1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH) 4 * 5 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com> 6 * 7 * Interactivity improvements by Mike Galbraith 8 * (C) 2007 Mike Galbraith <efault@gmx.de> 9 * 10 * Various enhancements by Dmitry Adamushko. 11 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com> 12 * 13 * Group scheduling enhancements by Srivatsa Vaddagiri 14 * Copyright IBM Corporation, 2007 15 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com> 16 * 17 * Scaled math optimizations by Thomas Gleixner 18 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de> 19 * 20 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra 21 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra 22 */ 23 #include "sched.h" 24 25 #include <trace/events/sched.h> 26 27 /* 28 * Targeted preemption latency for CPU-bound tasks: 29 * 30 * NOTE: this latency value is not the same as the concept of 31 * 'timeslice length' - timeslices in CFS are of variable length 32 * and have no persistent notion like in traditional, time-slice 33 * based scheduling concepts. 34 * 35 * (to see the precise effective timeslice length of your workload, 36 * run vmstat and monitor the context-switches (cs) field) 37 * 38 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds) 39 */ 40 unsigned int sysctl_sched_latency = 6000000ULL; 41 static unsigned int normalized_sysctl_sched_latency = 6000000ULL; 42 43 /* 44 * The initial- and re-scaling of tunables is configurable 45 * 46 * Options are: 47 * 48 * SCHED_TUNABLESCALING_NONE - unscaled, always *1 49 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus) 50 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus 51 * 52 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus)) 53 */ 54 enum sched_tunable_scaling sysctl_sched_tunable_scaling = SCHED_TUNABLESCALING_LOG; 55 56 /* 57 * Minimal preemption granularity for CPU-bound tasks: 58 * 59 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds) 60 */ 61 unsigned int sysctl_sched_min_granularity = 750000ULL; 62 static unsigned int normalized_sysctl_sched_min_granularity = 750000ULL; 63 64 /* 65 * This value is kept at sysctl_sched_latency/sysctl_sched_min_granularity 66 */ 67 static unsigned int sched_nr_latency = 8; 68 69 /* 70 * After fork, child runs first. If set to 0 (default) then 71 * parent will (try to) run first. 72 */ 73 unsigned int sysctl_sched_child_runs_first __read_mostly; 74 75 /* 76 * SCHED_OTHER wake-up granularity. 77 * 78 * This option delays the preemption effects of decoupled workloads 79 * and reduces their over-scheduling. Synchronous workloads will still 80 * have immediate wakeup/sleep latencies. 81 * 82 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds) 83 */ 84 unsigned int sysctl_sched_wakeup_granularity = 1000000UL; 85 static unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL; 86 87 const_debug unsigned int sysctl_sched_migration_cost = 500000UL; 88 89 int sched_thermal_decay_shift; 90 static int __init setup_sched_thermal_decay_shift(char *str) 91 { 92 int _shift = 0; 93 94 if (kstrtoint(str, 0, &_shift)) 95 pr_warn("Unable to set scheduler thermal pressure decay shift parameter\n"); 96 97 sched_thermal_decay_shift = clamp(_shift, 0, 10); 98 return 1; 99 } 100 __setup("sched_thermal_decay_shift=", setup_sched_thermal_decay_shift); 101 102 #ifdef CONFIG_SMP 103 /* 104 * For asym packing, by default the lower numbered CPU has higher priority. 105 */ 106 int __weak arch_asym_cpu_priority(int cpu) 107 { 108 return -cpu; 109 } 110 111 /* 112 * The margin used when comparing utilization with CPU capacity. 113 * 114 * (default: ~20%) 115 */ 116 #define fits_capacity(cap, max) ((cap) * 1280 < (max) * 1024) 117 118 #endif 119 120 #ifdef CONFIG_CFS_BANDWIDTH 121 /* 122 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool 123 * each time a cfs_rq requests quota. 124 * 125 * Note: in the case that the slice exceeds the runtime remaining (either due 126 * to consumption or the quota being specified to be smaller than the slice) 127 * we will always only issue the remaining available time. 128 * 129 * (default: 5 msec, units: microseconds) 130 */ 131 unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL; 132 #endif 133 134 static inline void update_load_add(struct load_weight *lw, unsigned long inc) 135 { 136 lw->weight += inc; 137 lw->inv_weight = 0; 138 } 139 140 static inline void update_load_sub(struct load_weight *lw, unsigned long dec) 141 { 142 lw->weight -= dec; 143 lw->inv_weight = 0; 144 } 145 146 static inline void update_load_set(struct load_weight *lw, unsigned long w) 147 { 148 lw->weight = w; 149 lw->inv_weight = 0; 150 } 151 152 /* 153 * Increase the granularity value when there are more CPUs, 154 * because with more CPUs the 'effective latency' as visible 155 * to users decreases. But the relationship is not linear, 156 * so pick a second-best guess by going with the log2 of the 157 * number of CPUs. 158 * 159 * This idea comes from the SD scheduler of Con Kolivas: 160 */ 161 static unsigned int get_update_sysctl_factor(void) 162 { 163 unsigned int cpus = min_t(unsigned int, num_online_cpus(), 8); 164 unsigned int factor; 165 166 switch (sysctl_sched_tunable_scaling) { 167 case SCHED_TUNABLESCALING_NONE: 168 factor = 1; 169 break; 170 case SCHED_TUNABLESCALING_LINEAR: 171 factor = cpus; 172 break; 173 case SCHED_TUNABLESCALING_LOG: 174 default: 175 factor = 1 + ilog2(cpus); 176 break; 177 } 178 179 return factor; 180 } 181 182 static void update_sysctl(void) 183 { 184 unsigned int factor = get_update_sysctl_factor(); 185 186 #define SET_SYSCTL(name) \ 187 (sysctl_##name = (factor) * normalized_sysctl_##name) 188 SET_SYSCTL(sched_min_granularity); 189 SET_SYSCTL(sched_latency); 190 SET_SYSCTL(sched_wakeup_granularity); 191 #undef SET_SYSCTL 192 } 193 194 void __init sched_init_granularity(void) 195 { 196 update_sysctl(); 197 } 198 199 #define WMULT_CONST (~0U) 200 #define WMULT_SHIFT 32 201 202 static void __update_inv_weight(struct load_weight *lw) 203 { 204 unsigned long w; 205 206 if (likely(lw->inv_weight)) 207 return; 208 209 w = scale_load_down(lw->weight); 210 211 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST)) 212 lw->inv_weight = 1; 213 else if (unlikely(!w)) 214 lw->inv_weight = WMULT_CONST; 215 else 216 lw->inv_weight = WMULT_CONST / w; 217 } 218 219 /* 220 * delta_exec * weight / lw.weight 221 * OR 222 * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT 223 * 224 * Either weight := NICE_0_LOAD and lw \e sched_prio_to_wmult[], in which case 225 * we're guaranteed shift stays positive because inv_weight is guaranteed to 226 * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22. 227 * 228 * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus 229 * weight/lw.weight <= 1, and therefore our shift will also be positive. 230 */ 231 static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw) 232 { 233 u64 fact = scale_load_down(weight); 234 int shift = WMULT_SHIFT; 235 236 __update_inv_weight(lw); 237 238 if (unlikely(fact >> 32)) { 239 while (fact >> 32) { 240 fact >>= 1; 241 shift--; 242 } 243 } 244 245 fact = mul_u32_u32(fact, lw->inv_weight); 246 247 while (fact >> 32) { 248 fact >>= 1; 249 shift--; 250 } 251 252 return mul_u64_u32_shr(delta_exec, fact, shift); 253 } 254 255 256 const struct sched_class fair_sched_class; 257 258 /************************************************************** 259 * CFS operations on generic schedulable entities: 260 */ 261 262 #ifdef CONFIG_FAIR_GROUP_SCHED 263 static inline struct task_struct *task_of(struct sched_entity *se) 264 { 265 SCHED_WARN_ON(!entity_is_task(se)); 266 return container_of(se, struct task_struct, se); 267 } 268 269 /* Walk up scheduling entities hierarchy */ 270 #define for_each_sched_entity(se) \ 271 for (; se; se = se->parent) 272 273 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p) 274 { 275 return p->se.cfs_rq; 276 } 277 278 /* runqueue on which this entity is (to be) queued */ 279 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se) 280 { 281 return se->cfs_rq; 282 } 283 284 /* runqueue "owned" by this group */ 285 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp) 286 { 287 return grp->my_q; 288 } 289 290 static inline void cfs_rq_tg_path(struct cfs_rq *cfs_rq, char *path, int len) 291 { 292 if (!path) 293 return; 294 295 if (cfs_rq && task_group_is_autogroup(cfs_rq->tg)) 296 autogroup_path(cfs_rq->tg, path, len); 297 else if (cfs_rq && cfs_rq->tg->css.cgroup) 298 cgroup_path(cfs_rq->tg->css.cgroup, path, len); 299 else 300 strlcpy(path, "(null)", len); 301 } 302 303 static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq) 304 { 305 struct rq *rq = rq_of(cfs_rq); 306 int cpu = cpu_of(rq); 307 308 if (cfs_rq->on_list) 309 return rq->tmp_alone_branch == &rq->leaf_cfs_rq_list; 310 311 cfs_rq->on_list = 1; 312 313 /* 314 * Ensure we either appear before our parent (if already 315 * enqueued) or force our parent to appear after us when it is 316 * enqueued. The fact that we always enqueue bottom-up 317 * reduces this to two cases and a special case for the root 318 * cfs_rq. Furthermore, it also means that we will always reset 319 * tmp_alone_branch either when the branch is connected 320 * to a tree or when we reach the top of the tree 321 */ 322 if (cfs_rq->tg->parent && 323 cfs_rq->tg->parent->cfs_rq[cpu]->on_list) { 324 /* 325 * If parent is already on the list, we add the child 326 * just before. Thanks to circular linked property of 327 * the list, this means to put the child at the tail 328 * of the list that starts by parent. 329 */ 330 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list, 331 &(cfs_rq->tg->parent->cfs_rq[cpu]->leaf_cfs_rq_list)); 332 /* 333 * The branch is now connected to its tree so we can 334 * reset tmp_alone_branch to the beginning of the 335 * list. 336 */ 337 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list; 338 return true; 339 } 340 341 if (!cfs_rq->tg->parent) { 342 /* 343 * cfs rq without parent should be put 344 * at the tail of the list. 345 */ 346 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list, 347 &rq->leaf_cfs_rq_list); 348 /* 349 * We have reach the top of a tree so we can reset 350 * tmp_alone_branch to the beginning of the list. 351 */ 352 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list; 353 return true; 354 } 355 356 /* 357 * The parent has not already been added so we want to 358 * make sure that it will be put after us. 359 * tmp_alone_branch points to the begin of the branch 360 * where we will add parent. 361 */ 362 list_add_rcu(&cfs_rq->leaf_cfs_rq_list, rq->tmp_alone_branch); 363 /* 364 * update tmp_alone_branch to points to the new begin 365 * of the branch 366 */ 367 rq->tmp_alone_branch = &cfs_rq->leaf_cfs_rq_list; 368 return false; 369 } 370 371 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq) 372 { 373 if (cfs_rq->on_list) { 374 struct rq *rq = rq_of(cfs_rq); 375 376 /* 377 * With cfs_rq being unthrottled/throttled during an enqueue, 378 * it can happen the tmp_alone_branch points the a leaf that 379 * we finally want to del. In this case, tmp_alone_branch moves 380 * to the prev element but it will point to rq->leaf_cfs_rq_list 381 * at the end of the enqueue. 382 */ 383 if (rq->tmp_alone_branch == &cfs_rq->leaf_cfs_rq_list) 384 rq->tmp_alone_branch = cfs_rq->leaf_cfs_rq_list.prev; 385 386 list_del_rcu(&cfs_rq->leaf_cfs_rq_list); 387 cfs_rq->on_list = 0; 388 } 389 } 390 391 static inline void assert_list_leaf_cfs_rq(struct rq *rq) 392 { 393 SCHED_WARN_ON(rq->tmp_alone_branch != &rq->leaf_cfs_rq_list); 394 } 395 396 /* Iterate thr' all leaf cfs_rq's on a runqueue */ 397 #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) \ 398 list_for_each_entry_safe(cfs_rq, pos, &rq->leaf_cfs_rq_list, \ 399 leaf_cfs_rq_list) 400 401 /* Do the two (enqueued) entities belong to the same group ? */ 402 static inline struct cfs_rq * 403 is_same_group(struct sched_entity *se, struct sched_entity *pse) 404 { 405 if (se->cfs_rq == pse->cfs_rq) 406 return se->cfs_rq; 407 408 return NULL; 409 } 410 411 static inline struct sched_entity *parent_entity(struct sched_entity *se) 412 { 413 return se->parent; 414 } 415 416 static void 417 find_matching_se(struct sched_entity **se, struct sched_entity **pse) 418 { 419 int se_depth, pse_depth; 420 421 /* 422 * preemption test can be made between sibling entities who are in the 423 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of 424 * both tasks until we find their ancestors who are siblings of common 425 * parent. 426 */ 427 428 /* First walk up until both entities are at same depth */ 429 se_depth = (*se)->depth; 430 pse_depth = (*pse)->depth; 431 432 while (se_depth > pse_depth) { 433 se_depth--; 434 *se = parent_entity(*se); 435 } 436 437 while (pse_depth > se_depth) { 438 pse_depth--; 439 *pse = parent_entity(*pse); 440 } 441 442 while (!is_same_group(*se, *pse)) { 443 *se = parent_entity(*se); 444 *pse = parent_entity(*pse); 445 } 446 } 447 448 #else /* !CONFIG_FAIR_GROUP_SCHED */ 449 450 static inline struct task_struct *task_of(struct sched_entity *se) 451 { 452 return container_of(se, struct task_struct, se); 453 } 454 455 #define for_each_sched_entity(se) \ 456 for (; se; se = NULL) 457 458 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p) 459 { 460 return &task_rq(p)->cfs; 461 } 462 463 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se) 464 { 465 struct task_struct *p = task_of(se); 466 struct rq *rq = task_rq(p); 467 468 return &rq->cfs; 469 } 470 471 /* runqueue "owned" by this group */ 472 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp) 473 { 474 return NULL; 475 } 476 477 static inline void cfs_rq_tg_path(struct cfs_rq *cfs_rq, char *path, int len) 478 { 479 if (path) 480 strlcpy(path, "(null)", len); 481 } 482 483 static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq) 484 { 485 return true; 486 } 487 488 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq) 489 { 490 } 491 492 static inline void assert_list_leaf_cfs_rq(struct rq *rq) 493 { 494 } 495 496 #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) \ 497 for (cfs_rq = &rq->cfs, pos = NULL; cfs_rq; cfs_rq = pos) 498 499 static inline struct sched_entity *parent_entity(struct sched_entity *se) 500 { 501 return NULL; 502 } 503 504 static inline void 505 find_matching_se(struct sched_entity **se, struct sched_entity **pse) 506 { 507 } 508 509 #endif /* CONFIG_FAIR_GROUP_SCHED */ 510 511 static __always_inline 512 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec); 513 514 /************************************************************** 515 * Scheduling class tree data structure manipulation methods: 516 */ 517 518 static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime) 519 { 520 s64 delta = (s64)(vruntime - max_vruntime); 521 if (delta > 0) 522 max_vruntime = vruntime; 523 524 return max_vruntime; 525 } 526 527 static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime) 528 { 529 s64 delta = (s64)(vruntime - min_vruntime); 530 if (delta < 0) 531 min_vruntime = vruntime; 532 533 return min_vruntime; 534 } 535 536 static inline int entity_before(struct sched_entity *a, 537 struct sched_entity *b) 538 { 539 return (s64)(a->vruntime - b->vruntime) < 0; 540 } 541 542 static void update_min_vruntime(struct cfs_rq *cfs_rq) 543 { 544 struct sched_entity *curr = cfs_rq->curr; 545 struct rb_node *leftmost = rb_first_cached(&cfs_rq->tasks_timeline); 546 547 u64 vruntime = cfs_rq->min_vruntime; 548 549 if (curr) { 550 if (curr->on_rq) 551 vruntime = curr->vruntime; 552 else 553 curr = NULL; 554 } 555 556 if (leftmost) { /* non-empty tree */ 557 struct sched_entity *se; 558 se = rb_entry(leftmost, struct sched_entity, run_node); 559 560 if (!curr) 561 vruntime = se->vruntime; 562 else 563 vruntime = min_vruntime(vruntime, se->vruntime); 564 } 565 566 /* ensure we never gain time by being placed backwards. */ 567 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime); 568 #ifndef CONFIG_64BIT 569 smp_wmb(); 570 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime; 571 #endif 572 } 573 574 /* 575 * Enqueue an entity into the rb-tree: 576 */ 577 static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) 578 { 579 struct rb_node **link = &cfs_rq->tasks_timeline.rb_root.rb_node; 580 struct rb_node *parent = NULL; 581 struct sched_entity *entry; 582 bool leftmost = true; 583 584 /* 585 * Find the right place in the rbtree: 586 */ 587 while (*link) { 588 parent = *link; 589 entry = rb_entry(parent, struct sched_entity, run_node); 590 /* 591 * We dont care about collisions. Nodes with 592 * the same key stay together. 593 */ 594 if (entity_before(se, entry)) { 595 link = &parent->rb_left; 596 } else { 597 link = &parent->rb_right; 598 leftmost = false; 599 } 600 } 601 602 rb_link_node(&se->run_node, parent, link); 603 rb_insert_color_cached(&se->run_node, 604 &cfs_rq->tasks_timeline, leftmost); 605 } 606 607 static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) 608 { 609 rb_erase_cached(&se->run_node, &cfs_rq->tasks_timeline); 610 } 611 612 struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq) 613 { 614 struct rb_node *left = rb_first_cached(&cfs_rq->tasks_timeline); 615 616 if (!left) 617 return NULL; 618 619 return rb_entry(left, struct sched_entity, run_node); 620 } 621 622 static struct sched_entity *__pick_next_entity(struct sched_entity *se) 623 { 624 struct rb_node *next = rb_next(&se->run_node); 625 626 if (!next) 627 return NULL; 628 629 return rb_entry(next, struct sched_entity, run_node); 630 } 631 632 #ifdef CONFIG_SCHED_DEBUG 633 struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq) 634 { 635 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline.rb_root); 636 637 if (!last) 638 return NULL; 639 640 return rb_entry(last, struct sched_entity, run_node); 641 } 642 643 /************************************************************** 644 * Scheduling class statistics methods: 645 */ 646 647 int sched_proc_update_handler(struct ctl_table *table, int write, 648 void *buffer, size_t *lenp, loff_t *ppos) 649 { 650 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 651 unsigned int factor = get_update_sysctl_factor(); 652 653 if (ret || !write) 654 return ret; 655 656 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency, 657 sysctl_sched_min_granularity); 658 659 #define WRT_SYSCTL(name) \ 660 (normalized_sysctl_##name = sysctl_##name / (factor)) 661 WRT_SYSCTL(sched_min_granularity); 662 WRT_SYSCTL(sched_latency); 663 WRT_SYSCTL(sched_wakeup_granularity); 664 #undef WRT_SYSCTL 665 666 return 0; 667 } 668 #endif 669 670 /* 671 * delta /= w 672 */ 673 static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se) 674 { 675 if (unlikely(se->load.weight != NICE_0_LOAD)) 676 delta = __calc_delta(delta, NICE_0_LOAD, &se->load); 677 678 return delta; 679 } 680 681 /* 682 * The idea is to set a period in which each task runs once. 683 * 684 * When there are too many tasks (sched_nr_latency) we have to stretch 685 * this period because otherwise the slices get too small. 686 * 687 * p = (nr <= nl) ? l : l*nr/nl 688 */ 689 static u64 __sched_period(unsigned long nr_running) 690 { 691 if (unlikely(nr_running > sched_nr_latency)) 692 return nr_running * sysctl_sched_min_granularity; 693 else 694 return sysctl_sched_latency; 695 } 696 697 /* 698 * We calculate the wall-time slice from the period by taking a part 699 * proportional to the weight. 700 * 701 * s = p*P[w/rw] 702 */ 703 static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se) 704 { 705 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq); 706 707 for_each_sched_entity(se) { 708 struct load_weight *load; 709 struct load_weight lw; 710 711 cfs_rq = cfs_rq_of(se); 712 load = &cfs_rq->load; 713 714 if (unlikely(!se->on_rq)) { 715 lw = cfs_rq->load; 716 717 update_load_add(&lw, se->load.weight); 718 load = &lw; 719 } 720 slice = __calc_delta(slice, se->load.weight, load); 721 } 722 return slice; 723 } 724 725 /* 726 * We calculate the vruntime slice of a to-be-inserted task. 727 * 728 * vs = s/w 729 */ 730 static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se) 731 { 732 return calc_delta_fair(sched_slice(cfs_rq, se), se); 733 } 734 735 #include "pelt.h" 736 #ifdef CONFIG_SMP 737 738 static int select_idle_sibling(struct task_struct *p, int prev_cpu, int cpu); 739 static unsigned long task_h_load(struct task_struct *p); 740 static unsigned long capacity_of(int cpu); 741 742 /* Give new sched_entity start runnable values to heavy its load in infant time */ 743 void init_entity_runnable_average(struct sched_entity *se) 744 { 745 struct sched_avg *sa = &se->avg; 746 747 memset(sa, 0, sizeof(*sa)); 748 749 /* 750 * Tasks are initialized with full load to be seen as heavy tasks until 751 * they get a chance to stabilize to their real load level. 752 * Group entities are initialized with zero load to reflect the fact that 753 * nothing has been attached to the task group yet. 754 */ 755 if (entity_is_task(se)) 756 sa->load_avg = scale_load_down(se->load.weight); 757 758 /* when this task enqueue'ed, it will contribute to its cfs_rq's load_avg */ 759 } 760 761 static void attach_entity_cfs_rq(struct sched_entity *se); 762 763 /* 764 * With new tasks being created, their initial util_avgs are extrapolated 765 * based on the cfs_rq's current util_avg: 766 * 767 * util_avg = cfs_rq->util_avg / (cfs_rq->load_avg + 1) * se.load.weight 768 * 769 * However, in many cases, the above util_avg does not give a desired 770 * value. Moreover, the sum of the util_avgs may be divergent, such 771 * as when the series is a harmonic series. 772 * 773 * To solve this problem, we also cap the util_avg of successive tasks to 774 * only 1/2 of the left utilization budget: 775 * 776 * util_avg_cap = (cpu_scale - cfs_rq->avg.util_avg) / 2^n 777 * 778 * where n denotes the nth task and cpu_scale the CPU capacity. 779 * 780 * For example, for a CPU with 1024 of capacity, a simplest series from 781 * the beginning would be like: 782 * 783 * task util_avg: 512, 256, 128, 64, 32, 16, 8, ... 784 * cfs_rq util_avg: 512, 768, 896, 960, 992, 1008, 1016, ... 785 * 786 * Finally, that extrapolated util_avg is clamped to the cap (util_avg_cap) 787 * if util_avg > util_avg_cap. 788 */ 789 void post_init_entity_util_avg(struct task_struct *p) 790 { 791 struct sched_entity *se = &p->se; 792 struct cfs_rq *cfs_rq = cfs_rq_of(se); 793 struct sched_avg *sa = &se->avg; 794 long cpu_scale = arch_scale_cpu_capacity(cpu_of(rq_of(cfs_rq))); 795 long cap = (long)(cpu_scale - cfs_rq->avg.util_avg) / 2; 796 797 if (cap > 0) { 798 if (cfs_rq->avg.util_avg != 0) { 799 sa->util_avg = cfs_rq->avg.util_avg * se->load.weight; 800 sa->util_avg /= (cfs_rq->avg.load_avg + 1); 801 802 if (sa->util_avg > cap) 803 sa->util_avg = cap; 804 } else { 805 sa->util_avg = cap; 806 } 807 } 808 809 sa->runnable_avg = sa->util_avg; 810 811 if (p->sched_class != &fair_sched_class) { 812 /* 813 * For !fair tasks do: 814 * 815 update_cfs_rq_load_avg(now, cfs_rq); 816 attach_entity_load_avg(cfs_rq, se); 817 switched_from_fair(rq, p); 818 * 819 * such that the next switched_to_fair() has the 820 * expected state. 821 */ 822 se->avg.last_update_time = cfs_rq_clock_pelt(cfs_rq); 823 return; 824 } 825 826 attach_entity_cfs_rq(se); 827 } 828 829 #else /* !CONFIG_SMP */ 830 void init_entity_runnable_average(struct sched_entity *se) 831 { 832 } 833 void post_init_entity_util_avg(struct task_struct *p) 834 { 835 } 836 static void update_tg_load_avg(struct cfs_rq *cfs_rq, int force) 837 { 838 } 839 #endif /* CONFIG_SMP */ 840 841 /* 842 * Update the current task's runtime statistics. 843 */ 844 static void update_curr(struct cfs_rq *cfs_rq) 845 { 846 struct sched_entity *curr = cfs_rq->curr; 847 u64 now = rq_clock_task(rq_of(cfs_rq)); 848 u64 delta_exec; 849 850 if (unlikely(!curr)) 851 return; 852 853 delta_exec = now - curr->exec_start; 854 if (unlikely((s64)delta_exec <= 0)) 855 return; 856 857 curr->exec_start = now; 858 859 schedstat_set(curr->statistics.exec_max, 860 max(delta_exec, curr->statistics.exec_max)); 861 862 curr->sum_exec_runtime += delta_exec; 863 schedstat_add(cfs_rq->exec_clock, delta_exec); 864 865 curr->vruntime += calc_delta_fair(delta_exec, curr); 866 update_min_vruntime(cfs_rq); 867 868 if (entity_is_task(curr)) { 869 struct task_struct *curtask = task_of(curr); 870 871 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime); 872 cgroup_account_cputime(curtask, delta_exec); 873 account_group_exec_runtime(curtask, delta_exec); 874 } 875 876 account_cfs_rq_runtime(cfs_rq, delta_exec); 877 } 878 879 static void update_curr_fair(struct rq *rq) 880 { 881 update_curr(cfs_rq_of(&rq->curr->se)); 882 } 883 884 static inline void 885 update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se) 886 { 887 u64 wait_start, prev_wait_start; 888 889 if (!schedstat_enabled()) 890 return; 891 892 wait_start = rq_clock(rq_of(cfs_rq)); 893 prev_wait_start = schedstat_val(se->statistics.wait_start); 894 895 if (entity_is_task(se) && task_on_rq_migrating(task_of(se)) && 896 likely(wait_start > prev_wait_start)) 897 wait_start -= prev_wait_start; 898 899 __schedstat_set(se->statistics.wait_start, wait_start); 900 } 901 902 static inline void 903 update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se) 904 { 905 struct task_struct *p; 906 u64 delta; 907 908 if (!schedstat_enabled()) 909 return; 910 911 delta = rq_clock(rq_of(cfs_rq)) - schedstat_val(se->statistics.wait_start); 912 913 if (entity_is_task(se)) { 914 p = task_of(se); 915 if (task_on_rq_migrating(p)) { 916 /* 917 * Preserve migrating task's wait time so wait_start 918 * time stamp can be adjusted to accumulate wait time 919 * prior to migration. 920 */ 921 __schedstat_set(se->statistics.wait_start, delta); 922 return; 923 } 924 trace_sched_stat_wait(p, delta); 925 } 926 927 __schedstat_set(se->statistics.wait_max, 928 max(schedstat_val(se->statistics.wait_max), delta)); 929 __schedstat_inc(se->statistics.wait_count); 930 __schedstat_add(se->statistics.wait_sum, delta); 931 __schedstat_set(se->statistics.wait_start, 0); 932 } 933 934 static inline void 935 update_stats_enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se) 936 { 937 struct task_struct *tsk = NULL; 938 u64 sleep_start, block_start; 939 940 if (!schedstat_enabled()) 941 return; 942 943 sleep_start = schedstat_val(se->statistics.sleep_start); 944 block_start = schedstat_val(se->statistics.block_start); 945 946 if (entity_is_task(se)) 947 tsk = task_of(se); 948 949 if (sleep_start) { 950 u64 delta = rq_clock(rq_of(cfs_rq)) - sleep_start; 951 952 if ((s64)delta < 0) 953 delta = 0; 954 955 if (unlikely(delta > schedstat_val(se->statistics.sleep_max))) 956 __schedstat_set(se->statistics.sleep_max, delta); 957 958 __schedstat_set(se->statistics.sleep_start, 0); 959 __schedstat_add(se->statistics.sum_sleep_runtime, delta); 960 961 if (tsk) { 962 account_scheduler_latency(tsk, delta >> 10, 1); 963 trace_sched_stat_sleep(tsk, delta); 964 } 965 } 966 if (block_start) { 967 u64 delta = rq_clock(rq_of(cfs_rq)) - block_start; 968 969 if ((s64)delta < 0) 970 delta = 0; 971 972 if (unlikely(delta > schedstat_val(se->statistics.block_max))) 973 __schedstat_set(se->statistics.block_max, delta); 974 975 __schedstat_set(se->statistics.block_start, 0); 976 __schedstat_add(se->statistics.sum_sleep_runtime, delta); 977 978 if (tsk) { 979 if (tsk->in_iowait) { 980 __schedstat_add(se->statistics.iowait_sum, delta); 981 __schedstat_inc(se->statistics.iowait_count); 982 trace_sched_stat_iowait(tsk, delta); 983 } 984 985 trace_sched_stat_blocked(tsk, delta); 986 987 /* 988 * Blocking time is in units of nanosecs, so shift by 989 * 20 to get a milliseconds-range estimation of the 990 * amount of time that the task spent sleeping: 991 */ 992 if (unlikely(prof_on == SLEEP_PROFILING)) { 993 profile_hits(SLEEP_PROFILING, 994 (void *)get_wchan(tsk), 995 delta >> 20); 996 } 997 account_scheduler_latency(tsk, delta >> 10, 0); 998 } 999 } 1000 } 1001 1002 /* 1003 * Task is being enqueued - update stats: 1004 */ 1005 static inline void 1006 update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 1007 { 1008 if (!schedstat_enabled()) 1009 return; 1010 1011 /* 1012 * Are we enqueueing a waiting task? (for current tasks 1013 * a dequeue/enqueue event is a NOP) 1014 */ 1015 if (se != cfs_rq->curr) 1016 update_stats_wait_start(cfs_rq, se); 1017 1018 if (flags & ENQUEUE_WAKEUP) 1019 update_stats_enqueue_sleeper(cfs_rq, se); 1020 } 1021 1022 static inline void 1023 update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 1024 { 1025 1026 if (!schedstat_enabled()) 1027 return; 1028 1029 /* 1030 * Mark the end of the wait period if dequeueing a 1031 * waiting task: 1032 */ 1033 if (se != cfs_rq->curr) 1034 update_stats_wait_end(cfs_rq, se); 1035 1036 if ((flags & DEQUEUE_SLEEP) && entity_is_task(se)) { 1037 struct task_struct *tsk = task_of(se); 1038 1039 if (tsk->state & TASK_INTERRUPTIBLE) 1040 __schedstat_set(se->statistics.sleep_start, 1041 rq_clock(rq_of(cfs_rq))); 1042 if (tsk->state & TASK_UNINTERRUPTIBLE) 1043 __schedstat_set(se->statistics.block_start, 1044 rq_clock(rq_of(cfs_rq))); 1045 } 1046 } 1047 1048 /* 1049 * We are picking a new current task - update its stats: 1050 */ 1051 static inline void 1052 update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se) 1053 { 1054 /* 1055 * We are starting a new run period: 1056 */ 1057 se->exec_start = rq_clock_task(rq_of(cfs_rq)); 1058 } 1059 1060 /************************************************** 1061 * Scheduling class queueing methods: 1062 */ 1063 1064 #ifdef CONFIG_NUMA_BALANCING 1065 /* 1066 * Approximate time to scan a full NUMA task in ms. The task scan period is 1067 * calculated based on the tasks virtual memory size and 1068 * numa_balancing_scan_size. 1069 */ 1070 unsigned int sysctl_numa_balancing_scan_period_min = 1000; 1071 unsigned int sysctl_numa_balancing_scan_period_max = 60000; 1072 1073 /* Portion of address space to scan in MB */ 1074 unsigned int sysctl_numa_balancing_scan_size = 256; 1075 1076 /* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */ 1077 unsigned int sysctl_numa_balancing_scan_delay = 1000; 1078 1079 struct numa_group { 1080 refcount_t refcount; 1081 1082 spinlock_t lock; /* nr_tasks, tasks */ 1083 int nr_tasks; 1084 pid_t gid; 1085 int active_nodes; 1086 1087 struct rcu_head rcu; 1088 unsigned long total_faults; 1089 unsigned long max_faults_cpu; 1090 /* 1091 * Faults_cpu is used to decide whether memory should move 1092 * towards the CPU. As a consequence, these stats are weighted 1093 * more by CPU use than by memory faults. 1094 */ 1095 unsigned long *faults_cpu; 1096 unsigned long faults[]; 1097 }; 1098 1099 /* 1100 * For functions that can be called in multiple contexts that permit reading 1101 * ->numa_group (see struct task_struct for locking rules). 1102 */ 1103 static struct numa_group *deref_task_numa_group(struct task_struct *p) 1104 { 1105 return rcu_dereference_check(p->numa_group, p == current || 1106 (lockdep_is_held(&task_rq(p)->lock) && !READ_ONCE(p->on_cpu))); 1107 } 1108 1109 static struct numa_group *deref_curr_numa_group(struct task_struct *p) 1110 { 1111 return rcu_dereference_protected(p->numa_group, p == current); 1112 } 1113 1114 static inline unsigned long group_faults_priv(struct numa_group *ng); 1115 static inline unsigned long group_faults_shared(struct numa_group *ng); 1116 1117 static unsigned int task_nr_scan_windows(struct task_struct *p) 1118 { 1119 unsigned long rss = 0; 1120 unsigned long nr_scan_pages; 1121 1122 /* 1123 * Calculations based on RSS as non-present and empty pages are skipped 1124 * by the PTE scanner and NUMA hinting faults should be trapped based 1125 * on resident pages 1126 */ 1127 nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT); 1128 rss = get_mm_rss(p->mm); 1129 if (!rss) 1130 rss = nr_scan_pages; 1131 1132 rss = round_up(rss, nr_scan_pages); 1133 return rss / nr_scan_pages; 1134 } 1135 1136 /* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */ 1137 #define MAX_SCAN_WINDOW 2560 1138 1139 static unsigned int task_scan_min(struct task_struct *p) 1140 { 1141 unsigned int scan_size = READ_ONCE(sysctl_numa_balancing_scan_size); 1142 unsigned int scan, floor; 1143 unsigned int windows = 1; 1144 1145 if (scan_size < MAX_SCAN_WINDOW) 1146 windows = MAX_SCAN_WINDOW / scan_size; 1147 floor = 1000 / windows; 1148 1149 scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p); 1150 return max_t(unsigned int, floor, scan); 1151 } 1152 1153 static unsigned int task_scan_start(struct task_struct *p) 1154 { 1155 unsigned long smin = task_scan_min(p); 1156 unsigned long period = smin; 1157 struct numa_group *ng; 1158 1159 /* Scale the maximum scan period with the amount of shared memory. */ 1160 rcu_read_lock(); 1161 ng = rcu_dereference(p->numa_group); 1162 if (ng) { 1163 unsigned long shared = group_faults_shared(ng); 1164 unsigned long private = group_faults_priv(ng); 1165 1166 period *= refcount_read(&ng->refcount); 1167 period *= shared + 1; 1168 period /= private + shared + 1; 1169 } 1170 rcu_read_unlock(); 1171 1172 return max(smin, period); 1173 } 1174 1175 static unsigned int task_scan_max(struct task_struct *p) 1176 { 1177 unsigned long smin = task_scan_min(p); 1178 unsigned long smax; 1179 struct numa_group *ng; 1180 1181 /* Watch for min being lower than max due to floor calculations */ 1182 smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p); 1183 1184 /* Scale the maximum scan period with the amount of shared memory. */ 1185 ng = deref_curr_numa_group(p); 1186 if (ng) { 1187 unsigned long shared = group_faults_shared(ng); 1188 unsigned long private = group_faults_priv(ng); 1189 unsigned long period = smax; 1190 1191 period *= refcount_read(&ng->refcount); 1192 period *= shared + 1; 1193 period /= private + shared + 1; 1194 1195 smax = max(smax, period); 1196 } 1197 1198 return max(smin, smax); 1199 } 1200 1201 static void account_numa_enqueue(struct rq *rq, struct task_struct *p) 1202 { 1203 rq->nr_numa_running += (p->numa_preferred_nid != NUMA_NO_NODE); 1204 rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p)); 1205 } 1206 1207 static void account_numa_dequeue(struct rq *rq, struct task_struct *p) 1208 { 1209 rq->nr_numa_running -= (p->numa_preferred_nid != NUMA_NO_NODE); 1210 rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p)); 1211 } 1212 1213 /* Shared or private faults. */ 1214 #define NR_NUMA_HINT_FAULT_TYPES 2 1215 1216 /* Memory and CPU locality */ 1217 #define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2) 1218 1219 /* Averaged statistics, and temporary buffers. */ 1220 #define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2) 1221 1222 pid_t task_numa_group_id(struct task_struct *p) 1223 { 1224 struct numa_group *ng; 1225 pid_t gid = 0; 1226 1227 rcu_read_lock(); 1228 ng = rcu_dereference(p->numa_group); 1229 if (ng) 1230 gid = ng->gid; 1231 rcu_read_unlock(); 1232 1233 return gid; 1234 } 1235 1236 /* 1237 * The averaged statistics, shared & private, memory & CPU, 1238 * occupy the first half of the array. The second half of the 1239 * array is for current counters, which are averaged into the 1240 * first set by task_numa_placement. 1241 */ 1242 static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv) 1243 { 1244 return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv; 1245 } 1246 1247 static inline unsigned long task_faults(struct task_struct *p, int nid) 1248 { 1249 if (!p->numa_faults) 1250 return 0; 1251 1252 return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] + 1253 p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)]; 1254 } 1255 1256 static inline unsigned long group_faults(struct task_struct *p, int nid) 1257 { 1258 struct numa_group *ng = deref_task_numa_group(p); 1259 1260 if (!ng) 1261 return 0; 1262 1263 return ng->faults[task_faults_idx(NUMA_MEM, nid, 0)] + 1264 ng->faults[task_faults_idx(NUMA_MEM, nid, 1)]; 1265 } 1266 1267 static inline unsigned long group_faults_cpu(struct numa_group *group, int nid) 1268 { 1269 return group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 0)] + 1270 group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 1)]; 1271 } 1272 1273 static inline unsigned long group_faults_priv(struct numa_group *ng) 1274 { 1275 unsigned long faults = 0; 1276 int node; 1277 1278 for_each_online_node(node) { 1279 faults += ng->faults[task_faults_idx(NUMA_MEM, node, 1)]; 1280 } 1281 1282 return faults; 1283 } 1284 1285 static inline unsigned long group_faults_shared(struct numa_group *ng) 1286 { 1287 unsigned long faults = 0; 1288 int node; 1289 1290 for_each_online_node(node) { 1291 faults += ng->faults[task_faults_idx(NUMA_MEM, node, 0)]; 1292 } 1293 1294 return faults; 1295 } 1296 1297 /* 1298 * A node triggering more than 1/3 as many NUMA faults as the maximum is 1299 * considered part of a numa group's pseudo-interleaving set. Migrations 1300 * between these nodes are slowed down, to allow things to settle down. 1301 */ 1302 #define ACTIVE_NODE_FRACTION 3 1303 1304 static bool numa_is_active_node(int nid, struct numa_group *ng) 1305 { 1306 return group_faults_cpu(ng, nid) * ACTIVE_NODE_FRACTION > ng->max_faults_cpu; 1307 } 1308 1309 /* Handle placement on systems where not all nodes are directly connected. */ 1310 static unsigned long score_nearby_nodes(struct task_struct *p, int nid, 1311 int maxdist, bool task) 1312 { 1313 unsigned long score = 0; 1314 int node; 1315 1316 /* 1317 * All nodes are directly connected, and the same distance 1318 * from each other. No need for fancy placement algorithms. 1319 */ 1320 if (sched_numa_topology_type == NUMA_DIRECT) 1321 return 0; 1322 1323 /* 1324 * This code is called for each node, introducing N^2 complexity, 1325 * which should be ok given the number of nodes rarely exceeds 8. 1326 */ 1327 for_each_online_node(node) { 1328 unsigned long faults; 1329 int dist = node_distance(nid, node); 1330 1331 /* 1332 * The furthest away nodes in the system are not interesting 1333 * for placement; nid was already counted. 1334 */ 1335 if (dist == sched_max_numa_distance || node == nid) 1336 continue; 1337 1338 /* 1339 * On systems with a backplane NUMA topology, compare groups 1340 * of nodes, and move tasks towards the group with the most 1341 * memory accesses. When comparing two nodes at distance 1342 * "hoplimit", only nodes closer by than "hoplimit" are part 1343 * of each group. Skip other nodes. 1344 */ 1345 if (sched_numa_topology_type == NUMA_BACKPLANE && 1346 dist >= maxdist) 1347 continue; 1348 1349 /* Add up the faults from nearby nodes. */ 1350 if (task) 1351 faults = task_faults(p, node); 1352 else 1353 faults = group_faults(p, node); 1354 1355 /* 1356 * On systems with a glueless mesh NUMA topology, there are 1357 * no fixed "groups of nodes". Instead, nodes that are not 1358 * directly connected bounce traffic through intermediate 1359 * nodes; a numa_group can occupy any set of nodes. 1360 * The further away a node is, the less the faults count. 1361 * This seems to result in good task placement. 1362 */ 1363 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) { 1364 faults *= (sched_max_numa_distance - dist); 1365 faults /= (sched_max_numa_distance - LOCAL_DISTANCE); 1366 } 1367 1368 score += faults; 1369 } 1370 1371 return score; 1372 } 1373 1374 /* 1375 * These return the fraction of accesses done by a particular task, or 1376 * task group, on a particular numa node. The group weight is given a 1377 * larger multiplier, in order to group tasks together that are almost 1378 * evenly spread out between numa nodes. 1379 */ 1380 static inline unsigned long task_weight(struct task_struct *p, int nid, 1381 int dist) 1382 { 1383 unsigned long faults, total_faults; 1384 1385 if (!p->numa_faults) 1386 return 0; 1387 1388 total_faults = p->total_numa_faults; 1389 1390 if (!total_faults) 1391 return 0; 1392 1393 faults = task_faults(p, nid); 1394 faults += score_nearby_nodes(p, nid, dist, true); 1395 1396 return 1000 * faults / total_faults; 1397 } 1398 1399 static inline unsigned long group_weight(struct task_struct *p, int nid, 1400 int dist) 1401 { 1402 struct numa_group *ng = deref_task_numa_group(p); 1403 unsigned long faults, total_faults; 1404 1405 if (!ng) 1406 return 0; 1407 1408 total_faults = ng->total_faults; 1409 1410 if (!total_faults) 1411 return 0; 1412 1413 faults = group_faults(p, nid); 1414 faults += score_nearby_nodes(p, nid, dist, false); 1415 1416 return 1000 * faults / total_faults; 1417 } 1418 1419 bool should_numa_migrate_memory(struct task_struct *p, struct page * page, 1420 int src_nid, int dst_cpu) 1421 { 1422 struct numa_group *ng = deref_curr_numa_group(p); 1423 int dst_nid = cpu_to_node(dst_cpu); 1424 int last_cpupid, this_cpupid; 1425 1426 this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid); 1427 last_cpupid = page_cpupid_xchg_last(page, this_cpupid); 1428 1429 /* 1430 * Allow first faults or private faults to migrate immediately early in 1431 * the lifetime of a task. The magic number 4 is based on waiting for 1432 * two full passes of the "multi-stage node selection" test that is 1433 * executed below. 1434 */ 1435 if ((p->numa_preferred_nid == NUMA_NO_NODE || p->numa_scan_seq <= 4) && 1436 (cpupid_pid_unset(last_cpupid) || cpupid_match_pid(p, last_cpupid))) 1437 return true; 1438 1439 /* 1440 * Multi-stage node selection is used in conjunction with a periodic 1441 * migration fault to build a temporal task<->page relation. By using 1442 * a two-stage filter we remove short/unlikely relations. 1443 * 1444 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate 1445 * a task's usage of a particular page (n_p) per total usage of this 1446 * page (n_t) (in a given time-span) to a probability. 1447 * 1448 * Our periodic faults will sample this probability and getting the 1449 * same result twice in a row, given these samples are fully 1450 * independent, is then given by P(n)^2, provided our sample period 1451 * is sufficiently short compared to the usage pattern. 1452 * 1453 * This quadric squishes small probabilities, making it less likely we 1454 * act on an unlikely task<->page relation. 1455 */ 1456 if (!cpupid_pid_unset(last_cpupid) && 1457 cpupid_to_nid(last_cpupid) != dst_nid) 1458 return false; 1459 1460 /* Always allow migrate on private faults */ 1461 if (cpupid_match_pid(p, last_cpupid)) 1462 return true; 1463 1464 /* A shared fault, but p->numa_group has not been set up yet. */ 1465 if (!ng) 1466 return true; 1467 1468 /* 1469 * Destination node is much more heavily used than the source 1470 * node? Allow migration. 1471 */ 1472 if (group_faults_cpu(ng, dst_nid) > group_faults_cpu(ng, src_nid) * 1473 ACTIVE_NODE_FRACTION) 1474 return true; 1475 1476 /* 1477 * Distribute memory according to CPU & memory use on each node, 1478 * with 3/4 hysteresis to avoid unnecessary memory migrations: 1479 * 1480 * faults_cpu(dst) 3 faults_cpu(src) 1481 * --------------- * - > --------------- 1482 * faults_mem(dst) 4 faults_mem(src) 1483 */ 1484 return group_faults_cpu(ng, dst_nid) * group_faults(p, src_nid) * 3 > 1485 group_faults_cpu(ng, src_nid) * group_faults(p, dst_nid) * 4; 1486 } 1487 1488 /* 1489 * 'numa_type' describes the node at the moment of load balancing. 1490 */ 1491 enum numa_type { 1492 /* The node has spare capacity that can be used to run more tasks. */ 1493 node_has_spare = 0, 1494 /* 1495 * The node is fully used and the tasks don't compete for more CPU 1496 * cycles. Nevertheless, some tasks might wait before running. 1497 */ 1498 node_fully_busy, 1499 /* 1500 * The node is overloaded and can't provide expected CPU cycles to all 1501 * tasks. 1502 */ 1503 node_overloaded 1504 }; 1505 1506 /* Cached statistics for all CPUs within a node */ 1507 struct numa_stats { 1508 unsigned long load; 1509 unsigned long util; 1510 /* Total compute capacity of CPUs on a node */ 1511 unsigned long compute_capacity; 1512 unsigned int nr_running; 1513 unsigned int weight; 1514 enum numa_type node_type; 1515 int idle_cpu; 1516 }; 1517 1518 static inline bool is_core_idle(int cpu) 1519 { 1520 #ifdef CONFIG_SCHED_SMT 1521 int sibling; 1522 1523 for_each_cpu(sibling, cpu_smt_mask(cpu)) { 1524 if (cpu == sibling) 1525 continue; 1526 1527 if (!idle_cpu(cpu)) 1528 return false; 1529 } 1530 #endif 1531 1532 return true; 1533 } 1534 1535 struct task_numa_env { 1536 struct task_struct *p; 1537 1538 int src_cpu, src_nid; 1539 int dst_cpu, dst_nid; 1540 1541 struct numa_stats src_stats, dst_stats; 1542 1543 int imbalance_pct; 1544 int dist; 1545 1546 struct task_struct *best_task; 1547 long best_imp; 1548 int best_cpu; 1549 }; 1550 1551 static unsigned long cpu_load(struct rq *rq); 1552 static unsigned long cpu_util(int cpu); 1553 static inline long adjust_numa_imbalance(int imbalance, int src_nr_running); 1554 1555 static inline enum 1556 numa_type numa_classify(unsigned int imbalance_pct, 1557 struct numa_stats *ns) 1558 { 1559 if ((ns->nr_running > ns->weight) && 1560 ((ns->compute_capacity * 100) < (ns->util * imbalance_pct))) 1561 return node_overloaded; 1562 1563 if ((ns->nr_running < ns->weight) || 1564 ((ns->compute_capacity * 100) > (ns->util * imbalance_pct))) 1565 return node_has_spare; 1566 1567 return node_fully_busy; 1568 } 1569 1570 #ifdef CONFIG_SCHED_SMT 1571 /* Forward declarations of select_idle_sibling helpers */ 1572 static inline bool test_idle_cores(int cpu, bool def); 1573 static inline int numa_idle_core(int idle_core, int cpu) 1574 { 1575 if (!static_branch_likely(&sched_smt_present) || 1576 idle_core >= 0 || !test_idle_cores(cpu, false)) 1577 return idle_core; 1578 1579 /* 1580 * Prefer cores instead of packing HT siblings 1581 * and triggering future load balancing. 1582 */ 1583 if (is_core_idle(cpu)) 1584 idle_core = cpu; 1585 1586 return idle_core; 1587 } 1588 #else 1589 static inline int numa_idle_core(int idle_core, int cpu) 1590 { 1591 return idle_core; 1592 } 1593 #endif 1594 1595 /* 1596 * Gather all necessary information to make NUMA balancing placement 1597 * decisions that are compatible with standard load balancer. This 1598 * borrows code and logic from update_sg_lb_stats but sharing a 1599 * common implementation is impractical. 1600 */ 1601 static void update_numa_stats(struct task_numa_env *env, 1602 struct numa_stats *ns, int nid, 1603 bool find_idle) 1604 { 1605 int cpu, idle_core = -1; 1606 1607 memset(ns, 0, sizeof(*ns)); 1608 ns->idle_cpu = -1; 1609 1610 rcu_read_lock(); 1611 for_each_cpu(cpu, cpumask_of_node(nid)) { 1612 struct rq *rq = cpu_rq(cpu); 1613 1614 ns->load += cpu_load(rq); 1615 ns->util += cpu_util(cpu); 1616 ns->nr_running += rq->cfs.h_nr_running; 1617 ns->compute_capacity += capacity_of(cpu); 1618 1619 if (find_idle && !rq->nr_running && idle_cpu(cpu)) { 1620 if (READ_ONCE(rq->numa_migrate_on) || 1621 !cpumask_test_cpu(cpu, env->p->cpus_ptr)) 1622 continue; 1623 1624 if (ns->idle_cpu == -1) 1625 ns->idle_cpu = cpu; 1626 1627 idle_core = numa_idle_core(idle_core, cpu); 1628 } 1629 } 1630 rcu_read_unlock(); 1631 1632 ns->weight = cpumask_weight(cpumask_of_node(nid)); 1633 1634 ns->node_type = numa_classify(env->imbalance_pct, ns); 1635 1636 if (idle_core >= 0) 1637 ns->idle_cpu = idle_core; 1638 } 1639 1640 static void task_numa_assign(struct task_numa_env *env, 1641 struct task_struct *p, long imp) 1642 { 1643 struct rq *rq = cpu_rq(env->dst_cpu); 1644 1645 /* Check if run-queue part of active NUMA balance. */ 1646 if (env->best_cpu != env->dst_cpu && xchg(&rq->numa_migrate_on, 1)) { 1647 int cpu; 1648 int start = env->dst_cpu; 1649 1650 /* Find alternative idle CPU. */ 1651 for_each_cpu_wrap(cpu, cpumask_of_node(env->dst_nid), start) { 1652 if (cpu == env->best_cpu || !idle_cpu(cpu) || 1653 !cpumask_test_cpu(cpu, env->p->cpus_ptr)) { 1654 continue; 1655 } 1656 1657 env->dst_cpu = cpu; 1658 rq = cpu_rq(env->dst_cpu); 1659 if (!xchg(&rq->numa_migrate_on, 1)) 1660 goto assign; 1661 } 1662 1663 /* Failed to find an alternative idle CPU */ 1664 return; 1665 } 1666 1667 assign: 1668 /* 1669 * Clear previous best_cpu/rq numa-migrate flag, since task now 1670 * found a better CPU to move/swap. 1671 */ 1672 if (env->best_cpu != -1 && env->best_cpu != env->dst_cpu) { 1673 rq = cpu_rq(env->best_cpu); 1674 WRITE_ONCE(rq->numa_migrate_on, 0); 1675 } 1676 1677 if (env->best_task) 1678 put_task_struct(env->best_task); 1679 if (p) 1680 get_task_struct(p); 1681 1682 env->best_task = p; 1683 env->best_imp = imp; 1684 env->best_cpu = env->dst_cpu; 1685 } 1686 1687 static bool load_too_imbalanced(long src_load, long dst_load, 1688 struct task_numa_env *env) 1689 { 1690 long imb, old_imb; 1691 long orig_src_load, orig_dst_load; 1692 long src_capacity, dst_capacity; 1693 1694 /* 1695 * The load is corrected for the CPU capacity available on each node. 1696 * 1697 * src_load dst_load 1698 * ------------ vs --------- 1699 * src_capacity dst_capacity 1700 */ 1701 src_capacity = env->src_stats.compute_capacity; 1702 dst_capacity = env->dst_stats.compute_capacity; 1703 1704 imb = abs(dst_load * src_capacity - src_load * dst_capacity); 1705 1706 orig_src_load = env->src_stats.load; 1707 orig_dst_load = env->dst_stats.load; 1708 1709 old_imb = abs(orig_dst_load * src_capacity - orig_src_load * dst_capacity); 1710 1711 /* Would this change make things worse? */ 1712 return (imb > old_imb); 1713 } 1714 1715 /* 1716 * Maximum NUMA importance can be 1998 (2*999); 1717 * SMALLIMP @ 30 would be close to 1998/64. 1718 * Used to deter task migration. 1719 */ 1720 #define SMALLIMP 30 1721 1722 /* 1723 * This checks if the overall compute and NUMA accesses of the system would 1724 * be improved if the source tasks was migrated to the target dst_cpu taking 1725 * into account that it might be best if task running on the dst_cpu should 1726 * be exchanged with the source task 1727 */ 1728 static bool task_numa_compare(struct task_numa_env *env, 1729 long taskimp, long groupimp, bool maymove) 1730 { 1731 struct numa_group *cur_ng, *p_ng = deref_curr_numa_group(env->p); 1732 struct rq *dst_rq = cpu_rq(env->dst_cpu); 1733 long imp = p_ng ? groupimp : taskimp; 1734 struct task_struct *cur; 1735 long src_load, dst_load; 1736 int dist = env->dist; 1737 long moveimp = imp; 1738 long load; 1739 bool stopsearch = false; 1740 1741 if (READ_ONCE(dst_rq->numa_migrate_on)) 1742 return false; 1743 1744 rcu_read_lock(); 1745 cur = rcu_dereference(dst_rq->curr); 1746 if (cur && ((cur->flags & PF_EXITING) || is_idle_task(cur))) 1747 cur = NULL; 1748 1749 /* 1750 * Because we have preemption enabled we can get migrated around and 1751 * end try selecting ourselves (current == env->p) as a swap candidate. 1752 */ 1753 if (cur == env->p) { 1754 stopsearch = true; 1755 goto unlock; 1756 } 1757 1758 if (!cur) { 1759 if (maymove && moveimp >= env->best_imp) 1760 goto assign; 1761 else 1762 goto unlock; 1763 } 1764 1765 /* Skip this swap candidate if cannot move to the source cpu. */ 1766 if (!cpumask_test_cpu(env->src_cpu, cur->cpus_ptr)) 1767 goto unlock; 1768 1769 /* 1770 * Skip this swap candidate if it is not moving to its preferred 1771 * node and the best task is. 1772 */ 1773 if (env->best_task && 1774 env->best_task->numa_preferred_nid == env->src_nid && 1775 cur->numa_preferred_nid != env->src_nid) { 1776 goto unlock; 1777 } 1778 1779 /* 1780 * "imp" is the fault differential for the source task between the 1781 * source and destination node. Calculate the total differential for 1782 * the source task and potential destination task. The more negative 1783 * the value is, the more remote accesses that would be expected to 1784 * be incurred if the tasks were swapped. 1785 * 1786 * If dst and source tasks are in the same NUMA group, or not 1787 * in any group then look only at task weights. 1788 */ 1789 cur_ng = rcu_dereference(cur->numa_group); 1790 if (cur_ng == p_ng) { 1791 imp = taskimp + task_weight(cur, env->src_nid, dist) - 1792 task_weight(cur, env->dst_nid, dist); 1793 /* 1794 * Add some hysteresis to prevent swapping the 1795 * tasks within a group over tiny differences. 1796 */ 1797 if (cur_ng) 1798 imp -= imp / 16; 1799 } else { 1800 /* 1801 * Compare the group weights. If a task is all by itself 1802 * (not part of a group), use the task weight instead. 1803 */ 1804 if (cur_ng && p_ng) 1805 imp += group_weight(cur, env->src_nid, dist) - 1806 group_weight(cur, env->dst_nid, dist); 1807 else 1808 imp += task_weight(cur, env->src_nid, dist) - 1809 task_weight(cur, env->dst_nid, dist); 1810 } 1811 1812 /* Discourage picking a task already on its preferred node */ 1813 if (cur->numa_preferred_nid == env->dst_nid) 1814 imp -= imp / 16; 1815 1816 /* 1817 * Encourage picking a task that moves to its preferred node. 1818 * This potentially makes imp larger than it's maximum of 1819 * 1998 (see SMALLIMP and task_weight for why) but in this 1820 * case, it does not matter. 1821 */ 1822 if (cur->numa_preferred_nid == env->src_nid) 1823 imp += imp / 8; 1824 1825 if (maymove && moveimp > imp && moveimp > env->best_imp) { 1826 imp = moveimp; 1827 cur = NULL; 1828 goto assign; 1829 } 1830 1831 /* 1832 * Prefer swapping with a task moving to its preferred node over a 1833 * task that is not. 1834 */ 1835 if (env->best_task && cur->numa_preferred_nid == env->src_nid && 1836 env->best_task->numa_preferred_nid != env->src_nid) { 1837 goto assign; 1838 } 1839 1840 /* 1841 * If the NUMA importance is less than SMALLIMP, 1842 * task migration might only result in ping pong 1843 * of tasks and also hurt performance due to cache 1844 * misses. 1845 */ 1846 if (imp < SMALLIMP || imp <= env->best_imp + SMALLIMP / 2) 1847 goto unlock; 1848 1849 /* 1850 * In the overloaded case, try and keep the load balanced. 1851 */ 1852 load = task_h_load(env->p) - task_h_load(cur); 1853 if (!load) 1854 goto assign; 1855 1856 dst_load = env->dst_stats.load + load; 1857 src_load = env->src_stats.load - load; 1858 1859 if (load_too_imbalanced(src_load, dst_load, env)) 1860 goto unlock; 1861 1862 assign: 1863 /* Evaluate an idle CPU for a task numa move. */ 1864 if (!cur) { 1865 int cpu = env->dst_stats.idle_cpu; 1866 1867 /* Nothing cached so current CPU went idle since the search. */ 1868 if (cpu < 0) 1869 cpu = env->dst_cpu; 1870 1871 /* 1872 * If the CPU is no longer truly idle and the previous best CPU 1873 * is, keep using it. 1874 */ 1875 if (!idle_cpu(cpu) && env->best_cpu >= 0 && 1876 idle_cpu(env->best_cpu)) { 1877 cpu = env->best_cpu; 1878 } 1879 1880 env->dst_cpu = cpu; 1881 } 1882 1883 task_numa_assign(env, cur, imp); 1884 1885 /* 1886 * If a move to idle is allowed because there is capacity or load 1887 * balance improves then stop the search. While a better swap 1888 * candidate may exist, a search is not free. 1889 */ 1890 if (maymove && !cur && env->best_cpu >= 0 && idle_cpu(env->best_cpu)) 1891 stopsearch = true; 1892 1893 /* 1894 * If a swap candidate must be identified and the current best task 1895 * moves its preferred node then stop the search. 1896 */ 1897 if (!maymove && env->best_task && 1898 env->best_task->numa_preferred_nid == env->src_nid) { 1899 stopsearch = true; 1900 } 1901 unlock: 1902 rcu_read_unlock(); 1903 1904 return stopsearch; 1905 } 1906 1907 static void task_numa_find_cpu(struct task_numa_env *env, 1908 long taskimp, long groupimp) 1909 { 1910 bool maymove = false; 1911 int cpu; 1912 1913 /* 1914 * If dst node has spare capacity, then check if there is an 1915 * imbalance that would be overruled by the load balancer. 1916 */ 1917 if (env->dst_stats.node_type == node_has_spare) { 1918 unsigned int imbalance; 1919 int src_running, dst_running; 1920 1921 /* 1922 * Would movement cause an imbalance? Note that if src has 1923 * more running tasks that the imbalance is ignored as the 1924 * move improves the imbalance from the perspective of the 1925 * CPU load balancer. 1926 * */ 1927 src_running = env->src_stats.nr_running - 1; 1928 dst_running = env->dst_stats.nr_running + 1; 1929 imbalance = max(0, dst_running - src_running); 1930 imbalance = adjust_numa_imbalance(imbalance, src_running); 1931 1932 /* Use idle CPU if there is no imbalance */ 1933 if (!imbalance) { 1934 maymove = true; 1935 if (env->dst_stats.idle_cpu >= 0) { 1936 env->dst_cpu = env->dst_stats.idle_cpu; 1937 task_numa_assign(env, NULL, 0); 1938 return; 1939 } 1940 } 1941 } else { 1942 long src_load, dst_load, load; 1943 /* 1944 * If the improvement from just moving env->p direction is better 1945 * than swapping tasks around, check if a move is possible. 1946 */ 1947 load = task_h_load(env->p); 1948 dst_load = env->dst_stats.load + load; 1949 src_load = env->src_stats.load - load; 1950 maymove = !load_too_imbalanced(src_load, dst_load, env); 1951 } 1952 1953 for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) { 1954 /* Skip this CPU if the source task cannot migrate */ 1955 if (!cpumask_test_cpu(cpu, env->p->cpus_ptr)) 1956 continue; 1957 1958 env->dst_cpu = cpu; 1959 if (task_numa_compare(env, taskimp, groupimp, maymove)) 1960 break; 1961 } 1962 } 1963 1964 static int task_numa_migrate(struct task_struct *p) 1965 { 1966 struct task_numa_env env = { 1967 .p = p, 1968 1969 .src_cpu = task_cpu(p), 1970 .src_nid = task_node(p), 1971 1972 .imbalance_pct = 112, 1973 1974 .best_task = NULL, 1975 .best_imp = 0, 1976 .best_cpu = -1, 1977 }; 1978 unsigned long taskweight, groupweight; 1979 struct sched_domain *sd; 1980 long taskimp, groupimp; 1981 struct numa_group *ng; 1982 struct rq *best_rq; 1983 int nid, ret, dist; 1984 1985 /* 1986 * Pick the lowest SD_NUMA domain, as that would have the smallest 1987 * imbalance and would be the first to start moving tasks about. 1988 * 1989 * And we want to avoid any moving of tasks about, as that would create 1990 * random movement of tasks -- counter the numa conditions we're trying 1991 * to satisfy here. 1992 */ 1993 rcu_read_lock(); 1994 sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu)); 1995 if (sd) 1996 env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2; 1997 rcu_read_unlock(); 1998 1999 /* 2000 * Cpusets can break the scheduler domain tree into smaller 2001 * balance domains, some of which do not cross NUMA boundaries. 2002 * Tasks that are "trapped" in such domains cannot be migrated 2003 * elsewhere, so there is no point in (re)trying. 2004 */ 2005 if (unlikely(!sd)) { 2006 sched_setnuma(p, task_node(p)); 2007 return -EINVAL; 2008 } 2009 2010 env.dst_nid = p->numa_preferred_nid; 2011 dist = env.dist = node_distance(env.src_nid, env.dst_nid); 2012 taskweight = task_weight(p, env.src_nid, dist); 2013 groupweight = group_weight(p, env.src_nid, dist); 2014 update_numa_stats(&env, &env.src_stats, env.src_nid, false); 2015 taskimp = task_weight(p, env.dst_nid, dist) - taskweight; 2016 groupimp = group_weight(p, env.dst_nid, dist) - groupweight; 2017 update_numa_stats(&env, &env.dst_stats, env.dst_nid, true); 2018 2019 /* Try to find a spot on the preferred nid. */ 2020 task_numa_find_cpu(&env, taskimp, groupimp); 2021 2022 /* 2023 * Look at other nodes in these cases: 2024 * - there is no space available on the preferred_nid 2025 * - the task is part of a numa_group that is interleaved across 2026 * multiple NUMA nodes; in order to better consolidate the group, 2027 * we need to check other locations. 2028 */ 2029 ng = deref_curr_numa_group(p); 2030 if (env.best_cpu == -1 || (ng && ng->active_nodes > 1)) { 2031 for_each_online_node(nid) { 2032 if (nid == env.src_nid || nid == p->numa_preferred_nid) 2033 continue; 2034 2035 dist = node_distance(env.src_nid, env.dst_nid); 2036 if (sched_numa_topology_type == NUMA_BACKPLANE && 2037 dist != env.dist) { 2038 taskweight = task_weight(p, env.src_nid, dist); 2039 groupweight = group_weight(p, env.src_nid, dist); 2040 } 2041 2042 /* Only consider nodes where both task and groups benefit */ 2043 taskimp = task_weight(p, nid, dist) - taskweight; 2044 groupimp = group_weight(p, nid, dist) - groupweight; 2045 if (taskimp < 0 && groupimp < 0) 2046 continue; 2047 2048 env.dist = dist; 2049 env.dst_nid = nid; 2050 update_numa_stats(&env, &env.dst_stats, env.dst_nid, true); 2051 task_numa_find_cpu(&env, taskimp, groupimp); 2052 } 2053 } 2054 2055 /* 2056 * If the task is part of a workload that spans multiple NUMA nodes, 2057 * and is migrating into one of the workload's active nodes, remember 2058 * this node as the task's preferred numa node, so the workload can 2059 * settle down. 2060 * A task that migrated to a second choice node will be better off 2061 * trying for a better one later. Do not set the preferred node here. 2062 */ 2063 if (ng) { 2064 if (env.best_cpu == -1) 2065 nid = env.src_nid; 2066 else 2067 nid = cpu_to_node(env.best_cpu); 2068 2069 if (nid != p->numa_preferred_nid) 2070 sched_setnuma(p, nid); 2071 } 2072 2073 /* No better CPU than the current one was found. */ 2074 if (env.best_cpu == -1) { 2075 trace_sched_stick_numa(p, env.src_cpu, NULL, -1); 2076 return -EAGAIN; 2077 } 2078 2079 best_rq = cpu_rq(env.best_cpu); 2080 if (env.best_task == NULL) { 2081 ret = migrate_task_to(p, env.best_cpu); 2082 WRITE_ONCE(best_rq->numa_migrate_on, 0); 2083 if (ret != 0) 2084 trace_sched_stick_numa(p, env.src_cpu, NULL, env.best_cpu); 2085 return ret; 2086 } 2087 2088 ret = migrate_swap(p, env.best_task, env.best_cpu, env.src_cpu); 2089 WRITE_ONCE(best_rq->numa_migrate_on, 0); 2090 2091 if (ret != 0) 2092 trace_sched_stick_numa(p, env.src_cpu, env.best_task, env.best_cpu); 2093 put_task_struct(env.best_task); 2094 return ret; 2095 } 2096 2097 /* Attempt to migrate a task to a CPU on the preferred node. */ 2098 static void numa_migrate_preferred(struct task_struct *p) 2099 { 2100 unsigned long interval = HZ; 2101 2102 /* This task has no NUMA fault statistics yet */ 2103 if (unlikely(p->numa_preferred_nid == NUMA_NO_NODE || !p->numa_faults)) 2104 return; 2105 2106 /* Periodically retry migrating the task to the preferred node */ 2107 interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16); 2108 p->numa_migrate_retry = jiffies + interval; 2109 2110 /* Success if task is already running on preferred CPU */ 2111 if (task_node(p) == p->numa_preferred_nid) 2112 return; 2113 2114 /* Otherwise, try migrate to a CPU on the preferred node */ 2115 task_numa_migrate(p); 2116 } 2117 2118 /* 2119 * Find out how many nodes on the workload is actively running on. Do this by 2120 * tracking the nodes from which NUMA hinting faults are triggered. This can 2121 * be different from the set of nodes where the workload's memory is currently 2122 * located. 2123 */ 2124 static void numa_group_count_active_nodes(struct numa_group *numa_group) 2125 { 2126 unsigned long faults, max_faults = 0; 2127 int nid, active_nodes = 0; 2128 2129 for_each_online_node(nid) { 2130 faults = group_faults_cpu(numa_group, nid); 2131 if (faults > max_faults) 2132 max_faults = faults; 2133 } 2134 2135 for_each_online_node(nid) { 2136 faults = group_faults_cpu(numa_group, nid); 2137 if (faults * ACTIVE_NODE_FRACTION > max_faults) 2138 active_nodes++; 2139 } 2140 2141 numa_group->max_faults_cpu = max_faults; 2142 numa_group->active_nodes = active_nodes; 2143 } 2144 2145 /* 2146 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS 2147 * increments. The more local the fault statistics are, the higher the scan 2148 * period will be for the next scan window. If local/(local+remote) ratio is 2149 * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS) 2150 * the scan period will decrease. Aim for 70% local accesses. 2151 */ 2152 #define NUMA_PERIOD_SLOTS 10 2153 #define NUMA_PERIOD_THRESHOLD 7 2154 2155 /* 2156 * Increase the scan period (slow down scanning) if the majority of 2157 * our memory is already on our local node, or if the majority of 2158 * the page accesses are shared with other processes. 2159 * Otherwise, decrease the scan period. 2160 */ 2161 static void update_task_scan_period(struct task_struct *p, 2162 unsigned long shared, unsigned long private) 2163 { 2164 unsigned int period_slot; 2165 int lr_ratio, ps_ratio; 2166 int diff; 2167 2168 unsigned long remote = p->numa_faults_locality[0]; 2169 unsigned long local = p->numa_faults_locality[1]; 2170 2171 /* 2172 * If there were no record hinting faults then either the task is 2173 * completely idle or all activity is areas that are not of interest 2174 * to automatic numa balancing. Related to that, if there were failed 2175 * migration then it implies we are migrating too quickly or the local 2176 * node is overloaded. In either case, scan slower 2177 */ 2178 if (local + shared == 0 || p->numa_faults_locality[2]) { 2179 p->numa_scan_period = min(p->numa_scan_period_max, 2180 p->numa_scan_period << 1); 2181 2182 p->mm->numa_next_scan = jiffies + 2183 msecs_to_jiffies(p->numa_scan_period); 2184 2185 return; 2186 } 2187 2188 /* 2189 * Prepare to scale scan period relative to the current period. 2190 * == NUMA_PERIOD_THRESHOLD scan period stays the same 2191 * < NUMA_PERIOD_THRESHOLD scan period decreases (scan faster) 2192 * >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower) 2193 */ 2194 period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS); 2195 lr_ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote); 2196 ps_ratio = (private * NUMA_PERIOD_SLOTS) / (private + shared); 2197 2198 if (ps_ratio >= NUMA_PERIOD_THRESHOLD) { 2199 /* 2200 * Most memory accesses are local. There is no need to 2201 * do fast NUMA scanning, since memory is already local. 2202 */ 2203 int slot = ps_ratio - NUMA_PERIOD_THRESHOLD; 2204 if (!slot) 2205 slot = 1; 2206 diff = slot * period_slot; 2207 } else if (lr_ratio >= NUMA_PERIOD_THRESHOLD) { 2208 /* 2209 * Most memory accesses are shared with other tasks. 2210 * There is no point in continuing fast NUMA scanning, 2211 * since other tasks may just move the memory elsewhere. 2212 */ 2213 int slot = lr_ratio - NUMA_PERIOD_THRESHOLD; 2214 if (!slot) 2215 slot = 1; 2216 diff = slot * period_slot; 2217 } else { 2218 /* 2219 * Private memory faults exceed (SLOTS-THRESHOLD)/SLOTS, 2220 * yet they are not on the local NUMA node. Speed up 2221 * NUMA scanning to get the memory moved over. 2222 */ 2223 int ratio = max(lr_ratio, ps_ratio); 2224 diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot; 2225 } 2226 2227 p->numa_scan_period = clamp(p->numa_scan_period + diff, 2228 task_scan_min(p), task_scan_max(p)); 2229 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality)); 2230 } 2231 2232 /* 2233 * Get the fraction of time the task has been running since the last 2234 * NUMA placement cycle. The scheduler keeps similar statistics, but 2235 * decays those on a 32ms period, which is orders of magnitude off 2236 * from the dozens-of-seconds NUMA balancing period. Use the scheduler 2237 * stats only if the task is so new there are no NUMA statistics yet. 2238 */ 2239 static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period) 2240 { 2241 u64 runtime, delta, now; 2242 /* Use the start of this time slice to avoid calculations. */ 2243 now = p->se.exec_start; 2244 runtime = p->se.sum_exec_runtime; 2245 2246 if (p->last_task_numa_placement) { 2247 delta = runtime - p->last_sum_exec_runtime; 2248 *period = now - p->last_task_numa_placement; 2249 2250 /* Avoid time going backwards, prevent potential divide error: */ 2251 if (unlikely((s64)*period < 0)) 2252 *period = 0; 2253 } else { 2254 delta = p->se.avg.load_sum; 2255 *period = LOAD_AVG_MAX; 2256 } 2257 2258 p->last_sum_exec_runtime = runtime; 2259 p->last_task_numa_placement = now; 2260 2261 return delta; 2262 } 2263 2264 /* 2265 * Determine the preferred nid for a task in a numa_group. This needs to 2266 * be done in a way that produces consistent results with group_weight, 2267 * otherwise workloads might not converge. 2268 */ 2269 static int preferred_group_nid(struct task_struct *p, int nid) 2270 { 2271 nodemask_t nodes; 2272 int dist; 2273 2274 /* Direct connections between all NUMA nodes. */ 2275 if (sched_numa_topology_type == NUMA_DIRECT) 2276 return nid; 2277 2278 /* 2279 * On a system with glueless mesh NUMA topology, group_weight 2280 * scores nodes according to the number of NUMA hinting faults on 2281 * both the node itself, and on nearby nodes. 2282 */ 2283 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) { 2284 unsigned long score, max_score = 0; 2285 int node, max_node = nid; 2286 2287 dist = sched_max_numa_distance; 2288 2289 for_each_online_node(node) { 2290 score = group_weight(p, node, dist); 2291 if (score > max_score) { 2292 max_score = score; 2293 max_node = node; 2294 } 2295 } 2296 return max_node; 2297 } 2298 2299 /* 2300 * Finding the preferred nid in a system with NUMA backplane 2301 * interconnect topology is more involved. The goal is to locate 2302 * tasks from numa_groups near each other in the system, and 2303 * untangle workloads from different sides of the system. This requires 2304 * searching down the hierarchy of node groups, recursively searching 2305 * inside the highest scoring group of nodes. The nodemask tricks 2306 * keep the complexity of the search down. 2307 */ 2308 nodes = node_online_map; 2309 for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) { 2310 unsigned long max_faults = 0; 2311 nodemask_t max_group = NODE_MASK_NONE; 2312 int a, b; 2313 2314 /* Are there nodes at this distance from each other? */ 2315 if (!find_numa_distance(dist)) 2316 continue; 2317 2318 for_each_node_mask(a, nodes) { 2319 unsigned long faults = 0; 2320 nodemask_t this_group; 2321 nodes_clear(this_group); 2322 2323 /* Sum group's NUMA faults; includes a==b case. */ 2324 for_each_node_mask(b, nodes) { 2325 if (node_distance(a, b) < dist) { 2326 faults += group_faults(p, b); 2327 node_set(b, this_group); 2328 node_clear(b, nodes); 2329 } 2330 } 2331 2332 /* Remember the top group. */ 2333 if (faults > max_faults) { 2334 max_faults = faults; 2335 max_group = this_group; 2336 /* 2337 * subtle: at the smallest distance there is 2338 * just one node left in each "group", the 2339 * winner is the preferred nid. 2340 */ 2341 nid = a; 2342 } 2343 } 2344 /* Next round, evaluate the nodes within max_group. */ 2345 if (!max_faults) 2346 break; 2347 nodes = max_group; 2348 } 2349 return nid; 2350 } 2351 2352 static void task_numa_placement(struct task_struct *p) 2353 { 2354 int seq, nid, max_nid = NUMA_NO_NODE; 2355 unsigned long max_faults = 0; 2356 unsigned long fault_types[2] = { 0, 0 }; 2357 unsigned long total_faults; 2358 u64 runtime, period; 2359 spinlock_t *group_lock = NULL; 2360 struct numa_group *ng; 2361 2362 /* 2363 * The p->mm->numa_scan_seq field gets updated without 2364 * exclusive access. Use READ_ONCE() here to ensure 2365 * that the field is read in a single access: 2366 */ 2367 seq = READ_ONCE(p->mm->numa_scan_seq); 2368 if (p->numa_scan_seq == seq) 2369 return; 2370 p->numa_scan_seq = seq; 2371 p->numa_scan_period_max = task_scan_max(p); 2372 2373 total_faults = p->numa_faults_locality[0] + 2374 p->numa_faults_locality[1]; 2375 runtime = numa_get_avg_runtime(p, &period); 2376 2377 /* If the task is part of a group prevent parallel updates to group stats */ 2378 ng = deref_curr_numa_group(p); 2379 if (ng) { 2380 group_lock = &ng->lock; 2381 spin_lock_irq(group_lock); 2382 } 2383 2384 /* Find the node with the highest number of faults */ 2385 for_each_online_node(nid) { 2386 /* Keep track of the offsets in numa_faults array */ 2387 int mem_idx, membuf_idx, cpu_idx, cpubuf_idx; 2388 unsigned long faults = 0, group_faults = 0; 2389 int priv; 2390 2391 for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) { 2392 long diff, f_diff, f_weight; 2393 2394 mem_idx = task_faults_idx(NUMA_MEM, nid, priv); 2395 membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv); 2396 cpu_idx = task_faults_idx(NUMA_CPU, nid, priv); 2397 cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv); 2398 2399 /* Decay existing window, copy faults since last scan */ 2400 diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2; 2401 fault_types[priv] += p->numa_faults[membuf_idx]; 2402 p->numa_faults[membuf_idx] = 0; 2403 2404 /* 2405 * Normalize the faults_from, so all tasks in a group 2406 * count according to CPU use, instead of by the raw 2407 * number of faults. Tasks with little runtime have 2408 * little over-all impact on throughput, and thus their 2409 * faults are less important. 2410 */ 2411 f_weight = div64_u64(runtime << 16, period + 1); 2412 f_weight = (f_weight * p->numa_faults[cpubuf_idx]) / 2413 (total_faults + 1); 2414 f_diff = f_weight - p->numa_faults[cpu_idx] / 2; 2415 p->numa_faults[cpubuf_idx] = 0; 2416 2417 p->numa_faults[mem_idx] += diff; 2418 p->numa_faults[cpu_idx] += f_diff; 2419 faults += p->numa_faults[mem_idx]; 2420 p->total_numa_faults += diff; 2421 if (ng) { 2422 /* 2423 * safe because we can only change our own group 2424 * 2425 * mem_idx represents the offset for a given 2426 * nid and priv in a specific region because it 2427 * is at the beginning of the numa_faults array. 2428 */ 2429 ng->faults[mem_idx] += diff; 2430 ng->faults_cpu[mem_idx] += f_diff; 2431 ng->total_faults += diff; 2432 group_faults += ng->faults[mem_idx]; 2433 } 2434 } 2435 2436 if (!ng) { 2437 if (faults > max_faults) { 2438 max_faults = faults; 2439 max_nid = nid; 2440 } 2441 } else if (group_faults > max_faults) { 2442 max_faults = group_faults; 2443 max_nid = nid; 2444 } 2445 } 2446 2447 if (ng) { 2448 numa_group_count_active_nodes(ng); 2449 spin_unlock_irq(group_lock); 2450 max_nid = preferred_group_nid(p, max_nid); 2451 } 2452 2453 if (max_faults) { 2454 /* Set the new preferred node */ 2455 if (max_nid != p->numa_preferred_nid) 2456 sched_setnuma(p, max_nid); 2457 } 2458 2459 update_task_scan_period(p, fault_types[0], fault_types[1]); 2460 } 2461 2462 static inline int get_numa_group(struct numa_group *grp) 2463 { 2464 return refcount_inc_not_zero(&grp->refcount); 2465 } 2466 2467 static inline void put_numa_group(struct numa_group *grp) 2468 { 2469 if (refcount_dec_and_test(&grp->refcount)) 2470 kfree_rcu(grp, rcu); 2471 } 2472 2473 static void task_numa_group(struct task_struct *p, int cpupid, int flags, 2474 int *priv) 2475 { 2476 struct numa_group *grp, *my_grp; 2477 struct task_struct *tsk; 2478 bool join = false; 2479 int cpu = cpupid_to_cpu(cpupid); 2480 int i; 2481 2482 if (unlikely(!deref_curr_numa_group(p))) { 2483 unsigned int size = sizeof(struct numa_group) + 2484 4*nr_node_ids*sizeof(unsigned long); 2485 2486 grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN); 2487 if (!grp) 2488 return; 2489 2490 refcount_set(&grp->refcount, 1); 2491 grp->active_nodes = 1; 2492 grp->max_faults_cpu = 0; 2493 spin_lock_init(&grp->lock); 2494 grp->gid = p->pid; 2495 /* Second half of the array tracks nids where faults happen */ 2496 grp->faults_cpu = grp->faults + NR_NUMA_HINT_FAULT_TYPES * 2497 nr_node_ids; 2498 2499 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) 2500 grp->faults[i] = p->numa_faults[i]; 2501 2502 grp->total_faults = p->total_numa_faults; 2503 2504 grp->nr_tasks++; 2505 rcu_assign_pointer(p->numa_group, grp); 2506 } 2507 2508 rcu_read_lock(); 2509 tsk = READ_ONCE(cpu_rq(cpu)->curr); 2510 2511 if (!cpupid_match_pid(tsk, cpupid)) 2512 goto no_join; 2513 2514 grp = rcu_dereference(tsk->numa_group); 2515 if (!grp) 2516 goto no_join; 2517 2518 my_grp = deref_curr_numa_group(p); 2519 if (grp == my_grp) 2520 goto no_join; 2521 2522 /* 2523 * Only join the other group if its bigger; if we're the bigger group, 2524 * the other task will join us. 2525 */ 2526 if (my_grp->nr_tasks > grp->nr_tasks) 2527 goto no_join; 2528 2529 /* 2530 * Tie-break on the grp address. 2531 */ 2532 if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp) 2533 goto no_join; 2534 2535 /* Always join threads in the same process. */ 2536 if (tsk->mm == current->mm) 2537 join = true; 2538 2539 /* Simple filter to avoid false positives due to PID collisions */ 2540 if (flags & TNF_SHARED) 2541 join = true; 2542 2543 /* Update priv based on whether false sharing was detected */ 2544 *priv = !join; 2545 2546 if (join && !get_numa_group(grp)) 2547 goto no_join; 2548 2549 rcu_read_unlock(); 2550 2551 if (!join) 2552 return; 2553 2554 BUG_ON(irqs_disabled()); 2555 double_lock_irq(&my_grp->lock, &grp->lock); 2556 2557 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) { 2558 my_grp->faults[i] -= p->numa_faults[i]; 2559 grp->faults[i] += p->numa_faults[i]; 2560 } 2561 my_grp->total_faults -= p->total_numa_faults; 2562 grp->total_faults += p->total_numa_faults; 2563 2564 my_grp->nr_tasks--; 2565 grp->nr_tasks++; 2566 2567 spin_unlock(&my_grp->lock); 2568 spin_unlock_irq(&grp->lock); 2569 2570 rcu_assign_pointer(p->numa_group, grp); 2571 2572 put_numa_group(my_grp); 2573 return; 2574 2575 no_join: 2576 rcu_read_unlock(); 2577 return; 2578 } 2579 2580 /* 2581 * Get rid of NUMA staticstics associated with a task (either current or dead). 2582 * If @final is set, the task is dead and has reached refcount zero, so we can 2583 * safely free all relevant data structures. Otherwise, there might be 2584 * concurrent reads from places like load balancing and procfs, and we should 2585 * reset the data back to default state without freeing ->numa_faults. 2586 */ 2587 void task_numa_free(struct task_struct *p, bool final) 2588 { 2589 /* safe: p either is current or is being freed by current */ 2590 struct numa_group *grp = rcu_dereference_raw(p->numa_group); 2591 unsigned long *numa_faults = p->numa_faults; 2592 unsigned long flags; 2593 int i; 2594 2595 if (!numa_faults) 2596 return; 2597 2598 if (grp) { 2599 spin_lock_irqsave(&grp->lock, flags); 2600 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) 2601 grp->faults[i] -= p->numa_faults[i]; 2602 grp->total_faults -= p->total_numa_faults; 2603 2604 grp->nr_tasks--; 2605 spin_unlock_irqrestore(&grp->lock, flags); 2606 RCU_INIT_POINTER(p->numa_group, NULL); 2607 put_numa_group(grp); 2608 } 2609 2610 if (final) { 2611 p->numa_faults = NULL; 2612 kfree(numa_faults); 2613 } else { 2614 p->total_numa_faults = 0; 2615 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) 2616 numa_faults[i] = 0; 2617 } 2618 } 2619 2620 /* 2621 * Got a PROT_NONE fault for a page on @node. 2622 */ 2623 void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags) 2624 { 2625 struct task_struct *p = current; 2626 bool migrated = flags & TNF_MIGRATED; 2627 int cpu_node = task_node(current); 2628 int local = !!(flags & TNF_FAULT_LOCAL); 2629 struct numa_group *ng; 2630 int priv; 2631 2632 if (!static_branch_likely(&sched_numa_balancing)) 2633 return; 2634 2635 /* for example, ksmd faulting in a user's mm */ 2636 if (!p->mm) 2637 return; 2638 2639 /* Allocate buffer to track faults on a per-node basis */ 2640 if (unlikely(!p->numa_faults)) { 2641 int size = sizeof(*p->numa_faults) * 2642 NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids; 2643 2644 p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN); 2645 if (!p->numa_faults) 2646 return; 2647 2648 p->total_numa_faults = 0; 2649 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality)); 2650 } 2651 2652 /* 2653 * First accesses are treated as private, otherwise consider accesses 2654 * to be private if the accessing pid has not changed 2655 */ 2656 if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) { 2657 priv = 1; 2658 } else { 2659 priv = cpupid_match_pid(p, last_cpupid); 2660 if (!priv && !(flags & TNF_NO_GROUP)) 2661 task_numa_group(p, last_cpupid, flags, &priv); 2662 } 2663 2664 /* 2665 * If a workload spans multiple NUMA nodes, a shared fault that 2666 * occurs wholly within the set of nodes that the workload is 2667 * actively using should be counted as local. This allows the 2668 * scan rate to slow down when a workload has settled down. 2669 */ 2670 ng = deref_curr_numa_group(p); 2671 if (!priv && !local && ng && ng->active_nodes > 1 && 2672 numa_is_active_node(cpu_node, ng) && 2673 numa_is_active_node(mem_node, ng)) 2674 local = 1; 2675 2676 /* 2677 * Retry to migrate task to preferred node periodically, in case it 2678 * previously failed, or the scheduler moved us. 2679 */ 2680 if (time_after(jiffies, p->numa_migrate_retry)) { 2681 task_numa_placement(p); 2682 numa_migrate_preferred(p); 2683 } 2684 2685 if (migrated) 2686 p->numa_pages_migrated += pages; 2687 if (flags & TNF_MIGRATE_FAIL) 2688 p->numa_faults_locality[2] += pages; 2689 2690 p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages; 2691 p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages; 2692 p->numa_faults_locality[local] += pages; 2693 } 2694 2695 static void reset_ptenuma_scan(struct task_struct *p) 2696 { 2697 /* 2698 * We only did a read acquisition of the mmap sem, so 2699 * p->mm->numa_scan_seq is written to without exclusive access 2700 * and the update is not guaranteed to be atomic. That's not 2701 * much of an issue though, since this is just used for 2702 * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not 2703 * expensive, to avoid any form of compiler optimizations: 2704 */ 2705 WRITE_ONCE(p->mm->numa_scan_seq, READ_ONCE(p->mm->numa_scan_seq) + 1); 2706 p->mm->numa_scan_offset = 0; 2707 } 2708 2709 /* 2710 * The expensive part of numa migration is done from task_work context. 2711 * Triggered from task_tick_numa(). 2712 */ 2713 static void task_numa_work(struct callback_head *work) 2714 { 2715 unsigned long migrate, next_scan, now = jiffies; 2716 struct task_struct *p = current; 2717 struct mm_struct *mm = p->mm; 2718 u64 runtime = p->se.sum_exec_runtime; 2719 struct vm_area_struct *vma; 2720 unsigned long start, end; 2721 unsigned long nr_pte_updates = 0; 2722 long pages, virtpages; 2723 2724 SCHED_WARN_ON(p != container_of(work, struct task_struct, numa_work)); 2725 2726 work->next = work; 2727 /* 2728 * Who cares about NUMA placement when they're dying. 2729 * 2730 * NOTE: make sure not to dereference p->mm before this check, 2731 * exit_task_work() happens _after_ exit_mm() so we could be called 2732 * without p->mm even though we still had it when we enqueued this 2733 * work. 2734 */ 2735 if (p->flags & PF_EXITING) 2736 return; 2737 2738 if (!mm->numa_next_scan) { 2739 mm->numa_next_scan = now + 2740 msecs_to_jiffies(sysctl_numa_balancing_scan_delay); 2741 } 2742 2743 /* 2744 * Enforce maximal scan/migration frequency.. 2745 */ 2746 migrate = mm->numa_next_scan; 2747 if (time_before(now, migrate)) 2748 return; 2749 2750 if (p->numa_scan_period == 0) { 2751 p->numa_scan_period_max = task_scan_max(p); 2752 p->numa_scan_period = task_scan_start(p); 2753 } 2754 2755 next_scan = now + msecs_to_jiffies(p->numa_scan_period); 2756 if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate) 2757 return; 2758 2759 /* 2760 * Delay this task enough that another task of this mm will likely win 2761 * the next time around. 2762 */ 2763 p->node_stamp += 2 * TICK_NSEC; 2764 2765 start = mm->numa_scan_offset; 2766 pages = sysctl_numa_balancing_scan_size; 2767 pages <<= 20 - PAGE_SHIFT; /* MB in pages */ 2768 virtpages = pages * 8; /* Scan up to this much virtual space */ 2769 if (!pages) 2770 return; 2771 2772 2773 if (!mmap_read_trylock(mm)) 2774 return; 2775 vma = find_vma(mm, start); 2776 if (!vma) { 2777 reset_ptenuma_scan(p); 2778 start = 0; 2779 vma = mm->mmap; 2780 } 2781 for (; vma; vma = vma->vm_next) { 2782 if (!vma_migratable(vma) || !vma_policy_mof(vma) || 2783 is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_MIXEDMAP)) { 2784 continue; 2785 } 2786 2787 /* 2788 * Shared library pages mapped by multiple processes are not 2789 * migrated as it is expected they are cache replicated. Avoid 2790 * hinting faults in read-only file-backed mappings or the vdso 2791 * as migrating the pages will be of marginal benefit. 2792 */ 2793 if (!vma->vm_mm || 2794 (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ))) 2795 continue; 2796 2797 /* 2798 * Skip inaccessible VMAs to avoid any confusion between 2799 * PROT_NONE and NUMA hinting ptes 2800 */ 2801 if (!vma_is_accessible(vma)) 2802 continue; 2803 2804 do { 2805 start = max(start, vma->vm_start); 2806 end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE); 2807 end = min(end, vma->vm_end); 2808 nr_pte_updates = change_prot_numa(vma, start, end); 2809 2810 /* 2811 * Try to scan sysctl_numa_balancing_size worth of 2812 * hpages that have at least one present PTE that 2813 * is not already pte-numa. If the VMA contains 2814 * areas that are unused or already full of prot_numa 2815 * PTEs, scan up to virtpages, to skip through those 2816 * areas faster. 2817 */ 2818 if (nr_pte_updates) 2819 pages -= (end - start) >> PAGE_SHIFT; 2820 virtpages -= (end - start) >> PAGE_SHIFT; 2821 2822 start = end; 2823 if (pages <= 0 || virtpages <= 0) 2824 goto out; 2825 2826 cond_resched(); 2827 } while (end != vma->vm_end); 2828 } 2829 2830 out: 2831 /* 2832 * It is possible to reach the end of the VMA list but the last few 2833 * VMAs are not guaranteed to the vma_migratable. If they are not, we 2834 * would find the !migratable VMA on the next scan but not reset the 2835 * scanner to the start so check it now. 2836 */ 2837 if (vma) 2838 mm->numa_scan_offset = start; 2839 else 2840 reset_ptenuma_scan(p); 2841 mmap_read_unlock(mm); 2842 2843 /* 2844 * Make sure tasks use at least 32x as much time to run other code 2845 * than they used here, to limit NUMA PTE scanning overhead to 3% max. 2846 * Usually update_task_scan_period slows down scanning enough; on an 2847 * overloaded system we need to limit overhead on a per task basis. 2848 */ 2849 if (unlikely(p->se.sum_exec_runtime != runtime)) { 2850 u64 diff = p->se.sum_exec_runtime - runtime; 2851 p->node_stamp += 32 * diff; 2852 } 2853 } 2854 2855 void init_numa_balancing(unsigned long clone_flags, struct task_struct *p) 2856 { 2857 int mm_users = 0; 2858 struct mm_struct *mm = p->mm; 2859 2860 if (mm) { 2861 mm_users = atomic_read(&mm->mm_users); 2862 if (mm_users == 1) { 2863 mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay); 2864 mm->numa_scan_seq = 0; 2865 } 2866 } 2867 p->node_stamp = 0; 2868 p->numa_scan_seq = mm ? mm->numa_scan_seq : 0; 2869 p->numa_scan_period = sysctl_numa_balancing_scan_delay; 2870 /* Protect against double add, see task_tick_numa and task_numa_work */ 2871 p->numa_work.next = &p->numa_work; 2872 p->numa_faults = NULL; 2873 RCU_INIT_POINTER(p->numa_group, NULL); 2874 p->last_task_numa_placement = 0; 2875 p->last_sum_exec_runtime = 0; 2876 2877 init_task_work(&p->numa_work, task_numa_work); 2878 2879 /* New address space, reset the preferred nid */ 2880 if (!(clone_flags & CLONE_VM)) { 2881 p->numa_preferred_nid = NUMA_NO_NODE; 2882 return; 2883 } 2884 2885 /* 2886 * New thread, keep existing numa_preferred_nid which should be copied 2887 * already by arch_dup_task_struct but stagger when scans start. 2888 */ 2889 if (mm) { 2890 unsigned int delay; 2891 2892 delay = min_t(unsigned int, task_scan_max(current), 2893 current->numa_scan_period * mm_users * NSEC_PER_MSEC); 2894 delay += 2 * TICK_NSEC; 2895 p->node_stamp = delay; 2896 } 2897 } 2898 2899 /* 2900 * Drive the periodic memory faults.. 2901 */ 2902 static void task_tick_numa(struct rq *rq, struct task_struct *curr) 2903 { 2904 struct callback_head *work = &curr->numa_work; 2905 u64 period, now; 2906 2907 /* 2908 * We don't care about NUMA placement if we don't have memory. 2909 */ 2910 if ((curr->flags & (PF_EXITING | PF_KTHREAD)) || work->next != work) 2911 return; 2912 2913 /* 2914 * Using runtime rather than walltime has the dual advantage that 2915 * we (mostly) drive the selection from busy threads and that the 2916 * task needs to have done some actual work before we bother with 2917 * NUMA placement. 2918 */ 2919 now = curr->se.sum_exec_runtime; 2920 period = (u64)curr->numa_scan_period * NSEC_PER_MSEC; 2921 2922 if (now > curr->node_stamp + period) { 2923 if (!curr->node_stamp) 2924 curr->numa_scan_period = task_scan_start(curr); 2925 curr->node_stamp += period; 2926 2927 if (!time_before(jiffies, curr->mm->numa_next_scan)) 2928 task_work_add(curr, work, true); 2929 } 2930 } 2931 2932 static void update_scan_period(struct task_struct *p, int new_cpu) 2933 { 2934 int src_nid = cpu_to_node(task_cpu(p)); 2935 int dst_nid = cpu_to_node(new_cpu); 2936 2937 if (!static_branch_likely(&sched_numa_balancing)) 2938 return; 2939 2940 if (!p->mm || !p->numa_faults || (p->flags & PF_EXITING)) 2941 return; 2942 2943 if (src_nid == dst_nid) 2944 return; 2945 2946 /* 2947 * Allow resets if faults have been trapped before one scan 2948 * has completed. This is most likely due to a new task that 2949 * is pulled cross-node due to wakeups or load balancing. 2950 */ 2951 if (p->numa_scan_seq) { 2952 /* 2953 * Avoid scan adjustments if moving to the preferred 2954 * node or if the task was not previously running on 2955 * the preferred node. 2956 */ 2957 if (dst_nid == p->numa_preferred_nid || 2958 (p->numa_preferred_nid != NUMA_NO_NODE && 2959 src_nid != p->numa_preferred_nid)) 2960 return; 2961 } 2962 2963 p->numa_scan_period = task_scan_start(p); 2964 } 2965 2966 #else 2967 static void task_tick_numa(struct rq *rq, struct task_struct *curr) 2968 { 2969 } 2970 2971 static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p) 2972 { 2973 } 2974 2975 static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p) 2976 { 2977 } 2978 2979 static inline void update_scan_period(struct task_struct *p, int new_cpu) 2980 { 2981 } 2982 2983 #endif /* CONFIG_NUMA_BALANCING */ 2984 2985 static void 2986 account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se) 2987 { 2988 update_load_add(&cfs_rq->load, se->load.weight); 2989 #ifdef CONFIG_SMP 2990 if (entity_is_task(se)) { 2991 struct rq *rq = rq_of(cfs_rq); 2992 2993 account_numa_enqueue(rq, task_of(se)); 2994 list_add(&se->group_node, &rq->cfs_tasks); 2995 } 2996 #endif 2997 cfs_rq->nr_running++; 2998 } 2999 3000 static void 3001 account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se) 3002 { 3003 update_load_sub(&cfs_rq->load, se->load.weight); 3004 #ifdef CONFIG_SMP 3005 if (entity_is_task(se)) { 3006 account_numa_dequeue(rq_of(cfs_rq), task_of(se)); 3007 list_del_init(&se->group_node); 3008 } 3009 #endif 3010 cfs_rq->nr_running--; 3011 } 3012 3013 /* 3014 * Signed add and clamp on underflow. 3015 * 3016 * Explicitly do a load-store to ensure the intermediate value never hits 3017 * memory. This allows lockless observations without ever seeing the negative 3018 * values. 3019 */ 3020 #define add_positive(_ptr, _val) do { \ 3021 typeof(_ptr) ptr = (_ptr); \ 3022 typeof(_val) val = (_val); \ 3023 typeof(*ptr) res, var = READ_ONCE(*ptr); \ 3024 \ 3025 res = var + val; \ 3026 \ 3027 if (val < 0 && res > var) \ 3028 res = 0; \ 3029 \ 3030 WRITE_ONCE(*ptr, res); \ 3031 } while (0) 3032 3033 /* 3034 * Unsigned subtract and clamp on underflow. 3035 * 3036 * Explicitly do a load-store to ensure the intermediate value never hits 3037 * memory. This allows lockless observations without ever seeing the negative 3038 * values. 3039 */ 3040 #define sub_positive(_ptr, _val) do { \ 3041 typeof(_ptr) ptr = (_ptr); \ 3042 typeof(*ptr) val = (_val); \ 3043 typeof(*ptr) res, var = READ_ONCE(*ptr); \ 3044 res = var - val; \ 3045 if (res > var) \ 3046 res = 0; \ 3047 WRITE_ONCE(*ptr, res); \ 3048 } while (0) 3049 3050 /* 3051 * Remove and clamp on negative, from a local variable. 3052 * 3053 * A variant of sub_positive(), which does not use explicit load-store 3054 * and is thus optimized for local variable updates. 3055 */ 3056 #define lsub_positive(_ptr, _val) do { \ 3057 typeof(_ptr) ptr = (_ptr); \ 3058 *ptr -= min_t(typeof(*ptr), *ptr, _val); \ 3059 } while (0) 3060 3061 #ifdef CONFIG_SMP 3062 static inline void 3063 enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) 3064 { 3065 cfs_rq->avg.load_avg += se->avg.load_avg; 3066 cfs_rq->avg.load_sum += se_weight(se) * se->avg.load_sum; 3067 } 3068 3069 static inline void 3070 dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) 3071 { 3072 sub_positive(&cfs_rq->avg.load_avg, se->avg.load_avg); 3073 sub_positive(&cfs_rq->avg.load_sum, se_weight(se) * se->avg.load_sum); 3074 } 3075 #else 3076 static inline void 3077 enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { } 3078 static inline void 3079 dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { } 3080 #endif 3081 3082 static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, 3083 unsigned long weight) 3084 { 3085 if (se->on_rq) { 3086 /* commit outstanding execution time */ 3087 if (cfs_rq->curr == se) 3088 update_curr(cfs_rq); 3089 account_entity_dequeue(cfs_rq, se); 3090 } 3091 dequeue_load_avg(cfs_rq, se); 3092 3093 update_load_set(&se->load, weight); 3094 3095 #ifdef CONFIG_SMP 3096 do { 3097 u32 divider = LOAD_AVG_MAX - 1024 + se->avg.period_contrib; 3098 3099 se->avg.load_avg = div_u64(se_weight(se) * se->avg.load_sum, divider); 3100 } while (0); 3101 #endif 3102 3103 enqueue_load_avg(cfs_rq, se); 3104 if (se->on_rq) 3105 account_entity_enqueue(cfs_rq, se); 3106 3107 } 3108 3109 void reweight_task(struct task_struct *p, int prio) 3110 { 3111 struct sched_entity *se = &p->se; 3112 struct cfs_rq *cfs_rq = cfs_rq_of(se); 3113 struct load_weight *load = &se->load; 3114 unsigned long weight = scale_load(sched_prio_to_weight[prio]); 3115 3116 reweight_entity(cfs_rq, se, weight); 3117 load->inv_weight = sched_prio_to_wmult[prio]; 3118 } 3119 3120 #ifdef CONFIG_FAIR_GROUP_SCHED 3121 #ifdef CONFIG_SMP 3122 /* 3123 * All this does is approximate the hierarchical proportion which includes that 3124 * global sum we all love to hate. 3125 * 3126 * That is, the weight of a group entity, is the proportional share of the 3127 * group weight based on the group runqueue weights. That is: 3128 * 3129 * tg->weight * grq->load.weight 3130 * ge->load.weight = ----------------------------- (1) 3131 * \Sum grq->load.weight 3132 * 3133 * Now, because computing that sum is prohibitively expensive to compute (been 3134 * there, done that) we approximate it with this average stuff. The average 3135 * moves slower and therefore the approximation is cheaper and more stable. 3136 * 3137 * So instead of the above, we substitute: 3138 * 3139 * grq->load.weight -> grq->avg.load_avg (2) 3140 * 3141 * which yields the following: 3142 * 3143 * tg->weight * grq->avg.load_avg 3144 * ge->load.weight = ------------------------------ (3) 3145 * tg->load_avg 3146 * 3147 * Where: tg->load_avg ~= \Sum grq->avg.load_avg 3148 * 3149 * That is shares_avg, and it is right (given the approximation (2)). 3150 * 3151 * The problem with it is that because the average is slow -- it was designed 3152 * to be exactly that of course -- this leads to transients in boundary 3153 * conditions. In specific, the case where the group was idle and we start the 3154 * one task. It takes time for our CPU's grq->avg.load_avg to build up, 3155 * yielding bad latency etc.. 3156 * 3157 * Now, in that special case (1) reduces to: 3158 * 3159 * tg->weight * grq->load.weight 3160 * ge->load.weight = ----------------------------- = tg->weight (4) 3161 * grp->load.weight 3162 * 3163 * That is, the sum collapses because all other CPUs are idle; the UP scenario. 3164 * 3165 * So what we do is modify our approximation (3) to approach (4) in the (near) 3166 * UP case, like: 3167 * 3168 * ge->load.weight = 3169 * 3170 * tg->weight * grq->load.weight 3171 * --------------------------------------------------- (5) 3172 * tg->load_avg - grq->avg.load_avg + grq->load.weight 3173 * 3174 * But because grq->load.weight can drop to 0, resulting in a divide by zero, 3175 * we need to use grq->avg.load_avg as its lower bound, which then gives: 3176 * 3177 * 3178 * tg->weight * grq->load.weight 3179 * ge->load.weight = ----------------------------- (6) 3180 * tg_load_avg' 3181 * 3182 * Where: 3183 * 3184 * tg_load_avg' = tg->load_avg - grq->avg.load_avg + 3185 * max(grq->load.weight, grq->avg.load_avg) 3186 * 3187 * And that is shares_weight and is icky. In the (near) UP case it approaches 3188 * (4) while in the normal case it approaches (3). It consistently 3189 * overestimates the ge->load.weight and therefore: 3190 * 3191 * \Sum ge->load.weight >= tg->weight 3192 * 3193 * hence icky! 3194 */ 3195 static long calc_group_shares(struct cfs_rq *cfs_rq) 3196 { 3197 long tg_weight, tg_shares, load, shares; 3198 struct task_group *tg = cfs_rq->tg; 3199 3200 tg_shares = READ_ONCE(tg->shares); 3201 3202 load = max(scale_load_down(cfs_rq->load.weight), cfs_rq->avg.load_avg); 3203 3204 tg_weight = atomic_long_read(&tg->load_avg); 3205 3206 /* Ensure tg_weight >= load */ 3207 tg_weight -= cfs_rq->tg_load_avg_contrib; 3208 tg_weight += load; 3209 3210 shares = (tg_shares * load); 3211 if (tg_weight) 3212 shares /= tg_weight; 3213 3214 /* 3215 * MIN_SHARES has to be unscaled here to support per-CPU partitioning 3216 * of a group with small tg->shares value. It is a floor value which is 3217 * assigned as a minimum load.weight to the sched_entity representing 3218 * the group on a CPU. 3219 * 3220 * E.g. on 64-bit for a group with tg->shares of scale_load(15)=15*1024 3221 * on an 8-core system with 8 tasks each runnable on one CPU shares has 3222 * to be 15*1024*1/8=1920 instead of scale_load(MIN_SHARES)=2*1024. In 3223 * case no task is runnable on a CPU MIN_SHARES=2 should be returned 3224 * instead of 0. 3225 */ 3226 return clamp_t(long, shares, MIN_SHARES, tg_shares); 3227 } 3228 #endif /* CONFIG_SMP */ 3229 3230 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq); 3231 3232 /* 3233 * Recomputes the group entity based on the current state of its group 3234 * runqueue. 3235 */ 3236 static void update_cfs_group(struct sched_entity *se) 3237 { 3238 struct cfs_rq *gcfs_rq = group_cfs_rq(se); 3239 long shares; 3240 3241 if (!gcfs_rq) 3242 return; 3243 3244 if (throttled_hierarchy(gcfs_rq)) 3245 return; 3246 3247 #ifndef CONFIG_SMP 3248 shares = READ_ONCE(gcfs_rq->tg->shares); 3249 3250 if (likely(se->load.weight == shares)) 3251 return; 3252 #else 3253 shares = calc_group_shares(gcfs_rq); 3254 #endif 3255 3256 reweight_entity(cfs_rq_of(se), se, shares); 3257 } 3258 3259 #else /* CONFIG_FAIR_GROUP_SCHED */ 3260 static inline void update_cfs_group(struct sched_entity *se) 3261 { 3262 } 3263 #endif /* CONFIG_FAIR_GROUP_SCHED */ 3264 3265 static inline void cfs_rq_util_change(struct cfs_rq *cfs_rq, int flags) 3266 { 3267 struct rq *rq = rq_of(cfs_rq); 3268 3269 if (&rq->cfs == cfs_rq) { 3270 /* 3271 * There are a few boundary cases this might miss but it should 3272 * get called often enough that that should (hopefully) not be 3273 * a real problem. 3274 * 3275 * It will not get called when we go idle, because the idle 3276 * thread is a different class (!fair), nor will the utilization 3277 * number include things like RT tasks. 3278 * 3279 * As is, the util number is not freq-invariant (we'd have to 3280 * implement arch_scale_freq_capacity() for that). 3281 * 3282 * See cpu_util(). 3283 */ 3284 cpufreq_update_util(rq, flags); 3285 } 3286 } 3287 3288 #ifdef CONFIG_SMP 3289 #ifdef CONFIG_FAIR_GROUP_SCHED 3290 /** 3291 * update_tg_load_avg - update the tg's load avg 3292 * @cfs_rq: the cfs_rq whose avg changed 3293 * @force: update regardless of how small the difference 3294 * 3295 * This function 'ensures': tg->load_avg := \Sum tg->cfs_rq[]->avg.load. 3296 * However, because tg->load_avg is a global value there are performance 3297 * considerations. 3298 * 3299 * In order to avoid having to look at the other cfs_rq's, we use a 3300 * differential update where we store the last value we propagated. This in 3301 * turn allows skipping updates if the differential is 'small'. 3302 * 3303 * Updating tg's load_avg is necessary before update_cfs_share(). 3304 */ 3305 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force) 3306 { 3307 long delta = cfs_rq->avg.load_avg - cfs_rq->tg_load_avg_contrib; 3308 3309 /* 3310 * No need to update load_avg for root_task_group as it is not used. 3311 */ 3312 if (cfs_rq->tg == &root_task_group) 3313 return; 3314 3315 if (force || abs(delta) > cfs_rq->tg_load_avg_contrib / 64) { 3316 atomic_long_add(delta, &cfs_rq->tg->load_avg); 3317 cfs_rq->tg_load_avg_contrib = cfs_rq->avg.load_avg; 3318 } 3319 } 3320 3321 /* 3322 * Called within set_task_rq() right before setting a task's CPU. The 3323 * caller only guarantees p->pi_lock is held; no other assumptions, 3324 * including the state of rq->lock, should be made. 3325 */ 3326 void set_task_rq_fair(struct sched_entity *se, 3327 struct cfs_rq *prev, struct cfs_rq *next) 3328 { 3329 u64 p_last_update_time; 3330 u64 n_last_update_time; 3331 3332 if (!sched_feat(ATTACH_AGE_LOAD)) 3333 return; 3334 3335 /* 3336 * We are supposed to update the task to "current" time, then its up to 3337 * date and ready to go to new CPU/cfs_rq. But we have difficulty in 3338 * getting what current time is, so simply throw away the out-of-date 3339 * time. This will result in the wakee task is less decayed, but giving 3340 * the wakee more load sounds not bad. 3341 */ 3342 if (!(se->avg.last_update_time && prev)) 3343 return; 3344 3345 #ifndef CONFIG_64BIT 3346 { 3347 u64 p_last_update_time_copy; 3348 u64 n_last_update_time_copy; 3349 3350 do { 3351 p_last_update_time_copy = prev->load_last_update_time_copy; 3352 n_last_update_time_copy = next->load_last_update_time_copy; 3353 3354 smp_rmb(); 3355 3356 p_last_update_time = prev->avg.last_update_time; 3357 n_last_update_time = next->avg.last_update_time; 3358 3359 } while (p_last_update_time != p_last_update_time_copy || 3360 n_last_update_time != n_last_update_time_copy); 3361 } 3362 #else 3363 p_last_update_time = prev->avg.last_update_time; 3364 n_last_update_time = next->avg.last_update_time; 3365 #endif 3366 __update_load_avg_blocked_se(p_last_update_time, se); 3367 se->avg.last_update_time = n_last_update_time; 3368 } 3369 3370 3371 /* 3372 * When on migration a sched_entity joins/leaves the PELT hierarchy, we need to 3373 * propagate its contribution. The key to this propagation is the invariant 3374 * that for each group: 3375 * 3376 * ge->avg == grq->avg (1) 3377 * 3378 * _IFF_ we look at the pure running and runnable sums. Because they 3379 * represent the very same entity, just at different points in the hierarchy. 3380 * 3381 * Per the above update_tg_cfs_util() and update_tg_cfs_runnable() are trivial 3382 * and simply copies the running/runnable sum over (but still wrong, because 3383 * the group entity and group rq do not have their PELT windows aligned). 3384 * 3385 * However, update_tg_cfs_load() is more complex. So we have: 3386 * 3387 * ge->avg.load_avg = ge->load.weight * ge->avg.runnable_avg (2) 3388 * 3389 * And since, like util, the runnable part should be directly transferable, 3390 * the following would _appear_ to be the straight forward approach: 3391 * 3392 * grq->avg.load_avg = grq->load.weight * grq->avg.runnable_avg (3) 3393 * 3394 * And per (1) we have: 3395 * 3396 * ge->avg.runnable_avg == grq->avg.runnable_avg 3397 * 3398 * Which gives: 3399 * 3400 * ge->load.weight * grq->avg.load_avg 3401 * ge->avg.load_avg = ----------------------------------- (4) 3402 * grq->load.weight 3403 * 3404 * Except that is wrong! 3405 * 3406 * Because while for entities historical weight is not important and we 3407 * really only care about our future and therefore can consider a pure 3408 * runnable sum, runqueues can NOT do this. 3409 * 3410 * We specifically want runqueues to have a load_avg that includes 3411 * historical weights. Those represent the blocked load, the load we expect 3412 * to (shortly) return to us. This only works by keeping the weights as 3413 * integral part of the sum. We therefore cannot decompose as per (3). 3414 * 3415 * Another reason this doesn't work is that runnable isn't a 0-sum entity. 3416 * Imagine a rq with 2 tasks that each are runnable 2/3 of the time. Then the 3417 * rq itself is runnable anywhere between 2/3 and 1 depending on how the 3418 * runnable section of these tasks overlap (or not). If they were to perfectly 3419 * align the rq as a whole would be runnable 2/3 of the time. If however we 3420 * always have at least 1 runnable task, the rq as a whole is always runnable. 3421 * 3422 * So we'll have to approximate.. :/ 3423 * 3424 * Given the constraint: 3425 * 3426 * ge->avg.running_sum <= ge->avg.runnable_sum <= LOAD_AVG_MAX 3427 * 3428 * We can construct a rule that adds runnable to a rq by assuming minimal 3429 * overlap. 3430 * 3431 * On removal, we'll assume each task is equally runnable; which yields: 3432 * 3433 * grq->avg.runnable_sum = grq->avg.load_sum / grq->load.weight 3434 * 3435 * XXX: only do this for the part of runnable > running ? 3436 * 3437 */ 3438 3439 static inline void 3440 update_tg_cfs_util(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq) 3441 { 3442 long delta = gcfs_rq->avg.util_avg - se->avg.util_avg; 3443 /* 3444 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se. 3445 * See ___update_load_avg() for details. 3446 */ 3447 u32 divider = LOAD_AVG_MAX - 1024 + cfs_rq->avg.period_contrib; 3448 3449 /* Nothing to update */ 3450 if (!delta) 3451 return; 3452 3453 /* Set new sched_entity's utilization */ 3454 se->avg.util_avg = gcfs_rq->avg.util_avg; 3455 se->avg.util_sum = se->avg.util_avg * divider; 3456 3457 /* Update parent cfs_rq utilization */ 3458 add_positive(&cfs_rq->avg.util_avg, delta); 3459 cfs_rq->avg.util_sum = cfs_rq->avg.util_avg * divider; 3460 } 3461 3462 static inline void 3463 update_tg_cfs_runnable(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq) 3464 { 3465 long delta = gcfs_rq->avg.runnable_avg - se->avg.runnable_avg; 3466 /* 3467 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se. 3468 * See ___update_load_avg() for details. 3469 */ 3470 u32 divider = LOAD_AVG_MAX - 1024 + cfs_rq->avg.period_contrib; 3471 3472 /* Nothing to update */ 3473 if (!delta) 3474 return; 3475 3476 /* Set new sched_entity's runnable */ 3477 se->avg.runnable_avg = gcfs_rq->avg.runnable_avg; 3478 se->avg.runnable_sum = se->avg.runnable_avg * divider; 3479 3480 /* Update parent cfs_rq runnable */ 3481 add_positive(&cfs_rq->avg.runnable_avg, delta); 3482 cfs_rq->avg.runnable_sum = cfs_rq->avg.runnable_avg * divider; 3483 } 3484 3485 static inline void 3486 update_tg_cfs_load(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq) 3487 { 3488 long delta_avg, running_sum, runnable_sum = gcfs_rq->prop_runnable_sum; 3489 unsigned long load_avg; 3490 u64 load_sum = 0; 3491 s64 delta_sum; 3492 u32 divider; 3493 3494 if (!runnable_sum) 3495 return; 3496 3497 gcfs_rq->prop_runnable_sum = 0; 3498 3499 /* 3500 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se. 3501 * See ___update_load_avg() for details. 3502 */ 3503 divider = LOAD_AVG_MAX - 1024 + cfs_rq->avg.period_contrib; 3504 3505 if (runnable_sum >= 0) { 3506 /* 3507 * Add runnable; clip at LOAD_AVG_MAX. Reflects that until 3508 * the CPU is saturated running == runnable. 3509 */ 3510 runnable_sum += se->avg.load_sum; 3511 runnable_sum = min_t(long, runnable_sum, divider); 3512 } else { 3513 /* 3514 * Estimate the new unweighted runnable_sum of the gcfs_rq by 3515 * assuming all tasks are equally runnable. 3516 */ 3517 if (scale_load_down(gcfs_rq->load.weight)) { 3518 load_sum = div_s64(gcfs_rq->avg.load_sum, 3519 scale_load_down(gcfs_rq->load.weight)); 3520 } 3521 3522 /* But make sure to not inflate se's runnable */ 3523 runnable_sum = min(se->avg.load_sum, load_sum); 3524 } 3525 3526 /* 3527 * runnable_sum can't be lower than running_sum 3528 * Rescale running sum to be in the same range as runnable sum 3529 * running_sum is in [0 : LOAD_AVG_MAX << SCHED_CAPACITY_SHIFT] 3530 * runnable_sum is in [0 : LOAD_AVG_MAX] 3531 */ 3532 running_sum = se->avg.util_sum >> SCHED_CAPACITY_SHIFT; 3533 runnable_sum = max(runnable_sum, running_sum); 3534 3535 load_sum = (s64)se_weight(se) * runnable_sum; 3536 load_avg = div_s64(load_sum, divider); 3537 3538 delta_sum = load_sum - (s64)se_weight(se) * se->avg.load_sum; 3539 delta_avg = load_avg - se->avg.load_avg; 3540 3541 se->avg.load_sum = runnable_sum; 3542 se->avg.load_avg = load_avg; 3543 add_positive(&cfs_rq->avg.load_avg, delta_avg); 3544 add_positive(&cfs_rq->avg.load_sum, delta_sum); 3545 } 3546 3547 static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum) 3548 { 3549 cfs_rq->propagate = 1; 3550 cfs_rq->prop_runnable_sum += runnable_sum; 3551 } 3552 3553 /* Update task and its cfs_rq load average */ 3554 static inline int propagate_entity_load_avg(struct sched_entity *se) 3555 { 3556 struct cfs_rq *cfs_rq, *gcfs_rq; 3557 3558 if (entity_is_task(se)) 3559 return 0; 3560 3561 gcfs_rq = group_cfs_rq(se); 3562 if (!gcfs_rq->propagate) 3563 return 0; 3564 3565 gcfs_rq->propagate = 0; 3566 3567 cfs_rq = cfs_rq_of(se); 3568 3569 add_tg_cfs_propagate(cfs_rq, gcfs_rq->prop_runnable_sum); 3570 3571 update_tg_cfs_util(cfs_rq, se, gcfs_rq); 3572 update_tg_cfs_runnable(cfs_rq, se, gcfs_rq); 3573 update_tg_cfs_load(cfs_rq, se, gcfs_rq); 3574 3575 trace_pelt_cfs_tp(cfs_rq); 3576 trace_pelt_se_tp(se); 3577 3578 return 1; 3579 } 3580 3581 /* 3582 * Check if we need to update the load and the utilization of a blocked 3583 * group_entity: 3584 */ 3585 static inline bool skip_blocked_update(struct sched_entity *se) 3586 { 3587 struct cfs_rq *gcfs_rq = group_cfs_rq(se); 3588 3589 /* 3590 * If sched_entity still have not zero load or utilization, we have to 3591 * decay it: 3592 */ 3593 if (se->avg.load_avg || se->avg.util_avg) 3594 return false; 3595 3596 /* 3597 * If there is a pending propagation, we have to update the load and 3598 * the utilization of the sched_entity: 3599 */ 3600 if (gcfs_rq->propagate) 3601 return false; 3602 3603 /* 3604 * Otherwise, the load and the utilization of the sched_entity is 3605 * already zero and there is no pending propagation, so it will be a 3606 * waste of time to try to decay it: 3607 */ 3608 return true; 3609 } 3610 3611 #else /* CONFIG_FAIR_GROUP_SCHED */ 3612 3613 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force) {} 3614 3615 static inline int propagate_entity_load_avg(struct sched_entity *se) 3616 { 3617 return 0; 3618 } 3619 3620 static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum) {} 3621 3622 #endif /* CONFIG_FAIR_GROUP_SCHED */ 3623 3624 /** 3625 * update_cfs_rq_load_avg - update the cfs_rq's load/util averages 3626 * @now: current time, as per cfs_rq_clock_pelt() 3627 * @cfs_rq: cfs_rq to update 3628 * 3629 * The cfs_rq avg is the direct sum of all its entities (blocked and runnable) 3630 * avg. The immediate corollary is that all (fair) tasks must be attached, see 3631 * post_init_entity_util_avg(). 3632 * 3633 * cfs_rq->avg is used for task_h_load() and update_cfs_share() for example. 3634 * 3635 * Returns true if the load decayed or we removed load. 3636 * 3637 * Since both these conditions indicate a changed cfs_rq->avg.load we should 3638 * call update_tg_load_avg() when this function returns true. 3639 */ 3640 static inline int 3641 update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq) 3642 { 3643 unsigned long removed_load = 0, removed_util = 0, removed_runnable = 0; 3644 struct sched_avg *sa = &cfs_rq->avg; 3645 int decayed = 0; 3646 3647 if (cfs_rq->removed.nr) { 3648 unsigned long r; 3649 u32 divider = LOAD_AVG_MAX - 1024 + sa->period_contrib; 3650 3651 raw_spin_lock(&cfs_rq->removed.lock); 3652 swap(cfs_rq->removed.util_avg, removed_util); 3653 swap(cfs_rq->removed.load_avg, removed_load); 3654 swap(cfs_rq->removed.runnable_avg, removed_runnable); 3655 cfs_rq->removed.nr = 0; 3656 raw_spin_unlock(&cfs_rq->removed.lock); 3657 3658 r = removed_load; 3659 sub_positive(&sa->load_avg, r); 3660 sub_positive(&sa->load_sum, r * divider); 3661 3662 r = removed_util; 3663 sub_positive(&sa->util_avg, r); 3664 sub_positive(&sa->util_sum, r * divider); 3665 3666 r = removed_runnable; 3667 sub_positive(&sa->runnable_avg, r); 3668 sub_positive(&sa->runnable_sum, r * divider); 3669 3670 /* 3671 * removed_runnable is the unweighted version of removed_load so we 3672 * can use it to estimate removed_load_sum. 3673 */ 3674 add_tg_cfs_propagate(cfs_rq, 3675 -(long)(removed_runnable * divider) >> SCHED_CAPACITY_SHIFT); 3676 3677 decayed = 1; 3678 } 3679 3680 decayed |= __update_load_avg_cfs_rq(now, cfs_rq); 3681 3682 #ifndef CONFIG_64BIT 3683 smp_wmb(); 3684 cfs_rq->load_last_update_time_copy = sa->last_update_time; 3685 #endif 3686 3687 return decayed; 3688 } 3689 3690 /** 3691 * attach_entity_load_avg - attach this entity to its cfs_rq load avg 3692 * @cfs_rq: cfs_rq to attach to 3693 * @se: sched_entity to attach 3694 * 3695 * Must call update_cfs_rq_load_avg() before this, since we rely on 3696 * cfs_rq->avg.last_update_time being current. 3697 */ 3698 static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) 3699 { 3700 /* 3701 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se. 3702 * See ___update_load_avg() for details. 3703 */ 3704 u32 divider = LOAD_AVG_MAX - 1024 + cfs_rq->avg.period_contrib; 3705 3706 /* 3707 * When we attach the @se to the @cfs_rq, we must align the decay 3708 * window because without that, really weird and wonderful things can 3709 * happen. 3710 * 3711 * XXX illustrate 3712 */ 3713 se->avg.last_update_time = cfs_rq->avg.last_update_time; 3714 se->avg.period_contrib = cfs_rq->avg.period_contrib; 3715 3716 /* 3717 * Hell(o) Nasty stuff.. we need to recompute _sum based on the new 3718 * period_contrib. This isn't strictly correct, but since we're 3719 * entirely outside of the PELT hierarchy, nobody cares if we truncate 3720 * _sum a little. 3721 */ 3722 se->avg.util_sum = se->avg.util_avg * divider; 3723 3724 se->avg.runnable_sum = se->avg.runnable_avg * divider; 3725 3726 se->avg.load_sum = divider; 3727 if (se_weight(se)) { 3728 se->avg.load_sum = 3729 div_u64(se->avg.load_avg * se->avg.load_sum, se_weight(se)); 3730 } 3731 3732 enqueue_load_avg(cfs_rq, se); 3733 cfs_rq->avg.util_avg += se->avg.util_avg; 3734 cfs_rq->avg.util_sum += se->avg.util_sum; 3735 cfs_rq->avg.runnable_avg += se->avg.runnable_avg; 3736 cfs_rq->avg.runnable_sum += se->avg.runnable_sum; 3737 3738 add_tg_cfs_propagate(cfs_rq, se->avg.load_sum); 3739 3740 cfs_rq_util_change(cfs_rq, 0); 3741 3742 trace_pelt_cfs_tp(cfs_rq); 3743 } 3744 3745 /** 3746 * detach_entity_load_avg - detach this entity from its cfs_rq load avg 3747 * @cfs_rq: cfs_rq to detach from 3748 * @se: sched_entity to detach 3749 * 3750 * Must call update_cfs_rq_load_avg() before this, since we rely on 3751 * cfs_rq->avg.last_update_time being current. 3752 */ 3753 static void detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) 3754 { 3755 dequeue_load_avg(cfs_rq, se); 3756 sub_positive(&cfs_rq->avg.util_avg, se->avg.util_avg); 3757 sub_positive(&cfs_rq->avg.util_sum, se->avg.util_sum); 3758 sub_positive(&cfs_rq->avg.runnable_avg, se->avg.runnable_avg); 3759 sub_positive(&cfs_rq->avg.runnable_sum, se->avg.runnable_sum); 3760 3761 add_tg_cfs_propagate(cfs_rq, -se->avg.load_sum); 3762 3763 cfs_rq_util_change(cfs_rq, 0); 3764 3765 trace_pelt_cfs_tp(cfs_rq); 3766 } 3767 3768 /* 3769 * Optional action to be done while updating the load average 3770 */ 3771 #define UPDATE_TG 0x1 3772 #define SKIP_AGE_LOAD 0x2 3773 #define DO_ATTACH 0x4 3774 3775 /* Update task and its cfs_rq load average */ 3776 static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 3777 { 3778 u64 now = cfs_rq_clock_pelt(cfs_rq); 3779 int decayed; 3780 3781 /* 3782 * Track task load average for carrying it to new CPU after migrated, and 3783 * track group sched_entity load average for task_h_load calc in migration 3784 */ 3785 if (se->avg.last_update_time && !(flags & SKIP_AGE_LOAD)) 3786 __update_load_avg_se(now, cfs_rq, se); 3787 3788 decayed = update_cfs_rq_load_avg(now, cfs_rq); 3789 decayed |= propagate_entity_load_avg(se); 3790 3791 if (!se->avg.last_update_time && (flags & DO_ATTACH)) { 3792 3793 /* 3794 * DO_ATTACH means we're here from enqueue_entity(). 3795 * !last_update_time means we've passed through 3796 * migrate_task_rq_fair() indicating we migrated. 3797 * 3798 * IOW we're enqueueing a task on a new CPU. 3799 */ 3800 attach_entity_load_avg(cfs_rq, se); 3801 update_tg_load_avg(cfs_rq, 0); 3802 3803 } else if (decayed) { 3804 cfs_rq_util_change(cfs_rq, 0); 3805 3806 if (flags & UPDATE_TG) 3807 update_tg_load_avg(cfs_rq, 0); 3808 } 3809 } 3810 3811 #ifndef CONFIG_64BIT 3812 static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq) 3813 { 3814 u64 last_update_time_copy; 3815 u64 last_update_time; 3816 3817 do { 3818 last_update_time_copy = cfs_rq->load_last_update_time_copy; 3819 smp_rmb(); 3820 last_update_time = cfs_rq->avg.last_update_time; 3821 } while (last_update_time != last_update_time_copy); 3822 3823 return last_update_time; 3824 } 3825 #else 3826 static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq) 3827 { 3828 return cfs_rq->avg.last_update_time; 3829 } 3830 #endif 3831 3832 /* 3833 * Synchronize entity load avg of dequeued entity without locking 3834 * the previous rq. 3835 */ 3836 static void sync_entity_load_avg(struct sched_entity *se) 3837 { 3838 struct cfs_rq *cfs_rq = cfs_rq_of(se); 3839 u64 last_update_time; 3840 3841 last_update_time = cfs_rq_last_update_time(cfs_rq); 3842 __update_load_avg_blocked_se(last_update_time, se); 3843 } 3844 3845 /* 3846 * Task first catches up with cfs_rq, and then subtract 3847 * itself from the cfs_rq (task must be off the queue now). 3848 */ 3849 static void remove_entity_load_avg(struct sched_entity *se) 3850 { 3851 struct cfs_rq *cfs_rq = cfs_rq_of(se); 3852 unsigned long flags; 3853 3854 /* 3855 * tasks cannot exit without having gone through wake_up_new_task() -> 3856 * post_init_entity_util_avg() which will have added things to the 3857 * cfs_rq, so we can remove unconditionally. 3858 */ 3859 3860 sync_entity_load_avg(se); 3861 3862 raw_spin_lock_irqsave(&cfs_rq->removed.lock, flags); 3863 ++cfs_rq->removed.nr; 3864 cfs_rq->removed.util_avg += se->avg.util_avg; 3865 cfs_rq->removed.load_avg += se->avg.load_avg; 3866 cfs_rq->removed.runnable_avg += se->avg.runnable_avg; 3867 raw_spin_unlock_irqrestore(&cfs_rq->removed.lock, flags); 3868 } 3869 3870 static inline unsigned long cfs_rq_runnable_avg(struct cfs_rq *cfs_rq) 3871 { 3872 return cfs_rq->avg.runnable_avg; 3873 } 3874 3875 static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq) 3876 { 3877 return cfs_rq->avg.load_avg; 3878 } 3879 3880 static int newidle_balance(struct rq *this_rq, struct rq_flags *rf); 3881 3882 static inline unsigned long task_util(struct task_struct *p) 3883 { 3884 return READ_ONCE(p->se.avg.util_avg); 3885 } 3886 3887 static inline unsigned long _task_util_est(struct task_struct *p) 3888 { 3889 struct util_est ue = READ_ONCE(p->se.avg.util_est); 3890 3891 return (max(ue.ewma, ue.enqueued) | UTIL_AVG_UNCHANGED); 3892 } 3893 3894 static inline unsigned long task_util_est(struct task_struct *p) 3895 { 3896 return max(task_util(p), _task_util_est(p)); 3897 } 3898 3899 #ifdef CONFIG_UCLAMP_TASK 3900 static inline unsigned long uclamp_task_util(struct task_struct *p) 3901 { 3902 return clamp(task_util_est(p), 3903 uclamp_eff_value(p, UCLAMP_MIN), 3904 uclamp_eff_value(p, UCLAMP_MAX)); 3905 } 3906 #else 3907 static inline unsigned long uclamp_task_util(struct task_struct *p) 3908 { 3909 return task_util_est(p); 3910 } 3911 #endif 3912 3913 static inline void util_est_enqueue(struct cfs_rq *cfs_rq, 3914 struct task_struct *p) 3915 { 3916 unsigned int enqueued; 3917 3918 if (!sched_feat(UTIL_EST)) 3919 return; 3920 3921 /* Update root cfs_rq's estimated utilization */ 3922 enqueued = cfs_rq->avg.util_est.enqueued; 3923 enqueued += _task_util_est(p); 3924 WRITE_ONCE(cfs_rq->avg.util_est.enqueued, enqueued); 3925 } 3926 3927 /* 3928 * Check if a (signed) value is within a specified (unsigned) margin, 3929 * based on the observation that: 3930 * 3931 * abs(x) < y := (unsigned)(x + y - 1) < (2 * y - 1) 3932 * 3933 * NOTE: this only works when value + maring < INT_MAX. 3934 */ 3935 static inline bool within_margin(int value, int margin) 3936 { 3937 return ((unsigned int)(value + margin - 1) < (2 * margin - 1)); 3938 } 3939 3940 static void 3941 util_est_dequeue(struct cfs_rq *cfs_rq, struct task_struct *p, bool task_sleep) 3942 { 3943 long last_ewma_diff; 3944 struct util_est ue; 3945 int cpu; 3946 3947 if (!sched_feat(UTIL_EST)) 3948 return; 3949 3950 /* Update root cfs_rq's estimated utilization */ 3951 ue.enqueued = cfs_rq->avg.util_est.enqueued; 3952 ue.enqueued -= min_t(unsigned int, ue.enqueued, _task_util_est(p)); 3953 WRITE_ONCE(cfs_rq->avg.util_est.enqueued, ue.enqueued); 3954 3955 /* 3956 * Skip update of task's estimated utilization when the task has not 3957 * yet completed an activation, e.g. being migrated. 3958 */ 3959 if (!task_sleep) 3960 return; 3961 3962 /* 3963 * If the PELT values haven't changed since enqueue time, 3964 * skip the util_est update. 3965 */ 3966 ue = p->se.avg.util_est; 3967 if (ue.enqueued & UTIL_AVG_UNCHANGED) 3968 return; 3969 3970 /* 3971 * Reset EWMA on utilization increases, the moving average is used only 3972 * to smooth utilization decreases. 3973 */ 3974 ue.enqueued = (task_util(p) | UTIL_AVG_UNCHANGED); 3975 if (sched_feat(UTIL_EST_FASTUP)) { 3976 if (ue.ewma < ue.enqueued) { 3977 ue.ewma = ue.enqueued; 3978 goto done; 3979 } 3980 } 3981 3982 /* 3983 * Skip update of task's estimated utilization when its EWMA is 3984 * already ~1% close to its last activation value. 3985 */ 3986 last_ewma_diff = ue.enqueued - ue.ewma; 3987 if (within_margin(last_ewma_diff, (SCHED_CAPACITY_SCALE / 100))) 3988 return; 3989 3990 /* 3991 * To avoid overestimation of actual task utilization, skip updates if 3992 * we cannot grant there is idle time in this CPU. 3993 */ 3994 cpu = cpu_of(rq_of(cfs_rq)); 3995 if (task_util(p) > capacity_orig_of(cpu)) 3996 return; 3997 3998 /* 3999 * Update Task's estimated utilization 4000 * 4001 * When *p completes an activation we can consolidate another sample 4002 * of the task size. This is done by storing the current PELT value 4003 * as ue.enqueued and by using this value to update the Exponential 4004 * Weighted Moving Average (EWMA): 4005 * 4006 * ewma(t) = w * task_util(p) + (1-w) * ewma(t-1) 4007 * = w * task_util(p) + ewma(t-1) - w * ewma(t-1) 4008 * = w * (task_util(p) - ewma(t-1)) + ewma(t-1) 4009 * = w * ( last_ewma_diff ) + ewma(t-1) 4010 * = w * (last_ewma_diff + ewma(t-1) / w) 4011 * 4012 * Where 'w' is the weight of new samples, which is configured to be 4013 * 0.25, thus making w=1/4 ( >>= UTIL_EST_WEIGHT_SHIFT) 4014 */ 4015 ue.ewma <<= UTIL_EST_WEIGHT_SHIFT; 4016 ue.ewma += last_ewma_diff; 4017 ue.ewma >>= UTIL_EST_WEIGHT_SHIFT; 4018 done: 4019 WRITE_ONCE(p->se.avg.util_est, ue); 4020 } 4021 4022 static inline int task_fits_capacity(struct task_struct *p, long capacity) 4023 { 4024 return fits_capacity(uclamp_task_util(p), capacity); 4025 } 4026 4027 static inline void update_misfit_status(struct task_struct *p, struct rq *rq) 4028 { 4029 if (!static_branch_unlikely(&sched_asym_cpucapacity)) 4030 return; 4031 4032 if (!p) { 4033 rq->misfit_task_load = 0; 4034 return; 4035 } 4036 4037 if (task_fits_capacity(p, capacity_of(cpu_of(rq)))) { 4038 rq->misfit_task_load = 0; 4039 return; 4040 } 4041 4042 /* 4043 * Make sure that misfit_task_load will not be null even if 4044 * task_h_load() returns 0. 4045 */ 4046 rq->misfit_task_load = max_t(unsigned long, task_h_load(p), 1); 4047 } 4048 4049 #else /* CONFIG_SMP */ 4050 4051 #define UPDATE_TG 0x0 4052 #define SKIP_AGE_LOAD 0x0 4053 #define DO_ATTACH 0x0 4054 4055 static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int not_used1) 4056 { 4057 cfs_rq_util_change(cfs_rq, 0); 4058 } 4059 4060 static inline void remove_entity_load_avg(struct sched_entity *se) {} 4061 4062 static inline void 4063 attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {} 4064 static inline void 4065 detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {} 4066 4067 static inline int newidle_balance(struct rq *rq, struct rq_flags *rf) 4068 { 4069 return 0; 4070 } 4071 4072 static inline void 4073 util_est_enqueue(struct cfs_rq *cfs_rq, struct task_struct *p) {} 4074 4075 static inline void 4076 util_est_dequeue(struct cfs_rq *cfs_rq, struct task_struct *p, 4077 bool task_sleep) {} 4078 static inline void update_misfit_status(struct task_struct *p, struct rq *rq) {} 4079 4080 #endif /* CONFIG_SMP */ 4081 4082 static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se) 4083 { 4084 #ifdef CONFIG_SCHED_DEBUG 4085 s64 d = se->vruntime - cfs_rq->min_vruntime; 4086 4087 if (d < 0) 4088 d = -d; 4089 4090 if (d > 3*sysctl_sched_latency) 4091 schedstat_inc(cfs_rq->nr_spread_over); 4092 #endif 4093 } 4094 4095 static void 4096 place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial) 4097 { 4098 u64 vruntime = cfs_rq->min_vruntime; 4099 4100 /* 4101 * The 'current' period is already promised to the current tasks, 4102 * however the extra weight of the new task will slow them down a 4103 * little, place the new task so that it fits in the slot that 4104 * stays open at the end. 4105 */ 4106 if (initial && sched_feat(START_DEBIT)) 4107 vruntime += sched_vslice(cfs_rq, se); 4108 4109 /* sleeps up to a single latency don't count. */ 4110 if (!initial) { 4111 unsigned long thresh = sysctl_sched_latency; 4112 4113 /* 4114 * Halve their sleep time's effect, to allow 4115 * for a gentler effect of sleepers: 4116 */ 4117 if (sched_feat(GENTLE_FAIR_SLEEPERS)) 4118 thresh >>= 1; 4119 4120 vruntime -= thresh; 4121 } 4122 4123 /* ensure we never gain time by being placed backwards. */ 4124 se->vruntime = max_vruntime(se->vruntime, vruntime); 4125 } 4126 4127 static void check_enqueue_throttle(struct cfs_rq *cfs_rq); 4128 4129 static inline void check_schedstat_required(void) 4130 { 4131 #ifdef CONFIG_SCHEDSTATS 4132 if (schedstat_enabled()) 4133 return; 4134 4135 /* Force schedstat enabled if a dependent tracepoint is active */ 4136 if (trace_sched_stat_wait_enabled() || 4137 trace_sched_stat_sleep_enabled() || 4138 trace_sched_stat_iowait_enabled() || 4139 trace_sched_stat_blocked_enabled() || 4140 trace_sched_stat_runtime_enabled()) { 4141 printk_deferred_once("Scheduler tracepoints stat_sleep, stat_iowait, " 4142 "stat_blocked and stat_runtime require the " 4143 "kernel parameter schedstats=enable or " 4144 "kernel.sched_schedstats=1\n"); 4145 } 4146 #endif 4147 } 4148 4149 static inline bool cfs_bandwidth_used(void); 4150 4151 /* 4152 * MIGRATION 4153 * 4154 * dequeue 4155 * update_curr() 4156 * update_min_vruntime() 4157 * vruntime -= min_vruntime 4158 * 4159 * enqueue 4160 * update_curr() 4161 * update_min_vruntime() 4162 * vruntime += min_vruntime 4163 * 4164 * this way the vruntime transition between RQs is done when both 4165 * min_vruntime are up-to-date. 4166 * 4167 * WAKEUP (remote) 4168 * 4169 * ->migrate_task_rq_fair() (p->state == TASK_WAKING) 4170 * vruntime -= min_vruntime 4171 * 4172 * enqueue 4173 * update_curr() 4174 * update_min_vruntime() 4175 * vruntime += min_vruntime 4176 * 4177 * this way we don't have the most up-to-date min_vruntime on the originating 4178 * CPU and an up-to-date min_vruntime on the destination CPU. 4179 */ 4180 4181 static void 4182 enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 4183 { 4184 bool renorm = !(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_MIGRATED); 4185 bool curr = cfs_rq->curr == se; 4186 4187 /* 4188 * If we're the current task, we must renormalise before calling 4189 * update_curr(). 4190 */ 4191 if (renorm && curr) 4192 se->vruntime += cfs_rq->min_vruntime; 4193 4194 update_curr(cfs_rq); 4195 4196 /* 4197 * Otherwise, renormalise after, such that we're placed at the current 4198 * moment in time, instead of some random moment in the past. Being 4199 * placed in the past could significantly boost this task to the 4200 * fairness detriment of existing tasks. 4201 */ 4202 if (renorm && !curr) 4203 se->vruntime += cfs_rq->min_vruntime; 4204 4205 /* 4206 * When enqueuing a sched_entity, we must: 4207 * - Update loads to have both entity and cfs_rq synced with now. 4208 * - Add its load to cfs_rq->runnable_avg 4209 * - For group_entity, update its weight to reflect the new share of 4210 * its group cfs_rq 4211 * - Add its new weight to cfs_rq->load.weight 4212 */ 4213 update_load_avg(cfs_rq, se, UPDATE_TG | DO_ATTACH); 4214 se_update_runnable(se); 4215 update_cfs_group(se); 4216 account_entity_enqueue(cfs_rq, se); 4217 4218 if (flags & ENQUEUE_WAKEUP) 4219 place_entity(cfs_rq, se, 0); 4220 4221 check_schedstat_required(); 4222 update_stats_enqueue(cfs_rq, se, flags); 4223 check_spread(cfs_rq, se); 4224 if (!curr) 4225 __enqueue_entity(cfs_rq, se); 4226 se->on_rq = 1; 4227 4228 /* 4229 * When bandwidth control is enabled, cfs might have been removed 4230 * because of a parent been throttled but cfs->nr_running > 1. Try to 4231 * add it unconditionnally. 4232 */ 4233 if (cfs_rq->nr_running == 1 || cfs_bandwidth_used()) 4234 list_add_leaf_cfs_rq(cfs_rq); 4235 4236 if (cfs_rq->nr_running == 1) 4237 check_enqueue_throttle(cfs_rq); 4238 } 4239 4240 static void __clear_buddies_last(struct sched_entity *se) 4241 { 4242 for_each_sched_entity(se) { 4243 struct cfs_rq *cfs_rq = cfs_rq_of(se); 4244 if (cfs_rq->last != se) 4245 break; 4246 4247 cfs_rq->last = NULL; 4248 } 4249 } 4250 4251 static void __clear_buddies_next(struct sched_entity *se) 4252 { 4253 for_each_sched_entity(se) { 4254 struct cfs_rq *cfs_rq = cfs_rq_of(se); 4255 if (cfs_rq->next != se) 4256 break; 4257 4258 cfs_rq->next = NULL; 4259 } 4260 } 4261 4262 static void __clear_buddies_skip(struct sched_entity *se) 4263 { 4264 for_each_sched_entity(se) { 4265 struct cfs_rq *cfs_rq = cfs_rq_of(se); 4266 if (cfs_rq->skip != se) 4267 break; 4268 4269 cfs_rq->skip = NULL; 4270 } 4271 } 4272 4273 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se) 4274 { 4275 if (cfs_rq->last == se) 4276 __clear_buddies_last(se); 4277 4278 if (cfs_rq->next == se) 4279 __clear_buddies_next(se); 4280 4281 if (cfs_rq->skip == se) 4282 __clear_buddies_skip(se); 4283 } 4284 4285 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq); 4286 4287 static void 4288 dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 4289 { 4290 /* 4291 * Update run-time statistics of the 'current'. 4292 */ 4293 update_curr(cfs_rq); 4294 4295 /* 4296 * When dequeuing a sched_entity, we must: 4297 * - Update loads to have both entity and cfs_rq synced with now. 4298 * - Subtract its load from the cfs_rq->runnable_avg. 4299 * - Subtract its previous weight from cfs_rq->load.weight. 4300 * - For group entity, update its weight to reflect the new share 4301 * of its group cfs_rq. 4302 */ 4303 update_load_avg(cfs_rq, se, UPDATE_TG); 4304 se_update_runnable(se); 4305 4306 update_stats_dequeue(cfs_rq, se, flags); 4307 4308 clear_buddies(cfs_rq, se); 4309 4310 if (se != cfs_rq->curr) 4311 __dequeue_entity(cfs_rq, se); 4312 se->on_rq = 0; 4313 account_entity_dequeue(cfs_rq, se); 4314 4315 /* 4316 * Normalize after update_curr(); which will also have moved 4317 * min_vruntime if @se is the one holding it back. But before doing 4318 * update_min_vruntime() again, which will discount @se's position and 4319 * can move min_vruntime forward still more. 4320 */ 4321 if (!(flags & DEQUEUE_SLEEP)) 4322 se->vruntime -= cfs_rq->min_vruntime; 4323 4324 /* return excess runtime on last dequeue */ 4325 return_cfs_rq_runtime(cfs_rq); 4326 4327 update_cfs_group(se); 4328 4329 /* 4330 * Now advance min_vruntime if @se was the entity holding it back, 4331 * except when: DEQUEUE_SAVE && !DEQUEUE_MOVE, in this case we'll be 4332 * put back on, and if we advance min_vruntime, we'll be placed back 4333 * further than we started -- ie. we'll be penalized. 4334 */ 4335 if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) != DEQUEUE_SAVE) 4336 update_min_vruntime(cfs_rq); 4337 } 4338 4339 /* 4340 * Preempt the current task with a newly woken task if needed: 4341 */ 4342 static void 4343 check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr) 4344 { 4345 unsigned long ideal_runtime, delta_exec; 4346 struct sched_entity *se; 4347 s64 delta; 4348 4349 ideal_runtime = sched_slice(cfs_rq, curr); 4350 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime; 4351 if (delta_exec > ideal_runtime) { 4352 resched_curr(rq_of(cfs_rq)); 4353 /* 4354 * The current task ran long enough, ensure it doesn't get 4355 * re-elected due to buddy favours. 4356 */ 4357 clear_buddies(cfs_rq, curr); 4358 return; 4359 } 4360 4361 /* 4362 * Ensure that a task that missed wakeup preemption by a 4363 * narrow margin doesn't have to wait for a full slice. 4364 * This also mitigates buddy induced latencies under load. 4365 */ 4366 if (delta_exec < sysctl_sched_min_granularity) 4367 return; 4368 4369 se = __pick_first_entity(cfs_rq); 4370 delta = curr->vruntime - se->vruntime; 4371 4372 if (delta < 0) 4373 return; 4374 4375 if (delta > ideal_runtime) 4376 resched_curr(rq_of(cfs_rq)); 4377 } 4378 4379 static void 4380 set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) 4381 { 4382 /* 'current' is not kept within the tree. */ 4383 if (se->on_rq) { 4384 /* 4385 * Any task has to be enqueued before it get to execute on 4386 * a CPU. So account for the time it spent waiting on the 4387 * runqueue. 4388 */ 4389 update_stats_wait_end(cfs_rq, se); 4390 __dequeue_entity(cfs_rq, se); 4391 update_load_avg(cfs_rq, se, UPDATE_TG); 4392 } 4393 4394 update_stats_curr_start(cfs_rq, se); 4395 cfs_rq->curr = se; 4396 4397 /* 4398 * Track our maximum slice length, if the CPU's load is at 4399 * least twice that of our own weight (i.e. dont track it 4400 * when there are only lesser-weight tasks around): 4401 */ 4402 if (schedstat_enabled() && 4403 rq_of(cfs_rq)->cfs.load.weight >= 2*se->load.weight) { 4404 schedstat_set(se->statistics.slice_max, 4405 max((u64)schedstat_val(se->statistics.slice_max), 4406 se->sum_exec_runtime - se->prev_sum_exec_runtime)); 4407 } 4408 4409 se->prev_sum_exec_runtime = se->sum_exec_runtime; 4410 } 4411 4412 static int 4413 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se); 4414 4415 /* 4416 * Pick the next process, keeping these things in mind, in this order: 4417 * 1) keep things fair between processes/task groups 4418 * 2) pick the "next" process, since someone really wants that to run 4419 * 3) pick the "last" process, for cache locality 4420 * 4) do not run the "skip" process, if something else is available 4421 */ 4422 static struct sched_entity * 4423 pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr) 4424 { 4425 struct sched_entity *left = __pick_first_entity(cfs_rq); 4426 struct sched_entity *se; 4427 4428 /* 4429 * If curr is set we have to see if its left of the leftmost entity 4430 * still in the tree, provided there was anything in the tree at all. 4431 */ 4432 if (!left || (curr && entity_before(curr, left))) 4433 left = curr; 4434 4435 se = left; /* ideally we run the leftmost entity */ 4436 4437 /* 4438 * Avoid running the skip buddy, if running something else can 4439 * be done without getting too unfair. 4440 */ 4441 if (cfs_rq->skip == se) { 4442 struct sched_entity *second; 4443 4444 if (se == curr) { 4445 second = __pick_first_entity(cfs_rq); 4446 } else { 4447 second = __pick_next_entity(se); 4448 if (!second || (curr && entity_before(curr, second))) 4449 second = curr; 4450 } 4451 4452 if (second && wakeup_preempt_entity(second, left) < 1) 4453 se = second; 4454 } 4455 4456 /* 4457 * Prefer last buddy, try to return the CPU to a preempted task. 4458 */ 4459 if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1) 4460 se = cfs_rq->last; 4461 4462 /* 4463 * Someone really wants this to run. If it's not unfair, run it. 4464 */ 4465 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1) 4466 se = cfs_rq->next; 4467 4468 clear_buddies(cfs_rq, se); 4469 4470 return se; 4471 } 4472 4473 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq); 4474 4475 static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev) 4476 { 4477 /* 4478 * If still on the runqueue then deactivate_task() 4479 * was not called and update_curr() has to be done: 4480 */ 4481 if (prev->on_rq) 4482 update_curr(cfs_rq); 4483 4484 /* throttle cfs_rqs exceeding runtime */ 4485 check_cfs_rq_runtime(cfs_rq); 4486 4487 check_spread(cfs_rq, prev); 4488 4489 if (prev->on_rq) { 4490 update_stats_wait_start(cfs_rq, prev); 4491 /* Put 'current' back into the tree. */ 4492 __enqueue_entity(cfs_rq, prev); 4493 /* in !on_rq case, update occurred at dequeue */ 4494 update_load_avg(cfs_rq, prev, 0); 4495 } 4496 cfs_rq->curr = NULL; 4497 } 4498 4499 static void 4500 entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued) 4501 { 4502 /* 4503 * Update run-time statistics of the 'current'. 4504 */ 4505 update_curr(cfs_rq); 4506 4507 /* 4508 * Ensure that runnable average is periodically updated. 4509 */ 4510 update_load_avg(cfs_rq, curr, UPDATE_TG); 4511 update_cfs_group(curr); 4512 4513 #ifdef CONFIG_SCHED_HRTICK 4514 /* 4515 * queued ticks are scheduled to match the slice, so don't bother 4516 * validating it and just reschedule. 4517 */ 4518 if (queued) { 4519 resched_curr(rq_of(cfs_rq)); 4520 return; 4521 } 4522 /* 4523 * don't let the period tick interfere with the hrtick preemption 4524 */ 4525 if (!sched_feat(DOUBLE_TICK) && 4526 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer)) 4527 return; 4528 #endif 4529 4530 if (cfs_rq->nr_running > 1) 4531 check_preempt_tick(cfs_rq, curr); 4532 } 4533 4534 4535 /************************************************** 4536 * CFS bandwidth control machinery 4537 */ 4538 4539 #ifdef CONFIG_CFS_BANDWIDTH 4540 4541 #ifdef CONFIG_JUMP_LABEL 4542 static struct static_key __cfs_bandwidth_used; 4543 4544 static inline bool cfs_bandwidth_used(void) 4545 { 4546 return static_key_false(&__cfs_bandwidth_used); 4547 } 4548 4549 void cfs_bandwidth_usage_inc(void) 4550 { 4551 static_key_slow_inc_cpuslocked(&__cfs_bandwidth_used); 4552 } 4553 4554 void cfs_bandwidth_usage_dec(void) 4555 { 4556 static_key_slow_dec_cpuslocked(&__cfs_bandwidth_used); 4557 } 4558 #else /* CONFIG_JUMP_LABEL */ 4559 static bool cfs_bandwidth_used(void) 4560 { 4561 return true; 4562 } 4563 4564 void cfs_bandwidth_usage_inc(void) {} 4565 void cfs_bandwidth_usage_dec(void) {} 4566 #endif /* CONFIG_JUMP_LABEL */ 4567 4568 /* 4569 * default period for cfs group bandwidth. 4570 * default: 0.1s, units: nanoseconds 4571 */ 4572 static inline u64 default_cfs_period(void) 4573 { 4574 return 100000000ULL; 4575 } 4576 4577 static inline u64 sched_cfs_bandwidth_slice(void) 4578 { 4579 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC; 4580 } 4581 4582 /* 4583 * Replenish runtime according to assigned quota. We use sched_clock_cpu 4584 * directly instead of rq->clock to avoid adding additional synchronization 4585 * around rq->lock. 4586 * 4587 * requires cfs_b->lock 4588 */ 4589 void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b) 4590 { 4591 if (cfs_b->quota != RUNTIME_INF) 4592 cfs_b->runtime = cfs_b->quota; 4593 } 4594 4595 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg) 4596 { 4597 return &tg->cfs_bandwidth; 4598 } 4599 4600 /* returns 0 on failure to allocate runtime */ 4601 static int __assign_cfs_rq_runtime(struct cfs_bandwidth *cfs_b, 4602 struct cfs_rq *cfs_rq, u64 target_runtime) 4603 { 4604 u64 min_amount, amount = 0; 4605 4606 lockdep_assert_held(&cfs_b->lock); 4607 4608 /* note: this is a positive sum as runtime_remaining <= 0 */ 4609 min_amount = target_runtime - cfs_rq->runtime_remaining; 4610 4611 if (cfs_b->quota == RUNTIME_INF) 4612 amount = min_amount; 4613 else { 4614 start_cfs_bandwidth(cfs_b); 4615 4616 if (cfs_b->runtime > 0) { 4617 amount = min(cfs_b->runtime, min_amount); 4618 cfs_b->runtime -= amount; 4619 cfs_b->idle = 0; 4620 } 4621 } 4622 4623 cfs_rq->runtime_remaining += amount; 4624 4625 return cfs_rq->runtime_remaining > 0; 4626 } 4627 4628 /* returns 0 on failure to allocate runtime */ 4629 static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq) 4630 { 4631 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 4632 int ret; 4633 4634 raw_spin_lock(&cfs_b->lock); 4635 ret = __assign_cfs_rq_runtime(cfs_b, cfs_rq, sched_cfs_bandwidth_slice()); 4636 raw_spin_unlock(&cfs_b->lock); 4637 4638 return ret; 4639 } 4640 4641 static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) 4642 { 4643 /* dock delta_exec before expiring quota (as it could span periods) */ 4644 cfs_rq->runtime_remaining -= delta_exec; 4645 4646 if (likely(cfs_rq->runtime_remaining > 0)) 4647 return; 4648 4649 if (cfs_rq->throttled) 4650 return; 4651 /* 4652 * if we're unable to extend our runtime we resched so that the active 4653 * hierarchy can be throttled 4654 */ 4655 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr)) 4656 resched_curr(rq_of(cfs_rq)); 4657 } 4658 4659 static __always_inline 4660 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) 4661 { 4662 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled) 4663 return; 4664 4665 __account_cfs_rq_runtime(cfs_rq, delta_exec); 4666 } 4667 4668 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq) 4669 { 4670 return cfs_bandwidth_used() && cfs_rq->throttled; 4671 } 4672 4673 /* check whether cfs_rq, or any parent, is throttled */ 4674 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq) 4675 { 4676 return cfs_bandwidth_used() && cfs_rq->throttle_count; 4677 } 4678 4679 /* 4680 * Ensure that neither of the group entities corresponding to src_cpu or 4681 * dest_cpu are members of a throttled hierarchy when performing group 4682 * load-balance operations. 4683 */ 4684 static inline int throttled_lb_pair(struct task_group *tg, 4685 int src_cpu, int dest_cpu) 4686 { 4687 struct cfs_rq *src_cfs_rq, *dest_cfs_rq; 4688 4689 src_cfs_rq = tg->cfs_rq[src_cpu]; 4690 dest_cfs_rq = tg->cfs_rq[dest_cpu]; 4691 4692 return throttled_hierarchy(src_cfs_rq) || 4693 throttled_hierarchy(dest_cfs_rq); 4694 } 4695 4696 static int tg_unthrottle_up(struct task_group *tg, void *data) 4697 { 4698 struct rq *rq = data; 4699 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; 4700 4701 cfs_rq->throttle_count--; 4702 if (!cfs_rq->throttle_count) { 4703 cfs_rq->throttled_clock_task_time += rq_clock_task(rq) - 4704 cfs_rq->throttled_clock_task; 4705 4706 /* Add cfs_rq with already running entity in the list */ 4707 if (cfs_rq->nr_running >= 1) 4708 list_add_leaf_cfs_rq(cfs_rq); 4709 } 4710 4711 return 0; 4712 } 4713 4714 static int tg_throttle_down(struct task_group *tg, void *data) 4715 { 4716 struct rq *rq = data; 4717 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; 4718 4719 /* group is entering throttled state, stop time */ 4720 if (!cfs_rq->throttle_count) { 4721 cfs_rq->throttled_clock_task = rq_clock_task(rq); 4722 list_del_leaf_cfs_rq(cfs_rq); 4723 } 4724 cfs_rq->throttle_count++; 4725 4726 return 0; 4727 } 4728 4729 static bool throttle_cfs_rq(struct cfs_rq *cfs_rq) 4730 { 4731 struct rq *rq = rq_of(cfs_rq); 4732 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 4733 struct sched_entity *se; 4734 long task_delta, idle_task_delta, dequeue = 1; 4735 4736 raw_spin_lock(&cfs_b->lock); 4737 /* This will start the period timer if necessary */ 4738 if (__assign_cfs_rq_runtime(cfs_b, cfs_rq, 1)) { 4739 /* 4740 * We have raced with bandwidth becoming available, and if we 4741 * actually throttled the timer might not unthrottle us for an 4742 * entire period. We additionally needed to make sure that any 4743 * subsequent check_cfs_rq_runtime calls agree not to throttle 4744 * us, as we may commit to do cfs put_prev+pick_next, so we ask 4745 * for 1ns of runtime rather than just check cfs_b. 4746 */ 4747 dequeue = 0; 4748 } else { 4749 list_add_tail_rcu(&cfs_rq->throttled_list, 4750 &cfs_b->throttled_cfs_rq); 4751 } 4752 raw_spin_unlock(&cfs_b->lock); 4753 4754 if (!dequeue) 4755 return false; /* Throttle no longer required. */ 4756 4757 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))]; 4758 4759 /* freeze hierarchy runnable averages while throttled */ 4760 rcu_read_lock(); 4761 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq); 4762 rcu_read_unlock(); 4763 4764 task_delta = cfs_rq->h_nr_running; 4765 idle_task_delta = cfs_rq->idle_h_nr_running; 4766 for_each_sched_entity(se) { 4767 struct cfs_rq *qcfs_rq = cfs_rq_of(se); 4768 /* throttled entity or throttle-on-deactivate */ 4769 if (!se->on_rq) 4770 break; 4771 4772 if (dequeue) { 4773 dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP); 4774 } else { 4775 update_load_avg(qcfs_rq, se, 0); 4776 se_update_runnable(se); 4777 } 4778 4779 qcfs_rq->h_nr_running -= task_delta; 4780 qcfs_rq->idle_h_nr_running -= idle_task_delta; 4781 4782 if (qcfs_rq->load.weight) 4783 dequeue = 0; 4784 } 4785 4786 if (!se) 4787 sub_nr_running(rq, task_delta); 4788 4789 /* 4790 * Note: distribution will already see us throttled via the 4791 * throttled-list. rq->lock protects completion. 4792 */ 4793 cfs_rq->throttled = 1; 4794 cfs_rq->throttled_clock = rq_clock(rq); 4795 return true; 4796 } 4797 4798 void unthrottle_cfs_rq(struct cfs_rq *cfs_rq) 4799 { 4800 struct rq *rq = rq_of(cfs_rq); 4801 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 4802 struct sched_entity *se; 4803 long task_delta, idle_task_delta; 4804 4805 se = cfs_rq->tg->se[cpu_of(rq)]; 4806 4807 cfs_rq->throttled = 0; 4808 4809 update_rq_clock(rq); 4810 4811 raw_spin_lock(&cfs_b->lock); 4812 cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock; 4813 list_del_rcu(&cfs_rq->throttled_list); 4814 raw_spin_unlock(&cfs_b->lock); 4815 4816 /* update hierarchical throttle state */ 4817 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq); 4818 4819 if (!cfs_rq->load.weight) 4820 return; 4821 4822 task_delta = cfs_rq->h_nr_running; 4823 idle_task_delta = cfs_rq->idle_h_nr_running; 4824 for_each_sched_entity(se) { 4825 if (se->on_rq) 4826 break; 4827 cfs_rq = cfs_rq_of(se); 4828 enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP); 4829 4830 cfs_rq->h_nr_running += task_delta; 4831 cfs_rq->idle_h_nr_running += idle_task_delta; 4832 4833 /* end evaluation on encountering a throttled cfs_rq */ 4834 if (cfs_rq_throttled(cfs_rq)) 4835 goto unthrottle_throttle; 4836 } 4837 4838 for_each_sched_entity(se) { 4839 cfs_rq = cfs_rq_of(se); 4840 4841 update_load_avg(cfs_rq, se, UPDATE_TG); 4842 se_update_runnable(se); 4843 4844 cfs_rq->h_nr_running += task_delta; 4845 cfs_rq->idle_h_nr_running += idle_task_delta; 4846 4847 4848 /* end evaluation on encountering a throttled cfs_rq */ 4849 if (cfs_rq_throttled(cfs_rq)) 4850 goto unthrottle_throttle; 4851 4852 /* 4853 * One parent has been throttled and cfs_rq removed from the 4854 * list. Add it back to not break the leaf list. 4855 */ 4856 if (throttled_hierarchy(cfs_rq)) 4857 list_add_leaf_cfs_rq(cfs_rq); 4858 } 4859 4860 /* At this point se is NULL and we are at root level*/ 4861 add_nr_running(rq, task_delta); 4862 4863 unthrottle_throttle: 4864 /* 4865 * The cfs_rq_throttled() breaks in the above iteration can result in 4866 * incomplete leaf list maintenance, resulting in triggering the 4867 * assertion below. 4868 */ 4869 for_each_sched_entity(se) { 4870 cfs_rq = cfs_rq_of(se); 4871 4872 if (list_add_leaf_cfs_rq(cfs_rq)) 4873 break; 4874 } 4875 4876 assert_list_leaf_cfs_rq(rq); 4877 4878 /* Determine whether we need to wake up potentially idle CPU: */ 4879 if (rq->curr == rq->idle && rq->cfs.nr_running) 4880 resched_curr(rq); 4881 } 4882 4883 static void distribute_cfs_runtime(struct cfs_bandwidth *cfs_b) 4884 { 4885 struct cfs_rq *cfs_rq; 4886 u64 runtime, remaining = 1; 4887 4888 rcu_read_lock(); 4889 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq, 4890 throttled_list) { 4891 struct rq *rq = rq_of(cfs_rq); 4892 struct rq_flags rf; 4893 4894 rq_lock_irqsave(rq, &rf); 4895 if (!cfs_rq_throttled(cfs_rq)) 4896 goto next; 4897 4898 /* By the above check, this should never be true */ 4899 SCHED_WARN_ON(cfs_rq->runtime_remaining > 0); 4900 4901 raw_spin_lock(&cfs_b->lock); 4902 runtime = -cfs_rq->runtime_remaining + 1; 4903 if (runtime > cfs_b->runtime) 4904 runtime = cfs_b->runtime; 4905 cfs_b->runtime -= runtime; 4906 remaining = cfs_b->runtime; 4907 raw_spin_unlock(&cfs_b->lock); 4908 4909 cfs_rq->runtime_remaining += runtime; 4910 4911 /* we check whether we're throttled above */ 4912 if (cfs_rq->runtime_remaining > 0) 4913 unthrottle_cfs_rq(cfs_rq); 4914 4915 next: 4916 rq_unlock_irqrestore(rq, &rf); 4917 4918 if (!remaining) 4919 break; 4920 } 4921 rcu_read_unlock(); 4922 } 4923 4924 /* 4925 * Responsible for refilling a task_group's bandwidth and unthrottling its 4926 * cfs_rqs as appropriate. If there has been no activity within the last 4927 * period the timer is deactivated until scheduling resumes; cfs_b->idle is 4928 * used to track this state. 4929 */ 4930 static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun, unsigned long flags) 4931 { 4932 int throttled; 4933 4934 /* no need to continue the timer with no bandwidth constraint */ 4935 if (cfs_b->quota == RUNTIME_INF) 4936 goto out_deactivate; 4937 4938 throttled = !list_empty(&cfs_b->throttled_cfs_rq); 4939 cfs_b->nr_periods += overrun; 4940 4941 /* 4942 * idle depends on !throttled (for the case of a large deficit), and if 4943 * we're going inactive then everything else can be deferred 4944 */ 4945 if (cfs_b->idle && !throttled) 4946 goto out_deactivate; 4947 4948 __refill_cfs_bandwidth_runtime(cfs_b); 4949 4950 if (!throttled) { 4951 /* mark as potentially idle for the upcoming period */ 4952 cfs_b->idle = 1; 4953 return 0; 4954 } 4955 4956 /* account preceding periods in which throttling occurred */ 4957 cfs_b->nr_throttled += overrun; 4958 4959 /* 4960 * This check is repeated as we release cfs_b->lock while we unthrottle. 4961 */ 4962 while (throttled && cfs_b->runtime > 0) { 4963 raw_spin_unlock_irqrestore(&cfs_b->lock, flags); 4964 /* we can't nest cfs_b->lock while distributing bandwidth */ 4965 distribute_cfs_runtime(cfs_b); 4966 raw_spin_lock_irqsave(&cfs_b->lock, flags); 4967 4968 throttled = !list_empty(&cfs_b->throttled_cfs_rq); 4969 } 4970 4971 /* 4972 * While we are ensured activity in the period following an 4973 * unthrottle, this also covers the case in which the new bandwidth is 4974 * insufficient to cover the existing bandwidth deficit. (Forcing the 4975 * timer to remain active while there are any throttled entities.) 4976 */ 4977 cfs_b->idle = 0; 4978 4979 return 0; 4980 4981 out_deactivate: 4982 return 1; 4983 } 4984 4985 /* a cfs_rq won't donate quota below this amount */ 4986 static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC; 4987 /* minimum remaining period time to redistribute slack quota */ 4988 static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC; 4989 /* how long we wait to gather additional slack before distributing */ 4990 static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC; 4991 4992 /* 4993 * Are we near the end of the current quota period? 4994 * 4995 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the 4996 * hrtimer base being cleared by hrtimer_start. In the case of 4997 * migrate_hrtimers, base is never cleared, so we are fine. 4998 */ 4999 static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire) 5000 { 5001 struct hrtimer *refresh_timer = &cfs_b->period_timer; 5002 u64 remaining; 5003 5004 /* if the call-back is running a quota refresh is already occurring */ 5005 if (hrtimer_callback_running(refresh_timer)) 5006 return 1; 5007 5008 /* is a quota refresh about to occur? */ 5009 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer)); 5010 if (remaining < min_expire) 5011 return 1; 5012 5013 return 0; 5014 } 5015 5016 static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b) 5017 { 5018 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration; 5019 5020 /* if there's a quota refresh soon don't bother with slack */ 5021 if (runtime_refresh_within(cfs_b, min_left)) 5022 return; 5023 5024 /* don't push forwards an existing deferred unthrottle */ 5025 if (cfs_b->slack_started) 5026 return; 5027 cfs_b->slack_started = true; 5028 5029 hrtimer_start(&cfs_b->slack_timer, 5030 ns_to_ktime(cfs_bandwidth_slack_period), 5031 HRTIMER_MODE_REL); 5032 } 5033 5034 /* we know any runtime found here is valid as update_curr() precedes return */ 5035 static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq) 5036 { 5037 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 5038 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime; 5039 5040 if (slack_runtime <= 0) 5041 return; 5042 5043 raw_spin_lock(&cfs_b->lock); 5044 if (cfs_b->quota != RUNTIME_INF) { 5045 cfs_b->runtime += slack_runtime; 5046 5047 /* we are under rq->lock, defer unthrottling using a timer */ 5048 if (cfs_b->runtime > sched_cfs_bandwidth_slice() && 5049 !list_empty(&cfs_b->throttled_cfs_rq)) 5050 start_cfs_slack_bandwidth(cfs_b); 5051 } 5052 raw_spin_unlock(&cfs_b->lock); 5053 5054 /* even if it's not valid for return we don't want to try again */ 5055 cfs_rq->runtime_remaining -= slack_runtime; 5056 } 5057 5058 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) 5059 { 5060 if (!cfs_bandwidth_used()) 5061 return; 5062 5063 if (!cfs_rq->runtime_enabled || cfs_rq->nr_running) 5064 return; 5065 5066 __return_cfs_rq_runtime(cfs_rq); 5067 } 5068 5069 /* 5070 * This is done with a timer (instead of inline with bandwidth return) since 5071 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs. 5072 */ 5073 static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b) 5074 { 5075 u64 runtime = 0, slice = sched_cfs_bandwidth_slice(); 5076 unsigned long flags; 5077 5078 /* confirm we're still not at a refresh boundary */ 5079 raw_spin_lock_irqsave(&cfs_b->lock, flags); 5080 cfs_b->slack_started = false; 5081 5082 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) { 5083 raw_spin_unlock_irqrestore(&cfs_b->lock, flags); 5084 return; 5085 } 5086 5087 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice) 5088 runtime = cfs_b->runtime; 5089 5090 raw_spin_unlock_irqrestore(&cfs_b->lock, flags); 5091 5092 if (!runtime) 5093 return; 5094 5095 distribute_cfs_runtime(cfs_b); 5096 5097 raw_spin_lock_irqsave(&cfs_b->lock, flags); 5098 raw_spin_unlock_irqrestore(&cfs_b->lock, flags); 5099 } 5100 5101 /* 5102 * When a group wakes up we want to make sure that its quota is not already 5103 * expired/exceeded, otherwise it may be allowed to steal additional ticks of 5104 * runtime as update_curr() throttling can not not trigger until it's on-rq. 5105 */ 5106 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) 5107 { 5108 if (!cfs_bandwidth_used()) 5109 return; 5110 5111 /* an active group must be handled by the update_curr()->put() path */ 5112 if (!cfs_rq->runtime_enabled || cfs_rq->curr) 5113 return; 5114 5115 /* ensure the group is not already throttled */ 5116 if (cfs_rq_throttled(cfs_rq)) 5117 return; 5118 5119 /* update runtime allocation */ 5120 account_cfs_rq_runtime(cfs_rq, 0); 5121 if (cfs_rq->runtime_remaining <= 0) 5122 throttle_cfs_rq(cfs_rq); 5123 } 5124 5125 static void sync_throttle(struct task_group *tg, int cpu) 5126 { 5127 struct cfs_rq *pcfs_rq, *cfs_rq; 5128 5129 if (!cfs_bandwidth_used()) 5130 return; 5131 5132 if (!tg->parent) 5133 return; 5134 5135 cfs_rq = tg->cfs_rq[cpu]; 5136 pcfs_rq = tg->parent->cfs_rq[cpu]; 5137 5138 cfs_rq->throttle_count = pcfs_rq->throttle_count; 5139 cfs_rq->throttled_clock_task = rq_clock_task(cpu_rq(cpu)); 5140 } 5141 5142 /* conditionally throttle active cfs_rq's from put_prev_entity() */ 5143 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) 5144 { 5145 if (!cfs_bandwidth_used()) 5146 return false; 5147 5148 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0)) 5149 return false; 5150 5151 /* 5152 * it's possible for a throttled entity to be forced into a running 5153 * state (e.g. set_curr_task), in this case we're finished. 5154 */ 5155 if (cfs_rq_throttled(cfs_rq)) 5156 return true; 5157 5158 return throttle_cfs_rq(cfs_rq); 5159 } 5160 5161 static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer) 5162 { 5163 struct cfs_bandwidth *cfs_b = 5164 container_of(timer, struct cfs_bandwidth, slack_timer); 5165 5166 do_sched_cfs_slack_timer(cfs_b); 5167 5168 return HRTIMER_NORESTART; 5169 } 5170 5171 extern const u64 max_cfs_quota_period; 5172 5173 static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer) 5174 { 5175 struct cfs_bandwidth *cfs_b = 5176 container_of(timer, struct cfs_bandwidth, period_timer); 5177 unsigned long flags; 5178 int overrun; 5179 int idle = 0; 5180 int count = 0; 5181 5182 raw_spin_lock_irqsave(&cfs_b->lock, flags); 5183 for (;;) { 5184 overrun = hrtimer_forward_now(timer, cfs_b->period); 5185 if (!overrun) 5186 break; 5187 5188 idle = do_sched_cfs_period_timer(cfs_b, overrun, flags); 5189 5190 if (++count > 3) { 5191 u64 new, old = ktime_to_ns(cfs_b->period); 5192 5193 /* 5194 * Grow period by a factor of 2 to avoid losing precision. 5195 * Precision loss in the quota/period ratio can cause __cfs_schedulable 5196 * to fail. 5197 */ 5198 new = old * 2; 5199 if (new < max_cfs_quota_period) { 5200 cfs_b->period = ns_to_ktime(new); 5201 cfs_b->quota *= 2; 5202 5203 pr_warn_ratelimited( 5204 "cfs_period_timer[cpu%d]: period too short, scaling up (new cfs_period_us = %lld, cfs_quota_us = %lld)\n", 5205 smp_processor_id(), 5206 div_u64(new, NSEC_PER_USEC), 5207 div_u64(cfs_b->quota, NSEC_PER_USEC)); 5208 } else { 5209 pr_warn_ratelimited( 5210 "cfs_period_timer[cpu%d]: period too short, but cannot scale up without losing precision (cfs_period_us = %lld, cfs_quota_us = %lld)\n", 5211 smp_processor_id(), 5212 div_u64(old, NSEC_PER_USEC), 5213 div_u64(cfs_b->quota, NSEC_PER_USEC)); 5214 } 5215 5216 /* reset count so we don't come right back in here */ 5217 count = 0; 5218 } 5219 } 5220 if (idle) 5221 cfs_b->period_active = 0; 5222 raw_spin_unlock_irqrestore(&cfs_b->lock, flags); 5223 5224 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART; 5225 } 5226 5227 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) 5228 { 5229 raw_spin_lock_init(&cfs_b->lock); 5230 cfs_b->runtime = 0; 5231 cfs_b->quota = RUNTIME_INF; 5232 cfs_b->period = ns_to_ktime(default_cfs_period()); 5233 5234 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq); 5235 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED); 5236 cfs_b->period_timer.function = sched_cfs_period_timer; 5237 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 5238 cfs_b->slack_timer.function = sched_cfs_slack_timer; 5239 cfs_b->slack_started = false; 5240 } 5241 5242 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) 5243 { 5244 cfs_rq->runtime_enabled = 0; 5245 INIT_LIST_HEAD(&cfs_rq->throttled_list); 5246 } 5247 5248 void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b) 5249 { 5250 lockdep_assert_held(&cfs_b->lock); 5251 5252 if (cfs_b->period_active) 5253 return; 5254 5255 cfs_b->period_active = 1; 5256 hrtimer_forward_now(&cfs_b->period_timer, cfs_b->period); 5257 hrtimer_start_expires(&cfs_b->period_timer, HRTIMER_MODE_ABS_PINNED); 5258 } 5259 5260 static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) 5261 { 5262 /* init_cfs_bandwidth() was not called */ 5263 if (!cfs_b->throttled_cfs_rq.next) 5264 return; 5265 5266 hrtimer_cancel(&cfs_b->period_timer); 5267 hrtimer_cancel(&cfs_b->slack_timer); 5268 } 5269 5270 /* 5271 * Both these CPU hotplug callbacks race against unregister_fair_sched_group() 5272 * 5273 * The race is harmless, since modifying bandwidth settings of unhooked group 5274 * bits doesn't do much. 5275 */ 5276 5277 /* cpu online calback */ 5278 static void __maybe_unused update_runtime_enabled(struct rq *rq) 5279 { 5280 struct task_group *tg; 5281 5282 lockdep_assert_held(&rq->lock); 5283 5284 rcu_read_lock(); 5285 list_for_each_entry_rcu(tg, &task_groups, list) { 5286 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 5287 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; 5288 5289 raw_spin_lock(&cfs_b->lock); 5290 cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF; 5291 raw_spin_unlock(&cfs_b->lock); 5292 } 5293 rcu_read_unlock(); 5294 } 5295 5296 /* cpu offline callback */ 5297 static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq) 5298 { 5299 struct task_group *tg; 5300 5301 lockdep_assert_held(&rq->lock); 5302 5303 rcu_read_lock(); 5304 list_for_each_entry_rcu(tg, &task_groups, list) { 5305 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; 5306 5307 if (!cfs_rq->runtime_enabled) 5308 continue; 5309 5310 /* 5311 * clock_task is not advancing so we just need to make sure 5312 * there's some valid quota amount 5313 */ 5314 cfs_rq->runtime_remaining = 1; 5315 /* 5316 * Offline rq is schedulable till CPU is completely disabled 5317 * in take_cpu_down(), so we prevent new cfs throttling here. 5318 */ 5319 cfs_rq->runtime_enabled = 0; 5320 5321 if (cfs_rq_throttled(cfs_rq)) 5322 unthrottle_cfs_rq(cfs_rq); 5323 } 5324 rcu_read_unlock(); 5325 } 5326 5327 #else /* CONFIG_CFS_BANDWIDTH */ 5328 5329 static inline bool cfs_bandwidth_used(void) 5330 { 5331 return false; 5332 } 5333 5334 static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {} 5335 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; } 5336 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {} 5337 static inline void sync_throttle(struct task_group *tg, int cpu) {} 5338 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {} 5339 5340 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq) 5341 { 5342 return 0; 5343 } 5344 5345 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq) 5346 { 5347 return 0; 5348 } 5349 5350 static inline int throttled_lb_pair(struct task_group *tg, 5351 int src_cpu, int dest_cpu) 5352 { 5353 return 0; 5354 } 5355 5356 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {} 5357 5358 #ifdef CONFIG_FAIR_GROUP_SCHED 5359 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {} 5360 #endif 5361 5362 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg) 5363 { 5364 return NULL; 5365 } 5366 static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {} 5367 static inline void update_runtime_enabled(struct rq *rq) {} 5368 static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {} 5369 5370 #endif /* CONFIG_CFS_BANDWIDTH */ 5371 5372 /************************************************** 5373 * CFS operations on tasks: 5374 */ 5375 5376 #ifdef CONFIG_SCHED_HRTICK 5377 static void hrtick_start_fair(struct rq *rq, struct task_struct *p) 5378 { 5379 struct sched_entity *se = &p->se; 5380 struct cfs_rq *cfs_rq = cfs_rq_of(se); 5381 5382 SCHED_WARN_ON(task_rq(p) != rq); 5383 5384 if (rq->cfs.h_nr_running > 1) { 5385 u64 slice = sched_slice(cfs_rq, se); 5386 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime; 5387 s64 delta = slice - ran; 5388 5389 if (delta < 0) { 5390 if (rq->curr == p) 5391 resched_curr(rq); 5392 return; 5393 } 5394 hrtick_start(rq, delta); 5395 } 5396 } 5397 5398 /* 5399 * called from enqueue/dequeue and updates the hrtick when the 5400 * current task is from our class and nr_running is low enough 5401 * to matter. 5402 */ 5403 static void hrtick_update(struct rq *rq) 5404 { 5405 struct task_struct *curr = rq->curr; 5406 5407 if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class) 5408 return; 5409 5410 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency) 5411 hrtick_start_fair(rq, curr); 5412 } 5413 #else /* !CONFIG_SCHED_HRTICK */ 5414 static inline void 5415 hrtick_start_fair(struct rq *rq, struct task_struct *p) 5416 { 5417 } 5418 5419 static inline void hrtick_update(struct rq *rq) 5420 { 5421 } 5422 #endif 5423 5424 #ifdef CONFIG_SMP 5425 static inline unsigned long cpu_util(int cpu); 5426 5427 static inline bool cpu_overutilized(int cpu) 5428 { 5429 return !fits_capacity(cpu_util(cpu), capacity_of(cpu)); 5430 } 5431 5432 static inline void update_overutilized_status(struct rq *rq) 5433 { 5434 if (!READ_ONCE(rq->rd->overutilized) && cpu_overutilized(rq->cpu)) { 5435 WRITE_ONCE(rq->rd->overutilized, SG_OVERUTILIZED); 5436 trace_sched_overutilized_tp(rq->rd, SG_OVERUTILIZED); 5437 } 5438 } 5439 #else 5440 static inline void update_overutilized_status(struct rq *rq) { } 5441 #endif 5442 5443 /* Runqueue only has SCHED_IDLE tasks enqueued */ 5444 static int sched_idle_rq(struct rq *rq) 5445 { 5446 return unlikely(rq->nr_running == rq->cfs.idle_h_nr_running && 5447 rq->nr_running); 5448 } 5449 5450 #ifdef CONFIG_SMP 5451 static int sched_idle_cpu(int cpu) 5452 { 5453 return sched_idle_rq(cpu_rq(cpu)); 5454 } 5455 #endif 5456 5457 /* 5458 * The enqueue_task method is called before nr_running is 5459 * increased. Here we update the fair scheduling stats and 5460 * then put the task into the rbtree: 5461 */ 5462 static void 5463 enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags) 5464 { 5465 struct cfs_rq *cfs_rq; 5466 struct sched_entity *se = &p->se; 5467 int idle_h_nr_running = task_has_idle_policy(p); 5468 5469 /* 5470 * The code below (indirectly) updates schedutil which looks at 5471 * the cfs_rq utilization to select a frequency. 5472 * Let's add the task's estimated utilization to the cfs_rq's 5473 * estimated utilization, before we update schedutil. 5474 */ 5475 util_est_enqueue(&rq->cfs, p); 5476 5477 /* 5478 * If in_iowait is set, the code below may not trigger any cpufreq 5479 * utilization updates, so do it here explicitly with the IOWAIT flag 5480 * passed. 5481 */ 5482 if (p->in_iowait) 5483 cpufreq_update_util(rq, SCHED_CPUFREQ_IOWAIT); 5484 5485 for_each_sched_entity(se) { 5486 if (se->on_rq) 5487 break; 5488 cfs_rq = cfs_rq_of(se); 5489 enqueue_entity(cfs_rq, se, flags); 5490 5491 cfs_rq->h_nr_running++; 5492 cfs_rq->idle_h_nr_running += idle_h_nr_running; 5493 5494 /* end evaluation on encountering a throttled cfs_rq */ 5495 if (cfs_rq_throttled(cfs_rq)) 5496 goto enqueue_throttle; 5497 5498 flags = ENQUEUE_WAKEUP; 5499 } 5500 5501 for_each_sched_entity(se) { 5502 cfs_rq = cfs_rq_of(se); 5503 5504 update_load_avg(cfs_rq, se, UPDATE_TG); 5505 se_update_runnable(se); 5506 update_cfs_group(se); 5507 5508 cfs_rq->h_nr_running++; 5509 cfs_rq->idle_h_nr_running += idle_h_nr_running; 5510 5511 /* end evaluation on encountering a throttled cfs_rq */ 5512 if (cfs_rq_throttled(cfs_rq)) 5513 goto enqueue_throttle; 5514 5515 /* 5516 * One parent has been throttled and cfs_rq removed from the 5517 * list. Add it back to not break the leaf list. 5518 */ 5519 if (throttled_hierarchy(cfs_rq)) 5520 list_add_leaf_cfs_rq(cfs_rq); 5521 } 5522 5523 /* At this point se is NULL and we are at root level*/ 5524 add_nr_running(rq, 1); 5525 5526 /* 5527 * Since new tasks are assigned an initial util_avg equal to 5528 * half of the spare capacity of their CPU, tiny tasks have the 5529 * ability to cross the overutilized threshold, which will 5530 * result in the load balancer ruining all the task placement 5531 * done by EAS. As a way to mitigate that effect, do not account 5532 * for the first enqueue operation of new tasks during the 5533 * overutilized flag detection. 5534 * 5535 * A better way of solving this problem would be to wait for 5536 * the PELT signals of tasks to converge before taking them 5537 * into account, but that is not straightforward to implement, 5538 * and the following generally works well enough in practice. 5539 */ 5540 if (flags & ENQUEUE_WAKEUP) 5541 update_overutilized_status(rq); 5542 5543 enqueue_throttle: 5544 if (cfs_bandwidth_used()) { 5545 /* 5546 * When bandwidth control is enabled; the cfs_rq_throttled() 5547 * breaks in the above iteration can result in incomplete 5548 * leaf list maintenance, resulting in triggering the assertion 5549 * below. 5550 */ 5551 for_each_sched_entity(se) { 5552 cfs_rq = cfs_rq_of(se); 5553 5554 if (list_add_leaf_cfs_rq(cfs_rq)) 5555 break; 5556 } 5557 } 5558 5559 assert_list_leaf_cfs_rq(rq); 5560 5561 hrtick_update(rq); 5562 } 5563 5564 static void set_next_buddy(struct sched_entity *se); 5565 5566 /* 5567 * The dequeue_task method is called before nr_running is 5568 * decreased. We remove the task from the rbtree and 5569 * update the fair scheduling stats: 5570 */ 5571 static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags) 5572 { 5573 struct cfs_rq *cfs_rq; 5574 struct sched_entity *se = &p->se; 5575 int task_sleep = flags & DEQUEUE_SLEEP; 5576 int idle_h_nr_running = task_has_idle_policy(p); 5577 bool was_sched_idle = sched_idle_rq(rq); 5578 5579 for_each_sched_entity(se) { 5580 cfs_rq = cfs_rq_of(se); 5581 dequeue_entity(cfs_rq, se, flags); 5582 5583 cfs_rq->h_nr_running--; 5584 cfs_rq->idle_h_nr_running -= idle_h_nr_running; 5585 5586 /* end evaluation on encountering a throttled cfs_rq */ 5587 if (cfs_rq_throttled(cfs_rq)) 5588 goto dequeue_throttle; 5589 5590 /* Don't dequeue parent if it has other entities besides us */ 5591 if (cfs_rq->load.weight) { 5592 /* Avoid re-evaluating load for this entity: */ 5593 se = parent_entity(se); 5594 /* 5595 * Bias pick_next to pick a task from this cfs_rq, as 5596 * p is sleeping when it is within its sched_slice. 5597 */ 5598 if (task_sleep && se && !throttled_hierarchy(cfs_rq)) 5599 set_next_buddy(se); 5600 break; 5601 } 5602 flags |= DEQUEUE_SLEEP; 5603 } 5604 5605 for_each_sched_entity(se) { 5606 cfs_rq = cfs_rq_of(se); 5607 5608 update_load_avg(cfs_rq, se, UPDATE_TG); 5609 se_update_runnable(se); 5610 update_cfs_group(se); 5611 5612 cfs_rq->h_nr_running--; 5613 cfs_rq->idle_h_nr_running -= idle_h_nr_running; 5614 5615 /* end evaluation on encountering a throttled cfs_rq */ 5616 if (cfs_rq_throttled(cfs_rq)) 5617 goto dequeue_throttle; 5618 5619 } 5620 5621 dequeue_throttle: 5622 if (!se) 5623 sub_nr_running(rq, 1); 5624 5625 /* balance early to pull high priority tasks */ 5626 if (unlikely(!was_sched_idle && sched_idle_rq(rq))) 5627 rq->next_balance = jiffies; 5628 5629 util_est_dequeue(&rq->cfs, p, task_sleep); 5630 hrtick_update(rq); 5631 } 5632 5633 #ifdef CONFIG_SMP 5634 5635 /* Working cpumask for: load_balance, load_balance_newidle. */ 5636 DEFINE_PER_CPU(cpumask_var_t, load_balance_mask); 5637 DEFINE_PER_CPU(cpumask_var_t, select_idle_mask); 5638 5639 #ifdef CONFIG_NO_HZ_COMMON 5640 5641 static struct { 5642 cpumask_var_t idle_cpus_mask; 5643 atomic_t nr_cpus; 5644 int has_blocked; /* Idle CPUS has blocked load */ 5645 unsigned long next_balance; /* in jiffy units */ 5646 unsigned long next_blocked; /* Next update of blocked load in jiffies */ 5647 } nohz ____cacheline_aligned; 5648 5649 #endif /* CONFIG_NO_HZ_COMMON */ 5650 5651 static unsigned long cpu_load(struct rq *rq) 5652 { 5653 return cfs_rq_load_avg(&rq->cfs); 5654 } 5655 5656 /* 5657 * cpu_load_without - compute CPU load without any contributions from *p 5658 * @cpu: the CPU which load is requested 5659 * @p: the task which load should be discounted 5660 * 5661 * The load of a CPU is defined by the load of tasks currently enqueued on that 5662 * CPU as well as tasks which are currently sleeping after an execution on that 5663 * CPU. 5664 * 5665 * This method returns the load of the specified CPU by discounting the load of 5666 * the specified task, whenever the task is currently contributing to the CPU 5667 * load. 5668 */ 5669 static unsigned long cpu_load_without(struct rq *rq, struct task_struct *p) 5670 { 5671 struct cfs_rq *cfs_rq; 5672 unsigned int load; 5673 5674 /* Task has no contribution or is new */ 5675 if (cpu_of(rq) != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time)) 5676 return cpu_load(rq); 5677 5678 cfs_rq = &rq->cfs; 5679 load = READ_ONCE(cfs_rq->avg.load_avg); 5680 5681 /* Discount task's util from CPU's util */ 5682 lsub_positive(&load, task_h_load(p)); 5683 5684 return load; 5685 } 5686 5687 static unsigned long cpu_runnable(struct rq *rq) 5688 { 5689 return cfs_rq_runnable_avg(&rq->cfs); 5690 } 5691 5692 static unsigned long cpu_runnable_without(struct rq *rq, struct task_struct *p) 5693 { 5694 struct cfs_rq *cfs_rq; 5695 unsigned int runnable; 5696 5697 /* Task has no contribution or is new */ 5698 if (cpu_of(rq) != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time)) 5699 return cpu_runnable(rq); 5700 5701 cfs_rq = &rq->cfs; 5702 runnable = READ_ONCE(cfs_rq->avg.runnable_avg); 5703 5704 /* Discount task's runnable from CPU's runnable */ 5705 lsub_positive(&runnable, p->se.avg.runnable_avg); 5706 5707 return runnable; 5708 } 5709 5710 static unsigned long capacity_of(int cpu) 5711 { 5712 return cpu_rq(cpu)->cpu_capacity; 5713 } 5714 5715 static void record_wakee(struct task_struct *p) 5716 { 5717 /* 5718 * Only decay a single time; tasks that have less then 1 wakeup per 5719 * jiffy will not have built up many flips. 5720 */ 5721 if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) { 5722 current->wakee_flips >>= 1; 5723 current->wakee_flip_decay_ts = jiffies; 5724 } 5725 5726 if (current->last_wakee != p) { 5727 current->last_wakee = p; 5728 current->wakee_flips++; 5729 } 5730 } 5731 5732 /* 5733 * Detect M:N waker/wakee relationships via a switching-frequency heuristic. 5734 * 5735 * A waker of many should wake a different task than the one last awakened 5736 * at a frequency roughly N times higher than one of its wakees. 5737 * 5738 * In order to determine whether we should let the load spread vs consolidating 5739 * to shared cache, we look for a minimum 'flip' frequency of llc_size in one 5740 * partner, and a factor of lls_size higher frequency in the other. 5741 * 5742 * With both conditions met, we can be relatively sure that the relationship is 5743 * non-monogamous, with partner count exceeding socket size. 5744 * 5745 * Waker/wakee being client/server, worker/dispatcher, interrupt source or 5746 * whatever is irrelevant, spread criteria is apparent partner count exceeds 5747 * socket size. 5748 */ 5749 static int wake_wide(struct task_struct *p) 5750 { 5751 unsigned int master = current->wakee_flips; 5752 unsigned int slave = p->wakee_flips; 5753 int factor = __this_cpu_read(sd_llc_size); 5754 5755 if (master < slave) 5756 swap(master, slave); 5757 if (slave < factor || master < slave * factor) 5758 return 0; 5759 return 1; 5760 } 5761 5762 /* 5763 * The purpose of wake_affine() is to quickly determine on which CPU we can run 5764 * soonest. For the purpose of speed we only consider the waking and previous 5765 * CPU. 5766 * 5767 * wake_affine_idle() - only considers 'now', it check if the waking CPU is 5768 * cache-affine and is (or will be) idle. 5769 * 5770 * wake_affine_weight() - considers the weight to reflect the average 5771 * scheduling latency of the CPUs. This seems to work 5772 * for the overloaded case. 5773 */ 5774 static int 5775 wake_affine_idle(int this_cpu, int prev_cpu, int sync) 5776 { 5777 /* 5778 * If this_cpu is idle, it implies the wakeup is from interrupt 5779 * context. Only allow the move if cache is shared. Otherwise an 5780 * interrupt intensive workload could force all tasks onto one 5781 * node depending on the IO topology or IRQ affinity settings. 5782 * 5783 * If the prev_cpu is idle and cache affine then avoid a migration. 5784 * There is no guarantee that the cache hot data from an interrupt 5785 * is more important than cache hot data on the prev_cpu and from 5786 * a cpufreq perspective, it's better to have higher utilisation 5787 * on one CPU. 5788 */ 5789 if (available_idle_cpu(this_cpu) && cpus_share_cache(this_cpu, prev_cpu)) 5790 return available_idle_cpu(prev_cpu) ? prev_cpu : this_cpu; 5791 5792 if (sync && cpu_rq(this_cpu)->nr_running == 1) 5793 return this_cpu; 5794 5795 return nr_cpumask_bits; 5796 } 5797 5798 static int 5799 wake_affine_weight(struct sched_domain *sd, struct task_struct *p, 5800 int this_cpu, int prev_cpu, int sync) 5801 { 5802 s64 this_eff_load, prev_eff_load; 5803 unsigned long task_load; 5804 5805 this_eff_load = cpu_load(cpu_rq(this_cpu)); 5806 5807 if (sync) { 5808 unsigned long current_load = task_h_load(current); 5809 5810 if (current_load > this_eff_load) 5811 return this_cpu; 5812 5813 this_eff_load -= current_load; 5814 } 5815 5816 task_load = task_h_load(p); 5817 5818 this_eff_load += task_load; 5819 if (sched_feat(WA_BIAS)) 5820 this_eff_load *= 100; 5821 this_eff_load *= capacity_of(prev_cpu); 5822 5823 prev_eff_load = cpu_load(cpu_rq(prev_cpu)); 5824 prev_eff_load -= task_load; 5825 if (sched_feat(WA_BIAS)) 5826 prev_eff_load *= 100 + (sd->imbalance_pct - 100) / 2; 5827 prev_eff_load *= capacity_of(this_cpu); 5828 5829 /* 5830 * If sync, adjust the weight of prev_eff_load such that if 5831 * prev_eff == this_eff that select_idle_sibling() will consider 5832 * stacking the wakee on top of the waker if no other CPU is 5833 * idle. 5834 */ 5835 if (sync) 5836 prev_eff_load += 1; 5837 5838 return this_eff_load < prev_eff_load ? this_cpu : nr_cpumask_bits; 5839 } 5840 5841 static int wake_affine(struct sched_domain *sd, struct task_struct *p, 5842 int this_cpu, int prev_cpu, int sync) 5843 { 5844 int target = nr_cpumask_bits; 5845 5846 if (sched_feat(WA_IDLE)) 5847 target = wake_affine_idle(this_cpu, prev_cpu, sync); 5848 5849 if (sched_feat(WA_WEIGHT) && target == nr_cpumask_bits) 5850 target = wake_affine_weight(sd, p, this_cpu, prev_cpu, sync); 5851 5852 schedstat_inc(p->se.statistics.nr_wakeups_affine_attempts); 5853 if (target == nr_cpumask_bits) 5854 return prev_cpu; 5855 5856 schedstat_inc(sd->ttwu_move_affine); 5857 schedstat_inc(p->se.statistics.nr_wakeups_affine); 5858 return target; 5859 } 5860 5861 static struct sched_group * 5862 find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu); 5863 5864 /* 5865 * find_idlest_group_cpu - find the idlest CPU among the CPUs in the group. 5866 */ 5867 static int 5868 find_idlest_group_cpu(struct sched_group *group, struct task_struct *p, int this_cpu) 5869 { 5870 unsigned long load, min_load = ULONG_MAX; 5871 unsigned int min_exit_latency = UINT_MAX; 5872 u64 latest_idle_timestamp = 0; 5873 int least_loaded_cpu = this_cpu; 5874 int shallowest_idle_cpu = -1; 5875 int i; 5876 5877 /* Check if we have any choice: */ 5878 if (group->group_weight == 1) 5879 return cpumask_first(sched_group_span(group)); 5880 5881 /* Traverse only the allowed CPUs */ 5882 for_each_cpu_and(i, sched_group_span(group), p->cpus_ptr) { 5883 if (sched_idle_cpu(i)) 5884 return i; 5885 5886 if (available_idle_cpu(i)) { 5887 struct rq *rq = cpu_rq(i); 5888 struct cpuidle_state *idle = idle_get_state(rq); 5889 if (idle && idle->exit_latency < min_exit_latency) { 5890 /* 5891 * We give priority to a CPU whose idle state 5892 * has the smallest exit latency irrespective 5893 * of any idle timestamp. 5894 */ 5895 min_exit_latency = idle->exit_latency; 5896 latest_idle_timestamp = rq->idle_stamp; 5897 shallowest_idle_cpu = i; 5898 } else if ((!idle || idle->exit_latency == min_exit_latency) && 5899 rq->idle_stamp > latest_idle_timestamp) { 5900 /* 5901 * If equal or no active idle state, then 5902 * the most recently idled CPU might have 5903 * a warmer cache. 5904 */ 5905 latest_idle_timestamp = rq->idle_stamp; 5906 shallowest_idle_cpu = i; 5907 } 5908 } else if (shallowest_idle_cpu == -1) { 5909 load = cpu_load(cpu_rq(i)); 5910 if (load < min_load) { 5911 min_load = load; 5912 least_loaded_cpu = i; 5913 } 5914 } 5915 } 5916 5917 return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu; 5918 } 5919 5920 static inline int find_idlest_cpu(struct sched_domain *sd, struct task_struct *p, 5921 int cpu, int prev_cpu, int sd_flag) 5922 { 5923 int new_cpu = cpu; 5924 5925 if (!cpumask_intersects(sched_domain_span(sd), p->cpus_ptr)) 5926 return prev_cpu; 5927 5928 /* 5929 * We need task's util for cpu_util_without, sync it up to 5930 * prev_cpu's last_update_time. 5931 */ 5932 if (!(sd_flag & SD_BALANCE_FORK)) 5933 sync_entity_load_avg(&p->se); 5934 5935 while (sd) { 5936 struct sched_group *group; 5937 struct sched_domain *tmp; 5938 int weight; 5939 5940 if (!(sd->flags & sd_flag)) { 5941 sd = sd->child; 5942 continue; 5943 } 5944 5945 group = find_idlest_group(sd, p, cpu); 5946 if (!group) { 5947 sd = sd->child; 5948 continue; 5949 } 5950 5951 new_cpu = find_idlest_group_cpu(group, p, cpu); 5952 if (new_cpu == cpu) { 5953 /* Now try balancing at a lower domain level of 'cpu': */ 5954 sd = sd->child; 5955 continue; 5956 } 5957 5958 /* Now try balancing at a lower domain level of 'new_cpu': */ 5959 cpu = new_cpu; 5960 weight = sd->span_weight; 5961 sd = NULL; 5962 for_each_domain(cpu, tmp) { 5963 if (weight <= tmp->span_weight) 5964 break; 5965 if (tmp->flags & sd_flag) 5966 sd = tmp; 5967 } 5968 } 5969 5970 return new_cpu; 5971 } 5972 5973 #ifdef CONFIG_SCHED_SMT 5974 DEFINE_STATIC_KEY_FALSE(sched_smt_present); 5975 EXPORT_SYMBOL_GPL(sched_smt_present); 5976 5977 static inline void set_idle_cores(int cpu, int val) 5978 { 5979 struct sched_domain_shared *sds; 5980 5981 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu)); 5982 if (sds) 5983 WRITE_ONCE(sds->has_idle_cores, val); 5984 } 5985 5986 static inline bool test_idle_cores(int cpu, bool def) 5987 { 5988 struct sched_domain_shared *sds; 5989 5990 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu)); 5991 if (sds) 5992 return READ_ONCE(sds->has_idle_cores); 5993 5994 return def; 5995 } 5996 5997 /* 5998 * Scans the local SMT mask to see if the entire core is idle, and records this 5999 * information in sd_llc_shared->has_idle_cores. 6000 * 6001 * Since SMT siblings share all cache levels, inspecting this limited remote 6002 * state should be fairly cheap. 6003 */ 6004 void __update_idle_core(struct rq *rq) 6005 { 6006 int core = cpu_of(rq); 6007 int cpu; 6008 6009 rcu_read_lock(); 6010 if (test_idle_cores(core, true)) 6011 goto unlock; 6012 6013 for_each_cpu(cpu, cpu_smt_mask(core)) { 6014 if (cpu == core) 6015 continue; 6016 6017 if (!available_idle_cpu(cpu)) 6018 goto unlock; 6019 } 6020 6021 set_idle_cores(core, 1); 6022 unlock: 6023 rcu_read_unlock(); 6024 } 6025 6026 /* 6027 * Scan the entire LLC domain for idle cores; this dynamically switches off if 6028 * there are no idle cores left in the system; tracked through 6029 * sd_llc->shared->has_idle_cores and enabled through update_idle_core() above. 6030 */ 6031 static int select_idle_core(struct task_struct *p, struct sched_domain *sd, int target) 6032 { 6033 struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_idle_mask); 6034 int core, cpu; 6035 6036 if (!static_branch_likely(&sched_smt_present)) 6037 return -1; 6038 6039 if (!test_idle_cores(target, false)) 6040 return -1; 6041 6042 cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr); 6043 6044 for_each_cpu_wrap(core, cpus, target) { 6045 bool idle = true; 6046 6047 for_each_cpu(cpu, cpu_smt_mask(core)) { 6048 if (!available_idle_cpu(cpu)) { 6049 idle = false; 6050 break; 6051 } 6052 } 6053 cpumask_andnot(cpus, cpus, cpu_smt_mask(core)); 6054 6055 if (idle) 6056 return core; 6057 } 6058 6059 /* 6060 * Failed to find an idle core; stop looking for one. 6061 */ 6062 set_idle_cores(target, 0); 6063 6064 return -1; 6065 } 6066 6067 /* 6068 * Scan the local SMT mask for idle CPUs. 6069 */ 6070 static int select_idle_smt(struct task_struct *p, int target) 6071 { 6072 int cpu; 6073 6074 if (!static_branch_likely(&sched_smt_present)) 6075 return -1; 6076 6077 for_each_cpu(cpu, cpu_smt_mask(target)) { 6078 if (!cpumask_test_cpu(cpu, p->cpus_ptr)) 6079 continue; 6080 if (available_idle_cpu(cpu) || sched_idle_cpu(cpu)) 6081 return cpu; 6082 } 6083 6084 return -1; 6085 } 6086 6087 #else /* CONFIG_SCHED_SMT */ 6088 6089 static inline int select_idle_core(struct task_struct *p, struct sched_domain *sd, int target) 6090 { 6091 return -1; 6092 } 6093 6094 static inline int select_idle_smt(struct task_struct *p, int target) 6095 { 6096 return -1; 6097 } 6098 6099 #endif /* CONFIG_SCHED_SMT */ 6100 6101 /* 6102 * Scan the LLC domain for idle CPUs; this is dynamically regulated by 6103 * comparing the average scan cost (tracked in sd->avg_scan_cost) against the 6104 * average idle time for this rq (as found in rq->avg_idle). 6105 */ 6106 static int select_idle_cpu(struct task_struct *p, struct sched_domain *sd, int target) 6107 { 6108 struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_idle_mask); 6109 struct sched_domain *this_sd; 6110 u64 avg_cost, avg_idle; 6111 u64 time; 6112 int this = smp_processor_id(); 6113 int cpu, nr = INT_MAX; 6114 6115 this_sd = rcu_dereference(*this_cpu_ptr(&sd_llc)); 6116 if (!this_sd) 6117 return -1; 6118 6119 /* 6120 * Due to large variance we need a large fuzz factor; hackbench in 6121 * particularly is sensitive here. 6122 */ 6123 avg_idle = this_rq()->avg_idle / 512; 6124 avg_cost = this_sd->avg_scan_cost + 1; 6125 6126 if (sched_feat(SIS_AVG_CPU) && avg_idle < avg_cost) 6127 return -1; 6128 6129 if (sched_feat(SIS_PROP)) { 6130 u64 span_avg = sd->span_weight * avg_idle; 6131 if (span_avg > 4*avg_cost) 6132 nr = div_u64(span_avg, avg_cost); 6133 else 6134 nr = 4; 6135 } 6136 6137 time = cpu_clock(this); 6138 6139 cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr); 6140 6141 for_each_cpu_wrap(cpu, cpus, target) { 6142 if (!--nr) 6143 return -1; 6144 if (available_idle_cpu(cpu) || sched_idle_cpu(cpu)) 6145 break; 6146 } 6147 6148 time = cpu_clock(this) - time; 6149 update_avg(&this_sd->avg_scan_cost, time); 6150 6151 return cpu; 6152 } 6153 6154 /* 6155 * Scan the asym_capacity domain for idle CPUs; pick the first idle one on which 6156 * the task fits. If no CPU is big enough, but there are idle ones, try to 6157 * maximize capacity. 6158 */ 6159 static int 6160 select_idle_capacity(struct task_struct *p, struct sched_domain *sd, int target) 6161 { 6162 unsigned long best_cap = 0; 6163 int cpu, best_cpu = -1; 6164 struct cpumask *cpus; 6165 6166 sync_entity_load_avg(&p->se); 6167 6168 cpus = this_cpu_cpumask_var_ptr(select_idle_mask); 6169 cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr); 6170 6171 for_each_cpu_wrap(cpu, cpus, target) { 6172 unsigned long cpu_cap = capacity_of(cpu); 6173 6174 if (!available_idle_cpu(cpu) && !sched_idle_cpu(cpu)) 6175 continue; 6176 if (task_fits_capacity(p, cpu_cap)) 6177 return cpu; 6178 6179 if (cpu_cap > best_cap) { 6180 best_cap = cpu_cap; 6181 best_cpu = cpu; 6182 } 6183 } 6184 6185 return best_cpu; 6186 } 6187 6188 /* 6189 * Try and locate an idle core/thread in the LLC cache domain. 6190 */ 6191 static int select_idle_sibling(struct task_struct *p, int prev, int target) 6192 { 6193 struct sched_domain *sd; 6194 int i, recent_used_cpu; 6195 6196 /* 6197 * For asymmetric CPU capacity systems, our domain of interest is 6198 * sd_asym_cpucapacity rather than sd_llc. 6199 */ 6200 if (static_branch_unlikely(&sched_asym_cpucapacity)) { 6201 sd = rcu_dereference(per_cpu(sd_asym_cpucapacity, target)); 6202 /* 6203 * On an asymmetric CPU capacity system where an exclusive 6204 * cpuset defines a symmetric island (i.e. one unique 6205 * capacity_orig value through the cpuset), the key will be set 6206 * but the CPUs within that cpuset will not have a domain with 6207 * SD_ASYM_CPUCAPACITY. These should follow the usual symmetric 6208 * capacity path. 6209 */ 6210 if (!sd) 6211 goto symmetric; 6212 6213 i = select_idle_capacity(p, sd, target); 6214 return ((unsigned)i < nr_cpumask_bits) ? i : target; 6215 } 6216 6217 symmetric: 6218 if (available_idle_cpu(target) || sched_idle_cpu(target)) 6219 return target; 6220 6221 /* 6222 * If the previous CPU is cache affine and idle, don't be stupid: 6223 */ 6224 if (prev != target && cpus_share_cache(prev, target) && 6225 (available_idle_cpu(prev) || sched_idle_cpu(prev))) 6226 return prev; 6227 6228 /* 6229 * Allow a per-cpu kthread to stack with the wakee if the 6230 * kworker thread and the tasks previous CPUs are the same. 6231 * The assumption is that the wakee queued work for the 6232 * per-cpu kthread that is now complete and the wakeup is 6233 * essentially a sync wakeup. An obvious example of this 6234 * pattern is IO completions. 6235 */ 6236 if (is_per_cpu_kthread(current) && 6237 prev == smp_processor_id() && 6238 this_rq()->nr_running <= 1) { 6239 return prev; 6240 } 6241 6242 /* Check a recently used CPU as a potential idle candidate: */ 6243 recent_used_cpu = p->recent_used_cpu; 6244 if (recent_used_cpu != prev && 6245 recent_used_cpu != target && 6246 cpus_share_cache(recent_used_cpu, target) && 6247 (available_idle_cpu(recent_used_cpu) || sched_idle_cpu(recent_used_cpu)) && 6248 cpumask_test_cpu(p->recent_used_cpu, p->cpus_ptr)) { 6249 /* 6250 * Replace recent_used_cpu with prev as it is a potential 6251 * candidate for the next wake: 6252 */ 6253 p->recent_used_cpu = prev; 6254 return recent_used_cpu; 6255 } 6256 6257 sd = rcu_dereference(per_cpu(sd_llc, target)); 6258 if (!sd) 6259 return target; 6260 6261 i = select_idle_core(p, sd, target); 6262 if ((unsigned)i < nr_cpumask_bits) 6263 return i; 6264 6265 i = select_idle_cpu(p, sd, target); 6266 if ((unsigned)i < nr_cpumask_bits) 6267 return i; 6268 6269 i = select_idle_smt(p, target); 6270 if ((unsigned)i < nr_cpumask_bits) 6271 return i; 6272 6273 return target; 6274 } 6275 6276 /** 6277 * Amount of capacity of a CPU that is (estimated to be) used by CFS tasks 6278 * @cpu: the CPU to get the utilization of 6279 * 6280 * The unit of the return value must be the one of capacity so we can compare 6281 * the utilization with the capacity of the CPU that is available for CFS task 6282 * (ie cpu_capacity). 6283 * 6284 * cfs_rq.avg.util_avg is the sum of running time of runnable tasks plus the 6285 * recent utilization of currently non-runnable tasks on a CPU. It represents 6286 * the amount of utilization of a CPU in the range [0..capacity_orig] where 6287 * capacity_orig is the cpu_capacity available at the highest frequency 6288 * (arch_scale_freq_capacity()). 6289 * The utilization of a CPU converges towards a sum equal to or less than the 6290 * current capacity (capacity_curr <= capacity_orig) of the CPU because it is 6291 * the running time on this CPU scaled by capacity_curr. 6292 * 6293 * The estimated utilization of a CPU is defined to be the maximum between its 6294 * cfs_rq.avg.util_avg and the sum of the estimated utilization of the tasks 6295 * currently RUNNABLE on that CPU. 6296 * This allows to properly represent the expected utilization of a CPU which 6297 * has just got a big task running since a long sleep period. At the same time 6298 * however it preserves the benefits of the "blocked utilization" in 6299 * describing the potential for other tasks waking up on the same CPU. 6300 * 6301 * Nevertheless, cfs_rq.avg.util_avg can be higher than capacity_curr or even 6302 * higher than capacity_orig because of unfortunate rounding in 6303 * cfs.avg.util_avg or just after migrating tasks and new task wakeups until 6304 * the average stabilizes with the new running time. We need to check that the 6305 * utilization stays within the range of [0..capacity_orig] and cap it if 6306 * necessary. Without utilization capping, a group could be seen as overloaded 6307 * (CPU0 utilization at 121% + CPU1 utilization at 80%) whereas CPU1 has 20% of 6308 * available capacity. We allow utilization to overshoot capacity_curr (but not 6309 * capacity_orig) as it useful for predicting the capacity required after task 6310 * migrations (scheduler-driven DVFS). 6311 * 6312 * Return: the (estimated) utilization for the specified CPU 6313 */ 6314 static inline unsigned long cpu_util(int cpu) 6315 { 6316 struct cfs_rq *cfs_rq; 6317 unsigned int util; 6318 6319 cfs_rq = &cpu_rq(cpu)->cfs; 6320 util = READ_ONCE(cfs_rq->avg.util_avg); 6321 6322 if (sched_feat(UTIL_EST)) 6323 util = max(util, READ_ONCE(cfs_rq->avg.util_est.enqueued)); 6324 6325 return min_t(unsigned long, util, capacity_orig_of(cpu)); 6326 } 6327 6328 /* 6329 * cpu_util_without: compute cpu utilization without any contributions from *p 6330 * @cpu: the CPU which utilization is requested 6331 * @p: the task which utilization should be discounted 6332 * 6333 * The utilization of a CPU is defined by the utilization of tasks currently 6334 * enqueued on that CPU as well as tasks which are currently sleeping after an 6335 * execution on that CPU. 6336 * 6337 * This method returns the utilization of the specified CPU by discounting the 6338 * utilization of the specified task, whenever the task is currently 6339 * contributing to the CPU utilization. 6340 */ 6341 static unsigned long cpu_util_without(int cpu, struct task_struct *p) 6342 { 6343 struct cfs_rq *cfs_rq; 6344 unsigned int util; 6345 6346 /* Task has no contribution or is new */ 6347 if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time)) 6348 return cpu_util(cpu); 6349 6350 cfs_rq = &cpu_rq(cpu)->cfs; 6351 util = READ_ONCE(cfs_rq->avg.util_avg); 6352 6353 /* Discount task's util from CPU's util */ 6354 lsub_positive(&util, task_util(p)); 6355 6356 /* 6357 * Covered cases: 6358 * 6359 * a) if *p is the only task sleeping on this CPU, then: 6360 * cpu_util (== task_util) > util_est (== 0) 6361 * and thus we return: 6362 * cpu_util_without = (cpu_util - task_util) = 0 6363 * 6364 * b) if other tasks are SLEEPING on this CPU, which is now exiting 6365 * IDLE, then: 6366 * cpu_util >= task_util 6367 * cpu_util > util_est (== 0) 6368 * and thus we discount *p's blocked utilization to return: 6369 * cpu_util_without = (cpu_util - task_util) >= 0 6370 * 6371 * c) if other tasks are RUNNABLE on that CPU and 6372 * util_est > cpu_util 6373 * then we use util_est since it returns a more restrictive 6374 * estimation of the spare capacity on that CPU, by just 6375 * considering the expected utilization of tasks already 6376 * runnable on that CPU. 6377 * 6378 * Cases a) and b) are covered by the above code, while case c) is 6379 * covered by the following code when estimated utilization is 6380 * enabled. 6381 */ 6382 if (sched_feat(UTIL_EST)) { 6383 unsigned int estimated = 6384 READ_ONCE(cfs_rq->avg.util_est.enqueued); 6385 6386 /* 6387 * Despite the following checks we still have a small window 6388 * for a possible race, when an execl's select_task_rq_fair() 6389 * races with LB's detach_task(): 6390 * 6391 * detach_task() 6392 * p->on_rq = TASK_ON_RQ_MIGRATING; 6393 * ---------------------------------- A 6394 * deactivate_task() \ 6395 * dequeue_task() + RaceTime 6396 * util_est_dequeue() / 6397 * ---------------------------------- B 6398 * 6399 * The additional check on "current == p" it's required to 6400 * properly fix the execl regression and it helps in further 6401 * reducing the chances for the above race. 6402 */ 6403 if (unlikely(task_on_rq_queued(p) || current == p)) 6404 lsub_positive(&estimated, _task_util_est(p)); 6405 6406 util = max(util, estimated); 6407 } 6408 6409 /* 6410 * Utilization (estimated) can exceed the CPU capacity, thus let's 6411 * clamp to the maximum CPU capacity to ensure consistency with 6412 * the cpu_util call. 6413 */ 6414 return min_t(unsigned long, util, capacity_orig_of(cpu)); 6415 } 6416 6417 /* 6418 * Predicts what cpu_util(@cpu) would return if @p was migrated (and enqueued) 6419 * to @dst_cpu. 6420 */ 6421 static unsigned long cpu_util_next(int cpu, struct task_struct *p, int dst_cpu) 6422 { 6423 struct cfs_rq *cfs_rq = &cpu_rq(cpu)->cfs; 6424 unsigned long util_est, util = READ_ONCE(cfs_rq->avg.util_avg); 6425 6426 /* 6427 * If @p migrates from @cpu to another, remove its contribution. Or, 6428 * if @p migrates from another CPU to @cpu, add its contribution. In 6429 * the other cases, @cpu is not impacted by the migration, so the 6430 * util_avg should already be correct. 6431 */ 6432 if (task_cpu(p) == cpu && dst_cpu != cpu) 6433 sub_positive(&util, task_util(p)); 6434 else if (task_cpu(p) != cpu && dst_cpu == cpu) 6435 util += task_util(p); 6436 6437 if (sched_feat(UTIL_EST)) { 6438 util_est = READ_ONCE(cfs_rq->avg.util_est.enqueued); 6439 6440 /* 6441 * During wake-up, the task isn't enqueued yet and doesn't 6442 * appear in the cfs_rq->avg.util_est.enqueued of any rq, 6443 * so just add it (if needed) to "simulate" what will be 6444 * cpu_util() after the task has been enqueued. 6445 */ 6446 if (dst_cpu == cpu) 6447 util_est += _task_util_est(p); 6448 6449 util = max(util, util_est); 6450 } 6451 6452 return min(util, capacity_orig_of(cpu)); 6453 } 6454 6455 /* 6456 * compute_energy(): Estimates the energy that @pd would consume if @p was 6457 * migrated to @dst_cpu. compute_energy() predicts what will be the utilization 6458 * landscape of @pd's CPUs after the task migration, and uses the Energy Model 6459 * to compute what would be the energy if we decided to actually migrate that 6460 * task. 6461 */ 6462 static long 6463 compute_energy(struct task_struct *p, int dst_cpu, struct perf_domain *pd) 6464 { 6465 struct cpumask *pd_mask = perf_domain_span(pd); 6466 unsigned long cpu_cap = arch_scale_cpu_capacity(cpumask_first(pd_mask)); 6467 unsigned long max_util = 0, sum_util = 0; 6468 int cpu; 6469 6470 /* 6471 * The capacity state of CPUs of the current rd can be driven by CPUs 6472 * of another rd if they belong to the same pd. So, account for the 6473 * utilization of these CPUs too by masking pd with cpu_online_mask 6474 * instead of the rd span. 6475 * 6476 * If an entire pd is outside of the current rd, it will not appear in 6477 * its pd list and will not be accounted by compute_energy(). 6478 */ 6479 for_each_cpu_and(cpu, pd_mask, cpu_online_mask) { 6480 unsigned long cpu_util, util_cfs = cpu_util_next(cpu, p, dst_cpu); 6481 struct task_struct *tsk = cpu == dst_cpu ? p : NULL; 6482 6483 /* 6484 * Busy time computation: utilization clamping is not 6485 * required since the ratio (sum_util / cpu_capacity) 6486 * is already enough to scale the EM reported power 6487 * consumption at the (eventually clamped) cpu_capacity. 6488 */ 6489 sum_util += schedutil_cpu_util(cpu, util_cfs, cpu_cap, 6490 ENERGY_UTIL, NULL); 6491 6492 /* 6493 * Performance domain frequency: utilization clamping 6494 * must be considered since it affects the selection 6495 * of the performance domain frequency. 6496 * NOTE: in case RT tasks are running, by default the 6497 * FREQUENCY_UTIL's utilization can be max OPP. 6498 */ 6499 cpu_util = schedutil_cpu_util(cpu, util_cfs, cpu_cap, 6500 FREQUENCY_UTIL, tsk); 6501 max_util = max(max_util, cpu_util); 6502 } 6503 6504 return em_pd_energy(pd->em_pd, max_util, sum_util); 6505 } 6506 6507 /* 6508 * find_energy_efficient_cpu(): Find most energy-efficient target CPU for the 6509 * waking task. find_energy_efficient_cpu() looks for the CPU with maximum 6510 * spare capacity in each performance domain and uses it as a potential 6511 * candidate to execute the task. Then, it uses the Energy Model to figure 6512 * out which of the CPU candidates is the most energy-efficient. 6513 * 6514 * The rationale for this heuristic is as follows. In a performance domain, 6515 * all the most energy efficient CPU candidates (according to the Energy 6516 * Model) are those for which we'll request a low frequency. When there are 6517 * several CPUs for which the frequency request will be the same, we don't 6518 * have enough data to break the tie between them, because the Energy Model 6519 * only includes active power costs. With this model, if we assume that 6520 * frequency requests follow utilization (e.g. using schedutil), the CPU with 6521 * the maximum spare capacity in a performance domain is guaranteed to be among 6522 * the best candidates of the performance domain. 6523 * 6524 * In practice, it could be preferable from an energy standpoint to pack 6525 * small tasks on a CPU in order to let other CPUs go in deeper idle states, 6526 * but that could also hurt our chances to go cluster idle, and we have no 6527 * ways to tell with the current Energy Model if this is actually a good 6528 * idea or not. So, find_energy_efficient_cpu() basically favors 6529 * cluster-packing, and spreading inside a cluster. That should at least be 6530 * a good thing for latency, and this is consistent with the idea that most 6531 * of the energy savings of EAS come from the asymmetry of the system, and 6532 * not so much from breaking the tie between identical CPUs. That's also the 6533 * reason why EAS is enabled in the topology code only for systems where 6534 * SD_ASYM_CPUCAPACITY is set. 6535 * 6536 * NOTE: Forkees are not accepted in the energy-aware wake-up path because 6537 * they don't have any useful utilization data yet and it's not possible to 6538 * forecast their impact on energy consumption. Consequently, they will be 6539 * placed by find_idlest_cpu() on the least loaded CPU, which might turn out 6540 * to be energy-inefficient in some use-cases. The alternative would be to 6541 * bias new tasks towards specific types of CPUs first, or to try to infer 6542 * their util_avg from the parent task, but those heuristics could hurt 6543 * other use-cases too. So, until someone finds a better way to solve this, 6544 * let's keep things simple by re-using the existing slow path. 6545 */ 6546 static int find_energy_efficient_cpu(struct task_struct *p, int prev_cpu) 6547 { 6548 unsigned long prev_delta = ULONG_MAX, best_delta = ULONG_MAX; 6549 struct root_domain *rd = cpu_rq(smp_processor_id())->rd; 6550 unsigned long cpu_cap, util, base_energy = 0; 6551 int cpu, best_energy_cpu = prev_cpu; 6552 struct sched_domain *sd; 6553 struct perf_domain *pd; 6554 6555 rcu_read_lock(); 6556 pd = rcu_dereference(rd->pd); 6557 if (!pd || READ_ONCE(rd->overutilized)) 6558 goto fail; 6559 6560 /* 6561 * Energy-aware wake-up happens on the lowest sched_domain starting 6562 * from sd_asym_cpucapacity spanning over this_cpu and prev_cpu. 6563 */ 6564 sd = rcu_dereference(*this_cpu_ptr(&sd_asym_cpucapacity)); 6565 while (sd && !cpumask_test_cpu(prev_cpu, sched_domain_span(sd))) 6566 sd = sd->parent; 6567 if (!sd) 6568 goto fail; 6569 6570 sync_entity_load_avg(&p->se); 6571 if (!task_util_est(p)) 6572 goto unlock; 6573 6574 for (; pd; pd = pd->next) { 6575 unsigned long cur_delta, spare_cap, max_spare_cap = 0; 6576 unsigned long base_energy_pd; 6577 int max_spare_cap_cpu = -1; 6578 6579 /* Compute the 'base' energy of the pd, without @p */ 6580 base_energy_pd = compute_energy(p, -1, pd); 6581 base_energy += base_energy_pd; 6582 6583 for_each_cpu_and(cpu, perf_domain_span(pd), sched_domain_span(sd)) { 6584 if (!cpumask_test_cpu(cpu, p->cpus_ptr)) 6585 continue; 6586 6587 util = cpu_util_next(cpu, p, cpu); 6588 cpu_cap = capacity_of(cpu); 6589 spare_cap = cpu_cap - util; 6590 6591 /* 6592 * Skip CPUs that cannot satisfy the capacity request. 6593 * IOW, placing the task there would make the CPU 6594 * overutilized. Take uclamp into account to see how 6595 * much capacity we can get out of the CPU; this is 6596 * aligned with schedutil_cpu_util(). 6597 */ 6598 util = uclamp_rq_util_with(cpu_rq(cpu), util, p); 6599 if (!fits_capacity(util, cpu_cap)) 6600 continue; 6601 6602 /* Always use prev_cpu as a candidate. */ 6603 if (cpu == prev_cpu) { 6604 prev_delta = compute_energy(p, prev_cpu, pd); 6605 prev_delta -= base_energy_pd; 6606 best_delta = min(best_delta, prev_delta); 6607 } 6608 6609 /* 6610 * Find the CPU with the maximum spare capacity in 6611 * the performance domain 6612 */ 6613 if (spare_cap > max_spare_cap) { 6614 max_spare_cap = spare_cap; 6615 max_spare_cap_cpu = cpu; 6616 } 6617 } 6618 6619 /* Evaluate the energy impact of using this CPU. */ 6620 if (max_spare_cap_cpu >= 0 && max_spare_cap_cpu != prev_cpu) { 6621 cur_delta = compute_energy(p, max_spare_cap_cpu, pd); 6622 cur_delta -= base_energy_pd; 6623 if (cur_delta < best_delta) { 6624 best_delta = cur_delta; 6625 best_energy_cpu = max_spare_cap_cpu; 6626 } 6627 } 6628 } 6629 unlock: 6630 rcu_read_unlock(); 6631 6632 /* 6633 * Pick the best CPU if prev_cpu cannot be used, or if it saves at 6634 * least 6% of the energy used by prev_cpu. 6635 */ 6636 if (prev_delta == ULONG_MAX) 6637 return best_energy_cpu; 6638 6639 if ((prev_delta - best_delta) > ((prev_delta + base_energy) >> 4)) 6640 return best_energy_cpu; 6641 6642 return prev_cpu; 6643 6644 fail: 6645 rcu_read_unlock(); 6646 6647 return -1; 6648 } 6649 6650 /* 6651 * select_task_rq_fair: Select target runqueue for the waking task in domains 6652 * that have the 'sd_flag' flag set. In practice, this is SD_BALANCE_WAKE, 6653 * SD_BALANCE_FORK, or SD_BALANCE_EXEC. 6654 * 6655 * Balances load by selecting the idlest CPU in the idlest group, or under 6656 * certain conditions an idle sibling CPU if the domain has SD_WAKE_AFFINE set. 6657 * 6658 * Returns the target CPU number. 6659 * 6660 * preempt must be disabled. 6661 */ 6662 static int 6663 select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_flags) 6664 { 6665 struct sched_domain *tmp, *sd = NULL; 6666 int cpu = smp_processor_id(); 6667 int new_cpu = prev_cpu; 6668 int want_affine = 0; 6669 int sync = (wake_flags & WF_SYNC) && !(current->flags & PF_EXITING); 6670 6671 if (sd_flag & SD_BALANCE_WAKE) { 6672 record_wakee(p); 6673 6674 if (sched_energy_enabled()) { 6675 new_cpu = find_energy_efficient_cpu(p, prev_cpu); 6676 if (new_cpu >= 0) 6677 return new_cpu; 6678 new_cpu = prev_cpu; 6679 } 6680 6681 want_affine = !wake_wide(p) && cpumask_test_cpu(cpu, p->cpus_ptr); 6682 } 6683 6684 rcu_read_lock(); 6685 for_each_domain(cpu, tmp) { 6686 /* 6687 * If both 'cpu' and 'prev_cpu' are part of this domain, 6688 * cpu is a valid SD_WAKE_AFFINE target. 6689 */ 6690 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) && 6691 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) { 6692 if (cpu != prev_cpu) 6693 new_cpu = wake_affine(tmp, p, cpu, prev_cpu, sync); 6694 6695 sd = NULL; /* Prefer wake_affine over balance flags */ 6696 break; 6697 } 6698 6699 if (tmp->flags & sd_flag) 6700 sd = tmp; 6701 else if (!want_affine) 6702 break; 6703 } 6704 6705 if (unlikely(sd)) { 6706 /* Slow path */ 6707 new_cpu = find_idlest_cpu(sd, p, cpu, prev_cpu, sd_flag); 6708 } else if (sd_flag & SD_BALANCE_WAKE) { /* XXX always ? */ 6709 /* Fast path */ 6710 6711 new_cpu = select_idle_sibling(p, prev_cpu, new_cpu); 6712 6713 if (want_affine) 6714 current->recent_used_cpu = cpu; 6715 } 6716 rcu_read_unlock(); 6717 6718 return new_cpu; 6719 } 6720 6721 static void detach_entity_cfs_rq(struct sched_entity *se); 6722 6723 /* 6724 * Called immediately before a task is migrated to a new CPU; task_cpu(p) and 6725 * cfs_rq_of(p) references at time of call are still valid and identify the 6726 * previous CPU. The caller guarantees p->pi_lock or task_rq(p)->lock is held. 6727 */ 6728 static void migrate_task_rq_fair(struct task_struct *p, int new_cpu) 6729 { 6730 /* 6731 * As blocked tasks retain absolute vruntime the migration needs to 6732 * deal with this by subtracting the old and adding the new 6733 * min_vruntime -- the latter is done by enqueue_entity() when placing 6734 * the task on the new runqueue. 6735 */ 6736 if (p->state == TASK_WAKING) { 6737 struct sched_entity *se = &p->se; 6738 struct cfs_rq *cfs_rq = cfs_rq_of(se); 6739 u64 min_vruntime; 6740 6741 #ifndef CONFIG_64BIT 6742 u64 min_vruntime_copy; 6743 6744 do { 6745 min_vruntime_copy = cfs_rq->min_vruntime_copy; 6746 smp_rmb(); 6747 min_vruntime = cfs_rq->min_vruntime; 6748 } while (min_vruntime != min_vruntime_copy); 6749 #else 6750 min_vruntime = cfs_rq->min_vruntime; 6751 #endif 6752 6753 se->vruntime -= min_vruntime; 6754 } 6755 6756 if (p->on_rq == TASK_ON_RQ_MIGRATING) { 6757 /* 6758 * In case of TASK_ON_RQ_MIGRATING we in fact hold the 'old' 6759 * rq->lock and can modify state directly. 6760 */ 6761 lockdep_assert_held(&task_rq(p)->lock); 6762 detach_entity_cfs_rq(&p->se); 6763 6764 } else { 6765 /* 6766 * We are supposed to update the task to "current" time, then 6767 * its up to date and ready to go to new CPU/cfs_rq. But we 6768 * have difficulty in getting what current time is, so simply 6769 * throw away the out-of-date time. This will result in the 6770 * wakee task is less decayed, but giving the wakee more load 6771 * sounds not bad. 6772 */ 6773 remove_entity_load_avg(&p->se); 6774 } 6775 6776 /* Tell new CPU we are migrated */ 6777 p->se.avg.last_update_time = 0; 6778 6779 /* We have migrated, no longer consider this task hot */ 6780 p->se.exec_start = 0; 6781 6782 update_scan_period(p, new_cpu); 6783 } 6784 6785 static void task_dead_fair(struct task_struct *p) 6786 { 6787 remove_entity_load_avg(&p->se); 6788 } 6789 6790 static int 6791 balance_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf) 6792 { 6793 if (rq->nr_running) 6794 return 1; 6795 6796 return newidle_balance(rq, rf) != 0; 6797 } 6798 #endif /* CONFIG_SMP */ 6799 6800 static unsigned long wakeup_gran(struct sched_entity *se) 6801 { 6802 unsigned long gran = sysctl_sched_wakeup_granularity; 6803 6804 /* 6805 * Since its curr running now, convert the gran from real-time 6806 * to virtual-time in his units. 6807 * 6808 * By using 'se' instead of 'curr' we penalize light tasks, so 6809 * they get preempted easier. That is, if 'se' < 'curr' then 6810 * the resulting gran will be larger, therefore penalizing the 6811 * lighter, if otoh 'se' > 'curr' then the resulting gran will 6812 * be smaller, again penalizing the lighter task. 6813 * 6814 * This is especially important for buddies when the leftmost 6815 * task is higher priority than the buddy. 6816 */ 6817 return calc_delta_fair(gran, se); 6818 } 6819 6820 /* 6821 * Should 'se' preempt 'curr'. 6822 * 6823 * |s1 6824 * |s2 6825 * |s3 6826 * g 6827 * |<--->|c 6828 * 6829 * w(c, s1) = -1 6830 * w(c, s2) = 0 6831 * w(c, s3) = 1 6832 * 6833 */ 6834 static int 6835 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se) 6836 { 6837 s64 gran, vdiff = curr->vruntime - se->vruntime; 6838 6839 if (vdiff <= 0) 6840 return -1; 6841 6842 gran = wakeup_gran(se); 6843 if (vdiff > gran) 6844 return 1; 6845 6846 return 0; 6847 } 6848 6849 static void set_last_buddy(struct sched_entity *se) 6850 { 6851 if (entity_is_task(se) && unlikely(task_has_idle_policy(task_of(se)))) 6852 return; 6853 6854 for_each_sched_entity(se) { 6855 if (SCHED_WARN_ON(!se->on_rq)) 6856 return; 6857 cfs_rq_of(se)->last = se; 6858 } 6859 } 6860 6861 static void set_next_buddy(struct sched_entity *se) 6862 { 6863 if (entity_is_task(se) && unlikely(task_has_idle_policy(task_of(se)))) 6864 return; 6865 6866 for_each_sched_entity(se) { 6867 if (SCHED_WARN_ON(!se->on_rq)) 6868 return; 6869 cfs_rq_of(se)->next = se; 6870 } 6871 } 6872 6873 static void set_skip_buddy(struct sched_entity *se) 6874 { 6875 for_each_sched_entity(se) 6876 cfs_rq_of(se)->skip = se; 6877 } 6878 6879 /* 6880 * Preempt the current task with a newly woken task if needed: 6881 */ 6882 static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags) 6883 { 6884 struct task_struct *curr = rq->curr; 6885 struct sched_entity *se = &curr->se, *pse = &p->se; 6886 struct cfs_rq *cfs_rq = task_cfs_rq(curr); 6887 int scale = cfs_rq->nr_running >= sched_nr_latency; 6888 int next_buddy_marked = 0; 6889 6890 if (unlikely(se == pse)) 6891 return; 6892 6893 /* 6894 * This is possible from callers such as attach_tasks(), in which we 6895 * unconditionally check_prempt_curr() after an enqueue (which may have 6896 * lead to a throttle). This both saves work and prevents false 6897 * next-buddy nomination below. 6898 */ 6899 if (unlikely(throttled_hierarchy(cfs_rq_of(pse)))) 6900 return; 6901 6902 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) { 6903 set_next_buddy(pse); 6904 next_buddy_marked = 1; 6905 } 6906 6907 /* 6908 * We can come here with TIF_NEED_RESCHED already set from new task 6909 * wake up path. 6910 * 6911 * Note: this also catches the edge-case of curr being in a throttled 6912 * group (e.g. via set_curr_task), since update_curr() (in the 6913 * enqueue of curr) will have resulted in resched being set. This 6914 * prevents us from potentially nominating it as a false LAST_BUDDY 6915 * below. 6916 */ 6917 if (test_tsk_need_resched(curr)) 6918 return; 6919 6920 /* Idle tasks are by definition preempted by non-idle tasks. */ 6921 if (unlikely(task_has_idle_policy(curr)) && 6922 likely(!task_has_idle_policy(p))) 6923 goto preempt; 6924 6925 /* 6926 * Batch and idle tasks do not preempt non-idle tasks (their preemption 6927 * is driven by the tick): 6928 */ 6929 if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION)) 6930 return; 6931 6932 find_matching_se(&se, &pse); 6933 update_curr(cfs_rq_of(se)); 6934 BUG_ON(!pse); 6935 if (wakeup_preempt_entity(se, pse) == 1) { 6936 /* 6937 * Bias pick_next to pick the sched entity that is 6938 * triggering this preemption. 6939 */ 6940 if (!next_buddy_marked) 6941 set_next_buddy(pse); 6942 goto preempt; 6943 } 6944 6945 return; 6946 6947 preempt: 6948 resched_curr(rq); 6949 /* 6950 * Only set the backward buddy when the current task is still 6951 * on the rq. This can happen when a wakeup gets interleaved 6952 * with schedule on the ->pre_schedule() or idle_balance() 6953 * point, either of which can * drop the rq lock. 6954 * 6955 * Also, during early boot the idle thread is in the fair class, 6956 * for obvious reasons its a bad idea to schedule back to it. 6957 */ 6958 if (unlikely(!se->on_rq || curr == rq->idle)) 6959 return; 6960 6961 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se)) 6962 set_last_buddy(se); 6963 } 6964 6965 struct task_struct * 6966 pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf) 6967 { 6968 struct cfs_rq *cfs_rq = &rq->cfs; 6969 struct sched_entity *se; 6970 struct task_struct *p; 6971 int new_tasks; 6972 6973 again: 6974 if (!sched_fair_runnable(rq)) 6975 goto idle; 6976 6977 #ifdef CONFIG_FAIR_GROUP_SCHED 6978 if (!prev || prev->sched_class != &fair_sched_class) 6979 goto simple; 6980 6981 /* 6982 * Because of the set_next_buddy() in dequeue_task_fair() it is rather 6983 * likely that a next task is from the same cgroup as the current. 6984 * 6985 * Therefore attempt to avoid putting and setting the entire cgroup 6986 * hierarchy, only change the part that actually changes. 6987 */ 6988 6989 do { 6990 struct sched_entity *curr = cfs_rq->curr; 6991 6992 /* 6993 * Since we got here without doing put_prev_entity() we also 6994 * have to consider cfs_rq->curr. If it is still a runnable 6995 * entity, update_curr() will update its vruntime, otherwise 6996 * forget we've ever seen it. 6997 */ 6998 if (curr) { 6999 if (curr->on_rq) 7000 update_curr(cfs_rq); 7001 else 7002 curr = NULL; 7003 7004 /* 7005 * This call to check_cfs_rq_runtime() will do the 7006 * throttle and dequeue its entity in the parent(s). 7007 * Therefore the nr_running test will indeed 7008 * be correct. 7009 */ 7010 if (unlikely(check_cfs_rq_runtime(cfs_rq))) { 7011 cfs_rq = &rq->cfs; 7012 7013 if (!cfs_rq->nr_running) 7014 goto idle; 7015 7016 goto simple; 7017 } 7018 } 7019 7020 se = pick_next_entity(cfs_rq, curr); 7021 cfs_rq = group_cfs_rq(se); 7022 } while (cfs_rq); 7023 7024 p = task_of(se); 7025 7026 /* 7027 * Since we haven't yet done put_prev_entity and if the selected task 7028 * is a different task than we started out with, try and touch the 7029 * least amount of cfs_rqs. 7030 */ 7031 if (prev != p) { 7032 struct sched_entity *pse = &prev->se; 7033 7034 while (!(cfs_rq = is_same_group(se, pse))) { 7035 int se_depth = se->depth; 7036 int pse_depth = pse->depth; 7037 7038 if (se_depth <= pse_depth) { 7039 put_prev_entity(cfs_rq_of(pse), pse); 7040 pse = parent_entity(pse); 7041 } 7042 if (se_depth >= pse_depth) { 7043 set_next_entity(cfs_rq_of(se), se); 7044 se = parent_entity(se); 7045 } 7046 } 7047 7048 put_prev_entity(cfs_rq, pse); 7049 set_next_entity(cfs_rq, se); 7050 } 7051 7052 goto done; 7053 simple: 7054 #endif 7055 if (prev) 7056 put_prev_task(rq, prev); 7057 7058 do { 7059 se = pick_next_entity(cfs_rq, NULL); 7060 set_next_entity(cfs_rq, se); 7061 cfs_rq = group_cfs_rq(se); 7062 } while (cfs_rq); 7063 7064 p = task_of(se); 7065 7066 done: __maybe_unused; 7067 #ifdef CONFIG_SMP 7068 /* 7069 * Move the next running task to the front of 7070 * the list, so our cfs_tasks list becomes MRU 7071 * one. 7072 */ 7073 list_move(&p->se.group_node, &rq->cfs_tasks); 7074 #endif 7075 7076 if (hrtick_enabled(rq)) 7077 hrtick_start_fair(rq, p); 7078 7079 update_misfit_status(p, rq); 7080 7081 return p; 7082 7083 idle: 7084 if (!rf) 7085 return NULL; 7086 7087 new_tasks = newidle_balance(rq, rf); 7088 7089 /* 7090 * Because newidle_balance() releases (and re-acquires) rq->lock, it is 7091 * possible for any higher priority task to appear. In that case we 7092 * must re-start the pick_next_entity() loop. 7093 */ 7094 if (new_tasks < 0) 7095 return RETRY_TASK; 7096 7097 if (new_tasks > 0) 7098 goto again; 7099 7100 /* 7101 * rq is about to be idle, check if we need to update the 7102 * lost_idle_time of clock_pelt 7103 */ 7104 update_idle_rq_clock_pelt(rq); 7105 7106 return NULL; 7107 } 7108 7109 static struct task_struct *__pick_next_task_fair(struct rq *rq) 7110 { 7111 return pick_next_task_fair(rq, NULL, NULL); 7112 } 7113 7114 /* 7115 * Account for a descheduled task: 7116 */ 7117 static void put_prev_task_fair(struct rq *rq, struct task_struct *prev) 7118 { 7119 struct sched_entity *se = &prev->se; 7120 struct cfs_rq *cfs_rq; 7121 7122 for_each_sched_entity(se) { 7123 cfs_rq = cfs_rq_of(se); 7124 put_prev_entity(cfs_rq, se); 7125 } 7126 } 7127 7128 /* 7129 * sched_yield() is very simple 7130 * 7131 * The magic of dealing with the ->skip buddy is in pick_next_entity. 7132 */ 7133 static void yield_task_fair(struct rq *rq) 7134 { 7135 struct task_struct *curr = rq->curr; 7136 struct cfs_rq *cfs_rq = task_cfs_rq(curr); 7137 struct sched_entity *se = &curr->se; 7138 7139 /* 7140 * Are we the only task in the tree? 7141 */ 7142 if (unlikely(rq->nr_running == 1)) 7143 return; 7144 7145 clear_buddies(cfs_rq, se); 7146 7147 if (curr->policy != SCHED_BATCH) { 7148 update_rq_clock(rq); 7149 /* 7150 * Update run-time statistics of the 'current'. 7151 */ 7152 update_curr(cfs_rq); 7153 /* 7154 * Tell update_rq_clock() that we've just updated, 7155 * so we don't do microscopic update in schedule() 7156 * and double the fastpath cost. 7157 */ 7158 rq_clock_skip_update(rq); 7159 } 7160 7161 set_skip_buddy(se); 7162 } 7163 7164 static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt) 7165 { 7166 struct sched_entity *se = &p->se; 7167 7168 /* throttled hierarchies are not runnable */ 7169 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se))) 7170 return false; 7171 7172 /* Tell the scheduler that we'd really like pse to run next. */ 7173 set_next_buddy(se); 7174 7175 yield_task_fair(rq); 7176 7177 return true; 7178 } 7179 7180 #ifdef CONFIG_SMP 7181 /************************************************** 7182 * Fair scheduling class load-balancing methods. 7183 * 7184 * BASICS 7185 * 7186 * The purpose of load-balancing is to achieve the same basic fairness the 7187 * per-CPU scheduler provides, namely provide a proportional amount of compute 7188 * time to each task. This is expressed in the following equation: 7189 * 7190 * W_i,n/P_i == W_j,n/P_j for all i,j (1) 7191 * 7192 * Where W_i,n is the n-th weight average for CPU i. The instantaneous weight 7193 * W_i,0 is defined as: 7194 * 7195 * W_i,0 = \Sum_j w_i,j (2) 7196 * 7197 * Where w_i,j is the weight of the j-th runnable task on CPU i. This weight 7198 * is derived from the nice value as per sched_prio_to_weight[]. 7199 * 7200 * The weight average is an exponential decay average of the instantaneous 7201 * weight: 7202 * 7203 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3) 7204 * 7205 * C_i is the compute capacity of CPU i, typically it is the 7206 * fraction of 'recent' time available for SCHED_OTHER task execution. But it 7207 * can also include other factors [XXX]. 7208 * 7209 * To achieve this balance we define a measure of imbalance which follows 7210 * directly from (1): 7211 * 7212 * imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j } (4) 7213 * 7214 * We them move tasks around to minimize the imbalance. In the continuous 7215 * function space it is obvious this converges, in the discrete case we get 7216 * a few fun cases generally called infeasible weight scenarios. 7217 * 7218 * [XXX expand on: 7219 * - infeasible weights; 7220 * - local vs global optima in the discrete case. ] 7221 * 7222 * 7223 * SCHED DOMAINS 7224 * 7225 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2) 7226 * for all i,j solution, we create a tree of CPUs that follows the hardware 7227 * topology where each level pairs two lower groups (or better). This results 7228 * in O(log n) layers. Furthermore we reduce the number of CPUs going up the 7229 * tree to only the first of the previous level and we decrease the frequency 7230 * of load-balance at each level inv. proportional to the number of CPUs in 7231 * the groups. 7232 * 7233 * This yields: 7234 * 7235 * log_2 n 1 n 7236 * \Sum { --- * --- * 2^i } = O(n) (5) 7237 * i = 0 2^i 2^i 7238 * `- size of each group 7239 * | | `- number of CPUs doing load-balance 7240 * | `- freq 7241 * `- sum over all levels 7242 * 7243 * Coupled with a limit on how many tasks we can migrate every balance pass, 7244 * this makes (5) the runtime complexity of the balancer. 7245 * 7246 * An important property here is that each CPU is still (indirectly) connected 7247 * to every other CPU in at most O(log n) steps: 7248 * 7249 * The adjacency matrix of the resulting graph is given by: 7250 * 7251 * log_2 n 7252 * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6) 7253 * k = 0 7254 * 7255 * And you'll find that: 7256 * 7257 * A^(log_2 n)_i,j != 0 for all i,j (7) 7258 * 7259 * Showing there's indeed a path between every CPU in at most O(log n) steps. 7260 * The task movement gives a factor of O(m), giving a convergence complexity 7261 * of: 7262 * 7263 * O(nm log n), n := nr_cpus, m := nr_tasks (8) 7264 * 7265 * 7266 * WORK CONSERVING 7267 * 7268 * In order to avoid CPUs going idle while there's still work to do, new idle 7269 * balancing is more aggressive and has the newly idle CPU iterate up the domain 7270 * tree itself instead of relying on other CPUs to bring it work. 7271 * 7272 * This adds some complexity to both (5) and (8) but it reduces the total idle 7273 * time. 7274 * 7275 * [XXX more?] 7276 * 7277 * 7278 * CGROUPS 7279 * 7280 * Cgroups make a horror show out of (2), instead of a simple sum we get: 7281 * 7282 * s_k,i 7283 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9) 7284 * S_k 7285 * 7286 * Where 7287 * 7288 * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10) 7289 * 7290 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on CPU i. 7291 * 7292 * The big problem is S_k, its a global sum needed to compute a local (W_i) 7293 * property. 7294 * 7295 * [XXX write more on how we solve this.. _after_ merging pjt's patches that 7296 * rewrite all of this once again.] 7297 */ 7298 7299 static unsigned long __read_mostly max_load_balance_interval = HZ/10; 7300 7301 enum fbq_type { regular, remote, all }; 7302 7303 /* 7304 * 'group_type' describes the group of CPUs at the moment of load balancing. 7305 * 7306 * The enum is ordered by pulling priority, with the group with lowest priority 7307 * first so the group_type can simply be compared when selecting the busiest 7308 * group. See update_sd_pick_busiest(). 7309 */ 7310 enum group_type { 7311 /* The group has spare capacity that can be used to run more tasks. */ 7312 group_has_spare = 0, 7313 /* 7314 * The group is fully used and the tasks don't compete for more CPU 7315 * cycles. Nevertheless, some tasks might wait before running. 7316 */ 7317 group_fully_busy, 7318 /* 7319 * SD_ASYM_CPUCAPACITY only: One task doesn't fit with CPU's capacity 7320 * and must be migrated to a more powerful CPU. 7321 */ 7322 group_misfit_task, 7323 /* 7324 * SD_ASYM_PACKING only: One local CPU with higher capacity is available, 7325 * and the task should be migrated to it instead of running on the 7326 * current CPU. 7327 */ 7328 group_asym_packing, 7329 /* 7330 * The tasks' affinity constraints previously prevented the scheduler 7331 * from balancing the load across the system. 7332 */ 7333 group_imbalanced, 7334 /* 7335 * The CPU is overloaded and can't provide expected CPU cycles to all 7336 * tasks. 7337 */ 7338 group_overloaded 7339 }; 7340 7341 enum migration_type { 7342 migrate_load = 0, 7343 migrate_util, 7344 migrate_task, 7345 migrate_misfit 7346 }; 7347 7348 #define LBF_ALL_PINNED 0x01 7349 #define LBF_NEED_BREAK 0x02 7350 #define LBF_DST_PINNED 0x04 7351 #define LBF_SOME_PINNED 0x08 7352 #define LBF_NOHZ_STATS 0x10 7353 #define LBF_NOHZ_AGAIN 0x20 7354 7355 struct lb_env { 7356 struct sched_domain *sd; 7357 7358 struct rq *src_rq; 7359 int src_cpu; 7360 7361 int dst_cpu; 7362 struct rq *dst_rq; 7363 7364 struct cpumask *dst_grpmask; 7365 int new_dst_cpu; 7366 enum cpu_idle_type idle; 7367 long imbalance; 7368 /* The set of CPUs under consideration for load-balancing */ 7369 struct cpumask *cpus; 7370 7371 unsigned int flags; 7372 7373 unsigned int loop; 7374 unsigned int loop_break; 7375 unsigned int loop_max; 7376 7377 enum fbq_type fbq_type; 7378 enum migration_type migration_type; 7379 struct list_head tasks; 7380 }; 7381 7382 /* 7383 * Is this task likely cache-hot: 7384 */ 7385 static int task_hot(struct task_struct *p, struct lb_env *env) 7386 { 7387 s64 delta; 7388 7389 lockdep_assert_held(&env->src_rq->lock); 7390 7391 if (p->sched_class != &fair_sched_class) 7392 return 0; 7393 7394 if (unlikely(task_has_idle_policy(p))) 7395 return 0; 7396 7397 /* 7398 * Buddy candidates are cache hot: 7399 */ 7400 if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running && 7401 (&p->se == cfs_rq_of(&p->se)->next || 7402 &p->se == cfs_rq_of(&p->se)->last)) 7403 return 1; 7404 7405 if (sysctl_sched_migration_cost == -1) 7406 return 1; 7407 if (sysctl_sched_migration_cost == 0) 7408 return 0; 7409 7410 delta = rq_clock_task(env->src_rq) - p->se.exec_start; 7411 7412 return delta < (s64)sysctl_sched_migration_cost; 7413 } 7414 7415 #ifdef CONFIG_NUMA_BALANCING 7416 /* 7417 * Returns 1, if task migration degrades locality 7418 * Returns 0, if task migration improves locality i.e migration preferred. 7419 * Returns -1, if task migration is not affected by locality. 7420 */ 7421 static int migrate_degrades_locality(struct task_struct *p, struct lb_env *env) 7422 { 7423 struct numa_group *numa_group = rcu_dereference(p->numa_group); 7424 unsigned long src_weight, dst_weight; 7425 int src_nid, dst_nid, dist; 7426 7427 if (!static_branch_likely(&sched_numa_balancing)) 7428 return -1; 7429 7430 if (!p->numa_faults || !(env->sd->flags & SD_NUMA)) 7431 return -1; 7432 7433 src_nid = cpu_to_node(env->src_cpu); 7434 dst_nid = cpu_to_node(env->dst_cpu); 7435 7436 if (src_nid == dst_nid) 7437 return -1; 7438 7439 /* Migrating away from the preferred node is always bad. */ 7440 if (src_nid == p->numa_preferred_nid) { 7441 if (env->src_rq->nr_running > env->src_rq->nr_preferred_running) 7442 return 1; 7443 else 7444 return -1; 7445 } 7446 7447 /* Encourage migration to the preferred node. */ 7448 if (dst_nid == p->numa_preferred_nid) 7449 return 0; 7450 7451 /* Leaving a core idle is often worse than degrading locality. */ 7452 if (env->idle == CPU_IDLE) 7453 return -1; 7454 7455 dist = node_distance(src_nid, dst_nid); 7456 if (numa_group) { 7457 src_weight = group_weight(p, src_nid, dist); 7458 dst_weight = group_weight(p, dst_nid, dist); 7459 } else { 7460 src_weight = task_weight(p, src_nid, dist); 7461 dst_weight = task_weight(p, dst_nid, dist); 7462 } 7463 7464 return dst_weight < src_weight; 7465 } 7466 7467 #else 7468 static inline int migrate_degrades_locality(struct task_struct *p, 7469 struct lb_env *env) 7470 { 7471 return -1; 7472 } 7473 #endif 7474 7475 /* 7476 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu? 7477 */ 7478 static 7479 int can_migrate_task(struct task_struct *p, struct lb_env *env) 7480 { 7481 int tsk_cache_hot; 7482 7483 lockdep_assert_held(&env->src_rq->lock); 7484 7485 /* 7486 * We do not migrate tasks that are: 7487 * 1) throttled_lb_pair, or 7488 * 2) cannot be migrated to this CPU due to cpus_ptr, or 7489 * 3) running (obviously), or 7490 * 4) are cache-hot on their current CPU. 7491 */ 7492 if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu)) 7493 return 0; 7494 7495 if (!cpumask_test_cpu(env->dst_cpu, p->cpus_ptr)) { 7496 int cpu; 7497 7498 schedstat_inc(p->se.statistics.nr_failed_migrations_affine); 7499 7500 env->flags |= LBF_SOME_PINNED; 7501 7502 /* 7503 * Remember if this task can be migrated to any other CPU in 7504 * our sched_group. We may want to revisit it if we couldn't 7505 * meet load balance goals by pulling other tasks on src_cpu. 7506 * 7507 * Avoid computing new_dst_cpu for NEWLY_IDLE or if we have 7508 * already computed one in current iteration. 7509 */ 7510 if (env->idle == CPU_NEWLY_IDLE || (env->flags & LBF_DST_PINNED)) 7511 return 0; 7512 7513 /* Prevent to re-select dst_cpu via env's CPUs: */ 7514 for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) { 7515 if (cpumask_test_cpu(cpu, p->cpus_ptr)) { 7516 env->flags |= LBF_DST_PINNED; 7517 env->new_dst_cpu = cpu; 7518 break; 7519 } 7520 } 7521 7522 return 0; 7523 } 7524 7525 /* Record that we found atleast one task that could run on dst_cpu */ 7526 env->flags &= ~LBF_ALL_PINNED; 7527 7528 if (task_running(env->src_rq, p)) { 7529 schedstat_inc(p->se.statistics.nr_failed_migrations_running); 7530 return 0; 7531 } 7532 7533 /* 7534 * Aggressive migration if: 7535 * 1) destination numa is preferred 7536 * 2) task is cache cold, or 7537 * 3) too many balance attempts have failed. 7538 */ 7539 tsk_cache_hot = migrate_degrades_locality(p, env); 7540 if (tsk_cache_hot == -1) 7541 tsk_cache_hot = task_hot(p, env); 7542 7543 if (tsk_cache_hot <= 0 || 7544 env->sd->nr_balance_failed > env->sd->cache_nice_tries) { 7545 if (tsk_cache_hot == 1) { 7546 schedstat_inc(env->sd->lb_hot_gained[env->idle]); 7547 schedstat_inc(p->se.statistics.nr_forced_migrations); 7548 } 7549 return 1; 7550 } 7551 7552 schedstat_inc(p->se.statistics.nr_failed_migrations_hot); 7553 return 0; 7554 } 7555 7556 /* 7557 * detach_task() -- detach the task for the migration specified in env 7558 */ 7559 static void detach_task(struct task_struct *p, struct lb_env *env) 7560 { 7561 lockdep_assert_held(&env->src_rq->lock); 7562 7563 deactivate_task(env->src_rq, p, DEQUEUE_NOCLOCK); 7564 set_task_cpu(p, env->dst_cpu); 7565 } 7566 7567 /* 7568 * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as 7569 * part of active balancing operations within "domain". 7570 * 7571 * Returns a task if successful and NULL otherwise. 7572 */ 7573 static struct task_struct *detach_one_task(struct lb_env *env) 7574 { 7575 struct task_struct *p; 7576 7577 lockdep_assert_held(&env->src_rq->lock); 7578 7579 list_for_each_entry_reverse(p, 7580 &env->src_rq->cfs_tasks, se.group_node) { 7581 if (!can_migrate_task(p, env)) 7582 continue; 7583 7584 detach_task(p, env); 7585 7586 /* 7587 * Right now, this is only the second place where 7588 * lb_gained[env->idle] is updated (other is detach_tasks) 7589 * so we can safely collect stats here rather than 7590 * inside detach_tasks(). 7591 */ 7592 schedstat_inc(env->sd->lb_gained[env->idle]); 7593 return p; 7594 } 7595 return NULL; 7596 } 7597 7598 static const unsigned int sched_nr_migrate_break = 32; 7599 7600 /* 7601 * detach_tasks() -- tries to detach up to imbalance load/util/tasks from 7602 * busiest_rq, as part of a balancing operation within domain "sd". 7603 * 7604 * Returns number of detached tasks if successful and 0 otherwise. 7605 */ 7606 static int detach_tasks(struct lb_env *env) 7607 { 7608 struct list_head *tasks = &env->src_rq->cfs_tasks; 7609 unsigned long util, load; 7610 struct task_struct *p; 7611 int detached = 0; 7612 7613 lockdep_assert_held(&env->src_rq->lock); 7614 7615 if (env->imbalance <= 0) 7616 return 0; 7617 7618 while (!list_empty(tasks)) { 7619 /* 7620 * We don't want to steal all, otherwise we may be treated likewise, 7621 * which could at worst lead to a livelock crash. 7622 */ 7623 if (env->idle != CPU_NOT_IDLE && env->src_rq->nr_running <= 1) 7624 break; 7625 7626 p = list_last_entry(tasks, struct task_struct, se.group_node); 7627 7628 env->loop++; 7629 /* We've more or less seen every task there is, call it quits */ 7630 if (env->loop > env->loop_max) 7631 break; 7632 7633 /* take a breather every nr_migrate tasks */ 7634 if (env->loop > env->loop_break) { 7635 env->loop_break += sched_nr_migrate_break; 7636 env->flags |= LBF_NEED_BREAK; 7637 break; 7638 } 7639 7640 if (!can_migrate_task(p, env)) 7641 goto next; 7642 7643 switch (env->migration_type) { 7644 case migrate_load: 7645 /* 7646 * Depending of the number of CPUs and tasks and the 7647 * cgroup hierarchy, task_h_load() can return a null 7648 * value. Make sure that env->imbalance decreases 7649 * otherwise detach_tasks() will stop only after 7650 * detaching up to loop_max tasks. 7651 */ 7652 load = max_t(unsigned long, task_h_load(p), 1); 7653 7654 if (sched_feat(LB_MIN) && 7655 load < 16 && !env->sd->nr_balance_failed) 7656 goto next; 7657 7658 /* 7659 * Make sure that we don't migrate too much load. 7660 * Nevertheless, let relax the constraint if 7661 * scheduler fails to find a good waiting task to 7662 * migrate. 7663 */ 7664 if (load/2 > env->imbalance && 7665 env->sd->nr_balance_failed <= env->sd->cache_nice_tries) 7666 goto next; 7667 7668 env->imbalance -= load; 7669 break; 7670 7671 case migrate_util: 7672 util = task_util_est(p); 7673 7674 if (util > env->imbalance) 7675 goto next; 7676 7677 env->imbalance -= util; 7678 break; 7679 7680 case migrate_task: 7681 env->imbalance--; 7682 break; 7683 7684 case migrate_misfit: 7685 /* This is not a misfit task */ 7686 if (task_fits_capacity(p, capacity_of(env->src_cpu))) 7687 goto next; 7688 7689 env->imbalance = 0; 7690 break; 7691 } 7692 7693 detach_task(p, env); 7694 list_add(&p->se.group_node, &env->tasks); 7695 7696 detached++; 7697 7698 #ifdef CONFIG_PREEMPTION 7699 /* 7700 * NEWIDLE balancing is a source of latency, so preemptible 7701 * kernels will stop after the first task is detached to minimize 7702 * the critical section. 7703 */ 7704 if (env->idle == CPU_NEWLY_IDLE) 7705 break; 7706 #endif 7707 7708 /* 7709 * We only want to steal up to the prescribed amount of 7710 * load/util/tasks. 7711 */ 7712 if (env->imbalance <= 0) 7713 break; 7714 7715 continue; 7716 next: 7717 list_move(&p->se.group_node, tasks); 7718 } 7719 7720 /* 7721 * Right now, this is one of only two places we collect this stat 7722 * so we can safely collect detach_one_task() stats here rather 7723 * than inside detach_one_task(). 7724 */ 7725 schedstat_add(env->sd->lb_gained[env->idle], detached); 7726 7727 return detached; 7728 } 7729 7730 /* 7731 * attach_task() -- attach the task detached by detach_task() to its new rq. 7732 */ 7733 static void attach_task(struct rq *rq, struct task_struct *p) 7734 { 7735 lockdep_assert_held(&rq->lock); 7736 7737 BUG_ON(task_rq(p) != rq); 7738 activate_task(rq, p, ENQUEUE_NOCLOCK); 7739 check_preempt_curr(rq, p, 0); 7740 } 7741 7742 /* 7743 * attach_one_task() -- attaches the task returned from detach_one_task() to 7744 * its new rq. 7745 */ 7746 static void attach_one_task(struct rq *rq, struct task_struct *p) 7747 { 7748 struct rq_flags rf; 7749 7750 rq_lock(rq, &rf); 7751 update_rq_clock(rq); 7752 attach_task(rq, p); 7753 rq_unlock(rq, &rf); 7754 } 7755 7756 /* 7757 * attach_tasks() -- attaches all tasks detached by detach_tasks() to their 7758 * new rq. 7759 */ 7760 static void attach_tasks(struct lb_env *env) 7761 { 7762 struct list_head *tasks = &env->tasks; 7763 struct task_struct *p; 7764 struct rq_flags rf; 7765 7766 rq_lock(env->dst_rq, &rf); 7767 update_rq_clock(env->dst_rq); 7768 7769 while (!list_empty(tasks)) { 7770 p = list_first_entry(tasks, struct task_struct, se.group_node); 7771 list_del_init(&p->se.group_node); 7772 7773 attach_task(env->dst_rq, p); 7774 } 7775 7776 rq_unlock(env->dst_rq, &rf); 7777 } 7778 7779 #ifdef CONFIG_NO_HZ_COMMON 7780 static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq) 7781 { 7782 if (cfs_rq->avg.load_avg) 7783 return true; 7784 7785 if (cfs_rq->avg.util_avg) 7786 return true; 7787 7788 return false; 7789 } 7790 7791 static inline bool others_have_blocked(struct rq *rq) 7792 { 7793 if (READ_ONCE(rq->avg_rt.util_avg)) 7794 return true; 7795 7796 if (READ_ONCE(rq->avg_dl.util_avg)) 7797 return true; 7798 7799 if (thermal_load_avg(rq)) 7800 return true; 7801 7802 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ 7803 if (READ_ONCE(rq->avg_irq.util_avg)) 7804 return true; 7805 #endif 7806 7807 return false; 7808 } 7809 7810 static inline void update_blocked_load_status(struct rq *rq, bool has_blocked) 7811 { 7812 rq->last_blocked_load_update_tick = jiffies; 7813 7814 if (!has_blocked) 7815 rq->has_blocked_load = 0; 7816 } 7817 #else 7818 static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq) { return false; } 7819 static inline bool others_have_blocked(struct rq *rq) { return false; } 7820 static inline void update_blocked_load_status(struct rq *rq, bool has_blocked) {} 7821 #endif 7822 7823 static bool __update_blocked_others(struct rq *rq, bool *done) 7824 { 7825 const struct sched_class *curr_class; 7826 u64 now = rq_clock_pelt(rq); 7827 unsigned long thermal_pressure; 7828 bool decayed; 7829 7830 /* 7831 * update_load_avg() can call cpufreq_update_util(). Make sure that RT, 7832 * DL and IRQ signals have been updated before updating CFS. 7833 */ 7834 curr_class = rq->curr->sched_class; 7835 7836 thermal_pressure = arch_scale_thermal_pressure(cpu_of(rq)); 7837 7838 decayed = update_rt_rq_load_avg(now, rq, curr_class == &rt_sched_class) | 7839 update_dl_rq_load_avg(now, rq, curr_class == &dl_sched_class) | 7840 update_thermal_load_avg(rq_clock_thermal(rq), rq, thermal_pressure) | 7841 update_irq_load_avg(rq, 0); 7842 7843 if (others_have_blocked(rq)) 7844 *done = false; 7845 7846 return decayed; 7847 } 7848 7849 #ifdef CONFIG_FAIR_GROUP_SCHED 7850 7851 static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq) 7852 { 7853 if (cfs_rq->load.weight) 7854 return false; 7855 7856 if (cfs_rq->avg.load_sum) 7857 return false; 7858 7859 if (cfs_rq->avg.util_sum) 7860 return false; 7861 7862 if (cfs_rq->avg.runnable_sum) 7863 return false; 7864 7865 return true; 7866 } 7867 7868 static bool __update_blocked_fair(struct rq *rq, bool *done) 7869 { 7870 struct cfs_rq *cfs_rq, *pos; 7871 bool decayed = false; 7872 int cpu = cpu_of(rq); 7873 7874 /* 7875 * Iterates the task_group tree in a bottom up fashion, see 7876 * list_add_leaf_cfs_rq() for details. 7877 */ 7878 for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) { 7879 struct sched_entity *se; 7880 7881 if (update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq)) { 7882 update_tg_load_avg(cfs_rq, 0); 7883 7884 if (cfs_rq == &rq->cfs) 7885 decayed = true; 7886 } 7887 7888 /* Propagate pending load changes to the parent, if any: */ 7889 se = cfs_rq->tg->se[cpu]; 7890 if (se && !skip_blocked_update(se)) 7891 update_load_avg(cfs_rq_of(se), se, 0); 7892 7893 /* 7894 * There can be a lot of idle CPU cgroups. Don't let fully 7895 * decayed cfs_rqs linger on the list. 7896 */ 7897 if (cfs_rq_is_decayed(cfs_rq)) 7898 list_del_leaf_cfs_rq(cfs_rq); 7899 7900 /* Don't need periodic decay once load/util_avg are null */ 7901 if (cfs_rq_has_blocked(cfs_rq)) 7902 *done = false; 7903 } 7904 7905 return decayed; 7906 } 7907 7908 /* 7909 * Compute the hierarchical load factor for cfs_rq and all its ascendants. 7910 * This needs to be done in a top-down fashion because the load of a child 7911 * group is a fraction of its parents load. 7912 */ 7913 static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq) 7914 { 7915 struct rq *rq = rq_of(cfs_rq); 7916 struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)]; 7917 unsigned long now = jiffies; 7918 unsigned long load; 7919 7920 if (cfs_rq->last_h_load_update == now) 7921 return; 7922 7923 WRITE_ONCE(cfs_rq->h_load_next, NULL); 7924 for_each_sched_entity(se) { 7925 cfs_rq = cfs_rq_of(se); 7926 WRITE_ONCE(cfs_rq->h_load_next, se); 7927 if (cfs_rq->last_h_load_update == now) 7928 break; 7929 } 7930 7931 if (!se) { 7932 cfs_rq->h_load = cfs_rq_load_avg(cfs_rq); 7933 cfs_rq->last_h_load_update = now; 7934 } 7935 7936 while ((se = READ_ONCE(cfs_rq->h_load_next)) != NULL) { 7937 load = cfs_rq->h_load; 7938 load = div64_ul(load * se->avg.load_avg, 7939 cfs_rq_load_avg(cfs_rq) + 1); 7940 cfs_rq = group_cfs_rq(se); 7941 cfs_rq->h_load = load; 7942 cfs_rq->last_h_load_update = now; 7943 } 7944 } 7945 7946 static unsigned long task_h_load(struct task_struct *p) 7947 { 7948 struct cfs_rq *cfs_rq = task_cfs_rq(p); 7949 7950 update_cfs_rq_h_load(cfs_rq); 7951 return div64_ul(p->se.avg.load_avg * cfs_rq->h_load, 7952 cfs_rq_load_avg(cfs_rq) + 1); 7953 } 7954 #else 7955 static bool __update_blocked_fair(struct rq *rq, bool *done) 7956 { 7957 struct cfs_rq *cfs_rq = &rq->cfs; 7958 bool decayed; 7959 7960 decayed = update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq); 7961 if (cfs_rq_has_blocked(cfs_rq)) 7962 *done = false; 7963 7964 return decayed; 7965 } 7966 7967 static unsigned long task_h_load(struct task_struct *p) 7968 { 7969 return p->se.avg.load_avg; 7970 } 7971 #endif 7972 7973 static void update_blocked_averages(int cpu) 7974 { 7975 bool decayed = false, done = true; 7976 struct rq *rq = cpu_rq(cpu); 7977 struct rq_flags rf; 7978 7979 rq_lock_irqsave(rq, &rf); 7980 update_rq_clock(rq); 7981 7982 decayed |= __update_blocked_others(rq, &done); 7983 decayed |= __update_blocked_fair(rq, &done); 7984 7985 update_blocked_load_status(rq, !done); 7986 if (decayed) 7987 cpufreq_update_util(rq, 0); 7988 rq_unlock_irqrestore(rq, &rf); 7989 } 7990 7991 /********** Helpers for find_busiest_group ************************/ 7992 7993 /* 7994 * sg_lb_stats - stats of a sched_group required for load_balancing 7995 */ 7996 struct sg_lb_stats { 7997 unsigned long avg_load; /*Avg load across the CPUs of the group */ 7998 unsigned long group_load; /* Total load over the CPUs of the group */ 7999 unsigned long group_capacity; 8000 unsigned long group_util; /* Total utilization over the CPUs of the group */ 8001 unsigned long group_runnable; /* Total runnable time over the CPUs of the group */ 8002 unsigned int sum_nr_running; /* Nr of tasks running in the group */ 8003 unsigned int sum_h_nr_running; /* Nr of CFS tasks running in the group */ 8004 unsigned int idle_cpus; 8005 unsigned int group_weight; 8006 enum group_type group_type; 8007 unsigned int group_asym_packing; /* Tasks should be moved to preferred CPU */ 8008 unsigned long group_misfit_task_load; /* A CPU has a task too big for its capacity */ 8009 #ifdef CONFIG_NUMA_BALANCING 8010 unsigned int nr_numa_running; 8011 unsigned int nr_preferred_running; 8012 #endif 8013 }; 8014 8015 /* 8016 * sd_lb_stats - Structure to store the statistics of a sched_domain 8017 * during load balancing. 8018 */ 8019 struct sd_lb_stats { 8020 struct sched_group *busiest; /* Busiest group in this sd */ 8021 struct sched_group *local; /* Local group in this sd */ 8022 unsigned long total_load; /* Total load of all groups in sd */ 8023 unsigned long total_capacity; /* Total capacity of all groups in sd */ 8024 unsigned long avg_load; /* Average load across all groups in sd */ 8025 unsigned int prefer_sibling; /* tasks should go to sibling first */ 8026 8027 struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */ 8028 struct sg_lb_stats local_stat; /* Statistics of the local group */ 8029 }; 8030 8031 static inline void init_sd_lb_stats(struct sd_lb_stats *sds) 8032 { 8033 /* 8034 * Skimp on the clearing to avoid duplicate work. We can avoid clearing 8035 * local_stat because update_sg_lb_stats() does a full clear/assignment. 8036 * We must however set busiest_stat::group_type and 8037 * busiest_stat::idle_cpus to the worst busiest group because 8038 * update_sd_pick_busiest() reads these before assignment. 8039 */ 8040 *sds = (struct sd_lb_stats){ 8041 .busiest = NULL, 8042 .local = NULL, 8043 .total_load = 0UL, 8044 .total_capacity = 0UL, 8045 .busiest_stat = { 8046 .idle_cpus = UINT_MAX, 8047 .group_type = group_has_spare, 8048 }, 8049 }; 8050 } 8051 8052 static unsigned long scale_rt_capacity(struct sched_domain *sd, int cpu) 8053 { 8054 struct rq *rq = cpu_rq(cpu); 8055 unsigned long max = arch_scale_cpu_capacity(cpu); 8056 unsigned long used, free; 8057 unsigned long irq; 8058 8059 irq = cpu_util_irq(rq); 8060 8061 if (unlikely(irq >= max)) 8062 return 1; 8063 8064 /* 8065 * avg_rt.util_avg and avg_dl.util_avg track binary signals 8066 * (running and not running) with weights 0 and 1024 respectively. 8067 * avg_thermal.load_avg tracks thermal pressure and the weighted 8068 * average uses the actual delta max capacity(load). 8069 */ 8070 used = READ_ONCE(rq->avg_rt.util_avg); 8071 used += READ_ONCE(rq->avg_dl.util_avg); 8072 used += thermal_load_avg(rq); 8073 8074 if (unlikely(used >= max)) 8075 return 1; 8076 8077 free = max - used; 8078 8079 return scale_irq_capacity(free, irq, max); 8080 } 8081 8082 static void update_cpu_capacity(struct sched_domain *sd, int cpu) 8083 { 8084 unsigned long capacity = scale_rt_capacity(sd, cpu); 8085 struct sched_group *sdg = sd->groups; 8086 8087 cpu_rq(cpu)->cpu_capacity_orig = arch_scale_cpu_capacity(cpu); 8088 8089 if (!capacity) 8090 capacity = 1; 8091 8092 cpu_rq(cpu)->cpu_capacity = capacity; 8093 sdg->sgc->capacity = capacity; 8094 sdg->sgc->min_capacity = capacity; 8095 sdg->sgc->max_capacity = capacity; 8096 } 8097 8098 void update_group_capacity(struct sched_domain *sd, int cpu) 8099 { 8100 struct sched_domain *child = sd->child; 8101 struct sched_group *group, *sdg = sd->groups; 8102 unsigned long capacity, min_capacity, max_capacity; 8103 unsigned long interval; 8104 8105 interval = msecs_to_jiffies(sd->balance_interval); 8106 interval = clamp(interval, 1UL, max_load_balance_interval); 8107 sdg->sgc->next_update = jiffies + interval; 8108 8109 if (!child) { 8110 update_cpu_capacity(sd, cpu); 8111 return; 8112 } 8113 8114 capacity = 0; 8115 min_capacity = ULONG_MAX; 8116 max_capacity = 0; 8117 8118 if (child->flags & SD_OVERLAP) { 8119 /* 8120 * SD_OVERLAP domains cannot assume that child groups 8121 * span the current group. 8122 */ 8123 8124 for_each_cpu(cpu, sched_group_span(sdg)) { 8125 unsigned long cpu_cap = capacity_of(cpu); 8126 8127 capacity += cpu_cap; 8128 min_capacity = min(cpu_cap, min_capacity); 8129 max_capacity = max(cpu_cap, max_capacity); 8130 } 8131 } else { 8132 /* 8133 * !SD_OVERLAP domains can assume that child groups 8134 * span the current group. 8135 */ 8136 8137 group = child->groups; 8138 do { 8139 struct sched_group_capacity *sgc = group->sgc; 8140 8141 capacity += sgc->capacity; 8142 min_capacity = min(sgc->min_capacity, min_capacity); 8143 max_capacity = max(sgc->max_capacity, max_capacity); 8144 group = group->next; 8145 } while (group != child->groups); 8146 } 8147 8148 sdg->sgc->capacity = capacity; 8149 sdg->sgc->min_capacity = min_capacity; 8150 sdg->sgc->max_capacity = max_capacity; 8151 } 8152 8153 /* 8154 * Check whether the capacity of the rq has been noticeably reduced by side 8155 * activity. The imbalance_pct is used for the threshold. 8156 * Return true is the capacity is reduced 8157 */ 8158 static inline int 8159 check_cpu_capacity(struct rq *rq, struct sched_domain *sd) 8160 { 8161 return ((rq->cpu_capacity * sd->imbalance_pct) < 8162 (rq->cpu_capacity_orig * 100)); 8163 } 8164 8165 /* 8166 * Check whether a rq has a misfit task and if it looks like we can actually 8167 * help that task: we can migrate the task to a CPU of higher capacity, or 8168 * the task's current CPU is heavily pressured. 8169 */ 8170 static inline int check_misfit_status(struct rq *rq, struct sched_domain *sd) 8171 { 8172 return rq->misfit_task_load && 8173 (rq->cpu_capacity_orig < rq->rd->max_cpu_capacity || 8174 check_cpu_capacity(rq, sd)); 8175 } 8176 8177 /* 8178 * Group imbalance indicates (and tries to solve) the problem where balancing 8179 * groups is inadequate due to ->cpus_ptr constraints. 8180 * 8181 * Imagine a situation of two groups of 4 CPUs each and 4 tasks each with a 8182 * cpumask covering 1 CPU of the first group and 3 CPUs of the second group. 8183 * Something like: 8184 * 8185 * { 0 1 2 3 } { 4 5 6 7 } 8186 * * * * * 8187 * 8188 * If we were to balance group-wise we'd place two tasks in the first group and 8189 * two tasks in the second group. Clearly this is undesired as it will overload 8190 * cpu 3 and leave one of the CPUs in the second group unused. 8191 * 8192 * The current solution to this issue is detecting the skew in the first group 8193 * by noticing the lower domain failed to reach balance and had difficulty 8194 * moving tasks due to affinity constraints. 8195 * 8196 * When this is so detected; this group becomes a candidate for busiest; see 8197 * update_sd_pick_busiest(). And calculate_imbalance() and 8198 * find_busiest_group() avoid some of the usual balance conditions to allow it 8199 * to create an effective group imbalance. 8200 * 8201 * This is a somewhat tricky proposition since the next run might not find the 8202 * group imbalance and decide the groups need to be balanced again. A most 8203 * subtle and fragile situation. 8204 */ 8205 8206 static inline int sg_imbalanced(struct sched_group *group) 8207 { 8208 return group->sgc->imbalance; 8209 } 8210 8211 /* 8212 * group_has_capacity returns true if the group has spare capacity that could 8213 * be used by some tasks. 8214 * We consider that a group has spare capacity if the * number of task is 8215 * smaller than the number of CPUs or if the utilization is lower than the 8216 * available capacity for CFS tasks. 8217 * For the latter, we use a threshold to stabilize the state, to take into 8218 * account the variance of the tasks' load and to return true if the available 8219 * capacity in meaningful for the load balancer. 8220 * As an example, an available capacity of 1% can appear but it doesn't make 8221 * any benefit for the load balance. 8222 */ 8223 static inline bool 8224 group_has_capacity(unsigned int imbalance_pct, struct sg_lb_stats *sgs) 8225 { 8226 if (sgs->sum_nr_running < sgs->group_weight) 8227 return true; 8228 8229 if ((sgs->group_capacity * imbalance_pct) < 8230 (sgs->group_runnable * 100)) 8231 return false; 8232 8233 if ((sgs->group_capacity * 100) > 8234 (sgs->group_util * imbalance_pct)) 8235 return true; 8236 8237 return false; 8238 } 8239 8240 /* 8241 * group_is_overloaded returns true if the group has more tasks than it can 8242 * handle. 8243 * group_is_overloaded is not equals to !group_has_capacity because a group 8244 * with the exact right number of tasks, has no more spare capacity but is not 8245 * overloaded so both group_has_capacity and group_is_overloaded return 8246 * false. 8247 */ 8248 static inline bool 8249 group_is_overloaded(unsigned int imbalance_pct, struct sg_lb_stats *sgs) 8250 { 8251 if (sgs->sum_nr_running <= sgs->group_weight) 8252 return false; 8253 8254 if ((sgs->group_capacity * 100) < 8255 (sgs->group_util * imbalance_pct)) 8256 return true; 8257 8258 if ((sgs->group_capacity * imbalance_pct) < 8259 (sgs->group_runnable * 100)) 8260 return true; 8261 8262 return false; 8263 } 8264 8265 /* 8266 * group_smaller_min_cpu_capacity: Returns true if sched_group sg has smaller 8267 * per-CPU capacity than sched_group ref. 8268 */ 8269 static inline bool 8270 group_smaller_min_cpu_capacity(struct sched_group *sg, struct sched_group *ref) 8271 { 8272 return fits_capacity(sg->sgc->min_capacity, ref->sgc->min_capacity); 8273 } 8274 8275 /* 8276 * group_smaller_max_cpu_capacity: Returns true if sched_group sg has smaller 8277 * per-CPU capacity_orig than sched_group ref. 8278 */ 8279 static inline bool 8280 group_smaller_max_cpu_capacity(struct sched_group *sg, struct sched_group *ref) 8281 { 8282 return fits_capacity(sg->sgc->max_capacity, ref->sgc->max_capacity); 8283 } 8284 8285 static inline enum 8286 group_type group_classify(unsigned int imbalance_pct, 8287 struct sched_group *group, 8288 struct sg_lb_stats *sgs) 8289 { 8290 if (group_is_overloaded(imbalance_pct, sgs)) 8291 return group_overloaded; 8292 8293 if (sg_imbalanced(group)) 8294 return group_imbalanced; 8295 8296 if (sgs->group_asym_packing) 8297 return group_asym_packing; 8298 8299 if (sgs->group_misfit_task_load) 8300 return group_misfit_task; 8301 8302 if (!group_has_capacity(imbalance_pct, sgs)) 8303 return group_fully_busy; 8304 8305 return group_has_spare; 8306 } 8307 8308 static bool update_nohz_stats(struct rq *rq, bool force) 8309 { 8310 #ifdef CONFIG_NO_HZ_COMMON 8311 unsigned int cpu = rq->cpu; 8312 8313 if (!rq->has_blocked_load) 8314 return false; 8315 8316 if (!cpumask_test_cpu(cpu, nohz.idle_cpus_mask)) 8317 return false; 8318 8319 if (!force && !time_after(jiffies, rq->last_blocked_load_update_tick)) 8320 return true; 8321 8322 update_blocked_averages(cpu); 8323 8324 return rq->has_blocked_load; 8325 #else 8326 return false; 8327 #endif 8328 } 8329 8330 /** 8331 * update_sg_lb_stats - Update sched_group's statistics for load balancing. 8332 * @env: The load balancing environment. 8333 * @group: sched_group whose statistics are to be updated. 8334 * @sgs: variable to hold the statistics for this group. 8335 * @sg_status: Holds flag indicating the status of the sched_group 8336 */ 8337 static inline void update_sg_lb_stats(struct lb_env *env, 8338 struct sched_group *group, 8339 struct sg_lb_stats *sgs, 8340 int *sg_status) 8341 { 8342 int i, nr_running, local_group; 8343 8344 memset(sgs, 0, sizeof(*sgs)); 8345 8346 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_span(group)); 8347 8348 for_each_cpu_and(i, sched_group_span(group), env->cpus) { 8349 struct rq *rq = cpu_rq(i); 8350 8351 if ((env->flags & LBF_NOHZ_STATS) && update_nohz_stats(rq, false)) 8352 env->flags |= LBF_NOHZ_AGAIN; 8353 8354 sgs->group_load += cpu_load(rq); 8355 sgs->group_util += cpu_util(i); 8356 sgs->group_runnable += cpu_runnable(rq); 8357 sgs->sum_h_nr_running += rq->cfs.h_nr_running; 8358 8359 nr_running = rq->nr_running; 8360 sgs->sum_nr_running += nr_running; 8361 8362 if (nr_running > 1) 8363 *sg_status |= SG_OVERLOAD; 8364 8365 if (cpu_overutilized(i)) 8366 *sg_status |= SG_OVERUTILIZED; 8367 8368 #ifdef CONFIG_NUMA_BALANCING 8369 sgs->nr_numa_running += rq->nr_numa_running; 8370 sgs->nr_preferred_running += rq->nr_preferred_running; 8371 #endif 8372 /* 8373 * No need to call idle_cpu() if nr_running is not 0 8374 */ 8375 if (!nr_running && idle_cpu(i)) { 8376 sgs->idle_cpus++; 8377 /* Idle cpu can't have misfit task */ 8378 continue; 8379 } 8380 8381 if (local_group) 8382 continue; 8383 8384 /* Check for a misfit task on the cpu */ 8385 if (env->sd->flags & SD_ASYM_CPUCAPACITY && 8386 sgs->group_misfit_task_load < rq->misfit_task_load) { 8387 sgs->group_misfit_task_load = rq->misfit_task_load; 8388 *sg_status |= SG_OVERLOAD; 8389 } 8390 } 8391 8392 /* Check if dst CPU is idle and preferred to this group */ 8393 if (env->sd->flags & SD_ASYM_PACKING && 8394 env->idle != CPU_NOT_IDLE && 8395 sgs->sum_h_nr_running && 8396 sched_asym_prefer(env->dst_cpu, group->asym_prefer_cpu)) { 8397 sgs->group_asym_packing = 1; 8398 } 8399 8400 sgs->group_capacity = group->sgc->capacity; 8401 8402 sgs->group_weight = group->group_weight; 8403 8404 sgs->group_type = group_classify(env->sd->imbalance_pct, group, sgs); 8405 8406 /* Computing avg_load makes sense only when group is overloaded */ 8407 if (sgs->group_type == group_overloaded) 8408 sgs->avg_load = (sgs->group_load * SCHED_CAPACITY_SCALE) / 8409 sgs->group_capacity; 8410 } 8411 8412 /** 8413 * update_sd_pick_busiest - return 1 on busiest group 8414 * @env: The load balancing environment. 8415 * @sds: sched_domain statistics 8416 * @sg: sched_group candidate to be checked for being the busiest 8417 * @sgs: sched_group statistics 8418 * 8419 * Determine if @sg is a busier group than the previously selected 8420 * busiest group. 8421 * 8422 * Return: %true if @sg is a busier group than the previously selected 8423 * busiest group. %false otherwise. 8424 */ 8425 static bool update_sd_pick_busiest(struct lb_env *env, 8426 struct sd_lb_stats *sds, 8427 struct sched_group *sg, 8428 struct sg_lb_stats *sgs) 8429 { 8430 struct sg_lb_stats *busiest = &sds->busiest_stat; 8431 8432 /* Make sure that there is at least one task to pull */ 8433 if (!sgs->sum_h_nr_running) 8434 return false; 8435 8436 /* 8437 * Don't try to pull misfit tasks we can't help. 8438 * We can use max_capacity here as reduction in capacity on some 8439 * CPUs in the group should either be possible to resolve 8440 * internally or be covered by avg_load imbalance (eventually). 8441 */ 8442 if (sgs->group_type == group_misfit_task && 8443 (!group_smaller_max_cpu_capacity(sg, sds->local) || 8444 sds->local_stat.group_type != group_has_spare)) 8445 return false; 8446 8447 if (sgs->group_type > busiest->group_type) 8448 return true; 8449 8450 if (sgs->group_type < busiest->group_type) 8451 return false; 8452 8453 /* 8454 * The candidate and the current busiest group are the same type of 8455 * group. Let check which one is the busiest according to the type. 8456 */ 8457 8458 switch (sgs->group_type) { 8459 case group_overloaded: 8460 /* Select the overloaded group with highest avg_load. */ 8461 if (sgs->avg_load <= busiest->avg_load) 8462 return false; 8463 break; 8464 8465 case group_imbalanced: 8466 /* 8467 * Select the 1st imbalanced group as we don't have any way to 8468 * choose one more than another. 8469 */ 8470 return false; 8471 8472 case group_asym_packing: 8473 /* Prefer to move from lowest priority CPU's work */ 8474 if (sched_asym_prefer(sg->asym_prefer_cpu, sds->busiest->asym_prefer_cpu)) 8475 return false; 8476 break; 8477 8478 case group_misfit_task: 8479 /* 8480 * If we have more than one misfit sg go with the biggest 8481 * misfit. 8482 */ 8483 if (sgs->group_misfit_task_load < busiest->group_misfit_task_load) 8484 return false; 8485 break; 8486 8487 case group_fully_busy: 8488 /* 8489 * Select the fully busy group with highest avg_load. In 8490 * theory, there is no need to pull task from such kind of 8491 * group because tasks have all compute capacity that they need 8492 * but we can still improve the overall throughput by reducing 8493 * contention when accessing shared HW resources. 8494 * 8495 * XXX for now avg_load is not computed and always 0 so we 8496 * select the 1st one. 8497 */ 8498 if (sgs->avg_load <= busiest->avg_load) 8499 return false; 8500 break; 8501 8502 case group_has_spare: 8503 /* 8504 * Select not overloaded group with lowest number of idle cpus 8505 * and highest number of running tasks. We could also compare 8506 * the spare capacity which is more stable but it can end up 8507 * that the group has less spare capacity but finally more idle 8508 * CPUs which means less opportunity to pull tasks. 8509 */ 8510 if (sgs->idle_cpus > busiest->idle_cpus) 8511 return false; 8512 else if ((sgs->idle_cpus == busiest->idle_cpus) && 8513 (sgs->sum_nr_running <= busiest->sum_nr_running)) 8514 return false; 8515 8516 break; 8517 } 8518 8519 /* 8520 * Candidate sg has no more than one task per CPU and has higher 8521 * per-CPU capacity. Migrating tasks to less capable CPUs may harm 8522 * throughput. Maximize throughput, power/energy consequences are not 8523 * considered. 8524 */ 8525 if ((env->sd->flags & SD_ASYM_CPUCAPACITY) && 8526 (sgs->group_type <= group_fully_busy) && 8527 (group_smaller_min_cpu_capacity(sds->local, sg))) 8528 return false; 8529 8530 return true; 8531 } 8532 8533 #ifdef CONFIG_NUMA_BALANCING 8534 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs) 8535 { 8536 if (sgs->sum_h_nr_running > sgs->nr_numa_running) 8537 return regular; 8538 if (sgs->sum_h_nr_running > sgs->nr_preferred_running) 8539 return remote; 8540 return all; 8541 } 8542 8543 static inline enum fbq_type fbq_classify_rq(struct rq *rq) 8544 { 8545 if (rq->nr_running > rq->nr_numa_running) 8546 return regular; 8547 if (rq->nr_running > rq->nr_preferred_running) 8548 return remote; 8549 return all; 8550 } 8551 #else 8552 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs) 8553 { 8554 return all; 8555 } 8556 8557 static inline enum fbq_type fbq_classify_rq(struct rq *rq) 8558 { 8559 return regular; 8560 } 8561 #endif /* CONFIG_NUMA_BALANCING */ 8562 8563 8564 struct sg_lb_stats; 8565 8566 /* 8567 * task_running_on_cpu - return 1 if @p is running on @cpu. 8568 */ 8569 8570 static unsigned int task_running_on_cpu(int cpu, struct task_struct *p) 8571 { 8572 /* Task has no contribution or is new */ 8573 if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time)) 8574 return 0; 8575 8576 if (task_on_rq_queued(p)) 8577 return 1; 8578 8579 return 0; 8580 } 8581 8582 /** 8583 * idle_cpu_without - would a given CPU be idle without p ? 8584 * @cpu: the processor on which idleness is tested. 8585 * @p: task which should be ignored. 8586 * 8587 * Return: 1 if the CPU would be idle. 0 otherwise. 8588 */ 8589 static int idle_cpu_without(int cpu, struct task_struct *p) 8590 { 8591 struct rq *rq = cpu_rq(cpu); 8592 8593 if (rq->curr != rq->idle && rq->curr != p) 8594 return 0; 8595 8596 /* 8597 * rq->nr_running can't be used but an updated version without the 8598 * impact of p on cpu must be used instead. The updated nr_running 8599 * be computed and tested before calling idle_cpu_without(). 8600 */ 8601 8602 #ifdef CONFIG_SMP 8603 if (rq->ttwu_pending) 8604 return 0; 8605 #endif 8606 8607 return 1; 8608 } 8609 8610 /* 8611 * update_sg_wakeup_stats - Update sched_group's statistics for wakeup. 8612 * @sd: The sched_domain level to look for idlest group. 8613 * @group: sched_group whose statistics are to be updated. 8614 * @sgs: variable to hold the statistics for this group. 8615 * @p: The task for which we look for the idlest group/CPU. 8616 */ 8617 static inline void update_sg_wakeup_stats(struct sched_domain *sd, 8618 struct sched_group *group, 8619 struct sg_lb_stats *sgs, 8620 struct task_struct *p) 8621 { 8622 int i, nr_running; 8623 8624 memset(sgs, 0, sizeof(*sgs)); 8625 8626 for_each_cpu(i, sched_group_span(group)) { 8627 struct rq *rq = cpu_rq(i); 8628 unsigned int local; 8629 8630 sgs->group_load += cpu_load_without(rq, p); 8631 sgs->group_util += cpu_util_without(i, p); 8632 sgs->group_runnable += cpu_runnable_without(rq, p); 8633 local = task_running_on_cpu(i, p); 8634 sgs->sum_h_nr_running += rq->cfs.h_nr_running - local; 8635 8636 nr_running = rq->nr_running - local; 8637 sgs->sum_nr_running += nr_running; 8638 8639 /* 8640 * No need to call idle_cpu_without() if nr_running is not 0 8641 */ 8642 if (!nr_running && idle_cpu_without(i, p)) 8643 sgs->idle_cpus++; 8644 8645 } 8646 8647 /* Check if task fits in the group */ 8648 if (sd->flags & SD_ASYM_CPUCAPACITY && 8649 !task_fits_capacity(p, group->sgc->max_capacity)) { 8650 sgs->group_misfit_task_load = 1; 8651 } 8652 8653 sgs->group_capacity = group->sgc->capacity; 8654 8655 sgs->group_weight = group->group_weight; 8656 8657 sgs->group_type = group_classify(sd->imbalance_pct, group, sgs); 8658 8659 /* 8660 * Computing avg_load makes sense only when group is fully busy or 8661 * overloaded 8662 */ 8663 if (sgs->group_type == group_fully_busy || 8664 sgs->group_type == group_overloaded) 8665 sgs->avg_load = (sgs->group_load * SCHED_CAPACITY_SCALE) / 8666 sgs->group_capacity; 8667 } 8668 8669 static bool update_pick_idlest(struct sched_group *idlest, 8670 struct sg_lb_stats *idlest_sgs, 8671 struct sched_group *group, 8672 struct sg_lb_stats *sgs) 8673 { 8674 if (sgs->group_type < idlest_sgs->group_type) 8675 return true; 8676 8677 if (sgs->group_type > idlest_sgs->group_type) 8678 return false; 8679 8680 /* 8681 * The candidate and the current idlest group are the same type of 8682 * group. Let check which one is the idlest according to the type. 8683 */ 8684 8685 switch (sgs->group_type) { 8686 case group_overloaded: 8687 case group_fully_busy: 8688 /* Select the group with lowest avg_load. */ 8689 if (idlest_sgs->avg_load <= sgs->avg_load) 8690 return false; 8691 break; 8692 8693 case group_imbalanced: 8694 case group_asym_packing: 8695 /* Those types are not used in the slow wakeup path */ 8696 return false; 8697 8698 case group_misfit_task: 8699 /* Select group with the highest max capacity */ 8700 if (idlest->sgc->max_capacity >= group->sgc->max_capacity) 8701 return false; 8702 break; 8703 8704 case group_has_spare: 8705 /* Select group with most idle CPUs */ 8706 if (idlest_sgs->idle_cpus >= sgs->idle_cpus) 8707 return false; 8708 break; 8709 } 8710 8711 return true; 8712 } 8713 8714 /* 8715 * find_idlest_group() finds and returns the least busy CPU group within the 8716 * domain. 8717 * 8718 * Assumes p is allowed on at least one CPU in sd. 8719 */ 8720 static struct sched_group * 8721 find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu) 8722 { 8723 struct sched_group *idlest = NULL, *local = NULL, *group = sd->groups; 8724 struct sg_lb_stats local_sgs, tmp_sgs; 8725 struct sg_lb_stats *sgs; 8726 unsigned long imbalance; 8727 struct sg_lb_stats idlest_sgs = { 8728 .avg_load = UINT_MAX, 8729 .group_type = group_overloaded, 8730 }; 8731 8732 imbalance = scale_load_down(NICE_0_LOAD) * 8733 (sd->imbalance_pct-100) / 100; 8734 8735 do { 8736 int local_group; 8737 8738 /* Skip over this group if it has no CPUs allowed */ 8739 if (!cpumask_intersects(sched_group_span(group), 8740 p->cpus_ptr)) 8741 continue; 8742 8743 local_group = cpumask_test_cpu(this_cpu, 8744 sched_group_span(group)); 8745 8746 if (local_group) { 8747 sgs = &local_sgs; 8748 local = group; 8749 } else { 8750 sgs = &tmp_sgs; 8751 } 8752 8753 update_sg_wakeup_stats(sd, group, sgs, p); 8754 8755 if (!local_group && update_pick_idlest(idlest, &idlest_sgs, group, sgs)) { 8756 idlest = group; 8757 idlest_sgs = *sgs; 8758 } 8759 8760 } while (group = group->next, group != sd->groups); 8761 8762 8763 /* There is no idlest group to push tasks to */ 8764 if (!idlest) 8765 return NULL; 8766 8767 /* The local group has been skipped because of CPU affinity */ 8768 if (!local) 8769 return idlest; 8770 8771 /* 8772 * If the local group is idler than the selected idlest group 8773 * don't try and push the task. 8774 */ 8775 if (local_sgs.group_type < idlest_sgs.group_type) 8776 return NULL; 8777 8778 /* 8779 * If the local group is busier than the selected idlest group 8780 * try and push the task. 8781 */ 8782 if (local_sgs.group_type > idlest_sgs.group_type) 8783 return idlest; 8784 8785 switch (local_sgs.group_type) { 8786 case group_overloaded: 8787 case group_fully_busy: 8788 /* 8789 * When comparing groups across NUMA domains, it's possible for 8790 * the local domain to be very lightly loaded relative to the 8791 * remote domains but "imbalance" skews the comparison making 8792 * remote CPUs look much more favourable. When considering 8793 * cross-domain, add imbalance to the load on the remote node 8794 * and consider staying local. 8795 */ 8796 8797 if ((sd->flags & SD_NUMA) && 8798 ((idlest_sgs.avg_load + imbalance) >= local_sgs.avg_load)) 8799 return NULL; 8800 8801 /* 8802 * If the local group is less loaded than the selected 8803 * idlest group don't try and push any tasks. 8804 */ 8805 if (idlest_sgs.avg_load >= (local_sgs.avg_load + imbalance)) 8806 return NULL; 8807 8808 if (100 * local_sgs.avg_load <= sd->imbalance_pct * idlest_sgs.avg_load) 8809 return NULL; 8810 break; 8811 8812 case group_imbalanced: 8813 case group_asym_packing: 8814 /* Those type are not used in the slow wakeup path */ 8815 return NULL; 8816 8817 case group_misfit_task: 8818 /* Select group with the highest max capacity */ 8819 if (local->sgc->max_capacity >= idlest->sgc->max_capacity) 8820 return NULL; 8821 break; 8822 8823 case group_has_spare: 8824 if (sd->flags & SD_NUMA) { 8825 #ifdef CONFIG_NUMA_BALANCING 8826 int idlest_cpu; 8827 /* 8828 * If there is spare capacity at NUMA, try to select 8829 * the preferred node 8830 */ 8831 if (cpu_to_node(this_cpu) == p->numa_preferred_nid) 8832 return NULL; 8833 8834 idlest_cpu = cpumask_first(sched_group_span(idlest)); 8835 if (cpu_to_node(idlest_cpu) == p->numa_preferred_nid) 8836 return idlest; 8837 #endif 8838 /* 8839 * Otherwise, keep the task on this node to stay close 8840 * its wakeup source and improve locality. If there is 8841 * a real need of migration, periodic load balance will 8842 * take care of it. 8843 */ 8844 if (local_sgs.idle_cpus) 8845 return NULL; 8846 } 8847 8848 /* 8849 * Select group with highest number of idle CPUs. We could also 8850 * compare the utilization which is more stable but it can end 8851 * up that the group has less spare capacity but finally more 8852 * idle CPUs which means more opportunity to run task. 8853 */ 8854 if (local_sgs.idle_cpus >= idlest_sgs.idle_cpus) 8855 return NULL; 8856 break; 8857 } 8858 8859 return idlest; 8860 } 8861 8862 /** 8863 * update_sd_lb_stats - Update sched_domain's statistics for load balancing. 8864 * @env: The load balancing environment. 8865 * @sds: variable to hold the statistics for this sched_domain. 8866 */ 8867 8868 static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds) 8869 { 8870 struct sched_domain *child = env->sd->child; 8871 struct sched_group *sg = env->sd->groups; 8872 struct sg_lb_stats *local = &sds->local_stat; 8873 struct sg_lb_stats tmp_sgs; 8874 int sg_status = 0; 8875 8876 #ifdef CONFIG_NO_HZ_COMMON 8877 if (env->idle == CPU_NEWLY_IDLE && READ_ONCE(nohz.has_blocked)) 8878 env->flags |= LBF_NOHZ_STATS; 8879 #endif 8880 8881 do { 8882 struct sg_lb_stats *sgs = &tmp_sgs; 8883 int local_group; 8884 8885 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_span(sg)); 8886 if (local_group) { 8887 sds->local = sg; 8888 sgs = local; 8889 8890 if (env->idle != CPU_NEWLY_IDLE || 8891 time_after_eq(jiffies, sg->sgc->next_update)) 8892 update_group_capacity(env->sd, env->dst_cpu); 8893 } 8894 8895 update_sg_lb_stats(env, sg, sgs, &sg_status); 8896 8897 if (local_group) 8898 goto next_group; 8899 8900 8901 if (update_sd_pick_busiest(env, sds, sg, sgs)) { 8902 sds->busiest = sg; 8903 sds->busiest_stat = *sgs; 8904 } 8905 8906 next_group: 8907 /* Now, start updating sd_lb_stats */ 8908 sds->total_load += sgs->group_load; 8909 sds->total_capacity += sgs->group_capacity; 8910 8911 sg = sg->next; 8912 } while (sg != env->sd->groups); 8913 8914 /* Tag domain that child domain prefers tasks go to siblings first */ 8915 sds->prefer_sibling = child && child->flags & SD_PREFER_SIBLING; 8916 8917 #ifdef CONFIG_NO_HZ_COMMON 8918 if ((env->flags & LBF_NOHZ_AGAIN) && 8919 cpumask_subset(nohz.idle_cpus_mask, sched_domain_span(env->sd))) { 8920 8921 WRITE_ONCE(nohz.next_blocked, 8922 jiffies + msecs_to_jiffies(LOAD_AVG_PERIOD)); 8923 } 8924 #endif 8925 8926 if (env->sd->flags & SD_NUMA) 8927 env->fbq_type = fbq_classify_group(&sds->busiest_stat); 8928 8929 if (!env->sd->parent) { 8930 struct root_domain *rd = env->dst_rq->rd; 8931 8932 /* update overload indicator if we are at root domain */ 8933 WRITE_ONCE(rd->overload, sg_status & SG_OVERLOAD); 8934 8935 /* Update over-utilization (tipping point, U >= 0) indicator */ 8936 WRITE_ONCE(rd->overutilized, sg_status & SG_OVERUTILIZED); 8937 trace_sched_overutilized_tp(rd, sg_status & SG_OVERUTILIZED); 8938 } else if (sg_status & SG_OVERUTILIZED) { 8939 struct root_domain *rd = env->dst_rq->rd; 8940 8941 WRITE_ONCE(rd->overutilized, SG_OVERUTILIZED); 8942 trace_sched_overutilized_tp(rd, SG_OVERUTILIZED); 8943 } 8944 } 8945 8946 static inline long adjust_numa_imbalance(int imbalance, int src_nr_running) 8947 { 8948 unsigned int imbalance_min; 8949 8950 /* 8951 * Allow a small imbalance based on a simple pair of communicating 8952 * tasks that remain local when the source domain is almost idle. 8953 */ 8954 imbalance_min = 2; 8955 if (src_nr_running <= imbalance_min) 8956 return 0; 8957 8958 return imbalance; 8959 } 8960 8961 /** 8962 * calculate_imbalance - Calculate the amount of imbalance present within the 8963 * groups of a given sched_domain during load balance. 8964 * @env: load balance environment 8965 * @sds: statistics of the sched_domain whose imbalance is to be calculated. 8966 */ 8967 static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds) 8968 { 8969 struct sg_lb_stats *local, *busiest; 8970 8971 local = &sds->local_stat; 8972 busiest = &sds->busiest_stat; 8973 8974 if (busiest->group_type == group_misfit_task) { 8975 /* Set imbalance to allow misfit tasks to be balanced. */ 8976 env->migration_type = migrate_misfit; 8977 env->imbalance = 1; 8978 return; 8979 } 8980 8981 if (busiest->group_type == group_asym_packing) { 8982 /* 8983 * In case of asym capacity, we will try to migrate all load to 8984 * the preferred CPU. 8985 */ 8986 env->migration_type = migrate_task; 8987 env->imbalance = busiest->sum_h_nr_running; 8988 return; 8989 } 8990 8991 if (busiest->group_type == group_imbalanced) { 8992 /* 8993 * In the group_imb case we cannot rely on group-wide averages 8994 * to ensure CPU-load equilibrium, try to move any task to fix 8995 * the imbalance. The next load balance will take care of 8996 * balancing back the system. 8997 */ 8998 env->migration_type = migrate_task; 8999 env->imbalance = 1; 9000 return; 9001 } 9002 9003 /* 9004 * Try to use spare capacity of local group without overloading it or 9005 * emptying busiest. 9006 */ 9007 if (local->group_type == group_has_spare) { 9008 if (busiest->group_type > group_fully_busy) { 9009 /* 9010 * If busiest is overloaded, try to fill spare 9011 * capacity. This might end up creating spare capacity 9012 * in busiest or busiest still being overloaded but 9013 * there is no simple way to directly compute the 9014 * amount of load to migrate in order to balance the 9015 * system. 9016 */ 9017 env->migration_type = migrate_util; 9018 env->imbalance = max(local->group_capacity, local->group_util) - 9019 local->group_util; 9020 9021 /* 9022 * In some cases, the group's utilization is max or even 9023 * higher than capacity because of migrations but the 9024 * local CPU is (newly) idle. There is at least one 9025 * waiting task in this overloaded busiest group. Let's 9026 * try to pull it. 9027 */ 9028 if (env->idle != CPU_NOT_IDLE && env->imbalance == 0) { 9029 env->migration_type = migrate_task; 9030 env->imbalance = 1; 9031 } 9032 9033 return; 9034 } 9035 9036 if (busiest->group_weight == 1 || sds->prefer_sibling) { 9037 unsigned int nr_diff = busiest->sum_nr_running; 9038 /* 9039 * When prefer sibling, evenly spread running tasks on 9040 * groups. 9041 */ 9042 env->migration_type = migrate_task; 9043 lsub_positive(&nr_diff, local->sum_nr_running); 9044 env->imbalance = nr_diff >> 1; 9045 } else { 9046 9047 /* 9048 * If there is no overload, we just want to even the number of 9049 * idle cpus. 9050 */ 9051 env->migration_type = migrate_task; 9052 env->imbalance = max_t(long, 0, (local->idle_cpus - 9053 busiest->idle_cpus) >> 1); 9054 } 9055 9056 /* Consider allowing a small imbalance between NUMA groups */ 9057 if (env->sd->flags & SD_NUMA) 9058 env->imbalance = adjust_numa_imbalance(env->imbalance, 9059 busiest->sum_nr_running); 9060 9061 return; 9062 } 9063 9064 /* 9065 * Local is fully busy but has to take more load to relieve the 9066 * busiest group 9067 */ 9068 if (local->group_type < group_overloaded) { 9069 /* 9070 * Local will become overloaded so the avg_load metrics are 9071 * finally needed. 9072 */ 9073 9074 local->avg_load = (local->group_load * SCHED_CAPACITY_SCALE) / 9075 local->group_capacity; 9076 9077 sds->avg_load = (sds->total_load * SCHED_CAPACITY_SCALE) / 9078 sds->total_capacity; 9079 /* 9080 * If the local group is more loaded than the selected 9081 * busiest group don't try to pull any tasks. 9082 */ 9083 if (local->avg_load >= busiest->avg_load) { 9084 env->imbalance = 0; 9085 return; 9086 } 9087 } 9088 9089 /* 9090 * Both group are or will become overloaded and we're trying to get all 9091 * the CPUs to the average_load, so we don't want to push ourselves 9092 * above the average load, nor do we wish to reduce the max loaded CPU 9093 * below the average load. At the same time, we also don't want to 9094 * reduce the group load below the group capacity. Thus we look for 9095 * the minimum possible imbalance. 9096 */ 9097 env->migration_type = migrate_load; 9098 env->imbalance = min( 9099 (busiest->avg_load - sds->avg_load) * busiest->group_capacity, 9100 (sds->avg_load - local->avg_load) * local->group_capacity 9101 ) / SCHED_CAPACITY_SCALE; 9102 } 9103 9104 /******* find_busiest_group() helpers end here *********************/ 9105 9106 /* 9107 * Decision matrix according to the local and busiest group type: 9108 * 9109 * busiest \ local has_spare fully_busy misfit asym imbalanced overloaded 9110 * has_spare nr_idle balanced N/A N/A balanced balanced 9111 * fully_busy nr_idle nr_idle N/A N/A balanced balanced 9112 * misfit_task force N/A N/A N/A force force 9113 * asym_packing force force N/A N/A force force 9114 * imbalanced force force N/A N/A force force 9115 * overloaded force force N/A N/A force avg_load 9116 * 9117 * N/A : Not Applicable because already filtered while updating 9118 * statistics. 9119 * balanced : The system is balanced for these 2 groups. 9120 * force : Calculate the imbalance as load migration is probably needed. 9121 * avg_load : Only if imbalance is significant enough. 9122 * nr_idle : dst_cpu is not busy and the number of idle CPUs is quite 9123 * different in groups. 9124 */ 9125 9126 /** 9127 * find_busiest_group - Returns the busiest group within the sched_domain 9128 * if there is an imbalance. 9129 * 9130 * Also calculates the amount of runnable load which should be moved 9131 * to restore balance. 9132 * 9133 * @env: The load balancing environment. 9134 * 9135 * Return: - The busiest group if imbalance exists. 9136 */ 9137 static struct sched_group *find_busiest_group(struct lb_env *env) 9138 { 9139 struct sg_lb_stats *local, *busiest; 9140 struct sd_lb_stats sds; 9141 9142 init_sd_lb_stats(&sds); 9143 9144 /* 9145 * Compute the various statistics relevant for load balancing at 9146 * this level. 9147 */ 9148 update_sd_lb_stats(env, &sds); 9149 9150 if (sched_energy_enabled()) { 9151 struct root_domain *rd = env->dst_rq->rd; 9152 9153 if (rcu_dereference(rd->pd) && !READ_ONCE(rd->overutilized)) 9154 goto out_balanced; 9155 } 9156 9157 local = &sds.local_stat; 9158 busiest = &sds.busiest_stat; 9159 9160 /* There is no busy sibling group to pull tasks from */ 9161 if (!sds.busiest) 9162 goto out_balanced; 9163 9164 /* Misfit tasks should be dealt with regardless of the avg load */ 9165 if (busiest->group_type == group_misfit_task) 9166 goto force_balance; 9167 9168 /* ASYM feature bypasses nice load balance check */ 9169 if (busiest->group_type == group_asym_packing) 9170 goto force_balance; 9171 9172 /* 9173 * If the busiest group is imbalanced the below checks don't 9174 * work because they assume all things are equal, which typically 9175 * isn't true due to cpus_ptr constraints and the like. 9176 */ 9177 if (busiest->group_type == group_imbalanced) 9178 goto force_balance; 9179 9180 /* 9181 * If the local group is busier than the selected busiest group 9182 * don't try and pull any tasks. 9183 */ 9184 if (local->group_type > busiest->group_type) 9185 goto out_balanced; 9186 9187 /* 9188 * When groups are overloaded, use the avg_load to ensure fairness 9189 * between tasks. 9190 */ 9191 if (local->group_type == group_overloaded) { 9192 /* 9193 * If the local group is more loaded than the selected 9194 * busiest group don't try to pull any tasks. 9195 */ 9196 if (local->avg_load >= busiest->avg_load) 9197 goto out_balanced; 9198 9199 /* XXX broken for overlapping NUMA groups */ 9200 sds.avg_load = (sds.total_load * SCHED_CAPACITY_SCALE) / 9201 sds.total_capacity; 9202 9203 /* 9204 * Don't pull any tasks if this group is already above the 9205 * domain average load. 9206 */ 9207 if (local->avg_load >= sds.avg_load) 9208 goto out_balanced; 9209 9210 /* 9211 * If the busiest group is more loaded, use imbalance_pct to be 9212 * conservative. 9213 */ 9214 if (100 * busiest->avg_load <= 9215 env->sd->imbalance_pct * local->avg_load) 9216 goto out_balanced; 9217 } 9218 9219 /* Try to move all excess tasks to child's sibling domain */ 9220 if (sds.prefer_sibling && local->group_type == group_has_spare && 9221 busiest->sum_nr_running > local->sum_nr_running + 1) 9222 goto force_balance; 9223 9224 if (busiest->group_type != group_overloaded) { 9225 if (env->idle == CPU_NOT_IDLE) 9226 /* 9227 * If the busiest group is not overloaded (and as a 9228 * result the local one too) but this CPU is already 9229 * busy, let another idle CPU try to pull task. 9230 */ 9231 goto out_balanced; 9232 9233 if (busiest->group_weight > 1 && 9234 local->idle_cpus <= (busiest->idle_cpus + 1)) 9235 /* 9236 * If the busiest group is not overloaded 9237 * and there is no imbalance between this and busiest 9238 * group wrt idle CPUs, it is balanced. The imbalance 9239 * becomes significant if the diff is greater than 1 9240 * otherwise we might end up to just move the imbalance 9241 * on another group. Of course this applies only if 9242 * there is more than 1 CPU per group. 9243 */ 9244 goto out_balanced; 9245 9246 if (busiest->sum_h_nr_running == 1) 9247 /* 9248 * busiest doesn't have any tasks waiting to run 9249 */ 9250 goto out_balanced; 9251 } 9252 9253 force_balance: 9254 /* Looks like there is an imbalance. Compute it */ 9255 calculate_imbalance(env, &sds); 9256 return env->imbalance ? sds.busiest : NULL; 9257 9258 out_balanced: 9259 env->imbalance = 0; 9260 return NULL; 9261 } 9262 9263 /* 9264 * find_busiest_queue - find the busiest runqueue among the CPUs in the group. 9265 */ 9266 static struct rq *find_busiest_queue(struct lb_env *env, 9267 struct sched_group *group) 9268 { 9269 struct rq *busiest = NULL, *rq; 9270 unsigned long busiest_util = 0, busiest_load = 0, busiest_capacity = 1; 9271 unsigned int busiest_nr = 0; 9272 int i; 9273 9274 for_each_cpu_and(i, sched_group_span(group), env->cpus) { 9275 unsigned long capacity, load, util; 9276 unsigned int nr_running; 9277 enum fbq_type rt; 9278 9279 rq = cpu_rq(i); 9280 rt = fbq_classify_rq(rq); 9281 9282 /* 9283 * We classify groups/runqueues into three groups: 9284 * - regular: there are !numa tasks 9285 * - remote: there are numa tasks that run on the 'wrong' node 9286 * - all: there is no distinction 9287 * 9288 * In order to avoid migrating ideally placed numa tasks, 9289 * ignore those when there's better options. 9290 * 9291 * If we ignore the actual busiest queue to migrate another 9292 * task, the next balance pass can still reduce the busiest 9293 * queue by moving tasks around inside the node. 9294 * 9295 * If we cannot move enough load due to this classification 9296 * the next pass will adjust the group classification and 9297 * allow migration of more tasks. 9298 * 9299 * Both cases only affect the total convergence complexity. 9300 */ 9301 if (rt > env->fbq_type) 9302 continue; 9303 9304 capacity = capacity_of(i); 9305 nr_running = rq->cfs.h_nr_running; 9306 9307 /* 9308 * For ASYM_CPUCAPACITY domains, don't pick a CPU that could 9309 * eventually lead to active_balancing high->low capacity. 9310 * Higher per-CPU capacity is considered better than balancing 9311 * average load. 9312 */ 9313 if (env->sd->flags & SD_ASYM_CPUCAPACITY && 9314 capacity_of(env->dst_cpu) < capacity && 9315 nr_running == 1) 9316 continue; 9317 9318 switch (env->migration_type) { 9319 case migrate_load: 9320 /* 9321 * When comparing with load imbalance, use cpu_load() 9322 * which is not scaled with the CPU capacity. 9323 */ 9324 load = cpu_load(rq); 9325 9326 if (nr_running == 1 && load > env->imbalance && 9327 !check_cpu_capacity(rq, env->sd)) 9328 break; 9329 9330 /* 9331 * For the load comparisons with the other CPUs, 9332 * consider the cpu_load() scaled with the CPU 9333 * capacity, so that the load can be moved away 9334 * from the CPU that is potentially running at a 9335 * lower capacity. 9336 * 9337 * Thus we're looking for max(load_i / capacity_i), 9338 * crosswise multiplication to rid ourselves of the 9339 * division works out to: 9340 * load_i * capacity_j > load_j * capacity_i; 9341 * where j is our previous maximum. 9342 */ 9343 if (load * busiest_capacity > busiest_load * capacity) { 9344 busiest_load = load; 9345 busiest_capacity = capacity; 9346 busiest = rq; 9347 } 9348 break; 9349 9350 case migrate_util: 9351 util = cpu_util(cpu_of(rq)); 9352 9353 /* 9354 * Don't try to pull utilization from a CPU with one 9355 * running task. Whatever its utilization, we will fail 9356 * detach the task. 9357 */ 9358 if (nr_running <= 1) 9359 continue; 9360 9361 if (busiest_util < util) { 9362 busiest_util = util; 9363 busiest = rq; 9364 } 9365 break; 9366 9367 case migrate_task: 9368 if (busiest_nr < nr_running) { 9369 busiest_nr = nr_running; 9370 busiest = rq; 9371 } 9372 break; 9373 9374 case migrate_misfit: 9375 /* 9376 * For ASYM_CPUCAPACITY domains with misfit tasks we 9377 * simply seek the "biggest" misfit task. 9378 */ 9379 if (rq->misfit_task_load > busiest_load) { 9380 busiest_load = rq->misfit_task_load; 9381 busiest = rq; 9382 } 9383 9384 break; 9385 9386 } 9387 } 9388 9389 return busiest; 9390 } 9391 9392 /* 9393 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but 9394 * so long as it is large enough. 9395 */ 9396 #define MAX_PINNED_INTERVAL 512 9397 9398 static inline bool 9399 asym_active_balance(struct lb_env *env) 9400 { 9401 /* 9402 * ASYM_PACKING needs to force migrate tasks from busy but 9403 * lower priority CPUs in order to pack all tasks in the 9404 * highest priority CPUs. 9405 */ 9406 return env->idle != CPU_NOT_IDLE && (env->sd->flags & SD_ASYM_PACKING) && 9407 sched_asym_prefer(env->dst_cpu, env->src_cpu); 9408 } 9409 9410 static inline bool 9411 voluntary_active_balance(struct lb_env *env) 9412 { 9413 struct sched_domain *sd = env->sd; 9414 9415 if (asym_active_balance(env)) 9416 return 1; 9417 9418 /* 9419 * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task. 9420 * It's worth migrating the task if the src_cpu's capacity is reduced 9421 * because of other sched_class or IRQs if more capacity stays 9422 * available on dst_cpu. 9423 */ 9424 if ((env->idle != CPU_NOT_IDLE) && 9425 (env->src_rq->cfs.h_nr_running == 1)) { 9426 if ((check_cpu_capacity(env->src_rq, sd)) && 9427 (capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100)) 9428 return 1; 9429 } 9430 9431 if (env->migration_type == migrate_misfit) 9432 return 1; 9433 9434 return 0; 9435 } 9436 9437 static int need_active_balance(struct lb_env *env) 9438 { 9439 struct sched_domain *sd = env->sd; 9440 9441 if (voluntary_active_balance(env)) 9442 return 1; 9443 9444 return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2); 9445 } 9446 9447 static int active_load_balance_cpu_stop(void *data); 9448 9449 static int should_we_balance(struct lb_env *env) 9450 { 9451 struct sched_group *sg = env->sd->groups; 9452 int cpu; 9453 9454 /* 9455 * Ensure the balancing environment is consistent; can happen 9456 * when the softirq triggers 'during' hotplug. 9457 */ 9458 if (!cpumask_test_cpu(env->dst_cpu, env->cpus)) 9459 return 0; 9460 9461 /* 9462 * In the newly idle case, we will allow all the CPUs 9463 * to do the newly idle load balance. 9464 */ 9465 if (env->idle == CPU_NEWLY_IDLE) 9466 return 1; 9467 9468 /* Try to find first idle CPU */ 9469 for_each_cpu_and(cpu, group_balance_mask(sg), env->cpus) { 9470 if (!idle_cpu(cpu)) 9471 continue; 9472 9473 /* Are we the first idle CPU? */ 9474 return cpu == env->dst_cpu; 9475 } 9476 9477 /* Are we the first CPU of this group ? */ 9478 return group_balance_cpu(sg) == env->dst_cpu; 9479 } 9480 9481 /* 9482 * Check this_cpu to ensure it is balanced within domain. Attempt to move 9483 * tasks if there is an imbalance. 9484 */ 9485 static int load_balance(int this_cpu, struct rq *this_rq, 9486 struct sched_domain *sd, enum cpu_idle_type idle, 9487 int *continue_balancing) 9488 { 9489 int ld_moved, cur_ld_moved, active_balance = 0; 9490 struct sched_domain *sd_parent = sd->parent; 9491 struct sched_group *group; 9492 struct rq *busiest; 9493 struct rq_flags rf; 9494 struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask); 9495 9496 struct lb_env env = { 9497 .sd = sd, 9498 .dst_cpu = this_cpu, 9499 .dst_rq = this_rq, 9500 .dst_grpmask = sched_group_span(sd->groups), 9501 .idle = idle, 9502 .loop_break = sched_nr_migrate_break, 9503 .cpus = cpus, 9504 .fbq_type = all, 9505 .tasks = LIST_HEAD_INIT(env.tasks), 9506 }; 9507 9508 cpumask_and(cpus, sched_domain_span(sd), cpu_active_mask); 9509 9510 schedstat_inc(sd->lb_count[idle]); 9511 9512 redo: 9513 if (!should_we_balance(&env)) { 9514 *continue_balancing = 0; 9515 goto out_balanced; 9516 } 9517 9518 group = find_busiest_group(&env); 9519 if (!group) { 9520 schedstat_inc(sd->lb_nobusyg[idle]); 9521 goto out_balanced; 9522 } 9523 9524 busiest = find_busiest_queue(&env, group); 9525 if (!busiest) { 9526 schedstat_inc(sd->lb_nobusyq[idle]); 9527 goto out_balanced; 9528 } 9529 9530 BUG_ON(busiest == env.dst_rq); 9531 9532 schedstat_add(sd->lb_imbalance[idle], env.imbalance); 9533 9534 env.src_cpu = busiest->cpu; 9535 env.src_rq = busiest; 9536 9537 ld_moved = 0; 9538 if (busiest->nr_running > 1) { 9539 /* 9540 * Attempt to move tasks. If find_busiest_group has found 9541 * an imbalance but busiest->nr_running <= 1, the group is 9542 * still unbalanced. ld_moved simply stays zero, so it is 9543 * correctly treated as an imbalance. 9544 */ 9545 env.flags |= LBF_ALL_PINNED; 9546 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running); 9547 9548 more_balance: 9549 rq_lock_irqsave(busiest, &rf); 9550 update_rq_clock(busiest); 9551 9552 /* 9553 * cur_ld_moved - load moved in current iteration 9554 * ld_moved - cumulative load moved across iterations 9555 */ 9556 cur_ld_moved = detach_tasks(&env); 9557 9558 /* 9559 * We've detached some tasks from busiest_rq. Every 9560 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely 9561 * unlock busiest->lock, and we are able to be sure 9562 * that nobody can manipulate the tasks in parallel. 9563 * See task_rq_lock() family for the details. 9564 */ 9565 9566 rq_unlock(busiest, &rf); 9567 9568 if (cur_ld_moved) { 9569 attach_tasks(&env); 9570 ld_moved += cur_ld_moved; 9571 } 9572 9573 local_irq_restore(rf.flags); 9574 9575 if (env.flags & LBF_NEED_BREAK) { 9576 env.flags &= ~LBF_NEED_BREAK; 9577 goto more_balance; 9578 } 9579 9580 /* 9581 * Revisit (affine) tasks on src_cpu that couldn't be moved to 9582 * us and move them to an alternate dst_cpu in our sched_group 9583 * where they can run. The upper limit on how many times we 9584 * iterate on same src_cpu is dependent on number of CPUs in our 9585 * sched_group. 9586 * 9587 * This changes load balance semantics a bit on who can move 9588 * load to a given_cpu. In addition to the given_cpu itself 9589 * (or a ilb_cpu acting on its behalf where given_cpu is 9590 * nohz-idle), we now have balance_cpu in a position to move 9591 * load to given_cpu. In rare situations, this may cause 9592 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding 9593 * _independently_ and at _same_ time to move some load to 9594 * given_cpu) causing exceess load to be moved to given_cpu. 9595 * This however should not happen so much in practice and 9596 * moreover subsequent load balance cycles should correct the 9597 * excess load moved. 9598 */ 9599 if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) { 9600 9601 /* Prevent to re-select dst_cpu via env's CPUs */ 9602 __cpumask_clear_cpu(env.dst_cpu, env.cpus); 9603 9604 env.dst_rq = cpu_rq(env.new_dst_cpu); 9605 env.dst_cpu = env.new_dst_cpu; 9606 env.flags &= ~LBF_DST_PINNED; 9607 env.loop = 0; 9608 env.loop_break = sched_nr_migrate_break; 9609 9610 /* 9611 * Go back to "more_balance" rather than "redo" since we 9612 * need to continue with same src_cpu. 9613 */ 9614 goto more_balance; 9615 } 9616 9617 /* 9618 * We failed to reach balance because of affinity. 9619 */ 9620 if (sd_parent) { 9621 int *group_imbalance = &sd_parent->groups->sgc->imbalance; 9622 9623 if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0) 9624 *group_imbalance = 1; 9625 } 9626 9627 /* All tasks on this runqueue were pinned by CPU affinity */ 9628 if (unlikely(env.flags & LBF_ALL_PINNED)) { 9629 __cpumask_clear_cpu(cpu_of(busiest), cpus); 9630 /* 9631 * Attempting to continue load balancing at the current 9632 * sched_domain level only makes sense if there are 9633 * active CPUs remaining as possible busiest CPUs to 9634 * pull load from which are not contained within the 9635 * destination group that is receiving any migrated 9636 * load. 9637 */ 9638 if (!cpumask_subset(cpus, env.dst_grpmask)) { 9639 env.loop = 0; 9640 env.loop_break = sched_nr_migrate_break; 9641 goto redo; 9642 } 9643 goto out_all_pinned; 9644 } 9645 } 9646 9647 if (!ld_moved) { 9648 schedstat_inc(sd->lb_failed[idle]); 9649 /* 9650 * Increment the failure counter only on periodic balance. 9651 * We do not want newidle balance, which can be very 9652 * frequent, pollute the failure counter causing 9653 * excessive cache_hot migrations and active balances. 9654 */ 9655 if (idle != CPU_NEWLY_IDLE) 9656 sd->nr_balance_failed++; 9657 9658 if (need_active_balance(&env)) { 9659 unsigned long flags; 9660 9661 raw_spin_lock_irqsave(&busiest->lock, flags); 9662 9663 /* 9664 * Don't kick the active_load_balance_cpu_stop, 9665 * if the curr task on busiest CPU can't be 9666 * moved to this_cpu: 9667 */ 9668 if (!cpumask_test_cpu(this_cpu, busiest->curr->cpus_ptr)) { 9669 raw_spin_unlock_irqrestore(&busiest->lock, 9670 flags); 9671 env.flags |= LBF_ALL_PINNED; 9672 goto out_one_pinned; 9673 } 9674 9675 /* 9676 * ->active_balance synchronizes accesses to 9677 * ->active_balance_work. Once set, it's cleared 9678 * only after active load balance is finished. 9679 */ 9680 if (!busiest->active_balance) { 9681 busiest->active_balance = 1; 9682 busiest->push_cpu = this_cpu; 9683 active_balance = 1; 9684 } 9685 raw_spin_unlock_irqrestore(&busiest->lock, flags); 9686 9687 if (active_balance) { 9688 stop_one_cpu_nowait(cpu_of(busiest), 9689 active_load_balance_cpu_stop, busiest, 9690 &busiest->active_balance_work); 9691 } 9692 9693 /* We've kicked active balancing, force task migration. */ 9694 sd->nr_balance_failed = sd->cache_nice_tries+1; 9695 } 9696 } else 9697 sd->nr_balance_failed = 0; 9698 9699 if (likely(!active_balance) || voluntary_active_balance(&env)) { 9700 /* We were unbalanced, so reset the balancing interval */ 9701 sd->balance_interval = sd->min_interval; 9702 } else { 9703 /* 9704 * If we've begun active balancing, start to back off. This 9705 * case may not be covered by the all_pinned logic if there 9706 * is only 1 task on the busy runqueue (because we don't call 9707 * detach_tasks). 9708 */ 9709 if (sd->balance_interval < sd->max_interval) 9710 sd->balance_interval *= 2; 9711 } 9712 9713 goto out; 9714 9715 out_balanced: 9716 /* 9717 * We reach balance although we may have faced some affinity 9718 * constraints. Clear the imbalance flag only if other tasks got 9719 * a chance to move and fix the imbalance. 9720 */ 9721 if (sd_parent && !(env.flags & LBF_ALL_PINNED)) { 9722 int *group_imbalance = &sd_parent->groups->sgc->imbalance; 9723 9724 if (*group_imbalance) 9725 *group_imbalance = 0; 9726 } 9727 9728 out_all_pinned: 9729 /* 9730 * We reach balance because all tasks are pinned at this level so 9731 * we can't migrate them. Let the imbalance flag set so parent level 9732 * can try to migrate them. 9733 */ 9734 schedstat_inc(sd->lb_balanced[idle]); 9735 9736 sd->nr_balance_failed = 0; 9737 9738 out_one_pinned: 9739 ld_moved = 0; 9740 9741 /* 9742 * newidle_balance() disregards balance intervals, so we could 9743 * repeatedly reach this code, which would lead to balance_interval 9744 * skyrocketting in a short amount of time. Skip the balance_interval 9745 * increase logic to avoid that. 9746 */ 9747 if (env.idle == CPU_NEWLY_IDLE) 9748 goto out; 9749 9750 /* tune up the balancing interval */ 9751 if ((env.flags & LBF_ALL_PINNED && 9752 sd->balance_interval < MAX_PINNED_INTERVAL) || 9753 sd->balance_interval < sd->max_interval) 9754 sd->balance_interval *= 2; 9755 out: 9756 return ld_moved; 9757 } 9758 9759 static inline unsigned long 9760 get_sd_balance_interval(struct sched_domain *sd, int cpu_busy) 9761 { 9762 unsigned long interval = sd->balance_interval; 9763 9764 if (cpu_busy) 9765 interval *= sd->busy_factor; 9766 9767 /* scale ms to jiffies */ 9768 interval = msecs_to_jiffies(interval); 9769 interval = clamp(interval, 1UL, max_load_balance_interval); 9770 9771 return interval; 9772 } 9773 9774 static inline void 9775 update_next_balance(struct sched_domain *sd, unsigned long *next_balance) 9776 { 9777 unsigned long interval, next; 9778 9779 /* used by idle balance, so cpu_busy = 0 */ 9780 interval = get_sd_balance_interval(sd, 0); 9781 next = sd->last_balance + interval; 9782 9783 if (time_after(*next_balance, next)) 9784 *next_balance = next; 9785 } 9786 9787 /* 9788 * active_load_balance_cpu_stop is run by the CPU stopper. It pushes 9789 * running tasks off the busiest CPU onto idle CPUs. It requires at 9790 * least 1 task to be running on each physical CPU where possible, and 9791 * avoids physical / logical imbalances. 9792 */ 9793 static int active_load_balance_cpu_stop(void *data) 9794 { 9795 struct rq *busiest_rq = data; 9796 int busiest_cpu = cpu_of(busiest_rq); 9797 int target_cpu = busiest_rq->push_cpu; 9798 struct rq *target_rq = cpu_rq(target_cpu); 9799 struct sched_domain *sd; 9800 struct task_struct *p = NULL; 9801 struct rq_flags rf; 9802 9803 rq_lock_irq(busiest_rq, &rf); 9804 /* 9805 * Between queueing the stop-work and running it is a hole in which 9806 * CPUs can become inactive. We should not move tasks from or to 9807 * inactive CPUs. 9808 */ 9809 if (!cpu_active(busiest_cpu) || !cpu_active(target_cpu)) 9810 goto out_unlock; 9811 9812 /* Make sure the requested CPU hasn't gone down in the meantime: */ 9813 if (unlikely(busiest_cpu != smp_processor_id() || 9814 !busiest_rq->active_balance)) 9815 goto out_unlock; 9816 9817 /* Is there any task to move? */ 9818 if (busiest_rq->nr_running <= 1) 9819 goto out_unlock; 9820 9821 /* 9822 * This condition is "impossible", if it occurs 9823 * we need to fix it. Originally reported by 9824 * Bjorn Helgaas on a 128-CPU setup. 9825 */ 9826 BUG_ON(busiest_rq == target_rq); 9827 9828 /* Search for an sd spanning us and the target CPU. */ 9829 rcu_read_lock(); 9830 for_each_domain(target_cpu, sd) { 9831 if (cpumask_test_cpu(busiest_cpu, sched_domain_span(sd))) 9832 break; 9833 } 9834 9835 if (likely(sd)) { 9836 struct lb_env env = { 9837 .sd = sd, 9838 .dst_cpu = target_cpu, 9839 .dst_rq = target_rq, 9840 .src_cpu = busiest_rq->cpu, 9841 .src_rq = busiest_rq, 9842 .idle = CPU_IDLE, 9843 /* 9844 * can_migrate_task() doesn't need to compute new_dst_cpu 9845 * for active balancing. Since we have CPU_IDLE, but no 9846 * @dst_grpmask we need to make that test go away with lying 9847 * about DST_PINNED. 9848 */ 9849 .flags = LBF_DST_PINNED, 9850 }; 9851 9852 schedstat_inc(sd->alb_count); 9853 update_rq_clock(busiest_rq); 9854 9855 p = detach_one_task(&env); 9856 if (p) { 9857 schedstat_inc(sd->alb_pushed); 9858 /* Active balancing done, reset the failure counter. */ 9859 sd->nr_balance_failed = 0; 9860 } else { 9861 schedstat_inc(sd->alb_failed); 9862 } 9863 } 9864 rcu_read_unlock(); 9865 out_unlock: 9866 busiest_rq->active_balance = 0; 9867 rq_unlock(busiest_rq, &rf); 9868 9869 if (p) 9870 attach_one_task(target_rq, p); 9871 9872 local_irq_enable(); 9873 9874 return 0; 9875 } 9876 9877 static DEFINE_SPINLOCK(balancing); 9878 9879 /* 9880 * Scale the max load_balance interval with the number of CPUs in the system. 9881 * This trades load-balance latency on larger machines for less cross talk. 9882 */ 9883 void update_max_interval(void) 9884 { 9885 max_load_balance_interval = HZ*num_online_cpus()/10; 9886 } 9887 9888 /* 9889 * It checks each scheduling domain to see if it is due to be balanced, 9890 * and initiates a balancing operation if so. 9891 * 9892 * Balancing parameters are set up in init_sched_domains. 9893 */ 9894 static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle) 9895 { 9896 int continue_balancing = 1; 9897 int cpu = rq->cpu; 9898 int busy = idle != CPU_IDLE && !sched_idle_cpu(cpu); 9899 unsigned long interval; 9900 struct sched_domain *sd; 9901 /* Earliest time when we have to do rebalance again */ 9902 unsigned long next_balance = jiffies + 60*HZ; 9903 int update_next_balance = 0; 9904 int need_serialize, need_decay = 0; 9905 u64 max_cost = 0; 9906 9907 rcu_read_lock(); 9908 for_each_domain(cpu, sd) { 9909 /* 9910 * Decay the newidle max times here because this is a regular 9911 * visit to all the domains. Decay ~1% per second. 9912 */ 9913 if (time_after(jiffies, sd->next_decay_max_lb_cost)) { 9914 sd->max_newidle_lb_cost = 9915 (sd->max_newidle_lb_cost * 253) / 256; 9916 sd->next_decay_max_lb_cost = jiffies + HZ; 9917 need_decay = 1; 9918 } 9919 max_cost += sd->max_newidle_lb_cost; 9920 9921 /* 9922 * Stop the load balance at this level. There is another 9923 * CPU in our sched group which is doing load balancing more 9924 * actively. 9925 */ 9926 if (!continue_balancing) { 9927 if (need_decay) 9928 continue; 9929 break; 9930 } 9931 9932 interval = get_sd_balance_interval(sd, busy); 9933 9934 need_serialize = sd->flags & SD_SERIALIZE; 9935 if (need_serialize) { 9936 if (!spin_trylock(&balancing)) 9937 goto out; 9938 } 9939 9940 if (time_after_eq(jiffies, sd->last_balance + interval)) { 9941 if (load_balance(cpu, rq, sd, idle, &continue_balancing)) { 9942 /* 9943 * The LBF_DST_PINNED logic could have changed 9944 * env->dst_cpu, so we can't know our idle 9945 * state even if we migrated tasks. Update it. 9946 */ 9947 idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE; 9948 busy = idle != CPU_IDLE && !sched_idle_cpu(cpu); 9949 } 9950 sd->last_balance = jiffies; 9951 interval = get_sd_balance_interval(sd, busy); 9952 } 9953 if (need_serialize) 9954 spin_unlock(&balancing); 9955 out: 9956 if (time_after(next_balance, sd->last_balance + interval)) { 9957 next_balance = sd->last_balance + interval; 9958 update_next_balance = 1; 9959 } 9960 } 9961 if (need_decay) { 9962 /* 9963 * Ensure the rq-wide value also decays but keep it at a 9964 * reasonable floor to avoid funnies with rq->avg_idle. 9965 */ 9966 rq->max_idle_balance_cost = 9967 max((u64)sysctl_sched_migration_cost, max_cost); 9968 } 9969 rcu_read_unlock(); 9970 9971 /* 9972 * next_balance will be updated only when there is a need. 9973 * When the cpu is attached to null domain for ex, it will not be 9974 * updated. 9975 */ 9976 if (likely(update_next_balance)) { 9977 rq->next_balance = next_balance; 9978 9979 #ifdef CONFIG_NO_HZ_COMMON 9980 /* 9981 * If this CPU has been elected to perform the nohz idle 9982 * balance. Other idle CPUs have already rebalanced with 9983 * nohz_idle_balance() and nohz.next_balance has been 9984 * updated accordingly. This CPU is now running the idle load 9985 * balance for itself and we need to update the 9986 * nohz.next_balance accordingly. 9987 */ 9988 if ((idle == CPU_IDLE) && time_after(nohz.next_balance, rq->next_balance)) 9989 nohz.next_balance = rq->next_balance; 9990 #endif 9991 } 9992 } 9993 9994 static inline int on_null_domain(struct rq *rq) 9995 { 9996 return unlikely(!rcu_dereference_sched(rq->sd)); 9997 } 9998 9999 #ifdef CONFIG_NO_HZ_COMMON 10000 /* 10001 * idle load balancing details 10002 * - When one of the busy CPUs notice that there may be an idle rebalancing 10003 * needed, they will kick the idle load balancer, which then does idle 10004 * load balancing for all the idle CPUs. 10005 * - HK_FLAG_MISC CPUs are used for this task, because HK_FLAG_SCHED not set 10006 * anywhere yet. 10007 */ 10008 10009 static inline int find_new_ilb(void) 10010 { 10011 int ilb; 10012 10013 for_each_cpu_and(ilb, nohz.idle_cpus_mask, 10014 housekeeping_cpumask(HK_FLAG_MISC)) { 10015 if (idle_cpu(ilb)) 10016 return ilb; 10017 } 10018 10019 return nr_cpu_ids; 10020 } 10021 10022 /* 10023 * Kick a CPU to do the nohz balancing, if it is time for it. We pick any 10024 * idle CPU in the HK_FLAG_MISC housekeeping set (if there is one). 10025 */ 10026 static void kick_ilb(unsigned int flags) 10027 { 10028 int ilb_cpu; 10029 10030 nohz.next_balance++; 10031 10032 ilb_cpu = find_new_ilb(); 10033 10034 if (ilb_cpu >= nr_cpu_ids) 10035 return; 10036 10037 /* 10038 * Access to rq::nohz_csd is serialized by NOHZ_KICK_MASK; he who sets 10039 * the first flag owns it; cleared by nohz_csd_func(). 10040 */ 10041 flags = atomic_fetch_or(flags, nohz_flags(ilb_cpu)); 10042 if (flags & NOHZ_KICK_MASK) 10043 return; 10044 10045 /* 10046 * This way we generate an IPI on the target CPU which 10047 * is idle. And the softirq performing nohz idle load balance 10048 * will be run before returning from the IPI. 10049 */ 10050 smp_call_function_single_async(ilb_cpu, &cpu_rq(ilb_cpu)->nohz_csd); 10051 } 10052 10053 /* 10054 * Current decision point for kicking the idle load balancer in the presence 10055 * of idle CPUs in the system. 10056 */ 10057 static void nohz_balancer_kick(struct rq *rq) 10058 { 10059 unsigned long now = jiffies; 10060 struct sched_domain_shared *sds; 10061 struct sched_domain *sd; 10062 int nr_busy, i, cpu = rq->cpu; 10063 unsigned int flags = 0; 10064 10065 if (unlikely(rq->idle_balance)) 10066 return; 10067 10068 /* 10069 * We may be recently in ticked or tickless idle mode. At the first 10070 * busy tick after returning from idle, we will update the busy stats. 10071 */ 10072 nohz_balance_exit_idle(rq); 10073 10074 /* 10075 * None are in tickless mode and hence no need for NOHZ idle load 10076 * balancing. 10077 */ 10078 if (likely(!atomic_read(&nohz.nr_cpus))) 10079 return; 10080 10081 if (READ_ONCE(nohz.has_blocked) && 10082 time_after(now, READ_ONCE(nohz.next_blocked))) 10083 flags = NOHZ_STATS_KICK; 10084 10085 if (time_before(now, nohz.next_balance)) 10086 goto out; 10087 10088 if (rq->nr_running >= 2) { 10089 flags = NOHZ_KICK_MASK; 10090 goto out; 10091 } 10092 10093 rcu_read_lock(); 10094 10095 sd = rcu_dereference(rq->sd); 10096 if (sd) { 10097 /* 10098 * If there's a CFS task and the current CPU has reduced 10099 * capacity; kick the ILB to see if there's a better CPU to run 10100 * on. 10101 */ 10102 if (rq->cfs.h_nr_running >= 1 && check_cpu_capacity(rq, sd)) { 10103 flags = NOHZ_KICK_MASK; 10104 goto unlock; 10105 } 10106 } 10107 10108 sd = rcu_dereference(per_cpu(sd_asym_packing, cpu)); 10109 if (sd) { 10110 /* 10111 * When ASYM_PACKING; see if there's a more preferred CPU 10112 * currently idle; in which case, kick the ILB to move tasks 10113 * around. 10114 */ 10115 for_each_cpu_and(i, sched_domain_span(sd), nohz.idle_cpus_mask) { 10116 if (sched_asym_prefer(i, cpu)) { 10117 flags = NOHZ_KICK_MASK; 10118 goto unlock; 10119 } 10120 } 10121 } 10122 10123 sd = rcu_dereference(per_cpu(sd_asym_cpucapacity, cpu)); 10124 if (sd) { 10125 /* 10126 * When ASYM_CPUCAPACITY; see if there's a higher capacity CPU 10127 * to run the misfit task on. 10128 */ 10129 if (check_misfit_status(rq, sd)) { 10130 flags = NOHZ_KICK_MASK; 10131 goto unlock; 10132 } 10133 10134 /* 10135 * For asymmetric systems, we do not want to nicely balance 10136 * cache use, instead we want to embrace asymmetry and only 10137 * ensure tasks have enough CPU capacity. 10138 * 10139 * Skip the LLC logic because it's not relevant in that case. 10140 */ 10141 goto unlock; 10142 } 10143 10144 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu)); 10145 if (sds) { 10146 /* 10147 * If there is an imbalance between LLC domains (IOW we could 10148 * increase the overall cache use), we need some less-loaded LLC 10149 * domain to pull some load. Likewise, we may need to spread 10150 * load within the current LLC domain (e.g. packed SMT cores but 10151 * other CPUs are idle). We can't really know from here how busy 10152 * the others are - so just get a nohz balance going if it looks 10153 * like this LLC domain has tasks we could move. 10154 */ 10155 nr_busy = atomic_read(&sds->nr_busy_cpus); 10156 if (nr_busy > 1) { 10157 flags = NOHZ_KICK_MASK; 10158 goto unlock; 10159 } 10160 } 10161 unlock: 10162 rcu_read_unlock(); 10163 out: 10164 if (flags) 10165 kick_ilb(flags); 10166 } 10167 10168 static void set_cpu_sd_state_busy(int cpu) 10169 { 10170 struct sched_domain *sd; 10171 10172 rcu_read_lock(); 10173 sd = rcu_dereference(per_cpu(sd_llc, cpu)); 10174 10175 if (!sd || !sd->nohz_idle) 10176 goto unlock; 10177 sd->nohz_idle = 0; 10178 10179 atomic_inc(&sd->shared->nr_busy_cpus); 10180 unlock: 10181 rcu_read_unlock(); 10182 } 10183 10184 void nohz_balance_exit_idle(struct rq *rq) 10185 { 10186 SCHED_WARN_ON(rq != this_rq()); 10187 10188 if (likely(!rq->nohz_tick_stopped)) 10189 return; 10190 10191 rq->nohz_tick_stopped = 0; 10192 cpumask_clear_cpu(rq->cpu, nohz.idle_cpus_mask); 10193 atomic_dec(&nohz.nr_cpus); 10194 10195 set_cpu_sd_state_busy(rq->cpu); 10196 } 10197 10198 static void set_cpu_sd_state_idle(int cpu) 10199 { 10200 struct sched_domain *sd; 10201 10202 rcu_read_lock(); 10203 sd = rcu_dereference(per_cpu(sd_llc, cpu)); 10204 10205 if (!sd || sd->nohz_idle) 10206 goto unlock; 10207 sd->nohz_idle = 1; 10208 10209 atomic_dec(&sd->shared->nr_busy_cpus); 10210 unlock: 10211 rcu_read_unlock(); 10212 } 10213 10214 /* 10215 * This routine will record that the CPU is going idle with tick stopped. 10216 * This info will be used in performing idle load balancing in the future. 10217 */ 10218 void nohz_balance_enter_idle(int cpu) 10219 { 10220 struct rq *rq = cpu_rq(cpu); 10221 10222 SCHED_WARN_ON(cpu != smp_processor_id()); 10223 10224 /* If this CPU is going down, then nothing needs to be done: */ 10225 if (!cpu_active(cpu)) 10226 return; 10227 10228 /* Spare idle load balancing on CPUs that don't want to be disturbed: */ 10229 if (!housekeeping_cpu(cpu, HK_FLAG_SCHED)) 10230 return; 10231 10232 /* 10233 * Can be set safely without rq->lock held 10234 * If a clear happens, it will have evaluated last additions because 10235 * rq->lock is held during the check and the clear 10236 */ 10237 rq->has_blocked_load = 1; 10238 10239 /* 10240 * The tick is still stopped but load could have been added in the 10241 * meantime. We set the nohz.has_blocked flag to trig a check of the 10242 * *_avg. The CPU is already part of nohz.idle_cpus_mask so the clear 10243 * of nohz.has_blocked can only happen after checking the new load 10244 */ 10245 if (rq->nohz_tick_stopped) 10246 goto out; 10247 10248 /* If we're a completely isolated CPU, we don't play: */ 10249 if (on_null_domain(rq)) 10250 return; 10251 10252 rq->nohz_tick_stopped = 1; 10253 10254 cpumask_set_cpu(cpu, nohz.idle_cpus_mask); 10255 atomic_inc(&nohz.nr_cpus); 10256 10257 /* 10258 * Ensures that if nohz_idle_balance() fails to observe our 10259 * @idle_cpus_mask store, it must observe the @has_blocked 10260 * store. 10261 */ 10262 smp_mb__after_atomic(); 10263 10264 set_cpu_sd_state_idle(cpu); 10265 10266 out: 10267 /* 10268 * Each time a cpu enter idle, we assume that it has blocked load and 10269 * enable the periodic update of the load of idle cpus 10270 */ 10271 WRITE_ONCE(nohz.has_blocked, 1); 10272 } 10273 10274 /* 10275 * Internal function that runs load balance for all idle cpus. The load balance 10276 * can be a simple update of blocked load or a complete load balance with 10277 * tasks movement depending of flags. 10278 * The function returns false if the loop has stopped before running 10279 * through all idle CPUs. 10280 */ 10281 static bool _nohz_idle_balance(struct rq *this_rq, unsigned int flags, 10282 enum cpu_idle_type idle) 10283 { 10284 /* Earliest time when we have to do rebalance again */ 10285 unsigned long now = jiffies; 10286 unsigned long next_balance = now + 60*HZ; 10287 bool has_blocked_load = false; 10288 int update_next_balance = 0; 10289 int this_cpu = this_rq->cpu; 10290 int balance_cpu; 10291 int ret = false; 10292 struct rq *rq; 10293 10294 SCHED_WARN_ON((flags & NOHZ_KICK_MASK) == NOHZ_BALANCE_KICK); 10295 10296 /* 10297 * We assume there will be no idle load after this update and clear 10298 * the has_blocked flag. If a cpu enters idle in the mean time, it will 10299 * set the has_blocked flag and trig another update of idle load. 10300 * Because a cpu that becomes idle, is added to idle_cpus_mask before 10301 * setting the flag, we are sure to not clear the state and not 10302 * check the load of an idle cpu. 10303 */ 10304 WRITE_ONCE(nohz.has_blocked, 0); 10305 10306 /* 10307 * Ensures that if we miss the CPU, we must see the has_blocked 10308 * store from nohz_balance_enter_idle(). 10309 */ 10310 smp_mb(); 10311 10312 for_each_cpu(balance_cpu, nohz.idle_cpus_mask) { 10313 if (balance_cpu == this_cpu || !idle_cpu(balance_cpu)) 10314 continue; 10315 10316 /* 10317 * If this CPU gets work to do, stop the load balancing 10318 * work being done for other CPUs. Next load 10319 * balancing owner will pick it up. 10320 */ 10321 if (need_resched()) { 10322 has_blocked_load = true; 10323 goto abort; 10324 } 10325 10326 rq = cpu_rq(balance_cpu); 10327 10328 has_blocked_load |= update_nohz_stats(rq, true); 10329 10330 /* 10331 * If time for next balance is due, 10332 * do the balance. 10333 */ 10334 if (time_after_eq(jiffies, rq->next_balance)) { 10335 struct rq_flags rf; 10336 10337 rq_lock_irqsave(rq, &rf); 10338 update_rq_clock(rq); 10339 rq_unlock_irqrestore(rq, &rf); 10340 10341 if (flags & NOHZ_BALANCE_KICK) 10342 rebalance_domains(rq, CPU_IDLE); 10343 } 10344 10345 if (time_after(next_balance, rq->next_balance)) { 10346 next_balance = rq->next_balance; 10347 update_next_balance = 1; 10348 } 10349 } 10350 10351 /* Newly idle CPU doesn't need an update */ 10352 if (idle != CPU_NEWLY_IDLE) { 10353 update_blocked_averages(this_cpu); 10354 has_blocked_load |= this_rq->has_blocked_load; 10355 } 10356 10357 if (flags & NOHZ_BALANCE_KICK) 10358 rebalance_domains(this_rq, CPU_IDLE); 10359 10360 WRITE_ONCE(nohz.next_blocked, 10361 now + msecs_to_jiffies(LOAD_AVG_PERIOD)); 10362 10363 /* The full idle balance loop has been done */ 10364 ret = true; 10365 10366 abort: 10367 /* There is still blocked load, enable periodic update */ 10368 if (has_blocked_load) 10369 WRITE_ONCE(nohz.has_blocked, 1); 10370 10371 /* 10372 * next_balance will be updated only when there is a need. 10373 * When the CPU is attached to null domain for ex, it will not be 10374 * updated. 10375 */ 10376 if (likely(update_next_balance)) 10377 nohz.next_balance = next_balance; 10378 10379 return ret; 10380 } 10381 10382 /* 10383 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the 10384 * rebalancing for all the cpus for whom scheduler ticks are stopped. 10385 */ 10386 static bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) 10387 { 10388 unsigned int flags = this_rq->nohz_idle_balance; 10389 10390 if (!flags) 10391 return false; 10392 10393 this_rq->nohz_idle_balance = 0; 10394 10395 if (idle != CPU_IDLE) 10396 return false; 10397 10398 _nohz_idle_balance(this_rq, flags, idle); 10399 10400 return true; 10401 } 10402 10403 static void nohz_newidle_balance(struct rq *this_rq) 10404 { 10405 int this_cpu = this_rq->cpu; 10406 10407 /* 10408 * This CPU doesn't want to be disturbed by scheduler 10409 * housekeeping 10410 */ 10411 if (!housekeeping_cpu(this_cpu, HK_FLAG_SCHED)) 10412 return; 10413 10414 /* Will wake up very soon. No time for doing anything else*/ 10415 if (this_rq->avg_idle < sysctl_sched_migration_cost) 10416 return; 10417 10418 /* Don't need to update blocked load of idle CPUs*/ 10419 if (!READ_ONCE(nohz.has_blocked) || 10420 time_before(jiffies, READ_ONCE(nohz.next_blocked))) 10421 return; 10422 10423 raw_spin_unlock(&this_rq->lock); 10424 /* 10425 * This CPU is going to be idle and blocked load of idle CPUs 10426 * need to be updated. Run the ilb locally as it is a good 10427 * candidate for ilb instead of waking up another idle CPU. 10428 * Kick an normal ilb if we failed to do the update. 10429 */ 10430 if (!_nohz_idle_balance(this_rq, NOHZ_STATS_KICK, CPU_NEWLY_IDLE)) 10431 kick_ilb(NOHZ_STATS_KICK); 10432 raw_spin_lock(&this_rq->lock); 10433 } 10434 10435 #else /* !CONFIG_NO_HZ_COMMON */ 10436 static inline void nohz_balancer_kick(struct rq *rq) { } 10437 10438 static inline bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) 10439 { 10440 return false; 10441 } 10442 10443 static inline void nohz_newidle_balance(struct rq *this_rq) { } 10444 #endif /* CONFIG_NO_HZ_COMMON */ 10445 10446 /* 10447 * idle_balance is called by schedule() if this_cpu is about to become 10448 * idle. Attempts to pull tasks from other CPUs. 10449 * 10450 * Returns: 10451 * < 0 - we released the lock and there are !fair tasks present 10452 * 0 - failed, no new tasks 10453 * > 0 - success, new (fair) tasks present 10454 */ 10455 static int newidle_balance(struct rq *this_rq, struct rq_flags *rf) 10456 { 10457 unsigned long next_balance = jiffies + HZ; 10458 int this_cpu = this_rq->cpu; 10459 struct sched_domain *sd; 10460 int pulled_task = 0; 10461 u64 curr_cost = 0; 10462 10463 update_misfit_status(NULL, this_rq); 10464 /* 10465 * We must set idle_stamp _before_ calling idle_balance(), such that we 10466 * measure the duration of idle_balance() as idle time. 10467 */ 10468 this_rq->idle_stamp = rq_clock(this_rq); 10469 10470 /* 10471 * Do not pull tasks towards !active CPUs... 10472 */ 10473 if (!cpu_active(this_cpu)) 10474 return 0; 10475 10476 /* 10477 * This is OK, because current is on_cpu, which avoids it being picked 10478 * for load-balance and preemption/IRQs are still disabled avoiding 10479 * further scheduler activity on it and we're being very careful to 10480 * re-start the picking loop. 10481 */ 10482 rq_unpin_lock(this_rq, rf); 10483 10484 if (this_rq->avg_idle < sysctl_sched_migration_cost || 10485 !READ_ONCE(this_rq->rd->overload)) { 10486 10487 rcu_read_lock(); 10488 sd = rcu_dereference_check_sched_domain(this_rq->sd); 10489 if (sd) 10490 update_next_balance(sd, &next_balance); 10491 rcu_read_unlock(); 10492 10493 nohz_newidle_balance(this_rq); 10494 10495 goto out; 10496 } 10497 10498 raw_spin_unlock(&this_rq->lock); 10499 10500 update_blocked_averages(this_cpu); 10501 rcu_read_lock(); 10502 for_each_domain(this_cpu, sd) { 10503 int continue_balancing = 1; 10504 u64 t0, domain_cost; 10505 10506 if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) { 10507 update_next_balance(sd, &next_balance); 10508 break; 10509 } 10510 10511 if (sd->flags & SD_BALANCE_NEWIDLE) { 10512 t0 = sched_clock_cpu(this_cpu); 10513 10514 pulled_task = load_balance(this_cpu, this_rq, 10515 sd, CPU_NEWLY_IDLE, 10516 &continue_balancing); 10517 10518 domain_cost = sched_clock_cpu(this_cpu) - t0; 10519 if (domain_cost > sd->max_newidle_lb_cost) 10520 sd->max_newidle_lb_cost = domain_cost; 10521 10522 curr_cost += domain_cost; 10523 } 10524 10525 update_next_balance(sd, &next_balance); 10526 10527 /* 10528 * Stop searching for tasks to pull if there are 10529 * now runnable tasks on this rq. 10530 */ 10531 if (pulled_task || this_rq->nr_running > 0) 10532 break; 10533 } 10534 rcu_read_unlock(); 10535 10536 raw_spin_lock(&this_rq->lock); 10537 10538 if (curr_cost > this_rq->max_idle_balance_cost) 10539 this_rq->max_idle_balance_cost = curr_cost; 10540 10541 out: 10542 /* 10543 * While browsing the domains, we released the rq lock, a task could 10544 * have been enqueued in the meantime. Since we're not going idle, 10545 * pretend we pulled a task. 10546 */ 10547 if (this_rq->cfs.h_nr_running && !pulled_task) 10548 pulled_task = 1; 10549 10550 /* Move the next balance forward */ 10551 if (time_after(this_rq->next_balance, next_balance)) 10552 this_rq->next_balance = next_balance; 10553 10554 /* Is there a task of a high priority class? */ 10555 if (this_rq->nr_running != this_rq->cfs.h_nr_running) 10556 pulled_task = -1; 10557 10558 if (pulled_task) 10559 this_rq->idle_stamp = 0; 10560 10561 rq_repin_lock(this_rq, rf); 10562 10563 return pulled_task; 10564 } 10565 10566 /* 10567 * run_rebalance_domains is triggered when needed from the scheduler tick. 10568 * Also triggered for nohz idle balancing (with nohz_balancing_kick set). 10569 */ 10570 static __latent_entropy void run_rebalance_domains(struct softirq_action *h) 10571 { 10572 struct rq *this_rq = this_rq(); 10573 enum cpu_idle_type idle = this_rq->idle_balance ? 10574 CPU_IDLE : CPU_NOT_IDLE; 10575 10576 /* 10577 * If this CPU has a pending nohz_balance_kick, then do the 10578 * balancing on behalf of the other idle CPUs whose ticks are 10579 * stopped. Do nohz_idle_balance *before* rebalance_domains to 10580 * give the idle CPUs a chance to load balance. Else we may 10581 * load balance only within the local sched_domain hierarchy 10582 * and abort nohz_idle_balance altogether if we pull some load. 10583 */ 10584 if (nohz_idle_balance(this_rq, idle)) 10585 return; 10586 10587 /* normal load balance */ 10588 update_blocked_averages(this_rq->cpu); 10589 rebalance_domains(this_rq, idle); 10590 } 10591 10592 /* 10593 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing. 10594 */ 10595 void trigger_load_balance(struct rq *rq) 10596 { 10597 /* Don't need to rebalance while attached to NULL domain */ 10598 if (unlikely(on_null_domain(rq))) 10599 return; 10600 10601 if (time_after_eq(jiffies, rq->next_balance)) 10602 raise_softirq(SCHED_SOFTIRQ); 10603 10604 nohz_balancer_kick(rq); 10605 } 10606 10607 static void rq_online_fair(struct rq *rq) 10608 { 10609 update_sysctl(); 10610 10611 update_runtime_enabled(rq); 10612 } 10613 10614 static void rq_offline_fair(struct rq *rq) 10615 { 10616 update_sysctl(); 10617 10618 /* Ensure any throttled groups are reachable by pick_next_task */ 10619 unthrottle_offline_cfs_rqs(rq); 10620 } 10621 10622 #endif /* CONFIG_SMP */ 10623 10624 /* 10625 * scheduler tick hitting a task of our scheduling class. 10626 * 10627 * NOTE: This function can be called remotely by the tick offload that 10628 * goes along full dynticks. Therefore no local assumption can be made 10629 * and everything must be accessed through the @rq and @curr passed in 10630 * parameters. 10631 */ 10632 static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued) 10633 { 10634 struct cfs_rq *cfs_rq; 10635 struct sched_entity *se = &curr->se; 10636 10637 for_each_sched_entity(se) { 10638 cfs_rq = cfs_rq_of(se); 10639 entity_tick(cfs_rq, se, queued); 10640 } 10641 10642 if (static_branch_unlikely(&sched_numa_balancing)) 10643 task_tick_numa(rq, curr); 10644 10645 update_misfit_status(curr, rq); 10646 update_overutilized_status(task_rq(curr)); 10647 } 10648 10649 /* 10650 * called on fork with the child task as argument from the parent's context 10651 * - child not yet on the tasklist 10652 * - preemption disabled 10653 */ 10654 static void task_fork_fair(struct task_struct *p) 10655 { 10656 struct cfs_rq *cfs_rq; 10657 struct sched_entity *se = &p->se, *curr; 10658 struct rq *rq = this_rq(); 10659 struct rq_flags rf; 10660 10661 rq_lock(rq, &rf); 10662 update_rq_clock(rq); 10663 10664 cfs_rq = task_cfs_rq(current); 10665 curr = cfs_rq->curr; 10666 if (curr) { 10667 update_curr(cfs_rq); 10668 se->vruntime = curr->vruntime; 10669 } 10670 place_entity(cfs_rq, se, 1); 10671 10672 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) { 10673 /* 10674 * Upon rescheduling, sched_class::put_prev_task() will place 10675 * 'current' within the tree based on its new key value. 10676 */ 10677 swap(curr->vruntime, se->vruntime); 10678 resched_curr(rq); 10679 } 10680 10681 se->vruntime -= cfs_rq->min_vruntime; 10682 rq_unlock(rq, &rf); 10683 } 10684 10685 /* 10686 * Priority of the task has changed. Check to see if we preempt 10687 * the current task. 10688 */ 10689 static void 10690 prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio) 10691 { 10692 if (!task_on_rq_queued(p)) 10693 return; 10694 10695 if (rq->cfs.nr_running == 1) 10696 return; 10697 10698 /* 10699 * Reschedule if we are currently running on this runqueue and 10700 * our priority decreased, or if we are not currently running on 10701 * this runqueue and our priority is higher than the current's 10702 */ 10703 if (rq->curr == p) { 10704 if (p->prio > oldprio) 10705 resched_curr(rq); 10706 } else 10707 check_preempt_curr(rq, p, 0); 10708 } 10709 10710 static inline bool vruntime_normalized(struct task_struct *p) 10711 { 10712 struct sched_entity *se = &p->se; 10713 10714 /* 10715 * In both the TASK_ON_RQ_QUEUED and TASK_ON_RQ_MIGRATING cases, 10716 * the dequeue_entity(.flags=0) will already have normalized the 10717 * vruntime. 10718 */ 10719 if (p->on_rq) 10720 return true; 10721 10722 /* 10723 * When !on_rq, vruntime of the task has usually NOT been normalized. 10724 * But there are some cases where it has already been normalized: 10725 * 10726 * - A forked child which is waiting for being woken up by 10727 * wake_up_new_task(). 10728 * - A task which has been woken up by try_to_wake_up() and 10729 * waiting for actually being woken up by sched_ttwu_pending(). 10730 */ 10731 if (!se->sum_exec_runtime || 10732 (p->state == TASK_WAKING && p->sched_remote_wakeup)) 10733 return true; 10734 10735 return false; 10736 } 10737 10738 #ifdef CONFIG_FAIR_GROUP_SCHED 10739 /* 10740 * Propagate the changes of the sched_entity across the tg tree to make it 10741 * visible to the root 10742 */ 10743 static void propagate_entity_cfs_rq(struct sched_entity *se) 10744 { 10745 struct cfs_rq *cfs_rq; 10746 10747 /* Start to propagate at parent */ 10748 se = se->parent; 10749 10750 for_each_sched_entity(se) { 10751 cfs_rq = cfs_rq_of(se); 10752 10753 if (cfs_rq_throttled(cfs_rq)) 10754 break; 10755 10756 update_load_avg(cfs_rq, se, UPDATE_TG); 10757 } 10758 } 10759 #else 10760 static void propagate_entity_cfs_rq(struct sched_entity *se) { } 10761 #endif 10762 10763 static void detach_entity_cfs_rq(struct sched_entity *se) 10764 { 10765 struct cfs_rq *cfs_rq = cfs_rq_of(se); 10766 10767 /* Catch up with the cfs_rq and remove our load when we leave */ 10768 update_load_avg(cfs_rq, se, 0); 10769 detach_entity_load_avg(cfs_rq, se); 10770 update_tg_load_avg(cfs_rq, false); 10771 propagate_entity_cfs_rq(se); 10772 } 10773 10774 static void attach_entity_cfs_rq(struct sched_entity *se) 10775 { 10776 struct cfs_rq *cfs_rq = cfs_rq_of(se); 10777 10778 #ifdef CONFIG_FAIR_GROUP_SCHED 10779 /* 10780 * Since the real-depth could have been changed (only FAIR 10781 * class maintain depth value), reset depth properly. 10782 */ 10783 se->depth = se->parent ? se->parent->depth + 1 : 0; 10784 #endif 10785 10786 /* Synchronize entity with its cfs_rq */ 10787 update_load_avg(cfs_rq, se, sched_feat(ATTACH_AGE_LOAD) ? 0 : SKIP_AGE_LOAD); 10788 attach_entity_load_avg(cfs_rq, se); 10789 update_tg_load_avg(cfs_rq, false); 10790 propagate_entity_cfs_rq(se); 10791 } 10792 10793 static void detach_task_cfs_rq(struct task_struct *p) 10794 { 10795 struct sched_entity *se = &p->se; 10796 struct cfs_rq *cfs_rq = cfs_rq_of(se); 10797 10798 if (!vruntime_normalized(p)) { 10799 /* 10800 * Fix up our vruntime so that the current sleep doesn't 10801 * cause 'unlimited' sleep bonus. 10802 */ 10803 place_entity(cfs_rq, se, 0); 10804 se->vruntime -= cfs_rq->min_vruntime; 10805 } 10806 10807 detach_entity_cfs_rq(se); 10808 } 10809 10810 static void attach_task_cfs_rq(struct task_struct *p) 10811 { 10812 struct sched_entity *se = &p->se; 10813 struct cfs_rq *cfs_rq = cfs_rq_of(se); 10814 10815 attach_entity_cfs_rq(se); 10816 10817 if (!vruntime_normalized(p)) 10818 se->vruntime += cfs_rq->min_vruntime; 10819 } 10820 10821 static void switched_from_fair(struct rq *rq, struct task_struct *p) 10822 { 10823 detach_task_cfs_rq(p); 10824 } 10825 10826 static void switched_to_fair(struct rq *rq, struct task_struct *p) 10827 { 10828 attach_task_cfs_rq(p); 10829 10830 if (task_on_rq_queued(p)) { 10831 /* 10832 * We were most likely switched from sched_rt, so 10833 * kick off the schedule if running, otherwise just see 10834 * if we can still preempt the current task. 10835 */ 10836 if (rq->curr == p) 10837 resched_curr(rq); 10838 else 10839 check_preempt_curr(rq, p, 0); 10840 } 10841 } 10842 10843 /* Account for a task changing its policy or group. 10844 * 10845 * This routine is mostly called to set cfs_rq->curr field when a task 10846 * migrates between groups/classes. 10847 */ 10848 static void set_next_task_fair(struct rq *rq, struct task_struct *p, bool first) 10849 { 10850 struct sched_entity *se = &p->se; 10851 10852 #ifdef CONFIG_SMP 10853 if (task_on_rq_queued(p)) { 10854 /* 10855 * Move the next running task to the front of the list, so our 10856 * cfs_tasks list becomes MRU one. 10857 */ 10858 list_move(&se->group_node, &rq->cfs_tasks); 10859 } 10860 #endif 10861 10862 for_each_sched_entity(se) { 10863 struct cfs_rq *cfs_rq = cfs_rq_of(se); 10864 10865 set_next_entity(cfs_rq, se); 10866 /* ensure bandwidth has been allocated on our new cfs_rq */ 10867 account_cfs_rq_runtime(cfs_rq, 0); 10868 } 10869 } 10870 10871 void init_cfs_rq(struct cfs_rq *cfs_rq) 10872 { 10873 cfs_rq->tasks_timeline = RB_ROOT_CACHED; 10874 cfs_rq->min_vruntime = (u64)(-(1LL << 20)); 10875 #ifndef CONFIG_64BIT 10876 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime; 10877 #endif 10878 #ifdef CONFIG_SMP 10879 raw_spin_lock_init(&cfs_rq->removed.lock); 10880 #endif 10881 } 10882 10883 #ifdef CONFIG_FAIR_GROUP_SCHED 10884 static void task_set_group_fair(struct task_struct *p) 10885 { 10886 struct sched_entity *se = &p->se; 10887 10888 set_task_rq(p, task_cpu(p)); 10889 se->depth = se->parent ? se->parent->depth + 1 : 0; 10890 } 10891 10892 static void task_move_group_fair(struct task_struct *p) 10893 { 10894 detach_task_cfs_rq(p); 10895 set_task_rq(p, task_cpu(p)); 10896 10897 #ifdef CONFIG_SMP 10898 /* Tell se's cfs_rq has been changed -- migrated */ 10899 p->se.avg.last_update_time = 0; 10900 #endif 10901 attach_task_cfs_rq(p); 10902 } 10903 10904 static void task_change_group_fair(struct task_struct *p, int type) 10905 { 10906 switch (type) { 10907 case TASK_SET_GROUP: 10908 task_set_group_fair(p); 10909 break; 10910 10911 case TASK_MOVE_GROUP: 10912 task_move_group_fair(p); 10913 break; 10914 } 10915 } 10916 10917 void free_fair_sched_group(struct task_group *tg) 10918 { 10919 int i; 10920 10921 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg)); 10922 10923 for_each_possible_cpu(i) { 10924 if (tg->cfs_rq) 10925 kfree(tg->cfs_rq[i]); 10926 if (tg->se) 10927 kfree(tg->se[i]); 10928 } 10929 10930 kfree(tg->cfs_rq); 10931 kfree(tg->se); 10932 } 10933 10934 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent) 10935 { 10936 struct sched_entity *se; 10937 struct cfs_rq *cfs_rq; 10938 int i; 10939 10940 tg->cfs_rq = kcalloc(nr_cpu_ids, sizeof(cfs_rq), GFP_KERNEL); 10941 if (!tg->cfs_rq) 10942 goto err; 10943 tg->se = kcalloc(nr_cpu_ids, sizeof(se), GFP_KERNEL); 10944 if (!tg->se) 10945 goto err; 10946 10947 tg->shares = NICE_0_LOAD; 10948 10949 init_cfs_bandwidth(tg_cfs_bandwidth(tg)); 10950 10951 for_each_possible_cpu(i) { 10952 cfs_rq = kzalloc_node(sizeof(struct cfs_rq), 10953 GFP_KERNEL, cpu_to_node(i)); 10954 if (!cfs_rq) 10955 goto err; 10956 10957 se = kzalloc_node(sizeof(struct sched_entity), 10958 GFP_KERNEL, cpu_to_node(i)); 10959 if (!se) 10960 goto err_free_rq; 10961 10962 init_cfs_rq(cfs_rq); 10963 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]); 10964 init_entity_runnable_average(se); 10965 } 10966 10967 return 1; 10968 10969 err_free_rq: 10970 kfree(cfs_rq); 10971 err: 10972 return 0; 10973 } 10974 10975 void online_fair_sched_group(struct task_group *tg) 10976 { 10977 struct sched_entity *se; 10978 struct rq_flags rf; 10979 struct rq *rq; 10980 int i; 10981 10982 for_each_possible_cpu(i) { 10983 rq = cpu_rq(i); 10984 se = tg->se[i]; 10985 rq_lock_irq(rq, &rf); 10986 update_rq_clock(rq); 10987 attach_entity_cfs_rq(se); 10988 sync_throttle(tg, i); 10989 rq_unlock_irq(rq, &rf); 10990 } 10991 } 10992 10993 void unregister_fair_sched_group(struct task_group *tg) 10994 { 10995 unsigned long flags; 10996 struct rq *rq; 10997 int cpu; 10998 10999 for_each_possible_cpu(cpu) { 11000 if (tg->se[cpu]) 11001 remove_entity_load_avg(tg->se[cpu]); 11002 11003 /* 11004 * Only empty task groups can be destroyed; so we can speculatively 11005 * check on_list without danger of it being re-added. 11006 */ 11007 if (!tg->cfs_rq[cpu]->on_list) 11008 continue; 11009 11010 rq = cpu_rq(cpu); 11011 11012 raw_spin_lock_irqsave(&rq->lock, flags); 11013 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]); 11014 raw_spin_unlock_irqrestore(&rq->lock, flags); 11015 } 11016 } 11017 11018 void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq, 11019 struct sched_entity *se, int cpu, 11020 struct sched_entity *parent) 11021 { 11022 struct rq *rq = cpu_rq(cpu); 11023 11024 cfs_rq->tg = tg; 11025 cfs_rq->rq = rq; 11026 init_cfs_rq_runtime(cfs_rq); 11027 11028 tg->cfs_rq[cpu] = cfs_rq; 11029 tg->se[cpu] = se; 11030 11031 /* se could be NULL for root_task_group */ 11032 if (!se) 11033 return; 11034 11035 if (!parent) { 11036 se->cfs_rq = &rq->cfs; 11037 se->depth = 0; 11038 } else { 11039 se->cfs_rq = parent->my_q; 11040 se->depth = parent->depth + 1; 11041 } 11042 11043 se->my_q = cfs_rq; 11044 /* guarantee group entities always have weight */ 11045 update_load_set(&se->load, NICE_0_LOAD); 11046 se->parent = parent; 11047 } 11048 11049 static DEFINE_MUTEX(shares_mutex); 11050 11051 int sched_group_set_shares(struct task_group *tg, unsigned long shares) 11052 { 11053 int i; 11054 11055 /* 11056 * We can't change the weight of the root cgroup. 11057 */ 11058 if (!tg->se[0]) 11059 return -EINVAL; 11060 11061 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES)); 11062 11063 mutex_lock(&shares_mutex); 11064 if (tg->shares == shares) 11065 goto done; 11066 11067 tg->shares = shares; 11068 for_each_possible_cpu(i) { 11069 struct rq *rq = cpu_rq(i); 11070 struct sched_entity *se = tg->se[i]; 11071 struct rq_flags rf; 11072 11073 /* Propagate contribution to hierarchy */ 11074 rq_lock_irqsave(rq, &rf); 11075 update_rq_clock(rq); 11076 for_each_sched_entity(se) { 11077 update_load_avg(cfs_rq_of(se), se, UPDATE_TG); 11078 update_cfs_group(se); 11079 } 11080 rq_unlock_irqrestore(rq, &rf); 11081 } 11082 11083 done: 11084 mutex_unlock(&shares_mutex); 11085 return 0; 11086 } 11087 #else /* CONFIG_FAIR_GROUP_SCHED */ 11088 11089 void free_fair_sched_group(struct task_group *tg) { } 11090 11091 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent) 11092 { 11093 return 1; 11094 } 11095 11096 void online_fair_sched_group(struct task_group *tg) { } 11097 11098 void unregister_fair_sched_group(struct task_group *tg) { } 11099 11100 #endif /* CONFIG_FAIR_GROUP_SCHED */ 11101 11102 11103 static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task) 11104 { 11105 struct sched_entity *se = &task->se; 11106 unsigned int rr_interval = 0; 11107 11108 /* 11109 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise 11110 * idle runqueue: 11111 */ 11112 if (rq->cfs.load.weight) 11113 rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se)); 11114 11115 return rr_interval; 11116 } 11117 11118 /* 11119 * All the scheduling class methods: 11120 */ 11121 const struct sched_class fair_sched_class = { 11122 .next = &idle_sched_class, 11123 .enqueue_task = enqueue_task_fair, 11124 .dequeue_task = dequeue_task_fair, 11125 .yield_task = yield_task_fair, 11126 .yield_to_task = yield_to_task_fair, 11127 11128 .check_preempt_curr = check_preempt_wakeup, 11129 11130 .pick_next_task = __pick_next_task_fair, 11131 .put_prev_task = put_prev_task_fair, 11132 .set_next_task = set_next_task_fair, 11133 11134 #ifdef CONFIG_SMP 11135 .balance = balance_fair, 11136 .select_task_rq = select_task_rq_fair, 11137 .migrate_task_rq = migrate_task_rq_fair, 11138 11139 .rq_online = rq_online_fair, 11140 .rq_offline = rq_offline_fair, 11141 11142 .task_dead = task_dead_fair, 11143 .set_cpus_allowed = set_cpus_allowed_common, 11144 #endif 11145 11146 .task_tick = task_tick_fair, 11147 .task_fork = task_fork_fair, 11148 11149 .prio_changed = prio_changed_fair, 11150 .switched_from = switched_from_fair, 11151 .switched_to = switched_to_fair, 11152 11153 .get_rr_interval = get_rr_interval_fair, 11154 11155 .update_curr = update_curr_fair, 11156 11157 #ifdef CONFIG_FAIR_GROUP_SCHED 11158 .task_change_group = task_change_group_fair, 11159 #endif 11160 11161 #ifdef CONFIG_UCLAMP_TASK 11162 .uclamp_enabled = 1, 11163 #endif 11164 }; 11165 11166 #ifdef CONFIG_SCHED_DEBUG 11167 void print_cfs_stats(struct seq_file *m, int cpu) 11168 { 11169 struct cfs_rq *cfs_rq, *pos; 11170 11171 rcu_read_lock(); 11172 for_each_leaf_cfs_rq_safe(cpu_rq(cpu), cfs_rq, pos) 11173 print_cfs_rq(m, cpu, cfs_rq); 11174 rcu_read_unlock(); 11175 } 11176 11177 #ifdef CONFIG_NUMA_BALANCING 11178 void show_numa_stats(struct task_struct *p, struct seq_file *m) 11179 { 11180 int node; 11181 unsigned long tsf = 0, tpf = 0, gsf = 0, gpf = 0; 11182 struct numa_group *ng; 11183 11184 rcu_read_lock(); 11185 ng = rcu_dereference(p->numa_group); 11186 for_each_online_node(node) { 11187 if (p->numa_faults) { 11188 tsf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 0)]; 11189 tpf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 1)]; 11190 } 11191 if (ng) { 11192 gsf = ng->faults[task_faults_idx(NUMA_MEM, node, 0)], 11193 gpf = ng->faults[task_faults_idx(NUMA_MEM, node, 1)]; 11194 } 11195 print_numa_stats(m, node, tsf, tpf, gsf, gpf); 11196 } 11197 rcu_read_unlock(); 11198 } 11199 #endif /* CONFIG_NUMA_BALANCING */ 11200 #endif /* CONFIG_SCHED_DEBUG */ 11201 11202 __init void init_sched_fair_class(void) 11203 { 11204 #ifdef CONFIG_SMP 11205 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains); 11206 11207 #ifdef CONFIG_NO_HZ_COMMON 11208 nohz.next_balance = jiffies; 11209 nohz.next_blocked = jiffies; 11210 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT); 11211 #endif 11212 #endif /* SMP */ 11213 11214 } 11215 11216 /* 11217 * Helper functions to facilitate extracting info from tracepoints. 11218 */ 11219 11220 const struct sched_avg *sched_trace_cfs_rq_avg(struct cfs_rq *cfs_rq) 11221 { 11222 #ifdef CONFIG_SMP 11223 return cfs_rq ? &cfs_rq->avg : NULL; 11224 #else 11225 return NULL; 11226 #endif 11227 } 11228 EXPORT_SYMBOL_GPL(sched_trace_cfs_rq_avg); 11229 11230 char *sched_trace_cfs_rq_path(struct cfs_rq *cfs_rq, char *str, int len) 11231 { 11232 if (!cfs_rq) { 11233 if (str) 11234 strlcpy(str, "(null)", len); 11235 else 11236 return NULL; 11237 } 11238 11239 cfs_rq_tg_path(cfs_rq, str, len); 11240 return str; 11241 } 11242 EXPORT_SYMBOL_GPL(sched_trace_cfs_rq_path); 11243 11244 int sched_trace_cfs_rq_cpu(struct cfs_rq *cfs_rq) 11245 { 11246 return cfs_rq ? cpu_of(rq_of(cfs_rq)) : -1; 11247 } 11248 EXPORT_SYMBOL_GPL(sched_trace_cfs_rq_cpu); 11249 11250 const struct sched_avg *sched_trace_rq_avg_rt(struct rq *rq) 11251 { 11252 #ifdef CONFIG_SMP 11253 return rq ? &rq->avg_rt : NULL; 11254 #else 11255 return NULL; 11256 #endif 11257 } 11258 EXPORT_SYMBOL_GPL(sched_trace_rq_avg_rt); 11259 11260 const struct sched_avg *sched_trace_rq_avg_dl(struct rq *rq) 11261 { 11262 #ifdef CONFIG_SMP 11263 return rq ? &rq->avg_dl : NULL; 11264 #else 11265 return NULL; 11266 #endif 11267 } 11268 EXPORT_SYMBOL_GPL(sched_trace_rq_avg_dl); 11269 11270 const struct sched_avg *sched_trace_rq_avg_irq(struct rq *rq) 11271 { 11272 #if defined(CONFIG_SMP) && defined(CONFIG_HAVE_SCHED_AVG_IRQ) 11273 return rq ? &rq->avg_irq : NULL; 11274 #else 11275 return NULL; 11276 #endif 11277 } 11278 EXPORT_SYMBOL_GPL(sched_trace_rq_avg_irq); 11279 11280 int sched_trace_rq_cpu(struct rq *rq) 11281 { 11282 return rq ? cpu_of(rq) : -1; 11283 } 11284 EXPORT_SYMBOL_GPL(sched_trace_rq_cpu); 11285 11286 const struct cpumask *sched_trace_rd_span(struct root_domain *rd) 11287 { 11288 #ifdef CONFIG_SMP 11289 return rd ? rd->span : NULL; 11290 #else 11291 return NULL; 11292 #endif 11293 } 11294 EXPORT_SYMBOL_GPL(sched_trace_rd_span); 11295