xref: /openbmc/linux/kernel/sched/fair.c (revision 62e59c4e)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
4  *
5  *  Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
6  *
7  *  Interactivity improvements by Mike Galbraith
8  *  (C) 2007 Mike Galbraith <efault@gmx.de>
9  *
10  *  Various enhancements by Dmitry Adamushko.
11  *  (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
12  *
13  *  Group scheduling enhancements by Srivatsa Vaddagiri
14  *  Copyright IBM Corporation, 2007
15  *  Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
16  *
17  *  Scaled math optimizations by Thomas Gleixner
18  *  Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
19  *
20  *  Adaptive scheduling granularity, math enhancements by Peter Zijlstra
21  *  Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
22  */
23 #include "sched.h"
24 
25 #include <trace/events/sched.h>
26 
27 /*
28  * Targeted preemption latency for CPU-bound tasks:
29  *
30  * NOTE: this latency value is not the same as the concept of
31  * 'timeslice length' - timeslices in CFS are of variable length
32  * and have no persistent notion like in traditional, time-slice
33  * based scheduling concepts.
34  *
35  * (to see the precise effective timeslice length of your workload,
36  *  run vmstat and monitor the context-switches (cs) field)
37  *
38  * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
39  */
40 unsigned int sysctl_sched_latency			= 6000000ULL;
41 static unsigned int normalized_sysctl_sched_latency	= 6000000ULL;
42 
43 /*
44  * The initial- and re-scaling of tunables is configurable
45  *
46  * Options are:
47  *
48  *   SCHED_TUNABLESCALING_NONE - unscaled, always *1
49  *   SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
50  *   SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
51  *
52  * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
53  */
54 enum sched_tunable_scaling sysctl_sched_tunable_scaling = SCHED_TUNABLESCALING_LOG;
55 
56 /*
57  * Minimal preemption granularity for CPU-bound tasks:
58  *
59  * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
60  */
61 unsigned int sysctl_sched_min_granularity			= 750000ULL;
62 static unsigned int normalized_sysctl_sched_min_granularity	= 750000ULL;
63 
64 /*
65  * This value is kept at sysctl_sched_latency/sysctl_sched_min_granularity
66  */
67 static unsigned int sched_nr_latency = 8;
68 
69 /*
70  * After fork, child runs first. If set to 0 (default) then
71  * parent will (try to) run first.
72  */
73 unsigned int sysctl_sched_child_runs_first __read_mostly;
74 
75 /*
76  * SCHED_OTHER wake-up granularity.
77  *
78  * This option delays the preemption effects of decoupled workloads
79  * and reduces their over-scheduling. Synchronous workloads will still
80  * have immediate wakeup/sleep latencies.
81  *
82  * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
83  */
84 unsigned int sysctl_sched_wakeup_granularity			= 1000000UL;
85 static unsigned int normalized_sysctl_sched_wakeup_granularity	= 1000000UL;
86 
87 const_debug unsigned int sysctl_sched_migration_cost	= 500000UL;
88 
89 #ifdef CONFIG_SMP
90 /*
91  * For asym packing, by default the lower numbered CPU has higher priority.
92  */
93 int __weak arch_asym_cpu_priority(int cpu)
94 {
95 	return -cpu;
96 }
97 
98 /*
99  * The margin used when comparing utilization with CPU capacity:
100  * util * margin < capacity * 1024
101  *
102  * (default: ~20%)
103  */
104 static unsigned int capacity_margin			= 1280;
105 #endif
106 
107 #ifdef CONFIG_CFS_BANDWIDTH
108 /*
109  * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
110  * each time a cfs_rq requests quota.
111  *
112  * Note: in the case that the slice exceeds the runtime remaining (either due
113  * to consumption or the quota being specified to be smaller than the slice)
114  * we will always only issue the remaining available time.
115  *
116  * (default: 5 msec, units: microseconds)
117  */
118 unsigned int sysctl_sched_cfs_bandwidth_slice		= 5000UL;
119 #endif
120 
121 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
122 {
123 	lw->weight += inc;
124 	lw->inv_weight = 0;
125 }
126 
127 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
128 {
129 	lw->weight -= dec;
130 	lw->inv_weight = 0;
131 }
132 
133 static inline void update_load_set(struct load_weight *lw, unsigned long w)
134 {
135 	lw->weight = w;
136 	lw->inv_weight = 0;
137 }
138 
139 /*
140  * Increase the granularity value when there are more CPUs,
141  * because with more CPUs the 'effective latency' as visible
142  * to users decreases. But the relationship is not linear,
143  * so pick a second-best guess by going with the log2 of the
144  * number of CPUs.
145  *
146  * This idea comes from the SD scheduler of Con Kolivas:
147  */
148 static unsigned int get_update_sysctl_factor(void)
149 {
150 	unsigned int cpus = min_t(unsigned int, num_online_cpus(), 8);
151 	unsigned int factor;
152 
153 	switch (sysctl_sched_tunable_scaling) {
154 	case SCHED_TUNABLESCALING_NONE:
155 		factor = 1;
156 		break;
157 	case SCHED_TUNABLESCALING_LINEAR:
158 		factor = cpus;
159 		break;
160 	case SCHED_TUNABLESCALING_LOG:
161 	default:
162 		factor = 1 + ilog2(cpus);
163 		break;
164 	}
165 
166 	return factor;
167 }
168 
169 static void update_sysctl(void)
170 {
171 	unsigned int factor = get_update_sysctl_factor();
172 
173 #define SET_SYSCTL(name) \
174 	(sysctl_##name = (factor) * normalized_sysctl_##name)
175 	SET_SYSCTL(sched_min_granularity);
176 	SET_SYSCTL(sched_latency);
177 	SET_SYSCTL(sched_wakeup_granularity);
178 #undef SET_SYSCTL
179 }
180 
181 void sched_init_granularity(void)
182 {
183 	update_sysctl();
184 }
185 
186 #define WMULT_CONST	(~0U)
187 #define WMULT_SHIFT	32
188 
189 static void __update_inv_weight(struct load_weight *lw)
190 {
191 	unsigned long w;
192 
193 	if (likely(lw->inv_weight))
194 		return;
195 
196 	w = scale_load_down(lw->weight);
197 
198 	if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
199 		lw->inv_weight = 1;
200 	else if (unlikely(!w))
201 		lw->inv_weight = WMULT_CONST;
202 	else
203 		lw->inv_weight = WMULT_CONST / w;
204 }
205 
206 /*
207  * delta_exec * weight / lw.weight
208  *   OR
209  * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
210  *
211  * Either weight := NICE_0_LOAD and lw \e sched_prio_to_wmult[], in which case
212  * we're guaranteed shift stays positive because inv_weight is guaranteed to
213  * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
214  *
215  * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
216  * weight/lw.weight <= 1, and therefore our shift will also be positive.
217  */
218 static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw)
219 {
220 	u64 fact = scale_load_down(weight);
221 	int shift = WMULT_SHIFT;
222 
223 	__update_inv_weight(lw);
224 
225 	if (unlikely(fact >> 32)) {
226 		while (fact >> 32) {
227 			fact >>= 1;
228 			shift--;
229 		}
230 	}
231 
232 	/* hint to use a 32x32->64 mul */
233 	fact = (u64)(u32)fact * lw->inv_weight;
234 
235 	while (fact >> 32) {
236 		fact >>= 1;
237 		shift--;
238 	}
239 
240 	return mul_u64_u32_shr(delta_exec, fact, shift);
241 }
242 
243 
244 const struct sched_class fair_sched_class;
245 
246 /**************************************************************
247  * CFS operations on generic schedulable entities:
248  */
249 
250 #ifdef CONFIG_FAIR_GROUP_SCHED
251 static inline struct task_struct *task_of(struct sched_entity *se)
252 {
253 	SCHED_WARN_ON(!entity_is_task(se));
254 	return container_of(se, struct task_struct, se);
255 }
256 
257 /* Walk up scheduling entities hierarchy */
258 #define for_each_sched_entity(se) \
259 		for (; se; se = se->parent)
260 
261 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
262 {
263 	return p->se.cfs_rq;
264 }
265 
266 /* runqueue on which this entity is (to be) queued */
267 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
268 {
269 	return se->cfs_rq;
270 }
271 
272 /* runqueue "owned" by this group */
273 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
274 {
275 	return grp->my_q;
276 }
277 
278 static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
279 {
280 	struct rq *rq = rq_of(cfs_rq);
281 	int cpu = cpu_of(rq);
282 
283 	if (cfs_rq->on_list)
284 		return rq->tmp_alone_branch == &rq->leaf_cfs_rq_list;
285 
286 	cfs_rq->on_list = 1;
287 
288 	/*
289 	 * Ensure we either appear before our parent (if already
290 	 * enqueued) or force our parent to appear after us when it is
291 	 * enqueued. The fact that we always enqueue bottom-up
292 	 * reduces this to two cases and a special case for the root
293 	 * cfs_rq. Furthermore, it also means that we will always reset
294 	 * tmp_alone_branch either when the branch is connected
295 	 * to a tree or when we reach the top of the tree
296 	 */
297 	if (cfs_rq->tg->parent &&
298 	    cfs_rq->tg->parent->cfs_rq[cpu]->on_list) {
299 		/*
300 		 * If parent is already on the list, we add the child
301 		 * just before. Thanks to circular linked property of
302 		 * the list, this means to put the child at the tail
303 		 * of the list that starts by parent.
304 		 */
305 		list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
306 			&(cfs_rq->tg->parent->cfs_rq[cpu]->leaf_cfs_rq_list));
307 		/*
308 		 * The branch is now connected to its tree so we can
309 		 * reset tmp_alone_branch to the beginning of the
310 		 * list.
311 		 */
312 		rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
313 		return true;
314 	}
315 
316 	if (!cfs_rq->tg->parent) {
317 		/*
318 		 * cfs rq without parent should be put
319 		 * at the tail of the list.
320 		 */
321 		list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
322 			&rq->leaf_cfs_rq_list);
323 		/*
324 		 * We have reach the top of a tree so we can reset
325 		 * tmp_alone_branch to the beginning of the list.
326 		 */
327 		rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
328 		return true;
329 	}
330 
331 	/*
332 	 * The parent has not already been added so we want to
333 	 * make sure that it will be put after us.
334 	 * tmp_alone_branch points to the begin of the branch
335 	 * where we will add parent.
336 	 */
337 	list_add_rcu(&cfs_rq->leaf_cfs_rq_list, rq->tmp_alone_branch);
338 	/*
339 	 * update tmp_alone_branch to points to the new begin
340 	 * of the branch
341 	 */
342 	rq->tmp_alone_branch = &cfs_rq->leaf_cfs_rq_list;
343 	return false;
344 }
345 
346 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
347 {
348 	if (cfs_rq->on_list) {
349 		struct rq *rq = rq_of(cfs_rq);
350 
351 		/*
352 		 * With cfs_rq being unthrottled/throttled during an enqueue,
353 		 * it can happen the tmp_alone_branch points the a leaf that
354 		 * we finally want to del. In this case, tmp_alone_branch moves
355 		 * to the prev element but it will point to rq->leaf_cfs_rq_list
356 		 * at the end of the enqueue.
357 		 */
358 		if (rq->tmp_alone_branch == &cfs_rq->leaf_cfs_rq_list)
359 			rq->tmp_alone_branch = cfs_rq->leaf_cfs_rq_list.prev;
360 
361 		list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
362 		cfs_rq->on_list = 0;
363 	}
364 }
365 
366 static inline void assert_list_leaf_cfs_rq(struct rq *rq)
367 {
368 	SCHED_WARN_ON(rq->tmp_alone_branch != &rq->leaf_cfs_rq_list);
369 }
370 
371 /* Iterate thr' all leaf cfs_rq's on a runqueue */
372 #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos)			\
373 	list_for_each_entry_safe(cfs_rq, pos, &rq->leaf_cfs_rq_list,	\
374 				 leaf_cfs_rq_list)
375 
376 /* Do the two (enqueued) entities belong to the same group ? */
377 static inline struct cfs_rq *
378 is_same_group(struct sched_entity *se, struct sched_entity *pse)
379 {
380 	if (se->cfs_rq == pse->cfs_rq)
381 		return se->cfs_rq;
382 
383 	return NULL;
384 }
385 
386 static inline struct sched_entity *parent_entity(struct sched_entity *se)
387 {
388 	return se->parent;
389 }
390 
391 static void
392 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
393 {
394 	int se_depth, pse_depth;
395 
396 	/*
397 	 * preemption test can be made between sibling entities who are in the
398 	 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
399 	 * both tasks until we find their ancestors who are siblings of common
400 	 * parent.
401 	 */
402 
403 	/* First walk up until both entities are at same depth */
404 	se_depth = (*se)->depth;
405 	pse_depth = (*pse)->depth;
406 
407 	while (se_depth > pse_depth) {
408 		se_depth--;
409 		*se = parent_entity(*se);
410 	}
411 
412 	while (pse_depth > se_depth) {
413 		pse_depth--;
414 		*pse = parent_entity(*pse);
415 	}
416 
417 	while (!is_same_group(*se, *pse)) {
418 		*se = parent_entity(*se);
419 		*pse = parent_entity(*pse);
420 	}
421 }
422 
423 #else	/* !CONFIG_FAIR_GROUP_SCHED */
424 
425 static inline struct task_struct *task_of(struct sched_entity *se)
426 {
427 	return container_of(se, struct task_struct, se);
428 }
429 
430 #define for_each_sched_entity(se) \
431 		for (; se; se = NULL)
432 
433 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
434 {
435 	return &task_rq(p)->cfs;
436 }
437 
438 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
439 {
440 	struct task_struct *p = task_of(se);
441 	struct rq *rq = task_rq(p);
442 
443 	return &rq->cfs;
444 }
445 
446 /* runqueue "owned" by this group */
447 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
448 {
449 	return NULL;
450 }
451 
452 static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
453 {
454 	return true;
455 }
456 
457 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
458 {
459 }
460 
461 static inline void assert_list_leaf_cfs_rq(struct rq *rq)
462 {
463 }
464 
465 #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos)	\
466 		for (cfs_rq = &rq->cfs, pos = NULL; cfs_rq; cfs_rq = pos)
467 
468 static inline struct sched_entity *parent_entity(struct sched_entity *se)
469 {
470 	return NULL;
471 }
472 
473 static inline void
474 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
475 {
476 }
477 
478 #endif	/* CONFIG_FAIR_GROUP_SCHED */
479 
480 static __always_inline
481 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec);
482 
483 /**************************************************************
484  * Scheduling class tree data structure manipulation methods:
485  */
486 
487 static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
488 {
489 	s64 delta = (s64)(vruntime - max_vruntime);
490 	if (delta > 0)
491 		max_vruntime = vruntime;
492 
493 	return max_vruntime;
494 }
495 
496 static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
497 {
498 	s64 delta = (s64)(vruntime - min_vruntime);
499 	if (delta < 0)
500 		min_vruntime = vruntime;
501 
502 	return min_vruntime;
503 }
504 
505 static inline int entity_before(struct sched_entity *a,
506 				struct sched_entity *b)
507 {
508 	return (s64)(a->vruntime - b->vruntime) < 0;
509 }
510 
511 static void update_min_vruntime(struct cfs_rq *cfs_rq)
512 {
513 	struct sched_entity *curr = cfs_rq->curr;
514 	struct rb_node *leftmost = rb_first_cached(&cfs_rq->tasks_timeline);
515 
516 	u64 vruntime = cfs_rq->min_vruntime;
517 
518 	if (curr) {
519 		if (curr->on_rq)
520 			vruntime = curr->vruntime;
521 		else
522 			curr = NULL;
523 	}
524 
525 	if (leftmost) { /* non-empty tree */
526 		struct sched_entity *se;
527 		se = rb_entry(leftmost, struct sched_entity, run_node);
528 
529 		if (!curr)
530 			vruntime = se->vruntime;
531 		else
532 			vruntime = min_vruntime(vruntime, se->vruntime);
533 	}
534 
535 	/* ensure we never gain time by being placed backwards. */
536 	cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
537 #ifndef CONFIG_64BIT
538 	smp_wmb();
539 	cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
540 #endif
541 }
542 
543 /*
544  * Enqueue an entity into the rb-tree:
545  */
546 static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
547 {
548 	struct rb_node **link = &cfs_rq->tasks_timeline.rb_root.rb_node;
549 	struct rb_node *parent = NULL;
550 	struct sched_entity *entry;
551 	bool leftmost = true;
552 
553 	/*
554 	 * Find the right place in the rbtree:
555 	 */
556 	while (*link) {
557 		parent = *link;
558 		entry = rb_entry(parent, struct sched_entity, run_node);
559 		/*
560 		 * We dont care about collisions. Nodes with
561 		 * the same key stay together.
562 		 */
563 		if (entity_before(se, entry)) {
564 			link = &parent->rb_left;
565 		} else {
566 			link = &parent->rb_right;
567 			leftmost = false;
568 		}
569 	}
570 
571 	rb_link_node(&se->run_node, parent, link);
572 	rb_insert_color_cached(&se->run_node,
573 			       &cfs_rq->tasks_timeline, leftmost);
574 }
575 
576 static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
577 {
578 	rb_erase_cached(&se->run_node, &cfs_rq->tasks_timeline);
579 }
580 
581 struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
582 {
583 	struct rb_node *left = rb_first_cached(&cfs_rq->tasks_timeline);
584 
585 	if (!left)
586 		return NULL;
587 
588 	return rb_entry(left, struct sched_entity, run_node);
589 }
590 
591 static struct sched_entity *__pick_next_entity(struct sched_entity *se)
592 {
593 	struct rb_node *next = rb_next(&se->run_node);
594 
595 	if (!next)
596 		return NULL;
597 
598 	return rb_entry(next, struct sched_entity, run_node);
599 }
600 
601 #ifdef CONFIG_SCHED_DEBUG
602 struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
603 {
604 	struct rb_node *last = rb_last(&cfs_rq->tasks_timeline.rb_root);
605 
606 	if (!last)
607 		return NULL;
608 
609 	return rb_entry(last, struct sched_entity, run_node);
610 }
611 
612 /**************************************************************
613  * Scheduling class statistics methods:
614  */
615 
616 int sched_proc_update_handler(struct ctl_table *table, int write,
617 		void __user *buffer, size_t *lenp,
618 		loff_t *ppos)
619 {
620 	int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
621 	unsigned int factor = get_update_sysctl_factor();
622 
623 	if (ret || !write)
624 		return ret;
625 
626 	sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
627 					sysctl_sched_min_granularity);
628 
629 #define WRT_SYSCTL(name) \
630 	(normalized_sysctl_##name = sysctl_##name / (factor))
631 	WRT_SYSCTL(sched_min_granularity);
632 	WRT_SYSCTL(sched_latency);
633 	WRT_SYSCTL(sched_wakeup_granularity);
634 #undef WRT_SYSCTL
635 
636 	return 0;
637 }
638 #endif
639 
640 /*
641  * delta /= w
642  */
643 static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
644 {
645 	if (unlikely(se->load.weight != NICE_0_LOAD))
646 		delta = __calc_delta(delta, NICE_0_LOAD, &se->load);
647 
648 	return delta;
649 }
650 
651 /*
652  * The idea is to set a period in which each task runs once.
653  *
654  * When there are too many tasks (sched_nr_latency) we have to stretch
655  * this period because otherwise the slices get too small.
656  *
657  * p = (nr <= nl) ? l : l*nr/nl
658  */
659 static u64 __sched_period(unsigned long nr_running)
660 {
661 	if (unlikely(nr_running > sched_nr_latency))
662 		return nr_running * sysctl_sched_min_granularity;
663 	else
664 		return sysctl_sched_latency;
665 }
666 
667 /*
668  * We calculate the wall-time slice from the period by taking a part
669  * proportional to the weight.
670  *
671  * s = p*P[w/rw]
672  */
673 static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
674 {
675 	u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
676 
677 	for_each_sched_entity(se) {
678 		struct load_weight *load;
679 		struct load_weight lw;
680 
681 		cfs_rq = cfs_rq_of(se);
682 		load = &cfs_rq->load;
683 
684 		if (unlikely(!se->on_rq)) {
685 			lw = cfs_rq->load;
686 
687 			update_load_add(&lw, se->load.weight);
688 			load = &lw;
689 		}
690 		slice = __calc_delta(slice, se->load.weight, load);
691 	}
692 	return slice;
693 }
694 
695 /*
696  * We calculate the vruntime slice of a to-be-inserted task.
697  *
698  * vs = s/w
699  */
700 static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
701 {
702 	return calc_delta_fair(sched_slice(cfs_rq, se), se);
703 }
704 
705 #include "pelt.h"
706 #ifdef CONFIG_SMP
707 
708 static int select_idle_sibling(struct task_struct *p, int prev_cpu, int cpu);
709 static unsigned long task_h_load(struct task_struct *p);
710 static unsigned long capacity_of(int cpu);
711 
712 /* Give new sched_entity start runnable values to heavy its load in infant time */
713 void init_entity_runnable_average(struct sched_entity *se)
714 {
715 	struct sched_avg *sa = &se->avg;
716 
717 	memset(sa, 0, sizeof(*sa));
718 
719 	/*
720 	 * Tasks are initialized with full load to be seen as heavy tasks until
721 	 * they get a chance to stabilize to their real load level.
722 	 * Group entities are initialized with zero load to reflect the fact that
723 	 * nothing has been attached to the task group yet.
724 	 */
725 	if (entity_is_task(se))
726 		sa->runnable_load_avg = sa->load_avg = scale_load_down(se->load.weight);
727 
728 	se->runnable_weight = se->load.weight;
729 
730 	/* when this task enqueue'ed, it will contribute to its cfs_rq's load_avg */
731 }
732 
733 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq);
734 static void attach_entity_cfs_rq(struct sched_entity *se);
735 
736 /*
737  * With new tasks being created, their initial util_avgs are extrapolated
738  * based on the cfs_rq's current util_avg:
739  *
740  *   util_avg = cfs_rq->util_avg / (cfs_rq->load_avg + 1) * se.load.weight
741  *
742  * However, in many cases, the above util_avg does not give a desired
743  * value. Moreover, the sum of the util_avgs may be divergent, such
744  * as when the series is a harmonic series.
745  *
746  * To solve this problem, we also cap the util_avg of successive tasks to
747  * only 1/2 of the left utilization budget:
748  *
749  *   util_avg_cap = (cpu_scale - cfs_rq->avg.util_avg) / 2^n
750  *
751  * where n denotes the nth task and cpu_scale the CPU capacity.
752  *
753  * For example, for a CPU with 1024 of capacity, a simplest series from
754  * the beginning would be like:
755  *
756  *  task  util_avg: 512, 256, 128,  64,  32,   16,    8, ...
757  * cfs_rq util_avg: 512, 768, 896, 960, 992, 1008, 1016, ...
758  *
759  * Finally, that extrapolated util_avg is clamped to the cap (util_avg_cap)
760  * if util_avg > util_avg_cap.
761  */
762 void post_init_entity_util_avg(struct task_struct *p)
763 {
764 	struct sched_entity *se = &p->se;
765 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
766 	struct sched_avg *sa = &se->avg;
767 	long cpu_scale = arch_scale_cpu_capacity(NULL, cpu_of(rq_of(cfs_rq)));
768 	long cap = (long)(cpu_scale - cfs_rq->avg.util_avg) / 2;
769 
770 	if (cap > 0) {
771 		if (cfs_rq->avg.util_avg != 0) {
772 			sa->util_avg  = cfs_rq->avg.util_avg * se->load.weight;
773 			sa->util_avg /= (cfs_rq->avg.load_avg + 1);
774 
775 			if (sa->util_avg > cap)
776 				sa->util_avg = cap;
777 		} else {
778 			sa->util_avg = cap;
779 		}
780 	}
781 
782 	if (p->sched_class != &fair_sched_class) {
783 		/*
784 		 * For !fair tasks do:
785 		 *
786 		update_cfs_rq_load_avg(now, cfs_rq);
787 		attach_entity_load_avg(cfs_rq, se, 0);
788 		switched_from_fair(rq, p);
789 		 *
790 		 * such that the next switched_to_fair() has the
791 		 * expected state.
792 		 */
793 		se->avg.last_update_time = cfs_rq_clock_pelt(cfs_rq);
794 		return;
795 	}
796 
797 	attach_entity_cfs_rq(se);
798 }
799 
800 #else /* !CONFIG_SMP */
801 void init_entity_runnable_average(struct sched_entity *se)
802 {
803 }
804 void post_init_entity_util_avg(struct task_struct *p)
805 {
806 }
807 static void update_tg_load_avg(struct cfs_rq *cfs_rq, int force)
808 {
809 }
810 #endif /* CONFIG_SMP */
811 
812 /*
813  * Update the current task's runtime statistics.
814  */
815 static void update_curr(struct cfs_rq *cfs_rq)
816 {
817 	struct sched_entity *curr = cfs_rq->curr;
818 	u64 now = rq_clock_task(rq_of(cfs_rq));
819 	u64 delta_exec;
820 
821 	if (unlikely(!curr))
822 		return;
823 
824 	delta_exec = now - curr->exec_start;
825 	if (unlikely((s64)delta_exec <= 0))
826 		return;
827 
828 	curr->exec_start = now;
829 
830 	schedstat_set(curr->statistics.exec_max,
831 		      max(delta_exec, curr->statistics.exec_max));
832 
833 	curr->sum_exec_runtime += delta_exec;
834 	schedstat_add(cfs_rq->exec_clock, delta_exec);
835 
836 	curr->vruntime += calc_delta_fair(delta_exec, curr);
837 	update_min_vruntime(cfs_rq);
838 
839 	if (entity_is_task(curr)) {
840 		struct task_struct *curtask = task_of(curr);
841 
842 		trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
843 		cgroup_account_cputime(curtask, delta_exec);
844 		account_group_exec_runtime(curtask, delta_exec);
845 	}
846 
847 	account_cfs_rq_runtime(cfs_rq, delta_exec);
848 }
849 
850 static void update_curr_fair(struct rq *rq)
851 {
852 	update_curr(cfs_rq_of(&rq->curr->se));
853 }
854 
855 static inline void
856 update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
857 {
858 	u64 wait_start, prev_wait_start;
859 
860 	if (!schedstat_enabled())
861 		return;
862 
863 	wait_start = rq_clock(rq_of(cfs_rq));
864 	prev_wait_start = schedstat_val(se->statistics.wait_start);
865 
866 	if (entity_is_task(se) && task_on_rq_migrating(task_of(se)) &&
867 	    likely(wait_start > prev_wait_start))
868 		wait_start -= prev_wait_start;
869 
870 	__schedstat_set(se->statistics.wait_start, wait_start);
871 }
872 
873 static inline void
874 update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
875 {
876 	struct task_struct *p;
877 	u64 delta;
878 
879 	if (!schedstat_enabled())
880 		return;
881 
882 	delta = rq_clock(rq_of(cfs_rq)) - schedstat_val(se->statistics.wait_start);
883 
884 	if (entity_is_task(se)) {
885 		p = task_of(se);
886 		if (task_on_rq_migrating(p)) {
887 			/*
888 			 * Preserve migrating task's wait time so wait_start
889 			 * time stamp can be adjusted to accumulate wait time
890 			 * prior to migration.
891 			 */
892 			__schedstat_set(se->statistics.wait_start, delta);
893 			return;
894 		}
895 		trace_sched_stat_wait(p, delta);
896 	}
897 
898 	__schedstat_set(se->statistics.wait_max,
899 		      max(schedstat_val(se->statistics.wait_max), delta));
900 	__schedstat_inc(se->statistics.wait_count);
901 	__schedstat_add(se->statistics.wait_sum, delta);
902 	__schedstat_set(se->statistics.wait_start, 0);
903 }
904 
905 static inline void
906 update_stats_enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
907 {
908 	struct task_struct *tsk = NULL;
909 	u64 sleep_start, block_start;
910 
911 	if (!schedstat_enabled())
912 		return;
913 
914 	sleep_start = schedstat_val(se->statistics.sleep_start);
915 	block_start = schedstat_val(se->statistics.block_start);
916 
917 	if (entity_is_task(se))
918 		tsk = task_of(se);
919 
920 	if (sleep_start) {
921 		u64 delta = rq_clock(rq_of(cfs_rq)) - sleep_start;
922 
923 		if ((s64)delta < 0)
924 			delta = 0;
925 
926 		if (unlikely(delta > schedstat_val(se->statistics.sleep_max)))
927 			__schedstat_set(se->statistics.sleep_max, delta);
928 
929 		__schedstat_set(se->statistics.sleep_start, 0);
930 		__schedstat_add(se->statistics.sum_sleep_runtime, delta);
931 
932 		if (tsk) {
933 			account_scheduler_latency(tsk, delta >> 10, 1);
934 			trace_sched_stat_sleep(tsk, delta);
935 		}
936 	}
937 	if (block_start) {
938 		u64 delta = rq_clock(rq_of(cfs_rq)) - block_start;
939 
940 		if ((s64)delta < 0)
941 			delta = 0;
942 
943 		if (unlikely(delta > schedstat_val(se->statistics.block_max)))
944 			__schedstat_set(se->statistics.block_max, delta);
945 
946 		__schedstat_set(se->statistics.block_start, 0);
947 		__schedstat_add(se->statistics.sum_sleep_runtime, delta);
948 
949 		if (tsk) {
950 			if (tsk->in_iowait) {
951 				__schedstat_add(se->statistics.iowait_sum, delta);
952 				__schedstat_inc(se->statistics.iowait_count);
953 				trace_sched_stat_iowait(tsk, delta);
954 			}
955 
956 			trace_sched_stat_blocked(tsk, delta);
957 
958 			/*
959 			 * Blocking time is in units of nanosecs, so shift by
960 			 * 20 to get a milliseconds-range estimation of the
961 			 * amount of time that the task spent sleeping:
962 			 */
963 			if (unlikely(prof_on == SLEEP_PROFILING)) {
964 				profile_hits(SLEEP_PROFILING,
965 						(void *)get_wchan(tsk),
966 						delta >> 20);
967 			}
968 			account_scheduler_latency(tsk, delta >> 10, 0);
969 		}
970 	}
971 }
972 
973 /*
974  * Task is being enqueued - update stats:
975  */
976 static inline void
977 update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
978 {
979 	if (!schedstat_enabled())
980 		return;
981 
982 	/*
983 	 * Are we enqueueing a waiting task? (for current tasks
984 	 * a dequeue/enqueue event is a NOP)
985 	 */
986 	if (se != cfs_rq->curr)
987 		update_stats_wait_start(cfs_rq, se);
988 
989 	if (flags & ENQUEUE_WAKEUP)
990 		update_stats_enqueue_sleeper(cfs_rq, se);
991 }
992 
993 static inline void
994 update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
995 {
996 
997 	if (!schedstat_enabled())
998 		return;
999 
1000 	/*
1001 	 * Mark the end of the wait period if dequeueing a
1002 	 * waiting task:
1003 	 */
1004 	if (se != cfs_rq->curr)
1005 		update_stats_wait_end(cfs_rq, se);
1006 
1007 	if ((flags & DEQUEUE_SLEEP) && entity_is_task(se)) {
1008 		struct task_struct *tsk = task_of(se);
1009 
1010 		if (tsk->state & TASK_INTERRUPTIBLE)
1011 			__schedstat_set(se->statistics.sleep_start,
1012 				      rq_clock(rq_of(cfs_rq)));
1013 		if (tsk->state & TASK_UNINTERRUPTIBLE)
1014 			__schedstat_set(se->statistics.block_start,
1015 				      rq_clock(rq_of(cfs_rq)));
1016 	}
1017 }
1018 
1019 /*
1020  * We are picking a new current task - update its stats:
1021  */
1022 static inline void
1023 update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
1024 {
1025 	/*
1026 	 * We are starting a new run period:
1027 	 */
1028 	se->exec_start = rq_clock_task(rq_of(cfs_rq));
1029 }
1030 
1031 /**************************************************
1032  * Scheduling class queueing methods:
1033  */
1034 
1035 #ifdef CONFIG_NUMA_BALANCING
1036 /*
1037  * Approximate time to scan a full NUMA task in ms. The task scan period is
1038  * calculated based on the tasks virtual memory size and
1039  * numa_balancing_scan_size.
1040  */
1041 unsigned int sysctl_numa_balancing_scan_period_min = 1000;
1042 unsigned int sysctl_numa_balancing_scan_period_max = 60000;
1043 
1044 /* Portion of address space to scan in MB */
1045 unsigned int sysctl_numa_balancing_scan_size = 256;
1046 
1047 /* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
1048 unsigned int sysctl_numa_balancing_scan_delay = 1000;
1049 
1050 struct numa_group {
1051 	refcount_t refcount;
1052 
1053 	spinlock_t lock; /* nr_tasks, tasks */
1054 	int nr_tasks;
1055 	pid_t gid;
1056 	int active_nodes;
1057 
1058 	struct rcu_head rcu;
1059 	unsigned long total_faults;
1060 	unsigned long max_faults_cpu;
1061 	/*
1062 	 * Faults_cpu is used to decide whether memory should move
1063 	 * towards the CPU. As a consequence, these stats are weighted
1064 	 * more by CPU use than by memory faults.
1065 	 */
1066 	unsigned long *faults_cpu;
1067 	unsigned long faults[0];
1068 };
1069 
1070 static inline unsigned long group_faults_priv(struct numa_group *ng);
1071 static inline unsigned long group_faults_shared(struct numa_group *ng);
1072 
1073 static unsigned int task_nr_scan_windows(struct task_struct *p)
1074 {
1075 	unsigned long rss = 0;
1076 	unsigned long nr_scan_pages;
1077 
1078 	/*
1079 	 * Calculations based on RSS as non-present and empty pages are skipped
1080 	 * by the PTE scanner and NUMA hinting faults should be trapped based
1081 	 * on resident pages
1082 	 */
1083 	nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
1084 	rss = get_mm_rss(p->mm);
1085 	if (!rss)
1086 		rss = nr_scan_pages;
1087 
1088 	rss = round_up(rss, nr_scan_pages);
1089 	return rss / nr_scan_pages;
1090 }
1091 
1092 /* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
1093 #define MAX_SCAN_WINDOW 2560
1094 
1095 static unsigned int task_scan_min(struct task_struct *p)
1096 {
1097 	unsigned int scan_size = READ_ONCE(sysctl_numa_balancing_scan_size);
1098 	unsigned int scan, floor;
1099 	unsigned int windows = 1;
1100 
1101 	if (scan_size < MAX_SCAN_WINDOW)
1102 		windows = MAX_SCAN_WINDOW / scan_size;
1103 	floor = 1000 / windows;
1104 
1105 	scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
1106 	return max_t(unsigned int, floor, scan);
1107 }
1108 
1109 static unsigned int task_scan_start(struct task_struct *p)
1110 {
1111 	unsigned long smin = task_scan_min(p);
1112 	unsigned long period = smin;
1113 
1114 	/* Scale the maximum scan period with the amount of shared memory. */
1115 	if (p->numa_group) {
1116 		struct numa_group *ng = p->numa_group;
1117 		unsigned long shared = group_faults_shared(ng);
1118 		unsigned long private = group_faults_priv(ng);
1119 
1120 		period *= refcount_read(&ng->refcount);
1121 		period *= shared + 1;
1122 		period /= private + shared + 1;
1123 	}
1124 
1125 	return max(smin, period);
1126 }
1127 
1128 static unsigned int task_scan_max(struct task_struct *p)
1129 {
1130 	unsigned long smin = task_scan_min(p);
1131 	unsigned long smax;
1132 
1133 	/* Watch for min being lower than max due to floor calculations */
1134 	smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
1135 
1136 	/* Scale the maximum scan period with the amount of shared memory. */
1137 	if (p->numa_group) {
1138 		struct numa_group *ng = p->numa_group;
1139 		unsigned long shared = group_faults_shared(ng);
1140 		unsigned long private = group_faults_priv(ng);
1141 		unsigned long period = smax;
1142 
1143 		period *= refcount_read(&ng->refcount);
1144 		period *= shared + 1;
1145 		period /= private + shared + 1;
1146 
1147 		smax = max(smax, period);
1148 	}
1149 
1150 	return max(smin, smax);
1151 }
1152 
1153 void init_numa_balancing(unsigned long clone_flags, struct task_struct *p)
1154 {
1155 	int mm_users = 0;
1156 	struct mm_struct *mm = p->mm;
1157 
1158 	if (mm) {
1159 		mm_users = atomic_read(&mm->mm_users);
1160 		if (mm_users == 1) {
1161 			mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
1162 			mm->numa_scan_seq = 0;
1163 		}
1164 	}
1165 	p->node_stamp			= 0;
1166 	p->numa_scan_seq		= mm ? mm->numa_scan_seq : 0;
1167 	p->numa_scan_period		= sysctl_numa_balancing_scan_delay;
1168 	p->numa_work.next		= &p->numa_work;
1169 	p->numa_faults			= NULL;
1170 	p->numa_group			= NULL;
1171 	p->last_task_numa_placement	= 0;
1172 	p->last_sum_exec_runtime	= 0;
1173 
1174 	/* New address space, reset the preferred nid */
1175 	if (!(clone_flags & CLONE_VM)) {
1176 		p->numa_preferred_nid = NUMA_NO_NODE;
1177 		return;
1178 	}
1179 
1180 	/*
1181 	 * New thread, keep existing numa_preferred_nid which should be copied
1182 	 * already by arch_dup_task_struct but stagger when scans start.
1183 	 */
1184 	if (mm) {
1185 		unsigned int delay;
1186 
1187 		delay = min_t(unsigned int, task_scan_max(current),
1188 			current->numa_scan_period * mm_users * NSEC_PER_MSEC);
1189 		delay += 2 * TICK_NSEC;
1190 		p->node_stamp = delay;
1191 	}
1192 }
1193 
1194 static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
1195 {
1196 	rq->nr_numa_running += (p->numa_preferred_nid != NUMA_NO_NODE);
1197 	rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
1198 }
1199 
1200 static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
1201 {
1202 	rq->nr_numa_running -= (p->numa_preferred_nid != NUMA_NO_NODE);
1203 	rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
1204 }
1205 
1206 /* Shared or private faults. */
1207 #define NR_NUMA_HINT_FAULT_TYPES 2
1208 
1209 /* Memory and CPU locality */
1210 #define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2)
1211 
1212 /* Averaged statistics, and temporary buffers. */
1213 #define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2)
1214 
1215 pid_t task_numa_group_id(struct task_struct *p)
1216 {
1217 	return p->numa_group ? p->numa_group->gid : 0;
1218 }
1219 
1220 /*
1221  * The averaged statistics, shared & private, memory & CPU,
1222  * occupy the first half of the array. The second half of the
1223  * array is for current counters, which are averaged into the
1224  * first set by task_numa_placement.
1225  */
1226 static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv)
1227 {
1228 	return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv;
1229 }
1230 
1231 static inline unsigned long task_faults(struct task_struct *p, int nid)
1232 {
1233 	if (!p->numa_faults)
1234 		return 0;
1235 
1236 	return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1237 		p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)];
1238 }
1239 
1240 static inline unsigned long group_faults(struct task_struct *p, int nid)
1241 {
1242 	if (!p->numa_group)
1243 		return 0;
1244 
1245 	return p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1246 		p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 1)];
1247 }
1248 
1249 static inline unsigned long group_faults_cpu(struct numa_group *group, int nid)
1250 {
1251 	return group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 0)] +
1252 		group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 1)];
1253 }
1254 
1255 static inline unsigned long group_faults_priv(struct numa_group *ng)
1256 {
1257 	unsigned long faults = 0;
1258 	int node;
1259 
1260 	for_each_online_node(node) {
1261 		faults += ng->faults[task_faults_idx(NUMA_MEM, node, 1)];
1262 	}
1263 
1264 	return faults;
1265 }
1266 
1267 static inline unsigned long group_faults_shared(struct numa_group *ng)
1268 {
1269 	unsigned long faults = 0;
1270 	int node;
1271 
1272 	for_each_online_node(node) {
1273 		faults += ng->faults[task_faults_idx(NUMA_MEM, node, 0)];
1274 	}
1275 
1276 	return faults;
1277 }
1278 
1279 /*
1280  * A node triggering more than 1/3 as many NUMA faults as the maximum is
1281  * considered part of a numa group's pseudo-interleaving set. Migrations
1282  * between these nodes are slowed down, to allow things to settle down.
1283  */
1284 #define ACTIVE_NODE_FRACTION 3
1285 
1286 static bool numa_is_active_node(int nid, struct numa_group *ng)
1287 {
1288 	return group_faults_cpu(ng, nid) * ACTIVE_NODE_FRACTION > ng->max_faults_cpu;
1289 }
1290 
1291 /* Handle placement on systems where not all nodes are directly connected. */
1292 static unsigned long score_nearby_nodes(struct task_struct *p, int nid,
1293 					int maxdist, bool task)
1294 {
1295 	unsigned long score = 0;
1296 	int node;
1297 
1298 	/*
1299 	 * All nodes are directly connected, and the same distance
1300 	 * from each other. No need for fancy placement algorithms.
1301 	 */
1302 	if (sched_numa_topology_type == NUMA_DIRECT)
1303 		return 0;
1304 
1305 	/*
1306 	 * This code is called for each node, introducing N^2 complexity,
1307 	 * which should be ok given the number of nodes rarely exceeds 8.
1308 	 */
1309 	for_each_online_node(node) {
1310 		unsigned long faults;
1311 		int dist = node_distance(nid, node);
1312 
1313 		/*
1314 		 * The furthest away nodes in the system are not interesting
1315 		 * for placement; nid was already counted.
1316 		 */
1317 		if (dist == sched_max_numa_distance || node == nid)
1318 			continue;
1319 
1320 		/*
1321 		 * On systems with a backplane NUMA topology, compare groups
1322 		 * of nodes, and move tasks towards the group with the most
1323 		 * memory accesses. When comparing two nodes at distance
1324 		 * "hoplimit", only nodes closer by than "hoplimit" are part
1325 		 * of each group. Skip other nodes.
1326 		 */
1327 		if (sched_numa_topology_type == NUMA_BACKPLANE &&
1328 					dist >= maxdist)
1329 			continue;
1330 
1331 		/* Add up the faults from nearby nodes. */
1332 		if (task)
1333 			faults = task_faults(p, node);
1334 		else
1335 			faults = group_faults(p, node);
1336 
1337 		/*
1338 		 * On systems with a glueless mesh NUMA topology, there are
1339 		 * no fixed "groups of nodes". Instead, nodes that are not
1340 		 * directly connected bounce traffic through intermediate
1341 		 * nodes; a numa_group can occupy any set of nodes.
1342 		 * The further away a node is, the less the faults count.
1343 		 * This seems to result in good task placement.
1344 		 */
1345 		if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
1346 			faults *= (sched_max_numa_distance - dist);
1347 			faults /= (sched_max_numa_distance - LOCAL_DISTANCE);
1348 		}
1349 
1350 		score += faults;
1351 	}
1352 
1353 	return score;
1354 }
1355 
1356 /*
1357  * These return the fraction of accesses done by a particular task, or
1358  * task group, on a particular numa node.  The group weight is given a
1359  * larger multiplier, in order to group tasks together that are almost
1360  * evenly spread out between numa nodes.
1361  */
1362 static inline unsigned long task_weight(struct task_struct *p, int nid,
1363 					int dist)
1364 {
1365 	unsigned long faults, total_faults;
1366 
1367 	if (!p->numa_faults)
1368 		return 0;
1369 
1370 	total_faults = p->total_numa_faults;
1371 
1372 	if (!total_faults)
1373 		return 0;
1374 
1375 	faults = task_faults(p, nid);
1376 	faults += score_nearby_nodes(p, nid, dist, true);
1377 
1378 	return 1000 * faults / total_faults;
1379 }
1380 
1381 static inline unsigned long group_weight(struct task_struct *p, int nid,
1382 					 int dist)
1383 {
1384 	unsigned long faults, total_faults;
1385 
1386 	if (!p->numa_group)
1387 		return 0;
1388 
1389 	total_faults = p->numa_group->total_faults;
1390 
1391 	if (!total_faults)
1392 		return 0;
1393 
1394 	faults = group_faults(p, nid);
1395 	faults += score_nearby_nodes(p, nid, dist, false);
1396 
1397 	return 1000 * faults / total_faults;
1398 }
1399 
1400 bool should_numa_migrate_memory(struct task_struct *p, struct page * page,
1401 				int src_nid, int dst_cpu)
1402 {
1403 	struct numa_group *ng = p->numa_group;
1404 	int dst_nid = cpu_to_node(dst_cpu);
1405 	int last_cpupid, this_cpupid;
1406 
1407 	this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid);
1408 	last_cpupid = page_cpupid_xchg_last(page, this_cpupid);
1409 
1410 	/*
1411 	 * Allow first faults or private faults to migrate immediately early in
1412 	 * the lifetime of a task. The magic number 4 is based on waiting for
1413 	 * two full passes of the "multi-stage node selection" test that is
1414 	 * executed below.
1415 	 */
1416 	if ((p->numa_preferred_nid == NUMA_NO_NODE || p->numa_scan_seq <= 4) &&
1417 	    (cpupid_pid_unset(last_cpupid) || cpupid_match_pid(p, last_cpupid)))
1418 		return true;
1419 
1420 	/*
1421 	 * Multi-stage node selection is used in conjunction with a periodic
1422 	 * migration fault to build a temporal task<->page relation. By using
1423 	 * a two-stage filter we remove short/unlikely relations.
1424 	 *
1425 	 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate
1426 	 * a task's usage of a particular page (n_p) per total usage of this
1427 	 * page (n_t) (in a given time-span) to a probability.
1428 	 *
1429 	 * Our periodic faults will sample this probability and getting the
1430 	 * same result twice in a row, given these samples are fully
1431 	 * independent, is then given by P(n)^2, provided our sample period
1432 	 * is sufficiently short compared to the usage pattern.
1433 	 *
1434 	 * This quadric squishes small probabilities, making it less likely we
1435 	 * act on an unlikely task<->page relation.
1436 	 */
1437 	if (!cpupid_pid_unset(last_cpupid) &&
1438 				cpupid_to_nid(last_cpupid) != dst_nid)
1439 		return false;
1440 
1441 	/* Always allow migrate on private faults */
1442 	if (cpupid_match_pid(p, last_cpupid))
1443 		return true;
1444 
1445 	/* A shared fault, but p->numa_group has not been set up yet. */
1446 	if (!ng)
1447 		return true;
1448 
1449 	/*
1450 	 * Destination node is much more heavily used than the source
1451 	 * node? Allow migration.
1452 	 */
1453 	if (group_faults_cpu(ng, dst_nid) > group_faults_cpu(ng, src_nid) *
1454 					ACTIVE_NODE_FRACTION)
1455 		return true;
1456 
1457 	/*
1458 	 * Distribute memory according to CPU & memory use on each node,
1459 	 * with 3/4 hysteresis to avoid unnecessary memory migrations:
1460 	 *
1461 	 * faults_cpu(dst)   3   faults_cpu(src)
1462 	 * --------------- * - > ---------------
1463 	 * faults_mem(dst)   4   faults_mem(src)
1464 	 */
1465 	return group_faults_cpu(ng, dst_nid) * group_faults(p, src_nid) * 3 >
1466 	       group_faults_cpu(ng, src_nid) * group_faults(p, dst_nid) * 4;
1467 }
1468 
1469 static unsigned long weighted_cpuload(struct rq *rq);
1470 static unsigned long source_load(int cpu, int type);
1471 static unsigned long target_load(int cpu, int type);
1472 
1473 /* Cached statistics for all CPUs within a node */
1474 struct numa_stats {
1475 	unsigned long load;
1476 
1477 	/* Total compute capacity of CPUs on a node */
1478 	unsigned long compute_capacity;
1479 };
1480 
1481 /*
1482  * XXX borrowed from update_sg_lb_stats
1483  */
1484 static void update_numa_stats(struct numa_stats *ns, int nid)
1485 {
1486 	int cpu;
1487 
1488 	memset(ns, 0, sizeof(*ns));
1489 	for_each_cpu(cpu, cpumask_of_node(nid)) {
1490 		struct rq *rq = cpu_rq(cpu);
1491 
1492 		ns->load += weighted_cpuload(rq);
1493 		ns->compute_capacity += capacity_of(cpu);
1494 	}
1495 
1496 }
1497 
1498 struct task_numa_env {
1499 	struct task_struct *p;
1500 
1501 	int src_cpu, src_nid;
1502 	int dst_cpu, dst_nid;
1503 
1504 	struct numa_stats src_stats, dst_stats;
1505 
1506 	int imbalance_pct;
1507 	int dist;
1508 
1509 	struct task_struct *best_task;
1510 	long best_imp;
1511 	int best_cpu;
1512 };
1513 
1514 static void task_numa_assign(struct task_numa_env *env,
1515 			     struct task_struct *p, long imp)
1516 {
1517 	struct rq *rq = cpu_rq(env->dst_cpu);
1518 
1519 	/* Bail out if run-queue part of active NUMA balance. */
1520 	if (xchg(&rq->numa_migrate_on, 1))
1521 		return;
1522 
1523 	/*
1524 	 * Clear previous best_cpu/rq numa-migrate flag, since task now
1525 	 * found a better CPU to move/swap.
1526 	 */
1527 	if (env->best_cpu != -1) {
1528 		rq = cpu_rq(env->best_cpu);
1529 		WRITE_ONCE(rq->numa_migrate_on, 0);
1530 	}
1531 
1532 	if (env->best_task)
1533 		put_task_struct(env->best_task);
1534 	if (p)
1535 		get_task_struct(p);
1536 
1537 	env->best_task = p;
1538 	env->best_imp = imp;
1539 	env->best_cpu = env->dst_cpu;
1540 }
1541 
1542 static bool load_too_imbalanced(long src_load, long dst_load,
1543 				struct task_numa_env *env)
1544 {
1545 	long imb, old_imb;
1546 	long orig_src_load, orig_dst_load;
1547 	long src_capacity, dst_capacity;
1548 
1549 	/*
1550 	 * The load is corrected for the CPU capacity available on each node.
1551 	 *
1552 	 * src_load        dst_load
1553 	 * ------------ vs ---------
1554 	 * src_capacity    dst_capacity
1555 	 */
1556 	src_capacity = env->src_stats.compute_capacity;
1557 	dst_capacity = env->dst_stats.compute_capacity;
1558 
1559 	imb = abs(dst_load * src_capacity - src_load * dst_capacity);
1560 
1561 	orig_src_load = env->src_stats.load;
1562 	orig_dst_load = env->dst_stats.load;
1563 
1564 	old_imb = abs(orig_dst_load * src_capacity - orig_src_load * dst_capacity);
1565 
1566 	/* Would this change make things worse? */
1567 	return (imb > old_imb);
1568 }
1569 
1570 /*
1571  * Maximum NUMA importance can be 1998 (2*999);
1572  * SMALLIMP @ 30 would be close to 1998/64.
1573  * Used to deter task migration.
1574  */
1575 #define SMALLIMP	30
1576 
1577 /*
1578  * This checks if the overall compute and NUMA accesses of the system would
1579  * be improved if the source tasks was migrated to the target dst_cpu taking
1580  * into account that it might be best if task running on the dst_cpu should
1581  * be exchanged with the source task
1582  */
1583 static void task_numa_compare(struct task_numa_env *env,
1584 			      long taskimp, long groupimp, bool maymove)
1585 {
1586 	struct rq *dst_rq = cpu_rq(env->dst_cpu);
1587 	struct task_struct *cur;
1588 	long src_load, dst_load;
1589 	long load;
1590 	long imp = env->p->numa_group ? groupimp : taskimp;
1591 	long moveimp = imp;
1592 	int dist = env->dist;
1593 
1594 	if (READ_ONCE(dst_rq->numa_migrate_on))
1595 		return;
1596 
1597 	rcu_read_lock();
1598 	cur = task_rcu_dereference(&dst_rq->curr);
1599 	if (cur && ((cur->flags & PF_EXITING) || is_idle_task(cur)))
1600 		cur = NULL;
1601 
1602 	/*
1603 	 * Because we have preemption enabled we can get migrated around and
1604 	 * end try selecting ourselves (current == env->p) as a swap candidate.
1605 	 */
1606 	if (cur == env->p)
1607 		goto unlock;
1608 
1609 	if (!cur) {
1610 		if (maymove && moveimp >= env->best_imp)
1611 			goto assign;
1612 		else
1613 			goto unlock;
1614 	}
1615 
1616 	/*
1617 	 * "imp" is the fault differential for the source task between the
1618 	 * source and destination node. Calculate the total differential for
1619 	 * the source task and potential destination task. The more negative
1620 	 * the value is, the more remote accesses that would be expected to
1621 	 * be incurred if the tasks were swapped.
1622 	 */
1623 	/* Skip this swap candidate if cannot move to the source cpu */
1624 	if (!cpumask_test_cpu(env->src_cpu, &cur->cpus_allowed))
1625 		goto unlock;
1626 
1627 	/*
1628 	 * If dst and source tasks are in the same NUMA group, or not
1629 	 * in any group then look only at task weights.
1630 	 */
1631 	if (cur->numa_group == env->p->numa_group) {
1632 		imp = taskimp + task_weight(cur, env->src_nid, dist) -
1633 		      task_weight(cur, env->dst_nid, dist);
1634 		/*
1635 		 * Add some hysteresis to prevent swapping the
1636 		 * tasks within a group over tiny differences.
1637 		 */
1638 		if (cur->numa_group)
1639 			imp -= imp / 16;
1640 	} else {
1641 		/*
1642 		 * Compare the group weights. If a task is all by itself
1643 		 * (not part of a group), use the task weight instead.
1644 		 */
1645 		if (cur->numa_group && env->p->numa_group)
1646 			imp += group_weight(cur, env->src_nid, dist) -
1647 			       group_weight(cur, env->dst_nid, dist);
1648 		else
1649 			imp += task_weight(cur, env->src_nid, dist) -
1650 			       task_weight(cur, env->dst_nid, dist);
1651 	}
1652 
1653 	if (maymove && moveimp > imp && moveimp > env->best_imp) {
1654 		imp = moveimp;
1655 		cur = NULL;
1656 		goto assign;
1657 	}
1658 
1659 	/*
1660 	 * If the NUMA importance is less than SMALLIMP,
1661 	 * task migration might only result in ping pong
1662 	 * of tasks and also hurt performance due to cache
1663 	 * misses.
1664 	 */
1665 	if (imp < SMALLIMP || imp <= env->best_imp + SMALLIMP / 2)
1666 		goto unlock;
1667 
1668 	/*
1669 	 * In the overloaded case, try and keep the load balanced.
1670 	 */
1671 	load = task_h_load(env->p) - task_h_load(cur);
1672 	if (!load)
1673 		goto assign;
1674 
1675 	dst_load = env->dst_stats.load + load;
1676 	src_load = env->src_stats.load - load;
1677 
1678 	if (load_too_imbalanced(src_load, dst_load, env))
1679 		goto unlock;
1680 
1681 assign:
1682 	/*
1683 	 * One idle CPU per node is evaluated for a task numa move.
1684 	 * Call select_idle_sibling to maybe find a better one.
1685 	 */
1686 	if (!cur) {
1687 		/*
1688 		 * select_idle_siblings() uses an per-CPU cpumask that
1689 		 * can be used from IRQ context.
1690 		 */
1691 		local_irq_disable();
1692 		env->dst_cpu = select_idle_sibling(env->p, env->src_cpu,
1693 						   env->dst_cpu);
1694 		local_irq_enable();
1695 	}
1696 
1697 	task_numa_assign(env, cur, imp);
1698 unlock:
1699 	rcu_read_unlock();
1700 }
1701 
1702 static void task_numa_find_cpu(struct task_numa_env *env,
1703 				long taskimp, long groupimp)
1704 {
1705 	long src_load, dst_load, load;
1706 	bool maymove = false;
1707 	int cpu;
1708 
1709 	load = task_h_load(env->p);
1710 	dst_load = env->dst_stats.load + load;
1711 	src_load = env->src_stats.load - load;
1712 
1713 	/*
1714 	 * If the improvement from just moving env->p direction is better
1715 	 * than swapping tasks around, check if a move is possible.
1716 	 */
1717 	maymove = !load_too_imbalanced(src_load, dst_load, env);
1718 
1719 	for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
1720 		/* Skip this CPU if the source task cannot migrate */
1721 		if (!cpumask_test_cpu(cpu, &env->p->cpus_allowed))
1722 			continue;
1723 
1724 		env->dst_cpu = cpu;
1725 		task_numa_compare(env, taskimp, groupimp, maymove);
1726 	}
1727 }
1728 
1729 static int task_numa_migrate(struct task_struct *p)
1730 {
1731 	struct task_numa_env env = {
1732 		.p = p,
1733 
1734 		.src_cpu = task_cpu(p),
1735 		.src_nid = task_node(p),
1736 
1737 		.imbalance_pct = 112,
1738 
1739 		.best_task = NULL,
1740 		.best_imp = 0,
1741 		.best_cpu = -1,
1742 	};
1743 	struct sched_domain *sd;
1744 	struct rq *best_rq;
1745 	unsigned long taskweight, groupweight;
1746 	int nid, ret, dist;
1747 	long taskimp, groupimp;
1748 
1749 	/*
1750 	 * Pick the lowest SD_NUMA domain, as that would have the smallest
1751 	 * imbalance and would be the first to start moving tasks about.
1752 	 *
1753 	 * And we want to avoid any moving of tasks about, as that would create
1754 	 * random movement of tasks -- counter the numa conditions we're trying
1755 	 * to satisfy here.
1756 	 */
1757 	rcu_read_lock();
1758 	sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
1759 	if (sd)
1760 		env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
1761 	rcu_read_unlock();
1762 
1763 	/*
1764 	 * Cpusets can break the scheduler domain tree into smaller
1765 	 * balance domains, some of which do not cross NUMA boundaries.
1766 	 * Tasks that are "trapped" in such domains cannot be migrated
1767 	 * elsewhere, so there is no point in (re)trying.
1768 	 */
1769 	if (unlikely(!sd)) {
1770 		sched_setnuma(p, task_node(p));
1771 		return -EINVAL;
1772 	}
1773 
1774 	env.dst_nid = p->numa_preferred_nid;
1775 	dist = env.dist = node_distance(env.src_nid, env.dst_nid);
1776 	taskweight = task_weight(p, env.src_nid, dist);
1777 	groupweight = group_weight(p, env.src_nid, dist);
1778 	update_numa_stats(&env.src_stats, env.src_nid);
1779 	taskimp = task_weight(p, env.dst_nid, dist) - taskweight;
1780 	groupimp = group_weight(p, env.dst_nid, dist) - groupweight;
1781 	update_numa_stats(&env.dst_stats, env.dst_nid);
1782 
1783 	/* Try to find a spot on the preferred nid. */
1784 	task_numa_find_cpu(&env, taskimp, groupimp);
1785 
1786 	/*
1787 	 * Look at other nodes in these cases:
1788 	 * - there is no space available on the preferred_nid
1789 	 * - the task is part of a numa_group that is interleaved across
1790 	 *   multiple NUMA nodes; in order to better consolidate the group,
1791 	 *   we need to check other locations.
1792 	 */
1793 	if (env.best_cpu == -1 || (p->numa_group && p->numa_group->active_nodes > 1)) {
1794 		for_each_online_node(nid) {
1795 			if (nid == env.src_nid || nid == p->numa_preferred_nid)
1796 				continue;
1797 
1798 			dist = node_distance(env.src_nid, env.dst_nid);
1799 			if (sched_numa_topology_type == NUMA_BACKPLANE &&
1800 						dist != env.dist) {
1801 				taskweight = task_weight(p, env.src_nid, dist);
1802 				groupweight = group_weight(p, env.src_nid, dist);
1803 			}
1804 
1805 			/* Only consider nodes where both task and groups benefit */
1806 			taskimp = task_weight(p, nid, dist) - taskweight;
1807 			groupimp = group_weight(p, nid, dist) - groupweight;
1808 			if (taskimp < 0 && groupimp < 0)
1809 				continue;
1810 
1811 			env.dist = dist;
1812 			env.dst_nid = nid;
1813 			update_numa_stats(&env.dst_stats, env.dst_nid);
1814 			task_numa_find_cpu(&env, taskimp, groupimp);
1815 		}
1816 	}
1817 
1818 	/*
1819 	 * If the task is part of a workload that spans multiple NUMA nodes,
1820 	 * and is migrating into one of the workload's active nodes, remember
1821 	 * this node as the task's preferred numa node, so the workload can
1822 	 * settle down.
1823 	 * A task that migrated to a second choice node will be better off
1824 	 * trying for a better one later. Do not set the preferred node here.
1825 	 */
1826 	if (p->numa_group) {
1827 		if (env.best_cpu == -1)
1828 			nid = env.src_nid;
1829 		else
1830 			nid = cpu_to_node(env.best_cpu);
1831 
1832 		if (nid != p->numa_preferred_nid)
1833 			sched_setnuma(p, nid);
1834 	}
1835 
1836 	/* No better CPU than the current one was found. */
1837 	if (env.best_cpu == -1)
1838 		return -EAGAIN;
1839 
1840 	best_rq = cpu_rq(env.best_cpu);
1841 	if (env.best_task == NULL) {
1842 		ret = migrate_task_to(p, env.best_cpu);
1843 		WRITE_ONCE(best_rq->numa_migrate_on, 0);
1844 		if (ret != 0)
1845 			trace_sched_stick_numa(p, env.src_cpu, env.best_cpu);
1846 		return ret;
1847 	}
1848 
1849 	ret = migrate_swap(p, env.best_task, env.best_cpu, env.src_cpu);
1850 	WRITE_ONCE(best_rq->numa_migrate_on, 0);
1851 
1852 	if (ret != 0)
1853 		trace_sched_stick_numa(p, env.src_cpu, task_cpu(env.best_task));
1854 	put_task_struct(env.best_task);
1855 	return ret;
1856 }
1857 
1858 /* Attempt to migrate a task to a CPU on the preferred node. */
1859 static void numa_migrate_preferred(struct task_struct *p)
1860 {
1861 	unsigned long interval = HZ;
1862 
1863 	/* This task has no NUMA fault statistics yet */
1864 	if (unlikely(p->numa_preferred_nid == NUMA_NO_NODE || !p->numa_faults))
1865 		return;
1866 
1867 	/* Periodically retry migrating the task to the preferred node */
1868 	interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16);
1869 	p->numa_migrate_retry = jiffies + interval;
1870 
1871 	/* Success if task is already running on preferred CPU */
1872 	if (task_node(p) == p->numa_preferred_nid)
1873 		return;
1874 
1875 	/* Otherwise, try migrate to a CPU on the preferred node */
1876 	task_numa_migrate(p);
1877 }
1878 
1879 /*
1880  * Find out how many nodes on the workload is actively running on. Do this by
1881  * tracking the nodes from which NUMA hinting faults are triggered. This can
1882  * be different from the set of nodes where the workload's memory is currently
1883  * located.
1884  */
1885 static void numa_group_count_active_nodes(struct numa_group *numa_group)
1886 {
1887 	unsigned long faults, max_faults = 0;
1888 	int nid, active_nodes = 0;
1889 
1890 	for_each_online_node(nid) {
1891 		faults = group_faults_cpu(numa_group, nid);
1892 		if (faults > max_faults)
1893 			max_faults = faults;
1894 	}
1895 
1896 	for_each_online_node(nid) {
1897 		faults = group_faults_cpu(numa_group, nid);
1898 		if (faults * ACTIVE_NODE_FRACTION > max_faults)
1899 			active_nodes++;
1900 	}
1901 
1902 	numa_group->max_faults_cpu = max_faults;
1903 	numa_group->active_nodes = active_nodes;
1904 }
1905 
1906 /*
1907  * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
1908  * increments. The more local the fault statistics are, the higher the scan
1909  * period will be for the next scan window. If local/(local+remote) ratio is
1910  * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS)
1911  * the scan period will decrease. Aim for 70% local accesses.
1912  */
1913 #define NUMA_PERIOD_SLOTS 10
1914 #define NUMA_PERIOD_THRESHOLD 7
1915 
1916 /*
1917  * Increase the scan period (slow down scanning) if the majority of
1918  * our memory is already on our local node, or if the majority of
1919  * the page accesses are shared with other processes.
1920  * Otherwise, decrease the scan period.
1921  */
1922 static void update_task_scan_period(struct task_struct *p,
1923 			unsigned long shared, unsigned long private)
1924 {
1925 	unsigned int period_slot;
1926 	int lr_ratio, ps_ratio;
1927 	int diff;
1928 
1929 	unsigned long remote = p->numa_faults_locality[0];
1930 	unsigned long local = p->numa_faults_locality[1];
1931 
1932 	/*
1933 	 * If there were no record hinting faults then either the task is
1934 	 * completely idle or all activity is areas that are not of interest
1935 	 * to automatic numa balancing. Related to that, if there were failed
1936 	 * migration then it implies we are migrating too quickly or the local
1937 	 * node is overloaded. In either case, scan slower
1938 	 */
1939 	if (local + shared == 0 || p->numa_faults_locality[2]) {
1940 		p->numa_scan_period = min(p->numa_scan_period_max,
1941 			p->numa_scan_period << 1);
1942 
1943 		p->mm->numa_next_scan = jiffies +
1944 			msecs_to_jiffies(p->numa_scan_period);
1945 
1946 		return;
1947 	}
1948 
1949 	/*
1950 	 * Prepare to scale scan period relative to the current period.
1951 	 *	 == NUMA_PERIOD_THRESHOLD scan period stays the same
1952 	 *       <  NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
1953 	 *	 >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
1954 	 */
1955 	period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
1956 	lr_ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
1957 	ps_ratio = (private * NUMA_PERIOD_SLOTS) / (private + shared);
1958 
1959 	if (ps_ratio >= NUMA_PERIOD_THRESHOLD) {
1960 		/*
1961 		 * Most memory accesses are local. There is no need to
1962 		 * do fast NUMA scanning, since memory is already local.
1963 		 */
1964 		int slot = ps_ratio - NUMA_PERIOD_THRESHOLD;
1965 		if (!slot)
1966 			slot = 1;
1967 		diff = slot * period_slot;
1968 	} else if (lr_ratio >= NUMA_PERIOD_THRESHOLD) {
1969 		/*
1970 		 * Most memory accesses are shared with other tasks.
1971 		 * There is no point in continuing fast NUMA scanning,
1972 		 * since other tasks may just move the memory elsewhere.
1973 		 */
1974 		int slot = lr_ratio - NUMA_PERIOD_THRESHOLD;
1975 		if (!slot)
1976 			slot = 1;
1977 		diff = slot * period_slot;
1978 	} else {
1979 		/*
1980 		 * Private memory faults exceed (SLOTS-THRESHOLD)/SLOTS,
1981 		 * yet they are not on the local NUMA node. Speed up
1982 		 * NUMA scanning to get the memory moved over.
1983 		 */
1984 		int ratio = max(lr_ratio, ps_ratio);
1985 		diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;
1986 	}
1987 
1988 	p->numa_scan_period = clamp(p->numa_scan_period + diff,
1989 			task_scan_min(p), task_scan_max(p));
1990 	memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
1991 }
1992 
1993 /*
1994  * Get the fraction of time the task has been running since the last
1995  * NUMA placement cycle. The scheduler keeps similar statistics, but
1996  * decays those on a 32ms period, which is orders of magnitude off
1997  * from the dozens-of-seconds NUMA balancing period. Use the scheduler
1998  * stats only if the task is so new there are no NUMA statistics yet.
1999  */
2000 static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period)
2001 {
2002 	u64 runtime, delta, now;
2003 	/* Use the start of this time slice to avoid calculations. */
2004 	now = p->se.exec_start;
2005 	runtime = p->se.sum_exec_runtime;
2006 
2007 	if (p->last_task_numa_placement) {
2008 		delta = runtime - p->last_sum_exec_runtime;
2009 		*period = now - p->last_task_numa_placement;
2010 
2011 		/* Avoid time going backwards, prevent potential divide error: */
2012 		if (unlikely((s64)*period < 0))
2013 			*period = 0;
2014 	} else {
2015 		delta = p->se.avg.load_sum;
2016 		*period = LOAD_AVG_MAX;
2017 	}
2018 
2019 	p->last_sum_exec_runtime = runtime;
2020 	p->last_task_numa_placement = now;
2021 
2022 	return delta;
2023 }
2024 
2025 /*
2026  * Determine the preferred nid for a task in a numa_group. This needs to
2027  * be done in a way that produces consistent results with group_weight,
2028  * otherwise workloads might not converge.
2029  */
2030 static int preferred_group_nid(struct task_struct *p, int nid)
2031 {
2032 	nodemask_t nodes;
2033 	int dist;
2034 
2035 	/* Direct connections between all NUMA nodes. */
2036 	if (sched_numa_topology_type == NUMA_DIRECT)
2037 		return nid;
2038 
2039 	/*
2040 	 * On a system with glueless mesh NUMA topology, group_weight
2041 	 * scores nodes according to the number of NUMA hinting faults on
2042 	 * both the node itself, and on nearby nodes.
2043 	 */
2044 	if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
2045 		unsigned long score, max_score = 0;
2046 		int node, max_node = nid;
2047 
2048 		dist = sched_max_numa_distance;
2049 
2050 		for_each_online_node(node) {
2051 			score = group_weight(p, node, dist);
2052 			if (score > max_score) {
2053 				max_score = score;
2054 				max_node = node;
2055 			}
2056 		}
2057 		return max_node;
2058 	}
2059 
2060 	/*
2061 	 * Finding the preferred nid in a system with NUMA backplane
2062 	 * interconnect topology is more involved. The goal is to locate
2063 	 * tasks from numa_groups near each other in the system, and
2064 	 * untangle workloads from different sides of the system. This requires
2065 	 * searching down the hierarchy of node groups, recursively searching
2066 	 * inside the highest scoring group of nodes. The nodemask tricks
2067 	 * keep the complexity of the search down.
2068 	 */
2069 	nodes = node_online_map;
2070 	for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) {
2071 		unsigned long max_faults = 0;
2072 		nodemask_t max_group = NODE_MASK_NONE;
2073 		int a, b;
2074 
2075 		/* Are there nodes at this distance from each other? */
2076 		if (!find_numa_distance(dist))
2077 			continue;
2078 
2079 		for_each_node_mask(a, nodes) {
2080 			unsigned long faults = 0;
2081 			nodemask_t this_group;
2082 			nodes_clear(this_group);
2083 
2084 			/* Sum group's NUMA faults; includes a==b case. */
2085 			for_each_node_mask(b, nodes) {
2086 				if (node_distance(a, b) < dist) {
2087 					faults += group_faults(p, b);
2088 					node_set(b, this_group);
2089 					node_clear(b, nodes);
2090 				}
2091 			}
2092 
2093 			/* Remember the top group. */
2094 			if (faults > max_faults) {
2095 				max_faults = faults;
2096 				max_group = this_group;
2097 				/*
2098 				 * subtle: at the smallest distance there is
2099 				 * just one node left in each "group", the
2100 				 * winner is the preferred nid.
2101 				 */
2102 				nid = a;
2103 			}
2104 		}
2105 		/* Next round, evaluate the nodes within max_group. */
2106 		if (!max_faults)
2107 			break;
2108 		nodes = max_group;
2109 	}
2110 	return nid;
2111 }
2112 
2113 static void task_numa_placement(struct task_struct *p)
2114 {
2115 	int seq, nid, max_nid = NUMA_NO_NODE;
2116 	unsigned long max_faults = 0;
2117 	unsigned long fault_types[2] = { 0, 0 };
2118 	unsigned long total_faults;
2119 	u64 runtime, period;
2120 	spinlock_t *group_lock = NULL;
2121 
2122 	/*
2123 	 * The p->mm->numa_scan_seq field gets updated without
2124 	 * exclusive access. Use READ_ONCE() here to ensure
2125 	 * that the field is read in a single access:
2126 	 */
2127 	seq = READ_ONCE(p->mm->numa_scan_seq);
2128 	if (p->numa_scan_seq == seq)
2129 		return;
2130 	p->numa_scan_seq = seq;
2131 	p->numa_scan_period_max = task_scan_max(p);
2132 
2133 	total_faults = p->numa_faults_locality[0] +
2134 		       p->numa_faults_locality[1];
2135 	runtime = numa_get_avg_runtime(p, &period);
2136 
2137 	/* If the task is part of a group prevent parallel updates to group stats */
2138 	if (p->numa_group) {
2139 		group_lock = &p->numa_group->lock;
2140 		spin_lock_irq(group_lock);
2141 	}
2142 
2143 	/* Find the node with the highest number of faults */
2144 	for_each_online_node(nid) {
2145 		/* Keep track of the offsets in numa_faults array */
2146 		int mem_idx, membuf_idx, cpu_idx, cpubuf_idx;
2147 		unsigned long faults = 0, group_faults = 0;
2148 		int priv;
2149 
2150 		for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) {
2151 			long diff, f_diff, f_weight;
2152 
2153 			mem_idx = task_faults_idx(NUMA_MEM, nid, priv);
2154 			membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv);
2155 			cpu_idx = task_faults_idx(NUMA_CPU, nid, priv);
2156 			cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv);
2157 
2158 			/* Decay existing window, copy faults since last scan */
2159 			diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2;
2160 			fault_types[priv] += p->numa_faults[membuf_idx];
2161 			p->numa_faults[membuf_idx] = 0;
2162 
2163 			/*
2164 			 * Normalize the faults_from, so all tasks in a group
2165 			 * count according to CPU use, instead of by the raw
2166 			 * number of faults. Tasks with little runtime have
2167 			 * little over-all impact on throughput, and thus their
2168 			 * faults are less important.
2169 			 */
2170 			f_weight = div64_u64(runtime << 16, period + 1);
2171 			f_weight = (f_weight * p->numa_faults[cpubuf_idx]) /
2172 				   (total_faults + 1);
2173 			f_diff = f_weight - p->numa_faults[cpu_idx] / 2;
2174 			p->numa_faults[cpubuf_idx] = 0;
2175 
2176 			p->numa_faults[mem_idx] += diff;
2177 			p->numa_faults[cpu_idx] += f_diff;
2178 			faults += p->numa_faults[mem_idx];
2179 			p->total_numa_faults += diff;
2180 			if (p->numa_group) {
2181 				/*
2182 				 * safe because we can only change our own group
2183 				 *
2184 				 * mem_idx represents the offset for a given
2185 				 * nid and priv in a specific region because it
2186 				 * is at the beginning of the numa_faults array.
2187 				 */
2188 				p->numa_group->faults[mem_idx] += diff;
2189 				p->numa_group->faults_cpu[mem_idx] += f_diff;
2190 				p->numa_group->total_faults += diff;
2191 				group_faults += p->numa_group->faults[mem_idx];
2192 			}
2193 		}
2194 
2195 		if (!p->numa_group) {
2196 			if (faults > max_faults) {
2197 				max_faults = faults;
2198 				max_nid = nid;
2199 			}
2200 		} else if (group_faults > max_faults) {
2201 			max_faults = group_faults;
2202 			max_nid = nid;
2203 		}
2204 	}
2205 
2206 	if (p->numa_group) {
2207 		numa_group_count_active_nodes(p->numa_group);
2208 		spin_unlock_irq(group_lock);
2209 		max_nid = preferred_group_nid(p, max_nid);
2210 	}
2211 
2212 	if (max_faults) {
2213 		/* Set the new preferred node */
2214 		if (max_nid != p->numa_preferred_nid)
2215 			sched_setnuma(p, max_nid);
2216 	}
2217 
2218 	update_task_scan_period(p, fault_types[0], fault_types[1]);
2219 }
2220 
2221 static inline int get_numa_group(struct numa_group *grp)
2222 {
2223 	return refcount_inc_not_zero(&grp->refcount);
2224 }
2225 
2226 static inline void put_numa_group(struct numa_group *grp)
2227 {
2228 	if (refcount_dec_and_test(&grp->refcount))
2229 		kfree_rcu(grp, rcu);
2230 }
2231 
2232 static void task_numa_group(struct task_struct *p, int cpupid, int flags,
2233 			int *priv)
2234 {
2235 	struct numa_group *grp, *my_grp;
2236 	struct task_struct *tsk;
2237 	bool join = false;
2238 	int cpu = cpupid_to_cpu(cpupid);
2239 	int i;
2240 
2241 	if (unlikely(!p->numa_group)) {
2242 		unsigned int size = sizeof(struct numa_group) +
2243 				    4*nr_node_ids*sizeof(unsigned long);
2244 
2245 		grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
2246 		if (!grp)
2247 			return;
2248 
2249 		refcount_set(&grp->refcount, 1);
2250 		grp->active_nodes = 1;
2251 		grp->max_faults_cpu = 0;
2252 		spin_lock_init(&grp->lock);
2253 		grp->gid = p->pid;
2254 		/* Second half of the array tracks nids where faults happen */
2255 		grp->faults_cpu = grp->faults + NR_NUMA_HINT_FAULT_TYPES *
2256 						nr_node_ids;
2257 
2258 		for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
2259 			grp->faults[i] = p->numa_faults[i];
2260 
2261 		grp->total_faults = p->total_numa_faults;
2262 
2263 		grp->nr_tasks++;
2264 		rcu_assign_pointer(p->numa_group, grp);
2265 	}
2266 
2267 	rcu_read_lock();
2268 	tsk = READ_ONCE(cpu_rq(cpu)->curr);
2269 
2270 	if (!cpupid_match_pid(tsk, cpupid))
2271 		goto no_join;
2272 
2273 	grp = rcu_dereference(tsk->numa_group);
2274 	if (!grp)
2275 		goto no_join;
2276 
2277 	my_grp = p->numa_group;
2278 	if (grp == my_grp)
2279 		goto no_join;
2280 
2281 	/*
2282 	 * Only join the other group if its bigger; if we're the bigger group,
2283 	 * the other task will join us.
2284 	 */
2285 	if (my_grp->nr_tasks > grp->nr_tasks)
2286 		goto no_join;
2287 
2288 	/*
2289 	 * Tie-break on the grp address.
2290 	 */
2291 	if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
2292 		goto no_join;
2293 
2294 	/* Always join threads in the same process. */
2295 	if (tsk->mm == current->mm)
2296 		join = true;
2297 
2298 	/* Simple filter to avoid false positives due to PID collisions */
2299 	if (flags & TNF_SHARED)
2300 		join = true;
2301 
2302 	/* Update priv based on whether false sharing was detected */
2303 	*priv = !join;
2304 
2305 	if (join && !get_numa_group(grp))
2306 		goto no_join;
2307 
2308 	rcu_read_unlock();
2309 
2310 	if (!join)
2311 		return;
2312 
2313 	BUG_ON(irqs_disabled());
2314 	double_lock_irq(&my_grp->lock, &grp->lock);
2315 
2316 	for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) {
2317 		my_grp->faults[i] -= p->numa_faults[i];
2318 		grp->faults[i] += p->numa_faults[i];
2319 	}
2320 	my_grp->total_faults -= p->total_numa_faults;
2321 	grp->total_faults += p->total_numa_faults;
2322 
2323 	my_grp->nr_tasks--;
2324 	grp->nr_tasks++;
2325 
2326 	spin_unlock(&my_grp->lock);
2327 	spin_unlock_irq(&grp->lock);
2328 
2329 	rcu_assign_pointer(p->numa_group, grp);
2330 
2331 	put_numa_group(my_grp);
2332 	return;
2333 
2334 no_join:
2335 	rcu_read_unlock();
2336 	return;
2337 }
2338 
2339 void task_numa_free(struct task_struct *p)
2340 {
2341 	struct numa_group *grp = p->numa_group;
2342 	void *numa_faults = p->numa_faults;
2343 	unsigned long flags;
2344 	int i;
2345 
2346 	if (grp) {
2347 		spin_lock_irqsave(&grp->lock, flags);
2348 		for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
2349 			grp->faults[i] -= p->numa_faults[i];
2350 		grp->total_faults -= p->total_numa_faults;
2351 
2352 		grp->nr_tasks--;
2353 		spin_unlock_irqrestore(&grp->lock, flags);
2354 		RCU_INIT_POINTER(p->numa_group, NULL);
2355 		put_numa_group(grp);
2356 	}
2357 
2358 	p->numa_faults = NULL;
2359 	kfree(numa_faults);
2360 }
2361 
2362 /*
2363  * Got a PROT_NONE fault for a page on @node.
2364  */
2365 void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags)
2366 {
2367 	struct task_struct *p = current;
2368 	bool migrated = flags & TNF_MIGRATED;
2369 	int cpu_node = task_node(current);
2370 	int local = !!(flags & TNF_FAULT_LOCAL);
2371 	struct numa_group *ng;
2372 	int priv;
2373 
2374 	if (!static_branch_likely(&sched_numa_balancing))
2375 		return;
2376 
2377 	/* for example, ksmd faulting in a user's mm */
2378 	if (!p->mm)
2379 		return;
2380 
2381 	/* Allocate buffer to track faults on a per-node basis */
2382 	if (unlikely(!p->numa_faults)) {
2383 		int size = sizeof(*p->numa_faults) *
2384 			   NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids;
2385 
2386 		p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN);
2387 		if (!p->numa_faults)
2388 			return;
2389 
2390 		p->total_numa_faults = 0;
2391 		memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
2392 	}
2393 
2394 	/*
2395 	 * First accesses are treated as private, otherwise consider accesses
2396 	 * to be private if the accessing pid has not changed
2397 	 */
2398 	if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
2399 		priv = 1;
2400 	} else {
2401 		priv = cpupid_match_pid(p, last_cpupid);
2402 		if (!priv && !(flags & TNF_NO_GROUP))
2403 			task_numa_group(p, last_cpupid, flags, &priv);
2404 	}
2405 
2406 	/*
2407 	 * If a workload spans multiple NUMA nodes, a shared fault that
2408 	 * occurs wholly within the set of nodes that the workload is
2409 	 * actively using should be counted as local. This allows the
2410 	 * scan rate to slow down when a workload has settled down.
2411 	 */
2412 	ng = p->numa_group;
2413 	if (!priv && !local && ng && ng->active_nodes > 1 &&
2414 				numa_is_active_node(cpu_node, ng) &&
2415 				numa_is_active_node(mem_node, ng))
2416 		local = 1;
2417 
2418 	/*
2419 	 * Retry to migrate task to preferred node periodically, in case it
2420 	 * previously failed, or the scheduler moved us.
2421 	 */
2422 	if (time_after(jiffies, p->numa_migrate_retry)) {
2423 		task_numa_placement(p);
2424 		numa_migrate_preferred(p);
2425 	}
2426 
2427 	if (migrated)
2428 		p->numa_pages_migrated += pages;
2429 	if (flags & TNF_MIGRATE_FAIL)
2430 		p->numa_faults_locality[2] += pages;
2431 
2432 	p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages;
2433 	p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages;
2434 	p->numa_faults_locality[local] += pages;
2435 }
2436 
2437 static void reset_ptenuma_scan(struct task_struct *p)
2438 {
2439 	/*
2440 	 * We only did a read acquisition of the mmap sem, so
2441 	 * p->mm->numa_scan_seq is written to without exclusive access
2442 	 * and the update is not guaranteed to be atomic. That's not
2443 	 * much of an issue though, since this is just used for
2444 	 * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not
2445 	 * expensive, to avoid any form of compiler optimizations:
2446 	 */
2447 	WRITE_ONCE(p->mm->numa_scan_seq, READ_ONCE(p->mm->numa_scan_seq) + 1);
2448 	p->mm->numa_scan_offset = 0;
2449 }
2450 
2451 /*
2452  * The expensive part of numa migration is done from task_work context.
2453  * Triggered from task_tick_numa().
2454  */
2455 void task_numa_work(struct callback_head *work)
2456 {
2457 	unsigned long migrate, next_scan, now = jiffies;
2458 	struct task_struct *p = current;
2459 	struct mm_struct *mm = p->mm;
2460 	u64 runtime = p->se.sum_exec_runtime;
2461 	struct vm_area_struct *vma;
2462 	unsigned long start, end;
2463 	unsigned long nr_pte_updates = 0;
2464 	long pages, virtpages;
2465 
2466 	SCHED_WARN_ON(p != container_of(work, struct task_struct, numa_work));
2467 
2468 	work->next = work; /* protect against double add */
2469 	/*
2470 	 * Who cares about NUMA placement when they're dying.
2471 	 *
2472 	 * NOTE: make sure not to dereference p->mm before this check,
2473 	 * exit_task_work() happens _after_ exit_mm() so we could be called
2474 	 * without p->mm even though we still had it when we enqueued this
2475 	 * work.
2476 	 */
2477 	if (p->flags & PF_EXITING)
2478 		return;
2479 
2480 	if (!mm->numa_next_scan) {
2481 		mm->numa_next_scan = now +
2482 			msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
2483 	}
2484 
2485 	/*
2486 	 * Enforce maximal scan/migration frequency..
2487 	 */
2488 	migrate = mm->numa_next_scan;
2489 	if (time_before(now, migrate))
2490 		return;
2491 
2492 	if (p->numa_scan_period == 0) {
2493 		p->numa_scan_period_max = task_scan_max(p);
2494 		p->numa_scan_period = task_scan_start(p);
2495 	}
2496 
2497 	next_scan = now + msecs_to_jiffies(p->numa_scan_period);
2498 	if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
2499 		return;
2500 
2501 	/*
2502 	 * Delay this task enough that another task of this mm will likely win
2503 	 * the next time around.
2504 	 */
2505 	p->node_stamp += 2 * TICK_NSEC;
2506 
2507 	start = mm->numa_scan_offset;
2508 	pages = sysctl_numa_balancing_scan_size;
2509 	pages <<= 20 - PAGE_SHIFT; /* MB in pages */
2510 	virtpages = pages * 8;	   /* Scan up to this much virtual space */
2511 	if (!pages)
2512 		return;
2513 
2514 
2515 	if (!down_read_trylock(&mm->mmap_sem))
2516 		return;
2517 	vma = find_vma(mm, start);
2518 	if (!vma) {
2519 		reset_ptenuma_scan(p);
2520 		start = 0;
2521 		vma = mm->mmap;
2522 	}
2523 	for (; vma; vma = vma->vm_next) {
2524 		if (!vma_migratable(vma) || !vma_policy_mof(vma) ||
2525 			is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_MIXEDMAP)) {
2526 			continue;
2527 		}
2528 
2529 		/*
2530 		 * Shared library pages mapped by multiple processes are not
2531 		 * migrated as it is expected they are cache replicated. Avoid
2532 		 * hinting faults in read-only file-backed mappings or the vdso
2533 		 * as migrating the pages will be of marginal benefit.
2534 		 */
2535 		if (!vma->vm_mm ||
2536 		    (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ)))
2537 			continue;
2538 
2539 		/*
2540 		 * Skip inaccessible VMAs to avoid any confusion between
2541 		 * PROT_NONE and NUMA hinting ptes
2542 		 */
2543 		if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)))
2544 			continue;
2545 
2546 		do {
2547 			start = max(start, vma->vm_start);
2548 			end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
2549 			end = min(end, vma->vm_end);
2550 			nr_pte_updates = change_prot_numa(vma, start, end);
2551 
2552 			/*
2553 			 * Try to scan sysctl_numa_balancing_size worth of
2554 			 * hpages that have at least one present PTE that
2555 			 * is not already pte-numa. If the VMA contains
2556 			 * areas that are unused or already full of prot_numa
2557 			 * PTEs, scan up to virtpages, to skip through those
2558 			 * areas faster.
2559 			 */
2560 			if (nr_pte_updates)
2561 				pages -= (end - start) >> PAGE_SHIFT;
2562 			virtpages -= (end - start) >> PAGE_SHIFT;
2563 
2564 			start = end;
2565 			if (pages <= 0 || virtpages <= 0)
2566 				goto out;
2567 
2568 			cond_resched();
2569 		} while (end != vma->vm_end);
2570 	}
2571 
2572 out:
2573 	/*
2574 	 * It is possible to reach the end of the VMA list but the last few
2575 	 * VMAs are not guaranteed to the vma_migratable. If they are not, we
2576 	 * would find the !migratable VMA on the next scan but not reset the
2577 	 * scanner to the start so check it now.
2578 	 */
2579 	if (vma)
2580 		mm->numa_scan_offset = start;
2581 	else
2582 		reset_ptenuma_scan(p);
2583 	up_read(&mm->mmap_sem);
2584 
2585 	/*
2586 	 * Make sure tasks use at least 32x as much time to run other code
2587 	 * than they used here, to limit NUMA PTE scanning overhead to 3% max.
2588 	 * Usually update_task_scan_period slows down scanning enough; on an
2589 	 * overloaded system we need to limit overhead on a per task basis.
2590 	 */
2591 	if (unlikely(p->se.sum_exec_runtime != runtime)) {
2592 		u64 diff = p->se.sum_exec_runtime - runtime;
2593 		p->node_stamp += 32 * diff;
2594 	}
2595 }
2596 
2597 /*
2598  * Drive the periodic memory faults..
2599  */
2600 void task_tick_numa(struct rq *rq, struct task_struct *curr)
2601 {
2602 	struct callback_head *work = &curr->numa_work;
2603 	u64 period, now;
2604 
2605 	/*
2606 	 * We don't care about NUMA placement if we don't have memory.
2607 	 */
2608 	if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work)
2609 		return;
2610 
2611 	/*
2612 	 * Using runtime rather than walltime has the dual advantage that
2613 	 * we (mostly) drive the selection from busy threads and that the
2614 	 * task needs to have done some actual work before we bother with
2615 	 * NUMA placement.
2616 	 */
2617 	now = curr->se.sum_exec_runtime;
2618 	period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
2619 
2620 	if (now > curr->node_stamp + period) {
2621 		if (!curr->node_stamp)
2622 			curr->numa_scan_period = task_scan_start(curr);
2623 		curr->node_stamp += period;
2624 
2625 		if (!time_before(jiffies, curr->mm->numa_next_scan)) {
2626 			init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */
2627 			task_work_add(curr, work, true);
2628 		}
2629 	}
2630 }
2631 
2632 static void update_scan_period(struct task_struct *p, int new_cpu)
2633 {
2634 	int src_nid = cpu_to_node(task_cpu(p));
2635 	int dst_nid = cpu_to_node(new_cpu);
2636 
2637 	if (!static_branch_likely(&sched_numa_balancing))
2638 		return;
2639 
2640 	if (!p->mm || !p->numa_faults || (p->flags & PF_EXITING))
2641 		return;
2642 
2643 	if (src_nid == dst_nid)
2644 		return;
2645 
2646 	/*
2647 	 * Allow resets if faults have been trapped before one scan
2648 	 * has completed. This is most likely due to a new task that
2649 	 * is pulled cross-node due to wakeups or load balancing.
2650 	 */
2651 	if (p->numa_scan_seq) {
2652 		/*
2653 		 * Avoid scan adjustments if moving to the preferred
2654 		 * node or if the task was not previously running on
2655 		 * the preferred node.
2656 		 */
2657 		if (dst_nid == p->numa_preferred_nid ||
2658 		    (p->numa_preferred_nid != NUMA_NO_NODE &&
2659 			src_nid != p->numa_preferred_nid))
2660 			return;
2661 	}
2662 
2663 	p->numa_scan_period = task_scan_start(p);
2664 }
2665 
2666 #else
2667 static void task_tick_numa(struct rq *rq, struct task_struct *curr)
2668 {
2669 }
2670 
2671 static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
2672 {
2673 }
2674 
2675 static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
2676 {
2677 }
2678 
2679 static inline void update_scan_period(struct task_struct *p, int new_cpu)
2680 {
2681 }
2682 
2683 #endif /* CONFIG_NUMA_BALANCING */
2684 
2685 static void
2686 account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2687 {
2688 	update_load_add(&cfs_rq->load, se->load.weight);
2689 	if (!parent_entity(se))
2690 		update_load_add(&rq_of(cfs_rq)->load, se->load.weight);
2691 #ifdef CONFIG_SMP
2692 	if (entity_is_task(se)) {
2693 		struct rq *rq = rq_of(cfs_rq);
2694 
2695 		account_numa_enqueue(rq, task_of(se));
2696 		list_add(&se->group_node, &rq->cfs_tasks);
2697 	}
2698 #endif
2699 	cfs_rq->nr_running++;
2700 }
2701 
2702 static void
2703 account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2704 {
2705 	update_load_sub(&cfs_rq->load, se->load.weight);
2706 	if (!parent_entity(se))
2707 		update_load_sub(&rq_of(cfs_rq)->load, se->load.weight);
2708 #ifdef CONFIG_SMP
2709 	if (entity_is_task(se)) {
2710 		account_numa_dequeue(rq_of(cfs_rq), task_of(se));
2711 		list_del_init(&se->group_node);
2712 	}
2713 #endif
2714 	cfs_rq->nr_running--;
2715 }
2716 
2717 /*
2718  * Signed add and clamp on underflow.
2719  *
2720  * Explicitly do a load-store to ensure the intermediate value never hits
2721  * memory. This allows lockless observations without ever seeing the negative
2722  * values.
2723  */
2724 #define add_positive(_ptr, _val) do {                           \
2725 	typeof(_ptr) ptr = (_ptr);                              \
2726 	typeof(_val) val = (_val);                              \
2727 	typeof(*ptr) res, var = READ_ONCE(*ptr);                \
2728 								\
2729 	res = var + val;                                        \
2730 								\
2731 	if (val < 0 && res > var)                               \
2732 		res = 0;                                        \
2733 								\
2734 	WRITE_ONCE(*ptr, res);                                  \
2735 } while (0)
2736 
2737 /*
2738  * Unsigned subtract and clamp on underflow.
2739  *
2740  * Explicitly do a load-store to ensure the intermediate value never hits
2741  * memory. This allows lockless observations without ever seeing the negative
2742  * values.
2743  */
2744 #define sub_positive(_ptr, _val) do {				\
2745 	typeof(_ptr) ptr = (_ptr);				\
2746 	typeof(*ptr) val = (_val);				\
2747 	typeof(*ptr) res, var = READ_ONCE(*ptr);		\
2748 	res = var - val;					\
2749 	if (res > var)						\
2750 		res = 0;					\
2751 	WRITE_ONCE(*ptr, res);					\
2752 } while (0)
2753 
2754 /*
2755  * Remove and clamp on negative, from a local variable.
2756  *
2757  * A variant of sub_positive(), which does not use explicit load-store
2758  * and is thus optimized for local variable updates.
2759  */
2760 #define lsub_positive(_ptr, _val) do {				\
2761 	typeof(_ptr) ptr = (_ptr);				\
2762 	*ptr -= min_t(typeof(*ptr), *ptr, _val);		\
2763 } while (0)
2764 
2765 #ifdef CONFIG_SMP
2766 static inline void
2767 enqueue_runnable_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
2768 {
2769 	cfs_rq->runnable_weight += se->runnable_weight;
2770 
2771 	cfs_rq->avg.runnable_load_avg += se->avg.runnable_load_avg;
2772 	cfs_rq->avg.runnable_load_sum += se_runnable(se) * se->avg.runnable_load_sum;
2773 }
2774 
2775 static inline void
2776 dequeue_runnable_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
2777 {
2778 	cfs_rq->runnable_weight -= se->runnable_weight;
2779 
2780 	sub_positive(&cfs_rq->avg.runnable_load_avg, se->avg.runnable_load_avg);
2781 	sub_positive(&cfs_rq->avg.runnable_load_sum,
2782 		     se_runnable(se) * se->avg.runnable_load_sum);
2783 }
2784 
2785 static inline void
2786 enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
2787 {
2788 	cfs_rq->avg.load_avg += se->avg.load_avg;
2789 	cfs_rq->avg.load_sum += se_weight(se) * se->avg.load_sum;
2790 }
2791 
2792 static inline void
2793 dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
2794 {
2795 	sub_positive(&cfs_rq->avg.load_avg, se->avg.load_avg);
2796 	sub_positive(&cfs_rq->avg.load_sum, se_weight(se) * se->avg.load_sum);
2797 }
2798 #else
2799 static inline void
2800 enqueue_runnable_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
2801 static inline void
2802 dequeue_runnable_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
2803 static inline void
2804 enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
2805 static inline void
2806 dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
2807 #endif
2808 
2809 static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
2810 			    unsigned long weight, unsigned long runnable)
2811 {
2812 	if (se->on_rq) {
2813 		/* commit outstanding execution time */
2814 		if (cfs_rq->curr == se)
2815 			update_curr(cfs_rq);
2816 		account_entity_dequeue(cfs_rq, se);
2817 		dequeue_runnable_load_avg(cfs_rq, se);
2818 	}
2819 	dequeue_load_avg(cfs_rq, se);
2820 
2821 	se->runnable_weight = runnable;
2822 	update_load_set(&se->load, weight);
2823 
2824 #ifdef CONFIG_SMP
2825 	do {
2826 		u32 divider = LOAD_AVG_MAX - 1024 + se->avg.period_contrib;
2827 
2828 		se->avg.load_avg = div_u64(se_weight(se) * se->avg.load_sum, divider);
2829 		se->avg.runnable_load_avg =
2830 			div_u64(se_runnable(se) * se->avg.runnable_load_sum, divider);
2831 	} while (0);
2832 #endif
2833 
2834 	enqueue_load_avg(cfs_rq, se);
2835 	if (se->on_rq) {
2836 		account_entity_enqueue(cfs_rq, se);
2837 		enqueue_runnable_load_avg(cfs_rq, se);
2838 	}
2839 }
2840 
2841 void reweight_task(struct task_struct *p, int prio)
2842 {
2843 	struct sched_entity *se = &p->se;
2844 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
2845 	struct load_weight *load = &se->load;
2846 	unsigned long weight = scale_load(sched_prio_to_weight[prio]);
2847 
2848 	reweight_entity(cfs_rq, se, weight, weight);
2849 	load->inv_weight = sched_prio_to_wmult[prio];
2850 }
2851 
2852 #ifdef CONFIG_FAIR_GROUP_SCHED
2853 #ifdef CONFIG_SMP
2854 /*
2855  * All this does is approximate the hierarchical proportion which includes that
2856  * global sum we all love to hate.
2857  *
2858  * That is, the weight of a group entity, is the proportional share of the
2859  * group weight based on the group runqueue weights. That is:
2860  *
2861  *                     tg->weight * grq->load.weight
2862  *   ge->load.weight = -----------------------------               (1)
2863  *			  \Sum grq->load.weight
2864  *
2865  * Now, because computing that sum is prohibitively expensive to compute (been
2866  * there, done that) we approximate it with this average stuff. The average
2867  * moves slower and therefore the approximation is cheaper and more stable.
2868  *
2869  * So instead of the above, we substitute:
2870  *
2871  *   grq->load.weight -> grq->avg.load_avg                         (2)
2872  *
2873  * which yields the following:
2874  *
2875  *                     tg->weight * grq->avg.load_avg
2876  *   ge->load.weight = ------------------------------              (3)
2877  *				tg->load_avg
2878  *
2879  * Where: tg->load_avg ~= \Sum grq->avg.load_avg
2880  *
2881  * That is shares_avg, and it is right (given the approximation (2)).
2882  *
2883  * The problem with it is that because the average is slow -- it was designed
2884  * to be exactly that of course -- this leads to transients in boundary
2885  * conditions. In specific, the case where the group was idle and we start the
2886  * one task. It takes time for our CPU's grq->avg.load_avg to build up,
2887  * yielding bad latency etc..
2888  *
2889  * Now, in that special case (1) reduces to:
2890  *
2891  *                     tg->weight * grq->load.weight
2892  *   ge->load.weight = ----------------------------- = tg->weight   (4)
2893  *			    grp->load.weight
2894  *
2895  * That is, the sum collapses because all other CPUs are idle; the UP scenario.
2896  *
2897  * So what we do is modify our approximation (3) to approach (4) in the (near)
2898  * UP case, like:
2899  *
2900  *   ge->load.weight =
2901  *
2902  *              tg->weight * grq->load.weight
2903  *     ---------------------------------------------------         (5)
2904  *     tg->load_avg - grq->avg.load_avg + grq->load.weight
2905  *
2906  * But because grq->load.weight can drop to 0, resulting in a divide by zero,
2907  * we need to use grq->avg.load_avg as its lower bound, which then gives:
2908  *
2909  *
2910  *                     tg->weight * grq->load.weight
2911  *   ge->load.weight = -----------------------------		   (6)
2912  *				tg_load_avg'
2913  *
2914  * Where:
2915  *
2916  *   tg_load_avg' = tg->load_avg - grq->avg.load_avg +
2917  *                  max(grq->load.weight, grq->avg.load_avg)
2918  *
2919  * And that is shares_weight and is icky. In the (near) UP case it approaches
2920  * (4) while in the normal case it approaches (3). It consistently
2921  * overestimates the ge->load.weight and therefore:
2922  *
2923  *   \Sum ge->load.weight >= tg->weight
2924  *
2925  * hence icky!
2926  */
2927 static long calc_group_shares(struct cfs_rq *cfs_rq)
2928 {
2929 	long tg_weight, tg_shares, load, shares;
2930 	struct task_group *tg = cfs_rq->tg;
2931 
2932 	tg_shares = READ_ONCE(tg->shares);
2933 
2934 	load = max(scale_load_down(cfs_rq->load.weight), cfs_rq->avg.load_avg);
2935 
2936 	tg_weight = atomic_long_read(&tg->load_avg);
2937 
2938 	/* Ensure tg_weight >= load */
2939 	tg_weight -= cfs_rq->tg_load_avg_contrib;
2940 	tg_weight += load;
2941 
2942 	shares = (tg_shares * load);
2943 	if (tg_weight)
2944 		shares /= tg_weight;
2945 
2946 	/*
2947 	 * MIN_SHARES has to be unscaled here to support per-CPU partitioning
2948 	 * of a group with small tg->shares value. It is a floor value which is
2949 	 * assigned as a minimum load.weight to the sched_entity representing
2950 	 * the group on a CPU.
2951 	 *
2952 	 * E.g. on 64-bit for a group with tg->shares of scale_load(15)=15*1024
2953 	 * on an 8-core system with 8 tasks each runnable on one CPU shares has
2954 	 * to be 15*1024*1/8=1920 instead of scale_load(MIN_SHARES)=2*1024. In
2955 	 * case no task is runnable on a CPU MIN_SHARES=2 should be returned
2956 	 * instead of 0.
2957 	 */
2958 	return clamp_t(long, shares, MIN_SHARES, tg_shares);
2959 }
2960 
2961 /*
2962  * This calculates the effective runnable weight for a group entity based on
2963  * the group entity weight calculated above.
2964  *
2965  * Because of the above approximation (2), our group entity weight is
2966  * an load_avg based ratio (3). This means that it includes blocked load and
2967  * does not represent the runnable weight.
2968  *
2969  * Approximate the group entity's runnable weight per ratio from the group
2970  * runqueue:
2971  *
2972  *					     grq->avg.runnable_load_avg
2973  *   ge->runnable_weight = ge->load.weight * -------------------------- (7)
2974  *						 grq->avg.load_avg
2975  *
2976  * However, analogous to above, since the avg numbers are slow, this leads to
2977  * transients in the from-idle case. Instead we use:
2978  *
2979  *   ge->runnable_weight = ge->load.weight *
2980  *
2981  *		max(grq->avg.runnable_load_avg, grq->runnable_weight)
2982  *		-----------------------------------------------------	(8)
2983  *		      max(grq->avg.load_avg, grq->load.weight)
2984  *
2985  * Where these max() serve both to use the 'instant' values to fix the slow
2986  * from-idle and avoid the /0 on to-idle, similar to (6).
2987  */
2988 static long calc_group_runnable(struct cfs_rq *cfs_rq, long shares)
2989 {
2990 	long runnable, load_avg;
2991 
2992 	load_avg = max(cfs_rq->avg.load_avg,
2993 		       scale_load_down(cfs_rq->load.weight));
2994 
2995 	runnable = max(cfs_rq->avg.runnable_load_avg,
2996 		       scale_load_down(cfs_rq->runnable_weight));
2997 
2998 	runnable *= shares;
2999 	if (load_avg)
3000 		runnable /= load_avg;
3001 
3002 	return clamp_t(long, runnable, MIN_SHARES, shares);
3003 }
3004 #endif /* CONFIG_SMP */
3005 
3006 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
3007 
3008 /*
3009  * Recomputes the group entity based on the current state of its group
3010  * runqueue.
3011  */
3012 static void update_cfs_group(struct sched_entity *se)
3013 {
3014 	struct cfs_rq *gcfs_rq = group_cfs_rq(se);
3015 	long shares, runnable;
3016 
3017 	if (!gcfs_rq)
3018 		return;
3019 
3020 	if (throttled_hierarchy(gcfs_rq))
3021 		return;
3022 
3023 #ifndef CONFIG_SMP
3024 	runnable = shares = READ_ONCE(gcfs_rq->tg->shares);
3025 
3026 	if (likely(se->load.weight == shares))
3027 		return;
3028 #else
3029 	shares   = calc_group_shares(gcfs_rq);
3030 	runnable = calc_group_runnable(gcfs_rq, shares);
3031 #endif
3032 
3033 	reweight_entity(cfs_rq_of(se), se, shares, runnable);
3034 }
3035 
3036 #else /* CONFIG_FAIR_GROUP_SCHED */
3037 static inline void update_cfs_group(struct sched_entity *se)
3038 {
3039 }
3040 #endif /* CONFIG_FAIR_GROUP_SCHED */
3041 
3042 static inline void cfs_rq_util_change(struct cfs_rq *cfs_rq, int flags)
3043 {
3044 	struct rq *rq = rq_of(cfs_rq);
3045 
3046 	if (&rq->cfs == cfs_rq || (flags & SCHED_CPUFREQ_MIGRATION)) {
3047 		/*
3048 		 * There are a few boundary cases this might miss but it should
3049 		 * get called often enough that that should (hopefully) not be
3050 		 * a real problem.
3051 		 *
3052 		 * It will not get called when we go idle, because the idle
3053 		 * thread is a different class (!fair), nor will the utilization
3054 		 * number include things like RT tasks.
3055 		 *
3056 		 * As is, the util number is not freq-invariant (we'd have to
3057 		 * implement arch_scale_freq_capacity() for that).
3058 		 *
3059 		 * See cpu_util().
3060 		 */
3061 		cpufreq_update_util(rq, flags);
3062 	}
3063 }
3064 
3065 #ifdef CONFIG_SMP
3066 #ifdef CONFIG_FAIR_GROUP_SCHED
3067 /**
3068  * update_tg_load_avg - update the tg's load avg
3069  * @cfs_rq: the cfs_rq whose avg changed
3070  * @force: update regardless of how small the difference
3071  *
3072  * This function 'ensures': tg->load_avg := \Sum tg->cfs_rq[]->avg.load.
3073  * However, because tg->load_avg is a global value there are performance
3074  * considerations.
3075  *
3076  * In order to avoid having to look at the other cfs_rq's, we use a
3077  * differential update where we store the last value we propagated. This in
3078  * turn allows skipping updates if the differential is 'small'.
3079  *
3080  * Updating tg's load_avg is necessary before update_cfs_share().
3081  */
3082 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force)
3083 {
3084 	long delta = cfs_rq->avg.load_avg - cfs_rq->tg_load_avg_contrib;
3085 
3086 	/*
3087 	 * No need to update load_avg for root_task_group as it is not used.
3088 	 */
3089 	if (cfs_rq->tg == &root_task_group)
3090 		return;
3091 
3092 	if (force || abs(delta) > cfs_rq->tg_load_avg_contrib / 64) {
3093 		atomic_long_add(delta, &cfs_rq->tg->load_avg);
3094 		cfs_rq->tg_load_avg_contrib = cfs_rq->avg.load_avg;
3095 	}
3096 }
3097 
3098 /*
3099  * Called within set_task_rq() right before setting a task's CPU. The
3100  * caller only guarantees p->pi_lock is held; no other assumptions,
3101  * including the state of rq->lock, should be made.
3102  */
3103 void set_task_rq_fair(struct sched_entity *se,
3104 		      struct cfs_rq *prev, struct cfs_rq *next)
3105 {
3106 	u64 p_last_update_time;
3107 	u64 n_last_update_time;
3108 
3109 	if (!sched_feat(ATTACH_AGE_LOAD))
3110 		return;
3111 
3112 	/*
3113 	 * We are supposed to update the task to "current" time, then its up to
3114 	 * date and ready to go to new CPU/cfs_rq. But we have difficulty in
3115 	 * getting what current time is, so simply throw away the out-of-date
3116 	 * time. This will result in the wakee task is less decayed, but giving
3117 	 * the wakee more load sounds not bad.
3118 	 */
3119 	if (!(se->avg.last_update_time && prev))
3120 		return;
3121 
3122 #ifndef CONFIG_64BIT
3123 	{
3124 		u64 p_last_update_time_copy;
3125 		u64 n_last_update_time_copy;
3126 
3127 		do {
3128 			p_last_update_time_copy = prev->load_last_update_time_copy;
3129 			n_last_update_time_copy = next->load_last_update_time_copy;
3130 
3131 			smp_rmb();
3132 
3133 			p_last_update_time = prev->avg.last_update_time;
3134 			n_last_update_time = next->avg.last_update_time;
3135 
3136 		} while (p_last_update_time != p_last_update_time_copy ||
3137 			 n_last_update_time != n_last_update_time_copy);
3138 	}
3139 #else
3140 	p_last_update_time = prev->avg.last_update_time;
3141 	n_last_update_time = next->avg.last_update_time;
3142 #endif
3143 	__update_load_avg_blocked_se(p_last_update_time, se);
3144 	se->avg.last_update_time = n_last_update_time;
3145 }
3146 
3147 
3148 /*
3149  * When on migration a sched_entity joins/leaves the PELT hierarchy, we need to
3150  * propagate its contribution. The key to this propagation is the invariant
3151  * that for each group:
3152  *
3153  *   ge->avg == grq->avg						(1)
3154  *
3155  * _IFF_ we look at the pure running and runnable sums. Because they
3156  * represent the very same entity, just at different points in the hierarchy.
3157  *
3158  * Per the above update_tg_cfs_util() is trivial and simply copies the running
3159  * sum over (but still wrong, because the group entity and group rq do not have
3160  * their PELT windows aligned).
3161  *
3162  * However, update_tg_cfs_runnable() is more complex. So we have:
3163  *
3164  *   ge->avg.load_avg = ge->load.weight * ge->avg.runnable_avg		(2)
3165  *
3166  * And since, like util, the runnable part should be directly transferable,
3167  * the following would _appear_ to be the straight forward approach:
3168  *
3169  *   grq->avg.load_avg = grq->load.weight * grq->avg.runnable_avg	(3)
3170  *
3171  * And per (1) we have:
3172  *
3173  *   ge->avg.runnable_avg == grq->avg.runnable_avg
3174  *
3175  * Which gives:
3176  *
3177  *                      ge->load.weight * grq->avg.load_avg
3178  *   ge->avg.load_avg = -----------------------------------		(4)
3179  *                               grq->load.weight
3180  *
3181  * Except that is wrong!
3182  *
3183  * Because while for entities historical weight is not important and we
3184  * really only care about our future and therefore can consider a pure
3185  * runnable sum, runqueues can NOT do this.
3186  *
3187  * We specifically want runqueues to have a load_avg that includes
3188  * historical weights. Those represent the blocked load, the load we expect
3189  * to (shortly) return to us. This only works by keeping the weights as
3190  * integral part of the sum. We therefore cannot decompose as per (3).
3191  *
3192  * Another reason this doesn't work is that runnable isn't a 0-sum entity.
3193  * Imagine a rq with 2 tasks that each are runnable 2/3 of the time. Then the
3194  * rq itself is runnable anywhere between 2/3 and 1 depending on how the
3195  * runnable section of these tasks overlap (or not). If they were to perfectly
3196  * align the rq as a whole would be runnable 2/3 of the time. If however we
3197  * always have at least 1 runnable task, the rq as a whole is always runnable.
3198  *
3199  * So we'll have to approximate.. :/
3200  *
3201  * Given the constraint:
3202  *
3203  *   ge->avg.running_sum <= ge->avg.runnable_sum <= LOAD_AVG_MAX
3204  *
3205  * We can construct a rule that adds runnable to a rq by assuming minimal
3206  * overlap.
3207  *
3208  * On removal, we'll assume each task is equally runnable; which yields:
3209  *
3210  *   grq->avg.runnable_sum = grq->avg.load_sum / grq->load.weight
3211  *
3212  * XXX: only do this for the part of runnable > running ?
3213  *
3214  */
3215 
3216 static inline void
3217 update_tg_cfs_util(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
3218 {
3219 	long delta = gcfs_rq->avg.util_avg - se->avg.util_avg;
3220 
3221 	/* Nothing to update */
3222 	if (!delta)
3223 		return;
3224 
3225 	/*
3226 	 * The relation between sum and avg is:
3227 	 *
3228 	 *   LOAD_AVG_MAX - 1024 + sa->period_contrib
3229 	 *
3230 	 * however, the PELT windows are not aligned between grq and gse.
3231 	 */
3232 
3233 	/* Set new sched_entity's utilization */
3234 	se->avg.util_avg = gcfs_rq->avg.util_avg;
3235 	se->avg.util_sum = se->avg.util_avg * LOAD_AVG_MAX;
3236 
3237 	/* Update parent cfs_rq utilization */
3238 	add_positive(&cfs_rq->avg.util_avg, delta);
3239 	cfs_rq->avg.util_sum = cfs_rq->avg.util_avg * LOAD_AVG_MAX;
3240 }
3241 
3242 static inline void
3243 update_tg_cfs_runnable(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
3244 {
3245 	long delta_avg, running_sum, runnable_sum = gcfs_rq->prop_runnable_sum;
3246 	unsigned long runnable_load_avg, load_avg;
3247 	u64 runnable_load_sum, load_sum = 0;
3248 	s64 delta_sum;
3249 
3250 	if (!runnable_sum)
3251 		return;
3252 
3253 	gcfs_rq->prop_runnable_sum = 0;
3254 
3255 	if (runnable_sum >= 0) {
3256 		/*
3257 		 * Add runnable; clip at LOAD_AVG_MAX. Reflects that until
3258 		 * the CPU is saturated running == runnable.
3259 		 */
3260 		runnable_sum += se->avg.load_sum;
3261 		runnable_sum = min(runnable_sum, (long)LOAD_AVG_MAX);
3262 	} else {
3263 		/*
3264 		 * Estimate the new unweighted runnable_sum of the gcfs_rq by
3265 		 * assuming all tasks are equally runnable.
3266 		 */
3267 		if (scale_load_down(gcfs_rq->load.weight)) {
3268 			load_sum = div_s64(gcfs_rq->avg.load_sum,
3269 				scale_load_down(gcfs_rq->load.weight));
3270 		}
3271 
3272 		/* But make sure to not inflate se's runnable */
3273 		runnable_sum = min(se->avg.load_sum, load_sum);
3274 	}
3275 
3276 	/*
3277 	 * runnable_sum can't be lower than running_sum
3278 	 * Rescale running sum to be in the same range as runnable sum
3279 	 * running_sum is in [0 : LOAD_AVG_MAX <<  SCHED_CAPACITY_SHIFT]
3280 	 * runnable_sum is in [0 : LOAD_AVG_MAX]
3281 	 */
3282 	running_sum = se->avg.util_sum >> SCHED_CAPACITY_SHIFT;
3283 	runnable_sum = max(runnable_sum, running_sum);
3284 
3285 	load_sum = (s64)se_weight(se) * runnable_sum;
3286 	load_avg = div_s64(load_sum, LOAD_AVG_MAX);
3287 
3288 	delta_sum = load_sum - (s64)se_weight(se) * se->avg.load_sum;
3289 	delta_avg = load_avg - se->avg.load_avg;
3290 
3291 	se->avg.load_sum = runnable_sum;
3292 	se->avg.load_avg = load_avg;
3293 	add_positive(&cfs_rq->avg.load_avg, delta_avg);
3294 	add_positive(&cfs_rq->avg.load_sum, delta_sum);
3295 
3296 	runnable_load_sum = (s64)se_runnable(se) * runnable_sum;
3297 	runnable_load_avg = div_s64(runnable_load_sum, LOAD_AVG_MAX);
3298 	delta_sum = runnable_load_sum - se_weight(se) * se->avg.runnable_load_sum;
3299 	delta_avg = runnable_load_avg - se->avg.runnable_load_avg;
3300 
3301 	se->avg.runnable_load_sum = runnable_sum;
3302 	se->avg.runnable_load_avg = runnable_load_avg;
3303 
3304 	if (se->on_rq) {
3305 		add_positive(&cfs_rq->avg.runnable_load_avg, delta_avg);
3306 		add_positive(&cfs_rq->avg.runnable_load_sum, delta_sum);
3307 	}
3308 }
3309 
3310 static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum)
3311 {
3312 	cfs_rq->propagate = 1;
3313 	cfs_rq->prop_runnable_sum += runnable_sum;
3314 }
3315 
3316 /* Update task and its cfs_rq load average */
3317 static inline int propagate_entity_load_avg(struct sched_entity *se)
3318 {
3319 	struct cfs_rq *cfs_rq, *gcfs_rq;
3320 
3321 	if (entity_is_task(se))
3322 		return 0;
3323 
3324 	gcfs_rq = group_cfs_rq(se);
3325 	if (!gcfs_rq->propagate)
3326 		return 0;
3327 
3328 	gcfs_rq->propagate = 0;
3329 
3330 	cfs_rq = cfs_rq_of(se);
3331 
3332 	add_tg_cfs_propagate(cfs_rq, gcfs_rq->prop_runnable_sum);
3333 
3334 	update_tg_cfs_util(cfs_rq, se, gcfs_rq);
3335 	update_tg_cfs_runnable(cfs_rq, se, gcfs_rq);
3336 
3337 	return 1;
3338 }
3339 
3340 /*
3341  * Check if we need to update the load and the utilization of a blocked
3342  * group_entity:
3343  */
3344 static inline bool skip_blocked_update(struct sched_entity *se)
3345 {
3346 	struct cfs_rq *gcfs_rq = group_cfs_rq(se);
3347 
3348 	/*
3349 	 * If sched_entity still have not zero load or utilization, we have to
3350 	 * decay it:
3351 	 */
3352 	if (se->avg.load_avg || se->avg.util_avg)
3353 		return false;
3354 
3355 	/*
3356 	 * If there is a pending propagation, we have to update the load and
3357 	 * the utilization of the sched_entity:
3358 	 */
3359 	if (gcfs_rq->propagate)
3360 		return false;
3361 
3362 	/*
3363 	 * Otherwise, the load and the utilization of the sched_entity is
3364 	 * already zero and there is no pending propagation, so it will be a
3365 	 * waste of time to try to decay it:
3366 	 */
3367 	return true;
3368 }
3369 
3370 #else /* CONFIG_FAIR_GROUP_SCHED */
3371 
3372 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force) {}
3373 
3374 static inline int propagate_entity_load_avg(struct sched_entity *se)
3375 {
3376 	return 0;
3377 }
3378 
3379 static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum) {}
3380 
3381 #endif /* CONFIG_FAIR_GROUP_SCHED */
3382 
3383 /**
3384  * update_cfs_rq_load_avg - update the cfs_rq's load/util averages
3385  * @now: current time, as per cfs_rq_clock_pelt()
3386  * @cfs_rq: cfs_rq to update
3387  *
3388  * The cfs_rq avg is the direct sum of all its entities (blocked and runnable)
3389  * avg. The immediate corollary is that all (fair) tasks must be attached, see
3390  * post_init_entity_util_avg().
3391  *
3392  * cfs_rq->avg is used for task_h_load() and update_cfs_share() for example.
3393  *
3394  * Returns true if the load decayed or we removed load.
3395  *
3396  * Since both these conditions indicate a changed cfs_rq->avg.load we should
3397  * call update_tg_load_avg() when this function returns true.
3398  */
3399 static inline int
3400 update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq)
3401 {
3402 	unsigned long removed_load = 0, removed_util = 0, removed_runnable_sum = 0;
3403 	struct sched_avg *sa = &cfs_rq->avg;
3404 	int decayed = 0;
3405 
3406 	if (cfs_rq->removed.nr) {
3407 		unsigned long r;
3408 		u32 divider = LOAD_AVG_MAX - 1024 + sa->period_contrib;
3409 
3410 		raw_spin_lock(&cfs_rq->removed.lock);
3411 		swap(cfs_rq->removed.util_avg, removed_util);
3412 		swap(cfs_rq->removed.load_avg, removed_load);
3413 		swap(cfs_rq->removed.runnable_sum, removed_runnable_sum);
3414 		cfs_rq->removed.nr = 0;
3415 		raw_spin_unlock(&cfs_rq->removed.lock);
3416 
3417 		r = removed_load;
3418 		sub_positive(&sa->load_avg, r);
3419 		sub_positive(&sa->load_sum, r * divider);
3420 
3421 		r = removed_util;
3422 		sub_positive(&sa->util_avg, r);
3423 		sub_positive(&sa->util_sum, r * divider);
3424 
3425 		add_tg_cfs_propagate(cfs_rq, -(long)removed_runnable_sum);
3426 
3427 		decayed = 1;
3428 	}
3429 
3430 	decayed |= __update_load_avg_cfs_rq(now, cfs_rq);
3431 
3432 #ifndef CONFIG_64BIT
3433 	smp_wmb();
3434 	cfs_rq->load_last_update_time_copy = sa->last_update_time;
3435 #endif
3436 
3437 	if (decayed)
3438 		cfs_rq_util_change(cfs_rq, 0);
3439 
3440 	return decayed;
3441 }
3442 
3443 /**
3444  * attach_entity_load_avg - attach this entity to its cfs_rq load avg
3445  * @cfs_rq: cfs_rq to attach to
3446  * @se: sched_entity to attach
3447  * @flags: migration hints
3448  *
3449  * Must call update_cfs_rq_load_avg() before this, since we rely on
3450  * cfs_rq->avg.last_update_time being current.
3451  */
3452 static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
3453 {
3454 	u32 divider = LOAD_AVG_MAX - 1024 + cfs_rq->avg.period_contrib;
3455 
3456 	/*
3457 	 * When we attach the @se to the @cfs_rq, we must align the decay
3458 	 * window because without that, really weird and wonderful things can
3459 	 * happen.
3460 	 *
3461 	 * XXX illustrate
3462 	 */
3463 	se->avg.last_update_time = cfs_rq->avg.last_update_time;
3464 	se->avg.period_contrib = cfs_rq->avg.period_contrib;
3465 
3466 	/*
3467 	 * Hell(o) Nasty stuff.. we need to recompute _sum based on the new
3468 	 * period_contrib. This isn't strictly correct, but since we're
3469 	 * entirely outside of the PELT hierarchy, nobody cares if we truncate
3470 	 * _sum a little.
3471 	 */
3472 	se->avg.util_sum = se->avg.util_avg * divider;
3473 
3474 	se->avg.load_sum = divider;
3475 	if (se_weight(se)) {
3476 		se->avg.load_sum =
3477 			div_u64(se->avg.load_avg * se->avg.load_sum, se_weight(se));
3478 	}
3479 
3480 	se->avg.runnable_load_sum = se->avg.load_sum;
3481 
3482 	enqueue_load_avg(cfs_rq, se);
3483 	cfs_rq->avg.util_avg += se->avg.util_avg;
3484 	cfs_rq->avg.util_sum += se->avg.util_sum;
3485 
3486 	add_tg_cfs_propagate(cfs_rq, se->avg.load_sum);
3487 
3488 	cfs_rq_util_change(cfs_rq, flags);
3489 }
3490 
3491 /**
3492  * detach_entity_load_avg - detach this entity from its cfs_rq load avg
3493  * @cfs_rq: cfs_rq to detach from
3494  * @se: sched_entity to detach
3495  *
3496  * Must call update_cfs_rq_load_avg() before this, since we rely on
3497  * cfs_rq->avg.last_update_time being current.
3498  */
3499 static void detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3500 {
3501 	dequeue_load_avg(cfs_rq, se);
3502 	sub_positive(&cfs_rq->avg.util_avg, se->avg.util_avg);
3503 	sub_positive(&cfs_rq->avg.util_sum, se->avg.util_sum);
3504 
3505 	add_tg_cfs_propagate(cfs_rq, -se->avg.load_sum);
3506 
3507 	cfs_rq_util_change(cfs_rq, 0);
3508 }
3509 
3510 /*
3511  * Optional action to be done while updating the load average
3512  */
3513 #define UPDATE_TG	0x1
3514 #define SKIP_AGE_LOAD	0x2
3515 #define DO_ATTACH	0x4
3516 
3517 /* Update task and its cfs_rq load average */
3518 static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
3519 {
3520 	u64 now = cfs_rq_clock_pelt(cfs_rq);
3521 	int decayed;
3522 
3523 	/*
3524 	 * Track task load average for carrying it to new CPU after migrated, and
3525 	 * track group sched_entity load average for task_h_load calc in migration
3526 	 */
3527 	if (se->avg.last_update_time && !(flags & SKIP_AGE_LOAD))
3528 		__update_load_avg_se(now, cfs_rq, se);
3529 
3530 	decayed  = update_cfs_rq_load_avg(now, cfs_rq);
3531 	decayed |= propagate_entity_load_avg(se);
3532 
3533 	if (!se->avg.last_update_time && (flags & DO_ATTACH)) {
3534 
3535 		/*
3536 		 * DO_ATTACH means we're here from enqueue_entity().
3537 		 * !last_update_time means we've passed through
3538 		 * migrate_task_rq_fair() indicating we migrated.
3539 		 *
3540 		 * IOW we're enqueueing a task on a new CPU.
3541 		 */
3542 		attach_entity_load_avg(cfs_rq, se, SCHED_CPUFREQ_MIGRATION);
3543 		update_tg_load_avg(cfs_rq, 0);
3544 
3545 	} else if (decayed && (flags & UPDATE_TG))
3546 		update_tg_load_avg(cfs_rq, 0);
3547 }
3548 
3549 #ifndef CONFIG_64BIT
3550 static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
3551 {
3552 	u64 last_update_time_copy;
3553 	u64 last_update_time;
3554 
3555 	do {
3556 		last_update_time_copy = cfs_rq->load_last_update_time_copy;
3557 		smp_rmb();
3558 		last_update_time = cfs_rq->avg.last_update_time;
3559 	} while (last_update_time != last_update_time_copy);
3560 
3561 	return last_update_time;
3562 }
3563 #else
3564 static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
3565 {
3566 	return cfs_rq->avg.last_update_time;
3567 }
3568 #endif
3569 
3570 /*
3571  * Synchronize entity load avg of dequeued entity without locking
3572  * the previous rq.
3573  */
3574 void sync_entity_load_avg(struct sched_entity *se)
3575 {
3576 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
3577 	u64 last_update_time;
3578 
3579 	last_update_time = cfs_rq_last_update_time(cfs_rq);
3580 	__update_load_avg_blocked_se(last_update_time, se);
3581 }
3582 
3583 /*
3584  * Task first catches up with cfs_rq, and then subtract
3585  * itself from the cfs_rq (task must be off the queue now).
3586  */
3587 void remove_entity_load_avg(struct sched_entity *se)
3588 {
3589 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
3590 	unsigned long flags;
3591 
3592 	/*
3593 	 * tasks cannot exit without having gone through wake_up_new_task() ->
3594 	 * post_init_entity_util_avg() which will have added things to the
3595 	 * cfs_rq, so we can remove unconditionally.
3596 	 */
3597 
3598 	sync_entity_load_avg(se);
3599 
3600 	raw_spin_lock_irqsave(&cfs_rq->removed.lock, flags);
3601 	++cfs_rq->removed.nr;
3602 	cfs_rq->removed.util_avg	+= se->avg.util_avg;
3603 	cfs_rq->removed.load_avg	+= se->avg.load_avg;
3604 	cfs_rq->removed.runnable_sum	+= se->avg.load_sum; /* == runnable_sum */
3605 	raw_spin_unlock_irqrestore(&cfs_rq->removed.lock, flags);
3606 }
3607 
3608 static inline unsigned long cfs_rq_runnable_load_avg(struct cfs_rq *cfs_rq)
3609 {
3610 	return cfs_rq->avg.runnable_load_avg;
3611 }
3612 
3613 static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq)
3614 {
3615 	return cfs_rq->avg.load_avg;
3616 }
3617 
3618 static int idle_balance(struct rq *this_rq, struct rq_flags *rf);
3619 
3620 static inline unsigned long task_util(struct task_struct *p)
3621 {
3622 	return READ_ONCE(p->se.avg.util_avg);
3623 }
3624 
3625 static inline unsigned long _task_util_est(struct task_struct *p)
3626 {
3627 	struct util_est ue = READ_ONCE(p->se.avg.util_est);
3628 
3629 	return (max(ue.ewma, ue.enqueued) | UTIL_AVG_UNCHANGED);
3630 }
3631 
3632 static inline unsigned long task_util_est(struct task_struct *p)
3633 {
3634 	return max(task_util(p), _task_util_est(p));
3635 }
3636 
3637 static inline void util_est_enqueue(struct cfs_rq *cfs_rq,
3638 				    struct task_struct *p)
3639 {
3640 	unsigned int enqueued;
3641 
3642 	if (!sched_feat(UTIL_EST))
3643 		return;
3644 
3645 	/* Update root cfs_rq's estimated utilization */
3646 	enqueued  = cfs_rq->avg.util_est.enqueued;
3647 	enqueued += _task_util_est(p);
3648 	WRITE_ONCE(cfs_rq->avg.util_est.enqueued, enqueued);
3649 }
3650 
3651 /*
3652  * Check if a (signed) value is within a specified (unsigned) margin,
3653  * based on the observation that:
3654  *
3655  *     abs(x) < y := (unsigned)(x + y - 1) < (2 * y - 1)
3656  *
3657  * NOTE: this only works when value + maring < INT_MAX.
3658  */
3659 static inline bool within_margin(int value, int margin)
3660 {
3661 	return ((unsigned int)(value + margin - 1) < (2 * margin - 1));
3662 }
3663 
3664 static void
3665 util_est_dequeue(struct cfs_rq *cfs_rq, struct task_struct *p, bool task_sleep)
3666 {
3667 	long last_ewma_diff;
3668 	struct util_est ue;
3669 	int cpu;
3670 
3671 	if (!sched_feat(UTIL_EST))
3672 		return;
3673 
3674 	/* Update root cfs_rq's estimated utilization */
3675 	ue.enqueued  = cfs_rq->avg.util_est.enqueued;
3676 	ue.enqueued -= min_t(unsigned int, ue.enqueued, _task_util_est(p));
3677 	WRITE_ONCE(cfs_rq->avg.util_est.enqueued, ue.enqueued);
3678 
3679 	/*
3680 	 * Skip update of task's estimated utilization when the task has not
3681 	 * yet completed an activation, e.g. being migrated.
3682 	 */
3683 	if (!task_sleep)
3684 		return;
3685 
3686 	/*
3687 	 * If the PELT values haven't changed since enqueue time,
3688 	 * skip the util_est update.
3689 	 */
3690 	ue = p->se.avg.util_est;
3691 	if (ue.enqueued & UTIL_AVG_UNCHANGED)
3692 		return;
3693 
3694 	/*
3695 	 * Skip update of task's estimated utilization when its EWMA is
3696 	 * already ~1% close to its last activation value.
3697 	 */
3698 	ue.enqueued = (task_util(p) | UTIL_AVG_UNCHANGED);
3699 	last_ewma_diff = ue.enqueued - ue.ewma;
3700 	if (within_margin(last_ewma_diff, (SCHED_CAPACITY_SCALE / 100)))
3701 		return;
3702 
3703 	/*
3704 	 * To avoid overestimation of actual task utilization, skip updates if
3705 	 * we cannot grant there is idle time in this CPU.
3706 	 */
3707 	cpu = cpu_of(rq_of(cfs_rq));
3708 	if (task_util(p) > capacity_orig_of(cpu))
3709 		return;
3710 
3711 	/*
3712 	 * Update Task's estimated utilization
3713 	 *
3714 	 * When *p completes an activation we can consolidate another sample
3715 	 * of the task size. This is done by storing the current PELT value
3716 	 * as ue.enqueued and by using this value to update the Exponential
3717 	 * Weighted Moving Average (EWMA):
3718 	 *
3719 	 *  ewma(t) = w *  task_util(p) + (1-w) * ewma(t-1)
3720 	 *          = w *  task_util(p) +         ewma(t-1)  - w * ewma(t-1)
3721 	 *          = w * (task_util(p) -         ewma(t-1)) +     ewma(t-1)
3722 	 *          = w * (      last_ewma_diff            ) +     ewma(t-1)
3723 	 *          = w * (last_ewma_diff  +  ewma(t-1) / w)
3724 	 *
3725 	 * Where 'w' is the weight of new samples, which is configured to be
3726 	 * 0.25, thus making w=1/4 ( >>= UTIL_EST_WEIGHT_SHIFT)
3727 	 */
3728 	ue.ewma <<= UTIL_EST_WEIGHT_SHIFT;
3729 	ue.ewma  += last_ewma_diff;
3730 	ue.ewma >>= UTIL_EST_WEIGHT_SHIFT;
3731 	WRITE_ONCE(p->se.avg.util_est, ue);
3732 }
3733 
3734 static inline int task_fits_capacity(struct task_struct *p, long capacity)
3735 {
3736 	return capacity * 1024 > task_util_est(p) * capacity_margin;
3737 }
3738 
3739 static inline void update_misfit_status(struct task_struct *p, struct rq *rq)
3740 {
3741 	if (!static_branch_unlikely(&sched_asym_cpucapacity))
3742 		return;
3743 
3744 	if (!p) {
3745 		rq->misfit_task_load = 0;
3746 		return;
3747 	}
3748 
3749 	if (task_fits_capacity(p, capacity_of(cpu_of(rq)))) {
3750 		rq->misfit_task_load = 0;
3751 		return;
3752 	}
3753 
3754 	rq->misfit_task_load = task_h_load(p);
3755 }
3756 
3757 #else /* CONFIG_SMP */
3758 
3759 #define UPDATE_TG	0x0
3760 #define SKIP_AGE_LOAD	0x0
3761 #define DO_ATTACH	0x0
3762 
3763 static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int not_used1)
3764 {
3765 	cfs_rq_util_change(cfs_rq, 0);
3766 }
3767 
3768 static inline void remove_entity_load_avg(struct sched_entity *se) {}
3769 
3770 static inline void
3771 attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) {}
3772 static inline void
3773 detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
3774 
3775 static inline int idle_balance(struct rq *rq, struct rq_flags *rf)
3776 {
3777 	return 0;
3778 }
3779 
3780 static inline void
3781 util_est_enqueue(struct cfs_rq *cfs_rq, struct task_struct *p) {}
3782 
3783 static inline void
3784 util_est_dequeue(struct cfs_rq *cfs_rq, struct task_struct *p,
3785 		 bool task_sleep) {}
3786 static inline void update_misfit_status(struct task_struct *p, struct rq *rq) {}
3787 
3788 #endif /* CONFIG_SMP */
3789 
3790 static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
3791 {
3792 #ifdef CONFIG_SCHED_DEBUG
3793 	s64 d = se->vruntime - cfs_rq->min_vruntime;
3794 
3795 	if (d < 0)
3796 		d = -d;
3797 
3798 	if (d > 3*sysctl_sched_latency)
3799 		schedstat_inc(cfs_rq->nr_spread_over);
3800 #endif
3801 }
3802 
3803 static void
3804 place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
3805 {
3806 	u64 vruntime = cfs_rq->min_vruntime;
3807 
3808 	/*
3809 	 * The 'current' period is already promised to the current tasks,
3810 	 * however the extra weight of the new task will slow them down a
3811 	 * little, place the new task so that it fits in the slot that
3812 	 * stays open at the end.
3813 	 */
3814 	if (initial && sched_feat(START_DEBIT))
3815 		vruntime += sched_vslice(cfs_rq, se);
3816 
3817 	/* sleeps up to a single latency don't count. */
3818 	if (!initial) {
3819 		unsigned long thresh = sysctl_sched_latency;
3820 
3821 		/*
3822 		 * Halve their sleep time's effect, to allow
3823 		 * for a gentler effect of sleepers:
3824 		 */
3825 		if (sched_feat(GENTLE_FAIR_SLEEPERS))
3826 			thresh >>= 1;
3827 
3828 		vruntime -= thresh;
3829 	}
3830 
3831 	/* ensure we never gain time by being placed backwards. */
3832 	se->vruntime = max_vruntime(se->vruntime, vruntime);
3833 }
3834 
3835 static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
3836 
3837 static inline void check_schedstat_required(void)
3838 {
3839 #ifdef CONFIG_SCHEDSTATS
3840 	if (schedstat_enabled())
3841 		return;
3842 
3843 	/* Force schedstat enabled if a dependent tracepoint is active */
3844 	if (trace_sched_stat_wait_enabled()    ||
3845 			trace_sched_stat_sleep_enabled()   ||
3846 			trace_sched_stat_iowait_enabled()  ||
3847 			trace_sched_stat_blocked_enabled() ||
3848 			trace_sched_stat_runtime_enabled())  {
3849 		printk_deferred_once("Scheduler tracepoints stat_sleep, stat_iowait, "
3850 			     "stat_blocked and stat_runtime require the "
3851 			     "kernel parameter schedstats=enable or "
3852 			     "kernel.sched_schedstats=1\n");
3853 	}
3854 #endif
3855 }
3856 
3857 
3858 /*
3859  * MIGRATION
3860  *
3861  *	dequeue
3862  *	  update_curr()
3863  *	    update_min_vruntime()
3864  *	  vruntime -= min_vruntime
3865  *
3866  *	enqueue
3867  *	  update_curr()
3868  *	    update_min_vruntime()
3869  *	  vruntime += min_vruntime
3870  *
3871  * this way the vruntime transition between RQs is done when both
3872  * min_vruntime are up-to-date.
3873  *
3874  * WAKEUP (remote)
3875  *
3876  *	->migrate_task_rq_fair() (p->state == TASK_WAKING)
3877  *	  vruntime -= min_vruntime
3878  *
3879  *	enqueue
3880  *	  update_curr()
3881  *	    update_min_vruntime()
3882  *	  vruntime += min_vruntime
3883  *
3884  * this way we don't have the most up-to-date min_vruntime on the originating
3885  * CPU and an up-to-date min_vruntime on the destination CPU.
3886  */
3887 
3888 static void
3889 enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
3890 {
3891 	bool renorm = !(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_MIGRATED);
3892 	bool curr = cfs_rq->curr == se;
3893 
3894 	/*
3895 	 * If we're the current task, we must renormalise before calling
3896 	 * update_curr().
3897 	 */
3898 	if (renorm && curr)
3899 		se->vruntime += cfs_rq->min_vruntime;
3900 
3901 	update_curr(cfs_rq);
3902 
3903 	/*
3904 	 * Otherwise, renormalise after, such that we're placed at the current
3905 	 * moment in time, instead of some random moment in the past. Being
3906 	 * placed in the past could significantly boost this task to the
3907 	 * fairness detriment of existing tasks.
3908 	 */
3909 	if (renorm && !curr)
3910 		se->vruntime += cfs_rq->min_vruntime;
3911 
3912 	/*
3913 	 * When enqueuing a sched_entity, we must:
3914 	 *   - Update loads to have both entity and cfs_rq synced with now.
3915 	 *   - Add its load to cfs_rq->runnable_avg
3916 	 *   - For group_entity, update its weight to reflect the new share of
3917 	 *     its group cfs_rq
3918 	 *   - Add its new weight to cfs_rq->load.weight
3919 	 */
3920 	update_load_avg(cfs_rq, se, UPDATE_TG | DO_ATTACH);
3921 	update_cfs_group(se);
3922 	enqueue_runnable_load_avg(cfs_rq, se);
3923 	account_entity_enqueue(cfs_rq, se);
3924 
3925 	if (flags & ENQUEUE_WAKEUP)
3926 		place_entity(cfs_rq, se, 0);
3927 
3928 	check_schedstat_required();
3929 	update_stats_enqueue(cfs_rq, se, flags);
3930 	check_spread(cfs_rq, se);
3931 	if (!curr)
3932 		__enqueue_entity(cfs_rq, se);
3933 	se->on_rq = 1;
3934 
3935 	if (cfs_rq->nr_running == 1) {
3936 		list_add_leaf_cfs_rq(cfs_rq);
3937 		check_enqueue_throttle(cfs_rq);
3938 	}
3939 }
3940 
3941 static void __clear_buddies_last(struct sched_entity *se)
3942 {
3943 	for_each_sched_entity(se) {
3944 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
3945 		if (cfs_rq->last != se)
3946 			break;
3947 
3948 		cfs_rq->last = NULL;
3949 	}
3950 }
3951 
3952 static void __clear_buddies_next(struct sched_entity *se)
3953 {
3954 	for_each_sched_entity(se) {
3955 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
3956 		if (cfs_rq->next != se)
3957 			break;
3958 
3959 		cfs_rq->next = NULL;
3960 	}
3961 }
3962 
3963 static void __clear_buddies_skip(struct sched_entity *se)
3964 {
3965 	for_each_sched_entity(se) {
3966 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
3967 		if (cfs_rq->skip != se)
3968 			break;
3969 
3970 		cfs_rq->skip = NULL;
3971 	}
3972 }
3973 
3974 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
3975 {
3976 	if (cfs_rq->last == se)
3977 		__clear_buddies_last(se);
3978 
3979 	if (cfs_rq->next == se)
3980 		__clear_buddies_next(se);
3981 
3982 	if (cfs_rq->skip == se)
3983 		__clear_buddies_skip(se);
3984 }
3985 
3986 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
3987 
3988 static void
3989 dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
3990 {
3991 	/*
3992 	 * Update run-time statistics of the 'current'.
3993 	 */
3994 	update_curr(cfs_rq);
3995 
3996 	/*
3997 	 * When dequeuing a sched_entity, we must:
3998 	 *   - Update loads to have both entity and cfs_rq synced with now.
3999 	 *   - Subtract its load from the cfs_rq->runnable_avg.
4000 	 *   - Subtract its previous weight from cfs_rq->load.weight.
4001 	 *   - For group entity, update its weight to reflect the new share
4002 	 *     of its group cfs_rq.
4003 	 */
4004 	update_load_avg(cfs_rq, se, UPDATE_TG);
4005 	dequeue_runnable_load_avg(cfs_rq, se);
4006 
4007 	update_stats_dequeue(cfs_rq, se, flags);
4008 
4009 	clear_buddies(cfs_rq, se);
4010 
4011 	if (se != cfs_rq->curr)
4012 		__dequeue_entity(cfs_rq, se);
4013 	se->on_rq = 0;
4014 	account_entity_dequeue(cfs_rq, se);
4015 
4016 	/*
4017 	 * Normalize after update_curr(); which will also have moved
4018 	 * min_vruntime if @se is the one holding it back. But before doing
4019 	 * update_min_vruntime() again, which will discount @se's position and
4020 	 * can move min_vruntime forward still more.
4021 	 */
4022 	if (!(flags & DEQUEUE_SLEEP))
4023 		se->vruntime -= cfs_rq->min_vruntime;
4024 
4025 	/* return excess runtime on last dequeue */
4026 	return_cfs_rq_runtime(cfs_rq);
4027 
4028 	update_cfs_group(se);
4029 
4030 	/*
4031 	 * Now advance min_vruntime if @se was the entity holding it back,
4032 	 * except when: DEQUEUE_SAVE && !DEQUEUE_MOVE, in this case we'll be
4033 	 * put back on, and if we advance min_vruntime, we'll be placed back
4034 	 * further than we started -- ie. we'll be penalized.
4035 	 */
4036 	if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) != DEQUEUE_SAVE)
4037 		update_min_vruntime(cfs_rq);
4038 }
4039 
4040 /*
4041  * Preempt the current task with a newly woken task if needed:
4042  */
4043 static void
4044 check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
4045 {
4046 	unsigned long ideal_runtime, delta_exec;
4047 	struct sched_entity *se;
4048 	s64 delta;
4049 
4050 	ideal_runtime = sched_slice(cfs_rq, curr);
4051 	delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
4052 	if (delta_exec > ideal_runtime) {
4053 		resched_curr(rq_of(cfs_rq));
4054 		/*
4055 		 * The current task ran long enough, ensure it doesn't get
4056 		 * re-elected due to buddy favours.
4057 		 */
4058 		clear_buddies(cfs_rq, curr);
4059 		return;
4060 	}
4061 
4062 	/*
4063 	 * Ensure that a task that missed wakeup preemption by a
4064 	 * narrow margin doesn't have to wait for a full slice.
4065 	 * This also mitigates buddy induced latencies under load.
4066 	 */
4067 	if (delta_exec < sysctl_sched_min_granularity)
4068 		return;
4069 
4070 	se = __pick_first_entity(cfs_rq);
4071 	delta = curr->vruntime - se->vruntime;
4072 
4073 	if (delta < 0)
4074 		return;
4075 
4076 	if (delta > ideal_runtime)
4077 		resched_curr(rq_of(cfs_rq));
4078 }
4079 
4080 static void
4081 set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
4082 {
4083 	/* 'current' is not kept within the tree. */
4084 	if (se->on_rq) {
4085 		/*
4086 		 * Any task has to be enqueued before it get to execute on
4087 		 * a CPU. So account for the time it spent waiting on the
4088 		 * runqueue.
4089 		 */
4090 		update_stats_wait_end(cfs_rq, se);
4091 		__dequeue_entity(cfs_rq, se);
4092 		update_load_avg(cfs_rq, se, UPDATE_TG);
4093 	}
4094 
4095 	update_stats_curr_start(cfs_rq, se);
4096 	cfs_rq->curr = se;
4097 
4098 	/*
4099 	 * Track our maximum slice length, if the CPU's load is at
4100 	 * least twice that of our own weight (i.e. dont track it
4101 	 * when there are only lesser-weight tasks around):
4102 	 */
4103 	if (schedstat_enabled() && rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
4104 		schedstat_set(se->statistics.slice_max,
4105 			max((u64)schedstat_val(se->statistics.slice_max),
4106 			    se->sum_exec_runtime - se->prev_sum_exec_runtime));
4107 	}
4108 
4109 	se->prev_sum_exec_runtime = se->sum_exec_runtime;
4110 }
4111 
4112 static int
4113 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
4114 
4115 /*
4116  * Pick the next process, keeping these things in mind, in this order:
4117  * 1) keep things fair between processes/task groups
4118  * 2) pick the "next" process, since someone really wants that to run
4119  * 3) pick the "last" process, for cache locality
4120  * 4) do not run the "skip" process, if something else is available
4121  */
4122 static struct sched_entity *
4123 pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr)
4124 {
4125 	struct sched_entity *left = __pick_first_entity(cfs_rq);
4126 	struct sched_entity *se;
4127 
4128 	/*
4129 	 * If curr is set we have to see if its left of the leftmost entity
4130 	 * still in the tree, provided there was anything in the tree at all.
4131 	 */
4132 	if (!left || (curr && entity_before(curr, left)))
4133 		left = curr;
4134 
4135 	se = left; /* ideally we run the leftmost entity */
4136 
4137 	/*
4138 	 * Avoid running the skip buddy, if running something else can
4139 	 * be done without getting too unfair.
4140 	 */
4141 	if (cfs_rq->skip == se) {
4142 		struct sched_entity *second;
4143 
4144 		if (se == curr) {
4145 			second = __pick_first_entity(cfs_rq);
4146 		} else {
4147 			second = __pick_next_entity(se);
4148 			if (!second || (curr && entity_before(curr, second)))
4149 				second = curr;
4150 		}
4151 
4152 		if (second && wakeup_preempt_entity(second, left) < 1)
4153 			se = second;
4154 	}
4155 
4156 	/*
4157 	 * Prefer last buddy, try to return the CPU to a preempted task.
4158 	 */
4159 	if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
4160 		se = cfs_rq->last;
4161 
4162 	/*
4163 	 * Someone really wants this to run. If it's not unfair, run it.
4164 	 */
4165 	if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
4166 		se = cfs_rq->next;
4167 
4168 	clear_buddies(cfs_rq, se);
4169 
4170 	return se;
4171 }
4172 
4173 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
4174 
4175 static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
4176 {
4177 	/*
4178 	 * If still on the runqueue then deactivate_task()
4179 	 * was not called and update_curr() has to be done:
4180 	 */
4181 	if (prev->on_rq)
4182 		update_curr(cfs_rq);
4183 
4184 	/* throttle cfs_rqs exceeding runtime */
4185 	check_cfs_rq_runtime(cfs_rq);
4186 
4187 	check_spread(cfs_rq, prev);
4188 
4189 	if (prev->on_rq) {
4190 		update_stats_wait_start(cfs_rq, prev);
4191 		/* Put 'current' back into the tree. */
4192 		__enqueue_entity(cfs_rq, prev);
4193 		/* in !on_rq case, update occurred at dequeue */
4194 		update_load_avg(cfs_rq, prev, 0);
4195 	}
4196 	cfs_rq->curr = NULL;
4197 }
4198 
4199 static void
4200 entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
4201 {
4202 	/*
4203 	 * Update run-time statistics of the 'current'.
4204 	 */
4205 	update_curr(cfs_rq);
4206 
4207 	/*
4208 	 * Ensure that runnable average is periodically updated.
4209 	 */
4210 	update_load_avg(cfs_rq, curr, UPDATE_TG);
4211 	update_cfs_group(curr);
4212 
4213 #ifdef CONFIG_SCHED_HRTICK
4214 	/*
4215 	 * queued ticks are scheduled to match the slice, so don't bother
4216 	 * validating it and just reschedule.
4217 	 */
4218 	if (queued) {
4219 		resched_curr(rq_of(cfs_rq));
4220 		return;
4221 	}
4222 	/*
4223 	 * don't let the period tick interfere with the hrtick preemption
4224 	 */
4225 	if (!sched_feat(DOUBLE_TICK) &&
4226 			hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
4227 		return;
4228 #endif
4229 
4230 	if (cfs_rq->nr_running > 1)
4231 		check_preempt_tick(cfs_rq, curr);
4232 }
4233 
4234 
4235 /**************************************************
4236  * CFS bandwidth control machinery
4237  */
4238 
4239 #ifdef CONFIG_CFS_BANDWIDTH
4240 
4241 #ifdef CONFIG_JUMP_LABEL
4242 static struct static_key __cfs_bandwidth_used;
4243 
4244 static inline bool cfs_bandwidth_used(void)
4245 {
4246 	return static_key_false(&__cfs_bandwidth_used);
4247 }
4248 
4249 void cfs_bandwidth_usage_inc(void)
4250 {
4251 	static_key_slow_inc_cpuslocked(&__cfs_bandwidth_used);
4252 }
4253 
4254 void cfs_bandwidth_usage_dec(void)
4255 {
4256 	static_key_slow_dec_cpuslocked(&__cfs_bandwidth_used);
4257 }
4258 #else /* CONFIG_JUMP_LABEL */
4259 static bool cfs_bandwidth_used(void)
4260 {
4261 	return true;
4262 }
4263 
4264 void cfs_bandwidth_usage_inc(void) {}
4265 void cfs_bandwidth_usage_dec(void) {}
4266 #endif /* CONFIG_JUMP_LABEL */
4267 
4268 /*
4269  * default period for cfs group bandwidth.
4270  * default: 0.1s, units: nanoseconds
4271  */
4272 static inline u64 default_cfs_period(void)
4273 {
4274 	return 100000000ULL;
4275 }
4276 
4277 static inline u64 sched_cfs_bandwidth_slice(void)
4278 {
4279 	return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
4280 }
4281 
4282 /*
4283  * Replenish runtime according to assigned quota and update expiration time.
4284  * We use sched_clock_cpu directly instead of rq->clock to avoid adding
4285  * additional synchronization around rq->lock.
4286  *
4287  * requires cfs_b->lock
4288  */
4289 void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
4290 {
4291 	u64 now;
4292 
4293 	if (cfs_b->quota == RUNTIME_INF)
4294 		return;
4295 
4296 	now = sched_clock_cpu(smp_processor_id());
4297 	cfs_b->runtime = cfs_b->quota;
4298 	cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
4299 	cfs_b->expires_seq++;
4300 }
4301 
4302 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
4303 {
4304 	return &tg->cfs_bandwidth;
4305 }
4306 
4307 /* rq->task_clock normalized against any time this cfs_rq has spent throttled */
4308 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
4309 {
4310 	if (unlikely(cfs_rq->throttle_count))
4311 		return cfs_rq->throttled_clock_task - cfs_rq->throttled_clock_task_time;
4312 
4313 	return rq_clock_task(rq_of(cfs_rq)) - cfs_rq->throttled_clock_task_time;
4314 }
4315 
4316 /* returns 0 on failure to allocate runtime */
4317 static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4318 {
4319 	struct task_group *tg = cfs_rq->tg;
4320 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
4321 	u64 amount = 0, min_amount, expires;
4322 	int expires_seq;
4323 
4324 	/* note: this is a positive sum as runtime_remaining <= 0 */
4325 	min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;
4326 
4327 	raw_spin_lock(&cfs_b->lock);
4328 	if (cfs_b->quota == RUNTIME_INF)
4329 		amount = min_amount;
4330 	else {
4331 		start_cfs_bandwidth(cfs_b);
4332 
4333 		if (cfs_b->runtime > 0) {
4334 			amount = min(cfs_b->runtime, min_amount);
4335 			cfs_b->runtime -= amount;
4336 			cfs_b->idle = 0;
4337 		}
4338 	}
4339 	expires_seq = cfs_b->expires_seq;
4340 	expires = cfs_b->runtime_expires;
4341 	raw_spin_unlock(&cfs_b->lock);
4342 
4343 	cfs_rq->runtime_remaining += amount;
4344 	/*
4345 	 * we may have advanced our local expiration to account for allowed
4346 	 * spread between our sched_clock and the one on which runtime was
4347 	 * issued.
4348 	 */
4349 	if (cfs_rq->expires_seq != expires_seq) {
4350 		cfs_rq->expires_seq = expires_seq;
4351 		cfs_rq->runtime_expires = expires;
4352 	}
4353 
4354 	return cfs_rq->runtime_remaining > 0;
4355 }
4356 
4357 /*
4358  * Note: This depends on the synchronization provided by sched_clock and the
4359  * fact that rq->clock snapshots this value.
4360  */
4361 static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4362 {
4363 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4364 
4365 	/* if the deadline is ahead of our clock, nothing to do */
4366 	if (likely((s64)(rq_clock(rq_of(cfs_rq)) - cfs_rq->runtime_expires) < 0))
4367 		return;
4368 
4369 	if (cfs_rq->runtime_remaining < 0)
4370 		return;
4371 
4372 	/*
4373 	 * If the local deadline has passed we have to consider the
4374 	 * possibility that our sched_clock is 'fast' and the global deadline
4375 	 * has not truly expired.
4376 	 *
4377 	 * Fortunately we can check determine whether this the case by checking
4378 	 * whether the global deadline(cfs_b->expires_seq) has advanced.
4379 	 */
4380 	if (cfs_rq->expires_seq == cfs_b->expires_seq) {
4381 		/* extend local deadline, drift is bounded above by 2 ticks */
4382 		cfs_rq->runtime_expires += TICK_NSEC;
4383 	} else {
4384 		/* global deadline is ahead, expiration has passed */
4385 		cfs_rq->runtime_remaining = 0;
4386 	}
4387 }
4388 
4389 static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
4390 {
4391 	/* dock delta_exec before expiring quota (as it could span periods) */
4392 	cfs_rq->runtime_remaining -= delta_exec;
4393 	expire_cfs_rq_runtime(cfs_rq);
4394 
4395 	if (likely(cfs_rq->runtime_remaining > 0))
4396 		return;
4397 
4398 	/*
4399 	 * if we're unable to extend our runtime we resched so that the active
4400 	 * hierarchy can be throttled
4401 	 */
4402 	if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
4403 		resched_curr(rq_of(cfs_rq));
4404 }
4405 
4406 static __always_inline
4407 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
4408 {
4409 	if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
4410 		return;
4411 
4412 	__account_cfs_rq_runtime(cfs_rq, delta_exec);
4413 }
4414 
4415 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
4416 {
4417 	return cfs_bandwidth_used() && cfs_rq->throttled;
4418 }
4419 
4420 /* check whether cfs_rq, or any parent, is throttled */
4421 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
4422 {
4423 	return cfs_bandwidth_used() && cfs_rq->throttle_count;
4424 }
4425 
4426 /*
4427  * Ensure that neither of the group entities corresponding to src_cpu or
4428  * dest_cpu are members of a throttled hierarchy when performing group
4429  * load-balance operations.
4430  */
4431 static inline int throttled_lb_pair(struct task_group *tg,
4432 				    int src_cpu, int dest_cpu)
4433 {
4434 	struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
4435 
4436 	src_cfs_rq = tg->cfs_rq[src_cpu];
4437 	dest_cfs_rq = tg->cfs_rq[dest_cpu];
4438 
4439 	return throttled_hierarchy(src_cfs_rq) ||
4440 	       throttled_hierarchy(dest_cfs_rq);
4441 }
4442 
4443 static int tg_unthrottle_up(struct task_group *tg, void *data)
4444 {
4445 	struct rq *rq = data;
4446 	struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
4447 
4448 	cfs_rq->throttle_count--;
4449 	if (!cfs_rq->throttle_count) {
4450 		/* adjust cfs_rq_clock_task() */
4451 		cfs_rq->throttled_clock_task_time += rq_clock_task(rq) -
4452 					     cfs_rq->throttled_clock_task;
4453 
4454 		/* Add cfs_rq with already running entity in the list */
4455 		if (cfs_rq->nr_running >= 1)
4456 			list_add_leaf_cfs_rq(cfs_rq);
4457 	}
4458 
4459 	return 0;
4460 }
4461 
4462 static int tg_throttle_down(struct task_group *tg, void *data)
4463 {
4464 	struct rq *rq = data;
4465 	struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
4466 
4467 	/* group is entering throttled state, stop time */
4468 	if (!cfs_rq->throttle_count) {
4469 		cfs_rq->throttled_clock_task = rq_clock_task(rq);
4470 		list_del_leaf_cfs_rq(cfs_rq);
4471 	}
4472 	cfs_rq->throttle_count++;
4473 
4474 	return 0;
4475 }
4476 
4477 static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
4478 {
4479 	struct rq *rq = rq_of(cfs_rq);
4480 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4481 	struct sched_entity *se;
4482 	long task_delta, dequeue = 1;
4483 	bool empty;
4484 
4485 	se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
4486 
4487 	/* freeze hierarchy runnable averages while throttled */
4488 	rcu_read_lock();
4489 	walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
4490 	rcu_read_unlock();
4491 
4492 	task_delta = cfs_rq->h_nr_running;
4493 	for_each_sched_entity(se) {
4494 		struct cfs_rq *qcfs_rq = cfs_rq_of(se);
4495 		/* throttled entity or throttle-on-deactivate */
4496 		if (!se->on_rq)
4497 			break;
4498 
4499 		if (dequeue)
4500 			dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
4501 		qcfs_rq->h_nr_running -= task_delta;
4502 
4503 		if (qcfs_rq->load.weight)
4504 			dequeue = 0;
4505 	}
4506 
4507 	if (!se)
4508 		sub_nr_running(rq, task_delta);
4509 
4510 	cfs_rq->throttled = 1;
4511 	cfs_rq->throttled_clock = rq_clock(rq);
4512 	raw_spin_lock(&cfs_b->lock);
4513 	empty = list_empty(&cfs_b->throttled_cfs_rq);
4514 
4515 	/*
4516 	 * Add to the _head_ of the list, so that an already-started
4517 	 * distribute_cfs_runtime will not see us. If disribute_cfs_runtime is
4518 	 * not running add to the tail so that later runqueues don't get starved.
4519 	 */
4520 	if (cfs_b->distribute_running)
4521 		list_add_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
4522 	else
4523 		list_add_tail_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
4524 
4525 	/*
4526 	 * If we're the first throttled task, make sure the bandwidth
4527 	 * timer is running.
4528 	 */
4529 	if (empty)
4530 		start_cfs_bandwidth(cfs_b);
4531 
4532 	raw_spin_unlock(&cfs_b->lock);
4533 }
4534 
4535 void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
4536 {
4537 	struct rq *rq = rq_of(cfs_rq);
4538 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4539 	struct sched_entity *se;
4540 	int enqueue = 1;
4541 	long task_delta;
4542 
4543 	se = cfs_rq->tg->se[cpu_of(rq)];
4544 
4545 	cfs_rq->throttled = 0;
4546 
4547 	update_rq_clock(rq);
4548 
4549 	raw_spin_lock(&cfs_b->lock);
4550 	cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
4551 	list_del_rcu(&cfs_rq->throttled_list);
4552 	raw_spin_unlock(&cfs_b->lock);
4553 
4554 	/* update hierarchical throttle state */
4555 	walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
4556 
4557 	if (!cfs_rq->load.weight)
4558 		return;
4559 
4560 	task_delta = cfs_rq->h_nr_running;
4561 	for_each_sched_entity(se) {
4562 		if (se->on_rq)
4563 			enqueue = 0;
4564 
4565 		cfs_rq = cfs_rq_of(se);
4566 		if (enqueue)
4567 			enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
4568 		cfs_rq->h_nr_running += task_delta;
4569 
4570 		if (cfs_rq_throttled(cfs_rq))
4571 			break;
4572 	}
4573 
4574 	assert_list_leaf_cfs_rq(rq);
4575 
4576 	if (!se)
4577 		add_nr_running(rq, task_delta);
4578 
4579 	/* Determine whether we need to wake up potentially idle CPU: */
4580 	if (rq->curr == rq->idle && rq->cfs.nr_running)
4581 		resched_curr(rq);
4582 }
4583 
4584 static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
4585 		u64 remaining, u64 expires)
4586 {
4587 	struct cfs_rq *cfs_rq;
4588 	u64 runtime;
4589 	u64 starting_runtime = remaining;
4590 
4591 	rcu_read_lock();
4592 	list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
4593 				throttled_list) {
4594 		struct rq *rq = rq_of(cfs_rq);
4595 		struct rq_flags rf;
4596 
4597 		rq_lock_irqsave(rq, &rf);
4598 		if (!cfs_rq_throttled(cfs_rq))
4599 			goto next;
4600 
4601 		runtime = -cfs_rq->runtime_remaining + 1;
4602 		if (runtime > remaining)
4603 			runtime = remaining;
4604 		remaining -= runtime;
4605 
4606 		cfs_rq->runtime_remaining += runtime;
4607 		cfs_rq->runtime_expires = expires;
4608 
4609 		/* we check whether we're throttled above */
4610 		if (cfs_rq->runtime_remaining > 0)
4611 			unthrottle_cfs_rq(cfs_rq);
4612 
4613 next:
4614 		rq_unlock_irqrestore(rq, &rf);
4615 
4616 		if (!remaining)
4617 			break;
4618 	}
4619 	rcu_read_unlock();
4620 
4621 	return starting_runtime - remaining;
4622 }
4623 
4624 /*
4625  * Responsible for refilling a task_group's bandwidth and unthrottling its
4626  * cfs_rqs as appropriate. If there has been no activity within the last
4627  * period the timer is deactivated until scheduling resumes; cfs_b->idle is
4628  * used to track this state.
4629  */
4630 static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun, unsigned long flags)
4631 {
4632 	u64 runtime, runtime_expires;
4633 	int throttled;
4634 
4635 	/* no need to continue the timer with no bandwidth constraint */
4636 	if (cfs_b->quota == RUNTIME_INF)
4637 		goto out_deactivate;
4638 
4639 	throttled = !list_empty(&cfs_b->throttled_cfs_rq);
4640 	cfs_b->nr_periods += overrun;
4641 
4642 	/*
4643 	 * idle depends on !throttled (for the case of a large deficit), and if
4644 	 * we're going inactive then everything else can be deferred
4645 	 */
4646 	if (cfs_b->idle && !throttled)
4647 		goto out_deactivate;
4648 
4649 	__refill_cfs_bandwidth_runtime(cfs_b);
4650 
4651 	if (!throttled) {
4652 		/* mark as potentially idle for the upcoming period */
4653 		cfs_b->idle = 1;
4654 		return 0;
4655 	}
4656 
4657 	/* account preceding periods in which throttling occurred */
4658 	cfs_b->nr_throttled += overrun;
4659 
4660 	runtime_expires = cfs_b->runtime_expires;
4661 
4662 	/*
4663 	 * This check is repeated as we are holding onto the new bandwidth while
4664 	 * we unthrottle. This can potentially race with an unthrottled group
4665 	 * trying to acquire new bandwidth from the global pool. This can result
4666 	 * in us over-using our runtime if it is all used during this loop, but
4667 	 * only by limited amounts in that extreme case.
4668 	 */
4669 	while (throttled && cfs_b->runtime > 0 && !cfs_b->distribute_running) {
4670 		runtime = cfs_b->runtime;
4671 		cfs_b->distribute_running = 1;
4672 		raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
4673 		/* we can't nest cfs_b->lock while distributing bandwidth */
4674 		runtime = distribute_cfs_runtime(cfs_b, runtime,
4675 						 runtime_expires);
4676 		raw_spin_lock_irqsave(&cfs_b->lock, flags);
4677 
4678 		cfs_b->distribute_running = 0;
4679 		throttled = !list_empty(&cfs_b->throttled_cfs_rq);
4680 
4681 		lsub_positive(&cfs_b->runtime, runtime);
4682 	}
4683 
4684 	/*
4685 	 * While we are ensured activity in the period following an
4686 	 * unthrottle, this also covers the case in which the new bandwidth is
4687 	 * insufficient to cover the existing bandwidth deficit.  (Forcing the
4688 	 * timer to remain active while there are any throttled entities.)
4689 	 */
4690 	cfs_b->idle = 0;
4691 
4692 	return 0;
4693 
4694 out_deactivate:
4695 	return 1;
4696 }
4697 
4698 /* a cfs_rq won't donate quota below this amount */
4699 static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
4700 /* minimum remaining period time to redistribute slack quota */
4701 static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
4702 /* how long we wait to gather additional slack before distributing */
4703 static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
4704 
4705 /*
4706  * Are we near the end of the current quota period?
4707  *
4708  * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
4709  * hrtimer base being cleared by hrtimer_start. In the case of
4710  * migrate_hrtimers, base is never cleared, so we are fine.
4711  */
4712 static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
4713 {
4714 	struct hrtimer *refresh_timer = &cfs_b->period_timer;
4715 	u64 remaining;
4716 
4717 	/* if the call-back is running a quota refresh is already occurring */
4718 	if (hrtimer_callback_running(refresh_timer))
4719 		return 1;
4720 
4721 	/* is a quota refresh about to occur? */
4722 	remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
4723 	if (remaining < min_expire)
4724 		return 1;
4725 
4726 	return 0;
4727 }
4728 
4729 static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
4730 {
4731 	u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
4732 
4733 	/* if there's a quota refresh soon don't bother with slack */
4734 	if (runtime_refresh_within(cfs_b, min_left))
4735 		return;
4736 
4737 	hrtimer_start(&cfs_b->slack_timer,
4738 			ns_to_ktime(cfs_bandwidth_slack_period),
4739 			HRTIMER_MODE_REL);
4740 }
4741 
4742 /* we know any runtime found here is valid as update_curr() precedes return */
4743 static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4744 {
4745 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4746 	s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
4747 
4748 	if (slack_runtime <= 0)
4749 		return;
4750 
4751 	raw_spin_lock(&cfs_b->lock);
4752 	if (cfs_b->quota != RUNTIME_INF &&
4753 	    cfs_rq->runtime_expires == cfs_b->runtime_expires) {
4754 		cfs_b->runtime += slack_runtime;
4755 
4756 		/* we are under rq->lock, defer unthrottling using a timer */
4757 		if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
4758 		    !list_empty(&cfs_b->throttled_cfs_rq))
4759 			start_cfs_slack_bandwidth(cfs_b);
4760 	}
4761 	raw_spin_unlock(&cfs_b->lock);
4762 
4763 	/* even if it's not valid for return we don't want to try again */
4764 	cfs_rq->runtime_remaining -= slack_runtime;
4765 }
4766 
4767 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4768 {
4769 	if (!cfs_bandwidth_used())
4770 		return;
4771 
4772 	if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
4773 		return;
4774 
4775 	__return_cfs_rq_runtime(cfs_rq);
4776 }
4777 
4778 /*
4779  * This is done with a timer (instead of inline with bandwidth return) since
4780  * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
4781  */
4782 static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
4783 {
4784 	u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
4785 	unsigned long flags;
4786 	u64 expires;
4787 
4788 	/* confirm we're still not at a refresh boundary */
4789 	raw_spin_lock_irqsave(&cfs_b->lock, flags);
4790 	if (cfs_b->distribute_running) {
4791 		raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
4792 		return;
4793 	}
4794 
4795 	if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
4796 		raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
4797 		return;
4798 	}
4799 
4800 	if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice)
4801 		runtime = cfs_b->runtime;
4802 
4803 	expires = cfs_b->runtime_expires;
4804 	if (runtime)
4805 		cfs_b->distribute_running = 1;
4806 
4807 	raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
4808 
4809 	if (!runtime)
4810 		return;
4811 
4812 	runtime = distribute_cfs_runtime(cfs_b, runtime, expires);
4813 
4814 	raw_spin_lock_irqsave(&cfs_b->lock, flags);
4815 	if (expires == cfs_b->runtime_expires)
4816 		lsub_positive(&cfs_b->runtime, runtime);
4817 	cfs_b->distribute_running = 0;
4818 	raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
4819 }
4820 
4821 /*
4822  * When a group wakes up we want to make sure that its quota is not already
4823  * expired/exceeded, otherwise it may be allowed to steal additional ticks of
4824  * runtime as update_curr() throttling can not not trigger until it's on-rq.
4825  */
4826 static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
4827 {
4828 	if (!cfs_bandwidth_used())
4829 		return;
4830 
4831 	/* an active group must be handled by the update_curr()->put() path */
4832 	if (!cfs_rq->runtime_enabled || cfs_rq->curr)
4833 		return;
4834 
4835 	/* ensure the group is not already throttled */
4836 	if (cfs_rq_throttled(cfs_rq))
4837 		return;
4838 
4839 	/* update runtime allocation */
4840 	account_cfs_rq_runtime(cfs_rq, 0);
4841 	if (cfs_rq->runtime_remaining <= 0)
4842 		throttle_cfs_rq(cfs_rq);
4843 }
4844 
4845 static void sync_throttle(struct task_group *tg, int cpu)
4846 {
4847 	struct cfs_rq *pcfs_rq, *cfs_rq;
4848 
4849 	if (!cfs_bandwidth_used())
4850 		return;
4851 
4852 	if (!tg->parent)
4853 		return;
4854 
4855 	cfs_rq = tg->cfs_rq[cpu];
4856 	pcfs_rq = tg->parent->cfs_rq[cpu];
4857 
4858 	cfs_rq->throttle_count = pcfs_rq->throttle_count;
4859 	cfs_rq->throttled_clock_task = rq_clock_task(cpu_rq(cpu));
4860 }
4861 
4862 /* conditionally throttle active cfs_rq's from put_prev_entity() */
4863 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4864 {
4865 	if (!cfs_bandwidth_used())
4866 		return false;
4867 
4868 	if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
4869 		return false;
4870 
4871 	/*
4872 	 * it's possible for a throttled entity to be forced into a running
4873 	 * state (e.g. set_curr_task), in this case we're finished.
4874 	 */
4875 	if (cfs_rq_throttled(cfs_rq))
4876 		return true;
4877 
4878 	throttle_cfs_rq(cfs_rq);
4879 	return true;
4880 }
4881 
4882 static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
4883 {
4884 	struct cfs_bandwidth *cfs_b =
4885 		container_of(timer, struct cfs_bandwidth, slack_timer);
4886 
4887 	do_sched_cfs_slack_timer(cfs_b);
4888 
4889 	return HRTIMER_NORESTART;
4890 }
4891 
4892 extern const u64 max_cfs_quota_period;
4893 
4894 static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
4895 {
4896 	struct cfs_bandwidth *cfs_b =
4897 		container_of(timer, struct cfs_bandwidth, period_timer);
4898 	unsigned long flags;
4899 	int overrun;
4900 	int idle = 0;
4901 	int count = 0;
4902 
4903 	raw_spin_lock_irqsave(&cfs_b->lock, flags);
4904 	for (;;) {
4905 		overrun = hrtimer_forward_now(timer, cfs_b->period);
4906 		if (!overrun)
4907 			break;
4908 
4909 		if (++count > 3) {
4910 			u64 new, old = ktime_to_ns(cfs_b->period);
4911 
4912 			new = (old * 147) / 128; /* ~115% */
4913 			new = min(new, max_cfs_quota_period);
4914 
4915 			cfs_b->period = ns_to_ktime(new);
4916 
4917 			/* since max is 1s, this is limited to 1e9^2, which fits in u64 */
4918 			cfs_b->quota *= new;
4919 			cfs_b->quota = div64_u64(cfs_b->quota, old);
4920 
4921 			pr_warn_ratelimited(
4922 	"cfs_period_timer[cpu%d]: period too short, scaling up (new cfs_period_us %lld, cfs_quota_us = %lld)\n",
4923 				smp_processor_id(),
4924 				div_u64(new, NSEC_PER_USEC),
4925 				div_u64(cfs_b->quota, NSEC_PER_USEC));
4926 
4927 			/* reset count so we don't come right back in here */
4928 			count = 0;
4929 		}
4930 
4931 		idle = do_sched_cfs_period_timer(cfs_b, overrun, flags);
4932 	}
4933 	if (idle)
4934 		cfs_b->period_active = 0;
4935 	raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
4936 
4937 	return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
4938 }
4939 
4940 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
4941 {
4942 	raw_spin_lock_init(&cfs_b->lock);
4943 	cfs_b->runtime = 0;
4944 	cfs_b->quota = RUNTIME_INF;
4945 	cfs_b->period = ns_to_ktime(default_cfs_period());
4946 
4947 	INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
4948 	hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
4949 	cfs_b->period_timer.function = sched_cfs_period_timer;
4950 	hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
4951 	cfs_b->slack_timer.function = sched_cfs_slack_timer;
4952 	cfs_b->distribute_running = 0;
4953 }
4954 
4955 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4956 {
4957 	cfs_rq->runtime_enabled = 0;
4958 	INIT_LIST_HEAD(&cfs_rq->throttled_list);
4959 }
4960 
4961 void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
4962 {
4963 	u64 overrun;
4964 
4965 	lockdep_assert_held(&cfs_b->lock);
4966 
4967 	if (cfs_b->period_active)
4968 		return;
4969 
4970 	cfs_b->period_active = 1;
4971 	overrun = hrtimer_forward_now(&cfs_b->period_timer, cfs_b->period);
4972 	cfs_b->runtime_expires += (overrun + 1) * ktime_to_ns(cfs_b->period);
4973 	cfs_b->expires_seq++;
4974 	hrtimer_start_expires(&cfs_b->period_timer, HRTIMER_MODE_ABS_PINNED);
4975 }
4976 
4977 static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
4978 {
4979 	/* init_cfs_bandwidth() was not called */
4980 	if (!cfs_b->throttled_cfs_rq.next)
4981 		return;
4982 
4983 	hrtimer_cancel(&cfs_b->period_timer);
4984 	hrtimer_cancel(&cfs_b->slack_timer);
4985 }
4986 
4987 /*
4988  * Both these CPU hotplug callbacks race against unregister_fair_sched_group()
4989  *
4990  * The race is harmless, since modifying bandwidth settings of unhooked group
4991  * bits doesn't do much.
4992  */
4993 
4994 /* cpu online calback */
4995 static void __maybe_unused update_runtime_enabled(struct rq *rq)
4996 {
4997 	struct task_group *tg;
4998 
4999 	lockdep_assert_held(&rq->lock);
5000 
5001 	rcu_read_lock();
5002 	list_for_each_entry_rcu(tg, &task_groups, list) {
5003 		struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
5004 		struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
5005 
5006 		raw_spin_lock(&cfs_b->lock);
5007 		cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF;
5008 		raw_spin_unlock(&cfs_b->lock);
5009 	}
5010 	rcu_read_unlock();
5011 }
5012 
5013 /* cpu offline callback */
5014 static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
5015 {
5016 	struct task_group *tg;
5017 
5018 	lockdep_assert_held(&rq->lock);
5019 
5020 	rcu_read_lock();
5021 	list_for_each_entry_rcu(tg, &task_groups, list) {
5022 		struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
5023 
5024 		if (!cfs_rq->runtime_enabled)
5025 			continue;
5026 
5027 		/*
5028 		 * clock_task is not advancing so we just need to make sure
5029 		 * there's some valid quota amount
5030 		 */
5031 		cfs_rq->runtime_remaining = 1;
5032 		/*
5033 		 * Offline rq is schedulable till CPU is completely disabled
5034 		 * in take_cpu_down(), so we prevent new cfs throttling here.
5035 		 */
5036 		cfs_rq->runtime_enabled = 0;
5037 
5038 		if (cfs_rq_throttled(cfs_rq))
5039 			unthrottle_cfs_rq(cfs_rq);
5040 	}
5041 	rcu_read_unlock();
5042 }
5043 
5044 #else /* CONFIG_CFS_BANDWIDTH */
5045 
5046 static inline bool cfs_bandwidth_used(void)
5047 {
5048 	return false;
5049 }
5050 
5051 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
5052 {
5053 	return rq_clock_task(rq_of(cfs_rq));
5054 }
5055 
5056 static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {}
5057 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; }
5058 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
5059 static inline void sync_throttle(struct task_group *tg, int cpu) {}
5060 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
5061 
5062 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
5063 {
5064 	return 0;
5065 }
5066 
5067 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
5068 {
5069 	return 0;
5070 }
5071 
5072 static inline int throttled_lb_pair(struct task_group *tg,
5073 				    int src_cpu, int dest_cpu)
5074 {
5075 	return 0;
5076 }
5077 
5078 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
5079 
5080 #ifdef CONFIG_FAIR_GROUP_SCHED
5081 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
5082 #endif
5083 
5084 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
5085 {
5086 	return NULL;
5087 }
5088 static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
5089 static inline void update_runtime_enabled(struct rq *rq) {}
5090 static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
5091 
5092 #endif /* CONFIG_CFS_BANDWIDTH */
5093 
5094 /**************************************************
5095  * CFS operations on tasks:
5096  */
5097 
5098 #ifdef CONFIG_SCHED_HRTICK
5099 static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
5100 {
5101 	struct sched_entity *se = &p->se;
5102 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
5103 
5104 	SCHED_WARN_ON(task_rq(p) != rq);
5105 
5106 	if (rq->cfs.h_nr_running > 1) {
5107 		u64 slice = sched_slice(cfs_rq, se);
5108 		u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
5109 		s64 delta = slice - ran;
5110 
5111 		if (delta < 0) {
5112 			if (rq->curr == p)
5113 				resched_curr(rq);
5114 			return;
5115 		}
5116 		hrtick_start(rq, delta);
5117 	}
5118 }
5119 
5120 /*
5121  * called from enqueue/dequeue and updates the hrtick when the
5122  * current task is from our class and nr_running is low enough
5123  * to matter.
5124  */
5125 static void hrtick_update(struct rq *rq)
5126 {
5127 	struct task_struct *curr = rq->curr;
5128 
5129 	if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
5130 		return;
5131 
5132 	if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
5133 		hrtick_start_fair(rq, curr);
5134 }
5135 #else /* !CONFIG_SCHED_HRTICK */
5136 static inline void
5137 hrtick_start_fair(struct rq *rq, struct task_struct *p)
5138 {
5139 }
5140 
5141 static inline void hrtick_update(struct rq *rq)
5142 {
5143 }
5144 #endif
5145 
5146 #ifdef CONFIG_SMP
5147 static inline unsigned long cpu_util(int cpu);
5148 static unsigned long capacity_of(int cpu);
5149 
5150 static inline bool cpu_overutilized(int cpu)
5151 {
5152 	return (capacity_of(cpu) * 1024) < (cpu_util(cpu) * capacity_margin);
5153 }
5154 
5155 static inline void update_overutilized_status(struct rq *rq)
5156 {
5157 	if (!READ_ONCE(rq->rd->overutilized) && cpu_overutilized(rq->cpu))
5158 		WRITE_ONCE(rq->rd->overutilized, SG_OVERUTILIZED);
5159 }
5160 #else
5161 static inline void update_overutilized_status(struct rq *rq) { }
5162 #endif
5163 
5164 /*
5165  * The enqueue_task method is called before nr_running is
5166  * increased. Here we update the fair scheduling stats and
5167  * then put the task into the rbtree:
5168  */
5169 static void
5170 enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
5171 {
5172 	struct cfs_rq *cfs_rq;
5173 	struct sched_entity *se = &p->se;
5174 
5175 	/*
5176 	 * The code below (indirectly) updates schedutil which looks at
5177 	 * the cfs_rq utilization to select a frequency.
5178 	 * Let's add the task's estimated utilization to the cfs_rq's
5179 	 * estimated utilization, before we update schedutil.
5180 	 */
5181 	util_est_enqueue(&rq->cfs, p);
5182 
5183 	/*
5184 	 * If in_iowait is set, the code below may not trigger any cpufreq
5185 	 * utilization updates, so do it here explicitly with the IOWAIT flag
5186 	 * passed.
5187 	 */
5188 	if (p->in_iowait)
5189 		cpufreq_update_util(rq, SCHED_CPUFREQ_IOWAIT);
5190 
5191 	for_each_sched_entity(se) {
5192 		if (se->on_rq)
5193 			break;
5194 		cfs_rq = cfs_rq_of(se);
5195 		enqueue_entity(cfs_rq, se, flags);
5196 
5197 		/*
5198 		 * end evaluation on encountering a throttled cfs_rq
5199 		 *
5200 		 * note: in the case of encountering a throttled cfs_rq we will
5201 		 * post the final h_nr_running increment below.
5202 		 */
5203 		if (cfs_rq_throttled(cfs_rq))
5204 			break;
5205 		cfs_rq->h_nr_running++;
5206 
5207 		flags = ENQUEUE_WAKEUP;
5208 	}
5209 
5210 	for_each_sched_entity(se) {
5211 		cfs_rq = cfs_rq_of(se);
5212 		cfs_rq->h_nr_running++;
5213 
5214 		if (cfs_rq_throttled(cfs_rq))
5215 			break;
5216 
5217 		update_load_avg(cfs_rq, se, UPDATE_TG);
5218 		update_cfs_group(se);
5219 	}
5220 
5221 	if (!se) {
5222 		add_nr_running(rq, 1);
5223 		/*
5224 		 * Since new tasks are assigned an initial util_avg equal to
5225 		 * half of the spare capacity of their CPU, tiny tasks have the
5226 		 * ability to cross the overutilized threshold, which will
5227 		 * result in the load balancer ruining all the task placement
5228 		 * done by EAS. As a way to mitigate that effect, do not account
5229 		 * for the first enqueue operation of new tasks during the
5230 		 * overutilized flag detection.
5231 		 *
5232 		 * A better way of solving this problem would be to wait for
5233 		 * the PELT signals of tasks to converge before taking them
5234 		 * into account, but that is not straightforward to implement,
5235 		 * and the following generally works well enough in practice.
5236 		 */
5237 		if (flags & ENQUEUE_WAKEUP)
5238 			update_overutilized_status(rq);
5239 
5240 	}
5241 
5242 	if (cfs_bandwidth_used()) {
5243 		/*
5244 		 * When bandwidth control is enabled; the cfs_rq_throttled()
5245 		 * breaks in the above iteration can result in incomplete
5246 		 * leaf list maintenance, resulting in triggering the assertion
5247 		 * below.
5248 		 */
5249 		for_each_sched_entity(se) {
5250 			cfs_rq = cfs_rq_of(se);
5251 
5252 			if (list_add_leaf_cfs_rq(cfs_rq))
5253 				break;
5254 		}
5255 	}
5256 
5257 	assert_list_leaf_cfs_rq(rq);
5258 
5259 	hrtick_update(rq);
5260 }
5261 
5262 static void set_next_buddy(struct sched_entity *se);
5263 
5264 /*
5265  * The dequeue_task method is called before nr_running is
5266  * decreased. We remove the task from the rbtree and
5267  * update the fair scheduling stats:
5268  */
5269 static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
5270 {
5271 	struct cfs_rq *cfs_rq;
5272 	struct sched_entity *se = &p->se;
5273 	int task_sleep = flags & DEQUEUE_SLEEP;
5274 
5275 	for_each_sched_entity(se) {
5276 		cfs_rq = cfs_rq_of(se);
5277 		dequeue_entity(cfs_rq, se, flags);
5278 
5279 		/*
5280 		 * end evaluation on encountering a throttled cfs_rq
5281 		 *
5282 		 * note: in the case of encountering a throttled cfs_rq we will
5283 		 * post the final h_nr_running decrement below.
5284 		*/
5285 		if (cfs_rq_throttled(cfs_rq))
5286 			break;
5287 		cfs_rq->h_nr_running--;
5288 
5289 		/* Don't dequeue parent if it has other entities besides us */
5290 		if (cfs_rq->load.weight) {
5291 			/* Avoid re-evaluating load for this entity: */
5292 			se = parent_entity(se);
5293 			/*
5294 			 * Bias pick_next to pick a task from this cfs_rq, as
5295 			 * p is sleeping when it is within its sched_slice.
5296 			 */
5297 			if (task_sleep && se && !throttled_hierarchy(cfs_rq))
5298 				set_next_buddy(se);
5299 			break;
5300 		}
5301 		flags |= DEQUEUE_SLEEP;
5302 	}
5303 
5304 	for_each_sched_entity(se) {
5305 		cfs_rq = cfs_rq_of(se);
5306 		cfs_rq->h_nr_running--;
5307 
5308 		if (cfs_rq_throttled(cfs_rq))
5309 			break;
5310 
5311 		update_load_avg(cfs_rq, se, UPDATE_TG);
5312 		update_cfs_group(se);
5313 	}
5314 
5315 	if (!se)
5316 		sub_nr_running(rq, 1);
5317 
5318 	util_est_dequeue(&rq->cfs, p, task_sleep);
5319 	hrtick_update(rq);
5320 }
5321 
5322 #ifdef CONFIG_SMP
5323 
5324 /* Working cpumask for: load_balance, load_balance_newidle. */
5325 DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
5326 DEFINE_PER_CPU(cpumask_var_t, select_idle_mask);
5327 
5328 #ifdef CONFIG_NO_HZ_COMMON
5329 /*
5330  * per rq 'load' arrray crap; XXX kill this.
5331  */
5332 
5333 /*
5334  * The exact cpuload calculated at every tick would be:
5335  *
5336  *   load' = (1 - 1/2^i) * load + (1/2^i) * cur_load
5337  *
5338  * If a CPU misses updates for n ticks (as it was idle) and update gets
5339  * called on the n+1-th tick when CPU may be busy, then we have:
5340  *
5341  *   load_n   = (1 - 1/2^i)^n * load_0
5342  *   load_n+1 = (1 - 1/2^i)   * load_n + (1/2^i) * cur_load
5343  *
5344  * decay_load_missed() below does efficient calculation of
5345  *
5346  *   load' = (1 - 1/2^i)^n * load
5347  *
5348  * Because x^(n+m) := x^n * x^m we can decompose any x^n in power-of-2 factors.
5349  * This allows us to precompute the above in said factors, thereby allowing the
5350  * reduction of an arbitrary n in O(log_2 n) steps. (See also
5351  * fixed_power_int())
5352  *
5353  * The calculation is approximated on a 128 point scale.
5354  */
5355 #define DEGRADE_SHIFT		7
5356 
5357 static const u8 degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
5358 static const u8 degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
5359 	{   0,   0,  0,  0,  0,  0, 0, 0 },
5360 	{  64,  32,  8,  0,  0,  0, 0, 0 },
5361 	{  96,  72, 40, 12,  1,  0, 0, 0 },
5362 	{ 112,  98, 75, 43, 15,  1, 0, 0 },
5363 	{ 120, 112, 98, 76, 45, 16, 2, 0 }
5364 };
5365 
5366 /*
5367  * Update cpu_load for any missed ticks, due to tickless idle. The backlog
5368  * would be when CPU is idle and so we just decay the old load without
5369  * adding any new load.
5370  */
5371 static unsigned long
5372 decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
5373 {
5374 	int j = 0;
5375 
5376 	if (!missed_updates)
5377 		return load;
5378 
5379 	if (missed_updates >= degrade_zero_ticks[idx])
5380 		return 0;
5381 
5382 	if (idx == 1)
5383 		return load >> missed_updates;
5384 
5385 	while (missed_updates) {
5386 		if (missed_updates % 2)
5387 			load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;
5388 
5389 		missed_updates >>= 1;
5390 		j++;
5391 	}
5392 	return load;
5393 }
5394 
5395 static struct {
5396 	cpumask_var_t idle_cpus_mask;
5397 	atomic_t nr_cpus;
5398 	int has_blocked;		/* Idle CPUS has blocked load */
5399 	unsigned long next_balance;     /* in jiffy units */
5400 	unsigned long next_blocked;	/* Next update of blocked load in jiffies */
5401 } nohz ____cacheline_aligned;
5402 
5403 #endif /* CONFIG_NO_HZ_COMMON */
5404 
5405 /**
5406  * __cpu_load_update - update the rq->cpu_load[] statistics
5407  * @this_rq: The rq to update statistics for
5408  * @this_load: The current load
5409  * @pending_updates: The number of missed updates
5410  *
5411  * Update rq->cpu_load[] statistics. This function is usually called every
5412  * scheduler tick (TICK_NSEC).
5413  *
5414  * This function computes a decaying average:
5415  *
5416  *   load[i]' = (1 - 1/2^i) * load[i] + (1/2^i) * load
5417  *
5418  * Because of NOHZ it might not get called on every tick which gives need for
5419  * the @pending_updates argument.
5420  *
5421  *   load[i]_n = (1 - 1/2^i) * load[i]_n-1 + (1/2^i) * load_n-1
5422  *             = A * load[i]_n-1 + B ; A := (1 - 1/2^i), B := (1/2^i) * load
5423  *             = A * (A * load[i]_n-2 + B) + B
5424  *             = A * (A * (A * load[i]_n-3 + B) + B) + B
5425  *             = A^3 * load[i]_n-3 + (A^2 + A + 1) * B
5426  *             = A^n * load[i]_0 + (A^(n-1) + A^(n-2) + ... + 1) * B
5427  *             = A^n * load[i]_0 + ((1 - A^n) / (1 - A)) * B
5428  *             = (1 - 1/2^i)^n * (load[i]_0 - load) + load
5429  *
5430  * In the above we've assumed load_n := load, which is true for NOHZ_FULL as
5431  * any change in load would have resulted in the tick being turned back on.
5432  *
5433  * For regular NOHZ, this reduces to:
5434  *
5435  *   load[i]_n = (1 - 1/2^i)^n * load[i]_0
5436  *
5437  * see decay_load_misses(). For NOHZ_FULL we get to subtract and add the extra
5438  * term.
5439  */
5440 static void cpu_load_update(struct rq *this_rq, unsigned long this_load,
5441 			    unsigned long pending_updates)
5442 {
5443 	unsigned long __maybe_unused tickless_load = this_rq->cpu_load[0];
5444 	int i, scale;
5445 
5446 	this_rq->nr_load_updates++;
5447 
5448 	/* Update our load: */
5449 	this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
5450 	for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
5451 		unsigned long old_load, new_load;
5452 
5453 		/* scale is effectively 1 << i now, and >> i divides by scale */
5454 
5455 		old_load = this_rq->cpu_load[i];
5456 #ifdef CONFIG_NO_HZ_COMMON
5457 		old_load = decay_load_missed(old_load, pending_updates - 1, i);
5458 		if (tickless_load) {
5459 			old_load -= decay_load_missed(tickless_load, pending_updates - 1, i);
5460 			/*
5461 			 * old_load can never be a negative value because a
5462 			 * decayed tickless_load cannot be greater than the
5463 			 * original tickless_load.
5464 			 */
5465 			old_load += tickless_load;
5466 		}
5467 #endif
5468 		new_load = this_load;
5469 		/*
5470 		 * Round up the averaging division if load is increasing. This
5471 		 * prevents us from getting stuck on 9 if the load is 10, for
5472 		 * example.
5473 		 */
5474 		if (new_load > old_load)
5475 			new_load += scale - 1;
5476 
5477 		this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
5478 	}
5479 }
5480 
5481 /* Used instead of source_load when we know the type == 0 */
5482 static unsigned long weighted_cpuload(struct rq *rq)
5483 {
5484 	return cfs_rq_runnable_load_avg(&rq->cfs);
5485 }
5486 
5487 #ifdef CONFIG_NO_HZ_COMMON
5488 /*
5489  * There is no sane way to deal with nohz on smp when using jiffies because the
5490  * CPU doing the jiffies update might drift wrt the CPU doing the jiffy reading
5491  * causing off-by-one errors in observed deltas; {0,2} instead of {1,1}.
5492  *
5493  * Therefore we need to avoid the delta approach from the regular tick when
5494  * possible since that would seriously skew the load calculation. This is why we
5495  * use cpu_load_update_periodic() for CPUs out of nohz. However we'll rely on
5496  * jiffies deltas for updates happening while in nohz mode (idle ticks, idle
5497  * loop exit, nohz_idle_balance, nohz full exit...)
5498  *
5499  * This means we might still be one tick off for nohz periods.
5500  */
5501 
5502 static void cpu_load_update_nohz(struct rq *this_rq,
5503 				 unsigned long curr_jiffies,
5504 				 unsigned long load)
5505 {
5506 	unsigned long pending_updates;
5507 
5508 	pending_updates = curr_jiffies - this_rq->last_load_update_tick;
5509 	if (pending_updates) {
5510 		this_rq->last_load_update_tick = curr_jiffies;
5511 		/*
5512 		 * In the regular NOHZ case, we were idle, this means load 0.
5513 		 * In the NOHZ_FULL case, we were non-idle, we should consider
5514 		 * its weighted load.
5515 		 */
5516 		cpu_load_update(this_rq, load, pending_updates);
5517 	}
5518 }
5519 
5520 /*
5521  * Called from nohz_idle_balance() to update the load ratings before doing the
5522  * idle balance.
5523  */
5524 static void cpu_load_update_idle(struct rq *this_rq)
5525 {
5526 	/*
5527 	 * bail if there's load or we're actually up-to-date.
5528 	 */
5529 	if (weighted_cpuload(this_rq))
5530 		return;
5531 
5532 	cpu_load_update_nohz(this_rq, READ_ONCE(jiffies), 0);
5533 }
5534 
5535 /*
5536  * Record CPU load on nohz entry so we know the tickless load to account
5537  * on nohz exit. cpu_load[0] happens then to be updated more frequently
5538  * than other cpu_load[idx] but it should be fine as cpu_load readers
5539  * shouldn't rely into synchronized cpu_load[*] updates.
5540  */
5541 void cpu_load_update_nohz_start(void)
5542 {
5543 	struct rq *this_rq = this_rq();
5544 
5545 	/*
5546 	 * This is all lockless but should be fine. If weighted_cpuload changes
5547 	 * concurrently we'll exit nohz. And cpu_load write can race with
5548 	 * cpu_load_update_idle() but both updater would be writing the same.
5549 	 */
5550 	this_rq->cpu_load[0] = weighted_cpuload(this_rq);
5551 }
5552 
5553 /*
5554  * Account the tickless load in the end of a nohz frame.
5555  */
5556 void cpu_load_update_nohz_stop(void)
5557 {
5558 	unsigned long curr_jiffies = READ_ONCE(jiffies);
5559 	struct rq *this_rq = this_rq();
5560 	unsigned long load;
5561 	struct rq_flags rf;
5562 
5563 	if (curr_jiffies == this_rq->last_load_update_tick)
5564 		return;
5565 
5566 	load = weighted_cpuload(this_rq);
5567 	rq_lock(this_rq, &rf);
5568 	update_rq_clock(this_rq);
5569 	cpu_load_update_nohz(this_rq, curr_jiffies, load);
5570 	rq_unlock(this_rq, &rf);
5571 }
5572 #else /* !CONFIG_NO_HZ_COMMON */
5573 static inline void cpu_load_update_nohz(struct rq *this_rq,
5574 					unsigned long curr_jiffies,
5575 					unsigned long load) { }
5576 #endif /* CONFIG_NO_HZ_COMMON */
5577 
5578 static void cpu_load_update_periodic(struct rq *this_rq, unsigned long load)
5579 {
5580 #ifdef CONFIG_NO_HZ_COMMON
5581 	/* See the mess around cpu_load_update_nohz(). */
5582 	this_rq->last_load_update_tick = READ_ONCE(jiffies);
5583 #endif
5584 	cpu_load_update(this_rq, load, 1);
5585 }
5586 
5587 /*
5588  * Called from scheduler_tick()
5589  */
5590 void cpu_load_update_active(struct rq *this_rq)
5591 {
5592 	unsigned long load = weighted_cpuload(this_rq);
5593 
5594 	if (tick_nohz_tick_stopped())
5595 		cpu_load_update_nohz(this_rq, READ_ONCE(jiffies), load);
5596 	else
5597 		cpu_load_update_periodic(this_rq, load);
5598 }
5599 
5600 /*
5601  * Return a low guess at the load of a migration-source CPU weighted
5602  * according to the scheduling class and "nice" value.
5603  *
5604  * We want to under-estimate the load of migration sources, to
5605  * balance conservatively.
5606  */
5607 static unsigned long source_load(int cpu, int type)
5608 {
5609 	struct rq *rq = cpu_rq(cpu);
5610 	unsigned long total = weighted_cpuload(rq);
5611 
5612 	if (type == 0 || !sched_feat(LB_BIAS))
5613 		return total;
5614 
5615 	return min(rq->cpu_load[type-1], total);
5616 }
5617 
5618 /*
5619  * Return a high guess at the load of a migration-target CPU weighted
5620  * according to the scheduling class and "nice" value.
5621  */
5622 static unsigned long target_load(int cpu, int type)
5623 {
5624 	struct rq *rq = cpu_rq(cpu);
5625 	unsigned long total = weighted_cpuload(rq);
5626 
5627 	if (type == 0 || !sched_feat(LB_BIAS))
5628 		return total;
5629 
5630 	return max(rq->cpu_load[type-1], total);
5631 }
5632 
5633 static unsigned long capacity_of(int cpu)
5634 {
5635 	return cpu_rq(cpu)->cpu_capacity;
5636 }
5637 
5638 static unsigned long cpu_avg_load_per_task(int cpu)
5639 {
5640 	struct rq *rq = cpu_rq(cpu);
5641 	unsigned long nr_running = READ_ONCE(rq->cfs.h_nr_running);
5642 	unsigned long load_avg = weighted_cpuload(rq);
5643 
5644 	if (nr_running)
5645 		return load_avg / nr_running;
5646 
5647 	return 0;
5648 }
5649 
5650 static void record_wakee(struct task_struct *p)
5651 {
5652 	/*
5653 	 * Only decay a single time; tasks that have less then 1 wakeup per
5654 	 * jiffy will not have built up many flips.
5655 	 */
5656 	if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) {
5657 		current->wakee_flips >>= 1;
5658 		current->wakee_flip_decay_ts = jiffies;
5659 	}
5660 
5661 	if (current->last_wakee != p) {
5662 		current->last_wakee = p;
5663 		current->wakee_flips++;
5664 	}
5665 }
5666 
5667 /*
5668  * Detect M:N waker/wakee relationships via a switching-frequency heuristic.
5669  *
5670  * A waker of many should wake a different task than the one last awakened
5671  * at a frequency roughly N times higher than one of its wakees.
5672  *
5673  * In order to determine whether we should let the load spread vs consolidating
5674  * to shared cache, we look for a minimum 'flip' frequency of llc_size in one
5675  * partner, and a factor of lls_size higher frequency in the other.
5676  *
5677  * With both conditions met, we can be relatively sure that the relationship is
5678  * non-monogamous, with partner count exceeding socket size.
5679  *
5680  * Waker/wakee being client/server, worker/dispatcher, interrupt source or
5681  * whatever is irrelevant, spread criteria is apparent partner count exceeds
5682  * socket size.
5683  */
5684 static int wake_wide(struct task_struct *p)
5685 {
5686 	unsigned int master = current->wakee_flips;
5687 	unsigned int slave = p->wakee_flips;
5688 	int factor = this_cpu_read(sd_llc_size);
5689 
5690 	if (master < slave)
5691 		swap(master, slave);
5692 	if (slave < factor || master < slave * factor)
5693 		return 0;
5694 	return 1;
5695 }
5696 
5697 /*
5698  * The purpose of wake_affine() is to quickly determine on which CPU we can run
5699  * soonest. For the purpose of speed we only consider the waking and previous
5700  * CPU.
5701  *
5702  * wake_affine_idle() - only considers 'now', it check if the waking CPU is
5703  *			cache-affine and is (or	will be) idle.
5704  *
5705  * wake_affine_weight() - considers the weight to reflect the average
5706  *			  scheduling latency of the CPUs. This seems to work
5707  *			  for the overloaded case.
5708  */
5709 static int
5710 wake_affine_idle(int this_cpu, int prev_cpu, int sync)
5711 {
5712 	/*
5713 	 * If this_cpu is idle, it implies the wakeup is from interrupt
5714 	 * context. Only allow the move if cache is shared. Otherwise an
5715 	 * interrupt intensive workload could force all tasks onto one
5716 	 * node depending on the IO topology or IRQ affinity settings.
5717 	 *
5718 	 * If the prev_cpu is idle and cache affine then avoid a migration.
5719 	 * There is no guarantee that the cache hot data from an interrupt
5720 	 * is more important than cache hot data on the prev_cpu and from
5721 	 * a cpufreq perspective, it's better to have higher utilisation
5722 	 * on one CPU.
5723 	 */
5724 	if (available_idle_cpu(this_cpu) && cpus_share_cache(this_cpu, prev_cpu))
5725 		return available_idle_cpu(prev_cpu) ? prev_cpu : this_cpu;
5726 
5727 	if (sync && cpu_rq(this_cpu)->nr_running == 1)
5728 		return this_cpu;
5729 
5730 	return nr_cpumask_bits;
5731 }
5732 
5733 static int
5734 wake_affine_weight(struct sched_domain *sd, struct task_struct *p,
5735 		   int this_cpu, int prev_cpu, int sync)
5736 {
5737 	s64 this_eff_load, prev_eff_load;
5738 	unsigned long task_load;
5739 
5740 	this_eff_load = target_load(this_cpu, sd->wake_idx);
5741 
5742 	if (sync) {
5743 		unsigned long current_load = task_h_load(current);
5744 
5745 		if (current_load > this_eff_load)
5746 			return this_cpu;
5747 
5748 		this_eff_load -= current_load;
5749 	}
5750 
5751 	task_load = task_h_load(p);
5752 
5753 	this_eff_load += task_load;
5754 	if (sched_feat(WA_BIAS))
5755 		this_eff_load *= 100;
5756 	this_eff_load *= capacity_of(prev_cpu);
5757 
5758 	prev_eff_load = source_load(prev_cpu, sd->wake_idx);
5759 	prev_eff_load -= task_load;
5760 	if (sched_feat(WA_BIAS))
5761 		prev_eff_load *= 100 + (sd->imbalance_pct - 100) / 2;
5762 	prev_eff_load *= capacity_of(this_cpu);
5763 
5764 	/*
5765 	 * If sync, adjust the weight of prev_eff_load such that if
5766 	 * prev_eff == this_eff that select_idle_sibling() will consider
5767 	 * stacking the wakee on top of the waker if no other CPU is
5768 	 * idle.
5769 	 */
5770 	if (sync)
5771 		prev_eff_load += 1;
5772 
5773 	return this_eff_load < prev_eff_load ? this_cpu : nr_cpumask_bits;
5774 }
5775 
5776 static int wake_affine(struct sched_domain *sd, struct task_struct *p,
5777 		       int this_cpu, int prev_cpu, int sync)
5778 {
5779 	int target = nr_cpumask_bits;
5780 
5781 	if (sched_feat(WA_IDLE))
5782 		target = wake_affine_idle(this_cpu, prev_cpu, sync);
5783 
5784 	if (sched_feat(WA_WEIGHT) && target == nr_cpumask_bits)
5785 		target = wake_affine_weight(sd, p, this_cpu, prev_cpu, sync);
5786 
5787 	schedstat_inc(p->se.statistics.nr_wakeups_affine_attempts);
5788 	if (target == nr_cpumask_bits)
5789 		return prev_cpu;
5790 
5791 	schedstat_inc(sd->ttwu_move_affine);
5792 	schedstat_inc(p->se.statistics.nr_wakeups_affine);
5793 	return target;
5794 }
5795 
5796 static unsigned long cpu_util_without(int cpu, struct task_struct *p);
5797 
5798 static unsigned long capacity_spare_without(int cpu, struct task_struct *p)
5799 {
5800 	return max_t(long, capacity_of(cpu) - cpu_util_without(cpu, p), 0);
5801 }
5802 
5803 /*
5804  * find_idlest_group finds and returns the least busy CPU group within the
5805  * domain.
5806  *
5807  * Assumes p is allowed on at least one CPU in sd.
5808  */
5809 static struct sched_group *
5810 find_idlest_group(struct sched_domain *sd, struct task_struct *p,
5811 		  int this_cpu, int sd_flag)
5812 {
5813 	struct sched_group *idlest = NULL, *group = sd->groups;
5814 	struct sched_group *most_spare_sg = NULL;
5815 	unsigned long min_runnable_load = ULONG_MAX;
5816 	unsigned long this_runnable_load = ULONG_MAX;
5817 	unsigned long min_avg_load = ULONG_MAX, this_avg_load = ULONG_MAX;
5818 	unsigned long most_spare = 0, this_spare = 0;
5819 	int load_idx = sd->forkexec_idx;
5820 	int imbalance_scale = 100 + (sd->imbalance_pct-100)/2;
5821 	unsigned long imbalance = scale_load_down(NICE_0_LOAD) *
5822 				(sd->imbalance_pct-100) / 100;
5823 
5824 	if (sd_flag & SD_BALANCE_WAKE)
5825 		load_idx = sd->wake_idx;
5826 
5827 	do {
5828 		unsigned long load, avg_load, runnable_load;
5829 		unsigned long spare_cap, max_spare_cap;
5830 		int local_group;
5831 		int i;
5832 
5833 		/* Skip over this group if it has no CPUs allowed */
5834 		if (!cpumask_intersects(sched_group_span(group),
5835 					&p->cpus_allowed))
5836 			continue;
5837 
5838 		local_group = cpumask_test_cpu(this_cpu,
5839 					       sched_group_span(group));
5840 
5841 		/*
5842 		 * Tally up the load of all CPUs in the group and find
5843 		 * the group containing the CPU with most spare capacity.
5844 		 */
5845 		avg_load = 0;
5846 		runnable_load = 0;
5847 		max_spare_cap = 0;
5848 
5849 		for_each_cpu(i, sched_group_span(group)) {
5850 			/* Bias balancing toward CPUs of our domain */
5851 			if (local_group)
5852 				load = source_load(i, load_idx);
5853 			else
5854 				load = target_load(i, load_idx);
5855 
5856 			runnable_load += load;
5857 
5858 			avg_load += cfs_rq_load_avg(&cpu_rq(i)->cfs);
5859 
5860 			spare_cap = capacity_spare_without(i, p);
5861 
5862 			if (spare_cap > max_spare_cap)
5863 				max_spare_cap = spare_cap;
5864 		}
5865 
5866 		/* Adjust by relative CPU capacity of the group */
5867 		avg_load = (avg_load * SCHED_CAPACITY_SCALE) /
5868 					group->sgc->capacity;
5869 		runnable_load = (runnable_load * SCHED_CAPACITY_SCALE) /
5870 					group->sgc->capacity;
5871 
5872 		if (local_group) {
5873 			this_runnable_load = runnable_load;
5874 			this_avg_load = avg_load;
5875 			this_spare = max_spare_cap;
5876 		} else {
5877 			if (min_runnable_load > (runnable_load + imbalance)) {
5878 				/*
5879 				 * The runnable load is significantly smaller
5880 				 * so we can pick this new CPU:
5881 				 */
5882 				min_runnable_load = runnable_load;
5883 				min_avg_load = avg_load;
5884 				idlest = group;
5885 			} else if ((runnable_load < (min_runnable_load + imbalance)) &&
5886 				   (100*min_avg_load > imbalance_scale*avg_load)) {
5887 				/*
5888 				 * The runnable loads are close so take the
5889 				 * blocked load into account through avg_load:
5890 				 */
5891 				min_avg_load = avg_load;
5892 				idlest = group;
5893 			}
5894 
5895 			if (most_spare < max_spare_cap) {
5896 				most_spare = max_spare_cap;
5897 				most_spare_sg = group;
5898 			}
5899 		}
5900 	} while (group = group->next, group != sd->groups);
5901 
5902 	/*
5903 	 * The cross-over point between using spare capacity or least load
5904 	 * is too conservative for high utilization tasks on partially
5905 	 * utilized systems if we require spare_capacity > task_util(p),
5906 	 * so we allow for some task stuffing by using
5907 	 * spare_capacity > task_util(p)/2.
5908 	 *
5909 	 * Spare capacity can't be used for fork because the utilization has
5910 	 * not been set yet, we must first select a rq to compute the initial
5911 	 * utilization.
5912 	 */
5913 	if (sd_flag & SD_BALANCE_FORK)
5914 		goto skip_spare;
5915 
5916 	if (this_spare > task_util(p) / 2 &&
5917 	    imbalance_scale*this_spare > 100*most_spare)
5918 		return NULL;
5919 
5920 	if (most_spare > task_util(p) / 2)
5921 		return most_spare_sg;
5922 
5923 skip_spare:
5924 	if (!idlest)
5925 		return NULL;
5926 
5927 	/*
5928 	 * When comparing groups across NUMA domains, it's possible for the
5929 	 * local domain to be very lightly loaded relative to the remote
5930 	 * domains but "imbalance" skews the comparison making remote CPUs
5931 	 * look much more favourable. When considering cross-domain, add
5932 	 * imbalance to the runnable load on the remote node and consider
5933 	 * staying local.
5934 	 */
5935 	if ((sd->flags & SD_NUMA) &&
5936 	    min_runnable_load + imbalance >= this_runnable_load)
5937 		return NULL;
5938 
5939 	if (min_runnable_load > (this_runnable_load + imbalance))
5940 		return NULL;
5941 
5942 	if ((this_runnable_load < (min_runnable_load + imbalance)) &&
5943 	     (100*this_avg_load < imbalance_scale*min_avg_load))
5944 		return NULL;
5945 
5946 	return idlest;
5947 }
5948 
5949 /*
5950  * find_idlest_group_cpu - find the idlest CPU among the CPUs in the group.
5951  */
5952 static int
5953 find_idlest_group_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
5954 {
5955 	unsigned long load, min_load = ULONG_MAX;
5956 	unsigned int min_exit_latency = UINT_MAX;
5957 	u64 latest_idle_timestamp = 0;
5958 	int least_loaded_cpu = this_cpu;
5959 	int shallowest_idle_cpu = -1;
5960 	int i;
5961 
5962 	/* Check if we have any choice: */
5963 	if (group->group_weight == 1)
5964 		return cpumask_first(sched_group_span(group));
5965 
5966 	/* Traverse only the allowed CPUs */
5967 	for_each_cpu_and(i, sched_group_span(group), &p->cpus_allowed) {
5968 		if (available_idle_cpu(i)) {
5969 			struct rq *rq = cpu_rq(i);
5970 			struct cpuidle_state *idle = idle_get_state(rq);
5971 			if (idle && idle->exit_latency < min_exit_latency) {
5972 				/*
5973 				 * We give priority to a CPU whose idle state
5974 				 * has the smallest exit latency irrespective
5975 				 * of any idle timestamp.
5976 				 */
5977 				min_exit_latency = idle->exit_latency;
5978 				latest_idle_timestamp = rq->idle_stamp;
5979 				shallowest_idle_cpu = i;
5980 			} else if ((!idle || idle->exit_latency == min_exit_latency) &&
5981 				   rq->idle_stamp > latest_idle_timestamp) {
5982 				/*
5983 				 * If equal or no active idle state, then
5984 				 * the most recently idled CPU might have
5985 				 * a warmer cache.
5986 				 */
5987 				latest_idle_timestamp = rq->idle_stamp;
5988 				shallowest_idle_cpu = i;
5989 			}
5990 		} else if (shallowest_idle_cpu == -1) {
5991 			load = weighted_cpuload(cpu_rq(i));
5992 			if (load < min_load) {
5993 				min_load = load;
5994 				least_loaded_cpu = i;
5995 			}
5996 		}
5997 	}
5998 
5999 	return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu;
6000 }
6001 
6002 static inline int find_idlest_cpu(struct sched_domain *sd, struct task_struct *p,
6003 				  int cpu, int prev_cpu, int sd_flag)
6004 {
6005 	int new_cpu = cpu;
6006 
6007 	if (!cpumask_intersects(sched_domain_span(sd), &p->cpus_allowed))
6008 		return prev_cpu;
6009 
6010 	/*
6011 	 * We need task's util for capacity_spare_without, sync it up to
6012 	 * prev_cpu's last_update_time.
6013 	 */
6014 	if (!(sd_flag & SD_BALANCE_FORK))
6015 		sync_entity_load_avg(&p->se);
6016 
6017 	while (sd) {
6018 		struct sched_group *group;
6019 		struct sched_domain *tmp;
6020 		int weight;
6021 
6022 		if (!(sd->flags & sd_flag)) {
6023 			sd = sd->child;
6024 			continue;
6025 		}
6026 
6027 		group = find_idlest_group(sd, p, cpu, sd_flag);
6028 		if (!group) {
6029 			sd = sd->child;
6030 			continue;
6031 		}
6032 
6033 		new_cpu = find_idlest_group_cpu(group, p, cpu);
6034 		if (new_cpu == cpu) {
6035 			/* Now try balancing at a lower domain level of 'cpu': */
6036 			sd = sd->child;
6037 			continue;
6038 		}
6039 
6040 		/* Now try balancing at a lower domain level of 'new_cpu': */
6041 		cpu = new_cpu;
6042 		weight = sd->span_weight;
6043 		sd = NULL;
6044 		for_each_domain(cpu, tmp) {
6045 			if (weight <= tmp->span_weight)
6046 				break;
6047 			if (tmp->flags & sd_flag)
6048 				sd = tmp;
6049 		}
6050 	}
6051 
6052 	return new_cpu;
6053 }
6054 
6055 #ifdef CONFIG_SCHED_SMT
6056 DEFINE_STATIC_KEY_FALSE(sched_smt_present);
6057 EXPORT_SYMBOL_GPL(sched_smt_present);
6058 
6059 static inline void set_idle_cores(int cpu, int val)
6060 {
6061 	struct sched_domain_shared *sds;
6062 
6063 	sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
6064 	if (sds)
6065 		WRITE_ONCE(sds->has_idle_cores, val);
6066 }
6067 
6068 static inline bool test_idle_cores(int cpu, bool def)
6069 {
6070 	struct sched_domain_shared *sds;
6071 
6072 	sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
6073 	if (sds)
6074 		return READ_ONCE(sds->has_idle_cores);
6075 
6076 	return def;
6077 }
6078 
6079 /*
6080  * Scans the local SMT mask to see if the entire core is idle, and records this
6081  * information in sd_llc_shared->has_idle_cores.
6082  *
6083  * Since SMT siblings share all cache levels, inspecting this limited remote
6084  * state should be fairly cheap.
6085  */
6086 void __update_idle_core(struct rq *rq)
6087 {
6088 	int core = cpu_of(rq);
6089 	int cpu;
6090 
6091 	rcu_read_lock();
6092 	if (test_idle_cores(core, true))
6093 		goto unlock;
6094 
6095 	for_each_cpu(cpu, cpu_smt_mask(core)) {
6096 		if (cpu == core)
6097 			continue;
6098 
6099 		if (!available_idle_cpu(cpu))
6100 			goto unlock;
6101 	}
6102 
6103 	set_idle_cores(core, 1);
6104 unlock:
6105 	rcu_read_unlock();
6106 }
6107 
6108 /*
6109  * Scan the entire LLC domain for idle cores; this dynamically switches off if
6110  * there are no idle cores left in the system; tracked through
6111  * sd_llc->shared->has_idle_cores and enabled through update_idle_core() above.
6112  */
6113 static int select_idle_core(struct task_struct *p, struct sched_domain *sd, int target)
6114 {
6115 	struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_idle_mask);
6116 	int core, cpu;
6117 
6118 	if (!static_branch_likely(&sched_smt_present))
6119 		return -1;
6120 
6121 	if (!test_idle_cores(target, false))
6122 		return -1;
6123 
6124 	cpumask_and(cpus, sched_domain_span(sd), &p->cpus_allowed);
6125 
6126 	for_each_cpu_wrap(core, cpus, target) {
6127 		bool idle = true;
6128 
6129 		for_each_cpu(cpu, cpu_smt_mask(core)) {
6130 			__cpumask_clear_cpu(cpu, cpus);
6131 			if (!available_idle_cpu(cpu))
6132 				idle = false;
6133 		}
6134 
6135 		if (idle)
6136 			return core;
6137 	}
6138 
6139 	/*
6140 	 * Failed to find an idle core; stop looking for one.
6141 	 */
6142 	set_idle_cores(target, 0);
6143 
6144 	return -1;
6145 }
6146 
6147 /*
6148  * Scan the local SMT mask for idle CPUs.
6149  */
6150 static int select_idle_smt(struct task_struct *p, int target)
6151 {
6152 	int cpu;
6153 
6154 	if (!static_branch_likely(&sched_smt_present))
6155 		return -1;
6156 
6157 	for_each_cpu(cpu, cpu_smt_mask(target)) {
6158 		if (!cpumask_test_cpu(cpu, &p->cpus_allowed))
6159 			continue;
6160 		if (available_idle_cpu(cpu))
6161 			return cpu;
6162 	}
6163 
6164 	return -1;
6165 }
6166 
6167 #else /* CONFIG_SCHED_SMT */
6168 
6169 static inline int select_idle_core(struct task_struct *p, struct sched_domain *sd, int target)
6170 {
6171 	return -1;
6172 }
6173 
6174 static inline int select_idle_smt(struct task_struct *p, int target)
6175 {
6176 	return -1;
6177 }
6178 
6179 #endif /* CONFIG_SCHED_SMT */
6180 
6181 /*
6182  * Scan the LLC domain for idle CPUs; this is dynamically regulated by
6183  * comparing the average scan cost (tracked in sd->avg_scan_cost) against the
6184  * average idle time for this rq (as found in rq->avg_idle).
6185  */
6186 static int select_idle_cpu(struct task_struct *p, struct sched_domain *sd, int target)
6187 {
6188 	struct sched_domain *this_sd;
6189 	u64 avg_cost, avg_idle;
6190 	u64 time, cost;
6191 	s64 delta;
6192 	int cpu, nr = INT_MAX;
6193 
6194 	this_sd = rcu_dereference(*this_cpu_ptr(&sd_llc));
6195 	if (!this_sd)
6196 		return -1;
6197 
6198 	/*
6199 	 * Due to large variance we need a large fuzz factor; hackbench in
6200 	 * particularly is sensitive here.
6201 	 */
6202 	avg_idle = this_rq()->avg_idle / 512;
6203 	avg_cost = this_sd->avg_scan_cost + 1;
6204 
6205 	if (sched_feat(SIS_AVG_CPU) && avg_idle < avg_cost)
6206 		return -1;
6207 
6208 	if (sched_feat(SIS_PROP)) {
6209 		u64 span_avg = sd->span_weight * avg_idle;
6210 		if (span_avg > 4*avg_cost)
6211 			nr = div_u64(span_avg, avg_cost);
6212 		else
6213 			nr = 4;
6214 	}
6215 
6216 	time = local_clock();
6217 
6218 	for_each_cpu_wrap(cpu, sched_domain_span(sd), target) {
6219 		if (!--nr)
6220 			return -1;
6221 		if (!cpumask_test_cpu(cpu, &p->cpus_allowed))
6222 			continue;
6223 		if (available_idle_cpu(cpu))
6224 			break;
6225 	}
6226 
6227 	time = local_clock() - time;
6228 	cost = this_sd->avg_scan_cost;
6229 	delta = (s64)(time - cost) / 8;
6230 	this_sd->avg_scan_cost += delta;
6231 
6232 	return cpu;
6233 }
6234 
6235 /*
6236  * Try and locate an idle core/thread in the LLC cache domain.
6237  */
6238 static int select_idle_sibling(struct task_struct *p, int prev, int target)
6239 {
6240 	struct sched_domain *sd;
6241 	int i, recent_used_cpu;
6242 
6243 	if (available_idle_cpu(target))
6244 		return target;
6245 
6246 	/*
6247 	 * If the previous CPU is cache affine and idle, don't be stupid:
6248 	 */
6249 	if (prev != target && cpus_share_cache(prev, target) && available_idle_cpu(prev))
6250 		return prev;
6251 
6252 	/* Check a recently used CPU as a potential idle candidate: */
6253 	recent_used_cpu = p->recent_used_cpu;
6254 	if (recent_used_cpu != prev &&
6255 	    recent_used_cpu != target &&
6256 	    cpus_share_cache(recent_used_cpu, target) &&
6257 	    available_idle_cpu(recent_used_cpu) &&
6258 	    cpumask_test_cpu(p->recent_used_cpu, &p->cpus_allowed)) {
6259 		/*
6260 		 * Replace recent_used_cpu with prev as it is a potential
6261 		 * candidate for the next wake:
6262 		 */
6263 		p->recent_used_cpu = prev;
6264 		return recent_used_cpu;
6265 	}
6266 
6267 	sd = rcu_dereference(per_cpu(sd_llc, target));
6268 	if (!sd)
6269 		return target;
6270 
6271 	i = select_idle_core(p, sd, target);
6272 	if ((unsigned)i < nr_cpumask_bits)
6273 		return i;
6274 
6275 	i = select_idle_cpu(p, sd, target);
6276 	if ((unsigned)i < nr_cpumask_bits)
6277 		return i;
6278 
6279 	i = select_idle_smt(p, target);
6280 	if ((unsigned)i < nr_cpumask_bits)
6281 		return i;
6282 
6283 	return target;
6284 }
6285 
6286 /**
6287  * Amount of capacity of a CPU that is (estimated to be) used by CFS tasks
6288  * @cpu: the CPU to get the utilization of
6289  *
6290  * The unit of the return value must be the one of capacity so we can compare
6291  * the utilization with the capacity of the CPU that is available for CFS task
6292  * (ie cpu_capacity).
6293  *
6294  * cfs_rq.avg.util_avg is the sum of running time of runnable tasks plus the
6295  * recent utilization of currently non-runnable tasks on a CPU. It represents
6296  * the amount of utilization of a CPU in the range [0..capacity_orig] where
6297  * capacity_orig is the cpu_capacity available at the highest frequency
6298  * (arch_scale_freq_capacity()).
6299  * The utilization of a CPU converges towards a sum equal to or less than the
6300  * current capacity (capacity_curr <= capacity_orig) of the CPU because it is
6301  * the running time on this CPU scaled by capacity_curr.
6302  *
6303  * The estimated utilization of a CPU is defined to be the maximum between its
6304  * cfs_rq.avg.util_avg and the sum of the estimated utilization of the tasks
6305  * currently RUNNABLE on that CPU.
6306  * This allows to properly represent the expected utilization of a CPU which
6307  * has just got a big task running since a long sleep period. At the same time
6308  * however it preserves the benefits of the "blocked utilization" in
6309  * describing the potential for other tasks waking up on the same CPU.
6310  *
6311  * Nevertheless, cfs_rq.avg.util_avg can be higher than capacity_curr or even
6312  * higher than capacity_orig because of unfortunate rounding in
6313  * cfs.avg.util_avg or just after migrating tasks and new task wakeups until
6314  * the average stabilizes with the new running time. We need to check that the
6315  * utilization stays within the range of [0..capacity_orig] and cap it if
6316  * necessary. Without utilization capping, a group could be seen as overloaded
6317  * (CPU0 utilization at 121% + CPU1 utilization at 80%) whereas CPU1 has 20% of
6318  * available capacity. We allow utilization to overshoot capacity_curr (but not
6319  * capacity_orig) as it useful for predicting the capacity required after task
6320  * migrations (scheduler-driven DVFS).
6321  *
6322  * Return: the (estimated) utilization for the specified CPU
6323  */
6324 static inline unsigned long cpu_util(int cpu)
6325 {
6326 	struct cfs_rq *cfs_rq;
6327 	unsigned int util;
6328 
6329 	cfs_rq = &cpu_rq(cpu)->cfs;
6330 	util = READ_ONCE(cfs_rq->avg.util_avg);
6331 
6332 	if (sched_feat(UTIL_EST))
6333 		util = max(util, READ_ONCE(cfs_rq->avg.util_est.enqueued));
6334 
6335 	return min_t(unsigned long, util, capacity_orig_of(cpu));
6336 }
6337 
6338 /*
6339  * cpu_util_without: compute cpu utilization without any contributions from *p
6340  * @cpu: the CPU which utilization is requested
6341  * @p: the task which utilization should be discounted
6342  *
6343  * The utilization of a CPU is defined by the utilization of tasks currently
6344  * enqueued on that CPU as well as tasks which are currently sleeping after an
6345  * execution on that CPU.
6346  *
6347  * This method returns the utilization of the specified CPU by discounting the
6348  * utilization of the specified task, whenever the task is currently
6349  * contributing to the CPU utilization.
6350  */
6351 static unsigned long cpu_util_without(int cpu, struct task_struct *p)
6352 {
6353 	struct cfs_rq *cfs_rq;
6354 	unsigned int util;
6355 
6356 	/* Task has no contribution or is new */
6357 	if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
6358 		return cpu_util(cpu);
6359 
6360 	cfs_rq = &cpu_rq(cpu)->cfs;
6361 	util = READ_ONCE(cfs_rq->avg.util_avg);
6362 
6363 	/* Discount task's util from CPU's util */
6364 	lsub_positive(&util, task_util(p));
6365 
6366 	/*
6367 	 * Covered cases:
6368 	 *
6369 	 * a) if *p is the only task sleeping on this CPU, then:
6370 	 *      cpu_util (== task_util) > util_est (== 0)
6371 	 *    and thus we return:
6372 	 *      cpu_util_without = (cpu_util - task_util) = 0
6373 	 *
6374 	 * b) if other tasks are SLEEPING on this CPU, which is now exiting
6375 	 *    IDLE, then:
6376 	 *      cpu_util >= task_util
6377 	 *      cpu_util > util_est (== 0)
6378 	 *    and thus we discount *p's blocked utilization to return:
6379 	 *      cpu_util_without = (cpu_util - task_util) >= 0
6380 	 *
6381 	 * c) if other tasks are RUNNABLE on that CPU and
6382 	 *      util_est > cpu_util
6383 	 *    then we use util_est since it returns a more restrictive
6384 	 *    estimation of the spare capacity on that CPU, by just
6385 	 *    considering the expected utilization of tasks already
6386 	 *    runnable on that CPU.
6387 	 *
6388 	 * Cases a) and b) are covered by the above code, while case c) is
6389 	 * covered by the following code when estimated utilization is
6390 	 * enabled.
6391 	 */
6392 	if (sched_feat(UTIL_EST)) {
6393 		unsigned int estimated =
6394 			READ_ONCE(cfs_rq->avg.util_est.enqueued);
6395 
6396 		/*
6397 		 * Despite the following checks we still have a small window
6398 		 * for a possible race, when an execl's select_task_rq_fair()
6399 		 * races with LB's detach_task():
6400 		 *
6401 		 *   detach_task()
6402 		 *     p->on_rq = TASK_ON_RQ_MIGRATING;
6403 		 *     ---------------------------------- A
6404 		 *     deactivate_task()                   \
6405 		 *       dequeue_task()                     + RaceTime
6406 		 *         util_est_dequeue()              /
6407 		 *     ---------------------------------- B
6408 		 *
6409 		 * The additional check on "current == p" it's required to
6410 		 * properly fix the execl regression and it helps in further
6411 		 * reducing the chances for the above race.
6412 		 */
6413 		if (unlikely(task_on_rq_queued(p) || current == p))
6414 			lsub_positive(&estimated, _task_util_est(p));
6415 
6416 		util = max(util, estimated);
6417 	}
6418 
6419 	/*
6420 	 * Utilization (estimated) can exceed the CPU capacity, thus let's
6421 	 * clamp to the maximum CPU capacity to ensure consistency with
6422 	 * the cpu_util call.
6423 	 */
6424 	return min_t(unsigned long, util, capacity_orig_of(cpu));
6425 }
6426 
6427 /*
6428  * Disable WAKE_AFFINE in the case where task @p doesn't fit in the
6429  * capacity of either the waking CPU @cpu or the previous CPU @prev_cpu.
6430  *
6431  * In that case WAKE_AFFINE doesn't make sense and we'll let
6432  * BALANCE_WAKE sort things out.
6433  */
6434 static int wake_cap(struct task_struct *p, int cpu, int prev_cpu)
6435 {
6436 	long min_cap, max_cap;
6437 
6438 	if (!static_branch_unlikely(&sched_asym_cpucapacity))
6439 		return 0;
6440 
6441 	min_cap = min(capacity_orig_of(prev_cpu), capacity_orig_of(cpu));
6442 	max_cap = cpu_rq(cpu)->rd->max_cpu_capacity;
6443 
6444 	/* Minimum capacity is close to max, no need to abort wake_affine */
6445 	if (max_cap - min_cap < max_cap >> 3)
6446 		return 0;
6447 
6448 	/* Bring task utilization in sync with prev_cpu */
6449 	sync_entity_load_avg(&p->se);
6450 
6451 	return !task_fits_capacity(p, min_cap);
6452 }
6453 
6454 /*
6455  * Predicts what cpu_util(@cpu) would return if @p was migrated (and enqueued)
6456  * to @dst_cpu.
6457  */
6458 static unsigned long cpu_util_next(int cpu, struct task_struct *p, int dst_cpu)
6459 {
6460 	struct cfs_rq *cfs_rq = &cpu_rq(cpu)->cfs;
6461 	unsigned long util_est, util = READ_ONCE(cfs_rq->avg.util_avg);
6462 
6463 	/*
6464 	 * If @p migrates from @cpu to another, remove its contribution. Or,
6465 	 * if @p migrates from another CPU to @cpu, add its contribution. In
6466 	 * the other cases, @cpu is not impacted by the migration, so the
6467 	 * util_avg should already be correct.
6468 	 */
6469 	if (task_cpu(p) == cpu && dst_cpu != cpu)
6470 		sub_positive(&util, task_util(p));
6471 	else if (task_cpu(p) != cpu && dst_cpu == cpu)
6472 		util += task_util(p);
6473 
6474 	if (sched_feat(UTIL_EST)) {
6475 		util_est = READ_ONCE(cfs_rq->avg.util_est.enqueued);
6476 
6477 		/*
6478 		 * During wake-up, the task isn't enqueued yet and doesn't
6479 		 * appear in the cfs_rq->avg.util_est.enqueued of any rq,
6480 		 * so just add it (if needed) to "simulate" what will be
6481 		 * cpu_util() after the task has been enqueued.
6482 		 */
6483 		if (dst_cpu == cpu)
6484 			util_est += _task_util_est(p);
6485 
6486 		util = max(util, util_est);
6487 	}
6488 
6489 	return min(util, capacity_orig_of(cpu));
6490 }
6491 
6492 /*
6493  * compute_energy(): Estimates the energy that would be consumed if @p was
6494  * migrated to @dst_cpu. compute_energy() predicts what will be the utilization
6495  * landscape of the * CPUs after the task migration, and uses the Energy Model
6496  * to compute what would be the energy if we decided to actually migrate that
6497  * task.
6498  */
6499 static long
6500 compute_energy(struct task_struct *p, int dst_cpu, struct perf_domain *pd)
6501 {
6502 	long util, max_util, sum_util, energy = 0;
6503 	int cpu;
6504 
6505 	for (; pd; pd = pd->next) {
6506 		max_util = sum_util = 0;
6507 		/*
6508 		 * The capacity state of CPUs of the current rd can be driven by
6509 		 * CPUs of another rd if they belong to the same performance
6510 		 * domain. So, account for the utilization of these CPUs too
6511 		 * by masking pd with cpu_online_mask instead of the rd span.
6512 		 *
6513 		 * If an entire performance domain is outside of the current rd,
6514 		 * it will not appear in its pd list and will not be accounted
6515 		 * by compute_energy().
6516 		 */
6517 		for_each_cpu_and(cpu, perf_domain_span(pd), cpu_online_mask) {
6518 			util = cpu_util_next(cpu, p, dst_cpu);
6519 			util = schedutil_energy_util(cpu, util);
6520 			max_util = max(util, max_util);
6521 			sum_util += util;
6522 		}
6523 
6524 		energy += em_pd_energy(pd->em_pd, max_util, sum_util);
6525 	}
6526 
6527 	return energy;
6528 }
6529 
6530 /*
6531  * find_energy_efficient_cpu(): Find most energy-efficient target CPU for the
6532  * waking task. find_energy_efficient_cpu() looks for the CPU with maximum
6533  * spare capacity in each performance domain and uses it as a potential
6534  * candidate to execute the task. Then, it uses the Energy Model to figure
6535  * out which of the CPU candidates is the most energy-efficient.
6536  *
6537  * The rationale for this heuristic is as follows. In a performance domain,
6538  * all the most energy efficient CPU candidates (according to the Energy
6539  * Model) are those for which we'll request a low frequency. When there are
6540  * several CPUs for which the frequency request will be the same, we don't
6541  * have enough data to break the tie between them, because the Energy Model
6542  * only includes active power costs. With this model, if we assume that
6543  * frequency requests follow utilization (e.g. using schedutil), the CPU with
6544  * the maximum spare capacity in a performance domain is guaranteed to be among
6545  * the best candidates of the performance domain.
6546  *
6547  * In practice, it could be preferable from an energy standpoint to pack
6548  * small tasks on a CPU in order to let other CPUs go in deeper idle states,
6549  * but that could also hurt our chances to go cluster idle, and we have no
6550  * ways to tell with the current Energy Model if this is actually a good
6551  * idea or not. So, find_energy_efficient_cpu() basically favors
6552  * cluster-packing, and spreading inside a cluster. That should at least be
6553  * a good thing for latency, and this is consistent with the idea that most
6554  * of the energy savings of EAS come from the asymmetry of the system, and
6555  * not so much from breaking the tie between identical CPUs. That's also the
6556  * reason why EAS is enabled in the topology code only for systems where
6557  * SD_ASYM_CPUCAPACITY is set.
6558  *
6559  * NOTE: Forkees are not accepted in the energy-aware wake-up path because
6560  * they don't have any useful utilization data yet and it's not possible to
6561  * forecast their impact on energy consumption. Consequently, they will be
6562  * placed by find_idlest_cpu() on the least loaded CPU, which might turn out
6563  * to be energy-inefficient in some use-cases. The alternative would be to
6564  * bias new tasks towards specific types of CPUs first, or to try to infer
6565  * their util_avg from the parent task, but those heuristics could hurt
6566  * other use-cases too. So, until someone finds a better way to solve this,
6567  * let's keep things simple by re-using the existing slow path.
6568  */
6569 
6570 static int find_energy_efficient_cpu(struct task_struct *p, int prev_cpu)
6571 {
6572 	unsigned long prev_energy = ULONG_MAX, best_energy = ULONG_MAX;
6573 	struct root_domain *rd = cpu_rq(smp_processor_id())->rd;
6574 	int cpu, best_energy_cpu = prev_cpu;
6575 	struct perf_domain *head, *pd;
6576 	unsigned long cpu_cap, util;
6577 	struct sched_domain *sd;
6578 
6579 	rcu_read_lock();
6580 	pd = rcu_dereference(rd->pd);
6581 	if (!pd || READ_ONCE(rd->overutilized))
6582 		goto fail;
6583 	head = pd;
6584 
6585 	/*
6586 	 * Energy-aware wake-up happens on the lowest sched_domain starting
6587 	 * from sd_asym_cpucapacity spanning over this_cpu and prev_cpu.
6588 	 */
6589 	sd = rcu_dereference(*this_cpu_ptr(&sd_asym_cpucapacity));
6590 	while (sd && !cpumask_test_cpu(prev_cpu, sched_domain_span(sd)))
6591 		sd = sd->parent;
6592 	if (!sd)
6593 		goto fail;
6594 
6595 	sync_entity_load_avg(&p->se);
6596 	if (!task_util_est(p))
6597 		goto unlock;
6598 
6599 	for (; pd; pd = pd->next) {
6600 		unsigned long cur_energy, spare_cap, max_spare_cap = 0;
6601 		int max_spare_cap_cpu = -1;
6602 
6603 		for_each_cpu_and(cpu, perf_domain_span(pd), sched_domain_span(sd)) {
6604 			if (!cpumask_test_cpu(cpu, &p->cpus_allowed))
6605 				continue;
6606 
6607 			/* Skip CPUs that will be overutilized. */
6608 			util = cpu_util_next(cpu, p, cpu);
6609 			cpu_cap = capacity_of(cpu);
6610 			if (cpu_cap * 1024 < util * capacity_margin)
6611 				continue;
6612 
6613 			/* Always use prev_cpu as a candidate. */
6614 			if (cpu == prev_cpu) {
6615 				prev_energy = compute_energy(p, prev_cpu, head);
6616 				best_energy = min(best_energy, prev_energy);
6617 				continue;
6618 			}
6619 
6620 			/*
6621 			 * Find the CPU with the maximum spare capacity in
6622 			 * the performance domain
6623 			 */
6624 			spare_cap = cpu_cap - util;
6625 			if (spare_cap > max_spare_cap) {
6626 				max_spare_cap = spare_cap;
6627 				max_spare_cap_cpu = cpu;
6628 			}
6629 		}
6630 
6631 		/* Evaluate the energy impact of using this CPU. */
6632 		if (max_spare_cap_cpu >= 0) {
6633 			cur_energy = compute_energy(p, max_spare_cap_cpu, head);
6634 			if (cur_energy < best_energy) {
6635 				best_energy = cur_energy;
6636 				best_energy_cpu = max_spare_cap_cpu;
6637 			}
6638 		}
6639 	}
6640 unlock:
6641 	rcu_read_unlock();
6642 
6643 	/*
6644 	 * Pick the best CPU if prev_cpu cannot be used, or if it saves at
6645 	 * least 6% of the energy used by prev_cpu.
6646 	 */
6647 	if (prev_energy == ULONG_MAX)
6648 		return best_energy_cpu;
6649 
6650 	if ((prev_energy - best_energy) > (prev_energy >> 4))
6651 		return best_energy_cpu;
6652 
6653 	return prev_cpu;
6654 
6655 fail:
6656 	rcu_read_unlock();
6657 
6658 	return -1;
6659 }
6660 
6661 /*
6662  * select_task_rq_fair: Select target runqueue for the waking task in domains
6663  * that have the 'sd_flag' flag set. In practice, this is SD_BALANCE_WAKE,
6664  * SD_BALANCE_FORK, or SD_BALANCE_EXEC.
6665  *
6666  * Balances load by selecting the idlest CPU in the idlest group, or under
6667  * certain conditions an idle sibling CPU if the domain has SD_WAKE_AFFINE set.
6668  *
6669  * Returns the target CPU number.
6670  *
6671  * preempt must be disabled.
6672  */
6673 static int
6674 select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_flags)
6675 {
6676 	struct sched_domain *tmp, *sd = NULL;
6677 	int cpu = smp_processor_id();
6678 	int new_cpu = prev_cpu;
6679 	int want_affine = 0;
6680 	int sync = (wake_flags & WF_SYNC) && !(current->flags & PF_EXITING);
6681 
6682 	if (sd_flag & SD_BALANCE_WAKE) {
6683 		record_wakee(p);
6684 
6685 		if (sched_energy_enabled()) {
6686 			new_cpu = find_energy_efficient_cpu(p, prev_cpu);
6687 			if (new_cpu >= 0)
6688 				return new_cpu;
6689 			new_cpu = prev_cpu;
6690 		}
6691 
6692 		want_affine = !wake_wide(p) && !wake_cap(p, cpu, prev_cpu) &&
6693 			      cpumask_test_cpu(cpu, &p->cpus_allowed);
6694 	}
6695 
6696 	rcu_read_lock();
6697 	for_each_domain(cpu, tmp) {
6698 		if (!(tmp->flags & SD_LOAD_BALANCE))
6699 			break;
6700 
6701 		/*
6702 		 * If both 'cpu' and 'prev_cpu' are part of this domain,
6703 		 * cpu is a valid SD_WAKE_AFFINE target.
6704 		 */
6705 		if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
6706 		    cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
6707 			if (cpu != prev_cpu)
6708 				new_cpu = wake_affine(tmp, p, cpu, prev_cpu, sync);
6709 
6710 			sd = NULL; /* Prefer wake_affine over balance flags */
6711 			break;
6712 		}
6713 
6714 		if (tmp->flags & sd_flag)
6715 			sd = tmp;
6716 		else if (!want_affine)
6717 			break;
6718 	}
6719 
6720 	if (unlikely(sd)) {
6721 		/* Slow path */
6722 		new_cpu = find_idlest_cpu(sd, p, cpu, prev_cpu, sd_flag);
6723 	} else if (sd_flag & SD_BALANCE_WAKE) { /* XXX always ? */
6724 		/* Fast path */
6725 
6726 		new_cpu = select_idle_sibling(p, prev_cpu, new_cpu);
6727 
6728 		if (want_affine)
6729 			current->recent_used_cpu = cpu;
6730 	}
6731 	rcu_read_unlock();
6732 
6733 	return new_cpu;
6734 }
6735 
6736 static void detach_entity_cfs_rq(struct sched_entity *se);
6737 
6738 /*
6739  * Called immediately before a task is migrated to a new CPU; task_cpu(p) and
6740  * cfs_rq_of(p) references at time of call are still valid and identify the
6741  * previous CPU. The caller guarantees p->pi_lock or task_rq(p)->lock is held.
6742  */
6743 static void migrate_task_rq_fair(struct task_struct *p, int new_cpu)
6744 {
6745 	/*
6746 	 * As blocked tasks retain absolute vruntime the migration needs to
6747 	 * deal with this by subtracting the old and adding the new
6748 	 * min_vruntime -- the latter is done by enqueue_entity() when placing
6749 	 * the task on the new runqueue.
6750 	 */
6751 	if (p->state == TASK_WAKING) {
6752 		struct sched_entity *se = &p->se;
6753 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
6754 		u64 min_vruntime;
6755 
6756 #ifndef CONFIG_64BIT
6757 		u64 min_vruntime_copy;
6758 
6759 		do {
6760 			min_vruntime_copy = cfs_rq->min_vruntime_copy;
6761 			smp_rmb();
6762 			min_vruntime = cfs_rq->min_vruntime;
6763 		} while (min_vruntime != min_vruntime_copy);
6764 #else
6765 		min_vruntime = cfs_rq->min_vruntime;
6766 #endif
6767 
6768 		se->vruntime -= min_vruntime;
6769 	}
6770 
6771 	if (p->on_rq == TASK_ON_RQ_MIGRATING) {
6772 		/*
6773 		 * In case of TASK_ON_RQ_MIGRATING we in fact hold the 'old'
6774 		 * rq->lock and can modify state directly.
6775 		 */
6776 		lockdep_assert_held(&task_rq(p)->lock);
6777 		detach_entity_cfs_rq(&p->se);
6778 
6779 	} else {
6780 		/*
6781 		 * We are supposed to update the task to "current" time, then
6782 		 * its up to date and ready to go to new CPU/cfs_rq. But we
6783 		 * have difficulty in getting what current time is, so simply
6784 		 * throw away the out-of-date time. This will result in the
6785 		 * wakee task is less decayed, but giving the wakee more load
6786 		 * sounds not bad.
6787 		 */
6788 		remove_entity_load_avg(&p->se);
6789 	}
6790 
6791 	/* Tell new CPU we are migrated */
6792 	p->se.avg.last_update_time = 0;
6793 
6794 	/* We have migrated, no longer consider this task hot */
6795 	p->se.exec_start = 0;
6796 
6797 	update_scan_period(p, new_cpu);
6798 }
6799 
6800 static void task_dead_fair(struct task_struct *p)
6801 {
6802 	remove_entity_load_avg(&p->se);
6803 }
6804 #endif /* CONFIG_SMP */
6805 
6806 static unsigned long wakeup_gran(struct sched_entity *se)
6807 {
6808 	unsigned long gran = sysctl_sched_wakeup_granularity;
6809 
6810 	/*
6811 	 * Since its curr running now, convert the gran from real-time
6812 	 * to virtual-time in his units.
6813 	 *
6814 	 * By using 'se' instead of 'curr' we penalize light tasks, so
6815 	 * they get preempted easier. That is, if 'se' < 'curr' then
6816 	 * the resulting gran will be larger, therefore penalizing the
6817 	 * lighter, if otoh 'se' > 'curr' then the resulting gran will
6818 	 * be smaller, again penalizing the lighter task.
6819 	 *
6820 	 * This is especially important for buddies when the leftmost
6821 	 * task is higher priority than the buddy.
6822 	 */
6823 	return calc_delta_fair(gran, se);
6824 }
6825 
6826 /*
6827  * Should 'se' preempt 'curr'.
6828  *
6829  *             |s1
6830  *        |s2
6831  *   |s3
6832  *         g
6833  *      |<--->|c
6834  *
6835  *  w(c, s1) = -1
6836  *  w(c, s2) =  0
6837  *  w(c, s3) =  1
6838  *
6839  */
6840 static int
6841 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
6842 {
6843 	s64 gran, vdiff = curr->vruntime - se->vruntime;
6844 
6845 	if (vdiff <= 0)
6846 		return -1;
6847 
6848 	gran = wakeup_gran(se);
6849 	if (vdiff > gran)
6850 		return 1;
6851 
6852 	return 0;
6853 }
6854 
6855 static void set_last_buddy(struct sched_entity *se)
6856 {
6857 	if (entity_is_task(se) && unlikely(task_has_idle_policy(task_of(se))))
6858 		return;
6859 
6860 	for_each_sched_entity(se) {
6861 		if (SCHED_WARN_ON(!se->on_rq))
6862 			return;
6863 		cfs_rq_of(se)->last = se;
6864 	}
6865 }
6866 
6867 static void set_next_buddy(struct sched_entity *se)
6868 {
6869 	if (entity_is_task(se) && unlikely(task_has_idle_policy(task_of(se))))
6870 		return;
6871 
6872 	for_each_sched_entity(se) {
6873 		if (SCHED_WARN_ON(!se->on_rq))
6874 			return;
6875 		cfs_rq_of(se)->next = se;
6876 	}
6877 }
6878 
6879 static void set_skip_buddy(struct sched_entity *se)
6880 {
6881 	for_each_sched_entity(se)
6882 		cfs_rq_of(se)->skip = se;
6883 }
6884 
6885 /*
6886  * Preempt the current task with a newly woken task if needed:
6887  */
6888 static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
6889 {
6890 	struct task_struct *curr = rq->curr;
6891 	struct sched_entity *se = &curr->se, *pse = &p->se;
6892 	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
6893 	int scale = cfs_rq->nr_running >= sched_nr_latency;
6894 	int next_buddy_marked = 0;
6895 
6896 	if (unlikely(se == pse))
6897 		return;
6898 
6899 	/*
6900 	 * This is possible from callers such as attach_tasks(), in which we
6901 	 * unconditionally check_prempt_curr() after an enqueue (which may have
6902 	 * lead to a throttle).  This both saves work and prevents false
6903 	 * next-buddy nomination below.
6904 	 */
6905 	if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
6906 		return;
6907 
6908 	if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
6909 		set_next_buddy(pse);
6910 		next_buddy_marked = 1;
6911 	}
6912 
6913 	/*
6914 	 * We can come here with TIF_NEED_RESCHED already set from new task
6915 	 * wake up path.
6916 	 *
6917 	 * Note: this also catches the edge-case of curr being in a throttled
6918 	 * group (e.g. via set_curr_task), since update_curr() (in the
6919 	 * enqueue of curr) will have resulted in resched being set.  This
6920 	 * prevents us from potentially nominating it as a false LAST_BUDDY
6921 	 * below.
6922 	 */
6923 	if (test_tsk_need_resched(curr))
6924 		return;
6925 
6926 	/* Idle tasks are by definition preempted by non-idle tasks. */
6927 	if (unlikely(task_has_idle_policy(curr)) &&
6928 	    likely(!task_has_idle_policy(p)))
6929 		goto preempt;
6930 
6931 	/*
6932 	 * Batch and idle tasks do not preempt non-idle tasks (their preemption
6933 	 * is driven by the tick):
6934 	 */
6935 	if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
6936 		return;
6937 
6938 	find_matching_se(&se, &pse);
6939 	update_curr(cfs_rq_of(se));
6940 	BUG_ON(!pse);
6941 	if (wakeup_preempt_entity(se, pse) == 1) {
6942 		/*
6943 		 * Bias pick_next to pick the sched entity that is
6944 		 * triggering this preemption.
6945 		 */
6946 		if (!next_buddy_marked)
6947 			set_next_buddy(pse);
6948 		goto preempt;
6949 	}
6950 
6951 	return;
6952 
6953 preempt:
6954 	resched_curr(rq);
6955 	/*
6956 	 * Only set the backward buddy when the current task is still
6957 	 * on the rq. This can happen when a wakeup gets interleaved
6958 	 * with schedule on the ->pre_schedule() or idle_balance()
6959 	 * point, either of which can * drop the rq lock.
6960 	 *
6961 	 * Also, during early boot the idle thread is in the fair class,
6962 	 * for obvious reasons its a bad idea to schedule back to it.
6963 	 */
6964 	if (unlikely(!se->on_rq || curr == rq->idle))
6965 		return;
6966 
6967 	if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
6968 		set_last_buddy(se);
6969 }
6970 
6971 static struct task_struct *
6972 pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
6973 {
6974 	struct cfs_rq *cfs_rq = &rq->cfs;
6975 	struct sched_entity *se;
6976 	struct task_struct *p;
6977 	int new_tasks;
6978 
6979 again:
6980 	if (!cfs_rq->nr_running)
6981 		goto idle;
6982 
6983 #ifdef CONFIG_FAIR_GROUP_SCHED
6984 	if (prev->sched_class != &fair_sched_class)
6985 		goto simple;
6986 
6987 	/*
6988 	 * Because of the set_next_buddy() in dequeue_task_fair() it is rather
6989 	 * likely that a next task is from the same cgroup as the current.
6990 	 *
6991 	 * Therefore attempt to avoid putting and setting the entire cgroup
6992 	 * hierarchy, only change the part that actually changes.
6993 	 */
6994 
6995 	do {
6996 		struct sched_entity *curr = cfs_rq->curr;
6997 
6998 		/*
6999 		 * Since we got here without doing put_prev_entity() we also
7000 		 * have to consider cfs_rq->curr. If it is still a runnable
7001 		 * entity, update_curr() will update its vruntime, otherwise
7002 		 * forget we've ever seen it.
7003 		 */
7004 		if (curr) {
7005 			if (curr->on_rq)
7006 				update_curr(cfs_rq);
7007 			else
7008 				curr = NULL;
7009 
7010 			/*
7011 			 * This call to check_cfs_rq_runtime() will do the
7012 			 * throttle and dequeue its entity in the parent(s).
7013 			 * Therefore the nr_running test will indeed
7014 			 * be correct.
7015 			 */
7016 			if (unlikely(check_cfs_rq_runtime(cfs_rq))) {
7017 				cfs_rq = &rq->cfs;
7018 
7019 				if (!cfs_rq->nr_running)
7020 					goto idle;
7021 
7022 				goto simple;
7023 			}
7024 		}
7025 
7026 		se = pick_next_entity(cfs_rq, curr);
7027 		cfs_rq = group_cfs_rq(se);
7028 	} while (cfs_rq);
7029 
7030 	p = task_of(se);
7031 
7032 	/*
7033 	 * Since we haven't yet done put_prev_entity and if the selected task
7034 	 * is a different task than we started out with, try and touch the
7035 	 * least amount of cfs_rqs.
7036 	 */
7037 	if (prev != p) {
7038 		struct sched_entity *pse = &prev->se;
7039 
7040 		while (!(cfs_rq = is_same_group(se, pse))) {
7041 			int se_depth = se->depth;
7042 			int pse_depth = pse->depth;
7043 
7044 			if (se_depth <= pse_depth) {
7045 				put_prev_entity(cfs_rq_of(pse), pse);
7046 				pse = parent_entity(pse);
7047 			}
7048 			if (se_depth >= pse_depth) {
7049 				set_next_entity(cfs_rq_of(se), se);
7050 				se = parent_entity(se);
7051 			}
7052 		}
7053 
7054 		put_prev_entity(cfs_rq, pse);
7055 		set_next_entity(cfs_rq, se);
7056 	}
7057 
7058 	goto done;
7059 simple:
7060 #endif
7061 
7062 	put_prev_task(rq, prev);
7063 
7064 	do {
7065 		se = pick_next_entity(cfs_rq, NULL);
7066 		set_next_entity(cfs_rq, se);
7067 		cfs_rq = group_cfs_rq(se);
7068 	} while (cfs_rq);
7069 
7070 	p = task_of(se);
7071 
7072 done: __maybe_unused;
7073 #ifdef CONFIG_SMP
7074 	/*
7075 	 * Move the next running task to the front of
7076 	 * the list, so our cfs_tasks list becomes MRU
7077 	 * one.
7078 	 */
7079 	list_move(&p->se.group_node, &rq->cfs_tasks);
7080 #endif
7081 
7082 	if (hrtick_enabled(rq))
7083 		hrtick_start_fair(rq, p);
7084 
7085 	update_misfit_status(p, rq);
7086 
7087 	return p;
7088 
7089 idle:
7090 	update_misfit_status(NULL, rq);
7091 	new_tasks = idle_balance(rq, rf);
7092 
7093 	/*
7094 	 * Because idle_balance() releases (and re-acquires) rq->lock, it is
7095 	 * possible for any higher priority task to appear. In that case we
7096 	 * must re-start the pick_next_entity() loop.
7097 	 */
7098 	if (new_tasks < 0)
7099 		return RETRY_TASK;
7100 
7101 	if (new_tasks > 0)
7102 		goto again;
7103 
7104 	/*
7105 	 * rq is about to be idle, check if we need to update the
7106 	 * lost_idle_time of clock_pelt
7107 	 */
7108 	update_idle_rq_clock_pelt(rq);
7109 
7110 	return NULL;
7111 }
7112 
7113 /*
7114  * Account for a descheduled task:
7115  */
7116 static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
7117 {
7118 	struct sched_entity *se = &prev->se;
7119 	struct cfs_rq *cfs_rq;
7120 
7121 	for_each_sched_entity(se) {
7122 		cfs_rq = cfs_rq_of(se);
7123 		put_prev_entity(cfs_rq, se);
7124 	}
7125 }
7126 
7127 /*
7128  * sched_yield() is very simple
7129  *
7130  * The magic of dealing with the ->skip buddy is in pick_next_entity.
7131  */
7132 static void yield_task_fair(struct rq *rq)
7133 {
7134 	struct task_struct *curr = rq->curr;
7135 	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
7136 	struct sched_entity *se = &curr->se;
7137 
7138 	/*
7139 	 * Are we the only task in the tree?
7140 	 */
7141 	if (unlikely(rq->nr_running == 1))
7142 		return;
7143 
7144 	clear_buddies(cfs_rq, se);
7145 
7146 	if (curr->policy != SCHED_BATCH) {
7147 		update_rq_clock(rq);
7148 		/*
7149 		 * Update run-time statistics of the 'current'.
7150 		 */
7151 		update_curr(cfs_rq);
7152 		/*
7153 		 * Tell update_rq_clock() that we've just updated,
7154 		 * so we don't do microscopic update in schedule()
7155 		 * and double the fastpath cost.
7156 		 */
7157 		rq_clock_skip_update(rq);
7158 	}
7159 
7160 	set_skip_buddy(se);
7161 }
7162 
7163 static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
7164 {
7165 	struct sched_entity *se = &p->se;
7166 
7167 	/* throttled hierarchies are not runnable */
7168 	if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
7169 		return false;
7170 
7171 	/* Tell the scheduler that we'd really like pse to run next. */
7172 	set_next_buddy(se);
7173 
7174 	yield_task_fair(rq);
7175 
7176 	return true;
7177 }
7178 
7179 #ifdef CONFIG_SMP
7180 /**************************************************
7181  * Fair scheduling class load-balancing methods.
7182  *
7183  * BASICS
7184  *
7185  * The purpose of load-balancing is to achieve the same basic fairness the
7186  * per-CPU scheduler provides, namely provide a proportional amount of compute
7187  * time to each task. This is expressed in the following equation:
7188  *
7189  *   W_i,n/P_i == W_j,n/P_j for all i,j                               (1)
7190  *
7191  * Where W_i,n is the n-th weight average for CPU i. The instantaneous weight
7192  * W_i,0 is defined as:
7193  *
7194  *   W_i,0 = \Sum_j w_i,j                                             (2)
7195  *
7196  * Where w_i,j is the weight of the j-th runnable task on CPU i. This weight
7197  * is derived from the nice value as per sched_prio_to_weight[].
7198  *
7199  * The weight average is an exponential decay average of the instantaneous
7200  * weight:
7201  *
7202  *   W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0               (3)
7203  *
7204  * C_i is the compute capacity of CPU i, typically it is the
7205  * fraction of 'recent' time available for SCHED_OTHER task execution. But it
7206  * can also include other factors [XXX].
7207  *
7208  * To achieve this balance we define a measure of imbalance which follows
7209  * directly from (1):
7210  *
7211  *   imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j }    (4)
7212  *
7213  * We them move tasks around to minimize the imbalance. In the continuous
7214  * function space it is obvious this converges, in the discrete case we get
7215  * a few fun cases generally called infeasible weight scenarios.
7216  *
7217  * [XXX expand on:
7218  *     - infeasible weights;
7219  *     - local vs global optima in the discrete case. ]
7220  *
7221  *
7222  * SCHED DOMAINS
7223  *
7224  * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
7225  * for all i,j solution, we create a tree of CPUs that follows the hardware
7226  * topology where each level pairs two lower groups (or better). This results
7227  * in O(log n) layers. Furthermore we reduce the number of CPUs going up the
7228  * tree to only the first of the previous level and we decrease the frequency
7229  * of load-balance at each level inv. proportional to the number of CPUs in
7230  * the groups.
7231  *
7232  * This yields:
7233  *
7234  *     log_2 n     1     n
7235  *   \Sum       { --- * --- * 2^i } = O(n)                            (5)
7236  *     i = 0      2^i   2^i
7237  *                               `- size of each group
7238  *         |         |     `- number of CPUs doing load-balance
7239  *         |         `- freq
7240  *         `- sum over all levels
7241  *
7242  * Coupled with a limit on how many tasks we can migrate every balance pass,
7243  * this makes (5) the runtime complexity of the balancer.
7244  *
7245  * An important property here is that each CPU is still (indirectly) connected
7246  * to every other CPU in at most O(log n) steps:
7247  *
7248  * The adjacency matrix of the resulting graph is given by:
7249  *
7250  *             log_2 n
7251  *   A_i,j = \Union     (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1)  (6)
7252  *             k = 0
7253  *
7254  * And you'll find that:
7255  *
7256  *   A^(log_2 n)_i,j != 0  for all i,j                                (7)
7257  *
7258  * Showing there's indeed a path between every CPU in at most O(log n) steps.
7259  * The task movement gives a factor of O(m), giving a convergence complexity
7260  * of:
7261  *
7262  *   O(nm log n),  n := nr_cpus, m := nr_tasks                        (8)
7263  *
7264  *
7265  * WORK CONSERVING
7266  *
7267  * In order to avoid CPUs going idle while there's still work to do, new idle
7268  * balancing is more aggressive and has the newly idle CPU iterate up the domain
7269  * tree itself instead of relying on other CPUs to bring it work.
7270  *
7271  * This adds some complexity to both (5) and (8) but it reduces the total idle
7272  * time.
7273  *
7274  * [XXX more?]
7275  *
7276  *
7277  * CGROUPS
7278  *
7279  * Cgroups make a horror show out of (2), instead of a simple sum we get:
7280  *
7281  *                                s_k,i
7282  *   W_i,0 = \Sum_j \Prod_k w_k * -----                               (9)
7283  *                                 S_k
7284  *
7285  * Where
7286  *
7287  *   s_k,i = \Sum_j w_i,j,k  and  S_k = \Sum_i s_k,i                 (10)
7288  *
7289  * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on CPU i.
7290  *
7291  * The big problem is S_k, its a global sum needed to compute a local (W_i)
7292  * property.
7293  *
7294  * [XXX write more on how we solve this.. _after_ merging pjt's patches that
7295  *      rewrite all of this once again.]
7296  */
7297 
7298 static unsigned long __read_mostly max_load_balance_interval = HZ/10;
7299 
7300 enum fbq_type { regular, remote, all };
7301 
7302 enum group_type {
7303 	group_other = 0,
7304 	group_misfit_task,
7305 	group_imbalanced,
7306 	group_overloaded,
7307 };
7308 
7309 #define LBF_ALL_PINNED	0x01
7310 #define LBF_NEED_BREAK	0x02
7311 #define LBF_DST_PINNED  0x04
7312 #define LBF_SOME_PINNED	0x08
7313 #define LBF_NOHZ_STATS	0x10
7314 #define LBF_NOHZ_AGAIN	0x20
7315 
7316 struct lb_env {
7317 	struct sched_domain	*sd;
7318 
7319 	struct rq		*src_rq;
7320 	int			src_cpu;
7321 
7322 	int			dst_cpu;
7323 	struct rq		*dst_rq;
7324 
7325 	struct cpumask		*dst_grpmask;
7326 	int			new_dst_cpu;
7327 	enum cpu_idle_type	idle;
7328 	long			imbalance;
7329 	/* The set of CPUs under consideration for load-balancing */
7330 	struct cpumask		*cpus;
7331 
7332 	unsigned int		flags;
7333 
7334 	unsigned int		loop;
7335 	unsigned int		loop_break;
7336 	unsigned int		loop_max;
7337 
7338 	enum fbq_type		fbq_type;
7339 	enum group_type		src_grp_type;
7340 	struct list_head	tasks;
7341 };
7342 
7343 /*
7344  * Is this task likely cache-hot:
7345  */
7346 static int task_hot(struct task_struct *p, struct lb_env *env)
7347 {
7348 	s64 delta;
7349 
7350 	lockdep_assert_held(&env->src_rq->lock);
7351 
7352 	if (p->sched_class != &fair_sched_class)
7353 		return 0;
7354 
7355 	if (unlikely(task_has_idle_policy(p)))
7356 		return 0;
7357 
7358 	/*
7359 	 * Buddy candidates are cache hot:
7360 	 */
7361 	if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running &&
7362 			(&p->se == cfs_rq_of(&p->se)->next ||
7363 			 &p->se == cfs_rq_of(&p->se)->last))
7364 		return 1;
7365 
7366 	if (sysctl_sched_migration_cost == -1)
7367 		return 1;
7368 	if (sysctl_sched_migration_cost == 0)
7369 		return 0;
7370 
7371 	delta = rq_clock_task(env->src_rq) - p->se.exec_start;
7372 
7373 	return delta < (s64)sysctl_sched_migration_cost;
7374 }
7375 
7376 #ifdef CONFIG_NUMA_BALANCING
7377 /*
7378  * Returns 1, if task migration degrades locality
7379  * Returns 0, if task migration improves locality i.e migration preferred.
7380  * Returns -1, if task migration is not affected by locality.
7381  */
7382 static int migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
7383 {
7384 	struct numa_group *numa_group = rcu_dereference(p->numa_group);
7385 	unsigned long src_weight, dst_weight;
7386 	int src_nid, dst_nid, dist;
7387 
7388 	if (!static_branch_likely(&sched_numa_balancing))
7389 		return -1;
7390 
7391 	if (!p->numa_faults || !(env->sd->flags & SD_NUMA))
7392 		return -1;
7393 
7394 	src_nid = cpu_to_node(env->src_cpu);
7395 	dst_nid = cpu_to_node(env->dst_cpu);
7396 
7397 	if (src_nid == dst_nid)
7398 		return -1;
7399 
7400 	/* Migrating away from the preferred node is always bad. */
7401 	if (src_nid == p->numa_preferred_nid) {
7402 		if (env->src_rq->nr_running > env->src_rq->nr_preferred_running)
7403 			return 1;
7404 		else
7405 			return -1;
7406 	}
7407 
7408 	/* Encourage migration to the preferred node. */
7409 	if (dst_nid == p->numa_preferred_nid)
7410 		return 0;
7411 
7412 	/* Leaving a core idle is often worse than degrading locality. */
7413 	if (env->idle == CPU_IDLE)
7414 		return -1;
7415 
7416 	dist = node_distance(src_nid, dst_nid);
7417 	if (numa_group) {
7418 		src_weight = group_weight(p, src_nid, dist);
7419 		dst_weight = group_weight(p, dst_nid, dist);
7420 	} else {
7421 		src_weight = task_weight(p, src_nid, dist);
7422 		dst_weight = task_weight(p, dst_nid, dist);
7423 	}
7424 
7425 	return dst_weight < src_weight;
7426 }
7427 
7428 #else
7429 static inline int migrate_degrades_locality(struct task_struct *p,
7430 					     struct lb_env *env)
7431 {
7432 	return -1;
7433 }
7434 #endif
7435 
7436 /*
7437  * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
7438  */
7439 static
7440 int can_migrate_task(struct task_struct *p, struct lb_env *env)
7441 {
7442 	int tsk_cache_hot;
7443 
7444 	lockdep_assert_held(&env->src_rq->lock);
7445 
7446 	/*
7447 	 * We do not migrate tasks that are:
7448 	 * 1) throttled_lb_pair, or
7449 	 * 2) cannot be migrated to this CPU due to cpus_allowed, or
7450 	 * 3) running (obviously), or
7451 	 * 4) are cache-hot on their current CPU.
7452 	 */
7453 	if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
7454 		return 0;
7455 
7456 	if (!cpumask_test_cpu(env->dst_cpu, &p->cpus_allowed)) {
7457 		int cpu;
7458 
7459 		schedstat_inc(p->se.statistics.nr_failed_migrations_affine);
7460 
7461 		env->flags |= LBF_SOME_PINNED;
7462 
7463 		/*
7464 		 * Remember if this task can be migrated to any other CPU in
7465 		 * our sched_group. We may want to revisit it if we couldn't
7466 		 * meet load balance goals by pulling other tasks on src_cpu.
7467 		 *
7468 		 * Avoid computing new_dst_cpu for NEWLY_IDLE or if we have
7469 		 * already computed one in current iteration.
7470 		 */
7471 		if (env->idle == CPU_NEWLY_IDLE || (env->flags & LBF_DST_PINNED))
7472 			return 0;
7473 
7474 		/* Prevent to re-select dst_cpu via env's CPUs: */
7475 		for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
7476 			if (cpumask_test_cpu(cpu, &p->cpus_allowed)) {
7477 				env->flags |= LBF_DST_PINNED;
7478 				env->new_dst_cpu = cpu;
7479 				break;
7480 			}
7481 		}
7482 
7483 		return 0;
7484 	}
7485 
7486 	/* Record that we found atleast one task that could run on dst_cpu */
7487 	env->flags &= ~LBF_ALL_PINNED;
7488 
7489 	if (task_running(env->src_rq, p)) {
7490 		schedstat_inc(p->se.statistics.nr_failed_migrations_running);
7491 		return 0;
7492 	}
7493 
7494 	/*
7495 	 * Aggressive migration if:
7496 	 * 1) destination numa is preferred
7497 	 * 2) task is cache cold, or
7498 	 * 3) too many balance attempts have failed.
7499 	 */
7500 	tsk_cache_hot = migrate_degrades_locality(p, env);
7501 	if (tsk_cache_hot == -1)
7502 		tsk_cache_hot = task_hot(p, env);
7503 
7504 	if (tsk_cache_hot <= 0 ||
7505 	    env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
7506 		if (tsk_cache_hot == 1) {
7507 			schedstat_inc(env->sd->lb_hot_gained[env->idle]);
7508 			schedstat_inc(p->se.statistics.nr_forced_migrations);
7509 		}
7510 		return 1;
7511 	}
7512 
7513 	schedstat_inc(p->se.statistics.nr_failed_migrations_hot);
7514 	return 0;
7515 }
7516 
7517 /*
7518  * detach_task() -- detach the task for the migration specified in env
7519  */
7520 static void detach_task(struct task_struct *p, struct lb_env *env)
7521 {
7522 	lockdep_assert_held(&env->src_rq->lock);
7523 
7524 	p->on_rq = TASK_ON_RQ_MIGRATING;
7525 	deactivate_task(env->src_rq, p, DEQUEUE_NOCLOCK);
7526 	set_task_cpu(p, env->dst_cpu);
7527 }
7528 
7529 /*
7530  * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as
7531  * part of active balancing operations within "domain".
7532  *
7533  * Returns a task if successful and NULL otherwise.
7534  */
7535 static struct task_struct *detach_one_task(struct lb_env *env)
7536 {
7537 	struct task_struct *p;
7538 
7539 	lockdep_assert_held(&env->src_rq->lock);
7540 
7541 	list_for_each_entry_reverse(p,
7542 			&env->src_rq->cfs_tasks, se.group_node) {
7543 		if (!can_migrate_task(p, env))
7544 			continue;
7545 
7546 		detach_task(p, env);
7547 
7548 		/*
7549 		 * Right now, this is only the second place where
7550 		 * lb_gained[env->idle] is updated (other is detach_tasks)
7551 		 * so we can safely collect stats here rather than
7552 		 * inside detach_tasks().
7553 		 */
7554 		schedstat_inc(env->sd->lb_gained[env->idle]);
7555 		return p;
7556 	}
7557 	return NULL;
7558 }
7559 
7560 static const unsigned int sched_nr_migrate_break = 32;
7561 
7562 /*
7563  * detach_tasks() -- tries to detach up to imbalance weighted load from
7564  * busiest_rq, as part of a balancing operation within domain "sd".
7565  *
7566  * Returns number of detached tasks if successful and 0 otherwise.
7567  */
7568 static int detach_tasks(struct lb_env *env)
7569 {
7570 	struct list_head *tasks = &env->src_rq->cfs_tasks;
7571 	struct task_struct *p;
7572 	unsigned long load;
7573 	int detached = 0;
7574 
7575 	lockdep_assert_held(&env->src_rq->lock);
7576 
7577 	if (env->imbalance <= 0)
7578 		return 0;
7579 
7580 	while (!list_empty(tasks)) {
7581 		/*
7582 		 * We don't want to steal all, otherwise we may be treated likewise,
7583 		 * which could at worst lead to a livelock crash.
7584 		 */
7585 		if (env->idle != CPU_NOT_IDLE && env->src_rq->nr_running <= 1)
7586 			break;
7587 
7588 		p = list_last_entry(tasks, struct task_struct, se.group_node);
7589 
7590 		env->loop++;
7591 		/* We've more or less seen every task there is, call it quits */
7592 		if (env->loop > env->loop_max)
7593 			break;
7594 
7595 		/* take a breather every nr_migrate tasks */
7596 		if (env->loop > env->loop_break) {
7597 			env->loop_break += sched_nr_migrate_break;
7598 			env->flags |= LBF_NEED_BREAK;
7599 			break;
7600 		}
7601 
7602 		if (!can_migrate_task(p, env))
7603 			goto next;
7604 
7605 		load = task_h_load(p);
7606 
7607 		if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed)
7608 			goto next;
7609 
7610 		if ((load / 2) > env->imbalance)
7611 			goto next;
7612 
7613 		detach_task(p, env);
7614 		list_add(&p->se.group_node, &env->tasks);
7615 
7616 		detached++;
7617 		env->imbalance -= load;
7618 
7619 #ifdef CONFIG_PREEMPT
7620 		/*
7621 		 * NEWIDLE balancing is a source of latency, so preemptible
7622 		 * kernels will stop after the first task is detached to minimize
7623 		 * the critical section.
7624 		 */
7625 		if (env->idle == CPU_NEWLY_IDLE)
7626 			break;
7627 #endif
7628 
7629 		/*
7630 		 * We only want to steal up to the prescribed amount of
7631 		 * weighted load.
7632 		 */
7633 		if (env->imbalance <= 0)
7634 			break;
7635 
7636 		continue;
7637 next:
7638 		list_move(&p->se.group_node, tasks);
7639 	}
7640 
7641 	/*
7642 	 * Right now, this is one of only two places we collect this stat
7643 	 * so we can safely collect detach_one_task() stats here rather
7644 	 * than inside detach_one_task().
7645 	 */
7646 	schedstat_add(env->sd->lb_gained[env->idle], detached);
7647 
7648 	return detached;
7649 }
7650 
7651 /*
7652  * attach_task() -- attach the task detached by detach_task() to its new rq.
7653  */
7654 static void attach_task(struct rq *rq, struct task_struct *p)
7655 {
7656 	lockdep_assert_held(&rq->lock);
7657 
7658 	BUG_ON(task_rq(p) != rq);
7659 	activate_task(rq, p, ENQUEUE_NOCLOCK);
7660 	p->on_rq = TASK_ON_RQ_QUEUED;
7661 	check_preempt_curr(rq, p, 0);
7662 }
7663 
7664 /*
7665  * attach_one_task() -- attaches the task returned from detach_one_task() to
7666  * its new rq.
7667  */
7668 static void attach_one_task(struct rq *rq, struct task_struct *p)
7669 {
7670 	struct rq_flags rf;
7671 
7672 	rq_lock(rq, &rf);
7673 	update_rq_clock(rq);
7674 	attach_task(rq, p);
7675 	rq_unlock(rq, &rf);
7676 }
7677 
7678 /*
7679  * attach_tasks() -- attaches all tasks detached by detach_tasks() to their
7680  * new rq.
7681  */
7682 static void attach_tasks(struct lb_env *env)
7683 {
7684 	struct list_head *tasks = &env->tasks;
7685 	struct task_struct *p;
7686 	struct rq_flags rf;
7687 
7688 	rq_lock(env->dst_rq, &rf);
7689 	update_rq_clock(env->dst_rq);
7690 
7691 	while (!list_empty(tasks)) {
7692 		p = list_first_entry(tasks, struct task_struct, se.group_node);
7693 		list_del_init(&p->se.group_node);
7694 
7695 		attach_task(env->dst_rq, p);
7696 	}
7697 
7698 	rq_unlock(env->dst_rq, &rf);
7699 }
7700 
7701 static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq)
7702 {
7703 	if (cfs_rq->avg.load_avg)
7704 		return true;
7705 
7706 	if (cfs_rq->avg.util_avg)
7707 		return true;
7708 
7709 	return false;
7710 }
7711 
7712 static inline bool others_have_blocked(struct rq *rq)
7713 {
7714 	if (READ_ONCE(rq->avg_rt.util_avg))
7715 		return true;
7716 
7717 	if (READ_ONCE(rq->avg_dl.util_avg))
7718 		return true;
7719 
7720 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ
7721 	if (READ_ONCE(rq->avg_irq.util_avg))
7722 		return true;
7723 #endif
7724 
7725 	return false;
7726 }
7727 
7728 #ifdef CONFIG_FAIR_GROUP_SCHED
7729 
7730 static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq)
7731 {
7732 	if (cfs_rq->load.weight)
7733 		return false;
7734 
7735 	if (cfs_rq->avg.load_sum)
7736 		return false;
7737 
7738 	if (cfs_rq->avg.util_sum)
7739 		return false;
7740 
7741 	if (cfs_rq->avg.runnable_load_sum)
7742 		return false;
7743 
7744 	return true;
7745 }
7746 
7747 static void update_blocked_averages(int cpu)
7748 {
7749 	struct rq *rq = cpu_rq(cpu);
7750 	struct cfs_rq *cfs_rq, *pos;
7751 	const struct sched_class *curr_class;
7752 	struct rq_flags rf;
7753 	bool done = true;
7754 
7755 	rq_lock_irqsave(rq, &rf);
7756 	update_rq_clock(rq);
7757 
7758 	/*
7759 	 * Iterates the task_group tree in a bottom up fashion, see
7760 	 * list_add_leaf_cfs_rq() for details.
7761 	 */
7762 	for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) {
7763 		struct sched_entity *se;
7764 
7765 		if (update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq))
7766 			update_tg_load_avg(cfs_rq, 0);
7767 
7768 		/* Propagate pending load changes to the parent, if any: */
7769 		se = cfs_rq->tg->se[cpu];
7770 		if (se && !skip_blocked_update(se))
7771 			update_load_avg(cfs_rq_of(se), se, 0);
7772 
7773 		/*
7774 		 * There can be a lot of idle CPU cgroups.  Don't let fully
7775 		 * decayed cfs_rqs linger on the list.
7776 		 */
7777 		if (cfs_rq_is_decayed(cfs_rq))
7778 			list_del_leaf_cfs_rq(cfs_rq);
7779 
7780 		/* Don't need periodic decay once load/util_avg are null */
7781 		if (cfs_rq_has_blocked(cfs_rq))
7782 			done = false;
7783 	}
7784 
7785 	curr_class = rq->curr->sched_class;
7786 	update_rt_rq_load_avg(rq_clock_pelt(rq), rq, curr_class == &rt_sched_class);
7787 	update_dl_rq_load_avg(rq_clock_pelt(rq), rq, curr_class == &dl_sched_class);
7788 	update_irq_load_avg(rq, 0);
7789 	/* Don't need periodic decay once load/util_avg are null */
7790 	if (others_have_blocked(rq))
7791 		done = false;
7792 
7793 #ifdef CONFIG_NO_HZ_COMMON
7794 	rq->last_blocked_load_update_tick = jiffies;
7795 	if (done)
7796 		rq->has_blocked_load = 0;
7797 #endif
7798 	rq_unlock_irqrestore(rq, &rf);
7799 }
7800 
7801 /*
7802  * Compute the hierarchical load factor for cfs_rq and all its ascendants.
7803  * This needs to be done in a top-down fashion because the load of a child
7804  * group is a fraction of its parents load.
7805  */
7806 static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
7807 {
7808 	struct rq *rq = rq_of(cfs_rq);
7809 	struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
7810 	unsigned long now = jiffies;
7811 	unsigned long load;
7812 
7813 	if (cfs_rq->last_h_load_update == now)
7814 		return;
7815 
7816 	WRITE_ONCE(cfs_rq->h_load_next, NULL);
7817 	for_each_sched_entity(se) {
7818 		cfs_rq = cfs_rq_of(se);
7819 		WRITE_ONCE(cfs_rq->h_load_next, se);
7820 		if (cfs_rq->last_h_load_update == now)
7821 			break;
7822 	}
7823 
7824 	if (!se) {
7825 		cfs_rq->h_load = cfs_rq_load_avg(cfs_rq);
7826 		cfs_rq->last_h_load_update = now;
7827 	}
7828 
7829 	while ((se = READ_ONCE(cfs_rq->h_load_next)) != NULL) {
7830 		load = cfs_rq->h_load;
7831 		load = div64_ul(load * se->avg.load_avg,
7832 			cfs_rq_load_avg(cfs_rq) + 1);
7833 		cfs_rq = group_cfs_rq(se);
7834 		cfs_rq->h_load = load;
7835 		cfs_rq->last_h_load_update = now;
7836 	}
7837 }
7838 
7839 static unsigned long task_h_load(struct task_struct *p)
7840 {
7841 	struct cfs_rq *cfs_rq = task_cfs_rq(p);
7842 
7843 	update_cfs_rq_h_load(cfs_rq);
7844 	return div64_ul(p->se.avg.load_avg * cfs_rq->h_load,
7845 			cfs_rq_load_avg(cfs_rq) + 1);
7846 }
7847 #else
7848 static inline void update_blocked_averages(int cpu)
7849 {
7850 	struct rq *rq = cpu_rq(cpu);
7851 	struct cfs_rq *cfs_rq = &rq->cfs;
7852 	const struct sched_class *curr_class;
7853 	struct rq_flags rf;
7854 
7855 	rq_lock_irqsave(rq, &rf);
7856 	update_rq_clock(rq);
7857 	update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq);
7858 
7859 	curr_class = rq->curr->sched_class;
7860 	update_rt_rq_load_avg(rq_clock_pelt(rq), rq, curr_class == &rt_sched_class);
7861 	update_dl_rq_load_avg(rq_clock_pelt(rq), rq, curr_class == &dl_sched_class);
7862 	update_irq_load_avg(rq, 0);
7863 #ifdef CONFIG_NO_HZ_COMMON
7864 	rq->last_blocked_load_update_tick = jiffies;
7865 	if (!cfs_rq_has_blocked(cfs_rq) && !others_have_blocked(rq))
7866 		rq->has_blocked_load = 0;
7867 #endif
7868 	rq_unlock_irqrestore(rq, &rf);
7869 }
7870 
7871 static unsigned long task_h_load(struct task_struct *p)
7872 {
7873 	return p->se.avg.load_avg;
7874 }
7875 #endif
7876 
7877 /********** Helpers for find_busiest_group ************************/
7878 
7879 /*
7880  * sg_lb_stats - stats of a sched_group required for load_balancing
7881  */
7882 struct sg_lb_stats {
7883 	unsigned long avg_load; /*Avg load across the CPUs of the group */
7884 	unsigned long group_load; /* Total load over the CPUs of the group */
7885 	unsigned long sum_weighted_load; /* Weighted load of group's tasks */
7886 	unsigned long load_per_task;
7887 	unsigned long group_capacity;
7888 	unsigned long group_util; /* Total utilization of the group */
7889 	unsigned int sum_nr_running; /* Nr tasks running in the group */
7890 	unsigned int idle_cpus;
7891 	unsigned int group_weight;
7892 	enum group_type group_type;
7893 	int group_no_capacity;
7894 	unsigned long group_misfit_task_load; /* A CPU has a task too big for its capacity */
7895 #ifdef CONFIG_NUMA_BALANCING
7896 	unsigned int nr_numa_running;
7897 	unsigned int nr_preferred_running;
7898 #endif
7899 };
7900 
7901 /*
7902  * sd_lb_stats - Structure to store the statistics of a sched_domain
7903  *		 during load balancing.
7904  */
7905 struct sd_lb_stats {
7906 	struct sched_group *busiest;	/* Busiest group in this sd */
7907 	struct sched_group *local;	/* Local group in this sd */
7908 	unsigned long total_running;
7909 	unsigned long total_load;	/* Total load of all groups in sd */
7910 	unsigned long total_capacity;	/* Total capacity of all groups in sd */
7911 	unsigned long avg_load;	/* Average load across all groups in sd */
7912 
7913 	struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
7914 	struct sg_lb_stats local_stat;	/* Statistics of the local group */
7915 };
7916 
7917 static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
7918 {
7919 	/*
7920 	 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
7921 	 * local_stat because update_sg_lb_stats() does a full clear/assignment.
7922 	 * We must however clear busiest_stat::avg_load because
7923 	 * update_sd_pick_busiest() reads this before assignment.
7924 	 */
7925 	*sds = (struct sd_lb_stats){
7926 		.busiest = NULL,
7927 		.local = NULL,
7928 		.total_running = 0UL,
7929 		.total_load = 0UL,
7930 		.total_capacity = 0UL,
7931 		.busiest_stat = {
7932 			.avg_load = 0UL,
7933 			.sum_nr_running = 0,
7934 			.group_type = group_other,
7935 		},
7936 	};
7937 }
7938 
7939 /**
7940  * get_sd_load_idx - Obtain the load index for a given sched domain.
7941  * @sd: The sched_domain whose load_idx is to be obtained.
7942  * @idle: The idle status of the CPU for whose sd load_idx is obtained.
7943  *
7944  * Return: The load index.
7945  */
7946 static inline int get_sd_load_idx(struct sched_domain *sd,
7947 					enum cpu_idle_type idle)
7948 {
7949 	int load_idx;
7950 
7951 	switch (idle) {
7952 	case CPU_NOT_IDLE:
7953 		load_idx = sd->busy_idx;
7954 		break;
7955 
7956 	case CPU_NEWLY_IDLE:
7957 		load_idx = sd->newidle_idx;
7958 		break;
7959 	default:
7960 		load_idx = sd->idle_idx;
7961 		break;
7962 	}
7963 
7964 	return load_idx;
7965 }
7966 
7967 static unsigned long scale_rt_capacity(struct sched_domain *sd, int cpu)
7968 {
7969 	struct rq *rq = cpu_rq(cpu);
7970 	unsigned long max = arch_scale_cpu_capacity(sd, cpu);
7971 	unsigned long used, free;
7972 	unsigned long irq;
7973 
7974 	irq = cpu_util_irq(rq);
7975 
7976 	if (unlikely(irq >= max))
7977 		return 1;
7978 
7979 	used = READ_ONCE(rq->avg_rt.util_avg);
7980 	used += READ_ONCE(rq->avg_dl.util_avg);
7981 
7982 	if (unlikely(used >= max))
7983 		return 1;
7984 
7985 	free = max - used;
7986 
7987 	return scale_irq_capacity(free, irq, max);
7988 }
7989 
7990 static void update_cpu_capacity(struct sched_domain *sd, int cpu)
7991 {
7992 	unsigned long capacity = scale_rt_capacity(sd, cpu);
7993 	struct sched_group *sdg = sd->groups;
7994 
7995 	cpu_rq(cpu)->cpu_capacity_orig = arch_scale_cpu_capacity(sd, cpu);
7996 
7997 	if (!capacity)
7998 		capacity = 1;
7999 
8000 	cpu_rq(cpu)->cpu_capacity = capacity;
8001 	sdg->sgc->capacity = capacity;
8002 	sdg->sgc->min_capacity = capacity;
8003 	sdg->sgc->max_capacity = capacity;
8004 }
8005 
8006 void update_group_capacity(struct sched_domain *sd, int cpu)
8007 {
8008 	struct sched_domain *child = sd->child;
8009 	struct sched_group *group, *sdg = sd->groups;
8010 	unsigned long capacity, min_capacity, max_capacity;
8011 	unsigned long interval;
8012 
8013 	interval = msecs_to_jiffies(sd->balance_interval);
8014 	interval = clamp(interval, 1UL, max_load_balance_interval);
8015 	sdg->sgc->next_update = jiffies + interval;
8016 
8017 	if (!child) {
8018 		update_cpu_capacity(sd, cpu);
8019 		return;
8020 	}
8021 
8022 	capacity = 0;
8023 	min_capacity = ULONG_MAX;
8024 	max_capacity = 0;
8025 
8026 	if (child->flags & SD_OVERLAP) {
8027 		/*
8028 		 * SD_OVERLAP domains cannot assume that child groups
8029 		 * span the current group.
8030 		 */
8031 
8032 		for_each_cpu(cpu, sched_group_span(sdg)) {
8033 			struct sched_group_capacity *sgc;
8034 			struct rq *rq = cpu_rq(cpu);
8035 
8036 			/*
8037 			 * build_sched_domains() -> init_sched_groups_capacity()
8038 			 * gets here before we've attached the domains to the
8039 			 * runqueues.
8040 			 *
8041 			 * Use capacity_of(), which is set irrespective of domains
8042 			 * in update_cpu_capacity().
8043 			 *
8044 			 * This avoids capacity from being 0 and
8045 			 * causing divide-by-zero issues on boot.
8046 			 */
8047 			if (unlikely(!rq->sd)) {
8048 				capacity += capacity_of(cpu);
8049 			} else {
8050 				sgc = rq->sd->groups->sgc;
8051 				capacity += sgc->capacity;
8052 			}
8053 
8054 			min_capacity = min(capacity, min_capacity);
8055 			max_capacity = max(capacity, max_capacity);
8056 		}
8057 	} else  {
8058 		/*
8059 		 * !SD_OVERLAP domains can assume that child groups
8060 		 * span the current group.
8061 		 */
8062 
8063 		group = child->groups;
8064 		do {
8065 			struct sched_group_capacity *sgc = group->sgc;
8066 
8067 			capacity += sgc->capacity;
8068 			min_capacity = min(sgc->min_capacity, min_capacity);
8069 			max_capacity = max(sgc->max_capacity, max_capacity);
8070 			group = group->next;
8071 		} while (group != child->groups);
8072 	}
8073 
8074 	sdg->sgc->capacity = capacity;
8075 	sdg->sgc->min_capacity = min_capacity;
8076 	sdg->sgc->max_capacity = max_capacity;
8077 }
8078 
8079 /*
8080  * Check whether the capacity of the rq has been noticeably reduced by side
8081  * activity. The imbalance_pct is used for the threshold.
8082  * Return true is the capacity is reduced
8083  */
8084 static inline int
8085 check_cpu_capacity(struct rq *rq, struct sched_domain *sd)
8086 {
8087 	return ((rq->cpu_capacity * sd->imbalance_pct) <
8088 				(rq->cpu_capacity_orig * 100));
8089 }
8090 
8091 /*
8092  * Check whether a rq has a misfit task and if it looks like we can actually
8093  * help that task: we can migrate the task to a CPU of higher capacity, or
8094  * the task's current CPU is heavily pressured.
8095  */
8096 static inline int check_misfit_status(struct rq *rq, struct sched_domain *sd)
8097 {
8098 	return rq->misfit_task_load &&
8099 		(rq->cpu_capacity_orig < rq->rd->max_cpu_capacity ||
8100 		 check_cpu_capacity(rq, sd));
8101 }
8102 
8103 /*
8104  * Group imbalance indicates (and tries to solve) the problem where balancing
8105  * groups is inadequate due to ->cpus_allowed constraints.
8106  *
8107  * Imagine a situation of two groups of 4 CPUs each and 4 tasks each with a
8108  * cpumask covering 1 CPU of the first group and 3 CPUs of the second group.
8109  * Something like:
8110  *
8111  *	{ 0 1 2 3 } { 4 5 6 7 }
8112  *	        *     * * *
8113  *
8114  * If we were to balance group-wise we'd place two tasks in the first group and
8115  * two tasks in the second group. Clearly this is undesired as it will overload
8116  * cpu 3 and leave one of the CPUs in the second group unused.
8117  *
8118  * The current solution to this issue is detecting the skew in the first group
8119  * by noticing the lower domain failed to reach balance and had difficulty
8120  * moving tasks due to affinity constraints.
8121  *
8122  * When this is so detected; this group becomes a candidate for busiest; see
8123  * update_sd_pick_busiest(). And calculate_imbalance() and
8124  * find_busiest_group() avoid some of the usual balance conditions to allow it
8125  * to create an effective group imbalance.
8126  *
8127  * This is a somewhat tricky proposition since the next run might not find the
8128  * group imbalance and decide the groups need to be balanced again. A most
8129  * subtle and fragile situation.
8130  */
8131 
8132 static inline int sg_imbalanced(struct sched_group *group)
8133 {
8134 	return group->sgc->imbalance;
8135 }
8136 
8137 /*
8138  * group_has_capacity returns true if the group has spare capacity that could
8139  * be used by some tasks.
8140  * We consider that a group has spare capacity if the  * number of task is
8141  * smaller than the number of CPUs or if the utilization is lower than the
8142  * available capacity for CFS tasks.
8143  * For the latter, we use a threshold to stabilize the state, to take into
8144  * account the variance of the tasks' load and to return true if the available
8145  * capacity in meaningful for the load balancer.
8146  * As an example, an available capacity of 1% can appear but it doesn't make
8147  * any benefit for the load balance.
8148  */
8149 static inline bool
8150 group_has_capacity(struct lb_env *env, struct sg_lb_stats *sgs)
8151 {
8152 	if (sgs->sum_nr_running < sgs->group_weight)
8153 		return true;
8154 
8155 	if ((sgs->group_capacity * 100) >
8156 			(sgs->group_util * env->sd->imbalance_pct))
8157 		return true;
8158 
8159 	return false;
8160 }
8161 
8162 /*
8163  *  group_is_overloaded returns true if the group has more tasks than it can
8164  *  handle.
8165  *  group_is_overloaded is not equals to !group_has_capacity because a group
8166  *  with the exact right number of tasks, has no more spare capacity but is not
8167  *  overloaded so both group_has_capacity and group_is_overloaded return
8168  *  false.
8169  */
8170 static inline bool
8171 group_is_overloaded(struct lb_env *env, struct sg_lb_stats *sgs)
8172 {
8173 	if (sgs->sum_nr_running <= sgs->group_weight)
8174 		return false;
8175 
8176 	if ((sgs->group_capacity * 100) <
8177 			(sgs->group_util * env->sd->imbalance_pct))
8178 		return true;
8179 
8180 	return false;
8181 }
8182 
8183 /*
8184  * group_smaller_min_cpu_capacity: Returns true if sched_group sg has smaller
8185  * per-CPU capacity than sched_group ref.
8186  */
8187 static inline bool
8188 group_smaller_min_cpu_capacity(struct sched_group *sg, struct sched_group *ref)
8189 {
8190 	return sg->sgc->min_capacity * capacity_margin <
8191 						ref->sgc->min_capacity * 1024;
8192 }
8193 
8194 /*
8195  * group_smaller_max_cpu_capacity: Returns true if sched_group sg has smaller
8196  * per-CPU capacity_orig than sched_group ref.
8197  */
8198 static inline bool
8199 group_smaller_max_cpu_capacity(struct sched_group *sg, struct sched_group *ref)
8200 {
8201 	return sg->sgc->max_capacity * capacity_margin <
8202 						ref->sgc->max_capacity * 1024;
8203 }
8204 
8205 static inline enum
8206 group_type group_classify(struct sched_group *group,
8207 			  struct sg_lb_stats *sgs)
8208 {
8209 	if (sgs->group_no_capacity)
8210 		return group_overloaded;
8211 
8212 	if (sg_imbalanced(group))
8213 		return group_imbalanced;
8214 
8215 	if (sgs->group_misfit_task_load)
8216 		return group_misfit_task;
8217 
8218 	return group_other;
8219 }
8220 
8221 static bool update_nohz_stats(struct rq *rq, bool force)
8222 {
8223 #ifdef CONFIG_NO_HZ_COMMON
8224 	unsigned int cpu = rq->cpu;
8225 
8226 	if (!rq->has_blocked_load)
8227 		return false;
8228 
8229 	if (!cpumask_test_cpu(cpu, nohz.idle_cpus_mask))
8230 		return false;
8231 
8232 	if (!force && !time_after(jiffies, rq->last_blocked_load_update_tick))
8233 		return true;
8234 
8235 	update_blocked_averages(cpu);
8236 
8237 	return rq->has_blocked_load;
8238 #else
8239 	return false;
8240 #endif
8241 }
8242 
8243 /**
8244  * update_sg_lb_stats - Update sched_group's statistics for load balancing.
8245  * @env: The load balancing environment.
8246  * @group: sched_group whose statistics are to be updated.
8247  * @sgs: variable to hold the statistics for this group.
8248  * @sg_status: Holds flag indicating the status of the sched_group
8249  */
8250 static inline void update_sg_lb_stats(struct lb_env *env,
8251 				      struct sched_group *group,
8252 				      struct sg_lb_stats *sgs,
8253 				      int *sg_status)
8254 {
8255 	int local_group = cpumask_test_cpu(env->dst_cpu, sched_group_span(group));
8256 	int load_idx = get_sd_load_idx(env->sd, env->idle);
8257 	unsigned long load;
8258 	int i, nr_running;
8259 
8260 	memset(sgs, 0, sizeof(*sgs));
8261 
8262 	for_each_cpu_and(i, sched_group_span(group), env->cpus) {
8263 		struct rq *rq = cpu_rq(i);
8264 
8265 		if ((env->flags & LBF_NOHZ_STATS) && update_nohz_stats(rq, false))
8266 			env->flags |= LBF_NOHZ_AGAIN;
8267 
8268 		/* Bias balancing toward CPUs of our domain: */
8269 		if (local_group)
8270 			load = target_load(i, load_idx);
8271 		else
8272 			load = source_load(i, load_idx);
8273 
8274 		sgs->group_load += load;
8275 		sgs->group_util += cpu_util(i);
8276 		sgs->sum_nr_running += rq->cfs.h_nr_running;
8277 
8278 		nr_running = rq->nr_running;
8279 		if (nr_running > 1)
8280 			*sg_status |= SG_OVERLOAD;
8281 
8282 		if (cpu_overutilized(i))
8283 			*sg_status |= SG_OVERUTILIZED;
8284 
8285 #ifdef CONFIG_NUMA_BALANCING
8286 		sgs->nr_numa_running += rq->nr_numa_running;
8287 		sgs->nr_preferred_running += rq->nr_preferred_running;
8288 #endif
8289 		sgs->sum_weighted_load += weighted_cpuload(rq);
8290 		/*
8291 		 * No need to call idle_cpu() if nr_running is not 0
8292 		 */
8293 		if (!nr_running && idle_cpu(i))
8294 			sgs->idle_cpus++;
8295 
8296 		if (env->sd->flags & SD_ASYM_CPUCAPACITY &&
8297 		    sgs->group_misfit_task_load < rq->misfit_task_load) {
8298 			sgs->group_misfit_task_load = rq->misfit_task_load;
8299 			*sg_status |= SG_OVERLOAD;
8300 		}
8301 	}
8302 
8303 	/* Adjust by relative CPU capacity of the group */
8304 	sgs->group_capacity = group->sgc->capacity;
8305 	sgs->avg_load = (sgs->group_load*SCHED_CAPACITY_SCALE) / sgs->group_capacity;
8306 
8307 	if (sgs->sum_nr_running)
8308 		sgs->load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
8309 
8310 	sgs->group_weight = group->group_weight;
8311 
8312 	sgs->group_no_capacity = group_is_overloaded(env, sgs);
8313 	sgs->group_type = group_classify(group, sgs);
8314 }
8315 
8316 /**
8317  * update_sd_pick_busiest - return 1 on busiest group
8318  * @env: The load balancing environment.
8319  * @sds: sched_domain statistics
8320  * @sg: sched_group candidate to be checked for being the busiest
8321  * @sgs: sched_group statistics
8322  *
8323  * Determine if @sg is a busier group than the previously selected
8324  * busiest group.
8325  *
8326  * Return: %true if @sg is a busier group than the previously selected
8327  * busiest group. %false otherwise.
8328  */
8329 static bool update_sd_pick_busiest(struct lb_env *env,
8330 				   struct sd_lb_stats *sds,
8331 				   struct sched_group *sg,
8332 				   struct sg_lb_stats *sgs)
8333 {
8334 	struct sg_lb_stats *busiest = &sds->busiest_stat;
8335 
8336 	/*
8337 	 * Don't try to pull misfit tasks we can't help.
8338 	 * We can use max_capacity here as reduction in capacity on some
8339 	 * CPUs in the group should either be possible to resolve
8340 	 * internally or be covered by avg_load imbalance (eventually).
8341 	 */
8342 	if (sgs->group_type == group_misfit_task &&
8343 	    (!group_smaller_max_cpu_capacity(sg, sds->local) ||
8344 	     !group_has_capacity(env, &sds->local_stat)))
8345 		return false;
8346 
8347 	if (sgs->group_type > busiest->group_type)
8348 		return true;
8349 
8350 	if (sgs->group_type < busiest->group_type)
8351 		return false;
8352 
8353 	if (sgs->avg_load <= busiest->avg_load)
8354 		return false;
8355 
8356 	if (!(env->sd->flags & SD_ASYM_CPUCAPACITY))
8357 		goto asym_packing;
8358 
8359 	/*
8360 	 * Candidate sg has no more than one task per CPU and
8361 	 * has higher per-CPU capacity. Migrating tasks to less
8362 	 * capable CPUs may harm throughput. Maximize throughput,
8363 	 * power/energy consequences are not considered.
8364 	 */
8365 	if (sgs->sum_nr_running <= sgs->group_weight &&
8366 	    group_smaller_min_cpu_capacity(sds->local, sg))
8367 		return false;
8368 
8369 	/*
8370 	 * If we have more than one misfit sg go with the biggest misfit.
8371 	 */
8372 	if (sgs->group_type == group_misfit_task &&
8373 	    sgs->group_misfit_task_load < busiest->group_misfit_task_load)
8374 		return false;
8375 
8376 asym_packing:
8377 	/* This is the busiest node in its class. */
8378 	if (!(env->sd->flags & SD_ASYM_PACKING))
8379 		return true;
8380 
8381 	/* No ASYM_PACKING if target CPU is already busy */
8382 	if (env->idle == CPU_NOT_IDLE)
8383 		return true;
8384 	/*
8385 	 * ASYM_PACKING needs to move all the work to the highest
8386 	 * prority CPUs in the group, therefore mark all groups
8387 	 * of lower priority than ourself as busy.
8388 	 */
8389 	if (sgs->sum_nr_running &&
8390 	    sched_asym_prefer(env->dst_cpu, sg->asym_prefer_cpu)) {
8391 		if (!sds->busiest)
8392 			return true;
8393 
8394 		/* Prefer to move from lowest priority CPU's work */
8395 		if (sched_asym_prefer(sds->busiest->asym_prefer_cpu,
8396 				      sg->asym_prefer_cpu))
8397 			return true;
8398 	}
8399 
8400 	return false;
8401 }
8402 
8403 #ifdef CONFIG_NUMA_BALANCING
8404 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
8405 {
8406 	if (sgs->sum_nr_running > sgs->nr_numa_running)
8407 		return regular;
8408 	if (sgs->sum_nr_running > sgs->nr_preferred_running)
8409 		return remote;
8410 	return all;
8411 }
8412 
8413 static inline enum fbq_type fbq_classify_rq(struct rq *rq)
8414 {
8415 	if (rq->nr_running > rq->nr_numa_running)
8416 		return regular;
8417 	if (rq->nr_running > rq->nr_preferred_running)
8418 		return remote;
8419 	return all;
8420 }
8421 #else
8422 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
8423 {
8424 	return all;
8425 }
8426 
8427 static inline enum fbq_type fbq_classify_rq(struct rq *rq)
8428 {
8429 	return regular;
8430 }
8431 #endif /* CONFIG_NUMA_BALANCING */
8432 
8433 /**
8434  * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
8435  * @env: The load balancing environment.
8436  * @sds: variable to hold the statistics for this sched_domain.
8437  */
8438 static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
8439 {
8440 	struct sched_domain *child = env->sd->child;
8441 	struct sched_group *sg = env->sd->groups;
8442 	struct sg_lb_stats *local = &sds->local_stat;
8443 	struct sg_lb_stats tmp_sgs;
8444 	bool prefer_sibling = child && child->flags & SD_PREFER_SIBLING;
8445 	int sg_status = 0;
8446 
8447 #ifdef CONFIG_NO_HZ_COMMON
8448 	if (env->idle == CPU_NEWLY_IDLE && READ_ONCE(nohz.has_blocked))
8449 		env->flags |= LBF_NOHZ_STATS;
8450 #endif
8451 
8452 	do {
8453 		struct sg_lb_stats *sgs = &tmp_sgs;
8454 		int local_group;
8455 
8456 		local_group = cpumask_test_cpu(env->dst_cpu, sched_group_span(sg));
8457 		if (local_group) {
8458 			sds->local = sg;
8459 			sgs = local;
8460 
8461 			if (env->idle != CPU_NEWLY_IDLE ||
8462 			    time_after_eq(jiffies, sg->sgc->next_update))
8463 				update_group_capacity(env->sd, env->dst_cpu);
8464 		}
8465 
8466 		update_sg_lb_stats(env, sg, sgs, &sg_status);
8467 
8468 		if (local_group)
8469 			goto next_group;
8470 
8471 		/*
8472 		 * In case the child domain prefers tasks go to siblings
8473 		 * first, lower the sg capacity so that we'll try
8474 		 * and move all the excess tasks away. We lower the capacity
8475 		 * of a group only if the local group has the capacity to fit
8476 		 * these excess tasks. The extra check prevents the case where
8477 		 * you always pull from the heaviest group when it is already
8478 		 * under-utilized (possible with a large weight task outweighs
8479 		 * the tasks on the system).
8480 		 */
8481 		if (prefer_sibling && sds->local &&
8482 		    group_has_capacity(env, local) &&
8483 		    (sgs->sum_nr_running > local->sum_nr_running + 1)) {
8484 			sgs->group_no_capacity = 1;
8485 			sgs->group_type = group_classify(sg, sgs);
8486 		}
8487 
8488 		if (update_sd_pick_busiest(env, sds, sg, sgs)) {
8489 			sds->busiest = sg;
8490 			sds->busiest_stat = *sgs;
8491 		}
8492 
8493 next_group:
8494 		/* Now, start updating sd_lb_stats */
8495 		sds->total_running += sgs->sum_nr_running;
8496 		sds->total_load += sgs->group_load;
8497 		sds->total_capacity += sgs->group_capacity;
8498 
8499 		sg = sg->next;
8500 	} while (sg != env->sd->groups);
8501 
8502 #ifdef CONFIG_NO_HZ_COMMON
8503 	if ((env->flags & LBF_NOHZ_AGAIN) &&
8504 	    cpumask_subset(nohz.idle_cpus_mask, sched_domain_span(env->sd))) {
8505 
8506 		WRITE_ONCE(nohz.next_blocked,
8507 			   jiffies + msecs_to_jiffies(LOAD_AVG_PERIOD));
8508 	}
8509 #endif
8510 
8511 	if (env->sd->flags & SD_NUMA)
8512 		env->fbq_type = fbq_classify_group(&sds->busiest_stat);
8513 
8514 	if (!env->sd->parent) {
8515 		struct root_domain *rd = env->dst_rq->rd;
8516 
8517 		/* update overload indicator if we are at root domain */
8518 		WRITE_ONCE(rd->overload, sg_status & SG_OVERLOAD);
8519 
8520 		/* Update over-utilization (tipping point, U >= 0) indicator */
8521 		WRITE_ONCE(rd->overutilized, sg_status & SG_OVERUTILIZED);
8522 	} else if (sg_status & SG_OVERUTILIZED) {
8523 		WRITE_ONCE(env->dst_rq->rd->overutilized, SG_OVERUTILIZED);
8524 	}
8525 }
8526 
8527 /**
8528  * check_asym_packing - Check to see if the group is packed into the
8529  *			sched domain.
8530  *
8531  * This is primarily intended to used at the sibling level.  Some
8532  * cores like POWER7 prefer to use lower numbered SMT threads.  In the
8533  * case of POWER7, it can move to lower SMT modes only when higher
8534  * threads are idle.  When in lower SMT modes, the threads will
8535  * perform better since they share less core resources.  Hence when we
8536  * have idle threads, we want them to be the higher ones.
8537  *
8538  * This packing function is run on idle threads.  It checks to see if
8539  * the busiest CPU in this domain (core in the P7 case) has a higher
8540  * CPU number than the packing function is being run on.  Here we are
8541  * assuming lower CPU number will be equivalent to lower a SMT thread
8542  * number.
8543  *
8544  * Return: 1 when packing is required and a task should be moved to
8545  * this CPU.  The amount of the imbalance is returned in env->imbalance.
8546  *
8547  * @env: The load balancing environment.
8548  * @sds: Statistics of the sched_domain which is to be packed
8549  */
8550 static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds)
8551 {
8552 	int busiest_cpu;
8553 
8554 	if (!(env->sd->flags & SD_ASYM_PACKING))
8555 		return 0;
8556 
8557 	if (env->idle == CPU_NOT_IDLE)
8558 		return 0;
8559 
8560 	if (!sds->busiest)
8561 		return 0;
8562 
8563 	busiest_cpu = sds->busiest->asym_prefer_cpu;
8564 	if (sched_asym_prefer(busiest_cpu, env->dst_cpu))
8565 		return 0;
8566 
8567 	env->imbalance = sds->busiest_stat.group_load;
8568 
8569 	return 1;
8570 }
8571 
8572 /**
8573  * fix_small_imbalance - Calculate the minor imbalance that exists
8574  *			amongst the groups of a sched_domain, during
8575  *			load balancing.
8576  * @env: The load balancing environment.
8577  * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
8578  */
8579 static inline
8580 void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
8581 {
8582 	unsigned long tmp, capa_now = 0, capa_move = 0;
8583 	unsigned int imbn = 2;
8584 	unsigned long scaled_busy_load_per_task;
8585 	struct sg_lb_stats *local, *busiest;
8586 
8587 	local = &sds->local_stat;
8588 	busiest = &sds->busiest_stat;
8589 
8590 	if (!local->sum_nr_running)
8591 		local->load_per_task = cpu_avg_load_per_task(env->dst_cpu);
8592 	else if (busiest->load_per_task > local->load_per_task)
8593 		imbn = 1;
8594 
8595 	scaled_busy_load_per_task =
8596 		(busiest->load_per_task * SCHED_CAPACITY_SCALE) /
8597 		busiest->group_capacity;
8598 
8599 	if (busiest->avg_load + scaled_busy_load_per_task >=
8600 	    local->avg_load + (scaled_busy_load_per_task * imbn)) {
8601 		env->imbalance = busiest->load_per_task;
8602 		return;
8603 	}
8604 
8605 	/*
8606 	 * OK, we don't have enough imbalance to justify moving tasks,
8607 	 * however we may be able to increase total CPU capacity used by
8608 	 * moving them.
8609 	 */
8610 
8611 	capa_now += busiest->group_capacity *
8612 			min(busiest->load_per_task, busiest->avg_load);
8613 	capa_now += local->group_capacity *
8614 			min(local->load_per_task, local->avg_load);
8615 	capa_now /= SCHED_CAPACITY_SCALE;
8616 
8617 	/* Amount of load we'd subtract */
8618 	if (busiest->avg_load > scaled_busy_load_per_task) {
8619 		capa_move += busiest->group_capacity *
8620 			    min(busiest->load_per_task,
8621 				busiest->avg_load - scaled_busy_load_per_task);
8622 	}
8623 
8624 	/* Amount of load we'd add */
8625 	if (busiest->avg_load * busiest->group_capacity <
8626 	    busiest->load_per_task * SCHED_CAPACITY_SCALE) {
8627 		tmp = (busiest->avg_load * busiest->group_capacity) /
8628 		      local->group_capacity;
8629 	} else {
8630 		tmp = (busiest->load_per_task * SCHED_CAPACITY_SCALE) /
8631 		      local->group_capacity;
8632 	}
8633 	capa_move += local->group_capacity *
8634 		    min(local->load_per_task, local->avg_load + tmp);
8635 	capa_move /= SCHED_CAPACITY_SCALE;
8636 
8637 	/* Move if we gain throughput */
8638 	if (capa_move > capa_now)
8639 		env->imbalance = busiest->load_per_task;
8640 }
8641 
8642 /**
8643  * calculate_imbalance - Calculate the amount of imbalance present within the
8644  *			 groups of a given sched_domain during load balance.
8645  * @env: load balance environment
8646  * @sds: statistics of the sched_domain whose imbalance is to be calculated.
8647  */
8648 static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
8649 {
8650 	unsigned long max_pull, load_above_capacity = ~0UL;
8651 	struct sg_lb_stats *local, *busiest;
8652 
8653 	local = &sds->local_stat;
8654 	busiest = &sds->busiest_stat;
8655 
8656 	if (busiest->group_type == group_imbalanced) {
8657 		/*
8658 		 * In the group_imb case we cannot rely on group-wide averages
8659 		 * to ensure CPU-load equilibrium, look at wider averages. XXX
8660 		 */
8661 		busiest->load_per_task =
8662 			min(busiest->load_per_task, sds->avg_load);
8663 	}
8664 
8665 	/*
8666 	 * Avg load of busiest sg can be less and avg load of local sg can
8667 	 * be greater than avg load across all sgs of sd because avg load
8668 	 * factors in sg capacity and sgs with smaller group_type are
8669 	 * skipped when updating the busiest sg:
8670 	 */
8671 	if (busiest->group_type != group_misfit_task &&
8672 	    (busiest->avg_load <= sds->avg_load ||
8673 	     local->avg_load >= sds->avg_load)) {
8674 		env->imbalance = 0;
8675 		return fix_small_imbalance(env, sds);
8676 	}
8677 
8678 	/*
8679 	 * If there aren't any idle CPUs, avoid creating some.
8680 	 */
8681 	if (busiest->group_type == group_overloaded &&
8682 	    local->group_type   == group_overloaded) {
8683 		load_above_capacity = busiest->sum_nr_running * SCHED_CAPACITY_SCALE;
8684 		if (load_above_capacity > busiest->group_capacity) {
8685 			load_above_capacity -= busiest->group_capacity;
8686 			load_above_capacity *= scale_load_down(NICE_0_LOAD);
8687 			load_above_capacity /= busiest->group_capacity;
8688 		} else
8689 			load_above_capacity = ~0UL;
8690 	}
8691 
8692 	/*
8693 	 * We're trying to get all the CPUs to the average_load, so we don't
8694 	 * want to push ourselves above the average load, nor do we wish to
8695 	 * reduce the max loaded CPU below the average load. At the same time,
8696 	 * we also don't want to reduce the group load below the group
8697 	 * capacity. Thus we look for the minimum possible imbalance.
8698 	 */
8699 	max_pull = min(busiest->avg_load - sds->avg_load, load_above_capacity);
8700 
8701 	/* How much load to actually move to equalise the imbalance */
8702 	env->imbalance = min(
8703 		max_pull * busiest->group_capacity,
8704 		(sds->avg_load - local->avg_load) * local->group_capacity
8705 	) / SCHED_CAPACITY_SCALE;
8706 
8707 	/* Boost imbalance to allow misfit task to be balanced. */
8708 	if (busiest->group_type == group_misfit_task) {
8709 		env->imbalance = max_t(long, env->imbalance,
8710 				       busiest->group_misfit_task_load);
8711 	}
8712 
8713 	/*
8714 	 * if *imbalance is less than the average load per runnable task
8715 	 * there is no guarantee that any tasks will be moved so we'll have
8716 	 * a think about bumping its value to force at least one task to be
8717 	 * moved
8718 	 */
8719 	if (env->imbalance < busiest->load_per_task)
8720 		return fix_small_imbalance(env, sds);
8721 }
8722 
8723 /******* find_busiest_group() helpers end here *********************/
8724 
8725 /**
8726  * find_busiest_group - Returns the busiest group within the sched_domain
8727  * if there is an imbalance.
8728  *
8729  * Also calculates the amount of weighted load which should be moved
8730  * to restore balance.
8731  *
8732  * @env: The load balancing environment.
8733  *
8734  * Return:	- The busiest group if imbalance exists.
8735  */
8736 static struct sched_group *find_busiest_group(struct lb_env *env)
8737 {
8738 	struct sg_lb_stats *local, *busiest;
8739 	struct sd_lb_stats sds;
8740 
8741 	init_sd_lb_stats(&sds);
8742 
8743 	/*
8744 	 * Compute the various statistics relavent for load balancing at
8745 	 * this level.
8746 	 */
8747 	update_sd_lb_stats(env, &sds);
8748 
8749 	if (sched_energy_enabled()) {
8750 		struct root_domain *rd = env->dst_rq->rd;
8751 
8752 		if (rcu_dereference(rd->pd) && !READ_ONCE(rd->overutilized))
8753 			goto out_balanced;
8754 	}
8755 
8756 	local = &sds.local_stat;
8757 	busiest = &sds.busiest_stat;
8758 
8759 	/* ASYM feature bypasses nice load balance check */
8760 	if (check_asym_packing(env, &sds))
8761 		return sds.busiest;
8762 
8763 	/* There is no busy sibling group to pull tasks from */
8764 	if (!sds.busiest || busiest->sum_nr_running == 0)
8765 		goto out_balanced;
8766 
8767 	/* XXX broken for overlapping NUMA groups */
8768 	sds.avg_load = (SCHED_CAPACITY_SCALE * sds.total_load)
8769 						/ sds.total_capacity;
8770 
8771 	/*
8772 	 * If the busiest group is imbalanced the below checks don't
8773 	 * work because they assume all things are equal, which typically
8774 	 * isn't true due to cpus_allowed constraints and the like.
8775 	 */
8776 	if (busiest->group_type == group_imbalanced)
8777 		goto force_balance;
8778 
8779 	/*
8780 	 * When dst_cpu is idle, prevent SMP nice and/or asymmetric group
8781 	 * capacities from resulting in underutilization due to avg_load.
8782 	 */
8783 	if (env->idle != CPU_NOT_IDLE && group_has_capacity(env, local) &&
8784 	    busiest->group_no_capacity)
8785 		goto force_balance;
8786 
8787 	/* Misfit tasks should be dealt with regardless of the avg load */
8788 	if (busiest->group_type == group_misfit_task)
8789 		goto force_balance;
8790 
8791 	/*
8792 	 * If the local group is busier than the selected busiest group
8793 	 * don't try and pull any tasks.
8794 	 */
8795 	if (local->avg_load >= busiest->avg_load)
8796 		goto out_balanced;
8797 
8798 	/*
8799 	 * Don't pull any tasks if this group is already above the domain
8800 	 * average load.
8801 	 */
8802 	if (local->avg_load >= sds.avg_load)
8803 		goto out_balanced;
8804 
8805 	if (env->idle == CPU_IDLE) {
8806 		/*
8807 		 * This CPU is idle. If the busiest group is not overloaded
8808 		 * and there is no imbalance between this and busiest group
8809 		 * wrt idle CPUs, it is balanced. The imbalance becomes
8810 		 * significant if the diff is greater than 1 otherwise we
8811 		 * might end up to just move the imbalance on another group
8812 		 */
8813 		if ((busiest->group_type != group_overloaded) &&
8814 				(local->idle_cpus <= (busiest->idle_cpus + 1)))
8815 			goto out_balanced;
8816 	} else {
8817 		/*
8818 		 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
8819 		 * imbalance_pct to be conservative.
8820 		 */
8821 		if (100 * busiest->avg_load <=
8822 				env->sd->imbalance_pct * local->avg_load)
8823 			goto out_balanced;
8824 	}
8825 
8826 force_balance:
8827 	/* Looks like there is an imbalance. Compute it */
8828 	env->src_grp_type = busiest->group_type;
8829 	calculate_imbalance(env, &sds);
8830 	return env->imbalance ? sds.busiest : NULL;
8831 
8832 out_balanced:
8833 	env->imbalance = 0;
8834 	return NULL;
8835 }
8836 
8837 /*
8838  * find_busiest_queue - find the busiest runqueue among the CPUs in the group.
8839  */
8840 static struct rq *find_busiest_queue(struct lb_env *env,
8841 				     struct sched_group *group)
8842 {
8843 	struct rq *busiest = NULL, *rq;
8844 	unsigned long busiest_load = 0, busiest_capacity = 1;
8845 	int i;
8846 
8847 	for_each_cpu_and(i, sched_group_span(group), env->cpus) {
8848 		unsigned long capacity, wl;
8849 		enum fbq_type rt;
8850 
8851 		rq = cpu_rq(i);
8852 		rt = fbq_classify_rq(rq);
8853 
8854 		/*
8855 		 * We classify groups/runqueues into three groups:
8856 		 *  - regular: there are !numa tasks
8857 		 *  - remote:  there are numa tasks that run on the 'wrong' node
8858 		 *  - all:     there is no distinction
8859 		 *
8860 		 * In order to avoid migrating ideally placed numa tasks,
8861 		 * ignore those when there's better options.
8862 		 *
8863 		 * If we ignore the actual busiest queue to migrate another
8864 		 * task, the next balance pass can still reduce the busiest
8865 		 * queue by moving tasks around inside the node.
8866 		 *
8867 		 * If we cannot move enough load due to this classification
8868 		 * the next pass will adjust the group classification and
8869 		 * allow migration of more tasks.
8870 		 *
8871 		 * Both cases only affect the total convergence complexity.
8872 		 */
8873 		if (rt > env->fbq_type)
8874 			continue;
8875 
8876 		/*
8877 		 * For ASYM_CPUCAPACITY domains with misfit tasks we simply
8878 		 * seek the "biggest" misfit task.
8879 		 */
8880 		if (env->src_grp_type == group_misfit_task) {
8881 			if (rq->misfit_task_load > busiest_load) {
8882 				busiest_load = rq->misfit_task_load;
8883 				busiest = rq;
8884 			}
8885 
8886 			continue;
8887 		}
8888 
8889 		capacity = capacity_of(i);
8890 
8891 		/*
8892 		 * For ASYM_CPUCAPACITY domains, don't pick a CPU that could
8893 		 * eventually lead to active_balancing high->low capacity.
8894 		 * Higher per-CPU capacity is considered better than balancing
8895 		 * average load.
8896 		 */
8897 		if (env->sd->flags & SD_ASYM_CPUCAPACITY &&
8898 		    capacity_of(env->dst_cpu) < capacity &&
8899 		    rq->nr_running == 1)
8900 			continue;
8901 
8902 		wl = weighted_cpuload(rq);
8903 
8904 		/*
8905 		 * When comparing with imbalance, use weighted_cpuload()
8906 		 * which is not scaled with the CPU capacity.
8907 		 */
8908 
8909 		if (rq->nr_running == 1 && wl > env->imbalance &&
8910 		    !check_cpu_capacity(rq, env->sd))
8911 			continue;
8912 
8913 		/*
8914 		 * For the load comparisons with the other CPU's, consider
8915 		 * the weighted_cpuload() scaled with the CPU capacity, so
8916 		 * that the load can be moved away from the CPU that is
8917 		 * potentially running at a lower capacity.
8918 		 *
8919 		 * Thus we're looking for max(wl_i / capacity_i), crosswise
8920 		 * multiplication to rid ourselves of the division works out
8921 		 * to: wl_i * capacity_j > wl_j * capacity_i;  where j is
8922 		 * our previous maximum.
8923 		 */
8924 		if (wl * busiest_capacity > busiest_load * capacity) {
8925 			busiest_load = wl;
8926 			busiest_capacity = capacity;
8927 			busiest = rq;
8928 		}
8929 	}
8930 
8931 	return busiest;
8932 }
8933 
8934 /*
8935  * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
8936  * so long as it is large enough.
8937  */
8938 #define MAX_PINNED_INTERVAL	512
8939 
8940 static inline bool
8941 asym_active_balance(struct lb_env *env)
8942 {
8943 	/*
8944 	 * ASYM_PACKING needs to force migrate tasks from busy but
8945 	 * lower priority CPUs in order to pack all tasks in the
8946 	 * highest priority CPUs.
8947 	 */
8948 	return env->idle != CPU_NOT_IDLE && (env->sd->flags & SD_ASYM_PACKING) &&
8949 	       sched_asym_prefer(env->dst_cpu, env->src_cpu);
8950 }
8951 
8952 static inline bool
8953 voluntary_active_balance(struct lb_env *env)
8954 {
8955 	struct sched_domain *sd = env->sd;
8956 
8957 	if (asym_active_balance(env))
8958 		return 1;
8959 
8960 	/*
8961 	 * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task.
8962 	 * It's worth migrating the task if the src_cpu's capacity is reduced
8963 	 * because of other sched_class or IRQs if more capacity stays
8964 	 * available on dst_cpu.
8965 	 */
8966 	if ((env->idle != CPU_NOT_IDLE) &&
8967 	    (env->src_rq->cfs.h_nr_running == 1)) {
8968 		if ((check_cpu_capacity(env->src_rq, sd)) &&
8969 		    (capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100))
8970 			return 1;
8971 	}
8972 
8973 	if (env->src_grp_type == group_misfit_task)
8974 		return 1;
8975 
8976 	return 0;
8977 }
8978 
8979 static int need_active_balance(struct lb_env *env)
8980 {
8981 	struct sched_domain *sd = env->sd;
8982 
8983 	if (voluntary_active_balance(env))
8984 		return 1;
8985 
8986 	return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
8987 }
8988 
8989 static int active_load_balance_cpu_stop(void *data);
8990 
8991 static int should_we_balance(struct lb_env *env)
8992 {
8993 	struct sched_group *sg = env->sd->groups;
8994 	int cpu, balance_cpu = -1;
8995 
8996 	/*
8997 	 * Ensure the balancing environment is consistent; can happen
8998 	 * when the softirq triggers 'during' hotplug.
8999 	 */
9000 	if (!cpumask_test_cpu(env->dst_cpu, env->cpus))
9001 		return 0;
9002 
9003 	/*
9004 	 * In the newly idle case, we will allow all the CPUs
9005 	 * to do the newly idle load balance.
9006 	 */
9007 	if (env->idle == CPU_NEWLY_IDLE)
9008 		return 1;
9009 
9010 	/* Try to find first idle CPU */
9011 	for_each_cpu_and(cpu, group_balance_mask(sg), env->cpus) {
9012 		if (!idle_cpu(cpu))
9013 			continue;
9014 
9015 		balance_cpu = cpu;
9016 		break;
9017 	}
9018 
9019 	if (balance_cpu == -1)
9020 		balance_cpu = group_balance_cpu(sg);
9021 
9022 	/*
9023 	 * First idle CPU or the first CPU(busiest) in this sched group
9024 	 * is eligible for doing load balancing at this and above domains.
9025 	 */
9026 	return balance_cpu == env->dst_cpu;
9027 }
9028 
9029 /*
9030  * Check this_cpu to ensure it is balanced within domain. Attempt to move
9031  * tasks if there is an imbalance.
9032  */
9033 static int load_balance(int this_cpu, struct rq *this_rq,
9034 			struct sched_domain *sd, enum cpu_idle_type idle,
9035 			int *continue_balancing)
9036 {
9037 	int ld_moved, cur_ld_moved, active_balance = 0;
9038 	struct sched_domain *sd_parent = sd->parent;
9039 	struct sched_group *group;
9040 	struct rq *busiest;
9041 	struct rq_flags rf;
9042 	struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask);
9043 
9044 	struct lb_env env = {
9045 		.sd		= sd,
9046 		.dst_cpu	= this_cpu,
9047 		.dst_rq		= this_rq,
9048 		.dst_grpmask    = sched_group_span(sd->groups),
9049 		.idle		= idle,
9050 		.loop_break	= sched_nr_migrate_break,
9051 		.cpus		= cpus,
9052 		.fbq_type	= all,
9053 		.tasks		= LIST_HEAD_INIT(env.tasks),
9054 	};
9055 
9056 	cpumask_and(cpus, sched_domain_span(sd), cpu_active_mask);
9057 
9058 	schedstat_inc(sd->lb_count[idle]);
9059 
9060 redo:
9061 	if (!should_we_balance(&env)) {
9062 		*continue_balancing = 0;
9063 		goto out_balanced;
9064 	}
9065 
9066 	group = find_busiest_group(&env);
9067 	if (!group) {
9068 		schedstat_inc(sd->lb_nobusyg[idle]);
9069 		goto out_balanced;
9070 	}
9071 
9072 	busiest = find_busiest_queue(&env, group);
9073 	if (!busiest) {
9074 		schedstat_inc(sd->lb_nobusyq[idle]);
9075 		goto out_balanced;
9076 	}
9077 
9078 	BUG_ON(busiest == env.dst_rq);
9079 
9080 	schedstat_add(sd->lb_imbalance[idle], env.imbalance);
9081 
9082 	env.src_cpu = busiest->cpu;
9083 	env.src_rq = busiest;
9084 
9085 	ld_moved = 0;
9086 	if (busiest->nr_running > 1) {
9087 		/*
9088 		 * Attempt to move tasks. If find_busiest_group has found
9089 		 * an imbalance but busiest->nr_running <= 1, the group is
9090 		 * still unbalanced. ld_moved simply stays zero, so it is
9091 		 * correctly treated as an imbalance.
9092 		 */
9093 		env.flags |= LBF_ALL_PINNED;
9094 		env.loop_max  = min(sysctl_sched_nr_migrate, busiest->nr_running);
9095 
9096 more_balance:
9097 		rq_lock_irqsave(busiest, &rf);
9098 		update_rq_clock(busiest);
9099 
9100 		/*
9101 		 * cur_ld_moved - load moved in current iteration
9102 		 * ld_moved     - cumulative load moved across iterations
9103 		 */
9104 		cur_ld_moved = detach_tasks(&env);
9105 
9106 		/*
9107 		 * We've detached some tasks from busiest_rq. Every
9108 		 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely
9109 		 * unlock busiest->lock, and we are able to be sure
9110 		 * that nobody can manipulate the tasks in parallel.
9111 		 * See task_rq_lock() family for the details.
9112 		 */
9113 
9114 		rq_unlock(busiest, &rf);
9115 
9116 		if (cur_ld_moved) {
9117 			attach_tasks(&env);
9118 			ld_moved += cur_ld_moved;
9119 		}
9120 
9121 		local_irq_restore(rf.flags);
9122 
9123 		if (env.flags & LBF_NEED_BREAK) {
9124 			env.flags &= ~LBF_NEED_BREAK;
9125 			goto more_balance;
9126 		}
9127 
9128 		/*
9129 		 * Revisit (affine) tasks on src_cpu that couldn't be moved to
9130 		 * us and move them to an alternate dst_cpu in our sched_group
9131 		 * where they can run. The upper limit on how many times we
9132 		 * iterate on same src_cpu is dependent on number of CPUs in our
9133 		 * sched_group.
9134 		 *
9135 		 * This changes load balance semantics a bit on who can move
9136 		 * load to a given_cpu. In addition to the given_cpu itself
9137 		 * (or a ilb_cpu acting on its behalf where given_cpu is
9138 		 * nohz-idle), we now have balance_cpu in a position to move
9139 		 * load to given_cpu. In rare situations, this may cause
9140 		 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
9141 		 * _independently_ and at _same_ time to move some load to
9142 		 * given_cpu) causing exceess load to be moved to given_cpu.
9143 		 * This however should not happen so much in practice and
9144 		 * moreover subsequent load balance cycles should correct the
9145 		 * excess load moved.
9146 		 */
9147 		if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
9148 
9149 			/* Prevent to re-select dst_cpu via env's CPUs */
9150 			__cpumask_clear_cpu(env.dst_cpu, env.cpus);
9151 
9152 			env.dst_rq	 = cpu_rq(env.new_dst_cpu);
9153 			env.dst_cpu	 = env.new_dst_cpu;
9154 			env.flags	&= ~LBF_DST_PINNED;
9155 			env.loop	 = 0;
9156 			env.loop_break	 = sched_nr_migrate_break;
9157 
9158 			/*
9159 			 * Go back to "more_balance" rather than "redo" since we
9160 			 * need to continue with same src_cpu.
9161 			 */
9162 			goto more_balance;
9163 		}
9164 
9165 		/*
9166 		 * We failed to reach balance because of affinity.
9167 		 */
9168 		if (sd_parent) {
9169 			int *group_imbalance = &sd_parent->groups->sgc->imbalance;
9170 
9171 			if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0)
9172 				*group_imbalance = 1;
9173 		}
9174 
9175 		/* All tasks on this runqueue were pinned by CPU affinity */
9176 		if (unlikely(env.flags & LBF_ALL_PINNED)) {
9177 			__cpumask_clear_cpu(cpu_of(busiest), cpus);
9178 			/*
9179 			 * Attempting to continue load balancing at the current
9180 			 * sched_domain level only makes sense if there are
9181 			 * active CPUs remaining as possible busiest CPUs to
9182 			 * pull load from which are not contained within the
9183 			 * destination group that is receiving any migrated
9184 			 * load.
9185 			 */
9186 			if (!cpumask_subset(cpus, env.dst_grpmask)) {
9187 				env.loop = 0;
9188 				env.loop_break = sched_nr_migrate_break;
9189 				goto redo;
9190 			}
9191 			goto out_all_pinned;
9192 		}
9193 	}
9194 
9195 	if (!ld_moved) {
9196 		schedstat_inc(sd->lb_failed[idle]);
9197 		/*
9198 		 * Increment the failure counter only on periodic balance.
9199 		 * We do not want newidle balance, which can be very
9200 		 * frequent, pollute the failure counter causing
9201 		 * excessive cache_hot migrations and active balances.
9202 		 */
9203 		if (idle != CPU_NEWLY_IDLE)
9204 			sd->nr_balance_failed++;
9205 
9206 		if (need_active_balance(&env)) {
9207 			unsigned long flags;
9208 
9209 			raw_spin_lock_irqsave(&busiest->lock, flags);
9210 
9211 			/*
9212 			 * Don't kick the active_load_balance_cpu_stop,
9213 			 * if the curr task on busiest CPU can't be
9214 			 * moved to this_cpu:
9215 			 */
9216 			if (!cpumask_test_cpu(this_cpu, &busiest->curr->cpus_allowed)) {
9217 				raw_spin_unlock_irqrestore(&busiest->lock,
9218 							    flags);
9219 				env.flags |= LBF_ALL_PINNED;
9220 				goto out_one_pinned;
9221 			}
9222 
9223 			/*
9224 			 * ->active_balance synchronizes accesses to
9225 			 * ->active_balance_work.  Once set, it's cleared
9226 			 * only after active load balance is finished.
9227 			 */
9228 			if (!busiest->active_balance) {
9229 				busiest->active_balance = 1;
9230 				busiest->push_cpu = this_cpu;
9231 				active_balance = 1;
9232 			}
9233 			raw_spin_unlock_irqrestore(&busiest->lock, flags);
9234 
9235 			if (active_balance) {
9236 				stop_one_cpu_nowait(cpu_of(busiest),
9237 					active_load_balance_cpu_stop, busiest,
9238 					&busiest->active_balance_work);
9239 			}
9240 
9241 			/* We've kicked active balancing, force task migration. */
9242 			sd->nr_balance_failed = sd->cache_nice_tries+1;
9243 		}
9244 	} else
9245 		sd->nr_balance_failed = 0;
9246 
9247 	if (likely(!active_balance) || voluntary_active_balance(&env)) {
9248 		/* We were unbalanced, so reset the balancing interval */
9249 		sd->balance_interval = sd->min_interval;
9250 	} else {
9251 		/*
9252 		 * If we've begun active balancing, start to back off. This
9253 		 * case may not be covered by the all_pinned logic if there
9254 		 * is only 1 task on the busy runqueue (because we don't call
9255 		 * detach_tasks).
9256 		 */
9257 		if (sd->balance_interval < sd->max_interval)
9258 			sd->balance_interval *= 2;
9259 	}
9260 
9261 	goto out;
9262 
9263 out_balanced:
9264 	/*
9265 	 * We reach balance although we may have faced some affinity
9266 	 * constraints. Clear the imbalance flag if it was set.
9267 	 */
9268 	if (sd_parent) {
9269 		int *group_imbalance = &sd_parent->groups->sgc->imbalance;
9270 
9271 		if (*group_imbalance)
9272 			*group_imbalance = 0;
9273 	}
9274 
9275 out_all_pinned:
9276 	/*
9277 	 * We reach balance because all tasks are pinned at this level so
9278 	 * we can't migrate them. Let the imbalance flag set so parent level
9279 	 * can try to migrate them.
9280 	 */
9281 	schedstat_inc(sd->lb_balanced[idle]);
9282 
9283 	sd->nr_balance_failed = 0;
9284 
9285 out_one_pinned:
9286 	ld_moved = 0;
9287 
9288 	/*
9289 	 * idle_balance() disregards balance intervals, so we could repeatedly
9290 	 * reach this code, which would lead to balance_interval skyrocketting
9291 	 * in a short amount of time. Skip the balance_interval increase logic
9292 	 * to avoid that.
9293 	 */
9294 	if (env.idle == CPU_NEWLY_IDLE)
9295 		goto out;
9296 
9297 	/* tune up the balancing interval */
9298 	if ((env.flags & LBF_ALL_PINNED &&
9299 	     sd->balance_interval < MAX_PINNED_INTERVAL) ||
9300 	    sd->balance_interval < sd->max_interval)
9301 		sd->balance_interval *= 2;
9302 out:
9303 	return ld_moved;
9304 }
9305 
9306 static inline unsigned long
9307 get_sd_balance_interval(struct sched_domain *sd, int cpu_busy)
9308 {
9309 	unsigned long interval = sd->balance_interval;
9310 
9311 	if (cpu_busy)
9312 		interval *= sd->busy_factor;
9313 
9314 	/* scale ms to jiffies */
9315 	interval = msecs_to_jiffies(interval);
9316 	interval = clamp(interval, 1UL, max_load_balance_interval);
9317 
9318 	return interval;
9319 }
9320 
9321 static inline void
9322 update_next_balance(struct sched_domain *sd, unsigned long *next_balance)
9323 {
9324 	unsigned long interval, next;
9325 
9326 	/* used by idle balance, so cpu_busy = 0 */
9327 	interval = get_sd_balance_interval(sd, 0);
9328 	next = sd->last_balance + interval;
9329 
9330 	if (time_after(*next_balance, next))
9331 		*next_balance = next;
9332 }
9333 
9334 /*
9335  * active_load_balance_cpu_stop is run by the CPU stopper. It pushes
9336  * running tasks off the busiest CPU onto idle CPUs. It requires at
9337  * least 1 task to be running on each physical CPU where possible, and
9338  * avoids physical / logical imbalances.
9339  */
9340 static int active_load_balance_cpu_stop(void *data)
9341 {
9342 	struct rq *busiest_rq = data;
9343 	int busiest_cpu = cpu_of(busiest_rq);
9344 	int target_cpu = busiest_rq->push_cpu;
9345 	struct rq *target_rq = cpu_rq(target_cpu);
9346 	struct sched_domain *sd;
9347 	struct task_struct *p = NULL;
9348 	struct rq_flags rf;
9349 
9350 	rq_lock_irq(busiest_rq, &rf);
9351 	/*
9352 	 * Between queueing the stop-work and running it is a hole in which
9353 	 * CPUs can become inactive. We should not move tasks from or to
9354 	 * inactive CPUs.
9355 	 */
9356 	if (!cpu_active(busiest_cpu) || !cpu_active(target_cpu))
9357 		goto out_unlock;
9358 
9359 	/* Make sure the requested CPU hasn't gone down in the meantime: */
9360 	if (unlikely(busiest_cpu != smp_processor_id() ||
9361 		     !busiest_rq->active_balance))
9362 		goto out_unlock;
9363 
9364 	/* Is there any task to move? */
9365 	if (busiest_rq->nr_running <= 1)
9366 		goto out_unlock;
9367 
9368 	/*
9369 	 * This condition is "impossible", if it occurs
9370 	 * we need to fix it. Originally reported by
9371 	 * Bjorn Helgaas on a 128-CPU setup.
9372 	 */
9373 	BUG_ON(busiest_rq == target_rq);
9374 
9375 	/* Search for an sd spanning us and the target CPU. */
9376 	rcu_read_lock();
9377 	for_each_domain(target_cpu, sd) {
9378 		if ((sd->flags & SD_LOAD_BALANCE) &&
9379 		    cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
9380 				break;
9381 	}
9382 
9383 	if (likely(sd)) {
9384 		struct lb_env env = {
9385 			.sd		= sd,
9386 			.dst_cpu	= target_cpu,
9387 			.dst_rq		= target_rq,
9388 			.src_cpu	= busiest_rq->cpu,
9389 			.src_rq		= busiest_rq,
9390 			.idle		= CPU_IDLE,
9391 			/*
9392 			 * can_migrate_task() doesn't need to compute new_dst_cpu
9393 			 * for active balancing. Since we have CPU_IDLE, but no
9394 			 * @dst_grpmask we need to make that test go away with lying
9395 			 * about DST_PINNED.
9396 			 */
9397 			.flags		= LBF_DST_PINNED,
9398 		};
9399 
9400 		schedstat_inc(sd->alb_count);
9401 		update_rq_clock(busiest_rq);
9402 
9403 		p = detach_one_task(&env);
9404 		if (p) {
9405 			schedstat_inc(sd->alb_pushed);
9406 			/* Active balancing done, reset the failure counter. */
9407 			sd->nr_balance_failed = 0;
9408 		} else {
9409 			schedstat_inc(sd->alb_failed);
9410 		}
9411 	}
9412 	rcu_read_unlock();
9413 out_unlock:
9414 	busiest_rq->active_balance = 0;
9415 	rq_unlock(busiest_rq, &rf);
9416 
9417 	if (p)
9418 		attach_one_task(target_rq, p);
9419 
9420 	local_irq_enable();
9421 
9422 	return 0;
9423 }
9424 
9425 static DEFINE_SPINLOCK(balancing);
9426 
9427 /*
9428  * Scale the max load_balance interval with the number of CPUs in the system.
9429  * This trades load-balance latency on larger machines for less cross talk.
9430  */
9431 void update_max_interval(void)
9432 {
9433 	max_load_balance_interval = HZ*num_online_cpus()/10;
9434 }
9435 
9436 /*
9437  * It checks each scheduling domain to see if it is due to be balanced,
9438  * and initiates a balancing operation if so.
9439  *
9440  * Balancing parameters are set up in init_sched_domains.
9441  */
9442 static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle)
9443 {
9444 	int continue_balancing = 1;
9445 	int cpu = rq->cpu;
9446 	unsigned long interval;
9447 	struct sched_domain *sd;
9448 	/* Earliest time when we have to do rebalance again */
9449 	unsigned long next_balance = jiffies + 60*HZ;
9450 	int update_next_balance = 0;
9451 	int need_serialize, need_decay = 0;
9452 	u64 max_cost = 0;
9453 
9454 	rcu_read_lock();
9455 	for_each_domain(cpu, sd) {
9456 		/*
9457 		 * Decay the newidle max times here because this is a regular
9458 		 * visit to all the domains. Decay ~1% per second.
9459 		 */
9460 		if (time_after(jiffies, sd->next_decay_max_lb_cost)) {
9461 			sd->max_newidle_lb_cost =
9462 				(sd->max_newidle_lb_cost * 253) / 256;
9463 			sd->next_decay_max_lb_cost = jiffies + HZ;
9464 			need_decay = 1;
9465 		}
9466 		max_cost += sd->max_newidle_lb_cost;
9467 
9468 		if (!(sd->flags & SD_LOAD_BALANCE))
9469 			continue;
9470 
9471 		/*
9472 		 * Stop the load balance at this level. There is another
9473 		 * CPU in our sched group which is doing load balancing more
9474 		 * actively.
9475 		 */
9476 		if (!continue_balancing) {
9477 			if (need_decay)
9478 				continue;
9479 			break;
9480 		}
9481 
9482 		interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
9483 
9484 		need_serialize = sd->flags & SD_SERIALIZE;
9485 		if (need_serialize) {
9486 			if (!spin_trylock(&balancing))
9487 				goto out;
9488 		}
9489 
9490 		if (time_after_eq(jiffies, sd->last_balance + interval)) {
9491 			if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
9492 				/*
9493 				 * The LBF_DST_PINNED logic could have changed
9494 				 * env->dst_cpu, so we can't know our idle
9495 				 * state even if we migrated tasks. Update it.
9496 				 */
9497 				idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
9498 			}
9499 			sd->last_balance = jiffies;
9500 			interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
9501 		}
9502 		if (need_serialize)
9503 			spin_unlock(&balancing);
9504 out:
9505 		if (time_after(next_balance, sd->last_balance + interval)) {
9506 			next_balance = sd->last_balance + interval;
9507 			update_next_balance = 1;
9508 		}
9509 	}
9510 	if (need_decay) {
9511 		/*
9512 		 * Ensure the rq-wide value also decays but keep it at a
9513 		 * reasonable floor to avoid funnies with rq->avg_idle.
9514 		 */
9515 		rq->max_idle_balance_cost =
9516 			max((u64)sysctl_sched_migration_cost, max_cost);
9517 	}
9518 	rcu_read_unlock();
9519 
9520 	/*
9521 	 * next_balance will be updated only when there is a need.
9522 	 * When the cpu is attached to null domain for ex, it will not be
9523 	 * updated.
9524 	 */
9525 	if (likely(update_next_balance)) {
9526 		rq->next_balance = next_balance;
9527 
9528 #ifdef CONFIG_NO_HZ_COMMON
9529 		/*
9530 		 * If this CPU has been elected to perform the nohz idle
9531 		 * balance. Other idle CPUs have already rebalanced with
9532 		 * nohz_idle_balance() and nohz.next_balance has been
9533 		 * updated accordingly. This CPU is now running the idle load
9534 		 * balance for itself and we need to update the
9535 		 * nohz.next_balance accordingly.
9536 		 */
9537 		if ((idle == CPU_IDLE) && time_after(nohz.next_balance, rq->next_balance))
9538 			nohz.next_balance = rq->next_balance;
9539 #endif
9540 	}
9541 }
9542 
9543 static inline int on_null_domain(struct rq *rq)
9544 {
9545 	return unlikely(!rcu_dereference_sched(rq->sd));
9546 }
9547 
9548 #ifdef CONFIG_NO_HZ_COMMON
9549 /*
9550  * idle load balancing details
9551  * - When one of the busy CPUs notice that there may be an idle rebalancing
9552  *   needed, they will kick the idle load balancer, which then does idle
9553  *   load balancing for all the idle CPUs.
9554  */
9555 
9556 static inline int find_new_ilb(void)
9557 {
9558 	int ilb = cpumask_first(nohz.idle_cpus_mask);
9559 
9560 	if (ilb < nr_cpu_ids && idle_cpu(ilb))
9561 		return ilb;
9562 
9563 	return nr_cpu_ids;
9564 }
9565 
9566 /*
9567  * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
9568  * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
9569  * CPU (if there is one).
9570  */
9571 static void kick_ilb(unsigned int flags)
9572 {
9573 	int ilb_cpu;
9574 
9575 	nohz.next_balance++;
9576 
9577 	ilb_cpu = find_new_ilb();
9578 
9579 	if (ilb_cpu >= nr_cpu_ids)
9580 		return;
9581 
9582 	flags = atomic_fetch_or(flags, nohz_flags(ilb_cpu));
9583 	if (flags & NOHZ_KICK_MASK)
9584 		return;
9585 
9586 	/*
9587 	 * Use smp_send_reschedule() instead of resched_cpu().
9588 	 * This way we generate a sched IPI on the target CPU which
9589 	 * is idle. And the softirq performing nohz idle load balance
9590 	 * will be run before returning from the IPI.
9591 	 */
9592 	smp_send_reschedule(ilb_cpu);
9593 }
9594 
9595 /*
9596  * Current decision point for kicking the idle load balancer in the presence
9597  * of idle CPUs in the system.
9598  */
9599 static void nohz_balancer_kick(struct rq *rq)
9600 {
9601 	unsigned long now = jiffies;
9602 	struct sched_domain_shared *sds;
9603 	struct sched_domain *sd;
9604 	int nr_busy, i, cpu = rq->cpu;
9605 	unsigned int flags = 0;
9606 
9607 	if (unlikely(rq->idle_balance))
9608 		return;
9609 
9610 	/*
9611 	 * We may be recently in ticked or tickless idle mode. At the first
9612 	 * busy tick after returning from idle, we will update the busy stats.
9613 	 */
9614 	nohz_balance_exit_idle(rq);
9615 
9616 	/*
9617 	 * None are in tickless mode and hence no need for NOHZ idle load
9618 	 * balancing.
9619 	 */
9620 	if (likely(!atomic_read(&nohz.nr_cpus)))
9621 		return;
9622 
9623 	if (READ_ONCE(nohz.has_blocked) &&
9624 	    time_after(now, READ_ONCE(nohz.next_blocked)))
9625 		flags = NOHZ_STATS_KICK;
9626 
9627 	if (time_before(now, nohz.next_balance))
9628 		goto out;
9629 
9630 	if (rq->nr_running >= 2) {
9631 		flags = NOHZ_KICK_MASK;
9632 		goto out;
9633 	}
9634 
9635 	rcu_read_lock();
9636 
9637 	sd = rcu_dereference(rq->sd);
9638 	if (sd) {
9639 		/*
9640 		 * If there's a CFS task and the current CPU has reduced
9641 		 * capacity; kick the ILB to see if there's a better CPU to run
9642 		 * on.
9643 		 */
9644 		if (rq->cfs.h_nr_running >= 1 && check_cpu_capacity(rq, sd)) {
9645 			flags = NOHZ_KICK_MASK;
9646 			goto unlock;
9647 		}
9648 	}
9649 
9650 	sd = rcu_dereference(per_cpu(sd_asym_packing, cpu));
9651 	if (sd) {
9652 		/*
9653 		 * When ASYM_PACKING; see if there's a more preferred CPU
9654 		 * currently idle; in which case, kick the ILB to move tasks
9655 		 * around.
9656 		 */
9657 		for_each_cpu_and(i, sched_domain_span(sd), nohz.idle_cpus_mask) {
9658 			if (sched_asym_prefer(i, cpu)) {
9659 				flags = NOHZ_KICK_MASK;
9660 				goto unlock;
9661 			}
9662 		}
9663 	}
9664 
9665 	sd = rcu_dereference(per_cpu(sd_asym_cpucapacity, cpu));
9666 	if (sd) {
9667 		/*
9668 		 * When ASYM_CPUCAPACITY; see if there's a higher capacity CPU
9669 		 * to run the misfit task on.
9670 		 */
9671 		if (check_misfit_status(rq, sd)) {
9672 			flags = NOHZ_KICK_MASK;
9673 			goto unlock;
9674 		}
9675 
9676 		/*
9677 		 * For asymmetric systems, we do not want to nicely balance
9678 		 * cache use, instead we want to embrace asymmetry and only
9679 		 * ensure tasks have enough CPU capacity.
9680 		 *
9681 		 * Skip the LLC logic because it's not relevant in that case.
9682 		 */
9683 		goto unlock;
9684 	}
9685 
9686 	sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
9687 	if (sds) {
9688 		/*
9689 		 * If there is an imbalance between LLC domains (IOW we could
9690 		 * increase the overall cache use), we need some less-loaded LLC
9691 		 * domain to pull some load. Likewise, we may need to spread
9692 		 * load within the current LLC domain (e.g. packed SMT cores but
9693 		 * other CPUs are idle). We can't really know from here how busy
9694 		 * the others are - so just get a nohz balance going if it looks
9695 		 * like this LLC domain has tasks we could move.
9696 		 */
9697 		nr_busy = atomic_read(&sds->nr_busy_cpus);
9698 		if (nr_busy > 1) {
9699 			flags = NOHZ_KICK_MASK;
9700 			goto unlock;
9701 		}
9702 	}
9703 unlock:
9704 	rcu_read_unlock();
9705 out:
9706 	if (flags)
9707 		kick_ilb(flags);
9708 }
9709 
9710 static void set_cpu_sd_state_busy(int cpu)
9711 {
9712 	struct sched_domain *sd;
9713 
9714 	rcu_read_lock();
9715 	sd = rcu_dereference(per_cpu(sd_llc, cpu));
9716 
9717 	if (!sd || !sd->nohz_idle)
9718 		goto unlock;
9719 	sd->nohz_idle = 0;
9720 
9721 	atomic_inc(&sd->shared->nr_busy_cpus);
9722 unlock:
9723 	rcu_read_unlock();
9724 }
9725 
9726 void nohz_balance_exit_idle(struct rq *rq)
9727 {
9728 	SCHED_WARN_ON(rq != this_rq());
9729 
9730 	if (likely(!rq->nohz_tick_stopped))
9731 		return;
9732 
9733 	rq->nohz_tick_stopped = 0;
9734 	cpumask_clear_cpu(rq->cpu, nohz.idle_cpus_mask);
9735 	atomic_dec(&nohz.nr_cpus);
9736 
9737 	set_cpu_sd_state_busy(rq->cpu);
9738 }
9739 
9740 static void set_cpu_sd_state_idle(int cpu)
9741 {
9742 	struct sched_domain *sd;
9743 
9744 	rcu_read_lock();
9745 	sd = rcu_dereference(per_cpu(sd_llc, cpu));
9746 
9747 	if (!sd || sd->nohz_idle)
9748 		goto unlock;
9749 	sd->nohz_idle = 1;
9750 
9751 	atomic_dec(&sd->shared->nr_busy_cpus);
9752 unlock:
9753 	rcu_read_unlock();
9754 }
9755 
9756 /*
9757  * This routine will record that the CPU is going idle with tick stopped.
9758  * This info will be used in performing idle load balancing in the future.
9759  */
9760 void nohz_balance_enter_idle(int cpu)
9761 {
9762 	struct rq *rq = cpu_rq(cpu);
9763 
9764 	SCHED_WARN_ON(cpu != smp_processor_id());
9765 
9766 	/* If this CPU is going down, then nothing needs to be done: */
9767 	if (!cpu_active(cpu))
9768 		return;
9769 
9770 	/* Spare idle load balancing on CPUs that don't want to be disturbed: */
9771 	if (!housekeeping_cpu(cpu, HK_FLAG_SCHED))
9772 		return;
9773 
9774 	/*
9775 	 * Can be set safely without rq->lock held
9776 	 * If a clear happens, it will have evaluated last additions because
9777 	 * rq->lock is held during the check and the clear
9778 	 */
9779 	rq->has_blocked_load = 1;
9780 
9781 	/*
9782 	 * The tick is still stopped but load could have been added in the
9783 	 * meantime. We set the nohz.has_blocked flag to trig a check of the
9784 	 * *_avg. The CPU is already part of nohz.idle_cpus_mask so the clear
9785 	 * of nohz.has_blocked can only happen after checking the new load
9786 	 */
9787 	if (rq->nohz_tick_stopped)
9788 		goto out;
9789 
9790 	/* If we're a completely isolated CPU, we don't play: */
9791 	if (on_null_domain(rq))
9792 		return;
9793 
9794 	rq->nohz_tick_stopped = 1;
9795 
9796 	cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
9797 	atomic_inc(&nohz.nr_cpus);
9798 
9799 	/*
9800 	 * Ensures that if nohz_idle_balance() fails to observe our
9801 	 * @idle_cpus_mask store, it must observe the @has_blocked
9802 	 * store.
9803 	 */
9804 	smp_mb__after_atomic();
9805 
9806 	set_cpu_sd_state_idle(cpu);
9807 
9808 out:
9809 	/*
9810 	 * Each time a cpu enter idle, we assume that it has blocked load and
9811 	 * enable the periodic update of the load of idle cpus
9812 	 */
9813 	WRITE_ONCE(nohz.has_blocked, 1);
9814 }
9815 
9816 /*
9817  * Internal function that runs load balance for all idle cpus. The load balance
9818  * can be a simple update of blocked load or a complete load balance with
9819  * tasks movement depending of flags.
9820  * The function returns false if the loop has stopped before running
9821  * through all idle CPUs.
9822  */
9823 static bool _nohz_idle_balance(struct rq *this_rq, unsigned int flags,
9824 			       enum cpu_idle_type idle)
9825 {
9826 	/* Earliest time when we have to do rebalance again */
9827 	unsigned long now = jiffies;
9828 	unsigned long next_balance = now + 60*HZ;
9829 	bool has_blocked_load = false;
9830 	int update_next_balance = 0;
9831 	int this_cpu = this_rq->cpu;
9832 	int balance_cpu;
9833 	int ret = false;
9834 	struct rq *rq;
9835 
9836 	SCHED_WARN_ON((flags & NOHZ_KICK_MASK) == NOHZ_BALANCE_KICK);
9837 
9838 	/*
9839 	 * We assume there will be no idle load after this update and clear
9840 	 * the has_blocked flag. If a cpu enters idle in the mean time, it will
9841 	 * set the has_blocked flag and trig another update of idle load.
9842 	 * Because a cpu that becomes idle, is added to idle_cpus_mask before
9843 	 * setting the flag, we are sure to not clear the state and not
9844 	 * check the load of an idle cpu.
9845 	 */
9846 	WRITE_ONCE(nohz.has_blocked, 0);
9847 
9848 	/*
9849 	 * Ensures that if we miss the CPU, we must see the has_blocked
9850 	 * store from nohz_balance_enter_idle().
9851 	 */
9852 	smp_mb();
9853 
9854 	for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
9855 		if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
9856 			continue;
9857 
9858 		/*
9859 		 * If this CPU gets work to do, stop the load balancing
9860 		 * work being done for other CPUs. Next load
9861 		 * balancing owner will pick it up.
9862 		 */
9863 		if (need_resched()) {
9864 			has_blocked_load = true;
9865 			goto abort;
9866 		}
9867 
9868 		rq = cpu_rq(balance_cpu);
9869 
9870 		has_blocked_load |= update_nohz_stats(rq, true);
9871 
9872 		/*
9873 		 * If time for next balance is due,
9874 		 * do the balance.
9875 		 */
9876 		if (time_after_eq(jiffies, rq->next_balance)) {
9877 			struct rq_flags rf;
9878 
9879 			rq_lock_irqsave(rq, &rf);
9880 			update_rq_clock(rq);
9881 			cpu_load_update_idle(rq);
9882 			rq_unlock_irqrestore(rq, &rf);
9883 
9884 			if (flags & NOHZ_BALANCE_KICK)
9885 				rebalance_domains(rq, CPU_IDLE);
9886 		}
9887 
9888 		if (time_after(next_balance, rq->next_balance)) {
9889 			next_balance = rq->next_balance;
9890 			update_next_balance = 1;
9891 		}
9892 	}
9893 
9894 	/* Newly idle CPU doesn't need an update */
9895 	if (idle != CPU_NEWLY_IDLE) {
9896 		update_blocked_averages(this_cpu);
9897 		has_blocked_load |= this_rq->has_blocked_load;
9898 	}
9899 
9900 	if (flags & NOHZ_BALANCE_KICK)
9901 		rebalance_domains(this_rq, CPU_IDLE);
9902 
9903 	WRITE_ONCE(nohz.next_blocked,
9904 		now + msecs_to_jiffies(LOAD_AVG_PERIOD));
9905 
9906 	/* The full idle balance loop has been done */
9907 	ret = true;
9908 
9909 abort:
9910 	/* There is still blocked load, enable periodic update */
9911 	if (has_blocked_load)
9912 		WRITE_ONCE(nohz.has_blocked, 1);
9913 
9914 	/*
9915 	 * next_balance will be updated only when there is a need.
9916 	 * When the CPU is attached to null domain for ex, it will not be
9917 	 * updated.
9918 	 */
9919 	if (likely(update_next_balance))
9920 		nohz.next_balance = next_balance;
9921 
9922 	return ret;
9923 }
9924 
9925 /*
9926  * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
9927  * rebalancing for all the cpus for whom scheduler ticks are stopped.
9928  */
9929 static bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
9930 {
9931 	int this_cpu = this_rq->cpu;
9932 	unsigned int flags;
9933 
9934 	if (!(atomic_read(nohz_flags(this_cpu)) & NOHZ_KICK_MASK))
9935 		return false;
9936 
9937 	if (idle != CPU_IDLE) {
9938 		atomic_andnot(NOHZ_KICK_MASK, nohz_flags(this_cpu));
9939 		return false;
9940 	}
9941 
9942 	/* could be _relaxed() */
9943 	flags = atomic_fetch_andnot(NOHZ_KICK_MASK, nohz_flags(this_cpu));
9944 	if (!(flags & NOHZ_KICK_MASK))
9945 		return false;
9946 
9947 	_nohz_idle_balance(this_rq, flags, idle);
9948 
9949 	return true;
9950 }
9951 
9952 static void nohz_newidle_balance(struct rq *this_rq)
9953 {
9954 	int this_cpu = this_rq->cpu;
9955 
9956 	/*
9957 	 * This CPU doesn't want to be disturbed by scheduler
9958 	 * housekeeping
9959 	 */
9960 	if (!housekeeping_cpu(this_cpu, HK_FLAG_SCHED))
9961 		return;
9962 
9963 	/* Will wake up very soon. No time for doing anything else*/
9964 	if (this_rq->avg_idle < sysctl_sched_migration_cost)
9965 		return;
9966 
9967 	/* Don't need to update blocked load of idle CPUs*/
9968 	if (!READ_ONCE(nohz.has_blocked) ||
9969 	    time_before(jiffies, READ_ONCE(nohz.next_blocked)))
9970 		return;
9971 
9972 	raw_spin_unlock(&this_rq->lock);
9973 	/*
9974 	 * This CPU is going to be idle and blocked load of idle CPUs
9975 	 * need to be updated. Run the ilb locally as it is a good
9976 	 * candidate for ilb instead of waking up another idle CPU.
9977 	 * Kick an normal ilb if we failed to do the update.
9978 	 */
9979 	if (!_nohz_idle_balance(this_rq, NOHZ_STATS_KICK, CPU_NEWLY_IDLE))
9980 		kick_ilb(NOHZ_STATS_KICK);
9981 	raw_spin_lock(&this_rq->lock);
9982 }
9983 
9984 #else /* !CONFIG_NO_HZ_COMMON */
9985 static inline void nohz_balancer_kick(struct rq *rq) { }
9986 
9987 static inline bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
9988 {
9989 	return false;
9990 }
9991 
9992 static inline void nohz_newidle_balance(struct rq *this_rq) { }
9993 #endif /* CONFIG_NO_HZ_COMMON */
9994 
9995 /*
9996  * idle_balance is called by schedule() if this_cpu is about to become
9997  * idle. Attempts to pull tasks from other CPUs.
9998  */
9999 static int idle_balance(struct rq *this_rq, struct rq_flags *rf)
10000 {
10001 	unsigned long next_balance = jiffies + HZ;
10002 	int this_cpu = this_rq->cpu;
10003 	struct sched_domain *sd;
10004 	int pulled_task = 0;
10005 	u64 curr_cost = 0;
10006 
10007 	/*
10008 	 * We must set idle_stamp _before_ calling idle_balance(), such that we
10009 	 * measure the duration of idle_balance() as idle time.
10010 	 */
10011 	this_rq->idle_stamp = rq_clock(this_rq);
10012 
10013 	/*
10014 	 * Do not pull tasks towards !active CPUs...
10015 	 */
10016 	if (!cpu_active(this_cpu))
10017 		return 0;
10018 
10019 	/*
10020 	 * This is OK, because current is on_cpu, which avoids it being picked
10021 	 * for load-balance and preemption/IRQs are still disabled avoiding
10022 	 * further scheduler activity on it and we're being very careful to
10023 	 * re-start the picking loop.
10024 	 */
10025 	rq_unpin_lock(this_rq, rf);
10026 
10027 	if (this_rq->avg_idle < sysctl_sched_migration_cost ||
10028 	    !READ_ONCE(this_rq->rd->overload)) {
10029 
10030 		rcu_read_lock();
10031 		sd = rcu_dereference_check_sched_domain(this_rq->sd);
10032 		if (sd)
10033 			update_next_balance(sd, &next_balance);
10034 		rcu_read_unlock();
10035 
10036 		nohz_newidle_balance(this_rq);
10037 
10038 		goto out;
10039 	}
10040 
10041 	raw_spin_unlock(&this_rq->lock);
10042 
10043 	update_blocked_averages(this_cpu);
10044 	rcu_read_lock();
10045 	for_each_domain(this_cpu, sd) {
10046 		int continue_balancing = 1;
10047 		u64 t0, domain_cost;
10048 
10049 		if (!(sd->flags & SD_LOAD_BALANCE))
10050 			continue;
10051 
10052 		if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) {
10053 			update_next_balance(sd, &next_balance);
10054 			break;
10055 		}
10056 
10057 		if (sd->flags & SD_BALANCE_NEWIDLE) {
10058 			t0 = sched_clock_cpu(this_cpu);
10059 
10060 			pulled_task = load_balance(this_cpu, this_rq,
10061 						   sd, CPU_NEWLY_IDLE,
10062 						   &continue_balancing);
10063 
10064 			domain_cost = sched_clock_cpu(this_cpu) - t0;
10065 			if (domain_cost > sd->max_newidle_lb_cost)
10066 				sd->max_newidle_lb_cost = domain_cost;
10067 
10068 			curr_cost += domain_cost;
10069 		}
10070 
10071 		update_next_balance(sd, &next_balance);
10072 
10073 		/*
10074 		 * Stop searching for tasks to pull if there are
10075 		 * now runnable tasks on this rq.
10076 		 */
10077 		if (pulled_task || this_rq->nr_running > 0)
10078 			break;
10079 	}
10080 	rcu_read_unlock();
10081 
10082 	raw_spin_lock(&this_rq->lock);
10083 
10084 	if (curr_cost > this_rq->max_idle_balance_cost)
10085 		this_rq->max_idle_balance_cost = curr_cost;
10086 
10087 out:
10088 	/*
10089 	 * While browsing the domains, we released the rq lock, a task could
10090 	 * have been enqueued in the meantime. Since we're not going idle,
10091 	 * pretend we pulled a task.
10092 	 */
10093 	if (this_rq->cfs.h_nr_running && !pulled_task)
10094 		pulled_task = 1;
10095 
10096 	/* Move the next balance forward */
10097 	if (time_after(this_rq->next_balance, next_balance))
10098 		this_rq->next_balance = next_balance;
10099 
10100 	/* Is there a task of a high priority class? */
10101 	if (this_rq->nr_running != this_rq->cfs.h_nr_running)
10102 		pulled_task = -1;
10103 
10104 	if (pulled_task)
10105 		this_rq->idle_stamp = 0;
10106 
10107 	rq_repin_lock(this_rq, rf);
10108 
10109 	return pulled_task;
10110 }
10111 
10112 /*
10113  * run_rebalance_domains is triggered when needed from the scheduler tick.
10114  * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
10115  */
10116 static __latent_entropy void run_rebalance_domains(struct softirq_action *h)
10117 {
10118 	struct rq *this_rq = this_rq();
10119 	enum cpu_idle_type idle = this_rq->idle_balance ?
10120 						CPU_IDLE : CPU_NOT_IDLE;
10121 
10122 	/*
10123 	 * If this CPU has a pending nohz_balance_kick, then do the
10124 	 * balancing on behalf of the other idle CPUs whose ticks are
10125 	 * stopped. Do nohz_idle_balance *before* rebalance_domains to
10126 	 * give the idle CPUs a chance to load balance. Else we may
10127 	 * load balance only within the local sched_domain hierarchy
10128 	 * and abort nohz_idle_balance altogether if we pull some load.
10129 	 */
10130 	if (nohz_idle_balance(this_rq, idle))
10131 		return;
10132 
10133 	/* normal load balance */
10134 	update_blocked_averages(this_rq->cpu);
10135 	rebalance_domains(this_rq, idle);
10136 }
10137 
10138 /*
10139  * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
10140  */
10141 void trigger_load_balance(struct rq *rq)
10142 {
10143 	/* Don't need to rebalance while attached to NULL domain */
10144 	if (unlikely(on_null_domain(rq)))
10145 		return;
10146 
10147 	if (time_after_eq(jiffies, rq->next_balance))
10148 		raise_softirq(SCHED_SOFTIRQ);
10149 
10150 	nohz_balancer_kick(rq);
10151 }
10152 
10153 static void rq_online_fair(struct rq *rq)
10154 {
10155 	update_sysctl();
10156 
10157 	update_runtime_enabled(rq);
10158 }
10159 
10160 static void rq_offline_fair(struct rq *rq)
10161 {
10162 	update_sysctl();
10163 
10164 	/* Ensure any throttled groups are reachable by pick_next_task */
10165 	unthrottle_offline_cfs_rqs(rq);
10166 }
10167 
10168 #endif /* CONFIG_SMP */
10169 
10170 /*
10171  * scheduler tick hitting a task of our scheduling class.
10172  *
10173  * NOTE: This function can be called remotely by the tick offload that
10174  * goes along full dynticks. Therefore no local assumption can be made
10175  * and everything must be accessed through the @rq and @curr passed in
10176  * parameters.
10177  */
10178 static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
10179 {
10180 	struct cfs_rq *cfs_rq;
10181 	struct sched_entity *se = &curr->se;
10182 
10183 	for_each_sched_entity(se) {
10184 		cfs_rq = cfs_rq_of(se);
10185 		entity_tick(cfs_rq, se, queued);
10186 	}
10187 
10188 	if (static_branch_unlikely(&sched_numa_balancing))
10189 		task_tick_numa(rq, curr);
10190 
10191 	update_misfit_status(curr, rq);
10192 	update_overutilized_status(task_rq(curr));
10193 }
10194 
10195 /*
10196  * called on fork with the child task as argument from the parent's context
10197  *  - child not yet on the tasklist
10198  *  - preemption disabled
10199  */
10200 static void task_fork_fair(struct task_struct *p)
10201 {
10202 	struct cfs_rq *cfs_rq;
10203 	struct sched_entity *se = &p->se, *curr;
10204 	struct rq *rq = this_rq();
10205 	struct rq_flags rf;
10206 
10207 	rq_lock(rq, &rf);
10208 	update_rq_clock(rq);
10209 
10210 	cfs_rq = task_cfs_rq(current);
10211 	curr = cfs_rq->curr;
10212 	if (curr) {
10213 		update_curr(cfs_rq);
10214 		se->vruntime = curr->vruntime;
10215 	}
10216 	place_entity(cfs_rq, se, 1);
10217 
10218 	if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
10219 		/*
10220 		 * Upon rescheduling, sched_class::put_prev_task() will place
10221 		 * 'current' within the tree based on its new key value.
10222 		 */
10223 		swap(curr->vruntime, se->vruntime);
10224 		resched_curr(rq);
10225 	}
10226 
10227 	se->vruntime -= cfs_rq->min_vruntime;
10228 	rq_unlock(rq, &rf);
10229 }
10230 
10231 /*
10232  * Priority of the task has changed. Check to see if we preempt
10233  * the current task.
10234  */
10235 static void
10236 prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
10237 {
10238 	if (!task_on_rq_queued(p))
10239 		return;
10240 
10241 	/*
10242 	 * Reschedule if we are currently running on this runqueue and
10243 	 * our priority decreased, or if we are not currently running on
10244 	 * this runqueue and our priority is higher than the current's
10245 	 */
10246 	if (rq->curr == p) {
10247 		if (p->prio > oldprio)
10248 			resched_curr(rq);
10249 	} else
10250 		check_preempt_curr(rq, p, 0);
10251 }
10252 
10253 static inline bool vruntime_normalized(struct task_struct *p)
10254 {
10255 	struct sched_entity *se = &p->se;
10256 
10257 	/*
10258 	 * In both the TASK_ON_RQ_QUEUED and TASK_ON_RQ_MIGRATING cases,
10259 	 * the dequeue_entity(.flags=0) will already have normalized the
10260 	 * vruntime.
10261 	 */
10262 	if (p->on_rq)
10263 		return true;
10264 
10265 	/*
10266 	 * When !on_rq, vruntime of the task has usually NOT been normalized.
10267 	 * But there are some cases where it has already been normalized:
10268 	 *
10269 	 * - A forked child which is waiting for being woken up by
10270 	 *   wake_up_new_task().
10271 	 * - A task which has been woken up by try_to_wake_up() and
10272 	 *   waiting for actually being woken up by sched_ttwu_pending().
10273 	 */
10274 	if (!se->sum_exec_runtime ||
10275 	    (p->state == TASK_WAKING && p->sched_remote_wakeup))
10276 		return true;
10277 
10278 	return false;
10279 }
10280 
10281 #ifdef CONFIG_FAIR_GROUP_SCHED
10282 /*
10283  * Propagate the changes of the sched_entity across the tg tree to make it
10284  * visible to the root
10285  */
10286 static void propagate_entity_cfs_rq(struct sched_entity *se)
10287 {
10288 	struct cfs_rq *cfs_rq;
10289 
10290 	/* Start to propagate at parent */
10291 	se = se->parent;
10292 
10293 	for_each_sched_entity(se) {
10294 		cfs_rq = cfs_rq_of(se);
10295 
10296 		if (cfs_rq_throttled(cfs_rq))
10297 			break;
10298 
10299 		update_load_avg(cfs_rq, se, UPDATE_TG);
10300 	}
10301 }
10302 #else
10303 static void propagate_entity_cfs_rq(struct sched_entity *se) { }
10304 #endif
10305 
10306 static void detach_entity_cfs_rq(struct sched_entity *se)
10307 {
10308 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
10309 
10310 	/* Catch up with the cfs_rq and remove our load when we leave */
10311 	update_load_avg(cfs_rq, se, 0);
10312 	detach_entity_load_avg(cfs_rq, se);
10313 	update_tg_load_avg(cfs_rq, false);
10314 	propagate_entity_cfs_rq(se);
10315 }
10316 
10317 static void attach_entity_cfs_rq(struct sched_entity *se)
10318 {
10319 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
10320 
10321 #ifdef CONFIG_FAIR_GROUP_SCHED
10322 	/*
10323 	 * Since the real-depth could have been changed (only FAIR
10324 	 * class maintain depth value), reset depth properly.
10325 	 */
10326 	se->depth = se->parent ? se->parent->depth + 1 : 0;
10327 #endif
10328 
10329 	/* Synchronize entity with its cfs_rq */
10330 	update_load_avg(cfs_rq, se, sched_feat(ATTACH_AGE_LOAD) ? 0 : SKIP_AGE_LOAD);
10331 	attach_entity_load_avg(cfs_rq, se, 0);
10332 	update_tg_load_avg(cfs_rq, false);
10333 	propagate_entity_cfs_rq(se);
10334 }
10335 
10336 static void detach_task_cfs_rq(struct task_struct *p)
10337 {
10338 	struct sched_entity *se = &p->se;
10339 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
10340 
10341 	if (!vruntime_normalized(p)) {
10342 		/*
10343 		 * Fix up our vruntime so that the current sleep doesn't
10344 		 * cause 'unlimited' sleep bonus.
10345 		 */
10346 		place_entity(cfs_rq, se, 0);
10347 		se->vruntime -= cfs_rq->min_vruntime;
10348 	}
10349 
10350 	detach_entity_cfs_rq(se);
10351 }
10352 
10353 static void attach_task_cfs_rq(struct task_struct *p)
10354 {
10355 	struct sched_entity *se = &p->se;
10356 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
10357 
10358 	attach_entity_cfs_rq(se);
10359 
10360 	if (!vruntime_normalized(p))
10361 		se->vruntime += cfs_rq->min_vruntime;
10362 }
10363 
10364 static void switched_from_fair(struct rq *rq, struct task_struct *p)
10365 {
10366 	detach_task_cfs_rq(p);
10367 }
10368 
10369 static void switched_to_fair(struct rq *rq, struct task_struct *p)
10370 {
10371 	attach_task_cfs_rq(p);
10372 
10373 	if (task_on_rq_queued(p)) {
10374 		/*
10375 		 * We were most likely switched from sched_rt, so
10376 		 * kick off the schedule if running, otherwise just see
10377 		 * if we can still preempt the current task.
10378 		 */
10379 		if (rq->curr == p)
10380 			resched_curr(rq);
10381 		else
10382 			check_preempt_curr(rq, p, 0);
10383 	}
10384 }
10385 
10386 /* Account for a task changing its policy or group.
10387  *
10388  * This routine is mostly called to set cfs_rq->curr field when a task
10389  * migrates between groups/classes.
10390  */
10391 static void set_curr_task_fair(struct rq *rq)
10392 {
10393 	struct sched_entity *se = &rq->curr->se;
10394 
10395 	for_each_sched_entity(se) {
10396 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
10397 
10398 		set_next_entity(cfs_rq, se);
10399 		/* ensure bandwidth has been allocated on our new cfs_rq */
10400 		account_cfs_rq_runtime(cfs_rq, 0);
10401 	}
10402 }
10403 
10404 void init_cfs_rq(struct cfs_rq *cfs_rq)
10405 {
10406 	cfs_rq->tasks_timeline = RB_ROOT_CACHED;
10407 	cfs_rq->min_vruntime = (u64)(-(1LL << 20));
10408 #ifndef CONFIG_64BIT
10409 	cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
10410 #endif
10411 #ifdef CONFIG_SMP
10412 	raw_spin_lock_init(&cfs_rq->removed.lock);
10413 #endif
10414 }
10415 
10416 #ifdef CONFIG_FAIR_GROUP_SCHED
10417 static void task_set_group_fair(struct task_struct *p)
10418 {
10419 	struct sched_entity *se = &p->se;
10420 
10421 	set_task_rq(p, task_cpu(p));
10422 	se->depth = se->parent ? se->parent->depth + 1 : 0;
10423 }
10424 
10425 static void task_move_group_fair(struct task_struct *p)
10426 {
10427 	detach_task_cfs_rq(p);
10428 	set_task_rq(p, task_cpu(p));
10429 
10430 #ifdef CONFIG_SMP
10431 	/* Tell se's cfs_rq has been changed -- migrated */
10432 	p->se.avg.last_update_time = 0;
10433 #endif
10434 	attach_task_cfs_rq(p);
10435 }
10436 
10437 static void task_change_group_fair(struct task_struct *p, int type)
10438 {
10439 	switch (type) {
10440 	case TASK_SET_GROUP:
10441 		task_set_group_fair(p);
10442 		break;
10443 
10444 	case TASK_MOVE_GROUP:
10445 		task_move_group_fair(p);
10446 		break;
10447 	}
10448 }
10449 
10450 void free_fair_sched_group(struct task_group *tg)
10451 {
10452 	int i;
10453 
10454 	destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
10455 
10456 	for_each_possible_cpu(i) {
10457 		if (tg->cfs_rq)
10458 			kfree(tg->cfs_rq[i]);
10459 		if (tg->se)
10460 			kfree(tg->se[i]);
10461 	}
10462 
10463 	kfree(tg->cfs_rq);
10464 	kfree(tg->se);
10465 }
10466 
10467 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
10468 {
10469 	struct sched_entity *se;
10470 	struct cfs_rq *cfs_rq;
10471 	int i;
10472 
10473 	tg->cfs_rq = kcalloc(nr_cpu_ids, sizeof(cfs_rq), GFP_KERNEL);
10474 	if (!tg->cfs_rq)
10475 		goto err;
10476 	tg->se = kcalloc(nr_cpu_ids, sizeof(se), GFP_KERNEL);
10477 	if (!tg->se)
10478 		goto err;
10479 
10480 	tg->shares = NICE_0_LOAD;
10481 
10482 	init_cfs_bandwidth(tg_cfs_bandwidth(tg));
10483 
10484 	for_each_possible_cpu(i) {
10485 		cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
10486 				      GFP_KERNEL, cpu_to_node(i));
10487 		if (!cfs_rq)
10488 			goto err;
10489 
10490 		se = kzalloc_node(sizeof(struct sched_entity),
10491 				  GFP_KERNEL, cpu_to_node(i));
10492 		if (!se)
10493 			goto err_free_rq;
10494 
10495 		init_cfs_rq(cfs_rq);
10496 		init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
10497 		init_entity_runnable_average(se);
10498 	}
10499 
10500 	return 1;
10501 
10502 err_free_rq:
10503 	kfree(cfs_rq);
10504 err:
10505 	return 0;
10506 }
10507 
10508 void online_fair_sched_group(struct task_group *tg)
10509 {
10510 	struct sched_entity *se;
10511 	struct rq *rq;
10512 	int i;
10513 
10514 	for_each_possible_cpu(i) {
10515 		rq = cpu_rq(i);
10516 		se = tg->se[i];
10517 
10518 		raw_spin_lock_irq(&rq->lock);
10519 		update_rq_clock(rq);
10520 		attach_entity_cfs_rq(se);
10521 		sync_throttle(tg, i);
10522 		raw_spin_unlock_irq(&rq->lock);
10523 	}
10524 }
10525 
10526 void unregister_fair_sched_group(struct task_group *tg)
10527 {
10528 	unsigned long flags;
10529 	struct rq *rq;
10530 	int cpu;
10531 
10532 	for_each_possible_cpu(cpu) {
10533 		if (tg->se[cpu])
10534 			remove_entity_load_avg(tg->se[cpu]);
10535 
10536 		/*
10537 		 * Only empty task groups can be destroyed; so we can speculatively
10538 		 * check on_list without danger of it being re-added.
10539 		 */
10540 		if (!tg->cfs_rq[cpu]->on_list)
10541 			continue;
10542 
10543 		rq = cpu_rq(cpu);
10544 
10545 		raw_spin_lock_irqsave(&rq->lock, flags);
10546 		list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
10547 		raw_spin_unlock_irqrestore(&rq->lock, flags);
10548 	}
10549 }
10550 
10551 void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
10552 			struct sched_entity *se, int cpu,
10553 			struct sched_entity *parent)
10554 {
10555 	struct rq *rq = cpu_rq(cpu);
10556 
10557 	cfs_rq->tg = tg;
10558 	cfs_rq->rq = rq;
10559 	init_cfs_rq_runtime(cfs_rq);
10560 
10561 	tg->cfs_rq[cpu] = cfs_rq;
10562 	tg->se[cpu] = se;
10563 
10564 	/* se could be NULL for root_task_group */
10565 	if (!se)
10566 		return;
10567 
10568 	if (!parent) {
10569 		se->cfs_rq = &rq->cfs;
10570 		se->depth = 0;
10571 	} else {
10572 		se->cfs_rq = parent->my_q;
10573 		se->depth = parent->depth + 1;
10574 	}
10575 
10576 	se->my_q = cfs_rq;
10577 	/* guarantee group entities always have weight */
10578 	update_load_set(&se->load, NICE_0_LOAD);
10579 	se->parent = parent;
10580 }
10581 
10582 static DEFINE_MUTEX(shares_mutex);
10583 
10584 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
10585 {
10586 	int i;
10587 
10588 	/*
10589 	 * We can't change the weight of the root cgroup.
10590 	 */
10591 	if (!tg->se[0])
10592 		return -EINVAL;
10593 
10594 	shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
10595 
10596 	mutex_lock(&shares_mutex);
10597 	if (tg->shares == shares)
10598 		goto done;
10599 
10600 	tg->shares = shares;
10601 	for_each_possible_cpu(i) {
10602 		struct rq *rq = cpu_rq(i);
10603 		struct sched_entity *se = tg->se[i];
10604 		struct rq_flags rf;
10605 
10606 		/* Propagate contribution to hierarchy */
10607 		rq_lock_irqsave(rq, &rf);
10608 		update_rq_clock(rq);
10609 		for_each_sched_entity(se) {
10610 			update_load_avg(cfs_rq_of(se), se, UPDATE_TG);
10611 			update_cfs_group(se);
10612 		}
10613 		rq_unlock_irqrestore(rq, &rf);
10614 	}
10615 
10616 done:
10617 	mutex_unlock(&shares_mutex);
10618 	return 0;
10619 }
10620 #else /* CONFIG_FAIR_GROUP_SCHED */
10621 
10622 void free_fair_sched_group(struct task_group *tg) { }
10623 
10624 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
10625 {
10626 	return 1;
10627 }
10628 
10629 void online_fair_sched_group(struct task_group *tg) { }
10630 
10631 void unregister_fair_sched_group(struct task_group *tg) { }
10632 
10633 #endif /* CONFIG_FAIR_GROUP_SCHED */
10634 
10635 
10636 static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
10637 {
10638 	struct sched_entity *se = &task->se;
10639 	unsigned int rr_interval = 0;
10640 
10641 	/*
10642 	 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
10643 	 * idle runqueue:
10644 	 */
10645 	if (rq->cfs.load.weight)
10646 		rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
10647 
10648 	return rr_interval;
10649 }
10650 
10651 /*
10652  * All the scheduling class methods:
10653  */
10654 const struct sched_class fair_sched_class = {
10655 	.next			= &idle_sched_class,
10656 	.enqueue_task		= enqueue_task_fair,
10657 	.dequeue_task		= dequeue_task_fair,
10658 	.yield_task		= yield_task_fair,
10659 	.yield_to_task		= yield_to_task_fair,
10660 
10661 	.check_preempt_curr	= check_preempt_wakeup,
10662 
10663 	.pick_next_task		= pick_next_task_fair,
10664 	.put_prev_task		= put_prev_task_fair,
10665 
10666 #ifdef CONFIG_SMP
10667 	.select_task_rq		= select_task_rq_fair,
10668 	.migrate_task_rq	= migrate_task_rq_fair,
10669 
10670 	.rq_online		= rq_online_fair,
10671 	.rq_offline		= rq_offline_fair,
10672 
10673 	.task_dead		= task_dead_fair,
10674 	.set_cpus_allowed	= set_cpus_allowed_common,
10675 #endif
10676 
10677 	.set_curr_task          = set_curr_task_fair,
10678 	.task_tick		= task_tick_fair,
10679 	.task_fork		= task_fork_fair,
10680 
10681 	.prio_changed		= prio_changed_fair,
10682 	.switched_from		= switched_from_fair,
10683 	.switched_to		= switched_to_fair,
10684 
10685 	.get_rr_interval	= get_rr_interval_fair,
10686 
10687 	.update_curr		= update_curr_fair,
10688 
10689 #ifdef CONFIG_FAIR_GROUP_SCHED
10690 	.task_change_group	= task_change_group_fair,
10691 #endif
10692 };
10693 
10694 #ifdef CONFIG_SCHED_DEBUG
10695 void print_cfs_stats(struct seq_file *m, int cpu)
10696 {
10697 	struct cfs_rq *cfs_rq, *pos;
10698 
10699 	rcu_read_lock();
10700 	for_each_leaf_cfs_rq_safe(cpu_rq(cpu), cfs_rq, pos)
10701 		print_cfs_rq(m, cpu, cfs_rq);
10702 	rcu_read_unlock();
10703 }
10704 
10705 #ifdef CONFIG_NUMA_BALANCING
10706 void show_numa_stats(struct task_struct *p, struct seq_file *m)
10707 {
10708 	int node;
10709 	unsigned long tsf = 0, tpf = 0, gsf = 0, gpf = 0;
10710 
10711 	for_each_online_node(node) {
10712 		if (p->numa_faults) {
10713 			tsf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 0)];
10714 			tpf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 1)];
10715 		}
10716 		if (p->numa_group) {
10717 			gsf = p->numa_group->faults[task_faults_idx(NUMA_MEM, node, 0)],
10718 			gpf = p->numa_group->faults[task_faults_idx(NUMA_MEM, node, 1)];
10719 		}
10720 		print_numa_stats(m, node, tsf, tpf, gsf, gpf);
10721 	}
10722 }
10723 #endif /* CONFIG_NUMA_BALANCING */
10724 #endif /* CONFIG_SCHED_DEBUG */
10725 
10726 __init void init_sched_fair_class(void)
10727 {
10728 #ifdef CONFIG_SMP
10729 	open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
10730 
10731 #ifdef CONFIG_NO_HZ_COMMON
10732 	nohz.next_balance = jiffies;
10733 	nohz.next_blocked = jiffies;
10734 	zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
10735 #endif
10736 #endif /* SMP */
10737 
10738 }
10739