 2^n 769 * 770 * where n denotes the nth task and cpu_scale the CPU capacity. 771 * 772 * For example, for a CPU with 1024 of capacity, a simplest series from 773 * the beginning would be like: 774 * 775 * task util_avg: 512, 256, 128, 64, 32, 16, 8, ... 776 * cfs_rq util_avg: 512, 768, 896, 960, 992, 1008, 1016, ... 777 * 778 * Finally, that extrapolated util_avg is clamped to the cap (util_avg_cap) 779 * if util_avg > util_avg_cap. 780 */ 781 void post_init_entity_util_avg(struct task_struct *p) 782 { 783 struct sched_entity *se = &p->se; 784 struct cfs_rq *cfs_rq = cfs_rq_of(se); 785 struct sched_avg *sa = &se->avg; 786 long cpu_scale = arch_scale_cpu_capacity(cpu_of(rq_of(cfs_rq))); 787 long cap = (long)(cpu_scale - cfs_rq->avg.util_avg) / 2; 788 789 if (cap > 0) { 790 if (cfs_rq->avg.util_avg != 0) { 791 sa->util_avg = cfs_rq->avg.util_avg * se->load.weight; 792 sa->util_avg /= (cfs_rq->avg.load_avg + 1); 793 794 if (sa->util_avg > cap) 795 sa->util_avg = cap; 796 } else { 797 sa->util_avg = cap; 798 } 799 } 800 801 if (p->sched_class != &fair_sched_class) { 802 /* 803 * For !fair tasks do: 804 * 805 update_cfs_rq_load_avg(now, cfs_rq); 806 attach_entity_load_avg(cfs_rq, se, 0); 807 switched_from_fair(rq, p); 808 * 809 * such that the next switched_to_fair() has the 810 * expected state. 811 */ 812 se->avg.last_update_time = cfs_rq_clock_pelt(cfs_rq); 813 return; 814 } 815 816 attach_entity_cfs_rq(se); 817 } 818 819 #else /* !CONFIG_SMP */ 820 void init_entity_runnable_average(struct sched_entity *se) 821 { 822 } 823 void post_init_entity_util_avg(struct task_struct *p) 824 { 825 } 826 static void update_tg_load_avg(struct cfs_rq *cfs_rq, int force) 827 { 828 } 829 #endif /* CONFIG_SMP */ 830 831 /* 832 * Update the current task's runtime statistics. 833 */ 834 static void update_curr(struct cfs_rq *cfs_rq) 835 { 836 struct sched_entity *curr = cfs_rq->curr; 837 u64 now = rq_clock_task(rq_of(cfs_rq)); 838 u64 delta_exec; 839 840 if (unlikely(!curr)) 841 return; 842 843 delta_exec = now - curr->exec_start; 844 if (unlikely((s64)delta_exec <= 0)) 845 return; 846 847 curr->exec_start = now; 848 849 schedstat_set(curr->statistics.exec_max, 850 max(delta_exec, curr->statistics.exec_max)); 851 852 curr->sum_exec_runtime += delta_exec; 853 schedstat_add(cfs_rq->exec_clock, delta_exec); 854 855 curr->vruntime += calc_delta_fair(delta_exec, curr); 856 update_min_vruntime(cfs_rq); 857 858 if (entity_is_task(curr)) { 859 struct task_struct *curtask = task_of(curr); 860 861 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime); 862 cgroup_account_cputime(curtask, delta_exec); 863 account_group_exec_runtime(curtask, delta_exec); 864 } 865 866 account_cfs_rq_runtime(cfs_rq, delta_exec); 867 } 868 869 static void update_curr_fair(struct rq *rq) 870 { 871 update_curr(cfs_rq_of(&rq->curr->se)); 872 } 873 874 static inline void 875 update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se) 876 { 877 u64 wait_start, prev_wait_start; 878 879 if (!schedstat_enabled()) 880 return; 881 882 wait_start = rq_clock(rq_of(cfs_rq)); 883 prev_wait_start = schedstat_val(se->statistics.wait_start); 884 885 if (entity_is_task(se) && task_on_rq_migrating(task_of(se)) && 886 likely(wait_start > prev_wait_start)) 887 wait_start -= prev_wait_start; 888 889 __schedstat_set(se->statistics.wait_start, wait_start); 890 } 891 892 static inline void 893 update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se) 894 { 895 struct task_struct *p; 896 u64 delta; 897 898 if (!schedstat_enabled()) 899 return; 900 901 delta = rq_clock(rq_of(cfs_rq)) - schedstat_val(se->statistics.wait_start); 902 903 if (entity_is_task(se)) { 904 p = task_of(se); 905 if (task_on_rq_migrating(p)) { 906 /* 907 * Preserve migrating task's wait time so wait_start 908 * time stamp can be adjusted to accumulate wait time 909 * prior to migration. 910 */ 911 __schedstat_set(se->statistics.wait_start, delta); 912 return; 913 } 914 trace_sched_stat_wait(p, delta); 915 } 916 917 __schedstat_set(se->statistics.wait_max, 918 max(schedstat_val(se->statistics.wait_max), delta)); 919 __schedstat_inc(se->statistics.wait_count); 920 __schedstat_add(se->statistics.wait_sum, delta); 921 __schedstat_set(se->statistics.wait_start, 0); 922 } 923 924 static inline void 925 update_stats_enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se) 926 { 927 struct task_struct *tsk = NULL; 928 u64 sleep_start, block_start; 929 930 if (!schedstat_enabled()) 931 return; 932 933 sleep_start = schedstat_val(se->statistics.sleep_start); 934 block_start = schedstat_val(se->statistics.block_start); 935 936 if (entity_is_task(se)) 937 tsk = task_of(se); 938 939 if (sleep_start) { 940 u64 delta = rq_clock(rq_of(cfs_rq)) - sleep_start; 941 942 if ((s64)delta < 0) 943 delta = 0; 944 945 if (unlikely(delta > schedstat_val(se->statistics.sleep_max))) 946 __schedstat_set(se->statistics.sleep_max, delta); 947 948 __schedstat_set(se->statistics.sleep_start, 0); 949 __schedstat_add(se->statistics.sum_sleep_runtime, delta); 950 951 if (tsk) { 952 account_scheduler_latency(tsk, delta >> 10, 1); 953 trace_sched_stat_sleep(tsk, delta); 954 } 955 } 956 if (block_start) { 957 u64 delta = rq_clock(rq_of(cfs_rq)) - block_start; 958 959 if ((s64)delta < 0) 960 delta = 0; 961 962 if (unlikely(delta > schedstat_val(se->statistics.block_max))) 963 __schedstat_set(se->statistics.block_max, delta); 964 965 __schedstat_set(se->statistics.block_start, 0); 966 __schedstat_add(se->statistics.sum_sleep_runtime, delta); 967 968 if (tsk) { 969 if (tsk->in_iowait) { 970 __schedstat_add(se->statistics.iowait_sum, delta); 971 __schedstat_inc(se->statistics.iowait_count); 972 trace_sched_stat_iowait(tsk, delta); 973 } 974 975 trace_sched_stat_blocked(tsk, delta); 976 977 /* 978 * Blocking time is in units of nanosecs, so shift by 979 * 20 to get a milliseconds-range estimation of the 980 * amount of time that the task spent sleeping: 981 */ 982 if (unlikely(prof_on == SLEEP_PROFILING)) { 983 profile_hits(SLEEP_PROFILING, 984 (void *)get_wchan(tsk), 985 delta >> 20); 986 } 987 account_scheduler_latency(tsk, delta >> 10, 0); 988 } 989 } 990 } 991 992 /* 993 * Task is being enqueued - update stats: 994 */ 995 static inline void 996 update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 997 { 998 if (!schedstat_enabled()) 999 return; 1000 1001 /* 1002 * Are we enqueueing a waiting task? (for current tasks 1003 * a dequeue/enqueue event is a NOP) 1004 */ 1005 if (se != cfs_rq->curr) 1006 update_stats_wait_start(cfs_rq, se); 1007 1008 if (flags & ENQUEUE_WAKEUP) 1009 update_stats_enqueue_sleeper(cfs_rq, se); 1010 } 1011 1012 static inline void 1013 update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 1014 { 1015 1016 if (!schedstat_enabled()) 1017 return; 1018 1019 /* 1020 * Mark the end of the wait period if dequeueing a 1021 * waiting task: 1022 */ 1023 if (se != cfs_rq->curr) 1024 update_stats_wait_end(cfs_rq, se); 1025 1026 if ((flags & DEQUEUE_SLEEP) && entity_is_task(se)) { 1027 struct task_struct *tsk = task_of(se); 1028 1029 if (tsk->state & TASK_INTERRUPTIBLE) 1030 __schedstat_set(se->statistics.sleep_start, 1031 rq_clock(rq_of(cfs_rq))); 1032 if (tsk->state & TASK_UNINTERRUPTIBLE) 1033 __schedstat_set(se->statistics.block_start, 1034 rq_clock(rq_of(cfs_rq))); 1035 } 1036 } 1037 1038 /* 1039 * We are picking a new current task - update its stats: 1040 */ 1041 static inline void 1042 update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se) 1043 { 1044 /* 1045 * We are starting a new run period: 1046 */ 1047 se->exec_start = rq_clock_task(rq_of(cfs_rq)); 1048 } 1049 1050 /************************************************** 1051 * Scheduling class queueing methods: 1052 */ 1053 1054 #ifdef CONFIG_NUMA_BALANCING 1055 /* 1056 * Approximate time to scan a full NUMA task in ms. The task scan period is 1057 * calculated based on the tasks virtual memory size and 1058 * numa_balancing_scan_size. 1059 */ 1060 unsigned int sysctl_numa_balancing_scan_period_min = 1000; 1061 unsigned int sysctl_numa_balancing_scan_period_max = 60000; 1062 1063 /* Portion of address space to scan in MB */ 1064 unsigned int sysctl_numa_balancing_scan_size = 256; 1065 1066 /* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */ 1067 unsigned int sysctl_numa_balancing_scan_delay = 1000; 1068 1069 struct numa_group { 1070 refcount_t refcount; 1071 1072 spinlock_t lock; /* nr_tasks, tasks */ 1073 int nr_tasks; 1074 pid_t gid; 1075 int active_nodes; 1076 1077 struct rcu_head rcu; 1078 unsigned long total_faults; 1079 unsigned long max_faults_cpu; 1080 /* 1081 * Faults_cpu is used to decide whether memory should move 1082 * towards the CPU. As a consequence, these stats are weighted 1083 * more by CPU use than by memory faults. 1084 */ 1085 unsigned long *faults_cpu; 1086 unsigned long faults[0]; 1087 }; 1088 1089 /* 1090 * For functions that can be called in multiple contexts that permit reading 1091 * ->numa_group (see struct task_struct for locking rules). 1092 */ 1093 static struct numa_group *deref_task_numa_group(struct task_struct *p) 1094 { 1095 return rcu_dereference_check(p->numa_group, p == current || 1096 (lockdep_is_held(&task_rq(p)->lock) && !READ_ONCE(p->on_cpu))); 1097 } 1098 1099 static struct numa_group *deref_curr_numa_group(struct task_struct *p) 1100 { 1101 return rcu_dereference_protected(p->numa_group, p == current); 1102 } 1103 1104 static inline unsigned long group_faults_priv(struct numa_group *ng); 1105 static inline unsigned long group_faults_shared(struct numa_group *ng); 1106 1107 static unsigned int task_nr_scan_windows(struct task_struct *p) 1108 { 1109 unsigned long rss = 0; 1110 unsigned long nr_scan_pages; 1111 1112 /* 1113 * Calculations based on RSS as non-present and empty pages are skipped 1114 * by the PTE scanner and NUMA hinting faults should be trapped based 1115 * on resident pages 1116 */ 1117 nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT); 1118 rss = get_mm_rss(p->mm); 1119 if (!rss) 1120 rss = nr_scan_pages; 1121 1122 rss = round_up(rss, nr_scan_pages); 1123 return rss / nr_scan_pages; 1124 } 1125 1126 /* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */ 1127 #define MAX_SCAN_WINDOW 2560 1128 1129 static unsigned int task_scan_min(struct task_struct *p) 1130 { 1131 unsigned int scan_size = READ_ONCE(sysctl_numa_balancing_scan_size); 1132 unsigned int scan, floor; 1133 unsigned int windows = 1; 1134 1135 if (scan_size < MAX_SCAN_WINDOW) 1136 windows = MAX_SCAN_WINDOW / scan_size; 1137 floor = 1000 / windows; 1138 1139 scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p); 1140 return max_t(unsigned int, floor, scan); 1141 } 1142 1143 static unsigned int task_scan_start(struct task_struct *p) 1144 { 1145 unsigned long smin = task_scan_min(p); 1146 unsigned long period = smin; 1147 struct numa_group *ng; 1148 1149 /* Scale the maximum scan period with the amount of shared memory. */ 1150 rcu_read_lock(); 1151 ng = rcu_dereference(p->numa_group); 1152 if (ng) { 1153 unsigned long shared = group_faults_shared(ng); 1154 unsigned long private = group_faults_priv(ng); 1155 1156 period *= refcount_read(&ng->refcount); 1157 period *= shared + 1; 1158 period /= private + shared + 1; 1159 } 1160 rcu_read_unlock(); 1161 1162 return max(smin, period); 1163 } 1164 1165 static unsigned int task_scan_max(struct task_struct *p) 1166 { 1167 unsigned long smin = task_scan_min(p); 1168 unsigned long smax; 1169 struct numa_group *ng; 1170 1171 /* Watch for min being lower than max due to floor calculations */ 1172 smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p); 1173 1174 /* Scale the maximum scan period with the amount of shared memory. */ 1175 ng = deref_curr_numa_group(p); 1176 if (ng) { 1177 unsigned long shared = group_faults_shared(ng); 1178 unsigned long private = group_faults_priv(ng); 1179 unsigned long period = smax; 1180 1181 period *= refcount_read(&ng->refcount); 1182 period *= shared + 1; 1183 period /= private + shared + 1; 1184 1185 smax = max(smax, period); 1186 } 1187 1188 return max(smin, smax); 1189 } 1190 1191 static void account_numa_enqueue(struct rq *rq, struct task_struct *p) 1192 { 1193 rq->nr_numa_running += (p->numa_preferred_nid != NUMA_NO_NODE); 1194 rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p)); 1195 } 1196 1197 static void account_numa_dequeue(struct rq *rq, struct task_struct *p) 1198 { 1199 rq->nr_numa_running -= (p->numa_preferred_nid != NUMA_NO_NODE); 1200 rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p)); 1201 } 1202 1203 /* Shared or private faults. */ 1204 #define NR_NUMA_HINT_FAULT_TYPES 2 1205 1206 /* Memory and CPU locality */ 1207 #define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2) 1208 1209 /* Averaged statistics, and temporary buffers. */ 1210 #define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2) 1211 1212 pid_t task_numa_group_id(struct task_struct *p) 1213 { 1214 struct numa_group *ng; 1215 pid_t gid = 0; 1216 1217 rcu_read_lock(); 1218 ng = rcu_dereference(p->numa_group); 1219 if (ng) 1220 gid = ng->gid; 1221 rcu_read_unlock(); 1222 1223 return gid; 1224 } 1225 1226 /* 1227 * The averaged statistics, shared & private, memory & CPU, 1228 * occupy the first half of the array. The second half of the 1229 * array is for current counters, which are averaged into the 1230 * first set by task_numa_placement. 1231 */ 1232 static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv) 1233 { 1234 return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv; 1235 } 1236 1237 static inline unsigned long task_faults(struct task_struct *p, int nid) 1238 { 1239 if (!p->numa_faults) 1240 return 0; 1241 1242 return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] + 1243 p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)]; 1244 } 1245 1246 static inline unsigned long group_faults(struct task_struct *p, int nid) 1247 { 1248 struct numa_group *ng = deref_task_numa_group(p); 1249 1250 if (!ng) 1251 return 0; 1252 1253 return ng->faults[task_faults_idx(NUMA_MEM, nid, 0)] + 1254 ng->faults[task_faults_idx(NUMA_MEM, nid, 1)]; 1255 } 1256 1257 static inline unsigned long group_faults_cpu(struct numa_group *group, int nid) 1258 { 1259 return group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 0)] + 1260 group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 1)]; 1261 } 1262 1263 static inline unsigned long group_faults_priv(struct numa_group *ng) 1264 { 1265 unsigned long faults = 0; 1266 int node; 1267 1268 for_each_online_node(node) { 1269 faults += ng->faults[task_faults_idx(NUMA_MEM, node, 1)]; 1270 } 1271 1272 return faults; 1273 } 1274 1275 static inline unsigned long group_faults_shared(struct numa_group *ng) 1276 { 1277 unsigned long faults = 0; 1278 int node; 1279 1280 for_each_online_node(node) { 1281 faults += ng->faults[task_faults_idx(NUMA_MEM, node, 0)]; 1282 } 1283 1284 return faults; 1285 } 1286 1287 /* 1288 * A node triggering more than 1/3 as many NUMA faults as the maximum is 1289 * considered part of a numa group's pseudo-interleaving set. Migrations 1290 * between these nodes are slowed down, to allow things to settle down. 1291 */ 1292 #define ACTIVE_NODE_FRACTION 3 1293 1294 static bool numa_is_active_node(int nid, struct numa_group *ng) 1295 { 1296 return group_faults_cpu(ng, nid) * ACTIVE_NODE_FRACTION > ng->max_faults_cpu; 1297 } 1298 1299 /* Handle placement on systems where not all nodes are directly connected. */ 1300 static unsigned long score_nearby_nodes(struct task_struct *p, int nid, 1301 int maxdist, bool task) 1302 { 1303 unsigned long score = 0; 1304 int node; 1305 1306 /* 1307 * All nodes are directly connected, and the same distance 1308 * from each other. No need for fancy placement algorithms. 1309 */ 1310 if (sched_numa_topology_type == NUMA_DIRECT) 1311 return 0; 1312 1313 /* 1314 * This code is called for each node, introducing N^2 complexity, 1315 * which should be ok given the number of nodes rarely exceeds 8. 1316 */ 1317 for_each_online_node(node) { 1318 unsigned long faults; 1319 int dist = node_distance(nid, node); 1320 1321 /* 1322 * The furthest away nodes in the system are not interesting 1323 * for placement; nid was already counted. 1324 */ 1325 if (dist == sched_max_numa_distance || node == nid) 1326 continue; 1327 1328 /* 1329 * On systems with a backplane NUMA topology, compare groups 1330 * of nodes, and move tasks towards the group with the most 1331 * memory accesses. When comparing two nodes at distance 1332 * "hoplimit", only nodes closer by than "hoplimit" are part 1333 * of each group. Skip other nodes. 1334 */ 1335 if (sched_numa_topology_type == NUMA_BACKPLANE && 1336 dist >= maxdist) 1337 continue; 1338 1339 /* Add up the faults from nearby nodes. */ 1340 if (task) 1341 faults = task_faults(p, node); 1342 else 1343 faults = group_faults(p, node); 1344 1345 /* 1346 * On systems with a glueless mesh NUMA topology, there are 1347 * no fixed "groups of nodes". Instead, nodes that are not 1348 * directly connected bounce traffic through intermediate 1349 * nodes; a numa_group can occupy any set of nodes. 1350 * The further away a node is, the less the faults count. 1351 * This seems to result in good task placement. 1352 */ 1353 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) { 1354 faults *= (sched_max_numa_distance - dist); 1355 faults /= (sched_max_numa_distance - LOCAL_DISTANCE); 1356 } 1357 1358 score += faults; 1359 } 1360 1361 return score; 1362 } 1363 1364 /* 1365 * These return the fraction of accesses done by a particular task, or 1366 * task group, on a particular numa node. The group weight is given a 1367 * larger multiplier, in order to group tasks together that are almost 1368 * evenly spread out between numa nodes. 1369 */ 1370 static inline unsigned long task_weight(struct task_struct *p, int nid, 1371 int dist) 1372 { 1373 unsigned long faults, total_faults; 1374 1375 if (!p->numa_faults) 1376 return 0; 1377 1378 total_faults = p->total_numa_faults; 1379 1380 if (!total_faults) 1381 return 0; 1382 1383 faults = task_faults(p, nid); 1384 faults += score_nearby_nodes(p, nid, dist, true); 1385 1386 return 1000 * faults / total_faults; 1387 } 1388 1389 static inline unsigned long group_weight(struct task_struct *p, int nid, 1390 int dist) 1391 { 1392 struct numa_group *ng = deref_task_numa_group(p); 1393 unsigned long faults, total_faults; 1394 1395 if (!ng) 1396 return 0; 1397 1398 total_faults = ng->total_faults; 1399 1400 if (!total_faults) 1401 return 0; 1402 1403 faults = group_faults(p, nid); 1404 faults += score_nearby_nodes(p, nid, dist, false); 1405 1406 return 1000 * faults / total_faults; 1407 } 1408 1409 bool should_numa_migrate_memory(struct task_struct *p, struct page * page, 1410 int src_nid, int dst_cpu) 1411 { 1412 struct numa_group *ng = deref_curr_numa_group(p); 1413 int dst_nid = cpu_to_node(dst_cpu); 1414 int last_cpupid, this_cpupid; 1415 1416 this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid); 1417 last_cpupid = page_cpupid_xchg_last(page, this_cpupid); 1418 1419 /* 1420 * Allow first faults or private faults to migrate immediately early in 1421 * the lifetime of a task. The magic number 4 is based on waiting for 1422 * two full passes of the "multi-stage node selection" test that is 1423 * executed below. 1424 */ 1425 if ((p->numa_preferred_nid == NUMA_NO_NODE || p->numa_scan_seq <= 4) && 1426 (cpupid_pid_unset(last_cpupid) || cpupid_match_pid(p, last_cpupid))) 1427 return true; 1428 1429 /* 1430 * Multi-stage node selection is used in conjunction with a periodic 1431 * migration fault to build a temporal task<->page relation. By using 1432 * a two-stage filter we remove short/unlikely relations. 1433 * 1434 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate 1435 * a task's usage of a particular page (n_p) per total usage of this 1436 * page (n_t) (in a given time-span) to a probability. 1437 * 1438 * Our periodic faults will sample this probability and getting the 1439 * same result twice in a row, given these samples are fully 1440 * independent, is then given by P(n)^2, provided our sample period 1441 * is sufficiently short compared to the usage pattern. 1442 * 1443 * This quadric squishes small probabilities, making it less likely we 1444 * act on an unlikely task<->page relation. 1445 */ 1446 if (!cpupid_pid_unset(last_cpupid) && 1447 cpupid_to_nid(last_cpupid) != dst_nid) 1448 return false; 1449 1450 /* Always allow migrate on private faults */ 1451 if (cpupid_match_pid(p, last_cpupid)) 1452 return true; 1453 1454 /* A shared fault, but p->numa_group has not been set up yet. */ 1455 if (!ng) 1456 return true; 1457 1458 /* 1459 * Destination node is much more heavily used than the source 1460 * node? Allow migration. 1461 */ 1462 if (group_faults_cpu(ng, dst_nid) > group_faults_cpu(ng, src_nid) * 1463 ACTIVE_NODE_FRACTION) 1464 return true; 1465 1466 /* 1467 * Distribute memory according to CPU & memory use on each node, 1468 * with 3/4 hysteresis to avoid unnecessary memory migrations: 1469 * 1470 * faults_cpu(dst) 3 faults_cpu(src) 1471 * --------------- * - > --------------- 1472 * faults_mem(dst) 4 faults_mem(src) 1473 */ 1474 return group_faults_cpu(ng, dst_nid) * group_faults(p, src_nid) * 3 > 1475 group_faults_cpu(ng, src_nid) * group_faults(p, dst_nid) * 4; 1476 } 1477 1478 static unsigned long cpu_runnable_load(struct rq *rq); 1479 1480 /* Cached statistics for all CPUs within a node */ 1481 struct numa_stats { 1482 unsigned long load; 1483 1484 /* Total compute capacity of CPUs on a node */ 1485 unsigned long compute_capacity; 1486 }; 1487 1488 /* 1489 * XXX borrowed from update_sg_lb_stats 1490 */ 1491 static void update_numa_stats(struct numa_stats *ns, int nid) 1492 { 1493 int cpu; 1494 1495 memset(ns, 0, sizeof(*ns)); 1496 for_each_cpu(cpu, cpumask_of_node(nid)) { 1497 struct rq *rq = cpu_rq(cpu); 1498 1499 ns->load += cpu_runnable_load(rq); 1500 ns->compute_capacity += capacity_of(cpu); 1501 } 1502 1503 } 1504 1505 struct task_numa_env { 1506 struct task_struct *p; 1507 1508 int src_cpu, src_nid; 1509 int dst_cpu, dst_nid; 1510 1511 struct numa_stats src_stats, dst_stats; 1512 1513 int imbalance_pct; 1514 int dist; 1515 1516 struct task_struct *best_task; 1517 long best_imp; 1518 int best_cpu; 1519 }; 1520 1521 static void task_numa_assign(struct task_numa_env *env, 1522 struct task_struct *p, long imp) 1523 { 1524 struct rq *rq = cpu_rq(env->dst_cpu); 1525 1526 /* Bail out if run-queue part of active NUMA balance. */ 1527 if (xchg(&rq->numa_migrate_on, 1)) 1528 return; 1529 1530 /* 1531 * Clear previous best_cpu/rq numa-migrate flag, since task now 1532 * found a better CPU to move/swap. 1533 */ 1534 if (env->best_cpu != -1) { 1535 rq = cpu_rq(env->best_cpu); 1536 WRITE_ONCE(rq->numa_migrate_on, 0); 1537 } 1538 1539 if (env->best_task) 1540 put_task_struct(env->best_task); 1541 if (p) 1542 get_task_struct(p); 1543 1544 env->best_task = p; 1545 env->best_imp = imp; 1546 env->best_cpu = env->dst_cpu; 1547 } 1548 1549 static bool load_too_imbalanced(long src_load, long dst_load, 1550 struct task_numa_env *env) 1551 { 1552 long imb, old_imb; 1553 long orig_src_load, orig_dst_load; 1554 long src_capacity, dst_capacity; 1555 1556 /* 1557 * The load is corrected for the CPU capacity available on each node. 1558 * 1559 * src_load dst_load 1560 * ------------ vs --------- 1561 * src_capacity dst_capacity 1562 */ 1563 src_capacity = env->src_stats.compute_capacity; 1564 dst_capacity = env->dst_stats.compute_capacity; 1565 1566 imb = abs(dst_load * src_capacity - src_load * dst_capacity); 1567 1568 orig_src_load = env->src_stats.load; 1569 orig_dst_load = env->dst_stats.load; 1570 1571 old_imb = abs(orig_dst_load * src_capacity - orig_src_load * dst_capacity); 1572 1573 /* Would this change make things worse? */ 1574 return (imb > old_imb); 1575 } 1576 1577 /* 1578 * Maximum NUMA importance can be 1998 (2*999); 1579 * SMALLIMP @ 30 would be close to 1998/64. 1580 * Used to deter task migration. 1581 */ 1582 #define SMALLIMP 30 1583 1584 /* 1585 * This checks if the overall compute and NUMA accesses of the system would 1586 * be improved if the source tasks was migrated to the target dst_cpu taking 1587 * into account that it might be best if task running on the dst_cpu should 1588 * be exchanged with the source task 1589 */ 1590 static void task_numa_compare(struct task_numa_env *env, 1591 long taskimp, long groupimp, bool maymove) 1592 { 1593 struct numa_group *cur_ng, *p_ng = deref_curr_numa_group(env->p); 1594 struct rq *dst_rq = cpu_rq(env->dst_cpu); 1595 long imp = p_ng ? groupimp : taskimp; 1596 struct task_struct *cur; 1597 long src_load, dst_load; 1598 int dist = env->dist; 1599 long moveimp = imp; 1600 long load; 1601 1602 if (READ_ONCE(dst_rq->numa_migrate_on)) 1603 return; 1604 1605 rcu_read_lock(); 1606 cur = task_rcu_dereference(&dst_rq->curr); 1607 if (cur && ((cur->flags & PF_EXITING) || is_idle_task(cur))) 1608 cur = NULL; 1609 1610 /* 1611 * Because we have preemption enabled we can get migrated around and 1612 * end try selecting ourselves (current == env->p) as a swap candidate. 1613 */ 1614 if (cur == env->p) 1615 goto unlock; 1616 1617 if (!cur) { 1618 if (maymove && moveimp >= env->best_imp) 1619 goto assign; 1620 else 1621 goto unlock; 1622 } 1623 1624 /* 1625 * "imp" is the fault differential for the source task between the 1626 * source and destination node. Calculate the total differential for 1627 * the source task and potential destination task. The more negative 1628 * the value is, the more remote accesses that would be expected to 1629 * be incurred if the tasks were swapped. 1630 */ 1631 /* Skip this swap candidate if cannot move to the source cpu */ 1632 if (!cpumask_test_cpu(env->src_cpu, cur->cpus_ptr)) 1633 goto unlock; 1634 1635 /* 1636 * If dst and source tasks are in the same NUMA group, or not 1637 * in any group then look only at task weights. 1638 */ 1639 cur_ng = rcu_dereference(cur->numa_group); 1640 if (cur_ng == p_ng) { 1641 imp = taskimp + task_weight(cur, env->src_nid, dist) - 1642 task_weight(cur, env->dst_nid, dist); 1643 /* 1644 * Add some hysteresis to prevent swapping the 1645 * tasks within a group over tiny differences. 1646 */ 1647 if (cur_ng) 1648 imp -= imp / 16; 1649 } else { 1650 /* 1651 * Compare the group weights. If a task is all by itself 1652 * (not part of a group), use the task weight instead. 1653 */ 1654 if (cur_ng && p_ng) 1655 imp += group_weight(cur, env->src_nid, dist) - 1656 group_weight(cur, env->dst_nid, dist); 1657 else 1658 imp += task_weight(cur, env->src_nid, dist) - 1659 task_weight(cur, env->dst_nid, dist); 1660 } 1661 1662 if (maymove && moveimp > imp && moveimp > env->best_imp) { 1663 imp = moveimp; 1664 cur = NULL; 1665 goto assign; 1666 } 1667 1668 /* 1669 * If the NUMA importance is less than SMALLIMP, 1670 * task migration might only result in ping pong 1671 * of tasks and also hurt performance due to cache 1672 * misses. 1673 */ 1674 if (imp < SMALLIMP || imp <= env->best_imp + SMALLIMP / 2) 1675 goto unlock; 1676 1677 /* 1678 * In the overloaded case, try and keep the load balanced. 1679 */ 1680 load = task_h_load(env->p) - task_h_load(cur); 1681 if (!load) 1682 goto assign; 1683 1684 dst_load = env->dst_stats.load + load; 1685 src_load = env->src_stats.load - load; 1686 1687 if (load_too_imbalanced(src_load, dst_load, env)) 1688 goto unlock; 1689 1690 assign: 1691 /* 1692 * One idle CPU per node is evaluated for a task numa move. 1693 * Call select_idle_sibling to maybe find a better one. 1694 */ 1695 if (!cur) { 1696 /* 1697 * select_idle_siblings() uses an per-CPU cpumask that 1698 * can be used from IRQ context. 1699 */ 1700 local_irq_disable(); 1701 env->dst_cpu = select_idle_sibling(env->p, env->src_cpu, 1702 env->dst_cpu); 1703 local_irq_enable(); 1704 } 1705 1706 task_numa_assign(env, cur, imp); 1707 unlock: 1708 rcu_read_unlock(); 1709 } 1710 1711 static void task_numa_find_cpu(struct task_numa_env *env, 1712 long taskimp, long groupimp) 1713 { 1714 long src_load, dst_load, load; 1715 bool maymove = false; 1716 int cpu; 1717 1718 load = task_h_load(env->p); 1719 dst_load = env->dst_stats.load + load; 1720 src_load = env->src_stats.load - load; 1721 1722 /* 1723 * If the improvement from just moving env->p direction is better 1724 * than swapping tasks around, check if a move is possible. 1725 */ 1726 maymove = !load_too_imbalanced(src_load, dst_load, env); 1727 1728 for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) { 1729 /* Skip this CPU if the source task cannot migrate */ 1730 if (!cpumask_test_cpu(cpu, env->p->cpus_ptr)) 1731 continue; 1732 1733 env->dst_cpu = cpu; 1734 task_numa_compare(env, taskimp, groupimp, maymove); 1735 } 1736 } 1737 1738 static int task_numa_migrate(struct task_struct *p) 1739 { 1740 struct task_numa_env env = { 1741 .p = p, 1742 1743 .src_cpu = task_cpu(p), 1744 .src_nid = task_node(p), 1745 1746 .imbalance_pct = 112, 1747 1748 .best_task = NULL, 1749 .best_imp = 0, 1750 .best_cpu = -1, 1751 }; 1752 unsigned long taskweight, groupweight; 1753 struct sched_domain *sd; 1754 long taskimp, groupimp; 1755 struct numa_group *ng; 1756 struct rq *best_rq; 1757 int nid, ret, dist; 1758 1759 /* 1760 * Pick the lowest SD_NUMA domain, as that would have the smallest 1761 * imbalance and would be the first to start moving tasks about. 1762 * 1763 * And we want to avoid any moving of tasks about, as that would create 1764 * random movement of tasks -- counter the numa conditions we're trying 1765 * to satisfy here. 1766 */ 1767 rcu_read_lock(); 1768 sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu)); 1769 if (sd) 1770 env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2; 1771 rcu_read_unlock(); 1772 1773 /* 1774 * Cpusets can break the scheduler domain tree into smaller 1775 * balance domains, some of which do not cross NUMA boundaries. 1776 * Tasks that are "trapped" in such domains cannot be migrated 1777 * elsewhere, so there is no point in (re)trying. 1778 */ 1779 if (unlikely(!sd)) { 1780 sched_setnuma(p, task_node(p)); 1781 return -EINVAL; 1782 } 1783 1784 env.dst_nid = p->numa_preferred_nid; 1785 dist = env.dist = node_distance(env.src_nid, env.dst_nid); 1786 taskweight = task_weight(p, env.src_nid, dist); 1787 groupweight = group_weight(p, env.src_nid, dist); 1788 update_numa_stats(&env.src_stats, env.src_nid); 1789 taskimp = task_weight(p, env.dst_nid, dist) - taskweight; 1790 groupimp = group_weight(p, env.dst_nid, dist) - groupweight; 1791 update_numa_stats(&env.dst_stats, env.dst_nid); 1792 1793 /* Try to find a spot on the preferred nid. */ 1794 task_numa_find_cpu(&env, taskimp, groupimp); 1795 1796 /* 1797 * Look at other nodes in these cases: 1798 * - there is no space available on the preferred_nid 1799 * - the task is part of a numa_group that is interleaved across 1800 * multiple NUMA nodes; in order to better consolidate the group, 1801 * we need to check other locations. 1802 */ 1803 ng = deref_curr_numa_group(p); 1804 if (env.best_cpu == -1 || (ng && ng->active_nodes > 1)) { 1805 for_each_online_node(nid) { 1806 if (nid == env.src_nid || nid == p->numa_preferred_nid) 1807 continue; 1808 1809 dist = node_distance(env.src_nid, env.dst_nid); 1810 if (sched_numa_topology_type == NUMA_BACKPLANE && 1811 dist != env.dist) { 1812 taskweight = task_weight(p, env.src_nid, dist); 1813 groupweight = group_weight(p, env.src_nid, dist); 1814 } 1815 1816 /* Only consider nodes where both task and groups benefit */ 1817 taskimp = task_weight(p, nid, dist) - taskweight; 1818 groupimp = group_weight(p, nid, dist) - groupweight; 1819 if (taskimp < 0 && groupimp < 0) 1820 continue; 1821 1822 env.dist = dist; 1823 env.dst_nid = nid; 1824 update_numa_stats(&env.dst_stats, env.dst_nid); 1825 task_numa_find_cpu(&env, taskimp, groupimp); 1826 } 1827 } 1828 1829 /* 1830 * If the task is part of a workload that spans multiple NUMA nodes, 1831 * and is migrating into one of the workload's active nodes, remember 1832 * this node as the task's preferred numa node, so the workload can 1833 * settle down. 1834 * A task that migrated to a second choice node will be better off 1835 * trying for a better one later. Do not set the preferred node here. 1836 */ 1837 if (ng) { 1838 if (env.best_cpu == -1) 1839 nid = env.src_nid; 1840 else 1841 nid = cpu_to_node(env.best_cpu); 1842 1843 if (nid != p->numa_preferred_nid) 1844 sched_setnuma(p, nid); 1845 } 1846 1847 /* No better CPU than the current one was found. */ 1848 if (env.best_cpu == -1) 1849 return -EAGAIN; 1850 1851 best_rq = cpu_rq(env.best_cpu); 1852 if (env.best_task == NULL) { 1853 ret = migrate_task_to(p, env.best_cpu); 1854 WRITE_ONCE(best_rq->numa_migrate_on, 0); 1855 if (ret != 0) 1856 trace_sched_stick_numa(p, env.src_cpu, env.best_cpu); 1857 return ret; 1858 } 1859 1860 ret = migrate_swap(p, env.best_task, env.best_cpu, env.src_cpu); 1861 WRITE_ONCE(best_rq->numa_migrate_on, 0); 1862 1863 if (ret != 0) 1864 trace_sched_stick_numa(p, env.src_cpu, task_cpu(env.best_task)); 1865 put_task_struct(env.best_task); 1866 return ret; 1867 } 1868 1869 /* Attempt to migrate a task to a CPU on the preferred node. */ 1870 static void numa_migrate_preferred(struct task_struct *p) 1871 { 1872 unsigned long interval = HZ; 1873 1874 /* This task has no NUMA fault statistics yet */ 1875 if (unlikely(p->numa_preferred_nid == NUMA_NO_NODE || !p->numa_faults)) 1876 return; 1877 1878 /* Periodically retry migrating the task to the preferred node */ 1879 interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16); 1880 p->numa_migrate_retry = jiffies + interval; 1881 1882 /* Success if task is already running on preferred CPU */ 1883 if (task_node(p) == p->numa_preferred_nid) 1884 return; 1885 1886 /* Otherwise, try migrate to a CPU on the preferred node */ 1887 task_numa_migrate(p); 1888 } 1889 1890 /* 1891 * Find out how many nodes on the workload is actively running on. Do this by 1892 * tracking the nodes from which NUMA hinting faults are triggered. This can 1893 * be different from the set of nodes where the workload's memory is currently 1894 * located. 1895 */ 1896 static void numa_group_count_active_nodes(struct numa_group *numa_group) 1897 { 1898 unsigned long faults, max_faults = 0; 1899 int nid, active_nodes = 0; 1900 1901 for_each_online_node(nid) { 1902 faults = group_faults_cpu(numa_group, nid); 1903 if (faults > max_faults) 1904 max_faults = faults; 1905 } 1906 1907 for_each_online_node(nid) { 1908 faults = group_faults_cpu(numa_group, nid); 1909 if (faults * ACTIVE_NODE_FRACTION > max_faults) 1910 active_nodes++; 1911 } 1912 1913 numa_group->max_faults_cpu = max_faults; 1914 numa_group->active_nodes = active_nodes; 1915 } 1916 1917 /* 1918 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS 1919 * increments. The more local the fault statistics are, the higher the scan 1920 * period will be for the next scan window. If local/(local+remote) ratio is 1921 * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS) 1922 * the scan period will decrease. Aim for 70% local accesses. 1923 */ 1924 #define NUMA_PERIOD_SLOTS 10 1925 #define NUMA_PERIOD_THRESHOLD 7 1926 1927 /* 1928 * Increase the scan period (slow down scanning) if the majority of 1929 * our memory is already on our local node, or if the majority of 1930 * the page accesses are shared with other processes. 1931 * Otherwise, decrease the scan period. 1932 */ 1933 static void update_task_scan_period(struct task_struct *p, 1934 unsigned long shared, unsigned long private) 1935 { 1936 unsigned int period_slot; 1937 int lr_ratio, ps_ratio; 1938 int diff; 1939 1940 unsigned long remote = p->numa_faults_locality[0]; 1941 unsigned long local = p->numa_faults_locality[1]; 1942 1943 /* 1944 * If there were no record hinting faults then either the task is 1945 * completely idle or all activity is areas that are not of interest 1946 * to automatic numa balancing. Related to that, if there were failed 1947 * migration then it implies we are migrating too quickly or the local 1948 * node is overloaded. In either case, scan slower 1949 */ 1950 if (local + shared == 0 || p->numa_faults_locality[2]) { 1951 p->numa_scan_period = min(p->numa_scan_period_max, 1952 p->numa_scan_period << 1); 1953 1954 p->mm->numa_next_scan = jiffies + 1955 msecs_to_jiffies(p->numa_scan_period); 1956 1957 return; 1958 } 1959 1960 /* 1961 * Prepare to scale scan period relative to the current period. 1962 * == NUMA_PERIOD_THRESHOLD scan period stays the same 1963 * < NUMA_PERIOD_THRESHOLD scan period decreases (scan faster) 1964 * >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower) 1965 */ 1966 period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS); 1967 lr_ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote); 1968 ps_ratio = (private * NUMA_PERIOD_SLOTS) / (private + shared); 1969 1970 if (ps_ratio >= NUMA_PERIOD_THRESHOLD) { 1971 /* 1972 * Most memory accesses are local. There is no need to 1973 * do fast NUMA scanning, since memory is already local. 1974 */ 1975 int slot = ps_ratio - NUMA_PERIOD_THRESHOLD; 1976 if (!slot) 1977 slot = 1; 1978 diff = slot * period_slot; 1979 } else if (lr_ratio >= NUMA_PERIOD_THRESHOLD) { 1980 /* 1981 * Most memory accesses are shared with other tasks. 1982 * There is no point in continuing fast NUMA scanning, 1983 * since other tasks may just move the memory elsewhere. 1984 */ 1985 int slot = lr_ratio - NUMA_PERIOD_THRESHOLD; 1986 if (!slot) 1987 slot = 1; 1988 diff = slot * period_slot; 1989 } else { 1990 /* 1991 * Private memory faults exceed (SLOTS-THRESHOLD)/SLOTS, 1992 * yet they are not on the local NUMA node. Speed up 1993 * NUMA scanning to get the memory moved over. 1994 */ 1995 int ratio = max(lr_ratio, ps_ratio); 1996 diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot; 1997 } 1998 1999 p->numa_scan_period = clamp(p->numa_scan_period + diff, 2000 task_scan_min(p), task_scan_max(p)); 2001 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality)); 2002 } 2003 2004 /* 2005 * Get the fraction of time the task has been running since the last 2006 * NUMA placement cycle. The scheduler keeps similar statistics, but 2007 * decays those on a 32ms period, which is orders of magnitude off 2008 * from the dozens-of-seconds NUMA balancing period. Use the scheduler 2009 * stats only if the task is so new there are no NUMA statistics yet. 2010 */ 2011 static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period) 2012 { 2013 u64 runtime, delta, now; 2014 /* Use the start of this time slice to avoid calculations. */ 2015 now = p->se.exec_start; 2016 runtime = p->se.sum_exec_runtime; 2017 2018 if (p->last_task_numa_placement) { 2019 delta = runtime - p->last_sum_exec_runtime; 2020 *period = now - p->last_task_numa_placement; 2021 2022 /* Avoid time going backwards, prevent potential divide error: */ 2023 if (unlikely((s64)*period < 0)) 2024 *period = 0; 2025 } else { 2026 delta = p->se.avg.load_sum; 2027 *period = LOAD_AVG_MAX; 2028 } 2029 2030 p->last_sum_exec_runtime = runtime; 2031 p->last_task_numa_placement = now; 2032 2033 return delta; 2034 } 2035 2036 /* 2037 * Determine the preferred nid for a task in a numa_group. This needs to 2038 * be done in a way that produces consistent results with group_weight, 2039 * otherwise workloads might not converge. 2040 */ 2041 static int preferred_group_nid(struct task_struct *p, int nid) 2042 { 2043 nodemask_t nodes; 2044 int dist; 2045 2046 /* Direct connections between all NUMA nodes. */ 2047 if (sched_numa_topology_type == NUMA_DIRECT) 2048 return nid; 2049 2050 /* 2051 * On a system with glueless mesh NUMA topology, group_weight 2052 * scores nodes according to the number of NUMA hinting faults on 2053 * both the node itself, and on nearby nodes. 2054 */ 2055 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) { 2056 unsigned long score, max_score = 0; 2057 int node, max_node = nid; 2058 2059 dist = sched_max_numa_distance; 2060 2061 for_each_online_node(node) { 2062 score = group_weight(p, node, dist); 2063 if (score > max_score) { 2064 max_score = score; 2065 max_node = node; 2066 } 2067 } 2068 return max_node; 2069 } 2070 2071 /* 2072 * Finding the preferred nid in a system with NUMA backplane 2073 * interconnect topology is more involved. The goal is to locate 2074 * tasks from numa_groups near each other in the system, and 2075 * untangle workloads from different sides of the system. This requires 2076 * searching down the hierarchy of node groups, recursively searching 2077 * inside the highest scoring group of nodes. The nodemask tricks 2078 * keep the complexity of the search down. 2079 */ 2080 nodes = node_online_map; 2081 for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) { 2082 unsigned long max_faults = 0; 2083 nodemask_t max_group = NODE_MASK_NONE; 2084 int a, b; 2085 2086 /* Are there nodes at this distance from each other? */ 2087 if (!find_numa_distance(dist)) 2088 continue; 2089 2090 for_each_node_mask(a, nodes) { 2091 unsigned long faults = 0; 2092 nodemask_t this_group; 2093 nodes_clear(this_group); 2094 2095 /* Sum group's NUMA faults; includes a==b case. */ 2096 for_each_node_mask(b, nodes) { 2097 if (node_distance(a, b) < dist) { 2098 faults += group_faults(p, b); 2099 node_set(b, this_group); 2100 node_clear(b, nodes); 2101 } 2102 } 2103 2104 /* Remember the top group. */ 2105 if (faults > max_faults) { 2106 max_faults = faults; 2107 max_group = this_group; 2108 /* 2109 * subtle: at the smallest distance there is 2110 * just one node left in each "group", the 2111 * winner is the preferred nid. 2112 */ 2113 nid = a; 2114 } 2115 } 2116 /* Next round, evaluate the nodes within max_group. */ 2117 if (!max_faults) 2118 break; 2119 nodes = max_group; 2120 } 2121 return nid; 2122 } 2123 2124 static void task_numa_placement(struct task_struct *p) 2125 { 2126 int seq, nid, max_nid = NUMA_NO_NODE; 2127 unsigned long max_faults = 0; 2128 unsigned long fault_types[2] = { 0, 0 }; 2129 unsigned long total_faults; 2130 u64 runtime, period; 2131 spinlock_t *group_lock = NULL; 2132 struct numa_group *ng; 2133 2134 /* 2135 * The p->mm->numa_scan_seq field gets updated without 2136 * exclusive access. Use READ_ONCE() here to ensure 2137 * that the field is read in a single access: 2138 */ 2139 seq = READ_ONCE(p->mm->numa_scan_seq); 2140 if (p->numa_scan_seq == seq) 2141 return; 2142 p->numa_scan_seq = seq; 2143 p->numa_scan_period_max = task_scan_max(p); 2144 2145 total_faults = p->numa_faults_locality[0] + 2146 p->numa_faults_locality[1]; 2147 runtime = numa_get_avg_runtime(p, &period); 2148 2149 /* If the task is part of a group prevent parallel updates to group stats */ 2150 ng = deref_curr_numa_group(p); 2151 if (ng) { 2152 group_lock = &ng->lock; 2153 spin_lock_irq(group_lock); 2154 } 2155 2156 /* Find the node with the highest number of faults */ 2157 for_each_online_node(nid) { 2158 /* Keep track of the offsets in numa_faults array */ 2159 int mem_idx, membuf_idx, cpu_idx, cpubuf_idx; 2160 unsigned long faults = 0, group_faults = 0; 2161 int priv; 2162 2163 for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) { 2164 long diff, f_diff, f_weight; 2165 2166 mem_idx = task_faults_idx(NUMA_MEM, nid, priv); 2167 membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv); 2168 cpu_idx = task_faults_idx(NUMA_CPU, nid, priv); 2169 cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv); 2170 2171 /* Decay existing window, copy faults since last scan */ 2172 diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2; 2173 fault_types[priv] += p->numa_faults[membuf_idx]; 2174 p->numa_faults[membuf_idx] = 0; 2175 2176 /* 2177 * Normalize the faults_from, so all tasks in a group 2178 * count according to CPU use, instead of by the raw 2179 * number of faults. Tasks with little runtime have 2180 * little over-all impact on throughput, and thus their 2181 * faults are less important. 2182 */ 2183 f_weight = div64_u64(runtime << 16, period + 1); 2184 f_weight = (f_weight * p->numa_faults[cpubuf_idx]) / 2185 (total_faults + 1); 2186 f_diff = f_weight - p->numa_faults[cpu_idx] / 2; 2187 p->numa_faults[cpubuf_idx] = 0; 2188 2189 p->numa_faults[mem_idx] += diff; 2190 p->numa_faults[cpu_idx] += f_diff; 2191 faults += p->numa_faults[mem_idx]; 2192 p->total_numa_faults += diff; 2193 if (ng) { 2194 /* 2195 * safe because we can only change our own group 2196 * 2197 * mem_idx represents the offset for a given 2198 * nid and priv in a specific region because it 2199 * is at the beginning of the numa_faults array. 2200 */ 2201 ng->faults[mem_idx] += diff; 2202 ng->faults_cpu[mem_idx] += f_diff; 2203 ng->total_faults += diff; 2204 group_faults += ng->faults[mem_idx]; 2205 } 2206 } 2207 2208 if (!ng) { 2209 if (faults > max_faults) { 2210 max_faults = faults; 2211 max_nid = nid; 2212 } 2213 } else if (group_faults > max_faults) { 2214 max_faults = group_faults; 2215 max_nid = nid; 2216 } 2217 } 2218 2219 if (ng) { 2220 numa_group_count_active_nodes(ng); 2221 spin_unlock_irq(group_lock); 2222 max_nid = preferred_group_nid(p, max_nid); 2223 } 2224 2225 if (max_faults) { 2226 /* Set the new preferred node */ 2227 if (max_nid != p->numa_preferred_nid) 2228 sched_setnuma(p, max_nid); 2229 } 2230 2231 update_task_scan_period(p, fault_types[0], fault_types[1]); 2232 } 2233 2234 static inline int get_numa_group(struct numa_group *grp) 2235 { 2236 return refcount_inc_not_zero(&grp->refcount); 2237 } 2238 2239 static inline void put_numa_group(struct numa_group *grp) 2240 { 2241 if (refcount_dec_and_test(&grp->refcount)) 2242 kfree_rcu(grp, rcu); 2243 } 2244 2245 static void task_numa_group(struct task_struct *p, int cpupid, int flags, 2246 int *priv) 2247 { 2248 struct numa_group *grp, *my_grp; 2249 struct task_struct *tsk; 2250 bool join = false; 2251 int cpu = cpupid_to_cpu(cpupid); 2252 int i; 2253 2254 if (unlikely(!deref_curr_numa_group(p))) { 2255 unsigned int size = sizeof(struct numa_group) + 2256 4*nr_node_ids*sizeof(unsigned long); 2257 2258 grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN); 2259 if (!grp) 2260 return; 2261 2262 refcount_set(&grp->refcount, 1); 2263 grp->active_nodes = 1; 2264 grp->max_faults_cpu = 0; 2265 spin_lock_init(&grp->lock); 2266 grp->gid = p->pid; 2267 /* Second half of the array tracks nids where faults happen */ 2268 grp->faults_cpu = grp->faults + NR_NUMA_HINT_FAULT_TYPES * 2269 nr_node_ids; 2270 2271 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) 2272 grp->faults[i] = p->numa_faults[i]; 2273 2274 grp->total_faults = p->total_numa_faults; 2275 2276 grp->nr_tasks++; 2277 rcu_assign_pointer(p->numa_group, grp); 2278 } 2279 2280 rcu_read_lock(); 2281 tsk = READ_ONCE(cpu_rq(cpu)->curr); 2282 2283 if (!cpupid_match_pid(tsk, cpupid)) 2284 goto no_join; 2285 2286 grp = rcu_dereference(tsk->numa_group); 2287 if (!grp) 2288 goto no_join; 2289 2290 my_grp = deref_curr_numa_group(p); 2291 if (grp == my_grp) 2292 goto no_join; 2293 2294 /* 2295 * Only join the other group if its bigger; if we're the bigger group, 2296 * the other task will join us. 2297 */ 2298 if (my_grp->nr_tasks > grp->nr_tasks) 2299 goto no_join; 2300 2301 /* 2302 * Tie-break on the grp address. 2303 */ 2304 if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp) 2305 goto no_join; 2306 2307 /* Always join threads in the same process. */ 2308 if (tsk->mm == current->mm) 2309 join = true; 2310 2311 /* Simple filter to avoid false positives due to PID collisions */ 2312 if (flags & TNF_SHARED) 2313 join = true; 2314 2315 /* Update priv based on whether false sharing was detected */ 2316 *priv = !join; 2317 2318 if (join && !get_numa_group(grp)) 2319 goto no_join; 2320 2321 rcu_read_unlock(); 2322 2323 if (!join) 2324 return; 2325 2326 BUG_ON(irqs_disabled()); 2327 double_lock_irq(&my_grp->lock, &grp->lock); 2328 2329 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) { 2330 my_grp->faults[i] -= p->numa_faults[i]; 2331 grp->faults[i] += p->numa_faults[i]; 2332 } 2333 my_grp->total_faults -= p->total_numa_faults; 2334 grp->total_faults += p->total_numa_faults; 2335 2336 my_grp->nr_tasks--; 2337 grp->nr_tasks++; 2338 2339 spin_unlock(&my_grp->lock); 2340 spin_unlock_irq(&grp->lock); 2341 2342 rcu_assign_pointer(p->numa_group, grp); 2343 2344 put_numa_group(my_grp); 2345 return; 2346 2347 no_join: 2348 rcu_read_unlock(); 2349 return; 2350 } 2351 2352 /* 2353 * Get rid of NUMA staticstics associated with a task (either current or dead). 2354 * If @final is set, the task is dead and has reached refcount zero, so we can 2355 * safely free all relevant data structures. Otherwise, there might be 2356 * concurrent reads from places like load balancing and procfs, and we should 2357 * reset the data back to default state without freeing ->numa_faults. 2358 */ 2359 void task_numa_free(struct task_struct *p, bool final) 2360 { 2361 /* safe: p either is current or is being freed by current */ 2362 struct numa_group *grp = rcu_dereference_raw(p->numa_group); 2363 unsigned long *numa_faults = p->numa_faults; 2364 unsigned long flags; 2365 int i; 2366 2367 if (!numa_faults) 2368 return; 2369 2370 if (grp) { 2371 spin_lock_irqsave(&grp->lock, flags); 2372 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) 2373 grp->faults[i] -= p->numa_faults[i]; 2374 grp->total_faults -= p->total_numa_faults; 2375 2376 grp->nr_tasks--; 2377 spin_unlock_irqrestore(&grp->lock, flags); 2378 RCU_INIT_POINTER(p->numa_group, NULL); 2379 put_numa_group(grp); 2380 } 2381 2382 if (final) { 2383 p->numa_faults = NULL; 2384 kfree(numa_faults); 2385 } else { 2386 p->total_numa_faults = 0; 2387 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) 2388 numa_faults[i] = 0; 2389 } 2390 } 2391 2392 /* 2393 * Got a PROT_NONE fault for a page on @node. 2394 */ 2395 void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags) 2396 { 2397 struct task_struct *p = current; 2398 bool migrated = flags & TNF_MIGRATED; 2399 int cpu_node = task_node(current); 2400 int local = !!(flags & TNF_FAULT_LOCAL); 2401 struct numa_group *ng; 2402 int priv; 2403 2404 if (!static_branch_likely(&sched_numa_balancing)) 2405 return; 2406 2407 /* for example, ksmd faulting in a user's mm */ 2408 if (!p->mm) 2409 return; 2410 2411 /* Allocate buffer to track faults on a per-node basis */ 2412 if (unlikely(!p->numa_faults)) { 2413 int size = sizeof(*p->numa_faults) * 2414 NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids; 2415 2416 p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN); 2417 if (!p->numa_faults) 2418 return; 2419 2420 p->total_numa_faults = 0; 2421 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality)); 2422 } 2423 2424 /* 2425 * First accesses are treated as private, otherwise consider accesses 2426 * to be private if the accessing pid has not changed 2427 */ 2428 if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) { 2429 priv = 1; 2430 } else { 2431 priv = cpupid_match_pid(p, last_cpupid); 2432 if (!priv && !(flags & TNF_NO_GROUP)) 2433 task_numa_group(p, last_cpupid, flags, &priv); 2434 } 2435 2436 /* 2437 * If a workload spans multiple NUMA nodes, a shared fault that 2438 * occurs wholly within the set of nodes that the workload is 2439 * actively using should be counted as local. This allows the 2440 * scan rate to slow down when a workload has settled down. 2441 */ 2442 ng = deref_curr_numa_group(p); 2443 if (!priv && !local && ng && ng->active_nodes > 1 && 2444 numa_is_active_node(cpu_node, ng) && 2445 numa_is_active_node(mem_node, ng)) 2446 local = 1; 2447 2448 /* 2449 * Retry to migrate task to preferred node periodically, in case it 2450 * previously failed, or the scheduler moved us. 2451 */ 2452 if (time_after(jiffies, p->numa_migrate_retry)) { 2453 task_numa_placement(p); 2454 numa_migrate_preferred(p); 2455 } 2456 2457 if (migrated) 2458 p->numa_pages_migrated += pages; 2459 if (flags & TNF_MIGRATE_FAIL) 2460 p->numa_faults_locality[2] += pages; 2461 2462 p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages; 2463 p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages; 2464 p->numa_faults_locality[local] += pages; 2465 } 2466 2467 static void reset_ptenuma_scan(struct task_struct *p) 2468 { 2469 /* 2470 * We only did a read acquisition of the mmap sem, so 2471 * p->mm->numa_scan_seq is written to without exclusive access 2472 * and the update is not guaranteed to be atomic. That's not 2473 * much of an issue though, since this is just used for 2474 * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not 2475 * expensive, to avoid any form of compiler optimizations: 2476 */ 2477 WRITE_ONCE(p->mm->numa_scan_seq, READ_ONCE(p->mm->numa_scan_seq) + 1); 2478 p->mm->numa_scan_offset = 0; 2479 } 2480 2481 /* 2482 * The expensive part of numa migration is done from task_work context. 2483 * Triggered from task_tick_numa(). 2484 */ 2485 static void task_numa_work(struct callback_head *work) 2486 { 2487 unsigned long migrate, next_scan, now = jiffies; 2488 struct task_struct *p = current; 2489 struct mm_struct *mm = p->mm; 2490 u64 runtime = p->se.sum_exec_runtime; 2491 struct vm_area_struct *vma; 2492 unsigned long start, end; 2493 unsigned long nr_pte_updates = 0; 2494 long pages, virtpages; 2495 2496 SCHED_WARN_ON(p != container_of(work, struct task_struct, numa_work)); 2497 2498 work->next = work; 2499 /* 2500 * Who cares about NUMA placement when they're dying. 2501 * 2502 * NOTE: make sure not to dereference p->mm before this check, 2503 * exit_task_work() happens _after_ exit_mm() so we could be called 2504 * without p->mm even though we still had it when we enqueued this 2505 * work. 2506 */ 2507 if (p->flags & PF_EXITING) 2508 return; 2509 2510 if (!mm->numa_next_scan) { 2511 mm->numa_next_scan = now + 2512 msecs_to_jiffies(sysctl_numa_balancing_scan_delay); 2513 } 2514 2515 /* 2516 * Enforce maximal scan/migration frequency.. 2517 */ 2518 migrate = mm->numa_next_scan; 2519 if (time_before(now, migrate)) 2520 return; 2521 2522 if (p->numa_scan_period == 0) { 2523 p->numa_scan_period_max = task_scan_max(p); 2524 p->numa_scan_period = task_scan_start(p); 2525 } 2526 2527 next_scan = now + msecs_to_jiffies(p->numa_scan_period); 2528 if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate) 2529 return; 2530 2531 /* 2532 * Delay this task enough that another task of this mm will likely win 2533 * the next time around. 2534 */ 2535 p->node_stamp += 2 * TICK_NSEC; 2536 2537 start = mm->numa_scan_offset; 2538 pages = sysctl_numa_balancing_scan_size; 2539 pages <<= 20 - PAGE_SHIFT; /* MB in pages */ 2540 virtpages = pages * 8; /* Scan up to this much virtual space */ 2541 if (!pages) 2542 return; 2543 2544 2545 if (!down_read_trylock(&mm->mmap_sem)) 2546 return; 2547 vma = find_vma(mm, start); 2548 if (!vma) { 2549 reset_ptenuma_scan(p); 2550 start = 0; 2551 vma = mm->mmap; 2552 } 2553 for (; vma; vma = vma->vm_next) { 2554 if (!vma_migratable(vma) || !vma_policy_mof(vma) || 2555 is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_MIXEDMAP)) { 2556 continue; 2557 } 2558 2559 /* 2560 * Shared library pages mapped by multiple processes are not 2561 * migrated as it is expected they are cache replicated. Avoid 2562 * hinting faults in read-only file-backed mappings or the vdso 2563 * as migrating the pages will be of marginal benefit. 2564 */ 2565 if (!vma->vm_mm || 2566 (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ))) 2567 continue; 2568 2569 /* 2570 * Skip inaccessible VMAs to avoid any confusion between 2571 * PROT_NONE and NUMA hinting ptes 2572 */ 2573 if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE))) 2574 continue; 2575 2576 do { 2577 start = max(start, vma->vm_start); 2578 end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE); 2579 end = min(end, vma->vm_end); 2580 nr_pte_updates = change_prot_numa(vma, start, end); 2581 2582 /* 2583 * Try to scan sysctl_numa_balancing_size worth of 2584 * hpages that have at least one present PTE that 2585 * is not already pte-numa. If the VMA contains 2586 * areas that are unused or already full of prot_numa 2587 * PTEs, scan up to virtpages, to skip through those 2588 * areas faster. 2589 */ 2590 if (nr_pte_updates) 2591 pages -= (end - start) >> PAGE_SHIFT; 2592 virtpages -= (end - start) >> PAGE_SHIFT; 2593 2594 start = end; 2595 if (pages <= 0 || virtpages <= 0) 2596 goto out; 2597 2598 cond_resched(); 2599 } while (end != vma->vm_end); 2600 } 2601 2602 out: 2603 /* 2604 * It is possible to reach the end of the VMA list but the last few 2605 * VMAs are not guaranteed to the vma_migratable. If they are not, we 2606 * would find the !migratable VMA on the next scan but not reset the 2607 * scanner to the start so check it now. 2608 */ 2609 if (vma) 2610 mm->numa_scan_offset = start; 2611 else 2612 reset_ptenuma_scan(p); 2613 up_read(&mm->mmap_sem); 2614 2615 /* 2616 * Make sure tasks use at least 32x as much time to run other code 2617 * than they used here, to limit NUMA PTE scanning overhead to 3% max. 2618 * Usually update_task_scan_period slows down scanning enough; on an 2619 * overloaded system we need to limit overhead on a per task basis. 2620 */ 2621 if (unlikely(p->se.sum_exec_runtime != runtime)) { 2622 u64 diff = p->se.sum_exec_runtime - runtime; 2623 p->node_stamp += 32 * diff; 2624 } 2625 } 2626 2627 void init_numa_balancing(unsigned long clone_flags, struct task_struct *p) 2628 { 2629 int mm_users = 0; 2630 struct mm_struct *mm = p->mm; 2631 2632 if (mm) { 2633 mm_users = atomic_read(&mm->mm_users); 2634 if (mm_users == 1) { 2635 mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay); 2636 mm->numa_scan_seq = 0; 2637 } 2638 } 2639 p->node_stamp = 0; 2640 p->numa_scan_seq = mm ? mm->numa_scan_seq : 0; 2641 p->numa_scan_period = sysctl_numa_balancing_scan_delay; 2642 /* Protect against double add, see task_tick_numa and task_numa_work */ 2643 p->numa_work.next = &p->numa_work; 2644 p->numa_faults = NULL; 2645 RCU_INIT_POINTER(p->numa_group, NULL); 2646 p->last_task_numa_placement = 0; 2647 p->last_sum_exec_runtime = 0; 2648 2649 init_task_work(&p->numa_work, task_numa_work); 2650 2651 /* New address space, reset the preferred nid */ 2652 if (!(clone_flags & CLONE_VM)) { 2653 p->numa_preferred_nid = NUMA_NO_NODE; 2654 return; 2655 } 2656 2657 /* 2658 * New thread, keep existing numa_preferred_nid which should be copied 2659 * already by arch_dup_task_struct but stagger when scans start. 2660 */ 2661 if (mm) { 2662 unsigned int delay; 2663 2664 delay = min_t(unsigned int, task_scan_max(current), 2665 current->numa_scan_period * mm_users * NSEC_PER_MSEC); 2666 delay += 2 * TICK_NSEC; 2667 p->node_stamp = delay; 2668 } 2669 } 2670 2671 /* 2672 * Drive the periodic memory faults.. 2673 */ 2674 static void task_tick_numa(struct rq *rq, struct task_struct *curr) 2675 { 2676 struct callback_head *work = &curr->numa_work; 2677 u64 period, now; 2678 2679 /* 2680 * We don't care about NUMA placement if we don't have memory. 2681 */ 2682 if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work) 2683 return; 2684 2685 /* 2686 * Using runtime rather than walltime has the dual advantage that 2687 * we (mostly) drive the selection from busy threads and that the 2688 * task needs to have done some actual work before we bother with 2689 * NUMA placement. 2690 */ 2691 now = curr->se.sum_exec_runtime; 2692 period = (u64)curr->numa_scan_period * NSEC_PER_MSEC; 2693 2694 if (now > curr->node_stamp + period) { 2695 if (!curr->node_stamp) 2696 curr->numa_scan_period = task_scan_start(curr); 2697 curr->node_stamp += period; 2698 2699 if (!time_before(jiffies, curr->mm->numa_next_scan)) 2700 task_work_add(curr, work, true); 2701 } 2702 } 2703 2704 static void update_scan_period(struct task_struct *p, int new_cpu) 2705 { 2706 int src_nid = cpu_to_node(task_cpu(p)); 2707 int dst_nid = cpu_to_node(new_cpu); 2708 2709 if (!static_branch_likely(&sched_numa_balancing)) 2710 return; 2711 2712 if (!p->mm || !p->numa_faults || (p->flags & PF_EXITING)) 2713 return; 2714 2715 if (src_nid == dst_nid) 2716 return; 2717 2718 /* 2719 * Allow resets if faults have been trapped before one scan 2720 * has completed. This is most likely due to a new task that 2721 * is pulled cross-node due to wakeups or load balancing. 2722 */ 2723 if (p->numa_scan_seq) { 2724 /* 2725 * Avoid scan adjustments if moving to the preferred 2726 * node or if the task was not previously running on 2727 * the preferred node. 2728 */ 2729 if (dst_nid == p->numa_preferred_nid || 2730 (p->numa_preferred_nid != NUMA_NO_NODE && 2731 src_nid != p->numa_preferred_nid)) 2732 return; 2733 } 2734 2735 p->numa_scan_period = task_scan_start(p); 2736 } 2737 2738 #else 2739 static void task_tick_numa(struct rq *rq, struct task_struct *curr) 2740 { 2741 } 2742 2743 static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p) 2744 { 2745 } 2746 2747 static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p) 2748 { 2749 } 2750 2751 static inline void update_scan_period(struct task_struct *p, int new_cpu) 2752 { 2753 } 2754 2755 #endif /* CONFIG_NUMA_BALANCING */ 2756 2757 static void 2758 account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se) 2759 { 2760 update_load_add(&cfs_rq->load, se->load.weight); 2761 #ifdef CONFIG_SMP 2762 if (entity_is_task(se)) { 2763 struct rq *rq = rq_of(cfs_rq); 2764 2765 account_numa_enqueue(rq, task_of(se)); 2766 list_add(&se->group_node, &rq->cfs_tasks); 2767 } 2768 #endif 2769 cfs_rq->nr_running++; 2770 } 2771 2772 static void 2773 account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se) 2774 { 2775 update_load_sub(&cfs_rq->load, se->load.weight); 2776 #ifdef CONFIG_SMP 2777 if (entity_is_task(se)) { 2778 account_numa_dequeue(rq_of(cfs_rq), task_of(se)); 2779 list_del_init(&se->group_node); 2780 } 2781 #endif 2782 cfs_rq->nr_running--; 2783 } 2784 2785 /* 2786 * Signed add and clamp on underflow. 2787 * 2788 * Explicitly do a load-store to ensure the intermediate value never hits 2789 * memory. This allows lockless observations without ever seeing the negative 2790 * values. 2791 */ 2792 #define add_positive(_ptr, _val) do { \ 2793 typeof(_ptr) ptr = (_ptr); \ 2794 typeof(_val) val = (_val); \ 2795 typeof(*ptr) res, var = READ_ONCE(*ptr); \ 2796 \ 2797 res = var + val; \ 2798 \ 2799 if (val < 0 && res > var) \ 2800 res = 0; \ 2801 \ 2802 WRITE_ONCE(*ptr, res); \ 2803 } while (0) 2804 2805 /* 2806 * Unsigned subtract and clamp on underflow. 2807 * 2808 * Explicitly do a load-store to ensure the intermediate value never hits 2809 * memory. This allows lockless observations without ever seeing the negative 2810 * values. 2811 */ 2812 #define sub_positive(_ptr, _val) do { \ 2813 typeof(_ptr) ptr = (_ptr); \ 2814 typeof(*ptr) val = (_val); \ 2815 typeof(*ptr) res, var = READ_ONCE(*ptr); \ 2816 res = var - val; \ 2817 if (res > var) \ 2818 res = 0; \ 2819 WRITE_ONCE(*ptr, res); \ 2820 } while (0) 2821 2822 /* 2823 * Remove and clamp on negative, from a local variable. 2824 * 2825 * A variant of sub_positive(), which does not use explicit load-store 2826 * and is thus optimized for local variable updates. 2827 */ 2828 #define lsub_positive(_ptr, _val) do { \ 2829 typeof(_ptr) ptr = (_ptr); \ 2830 *ptr -= min_t(typeof(*ptr), *ptr, _val); \ 2831 } while (0) 2832 2833 #ifdef CONFIG_SMP 2834 static inline void 2835 enqueue_runnable_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) 2836 { 2837 cfs_rq->runnable_weight += se->runnable_weight; 2838 2839 cfs_rq->avg.runnable_load_avg += se->avg.runnable_load_avg; 2840 cfs_rq->avg.runnable_load_sum += se_runnable(se) * se->avg.runnable_load_sum; 2841 } 2842 2843 static inline void 2844 dequeue_runnable_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) 2845 { 2846 cfs_rq->runnable_weight -= se->runnable_weight; 2847 2848 sub_positive(&cfs_rq->avg.runnable_load_avg, se->avg.runnable_load_avg); 2849 sub_positive(&cfs_rq->avg.runnable_load_sum, 2850 se_runnable(se) * se->avg.runnable_load_sum); 2851 } 2852 2853 static inline void 2854 enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) 2855 { 2856 cfs_rq->avg.load_avg += se->avg.load_avg; 2857 cfs_rq->avg.load_sum += se_weight(se) * se->avg.load_sum; 2858 } 2859 2860 static inline void 2861 dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) 2862 { 2863 sub_positive(&cfs_rq->avg.load_avg, se->avg.load_avg); 2864 sub_positive(&cfs_rq->avg.load_sum, se_weight(se) * se->avg.load_sum); 2865 } 2866 #else 2867 static inline void 2868 enqueue_runnable_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { } 2869 static inline void 2870 dequeue_runnable_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { } 2871 static inline void 2872 enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { } 2873 static inline void 2874 dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { } 2875 #endif 2876 2877 static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, 2878 unsigned long weight, unsigned long runnable) 2879 { 2880 if (se->on_rq) { 2881 /* commit outstanding execution time */ 2882 if (cfs_rq->curr == se) 2883 update_curr(cfs_rq); 2884 account_entity_dequeue(cfs_rq, se); 2885 dequeue_runnable_load_avg(cfs_rq, se); 2886 } 2887 dequeue_load_avg(cfs_rq, se); 2888 2889 se->runnable_weight = runnable; 2890 update_load_set(&se->load, weight); 2891 2892 #ifdef CONFIG_SMP 2893 do { 2894 u32 divider = LOAD_AVG_MAX - 1024 + se->avg.period_contrib; 2895 2896 se->avg.load_avg = div_u64(se_weight(se) * se->avg.load_sum, divider); 2897 se->avg.runnable_load_avg = 2898 div_u64(se_runnable(se) * se->avg.runnable_load_sum, divider); 2899 } while (0); 2900 #endif 2901 2902 enqueue_load_avg(cfs_rq, se); 2903 if (se->on_rq) { 2904 account_entity_enqueue(cfs_rq, se); 2905 enqueue_runnable_load_avg(cfs_rq, se); 2906 } 2907 } 2908 2909 void reweight_task(struct task_struct *p, int prio) 2910 { 2911 struct sched_entity *se = &p->se; 2912 struct cfs_rq *cfs_rq = cfs_rq_of(se); 2913 struct load_weight *load = &se->load; 2914 unsigned long weight = scale_load(sched_prio_to_weight[prio]); 2915 2916 reweight_entity(cfs_rq, se, weight, weight); 2917 load->inv_weight = sched_prio_to_wmult[prio]; 2918 } 2919 2920 #ifdef CONFIG_FAIR_GROUP_SCHED 2921 #ifdef CONFIG_SMP 2922 /* 2923 * All this does is approximate the hierarchical proportion which includes that 2924 * global sum we all love to hate. 2925 * 2926 * That is, the weight of a group entity, is the proportional share of the 2927 * group weight based on the group runqueue weights. That is: 2928 * 2929 * tg->weight * grq->load.weight 2930 * ge->load.weight = ----------------------------- (1) 2931 * \Sum grq->load.weight 2932 * 2933 * Now, because computing that sum is prohibitively expensive to compute (been 2934 * there, done that) we approximate it with this average stuff. The average 2935 * moves slower and therefore the approximation is cheaper and more stable. 2936 * 2937 * So instead of the above, we substitute: 2938 * 2939 * grq->load.weight -> grq->avg.load_avg (2) 2940 * 2941 * which yields the following: 2942 * 2943 * tg->weight * grq->avg.load_avg 2944 * ge->load.weight = ------------------------------ (3) 2945 * tg->load_avg 2946 * 2947 * Where: tg->load_avg ~= \Sum grq->avg.load_avg 2948 * 2949 * That is shares_avg, and it is right (given the approximation (2)). 2950 * 2951 * The problem with it is that because the average is slow -- it was designed 2952 * to be exactly that of course -- this leads to transients in boundary 2953 * conditions. In specific, the case where the group was idle and we start the 2954 * one task. It takes time for our CPU's grq->avg.load_avg to build up, 2955 * yielding bad latency etc.. 2956 * 2957 * Now, in that special case (1) reduces to: 2958 * 2959 * tg->weight * grq->load.weight 2960 * ge->load.weight = ----------------------------- = tg->weight (4) 2961 * grp->load.weight 2962 * 2963 * That is, the sum collapses because all other CPUs are idle; the UP scenario. 2964 * 2965 * So what we do is modify our approximation (3) to approach (4) in the (near) 2966 * UP case, like: 2967 * 2968 * ge->load.weight = 2969 * 2970 * tg->weight * grq->load.weight 2971 * --------------------------------------------------- (5) 2972 * tg->load_avg - grq->avg.load_avg + grq->load.weight 2973 * 2974 * But because grq->load.weight can drop to 0, resulting in a divide by zero, 2975 * we need to use grq->avg.load_avg as its lower bound, which then gives: 2976 * 2977 * 2978 * tg->weight * grq->load.weight 2979 * ge->load.weight = ----------------------------- (6) 2980 * tg_load_avg' 2981 * 2982 * Where: 2983 * 2984 * tg_load_avg' = tg->load_avg - grq->avg.load_avg + 2985 * max(grq->load.weight, grq->avg.load_avg) 2986 * 2987 * And that is shares_weight and is icky. In the (near) UP case it approaches 2988 * (4) while in the normal case it approaches (3). It consistently 2989 * overestimates the ge->load.weight and therefore: 2990 * 2991 * \Sum ge->load.weight >= tg->weight 2992 * 2993 * hence icky! 2994 */ 2995 static long calc_group_shares(struct cfs_rq *cfs_rq) 2996 { 2997 long tg_weight, tg_shares, load, shares; 2998 struct task_group *tg = cfs_rq->tg; 2999 3000 tg_shares = READ_ONCE(tg->shares); 3001 3002 load = max(scale_load_down(cfs_rq->load.weight), cfs_rq->avg.load_avg); 3003 3004 tg_weight = atomic_long_read(&tg->load_avg); 3005 3006 /* Ensure tg_weight >= load */ 3007 tg_weight -= cfs_rq->tg_load_avg_contrib; 3008 tg_weight += load; 3009 3010 shares = (tg_shares * load); 3011 if (tg_weight) 3012 shares /= tg_weight; 3013 3014 /* 3015 * MIN_SHARES has to be unscaled here to support per-CPU partitioning 3016 * of a group with small tg->shares value. It is a floor value which is 3017 * assigned as a minimum load.weight to the sched_entity representing 3018 * the group on a CPU. 3019 * 3020 * E.g. on 64-bit for a group with tg->shares of scale_load(15)=15*1024 3021 * on an 8-core system with 8 tasks each runnable on one CPU shares has 3022 * to be 15*1024*1/8=1920 instead of scale_load(MIN_SHARES)=2*1024. In 3023 * case no task is runnable on a CPU MIN_SHARES=2 should be returned 3024 * instead of 0. 3025 */ 3026 return clamp_t(long, shares, MIN_SHARES, tg_shares); 3027 } 3028 3029 /* 3030 * This calculates the effective runnable weight for a group entity based on 3031 * the group entity weight calculated above. 3032 * 3033 * Because of the above approximation (2), our group entity weight is 3034 * an load_avg based ratio (3). This means that it includes blocked load and 3035 * does not represent the runnable weight. 3036 * 3037 * Approximate the group entity's runnable weight per ratio from the group 3038 * runqueue: 3039 * 3040 * grq->avg.runnable_load_avg 3041 * ge->runnable_weight = ge->load.weight * -------------------------- (7) 3042 * grq->avg.load_avg 3043 * 3044 * However, analogous to above, since the avg numbers are slow, this leads to 3045 * transients in the from-idle case. Instead we use: 3046 * 3047 * ge->runnable_weight = ge->load.weight * 3048 * 3049 * max(grq->avg.runnable_load_avg, grq->runnable_weight) 3050 * ----------------------------------------------------- (8) 3051 * max(grq->avg.load_avg, grq->load.weight) 3052 * 3053 * Where these max() serve both to use the 'instant' values to fix the slow 3054 * from-idle and avoid the /0 on to-idle, similar to (6). 3055 */ 3056 static long calc_group_runnable(struct cfs_rq *cfs_rq, long shares) 3057 { 3058 long runnable, load_avg; 3059 3060 load_avg = max(cfs_rq->avg.load_avg, 3061 scale_load_down(cfs_rq->load.weight)); 3062 3063 runnable = max(cfs_rq->avg.runnable_load_avg, 3064 scale_load_down(cfs_rq->runnable_weight)); 3065 3066 runnable *= shares; 3067 if (load_avg) 3068 runnable /= load_avg; 3069 3070 return clamp_t(long, runnable, MIN_SHARES, shares); 3071 } 3072 #endif /* CONFIG_SMP */ 3073 3074 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq); 3075 3076 /* 3077 * Recomputes the group entity based on the current state of its group 3078 * runqueue. 3079 */ 3080 static void update_cfs_group(struct sched_entity *se) 3081 { 3082 struct cfs_rq *gcfs_rq = group_cfs_rq(se); 3083 long shares, runnable; 3084 3085 if (!gcfs_rq) 3086 return; 3087 3088 if (throttled_hierarchy(gcfs_rq)) 3089 return; 3090 3091 #ifndef CONFIG_SMP 3092 runnable = shares = READ_ONCE(gcfs_rq->tg->shares); 3093 3094 if (likely(se->load.weight == shares)) 3095 return; 3096 #else 3097 shares = calc_group_shares(gcfs_rq); 3098 runnable = calc_group_runnable(gcfs_rq, shares); 3099 #endif 3100 3101 reweight_entity(cfs_rq_of(se), se, shares, runnable); 3102 } 3103 3104 #else /* CONFIG_FAIR_GROUP_SCHED */ 3105 static inline void update_cfs_group(struct sched_entity *se) 3106 { 3107 } 3108 #endif /* CONFIG_FAIR_GROUP_SCHED */ 3109 3110 static inline void cfs_rq_util_change(struct cfs_rq *cfs_rq, int flags) 3111 { 3112 struct rq *rq = rq_of(cfs_rq); 3113 3114 if (&rq->cfs == cfs_rq || (flags & SCHED_CPUFREQ_MIGRATION)) { 3115 /* 3116 * There are a few boundary cases this might miss but it should 3117 * get called often enough that that should (hopefully) not be 3118 * a real problem. 3119 * 3120 * It will not get called when we go idle, because the idle 3121 * thread is a different class (!fair), nor will the utilization 3122 * number include things like RT tasks. 3123 * 3124 * As is, the util number is not freq-invariant (we'd have to 3125 * implement arch_scale_freq_capacity() for that). 3126 * 3127 * See cpu_util(). 3128 */ 3129 cpufreq_update_util(rq, flags); 3130 } 3131 } 3132 3133 #ifdef CONFIG_SMP 3134 #ifdef CONFIG_FAIR_GROUP_SCHED 3135 /** 3136 * update_tg_load_avg - update the tg's load avg 3137 * @cfs_rq: the cfs_rq whose avg changed 3138 * @force: update regardless of how small the difference 3139 * 3140 * This function 'ensures': tg->load_avg := \Sum tg->cfs_rq[]->avg.load. 3141 * However, because tg->load_avg is a global value there are performance 3142 * considerations. 3143 * 3144 * In order to avoid having to look at the other cfs_rq's, we use a 3145 * differential update where we store the last value we propagated. This in 3146 * turn allows skipping updates if the differential is 'small'. 3147 * 3148 * Updating tg's load_avg is necessary before update_cfs_share(). 3149 */ 3150 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force) 3151 { 3152 long delta = cfs_rq->avg.load_avg - cfs_rq->tg_load_avg_contrib; 3153 3154 /* 3155 * No need to update load_avg for root_task_group as it is not used. 3156 */ 3157 if (cfs_rq->tg == &root_task_group) 3158 return; 3159 3160 if (force || abs(delta) > cfs_rq->tg_load_avg_contrib / 64) { 3161 atomic_long_add(delta, &cfs_rq->tg->load_avg); 3162 cfs_rq->tg_load_avg_contrib = cfs_rq->avg.load_avg; 3163 } 3164 } 3165 3166 /* 3167 * Called within set_task_rq() right before setting a task's CPU. The 3168 * caller only guarantees p->pi_lock is held; no other assumptions, 3169 * including the state of rq->lock, should be made. 3170 */ 3171 void set_task_rq_fair(struct sched_entity *se, 3172 struct cfs_rq *prev, struct cfs_rq *next) 3173 { 3174 u64 p_last_update_time; 3175 u64 n_last_update_time; 3176 3177 if (!sched_feat(ATTACH_AGE_LOAD)) 3178 return; 3179 3180 /* 3181 * We are supposed to update the task to "current" time, then its up to 3182 * date and ready to go to new CPU/cfs_rq. But we have difficulty in 3183 * getting what current time is, so simply throw away the out-of-date 3184 * time. This will result in the wakee task is less decayed, but giving 3185 * the wakee more load sounds not bad. 3186 */ 3187 if (!(se->avg.last_update_time && prev)) 3188 return; 3189 3190 #ifndef CONFIG_64BIT 3191 { 3192 u64 p_last_update_time_copy; 3193 u64 n_last_update_time_copy; 3194 3195 do { 3196 p_last_update_time_copy = prev->load_last_update_time_copy; 3197 n_last_update_time_copy = next->load_last_update_time_copy; 3198 3199 smp_rmb(); 3200 3201 p_last_update_time = prev->avg.last_update_time; 3202 n_last_update_time = next->avg.last_update_time; 3203 3204 } while (p_last_update_time != p_last_update_time_copy || 3205 n_last_update_time != n_last_update_time_copy); 3206 } 3207 #else 3208 p_last_update_time = prev->avg.last_update_time; 3209 n_last_update_time = next->avg.last_update_time; 3210 #endif 3211 __update_load_avg_blocked_se(p_last_update_time, se); 3212 se->avg.last_update_time = n_last_update_time; 3213 } 3214 3215 3216 /* 3217 * When on migration a sched_entity joins/leaves the PELT hierarchy, we need to 3218 * propagate its contribution. The key to this propagation is the invariant 3219 * that for each group: 3220 * 3221 * ge->avg == grq->avg (1) 3222 * 3223 * _IFF_ we look at the pure running and runnable sums. Because they 3224 * represent the very same entity, just at different points in the hierarchy. 3225 * 3226 * Per the above update_tg_cfs_util() is trivial and simply copies the running 3227 * sum over (but still wrong, because the group entity and group rq do not have 3228 * their PELT windows aligned). 3229 * 3230 * However, update_tg_cfs_runnable() is more complex. So we have: 3231 * 3232 * ge->avg.load_avg = ge->load.weight * ge->avg.runnable_avg (2) 3233 * 3234 * And since, like util, the runnable part should be directly transferable, 3235 * the following would _appear_ to be the straight forward approach: 3236 * 3237 * grq->avg.load_avg = grq->load.weight * grq->avg.runnable_avg (3) 3238 * 3239 * And per (1) we have: 3240 * 3241 * ge->avg.runnable_avg == grq->avg.runnable_avg 3242 * 3243 * Which gives: 3244 * 3245 * ge->load.weight * grq->avg.load_avg 3246 * ge->avg.load_avg = ----------------------------------- (4) 3247 * grq->load.weight 3248 * 3249 * Except that is wrong! 3250 * 3251 * Because while for entities historical weight is not important and we 3252 * really only care about our future and therefore can consider a pure 3253 * runnable sum, runqueues can NOT do this. 3254 * 3255 * We specifically want runqueues to have a load_avg that includes 3256 * historical weights. Those represent the blocked load, the load we expect 3257 * to (shortly) return to us. This only works by keeping the weights as 3258 * integral part of the sum. We therefore cannot decompose as per (3). 3259 * 3260 * Another reason this doesn't work is that runnable isn't a 0-sum entity. 3261 * Imagine a rq with 2 tasks that each are runnable 2/3 of the time. Then the 3262 * rq itself is runnable anywhere between 2/3 and 1 depending on how the 3263 * runnable section of these tasks overlap (or not). If they were to perfectly 3264 * align the rq as a whole would be runnable 2/3 of the time. If however we 3265 * always have at least 1 runnable task, the rq as a whole is always runnable. 3266 * 3267 * So we'll have to approximate.. :/ 3268 * 3269 * Given the constraint: 3270 * 3271 * ge->avg.running_sum <= ge->avg.runnable_sum <= LOAD_AVG_MAX 3272 * 3273 * We can construct a rule that adds runnable to a rq by assuming minimal 3274 * overlap. 3275 * 3276 * On removal, we'll assume each task is equally runnable; which yields: 3277 * 3278 * grq->avg.runnable_sum = grq->avg.load_sum / grq->load.weight 3279 * 3280 * XXX: only do this for the part of runnable > running ? 3281 * 3282 */ 3283 3284 static inline void 3285 update_tg_cfs_util(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq) 3286 { 3287 long delta = gcfs_rq->avg.util_avg - se->avg.util_avg; 3288 3289 /* Nothing to update */ 3290 if (!delta) 3291 return; 3292 3293 /* 3294 * The relation between sum and avg is: 3295 * 3296 * LOAD_AVG_MAX - 1024 + sa->period_contrib 3297 * 3298 * however, the PELT windows are not aligned between grq and gse. 3299 */ 3300 3301 /* Set new sched_entity's utilization */ 3302 se->avg.util_avg = gcfs_rq->avg.util_avg; 3303 se->avg.util_sum = se->avg.util_avg * LOAD_AVG_MAX; 3304 3305 /* Update parent cfs_rq utilization */ 3306 add_positive(&cfs_rq->avg.util_avg, delta); 3307 cfs_rq->avg.util_sum = cfs_rq->avg.util_avg * LOAD_AVG_MAX; 3308 } 3309 3310 static inline void 3311 update_tg_cfs_runnable(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq) 3312 { 3313 long delta_avg, running_sum, runnable_sum = gcfs_rq->prop_runnable_sum; 3314 unsigned long runnable_load_avg, load_avg; 3315 u64 runnable_load_sum, load_sum = 0; 3316 s64 delta_sum; 3317 3318 if (!runnable_sum) 3319 return; 3320 3321 gcfs_rq->prop_runnable_sum = 0; 3322 3323 if (runnable_sum >= 0) { 3324 /* 3325 * Add runnable; clip at LOAD_AVG_MAX. Reflects that until 3326 * the CPU is saturated running == runnable. 3327 */ 3328 runnable_sum += se->avg.load_sum; 3329 runnable_sum = min(runnable_sum, (long)LOAD_AVG_MAX); 3330 } else { 3331 /* 3332 * Estimate the new unweighted runnable_sum of the gcfs_rq by 3333 * assuming all tasks are equally runnable. 3334 */ 3335 if (scale_load_down(gcfs_rq->load.weight)) { 3336 load_sum = div_s64(gcfs_rq->avg.load_sum, 3337 scale_load_down(gcfs_rq->load.weight)); 3338 } 3339 3340 /* But make sure to not inflate se's runnable */ 3341 runnable_sum = min(se->avg.load_sum, load_sum); 3342 } 3343 3344 /* 3345 * runnable_sum can't be lower than running_sum 3346 * Rescale running sum to be in the same range as runnable sum 3347 * running_sum is in [0 : LOAD_AVG_MAX << SCHED_CAPACITY_SHIFT] 3348 * runnable_sum is in [0 : LOAD_AVG_MAX] 3349 */ 3350 running_sum = se->avg.util_sum >> SCHED_CAPACITY_SHIFT; 3351 runnable_sum = max(runnable_sum, running_sum); 3352 3353 load_sum = (s64)se_weight(se) * runnable_sum; 3354 load_avg = div_s64(load_sum, LOAD_AVG_MAX); 3355 3356 delta_sum = load_sum - (s64)se_weight(se) * se->avg.load_sum; 3357 delta_avg = load_avg - se->avg.load_avg; 3358 3359 se->avg.load_sum = runnable_sum; 3360 se->avg.load_avg = load_avg; 3361 add_positive(&cfs_rq->avg.load_avg, delta_avg); 3362 add_positive(&cfs_rq->avg.load_sum, delta_sum); 3363 3364 runnable_load_sum = (s64)se_runnable(se) * runnable_sum; 3365 runnable_load_avg = div_s64(runnable_load_sum, LOAD_AVG_MAX); 3366 delta_sum = runnable_load_sum - se_weight(se) * se->avg.runnable_load_sum; 3367 delta_avg = runnable_load_avg - se->avg.runnable_load_avg; 3368 3369 se->avg.runnable_load_sum = runnable_sum; 3370 se->avg.runnable_load_avg = runnable_load_avg; 3371 3372 if (se->on_rq) { 3373 add_positive(&cfs_rq->avg.runnable_load_avg, delta_avg); 3374 add_positive(&cfs_rq->avg.runnable_load_sum, delta_sum); 3375 } 3376 } 3377 3378 static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum) 3379 { 3380 cfs_rq->propagate = 1; 3381 cfs_rq->prop_runnable_sum += runnable_sum; 3382 } 3383 3384 /* Update task and its cfs_rq load average */ 3385 static inline int propagate_entity_load_avg(struct sched_entity *se) 3386 { 3387 struct cfs_rq *cfs_rq, *gcfs_rq; 3388 3389 if (entity_is_task(se)) 3390 return 0; 3391 3392 gcfs_rq = group_cfs_rq(se); 3393 if (!gcfs_rq->propagate) 3394 return 0; 3395 3396 gcfs_rq->propagate = 0; 3397 3398 cfs_rq = cfs_rq_of(se); 3399 3400 add_tg_cfs_propagate(cfs_rq, gcfs_rq->prop_runnable_sum); 3401 3402 update_tg_cfs_util(cfs_rq, se, gcfs_rq); 3403 update_tg_cfs_runnable(cfs_rq, se, gcfs_rq); 3404 3405 trace_pelt_cfs_tp(cfs_rq); 3406 trace_pelt_se_tp(se); 3407 3408 return 1; 3409 } 3410 3411 /* 3412 * Check if we need to update the load and the utilization of a blocked 3413 * group_entity: 3414 */ 3415 static inline bool skip_blocked_update(struct sched_entity *se) 3416 { 3417 struct cfs_rq *gcfs_rq = group_cfs_rq(se); 3418 3419 /* 3420 * If sched_entity still have not zero load or utilization, we have to 3421 * decay it: 3422 */ 3423 if (se->avg.load_avg || se->avg.util_avg) 3424 return false; 3425 3426 /* 3427 * If there is a pending propagation, we have to update the load and 3428 * the utilization of the sched_entity: 3429 */ 3430 if (gcfs_rq->propagate) 3431 return false; 3432 3433 /* 3434 * Otherwise, the load and the utilization of the sched_entity is 3435 * already zero and there is no pending propagation, so it will be a 3436 * waste of time to try to decay it: 3437 */ 3438 return true; 3439 } 3440 3441 #else /* CONFIG_FAIR_GROUP_SCHED */ 3442 3443 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force) {} 3444 3445 static inline int propagate_entity_load_avg(struct sched_entity *se) 3446 { 3447 return 0; 3448 } 3449 3450 static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum) {} 3451 3452 #endif /* CONFIG_FAIR_GROUP_SCHED */ 3453 3454 /** 3455 * update_cfs_rq_load_avg - update the cfs_rq's load/util averages 3456 * @now: current time, as per cfs_rq_clock_pelt() 3457 * @cfs_rq: cfs_rq to update 3458 * 3459 * The cfs_rq avg is the direct sum of all its entities (blocked and runnable) 3460 * avg. The immediate corollary is that all (fair) tasks must be attached, see 3461 * post_init_entity_util_avg(). 3462 * 3463 * cfs_rq->avg is used for task_h_load() and update_cfs_share() for example. 3464 * 3465 * Returns true if the load decayed or we removed load. 3466 * 3467 * Since both these conditions indicate a changed cfs_rq->avg.load we should 3468 * call update_tg_load_avg() when this function returns true. 3469 */ 3470 static inline int 3471 update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq) 3472 { 3473 unsigned long removed_load = 0, removed_util = 0, removed_runnable_sum = 0; 3474 struct sched_avg *sa = &cfs_rq->avg; 3475 int decayed = 0; 3476 3477 if (cfs_rq->removed.nr) { 3478 unsigned long r; 3479 u32 divider = LOAD_AVG_MAX - 1024 + sa->period_contrib; 3480 3481 raw_spin_lock(&cfs_rq->removed.lock); 3482 swap(cfs_rq->removed.util_avg, removed_util); 3483 swap(cfs_rq->removed.load_avg, removed_load); 3484 swap(cfs_rq->removed.runnable_sum, removed_runnable_sum); 3485 cfs_rq->removed.nr = 0; 3486 raw_spin_unlock(&cfs_rq->removed.lock); 3487 3488 r = removed_load; 3489 sub_positive(&sa->load_avg, r); 3490 sub_positive(&sa->load_sum, r * divider); 3491 3492 r = removed_util; 3493 sub_positive(&sa->util_avg, r); 3494 sub_positive(&sa->util_sum, r * divider); 3495 3496 add_tg_cfs_propagate(cfs_rq, -(long)removed_runnable_sum); 3497 3498 decayed = 1; 3499 } 3500 3501 decayed |= __update_load_avg_cfs_rq(now, cfs_rq); 3502 3503 #ifndef CONFIG_64BIT 3504 smp_wmb(); 3505 cfs_rq->load_last_update_time_copy = sa->last_update_time; 3506 #endif 3507 3508 if (decayed) 3509 cfs_rq_util_change(cfs_rq, 0); 3510 3511 return decayed; 3512 } 3513 3514 /** 3515 * attach_entity_load_avg - attach this entity to its cfs_rq load avg 3516 * @cfs_rq: cfs_rq to attach to 3517 * @se: sched_entity to attach 3518 * @flags: migration hints 3519 * 3520 * Must call update_cfs_rq_load_avg() before this, since we rely on 3521 * cfs_rq->avg.last_update_time being current. 3522 */ 3523 static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 3524 { 3525 u32 divider = LOAD_AVG_MAX - 1024 + cfs_rq->avg.period_contrib; 3526 3527 /* 3528 * When we attach the @se to the @cfs_rq, we must align the decay 3529 * window because without that, really weird and wonderful things can 3530 * happen. 3531 * 3532 * XXX illustrate 3533 */ 3534 se->avg.last_update_time = cfs_rq->avg.last_update_time; 3535 se->avg.period_contrib = cfs_rq->avg.period_contrib; 3536 3537 /* 3538 * Hell(o) Nasty stuff.. we need to recompute _sum based on the new 3539 * period_contrib. This isn't strictly correct, but since we're 3540 * entirely outside of the PELT hierarchy, nobody cares if we truncate 3541 * _sum a little. 3542 */ 3543 se->avg.util_sum = se->avg.util_avg * divider; 3544 3545 se->avg.load_sum = divider; 3546 if (se_weight(se)) { 3547 se->avg.load_sum = 3548 div_u64(se->avg.load_avg * se->avg.load_sum, se_weight(se)); 3549 } 3550 3551 se->avg.runnable_load_sum = se->avg.load_sum; 3552 3553 enqueue_load_avg(cfs_rq, se); 3554 cfs_rq->avg.util_avg += se->avg.util_avg; 3555 cfs_rq->avg.util_sum += se->avg.util_sum; 3556 3557 add_tg_cfs_propagate(cfs_rq, se->avg.load_sum); 3558 3559 cfs_rq_util_change(cfs_rq, flags); 3560 3561 trace_pelt_cfs_tp(cfs_rq); 3562 } 3563 3564 /** 3565 * detach_entity_load_avg - detach this entity from its cfs_rq load avg 3566 * @cfs_rq: cfs_rq to detach from 3567 * @se: sched_entity to detach 3568 * 3569 * Must call update_cfs_rq_load_avg() before this, since we rely on 3570 * cfs_rq->avg.last_update_time being current. 3571 */ 3572 static void detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) 3573 { 3574 dequeue_load_avg(cfs_rq, se); 3575 sub_positive(&cfs_rq->avg.util_avg, se->avg.util_avg); 3576 sub_positive(&cfs_rq->avg.util_sum, se->avg.util_sum); 3577 3578 add_tg_cfs_propagate(cfs_rq, -se->avg.load_sum); 3579 3580 cfs_rq_util_change(cfs_rq, 0); 3581 3582 trace_pelt_cfs_tp(cfs_rq); 3583 } 3584 3585 /* 3586 * Optional action to be done while updating the load average 3587 */ 3588 #define UPDATE_TG 0x1 3589 #define SKIP_AGE_LOAD 0x2 3590 #define DO_ATTACH 0x4 3591 3592 /* Update task and its cfs_rq load average */ 3593 static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 3594 { 3595 u64 now = cfs_rq_clock_pelt(cfs_rq); 3596 int decayed; 3597 3598 /* 3599 * Track task load average for carrying it to new CPU after migrated, and 3600 * track group sched_entity load average for task_h_load calc in migration 3601 */ 3602 if (se->avg.last_update_time && !(flags & SKIP_AGE_LOAD)) 3603 __update_load_avg_se(now, cfs_rq, se); 3604 3605 decayed = update_cfs_rq_load_avg(now, cfs_rq); 3606 decayed |= propagate_entity_load_avg(se); 3607 3608 if (!se->avg.last_update_time && (flags & DO_ATTACH)) { 3609 3610 /* 3611 * DO_ATTACH means we're here from enqueue_entity(). 3612 * !last_update_time means we've passed through 3613 * migrate_task_rq_fair() indicating we migrated. 3614 * 3615 * IOW we're enqueueing a task on a new CPU. 3616 */ 3617 attach_entity_load_avg(cfs_rq, se, SCHED_CPUFREQ_MIGRATION); 3618 update_tg_load_avg(cfs_rq, 0); 3619 3620 } else if (decayed && (flags & UPDATE_TG)) 3621 update_tg_load_avg(cfs_rq, 0); 3622 } 3623 3624 #ifndef CONFIG_64BIT 3625 static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq) 3626 { 3627 u64 last_update_time_copy; 3628 u64 last_update_time; 3629 3630 do { 3631 last_update_time_copy = cfs_rq->load_last_update_time_copy; 3632 smp_rmb(); 3633 last_update_time = cfs_rq->avg.last_update_time; 3634 } while (last_update_time != last_update_time_copy); 3635 3636 return last_update_time; 3637 } 3638 #else 3639 static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq) 3640 { 3641 return cfs_rq->avg.last_update_time; 3642 } 3643 #endif 3644 3645 /* 3646 * Synchronize entity load avg of dequeued entity without locking 3647 * the previous rq. 3648 */ 3649 static void sync_entity_load_avg(struct sched_entity *se) 3650 { 3651 struct cfs_rq *cfs_rq = cfs_rq_of(se); 3652 u64 last_update_time; 3653 3654 last_update_time = cfs_rq_last_update_time(cfs_rq); 3655 __update_load_avg_blocked_se(last_update_time, se); 3656 } 3657 3658 /* 3659 * Task first catches up with cfs_rq, and then subtract 3660 * itself from the cfs_rq (task must be off the queue now). 3661 */ 3662 static void remove_entity_load_avg(struct sched_entity *se) 3663 { 3664 struct cfs_rq *cfs_rq = cfs_rq_of(se); 3665 unsigned long flags; 3666 3667 /* 3668 * tasks cannot exit without having gone through wake_up_new_task() -> 3669 * post_init_entity_util_avg() which will have added things to the 3670 * cfs_rq, so we can remove unconditionally. 3671 */ 3672 3673 sync_entity_load_avg(se); 3674 3675 raw_spin_lock_irqsave(&cfs_rq->removed.lock, flags); 3676 ++cfs_rq->removed.nr; 3677 cfs_rq->removed.util_avg += se->avg.util_avg; 3678 cfs_rq->removed.load_avg += se->avg.load_avg; 3679 cfs_rq->removed.runnable_sum += se->avg.load_sum; /* == runnable_sum */ 3680 raw_spin_unlock_irqrestore(&cfs_rq->removed.lock, flags); 3681 } 3682 3683 static inline unsigned long cfs_rq_runnable_load_avg(struct cfs_rq *cfs_rq) 3684 { 3685 return cfs_rq->avg.runnable_load_avg; 3686 } 3687 3688 static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq) 3689 { 3690 return cfs_rq->avg.load_avg; 3691 } 3692 3693 static inline unsigned long task_util(struct task_struct *p) 3694 { 3695 return READ_ONCE(p->se.avg.util_avg); 3696 } 3697 3698 static inline unsigned long _task_util_est(struct task_struct *p) 3699 { 3700 struct util_est ue = READ_ONCE(p->se.avg.util_est); 3701 3702 return (max(ue.ewma, ue.enqueued) | UTIL_AVG_UNCHANGED); 3703 } 3704 3705 static inline unsigned long task_util_est(struct task_struct *p) 3706 { 3707 return max(task_util(p), _task_util_est(p)); 3708 } 3709 3710 static inline void util_est_enqueue(struct cfs_rq *cfs_rq, 3711 struct task_struct *p) 3712 { 3713 unsigned int enqueued; 3714 3715 if (!sched_feat(UTIL_EST)) 3716 return; 3717 3718 /* Update root cfs_rq's estimated utilization */ 3719 enqueued = cfs_rq->avg.util_est.enqueued; 3720 enqueued += _task_util_est(p); 3721 WRITE_ONCE(cfs_rq->avg.util_est.enqueued, enqueued); 3722 } 3723 3724 /* 3725 * Check if a (signed) value is within a specified (unsigned) margin, 3726 * based on the observation that: 3727 * 3728 * abs(x) < y := (unsigned)(x + y - 1) < (2 * y - 1) 3729 * 3730 * NOTE: this only works when value + maring < INT_MAX. 3731 */ 3732 static inline bool within_margin(int value, int margin) 3733 { 3734 return ((unsigned int)(value + margin - 1) < (2 * margin - 1)); 3735 } 3736 3737 static void 3738 util_est_dequeue(struct cfs_rq *cfs_rq, struct task_struct *p, bool task_sleep) 3739 { 3740 long last_ewma_diff; 3741 struct util_est ue; 3742 int cpu; 3743 3744 if (!sched_feat(UTIL_EST)) 3745 return; 3746 3747 /* Update root cfs_rq's estimated utilization */ 3748 ue.enqueued = cfs_rq->avg.util_est.enqueued; 3749 ue.enqueued -= min_t(unsigned int, ue.enqueued, _task_util_est(p)); 3750 WRITE_ONCE(cfs_rq->avg.util_est.enqueued, ue.enqueued); 3751 3752 /* 3753 * Skip update of task's estimated utilization when the task has not 3754 * yet completed an activation, e.g. being migrated. 3755 */ 3756 if (!task_sleep) 3757 return; 3758 3759 /* 3760 * If the PELT values haven't changed since enqueue time, 3761 * skip the util_est update. 3762 */ 3763 ue = p->se.avg.util_est; 3764 if (ue.enqueued & UTIL_AVG_UNCHANGED) 3765 return; 3766 3767 /* 3768 * Skip update of task's estimated utilization when its EWMA is 3769 * already ~1% close to its last activation value. 3770 */ 3771 ue.enqueued = (task_util(p) | UTIL_AVG_UNCHANGED); 3772 last_ewma_diff = ue.enqueued - ue.ewma; 3773 if (within_margin(last_ewma_diff, (SCHED_CAPACITY_SCALE / 100))) 3774 return; 3775 3776 /* 3777 * To avoid overestimation of actual task utilization, skip updates if 3778 * we cannot grant there is idle time in this CPU. 3779 */ 3780 cpu = cpu_of(rq_of(cfs_rq)); 3781 if (task_util(p) > capacity_orig_of(cpu)) 3782 return; 3783 3784 /* 3785 * Update Task's estimated utilization 3786 * 3787 * When *p completes an activation we can consolidate another sample 3788 * of the task size. This is done by storing the current PELT value 3789 * as ue.enqueued and by using this value to update the Exponential 3790 * Weighted Moving Average (EWMA): 3791 * 3792 * ewma(t) = w * task_util(p) + (1-w) * ewma(t-1) 3793 * = w * task_util(p) + ewma(t-1) - w * ewma(t-1) 3794 * = w * (task_util(p) - ewma(t-1)) + ewma(t-1) 3795 * = w * ( last_ewma_diff ) + ewma(t-1) 3796 * = w * (last_ewma_diff + ewma(t-1) / w) 3797 * 3798 * Where 'w' is the weight of new samples, which is configured to be 3799 * 0.25, thus making w=1/4 ( >>= UTIL_EST_WEIGHT_SHIFT) 3800 */ 3801 ue.ewma <<= UTIL_EST_WEIGHT_SHIFT; 3802 ue.ewma += last_ewma_diff; 3803 ue.ewma >>= UTIL_EST_WEIGHT_SHIFT; 3804 WRITE_ONCE(p->se.avg.util_est, ue); 3805 } 3806 3807 static inline int task_fits_capacity(struct task_struct *p, long capacity) 3808 { 3809 return fits_capacity(task_util_est(p), capacity); 3810 } 3811 3812 static inline void update_misfit_status(struct task_struct *p, struct rq *rq) 3813 { 3814 if (!static_branch_unlikely(&sched_asym_cpucapacity)) 3815 return; 3816 3817 if (!p) { 3818 rq->misfit_task_load = 0; 3819 return; 3820 } 3821 3822 if (task_fits_capacity(p, capacity_of(cpu_of(rq)))) { 3823 rq->misfit_task_load = 0; 3824 return; 3825 } 3826 3827 rq->misfit_task_load = task_h_load(p); 3828 } 3829 3830 #else /* CONFIG_SMP */ 3831 3832 #define UPDATE_TG 0x0 3833 #define SKIP_AGE_LOAD 0x0 3834 #define DO_ATTACH 0x0 3835 3836 static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int not_used1) 3837 { 3838 cfs_rq_util_change(cfs_rq, 0); 3839 } 3840 3841 static inline void remove_entity_load_avg(struct sched_entity *se) {} 3842 3843 static inline void 3844 attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) {} 3845 static inline void 3846 detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {} 3847 3848 static inline int idle_balance(struct rq *rq, struct rq_flags *rf) 3849 { 3850 return 0; 3851 } 3852 3853 static inline void 3854 util_est_enqueue(struct cfs_rq *cfs_rq, struct task_struct *p) {} 3855 3856 static inline void 3857 util_est_dequeue(struct cfs_rq *cfs_rq, struct task_struct *p, 3858 bool task_sleep) {} 3859 static inline void update_misfit_status(struct task_struct *p, struct rq *rq) {} 3860 3861 #endif /* CONFIG_SMP */ 3862 3863 static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se) 3864 { 3865 #ifdef CONFIG_SCHED_DEBUG 3866 s64 d = se->vruntime - cfs_rq->min_vruntime; 3867 3868 if (d < 0) 3869 d = -d; 3870 3871 if (d > 3*sysctl_sched_latency) 3872 schedstat_inc(cfs_rq->nr_spread_over); 3873 #endif 3874 } 3875 3876 static void 3877 place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial) 3878 { 3879 u64 vruntime = cfs_rq->min_vruntime; 3880 3881 /* 3882 * The 'current' period is already promised to the current tasks, 3883 * however the extra weight of the new task will slow them down a 3884 * little, place the new task so that it fits in the slot that 3885 * stays open at the end. 3886 */ 3887 if (initial && sched_feat(START_DEBIT)) 3888 vruntime += sched_vslice(cfs_rq, se); 3889 3890 /* sleeps up to a single latency don't count. */ 3891 if (!initial) { 3892 unsigned long thresh = sysctl_sched_latency; 3893 3894 /* 3895 * Halve their sleep time's effect, to allow 3896 * for a gentler effect of sleepers: 3897 */ 3898 if (sched_feat(GENTLE_FAIR_SLEEPERS)) 3899 thresh >>= 1; 3900 3901 vruntime -= thresh; 3902 } 3903 3904 /* ensure we never gain time by being placed backwards. */ 3905 se->vruntime = max_vruntime(se->vruntime, vruntime); 3906 } 3907 3908 static void check_enqueue_throttle(struct cfs_rq *cfs_rq); 3909 3910 static inline void check_schedstat_required(void) 3911 { 3912 #ifdef CONFIG_SCHEDSTATS 3913 if (schedstat_enabled()) 3914 return; 3915 3916 /* Force schedstat enabled if a dependent tracepoint is active */ 3917 if (trace_sched_stat_wait_enabled() || 3918 trace_sched_stat_sleep_enabled() || 3919 trace_sched_stat_iowait_enabled() || 3920 trace_sched_stat_blocked_enabled() || 3921 trace_sched_stat_runtime_enabled()) { 3922 printk_deferred_once("Scheduler tracepoints stat_sleep, stat_iowait, " 3923 "stat_blocked and stat_runtime require the " 3924 "kernel parameter schedstats=enable or " 3925 "kernel.sched_schedstats=1\n"); 3926 } 3927 #endif 3928 } 3929 3930 3931 /* 3932 * MIGRATION 3933 * 3934 * dequeue 3935 * update_curr() 3936 * update_min_vruntime() 3937 * vruntime -= min_vruntime 3938 * 3939 * enqueue 3940 * update_curr() 3941 * update_min_vruntime() 3942 * vruntime += min_vruntime 3943 * 3944 * this way the vruntime transition between RQs is done when both 3945 * min_vruntime are up-to-date. 3946 * 3947 * WAKEUP (remote) 3948 * 3949 * ->migrate_task_rq_fair() (p->state == TASK_WAKING) 3950 * vruntime -= min_vruntime 3951 * 3952 * enqueue 3953 * update_curr() 3954 * update_min_vruntime() 3955 * vruntime += min_vruntime 3956 * 3957 * this way we don't have the most up-to-date min_vruntime on the originating 3958 * CPU and an up-to-date min_vruntime on the destination CPU. 3959 */ 3960 3961 static void 3962 enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 3963 { 3964 bool renorm = !(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_MIGRATED); 3965 bool curr = cfs_rq->curr == se; 3966 3967 /* 3968 * If we're the current task, we must renormalise before calling 3969 * update_curr(). 3970 */ 3971 if (renorm && curr) 3972 se->vruntime += cfs_rq->min_vruntime; 3973 3974 update_curr(cfs_rq); 3975 3976 /* 3977 * Otherwise, renormalise after, such that we're placed at the current 3978 * moment in time, instead of some random moment in the past. Being 3979 * placed in the past could significantly boost this task to the 3980 * fairness detriment of existing tasks. 3981 */ 3982 if (renorm && !curr) 3983 se->vruntime += cfs_rq->min_vruntime; 3984 3985 /* 3986 * When enqueuing a sched_entity, we must: 3987 * - Update loads to have both entity and cfs_rq synced with now. 3988 * - Add its load to cfs_rq->runnable_avg 3989 * - For group_entity, update its weight to reflect the new share of 3990 * its group cfs_rq 3991 * - Add its new weight to cfs_rq->load.weight 3992 */ 3993 update_load_avg(cfs_rq, se, UPDATE_TG | DO_ATTACH); 3994 update_cfs_group(se); 3995 enqueue_runnable_load_avg(cfs_rq, se); 3996 account_entity_enqueue(cfs_rq, se); 3997 3998 if (flags & ENQUEUE_WAKEUP) 3999 place_entity(cfs_rq, se, 0); 4000 4001 check_schedstat_required(); 4002 update_stats_enqueue(cfs_rq, se, flags); 4003 check_spread(cfs_rq, se); 4004 if (!curr) 4005 __enqueue_entity(cfs_rq, se); 4006 se->on_rq = 1; 4007 4008 if (cfs_rq->nr_running == 1) { 4009 list_add_leaf_cfs_rq(cfs_rq); 4010 check_enqueue_throttle(cfs_rq); 4011 } 4012 } 4013 4014 static void __clear_buddies_last(struct sched_entity *se) 4015 { 4016 for_each_sched_entity(se) { 4017 struct cfs_rq *cfs_rq = cfs_rq_of(se); 4018 if (cfs_rq->last != se) 4019 break; 4020 4021 cfs_rq->last = NULL; 4022 } 4023 } 4024 4025 static void __clear_buddies_next(struct sched_entity *se) 4026 { 4027 for_each_sched_entity(se) { 4028 struct cfs_rq *cfs_rq = cfs_rq_of(se); 4029 if (cfs_rq->next != se) 4030 break; 4031 4032 cfs_rq->next = NULL; 4033 } 4034 } 4035 4036 static void __clear_buddies_skip(struct sched_entity *se) 4037 { 4038 for_each_sched_entity(se) { 4039 struct cfs_rq *cfs_rq = cfs_rq_of(se); 4040 if (cfs_rq->skip != se) 4041 break; 4042 4043 cfs_rq->skip = NULL; 4044 } 4045 } 4046 4047 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se) 4048 { 4049 if (cfs_rq->last == se) 4050 __clear_buddies_last(se); 4051 4052 if (cfs_rq->next == se) 4053 __clear_buddies_next(se); 4054 4055 if (cfs_rq->skip == se) 4056 __clear_buddies_skip(se); 4057 } 4058 4059 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq); 4060 4061 static void 4062 dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 4063 { 4064 /* 4065 * Update run-time statistics of the 'current'. 4066 */ 4067 update_curr(cfs_rq); 4068 4069 /* 4070 * When dequeuing a sched_entity, we must: 4071 * - Update loads to have both entity and cfs_rq synced with now. 4072 * - Subtract its load from the cfs_rq->runnable_avg. 4073 * - Subtract its previous weight from cfs_rq->load.weight. 4074 * - For group entity, update its weight to reflect the new share 4075 * of its group cfs_rq. 4076 */ 4077 update_load_avg(cfs_rq, se, UPDATE_TG); 4078 dequeue_runnable_load_avg(cfs_rq, se); 4079 4080 update_stats_dequeue(cfs_rq, se, flags); 4081 4082 clear_buddies(cfs_rq, se); 4083 4084 if (se != cfs_rq->curr) 4085 __dequeue_entity(cfs_rq, se); 4086 se->on_rq = 0; 4087 account_entity_dequeue(cfs_rq, se); 4088 4089 /* 4090 * Normalize after update_curr(); which will also have moved 4091 * min_vruntime if @se is the one holding it back. But before doing 4092 * update_min_vruntime() again, which will discount @se's position and 4093 * can move min_vruntime forward still more. 4094 */ 4095 if (!(flags & DEQUEUE_SLEEP)) 4096 se->vruntime -= cfs_rq->min_vruntime; 4097 4098 /* return excess runtime on last dequeue */ 4099 return_cfs_rq_runtime(cfs_rq); 4100 4101 update_cfs_group(se); 4102 4103 /* 4104 * Now advance min_vruntime if @se was the entity holding it back, 4105 * except when: DEQUEUE_SAVE && !DEQUEUE_MOVE, in this case we'll be 4106 * put back on, and if we advance min_vruntime, we'll be placed back 4107 * further than we started -- ie. we'll be penalized. 4108 */ 4109 if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) != DEQUEUE_SAVE) 4110 update_min_vruntime(cfs_rq); 4111 } 4112 4113 /* 4114 * Preempt the current task with a newly woken task if needed: 4115 */ 4116 static void 4117 check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr) 4118 { 4119 unsigned long ideal_runtime, delta_exec; 4120 struct sched_entity *se; 4121 s64 delta; 4122 4123 ideal_runtime = sched_slice(cfs_rq, curr); 4124 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime; 4125 if (delta_exec > ideal_runtime) { 4126 resched_curr(rq_of(cfs_rq)); 4127 /* 4128 * The current task ran long enough, ensure it doesn't get 4129 * re-elected due to buddy favours. 4130 */ 4131 clear_buddies(cfs_rq, curr); 4132 return; 4133 } 4134 4135 /* 4136 * Ensure that a task that missed wakeup preemption by a 4137 * narrow margin doesn't have to wait for a full slice. 4138 * This also mitigates buddy induced latencies under load. 4139 */ 4140 if (delta_exec < sysctl_sched_min_granularity) 4141 return; 4142 4143 se = __pick_first_entity(cfs_rq); 4144 delta = curr->vruntime - se->vruntime; 4145 4146 if (delta < 0) 4147 return; 4148 4149 if (delta > ideal_runtime) 4150 resched_curr(rq_of(cfs_rq)); 4151 } 4152 4153 static void 4154 set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) 4155 { 4156 /* 'current' is not kept within the tree. */ 4157 if (se->on_rq) { 4158 /* 4159 * Any task has to be enqueued before it get to execute on 4160 * a CPU. So account for the time it spent waiting on the 4161 * runqueue. 4162 */ 4163 update_stats_wait_end(cfs_rq, se); 4164 __dequeue_entity(cfs_rq, se); 4165 update_load_avg(cfs_rq, se, UPDATE_TG); 4166 } 4167 4168 update_stats_curr_start(cfs_rq, se); 4169 cfs_rq->curr = se; 4170 4171 /* 4172 * Track our maximum slice length, if the CPU's load is at 4173 * least twice that of our own weight (i.e. dont track it 4174 * when there are only lesser-weight tasks around): 4175 */ 4176 if (schedstat_enabled() && 4177 rq_of(cfs_rq)->cfs.load.weight >= 2*se->load.weight) { 4178 schedstat_set(se->statistics.slice_max, 4179 max((u64)schedstat_val(se->statistics.slice_max), 4180 se->sum_exec_runtime - se->prev_sum_exec_runtime)); 4181 } 4182 4183 se->prev_sum_exec_runtime = se->sum_exec_runtime; 4184 } 4185 4186 static int 4187 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se); 4188 4189 /* 4190 * Pick the next process, keeping these things in mind, in this order: 4191 * 1) keep things fair between processes/task groups 4192 * 2) pick the "next" process, since someone really wants that to run 4193 * 3) pick the "last" process, for cache locality 4194 * 4) do not run the "skip" process, if something else is available 4195 */ 4196 static struct sched_entity * 4197 pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr) 4198 { 4199 struct sched_entity *left = __pick_first_entity(cfs_rq); 4200 struct sched_entity *se; 4201 4202 /* 4203 * If curr is set we have to see if its left of the leftmost entity 4204 * still in the tree, provided there was anything in the tree at all. 4205 */ 4206 if (!left || (curr && entity_before(curr, left))) 4207 left = curr; 4208 4209 se = left; /* ideally we run the leftmost entity */ 4210 4211 /* 4212 * Avoid running the skip buddy, if running something else can 4213 * be done without getting too unfair. 4214 */ 4215 if (cfs_rq->skip == se) { 4216 struct sched_entity *second; 4217 4218 if (se == curr) { 4219 second = __pick_first_entity(cfs_rq); 4220 } else { 4221 second = __pick_next_entity(se); 4222 if (!second || (curr && entity_before(curr, second))) 4223 second = curr; 4224 } 4225 4226 if (second && wakeup_preempt_entity(second, left) < 1) 4227 se = second; 4228 } 4229 4230 /* 4231 * Prefer last buddy, try to return the CPU to a preempted task. 4232 */ 4233 if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1) 4234 se = cfs_rq->last; 4235 4236 /* 4237 * Someone really wants this to run. If it's not unfair, run it. 4238 */ 4239 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1) 4240 se = cfs_rq->next; 4241 4242 clear_buddies(cfs_rq, se); 4243 4244 return se; 4245 } 4246 4247 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq); 4248 4249 static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev) 4250 { 4251 /* 4252 * If still on the runqueue then deactivate_task() 4253 * was not called and update_curr() has to be done: 4254 */ 4255 if (prev->on_rq) 4256 update_curr(cfs_rq); 4257 4258 /* throttle cfs_rqs exceeding runtime */ 4259 check_cfs_rq_runtime(cfs_rq); 4260 4261 check_spread(cfs_rq, prev); 4262 4263 if (prev->on_rq) { 4264 update_stats_wait_start(cfs_rq, prev); 4265 /* Put 'current' back into the tree. */ 4266 __enqueue_entity(cfs_rq, prev); 4267 /* in !on_rq case, update occurred at dequeue */ 4268 update_load_avg(cfs_rq, prev, 0); 4269 } 4270 cfs_rq->curr = NULL; 4271 } 4272 4273 static void 4274 entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued) 4275 { 4276 /* 4277 * Update run-time statistics of the 'current'. 4278 */ 4279 update_curr(cfs_rq); 4280 4281 /* 4282 * Ensure that runnable average is periodically updated. 4283 */ 4284 update_load_avg(cfs_rq, curr, UPDATE_TG); 4285 update_cfs_group(curr); 4286 4287 #ifdef CONFIG_SCHED_HRTICK 4288 /* 4289 * queued ticks are scheduled to match the slice, so don't bother 4290 * validating it and just reschedule. 4291 */ 4292 if (queued) { 4293 resched_curr(rq_of(cfs_rq)); 4294 return; 4295 } 4296 /* 4297 * don't let the period tick interfere with the hrtick preemption 4298 */ 4299 if (!sched_feat(DOUBLE_TICK) && 4300 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer)) 4301 return; 4302 #endif 4303 4304 if (cfs_rq->nr_running > 1) 4305 check_preempt_tick(cfs_rq, curr); 4306 } 4307 4308 4309 /************************************************** 4310 * CFS bandwidth control machinery 4311 */ 4312 4313 #ifdef CONFIG_CFS_BANDWIDTH 4314 4315 #ifdef CONFIG_JUMP_LABEL 4316 static struct static_key __cfs_bandwidth_used; 4317 4318 static inline bool cfs_bandwidth_used(void) 4319 { 4320 return static_key_false(&__cfs_bandwidth_used); 4321 } 4322 4323 void cfs_bandwidth_usage_inc(void) 4324 { 4325 static_key_slow_inc_cpuslocked(&__cfs_bandwidth_used); 4326 } 4327 4328 void cfs_bandwidth_usage_dec(void) 4329 { 4330 static_key_slow_dec_cpuslocked(&__cfs_bandwidth_used); 4331 } 4332 #else /* CONFIG_JUMP_LABEL */ 4333 static bool cfs_bandwidth_used(void) 4334 { 4335 return true; 4336 } 4337 4338 void cfs_bandwidth_usage_inc(void) {} 4339 void cfs_bandwidth_usage_dec(void) {} 4340 #endif /* CONFIG_JUMP_LABEL */ 4341 4342 /* 4343 * default period for cfs group bandwidth. 4344 * default: 0.1s, units: nanoseconds 4345 */ 4346 static inline u64 default_cfs_period(void) 4347 { 4348 return 100000000ULL; 4349 } 4350 4351 static inline u64 sched_cfs_bandwidth_slice(void) 4352 { 4353 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC; 4354 } 4355 4356 /* 4357 * Replenish runtime according to assigned quota and update expiration time. 4358 * We use sched_clock_cpu directly instead of rq->clock to avoid adding 4359 * additional synchronization around rq->lock. 4360 * 4361 * requires cfs_b->lock 4362 */ 4363 void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b) 4364 { 4365 u64 now; 4366 4367 if (cfs_b->quota == RUNTIME_INF) 4368 return; 4369 4370 now = sched_clock_cpu(smp_processor_id()); 4371 cfs_b->runtime = cfs_b->quota; 4372 } 4373 4374 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg) 4375 { 4376 return &tg->cfs_bandwidth; 4377 } 4378 4379 /* rq->task_clock normalized against any time this cfs_rq has spent throttled */ 4380 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq) 4381 { 4382 if (unlikely(cfs_rq->throttle_count)) 4383 return cfs_rq->throttled_clock_task - cfs_rq->throttled_clock_task_time; 4384 4385 return rq_clock_task(rq_of(cfs_rq)) - cfs_rq->throttled_clock_task_time; 4386 } 4387 4388 /* returns 0 on failure to allocate runtime */ 4389 static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq) 4390 { 4391 struct task_group *tg = cfs_rq->tg; 4392 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg); 4393 u64 amount = 0, min_amount; 4394 4395 /* note: this is a positive sum as runtime_remaining <= 0 */ 4396 min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining; 4397 4398 raw_spin_lock(&cfs_b->lock); 4399 if (cfs_b->quota == RUNTIME_INF) 4400 amount = min_amount; 4401 else { 4402 start_cfs_bandwidth(cfs_b); 4403 4404 if (cfs_b->runtime > 0) { 4405 amount = min(cfs_b->runtime, min_amount); 4406 cfs_b->runtime -= amount; 4407 cfs_b->idle = 0; 4408 } 4409 } 4410 raw_spin_unlock(&cfs_b->lock); 4411 4412 cfs_rq->runtime_remaining += amount; 4413 4414 return cfs_rq->runtime_remaining > 0; 4415 } 4416 4417 static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) 4418 { 4419 /* dock delta_exec before expiring quota (as it could span periods) */ 4420 cfs_rq->runtime_remaining -= delta_exec; 4421 4422 if (likely(cfs_rq->runtime_remaining > 0)) 4423 return; 4424 4425 if (cfs_rq->throttled) 4426 return; 4427 /* 4428 * if we're unable to extend our runtime we resched so that the active 4429 * hierarchy can be throttled 4430 */ 4431 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr)) 4432 resched_curr(rq_of(cfs_rq)); 4433 } 4434 4435 static __always_inline 4436 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) 4437 { 4438 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled) 4439 return; 4440 4441 __account_cfs_rq_runtime(cfs_rq, delta_exec); 4442 } 4443 4444 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq) 4445 { 4446 return cfs_bandwidth_used() && cfs_rq->throttled; 4447 } 4448 4449 /* check whether cfs_rq, or any parent, is throttled */ 4450 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq) 4451 { 4452 return cfs_bandwidth_used() && cfs_rq->throttle_count; 4453 } 4454 4455 /* 4456 * Ensure that neither of the group entities corresponding to src_cpu or 4457 * dest_cpu are members of a throttled hierarchy when performing group 4458 * load-balance operations. 4459 */ 4460 static inline int throttled_lb_pair(struct task_group *tg, 4461 int src_cpu, int dest_cpu) 4462 { 4463 struct cfs_rq *src_cfs_rq, *dest_cfs_rq; 4464 4465 src_cfs_rq = tg->cfs_rq[src_cpu]; 4466 dest_cfs_rq = tg->cfs_rq[dest_cpu]; 4467 4468 return throttled_hierarchy(src_cfs_rq) || 4469 throttled_hierarchy(dest_cfs_rq); 4470 } 4471 4472 static int tg_unthrottle_up(struct task_group *tg, void *data) 4473 { 4474 struct rq *rq = data; 4475 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; 4476 4477 cfs_rq->throttle_count--; 4478 if (!cfs_rq->throttle_count) { 4479 /* adjust cfs_rq_clock_task() */ 4480 cfs_rq->throttled_clock_task_time += rq_clock_task(rq) - 4481 cfs_rq->throttled_clock_task; 4482 4483 /* Add cfs_rq with already running entity in the list */ 4484 if (cfs_rq->nr_running >= 1) 4485 list_add_leaf_cfs_rq(cfs_rq); 4486 } 4487 4488 return 0; 4489 } 4490 4491 static int tg_throttle_down(struct task_group *tg, void *data) 4492 { 4493 struct rq *rq = data; 4494 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; 4495 4496 /* group is entering throttled state, stop time */ 4497 if (!cfs_rq->throttle_count) { 4498 cfs_rq->throttled_clock_task = rq_clock_task(rq); 4499 list_del_leaf_cfs_rq(cfs_rq); 4500 } 4501 cfs_rq->throttle_count++; 4502 4503 return 0; 4504 } 4505 4506 static void throttle_cfs_rq(struct cfs_rq *cfs_rq) 4507 { 4508 struct rq *rq = rq_of(cfs_rq); 4509 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 4510 struct sched_entity *se; 4511 long task_delta, idle_task_delta, dequeue = 1; 4512 bool empty; 4513 4514 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))]; 4515 4516 /* freeze hierarchy runnable averages while throttled */ 4517 rcu_read_lock(); 4518 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq); 4519 rcu_read_unlock(); 4520 4521 task_delta = cfs_rq->h_nr_running; 4522 idle_task_delta = cfs_rq->idle_h_nr_running; 4523 for_each_sched_entity(se) { 4524 struct cfs_rq *qcfs_rq = cfs_rq_of(se); 4525 /* throttled entity or throttle-on-deactivate */ 4526 if (!se->on_rq) 4527 break; 4528 4529 if (dequeue) 4530 dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP); 4531 qcfs_rq->h_nr_running -= task_delta; 4532 qcfs_rq->idle_h_nr_running -= idle_task_delta; 4533 4534 if (qcfs_rq->load.weight) 4535 dequeue = 0; 4536 } 4537 4538 if (!se) 4539 sub_nr_running(rq, task_delta); 4540 4541 cfs_rq->throttled = 1; 4542 cfs_rq->throttled_clock = rq_clock(rq); 4543 raw_spin_lock(&cfs_b->lock); 4544 empty = list_empty(&cfs_b->throttled_cfs_rq); 4545 4546 /* 4547 * Add to the _head_ of the list, so that an already-started 4548 * distribute_cfs_runtime will not see us. If disribute_cfs_runtime is 4549 * not running add to the tail so that later runqueues don't get starved. 4550 */ 4551 if (cfs_b->distribute_running) 4552 list_add_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq); 4553 else 4554 list_add_tail_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq); 4555 4556 /* 4557 * If we're the first throttled task, make sure the bandwidth 4558 * timer is running. 4559 */ 4560 if (empty) 4561 start_cfs_bandwidth(cfs_b); 4562 4563 raw_spin_unlock(&cfs_b->lock); 4564 } 4565 4566 void unthrottle_cfs_rq(struct cfs_rq *cfs_rq) 4567 { 4568 struct rq *rq = rq_of(cfs_rq); 4569 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 4570 struct sched_entity *se; 4571 int enqueue = 1; 4572 long task_delta, idle_task_delta; 4573 4574 se = cfs_rq->tg->se[cpu_of(rq)]; 4575 4576 cfs_rq->throttled = 0; 4577 4578 update_rq_clock(rq); 4579 4580 raw_spin_lock(&cfs_b->lock); 4581 cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock; 4582 list_del_rcu(&cfs_rq->throttled_list); 4583 raw_spin_unlock(&cfs_b->lock); 4584 4585 /* update hierarchical throttle state */ 4586 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq); 4587 4588 if (!cfs_rq->load.weight) 4589 return; 4590 4591 task_delta = cfs_rq->h_nr_running; 4592 idle_task_delta = cfs_rq->idle_h_nr_running; 4593 for_each_sched_entity(se) { 4594 if (se->on_rq) 4595 enqueue = 0; 4596 4597 cfs_rq = cfs_rq_of(se); 4598 if (enqueue) 4599 enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP); 4600 cfs_rq->h_nr_running += task_delta; 4601 cfs_rq->idle_h_nr_running += idle_task_delta; 4602 4603 if (cfs_rq_throttled(cfs_rq)) 4604 break; 4605 } 4606 4607 assert_list_leaf_cfs_rq(rq); 4608 4609 if (!se) 4610 add_nr_running(rq, task_delta); 4611 4612 /* Determine whether we need to wake up potentially idle CPU: */ 4613 if (rq->curr == rq->idle && rq->cfs.nr_running) 4614 resched_curr(rq); 4615 } 4616 4617 static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b, u64 remaining) 4618 { 4619 struct cfs_rq *cfs_rq; 4620 u64 runtime; 4621 u64 starting_runtime = remaining; 4622 4623 rcu_read_lock(); 4624 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq, 4625 throttled_list) { 4626 struct rq *rq = rq_of(cfs_rq); 4627 struct rq_flags rf; 4628 4629 rq_lock_irqsave(rq, &rf); 4630 if (!cfs_rq_throttled(cfs_rq)) 4631 goto next; 4632 4633 /* By the above check, this should never be true */ 4634 SCHED_WARN_ON(cfs_rq->runtime_remaining > 0); 4635 4636 runtime = -cfs_rq->runtime_remaining + 1; 4637 if (runtime > remaining) 4638 runtime = remaining; 4639 remaining -= runtime; 4640 4641 cfs_rq->runtime_remaining += runtime; 4642 4643 /* we check whether we're throttled above */ 4644 if (cfs_rq->runtime_remaining > 0) 4645 unthrottle_cfs_rq(cfs_rq); 4646 4647 next: 4648 rq_unlock_irqrestore(rq, &rf); 4649 4650 if (!remaining) 4651 break; 4652 } 4653 rcu_read_unlock(); 4654 4655 return starting_runtime - remaining; 4656 } 4657 4658 /* 4659 * Responsible for refilling a task_group's bandwidth and unthrottling its 4660 * cfs_rqs as appropriate. If there has been no activity within the last 4661 * period the timer is deactivated until scheduling resumes; cfs_b->idle is 4662 * used to track this state. 4663 */ 4664 static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun, unsigned long flags) 4665 { 4666 u64 runtime; 4667 int throttled; 4668 4669 /* no need to continue the timer with no bandwidth constraint */ 4670 if (cfs_b->quota == RUNTIME_INF) 4671 goto out_deactivate; 4672 4673 throttled = !list_empty(&cfs_b->throttled_cfs_rq); 4674 cfs_b->nr_periods += overrun; 4675 4676 /* 4677 * idle depends on !throttled (for the case of a large deficit), and if 4678 * we're going inactive then everything else can be deferred 4679 */ 4680 if (cfs_b->idle && !throttled) 4681 goto out_deactivate; 4682 4683 __refill_cfs_bandwidth_runtime(cfs_b); 4684 4685 if (!throttled) { 4686 /* mark as potentially idle for the upcoming period */ 4687 cfs_b->idle = 1; 4688 return 0; 4689 } 4690 4691 /* account preceding periods in which throttling occurred */ 4692 cfs_b->nr_throttled += overrun; 4693 4694 /* 4695 * This check is repeated as we are holding onto the new bandwidth while 4696 * we unthrottle. This can potentially race with an unthrottled group 4697 * trying to acquire new bandwidth from the global pool. This can result 4698 * in us over-using our runtime if it is all used during this loop, but 4699 * only by limited amounts in that extreme case. 4700 */ 4701 while (throttled && cfs_b->runtime > 0 && !cfs_b->distribute_running) { 4702 runtime = cfs_b->runtime; 4703 cfs_b->distribute_running = 1; 4704 raw_spin_unlock_irqrestore(&cfs_b->lock, flags); 4705 /* we can't nest cfs_b->lock while distributing bandwidth */ 4706 runtime = distribute_cfs_runtime(cfs_b, runtime); 4707 raw_spin_lock_irqsave(&cfs_b->lock, flags); 4708 4709 cfs_b->distribute_running = 0; 4710 throttled = !list_empty(&cfs_b->throttled_cfs_rq); 4711 4712 lsub_positive(&cfs_b->runtime, runtime); 4713 } 4714 4715 /* 4716 * While we are ensured activity in the period following an 4717 * unthrottle, this also covers the case in which the new bandwidth is 4718 * insufficient to cover the existing bandwidth deficit. (Forcing the 4719 * timer to remain active while there are any throttled entities.) 4720 */ 4721 cfs_b->idle = 0; 4722 4723 return 0; 4724 4725 out_deactivate: 4726 return 1; 4727 } 4728 4729 /* a cfs_rq won't donate quota below this amount */ 4730 static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC; 4731 /* minimum remaining period time to redistribute slack quota */ 4732 static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC; 4733 /* how long we wait to gather additional slack before distributing */ 4734 static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC; 4735 4736 /* 4737 * Are we near the end of the current quota period? 4738 * 4739 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the 4740 * hrtimer base being cleared by hrtimer_start. In the case of 4741 * migrate_hrtimers, base is never cleared, so we are fine. 4742 */ 4743 static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire) 4744 { 4745 struct hrtimer *refresh_timer = &cfs_b->period_timer; 4746 u64 remaining; 4747 4748 /* if the call-back is running a quota refresh is already occurring */ 4749 if (hrtimer_callback_running(refresh_timer)) 4750 return 1; 4751 4752 /* is a quota refresh about to occur? */ 4753 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer)); 4754 if (remaining < min_expire) 4755 return 1; 4756 4757 return 0; 4758 } 4759 4760 static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b) 4761 { 4762 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration; 4763 4764 /* if there's a quota refresh soon don't bother with slack */ 4765 if (runtime_refresh_within(cfs_b, min_left)) 4766 return; 4767 4768 /* don't push forwards an existing deferred unthrottle */ 4769 if (cfs_b->slack_started) 4770 return; 4771 cfs_b->slack_started = true; 4772 4773 hrtimer_start(&cfs_b->slack_timer, 4774 ns_to_ktime(cfs_bandwidth_slack_period), 4775 HRTIMER_MODE_REL); 4776 } 4777 4778 /* we know any runtime found here is valid as update_curr() precedes return */ 4779 static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq) 4780 { 4781 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 4782 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime; 4783 4784 if (slack_runtime <= 0) 4785 return; 4786 4787 raw_spin_lock(&cfs_b->lock); 4788 if (cfs_b->quota != RUNTIME_INF) { 4789 cfs_b->runtime += slack_runtime; 4790 4791 /* we are under rq->lock, defer unthrottling using a timer */ 4792 if (cfs_b->runtime > sched_cfs_bandwidth_slice() && 4793 !list_empty(&cfs_b->throttled_cfs_rq)) 4794 start_cfs_slack_bandwidth(cfs_b); 4795 } 4796 raw_spin_unlock(&cfs_b->lock); 4797 4798 /* even if it's not valid for return we don't want to try again */ 4799 cfs_rq->runtime_remaining -= slack_runtime; 4800 } 4801 4802 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) 4803 { 4804 if (!cfs_bandwidth_used()) 4805 return; 4806 4807 if (!cfs_rq->runtime_enabled || cfs_rq->nr_running) 4808 return; 4809 4810 __return_cfs_rq_runtime(cfs_rq); 4811 } 4812 4813 /* 4814 * This is done with a timer (instead of inline with bandwidth return) since 4815 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs. 4816 */ 4817 static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b) 4818 { 4819 u64 runtime = 0, slice = sched_cfs_bandwidth_slice(); 4820 unsigned long flags; 4821 4822 /* confirm we're still not at a refresh boundary */ 4823 raw_spin_lock_irqsave(&cfs_b->lock, flags); 4824 cfs_b->slack_started = false; 4825 if (cfs_b->distribute_running) { 4826 raw_spin_unlock_irqrestore(&cfs_b->lock, flags); 4827 return; 4828 } 4829 4830 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) { 4831 raw_spin_unlock_irqrestore(&cfs_b->lock, flags); 4832 return; 4833 } 4834 4835 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice) 4836 runtime = cfs_b->runtime; 4837 4838 if (runtime) 4839 cfs_b->distribute_running = 1; 4840 4841 raw_spin_unlock_irqrestore(&cfs_b->lock, flags); 4842 4843 if (!runtime) 4844 return; 4845 4846 runtime = distribute_cfs_runtime(cfs_b, runtime); 4847 4848 raw_spin_lock_irqsave(&cfs_b->lock, flags); 4849 lsub_positive(&cfs_b->runtime, runtime); 4850 cfs_b->distribute_running = 0; 4851 raw_spin_unlock_irqrestore(&cfs_b->lock, flags); 4852 } 4853 4854 /* 4855 * When a group wakes up we want to make sure that its quota is not already 4856 * expired/exceeded, otherwise it may be allowed to steal additional ticks of 4857 * runtime as update_curr() throttling can not not trigger until it's on-rq. 4858 */ 4859 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) 4860 { 4861 if (!cfs_bandwidth_used()) 4862 return; 4863 4864 /* an active group must be handled by the update_curr()->put() path */ 4865 if (!cfs_rq->runtime_enabled || cfs_rq->curr) 4866 return; 4867 4868 /* ensure the group is not already throttled */ 4869 if (cfs_rq_throttled(cfs_rq)) 4870 return; 4871 4872 /* update runtime allocation */ 4873 account_cfs_rq_runtime(cfs_rq, 0); 4874 if (cfs_rq->runtime_remaining <= 0) 4875 throttle_cfs_rq(cfs_rq); 4876 } 4877 4878 static void sync_throttle(struct task_group *tg, int cpu) 4879 { 4880 struct cfs_rq *pcfs_rq, *cfs_rq; 4881 4882 if (!cfs_bandwidth_used()) 4883 return; 4884 4885 if (!tg->parent) 4886 return; 4887 4888 cfs_rq = tg->cfs_rq[cpu]; 4889 pcfs_rq = tg->parent->cfs_rq[cpu]; 4890 4891 cfs_rq->throttle_count = pcfs_rq->throttle_count; 4892 cfs_rq->throttled_clock_task = rq_clock_task(cpu_rq(cpu)); 4893 } 4894 4895 /* conditionally throttle active cfs_rq's from put_prev_entity() */ 4896 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) 4897 { 4898 if (!cfs_bandwidth_used()) 4899 return false; 4900 4901 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0)) 4902 return false; 4903 4904 /* 4905 * it's possible for a throttled entity to be forced into a running 4906 * state (e.g. set_curr_task), in this case we're finished. 4907 */ 4908 if (cfs_rq_throttled(cfs_rq)) 4909 return true; 4910 4911 throttle_cfs_rq(cfs_rq); 4912 return true; 4913 } 4914 4915 static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer) 4916 { 4917 struct cfs_bandwidth *cfs_b = 4918 container_of(timer, struct cfs_bandwidth, slack_timer); 4919 4920 do_sched_cfs_slack_timer(cfs_b); 4921 4922 return HRTIMER_NORESTART; 4923 } 4924 4925 extern const u64 max_cfs_quota_period; 4926 4927 static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer) 4928 { 4929 struct cfs_bandwidth *cfs_b = 4930 container_of(timer, struct cfs_bandwidth, period_timer); 4931 unsigned long flags; 4932 int overrun; 4933 int idle = 0; 4934 int count = 0; 4935 4936 raw_spin_lock_irqsave(&cfs_b->lock, flags); 4937 for (;;) { 4938 overrun = hrtimer_forward_now(timer, cfs_b->period); 4939 if (!overrun) 4940 break; 4941 4942 if (++count > 3) { 4943 u64 new, old = ktime_to_ns(cfs_b->period); 4944 4945 new = (old * 147) / 128; /* ~115% */ 4946 new = min(new, max_cfs_quota_period); 4947 4948 cfs_b->period = ns_to_ktime(new); 4949 4950 /* since max is 1s, this is limited to 1e9^2, which fits in u64 */ 4951 cfs_b->quota *= new; 4952 cfs_b->quota = div64_u64(cfs_b->quota, old); 4953 4954 pr_warn_ratelimited( 4955 "cfs_period_timer[cpu%d]: period too short, scaling up (new cfs_period_us %lld, cfs_quota_us = %lld)\n", 4956 smp_processor_id(), 4957 div_u64(new, NSEC_PER_USEC), 4958 div_u64(cfs_b->quota, NSEC_PER_USEC)); 4959 4960 /* reset count so we don't come right back in here */ 4961 count = 0; 4962 } 4963 4964 idle = do_sched_cfs_period_timer(cfs_b, overrun, flags); 4965 } 4966 if (idle) 4967 cfs_b->period_active = 0; 4968 raw_spin_unlock_irqrestore(&cfs_b->lock, flags); 4969 4970 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART; 4971 } 4972 4973 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) 4974 { 4975 raw_spin_lock_init(&cfs_b->lock); 4976 cfs_b->runtime = 0; 4977 cfs_b->quota = RUNTIME_INF; 4978 cfs_b->period = ns_to_ktime(default_cfs_period()); 4979 4980 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq); 4981 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED); 4982 cfs_b->period_timer.function = sched_cfs_period_timer; 4983 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 4984 cfs_b->slack_timer.function = sched_cfs_slack_timer; 4985 cfs_b->distribute_running = 0; 4986 cfs_b->slack_started = false; 4987 } 4988 4989 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) 4990 { 4991 cfs_rq->runtime_enabled = 0; 4992 INIT_LIST_HEAD(&cfs_rq->throttled_list); 4993 } 4994 4995 void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b) 4996 { 4997 u64 overrun; 4998 4999 lockdep_assert_held(&cfs_b->lock); 5000 5001 if (cfs_b->period_active) 5002 return; 5003 5004 cfs_b->period_active = 1; 5005 overrun = hrtimer_forward_now(&cfs_b->period_timer, cfs_b->period); 5006 hrtimer_start_expires(&cfs_b->period_timer, HRTIMER_MODE_ABS_PINNED); 5007 } 5008 5009 static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) 5010 { 5011 /* init_cfs_bandwidth() was not called */ 5012 if (!cfs_b->throttled_cfs_rq.next) 5013 return; 5014 5015 hrtimer_cancel(&cfs_b->period_timer); 5016 hrtimer_cancel(&cfs_b->slack_timer); 5017 } 5018 5019 /* 5020 * Both these CPU hotplug callbacks race against unregister_fair_sched_group() 5021 * 5022 * The race is harmless, since modifying bandwidth settings of unhooked group 5023 * bits doesn't do much. 5024 */ 5025 5026 /* cpu online calback */ 5027 static void __maybe_unused update_runtime_enabled(struct rq *rq) 5028 { 5029 struct task_group *tg; 5030 5031 lockdep_assert_held(&rq->lock); 5032 5033 rcu_read_lock(); 5034 list_for_each_entry_rcu(tg, &task_groups, list) { 5035 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 5036 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; 5037 5038 raw_spin_lock(&cfs_b->lock); 5039 cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF; 5040 raw_spin_unlock(&cfs_b->lock); 5041 } 5042 rcu_read_unlock(); 5043 } 5044 5045 /* cpu offline callback */ 5046 static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq) 5047 { 5048 struct task_group *tg; 5049 5050 lockdep_assert_held(&rq->lock); 5051 5052 rcu_read_lock(); 5053 list_for_each_entry_rcu(tg, &task_groups, list) { 5054 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; 5055 5056 if (!cfs_rq->runtime_enabled) 5057 continue; 5058 5059 /* 5060 * clock_task is not advancing so we just need to make sure 5061 * there's some valid quota amount 5062 */ 5063 cfs_rq->runtime_remaining = 1; 5064 /* 5065 * Offline rq is schedulable till CPU is completely disabled 5066 * in take_cpu_down(), so we prevent new cfs throttling here. 5067 */ 5068 cfs_rq->runtime_enabled = 0; 5069 5070 if (cfs_rq_throttled(cfs_rq)) 5071 unthrottle_cfs_rq(cfs_rq); 5072 } 5073 rcu_read_unlock(); 5074 } 5075 5076 #else /* CONFIG_CFS_BANDWIDTH */ 5077 5078 static inline bool cfs_bandwidth_used(void) 5079 { 5080 return false; 5081 } 5082 5083 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq) 5084 { 5085 return rq_clock_task(rq_of(cfs_rq)); 5086 } 5087 5088 static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {} 5089 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; } 5090 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {} 5091 static inline void sync_throttle(struct task_group *tg, int cpu) {} 5092 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {} 5093 5094 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq) 5095 { 5096 return 0; 5097 } 5098 5099 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq) 5100 { 5101 return 0; 5102 } 5103 5104 static inline int throttled_lb_pair(struct task_group *tg, 5105 int src_cpu, int dest_cpu) 5106 { 5107 return 0; 5108 } 5109 5110 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {} 5111 5112 #ifdef CONFIG_FAIR_GROUP_SCHED 5113 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {} 5114 #endif 5115 5116 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg) 5117 { 5118 return NULL; 5119 } 5120 static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {} 5121 static inline void update_runtime_enabled(struct rq *rq) {} 5122 static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {} 5123 5124 #endif /* CONFIG_CFS_BANDWIDTH */ 5125 5126 /************************************************** 5127 * CFS operations on tasks: 5128 */ 5129 5130 #ifdef CONFIG_SCHED_HRTICK 5131 static void hrtick_start_fair(struct rq *rq, struct task_struct *p) 5132 { 5133 struct sched_entity *se = &p->se; 5134 struct cfs_rq *cfs_rq = cfs_rq_of(se); 5135 5136 SCHED_WARN_ON(task_rq(p) != rq); 5137 5138 if (rq->cfs.h_nr_running > 1) { 5139 u64 slice = sched_slice(cfs_rq, se); 5140 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime; 5141 s64 delta = slice - ran; 5142 5143 if (delta < 0) { 5144 if (rq->curr == p) 5145 resched_curr(rq); 5146 return; 5147 } 5148 hrtick_start(rq, delta); 5149 } 5150 } 5151 5152 /* 5153 * called from enqueue/dequeue and updates the hrtick when the 5154 * current task is from our class and nr_running is low enough 5155 * to matter. 5156 */ 5157 static void hrtick_update(struct rq *rq) 5158 { 5159 struct task_struct *curr = rq->curr; 5160 5161 if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class) 5162 return; 5163 5164 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency) 5165 hrtick_start_fair(rq, curr); 5166 } 5167 #else /* !CONFIG_SCHED_HRTICK */ 5168 static inline void 5169 hrtick_start_fair(struct rq *rq, struct task_struct *p) 5170 { 5171 } 5172 5173 static inline void hrtick_update(struct rq *rq) 5174 { 5175 } 5176 #endif 5177 5178 #ifdef CONFIG_SMP 5179 static inline unsigned long cpu_util(int cpu); 5180 5181 static inline bool cpu_overutilized(int cpu) 5182 { 5183 return !fits_capacity(cpu_util(cpu), capacity_of(cpu)); 5184 } 5185 5186 static inline void update_overutilized_status(struct rq *rq) 5187 { 5188 if (!READ_ONCE(rq->rd->overutilized) && cpu_overutilized(rq->cpu)) { 5189 WRITE_ONCE(rq->rd->overutilized, SG_OVERUTILIZED); 5190 trace_sched_overutilized_tp(rq->rd, SG_OVERUTILIZED); 5191 } 5192 } 5193 #else 5194 static inline void update_overutilized_status(struct rq *rq) { } 5195 #endif 5196 5197 /* 5198 * The enqueue_task method is called before nr_running is 5199 * increased. Here we update the fair scheduling stats and 5200 * then put the task into the rbtree: 5201 */ 5202 static void 5203 enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags) 5204 { 5205 struct cfs_rq *cfs_rq; 5206 struct sched_entity *se = &p->se; 5207 int idle_h_nr_running = task_has_idle_policy(p); 5208 5209 /* 5210 * The code below (indirectly) updates schedutil which looks at 5211 * the cfs_rq utilization to select a frequency. 5212 * Let's add the task's estimated utilization to the cfs_rq's 5213 * estimated utilization, before we update schedutil. 5214 */ 5215 util_est_enqueue(&rq->cfs, p); 5216 5217 /* 5218 * If in_iowait is set, the code below may not trigger any cpufreq 5219 * utilization updates, so do it here explicitly with the IOWAIT flag 5220 * passed. 5221 */ 5222 if (p->in_iowait) 5223 cpufreq_update_util(rq, SCHED_CPUFREQ_IOWAIT); 5224 5225 for_each_sched_entity(se) { 5226 if (se->on_rq) 5227 break; 5228 cfs_rq = cfs_rq_of(se); 5229 enqueue_entity(cfs_rq, se, flags); 5230 5231 /* 5232 * end evaluation on encountering a throttled cfs_rq 5233 * 5234 * note: in the case of encountering a throttled cfs_rq we will 5235 * post the final h_nr_running increment below. 5236 */ 5237 if (cfs_rq_throttled(cfs_rq)) 5238 break; 5239 cfs_rq->h_nr_running++; 5240 cfs_rq->idle_h_nr_running += idle_h_nr_running; 5241 5242 flags = ENQUEUE_WAKEUP; 5243 } 5244 5245 for_each_sched_entity(se) { 5246 cfs_rq = cfs_rq_of(se); 5247 cfs_rq->h_nr_running++; 5248 cfs_rq->idle_h_nr_running += idle_h_nr_running; 5249 5250 if (cfs_rq_throttled(cfs_rq)) 5251 break; 5252 5253 update_load_avg(cfs_rq, se, UPDATE_TG); 5254 update_cfs_group(se); 5255 } 5256 5257 if (!se) { 5258 add_nr_running(rq, 1); 5259 /* 5260 * Since new tasks are assigned an initial util_avg equal to 5261 * half of the spare capacity of their CPU, tiny tasks have the 5262 * ability to cross the overutilized threshold, which will 5263 * result in the load balancer ruining all the task placement 5264 * done by EAS. As a way to mitigate that effect, do not account 5265 * for the first enqueue operation of new tasks during the 5266 * overutilized flag detection. 5267 * 5268 * A better way of solving this problem would be to wait for 5269 * the PELT signals of tasks to converge before taking them 5270 * into account, but that is not straightforward to implement, 5271 * and the following generally works well enough in practice. 5272 */ 5273 if (flags & ENQUEUE_WAKEUP) 5274 update_overutilized_status(rq); 5275 5276 } 5277 5278 if (cfs_bandwidth_used()) { 5279 /* 5280 * When bandwidth control is enabled; the cfs_rq_throttled() 5281 * breaks in the above iteration can result in incomplete 5282 * leaf list maintenance, resulting in triggering the assertion 5283 * below. 5284 */ 5285 for_each_sched_entity(se) { 5286 cfs_rq = cfs_rq_of(se); 5287 5288 if (list_add_leaf_cfs_rq(cfs_rq)) 5289 break; 5290 } 5291 } 5292 5293 assert_list_leaf_cfs_rq(rq); 5294 5295 hrtick_update(rq); 5296 } 5297 5298 static void set_next_buddy(struct sched_entity *se); 5299 5300 /* 5301 * The dequeue_task method is called before nr_running is 5302 * decreased. We remove the task from the rbtree and 5303 * update the fair scheduling stats: 5304 */ 5305 static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags) 5306 { 5307 struct cfs_rq *cfs_rq; 5308 struct sched_entity *se = &p->se; 5309 int task_sleep = flags & DEQUEUE_SLEEP; 5310 int idle_h_nr_running = task_has_idle_policy(p); 5311 5312 for_each_sched_entity(se) { 5313 cfs_rq = cfs_rq_of(se); 5314 dequeue_entity(cfs_rq, se, flags); 5315 5316 /* 5317 * end evaluation on encountering a throttled cfs_rq 5318 * 5319 * note: in the case of encountering a throttled cfs_rq we will 5320 * post the final h_nr_running decrement below. 5321 */ 5322 if (cfs_rq_throttled(cfs_rq)) 5323 break; 5324 cfs_rq->h_nr_running--; 5325 cfs_rq->idle_h_nr_running -= idle_h_nr_running; 5326 5327 /* Don't dequeue parent if it has other entities besides us */ 5328 if (cfs_rq->load.weight) { 5329 /* Avoid re-evaluating load for this entity: */ 5330 se = parent_entity(se); 5331 /* 5332 * Bias pick_next to pick a task from this cfs_rq, as 5333 * p is sleeping when it is within its sched_slice. 5334 */ 5335 if (task_sleep && se && !throttled_hierarchy(cfs_rq)) 5336 set_next_buddy(se); 5337 break; 5338 } 5339 flags |= DEQUEUE_SLEEP; 5340 } 5341 5342 for_each_sched_entity(se) { 5343 cfs_rq = cfs_rq_of(se); 5344 cfs_rq->h_nr_running--; 5345 cfs_rq->idle_h_nr_running -= idle_h_nr_running; 5346 5347 if (cfs_rq_throttled(cfs_rq)) 5348 break; 5349 5350 update_load_avg(cfs_rq, se, UPDATE_TG); 5351 update_cfs_group(se); 5352 } 5353 5354 if (!se) 5355 sub_nr_running(rq, 1); 5356 5357 util_est_dequeue(&rq->cfs, p, task_sleep); 5358 hrtick_update(rq); 5359 } 5360 5361 #ifdef CONFIG_SMP 5362 5363 /* Working cpumask for: load_balance, load_balance_newidle. */ 5364 DEFINE_PER_CPU(cpumask_var_t, load_balance_mask); 5365 DEFINE_PER_CPU(cpumask_var_t, select_idle_mask); 5366 5367 #ifdef CONFIG_NO_HZ_COMMON 5368 5369 static struct { 5370 cpumask_var_t idle_cpus_mask; 5371 atomic_t nr_cpus; 5372 int has_blocked; /* Idle CPUS has blocked load */ 5373 unsigned long next_balance; /* in jiffy units */ 5374 unsigned long next_blocked; /* Next update of blocked load in jiffies */ 5375 } nohz ____cacheline_aligned; 5376 5377 #endif /* CONFIG_NO_HZ_COMMON */ 5378 5379 /* CPU only has SCHED_IDLE tasks enqueued */ 5380 static int sched_idle_cpu(int cpu) 5381 { 5382 struct rq *rq = cpu_rq(cpu); 5383 5384 return unlikely(rq->nr_running == rq->cfs.idle_h_nr_running && 5385 rq->nr_running); 5386 } 5387 5388 static unsigned long cpu_runnable_load(struct rq *rq) 5389 { 5390 return cfs_rq_runnable_load_avg(&rq->cfs); 5391 } 5392 5393 static unsigned long capacity_of(int cpu) 5394 { 5395 return cpu_rq(cpu)->cpu_capacity; 5396 } 5397 5398 static unsigned long cpu_avg_load_per_task(int cpu) 5399 { 5400 struct rq *rq = cpu_rq(cpu); 5401 unsigned long nr_running = READ_ONCE(rq->cfs.h_nr_running); 5402 unsigned long load_avg = cpu_runnable_load(rq); 5403 5404 if (nr_running) 5405 return load_avg / nr_running; 5406 5407 return 0; 5408 } 5409 5410 static void record_wakee(struct task_struct *p) 5411 { 5412 /* 5413 * Only decay a single time; tasks that have less then 1 wakeup per 5414 * jiffy will not have built up many flips. 5415 */ 5416 if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) { 5417 current->wakee_flips >>= 1; 5418 current->wakee_flip_decay_ts = jiffies; 5419 } 5420 5421 if (current->last_wakee != p) { 5422 current->last_wakee = p; 5423 current->wakee_flips++; 5424 } 5425 } 5426 5427 /* 5428 * Detect M:N waker/wakee relationships via a switching-frequency heuristic. 5429 * 5430 * A waker of many should wake a different task than the one last awakened 5431 * at a frequency roughly N times higher than one of its wakees. 5432 * 5433 * In order to determine whether we should let the load spread vs consolidating 5434 * to shared cache, we look for a minimum 'flip' frequency of llc_size in one 5435 * partner, and a factor of lls_size higher frequency in the other. 5436 * 5437 * With both conditions met, we can be relatively sure that the relationship is 5438 * non-monogamous, with partner count exceeding socket size. 5439 * 5440 * Waker/wakee being client/server, worker/dispatcher, interrupt source or 5441 * whatever is irrelevant, spread criteria is apparent partner count exceeds 5442 * socket size. 5443 */ 5444 static int wake_wide(struct task_struct *p) 5445 { 5446 unsigned int master = current->wakee_flips; 5447 unsigned int slave = p->wakee_flips; 5448 int factor = this_cpu_read(sd_llc_size); 5449 5450 if (master < slave) 5451 swap(master, slave); 5452 if (slave < factor || master < slave * factor) 5453 return 0; 5454 return 1; 5455 } 5456 5457 /* 5458 * The purpose of wake_affine() is to quickly determine on which CPU we can run 5459 * soonest. For the purpose of speed we only consider the waking and previous 5460 * CPU. 5461 * 5462 * wake_affine_idle() - only considers 'now', it check if the waking CPU is 5463 * cache-affine and is (or will be) idle. 5464 * 5465 * wake_affine_weight() - considers the weight to reflect the average 5466 * scheduling latency of the CPUs. This seems to work 5467 * for the overloaded case. 5468 */ 5469 static int 5470 wake_affine_idle(int this_cpu, int prev_cpu, int sync) 5471 { 5472 /* 5473 * If this_cpu is idle, it implies the wakeup is from interrupt 5474 * context. Only allow the move if cache is shared. Otherwise an 5475 * interrupt intensive workload could force all tasks onto one 5476 * node depending on the IO topology or IRQ affinity settings. 5477 * 5478 * If the prev_cpu is idle and cache affine then avoid a migration. 5479 * There is no guarantee that the cache hot data from an interrupt 5480 * is more important than cache hot data on the prev_cpu and from 5481 * a cpufreq perspective, it's better to have higher utilisation 5482 * on one CPU. 5483 */ 5484 if (available_idle_cpu(this_cpu) && cpus_share_cache(this_cpu, prev_cpu)) 5485 return available_idle_cpu(prev_cpu) ? prev_cpu : this_cpu; 5486 5487 if (sync && cpu_rq(this_cpu)->nr_running == 1) 5488 return this_cpu; 5489 5490 return nr_cpumask_bits; 5491 } 5492 5493 static int 5494 wake_affine_weight(struct sched_domain *sd, struct task_struct *p, 5495 int this_cpu, int prev_cpu, int sync) 5496 { 5497 s64 this_eff_load, prev_eff_load; 5498 unsigned long task_load; 5499 5500 this_eff_load = cpu_runnable_load(cpu_rq(this_cpu)); 5501 5502 if (sync) { 5503 unsigned long current_load = task_h_load(current); 5504 5505 if (current_load > this_eff_load) 5506 return this_cpu; 5507 5508 this_eff_load -= current_load; 5509 } 5510 5511 task_load = task_h_load(p); 5512 5513 this_eff_load += task_load; 5514 if (sched_feat(WA_BIAS)) 5515 this_eff_load *= 100; 5516 this_eff_load *= capacity_of(prev_cpu); 5517 5518 prev_eff_load = cpu_runnable_load(cpu_rq(prev_cpu)); 5519 prev_eff_load -= task_load; 5520 if (sched_feat(WA_BIAS)) 5521 prev_eff_load *= 100 + (sd->imbalance_pct - 100) / 2; 5522 prev_eff_load *= capacity_of(this_cpu); 5523 5524 /* 5525 * If sync, adjust the weight of prev_eff_load such that if 5526 * prev_eff == this_eff that select_idle_sibling() will consider 5527 * stacking the wakee on top of the waker if no other CPU is 5528 * idle. 5529 */ 5530 if (sync) 5531 prev_eff_load += 1; 5532 5533 return this_eff_load < prev_eff_load ? this_cpu : nr_cpumask_bits; 5534 } 5535 5536 static int wake_affine(struct sched_domain *sd, struct task_struct *p, 5537 int this_cpu, int prev_cpu, int sync) 5538 { 5539 int target = nr_cpumask_bits; 5540 5541 if (sched_feat(WA_IDLE)) 5542 target = wake_affine_idle(this_cpu, prev_cpu, sync); 5543 5544 if (sched_feat(WA_WEIGHT) && target == nr_cpumask_bits) 5545 target = wake_affine_weight(sd, p, this_cpu, prev_cpu, sync); 5546 5547 schedstat_inc(p->se.statistics.nr_wakeups_affine_attempts); 5548 if (target == nr_cpumask_bits) 5549 return prev_cpu; 5550 5551 schedstat_inc(sd->ttwu_move_affine); 5552 schedstat_inc(p->se.statistics.nr_wakeups_affine); 5553 return target; 5554 } 5555 5556 static unsigned long cpu_util_without(int cpu, struct task_struct *p); 5557 5558 static unsigned long capacity_spare_without(int cpu, struct task_struct *p) 5559 { 5560 return max_t(long, capacity_of(cpu) - cpu_util_without(cpu, p), 0); 5561 } 5562 5563 /* 5564 * find_idlest_group finds and returns the least busy CPU group within the 5565 * domain. 5566 * 5567 * Assumes p is allowed on at least one CPU in sd. 5568 */ 5569 static struct sched_group * 5570 find_idlest_group(struct sched_domain *sd, struct task_struct *p, 5571 int this_cpu, int sd_flag) 5572 { 5573 struct sched_group *idlest = NULL, *group = sd->groups; 5574 struct sched_group *most_spare_sg = NULL; 5575 unsigned long min_runnable_load = ULONG_MAX; 5576 unsigned long this_runnable_load = ULONG_MAX; 5577 unsigned long min_avg_load = ULONG_MAX, this_avg_load = ULONG_MAX; 5578 unsigned long most_spare = 0, this_spare = 0; 5579 int imbalance_scale = 100 + (sd->imbalance_pct-100)/2; 5580 unsigned long imbalance = scale_load_down(NICE_0_LOAD) * 5581 (sd->imbalance_pct-100) / 100; 5582 5583 do { 5584 unsigned long load, avg_load, runnable_load; 5585 unsigned long spare_cap, max_spare_cap; 5586 int local_group; 5587 int i; 5588 5589 /* Skip over this group if it has no CPUs allowed */ 5590 if (!cpumask_intersects(sched_group_span(group), 5591 p->cpus_ptr)) 5592 continue; 5593 5594 local_group = cpumask_test_cpu(this_cpu, 5595 sched_group_span(group)); 5596 5597 /* 5598 * Tally up the load of all CPUs in the group and find 5599 * the group containing the CPU with most spare capacity. 5600 */ 5601 avg_load = 0; 5602 runnable_load = 0; 5603 max_spare_cap = 0; 5604 5605 for_each_cpu(i, sched_group_span(group)) { 5606 load = cpu_runnable_load(cpu_rq(i)); 5607 runnable_load += load; 5608 5609 avg_load += cfs_rq_load_avg(&cpu_rq(i)->cfs); 5610 5611 spare_cap = capacity_spare_without(i, p); 5612 5613 if (spare_cap > max_spare_cap) 5614 max_spare_cap = spare_cap; 5615 } 5616 5617 /* Adjust by relative CPU capacity of the group */ 5618 avg_load = (avg_load * SCHED_CAPACITY_SCALE) / 5619 group->sgc->capacity; 5620 runnable_load = (runnable_load * SCHED_CAPACITY_SCALE) / 5621 group->sgc->capacity; 5622 5623 if (local_group) { 5624 this_runnable_load = runnable_load; 5625 this_avg_load = avg_load; 5626 this_spare = max_spare_cap; 5627 } else { 5628 if (min_runnable_load > (runnable_load + imbalance)) { 5629 /* 5630 * The runnable load is significantly smaller 5631 * so we can pick this new CPU: 5632 */ 5633 min_runnable_load = runnable_load; 5634 min_avg_load = avg_load; 5635 idlest = group; 5636 } else if ((runnable_load < (min_runnable_load + imbalance)) && 5637 (100*min_avg_load > imbalance_scale*avg_load)) { 5638 /* 5639 * The runnable loads are close so take the 5640 * blocked load into account through avg_load: 5641 */ 5642 min_avg_load = avg_load; 5643 idlest = group; 5644 } 5645 5646 if (most_spare < max_spare_cap) { 5647 most_spare = max_spare_cap; 5648 most_spare_sg = group; 5649 } 5650 } 5651 } while (group = group->next, group != sd->groups); 5652 5653 /* 5654 * The cross-over point between using spare capacity or least load 5655 * is too conservative for high utilization tasks on partially 5656 * utilized systems if we require spare_capacity > task_util(p), 5657 * so we allow for some task stuffing by using 5658 * spare_capacity > task_util(p)/2. 5659 * 5660 * Spare capacity can't be used for fork because the utilization has 5661 * not been set yet, we must first select a rq to compute the initial 5662 * utilization. 5663 */ 5664 if (sd_flag & SD_BALANCE_FORK) 5665 goto skip_spare; 5666 5667 if (this_spare > task_util(p) / 2 && 5668 imbalance_scale*this_spare > 100*most_spare) 5669 return NULL; 5670 5671 if (most_spare > task_util(p) / 2) 5672 return most_spare_sg; 5673 5674 skip_spare: 5675 if (!idlest) 5676 return NULL; 5677 5678 /* 5679 * When comparing groups across NUMA domains, it's possible for the 5680 * local domain to be very lightly loaded relative to the remote 5681 * domains but "imbalance" skews the comparison making remote CPUs 5682 * look much more favourable. When considering cross-domain, add 5683 * imbalance to the runnable load on the remote node and consider 5684 * staying local. 5685 */ 5686 if ((sd->flags & SD_NUMA) && 5687 min_runnable_load + imbalance >= this_runnable_load) 5688 return NULL; 5689 5690 if (min_runnable_load > (this_runnable_load + imbalance)) 5691 return NULL; 5692 5693 if ((this_runnable_load < (min_runnable_load + imbalance)) && 5694 (100*this_avg_load < imbalance_scale*min_avg_load)) 5695 return NULL; 5696 5697 return idlest; 5698 } 5699 5700 /* 5701 * find_idlest_group_cpu - find the idlest CPU among the CPUs in the group. 5702 */ 5703 static int 5704 find_idlest_group_cpu(struct sched_group *group, struct task_struct *p, int this_cpu) 5705 { 5706 unsigned long load, min_load = ULONG_MAX; 5707 unsigned int min_exit_latency = UINT_MAX; 5708 u64 latest_idle_timestamp = 0; 5709 int least_loaded_cpu = this_cpu; 5710 int shallowest_idle_cpu = -1, si_cpu = -1; 5711 int i; 5712 5713 /* Check if we have any choice: */ 5714 if (group->group_weight == 1) 5715 return cpumask_first(sched_group_span(group)); 5716 5717 /* Traverse only the allowed CPUs */ 5718 for_each_cpu_and(i, sched_group_span(group), p->cpus_ptr) { 5719 if (available_idle_cpu(i)) { 5720 struct rq *rq = cpu_rq(i); 5721 struct cpuidle_state *idle = idle_get_state(rq); 5722 if (idle && idle->exit_latency < min_exit_latency) { 5723 /* 5724 * We give priority to a CPU whose idle state 5725 * has the smallest exit latency irrespective 5726 * of any idle timestamp. 5727 */ 5728 min_exit_latency = idle->exit_latency; 5729 latest_idle_timestamp = rq->idle_stamp; 5730 shallowest_idle_cpu = i; 5731 } else if ((!idle || idle->exit_latency == min_exit_latency) && 5732 rq->idle_stamp > latest_idle_timestamp) { 5733 /* 5734 * If equal or no active idle state, then 5735 * the most recently idled CPU might have 5736 * a warmer cache. 5737 */ 5738 latest_idle_timestamp = rq->idle_stamp; 5739 shallowest_idle_cpu = i; 5740 } 5741 } else if (shallowest_idle_cpu == -1 && si_cpu == -1) { 5742 if (sched_idle_cpu(i)) { 5743 si_cpu = i; 5744 continue; 5745 } 5746 5747 load = cpu_runnable_load(cpu_rq(i)); 5748 if (load < min_load) { 5749 min_load = load; 5750 least_loaded_cpu = i; 5751 } 5752 } 5753 } 5754 5755 if (shallowest_idle_cpu != -1) 5756 return shallowest_idle_cpu; 5757 if (si_cpu != -1) 5758 return si_cpu; 5759 return least_loaded_cpu; 5760 } 5761 5762 static inline int find_idlest_cpu(struct sched_domain *sd, struct task_struct *p, 5763 int cpu, int prev_cpu, int sd_flag) 5764 { 5765 int new_cpu = cpu; 5766 5767 if (!cpumask_intersects(sched_domain_span(sd), p->cpus_ptr)) 5768 return prev_cpu; 5769 5770 /* 5771 * We need task's util for capacity_spare_without, sync it up to 5772 * prev_cpu's last_update_time. 5773 */ 5774 if (!(sd_flag & SD_BALANCE_FORK)) 5775 sync_entity_load_avg(&p->se); 5776 5777 while (sd) { 5778 struct sched_group *group; 5779 struct sched_domain *tmp; 5780 int weight; 5781 5782 if (!(sd->flags & sd_flag)) { 5783 sd = sd->child; 5784 continue; 5785 } 5786 5787 group = find_idlest_group(sd, p, cpu, sd_flag); 5788 if (!group) { 5789 sd = sd->child; 5790 continue; 5791 } 5792 5793 new_cpu = find_idlest_group_cpu(group, p, cpu); 5794 if (new_cpu == cpu) { 5795 /* Now try balancing at a lower domain level of 'cpu': */ 5796 sd = sd->child; 5797 continue; 5798 } 5799 5800 /* Now try balancing at a lower domain level of 'new_cpu': */ 5801 cpu = new_cpu; 5802 weight = sd->span_weight; 5803 sd = NULL; 5804 for_each_domain(cpu, tmp) { 5805 if (weight <= tmp->span_weight) 5806 break; 5807 if (tmp->flags & sd_flag) 5808 sd = tmp; 5809 } 5810 } 5811 5812 return new_cpu; 5813 } 5814 5815 #ifdef CONFIG_SCHED_SMT 5816 DEFINE_STATIC_KEY_FALSE(sched_smt_present); 5817 EXPORT_SYMBOL_GPL(sched_smt_present); 5818 5819 static inline void set_idle_cores(int cpu, int val) 5820 { 5821 struct sched_domain_shared *sds; 5822 5823 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu)); 5824 if (sds) 5825 WRITE_ONCE(sds->has_idle_cores, val); 5826 } 5827 5828 static inline bool test_idle_cores(int cpu, bool def) 5829 { 5830 struct sched_domain_shared *sds; 5831 5832 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu)); 5833 if (sds) 5834 return READ_ONCE(sds->has_idle_cores); 5835 5836 return def; 5837 } 5838 5839 /* 5840 * Scans the local SMT mask to see if the entire core is idle, and records this 5841 * information in sd_llc_shared->has_idle_cores. 5842 * 5843 * Since SMT siblings share all cache levels, inspecting this limited remote 5844 * state should be fairly cheap. 5845 */ 5846 void __update_idle_core(struct rq *rq) 5847 { 5848 int core = cpu_of(rq); 5849 int cpu; 5850 5851 rcu_read_lock(); 5852 if (test_idle_cores(core, true)) 5853 goto unlock; 5854 5855 for_each_cpu(cpu, cpu_smt_mask(core)) { 5856 if (cpu == core) 5857 continue; 5858 5859 if (!available_idle_cpu(cpu)) 5860 goto unlock; 5861 } 5862 5863 set_idle_cores(core, 1); 5864 unlock: 5865 rcu_read_unlock(); 5866 } 5867 5868 /* 5869 * Scan the entire LLC domain for idle cores; this dynamically switches off if 5870 * there are no idle cores left in the system; tracked through 5871 * sd_llc->shared->has_idle_cores and enabled through update_idle_core() above. 5872 */ 5873 static int select_idle_core(struct task_struct *p, struct sched_domain *sd, int target) 5874 { 5875 struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_idle_mask); 5876 int core, cpu; 5877 5878 if (!static_branch_likely(&sched_smt_present)) 5879 return -1; 5880 5881 if (!test_idle_cores(target, false)) 5882 return -1; 5883 5884 cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr); 5885 5886 for_each_cpu_wrap(core, cpus, target) { 5887 bool idle = true; 5888 5889 for_each_cpu(cpu, cpu_smt_mask(core)) { 5890 __cpumask_clear_cpu(cpu, cpus); 5891 if (!available_idle_cpu(cpu)) 5892 idle = false; 5893 } 5894 5895 if (idle) 5896 return core; 5897 } 5898 5899 /* 5900 * Failed to find an idle core; stop looking for one. 5901 */ 5902 set_idle_cores(target, 0); 5903 5904 return -1; 5905 } 5906 5907 /* 5908 * Scan the local SMT mask for idle CPUs. 5909 */ 5910 static int select_idle_smt(struct task_struct *p, int target) 5911 { 5912 int cpu, si_cpu = -1; 5913 5914 if (!static_branch_likely(&sched_smt_present)) 5915 return -1; 5916 5917 for_each_cpu(cpu, cpu_smt_mask(target)) { 5918 if (!cpumask_test_cpu(cpu, p->cpus_ptr)) 5919 continue; 5920 if (available_idle_cpu(cpu)) 5921 return cpu; 5922 if (si_cpu == -1 && sched_idle_cpu(cpu)) 5923 si_cpu = cpu; 5924 } 5925 5926 return si_cpu; 5927 } 5928 5929 #else /* CONFIG_SCHED_SMT */ 5930 5931 static inline int select_idle_core(struct task_struct *p, struct sched_domain *sd, int target) 5932 { 5933 return -1; 5934 } 5935 5936 static inline int select_idle_smt(struct task_struct *p, int target) 5937 { 5938 return -1; 5939 } 5940 5941 #endif /* CONFIG_SCHED_SMT */ 5942 5943 /* 5944 * Scan the LLC domain for idle CPUs; this is dynamically regulated by 5945 * comparing the average scan cost (tracked in sd->avg_scan_cost) against the 5946 * average idle time for this rq (as found in rq->avg_idle). 5947 */ 5948 static int select_idle_cpu(struct task_struct *p, struct sched_domain *sd, int target) 5949 { 5950 struct sched_domain *this_sd; 5951 u64 avg_cost, avg_idle; 5952 u64 time, cost; 5953 s64 delta; 5954 int this = smp_processor_id(); 5955 int cpu, nr = INT_MAX, si_cpu = -1; 5956 5957 this_sd = rcu_dereference(*this_cpu_ptr(&sd_llc)); 5958 if (!this_sd) 5959 return -1; 5960 5961 /* 5962 * Due to large variance we need a large fuzz factor; hackbench in 5963 * particularly is sensitive here. 5964 */ 5965 avg_idle = this_rq()->avg_idle / 512; 5966 avg_cost = this_sd->avg_scan_cost + 1; 5967 5968 if (sched_feat(SIS_AVG_CPU) && avg_idle < avg_cost) 5969 return -1; 5970 5971 if (sched_feat(SIS_PROP)) { 5972 u64 span_avg = sd->span_weight * avg_idle; 5973 if (span_avg > 4*avg_cost) 5974 nr = div_u64(span_avg, avg_cost); 5975 else 5976 nr = 4; 5977 } 5978 5979 time = cpu_clock(this); 5980 5981 for_each_cpu_wrap(cpu, sched_domain_span(sd), target) { 5982 if (!--nr) 5983 return si_cpu; 5984 if (!cpumask_test_cpu(cpu, p->cpus_ptr)) 5985 continue; 5986 if (available_idle_cpu(cpu)) 5987 break; 5988 if (si_cpu == -1 && sched_idle_cpu(cpu)) 5989 si_cpu = cpu; 5990 } 5991 5992 time = cpu_clock(this) - time; 5993 cost = this_sd->avg_scan_cost; 5994 delta = (s64)(time - cost) / 8; 5995 this_sd->avg_scan_cost += delta; 5996 5997 return cpu; 5998 } 5999 6000 /* 6001 * Try and locate an idle core/thread in the LLC cache domain. 6002 */ 6003 static int select_idle_sibling(struct task_struct *p, int prev, int target) 6004 { 6005 struct sched_domain *sd; 6006 int i, recent_used_cpu; 6007 6008 if (available_idle_cpu(target) || sched_idle_cpu(target)) 6009 return target; 6010 6011 /* 6012 * If the previous CPU is cache affine and idle, don't be stupid: 6013 */ 6014 if (prev != target && cpus_share_cache(prev, target) && 6015 (available_idle_cpu(prev) || sched_idle_cpu(prev))) 6016 return prev; 6017 6018 /* Check a recently used CPU as a potential idle candidate: */ 6019 recent_used_cpu = p->recent_used_cpu; 6020 if (recent_used_cpu != prev && 6021 recent_used_cpu != target && 6022 cpus_share_cache(recent_used_cpu, target) && 6023 (available_idle_cpu(recent_used_cpu) || sched_idle_cpu(recent_used_cpu)) && 6024 cpumask_test_cpu(p->recent_used_cpu, p->cpus_ptr)) { 6025 /* 6026 * Replace recent_used_cpu with prev as it is a potential 6027 * candidate for the next wake: 6028 */ 6029 p->recent_used_cpu = prev; 6030 return recent_used_cpu; 6031 } 6032 6033 sd = rcu_dereference(per_cpu(sd_llc, target)); 6034 if (!sd) 6035 return target; 6036 6037 i = select_idle_core(p, sd, target); 6038 if ((unsigned)i < nr_cpumask_bits) 6039 return i; 6040 6041 i = select_idle_cpu(p, sd, target); 6042 if ((unsigned)i < nr_cpumask_bits) 6043 return i; 6044 6045 i = select_idle_smt(p, target); 6046 if ((unsigned)i < nr_cpumask_bits) 6047 return i; 6048 6049 return target; 6050 } 6051 6052 /** 6053 * Amount of capacity of a CPU that is (estimated to be) used by CFS tasks 6054 * @cpu: the CPU to get the utilization of 6055 * 6056 * The unit of the return value must be the one of capacity so we can compare 6057 * the utilization with the capacity of the CPU that is available for CFS task 6058 * (ie cpu_capacity). 6059 * 6060 * cfs_rq.avg.util_avg is the sum of running time of runnable tasks plus the 6061 * recent utilization of currently non-runnable tasks on a CPU. It represents 6062 * the amount of utilization of a CPU in the range [0..capacity_orig] where 6063 * capacity_orig is the cpu_capacity available at the highest frequency 6064 * (arch_scale_freq_capacity()). 6065 * The utilization of a CPU converges towards a sum equal to or less than the 6066 * current capacity (capacity_curr <= capacity_orig) of the CPU because it is 6067 * the running time on this CPU scaled by capacity_curr. 6068 * 6069 * The estimated utilization of a CPU is defined to be the maximum between its 6070 * cfs_rq.avg.util_avg and the sum of the estimated utilization of the tasks 6071 * currently RUNNABLE on that CPU. 6072 * This allows to properly represent the expected utilization of a CPU which 6073 * has just got a big task running since a long sleep period. At the same time 6074 * however it preserves the benefits of the "blocked utilization" in 6075 * describing the potential for other tasks waking up on the same CPU. 6076 * 6077 * Nevertheless, cfs_rq.avg.util_avg can be higher than capacity_curr or even 6078 * higher than capacity_orig because of unfortunate rounding in 6079 * cfs.avg.util_avg or just after migrating tasks and new task wakeups until 6080 * the average stabilizes with the new running time. We need to check that the 6081 * utilization stays within the range of [0..capacity_orig] and cap it if 6082 * necessary. Without utilization capping, a group could be seen as overloaded 6083 * (CPU0 utilization at 121% + CPU1 utilization at 80%) whereas CPU1 has 20% of 6084 * available capacity. We allow utilization to overshoot capacity_curr (but not 6085 * capacity_orig) as it useful for predicting the capacity required after task 6086 * migrations (scheduler-driven DVFS). 6087 * 6088 * Return: the (estimated) utilization for the specified CPU 6089 */ 6090 static inline unsigned long cpu_util(int cpu) 6091 { 6092 struct cfs_rq *cfs_rq; 6093 unsigned int util; 6094 6095 cfs_rq = &cpu_rq(cpu)->cfs; 6096 util = READ_ONCE(cfs_rq->avg.util_avg); 6097 6098 if (sched_feat(UTIL_EST)) 6099 util = max(util, READ_ONCE(cfs_rq->avg.util_est.enqueued)); 6100 6101 return min_t(unsigned long, util, capacity_orig_of(cpu)); 6102 } 6103 6104 /* 6105 * cpu_util_without: compute cpu utilization without any contributions from *p 6106 * @cpu: the CPU which utilization is requested 6107 * @p: the task which utilization should be discounted 6108 * 6109 * The utilization of a CPU is defined by the utilization of tasks currently 6110 * enqueued on that CPU as well as tasks which are currently sleeping after an 6111 * execution on that CPU. 6112 * 6113 * This method returns the utilization of the specified CPU by discounting the 6114 * utilization of the specified task, whenever the task is currently 6115 * contributing to the CPU utilization. 6116 */ 6117 static unsigned long cpu_util_without(int cpu, struct task_struct *p) 6118 { 6119 struct cfs_rq *cfs_rq; 6120 unsigned int util; 6121 6122 /* Task has no contribution or is new */ 6123 if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time)) 6124 return cpu_util(cpu); 6125 6126 cfs_rq = &cpu_rq(cpu)->cfs; 6127 util = READ_ONCE(cfs_rq->avg.util_avg); 6128 6129 /* Discount task's util from CPU's util */ 6130 lsub_positive(&util, task_util(p)); 6131 6132 /* 6133 * Covered cases: 6134 * 6135 * a) if *p is the only task sleeping on this CPU, then: 6136 * cpu_util (== task_util) > util_est (== 0) 6137 * and thus we return: 6138 * cpu_util_without = (cpu_util - task_util) = 0 6139 * 6140 * b) if other tasks are SLEEPING on this CPU, which is now exiting 6141 * IDLE, then: 6142 * cpu_util >= task_util 6143 * cpu_util > util_est (== 0) 6144 * and thus we discount *p's blocked utilization to return: 6145 * cpu_util_without = (cpu_util - task_util) >= 0 6146 * 6147 * c) if other tasks are RUNNABLE on that CPU and 6148 * util_est > cpu_util 6149 * then we use util_est since it returns a more restrictive 6150 * estimation of the spare capacity on that CPU, by just 6151 * considering the expected utilization of tasks already 6152 * runnable on that CPU. 6153 * 6154 * Cases a) and b) are covered by the above code, while case c) is 6155 * covered by the following code when estimated utilization is 6156 * enabled. 6157 */ 6158 if (sched_feat(UTIL_EST)) { 6159 unsigned int estimated = 6160 READ_ONCE(cfs_rq->avg.util_est.enqueued); 6161 6162 /* 6163 * Despite the following checks we still have a small window 6164 * for a possible race, when an execl's select_task_rq_fair() 6165 * races with LB's detach_task(): 6166 * 6167 * detach_task() 6168 * p->on_rq = TASK_ON_RQ_MIGRATING; 6169 * ---------------------------------- A 6170 * deactivate_task() \ 6171 * dequeue_task() + RaceTime 6172 * util_est_dequeue() / 6173 * ---------------------------------- B 6174 * 6175 * The additional check on "current == p" it's required to 6176 * properly fix the execl regression and it helps in further 6177 * reducing the chances for the above race. 6178 */ 6179 if (unlikely(task_on_rq_queued(p) || current == p)) 6180 lsub_positive(&estimated, _task_util_est(p)); 6181 6182 util = max(util, estimated); 6183 } 6184 6185 /* 6186 * Utilization (estimated) can exceed the CPU capacity, thus let's 6187 * clamp to the maximum CPU capacity to ensure consistency with 6188 * the cpu_util call. 6189 */ 6190 return min_t(unsigned long, util, capacity_orig_of(cpu)); 6191 } 6192 6193 /* 6194 * Disable WAKE_AFFINE in the case where task @p doesn't fit in the 6195 * capacity of either the waking CPU @cpu or the previous CPU @prev_cpu. 6196 * 6197 * In that case WAKE_AFFINE doesn't make sense and we'll let 6198 * BALANCE_WAKE sort things out. 6199 */ 6200 static int wake_cap(struct task_struct *p, int cpu, int prev_cpu) 6201 { 6202 long min_cap, max_cap; 6203 6204 if (!static_branch_unlikely(&sched_asym_cpucapacity)) 6205 return 0; 6206 6207 min_cap = min(capacity_orig_of(prev_cpu), capacity_orig_of(cpu)); 6208 max_cap = cpu_rq(cpu)->rd->max_cpu_capacity; 6209 6210 /* Minimum capacity is close to max, no need to abort wake_affine */ 6211 if (max_cap - min_cap < max_cap >> 3) 6212 return 0; 6213 6214 /* Bring task utilization in sync with prev_cpu */ 6215 sync_entity_load_avg(&p->se); 6216 6217 return !task_fits_capacity(p, min_cap); 6218 } 6219 6220 /* 6221 * Predicts what cpu_util(@cpu) would return if @p was migrated (and enqueued) 6222 * to @dst_cpu. 6223 */ 6224 static unsigned long cpu_util_next(int cpu, struct task_struct *p, int dst_cpu) 6225 { 6226 struct cfs_rq *cfs_rq = &cpu_rq(cpu)->cfs; 6227 unsigned long util_est, util = READ_ONCE(cfs_rq->avg.util_avg); 6228 6229 /* 6230 * If @p migrates from @cpu to another, remove its contribution. Or, 6231 * if @p migrates from another CPU to @cpu, add its contribution. In 6232 * the other cases, @cpu is not impacted by the migration, so the 6233 * util_avg should already be correct. 6234 */ 6235 if (task_cpu(p) == cpu && dst_cpu != cpu) 6236 sub_positive(&util, task_util(p)); 6237 else if (task_cpu(p) != cpu && dst_cpu == cpu) 6238 util += task_util(p); 6239 6240 if (sched_feat(UTIL_EST)) { 6241 util_est = READ_ONCE(cfs_rq->avg.util_est.enqueued); 6242 6243 /* 6244 * During wake-up, the task isn't enqueued yet and doesn't 6245 * appear in the cfs_rq->avg.util_est.enqueued of any rq, 6246 * so just add it (if needed) to "simulate" what will be 6247 * cpu_util() after the task has been enqueued. 6248 */ 6249 if (dst_cpu == cpu) 6250 util_est += _task_util_est(p); 6251 6252 util = max(util, util_est); 6253 } 6254 6255 return min(util, capacity_orig_of(cpu)); 6256 } 6257 6258 /* 6259 * compute_energy(): Estimates the energy that @pd would consume if @p was 6260 * migrated to @dst_cpu. compute_energy() predicts what will be the utilization 6261 * landscape of @pd's CPUs after the task migration, and uses the Energy Model 6262 * to compute what would be the energy if we decided to actually migrate that 6263 * task. 6264 */ 6265 static long 6266 compute_energy(struct task_struct *p, int dst_cpu, struct perf_domain *pd) 6267 { 6268 struct cpumask *pd_mask = perf_domain_span(pd); 6269 unsigned long cpu_cap = arch_scale_cpu_capacity(cpumask_first(pd_mask)); 6270 unsigned long max_util = 0, sum_util = 0; 6271 int cpu; 6272 6273 /* 6274 * The capacity state of CPUs of the current rd can be driven by CPUs 6275 * of another rd if they belong to the same pd. So, account for the 6276 * utilization of these CPUs too by masking pd with cpu_online_mask 6277 * instead of the rd span. 6278 * 6279 * If an entire pd is outside of the current rd, it will not appear in 6280 * its pd list and will not be accounted by compute_energy(). 6281 */ 6282 for_each_cpu_and(cpu, pd_mask, cpu_online_mask) { 6283 unsigned long cpu_util, util_cfs = cpu_util_next(cpu, p, dst_cpu); 6284 struct task_struct *tsk = cpu == dst_cpu ? p : NULL; 6285 6286 /* 6287 * Busy time computation: utilization clamping is not 6288 * required since the ratio (sum_util / cpu_capacity) 6289 * is already enough to scale the EM reported power 6290 * consumption at the (eventually clamped) cpu_capacity. 6291 */ 6292 sum_util += schedutil_cpu_util(cpu, util_cfs, cpu_cap, 6293 ENERGY_UTIL, NULL); 6294 6295 /* 6296 * Performance domain frequency: utilization clamping 6297 * must be considered since it affects the selection 6298 * of the performance domain frequency. 6299 * NOTE: in case RT tasks are running, by default the 6300 * FREQUENCY_UTIL's utilization can be max OPP. 6301 */ 6302 cpu_util = schedutil_cpu_util(cpu, util_cfs, cpu_cap, 6303 FREQUENCY_UTIL, tsk); 6304 max_util = max(max_util, cpu_util); 6305 } 6306 6307 return em_pd_energy(pd->em_pd, max_util, sum_util); 6308 } 6309 6310 /* 6311 * find_energy_efficient_cpu(): Find most energy-efficient target CPU for the 6312 * waking task. find_energy_efficient_cpu() looks for the CPU with maximum 6313 * spare capacity in each performance domain and uses it as a potential 6314 * candidate to execute the task. Then, it uses the Energy Model to figure 6315 * out which of the CPU candidates is the most energy-efficient. 6316 * 6317 * The rationale for this heuristic is as follows. In a performance domain, 6318 * all the most energy efficient CPU candidates (according to the Energy 6319 * Model) are those for which we'll request a low frequency. When there are 6320 * several CPUs for which the frequency request will be the same, we don't 6321 * have enough data to break the tie between them, because the Energy Model 6322 * only includes active power costs. With this model, if we assume that 6323 * frequency requests follow utilization (e.g. using schedutil), the CPU with 6324 * the maximum spare capacity in a performance domain is guaranteed to be among 6325 * the best candidates of the performance domain. 6326 * 6327 * In practice, it could be preferable from an energy standpoint to pack 6328 * small tasks on a CPU in order to let other CPUs go in deeper idle states, 6329 * but that could also hurt our chances to go cluster idle, and we have no 6330 * ways to tell with the current Energy Model if this is actually a good 6331 * idea or not. So, find_energy_efficient_cpu() basically favors 6332 * cluster-packing, and spreading inside a cluster. That should at least be 6333 * a good thing for latency, and this is consistent with the idea that most 6334 * of the energy savings of EAS come from the asymmetry of the system, and 6335 * not so much from breaking the tie between identical CPUs. That's also the 6336 * reason why EAS is enabled in the topology code only for systems where 6337 * SD_ASYM_CPUCAPACITY is set. 6338 * 6339 * NOTE: Forkees are not accepted in the energy-aware wake-up path because 6340 * they don't have any useful utilization data yet and it's not possible to 6341 * forecast their impact on energy consumption. Consequently, they will be 6342 * placed by find_idlest_cpu() on the least loaded CPU, which might turn out 6343 * to be energy-inefficient in some use-cases. The alternative would be to 6344 * bias new tasks towards specific types of CPUs first, or to try to infer 6345 * their util_avg from the parent task, but those heuristics could hurt 6346 * other use-cases too. So, until someone finds a better way to solve this, 6347 * let's keep things simple by re-using the existing slow path. 6348 */ 6349 static int find_energy_efficient_cpu(struct task_struct *p, int prev_cpu) 6350 { 6351 unsigned long prev_delta = ULONG_MAX, best_delta = ULONG_MAX; 6352 struct root_domain *rd = cpu_rq(smp_processor_id())->rd; 6353 unsigned long cpu_cap, util, base_energy = 0; 6354 int cpu, best_energy_cpu = prev_cpu; 6355 struct sched_domain *sd; 6356 struct perf_domain *pd; 6357 6358 rcu_read_lock(); 6359 pd = rcu_dereference(rd->pd); 6360 if (!pd || READ_ONCE(rd->overutilized)) 6361 goto fail; 6362 6363 /* 6364 * Energy-aware wake-up happens on the lowest sched_domain starting 6365 * from sd_asym_cpucapacity spanning over this_cpu and prev_cpu. 6366 */ 6367 sd = rcu_dereference(*this_cpu_ptr(&sd_asym_cpucapacity)); 6368 while (sd && !cpumask_test_cpu(prev_cpu, sched_domain_span(sd))) 6369 sd = sd->parent; 6370 if (!sd) 6371 goto fail; 6372 6373 sync_entity_load_avg(&p->se); 6374 if (!task_util_est(p)) 6375 goto unlock; 6376 6377 for (; pd; pd = pd->next) { 6378 unsigned long cur_delta, spare_cap, max_spare_cap = 0; 6379 unsigned long base_energy_pd; 6380 int max_spare_cap_cpu = -1; 6381 6382 /* Compute the 'base' energy of the pd, without @p */ 6383 base_energy_pd = compute_energy(p, -1, pd); 6384 base_energy += base_energy_pd; 6385 6386 for_each_cpu_and(cpu, perf_domain_span(pd), sched_domain_span(sd)) { 6387 if (!cpumask_test_cpu(cpu, p->cpus_ptr)) 6388 continue; 6389 6390 /* Skip CPUs that will be overutilized. */ 6391 util = cpu_util_next(cpu, p, cpu); 6392 cpu_cap = capacity_of(cpu); 6393 if (!fits_capacity(util, cpu_cap)) 6394 continue; 6395 6396 /* Always use prev_cpu as a candidate. */ 6397 if (cpu == prev_cpu) { 6398 prev_delta = compute_energy(p, prev_cpu, pd); 6399 prev_delta -= base_energy_pd; 6400 best_delta = min(best_delta, prev_delta); 6401 } 6402 6403 /* 6404 * Find the CPU with the maximum spare capacity in 6405 * the performance domain 6406 */ 6407 spare_cap = cpu_cap - util; 6408 if (spare_cap > max_spare_cap) { 6409 max_spare_cap = spare_cap; 6410 max_spare_cap_cpu = cpu; 6411 } 6412 } 6413 6414 /* Evaluate the energy impact of using this CPU. */ 6415 if (max_spare_cap_cpu >= 0) { 6416 cur_delta = compute_energy(p, max_spare_cap_cpu, pd); 6417 cur_delta -= base_energy_pd; 6418 if (cur_delta < best_delta) { 6419 best_delta = cur_delta; 6420 best_energy_cpu = max_spare_cap_cpu; 6421 } 6422 } 6423 } 6424 unlock: 6425 rcu_read_unlock(); 6426 6427 /* 6428 * Pick the best CPU if prev_cpu cannot be used, or if it saves at 6429 * least 6% of the energy used by prev_cpu. 6430 */ 6431 if (prev_delta == ULONG_MAX) 6432 return best_energy_cpu; 6433 6434 if ((prev_delta - best_delta) > ((prev_delta + base_energy) >> 4)) 6435 return best_energy_cpu; 6436 6437 return prev_cpu; 6438 6439 fail: 6440 rcu_read_unlock(); 6441 6442 return -1; 6443 } 6444 6445 /* 6446 * select_task_rq_fair: Select target runqueue for the waking task in domains 6447 * that have the 'sd_flag' flag set. In practice, this is SD_BALANCE_WAKE, 6448 * SD_BALANCE_FORK, or SD_BALANCE_EXEC. 6449 * 6450 * Balances load by selecting the idlest CPU in the idlest group, or under 6451 * certain conditions an idle sibling CPU if the domain has SD_WAKE_AFFINE set. 6452 * 6453 * Returns the target CPU number. 6454 * 6455 * preempt must be disabled. 6456 */ 6457 static int 6458 select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_flags) 6459 { 6460 struct sched_domain *tmp, *sd = NULL; 6461 int cpu = smp_processor_id(); 6462 int new_cpu = prev_cpu; 6463 int want_affine = 0; 6464 int sync = (wake_flags & WF_SYNC) && !(current->flags & PF_EXITING); 6465 6466 if (sd_flag & SD_BALANCE_WAKE) { 6467 record_wakee(p); 6468 6469 if (sched_energy_enabled()) { 6470 new_cpu = find_energy_efficient_cpu(p, prev_cpu); 6471 if (new_cpu >= 0) 6472 return new_cpu; 6473 new_cpu = prev_cpu; 6474 } 6475 6476 want_affine = !wake_wide(p) && !wake_cap(p, cpu, prev_cpu) && 6477 cpumask_test_cpu(cpu, p->cpus_ptr); 6478 } 6479 6480 rcu_read_lock(); 6481 for_each_domain(cpu, tmp) { 6482 if (!(tmp->flags & SD_LOAD_BALANCE)) 6483 break; 6484 6485 /* 6486 * If both 'cpu' and 'prev_cpu' are part of this domain, 6487 * cpu is a valid SD_WAKE_AFFINE target. 6488 */ 6489 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) && 6490 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) { 6491 if (cpu != prev_cpu) 6492 new_cpu = wake_affine(tmp, p, cpu, prev_cpu, sync); 6493 6494 sd = NULL; /* Prefer wake_affine over balance flags */ 6495 break; 6496 } 6497 6498 if (tmp->flags & sd_flag) 6499 sd = tmp; 6500 else if (!want_affine) 6501 break; 6502 } 6503 6504 if (unlikely(sd)) { 6505 /* Slow path */ 6506 new_cpu = find_idlest_cpu(sd, p, cpu, prev_cpu, sd_flag); 6507 } else if (sd_flag & SD_BALANCE_WAKE) { /* XXX always ? */ 6508 /* Fast path */ 6509 6510 new_cpu = select_idle_sibling(p, prev_cpu, new_cpu); 6511 6512 if (want_affine) 6513 current->recent_used_cpu = cpu; 6514 } 6515 rcu_read_unlock(); 6516 6517 return new_cpu; 6518 } 6519 6520 static void detach_entity_cfs_rq(struct sched_entity *se); 6521 6522 /* 6523 * Called immediately before a task is migrated to a new CPU; task_cpu(p) and 6524 * cfs_rq_of(p) references at time of call are still valid and identify the 6525 * previous CPU. The caller guarantees p->pi_lock or task_rq(p)->lock is held. 6526 */ 6527 static void migrate_task_rq_fair(struct task_struct *p, int new_cpu) 6528 { 6529 /* 6530 * As blocked tasks retain absolute vruntime the migration needs to 6531 * deal with this by subtracting the old and adding the new 6532 * min_vruntime -- the latter is done by enqueue_entity() when placing 6533 * the task on the new runqueue. 6534 */ 6535 if (p->state == TASK_WAKING) { 6536 struct sched_entity *se = &p->se; 6537 struct cfs_rq *cfs_rq = cfs_rq_of(se); 6538 u64 min_vruntime; 6539 6540 #ifndef CONFIG_64BIT 6541 u64 min_vruntime_copy; 6542 6543 do { 6544 min_vruntime_copy = cfs_rq->min_vruntime_copy; 6545 smp_rmb(); 6546 min_vruntime = cfs_rq->min_vruntime; 6547 } while (min_vruntime != min_vruntime_copy); 6548 #else 6549 min_vruntime = cfs_rq->min_vruntime; 6550 #endif 6551 6552 se->vruntime -= min_vruntime; 6553 } 6554 6555 if (p->on_rq == TASK_ON_RQ_MIGRATING) { 6556 /* 6557 * In case of TASK_ON_RQ_MIGRATING we in fact hold the 'old' 6558 * rq->lock and can modify state directly. 6559 */ 6560 lockdep_assert_held(&task_rq(p)->lock); 6561 detach_entity_cfs_rq(&p->se); 6562 6563 } else { 6564 /* 6565 * We are supposed to update the task to "current" time, then 6566 * its up to date and ready to go to new CPU/cfs_rq. But we 6567 * have difficulty in getting what current time is, so simply 6568 * throw away the out-of-date time. This will result in the 6569 * wakee task is less decayed, but giving the wakee more load 6570 * sounds not bad. 6571 */ 6572 remove_entity_load_avg(&p->se); 6573 } 6574 6575 /* Tell new CPU we are migrated */ 6576 p->se.avg.last_update_time = 0; 6577 6578 /* We have migrated, no longer consider this task hot */ 6579 p->se.exec_start = 0; 6580 6581 update_scan_period(p, new_cpu); 6582 } 6583 6584 static void task_dead_fair(struct task_struct *p) 6585 { 6586 remove_entity_load_avg(&p->se); 6587 } 6588 #endif /* CONFIG_SMP */ 6589 6590 static unsigned long wakeup_gran(struct sched_entity *se) 6591 { 6592 unsigned long gran = sysctl_sched_wakeup_granularity; 6593 6594 /* 6595 * Since its curr running now, convert the gran from real-time 6596 * to virtual-time in his units. 6597 * 6598 * By using 'se' instead of 'curr' we penalize light tasks, so 6599 * they get preempted easier. That is, if 'se' < 'curr' then 6600 * the resulting gran will be larger, therefore penalizing the 6601 * lighter, if otoh 'se' > 'curr' then the resulting gran will 6602 * be smaller, again penalizing the lighter task. 6603 * 6604 * This is especially important for buddies when the leftmost 6605 * task is higher priority than the buddy. 6606 */ 6607 return calc_delta_fair(gran, se); 6608 } 6609 6610 /* 6611 * Should 'se' preempt 'curr'. 6612 * 6613 * |s1 6614 * |s2 6615 * |s3 6616 * g 6617 * |<--->|c 6618 * 6619 * w(c, s1) = -1 6620 * w(c, s2) = 0 6621 * w(c, s3) = 1 6622 * 6623 */ 6624 static int 6625 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se) 6626 { 6627 s64 gran, vdiff = curr->vruntime - se->vruntime; 6628 6629 if (vdiff <= 0) 6630 return -1; 6631 6632 gran = wakeup_gran(se); 6633 if (vdiff > gran) 6634 return 1; 6635 6636 return 0; 6637 } 6638 6639 static void set_last_buddy(struct sched_entity *se) 6640 { 6641 if (entity_is_task(se) && unlikely(task_has_idle_policy(task_of(se)))) 6642 return; 6643 6644 for_each_sched_entity(se) { 6645 if (SCHED_WARN_ON(!se->on_rq)) 6646 return; 6647 cfs_rq_of(se)->last = se; 6648 } 6649 } 6650 6651 static void set_next_buddy(struct sched_entity *se) 6652 { 6653 if (entity_is_task(se) && unlikely(task_has_idle_policy(task_of(se)))) 6654 return; 6655 6656 for_each_sched_entity(se) { 6657 if (SCHED_WARN_ON(!se->on_rq)) 6658 return; 6659 cfs_rq_of(se)->next = se; 6660 } 6661 } 6662 6663 static void set_skip_buddy(struct sched_entity *se) 6664 { 6665 for_each_sched_entity(se) 6666 cfs_rq_of(se)->skip = se; 6667 } 6668 6669 /* 6670 * Preempt the current task with a newly woken task if needed: 6671 */ 6672 static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags) 6673 { 6674 struct task_struct *curr = rq->curr; 6675 struct sched_entity *se = &curr->se, *pse = &p->se; 6676 struct cfs_rq *cfs_rq = task_cfs_rq(curr); 6677 int scale = cfs_rq->nr_running >= sched_nr_latency; 6678 int next_buddy_marked = 0; 6679 6680 if (unlikely(se == pse)) 6681 return; 6682 6683 /* 6684 * This is possible from callers such as attach_tasks(), in which we 6685 * unconditionally check_prempt_curr() after an enqueue (which may have 6686 * lead to a throttle). This both saves work and prevents false 6687 * next-buddy nomination below. 6688 */ 6689 if (unlikely(throttled_hierarchy(cfs_rq_of(pse)))) 6690 return; 6691 6692 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) { 6693 set_next_buddy(pse); 6694 next_buddy_marked = 1; 6695 } 6696 6697 /* 6698 * We can come here with TIF_NEED_RESCHED already set from new task 6699 * wake up path. 6700 * 6701 * Note: this also catches the edge-case of curr being in a throttled 6702 * group (e.g. via set_curr_task), since update_curr() (in the 6703 * enqueue of curr) will have resulted in resched being set. This 6704 * prevents us from potentially nominating it as a false LAST_BUDDY 6705 * below. 6706 */ 6707 if (test_tsk_need_resched(curr)) 6708 return; 6709 6710 /* Idle tasks are by definition preempted by non-idle tasks. */ 6711 if (unlikely(task_has_idle_policy(curr)) && 6712 likely(!task_has_idle_policy(p))) 6713 goto preempt; 6714 6715 /* 6716 * Batch and idle tasks do not preempt non-idle tasks (their preemption 6717 * is driven by the tick): 6718 */ 6719 if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION)) 6720 return; 6721 6722 find_matching_se(&se, &pse); 6723 update_curr(cfs_rq_of(se)); 6724 BUG_ON(!pse); 6725 if (wakeup_preempt_entity(se, pse) == 1) { 6726 /* 6727 * Bias pick_next to pick the sched entity that is 6728 * triggering this preemption. 6729 */ 6730 if (!next_buddy_marked) 6731 set_next_buddy(pse); 6732 goto preempt; 6733 } 6734 6735 return; 6736 6737 preempt: 6738 resched_curr(rq); 6739 /* 6740 * Only set the backward buddy when the current task is still 6741 * on the rq. This can happen when a wakeup gets interleaved 6742 * with schedule on the ->pre_schedule() or idle_balance() 6743 * point, either of which can * drop the rq lock. 6744 * 6745 * Also, during early boot the idle thread is in the fair class, 6746 * for obvious reasons its a bad idea to schedule back to it. 6747 */ 6748 if (unlikely(!se->on_rq || curr == rq->idle)) 6749 return; 6750 6751 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se)) 6752 set_last_buddy(se); 6753 } 6754 6755 static struct task_struct * 6756 pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf) 6757 { 6758 struct cfs_rq *cfs_rq = &rq->cfs; 6759 struct sched_entity *se; 6760 struct task_struct *p; 6761 int new_tasks; 6762 6763 again: 6764 if (!cfs_rq->nr_running) 6765 goto idle; 6766 6767 #ifdef CONFIG_FAIR_GROUP_SCHED 6768 if (!prev || prev->sched_class != &fair_sched_class) 6769 goto simple; 6770 6771 /* 6772 * Because of the set_next_buddy() in dequeue_task_fair() it is rather 6773 * likely that a next task is from the same cgroup as the current. 6774 * 6775 * Therefore attempt to avoid putting and setting the entire cgroup 6776 * hierarchy, only change the part that actually changes. 6777 */ 6778 6779 do { 6780 struct sched_entity *curr = cfs_rq->curr; 6781 6782 /* 6783 * Since we got here without doing put_prev_entity() we also 6784 * have to consider cfs_rq->curr. If it is still a runnable 6785 * entity, update_curr() will update its vruntime, otherwise 6786 * forget we've ever seen it. 6787 */ 6788 if (curr) { 6789 if (curr->on_rq) 6790 update_curr(cfs_rq); 6791 else 6792 curr = NULL; 6793 6794 /* 6795 * This call to check_cfs_rq_runtime() will do the 6796 * throttle and dequeue its entity in the parent(s). 6797 * Therefore the nr_running test will indeed 6798 * be correct. 6799 */ 6800 if (unlikely(check_cfs_rq_runtime(cfs_rq))) { 6801 cfs_rq = &rq->cfs; 6802 6803 if (!cfs_rq->nr_running) 6804 goto idle; 6805 6806 goto simple; 6807 } 6808 } 6809 6810 se = pick_next_entity(cfs_rq, curr); 6811 cfs_rq = group_cfs_rq(se); 6812 } while (cfs_rq); 6813 6814 p = task_of(se); 6815 6816 /* 6817 * Since we haven't yet done put_prev_entity and if the selected task 6818 * is a different task than we started out with, try and touch the 6819 * least amount of cfs_rqs. 6820 */ 6821 if (prev != p) { 6822 struct sched_entity *pse = &prev->se; 6823 6824 while (!(cfs_rq = is_same_group(se, pse))) { 6825 int se_depth = se->depth; 6826 int pse_depth = pse->depth; 6827 6828 if (se_depth <= pse_depth) { 6829 put_prev_entity(cfs_rq_of(pse), pse); 6830 pse = parent_entity(pse); 6831 } 6832 if (se_depth >= pse_depth) { 6833 set_next_entity(cfs_rq_of(se), se); 6834 se = parent_entity(se); 6835 } 6836 } 6837 6838 put_prev_entity(cfs_rq, pse); 6839 set_next_entity(cfs_rq, se); 6840 } 6841 6842 goto done; 6843 simple: 6844 #endif 6845 if (prev) 6846 put_prev_task(rq, prev); 6847 6848 do { 6849 se = pick_next_entity(cfs_rq, NULL); 6850 set_next_entity(cfs_rq, se); 6851 cfs_rq = group_cfs_rq(se); 6852 } while (cfs_rq); 6853 6854 p = task_of(se); 6855 6856 done: __maybe_unused; 6857 #ifdef CONFIG_SMP 6858 /* 6859 * Move the next running task to the front of 6860 * the list, so our cfs_tasks list becomes MRU 6861 * one. 6862 */ 6863 list_move(&p->se.group_node, &rq->cfs_tasks); 6864 #endif 6865 6866 if (hrtick_enabled(rq)) 6867 hrtick_start_fair(rq, p); 6868 6869 update_misfit_status(p, rq); 6870 6871 return p; 6872 6873 idle: 6874 if (!rf) 6875 return NULL; 6876 6877 new_tasks = newidle_balance(rq, rf); 6878 6879 /* 6880 * Because newidle_balance() releases (and re-acquires) rq->lock, it is 6881 * possible for any higher priority task to appear. In that case we 6882 * must re-start the pick_next_entity() loop. 6883 */ 6884 if (new_tasks < 0) 6885 return RETRY_TASK; 6886 6887 if (new_tasks > 0) 6888 goto again; 6889 6890 /* 6891 * rq is about to be idle, check if we need to update the 6892 * lost_idle_time of clock_pelt 6893 */ 6894 update_idle_rq_clock_pelt(rq); 6895 6896 return NULL; 6897 } 6898 6899 /* 6900 * Account for a descheduled task: 6901 */ 6902 static void put_prev_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf) 6903 { 6904 struct sched_entity *se = &prev->se; 6905 struct cfs_rq *cfs_rq; 6906 6907 for_each_sched_entity(se) { 6908 cfs_rq = cfs_rq_of(se); 6909 put_prev_entity(cfs_rq, se); 6910 } 6911 } 6912 6913 /* 6914 * sched_yield() is very simple 6915 * 6916 * The magic of dealing with the ->skip buddy is in pick_next_entity. 6917 */ 6918 static void yield_task_fair(struct rq *rq) 6919 { 6920 struct task_struct *curr = rq->curr; 6921 struct cfs_rq *cfs_rq = task_cfs_rq(curr); 6922 struct sched_entity *se = &curr->se; 6923 6924 /* 6925 * Are we the only task in the tree? 6926 */ 6927 if (unlikely(rq->nr_running == 1)) 6928 return; 6929 6930 clear_buddies(cfs_rq, se); 6931 6932 if (curr->policy != SCHED_BATCH) { 6933 update_rq_clock(rq); 6934 /* 6935 * Update run-time statistics of the 'current'. 6936 */ 6937 update_curr(cfs_rq); 6938 /* 6939 * Tell update_rq_clock() that we've just updated, 6940 * so we don't do microscopic update in schedule() 6941 * and double the fastpath cost. 6942 */ 6943 rq_clock_skip_update(rq); 6944 } 6945 6946 set_skip_buddy(se); 6947 } 6948 6949 static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt) 6950 { 6951 struct sched_entity *se = &p->se; 6952 6953 /* throttled hierarchies are not runnable */ 6954 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se))) 6955 return false; 6956 6957 /* Tell the scheduler that we'd really like pse to run next. */ 6958 set_next_buddy(se); 6959 6960 yield_task_fair(rq); 6961 6962 return true; 6963 } 6964 6965 #ifdef CONFIG_SMP 6966 /************************************************** 6967 * Fair scheduling class load-balancing methods. 6968 * 6969 * BASICS 6970 * 6971 * The purpose of load-balancing is to achieve the same basic fairness the 6972 * per-CPU scheduler provides, namely provide a proportional amount of compute 6973 * time to each task. This is expressed in the following equation: 6974 * 6975 * W_i,n/P_i == W_j,n/P_j for all i,j (1) 6976 * 6977 * Where W_i,n is the n-th weight average for CPU i. The instantaneous weight 6978 * W_i,0 is defined as: 6979 * 6980 * W_i,0 = \Sum_j w_i,j (2) 6981 * 6982 * Where w_i,j is the weight of the j-th runnable task on CPU i. This weight 6983 * is derived from the nice value as per sched_prio_to_weight[]. 6984 * 6985 * The weight average is an exponential decay average of the instantaneous 6986 * weight: 6987 * 6988 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3) 6989 * 6990 * C_i is the compute capacity of CPU i, typically it is the 6991 * fraction of 'recent' time available for SCHED_OTHER task execution. But it 6992 * can also include other factors [XXX]. 6993 * 6994 * To achieve this balance we define a measure of imbalance which follows 6995 * directly from (1): 6996 * 6997 * imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j } (4) 6998 * 6999 * We them move tasks around to minimize the imbalance. In the continuous 7000 * function space it is obvious this converges, in the discrete case we get 7001 * a few fun cases generally called infeasible weight scenarios. 7002 * 7003 * [XXX expand on: 7004 * - infeasible weights; 7005 * - local vs global optima in the discrete case. ] 7006 * 7007 * 7008 * SCHED DOMAINS 7009 * 7010 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2) 7011 * for all i,j solution, we create a tree of CPUs that follows the hardware 7012 * topology where each level pairs two lower groups (or better). This results 7013 * in O(log n) layers. Furthermore we reduce the number of CPUs going up the 7014 * tree to only the first of the previous level and we decrease the frequency 7015 * of load-balance at each level inv. proportional to the number of CPUs in 7016 * the groups. 7017 * 7018 * This yields: 7019 * 7020 * log_2 n 1 n 7021 * \Sum { --- * --- * 2^i } = O(n) (5) 7022 * i = 0 2^i 2^i 7023 * `- size of each group 7024 * | | `- number of CPUs doing load-balance 7025 * | `- freq 7026 * `- sum over all levels 7027 * 7028 * Coupled with a limit on how many tasks we can migrate every balance pass, 7029 * this makes (5) the runtime complexity of the balancer. 7030 * 7031 * An important property here is that each CPU is still (indirectly) connected 7032 * to every other CPU in at most O(log n) steps: 7033 * 7034 * The adjacency matrix of the resulting graph is given by: 7035 * 7036 * log_2 n 7037 * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6) 7038 * k = 0 7039 * 7040 * And you'll find that: 7041 * 7042 * A^(log_2 n)_i,j != 0 for all i,j (7) 7043 * 7044 * Showing there's indeed a path between every CPU in at most O(log n) steps. 7045 * The task movement gives a factor of O(m), giving a convergence complexity 7046 * of: 7047 * 7048 * O(nm log n), n := nr_cpus, m := nr_tasks (8) 7049 * 7050 * 7051 * WORK CONSERVING 7052 * 7053 * In order to avoid CPUs going idle while there's still work to do, new idle 7054 * balancing is more aggressive and has the newly idle CPU iterate up the domain 7055 * tree itself instead of relying on other CPUs to bring it work. 7056 * 7057 * This adds some complexity to both (5) and (8) but it reduces the total idle 7058 * time. 7059 * 7060 * [XXX more?] 7061 * 7062 * 7063 * CGROUPS 7064 * 7065 * Cgroups make a horror show out of (2), instead of a simple sum we get: 7066 * 7067 * s_k,i 7068 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9) 7069 * S_k 7070 * 7071 * Where 7072 * 7073 * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10) 7074 * 7075 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on CPU i. 7076 * 7077 * The big problem is S_k, its a global sum needed to compute a local (W_i) 7078 * property. 7079 * 7080 * [XXX write more on how we solve this.. _after_ merging pjt's patches that 7081 * rewrite all of this once again.] 7082 */ 7083 7084 static unsigned long __read_mostly max_load_balance_interval = HZ/10; 7085 7086 enum fbq_type { regular, remote, all }; 7087 7088 enum group_type { 7089 group_other = 0, 7090 group_misfit_task, 7091 group_imbalanced, 7092 group_overloaded, 7093 }; 7094 7095 #define LBF_ALL_PINNED 0x01 7096 #define LBF_NEED_BREAK 0x02 7097 #define LBF_DST_PINNED 0x04 7098 #define LBF_SOME_PINNED 0x08 7099 #define LBF_NOHZ_STATS 0x10 7100 #define LBF_NOHZ_AGAIN 0x20 7101 7102 struct lb_env { 7103 struct sched_domain *sd; 7104 7105 struct rq *src_rq; 7106 int src_cpu; 7107 7108 int dst_cpu; 7109 struct rq *dst_rq; 7110 7111 struct cpumask *dst_grpmask; 7112 int new_dst_cpu; 7113 enum cpu_idle_type idle; 7114 long imbalance; 7115 /* The set of CPUs under consideration for load-balancing */ 7116 struct cpumask *cpus; 7117 7118 unsigned int flags; 7119 7120 unsigned int loop; 7121 unsigned int loop_break; 7122 unsigned int loop_max; 7123 7124 enum fbq_type fbq_type; 7125 enum group_type src_grp_type; 7126 struct list_head tasks; 7127 }; 7128 7129 /* 7130 * Is this task likely cache-hot: 7131 */ 7132 static int task_hot(struct task_struct *p, struct lb_env *env) 7133 { 7134 s64 delta; 7135 7136 lockdep_assert_held(&env->src_rq->lock); 7137 7138 if (p->sched_class != &fair_sched_class) 7139 return 0; 7140 7141 if (unlikely(task_has_idle_policy(p))) 7142 return 0; 7143 7144 /* 7145 * Buddy candidates are cache hot: 7146 */ 7147 if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running && 7148 (&p->se == cfs_rq_of(&p->se)->next || 7149 &p->se == cfs_rq_of(&p->se)->last)) 7150 return 1; 7151 7152 if (sysctl_sched_migration_cost == -1) 7153 return 1; 7154 if (sysctl_sched_migration_cost == 0) 7155 return 0; 7156 7157 delta = rq_clock_task(env->src_rq) - p->se.exec_start; 7158 7159 return delta < (s64)sysctl_sched_migration_cost; 7160 } 7161 7162 #ifdef CONFIG_NUMA_BALANCING 7163 /* 7164 * Returns 1, if task migration degrades locality 7165 * Returns 0, if task migration improves locality i.e migration preferred. 7166 * Returns -1, if task migration is not affected by locality. 7167 */ 7168 static int migrate_degrades_locality(struct task_struct *p, struct lb_env *env) 7169 { 7170 struct numa_group *numa_group = rcu_dereference(p->numa_group); 7171 unsigned long src_weight, dst_weight; 7172 int src_nid, dst_nid, dist; 7173 7174 if (!static_branch_likely(&sched_numa_balancing)) 7175 return -1; 7176 7177 if (!p->numa_faults || !(env->sd->flags & SD_NUMA)) 7178 return -1; 7179 7180 src_nid = cpu_to_node(env->src_cpu); 7181 dst_nid = cpu_to_node(env->dst_cpu); 7182 7183 if (src_nid == dst_nid) 7184 return -1; 7185 7186 /* Migrating away from the preferred node is always bad. */ 7187 if (src_nid == p->numa_preferred_nid) { 7188 if (env->src_rq->nr_running > env->src_rq->nr_preferred_running) 7189 return 1; 7190 else 7191 return -1; 7192 } 7193 7194 /* Encourage migration to the preferred node. */ 7195 if (dst_nid == p->numa_preferred_nid) 7196 return 0; 7197 7198 /* Leaving a core idle is often worse than degrading locality. */ 7199 if (env->idle == CPU_IDLE) 7200 return -1; 7201 7202 dist = node_distance(src_nid, dst_nid); 7203 if (numa_group) { 7204 src_weight = group_weight(p, src_nid, dist); 7205 dst_weight = group_weight(p, dst_nid, dist); 7206 } else { 7207 src_weight = task_weight(p, src_nid, dist); 7208 dst_weight = task_weight(p, dst_nid, dist); 7209 } 7210 7211 return dst_weight < src_weight; 7212 } 7213 7214 #else 7215 static inline int migrate_degrades_locality(struct task_struct *p, 7216 struct lb_env *env) 7217 { 7218 return -1; 7219 } 7220 #endif 7221 7222 /* 7223 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu? 7224 */ 7225 static 7226 int can_migrate_task(struct task_struct *p, struct lb_env *env) 7227 { 7228 int tsk_cache_hot; 7229 7230 lockdep_assert_held(&env->src_rq->lock); 7231 7232 /* 7233 * We do not migrate tasks that are: 7234 * 1) throttled_lb_pair, or 7235 * 2) cannot be migrated to this CPU due to cpus_ptr, or 7236 * 3) running (obviously), or 7237 * 4) are cache-hot on their current CPU. 7238 */ 7239 if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu)) 7240 return 0; 7241 7242 if (!cpumask_test_cpu(env->dst_cpu, p->cpus_ptr)) { 7243 int cpu; 7244 7245 schedstat_inc(p->se.statistics.nr_failed_migrations_affine); 7246 7247 env->flags |= LBF_SOME_PINNED; 7248 7249 /* 7250 * Remember if this task can be migrated to any other CPU in 7251 * our sched_group. We may want to revisit it if we couldn't 7252 * meet load balance goals by pulling other tasks on src_cpu. 7253 * 7254 * Avoid computing new_dst_cpu for NEWLY_IDLE or if we have 7255 * already computed one in current iteration. 7256 */ 7257 if (env->idle == CPU_NEWLY_IDLE || (env->flags & LBF_DST_PINNED)) 7258 return 0; 7259 7260 /* Prevent to re-select dst_cpu via env's CPUs: */ 7261 for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) { 7262 if (cpumask_test_cpu(cpu, p->cpus_ptr)) { 7263 env->flags |= LBF_DST_PINNED; 7264 env->new_dst_cpu = cpu; 7265 break; 7266 } 7267 } 7268 7269 return 0; 7270 } 7271 7272 /* Record that we found atleast one task that could run on dst_cpu */ 7273 env->flags &= ~LBF_ALL_PINNED; 7274 7275 if (task_running(env->src_rq, p)) { 7276 schedstat_inc(p->se.statistics.nr_failed_migrations_running); 7277 return 0; 7278 } 7279 7280 /* 7281 * Aggressive migration if: 7282 * 1) destination numa is preferred 7283 * 2) task is cache cold, or 7284 * 3) too many balance attempts have failed. 7285 */ 7286 tsk_cache_hot = migrate_degrades_locality(p, env); 7287 if (tsk_cache_hot == -1) 7288 tsk_cache_hot = task_hot(p, env); 7289 7290 if (tsk_cache_hot <= 0 || 7291 env->sd->nr_balance_failed > env->sd->cache_nice_tries) { 7292 if (tsk_cache_hot == 1) { 7293 schedstat_inc(env->sd->lb_hot_gained[env->idle]); 7294 schedstat_inc(p->se.statistics.nr_forced_migrations); 7295 } 7296 return 1; 7297 } 7298 7299 schedstat_inc(p->se.statistics.nr_failed_migrations_hot); 7300 return 0; 7301 } 7302 7303 /* 7304 * detach_task() -- detach the task for the migration specified in env 7305 */ 7306 static void detach_task(struct task_struct *p, struct lb_env *env) 7307 { 7308 lockdep_assert_held(&env->src_rq->lock); 7309 7310 deactivate_task(env->src_rq, p, DEQUEUE_NOCLOCK); 7311 set_task_cpu(p, env->dst_cpu); 7312 } 7313 7314 /* 7315 * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as 7316 * part of active balancing operations within "domain". 7317 * 7318 * Returns a task if successful and NULL otherwise. 7319 */ 7320 static struct task_struct *detach_one_task(struct lb_env *env) 7321 { 7322 struct task_struct *p; 7323 7324 lockdep_assert_held(&env->src_rq->lock); 7325 7326 list_for_each_entry_reverse(p, 7327 &env->src_rq->cfs_tasks, se.group_node) { 7328 if (!can_migrate_task(p, env)) 7329 continue; 7330 7331 detach_task(p, env); 7332 7333 /* 7334 * Right now, this is only the second place where 7335 * lb_gained[env->idle] is updated (other is detach_tasks) 7336 * so we can safely collect stats here rather than 7337 * inside detach_tasks(). 7338 */ 7339 schedstat_inc(env->sd->lb_gained[env->idle]); 7340 return p; 7341 } 7342 return NULL; 7343 } 7344 7345 static const unsigned int sched_nr_migrate_break = 32; 7346 7347 /* 7348 * detach_tasks() -- tries to detach up to imbalance runnable load from 7349 * busiest_rq, as part of a balancing operation within domain "sd". 7350 * 7351 * Returns number of detached tasks if successful and 0 otherwise. 7352 */ 7353 static int detach_tasks(struct lb_env *env) 7354 { 7355 struct list_head *tasks = &env->src_rq->cfs_tasks; 7356 struct task_struct *p; 7357 unsigned long load; 7358 int detached = 0; 7359 7360 lockdep_assert_held(&env->src_rq->lock); 7361 7362 if (env->imbalance <= 0) 7363 return 0; 7364 7365 while (!list_empty(tasks)) { 7366 /* 7367 * We don't want to steal all, otherwise we may be treated likewise, 7368 * which could at worst lead to a livelock crash. 7369 */ 7370 if (env->idle != CPU_NOT_IDLE && env->src_rq->nr_running <= 1) 7371 break; 7372 7373 p = list_last_entry(tasks, struct task_struct, se.group_node); 7374 7375 env->loop++; 7376 /* We've more or less seen every task there is, call it quits */ 7377 if (env->loop > env->loop_max) 7378 break; 7379 7380 /* take a breather every nr_migrate tasks */ 7381 if (env->loop > env->loop_break) { 7382 env->loop_break += sched_nr_migrate_break; 7383 env->flags |= LBF_NEED_BREAK; 7384 break; 7385 } 7386 7387 if (!can_migrate_task(p, env)) 7388 goto next; 7389 7390 load = task_h_load(p); 7391 7392 if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed) 7393 goto next; 7394 7395 if ((load / 2) > env->imbalance) 7396 goto next; 7397 7398 detach_task(p, env); 7399 list_add(&p->se.group_node, &env->tasks); 7400 7401 detached++; 7402 env->imbalance -= load; 7403 7404 #ifdef CONFIG_PREEMPTION 7405 /* 7406 * NEWIDLE balancing is a source of latency, so preemptible 7407 * kernels will stop after the first task is detached to minimize 7408 * the critical section. 7409 */ 7410 if (env->idle == CPU_NEWLY_IDLE) 7411 break; 7412 #endif 7413 7414 /* 7415 * We only want to steal up to the prescribed amount of 7416 * runnable load. 7417 */ 7418 if (env->imbalance <= 0) 7419 break; 7420 7421 continue; 7422 next: 7423 list_move(&p->se.group_node, tasks); 7424 } 7425 7426 /* 7427 * Right now, this is one of only two places we collect this stat 7428 * so we can safely collect detach_one_task() stats here rather 7429 * than inside detach_one_task(). 7430 */ 7431 schedstat_add(env->sd->lb_gained[env->idle], detached); 7432 7433 return detached; 7434 } 7435 7436 /* 7437 * attach_task() -- attach the task detached by detach_task() to its new rq. 7438 */ 7439 static void attach_task(struct rq *rq, struct task_struct *p) 7440 { 7441 lockdep_assert_held(&rq->lock); 7442 7443 BUG_ON(task_rq(p) != rq); 7444 activate_task(rq, p, ENQUEUE_NOCLOCK); 7445 check_preempt_curr(rq, p, 0); 7446 } 7447 7448 /* 7449 * attach_one_task() -- attaches the task returned from detach_one_task() to 7450 * its new rq. 7451 */ 7452 static void attach_one_task(struct rq *rq, struct task_struct *p) 7453 { 7454 struct rq_flags rf; 7455 7456 rq_lock(rq, &rf); 7457 update_rq_clock(rq); 7458 attach_task(rq, p); 7459 rq_unlock(rq, &rf); 7460 } 7461 7462 /* 7463 * attach_tasks() -- attaches all tasks detached by detach_tasks() to their 7464 * new rq. 7465 */ 7466 static void attach_tasks(struct lb_env *env) 7467 { 7468 struct list_head *tasks = &env->tasks; 7469 struct task_struct *p; 7470 struct rq_flags rf; 7471 7472 rq_lock(env->dst_rq, &rf); 7473 update_rq_clock(env->dst_rq); 7474 7475 while (!list_empty(tasks)) { 7476 p = list_first_entry(tasks, struct task_struct, se.group_node); 7477 list_del_init(&p->se.group_node); 7478 7479 attach_task(env->dst_rq, p); 7480 } 7481 7482 rq_unlock(env->dst_rq, &rf); 7483 } 7484 7485 #ifdef CONFIG_NO_HZ_COMMON 7486 static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq) 7487 { 7488 if (cfs_rq->avg.load_avg) 7489 return true; 7490 7491 if (cfs_rq->avg.util_avg) 7492 return true; 7493 7494 return false; 7495 } 7496 7497 static inline bool others_have_blocked(struct rq *rq) 7498 { 7499 if (READ_ONCE(rq->avg_rt.util_avg)) 7500 return true; 7501 7502 if (READ_ONCE(rq->avg_dl.util_avg)) 7503 return true; 7504 7505 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ 7506 if (READ_ONCE(rq->avg_irq.util_avg)) 7507 return true; 7508 #endif 7509 7510 return false; 7511 } 7512 7513 static inline void update_blocked_load_status(struct rq *rq, bool has_blocked) 7514 { 7515 rq->last_blocked_load_update_tick = jiffies; 7516 7517 if (!has_blocked) 7518 rq->has_blocked_load = 0; 7519 } 7520 #else 7521 static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq) { return false; } 7522 static inline bool others_have_blocked(struct rq *rq) { return false; } 7523 static inline void update_blocked_load_status(struct rq *rq, bool has_blocked) {} 7524 #endif 7525 7526 #ifdef CONFIG_FAIR_GROUP_SCHED 7527 7528 static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq) 7529 { 7530 if (cfs_rq->load.weight) 7531 return false; 7532 7533 if (cfs_rq->avg.load_sum) 7534 return false; 7535 7536 if (cfs_rq->avg.util_sum) 7537 return false; 7538 7539 if (cfs_rq->avg.runnable_load_sum) 7540 return false; 7541 7542 return true; 7543 } 7544 7545 static void update_blocked_averages(int cpu) 7546 { 7547 struct rq *rq = cpu_rq(cpu); 7548 struct cfs_rq *cfs_rq, *pos; 7549 const struct sched_class *curr_class; 7550 struct rq_flags rf; 7551 bool done = true; 7552 7553 rq_lock_irqsave(rq, &rf); 7554 update_rq_clock(rq); 7555 7556 /* 7557 * Iterates the task_group tree in a bottom up fashion, see 7558 * list_add_leaf_cfs_rq() for details. 7559 */ 7560 for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) { 7561 struct sched_entity *se; 7562 7563 if (update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq)) 7564 update_tg_load_avg(cfs_rq, 0); 7565 7566 /* Propagate pending load changes to the parent, if any: */ 7567 se = cfs_rq->tg->se[cpu]; 7568 if (se && !skip_blocked_update(se)) 7569 update_load_avg(cfs_rq_of(se), se, 0); 7570 7571 /* 7572 * There can be a lot of idle CPU cgroups. Don't let fully 7573 * decayed cfs_rqs linger on the list. 7574 */ 7575 if (cfs_rq_is_decayed(cfs_rq)) 7576 list_del_leaf_cfs_rq(cfs_rq); 7577 7578 /* Don't need periodic decay once load/util_avg are null */ 7579 if (cfs_rq_has_blocked(cfs_rq)) 7580 done = false; 7581 } 7582 7583 curr_class = rq->curr->sched_class; 7584 update_rt_rq_load_avg(rq_clock_pelt(rq), rq, curr_class == &rt_sched_class); 7585 update_dl_rq_load_avg(rq_clock_pelt(rq), rq, curr_class == &dl_sched_class); 7586 update_irq_load_avg(rq, 0); 7587 /* Don't need periodic decay once load/util_avg are null */ 7588 if (others_have_blocked(rq)) 7589 done = false; 7590 7591 update_blocked_load_status(rq, !done); 7592 rq_unlock_irqrestore(rq, &rf); 7593 } 7594 7595 /* 7596 * Compute the hierarchical load factor for cfs_rq and all its ascendants. 7597 * This needs to be done in a top-down fashion because the load of a child 7598 * group is a fraction of its parents load. 7599 */ 7600 static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq) 7601 { 7602 struct rq *rq = rq_of(cfs_rq); 7603 struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)]; 7604 unsigned long now = jiffies; 7605 unsigned long load; 7606 7607 if (cfs_rq->last_h_load_update == now) 7608 return; 7609 7610 WRITE_ONCE(cfs_rq->h_load_next, NULL); 7611 for_each_sched_entity(se) { 7612 cfs_rq = cfs_rq_of(se); 7613 WRITE_ONCE(cfs_rq->h_load_next, se); 7614 if (cfs_rq->last_h_load_update == now) 7615 break; 7616 } 7617 7618 if (!se) { 7619 cfs_rq->h_load = cfs_rq_load_avg(cfs_rq); 7620 cfs_rq->last_h_load_update = now; 7621 } 7622 7623 while ((se = READ_ONCE(cfs_rq->h_load_next)) != NULL) { 7624 load = cfs_rq->h_load; 7625 load = div64_ul(load * se->avg.load_avg, 7626 cfs_rq_load_avg(cfs_rq) + 1); 7627 cfs_rq = group_cfs_rq(se); 7628 cfs_rq->h_load = load; 7629 cfs_rq->last_h_load_update = now; 7630 } 7631 } 7632 7633 static unsigned long task_h_load(struct task_struct *p) 7634 { 7635 struct cfs_rq *cfs_rq = task_cfs_rq(p); 7636 7637 update_cfs_rq_h_load(cfs_rq); 7638 return div64_ul(p->se.avg.load_avg * cfs_rq->h_load, 7639 cfs_rq_load_avg(cfs_rq) + 1); 7640 } 7641 #else 7642 static inline void update_blocked_averages(int cpu) 7643 { 7644 struct rq *rq = cpu_rq(cpu); 7645 struct cfs_rq *cfs_rq = &rq->cfs; 7646 const struct sched_class *curr_class; 7647 struct rq_flags rf; 7648 7649 rq_lock_irqsave(rq, &rf); 7650 update_rq_clock(rq); 7651 update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq); 7652 7653 curr_class = rq->curr->sched_class; 7654 update_rt_rq_load_avg(rq_clock_pelt(rq), rq, curr_class == &rt_sched_class); 7655 update_dl_rq_load_avg(rq_clock_pelt(rq), rq, curr_class == &dl_sched_class); 7656 update_irq_load_avg(rq, 0); 7657 update_blocked_load_status(rq, cfs_rq_has_blocked(cfs_rq) || others_have_blocked(rq)); 7658 rq_unlock_irqrestore(rq, &rf); 7659 } 7660 7661 static unsigned long task_h_load(struct task_struct *p) 7662 { 7663 return p->se.avg.load_avg; 7664 } 7665 #endif 7666 7667 /********** Helpers for find_busiest_group ************************/ 7668 7669 /* 7670 * sg_lb_stats - stats of a sched_group required for load_balancing 7671 */ 7672 struct sg_lb_stats { 7673 unsigned long avg_load; /*Avg load across the CPUs of the group */ 7674 unsigned long group_load; /* Total load over the CPUs of the group */ 7675 unsigned long load_per_task; 7676 unsigned long group_capacity; 7677 unsigned long group_util; /* Total utilization of the group */ 7678 unsigned int sum_nr_running; /* Nr tasks running in the group */ 7679 unsigned int idle_cpus; 7680 unsigned int group_weight; 7681 enum group_type group_type; 7682 int group_no_capacity; 7683 unsigned long group_misfit_task_load; /* A CPU has a task too big for its capacity */ 7684 #ifdef CONFIG_NUMA_BALANCING 7685 unsigned int nr_numa_running; 7686 unsigned int nr_preferred_running; 7687 #endif 7688 }; 7689 7690 /* 7691 * sd_lb_stats - Structure to store the statistics of a sched_domain 7692 * during load balancing. 7693 */ 7694 struct sd_lb_stats { 7695 struct sched_group *busiest; /* Busiest group in this sd */ 7696 struct sched_group *local; /* Local group in this sd */ 7697 unsigned long total_running; 7698 unsigned long total_load; /* Total load of all groups in sd */ 7699 unsigned long total_capacity; /* Total capacity of all groups in sd */ 7700 unsigned long avg_load; /* Average load across all groups in sd */ 7701 7702 struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */ 7703 struct sg_lb_stats local_stat; /* Statistics of the local group */ 7704 }; 7705 7706 static inline void init_sd_lb_stats(struct sd_lb_stats *sds) 7707 { 7708 /* 7709 * Skimp on the clearing to avoid duplicate work. We can avoid clearing 7710 * local_stat because update_sg_lb_stats() does a full clear/assignment. 7711 * We must however clear busiest_stat::avg_load because 7712 * update_sd_pick_busiest() reads this before assignment. 7713 */ 7714 *sds = (struct sd_lb_stats){ 7715 .busiest = NULL, 7716 .local = NULL, 7717 .total_running = 0UL, 7718 .total_load = 0UL, 7719 .total_capacity = 0UL, 7720 .busiest_stat = { 7721 .avg_load = 0UL, 7722 .sum_nr_running = 0, 7723 .group_type = group_other, 7724 }, 7725 }; 7726 } 7727 7728 static unsigned long scale_rt_capacity(struct sched_domain *sd, int cpu) 7729 { 7730 struct rq *rq = cpu_rq(cpu); 7731 unsigned long max = arch_scale_cpu_capacity(cpu); 7732 unsigned long used, free; 7733 unsigned long irq; 7734 7735 irq = cpu_util_irq(rq); 7736 7737 if (unlikely(irq >= max)) 7738 return 1; 7739 7740 used = READ_ONCE(rq->avg_rt.util_avg); 7741 used += READ_ONCE(rq->avg_dl.util_avg); 7742 7743 if (unlikely(used >= max)) 7744 return 1; 7745 7746 free = max - used; 7747 7748 return scale_irq_capacity(free, irq, max); 7749 } 7750 7751 static void update_cpu_capacity(struct sched_domain *sd, int cpu) 7752 { 7753 unsigned long capacity = scale_rt_capacity(sd, cpu); 7754 struct sched_group *sdg = sd->groups; 7755 7756 cpu_rq(cpu)->cpu_capacity_orig = arch_scale_cpu_capacity(cpu); 7757 7758 if (!capacity) 7759 capacity = 1; 7760 7761 cpu_rq(cpu)->cpu_capacity = capacity; 7762 sdg->sgc->capacity = capacity; 7763 sdg->sgc->min_capacity = capacity; 7764 sdg->sgc->max_capacity = capacity; 7765 } 7766 7767 void update_group_capacity(struct sched_domain *sd, int cpu) 7768 { 7769 struct sched_domain *child = sd->child; 7770 struct sched_group *group, *sdg = sd->groups; 7771 unsigned long capacity, min_capacity, max_capacity; 7772 unsigned long interval; 7773 7774 interval = msecs_to_jiffies(sd->balance_interval); 7775 interval = clamp(interval, 1UL, max_load_balance_interval); 7776 sdg->sgc->next_update = jiffies + interval; 7777 7778 if (!child) { 7779 update_cpu_capacity(sd, cpu); 7780 return; 7781 } 7782 7783 capacity = 0; 7784 min_capacity = ULONG_MAX; 7785 max_capacity = 0; 7786 7787 if (child->flags & SD_OVERLAP) { 7788 /* 7789 * SD_OVERLAP domains cannot assume that child groups 7790 * span the current group. 7791 */ 7792 7793 for_each_cpu(cpu, sched_group_span(sdg)) { 7794 struct sched_group_capacity *sgc; 7795 struct rq *rq = cpu_rq(cpu); 7796 7797 /* 7798 * build_sched_domains() -> init_sched_groups_capacity() 7799 * gets here before we've attached the domains to the 7800 * runqueues. 7801 * 7802 * Use capacity_of(), which is set irrespective of domains 7803 * in update_cpu_capacity(). 7804 * 7805 * This avoids capacity from being 0 and 7806 * causing divide-by-zero issues on boot. 7807 */ 7808 if (unlikely(!rq->sd)) { 7809 capacity += capacity_of(cpu); 7810 } else { 7811 sgc = rq->sd->groups->sgc; 7812 capacity += sgc->capacity; 7813 } 7814 7815 min_capacity = min(capacity, min_capacity); 7816 max_capacity = max(capacity, max_capacity); 7817 } 7818 } else { 7819 /* 7820 * !SD_OVERLAP domains can assume that child groups 7821 * span the current group. 7822 */ 7823 7824 group = child->groups; 7825 do { 7826 struct sched_group_capacity *sgc = group->sgc; 7827 7828 capacity += sgc->capacity; 7829 min_capacity = min(sgc->min_capacity, min_capacity); 7830 max_capacity = max(sgc->max_capacity, max_capacity); 7831 group = group->next; 7832 } while (group != child->groups); 7833 } 7834 7835 sdg->sgc->capacity = capacity; 7836 sdg->sgc->min_capacity = min_capacity; 7837 sdg->sgc->max_capacity = max_capacity; 7838 } 7839 7840 /* 7841 * Check whether the capacity of the rq has been noticeably reduced by side 7842 * activity. The imbalance_pct is used for the threshold. 7843 * Return true is the capacity is reduced 7844 */ 7845 static inline int 7846 check_cpu_capacity(struct rq *rq, struct sched_domain *sd) 7847 { 7848 return ((rq->cpu_capacity * sd->imbalance_pct) < 7849 (rq->cpu_capacity_orig * 100)); 7850 } 7851 7852 /* 7853 * Check whether a rq has a misfit task and if it looks like we can actually 7854 * help that task: we can migrate the task to a CPU of higher capacity, or 7855 * the task's current CPU is heavily pressured. 7856 */ 7857 static inline int check_misfit_status(struct rq *rq, struct sched_domain *sd) 7858 { 7859 return rq->misfit_task_load && 7860 (rq->cpu_capacity_orig < rq->rd->max_cpu_capacity || 7861 check_cpu_capacity(rq, sd)); 7862 } 7863 7864 /* 7865 * Group imbalance indicates (and tries to solve) the problem where balancing 7866 * groups is inadequate due to ->cpus_ptr constraints. 7867 * 7868 * Imagine a situation of two groups of 4 CPUs each and 4 tasks each with a 7869 * cpumask covering 1 CPU of the first group and 3 CPUs of the second group. 7870 * Something like: 7871 * 7872 * { 0 1 2 3 } { 4 5 6 7 } 7873 * * * * * 7874 * 7875 * If we were to balance group-wise we'd place two tasks in the first group and 7876 * two tasks in the second group. Clearly this is undesired as it will overload 7877 * cpu 3 and leave one of the CPUs in the second group unused. 7878 * 7879 * The current solution to this issue is detecting the skew in the first group 7880 * by noticing the lower domain failed to reach balance and had difficulty 7881 * moving tasks due to affinity constraints. 7882 * 7883 * When this is so detected; this group becomes a candidate for busiest; see 7884 * update_sd_pick_busiest(). And calculate_imbalance() and 7885 * find_busiest_group() avoid some of the usual balance conditions to allow it 7886 * to create an effective group imbalance. 7887 * 7888 * This is a somewhat tricky proposition since the next run might not find the 7889 * group imbalance and decide the groups need to be balanced again. A most 7890 * subtle and fragile situation. 7891 */ 7892 7893 static inline int sg_imbalanced(struct sched_group *group) 7894 { 7895 return group->sgc->imbalance; 7896 } 7897 7898 /* 7899 * group_has_capacity returns true if the group has spare capacity that could 7900 * be used by some tasks. 7901 * We consider that a group has spare capacity if the * number of task is 7902 * smaller than the number of CPUs or if the utilization is lower than the 7903 * available capacity for CFS tasks. 7904 * For the latter, we use a threshold to stabilize the state, to take into 7905 * account the variance of the tasks' load and to return true if the available 7906 * capacity in meaningful for the load balancer. 7907 * As an example, an available capacity of 1% can appear but it doesn't make 7908 * any benefit for the load balance. 7909 */ 7910 static inline bool 7911 group_has_capacity(struct lb_env *env, struct sg_lb_stats *sgs) 7912 { 7913 if (sgs->sum_nr_running < sgs->group_weight) 7914 return true; 7915 7916 if ((sgs->group_capacity * 100) > 7917 (sgs->group_util * env->sd->imbalance_pct)) 7918 return true; 7919 7920 return false; 7921 } 7922 7923 /* 7924 * group_is_overloaded returns true if the group has more tasks than it can 7925 * handle. 7926 * group_is_overloaded is not equals to !group_has_capacity because a group 7927 * with the exact right number of tasks, has no more spare capacity but is not 7928 * overloaded so both group_has_capacity and group_is_overloaded return 7929 * false. 7930 */ 7931 static inline bool 7932 group_is_overloaded(struct lb_env *env, struct sg_lb_stats *sgs) 7933 { 7934 if (sgs->sum_nr_running <= sgs->group_weight) 7935 return false; 7936 7937 if ((sgs->group_capacity * 100) < 7938 (sgs->group_util * env->sd->imbalance_pct)) 7939 return true; 7940 7941 return false; 7942 } 7943 7944 /* 7945 * group_smaller_min_cpu_capacity: Returns true if sched_group sg has smaller 7946 * per-CPU capacity than sched_group ref. 7947 */ 7948 static inline bool 7949 group_smaller_min_cpu_capacity(struct sched_group *sg, struct sched_group *ref) 7950 { 7951 return fits_capacity(sg->sgc->min_capacity, ref->sgc->min_capacity); 7952 } 7953 7954 /* 7955 * group_smaller_max_cpu_capacity: Returns true if sched_group sg has smaller 7956 * per-CPU capacity_orig than sched_group ref. 7957 */ 7958 static inline bool 7959 group_smaller_max_cpu_capacity(struct sched_group *sg, struct sched_group *ref) 7960 { 7961 return fits_capacity(sg->sgc->max_capacity, ref->sgc->max_capacity); 7962 } 7963 7964 static inline enum 7965 group_type group_classify(struct sched_group *group, 7966 struct sg_lb_stats *sgs) 7967 { 7968 if (sgs->group_no_capacity) 7969 return group_overloaded; 7970 7971 if (sg_imbalanced(group)) 7972 return group_imbalanced; 7973 7974 if (sgs->group_misfit_task_load) 7975 return group_misfit_task; 7976 7977 return group_other; 7978 } 7979 7980 static bool update_nohz_stats(struct rq *rq, bool force) 7981 { 7982 #ifdef CONFIG_NO_HZ_COMMON 7983 unsigned int cpu = rq->cpu; 7984 7985 if (!rq->has_blocked_load) 7986 return false; 7987 7988 if (!cpumask_test_cpu(cpu, nohz.idle_cpus_mask)) 7989 return false; 7990 7991 if (!force && !time_after(jiffies, rq->last_blocked_load_update_tick)) 7992 return true; 7993 7994 update_blocked_averages(cpu); 7995 7996 return rq->has_blocked_load; 7997 #else 7998 return false; 7999 #endif 8000 } 8001 8002 /** 8003 * update_sg_lb_stats - Update sched_group's statistics for load balancing. 8004 * @env: The load balancing environment. 8005 * @group: sched_group whose statistics are to be updated. 8006 * @sgs: variable to hold the statistics for this group. 8007 * @sg_status: Holds flag indicating the status of the sched_group 8008 */ 8009 static inline void update_sg_lb_stats(struct lb_env *env, 8010 struct sched_group *group, 8011 struct sg_lb_stats *sgs, 8012 int *sg_status) 8013 { 8014 int i, nr_running; 8015 8016 memset(sgs, 0, sizeof(*sgs)); 8017 8018 for_each_cpu_and(i, sched_group_span(group), env->cpus) { 8019 struct rq *rq = cpu_rq(i); 8020 8021 if ((env->flags & LBF_NOHZ_STATS) && update_nohz_stats(rq, false)) 8022 env->flags |= LBF_NOHZ_AGAIN; 8023 8024 sgs->group_load += cpu_runnable_load(rq); 8025 sgs->group_util += cpu_util(i); 8026 sgs->sum_nr_running += rq->cfs.h_nr_running; 8027 8028 nr_running = rq->nr_running; 8029 if (nr_running > 1) 8030 *sg_status |= SG_OVERLOAD; 8031 8032 if (cpu_overutilized(i)) 8033 *sg_status |= SG_OVERUTILIZED; 8034 8035 #ifdef CONFIG_NUMA_BALANCING 8036 sgs->nr_numa_running += rq->nr_numa_running; 8037 sgs->nr_preferred_running += rq->nr_preferred_running; 8038 #endif 8039 /* 8040 * No need to call idle_cpu() if nr_running is not 0 8041 */ 8042 if (!nr_running && idle_cpu(i)) 8043 sgs->idle_cpus++; 8044 8045 if (env->sd->flags & SD_ASYM_CPUCAPACITY && 8046 sgs->group_misfit_task_load < rq->misfit_task_load) { 8047 sgs->group_misfit_task_load = rq->misfit_task_load; 8048 *sg_status |= SG_OVERLOAD; 8049 } 8050 } 8051 8052 /* Adjust by relative CPU capacity of the group */ 8053 sgs->group_capacity = group->sgc->capacity; 8054 sgs->avg_load = (sgs->group_load*SCHED_CAPACITY_SCALE) / sgs->group_capacity; 8055 8056 if (sgs->sum_nr_running) 8057 sgs->load_per_task = sgs->group_load / sgs->sum_nr_running; 8058 8059 sgs->group_weight = group->group_weight; 8060 8061 sgs->group_no_capacity = group_is_overloaded(env, sgs); 8062 sgs->group_type = group_classify(group, sgs); 8063 } 8064 8065 /** 8066 * update_sd_pick_busiest - return 1 on busiest group 8067 * @env: The load balancing environment. 8068 * @sds: sched_domain statistics 8069 * @sg: sched_group candidate to be checked for being the busiest 8070 * @sgs: sched_group statistics 8071 * 8072 * Determine if @sg is a busier group than the previously selected 8073 * busiest group. 8074 * 8075 * Return: %true if @sg is a busier group than the previously selected 8076 * busiest group. %false otherwise. 8077 */ 8078 static bool update_sd_pick_busiest(struct lb_env *env, 8079 struct sd_lb_stats *sds, 8080 struct sched_group *sg, 8081 struct sg_lb_stats *sgs) 8082 { 8083 struct sg_lb_stats *busiest = &sds->busiest_stat; 8084 8085 /* 8086 * Don't try to pull misfit tasks we can't help. 8087 * We can use max_capacity here as reduction in capacity on some 8088 * CPUs in the group should either be possible to resolve 8089 * internally or be covered by avg_load imbalance (eventually). 8090 */ 8091 if (sgs->group_type == group_misfit_task && 8092 (!group_smaller_max_cpu_capacity(sg, sds->local) || 8093 !group_has_capacity(env, &sds->local_stat))) 8094 return false; 8095 8096 if (sgs->group_type > busiest->group_type) 8097 return true; 8098 8099 if (sgs->group_type < busiest->group_type) 8100 return false; 8101 8102 if (sgs->avg_load <= busiest->avg_load) 8103 return false; 8104 8105 if (!(env->sd->flags & SD_ASYM_CPUCAPACITY)) 8106 goto asym_packing; 8107 8108 /* 8109 * Candidate sg has no more than one task per CPU and 8110 * has higher per-CPU capacity. Migrating tasks to less 8111 * capable CPUs may harm throughput. Maximize throughput, 8112 * power/energy consequences are not considered. 8113 */ 8114 if (sgs->sum_nr_running <= sgs->group_weight && 8115 group_smaller_min_cpu_capacity(sds->local, sg)) 8116 return false; 8117 8118 /* 8119 * If we have more than one misfit sg go with the biggest misfit. 8120 */ 8121 if (sgs->group_type == group_misfit_task && 8122 sgs->group_misfit_task_load < busiest->group_misfit_task_load) 8123 return false; 8124 8125 asym_packing: 8126 /* This is the busiest node in its class. */ 8127 if (!(env->sd->flags & SD_ASYM_PACKING)) 8128 return true; 8129 8130 /* No ASYM_PACKING if target CPU is already busy */ 8131 if (env->idle == CPU_NOT_IDLE) 8132 return true; 8133 /* 8134 * ASYM_PACKING needs to move all the work to the highest 8135 * prority CPUs in the group, therefore mark all groups 8136 * of lower priority than ourself as busy. 8137 */ 8138 if (sgs->sum_nr_running && 8139 sched_asym_prefer(env->dst_cpu, sg->asym_prefer_cpu)) { 8140 if (!sds->busiest) 8141 return true; 8142 8143 /* Prefer to move from lowest priority CPU's work */ 8144 if (sched_asym_prefer(sds->busiest->asym_prefer_cpu, 8145 sg->asym_prefer_cpu)) 8146 return true; 8147 } 8148 8149 return false; 8150 } 8151 8152 #ifdef CONFIG_NUMA_BALANCING 8153 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs) 8154 { 8155 if (sgs->sum_nr_running > sgs->nr_numa_running) 8156 return regular; 8157 if (sgs->sum_nr_running > sgs->nr_preferred_running) 8158 return remote; 8159 return all; 8160 } 8161 8162 static inline enum fbq_type fbq_classify_rq(struct rq *rq) 8163 { 8164 if (rq->nr_running > rq->nr_numa_running) 8165 return regular; 8166 if (rq->nr_running > rq->nr_preferred_running) 8167 return remote; 8168 return all; 8169 } 8170 #else 8171 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs) 8172 { 8173 return all; 8174 } 8175 8176 static inline enum fbq_type fbq_classify_rq(struct rq *rq) 8177 { 8178 return regular; 8179 } 8180 #endif /* CONFIG_NUMA_BALANCING */ 8181 8182 /** 8183 * update_sd_lb_stats - Update sched_domain's statistics for load balancing. 8184 * @env: The load balancing environment. 8185 * @sds: variable to hold the statistics for this sched_domain. 8186 */ 8187 static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds) 8188 { 8189 struct sched_domain *child = env->sd->child; 8190 struct sched_group *sg = env->sd->groups; 8191 struct sg_lb_stats *local = &sds->local_stat; 8192 struct sg_lb_stats tmp_sgs; 8193 bool prefer_sibling = child && child->flags & SD_PREFER_SIBLING; 8194 int sg_status = 0; 8195 8196 #ifdef CONFIG_NO_HZ_COMMON 8197 if (env->idle == CPU_NEWLY_IDLE && READ_ONCE(nohz.has_blocked)) 8198 env->flags |= LBF_NOHZ_STATS; 8199 #endif 8200 8201 do { 8202 struct sg_lb_stats *sgs = &tmp_sgs; 8203 int local_group; 8204 8205 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_span(sg)); 8206 if (local_group) { 8207 sds->local = sg; 8208 sgs = local; 8209 8210 if (env->idle != CPU_NEWLY_IDLE || 8211 time_after_eq(jiffies, sg->sgc->next_update)) 8212 update_group_capacity(env->sd, env->dst_cpu); 8213 } 8214 8215 update_sg_lb_stats(env, sg, sgs, &sg_status); 8216 8217 if (local_group) 8218 goto next_group; 8219 8220 /* 8221 * In case the child domain prefers tasks go to siblings 8222 * first, lower the sg capacity so that we'll try 8223 * and move all the excess tasks away. We lower the capacity 8224 * of a group only if the local group has the capacity to fit 8225 * these excess tasks. The extra check prevents the case where 8226 * you always pull from the heaviest group when it is already 8227 * under-utilized (possible with a large weight task outweighs 8228 * the tasks on the system). 8229 */ 8230 if (prefer_sibling && sds->local && 8231 group_has_capacity(env, local) && 8232 (sgs->sum_nr_running > local->sum_nr_running + 1)) { 8233 sgs->group_no_capacity = 1; 8234 sgs->group_type = group_classify(sg, sgs); 8235 } 8236 8237 if (update_sd_pick_busiest(env, sds, sg, sgs)) { 8238 sds->busiest = sg; 8239 sds->busiest_stat = *sgs; 8240 } 8241 8242 next_group: 8243 /* Now, start updating sd_lb_stats */ 8244 sds->total_running += sgs->sum_nr_running; 8245 sds->total_load += sgs->group_load; 8246 sds->total_capacity += sgs->group_capacity; 8247 8248 sg = sg->next; 8249 } while (sg != env->sd->groups); 8250 8251 #ifdef CONFIG_NO_HZ_COMMON 8252 if ((env->flags & LBF_NOHZ_AGAIN) && 8253 cpumask_subset(nohz.idle_cpus_mask, sched_domain_span(env->sd))) { 8254 8255 WRITE_ONCE(nohz.next_blocked, 8256 jiffies + msecs_to_jiffies(LOAD_AVG_PERIOD)); 8257 } 8258 #endif 8259 8260 if (env->sd->flags & SD_NUMA) 8261 env->fbq_type = fbq_classify_group(&sds->busiest_stat); 8262 8263 if (!env->sd->parent) { 8264 struct root_domain *rd = env->dst_rq->rd; 8265 8266 /* update overload indicator if we are at root domain */ 8267 WRITE_ONCE(rd->overload, sg_status & SG_OVERLOAD); 8268 8269 /* Update over-utilization (tipping point, U >= 0) indicator */ 8270 WRITE_ONCE(rd->overutilized, sg_status & SG_OVERUTILIZED); 8271 trace_sched_overutilized_tp(rd, sg_status & SG_OVERUTILIZED); 8272 } else if (sg_status & SG_OVERUTILIZED) { 8273 struct root_domain *rd = env->dst_rq->rd; 8274 8275 WRITE_ONCE(rd->overutilized, SG_OVERUTILIZED); 8276 trace_sched_overutilized_tp(rd, SG_OVERUTILIZED); 8277 } 8278 } 8279 8280 /** 8281 * check_asym_packing - Check to see if the group is packed into the 8282 * sched domain. 8283 * 8284 * This is primarily intended to used at the sibling level. Some 8285 * cores like POWER7 prefer to use lower numbered SMT threads. In the 8286 * case of POWER7, it can move to lower SMT modes only when higher 8287 * threads are idle. When in lower SMT modes, the threads will 8288 * perform better since they share less core resources. Hence when we 8289 * have idle threads, we want them to be the higher ones. 8290 * 8291 * This packing function is run on idle threads. It checks to see if 8292 * the busiest CPU in this domain (core in the P7 case) has a higher 8293 * CPU number than the packing function is being run on. Here we are 8294 * assuming lower CPU number will be equivalent to lower a SMT thread 8295 * number. 8296 * 8297 * Return: 1 when packing is required and a task should be moved to 8298 * this CPU. The amount of the imbalance is returned in env->imbalance. 8299 * 8300 * @env: The load balancing environment. 8301 * @sds: Statistics of the sched_domain which is to be packed 8302 */ 8303 static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds) 8304 { 8305 int busiest_cpu; 8306 8307 if (!(env->sd->flags & SD_ASYM_PACKING)) 8308 return 0; 8309 8310 if (env->idle == CPU_NOT_IDLE) 8311 return 0; 8312 8313 if (!sds->busiest) 8314 return 0; 8315 8316 busiest_cpu = sds->busiest->asym_prefer_cpu; 8317 if (sched_asym_prefer(busiest_cpu, env->dst_cpu)) 8318 return 0; 8319 8320 env->imbalance = sds->busiest_stat.group_load; 8321 8322 return 1; 8323 } 8324 8325 /** 8326 * fix_small_imbalance - Calculate the minor imbalance that exists 8327 * amongst the groups of a sched_domain, during 8328 * load balancing. 8329 * @env: The load balancing environment. 8330 * @sds: Statistics of the sched_domain whose imbalance is to be calculated. 8331 */ 8332 static inline 8333 void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds) 8334 { 8335 unsigned long tmp, capa_now = 0, capa_move = 0; 8336 unsigned int imbn = 2; 8337 unsigned long scaled_busy_load_per_task; 8338 struct sg_lb_stats *local, *busiest; 8339 8340 local = &sds->local_stat; 8341 busiest = &sds->busiest_stat; 8342 8343 if (!local->sum_nr_running) 8344 local->load_per_task = cpu_avg_load_per_task(env->dst_cpu); 8345 else if (busiest->load_per_task > local->load_per_task) 8346 imbn = 1; 8347 8348 scaled_busy_load_per_task = 8349 (busiest->load_per_task * SCHED_CAPACITY_SCALE) / 8350 busiest->group_capacity; 8351 8352 if (busiest->avg_load + scaled_busy_load_per_task >= 8353 local->avg_load + (scaled_busy_load_per_task * imbn)) { 8354 env->imbalance = busiest->load_per_task; 8355 return; 8356 } 8357 8358 /* 8359 * OK, we don't have enough imbalance to justify moving tasks, 8360 * however we may be able to increase total CPU capacity used by 8361 * moving them. 8362 */ 8363 8364 capa_now += busiest->group_capacity * 8365 min(busiest->load_per_task, busiest->avg_load); 8366 capa_now += local->group_capacity * 8367 min(local->load_per_task, local->avg_load); 8368 capa_now /= SCHED_CAPACITY_SCALE; 8369 8370 /* Amount of load we'd subtract */ 8371 if (busiest->avg_load > scaled_busy_load_per_task) { 8372 capa_move += busiest->group_capacity * 8373 min(busiest->load_per_task, 8374 busiest->avg_load - scaled_busy_load_per_task); 8375 } 8376 8377 /* Amount of load we'd add */ 8378 if (busiest->avg_load * busiest->group_capacity < 8379 busiest->load_per_task * SCHED_CAPACITY_SCALE) { 8380 tmp = (busiest->avg_load * busiest->group_capacity) / 8381 local->group_capacity; 8382 } else { 8383 tmp = (busiest->load_per_task * SCHED_CAPACITY_SCALE) / 8384 local->group_capacity; 8385 } 8386 capa_move += local->group_capacity * 8387 min(local->load_per_task, local->avg_load + tmp); 8388 capa_move /= SCHED_CAPACITY_SCALE; 8389 8390 /* Move if we gain throughput */ 8391 if (capa_move > capa_now) 8392 env->imbalance = busiest->load_per_task; 8393 } 8394 8395 /** 8396 * calculate_imbalance - Calculate the amount of imbalance present within the 8397 * groups of a given sched_domain during load balance. 8398 * @env: load balance environment 8399 * @sds: statistics of the sched_domain whose imbalance is to be calculated. 8400 */ 8401 static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds) 8402 { 8403 unsigned long max_pull, load_above_capacity = ~0UL; 8404 struct sg_lb_stats *local, *busiest; 8405 8406 local = &sds->local_stat; 8407 busiest = &sds->busiest_stat; 8408 8409 if (busiest->group_type == group_imbalanced) { 8410 /* 8411 * In the group_imb case we cannot rely on group-wide averages 8412 * to ensure CPU-load equilibrium, look at wider averages. XXX 8413 */ 8414 busiest->load_per_task = 8415 min(busiest->load_per_task, sds->avg_load); 8416 } 8417 8418 /* 8419 * Avg load of busiest sg can be less and avg load of local sg can 8420 * be greater than avg load across all sgs of sd because avg load 8421 * factors in sg capacity and sgs with smaller group_type are 8422 * skipped when updating the busiest sg: 8423 */ 8424 if (busiest->group_type != group_misfit_task && 8425 (busiest->avg_load <= sds->avg_load || 8426 local->avg_load >= sds->avg_load)) { 8427 env->imbalance = 0; 8428 return fix_small_imbalance(env, sds); 8429 } 8430 8431 /* 8432 * If there aren't any idle CPUs, avoid creating some. 8433 */ 8434 if (busiest->group_type == group_overloaded && 8435 local->group_type == group_overloaded) { 8436 load_above_capacity = busiest->sum_nr_running * SCHED_CAPACITY_SCALE; 8437 if (load_above_capacity > busiest->group_capacity) { 8438 load_above_capacity -= busiest->group_capacity; 8439 load_above_capacity *= scale_load_down(NICE_0_LOAD); 8440 load_above_capacity /= busiest->group_capacity; 8441 } else 8442 load_above_capacity = ~0UL; 8443 } 8444 8445 /* 8446 * We're trying to get all the CPUs to the average_load, so we don't 8447 * want to push ourselves above the average load, nor do we wish to 8448 * reduce the max loaded CPU below the average load. At the same time, 8449 * we also don't want to reduce the group load below the group 8450 * capacity. Thus we look for the minimum possible imbalance. 8451 */ 8452 max_pull = min(busiest->avg_load - sds->avg_load, load_above_capacity); 8453 8454 /* How much load to actually move to equalise the imbalance */ 8455 env->imbalance = min( 8456 max_pull * busiest->group_capacity, 8457 (sds->avg_load - local->avg_load) * local->group_capacity 8458 ) / SCHED_CAPACITY_SCALE; 8459 8460 /* Boost imbalance to allow misfit task to be balanced. */ 8461 if (busiest->group_type == group_misfit_task) { 8462 env->imbalance = max_t(long, env->imbalance, 8463 busiest->group_misfit_task_load); 8464 } 8465 8466 /* 8467 * if *imbalance is less than the average load per runnable task 8468 * there is no guarantee that any tasks will be moved so we'll have 8469 * a think about bumping its value to force at least one task to be 8470 * moved 8471 */ 8472 if (env->imbalance < busiest->load_per_task) 8473 return fix_small_imbalance(env, sds); 8474 } 8475 8476 /******* find_busiest_group() helpers end here *********************/ 8477 8478 /** 8479 * find_busiest_group - Returns the busiest group within the sched_domain 8480 * if there is an imbalance. 8481 * 8482 * Also calculates the amount of runnable load which should be moved 8483 * to restore balance. 8484 * 8485 * @env: The load balancing environment. 8486 * 8487 * Return: - The busiest group if imbalance exists. 8488 */ 8489 static struct sched_group *find_busiest_group(struct lb_env *env) 8490 { 8491 struct sg_lb_stats *local, *busiest; 8492 struct sd_lb_stats sds; 8493 8494 init_sd_lb_stats(&sds); 8495 8496 /* 8497 * Compute the various statistics relavent for load balancing at 8498 * this level. 8499 */ 8500 update_sd_lb_stats(env, &sds); 8501 8502 if (sched_energy_enabled()) { 8503 struct root_domain *rd = env->dst_rq->rd; 8504 8505 if (rcu_dereference(rd->pd) && !READ_ONCE(rd->overutilized)) 8506 goto out_balanced; 8507 } 8508 8509 local = &sds.local_stat; 8510 busiest = &sds.busiest_stat; 8511 8512 /* ASYM feature bypasses nice load balance check */ 8513 if (check_asym_packing(env, &sds)) 8514 return sds.busiest; 8515 8516 /* There is no busy sibling group to pull tasks from */ 8517 if (!sds.busiest || busiest->sum_nr_running == 0) 8518 goto out_balanced; 8519 8520 /* XXX broken for overlapping NUMA groups */ 8521 sds.avg_load = (SCHED_CAPACITY_SCALE * sds.total_load) 8522 / sds.total_capacity; 8523 8524 /* 8525 * If the busiest group is imbalanced the below checks don't 8526 * work because they assume all things are equal, which typically 8527 * isn't true due to cpus_ptr constraints and the like. 8528 */ 8529 if (busiest->group_type == group_imbalanced) 8530 goto force_balance; 8531 8532 /* 8533 * When dst_cpu is idle, prevent SMP nice and/or asymmetric group 8534 * capacities from resulting in underutilization due to avg_load. 8535 */ 8536 if (env->idle != CPU_NOT_IDLE && group_has_capacity(env, local) && 8537 busiest->group_no_capacity) 8538 goto force_balance; 8539 8540 /* Misfit tasks should be dealt with regardless of the avg load */ 8541 if (busiest->group_type == group_misfit_task) 8542 goto force_balance; 8543 8544 /* 8545 * If the local group is busier than the selected busiest group 8546 * don't try and pull any tasks. 8547 */ 8548 if (local->avg_load >= busiest->avg_load) 8549 goto out_balanced; 8550 8551 /* 8552 * Don't pull any tasks if this group is already above the domain 8553 * average load. 8554 */ 8555 if (local->avg_load >= sds.avg_load) 8556 goto out_balanced; 8557 8558 if (env->idle == CPU_IDLE) { 8559 /* 8560 * This CPU is idle. If the busiest group is not overloaded 8561 * and there is no imbalance between this and busiest group 8562 * wrt idle CPUs, it is balanced. The imbalance becomes 8563 * significant if the diff is greater than 1 otherwise we 8564 * might end up to just move the imbalance on another group 8565 */ 8566 if ((busiest->group_type != group_overloaded) && 8567 (local->idle_cpus <= (busiest->idle_cpus + 1))) 8568 goto out_balanced; 8569 } else { 8570 /* 8571 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use 8572 * imbalance_pct to be conservative. 8573 */ 8574 if (100 * busiest->avg_load <= 8575 env->sd->imbalance_pct * local->avg_load) 8576 goto out_balanced; 8577 } 8578 8579 force_balance: 8580 /* Looks like there is an imbalance. Compute it */ 8581 env->src_grp_type = busiest->group_type; 8582 calculate_imbalance(env, &sds); 8583 return env->imbalance ? sds.busiest : NULL; 8584 8585 out_balanced: 8586 env->imbalance = 0; 8587 return NULL; 8588 } 8589 8590 /* 8591 * find_busiest_queue - find the busiest runqueue among the CPUs in the group. 8592 */ 8593 static struct rq *find_busiest_queue(struct lb_env *env, 8594 struct sched_group *group) 8595 { 8596 struct rq *busiest = NULL, *rq; 8597 unsigned long busiest_load = 0, busiest_capacity = 1; 8598 int i; 8599 8600 for_each_cpu_and(i, sched_group_span(group), env->cpus) { 8601 unsigned long capacity, load; 8602 enum fbq_type rt; 8603 8604 rq = cpu_rq(i); 8605 rt = fbq_classify_rq(rq); 8606 8607 /* 8608 * We classify groups/runqueues into three groups: 8609 * - regular: there are !numa tasks 8610 * - remote: there are numa tasks that run on the 'wrong' node 8611 * - all: there is no distinction 8612 * 8613 * In order to avoid migrating ideally placed numa tasks, 8614 * ignore those when there's better options. 8615 * 8616 * If we ignore the actual busiest queue to migrate another 8617 * task, the next balance pass can still reduce the busiest 8618 * queue by moving tasks around inside the node. 8619 * 8620 * If we cannot move enough load due to this classification 8621 * the next pass will adjust the group classification and 8622 * allow migration of more tasks. 8623 * 8624 * Both cases only affect the total convergence complexity. 8625 */ 8626 if (rt > env->fbq_type) 8627 continue; 8628 8629 /* 8630 * For ASYM_CPUCAPACITY domains with misfit tasks we simply 8631 * seek the "biggest" misfit task. 8632 */ 8633 if (env->src_grp_type == group_misfit_task) { 8634 if (rq->misfit_task_load > busiest_load) { 8635 busiest_load = rq->misfit_task_load; 8636 busiest = rq; 8637 } 8638 8639 continue; 8640 } 8641 8642 capacity = capacity_of(i); 8643 8644 /* 8645 * For ASYM_CPUCAPACITY domains, don't pick a CPU that could 8646 * eventually lead to active_balancing high->low capacity. 8647 * Higher per-CPU capacity is considered better than balancing 8648 * average load. 8649 */ 8650 if (env->sd->flags & SD_ASYM_CPUCAPACITY && 8651 capacity_of(env->dst_cpu) < capacity && 8652 rq->nr_running == 1) 8653 continue; 8654 8655 load = cpu_runnable_load(rq); 8656 8657 /* 8658 * When comparing with imbalance, use cpu_runnable_load() 8659 * which is not scaled with the CPU capacity. 8660 */ 8661 8662 if (rq->nr_running == 1 && load > env->imbalance && 8663 !check_cpu_capacity(rq, env->sd)) 8664 continue; 8665 8666 /* 8667 * For the load comparisons with the other CPU's, consider 8668 * the cpu_runnable_load() scaled with the CPU capacity, so 8669 * that the load can be moved away from the CPU that is 8670 * potentially running at a lower capacity. 8671 * 8672 * Thus we're looking for max(load_i / capacity_i), crosswise 8673 * multiplication to rid ourselves of the division works out 8674 * to: load_i * capacity_j > load_j * capacity_i; where j is 8675 * our previous maximum. 8676 */ 8677 if (load * busiest_capacity > busiest_load * capacity) { 8678 busiest_load = load; 8679 busiest_capacity = capacity; 8680 busiest = rq; 8681 } 8682 } 8683 8684 return busiest; 8685 } 8686 8687 /* 8688 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but 8689 * so long as it is large enough. 8690 */ 8691 #define MAX_PINNED_INTERVAL 512 8692 8693 static inline bool 8694 asym_active_balance(struct lb_env *env) 8695 { 8696 /* 8697 * ASYM_PACKING needs to force migrate tasks from busy but 8698 * lower priority CPUs in order to pack all tasks in the 8699 * highest priority CPUs. 8700 */ 8701 return env->idle != CPU_NOT_IDLE && (env->sd->flags & SD_ASYM_PACKING) && 8702 sched_asym_prefer(env->dst_cpu, env->src_cpu); 8703 } 8704 8705 static inline bool 8706 voluntary_active_balance(struct lb_env *env) 8707 { 8708 struct sched_domain *sd = env->sd; 8709 8710 if (asym_active_balance(env)) 8711 return 1; 8712 8713 /* 8714 * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task. 8715 * It's worth migrating the task if the src_cpu's capacity is reduced 8716 * because of other sched_class or IRQs if more capacity stays 8717 * available on dst_cpu. 8718 */ 8719 if ((env->idle != CPU_NOT_IDLE) && 8720 (env->src_rq->cfs.h_nr_running == 1)) { 8721 if ((check_cpu_capacity(env->src_rq, sd)) && 8722 (capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100)) 8723 return 1; 8724 } 8725 8726 if (env->src_grp_type == group_misfit_task) 8727 return 1; 8728 8729 return 0; 8730 } 8731 8732 static int need_active_balance(struct lb_env *env) 8733 { 8734 struct sched_domain *sd = env->sd; 8735 8736 if (voluntary_active_balance(env)) 8737 return 1; 8738 8739 return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2); 8740 } 8741 8742 static int active_load_balance_cpu_stop(void *data); 8743 8744 static int should_we_balance(struct lb_env *env) 8745 { 8746 struct sched_group *sg = env->sd->groups; 8747 int cpu, balance_cpu = -1; 8748 8749 /* 8750 * Ensure the balancing environment is consistent; can happen 8751 * when the softirq triggers 'during' hotplug. 8752 */ 8753 if (!cpumask_test_cpu(env->dst_cpu, env->cpus)) 8754 return 0; 8755 8756 /* 8757 * In the newly idle case, we will allow all the CPUs 8758 * to do the newly idle load balance. 8759 */ 8760 if (env->idle == CPU_NEWLY_IDLE) 8761 return 1; 8762 8763 /* Try to find first idle CPU */ 8764 for_each_cpu_and(cpu, group_balance_mask(sg), env->cpus) { 8765 if (!idle_cpu(cpu)) 8766 continue; 8767 8768 balance_cpu = cpu; 8769 break; 8770 } 8771 8772 if (balance_cpu == -1) 8773 balance_cpu = group_balance_cpu(sg); 8774 8775 /* 8776 * First idle CPU or the first CPU(busiest) in this sched group 8777 * is eligible for doing load balancing at this and above domains. 8778 */ 8779 return balance_cpu == env->dst_cpu; 8780 } 8781 8782 /* 8783 * Check this_cpu to ensure it is balanced within domain. Attempt to move 8784 * tasks if there is an imbalance. 8785 */ 8786 static int load_balance(int this_cpu, struct rq *this_rq, 8787 struct sched_domain *sd, enum cpu_idle_type idle, 8788 int *continue_balancing) 8789 { 8790 int ld_moved, cur_ld_moved, active_balance = 0; 8791 struct sched_domain *sd_parent = sd->parent; 8792 struct sched_group *group; 8793 struct rq *busiest; 8794 struct rq_flags rf; 8795 struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask); 8796 8797 struct lb_env env = { 8798 .sd = sd, 8799 .dst_cpu = this_cpu, 8800 .dst_rq = this_rq, 8801 .dst_grpmask = sched_group_span(sd->groups), 8802 .idle = idle, 8803 .loop_break = sched_nr_migrate_break, 8804 .cpus = cpus, 8805 .fbq_type = all, 8806 .tasks = LIST_HEAD_INIT(env.tasks), 8807 }; 8808 8809 cpumask_and(cpus, sched_domain_span(sd), cpu_active_mask); 8810 8811 schedstat_inc(sd->lb_count[idle]); 8812 8813 redo: 8814 if (!should_we_balance(&env)) { 8815 *continue_balancing = 0; 8816 goto out_balanced; 8817 } 8818 8819 group = find_busiest_group(&env); 8820 if (!group) { 8821 schedstat_inc(sd->lb_nobusyg[idle]); 8822 goto out_balanced; 8823 } 8824 8825 busiest = find_busiest_queue(&env, group); 8826 if (!busiest) { 8827 schedstat_inc(sd->lb_nobusyq[idle]); 8828 goto out_balanced; 8829 } 8830 8831 BUG_ON(busiest == env.dst_rq); 8832 8833 schedstat_add(sd->lb_imbalance[idle], env.imbalance); 8834 8835 env.src_cpu = busiest->cpu; 8836 env.src_rq = busiest; 8837 8838 ld_moved = 0; 8839 if (busiest->nr_running > 1) { 8840 /* 8841 * Attempt to move tasks. If find_busiest_group has found 8842 * an imbalance but busiest->nr_running <= 1, the group is 8843 * still unbalanced. ld_moved simply stays zero, so it is 8844 * correctly treated as an imbalance. 8845 */ 8846 env.flags |= LBF_ALL_PINNED; 8847 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running); 8848 8849 more_balance: 8850 rq_lock_irqsave(busiest, &rf); 8851 update_rq_clock(busiest); 8852 8853 /* 8854 * cur_ld_moved - load moved in current iteration 8855 * ld_moved - cumulative load moved across iterations 8856 */ 8857 cur_ld_moved = detach_tasks(&env); 8858 8859 /* 8860 * We've detached some tasks from busiest_rq. Every 8861 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely 8862 * unlock busiest->lock, and we are able to be sure 8863 * that nobody can manipulate the tasks in parallel. 8864 * See task_rq_lock() family for the details. 8865 */ 8866 8867 rq_unlock(busiest, &rf); 8868 8869 if (cur_ld_moved) { 8870 attach_tasks(&env); 8871 ld_moved += cur_ld_moved; 8872 } 8873 8874 local_irq_restore(rf.flags); 8875 8876 if (env.flags & LBF_NEED_BREAK) { 8877 env.flags &= ~LBF_NEED_BREAK; 8878 goto more_balance; 8879 } 8880 8881 /* 8882 * Revisit (affine) tasks on src_cpu that couldn't be moved to 8883 * us and move them to an alternate dst_cpu in our sched_group 8884 * where they can run. The upper limit on how many times we 8885 * iterate on same src_cpu is dependent on number of CPUs in our 8886 * sched_group. 8887 * 8888 * This changes load balance semantics a bit on who can move 8889 * load to a given_cpu. In addition to the given_cpu itself 8890 * (or a ilb_cpu acting on its behalf where given_cpu is 8891 * nohz-idle), we now have balance_cpu in a position to move 8892 * load to given_cpu. In rare situations, this may cause 8893 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding 8894 * _independently_ and at _same_ time to move some load to 8895 * given_cpu) causing exceess load to be moved to given_cpu. 8896 * This however should not happen so much in practice and 8897 * moreover subsequent load balance cycles should correct the 8898 * excess load moved. 8899 */ 8900 if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) { 8901 8902 /* Prevent to re-select dst_cpu via env's CPUs */ 8903 __cpumask_clear_cpu(env.dst_cpu, env.cpus); 8904 8905 env.dst_rq = cpu_rq(env.new_dst_cpu); 8906 env.dst_cpu = env.new_dst_cpu; 8907 env.flags &= ~LBF_DST_PINNED; 8908 env.loop = 0; 8909 env.loop_break = sched_nr_migrate_break; 8910 8911 /* 8912 * Go back to "more_balance" rather than "redo" since we 8913 * need to continue with same src_cpu. 8914 */ 8915 goto more_balance; 8916 } 8917 8918 /* 8919 * We failed to reach balance because of affinity. 8920 */ 8921 if (sd_parent) { 8922 int *group_imbalance = &sd_parent->groups->sgc->imbalance; 8923 8924 if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0) 8925 *group_imbalance = 1; 8926 } 8927 8928 /* All tasks on this runqueue were pinned by CPU affinity */ 8929 if (unlikely(env.flags & LBF_ALL_PINNED)) { 8930 __cpumask_clear_cpu(cpu_of(busiest), cpus); 8931 /* 8932 * Attempting to continue load balancing at the current 8933 * sched_domain level only makes sense if there are 8934 * active CPUs remaining as possible busiest CPUs to 8935 * pull load from which are not contained within the 8936 * destination group that is receiving any migrated 8937 * load. 8938 */ 8939 if (!cpumask_subset(cpus, env.dst_grpmask)) { 8940 env.loop = 0; 8941 env.loop_break = sched_nr_migrate_break; 8942 goto redo; 8943 } 8944 goto out_all_pinned; 8945 } 8946 } 8947 8948 if (!ld_moved) { 8949 schedstat_inc(sd->lb_failed[idle]); 8950 /* 8951 * Increment the failure counter only on periodic balance. 8952 * We do not want newidle balance, which can be very 8953 * frequent, pollute the failure counter causing 8954 * excessive cache_hot migrations and active balances. 8955 */ 8956 if (idle != CPU_NEWLY_IDLE) 8957 sd->nr_balance_failed++; 8958 8959 if (need_active_balance(&env)) { 8960 unsigned long flags; 8961 8962 raw_spin_lock_irqsave(&busiest->lock, flags); 8963 8964 /* 8965 * Don't kick the active_load_balance_cpu_stop, 8966 * if the curr task on busiest CPU can't be 8967 * moved to this_cpu: 8968 */ 8969 if (!cpumask_test_cpu(this_cpu, busiest->curr->cpus_ptr)) { 8970 raw_spin_unlock_irqrestore(&busiest->lock, 8971 flags); 8972 env.flags |= LBF_ALL_PINNED; 8973 goto out_one_pinned; 8974 } 8975 8976 /* 8977 * ->active_balance synchronizes accesses to 8978 * ->active_balance_work. Once set, it's cleared 8979 * only after active load balance is finished. 8980 */ 8981 if (!busiest->active_balance) { 8982 busiest->active_balance = 1; 8983 busiest->push_cpu = this_cpu; 8984 active_balance = 1; 8985 } 8986 raw_spin_unlock_irqrestore(&busiest->lock, flags); 8987 8988 if (active_balance) { 8989 stop_one_cpu_nowait(cpu_of(busiest), 8990 active_load_balance_cpu_stop, busiest, 8991 &busiest->active_balance_work); 8992 } 8993 8994 /* We've kicked active balancing, force task migration. */ 8995 sd->nr_balance_failed = sd->cache_nice_tries+1; 8996 } 8997 } else 8998 sd->nr_balance_failed = 0; 8999 9000 if (likely(!active_balance) || voluntary_active_balance(&env)) { 9001 /* We were unbalanced, so reset the balancing interval */ 9002 sd->balance_interval = sd->min_interval; 9003 } else { 9004 /* 9005 * If we've begun active balancing, start to back off. This 9006 * case may not be covered by the all_pinned logic if there 9007 * is only 1 task on the busy runqueue (because we don't call 9008 * detach_tasks). 9009 */ 9010 if (sd->balance_interval < sd->max_interval) 9011 sd->balance_interval *= 2; 9012 } 9013 9014 goto out; 9015 9016 out_balanced: 9017 /* 9018 * We reach balance although we may have faced some affinity 9019 * constraints. Clear the imbalance flag only if other tasks got 9020 * a chance to move and fix the imbalance. 9021 */ 9022 if (sd_parent && !(env.flags & LBF_ALL_PINNED)) { 9023 int *group_imbalance = &sd_parent->groups->sgc->imbalance; 9024 9025 if (*group_imbalance) 9026 *group_imbalance = 0; 9027 } 9028 9029 out_all_pinned: 9030 /* 9031 * We reach balance because all tasks are pinned at this level so 9032 * we can't migrate them. Let the imbalance flag set so parent level 9033 * can try to migrate them. 9034 */ 9035 schedstat_inc(sd->lb_balanced[idle]); 9036 9037 sd->nr_balance_failed = 0; 9038 9039 out_one_pinned: 9040 ld_moved = 0; 9041 9042 /* 9043 * newidle_balance() disregards balance intervals, so we could 9044 * repeatedly reach this code, which would lead to balance_interval 9045 * skyrocketting in a short amount of time. Skip the balance_interval 9046 * increase logic to avoid that. 9047 */ 9048 if (env.idle == CPU_NEWLY_IDLE) 9049 goto out; 9050 9051 /* tune up the balancing interval */ 9052 if ((env.flags & LBF_ALL_PINNED && 9053 sd->balance_interval < MAX_PINNED_INTERVAL) || 9054 sd->balance_interval < sd->max_interval) 9055 sd->balance_interval *= 2; 9056 out: 9057 return ld_moved; 9058 } 9059 9060 static inline unsigned long 9061 get_sd_balance_interval(struct sched_domain *sd, int cpu_busy) 9062 { 9063 unsigned long interval = sd->balance_interval; 9064 9065 if (cpu_busy) 9066 interval *= sd->busy_factor; 9067 9068 /* scale ms to jiffies */ 9069 interval = msecs_to_jiffies(interval); 9070 interval = clamp(interval, 1UL, max_load_balance_interval); 9071 9072 return interval; 9073 } 9074 9075 static inline void 9076 update_next_balance(struct sched_domain *sd, unsigned long *next_balance) 9077 { 9078 unsigned long interval, next; 9079 9080 /* used by idle balance, so cpu_busy = 0 */ 9081 interval = get_sd_balance_interval(sd, 0); 9082 next = sd->last_balance + interval; 9083 9084 if (time_after(*next_balance, next)) 9085 *next_balance = next; 9086 } 9087 9088 /* 9089 * active_load_balance_cpu_stop is run by the CPU stopper. It pushes 9090 * running tasks off the busiest CPU onto idle CPUs. It requires at 9091 * least 1 task to be running on each physical CPU where possible, and 9092 * avoids physical / logical imbalances. 9093 */ 9094 static int active_load_balance_cpu_stop(void *data) 9095 { 9096 struct rq *busiest_rq = data; 9097 int busiest_cpu = cpu_of(busiest_rq); 9098 int target_cpu = busiest_rq->push_cpu; 9099 struct rq *target_rq = cpu_rq(target_cpu); 9100 struct sched_domain *sd; 9101 struct task_struct *p = NULL; 9102 struct rq_flags rf; 9103 9104 rq_lock_irq(busiest_rq, &rf); 9105 /* 9106 * Between queueing the stop-work and running it is a hole in which 9107 * CPUs can become inactive. We should not move tasks from or to 9108 * inactive CPUs. 9109 */ 9110 if (!cpu_active(busiest_cpu) || !cpu_active(target_cpu)) 9111 goto out_unlock; 9112 9113 /* Make sure the requested CPU hasn't gone down in the meantime: */ 9114 if (unlikely(busiest_cpu != smp_processor_id() || 9115 !busiest_rq->active_balance)) 9116 goto out_unlock; 9117 9118 /* Is there any task to move? */ 9119 if (busiest_rq->nr_running <= 1) 9120 goto out_unlock; 9121 9122 /* 9123 * This condition is "impossible", if it occurs 9124 * we need to fix it. Originally reported by 9125 * Bjorn Helgaas on a 128-CPU setup. 9126 */ 9127 BUG_ON(busiest_rq == target_rq); 9128 9129 /* Search for an sd spanning us and the target CPU. */ 9130 rcu_read_lock(); 9131 for_each_domain(target_cpu, sd) { 9132 if ((sd->flags & SD_LOAD_BALANCE) && 9133 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd))) 9134 break; 9135 } 9136 9137 if (likely(sd)) { 9138 struct lb_env env = { 9139 .sd = sd, 9140 .dst_cpu = target_cpu, 9141 .dst_rq = target_rq, 9142 .src_cpu = busiest_rq->cpu, 9143 .src_rq = busiest_rq, 9144 .idle = CPU_IDLE, 9145 /* 9146 * can_migrate_task() doesn't need to compute new_dst_cpu 9147 * for active balancing. Since we have CPU_IDLE, but no 9148 * @dst_grpmask we need to make that test go away with lying 9149 * about DST_PINNED. 9150 */ 9151 .flags = LBF_DST_PINNED, 9152 }; 9153 9154 schedstat_inc(sd->alb_count); 9155 update_rq_clock(busiest_rq); 9156 9157 p = detach_one_task(&env); 9158 if (p) { 9159 schedstat_inc(sd->alb_pushed); 9160 /* Active balancing done, reset the failure counter. */ 9161 sd->nr_balance_failed = 0; 9162 } else { 9163 schedstat_inc(sd->alb_failed); 9164 } 9165 } 9166 rcu_read_unlock(); 9167 out_unlock: 9168 busiest_rq->active_balance = 0; 9169 rq_unlock(busiest_rq, &rf); 9170 9171 if (p) 9172 attach_one_task(target_rq, p); 9173 9174 local_irq_enable(); 9175 9176 return 0; 9177 } 9178 9179 static DEFINE_SPINLOCK(balancing); 9180 9181 /* 9182 * Scale the max load_balance interval with the number of CPUs in the system. 9183 * This trades load-balance latency on larger machines for less cross talk. 9184 */ 9185 void update_max_interval(void) 9186 { 9187 max_load_balance_interval = HZ*num_online_cpus()/10; 9188 } 9189 9190 /* 9191 * It checks each scheduling domain to see if it is due to be balanced, 9192 * and initiates a balancing operation if so. 9193 * 9194 * Balancing parameters are set up in init_sched_domains. 9195 */ 9196 static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle) 9197 { 9198 int continue_balancing = 1; 9199 int cpu = rq->cpu; 9200 unsigned long interval; 9201 struct sched_domain *sd; 9202 /* Earliest time when we have to do rebalance again */ 9203 unsigned long next_balance = jiffies + 60*HZ; 9204 int update_next_balance = 0; 9205 int need_serialize, need_decay = 0; 9206 u64 max_cost = 0; 9207 9208 rcu_read_lock(); 9209 for_each_domain(cpu, sd) { 9210 /* 9211 * Decay the newidle max times here because this is a regular 9212 * visit to all the domains. Decay ~1% per second. 9213 */ 9214 if (time_after(jiffies, sd->next_decay_max_lb_cost)) { 9215 sd->max_newidle_lb_cost = 9216 (sd->max_newidle_lb_cost * 253) / 256; 9217 sd->next_decay_max_lb_cost = jiffies + HZ; 9218 need_decay = 1; 9219 } 9220 max_cost += sd->max_newidle_lb_cost; 9221 9222 if (!(sd->flags & SD_LOAD_BALANCE)) 9223 continue; 9224 9225 /* 9226 * Stop the load balance at this level. There is another 9227 * CPU in our sched group which is doing load balancing more 9228 * actively. 9229 */ 9230 if (!continue_balancing) { 9231 if (need_decay) 9232 continue; 9233 break; 9234 } 9235 9236 interval = get_sd_balance_interval(sd, idle != CPU_IDLE); 9237 9238 need_serialize = sd->flags & SD_SERIALIZE; 9239 if (need_serialize) { 9240 if (!spin_trylock(&balancing)) 9241 goto out; 9242 } 9243 9244 if (time_after_eq(jiffies, sd->last_balance + interval)) { 9245 if (load_balance(cpu, rq, sd, idle, &continue_balancing)) { 9246 /* 9247 * The LBF_DST_PINNED logic could have changed 9248 * env->dst_cpu, so we can't know our idle 9249 * state even if we migrated tasks. Update it. 9250 */ 9251 idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE; 9252 } 9253 sd->last_balance = jiffies; 9254 interval = get_sd_balance_interval(sd, idle != CPU_IDLE); 9255 } 9256 if (need_serialize) 9257 spin_unlock(&balancing); 9258 out: 9259 if (time_after(next_balance, sd->last_balance + interval)) { 9260 next_balance = sd->last_balance + interval; 9261 update_next_balance = 1; 9262 } 9263 } 9264 if (need_decay) { 9265 /* 9266 * Ensure the rq-wide value also decays but keep it at a 9267 * reasonable floor to avoid funnies with rq->avg_idle. 9268 */ 9269 rq->max_idle_balance_cost = 9270 max((u64)sysctl_sched_migration_cost, max_cost); 9271 } 9272 rcu_read_unlock(); 9273 9274 /* 9275 * next_balance will be updated only when there is a need. 9276 * When the cpu is attached to null domain for ex, it will not be 9277 * updated. 9278 */ 9279 if (likely(update_next_balance)) { 9280 rq->next_balance = next_balance; 9281 9282 #ifdef CONFIG_NO_HZ_COMMON 9283 /* 9284 * If this CPU has been elected to perform the nohz idle 9285 * balance. Other idle CPUs have already rebalanced with 9286 * nohz_idle_balance() and nohz.next_balance has been 9287 * updated accordingly. This CPU is now running the idle load 9288 * balance for itself and we need to update the 9289 * nohz.next_balance accordingly. 9290 */ 9291 if ((idle == CPU_IDLE) && time_after(nohz.next_balance, rq->next_balance)) 9292 nohz.next_balance = rq->next_balance; 9293 #endif 9294 } 9295 } 9296 9297 static inline int on_null_domain(struct rq *rq) 9298 { 9299 return unlikely(!rcu_dereference_sched(rq->sd)); 9300 } 9301 9302 #ifdef CONFIG_NO_HZ_COMMON 9303 /* 9304 * idle load balancing details 9305 * - When one of the busy CPUs notice that there may be an idle rebalancing 9306 * needed, they will kick the idle load balancer, which then does idle 9307 * load balancing for all the idle CPUs. 9308 * - HK_FLAG_MISC CPUs are used for this task, because HK_FLAG_SCHED not set 9309 * anywhere yet. 9310 */ 9311 9312 static inline int find_new_ilb(void) 9313 { 9314 int ilb; 9315 9316 for_each_cpu_and(ilb, nohz.idle_cpus_mask, 9317 housekeeping_cpumask(HK_FLAG_MISC)) { 9318 if (idle_cpu(ilb)) 9319 return ilb; 9320 } 9321 9322 return nr_cpu_ids; 9323 } 9324 9325 /* 9326 * Kick a CPU to do the nohz balancing, if it is time for it. We pick any 9327 * idle CPU in the HK_FLAG_MISC housekeeping set (if there is one). 9328 */ 9329 static void kick_ilb(unsigned int flags) 9330 { 9331 int ilb_cpu; 9332 9333 nohz.next_balance++; 9334 9335 ilb_cpu = find_new_ilb(); 9336 9337 if (ilb_cpu >= nr_cpu_ids) 9338 return; 9339 9340 flags = atomic_fetch_or(flags, nohz_flags(ilb_cpu)); 9341 if (flags & NOHZ_KICK_MASK) 9342 return; 9343 9344 /* 9345 * Use smp_send_reschedule() instead of resched_cpu(). 9346 * This way we generate a sched IPI on the target CPU which 9347 * is idle. And the softirq performing nohz idle load balance 9348 * will be run before returning from the IPI. 9349 */ 9350 smp_send_reschedule(ilb_cpu); 9351 } 9352 9353 /* 9354 * Current decision point for kicking the idle load balancer in the presence 9355 * of idle CPUs in the system. 9356 */ 9357 static void nohz_balancer_kick(struct rq *rq) 9358 { 9359 unsigned long now = jiffies; 9360 struct sched_domain_shared *sds; 9361 struct sched_domain *sd; 9362 int nr_busy, i, cpu = rq->cpu; 9363 unsigned int flags = 0; 9364 9365 if (unlikely(rq->idle_balance)) 9366 return; 9367 9368 /* 9369 * We may be recently in ticked or tickless idle mode. At the first 9370 * busy tick after returning from idle, we will update the busy stats. 9371 */ 9372 nohz_balance_exit_idle(rq); 9373 9374 /* 9375 * None are in tickless mode and hence no need for NOHZ idle load 9376 * balancing. 9377 */ 9378 if (likely(!atomic_read(&nohz.nr_cpus))) 9379 return; 9380 9381 if (READ_ONCE(nohz.has_blocked) && 9382 time_after(now, READ_ONCE(nohz.next_blocked))) 9383 flags = NOHZ_STATS_KICK; 9384 9385 if (time_before(now, nohz.next_balance)) 9386 goto out; 9387 9388 if (rq->nr_running >= 2) { 9389 flags = NOHZ_KICK_MASK; 9390 goto out; 9391 } 9392 9393 rcu_read_lock(); 9394 9395 sd = rcu_dereference(rq->sd); 9396 if (sd) { 9397 /* 9398 * If there's a CFS task and the current CPU has reduced 9399 * capacity; kick the ILB to see if there's a better CPU to run 9400 * on. 9401 */ 9402 if (rq->cfs.h_nr_running >= 1 && check_cpu_capacity(rq, sd)) { 9403 flags = NOHZ_KICK_MASK; 9404 goto unlock; 9405 } 9406 } 9407 9408 sd = rcu_dereference(per_cpu(sd_asym_packing, cpu)); 9409 if (sd) { 9410 /* 9411 * When ASYM_PACKING; see if there's a more preferred CPU 9412 * currently idle; in which case, kick the ILB to move tasks 9413 * around. 9414 */ 9415 for_each_cpu_and(i, sched_domain_span(sd), nohz.idle_cpus_mask) { 9416 if (sched_asym_prefer(i, cpu)) { 9417 flags = NOHZ_KICK_MASK; 9418 goto unlock; 9419 } 9420 } 9421 } 9422 9423 sd = rcu_dereference(per_cpu(sd_asym_cpucapacity, cpu)); 9424 if (sd) { 9425 /* 9426 * When ASYM_CPUCAPACITY; see if there's a higher capacity CPU 9427 * to run the misfit task on. 9428 */ 9429 if (check_misfit_status(rq, sd)) { 9430 flags = NOHZ_KICK_MASK; 9431 goto unlock; 9432 } 9433 9434 /* 9435 * For asymmetric systems, we do not want to nicely balance 9436 * cache use, instead we want to embrace asymmetry and only 9437 * ensure tasks have enough CPU capacity. 9438 * 9439 * Skip the LLC logic because it's not relevant in that case. 9440 */ 9441 goto unlock; 9442 } 9443 9444 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu)); 9445 if (sds) { 9446 /* 9447 * If there is an imbalance between LLC domains (IOW we could 9448 * increase the overall cache use), we need some less-loaded LLC 9449 * domain to pull some load. Likewise, we may need to spread 9450 * load within the current LLC domain (e.g. packed SMT cores but 9451 * other CPUs are idle). We can't really know from here how busy 9452 * the others are - so just get a nohz balance going if it looks 9453 * like this LLC domain has tasks we could move. 9454 */ 9455 nr_busy = atomic_read(&sds->nr_busy_cpus); 9456 if (nr_busy > 1) { 9457 flags = NOHZ_KICK_MASK; 9458 goto unlock; 9459 } 9460 } 9461 unlock: 9462 rcu_read_unlock(); 9463 out: 9464 if (flags) 9465 kick_ilb(flags); 9466 } 9467 9468 static void set_cpu_sd_state_busy(int cpu) 9469 { 9470 struct sched_domain *sd; 9471 9472 rcu_read_lock(); 9473 sd = rcu_dereference(per_cpu(sd_llc, cpu)); 9474 9475 if (!sd || !sd->nohz_idle) 9476 goto unlock; 9477 sd->nohz_idle = 0; 9478 9479 atomic_inc(&sd->shared->nr_busy_cpus); 9480 unlock: 9481 rcu_read_unlock(); 9482 } 9483 9484 void nohz_balance_exit_idle(struct rq *rq) 9485 { 9486 SCHED_WARN_ON(rq != this_rq()); 9487 9488 if (likely(!rq->nohz_tick_stopped)) 9489 return; 9490 9491 rq->nohz_tick_stopped = 0; 9492 cpumask_clear_cpu(rq->cpu, nohz.idle_cpus_mask); 9493 atomic_dec(&nohz.nr_cpus); 9494 9495 set_cpu_sd_state_busy(rq->cpu); 9496 } 9497 9498 static void set_cpu_sd_state_idle(int cpu) 9499 { 9500 struct sched_domain *sd; 9501 9502 rcu_read_lock(); 9503 sd = rcu_dereference(per_cpu(sd_llc, cpu)); 9504 9505 if (!sd || sd->nohz_idle) 9506 goto unlock; 9507 sd->nohz_idle = 1; 9508 9509 atomic_dec(&sd->shared->nr_busy_cpus); 9510 unlock: 9511 rcu_read_unlock(); 9512 } 9513 9514 /* 9515 * This routine will record that the CPU is going idle with tick stopped. 9516 * This info will be used in performing idle load balancing in the future. 9517 */ 9518 void nohz_balance_enter_idle(int cpu) 9519 { 9520 struct rq *rq = cpu_rq(cpu); 9521 9522 SCHED_WARN_ON(cpu != smp_processor_id()); 9523 9524 /* If this CPU is going down, then nothing needs to be done: */ 9525 if (!cpu_active(cpu)) 9526 return; 9527 9528 /* Spare idle load balancing on CPUs that don't want to be disturbed: */ 9529 if (!housekeeping_cpu(cpu, HK_FLAG_SCHED)) 9530 return; 9531 9532 /* 9533 * Can be set safely without rq->lock held 9534 * If a clear happens, it will have evaluated last additions because 9535 * rq->lock is held during the check and the clear 9536 */ 9537 rq->has_blocked_load = 1; 9538 9539 /* 9540 * The tick is still stopped but load could have been added in the 9541 * meantime. We set the nohz.has_blocked flag to trig a check of the 9542 * *_avg. The CPU is already part of nohz.idle_cpus_mask so the clear 9543 * of nohz.has_blocked can only happen after checking the new load 9544 */ 9545 if (rq->nohz_tick_stopped) 9546 goto out; 9547 9548 /* If we're a completely isolated CPU, we don't play: */ 9549 if (on_null_domain(rq)) 9550 return; 9551 9552 rq->nohz_tick_stopped = 1; 9553 9554 cpumask_set_cpu(cpu, nohz.idle_cpus_mask); 9555 atomic_inc(&nohz.nr_cpus); 9556 9557 /* 9558 * Ensures that if nohz_idle_balance() fails to observe our 9559 * @idle_cpus_mask store, it must observe the @has_blocked 9560 * store. 9561 */ 9562 smp_mb__after_atomic(); 9563 9564 set_cpu_sd_state_idle(cpu); 9565 9566 out: 9567 /* 9568 * Each time a cpu enter idle, we assume that it has blocked load and 9569 * enable the periodic update of the load of idle cpus 9570 */ 9571 WRITE_ONCE(nohz.has_blocked, 1); 9572 } 9573 9574 /* 9575 * Internal function that runs load balance for all idle cpus. The load balance 9576 * can be a simple update of blocked load or a complete load balance with 9577 * tasks movement depending of flags. 9578 * The function returns false if the loop has stopped before running 9579 * through all idle CPUs. 9580 */ 9581 static bool _nohz_idle_balance(struct rq *this_rq, unsigned int flags, 9582 enum cpu_idle_type idle) 9583 { 9584 /* Earliest time when we have to do rebalance again */ 9585 unsigned long now = jiffies; 9586 unsigned long next_balance = now + 60*HZ; 9587 bool has_blocked_load = false; 9588 int update_next_balance = 0; 9589 int this_cpu = this_rq->cpu; 9590 int balance_cpu; 9591 int ret = false; 9592 struct rq *rq; 9593 9594 SCHED_WARN_ON((flags & NOHZ_KICK_MASK) == NOHZ_BALANCE_KICK); 9595 9596 /* 9597 * We assume there will be no idle load after this update and clear 9598 * the has_blocked flag. If a cpu enters idle in the mean time, it will 9599 * set the has_blocked flag and trig another update of idle load. 9600 * Because a cpu that becomes idle, is added to idle_cpus_mask before 9601 * setting the flag, we are sure to not clear the state and not 9602 * check the load of an idle cpu. 9603 */ 9604 WRITE_ONCE(nohz.has_blocked, 0); 9605 9606 /* 9607 * Ensures that if we miss the CPU, we must see the has_blocked 9608 * store from nohz_balance_enter_idle(). 9609 */ 9610 smp_mb(); 9611 9612 for_each_cpu(balance_cpu, nohz.idle_cpus_mask) { 9613 if (balance_cpu == this_cpu || !idle_cpu(balance_cpu)) 9614 continue; 9615 9616 /* 9617 * If this CPU gets work to do, stop the load balancing 9618 * work being done for other CPUs. Next load 9619 * balancing owner will pick it up. 9620 */ 9621 if (need_resched()) { 9622 has_blocked_load = true; 9623 goto abort; 9624 } 9625 9626 rq = cpu_rq(balance_cpu); 9627 9628 has_blocked_load |= update_nohz_stats(rq, true); 9629 9630 /* 9631 * If time for next balance is due, 9632 * do the balance. 9633 */ 9634 if (time_after_eq(jiffies, rq->next_balance)) { 9635 struct rq_flags rf; 9636 9637 rq_lock_irqsave(rq, &rf); 9638 update_rq_clock(rq); 9639 rq_unlock_irqrestore(rq, &rf); 9640 9641 if (flags & NOHZ_BALANCE_KICK) 9642 rebalance_domains(rq, CPU_IDLE); 9643 } 9644 9645 if (time_after(next_balance, rq->next_balance)) { 9646 next_balance = rq->next_balance; 9647 update_next_balance = 1; 9648 } 9649 } 9650 9651 /* Newly idle CPU doesn't need an update */ 9652 if (idle != CPU_NEWLY_IDLE) { 9653 update_blocked_averages(this_cpu); 9654 has_blocked_load |= this_rq->has_blocked_load; 9655 } 9656 9657 if (flags & NOHZ_BALANCE_KICK) 9658 rebalance_domains(this_rq, CPU_IDLE); 9659 9660 WRITE_ONCE(nohz.next_blocked, 9661 now + msecs_to_jiffies(LOAD_AVG_PERIOD)); 9662 9663 /* The full idle balance loop has been done */ 9664 ret = true; 9665 9666 abort: 9667 /* There is still blocked load, enable periodic update */ 9668 if (has_blocked_load) 9669 WRITE_ONCE(nohz.has_blocked, 1); 9670 9671 /* 9672 * next_balance will be updated only when there is a need. 9673 * When the CPU is attached to null domain for ex, it will not be 9674 * updated. 9675 */ 9676 if (likely(update_next_balance)) 9677 nohz.next_balance = next_balance; 9678 9679 return ret; 9680 } 9681 9682 /* 9683 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the 9684 * rebalancing for all the cpus for whom scheduler ticks are stopped. 9685 */ 9686 static bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) 9687 { 9688 int this_cpu = this_rq->cpu; 9689 unsigned int flags; 9690 9691 if (!(atomic_read(nohz_flags(this_cpu)) & NOHZ_KICK_MASK)) 9692 return false; 9693 9694 if (idle != CPU_IDLE) { 9695 atomic_andnot(NOHZ_KICK_MASK, nohz_flags(this_cpu)); 9696 return false; 9697 } 9698 9699 /* could be _relaxed() */ 9700 flags = atomic_fetch_andnot(NOHZ_KICK_MASK, nohz_flags(this_cpu)); 9701 if (!(flags & NOHZ_KICK_MASK)) 9702 return false; 9703 9704 _nohz_idle_balance(this_rq, flags, idle); 9705 9706 return true; 9707 } 9708 9709 static void nohz_newidle_balance(struct rq *this_rq) 9710 { 9711 int this_cpu = this_rq->cpu; 9712 9713 /* 9714 * This CPU doesn't want to be disturbed by scheduler 9715 * housekeeping 9716 */ 9717 if (!housekeeping_cpu(this_cpu, HK_FLAG_SCHED)) 9718 return; 9719 9720 /* Will wake up very soon. No time for doing anything else*/ 9721 if (this_rq->avg_idle < sysctl_sched_migration_cost) 9722 return; 9723 9724 /* Don't need to update blocked load of idle CPUs*/ 9725 if (!READ_ONCE(nohz.has_blocked) || 9726 time_before(jiffies, READ_ONCE(nohz.next_blocked))) 9727 return; 9728 9729 raw_spin_unlock(&this_rq->lock); 9730 /* 9731 * This CPU is going to be idle and blocked load of idle CPUs 9732 * need to be updated. Run the ilb locally as it is a good 9733 * candidate for ilb instead of waking up another idle CPU. 9734 * Kick an normal ilb if we failed to do the update. 9735 */ 9736 if (!_nohz_idle_balance(this_rq, NOHZ_STATS_KICK, CPU_NEWLY_IDLE)) 9737 kick_ilb(NOHZ_STATS_KICK); 9738 raw_spin_lock(&this_rq->lock); 9739 } 9740 9741 #else /* !CONFIG_NO_HZ_COMMON */ 9742 static inline void nohz_balancer_kick(struct rq *rq) { } 9743 9744 static inline bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) 9745 { 9746 return false; 9747 } 9748 9749 static inline void nohz_newidle_balance(struct rq *this_rq) { } 9750 #endif /* CONFIG_NO_HZ_COMMON */ 9751 9752 /* 9753 * idle_balance is called by schedule() if this_cpu is about to become 9754 * idle. Attempts to pull tasks from other CPUs. 9755 */ 9756 int newidle_balance(struct rq *this_rq, struct rq_flags *rf) 9757 { 9758 unsigned long next_balance = jiffies + HZ; 9759 int this_cpu = this_rq->cpu; 9760 struct sched_domain *sd; 9761 int pulled_task = 0; 9762 u64 curr_cost = 0; 9763 9764 update_misfit_status(NULL, this_rq); 9765 /* 9766 * We must set idle_stamp _before_ calling idle_balance(), such that we 9767 * measure the duration of idle_balance() as idle time. 9768 */ 9769 this_rq->idle_stamp = rq_clock(this_rq); 9770 9771 /* 9772 * Do not pull tasks towards !active CPUs... 9773 */ 9774 if (!cpu_active(this_cpu)) 9775 return 0; 9776 9777 /* 9778 * This is OK, because current is on_cpu, which avoids it being picked 9779 * for load-balance and preemption/IRQs are still disabled avoiding 9780 * further scheduler activity on it and we're being very careful to 9781 * re-start the picking loop. 9782 */ 9783 rq_unpin_lock(this_rq, rf); 9784 9785 if (this_rq->avg_idle < sysctl_sched_migration_cost || 9786 !READ_ONCE(this_rq->rd->overload)) { 9787 9788 rcu_read_lock(); 9789 sd = rcu_dereference_check_sched_domain(this_rq->sd); 9790 if (sd) 9791 update_next_balance(sd, &next_balance); 9792 rcu_read_unlock(); 9793 9794 nohz_newidle_balance(this_rq); 9795 9796 goto out; 9797 } 9798 9799 raw_spin_unlock(&this_rq->lock); 9800 9801 update_blocked_averages(this_cpu); 9802 rcu_read_lock(); 9803 for_each_domain(this_cpu, sd) { 9804 int continue_balancing = 1; 9805 u64 t0, domain_cost; 9806 9807 if (!(sd->flags & SD_LOAD_BALANCE)) 9808 continue; 9809 9810 if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) { 9811 update_next_balance(sd, &next_balance); 9812 break; 9813 } 9814 9815 if (sd->flags & SD_BALANCE_NEWIDLE) { 9816 t0 = sched_clock_cpu(this_cpu); 9817 9818 pulled_task = load_balance(this_cpu, this_rq, 9819 sd, CPU_NEWLY_IDLE, 9820 &continue_balancing); 9821 9822 domain_cost = sched_clock_cpu(this_cpu) - t0; 9823 if (domain_cost > sd->max_newidle_lb_cost) 9824 sd->max_newidle_lb_cost = domain_cost; 9825 9826 curr_cost += domain_cost; 9827 } 9828 9829 update_next_balance(sd, &next_balance); 9830 9831 /* 9832 * Stop searching for tasks to pull if there are 9833 * now runnable tasks on this rq. 9834 */ 9835 if (pulled_task || this_rq->nr_running > 0) 9836 break; 9837 } 9838 rcu_read_unlock(); 9839 9840 raw_spin_lock(&this_rq->lock); 9841 9842 if (curr_cost > this_rq->max_idle_balance_cost) 9843 this_rq->max_idle_balance_cost = curr_cost; 9844 9845 out: 9846 /* 9847 * While browsing the domains, we released the rq lock, a task could 9848 * have been enqueued in the meantime. Since we're not going idle, 9849 * pretend we pulled a task. 9850 */ 9851 if (this_rq->cfs.h_nr_running && !pulled_task) 9852 pulled_task = 1; 9853 9854 /* Move the next balance forward */ 9855 if (time_after(this_rq->next_balance, next_balance)) 9856 this_rq->next_balance = next_balance; 9857 9858 /* Is there a task of a high priority class? */ 9859 if (this_rq->nr_running != this_rq->cfs.h_nr_running) 9860 pulled_task = -1; 9861 9862 if (pulled_task) 9863 this_rq->idle_stamp = 0; 9864 9865 rq_repin_lock(this_rq, rf); 9866 9867 return pulled_task; 9868 } 9869 9870 /* 9871 * run_rebalance_domains is triggered when needed from the scheduler tick. 9872 * Also triggered for nohz idle balancing (with nohz_balancing_kick set). 9873 */ 9874 static __latent_entropy void run_rebalance_domains(struct softirq_action *h) 9875 { 9876 struct rq *this_rq = this_rq(); 9877 enum cpu_idle_type idle = this_rq->idle_balance ? 9878 CPU_IDLE : CPU_NOT_IDLE; 9879 9880 /* 9881 * If this CPU has a pending nohz_balance_kick, then do the 9882 * balancing on behalf of the other idle CPUs whose ticks are 9883 * stopped. Do nohz_idle_balance *before* rebalance_domains to 9884 * give the idle CPUs a chance to load balance. Else we may 9885 * load balance only within the local sched_domain hierarchy 9886 * and abort nohz_idle_balance altogether if we pull some load. 9887 */ 9888 if (nohz_idle_balance(this_rq, idle)) 9889 return; 9890 9891 /* normal load balance */ 9892 update_blocked_averages(this_rq->cpu); 9893 rebalance_domains(this_rq, idle); 9894 } 9895 9896 /* 9897 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing. 9898 */ 9899 void trigger_load_balance(struct rq *rq) 9900 { 9901 /* Don't need to rebalance while attached to NULL domain */ 9902 if (unlikely(on_null_domain(rq))) 9903 return; 9904 9905 if (time_after_eq(jiffies, rq->next_balance)) 9906 raise_softirq(SCHED_SOFTIRQ); 9907 9908 nohz_balancer_kick(rq); 9909 } 9910 9911 static void rq_online_fair(struct rq *rq) 9912 { 9913 update_sysctl(); 9914 9915 update_runtime_enabled(rq); 9916 } 9917 9918 static void rq_offline_fair(struct rq *rq) 9919 { 9920 update_sysctl(); 9921 9922 /* Ensure any throttled groups are reachable by pick_next_task */ 9923 unthrottle_offline_cfs_rqs(rq); 9924 } 9925 9926 #endif /* CONFIG_SMP */ 9927 9928 /* 9929 * scheduler tick hitting a task of our scheduling class. 9930 * 9931 * NOTE: This function can be called remotely by the tick offload that 9932 * goes along full dynticks. Therefore no local assumption can be made 9933 * and everything must be accessed through the @rq and @curr passed in 9934 * parameters. 9935 */ 9936 static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued) 9937 { 9938 struct cfs_rq *cfs_rq; 9939 struct sched_entity *se = &curr->se; 9940 9941 for_each_sched_entity(se) { 9942 cfs_rq = cfs_rq_of(se); 9943 entity_tick(cfs_rq, se, queued); 9944 } 9945 9946 if (static_branch_unlikely(&sched_numa_balancing)) 9947 task_tick_numa(rq, curr); 9948 9949 update_misfit_status(curr, rq); 9950 update_overutilized_status(task_rq(curr)); 9951 } 9952 9953 /* 9954 * called on fork with the child task as argument from the parent's context 9955 * - child not yet on the tasklist 9956 * - preemption disabled 9957 */ 9958 static void task_fork_fair(struct task_struct *p) 9959 { 9960 struct cfs_rq *cfs_rq; 9961 struct sched_entity *se = &p->se, *curr; 9962 struct rq *rq = this_rq(); 9963 struct rq_flags rf; 9964 9965 rq_lock(rq, &rf); 9966 update_rq_clock(rq); 9967 9968 cfs_rq = task_cfs_rq(current); 9969 curr = cfs_rq->curr; 9970 if (curr) { 9971 update_curr(cfs_rq); 9972 se->vruntime = curr->vruntime; 9973 } 9974 place_entity(cfs_rq, se, 1); 9975 9976 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) { 9977 /* 9978 * Upon rescheduling, sched_class::put_prev_task() will place 9979 * 'current' within the tree based on its new key value. 9980 */ 9981 swap(curr->vruntime, se->vruntime); 9982 resched_curr(rq); 9983 } 9984 9985 se->vruntime -= cfs_rq->min_vruntime; 9986 rq_unlock(rq, &rf); 9987 } 9988 9989 /* 9990 * Priority of the task has changed. Check to see if we preempt 9991 * the current task. 9992 */ 9993 static void 9994 prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio) 9995 { 9996 if (!task_on_rq_queued(p)) 9997 return; 9998 9999 /* 10000 * Reschedule if we are currently running on this runqueue and 10001 * our priority decreased, or if we are not currently running on 10002 * this runqueue and our priority is higher than the current's 10003 */ 10004 if (rq->curr == p) { 10005 if (p->prio > oldprio) 10006 resched_curr(rq); 10007 } else 10008 check_preempt_curr(rq, p, 0); 10009 } 10010 10011 static inline bool vruntime_normalized(struct task_struct *p) 10012 { 10013 struct sched_entity *se = &p->se; 10014 10015 /* 10016 * In both the TASK_ON_RQ_QUEUED and TASK_ON_RQ_MIGRATING cases, 10017 * the dequeue_entity(.flags=0) will already have normalized the 10018 * vruntime. 10019 */ 10020 if (p->on_rq) 10021 return true; 10022 10023 /* 10024 * When !on_rq, vruntime of the task has usually NOT been normalized. 10025 * But there are some cases where it has already been normalized: 10026 * 10027 * - A forked child which is waiting for being woken up by 10028 * wake_up_new_task(). 10029 * - A task which has been woken up by try_to_wake_up() and 10030 * waiting for actually being woken up by sched_ttwu_pending(). 10031 */ 10032 if (!se->sum_exec_runtime || 10033 (p->state == TASK_WAKING && p->sched_remote_wakeup)) 10034 return true; 10035 10036 return false; 10037 } 10038 10039 #ifdef CONFIG_FAIR_GROUP_SCHED 10040 /* 10041 * Propagate the changes of the sched_entity across the tg tree to make it 10042 * visible to the root 10043 */ 10044 static void propagate_entity_cfs_rq(struct sched_entity *se) 10045 { 10046 struct cfs_rq *cfs_rq; 10047 10048 /* Start to propagate at parent */ 10049 se = se->parent; 10050 10051 for_each_sched_entity(se) { 10052 cfs_rq = cfs_rq_of(se); 10053 10054 if (cfs_rq_throttled(cfs_rq)) 10055 break; 10056 10057 update_load_avg(cfs_rq, se, UPDATE_TG); 10058 } 10059 } 10060 #else 10061 static void propagate_entity_cfs_rq(struct sched_entity *se) { } 10062 #endif 10063 10064 static void detach_entity_cfs_rq(struct sched_entity *se) 10065 { 10066 struct cfs_rq *cfs_rq = cfs_rq_of(se); 10067 10068 /* Catch up with the cfs_rq and remove our load when we leave */ 10069 update_load_avg(cfs_rq, se, 0); 10070 detach_entity_load_avg(cfs_rq, se); 10071 update_tg_load_avg(cfs_rq, false); 10072 propagate_entity_cfs_rq(se); 10073 } 10074 10075 static void attach_entity_cfs_rq(struct sched_entity *se) 10076 { 10077 struct cfs_rq *cfs_rq = cfs_rq_of(se); 10078 10079 #ifdef CONFIG_FAIR_GROUP_SCHED 10080 /* 10081 * Since the real-depth could have been changed (only FAIR 10082 * class maintain depth value), reset depth properly. 10083 */ 10084 se->depth = se->parent ? se->parent->depth + 1 : 0; 10085 #endif 10086 10087 /* Synchronize entity with its cfs_rq */ 10088 update_load_avg(cfs_rq, se, sched_feat(ATTACH_AGE_LOAD) ? 0 : SKIP_AGE_LOAD); 10089 attach_entity_load_avg(cfs_rq, se, 0); 10090 update_tg_load_avg(cfs_rq, false); 10091 propagate_entity_cfs_rq(se); 10092 } 10093 10094 static void detach_task_cfs_rq(struct task_struct *p) 10095 { 10096 struct sched_entity *se = &p->se; 10097 struct cfs_rq *cfs_rq = cfs_rq_of(se); 10098 10099 if (!vruntime_normalized(p)) { 10100 /* 10101 * Fix up our vruntime so that the current sleep doesn't 10102 * cause 'unlimited' sleep bonus. 10103 */ 10104 place_entity(cfs_rq, se, 0); 10105 se->vruntime -= cfs_rq->min_vruntime; 10106 } 10107 10108 detach_entity_cfs_rq(se); 10109 } 10110 10111 static void attach_task_cfs_rq(struct task_struct *p) 10112 { 10113 struct sched_entity *se = &p->se; 10114 struct cfs_rq *cfs_rq = cfs_rq_of(se); 10115 10116 attach_entity_cfs_rq(se); 10117 10118 if (!vruntime_normalized(p)) 10119 se->vruntime += cfs_rq->min_vruntime; 10120 } 10121 10122 static void switched_from_fair(struct rq *rq, struct task_struct *p) 10123 { 10124 detach_task_cfs_rq(p); 10125 } 10126 10127 static void switched_to_fair(struct rq *rq, struct task_struct *p) 10128 { 10129 attach_task_cfs_rq(p); 10130 10131 if (task_on_rq_queued(p)) { 10132 /* 10133 * We were most likely switched from sched_rt, so 10134 * kick off the schedule if running, otherwise just see 10135 * if we can still preempt the current task. 10136 */ 10137 if (rq->curr == p) 10138 resched_curr(rq); 10139 else 10140 check_preempt_curr(rq, p, 0); 10141 } 10142 } 10143 10144 /* Account for a task changing its policy or group. 10145 * 10146 * This routine is mostly called to set cfs_rq->curr field when a task 10147 * migrates between groups/classes. 10148 */ 10149 static void set_next_task_fair(struct rq *rq, struct task_struct *p) 10150 { 10151 struct sched_entity *se = &p->se; 10152 10153 #ifdef CONFIG_SMP 10154 if (task_on_rq_queued(p)) { 10155 /* 10156 * Move the next running task to the front of the list, so our 10157 * cfs_tasks list becomes MRU one. 10158 */ 10159 list_move(&se->group_node, &rq->cfs_tasks); 10160 } 10161 #endif 10162 10163 for_each_sched_entity(se) { 10164 struct cfs_rq *cfs_rq = cfs_rq_of(se); 10165 10166 set_next_entity(cfs_rq, se); 10167 /* ensure bandwidth has been allocated on our new cfs_rq */ 10168 account_cfs_rq_runtime(cfs_rq, 0); 10169 } 10170 } 10171 10172 void init_cfs_rq(struct cfs_rq *cfs_rq) 10173 { 10174 cfs_rq->tasks_timeline = RB_ROOT_CACHED; 10175 cfs_rq->min_vruntime = (u64)(-(1LL << 20)); 10176 #ifndef CONFIG_64BIT 10177 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime; 10178 #endif 10179 #ifdef CONFIG_SMP 10180 raw_spin_lock_init(&cfs_rq->removed.lock); 10181 #endif 10182 } 10183 10184 #ifdef CONFIG_FAIR_GROUP_SCHED 10185 static void task_set_group_fair(struct task_struct *p) 10186 { 10187 struct sched_entity *se = &p->se; 10188 10189 set_task_rq(p, task_cpu(p)); 10190 se->depth = se->parent ? se->parent->depth + 1 : 0; 10191 } 10192 10193 static void task_move_group_fair(struct task_struct *p) 10194 { 10195 detach_task_cfs_rq(p); 10196 set_task_rq(p, task_cpu(p)); 10197 10198 #ifdef CONFIG_SMP 10199 /* Tell se's cfs_rq has been changed -- migrated */ 10200 p->se.avg.last_update_time = 0; 10201 #endif 10202 attach_task_cfs_rq(p); 10203 } 10204 10205 static void task_change_group_fair(struct task_struct *p, int type) 10206 { 10207 switch (type) { 10208 case TASK_SET_GROUP: 10209 task_set_group_fair(p); 10210 break; 10211 10212 case TASK_MOVE_GROUP: 10213 task_move_group_fair(p); 10214 break; 10215 } 10216 } 10217 10218 void free_fair_sched_group(struct task_group *tg) 10219 { 10220 int i; 10221 10222 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg)); 10223 10224 for_each_possible_cpu(i) { 10225 if (tg->cfs_rq) 10226 kfree(tg->cfs_rq[i]); 10227 if (tg->se) 10228 kfree(tg->se[i]); 10229 } 10230 10231 kfree(tg->cfs_rq); 10232 kfree(tg->se); 10233 } 10234 10235 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent) 10236 { 10237 struct sched_entity *se; 10238 struct cfs_rq *cfs_rq; 10239 int i; 10240 10241 tg->cfs_rq = kcalloc(nr_cpu_ids, sizeof(cfs_rq), GFP_KERNEL); 10242 if (!tg->cfs_rq) 10243 goto err; 10244 tg->se = kcalloc(nr_cpu_ids, sizeof(se), GFP_KERNEL); 10245 if (!tg->se) 10246 goto err; 10247 10248 tg->shares = NICE_0_LOAD; 10249 10250 init_cfs_bandwidth(tg_cfs_bandwidth(tg)); 10251 10252 for_each_possible_cpu(i) { 10253 cfs_rq = kzalloc_node(sizeof(struct cfs_rq), 10254 GFP_KERNEL, cpu_to_node(i)); 10255 if (!cfs_rq) 10256 goto err; 10257 10258 se = kzalloc_node(sizeof(struct sched_entity), 10259 GFP_KERNEL, cpu_to_node(i)); 10260 if (!se) 10261 goto err_free_rq; 10262 10263 init_cfs_rq(cfs_rq); 10264 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]); 10265 init_entity_runnable_average(se); 10266 } 10267 10268 return 1; 10269 10270 err_free_rq: 10271 kfree(cfs_rq); 10272 err: 10273 return 0; 10274 } 10275 10276 void online_fair_sched_group(struct task_group *tg) 10277 { 10278 struct sched_entity *se; 10279 struct rq_flags rf; 10280 struct rq *rq; 10281 int i; 10282 10283 for_each_possible_cpu(i) { 10284 rq = cpu_rq(i); 10285 se = tg->se[i]; 10286 rq_lock_irq(rq, &rf); 10287 update_rq_clock(rq); 10288 attach_entity_cfs_rq(se); 10289 sync_throttle(tg, i); 10290 rq_unlock_irq(rq, &rf); 10291 } 10292 } 10293 10294 void unregister_fair_sched_group(struct task_group *tg) 10295 { 10296 unsigned long flags; 10297 struct rq *rq; 10298 int cpu; 10299 10300 for_each_possible_cpu(cpu) { 10301 if (tg->se[cpu]) 10302 remove_entity_load_avg(tg->se[cpu]); 10303 10304 /* 10305 * Only empty task groups can be destroyed; so we can speculatively 10306 * check on_list without danger of it being re-added. 10307 */ 10308 if (!tg->cfs_rq[cpu]->on_list) 10309 continue; 10310 10311 rq = cpu_rq(cpu); 10312 10313 raw_spin_lock_irqsave(&rq->lock, flags); 10314 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]); 10315 raw_spin_unlock_irqrestore(&rq->lock, flags); 10316 } 10317 } 10318 10319 void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq, 10320 struct sched_entity *se, int cpu, 10321 struct sched_entity *parent) 10322 { 10323 struct rq *rq = cpu_rq(cpu); 10324 10325 cfs_rq->tg = tg; 10326 cfs_rq->rq = rq; 10327 init_cfs_rq_runtime(cfs_rq); 10328 10329 tg->cfs_rq[cpu] = cfs_rq; 10330 tg->se[cpu] = se; 10331 10332 /* se could be NULL for root_task_group */ 10333 if (!se) 10334 return; 10335 10336 if (!parent) { 10337 se->cfs_rq = &rq->cfs; 10338 se->depth = 0; 10339 } else { 10340 se->cfs_rq = parent->my_q; 10341 se->depth = parent->depth + 1; 10342 } 10343 10344 se->my_q = cfs_rq; 10345 /* guarantee group entities always have weight */ 10346 update_load_set(&se->load, NICE_0_LOAD); 10347 se->parent = parent; 10348 } 10349 10350 static DEFINE_MUTEX(shares_mutex); 10351 10352 int sched_group_set_shares(struct task_group *tg, unsigned long shares) 10353 { 10354 int i; 10355 10356 /* 10357 * We can't change the weight of the root cgroup. 10358 */ 10359 if (!tg->se[0]) 10360 return -EINVAL; 10361 10362 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES)); 10363 10364 mutex_lock(&shares_mutex); 10365 if (tg->shares == shares) 10366 goto done; 10367 10368 tg->shares = shares; 10369 for_each_possible_cpu(i) { 10370 struct rq *rq = cpu_rq(i); 10371 struct sched_entity *se = tg->se[i]; 10372 struct rq_flags rf; 10373 10374 /* Propagate contribution to hierarchy */ 10375 rq_lock_irqsave(rq, &rf); 10376 update_rq_clock(rq); 10377 for_each_sched_entity(se) { 10378 update_load_avg(cfs_rq_of(se), se, UPDATE_TG); 10379 update_cfs_group(se); 10380 } 10381 rq_unlock_irqrestore(rq, &rf); 10382 } 10383 10384 done: 10385 mutex_unlock(&shares_mutex); 10386 return 0; 10387 } 10388 #else /* CONFIG_FAIR_GROUP_SCHED */ 10389 10390 void free_fair_sched_group(struct task_group *tg) { } 10391 10392 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent) 10393 { 10394 return 1; 10395 } 10396 10397 void online_fair_sched_group(struct task_group *tg) { } 10398 10399 void unregister_fair_sched_group(struct task_group *tg) { } 10400 10401 #endif /* CONFIG_FAIR_GROUP_SCHED */ 10402 10403 10404 static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task) 10405 { 10406 struct sched_entity *se = &task->se; 10407 unsigned int rr_interval = 0; 10408 10409 /* 10410 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise 10411 * idle runqueue: 10412 */ 10413 if (rq->cfs.load.weight) 10414 rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se)); 10415 10416 return rr_interval; 10417 } 10418 10419 /* 10420 * All the scheduling class methods: 10421 */ 10422 const struct sched_class fair_sched_class = { 10423 .next = &idle_sched_class, 10424 .enqueue_task = enqueue_task_fair, 10425 .dequeue_task = dequeue_task_fair, 10426 .yield_task = yield_task_fair, 10427 .yield_to_task = yield_to_task_fair, 10428 10429 .check_preempt_curr = check_preempt_wakeup, 10430 10431 .pick_next_task = pick_next_task_fair, 10432 10433 .put_prev_task = put_prev_task_fair, 10434 .set_next_task = set_next_task_fair, 10435 10436 #ifdef CONFIG_SMP 10437 .select_task_rq = select_task_rq_fair, 10438 .migrate_task_rq = migrate_task_rq_fair, 10439 10440 .rq_online = rq_online_fair, 10441 .rq_offline = rq_offline_fair, 10442 10443 .task_dead = task_dead_fair, 10444 .set_cpus_allowed = set_cpus_allowed_common, 10445 #endif 10446 10447 .task_tick = task_tick_fair, 10448 .task_fork = task_fork_fair, 10449 10450 .prio_changed = prio_changed_fair, 10451 .switched_from = switched_from_fair, 10452 .switched_to = switched_to_fair, 10453 10454 .get_rr_interval = get_rr_interval_fair, 10455 10456 .update_curr = update_curr_fair, 10457 10458 #ifdef CONFIG_FAIR_GROUP_SCHED 10459 .task_change_group = task_change_group_fair, 10460 #endif 10461 10462 #ifdef CONFIG_UCLAMP_TASK 10463 .uclamp_enabled = 1, 10464 #endif 10465 }; 10466 10467 #ifdef CONFIG_SCHED_DEBUG 10468 void print_cfs_stats(struct seq_file *m, int cpu) 10469 { 10470 struct cfs_rq *cfs_rq, *pos; 10471 10472 rcu_read_lock(); 10473 for_each_leaf_cfs_rq_safe(cpu_rq(cpu), cfs_rq, pos) 10474 print_cfs_rq(m, cpu, cfs_rq); 10475 rcu_read_unlock(); 10476 } 10477 10478 #ifdef CONFIG_NUMA_BALANCING 10479 void show_numa_stats(struct task_struct *p, struct seq_file *m) 10480 { 10481 int node; 10482 unsigned long tsf = 0, tpf = 0, gsf = 0, gpf = 0; 10483 struct numa_group *ng; 10484 10485 rcu_read_lock(); 10486 ng = rcu_dereference(p->numa_group); 10487 for_each_online_node(node) { 10488 if (p->numa_faults) { 10489 tsf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 0)]; 10490 tpf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 1)]; 10491 } 10492 if (ng) { 10493 gsf = ng->faults[task_faults_idx(NUMA_MEM, node, 0)], 10494 gpf = ng->faults[task_faults_idx(NUMA_MEM, node, 1)]; 10495 } 10496 print_numa_stats(m, node, tsf, tpf, gsf, gpf); 10497 } 10498 rcu_read_unlock(); 10499 } 10500 #endif /* CONFIG_NUMA_BALANCING */ 10501 #endif /* CONFIG_SCHED_DEBUG */ 10502 10503 __init void init_sched_fair_class(void) 10504 { 10505 #ifdef CONFIG_SMP 10506 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains); 10507 10508 #ifdef CONFIG_NO_HZ_COMMON 10509 nohz.next_balance = jiffies; 10510 nohz.next_blocked = jiffies; 10511 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT); 10512 #endif 10513 #endif /* SMP */ 10514 10515 } 10516 10517 /* 10518 * Helper functions to facilitate extracting info from tracepoints. 10519 */ 10520 10521 const struct sched_avg *sched_trace_cfs_rq_avg(struct cfs_rq *cfs_rq) 10522 { 10523 #ifdef CONFIG_SMP 10524 return cfs_rq ? &cfs_rq->avg : NULL; 10525 #else 10526 return NULL; 10527 #endif 10528 } 10529 EXPORT_SYMBOL_GPL(sched_trace_cfs_rq_avg); 10530 10531 char *sched_trace_cfs_rq_path(struct cfs_rq *cfs_rq, char *str, int len) 10532 { 10533 if (!cfs_rq) { 10534 if (str) 10535 strlcpy(str, "(null)", len); 10536 else 10537 return NULL; 10538 } 10539 10540 cfs_rq_tg_path(cfs_rq, str, len); 10541 return str; 10542 } 10543 EXPORT_SYMBOL_GPL(sched_trace_cfs_rq_path); 10544 10545 int sched_trace_cfs_rq_cpu(struct cfs_rq *cfs_rq) 10546 { 10547 return cfs_rq ? cpu_of(rq_of(cfs_rq)) : -1; 10548 } 10549 EXPORT_SYMBOL_GPL(sched_trace_cfs_rq_cpu); 10550 10551 const struct sched_avg *sched_trace_rq_avg_rt(struct rq *rq) 10552 { 10553 #ifdef CONFIG_SMP 10554 return rq ? &rq->avg_rt : NULL; 10555 #else 10556 return NULL; 10557 #endif 10558 } 10559 EXPORT_SYMBOL_GPL(sched_trace_rq_avg_rt); 10560 10561 const struct sched_avg *sched_trace_rq_avg_dl(struct rq *rq) 10562 { 10563 #ifdef CONFIG_SMP 10564 return rq ? &rq->avg_dl : NULL; 10565 #else 10566 return NULL; 10567 #endif 10568 } 10569 EXPORT_SYMBOL_GPL(sched_trace_rq_avg_dl); 10570 10571 const struct sched_avg *sched_trace_rq_avg_irq(struct rq *rq) 10572 { 10573 #if defined(CONFIG_SMP) && defined(CONFIG_HAVE_SCHED_AVG_IRQ) 10574 return rq ? &rq->avg_irq : NULL; 10575 #else 10576 return NULL; 10577 #endif 10578 } 10579 EXPORT_SYMBOL_GPL(sched_trace_rq_avg_irq); 10580 10581 int sched_trace_rq_cpu(struct rq *rq) 10582 { 10583 return rq ? cpu_of(rq) : -1; 10584 } 10585 EXPORT_SYMBOL_GPL(sched_trace_rq_cpu); 10586 10587 const struct cpumask *sched_trace_rd_span(struct root_domain *rd) 10588 { 10589 #ifdef CONFIG_SMP 10590 return rd ? rd->span : NULL; 10591 #else 10592 return NULL; 10593 #endif 10594 } 10595 EXPORT_SYMBOL_GPL(sched_trace_rd_span); 10596