1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH) 4 * 5 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com> 6 * 7 * Interactivity improvements by Mike Galbraith 8 * (C) 2007 Mike Galbraith <efault@gmx.de> 9 * 10 * Various enhancements by Dmitry Adamushko. 11 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com> 12 * 13 * Group scheduling enhancements by Srivatsa Vaddagiri 14 * Copyright IBM Corporation, 2007 15 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com> 16 * 17 * Scaled math optimizations by Thomas Gleixner 18 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de> 19 * 20 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra 21 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra 22 */ 23 #include "sched.h" 24 25 #include <trace/events/sched.h> 26 27 /* 28 * Targeted preemption latency for CPU-bound tasks: 29 * 30 * NOTE: this latency value is not the same as the concept of 31 * 'timeslice length' - timeslices in CFS are of variable length 32 * and have no persistent notion like in traditional, time-slice 33 * based scheduling concepts. 34 * 35 * (to see the precise effective timeslice length of your workload, 36 * run vmstat and monitor the context-switches (cs) field) 37 * 38 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds) 39 */ 40 unsigned int sysctl_sched_latency = 6000000ULL; 41 static unsigned int normalized_sysctl_sched_latency = 6000000ULL; 42 43 /* 44 * The initial- and re-scaling of tunables is configurable 45 * 46 * Options are: 47 * 48 * SCHED_TUNABLESCALING_NONE - unscaled, always *1 49 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus) 50 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus 51 * 52 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus)) 53 */ 54 enum sched_tunable_scaling sysctl_sched_tunable_scaling = SCHED_TUNABLESCALING_LOG; 55 56 /* 57 * Minimal preemption granularity for CPU-bound tasks: 58 * 59 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds) 60 */ 61 unsigned int sysctl_sched_min_granularity = 750000ULL; 62 static unsigned int normalized_sysctl_sched_min_granularity = 750000ULL; 63 64 /* 65 * This value is kept at sysctl_sched_latency/sysctl_sched_min_granularity 66 */ 67 static unsigned int sched_nr_latency = 8; 68 69 /* 70 * After fork, child runs first. If set to 0 (default) then 71 * parent will (try to) run first. 72 */ 73 unsigned int sysctl_sched_child_runs_first __read_mostly; 74 75 /* 76 * SCHED_OTHER wake-up granularity. 77 * 78 * This option delays the preemption effects of decoupled workloads 79 * and reduces their over-scheduling. Synchronous workloads will still 80 * have immediate wakeup/sleep latencies. 81 * 82 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds) 83 */ 84 unsigned int sysctl_sched_wakeup_granularity = 1000000UL; 85 static unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL; 86 87 const_debug unsigned int sysctl_sched_migration_cost = 500000UL; 88 89 #ifdef CONFIG_SMP 90 /* 91 * For asym packing, by default the lower numbered CPU has higher priority. 92 */ 93 int __weak arch_asym_cpu_priority(int cpu) 94 { 95 return -cpu; 96 } 97 98 /* 99 * The margin used when comparing utilization with CPU capacity: 100 * util * margin < capacity * 1024 101 * 102 * (default: ~20%) 103 */ 104 static unsigned int capacity_margin = 1280; 105 #endif 106 107 #ifdef CONFIG_CFS_BANDWIDTH 108 /* 109 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool 110 * each time a cfs_rq requests quota. 111 * 112 * Note: in the case that the slice exceeds the runtime remaining (either due 113 * to consumption or the quota being specified to be smaller than the slice) 114 * we will always only issue the remaining available time. 115 * 116 * (default: 5 msec, units: microseconds) 117 */ 118 unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL; 119 #endif 120 121 static inline void update_load_add(struct load_weight *lw, unsigned long inc) 122 { 123 lw->weight += inc; 124 lw->inv_weight = 0; 125 } 126 127 static inline void update_load_sub(struct load_weight *lw, unsigned long dec) 128 { 129 lw->weight -= dec; 130 lw->inv_weight = 0; 131 } 132 133 static inline void update_load_set(struct load_weight *lw, unsigned long w) 134 { 135 lw->weight = w; 136 lw->inv_weight = 0; 137 } 138 139 /* 140 * Increase the granularity value when there are more CPUs, 141 * because with more CPUs the 'effective latency' as visible 142 * to users decreases. But the relationship is not linear, 143 * so pick a second-best guess by going with the log2 of the 144 * number of CPUs. 145 * 146 * This idea comes from the SD scheduler of Con Kolivas: 147 */ 148 static unsigned int get_update_sysctl_factor(void) 149 { 150 unsigned int cpus = min_t(unsigned int, num_online_cpus(), 8); 151 unsigned int factor; 152 153 switch (sysctl_sched_tunable_scaling) { 154 case SCHED_TUNABLESCALING_NONE: 155 factor = 1; 156 break; 157 case SCHED_TUNABLESCALING_LINEAR: 158 factor = cpus; 159 break; 160 case SCHED_TUNABLESCALING_LOG: 161 default: 162 factor = 1 + ilog2(cpus); 163 break; 164 } 165 166 return factor; 167 } 168 169 static void update_sysctl(void) 170 { 171 unsigned int factor = get_update_sysctl_factor(); 172 173 #define SET_SYSCTL(name) \ 174 (sysctl_##name = (factor) * normalized_sysctl_##name) 175 SET_SYSCTL(sched_min_granularity); 176 SET_SYSCTL(sched_latency); 177 SET_SYSCTL(sched_wakeup_granularity); 178 #undef SET_SYSCTL 179 } 180 181 void sched_init_granularity(void) 182 { 183 update_sysctl(); 184 } 185 186 #define WMULT_CONST (~0U) 187 #define WMULT_SHIFT 32 188 189 static void __update_inv_weight(struct load_weight *lw) 190 { 191 unsigned long w; 192 193 if (likely(lw->inv_weight)) 194 return; 195 196 w = scale_load_down(lw->weight); 197 198 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST)) 199 lw->inv_weight = 1; 200 else if (unlikely(!w)) 201 lw->inv_weight = WMULT_CONST; 202 else 203 lw->inv_weight = WMULT_CONST / w; 204 } 205 206 /* 207 * delta_exec * weight / lw.weight 208 * OR 209 * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT 210 * 211 * Either weight := NICE_0_LOAD and lw \e sched_prio_to_wmult[], in which case 212 * we're guaranteed shift stays positive because inv_weight is guaranteed to 213 * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22. 214 * 215 * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus 216 * weight/lw.weight <= 1, and therefore our shift will also be positive. 217 */ 218 static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw) 219 { 220 u64 fact = scale_load_down(weight); 221 int shift = WMULT_SHIFT; 222 223 __update_inv_weight(lw); 224 225 if (unlikely(fact >> 32)) { 226 while (fact >> 32) { 227 fact >>= 1; 228 shift--; 229 } 230 } 231 232 /* hint to use a 32x32->64 mul */ 233 fact = (u64)(u32)fact * lw->inv_weight; 234 235 while (fact >> 32) { 236 fact >>= 1; 237 shift--; 238 } 239 240 return mul_u64_u32_shr(delta_exec, fact, shift); 241 } 242 243 244 const struct sched_class fair_sched_class; 245 246 /************************************************************** 247 * CFS operations on generic schedulable entities: 248 */ 249 250 #ifdef CONFIG_FAIR_GROUP_SCHED 251 static inline struct task_struct *task_of(struct sched_entity *se) 252 { 253 SCHED_WARN_ON(!entity_is_task(se)); 254 return container_of(se, struct task_struct, se); 255 } 256 257 /* Walk up scheduling entities hierarchy */ 258 #define for_each_sched_entity(se) \ 259 for (; se; se = se->parent) 260 261 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p) 262 { 263 return p->se.cfs_rq; 264 } 265 266 /* runqueue on which this entity is (to be) queued */ 267 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se) 268 { 269 return se->cfs_rq; 270 } 271 272 /* runqueue "owned" by this group */ 273 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp) 274 { 275 return grp->my_q; 276 } 277 278 static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq) 279 { 280 struct rq *rq = rq_of(cfs_rq); 281 int cpu = cpu_of(rq); 282 283 if (cfs_rq->on_list) 284 return rq->tmp_alone_branch == &rq->leaf_cfs_rq_list; 285 286 cfs_rq->on_list = 1; 287 288 /* 289 * Ensure we either appear before our parent (if already 290 * enqueued) or force our parent to appear after us when it is 291 * enqueued. The fact that we always enqueue bottom-up 292 * reduces this to two cases and a special case for the root 293 * cfs_rq. Furthermore, it also means that we will always reset 294 * tmp_alone_branch either when the branch is connected 295 * to a tree or when we reach the top of the tree 296 */ 297 if (cfs_rq->tg->parent && 298 cfs_rq->tg->parent->cfs_rq[cpu]->on_list) { 299 /* 300 * If parent is already on the list, we add the child 301 * just before. Thanks to circular linked property of 302 * the list, this means to put the child at the tail 303 * of the list that starts by parent. 304 */ 305 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list, 306 &(cfs_rq->tg->parent->cfs_rq[cpu]->leaf_cfs_rq_list)); 307 /* 308 * The branch is now connected to its tree so we can 309 * reset tmp_alone_branch to the beginning of the 310 * list. 311 */ 312 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list; 313 return true; 314 } 315 316 if (!cfs_rq->tg->parent) { 317 /* 318 * cfs rq without parent should be put 319 * at the tail of the list. 320 */ 321 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list, 322 &rq->leaf_cfs_rq_list); 323 /* 324 * We have reach the top of a tree so we can reset 325 * tmp_alone_branch to the beginning of the list. 326 */ 327 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list; 328 return true; 329 } 330 331 /* 332 * The parent has not already been added so we want to 333 * make sure that it will be put after us. 334 * tmp_alone_branch points to the begin of the branch 335 * where we will add parent. 336 */ 337 list_add_rcu(&cfs_rq->leaf_cfs_rq_list, rq->tmp_alone_branch); 338 /* 339 * update tmp_alone_branch to points to the new begin 340 * of the branch 341 */ 342 rq->tmp_alone_branch = &cfs_rq->leaf_cfs_rq_list; 343 return false; 344 } 345 346 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq) 347 { 348 if (cfs_rq->on_list) { 349 struct rq *rq = rq_of(cfs_rq); 350 351 /* 352 * With cfs_rq being unthrottled/throttled during an enqueue, 353 * it can happen the tmp_alone_branch points the a leaf that 354 * we finally want to del. In this case, tmp_alone_branch moves 355 * to the prev element but it will point to rq->leaf_cfs_rq_list 356 * at the end of the enqueue. 357 */ 358 if (rq->tmp_alone_branch == &cfs_rq->leaf_cfs_rq_list) 359 rq->tmp_alone_branch = cfs_rq->leaf_cfs_rq_list.prev; 360 361 list_del_rcu(&cfs_rq->leaf_cfs_rq_list); 362 cfs_rq->on_list = 0; 363 } 364 } 365 366 static inline void assert_list_leaf_cfs_rq(struct rq *rq) 367 { 368 SCHED_WARN_ON(rq->tmp_alone_branch != &rq->leaf_cfs_rq_list); 369 } 370 371 /* Iterate thr' all leaf cfs_rq's on a runqueue */ 372 #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) \ 373 list_for_each_entry_safe(cfs_rq, pos, &rq->leaf_cfs_rq_list, \ 374 leaf_cfs_rq_list) 375 376 /* Do the two (enqueued) entities belong to the same group ? */ 377 static inline struct cfs_rq * 378 is_same_group(struct sched_entity *se, struct sched_entity *pse) 379 { 380 if (se->cfs_rq == pse->cfs_rq) 381 return se->cfs_rq; 382 383 return NULL; 384 } 385 386 static inline struct sched_entity *parent_entity(struct sched_entity *se) 387 { 388 return se->parent; 389 } 390 391 static void 392 find_matching_se(struct sched_entity **se, struct sched_entity **pse) 393 { 394 int se_depth, pse_depth; 395 396 /* 397 * preemption test can be made between sibling entities who are in the 398 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of 399 * both tasks until we find their ancestors who are siblings of common 400 * parent. 401 */ 402 403 /* First walk up until both entities are at same depth */ 404 se_depth = (*se)->depth; 405 pse_depth = (*pse)->depth; 406 407 while (se_depth > pse_depth) { 408 se_depth--; 409 *se = parent_entity(*se); 410 } 411 412 while (pse_depth > se_depth) { 413 pse_depth--; 414 *pse = parent_entity(*pse); 415 } 416 417 while (!is_same_group(*se, *pse)) { 418 *se = parent_entity(*se); 419 *pse = parent_entity(*pse); 420 } 421 } 422 423 #else /* !CONFIG_FAIR_GROUP_SCHED */ 424 425 static inline struct task_struct *task_of(struct sched_entity *se) 426 { 427 return container_of(se, struct task_struct, se); 428 } 429 430 #define for_each_sched_entity(se) \ 431 for (; se; se = NULL) 432 433 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p) 434 { 435 return &task_rq(p)->cfs; 436 } 437 438 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se) 439 { 440 struct task_struct *p = task_of(se); 441 struct rq *rq = task_rq(p); 442 443 return &rq->cfs; 444 } 445 446 /* runqueue "owned" by this group */ 447 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp) 448 { 449 return NULL; 450 } 451 452 static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq) 453 { 454 return true; 455 } 456 457 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq) 458 { 459 } 460 461 static inline void assert_list_leaf_cfs_rq(struct rq *rq) 462 { 463 } 464 465 #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) \ 466 for (cfs_rq = &rq->cfs, pos = NULL; cfs_rq; cfs_rq = pos) 467 468 static inline struct sched_entity *parent_entity(struct sched_entity *se) 469 { 470 return NULL; 471 } 472 473 static inline void 474 find_matching_se(struct sched_entity **se, struct sched_entity **pse) 475 { 476 } 477 478 #endif /* CONFIG_FAIR_GROUP_SCHED */ 479 480 static __always_inline 481 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec); 482 483 /************************************************************** 484 * Scheduling class tree data structure manipulation methods: 485 */ 486 487 static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime) 488 { 489 s64 delta = (s64)(vruntime - max_vruntime); 490 if (delta > 0) 491 max_vruntime = vruntime; 492 493 return max_vruntime; 494 } 495 496 static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime) 497 { 498 s64 delta = (s64)(vruntime - min_vruntime); 499 if (delta < 0) 500 min_vruntime = vruntime; 501 502 return min_vruntime; 503 } 504 505 static inline int entity_before(struct sched_entity *a, 506 struct sched_entity *b) 507 { 508 return (s64)(a->vruntime - b->vruntime) < 0; 509 } 510 511 static void update_min_vruntime(struct cfs_rq *cfs_rq) 512 { 513 struct sched_entity *curr = cfs_rq->curr; 514 struct rb_node *leftmost = rb_first_cached(&cfs_rq->tasks_timeline); 515 516 u64 vruntime = cfs_rq->min_vruntime; 517 518 if (curr) { 519 if (curr->on_rq) 520 vruntime = curr->vruntime; 521 else 522 curr = NULL; 523 } 524 525 if (leftmost) { /* non-empty tree */ 526 struct sched_entity *se; 527 se = rb_entry(leftmost, struct sched_entity, run_node); 528 529 if (!curr) 530 vruntime = se->vruntime; 531 else 532 vruntime = min_vruntime(vruntime, se->vruntime); 533 } 534 535 /* ensure we never gain time by being placed backwards. */ 536 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime); 537 #ifndef CONFIG_64BIT 538 smp_wmb(); 539 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime; 540 #endif 541 } 542 543 /* 544 * Enqueue an entity into the rb-tree: 545 */ 546 static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) 547 { 548 struct rb_node **link = &cfs_rq->tasks_timeline.rb_root.rb_node; 549 struct rb_node *parent = NULL; 550 struct sched_entity *entry; 551 bool leftmost = true; 552 553 /* 554 * Find the right place in the rbtree: 555 */ 556 while (*link) { 557 parent = *link; 558 entry = rb_entry(parent, struct sched_entity, run_node); 559 /* 560 * We dont care about collisions. Nodes with 561 * the same key stay together. 562 */ 563 if (entity_before(se, entry)) { 564 link = &parent->rb_left; 565 } else { 566 link = &parent->rb_right; 567 leftmost = false; 568 } 569 } 570 571 rb_link_node(&se->run_node, parent, link); 572 rb_insert_color_cached(&se->run_node, 573 &cfs_rq->tasks_timeline, leftmost); 574 } 575 576 static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) 577 { 578 rb_erase_cached(&se->run_node, &cfs_rq->tasks_timeline); 579 } 580 581 struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq) 582 { 583 struct rb_node *left = rb_first_cached(&cfs_rq->tasks_timeline); 584 585 if (!left) 586 return NULL; 587 588 return rb_entry(left, struct sched_entity, run_node); 589 } 590 591 static struct sched_entity *__pick_next_entity(struct sched_entity *se) 592 { 593 struct rb_node *next = rb_next(&se->run_node); 594 595 if (!next) 596 return NULL; 597 598 return rb_entry(next, struct sched_entity, run_node); 599 } 600 601 #ifdef CONFIG_SCHED_DEBUG 602 struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq) 603 { 604 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline.rb_root); 605 606 if (!last) 607 return NULL; 608 609 return rb_entry(last, struct sched_entity, run_node); 610 } 611 612 /************************************************************** 613 * Scheduling class statistics methods: 614 */ 615 616 int sched_proc_update_handler(struct ctl_table *table, int write, 617 void __user *buffer, size_t *lenp, 618 loff_t *ppos) 619 { 620 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 621 unsigned int factor = get_update_sysctl_factor(); 622 623 if (ret || !write) 624 return ret; 625 626 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency, 627 sysctl_sched_min_granularity); 628 629 #define WRT_SYSCTL(name) \ 630 (normalized_sysctl_##name = sysctl_##name / (factor)) 631 WRT_SYSCTL(sched_min_granularity); 632 WRT_SYSCTL(sched_latency); 633 WRT_SYSCTL(sched_wakeup_granularity); 634 #undef WRT_SYSCTL 635 636 return 0; 637 } 638 #endif 639 640 /* 641 * delta /= w 642 */ 643 static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se) 644 { 645 if (unlikely(se->load.weight != NICE_0_LOAD)) 646 delta = __calc_delta(delta, NICE_0_LOAD, &se->load); 647 648 return delta; 649 } 650 651 /* 652 * The idea is to set a period in which each task runs once. 653 * 654 * When there are too many tasks (sched_nr_latency) we have to stretch 655 * this period because otherwise the slices get too small. 656 * 657 * p = (nr <= nl) ? l : l*nr/nl 658 */ 659 static u64 __sched_period(unsigned long nr_running) 660 { 661 if (unlikely(nr_running > sched_nr_latency)) 662 return nr_running * sysctl_sched_min_granularity; 663 else 664 return sysctl_sched_latency; 665 } 666 667 /* 668 * We calculate the wall-time slice from the period by taking a part 669 * proportional to the weight. 670 * 671 * s = p*P[w/rw] 672 */ 673 static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se) 674 { 675 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq); 676 677 for_each_sched_entity(se) { 678 struct load_weight *load; 679 struct load_weight lw; 680 681 cfs_rq = cfs_rq_of(se); 682 load = &cfs_rq->load; 683 684 if (unlikely(!se->on_rq)) { 685 lw = cfs_rq->load; 686 687 update_load_add(&lw, se->load.weight); 688 load = &lw; 689 } 690 slice = __calc_delta(slice, se->load.weight, load); 691 } 692 return slice; 693 } 694 695 /* 696 * We calculate the vruntime slice of a to-be-inserted task. 697 * 698 * vs = s/w 699 */ 700 static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se) 701 { 702 return calc_delta_fair(sched_slice(cfs_rq, se), se); 703 } 704 705 #include "pelt.h" 706 #ifdef CONFIG_SMP 707 708 static int select_idle_sibling(struct task_struct *p, int prev_cpu, int cpu); 709 static unsigned long task_h_load(struct task_struct *p); 710 static unsigned long capacity_of(int cpu); 711 712 /* Give new sched_entity start runnable values to heavy its load in infant time */ 713 void init_entity_runnable_average(struct sched_entity *se) 714 { 715 struct sched_avg *sa = &se->avg; 716 717 memset(sa, 0, sizeof(*sa)); 718 719 /* 720 * Tasks are initialized with full load to be seen as heavy tasks until 721 * they get a chance to stabilize to their real load level. 722 * Group entities are initialized with zero load to reflect the fact that 723 * nothing has been attached to the task group yet. 724 */ 725 if (entity_is_task(se)) 726 sa->runnable_load_avg = sa->load_avg = scale_load_down(se->load.weight); 727 728 se->runnable_weight = se->load.weight; 729 730 /* when this task enqueue'ed, it will contribute to its cfs_rq's load_avg */ 731 } 732 733 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq); 734 static void attach_entity_cfs_rq(struct sched_entity *se); 735 736 /* 737 * With new tasks being created, their initial util_avgs are extrapolated 738 * based on the cfs_rq's current util_avg: 739 * 740 * util_avg = cfs_rq->util_avg / (cfs_rq->load_avg + 1) * se.load.weight 741 * 742 * However, in many cases, the above util_avg does not give a desired 743 * value. Moreover, the sum of the util_avgs may be divergent, such 744 * as when the series is a harmonic series. 745 * 746 * To solve this problem, we also cap the util_avg of successive tasks to 747 * only 1/2 of the left utilization budget: 748 * 749 * util_avg_cap = (cpu_scale - cfs_rq->avg.util_avg) / 2^n 750 * 751 * where n denotes the nth task and cpu_scale the CPU capacity. 752 * 753 * For example, for a CPU with 1024 of capacity, a simplest series from 754 * the beginning would be like: 755 * 756 * task util_avg: 512, 256, 128, 64, 32, 16, 8, ... 757 * cfs_rq util_avg: 512, 768, 896, 960, 992, 1008, 1016, ... 758 * 759 * Finally, that extrapolated util_avg is clamped to the cap (util_avg_cap) 760 * if util_avg > util_avg_cap. 761 */ 762 void post_init_entity_util_avg(struct task_struct *p) 763 { 764 struct sched_entity *se = &p->se; 765 struct cfs_rq *cfs_rq = cfs_rq_of(se); 766 struct sched_avg *sa = &se->avg; 767 long cpu_scale = arch_scale_cpu_capacity(NULL, cpu_of(rq_of(cfs_rq))); 768 long cap = (long)(cpu_scale - cfs_rq->avg.util_avg) / 2; 769 770 if (cap > 0) { 771 if (cfs_rq->avg.util_avg != 0) { 772 sa->util_avg = cfs_rq->avg.util_avg * se->load.weight; 773 sa->util_avg /= (cfs_rq->avg.load_avg + 1); 774 775 if (sa->util_avg > cap) 776 sa->util_avg = cap; 777 } else { 778 sa->util_avg = cap; 779 } 780 } 781 782 if (p->sched_class != &fair_sched_class) { 783 /* 784 * For !fair tasks do: 785 * 786 update_cfs_rq_load_avg(now, cfs_rq); 787 attach_entity_load_avg(cfs_rq, se, 0); 788 switched_from_fair(rq, p); 789 * 790 * such that the next switched_to_fair() has the 791 * expected state. 792 */ 793 se->avg.last_update_time = cfs_rq_clock_pelt(cfs_rq); 794 return; 795 } 796 797 attach_entity_cfs_rq(se); 798 } 799 800 #else /* !CONFIG_SMP */ 801 void init_entity_runnable_average(struct sched_entity *se) 802 { 803 } 804 void post_init_entity_util_avg(struct task_struct *p) 805 { 806 } 807 static void update_tg_load_avg(struct cfs_rq *cfs_rq, int force) 808 { 809 } 810 #endif /* CONFIG_SMP */ 811 812 /* 813 * Update the current task's runtime statistics. 814 */ 815 static void update_curr(struct cfs_rq *cfs_rq) 816 { 817 struct sched_entity *curr = cfs_rq->curr; 818 u64 now = rq_clock_task(rq_of(cfs_rq)); 819 u64 delta_exec; 820 821 if (unlikely(!curr)) 822 return; 823 824 delta_exec = now - curr->exec_start; 825 if (unlikely((s64)delta_exec <= 0)) 826 return; 827 828 curr->exec_start = now; 829 830 schedstat_set(curr->statistics.exec_max, 831 max(delta_exec, curr->statistics.exec_max)); 832 833 curr->sum_exec_runtime += delta_exec; 834 schedstat_add(cfs_rq->exec_clock, delta_exec); 835 836 curr->vruntime += calc_delta_fair(delta_exec, curr); 837 update_min_vruntime(cfs_rq); 838 839 if (entity_is_task(curr)) { 840 struct task_struct *curtask = task_of(curr); 841 842 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime); 843 cgroup_account_cputime(curtask, delta_exec); 844 account_group_exec_runtime(curtask, delta_exec); 845 } 846 847 account_cfs_rq_runtime(cfs_rq, delta_exec); 848 } 849 850 static void update_curr_fair(struct rq *rq) 851 { 852 update_curr(cfs_rq_of(&rq->curr->se)); 853 } 854 855 static inline void 856 update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se) 857 { 858 u64 wait_start, prev_wait_start; 859 860 if (!schedstat_enabled()) 861 return; 862 863 wait_start = rq_clock(rq_of(cfs_rq)); 864 prev_wait_start = schedstat_val(se->statistics.wait_start); 865 866 if (entity_is_task(se) && task_on_rq_migrating(task_of(se)) && 867 likely(wait_start > prev_wait_start)) 868 wait_start -= prev_wait_start; 869 870 __schedstat_set(se->statistics.wait_start, wait_start); 871 } 872 873 static inline void 874 update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se) 875 { 876 struct task_struct *p; 877 u64 delta; 878 879 if (!schedstat_enabled()) 880 return; 881 882 delta = rq_clock(rq_of(cfs_rq)) - schedstat_val(se->statistics.wait_start); 883 884 if (entity_is_task(se)) { 885 p = task_of(se); 886 if (task_on_rq_migrating(p)) { 887 /* 888 * Preserve migrating task's wait time so wait_start 889 * time stamp can be adjusted to accumulate wait time 890 * prior to migration. 891 */ 892 __schedstat_set(se->statistics.wait_start, delta); 893 return; 894 } 895 trace_sched_stat_wait(p, delta); 896 } 897 898 __schedstat_set(se->statistics.wait_max, 899 max(schedstat_val(se->statistics.wait_max), delta)); 900 __schedstat_inc(se->statistics.wait_count); 901 __schedstat_add(se->statistics.wait_sum, delta); 902 __schedstat_set(se->statistics.wait_start, 0); 903 } 904 905 static inline void 906 update_stats_enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se) 907 { 908 struct task_struct *tsk = NULL; 909 u64 sleep_start, block_start; 910 911 if (!schedstat_enabled()) 912 return; 913 914 sleep_start = schedstat_val(se->statistics.sleep_start); 915 block_start = schedstat_val(se->statistics.block_start); 916 917 if (entity_is_task(se)) 918 tsk = task_of(se); 919 920 if (sleep_start) { 921 u64 delta = rq_clock(rq_of(cfs_rq)) - sleep_start; 922 923 if ((s64)delta < 0) 924 delta = 0; 925 926 if (unlikely(delta > schedstat_val(se->statistics.sleep_max))) 927 __schedstat_set(se->statistics.sleep_max, delta); 928 929 __schedstat_set(se->statistics.sleep_start, 0); 930 __schedstat_add(se->statistics.sum_sleep_runtime, delta); 931 932 if (tsk) { 933 account_scheduler_latency(tsk, delta >> 10, 1); 934 trace_sched_stat_sleep(tsk, delta); 935 } 936 } 937 if (block_start) { 938 u64 delta = rq_clock(rq_of(cfs_rq)) - block_start; 939 940 if ((s64)delta < 0) 941 delta = 0; 942 943 if (unlikely(delta > schedstat_val(se->statistics.block_max))) 944 __schedstat_set(se->statistics.block_max, delta); 945 946 __schedstat_set(se->statistics.block_start, 0); 947 __schedstat_add(se->statistics.sum_sleep_runtime, delta); 948 949 if (tsk) { 950 if (tsk->in_iowait) { 951 __schedstat_add(se->statistics.iowait_sum, delta); 952 __schedstat_inc(se->statistics.iowait_count); 953 trace_sched_stat_iowait(tsk, delta); 954 } 955 956 trace_sched_stat_blocked(tsk, delta); 957 958 /* 959 * Blocking time is in units of nanosecs, so shift by 960 * 20 to get a milliseconds-range estimation of the 961 * amount of time that the task spent sleeping: 962 */ 963 if (unlikely(prof_on == SLEEP_PROFILING)) { 964 profile_hits(SLEEP_PROFILING, 965 (void *)get_wchan(tsk), 966 delta >> 20); 967 } 968 account_scheduler_latency(tsk, delta >> 10, 0); 969 } 970 } 971 } 972 973 /* 974 * Task is being enqueued - update stats: 975 */ 976 static inline void 977 update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 978 { 979 if (!schedstat_enabled()) 980 return; 981 982 /* 983 * Are we enqueueing a waiting task? (for current tasks 984 * a dequeue/enqueue event is a NOP) 985 */ 986 if (se != cfs_rq->curr) 987 update_stats_wait_start(cfs_rq, se); 988 989 if (flags & ENQUEUE_WAKEUP) 990 update_stats_enqueue_sleeper(cfs_rq, se); 991 } 992 993 static inline void 994 update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 995 { 996 997 if (!schedstat_enabled()) 998 return; 999 1000 /* 1001 * Mark the end of the wait period if dequeueing a 1002 * waiting task: 1003 */ 1004 if (se != cfs_rq->curr) 1005 update_stats_wait_end(cfs_rq, se); 1006 1007 if ((flags & DEQUEUE_SLEEP) && entity_is_task(se)) { 1008 struct task_struct *tsk = task_of(se); 1009 1010 if (tsk->state & TASK_INTERRUPTIBLE) 1011 __schedstat_set(se->statistics.sleep_start, 1012 rq_clock(rq_of(cfs_rq))); 1013 if (tsk->state & TASK_UNINTERRUPTIBLE) 1014 __schedstat_set(se->statistics.block_start, 1015 rq_clock(rq_of(cfs_rq))); 1016 } 1017 } 1018 1019 /* 1020 * We are picking a new current task - update its stats: 1021 */ 1022 static inline void 1023 update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se) 1024 { 1025 /* 1026 * We are starting a new run period: 1027 */ 1028 se->exec_start = rq_clock_task(rq_of(cfs_rq)); 1029 } 1030 1031 /************************************************** 1032 * Scheduling class queueing methods: 1033 */ 1034 1035 #ifdef CONFIG_NUMA_BALANCING 1036 /* 1037 * Approximate time to scan a full NUMA task in ms. The task scan period is 1038 * calculated based on the tasks virtual memory size and 1039 * numa_balancing_scan_size. 1040 */ 1041 unsigned int sysctl_numa_balancing_scan_period_min = 1000; 1042 unsigned int sysctl_numa_balancing_scan_period_max = 60000; 1043 1044 /* Portion of address space to scan in MB */ 1045 unsigned int sysctl_numa_balancing_scan_size = 256; 1046 1047 /* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */ 1048 unsigned int sysctl_numa_balancing_scan_delay = 1000; 1049 1050 struct numa_group { 1051 refcount_t refcount; 1052 1053 spinlock_t lock; /* nr_tasks, tasks */ 1054 int nr_tasks; 1055 pid_t gid; 1056 int active_nodes; 1057 1058 struct rcu_head rcu; 1059 unsigned long total_faults; 1060 unsigned long max_faults_cpu; 1061 /* 1062 * Faults_cpu is used to decide whether memory should move 1063 * towards the CPU. As a consequence, these stats are weighted 1064 * more by CPU use than by memory faults. 1065 */ 1066 unsigned long *faults_cpu; 1067 unsigned long faults[0]; 1068 }; 1069 1070 static inline unsigned long group_faults_priv(struct numa_group *ng); 1071 static inline unsigned long group_faults_shared(struct numa_group *ng); 1072 1073 static unsigned int task_nr_scan_windows(struct task_struct *p) 1074 { 1075 unsigned long rss = 0; 1076 unsigned long nr_scan_pages; 1077 1078 /* 1079 * Calculations based on RSS as non-present and empty pages are skipped 1080 * by the PTE scanner and NUMA hinting faults should be trapped based 1081 * on resident pages 1082 */ 1083 nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT); 1084 rss = get_mm_rss(p->mm); 1085 if (!rss) 1086 rss = nr_scan_pages; 1087 1088 rss = round_up(rss, nr_scan_pages); 1089 return rss / nr_scan_pages; 1090 } 1091 1092 /* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */ 1093 #define MAX_SCAN_WINDOW 2560 1094 1095 static unsigned int task_scan_min(struct task_struct *p) 1096 { 1097 unsigned int scan_size = READ_ONCE(sysctl_numa_balancing_scan_size); 1098 unsigned int scan, floor; 1099 unsigned int windows = 1; 1100 1101 if (scan_size < MAX_SCAN_WINDOW) 1102 windows = MAX_SCAN_WINDOW / scan_size; 1103 floor = 1000 / windows; 1104 1105 scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p); 1106 return max_t(unsigned int, floor, scan); 1107 } 1108 1109 static unsigned int task_scan_start(struct task_struct *p) 1110 { 1111 unsigned long smin = task_scan_min(p); 1112 unsigned long period = smin; 1113 1114 /* Scale the maximum scan period with the amount of shared memory. */ 1115 if (p->numa_group) { 1116 struct numa_group *ng = p->numa_group; 1117 unsigned long shared = group_faults_shared(ng); 1118 unsigned long private = group_faults_priv(ng); 1119 1120 period *= refcount_read(&ng->refcount); 1121 period *= shared + 1; 1122 period /= private + shared + 1; 1123 } 1124 1125 return max(smin, period); 1126 } 1127 1128 static unsigned int task_scan_max(struct task_struct *p) 1129 { 1130 unsigned long smin = task_scan_min(p); 1131 unsigned long smax; 1132 1133 /* Watch for min being lower than max due to floor calculations */ 1134 smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p); 1135 1136 /* Scale the maximum scan period with the amount of shared memory. */ 1137 if (p->numa_group) { 1138 struct numa_group *ng = p->numa_group; 1139 unsigned long shared = group_faults_shared(ng); 1140 unsigned long private = group_faults_priv(ng); 1141 unsigned long period = smax; 1142 1143 period *= refcount_read(&ng->refcount); 1144 period *= shared + 1; 1145 period /= private + shared + 1; 1146 1147 smax = max(smax, period); 1148 } 1149 1150 return max(smin, smax); 1151 } 1152 1153 void init_numa_balancing(unsigned long clone_flags, struct task_struct *p) 1154 { 1155 int mm_users = 0; 1156 struct mm_struct *mm = p->mm; 1157 1158 if (mm) { 1159 mm_users = atomic_read(&mm->mm_users); 1160 if (mm_users == 1) { 1161 mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay); 1162 mm->numa_scan_seq = 0; 1163 } 1164 } 1165 p->node_stamp = 0; 1166 p->numa_scan_seq = mm ? mm->numa_scan_seq : 0; 1167 p->numa_scan_period = sysctl_numa_balancing_scan_delay; 1168 p->numa_work.next = &p->numa_work; 1169 p->numa_faults = NULL; 1170 p->numa_group = NULL; 1171 p->last_task_numa_placement = 0; 1172 p->last_sum_exec_runtime = 0; 1173 1174 /* New address space, reset the preferred nid */ 1175 if (!(clone_flags & CLONE_VM)) { 1176 p->numa_preferred_nid = NUMA_NO_NODE; 1177 return; 1178 } 1179 1180 /* 1181 * New thread, keep existing numa_preferred_nid which should be copied 1182 * already by arch_dup_task_struct but stagger when scans start. 1183 */ 1184 if (mm) { 1185 unsigned int delay; 1186 1187 delay = min_t(unsigned int, task_scan_max(current), 1188 current->numa_scan_period * mm_users * NSEC_PER_MSEC); 1189 delay += 2 * TICK_NSEC; 1190 p->node_stamp = delay; 1191 } 1192 } 1193 1194 static void account_numa_enqueue(struct rq *rq, struct task_struct *p) 1195 { 1196 rq->nr_numa_running += (p->numa_preferred_nid != NUMA_NO_NODE); 1197 rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p)); 1198 } 1199 1200 static void account_numa_dequeue(struct rq *rq, struct task_struct *p) 1201 { 1202 rq->nr_numa_running -= (p->numa_preferred_nid != NUMA_NO_NODE); 1203 rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p)); 1204 } 1205 1206 /* Shared or private faults. */ 1207 #define NR_NUMA_HINT_FAULT_TYPES 2 1208 1209 /* Memory and CPU locality */ 1210 #define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2) 1211 1212 /* Averaged statistics, and temporary buffers. */ 1213 #define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2) 1214 1215 pid_t task_numa_group_id(struct task_struct *p) 1216 { 1217 return p->numa_group ? p->numa_group->gid : 0; 1218 } 1219 1220 /* 1221 * The averaged statistics, shared & private, memory & CPU, 1222 * occupy the first half of the array. The second half of the 1223 * array is for current counters, which are averaged into the 1224 * first set by task_numa_placement. 1225 */ 1226 static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv) 1227 { 1228 return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv; 1229 } 1230 1231 static inline unsigned long task_faults(struct task_struct *p, int nid) 1232 { 1233 if (!p->numa_faults) 1234 return 0; 1235 1236 return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] + 1237 p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)]; 1238 } 1239 1240 static inline unsigned long group_faults(struct task_struct *p, int nid) 1241 { 1242 if (!p->numa_group) 1243 return 0; 1244 1245 return p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 0)] + 1246 p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 1)]; 1247 } 1248 1249 static inline unsigned long group_faults_cpu(struct numa_group *group, int nid) 1250 { 1251 return group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 0)] + 1252 group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 1)]; 1253 } 1254 1255 static inline unsigned long group_faults_priv(struct numa_group *ng) 1256 { 1257 unsigned long faults = 0; 1258 int node; 1259 1260 for_each_online_node(node) { 1261 faults += ng->faults[task_faults_idx(NUMA_MEM, node, 1)]; 1262 } 1263 1264 return faults; 1265 } 1266 1267 static inline unsigned long group_faults_shared(struct numa_group *ng) 1268 { 1269 unsigned long faults = 0; 1270 int node; 1271 1272 for_each_online_node(node) { 1273 faults += ng->faults[task_faults_idx(NUMA_MEM, node, 0)]; 1274 } 1275 1276 return faults; 1277 } 1278 1279 /* 1280 * A node triggering more than 1/3 as many NUMA faults as the maximum is 1281 * considered part of a numa group's pseudo-interleaving set. Migrations 1282 * between these nodes are slowed down, to allow things to settle down. 1283 */ 1284 #define ACTIVE_NODE_FRACTION 3 1285 1286 static bool numa_is_active_node(int nid, struct numa_group *ng) 1287 { 1288 return group_faults_cpu(ng, nid) * ACTIVE_NODE_FRACTION > ng->max_faults_cpu; 1289 } 1290 1291 /* Handle placement on systems where not all nodes are directly connected. */ 1292 static unsigned long score_nearby_nodes(struct task_struct *p, int nid, 1293 int maxdist, bool task) 1294 { 1295 unsigned long score = 0; 1296 int node; 1297 1298 /* 1299 * All nodes are directly connected, and the same distance 1300 * from each other. No need for fancy placement algorithms. 1301 */ 1302 if (sched_numa_topology_type == NUMA_DIRECT) 1303 return 0; 1304 1305 /* 1306 * This code is called for each node, introducing N^2 complexity, 1307 * which should be ok given the number of nodes rarely exceeds 8. 1308 */ 1309 for_each_online_node(node) { 1310 unsigned long faults; 1311 int dist = node_distance(nid, node); 1312 1313 /* 1314 * The furthest away nodes in the system are not interesting 1315 * for placement; nid was already counted. 1316 */ 1317 if (dist == sched_max_numa_distance || node == nid) 1318 continue; 1319 1320 /* 1321 * On systems with a backplane NUMA topology, compare groups 1322 * of nodes, and move tasks towards the group with the most 1323 * memory accesses. When comparing two nodes at distance 1324 * "hoplimit", only nodes closer by than "hoplimit" are part 1325 * of each group. Skip other nodes. 1326 */ 1327 if (sched_numa_topology_type == NUMA_BACKPLANE && 1328 dist >= maxdist) 1329 continue; 1330 1331 /* Add up the faults from nearby nodes. */ 1332 if (task) 1333 faults = task_faults(p, node); 1334 else 1335 faults = group_faults(p, node); 1336 1337 /* 1338 * On systems with a glueless mesh NUMA topology, there are 1339 * no fixed "groups of nodes". Instead, nodes that are not 1340 * directly connected bounce traffic through intermediate 1341 * nodes; a numa_group can occupy any set of nodes. 1342 * The further away a node is, the less the faults count. 1343 * This seems to result in good task placement. 1344 */ 1345 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) { 1346 faults *= (sched_max_numa_distance - dist); 1347 faults /= (sched_max_numa_distance - LOCAL_DISTANCE); 1348 } 1349 1350 score += faults; 1351 } 1352 1353 return score; 1354 } 1355 1356 /* 1357 * These return the fraction of accesses done by a particular task, or 1358 * task group, on a particular numa node. The group weight is given a 1359 * larger multiplier, in order to group tasks together that are almost 1360 * evenly spread out between numa nodes. 1361 */ 1362 static inline unsigned long task_weight(struct task_struct *p, int nid, 1363 int dist) 1364 { 1365 unsigned long faults, total_faults; 1366 1367 if (!p->numa_faults) 1368 return 0; 1369 1370 total_faults = p->total_numa_faults; 1371 1372 if (!total_faults) 1373 return 0; 1374 1375 faults = task_faults(p, nid); 1376 faults += score_nearby_nodes(p, nid, dist, true); 1377 1378 return 1000 * faults / total_faults; 1379 } 1380 1381 static inline unsigned long group_weight(struct task_struct *p, int nid, 1382 int dist) 1383 { 1384 unsigned long faults, total_faults; 1385 1386 if (!p->numa_group) 1387 return 0; 1388 1389 total_faults = p->numa_group->total_faults; 1390 1391 if (!total_faults) 1392 return 0; 1393 1394 faults = group_faults(p, nid); 1395 faults += score_nearby_nodes(p, nid, dist, false); 1396 1397 return 1000 * faults / total_faults; 1398 } 1399 1400 bool should_numa_migrate_memory(struct task_struct *p, struct page * page, 1401 int src_nid, int dst_cpu) 1402 { 1403 struct numa_group *ng = p->numa_group; 1404 int dst_nid = cpu_to_node(dst_cpu); 1405 int last_cpupid, this_cpupid; 1406 1407 this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid); 1408 last_cpupid = page_cpupid_xchg_last(page, this_cpupid); 1409 1410 /* 1411 * Allow first faults or private faults to migrate immediately early in 1412 * the lifetime of a task. The magic number 4 is based on waiting for 1413 * two full passes of the "multi-stage node selection" test that is 1414 * executed below. 1415 */ 1416 if ((p->numa_preferred_nid == NUMA_NO_NODE || p->numa_scan_seq <= 4) && 1417 (cpupid_pid_unset(last_cpupid) || cpupid_match_pid(p, last_cpupid))) 1418 return true; 1419 1420 /* 1421 * Multi-stage node selection is used in conjunction with a periodic 1422 * migration fault to build a temporal task<->page relation. By using 1423 * a two-stage filter we remove short/unlikely relations. 1424 * 1425 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate 1426 * a task's usage of a particular page (n_p) per total usage of this 1427 * page (n_t) (in a given time-span) to a probability. 1428 * 1429 * Our periodic faults will sample this probability and getting the 1430 * same result twice in a row, given these samples are fully 1431 * independent, is then given by P(n)^2, provided our sample period 1432 * is sufficiently short compared to the usage pattern. 1433 * 1434 * This quadric squishes small probabilities, making it less likely we 1435 * act on an unlikely task<->page relation. 1436 */ 1437 if (!cpupid_pid_unset(last_cpupid) && 1438 cpupid_to_nid(last_cpupid) != dst_nid) 1439 return false; 1440 1441 /* Always allow migrate on private faults */ 1442 if (cpupid_match_pid(p, last_cpupid)) 1443 return true; 1444 1445 /* A shared fault, but p->numa_group has not been set up yet. */ 1446 if (!ng) 1447 return true; 1448 1449 /* 1450 * Destination node is much more heavily used than the source 1451 * node? Allow migration. 1452 */ 1453 if (group_faults_cpu(ng, dst_nid) > group_faults_cpu(ng, src_nid) * 1454 ACTIVE_NODE_FRACTION) 1455 return true; 1456 1457 /* 1458 * Distribute memory according to CPU & memory use on each node, 1459 * with 3/4 hysteresis to avoid unnecessary memory migrations: 1460 * 1461 * faults_cpu(dst) 3 faults_cpu(src) 1462 * --------------- * - > --------------- 1463 * faults_mem(dst) 4 faults_mem(src) 1464 */ 1465 return group_faults_cpu(ng, dst_nid) * group_faults(p, src_nid) * 3 > 1466 group_faults_cpu(ng, src_nid) * group_faults(p, dst_nid) * 4; 1467 } 1468 1469 static unsigned long weighted_cpuload(struct rq *rq); 1470 static unsigned long source_load(int cpu, int type); 1471 static unsigned long target_load(int cpu, int type); 1472 1473 /* Cached statistics for all CPUs within a node */ 1474 struct numa_stats { 1475 unsigned long load; 1476 1477 /* Total compute capacity of CPUs on a node */ 1478 unsigned long compute_capacity; 1479 }; 1480 1481 /* 1482 * XXX borrowed from update_sg_lb_stats 1483 */ 1484 static void update_numa_stats(struct numa_stats *ns, int nid) 1485 { 1486 int cpu; 1487 1488 memset(ns, 0, sizeof(*ns)); 1489 for_each_cpu(cpu, cpumask_of_node(nid)) { 1490 struct rq *rq = cpu_rq(cpu); 1491 1492 ns->load += weighted_cpuload(rq); 1493 ns->compute_capacity += capacity_of(cpu); 1494 } 1495 1496 } 1497 1498 struct task_numa_env { 1499 struct task_struct *p; 1500 1501 int src_cpu, src_nid; 1502 int dst_cpu, dst_nid; 1503 1504 struct numa_stats src_stats, dst_stats; 1505 1506 int imbalance_pct; 1507 int dist; 1508 1509 struct task_struct *best_task; 1510 long best_imp; 1511 int best_cpu; 1512 }; 1513 1514 static void task_numa_assign(struct task_numa_env *env, 1515 struct task_struct *p, long imp) 1516 { 1517 struct rq *rq = cpu_rq(env->dst_cpu); 1518 1519 /* Bail out if run-queue part of active NUMA balance. */ 1520 if (xchg(&rq->numa_migrate_on, 1)) 1521 return; 1522 1523 /* 1524 * Clear previous best_cpu/rq numa-migrate flag, since task now 1525 * found a better CPU to move/swap. 1526 */ 1527 if (env->best_cpu != -1) { 1528 rq = cpu_rq(env->best_cpu); 1529 WRITE_ONCE(rq->numa_migrate_on, 0); 1530 } 1531 1532 if (env->best_task) 1533 put_task_struct(env->best_task); 1534 if (p) 1535 get_task_struct(p); 1536 1537 env->best_task = p; 1538 env->best_imp = imp; 1539 env->best_cpu = env->dst_cpu; 1540 } 1541 1542 static bool load_too_imbalanced(long src_load, long dst_load, 1543 struct task_numa_env *env) 1544 { 1545 long imb, old_imb; 1546 long orig_src_load, orig_dst_load; 1547 long src_capacity, dst_capacity; 1548 1549 /* 1550 * The load is corrected for the CPU capacity available on each node. 1551 * 1552 * src_load dst_load 1553 * ------------ vs --------- 1554 * src_capacity dst_capacity 1555 */ 1556 src_capacity = env->src_stats.compute_capacity; 1557 dst_capacity = env->dst_stats.compute_capacity; 1558 1559 imb = abs(dst_load * src_capacity - src_load * dst_capacity); 1560 1561 orig_src_load = env->src_stats.load; 1562 orig_dst_load = env->dst_stats.load; 1563 1564 old_imb = abs(orig_dst_load * src_capacity - orig_src_load * dst_capacity); 1565 1566 /* Would this change make things worse? */ 1567 return (imb > old_imb); 1568 } 1569 1570 /* 1571 * Maximum NUMA importance can be 1998 (2*999); 1572 * SMALLIMP @ 30 would be close to 1998/64. 1573 * Used to deter task migration. 1574 */ 1575 #define SMALLIMP 30 1576 1577 /* 1578 * This checks if the overall compute and NUMA accesses of the system would 1579 * be improved if the source tasks was migrated to the target dst_cpu taking 1580 * into account that it might be best if task running on the dst_cpu should 1581 * be exchanged with the source task 1582 */ 1583 static void task_numa_compare(struct task_numa_env *env, 1584 long taskimp, long groupimp, bool maymove) 1585 { 1586 struct rq *dst_rq = cpu_rq(env->dst_cpu); 1587 struct task_struct *cur; 1588 long src_load, dst_load; 1589 long load; 1590 long imp = env->p->numa_group ? groupimp : taskimp; 1591 long moveimp = imp; 1592 int dist = env->dist; 1593 1594 if (READ_ONCE(dst_rq->numa_migrate_on)) 1595 return; 1596 1597 rcu_read_lock(); 1598 cur = task_rcu_dereference(&dst_rq->curr); 1599 if (cur && ((cur->flags & PF_EXITING) || is_idle_task(cur))) 1600 cur = NULL; 1601 1602 /* 1603 * Because we have preemption enabled we can get migrated around and 1604 * end try selecting ourselves (current == env->p) as a swap candidate. 1605 */ 1606 if (cur == env->p) 1607 goto unlock; 1608 1609 if (!cur) { 1610 if (maymove && moveimp >= env->best_imp) 1611 goto assign; 1612 else 1613 goto unlock; 1614 } 1615 1616 /* 1617 * "imp" is the fault differential for the source task between the 1618 * source and destination node. Calculate the total differential for 1619 * the source task and potential destination task. The more negative 1620 * the value is, the more remote accesses that would be expected to 1621 * be incurred if the tasks were swapped. 1622 */ 1623 /* Skip this swap candidate if cannot move to the source cpu */ 1624 if (!cpumask_test_cpu(env->src_cpu, &cur->cpus_allowed)) 1625 goto unlock; 1626 1627 /* 1628 * If dst and source tasks are in the same NUMA group, or not 1629 * in any group then look only at task weights. 1630 */ 1631 if (cur->numa_group == env->p->numa_group) { 1632 imp = taskimp + task_weight(cur, env->src_nid, dist) - 1633 task_weight(cur, env->dst_nid, dist); 1634 /* 1635 * Add some hysteresis to prevent swapping the 1636 * tasks within a group over tiny differences. 1637 */ 1638 if (cur->numa_group) 1639 imp -= imp / 16; 1640 } else { 1641 /* 1642 * Compare the group weights. If a task is all by itself 1643 * (not part of a group), use the task weight instead. 1644 */ 1645 if (cur->numa_group && env->p->numa_group) 1646 imp += group_weight(cur, env->src_nid, dist) - 1647 group_weight(cur, env->dst_nid, dist); 1648 else 1649 imp += task_weight(cur, env->src_nid, dist) - 1650 task_weight(cur, env->dst_nid, dist); 1651 } 1652 1653 if (maymove && moveimp > imp && moveimp > env->best_imp) { 1654 imp = moveimp; 1655 cur = NULL; 1656 goto assign; 1657 } 1658 1659 /* 1660 * If the NUMA importance is less than SMALLIMP, 1661 * task migration might only result in ping pong 1662 * of tasks and also hurt performance due to cache 1663 * misses. 1664 */ 1665 if (imp < SMALLIMP || imp <= env->best_imp + SMALLIMP / 2) 1666 goto unlock; 1667 1668 /* 1669 * In the overloaded case, try and keep the load balanced. 1670 */ 1671 load = task_h_load(env->p) - task_h_load(cur); 1672 if (!load) 1673 goto assign; 1674 1675 dst_load = env->dst_stats.load + load; 1676 src_load = env->src_stats.load - load; 1677 1678 if (load_too_imbalanced(src_load, dst_load, env)) 1679 goto unlock; 1680 1681 assign: 1682 /* 1683 * One idle CPU per node is evaluated for a task numa move. 1684 * Call select_idle_sibling to maybe find a better one. 1685 */ 1686 if (!cur) { 1687 /* 1688 * select_idle_siblings() uses an per-CPU cpumask that 1689 * can be used from IRQ context. 1690 */ 1691 local_irq_disable(); 1692 env->dst_cpu = select_idle_sibling(env->p, env->src_cpu, 1693 env->dst_cpu); 1694 local_irq_enable(); 1695 } 1696 1697 task_numa_assign(env, cur, imp); 1698 unlock: 1699 rcu_read_unlock(); 1700 } 1701 1702 static void task_numa_find_cpu(struct task_numa_env *env, 1703 long taskimp, long groupimp) 1704 { 1705 long src_load, dst_load, load; 1706 bool maymove = false; 1707 int cpu; 1708 1709 load = task_h_load(env->p); 1710 dst_load = env->dst_stats.load + load; 1711 src_load = env->src_stats.load - load; 1712 1713 /* 1714 * If the improvement from just moving env->p direction is better 1715 * than swapping tasks around, check if a move is possible. 1716 */ 1717 maymove = !load_too_imbalanced(src_load, dst_load, env); 1718 1719 for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) { 1720 /* Skip this CPU if the source task cannot migrate */ 1721 if (!cpumask_test_cpu(cpu, &env->p->cpus_allowed)) 1722 continue; 1723 1724 env->dst_cpu = cpu; 1725 task_numa_compare(env, taskimp, groupimp, maymove); 1726 } 1727 } 1728 1729 static int task_numa_migrate(struct task_struct *p) 1730 { 1731 struct task_numa_env env = { 1732 .p = p, 1733 1734 .src_cpu = task_cpu(p), 1735 .src_nid = task_node(p), 1736 1737 .imbalance_pct = 112, 1738 1739 .best_task = NULL, 1740 .best_imp = 0, 1741 .best_cpu = -1, 1742 }; 1743 struct sched_domain *sd; 1744 struct rq *best_rq; 1745 unsigned long taskweight, groupweight; 1746 int nid, ret, dist; 1747 long taskimp, groupimp; 1748 1749 /* 1750 * Pick the lowest SD_NUMA domain, as that would have the smallest 1751 * imbalance and would be the first to start moving tasks about. 1752 * 1753 * And we want to avoid any moving of tasks about, as that would create 1754 * random movement of tasks -- counter the numa conditions we're trying 1755 * to satisfy here. 1756 */ 1757 rcu_read_lock(); 1758 sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu)); 1759 if (sd) 1760 env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2; 1761 rcu_read_unlock(); 1762 1763 /* 1764 * Cpusets can break the scheduler domain tree into smaller 1765 * balance domains, some of which do not cross NUMA boundaries. 1766 * Tasks that are "trapped" in such domains cannot be migrated 1767 * elsewhere, so there is no point in (re)trying. 1768 */ 1769 if (unlikely(!sd)) { 1770 sched_setnuma(p, task_node(p)); 1771 return -EINVAL; 1772 } 1773 1774 env.dst_nid = p->numa_preferred_nid; 1775 dist = env.dist = node_distance(env.src_nid, env.dst_nid); 1776 taskweight = task_weight(p, env.src_nid, dist); 1777 groupweight = group_weight(p, env.src_nid, dist); 1778 update_numa_stats(&env.src_stats, env.src_nid); 1779 taskimp = task_weight(p, env.dst_nid, dist) - taskweight; 1780 groupimp = group_weight(p, env.dst_nid, dist) - groupweight; 1781 update_numa_stats(&env.dst_stats, env.dst_nid); 1782 1783 /* Try to find a spot on the preferred nid. */ 1784 task_numa_find_cpu(&env, taskimp, groupimp); 1785 1786 /* 1787 * Look at other nodes in these cases: 1788 * - there is no space available on the preferred_nid 1789 * - the task is part of a numa_group that is interleaved across 1790 * multiple NUMA nodes; in order to better consolidate the group, 1791 * we need to check other locations. 1792 */ 1793 if (env.best_cpu == -1 || (p->numa_group && p->numa_group->active_nodes > 1)) { 1794 for_each_online_node(nid) { 1795 if (nid == env.src_nid || nid == p->numa_preferred_nid) 1796 continue; 1797 1798 dist = node_distance(env.src_nid, env.dst_nid); 1799 if (sched_numa_topology_type == NUMA_BACKPLANE && 1800 dist != env.dist) { 1801 taskweight = task_weight(p, env.src_nid, dist); 1802 groupweight = group_weight(p, env.src_nid, dist); 1803 } 1804 1805 /* Only consider nodes where both task and groups benefit */ 1806 taskimp = task_weight(p, nid, dist) - taskweight; 1807 groupimp = group_weight(p, nid, dist) - groupweight; 1808 if (taskimp < 0 && groupimp < 0) 1809 continue; 1810 1811 env.dist = dist; 1812 env.dst_nid = nid; 1813 update_numa_stats(&env.dst_stats, env.dst_nid); 1814 task_numa_find_cpu(&env, taskimp, groupimp); 1815 } 1816 } 1817 1818 /* 1819 * If the task is part of a workload that spans multiple NUMA nodes, 1820 * and is migrating into one of the workload's active nodes, remember 1821 * this node as the task's preferred numa node, so the workload can 1822 * settle down. 1823 * A task that migrated to a second choice node will be better off 1824 * trying for a better one later. Do not set the preferred node here. 1825 */ 1826 if (p->numa_group) { 1827 if (env.best_cpu == -1) 1828 nid = env.src_nid; 1829 else 1830 nid = cpu_to_node(env.best_cpu); 1831 1832 if (nid != p->numa_preferred_nid) 1833 sched_setnuma(p, nid); 1834 } 1835 1836 /* No better CPU than the current one was found. */ 1837 if (env.best_cpu == -1) 1838 return -EAGAIN; 1839 1840 best_rq = cpu_rq(env.best_cpu); 1841 if (env.best_task == NULL) { 1842 ret = migrate_task_to(p, env.best_cpu); 1843 WRITE_ONCE(best_rq->numa_migrate_on, 0); 1844 if (ret != 0) 1845 trace_sched_stick_numa(p, env.src_cpu, env.best_cpu); 1846 return ret; 1847 } 1848 1849 ret = migrate_swap(p, env.best_task, env.best_cpu, env.src_cpu); 1850 WRITE_ONCE(best_rq->numa_migrate_on, 0); 1851 1852 if (ret != 0) 1853 trace_sched_stick_numa(p, env.src_cpu, task_cpu(env.best_task)); 1854 put_task_struct(env.best_task); 1855 return ret; 1856 } 1857 1858 /* Attempt to migrate a task to a CPU on the preferred node. */ 1859 static void numa_migrate_preferred(struct task_struct *p) 1860 { 1861 unsigned long interval = HZ; 1862 1863 /* This task has no NUMA fault statistics yet */ 1864 if (unlikely(p->numa_preferred_nid == NUMA_NO_NODE || !p->numa_faults)) 1865 return; 1866 1867 /* Periodically retry migrating the task to the preferred node */ 1868 interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16); 1869 p->numa_migrate_retry = jiffies + interval; 1870 1871 /* Success if task is already running on preferred CPU */ 1872 if (task_node(p) == p->numa_preferred_nid) 1873 return; 1874 1875 /* Otherwise, try migrate to a CPU on the preferred node */ 1876 task_numa_migrate(p); 1877 } 1878 1879 /* 1880 * Find out how many nodes on the workload is actively running on. Do this by 1881 * tracking the nodes from which NUMA hinting faults are triggered. This can 1882 * be different from the set of nodes where the workload's memory is currently 1883 * located. 1884 */ 1885 static void numa_group_count_active_nodes(struct numa_group *numa_group) 1886 { 1887 unsigned long faults, max_faults = 0; 1888 int nid, active_nodes = 0; 1889 1890 for_each_online_node(nid) { 1891 faults = group_faults_cpu(numa_group, nid); 1892 if (faults > max_faults) 1893 max_faults = faults; 1894 } 1895 1896 for_each_online_node(nid) { 1897 faults = group_faults_cpu(numa_group, nid); 1898 if (faults * ACTIVE_NODE_FRACTION > max_faults) 1899 active_nodes++; 1900 } 1901 1902 numa_group->max_faults_cpu = max_faults; 1903 numa_group->active_nodes = active_nodes; 1904 } 1905 1906 /* 1907 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS 1908 * increments. The more local the fault statistics are, the higher the scan 1909 * period will be for the next scan window. If local/(local+remote) ratio is 1910 * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS) 1911 * the scan period will decrease. Aim for 70% local accesses. 1912 */ 1913 #define NUMA_PERIOD_SLOTS 10 1914 #define NUMA_PERIOD_THRESHOLD 7 1915 1916 /* 1917 * Increase the scan period (slow down scanning) if the majority of 1918 * our memory is already on our local node, or if the majority of 1919 * the page accesses are shared with other processes. 1920 * Otherwise, decrease the scan period. 1921 */ 1922 static void update_task_scan_period(struct task_struct *p, 1923 unsigned long shared, unsigned long private) 1924 { 1925 unsigned int period_slot; 1926 int lr_ratio, ps_ratio; 1927 int diff; 1928 1929 unsigned long remote = p->numa_faults_locality[0]; 1930 unsigned long local = p->numa_faults_locality[1]; 1931 1932 /* 1933 * If there were no record hinting faults then either the task is 1934 * completely idle or all activity is areas that are not of interest 1935 * to automatic numa balancing. Related to that, if there were failed 1936 * migration then it implies we are migrating too quickly or the local 1937 * node is overloaded. In either case, scan slower 1938 */ 1939 if (local + shared == 0 || p->numa_faults_locality[2]) { 1940 p->numa_scan_period = min(p->numa_scan_period_max, 1941 p->numa_scan_period << 1); 1942 1943 p->mm->numa_next_scan = jiffies + 1944 msecs_to_jiffies(p->numa_scan_period); 1945 1946 return; 1947 } 1948 1949 /* 1950 * Prepare to scale scan period relative to the current period. 1951 * == NUMA_PERIOD_THRESHOLD scan period stays the same 1952 * < NUMA_PERIOD_THRESHOLD scan period decreases (scan faster) 1953 * >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower) 1954 */ 1955 period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS); 1956 lr_ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote); 1957 ps_ratio = (private * NUMA_PERIOD_SLOTS) / (private + shared); 1958 1959 if (ps_ratio >= NUMA_PERIOD_THRESHOLD) { 1960 /* 1961 * Most memory accesses are local. There is no need to 1962 * do fast NUMA scanning, since memory is already local. 1963 */ 1964 int slot = ps_ratio - NUMA_PERIOD_THRESHOLD; 1965 if (!slot) 1966 slot = 1; 1967 diff = slot * period_slot; 1968 } else if (lr_ratio >= NUMA_PERIOD_THRESHOLD) { 1969 /* 1970 * Most memory accesses are shared with other tasks. 1971 * There is no point in continuing fast NUMA scanning, 1972 * since other tasks may just move the memory elsewhere. 1973 */ 1974 int slot = lr_ratio - NUMA_PERIOD_THRESHOLD; 1975 if (!slot) 1976 slot = 1; 1977 diff = slot * period_slot; 1978 } else { 1979 /* 1980 * Private memory faults exceed (SLOTS-THRESHOLD)/SLOTS, 1981 * yet they are not on the local NUMA node. Speed up 1982 * NUMA scanning to get the memory moved over. 1983 */ 1984 int ratio = max(lr_ratio, ps_ratio); 1985 diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot; 1986 } 1987 1988 p->numa_scan_period = clamp(p->numa_scan_period + diff, 1989 task_scan_min(p), task_scan_max(p)); 1990 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality)); 1991 } 1992 1993 /* 1994 * Get the fraction of time the task has been running since the last 1995 * NUMA placement cycle. The scheduler keeps similar statistics, but 1996 * decays those on a 32ms period, which is orders of magnitude off 1997 * from the dozens-of-seconds NUMA balancing period. Use the scheduler 1998 * stats only if the task is so new there are no NUMA statistics yet. 1999 */ 2000 static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period) 2001 { 2002 u64 runtime, delta, now; 2003 /* Use the start of this time slice to avoid calculations. */ 2004 now = p->se.exec_start; 2005 runtime = p->se.sum_exec_runtime; 2006 2007 if (p->last_task_numa_placement) { 2008 delta = runtime - p->last_sum_exec_runtime; 2009 *period = now - p->last_task_numa_placement; 2010 2011 /* Avoid time going backwards, prevent potential divide error: */ 2012 if (unlikely((s64)*period < 0)) 2013 *period = 0; 2014 } else { 2015 delta = p->se.avg.load_sum; 2016 *period = LOAD_AVG_MAX; 2017 } 2018 2019 p->last_sum_exec_runtime = runtime; 2020 p->last_task_numa_placement = now; 2021 2022 return delta; 2023 } 2024 2025 /* 2026 * Determine the preferred nid for a task in a numa_group. This needs to 2027 * be done in a way that produces consistent results with group_weight, 2028 * otherwise workloads might not converge. 2029 */ 2030 static int preferred_group_nid(struct task_struct *p, int nid) 2031 { 2032 nodemask_t nodes; 2033 int dist; 2034 2035 /* Direct connections between all NUMA nodes. */ 2036 if (sched_numa_topology_type == NUMA_DIRECT) 2037 return nid; 2038 2039 /* 2040 * On a system with glueless mesh NUMA topology, group_weight 2041 * scores nodes according to the number of NUMA hinting faults on 2042 * both the node itself, and on nearby nodes. 2043 */ 2044 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) { 2045 unsigned long score, max_score = 0; 2046 int node, max_node = nid; 2047 2048 dist = sched_max_numa_distance; 2049 2050 for_each_online_node(node) { 2051 score = group_weight(p, node, dist); 2052 if (score > max_score) { 2053 max_score = score; 2054 max_node = node; 2055 } 2056 } 2057 return max_node; 2058 } 2059 2060 /* 2061 * Finding the preferred nid in a system with NUMA backplane 2062 * interconnect topology is more involved. The goal is to locate 2063 * tasks from numa_groups near each other in the system, and 2064 * untangle workloads from different sides of the system. This requires 2065 * searching down the hierarchy of node groups, recursively searching 2066 * inside the highest scoring group of nodes. The nodemask tricks 2067 * keep the complexity of the search down. 2068 */ 2069 nodes = node_online_map; 2070 for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) { 2071 unsigned long max_faults = 0; 2072 nodemask_t max_group = NODE_MASK_NONE; 2073 int a, b; 2074 2075 /* Are there nodes at this distance from each other? */ 2076 if (!find_numa_distance(dist)) 2077 continue; 2078 2079 for_each_node_mask(a, nodes) { 2080 unsigned long faults = 0; 2081 nodemask_t this_group; 2082 nodes_clear(this_group); 2083 2084 /* Sum group's NUMA faults; includes a==b case. */ 2085 for_each_node_mask(b, nodes) { 2086 if (node_distance(a, b) < dist) { 2087 faults += group_faults(p, b); 2088 node_set(b, this_group); 2089 node_clear(b, nodes); 2090 } 2091 } 2092 2093 /* Remember the top group. */ 2094 if (faults > max_faults) { 2095 max_faults = faults; 2096 max_group = this_group; 2097 /* 2098 * subtle: at the smallest distance there is 2099 * just one node left in each "group", the 2100 * winner is the preferred nid. 2101 */ 2102 nid = a; 2103 } 2104 } 2105 /* Next round, evaluate the nodes within max_group. */ 2106 if (!max_faults) 2107 break; 2108 nodes = max_group; 2109 } 2110 return nid; 2111 } 2112 2113 static void task_numa_placement(struct task_struct *p) 2114 { 2115 int seq, nid, max_nid = NUMA_NO_NODE; 2116 unsigned long max_faults = 0; 2117 unsigned long fault_types[2] = { 0, 0 }; 2118 unsigned long total_faults; 2119 u64 runtime, period; 2120 spinlock_t *group_lock = NULL; 2121 2122 /* 2123 * The p->mm->numa_scan_seq field gets updated without 2124 * exclusive access. Use READ_ONCE() here to ensure 2125 * that the field is read in a single access: 2126 */ 2127 seq = READ_ONCE(p->mm->numa_scan_seq); 2128 if (p->numa_scan_seq == seq) 2129 return; 2130 p->numa_scan_seq = seq; 2131 p->numa_scan_period_max = task_scan_max(p); 2132 2133 total_faults = p->numa_faults_locality[0] + 2134 p->numa_faults_locality[1]; 2135 runtime = numa_get_avg_runtime(p, &period); 2136 2137 /* If the task is part of a group prevent parallel updates to group stats */ 2138 if (p->numa_group) { 2139 group_lock = &p->numa_group->lock; 2140 spin_lock_irq(group_lock); 2141 } 2142 2143 /* Find the node with the highest number of faults */ 2144 for_each_online_node(nid) { 2145 /* Keep track of the offsets in numa_faults array */ 2146 int mem_idx, membuf_idx, cpu_idx, cpubuf_idx; 2147 unsigned long faults = 0, group_faults = 0; 2148 int priv; 2149 2150 for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) { 2151 long diff, f_diff, f_weight; 2152 2153 mem_idx = task_faults_idx(NUMA_MEM, nid, priv); 2154 membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv); 2155 cpu_idx = task_faults_idx(NUMA_CPU, nid, priv); 2156 cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv); 2157 2158 /* Decay existing window, copy faults since last scan */ 2159 diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2; 2160 fault_types[priv] += p->numa_faults[membuf_idx]; 2161 p->numa_faults[membuf_idx] = 0; 2162 2163 /* 2164 * Normalize the faults_from, so all tasks in a group 2165 * count according to CPU use, instead of by the raw 2166 * number of faults. Tasks with little runtime have 2167 * little over-all impact on throughput, and thus their 2168 * faults are less important. 2169 */ 2170 f_weight = div64_u64(runtime << 16, period + 1); 2171 f_weight = (f_weight * p->numa_faults[cpubuf_idx]) / 2172 (total_faults + 1); 2173 f_diff = f_weight - p->numa_faults[cpu_idx] / 2; 2174 p->numa_faults[cpubuf_idx] = 0; 2175 2176 p->numa_faults[mem_idx] += diff; 2177 p->numa_faults[cpu_idx] += f_diff; 2178 faults += p->numa_faults[mem_idx]; 2179 p->total_numa_faults += diff; 2180 if (p->numa_group) { 2181 /* 2182 * safe because we can only change our own group 2183 * 2184 * mem_idx represents the offset for a given 2185 * nid and priv in a specific region because it 2186 * is at the beginning of the numa_faults array. 2187 */ 2188 p->numa_group->faults[mem_idx] += diff; 2189 p->numa_group->faults_cpu[mem_idx] += f_diff; 2190 p->numa_group->total_faults += diff; 2191 group_faults += p->numa_group->faults[mem_idx]; 2192 } 2193 } 2194 2195 if (!p->numa_group) { 2196 if (faults > max_faults) { 2197 max_faults = faults; 2198 max_nid = nid; 2199 } 2200 } else if (group_faults > max_faults) { 2201 max_faults = group_faults; 2202 max_nid = nid; 2203 } 2204 } 2205 2206 if (p->numa_group) { 2207 numa_group_count_active_nodes(p->numa_group); 2208 spin_unlock_irq(group_lock); 2209 max_nid = preferred_group_nid(p, max_nid); 2210 } 2211 2212 if (max_faults) { 2213 /* Set the new preferred node */ 2214 if (max_nid != p->numa_preferred_nid) 2215 sched_setnuma(p, max_nid); 2216 } 2217 2218 update_task_scan_period(p, fault_types[0], fault_types[1]); 2219 } 2220 2221 static inline int get_numa_group(struct numa_group *grp) 2222 { 2223 return refcount_inc_not_zero(&grp->refcount); 2224 } 2225 2226 static inline void put_numa_group(struct numa_group *grp) 2227 { 2228 if (refcount_dec_and_test(&grp->refcount)) 2229 kfree_rcu(grp, rcu); 2230 } 2231 2232 static void task_numa_group(struct task_struct *p, int cpupid, int flags, 2233 int *priv) 2234 { 2235 struct numa_group *grp, *my_grp; 2236 struct task_struct *tsk; 2237 bool join = false; 2238 int cpu = cpupid_to_cpu(cpupid); 2239 int i; 2240 2241 if (unlikely(!p->numa_group)) { 2242 unsigned int size = sizeof(struct numa_group) + 2243 4*nr_node_ids*sizeof(unsigned long); 2244 2245 grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN); 2246 if (!grp) 2247 return; 2248 2249 refcount_set(&grp->refcount, 1); 2250 grp->active_nodes = 1; 2251 grp->max_faults_cpu = 0; 2252 spin_lock_init(&grp->lock); 2253 grp->gid = p->pid; 2254 /* Second half of the array tracks nids where faults happen */ 2255 grp->faults_cpu = grp->faults + NR_NUMA_HINT_FAULT_TYPES * 2256 nr_node_ids; 2257 2258 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) 2259 grp->faults[i] = p->numa_faults[i]; 2260 2261 grp->total_faults = p->total_numa_faults; 2262 2263 grp->nr_tasks++; 2264 rcu_assign_pointer(p->numa_group, grp); 2265 } 2266 2267 rcu_read_lock(); 2268 tsk = READ_ONCE(cpu_rq(cpu)->curr); 2269 2270 if (!cpupid_match_pid(tsk, cpupid)) 2271 goto no_join; 2272 2273 grp = rcu_dereference(tsk->numa_group); 2274 if (!grp) 2275 goto no_join; 2276 2277 my_grp = p->numa_group; 2278 if (grp == my_grp) 2279 goto no_join; 2280 2281 /* 2282 * Only join the other group if its bigger; if we're the bigger group, 2283 * the other task will join us. 2284 */ 2285 if (my_grp->nr_tasks > grp->nr_tasks) 2286 goto no_join; 2287 2288 /* 2289 * Tie-break on the grp address. 2290 */ 2291 if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp) 2292 goto no_join; 2293 2294 /* Always join threads in the same process. */ 2295 if (tsk->mm == current->mm) 2296 join = true; 2297 2298 /* Simple filter to avoid false positives due to PID collisions */ 2299 if (flags & TNF_SHARED) 2300 join = true; 2301 2302 /* Update priv based on whether false sharing was detected */ 2303 *priv = !join; 2304 2305 if (join && !get_numa_group(grp)) 2306 goto no_join; 2307 2308 rcu_read_unlock(); 2309 2310 if (!join) 2311 return; 2312 2313 BUG_ON(irqs_disabled()); 2314 double_lock_irq(&my_grp->lock, &grp->lock); 2315 2316 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) { 2317 my_grp->faults[i] -= p->numa_faults[i]; 2318 grp->faults[i] += p->numa_faults[i]; 2319 } 2320 my_grp->total_faults -= p->total_numa_faults; 2321 grp->total_faults += p->total_numa_faults; 2322 2323 my_grp->nr_tasks--; 2324 grp->nr_tasks++; 2325 2326 spin_unlock(&my_grp->lock); 2327 spin_unlock_irq(&grp->lock); 2328 2329 rcu_assign_pointer(p->numa_group, grp); 2330 2331 put_numa_group(my_grp); 2332 return; 2333 2334 no_join: 2335 rcu_read_unlock(); 2336 return; 2337 } 2338 2339 void task_numa_free(struct task_struct *p) 2340 { 2341 struct numa_group *grp = p->numa_group; 2342 void *numa_faults = p->numa_faults; 2343 unsigned long flags; 2344 int i; 2345 2346 if (grp) { 2347 spin_lock_irqsave(&grp->lock, flags); 2348 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) 2349 grp->faults[i] -= p->numa_faults[i]; 2350 grp->total_faults -= p->total_numa_faults; 2351 2352 grp->nr_tasks--; 2353 spin_unlock_irqrestore(&grp->lock, flags); 2354 RCU_INIT_POINTER(p->numa_group, NULL); 2355 put_numa_group(grp); 2356 } 2357 2358 p->numa_faults = NULL; 2359 kfree(numa_faults); 2360 } 2361 2362 /* 2363 * Got a PROT_NONE fault for a page on @node. 2364 */ 2365 void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags) 2366 { 2367 struct task_struct *p = current; 2368 bool migrated = flags & TNF_MIGRATED; 2369 int cpu_node = task_node(current); 2370 int local = !!(flags & TNF_FAULT_LOCAL); 2371 struct numa_group *ng; 2372 int priv; 2373 2374 if (!static_branch_likely(&sched_numa_balancing)) 2375 return; 2376 2377 /* for example, ksmd faulting in a user's mm */ 2378 if (!p->mm) 2379 return; 2380 2381 /* Allocate buffer to track faults on a per-node basis */ 2382 if (unlikely(!p->numa_faults)) { 2383 int size = sizeof(*p->numa_faults) * 2384 NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids; 2385 2386 p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN); 2387 if (!p->numa_faults) 2388 return; 2389 2390 p->total_numa_faults = 0; 2391 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality)); 2392 } 2393 2394 /* 2395 * First accesses are treated as private, otherwise consider accesses 2396 * to be private if the accessing pid has not changed 2397 */ 2398 if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) { 2399 priv = 1; 2400 } else { 2401 priv = cpupid_match_pid(p, last_cpupid); 2402 if (!priv && !(flags & TNF_NO_GROUP)) 2403 task_numa_group(p, last_cpupid, flags, &priv); 2404 } 2405 2406 /* 2407 * If a workload spans multiple NUMA nodes, a shared fault that 2408 * occurs wholly within the set of nodes that the workload is 2409 * actively using should be counted as local. This allows the 2410 * scan rate to slow down when a workload has settled down. 2411 */ 2412 ng = p->numa_group; 2413 if (!priv && !local && ng && ng->active_nodes > 1 && 2414 numa_is_active_node(cpu_node, ng) && 2415 numa_is_active_node(mem_node, ng)) 2416 local = 1; 2417 2418 /* 2419 * Retry to migrate task to preferred node periodically, in case it 2420 * previously failed, or the scheduler moved us. 2421 */ 2422 if (time_after(jiffies, p->numa_migrate_retry)) { 2423 task_numa_placement(p); 2424 numa_migrate_preferred(p); 2425 } 2426 2427 if (migrated) 2428 p->numa_pages_migrated += pages; 2429 if (flags & TNF_MIGRATE_FAIL) 2430 p->numa_faults_locality[2] += pages; 2431 2432 p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages; 2433 p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages; 2434 p->numa_faults_locality[local] += pages; 2435 } 2436 2437 static void reset_ptenuma_scan(struct task_struct *p) 2438 { 2439 /* 2440 * We only did a read acquisition of the mmap sem, so 2441 * p->mm->numa_scan_seq is written to without exclusive access 2442 * and the update is not guaranteed to be atomic. That's not 2443 * much of an issue though, since this is just used for 2444 * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not 2445 * expensive, to avoid any form of compiler optimizations: 2446 */ 2447 WRITE_ONCE(p->mm->numa_scan_seq, READ_ONCE(p->mm->numa_scan_seq) + 1); 2448 p->mm->numa_scan_offset = 0; 2449 } 2450 2451 /* 2452 * The expensive part of numa migration is done from task_work context. 2453 * Triggered from task_tick_numa(). 2454 */ 2455 void task_numa_work(struct callback_head *work) 2456 { 2457 unsigned long migrate, next_scan, now = jiffies; 2458 struct task_struct *p = current; 2459 struct mm_struct *mm = p->mm; 2460 u64 runtime = p->se.sum_exec_runtime; 2461 struct vm_area_struct *vma; 2462 unsigned long start, end; 2463 unsigned long nr_pte_updates = 0; 2464 long pages, virtpages; 2465 2466 SCHED_WARN_ON(p != container_of(work, struct task_struct, numa_work)); 2467 2468 work->next = work; /* protect against double add */ 2469 /* 2470 * Who cares about NUMA placement when they're dying. 2471 * 2472 * NOTE: make sure not to dereference p->mm before this check, 2473 * exit_task_work() happens _after_ exit_mm() so we could be called 2474 * without p->mm even though we still had it when we enqueued this 2475 * work. 2476 */ 2477 if (p->flags & PF_EXITING) 2478 return; 2479 2480 if (!mm->numa_next_scan) { 2481 mm->numa_next_scan = now + 2482 msecs_to_jiffies(sysctl_numa_balancing_scan_delay); 2483 } 2484 2485 /* 2486 * Enforce maximal scan/migration frequency.. 2487 */ 2488 migrate = mm->numa_next_scan; 2489 if (time_before(now, migrate)) 2490 return; 2491 2492 if (p->numa_scan_period == 0) { 2493 p->numa_scan_period_max = task_scan_max(p); 2494 p->numa_scan_period = task_scan_start(p); 2495 } 2496 2497 next_scan = now + msecs_to_jiffies(p->numa_scan_period); 2498 if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate) 2499 return; 2500 2501 /* 2502 * Delay this task enough that another task of this mm will likely win 2503 * the next time around. 2504 */ 2505 p->node_stamp += 2 * TICK_NSEC; 2506 2507 start = mm->numa_scan_offset; 2508 pages = sysctl_numa_balancing_scan_size; 2509 pages <<= 20 - PAGE_SHIFT; /* MB in pages */ 2510 virtpages = pages * 8; /* Scan up to this much virtual space */ 2511 if (!pages) 2512 return; 2513 2514 2515 if (!down_read_trylock(&mm->mmap_sem)) 2516 return; 2517 vma = find_vma(mm, start); 2518 if (!vma) { 2519 reset_ptenuma_scan(p); 2520 start = 0; 2521 vma = mm->mmap; 2522 } 2523 for (; vma; vma = vma->vm_next) { 2524 if (!vma_migratable(vma) || !vma_policy_mof(vma) || 2525 is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_MIXEDMAP)) { 2526 continue; 2527 } 2528 2529 /* 2530 * Shared library pages mapped by multiple processes are not 2531 * migrated as it is expected they are cache replicated. Avoid 2532 * hinting faults in read-only file-backed mappings or the vdso 2533 * as migrating the pages will be of marginal benefit. 2534 */ 2535 if (!vma->vm_mm || 2536 (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ))) 2537 continue; 2538 2539 /* 2540 * Skip inaccessible VMAs to avoid any confusion between 2541 * PROT_NONE and NUMA hinting ptes 2542 */ 2543 if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE))) 2544 continue; 2545 2546 do { 2547 start = max(start, vma->vm_start); 2548 end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE); 2549 end = min(end, vma->vm_end); 2550 nr_pte_updates = change_prot_numa(vma, start, end); 2551 2552 /* 2553 * Try to scan sysctl_numa_balancing_size worth of 2554 * hpages that have at least one present PTE that 2555 * is not already pte-numa. If the VMA contains 2556 * areas that are unused or already full of prot_numa 2557 * PTEs, scan up to virtpages, to skip through those 2558 * areas faster. 2559 */ 2560 if (nr_pte_updates) 2561 pages -= (end - start) >> PAGE_SHIFT; 2562 virtpages -= (end - start) >> PAGE_SHIFT; 2563 2564 start = end; 2565 if (pages <= 0 || virtpages <= 0) 2566 goto out; 2567 2568 cond_resched(); 2569 } while (end != vma->vm_end); 2570 } 2571 2572 out: 2573 /* 2574 * It is possible to reach the end of the VMA list but the last few 2575 * VMAs are not guaranteed to the vma_migratable. If they are not, we 2576 * would find the !migratable VMA on the next scan but not reset the 2577 * scanner to the start so check it now. 2578 */ 2579 if (vma) 2580 mm->numa_scan_offset = start; 2581 else 2582 reset_ptenuma_scan(p); 2583 up_read(&mm->mmap_sem); 2584 2585 /* 2586 * Make sure tasks use at least 32x as much time to run other code 2587 * than they used here, to limit NUMA PTE scanning overhead to 3% max. 2588 * Usually update_task_scan_period slows down scanning enough; on an 2589 * overloaded system we need to limit overhead on a per task basis. 2590 */ 2591 if (unlikely(p->se.sum_exec_runtime != runtime)) { 2592 u64 diff = p->se.sum_exec_runtime - runtime; 2593 p->node_stamp += 32 * diff; 2594 } 2595 } 2596 2597 /* 2598 * Drive the periodic memory faults.. 2599 */ 2600 void task_tick_numa(struct rq *rq, struct task_struct *curr) 2601 { 2602 struct callback_head *work = &curr->numa_work; 2603 u64 period, now; 2604 2605 /* 2606 * We don't care about NUMA placement if we don't have memory. 2607 */ 2608 if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work) 2609 return; 2610 2611 /* 2612 * Using runtime rather than walltime has the dual advantage that 2613 * we (mostly) drive the selection from busy threads and that the 2614 * task needs to have done some actual work before we bother with 2615 * NUMA placement. 2616 */ 2617 now = curr->se.sum_exec_runtime; 2618 period = (u64)curr->numa_scan_period * NSEC_PER_MSEC; 2619 2620 if (now > curr->node_stamp + period) { 2621 if (!curr->node_stamp) 2622 curr->numa_scan_period = task_scan_start(curr); 2623 curr->node_stamp += period; 2624 2625 if (!time_before(jiffies, curr->mm->numa_next_scan)) { 2626 init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */ 2627 task_work_add(curr, work, true); 2628 } 2629 } 2630 } 2631 2632 static void update_scan_period(struct task_struct *p, int new_cpu) 2633 { 2634 int src_nid = cpu_to_node(task_cpu(p)); 2635 int dst_nid = cpu_to_node(new_cpu); 2636 2637 if (!static_branch_likely(&sched_numa_balancing)) 2638 return; 2639 2640 if (!p->mm || !p->numa_faults || (p->flags & PF_EXITING)) 2641 return; 2642 2643 if (src_nid == dst_nid) 2644 return; 2645 2646 /* 2647 * Allow resets if faults have been trapped before one scan 2648 * has completed. This is most likely due to a new task that 2649 * is pulled cross-node due to wakeups or load balancing. 2650 */ 2651 if (p->numa_scan_seq) { 2652 /* 2653 * Avoid scan adjustments if moving to the preferred 2654 * node or if the task was not previously running on 2655 * the preferred node. 2656 */ 2657 if (dst_nid == p->numa_preferred_nid || 2658 (p->numa_preferred_nid != NUMA_NO_NODE && 2659 src_nid != p->numa_preferred_nid)) 2660 return; 2661 } 2662 2663 p->numa_scan_period = task_scan_start(p); 2664 } 2665 2666 #else 2667 static void task_tick_numa(struct rq *rq, struct task_struct *curr) 2668 { 2669 } 2670 2671 static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p) 2672 { 2673 } 2674 2675 static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p) 2676 { 2677 } 2678 2679 static inline void update_scan_period(struct task_struct *p, int new_cpu) 2680 { 2681 } 2682 2683 #endif /* CONFIG_NUMA_BALANCING */ 2684 2685 static void 2686 account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se) 2687 { 2688 update_load_add(&cfs_rq->load, se->load.weight); 2689 if (!parent_entity(se)) 2690 update_load_add(&rq_of(cfs_rq)->load, se->load.weight); 2691 #ifdef CONFIG_SMP 2692 if (entity_is_task(se)) { 2693 struct rq *rq = rq_of(cfs_rq); 2694 2695 account_numa_enqueue(rq, task_of(se)); 2696 list_add(&se->group_node, &rq->cfs_tasks); 2697 } 2698 #endif 2699 cfs_rq->nr_running++; 2700 } 2701 2702 static void 2703 account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se) 2704 { 2705 update_load_sub(&cfs_rq->load, se->load.weight); 2706 if (!parent_entity(se)) 2707 update_load_sub(&rq_of(cfs_rq)->load, se->load.weight); 2708 #ifdef CONFIG_SMP 2709 if (entity_is_task(se)) { 2710 account_numa_dequeue(rq_of(cfs_rq), task_of(se)); 2711 list_del_init(&se->group_node); 2712 } 2713 #endif 2714 cfs_rq->nr_running--; 2715 } 2716 2717 /* 2718 * Signed add and clamp on underflow. 2719 * 2720 * Explicitly do a load-store to ensure the intermediate value never hits 2721 * memory. This allows lockless observations without ever seeing the negative 2722 * values. 2723 */ 2724 #define add_positive(_ptr, _val) do { \ 2725 typeof(_ptr) ptr = (_ptr); \ 2726 typeof(_val) val = (_val); \ 2727 typeof(*ptr) res, var = READ_ONCE(*ptr); \ 2728 \ 2729 res = var + val; \ 2730 \ 2731 if (val < 0 && res > var) \ 2732 res = 0; \ 2733 \ 2734 WRITE_ONCE(*ptr, res); \ 2735 } while (0) 2736 2737 /* 2738 * Unsigned subtract and clamp on underflow. 2739 * 2740 * Explicitly do a load-store to ensure the intermediate value never hits 2741 * memory. This allows lockless observations without ever seeing the negative 2742 * values. 2743 */ 2744 #define sub_positive(_ptr, _val) do { \ 2745 typeof(_ptr) ptr = (_ptr); \ 2746 typeof(*ptr) val = (_val); \ 2747 typeof(*ptr) res, var = READ_ONCE(*ptr); \ 2748 res = var - val; \ 2749 if (res > var) \ 2750 res = 0; \ 2751 WRITE_ONCE(*ptr, res); \ 2752 } while (0) 2753 2754 /* 2755 * Remove and clamp on negative, from a local variable. 2756 * 2757 * A variant of sub_positive(), which does not use explicit load-store 2758 * and is thus optimized for local variable updates. 2759 */ 2760 #define lsub_positive(_ptr, _val) do { \ 2761 typeof(_ptr) ptr = (_ptr); \ 2762 *ptr -= min_t(typeof(*ptr), *ptr, _val); \ 2763 } while (0) 2764 2765 #ifdef CONFIG_SMP 2766 static inline void 2767 enqueue_runnable_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) 2768 { 2769 cfs_rq->runnable_weight += se->runnable_weight; 2770 2771 cfs_rq->avg.runnable_load_avg += se->avg.runnable_load_avg; 2772 cfs_rq->avg.runnable_load_sum += se_runnable(se) * se->avg.runnable_load_sum; 2773 } 2774 2775 static inline void 2776 dequeue_runnable_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) 2777 { 2778 cfs_rq->runnable_weight -= se->runnable_weight; 2779 2780 sub_positive(&cfs_rq->avg.runnable_load_avg, se->avg.runnable_load_avg); 2781 sub_positive(&cfs_rq->avg.runnable_load_sum, 2782 se_runnable(se) * se->avg.runnable_load_sum); 2783 } 2784 2785 static inline void 2786 enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) 2787 { 2788 cfs_rq->avg.load_avg += se->avg.load_avg; 2789 cfs_rq->avg.load_sum += se_weight(se) * se->avg.load_sum; 2790 } 2791 2792 static inline void 2793 dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) 2794 { 2795 sub_positive(&cfs_rq->avg.load_avg, se->avg.load_avg); 2796 sub_positive(&cfs_rq->avg.load_sum, se_weight(se) * se->avg.load_sum); 2797 } 2798 #else 2799 static inline void 2800 enqueue_runnable_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { } 2801 static inline void 2802 dequeue_runnable_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { } 2803 static inline void 2804 enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { } 2805 static inline void 2806 dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { } 2807 #endif 2808 2809 static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, 2810 unsigned long weight, unsigned long runnable) 2811 { 2812 if (se->on_rq) { 2813 /* commit outstanding execution time */ 2814 if (cfs_rq->curr == se) 2815 update_curr(cfs_rq); 2816 account_entity_dequeue(cfs_rq, se); 2817 dequeue_runnable_load_avg(cfs_rq, se); 2818 } 2819 dequeue_load_avg(cfs_rq, se); 2820 2821 se->runnable_weight = runnable; 2822 update_load_set(&se->load, weight); 2823 2824 #ifdef CONFIG_SMP 2825 do { 2826 u32 divider = LOAD_AVG_MAX - 1024 + se->avg.period_contrib; 2827 2828 se->avg.load_avg = div_u64(se_weight(se) * se->avg.load_sum, divider); 2829 se->avg.runnable_load_avg = 2830 div_u64(se_runnable(se) * se->avg.runnable_load_sum, divider); 2831 } while (0); 2832 #endif 2833 2834 enqueue_load_avg(cfs_rq, se); 2835 if (se->on_rq) { 2836 account_entity_enqueue(cfs_rq, se); 2837 enqueue_runnable_load_avg(cfs_rq, se); 2838 } 2839 } 2840 2841 void reweight_task(struct task_struct *p, int prio) 2842 { 2843 struct sched_entity *se = &p->se; 2844 struct cfs_rq *cfs_rq = cfs_rq_of(se); 2845 struct load_weight *load = &se->load; 2846 unsigned long weight = scale_load(sched_prio_to_weight[prio]); 2847 2848 reweight_entity(cfs_rq, se, weight, weight); 2849 load->inv_weight = sched_prio_to_wmult[prio]; 2850 } 2851 2852 #ifdef CONFIG_FAIR_GROUP_SCHED 2853 #ifdef CONFIG_SMP 2854 /* 2855 * All this does is approximate the hierarchical proportion which includes that 2856 * global sum we all love to hate. 2857 * 2858 * That is, the weight of a group entity, is the proportional share of the 2859 * group weight based on the group runqueue weights. That is: 2860 * 2861 * tg->weight * grq->load.weight 2862 * ge->load.weight = ----------------------------- (1) 2863 * \Sum grq->load.weight 2864 * 2865 * Now, because computing that sum is prohibitively expensive to compute (been 2866 * there, done that) we approximate it with this average stuff. The average 2867 * moves slower and therefore the approximation is cheaper and more stable. 2868 * 2869 * So instead of the above, we substitute: 2870 * 2871 * grq->load.weight -> grq->avg.load_avg (2) 2872 * 2873 * which yields the following: 2874 * 2875 * tg->weight * grq->avg.load_avg 2876 * ge->load.weight = ------------------------------ (3) 2877 * tg->load_avg 2878 * 2879 * Where: tg->load_avg ~= \Sum grq->avg.load_avg 2880 * 2881 * That is shares_avg, and it is right (given the approximation (2)). 2882 * 2883 * The problem with it is that because the average is slow -- it was designed 2884 * to be exactly that of course -- this leads to transients in boundary 2885 * conditions. In specific, the case where the group was idle and we start the 2886 * one task. It takes time for our CPU's grq->avg.load_avg to build up, 2887 * yielding bad latency etc.. 2888 * 2889 * Now, in that special case (1) reduces to: 2890 * 2891 * tg->weight * grq->load.weight 2892 * ge->load.weight = ----------------------------- = tg->weight (4) 2893 * grp->load.weight 2894 * 2895 * That is, the sum collapses because all other CPUs are idle; the UP scenario. 2896 * 2897 * So what we do is modify our approximation (3) to approach (4) in the (near) 2898 * UP case, like: 2899 * 2900 * ge->load.weight = 2901 * 2902 * tg->weight * grq->load.weight 2903 * --------------------------------------------------- (5) 2904 * tg->load_avg - grq->avg.load_avg + grq->load.weight 2905 * 2906 * But because grq->load.weight can drop to 0, resulting in a divide by zero, 2907 * we need to use grq->avg.load_avg as its lower bound, which then gives: 2908 * 2909 * 2910 * tg->weight * grq->load.weight 2911 * ge->load.weight = ----------------------------- (6) 2912 * tg_load_avg' 2913 * 2914 * Where: 2915 * 2916 * tg_load_avg' = tg->load_avg - grq->avg.load_avg + 2917 * max(grq->load.weight, grq->avg.load_avg) 2918 * 2919 * And that is shares_weight and is icky. In the (near) UP case it approaches 2920 * (4) while in the normal case it approaches (3). It consistently 2921 * overestimates the ge->load.weight and therefore: 2922 * 2923 * \Sum ge->load.weight >= tg->weight 2924 * 2925 * hence icky! 2926 */ 2927 static long calc_group_shares(struct cfs_rq *cfs_rq) 2928 { 2929 long tg_weight, tg_shares, load, shares; 2930 struct task_group *tg = cfs_rq->tg; 2931 2932 tg_shares = READ_ONCE(tg->shares); 2933 2934 load = max(scale_load_down(cfs_rq->load.weight), cfs_rq->avg.load_avg); 2935 2936 tg_weight = atomic_long_read(&tg->load_avg); 2937 2938 /* Ensure tg_weight >= load */ 2939 tg_weight -= cfs_rq->tg_load_avg_contrib; 2940 tg_weight += load; 2941 2942 shares = (tg_shares * load); 2943 if (tg_weight) 2944 shares /= tg_weight; 2945 2946 /* 2947 * MIN_SHARES has to be unscaled here to support per-CPU partitioning 2948 * of a group with small tg->shares value. It is a floor value which is 2949 * assigned as a minimum load.weight to the sched_entity representing 2950 * the group on a CPU. 2951 * 2952 * E.g. on 64-bit for a group with tg->shares of scale_load(15)=15*1024 2953 * on an 8-core system with 8 tasks each runnable on one CPU shares has 2954 * to be 15*1024*1/8=1920 instead of scale_load(MIN_SHARES)=2*1024. In 2955 * case no task is runnable on a CPU MIN_SHARES=2 should be returned 2956 * instead of 0. 2957 */ 2958 return clamp_t(long, shares, MIN_SHARES, tg_shares); 2959 } 2960 2961 /* 2962 * This calculates the effective runnable weight for a group entity based on 2963 * the group entity weight calculated above. 2964 * 2965 * Because of the above approximation (2), our group entity weight is 2966 * an load_avg based ratio (3). This means that it includes blocked load and 2967 * does not represent the runnable weight. 2968 * 2969 * Approximate the group entity's runnable weight per ratio from the group 2970 * runqueue: 2971 * 2972 * grq->avg.runnable_load_avg 2973 * ge->runnable_weight = ge->load.weight * -------------------------- (7) 2974 * grq->avg.load_avg 2975 * 2976 * However, analogous to above, since the avg numbers are slow, this leads to 2977 * transients in the from-idle case. Instead we use: 2978 * 2979 * ge->runnable_weight = ge->load.weight * 2980 * 2981 * max(grq->avg.runnable_load_avg, grq->runnable_weight) 2982 * ----------------------------------------------------- (8) 2983 * max(grq->avg.load_avg, grq->load.weight) 2984 * 2985 * Where these max() serve both to use the 'instant' values to fix the slow 2986 * from-idle and avoid the /0 on to-idle, similar to (6). 2987 */ 2988 static long calc_group_runnable(struct cfs_rq *cfs_rq, long shares) 2989 { 2990 long runnable, load_avg; 2991 2992 load_avg = max(cfs_rq->avg.load_avg, 2993 scale_load_down(cfs_rq->load.weight)); 2994 2995 runnable = max(cfs_rq->avg.runnable_load_avg, 2996 scale_load_down(cfs_rq->runnable_weight)); 2997 2998 runnable *= shares; 2999 if (load_avg) 3000 runnable /= load_avg; 3001 3002 return clamp_t(long, runnable, MIN_SHARES, shares); 3003 } 3004 #endif /* CONFIG_SMP */ 3005 3006 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq); 3007 3008 /* 3009 * Recomputes the group entity based on the current state of its group 3010 * runqueue. 3011 */ 3012 static void update_cfs_group(struct sched_entity *se) 3013 { 3014 struct cfs_rq *gcfs_rq = group_cfs_rq(se); 3015 long shares, runnable; 3016 3017 if (!gcfs_rq) 3018 return; 3019 3020 if (throttled_hierarchy(gcfs_rq)) 3021 return; 3022 3023 #ifndef CONFIG_SMP 3024 runnable = shares = READ_ONCE(gcfs_rq->tg->shares); 3025 3026 if (likely(se->load.weight == shares)) 3027 return; 3028 #else 3029 shares = calc_group_shares(gcfs_rq); 3030 runnable = calc_group_runnable(gcfs_rq, shares); 3031 #endif 3032 3033 reweight_entity(cfs_rq_of(se), se, shares, runnable); 3034 } 3035 3036 #else /* CONFIG_FAIR_GROUP_SCHED */ 3037 static inline void update_cfs_group(struct sched_entity *se) 3038 { 3039 } 3040 #endif /* CONFIG_FAIR_GROUP_SCHED */ 3041 3042 static inline void cfs_rq_util_change(struct cfs_rq *cfs_rq, int flags) 3043 { 3044 struct rq *rq = rq_of(cfs_rq); 3045 3046 if (&rq->cfs == cfs_rq || (flags & SCHED_CPUFREQ_MIGRATION)) { 3047 /* 3048 * There are a few boundary cases this might miss but it should 3049 * get called often enough that that should (hopefully) not be 3050 * a real problem. 3051 * 3052 * It will not get called when we go idle, because the idle 3053 * thread is a different class (!fair), nor will the utilization 3054 * number include things like RT tasks. 3055 * 3056 * As is, the util number is not freq-invariant (we'd have to 3057 * implement arch_scale_freq_capacity() for that). 3058 * 3059 * See cpu_util(). 3060 */ 3061 cpufreq_update_util(rq, flags); 3062 } 3063 } 3064 3065 #ifdef CONFIG_SMP 3066 #ifdef CONFIG_FAIR_GROUP_SCHED 3067 /** 3068 * update_tg_load_avg - update the tg's load avg 3069 * @cfs_rq: the cfs_rq whose avg changed 3070 * @force: update regardless of how small the difference 3071 * 3072 * This function 'ensures': tg->load_avg := \Sum tg->cfs_rq[]->avg.load. 3073 * However, because tg->load_avg is a global value there are performance 3074 * considerations. 3075 * 3076 * In order to avoid having to look at the other cfs_rq's, we use a 3077 * differential update where we store the last value we propagated. This in 3078 * turn allows skipping updates if the differential is 'small'. 3079 * 3080 * Updating tg's load_avg is necessary before update_cfs_share(). 3081 */ 3082 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force) 3083 { 3084 long delta = cfs_rq->avg.load_avg - cfs_rq->tg_load_avg_contrib; 3085 3086 /* 3087 * No need to update load_avg for root_task_group as it is not used. 3088 */ 3089 if (cfs_rq->tg == &root_task_group) 3090 return; 3091 3092 if (force || abs(delta) > cfs_rq->tg_load_avg_contrib / 64) { 3093 atomic_long_add(delta, &cfs_rq->tg->load_avg); 3094 cfs_rq->tg_load_avg_contrib = cfs_rq->avg.load_avg; 3095 } 3096 } 3097 3098 /* 3099 * Called within set_task_rq() right before setting a task's CPU. The 3100 * caller only guarantees p->pi_lock is held; no other assumptions, 3101 * including the state of rq->lock, should be made. 3102 */ 3103 void set_task_rq_fair(struct sched_entity *se, 3104 struct cfs_rq *prev, struct cfs_rq *next) 3105 { 3106 u64 p_last_update_time; 3107 u64 n_last_update_time; 3108 3109 if (!sched_feat(ATTACH_AGE_LOAD)) 3110 return; 3111 3112 /* 3113 * We are supposed to update the task to "current" time, then its up to 3114 * date and ready to go to new CPU/cfs_rq. But we have difficulty in 3115 * getting what current time is, so simply throw away the out-of-date 3116 * time. This will result in the wakee task is less decayed, but giving 3117 * the wakee more load sounds not bad. 3118 */ 3119 if (!(se->avg.last_update_time && prev)) 3120 return; 3121 3122 #ifndef CONFIG_64BIT 3123 { 3124 u64 p_last_update_time_copy; 3125 u64 n_last_update_time_copy; 3126 3127 do { 3128 p_last_update_time_copy = prev->load_last_update_time_copy; 3129 n_last_update_time_copy = next->load_last_update_time_copy; 3130 3131 smp_rmb(); 3132 3133 p_last_update_time = prev->avg.last_update_time; 3134 n_last_update_time = next->avg.last_update_time; 3135 3136 } while (p_last_update_time != p_last_update_time_copy || 3137 n_last_update_time != n_last_update_time_copy); 3138 } 3139 #else 3140 p_last_update_time = prev->avg.last_update_time; 3141 n_last_update_time = next->avg.last_update_time; 3142 #endif 3143 __update_load_avg_blocked_se(p_last_update_time, se); 3144 se->avg.last_update_time = n_last_update_time; 3145 } 3146 3147 3148 /* 3149 * When on migration a sched_entity joins/leaves the PELT hierarchy, we need to 3150 * propagate its contribution. The key to this propagation is the invariant 3151 * that for each group: 3152 * 3153 * ge->avg == grq->avg (1) 3154 * 3155 * _IFF_ we look at the pure running and runnable sums. Because they 3156 * represent the very same entity, just at different points in the hierarchy. 3157 * 3158 * Per the above update_tg_cfs_util() is trivial and simply copies the running 3159 * sum over (but still wrong, because the group entity and group rq do not have 3160 * their PELT windows aligned). 3161 * 3162 * However, update_tg_cfs_runnable() is more complex. So we have: 3163 * 3164 * ge->avg.load_avg = ge->load.weight * ge->avg.runnable_avg (2) 3165 * 3166 * And since, like util, the runnable part should be directly transferable, 3167 * the following would _appear_ to be the straight forward approach: 3168 * 3169 * grq->avg.load_avg = grq->load.weight * grq->avg.runnable_avg (3) 3170 * 3171 * And per (1) we have: 3172 * 3173 * ge->avg.runnable_avg == grq->avg.runnable_avg 3174 * 3175 * Which gives: 3176 * 3177 * ge->load.weight * grq->avg.load_avg 3178 * ge->avg.load_avg = ----------------------------------- (4) 3179 * grq->load.weight 3180 * 3181 * Except that is wrong! 3182 * 3183 * Because while for entities historical weight is not important and we 3184 * really only care about our future and therefore can consider a pure 3185 * runnable sum, runqueues can NOT do this. 3186 * 3187 * We specifically want runqueues to have a load_avg that includes 3188 * historical weights. Those represent the blocked load, the load we expect 3189 * to (shortly) return to us. This only works by keeping the weights as 3190 * integral part of the sum. We therefore cannot decompose as per (3). 3191 * 3192 * Another reason this doesn't work is that runnable isn't a 0-sum entity. 3193 * Imagine a rq with 2 tasks that each are runnable 2/3 of the time. Then the 3194 * rq itself is runnable anywhere between 2/3 and 1 depending on how the 3195 * runnable section of these tasks overlap (or not). If they were to perfectly 3196 * align the rq as a whole would be runnable 2/3 of the time. If however we 3197 * always have at least 1 runnable task, the rq as a whole is always runnable. 3198 * 3199 * So we'll have to approximate.. :/ 3200 * 3201 * Given the constraint: 3202 * 3203 * ge->avg.running_sum <= ge->avg.runnable_sum <= LOAD_AVG_MAX 3204 * 3205 * We can construct a rule that adds runnable to a rq by assuming minimal 3206 * overlap. 3207 * 3208 * On removal, we'll assume each task is equally runnable; which yields: 3209 * 3210 * grq->avg.runnable_sum = grq->avg.load_sum / grq->load.weight 3211 * 3212 * XXX: only do this for the part of runnable > running ? 3213 * 3214 */ 3215 3216 static inline void 3217 update_tg_cfs_util(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq) 3218 { 3219 long delta = gcfs_rq->avg.util_avg - se->avg.util_avg; 3220 3221 /* Nothing to update */ 3222 if (!delta) 3223 return; 3224 3225 /* 3226 * The relation between sum and avg is: 3227 * 3228 * LOAD_AVG_MAX - 1024 + sa->period_contrib 3229 * 3230 * however, the PELT windows are not aligned between grq and gse. 3231 */ 3232 3233 /* Set new sched_entity's utilization */ 3234 se->avg.util_avg = gcfs_rq->avg.util_avg; 3235 se->avg.util_sum = se->avg.util_avg * LOAD_AVG_MAX; 3236 3237 /* Update parent cfs_rq utilization */ 3238 add_positive(&cfs_rq->avg.util_avg, delta); 3239 cfs_rq->avg.util_sum = cfs_rq->avg.util_avg * LOAD_AVG_MAX; 3240 } 3241 3242 static inline void 3243 update_tg_cfs_runnable(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq) 3244 { 3245 long delta_avg, running_sum, runnable_sum = gcfs_rq->prop_runnable_sum; 3246 unsigned long runnable_load_avg, load_avg; 3247 u64 runnable_load_sum, load_sum = 0; 3248 s64 delta_sum; 3249 3250 if (!runnable_sum) 3251 return; 3252 3253 gcfs_rq->prop_runnable_sum = 0; 3254 3255 if (runnable_sum >= 0) { 3256 /* 3257 * Add runnable; clip at LOAD_AVG_MAX. Reflects that until 3258 * the CPU is saturated running == runnable. 3259 */ 3260 runnable_sum += se->avg.load_sum; 3261 runnable_sum = min(runnable_sum, (long)LOAD_AVG_MAX); 3262 } else { 3263 /* 3264 * Estimate the new unweighted runnable_sum of the gcfs_rq by 3265 * assuming all tasks are equally runnable. 3266 */ 3267 if (scale_load_down(gcfs_rq->load.weight)) { 3268 load_sum = div_s64(gcfs_rq->avg.load_sum, 3269 scale_load_down(gcfs_rq->load.weight)); 3270 } 3271 3272 /* But make sure to not inflate se's runnable */ 3273 runnable_sum = min(se->avg.load_sum, load_sum); 3274 } 3275 3276 /* 3277 * runnable_sum can't be lower than running_sum 3278 * Rescale running sum to be in the same range as runnable sum 3279 * running_sum is in [0 : LOAD_AVG_MAX << SCHED_CAPACITY_SHIFT] 3280 * runnable_sum is in [0 : LOAD_AVG_MAX] 3281 */ 3282 running_sum = se->avg.util_sum >> SCHED_CAPACITY_SHIFT; 3283 runnable_sum = max(runnable_sum, running_sum); 3284 3285 load_sum = (s64)se_weight(se) * runnable_sum; 3286 load_avg = div_s64(load_sum, LOAD_AVG_MAX); 3287 3288 delta_sum = load_sum - (s64)se_weight(se) * se->avg.load_sum; 3289 delta_avg = load_avg - se->avg.load_avg; 3290 3291 se->avg.load_sum = runnable_sum; 3292 se->avg.load_avg = load_avg; 3293 add_positive(&cfs_rq->avg.load_avg, delta_avg); 3294 add_positive(&cfs_rq->avg.load_sum, delta_sum); 3295 3296 runnable_load_sum = (s64)se_runnable(se) * runnable_sum; 3297 runnable_load_avg = div_s64(runnable_load_sum, LOAD_AVG_MAX); 3298 delta_sum = runnable_load_sum - se_weight(se) * se->avg.runnable_load_sum; 3299 delta_avg = runnable_load_avg - se->avg.runnable_load_avg; 3300 3301 se->avg.runnable_load_sum = runnable_sum; 3302 se->avg.runnable_load_avg = runnable_load_avg; 3303 3304 if (se->on_rq) { 3305 add_positive(&cfs_rq->avg.runnable_load_avg, delta_avg); 3306 add_positive(&cfs_rq->avg.runnable_load_sum, delta_sum); 3307 } 3308 } 3309 3310 static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum) 3311 { 3312 cfs_rq->propagate = 1; 3313 cfs_rq->prop_runnable_sum += runnable_sum; 3314 } 3315 3316 /* Update task and its cfs_rq load average */ 3317 static inline int propagate_entity_load_avg(struct sched_entity *se) 3318 { 3319 struct cfs_rq *cfs_rq, *gcfs_rq; 3320 3321 if (entity_is_task(se)) 3322 return 0; 3323 3324 gcfs_rq = group_cfs_rq(se); 3325 if (!gcfs_rq->propagate) 3326 return 0; 3327 3328 gcfs_rq->propagate = 0; 3329 3330 cfs_rq = cfs_rq_of(se); 3331 3332 add_tg_cfs_propagate(cfs_rq, gcfs_rq->prop_runnable_sum); 3333 3334 update_tg_cfs_util(cfs_rq, se, gcfs_rq); 3335 update_tg_cfs_runnable(cfs_rq, se, gcfs_rq); 3336 3337 return 1; 3338 } 3339 3340 /* 3341 * Check if we need to update the load and the utilization of a blocked 3342 * group_entity: 3343 */ 3344 static inline bool skip_blocked_update(struct sched_entity *se) 3345 { 3346 struct cfs_rq *gcfs_rq = group_cfs_rq(se); 3347 3348 /* 3349 * If sched_entity still have not zero load or utilization, we have to 3350 * decay it: 3351 */ 3352 if (se->avg.load_avg || se->avg.util_avg) 3353 return false; 3354 3355 /* 3356 * If there is a pending propagation, we have to update the load and 3357 * the utilization of the sched_entity: 3358 */ 3359 if (gcfs_rq->propagate) 3360 return false; 3361 3362 /* 3363 * Otherwise, the load and the utilization of the sched_entity is 3364 * already zero and there is no pending propagation, so it will be a 3365 * waste of time to try to decay it: 3366 */ 3367 return true; 3368 } 3369 3370 #else /* CONFIG_FAIR_GROUP_SCHED */ 3371 3372 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force) {} 3373 3374 static inline int propagate_entity_load_avg(struct sched_entity *se) 3375 { 3376 return 0; 3377 } 3378 3379 static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum) {} 3380 3381 #endif /* CONFIG_FAIR_GROUP_SCHED */ 3382 3383 /** 3384 * update_cfs_rq_load_avg - update the cfs_rq's load/util averages 3385 * @now: current time, as per cfs_rq_clock_pelt() 3386 * @cfs_rq: cfs_rq to update 3387 * 3388 * The cfs_rq avg is the direct sum of all its entities (blocked and runnable) 3389 * avg. The immediate corollary is that all (fair) tasks must be attached, see 3390 * post_init_entity_util_avg(). 3391 * 3392 * cfs_rq->avg is used for task_h_load() and update_cfs_share() for example. 3393 * 3394 * Returns true if the load decayed or we removed load. 3395 * 3396 * Since both these conditions indicate a changed cfs_rq->avg.load we should 3397 * call update_tg_load_avg() when this function returns true. 3398 */ 3399 static inline int 3400 update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq) 3401 { 3402 unsigned long removed_load = 0, removed_util = 0, removed_runnable_sum = 0; 3403 struct sched_avg *sa = &cfs_rq->avg; 3404 int decayed = 0; 3405 3406 if (cfs_rq->removed.nr) { 3407 unsigned long r; 3408 u32 divider = LOAD_AVG_MAX - 1024 + sa->period_contrib; 3409 3410 raw_spin_lock(&cfs_rq->removed.lock); 3411 swap(cfs_rq->removed.util_avg, removed_util); 3412 swap(cfs_rq->removed.load_avg, removed_load); 3413 swap(cfs_rq->removed.runnable_sum, removed_runnable_sum); 3414 cfs_rq->removed.nr = 0; 3415 raw_spin_unlock(&cfs_rq->removed.lock); 3416 3417 r = removed_load; 3418 sub_positive(&sa->load_avg, r); 3419 sub_positive(&sa->load_sum, r * divider); 3420 3421 r = removed_util; 3422 sub_positive(&sa->util_avg, r); 3423 sub_positive(&sa->util_sum, r * divider); 3424 3425 add_tg_cfs_propagate(cfs_rq, -(long)removed_runnable_sum); 3426 3427 decayed = 1; 3428 } 3429 3430 decayed |= __update_load_avg_cfs_rq(now, cfs_rq); 3431 3432 #ifndef CONFIG_64BIT 3433 smp_wmb(); 3434 cfs_rq->load_last_update_time_copy = sa->last_update_time; 3435 #endif 3436 3437 if (decayed) 3438 cfs_rq_util_change(cfs_rq, 0); 3439 3440 return decayed; 3441 } 3442 3443 /** 3444 * attach_entity_load_avg - attach this entity to its cfs_rq load avg 3445 * @cfs_rq: cfs_rq to attach to 3446 * @se: sched_entity to attach 3447 * @flags: migration hints 3448 * 3449 * Must call update_cfs_rq_load_avg() before this, since we rely on 3450 * cfs_rq->avg.last_update_time being current. 3451 */ 3452 static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 3453 { 3454 u32 divider = LOAD_AVG_MAX - 1024 + cfs_rq->avg.period_contrib; 3455 3456 /* 3457 * When we attach the @se to the @cfs_rq, we must align the decay 3458 * window because without that, really weird and wonderful things can 3459 * happen. 3460 * 3461 * XXX illustrate 3462 */ 3463 se->avg.last_update_time = cfs_rq->avg.last_update_time; 3464 se->avg.period_contrib = cfs_rq->avg.period_contrib; 3465 3466 /* 3467 * Hell(o) Nasty stuff.. we need to recompute _sum based on the new 3468 * period_contrib. This isn't strictly correct, but since we're 3469 * entirely outside of the PELT hierarchy, nobody cares if we truncate 3470 * _sum a little. 3471 */ 3472 se->avg.util_sum = se->avg.util_avg * divider; 3473 3474 se->avg.load_sum = divider; 3475 if (se_weight(se)) { 3476 se->avg.load_sum = 3477 div_u64(se->avg.load_avg * se->avg.load_sum, se_weight(se)); 3478 } 3479 3480 se->avg.runnable_load_sum = se->avg.load_sum; 3481 3482 enqueue_load_avg(cfs_rq, se); 3483 cfs_rq->avg.util_avg += se->avg.util_avg; 3484 cfs_rq->avg.util_sum += se->avg.util_sum; 3485 3486 add_tg_cfs_propagate(cfs_rq, se->avg.load_sum); 3487 3488 cfs_rq_util_change(cfs_rq, flags); 3489 } 3490 3491 /** 3492 * detach_entity_load_avg - detach this entity from its cfs_rq load avg 3493 * @cfs_rq: cfs_rq to detach from 3494 * @se: sched_entity to detach 3495 * 3496 * Must call update_cfs_rq_load_avg() before this, since we rely on 3497 * cfs_rq->avg.last_update_time being current. 3498 */ 3499 static void detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) 3500 { 3501 dequeue_load_avg(cfs_rq, se); 3502 sub_positive(&cfs_rq->avg.util_avg, se->avg.util_avg); 3503 sub_positive(&cfs_rq->avg.util_sum, se->avg.util_sum); 3504 3505 add_tg_cfs_propagate(cfs_rq, -se->avg.load_sum); 3506 3507 cfs_rq_util_change(cfs_rq, 0); 3508 } 3509 3510 /* 3511 * Optional action to be done while updating the load average 3512 */ 3513 #define UPDATE_TG 0x1 3514 #define SKIP_AGE_LOAD 0x2 3515 #define DO_ATTACH 0x4 3516 3517 /* Update task and its cfs_rq load average */ 3518 static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 3519 { 3520 u64 now = cfs_rq_clock_pelt(cfs_rq); 3521 int decayed; 3522 3523 /* 3524 * Track task load average for carrying it to new CPU after migrated, and 3525 * track group sched_entity load average for task_h_load calc in migration 3526 */ 3527 if (se->avg.last_update_time && !(flags & SKIP_AGE_LOAD)) 3528 __update_load_avg_se(now, cfs_rq, se); 3529 3530 decayed = update_cfs_rq_load_avg(now, cfs_rq); 3531 decayed |= propagate_entity_load_avg(se); 3532 3533 if (!se->avg.last_update_time && (flags & DO_ATTACH)) { 3534 3535 /* 3536 * DO_ATTACH means we're here from enqueue_entity(). 3537 * !last_update_time means we've passed through 3538 * migrate_task_rq_fair() indicating we migrated. 3539 * 3540 * IOW we're enqueueing a task on a new CPU. 3541 */ 3542 attach_entity_load_avg(cfs_rq, se, SCHED_CPUFREQ_MIGRATION); 3543 update_tg_load_avg(cfs_rq, 0); 3544 3545 } else if (decayed && (flags & UPDATE_TG)) 3546 update_tg_load_avg(cfs_rq, 0); 3547 } 3548 3549 #ifndef CONFIG_64BIT 3550 static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq) 3551 { 3552 u64 last_update_time_copy; 3553 u64 last_update_time; 3554 3555 do { 3556 last_update_time_copy = cfs_rq->load_last_update_time_copy; 3557 smp_rmb(); 3558 last_update_time = cfs_rq->avg.last_update_time; 3559 } while (last_update_time != last_update_time_copy); 3560 3561 return last_update_time; 3562 } 3563 #else 3564 static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq) 3565 { 3566 return cfs_rq->avg.last_update_time; 3567 } 3568 #endif 3569 3570 /* 3571 * Synchronize entity load avg of dequeued entity without locking 3572 * the previous rq. 3573 */ 3574 void sync_entity_load_avg(struct sched_entity *se) 3575 { 3576 struct cfs_rq *cfs_rq = cfs_rq_of(se); 3577 u64 last_update_time; 3578 3579 last_update_time = cfs_rq_last_update_time(cfs_rq); 3580 __update_load_avg_blocked_se(last_update_time, se); 3581 } 3582 3583 /* 3584 * Task first catches up with cfs_rq, and then subtract 3585 * itself from the cfs_rq (task must be off the queue now). 3586 */ 3587 void remove_entity_load_avg(struct sched_entity *se) 3588 { 3589 struct cfs_rq *cfs_rq = cfs_rq_of(se); 3590 unsigned long flags; 3591 3592 /* 3593 * tasks cannot exit without having gone through wake_up_new_task() -> 3594 * post_init_entity_util_avg() which will have added things to the 3595 * cfs_rq, so we can remove unconditionally. 3596 */ 3597 3598 sync_entity_load_avg(se); 3599 3600 raw_spin_lock_irqsave(&cfs_rq->removed.lock, flags); 3601 ++cfs_rq->removed.nr; 3602 cfs_rq->removed.util_avg += se->avg.util_avg; 3603 cfs_rq->removed.load_avg += se->avg.load_avg; 3604 cfs_rq->removed.runnable_sum += se->avg.load_sum; /* == runnable_sum */ 3605 raw_spin_unlock_irqrestore(&cfs_rq->removed.lock, flags); 3606 } 3607 3608 static inline unsigned long cfs_rq_runnable_load_avg(struct cfs_rq *cfs_rq) 3609 { 3610 return cfs_rq->avg.runnable_load_avg; 3611 } 3612 3613 static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq) 3614 { 3615 return cfs_rq->avg.load_avg; 3616 } 3617 3618 static int idle_balance(struct rq *this_rq, struct rq_flags *rf); 3619 3620 static inline unsigned long task_util(struct task_struct *p) 3621 { 3622 return READ_ONCE(p->se.avg.util_avg); 3623 } 3624 3625 static inline unsigned long _task_util_est(struct task_struct *p) 3626 { 3627 struct util_est ue = READ_ONCE(p->se.avg.util_est); 3628 3629 return (max(ue.ewma, ue.enqueued) | UTIL_AVG_UNCHANGED); 3630 } 3631 3632 static inline unsigned long task_util_est(struct task_struct *p) 3633 { 3634 return max(task_util(p), _task_util_est(p)); 3635 } 3636 3637 static inline void util_est_enqueue(struct cfs_rq *cfs_rq, 3638 struct task_struct *p) 3639 { 3640 unsigned int enqueued; 3641 3642 if (!sched_feat(UTIL_EST)) 3643 return; 3644 3645 /* Update root cfs_rq's estimated utilization */ 3646 enqueued = cfs_rq->avg.util_est.enqueued; 3647 enqueued += _task_util_est(p); 3648 WRITE_ONCE(cfs_rq->avg.util_est.enqueued, enqueued); 3649 } 3650 3651 /* 3652 * Check if a (signed) value is within a specified (unsigned) margin, 3653 * based on the observation that: 3654 * 3655 * abs(x) < y := (unsigned)(x + y - 1) < (2 * y - 1) 3656 * 3657 * NOTE: this only works when value + maring < INT_MAX. 3658 */ 3659 static inline bool within_margin(int value, int margin) 3660 { 3661 return ((unsigned int)(value + margin - 1) < (2 * margin - 1)); 3662 } 3663 3664 static void 3665 util_est_dequeue(struct cfs_rq *cfs_rq, struct task_struct *p, bool task_sleep) 3666 { 3667 long last_ewma_diff; 3668 struct util_est ue; 3669 int cpu; 3670 3671 if (!sched_feat(UTIL_EST)) 3672 return; 3673 3674 /* Update root cfs_rq's estimated utilization */ 3675 ue.enqueued = cfs_rq->avg.util_est.enqueued; 3676 ue.enqueued -= min_t(unsigned int, ue.enqueued, _task_util_est(p)); 3677 WRITE_ONCE(cfs_rq->avg.util_est.enqueued, ue.enqueued); 3678 3679 /* 3680 * Skip update of task's estimated utilization when the task has not 3681 * yet completed an activation, e.g. being migrated. 3682 */ 3683 if (!task_sleep) 3684 return; 3685 3686 /* 3687 * If the PELT values haven't changed since enqueue time, 3688 * skip the util_est update. 3689 */ 3690 ue = p->se.avg.util_est; 3691 if (ue.enqueued & UTIL_AVG_UNCHANGED) 3692 return; 3693 3694 /* 3695 * Skip update of task's estimated utilization when its EWMA is 3696 * already ~1% close to its last activation value. 3697 */ 3698 ue.enqueued = (task_util(p) | UTIL_AVG_UNCHANGED); 3699 last_ewma_diff = ue.enqueued - ue.ewma; 3700 if (within_margin(last_ewma_diff, (SCHED_CAPACITY_SCALE / 100))) 3701 return; 3702 3703 /* 3704 * To avoid overestimation of actual task utilization, skip updates if 3705 * we cannot grant there is idle time in this CPU. 3706 */ 3707 cpu = cpu_of(rq_of(cfs_rq)); 3708 if (task_util(p) > capacity_orig_of(cpu)) 3709 return; 3710 3711 /* 3712 * Update Task's estimated utilization 3713 * 3714 * When *p completes an activation we can consolidate another sample 3715 * of the task size. This is done by storing the current PELT value 3716 * as ue.enqueued and by using this value to update the Exponential 3717 * Weighted Moving Average (EWMA): 3718 * 3719 * ewma(t) = w * task_util(p) + (1-w) * ewma(t-1) 3720 * = w * task_util(p) + ewma(t-1) - w * ewma(t-1) 3721 * = w * (task_util(p) - ewma(t-1)) + ewma(t-1) 3722 * = w * ( last_ewma_diff ) + ewma(t-1) 3723 * = w * (last_ewma_diff + ewma(t-1) / w) 3724 * 3725 * Where 'w' is the weight of new samples, which is configured to be 3726 * 0.25, thus making w=1/4 ( >>= UTIL_EST_WEIGHT_SHIFT) 3727 */ 3728 ue.ewma <<= UTIL_EST_WEIGHT_SHIFT; 3729 ue.ewma += last_ewma_diff; 3730 ue.ewma >>= UTIL_EST_WEIGHT_SHIFT; 3731 WRITE_ONCE(p->se.avg.util_est, ue); 3732 } 3733 3734 static inline int task_fits_capacity(struct task_struct *p, long capacity) 3735 { 3736 return capacity * 1024 > task_util_est(p) * capacity_margin; 3737 } 3738 3739 static inline void update_misfit_status(struct task_struct *p, struct rq *rq) 3740 { 3741 if (!static_branch_unlikely(&sched_asym_cpucapacity)) 3742 return; 3743 3744 if (!p) { 3745 rq->misfit_task_load = 0; 3746 return; 3747 } 3748 3749 if (task_fits_capacity(p, capacity_of(cpu_of(rq)))) { 3750 rq->misfit_task_load = 0; 3751 return; 3752 } 3753 3754 rq->misfit_task_load = task_h_load(p); 3755 } 3756 3757 #else /* CONFIG_SMP */ 3758 3759 #define UPDATE_TG 0x0 3760 #define SKIP_AGE_LOAD 0x0 3761 #define DO_ATTACH 0x0 3762 3763 static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int not_used1) 3764 { 3765 cfs_rq_util_change(cfs_rq, 0); 3766 } 3767 3768 static inline void remove_entity_load_avg(struct sched_entity *se) {} 3769 3770 static inline void 3771 attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) {} 3772 static inline void 3773 detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {} 3774 3775 static inline int idle_balance(struct rq *rq, struct rq_flags *rf) 3776 { 3777 return 0; 3778 } 3779 3780 static inline void 3781 util_est_enqueue(struct cfs_rq *cfs_rq, struct task_struct *p) {} 3782 3783 static inline void 3784 util_est_dequeue(struct cfs_rq *cfs_rq, struct task_struct *p, 3785 bool task_sleep) {} 3786 static inline void update_misfit_status(struct task_struct *p, struct rq *rq) {} 3787 3788 #endif /* CONFIG_SMP */ 3789 3790 static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se) 3791 { 3792 #ifdef CONFIG_SCHED_DEBUG 3793 s64 d = se->vruntime - cfs_rq->min_vruntime; 3794 3795 if (d < 0) 3796 d = -d; 3797 3798 if (d > 3*sysctl_sched_latency) 3799 schedstat_inc(cfs_rq->nr_spread_over); 3800 #endif 3801 } 3802 3803 static void 3804 place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial) 3805 { 3806 u64 vruntime = cfs_rq->min_vruntime; 3807 3808 /* 3809 * The 'current' period is already promised to the current tasks, 3810 * however the extra weight of the new task will slow them down a 3811 * little, place the new task so that it fits in the slot that 3812 * stays open at the end. 3813 */ 3814 if (initial && sched_feat(START_DEBIT)) 3815 vruntime += sched_vslice(cfs_rq, se); 3816 3817 /* sleeps up to a single latency don't count. */ 3818 if (!initial) { 3819 unsigned long thresh = sysctl_sched_latency; 3820 3821 /* 3822 * Halve their sleep time's effect, to allow 3823 * for a gentler effect of sleepers: 3824 */ 3825 if (sched_feat(GENTLE_FAIR_SLEEPERS)) 3826 thresh >>= 1; 3827 3828 vruntime -= thresh; 3829 } 3830 3831 /* ensure we never gain time by being placed backwards. */ 3832 se->vruntime = max_vruntime(se->vruntime, vruntime); 3833 } 3834 3835 static void check_enqueue_throttle(struct cfs_rq *cfs_rq); 3836 3837 static inline void check_schedstat_required(void) 3838 { 3839 #ifdef CONFIG_SCHEDSTATS 3840 if (schedstat_enabled()) 3841 return; 3842 3843 /* Force schedstat enabled if a dependent tracepoint is active */ 3844 if (trace_sched_stat_wait_enabled() || 3845 trace_sched_stat_sleep_enabled() || 3846 trace_sched_stat_iowait_enabled() || 3847 trace_sched_stat_blocked_enabled() || 3848 trace_sched_stat_runtime_enabled()) { 3849 printk_deferred_once("Scheduler tracepoints stat_sleep, stat_iowait, " 3850 "stat_blocked and stat_runtime require the " 3851 "kernel parameter schedstats=enable or " 3852 "kernel.sched_schedstats=1\n"); 3853 } 3854 #endif 3855 } 3856 3857 3858 /* 3859 * MIGRATION 3860 * 3861 * dequeue 3862 * update_curr() 3863 * update_min_vruntime() 3864 * vruntime -= min_vruntime 3865 * 3866 * enqueue 3867 * update_curr() 3868 * update_min_vruntime() 3869 * vruntime += min_vruntime 3870 * 3871 * this way the vruntime transition between RQs is done when both 3872 * min_vruntime are up-to-date. 3873 * 3874 * WAKEUP (remote) 3875 * 3876 * ->migrate_task_rq_fair() (p->state == TASK_WAKING) 3877 * vruntime -= min_vruntime 3878 * 3879 * enqueue 3880 * update_curr() 3881 * update_min_vruntime() 3882 * vruntime += min_vruntime 3883 * 3884 * this way we don't have the most up-to-date min_vruntime on the originating 3885 * CPU and an up-to-date min_vruntime on the destination CPU. 3886 */ 3887 3888 static void 3889 enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 3890 { 3891 bool renorm = !(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_MIGRATED); 3892 bool curr = cfs_rq->curr == se; 3893 3894 /* 3895 * If we're the current task, we must renormalise before calling 3896 * update_curr(). 3897 */ 3898 if (renorm && curr) 3899 se->vruntime += cfs_rq->min_vruntime; 3900 3901 update_curr(cfs_rq); 3902 3903 /* 3904 * Otherwise, renormalise after, such that we're placed at the current 3905 * moment in time, instead of some random moment in the past. Being 3906 * placed in the past could significantly boost this task to the 3907 * fairness detriment of existing tasks. 3908 */ 3909 if (renorm && !curr) 3910 se->vruntime += cfs_rq->min_vruntime; 3911 3912 /* 3913 * When enqueuing a sched_entity, we must: 3914 * - Update loads to have both entity and cfs_rq synced with now. 3915 * - Add its load to cfs_rq->runnable_avg 3916 * - For group_entity, update its weight to reflect the new share of 3917 * its group cfs_rq 3918 * - Add its new weight to cfs_rq->load.weight 3919 */ 3920 update_load_avg(cfs_rq, se, UPDATE_TG | DO_ATTACH); 3921 update_cfs_group(se); 3922 enqueue_runnable_load_avg(cfs_rq, se); 3923 account_entity_enqueue(cfs_rq, se); 3924 3925 if (flags & ENQUEUE_WAKEUP) 3926 place_entity(cfs_rq, se, 0); 3927 3928 check_schedstat_required(); 3929 update_stats_enqueue(cfs_rq, se, flags); 3930 check_spread(cfs_rq, se); 3931 if (!curr) 3932 __enqueue_entity(cfs_rq, se); 3933 se->on_rq = 1; 3934 3935 if (cfs_rq->nr_running == 1) { 3936 list_add_leaf_cfs_rq(cfs_rq); 3937 check_enqueue_throttle(cfs_rq); 3938 } 3939 } 3940 3941 static void __clear_buddies_last(struct sched_entity *se) 3942 { 3943 for_each_sched_entity(se) { 3944 struct cfs_rq *cfs_rq = cfs_rq_of(se); 3945 if (cfs_rq->last != se) 3946 break; 3947 3948 cfs_rq->last = NULL; 3949 } 3950 } 3951 3952 static void __clear_buddies_next(struct sched_entity *se) 3953 { 3954 for_each_sched_entity(se) { 3955 struct cfs_rq *cfs_rq = cfs_rq_of(se); 3956 if (cfs_rq->next != se) 3957 break; 3958 3959 cfs_rq->next = NULL; 3960 } 3961 } 3962 3963 static void __clear_buddies_skip(struct sched_entity *se) 3964 { 3965 for_each_sched_entity(se) { 3966 struct cfs_rq *cfs_rq = cfs_rq_of(se); 3967 if (cfs_rq->skip != se) 3968 break; 3969 3970 cfs_rq->skip = NULL; 3971 } 3972 } 3973 3974 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se) 3975 { 3976 if (cfs_rq->last == se) 3977 __clear_buddies_last(se); 3978 3979 if (cfs_rq->next == se) 3980 __clear_buddies_next(se); 3981 3982 if (cfs_rq->skip == se) 3983 __clear_buddies_skip(se); 3984 } 3985 3986 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq); 3987 3988 static void 3989 dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 3990 { 3991 /* 3992 * Update run-time statistics of the 'current'. 3993 */ 3994 update_curr(cfs_rq); 3995 3996 /* 3997 * When dequeuing a sched_entity, we must: 3998 * - Update loads to have both entity and cfs_rq synced with now. 3999 * - Subtract its load from the cfs_rq->runnable_avg. 4000 * - Subtract its previous weight from cfs_rq->load.weight. 4001 * - For group entity, update its weight to reflect the new share 4002 * of its group cfs_rq. 4003 */ 4004 update_load_avg(cfs_rq, se, UPDATE_TG); 4005 dequeue_runnable_load_avg(cfs_rq, se); 4006 4007 update_stats_dequeue(cfs_rq, se, flags); 4008 4009 clear_buddies(cfs_rq, se); 4010 4011 if (se != cfs_rq->curr) 4012 __dequeue_entity(cfs_rq, se); 4013 se->on_rq = 0; 4014 account_entity_dequeue(cfs_rq, se); 4015 4016 /* 4017 * Normalize after update_curr(); which will also have moved 4018 * min_vruntime if @se is the one holding it back. But before doing 4019 * update_min_vruntime() again, which will discount @se's position and 4020 * can move min_vruntime forward still more. 4021 */ 4022 if (!(flags & DEQUEUE_SLEEP)) 4023 se->vruntime -= cfs_rq->min_vruntime; 4024 4025 /* return excess runtime on last dequeue */ 4026 return_cfs_rq_runtime(cfs_rq); 4027 4028 update_cfs_group(se); 4029 4030 /* 4031 * Now advance min_vruntime if @se was the entity holding it back, 4032 * except when: DEQUEUE_SAVE && !DEQUEUE_MOVE, in this case we'll be 4033 * put back on, and if we advance min_vruntime, we'll be placed back 4034 * further than we started -- ie. we'll be penalized. 4035 */ 4036 if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) != DEQUEUE_SAVE) 4037 update_min_vruntime(cfs_rq); 4038 } 4039 4040 /* 4041 * Preempt the current task with a newly woken task if needed: 4042 */ 4043 static void 4044 check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr) 4045 { 4046 unsigned long ideal_runtime, delta_exec; 4047 struct sched_entity *se; 4048 s64 delta; 4049 4050 ideal_runtime = sched_slice(cfs_rq, curr); 4051 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime; 4052 if (delta_exec > ideal_runtime) { 4053 resched_curr(rq_of(cfs_rq)); 4054 /* 4055 * The current task ran long enough, ensure it doesn't get 4056 * re-elected due to buddy favours. 4057 */ 4058 clear_buddies(cfs_rq, curr); 4059 return; 4060 } 4061 4062 /* 4063 * Ensure that a task that missed wakeup preemption by a 4064 * narrow margin doesn't have to wait for a full slice. 4065 * This also mitigates buddy induced latencies under load. 4066 */ 4067 if (delta_exec < sysctl_sched_min_granularity) 4068 return; 4069 4070 se = __pick_first_entity(cfs_rq); 4071 delta = curr->vruntime - se->vruntime; 4072 4073 if (delta < 0) 4074 return; 4075 4076 if (delta > ideal_runtime) 4077 resched_curr(rq_of(cfs_rq)); 4078 } 4079 4080 static void 4081 set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) 4082 { 4083 /* 'current' is not kept within the tree. */ 4084 if (se->on_rq) { 4085 /* 4086 * Any task has to be enqueued before it get to execute on 4087 * a CPU. So account for the time it spent waiting on the 4088 * runqueue. 4089 */ 4090 update_stats_wait_end(cfs_rq, se); 4091 __dequeue_entity(cfs_rq, se); 4092 update_load_avg(cfs_rq, se, UPDATE_TG); 4093 } 4094 4095 update_stats_curr_start(cfs_rq, se); 4096 cfs_rq->curr = se; 4097 4098 /* 4099 * Track our maximum slice length, if the CPU's load is at 4100 * least twice that of our own weight (i.e. dont track it 4101 * when there are only lesser-weight tasks around): 4102 */ 4103 if (schedstat_enabled() && rq_of(cfs_rq)->load.weight >= 2*se->load.weight) { 4104 schedstat_set(se->statistics.slice_max, 4105 max((u64)schedstat_val(se->statistics.slice_max), 4106 se->sum_exec_runtime - se->prev_sum_exec_runtime)); 4107 } 4108 4109 se->prev_sum_exec_runtime = se->sum_exec_runtime; 4110 } 4111 4112 static int 4113 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se); 4114 4115 /* 4116 * Pick the next process, keeping these things in mind, in this order: 4117 * 1) keep things fair between processes/task groups 4118 * 2) pick the "next" process, since someone really wants that to run 4119 * 3) pick the "last" process, for cache locality 4120 * 4) do not run the "skip" process, if something else is available 4121 */ 4122 static struct sched_entity * 4123 pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr) 4124 { 4125 struct sched_entity *left = __pick_first_entity(cfs_rq); 4126 struct sched_entity *se; 4127 4128 /* 4129 * If curr is set we have to see if its left of the leftmost entity 4130 * still in the tree, provided there was anything in the tree at all. 4131 */ 4132 if (!left || (curr && entity_before(curr, left))) 4133 left = curr; 4134 4135 se = left; /* ideally we run the leftmost entity */ 4136 4137 /* 4138 * Avoid running the skip buddy, if running something else can 4139 * be done without getting too unfair. 4140 */ 4141 if (cfs_rq->skip == se) { 4142 struct sched_entity *second; 4143 4144 if (se == curr) { 4145 second = __pick_first_entity(cfs_rq); 4146 } else { 4147 second = __pick_next_entity(se); 4148 if (!second || (curr && entity_before(curr, second))) 4149 second = curr; 4150 } 4151 4152 if (second && wakeup_preempt_entity(second, left) < 1) 4153 se = second; 4154 } 4155 4156 /* 4157 * Prefer last buddy, try to return the CPU to a preempted task. 4158 */ 4159 if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1) 4160 se = cfs_rq->last; 4161 4162 /* 4163 * Someone really wants this to run. If it's not unfair, run it. 4164 */ 4165 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1) 4166 se = cfs_rq->next; 4167 4168 clear_buddies(cfs_rq, se); 4169 4170 return se; 4171 } 4172 4173 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq); 4174 4175 static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev) 4176 { 4177 /* 4178 * If still on the runqueue then deactivate_task() 4179 * was not called and update_curr() has to be done: 4180 */ 4181 if (prev->on_rq) 4182 update_curr(cfs_rq); 4183 4184 /* throttle cfs_rqs exceeding runtime */ 4185 check_cfs_rq_runtime(cfs_rq); 4186 4187 check_spread(cfs_rq, prev); 4188 4189 if (prev->on_rq) { 4190 update_stats_wait_start(cfs_rq, prev); 4191 /* Put 'current' back into the tree. */ 4192 __enqueue_entity(cfs_rq, prev); 4193 /* in !on_rq case, update occurred at dequeue */ 4194 update_load_avg(cfs_rq, prev, 0); 4195 } 4196 cfs_rq->curr = NULL; 4197 } 4198 4199 static void 4200 entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued) 4201 { 4202 /* 4203 * Update run-time statistics of the 'current'. 4204 */ 4205 update_curr(cfs_rq); 4206 4207 /* 4208 * Ensure that runnable average is periodically updated. 4209 */ 4210 update_load_avg(cfs_rq, curr, UPDATE_TG); 4211 update_cfs_group(curr); 4212 4213 #ifdef CONFIG_SCHED_HRTICK 4214 /* 4215 * queued ticks are scheduled to match the slice, so don't bother 4216 * validating it and just reschedule. 4217 */ 4218 if (queued) { 4219 resched_curr(rq_of(cfs_rq)); 4220 return; 4221 } 4222 /* 4223 * don't let the period tick interfere with the hrtick preemption 4224 */ 4225 if (!sched_feat(DOUBLE_TICK) && 4226 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer)) 4227 return; 4228 #endif 4229 4230 if (cfs_rq->nr_running > 1) 4231 check_preempt_tick(cfs_rq, curr); 4232 } 4233 4234 4235 /************************************************** 4236 * CFS bandwidth control machinery 4237 */ 4238 4239 #ifdef CONFIG_CFS_BANDWIDTH 4240 4241 #ifdef CONFIG_JUMP_LABEL 4242 static struct static_key __cfs_bandwidth_used; 4243 4244 static inline bool cfs_bandwidth_used(void) 4245 { 4246 return static_key_false(&__cfs_bandwidth_used); 4247 } 4248 4249 void cfs_bandwidth_usage_inc(void) 4250 { 4251 static_key_slow_inc_cpuslocked(&__cfs_bandwidth_used); 4252 } 4253 4254 void cfs_bandwidth_usage_dec(void) 4255 { 4256 static_key_slow_dec_cpuslocked(&__cfs_bandwidth_used); 4257 } 4258 #else /* CONFIG_JUMP_LABEL */ 4259 static bool cfs_bandwidth_used(void) 4260 { 4261 return true; 4262 } 4263 4264 void cfs_bandwidth_usage_inc(void) {} 4265 void cfs_bandwidth_usage_dec(void) {} 4266 #endif /* CONFIG_JUMP_LABEL */ 4267 4268 /* 4269 * default period for cfs group bandwidth. 4270 * default: 0.1s, units: nanoseconds 4271 */ 4272 static inline u64 default_cfs_period(void) 4273 { 4274 return 100000000ULL; 4275 } 4276 4277 static inline u64 sched_cfs_bandwidth_slice(void) 4278 { 4279 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC; 4280 } 4281 4282 /* 4283 * Replenish runtime according to assigned quota and update expiration time. 4284 * We use sched_clock_cpu directly instead of rq->clock to avoid adding 4285 * additional synchronization around rq->lock. 4286 * 4287 * requires cfs_b->lock 4288 */ 4289 void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b) 4290 { 4291 u64 now; 4292 4293 if (cfs_b->quota == RUNTIME_INF) 4294 return; 4295 4296 now = sched_clock_cpu(smp_processor_id()); 4297 cfs_b->runtime = cfs_b->quota; 4298 cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period); 4299 cfs_b->expires_seq++; 4300 } 4301 4302 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg) 4303 { 4304 return &tg->cfs_bandwidth; 4305 } 4306 4307 /* rq->task_clock normalized against any time this cfs_rq has spent throttled */ 4308 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq) 4309 { 4310 if (unlikely(cfs_rq->throttle_count)) 4311 return cfs_rq->throttled_clock_task - cfs_rq->throttled_clock_task_time; 4312 4313 return rq_clock_task(rq_of(cfs_rq)) - cfs_rq->throttled_clock_task_time; 4314 } 4315 4316 /* returns 0 on failure to allocate runtime */ 4317 static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq) 4318 { 4319 struct task_group *tg = cfs_rq->tg; 4320 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg); 4321 u64 amount = 0, min_amount, expires; 4322 int expires_seq; 4323 4324 /* note: this is a positive sum as runtime_remaining <= 0 */ 4325 min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining; 4326 4327 raw_spin_lock(&cfs_b->lock); 4328 if (cfs_b->quota == RUNTIME_INF) 4329 amount = min_amount; 4330 else { 4331 start_cfs_bandwidth(cfs_b); 4332 4333 if (cfs_b->runtime > 0) { 4334 amount = min(cfs_b->runtime, min_amount); 4335 cfs_b->runtime -= amount; 4336 cfs_b->idle = 0; 4337 } 4338 } 4339 expires_seq = cfs_b->expires_seq; 4340 expires = cfs_b->runtime_expires; 4341 raw_spin_unlock(&cfs_b->lock); 4342 4343 cfs_rq->runtime_remaining += amount; 4344 /* 4345 * we may have advanced our local expiration to account for allowed 4346 * spread between our sched_clock and the one on which runtime was 4347 * issued. 4348 */ 4349 if (cfs_rq->expires_seq != expires_seq) { 4350 cfs_rq->expires_seq = expires_seq; 4351 cfs_rq->runtime_expires = expires; 4352 } 4353 4354 return cfs_rq->runtime_remaining > 0; 4355 } 4356 4357 /* 4358 * Note: This depends on the synchronization provided by sched_clock and the 4359 * fact that rq->clock snapshots this value. 4360 */ 4361 static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq) 4362 { 4363 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 4364 4365 /* if the deadline is ahead of our clock, nothing to do */ 4366 if (likely((s64)(rq_clock(rq_of(cfs_rq)) - cfs_rq->runtime_expires) < 0)) 4367 return; 4368 4369 if (cfs_rq->runtime_remaining < 0) 4370 return; 4371 4372 /* 4373 * If the local deadline has passed we have to consider the 4374 * possibility that our sched_clock is 'fast' and the global deadline 4375 * has not truly expired. 4376 * 4377 * Fortunately we can check determine whether this the case by checking 4378 * whether the global deadline(cfs_b->expires_seq) has advanced. 4379 */ 4380 if (cfs_rq->expires_seq == cfs_b->expires_seq) { 4381 /* extend local deadline, drift is bounded above by 2 ticks */ 4382 cfs_rq->runtime_expires += TICK_NSEC; 4383 } else { 4384 /* global deadline is ahead, expiration has passed */ 4385 cfs_rq->runtime_remaining = 0; 4386 } 4387 } 4388 4389 static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) 4390 { 4391 /* dock delta_exec before expiring quota (as it could span periods) */ 4392 cfs_rq->runtime_remaining -= delta_exec; 4393 expire_cfs_rq_runtime(cfs_rq); 4394 4395 if (likely(cfs_rq->runtime_remaining > 0)) 4396 return; 4397 4398 /* 4399 * if we're unable to extend our runtime we resched so that the active 4400 * hierarchy can be throttled 4401 */ 4402 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr)) 4403 resched_curr(rq_of(cfs_rq)); 4404 } 4405 4406 static __always_inline 4407 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) 4408 { 4409 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled) 4410 return; 4411 4412 __account_cfs_rq_runtime(cfs_rq, delta_exec); 4413 } 4414 4415 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq) 4416 { 4417 return cfs_bandwidth_used() && cfs_rq->throttled; 4418 } 4419 4420 /* check whether cfs_rq, or any parent, is throttled */ 4421 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq) 4422 { 4423 return cfs_bandwidth_used() && cfs_rq->throttle_count; 4424 } 4425 4426 /* 4427 * Ensure that neither of the group entities corresponding to src_cpu or 4428 * dest_cpu are members of a throttled hierarchy when performing group 4429 * load-balance operations. 4430 */ 4431 static inline int throttled_lb_pair(struct task_group *tg, 4432 int src_cpu, int dest_cpu) 4433 { 4434 struct cfs_rq *src_cfs_rq, *dest_cfs_rq; 4435 4436 src_cfs_rq = tg->cfs_rq[src_cpu]; 4437 dest_cfs_rq = tg->cfs_rq[dest_cpu]; 4438 4439 return throttled_hierarchy(src_cfs_rq) || 4440 throttled_hierarchy(dest_cfs_rq); 4441 } 4442 4443 static int tg_unthrottle_up(struct task_group *tg, void *data) 4444 { 4445 struct rq *rq = data; 4446 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; 4447 4448 cfs_rq->throttle_count--; 4449 if (!cfs_rq->throttle_count) { 4450 /* adjust cfs_rq_clock_task() */ 4451 cfs_rq->throttled_clock_task_time += rq_clock_task(rq) - 4452 cfs_rq->throttled_clock_task; 4453 4454 /* Add cfs_rq with already running entity in the list */ 4455 if (cfs_rq->nr_running >= 1) 4456 list_add_leaf_cfs_rq(cfs_rq); 4457 } 4458 4459 return 0; 4460 } 4461 4462 static int tg_throttle_down(struct task_group *tg, void *data) 4463 { 4464 struct rq *rq = data; 4465 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; 4466 4467 /* group is entering throttled state, stop time */ 4468 if (!cfs_rq->throttle_count) { 4469 cfs_rq->throttled_clock_task = rq_clock_task(rq); 4470 list_del_leaf_cfs_rq(cfs_rq); 4471 } 4472 cfs_rq->throttle_count++; 4473 4474 return 0; 4475 } 4476 4477 static void throttle_cfs_rq(struct cfs_rq *cfs_rq) 4478 { 4479 struct rq *rq = rq_of(cfs_rq); 4480 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 4481 struct sched_entity *se; 4482 long task_delta, dequeue = 1; 4483 bool empty; 4484 4485 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))]; 4486 4487 /* freeze hierarchy runnable averages while throttled */ 4488 rcu_read_lock(); 4489 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq); 4490 rcu_read_unlock(); 4491 4492 task_delta = cfs_rq->h_nr_running; 4493 for_each_sched_entity(se) { 4494 struct cfs_rq *qcfs_rq = cfs_rq_of(se); 4495 /* throttled entity or throttle-on-deactivate */ 4496 if (!se->on_rq) 4497 break; 4498 4499 if (dequeue) 4500 dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP); 4501 qcfs_rq->h_nr_running -= task_delta; 4502 4503 if (qcfs_rq->load.weight) 4504 dequeue = 0; 4505 } 4506 4507 if (!se) 4508 sub_nr_running(rq, task_delta); 4509 4510 cfs_rq->throttled = 1; 4511 cfs_rq->throttled_clock = rq_clock(rq); 4512 raw_spin_lock(&cfs_b->lock); 4513 empty = list_empty(&cfs_b->throttled_cfs_rq); 4514 4515 /* 4516 * Add to the _head_ of the list, so that an already-started 4517 * distribute_cfs_runtime will not see us. If disribute_cfs_runtime is 4518 * not running add to the tail so that later runqueues don't get starved. 4519 */ 4520 if (cfs_b->distribute_running) 4521 list_add_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq); 4522 else 4523 list_add_tail_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq); 4524 4525 /* 4526 * If we're the first throttled task, make sure the bandwidth 4527 * timer is running. 4528 */ 4529 if (empty) 4530 start_cfs_bandwidth(cfs_b); 4531 4532 raw_spin_unlock(&cfs_b->lock); 4533 } 4534 4535 void unthrottle_cfs_rq(struct cfs_rq *cfs_rq) 4536 { 4537 struct rq *rq = rq_of(cfs_rq); 4538 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 4539 struct sched_entity *se; 4540 int enqueue = 1; 4541 long task_delta; 4542 4543 se = cfs_rq->tg->se[cpu_of(rq)]; 4544 4545 cfs_rq->throttled = 0; 4546 4547 update_rq_clock(rq); 4548 4549 raw_spin_lock(&cfs_b->lock); 4550 cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock; 4551 list_del_rcu(&cfs_rq->throttled_list); 4552 raw_spin_unlock(&cfs_b->lock); 4553 4554 /* update hierarchical throttle state */ 4555 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq); 4556 4557 if (!cfs_rq->load.weight) 4558 return; 4559 4560 task_delta = cfs_rq->h_nr_running; 4561 for_each_sched_entity(se) { 4562 if (se->on_rq) 4563 enqueue = 0; 4564 4565 cfs_rq = cfs_rq_of(se); 4566 if (enqueue) 4567 enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP); 4568 cfs_rq->h_nr_running += task_delta; 4569 4570 if (cfs_rq_throttled(cfs_rq)) 4571 break; 4572 } 4573 4574 assert_list_leaf_cfs_rq(rq); 4575 4576 if (!se) 4577 add_nr_running(rq, task_delta); 4578 4579 /* Determine whether we need to wake up potentially idle CPU: */ 4580 if (rq->curr == rq->idle && rq->cfs.nr_running) 4581 resched_curr(rq); 4582 } 4583 4584 static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b, 4585 u64 remaining, u64 expires) 4586 { 4587 struct cfs_rq *cfs_rq; 4588 u64 runtime; 4589 u64 starting_runtime = remaining; 4590 4591 rcu_read_lock(); 4592 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq, 4593 throttled_list) { 4594 struct rq *rq = rq_of(cfs_rq); 4595 struct rq_flags rf; 4596 4597 rq_lock_irqsave(rq, &rf); 4598 if (!cfs_rq_throttled(cfs_rq)) 4599 goto next; 4600 4601 runtime = -cfs_rq->runtime_remaining + 1; 4602 if (runtime > remaining) 4603 runtime = remaining; 4604 remaining -= runtime; 4605 4606 cfs_rq->runtime_remaining += runtime; 4607 cfs_rq->runtime_expires = expires; 4608 4609 /* we check whether we're throttled above */ 4610 if (cfs_rq->runtime_remaining > 0) 4611 unthrottle_cfs_rq(cfs_rq); 4612 4613 next: 4614 rq_unlock_irqrestore(rq, &rf); 4615 4616 if (!remaining) 4617 break; 4618 } 4619 rcu_read_unlock(); 4620 4621 return starting_runtime - remaining; 4622 } 4623 4624 /* 4625 * Responsible for refilling a task_group's bandwidth and unthrottling its 4626 * cfs_rqs as appropriate. If there has been no activity within the last 4627 * period the timer is deactivated until scheduling resumes; cfs_b->idle is 4628 * used to track this state. 4629 */ 4630 static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun, unsigned long flags) 4631 { 4632 u64 runtime, runtime_expires; 4633 int throttled; 4634 4635 /* no need to continue the timer with no bandwidth constraint */ 4636 if (cfs_b->quota == RUNTIME_INF) 4637 goto out_deactivate; 4638 4639 throttled = !list_empty(&cfs_b->throttled_cfs_rq); 4640 cfs_b->nr_periods += overrun; 4641 4642 /* 4643 * idle depends on !throttled (for the case of a large deficit), and if 4644 * we're going inactive then everything else can be deferred 4645 */ 4646 if (cfs_b->idle && !throttled) 4647 goto out_deactivate; 4648 4649 __refill_cfs_bandwidth_runtime(cfs_b); 4650 4651 if (!throttled) { 4652 /* mark as potentially idle for the upcoming period */ 4653 cfs_b->idle = 1; 4654 return 0; 4655 } 4656 4657 /* account preceding periods in which throttling occurred */ 4658 cfs_b->nr_throttled += overrun; 4659 4660 runtime_expires = cfs_b->runtime_expires; 4661 4662 /* 4663 * This check is repeated as we are holding onto the new bandwidth while 4664 * we unthrottle. This can potentially race with an unthrottled group 4665 * trying to acquire new bandwidth from the global pool. This can result 4666 * in us over-using our runtime if it is all used during this loop, but 4667 * only by limited amounts in that extreme case. 4668 */ 4669 while (throttled && cfs_b->runtime > 0 && !cfs_b->distribute_running) { 4670 runtime = cfs_b->runtime; 4671 cfs_b->distribute_running = 1; 4672 raw_spin_unlock_irqrestore(&cfs_b->lock, flags); 4673 /* we can't nest cfs_b->lock while distributing bandwidth */ 4674 runtime = distribute_cfs_runtime(cfs_b, runtime, 4675 runtime_expires); 4676 raw_spin_lock_irqsave(&cfs_b->lock, flags); 4677 4678 cfs_b->distribute_running = 0; 4679 throttled = !list_empty(&cfs_b->throttled_cfs_rq); 4680 4681 lsub_positive(&cfs_b->runtime, runtime); 4682 } 4683 4684 /* 4685 * While we are ensured activity in the period following an 4686 * unthrottle, this also covers the case in which the new bandwidth is 4687 * insufficient to cover the existing bandwidth deficit. (Forcing the 4688 * timer to remain active while there are any throttled entities.) 4689 */ 4690 cfs_b->idle = 0; 4691 4692 return 0; 4693 4694 out_deactivate: 4695 return 1; 4696 } 4697 4698 /* a cfs_rq won't donate quota below this amount */ 4699 static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC; 4700 /* minimum remaining period time to redistribute slack quota */ 4701 static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC; 4702 /* how long we wait to gather additional slack before distributing */ 4703 static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC; 4704 4705 /* 4706 * Are we near the end of the current quota period? 4707 * 4708 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the 4709 * hrtimer base being cleared by hrtimer_start. In the case of 4710 * migrate_hrtimers, base is never cleared, so we are fine. 4711 */ 4712 static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire) 4713 { 4714 struct hrtimer *refresh_timer = &cfs_b->period_timer; 4715 u64 remaining; 4716 4717 /* if the call-back is running a quota refresh is already occurring */ 4718 if (hrtimer_callback_running(refresh_timer)) 4719 return 1; 4720 4721 /* is a quota refresh about to occur? */ 4722 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer)); 4723 if (remaining < min_expire) 4724 return 1; 4725 4726 return 0; 4727 } 4728 4729 static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b) 4730 { 4731 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration; 4732 4733 /* if there's a quota refresh soon don't bother with slack */ 4734 if (runtime_refresh_within(cfs_b, min_left)) 4735 return; 4736 4737 hrtimer_start(&cfs_b->slack_timer, 4738 ns_to_ktime(cfs_bandwidth_slack_period), 4739 HRTIMER_MODE_REL); 4740 } 4741 4742 /* we know any runtime found here is valid as update_curr() precedes return */ 4743 static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq) 4744 { 4745 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 4746 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime; 4747 4748 if (slack_runtime <= 0) 4749 return; 4750 4751 raw_spin_lock(&cfs_b->lock); 4752 if (cfs_b->quota != RUNTIME_INF && 4753 cfs_rq->runtime_expires == cfs_b->runtime_expires) { 4754 cfs_b->runtime += slack_runtime; 4755 4756 /* we are under rq->lock, defer unthrottling using a timer */ 4757 if (cfs_b->runtime > sched_cfs_bandwidth_slice() && 4758 !list_empty(&cfs_b->throttled_cfs_rq)) 4759 start_cfs_slack_bandwidth(cfs_b); 4760 } 4761 raw_spin_unlock(&cfs_b->lock); 4762 4763 /* even if it's not valid for return we don't want to try again */ 4764 cfs_rq->runtime_remaining -= slack_runtime; 4765 } 4766 4767 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) 4768 { 4769 if (!cfs_bandwidth_used()) 4770 return; 4771 4772 if (!cfs_rq->runtime_enabled || cfs_rq->nr_running) 4773 return; 4774 4775 __return_cfs_rq_runtime(cfs_rq); 4776 } 4777 4778 /* 4779 * This is done with a timer (instead of inline with bandwidth return) since 4780 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs. 4781 */ 4782 static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b) 4783 { 4784 u64 runtime = 0, slice = sched_cfs_bandwidth_slice(); 4785 unsigned long flags; 4786 u64 expires; 4787 4788 /* confirm we're still not at a refresh boundary */ 4789 raw_spin_lock_irqsave(&cfs_b->lock, flags); 4790 if (cfs_b->distribute_running) { 4791 raw_spin_unlock_irqrestore(&cfs_b->lock, flags); 4792 return; 4793 } 4794 4795 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) { 4796 raw_spin_unlock_irqrestore(&cfs_b->lock, flags); 4797 return; 4798 } 4799 4800 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice) 4801 runtime = cfs_b->runtime; 4802 4803 expires = cfs_b->runtime_expires; 4804 if (runtime) 4805 cfs_b->distribute_running = 1; 4806 4807 raw_spin_unlock_irqrestore(&cfs_b->lock, flags); 4808 4809 if (!runtime) 4810 return; 4811 4812 runtime = distribute_cfs_runtime(cfs_b, runtime, expires); 4813 4814 raw_spin_lock_irqsave(&cfs_b->lock, flags); 4815 if (expires == cfs_b->runtime_expires) 4816 lsub_positive(&cfs_b->runtime, runtime); 4817 cfs_b->distribute_running = 0; 4818 raw_spin_unlock_irqrestore(&cfs_b->lock, flags); 4819 } 4820 4821 /* 4822 * When a group wakes up we want to make sure that its quota is not already 4823 * expired/exceeded, otherwise it may be allowed to steal additional ticks of 4824 * runtime as update_curr() throttling can not not trigger until it's on-rq. 4825 */ 4826 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) 4827 { 4828 if (!cfs_bandwidth_used()) 4829 return; 4830 4831 /* an active group must be handled by the update_curr()->put() path */ 4832 if (!cfs_rq->runtime_enabled || cfs_rq->curr) 4833 return; 4834 4835 /* ensure the group is not already throttled */ 4836 if (cfs_rq_throttled(cfs_rq)) 4837 return; 4838 4839 /* update runtime allocation */ 4840 account_cfs_rq_runtime(cfs_rq, 0); 4841 if (cfs_rq->runtime_remaining <= 0) 4842 throttle_cfs_rq(cfs_rq); 4843 } 4844 4845 static void sync_throttle(struct task_group *tg, int cpu) 4846 { 4847 struct cfs_rq *pcfs_rq, *cfs_rq; 4848 4849 if (!cfs_bandwidth_used()) 4850 return; 4851 4852 if (!tg->parent) 4853 return; 4854 4855 cfs_rq = tg->cfs_rq[cpu]; 4856 pcfs_rq = tg->parent->cfs_rq[cpu]; 4857 4858 cfs_rq->throttle_count = pcfs_rq->throttle_count; 4859 cfs_rq->throttled_clock_task = rq_clock_task(cpu_rq(cpu)); 4860 } 4861 4862 /* conditionally throttle active cfs_rq's from put_prev_entity() */ 4863 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) 4864 { 4865 if (!cfs_bandwidth_used()) 4866 return false; 4867 4868 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0)) 4869 return false; 4870 4871 /* 4872 * it's possible for a throttled entity to be forced into a running 4873 * state (e.g. set_curr_task), in this case we're finished. 4874 */ 4875 if (cfs_rq_throttled(cfs_rq)) 4876 return true; 4877 4878 throttle_cfs_rq(cfs_rq); 4879 return true; 4880 } 4881 4882 static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer) 4883 { 4884 struct cfs_bandwidth *cfs_b = 4885 container_of(timer, struct cfs_bandwidth, slack_timer); 4886 4887 do_sched_cfs_slack_timer(cfs_b); 4888 4889 return HRTIMER_NORESTART; 4890 } 4891 4892 extern const u64 max_cfs_quota_period; 4893 4894 static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer) 4895 { 4896 struct cfs_bandwidth *cfs_b = 4897 container_of(timer, struct cfs_bandwidth, period_timer); 4898 unsigned long flags; 4899 int overrun; 4900 int idle = 0; 4901 int count = 0; 4902 4903 raw_spin_lock_irqsave(&cfs_b->lock, flags); 4904 for (;;) { 4905 overrun = hrtimer_forward_now(timer, cfs_b->period); 4906 if (!overrun) 4907 break; 4908 4909 if (++count > 3) { 4910 u64 new, old = ktime_to_ns(cfs_b->period); 4911 4912 new = (old * 147) / 128; /* ~115% */ 4913 new = min(new, max_cfs_quota_period); 4914 4915 cfs_b->period = ns_to_ktime(new); 4916 4917 /* since max is 1s, this is limited to 1e9^2, which fits in u64 */ 4918 cfs_b->quota *= new; 4919 cfs_b->quota = div64_u64(cfs_b->quota, old); 4920 4921 pr_warn_ratelimited( 4922 "cfs_period_timer[cpu%d]: period too short, scaling up (new cfs_period_us %lld, cfs_quota_us = %lld)\n", 4923 smp_processor_id(), 4924 div_u64(new, NSEC_PER_USEC), 4925 div_u64(cfs_b->quota, NSEC_PER_USEC)); 4926 4927 /* reset count so we don't come right back in here */ 4928 count = 0; 4929 } 4930 4931 idle = do_sched_cfs_period_timer(cfs_b, overrun, flags); 4932 } 4933 if (idle) 4934 cfs_b->period_active = 0; 4935 raw_spin_unlock_irqrestore(&cfs_b->lock, flags); 4936 4937 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART; 4938 } 4939 4940 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) 4941 { 4942 raw_spin_lock_init(&cfs_b->lock); 4943 cfs_b->runtime = 0; 4944 cfs_b->quota = RUNTIME_INF; 4945 cfs_b->period = ns_to_ktime(default_cfs_period()); 4946 4947 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq); 4948 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED); 4949 cfs_b->period_timer.function = sched_cfs_period_timer; 4950 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 4951 cfs_b->slack_timer.function = sched_cfs_slack_timer; 4952 cfs_b->distribute_running = 0; 4953 } 4954 4955 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) 4956 { 4957 cfs_rq->runtime_enabled = 0; 4958 INIT_LIST_HEAD(&cfs_rq->throttled_list); 4959 } 4960 4961 void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b) 4962 { 4963 u64 overrun; 4964 4965 lockdep_assert_held(&cfs_b->lock); 4966 4967 if (cfs_b->period_active) 4968 return; 4969 4970 cfs_b->period_active = 1; 4971 overrun = hrtimer_forward_now(&cfs_b->period_timer, cfs_b->period); 4972 cfs_b->runtime_expires += (overrun + 1) * ktime_to_ns(cfs_b->period); 4973 cfs_b->expires_seq++; 4974 hrtimer_start_expires(&cfs_b->period_timer, HRTIMER_MODE_ABS_PINNED); 4975 } 4976 4977 static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) 4978 { 4979 /* init_cfs_bandwidth() was not called */ 4980 if (!cfs_b->throttled_cfs_rq.next) 4981 return; 4982 4983 hrtimer_cancel(&cfs_b->period_timer); 4984 hrtimer_cancel(&cfs_b->slack_timer); 4985 } 4986 4987 /* 4988 * Both these CPU hotplug callbacks race against unregister_fair_sched_group() 4989 * 4990 * The race is harmless, since modifying bandwidth settings of unhooked group 4991 * bits doesn't do much. 4992 */ 4993 4994 /* cpu online calback */ 4995 static void __maybe_unused update_runtime_enabled(struct rq *rq) 4996 { 4997 struct task_group *tg; 4998 4999 lockdep_assert_held(&rq->lock); 5000 5001 rcu_read_lock(); 5002 list_for_each_entry_rcu(tg, &task_groups, list) { 5003 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 5004 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; 5005 5006 raw_spin_lock(&cfs_b->lock); 5007 cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF; 5008 raw_spin_unlock(&cfs_b->lock); 5009 } 5010 rcu_read_unlock(); 5011 } 5012 5013 /* cpu offline callback */ 5014 static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq) 5015 { 5016 struct task_group *tg; 5017 5018 lockdep_assert_held(&rq->lock); 5019 5020 rcu_read_lock(); 5021 list_for_each_entry_rcu(tg, &task_groups, list) { 5022 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; 5023 5024 if (!cfs_rq->runtime_enabled) 5025 continue; 5026 5027 /* 5028 * clock_task is not advancing so we just need to make sure 5029 * there's some valid quota amount 5030 */ 5031 cfs_rq->runtime_remaining = 1; 5032 /* 5033 * Offline rq is schedulable till CPU is completely disabled 5034 * in take_cpu_down(), so we prevent new cfs throttling here. 5035 */ 5036 cfs_rq->runtime_enabled = 0; 5037 5038 if (cfs_rq_throttled(cfs_rq)) 5039 unthrottle_cfs_rq(cfs_rq); 5040 } 5041 rcu_read_unlock(); 5042 } 5043 5044 #else /* CONFIG_CFS_BANDWIDTH */ 5045 5046 static inline bool cfs_bandwidth_used(void) 5047 { 5048 return false; 5049 } 5050 5051 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq) 5052 { 5053 return rq_clock_task(rq_of(cfs_rq)); 5054 } 5055 5056 static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {} 5057 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; } 5058 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {} 5059 static inline void sync_throttle(struct task_group *tg, int cpu) {} 5060 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {} 5061 5062 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq) 5063 { 5064 return 0; 5065 } 5066 5067 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq) 5068 { 5069 return 0; 5070 } 5071 5072 static inline int throttled_lb_pair(struct task_group *tg, 5073 int src_cpu, int dest_cpu) 5074 { 5075 return 0; 5076 } 5077 5078 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {} 5079 5080 #ifdef CONFIG_FAIR_GROUP_SCHED 5081 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {} 5082 #endif 5083 5084 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg) 5085 { 5086 return NULL; 5087 } 5088 static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {} 5089 static inline void update_runtime_enabled(struct rq *rq) {} 5090 static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {} 5091 5092 #endif /* CONFIG_CFS_BANDWIDTH */ 5093 5094 /************************************************** 5095 * CFS operations on tasks: 5096 */ 5097 5098 #ifdef CONFIG_SCHED_HRTICK 5099 static void hrtick_start_fair(struct rq *rq, struct task_struct *p) 5100 { 5101 struct sched_entity *se = &p->se; 5102 struct cfs_rq *cfs_rq = cfs_rq_of(se); 5103 5104 SCHED_WARN_ON(task_rq(p) != rq); 5105 5106 if (rq->cfs.h_nr_running > 1) { 5107 u64 slice = sched_slice(cfs_rq, se); 5108 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime; 5109 s64 delta = slice - ran; 5110 5111 if (delta < 0) { 5112 if (rq->curr == p) 5113 resched_curr(rq); 5114 return; 5115 } 5116 hrtick_start(rq, delta); 5117 } 5118 } 5119 5120 /* 5121 * called from enqueue/dequeue and updates the hrtick when the 5122 * current task is from our class and nr_running is low enough 5123 * to matter. 5124 */ 5125 static void hrtick_update(struct rq *rq) 5126 { 5127 struct task_struct *curr = rq->curr; 5128 5129 if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class) 5130 return; 5131 5132 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency) 5133 hrtick_start_fair(rq, curr); 5134 } 5135 #else /* !CONFIG_SCHED_HRTICK */ 5136 static inline void 5137 hrtick_start_fair(struct rq *rq, struct task_struct *p) 5138 { 5139 } 5140 5141 static inline void hrtick_update(struct rq *rq) 5142 { 5143 } 5144 #endif 5145 5146 #ifdef CONFIG_SMP 5147 static inline unsigned long cpu_util(int cpu); 5148 static unsigned long capacity_of(int cpu); 5149 5150 static inline bool cpu_overutilized(int cpu) 5151 { 5152 return (capacity_of(cpu) * 1024) < (cpu_util(cpu) * capacity_margin); 5153 } 5154 5155 static inline void update_overutilized_status(struct rq *rq) 5156 { 5157 if (!READ_ONCE(rq->rd->overutilized) && cpu_overutilized(rq->cpu)) 5158 WRITE_ONCE(rq->rd->overutilized, SG_OVERUTILIZED); 5159 } 5160 #else 5161 static inline void update_overutilized_status(struct rq *rq) { } 5162 #endif 5163 5164 /* 5165 * The enqueue_task method is called before nr_running is 5166 * increased. Here we update the fair scheduling stats and 5167 * then put the task into the rbtree: 5168 */ 5169 static void 5170 enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags) 5171 { 5172 struct cfs_rq *cfs_rq; 5173 struct sched_entity *se = &p->se; 5174 5175 /* 5176 * The code below (indirectly) updates schedutil which looks at 5177 * the cfs_rq utilization to select a frequency. 5178 * Let's add the task's estimated utilization to the cfs_rq's 5179 * estimated utilization, before we update schedutil. 5180 */ 5181 util_est_enqueue(&rq->cfs, p); 5182 5183 /* 5184 * If in_iowait is set, the code below may not trigger any cpufreq 5185 * utilization updates, so do it here explicitly with the IOWAIT flag 5186 * passed. 5187 */ 5188 if (p->in_iowait) 5189 cpufreq_update_util(rq, SCHED_CPUFREQ_IOWAIT); 5190 5191 for_each_sched_entity(se) { 5192 if (se->on_rq) 5193 break; 5194 cfs_rq = cfs_rq_of(se); 5195 enqueue_entity(cfs_rq, se, flags); 5196 5197 /* 5198 * end evaluation on encountering a throttled cfs_rq 5199 * 5200 * note: in the case of encountering a throttled cfs_rq we will 5201 * post the final h_nr_running increment below. 5202 */ 5203 if (cfs_rq_throttled(cfs_rq)) 5204 break; 5205 cfs_rq->h_nr_running++; 5206 5207 flags = ENQUEUE_WAKEUP; 5208 } 5209 5210 for_each_sched_entity(se) { 5211 cfs_rq = cfs_rq_of(se); 5212 cfs_rq->h_nr_running++; 5213 5214 if (cfs_rq_throttled(cfs_rq)) 5215 break; 5216 5217 update_load_avg(cfs_rq, se, UPDATE_TG); 5218 update_cfs_group(se); 5219 } 5220 5221 if (!se) { 5222 add_nr_running(rq, 1); 5223 /* 5224 * Since new tasks are assigned an initial util_avg equal to 5225 * half of the spare capacity of their CPU, tiny tasks have the 5226 * ability to cross the overutilized threshold, which will 5227 * result in the load balancer ruining all the task placement 5228 * done by EAS. As a way to mitigate that effect, do not account 5229 * for the first enqueue operation of new tasks during the 5230 * overutilized flag detection. 5231 * 5232 * A better way of solving this problem would be to wait for 5233 * the PELT signals of tasks to converge before taking them 5234 * into account, but that is not straightforward to implement, 5235 * and the following generally works well enough in practice. 5236 */ 5237 if (flags & ENQUEUE_WAKEUP) 5238 update_overutilized_status(rq); 5239 5240 } 5241 5242 if (cfs_bandwidth_used()) { 5243 /* 5244 * When bandwidth control is enabled; the cfs_rq_throttled() 5245 * breaks in the above iteration can result in incomplete 5246 * leaf list maintenance, resulting in triggering the assertion 5247 * below. 5248 */ 5249 for_each_sched_entity(se) { 5250 cfs_rq = cfs_rq_of(se); 5251 5252 if (list_add_leaf_cfs_rq(cfs_rq)) 5253 break; 5254 } 5255 } 5256 5257 assert_list_leaf_cfs_rq(rq); 5258 5259 hrtick_update(rq); 5260 } 5261 5262 static void set_next_buddy(struct sched_entity *se); 5263 5264 /* 5265 * The dequeue_task method is called before nr_running is 5266 * decreased. We remove the task from the rbtree and 5267 * update the fair scheduling stats: 5268 */ 5269 static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags) 5270 { 5271 struct cfs_rq *cfs_rq; 5272 struct sched_entity *se = &p->se; 5273 int task_sleep = flags & DEQUEUE_SLEEP; 5274 5275 for_each_sched_entity(se) { 5276 cfs_rq = cfs_rq_of(se); 5277 dequeue_entity(cfs_rq, se, flags); 5278 5279 /* 5280 * end evaluation on encountering a throttled cfs_rq 5281 * 5282 * note: in the case of encountering a throttled cfs_rq we will 5283 * post the final h_nr_running decrement below. 5284 */ 5285 if (cfs_rq_throttled(cfs_rq)) 5286 break; 5287 cfs_rq->h_nr_running--; 5288 5289 /* Don't dequeue parent if it has other entities besides us */ 5290 if (cfs_rq->load.weight) { 5291 /* Avoid re-evaluating load for this entity: */ 5292 se = parent_entity(se); 5293 /* 5294 * Bias pick_next to pick a task from this cfs_rq, as 5295 * p is sleeping when it is within its sched_slice. 5296 */ 5297 if (task_sleep && se && !throttled_hierarchy(cfs_rq)) 5298 set_next_buddy(se); 5299 break; 5300 } 5301 flags |= DEQUEUE_SLEEP; 5302 } 5303 5304 for_each_sched_entity(se) { 5305 cfs_rq = cfs_rq_of(se); 5306 cfs_rq->h_nr_running--; 5307 5308 if (cfs_rq_throttled(cfs_rq)) 5309 break; 5310 5311 update_load_avg(cfs_rq, se, UPDATE_TG); 5312 update_cfs_group(se); 5313 } 5314 5315 if (!se) 5316 sub_nr_running(rq, 1); 5317 5318 util_est_dequeue(&rq->cfs, p, task_sleep); 5319 hrtick_update(rq); 5320 } 5321 5322 #ifdef CONFIG_SMP 5323 5324 /* Working cpumask for: load_balance, load_balance_newidle. */ 5325 DEFINE_PER_CPU(cpumask_var_t, load_balance_mask); 5326 DEFINE_PER_CPU(cpumask_var_t, select_idle_mask); 5327 5328 #ifdef CONFIG_NO_HZ_COMMON 5329 /* 5330 * per rq 'load' arrray crap; XXX kill this. 5331 */ 5332 5333 /* 5334 * The exact cpuload calculated at every tick would be: 5335 * 5336 * load' = (1 - 1/2^i) * load + (1/2^i) * cur_load 5337 * 5338 * If a CPU misses updates for n ticks (as it was idle) and update gets 5339 * called on the n+1-th tick when CPU may be busy, then we have: 5340 * 5341 * load_n = (1 - 1/2^i)^n * load_0 5342 * load_n+1 = (1 - 1/2^i) * load_n + (1/2^i) * cur_load 5343 * 5344 * decay_load_missed() below does efficient calculation of 5345 * 5346 * load' = (1 - 1/2^i)^n * load 5347 * 5348 * Because x^(n+m) := x^n * x^m we can decompose any x^n in power-of-2 factors. 5349 * This allows us to precompute the above in said factors, thereby allowing the 5350 * reduction of an arbitrary n in O(log_2 n) steps. (See also 5351 * fixed_power_int()) 5352 * 5353 * The calculation is approximated on a 128 point scale. 5354 */ 5355 #define DEGRADE_SHIFT 7 5356 5357 static const u8 degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128}; 5358 static const u8 degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = { 5359 { 0, 0, 0, 0, 0, 0, 0, 0 }, 5360 { 64, 32, 8, 0, 0, 0, 0, 0 }, 5361 { 96, 72, 40, 12, 1, 0, 0, 0 }, 5362 { 112, 98, 75, 43, 15, 1, 0, 0 }, 5363 { 120, 112, 98, 76, 45, 16, 2, 0 } 5364 }; 5365 5366 /* 5367 * Update cpu_load for any missed ticks, due to tickless idle. The backlog 5368 * would be when CPU is idle and so we just decay the old load without 5369 * adding any new load. 5370 */ 5371 static unsigned long 5372 decay_load_missed(unsigned long load, unsigned long missed_updates, int idx) 5373 { 5374 int j = 0; 5375 5376 if (!missed_updates) 5377 return load; 5378 5379 if (missed_updates >= degrade_zero_ticks[idx]) 5380 return 0; 5381 5382 if (idx == 1) 5383 return load >> missed_updates; 5384 5385 while (missed_updates) { 5386 if (missed_updates % 2) 5387 load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT; 5388 5389 missed_updates >>= 1; 5390 j++; 5391 } 5392 return load; 5393 } 5394 5395 static struct { 5396 cpumask_var_t idle_cpus_mask; 5397 atomic_t nr_cpus; 5398 int has_blocked; /* Idle CPUS has blocked load */ 5399 unsigned long next_balance; /* in jiffy units */ 5400 unsigned long next_blocked; /* Next update of blocked load in jiffies */ 5401 } nohz ____cacheline_aligned; 5402 5403 #endif /* CONFIG_NO_HZ_COMMON */ 5404 5405 /** 5406 * __cpu_load_update - update the rq->cpu_load[] statistics 5407 * @this_rq: The rq to update statistics for 5408 * @this_load: The current load 5409 * @pending_updates: The number of missed updates 5410 * 5411 * Update rq->cpu_load[] statistics. This function is usually called every 5412 * scheduler tick (TICK_NSEC). 5413 * 5414 * This function computes a decaying average: 5415 * 5416 * load[i]' = (1 - 1/2^i) * load[i] + (1/2^i) * load 5417 * 5418 * Because of NOHZ it might not get called on every tick which gives need for 5419 * the @pending_updates argument. 5420 * 5421 * load[i]_n = (1 - 1/2^i) * load[i]_n-1 + (1/2^i) * load_n-1 5422 * = A * load[i]_n-1 + B ; A := (1 - 1/2^i), B := (1/2^i) * load 5423 * = A * (A * load[i]_n-2 + B) + B 5424 * = A * (A * (A * load[i]_n-3 + B) + B) + B 5425 * = A^3 * load[i]_n-3 + (A^2 + A + 1) * B 5426 * = A^n * load[i]_0 + (A^(n-1) + A^(n-2) + ... + 1) * B 5427 * = A^n * load[i]_0 + ((1 - A^n) / (1 - A)) * B 5428 * = (1 - 1/2^i)^n * (load[i]_0 - load) + load 5429 * 5430 * In the above we've assumed load_n := load, which is true for NOHZ_FULL as 5431 * any change in load would have resulted in the tick being turned back on. 5432 * 5433 * For regular NOHZ, this reduces to: 5434 * 5435 * load[i]_n = (1 - 1/2^i)^n * load[i]_0 5436 * 5437 * see decay_load_misses(). For NOHZ_FULL we get to subtract and add the extra 5438 * term. 5439 */ 5440 static void cpu_load_update(struct rq *this_rq, unsigned long this_load, 5441 unsigned long pending_updates) 5442 { 5443 unsigned long __maybe_unused tickless_load = this_rq->cpu_load[0]; 5444 int i, scale; 5445 5446 this_rq->nr_load_updates++; 5447 5448 /* Update our load: */ 5449 this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */ 5450 for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) { 5451 unsigned long old_load, new_load; 5452 5453 /* scale is effectively 1 << i now, and >> i divides by scale */ 5454 5455 old_load = this_rq->cpu_load[i]; 5456 #ifdef CONFIG_NO_HZ_COMMON 5457 old_load = decay_load_missed(old_load, pending_updates - 1, i); 5458 if (tickless_load) { 5459 old_load -= decay_load_missed(tickless_load, pending_updates - 1, i); 5460 /* 5461 * old_load can never be a negative value because a 5462 * decayed tickless_load cannot be greater than the 5463 * original tickless_load. 5464 */ 5465 old_load += tickless_load; 5466 } 5467 #endif 5468 new_load = this_load; 5469 /* 5470 * Round up the averaging division if load is increasing. This 5471 * prevents us from getting stuck on 9 if the load is 10, for 5472 * example. 5473 */ 5474 if (new_load > old_load) 5475 new_load += scale - 1; 5476 5477 this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i; 5478 } 5479 } 5480 5481 /* Used instead of source_load when we know the type == 0 */ 5482 static unsigned long weighted_cpuload(struct rq *rq) 5483 { 5484 return cfs_rq_runnable_load_avg(&rq->cfs); 5485 } 5486 5487 #ifdef CONFIG_NO_HZ_COMMON 5488 /* 5489 * There is no sane way to deal with nohz on smp when using jiffies because the 5490 * CPU doing the jiffies update might drift wrt the CPU doing the jiffy reading 5491 * causing off-by-one errors in observed deltas; {0,2} instead of {1,1}. 5492 * 5493 * Therefore we need to avoid the delta approach from the regular tick when 5494 * possible since that would seriously skew the load calculation. This is why we 5495 * use cpu_load_update_periodic() for CPUs out of nohz. However we'll rely on 5496 * jiffies deltas for updates happening while in nohz mode (idle ticks, idle 5497 * loop exit, nohz_idle_balance, nohz full exit...) 5498 * 5499 * This means we might still be one tick off for nohz periods. 5500 */ 5501 5502 static void cpu_load_update_nohz(struct rq *this_rq, 5503 unsigned long curr_jiffies, 5504 unsigned long load) 5505 { 5506 unsigned long pending_updates; 5507 5508 pending_updates = curr_jiffies - this_rq->last_load_update_tick; 5509 if (pending_updates) { 5510 this_rq->last_load_update_tick = curr_jiffies; 5511 /* 5512 * In the regular NOHZ case, we were idle, this means load 0. 5513 * In the NOHZ_FULL case, we were non-idle, we should consider 5514 * its weighted load. 5515 */ 5516 cpu_load_update(this_rq, load, pending_updates); 5517 } 5518 } 5519 5520 /* 5521 * Called from nohz_idle_balance() to update the load ratings before doing the 5522 * idle balance. 5523 */ 5524 static void cpu_load_update_idle(struct rq *this_rq) 5525 { 5526 /* 5527 * bail if there's load or we're actually up-to-date. 5528 */ 5529 if (weighted_cpuload(this_rq)) 5530 return; 5531 5532 cpu_load_update_nohz(this_rq, READ_ONCE(jiffies), 0); 5533 } 5534 5535 /* 5536 * Record CPU load on nohz entry so we know the tickless load to account 5537 * on nohz exit. cpu_load[0] happens then to be updated more frequently 5538 * than other cpu_load[idx] but it should be fine as cpu_load readers 5539 * shouldn't rely into synchronized cpu_load[*] updates. 5540 */ 5541 void cpu_load_update_nohz_start(void) 5542 { 5543 struct rq *this_rq = this_rq(); 5544 5545 /* 5546 * This is all lockless but should be fine. If weighted_cpuload changes 5547 * concurrently we'll exit nohz. And cpu_load write can race with 5548 * cpu_load_update_idle() but both updater would be writing the same. 5549 */ 5550 this_rq->cpu_load[0] = weighted_cpuload(this_rq); 5551 } 5552 5553 /* 5554 * Account the tickless load in the end of a nohz frame. 5555 */ 5556 void cpu_load_update_nohz_stop(void) 5557 { 5558 unsigned long curr_jiffies = READ_ONCE(jiffies); 5559 struct rq *this_rq = this_rq(); 5560 unsigned long load; 5561 struct rq_flags rf; 5562 5563 if (curr_jiffies == this_rq->last_load_update_tick) 5564 return; 5565 5566 load = weighted_cpuload(this_rq); 5567 rq_lock(this_rq, &rf); 5568 update_rq_clock(this_rq); 5569 cpu_load_update_nohz(this_rq, curr_jiffies, load); 5570 rq_unlock(this_rq, &rf); 5571 } 5572 #else /* !CONFIG_NO_HZ_COMMON */ 5573 static inline void cpu_load_update_nohz(struct rq *this_rq, 5574 unsigned long curr_jiffies, 5575 unsigned long load) { } 5576 #endif /* CONFIG_NO_HZ_COMMON */ 5577 5578 static void cpu_load_update_periodic(struct rq *this_rq, unsigned long load) 5579 { 5580 #ifdef CONFIG_NO_HZ_COMMON 5581 /* See the mess around cpu_load_update_nohz(). */ 5582 this_rq->last_load_update_tick = READ_ONCE(jiffies); 5583 #endif 5584 cpu_load_update(this_rq, load, 1); 5585 } 5586 5587 /* 5588 * Called from scheduler_tick() 5589 */ 5590 void cpu_load_update_active(struct rq *this_rq) 5591 { 5592 unsigned long load = weighted_cpuload(this_rq); 5593 5594 if (tick_nohz_tick_stopped()) 5595 cpu_load_update_nohz(this_rq, READ_ONCE(jiffies), load); 5596 else 5597 cpu_load_update_periodic(this_rq, load); 5598 } 5599 5600 /* 5601 * Return a low guess at the load of a migration-source CPU weighted 5602 * according to the scheduling class and "nice" value. 5603 * 5604 * We want to under-estimate the load of migration sources, to 5605 * balance conservatively. 5606 */ 5607 static unsigned long source_load(int cpu, int type) 5608 { 5609 struct rq *rq = cpu_rq(cpu); 5610 unsigned long total = weighted_cpuload(rq); 5611 5612 if (type == 0 || !sched_feat(LB_BIAS)) 5613 return total; 5614 5615 return min(rq->cpu_load[type-1], total); 5616 } 5617 5618 /* 5619 * Return a high guess at the load of a migration-target CPU weighted 5620 * according to the scheduling class and "nice" value. 5621 */ 5622 static unsigned long target_load(int cpu, int type) 5623 { 5624 struct rq *rq = cpu_rq(cpu); 5625 unsigned long total = weighted_cpuload(rq); 5626 5627 if (type == 0 || !sched_feat(LB_BIAS)) 5628 return total; 5629 5630 return max(rq->cpu_load[type-1], total); 5631 } 5632 5633 static unsigned long capacity_of(int cpu) 5634 { 5635 return cpu_rq(cpu)->cpu_capacity; 5636 } 5637 5638 static unsigned long cpu_avg_load_per_task(int cpu) 5639 { 5640 struct rq *rq = cpu_rq(cpu); 5641 unsigned long nr_running = READ_ONCE(rq->cfs.h_nr_running); 5642 unsigned long load_avg = weighted_cpuload(rq); 5643 5644 if (nr_running) 5645 return load_avg / nr_running; 5646 5647 return 0; 5648 } 5649 5650 static void record_wakee(struct task_struct *p) 5651 { 5652 /* 5653 * Only decay a single time; tasks that have less then 1 wakeup per 5654 * jiffy will not have built up many flips. 5655 */ 5656 if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) { 5657 current->wakee_flips >>= 1; 5658 current->wakee_flip_decay_ts = jiffies; 5659 } 5660 5661 if (current->last_wakee != p) { 5662 current->last_wakee = p; 5663 current->wakee_flips++; 5664 } 5665 } 5666 5667 /* 5668 * Detect M:N waker/wakee relationships via a switching-frequency heuristic. 5669 * 5670 * A waker of many should wake a different task than the one last awakened 5671 * at a frequency roughly N times higher than one of its wakees. 5672 * 5673 * In order to determine whether we should let the load spread vs consolidating 5674 * to shared cache, we look for a minimum 'flip' frequency of llc_size in one 5675 * partner, and a factor of lls_size higher frequency in the other. 5676 * 5677 * With both conditions met, we can be relatively sure that the relationship is 5678 * non-monogamous, with partner count exceeding socket size. 5679 * 5680 * Waker/wakee being client/server, worker/dispatcher, interrupt source or 5681 * whatever is irrelevant, spread criteria is apparent partner count exceeds 5682 * socket size. 5683 */ 5684 static int wake_wide(struct task_struct *p) 5685 { 5686 unsigned int master = current->wakee_flips; 5687 unsigned int slave = p->wakee_flips; 5688 int factor = this_cpu_read(sd_llc_size); 5689 5690 if (master < slave) 5691 swap(master, slave); 5692 if (slave < factor || master < slave * factor) 5693 return 0; 5694 return 1; 5695 } 5696 5697 /* 5698 * The purpose of wake_affine() is to quickly determine on which CPU we can run 5699 * soonest. For the purpose of speed we only consider the waking and previous 5700 * CPU. 5701 * 5702 * wake_affine_idle() - only considers 'now', it check if the waking CPU is 5703 * cache-affine and is (or will be) idle. 5704 * 5705 * wake_affine_weight() - considers the weight to reflect the average 5706 * scheduling latency of the CPUs. This seems to work 5707 * for the overloaded case. 5708 */ 5709 static int 5710 wake_affine_idle(int this_cpu, int prev_cpu, int sync) 5711 { 5712 /* 5713 * If this_cpu is idle, it implies the wakeup is from interrupt 5714 * context. Only allow the move if cache is shared. Otherwise an 5715 * interrupt intensive workload could force all tasks onto one 5716 * node depending on the IO topology or IRQ affinity settings. 5717 * 5718 * If the prev_cpu is idle and cache affine then avoid a migration. 5719 * There is no guarantee that the cache hot data from an interrupt 5720 * is more important than cache hot data on the prev_cpu and from 5721 * a cpufreq perspective, it's better to have higher utilisation 5722 * on one CPU. 5723 */ 5724 if (available_idle_cpu(this_cpu) && cpus_share_cache(this_cpu, prev_cpu)) 5725 return available_idle_cpu(prev_cpu) ? prev_cpu : this_cpu; 5726 5727 if (sync && cpu_rq(this_cpu)->nr_running == 1) 5728 return this_cpu; 5729 5730 return nr_cpumask_bits; 5731 } 5732 5733 static int 5734 wake_affine_weight(struct sched_domain *sd, struct task_struct *p, 5735 int this_cpu, int prev_cpu, int sync) 5736 { 5737 s64 this_eff_load, prev_eff_load; 5738 unsigned long task_load; 5739 5740 this_eff_load = target_load(this_cpu, sd->wake_idx); 5741 5742 if (sync) { 5743 unsigned long current_load = task_h_load(current); 5744 5745 if (current_load > this_eff_load) 5746 return this_cpu; 5747 5748 this_eff_load -= current_load; 5749 } 5750 5751 task_load = task_h_load(p); 5752 5753 this_eff_load += task_load; 5754 if (sched_feat(WA_BIAS)) 5755 this_eff_load *= 100; 5756 this_eff_load *= capacity_of(prev_cpu); 5757 5758 prev_eff_load = source_load(prev_cpu, sd->wake_idx); 5759 prev_eff_load -= task_load; 5760 if (sched_feat(WA_BIAS)) 5761 prev_eff_load *= 100 + (sd->imbalance_pct - 100) / 2; 5762 prev_eff_load *= capacity_of(this_cpu); 5763 5764 /* 5765 * If sync, adjust the weight of prev_eff_load such that if 5766 * prev_eff == this_eff that select_idle_sibling() will consider 5767 * stacking the wakee on top of the waker if no other CPU is 5768 * idle. 5769 */ 5770 if (sync) 5771 prev_eff_load += 1; 5772 5773 return this_eff_load < prev_eff_load ? this_cpu : nr_cpumask_bits; 5774 } 5775 5776 static int wake_affine(struct sched_domain *sd, struct task_struct *p, 5777 int this_cpu, int prev_cpu, int sync) 5778 { 5779 int target = nr_cpumask_bits; 5780 5781 if (sched_feat(WA_IDLE)) 5782 target = wake_affine_idle(this_cpu, prev_cpu, sync); 5783 5784 if (sched_feat(WA_WEIGHT) && target == nr_cpumask_bits) 5785 target = wake_affine_weight(sd, p, this_cpu, prev_cpu, sync); 5786 5787 schedstat_inc(p->se.statistics.nr_wakeups_affine_attempts); 5788 if (target == nr_cpumask_bits) 5789 return prev_cpu; 5790 5791 schedstat_inc(sd->ttwu_move_affine); 5792 schedstat_inc(p->se.statistics.nr_wakeups_affine); 5793 return target; 5794 } 5795 5796 static unsigned long cpu_util_without(int cpu, struct task_struct *p); 5797 5798 static unsigned long capacity_spare_without(int cpu, struct task_struct *p) 5799 { 5800 return max_t(long, capacity_of(cpu) - cpu_util_without(cpu, p), 0); 5801 } 5802 5803 /* 5804 * find_idlest_group finds and returns the least busy CPU group within the 5805 * domain. 5806 * 5807 * Assumes p is allowed on at least one CPU in sd. 5808 */ 5809 static struct sched_group * 5810 find_idlest_group(struct sched_domain *sd, struct task_struct *p, 5811 int this_cpu, int sd_flag) 5812 { 5813 struct sched_group *idlest = NULL, *group = sd->groups; 5814 struct sched_group *most_spare_sg = NULL; 5815 unsigned long min_runnable_load = ULONG_MAX; 5816 unsigned long this_runnable_load = ULONG_MAX; 5817 unsigned long min_avg_load = ULONG_MAX, this_avg_load = ULONG_MAX; 5818 unsigned long most_spare = 0, this_spare = 0; 5819 int load_idx = sd->forkexec_idx; 5820 int imbalance_scale = 100 + (sd->imbalance_pct-100)/2; 5821 unsigned long imbalance = scale_load_down(NICE_0_LOAD) * 5822 (sd->imbalance_pct-100) / 100; 5823 5824 if (sd_flag & SD_BALANCE_WAKE) 5825 load_idx = sd->wake_idx; 5826 5827 do { 5828 unsigned long load, avg_load, runnable_load; 5829 unsigned long spare_cap, max_spare_cap; 5830 int local_group; 5831 int i; 5832 5833 /* Skip over this group if it has no CPUs allowed */ 5834 if (!cpumask_intersects(sched_group_span(group), 5835 &p->cpus_allowed)) 5836 continue; 5837 5838 local_group = cpumask_test_cpu(this_cpu, 5839 sched_group_span(group)); 5840 5841 /* 5842 * Tally up the load of all CPUs in the group and find 5843 * the group containing the CPU with most spare capacity. 5844 */ 5845 avg_load = 0; 5846 runnable_load = 0; 5847 max_spare_cap = 0; 5848 5849 for_each_cpu(i, sched_group_span(group)) { 5850 /* Bias balancing toward CPUs of our domain */ 5851 if (local_group) 5852 load = source_load(i, load_idx); 5853 else 5854 load = target_load(i, load_idx); 5855 5856 runnable_load += load; 5857 5858 avg_load += cfs_rq_load_avg(&cpu_rq(i)->cfs); 5859 5860 spare_cap = capacity_spare_without(i, p); 5861 5862 if (spare_cap > max_spare_cap) 5863 max_spare_cap = spare_cap; 5864 } 5865 5866 /* Adjust by relative CPU capacity of the group */ 5867 avg_load = (avg_load * SCHED_CAPACITY_SCALE) / 5868 group->sgc->capacity; 5869 runnable_load = (runnable_load * SCHED_CAPACITY_SCALE) / 5870 group->sgc->capacity; 5871 5872 if (local_group) { 5873 this_runnable_load = runnable_load; 5874 this_avg_load = avg_load; 5875 this_spare = max_spare_cap; 5876 } else { 5877 if (min_runnable_load > (runnable_load + imbalance)) { 5878 /* 5879 * The runnable load is significantly smaller 5880 * so we can pick this new CPU: 5881 */ 5882 min_runnable_load = runnable_load; 5883 min_avg_load = avg_load; 5884 idlest = group; 5885 } else if ((runnable_load < (min_runnable_load + imbalance)) && 5886 (100*min_avg_load > imbalance_scale*avg_load)) { 5887 /* 5888 * The runnable loads are close so take the 5889 * blocked load into account through avg_load: 5890 */ 5891 min_avg_load = avg_load; 5892 idlest = group; 5893 } 5894 5895 if (most_spare < max_spare_cap) { 5896 most_spare = max_spare_cap; 5897 most_spare_sg = group; 5898 } 5899 } 5900 } while (group = group->next, group != sd->groups); 5901 5902 /* 5903 * The cross-over point between using spare capacity or least load 5904 * is too conservative for high utilization tasks on partially 5905 * utilized systems if we require spare_capacity > task_util(p), 5906 * so we allow for some task stuffing by using 5907 * spare_capacity > task_util(p)/2. 5908 * 5909 * Spare capacity can't be used for fork because the utilization has 5910 * not been set yet, we must first select a rq to compute the initial 5911 * utilization. 5912 */ 5913 if (sd_flag & SD_BALANCE_FORK) 5914 goto skip_spare; 5915 5916 if (this_spare > task_util(p) / 2 && 5917 imbalance_scale*this_spare > 100*most_spare) 5918 return NULL; 5919 5920 if (most_spare > task_util(p) / 2) 5921 return most_spare_sg; 5922 5923 skip_spare: 5924 if (!idlest) 5925 return NULL; 5926 5927 /* 5928 * When comparing groups across NUMA domains, it's possible for the 5929 * local domain to be very lightly loaded relative to the remote 5930 * domains but "imbalance" skews the comparison making remote CPUs 5931 * look much more favourable. When considering cross-domain, add 5932 * imbalance to the runnable load on the remote node and consider 5933 * staying local. 5934 */ 5935 if ((sd->flags & SD_NUMA) && 5936 min_runnable_load + imbalance >= this_runnable_load) 5937 return NULL; 5938 5939 if (min_runnable_load > (this_runnable_load + imbalance)) 5940 return NULL; 5941 5942 if ((this_runnable_load < (min_runnable_load + imbalance)) && 5943 (100*this_avg_load < imbalance_scale*min_avg_load)) 5944 return NULL; 5945 5946 return idlest; 5947 } 5948 5949 /* 5950 * find_idlest_group_cpu - find the idlest CPU among the CPUs in the group. 5951 */ 5952 static int 5953 find_idlest_group_cpu(struct sched_group *group, struct task_struct *p, int this_cpu) 5954 { 5955 unsigned long load, min_load = ULONG_MAX; 5956 unsigned int min_exit_latency = UINT_MAX; 5957 u64 latest_idle_timestamp = 0; 5958 int least_loaded_cpu = this_cpu; 5959 int shallowest_idle_cpu = -1; 5960 int i; 5961 5962 /* Check if we have any choice: */ 5963 if (group->group_weight == 1) 5964 return cpumask_first(sched_group_span(group)); 5965 5966 /* Traverse only the allowed CPUs */ 5967 for_each_cpu_and(i, sched_group_span(group), &p->cpus_allowed) { 5968 if (available_idle_cpu(i)) { 5969 struct rq *rq = cpu_rq(i); 5970 struct cpuidle_state *idle = idle_get_state(rq); 5971 if (idle && idle->exit_latency < min_exit_latency) { 5972 /* 5973 * We give priority to a CPU whose idle state 5974 * has the smallest exit latency irrespective 5975 * of any idle timestamp. 5976 */ 5977 min_exit_latency = idle->exit_latency; 5978 latest_idle_timestamp = rq->idle_stamp; 5979 shallowest_idle_cpu = i; 5980 } else if ((!idle || idle->exit_latency == min_exit_latency) && 5981 rq->idle_stamp > latest_idle_timestamp) { 5982 /* 5983 * If equal or no active idle state, then 5984 * the most recently idled CPU might have 5985 * a warmer cache. 5986 */ 5987 latest_idle_timestamp = rq->idle_stamp; 5988 shallowest_idle_cpu = i; 5989 } 5990 } else if (shallowest_idle_cpu == -1) { 5991 load = weighted_cpuload(cpu_rq(i)); 5992 if (load < min_load) { 5993 min_load = load; 5994 least_loaded_cpu = i; 5995 } 5996 } 5997 } 5998 5999 return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu; 6000 } 6001 6002 static inline int find_idlest_cpu(struct sched_domain *sd, struct task_struct *p, 6003 int cpu, int prev_cpu, int sd_flag) 6004 { 6005 int new_cpu = cpu; 6006 6007 if (!cpumask_intersects(sched_domain_span(sd), &p->cpus_allowed)) 6008 return prev_cpu; 6009 6010 /* 6011 * We need task's util for capacity_spare_without, sync it up to 6012 * prev_cpu's last_update_time. 6013 */ 6014 if (!(sd_flag & SD_BALANCE_FORK)) 6015 sync_entity_load_avg(&p->se); 6016 6017 while (sd) { 6018 struct sched_group *group; 6019 struct sched_domain *tmp; 6020 int weight; 6021 6022 if (!(sd->flags & sd_flag)) { 6023 sd = sd->child; 6024 continue; 6025 } 6026 6027 group = find_idlest_group(sd, p, cpu, sd_flag); 6028 if (!group) { 6029 sd = sd->child; 6030 continue; 6031 } 6032 6033 new_cpu = find_idlest_group_cpu(group, p, cpu); 6034 if (new_cpu == cpu) { 6035 /* Now try balancing at a lower domain level of 'cpu': */ 6036 sd = sd->child; 6037 continue; 6038 } 6039 6040 /* Now try balancing at a lower domain level of 'new_cpu': */ 6041 cpu = new_cpu; 6042 weight = sd->span_weight; 6043 sd = NULL; 6044 for_each_domain(cpu, tmp) { 6045 if (weight <= tmp->span_weight) 6046 break; 6047 if (tmp->flags & sd_flag) 6048 sd = tmp; 6049 } 6050 } 6051 6052 return new_cpu; 6053 } 6054 6055 #ifdef CONFIG_SCHED_SMT 6056 DEFINE_STATIC_KEY_FALSE(sched_smt_present); 6057 EXPORT_SYMBOL_GPL(sched_smt_present); 6058 6059 static inline void set_idle_cores(int cpu, int val) 6060 { 6061 struct sched_domain_shared *sds; 6062 6063 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu)); 6064 if (sds) 6065 WRITE_ONCE(sds->has_idle_cores, val); 6066 } 6067 6068 static inline bool test_idle_cores(int cpu, bool def) 6069 { 6070 struct sched_domain_shared *sds; 6071 6072 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu)); 6073 if (sds) 6074 return READ_ONCE(sds->has_idle_cores); 6075 6076 return def; 6077 } 6078 6079 /* 6080 * Scans the local SMT mask to see if the entire core is idle, and records this 6081 * information in sd_llc_shared->has_idle_cores. 6082 * 6083 * Since SMT siblings share all cache levels, inspecting this limited remote 6084 * state should be fairly cheap. 6085 */ 6086 void __update_idle_core(struct rq *rq) 6087 { 6088 int core = cpu_of(rq); 6089 int cpu; 6090 6091 rcu_read_lock(); 6092 if (test_idle_cores(core, true)) 6093 goto unlock; 6094 6095 for_each_cpu(cpu, cpu_smt_mask(core)) { 6096 if (cpu == core) 6097 continue; 6098 6099 if (!available_idle_cpu(cpu)) 6100 goto unlock; 6101 } 6102 6103 set_idle_cores(core, 1); 6104 unlock: 6105 rcu_read_unlock(); 6106 } 6107 6108 /* 6109 * Scan the entire LLC domain for idle cores; this dynamically switches off if 6110 * there are no idle cores left in the system; tracked through 6111 * sd_llc->shared->has_idle_cores and enabled through update_idle_core() above. 6112 */ 6113 static int select_idle_core(struct task_struct *p, struct sched_domain *sd, int target) 6114 { 6115 struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_idle_mask); 6116 int core, cpu; 6117 6118 if (!static_branch_likely(&sched_smt_present)) 6119 return -1; 6120 6121 if (!test_idle_cores(target, false)) 6122 return -1; 6123 6124 cpumask_and(cpus, sched_domain_span(sd), &p->cpus_allowed); 6125 6126 for_each_cpu_wrap(core, cpus, target) { 6127 bool idle = true; 6128 6129 for_each_cpu(cpu, cpu_smt_mask(core)) { 6130 __cpumask_clear_cpu(cpu, cpus); 6131 if (!available_idle_cpu(cpu)) 6132 idle = false; 6133 } 6134 6135 if (idle) 6136 return core; 6137 } 6138 6139 /* 6140 * Failed to find an idle core; stop looking for one. 6141 */ 6142 set_idle_cores(target, 0); 6143 6144 return -1; 6145 } 6146 6147 /* 6148 * Scan the local SMT mask for idle CPUs. 6149 */ 6150 static int select_idle_smt(struct task_struct *p, int target) 6151 { 6152 int cpu; 6153 6154 if (!static_branch_likely(&sched_smt_present)) 6155 return -1; 6156 6157 for_each_cpu(cpu, cpu_smt_mask(target)) { 6158 if (!cpumask_test_cpu(cpu, &p->cpus_allowed)) 6159 continue; 6160 if (available_idle_cpu(cpu)) 6161 return cpu; 6162 } 6163 6164 return -1; 6165 } 6166 6167 #else /* CONFIG_SCHED_SMT */ 6168 6169 static inline int select_idle_core(struct task_struct *p, struct sched_domain *sd, int target) 6170 { 6171 return -1; 6172 } 6173 6174 static inline int select_idle_smt(struct task_struct *p, int target) 6175 { 6176 return -1; 6177 } 6178 6179 #endif /* CONFIG_SCHED_SMT */ 6180 6181 /* 6182 * Scan the LLC domain for idle CPUs; this is dynamically regulated by 6183 * comparing the average scan cost (tracked in sd->avg_scan_cost) against the 6184 * average idle time for this rq (as found in rq->avg_idle). 6185 */ 6186 static int select_idle_cpu(struct task_struct *p, struct sched_domain *sd, int target) 6187 { 6188 struct sched_domain *this_sd; 6189 u64 avg_cost, avg_idle; 6190 u64 time, cost; 6191 s64 delta; 6192 int cpu, nr = INT_MAX; 6193 6194 this_sd = rcu_dereference(*this_cpu_ptr(&sd_llc)); 6195 if (!this_sd) 6196 return -1; 6197 6198 /* 6199 * Due to large variance we need a large fuzz factor; hackbench in 6200 * particularly is sensitive here. 6201 */ 6202 avg_idle = this_rq()->avg_idle / 512; 6203 avg_cost = this_sd->avg_scan_cost + 1; 6204 6205 if (sched_feat(SIS_AVG_CPU) && avg_idle < avg_cost) 6206 return -1; 6207 6208 if (sched_feat(SIS_PROP)) { 6209 u64 span_avg = sd->span_weight * avg_idle; 6210 if (span_avg > 4*avg_cost) 6211 nr = div_u64(span_avg, avg_cost); 6212 else 6213 nr = 4; 6214 } 6215 6216 time = local_clock(); 6217 6218 for_each_cpu_wrap(cpu, sched_domain_span(sd), target) { 6219 if (!--nr) 6220 return -1; 6221 if (!cpumask_test_cpu(cpu, &p->cpus_allowed)) 6222 continue; 6223 if (available_idle_cpu(cpu)) 6224 break; 6225 } 6226 6227 time = local_clock() - time; 6228 cost = this_sd->avg_scan_cost; 6229 delta = (s64)(time - cost) / 8; 6230 this_sd->avg_scan_cost += delta; 6231 6232 return cpu; 6233 } 6234 6235 /* 6236 * Try and locate an idle core/thread in the LLC cache domain. 6237 */ 6238 static int select_idle_sibling(struct task_struct *p, int prev, int target) 6239 { 6240 struct sched_domain *sd; 6241 int i, recent_used_cpu; 6242 6243 if (available_idle_cpu(target)) 6244 return target; 6245 6246 /* 6247 * If the previous CPU is cache affine and idle, don't be stupid: 6248 */ 6249 if (prev != target && cpus_share_cache(prev, target) && available_idle_cpu(prev)) 6250 return prev; 6251 6252 /* Check a recently used CPU as a potential idle candidate: */ 6253 recent_used_cpu = p->recent_used_cpu; 6254 if (recent_used_cpu != prev && 6255 recent_used_cpu != target && 6256 cpus_share_cache(recent_used_cpu, target) && 6257 available_idle_cpu(recent_used_cpu) && 6258 cpumask_test_cpu(p->recent_used_cpu, &p->cpus_allowed)) { 6259 /* 6260 * Replace recent_used_cpu with prev as it is a potential 6261 * candidate for the next wake: 6262 */ 6263 p->recent_used_cpu = prev; 6264 return recent_used_cpu; 6265 } 6266 6267 sd = rcu_dereference(per_cpu(sd_llc, target)); 6268 if (!sd) 6269 return target; 6270 6271 i = select_idle_core(p, sd, target); 6272 if ((unsigned)i < nr_cpumask_bits) 6273 return i; 6274 6275 i = select_idle_cpu(p, sd, target); 6276 if ((unsigned)i < nr_cpumask_bits) 6277 return i; 6278 6279 i = select_idle_smt(p, target); 6280 if ((unsigned)i < nr_cpumask_bits) 6281 return i; 6282 6283 return target; 6284 } 6285 6286 /** 6287 * Amount of capacity of a CPU that is (estimated to be) used by CFS tasks 6288 * @cpu: the CPU to get the utilization of 6289 * 6290 * The unit of the return value must be the one of capacity so we can compare 6291 * the utilization with the capacity of the CPU that is available for CFS task 6292 * (ie cpu_capacity). 6293 * 6294 * cfs_rq.avg.util_avg is the sum of running time of runnable tasks plus the 6295 * recent utilization of currently non-runnable tasks on a CPU. It represents 6296 * the amount of utilization of a CPU in the range [0..capacity_orig] where 6297 * capacity_orig is the cpu_capacity available at the highest frequency 6298 * (arch_scale_freq_capacity()). 6299 * The utilization of a CPU converges towards a sum equal to or less than the 6300 * current capacity (capacity_curr <= capacity_orig) of the CPU because it is 6301 * the running time on this CPU scaled by capacity_curr. 6302 * 6303 * The estimated utilization of a CPU is defined to be the maximum between its 6304 * cfs_rq.avg.util_avg and the sum of the estimated utilization of the tasks 6305 * currently RUNNABLE on that CPU. 6306 * This allows to properly represent the expected utilization of a CPU which 6307 * has just got a big task running since a long sleep period. At the same time 6308 * however it preserves the benefits of the "blocked utilization" in 6309 * describing the potential for other tasks waking up on the same CPU. 6310 * 6311 * Nevertheless, cfs_rq.avg.util_avg can be higher than capacity_curr or even 6312 * higher than capacity_orig because of unfortunate rounding in 6313 * cfs.avg.util_avg or just after migrating tasks and new task wakeups until 6314 * the average stabilizes with the new running time. We need to check that the 6315 * utilization stays within the range of [0..capacity_orig] and cap it if 6316 * necessary. Without utilization capping, a group could be seen as overloaded 6317 * (CPU0 utilization at 121% + CPU1 utilization at 80%) whereas CPU1 has 20% of 6318 * available capacity. We allow utilization to overshoot capacity_curr (but not 6319 * capacity_orig) as it useful for predicting the capacity required after task 6320 * migrations (scheduler-driven DVFS). 6321 * 6322 * Return: the (estimated) utilization for the specified CPU 6323 */ 6324 static inline unsigned long cpu_util(int cpu) 6325 { 6326 struct cfs_rq *cfs_rq; 6327 unsigned int util; 6328 6329 cfs_rq = &cpu_rq(cpu)->cfs; 6330 util = READ_ONCE(cfs_rq->avg.util_avg); 6331 6332 if (sched_feat(UTIL_EST)) 6333 util = max(util, READ_ONCE(cfs_rq->avg.util_est.enqueued)); 6334 6335 return min_t(unsigned long, util, capacity_orig_of(cpu)); 6336 } 6337 6338 /* 6339 * cpu_util_without: compute cpu utilization without any contributions from *p 6340 * @cpu: the CPU which utilization is requested 6341 * @p: the task which utilization should be discounted 6342 * 6343 * The utilization of a CPU is defined by the utilization of tasks currently 6344 * enqueued on that CPU as well as tasks which are currently sleeping after an 6345 * execution on that CPU. 6346 * 6347 * This method returns the utilization of the specified CPU by discounting the 6348 * utilization of the specified task, whenever the task is currently 6349 * contributing to the CPU utilization. 6350 */ 6351 static unsigned long cpu_util_without(int cpu, struct task_struct *p) 6352 { 6353 struct cfs_rq *cfs_rq; 6354 unsigned int util; 6355 6356 /* Task has no contribution or is new */ 6357 if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time)) 6358 return cpu_util(cpu); 6359 6360 cfs_rq = &cpu_rq(cpu)->cfs; 6361 util = READ_ONCE(cfs_rq->avg.util_avg); 6362 6363 /* Discount task's util from CPU's util */ 6364 lsub_positive(&util, task_util(p)); 6365 6366 /* 6367 * Covered cases: 6368 * 6369 * a) if *p is the only task sleeping on this CPU, then: 6370 * cpu_util (== task_util) > util_est (== 0) 6371 * and thus we return: 6372 * cpu_util_without = (cpu_util - task_util) = 0 6373 * 6374 * b) if other tasks are SLEEPING on this CPU, which is now exiting 6375 * IDLE, then: 6376 * cpu_util >= task_util 6377 * cpu_util > util_est (== 0) 6378 * and thus we discount *p's blocked utilization to return: 6379 * cpu_util_without = (cpu_util - task_util) >= 0 6380 * 6381 * c) if other tasks are RUNNABLE on that CPU and 6382 * util_est > cpu_util 6383 * then we use util_est since it returns a more restrictive 6384 * estimation of the spare capacity on that CPU, by just 6385 * considering the expected utilization of tasks already 6386 * runnable on that CPU. 6387 * 6388 * Cases a) and b) are covered by the above code, while case c) is 6389 * covered by the following code when estimated utilization is 6390 * enabled. 6391 */ 6392 if (sched_feat(UTIL_EST)) { 6393 unsigned int estimated = 6394 READ_ONCE(cfs_rq->avg.util_est.enqueued); 6395 6396 /* 6397 * Despite the following checks we still have a small window 6398 * for a possible race, when an execl's select_task_rq_fair() 6399 * races with LB's detach_task(): 6400 * 6401 * detach_task() 6402 * p->on_rq = TASK_ON_RQ_MIGRATING; 6403 * ---------------------------------- A 6404 * deactivate_task() \ 6405 * dequeue_task() + RaceTime 6406 * util_est_dequeue() / 6407 * ---------------------------------- B 6408 * 6409 * The additional check on "current == p" it's required to 6410 * properly fix the execl regression and it helps in further 6411 * reducing the chances for the above race. 6412 */ 6413 if (unlikely(task_on_rq_queued(p) || current == p)) 6414 lsub_positive(&estimated, _task_util_est(p)); 6415 6416 util = max(util, estimated); 6417 } 6418 6419 /* 6420 * Utilization (estimated) can exceed the CPU capacity, thus let's 6421 * clamp to the maximum CPU capacity to ensure consistency with 6422 * the cpu_util call. 6423 */ 6424 return min_t(unsigned long, util, capacity_orig_of(cpu)); 6425 } 6426 6427 /* 6428 * Disable WAKE_AFFINE in the case where task @p doesn't fit in the 6429 * capacity of either the waking CPU @cpu or the previous CPU @prev_cpu. 6430 * 6431 * In that case WAKE_AFFINE doesn't make sense and we'll let 6432 * BALANCE_WAKE sort things out. 6433 */ 6434 static int wake_cap(struct task_struct *p, int cpu, int prev_cpu) 6435 { 6436 long min_cap, max_cap; 6437 6438 if (!static_branch_unlikely(&sched_asym_cpucapacity)) 6439 return 0; 6440 6441 min_cap = min(capacity_orig_of(prev_cpu), capacity_orig_of(cpu)); 6442 max_cap = cpu_rq(cpu)->rd->max_cpu_capacity; 6443 6444 /* Minimum capacity is close to max, no need to abort wake_affine */ 6445 if (max_cap - min_cap < max_cap >> 3) 6446 return 0; 6447 6448 /* Bring task utilization in sync with prev_cpu */ 6449 sync_entity_load_avg(&p->se); 6450 6451 return !task_fits_capacity(p, min_cap); 6452 } 6453 6454 /* 6455 * Predicts what cpu_util(@cpu) would return if @p was migrated (and enqueued) 6456 * to @dst_cpu. 6457 */ 6458 static unsigned long cpu_util_next(int cpu, struct task_struct *p, int dst_cpu) 6459 { 6460 struct cfs_rq *cfs_rq = &cpu_rq(cpu)->cfs; 6461 unsigned long util_est, util = READ_ONCE(cfs_rq->avg.util_avg); 6462 6463 /* 6464 * If @p migrates from @cpu to another, remove its contribution. Or, 6465 * if @p migrates from another CPU to @cpu, add its contribution. In 6466 * the other cases, @cpu is not impacted by the migration, so the 6467 * util_avg should already be correct. 6468 */ 6469 if (task_cpu(p) == cpu && dst_cpu != cpu) 6470 sub_positive(&util, task_util(p)); 6471 else if (task_cpu(p) != cpu && dst_cpu == cpu) 6472 util += task_util(p); 6473 6474 if (sched_feat(UTIL_EST)) { 6475 util_est = READ_ONCE(cfs_rq->avg.util_est.enqueued); 6476 6477 /* 6478 * During wake-up, the task isn't enqueued yet and doesn't 6479 * appear in the cfs_rq->avg.util_est.enqueued of any rq, 6480 * so just add it (if needed) to "simulate" what will be 6481 * cpu_util() after the task has been enqueued. 6482 */ 6483 if (dst_cpu == cpu) 6484 util_est += _task_util_est(p); 6485 6486 util = max(util, util_est); 6487 } 6488 6489 return min(util, capacity_orig_of(cpu)); 6490 } 6491 6492 /* 6493 * compute_energy(): Estimates the energy that would be consumed if @p was 6494 * migrated to @dst_cpu. compute_energy() predicts what will be the utilization 6495 * landscape of the * CPUs after the task migration, and uses the Energy Model 6496 * to compute what would be the energy if we decided to actually migrate that 6497 * task. 6498 */ 6499 static long 6500 compute_energy(struct task_struct *p, int dst_cpu, struct perf_domain *pd) 6501 { 6502 long util, max_util, sum_util, energy = 0; 6503 int cpu; 6504 6505 for (; pd; pd = pd->next) { 6506 max_util = sum_util = 0; 6507 /* 6508 * The capacity state of CPUs of the current rd can be driven by 6509 * CPUs of another rd if they belong to the same performance 6510 * domain. So, account for the utilization of these CPUs too 6511 * by masking pd with cpu_online_mask instead of the rd span. 6512 * 6513 * If an entire performance domain is outside of the current rd, 6514 * it will not appear in its pd list and will not be accounted 6515 * by compute_energy(). 6516 */ 6517 for_each_cpu_and(cpu, perf_domain_span(pd), cpu_online_mask) { 6518 util = cpu_util_next(cpu, p, dst_cpu); 6519 util = schedutil_energy_util(cpu, util); 6520 max_util = max(util, max_util); 6521 sum_util += util; 6522 } 6523 6524 energy += em_pd_energy(pd->em_pd, max_util, sum_util); 6525 } 6526 6527 return energy; 6528 } 6529 6530 /* 6531 * find_energy_efficient_cpu(): Find most energy-efficient target CPU for the 6532 * waking task. find_energy_efficient_cpu() looks for the CPU with maximum 6533 * spare capacity in each performance domain and uses it as a potential 6534 * candidate to execute the task. Then, it uses the Energy Model to figure 6535 * out which of the CPU candidates is the most energy-efficient. 6536 * 6537 * The rationale for this heuristic is as follows. In a performance domain, 6538 * all the most energy efficient CPU candidates (according to the Energy 6539 * Model) are those for which we'll request a low frequency. When there are 6540 * several CPUs for which the frequency request will be the same, we don't 6541 * have enough data to break the tie between them, because the Energy Model 6542 * only includes active power costs. With this model, if we assume that 6543 * frequency requests follow utilization (e.g. using schedutil), the CPU with 6544 * the maximum spare capacity in a performance domain is guaranteed to be among 6545 * the best candidates of the performance domain. 6546 * 6547 * In practice, it could be preferable from an energy standpoint to pack 6548 * small tasks on a CPU in order to let other CPUs go in deeper idle states, 6549 * but that could also hurt our chances to go cluster idle, and we have no 6550 * ways to tell with the current Energy Model if this is actually a good 6551 * idea or not. So, find_energy_efficient_cpu() basically favors 6552 * cluster-packing, and spreading inside a cluster. That should at least be 6553 * a good thing for latency, and this is consistent with the idea that most 6554 * of the energy savings of EAS come from the asymmetry of the system, and 6555 * not so much from breaking the tie between identical CPUs. That's also the 6556 * reason why EAS is enabled in the topology code only for systems where 6557 * SD_ASYM_CPUCAPACITY is set. 6558 * 6559 * NOTE: Forkees are not accepted in the energy-aware wake-up path because 6560 * they don't have any useful utilization data yet and it's not possible to 6561 * forecast their impact on energy consumption. Consequently, they will be 6562 * placed by find_idlest_cpu() on the least loaded CPU, which might turn out 6563 * to be energy-inefficient in some use-cases. The alternative would be to 6564 * bias new tasks towards specific types of CPUs first, or to try to infer 6565 * their util_avg from the parent task, but those heuristics could hurt 6566 * other use-cases too. So, until someone finds a better way to solve this, 6567 * let's keep things simple by re-using the existing slow path. 6568 */ 6569 6570 static int find_energy_efficient_cpu(struct task_struct *p, int prev_cpu) 6571 { 6572 unsigned long prev_energy = ULONG_MAX, best_energy = ULONG_MAX; 6573 struct root_domain *rd = cpu_rq(smp_processor_id())->rd; 6574 int cpu, best_energy_cpu = prev_cpu; 6575 struct perf_domain *head, *pd; 6576 unsigned long cpu_cap, util; 6577 struct sched_domain *sd; 6578 6579 rcu_read_lock(); 6580 pd = rcu_dereference(rd->pd); 6581 if (!pd || READ_ONCE(rd->overutilized)) 6582 goto fail; 6583 head = pd; 6584 6585 /* 6586 * Energy-aware wake-up happens on the lowest sched_domain starting 6587 * from sd_asym_cpucapacity spanning over this_cpu and prev_cpu. 6588 */ 6589 sd = rcu_dereference(*this_cpu_ptr(&sd_asym_cpucapacity)); 6590 while (sd && !cpumask_test_cpu(prev_cpu, sched_domain_span(sd))) 6591 sd = sd->parent; 6592 if (!sd) 6593 goto fail; 6594 6595 sync_entity_load_avg(&p->se); 6596 if (!task_util_est(p)) 6597 goto unlock; 6598 6599 for (; pd; pd = pd->next) { 6600 unsigned long cur_energy, spare_cap, max_spare_cap = 0; 6601 int max_spare_cap_cpu = -1; 6602 6603 for_each_cpu_and(cpu, perf_domain_span(pd), sched_domain_span(sd)) { 6604 if (!cpumask_test_cpu(cpu, &p->cpus_allowed)) 6605 continue; 6606 6607 /* Skip CPUs that will be overutilized. */ 6608 util = cpu_util_next(cpu, p, cpu); 6609 cpu_cap = capacity_of(cpu); 6610 if (cpu_cap * 1024 < util * capacity_margin) 6611 continue; 6612 6613 /* Always use prev_cpu as a candidate. */ 6614 if (cpu == prev_cpu) { 6615 prev_energy = compute_energy(p, prev_cpu, head); 6616 best_energy = min(best_energy, prev_energy); 6617 continue; 6618 } 6619 6620 /* 6621 * Find the CPU with the maximum spare capacity in 6622 * the performance domain 6623 */ 6624 spare_cap = cpu_cap - util; 6625 if (spare_cap > max_spare_cap) { 6626 max_spare_cap = spare_cap; 6627 max_spare_cap_cpu = cpu; 6628 } 6629 } 6630 6631 /* Evaluate the energy impact of using this CPU. */ 6632 if (max_spare_cap_cpu >= 0) { 6633 cur_energy = compute_energy(p, max_spare_cap_cpu, head); 6634 if (cur_energy < best_energy) { 6635 best_energy = cur_energy; 6636 best_energy_cpu = max_spare_cap_cpu; 6637 } 6638 } 6639 } 6640 unlock: 6641 rcu_read_unlock(); 6642 6643 /* 6644 * Pick the best CPU if prev_cpu cannot be used, or if it saves at 6645 * least 6% of the energy used by prev_cpu. 6646 */ 6647 if (prev_energy == ULONG_MAX) 6648 return best_energy_cpu; 6649 6650 if ((prev_energy - best_energy) > (prev_energy >> 4)) 6651 return best_energy_cpu; 6652 6653 return prev_cpu; 6654 6655 fail: 6656 rcu_read_unlock(); 6657 6658 return -1; 6659 } 6660 6661 /* 6662 * select_task_rq_fair: Select target runqueue for the waking task in domains 6663 * that have the 'sd_flag' flag set. In practice, this is SD_BALANCE_WAKE, 6664 * SD_BALANCE_FORK, or SD_BALANCE_EXEC. 6665 * 6666 * Balances load by selecting the idlest CPU in the idlest group, or under 6667 * certain conditions an idle sibling CPU if the domain has SD_WAKE_AFFINE set. 6668 * 6669 * Returns the target CPU number. 6670 * 6671 * preempt must be disabled. 6672 */ 6673 static int 6674 select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_flags) 6675 { 6676 struct sched_domain *tmp, *sd = NULL; 6677 int cpu = smp_processor_id(); 6678 int new_cpu = prev_cpu; 6679 int want_affine = 0; 6680 int sync = (wake_flags & WF_SYNC) && !(current->flags & PF_EXITING); 6681 6682 if (sd_flag & SD_BALANCE_WAKE) { 6683 record_wakee(p); 6684 6685 if (sched_energy_enabled()) { 6686 new_cpu = find_energy_efficient_cpu(p, prev_cpu); 6687 if (new_cpu >= 0) 6688 return new_cpu; 6689 new_cpu = prev_cpu; 6690 } 6691 6692 want_affine = !wake_wide(p) && !wake_cap(p, cpu, prev_cpu) && 6693 cpumask_test_cpu(cpu, &p->cpus_allowed); 6694 } 6695 6696 rcu_read_lock(); 6697 for_each_domain(cpu, tmp) { 6698 if (!(tmp->flags & SD_LOAD_BALANCE)) 6699 break; 6700 6701 /* 6702 * If both 'cpu' and 'prev_cpu' are part of this domain, 6703 * cpu is a valid SD_WAKE_AFFINE target. 6704 */ 6705 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) && 6706 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) { 6707 if (cpu != prev_cpu) 6708 new_cpu = wake_affine(tmp, p, cpu, prev_cpu, sync); 6709 6710 sd = NULL; /* Prefer wake_affine over balance flags */ 6711 break; 6712 } 6713 6714 if (tmp->flags & sd_flag) 6715 sd = tmp; 6716 else if (!want_affine) 6717 break; 6718 } 6719 6720 if (unlikely(sd)) { 6721 /* Slow path */ 6722 new_cpu = find_idlest_cpu(sd, p, cpu, prev_cpu, sd_flag); 6723 } else if (sd_flag & SD_BALANCE_WAKE) { /* XXX always ? */ 6724 /* Fast path */ 6725 6726 new_cpu = select_idle_sibling(p, prev_cpu, new_cpu); 6727 6728 if (want_affine) 6729 current->recent_used_cpu = cpu; 6730 } 6731 rcu_read_unlock(); 6732 6733 return new_cpu; 6734 } 6735 6736 static void detach_entity_cfs_rq(struct sched_entity *se); 6737 6738 /* 6739 * Called immediately before a task is migrated to a new CPU; task_cpu(p) and 6740 * cfs_rq_of(p) references at time of call are still valid and identify the 6741 * previous CPU. The caller guarantees p->pi_lock or task_rq(p)->lock is held. 6742 */ 6743 static void migrate_task_rq_fair(struct task_struct *p, int new_cpu) 6744 { 6745 /* 6746 * As blocked tasks retain absolute vruntime the migration needs to 6747 * deal with this by subtracting the old and adding the new 6748 * min_vruntime -- the latter is done by enqueue_entity() when placing 6749 * the task on the new runqueue. 6750 */ 6751 if (p->state == TASK_WAKING) { 6752 struct sched_entity *se = &p->se; 6753 struct cfs_rq *cfs_rq = cfs_rq_of(se); 6754 u64 min_vruntime; 6755 6756 #ifndef CONFIG_64BIT 6757 u64 min_vruntime_copy; 6758 6759 do { 6760 min_vruntime_copy = cfs_rq->min_vruntime_copy; 6761 smp_rmb(); 6762 min_vruntime = cfs_rq->min_vruntime; 6763 } while (min_vruntime != min_vruntime_copy); 6764 #else 6765 min_vruntime = cfs_rq->min_vruntime; 6766 #endif 6767 6768 se->vruntime -= min_vruntime; 6769 } 6770 6771 if (p->on_rq == TASK_ON_RQ_MIGRATING) { 6772 /* 6773 * In case of TASK_ON_RQ_MIGRATING we in fact hold the 'old' 6774 * rq->lock and can modify state directly. 6775 */ 6776 lockdep_assert_held(&task_rq(p)->lock); 6777 detach_entity_cfs_rq(&p->se); 6778 6779 } else { 6780 /* 6781 * We are supposed to update the task to "current" time, then 6782 * its up to date and ready to go to new CPU/cfs_rq. But we 6783 * have difficulty in getting what current time is, so simply 6784 * throw away the out-of-date time. This will result in the 6785 * wakee task is less decayed, but giving the wakee more load 6786 * sounds not bad. 6787 */ 6788 remove_entity_load_avg(&p->se); 6789 } 6790 6791 /* Tell new CPU we are migrated */ 6792 p->se.avg.last_update_time = 0; 6793 6794 /* We have migrated, no longer consider this task hot */ 6795 p->se.exec_start = 0; 6796 6797 update_scan_period(p, new_cpu); 6798 } 6799 6800 static void task_dead_fair(struct task_struct *p) 6801 { 6802 remove_entity_load_avg(&p->se); 6803 } 6804 #endif /* CONFIG_SMP */ 6805 6806 static unsigned long wakeup_gran(struct sched_entity *se) 6807 { 6808 unsigned long gran = sysctl_sched_wakeup_granularity; 6809 6810 /* 6811 * Since its curr running now, convert the gran from real-time 6812 * to virtual-time in his units. 6813 * 6814 * By using 'se' instead of 'curr' we penalize light tasks, so 6815 * they get preempted easier. That is, if 'se' < 'curr' then 6816 * the resulting gran will be larger, therefore penalizing the 6817 * lighter, if otoh 'se' > 'curr' then the resulting gran will 6818 * be smaller, again penalizing the lighter task. 6819 * 6820 * This is especially important for buddies when the leftmost 6821 * task is higher priority than the buddy. 6822 */ 6823 return calc_delta_fair(gran, se); 6824 } 6825 6826 /* 6827 * Should 'se' preempt 'curr'. 6828 * 6829 * |s1 6830 * |s2 6831 * |s3 6832 * g 6833 * |<--->|c 6834 * 6835 * w(c, s1) = -1 6836 * w(c, s2) = 0 6837 * w(c, s3) = 1 6838 * 6839 */ 6840 static int 6841 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se) 6842 { 6843 s64 gran, vdiff = curr->vruntime - se->vruntime; 6844 6845 if (vdiff <= 0) 6846 return -1; 6847 6848 gran = wakeup_gran(se); 6849 if (vdiff > gran) 6850 return 1; 6851 6852 return 0; 6853 } 6854 6855 static void set_last_buddy(struct sched_entity *se) 6856 { 6857 if (entity_is_task(se) && unlikely(task_has_idle_policy(task_of(se)))) 6858 return; 6859 6860 for_each_sched_entity(se) { 6861 if (SCHED_WARN_ON(!se->on_rq)) 6862 return; 6863 cfs_rq_of(se)->last = se; 6864 } 6865 } 6866 6867 static void set_next_buddy(struct sched_entity *se) 6868 { 6869 if (entity_is_task(se) && unlikely(task_has_idle_policy(task_of(se)))) 6870 return; 6871 6872 for_each_sched_entity(se) { 6873 if (SCHED_WARN_ON(!se->on_rq)) 6874 return; 6875 cfs_rq_of(se)->next = se; 6876 } 6877 } 6878 6879 static void set_skip_buddy(struct sched_entity *se) 6880 { 6881 for_each_sched_entity(se) 6882 cfs_rq_of(se)->skip = se; 6883 } 6884 6885 /* 6886 * Preempt the current task with a newly woken task if needed: 6887 */ 6888 static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags) 6889 { 6890 struct task_struct *curr = rq->curr; 6891 struct sched_entity *se = &curr->se, *pse = &p->se; 6892 struct cfs_rq *cfs_rq = task_cfs_rq(curr); 6893 int scale = cfs_rq->nr_running >= sched_nr_latency; 6894 int next_buddy_marked = 0; 6895 6896 if (unlikely(se == pse)) 6897 return; 6898 6899 /* 6900 * This is possible from callers such as attach_tasks(), in which we 6901 * unconditionally check_prempt_curr() after an enqueue (which may have 6902 * lead to a throttle). This both saves work and prevents false 6903 * next-buddy nomination below. 6904 */ 6905 if (unlikely(throttled_hierarchy(cfs_rq_of(pse)))) 6906 return; 6907 6908 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) { 6909 set_next_buddy(pse); 6910 next_buddy_marked = 1; 6911 } 6912 6913 /* 6914 * We can come here with TIF_NEED_RESCHED already set from new task 6915 * wake up path. 6916 * 6917 * Note: this also catches the edge-case of curr being in a throttled 6918 * group (e.g. via set_curr_task), since update_curr() (in the 6919 * enqueue of curr) will have resulted in resched being set. This 6920 * prevents us from potentially nominating it as a false LAST_BUDDY 6921 * below. 6922 */ 6923 if (test_tsk_need_resched(curr)) 6924 return; 6925 6926 /* Idle tasks are by definition preempted by non-idle tasks. */ 6927 if (unlikely(task_has_idle_policy(curr)) && 6928 likely(!task_has_idle_policy(p))) 6929 goto preempt; 6930 6931 /* 6932 * Batch and idle tasks do not preempt non-idle tasks (their preemption 6933 * is driven by the tick): 6934 */ 6935 if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION)) 6936 return; 6937 6938 find_matching_se(&se, &pse); 6939 update_curr(cfs_rq_of(se)); 6940 BUG_ON(!pse); 6941 if (wakeup_preempt_entity(se, pse) == 1) { 6942 /* 6943 * Bias pick_next to pick the sched entity that is 6944 * triggering this preemption. 6945 */ 6946 if (!next_buddy_marked) 6947 set_next_buddy(pse); 6948 goto preempt; 6949 } 6950 6951 return; 6952 6953 preempt: 6954 resched_curr(rq); 6955 /* 6956 * Only set the backward buddy when the current task is still 6957 * on the rq. This can happen when a wakeup gets interleaved 6958 * with schedule on the ->pre_schedule() or idle_balance() 6959 * point, either of which can * drop the rq lock. 6960 * 6961 * Also, during early boot the idle thread is in the fair class, 6962 * for obvious reasons its a bad idea to schedule back to it. 6963 */ 6964 if (unlikely(!se->on_rq || curr == rq->idle)) 6965 return; 6966 6967 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se)) 6968 set_last_buddy(se); 6969 } 6970 6971 static struct task_struct * 6972 pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf) 6973 { 6974 struct cfs_rq *cfs_rq = &rq->cfs; 6975 struct sched_entity *se; 6976 struct task_struct *p; 6977 int new_tasks; 6978 6979 again: 6980 if (!cfs_rq->nr_running) 6981 goto idle; 6982 6983 #ifdef CONFIG_FAIR_GROUP_SCHED 6984 if (prev->sched_class != &fair_sched_class) 6985 goto simple; 6986 6987 /* 6988 * Because of the set_next_buddy() in dequeue_task_fair() it is rather 6989 * likely that a next task is from the same cgroup as the current. 6990 * 6991 * Therefore attempt to avoid putting and setting the entire cgroup 6992 * hierarchy, only change the part that actually changes. 6993 */ 6994 6995 do { 6996 struct sched_entity *curr = cfs_rq->curr; 6997 6998 /* 6999 * Since we got here without doing put_prev_entity() we also 7000 * have to consider cfs_rq->curr. If it is still a runnable 7001 * entity, update_curr() will update its vruntime, otherwise 7002 * forget we've ever seen it. 7003 */ 7004 if (curr) { 7005 if (curr->on_rq) 7006 update_curr(cfs_rq); 7007 else 7008 curr = NULL; 7009 7010 /* 7011 * This call to check_cfs_rq_runtime() will do the 7012 * throttle and dequeue its entity in the parent(s). 7013 * Therefore the nr_running test will indeed 7014 * be correct. 7015 */ 7016 if (unlikely(check_cfs_rq_runtime(cfs_rq))) { 7017 cfs_rq = &rq->cfs; 7018 7019 if (!cfs_rq->nr_running) 7020 goto idle; 7021 7022 goto simple; 7023 } 7024 } 7025 7026 se = pick_next_entity(cfs_rq, curr); 7027 cfs_rq = group_cfs_rq(se); 7028 } while (cfs_rq); 7029 7030 p = task_of(se); 7031 7032 /* 7033 * Since we haven't yet done put_prev_entity and if the selected task 7034 * is a different task than we started out with, try and touch the 7035 * least amount of cfs_rqs. 7036 */ 7037 if (prev != p) { 7038 struct sched_entity *pse = &prev->se; 7039 7040 while (!(cfs_rq = is_same_group(se, pse))) { 7041 int se_depth = se->depth; 7042 int pse_depth = pse->depth; 7043 7044 if (se_depth <= pse_depth) { 7045 put_prev_entity(cfs_rq_of(pse), pse); 7046 pse = parent_entity(pse); 7047 } 7048 if (se_depth >= pse_depth) { 7049 set_next_entity(cfs_rq_of(se), se); 7050 se = parent_entity(se); 7051 } 7052 } 7053 7054 put_prev_entity(cfs_rq, pse); 7055 set_next_entity(cfs_rq, se); 7056 } 7057 7058 goto done; 7059 simple: 7060 #endif 7061 7062 put_prev_task(rq, prev); 7063 7064 do { 7065 se = pick_next_entity(cfs_rq, NULL); 7066 set_next_entity(cfs_rq, se); 7067 cfs_rq = group_cfs_rq(se); 7068 } while (cfs_rq); 7069 7070 p = task_of(se); 7071 7072 done: __maybe_unused; 7073 #ifdef CONFIG_SMP 7074 /* 7075 * Move the next running task to the front of 7076 * the list, so our cfs_tasks list becomes MRU 7077 * one. 7078 */ 7079 list_move(&p->se.group_node, &rq->cfs_tasks); 7080 #endif 7081 7082 if (hrtick_enabled(rq)) 7083 hrtick_start_fair(rq, p); 7084 7085 update_misfit_status(p, rq); 7086 7087 return p; 7088 7089 idle: 7090 update_misfit_status(NULL, rq); 7091 new_tasks = idle_balance(rq, rf); 7092 7093 /* 7094 * Because idle_balance() releases (and re-acquires) rq->lock, it is 7095 * possible for any higher priority task to appear. In that case we 7096 * must re-start the pick_next_entity() loop. 7097 */ 7098 if (new_tasks < 0) 7099 return RETRY_TASK; 7100 7101 if (new_tasks > 0) 7102 goto again; 7103 7104 /* 7105 * rq is about to be idle, check if we need to update the 7106 * lost_idle_time of clock_pelt 7107 */ 7108 update_idle_rq_clock_pelt(rq); 7109 7110 return NULL; 7111 } 7112 7113 /* 7114 * Account for a descheduled task: 7115 */ 7116 static void put_prev_task_fair(struct rq *rq, struct task_struct *prev) 7117 { 7118 struct sched_entity *se = &prev->se; 7119 struct cfs_rq *cfs_rq; 7120 7121 for_each_sched_entity(se) { 7122 cfs_rq = cfs_rq_of(se); 7123 put_prev_entity(cfs_rq, se); 7124 } 7125 } 7126 7127 /* 7128 * sched_yield() is very simple 7129 * 7130 * The magic of dealing with the ->skip buddy is in pick_next_entity. 7131 */ 7132 static void yield_task_fair(struct rq *rq) 7133 { 7134 struct task_struct *curr = rq->curr; 7135 struct cfs_rq *cfs_rq = task_cfs_rq(curr); 7136 struct sched_entity *se = &curr->se; 7137 7138 /* 7139 * Are we the only task in the tree? 7140 */ 7141 if (unlikely(rq->nr_running == 1)) 7142 return; 7143 7144 clear_buddies(cfs_rq, se); 7145 7146 if (curr->policy != SCHED_BATCH) { 7147 update_rq_clock(rq); 7148 /* 7149 * Update run-time statistics of the 'current'. 7150 */ 7151 update_curr(cfs_rq); 7152 /* 7153 * Tell update_rq_clock() that we've just updated, 7154 * so we don't do microscopic update in schedule() 7155 * and double the fastpath cost. 7156 */ 7157 rq_clock_skip_update(rq); 7158 } 7159 7160 set_skip_buddy(se); 7161 } 7162 7163 static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt) 7164 { 7165 struct sched_entity *se = &p->se; 7166 7167 /* throttled hierarchies are not runnable */ 7168 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se))) 7169 return false; 7170 7171 /* Tell the scheduler that we'd really like pse to run next. */ 7172 set_next_buddy(se); 7173 7174 yield_task_fair(rq); 7175 7176 return true; 7177 } 7178 7179 #ifdef CONFIG_SMP 7180 /************************************************** 7181 * Fair scheduling class load-balancing methods. 7182 * 7183 * BASICS 7184 * 7185 * The purpose of load-balancing is to achieve the same basic fairness the 7186 * per-CPU scheduler provides, namely provide a proportional amount of compute 7187 * time to each task. This is expressed in the following equation: 7188 * 7189 * W_i,n/P_i == W_j,n/P_j for all i,j (1) 7190 * 7191 * Where W_i,n is the n-th weight average for CPU i. The instantaneous weight 7192 * W_i,0 is defined as: 7193 * 7194 * W_i,0 = \Sum_j w_i,j (2) 7195 * 7196 * Where w_i,j is the weight of the j-th runnable task on CPU i. This weight 7197 * is derived from the nice value as per sched_prio_to_weight[]. 7198 * 7199 * The weight average is an exponential decay average of the instantaneous 7200 * weight: 7201 * 7202 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3) 7203 * 7204 * C_i is the compute capacity of CPU i, typically it is the 7205 * fraction of 'recent' time available for SCHED_OTHER task execution. But it 7206 * can also include other factors [XXX]. 7207 * 7208 * To achieve this balance we define a measure of imbalance which follows 7209 * directly from (1): 7210 * 7211 * imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j } (4) 7212 * 7213 * We them move tasks around to minimize the imbalance. In the continuous 7214 * function space it is obvious this converges, in the discrete case we get 7215 * a few fun cases generally called infeasible weight scenarios. 7216 * 7217 * [XXX expand on: 7218 * - infeasible weights; 7219 * - local vs global optima in the discrete case. ] 7220 * 7221 * 7222 * SCHED DOMAINS 7223 * 7224 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2) 7225 * for all i,j solution, we create a tree of CPUs that follows the hardware 7226 * topology where each level pairs two lower groups (or better). This results 7227 * in O(log n) layers. Furthermore we reduce the number of CPUs going up the 7228 * tree to only the first of the previous level and we decrease the frequency 7229 * of load-balance at each level inv. proportional to the number of CPUs in 7230 * the groups. 7231 * 7232 * This yields: 7233 * 7234 * log_2 n 1 n 7235 * \Sum { --- * --- * 2^i } = O(n) (5) 7236 * i = 0 2^i 2^i 7237 * `- size of each group 7238 * | | `- number of CPUs doing load-balance 7239 * | `- freq 7240 * `- sum over all levels 7241 * 7242 * Coupled with a limit on how many tasks we can migrate every balance pass, 7243 * this makes (5) the runtime complexity of the balancer. 7244 * 7245 * An important property here is that each CPU is still (indirectly) connected 7246 * to every other CPU in at most O(log n) steps: 7247 * 7248 * The adjacency matrix of the resulting graph is given by: 7249 * 7250 * log_2 n 7251 * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6) 7252 * k = 0 7253 * 7254 * And you'll find that: 7255 * 7256 * A^(log_2 n)_i,j != 0 for all i,j (7) 7257 * 7258 * Showing there's indeed a path between every CPU in at most O(log n) steps. 7259 * The task movement gives a factor of O(m), giving a convergence complexity 7260 * of: 7261 * 7262 * O(nm log n), n := nr_cpus, m := nr_tasks (8) 7263 * 7264 * 7265 * WORK CONSERVING 7266 * 7267 * In order to avoid CPUs going idle while there's still work to do, new idle 7268 * balancing is more aggressive and has the newly idle CPU iterate up the domain 7269 * tree itself instead of relying on other CPUs to bring it work. 7270 * 7271 * This adds some complexity to both (5) and (8) but it reduces the total idle 7272 * time. 7273 * 7274 * [XXX more?] 7275 * 7276 * 7277 * CGROUPS 7278 * 7279 * Cgroups make a horror show out of (2), instead of a simple sum we get: 7280 * 7281 * s_k,i 7282 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9) 7283 * S_k 7284 * 7285 * Where 7286 * 7287 * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10) 7288 * 7289 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on CPU i. 7290 * 7291 * The big problem is S_k, its a global sum needed to compute a local (W_i) 7292 * property. 7293 * 7294 * [XXX write more on how we solve this.. _after_ merging pjt's patches that 7295 * rewrite all of this once again.] 7296 */ 7297 7298 static unsigned long __read_mostly max_load_balance_interval = HZ/10; 7299 7300 enum fbq_type { regular, remote, all }; 7301 7302 enum group_type { 7303 group_other = 0, 7304 group_misfit_task, 7305 group_imbalanced, 7306 group_overloaded, 7307 }; 7308 7309 #define LBF_ALL_PINNED 0x01 7310 #define LBF_NEED_BREAK 0x02 7311 #define LBF_DST_PINNED 0x04 7312 #define LBF_SOME_PINNED 0x08 7313 #define LBF_NOHZ_STATS 0x10 7314 #define LBF_NOHZ_AGAIN 0x20 7315 7316 struct lb_env { 7317 struct sched_domain *sd; 7318 7319 struct rq *src_rq; 7320 int src_cpu; 7321 7322 int dst_cpu; 7323 struct rq *dst_rq; 7324 7325 struct cpumask *dst_grpmask; 7326 int new_dst_cpu; 7327 enum cpu_idle_type idle; 7328 long imbalance; 7329 /* The set of CPUs under consideration for load-balancing */ 7330 struct cpumask *cpus; 7331 7332 unsigned int flags; 7333 7334 unsigned int loop; 7335 unsigned int loop_break; 7336 unsigned int loop_max; 7337 7338 enum fbq_type fbq_type; 7339 enum group_type src_grp_type; 7340 struct list_head tasks; 7341 }; 7342 7343 /* 7344 * Is this task likely cache-hot: 7345 */ 7346 static int task_hot(struct task_struct *p, struct lb_env *env) 7347 { 7348 s64 delta; 7349 7350 lockdep_assert_held(&env->src_rq->lock); 7351 7352 if (p->sched_class != &fair_sched_class) 7353 return 0; 7354 7355 if (unlikely(task_has_idle_policy(p))) 7356 return 0; 7357 7358 /* 7359 * Buddy candidates are cache hot: 7360 */ 7361 if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running && 7362 (&p->se == cfs_rq_of(&p->se)->next || 7363 &p->se == cfs_rq_of(&p->se)->last)) 7364 return 1; 7365 7366 if (sysctl_sched_migration_cost == -1) 7367 return 1; 7368 if (sysctl_sched_migration_cost == 0) 7369 return 0; 7370 7371 delta = rq_clock_task(env->src_rq) - p->se.exec_start; 7372 7373 return delta < (s64)sysctl_sched_migration_cost; 7374 } 7375 7376 #ifdef CONFIG_NUMA_BALANCING 7377 /* 7378 * Returns 1, if task migration degrades locality 7379 * Returns 0, if task migration improves locality i.e migration preferred. 7380 * Returns -1, if task migration is not affected by locality. 7381 */ 7382 static int migrate_degrades_locality(struct task_struct *p, struct lb_env *env) 7383 { 7384 struct numa_group *numa_group = rcu_dereference(p->numa_group); 7385 unsigned long src_weight, dst_weight; 7386 int src_nid, dst_nid, dist; 7387 7388 if (!static_branch_likely(&sched_numa_balancing)) 7389 return -1; 7390 7391 if (!p->numa_faults || !(env->sd->flags & SD_NUMA)) 7392 return -1; 7393 7394 src_nid = cpu_to_node(env->src_cpu); 7395 dst_nid = cpu_to_node(env->dst_cpu); 7396 7397 if (src_nid == dst_nid) 7398 return -1; 7399 7400 /* Migrating away from the preferred node is always bad. */ 7401 if (src_nid == p->numa_preferred_nid) { 7402 if (env->src_rq->nr_running > env->src_rq->nr_preferred_running) 7403 return 1; 7404 else 7405 return -1; 7406 } 7407 7408 /* Encourage migration to the preferred node. */ 7409 if (dst_nid == p->numa_preferred_nid) 7410 return 0; 7411 7412 /* Leaving a core idle is often worse than degrading locality. */ 7413 if (env->idle == CPU_IDLE) 7414 return -1; 7415 7416 dist = node_distance(src_nid, dst_nid); 7417 if (numa_group) { 7418 src_weight = group_weight(p, src_nid, dist); 7419 dst_weight = group_weight(p, dst_nid, dist); 7420 } else { 7421 src_weight = task_weight(p, src_nid, dist); 7422 dst_weight = task_weight(p, dst_nid, dist); 7423 } 7424 7425 return dst_weight < src_weight; 7426 } 7427 7428 #else 7429 static inline int migrate_degrades_locality(struct task_struct *p, 7430 struct lb_env *env) 7431 { 7432 return -1; 7433 } 7434 #endif 7435 7436 /* 7437 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu? 7438 */ 7439 static 7440 int can_migrate_task(struct task_struct *p, struct lb_env *env) 7441 { 7442 int tsk_cache_hot; 7443 7444 lockdep_assert_held(&env->src_rq->lock); 7445 7446 /* 7447 * We do not migrate tasks that are: 7448 * 1) throttled_lb_pair, or 7449 * 2) cannot be migrated to this CPU due to cpus_allowed, or 7450 * 3) running (obviously), or 7451 * 4) are cache-hot on their current CPU. 7452 */ 7453 if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu)) 7454 return 0; 7455 7456 if (!cpumask_test_cpu(env->dst_cpu, &p->cpus_allowed)) { 7457 int cpu; 7458 7459 schedstat_inc(p->se.statistics.nr_failed_migrations_affine); 7460 7461 env->flags |= LBF_SOME_PINNED; 7462 7463 /* 7464 * Remember if this task can be migrated to any other CPU in 7465 * our sched_group. We may want to revisit it if we couldn't 7466 * meet load balance goals by pulling other tasks on src_cpu. 7467 * 7468 * Avoid computing new_dst_cpu for NEWLY_IDLE or if we have 7469 * already computed one in current iteration. 7470 */ 7471 if (env->idle == CPU_NEWLY_IDLE || (env->flags & LBF_DST_PINNED)) 7472 return 0; 7473 7474 /* Prevent to re-select dst_cpu via env's CPUs: */ 7475 for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) { 7476 if (cpumask_test_cpu(cpu, &p->cpus_allowed)) { 7477 env->flags |= LBF_DST_PINNED; 7478 env->new_dst_cpu = cpu; 7479 break; 7480 } 7481 } 7482 7483 return 0; 7484 } 7485 7486 /* Record that we found atleast one task that could run on dst_cpu */ 7487 env->flags &= ~LBF_ALL_PINNED; 7488 7489 if (task_running(env->src_rq, p)) { 7490 schedstat_inc(p->se.statistics.nr_failed_migrations_running); 7491 return 0; 7492 } 7493 7494 /* 7495 * Aggressive migration if: 7496 * 1) destination numa is preferred 7497 * 2) task is cache cold, or 7498 * 3) too many balance attempts have failed. 7499 */ 7500 tsk_cache_hot = migrate_degrades_locality(p, env); 7501 if (tsk_cache_hot == -1) 7502 tsk_cache_hot = task_hot(p, env); 7503 7504 if (tsk_cache_hot <= 0 || 7505 env->sd->nr_balance_failed > env->sd->cache_nice_tries) { 7506 if (tsk_cache_hot == 1) { 7507 schedstat_inc(env->sd->lb_hot_gained[env->idle]); 7508 schedstat_inc(p->se.statistics.nr_forced_migrations); 7509 } 7510 return 1; 7511 } 7512 7513 schedstat_inc(p->se.statistics.nr_failed_migrations_hot); 7514 return 0; 7515 } 7516 7517 /* 7518 * detach_task() -- detach the task for the migration specified in env 7519 */ 7520 static void detach_task(struct task_struct *p, struct lb_env *env) 7521 { 7522 lockdep_assert_held(&env->src_rq->lock); 7523 7524 p->on_rq = TASK_ON_RQ_MIGRATING; 7525 deactivate_task(env->src_rq, p, DEQUEUE_NOCLOCK); 7526 set_task_cpu(p, env->dst_cpu); 7527 } 7528 7529 /* 7530 * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as 7531 * part of active balancing operations within "domain". 7532 * 7533 * Returns a task if successful and NULL otherwise. 7534 */ 7535 static struct task_struct *detach_one_task(struct lb_env *env) 7536 { 7537 struct task_struct *p; 7538 7539 lockdep_assert_held(&env->src_rq->lock); 7540 7541 list_for_each_entry_reverse(p, 7542 &env->src_rq->cfs_tasks, se.group_node) { 7543 if (!can_migrate_task(p, env)) 7544 continue; 7545 7546 detach_task(p, env); 7547 7548 /* 7549 * Right now, this is only the second place where 7550 * lb_gained[env->idle] is updated (other is detach_tasks) 7551 * so we can safely collect stats here rather than 7552 * inside detach_tasks(). 7553 */ 7554 schedstat_inc(env->sd->lb_gained[env->idle]); 7555 return p; 7556 } 7557 return NULL; 7558 } 7559 7560 static const unsigned int sched_nr_migrate_break = 32; 7561 7562 /* 7563 * detach_tasks() -- tries to detach up to imbalance weighted load from 7564 * busiest_rq, as part of a balancing operation within domain "sd". 7565 * 7566 * Returns number of detached tasks if successful and 0 otherwise. 7567 */ 7568 static int detach_tasks(struct lb_env *env) 7569 { 7570 struct list_head *tasks = &env->src_rq->cfs_tasks; 7571 struct task_struct *p; 7572 unsigned long load; 7573 int detached = 0; 7574 7575 lockdep_assert_held(&env->src_rq->lock); 7576 7577 if (env->imbalance <= 0) 7578 return 0; 7579 7580 while (!list_empty(tasks)) { 7581 /* 7582 * We don't want to steal all, otherwise we may be treated likewise, 7583 * which could at worst lead to a livelock crash. 7584 */ 7585 if (env->idle != CPU_NOT_IDLE && env->src_rq->nr_running <= 1) 7586 break; 7587 7588 p = list_last_entry(tasks, struct task_struct, se.group_node); 7589 7590 env->loop++; 7591 /* We've more or less seen every task there is, call it quits */ 7592 if (env->loop > env->loop_max) 7593 break; 7594 7595 /* take a breather every nr_migrate tasks */ 7596 if (env->loop > env->loop_break) { 7597 env->loop_break += sched_nr_migrate_break; 7598 env->flags |= LBF_NEED_BREAK; 7599 break; 7600 } 7601 7602 if (!can_migrate_task(p, env)) 7603 goto next; 7604 7605 load = task_h_load(p); 7606 7607 if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed) 7608 goto next; 7609 7610 if ((load / 2) > env->imbalance) 7611 goto next; 7612 7613 detach_task(p, env); 7614 list_add(&p->se.group_node, &env->tasks); 7615 7616 detached++; 7617 env->imbalance -= load; 7618 7619 #ifdef CONFIG_PREEMPT 7620 /* 7621 * NEWIDLE balancing is a source of latency, so preemptible 7622 * kernels will stop after the first task is detached to minimize 7623 * the critical section. 7624 */ 7625 if (env->idle == CPU_NEWLY_IDLE) 7626 break; 7627 #endif 7628 7629 /* 7630 * We only want to steal up to the prescribed amount of 7631 * weighted load. 7632 */ 7633 if (env->imbalance <= 0) 7634 break; 7635 7636 continue; 7637 next: 7638 list_move(&p->se.group_node, tasks); 7639 } 7640 7641 /* 7642 * Right now, this is one of only two places we collect this stat 7643 * so we can safely collect detach_one_task() stats here rather 7644 * than inside detach_one_task(). 7645 */ 7646 schedstat_add(env->sd->lb_gained[env->idle], detached); 7647 7648 return detached; 7649 } 7650 7651 /* 7652 * attach_task() -- attach the task detached by detach_task() to its new rq. 7653 */ 7654 static void attach_task(struct rq *rq, struct task_struct *p) 7655 { 7656 lockdep_assert_held(&rq->lock); 7657 7658 BUG_ON(task_rq(p) != rq); 7659 activate_task(rq, p, ENQUEUE_NOCLOCK); 7660 p->on_rq = TASK_ON_RQ_QUEUED; 7661 check_preempt_curr(rq, p, 0); 7662 } 7663 7664 /* 7665 * attach_one_task() -- attaches the task returned from detach_one_task() to 7666 * its new rq. 7667 */ 7668 static void attach_one_task(struct rq *rq, struct task_struct *p) 7669 { 7670 struct rq_flags rf; 7671 7672 rq_lock(rq, &rf); 7673 update_rq_clock(rq); 7674 attach_task(rq, p); 7675 rq_unlock(rq, &rf); 7676 } 7677 7678 /* 7679 * attach_tasks() -- attaches all tasks detached by detach_tasks() to their 7680 * new rq. 7681 */ 7682 static void attach_tasks(struct lb_env *env) 7683 { 7684 struct list_head *tasks = &env->tasks; 7685 struct task_struct *p; 7686 struct rq_flags rf; 7687 7688 rq_lock(env->dst_rq, &rf); 7689 update_rq_clock(env->dst_rq); 7690 7691 while (!list_empty(tasks)) { 7692 p = list_first_entry(tasks, struct task_struct, se.group_node); 7693 list_del_init(&p->se.group_node); 7694 7695 attach_task(env->dst_rq, p); 7696 } 7697 7698 rq_unlock(env->dst_rq, &rf); 7699 } 7700 7701 static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq) 7702 { 7703 if (cfs_rq->avg.load_avg) 7704 return true; 7705 7706 if (cfs_rq->avg.util_avg) 7707 return true; 7708 7709 return false; 7710 } 7711 7712 static inline bool others_have_blocked(struct rq *rq) 7713 { 7714 if (READ_ONCE(rq->avg_rt.util_avg)) 7715 return true; 7716 7717 if (READ_ONCE(rq->avg_dl.util_avg)) 7718 return true; 7719 7720 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ 7721 if (READ_ONCE(rq->avg_irq.util_avg)) 7722 return true; 7723 #endif 7724 7725 return false; 7726 } 7727 7728 #ifdef CONFIG_FAIR_GROUP_SCHED 7729 7730 static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq) 7731 { 7732 if (cfs_rq->load.weight) 7733 return false; 7734 7735 if (cfs_rq->avg.load_sum) 7736 return false; 7737 7738 if (cfs_rq->avg.util_sum) 7739 return false; 7740 7741 if (cfs_rq->avg.runnable_load_sum) 7742 return false; 7743 7744 return true; 7745 } 7746 7747 static void update_blocked_averages(int cpu) 7748 { 7749 struct rq *rq = cpu_rq(cpu); 7750 struct cfs_rq *cfs_rq, *pos; 7751 const struct sched_class *curr_class; 7752 struct rq_flags rf; 7753 bool done = true; 7754 7755 rq_lock_irqsave(rq, &rf); 7756 update_rq_clock(rq); 7757 7758 /* 7759 * Iterates the task_group tree in a bottom up fashion, see 7760 * list_add_leaf_cfs_rq() for details. 7761 */ 7762 for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) { 7763 struct sched_entity *se; 7764 7765 if (update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq)) 7766 update_tg_load_avg(cfs_rq, 0); 7767 7768 /* Propagate pending load changes to the parent, if any: */ 7769 se = cfs_rq->tg->se[cpu]; 7770 if (se && !skip_blocked_update(se)) 7771 update_load_avg(cfs_rq_of(se), se, 0); 7772 7773 /* 7774 * There can be a lot of idle CPU cgroups. Don't let fully 7775 * decayed cfs_rqs linger on the list. 7776 */ 7777 if (cfs_rq_is_decayed(cfs_rq)) 7778 list_del_leaf_cfs_rq(cfs_rq); 7779 7780 /* Don't need periodic decay once load/util_avg are null */ 7781 if (cfs_rq_has_blocked(cfs_rq)) 7782 done = false; 7783 } 7784 7785 curr_class = rq->curr->sched_class; 7786 update_rt_rq_load_avg(rq_clock_pelt(rq), rq, curr_class == &rt_sched_class); 7787 update_dl_rq_load_avg(rq_clock_pelt(rq), rq, curr_class == &dl_sched_class); 7788 update_irq_load_avg(rq, 0); 7789 /* Don't need periodic decay once load/util_avg are null */ 7790 if (others_have_blocked(rq)) 7791 done = false; 7792 7793 #ifdef CONFIG_NO_HZ_COMMON 7794 rq->last_blocked_load_update_tick = jiffies; 7795 if (done) 7796 rq->has_blocked_load = 0; 7797 #endif 7798 rq_unlock_irqrestore(rq, &rf); 7799 } 7800 7801 /* 7802 * Compute the hierarchical load factor for cfs_rq and all its ascendants. 7803 * This needs to be done in a top-down fashion because the load of a child 7804 * group is a fraction of its parents load. 7805 */ 7806 static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq) 7807 { 7808 struct rq *rq = rq_of(cfs_rq); 7809 struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)]; 7810 unsigned long now = jiffies; 7811 unsigned long load; 7812 7813 if (cfs_rq->last_h_load_update == now) 7814 return; 7815 7816 WRITE_ONCE(cfs_rq->h_load_next, NULL); 7817 for_each_sched_entity(se) { 7818 cfs_rq = cfs_rq_of(se); 7819 WRITE_ONCE(cfs_rq->h_load_next, se); 7820 if (cfs_rq->last_h_load_update == now) 7821 break; 7822 } 7823 7824 if (!se) { 7825 cfs_rq->h_load = cfs_rq_load_avg(cfs_rq); 7826 cfs_rq->last_h_load_update = now; 7827 } 7828 7829 while ((se = READ_ONCE(cfs_rq->h_load_next)) != NULL) { 7830 load = cfs_rq->h_load; 7831 load = div64_ul(load * se->avg.load_avg, 7832 cfs_rq_load_avg(cfs_rq) + 1); 7833 cfs_rq = group_cfs_rq(se); 7834 cfs_rq->h_load = load; 7835 cfs_rq->last_h_load_update = now; 7836 } 7837 } 7838 7839 static unsigned long task_h_load(struct task_struct *p) 7840 { 7841 struct cfs_rq *cfs_rq = task_cfs_rq(p); 7842 7843 update_cfs_rq_h_load(cfs_rq); 7844 return div64_ul(p->se.avg.load_avg * cfs_rq->h_load, 7845 cfs_rq_load_avg(cfs_rq) + 1); 7846 } 7847 #else 7848 static inline void update_blocked_averages(int cpu) 7849 { 7850 struct rq *rq = cpu_rq(cpu); 7851 struct cfs_rq *cfs_rq = &rq->cfs; 7852 const struct sched_class *curr_class; 7853 struct rq_flags rf; 7854 7855 rq_lock_irqsave(rq, &rf); 7856 update_rq_clock(rq); 7857 update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq); 7858 7859 curr_class = rq->curr->sched_class; 7860 update_rt_rq_load_avg(rq_clock_pelt(rq), rq, curr_class == &rt_sched_class); 7861 update_dl_rq_load_avg(rq_clock_pelt(rq), rq, curr_class == &dl_sched_class); 7862 update_irq_load_avg(rq, 0); 7863 #ifdef CONFIG_NO_HZ_COMMON 7864 rq->last_blocked_load_update_tick = jiffies; 7865 if (!cfs_rq_has_blocked(cfs_rq) && !others_have_blocked(rq)) 7866 rq->has_blocked_load = 0; 7867 #endif 7868 rq_unlock_irqrestore(rq, &rf); 7869 } 7870 7871 static unsigned long task_h_load(struct task_struct *p) 7872 { 7873 return p->se.avg.load_avg; 7874 } 7875 #endif 7876 7877 /********** Helpers for find_busiest_group ************************/ 7878 7879 /* 7880 * sg_lb_stats - stats of a sched_group required for load_balancing 7881 */ 7882 struct sg_lb_stats { 7883 unsigned long avg_load; /*Avg load across the CPUs of the group */ 7884 unsigned long group_load; /* Total load over the CPUs of the group */ 7885 unsigned long sum_weighted_load; /* Weighted load of group's tasks */ 7886 unsigned long load_per_task; 7887 unsigned long group_capacity; 7888 unsigned long group_util; /* Total utilization of the group */ 7889 unsigned int sum_nr_running; /* Nr tasks running in the group */ 7890 unsigned int idle_cpus; 7891 unsigned int group_weight; 7892 enum group_type group_type; 7893 int group_no_capacity; 7894 unsigned long group_misfit_task_load; /* A CPU has a task too big for its capacity */ 7895 #ifdef CONFIG_NUMA_BALANCING 7896 unsigned int nr_numa_running; 7897 unsigned int nr_preferred_running; 7898 #endif 7899 }; 7900 7901 /* 7902 * sd_lb_stats - Structure to store the statistics of a sched_domain 7903 * during load balancing. 7904 */ 7905 struct sd_lb_stats { 7906 struct sched_group *busiest; /* Busiest group in this sd */ 7907 struct sched_group *local; /* Local group in this sd */ 7908 unsigned long total_running; 7909 unsigned long total_load; /* Total load of all groups in sd */ 7910 unsigned long total_capacity; /* Total capacity of all groups in sd */ 7911 unsigned long avg_load; /* Average load across all groups in sd */ 7912 7913 struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */ 7914 struct sg_lb_stats local_stat; /* Statistics of the local group */ 7915 }; 7916 7917 static inline void init_sd_lb_stats(struct sd_lb_stats *sds) 7918 { 7919 /* 7920 * Skimp on the clearing to avoid duplicate work. We can avoid clearing 7921 * local_stat because update_sg_lb_stats() does a full clear/assignment. 7922 * We must however clear busiest_stat::avg_load because 7923 * update_sd_pick_busiest() reads this before assignment. 7924 */ 7925 *sds = (struct sd_lb_stats){ 7926 .busiest = NULL, 7927 .local = NULL, 7928 .total_running = 0UL, 7929 .total_load = 0UL, 7930 .total_capacity = 0UL, 7931 .busiest_stat = { 7932 .avg_load = 0UL, 7933 .sum_nr_running = 0, 7934 .group_type = group_other, 7935 }, 7936 }; 7937 } 7938 7939 /** 7940 * get_sd_load_idx - Obtain the load index for a given sched domain. 7941 * @sd: The sched_domain whose load_idx is to be obtained. 7942 * @idle: The idle status of the CPU for whose sd load_idx is obtained. 7943 * 7944 * Return: The load index. 7945 */ 7946 static inline int get_sd_load_idx(struct sched_domain *sd, 7947 enum cpu_idle_type idle) 7948 { 7949 int load_idx; 7950 7951 switch (idle) { 7952 case CPU_NOT_IDLE: 7953 load_idx = sd->busy_idx; 7954 break; 7955 7956 case CPU_NEWLY_IDLE: 7957 load_idx = sd->newidle_idx; 7958 break; 7959 default: 7960 load_idx = sd->idle_idx; 7961 break; 7962 } 7963 7964 return load_idx; 7965 } 7966 7967 static unsigned long scale_rt_capacity(struct sched_domain *sd, int cpu) 7968 { 7969 struct rq *rq = cpu_rq(cpu); 7970 unsigned long max = arch_scale_cpu_capacity(sd, cpu); 7971 unsigned long used, free; 7972 unsigned long irq; 7973 7974 irq = cpu_util_irq(rq); 7975 7976 if (unlikely(irq >= max)) 7977 return 1; 7978 7979 used = READ_ONCE(rq->avg_rt.util_avg); 7980 used += READ_ONCE(rq->avg_dl.util_avg); 7981 7982 if (unlikely(used >= max)) 7983 return 1; 7984 7985 free = max - used; 7986 7987 return scale_irq_capacity(free, irq, max); 7988 } 7989 7990 static void update_cpu_capacity(struct sched_domain *sd, int cpu) 7991 { 7992 unsigned long capacity = scale_rt_capacity(sd, cpu); 7993 struct sched_group *sdg = sd->groups; 7994 7995 cpu_rq(cpu)->cpu_capacity_orig = arch_scale_cpu_capacity(sd, cpu); 7996 7997 if (!capacity) 7998 capacity = 1; 7999 8000 cpu_rq(cpu)->cpu_capacity = capacity; 8001 sdg->sgc->capacity = capacity; 8002 sdg->sgc->min_capacity = capacity; 8003 sdg->sgc->max_capacity = capacity; 8004 } 8005 8006 void update_group_capacity(struct sched_domain *sd, int cpu) 8007 { 8008 struct sched_domain *child = sd->child; 8009 struct sched_group *group, *sdg = sd->groups; 8010 unsigned long capacity, min_capacity, max_capacity; 8011 unsigned long interval; 8012 8013 interval = msecs_to_jiffies(sd->balance_interval); 8014 interval = clamp(interval, 1UL, max_load_balance_interval); 8015 sdg->sgc->next_update = jiffies + interval; 8016 8017 if (!child) { 8018 update_cpu_capacity(sd, cpu); 8019 return; 8020 } 8021 8022 capacity = 0; 8023 min_capacity = ULONG_MAX; 8024 max_capacity = 0; 8025 8026 if (child->flags & SD_OVERLAP) { 8027 /* 8028 * SD_OVERLAP domains cannot assume that child groups 8029 * span the current group. 8030 */ 8031 8032 for_each_cpu(cpu, sched_group_span(sdg)) { 8033 struct sched_group_capacity *sgc; 8034 struct rq *rq = cpu_rq(cpu); 8035 8036 /* 8037 * build_sched_domains() -> init_sched_groups_capacity() 8038 * gets here before we've attached the domains to the 8039 * runqueues. 8040 * 8041 * Use capacity_of(), which is set irrespective of domains 8042 * in update_cpu_capacity(). 8043 * 8044 * This avoids capacity from being 0 and 8045 * causing divide-by-zero issues on boot. 8046 */ 8047 if (unlikely(!rq->sd)) { 8048 capacity += capacity_of(cpu); 8049 } else { 8050 sgc = rq->sd->groups->sgc; 8051 capacity += sgc->capacity; 8052 } 8053 8054 min_capacity = min(capacity, min_capacity); 8055 max_capacity = max(capacity, max_capacity); 8056 } 8057 } else { 8058 /* 8059 * !SD_OVERLAP domains can assume that child groups 8060 * span the current group. 8061 */ 8062 8063 group = child->groups; 8064 do { 8065 struct sched_group_capacity *sgc = group->sgc; 8066 8067 capacity += sgc->capacity; 8068 min_capacity = min(sgc->min_capacity, min_capacity); 8069 max_capacity = max(sgc->max_capacity, max_capacity); 8070 group = group->next; 8071 } while (group != child->groups); 8072 } 8073 8074 sdg->sgc->capacity = capacity; 8075 sdg->sgc->min_capacity = min_capacity; 8076 sdg->sgc->max_capacity = max_capacity; 8077 } 8078 8079 /* 8080 * Check whether the capacity of the rq has been noticeably reduced by side 8081 * activity. The imbalance_pct is used for the threshold. 8082 * Return true is the capacity is reduced 8083 */ 8084 static inline int 8085 check_cpu_capacity(struct rq *rq, struct sched_domain *sd) 8086 { 8087 return ((rq->cpu_capacity * sd->imbalance_pct) < 8088 (rq->cpu_capacity_orig * 100)); 8089 } 8090 8091 /* 8092 * Check whether a rq has a misfit task and if it looks like we can actually 8093 * help that task: we can migrate the task to a CPU of higher capacity, or 8094 * the task's current CPU is heavily pressured. 8095 */ 8096 static inline int check_misfit_status(struct rq *rq, struct sched_domain *sd) 8097 { 8098 return rq->misfit_task_load && 8099 (rq->cpu_capacity_orig < rq->rd->max_cpu_capacity || 8100 check_cpu_capacity(rq, sd)); 8101 } 8102 8103 /* 8104 * Group imbalance indicates (and tries to solve) the problem where balancing 8105 * groups is inadequate due to ->cpus_allowed constraints. 8106 * 8107 * Imagine a situation of two groups of 4 CPUs each and 4 tasks each with a 8108 * cpumask covering 1 CPU of the first group and 3 CPUs of the second group. 8109 * Something like: 8110 * 8111 * { 0 1 2 3 } { 4 5 6 7 } 8112 * * * * * 8113 * 8114 * If we were to balance group-wise we'd place two tasks in the first group and 8115 * two tasks in the second group. Clearly this is undesired as it will overload 8116 * cpu 3 and leave one of the CPUs in the second group unused. 8117 * 8118 * The current solution to this issue is detecting the skew in the first group 8119 * by noticing the lower domain failed to reach balance and had difficulty 8120 * moving tasks due to affinity constraints. 8121 * 8122 * When this is so detected; this group becomes a candidate for busiest; see 8123 * update_sd_pick_busiest(). And calculate_imbalance() and 8124 * find_busiest_group() avoid some of the usual balance conditions to allow it 8125 * to create an effective group imbalance. 8126 * 8127 * This is a somewhat tricky proposition since the next run might not find the 8128 * group imbalance and decide the groups need to be balanced again. A most 8129 * subtle and fragile situation. 8130 */ 8131 8132 static inline int sg_imbalanced(struct sched_group *group) 8133 { 8134 return group->sgc->imbalance; 8135 } 8136 8137 /* 8138 * group_has_capacity returns true if the group has spare capacity that could 8139 * be used by some tasks. 8140 * We consider that a group has spare capacity if the * number of task is 8141 * smaller than the number of CPUs or if the utilization is lower than the 8142 * available capacity for CFS tasks. 8143 * For the latter, we use a threshold to stabilize the state, to take into 8144 * account the variance of the tasks' load and to return true if the available 8145 * capacity in meaningful for the load balancer. 8146 * As an example, an available capacity of 1% can appear but it doesn't make 8147 * any benefit for the load balance. 8148 */ 8149 static inline bool 8150 group_has_capacity(struct lb_env *env, struct sg_lb_stats *sgs) 8151 { 8152 if (sgs->sum_nr_running < sgs->group_weight) 8153 return true; 8154 8155 if ((sgs->group_capacity * 100) > 8156 (sgs->group_util * env->sd->imbalance_pct)) 8157 return true; 8158 8159 return false; 8160 } 8161 8162 /* 8163 * group_is_overloaded returns true if the group has more tasks than it can 8164 * handle. 8165 * group_is_overloaded is not equals to !group_has_capacity because a group 8166 * with the exact right number of tasks, has no more spare capacity but is not 8167 * overloaded so both group_has_capacity and group_is_overloaded return 8168 * false. 8169 */ 8170 static inline bool 8171 group_is_overloaded(struct lb_env *env, struct sg_lb_stats *sgs) 8172 { 8173 if (sgs->sum_nr_running <= sgs->group_weight) 8174 return false; 8175 8176 if ((sgs->group_capacity * 100) < 8177 (sgs->group_util * env->sd->imbalance_pct)) 8178 return true; 8179 8180 return false; 8181 } 8182 8183 /* 8184 * group_smaller_min_cpu_capacity: Returns true if sched_group sg has smaller 8185 * per-CPU capacity than sched_group ref. 8186 */ 8187 static inline bool 8188 group_smaller_min_cpu_capacity(struct sched_group *sg, struct sched_group *ref) 8189 { 8190 return sg->sgc->min_capacity * capacity_margin < 8191 ref->sgc->min_capacity * 1024; 8192 } 8193 8194 /* 8195 * group_smaller_max_cpu_capacity: Returns true if sched_group sg has smaller 8196 * per-CPU capacity_orig than sched_group ref. 8197 */ 8198 static inline bool 8199 group_smaller_max_cpu_capacity(struct sched_group *sg, struct sched_group *ref) 8200 { 8201 return sg->sgc->max_capacity * capacity_margin < 8202 ref->sgc->max_capacity * 1024; 8203 } 8204 8205 static inline enum 8206 group_type group_classify(struct sched_group *group, 8207 struct sg_lb_stats *sgs) 8208 { 8209 if (sgs->group_no_capacity) 8210 return group_overloaded; 8211 8212 if (sg_imbalanced(group)) 8213 return group_imbalanced; 8214 8215 if (sgs->group_misfit_task_load) 8216 return group_misfit_task; 8217 8218 return group_other; 8219 } 8220 8221 static bool update_nohz_stats(struct rq *rq, bool force) 8222 { 8223 #ifdef CONFIG_NO_HZ_COMMON 8224 unsigned int cpu = rq->cpu; 8225 8226 if (!rq->has_blocked_load) 8227 return false; 8228 8229 if (!cpumask_test_cpu(cpu, nohz.idle_cpus_mask)) 8230 return false; 8231 8232 if (!force && !time_after(jiffies, rq->last_blocked_load_update_tick)) 8233 return true; 8234 8235 update_blocked_averages(cpu); 8236 8237 return rq->has_blocked_load; 8238 #else 8239 return false; 8240 #endif 8241 } 8242 8243 /** 8244 * update_sg_lb_stats - Update sched_group's statistics for load balancing. 8245 * @env: The load balancing environment. 8246 * @group: sched_group whose statistics are to be updated. 8247 * @sgs: variable to hold the statistics for this group. 8248 * @sg_status: Holds flag indicating the status of the sched_group 8249 */ 8250 static inline void update_sg_lb_stats(struct lb_env *env, 8251 struct sched_group *group, 8252 struct sg_lb_stats *sgs, 8253 int *sg_status) 8254 { 8255 int local_group = cpumask_test_cpu(env->dst_cpu, sched_group_span(group)); 8256 int load_idx = get_sd_load_idx(env->sd, env->idle); 8257 unsigned long load; 8258 int i, nr_running; 8259 8260 memset(sgs, 0, sizeof(*sgs)); 8261 8262 for_each_cpu_and(i, sched_group_span(group), env->cpus) { 8263 struct rq *rq = cpu_rq(i); 8264 8265 if ((env->flags & LBF_NOHZ_STATS) && update_nohz_stats(rq, false)) 8266 env->flags |= LBF_NOHZ_AGAIN; 8267 8268 /* Bias balancing toward CPUs of our domain: */ 8269 if (local_group) 8270 load = target_load(i, load_idx); 8271 else 8272 load = source_load(i, load_idx); 8273 8274 sgs->group_load += load; 8275 sgs->group_util += cpu_util(i); 8276 sgs->sum_nr_running += rq->cfs.h_nr_running; 8277 8278 nr_running = rq->nr_running; 8279 if (nr_running > 1) 8280 *sg_status |= SG_OVERLOAD; 8281 8282 if (cpu_overutilized(i)) 8283 *sg_status |= SG_OVERUTILIZED; 8284 8285 #ifdef CONFIG_NUMA_BALANCING 8286 sgs->nr_numa_running += rq->nr_numa_running; 8287 sgs->nr_preferred_running += rq->nr_preferred_running; 8288 #endif 8289 sgs->sum_weighted_load += weighted_cpuload(rq); 8290 /* 8291 * No need to call idle_cpu() if nr_running is not 0 8292 */ 8293 if (!nr_running && idle_cpu(i)) 8294 sgs->idle_cpus++; 8295 8296 if (env->sd->flags & SD_ASYM_CPUCAPACITY && 8297 sgs->group_misfit_task_load < rq->misfit_task_load) { 8298 sgs->group_misfit_task_load = rq->misfit_task_load; 8299 *sg_status |= SG_OVERLOAD; 8300 } 8301 } 8302 8303 /* Adjust by relative CPU capacity of the group */ 8304 sgs->group_capacity = group->sgc->capacity; 8305 sgs->avg_load = (sgs->group_load*SCHED_CAPACITY_SCALE) / sgs->group_capacity; 8306 8307 if (sgs->sum_nr_running) 8308 sgs->load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running; 8309 8310 sgs->group_weight = group->group_weight; 8311 8312 sgs->group_no_capacity = group_is_overloaded(env, sgs); 8313 sgs->group_type = group_classify(group, sgs); 8314 } 8315 8316 /** 8317 * update_sd_pick_busiest - return 1 on busiest group 8318 * @env: The load balancing environment. 8319 * @sds: sched_domain statistics 8320 * @sg: sched_group candidate to be checked for being the busiest 8321 * @sgs: sched_group statistics 8322 * 8323 * Determine if @sg is a busier group than the previously selected 8324 * busiest group. 8325 * 8326 * Return: %true if @sg is a busier group than the previously selected 8327 * busiest group. %false otherwise. 8328 */ 8329 static bool update_sd_pick_busiest(struct lb_env *env, 8330 struct sd_lb_stats *sds, 8331 struct sched_group *sg, 8332 struct sg_lb_stats *sgs) 8333 { 8334 struct sg_lb_stats *busiest = &sds->busiest_stat; 8335 8336 /* 8337 * Don't try to pull misfit tasks we can't help. 8338 * We can use max_capacity here as reduction in capacity on some 8339 * CPUs in the group should either be possible to resolve 8340 * internally or be covered by avg_load imbalance (eventually). 8341 */ 8342 if (sgs->group_type == group_misfit_task && 8343 (!group_smaller_max_cpu_capacity(sg, sds->local) || 8344 !group_has_capacity(env, &sds->local_stat))) 8345 return false; 8346 8347 if (sgs->group_type > busiest->group_type) 8348 return true; 8349 8350 if (sgs->group_type < busiest->group_type) 8351 return false; 8352 8353 if (sgs->avg_load <= busiest->avg_load) 8354 return false; 8355 8356 if (!(env->sd->flags & SD_ASYM_CPUCAPACITY)) 8357 goto asym_packing; 8358 8359 /* 8360 * Candidate sg has no more than one task per CPU and 8361 * has higher per-CPU capacity. Migrating tasks to less 8362 * capable CPUs may harm throughput. Maximize throughput, 8363 * power/energy consequences are not considered. 8364 */ 8365 if (sgs->sum_nr_running <= sgs->group_weight && 8366 group_smaller_min_cpu_capacity(sds->local, sg)) 8367 return false; 8368 8369 /* 8370 * If we have more than one misfit sg go with the biggest misfit. 8371 */ 8372 if (sgs->group_type == group_misfit_task && 8373 sgs->group_misfit_task_load < busiest->group_misfit_task_load) 8374 return false; 8375 8376 asym_packing: 8377 /* This is the busiest node in its class. */ 8378 if (!(env->sd->flags & SD_ASYM_PACKING)) 8379 return true; 8380 8381 /* No ASYM_PACKING if target CPU is already busy */ 8382 if (env->idle == CPU_NOT_IDLE) 8383 return true; 8384 /* 8385 * ASYM_PACKING needs to move all the work to the highest 8386 * prority CPUs in the group, therefore mark all groups 8387 * of lower priority than ourself as busy. 8388 */ 8389 if (sgs->sum_nr_running && 8390 sched_asym_prefer(env->dst_cpu, sg->asym_prefer_cpu)) { 8391 if (!sds->busiest) 8392 return true; 8393 8394 /* Prefer to move from lowest priority CPU's work */ 8395 if (sched_asym_prefer(sds->busiest->asym_prefer_cpu, 8396 sg->asym_prefer_cpu)) 8397 return true; 8398 } 8399 8400 return false; 8401 } 8402 8403 #ifdef CONFIG_NUMA_BALANCING 8404 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs) 8405 { 8406 if (sgs->sum_nr_running > sgs->nr_numa_running) 8407 return regular; 8408 if (sgs->sum_nr_running > sgs->nr_preferred_running) 8409 return remote; 8410 return all; 8411 } 8412 8413 static inline enum fbq_type fbq_classify_rq(struct rq *rq) 8414 { 8415 if (rq->nr_running > rq->nr_numa_running) 8416 return regular; 8417 if (rq->nr_running > rq->nr_preferred_running) 8418 return remote; 8419 return all; 8420 } 8421 #else 8422 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs) 8423 { 8424 return all; 8425 } 8426 8427 static inline enum fbq_type fbq_classify_rq(struct rq *rq) 8428 { 8429 return regular; 8430 } 8431 #endif /* CONFIG_NUMA_BALANCING */ 8432 8433 /** 8434 * update_sd_lb_stats - Update sched_domain's statistics for load balancing. 8435 * @env: The load balancing environment. 8436 * @sds: variable to hold the statistics for this sched_domain. 8437 */ 8438 static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds) 8439 { 8440 struct sched_domain *child = env->sd->child; 8441 struct sched_group *sg = env->sd->groups; 8442 struct sg_lb_stats *local = &sds->local_stat; 8443 struct sg_lb_stats tmp_sgs; 8444 bool prefer_sibling = child && child->flags & SD_PREFER_SIBLING; 8445 int sg_status = 0; 8446 8447 #ifdef CONFIG_NO_HZ_COMMON 8448 if (env->idle == CPU_NEWLY_IDLE && READ_ONCE(nohz.has_blocked)) 8449 env->flags |= LBF_NOHZ_STATS; 8450 #endif 8451 8452 do { 8453 struct sg_lb_stats *sgs = &tmp_sgs; 8454 int local_group; 8455 8456 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_span(sg)); 8457 if (local_group) { 8458 sds->local = sg; 8459 sgs = local; 8460 8461 if (env->idle != CPU_NEWLY_IDLE || 8462 time_after_eq(jiffies, sg->sgc->next_update)) 8463 update_group_capacity(env->sd, env->dst_cpu); 8464 } 8465 8466 update_sg_lb_stats(env, sg, sgs, &sg_status); 8467 8468 if (local_group) 8469 goto next_group; 8470 8471 /* 8472 * In case the child domain prefers tasks go to siblings 8473 * first, lower the sg capacity so that we'll try 8474 * and move all the excess tasks away. We lower the capacity 8475 * of a group only if the local group has the capacity to fit 8476 * these excess tasks. The extra check prevents the case where 8477 * you always pull from the heaviest group when it is already 8478 * under-utilized (possible with a large weight task outweighs 8479 * the tasks on the system). 8480 */ 8481 if (prefer_sibling && sds->local && 8482 group_has_capacity(env, local) && 8483 (sgs->sum_nr_running > local->sum_nr_running + 1)) { 8484 sgs->group_no_capacity = 1; 8485 sgs->group_type = group_classify(sg, sgs); 8486 } 8487 8488 if (update_sd_pick_busiest(env, sds, sg, sgs)) { 8489 sds->busiest = sg; 8490 sds->busiest_stat = *sgs; 8491 } 8492 8493 next_group: 8494 /* Now, start updating sd_lb_stats */ 8495 sds->total_running += sgs->sum_nr_running; 8496 sds->total_load += sgs->group_load; 8497 sds->total_capacity += sgs->group_capacity; 8498 8499 sg = sg->next; 8500 } while (sg != env->sd->groups); 8501 8502 #ifdef CONFIG_NO_HZ_COMMON 8503 if ((env->flags & LBF_NOHZ_AGAIN) && 8504 cpumask_subset(nohz.idle_cpus_mask, sched_domain_span(env->sd))) { 8505 8506 WRITE_ONCE(nohz.next_blocked, 8507 jiffies + msecs_to_jiffies(LOAD_AVG_PERIOD)); 8508 } 8509 #endif 8510 8511 if (env->sd->flags & SD_NUMA) 8512 env->fbq_type = fbq_classify_group(&sds->busiest_stat); 8513 8514 if (!env->sd->parent) { 8515 struct root_domain *rd = env->dst_rq->rd; 8516 8517 /* update overload indicator if we are at root domain */ 8518 WRITE_ONCE(rd->overload, sg_status & SG_OVERLOAD); 8519 8520 /* Update over-utilization (tipping point, U >= 0) indicator */ 8521 WRITE_ONCE(rd->overutilized, sg_status & SG_OVERUTILIZED); 8522 } else if (sg_status & SG_OVERUTILIZED) { 8523 WRITE_ONCE(env->dst_rq->rd->overutilized, SG_OVERUTILIZED); 8524 } 8525 } 8526 8527 /** 8528 * check_asym_packing - Check to see if the group is packed into the 8529 * sched domain. 8530 * 8531 * This is primarily intended to used at the sibling level. Some 8532 * cores like POWER7 prefer to use lower numbered SMT threads. In the 8533 * case of POWER7, it can move to lower SMT modes only when higher 8534 * threads are idle. When in lower SMT modes, the threads will 8535 * perform better since they share less core resources. Hence when we 8536 * have idle threads, we want them to be the higher ones. 8537 * 8538 * This packing function is run on idle threads. It checks to see if 8539 * the busiest CPU in this domain (core in the P7 case) has a higher 8540 * CPU number than the packing function is being run on. Here we are 8541 * assuming lower CPU number will be equivalent to lower a SMT thread 8542 * number. 8543 * 8544 * Return: 1 when packing is required and a task should be moved to 8545 * this CPU. The amount of the imbalance is returned in env->imbalance. 8546 * 8547 * @env: The load balancing environment. 8548 * @sds: Statistics of the sched_domain which is to be packed 8549 */ 8550 static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds) 8551 { 8552 int busiest_cpu; 8553 8554 if (!(env->sd->flags & SD_ASYM_PACKING)) 8555 return 0; 8556 8557 if (env->idle == CPU_NOT_IDLE) 8558 return 0; 8559 8560 if (!sds->busiest) 8561 return 0; 8562 8563 busiest_cpu = sds->busiest->asym_prefer_cpu; 8564 if (sched_asym_prefer(busiest_cpu, env->dst_cpu)) 8565 return 0; 8566 8567 env->imbalance = sds->busiest_stat.group_load; 8568 8569 return 1; 8570 } 8571 8572 /** 8573 * fix_small_imbalance - Calculate the minor imbalance that exists 8574 * amongst the groups of a sched_domain, during 8575 * load balancing. 8576 * @env: The load balancing environment. 8577 * @sds: Statistics of the sched_domain whose imbalance is to be calculated. 8578 */ 8579 static inline 8580 void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds) 8581 { 8582 unsigned long tmp, capa_now = 0, capa_move = 0; 8583 unsigned int imbn = 2; 8584 unsigned long scaled_busy_load_per_task; 8585 struct sg_lb_stats *local, *busiest; 8586 8587 local = &sds->local_stat; 8588 busiest = &sds->busiest_stat; 8589 8590 if (!local->sum_nr_running) 8591 local->load_per_task = cpu_avg_load_per_task(env->dst_cpu); 8592 else if (busiest->load_per_task > local->load_per_task) 8593 imbn = 1; 8594 8595 scaled_busy_load_per_task = 8596 (busiest->load_per_task * SCHED_CAPACITY_SCALE) / 8597 busiest->group_capacity; 8598 8599 if (busiest->avg_load + scaled_busy_load_per_task >= 8600 local->avg_load + (scaled_busy_load_per_task * imbn)) { 8601 env->imbalance = busiest->load_per_task; 8602 return; 8603 } 8604 8605 /* 8606 * OK, we don't have enough imbalance to justify moving tasks, 8607 * however we may be able to increase total CPU capacity used by 8608 * moving them. 8609 */ 8610 8611 capa_now += busiest->group_capacity * 8612 min(busiest->load_per_task, busiest->avg_load); 8613 capa_now += local->group_capacity * 8614 min(local->load_per_task, local->avg_load); 8615 capa_now /= SCHED_CAPACITY_SCALE; 8616 8617 /* Amount of load we'd subtract */ 8618 if (busiest->avg_load > scaled_busy_load_per_task) { 8619 capa_move += busiest->group_capacity * 8620 min(busiest->load_per_task, 8621 busiest->avg_load - scaled_busy_load_per_task); 8622 } 8623 8624 /* Amount of load we'd add */ 8625 if (busiest->avg_load * busiest->group_capacity < 8626 busiest->load_per_task * SCHED_CAPACITY_SCALE) { 8627 tmp = (busiest->avg_load * busiest->group_capacity) / 8628 local->group_capacity; 8629 } else { 8630 tmp = (busiest->load_per_task * SCHED_CAPACITY_SCALE) / 8631 local->group_capacity; 8632 } 8633 capa_move += local->group_capacity * 8634 min(local->load_per_task, local->avg_load + tmp); 8635 capa_move /= SCHED_CAPACITY_SCALE; 8636 8637 /* Move if we gain throughput */ 8638 if (capa_move > capa_now) 8639 env->imbalance = busiest->load_per_task; 8640 } 8641 8642 /** 8643 * calculate_imbalance - Calculate the amount of imbalance present within the 8644 * groups of a given sched_domain during load balance. 8645 * @env: load balance environment 8646 * @sds: statistics of the sched_domain whose imbalance is to be calculated. 8647 */ 8648 static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds) 8649 { 8650 unsigned long max_pull, load_above_capacity = ~0UL; 8651 struct sg_lb_stats *local, *busiest; 8652 8653 local = &sds->local_stat; 8654 busiest = &sds->busiest_stat; 8655 8656 if (busiest->group_type == group_imbalanced) { 8657 /* 8658 * In the group_imb case we cannot rely on group-wide averages 8659 * to ensure CPU-load equilibrium, look at wider averages. XXX 8660 */ 8661 busiest->load_per_task = 8662 min(busiest->load_per_task, sds->avg_load); 8663 } 8664 8665 /* 8666 * Avg load of busiest sg can be less and avg load of local sg can 8667 * be greater than avg load across all sgs of sd because avg load 8668 * factors in sg capacity and sgs with smaller group_type are 8669 * skipped when updating the busiest sg: 8670 */ 8671 if (busiest->group_type != group_misfit_task && 8672 (busiest->avg_load <= sds->avg_load || 8673 local->avg_load >= sds->avg_load)) { 8674 env->imbalance = 0; 8675 return fix_small_imbalance(env, sds); 8676 } 8677 8678 /* 8679 * If there aren't any idle CPUs, avoid creating some. 8680 */ 8681 if (busiest->group_type == group_overloaded && 8682 local->group_type == group_overloaded) { 8683 load_above_capacity = busiest->sum_nr_running * SCHED_CAPACITY_SCALE; 8684 if (load_above_capacity > busiest->group_capacity) { 8685 load_above_capacity -= busiest->group_capacity; 8686 load_above_capacity *= scale_load_down(NICE_0_LOAD); 8687 load_above_capacity /= busiest->group_capacity; 8688 } else 8689 load_above_capacity = ~0UL; 8690 } 8691 8692 /* 8693 * We're trying to get all the CPUs to the average_load, so we don't 8694 * want to push ourselves above the average load, nor do we wish to 8695 * reduce the max loaded CPU below the average load. At the same time, 8696 * we also don't want to reduce the group load below the group 8697 * capacity. Thus we look for the minimum possible imbalance. 8698 */ 8699 max_pull = min(busiest->avg_load - sds->avg_load, load_above_capacity); 8700 8701 /* How much load to actually move to equalise the imbalance */ 8702 env->imbalance = min( 8703 max_pull * busiest->group_capacity, 8704 (sds->avg_load - local->avg_load) * local->group_capacity 8705 ) / SCHED_CAPACITY_SCALE; 8706 8707 /* Boost imbalance to allow misfit task to be balanced. */ 8708 if (busiest->group_type == group_misfit_task) { 8709 env->imbalance = max_t(long, env->imbalance, 8710 busiest->group_misfit_task_load); 8711 } 8712 8713 /* 8714 * if *imbalance is less than the average load per runnable task 8715 * there is no guarantee that any tasks will be moved so we'll have 8716 * a think about bumping its value to force at least one task to be 8717 * moved 8718 */ 8719 if (env->imbalance < busiest->load_per_task) 8720 return fix_small_imbalance(env, sds); 8721 } 8722 8723 /******* find_busiest_group() helpers end here *********************/ 8724 8725 /** 8726 * find_busiest_group - Returns the busiest group within the sched_domain 8727 * if there is an imbalance. 8728 * 8729 * Also calculates the amount of weighted load which should be moved 8730 * to restore balance. 8731 * 8732 * @env: The load balancing environment. 8733 * 8734 * Return: - The busiest group if imbalance exists. 8735 */ 8736 static struct sched_group *find_busiest_group(struct lb_env *env) 8737 { 8738 struct sg_lb_stats *local, *busiest; 8739 struct sd_lb_stats sds; 8740 8741 init_sd_lb_stats(&sds); 8742 8743 /* 8744 * Compute the various statistics relavent for load balancing at 8745 * this level. 8746 */ 8747 update_sd_lb_stats(env, &sds); 8748 8749 if (sched_energy_enabled()) { 8750 struct root_domain *rd = env->dst_rq->rd; 8751 8752 if (rcu_dereference(rd->pd) && !READ_ONCE(rd->overutilized)) 8753 goto out_balanced; 8754 } 8755 8756 local = &sds.local_stat; 8757 busiest = &sds.busiest_stat; 8758 8759 /* ASYM feature bypasses nice load balance check */ 8760 if (check_asym_packing(env, &sds)) 8761 return sds.busiest; 8762 8763 /* There is no busy sibling group to pull tasks from */ 8764 if (!sds.busiest || busiest->sum_nr_running == 0) 8765 goto out_balanced; 8766 8767 /* XXX broken for overlapping NUMA groups */ 8768 sds.avg_load = (SCHED_CAPACITY_SCALE * sds.total_load) 8769 / sds.total_capacity; 8770 8771 /* 8772 * If the busiest group is imbalanced the below checks don't 8773 * work because they assume all things are equal, which typically 8774 * isn't true due to cpus_allowed constraints and the like. 8775 */ 8776 if (busiest->group_type == group_imbalanced) 8777 goto force_balance; 8778 8779 /* 8780 * When dst_cpu is idle, prevent SMP nice and/or asymmetric group 8781 * capacities from resulting in underutilization due to avg_load. 8782 */ 8783 if (env->idle != CPU_NOT_IDLE && group_has_capacity(env, local) && 8784 busiest->group_no_capacity) 8785 goto force_balance; 8786 8787 /* Misfit tasks should be dealt with regardless of the avg load */ 8788 if (busiest->group_type == group_misfit_task) 8789 goto force_balance; 8790 8791 /* 8792 * If the local group is busier than the selected busiest group 8793 * don't try and pull any tasks. 8794 */ 8795 if (local->avg_load >= busiest->avg_load) 8796 goto out_balanced; 8797 8798 /* 8799 * Don't pull any tasks if this group is already above the domain 8800 * average load. 8801 */ 8802 if (local->avg_load >= sds.avg_load) 8803 goto out_balanced; 8804 8805 if (env->idle == CPU_IDLE) { 8806 /* 8807 * This CPU is idle. If the busiest group is not overloaded 8808 * and there is no imbalance between this and busiest group 8809 * wrt idle CPUs, it is balanced. The imbalance becomes 8810 * significant if the diff is greater than 1 otherwise we 8811 * might end up to just move the imbalance on another group 8812 */ 8813 if ((busiest->group_type != group_overloaded) && 8814 (local->idle_cpus <= (busiest->idle_cpus + 1))) 8815 goto out_balanced; 8816 } else { 8817 /* 8818 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use 8819 * imbalance_pct to be conservative. 8820 */ 8821 if (100 * busiest->avg_load <= 8822 env->sd->imbalance_pct * local->avg_load) 8823 goto out_balanced; 8824 } 8825 8826 force_balance: 8827 /* Looks like there is an imbalance. Compute it */ 8828 env->src_grp_type = busiest->group_type; 8829 calculate_imbalance(env, &sds); 8830 return env->imbalance ? sds.busiest : NULL; 8831 8832 out_balanced: 8833 env->imbalance = 0; 8834 return NULL; 8835 } 8836 8837 /* 8838 * find_busiest_queue - find the busiest runqueue among the CPUs in the group. 8839 */ 8840 static struct rq *find_busiest_queue(struct lb_env *env, 8841 struct sched_group *group) 8842 { 8843 struct rq *busiest = NULL, *rq; 8844 unsigned long busiest_load = 0, busiest_capacity = 1; 8845 int i; 8846 8847 for_each_cpu_and(i, sched_group_span(group), env->cpus) { 8848 unsigned long capacity, wl; 8849 enum fbq_type rt; 8850 8851 rq = cpu_rq(i); 8852 rt = fbq_classify_rq(rq); 8853 8854 /* 8855 * We classify groups/runqueues into three groups: 8856 * - regular: there are !numa tasks 8857 * - remote: there are numa tasks that run on the 'wrong' node 8858 * - all: there is no distinction 8859 * 8860 * In order to avoid migrating ideally placed numa tasks, 8861 * ignore those when there's better options. 8862 * 8863 * If we ignore the actual busiest queue to migrate another 8864 * task, the next balance pass can still reduce the busiest 8865 * queue by moving tasks around inside the node. 8866 * 8867 * If we cannot move enough load due to this classification 8868 * the next pass will adjust the group classification and 8869 * allow migration of more tasks. 8870 * 8871 * Both cases only affect the total convergence complexity. 8872 */ 8873 if (rt > env->fbq_type) 8874 continue; 8875 8876 /* 8877 * For ASYM_CPUCAPACITY domains with misfit tasks we simply 8878 * seek the "biggest" misfit task. 8879 */ 8880 if (env->src_grp_type == group_misfit_task) { 8881 if (rq->misfit_task_load > busiest_load) { 8882 busiest_load = rq->misfit_task_load; 8883 busiest = rq; 8884 } 8885 8886 continue; 8887 } 8888 8889 capacity = capacity_of(i); 8890 8891 /* 8892 * For ASYM_CPUCAPACITY domains, don't pick a CPU that could 8893 * eventually lead to active_balancing high->low capacity. 8894 * Higher per-CPU capacity is considered better than balancing 8895 * average load. 8896 */ 8897 if (env->sd->flags & SD_ASYM_CPUCAPACITY && 8898 capacity_of(env->dst_cpu) < capacity && 8899 rq->nr_running == 1) 8900 continue; 8901 8902 wl = weighted_cpuload(rq); 8903 8904 /* 8905 * When comparing with imbalance, use weighted_cpuload() 8906 * which is not scaled with the CPU capacity. 8907 */ 8908 8909 if (rq->nr_running == 1 && wl > env->imbalance && 8910 !check_cpu_capacity(rq, env->sd)) 8911 continue; 8912 8913 /* 8914 * For the load comparisons with the other CPU's, consider 8915 * the weighted_cpuload() scaled with the CPU capacity, so 8916 * that the load can be moved away from the CPU that is 8917 * potentially running at a lower capacity. 8918 * 8919 * Thus we're looking for max(wl_i / capacity_i), crosswise 8920 * multiplication to rid ourselves of the division works out 8921 * to: wl_i * capacity_j > wl_j * capacity_i; where j is 8922 * our previous maximum. 8923 */ 8924 if (wl * busiest_capacity > busiest_load * capacity) { 8925 busiest_load = wl; 8926 busiest_capacity = capacity; 8927 busiest = rq; 8928 } 8929 } 8930 8931 return busiest; 8932 } 8933 8934 /* 8935 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but 8936 * so long as it is large enough. 8937 */ 8938 #define MAX_PINNED_INTERVAL 512 8939 8940 static inline bool 8941 asym_active_balance(struct lb_env *env) 8942 { 8943 /* 8944 * ASYM_PACKING needs to force migrate tasks from busy but 8945 * lower priority CPUs in order to pack all tasks in the 8946 * highest priority CPUs. 8947 */ 8948 return env->idle != CPU_NOT_IDLE && (env->sd->flags & SD_ASYM_PACKING) && 8949 sched_asym_prefer(env->dst_cpu, env->src_cpu); 8950 } 8951 8952 static inline bool 8953 voluntary_active_balance(struct lb_env *env) 8954 { 8955 struct sched_domain *sd = env->sd; 8956 8957 if (asym_active_balance(env)) 8958 return 1; 8959 8960 /* 8961 * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task. 8962 * It's worth migrating the task if the src_cpu's capacity is reduced 8963 * because of other sched_class or IRQs if more capacity stays 8964 * available on dst_cpu. 8965 */ 8966 if ((env->idle != CPU_NOT_IDLE) && 8967 (env->src_rq->cfs.h_nr_running == 1)) { 8968 if ((check_cpu_capacity(env->src_rq, sd)) && 8969 (capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100)) 8970 return 1; 8971 } 8972 8973 if (env->src_grp_type == group_misfit_task) 8974 return 1; 8975 8976 return 0; 8977 } 8978 8979 static int need_active_balance(struct lb_env *env) 8980 { 8981 struct sched_domain *sd = env->sd; 8982 8983 if (voluntary_active_balance(env)) 8984 return 1; 8985 8986 return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2); 8987 } 8988 8989 static int active_load_balance_cpu_stop(void *data); 8990 8991 static int should_we_balance(struct lb_env *env) 8992 { 8993 struct sched_group *sg = env->sd->groups; 8994 int cpu, balance_cpu = -1; 8995 8996 /* 8997 * Ensure the balancing environment is consistent; can happen 8998 * when the softirq triggers 'during' hotplug. 8999 */ 9000 if (!cpumask_test_cpu(env->dst_cpu, env->cpus)) 9001 return 0; 9002 9003 /* 9004 * In the newly idle case, we will allow all the CPUs 9005 * to do the newly idle load balance. 9006 */ 9007 if (env->idle == CPU_NEWLY_IDLE) 9008 return 1; 9009 9010 /* Try to find first idle CPU */ 9011 for_each_cpu_and(cpu, group_balance_mask(sg), env->cpus) { 9012 if (!idle_cpu(cpu)) 9013 continue; 9014 9015 balance_cpu = cpu; 9016 break; 9017 } 9018 9019 if (balance_cpu == -1) 9020 balance_cpu = group_balance_cpu(sg); 9021 9022 /* 9023 * First idle CPU or the first CPU(busiest) in this sched group 9024 * is eligible for doing load balancing at this and above domains. 9025 */ 9026 return balance_cpu == env->dst_cpu; 9027 } 9028 9029 /* 9030 * Check this_cpu to ensure it is balanced within domain. Attempt to move 9031 * tasks if there is an imbalance. 9032 */ 9033 static int load_balance(int this_cpu, struct rq *this_rq, 9034 struct sched_domain *sd, enum cpu_idle_type idle, 9035 int *continue_balancing) 9036 { 9037 int ld_moved, cur_ld_moved, active_balance = 0; 9038 struct sched_domain *sd_parent = sd->parent; 9039 struct sched_group *group; 9040 struct rq *busiest; 9041 struct rq_flags rf; 9042 struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask); 9043 9044 struct lb_env env = { 9045 .sd = sd, 9046 .dst_cpu = this_cpu, 9047 .dst_rq = this_rq, 9048 .dst_grpmask = sched_group_span(sd->groups), 9049 .idle = idle, 9050 .loop_break = sched_nr_migrate_break, 9051 .cpus = cpus, 9052 .fbq_type = all, 9053 .tasks = LIST_HEAD_INIT(env.tasks), 9054 }; 9055 9056 cpumask_and(cpus, sched_domain_span(sd), cpu_active_mask); 9057 9058 schedstat_inc(sd->lb_count[idle]); 9059 9060 redo: 9061 if (!should_we_balance(&env)) { 9062 *continue_balancing = 0; 9063 goto out_balanced; 9064 } 9065 9066 group = find_busiest_group(&env); 9067 if (!group) { 9068 schedstat_inc(sd->lb_nobusyg[idle]); 9069 goto out_balanced; 9070 } 9071 9072 busiest = find_busiest_queue(&env, group); 9073 if (!busiest) { 9074 schedstat_inc(sd->lb_nobusyq[idle]); 9075 goto out_balanced; 9076 } 9077 9078 BUG_ON(busiest == env.dst_rq); 9079 9080 schedstat_add(sd->lb_imbalance[idle], env.imbalance); 9081 9082 env.src_cpu = busiest->cpu; 9083 env.src_rq = busiest; 9084 9085 ld_moved = 0; 9086 if (busiest->nr_running > 1) { 9087 /* 9088 * Attempt to move tasks. If find_busiest_group has found 9089 * an imbalance but busiest->nr_running <= 1, the group is 9090 * still unbalanced. ld_moved simply stays zero, so it is 9091 * correctly treated as an imbalance. 9092 */ 9093 env.flags |= LBF_ALL_PINNED; 9094 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running); 9095 9096 more_balance: 9097 rq_lock_irqsave(busiest, &rf); 9098 update_rq_clock(busiest); 9099 9100 /* 9101 * cur_ld_moved - load moved in current iteration 9102 * ld_moved - cumulative load moved across iterations 9103 */ 9104 cur_ld_moved = detach_tasks(&env); 9105 9106 /* 9107 * We've detached some tasks from busiest_rq. Every 9108 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely 9109 * unlock busiest->lock, and we are able to be sure 9110 * that nobody can manipulate the tasks in parallel. 9111 * See task_rq_lock() family for the details. 9112 */ 9113 9114 rq_unlock(busiest, &rf); 9115 9116 if (cur_ld_moved) { 9117 attach_tasks(&env); 9118 ld_moved += cur_ld_moved; 9119 } 9120 9121 local_irq_restore(rf.flags); 9122 9123 if (env.flags & LBF_NEED_BREAK) { 9124 env.flags &= ~LBF_NEED_BREAK; 9125 goto more_balance; 9126 } 9127 9128 /* 9129 * Revisit (affine) tasks on src_cpu that couldn't be moved to 9130 * us and move them to an alternate dst_cpu in our sched_group 9131 * where they can run. The upper limit on how many times we 9132 * iterate on same src_cpu is dependent on number of CPUs in our 9133 * sched_group. 9134 * 9135 * This changes load balance semantics a bit on who can move 9136 * load to a given_cpu. In addition to the given_cpu itself 9137 * (or a ilb_cpu acting on its behalf where given_cpu is 9138 * nohz-idle), we now have balance_cpu in a position to move 9139 * load to given_cpu. In rare situations, this may cause 9140 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding 9141 * _independently_ and at _same_ time to move some load to 9142 * given_cpu) causing exceess load to be moved to given_cpu. 9143 * This however should not happen so much in practice and 9144 * moreover subsequent load balance cycles should correct the 9145 * excess load moved. 9146 */ 9147 if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) { 9148 9149 /* Prevent to re-select dst_cpu via env's CPUs */ 9150 __cpumask_clear_cpu(env.dst_cpu, env.cpus); 9151 9152 env.dst_rq = cpu_rq(env.new_dst_cpu); 9153 env.dst_cpu = env.new_dst_cpu; 9154 env.flags &= ~LBF_DST_PINNED; 9155 env.loop = 0; 9156 env.loop_break = sched_nr_migrate_break; 9157 9158 /* 9159 * Go back to "more_balance" rather than "redo" since we 9160 * need to continue with same src_cpu. 9161 */ 9162 goto more_balance; 9163 } 9164 9165 /* 9166 * We failed to reach balance because of affinity. 9167 */ 9168 if (sd_parent) { 9169 int *group_imbalance = &sd_parent->groups->sgc->imbalance; 9170 9171 if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0) 9172 *group_imbalance = 1; 9173 } 9174 9175 /* All tasks on this runqueue were pinned by CPU affinity */ 9176 if (unlikely(env.flags & LBF_ALL_PINNED)) { 9177 __cpumask_clear_cpu(cpu_of(busiest), cpus); 9178 /* 9179 * Attempting to continue load balancing at the current 9180 * sched_domain level only makes sense if there are 9181 * active CPUs remaining as possible busiest CPUs to 9182 * pull load from which are not contained within the 9183 * destination group that is receiving any migrated 9184 * load. 9185 */ 9186 if (!cpumask_subset(cpus, env.dst_grpmask)) { 9187 env.loop = 0; 9188 env.loop_break = sched_nr_migrate_break; 9189 goto redo; 9190 } 9191 goto out_all_pinned; 9192 } 9193 } 9194 9195 if (!ld_moved) { 9196 schedstat_inc(sd->lb_failed[idle]); 9197 /* 9198 * Increment the failure counter only on periodic balance. 9199 * We do not want newidle balance, which can be very 9200 * frequent, pollute the failure counter causing 9201 * excessive cache_hot migrations and active balances. 9202 */ 9203 if (idle != CPU_NEWLY_IDLE) 9204 sd->nr_balance_failed++; 9205 9206 if (need_active_balance(&env)) { 9207 unsigned long flags; 9208 9209 raw_spin_lock_irqsave(&busiest->lock, flags); 9210 9211 /* 9212 * Don't kick the active_load_balance_cpu_stop, 9213 * if the curr task on busiest CPU can't be 9214 * moved to this_cpu: 9215 */ 9216 if (!cpumask_test_cpu(this_cpu, &busiest->curr->cpus_allowed)) { 9217 raw_spin_unlock_irqrestore(&busiest->lock, 9218 flags); 9219 env.flags |= LBF_ALL_PINNED; 9220 goto out_one_pinned; 9221 } 9222 9223 /* 9224 * ->active_balance synchronizes accesses to 9225 * ->active_balance_work. Once set, it's cleared 9226 * only after active load balance is finished. 9227 */ 9228 if (!busiest->active_balance) { 9229 busiest->active_balance = 1; 9230 busiest->push_cpu = this_cpu; 9231 active_balance = 1; 9232 } 9233 raw_spin_unlock_irqrestore(&busiest->lock, flags); 9234 9235 if (active_balance) { 9236 stop_one_cpu_nowait(cpu_of(busiest), 9237 active_load_balance_cpu_stop, busiest, 9238 &busiest->active_balance_work); 9239 } 9240 9241 /* We've kicked active balancing, force task migration. */ 9242 sd->nr_balance_failed = sd->cache_nice_tries+1; 9243 } 9244 } else 9245 sd->nr_balance_failed = 0; 9246 9247 if (likely(!active_balance) || voluntary_active_balance(&env)) { 9248 /* We were unbalanced, so reset the balancing interval */ 9249 sd->balance_interval = sd->min_interval; 9250 } else { 9251 /* 9252 * If we've begun active balancing, start to back off. This 9253 * case may not be covered by the all_pinned logic if there 9254 * is only 1 task on the busy runqueue (because we don't call 9255 * detach_tasks). 9256 */ 9257 if (sd->balance_interval < sd->max_interval) 9258 sd->balance_interval *= 2; 9259 } 9260 9261 goto out; 9262 9263 out_balanced: 9264 /* 9265 * We reach balance although we may have faced some affinity 9266 * constraints. Clear the imbalance flag if it was set. 9267 */ 9268 if (sd_parent) { 9269 int *group_imbalance = &sd_parent->groups->sgc->imbalance; 9270 9271 if (*group_imbalance) 9272 *group_imbalance = 0; 9273 } 9274 9275 out_all_pinned: 9276 /* 9277 * We reach balance because all tasks are pinned at this level so 9278 * we can't migrate them. Let the imbalance flag set so parent level 9279 * can try to migrate them. 9280 */ 9281 schedstat_inc(sd->lb_balanced[idle]); 9282 9283 sd->nr_balance_failed = 0; 9284 9285 out_one_pinned: 9286 ld_moved = 0; 9287 9288 /* 9289 * idle_balance() disregards balance intervals, so we could repeatedly 9290 * reach this code, which would lead to balance_interval skyrocketting 9291 * in a short amount of time. Skip the balance_interval increase logic 9292 * to avoid that. 9293 */ 9294 if (env.idle == CPU_NEWLY_IDLE) 9295 goto out; 9296 9297 /* tune up the balancing interval */ 9298 if ((env.flags & LBF_ALL_PINNED && 9299 sd->balance_interval < MAX_PINNED_INTERVAL) || 9300 sd->balance_interval < sd->max_interval) 9301 sd->balance_interval *= 2; 9302 out: 9303 return ld_moved; 9304 } 9305 9306 static inline unsigned long 9307 get_sd_balance_interval(struct sched_domain *sd, int cpu_busy) 9308 { 9309 unsigned long interval = sd->balance_interval; 9310 9311 if (cpu_busy) 9312 interval *= sd->busy_factor; 9313 9314 /* scale ms to jiffies */ 9315 interval = msecs_to_jiffies(interval); 9316 interval = clamp(interval, 1UL, max_load_balance_interval); 9317 9318 return interval; 9319 } 9320 9321 static inline void 9322 update_next_balance(struct sched_domain *sd, unsigned long *next_balance) 9323 { 9324 unsigned long interval, next; 9325 9326 /* used by idle balance, so cpu_busy = 0 */ 9327 interval = get_sd_balance_interval(sd, 0); 9328 next = sd->last_balance + interval; 9329 9330 if (time_after(*next_balance, next)) 9331 *next_balance = next; 9332 } 9333 9334 /* 9335 * active_load_balance_cpu_stop is run by the CPU stopper. It pushes 9336 * running tasks off the busiest CPU onto idle CPUs. It requires at 9337 * least 1 task to be running on each physical CPU where possible, and 9338 * avoids physical / logical imbalances. 9339 */ 9340 static int active_load_balance_cpu_stop(void *data) 9341 { 9342 struct rq *busiest_rq = data; 9343 int busiest_cpu = cpu_of(busiest_rq); 9344 int target_cpu = busiest_rq->push_cpu; 9345 struct rq *target_rq = cpu_rq(target_cpu); 9346 struct sched_domain *sd; 9347 struct task_struct *p = NULL; 9348 struct rq_flags rf; 9349 9350 rq_lock_irq(busiest_rq, &rf); 9351 /* 9352 * Between queueing the stop-work and running it is a hole in which 9353 * CPUs can become inactive. We should not move tasks from or to 9354 * inactive CPUs. 9355 */ 9356 if (!cpu_active(busiest_cpu) || !cpu_active(target_cpu)) 9357 goto out_unlock; 9358 9359 /* Make sure the requested CPU hasn't gone down in the meantime: */ 9360 if (unlikely(busiest_cpu != smp_processor_id() || 9361 !busiest_rq->active_balance)) 9362 goto out_unlock; 9363 9364 /* Is there any task to move? */ 9365 if (busiest_rq->nr_running <= 1) 9366 goto out_unlock; 9367 9368 /* 9369 * This condition is "impossible", if it occurs 9370 * we need to fix it. Originally reported by 9371 * Bjorn Helgaas on a 128-CPU setup. 9372 */ 9373 BUG_ON(busiest_rq == target_rq); 9374 9375 /* Search for an sd spanning us and the target CPU. */ 9376 rcu_read_lock(); 9377 for_each_domain(target_cpu, sd) { 9378 if ((sd->flags & SD_LOAD_BALANCE) && 9379 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd))) 9380 break; 9381 } 9382 9383 if (likely(sd)) { 9384 struct lb_env env = { 9385 .sd = sd, 9386 .dst_cpu = target_cpu, 9387 .dst_rq = target_rq, 9388 .src_cpu = busiest_rq->cpu, 9389 .src_rq = busiest_rq, 9390 .idle = CPU_IDLE, 9391 /* 9392 * can_migrate_task() doesn't need to compute new_dst_cpu 9393 * for active balancing. Since we have CPU_IDLE, but no 9394 * @dst_grpmask we need to make that test go away with lying 9395 * about DST_PINNED. 9396 */ 9397 .flags = LBF_DST_PINNED, 9398 }; 9399 9400 schedstat_inc(sd->alb_count); 9401 update_rq_clock(busiest_rq); 9402 9403 p = detach_one_task(&env); 9404 if (p) { 9405 schedstat_inc(sd->alb_pushed); 9406 /* Active balancing done, reset the failure counter. */ 9407 sd->nr_balance_failed = 0; 9408 } else { 9409 schedstat_inc(sd->alb_failed); 9410 } 9411 } 9412 rcu_read_unlock(); 9413 out_unlock: 9414 busiest_rq->active_balance = 0; 9415 rq_unlock(busiest_rq, &rf); 9416 9417 if (p) 9418 attach_one_task(target_rq, p); 9419 9420 local_irq_enable(); 9421 9422 return 0; 9423 } 9424 9425 static DEFINE_SPINLOCK(balancing); 9426 9427 /* 9428 * Scale the max load_balance interval with the number of CPUs in the system. 9429 * This trades load-balance latency on larger machines for less cross talk. 9430 */ 9431 void update_max_interval(void) 9432 { 9433 max_load_balance_interval = HZ*num_online_cpus()/10; 9434 } 9435 9436 /* 9437 * It checks each scheduling domain to see if it is due to be balanced, 9438 * and initiates a balancing operation if so. 9439 * 9440 * Balancing parameters are set up in init_sched_domains. 9441 */ 9442 static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle) 9443 { 9444 int continue_balancing = 1; 9445 int cpu = rq->cpu; 9446 unsigned long interval; 9447 struct sched_domain *sd; 9448 /* Earliest time when we have to do rebalance again */ 9449 unsigned long next_balance = jiffies + 60*HZ; 9450 int update_next_balance = 0; 9451 int need_serialize, need_decay = 0; 9452 u64 max_cost = 0; 9453 9454 rcu_read_lock(); 9455 for_each_domain(cpu, sd) { 9456 /* 9457 * Decay the newidle max times here because this is a regular 9458 * visit to all the domains. Decay ~1% per second. 9459 */ 9460 if (time_after(jiffies, sd->next_decay_max_lb_cost)) { 9461 sd->max_newidle_lb_cost = 9462 (sd->max_newidle_lb_cost * 253) / 256; 9463 sd->next_decay_max_lb_cost = jiffies + HZ; 9464 need_decay = 1; 9465 } 9466 max_cost += sd->max_newidle_lb_cost; 9467 9468 if (!(sd->flags & SD_LOAD_BALANCE)) 9469 continue; 9470 9471 /* 9472 * Stop the load balance at this level. There is another 9473 * CPU in our sched group which is doing load balancing more 9474 * actively. 9475 */ 9476 if (!continue_balancing) { 9477 if (need_decay) 9478 continue; 9479 break; 9480 } 9481 9482 interval = get_sd_balance_interval(sd, idle != CPU_IDLE); 9483 9484 need_serialize = sd->flags & SD_SERIALIZE; 9485 if (need_serialize) { 9486 if (!spin_trylock(&balancing)) 9487 goto out; 9488 } 9489 9490 if (time_after_eq(jiffies, sd->last_balance + interval)) { 9491 if (load_balance(cpu, rq, sd, idle, &continue_balancing)) { 9492 /* 9493 * The LBF_DST_PINNED logic could have changed 9494 * env->dst_cpu, so we can't know our idle 9495 * state even if we migrated tasks. Update it. 9496 */ 9497 idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE; 9498 } 9499 sd->last_balance = jiffies; 9500 interval = get_sd_balance_interval(sd, idle != CPU_IDLE); 9501 } 9502 if (need_serialize) 9503 spin_unlock(&balancing); 9504 out: 9505 if (time_after(next_balance, sd->last_balance + interval)) { 9506 next_balance = sd->last_balance + interval; 9507 update_next_balance = 1; 9508 } 9509 } 9510 if (need_decay) { 9511 /* 9512 * Ensure the rq-wide value also decays but keep it at a 9513 * reasonable floor to avoid funnies with rq->avg_idle. 9514 */ 9515 rq->max_idle_balance_cost = 9516 max((u64)sysctl_sched_migration_cost, max_cost); 9517 } 9518 rcu_read_unlock(); 9519 9520 /* 9521 * next_balance will be updated only when there is a need. 9522 * When the cpu is attached to null domain for ex, it will not be 9523 * updated. 9524 */ 9525 if (likely(update_next_balance)) { 9526 rq->next_balance = next_balance; 9527 9528 #ifdef CONFIG_NO_HZ_COMMON 9529 /* 9530 * If this CPU has been elected to perform the nohz idle 9531 * balance. Other idle CPUs have already rebalanced with 9532 * nohz_idle_balance() and nohz.next_balance has been 9533 * updated accordingly. This CPU is now running the idle load 9534 * balance for itself and we need to update the 9535 * nohz.next_balance accordingly. 9536 */ 9537 if ((idle == CPU_IDLE) && time_after(nohz.next_balance, rq->next_balance)) 9538 nohz.next_balance = rq->next_balance; 9539 #endif 9540 } 9541 } 9542 9543 static inline int on_null_domain(struct rq *rq) 9544 { 9545 return unlikely(!rcu_dereference_sched(rq->sd)); 9546 } 9547 9548 #ifdef CONFIG_NO_HZ_COMMON 9549 /* 9550 * idle load balancing details 9551 * - When one of the busy CPUs notice that there may be an idle rebalancing 9552 * needed, they will kick the idle load balancer, which then does idle 9553 * load balancing for all the idle CPUs. 9554 */ 9555 9556 static inline int find_new_ilb(void) 9557 { 9558 int ilb = cpumask_first(nohz.idle_cpus_mask); 9559 9560 if (ilb < nr_cpu_ids && idle_cpu(ilb)) 9561 return ilb; 9562 9563 return nr_cpu_ids; 9564 } 9565 9566 /* 9567 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the 9568 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle 9569 * CPU (if there is one). 9570 */ 9571 static void kick_ilb(unsigned int flags) 9572 { 9573 int ilb_cpu; 9574 9575 nohz.next_balance++; 9576 9577 ilb_cpu = find_new_ilb(); 9578 9579 if (ilb_cpu >= nr_cpu_ids) 9580 return; 9581 9582 flags = atomic_fetch_or(flags, nohz_flags(ilb_cpu)); 9583 if (flags & NOHZ_KICK_MASK) 9584 return; 9585 9586 /* 9587 * Use smp_send_reschedule() instead of resched_cpu(). 9588 * This way we generate a sched IPI on the target CPU which 9589 * is idle. And the softirq performing nohz idle load balance 9590 * will be run before returning from the IPI. 9591 */ 9592 smp_send_reschedule(ilb_cpu); 9593 } 9594 9595 /* 9596 * Current decision point for kicking the idle load balancer in the presence 9597 * of idle CPUs in the system. 9598 */ 9599 static void nohz_balancer_kick(struct rq *rq) 9600 { 9601 unsigned long now = jiffies; 9602 struct sched_domain_shared *sds; 9603 struct sched_domain *sd; 9604 int nr_busy, i, cpu = rq->cpu; 9605 unsigned int flags = 0; 9606 9607 if (unlikely(rq->idle_balance)) 9608 return; 9609 9610 /* 9611 * We may be recently in ticked or tickless idle mode. At the first 9612 * busy tick after returning from idle, we will update the busy stats. 9613 */ 9614 nohz_balance_exit_idle(rq); 9615 9616 /* 9617 * None are in tickless mode and hence no need for NOHZ idle load 9618 * balancing. 9619 */ 9620 if (likely(!atomic_read(&nohz.nr_cpus))) 9621 return; 9622 9623 if (READ_ONCE(nohz.has_blocked) && 9624 time_after(now, READ_ONCE(nohz.next_blocked))) 9625 flags = NOHZ_STATS_KICK; 9626 9627 if (time_before(now, nohz.next_balance)) 9628 goto out; 9629 9630 if (rq->nr_running >= 2) { 9631 flags = NOHZ_KICK_MASK; 9632 goto out; 9633 } 9634 9635 rcu_read_lock(); 9636 9637 sd = rcu_dereference(rq->sd); 9638 if (sd) { 9639 /* 9640 * If there's a CFS task and the current CPU has reduced 9641 * capacity; kick the ILB to see if there's a better CPU to run 9642 * on. 9643 */ 9644 if (rq->cfs.h_nr_running >= 1 && check_cpu_capacity(rq, sd)) { 9645 flags = NOHZ_KICK_MASK; 9646 goto unlock; 9647 } 9648 } 9649 9650 sd = rcu_dereference(per_cpu(sd_asym_packing, cpu)); 9651 if (sd) { 9652 /* 9653 * When ASYM_PACKING; see if there's a more preferred CPU 9654 * currently idle; in which case, kick the ILB to move tasks 9655 * around. 9656 */ 9657 for_each_cpu_and(i, sched_domain_span(sd), nohz.idle_cpus_mask) { 9658 if (sched_asym_prefer(i, cpu)) { 9659 flags = NOHZ_KICK_MASK; 9660 goto unlock; 9661 } 9662 } 9663 } 9664 9665 sd = rcu_dereference(per_cpu(sd_asym_cpucapacity, cpu)); 9666 if (sd) { 9667 /* 9668 * When ASYM_CPUCAPACITY; see if there's a higher capacity CPU 9669 * to run the misfit task on. 9670 */ 9671 if (check_misfit_status(rq, sd)) { 9672 flags = NOHZ_KICK_MASK; 9673 goto unlock; 9674 } 9675 9676 /* 9677 * For asymmetric systems, we do not want to nicely balance 9678 * cache use, instead we want to embrace asymmetry and only 9679 * ensure tasks have enough CPU capacity. 9680 * 9681 * Skip the LLC logic because it's not relevant in that case. 9682 */ 9683 goto unlock; 9684 } 9685 9686 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu)); 9687 if (sds) { 9688 /* 9689 * If there is an imbalance between LLC domains (IOW we could 9690 * increase the overall cache use), we need some less-loaded LLC 9691 * domain to pull some load. Likewise, we may need to spread 9692 * load within the current LLC domain (e.g. packed SMT cores but 9693 * other CPUs are idle). We can't really know from here how busy 9694 * the others are - so just get a nohz balance going if it looks 9695 * like this LLC domain has tasks we could move. 9696 */ 9697 nr_busy = atomic_read(&sds->nr_busy_cpus); 9698 if (nr_busy > 1) { 9699 flags = NOHZ_KICK_MASK; 9700 goto unlock; 9701 } 9702 } 9703 unlock: 9704 rcu_read_unlock(); 9705 out: 9706 if (flags) 9707 kick_ilb(flags); 9708 } 9709 9710 static void set_cpu_sd_state_busy(int cpu) 9711 { 9712 struct sched_domain *sd; 9713 9714 rcu_read_lock(); 9715 sd = rcu_dereference(per_cpu(sd_llc, cpu)); 9716 9717 if (!sd || !sd->nohz_idle) 9718 goto unlock; 9719 sd->nohz_idle = 0; 9720 9721 atomic_inc(&sd->shared->nr_busy_cpus); 9722 unlock: 9723 rcu_read_unlock(); 9724 } 9725 9726 void nohz_balance_exit_idle(struct rq *rq) 9727 { 9728 SCHED_WARN_ON(rq != this_rq()); 9729 9730 if (likely(!rq->nohz_tick_stopped)) 9731 return; 9732 9733 rq->nohz_tick_stopped = 0; 9734 cpumask_clear_cpu(rq->cpu, nohz.idle_cpus_mask); 9735 atomic_dec(&nohz.nr_cpus); 9736 9737 set_cpu_sd_state_busy(rq->cpu); 9738 } 9739 9740 static void set_cpu_sd_state_idle(int cpu) 9741 { 9742 struct sched_domain *sd; 9743 9744 rcu_read_lock(); 9745 sd = rcu_dereference(per_cpu(sd_llc, cpu)); 9746 9747 if (!sd || sd->nohz_idle) 9748 goto unlock; 9749 sd->nohz_idle = 1; 9750 9751 atomic_dec(&sd->shared->nr_busy_cpus); 9752 unlock: 9753 rcu_read_unlock(); 9754 } 9755 9756 /* 9757 * This routine will record that the CPU is going idle with tick stopped. 9758 * This info will be used in performing idle load balancing in the future. 9759 */ 9760 void nohz_balance_enter_idle(int cpu) 9761 { 9762 struct rq *rq = cpu_rq(cpu); 9763 9764 SCHED_WARN_ON(cpu != smp_processor_id()); 9765 9766 /* If this CPU is going down, then nothing needs to be done: */ 9767 if (!cpu_active(cpu)) 9768 return; 9769 9770 /* Spare idle load balancing on CPUs that don't want to be disturbed: */ 9771 if (!housekeeping_cpu(cpu, HK_FLAG_SCHED)) 9772 return; 9773 9774 /* 9775 * Can be set safely without rq->lock held 9776 * If a clear happens, it will have evaluated last additions because 9777 * rq->lock is held during the check and the clear 9778 */ 9779 rq->has_blocked_load = 1; 9780 9781 /* 9782 * The tick is still stopped but load could have been added in the 9783 * meantime. We set the nohz.has_blocked flag to trig a check of the 9784 * *_avg. The CPU is already part of nohz.idle_cpus_mask so the clear 9785 * of nohz.has_blocked can only happen after checking the new load 9786 */ 9787 if (rq->nohz_tick_stopped) 9788 goto out; 9789 9790 /* If we're a completely isolated CPU, we don't play: */ 9791 if (on_null_domain(rq)) 9792 return; 9793 9794 rq->nohz_tick_stopped = 1; 9795 9796 cpumask_set_cpu(cpu, nohz.idle_cpus_mask); 9797 atomic_inc(&nohz.nr_cpus); 9798 9799 /* 9800 * Ensures that if nohz_idle_balance() fails to observe our 9801 * @idle_cpus_mask store, it must observe the @has_blocked 9802 * store. 9803 */ 9804 smp_mb__after_atomic(); 9805 9806 set_cpu_sd_state_idle(cpu); 9807 9808 out: 9809 /* 9810 * Each time a cpu enter idle, we assume that it has blocked load and 9811 * enable the periodic update of the load of idle cpus 9812 */ 9813 WRITE_ONCE(nohz.has_blocked, 1); 9814 } 9815 9816 /* 9817 * Internal function that runs load balance for all idle cpus. The load balance 9818 * can be a simple update of blocked load or a complete load balance with 9819 * tasks movement depending of flags. 9820 * The function returns false if the loop has stopped before running 9821 * through all idle CPUs. 9822 */ 9823 static bool _nohz_idle_balance(struct rq *this_rq, unsigned int flags, 9824 enum cpu_idle_type idle) 9825 { 9826 /* Earliest time when we have to do rebalance again */ 9827 unsigned long now = jiffies; 9828 unsigned long next_balance = now + 60*HZ; 9829 bool has_blocked_load = false; 9830 int update_next_balance = 0; 9831 int this_cpu = this_rq->cpu; 9832 int balance_cpu; 9833 int ret = false; 9834 struct rq *rq; 9835 9836 SCHED_WARN_ON((flags & NOHZ_KICK_MASK) == NOHZ_BALANCE_KICK); 9837 9838 /* 9839 * We assume there will be no idle load after this update and clear 9840 * the has_blocked flag. If a cpu enters idle in the mean time, it will 9841 * set the has_blocked flag and trig another update of idle load. 9842 * Because a cpu that becomes idle, is added to idle_cpus_mask before 9843 * setting the flag, we are sure to not clear the state and not 9844 * check the load of an idle cpu. 9845 */ 9846 WRITE_ONCE(nohz.has_blocked, 0); 9847 9848 /* 9849 * Ensures that if we miss the CPU, we must see the has_blocked 9850 * store from nohz_balance_enter_idle(). 9851 */ 9852 smp_mb(); 9853 9854 for_each_cpu(balance_cpu, nohz.idle_cpus_mask) { 9855 if (balance_cpu == this_cpu || !idle_cpu(balance_cpu)) 9856 continue; 9857 9858 /* 9859 * If this CPU gets work to do, stop the load balancing 9860 * work being done for other CPUs. Next load 9861 * balancing owner will pick it up. 9862 */ 9863 if (need_resched()) { 9864 has_blocked_load = true; 9865 goto abort; 9866 } 9867 9868 rq = cpu_rq(balance_cpu); 9869 9870 has_blocked_load |= update_nohz_stats(rq, true); 9871 9872 /* 9873 * If time for next balance is due, 9874 * do the balance. 9875 */ 9876 if (time_after_eq(jiffies, rq->next_balance)) { 9877 struct rq_flags rf; 9878 9879 rq_lock_irqsave(rq, &rf); 9880 update_rq_clock(rq); 9881 cpu_load_update_idle(rq); 9882 rq_unlock_irqrestore(rq, &rf); 9883 9884 if (flags & NOHZ_BALANCE_KICK) 9885 rebalance_domains(rq, CPU_IDLE); 9886 } 9887 9888 if (time_after(next_balance, rq->next_balance)) { 9889 next_balance = rq->next_balance; 9890 update_next_balance = 1; 9891 } 9892 } 9893 9894 /* Newly idle CPU doesn't need an update */ 9895 if (idle != CPU_NEWLY_IDLE) { 9896 update_blocked_averages(this_cpu); 9897 has_blocked_load |= this_rq->has_blocked_load; 9898 } 9899 9900 if (flags & NOHZ_BALANCE_KICK) 9901 rebalance_domains(this_rq, CPU_IDLE); 9902 9903 WRITE_ONCE(nohz.next_blocked, 9904 now + msecs_to_jiffies(LOAD_AVG_PERIOD)); 9905 9906 /* The full idle balance loop has been done */ 9907 ret = true; 9908 9909 abort: 9910 /* There is still blocked load, enable periodic update */ 9911 if (has_blocked_load) 9912 WRITE_ONCE(nohz.has_blocked, 1); 9913 9914 /* 9915 * next_balance will be updated only when there is a need. 9916 * When the CPU is attached to null domain for ex, it will not be 9917 * updated. 9918 */ 9919 if (likely(update_next_balance)) 9920 nohz.next_balance = next_balance; 9921 9922 return ret; 9923 } 9924 9925 /* 9926 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the 9927 * rebalancing for all the cpus for whom scheduler ticks are stopped. 9928 */ 9929 static bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) 9930 { 9931 int this_cpu = this_rq->cpu; 9932 unsigned int flags; 9933 9934 if (!(atomic_read(nohz_flags(this_cpu)) & NOHZ_KICK_MASK)) 9935 return false; 9936 9937 if (idle != CPU_IDLE) { 9938 atomic_andnot(NOHZ_KICK_MASK, nohz_flags(this_cpu)); 9939 return false; 9940 } 9941 9942 /* could be _relaxed() */ 9943 flags = atomic_fetch_andnot(NOHZ_KICK_MASK, nohz_flags(this_cpu)); 9944 if (!(flags & NOHZ_KICK_MASK)) 9945 return false; 9946 9947 _nohz_idle_balance(this_rq, flags, idle); 9948 9949 return true; 9950 } 9951 9952 static void nohz_newidle_balance(struct rq *this_rq) 9953 { 9954 int this_cpu = this_rq->cpu; 9955 9956 /* 9957 * This CPU doesn't want to be disturbed by scheduler 9958 * housekeeping 9959 */ 9960 if (!housekeeping_cpu(this_cpu, HK_FLAG_SCHED)) 9961 return; 9962 9963 /* Will wake up very soon. No time for doing anything else*/ 9964 if (this_rq->avg_idle < sysctl_sched_migration_cost) 9965 return; 9966 9967 /* Don't need to update blocked load of idle CPUs*/ 9968 if (!READ_ONCE(nohz.has_blocked) || 9969 time_before(jiffies, READ_ONCE(nohz.next_blocked))) 9970 return; 9971 9972 raw_spin_unlock(&this_rq->lock); 9973 /* 9974 * This CPU is going to be idle and blocked load of idle CPUs 9975 * need to be updated. Run the ilb locally as it is a good 9976 * candidate for ilb instead of waking up another idle CPU. 9977 * Kick an normal ilb if we failed to do the update. 9978 */ 9979 if (!_nohz_idle_balance(this_rq, NOHZ_STATS_KICK, CPU_NEWLY_IDLE)) 9980 kick_ilb(NOHZ_STATS_KICK); 9981 raw_spin_lock(&this_rq->lock); 9982 } 9983 9984 #else /* !CONFIG_NO_HZ_COMMON */ 9985 static inline void nohz_balancer_kick(struct rq *rq) { } 9986 9987 static inline bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) 9988 { 9989 return false; 9990 } 9991 9992 static inline void nohz_newidle_balance(struct rq *this_rq) { } 9993 #endif /* CONFIG_NO_HZ_COMMON */ 9994 9995 /* 9996 * idle_balance is called by schedule() if this_cpu is about to become 9997 * idle. Attempts to pull tasks from other CPUs. 9998 */ 9999 static int idle_balance(struct rq *this_rq, struct rq_flags *rf) 10000 { 10001 unsigned long next_balance = jiffies + HZ; 10002 int this_cpu = this_rq->cpu; 10003 struct sched_domain *sd; 10004 int pulled_task = 0; 10005 u64 curr_cost = 0; 10006 10007 /* 10008 * We must set idle_stamp _before_ calling idle_balance(), such that we 10009 * measure the duration of idle_balance() as idle time. 10010 */ 10011 this_rq->idle_stamp = rq_clock(this_rq); 10012 10013 /* 10014 * Do not pull tasks towards !active CPUs... 10015 */ 10016 if (!cpu_active(this_cpu)) 10017 return 0; 10018 10019 /* 10020 * This is OK, because current is on_cpu, which avoids it being picked 10021 * for load-balance and preemption/IRQs are still disabled avoiding 10022 * further scheduler activity on it and we're being very careful to 10023 * re-start the picking loop. 10024 */ 10025 rq_unpin_lock(this_rq, rf); 10026 10027 if (this_rq->avg_idle < sysctl_sched_migration_cost || 10028 !READ_ONCE(this_rq->rd->overload)) { 10029 10030 rcu_read_lock(); 10031 sd = rcu_dereference_check_sched_domain(this_rq->sd); 10032 if (sd) 10033 update_next_balance(sd, &next_balance); 10034 rcu_read_unlock(); 10035 10036 nohz_newidle_balance(this_rq); 10037 10038 goto out; 10039 } 10040 10041 raw_spin_unlock(&this_rq->lock); 10042 10043 update_blocked_averages(this_cpu); 10044 rcu_read_lock(); 10045 for_each_domain(this_cpu, sd) { 10046 int continue_balancing = 1; 10047 u64 t0, domain_cost; 10048 10049 if (!(sd->flags & SD_LOAD_BALANCE)) 10050 continue; 10051 10052 if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) { 10053 update_next_balance(sd, &next_balance); 10054 break; 10055 } 10056 10057 if (sd->flags & SD_BALANCE_NEWIDLE) { 10058 t0 = sched_clock_cpu(this_cpu); 10059 10060 pulled_task = load_balance(this_cpu, this_rq, 10061 sd, CPU_NEWLY_IDLE, 10062 &continue_balancing); 10063 10064 domain_cost = sched_clock_cpu(this_cpu) - t0; 10065 if (domain_cost > sd->max_newidle_lb_cost) 10066 sd->max_newidle_lb_cost = domain_cost; 10067 10068 curr_cost += domain_cost; 10069 } 10070 10071 update_next_balance(sd, &next_balance); 10072 10073 /* 10074 * Stop searching for tasks to pull if there are 10075 * now runnable tasks on this rq. 10076 */ 10077 if (pulled_task || this_rq->nr_running > 0) 10078 break; 10079 } 10080 rcu_read_unlock(); 10081 10082 raw_spin_lock(&this_rq->lock); 10083 10084 if (curr_cost > this_rq->max_idle_balance_cost) 10085 this_rq->max_idle_balance_cost = curr_cost; 10086 10087 out: 10088 /* 10089 * While browsing the domains, we released the rq lock, a task could 10090 * have been enqueued in the meantime. Since we're not going idle, 10091 * pretend we pulled a task. 10092 */ 10093 if (this_rq->cfs.h_nr_running && !pulled_task) 10094 pulled_task = 1; 10095 10096 /* Move the next balance forward */ 10097 if (time_after(this_rq->next_balance, next_balance)) 10098 this_rq->next_balance = next_balance; 10099 10100 /* Is there a task of a high priority class? */ 10101 if (this_rq->nr_running != this_rq->cfs.h_nr_running) 10102 pulled_task = -1; 10103 10104 if (pulled_task) 10105 this_rq->idle_stamp = 0; 10106 10107 rq_repin_lock(this_rq, rf); 10108 10109 return pulled_task; 10110 } 10111 10112 /* 10113 * run_rebalance_domains is triggered when needed from the scheduler tick. 10114 * Also triggered for nohz idle balancing (with nohz_balancing_kick set). 10115 */ 10116 static __latent_entropy void run_rebalance_domains(struct softirq_action *h) 10117 { 10118 struct rq *this_rq = this_rq(); 10119 enum cpu_idle_type idle = this_rq->idle_balance ? 10120 CPU_IDLE : CPU_NOT_IDLE; 10121 10122 /* 10123 * If this CPU has a pending nohz_balance_kick, then do the 10124 * balancing on behalf of the other idle CPUs whose ticks are 10125 * stopped. Do nohz_idle_balance *before* rebalance_domains to 10126 * give the idle CPUs a chance to load balance. Else we may 10127 * load balance only within the local sched_domain hierarchy 10128 * and abort nohz_idle_balance altogether if we pull some load. 10129 */ 10130 if (nohz_idle_balance(this_rq, idle)) 10131 return; 10132 10133 /* normal load balance */ 10134 update_blocked_averages(this_rq->cpu); 10135 rebalance_domains(this_rq, idle); 10136 } 10137 10138 /* 10139 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing. 10140 */ 10141 void trigger_load_balance(struct rq *rq) 10142 { 10143 /* Don't need to rebalance while attached to NULL domain */ 10144 if (unlikely(on_null_domain(rq))) 10145 return; 10146 10147 if (time_after_eq(jiffies, rq->next_balance)) 10148 raise_softirq(SCHED_SOFTIRQ); 10149 10150 nohz_balancer_kick(rq); 10151 } 10152 10153 static void rq_online_fair(struct rq *rq) 10154 { 10155 update_sysctl(); 10156 10157 update_runtime_enabled(rq); 10158 } 10159 10160 static void rq_offline_fair(struct rq *rq) 10161 { 10162 update_sysctl(); 10163 10164 /* Ensure any throttled groups are reachable by pick_next_task */ 10165 unthrottle_offline_cfs_rqs(rq); 10166 } 10167 10168 #endif /* CONFIG_SMP */ 10169 10170 /* 10171 * scheduler tick hitting a task of our scheduling class. 10172 * 10173 * NOTE: This function can be called remotely by the tick offload that 10174 * goes along full dynticks. Therefore no local assumption can be made 10175 * and everything must be accessed through the @rq and @curr passed in 10176 * parameters. 10177 */ 10178 static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued) 10179 { 10180 struct cfs_rq *cfs_rq; 10181 struct sched_entity *se = &curr->se; 10182 10183 for_each_sched_entity(se) { 10184 cfs_rq = cfs_rq_of(se); 10185 entity_tick(cfs_rq, se, queued); 10186 } 10187 10188 if (static_branch_unlikely(&sched_numa_balancing)) 10189 task_tick_numa(rq, curr); 10190 10191 update_misfit_status(curr, rq); 10192 update_overutilized_status(task_rq(curr)); 10193 } 10194 10195 /* 10196 * called on fork with the child task as argument from the parent's context 10197 * - child not yet on the tasklist 10198 * - preemption disabled 10199 */ 10200 static void task_fork_fair(struct task_struct *p) 10201 { 10202 struct cfs_rq *cfs_rq; 10203 struct sched_entity *se = &p->se, *curr; 10204 struct rq *rq = this_rq(); 10205 struct rq_flags rf; 10206 10207 rq_lock(rq, &rf); 10208 update_rq_clock(rq); 10209 10210 cfs_rq = task_cfs_rq(current); 10211 curr = cfs_rq->curr; 10212 if (curr) { 10213 update_curr(cfs_rq); 10214 se->vruntime = curr->vruntime; 10215 } 10216 place_entity(cfs_rq, se, 1); 10217 10218 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) { 10219 /* 10220 * Upon rescheduling, sched_class::put_prev_task() will place 10221 * 'current' within the tree based on its new key value. 10222 */ 10223 swap(curr->vruntime, se->vruntime); 10224 resched_curr(rq); 10225 } 10226 10227 se->vruntime -= cfs_rq->min_vruntime; 10228 rq_unlock(rq, &rf); 10229 } 10230 10231 /* 10232 * Priority of the task has changed. Check to see if we preempt 10233 * the current task. 10234 */ 10235 static void 10236 prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio) 10237 { 10238 if (!task_on_rq_queued(p)) 10239 return; 10240 10241 /* 10242 * Reschedule if we are currently running on this runqueue and 10243 * our priority decreased, or if we are not currently running on 10244 * this runqueue and our priority is higher than the current's 10245 */ 10246 if (rq->curr == p) { 10247 if (p->prio > oldprio) 10248 resched_curr(rq); 10249 } else 10250 check_preempt_curr(rq, p, 0); 10251 } 10252 10253 static inline bool vruntime_normalized(struct task_struct *p) 10254 { 10255 struct sched_entity *se = &p->se; 10256 10257 /* 10258 * In both the TASK_ON_RQ_QUEUED and TASK_ON_RQ_MIGRATING cases, 10259 * the dequeue_entity(.flags=0) will already have normalized the 10260 * vruntime. 10261 */ 10262 if (p->on_rq) 10263 return true; 10264 10265 /* 10266 * When !on_rq, vruntime of the task has usually NOT been normalized. 10267 * But there are some cases where it has already been normalized: 10268 * 10269 * - A forked child which is waiting for being woken up by 10270 * wake_up_new_task(). 10271 * - A task which has been woken up by try_to_wake_up() and 10272 * waiting for actually being woken up by sched_ttwu_pending(). 10273 */ 10274 if (!se->sum_exec_runtime || 10275 (p->state == TASK_WAKING && p->sched_remote_wakeup)) 10276 return true; 10277 10278 return false; 10279 } 10280 10281 #ifdef CONFIG_FAIR_GROUP_SCHED 10282 /* 10283 * Propagate the changes of the sched_entity across the tg tree to make it 10284 * visible to the root 10285 */ 10286 static void propagate_entity_cfs_rq(struct sched_entity *se) 10287 { 10288 struct cfs_rq *cfs_rq; 10289 10290 /* Start to propagate at parent */ 10291 se = se->parent; 10292 10293 for_each_sched_entity(se) { 10294 cfs_rq = cfs_rq_of(se); 10295 10296 if (cfs_rq_throttled(cfs_rq)) 10297 break; 10298 10299 update_load_avg(cfs_rq, se, UPDATE_TG); 10300 } 10301 } 10302 #else 10303 static void propagate_entity_cfs_rq(struct sched_entity *se) { } 10304 #endif 10305 10306 static void detach_entity_cfs_rq(struct sched_entity *se) 10307 { 10308 struct cfs_rq *cfs_rq = cfs_rq_of(se); 10309 10310 /* Catch up with the cfs_rq and remove our load when we leave */ 10311 update_load_avg(cfs_rq, se, 0); 10312 detach_entity_load_avg(cfs_rq, se); 10313 update_tg_load_avg(cfs_rq, false); 10314 propagate_entity_cfs_rq(se); 10315 } 10316 10317 static void attach_entity_cfs_rq(struct sched_entity *se) 10318 { 10319 struct cfs_rq *cfs_rq = cfs_rq_of(se); 10320 10321 #ifdef CONFIG_FAIR_GROUP_SCHED 10322 /* 10323 * Since the real-depth could have been changed (only FAIR 10324 * class maintain depth value), reset depth properly. 10325 */ 10326 se->depth = se->parent ? se->parent->depth + 1 : 0; 10327 #endif 10328 10329 /* Synchronize entity with its cfs_rq */ 10330 update_load_avg(cfs_rq, se, sched_feat(ATTACH_AGE_LOAD) ? 0 : SKIP_AGE_LOAD); 10331 attach_entity_load_avg(cfs_rq, se, 0); 10332 update_tg_load_avg(cfs_rq, false); 10333 propagate_entity_cfs_rq(se); 10334 } 10335 10336 static void detach_task_cfs_rq(struct task_struct *p) 10337 { 10338 struct sched_entity *se = &p->se; 10339 struct cfs_rq *cfs_rq = cfs_rq_of(se); 10340 10341 if (!vruntime_normalized(p)) { 10342 /* 10343 * Fix up our vruntime so that the current sleep doesn't 10344 * cause 'unlimited' sleep bonus. 10345 */ 10346 place_entity(cfs_rq, se, 0); 10347 se->vruntime -= cfs_rq->min_vruntime; 10348 } 10349 10350 detach_entity_cfs_rq(se); 10351 } 10352 10353 static void attach_task_cfs_rq(struct task_struct *p) 10354 { 10355 struct sched_entity *se = &p->se; 10356 struct cfs_rq *cfs_rq = cfs_rq_of(se); 10357 10358 attach_entity_cfs_rq(se); 10359 10360 if (!vruntime_normalized(p)) 10361 se->vruntime += cfs_rq->min_vruntime; 10362 } 10363 10364 static void switched_from_fair(struct rq *rq, struct task_struct *p) 10365 { 10366 detach_task_cfs_rq(p); 10367 } 10368 10369 static void switched_to_fair(struct rq *rq, struct task_struct *p) 10370 { 10371 attach_task_cfs_rq(p); 10372 10373 if (task_on_rq_queued(p)) { 10374 /* 10375 * We were most likely switched from sched_rt, so 10376 * kick off the schedule if running, otherwise just see 10377 * if we can still preempt the current task. 10378 */ 10379 if (rq->curr == p) 10380 resched_curr(rq); 10381 else 10382 check_preempt_curr(rq, p, 0); 10383 } 10384 } 10385 10386 /* Account for a task changing its policy or group. 10387 * 10388 * This routine is mostly called to set cfs_rq->curr field when a task 10389 * migrates between groups/classes. 10390 */ 10391 static void set_curr_task_fair(struct rq *rq) 10392 { 10393 struct sched_entity *se = &rq->curr->se; 10394 10395 for_each_sched_entity(se) { 10396 struct cfs_rq *cfs_rq = cfs_rq_of(se); 10397 10398 set_next_entity(cfs_rq, se); 10399 /* ensure bandwidth has been allocated on our new cfs_rq */ 10400 account_cfs_rq_runtime(cfs_rq, 0); 10401 } 10402 } 10403 10404 void init_cfs_rq(struct cfs_rq *cfs_rq) 10405 { 10406 cfs_rq->tasks_timeline = RB_ROOT_CACHED; 10407 cfs_rq->min_vruntime = (u64)(-(1LL << 20)); 10408 #ifndef CONFIG_64BIT 10409 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime; 10410 #endif 10411 #ifdef CONFIG_SMP 10412 raw_spin_lock_init(&cfs_rq->removed.lock); 10413 #endif 10414 } 10415 10416 #ifdef CONFIG_FAIR_GROUP_SCHED 10417 static void task_set_group_fair(struct task_struct *p) 10418 { 10419 struct sched_entity *se = &p->se; 10420 10421 set_task_rq(p, task_cpu(p)); 10422 se->depth = se->parent ? se->parent->depth + 1 : 0; 10423 } 10424 10425 static void task_move_group_fair(struct task_struct *p) 10426 { 10427 detach_task_cfs_rq(p); 10428 set_task_rq(p, task_cpu(p)); 10429 10430 #ifdef CONFIG_SMP 10431 /* Tell se's cfs_rq has been changed -- migrated */ 10432 p->se.avg.last_update_time = 0; 10433 #endif 10434 attach_task_cfs_rq(p); 10435 } 10436 10437 static void task_change_group_fair(struct task_struct *p, int type) 10438 { 10439 switch (type) { 10440 case TASK_SET_GROUP: 10441 task_set_group_fair(p); 10442 break; 10443 10444 case TASK_MOVE_GROUP: 10445 task_move_group_fair(p); 10446 break; 10447 } 10448 } 10449 10450 void free_fair_sched_group(struct task_group *tg) 10451 { 10452 int i; 10453 10454 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg)); 10455 10456 for_each_possible_cpu(i) { 10457 if (tg->cfs_rq) 10458 kfree(tg->cfs_rq[i]); 10459 if (tg->se) 10460 kfree(tg->se[i]); 10461 } 10462 10463 kfree(tg->cfs_rq); 10464 kfree(tg->se); 10465 } 10466 10467 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent) 10468 { 10469 struct sched_entity *se; 10470 struct cfs_rq *cfs_rq; 10471 int i; 10472 10473 tg->cfs_rq = kcalloc(nr_cpu_ids, sizeof(cfs_rq), GFP_KERNEL); 10474 if (!tg->cfs_rq) 10475 goto err; 10476 tg->se = kcalloc(nr_cpu_ids, sizeof(se), GFP_KERNEL); 10477 if (!tg->se) 10478 goto err; 10479 10480 tg->shares = NICE_0_LOAD; 10481 10482 init_cfs_bandwidth(tg_cfs_bandwidth(tg)); 10483 10484 for_each_possible_cpu(i) { 10485 cfs_rq = kzalloc_node(sizeof(struct cfs_rq), 10486 GFP_KERNEL, cpu_to_node(i)); 10487 if (!cfs_rq) 10488 goto err; 10489 10490 se = kzalloc_node(sizeof(struct sched_entity), 10491 GFP_KERNEL, cpu_to_node(i)); 10492 if (!se) 10493 goto err_free_rq; 10494 10495 init_cfs_rq(cfs_rq); 10496 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]); 10497 init_entity_runnable_average(se); 10498 } 10499 10500 return 1; 10501 10502 err_free_rq: 10503 kfree(cfs_rq); 10504 err: 10505 return 0; 10506 } 10507 10508 void online_fair_sched_group(struct task_group *tg) 10509 { 10510 struct sched_entity *se; 10511 struct rq *rq; 10512 int i; 10513 10514 for_each_possible_cpu(i) { 10515 rq = cpu_rq(i); 10516 se = tg->se[i]; 10517 10518 raw_spin_lock_irq(&rq->lock); 10519 update_rq_clock(rq); 10520 attach_entity_cfs_rq(se); 10521 sync_throttle(tg, i); 10522 raw_spin_unlock_irq(&rq->lock); 10523 } 10524 } 10525 10526 void unregister_fair_sched_group(struct task_group *tg) 10527 { 10528 unsigned long flags; 10529 struct rq *rq; 10530 int cpu; 10531 10532 for_each_possible_cpu(cpu) { 10533 if (tg->se[cpu]) 10534 remove_entity_load_avg(tg->se[cpu]); 10535 10536 /* 10537 * Only empty task groups can be destroyed; so we can speculatively 10538 * check on_list without danger of it being re-added. 10539 */ 10540 if (!tg->cfs_rq[cpu]->on_list) 10541 continue; 10542 10543 rq = cpu_rq(cpu); 10544 10545 raw_spin_lock_irqsave(&rq->lock, flags); 10546 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]); 10547 raw_spin_unlock_irqrestore(&rq->lock, flags); 10548 } 10549 } 10550 10551 void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq, 10552 struct sched_entity *se, int cpu, 10553 struct sched_entity *parent) 10554 { 10555 struct rq *rq = cpu_rq(cpu); 10556 10557 cfs_rq->tg = tg; 10558 cfs_rq->rq = rq; 10559 init_cfs_rq_runtime(cfs_rq); 10560 10561 tg->cfs_rq[cpu] = cfs_rq; 10562 tg->se[cpu] = se; 10563 10564 /* se could be NULL for root_task_group */ 10565 if (!se) 10566 return; 10567 10568 if (!parent) { 10569 se->cfs_rq = &rq->cfs; 10570 se->depth = 0; 10571 } else { 10572 se->cfs_rq = parent->my_q; 10573 se->depth = parent->depth + 1; 10574 } 10575 10576 se->my_q = cfs_rq; 10577 /* guarantee group entities always have weight */ 10578 update_load_set(&se->load, NICE_0_LOAD); 10579 se->parent = parent; 10580 } 10581 10582 static DEFINE_MUTEX(shares_mutex); 10583 10584 int sched_group_set_shares(struct task_group *tg, unsigned long shares) 10585 { 10586 int i; 10587 10588 /* 10589 * We can't change the weight of the root cgroup. 10590 */ 10591 if (!tg->se[0]) 10592 return -EINVAL; 10593 10594 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES)); 10595 10596 mutex_lock(&shares_mutex); 10597 if (tg->shares == shares) 10598 goto done; 10599 10600 tg->shares = shares; 10601 for_each_possible_cpu(i) { 10602 struct rq *rq = cpu_rq(i); 10603 struct sched_entity *se = tg->se[i]; 10604 struct rq_flags rf; 10605 10606 /* Propagate contribution to hierarchy */ 10607 rq_lock_irqsave(rq, &rf); 10608 update_rq_clock(rq); 10609 for_each_sched_entity(se) { 10610 update_load_avg(cfs_rq_of(se), se, UPDATE_TG); 10611 update_cfs_group(se); 10612 } 10613 rq_unlock_irqrestore(rq, &rf); 10614 } 10615 10616 done: 10617 mutex_unlock(&shares_mutex); 10618 return 0; 10619 } 10620 #else /* CONFIG_FAIR_GROUP_SCHED */ 10621 10622 void free_fair_sched_group(struct task_group *tg) { } 10623 10624 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent) 10625 { 10626 return 1; 10627 } 10628 10629 void online_fair_sched_group(struct task_group *tg) { } 10630 10631 void unregister_fair_sched_group(struct task_group *tg) { } 10632 10633 #endif /* CONFIG_FAIR_GROUP_SCHED */ 10634 10635 10636 static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task) 10637 { 10638 struct sched_entity *se = &task->se; 10639 unsigned int rr_interval = 0; 10640 10641 /* 10642 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise 10643 * idle runqueue: 10644 */ 10645 if (rq->cfs.load.weight) 10646 rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se)); 10647 10648 return rr_interval; 10649 } 10650 10651 /* 10652 * All the scheduling class methods: 10653 */ 10654 const struct sched_class fair_sched_class = { 10655 .next = &idle_sched_class, 10656 .enqueue_task = enqueue_task_fair, 10657 .dequeue_task = dequeue_task_fair, 10658 .yield_task = yield_task_fair, 10659 .yield_to_task = yield_to_task_fair, 10660 10661 .check_preempt_curr = check_preempt_wakeup, 10662 10663 .pick_next_task = pick_next_task_fair, 10664 .put_prev_task = put_prev_task_fair, 10665 10666 #ifdef CONFIG_SMP 10667 .select_task_rq = select_task_rq_fair, 10668 .migrate_task_rq = migrate_task_rq_fair, 10669 10670 .rq_online = rq_online_fair, 10671 .rq_offline = rq_offline_fair, 10672 10673 .task_dead = task_dead_fair, 10674 .set_cpus_allowed = set_cpus_allowed_common, 10675 #endif 10676 10677 .set_curr_task = set_curr_task_fair, 10678 .task_tick = task_tick_fair, 10679 .task_fork = task_fork_fair, 10680 10681 .prio_changed = prio_changed_fair, 10682 .switched_from = switched_from_fair, 10683 .switched_to = switched_to_fair, 10684 10685 .get_rr_interval = get_rr_interval_fair, 10686 10687 .update_curr = update_curr_fair, 10688 10689 #ifdef CONFIG_FAIR_GROUP_SCHED 10690 .task_change_group = task_change_group_fair, 10691 #endif 10692 }; 10693 10694 #ifdef CONFIG_SCHED_DEBUG 10695 void print_cfs_stats(struct seq_file *m, int cpu) 10696 { 10697 struct cfs_rq *cfs_rq, *pos; 10698 10699 rcu_read_lock(); 10700 for_each_leaf_cfs_rq_safe(cpu_rq(cpu), cfs_rq, pos) 10701 print_cfs_rq(m, cpu, cfs_rq); 10702 rcu_read_unlock(); 10703 } 10704 10705 #ifdef CONFIG_NUMA_BALANCING 10706 void show_numa_stats(struct task_struct *p, struct seq_file *m) 10707 { 10708 int node; 10709 unsigned long tsf = 0, tpf = 0, gsf = 0, gpf = 0; 10710 10711 for_each_online_node(node) { 10712 if (p->numa_faults) { 10713 tsf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 0)]; 10714 tpf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 1)]; 10715 } 10716 if (p->numa_group) { 10717 gsf = p->numa_group->faults[task_faults_idx(NUMA_MEM, node, 0)], 10718 gpf = p->numa_group->faults[task_faults_idx(NUMA_MEM, node, 1)]; 10719 } 10720 print_numa_stats(m, node, tsf, tpf, gsf, gpf); 10721 } 10722 } 10723 #endif /* CONFIG_NUMA_BALANCING */ 10724 #endif /* CONFIG_SCHED_DEBUG */ 10725 10726 __init void init_sched_fair_class(void) 10727 { 10728 #ifdef CONFIG_SMP 10729 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains); 10730 10731 #ifdef CONFIG_NO_HZ_COMMON 10732 nohz.next_balance = jiffies; 10733 nohz.next_blocked = jiffies; 10734 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT); 10735 #endif 10736 #endif /* SMP */ 10737 10738 } 10739