xref: /openbmc/linux/kernel/sched/fair.c (revision 5ef12cb4a3a78ffb331c03a795a15eea4ae35155)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
4  *
5  *  Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
6  *
7  *  Interactivity improvements by Mike Galbraith
8  *  (C) 2007 Mike Galbraith <efault@gmx.de>
9  *
10  *  Various enhancements by Dmitry Adamushko.
11  *  (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
12  *
13  *  Group scheduling enhancements by Srivatsa Vaddagiri
14  *  Copyright IBM Corporation, 2007
15  *  Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
16  *
17  *  Scaled math optimizations by Thomas Gleixner
18  *  Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
19  *
20  *  Adaptive scheduling granularity, math enhancements by Peter Zijlstra
21  *  Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
22  */
23 #include "sched.h"
24 
25 #include <trace/events/sched.h>
26 
27 /*
28  * Targeted preemption latency for CPU-bound tasks:
29  *
30  * NOTE: this latency value is not the same as the concept of
31  * 'timeslice length' - timeslices in CFS are of variable length
32  * and have no persistent notion like in traditional, time-slice
33  * based scheduling concepts.
34  *
35  * (to see the precise effective timeslice length of your workload,
36  *  run vmstat and monitor the context-switches (cs) field)
37  *
38  * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
39  */
40 unsigned int sysctl_sched_latency			= 6000000ULL;
41 unsigned int normalized_sysctl_sched_latency		= 6000000ULL;
42 
43 /*
44  * The initial- and re-scaling of tunables is configurable
45  *
46  * Options are:
47  *
48  *   SCHED_TUNABLESCALING_NONE - unscaled, always *1
49  *   SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
50  *   SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
51  *
52  * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
53  */
54 enum sched_tunable_scaling sysctl_sched_tunable_scaling = SCHED_TUNABLESCALING_LOG;
55 
56 /*
57  * Minimal preemption granularity for CPU-bound tasks:
58  *
59  * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
60  */
61 unsigned int sysctl_sched_min_granularity		= 750000ULL;
62 unsigned int normalized_sysctl_sched_min_granularity	= 750000ULL;
63 
64 /*
65  * This value is kept at sysctl_sched_latency/sysctl_sched_min_granularity
66  */
67 static unsigned int sched_nr_latency = 8;
68 
69 /*
70  * After fork, child runs first. If set to 0 (default) then
71  * parent will (try to) run first.
72  */
73 unsigned int sysctl_sched_child_runs_first __read_mostly;
74 
75 /*
76  * SCHED_OTHER wake-up granularity.
77  *
78  * This option delays the preemption effects of decoupled workloads
79  * and reduces their over-scheduling. Synchronous workloads will still
80  * have immediate wakeup/sleep latencies.
81  *
82  * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
83  */
84 unsigned int sysctl_sched_wakeup_granularity		= 1000000UL;
85 unsigned int normalized_sysctl_sched_wakeup_granularity	= 1000000UL;
86 
87 const_debug unsigned int sysctl_sched_migration_cost	= 500000UL;
88 
89 #ifdef CONFIG_SMP
90 /*
91  * For asym packing, by default the lower numbered CPU has higher priority.
92  */
93 int __weak arch_asym_cpu_priority(int cpu)
94 {
95 	return -cpu;
96 }
97 #endif
98 
99 #ifdef CONFIG_CFS_BANDWIDTH
100 /*
101  * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
102  * each time a cfs_rq requests quota.
103  *
104  * Note: in the case that the slice exceeds the runtime remaining (either due
105  * to consumption or the quota being specified to be smaller than the slice)
106  * we will always only issue the remaining available time.
107  *
108  * (default: 5 msec, units: microseconds)
109  */
110 unsigned int sysctl_sched_cfs_bandwidth_slice		= 5000UL;
111 #endif
112 
113 /*
114  * The margin used when comparing utilization with CPU capacity:
115  * util * margin < capacity * 1024
116  *
117  * (default: ~20%)
118  */
119 unsigned int capacity_margin				= 1280;
120 
121 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
122 {
123 	lw->weight += inc;
124 	lw->inv_weight = 0;
125 }
126 
127 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
128 {
129 	lw->weight -= dec;
130 	lw->inv_weight = 0;
131 }
132 
133 static inline void update_load_set(struct load_weight *lw, unsigned long w)
134 {
135 	lw->weight = w;
136 	lw->inv_weight = 0;
137 }
138 
139 /*
140  * Increase the granularity value when there are more CPUs,
141  * because with more CPUs the 'effective latency' as visible
142  * to users decreases. But the relationship is not linear,
143  * so pick a second-best guess by going with the log2 of the
144  * number of CPUs.
145  *
146  * This idea comes from the SD scheduler of Con Kolivas:
147  */
148 static unsigned int get_update_sysctl_factor(void)
149 {
150 	unsigned int cpus = min_t(unsigned int, num_online_cpus(), 8);
151 	unsigned int factor;
152 
153 	switch (sysctl_sched_tunable_scaling) {
154 	case SCHED_TUNABLESCALING_NONE:
155 		factor = 1;
156 		break;
157 	case SCHED_TUNABLESCALING_LINEAR:
158 		factor = cpus;
159 		break;
160 	case SCHED_TUNABLESCALING_LOG:
161 	default:
162 		factor = 1 + ilog2(cpus);
163 		break;
164 	}
165 
166 	return factor;
167 }
168 
169 static void update_sysctl(void)
170 {
171 	unsigned int factor = get_update_sysctl_factor();
172 
173 #define SET_SYSCTL(name) \
174 	(sysctl_##name = (factor) * normalized_sysctl_##name)
175 	SET_SYSCTL(sched_min_granularity);
176 	SET_SYSCTL(sched_latency);
177 	SET_SYSCTL(sched_wakeup_granularity);
178 #undef SET_SYSCTL
179 }
180 
181 void sched_init_granularity(void)
182 {
183 	update_sysctl();
184 }
185 
186 #define WMULT_CONST	(~0U)
187 #define WMULT_SHIFT	32
188 
189 static void __update_inv_weight(struct load_weight *lw)
190 {
191 	unsigned long w;
192 
193 	if (likely(lw->inv_weight))
194 		return;
195 
196 	w = scale_load_down(lw->weight);
197 
198 	if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
199 		lw->inv_weight = 1;
200 	else if (unlikely(!w))
201 		lw->inv_weight = WMULT_CONST;
202 	else
203 		lw->inv_weight = WMULT_CONST / w;
204 }
205 
206 /*
207  * delta_exec * weight / lw.weight
208  *   OR
209  * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
210  *
211  * Either weight := NICE_0_LOAD and lw \e sched_prio_to_wmult[], in which case
212  * we're guaranteed shift stays positive because inv_weight is guaranteed to
213  * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
214  *
215  * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
216  * weight/lw.weight <= 1, and therefore our shift will also be positive.
217  */
218 static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw)
219 {
220 	u64 fact = scale_load_down(weight);
221 	int shift = WMULT_SHIFT;
222 
223 	__update_inv_weight(lw);
224 
225 	if (unlikely(fact >> 32)) {
226 		while (fact >> 32) {
227 			fact >>= 1;
228 			shift--;
229 		}
230 	}
231 
232 	/* hint to use a 32x32->64 mul */
233 	fact = (u64)(u32)fact * lw->inv_weight;
234 
235 	while (fact >> 32) {
236 		fact >>= 1;
237 		shift--;
238 	}
239 
240 	return mul_u64_u32_shr(delta_exec, fact, shift);
241 }
242 
243 
244 const struct sched_class fair_sched_class;
245 
246 /**************************************************************
247  * CFS operations on generic schedulable entities:
248  */
249 
250 #ifdef CONFIG_FAIR_GROUP_SCHED
251 
252 /* cpu runqueue to which this cfs_rq is attached */
253 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
254 {
255 	return cfs_rq->rq;
256 }
257 
258 /* An entity is a task if it doesn't "own" a runqueue */
259 #define entity_is_task(se)	(!se->my_q)
260 
261 static inline struct task_struct *task_of(struct sched_entity *se)
262 {
263 	SCHED_WARN_ON(!entity_is_task(se));
264 	return container_of(se, struct task_struct, se);
265 }
266 
267 /* Walk up scheduling entities hierarchy */
268 #define for_each_sched_entity(se) \
269 		for (; se; se = se->parent)
270 
271 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
272 {
273 	return p->se.cfs_rq;
274 }
275 
276 /* runqueue on which this entity is (to be) queued */
277 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
278 {
279 	return se->cfs_rq;
280 }
281 
282 /* runqueue "owned" by this group */
283 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
284 {
285 	return grp->my_q;
286 }
287 
288 static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
289 {
290 	if (!cfs_rq->on_list) {
291 		struct rq *rq = rq_of(cfs_rq);
292 		int cpu = cpu_of(rq);
293 		/*
294 		 * Ensure we either appear before our parent (if already
295 		 * enqueued) or force our parent to appear after us when it is
296 		 * enqueued. The fact that we always enqueue bottom-up
297 		 * reduces this to two cases and a special case for the root
298 		 * cfs_rq. Furthermore, it also means that we will always reset
299 		 * tmp_alone_branch either when the branch is connected
300 		 * to a tree or when we reach the beg of the tree
301 		 */
302 		if (cfs_rq->tg->parent &&
303 		    cfs_rq->tg->parent->cfs_rq[cpu]->on_list) {
304 			/*
305 			 * If parent is already on the list, we add the child
306 			 * just before. Thanks to circular linked property of
307 			 * the list, this means to put the child at the tail
308 			 * of the list that starts by parent.
309 			 */
310 			list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
311 				&(cfs_rq->tg->parent->cfs_rq[cpu]->leaf_cfs_rq_list));
312 			/*
313 			 * The branch is now connected to its tree so we can
314 			 * reset tmp_alone_branch to the beginning of the
315 			 * list.
316 			 */
317 			rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
318 		} else if (!cfs_rq->tg->parent) {
319 			/*
320 			 * cfs rq without parent should be put
321 			 * at the tail of the list.
322 			 */
323 			list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
324 				&rq->leaf_cfs_rq_list);
325 			/*
326 			 * We have reach the beg of a tree so we can reset
327 			 * tmp_alone_branch to the beginning of the list.
328 			 */
329 			rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
330 		} else {
331 			/*
332 			 * The parent has not already been added so we want to
333 			 * make sure that it will be put after us.
334 			 * tmp_alone_branch points to the beg of the branch
335 			 * where we will add parent.
336 			 */
337 			list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
338 				rq->tmp_alone_branch);
339 			/*
340 			 * update tmp_alone_branch to points to the new beg
341 			 * of the branch
342 			 */
343 			rq->tmp_alone_branch = &cfs_rq->leaf_cfs_rq_list;
344 		}
345 
346 		cfs_rq->on_list = 1;
347 	}
348 }
349 
350 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
351 {
352 	if (cfs_rq->on_list) {
353 		list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
354 		cfs_rq->on_list = 0;
355 	}
356 }
357 
358 /* Iterate thr' all leaf cfs_rq's on a runqueue */
359 #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos)			\
360 	list_for_each_entry_safe(cfs_rq, pos, &rq->leaf_cfs_rq_list,	\
361 				 leaf_cfs_rq_list)
362 
363 /* Do the two (enqueued) entities belong to the same group ? */
364 static inline struct cfs_rq *
365 is_same_group(struct sched_entity *se, struct sched_entity *pse)
366 {
367 	if (se->cfs_rq == pse->cfs_rq)
368 		return se->cfs_rq;
369 
370 	return NULL;
371 }
372 
373 static inline struct sched_entity *parent_entity(struct sched_entity *se)
374 {
375 	return se->parent;
376 }
377 
378 static void
379 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
380 {
381 	int se_depth, pse_depth;
382 
383 	/*
384 	 * preemption test can be made between sibling entities who are in the
385 	 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
386 	 * both tasks until we find their ancestors who are siblings of common
387 	 * parent.
388 	 */
389 
390 	/* First walk up until both entities are at same depth */
391 	se_depth = (*se)->depth;
392 	pse_depth = (*pse)->depth;
393 
394 	while (se_depth > pse_depth) {
395 		se_depth--;
396 		*se = parent_entity(*se);
397 	}
398 
399 	while (pse_depth > se_depth) {
400 		pse_depth--;
401 		*pse = parent_entity(*pse);
402 	}
403 
404 	while (!is_same_group(*se, *pse)) {
405 		*se = parent_entity(*se);
406 		*pse = parent_entity(*pse);
407 	}
408 }
409 
410 #else	/* !CONFIG_FAIR_GROUP_SCHED */
411 
412 static inline struct task_struct *task_of(struct sched_entity *se)
413 {
414 	return container_of(se, struct task_struct, se);
415 }
416 
417 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
418 {
419 	return container_of(cfs_rq, struct rq, cfs);
420 }
421 
422 #define entity_is_task(se)	1
423 
424 #define for_each_sched_entity(se) \
425 		for (; se; se = NULL)
426 
427 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
428 {
429 	return &task_rq(p)->cfs;
430 }
431 
432 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
433 {
434 	struct task_struct *p = task_of(se);
435 	struct rq *rq = task_rq(p);
436 
437 	return &rq->cfs;
438 }
439 
440 /* runqueue "owned" by this group */
441 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
442 {
443 	return NULL;
444 }
445 
446 static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
447 {
448 }
449 
450 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
451 {
452 }
453 
454 #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos)	\
455 		for (cfs_rq = &rq->cfs, pos = NULL; cfs_rq; cfs_rq = pos)
456 
457 static inline struct sched_entity *parent_entity(struct sched_entity *se)
458 {
459 	return NULL;
460 }
461 
462 static inline void
463 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
464 {
465 }
466 
467 #endif	/* CONFIG_FAIR_GROUP_SCHED */
468 
469 static __always_inline
470 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec);
471 
472 /**************************************************************
473  * Scheduling class tree data structure manipulation methods:
474  */
475 
476 static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
477 {
478 	s64 delta = (s64)(vruntime - max_vruntime);
479 	if (delta > 0)
480 		max_vruntime = vruntime;
481 
482 	return max_vruntime;
483 }
484 
485 static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
486 {
487 	s64 delta = (s64)(vruntime - min_vruntime);
488 	if (delta < 0)
489 		min_vruntime = vruntime;
490 
491 	return min_vruntime;
492 }
493 
494 static inline int entity_before(struct sched_entity *a,
495 				struct sched_entity *b)
496 {
497 	return (s64)(a->vruntime - b->vruntime) < 0;
498 }
499 
500 static void update_min_vruntime(struct cfs_rq *cfs_rq)
501 {
502 	struct sched_entity *curr = cfs_rq->curr;
503 	struct rb_node *leftmost = rb_first_cached(&cfs_rq->tasks_timeline);
504 
505 	u64 vruntime = cfs_rq->min_vruntime;
506 
507 	if (curr) {
508 		if (curr->on_rq)
509 			vruntime = curr->vruntime;
510 		else
511 			curr = NULL;
512 	}
513 
514 	if (leftmost) { /* non-empty tree */
515 		struct sched_entity *se;
516 		se = rb_entry(leftmost, struct sched_entity, run_node);
517 
518 		if (!curr)
519 			vruntime = se->vruntime;
520 		else
521 			vruntime = min_vruntime(vruntime, se->vruntime);
522 	}
523 
524 	/* ensure we never gain time by being placed backwards. */
525 	cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
526 #ifndef CONFIG_64BIT
527 	smp_wmb();
528 	cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
529 #endif
530 }
531 
532 /*
533  * Enqueue an entity into the rb-tree:
534  */
535 static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
536 {
537 	struct rb_node **link = &cfs_rq->tasks_timeline.rb_root.rb_node;
538 	struct rb_node *parent = NULL;
539 	struct sched_entity *entry;
540 	bool leftmost = true;
541 
542 	/*
543 	 * Find the right place in the rbtree:
544 	 */
545 	while (*link) {
546 		parent = *link;
547 		entry = rb_entry(parent, struct sched_entity, run_node);
548 		/*
549 		 * We dont care about collisions. Nodes with
550 		 * the same key stay together.
551 		 */
552 		if (entity_before(se, entry)) {
553 			link = &parent->rb_left;
554 		} else {
555 			link = &parent->rb_right;
556 			leftmost = false;
557 		}
558 	}
559 
560 	rb_link_node(&se->run_node, parent, link);
561 	rb_insert_color_cached(&se->run_node,
562 			       &cfs_rq->tasks_timeline, leftmost);
563 }
564 
565 static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
566 {
567 	rb_erase_cached(&se->run_node, &cfs_rq->tasks_timeline);
568 }
569 
570 struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
571 {
572 	struct rb_node *left = rb_first_cached(&cfs_rq->tasks_timeline);
573 
574 	if (!left)
575 		return NULL;
576 
577 	return rb_entry(left, struct sched_entity, run_node);
578 }
579 
580 static struct sched_entity *__pick_next_entity(struct sched_entity *se)
581 {
582 	struct rb_node *next = rb_next(&se->run_node);
583 
584 	if (!next)
585 		return NULL;
586 
587 	return rb_entry(next, struct sched_entity, run_node);
588 }
589 
590 #ifdef CONFIG_SCHED_DEBUG
591 struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
592 {
593 	struct rb_node *last = rb_last(&cfs_rq->tasks_timeline.rb_root);
594 
595 	if (!last)
596 		return NULL;
597 
598 	return rb_entry(last, struct sched_entity, run_node);
599 }
600 
601 /**************************************************************
602  * Scheduling class statistics methods:
603  */
604 
605 int sched_proc_update_handler(struct ctl_table *table, int write,
606 		void __user *buffer, size_t *lenp,
607 		loff_t *ppos)
608 {
609 	int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
610 	unsigned int factor = get_update_sysctl_factor();
611 
612 	if (ret || !write)
613 		return ret;
614 
615 	sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
616 					sysctl_sched_min_granularity);
617 
618 #define WRT_SYSCTL(name) \
619 	(normalized_sysctl_##name = sysctl_##name / (factor))
620 	WRT_SYSCTL(sched_min_granularity);
621 	WRT_SYSCTL(sched_latency);
622 	WRT_SYSCTL(sched_wakeup_granularity);
623 #undef WRT_SYSCTL
624 
625 	return 0;
626 }
627 #endif
628 
629 /*
630  * delta /= w
631  */
632 static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
633 {
634 	if (unlikely(se->load.weight != NICE_0_LOAD))
635 		delta = __calc_delta(delta, NICE_0_LOAD, &se->load);
636 
637 	return delta;
638 }
639 
640 /*
641  * The idea is to set a period in which each task runs once.
642  *
643  * When there are too many tasks (sched_nr_latency) we have to stretch
644  * this period because otherwise the slices get too small.
645  *
646  * p = (nr <= nl) ? l : l*nr/nl
647  */
648 static u64 __sched_period(unsigned long nr_running)
649 {
650 	if (unlikely(nr_running > sched_nr_latency))
651 		return nr_running * sysctl_sched_min_granularity;
652 	else
653 		return sysctl_sched_latency;
654 }
655 
656 /*
657  * We calculate the wall-time slice from the period by taking a part
658  * proportional to the weight.
659  *
660  * s = p*P[w/rw]
661  */
662 static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
663 {
664 	u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
665 
666 	for_each_sched_entity(se) {
667 		struct load_weight *load;
668 		struct load_weight lw;
669 
670 		cfs_rq = cfs_rq_of(se);
671 		load = &cfs_rq->load;
672 
673 		if (unlikely(!se->on_rq)) {
674 			lw = cfs_rq->load;
675 
676 			update_load_add(&lw, se->load.weight);
677 			load = &lw;
678 		}
679 		slice = __calc_delta(slice, se->load.weight, load);
680 	}
681 	return slice;
682 }
683 
684 /*
685  * We calculate the vruntime slice of a to-be-inserted task.
686  *
687  * vs = s/w
688  */
689 static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
690 {
691 	return calc_delta_fair(sched_slice(cfs_rq, se), se);
692 }
693 
694 #ifdef CONFIG_SMP
695 
696 #include "sched-pelt.h"
697 
698 static int select_idle_sibling(struct task_struct *p, int prev_cpu, int cpu);
699 static unsigned long task_h_load(struct task_struct *p);
700 
701 /* Give new sched_entity start runnable values to heavy its load in infant time */
702 void init_entity_runnable_average(struct sched_entity *se)
703 {
704 	struct sched_avg *sa = &se->avg;
705 
706 	memset(sa, 0, sizeof(*sa));
707 
708 	/*
709 	 * Tasks are intialized with full load to be seen as heavy tasks until
710 	 * they get a chance to stabilize to their real load level.
711 	 * Group entities are intialized with zero load to reflect the fact that
712 	 * nothing has been attached to the task group yet.
713 	 */
714 	if (entity_is_task(se))
715 		sa->runnable_load_avg = sa->load_avg = scale_load_down(se->load.weight);
716 
717 	se->runnable_weight = se->load.weight;
718 
719 	/* when this task enqueue'ed, it will contribute to its cfs_rq's load_avg */
720 }
721 
722 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq);
723 static void attach_entity_cfs_rq(struct sched_entity *se);
724 
725 /*
726  * With new tasks being created, their initial util_avgs are extrapolated
727  * based on the cfs_rq's current util_avg:
728  *
729  *   util_avg = cfs_rq->util_avg / (cfs_rq->load_avg + 1) * se.load.weight
730  *
731  * However, in many cases, the above util_avg does not give a desired
732  * value. Moreover, the sum of the util_avgs may be divergent, such
733  * as when the series is a harmonic series.
734  *
735  * To solve this problem, we also cap the util_avg of successive tasks to
736  * only 1/2 of the left utilization budget:
737  *
738  *   util_avg_cap = (1024 - cfs_rq->avg.util_avg) / 2^n
739  *
740  * where n denotes the nth task.
741  *
742  * For example, a simplest series from the beginning would be like:
743  *
744  *  task  util_avg: 512, 256, 128,  64,  32,   16,    8, ...
745  * cfs_rq util_avg: 512, 768, 896, 960, 992, 1008, 1016, ...
746  *
747  * Finally, that extrapolated util_avg is clamped to the cap (util_avg_cap)
748  * if util_avg > util_avg_cap.
749  */
750 void post_init_entity_util_avg(struct sched_entity *se)
751 {
752 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
753 	struct sched_avg *sa = &se->avg;
754 	long cap = (long)(SCHED_CAPACITY_SCALE - cfs_rq->avg.util_avg) / 2;
755 
756 	if (cap > 0) {
757 		if (cfs_rq->avg.util_avg != 0) {
758 			sa->util_avg  = cfs_rq->avg.util_avg * se->load.weight;
759 			sa->util_avg /= (cfs_rq->avg.load_avg + 1);
760 
761 			if (sa->util_avg > cap)
762 				sa->util_avg = cap;
763 		} else {
764 			sa->util_avg = cap;
765 		}
766 	}
767 
768 	if (entity_is_task(se)) {
769 		struct task_struct *p = task_of(se);
770 		if (p->sched_class != &fair_sched_class) {
771 			/*
772 			 * For !fair tasks do:
773 			 *
774 			update_cfs_rq_load_avg(now, cfs_rq);
775 			attach_entity_load_avg(cfs_rq, se, 0);
776 			switched_from_fair(rq, p);
777 			 *
778 			 * such that the next switched_to_fair() has the
779 			 * expected state.
780 			 */
781 			se->avg.last_update_time = cfs_rq_clock_task(cfs_rq);
782 			return;
783 		}
784 	}
785 
786 	attach_entity_cfs_rq(se);
787 }
788 
789 #else /* !CONFIG_SMP */
790 void init_entity_runnable_average(struct sched_entity *se)
791 {
792 }
793 void post_init_entity_util_avg(struct sched_entity *se)
794 {
795 }
796 static void update_tg_load_avg(struct cfs_rq *cfs_rq, int force)
797 {
798 }
799 #endif /* CONFIG_SMP */
800 
801 /*
802  * Update the current task's runtime statistics.
803  */
804 static void update_curr(struct cfs_rq *cfs_rq)
805 {
806 	struct sched_entity *curr = cfs_rq->curr;
807 	u64 now = rq_clock_task(rq_of(cfs_rq));
808 	u64 delta_exec;
809 
810 	if (unlikely(!curr))
811 		return;
812 
813 	delta_exec = now - curr->exec_start;
814 	if (unlikely((s64)delta_exec <= 0))
815 		return;
816 
817 	curr->exec_start = now;
818 
819 	schedstat_set(curr->statistics.exec_max,
820 		      max(delta_exec, curr->statistics.exec_max));
821 
822 	curr->sum_exec_runtime += delta_exec;
823 	schedstat_add(cfs_rq->exec_clock, delta_exec);
824 
825 	curr->vruntime += calc_delta_fair(delta_exec, curr);
826 	update_min_vruntime(cfs_rq);
827 
828 	if (entity_is_task(curr)) {
829 		struct task_struct *curtask = task_of(curr);
830 
831 		trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
832 		cgroup_account_cputime(curtask, delta_exec);
833 		account_group_exec_runtime(curtask, delta_exec);
834 	}
835 
836 	account_cfs_rq_runtime(cfs_rq, delta_exec);
837 }
838 
839 static void update_curr_fair(struct rq *rq)
840 {
841 	update_curr(cfs_rq_of(&rq->curr->se));
842 }
843 
844 static inline void
845 update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
846 {
847 	u64 wait_start, prev_wait_start;
848 
849 	if (!schedstat_enabled())
850 		return;
851 
852 	wait_start = rq_clock(rq_of(cfs_rq));
853 	prev_wait_start = schedstat_val(se->statistics.wait_start);
854 
855 	if (entity_is_task(se) && task_on_rq_migrating(task_of(se)) &&
856 	    likely(wait_start > prev_wait_start))
857 		wait_start -= prev_wait_start;
858 
859 	__schedstat_set(se->statistics.wait_start, wait_start);
860 }
861 
862 static inline void
863 update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
864 {
865 	struct task_struct *p;
866 	u64 delta;
867 
868 	if (!schedstat_enabled())
869 		return;
870 
871 	delta = rq_clock(rq_of(cfs_rq)) - schedstat_val(se->statistics.wait_start);
872 
873 	if (entity_is_task(se)) {
874 		p = task_of(se);
875 		if (task_on_rq_migrating(p)) {
876 			/*
877 			 * Preserve migrating task's wait time so wait_start
878 			 * time stamp can be adjusted to accumulate wait time
879 			 * prior to migration.
880 			 */
881 			__schedstat_set(se->statistics.wait_start, delta);
882 			return;
883 		}
884 		trace_sched_stat_wait(p, delta);
885 	}
886 
887 	__schedstat_set(se->statistics.wait_max,
888 		      max(schedstat_val(se->statistics.wait_max), delta));
889 	__schedstat_inc(se->statistics.wait_count);
890 	__schedstat_add(se->statistics.wait_sum, delta);
891 	__schedstat_set(se->statistics.wait_start, 0);
892 }
893 
894 static inline void
895 update_stats_enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
896 {
897 	struct task_struct *tsk = NULL;
898 	u64 sleep_start, block_start;
899 
900 	if (!schedstat_enabled())
901 		return;
902 
903 	sleep_start = schedstat_val(se->statistics.sleep_start);
904 	block_start = schedstat_val(se->statistics.block_start);
905 
906 	if (entity_is_task(se))
907 		tsk = task_of(se);
908 
909 	if (sleep_start) {
910 		u64 delta = rq_clock(rq_of(cfs_rq)) - sleep_start;
911 
912 		if ((s64)delta < 0)
913 			delta = 0;
914 
915 		if (unlikely(delta > schedstat_val(se->statistics.sleep_max)))
916 			__schedstat_set(se->statistics.sleep_max, delta);
917 
918 		__schedstat_set(se->statistics.sleep_start, 0);
919 		__schedstat_add(se->statistics.sum_sleep_runtime, delta);
920 
921 		if (tsk) {
922 			account_scheduler_latency(tsk, delta >> 10, 1);
923 			trace_sched_stat_sleep(tsk, delta);
924 		}
925 	}
926 	if (block_start) {
927 		u64 delta = rq_clock(rq_of(cfs_rq)) - block_start;
928 
929 		if ((s64)delta < 0)
930 			delta = 0;
931 
932 		if (unlikely(delta > schedstat_val(se->statistics.block_max)))
933 			__schedstat_set(se->statistics.block_max, delta);
934 
935 		__schedstat_set(se->statistics.block_start, 0);
936 		__schedstat_add(se->statistics.sum_sleep_runtime, delta);
937 
938 		if (tsk) {
939 			if (tsk->in_iowait) {
940 				__schedstat_add(se->statistics.iowait_sum, delta);
941 				__schedstat_inc(se->statistics.iowait_count);
942 				trace_sched_stat_iowait(tsk, delta);
943 			}
944 
945 			trace_sched_stat_blocked(tsk, delta);
946 
947 			/*
948 			 * Blocking time is in units of nanosecs, so shift by
949 			 * 20 to get a milliseconds-range estimation of the
950 			 * amount of time that the task spent sleeping:
951 			 */
952 			if (unlikely(prof_on == SLEEP_PROFILING)) {
953 				profile_hits(SLEEP_PROFILING,
954 						(void *)get_wchan(tsk),
955 						delta >> 20);
956 			}
957 			account_scheduler_latency(tsk, delta >> 10, 0);
958 		}
959 	}
960 }
961 
962 /*
963  * Task is being enqueued - update stats:
964  */
965 static inline void
966 update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
967 {
968 	if (!schedstat_enabled())
969 		return;
970 
971 	/*
972 	 * Are we enqueueing a waiting task? (for current tasks
973 	 * a dequeue/enqueue event is a NOP)
974 	 */
975 	if (se != cfs_rq->curr)
976 		update_stats_wait_start(cfs_rq, se);
977 
978 	if (flags & ENQUEUE_WAKEUP)
979 		update_stats_enqueue_sleeper(cfs_rq, se);
980 }
981 
982 static inline void
983 update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
984 {
985 
986 	if (!schedstat_enabled())
987 		return;
988 
989 	/*
990 	 * Mark the end of the wait period if dequeueing a
991 	 * waiting task:
992 	 */
993 	if (se != cfs_rq->curr)
994 		update_stats_wait_end(cfs_rq, se);
995 
996 	if ((flags & DEQUEUE_SLEEP) && entity_is_task(se)) {
997 		struct task_struct *tsk = task_of(se);
998 
999 		if (tsk->state & TASK_INTERRUPTIBLE)
1000 			__schedstat_set(se->statistics.sleep_start,
1001 				      rq_clock(rq_of(cfs_rq)));
1002 		if (tsk->state & TASK_UNINTERRUPTIBLE)
1003 			__schedstat_set(se->statistics.block_start,
1004 				      rq_clock(rq_of(cfs_rq)));
1005 	}
1006 }
1007 
1008 /*
1009  * We are picking a new current task - update its stats:
1010  */
1011 static inline void
1012 update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
1013 {
1014 	/*
1015 	 * We are starting a new run period:
1016 	 */
1017 	se->exec_start = rq_clock_task(rq_of(cfs_rq));
1018 }
1019 
1020 /**************************************************
1021  * Scheduling class queueing methods:
1022  */
1023 
1024 #ifdef CONFIG_NUMA_BALANCING
1025 /*
1026  * Approximate time to scan a full NUMA task in ms. The task scan period is
1027  * calculated based on the tasks virtual memory size and
1028  * numa_balancing_scan_size.
1029  */
1030 unsigned int sysctl_numa_balancing_scan_period_min = 1000;
1031 unsigned int sysctl_numa_balancing_scan_period_max = 60000;
1032 
1033 /* Portion of address space to scan in MB */
1034 unsigned int sysctl_numa_balancing_scan_size = 256;
1035 
1036 /* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
1037 unsigned int sysctl_numa_balancing_scan_delay = 1000;
1038 
1039 struct numa_group {
1040 	atomic_t refcount;
1041 
1042 	spinlock_t lock; /* nr_tasks, tasks */
1043 	int nr_tasks;
1044 	pid_t gid;
1045 	int active_nodes;
1046 
1047 	struct rcu_head rcu;
1048 	unsigned long total_faults;
1049 	unsigned long max_faults_cpu;
1050 	/*
1051 	 * Faults_cpu is used to decide whether memory should move
1052 	 * towards the CPU. As a consequence, these stats are weighted
1053 	 * more by CPU use than by memory faults.
1054 	 */
1055 	unsigned long *faults_cpu;
1056 	unsigned long faults[0];
1057 };
1058 
1059 static inline unsigned long group_faults_priv(struct numa_group *ng);
1060 static inline unsigned long group_faults_shared(struct numa_group *ng);
1061 
1062 static unsigned int task_nr_scan_windows(struct task_struct *p)
1063 {
1064 	unsigned long rss = 0;
1065 	unsigned long nr_scan_pages;
1066 
1067 	/*
1068 	 * Calculations based on RSS as non-present and empty pages are skipped
1069 	 * by the PTE scanner and NUMA hinting faults should be trapped based
1070 	 * on resident pages
1071 	 */
1072 	nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
1073 	rss = get_mm_rss(p->mm);
1074 	if (!rss)
1075 		rss = nr_scan_pages;
1076 
1077 	rss = round_up(rss, nr_scan_pages);
1078 	return rss / nr_scan_pages;
1079 }
1080 
1081 /* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
1082 #define MAX_SCAN_WINDOW 2560
1083 
1084 static unsigned int task_scan_min(struct task_struct *p)
1085 {
1086 	unsigned int scan_size = READ_ONCE(sysctl_numa_balancing_scan_size);
1087 	unsigned int scan, floor;
1088 	unsigned int windows = 1;
1089 
1090 	if (scan_size < MAX_SCAN_WINDOW)
1091 		windows = MAX_SCAN_WINDOW / scan_size;
1092 	floor = 1000 / windows;
1093 
1094 	scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
1095 	return max_t(unsigned int, floor, scan);
1096 }
1097 
1098 static unsigned int task_scan_start(struct task_struct *p)
1099 {
1100 	unsigned long smin = task_scan_min(p);
1101 	unsigned long period = smin;
1102 
1103 	/* Scale the maximum scan period with the amount of shared memory. */
1104 	if (p->numa_group) {
1105 		struct numa_group *ng = p->numa_group;
1106 		unsigned long shared = group_faults_shared(ng);
1107 		unsigned long private = group_faults_priv(ng);
1108 
1109 		period *= atomic_read(&ng->refcount);
1110 		period *= shared + 1;
1111 		period /= private + shared + 1;
1112 	}
1113 
1114 	return max(smin, period);
1115 }
1116 
1117 static unsigned int task_scan_max(struct task_struct *p)
1118 {
1119 	unsigned long smin = task_scan_min(p);
1120 	unsigned long smax;
1121 
1122 	/* Watch for min being lower than max due to floor calculations */
1123 	smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
1124 
1125 	/* Scale the maximum scan period with the amount of shared memory. */
1126 	if (p->numa_group) {
1127 		struct numa_group *ng = p->numa_group;
1128 		unsigned long shared = group_faults_shared(ng);
1129 		unsigned long private = group_faults_priv(ng);
1130 		unsigned long period = smax;
1131 
1132 		period *= atomic_read(&ng->refcount);
1133 		period *= shared + 1;
1134 		period /= private + shared + 1;
1135 
1136 		smax = max(smax, period);
1137 	}
1138 
1139 	return max(smin, smax);
1140 }
1141 
1142 static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
1143 {
1144 	rq->nr_numa_running += (p->numa_preferred_nid != -1);
1145 	rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
1146 }
1147 
1148 static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
1149 {
1150 	rq->nr_numa_running -= (p->numa_preferred_nid != -1);
1151 	rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
1152 }
1153 
1154 /* Shared or private faults. */
1155 #define NR_NUMA_HINT_FAULT_TYPES 2
1156 
1157 /* Memory and CPU locality */
1158 #define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2)
1159 
1160 /* Averaged statistics, and temporary buffers. */
1161 #define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2)
1162 
1163 pid_t task_numa_group_id(struct task_struct *p)
1164 {
1165 	return p->numa_group ? p->numa_group->gid : 0;
1166 }
1167 
1168 /*
1169  * The averaged statistics, shared & private, memory & CPU,
1170  * occupy the first half of the array. The second half of the
1171  * array is for current counters, which are averaged into the
1172  * first set by task_numa_placement.
1173  */
1174 static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv)
1175 {
1176 	return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv;
1177 }
1178 
1179 static inline unsigned long task_faults(struct task_struct *p, int nid)
1180 {
1181 	if (!p->numa_faults)
1182 		return 0;
1183 
1184 	return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1185 		p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)];
1186 }
1187 
1188 static inline unsigned long group_faults(struct task_struct *p, int nid)
1189 {
1190 	if (!p->numa_group)
1191 		return 0;
1192 
1193 	return p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1194 		p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 1)];
1195 }
1196 
1197 static inline unsigned long group_faults_cpu(struct numa_group *group, int nid)
1198 {
1199 	return group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 0)] +
1200 		group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 1)];
1201 }
1202 
1203 static inline unsigned long group_faults_priv(struct numa_group *ng)
1204 {
1205 	unsigned long faults = 0;
1206 	int node;
1207 
1208 	for_each_online_node(node) {
1209 		faults += ng->faults[task_faults_idx(NUMA_MEM, node, 1)];
1210 	}
1211 
1212 	return faults;
1213 }
1214 
1215 static inline unsigned long group_faults_shared(struct numa_group *ng)
1216 {
1217 	unsigned long faults = 0;
1218 	int node;
1219 
1220 	for_each_online_node(node) {
1221 		faults += ng->faults[task_faults_idx(NUMA_MEM, node, 0)];
1222 	}
1223 
1224 	return faults;
1225 }
1226 
1227 /*
1228  * A node triggering more than 1/3 as many NUMA faults as the maximum is
1229  * considered part of a numa group's pseudo-interleaving set. Migrations
1230  * between these nodes are slowed down, to allow things to settle down.
1231  */
1232 #define ACTIVE_NODE_FRACTION 3
1233 
1234 static bool numa_is_active_node(int nid, struct numa_group *ng)
1235 {
1236 	return group_faults_cpu(ng, nid) * ACTIVE_NODE_FRACTION > ng->max_faults_cpu;
1237 }
1238 
1239 /* Handle placement on systems where not all nodes are directly connected. */
1240 static unsigned long score_nearby_nodes(struct task_struct *p, int nid,
1241 					int maxdist, bool task)
1242 {
1243 	unsigned long score = 0;
1244 	int node;
1245 
1246 	/*
1247 	 * All nodes are directly connected, and the same distance
1248 	 * from each other. No need for fancy placement algorithms.
1249 	 */
1250 	if (sched_numa_topology_type == NUMA_DIRECT)
1251 		return 0;
1252 
1253 	/*
1254 	 * This code is called for each node, introducing N^2 complexity,
1255 	 * which should be ok given the number of nodes rarely exceeds 8.
1256 	 */
1257 	for_each_online_node(node) {
1258 		unsigned long faults;
1259 		int dist = node_distance(nid, node);
1260 
1261 		/*
1262 		 * The furthest away nodes in the system are not interesting
1263 		 * for placement; nid was already counted.
1264 		 */
1265 		if (dist == sched_max_numa_distance || node == nid)
1266 			continue;
1267 
1268 		/*
1269 		 * On systems with a backplane NUMA topology, compare groups
1270 		 * of nodes, and move tasks towards the group with the most
1271 		 * memory accesses. When comparing two nodes at distance
1272 		 * "hoplimit", only nodes closer by than "hoplimit" are part
1273 		 * of each group. Skip other nodes.
1274 		 */
1275 		if (sched_numa_topology_type == NUMA_BACKPLANE &&
1276 					dist > maxdist)
1277 			continue;
1278 
1279 		/* Add up the faults from nearby nodes. */
1280 		if (task)
1281 			faults = task_faults(p, node);
1282 		else
1283 			faults = group_faults(p, node);
1284 
1285 		/*
1286 		 * On systems with a glueless mesh NUMA topology, there are
1287 		 * no fixed "groups of nodes". Instead, nodes that are not
1288 		 * directly connected bounce traffic through intermediate
1289 		 * nodes; a numa_group can occupy any set of nodes.
1290 		 * The further away a node is, the less the faults count.
1291 		 * This seems to result in good task placement.
1292 		 */
1293 		if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
1294 			faults *= (sched_max_numa_distance - dist);
1295 			faults /= (sched_max_numa_distance - LOCAL_DISTANCE);
1296 		}
1297 
1298 		score += faults;
1299 	}
1300 
1301 	return score;
1302 }
1303 
1304 /*
1305  * These return the fraction of accesses done by a particular task, or
1306  * task group, on a particular numa node.  The group weight is given a
1307  * larger multiplier, in order to group tasks together that are almost
1308  * evenly spread out between numa nodes.
1309  */
1310 static inline unsigned long task_weight(struct task_struct *p, int nid,
1311 					int dist)
1312 {
1313 	unsigned long faults, total_faults;
1314 
1315 	if (!p->numa_faults)
1316 		return 0;
1317 
1318 	total_faults = p->total_numa_faults;
1319 
1320 	if (!total_faults)
1321 		return 0;
1322 
1323 	faults = task_faults(p, nid);
1324 	faults += score_nearby_nodes(p, nid, dist, true);
1325 
1326 	return 1000 * faults / total_faults;
1327 }
1328 
1329 static inline unsigned long group_weight(struct task_struct *p, int nid,
1330 					 int dist)
1331 {
1332 	unsigned long faults, total_faults;
1333 
1334 	if (!p->numa_group)
1335 		return 0;
1336 
1337 	total_faults = p->numa_group->total_faults;
1338 
1339 	if (!total_faults)
1340 		return 0;
1341 
1342 	faults = group_faults(p, nid);
1343 	faults += score_nearby_nodes(p, nid, dist, false);
1344 
1345 	return 1000 * faults / total_faults;
1346 }
1347 
1348 bool should_numa_migrate_memory(struct task_struct *p, struct page * page,
1349 				int src_nid, int dst_cpu)
1350 {
1351 	struct numa_group *ng = p->numa_group;
1352 	int dst_nid = cpu_to_node(dst_cpu);
1353 	int last_cpupid, this_cpupid;
1354 
1355 	this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid);
1356 
1357 	/*
1358 	 * Multi-stage node selection is used in conjunction with a periodic
1359 	 * migration fault to build a temporal task<->page relation. By using
1360 	 * a two-stage filter we remove short/unlikely relations.
1361 	 *
1362 	 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate
1363 	 * a task's usage of a particular page (n_p) per total usage of this
1364 	 * page (n_t) (in a given time-span) to a probability.
1365 	 *
1366 	 * Our periodic faults will sample this probability and getting the
1367 	 * same result twice in a row, given these samples are fully
1368 	 * independent, is then given by P(n)^2, provided our sample period
1369 	 * is sufficiently short compared to the usage pattern.
1370 	 *
1371 	 * This quadric squishes small probabilities, making it less likely we
1372 	 * act on an unlikely task<->page relation.
1373 	 */
1374 	last_cpupid = page_cpupid_xchg_last(page, this_cpupid);
1375 	if (!cpupid_pid_unset(last_cpupid) &&
1376 				cpupid_to_nid(last_cpupid) != dst_nid)
1377 		return false;
1378 
1379 	/* Always allow migrate on private faults */
1380 	if (cpupid_match_pid(p, last_cpupid))
1381 		return true;
1382 
1383 	/* A shared fault, but p->numa_group has not been set up yet. */
1384 	if (!ng)
1385 		return true;
1386 
1387 	/*
1388 	 * Destination node is much more heavily used than the source
1389 	 * node? Allow migration.
1390 	 */
1391 	if (group_faults_cpu(ng, dst_nid) > group_faults_cpu(ng, src_nid) *
1392 					ACTIVE_NODE_FRACTION)
1393 		return true;
1394 
1395 	/*
1396 	 * Distribute memory according to CPU & memory use on each node,
1397 	 * with 3/4 hysteresis to avoid unnecessary memory migrations:
1398 	 *
1399 	 * faults_cpu(dst)   3   faults_cpu(src)
1400 	 * --------------- * - > ---------------
1401 	 * faults_mem(dst)   4   faults_mem(src)
1402 	 */
1403 	return group_faults_cpu(ng, dst_nid) * group_faults(p, src_nid) * 3 >
1404 	       group_faults_cpu(ng, src_nid) * group_faults(p, dst_nid) * 4;
1405 }
1406 
1407 static unsigned long weighted_cpuload(struct rq *rq);
1408 static unsigned long source_load(int cpu, int type);
1409 static unsigned long target_load(int cpu, int type);
1410 static unsigned long capacity_of(int cpu);
1411 
1412 /* Cached statistics for all CPUs within a node */
1413 struct numa_stats {
1414 	unsigned long nr_running;
1415 	unsigned long load;
1416 
1417 	/* Total compute capacity of CPUs on a node */
1418 	unsigned long compute_capacity;
1419 
1420 	/* Approximate capacity in terms of runnable tasks on a node */
1421 	unsigned long task_capacity;
1422 	int has_free_capacity;
1423 };
1424 
1425 /*
1426  * XXX borrowed from update_sg_lb_stats
1427  */
1428 static void update_numa_stats(struct numa_stats *ns, int nid)
1429 {
1430 	int smt, cpu, cpus = 0;
1431 	unsigned long capacity;
1432 
1433 	memset(ns, 0, sizeof(*ns));
1434 	for_each_cpu(cpu, cpumask_of_node(nid)) {
1435 		struct rq *rq = cpu_rq(cpu);
1436 
1437 		ns->nr_running += rq->nr_running;
1438 		ns->load += weighted_cpuload(rq);
1439 		ns->compute_capacity += capacity_of(cpu);
1440 
1441 		cpus++;
1442 	}
1443 
1444 	/*
1445 	 * If we raced with hotplug and there are no CPUs left in our mask
1446 	 * the @ns structure is NULL'ed and task_numa_compare() will
1447 	 * not find this node attractive.
1448 	 *
1449 	 * We'll either bail at !has_free_capacity, or we'll detect a huge
1450 	 * imbalance and bail there.
1451 	 */
1452 	if (!cpus)
1453 		return;
1454 
1455 	/* smt := ceil(cpus / capacity), assumes: 1 < smt_power < 2 */
1456 	smt = DIV_ROUND_UP(SCHED_CAPACITY_SCALE * cpus, ns->compute_capacity);
1457 	capacity = cpus / smt; /* cores */
1458 
1459 	ns->task_capacity = min_t(unsigned, capacity,
1460 		DIV_ROUND_CLOSEST(ns->compute_capacity, SCHED_CAPACITY_SCALE));
1461 	ns->has_free_capacity = (ns->nr_running < ns->task_capacity);
1462 }
1463 
1464 struct task_numa_env {
1465 	struct task_struct *p;
1466 
1467 	int src_cpu, src_nid;
1468 	int dst_cpu, dst_nid;
1469 
1470 	struct numa_stats src_stats, dst_stats;
1471 
1472 	int imbalance_pct;
1473 	int dist;
1474 
1475 	struct task_struct *best_task;
1476 	long best_imp;
1477 	int best_cpu;
1478 };
1479 
1480 static void task_numa_assign(struct task_numa_env *env,
1481 			     struct task_struct *p, long imp)
1482 {
1483 	if (env->best_task)
1484 		put_task_struct(env->best_task);
1485 	if (p)
1486 		get_task_struct(p);
1487 
1488 	env->best_task = p;
1489 	env->best_imp = imp;
1490 	env->best_cpu = env->dst_cpu;
1491 }
1492 
1493 static bool load_too_imbalanced(long src_load, long dst_load,
1494 				struct task_numa_env *env)
1495 {
1496 	long imb, old_imb;
1497 	long orig_src_load, orig_dst_load;
1498 	long src_capacity, dst_capacity;
1499 
1500 	/*
1501 	 * The load is corrected for the CPU capacity available on each node.
1502 	 *
1503 	 * src_load        dst_load
1504 	 * ------------ vs ---------
1505 	 * src_capacity    dst_capacity
1506 	 */
1507 	src_capacity = env->src_stats.compute_capacity;
1508 	dst_capacity = env->dst_stats.compute_capacity;
1509 
1510 	/* We care about the slope of the imbalance, not the direction. */
1511 	if (dst_load < src_load)
1512 		swap(dst_load, src_load);
1513 
1514 	/* Is the difference below the threshold? */
1515 	imb = dst_load * src_capacity * 100 -
1516 	      src_load * dst_capacity * env->imbalance_pct;
1517 	if (imb <= 0)
1518 		return false;
1519 
1520 	/*
1521 	 * The imbalance is above the allowed threshold.
1522 	 * Compare it with the old imbalance.
1523 	 */
1524 	orig_src_load = env->src_stats.load;
1525 	orig_dst_load = env->dst_stats.load;
1526 
1527 	if (orig_dst_load < orig_src_load)
1528 		swap(orig_dst_load, orig_src_load);
1529 
1530 	old_imb = orig_dst_load * src_capacity * 100 -
1531 		  orig_src_load * dst_capacity * env->imbalance_pct;
1532 
1533 	/* Would this change make things worse? */
1534 	return (imb > old_imb);
1535 }
1536 
1537 /*
1538  * This checks if the overall compute and NUMA accesses of the system would
1539  * be improved if the source tasks was migrated to the target dst_cpu taking
1540  * into account that it might be best if task running on the dst_cpu should
1541  * be exchanged with the source task
1542  */
1543 static void task_numa_compare(struct task_numa_env *env,
1544 			      long taskimp, long groupimp)
1545 {
1546 	struct rq *src_rq = cpu_rq(env->src_cpu);
1547 	struct rq *dst_rq = cpu_rq(env->dst_cpu);
1548 	struct task_struct *cur;
1549 	long src_load, dst_load;
1550 	long load;
1551 	long imp = env->p->numa_group ? groupimp : taskimp;
1552 	long moveimp = imp;
1553 	int dist = env->dist;
1554 
1555 	rcu_read_lock();
1556 	cur = task_rcu_dereference(&dst_rq->curr);
1557 	if (cur && ((cur->flags & PF_EXITING) || is_idle_task(cur)))
1558 		cur = NULL;
1559 
1560 	/*
1561 	 * Because we have preemption enabled we can get migrated around and
1562 	 * end try selecting ourselves (current == env->p) as a swap candidate.
1563 	 */
1564 	if (cur == env->p)
1565 		goto unlock;
1566 
1567 	/*
1568 	 * "imp" is the fault differential for the source task between the
1569 	 * source and destination node. Calculate the total differential for
1570 	 * the source task and potential destination task. The more negative
1571 	 * the value is, the more rmeote accesses that would be expected to
1572 	 * be incurred if the tasks were swapped.
1573 	 */
1574 	if (cur) {
1575 		/* Skip this swap candidate if cannot move to the source CPU: */
1576 		if (!cpumask_test_cpu(env->src_cpu, &cur->cpus_allowed))
1577 			goto unlock;
1578 
1579 		/*
1580 		 * If dst and source tasks are in the same NUMA group, or not
1581 		 * in any group then look only at task weights.
1582 		 */
1583 		if (cur->numa_group == env->p->numa_group) {
1584 			imp = taskimp + task_weight(cur, env->src_nid, dist) -
1585 			      task_weight(cur, env->dst_nid, dist);
1586 			/*
1587 			 * Add some hysteresis to prevent swapping the
1588 			 * tasks within a group over tiny differences.
1589 			 */
1590 			if (cur->numa_group)
1591 				imp -= imp/16;
1592 		} else {
1593 			/*
1594 			 * Compare the group weights. If a task is all by
1595 			 * itself (not part of a group), use the task weight
1596 			 * instead.
1597 			 */
1598 			if (cur->numa_group)
1599 				imp += group_weight(cur, env->src_nid, dist) -
1600 				       group_weight(cur, env->dst_nid, dist);
1601 			else
1602 				imp += task_weight(cur, env->src_nid, dist) -
1603 				       task_weight(cur, env->dst_nid, dist);
1604 		}
1605 	}
1606 
1607 	if (imp <= env->best_imp && moveimp <= env->best_imp)
1608 		goto unlock;
1609 
1610 	if (!cur) {
1611 		/* Is there capacity at our destination? */
1612 		if (env->src_stats.nr_running <= env->src_stats.task_capacity &&
1613 		    !env->dst_stats.has_free_capacity)
1614 			goto unlock;
1615 
1616 		goto balance;
1617 	}
1618 
1619 	/* Balance doesn't matter much if we're running a task per CPU: */
1620 	if (imp > env->best_imp && src_rq->nr_running == 1 &&
1621 			dst_rq->nr_running == 1)
1622 		goto assign;
1623 
1624 	/*
1625 	 * In the overloaded case, try and keep the load balanced.
1626 	 */
1627 balance:
1628 	load = task_h_load(env->p);
1629 	dst_load = env->dst_stats.load + load;
1630 	src_load = env->src_stats.load - load;
1631 
1632 	if (moveimp > imp && moveimp > env->best_imp) {
1633 		/*
1634 		 * If the improvement from just moving env->p direction is
1635 		 * better than swapping tasks around, check if a move is
1636 		 * possible. Store a slightly smaller score than moveimp,
1637 		 * so an actually idle CPU will win.
1638 		 */
1639 		if (!load_too_imbalanced(src_load, dst_load, env)) {
1640 			imp = moveimp - 1;
1641 			cur = NULL;
1642 			goto assign;
1643 		}
1644 	}
1645 
1646 	if (imp <= env->best_imp)
1647 		goto unlock;
1648 
1649 	if (cur) {
1650 		load = task_h_load(cur);
1651 		dst_load -= load;
1652 		src_load += load;
1653 	}
1654 
1655 	if (load_too_imbalanced(src_load, dst_load, env))
1656 		goto unlock;
1657 
1658 	/*
1659 	 * One idle CPU per node is evaluated for a task numa move.
1660 	 * Call select_idle_sibling to maybe find a better one.
1661 	 */
1662 	if (!cur) {
1663 		/*
1664 		 * select_idle_siblings() uses an per-CPU cpumask that
1665 		 * can be used from IRQ context.
1666 		 */
1667 		local_irq_disable();
1668 		env->dst_cpu = select_idle_sibling(env->p, env->src_cpu,
1669 						   env->dst_cpu);
1670 		local_irq_enable();
1671 	}
1672 
1673 assign:
1674 	task_numa_assign(env, cur, imp);
1675 unlock:
1676 	rcu_read_unlock();
1677 }
1678 
1679 static void task_numa_find_cpu(struct task_numa_env *env,
1680 				long taskimp, long groupimp)
1681 {
1682 	int cpu;
1683 
1684 	for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
1685 		/* Skip this CPU if the source task cannot migrate */
1686 		if (!cpumask_test_cpu(cpu, &env->p->cpus_allowed))
1687 			continue;
1688 
1689 		env->dst_cpu = cpu;
1690 		task_numa_compare(env, taskimp, groupimp);
1691 	}
1692 }
1693 
1694 /* Only move tasks to a NUMA node less busy than the current node. */
1695 static bool numa_has_capacity(struct task_numa_env *env)
1696 {
1697 	struct numa_stats *src = &env->src_stats;
1698 	struct numa_stats *dst = &env->dst_stats;
1699 
1700 	if (src->has_free_capacity && !dst->has_free_capacity)
1701 		return false;
1702 
1703 	/*
1704 	 * Only consider a task move if the source has a higher load
1705 	 * than the destination, corrected for CPU capacity on each node.
1706 	 *
1707 	 *      src->load                dst->load
1708 	 * --------------------- vs ---------------------
1709 	 * src->compute_capacity    dst->compute_capacity
1710 	 */
1711 	if (src->load * dst->compute_capacity * env->imbalance_pct >
1712 
1713 	    dst->load * src->compute_capacity * 100)
1714 		return true;
1715 
1716 	return false;
1717 }
1718 
1719 static int task_numa_migrate(struct task_struct *p)
1720 {
1721 	struct task_numa_env env = {
1722 		.p = p,
1723 
1724 		.src_cpu = task_cpu(p),
1725 		.src_nid = task_node(p),
1726 
1727 		.imbalance_pct = 112,
1728 
1729 		.best_task = NULL,
1730 		.best_imp = 0,
1731 		.best_cpu = -1,
1732 	};
1733 	struct sched_domain *sd;
1734 	unsigned long taskweight, groupweight;
1735 	int nid, ret, dist;
1736 	long taskimp, groupimp;
1737 
1738 	/*
1739 	 * Pick the lowest SD_NUMA domain, as that would have the smallest
1740 	 * imbalance and would be the first to start moving tasks about.
1741 	 *
1742 	 * And we want to avoid any moving of tasks about, as that would create
1743 	 * random movement of tasks -- counter the numa conditions we're trying
1744 	 * to satisfy here.
1745 	 */
1746 	rcu_read_lock();
1747 	sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
1748 	if (sd)
1749 		env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
1750 	rcu_read_unlock();
1751 
1752 	/*
1753 	 * Cpusets can break the scheduler domain tree into smaller
1754 	 * balance domains, some of which do not cross NUMA boundaries.
1755 	 * Tasks that are "trapped" in such domains cannot be migrated
1756 	 * elsewhere, so there is no point in (re)trying.
1757 	 */
1758 	if (unlikely(!sd)) {
1759 		p->numa_preferred_nid = task_node(p);
1760 		return -EINVAL;
1761 	}
1762 
1763 	env.dst_nid = p->numa_preferred_nid;
1764 	dist = env.dist = node_distance(env.src_nid, env.dst_nid);
1765 	taskweight = task_weight(p, env.src_nid, dist);
1766 	groupweight = group_weight(p, env.src_nid, dist);
1767 	update_numa_stats(&env.src_stats, env.src_nid);
1768 	taskimp = task_weight(p, env.dst_nid, dist) - taskweight;
1769 	groupimp = group_weight(p, env.dst_nid, dist) - groupweight;
1770 	update_numa_stats(&env.dst_stats, env.dst_nid);
1771 
1772 	/* Try to find a spot on the preferred nid. */
1773 	if (numa_has_capacity(&env))
1774 		task_numa_find_cpu(&env, taskimp, groupimp);
1775 
1776 	/*
1777 	 * Look at other nodes in these cases:
1778 	 * - there is no space available on the preferred_nid
1779 	 * - the task is part of a numa_group that is interleaved across
1780 	 *   multiple NUMA nodes; in order to better consolidate the group,
1781 	 *   we need to check other locations.
1782 	 */
1783 	if (env.best_cpu == -1 || (p->numa_group && p->numa_group->active_nodes > 1)) {
1784 		for_each_online_node(nid) {
1785 			if (nid == env.src_nid || nid == p->numa_preferred_nid)
1786 				continue;
1787 
1788 			dist = node_distance(env.src_nid, env.dst_nid);
1789 			if (sched_numa_topology_type == NUMA_BACKPLANE &&
1790 						dist != env.dist) {
1791 				taskweight = task_weight(p, env.src_nid, dist);
1792 				groupweight = group_weight(p, env.src_nid, dist);
1793 			}
1794 
1795 			/* Only consider nodes where both task and groups benefit */
1796 			taskimp = task_weight(p, nid, dist) - taskweight;
1797 			groupimp = group_weight(p, nid, dist) - groupweight;
1798 			if (taskimp < 0 && groupimp < 0)
1799 				continue;
1800 
1801 			env.dist = dist;
1802 			env.dst_nid = nid;
1803 			update_numa_stats(&env.dst_stats, env.dst_nid);
1804 			if (numa_has_capacity(&env))
1805 				task_numa_find_cpu(&env, taskimp, groupimp);
1806 		}
1807 	}
1808 
1809 	/*
1810 	 * If the task is part of a workload that spans multiple NUMA nodes,
1811 	 * and is migrating into one of the workload's active nodes, remember
1812 	 * this node as the task's preferred numa node, so the workload can
1813 	 * settle down.
1814 	 * A task that migrated to a second choice node will be better off
1815 	 * trying for a better one later. Do not set the preferred node here.
1816 	 */
1817 	if (p->numa_group) {
1818 		struct numa_group *ng = p->numa_group;
1819 
1820 		if (env.best_cpu == -1)
1821 			nid = env.src_nid;
1822 		else
1823 			nid = env.dst_nid;
1824 
1825 		if (ng->active_nodes > 1 && numa_is_active_node(env.dst_nid, ng))
1826 			sched_setnuma(p, env.dst_nid);
1827 	}
1828 
1829 	/* No better CPU than the current one was found. */
1830 	if (env.best_cpu == -1)
1831 		return -EAGAIN;
1832 
1833 	/*
1834 	 * Reset the scan period if the task is being rescheduled on an
1835 	 * alternative node to recheck if the tasks is now properly placed.
1836 	 */
1837 	p->numa_scan_period = task_scan_start(p);
1838 
1839 	if (env.best_task == NULL) {
1840 		ret = migrate_task_to(p, env.best_cpu);
1841 		if (ret != 0)
1842 			trace_sched_stick_numa(p, env.src_cpu, env.best_cpu);
1843 		return ret;
1844 	}
1845 
1846 	ret = migrate_swap(p, env.best_task);
1847 	if (ret != 0)
1848 		trace_sched_stick_numa(p, env.src_cpu, task_cpu(env.best_task));
1849 	put_task_struct(env.best_task);
1850 	return ret;
1851 }
1852 
1853 /* Attempt to migrate a task to a CPU on the preferred node. */
1854 static void numa_migrate_preferred(struct task_struct *p)
1855 {
1856 	unsigned long interval = HZ;
1857 
1858 	/* This task has no NUMA fault statistics yet */
1859 	if (unlikely(p->numa_preferred_nid == -1 || !p->numa_faults))
1860 		return;
1861 
1862 	/* Periodically retry migrating the task to the preferred node */
1863 	interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16);
1864 	p->numa_migrate_retry = jiffies + interval;
1865 
1866 	/* Success if task is already running on preferred CPU */
1867 	if (task_node(p) == p->numa_preferred_nid)
1868 		return;
1869 
1870 	/* Otherwise, try migrate to a CPU on the preferred node */
1871 	task_numa_migrate(p);
1872 }
1873 
1874 /*
1875  * Find out how many nodes on the workload is actively running on. Do this by
1876  * tracking the nodes from which NUMA hinting faults are triggered. This can
1877  * be different from the set of nodes where the workload's memory is currently
1878  * located.
1879  */
1880 static void numa_group_count_active_nodes(struct numa_group *numa_group)
1881 {
1882 	unsigned long faults, max_faults = 0;
1883 	int nid, active_nodes = 0;
1884 
1885 	for_each_online_node(nid) {
1886 		faults = group_faults_cpu(numa_group, nid);
1887 		if (faults > max_faults)
1888 			max_faults = faults;
1889 	}
1890 
1891 	for_each_online_node(nid) {
1892 		faults = group_faults_cpu(numa_group, nid);
1893 		if (faults * ACTIVE_NODE_FRACTION > max_faults)
1894 			active_nodes++;
1895 	}
1896 
1897 	numa_group->max_faults_cpu = max_faults;
1898 	numa_group->active_nodes = active_nodes;
1899 }
1900 
1901 /*
1902  * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
1903  * increments. The more local the fault statistics are, the higher the scan
1904  * period will be for the next scan window. If local/(local+remote) ratio is
1905  * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS)
1906  * the scan period will decrease. Aim for 70% local accesses.
1907  */
1908 #define NUMA_PERIOD_SLOTS 10
1909 #define NUMA_PERIOD_THRESHOLD 7
1910 
1911 /*
1912  * Increase the scan period (slow down scanning) if the majority of
1913  * our memory is already on our local node, or if the majority of
1914  * the page accesses are shared with other processes.
1915  * Otherwise, decrease the scan period.
1916  */
1917 static void update_task_scan_period(struct task_struct *p,
1918 			unsigned long shared, unsigned long private)
1919 {
1920 	unsigned int period_slot;
1921 	int lr_ratio, ps_ratio;
1922 	int diff;
1923 
1924 	unsigned long remote = p->numa_faults_locality[0];
1925 	unsigned long local = p->numa_faults_locality[1];
1926 
1927 	/*
1928 	 * If there were no record hinting faults then either the task is
1929 	 * completely idle or all activity is areas that are not of interest
1930 	 * to automatic numa balancing. Related to that, if there were failed
1931 	 * migration then it implies we are migrating too quickly or the local
1932 	 * node is overloaded. In either case, scan slower
1933 	 */
1934 	if (local + shared == 0 || p->numa_faults_locality[2]) {
1935 		p->numa_scan_period = min(p->numa_scan_period_max,
1936 			p->numa_scan_period << 1);
1937 
1938 		p->mm->numa_next_scan = jiffies +
1939 			msecs_to_jiffies(p->numa_scan_period);
1940 
1941 		return;
1942 	}
1943 
1944 	/*
1945 	 * Prepare to scale scan period relative to the current period.
1946 	 *	 == NUMA_PERIOD_THRESHOLD scan period stays the same
1947 	 *       <  NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
1948 	 *	 >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
1949 	 */
1950 	period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
1951 	lr_ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
1952 	ps_ratio = (private * NUMA_PERIOD_SLOTS) / (private + shared);
1953 
1954 	if (ps_ratio >= NUMA_PERIOD_THRESHOLD) {
1955 		/*
1956 		 * Most memory accesses are local. There is no need to
1957 		 * do fast NUMA scanning, since memory is already local.
1958 		 */
1959 		int slot = ps_ratio - NUMA_PERIOD_THRESHOLD;
1960 		if (!slot)
1961 			slot = 1;
1962 		diff = slot * period_slot;
1963 	} else if (lr_ratio >= NUMA_PERIOD_THRESHOLD) {
1964 		/*
1965 		 * Most memory accesses are shared with other tasks.
1966 		 * There is no point in continuing fast NUMA scanning,
1967 		 * since other tasks may just move the memory elsewhere.
1968 		 */
1969 		int slot = lr_ratio - NUMA_PERIOD_THRESHOLD;
1970 		if (!slot)
1971 			slot = 1;
1972 		diff = slot * period_slot;
1973 	} else {
1974 		/*
1975 		 * Private memory faults exceed (SLOTS-THRESHOLD)/SLOTS,
1976 		 * yet they are not on the local NUMA node. Speed up
1977 		 * NUMA scanning to get the memory moved over.
1978 		 */
1979 		int ratio = max(lr_ratio, ps_ratio);
1980 		diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;
1981 	}
1982 
1983 	p->numa_scan_period = clamp(p->numa_scan_period + diff,
1984 			task_scan_min(p), task_scan_max(p));
1985 	memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
1986 }
1987 
1988 /*
1989  * Get the fraction of time the task has been running since the last
1990  * NUMA placement cycle. The scheduler keeps similar statistics, but
1991  * decays those on a 32ms period, which is orders of magnitude off
1992  * from the dozens-of-seconds NUMA balancing period. Use the scheduler
1993  * stats only if the task is so new there are no NUMA statistics yet.
1994  */
1995 static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period)
1996 {
1997 	u64 runtime, delta, now;
1998 	/* Use the start of this time slice to avoid calculations. */
1999 	now = p->se.exec_start;
2000 	runtime = p->se.sum_exec_runtime;
2001 
2002 	if (p->last_task_numa_placement) {
2003 		delta = runtime - p->last_sum_exec_runtime;
2004 		*period = now - p->last_task_numa_placement;
2005 	} else {
2006 		delta = p->se.avg.load_sum;
2007 		*period = LOAD_AVG_MAX;
2008 	}
2009 
2010 	p->last_sum_exec_runtime = runtime;
2011 	p->last_task_numa_placement = now;
2012 
2013 	return delta;
2014 }
2015 
2016 /*
2017  * Determine the preferred nid for a task in a numa_group. This needs to
2018  * be done in a way that produces consistent results with group_weight,
2019  * otherwise workloads might not converge.
2020  */
2021 static int preferred_group_nid(struct task_struct *p, int nid)
2022 {
2023 	nodemask_t nodes;
2024 	int dist;
2025 
2026 	/* Direct connections between all NUMA nodes. */
2027 	if (sched_numa_topology_type == NUMA_DIRECT)
2028 		return nid;
2029 
2030 	/*
2031 	 * On a system with glueless mesh NUMA topology, group_weight
2032 	 * scores nodes according to the number of NUMA hinting faults on
2033 	 * both the node itself, and on nearby nodes.
2034 	 */
2035 	if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
2036 		unsigned long score, max_score = 0;
2037 		int node, max_node = nid;
2038 
2039 		dist = sched_max_numa_distance;
2040 
2041 		for_each_online_node(node) {
2042 			score = group_weight(p, node, dist);
2043 			if (score > max_score) {
2044 				max_score = score;
2045 				max_node = node;
2046 			}
2047 		}
2048 		return max_node;
2049 	}
2050 
2051 	/*
2052 	 * Finding the preferred nid in a system with NUMA backplane
2053 	 * interconnect topology is more involved. The goal is to locate
2054 	 * tasks from numa_groups near each other in the system, and
2055 	 * untangle workloads from different sides of the system. This requires
2056 	 * searching down the hierarchy of node groups, recursively searching
2057 	 * inside the highest scoring group of nodes. The nodemask tricks
2058 	 * keep the complexity of the search down.
2059 	 */
2060 	nodes = node_online_map;
2061 	for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) {
2062 		unsigned long max_faults = 0;
2063 		nodemask_t max_group = NODE_MASK_NONE;
2064 		int a, b;
2065 
2066 		/* Are there nodes at this distance from each other? */
2067 		if (!find_numa_distance(dist))
2068 			continue;
2069 
2070 		for_each_node_mask(a, nodes) {
2071 			unsigned long faults = 0;
2072 			nodemask_t this_group;
2073 			nodes_clear(this_group);
2074 
2075 			/* Sum group's NUMA faults; includes a==b case. */
2076 			for_each_node_mask(b, nodes) {
2077 				if (node_distance(a, b) < dist) {
2078 					faults += group_faults(p, b);
2079 					node_set(b, this_group);
2080 					node_clear(b, nodes);
2081 				}
2082 			}
2083 
2084 			/* Remember the top group. */
2085 			if (faults > max_faults) {
2086 				max_faults = faults;
2087 				max_group = this_group;
2088 				/*
2089 				 * subtle: at the smallest distance there is
2090 				 * just one node left in each "group", the
2091 				 * winner is the preferred nid.
2092 				 */
2093 				nid = a;
2094 			}
2095 		}
2096 		/* Next round, evaluate the nodes within max_group. */
2097 		if (!max_faults)
2098 			break;
2099 		nodes = max_group;
2100 	}
2101 	return nid;
2102 }
2103 
2104 static void task_numa_placement(struct task_struct *p)
2105 {
2106 	int seq, nid, max_nid = -1, max_group_nid = -1;
2107 	unsigned long max_faults = 0, max_group_faults = 0;
2108 	unsigned long fault_types[2] = { 0, 0 };
2109 	unsigned long total_faults;
2110 	u64 runtime, period;
2111 	spinlock_t *group_lock = NULL;
2112 
2113 	/*
2114 	 * The p->mm->numa_scan_seq field gets updated without
2115 	 * exclusive access. Use READ_ONCE() here to ensure
2116 	 * that the field is read in a single access:
2117 	 */
2118 	seq = READ_ONCE(p->mm->numa_scan_seq);
2119 	if (p->numa_scan_seq == seq)
2120 		return;
2121 	p->numa_scan_seq = seq;
2122 	p->numa_scan_period_max = task_scan_max(p);
2123 
2124 	total_faults = p->numa_faults_locality[0] +
2125 		       p->numa_faults_locality[1];
2126 	runtime = numa_get_avg_runtime(p, &period);
2127 
2128 	/* If the task is part of a group prevent parallel updates to group stats */
2129 	if (p->numa_group) {
2130 		group_lock = &p->numa_group->lock;
2131 		spin_lock_irq(group_lock);
2132 	}
2133 
2134 	/* Find the node with the highest number of faults */
2135 	for_each_online_node(nid) {
2136 		/* Keep track of the offsets in numa_faults array */
2137 		int mem_idx, membuf_idx, cpu_idx, cpubuf_idx;
2138 		unsigned long faults = 0, group_faults = 0;
2139 		int priv;
2140 
2141 		for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) {
2142 			long diff, f_diff, f_weight;
2143 
2144 			mem_idx = task_faults_idx(NUMA_MEM, nid, priv);
2145 			membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv);
2146 			cpu_idx = task_faults_idx(NUMA_CPU, nid, priv);
2147 			cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv);
2148 
2149 			/* Decay existing window, copy faults since last scan */
2150 			diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2;
2151 			fault_types[priv] += p->numa_faults[membuf_idx];
2152 			p->numa_faults[membuf_idx] = 0;
2153 
2154 			/*
2155 			 * Normalize the faults_from, so all tasks in a group
2156 			 * count according to CPU use, instead of by the raw
2157 			 * number of faults. Tasks with little runtime have
2158 			 * little over-all impact on throughput, and thus their
2159 			 * faults are less important.
2160 			 */
2161 			f_weight = div64_u64(runtime << 16, period + 1);
2162 			f_weight = (f_weight * p->numa_faults[cpubuf_idx]) /
2163 				   (total_faults + 1);
2164 			f_diff = f_weight - p->numa_faults[cpu_idx] / 2;
2165 			p->numa_faults[cpubuf_idx] = 0;
2166 
2167 			p->numa_faults[mem_idx] += diff;
2168 			p->numa_faults[cpu_idx] += f_diff;
2169 			faults += p->numa_faults[mem_idx];
2170 			p->total_numa_faults += diff;
2171 			if (p->numa_group) {
2172 				/*
2173 				 * safe because we can only change our own group
2174 				 *
2175 				 * mem_idx represents the offset for a given
2176 				 * nid and priv in a specific region because it
2177 				 * is at the beginning of the numa_faults array.
2178 				 */
2179 				p->numa_group->faults[mem_idx] += diff;
2180 				p->numa_group->faults_cpu[mem_idx] += f_diff;
2181 				p->numa_group->total_faults += diff;
2182 				group_faults += p->numa_group->faults[mem_idx];
2183 			}
2184 		}
2185 
2186 		if (faults > max_faults) {
2187 			max_faults = faults;
2188 			max_nid = nid;
2189 		}
2190 
2191 		if (group_faults > max_group_faults) {
2192 			max_group_faults = group_faults;
2193 			max_group_nid = nid;
2194 		}
2195 	}
2196 
2197 	update_task_scan_period(p, fault_types[0], fault_types[1]);
2198 
2199 	if (p->numa_group) {
2200 		numa_group_count_active_nodes(p->numa_group);
2201 		spin_unlock_irq(group_lock);
2202 		max_nid = preferred_group_nid(p, max_group_nid);
2203 	}
2204 
2205 	if (max_faults) {
2206 		/* Set the new preferred node */
2207 		if (max_nid != p->numa_preferred_nid)
2208 			sched_setnuma(p, max_nid);
2209 
2210 		if (task_node(p) != p->numa_preferred_nid)
2211 			numa_migrate_preferred(p);
2212 	}
2213 }
2214 
2215 static inline int get_numa_group(struct numa_group *grp)
2216 {
2217 	return atomic_inc_not_zero(&grp->refcount);
2218 }
2219 
2220 static inline void put_numa_group(struct numa_group *grp)
2221 {
2222 	if (atomic_dec_and_test(&grp->refcount))
2223 		kfree_rcu(grp, rcu);
2224 }
2225 
2226 static void task_numa_group(struct task_struct *p, int cpupid, int flags,
2227 			int *priv)
2228 {
2229 	struct numa_group *grp, *my_grp;
2230 	struct task_struct *tsk;
2231 	bool join = false;
2232 	int cpu = cpupid_to_cpu(cpupid);
2233 	int i;
2234 
2235 	if (unlikely(!p->numa_group)) {
2236 		unsigned int size = sizeof(struct numa_group) +
2237 				    4*nr_node_ids*sizeof(unsigned long);
2238 
2239 		grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
2240 		if (!grp)
2241 			return;
2242 
2243 		atomic_set(&grp->refcount, 1);
2244 		grp->active_nodes = 1;
2245 		grp->max_faults_cpu = 0;
2246 		spin_lock_init(&grp->lock);
2247 		grp->gid = p->pid;
2248 		/* Second half of the array tracks nids where faults happen */
2249 		grp->faults_cpu = grp->faults + NR_NUMA_HINT_FAULT_TYPES *
2250 						nr_node_ids;
2251 
2252 		for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
2253 			grp->faults[i] = p->numa_faults[i];
2254 
2255 		grp->total_faults = p->total_numa_faults;
2256 
2257 		grp->nr_tasks++;
2258 		rcu_assign_pointer(p->numa_group, grp);
2259 	}
2260 
2261 	rcu_read_lock();
2262 	tsk = READ_ONCE(cpu_rq(cpu)->curr);
2263 
2264 	if (!cpupid_match_pid(tsk, cpupid))
2265 		goto no_join;
2266 
2267 	grp = rcu_dereference(tsk->numa_group);
2268 	if (!grp)
2269 		goto no_join;
2270 
2271 	my_grp = p->numa_group;
2272 	if (grp == my_grp)
2273 		goto no_join;
2274 
2275 	/*
2276 	 * Only join the other group if its bigger; if we're the bigger group,
2277 	 * the other task will join us.
2278 	 */
2279 	if (my_grp->nr_tasks > grp->nr_tasks)
2280 		goto no_join;
2281 
2282 	/*
2283 	 * Tie-break on the grp address.
2284 	 */
2285 	if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
2286 		goto no_join;
2287 
2288 	/* Always join threads in the same process. */
2289 	if (tsk->mm == current->mm)
2290 		join = true;
2291 
2292 	/* Simple filter to avoid false positives due to PID collisions */
2293 	if (flags & TNF_SHARED)
2294 		join = true;
2295 
2296 	/* Update priv based on whether false sharing was detected */
2297 	*priv = !join;
2298 
2299 	if (join && !get_numa_group(grp))
2300 		goto no_join;
2301 
2302 	rcu_read_unlock();
2303 
2304 	if (!join)
2305 		return;
2306 
2307 	BUG_ON(irqs_disabled());
2308 	double_lock_irq(&my_grp->lock, &grp->lock);
2309 
2310 	for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) {
2311 		my_grp->faults[i] -= p->numa_faults[i];
2312 		grp->faults[i] += p->numa_faults[i];
2313 	}
2314 	my_grp->total_faults -= p->total_numa_faults;
2315 	grp->total_faults += p->total_numa_faults;
2316 
2317 	my_grp->nr_tasks--;
2318 	grp->nr_tasks++;
2319 
2320 	spin_unlock(&my_grp->lock);
2321 	spin_unlock_irq(&grp->lock);
2322 
2323 	rcu_assign_pointer(p->numa_group, grp);
2324 
2325 	put_numa_group(my_grp);
2326 	return;
2327 
2328 no_join:
2329 	rcu_read_unlock();
2330 	return;
2331 }
2332 
2333 void task_numa_free(struct task_struct *p)
2334 {
2335 	struct numa_group *grp = p->numa_group;
2336 	void *numa_faults = p->numa_faults;
2337 	unsigned long flags;
2338 	int i;
2339 
2340 	if (grp) {
2341 		spin_lock_irqsave(&grp->lock, flags);
2342 		for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
2343 			grp->faults[i] -= p->numa_faults[i];
2344 		grp->total_faults -= p->total_numa_faults;
2345 
2346 		grp->nr_tasks--;
2347 		spin_unlock_irqrestore(&grp->lock, flags);
2348 		RCU_INIT_POINTER(p->numa_group, NULL);
2349 		put_numa_group(grp);
2350 	}
2351 
2352 	p->numa_faults = NULL;
2353 	kfree(numa_faults);
2354 }
2355 
2356 /*
2357  * Got a PROT_NONE fault for a page on @node.
2358  */
2359 void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags)
2360 {
2361 	struct task_struct *p = current;
2362 	bool migrated = flags & TNF_MIGRATED;
2363 	int cpu_node = task_node(current);
2364 	int local = !!(flags & TNF_FAULT_LOCAL);
2365 	struct numa_group *ng;
2366 	int priv;
2367 
2368 	if (!static_branch_likely(&sched_numa_balancing))
2369 		return;
2370 
2371 	/* for example, ksmd faulting in a user's mm */
2372 	if (!p->mm)
2373 		return;
2374 
2375 	/* Allocate buffer to track faults on a per-node basis */
2376 	if (unlikely(!p->numa_faults)) {
2377 		int size = sizeof(*p->numa_faults) *
2378 			   NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids;
2379 
2380 		p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN);
2381 		if (!p->numa_faults)
2382 			return;
2383 
2384 		p->total_numa_faults = 0;
2385 		memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
2386 	}
2387 
2388 	/*
2389 	 * First accesses are treated as private, otherwise consider accesses
2390 	 * to be private if the accessing pid has not changed
2391 	 */
2392 	if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
2393 		priv = 1;
2394 	} else {
2395 		priv = cpupid_match_pid(p, last_cpupid);
2396 		if (!priv && !(flags & TNF_NO_GROUP))
2397 			task_numa_group(p, last_cpupid, flags, &priv);
2398 	}
2399 
2400 	/*
2401 	 * If a workload spans multiple NUMA nodes, a shared fault that
2402 	 * occurs wholly within the set of nodes that the workload is
2403 	 * actively using should be counted as local. This allows the
2404 	 * scan rate to slow down when a workload has settled down.
2405 	 */
2406 	ng = p->numa_group;
2407 	if (!priv && !local && ng && ng->active_nodes > 1 &&
2408 				numa_is_active_node(cpu_node, ng) &&
2409 				numa_is_active_node(mem_node, ng))
2410 		local = 1;
2411 
2412 	task_numa_placement(p);
2413 
2414 	/*
2415 	 * Retry task to preferred node migration periodically, in case it
2416 	 * case it previously failed, or the scheduler moved us.
2417 	 */
2418 	if (time_after(jiffies, p->numa_migrate_retry))
2419 		numa_migrate_preferred(p);
2420 
2421 	if (migrated)
2422 		p->numa_pages_migrated += pages;
2423 	if (flags & TNF_MIGRATE_FAIL)
2424 		p->numa_faults_locality[2] += pages;
2425 
2426 	p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages;
2427 	p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages;
2428 	p->numa_faults_locality[local] += pages;
2429 }
2430 
2431 static void reset_ptenuma_scan(struct task_struct *p)
2432 {
2433 	/*
2434 	 * We only did a read acquisition of the mmap sem, so
2435 	 * p->mm->numa_scan_seq is written to without exclusive access
2436 	 * and the update is not guaranteed to be atomic. That's not
2437 	 * much of an issue though, since this is just used for
2438 	 * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not
2439 	 * expensive, to avoid any form of compiler optimizations:
2440 	 */
2441 	WRITE_ONCE(p->mm->numa_scan_seq, READ_ONCE(p->mm->numa_scan_seq) + 1);
2442 	p->mm->numa_scan_offset = 0;
2443 }
2444 
2445 /*
2446  * The expensive part of numa migration is done from task_work context.
2447  * Triggered from task_tick_numa().
2448  */
2449 void task_numa_work(struct callback_head *work)
2450 {
2451 	unsigned long migrate, next_scan, now = jiffies;
2452 	struct task_struct *p = current;
2453 	struct mm_struct *mm = p->mm;
2454 	u64 runtime = p->se.sum_exec_runtime;
2455 	struct vm_area_struct *vma;
2456 	unsigned long start, end;
2457 	unsigned long nr_pte_updates = 0;
2458 	long pages, virtpages;
2459 
2460 	SCHED_WARN_ON(p != container_of(work, struct task_struct, numa_work));
2461 
2462 	work->next = work; /* protect against double add */
2463 	/*
2464 	 * Who cares about NUMA placement when they're dying.
2465 	 *
2466 	 * NOTE: make sure not to dereference p->mm before this check,
2467 	 * exit_task_work() happens _after_ exit_mm() so we could be called
2468 	 * without p->mm even though we still had it when we enqueued this
2469 	 * work.
2470 	 */
2471 	if (p->flags & PF_EXITING)
2472 		return;
2473 
2474 	if (!mm->numa_next_scan) {
2475 		mm->numa_next_scan = now +
2476 			msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
2477 	}
2478 
2479 	/*
2480 	 * Enforce maximal scan/migration frequency..
2481 	 */
2482 	migrate = mm->numa_next_scan;
2483 	if (time_before(now, migrate))
2484 		return;
2485 
2486 	if (p->numa_scan_period == 0) {
2487 		p->numa_scan_period_max = task_scan_max(p);
2488 		p->numa_scan_period = task_scan_start(p);
2489 	}
2490 
2491 	next_scan = now + msecs_to_jiffies(p->numa_scan_period);
2492 	if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
2493 		return;
2494 
2495 	/*
2496 	 * Delay this task enough that another task of this mm will likely win
2497 	 * the next time around.
2498 	 */
2499 	p->node_stamp += 2 * TICK_NSEC;
2500 
2501 	start = mm->numa_scan_offset;
2502 	pages = sysctl_numa_balancing_scan_size;
2503 	pages <<= 20 - PAGE_SHIFT; /* MB in pages */
2504 	virtpages = pages * 8;	   /* Scan up to this much virtual space */
2505 	if (!pages)
2506 		return;
2507 
2508 
2509 	if (!down_read_trylock(&mm->mmap_sem))
2510 		return;
2511 	vma = find_vma(mm, start);
2512 	if (!vma) {
2513 		reset_ptenuma_scan(p);
2514 		start = 0;
2515 		vma = mm->mmap;
2516 	}
2517 	for (; vma; vma = vma->vm_next) {
2518 		if (!vma_migratable(vma) || !vma_policy_mof(vma) ||
2519 			is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_MIXEDMAP)) {
2520 			continue;
2521 		}
2522 
2523 		/*
2524 		 * Shared library pages mapped by multiple processes are not
2525 		 * migrated as it is expected they are cache replicated. Avoid
2526 		 * hinting faults in read-only file-backed mappings or the vdso
2527 		 * as migrating the pages will be of marginal benefit.
2528 		 */
2529 		if (!vma->vm_mm ||
2530 		    (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ)))
2531 			continue;
2532 
2533 		/*
2534 		 * Skip inaccessible VMAs to avoid any confusion between
2535 		 * PROT_NONE and NUMA hinting ptes
2536 		 */
2537 		if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)))
2538 			continue;
2539 
2540 		do {
2541 			start = max(start, vma->vm_start);
2542 			end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
2543 			end = min(end, vma->vm_end);
2544 			nr_pte_updates = change_prot_numa(vma, start, end);
2545 
2546 			/*
2547 			 * Try to scan sysctl_numa_balancing_size worth of
2548 			 * hpages that have at least one present PTE that
2549 			 * is not already pte-numa. If the VMA contains
2550 			 * areas that are unused or already full of prot_numa
2551 			 * PTEs, scan up to virtpages, to skip through those
2552 			 * areas faster.
2553 			 */
2554 			if (nr_pte_updates)
2555 				pages -= (end - start) >> PAGE_SHIFT;
2556 			virtpages -= (end - start) >> PAGE_SHIFT;
2557 
2558 			start = end;
2559 			if (pages <= 0 || virtpages <= 0)
2560 				goto out;
2561 
2562 			cond_resched();
2563 		} while (end != vma->vm_end);
2564 	}
2565 
2566 out:
2567 	/*
2568 	 * It is possible to reach the end of the VMA list but the last few
2569 	 * VMAs are not guaranteed to the vma_migratable. If they are not, we
2570 	 * would find the !migratable VMA on the next scan but not reset the
2571 	 * scanner to the start so check it now.
2572 	 */
2573 	if (vma)
2574 		mm->numa_scan_offset = start;
2575 	else
2576 		reset_ptenuma_scan(p);
2577 	up_read(&mm->mmap_sem);
2578 
2579 	/*
2580 	 * Make sure tasks use at least 32x as much time to run other code
2581 	 * than they used here, to limit NUMA PTE scanning overhead to 3% max.
2582 	 * Usually update_task_scan_period slows down scanning enough; on an
2583 	 * overloaded system we need to limit overhead on a per task basis.
2584 	 */
2585 	if (unlikely(p->se.sum_exec_runtime != runtime)) {
2586 		u64 diff = p->se.sum_exec_runtime - runtime;
2587 		p->node_stamp += 32 * diff;
2588 	}
2589 }
2590 
2591 /*
2592  * Drive the periodic memory faults..
2593  */
2594 void task_tick_numa(struct rq *rq, struct task_struct *curr)
2595 {
2596 	struct callback_head *work = &curr->numa_work;
2597 	u64 period, now;
2598 
2599 	/*
2600 	 * We don't care about NUMA placement if we don't have memory.
2601 	 */
2602 	if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work)
2603 		return;
2604 
2605 	/*
2606 	 * Using runtime rather than walltime has the dual advantage that
2607 	 * we (mostly) drive the selection from busy threads and that the
2608 	 * task needs to have done some actual work before we bother with
2609 	 * NUMA placement.
2610 	 */
2611 	now = curr->se.sum_exec_runtime;
2612 	period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
2613 
2614 	if (now > curr->node_stamp + period) {
2615 		if (!curr->node_stamp)
2616 			curr->numa_scan_period = task_scan_start(curr);
2617 		curr->node_stamp += period;
2618 
2619 		if (!time_before(jiffies, curr->mm->numa_next_scan)) {
2620 			init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */
2621 			task_work_add(curr, work, true);
2622 		}
2623 	}
2624 }
2625 
2626 #else
2627 static void task_tick_numa(struct rq *rq, struct task_struct *curr)
2628 {
2629 }
2630 
2631 static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
2632 {
2633 }
2634 
2635 static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
2636 {
2637 }
2638 
2639 #endif /* CONFIG_NUMA_BALANCING */
2640 
2641 static void
2642 account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2643 {
2644 	update_load_add(&cfs_rq->load, se->load.weight);
2645 	if (!parent_entity(se))
2646 		update_load_add(&rq_of(cfs_rq)->load, se->load.weight);
2647 #ifdef CONFIG_SMP
2648 	if (entity_is_task(se)) {
2649 		struct rq *rq = rq_of(cfs_rq);
2650 
2651 		account_numa_enqueue(rq, task_of(se));
2652 		list_add(&se->group_node, &rq->cfs_tasks);
2653 	}
2654 #endif
2655 	cfs_rq->nr_running++;
2656 }
2657 
2658 static void
2659 account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2660 {
2661 	update_load_sub(&cfs_rq->load, se->load.weight);
2662 	if (!parent_entity(se))
2663 		update_load_sub(&rq_of(cfs_rq)->load, se->load.weight);
2664 #ifdef CONFIG_SMP
2665 	if (entity_is_task(se)) {
2666 		account_numa_dequeue(rq_of(cfs_rq), task_of(se));
2667 		list_del_init(&se->group_node);
2668 	}
2669 #endif
2670 	cfs_rq->nr_running--;
2671 }
2672 
2673 /*
2674  * Signed add and clamp on underflow.
2675  *
2676  * Explicitly do a load-store to ensure the intermediate value never hits
2677  * memory. This allows lockless observations without ever seeing the negative
2678  * values.
2679  */
2680 #define add_positive(_ptr, _val) do {                           \
2681 	typeof(_ptr) ptr = (_ptr);                              \
2682 	typeof(_val) val = (_val);                              \
2683 	typeof(*ptr) res, var = READ_ONCE(*ptr);                \
2684 								\
2685 	res = var + val;                                        \
2686 								\
2687 	if (val < 0 && res > var)                               \
2688 		res = 0;                                        \
2689 								\
2690 	WRITE_ONCE(*ptr, res);                                  \
2691 } while (0)
2692 
2693 /*
2694  * Unsigned subtract and clamp on underflow.
2695  *
2696  * Explicitly do a load-store to ensure the intermediate value never hits
2697  * memory. This allows lockless observations without ever seeing the negative
2698  * values.
2699  */
2700 #define sub_positive(_ptr, _val) do {				\
2701 	typeof(_ptr) ptr = (_ptr);				\
2702 	typeof(*ptr) val = (_val);				\
2703 	typeof(*ptr) res, var = READ_ONCE(*ptr);		\
2704 	res = var - val;					\
2705 	if (res > var)						\
2706 		res = 0;					\
2707 	WRITE_ONCE(*ptr, res);					\
2708 } while (0)
2709 
2710 #ifdef CONFIG_SMP
2711 /*
2712  * XXX we want to get rid of these helpers and use the full load resolution.
2713  */
2714 static inline long se_weight(struct sched_entity *se)
2715 {
2716 	return scale_load_down(se->load.weight);
2717 }
2718 
2719 static inline long se_runnable(struct sched_entity *se)
2720 {
2721 	return scale_load_down(se->runnable_weight);
2722 }
2723 
2724 static inline void
2725 enqueue_runnable_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
2726 {
2727 	cfs_rq->runnable_weight += se->runnable_weight;
2728 
2729 	cfs_rq->avg.runnable_load_avg += se->avg.runnable_load_avg;
2730 	cfs_rq->avg.runnable_load_sum += se_runnable(se) * se->avg.runnable_load_sum;
2731 }
2732 
2733 static inline void
2734 dequeue_runnable_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
2735 {
2736 	cfs_rq->runnable_weight -= se->runnable_weight;
2737 
2738 	sub_positive(&cfs_rq->avg.runnable_load_avg, se->avg.runnable_load_avg);
2739 	sub_positive(&cfs_rq->avg.runnable_load_sum,
2740 		     se_runnable(se) * se->avg.runnable_load_sum);
2741 }
2742 
2743 static inline void
2744 enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
2745 {
2746 	cfs_rq->avg.load_avg += se->avg.load_avg;
2747 	cfs_rq->avg.load_sum += se_weight(se) * se->avg.load_sum;
2748 }
2749 
2750 static inline void
2751 dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
2752 {
2753 	sub_positive(&cfs_rq->avg.load_avg, se->avg.load_avg);
2754 	sub_positive(&cfs_rq->avg.load_sum, se_weight(se) * se->avg.load_sum);
2755 }
2756 #else
2757 static inline void
2758 enqueue_runnable_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
2759 static inline void
2760 dequeue_runnable_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
2761 static inline void
2762 enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
2763 static inline void
2764 dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
2765 #endif
2766 
2767 static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
2768 			    unsigned long weight, unsigned long runnable)
2769 {
2770 	if (se->on_rq) {
2771 		/* commit outstanding execution time */
2772 		if (cfs_rq->curr == se)
2773 			update_curr(cfs_rq);
2774 		account_entity_dequeue(cfs_rq, se);
2775 		dequeue_runnable_load_avg(cfs_rq, se);
2776 	}
2777 	dequeue_load_avg(cfs_rq, se);
2778 
2779 	se->runnable_weight = runnable;
2780 	update_load_set(&se->load, weight);
2781 
2782 #ifdef CONFIG_SMP
2783 	do {
2784 		u32 divider = LOAD_AVG_MAX - 1024 + se->avg.period_contrib;
2785 
2786 		se->avg.load_avg = div_u64(se_weight(se) * se->avg.load_sum, divider);
2787 		se->avg.runnable_load_avg =
2788 			div_u64(se_runnable(se) * se->avg.runnable_load_sum, divider);
2789 	} while (0);
2790 #endif
2791 
2792 	enqueue_load_avg(cfs_rq, se);
2793 	if (se->on_rq) {
2794 		account_entity_enqueue(cfs_rq, se);
2795 		enqueue_runnable_load_avg(cfs_rq, se);
2796 	}
2797 }
2798 
2799 void reweight_task(struct task_struct *p, int prio)
2800 {
2801 	struct sched_entity *se = &p->se;
2802 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
2803 	struct load_weight *load = &se->load;
2804 	unsigned long weight = scale_load(sched_prio_to_weight[prio]);
2805 
2806 	reweight_entity(cfs_rq, se, weight, weight);
2807 	load->inv_weight = sched_prio_to_wmult[prio];
2808 }
2809 
2810 #ifdef CONFIG_FAIR_GROUP_SCHED
2811 #ifdef CONFIG_SMP
2812 /*
2813  * All this does is approximate the hierarchical proportion which includes that
2814  * global sum we all love to hate.
2815  *
2816  * That is, the weight of a group entity, is the proportional share of the
2817  * group weight based on the group runqueue weights. That is:
2818  *
2819  *                     tg->weight * grq->load.weight
2820  *   ge->load.weight = -----------------------------               (1)
2821  *			  \Sum grq->load.weight
2822  *
2823  * Now, because computing that sum is prohibitively expensive to compute (been
2824  * there, done that) we approximate it with this average stuff. The average
2825  * moves slower and therefore the approximation is cheaper and more stable.
2826  *
2827  * So instead of the above, we substitute:
2828  *
2829  *   grq->load.weight -> grq->avg.load_avg                         (2)
2830  *
2831  * which yields the following:
2832  *
2833  *                     tg->weight * grq->avg.load_avg
2834  *   ge->load.weight = ------------------------------              (3)
2835  *				tg->load_avg
2836  *
2837  * Where: tg->load_avg ~= \Sum grq->avg.load_avg
2838  *
2839  * That is shares_avg, and it is right (given the approximation (2)).
2840  *
2841  * The problem with it is that because the average is slow -- it was designed
2842  * to be exactly that of course -- this leads to transients in boundary
2843  * conditions. In specific, the case where the group was idle and we start the
2844  * one task. It takes time for our CPU's grq->avg.load_avg to build up,
2845  * yielding bad latency etc..
2846  *
2847  * Now, in that special case (1) reduces to:
2848  *
2849  *                     tg->weight * grq->load.weight
2850  *   ge->load.weight = ----------------------------- = tg->weight   (4)
2851  *			    grp->load.weight
2852  *
2853  * That is, the sum collapses because all other CPUs are idle; the UP scenario.
2854  *
2855  * So what we do is modify our approximation (3) to approach (4) in the (near)
2856  * UP case, like:
2857  *
2858  *   ge->load.weight =
2859  *
2860  *              tg->weight * grq->load.weight
2861  *     ---------------------------------------------------         (5)
2862  *     tg->load_avg - grq->avg.load_avg + grq->load.weight
2863  *
2864  * But because grq->load.weight can drop to 0, resulting in a divide by zero,
2865  * we need to use grq->avg.load_avg as its lower bound, which then gives:
2866  *
2867  *
2868  *                     tg->weight * grq->load.weight
2869  *   ge->load.weight = -----------------------------		   (6)
2870  *				tg_load_avg'
2871  *
2872  * Where:
2873  *
2874  *   tg_load_avg' = tg->load_avg - grq->avg.load_avg +
2875  *                  max(grq->load.weight, grq->avg.load_avg)
2876  *
2877  * And that is shares_weight and is icky. In the (near) UP case it approaches
2878  * (4) while in the normal case it approaches (3). It consistently
2879  * overestimates the ge->load.weight and therefore:
2880  *
2881  *   \Sum ge->load.weight >= tg->weight
2882  *
2883  * hence icky!
2884  */
2885 static long calc_group_shares(struct cfs_rq *cfs_rq)
2886 {
2887 	long tg_weight, tg_shares, load, shares;
2888 	struct task_group *tg = cfs_rq->tg;
2889 
2890 	tg_shares = READ_ONCE(tg->shares);
2891 
2892 	load = max(scale_load_down(cfs_rq->load.weight), cfs_rq->avg.load_avg);
2893 
2894 	tg_weight = atomic_long_read(&tg->load_avg);
2895 
2896 	/* Ensure tg_weight >= load */
2897 	tg_weight -= cfs_rq->tg_load_avg_contrib;
2898 	tg_weight += load;
2899 
2900 	shares = (tg_shares * load);
2901 	if (tg_weight)
2902 		shares /= tg_weight;
2903 
2904 	/*
2905 	 * MIN_SHARES has to be unscaled here to support per-CPU partitioning
2906 	 * of a group with small tg->shares value. It is a floor value which is
2907 	 * assigned as a minimum load.weight to the sched_entity representing
2908 	 * the group on a CPU.
2909 	 *
2910 	 * E.g. on 64-bit for a group with tg->shares of scale_load(15)=15*1024
2911 	 * on an 8-core system with 8 tasks each runnable on one CPU shares has
2912 	 * to be 15*1024*1/8=1920 instead of scale_load(MIN_SHARES)=2*1024. In
2913 	 * case no task is runnable on a CPU MIN_SHARES=2 should be returned
2914 	 * instead of 0.
2915 	 */
2916 	return clamp_t(long, shares, MIN_SHARES, tg_shares);
2917 }
2918 
2919 /*
2920  * This calculates the effective runnable weight for a group entity based on
2921  * the group entity weight calculated above.
2922  *
2923  * Because of the above approximation (2), our group entity weight is
2924  * an load_avg based ratio (3). This means that it includes blocked load and
2925  * does not represent the runnable weight.
2926  *
2927  * Approximate the group entity's runnable weight per ratio from the group
2928  * runqueue:
2929  *
2930  *					     grq->avg.runnable_load_avg
2931  *   ge->runnable_weight = ge->load.weight * -------------------------- (7)
2932  *						 grq->avg.load_avg
2933  *
2934  * However, analogous to above, since the avg numbers are slow, this leads to
2935  * transients in the from-idle case. Instead we use:
2936  *
2937  *   ge->runnable_weight = ge->load.weight *
2938  *
2939  *		max(grq->avg.runnable_load_avg, grq->runnable_weight)
2940  *		-----------------------------------------------------	(8)
2941  *		      max(grq->avg.load_avg, grq->load.weight)
2942  *
2943  * Where these max() serve both to use the 'instant' values to fix the slow
2944  * from-idle and avoid the /0 on to-idle, similar to (6).
2945  */
2946 static long calc_group_runnable(struct cfs_rq *cfs_rq, long shares)
2947 {
2948 	long runnable, load_avg;
2949 
2950 	load_avg = max(cfs_rq->avg.load_avg,
2951 		       scale_load_down(cfs_rq->load.weight));
2952 
2953 	runnable = max(cfs_rq->avg.runnable_load_avg,
2954 		       scale_load_down(cfs_rq->runnable_weight));
2955 
2956 	runnable *= shares;
2957 	if (load_avg)
2958 		runnable /= load_avg;
2959 
2960 	return clamp_t(long, runnable, MIN_SHARES, shares);
2961 }
2962 #endif /* CONFIG_SMP */
2963 
2964 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
2965 
2966 /*
2967  * Recomputes the group entity based on the current state of its group
2968  * runqueue.
2969  */
2970 static void update_cfs_group(struct sched_entity *se)
2971 {
2972 	struct cfs_rq *gcfs_rq = group_cfs_rq(se);
2973 	long shares, runnable;
2974 
2975 	if (!gcfs_rq)
2976 		return;
2977 
2978 	if (throttled_hierarchy(gcfs_rq))
2979 		return;
2980 
2981 #ifndef CONFIG_SMP
2982 	runnable = shares = READ_ONCE(gcfs_rq->tg->shares);
2983 
2984 	if (likely(se->load.weight == shares))
2985 		return;
2986 #else
2987 	shares   = calc_group_shares(gcfs_rq);
2988 	runnable = calc_group_runnable(gcfs_rq, shares);
2989 #endif
2990 
2991 	reweight_entity(cfs_rq_of(se), se, shares, runnable);
2992 }
2993 
2994 #else /* CONFIG_FAIR_GROUP_SCHED */
2995 static inline void update_cfs_group(struct sched_entity *se)
2996 {
2997 }
2998 #endif /* CONFIG_FAIR_GROUP_SCHED */
2999 
3000 static inline void cfs_rq_util_change(struct cfs_rq *cfs_rq, int flags)
3001 {
3002 	struct rq *rq = rq_of(cfs_rq);
3003 
3004 	if (&rq->cfs == cfs_rq || (flags & SCHED_CPUFREQ_MIGRATION)) {
3005 		/*
3006 		 * There are a few boundary cases this might miss but it should
3007 		 * get called often enough that that should (hopefully) not be
3008 		 * a real problem.
3009 		 *
3010 		 * It will not get called when we go idle, because the idle
3011 		 * thread is a different class (!fair), nor will the utilization
3012 		 * number include things like RT tasks.
3013 		 *
3014 		 * As is, the util number is not freq-invariant (we'd have to
3015 		 * implement arch_scale_freq_capacity() for that).
3016 		 *
3017 		 * See cpu_util().
3018 		 */
3019 		cpufreq_update_util(rq, flags);
3020 	}
3021 }
3022 
3023 #ifdef CONFIG_SMP
3024 /*
3025  * Approximate:
3026  *   val * y^n,    where y^32 ~= 0.5 (~1 scheduling period)
3027  */
3028 static u64 decay_load(u64 val, u64 n)
3029 {
3030 	unsigned int local_n;
3031 
3032 	if (unlikely(n > LOAD_AVG_PERIOD * 63))
3033 		return 0;
3034 
3035 	/* after bounds checking we can collapse to 32-bit */
3036 	local_n = n;
3037 
3038 	/*
3039 	 * As y^PERIOD = 1/2, we can combine
3040 	 *    y^n = 1/2^(n/PERIOD) * y^(n%PERIOD)
3041 	 * With a look-up table which covers y^n (n<PERIOD)
3042 	 *
3043 	 * To achieve constant time decay_load.
3044 	 */
3045 	if (unlikely(local_n >= LOAD_AVG_PERIOD)) {
3046 		val >>= local_n / LOAD_AVG_PERIOD;
3047 		local_n %= LOAD_AVG_PERIOD;
3048 	}
3049 
3050 	val = mul_u64_u32_shr(val, runnable_avg_yN_inv[local_n], 32);
3051 	return val;
3052 }
3053 
3054 static u32 __accumulate_pelt_segments(u64 periods, u32 d1, u32 d3)
3055 {
3056 	u32 c1, c2, c3 = d3; /* y^0 == 1 */
3057 
3058 	/*
3059 	 * c1 = d1 y^p
3060 	 */
3061 	c1 = decay_load((u64)d1, periods);
3062 
3063 	/*
3064 	 *            p-1
3065 	 * c2 = 1024 \Sum y^n
3066 	 *            n=1
3067 	 *
3068 	 *              inf        inf
3069 	 *    = 1024 ( \Sum y^n - \Sum y^n - y^0 )
3070 	 *              n=0        n=p
3071 	 */
3072 	c2 = LOAD_AVG_MAX - decay_load(LOAD_AVG_MAX, periods) - 1024;
3073 
3074 	return c1 + c2 + c3;
3075 }
3076 
3077 /*
3078  * Accumulate the three separate parts of the sum; d1 the remainder
3079  * of the last (incomplete) period, d2 the span of full periods and d3
3080  * the remainder of the (incomplete) current period.
3081  *
3082  *           d1          d2           d3
3083  *           ^           ^            ^
3084  *           |           |            |
3085  *         |<->|<----------------->|<--->|
3086  * ... |---x---|------| ... |------|-----x (now)
3087  *
3088  *                           p-1
3089  * u' = (u + d1) y^p + 1024 \Sum y^n + d3 y^0
3090  *                           n=1
3091  *
3092  *    = u y^p +					(Step 1)
3093  *
3094  *                     p-1
3095  *      d1 y^p + 1024 \Sum y^n + d3 y^0		(Step 2)
3096  *                     n=1
3097  */
3098 static __always_inline u32
3099 accumulate_sum(u64 delta, int cpu, struct sched_avg *sa,
3100 	       unsigned long load, unsigned long runnable, int running)
3101 {
3102 	unsigned long scale_freq, scale_cpu;
3103 	u32 contrib = (u32)delta; /* p == 0 -> delta < 1024 */
3104 	u64 periods;
3105 
3106 	scale_freq = arch_scale_freq_capacity(cpu);
3107 	scale_cpu = arch_scale_cpu_capacity(NULL, cpu);
3108 
3109 	delta += sa->period_contrib;
3110 	periods = delta / 1024; /* A period is 1024us (~1ms) */
3111 
3112 	/*
3113 	 * Step 1: decay old *_sum if we crossed period boundaries.
3114 	 */
3115 	if (periods) {
3116 		sa->load_sum = decay_load(sa->load_sum, periods);
3117 		sa->runnable_load_sum =
3118 			decay_load(sa->runnable_load_sum, periods);
3119 		sa->util_sum = decay_load((u64)(sa->util_sum), periods);
3120 
3121 		/*
3122 		 * Step 2
3123 		 */
3124 		delta %= 1024;
3125 		contrib = __accumulate_pelt_segments(periods,
3126 				1024 - sa->period_contrib, delta);
3127 	}
3128 	sa->period_contrib = delta;
3129 
3130 	contrib = cap_scale(contrib, scale_freq);
3131 	if (load)
3132 		sa->load_sum += load * contrib;
3133 	if (runnable)
3134 		sa->runnable_load_sum += runnable * contrib;
3135 	if (running)
3136 		sa->util_sum += contrib * scale_cpu;
3137 
3138 	return periods;
3139 }
3140 
3141 /*
3142  * We can represent the historical contribution to runnable average as the
3143  * coefficients of a geometric series.  To do this we sub-divide our runnable
3144  * history into segments of approximately 1ms (1024us); label the segment that
3145  * occurred N-ms ago p_N, with p_0 corresponding to the current period, e.g.
3146  *
3147  * [<- 1024us ->|<- 1024us ->|<- 1024us ->| ...
3148  *      p0            p1           p2
3149  *     (now)       (~1ms ago)  (~2ms ago)
3150  *
3151  * Let u_i denote the fraction of p_i that the entity was runnable.
3152  *
3153  * We then designate the fractions u_i as our co-efficients, yielding the
3154  * following representation of historical load:
3155  *   u_0 + u_1*y + u_2*y^2 + u_3*y^3 + ...
3156  *
3157  * We choose y based on the with of a reasonably scheduling period, fixing:
3158  *   y^32 = 0.5
3159  *
3160  * This means that the contribution to load ~32ms ago (u_32) will be weighted
3161  * approximately half as much as the contribution to load within the last ms
3162  * (u_0).
3163  *
3164  * When a period "rolls over" and we have new u_0`, multiplying the previous
3165  * sum again by y is sufficient to update:
3166  *   load_avg = u_0` + y*(u_0 + u_1*y + u_2*y^2 + ... )
3167  *            = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1}]
3168  */
3169 static __always_inline int
3170 ___update_load_sum(u64 now, int cpu, struct sched_avg *sa,
3171 		  unsigned long load, unsigned long runnable, int running)
3172 {
3173 	u64 delta;
3174 
3175 	delta = now - sa->last_update_time;
3176 	/*
3177 	 * This should only happen when time goes backwards, which it
3178 	 * unfortunately does during sched clock init when we swap over to TSC.
3179 	 */
3180 	if ((s64)delta < 0) {
3181 		sa->last_update_time = now;
3182 		return 0;
3183 	}
3184 
3185 	/*
3186 	 * Use 1024ns as the unit of measurement since it's a reasonable
3187 	 * approximation of 1us and fast to compute.
3188 	 */
3189 	delta >>= 10;
3190 	if (!delta)
3191 		return 0;
3192 
3193 	sa->last_update_time += delta << 10;
3194 
3195 	/*
3196 	 * running is a subset of runnable (weight) so running can't be set if
3197 	 * runnable is clear. But there are some corner cases where the current
3198 	 * se has been already dequeued but cfs_rq->curr still points to it.
3199 	 * This means that weight will be 0 but not running for a sched_entity
3200 	 * but also for a cfs_rq if the latter becomes idle. As an example,
3201 	 * this happens during idle_balance() which calls
3202 	 * update_blocked_averages()
3203 	 */
3204 	if (!load)
3205 		runnable = running = 0;
3206 
3207 	/*
3208 	 * Now we know we crossed measurement unit boundaries. The *_avg
3209 	 * accrues by two steps:
3210 	 *
3211 	 * Step 1: accumulate *_sum since last_update_time. If we haven't
3212 	 * crossed period boundaries, finish.
3213 	 */
3214 	if (!accumulate_sum(delta, cpu, sa, load, runnable, running))
3215 		return 0;
3216 
3217 	return 1;
3218 }
3219 
3220 static __always_inline void
3221 ___update_load_avg(struct sched_avg *sa, unsigned long load, unsigned long runnable)
3222 {
3223 	u32 divider = LOAD_AVG_MAX - 1024 + sa->period_contrib;
3224 
3225 	/*
3226 	 * Step 2: update *_avg.
3227 	 */
3228 	sa->load_avg = div_u64(load * sa->load_sum, divider);
3229 	sa->runnable_load_avg =	div_u64(runnable * sa->runnable_load_sum, divider);
3230 	sa->util_avg = sa->util_sum / divider;
3231 }
3232 
3233 /*
3234  * When a task is dequeued, its estimated utilization should not be update if
3235  * its util_avg has not been updated at least once.
3236  * This flag is used to synchronize util_avg updates with util_est updates.
3237  * We map this information into the LSB bit of the utilization saved at
3238  * dequeue time (i.e. util_est.dequeued).
3239  */
3240 #define UTIL_AVG_UNCHANGED 0x1
3241 
3242 static inline void cfs_se_util_change(struct sched_avg *avg)
3243 {
3244 	unsigned int enqueued;
3245 
3246 	if (!sched_feat(UTIL_EST))
3247 		return;
3248 
3249 	/* Avoid store if the flag has been already set */
3250 	enqueued = avg->util_est.enqueued;
3251 	if (!(enqueued & UTIL_AVG_UNCHANGED))
3252 		return;
3253 
3254 	/* Reset flag to report util_avg has been updated */
3255 	enqueued &= ~UTIL_AVG_UNCHANGED;
3256 	WRITE_ONCE(avg->util_est.enqueued, enqueued);
3257 }
3258 
3259 /*
3260  * sched_entity:
3261  *
3262  *   task:
3263  *     se_runnable() == se_weight()
3264  *
3265  *   group: [ see update_cfs_group() ]
3266  *     se_weight()   = tg->weight * grq->load_avg / tg->load_avg
3267  *     se_runnable() = se_weight(se) * grq->runnable_load_avg / grq->load_avg
3268  *
3269  *   load_sum := runnable_sum
3270  *   load_avg = se_weight(se) * runnable_avg
3271  *
3272  *   runnable_load_sum := runnable_sum
3273  *   runnable_load_avg = se_runnable(se) * runnable_avg
3274  *
3275  * XXX collapse load_sum and runnable_load_sum
3276  *
3277  * cfq_rs:
3278  *
3279  *   load_sum = \Sum se_weight(se) * se->avg.load_sum
3280  *   load_avg = \Sum se->avg.load_avg
3281  *
3282  *   runnable_load_sum = \Sum se_runnable(se) * se->avg.runnable_load_sum
3283  *   runnable_load_avg = \Sum se->avg.runable_load_avg
3284  */
3285 
3286 static int
3287 __update_load_avg_blocked_se(u64 now, int cpu, struct sched_entity *se)
3288 {
3289 	if (entity_is_task(se))
3290 		se->runnable_weight = se->load.weight;
3291 
3292 	if (___update_load_sum(now, cpu, &se->avg, 0, 0, 0)) {
3293 		___update_load_avg(&se->avg, se_weight(se), se_runnable(se));
3294 		return 1;
3295 	}
3296 
3297 	return 0;
3298 }
3299 
3300 static int
3301 __update_load_avg_se(u64 now, int cpu, struct cfs_rq *cfs_rq, struct sched_entity *se)
3302 {
3303 	if (entity_is_task(se))
3304 		se->runnable_weight = se->load.weight;
3305 
3306 	if (___update_load_sum(now, cpu, &se->avg, !!se->on_rq, !!se->on_rq,
3307 				cfs_rq->curr == se)) {
3308 
3309 		___update_load_avg(&se->avg, se_weight(se), se_runnable(se));
3310 		cfs_se_util_change(&se->avg);
3311 		return 1;
3312 	}
3313 
3314 	return 0;
3315 }
3316 
3317 static int
3318 __update_load_avg_cfs_rq(u64 now, int cpu, struct cfs_rq *cfs_rq)
3319 {
3320 	if (___update_load_sum(now, cpu, &cfs_rq->avg,
3321 				scale_load_down(cfs_rq->load.weight),
3322 				scale_load_down(cfs_rq->runnable_weight),
3323 				cfs_rq->curr != NULL)) {
3324 
3325 		___update_load_avg(&cfs_rq->avg, 1, 1);
3326 		return 1;
3327 	}
3328 
3329 	return 0;
3330 }
3331 
3332 #ifdef CONFIG_FAIR_GROUP_SCHED
3333 /**
3334  * update_tg_load_avg - update the tg's load avg
3335  * @cfs_rq: the cfs_rq whose avg changed
3336  * @force: update regardless of how small the difference
3337  *
3338  * This function 'ensures': tg->load_avg := \Sum tg->cfs_rq[]->avg.load.
3339  * However, because tg->load_avg is a global value there are performance
3340  * considerations.
3341  *
3342  * In order to avoid having to look at the other cfs_rq's, we use a
3343  * differential update where we store the last value we propagated. This in
3344  * turn allows skipping updates if the differential is 'small'.
3345  *
3346  * Updating tg's load_avg is necessary before update_cfs_share().
3347  */
3348 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force)
3349 {
3350 	long delta = cfs_rq->avg.load_avg - cfs_rq->tg_load_avg_contrib;
3351 
3352 	/*
3353 	 * No need to update load_avg for root_task_group as it is not used.
3354 	 */
3355 	if (cfs_rq->tg == &root_task_group)
3356 		return;
3357 
3358 	if (force || abs(delta) > cfs_rq->tg_load_avg_contrib / 64) {
3359 		atomic_long_add(delta, &cfs_rq->tg->load_avg);
3360 		cfs_rq->tg_load_avg_contrib = cfs_rq->avg.load_avg;
3361 	}
3362 }
3363 
3364 /*
3365  * Called within set_task_rq() right before setting a task's CPU. The
3366  * caller only guarantees p->pi_lock is held; no other assumptions,
3367  * including the state of rq->lock, should be made.
3368  */
3369 void set_task_rq_fair(struct sched_entity *se,
3370 		      struct cfs_rq *prev, struct cfs_rq *next)
3371 {
3372 	u64 p_last_update_time;
3373 	u64 n_last_update_time;
3374 
3375 	if (!sched_feat(ATTACH_AGE_LOAD))
3376 		return;
3377 
3378 	/*
3379 	 * We are supposed to update the task to "current" time, then its up to
3380 	 * date and ready to go to new CPU/cfs_rq. But we have difficulty in
3381 	 * getting what current time is, so simply throw away the out-of-date
3382 	 * time. This will result in the wakee task is less decayed, but giving
3383 	 * the wakee more load sounds not bad.
3384 	 */
3385 	if (!(se->avg.last_update_time && prev))
3386 		return;
3387 
3388 #ifndef CONFIG_64BIT
3389 	{
3390 		u64 p_last_update_time_copy;
3391 		u64 n_last_update_time_copy;
3392 
3393 		do {
3394 			p_last_update_time_copy = prev->load_last_update_time_copy;
3395 			n_last_update_time_copy = next->load_last_update_time_copy;
3396 
3397 			smp_rmb();
3398 
3399 			p_last_update_time = prev->avg.last_update_time;
3400 			n_last_update_time = next->avg.last_update_time;
3401 
3402 		} while (p_last_update_time != p_last_update_time_copy ||
3403 			 n_last_update_time != n_last_update_time_copy);
3404 	}
3405 #else
3406 	p_last_update_time = prev->avg.last_update_time;
3407 	n_last_update_time = next->avg.last_update_time;
3408 #endif
3409 	__update_load_avg_blocked_se(p_last_update_time, cpu_of(rq_of(prev)), se);
3410 	se->avg.last_update_time = n_last_update_time;
3411 }
3412 
3413 
3414 /*
3415  * When on migration a sched_entity joins/leaves the PELT hierarchy, we need to
3416  * propagate its contribution. The key to this propagation is the invariant
3417  * that for each group:
3418  *
3419  *   ge->avg == grq->avg						(1)
3420  *
3421  * _IFF_ we look at the pure running and runnable sums. Because they
3422  * represent the very same entity, just at different points in the hierarchy.
3423  *
3424  * Per the above update_tg_cfs_util() is trivial and simply copies the running
3425  * sum over (but still wrong, because the group entity and group rq do not have
3426  * their PELT windows aligned).
3427  *
3428  * However, update_tg_cfs_runnable() is more complex. So we have:
3429  *
3430  *   ge->avg.load_avg = ge->load.weight * ge->avg.runnable_avg		(2)
3431  *
3432  * And since, like util, the runnable part should be directly transferable,
3433  * the following would _appear_ to be the straight forward approach:
3434  *
3435  *   grq->avg.load_avg = grq->load.weight * grq->avg.runnable_avg	(3)
3436  *
3437  * And per (1) we have:
3438  *
3439  *   ge->avg.runnable_avg == grq->avg.runnable_avg
3440  *
3441  * Which gives:
3442  *
3443  *                      ge->load.weight * grq->avg.load_avg
3444  *   ge->avg.load_avg = -----------------------------------		(4)
3445  *                               grq->load.weight
3446  *
3447  * Except that is wrong!
3448  *
3449  * Because while for entities historical weight is not important and we
3450  * really only care about our future and therefore can consider a pure
3451  * runnable sum, runqueues can NOT do this.
3452  *
3453  * We specifically want runqueues to have a load_avg that includes
3454  * historical weights. Those represent the blocked load, the load we expect
3455  * to (shortly) return to us. This only works by keeping the weights as
3456  * integral part of the sum. We therefore cannot decompose as per (3).
3457  *
3458  * Another reason this doesn't work is that runnable isn't a 0-sum entity.
3459  * Imagine a rq with 2 tasks that each are runnable 2/3 of the time. Then the
3460  * rq itself is runnable anywhere between 2/3 and 1 depending on how the
3461  * runnable section of these tasks overlap (or not). If they were to perfectly
3462  * align the rq as a whole would be runnable 2/3 of the time. If however we
3463  * always have at least 1 runnable task, the rq as a whole is always runnable.
3464  *
3465  * So we'll have to approximate.. :/
3466  *
3467  * Given the constraint:
3468  *
3469  *   ge->avg.running_sum <= ge->avg.runnable_sum <= LOAD_AVG_MAX
3470  *
3471  * We can construct a rule that adds runnable to a rq by assuming minimal
3472  * overlap.
3473  *
3474  * On removal, we'll assume each task is equally runnable; which yields:
3475  *
3476  *   grq->avg.runnable_sum = grq->avg.load_sum / grq->load.weight
3477  *
3478  * XXX: only do this for the part of runnable > running ?
3479  *
3480  */
3481 
3482 static inline void
3483 update_tg_cfs_util(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
3484 {
3485 	long delta = gcfs_rq->avg.util_avg - se->avg.util_avg;
3486 
3487 	/* Nothing to update */
3488 	if (!delta)
3489 		return;
3490 
3491 	/*
3492 	 * The relation between sum and avg is:
3493 	 *
3494 	 *   LOAD_AVG_MAX - 1024 + sa->period_contrib
3495 	 *
3496 	 * however, the PELT windows are not aligned between grq and gse.
3497 	 */
3498 
3499 	/* Set new sched_entity's utilization */
3500 	se->avg.util_avg = gcfs_rq->avg.util_avg;
3501 	se->avg.util_sum = se->avg.util_avg * LOAD_AVG_MAX;
3502 
3503 	/* Update parent cfs_rq utilization */
3504 	add_positive(&cfs_rq->avg.util_avg, delta);
3505 	cfs_rq->avg.util_sum = cfs_rq->avg.util_avg * LOAD_AVG_MAX;
3506 }
3507 
3508 static inline void
3509 update_tg_cfs_runnable(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
3510 {
3511 	long delta_avg, running_sum, runnable_sum = gcfs_rq->prop_runnable_sum;
3512 	unsigned long runnable_load_avg, load_avg;
3513 	u64 runnable_load_sum, load_sum = 0;
3514 	s64 delta_sum;
3515 
3516 	if (!runnable_sum)
3517 		return;
3518 
3519 	gcfs_rq->prop_runnable_sum = 0;
3520 
3521 	if (runnable_sum >= 0) {
3522 		/*
3523 		 * Add runnable; clip at LOAD_AVG_MAX. Reflects that until
3524 		 * the CPU is saturated running == runnable.
3525 		 */
3526 		runnable_sum += se->avg.load_sum;
3527 		runnable_sum = min(runnable_sum, (long)LOAD_AVG_MAX);
3528 	} else {
3529 		/*
3530 		 * Estimate the new unweighted runnable_sum of the gcfs_rq by
3531 		 * assuming all tasks are equally runnable.
3532 		 */
3533 		if (scale_load_down(gcfs_rq->load.weight)) {
3534 			load_sum = div_s64(gcfs_rq->avg.load_sum,
3535 				scale_load_down(gcfs_rq->load.weight));
3536 		}
3537 
3538 		/* But make sure to not inflate se's runnable */
3539 		runnable_sum = min(se->avg.load_sum, load_sum);
3540 	}
3541 
3542 	/*
3543 	 * runnable_sum can't be lower than running_sum
3544 	 * As running sum is scale with CPU capacity wehreas the runnable sum
3545 	 * is not we rescale running_sum 1st
3546 	 */
3547 	running_sum = se->avg.util_sum /
3548 		arch_scale_cpu_capacity(NULL, cpu_of(rq_of(cfs_rq)));
3549 	runnable_sum = max(runnable_sum, running_sum);
3550 
3551 	load_sum = (s64)se_weight(se) * runnable_sum;
3552 	load_avg = div_s64(load_sum, LOAD_AVG_MAX);
3553 
3554 	delta_sum = load_sum - (s64)se_weight(se) * se->avg.load_sum;
3555 	delta_avg = load_avg - se->avg.load_avg;
3556 
3557 	se->avg.load_sum = runnable_sum;
3558 	se->avg.load_avg = load_avg;
3559 	add_positive(&cfs_rq->avg.load_avg, delta_avg);
3560 	add_positive(&cfs_rq->avg.load_sum, delta_sum);
3561 
3562 	runnable_load_sum = (s64)se_runnable(se) * runnable_sum;
3563 	runnable_load_avg = div_s64(runnable_load_sum, LOAD_AVG_MAX);
3564 	delta_sum = runnable_load_sum - se_weight(se) * se->avg.runnable_load_sum;
3565 	delta_avg = runnable_load_avg - se->avg.runnable_load_avg;
3566 
3567 	se->avg.runnable_load_sum = runnable_sum;
3568 	se->avg.runnable_load_avg = runnable_load_avg;
3569 
3570 	if (se->on_rq) {
3571 		add_positive(&cfs_rq->avg.runnable_load_avg, delta_avg);
3572 		add_positive(&cfs_rq->avg.runnable_load_sum, delta_sum);
3573 	}
3574 }
3575 
3576 static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum)
3577 {
3578 	cfs_rq->propagate = 1;
3579 	cfs_rq->prop_runnable_sum += runnable_sum;
3580 }
3581 
3582 /* Update task and its cfs_rq load average */
3583 static inline int propagate_entity_load_avg(struct sched_entity *se)
3584 {
3585 	struct cfs_rq *cfs_rq, *gcfs_rq;
3586 
3587 	if (entity_is_task(se))
3588 		return 0;
3589 
3590 	gcfs_rq = group_cfs_rq(se);
3591 	if (!gcfs_rq->propagate)
3592 		return 0;
3593 
3594 	gcfs_rq->propagate = 0;
3595 
3596 	cfs_rq = cfs_rq_of(se);
3597 
3598 	add_tg_cfs_propagate(cfs_rq, gcfs_rq->prop_runnable_sum);
3599 
3600 	update_tg_cfs_util(cfs_rq, se, gcfs_rq);
3601 	update_tg_cfs_runnable(cfs_rq, se, gcfs_rq);
3602 
3603 	return 1;
3604 }
3605 
3606 /*
3607  * Check if we need to update the load and the utilization of a blocked
3608  * group_entity:
3609  */
3610 static inline bool skip_blocked_update(struct sched_entity *se)
3611 {
3612 	struct cfs_rq *gcfs_rq = group_cfs_rq(se);
3613 
3614 	/*
3615 	 * If sched_entity still have not zero load or utilization, we have to
3616 	 * decay it:
3617 	 */
3618 	if (se->avg.load_avg || se->avg.util_avg)
3619 		return false;
3620 
3621 	/*
3622 	 * If there is a pending propagation, we have to update the load and
3623 	 * the utilization of the sched_entity:
3624 	 */
3625 	if (gcfs_rq->propagate)
3626 		return false;
3627 
3628 	/*
3629 	 * Otherwise, the load and the utilization of the sched_entity is
3630 	 * already zero and there is no pending propagation, so it will be a
3631 	 * waste of time to try to decay it:
3632 	 */
3633 	return true;
3634 }
3635 
3636 #else /* CONFIG_FAIR_GROUP_SCHED */
3637 
3638 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force) {}
3639 
3640 static inline int propagate_entity_load_avg(struct sched_entity *se)
3641 {
3642 	return 0;
3643 }
3644 
3645 static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum) {}
3646 
3647 #endif /* CONFIG_FAIR_GROUP_SCHED */
3648 
3649 /**
3650  * update_cfs_rq_load_avg - update the cfs_rq's load/util averages
3651  * @now: current time, as per cfs_rq_clock_task()
3652  * @cfs_rq: cfs_rq to update
3653  *
3654  * The cfs_rq avg is the direct sum of all its entities (blocked and runnable)
3655  * avg. The immediate corollary is that all (fair) tasks must be attached, see
3656  * post_init_entity_util_avg().
3657  *
3658  * cfs_rq->avg is used for task_h_load() and update_cfs_share() for example.
3659  *
3660  * Returns true if the load decayed or we removed load.
3661  *
3662  * Since both these conditions indicate a changed cfs_rq->avg.load we should
3663  * call update_tg_load_avg() when this function returns true.
3664  */
3665 static inline int
3666 update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq)
3667 {
3668 	unsigned long removed_load = 0, removed_util = 0, removed_runnable_sum = 0;
3669 	struct sched_avg *sa = &cfs_rq->avg;
3670 	int decayed = 0;
3671 
3672 	if (cfs_rq->removed.nr) {
3673 		unsigned long r;
3674 		u32 divider = LOAD_AVG_MAX - 1024 + sa->period_contrib;
3675 
3676 		raw_spin_lock(&cfs_rq->removed.lock);
3677 		swap(cfs_rq->removed.util_avg, removed_util);
3678 		swap(cfs_rq->removed.load_avg, removed_load);
3679 		swap(cfs_rq->removed.runnable_sum, removed_runnable_sum);
3680 		cfs_rq->removed.nr = 0;
3681 		raw_spin_unlock(&cfs_rq->removed.lock);
3682 
3683 		r = removed_load;
3684 		sub_positive(&sa->load_avg, r);
3685 		sub_positive(&sa->load_sum, r * divider);
3686 
3687 		r = removed_util;
3688 		sub_positive(&sa->util_avg, r);
3689 		sub_positive(&sa->util_sum, r * divider);
3690 
3691 		add_tg_cfs_propagate(cfs_rq, -(long)removed_runnable_sum);
3692 
3693 		decayed = 1;
3694 	}
3695 
3696 	decayed |= __update_load_avg_cfs_rq(now, cpu_of(rq_of(cfs_rq)), cfs_rq);
3697 
3698 #ifndef CONFIG_64BIT
3699 	smp_wmb();
3700 	cfs_rq->load_last_update_time_copy = sa->last_update_time;
3701 #endif
3702 
3703 	if (decayed)
3704 		cfs_rq_util_change(cfs_rq, 0);
3705 
3706 	return decayed;
3707 }
3708 
3709 /**
3710  * attach_entity_load_avg - attach this entity to its cfs_rq load avg
3711  * @cfs_rq: cfs_rq to attach to
3712  * @se: sched_entity to attach
3713  *
3714  * Must call update_cfs_rq_load_avg() before this, since we rely on
3715  * cfs_rq->avg.last_update_time being current.
3716  */
3717 static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
3718 {
3719 	u32 divider = LOAD_AVG_MAX - 1024 + cfs_rq->avg.period_contrib;
3720 
3721 	/*
3722 	 * When we attach the @se to the @cfs_rq, we must align the decay
3723 	 * window because without that, really weird and wonderful things can
3724 	 * happen.
3725 	 *
3726 	 * XXX illustrate
3727 	 */
3728 	se->avg.last_update_time = cfs_rq->avg.last_update_time;
3729 	se->avg.period_contrib = cfs_rq->avg.period_contrib;
3730 
3731 	/*
3732 	 * Hell(o) Nasty stuff.. we need to recompute _sum based on the new
3733 	 * period_contrib. This isn't strictly correct, but since we're
3734 	 * entirely outside of the PELT hierarchy, nobody cares if we truncate
3735 	 * _sum a little.
3736 	 */
3737 	se->avg.util_sum = se->avg.util_avg * divider;
3738 
3739 	se->avg.load_sum = divider;
3740 	if (se_weight(se)) {
3741 		se->avg.load_sum =
3742 			div_u64(se->avg.load_avg * se->avg.load_sum, se_weight(se));
3743 	}
3744 
3745 	se->avg.runnable_load_sum = se->avg.load_sum;
3746 
3747 	enqueue_load_avg(cfs_rq, se);
3748 	cfs_rq->avg.util_avg += se->avg.util_avg;
3749 	cfs_rq->avg.util_sum += se->avg.util_sum;
3750 
3751 	add_tg_cfs_propagate(cfs_rq, se->avg.load_sum);
3752 
3753 	cfs_rq_util_change(cfs_rq, flags);
3754 }
3755 
3756 /**
3757  * detach_entity_load_avg - detach this entity from its cfs_rq load avg
3758  * @cfs_rq: cfs_rq to detach from
3759  * @se: sched_entity to detach
3760  *
3761  * Must call update_cfs_rq_load_avg() before this, since we rely on
3762  * cfs_rq->avg.last_update_time being current.
3763  */
3764 static void detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3765 {
3766 	dequeue_load_avg(cfs_rq, se);
3767 	sub_positive(&cfs_rq->avg.util_avg, se->avg.util_avg);
3768 	sub_positive(&cfs_rq->avg.util_sum, se->avg.util_sum);
3769 
3770 	add_tg_cfs_propagate(cfs_rq, -se->avg.load_sum);
3771 
3772 	cfs_rq_util_change(cfs_rq, 0);
3773 }
3774 
3775 /*
3776  * Optional action to be done while updating the load average
3777  */
3778 #define UPDATE_TG	0x1
3779 #define SKIP_AGE_LOAD	0x2
3780 #define DO_ATTACH	0x4
3781 
3782 /* Update task and its cfs_rq load average */
3783 static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
3784 {
3785 	u64 now = cfs_rq_clock_task(cfs_rq);
3786 	struct rq *rq = rq_of(cfs_rq);
3787 	int cpu = cpu_of(rq);
3788 	int decayed;
3789 
3790 	/*
3791 	 * Track task load average for carrying it to new CPU after migrated, and
3792 	 * track group sched_entity load average for task_h_load calc in migration
3793 	 */
3794 	if (se->avg.last_update_time && !(flags & SKIP_AGE_LOAD))
3795 		__update_load_avg_se(now, cpu, cfs_rq, se);
3796 
3797 	decayed  = update_cfs_rq_load_avg(now, cfs_rq);
3798 	decayed |= propagate_entity_load_avg(se);
3799 
3800 	if (!se->avg.last_update_time && (flags & DO_ATTACH)) {
3801 
3802 		/*
3803 		 * DO_ATTACH means we're here from enqueue_entity().
3804 		 * !last_update_time means we've passed through
3805 		 * migrate_task_rq_fair() indicating we migrated.
3806 		 *
3807 		 * IOW we're enqueueing a task on a new CPU.
3808 		 */
3809 		attach_entity_load_avg(cfs_rq, se, SCHED_CPUFREQ_MIGRATION);
3810 		update_tg_load_avg(cfs_rq, 0);
3811 
3812 	} else if (decayed && (flags & UPDATE_TG))
3813 		update_tg_load_avg(cfs_rq, 0);
3814 }
3815 
3816 #ifndef CONFIG_64BIT
3817 static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
3818 {
3819 	u64 last_update_time_copy;
3820 	u64 last_update_time;
3821 
3822 	do {
3823 		last_update_time_copy = cfs_rq->load_last_update_time_copy;
3824 		smp_rmb();
3825 		last_update_time = cfs_rq->avg.last_update_time;
3826 	} while (last_update_time != last_update_time_copy);
3827 
3828 	return last_update_time;
3829 }
3830 #else
3831 static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
3832 {
3833 	return cfs_rq->avg.last_update_time;
3834 }
3835 #endif
3836 
3837 /*
3838  * Synchronize entity load avg of dequeued entity without locking
3839  * the previous rq.
3840  */
3841 void sync_entity_load_avg(struct sched_entity *se)
3842 {
3843 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
3844 	u64 last_update_time;
3845 
3846 	last_update_time = cfs_rq_last_update_time(cfs_rq);
3847 	__update_load_avg_blocked_se(last_update_time, cpu_of(rq_of(cfs_rq)), se);
3848 }
3849 
3850 /*
3851  * Task first catches up with cfs_rq, and then subtract
3852  * itself from the cfs_rq (task must be off the queue now).
3853  */
3854 void remove_entity_load_avg(struct sched_entity *se)
3855 {
3856 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
3857 	unsigned long flags;
3858 
3859 	/*
3860 	 * tasks cannot exit without having gone through wake_up_new_task() ->
3861 	 * post_init_entity_util_avg() which will have added things to the
3862 	 * cfs_rq, so we can remove unconditionally.
3863 	 *
3864 	 * Similarly for groups, they will have passed through
3865 	 * post_init_entity_util_avg() before unregister_sched_fair_group()
3866 	 * calls this.
3867 	 */
3868 
3869 	sync_entity_load_avg(se);
3870 
3871 	raw_spin_lock_irqsave(&cfs_rq->removed.lock, flags);
3872 	++cfs_rq->removed.nr;
3873 	cfs_rq->removed.util_avg	+= se->avg.util_avg;
3874 	cfs_rq->removed.load_avg	+= se->avg.load_avg;
3875 	cfs_rq->removed.runnable_sum	+= se->avg.load_sum; /* == runnable_sum */
3876 	raw_spin_unlock_irqrestore(&cfs_rq->removed.lock, flags);
3877 }
3878 
3879 static inline unsigned long cfs_rq_runnable_load_avg(struct cfs_rq *cfs_rq)
3880 {
3881 	return cfs_rq->avg.runnable_load_avg;
3882 }
3883 
3884 static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq)
3885 {
3886 	return cfs_rq->avg.load_avg;
3887 }
3888 
3889 static int idle_balance(struct rq *this_rq, struct rq_flags *rf);
3890 
3891 static inline unsigned long task_util(struct task_struct *p)
3892 {
3893 	return READ_ONCE(p->se.avg.util_avg);
3894 }
3895 
3896 static inline unsigned long _task_util_est(struct task_struct *p)
3897 {
3898 	struct util_est ue = READ_ONCE(p->se.avg.util_est);
3899 
3900 	return max(ue.ewma, ue.enqueued);
3901 }
3902 
3903 static inline unsigned long task_util_est(struct task_struct *p)
3904 {
3905 	return max(task_util(p), _task_util_est(p));
3906 }
3907 
3908 static inline void util_est_enqueue(struct cfs_rq *cfs_rq,
3909 				    struct task_struct *p)
3910 {
3911 	unsigned int enqueued;
3912 
3913 	if (!sched_feat(UTIL_EST))
3914 		return;
3915 
3916 	/* Update root cfs_rq's estimated utilization */
3917 	enqueued  = cfs_rq->avg.util_est.enqueued;
3918 	enqueued += (_task_util_est(p) | UTIL_AVG_UNCHANGED);
3919 	WRITE_ONCE(cfs_rq->avg.util_est.enqueued, enqueued);
3920 }
3921 
3922 /*
3923  * Check if a (signed) value is within a specified (unsigned) margin,
3924  * based on the observation that:
3925  *
3926  *     abs(x) < y := (unsigned)(x + y - 1) < (2 * y - 1)
3927  *
3928  * NOTE: this only works when value + maring < INT_MAX.
3929  */
3930 static inline bool within_margin(int value, int margin)
3931 {
3932 	return ((unsigned int)(value + margin - 1) < (2 * margin - 1));
3933 }
3934 
3935 static void
3936 util_est_dequeue(struct cfs_rq *cfs_rq, struct task_struct *p, bool task_sleep)
3937 {
3938 	long last_ewma_diff;
3939 	struct util_est ue;
3940 
3941 	if (!sched_feat(UTIL_EST))
3942 		return;
3943 
3944 	/*
3945 	 * Update root cfs_rq's estimated utilization
3946 	 *
3947 	 * If *p is the last task then the root cfs_rq's estimated utilization
3948 	 * of a CPU is 0 by definition.
3949 	 */
3950 	ue.enqueued = 0;
3951 	if (cfs_rq->nr_running) {
3952 		ue.enqueued  = cfs_rq->avg.util_est.enqueued;
3953 		ue.enqueued -= min_t(unsigned int, ue.enqueued,
3954 				     (_task_util_est(p) | UTIL_AVG_UNCHANGED));
3955 	}
3956 	WRITE_ONCE(cfs_rq->avg.util_est.enqueued, ue.enqueued);
3957 
3958 	/*
3959 	 * Skip update of task's estimated utilization when the task has not
3960 	 * yet completed an activation, e.g. being migrated.
3961 	 */
3962 	if (!task_sleep)
3963 		return;
3964 
3965 	/*
3966 	 * If the PELT values haven't changed since enqueue time,
3967 	 * skip the util_est update.
3968 	 */
3969 	ue = p->se.avg.util_est;
3970 	if (ue.enqueued & UTIL_AVG_UNCHANGED)
3971 		return;
3972 
3973 	/*
3974 	 * Skip update of task's estimated utilization when its EWMA is
3975 	 * already ~1% close to its last activation value.
3976 	 */
3977 	ue.enqueued = (task_util(p) | UTIL_AVG_UNCHANGED);
3978 	last_ewma_diff = ue.enqueued - ue.ewma;
3979 	if (within_margin(last_ewma_diff, (SCHED_CAPACITY_SCALE / 100)))
3980 		return;
3981 
3982 	/*
3983 	 * Update Task's estimated utilization
3984 	 *
3985 	 * When *p completes an activation we can consolidate another sample
3986 	 * of the task size. This is done by storing the current PELT value
3987 	 * as ue.enqueued and by using this value to update the Exponential
3988 	 * Weighted Moving Average (EWMA):
3989 	 *
3990 	 *  ewma(t) = w *  task_util(p) + (1-w) * ewma(t-1)
3991 	 *          = w *  task_util(p) +         ewma(t-1)  - w * ewma(t-1)
3992 	 *          = w * (task_util(p) -         ewma(t-1)) +     ewma(t-1)
3993 	 *          = w * (      last_ewma_diff            ) +     ewma(t-1)
3994 	 *          = w * (last_ewma_diff  +  ewma(t-1) / w)
3995 	 *
3996 	 * Where 'w' is the weight of new samples, which is configured to be
3997 	 * 0.25, thus making w=1/4 ( >>= UTIL_EST_WEIGHT_SHIFT)
3998 	 */
3999 	ue.ewma <<= UTIL_EST_WEIGHT_SHIFT;
4000 	ue.ewma  += last_ewma_diff;
4001 	ue.ewma >>= UTIL_EST_WEIGHT_SHIFT;
4002 	WRITE_ONCE(p->se.avg.util_est, ue);
4003 }
4004 
4005 #else /* CONFIG_SMP */
4006 
4007 static inline int
4008 update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq)
4009 {
4010 	return 0;
4011 }
4012 
4013 #define UPDATE_TG	0x0
4014 #define SKIP_AGE_LOAD	0x0
4015 #define DO_ATTACH	0x0
4016 
4017 static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int not_used1)
4018 {
4019 	cfs_rq_util_change(cfs_rq, 0);
4020 }
4021 
4022 static inline void remove_entity_load_avg(struct sched_entity *se) {}
4023 
4024 static inline void
4025 attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) {}
4026 static inline void
4027 detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
4028 
4029 static inline int idle_balance(struct rq *rq, struct rq_flags *rf)
4030 {
4031 	return 0;
4032 }
4033 
4034 static inline void
4035 util_est_enqueue(struct cfs_rq *cfs_rq, struct task_struct *p) {}
4036 
4037 static inline void
4038 util_est_dequeue(struct cfs_rq *cfs_rq, struct task_struct *p,
4039 		 bool task_sleep) {}
4040 
4041 #endif /* CONFIG_SMP */
4042 
4043 static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
4044 {
4045 #ifdef CONFIG_SCHED_DEBUG
4046 	s64 d = se->vruntime - cfs_rq->min_vruntime;
4047 
4048 	if (d < 0)
4049 		d = -d;
4050 
4051 	if (d > 3*sysctl_sched_latency)
4052 		schedstat_inc(cfs_rq->nr_spread_over);
4053 #endif
4054 }
4055 
4056 static void
4057 place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
4058 {
4059 	u64 vruntime = cfs_rq->min_vruntime;
4060 
4061 	/*
4062 	 * The 'current' period is already promised to the current tasks,
4063 	 * however the extra weight of the new task will slow them down a
4064 	 * little, place the new task so that it fits in the slot that
4065 	 * stays open at the end.
4066 	 */
4067 	if (initial && sched_feat(START_DEBIT))
4068 		vruntime += sched_vslice(cfs_rq, se);
4069 
4070 	/* sleeps up to a single latency don't count. */
4071 	if (!initial) {
4072 		unsigned long thresh = sysctl_sched_latency;
4073 
4074 		/*
4075 		 * Halve their sleep time's effect, to allow
4076 		 * for a gentler effect of sleepers:
4077 		 */
4078 		if (sched_feat(GENTLE_FAIR_SLEEPERS))
4079 			thresh >>= 1;
4080 
4081 		vruntime -= thresh;
4082 	}
4083 
4084 	/* ensure we never gain time by being placed backwards. */
4085 	se->vruntime = max_vruntime(se->vruntime, vruntime);
4086 }
4087 
4088 static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
4089 
4090 static inline void check_schedstat_required(void)
4091 {
4092 #ifdef CONFIG_SCHEDSTATS
4093 	if (schedstat_enabled())
4094 		return;
4095 
4096 	/* Force schedstat enabled if a dependent tracepoint is active */
4097 	if (trace_sched_stat_wait_enabled()    ||
4098 			trace_sched_stat_sleep_enabled()   ||
4099 			trace_sched_stat_iowait_enabled()  ||
4100 			trace_sched_stat_blocked_enabled() ||
4101 			trace_sched_stat_runtime_enabled())  {
4102 		printk_deferred_once("Scheduler tracepoints stat_sleep, stat_iowait, "
4103 			     "stat_blocked and stat_runtime require the "
4104 			     "kernel parameter schedstats=enable or "
4105 			     "kernel.sched_schedstats=1\n");
4106 	}
4107 #endif
4108 }
4109 
4110 
4111 /*
4112  * MIGRATION
4113  *
4114  *	dequeue
4115  *	  update_curr()
4116  *	    update_min_vruntime()
4117  *	  vruntime -= min_vruntime
4118  *
4119  *	enqueue
4120  *	  update_curr()
4121  *	    update_min_vruntime()
4122  *	  vruntime += min_vruntime
4123  *
4124  * this way the vruntime transition between RQs is done when both
4125  * min_vruntime are up-to-date.
4126  *
4127  * WAKEUP (remote)
4128  *
4129  *	->migrate_task_rq_fair() (p->state == TASK_WAKING)
4130  *	  vruntime -= min_vruntime
4131  *
4132  *	enqueue
4133  *	  update_curr()
4134  *	    update_min_vruntime()
4135  *	  vruntime += min_vruntime
4136  *
4137  * this way we don't have the most up-to-date min_vruntime on the originating
4138  * CPU and an up-to-date min_vruntime on the destination CPU.
4139  */
4140 
4141 static void
4142 enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
4143 {
4144 	bool renorm = !(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_MIGRATED);
4145 	bool curr = cfs_rq->curr == se;
4146 
4147 	/*
4148 	 * If we're the current task, we must renormalise before calling
4149 	 * update_curr().
4150 	 */
4151 	if (renorm && curr)
4152 		se->vruntime += cfs_rq->min_vruntime;
4153 
4154 	update_curr(cfs_rq);
4155 
4156 	/*
4157 	 * Otherwise, renormalise after, such that we're placed at the current
4158 	 * moment in time, instead of some random moment in the past. Being
4159 	 * placed in the past could significantly boost this task to the
4160 	 * fairness detriment of existing tasks.
4161 	 */
4162 	if (renorm && !curr)
4163 		se->vruntime += cfs_rq->min_vruntime;
4164 
4165 	/*
4166 	 * When enqueuing a sched_entity, we must:
4167 	 *   - Update loads to have both entity and cfs_rq synced with now.
4168 	 *   - Add its load to cfs_rq->runnable_avg
4169 	 *   - For group_entity, update its weight to reflect the new share of
4170 	 *     its group cfs_rq
4171 	 *   - Add its new weight to cfs_rq->load.weight
4172 	 */
4173 	update_load_avg(cfs_rq, se, UPDATE_TG | DO_ATTACH);
4174 	update_cfs_group(se);
4175 	enqueue_runnable_load_avg(cfs_rq, se);
4176 	account_entity_enqueue(cfs_rq, se);
4177 
4178 	if (flags & ENQUEUE_WAKEUP)
4179 		place_entity(cfs_rq, se, 0);
4180 
4181 	check_schedstat_required();
4182 	update_stats_enqueue(cfs_rq, se, flags);
4183 	check_spread(cfs_rq, se);
4184 	if (!curr)
4185 		__enqueue_entity(cfs_rq, se);
4186 	se->on_rq = 1;
4187 
4188 	if (cfs_rq->nr_running == 1) {
4189 		list_add_leaf_cfs_rq(cfs_rq);
4190 		check_enqueue_throttle(cfs_rq);
4191 	}
4192 }
4193 
4194 static void __clear_buddies_last(struct sched_entity *se)
4195 {
4196 	for_each_sched_entity(se) {
4197 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
4198 		if (cfs_rq->last != se)
4199 			break;
4200 
4201 		cfs_rq->last = NULL;
4202 	}
4203 }
4204 
4205 static void __clear_buddies_next(struct sched_entity *se)
4206 {
4207 	for_each_sched_entity(se) {
4208 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
4209 		if (cfs_rq->next != se)
4210 			break;
4211 
4212 		cfs_rq->next = NULL;
4213 	}
4214 }
4215 
4216 static void __clear_buddies_skip(struct sched_entity *se)
4217 {
4218 	for_each_sched_entity(se) {
4219 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
4220 		if (cfs_rq->skip != se)
4221 			break;
4222 
4223 		cfs_rq->skip = NULL;
4224 	}
4225 }
4226 
4227 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
4228 {
4229 	if (cfs_rq->last == se)
4230 		__clear_buddies_last(se);
4231 
4232 	if (cfs_rq->next == se)
4233 		__clear_buddies_next(se);
4234 
4235 	if (cfs_rq->skip == se)
4236 		__clear_buddies_skip(se);
4237 }
4238 
4239 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
4240 
4241 static void
4242 dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
4243 {
4244 	/*
4245 	 * Update run-time statistics of the 'current'.
4246 	 */
4247 	update_curr(cfs_rq);
4248 
4249 	/*
4250 	 * When dequeuing a sched_entity, we must:
4251 	 *   - Update loads to have both entity and cfs_rq synced with now.
4252 	 *   - Substract its load from the cfs_rq->runnable_avg.
4253 	 *   - Substract its previous weight from cfs_rq->load.weight.
4254 	 *   - For group entity, update its weight to reflect the new share
4255 	 *     of its group cfs_rq.
4256 	 */
4257 	update_load_avg(cfs_rq, se, UPDATE_TG);
4258 	dequeue_runnable_load_avg(cfs_rq, se);
4259 
4260 	update_stats_dequeue(cfs_rq, se, flags);
4261 
4262 	clear_buddies(cfs_rq, se);
4263 
4264 	if (se != cfs_rq->curr)
4265 		__dequeue_entity(cfs_rq, se);
4266 	se->on_rq = 0;
4267 	account_entity_dequeue(cfs_rq, se);
4268 
4269 	/*
4270 	 * Normalize after update_curr(); which will also have moved
4271 	 * min_vruntime if @se is the one holding it back. But before doing
4272 	 * update_min_vruntime() again, which will discount @se's position and
4273 	 * can move min_vruntime forward still more.
4274 	 */
4275 	if (!(flags & DEQUEUE_SLEEP))
4276 		se->vruntime -= cfs_rq->min_vruntime;
4277 
4278 	/* return excess runtime on last dequeue */
4279 	return_cfs_rq_runtime(cfs_rq);
4280 
4281 	update_cfs_group(se);
4282 
4283 	/*
4284 	 * Now advance min_vruntime if @se was the entity holding it back,
4285 	 * except when: DEQUEUE_SAVE && !DEQUEUE_MOVE, in this case we'll be
4286 	 * put back on, and if we advance min_vruntime, we'll be placed back
4287 	 * further than we started -- ie. we'll be penalized.
4288 	 */
4289 	if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) == DEQUEUE_SAVE)
4290 		update_min_vruntime(cfs_rq);
4291 }
4292 
4293 /*
4294  * Preempt the current task with a newly woken task if needed:
4295  */
4296 static void
4297 check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
4298 {
4299 	unsigned long ideal_runtime, delta_exec;
4300 	struct sched_entity *se;
4301 	s64 delta;
4302 
4303 	ideal_runtime = sched_slice(cfs_rq, curr);
4304 	delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
4305 	if (delta_exec > ideal_runtime) {
4306 		resched_curr(rq_of(cfs_rq));
4307 		/*
4308 		 * The current task ran long enough, ensure it doesn't get
4309 		 * re-elected due to buddy favours.
4310 		 */
4311 		clear_buddies(cfs_rq, curr);
4312 		return;
4313 	}
4314 
4315 	/*
4316 	 * Ensure that a task that missed wakeup preemption by a
4317 	 * narrow margin doesn't have to wait for a full slice.
4318 	 * This also mitigates buddy induced latencies under load.
4319 	 */
4320 	if (delta_exec < sysctl_sched_min_granularity)
4321 		return;
4322 
4323 	se = __pick_first_entity(cfs_rq);
4324 	delta = curr->vruntime - se->vruntime;
4325 
4326 	if (delta < 0)
4327 		return;
4328 
4329 	if (delta > ideal_runtime)
4330 		resched_curr(rq_of(cfs_rq));
4331 }
4332 
4333 static void
4334 set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
4335 {
4336 	/* 'current' is not kept within the tree. */
4337 	if (se->on_rq) {
4338 		/*
4339 		 * Any task has to be enqueued before it get to execute on
4340 		 * a CPU. So account for the time it spent waiting on the
4341 		 * runqueue.
4342 		 */
4343 		update_stats_wait_end(cfs_rq, se);
4344 		__dequeue_entity(cfs_rq, se);
4345 		update_load_avg(cfs_rq, se, UPDATE_TG);
4346 	}
4347 
4348 	update_stats_curr_start(cfs_rq, se);
4349 	cfs_rq->curr = se;
4350 
4351 	/*
4352 	 * Track our maximum slice length, if the CPU's load is at
4353 	 * least twice that of our own weight (i.e. dont track it
4354 	 * when there are only lesser-weight tasks around):
4355 	 */
4356 	if (schedstat_enabled() && rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
4357 		schedstat_set(se->statistics.slice_max,
4358 			max((u64)schedstat_val(se->statistics.slice_max),
4359 			    se->sum_exec_runtime - se->prev_sum_exec_runtime));
4360 	}
4361 
4362 	se->prev_sum_exec_runtime = se->sum_exec_runtime;
4363 }
4364 
4365 static int
4366 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
4367 
4368 /*
4369  * Pick the next process, keeping these things in mind, in this order:
4370  * 1) keep things fair between processes/task groups
4371  * 2) pick the "next" process, since someone really wants that to run
4372  * 3) pick the "last" process, for cache locality
4373  * 4) do not run the "skip" process, if something else is available
4374  */
4375 static struct sched_entity *
4376 pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr)
4377 {
4378 	struct sched_entity *left = __pick_first_entity(cfs_rq);
4379 	struct sched_entity *se;
4380 
4381 	/*
4382 	 * If curr is set we have to see if its left of the leftmost entity
4383 	 * still in the tree, provided there was anything in the tree at all.
4384 	 */
4385 	if (!left || (curr && entity_before(curr, left)))
4386 		left = curr;
4387 
4388 	se = left; /* ideally we run the leftmost entity */
4389 
4390 	/*
4391 	 * Avoid running the skip buddy, if running something else can
4392 	 * be done without getting too unfair.
4393 	 */
4394 	if (cfs_rq->skip == se) {
4395 		struct sched_entity *second;
4396 
4397 		if (se == curr) {
4398 			second = __pick_first_entity(cfs_rq);
4399 		} else {
4400 			second = __pick_next_entity(se);
4401 			if (!second || (curr && entity_before(curr, second)))
4402 				second = curr;
4403 		}
4404 
4405 		if (second && wakeup_preempt_entity(second, left) < 1)
4406 			se = second;
4407 	}
4408 
4409 	/*
4410 	 * Prefer last buddy, try to return the CPU to a preempted task.
4411 	 */
4412 	if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
4413 		se = cfs_rq->last;
4414 
4415 	/*
4416 	 * Someone really wants this to run. If it's not unfair, run it.
4417 	 */
4418 	if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
4419 		se = cfs_rq->next;
4420 
4421 	clear_buddies(cfs_rq, se);
4422 
4423 	return se;
4424 }
4425 
4426 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
4427 
4428 static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
4429 {
4430 	/*
4431 	 * If still on the runqueue then deactivate_task()
4432 	 * was not called and update_curr() has to be done:
4433 	 */
4434 	if (prev->on_rq)
4435 		update_curr(cfs_rq);
4436 
4437 	/* throttle cfs_rqs exceeding runtime */
4438 	check_cfs_rq_runtime(cfs_rq);
4439 
4440 	check_spread(cfs_rq, prev);
4441 
4442 	if (prev->on_rq) {
4443 		update_stats_wait_start(cfs_rq, prev);
4444 		/* Put 'current' back into the tree. */
4445 		__enqueue_entity(cfs_rq, prev);
4446 		/* in !on_rq case, update occurred at dequeue */
4447 		update_load_avg(cfs_rq, prev, 0);
4448 	}
4449 	cfs_rq->curr = NULL;
4450 }
4451 
4452 static void
4453 entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
4454 {
4455 	/*
4456 	 * Update run-time statistics of the 'current'.
4457 	 */
4458 	update_curr(cfs_rq);
4459 
4460 	/*
4461 	 * Ensure that runnable average is periodically updated.
4462 	 */
4463 	update_load_avg(cfs_rq, curr, UPDATE_TG);
4464 	update_cfs_group(curr);
4465 
4466 #ifdef CONFIG_SCHED_HRTICK
4467 	/*
4468 	 * queued ticks are scheduled to match the slice, so don't bother
4469 	 * validating it and just reschedule.
4470 	 */
4471 	if (queued) {
4472 		resched_curr(rq_of(cfs_rq));
4473 		return;
4474 	}
4475 	/*
4476 	 * don't let the period tick interfere with the hrtick preemption
4477 	 */
4478 	if (!sched_feat(DOUBLE_TICK) &&
4479 			hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
4480 		return;
4481 #endif
4482 
4483 	if (cfs_rq->nr_running > 1)
4484 		check_preempt_tick(cfs_rq, curr);
4485 }
4486 
4487 
4488 /**************************************************
4489  * CFS bandwidth control machinery
4490  */
4491 
4492 #ifdef CONFIG_CFS_BANDWIDTH
4493 
4494 #ifdef HAVE_JUMP_LABEL
4495 static struct static_key __cfs_bandwidth_used;
4496 
4497 static inline bool cfs_bandwidth_used(void)
4498 {
4499 	return static_key_false(&__cfs_bandwidth_used);
4500 }
4501 
4502 void cfs_bandwidth_usage_inc(void)
4503 {
4504 	static_key_slow_inc_cpuslocked(&__cfs_bandwidth_used);
4505 }
4506 
4507 void cfs_bandwidth_usage_dec(void)
4508 {
4509 	static_key_slow_dec_cpuslocked(&__cfs_bandwidth_used);
4510 }
4511 #else /* HAVE_JUMP_LABEL */
4512 static bool cfs_bandwidth_used(void)
4513 {
4514 	return true;
4515 }
4516 
4517 void cfs_bandwidth_usage_inc(void) {}
4518 void cfs_bandwidth_usage_dec(void) {}
4519 #endif /* HAVE_JUMP_LABEL */
4520 
4521 /*
4522  * default period for cfs group bandwidth.
4523  * default: 0.1s, units: nanoseconds
4524  */
4525 static inline u64 default_cfs_period(void)
4526 {
4527 	return 100000000ULL;
4528 }
4529 
4530 static inline u64 sched_cfs_bandwidth_slice(void)
4531 {
4532 	return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
4533 }
4534 
4535 /*
4536  * Replenish runtime according to assigned quota and update expiration time.
4537  * We use sched_clock_cpu directly instead of rq->clock to avoid adding
4538  * additional synchronization around rq->lock.
4539  *
4540  * requires cfs_b->lock
4541  */
4542 void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
4543 {
4544 	u64 now;
4545 
4546 	if (cfs_b->quota == RUNTIME_INF)
4547 		return;
4548 
4549 	now = sched_clock_cpu(smp_processor_id());
4550 	cfs_b->runtime = cfs_b->quota;
4551 	cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
4552 }
4553 
4554 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
4555 {
4556 	return &tg->cfs_bandwidth;
4557 }
4558 
4559 /* rq->task_clock normalized against any time this cfs_rq has spent throttled */
4560 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
4561 {
4562 	if (unlikely(cfs_rq->throttle_count))
4563 		return cfs_rq->throttled_clock_task - cfs_rq->throttled_clock_task_time;
4564 
4565 	return rq_clock_task(rq_of(cfs_rq)) - cfs_rq->throttled_clock_task_time;
4566 }
4567 
4568 /* returns 0 on failure to allocate runtime */
4569 static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4570 {
4571 	struct task_group *tg = cfs_rq->tg;
4572 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
4573 	u64 amount = 0, min_amount, expires;
4574 
4575 	/* note: this is a positive sum as runtime_remaining <= 0 */
4576 	min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;
4577 
4578 	raw_spin_lock(&cfs_b->lock);
4579 	if (cfs_b->quota == RUNTIME_INF)
4580 		amount = min_amount;
4581 	else {
4582 		start_cfs_bandwidth(cfs_b);
4583 
4584 		if (cfs_b->runtime > 0) {
4585 			amount = min(cfs_b->runtime, min_amount);
4586 			cfs_b->runtime -= amount;
4587 			cfs_b->idle = 0;
4588 		}
4589 	}
4590 	expires = cfs_b->runtime_expires;
4591 	raw_spin_unlock(&cfs_b->lock);
4592 
4593 	cfs_rq->runtime_remaining += amount;
4594 	/*
4595 	 * we may have advanced our local expiration to account for allowed
4596 	 * spread between our sched_clock and the one on which runtime was
4597 	 * issued.
4598 	 */
4599 	if ((s64)(expires - cfs_rq->runtime_expires) > 0)
4600 		cfs_rq->runtime_expires = expires;
4601 
4602 	return cfs_rq->runtime_remaining > 0;
4603 }
4604 
4605 /*
4606  * Note: This depends on the synchronization provided by sched_clock and the
4607  * fact that rq->clock snapshots this value.
4608  */
4609 static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4610 {
4611 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4612 
4613 	/* if the deadline is ahead of our clock, nothing to do */
4614 	if (likely((s64)(rq_clock(rq_of(cfs_rq)) - cfs_rq->runtime_expires) < 0))
4615 		return;
4616 
4617 	if (cfs_rq->runtime_remaining < 0)
4618 		return;
4619 
4620 	/*
4621 	 * If the local deadline has passed we have to consider the
4622 	 * possibility that our sched_clock is 'fast' and the global deadline
4623 	 * has not truly expired.
4624 	 *
4625 	 * Fortunately we can check determine whether this the case by checking
4626 	 * whether the global deadline has advanced. It is valid to compare
4627 	 * cfs_b->runtime_expires without any locks since we only care about
4628 	 * exact equality, so a partial write will still work.
4629 	 */
4630 
4631 	if (cfs_rq->runtime_expires != cfs_b->runtime_expires) {
4632 		/* extend local deadline, drift is bounded above by 2 ticks */
4633 		cfs_rq->runtime_expires += TICK_NSEC;
4634 	} else {
4635 		/* global deadline is ahead, expiration has passed */
4636 		cfs_rq->runtime_remaining = 0;
4637 	}
4638 }
4639 
4640 static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
4641 {
4642 	/* dock delta_exec before expiring quota (as it could span periods) */
4643 	cfs_rq->runtime_remaining -= delta_exec;
4644 	expire_cfs_rq_runtime(cfs_rq);
4645 
4646 	if (likely(cfs_rq->runtime_remaining > 0))
4647 		return;
4648 
4649 	/*
4650 	 * if we're unable to extend our runtime we resched so that the active
4651 	 * hierarchy can be throttled
4652 	 */
4653 	if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
4654 		resched_curr(rq_of(cfs_rq));
4655 }
4656 
4657 static __always_inline
4658 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
4659 {
4660 	if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
4661 		return;
4662 
4663 	__account_cfs_rq_runtime(cfs_rq, delta_exec);
4664 }
4665 
4666 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
4667 {
4668 	return cfs_bandwidth_used() && cfs_rq->throttled;
4669 }
4670 
4671 /* check whether cfs_rq, or any parent, is throttled */
4672 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
4673 {
4674 	return cfs_bandwidth_used() && cfs_rq->throttle_count;
4675 }
4676 
4677 /*
4678  * Ensure that neither of the group entities corresponding to src_cpu or
4679  * dest_cpu are members of a throttled hierarchy when performing group
4680  * load-balance operations.
4681  */
4682 static inline int throttled_lb_pair(struct task_group *tg,
4683 				    int src_cpu, int dest_cpu)
4684 {
4685 	struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
4686 
4687 	src_cfs_rq = tg->cfs_rq[src_cpu];
4688 	dest_cfs_rq = tg->cfs_rq[dest_cpu];
4689 
4690 	return throttled_hierarchy(src_cfs_rq) ||
4691 	       throttled_hierarchy(dest_cfs_rq);
4692 }
4693 
4694 /* updated child weight may affect parent so we have to do this bottom up */
4695 static int tg_unthrottle_up(struct task_group *tg, void *data)
4696 {
4697 	struct rq *rq = data;
4698 	struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
4699 
4700 	cfs_rq->throttle_count--;
4701 	if (!cfs_rq->throttle_count) {
4702 		/* adjust cfs_rq_clock_task() */
4703 		cfs_rq->throttled_clock_task_time += rq_clock_task(rq) -
4704 					     cfs_rq->throttled_clock_task;
4705 	}
4706 
4707 	return 0;
4708 }
4709 
4710 static int tg_throttle_down(struct task_group *tg, void *data)
4711 {
4712 	struct rq *rq = data;
4713 	struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
4714 
4715 	/* group is entering throttled state, stop time */
4716 	if (!cfs_rq->throttle_count)
4717 		cfs_rq->throttled_clock_task = rq_clock_task(rq);
4718 	cfs_rq->throttle_count++;
4719 
4720 	return 0;
4721 }
4722 
4723 static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
4724 {
4725 	struct rq *rq = rq_of(cfs_rq);
4726 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4727 	struct sched_entity *se;
4728 	long task_delta, dequeue = 1;
4729 	bool empty;
4730 
4731 	se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
4732 
4733 	/* freeze hierarchy runnable averages while throttled */
4734 	rcu_read_lock();
4735 	walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
4736 	rcu_read_unlock();
4737 
4738 	task_delta = cfs_rq->h_nr_running;
4739 	for_each_sched_entity(se) {
4740 		struct cfs_rq *qcfs_rq = cfs_rq_of(se);
4741 		/* throttled entity or throttle-on-deactivate */
4742 		if (!se->on_rq)
4743 			break;
4744 
4745 		if (dequeue)
4746 			dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
4747 		qcfs_rq->h_nr_running -= task_delta;
4748 
4749 		if (qcfs_rq->load.weight)
4750 			dequeue = 0;
4751 	}
4752 
4753 	if (!se)
4754 		sub_nr_running(rq, task_delta);
4755 
4756 	cfs_rq->throttled = 1;
4757 	cfs_rq->throttled_clock = rq_clock(rq);
4758 	raw_spin_lock(&cfs_b->lock);
4759 	empty = list_empty(&cfs_b->throttled_cfs_rq);
4760 
4761 	/*
4762 	 * Add to the _head_ of the list, so that an already-started
4763 	 * distribute_cfs_runtime will not see us
4764 	 */
4765 	list_add_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
4766 
4767 	/*
4768 	 * If we're the first throttled task, make sure the bandwidth
4769 	 * timer is running.
4770 	 */
4771 	if (empty)
4772 		start_cfs_bandwidth(cfs_b);
4773 
4774 	raw_spin_unlock(&cfs_b->lock);
4775 }
4776 
4777 void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
4778 {
4779 	struct rq *rq = rq_of(cfs_rq);
4780 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4781 	struct sched_entity *se;
4782 	int enqueue = 1;
4783 	long task_delta;
4784 
4785 	se = cfs_rq->tg->se[cpu_of(rq)];
4786 
4787 	cfs_rq->throttled = 0;
4788 
4789 	update_rq_clock(rq);
4790 
4791 	raw_spin_lock(&cfs_b->lock);
4792 	cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
4793 	list_del_rcu(&cfs_rq->throttled_list);
4794 	raw_spin_unlock(&cfs_b->lock);
4795 
4796 	/* update hierarchical throttle state */
4797 	walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
4798 
4799 	if (!cfs_rq->load.weight)
4800 		return;
4801 
4802 	task_delta = cfs_rq->h_nr_running;
4803 	for_each_sched_entity(se) {
4804 		if (se->on_rq)
4805 			enqueue = 0;
4806 
4807 		cfs_rq = cfs_rq_of(se);
4808 		if (enqueue)
4809 			enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
4810 		cfs_rq->h_nr_running += task_delta;
4811 
4812 		if (cfs_rq_throttled(cfs_rq))
4813 			break;
4814 	}
4815 
4816 	if (!se)
4817 		add_nr_running(rq, task_delta);
4818 
4819 	/* Determine whether we need to wake up potentially idle CPU: */
4820 	if (rq->curr == rq->idle && rq->cfs.nr_running)
4821 		resched_curr(rq);
4822 }
4823 
4824 static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
4825 		u64 remaining, u64 expires)
4826 {
4827 	struct cfs_rq *cfs_rq;
4828 	u64 runtime;
4829 	u64 starting_runtime = remaining;
4830 
4831 	rcu_read_lock();
4832 	list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
4833 				throttled_list) {
4834 		struct rq *rq = rq_of(cfs_rq);
4835 		struct rq_flags rf;
4836 
4837 		rq_lock(rq, &rf);
4838 		if (!cfs_rq_throttled(cfs_rq))
4839 			goto next;
4840 
4841 		runtime = -cfs_rq->runtime_remaining + 1;
4842 		if (runtime > remaining)
4843 			runtime = remaining;
4844 		remaining -= runtime;
4845 
4846 		cfs_rq->runtime_remaining += runtime;
4847 		cfs_rq->runtime_expires = expires;
4848 
4849 		/* we check whether we're throttled above */
4850 		if (cfs_rq->runtime_remaining > 0)
4851 			unthrottle_cfs_rq(cfs_rq);
4852 
4853 next:
4854 		rq_unlock(rq, &rf);
4855 
4856 		if (!remaining)
4857 			break;
4858 	}
4859 	rcu_read_unlock();
4860 
4861 	return starting_runtime - remaining;
4862 }
4863 
4864 /*
4865  * Responsible for refilling a task_group's bandwidth and unthrottling its
4866  * cfs_rqs as appropriate. If there has been no activity within the last
4867  * period the timer is deactivated until scheduling resumes; cfs_b->idle is
4868  * used to track this state.
4869  */
4870 static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
4871 {
4872 	u64 runtime, runtime_expires;
4873 	int throttled;
4874 
4875 	/* no need to continue the timer with no bandwidth constraint */
4876 	if (cfs_b->quota == RUNTIME_INF)
4877 		goto out_deactivate;
4878 
4879 	throttled = !list_empty(&cfs_b->throttled_cfs_rq);
4880 	cfs_b->nr_periods += overrun;
4881 
4882 	/*
4883 	 * idle depends on !throttled (for the case of a large deficit), and if
4884 	 * we're going inactive then everything else can be deferred
4885 	 */
4886 	if (cfs_b->idle && !throttled)
4887 		goto out_deactivate;
4888 
4889 	__refill_cfs_bandwidth_runtime(cfs_b);
4890 
4891 	if (!throttled) {
4892 		/* mark as potentially idle for the upcoming period */
4893 		cfs_b->idle = 1;
4894 		return 0;
4895 	}
4896 
4897 	/* account preceding periods in which throttling occurred */
4898 	cfs_b->nr_throttled += overrun;
4899 
4900 	runtime_expires = cfs_b->runtime_expires;
4901 
4902 	/*
4903 	 * This check is repeated as we are holding onto the new bandwidth while
4904 	 * we unthrottle. This can potentially race with an unthrottled group
4905 	 * trying to acquire new bandwidth from the global pool. This can result
4906 	 * in us over-using our runtime if it is all used during this loop, but
4907 	 * only by limited amounts in that extreme case.
4908 	 */
4909 	while (throttled && cfs_b->runtime > 0) {
4910 		runtime = cfs_b->runtime;
4911 		raw_spin_unlock(&cfs_b->lock);
4912 		/* we can't nest cfs_b->lock while distributing bandwidth */
4913 		runtime = distribute_cfs_runtime(cfs_b, runtime,
4914 						 runtime_expires);
4915 		raw_spin_lock(&cfs_b->lock);
4916 
4917 		throttled = !list_empty(&cfs_b->throttled_cfs_rq);
4918 
4919 		cfs_b->runtime -= min(runtime, cfs_b->runtime);
4920 	}
4921 
4922 	/*
4923 	 * While we are ensured activity in the period following an
4924 	 * unthrottle, this also covers the case in which the new bandwidth is
4925 	 * insufficient to cover the existing bandwidth deficit.  (Forcing the
4926 	 * timer to remain active while there are any throttled entities.)
4927 	 */
4928 	cfs_b->idle = 0;
4929 
4930 	return 0;
4931 
4932 out_deactivate:
4933 	return 1;
4934 }
4935 
4936 /* a cfs_rq won't donate quota below this amount */
4937 static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
4938 /* minimum remaining period time to redistribute slack quota */
4939 static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
4940 /* how long we wait to gather additional slack before distributing */
4941 static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
4942 
4943 /*
4944  * Are we near the end of the current quota period?
4945  *
4946  * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
4947  * hrtimer base being cleared by hrtimer_start. In the case of
4948  * migrate_hrtimers, base is never cleared, so we are fine.
4949  */
4950 static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
4951 {
4952 	struct hrtimer *refresh_timer = &cfs_b->period_timer;
4953 	u64 remaining;
4954 
4955 	/* if the call-back is running a quota refresh is already occurring */
4956 	if (hrtimer_callback_running(refresh_timer))
4957 		return 1;
4958 
4959 	/* is a quota refresh about to occur? */
4960 	remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
4961 	if (remaining < min_expire)
4962 		return 1;
4963 
4964 	return 0;
4965 }
4966 
4967 static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
4968 {
4969 	u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
4970 
4971 	/* if there's a quota refresh soon don't bother with slack */
4972 	if (runtime_refresh_within(cfs_b, min_left))
4973 		return;
4974 
4975 	hrtimer_start(&cfs_b->slack_timer,
4976 			ns_to_ktime(cfs_bandwidth_slack_period),
4977 			HRTIMER_MODE_REL);
4978 }
4979 
4980 /* we know any runtime found here is valid as update_curr() precedes return */
4981 static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4982 {
4983 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4984 	s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
4985 
4986 	if (slack_runtime <= 0)
4987 		return;
4988 
4989 	raw_spin_lock(&cfs_b->lock);
4990 	if (cfs_b->quota != RUNTIME_INF &&
4991 	    cfs_rq->runtime_expires == cfs_b->runtime_expires) {
4992 		cfs_b->runtime += slack_runtime;
4993 
4994 		/* we are under rq->lock, defer unthrottling using a timer */
4995 		if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
4996 		    !list_empty(&cfs_b->throttled_cfs_rq))
4997 			start_cfs_slack_bandwidth(cfs_b);
4998 	}
4999 	raw_spin_unlock(&cfs_b->lock);
5000 
5001 	/* even if it's not valid for return we don't want to try again */
5002 	cfs_rq->runtime_remaining -= slack_runtime;
5003 }
5004 
5005 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
5006 {
5007 	if (!cfs_bandwidth_used())
5008 		return;
5009 
5010 	if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
5011 		return;
5012 
5013 	__return_cfs_rq_runtime(cfs_rq);
5014 }
5015 
5016 /*
5017  * This is done with a timer (instead of inline with bandwidth return) since
5018  * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
5019  */
5020 static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
5021 {
5022 	u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
5023 	u64 expires;
5024 
5025 	/* confirm we're still not at a refresh boundary */
5026 	raw_spin_lock(&cfs_b->lock);
5027 	if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
5028 		raw_spin_unlock(&cfs_b->lock);
5029 		return;
5030 	}
5031 
5032 	if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice)
5033 		runtime = cfs_b->runtime;
5034 
5035 	expires = cfs_b->runtime_expires;
5036 	raw_spin_unlock(&cfs_b->lock);
5037 
5038 	if (!runtime)
5039 		return;
5040 
5041 	runtime = distribute_cfs_runtime(cfs_b, runtime, expires);
5042 
5043 	raw_spin_lock(&cfs_b->lock);
5044 	if (expires == cfs_b->runtime_expires)
5045 		cfs_b->runtime -= min(runtime, cfs_b->runtime);
5046 	raw_spin_unlock(&cfs_b->lock);
5047 }
5048 
5049 /*
5050  * When a group wakes up we want to make sure that its quota is not already
5051  * expired/exceeded, otherwise it may be allowed to steal additional ticks of
5052  * runtime as update_curr() throttling can not not trigger until it's on-rq.
5053  */
5054 static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
5055 {
5056 	if (!cfs_bandwidth_used())
5057 		return;
5058 
5059 	/* an active group must be handled by the update_curr()->put() path */
5060 	if (!cfs_rq->runtime_enabled || cfs_rq->curr)
5061 		return;
5062 
5063 	/* ensure the group is not already throttled */
5064 	if (cfs_rq_throttled(cfs_rq))
5065 		return;
5066 
5067 	/* update runtime allocation */
5068 	account_cfs_rq_runtime(cfs_rq, 0);
5069 	if (cfs_rq->runtime_remaining <= 0)
5070 		throttle_cfs_rq(cfs_rq);
5071 }
5072 
5073 static void sync_throttle(struct task_group *tg, int cpu)
5074 {
5075 	struct cfs_rq *pcfs_rq, *cfs_rq;
5076 
5077 	if (!cfs_bandwidth_used())
5078 		return;
5079 
5080 	if (!tg->parent)
5081 		return;
5082 
5083 	cfs_rq = tg->cfs_rq[cpu];
5084 	pcfs_rq = tg->parent->cfs_rq[cpu];
5085 
5086 	cfs_rq->throttle_count = pcfs_rq->throttle_count;
5087 	cfs_rq->throttled_clock_task = rq_clock_task(cpu_rq(cpu));
5088 }
5089 
5090 /* conditionally throttle active cfs_rq's from put_prev_entity() */
5091 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
5092 {
5093 	if (!cfs_bandwidth_used())
5094 		return false;
5095 
5096 	if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
5097 		return false;
5098 
5099 	/*
5100 	 * it's possible for a throttled entity to be forced into a running
5101 	 * state (e.g. set_curr_task), in this case we're finished.
5102 	 */
5103 	if (cfs_rq_throttled(cfs_rq))
5104 		return true;
5105 
5106 	throttle_cfs_rq(cfs_rq);
5107 	return true;
5108 }
5109 
5110 static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
5111 {
5112 	struct cfs_bandwidth *cfs_b =
5113 		container_of(timer, struct cfs_bandwidth, slack_timer);
5114 
5115 	do_sched_cfs_slack_timer(cfs_b);
5116 
5117 	return HRTIMER_NORESTART;
5118 }
5119 
5120 static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
5121 {
5122 	struct cfs_bandwidth *cfs_b =
5123 		container_of(timer, struct cfs_bandwidth, period_timer);
5124 	int overrun;
5125 	int idle = 0;
5126 
5127 	raw_spin_lock(&cfs_b->lock);
5128 	for (;;) {
5129 		overrun = hrtimer_forward_now(timer, cfs_b->period);
5130 		if (!overrun)
5131 			break;
5132 
5133 		idle = do_sched_cfs_period_timer(cfs_b, overrun);
5134 	}
5135 	if (idle)
5136 		cfs_b->period_active = 0;
5137 	raw_spin_unlock(&cfs_b->lock);
5138 
5139 	return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
5140 }
5141 
5142 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
5143 {
5144 	raw_spin_lock_init(&cfs_b->lock);
5145 	cfs_b->runtime = 0;
5146 	cfs_b->quota = RUNTIME_INF;
5147 	cfs_b->period = ns_to_ktime(default_cfs_period());
5148 
5149 	INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
5150 	hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
5151 	cfs_b->period_timer.function = sched_cfs_period_timer;
5152 	hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
5153 	cfs_b->slack_timer.function = sched_cfs_slack_timer;
5154 }
5155 
5156 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
5157 {
5158 	cfs_rq->runtime_enabled = 0;
5159 	INIT_LIST_HEAD(&cfs_rq->throttled_list);
5160 }
5161 
5162 void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
5163 {
5164 	lockdep_assert_held(&cfs_b->lock);
5165 
5166 	if (!cfs_b->period_active) {
5167 		cfs_b->period_active = 1;
5168 		hrtimer_forward_now(&cfs_b->period_timer, cfs_b->period);
5169 		hrtimer_start_expires(&cfs_b->period_timer, HRTIMER_MODE_ABS_PINNED);
5170 	}
5171 }
5172 
5173 static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
5174 {
5175 	/* init_cfs_bandwidth() was not called */
5176 	if (!cfs_b->throttled_cfs_rq.next)
5177 		return;
5178 
5179 	hrtimer_cancel(&cfs_b->period_timer);
5180 	hrtimer_cancel(&cfs_b->slack_timer);
5181 }
5182 
5183 /*
5184  * Both these CPU hotplug callbacks race against unregister_fair_sched_group()
5185  *
5186  * The race is harmless, since modifying bandwidth settings of unhooked group
5187  * bits doesn't do much.
5188  */
5189 
5190 /* cpu online calback */
5191 static void __maybe_unused update_runtime_enabled(struct rq *rq)
5192 {
5193 	struct task_group *tg;
5194 
5195 	lockdep_assert_held(&rq->lock);
5196 
5197 	rcu_read_lock();
5198 	list_for_each_entry_rcu(tg, &task_groups, list) {
5199 		struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
5200 		struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
5201 
5202 		raw_spin_lock(&cfs_b->lock);
5203 		cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF;
5204 		raw_spin_unlock(&cfs_b->lock);
5205 	}
5206 	rcu_read_unlock();
5207 }
5208 
5209 /* cpu offline callback */
5210 static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
5211 {
5212 	struct task_group *tg;
5213 
5214 	lockdep_assert_held(&rq->lock);
5215 
5216 	rcu_read_lock();
5217 	list_for_each_entry_rcu(tg, &task_groups, list) {
5218 		struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
5219 
5220 		if (!cfs_rq->runtime_enabled)
5221 			continue;
5222 
5223 		/*
5224 		 * clock_task is not advancing so we just need to make sure
5225 		 * there's some valid quota amount
5226 		 */
5227 		cfs_rq->runtime_remaining = 1;
5228 		/*
5229 		 * Offline rq is schedulable till CPU is completely disabled
5230 		 * in take_cpu_down(), so we prevent new cfs throttling here.
5231 		 */
5232 		cfs_rq->runtime_enabled = 0;
5233 
5234 		if (cfs_rq_throttled(cfs_rq))
5235 			unthrottle_cfs_rq(cfs_rq);
5236 	}
5237 	rcu_read_unlock();
5238 }
5239 
5240 #else /* CONFIG_CFS_BANDWIDTH */
5241 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
5242 {
5243 	return rq_clock_task(rq_of(cfs_rq));
5244 }
5245 
5246 static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {}
5247 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; }
5248 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
5249 static inline void sync_throttle(struct task_group *tg, int cpu) {}
5250 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
5251 
5252 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
5253 {
5254 	return 0;
5255 }
5256 
5257 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
5258 {
5259 	return 0;
5260 }
5261 
5262 static inline int throttled_lb_pair(struct task_group *tg,
5263 				    int src_cpu, int dest_cpu)
5264 {
5265 	return 0;
5266 }
5267 
5268 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
5269 
5270 #ifdef CONFIG_FAIR_GROUP_SCHED
5271 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
5272 #endif
5273 
5274 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
5275 {
5276 	return NULL;
5277 }
5278 static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
5279 static inline void update_runtime_enabled(struct rq *rq) {}
5280 static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
5281 
5282 #endif /* CONFIG_CFS_BANDWIDTH */
5283 
5284 /**************************************************
5285  * CFS operations on tasks:
5286  */
5287 
5288 #ifdef CONFIG_SCHED_HRTICK
5289 static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
5290 {
5291 	struct sched_entity *se = &p->se;
5292 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
5293 
5294 	SCHED_WARN_ON(task_rq(p) != rq);
5295 
5296 	if (rq->cfs.h_nr_running > 1) {
5297 		u64 slice = sched_slice(cfs_rq, se);
5298 		u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
5299 		s64 delta = slice - ran;
5300 
5301 		if (delta < 0) {
5302 			if (rq->curr == p)
5303 				resched_curr(rq);
5304 			return;
5305 		}
5306 		hrtick_start(rq, delta);
5307 	}
5308 }
5309 
5310 /*
5311  * called from enqueue/dequeue and updates the hrtick when the
5312  * current task is from our class and nr_running is low enough
5313  * to matter.
5314  */
5315 static void hrtick_update(struct rq *rq)
5316 {
5317 	struct task_struct *curr = rq->curr;
5318 
5319 	if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
5320 		return;
5321 
5322 	if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
5323 		hrtick_start_fair(rq, curr);
5324 }
5325 #else /* !CONFIG_SCHED_HRTICK */
5326 static inline void
5327 hrtick_start_fair(struct rq *rq, struct task_struct *p)
5328 {
5329 }
5330 
5331 static inline void hrtick_update(struct rq *rq)
5332 {
5333 }
5334 #endif
5335 
5336 /*
5337  * The enqueue_task method is called before nr_running is
5338  * increased. Here we update the fair scheduling stats and
5339  * then put the task into the rbtree:
5340  */
5341 static void
5342 enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
5343 {
5344 	struct cfs_rq *cfs_rq;
5345 	struct sched_entity *se = &p->se;
5346 
5347 	/*
5348 	 * If in_iowait is set, the code below may not trigger any cpufreq
5349 	 * utilization updates, so do it here explicitly with the IOWAIT flag
5350 	 * passed.
5351 	 */
5352 	if (p->in_iowait)
5353 		cpufreq_update_util(rq, SCHED_CPUFREQ_IOWAIT);
5354 
5355 	for_each_sched_entity(se) {
5356 		if (se->on_rq)
5357 			break;
5358 		cfs_rq = cfs_rq_of(se);
5359 		enqueue_entity(cfs_rq, se, flags);
5360 
5361 		/*
5362 		 * end evaluation on encountering a throttled cfs_rq
5363 		 *
5364 		 * note: in the case of encountering a throttled cfs_rq we will
5365 		 * post the final h_nr_running increment below.
5366 		 */
5367 		if (cfs_rq_throttled(cfs_rq))
5368 			break;
5369 		cfs_rq->h_nr_running++;
5370 
5371 		flags = ENQUEUE_WAKEUP;
5372 	}
5373 
5374 	for_each_sched_entity(se) {
5375 		cfs_rq = cfs_rq_of(se);
5376 		cfs_rq->h_nr_running++;
5377 
5378 		if (cfs_rq_throttled(cfs_rq))
5379 			break;
5380 
5381 		update_load_avg(cfs_rq, se, UPDATE_TG);
5382 		update_cfs_group(se);
5383 	}
5384 
5385 	if (!se)
5386 		add_nr_running(rq, 1);
5387 
5388 	util_est_enqueue(&rq->cfs, p);
5389 	hrtick_update(rq);
5390 }
5391 
5392 static void set_next_buddy(struct sched_entity *se);
5393 
5394 /*
5395  * The dequeue_task method is called before nr_running is
5396  * decreased. We remove the task from the rbtree and
5397  * update the fair scheduling stats:
5398  */
5399 static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
5400 {
5401 	struct cfs_rq *cfs_rq;
5402 	struct sched_entity *se = &p->se;
5403 	int task_sleep = flags & DEQUEUE_SLEEP;
5404 
5405 	for_each_sched_entity(se) {
5406 		cfs_rq = cfs_rq_of(se);
5407 		dequeue_entity(cfs_rq, se, flags);
5408 
5409 		/*
5410 		 * end evaluation on encountering a throttled cfs_rq
5411 		 *
5412 		 * note: in the case of encountering a throttled cfs_rq we will
5413 		 * post the final h_nr_running decrement below.
5414 		*/
5415 		if (cfs_rq_throttled(cfs_rq))
5416 			break;
5417 		cfs_rq->h_nr_running--;
5418 
5419 		/* Don't dequeue parent if it has other entities besides us */
5420 		if (cfs_rq->load.weight) {
5421 			/* Avoid re-evaluating load for this entity: */
5422 			se = parent_entity(se);
5423 			/*
5424 			 * Bias pick_next to pick a task from this cfs_rq, as
5425 			 * p is sleeping when it is within its sched_slice.
5426 			 */
5427 			if (task_sleep && se && !throttled_hierarchy(cfs_rq))
5428 				set_next_buddy(se);
5429 			break;
5430 		}
5431 		flags |= DEQUEUE_SLEEP;
5432 	}
5433 
5434 	for_each_sched_entity(se) {
5435 		cfs_rq = cfs_rq_of(se);
5436 		cfs_rq->h_nr_running--;
5437 
5438 		if (cfs_rq_throttled(cfs_rq))
5439 			break;
5440 
5441 		update_load_avg(cfs_rq, se, UPDATE_TG);
5442 		update_cfs_group(se);
5443 	}
5444 
5445 	if (!se)
5446 		sub_nr_running(rq, 1);
5447 
5448 	util_est_dequeue(&rq->cfs, p, task_sleep);
5449 	hrtick_update(rq);
5450 }
5451 
5452 #ifdef CONFIG_SMP
5453 
5454 /* Working cpumask for: load_balance, load_balance_newidle. */
5455 DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
5456 DEFINE_PER_CPU(cpumask_var_t, select_idle_mask);
5457 
5458 #ifdef CONFIG_NO_HZ_COMMON
5459 /*
5460  * per rq 'load' arrray crap; XXX kill this.
5461  */
5462 
5463 /*
5464  * The exact cpuload calculated at every tick would be:
5465  *
5466  *   load' = (1 - 1/2^i) * load + (1/2^i) * cur_load
5467  *
5468  * If a CPU misses updates for n ticks (as it was idle) and update gets
5469  * called on the n+1-th tick when CPU may be busy, then we have:
5470  *
5471  *   load_n   = (1 - 1/2^i)^n * load_0
5472  *   load_n+1 = (1 - 1/2^i)   * load_n + (1/2^i) * cur_load
5473  *
5474  * decay_load_missed() below does efficient calculation of
5475  *
5476  *   load' = (1 - 1/2^i)^n * load
5477  *
5478  * Because x^(n+m) := x^n * x^m we can decompose any x^n in power-of-2 factors.
5479  * This allows us to precompute the above in said factors, thereby allowing the
5480  * reduction of an arbitrary n in O(log_2 n) steps. (See also
5481  * fixed_power_int())
5482  *
5483  * The calculation is approximated on a 128 point scale.
5484  */
5485 #define DEGRADE_SHIFT		7
5486 
5487 static const u8 degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
5488 static const u8 degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
5489 	{   0,   0,  0,  0,  0,  0, 0, 0 },
5490 	{  64,  32,  8,  0,  0,  0, 0, 0 },
5491 	{  96,  72, 40, 12,  1,  0, 0, 0 },
5492 	{ 112,  98, 75, 43, 15,  1, 0, 0 },
5493 	{ 120, 112, 98, 76, 45, 16, 2, 0 }
5494 };
5495 
5496 /*
5497  * Update cpu_load for any missed ticks, due to tickless idle. The backlog
5498  * would be when CPU is idle and so we just decay the old load without
5499  * adding any new load.
5500  */
5501 static unsigned long
5502 decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
5503 {
5504 	int j = 0;
5505 
5506 	if (!missed_updates)
5507 		return load;
5508 
5509 	if (missed_updates >= degrade_zero_ticks[idx])
5510 		return 0;
5511 
5512 	if (idx == 1)
5513 		return load >> missed_updates;
5514 
5515 	while (missed_updates) {
5516 		if (missed_updates % 2)
5517 			load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;
5518 
5519 		missed_updates >>= 1;
5520 		j++;
5521 	}
5522 	return load;
5523 }
5524 
5525 static struct {
5526 	cpumask_var_t idle_cpus_mask;
5527 	atomic_t nr_cpus;
5528 	int has_blocked;		/* Idle CPUS has blocked load */
5529 	unsigned long next_balance;     /* in jiffy units */
5530 	unsigned long next_blocked;	/* Next update of blocked load in jiffies */
5531 } nohz ____cacheline_aligned;
5532 
5533 #endif /* CONFIG_NO_HZ_COMMON */
5534 
5535 /**
5536  * __cpu_load_update - update the rq->cpu_load[] statistics
5537  * @this_rq: The rq to update statistics for
5538  * @this_load: The current load
5539  * @pending_updates: The number of missed updates
5540  *
5541  * Update rq->cpu_load[] statistics. This function is usually called every
5542  * scheduler tick (TICK_NSEC).
5543  *
5544  * This function computes a decaying average:
5545  *
5546  *   load[i]' = (1 - 1/2^i) * load[i] + (1/2^i) * load
5547  *
5548  * Because of NOHZ it might not get called on every tick which gives need for
5549  * the @pending_updates argument.
5550  *
5551  *   load[i]_n = (1 - 1/2^i) * load[i]_n-1 + (1/2^i) * load_n-1
5552  *             = A * load[i]_n-1 + B ; A := (1 - 1/2^i), B := (1/2^i) * load
5553  *             = A * (A * load[i]_n-2 + B) + B
5554  *             = A * (A * (A * load[i]_n-3 + B) + B) + B
5555  *             = A^3 * load[i]_n-3 + (A^2 + A + 1) * B
5556  *             = A^n * load[i]_0 + (A^(n-1) + A^(n-2) + ... + 1) * B
5557  *             = A^n * load[i]_0 + ((1 - A^n) / (1 - A)) * B
5558  *             = (1 - 1/2^i)^n * (load[i]_0 - load) + load
5559  *
5560  * In the above we've assumed load_n := load, which is true for NOHZ_FULL as
5561  * any change in load would have resulted in the tick being turned back on.
5562  *
5563  * For regular NOHZ, this reduces to:
5564  *
5565  *   load[i]_n = (1 - 1/2^i)^n * load[i]_0
5566  *
5567  * see decay_load_misses(). For NOHZ_FULL we get to subtract and add the extra
5568  * term.
5569  */
5570 static void cpu_load_update(struct rq *this_rq, unsigned long this_load,
5571 			    unsigned long pending_updates)
5572 {
5573 	unsigned long __maybe_unused tickless_load = this_rq->cpu_load[0];
5574 	int i, scale;
5575 
5576 	this_rq->nr_load_updates++;
5577 
5578 	/* Update our load: */
5579 	this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
5580 	for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
5581 		unsigned long old_load, new_load;
5582 
5583 		/* scale is effectively 1 << i now, and >> i divides by scale */
5584 
5585 		old_load = this_rq->cpu_load[i];
5586 #ifdef CONFIG_NO_HZ_COMMON
5587 		old_load = decay_load_missed(old_load, pending_updates - 1, i);
5588 		if (tickless_load) {
5589 			old_load -= decay_load_missed(tickless_load, pending_updates - 1, i);
5590 			/*
5591 			 * old_load can never be a negative value because a
5592 			 * decayed tickless_load cannot be greater than the
5593 			 * original tickless_load.
5594 			 */
5595 			old_load += tickless_load;
5596 		}
5597 #endif
5598 		new_load = this_load;
5599 		/*
5600 		 * Round up the averaging division if load is increasing. This
5601 		 * prevents us from getting stuck on 9 if the load is 10, for
5602 		 * example.
5603 		 */
5604 		if (new_load > old_load)
5605 			new_load += scale - 1;
5606 
5607 		this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
5608 	}
5609 
5610 	sched_avg_update(this_rq);
5611 }
5612 
5613 /* Used instead of source_load when we know the type == 0 */
5614 static unsigned long weighted_cpuload(struct rq *rq)
5615 {
5616 	return cfs_rq_runnable_load_avg(&rq->cfs);
5617 }
5618 
5619 #ifdef CONFIG_NO_HZ_COMMON
5620 /*
5621  * There is no sane way to deal with nohz on smp when using jiffies because the
5622  * CPU doing the jiffies update might drift wrt the CPU doing the jiffy reading
5623  * causing off-by-one errors in observed deltas; {0,2} instead of {1,1}.
5624  *
5625  * Therefore we need to avoid the delta approach from the regular tick when
5626  * possible since that would seriously skew the load calculation. This is why we
5627  * use cpu_load_update_periodic() for CPUs out of nohz. However we'll rely on
5628  * jiffies deltas for updates happening while in nohz mode (idle ticks, idle
5629  * loop exit, nohz_idle_balance, nohz full exit...)
5630  *
5631  * This means we might still be one tick off for nohz periods.
5632  */
5633 
5634 static void cpu_load_update_nohz(struct rq *this_rq,
5635 				 unsigned long curr_jiffies,
5636 				 unsigned long load)
5637 {
5638 	unsigned long pending_updates;
5639 
5640 	pending_updates = curr_jiffies - this_rq->last_load_update_tick;
5641 	if (pending_updates) {
5642 		this_rq->last_load_update_tick = curr_jiffies;
5643 		/*
5644 		 * In the regular NOHZ case, we were idle, this means load 0.
5645 		 * In the NOHZ_FULL case, we were non-idle, we should consider
5646 		 * its weighted load.
5647 		 */
5648 		cpu_load_update(this_rq, load, pending_updates);
5649 	}
5650 }
5651 
5652 /*
5653  * Called from nohz_idle_balance() to update the load ratings before doing the
5654  * idle balance.
5655  */
5656 static void cpu_load_update_idle(struct rq *this_rq)
5657 {
5658 	/*
5659 	 * bail if there's load or we're actually up-to-date.
5660 	 */
5661 	if (weighted_cpuload(this_rq))
5662 		return;
5663 
5664 	cpu_load_update_nohz(this_rq, READ_ONCE(jiffies), 0);
5665 }
5666 
5667 /*
5668  * Record CPU load on nohz entry so we know the tickless load to account
5669  * on nohz exit. cpu_load[0] happens then to be updated more frequently
5670  * than other cpu_load[idx] but it should be fine as cpu_load readers
5671  * shouldn't rely into synchronized cpu_load[*] updates.
5672  */
5673 void cpu_load_update_nohz_start(void)
5674 {
5675 	struct rq *this_rq = this_rq();
5676 
5677 	/*
5678 	 * This is all lockless but should be fine. If weighted_cpuload changes
5679 	 * concurrently we'll exit nohz. And cpu_load write can race with
5680 	 * cpu_load_update_idle() but both updater would be writing the same.
5681 	 */
5682 	this_rq->cpu_load[0] = weighted_cpuload(this_rq);
5683 }
5684 
5685 /*
5686  * Account the tickless load in the end of a nohz frame.
5687  */
5688 void cpu_load_update_nohz_stop(void)
5689 {
5690 	unsigned long curr_jiffies = READ_ONCE(jiffies);
5691 	struct rq *this_rq = this_rq();
5692 	unsigned long load;
5693 	struct rq_flags rf;
5694 
5695 	if (curr_jiffies == this_rq->last_load_update_tick)
5696 		return;
5697 
5698 	load = weighted_cpuload(this_rq);
5699 	rq_lock(this_rq, &rf);
5700 	update_rq_clock(this_rq);
5701 	cpu_load_update_nohz(this_rq, curr_jiffies, load);
5702 	rq_unlock(this_rq, &rf);
5703 }
5704 #else /* !CONFIG_NO_HZ_COMMON */
5705 static inline void cpu_load_update_nohz(struct rq *this_rq,
5706 					unsigned long curr_jiffies,
5707 					unsigned long load) { }
5708 #endif /* CONFIG_NO_HZ_COMMON */
5709 
5710 static void cpu_load_update_periodic(struct rq *this_rq, unsigned long load)
5711 {
5712 #ifdef CONFIG_NO_HZ_COMMON
5713 	/* See the mess around cpu_load_update_nohz(). */
5714 	this_rq->last_load_update_tick = READ_ONCE(jiffies);
5715 #endif
5716 	cpu_load_update(this_rq, load, 1);
5717 }
5718 
5719 /*
5720  * Called from scheduler_tick()
5721  */
5722 void cpu_load_update_active(struct rq *this_rq)
5723 {
5724 	unsigned long load = weighted_cpuload(this_rq);
5725 
5726 	if (tick_nohz_tick_stopped())
5727 		cpu_load_update_nohz(this_rq, READ_ONCE(jiffies), load);
5728 	else
5729 		cpu_load_update_periodic(this_rq, load);
5730 }
5731 
5732 /*
5733  * Return a low guess at the load of a migration-source CPU weighted
5734  * according to the scheduling class and "nice" value.
5735  *
5736  * We want to under-estimate the load of migration sources, to
5737  * balance conservatively.
5738  */
5739 static unsigned long source_load(int cpu, int type)
5740 {
5741 	struct rq *rq = cpu_rq(cpu);
5742 	unsigned long total = weighted_cpuload(rq);
5743 
5744 	if (type == 0 || !sched_feat(LB_BIAS))
5745 		return total;
5746 
5747 	return min(rq->cpu_load[type-1], total);
5748 }
5749 
5750 /*
5751  * Return a high guess at the load of a migration-target CPU weighted
5752  * according to the scheduling class and "nice" value.
5753  */
5754 static unsigned long target_load(int cpu, int type)
5755 {
5756 	struct rq *rq = cpu_rq(cpu);
5757 	unsigned long total = weighted_cpuload(rq);
5758 
5759 	if (type == 0 || !sched_feat(LB_BIAS))
5760 		return total;
5761 
5762 	return max(rq->cpu_load[type-1], total);
5763 }
5764 
5765 static unsigned long capacity_of(int cpu)
5766 {
5767 	return cpu_rq(cpu)->cpu_capacity;
5768 }
5769 
5770 static unsigned long capacity_orig_of(int cpu)
5771 {
5772 	return cpu_rq(cpu)->cpu_capacity_orig;
5773 }
5774 
5775 static unsigned long cpu_avg_load_per_task(int cpu)
5776 {
5777 	struct rq *rq = cpu_rq(cpu);
5778 	unsigned long nr_running = READ_ONCE(rq->cfs.h_nr_running);
5779 	unsigned long load_avg = weighted_cpuload(rq);
5780 
5781 	if (nr_running)
5782 		return load_avg / nr_running;
5783 
5784 	return 0;
5785 }
5786 
5787 static void record_wakee(struct task_struct *p)
5788 {
5789 	/*
5790 	 * Only decay a single time; tasks that have less then 1 wakeup per
5791 	 * jiffy will not have built up many flips.
5792 	 */
5793 	if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) {
5794 		current->wakee_flips >>= 1;
5795 		current->wakee_flip_decay_ts = jiffies;
5796 	}
5797 
5798 	if (current->last_wakee != p) {
5799 		current->last_wakee = p;
5800 		current->wakee_flips++;
5801 	}
5802 }
5803 
5804 /*
5805  * Detect M:N waker/wakee relationships via a switching-frequency heuristic.
5806  *
5807  * A waker of many should wake a different task than the one last awakened
5808  * at a frequency roughly N times higher than one of its wakees.
5809  *
5810  * In order to determine whether we should let the load spread vs consolidating
5811  * to shared cache, we look for a minimum 'flip' frequency of llc_size in one
5812  * partner, and a factor of lls_size higher frequency in the other.
5813  *
5814  * With both conditions met, we can be relatively sure that the relationship is
5815  * non-monogamous, with partner count exceeding socket size.
5816  *
5817  * Waker/wakee being client/server, worker/dispatcher, interrupt source or
5818  * whatever is irrelevant, spread criteria is apparent partner count exceeds
5819  * socket size.
5820  */
5821 static int wake_wide(struct task_struct *p)
5822 {
5823 	unsigned int master = current->wakee_flips;
5824 	unsigned int slave = p->wakee_flips;
5825 	int factor = this_cpu_read(sd_llc_size);
5826 
5827 	if (master < slave)
5828 		swap(master, slave);
5829 	if (slave < factor || master < slave * factor)
5830 		return 0;
5831 	return 1;
5832 }
5833 
5834 /*
5835  * The purpose of wake_affine() is to quickly determine on which CPU we can run
5836  * soonest. For the purpose of speed we only consider the waking and previous
5837  * CPU.
5838  *
5839  * wake_affine_idle() - only considers 'now', it check if the waking CPU is
5840  *			cache-affine and is (or	will be) idle.
5841  *
5842  * wake_affine_weight() - considers the weight to reflect the average
5843  *			  scheduling latency of the CPUs. This seems to work
5844  *			  for the overloaded case.
5845  */
5846 static int
5847 wake_affine_idle(int this_cpu, int prev_cpu, int sync)
5848 {
5849 	/*
5850 	 * If this_cpu is idle, it implies the wakeup is from interrupt
5851 	 * context. Only allow the move if cache is shared. Otherwise an
5852 	 * interrupt intensive workload could force all tasks onto one
5853 	 * node depending on the IO topology or IRQ affinity settings.
5854 	 *
5855 	 * If the prev_cpu is idle and cache affine then avoid a migration.
5856 	 * There is no guarantee that the cache hot data from an interrupt
5857 	 * is more important than cache hot data on the prev_cpu and from
5858 	 * a cpufreq perspective, it's better to have higher utilisation
5859 	 * on one CPU.
5860 	 */
5861 	if (idle_cpu(this_cpu) && cpus_share_cache(this_cpu, prev_cpu))
5862 		return idle_cpu(prev_cpu) ? prev_cpu : this_cpu;
5863 
5864 	if (sync && cpu_rq(this_cpu)->nr_running == 1)
5865 		return this_cpu;
5866 
5867 	return nr_cpumask_bits;
5868 }
5869 
5870 static int
5871 wake_affine_weight(struct sched_domain *sd, struct task_struct *p,
5872 		   int this_cpu, int prev_cpu, int sync)
5873 {
5874 	s64 this_eff_load, prev_eff_load;
5875 	unsigned long task_load;
5876 
5877 	this_eff_load = target_load(this_cpu, sd->wake_idx);
5878 
5879 	if (sync) {
5880 		unsigned long current_load = task_h_load(current);
5881 
5882 		if (current_load > this_eff_load)
5883 			return this_cpu;
5884 
5885 		this_eff_load -= current_load;
5886 	}
5887 
5888 	task_load = task_h_load(p);
5889 
5890 	this_eff_load += task_load;
5891 	if (sched_feat(WA_BIAS))
5892 		this_eff_load *= 100;
5893 	this_eff_load *= capacity_of(prev_cpu);
5894 
5895 	prev_eff_load = source_load(prev_cpu, sd->wake_idx);
5896 	prev_eff_load -= task_load;
5897 	if (sched_feat(WA_BIAS))
5898 		prev_eff_load *= 100 + (sd->imbalance_pct - 100) / 2;
5899 	prev_eff_load *= capacity_of(this_cpu);
5900 
5901 	/*
5902 	 * If sync, adjust the weight of prev_eff_load such that if
5903 	 * prev_eff == this_eff that select_idle_sibling() will consider
5904 	 * stacking the wakee on top of the waker if no other CPU is
5905 	 * idle.
5906 	 */
5907 	if (sync)
5908 		prev_eff_load += 1;
5909 
5910 	return this_eff_load < prev_eff_load ? this_cpu : nr_cpumask_bits;
5911 }
5912 
5913 static int wake_affine(struct sched_domain *sd, struct task_struct *p,
5914 		       int this_cpu, int prev_cpu, int sync)
5915 {
5916 	int target = nr_cpumask_bits;
5917 
5918 	if (sched_feat(WA_IDLE))
5919 		target = wake_affine_idle(this_cpu, prev_cpu, sync);
5920 
5921 	if (sched_feat(WA_WEIGHT) && target == nr_cpumask_bits)
5922 		target = wake_affine_weight(sd, p, this_cpu, prev_cpu, sync);
5923 
5924 	schedstat_inc(p->se.statistics.nr_wakeups_affine_attempts);
5925 	if (target == nr_cpumask_bits)
5926 		return prev_cpu;
5927 
5928 	schedstat_inc(sd->ttwu_move_affine);
5929 	schedstat_inc(p->se.statistics.nr_wakeups_affine);
5930 	return target;
5931 }
5932 
5933 static unsigned long cpu_util_wake(int cpu, struct task_struct *p);
5934 
5935 static unsigned long capacity_spare_wake(int cpu, struct task_struct *p)
5936 {
5937 	return max_t(long, capacity_of(cpu) - cpu_util_wake(cpu, p), 0);
5938 }
5939 
5940 /*
5941  * find_idlest_group finds and returns the least busy CPU group within the
5942  * domain.
5943  *
5944  * Assumes p is allowed on at least one CPU in sd.
5945  */
5946 static struct sched_group *
5947 find_idlest_group(struct sched_domain *sd, struct task_struct *p,
5948 		  int this_cpu, int sd_flag)
5949 {
5950 	struct sched_group *idlest = NULL, *group = sd->groups;
5951 	struct sched_group *most_spare_sg = NULL;
5952 	unsigned long min_runnable_load = ULONG_MAX;
5953 	unsigned long this_runnable_load = ULONG_MAX;
5954 	unsigned long min_avg_load = ULONG_MAX, this_avg_load = ULONG_MAX;
5955 	unsigned long most_spare = 0, this_spare = 0;
5956 	int load_idx = sd->forkexec_idx;
5957 	int imbalance_scale = 100 + (sd->imbalance_pct-100)/2;
5958 	unsigned long imbalance = scale_load_down(NICE_0_LOAD) *
5959 				(sd->imbalance_pct-100) / 100;
5960 
5961 	if (sd_flag & SD_BALANCE_WAKE)
5962 		load_idx = sd->wake_idx;
5963 
5964 	do {
5965 		unsigned long load, avg_load, runnable_load;
5966 		unsigned long spare_cap, max_spare_cap;
5967 		int local_group;
5968 		int i;
5969 
5970 		/* Skip over this group if it has no CPUs allowed */
5971 		if (!cpumask_intersects(sched_group_span(group),
5972 					&p->cpus_allowed))
5973 			continue;
5974 
5975 		local_group = cpumask_test_cpu(this_cpu,
5976 					       sched_group_span(group));
5977 
5978 		/*
5979 		 * Tally up the load of all CPUs in the group and find
5980 		 * the group containing the CPU with most spare capacity.
5981 		 */
5982 		avg_load = 0;
5983 		runnable_load = 0;
5984 		max_spare_cap = 0;
5985 
5986 		for_each_cpu(i, sched_group_span(group)) {
5987 			/* Bias balancing toward CPUs of our domain */
5988 			if (local_group)
5989 				load = source_load(i, load_idx);
5990 			else
5991 				load = target_load(i, load_idx);
5992 
5993 			runnable_load += load;
5994 
5995 			avg_load += cfs_rq_load_avg(&cpu_rq(i)->cfs);
5996 
5997 			spare_cap = capacity_spare_wake(i, p);
5998 
5999 			if (spare_cap > max_spare_cap)
6000 				max_spare_cap = spare_cap;
6001 		}
6002 
6003 		/* Adjust by relative CPU capacity of the group */
6004 		avg_load = (avg_load * SCHED_CAPACITY_SCALE) /
6005 					group->sgc->capacity;
6006 		runnable_load = (runnable_load * SCHED_CAPACITY_SCALE) /
6007 					group->sgc->capacity;
6008 
6009 		if (local_group) {
6010 			this_runnable_load = runnable_load;
6011 			this_avg_load = avg_load;
6012 			this_spare = max_spare_cap;
6013 		} else {
6014 			if (min_runnable_load > (runnable_load + imbalance)) {
6015 				/*
6016 				 * The runnable load is significantly smaller
6017 				 * so we can pick this new CPU:
6018 				 */
6019 				min_runnable_load = runnable_load;
6020 				min_avg_load = avg_load;
6021 				idlest = group;
6022 			} else if ((runnable_load < (min_runnable_load + imbalance)) &&
6023 				   (100*min_avg_load > imbalance_scale*avg_load)) {
6024 				/*
6025 				 * The runnable loads are close so take the
6026 				 * blocked load into account through avg_load:
6027 				 */
6028 				min_avg_load = avg_load;
6029 				idlest = group;
6030 			}
6031 
6032 			if (most_spare < max_spare_cap) {
6033 				most_spare = max_spare_cap;
6034 				most_spare_sg = group;
6035 			}
6036 		}
6037 	} while (group = group->next, group != sd->groups);
6038 
6039 	/*
6040 	 * The cross-over point between using spare capacity or least load
6041 	 * is too conservative for high utilization tasks on partially
6042 	 * utilized systems if we require spare_capacity > task_util(p),
6043 	 * so we allow for some task stuffing by using
6044 	 * spare_capacity > task_util(p)/2.
6045 	 *
6046 	 * Spare capacity can't be used for fork because the utilization has
6047 	 * not been set yet, we must first select a rq to compute the initial
6048 	 * utilization.
6049 	 */
6050 	if (sd_flag & SD_BALANCE_FORK)
6051 		goto skip_spare;
6052 
6053 	if (this_spare > task_util(p) / 2 &&
6054 	    imbalance_scale*this_spare > 100*most_spare)
6055 		return NULL;
6056 
6057 	if (most_spare > task_util(p) / 2)
6058 		return most_spare_sg;
6059 
6060 skip_spare:
6061 	if (!idlest)
6062 		return NULL;
6063 
6064 	/*
6065 	 * When comparing groups across NUMA domains, it's possible for the
6066 	 * local domain to be very lightly loaded relative to the remote
6067 	 * domains but "imbalance" skews the comparison making remote CPUs
6068 	 * look much more favourable. When considering cross-domain, add
6069 	 * imbalance to the runnable load on the remote node and consider
6070 	 * staying local.
6071 	 */
6072 	if ((sd->flags & SD_NUMA) &&
6073 	    min_runnable_load + imbalance >= this_runnable_load)
6074 		return NULL;
6075 
6076 	if (min_runnable_load > (this_runnable_load + imbalance))
6077 		return NULL;
6078 
6079 	if ((this_runnable_load < (min_runnable_load + imbalance)) &&
6080 	     (100*this_avg_load < imbalance_scale*min_avg_load))
6081 		return NULL;
6082 
6083 	return idlest;
6084 }
6085 
6086 /*
6087  * find_idlest_group_cpu - find the idlest CPU among the CPUs in the group.
6088  */
6089 static int
6090 find_idlest_group_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
6091 {
6092 	unsigned long load, min_load = ULONG_MAX;
6093 	unsigned int min_exit_latency = UINT_MAX;
6094 	u64 latest_idle_timestamp = 0;
6095 	int least_loaded_cpu = this_cpu;
6096 	int shallowest_idle_cpu = -1;
6097 	int i;
6098 
6099 	/* Check if we have any choice: */
6100 	if (group->group_weight == 1)
6101 		return cpumask_first(sched_group_span(group));
6102 
6103 	/* Traverse only the allowed CPUs */
6104 	for_each_cpu_and(i, sched_group_span(group), &p->cpus_allowed) {
6105 		if (idle_cpu(i)) {
6106 			struct rq *rq = cpu_rq(i);
6107 			struct cpuidle_state *idle = idle_get_state(rq);
6108 			if (idle && idle->exit_latency < min_exit_latency) {
6109 				/*
6110 				 * We give priority to a CPU whose idle state
6111 				 * has the smallest exit latency irrespective
6112 				 * of any idle timestamp.
6113 				 */
6114 				min_exit_latency = idle->exit_latency;
6115 				latest_idle_timestamp = rq->idle_stamp;
6116 				shallowest_idle_cpu = i;
6117 			} else if ((!idle || idle->exit_latency == min_exit_latency) &&
6118 				   rq->idle_stamp > latest_idle_timestamp) {
6119 				/*
6120 				 * If equal or no active idle state, then
6121 				 * the most recently idled CPU might have
6122 				 * a warmer cache.
6123 				 */
6124 				latest_idle_timestamp = rq->idle_stamp;
6125 				shallowest_idle_cpu = i;
6126 			}
6127 		} else if (shallowest_idle_cpu == -1) {
6128 			load = weighted_cpuload(cpu_rq(i));
6129 			if (load < min_load) {
6130 				min_load = load;
6131 				least_loaded_cpu = i;
6132 			}
6133 		}
6134 	}
6135 
6136 	return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu;
6137 }
6138 
6139 static inline int find_idlest_cpu(struct sched_domain *sd, struct task_struct *p,
6140 				  int cpu, int prev_cpu, int sd_flag)
6141 {
6142 	int new_cpu = cpu;
6143 
6144 	if (!cpumask_intersects(sched_domain_span(sd), &p->cpus_allowed))
6145 		return prev_cpu;
6146 
6147 	while (sd) {
6148 		struct sched_group *group;
6149 		struct sched_domain *tmp;
6150 		int weight;
6151 
6152 		if (!(sd->flags & sd_flag)) {
6153 			sd = sd->child;
6154 			continue;
6155 		}
6156 
6157 		group = find_idlest_group(sd, p, cpu, sd_flag);
6158 		if (!group) {
6159 			sd = sd->child;
6160 			continue;
6161 		}
6162 
6163 		new_cpu = find_idlest_group_cpu(group, p, cpu);
6164 		if (new_cpu == cpu) {
6165 			/* Now try balancing at a lower domain level of 'cpu': */
6166 			sd = sd->child;
6167 			continue;
6168 		}
6169 
6170 		/* Now try balancing at a lower domain level of 'new_cpu': */
6171 		cpu = new_cpu;
6172 		weight = sd->span_weight;
6173 		sd = NULL;
6174 		for_each_domain(cpu, tmp) {
6175 			if (weight <= tmp->span_weight)
6176 				break;
6177 			if (tmp->flags & sd_flag)
6178 				sd = tmp;
6179 		}
6180 	}
6181 
6182 	return new_cpu;
6183 }
6184 
6185 #ifdef CONFIG_SCHED_SMT
6186 
6187 static inline void set_idle_cores(int cpu, int val)
6188 {
6189 	struct sched_domain_shared *sds;
6190 
6191 	sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
6192 	if (sds)
6193 		WRITE_ONCE(sds->has_idle_cores, val);
6194 }
6195 
6196 static inline bool test_idle_cores(int cpu, bool def)
6197 {
6198 	struct sched_domain_shared *sds;
6199 
6200 	sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
6201 	if (sds)
6202 		return READ_ONCE(sds->has_idle_cores);
6203 
6204 	return def;
6205 }
6206 
6207 /*
6208  * Scans the local SMT mask to see if the entire core is idle, and records this
6209  * information in sd_llc_shared->has_idle_cores.
6210  *
6211  * Since SMT siblings share all cache levels, inspecting this limited remote
6212  * state should be fairly cheap.
6213  */
6214 void __update_idle_core(struct rq *rq)
6215 {
6216 	int core = cpu_of(rq);
6217 	int cpu;
6218 
6219 	rcu_read_lock();
6220 	if (test_idle_cores(core, true))
6221 		goto unlock;
6222 
6223 	for_each_cpu(cpu, cpu_smt_mask(core)) {
6224 		if (cpu == core)
6225 			continue;
6226 
6227 		if (!idle_cpu(cpu))
6228 			goto unlock;
6229 	}
6230 
6231 	set_idle_cores(core, 1);
6232 unlock:
6233 	rcu_read_unlock();
6234 }
6235 
6236 /*
6237  * Scan the entire LLC domain for idle cores; this dynamically switches off if
6238  * there are no idle cores left in the system; tracked through
6239  * sd_llc->shared->has_idle_cores and enabled through update_idle_core() above.
6240  */
6241 static int select_idle_core(struct task_struct *p, struct sched_domain *sd, int target)
6242 {
6243 	struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_idle_mask);
6244 	int core, cpu;
6245 
6246 	if (!static_branch_likely(&sched_smt_present))
6247 		return -1;
6248 
6249 	if (!test_idle_cores(target, false))
6250 		return -1;
6251 
6252 	cpumask_and(cpus, sched_domain_span(sd), &p->cpus_allowed);
6253 
6254 	for_each_cpu_wrap(core, cpus, target) {
6255 		bool idle = true;
6256 
6257 		for_each_cpu(cpu, cpu_smt_mask(core)) {
6258 			cpumask_clear_cpu(cpu, cpus);
6259 			if (!idle_cpu(cpu))
6260 				idle = false;
6261 		}
6262 
6263 		if (idle)
6264 			return core;
6265 	}
6266 
6267 	/*
6268 	 * Failed to find an idle core; stop looking for one.
6269 	 */
6270 	set_idle_cores(target, 0);
6271 
6272 	return -1;
6273 }
6274 
6275 /*
6276  * Scan the local SMT mask for idle CPUs.
6277  */
6278 static int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target)
6279 {
6280 	int cpu;
6281 
6282 	if (!static_branch_likely(&sched_smt_present))
6283 		return -1;
6284 
6285 	for_each_cpu(cpu, cpu_smt_mask(target)) {
6286 		if (!cpumask_test_cpu(cpu, &p->cpus_allowed))
6287 			continue;
6288 		if (idle_cpu(cpu))
6289 			return cpu;
6290 	}
6291 
6292 	return -1;
6293 }
6294 
6295 #else /* CONFIG_SCHED_SMT */
6296 
6297 static inline int select_idle_core(struct task_struct *p, struct sched_domain *sd, int target)
6298 {
6299 	return -1;
6300 }
6301 
6302 static inline int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target)
6303 {
6304 	return -1;
6305 }
6306 
6307 #endif /* CONFIG_SCHED_SMT */
6308 
6309 /*
6310  * Scan the LLC domain for idle CPUs; this is dynamically regulated by
6311  * comparing the average scan cost (tracked in sd->avg_scan_cost) against the
6312  * average idle time for this rq (as found in rq->avg_idle).
6313  */
6314 static int select_idle_cpu(struct task_struct *p, struct sched_domain *sd, int target)
6315 {
6316 	struct sched_domain *this_sd;
6317 	u64 avg_cost, avg_idle;
6318 	u64 time, cost;
6319 	s64 delta;
6320 	int cpu, nr = INT_MAX;
6321 
6322 	this_sd = rcu_dereference(*this_cpu_ptr(&sd_llc));
6323 	if (!this_sd)
6324 		return -1;
6325 
6326 	/*
6327 	 * Due to large variance we need a large fuzz factor; hackbench in
6328 	 * particularly is sensitive here.
6329 	 */
6330 	avg_idle = this_rq()->avg_idle / 512;
6331 	avg_cost = this_sd->avg_scan_cost + 1;
6332 
6333 	if (sched_feat(SIS_AVG_CPU) && avg_idle < avg_cost)
6334 		return -1;
6335 
6336 	if (sched_feat(SIS_PROP)) {
6337 		u64 span_avg = sd->span_weight * avg_idle;
6338 		if (span_avg > 4*avg_cost)
6339 			nr = div_u64(span_avg, avg_cost);
6340 		else
6341 			nr = 4;
6342 	}
6343 
6344 	time = local_clock();
6345 
6346 	for_each_cpu_wrap(cpu, sched_domain_span(sd), target) {
6347 		if (!--nr)
6348 			return -1;
6349 		if (!cpumask_test_cpu(cpu, &p->cpus_allowed))
6350 			continue;
6351 		if (idle_cpu(cpu))
6352 			break;
6353 	}
6354 
6355 	time = local_clock() - time;
6356 	cost = this_sd->avg_scan_cost;
6357 	delta = (s64)(time - cost) / 8;
6358 	this_sd->avg_scan_cost += delta;
6359 
6360 	return cpu;
6361 }
6362 
6363 /*
6364  * Try and locate an idle core/thread in the LLC cache domain.
6365  */
6366 static int select_idle_sibling(struct task_struct *p, int prev, int target)
6367 {
6368 	struct sched_domain *sd;
6369 	int i, recent_used_cpu;
6370 
6371 	if (idle_cpu(target))
6372 		return target;
6373 
6374 	/*
6375 	 * If the previous CPU is cache affine and idle, don't be stupid:
6376 	 */
6377 	if (prev != target && cpus_share_cache(prev, target) && idle_cpu(prev))
6378 		return prev;
6379 
6380 	/* Check a recently used CPU as a potential idle candidate: */
6381 	recent_used_cpu = p->recent_used_cpu;
6382 	if (recent_used_cpu != prev &&
6383 	    recent_used_cpu != target &&
6384 	    cpus_share_cache(recent_used_cpu, target) &&
6385 	    idle_cpu(recent_used_cpu) &&
6386 	    cpumask_test_cpu(p->recent_used_cpu, &p->cpus_allowed)) {
6387 		/*
6388 		 * Replace recent_used_cpu with prev as it is a potential
6389 		 * candidate for the next wake:
6390 		 */
6391 		p->recent_used_cpu = prev;
6392 		return recent_used_cpu;
6393 	}
6394 
6395 	sd = rcu_dereference(per_cpu(sd_llc, target));
6396 	if (!sd)
6397 		return target;
6398 
6399 	i = select_idle_core(p, sd, target);
6400 	if ((unsigned)i < nr_cpumask_bits)
6401 		return i;
6402 
6403 	i = select_idle_cpu(p, sd, target);
6404 	if ((unsigned)i < nr_cpumask_bits)
6405 		return i;
6406 
6407 	i = select_idle_smt(p, sd, target);
6408 	if ((unsigned)i < nr_cpumask_bits)
6409 		return i;
6410 
6411 	return target;
6412 }
6413 
6414 /**
6415  * Amount of capacity of a CPU that is (estimated to be) used by CFS tasks
6416  * @cpu: the CPU to get the utilization of
6417  *
6418  * The unit of the return value must be the one of capacity so we can compare
6419  * the utilization with the capacity of the CPU that is available for CFS task
6420  * (ie cpu_capacity).
6421  *
6422  * cfs_rq.avg.util_avg is the sum of running time of runnable tasks plus the
6423  * recent utilization of currently non-runnable tasks on a CPU. It represents
6424  * the amount of utilization of a CPU in the range [0..capacity_orig] where
6425  * capacity_orig is the cpu_capacity available at the highest frequency
6426  * (arch_scale_freq_capacity()).
6427  * The utilization of a CPU converges towards a sum equal to or less than the
6428  * current capacity (capacity_curr <= capacity_orig) of the CPU because it is
6429  * the running time on this CPU scaled by capacity_curr.
6430  *
6431  * The estimated utilization of a CPU is defined to be the maximum between its
6432  * cfs_rq.avg.util_avg and the sum of the estimated utilization of the tasks
6433  * currently RUNNABLE on that CPU.
6434  * This allows to properly represent the expected utilization of a CPU which
6435  * has just got a big task running since a long sleep period. At the same time
6436  * however it preserves the benefits of the "blocked utilization" in
6437  * describing the potential for other tasks waking up on the same CPU.
6438  *
6439  * Nevertheless, cfs_rq.avg.util_avg can be higher than capacity_curr or even
6440  * higher than capacity_orig because of unfortunate rounding in
6441  * cfs.avg.util_avg or just after migrating tasks and new task wakeups until
6442  * the average stabilizes with the new running time. We need to check that the
6443  * utilization stays within the range of [0..capacity_orig] and cap it if
6444  * necessary. Without utilization capping, a group could be seen as overloaded
6445  * (CPU0 utilization at 121% + CPU1 utilization at 80%) whereas CPU1 has 20% of
6446  * available capacity. We allow utilization to overshoot capacity_curr (but not
6447  * capacity_orig) as it useful for predicting the capacity required after task
6448  * migrations (scheduler-driven DVFS).
6449  *
6450  * Return: the (estimated) utilization for the specified CPU
6451  */
6452 static inline unsigned long cpu_util(int cpu)
6453 {
6454 	struct cfs_rq *cfs_rq;
6455 	unsigned int util;
6456 
6457 	cfs_rq = &cpu_rq(cpu)->cfs;
6458 	util = READ_ONCE(cfs_rq->avg.util_avg);
6459 
6460 	if (sched_feat(UTIL_EST))
6461 		util = max(util, READ_ONCE(cfs_rq->avg.util_est.enqueued));
6462 
6463 	return min_t(unsigned long, util, capacity_orig_of(cpu));
6464 }
6465 
6466 /*
6467  * cpu_util_wake: Compute CPU utilization with any contributions from
6468  * the waking task p removed.
6469  */
6470 static unsigned long cpu_util_wake(int cpu, struct task_struct *p)
6471 {
6472 	struct cfs_rq *cfs_rq;
6473 	unsigned int util;
6474 
6475 	/* Task has no contribution or is new */
6476 	if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
6477 		return cpu_util(cpu);
6478 
6479 	cfs_rq = &cpu_rq(cpu)->cfs;
6480 	util = READ_ONCE(cfs_rq->avg.util_avg);
6481 
6482 	/* Discount task's blocked util from CPU's util */
6483 	util -= min_t(unsigned int, util, task_util(p));
6484 
6485 	/*
6486 	 * Covered cases:
6487 	 *
6488 	 * a) if *p is the only task sleeping on this CPU, then:
6489 	 *      cpu_util (== task_util) > util_est (== 0)
6490 	 *    and thus we return:
6491 	 *      cpu_util_wake = (cpu_util - task_util) = 0
6492 	 *
6493 	 * b) if other tasks are SLEEPING on this CPU, which is now exiting
6494 	 *    IDLE, then:
6495 	 *      cpu_util >= task_util
6496 	 *      cpu_util > util_est (== 0)
6497 	 *    and thus we discount *p's blocked utilization to return:
6498 	 *      cpu_util_wake = (cpu_util - task_util) >= 0
6499 	 *
6500 	 * c) if other tasks are RUNNABLE on that CPU and
6501 	 *      util_est > cpu_util
6502 	 *    then we use util_est since it returns a more restrictive
6503 	 *    estimation of the spare capacity on that CPU, by just
6504 	 *    considering the expected utilization of tasks already
6505 	 *    runnable on that CPU.
6506 	 *
6507 	 * Cases a) and b) are covered by the above code, while case c) is
6508 	 * covered by the following code when estimated utilization is
6509 	 * enabled.
6510 	 */
6511 	if (sched_feat(UTIL_EST))
6512 		util = max(util, READ_ONCE(cfs_rq->avg.util_est.enqueued));
6513 
6514 	/*
6515 	 * Utilization (estimated) can exceed the CPU capacity, thus let's
6516 	 * clamp to the maximum CPU capacity to ensure consistency with
6517 	 * the cpu_util call.
6518 	 */
6519 	return min_t(unsigned long, util, capacity_orig_of(cpu));
6520 }
6521 
6522 /*
6523  * Disable WAKE_AFFINE in the case where task @p doesn't fit in the
6524  * capacity of either the waking CPU @cpu or the previous CPU @prev_cpu.
6525  *
6526  * In that case WAKE_AFFINE doesn't make sense and we'll let
6527  * BALANCE_WAKE sort things out.
6528  */
6529 static int wake_cap(struct task_struct *p, int cpu, int prev_cpu)
6530 {
6531 	long min_cap, max_cap;
6532 
6533 	min_cap = min(capacity_orig_of(prev_cpu), capacity_orig_of(cpu));
6534 	max_cap = cpu_rq(cpu)->rd->max_cpu_capacity;
6535 
6536 	/* Minimum capacity is close to max, no need to abort wake_affine */
6537 	if (max_cap - min_cap < max_cap >> 3)
6538 		return 0;
6539 
6540 	/* Bring task utilization in sync with prev_cpu */
6541 	sync_entity_load_avg(&p->se);
6542 
6543 	return min_cap * 1024 < task_util(p) * capacity_margin;
6544 }
6545 
6546 /*
6547  * select_task_rq_fair: Select target runqueue for the waking task in domains
6548  * that have the 'sd_flag' flag set. In practice, this is SD_BALANCE_WAKE,
6549  * SD_BALANCE_FORK, or SD_BALANCE_EXEC.
6550  *
6551  * Balances load by selecting the idlest CPU in the idlest group, or under
6552  * certain conditions an idle sibling CPU if the domain has SD_WAKE_AFFINE set.
6553  *
6554  * Returns the target CPU number.
6555  *
6556  * preempt must be disabled.
6557  */
6558 static int
6559 select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_flags)
6560 {
6561 	struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
6562 	int cpu = smp_processor_id();
6563 	int new_cpu = prev_cpu;
6564 	int want_affine = 0;
6565 	int sync = (wake_flags & WF_SYNC) && !(current->flags & PF_EXITING);
6566 
6567 	if (sd_flag & SD_BALANCE_WAKE) {
6568 		record_wakee(p);
6569 		want_affine = !wake_wide(p) && !wake_cap(p, cpu, prev_cpu)
6570 			      && cpumask_test_cpu(cpu, &p->cpus_allowed);
6571 	}
6572 
6573 	rcu_read_lock();
6574 	for_each_domain(cpu, tmp) {
6575 		if (!(tmp->flags & SD_LOAD_BALANCE))
6576 			break;
6577 
6578 		/*
6579 		 * If both 'cpu' and 'prev_cpu' are part of this domain,
6580 		 * cpu is a valid SD_WAKE_AFFINE target.
6581 		 */
6582 		if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
6583 		    cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
6584 			affine_sd = tmp;
6585 			break;
6586 		}
6587 
6588 		if (tmp->flags & sd_flag)
6589 			sd = tmp;
6590 		else if (!want_affine)
6591 			break;
6592 	}
6593 
6594 	if (affine_sd) {
6595 		sd = NULL; /* Prefer wake_affine over balance flags */
6596 		if (cpu == prev_cpu)
6597 			goto pick_cpu;
6598 
6599 		new_cpu = wake_affine(affine_sd, p, cpu, prev_cpu, sync);
6600 	}
6601 
6602 	if (sd && !(sd_flag & SD_BALANCE_FORK)) {
6603 		/*
6604 		 * We're going to need the task's util for capacity_spare_wake
6605 		 * in find_idlest_group. Sync it up to prev_cpu's
6606 		 * last_update_time.
6607 		 */
6608 		sync_entity_load_avg(&p->se);
6609 	}
6610 
6611 	if (!sd) {
6612 pick_cpu:
6613 		if (sd_flag & SD_BALANCE_WAKE) { /* XXX always ? */
6614 			new_cpu = select_idle_sibling(p, prev_cpu, new_cpu);
6615 
6616 			if (want_affine)
6617 				current->recent_used_cpu = cpu;
6618 		}
6619 	} else {
6620 		new_cpu = find_idlest_cpu(sd, p, cpu, prev_cpu, sd_flag);
6621 	}
6622 	rcu_read_unlock();
6623 
6624 	return new_cpu;
6625 }
6626 
6627 static void detach_entity_cfs_rq(struct sched_entity *se);
6628 
6629 /*
6630  * Called immediately before a task is migrated to a new CPU; task_cpu(p) and
6631  * cfs_rq_of(p) references at time of call are still valid and identify the
6632  * previous CPU. The caller guarantees p->pi_lock or task_rq(p)->lock is held.
6633  */
6634 static void migrate_task_rq_fair(struct task_struct *p)
6635 {
6636 	/*
6637 	 * As blocked tasks retain absolute vruntime the migration needs to
6638 	 * deal with this by subtracting the old and adding the new
6639 	 * min_vruntime -- the latter is done by enqueue_entity() when placing
6640 	 * the task on the new runqueue.
6641 	 */
6642 	if (p->state == TASK_WAKING) {
6643 		struct sched_entity *se = &p->se;
6644 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
6645 		u64 min_vruntime;
6646 
6647 #ifndef CONFIG_64BIT
6648 		u64 min_vruntime_copy;
6649 
6650 		do {
6651 			min_vruntime_copy = cfs_rq->min_vruntime_copy;
6652 			smp_rmb();
6653 			min_vruntime = cfs_rq->min_vruntime;
6654 		} while (min_vruntime != min_vruntime_copy);
6655 #else
6656 		min_vruntime = cfs_rq->min_vruntime;
6657 #endif
6658 
6659 		se->vruntime -= min_vruntime;
6660 	}
6661 
6662 	if (p->on_rq == TASK_ON_RQ_MIGRATING) {
6663 		/*
6664 		 * In case of TASK_ON_RQ_MIGRATING we in fact hold the 'old'
6665 		 * rq->lock and can modify state directly.
6666 		 */
6667 		lockdep_assert_held(&task_rq(p)->lock);
6668 		detach_entity_cfs_rq(&p->se);
6669 
6670 	} else {
6671 		/*
6672 		 * We are supposed to update the task to "current" time, then
6673 		 * its up to date and ready to go to new CPU/cfs_rq. But we
6674 		 * have difficulty in getting what current time is, so simply
6675 		 * throw away the out-of-date time. This will result in the
6676 		 * wakee task is less decayed, but giving the wakee more load
6677 		 * sounds not bad.
6678 		 */
6679 		remove_entity_load_avg(&p->se);
6680 	}
6681 
6682 	/* Tell new CPU we are migrated */
6683 	p->se.avg.last_update_time = 0;
6684 
6685 	/* We have migrated, no longer consider this task hot */
6686 	p->se.exec_start = 0;
6687 }
6688 
6689 static void task_dead_fair(struct task_struct *p)
6690 {
6691 	remove_entity_load_avg(&p->se);
6692 }
6693 #endif /* CONFIG_SMP */
6694 
6695 static unsigned long wakeup_gran(struct sched_entity *se)
6696 {
6697 	unsigned long gran = sysctl_sched_wakeup_granularity;
6698 
6699 	/*
6700 	 * Since its curr running now, convert the gran from real-time
6701 	 * to virtual-time in his units.
6702 	 *
6703 	 * By using 'se' instead of 'curr' we penalize light tasks, so
6704 	 * they get preempted easier. That is, if 'se' < 'curr' then
6705 	 * the resulting gran will be larger, therefore penalizing the
6706 	 * lighter, if otoh 'se' > 'curr' then the resulting gran will
6707 	 * be smaller, again penalizing the lighter task.
6708 	 *
6709 	 * This is especially important for buddies when the leftmost
6710 	 * task is higher priority than the buddy.
6711 	 */
6712 	return calc_delta_fair(gran, se);
6713 }
6714 
6715 /*
6716  * Should 'se' preempt 'curr'.
6717  *
6718  *             |s1
6719  *        |s2
6720  *   |s3
6721  *         g
6722  *      |<--->|c
6723  *
6724  *  w(c, s1) = -1
6725  *  w(c, s2) =  0
6726  *  w(c, s3) =  1
6727  *
6728  */
6729 static int
6730 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
6731 {
6732 	s64 gran, vdiff = curr->vruntime - se->vruntime;
6733 
6734 	if (vdiff <= 0)
6735 		return -1;
6736 
6737 	gran = wakeup_gran(se);
6738 	if (vdiff > gran)
6739 		return 1;
6740 
6741 	return 0;
6742 }
6743 
6744 static void set_last_buddy(struct sched_entity *se)
6745 {
6746 	if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
6747 		return;
6748 
6749 	for_each_sched_entity(se) {
6750 		if (SCHED_WARN_ON(!se->on_rq))
6751 			return;
6752 		cfs_rq_of(se)->last = se;
6753 	}
6754 }
6755 
6756 static void set_next_buddy(struct sched_entity *se)
6757 {
6758 	if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
6759 		return;
6760 
6761 	for_each_sched_entity(se) {
6762 		if (SCHED_WARN_ON(!se->on_rq))
6763 			return;
6764 		cfs_rq_of(se)->next = se;
6765 	}
6766 }
6767 
6768 static void set_skip_buddy(struct sched_entity *se)
6769 {
6770 	for_each_sched_entity(se)
6771 		cfs_rq_of(se)->skip = se;
6772 }
6773 
6774 /*
6775  * Preempt the current task with a newly woken task if needed:
6776  */
6777 static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
6778 {
6779 	struct task_struct *curr = rq->curr;
6780 	struct sched_entity *se = &curr->se, *pse = &p->se;
6781 	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
6782 	int scale = cfs_rq->nr_running >= sched_nr_latency;
6783 	int next_buddy_marked = 0;
6784 
6785 	if (unlikely(se == pse))
6786 		return;
6787 
6788 	/*
6789 	 * This is possible from callers such as attach_tasks(), in which we
6790 	 * unconditionally check_prempt_curr() after an enqueue (which may have
6791 	 * lead to a throttle).  This both saves work and prevents false
6792 	 * next-buddy nomination below.
6793 	 */
6794 	if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
6795 		return;
6796 
6797 	if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
6798 		set_next_buddy(pse);
6799 		next_buddy_marked = 1;
6800 	}
6801 
6802 	/*
6803 	 * We can come here with TIF_NEED_RESCHED already set from new task
6804 	 * wake up path.
6805 	 *
6806 	 * Note: this also catches the edge-case of curr being in a throttled
6807 	 * group (e.g. via set_curr_task), since update_curr() (in the
6808 	 * enqueue of curr) will have resulted in resched being set.  This
6809 	 * prevents us from potentially nominating it as a false LAST_BUDDY
6810 	 * below.
6811 	 */
6812 	if (test_tsk_need_resched(curr))
6813 		return;
6814 
6815 	/* Idle tasks are by definition preempted by non-idle tasks. */
6816 	if (unlikely(curr->policy == SCHED_IDLE) &&
6817 	    likely(p->policy != SCHED_IDLE))
6818 		goto preempt;
6819 
6820 	/*
6821 	 * Batch and idle tasks do not preempt non-idle tasks (their preemption
6822 	 * is driven by the tick):
6823 	 */
6824 	if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
6825 		return;
6826 
6827 	find_matching_se(&se, &pse);
6828 	update_curr(cfs_rq_of(se));
6829 	BUG_ON(!pse);
6830 	if (wakeup_preempt_entity(se, pse) == 1) {
6831 		/*
6832 		 * Bias pick_next to pick the sched entity that is
6833 		 * triggering this preemption.
6834 		 */
6835 		if (!next_buddy_marked)
6836 			set_next_buddy(pse);
6837 		goto preempt;
6838 	}
6839 
6840 	return;
6841 
6842 preempt:
6843 	resched_curr(rq);
6844 	/*
6845 	 * Only set the backward buddy when the current task is still
6846 	 * on the rq. This can happen when a wakeup gets interleaved
6847 	 * with schedule on the ->pre_schedule() or idle_balance()
6848 	 * point, either of which can * drop the rq lock.
6849 	 *
6850 	 * Also, during early boot the idle thread is in the fair class,
6851 	 * for obvious reasons its a bad idea to schedule back to it.
6852 	 */
6853 	if (unlikely(!se->on_rq || curr == rq->idle))
6854 		return;
6855 
6856 	if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
6857 		set_last_buddy(se);
6858 }
6859 
6860 static struct task_struct *
6861 pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
6862 {
6863 	struct cfs_rq *cfs_rq = &rq->cfs;
6864 	struct sched_entity *se;
6865 	struct task_struct *p;
6866 	int new_tasks;
6867 
6868 again:
6869 	if (!cfs_rq->nr_running)
6870 		goto idle;
6871 
6872 #ifdef CONFIG_FAIR_GROUP_SCHED
6873 	if (prev->sched_class != &fair_sched_class)
6874 		goto simple;
6875 
6876 	/*
6877 	 * Because of the set_next_buddy() in dequeue_task_fair() it is rather
6878 	 * likely that a next task is from the same cgroup as the current.
6879 	 *
6880 	 * Therefore attempt to avoid putting and setting the entire cgroup
6881 	 * hierarchy, only change the part that actually changes.
6882 	 */
6883 
6884 	do {
6885 		struct sched_entity *curr = cfs_rq->curr;
6886 
6887 		/*
6888 		 * Since we got here without doing put_prev_entity() we also
6889 		 * have to consider cfs_rq->curr. If it is still a runnable
6890 		 * entity, update_curr() will update its vruntime, otherwise
6891 		 * forget we've ever seen it.
6892 		 */
6893 		if (curr) {
6894 			if (curr->on_rq)
6895 				update_curr(cfs_rq);
6896 			else
6897 				curr = NULL;
6898 
6899 			/*
6900 			 * This call to check_cfs_rq_runtime() will do the
6901 			 * throttle and dequeue its entity in the parent(s).
6902 			 * Therefore the nr_running test will indeed
6903 			 * be correct.
6904 			 */
6905 			if (unlikely(check_cfs_rq_runtime(cfs_rq))) {
6906 				cfs_rq = &rq->cfs;
6907 
6908 				if (!cfs_rq->nr_running)
6909 					goto idle;
6910 
6911 				goto simple;
6912 			}
6913 		}
6914 
6915 		se = pick_next_entity(cfs_rq, curr);
6916 		cfs_rq = group_cfs_rq(se);
6917 	} while (cfs_rq);
6918 
6919 	p = task_of(se);
6920 
6921 	/*
6922 	 * Since we haven't yet done put_prev_entity and if the selected task
6923 	 * is a different task than we started out with, try and touch the
6924 	 * least amount of cfs_rqs.
6925 	 */
6926 	if (prev != p) {
6927 		struct sched_entity *pse = &prev->se;
6928 
6929 		while (!(cfs_rq = is_same_group(se, pse))) {
6930 			int se_depth = se->depth;
6931 			int pse_depth = pse->depth;
6932 
6933 			if (se_depth <= pse_depth) {
6934 				put_prev_entity(cfs_rq_of(pse), pse);
6935 				pse = parent_entity(pse);
6936 			}
6937 			if (se_depth >= pse_depth) {
6938 				set_next_entity(cfs_rq_of(se), se);
6939 				se = parent_entity(se);
6940 			}
6941 		}
6942 
6943 		put_prev_entity(cfs_rq, pse);
6944 		set_next_entity(cfs_rq, se);
6945 	}
6946 
6947 	goto done;
6948 simple:
6949 #endif
6950 
6951 	put_prev_task(rq, prev);
6952 
6953 	do {
6954 		se = pick_next_entity(cfs_rq, NULL);
6955 		set_next_entity(cfs_rq, se);
6956 		cfs_rq = group_cfs_rq(se);
6957 	} while (cfs_rq);
6958 
6959 	p = task_of(se);
6960 
6961 done: __maybe_unused;
6962 #ifdef CONFIG_SMP
6963 	/*
6964 	 * Move the next running task to the front of
6965 	 * the list, so our cfs_tasks list becomes MRU
6966 	 * one.
6967 	 */
6968 	list_move(&p->se.group_node, &rq->cfs_tasks);
6969 #endif
6970 
6971 	if (hrtick_enabled(rq))
6972 		hrtick_start_fair(rq, p);
6973 
6974 	return p;
6975 
6976 idle:
6977 	new_tasks = idle_balance(rq, rf);
6978 
6979 	/*
6980 	 * Because idle_balance() releases (and re-acquires) rq->lock, it is
6981 	 * possible for any higher priority task to appear. In that case we
6982 	 * must re-start the pick_next_entity() loop.
6983 	 */
6984 	if (new_tasks < 0)
6985 		return RETRY_TASK;
6986 
6987 	if (new_tasks > 0)
6988 		goto again;
6989 
6990 	return NULL;
6991 }
6992 
6993 /*
6994  * Account for a descheduled task:
6995  */
6996 static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
6997 {
6998 	struct sched_entity *se = &prev->se;
6999 	struct cfs_rq *cfs_rq;
7000 
7001 	for_each_sched_entity(se) {
7002 		cfs_rq = cfs_rq_of(se);
7003 		put_prev_entity(cfs_rq, se);
7004 	}
7005 }
7006 
7007 /*
7008  * sched_yield() is very simple
7009  *
7010  * The magic of dealing with the ->skip buddy is in pick_next_entity.
7011  */
7012 static void yield_task_fair(struct rq *rq)
7013 {
7014 	struct task_struct *curr = rq->curr;
7015 	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
7016 	struct sched_entity *se = &curr->se;
7017 
7018 	/*
7019 	 * Are we the only task in the tree?
7020 	 */
7021 	if (unlikely(rq->nr_running == 1))
7022 		return;
7023 
7024 	clear_buddies(cfs_rq, se);
7025 
7026 	if (curr->policy != SCHED_BATCH) {
7027 		update_rq_clock(rq);
7028 		/*
7029 		 * Update run-time statistics of the 'current'.
7030 		 */
7031 		update_curr(cfs_rq);
7032 		/*
7033 		 * Tell update_rq_clock() that we've just updated,
7034 		 * so we don't do microscopic update in schedule()
7035 		 * and double the fastpath cost.
7036 		 */
7037 		rq_clock_skip_update(rq);
7038 	}
7039 
7040 	set_skip_buddy(se);
7041 }
7042 
7043 static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
7044 {
7045 	struct sched_entity *se = &p->se;
7046 
7047 	/* throttled hierarchies are not runnable */
7048 	if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
7049 		return false;
7050 
7051 	/* Tell the scheduler that we'd really like pse to run next. */
7052 	set_next_buddy(se);
7053 
7054 	yield_task_fair(rq);
7055 
7056 	return true;
7057 }
7058 
7059 #ifdef CONFIG_SMP
7060 /**************************************************
7061  * Fair scheduling class load-balancing methods.
7062  *
7063  * BASICS
7064  *
7065  * The purpose of load-balancing is to achieve the same basic fairness the
7066  * per-CPU scheduler provides, namely provide a proportional amount of compute
7067  * time to each task. This is expressed in the following equation:
7068  *
7069  *   W_i,n/P_i == W_j,n/P_j for all i,j                               (1)
7070  *
7071  * Where W_i,n is the n-th weight average for CPU i. The instantaneous weight
7072  * W_i,0 is defined as:
7073  *
7074  *   W_i,0 = \Sum_j w_i,j                                             (2)
7075  *
7076  * Where w_i,j is the weight of the j-th runnable task on CPU i. This weight
7077  * is derived from the nice value as per sched_prio_to_weight[].
7078  *
7079  * The weight average is an exponential decay average of the instantaneous
7080  * weight:
7081  *
7082  *   W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0               (3)
7083  *
7084  * C_i is the compute capacity of CPU i, typically it is the
7085  * fraction of 'recent' time available for SCHED_OTHER task execution. But it
7086  * can also include other factors [XXX].
7087  *
7088  * To achieve this balance we define a measure of imbalance which follows
7089  * directly from (1):
7090  *
7091  *   imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j }    (4)
7092  *
7093  * We them move tasks around to minimize the imbalance. In the continuous
7094  * function space it is obvious this converges, in the discrete case we get
7095  * a few fun cases generally called infeasible weight scenarios.
7096  *
7097  * [XXX expand on:
7098  *     - infeasible weights;
7099  *     - local vs global optima in the discrete case. ]
7100  *
7101  *
7102  * SCHED DOMAINS
7103  *
7104  * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
7105  * for all i,j solution, we create a tree of CPUs that follows the hardware
7106  * topology where each level pairs two lower groups (or better). This results
7107  * in O(log n) layers. Furthermore we reduce the number of CPUs going up the
7108  * tree to only the first of the previous level and we decrease the frequency
7109  * of load-balance at each level inv. proportional to the number of CPUs in
7110  * the groups.
7111  *
7112  * This yields:
7113  *
7114  *     log_2 n     1     n
7115  *   \Sum       { --- * --- * 2^i } = O(n)                            (5)
7116  *     i = 0      2^i   2^i
7117  *                               `- size of each group
7118  *         |         |     `- number of CPUs doing load-balance
7119  *         |         `- freq
7120  *         `- sum over all levels
7121  *
7122  * Coupled with a limit on how many tasks we can migrate every balance pass,
7123  * this makes (5) the runtime complexity of the balancer.
7124  *
7125  * An important property here is that each CPU is still (indirectly) connected
7126  * to every other CPU in at most O(log n) steps:
7127  *
7128  * The adjacency matrix of the resulting graph is given by:
7129  *
7130  *             log_2 n
7131  *   A_i,j = \Union     (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1)  (6)
7132  *             k = 0
7133  *
7134  * And you'll find that:
7135  *
7136  *   A^(log_2 n)_i,j != 0  for all i,j                                (7)
7137  *
7138  * Showing there's indeed a path between every CPU in at most O(log n) steps.
7139  * The task movement gives a factor of O(m), giving a convergence complexity
7140  * of:
7141  *
7142  *   O(nm log n),  n := nr_cpus, m := nr_tasks                        (8)
7143  *
7144  *
7145  * WORK CONSERVING
7146  *
7147  * In order to avoid CPUs going idle while there's still work to do, new idle
7148  * balancing is more aggressive and has the newly idle CPU iterate up the domain
7149  * tree itself instead of relying on other CPUs to bring it work.
7150  *
7151  * This adds some complexity to both (5) and (8) but it reduces the total idle
7152  * time.
7153  *
7154  * [XXX more?]
7155  *
7156  *
7157  * CGROUPS
7158  *
7159  * Cgroups make a horror show out of (2), instead of a simple sum we get:
7160  *
7161  *                                s_k,i
7162  *   W_i,0 = \Sum_j \Prod_k w_k * -----                               (9)
7163  *                                 S_k
7164  *
7165  * Where
7166  *
7167  *   s_k,i = \Sum_j w_i,j,k  and  S_k = \Sum_i s_k,i                 (10)
7168  *
7169  * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on CPU i.
7170  *
7171  * The big problem is S_k, its a global sum needed to compute a local (W_i)
7172  * property.
7173  *
7174  * [XXX write more on how we solve this.. _after_ merging pjt's patches that
7175  *      rewrite all of this once again.]
7176  */
7177 
7178 static unsigned long __read_mostly max_load_balance_interval = HZ/10;
7179 
7180 enum fbq_type { regular, remote, all };
7181 
7182 #define LBF_ALL_PINNED	0x01
7183 #define LBF_NEED_BREAK	0x02
7184 #define LBF_DST_PINNED  0x04
7185 #define LBF_SOME_PINNED	0x08
7186 #define LBF_NOHZ_STATS	0x10
7187 #define LBF_NOHZ_AGAIN	0x20
7188 
7189 struct lb_env {
7190 	struct sched_domain	*sd;
7191 
7192 	struct rq		*src_rq;
7193 	int			src_cpu;
7194 
7195 	int			dst_cpu;
7196 	struct rq		*dst_rq;
7197 
7198 	struct cpumask		*dst_grpmask;
7199 	int			new_dst_cpu;
7200 	enum cpu_idle_type	idle;
7201 	long			imbalance;
7202 	/* The set of CPUs under consideration for load-balancing */
7203 	struct cpumask		*cpus;
7204 
7205 	unsigned int		flags;
7206 
7207 	unsigned int		loop;
7208 	unsigned int		loop_break;
7209 	unsigned int		loop_max;
7210 
7211 	enum fbq_type		fbq_type;
7212 	struct list_head	tasks;
7213 };
7214 
7215 /*
7216  * Is this task likely cache-hot:
7217  */
7218 static int task_hot(struct task_struct *p, struct lb_env *env)
7219 {
7220 	s64 delta;
7221 
7222 	lockdep_assert_held(&env->src_rq->lock);
7223 
7224 	if (p->sched_class != &fair_sched_class)
7225 		return 0;
7226 
7227 	if (unlikely(p->policy == SCHED_IDLE))
7228 		return 0;
7229 
7230 	/*
7231 	 * Buddy candidates are cache hot:
7232 	 */
7233 	if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running &&
7234 			(&p->se == cfs_rq_of(&p->se)->next ||
7235 			 &p->se == cfs_rq_of(&p->se)->last))
7236 		return 1;
7237 
7238 	if (sysctl_sched_migration_cost == -1)
7239 		return 1;
7240 	if (sysctl_sched_migration_cost == 0)
7241 		return 0;
7242 
7243 	delta = rq_clock_task(env->src_rq) - p->se.exec_start;
7244 
7245 	return delta < (s64)sysctl_sched_migration_cost;
7246 }
7247 
7248 #ifdef CONFIG_NUMA_BALANCING
7249 /*
7250  * Returns 1, if task migration degrades locality
7251  * Returns 0, if task migration improves locality i.e migration preferred.
7252  * Returns -1, if task migration is not affected by locality.
7253  */
7254 static int migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
7255 {
7256 	struct numa_group *numa_group = rcu_dereference(p->numa_group);
7257 	unsigned long src_faults, dst_faults;
7258 	int src_nid, dst_nid;
7259 
7260 	if (!static_branch_likely(&sched_numa_balancing))
7261 		return -1;
7262 
7263 	if (!p->numa_faults || !(env->sd->flags & SD_NUMA))
7264 		return -1;
7265 
7266 	src_nid = cpu_to_node(env->src_cpu);
7267 	dst_nid = cpu_to_node(env->dst_cpu);
7268 
7269 	if (src_nid == dst_nid)
7270 		return -1;
7271 
7272 	/* Migrating away from the preferred node is always bad. */
7273 	if (src_nid == p->numa_preferred_nid) {
7274 		if (env->src_rq->nr_running > env->src_rq->nr_preferred_running)
7275 			return 1;
7276 		else
7277 			return -1;
7278 	}
7279 
7280 	/* Encourage migration to the preferred node. */
7281 	if (dst_nid == p->numa_preferred_nid)
7282 		return 0;
7283 
7284 	/* Leaving a core idle is often worse than degrading locality. */
7285 	if (env->idle != CPU_NOT_IDLE)
7286 		return -1;
7287 
7288 	if (numa_group) {
7289 		src_faults = group_faults(p, src_nid);
7290 		dst_faults = group_faults(p, dst_nid);
7291 	} else {
7292 		src_faults = task_faults(p, src_nid);
7293 		dst_faults = task_faults(p, dst_nid);
7294 	}
7295 
7296 	return dst_faults < src_faults;
7297 }
7298 
7299 #else
7300 static inline int migrate_degrades_locality(struct task_struct *p,
7301 					     struct lb_env *env)
7302 {
7303 	return -1;
7304 }
7305 #endif
7306 
7307 /*
7308  * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
7309  */
7310 static
7311 int can_migrate_task(struct task_struct *p, struct lb_env *env)
7312 {
7313 	int tsk_cache_hot;
7314 
7315 	lockdep_assert_held(&env->src_rq->lock);
7316 
7317 	/*
7318 	 * We do not migrate tasks that are:
7319 	 * 1) throttled_lb_pair, or
7320 	 * 2) cannot be migrated to this CPU due to cpus_allowed, or
7321 	 * 3) running (obviously), or
7322 	 * 4) are cache-hot on their current CPU.
7323 	 */
7324 	if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
7325 		return 0;
7326 
7327 	if (!cpumask_test_cpu(env->dst_cpu, &p->cpus_allowed)) {
7328 		int cpu;
7329 
7330 		schedstat_inc(p->se.statistics.nr_failed_migrations_affine);
7331 
7332 		env->flags |= LBF_SOME_PINNED;
7333 
7334 		/*
7335 		 * Remember if this task can be migrated to any other CPU in
7336 		 * our sched_group. We may want to revisit it if we couldn't
7337 		 * meet load balance goals by pulling other tasks on src_cpu.
7338 		 *
7339 		 * Avoid computing new_dst_cpu for NEWLY_IDLE or if we have
7340 		 * already computed one in current iteration.
7341 		 */
7342 		if (env->idle == CPU_NEWLY_IDLE || (env->flags & LBF_DST_PINNED))
7343 			return 0;
7344 
7345 		/* Prevent to re-select dst_cpu via env's CPUs: */
7346 		for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
7347 			if (cpumask_test_cpu(cpu, &p->cpus_allowed)) {
7348 				env->flags |= LBF_DST_PINNED;
7349 				env->new_dst_cpu = cpu;
7350 				break;
7351 			}
7352 		}
7353 
7354 		return 0;
7355 	}
7356 
7357 	/* Record that we found atleast one task that could run on dst_cpu */
7358 	env->flags &= ~LBF_ALL_PINNED;
7359 
7360 	if (task_running(env->src_rq, p)) {
7361 		schedstat_inc(p->se.statistics.nr_failed_migrations_running);
7362 		return 0;
7363 	}
7364 
7365 	/*
7366 	 * Aggressive migration if:
7367 	 * 1) destination numa is preferred
7368 	 * 2) task is cache cold, or
7369 	 * 3) too many balance attempts have failed.
7370 	 */
7371 	tsk_cache_hot = migrate_degrades_locality(p, env);
7372 	if (tsk_cache_hot == -1)
7373 		tsk_cache_hot = task_hot(p, env);
7374 
7375 	if (tsk_cache_hot <= 0 ||
7376 	    env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
7377 		if (tsk_cache_hot == 1) {
7378 			schedstat_inc(env->sd->lb_hot_gained[env->idle]);
7379 			schedstat_inc(p->se.statistics.nr_forced_migrations);
7380 		}
7381 		return 1;
7382 	}
7383 
7384 	schedstat_inc(p->se.statistics.nr_failed_migrations_hot);
7385 	return 0;
7386 }
7387 
7388 /*
7389  * detach_task() -- detach the task for the migration specified in env
7390  */
7391 static void detach_task(struct task_struct *p, struct lb_env *env)
7392 {
7393 	lockdep_assert_held(&env->src_rq->lock);
7394 
7395 	p->on_rq = TASK_ON_RQ_MIGRATING;
7396 	deactivate_task(env->src_rq, p, DEQUEUE_NOCLOCK);
7397 	set_task_cpu(p, env->dst_cpu);
7398 }
7399 
7400 /*
7401  * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as
7402  * part of active balancing operations within "domain".
7403  *
7404  * Returns a task if successful and NULL otherwise.
7405  */
7406 static struct task_struct *detach_one_task(struct lb_env *env)
7407 {
7408 	struct task_struct *p;
7409 
7410 	lockdep_assert_held(&env->src_rq->lock);
7411 
7412 	list_for_each_entry_reverse(p,
7413 			&env->src_rq->cfs_tasks, se.group_node) {
7414 		if (!can_migrate_task(p, env))
7415 			continue;
7416 
7417 		detach_task(p, env);
7418 
7419 		/*
7420 		 * Right now, this is only the second place where
7421 		 * lb_gained[env->idle] is updated (other is detach_tasks)
7422 		 * so we can safely collect stats here rather than
7423 		 * inside detach_tasks().
7424 		 */
7425 		schedstat_inc(env->sd->lb_gained[env->idle]);
7426 		return p;
7427 	}
7428 	return NULL;
7429 }
7430 
7431 static const unsigned int sched_nr_migrate_break = 32;
7432 
7433 /*
7434  * detach_tasks() -- tries to detach up to imbalance weighted load from
7435  * busiest_rq, as part of a balancing operation within domain "sd".
7436  *
7437  * Returns number of detached tasks if successful and 0 otherwise.
7438  */
7439 static int detach_tasks(struct lb_env *env)
7440 {
7441 	struct list_head *tasks = &env->src_rq->cfs_tasks;
7442 	struct task_struct *p;
7443 	unsigned long load;
7444 	int detached = 0;
7445 
7446 	lockdep_assert_held(&env->src_rq->lock);
7447 
7448 	if (env->imbalance <= 0)
7449 		return 0;
7450 
7451 	while (!list_empty(tasks)) {
7452 		/*
7453 		 * We don't want to steal all, otherwise we may be treated likewise,
7454 		 * which could at worst lead to a livelock crash.
7455 		 */
7456 		if (env->idle != CPU_NOT_IDLE && env->src_rq->nr_running <= 1)
7457 			break;
7458 
7459 		p = list_last_entry(tasks, struct task_struct, se.group_node);
7460 
7461 		env->loop++;
7462 		/* We've more or less seen every task there is, call it quits */
7463 		if (env->loop > env->loop_max)
7464 			break;
7465 
7466 		/* take a breather every nr_migrate tasks */
7467 		if (env->loop > env->loop_break) {
7468 			env->loop_break += sched_nr_migrate_break;
7469 			env->flags |= LBF_NEED_BREAK;
7470 			break;
7471 		}
7472 
7473 		if (!can_migrate_task(p, env))
7474 			goto next;
7475 
7476 		load = task_h_load(p);
7477 
7478 		if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed)
7479 			goto next;
7480 
7481 		if ((load / 2) > env->imbalance)
7482 			goto next;
7483 
7484 		detach_task(p, env);
7485 		list_add(&p->se.group_node, &env->tasks);
7486 
7487 		detached++;
7488 		env->imbalance -= load;
7489 
7490 #ifdef CONFIG_PREEMPT
7491 		/*
7492 		 * NEWIDLE balancing is a source of latency, so preemptible
7493 		 * kernels will stop after the first task is detached to minimize
7494 		 * the critical section.
7495 		 */
7496 		if (env->idle == CPU_NEWLY_IDLE)
7497 			break;
7498 #endif
7499 
7500 		/*
7501 		 * We only want to steal up to the prescribed amount of
7502 		 * weighted load.
7503 		 */
7504 		if (env->imbalance <= 0)
7505 			break;
7506 
7507 		continue;
7508 next:
7509 		list_move(&p->se.group_node, tasks);
7510 	}
7511 
7512 	/*
7513 	 * Right now, this is one of only two places we collect this stat
7514 	 * so we can safely collect detach_one_task() stats here rather
7515 	 * than inside detach_one_task().
7516 	 */
7517 	schedstat_add(env->sd->lb_gained[env->idle], detached);
7518 
7519 	return detached;
7520 }
7521 
7522 /*
7523  * attach_task() -- attach the task detached by detach_task() to its new rq.
7524  */
7525 static void attach_task(struct rq *rq, struct task_struct *p)
7526 {
7527 	lockdep_assert_held(&rq->lock);
7528 
7529 	BUG_ON(task_rq(p) != rq);
7530 	activate_task(rq, p, ENQUEUE_NOCLOCK);
7531 	p->on_rq = TASK_ON_RQ_QUEUED;
7532 	check_preempt_curr(rq, p, 0);
7533 }
7534 
7535 /*
7536  * attach_one_task() -- attaches the task returned from detach_one_task() to
7537  * its new rq.
7538  */
7539 static void attach_one_task(struct rq *rq, struct task_struct *p)
7540 {
7541 	struct rq_flags rf;
7542 
7543 	rq_lock(rq, &rf);
7544 	update_rq_clock(rq);
7545 	attach_task(rq, p);
7546 	rq_unlock(rq, &rf);
7547 }
7548 
7549 /*
7550  * attach_tasks() -- attaches all tasks detached by detach_tasks() to their
7551  * new rq.
7552  */
7553 static void attach_tasks(struct lb_env *env)
7554 {
7555 	struct list_head *tasks = &env->tasks;
7556 	struct task_struct *p;
7557 	struct rq_flags rf;
7558 
7559 	rq_lock(env->dst_rq, &rf);
7560 	update_rq_clock(env->dst_rq);
7561 
7562 	while (!list_empty(tasks)) {
7563 		p = list_first_entry(tasks, struct task_struct, se.group_node);
7564 		list_del_init(&p->se.group_node);
7565 
7566 		attach_task(env->dst_rq, p);
7567 	}
7568 
7569 	rq_unlock(env->dst_rq, &rf);
7570 }
7571 
7572 static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq)
7573 {
7574 	if (cfs_rq->avg.load_avg)
7575 		return true;
7576 
7577 	if (cfs_rq->avg.util_avg)
7578 		return true;
7579 
7580 	return false;
7581 }
7582 
7583 #ifdef CONFIG_FAIR_GROUP_SCHED
7584 
7585 static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq)
7586 {
7587 	if (cfs_rq->load.weight)
7588 		return false;
7589 
7590 	if (cfs_rq->avg.load_sum)
7591 		return false;
7592 
7593 	if (cfs_rq->avg.util_sum)
7594 		return false;
7595 
7596 	if (cfs_rq->avg.runnable_load_sum)
7597 		return false;
7598 
7599 	return true;
7600 }
7601 
7602 static void update_blocked_averages(int cpu)
7603 {
7604 	struct rq *rq = cpu_rq(cpu);
7605 	struct cfs_rq *cfs_rq, *pos;
7606 	struct rq_flags rf;
7607 	bool done = true;
7608 
7609 	rq_lock_irqsave(rq, &rf);
7610 	update_rq_clock(rq);
7611 
7612 	/*
7613 	 * Iterates the task_group tree in a bottom up fashion, see
7614 	 * list_add_leaf_cfs_rq() for details.
7615 	 */
7616 	for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) {
7617 		struct sched_entity *se;
7618 
7619 		/* throttled entities do not contribute to load */
7620 		if (throttled_hierarchy(cfs_rq))
7621 			continue;
7622 
7623 		if (update_cfs_rq_load_avg(cfs_rq_clock_task(cfs_rq), cfs_rq))
7624 			update_tg_load_avg(cfs_rq, 0);
7625 
7626 		/* Propagate pending load changes to the parent, if any: */
7627 		se = cfs_rq->tg->se[cpu];
7628 		if (se && !skip_blocked_update(se))
7629 			update_load_avg(cfs_rq_of(se), se, 0);
7630 
7631 		/*
7632 		 * There can be a lot of idle CPU cgroups.  Don't let fully
7633 		 * decayed cfs_rqs linger on the list.
7634 		 */
7635 		if (cfs_rq_is_decayed(cfs_rq))
7636 			list_del_leaf_cfs_rq(cfs_rq);
7637 
7638 		/* Don't need periodic decay once load/util_avg are null */
7639 		if (cfs_rq_has_blocked(cfs_rq))
7640 			done = false;
7641 	}
7642 
7643 #ifdef CONFIG_NO_HZ_COMMON
7644 	rq->last_blocked_load_update_tick = jiffies;
7645 	if (done)
7646 		rq->has_blocked_load = 0;
7647 #endif
7648 	rq_unlock_irqrestore(rq, &rf);
7649 }
7650 
7651 /*
7652  * Compute the hierarchical load factor for cfs_rq and all its ascendants.
7653  * This needs to be done in a top-down fashion because the load of a child
7654  * group is a fraction of its parents load.
7655  */
7656 static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
7657 {
7658 	struct rq *rq = rq_of(cfs_rq);
7659 	struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
7660 	unsigned long now = jiffies;
7661 	unsigned long load;
7662 
7663 	if (cfs_rq->last_h_load_update == now)
7664 		return;
7665 
7666 	cfs_rq->h_load_next = NULL;
7667 	for_each_sched_entity(se) {
7668 		cfs_rq = cfs_rq_of(se);
7669 		cfs_rq->h_load_next = se;
7670 		if (cfs_rq->last_h_load_update == now)
7671 			break;
7672 	}
7673 
7674 	if (!se) {
7675 		cfs_rq->h_load = cfs_rq_load_avg(cfs_rq);
7676 		cfs_rq->last_h_load_update = now;
7677 	}
7678 
7679 	while ((se = cfs_rq->h_load_next) != NULL) {
7680 		load = cfs_rq->h_load;
7681 		load = div64_ul(load * se->avg.load_avg,
7682 			cfs_rq_load_avg(cfs_rq) + 1);
7683 		cfs_rq = group_cfs_rq(se);
7684 		cfs_rq->h_load = load;
7685 		cfs_rq->last_h_load_update = now;
7686 	}
7687 }
7688 
7689 static unsigned long task_h_load(struct task_struct *p)
7690 {
7691 	struct cfs_rq *cfs_rq = task_cfs_rq(p);
7692 
7693 	update_cfs_rq_h_load(cfs_rq);
7694 	return div64_ul(p->se.avg.load_avg * cfs_rq->h_load,
7695 			cfs_rq_load_avg(cfs_rq) + 1);
7696 }
7697 #else
7698 static inline void update_blocked_averages(int cpu)
7699 {
7700 	struct rq *rq = cpu_rq(cpu);
7701 	struct cfs_rq *cfs_rq = &rq->cfs;
7702 	struct rq_flags rf;
7703 
7704 	rq_lock_irqsave(rq, &rf);
7705 	update_rq_clock(rq);
7706 	update_cfs_rq_load_avg(cfs_rq_clock_task(cfs_rq), cfs_rq);
7707 #ifdef CONFIG_NO_HZ_COMMON
7708 	rq->last_blocked_load_update_tick = jiffies;
7709 	if (!cfs_rq_has_blocked(cfs_rq))
7710 		rq->has_blocked_load = 0;
7711 #endif
7712 	rq_unlock_irqrestore(rq, &rf);
7713 }
7714 
7715 static unsigned long task_h_load(struct task_struct *p)
7716 {
7717 	return p->se.avg.load_avg;
7718 }
7719 #endif
7720 
7721 /********** Helpers for find_busiest_group ************************/
7722 
7723 enum group_type {
7724 	group_other = 0,
7725 	group_imbalanced,
7726 	group_overloaded,
7727 };
7728 
7729 /*
7730  * sg_lb_stats - stats of a sched_group required for load_balancing
7731  */
7732 struct sg_lb_stats {
7733 	unsigned long avg_load; /*Avg load across the CPUs of the group */
7734 	unsigned long group_load; /* Total load over the CPUs of the group */
7735 	unsigned long sum_weighted_load; /* Weighted load of group's tasks */
7736 	unsigned long load_per_task;
7737 	unsigned long group_capacity;
7738 	unsigned long group_util; /* Total utilization of the group */
7739 	unsigned int sum_nr_running; /* Nr tasks running in the group */
7740 	unsigned int idle_cpus;
7741 	unsigned int group_weight;
7742 	enum group_type group_type;
7743 	int group_no_capacity;
7744 #ifdef CONFIG_NUMA_BALANCING
7745 	unsigned int nr_numa_running;
7746 	unsigned int nr_preferred_running;
7747 #endif
7748 };
7749 
7750 /*
7751  * sd_lb_stats - Structure to store the statistics of a sched_domain
7752  *		 during load balancing.
7753  */
7754 struct sd_lb_stats {
7755 	struct sched_group *busiest;	/* Busiest group in this sd */
7756 	struct sched_group *local;	/* Local group in this sd */
7757 	unsigned long total_running;
7758 	unsigned long total_load;	/* Total load of all groups in sd */
7759 	unsigned long total_capacity;	/* Total capacity of all groups in sd */
7760 	unsigned long avg_load;	/* Average load across all groups in sd */
7761 
7762 	struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
7763 	struct sg_lb_stats local_stat;	/* Statistics of the local group */
7764 };
7765 
7766 static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
7767 {
7768 	/*
7769 	 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
7770 	 * local_stat because update_sg_lb_stats() does a full clear/assignment.
7771 	 * We must however clear busiest_stat::avg_load because
7772 	 * update_sd_pick_busiest() reads this before assignment.
7773 	 */
7774 	*sds = (struct sd_lb_stats){
7775 		.busiest = NULL,
7776 		.local = NULL,
7777 		.total_running = 0UL,
7778 		.total_load = 0UL,
7779 		.total_capacity = 0UL,
7780 		.busiest_stat = {
7781 			.avg_load = 0UL,
7782 			.sum_nr_running = 0,
7783 			.group_type = group_other,
7784 		},
7785 	};
7786 }
7787 
7788 /**
7789  * get_sd_load_idx - Obtain the load index for a given sched domain.
7790  * @sd: The sched_domain whose load_idx is to be obtained.
7791  * @idle: The idle status of the CPU for whose sd load_idx is obtained.
7792  *
7793  * Return: The load index.
7794  */
7795 static inline int get_sd_load_idx(struct sched_domain *sd,
7796 					enum cpu_idle_type idle)
7797 {
7798 	int load_idx;
7799 
7800 	switch (idle) {
7801 	case CPU_NOT_IDLE:
7802 		load_idx = sd->busy_idx;
7803 		break;
7804 
7805 	case CPU_NEWLY_IDLE:
7806 		load_idx = sd->newidle_idx;
7807 		break;
7808 	default:
7809 		load_idx = sd->idle_idx;
7810 		break;
7811 	}
7812 
7813 	return load_idx;
7814 }
7815 
7816 static unsigned long scale_rt_capacity(int cpu)
7817 {
7818 	struct rq *rq = cpu_rq(cpu);
7819 	u64 total, used, age_stamp, avg;
7820 	s64 delta;
7821 
7822 	/*
7823 	 * Since we're reading these variables without serialization make sure
7824 	 * we read them once before doing sanity checks on them.
7825 	 */
7826 	age_stamp = READ_ONCE(rq->age_stamp);
7827 	avg = READ_ONCE(rq->rt_avg);
7828 	delta = __rq_clock_broken(rq) - age_stamp;
7829 
7830 	if (unlikely(delta < 0))
7831 		delta = 0;
7832 
7833 	total = sched_avg_period() + delta;
7834 
7835 	used = div_u64(avg, total);
7836 
7837 	if (likely(used < SCHED_CAPACITY_SCALE))
7838 		return SCHED_CAPACITY_SCALE - used;
7839 
7840 	return 1;
7841 }
7842 
7843 static void update_cpu_capacity(struct sched_domain *sd, int cpu)
7844 {
7845 	unsigned long capacity = arch_scale_cpu_capacity(sd, cpu);
7846 	struct sched_group *sdg = sd->groups;
7847 
7848 	cpu_rq(cpu)->cpu_capacity_orig = capacity;
7849 
7850 	capacity *= scale_rt_capacity(cpu);
7851 	capacity >>= SCHED_CAPACITY_SHIFT;
7852 
7853 	if (!capacity)
7854 		capacity = 1;
7855 
7856 	cpu_rq(cpu)->cpu_capacity = capacity;
7857 	sdg->sgc->capacity = capacity;
7858 	sdg->sgc->min_capacity = capacity;
7859 }
7860 
7861 void update_group_capacity(struct sched_domain *sd, int cpu)
7862 {
7863 	struct sched_domain *child = sd->child;
7864 	struct sched_group *group, *sdg = sd->groups;
7865 	unsigned long capacity, min_capacity;
7866 	unsigned long interval;
7867 
7868 	interval = msecs_to_jiffies(sd->balance_interval);
7869 	interval = clamp(interval, 1UL, max_load_balance_interval);
7870 	sdg->sgc->next_update = jiffies + interval;
7871 
7872 	if (!child) {
7873 		update_cpu_capacity(sd, cpu);
7874 		return;
7875 	}
7876 
7877 	capacity = 0;
7878 	min_capacity = ULONG_MAX;
7879 
7880 	if (child->flags & SD_OVERLAP) {
7881 		/*
7882 		 * SD_OVERLAP domains cannot assume that child groups
7883 		 * span the current group.
7884 		 */
7885 
7886 		for_each_cpu(cpu, sched_group_span(sdg)) {
7887 			struct sched_group_capacity *sgc;
7888 			struct rq *rq = cpu_rq(cpu);
7889 
7890 			/*
7891 			 * build_sched_domains() -> init_sched_groups_capacity()
7892 			 * gets here before we've attached the domains to the
7893 			 * runqueues.
7894 			 *
7895 			 * Use capacity_of(), which is set irrespective of domains
7896 			 * in update_cpu_capacity().
7897 			 *
7898 			 * This avoids capacity from being 0 and
7899 			 * causing divide-by-zero issues on boot.
7900 			 */
7901 			if (unlikely(!rq->sd)) {
7902 				capacity += capacity_of(cpu);
7903 			} else {
7904 				sgc = rq->sd->groups->sgc;
7905 				capacity += sgc->capacity;
7906 			}
7907 
7908 			min_capacity = min(capacity, min_capacity);
7909 		}
7910 	} else  {
7911 		/*
7912 		 * !SD_OVERLAP domains can assume that child groups
7913 		 * span the current group.
7914 		 */
7915 
7916 		group = child->groups;
7917 		do {
7918 			struct sched_group_capacity *sgc = group->sgc;
7919 
7920 			capacity += sgc->capacity;
7921 			min_capacity = min(sgc->min_capacity, min_capacity);
7922 			group = group->next;
7923 		} while (group != child->groups);
7924 	}
7925 
7926 	sdg->sgc->capacity = capacity;
7927 	sdg->sgc->min_capacity = min_capacity;
7928 }
7929 
7930 /*
7931  * Check whether the capacity of the rq has been noticeably reduced by side
7932  * activity. The imbalance_pct is used for the threshold.
7933  * Return true is the capacity is reduced
7934  */
7935 static inline int
7936 check_cpu_capacity(struct rq *rq, struct sched_domain *sd)
7937 {
7938 	return ((rq->cpu_capacity * sd->imbalance_pct) <
7939 				(rq->cpu_capacity_orig * 100));
7940 }
7941 
7942 /*
7943  * Group imbalance indicates (and tries to solve) the problem where balancing
7944  * groups is inadequate due to ->cpus_allowed constraints.
7945  *
7946  * Imagine a situation of two groups of 4 CPUs each and 4 tasks each with a
7947  * cpumask covering 1 CPU of the first group and 3 CPUs of the second group.
7948  * Something like:
7949  *
7950  *	{ 0 1 2 3 } { 4 5 6 7 }
7951  *	        *     * * *
7952  *
7953  * If we were to balance group-wise we'd place two tasks in the first group and
7954  * two tasks in the second group. Clearly this is undesired as it will overload
7955  * cpu 3 and leave one of the CPUs in the second group unused.
7956  *
7957  * The current solution to this issue is detecting the skew in the first group
7958  * by noticing the lower domain failed to reach balance and had difficulty
7959  * moving tasks due to affinity constraints.
7960  *
7961  * When this is so detected; this group becomes a candidate for busiest; see
7962  * update_sd_pick_busiest(). And calculate_imbalance() and
7963  * find_busiest_group() avoid some of the usual balance conditions to allow it
7964  * to create an effective group imbalance.
7965  *
7966  * This is a somewhat tricky proposition since the next run might not find the
7967  * group imbalance and decide the groups need to be balanced again. A most
7968  * subtle and fragile situation.
7969  */
7970 
7971 static inline int sg_imbalanced(struct sched_group *group)
7972 {
7973 	return group->sgc->imbalance;
7974 }
7975 
7976 /*
7977  * group_has_capacity returns true if the group has spare capacity that could
7978  * be used by some tasks.
7979  * We consider that a group has spare capacity if the  * number of task is
7980  * smaller than the number of CPUs or if the utilization is lower than the
7981  * available capacity for CFS tasks.
7982  * For the latter, we use a threshold to stabilize the state, to take into
7983  * account the variance of the tasks' load and to return true if the available
7984  * capacity in meaningful for the load balancer.
7985  * As an example, an available capacity of 1% can appear but it doesn't make
7986  * any benefit for the load balance.
7987  */
7988 static inline bool
7989 group_has_capacity(struct lb_env *env, struct sg_lb_stats *sgs)
7990 {
7991 	if (sgs->sum_nr_running < sgs->group_weight)
7992 		return true;
7993 
7994 	if ((sgs->group_capacity * 100) >
7995 			(sgs->group_util * env->sd->imbalance_pct))
7996 		return true;
7997 
7998 	return false;
7999 }
8000 
8001 /*
8002  *  group_is_overloaded returns true if the group has more tasks than it can
8003  *  handle.
8004  *  group_is_overloaded is not equals to !group_has_capacity because a group
8005  *  with the exact right number of tasks, has no more spare capacity but is not
8006  *  overloaded so both group_has_capacity and group_is_overloaded return
8007  *  false.
8008  */
8009 static inline bool
8010 group_is_overloaded(struct lb_env *env, struct sg_lb_stats *sgs)
8011 {
8012 	if (sgs->sum_nr_running <= sgs->group_weight)
8013 		return false;
8014 
8015 	if ((sgs->group_capacity * 100) <
8016 			(sgs->group_util * env->sd->imbalance_pct))
8017 		return true;
8018 
8019 	return false;
8020 }
8021 
8022 /*
8023  * group_smaller_cpu_capacity: Returns true if sched_group sg has smaller
8024  * per-CPU capacity than sched_group ref.
8025  */
8026 static inline bool
8027 group_smaller_cpu_capacity(struct sched_group *sg, struct sched_group *ref)
8028 {
8029 	return sg->sgc->min_capacity * capacity_margin <
8030 						ref->sgc->min_capacity * 1024;
8031 }
8032 
8033 static inline enum
8034 group_type group_classify(struct sched_group *group,
8035 			  struct sg_lb_stats *sgs)
8036 {
8037 	if (sgs->group_no_capacity)
8038 		return group_overloaded;
8039 
8040 	if (sg_imbalanced(group))
8041 		return group_imbalanced;
8042 
8043 	return group_other;
8044 }
8045 
8046 static bool update_nohz_stats(struct rq *rq, bool force)
8047 {
8048 #ifdef CONFIG_NO_HZ_COMMON
8049 	unsigned int cpu = rq->cpu;
8050 
8051 	if (!rq->has_blocked_load)
8052 		return false;
8053 
8054 	if (!cpumask_test_cpu(cpu, nohz.idle_cpus_mask))
8055 		return false;
8056 
8057 	if (!force && !time_after(jiffies, rq->last_blocked_load_update_tick))
8058 		return true;
8059 
8060 	update_blocked_averages(cpu);
8061 
8062 	return rq->has_blocked_load;
8063 #else
8064 	return false;
8065 #endif
8066 }
8067 
8068 /**
8069  * update_sg_lb_stats - Update sched_group's statistics for load balancing.
8070  * @env: The load balancing environment.
8071  * @group: sched_group whose statistics are to be updated.
8072  * @load_idx: Load index of sched_domain of this_cpu for load calc.
8073  * @local_group: Does group contain this_cpu.
8074  * @sgs: variable to hold the statistics for this group.
8075  * @overload: Indicate more than one runnable task for any CPU.
8076  */
8077 static inline void update_sg_lb_stats(struct lb_env *env,
8078 			struct sched_group *group, int load_idx,
8079 			int local_group, struct sg_lb_stats *sgs,
8080 			bool *overload)
8081 {
8082 	unsigned long load;
8083 	int i, nr_running;
8084 
8085 	memset(sgs, 0, sizeof(*sgs));
8086 
8087 	for_each_cpu_and(i, sched_group_span(group), env->cpus) {
8088 		struct rq *rq = cpu_rq(i);
8089 
8090 		if ((env->flags & LBF_NOHZ_STATS) && update_nohz_stats(rq, false))
8091 			env->flags |= LBF_NOHZ_AGAIN;
8092 
8093 		/* Bias balancing toward CPUs of our domain: */
8094 		if (local_group)
8095 			load = target_load(i, load_idx);
8096 		else
8097 			load = source_load(i, load_idx);
8098 
8099 		sgs->group_load += load;
8100 		sgs->group_util += cpu_util(i);
8101 		sgs->sum_nr_running += rq->cfs.h_nr_running;
8102 
8103 		nr_running = rq->nr_running;
8104 		if (nr_running > 1)
8105 			*overload = true;
8106 
8107 #ifdef CONFIG_NUMA_BALANCING
8108 		sgs->nr_numa_running += rq->nr_numa_running;
8109 		sgs->nr_preferred_running += rq->nr_preferred_running;
8110 #endif
8111 		sgs->sum_weighted_load += weighted_cpuload(rq);
8112 		/*
8113 		 * No need to call idle_cpu() if nr_running is not 0
8114 		 */
8115 		if (!nr_running && idle_cpu(i))
8116 			sgs->idle_cpus++;
8117 	}
8118 
8119 	/* Adjust by relative CPU capacity of the group */
8120 	sgs->group_capacity = group->sgc->capacity;
8121 	sgs->avg_load = (sgs->group_load*SCHED_CAPACITY_SCALE) / sgs->group_capacity;
8122 
8123 	if (sgs->sum_nr_running)
8124 		sgs->load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
8125 
8126 	sgs->group_weight = group->group_weight;
8127 
8128 	sgs->group_no_capacity = group_is_overloaded(env, sgs);
8129 	sgs->group_type = group_classify(group, sgs);
8130 }
8131 
8132 /**
8133  * update_sd_pick_busiest - return 1 on busiest group
8134  * @env: The load balancing environment.
8135  * @sds: sched_domain statistics
8136  * @sg: sched_group candidate to be checked for being the busiest
8137  * @sgs: sched_group statistics
8138  *
8139  * Determine if @sg is a busier group than the previously selected
8140  * busiest group.
8141  *
8142  * Return: %true if @sg is a busier group than the previously selected
8143  * busiest group. %false otherwise.
8144  */
8145 static bool update_sd_pick_busiest(struct lb_env *env,
8146 				   struct sd_lb_stats *sds,
8147 				   struct sched_group *sg,
8148 				   struct sg_lb_stats *sgs)
8149 {
8150 	struct sg_lb_stats *busiest = &sds->busiest_stat;
8151 
8152 	if (sgs->group_type > busiest->group_type)
8153 		return true;
8154 
8155 	if (sgs->group_type < busiest->group_type)
8156 		return false;
8157 
8158 	if (sgs->avg_load <= busiest->avg_load)
8159 		return false;
8160 
8161 	if (!(env->sd->flags & SD_ASYM_CPUCAPACITY))
8162 		goto asym_packing;
8163 
8164 	/*
8165 	 * Candidate sg has no more than one task per CPU and
8166 	 * has higher per-CPU capacity. Migrating tasks to less
8167 	 * capable CPUs may harm throughput. Maximize throughput,
8168 	 * power/energy consequences are not considered.
8169 	 */
8170 	if (sgs->sum_nr_running <= sgs->group_weight &&
8171 	    group_smaller_cpu_capacity(sds->local, sg))
8172 		return false;
8173 
8174 asym_packing:
8175 	/* This is the busiest node in its class. */
8176 	if (!(env->sd->flags & SD_ASYM_PACKING))
8177 		return true;
8178 
8179 	/* No ASYM_PACKING if target CPU is already busy */
8180 	if (env->idle == CPU_NOT_IDLE)
8181 		return true;
8182 	/*
8183 	 * ASYM_PACKING needs to move all the work to the highest
8184 	 * prority CPUs in the group, therefore mark all groups
8185 	 * of lower priority than ourself as busy.
8186 	 */
8187 	if (sgs->sum_nr_running &&
8188 	    sched_asym_prefer(env->dst_cpu, sg->asym_prefer_cpu)) {
8189 		if (!sds->busiest)
8190 			return true;
8191 
8192 		/* Prefer to move from lowest priority CPU's work */
8193 		if (sched_asym_prefer(sds->busiest->asym_prefer_cpu,
8194 				      sg->asym_prefer_cpu))
8195 			return true;
8196 	}
8197 
8198 	return false;
8199 }
8200 
8201 #ifdef CONFIG_NUMA_BALANCING
8202 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
8203 {
8204 	if (sgs->sum_nr_running > sgs->nr_numa_running)
8205 		return regular;
8206 	if (sgs->sum_nr_running > sgs->nr_preferred_running)
8207 		return remote;
8208 	return all;
8209 }
8210 
8211 static inline enum fbq_type fbq_classify_rq(struct rq *rq)
8212 {
8213 	if (rq->nr_running > rq->nr_numa_running)
8214 		return regular;
8215 	if (rq->nr_running > rq->nr_preferred_running)
8216 		return remote;
8217 	return all;
8218 }
8219 #else
8220 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
8221 {
8222 	return all;
8223 }
8224 
8225 static inline enum fbq_type fbq_classify_rq(struct rq *rq)
8226 {
8227 	return regular;
8228 }
8229 #endif /* CONFIG_NUMA_BALANCING */
8230 
8231 /**
8232  * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
8233  * @env: The load balancing environment.
8234  * @sds: variable to hold the statistics for this sched_domain.
8235  */
8236 static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
8237 {
8238 	struct sched_domain *child = env->sd->child;
8239 	struct sched_group *sg = env->sd->groups;
8240 	struct sg_lb_stats *local = &sds->local_stat;
8241 	struct sg_lb_stats tmp_sgs;
8242 	int load_idx, prefer_sibling = 0;
8243 	bool overload = false;
8244 
8245 	if (child && child->flags & SD_PREFER_SIBLING)
8246 		prefer_sibling = 1;
8247 
8248 #ifdef CONFIG_NO_HZ_COMMON
8249 	if (env->idle == CPU_NEWLY_IDLE && READ_ONCE(nohz.has_blocked))
8250 		env->flags |= LBF_NOHZ_STATS;
8251 #endif
8252 
8253 	load_idx = get_sd_load_idx(env->sd, env->idle);
8254 
8255 	do {
8256 		struct sg_lb_stats *sgs = &tmp_sgs;
8257 		int local_group;
8258 
8259 		local_group = cpumask_test_cpu(env->dst_cpu, sched_group_span(sg));
8260 		if (local_group) {
8261 			sds->local = sg;
8262 			sgs = local;
8263 
8264 			if (env->idle != CPU_NEWLY_IDLE ||
8265 			    time_after_eq(jiffies, sg->sgc->next_update))
8266 				update_group_capacity(env->sd, env->dst_cpu);
8267 		}
8268 
8269 		update_sg_lb_stats(env, sg, load_idx, local_group, sgs,
8270 						&overload);
8271 
8272 		if (local_group)
8273 			goto next_group;
8274 
8275 		/*
8276 		 * In case the child domain prefers tasks go to siblings
8277 		 * first, lower the sg capacity so that we'll try
8278 		 * and move all the excess tasks away. We lower the capacity
8279 		 * of a group only if the local group has the capacity to fit
8280 		 * these excess tasks. The extra check prevents the case where
8281 		 * you always pull from the heaviest group when it is already
8282 		 * under-utilized (possible with a large weight task outweighs
8283 		 * the tasks on the system).
8284 		 */
8285 		if (prefer_sibling && sds->local &&
8286 		    group_has_capacity(env, local) &&
8287 		    (sgs->sum_nr_running > local->sum_nr_running + 1)) {
8288 			sgs->group_no_capacity = 1;
8289 			sgs->group_type = group_classify(sg, sgs);
8290 		}
8291 
8292 		if (update_sd_pick_busiest(env, sds, sg, sgs)) {
8293 			sds->busiest = sg;
8294 			sds->busiest_stat = *sgs;
8295 		}
8296 
8297 next_group:
8298 		/* Now, start updating sd_lb_stats */
8299 		sds->total_running += sgs->sum_nr_running;
8300 		sds->total_load += sgs->group_load;
8301 		sds->total_capacity += sgs->group_capacity;
8302 
8303 		sg = sg->next;
8304 	} while (sg != env->sd->groups);
8305 
8306 #ifdef CONFIG_NO_HZ_COMMON
8307 	if ((env->flags & LBF_NOHZ_AGAIN) &&
8308 	    cpumask_subset(nohz.idle_cpus_mask, sched_domain_span(env->sd))) {
8309 
8310 		WRITE_ONCE(nohz.next_blocked,
8311 			   jiffies + msecs_to_jiffies(LOAD_AVG_PERIOD));
8312 	}
8313 #endif
8314 
8315 	if (env->sd->flags & SD_NUMA)
8316 		env->fbq_type = fbq_classify_group(&sds->busiest_stat);
8317 
8318 	if (!env->sd->parent) {
8319 		/* update overload indicator if we are at root domain */
8320 		if (env->dst_rq->rd->overload != overload)
8321 			env->dst_rq->rd->overload = overload;
8322 	}
8323 }
8324 
8325 /**
8326  * check_asym_packing - Check to see if the group is packed into the
8327  *			sched domain.
8328  *
8329  * This is primarily intended to used at the sibling level.  Some
8330  * cores like POWER7 prefer to use lower numbered SMT threads.  In the
8331  * case of POWER7, it can move to lower SMT modes only when higher
8332  * threads are idle.  When in lower SMT modes, the threads will
8333  * perform better since they share less core resources.  Hence when we
8334  * have idle threads, we want them to be the higher ones.
8335  *
8336  * This packing function is run on idle threads.  It checks to see if
8337  * the busiest CPU in this domain (core in the P7 case) has a higher
8338  * CPU number than the packing function is being run on.  Here we are
8339  * assuming lower CPU number will be equivalent to lower a SMT thread
8340  * number.
8341  *
8342  * Return: 1 when packing is required and a task should be moved to
8343  * this CPU.  The amount of the imbalance is returned in env->imbalance.
8344  *
8345  * @env: The load balancing environment.
8346  * @sds: Statistics of the sched_domain which is to be packed
8347  */
8348 static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds)
8349 {
8350 	int busiest_cpu;
8351 
8352 	if (!(env->sd->flags & SD_ASYM_PACKING))
8353 		return 0;
8354 
8355 	if (env->idle == CPU_NOT_IDLE)
8356 		return 0;
8357 
8358 	if (!sds->busiest)
8359 		return 0;
8360 
8361 	busiest_cpu = sds->busiest->asym_prefer_cpu;
8362 	if (sched_asym_prefer(busiest_cpu, env->dst_cpu))
8363 		return 0;
8364 
8365 	env->imbalance = DIV_ROUND_CLOSEST(
8366 		sds->busiest_stat.avg_load * sds->busiest_stat.group_capacity,
8367 		SCHED_CAPACITY_SCALE);
8368 
8369 	return 1;
8370 }
8371 
8372 /**
8373  * fix_small_imbalance - Calculate the minor imbalance that exists
8374  *			amongst the groups of a sched_domain, during
8375  *			load balancing.
8376  * @env: The load balancing environment.
8377  * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
8378  */
8379 static inline
8380 void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
8381 {
8382 	unsigned long tmp, capa_now = 0, capa_move = 0;
8383 	unsigned int imbn = 2;
8384 	unsigned long scaled_busy_load_per_task;
8385 	struct sg_lb_stats *local, *busiest;
8386 
8387 	local = &sds->local_stat;
8388 	busiest = &sds->busiest_stat;
8389 
8390 	if (!local->sum_nr_running)
8391 		local->load_per_task = cpu_avg_load_per_task(env->dst_cpu);
8392 	else if (busiest->load_per_task > local->load_per_task)
8393 		imbn = 1;
8394 
8395 	scaled_busy_load_per_task =
8396 		(busiest->load_per_task * SCHED_CAPACITY_SCALE) /
8397 		busiest->group_capacity;
8398 
8399 	if (busiest->avg_load + scaled_busy_load_per_task >=
8400 	    local->avg_load + (scaled_busy_load_per_task * imbn)) {
8401 		env->imbalance = busiest->load_per_task;
8402 		return;
8403 	}
8404 
8405 	/*
8406 	 * OK, we don't have enough imbalance to justify moving tasks,
8407 	 * however we may be able to increase total CPU capacity used by
8408 	 * moving them.
8409 	 */
8410 
8411 	capa_now += busiest->group_capacity *
8412 			min(busiest->load_per_task, busiest->avg_load);
8413 	capa_now += local->group_capacity *
8414 			min(local->load_per_task, local->avg_load);
8415 	capa_now /= SCHED_CAPACITY_SCALE;
8416 
8417 	/* Amount of load we'd subtract */
8418 	if (busiest->avg_load > scaled_busy_load_per_task) {
8419 		capa_move += busiest->group_capacity *
8420 			    min(busiest->load_per_task,
8421 				busiest->avg_load - scaled_busy_load_per_task);
8422 	}
8423 
8424 	/* Amount of load we'd add */
8425 	if (busiest->avg_load * busiest->group_capacity <
8426 	    busiest->load_per_task * SCHED_CAPACITY_SCALE) {
8427 		tmp = (busiest->avg_load * busiest->group_capacity) /
8428 		      local->group_capacity;
8429 	} else {
8430 		tmp = (busiest->load_per_task * SCHED_CAPACITY_SCALE) /
8431 		      local->group_capacity;
8432 	}
8433 	capa_move += local->group_capacity *
8434 		    min(local->load_per_task, local->avg_load + tmp);
8435 	capa_move /= SCHED_CAPACITY_SCALE;
8436 
8437 	/* Move if we gain throughput */
8438 	if (capa_move > capa_now)
8439 		env->imbalance = busiest->load_per_task;
8440 }
8441 
8442 /**
8443  * calculate_imbalance - Calculate the amount of imbalance present within the
8444  *			 groups of a given sched_domain during load balance.
8445  * @env: load balance environment
8446  * @sds: statistics of the sched_domain whose imbalance is to be calculated.
8447  */
8448 static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
8449 {
8450 	unsigned long max_pull, load_above_capacity = ~0UL;
8451 	struct sg_lb_stats *local, *busiest;
8452 
8453 	local = &sds->local_stat;
8454 	busiest = &sds->busiest_stat;
8455 
8456 	if (busiest->group_type == group_imbalanced) {
8457 		/*
8458 		 * In the group_imb case we cannot rely on group-wide averages
8459 		 * to ensure CPU-load equilibrium, look at wider averages. XXX
8460 		 */
8461 		busiest->load_per_task =
8462 			min(busiest->load_per_task, sds->avg_load);
8463 	}
8464 
8465 	/*
8466 	 * Avg load of busiest sg can be less and avg load of local sg can
8467 	 * be greater than avg load across all sgs of sd because avg load
8468 	 * factors in sg capacity and sgs with smaller group_type are
8469 	 * skipped when updating the busiest sg:
8470 	 */
8471 	if (busiest->avg_load <= sds->avg_load ||
8472 	    local->avg_load >= sds->avg_load) {
8473 		env->imbalance = 0;
8474 		return fix_small_imbalance(env, sds);
8475 	}
8476 
8477 	/*
8478 	 * If there aren't any idle CPUs, avoid creating some.
8479 	 */
8480 	if (busiest->group_type == group_overloaded &&
8481 	    local->group_type   == group_overloaded) {
8482 		load_above_capacity = busiest->sum_nr_running * SCHED_CAPACITY_SCALE;
8483 		if (load_above_capacity > busiest->group_capacity) {
8484 			load_above_capacity -= busiest->group_capacity;
8485 			load_above_capacity *= scale_load_down(NICE_0_LOAD);
8486 			load_above_capacity /= busiest->group_capacity;
8487 		} else
8488 			load_above_capacity = ~0UL;
8489 	}
8490 
8491 	/*
8492 	 * We're trying to get all the CPUs to the average_load, so we don't
8493 	 * want to push ourselves above the average load, nor do we wish to
8494 	 * reduce the max loaded CPU below the average load. At the same time,
8495 	 * we also don't want to reduce the group load below the group
8496 	 * capacity. Thus we look for the minimum possible imbalance.
8497 	 */
8498 	max_pull = min(busiest->avg_load - sds->avg_load, load_above_capacity);
8499 
8500 	/* How much load to actually move to equalise the imbalance */
8501 	env->imbalance = min(
8502 		max_pull * busiest->group_capacity,
8503 		(sds->avg_load - local->avg_load) * local->group_capacity
8504 	) / SCHED_CAPACITY_SCALE;
8505 
8506 	/*
8507 	 * if *imbalance is less than the average load per runnable task
8508 	 * there is no guarantee that any tasks will be moved so we'll have
8509 	 * a think about bumping its value to force at least one task to be
8510 	 * moved
8511 	 */
8512 	if (env->imbalance < busiest->load_per_task)
8513 		return fix_small_imbalance(env, sds);
8514 }
8515 
8516 /******* find_busiest_group() helpers end here *********************/
8517 
8518 /**
8519  * find_busiest_group - Returns the busiest group within the sched_domain
8520  * if there is an imbalance.
8521  *
8522  * Also calculates the amount of weighted load which should be moved
8523  * to restore balance.
8524  *
8525  * @env: The load balancing environment.
8526  *
8527  * Return:	- The busiest group if imbalance exists.
8528  */
8529 static struct sched_group *find_busiest_group(struct lb_env *env)
8530 {
8531 	struct sg_lb_stats *local, *busiest;
8532 	struct sd_lb_stats sds;
8533 
8534 	init_sd_lb_stats(&sds);
8535 
8536 	/*
8537 	 * Compute the various statistics relavent for load balancing at
8538 	 * this level.
8539 	 */
8540 	update_sd_lb_stats(env, &sds);
8541 	local = &sds.local_stat;
8542 	busiest = &sds.busiest_stat;
8543 
8544 	/* ASYM feature bypasses nice load balance check */
8545 	if (check_asym_packing(env, &sds))
8546 		return sds.busiest;
8547 
8548 	/* There is no busy sibling group to pull tasks from */
8549 	if (!sds.busiest || busiest->sum_nr_running == 0)
8550 		goto out_balanced;
8551 
8552 	/* XXX broken for overlapping NUMA groups */
8553 	sds.avg_load = (SCHED_CAPACITY_SCALE * sds.total_load)
8554 						/ sds.total_capacity;
8555 
8556 	/*
8557 	 * If the busiest group is imbalanced the below checks don't
8558 	 * work because they assume all things are equal, which typically
8559 	 * isn't true due to cpus_allowed constraints and the like.
8560 	 */
8561 	if (busiest->group_type == group_imbalanced)
8562 		goto force_balance;
8563 
8564 	/*
8565 	 * When dst_cpu is idle, prevent SMP nice and/or asymmetric group
8566 	 * capacities from resulting in underutilization due to avg_load.
8567 	 */
8568 	if (env->idle != CPU_NOT_IDLE && group_has_capacity(env, local) &&
8569 	    busiest->group_no_capacity)
8570 		goto force_balance;
8571 
8572 	/*
8573 	 * If the local group is busier than the selected busiest group
8574 	 * don't try and pull any tasks.
8575 	 */
8576 	if (local->avg_load >= busiest->avg_load)
8577 		goto out_balanced;
8578 
8579 	/*
8580 	 * Don't pull any tasks if this group is already above the domain
8581 	 * average load.
8582 	 */
8583 	if (local->avg_load >= sds.avg_load)
8584 		goto out_balanced;
8585 
8586 	if (env->idle == CPU_IDLE) {
8587 		/*
8588 		 * This CPU is idle. If the busiest group is not overloaded
8589 		 * and there is no imbalance between this and busiest group
8590 		 * wrt idle CPUs, it is balanced. The imbalance becomes
8591 		 * significant if the diff is greater than 1 otherwise we
8592 		 * might end up to just move the imbalance on another group
8593 		 */
8594 		if ((busiest->group_type != group_overloaded) &&
8595 				(local->idle_cpus <= (busiest->idle_cpus + 1)))
8596 			goto out_balanced;
8597 	} else {
8598 		/*
8599 		 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
8600 		 * imbalance_pct to be conservative.
8601 		 */
8602 		if (100 * busiest->avg_load <=
8603 				env->sd->imbalance_pct * local->avg_load)
8604 			goto out_balanced;
8605 	}
8606 
8607 force_balance:
8608 	/* Looks like there is an imbalance. Compute it */
8609 	calculate_imbalance(env, &sds);
8610 	return sds.busiest;
8611 
8612 out_balanced:
8613 	env->imbalance = 0;
8614 	return NULL;
8615 }
8616 
8617 /*
8618  * find_busiest_queue - find the busiest runqueue among the CPUs in the group.
8619  */
8620 static struct rq *find_busiest_queue(struct lb_env *env,
8621 				     struct sched_group *group)
8622 {
8623 	struct rq *busiest = NULL, *rq;
8624 	unsigned long busiest_load = 0, busiest_capacity = 1;
8625 	int i;
8626 
8627 	for_each_cpu_and(i, sched_group_span(group), env->cpus) {
8628 		unsigned long capacity, wl;
8629 		enum fbq_type rt;
8630 
8631 		rq = cpu_rq(i);
8632 		rt = fbq_classify_rq(rq);
8633 
8634 		/*
8635 		 * We classify groups/runqueues into three groups:
8636 		 *  - regular: there are !numa tasks
8637 		 *  - remote:  there are numa tasks that run on the 'wrong' node
8638 		 *  - all:     there is no distinction
8639 		 *
8640 		 * In order to avoid migrating ideally placed numa tasks,
8641 		 * ignore those when there's better options.
8642 		 *
8643 		 * If we ignore the actual busiest queue to migrate another
8644 		 * task, the next balance pass can still reduce the busiest
8645 		 * queue by moving tasks around inside the node.
8646 		 *
8647 		 * If we cannot move enough load due to this classification
8648 		 * the next pass will adjust the group classification and
8649 		 * allow migration of more tasks.
8650 		 *
8651 		 * Both cases only affect the total convergence complexity.
8652 		 */
8653 		if (rt > env->fbq_type)
8654 			continue;
8655 
8656 		capacity = capacity_of(i);
8657 
8658 		wl = weighted_cpuload(rq);
8659 
8660 		/*
8661 		 * When comparing with imbalance, use weighted_cpuload()
8662 		 * which is not scaled with the CPU capacity.
8663 		 */
8664 
8665 		if (rq->nr_running == 1 && wl > env->imbalance &&
8666 		    !check_cpu_capacity(rq, env->sd))
8667 			continue;
8668 
8669 		/*
8670 		 * For the load comparisons with the other CPU's, consider
8671 		 * the weighted_cpuload() scaled with the CPU capacity, so
8672 		 * that the load can be moved away from the CPU that is
8673 		 * potentially running at a lower capacity.
8674 		 *
8675 		 * Thus we're looking for max(wl_i / capacity_i), crosswise
8676 		 * multiplication to rid ourselves of the division works out
8677 		 * to: wl_i * capacity_j > wl_j * capacity_i;  where j is
8678 		 * our previous maximum.
8679 		 */
8680 		if (wl * busiest_capacity > busiest_load * capacity) {
8681 			busiest_load = wl;
8682 			busiest_capacity = capacity;
8683 			busiest = rq;
8684 		}
8685 	}
8686 
8687 	return busiest;
8688 }
8689 
8690 /*
8691  * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
8692  * so long as it is large enough.
8693  */
8694 #define MAX_PINNED_INTERVAL	512
8695 
8696 static int need_active_balance(struct lb_env *env)
8697 {
8698 	struct sched_domain *sd = env->sd;
8699 
8700 	if (env->idle == CPU_NEWLY_IDLE) {
8701 
8702 		/*
8703 		 * ASYM_PACKING needs to force migrate tasks from busy but
8704 		 * lower priority CPUs in order to pack all tasks in the
8705 		 * highest priority CPUs.
8706 		 */
8707 		if ((sd->flags & SD_ASYM_PACKING) &&
8708 		    sched_asym_prefer(env->dst_cpu, env->src_cpu))
8709 			return 1;
8710 	}
8711 
8712 	/*
8713 	 * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task.
8714 	 * It's worth migrating the task if the src_cpu's capacity is reduced
8715 	 * because of other sched_class or IRQs if more capacity stays
8716 	 * available on dst_cpu.
8717 	 */
8718 	if ((env->idle != CPU_NOT_IDLE) &&
8719 	    (env->src_rq->cfs.h_nr_running == 1)) {
8720 		if ((check_cpu_capacity(env->src_rq, sd)) &&
8721 		    (capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100))
8722 			return 1;
8723 	}
8724 
8725 	return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
8726 }
8727 
8728 static int active_load_balance_cpu_stop(void *data);
8729 
8730 static int should_we_balance(struct lb_env *env)
8731 {
8732 	struct sched_group *sg = env->sd->groups;
8733 	int cpu, balance_cpu = -1;
8734 
8735 	/*
8736 	 * Ensure the balancing environment is consistent; can happen
8737 	 * when the softirq triggers 'during' hotplug.
8738 	 */
8739 	if (!cpumask_test_cpu(env->dst_cpu, env->cpus))
8740 		return 0;
8741 
8742 	/*
8743 	 * In the newly idle case, we will allow all the CPUs
8744 	 * to do the newly idle load balance.
8745 	 */
8746 	if (env->idle == CPU_NEWLY_IDLE)
8747 		return 1;
8748 
8749 	/* Try to find first idle CPU */
8750 	for_each_cpu_and(cpu, group_balance_mask(sg), env->cpus) {
8751 		if (!idle_cpu(cpu))
8752 			continue;
8753 
8754 		balance_cpu = cpu;
8755 		break;
8756 	}
8757 
8758 	if (balance_cpu == -1)
8759 		balance_cpu = group_balance_cpu(sg);
8760 
8761 	/*
8762 	 * First idle CPU or the first CPU(busiest) in this sched group
8763 	 * is eligible for doing load balancing at this and above domains.
8764 	 */
8765 	return balance_cpu == env->dst_cpu;
8766 }
8767 
8768 /*
8769  * Check this_cpu to ensure it is balanced within domain. Attempt to move
8770  * tasks if there is an imbalance.
8771  */
8772 static int load_balance(int this_cpu, struct rq *this_rq,
8773 			struct sched_domain *sd, enum cpu_idle_type idle,
8774 			int *continue_balancing)
8775 {
8776 	int ld_moved, cur_ld_moved, active_balance = 0;
8777 	struct sched_domain *sd_parent = sd->parent;
8778 	struct sched_group *group;
8779 	struct rq *busiest;
8780 	struct rq_flags rf;
8781 	struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask);
8782 
8783 	struct lb_env env = {
8784 		.sd		= sd,
8785 		.dst_cpu	= this_cpu,
8786 		.dst_rq		= this_rq,
8787 		.dst_grpmask    = sched_group_span(sd->groups),
8788 		.idle		= idle,
8789 		.loop_break	= sched_nr_migrate_break,
8790 		.cpus		= cpus,
8791 		.fbq_type	= all,
8792 		.tasks		= LIST_HEAD_INIT(env.tasks),
8793 	};
8794 
8795 	cpumask_and(cpus, sched_domain_span(sd), cpu_active_mask);
8796 
8797 	schedstat_inc(sd->lb_count[idle]);
8798 
8799 redo:
8800 	if (!should_we_balance(&env)) {
8801 		*continue_balancing = 0;
8802 		goto out_balanced;
8803 	}
8804 
8805 	group = find_busiest_group(&env);
8806 	if (!group) {
8807 		schedstat_inc(sd->lb_nobusyg[idle]);
8808 		goto out_balanced;
8809 	}
8810 
8811 	busiest = find_busiest_queue(&env, group);
8812 	if (!busiest) {
8813 		schedstat_inc(sd->lb_nobusyq[idle]);
8814 		goto out_balanced;
8815 	}
8816 
8817 	BUG_ON(busiest == env.dst_rq);
8818 
8819 	schedstat_add(sd->lb_imbalance[idle], env.imbalance);
8820 
8821 	env.src_cpu = busiest->cpu;
8822 	env.src_rq = busiest;
8823 
8824 	ld_moved = 0;
8825 	if (busiest->nr_running > 1) {
8826 		/*
8827 		 * Attempt to move tasks. If find_busiest_group has found
8828 		 * an imbalance but busiest->nr_running <= 1, the group is
8829 		 * still unbalanced. ld_moved simply stays zero, so it is
8830 		 * correctly treated as an imbalance.
8831 		 */
8832 		env.flags |= LBF_ALL_PINNED;
8833 		env.loop_max  = min(sysctl_sched_nr_migrate, busiest->nr_running);
8834 
8835 more_balance:
8836 		rq_lock_irqsave(busiest, &rf);
8837 		update_rq_clock(busiest);
8838 
8839 		/*
8840 		 * cur_ld_moved - load moved in current iteration
8841 		 * ld_moved     - cumulative load moved across iterations
8842 		 */
8843 		cur_ld_moved = detach_tasks(&env);
8844 
8845 		/*
8846 		 * We've detached some tasks from busiest_rq. Every
8847 		 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely
8848 		 * unlock busiest->lock, and we are able to be sure
8849 		 * that nobody can manipulate the tasks in parallel.
8850 		 * See task_rq_lock() family for the details.
8851 		 */
8852 
8853 		rq_unlock(busiest, &rf);
8854 
8855 		if (cur_ld_moved) {
8856 			attach_tasks(&env);
8857 			ld_moved += cur_ld_moved;
8858 		}
8859 
8860 		local_irq_restore(rf.flags);
8861 
8862 		if (env.flags & LBF_NEED_BREAK) {
8863 			env.flags &= ~LBF_NEED_BREAK;
8864 			goto more_balance;
8865 		}
8866 
8867 		/*
8868 		 * Revisit (affine) tasks on src_cpu that couldn't be moved to
8869 		 * us and move them to an alternate dst_cpu in our sched_group
8870 		 * where they can run. The upper limit on how many times we
8871 		 * iterate on same src_cpu is dependent on number of CPUs in our
8872 		 * sched_group.
8873 		 *
8874 		 * This changes load balance semantics a bit on who can move
8875 		 * load to a given_cpu. In addition to the given_cpu itself
8876 		 * (or a ilb_cpu acting on its behalf where given_cpu is
8877 		 * nohz-idle), we now have balance_cpu in a position to move
8878 		 * load to given_cpu. In rare situations, this may cause
8879 		 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
8880 		 * _independently_ and at _same_ time to move some load to
8881 		 * given_cpu) causing exceess load to be moved to given_cpu.
8882 		 * This however should not happen so much in practice and
8883 		 * moreover subsequent load balance cycles should correct the
8884 		 * excess load moved.
8885 		 */
8886 		if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
8887 
8888 			/* Prevent to re-select dst_cpu via env's CPUs */
8889 			cpumask_clear_cpu(env.dst_cpu, env.cpus);
8890 
8891 			env.dst_rq	 = cpu_rq(env.new_dst_cpu);
8892 			env.dst_cpu	 = env.new_dst_cpu;
8893 			env.flags	&= ~LBF_DST_PINNED;
8894 			env.loop	 = 0;
8895 			env.loop_break	 = sched_nr_migrate_break;
8896 
8897 			/*
8898 			 * Go back to "more_balance" rather than "redo" since we
8899 			 * need to continue with same src_cpu.
8900 			 */
8901 			goto more_balance;
8902 		}
8903 
8904 		/*
8905 		 * We failed to reach balance because of affinity.
8906 		 */
8907 		if (sd_parent) {
8908 			int *group_imbalance = &sd_parent->groups->sgc->imbalance;
8909 
8910 			if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0)
8911 				*group_imbalance = 1;
8912 		}
8913 
8914 		/* All tasks on this runqueue were pinned by CPU affinity */
8915 		if (unlikely(env.flags & LBF_ALL_PINNED)) {
8916 			cpumask_clear_cpu(cpu_of(busiest), cpus);
8917 			/*
8918 			 * Attempting to continue load balancing at the current
8919 			 * sched_domain level only makes sense if there are
8920 			 * active CPUs remaining as possible busiest CPUs to
8921 			 * pull load from which are not contained within the
8922 			 * destination group that is receiving any migrated
8923 			 * load.
8924 			 */
8925 			if (!cpumask_subset(cpus, env.dst_grpmask)) {
8926 				env.loop = 0;
8927 				env.loop_break = sched_nr_migrate_break;
8928 				goto redo;
8929 			}
8930 			goto out_all_pinned;
8931 		}
8932 	}
8933 
8934 	if (!ld_moved) {
8935 		schedstat_inc(sd->lb_failed[idle]);
8936 		/*
8937 		 * Increment the failure counter only on periodic balance.
8938 		 * We do not want newidle balance, which can be very
8939 		 * frequent, pollute the failure counter causing
8940 		 * excessive cache_hot migrations and active balances.
8941 		 */
8942 		if (idle != CPU_NEWLY_IDLE)
8943 			sd->nr_balance_failed++;
8944 
8945 		if (need_active_balance(&env)) {
8946 			unsigned long flags;
8947 
8948 			raw_spin_lock_irqsave(&busiest->lock, flags);
8949 
8950 			/*
8951 			 * Don't kick the active_load_balance_cpu_stop,
8952 			 * if the curr task on busiest CPU can't be
8953 			 * moved to this_cpu:
8954 			 */
8955 			if (!cpumask_test_cpu(this_cpu, &busiest->curr->cpus_allowed)) {
8956 				raw_spin_unlock_irqrestore(&busiest->lock,
8957 							    flags);
8958 				env.flags |= LBF_ALL_PINNED;
8959 				goto out_one_pinned;
8960 			}
8961 
8962 			/*
8963 			 * ->active_balance synchronizes accesses to
8964 			 * ->active_balance_work.  Once set, it's cleared
8965 			 * only after active load balance is finished.
8966 			 */
8967 			if (!busiest->active_balance) {
8968 				busiest->active_balance = 1;
8969 				busiest->push_cpu = this_cpu;
8970 				active_balance = 1;
8971 			}
8972 			raw_spin_unlock_irqrestore(&busiest->lock, flags);
8973 
8974 			if (active_balance) {
8975 				stop_one_cpu_nowait(cpu_of(busiest),
8976 					active_load_balance_cpu_stop, busiest,
8977 					&busiest->active_balance_work);
8978 			}
8979 
8980 			/* We've kicked active balancing, force task migration. */
8981 			sd->nr_balance_failed = sd->cache_nice_tries+1;
8982 		}
8983 	} else
8984 		sd->nr_balance_failed = 0;
8985 
8986 	if (likely(!active_balance)) {
8987 		/* We were unbalanced, so reset the balancing interval */
8988 		sd->balance_interval = sd->min_interval;
8989 	} else {
8990 		/*
8991 		 * If we've begun active balancing, start to back off. This
8992 		 * case may not be covered by the all_pinned logic if there
8993 		 * is only 1 task on the busy runqueue (because we don't call
8994 		 * detach_tasks).
8995 		 */
8996 		if (sd->balance_interval < sd->max_interval)
8997 			sd->balance_interval *= 2;
8998 	}
8999 
9000 	goto out;
9001 
9002 out_balanced:
9003 	/*
9004 	 * We reach balance although we may have faced some affinity
9005 	 * constraints. Clear the imbalance flag if it was set.
9006 	 */
9007 	if (sd_parent) {
9008 		int *group_imbalance = &sd_parent->groups->sgc->imbalance;
9009 
9010 		if (*group_imbalance)
9011 			*group_imbalance = 0;
9012 	}
9013 
9014 out_all_pinned:
9015 	/*
9016 	 * We reach balance because all tasks are pinned at this level so
9017 	 * we can't migrate them. Let the imbalance flag set so parent level
9018 	 * can try to migrate them.
9019 	 */
9020 	schedstat_inc(sd->lb_balanced[idle]);
9021 
9022 	sd->nr_balance_failed = 0;
9023 
9024 out_one_pinned:
9025 	/* tune up the balancing interval */
9026 	if (((env.flags & LBF_ALL_PINNED) &&
9027 			sd->balance_interval < MAX_PINNED_INTERVAL) ||
9028 			(sd->balance_interval < sd->max_interval))
9029 		sd->balance_interval *= 2;
9030 
9031 	ld_moved = 0;
9032 out:
9033 	return ld_moved;
9034 }
9035 
9036 static inline unsigned long
9037 get_sd_balance_interval(struct sched_domain *sd, int cpu_busy)
9038 {
9039 	unsigned long interval = sd->balance_interval;
9040 
9041 	if (cpu_busy)
9042 		interval *= sd->busy_factor;
9043 
9044 	/* scale ms to jiffies */
9045 	interval = msecs_to_jiffies(interval);
9046 	interval = clamp(interval, 1UL, max_load_balance_interval);
9047 
9048 	return interval;
9049 }
9050 
9051 static inline void
9052 update_next_balance(struct sched_domain *sd, unsigned long *next_balance)
9053 {
9054 	unsigned long interval, next;
9055 
9056 	/* used by idle balance, so cpu_busy = 0 */
9057 	interval = get_sd_balance_interval(sd, 0);
9058 	next = sd->last_balance + interval;
9059 
9060 	if (time_after(*next_balance, next))
9061 		*next_balance = next;
9062 }
9063 
9064 /*
9065  * active_load_balance_cpu_stop is run by the CPU stopper. It pushes
9066  * running tasks off the busiest CPU onto idle CPUs. It requires at
9067  * least 1 task to be running on each physical CPU where possible, and
9068  * avoids physical / logical imbalances.
9069  */
9070 static int active_load_balance_cpu_stop(void *data)
9071 {
9072 	struct rq *busiest_rq = data;
9073 	int busiest_cpu = cpu_of(busiest_rq);
9074 	int target_cpu = busiest_rq->push_cpu;
9075 	struct rq *target_rq = cpu_rq(target_cpu);
9076 	struct sched_domain *sd;
9077 	struct task_struct *p = NULL;
9078 	struct rq_flags rf;
9079 
9080 	rq_lock_irq(busiest_rq, &rf);
9081 	/*
9082 	 * Between queueing the stop-work and running it is a hole in which
9083 	 * CPUs can become inactive. We should not move tasks from or to
9084 	 * inactive CPUs.
9085 	 */
9086 	if (!cpu_active(busiest_cpu) || !cpu_active(target_cpu))
9087 		goto out_unlock;
9088 
9089 	/* Make sure the requested CPU hasn't gone down in the meantime: */
9090 	if (unlikely(busiest_cpu != smp_processor_id() ||
9091 		     !busiest_rq->active_balance))
9092 		goto out_unlock;
9093 
9094 	/* Is there any task to move? */
9095 	if (busiest_rq->nr_running <= 1)
9096 		goto out_unlock;
9097 
9098 	/*
9099 	 * This condition is "impossible", if it occurs
9100 	 * we need to fix it. Originally reported by
9101 	 * Bjorn Helgaas on a 128-CPU setup.
9102 	 */
9103 	BUG_ON(busiest_rq == target_rq);
9104 
9105 	/* Search for an sd spanning us and the target CPU. */
9106 	rcu_read_lock();
9107 	for_each_domain(target_cpu, sd) {
9108 		if ((sd->flags & SD_LOAD_BALANCE) &&
9109 		    cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
9110 				break;
9111 	}
9112 
9113 	if (likely(sd)) {
9114 		struct lb_env env = {
9115 			.sd		= sd,
9116 			.dst_cpu	= target_cpu,
9117 			.dst_rq		= target_rq,
9118 			.src_cpu	= busiest_rq->cpu,
9119 			.src_rq		= busiest_rq,
9120 			.idle		= CPU_IDLE,
9121 			/*
9122 			 * can_migrate_task() doesn't need to compute new_dst_cpu
9123 			 * for active balancing. Since we have CPU_IDLE, but no
9124 			 * @dst_grpmask we need to make that test go away with lying
9125 			 * about DST_PINNED.
9126 			 */
9127 			.flags		= LBF_DST_PINNED,
9128 		};
9129 
9130 		schedstat_inc(sd->alb_count);
9131 		update_rq_clock(busiest_rq);
9132 
9133 		p = detach_one_task(&env);
9134 		if (p) {
9135 			schedstat_inc(sd->alb_pushed);
9136 			/* Active balancing done, reset the failure counter. */
9137 			sd->nr_balance_failed = 0;
9138 		} else {
9139 			schedstat_inc(sd->alb_failed);
9140 		}
9141 	}
9142 	rcu_read_unlock();
9143 out_unlock:
9144 	busiest_rq->active_balance = 0;
9145 	rq_unlock(busiest_rq, &rf);
9146 
9147 	if (p)
9148 		attach_one_task(target_rq, p);
9149 
9150 	local_irq_enable();
9151 
9152 	return 0;
9153 }
9154 
9155 static DEFINE_SPINLOCK(balancing);
9156 
9157 /*
9158  * Scale the max load_balance interval with the number of CPUs in the system.
9159  * This trades load-balance latency on larger machines for less cross talk.
9160  */
9161 void update_max_interval(void)
9162 {
9163 	max_load_balance_interval = HZ*num_online_cpus()/10;
9164 }
9165 
9166 /*
9167  * It checks each scheduling domain to see if it is due to be balanced,
9168  * and initiates a balancing operation if so.
9169  *
9170  * Balancing parameters are set up in init_sched_domains.
9171  */
9172 static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle)
9173 {
9174 	int continue_balancing = 1;
9175 	int cpu = rq->cpu;
9176 	unsigned long interval;
9177 	struct sched_domain *sd;
9178 	/* Earliest time when we have to do rebalance again */
9179 	unsigned long next_balance = jiffies + 60*HZ;
9180 	int update_next_balance = 0;
9181 	int need_serialize, need_decay = 0;
9182 	u64 max_cost = 0;
9183 
9184 	rcu_read_lock();
9185 	for_each_domain(cpu, sd) {
9186 		/*
9187 		 * Decay the newidle max times here because this is a regular
9188 		 * visit to all the domains. Decay ~1% per second.
9189 		 */
9190 		if (time_after(jiffies, sd->next_decay_max_lb_cost)) {
9191 			sd->max_newidle_lb_cost =
9192 				(sd->max_newidle_lb_cost * 253) / 256;
9193 			sd->next_decay_max_lb_cost = jiffies + HZ;
9194 			need_decay = 1;
9195 		}
9196 		max_cost += sd->max_newidle_lb_cost;
9197 
9198 		if (!(sd->flags & SD_LOAD_BALANCE))
9199 			continue;
9200 
9201 		/*
9202 		 * Stop the load balance at this level. There is another
9203 		 * CPU in our sched group which is doing load balancing more
9204 		 * actively.
9205 		 */
9206 		if (!continue_balancing) {
9207 			if (need_decay)
9208 				continue;
9209 			break;
9210 		}
9211 
9212 		interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
9213 
9214 		need_serialize = sd->flags & SD_SERIALIZE;
9215 		if (need_serialize) {
9216 			if (!spin_trylock(&balancing))
9217 				goto out;
9218 		}
9219 
9220 		if (time_after_eq(jiffies, sd->last_balance + interval)) {
9221 			if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
9222 				/*
9223 				 * The LBF_DST_PINNED logic could have changed
9224 				 * env->dst_cpu, so we can't know our idle
9225 				 * state even if we migrated tasks. Update it.
9226 				 */
9227 				idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
9228 			}
9229 			sd->last_balance = jiffies;
9230 			interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
9231 		}
9232 		if (need_serialize)
9233 			spin_unlock(&balancing);
9234 out:
9235 		if (time_after(next_balance, sd->last_balance + interval)) {
9236 			next_balance = sd->last_balance + interval;
9237 			update_next_balance = 1;
9238 		}
9239 	}
9240 	if (need_decay) {
9241 		/*
9242 		 * Ensure the rq-wide value also decays but keep it at a
9243 		 * reasonable floor to avoid funnies with rq->avg_idle.
9244 		 */
9245 		rq->max_idle_balance_cost =
9246 			max((u64)sysctl_sched_migration_cost, max_cost);
9247 	}
9248 	rcu_read_unlock();
9249 
9250 	/*
9251 	 * next_balance will be updated only when there is a need.
9252 	 * When the cpu is attached to null domain for ex, it will not be
9253 	 * updated.
9254 	 */
9255 	if (likely(update_next_balance)) {
9256 		rq->next_balance = next_balance;
9257 
9258 #ifdef CONFIG_NO_HZ_COMMON
9259 		/*
9260 		 * If this CPU has been elected to perform the nohz idle
9261 		 * balance. Other idle CPUs have already rebalanced with
9262 		 * nohz_idle_balance() and nohz.next_balance has been
9263 		 * updated accordingly. This CPU is now running the idle load
9264 		 * balance for itself and we need to update the
9265 		 * nohz.next_balance accordingly.
9266 		 */
9267 		if ((idle == CPU_IDLE) && time_after(nohz.next_balance, rq->next_balance))
9268 			nohz.next_balance = rq->next_balance;
9269 #endif
9270 	}
9271 }
9272 
9273 static inline int on_null_domain(struct rq *rq)
9274 {
9275 	return unlikely(!rcu_dereference_sched(rq->sd));
9276 }
9277 
9278 #ifdef CONFIG_NO_HZ_COMMON
9279 /*
9280  * idle load balancing details
9281  * - When one of the busy CPUs notice that there may be an idle rebalancing
9282  *   needed, they will kick the idle load balancer, which then does idle
9283  *   load balancing for all the idle CPUs.
9284  */
9285 
9286 static inline int find_new_ilb(void)
9287 {
9288 	int ilb = cpumask_first(nohz.idle_cpus_mask);
9289 
9290 	if (ilb < nr_cpu_ids && idle_cpu(ilb))
9291 		return ilb;
9292 
9293 	return nr_cpu_ids;
9294 }
9295 
9296 /*
9297  * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
9298  * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
9299  * CPU (if there is one).
9300  */
9301 static void kick_ilb(unsigned int flags)
9302 {
9303 	int ilb_cpu;
9304 
9305 	nohz.next_balance++;
9306 
9307 	ilb_cpu = find_new_ilb();
9308 
9309 	if (ilb_cpu >= nr_cpu_ids)
9310 		return;
9311 
9312 	flags = atomic_fetch_or(flags, nohz_flags(ilb_cpu));
9313 	if (flags & NOHZ_KICK_MASK)
9314 		return;
9315 
9316 	/*
9317 	 * Use smp_send_reschedule() instead of resched_cpu().
9318 	 * This way we generate a sched IPI on the target CPU which
9319 	 * is idle. And the softirq performing nohz idle load balance
9320 	 * will be run before returning from the IPI.
9321 	 */
9322 	smp_send_reschedule(ilb_cpu);
9323 }
9324 
9325 /*
9326  * Current heuristic for kicking the idle load balancer in the presence
9327  * of an idle cpu in the system.
9328  *   - This rq has more than one task.
9329  *   - This rq has at least one CFS task and the capacity of the CPU is
9330  *     significantly reduced because of RT tasks or IRQs.
9331  *   - At parent of LLC scheduler domain level, this cpu's scheduler group has
9332  *     multiple busy cpu.
9333  *   - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler
9334  *     domain span are idle.
9335  */
9336 static void nohz_balancer_kick(struct rq *rq)
9337 {
9338 	unsigned long now = jiffies;
9339 	struct sched_domain_shared *sds;
9340 	struct sched_domain *sd;
9341 	int nr_busy, i, cpu = rq->cpu;
9342 	unsigned int flags = 0;
9343 
9344 	if (unlikely(rq->idle_balance))
9345 		return;
9346 
9347 	/*
9348 	 * We may be recently in ticked or tickless idle mode. At the first
9349 	 * busy tick after returning from idle, we will update the busy stats.
9350 	 */
9351 	nohz_balance_exit_idle(rq);
9352 
9353 	/*
9354 	 * None are in tickless mode and hence no need for NOHZ idle load
9355 	 * balancing.
9356 	 */
9357 	if (likely(!atomic_read(&nohz.nr_cpus)))
9358 		return;
9359 
9360 	if (READ_ONCE(nohz.has_blocked) &&
9361 	    time_after(now, READ_ONCE(nohz.next_blocked)))
9362 		flags = NOHZ_STATS_KICK;
9363 
9364 	if (time_before(now, nohz.next_balance))
9365 		goto out;
9366 
9367 	if (rq->nr_running >= 2) {
9368 		flags = NOHZ_KICK_MASK;
9369 		goto out;
9370 	}
9371 
9372 	rcu_read_lock();
9373 	sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
9374 	if (sds) {
9375 		/*
9376 		 * XXX: write a coherent comment on why we do this.
9377 		 * See also: http://lkml.kernel.org/r/20111202010832.602203411@sbsiddha-desk.sc.intel.com
9378 		 */
9379 		nr_busy = atomic_read(&sds->nr_busy_cpus);
9380 		if (nr_busy > 1) {
9381 			flags = NOHZ_KICK_MASK;
9382 			goto unlock;
9383 		}
9384 
9385 	}
9386 
9387 	sd = rcu_dereference(rq->sd);
9388 	if (sd) {
9389 		if ((rq->cfs.h_nr_running >= 1) &&
9390 				check_cpu_capacity(rq, sd)) {
9391 			flags = NOHZ_KICK_MASK;
9392 			goto unlock;
9393 		}
9394 	}
9395 
9396 	sd = rcu_dereference(per_cpu(sd_asym, cpu));
9397 	if (sd) {
9398 		for_each_cpu(i, sched_domain_span(sd)) {
9399 			if (i == cpu ||
9400 			    !cpumask_test_cpu(i, nohz.idle_cpus_mask))
9401 				continue;
9402 
9403 			if (sched_asym_prefer(i, cpu)) {
9404 				flags = NOHZ_KICK_MASK;
9405 				goto unlock;
9406 			}
9407 		}
9408 	}
9409 unlock:
9410 	rcu_read_unlock();
9411 out:
9412 	if (flags)
9413 		kick_ilb(flags);
9414 }
9415 
9416 static void set_cpu_sd_state_busy(int cpu)
9417 {
9418 	struct sched_domain *sd;
9419 
9420 	rcu_read_lock();
9421 	sd = rcu_dereference(per_cpu(sd_llc, cpu));
9422 
9423 	if (!sd || !sd->nohz_idle)
9424 		goto unlock;
9425 	sd->nohz_idle = 0;
9426 
9427 	atomic_inc(&sd->shared->nr_busy_cpus);
9428 unlock:
9429 	rcu_read_unlock();
9430 }
9431 
9432 void nohz_balance_exit_idle(struct rq *rq)
9433 {
9434 	SCHED_WARN_ON(rq != this_rq());
9435 
9436 	if (likely(!rq->nohz_tick_stopped))
9437 		return;
9438 
9439 	rq->nohz_tick_stopped = 0;
9440 	cpumask_clear_cpu(rq->cpu, nohz.idle_cpus_mask);
9441 	atomic_dec(&nohz.nr_cpus);
9442 
9443 	set_cpu_sd_state_busy(rq->cpu);
9444 }
9445 
9446 static void set_cpu_sd_state_idle(int cpu)
9447 {
9448 	struct sched_domain *sd;
9449 
9450 	rcu_read_lock();
9451 	sd = rcu_dereference(per_cpu(sd_llc, cpu));
9452 
9453 	if (!sd || sd->nohz_idle)
9454 		goto unlock;
9455 	sd->nohz_idle = 1;
9456 
9457 	atomic_dec(&sd->shared->nr_busy_cpus);
9458 unlock:
9459 	rcu_read_unlock();
9460 }
9461 
9462 /*
9463  * This routine will record that the CPU is going idle with tick stopped.
9464  * This info will be used in performing idle load balancing in the future.
9465  */
9466 void nohz_balance_enter_idle(int cpu)
9467 {
9468 	struct rq *rq = cpu_rq(cpu);
9469 
9470 	SCHED_WARN_ON(cpu != smp_processor_id());
9471 
9472 	/* If this CPU is going down, then nothing needs to be done: */
9473 	if (!cpu_active(cpu))
9474 		return;
9475 
9476 	/* Spare idle load balancing on CPUs that don't want to be disturbed: */
9477 	if (!housekeeping_cpu(cpu, HK_FLAG_SCHED))
9478 		return;
9479 
9480 	/*
9481 	 * Can be set safely without rq->lock held
9482 	 * If a clear happens, it will have evaluated last additions because
9483 	 * rq->lock is held during the check and the clear
9484 	 */
9485 	rq->has_blocked_load = 1;
9486 
9487 	/*
9488 	 * The tick is still stopped but load could have been added in the
9489 	 * meantime. We set the nohz.has_blocked flag to trig a check of the
9490 	 * *_avg. The CPU is already part of nohz.idle_cpus_mask so the clear
9491 	 * of nohz.has_blocked can only happen after checking the new load
9492 	 */
9493 	if (rq->nohz_tick_stopped)
9494 		goto out;
9495 
9496 	/* If we're a completely isolated CPU, we don't play: */
9497 	if (on_null_domain(rq))
9498 		return;
9499 
9500 	rq->nohz_tick_stopped = 1;
9501 
9502 	cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
9503 	atomic_inc(&nohz.nr_cpus);
9504 
9505 	/*
9506 	 * Ensures that if nohz_idle_balance() fails to observe our
9507 	 * @idle_cpus_mask store, it must observe the @has_blocked
9508 	 * store.
9509 	 */
9510 	smp_mb__after_atomic();
9511 
9512 	set_cpu_sd_state_idle(cpu);
9513 
9514 out:
9515 	/*
9516 	 * Each time a cpu enter idle, we assume that it has blocked load and
9517 	 * enable the periodic update of the load of idle cpus
9518 	 */
9519 	WRITE_ONCE(nohz.has_blocked, 1);
9520 }
9521 
9522 /*
9523  * Internal function that runs load balance for all idle cpus. The load balance
9524  * can be a simple update of blocked load or a complete load balance with
9525  * tasks movement depending of flags.
9526  * The function returns false if the loop has stopped before running
9527  * through all idle CPUs.
9528  */
9529 static bool _nohz_idle_balance(struct rq *this_rq, unsigned int flags,
9530 			       enum cpu_idle_type idle)
9531 {
9532 	/* Earliest time when we have to do rebalance again */
9533 	unsigned long now = jiffies;
9534 	unsigned long next_balance = now + 60*HZ;
9535 	bool has_blocked_load = false;
9536 	int update_next_balance = 0;
9537 	int this_cpu = this_rq->cpu;
9538 	int balance_cpu;
9539 	int ret = false;
9540 	struct rq *rq;
9541 
9542 	SCHED_WARN_ON((flags & NOHZ_KICK_MASK) == NOHZ_BALANCE_KICK);
9543 
9544 	/*
9545 	 * We assume there will be no idle load after this update and clear
9546 	 * the has_blocked flag. If a cpu enters idle in the mean time, it will
9547 	 * set the has_blocked flag and trig another update of idle load.
9548 	 * Because a cpu that becomes idle, is added to idle_cpus_mask before
9549 	 * setting the flag, we are sure to not clear the state and not
9550 	 * check the load of an idle cpu.
9551 	 */
9552 	WRITE_ONCE(nohz.has_blocked, 0);
9553 
9554 	/*
9555 	 * Ensures that if we miss the CPU, we must see the has_blocked
9556 	 * store from nohz_balance_enter_idle().
9557 	 */
9558 	smp_mb();
9559 
9560 	for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
9561 		if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
9562 			continue;
9563 
9564 		/*
9565 		 * If this CPU gets work to do, stop the load balancing
9566 		 * work being done for other CPUs. Next load
9567 		 * balancing owner will pick it up.
9568 		 */
9569 		if (need_resched()) {
9570 			has_blocked_load = true;
9571 			goto abort;
9572 		}
9573 
9574 		rq = cpu_rq(balance_cpu);
9575 
9576 		has_blocked_load |= update_nohz_stats(rq, true);
9577 
9578 		/*
9579 		 * If time for next balance is due,
9580 		 * do the balance.
9581 		 */
9582 		if (time_after_eq(jiffies, rq->next_balance)) {
9583 			struct rq_flags rf;
9584 
9585 			rq_lock_irqsave(rq, &rf);
9586 			update_rq_clock(rq);
9587 			cpu_load_update_idle(rq);
9588 			rq_unlock_irqrestore(rq, &rf);
9589 
9590 			if (flags & NOHZ_BALANCE_KICK)
9591 				rebalance_domains(rq, CPU_IDLE);
9592 		}
9593 
9594 		if (time_after(next_balance, rq->next_balance)) {
9595 			next_balance = rq->next_balance;
9596 			update_next_balance = 1;
9597 		}
9598 	}
9599 
9600 	/* Newly idle CPU doesn't need an update */
9601 	if (idle != CPU_NEWLY_IDLE) {
9602 		update_blocked_averages(this_cpu);
9603 		has_blocked_load |= this_rq->has_blocked_load;
9604 	}
9605 
9606 	if (flags & NOHZ_BALANCE_KICK)
9607 		rebalance_domains(this_rq, CPU_IDLE);
9608 
9609 	WRITE_ONCE(nohz.next_blocked,
9610 		now + msecs_to_jiffies(LOAD_AVG_PERIOD));
9611 
9612 	/* The full idle balance loop has been done */
9613 	ret = true;
9614 
9615 abort:
9616 	/* There is still blocked load, enable periodic update */
9617 	if (has_blocked_load)
9618 		WRITE_ONCE(nohz.has_blocked, 1);
9619 
9620 	/*
9621 	 * next_balance will be updated only when there is a need.
9622 	 * When the CPU is attached to null domain for ex, it will not be
9623 	 * updated.
9624 	 */
9625 	if (likely(update_next_balance))
9626 		nohz.next_balance = next_balance;
9627 
9628 	return ret;
9629 }
9630 
9631 /*
9632  * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
9633  * rebalancing for all the cpus for whom scheduler ticks are stopped.
9634  */
9635 static bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
9636 {
9637 	int this_cpu = this_rq->cpu;
9638 	unsigned int flags;
9639 
9640 	if (!(atomic_read(nohz_flags(this_cpu)) & NOHZ_KICK_MASK))
9641 		return false;
9642 
9643 	if (idle != CPU_IDLE) {
9644 		atomic_andnot(NOHZ_KICK_MASK, nohz_flags(this_cpu));
9645 		return false;
9646 	}
9647 
9648 	/*
9649 	 * barrier, pairs with nohz_balance_enter_idle(), ensures ...
9650 	 */
9651 	flags = atomic_fetch_andnot(NOHZ_KICK_MASK, nohz_flags(this_cpu));
9652 	if (!(flags & NOHZ_KICK_MASK))
9653 		return false;
9654 
9655 	_nohz_idle_balance(this_rq, flags, idle);
9656 
9657 	return true;
9658 }
9659 
9660 static void nohz_newidle_balance(struct rq *this_rq)
9661 {
9662 	int this_cpu = this_rq->cpu;
9663 
9664 	/*
9665 	 * This CPU doesn't want to be disturbed by scheduler
9666 	 * housekeeping
9667 	 */
9668 	if (!housekeeping_cpu(this_cpu, HK_FLAG_SCHED))
9669 		return;
9670 
9671 	/* Will wake up very soon. No time for doing anything else*/
9672 	if (this_rq->avg_idle < sysctl_sched_migration_cost)
9673 		return;
9674 
9675 	/* Don't need to update blocked load of idle CPUs*/
9676 	if (!READ_ONCE(nohz.has_blocked) ||
9677 	    time_before(jiffies, READ_ONCE(nohz.next_blocked)))
9678 		return;
9679 
9680 	raw_spin_unlock(&this_rq->lock);
9681 	/*
9682 	 * This CPU is going to be idle and blocked load of idle CPUs
9683 	 * need to be updated. Run the ilb locally as it is a good
9684 	 * candidate for ilb instead of waking up another idle CPU.
9685 	 * Kick an normal ilb if we failed to do the update.
9686 	 */
9687 	if (!_nohz_idle_balance(this_rq, NOHZ_STATS_KICK, CPU_NEWLY_IDLE))
9688 		kick_ilb(NOHZ_STATS_KICK);
9689 	raw_spin_lock(&this_rq->lock);
9690 }
9691 
9692 #else /* !CONFIG_NO_HZ_COMMON */
9693 static inline void nohz_balancer_kick(struct rq *rq) { }
9694 
9695 static inline bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
9696 {
9697 	return false;
9698 }
9699 
9700 static inline void nohz_newidle_balance(struct rq *this_rq) { }
9701 #endif /* CONFIG_NO_HZ_COMMON */
9702 
9703 /*
9704  * idle_balance is called by schedule() if this_cpu is about to become
9705  * idle. Attempts to pull tasks from other CPUs.
9706  */
9707 static int idle_balance(struct rq *this_rq, struct rq_flags *rf)
9708 {
9709 	unsigned long next_balance = jiffies + HZ;
9710 	int this_cpu = this_rq->cpu;
9711 	struct sched_domain *sd;
9712 	int pulled_task = 0;
9713 	u64 curr_cost = 0;
9714 
9715 	/*
9716 	 * We must set idle_stamp _before_ calling idle_balance(), such that we
9717 	 * measure the duration of idle_balance() as idle time.
9718 	 */
9719 	this_rq->idle_stamp = rq_clock(this_rq);
9720 
9721 	/*
9722 	 * Do not pull tasks towards !active CPUs...
9723 	 */
9724 	if (!cpu_active(this_cpu))
9725 		return 0;
9726 
9727 	/*
9728 	 * This is OK, because current is on_cpu, which avoids it being picked
9729 	 * for load-balance and preemption/IRQs are still disabled avoiding
9730 	 * further scheduler activity on it and we're being very careful to
9731 	 * re-start the picking loop.
9732 	 */
9733 	rq_unpin_lock(this_rq, rf);
9734 
9735 	if (this_rq->avg_idle < sysctl_sched_migration_cost ||
9736 	    !this_rq->rd->overload) {
9737 
9738 		rcu_read_lock();
9739 		sd = rcu_dereference_check_sched_domain(this_rq->sd);
9740 		if (sd)
9741 			update_next_balance(sd, &next_balance);
9742 		rcu_read_unlock();
9743 
9744 		nohz_newidle_balance(this_rq);
9745 
9746 		goto out;
9747 	}
9748 
9749 	raw_spin_unlock(&this_rq->lock);
9750 
9751 	update_blocked_averages(this_cpu);
9752 	rcu_read_lock();
9753 	for_each_domain(this_cpu, sd) {
9754 		int continue_balancing = 1;
9755 		u64 t0, domain_cost;
9756 
9757 		if (!(sd->flags & SD_LOAD_BALANCE))
9758 			continue;
9759 
9760 		if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) {
9761 			update_next_balance(sd, &next_balance);
9762 			break;
9763 		}
9764 
9765 		if (sd->flags & SD_BALANCE_NEWIDLE) {
9766 			t0 = sched_clock_cpu(this_cpu);
9767 
9768 			pulled_task = load_balance(this_cpu, this_rq,
9769 						   sd, CPU_NEWLY_IDLE,
9770 						   &continue_balancing);
9771 
9772 			domain_cost = sched_clock_cpu(this_cpu) - t0;
9773 			if (domain_cost > sd->max_newidle_lb_cost)
9774 				sd->max_newidle_lb_cost = domain_cost;
9775 
9776 			curr_cost += domain_cost;
9777 		}
9778 
9779 		update_next_balance(sd, &next_balance);
9780 
9781 		/*
9782 		 * Stop searching for tasks to pull if there are
9783 		 * now runnable tasks on this rq.
9784 		 */
9785 		if (pulled_task || this_rq->nr_running > 0)
9786 			break;
9787 	}
9788 	rcu_read_unlock();
9789 
9790 	raw_spin_lock(&this_rq->lock);
9791 
9792 	if (curr_cost > this_rq->max_idle_balance_cost)
9793 		this_rq->max_idle_balance_cost = curr_cost;
9794 
9795 out:
9796 	/*
9797 	 * While browsing the domains, we released the rq lock, a task could
9798 	 * have been enqueued in the meantime. Since we're not going idle,
9799 	 * pretend we pulled a task.
9800 	 */
9801 	if (this_rq->cfs.h_nr_running && !pulled_task)
9802 		pulled_task = 1;
9803 
9804 	/* Move the next balance forward */
9805 	if (time_after(this_rq->next_balance, next_balance))
9806 		this_rq->next_balance = next_balance;
9807 
9808 	/* Is there a task of a high priority class? */
9809 	if (this_rq->nr_running != this_rq->cfs.h_nr_running)
9810 		pulled_task = -1;
9811 
9812 	if (pulled_task)
9813 		this_rq->idle_stamp = 0;
9814 
9815 	rq_repin_lock(this_rq, rf);
9816 
9817 	return pulled_task;
9818 }
9819 
9820 /*
9821  * run_rebalance_domains is triggered when needed from the scheduler tick.
9822  * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
9823  */
9824 static __latent_entropy void run_rebalance_domains(struct softirq_action *h)
9825 {
9826 	struct rq *this_rq = this_rq();
9827 	enum cpu_idle_type idle = this_rq->idle_balance ?
9828 						CPU_IDLE : CPU_NOT_IDLE;
9829 
9830 	/*
9831 	 * If this CPU has a pending nohz_balance_kick, then do the
9832 	 * balancing on behalf of the other idle CPUs whose ticks are
9833 	 * stopped. Do nohz_idle_balance *before* rebalance_domains to
9834 	 * give the idle CPUs a chance to load balance. Else we may
9835 	 * load balance only within the local sched_domain hierarchy
9836 	 * and abort nohz_idle_balance altogether if we pull some load.
9837 	 */
9838 	if (nohz_idle_balance(this_rq, idle))
9839 		return;
9840 
9841 	/* normal load balance */
9842 	update_blocked_averages(this_rq->cpu);
9843 	rebalance_domains(this_rq, idle);
9844 }
9845 
9846 /*
9847  * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
9848  */
9849 void trigger_load_balance(struct rq *rq)
9850 {
9851 	/* Don't need to rebalance while attached to NULL domain */
9852 	if (unlikely(on_null_domain(rq)))
9853 		return;
9854 
9855 	if (time_after_eq(jiffies, rq->next_balance))
9856 		raise_softirq(SCHED_SOFTIRQ);
9857 
9858 	nohz_balancer_kick(rq);
9859 }
9860 
9861 static void rq_online_fair(struct rq *rq)
9862 {
9863 	update_sysctl();
9864 
9865 	update_runtime_enabled(rq);
9866 }
9867 
9868 static void rq_offline_fair(struct rq *rq)
9869 {
9870 	update_sysctl();
9871 
9872 	/* Ensure any throttled groups are reachable by pick_next_task */
9873 	unthrottle_offline_cfs_rqs(rq);
9874 }
9875 
9876 #endif /* CONFIG_SMP */
9877 
9878 /*
9879  * scheduler tick hitting a task of our scheduling class.
9880  *
9881  * NOTE: This function can be called remotely by the tick offload that
9882  * goes along full dynticks. Therefore no local assumption can be made
9883  * and everything must be accessed through the @rq and @curr passed in
9884  * parameters.
9885  */
9886 static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
9887 {
9888 	struct cfs_rq *cfs_rq;
9889 	struct sched_entity *se = &curr->se;
9890 
9891 	for_each_sched_entity(se) {
9892 		cfs_rq = cfs_rq_of(se);
9893 		entity_tick(cfs_rq, se, queued);
9894 	}
9895 
9896 	if (static_branch_unlikely(&sched_numa_balancing))
9897 		task_tick_numa(rq, curr);
9898 }
9899 
9900 /*
9901  * called on fork with the child task as argument from the parent's context
9902  *  - child not yet on the tasklist
9903  *  - preemption disabled
9904  */
9905 static void task_fork_fair(struct task_struct *p)
9906 {
9907 	struct cfs_rq *cfs_rq;
9908 	struct sched_entity *se = &p->se, *curr;
9909 	struct rq *rq = this_rq();
9910 	struct rq_flags rf;
9911 
9912 	rq_lock(rq, &rf);
9913 	update_rq_clock(rq);
9914 
9915 	cfs_rq = task_cfs_rq(current);
9916 	curr = cfs_rq->curr;
9917 	if (curr) {
9918 		update_curr(cfs_rq);
9919 		se->vruntime = curr->vruntime;
9920 	}
9921 	place_entity(cfs_rq, se, 1);
9922 
9923 	if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
9924 		/*
9925 		 * Upon rescheduling, sched_class::put_prev_task() will place
9926 		 * 'current' within the tree based on its new key value.
9927 		 */
9928 		swap(curr->vruntime, se->vruntime);
9929 		resched_curr(rq);
9930 	}
9931 
9932 	se->vruntime -= cfs_rq->min_vruntime;
9933 	rq_unlock(rq, &rf);
9934 }
9935 
9936 /*
9937  * Priority of the task has changed. Check to see if we preempt
9938  * the current task.
9939  */
9940 static void
9941 prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
9942 {
9943 	if (!task_on_rq_queued(p))
9944 		return;
9945 
9946 	/*
9947 	 * Reschedule if we are currently running on this runqueue and
9948 	 * our priority decreased, or if we are not currently running on
9949 	 * this runqueue and our priority is higher than the current's
9950 	 */
9951 	if (rq->curr == p) {
9952 		if (p->prio > oldprio)
9953 			resched_curr(rq);
9954 	} else
9955 		check_preempt_curr(rq, p, 0);
9956 }
9957 
9958 static inline bool vruntime_normalized(struct task_struct *p)
9959 {
9960 	struct sched_entity *se = &p->se;
9961 
9962 	/*
9963 	 * In both the TASK_ON_RQ_QUEUED and TASK_ON_RQ_MIGRATING cases,
9964 	 * the dequeue_entity(.flags=0) will already have normalized the
9965 	 * vruntime.
9966 	 */
9967 	if (p->on_rq)
9968 		return true;
9969 
9970 	/*
9971 	 * When !on_rq, vruntime of the task has usually NOT been normalized.
9972 	 * But there are some cases where it has already been normalized:
9973 	 *
9974 	 * - A forked child which is waiting for being woken up by
9975 	 *   wake_up_new_task().
9976 	 * - A task which has been woken up by try_to_wake_up() and
9977 	 *   waiting for actually being woken up by sched_ttwu_pending().
9978 	 */
9979 	if (!se->sum_exec_runtime || p->state == TASK_WAKING)
9980 		return true;
9981 
9982 	return false;
9983 }
9984 
9985 #ifdef CONFIG_FAIR_GROUP_SCHED
9986 /*
9987  * Propagate the changes of the sched_entity across the tg tree to make it
9988  * visible to the root
9989  */
9990 static void propagate_entity_cfs_rq(struct sched_entity *se)
9991 {
9992 	struct cfs_rq *cfs_rq;
9993 
9994 	/* Start to propagate at parent */
9995 	se = se->parent;
9996 
9997 	for_each_sched_entity(se) {
9998 		cfs_rq = cfs_rq_of(se);
9999 
10000 		if (cfs_rq_throttled(cfs_rq))
10001 			break;
10002 
10003 		update_load_avg(cfs_rq, se, UPDATE_TG);
10004 	}
10005 }
10006 #else
10007 static void propagate_entity_cfs_rq(struct sched_entity *se) { }
10008 #endif
10009 
10010 static void detach_entity_cfs_rq(struct sched_entity *se)
10011 {
10012 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
10013 
10014 	/* Catch up with the cfs_rq and remove our load when we leave */
10015 	update_load_avg(cfs_rq, se, 0);
10016 	detach_entity_load_avg(cfs_rq, se);
10017 	update_tg_load_avg(cfs_rq, false);
10018 	propagate_entity_cfs_rq(se);
10019 }
10020 
10021 static void attach_entity_cfs_rq(struct sched_entity *se)
10022 {
10023 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
10024 
10025 #ifdef CONFIG_FAIR_GROUP_SCHED
10026 	/*
10027 	 * Since the real-depth could have been changed (only FAIR
10028 	 * class maintain depth value), reset depth properly.
10029 	 */
10030 	se->depth = se->parent ? se->parent->depth + 1 : 0;
10031 #endif
10032 
10033 	/* Synchronize entity with its cfs_rq */
10034 	update_load_avg(cfs_rq, se, sched_feat(ATTACH_AGE_LOAD) ? 0 : SKIP_AGE_LOAD);
10035 	attach_entity_load_avg(cfs_rq, se, 0);
10036 	update_tg_load_avg(cfs_rq, false);
10037 	propagate_entity_cfs_rq(se);
10038 }
10039 
10040 static void detach_task_cfs_rq(struct task_struct *p)
10041 {
10042 	struct sched_entity *se = &p->se;
10043 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
10044 
10045 	if (!vruntime_normalized(p)) {
10046 		/*
10047 		 * Fix up our vruntime so that the current sleep doesn't
10048 		 * cause 'unlimited' sleep bonus.
10049 		 */
10050 		place_entity(cfs_rq, se, 0);
10051 		se->vruntime -= cfs_rq->min_vruntime;
10052 	}
10053 
10054 	detach_entity_cfs_rq(se);
10055 }
10056 
10057 static void attach_task_cfs_rq(struct task_struct *p)
10058 {
10059 	struct sched_entity *se = &p->se;
10060 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
10061 
10062 	attach_entity_cfs_rq(se);
10063 
10064 	if (!vruntime_normalized(p))
10065 		se->vruntime += cfs_rq->min_vruntime;
10066 }
10067 
10068 static void switched_from_fair(struct rq *rq, struct task_struct *p)
10069 {
10070 	detach_task_cfs_rq(p);
10071 }
10072 
10073 static void switched_to_fair(struct rq *rq, struct task_struct *p)
10074 {
10075 	attach_task_cfs_rq(p);
10076 
10077 	if (task_on_rq_queued(p)) {
10078 		/*
10079 		 * We were most likely switched from sched_rt, so
10080 		 * kick off the schedule if running, otherwise just see
10081 		 * if we can still preempt the current task.
10082 		 */
10083 		if (rq->curr == p)
10084 			resched_curr(rq);
10085 		else
10086 			check_preempt_curr(rq, p, 0);
10087 	}
10088 }
10089 
10090 /* Account for a task changing its policy or group.
10091  *
10092  * This routine is mostly called to set cfs_rq->curr field when a task
10093  * migrates between groups/classes.
10094  */
10095 static void set_curr_task_fair(struct rq *rq)
10096 {
10097 	struct sched_entity *se = &rq->curr->se;
10098 
10099 	for_each_sched_entity(se) {
10100 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
10101 
10102 		set_next_entity(cfs_rq, se);
10103 		/* ensure bandwidth has been allocated on our new cfs_rq */
10104 		account_cfs_rq_runtime(cfs_rq, 0);
10105 	}
10106 }
10107 
10108 void init_cfs_rq(struct cfs_rq *cfs_rq)
10109 {
10110 	cfs_rq->tasks_timeline = RB_ROOT_CACHED;
10111 	cfs_rq->min_vruntime = (u64)(-(1LL << 20));
10112 #ifndef CONFIG_64BIT
10113 	cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
10114 #endif
10115 #ifdef CONFIG_SMP
10116 	raw_spin_lock_init(&cfs_rq->removed.lock);
10117 #endif
10118 }
10119 
10120 #ifdef CONFIG_FAIR_GROUP_SCHED
10121 static void task_set_group_fair(struct task_struct *p)
10122 {
10123 	struct sched_entity *se = &p->se;
10124 
10125 	set_task_rq(p, task_cpu(p));
10126 	se->depth = se->parent ? se->parent->depth + 1 : 0;
10127 }
10128 
10129 static void task_move_group_fair(struct task_struct *p)
10130 {
10131 	detach_task_cfs_rq(p);
10132 	set_task_rq(p, task_cpu(p));
10133 
10134 #ifdef CONFIG_SMP
10135 	/* Tell se's cfs_rq has been changed -- migrated */
10136 	p->se.avg.last_update_time = 0;
10137 #endif
10138 	attach_task_cfs_rq(p);
10139 }
10140 
10141 static void task_change_group_fair(struct task_struct *p, int type)
10142 {
10143 	switch (type) {
10144 	case TASK_SET_GROUP:
10145 		task_set_group_fair(p);
10146 		break;
10147 
10148 	case TASK_MOVE_GROUP:
10149 		task_move_group_fair(p);
10150 		break;
10151 	}
10152 }
10153 
10154 void free_fair_sched_group(struct task_group *tg)
10155 {
10156 	int i;
10157 
10158 	destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
10159 
10160 	for_each_possible_cpu(i) {
10161 		if (tg->cfs_rq)
10162 			kfree(tg->cfs_rq[i]);
10163 		if (tg->se)
10164 			kfree(tg->se[i]);
10165 	}
10166 
10167 	kfree(tg->cfs_rq);
10168 	kfree(tg->se);
10169 }
10170 
10171 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
10172 {
10173 	struct sched_entity *se;
10174 	struct cfs_rq *cfs_rq;
10175 	int i;
10176 
10177 	tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
10178 	if (!tg->cfs_rq)
10179 		goto err;
10180 	tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
10181 	if (!tg->se)
10182 		goto err;
10183 
10184 	tg->shares = NICE_0_LOAD;
10185 
10186 	init_cfs_bandwidth(tg_cfs_bandwidth(tg));
10187 
10188 	for_each_possible_cpu(i) {
10189 		cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
10190 				      GFP_KERNEL, cpu_to_node(i));
10191 		if (!cfs_rq)
10192 			goto err;
10193 
10194 		se = kzalloc_node(sizeof(struct sched_entity),
10195 				  GFP_KERNEL, cpu_to_node(i));
10196 		if (!se)
10197 			goto err_free_rq;
10198 
10199 		init_cfs_rq(cfs_rq);
10200 		init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
10201 		init_entity_runnable_average(se);
10202 	}
10203 
10204 	return 1;
10205 
10206 err_free_rq:
10207 	kfree(cfs_rq);
10208 err:
10209 	return 0;
10210 }
10211 
10212 void online_fair_sched_group(struct task_group *tg)
10213 {
10214 	struct sched_entity *se;
10215 	struct rq *rq;
10216 	int i;
10217 
10218 	for_each_possible_cpu(i) {
10219 		rq = cpu_rq(i);
10220 		se = tg->se[i];
10221 
10222 		raw_spin_lock_irq(&rq->lock);
10223 		update_rq_clock(rq);
10224 		attach_entity_cfs_rq(se);
10225 		sync_throttle(tg, i);
10226 		raw_spin_unlock_irq(&rq->lock);
10227 	}
10228 }
10229 
10230 void unregister_fair_sched_group(struct task_group *tg)
10231 {
10232 	unsigned long flags;
10233 	struct rq *rq;
10234 	int cpu;
10235 
10236 	for_each_possible_cpu(cpu) {
10237 		if (tg->se[cpu])
10238 			remove_entity_load_avg(tg->se[cpu]);
10239 
10240 		/*
10241 		 * Only empty task groups can be destroyed; so we can speculatively
10242 		 * check on_list without danger of it being re-added.
10243 		 */
10244 		if (!tg->cfs_rq[cpu]->on_list)
10245 			continue;
10246 
10247 		rq = cpu_rq(cpu);
10248 
10249 		raw_spin_lock_irqsave(&rq->lock, flags);
10250 		list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
10251 		raw_spin_unlock_irqrestore(&rq->lock, flags);
10252 	}
10253 }
10254 
10255 void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
10256 			struct sched_entity *se, int cpu,
10257 			struct sched_entity *parent)
10258 {
10259 	struct rq *rq = cpu_rq(cpu);
10260 
10261 	cfs_rq->tg = tg;
10262 	cfs_rq->rq = rq;
10263 	init_cfs_rq_runtime(cfs_rq);
10264 
10265 	tg->cfs_rq[cpu] = cfs_rq;
10266 	tg->se[cpu] = se;
10267 
10268 	/* se could be NULL for root_task_group */
10269 	if (!se)
10270 		return;
10271 
10272 	if (!parent) {
10273 		se->cfs_rq = &rq->cfs;
10274 		se->depth = 0;
10275 	} else {
10276 		se->cfs_rq = parent->my_q;
10277 		se->depth = parent->depth + 1;
10278 	}
10279 
10280 	se->my_q = cfs_rq;
10281 	/* guarantee group entities always have weight */
10282 	update_load_set(&se->load, NICE_0_LOAD);
10283 	se->parent = parent;
10284 }
10285 
10286 static DEFINE_MUTEX(shares_mutex);
10287 
10288 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
10289 {
10290 	int i;
10291 
10292 	/*
10293 	 * We can't change the weight of the root cgroup.
10294 	 */
10295 	if (!tg->se[0])
10296 		return -EINVAL;
10297 
10298 	shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
10299 
10300 	mutex_lock(&shares_mutex);
10301 	if (tg->shares == shares)
10302 		goto done;
10303 
10304 	tg->shares = shares;
10305 	for_each_possible_cpu(i) {
10306 		struct rq *rq = cpu_rq(i);
10307 		struct sched_entity *se = tg->se[i];
10308 		struct rq_flags rf;
10309 
10310 		/* Propagate contribution to hierarchy */
10311 		rq_lock_irqsave(rq, &rf);
10312 		update_rq_clock(rq);
10313 		for_each_sched_entity(se) {
10314 			update_load_avg(cfs_rq_of(se), se, UPDATE_TG);
10315 			update_cfs_group(se);
10316 		}
10317 		rq_unlock_irqrestore(rq, &rf);
10318 	}
10319 
10320 done:
10321 	mutex_unlock(&shares_mutex);
10322 	return 0;
10323 }
10324 #else /* CONFIG_FAIR_GROUP_SCHED */
10325 
10326 void free_fair_sched_group(struct task_group *tg) { }
10327 
10328 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
10329 {
10330 	return 1;
10331 }
10332 
10333 void online_fair_sched_group(struct task_group *tg) { }
10334 
10335 void unregister_fair_sched_group(struct task_group *tg) { }
10336 
10337 #endif /* CONFIG_FAIR_GROUP_SCHED */
10338 
10339 
10340 static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
10341 {
10342 	struct sched_entity *se = &task->se;
10343 	unsigned int rr_interval = 0;
10344 
10345 	/*
10346 	 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
10347 	 * idle runqueue:
10348 	 */
10349 	if (rq->cfs.load.weight)
10350 		rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
10351 
10352 	return rr_interval;
10353 }
10354 
10355 /*
10356  * All the scheduling class methods:
10357  */
10358 const struct sched_class fair_sched_class = {
10359 	.next			= &idle_sched_class,
10360 	.enqueue_task		= enqueue_task_fair,
10361 	.dequeue_task		= dequeue_task_fair,
10362 	.yield_task		= yield_task_fair,
10363 	.yield_to_task		= yield_to_task_fair,
10364 
10365 	.check_preempt_curr	= check_preempt_wakeup,
10366 
10367 	.pick_next_task		= pick_next_task_fair,
10368 	.put_prev_task		= put_prev_task_fair,
10369 
10370 #ifdef CONFIG_SMP
10371 	.select_task_rq		= select_task_rq_fair,
10372 	.migrate_task_rq	= migrate_task_rq_fair,
10373 
10374 	.rq_online		= rq_online_fair,
10375 	.rq_offline		= rq_offline_fair,
10376 
10377 	.task_dead		= task_dead_fair,
10378 	.set_cpus_allowed	= set_cpus_allowed_common,
10379 #endif
10380 
10381 	.set_curr_task          = set_curr_task_fair,
10382 	.task_tick		= task_tick_fair,
10383 	.task_fork		= task_fork_fair,
10384 
10385 	.prio_changed		= prio_changed_fair,
10386 	.switched_from		= switched_from_fair,
10387 	.switched_to		= switched_to_fair,
10388 
10389 	.get_rr_interval	= get_rr_interval_fair,
10390 
10391 	.update_curr		= update_curr_fair,
10392 
10393 #ifdef CONFIG_FAIR_GROUP_SCHED
10394 	.task_change_group	= task_change_group_fair,
10395 #endif
10396 };
10397 
10398 #ifdef CONFIG_SCHED_DEBUG
10399 void print_cfs_stats(struct seq_file *m, int cpu)
10400 {
10401 	struct cfs_rq *cfs_rq, *pos;
10402 
10403 	rcu_read_lock();
10404 	for_each_leaf_cfs_rq_safe(cpu_rq(cpu), cfs_rq, pos)
10405 		print_cfs_rq(m, cpu, cfs_rq);
10406 	rcu_read_unlock();
10407 }
10408 
10409 #ifdef CONFIG_NUMA_BALANCING
10410 void show_numa_stats(struct task_struct *p, struct seq_file *m)
10411 {
10412 	int node;
10413 	unsigned long tsf = 0, tpf = 0, gsf = 0, gpf = 0;
10414 
10415 	for_each_online_node(node) {
10416 		if (p->numa_faults) {
10417 			tsf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 0)];
10418 			tpf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 1)];
10419 		}
10420 		if (p->numa_group) {
10421 			gsf = p->numa_group->faults[task_faults_idx(NUMA_MEM, node, 0)],
10422 			gpf = p->numa_group->faults[task_faults_idx(NUMA_MEM, node, 1)];
10423 		}
10424 		print_numa_stats(m, node, tsf, tpf, gsf, gpf);
10425 	}
10426 }
10427 #endif /* CONFIG_NUMA_BALANCING */
10428 #endif /* CONFIG_SCHED_DEBUG */
10429 
10430 __init void init_sched_fair_class(void)
10431 {
10432 #ifdef CONFIG_SMP
10433 	open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
10434 
10435 #ifdef CONFIG_NO_HZ_COMMON
10436 	nohz.next_balance = jiffies;
10437 	nohz.next_blocked = jiffies;
10438 	zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
10439 #endif
10440 #endif /* SMP */
10441 
10442 }
10443