1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH) 4 * 5 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com> 6 * 7 * Interactivity improvements by Mike Galbraith 8 * (C) 2007 Mike Galbraith <efault@gmx.de> 9 * 10 * Various enhancements by Dmitry Adamushko. 11 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com> 12 * 13 * Group scheduling enhancements by Srivatsa Vaddagiri 14 * Copyright IBM Corporation, 2007 15 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com> 16 * 17 * Scaled math optimizations by Thomas Gleixner 18 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de> 19 * 20 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra 21 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra 22 */ 23 #include "sched.h" 24 25 #include <trace/events/sched.h> 26 27 /* 28 * Targeted preemption latency for CPU-bound tasks: 29 * 30 * NOTE: this latency value is not the same as the concept of 31 * 'timeslice length' - timeslices in CFS are of variable length 32 * and have no persistent notion like in traditional, time-slice 33 * based scheduling concepts. 34 * 35 * (to see the precise effective timeslice length of your workload, 36 * run vmstat and monitor the context-switches (cs) field) 37 * 38 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds) 39 */ 40 unsigned int sysctl_sched_latency = 6000000ULL; 41 unsigned int normalized_sysctl_sched_latency = 6000000ULL; 42 43 /* 44 * The initial- and re-scaling of tunables is configurable 45 * 46 * Options are: 47 * 48 * SCHED_TUNABLESCALING_NONE - unscaled, always *1 49 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus) 50 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus 51 * 52 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus)) 53 */ 54 enum sched_tunable_scaling sysctl_sched_tunable_scaling = SCHED_TUNABLESCALING_LOG; 55 56 /* 57 * Minimal preemption granularity for CPU-bound tasks: 58 * 59 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds) 60 */ 61 unsigned int sysctl_sched_min_granularity = 750000ULL; 62 unsigned int normalized_sysctl_sched_min_granularity = 750000ULL; 63 64 /* 65 * This value is kept at sysctl_sched_latency/sysctl_sched_min_granularity 66 */ 67 static unsigned int sched_nr_latency = 8; 68 69 /* 70 * After fork, child runs first. If set to 0 (default) then 71 * parent will (try to) run first. 72 */ 73 unsigned int sysctl_sched_child_runs_first __read_mostly; 74 75 /* 76 * SCHED_OTHER wake-up granularity. 77 * 78 * This option delays the preemption effects of decoupled workloads 79 * and reduces their over-scheduling. Synchronous workloads will still 80 * have immediate wakeup/sleep latencies. 81 * 82 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds) 83 */ 84 unsigned int sysctl_sched_wakeup_granularity = 1000000UL; 85 unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL; 86 87 const_debug unsigned int sysctl_sched_migration_cost = 500000UL; 88 89 #ifdef CONFIG_SMP 90 /* 91 * For asym packing, by default the lower numbered CPU has higher priority. 92 */ 93 int __weak arch_asym_cpu_priority(int cpu) 94 { 95 return -cpu; 96 } 97 #endif 98 99 #ifdef CONFIG_CFS_BANDWIDTH 100 /* 101 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool 102 * each time a cfs_rq requests quota. 103 * 104 * Note: in the case that the slice exceeds the runtime remaining (either due 105 * to consumption or the quota being specified to be smaller than the slice) 106 * we will always only issue the remaining available time. 107 * 108 * (default: 5 msec, units: microseconds) 109 */ 110 unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL; 111 #endif 112 113 /* 114 * The margin used when comparing utilization with CPU capacity: 115 * util * margin < capacity * 1024 116 * 117 * (default: ~20%) 118 */ 119 unsigned int capacity_margin = 1280; 120 121 static inline void update_load_add(struct load_weight *lw, unsigned long inc) 122 { 123 lw->weight += inc; 124 lw->inv_weight = 0; 125 } 126 127 static inline void update_load_sub(struct load_weight *lw, unsigned long dec) 128 { 129 lw->weight -= dec; 130 lw->inv_weight = 0; 131 } 132 133 static inline void update_load_set(struct load_weight *lw, unsigned long w) 134 { 135 lw->weight = w; 136 lw->inv_weight = 0; 137 } 138 139 /* 140 * Increase the granularity value when there are more CPUs, 141 * because with more CPUs the 'effective latency' as visible 142 * to users decreases. But the relationship is not linear, 143 * so pick a second-best guess by going with the log2 of the 144 * number of CPUs. 145 * 146 * This idea comes from the SD scheduler of Con Kolivas: 147 */ 148 static unsigned int get_update_sysctl_factor(void) 149 { 150 unsigned int cpus = min_t(unsigned int, num_online_cpus(), 8); 151 unsigned int factor; 152 153 switch (sysctl_sched_tunable_scaling) { 154 case SCHED_TUNABLESCALING_NONE: 155 factor = 1; 156 break; 157 case SCHED_TUNABLESCALING_LINEAR: 158 factor = cpus; 159 break; 160 case SCHED_TUNABLESCALING_LOG: 161 default: 162 factor = 1 + ilog2(cpus); 163 break; 164 } 165 166 return factor; 167 } 168 169 static void update_sysctl(void) 170 { 171 unsigned int factor = get_update_sysctl_factor(); 172 173 #define SET_SYSCTL(name) \ 174 (sysctl_##name = (factor) * normalized_sysctl_##name) 175 SET_SYSCTL(sched_min_granularity); 176 SET_SYSCTL(sched_latency); 177 SET_SYSCTL(sched_wakeup_granularity); 178 #undef SET_SYSCTL 179 } 180 181 void sched_init_granularity(void) 182 { 183 update_sysctl(); 184 } 185 186 #define WMULT_CONST (~0U) 187 #define WMULT_SHIFT 32 188 189 static void __update_inv_weight(struct load_weight *lw) 190 { 191 unsigned long w; 192 193 if (likely(lw->inv_weight)) 194 return; 195 196 w = scale_load_down(lw->weight); 197 198 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST)) 199 lw->inv_weight = 1; 200 else if (unlikely(!w)) 201 lw->inv_weight = WMULT_CONST; 202 else 203 lw->inv_weight = WMULT_CONST / w; 204 } 205 206 /* 207 * delta_exec * weight / lw.weight 208 * OR 209 * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT 210 * 211 * Either weight := NICE_0_LOAD and lw \e sched_prio_to_wmult[], in which case 212 * we're guaranteed shift stays positive because inv_weight is guaranteed to 213 * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22. 214 * 215 * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus 216 * weight/lw.weight <= 1, and therefore our shift will also be positive. 217 */ 218 static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw) 219 { 220 u64 fact = scale_load_down(weight); 221 int shift = WMULT_SHIFT; 222 223 __update_inv_weight(lw); 224 225 if (unlikely(fact >> 32)) { 226 while (fact >> 32) { 227 fact >>= 1; 228 shift--; 229 } 230 } 231 232 /* hint to use a 32x32->64 mul */ 233 fact = (u64)(u32)fact * lw->inv_weight; 234 235 while (fact >> 32) { 236 fact >>= 1; 237 shift--; 238 } 239 240 return mul_u64_u32_shr(delta_exec, fact, shift); 241 } 242 243 244 const struct sched_class fair_sched_class; 245 246 /************************************************************** 247 * CFS operations on generic schedulable entities: 248 */ 249 250 #ifdef CONFIG_FAIR_GROUP_SCHED 251 252 /* cpu runqueue to which this cfs_rq is attached */ 253 static inline struct rq *rq_of(struct cfs_rq *cfs_rq) 254 { 255 return cfs_rq->rq; 256 } 257 258 /* An entity is a task if it doesn't "own" a runqueue */ 259 #define entity_is_task(se) (!se->my_q) 260 261 static inline struct task_struct *task_of(struct sched_entity *se) 262 { 263 SCHED_WARN_ON(!entity_is_task(se)); 264 return container_of(se, struct task_struct, se); 265 } 266 267 /* Walk up scheduling entities hierarchy */ 268 #define for_each_sched_entity(se) \ 269 for (; se; se = se->parent) 270 271 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p) 272 { 273 return p->se.cfs_rq; 274 } 275 276 /* runqueue on which this entity is (to be) queued */ 277 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se) 278 { 279 return se->cfs_rq; 280 } 281 282 /* runqueue "owned" by this group */ 283 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp) 284 { 285 return grp->my_q; 286 } 287 288 static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq) 289 { 290 if (!cfs_rq->on_list) { 291 struct rq *rq = rq_of(cfs_rq); 292 int cpu = cpu_of(rq); 293 /* 294 * Ensure we either appear before our parent (if already 295 * enqueued) or force our parent to appear after us when it is 296 * enqueued. The fact that we always enqueue bottom-up 297 * reduces this to two cases and a special case for the root 298 * cfs_rq. Furthermore, it also means that we will always reset 299 * tmp_alone_branch either when the branch is connected 300 * to a tree or when we reach the beg of the tree 301 */ 302 if (cfs_rq->tg->parent && 303 cfs_rq->tg->parent->cfs_rq[cpu]->on_list) { 304 /* 305 * If parent is already on the list, we add the child 306 * just before. Thanks to circular linked property of 307 * the list, this means to put the child at the tail 308 * of the list that starts by parent. 309 */ 310 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list, 311 &(cfs_rq->tg->parent->cfs_rq[cpu]->leaf_cfs_rq_list)); 312 /* 313 * The branch is now connected to its tree so we can 314 * reset tmp_alone_branch to the beginning of the 315 * list. 316 */ 317 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list; 318 } else if (!cfs_rq->tg->parent) { 319 /* 320 * cfs rq without parent should be put 321 * at the tail of the list. 322 */ 323 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list, 324 &rq->leaf_cfs_rq_list); 325 /* 326 * We have reach the beg of a tree so we can reset 327 * tmp_alone_branch to the beginning of the list. 328 */ 329 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list; 330 } else { 331 /* 332 * The parent has not already been added so we want to 333 * make sure that it will be put after us. 334 * tmp_alone_branch points to the beg of the branch 335 * where we will add parent. 336 */ 337 list_add_rcu(&cfs_rq->leaf_cfs_rq_list, 338 rq->tmp_alone_branch); 339 /* 340 * update tmp_alone_branch to points to the new beg 341 * of the branch 342 */ 343 rq->tmp_alone_branch = &cfs_rq->leaf_cfs_rq_list; 344 } 345 346 cfs_rq->on_list = 1; 347 } 348 } 349 350 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq) 351 { 352 if (cfs_rq->on_list) { 353 list_del_rcu(&cfs_rq->leaf_cfs_rq_list); 354 cfs_rq->on_list = 0; 355 } 356 } 357 358 /* Iterate thr' all leaf cfs_rq's on a runqueue */ 359 #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) \ 360 list_for_each_entry_safe(cfs_rq, pos, &rq->leaf_cfs_rq_list, \ 361 leaf_cfs_rq_list) 362 363 /* Do the two (enqueued) entities belong to the same group ? */ 364 static inline struct cfs_rq * 365 is_same_group(struct sched_entity *se, struct sched_entity *pse) 366 { 367 if (se->cfs_rq == pse->cfs_rq) 368 return se->cfs_rq; 369 370 return NULL; 371 } 372 373 static inline struct sched_entity *parent_entity(struct sched_entity *se) 374 { 375 return se->parent; 376 } 377 378 static void 379 find_matching_se(struct sched_entity **se, struct sched_entity **pse) 380 { 381 int se_depth, pse_depth; 382 383 /* 384 * preemption test can be made between sibling entities who are in the 385 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of 386 * both tasks until we find their ancestors who are siblings of common 387 * parent. 388 */ 389 390 /* First walk up until both entities are at same depth */ 391 se_depth = (*se)->depth; 392 pse_depth = (*pse)->depth; 393 394 while (se_depth > pse_depth) { 395 se_depth--; 396 *se = parent_entity(*se); 397 } 398 399 while (pse_depth > se_depth) { 400 pse_depth--; 401 *pse = parent_entity(*pse); 402 } 403 404 while (!is_same_group(*se, *pse)) { 405 *se = parent_entity(*se); 406 *pse = parent_entity(*pse); 407 } 408 } 409 410 #else /* !CONFIG_FAIR_GROUP_SCHED */ 411 412 static inline struct task_struct *task_of(struct sched_entity *se) 413 { 414 return container_of(se, struct task_struct, se); 415 } 416 417 static inline struct rq *rq_of(struct cfs_rq *cfs_rq) 418 { 419 return container_of(cfs_rq, struct rq, cfs); 420 } 421 422 #define entity_is_task(se) 1 423 424 #define for_each_sched_entity(se) \ 425 for (; se; se = NULL) 426 427 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p) 428 { 429 return &task_rq(p)->cfs; 430 } 431 432 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se) 433 { 434 struct task_struct *p = task_of(se); 435 struct rq *rq = task_rq(p); 436 437 return &rq->cfs; 438 } 439 440 /* runqueue "owned" by this group */ 441 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp) 442 { 443 return NULL; 444 } 445 446 static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq) 447 { 448 } 449 450 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq) 451 { 452 } 453 454 #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) \ 455 for (cfs_rq = &rq->cfs, pos = NULL; cfs_rq; cfs_rq = pos) 456 457 static inline struct sched_entity *parent_entity(struct sched_entity *se) 458 { 459 return NULL; 460 } 461 462 static inline void 463 find_matching_se(struct sched_entity **se, struct sched_entity **pse) 464 { 465 } 466 467 #endif /* CONFIG_FAIR_GROUP_SCHED */ 468 469 static __always_inline 470 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec); 471 472 /************************************************************** 473 * Scheduling class tree data structure manipulation methods: 474 */ 475 476 static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime) 477 { 478 s64 delta = (s64)(vruntime - max_vruntime); 479 if (delta > 0) 480 max_vruntime = vruntime; 481 482 return max_vruntime; 483 } 484 485 static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime) 486 { 487 s64 delta = (s64)(vruntime - min_vruntime); 488 if (delta < 0) 489 min_vruntime = vruntime; 490 491 return min_vruntime; 492 } 493 494 static inline int entity_before(struct sched_entity *a, 495 struct sched_entity *b) 496 { 497 return (s64)(a->vruntime - b->vruntime) < 0; 498 } 499 500 static void update_min_vruntime(struct cfs_rq *cfs_rq) 501 { 502 struct sched_entity *curr = cfs_rq->curr; 503 struct rb_node *leftmost = rb_first_cached(&cfs_rq->tasks_timeline); 504 505 u64 vruntime = cfs_rq->min_vruntime; 506 507 if (curr) { 508 if (curr->on_rq) 509 vruntime = curr->vruntime; 510 else 511 curr = NULL; 512 } 513 514 if (leftmost) { /* non-empty tree */ 515 struct sched_entity *se; 516 se = rb_entry(leftmost, struct sched_entity, run_node); 517 518 if (!curr) 519 vruntime = se->vruntime; 520 else 521 vruntime = min_vruntime(vruntime, se->vruntime); 522 } 523 524 /* ensure we never gain time by being placed backwards. */ 525 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime); 526 #ifndef CONFIG_64BIT 527 smp_wmb(); 528 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime; 529 #endif 530 } 531 532 /* 533 * Enqueue an entity into the rb-tree: 534 */ 535 static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) 536 { 537 struct rb_node **link = &cfs_rq->tasks_timeline.rb_root.rb_node; 538 struct rb_node *parent = NULL; 539 struct sched_entity *entry; 540 bool leftmost = true; 541 542 /* 543 * Find the right place in the rbtree: 544 */ 545 while (*link) { 546 parent = *link; 547 entry = rb_entry(parent, struct sched_entity, run_node); 548 /* 549 * We dont care about collisions. Nodes with 550 * the same key stay together. 551 */ 552 if (entity_before(se, entry)) { 553 link = &parent->rb_left; 554 } else { 555 link = &parent->rb_right; 556 leftmost = false; 557 } 558 } 559 560 rb_link_node(&se->run_node, parent, link); 561 rb_insert_color_cached(&se->run_node, 562 &cfs_rq->tasks_timeline, leftmost); 563 } 564 565 static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) 566 { 567 rb_erase_cached(&se->run_node, &cfs_rq->tasks_timeline); 568 } 569 570 struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq) 571 { 572 struct rb_node *left = rb_first_cached(&cfs_rq->tasks_timeline); 573 574 if (!left) 575 return NULL; 576 577 return rb_entry(left, struct sched_entity, run_node); 578 } 579 580 static struct sched_entity *__pick_next_entity(struct sched_entity *se) 581 { 582 struct rb_node *next = rb_next(&se->run_node); 583 584 if (!next) 585 return NULL; 586 587 return rb_entry(next, struct sched_entity, run_node); 588 } 589 590 #ifdef CONFIG_SCHED_DEBUG 591 struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq) 592 { 593 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline.rb_root); 594 595 if (!last) 596 return NULL; 597 598 return rb_entry(last, struct sched_entity, run_node); 599 } 600 601 /************************************************************** 602 * Scheduling class statistics methods: 603 */ 604 605 int sched_proc_update_handler(struct ctl_table *table, int write, 606 void __user *buffer, size_t *lenp, 607 loff_t *ppos) 608 { 609 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 610 unsigned int factor = get_update_sysctl_factor(); 611 612 if (ret || !write) 613 return ret; 614 615 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency, 616 sysctl_sched_min_granularity); 617 618 #define WRT_SYSCTL(name) \ 619 (normalized_sysctl_##name = sysctl_##name / (factor)) 620 WRT_SYSCTL(sched_min_granularity); 621 WRT_SYSCTL(sched_latency); 622 WRT_SYSCTL(sched_wakeup_granularity); 623 #undef WRT_SYSCTL 624 625 return 0; 626 } 627 #endif 628 629 /* 630 * delta /= w 631 */ 632 static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se) 633 { 634 if (unlikely(se->load.weight != NICE_0_LOAD)) 635 delta = __calc_delta(delta, NICE_0_LOAD, &se->load); 636 637 return delta; 638 } 639 640 /* 641 * The idea is to set a period in which each task runs once. 642 * 643 * When there are too many tasks (sched_nr_latency) we have to stretch 644 * this period because otherwise the slices get too small. 645 * 646 * p = (nr <= nl) ? l : l*nr/nl 647 */ 648 static u64 __sched_period(unsigned long nr_running) 649 { 650 if (unlikely(nr_running > sched_nr_latency)) 651 return nr_running * sysctl_sched_min_granularity; 652 else 653 return sysctl_sched_latency; 654 } 655 656 /* 657 * We calculate the wall-time slice from the period by taking a part 658 * proportional to the weight. 659 * 660 * s = p*P[w/rw] 661 */ 662 static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se) 663 { 664 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq); 665 666 for_each_sched_entity(se) { 667 struct load_weight *load; 668 struct load_weight lw; 669 670 cfs_rq = cfs_rq_of(se); 671 load = &cfs_rq->load; 672 673 if (unlikely(!se->on_rq)) { 674 lw = cfs_rq->load; 675 676 update_load_add(&lw, se->load.weight); 677 load = &lw; 678 } 679 slice = __calc_delta(slice, se->load.weight, load); 680 } 681 return slice; 682 } 683 684 /* 685 * We calculate the vruntime slice of a to-be-inserted task. 686 * 687 * vs = s/w 688 */ 689 static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se) 690 { 691 return calc_delta_fair(sched_slice(cfs_rq, se), se); 692 } 693 694 #ifdef CONFIG_SMP 695 696 #include "sched-pelt.h" 697 698 static int select_idle_sibling(struct task_struct *p, int prev_cpu, int cpu); 699 static unsigned long task_h_load(struct task_struct *p); 700 701 /* Give new sched_entity start runnable values to heavy its load in infant time */ 702 void init_entity_runnable_average(struct sched_entity *se) 703 { 704 struct sched_avg *sa = &se->avg; 705 706 memset(sa, 0, sizeof(*sa)); 707 708 /* 709 * Tasks are intialized with full load to be seen as heavy tasks until 710 * they get a chance to stabilize to their real load level. 711 * Group entities are intialized with zero load to reflect the fact that 712 * nothing has been attached to the task group yet. 713 */ 714 if (entity_is_task(se)) 715 sa->runnable_load_avg = sa->load_avg = scale_load_down(se->load.weight); 716 717 se->runnable_weight = se->load.weight; 718 719 /* when this task enqueue'ed, it will contribute to its cfs_rq's load_avg */ 720 } 721 722 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq); 723 static void attach_entity_cfs_rq(struct sched_entity *se); 724 725 /* 726 * With new tasks being created, their initial util_avgs are extrapolated 727 * based on the cfs_rq's current util_avg: 728 * 729 * util_avg = cfs_rq->util_avg / (cfs_rq->load_avg + 1) * se.load.weight 730 * 731 * However, in many cases, the above util_avg does not give a desired 732 * value. Moreover, the sum of the util_avgs may be divergent, such 733 * as when the series is a harmonic series. 734 * 735 * To solve this problem, we also cap the util_avg of successive tasks to 736 * only 1/2 of the left utilization budget: 737 * 738 * util_avg_cap = (1024 - cfs_rq->avg.util_avg) / 2^n 739 * 740 * where n denotes the nth task. 741 * 742 * For example, a simplest series from the beginning would be like: 743 * 744 * task util_avg: 512, 256, 128, 64, 32, 16, 8, ... 745 * cfs_rq util_avg: 512, 768, 896, 960, 992, 1008, 1016, ... 746 * 747 * Finally, that extrapolated util_avg is clamped to the cap (util_avg_cap) 748 * if util_avg > util_avg_cap. 749 */ 750 void post_init_entity_util_avg(struct sched_entity *se) 751 { 752 struct cfs_rq *cfs_rq = cfs_rq_of(se); 753 struct sched_avg *sa = &se->avg; 754 long cap = (long)(SCHED_CAPACITY_SCALE - cfs_rq->avg.util_avg) / 2; 755 756 if (cap > 0) { 757 if (cfs_rq->avg.util_avg != 0) { 758 sa->util_avg = cfs_rq->avg.util_avg * se->load.weight; 759 sa->util_avg /= (cfs_rq->avg.load_avg + 1); 760 761 if (sa->util_avg > cap) 762 sa->util_avg = cap; 763 } else { 764 sa->util_avg = cap; 765 } 766 } 767 768 if (entity_is_task(se)) { 769 struct task_struct *p = task_of(se); 770 if (p->sched_class != &fair_sched_class) { 771 /* 772 * For !fair tasks do: 773 * 774 update_cfs_rq_load_avg(now, cfs_rq); 775 attach_entity_load_avg(cfs_rq, se, 0); 776 switched_from_fair(rq, p); 777 * 778 * such that the next switched_to_fair() has the 779 * expected state. 780 */ 781 se->avg.last_update_time = cfs_rq_clock_task(cfs_rq); 782 return; 783 } 784 } 785 786 attach_entity_cfs_rq(se); 787 } 788 789 #else /* !CONFIG_SMP */ 790 void init_entity_runnable_average(struct sched_entity *se) 791 { 792 } 793 void post_init_entity_util_avg(struct sched_entity *se) 794 { 795 } 796 static void update_tg_load_avg(struct cfs_rq *cfs_rq, int force) 797 { 798 } 799 #endif /* CONFIG_SMP */ 800 801 /* 802 * Update the current task's runtime statistics. 803 */ 804 static void update_curr(struct cfs_rq *cfs_rq) 805 { 806 struct sched_entity *curr = cfs_rq->curr; 807 u64 now = rq_clock_task(rq_of(cfs_rq)); 808 u64 delta_exec; 809 810 if (unlikely(!curr)) 811 return; 812 813 delta_exec = now - curr->exec_start; 814 if (unlikely((s64)delta_exec <= 0)) 815 return; 816 817 curr->exec_start = now; 818 819 schedstat_set(curr->statistics.exec_max, 820 max(delta_exec, curr->statistics.exec_max)); 821 822 curr->sum_exec_runtime += delta_exec; 823 schedstat_add(cfs_rq->exec_clock, delta_exec); 824 825 curr->vruntime += calc_delta_fair(delta_exec, curr); 826 update_min_vruntime(cfs_rq); 827 828 if (entity_is_task(curr)) { 829 struct task_struct *curtask = task_of(curr); 830 831 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime); 832 cgroup_account_cputime(curtask, delta_exec); 833 account_group_exec_runtime(curtask, delta_exec); 834 } 835 836 account_cfs_rq_runtime(cfs_rq, delta_exec); 837 } 838 839 static void update_curr_fair(struct rq *rq) 840 { 841 update_curr(cfs_rq_of(&rq->curr->se)); 842 } 843 844 static inline void 845 update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se) 846 { 847 u64 wait_start, prev_wait_start; 848 849 if (!schedstat_enabled()) 850 return; 851 852 wait_start = rq_clock(rq_of(cfs_rq)); 853 prev_wait_start = schedstat_val(se->statistics.wait_start); 854 855 if (entity_is_task(se) && task_on_rq_migrating(task_of(se)) && 856 likely(wait_start > prev_wait_start)) 857 wait_start -= prev_wait_start; 858 859 __schedstat_set(se->statistics.wait_start, wait_start); 860 } 861 862 static inline void 863 update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se) 864 { 865 struct task_struct *p; 866 u64 delta; 867 868 if (!schedstat_enabled()) 869 return; 870 871 delta = rq_clock(rq_of(cfs_rq)) - schedstat_val(se->statistics.wait_start); 872 873 if (entity_is_task(se)) { 874 p = task_of(se); 875 if (task_on_rq_migrating(p)) { 876 /* 877 * Preserve migrating task's wait time so wait_start 878 * time stamp can be adjusted to accumulate wait time 879 * prior to migration. 880 */ 881 __schedstat_set(se->statistics.wait_start, delta); 882 return; 883 } 884 trace_sched_stat_wait(p, delta); 885 } 886 887 __schedstat_set(se->statistics.wait_max, 888 max(schedstat_val(se->statistics.wait_max), delta)); 889 __schedstat_inc(se->statistics.wait_count); 890 __schedstat_add(se->statistics.wait_sum, delta); 891 __schedstat_set(se->statistics.wait_start, 0); 892 } 893 894 static inline void 895 update_stats_enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se) 896 { 897 struct task_struct *tsk = NULL; 898 u64 sleep_start, block_start; 899 900 if (!schedstat_enabled()) 901 return; 902 903 sleep_start = schedstat_val(se->statistics.sleep_start); 904 block_start = schedstat_val(se->statistics.block_start); 905 906 if (entity_is_task(se)) 907 tsk = task_of(se); 908 909 if (sleep_start) { 910 u64 delta = rq_clock(rq_of(cfs_rq)) - sleep_start; 911 912 if ((s64)delta < 0) 913 delta = 0; 914 915 if (unlikely(delta > schedstat_val(se->statistics.sleep_max))) 916 __schedstat_set(se->statistics.sleep_max, delta); 917 918 __schedstat_set(se->statistics.sleep_start, 0); 919 __schedstat_add(se->statistics.sum_sleep_runtime, delta); 920 921 if (tsk) { 922 account_scheduler_latency(tsk, delta >> 10, 1); 923 trace_sched_stat_sleep(tsk, delta); 924 } 925 } 926 if (block_start) { 927 u64 delta = rq_clock(rq_of(cfs_rq)) - block_start; 928 929 if ((s64)delta < 0) 930 delta = 0; 931 932 if (unlikely(delta > schedstat_val(se->statistics.block_max))) 933 __schedstat_set(se->statistics.block_max, delta); 934 935 __schedstat_set(se->statistics.block_start, 0); 936 __schedstat_add(se->statistics.sum_sleep_runtime, delta); 937 938 if (tsk) { 939 if (tsk->in_iowait) { 940 __schedstat_add(se->statistics.iowait_sum, delta); 941 __schedstat_inc(se->statistics.iowait_count); 942 trace_sched_stat_iowait(tsk, delta); 943 } 944 945 trace_sched_stat_blocked(tsk, delta); 946 947 /* 948 * Blocking time is in units of nanosecs, so shift by 949 * 20 to get a milliseconds-range estimation of the 950 * amount of time that the task spent sleeping: 951 */ 952 if (unlikely(prof_on == SLEEP_PROFILING)) { 953 profile_hits(SLEEP_PROFILING, 954 (void *)get_wchan(tsk), 955 delta >> 20); 956 } 957 account_scheduler_latency(tsk, delta >> 10, 0); 958 } 959 } 960 } 961 962 /* 963 * Task is being enqueued - update stats: 964 */ 965 static inline void 966 update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 967 { 968 if (!schedstat_enabled()) 969 return; 970 971 /* 972 * Are we enqueueing a waiting task? (for current tasks 973 * a dequeue/enqueue event is a NOP) 974 */ 975 if (se != cfs_rq->curr) 976 update_stats_wait_start(cfs_rq, se); 977 978 if (flags & ENQUEUE_WAKEUP) 979 update_stats_enqueue_sleeper(cfs_rq, se); 980 } 981 982 static inline void 983 update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 984 { 985 986 if (!schedstat_enabled()) 987 return; 988 989 /* 990 * Mark the end of the wait period if dequeueing a 991 * waiting task: 992 */ 993 if (se != cfs_rq->curr) 994 update_stats_wait_end(cfs_rq, se); 995 996 if ((flags & DEQUEUE_SLEEP) && entity_is_task(se)) { 997 struct task_struct *tsk = task_of(se); 998 999 if (tsk->state & TASK_INTERRUPTIBLE) 1000 __schedstat_set(se->statistics.sleep_start, 1001 rq_clock(rq_of(cfs_rq))); 1002 if (tsk->state & TASK_UNINTERRUPTIBLE) 1003 __schedstat_set(se->statistics.block_start, 1004 rq_clock(rq_of(cfs_rq))); 1005 } 1006 } 1007 1008 /* 1009 * We are picking a new current task - update its stats: 1010 */ 1011 static inline void 1012 update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se) 1013 { 1014 /* 1015 * We are starting a new run period: 1016 */ 1017 se->exec_start = rq_clock_task(rq_of(cfs_rq)); 1018 } 1019 1020 /************************************************** 1021 * Scheduling class queueing methods: 1022 */ 1023 1024 #ifdef CONFIG_NUMA_BALANCING 1025 /* 1026 * Approximate time to scan a full NUMA task in ms. The task scan period is 1027 * calculated based on the tasks virtual memory size and 1028 * numa_balancing_scan_size. 1029 */ 1030 unsigned int sysctl_numa_balancing_scan_period_min = 1000; 1031 unsigned int sysctl_numa_balancing_scan_period_max = 60000; 1032 1033 /* Portion of address space to scan in MB */ 1034 unsigned int sysctl_numa_balancing_scan_size = 256; 1035 1036 /* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */ 1037 unsigned int sysctl_numa_balancing_scan_delay = 1000; 1038 1039 struct numa_group { 1040 atomic_t refcount; 1041 1042 spinlock_t lock; /* nr_tasks, tasks */ 1043 int nr_tasks; 1044 pid_t gid; 1045 int active_nodes; 1046 1047 struct rcu_head rcu; 1048 unsigned long total_faults; 1049 unsigned long max_faults_cpu; 1050 /* 1051 * Faults_cpu is used to decide whether memory should move 1052 * towards the CPU. As a consequence, these stats are weighted 1053 * more by CPU use than by memory faults. 1054 */ 1055 unsigned long *faults_cpu; 1056 unsigned long faults[0]; 1057 }; 1058 1059 static inline unsigned long group_faults_priv(struct numa_group *ng); 1060 static inline unsigned long group_faults_shared(struct numa_group *ng); 1061 1062 static unsigned int task_nr_scan_windows(struct task_struct *p) 1063 { 1064 unsigned long rss = 0; 1065 unsigned long nr_scan_pages; 1066 1067 /* 1068 * Calculations based on RSS as non-present and empty pages are skipped 1069 * by the PTE scanner and NUMA hinting faults should be trapped based 1070 * on resident pages 1071 */ 1072 nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT); 1073 rss = get_mm_rss(p->mm); 1074 if (!rss) 1075 rss = nr_scan_pages; 1076 1077 rss = round_up(rss, nr_scan_pages); 1078 return rss / nr_scan_pages; 1079 } 1080 1081 /* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */ 1082 #define MAX_SCAN_WINDOW 2560 1083 1084 static unsigned int task_scan_min(struct task_struct *p) 1085 { 1086 unsigned int scan_size = READ_ONCE(sysctl_numa_balancing_scan_size); 1087 unsigned int scan, floor; 1088 unsigned int windows = 1; 1089 1090 if (scan_size < MAX_SCAN_WINDOW) 1091 windows = MAX_SCAN_WINDOW / scan_size; 1092 floor = 1000 / windows; 1093 1094 scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p); 1095 return max_t(unsigned int, floor, scan); 1096 } 1097 1098 static unsigned int task_scan_start(struct task_struct *p) 1099 { 1100 unsigned long smin = task_scan_min(p); 1101 unsigned long period = smin; 1102 1103 /* Scale the maximum scan period with the amount of shared memory. */ 1104 if (p->numa_group) { 1105 struct numa_group *ng = p->numa_group; 1106 unsigned long shared = group_faults_shared(ng); 1107 unsigned long private = group_faults_priv(ng); 1108 1109 period *= atomic_read(&ng->refcount); 1110 period *= shared + 1; 1111 period /= private + shared + 1; 1112 } 1113 1114 return max(smin, period); 1115 } 1116 1117 static unsigned int task_scan_max(struct task_struct *p) 1118 { 1119 unsigned long smin = task_scan_min(p); 1120 unsigned long smax; 1121 1122 /* Watch for min being lower than max due to floor calculations */ 1123 smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p); 1124 1125 /* Scale the maximum scan period with the amount of shared memory. */ 1126 if (p->numa_group) { 1127 struct numa_group *ng = p->numa_group; 1128 unsigned long shared = group_faults_shared(ng); 1129 unsigned long private = group_faults_priv(ng); 1130 unsigned long period = smax; 1131 1132 period *= atomic_read(&ng->refcount); 1133 period *= shared + 1; 1134 period /= private + shared + 1; 1135 1136 smax = max(smax, period); 1137 } 1138 1139 return max(smin, smax); 1140 } 1141 1142 static void account_numa_enqueue(struct rq *rq, struct task_struct *p) 1143 { 1144 rq->nr_numa_running += (p->numa_preferred_nid != -1); 1145 rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p)); 1146 } 1147 1148 static void account_numa_dequeue(struct rq *rq, struct task_struct *p) 1149 { 1150 rq->nr_numa_running -= (p->numa_preferred_nid != -1); 1151 rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p)); 1152 } 1153 1154 /* Shared or private faults. */ 1155 #define NR_NUMA_HINT_FAULT_TYPES 2 1156 1157 /* Memory and CPU locality */ 1158 #define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2) 1159 1160 /* Averaged statistics, and temporary buffers. */ 1161 #define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2) 1162 1163 pid_t task_numa_group_id(struct task_struct *p) 1164 { 1165 return p->numa_group ? p->numa_group->gid : 0; 1166 } 1167 1168 /* 1169 * The averaged statistics, shared & private, memory & CPU, 1170 * occupy the first half of the array. The second half of the 1171 * array is for current counters, which are averaged into the 1172 * first set by task_numa_placement. 1173 */ 1174 static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv) 1175 { 1176 return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv; 1177 } 1178 1179 static inline unsigned long task_faults(struct task_struct *p, int nid) 1180 { 1181 if (!p->numa_faults) 1182 return 0; 1183 1184 return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] + 1185 p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)]; 1186 } 1187 1188 static inline unsigned long group_faults(struct task_struct *p, int nid) 1189 { 1190 if (!p->numa_group) 1191 return 0; 1192 1193 return p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 0)] + 1194 p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 1)]; 1195 } 1196 1197 static inline unsigned long group_faults_cpu(struct numa_group *group, int nid) 1198 { 1199 return group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 0)] + 1200 group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 1)]; 1201 } 1202 1203 static inline unsigned long group_faults_priv(struct numa_group *ng) 1204 { 1205 unsigned long faults = 0; 1206 int node; 1207 1208 for_each_online_node(node) { 1209 faults += ng->faults[task_faults_idx(NUMA_MEM, node, 1)]; 1210 } 1211 1212 return faults; 1213 } 1214 1215 static inline unsigned long group_faults_shared(struct numa_group *ng) 1216 { 1217 unsigned long faults = 0; 1218 int node; 1219 1220 for_each_online_node(node) { 1221 faults += ng->faults[task_faults_idx(NUMA_MEM, node, 0)]; 1222 } 1223 1224 return faults; 1225 } 1226 1227 /* 1228 * A node triggering more than 1/3 as many NUMA faults as the maximum is 1229 * considered part of a numa group's pseudo-interleaving set. Migrations 1230 * between these nodes are slowed down, to allow things to settle down. 1231 */ 1232 #define ACTIVE_NODE_FRACTION 3 1233 1234 static bool numa_is_active_node(int nid, struct numa_group *ng) 1235 { 1236 return group_faults_cpu(ng, nid) * ACTIVE_NODE_FRACTION > ng->max_faults_cpu; 1237 } 1238 1239 /* Handle placement on systems where not all nodes are directly connected. */ 1240 static unsigned long score_nearby_nodes(struct task_struct *p, int nid, 1241 int maxdist, bool task) 1242 { 1243 unsigned long score = 0; 1244 int node; 1245 1246 /* 1247 * All nodes are directly connected, and the same distance 1248 * from each other. No need for fancy placement algorithms. 1249 */ 1250 if (sched_numa_topology_type == NUMA_DIRECT) 1251 return 0; 1252 1253 /* 1254 * This code is called for each node, introducing N^2 complexity, 1255 * which should be ok given the number of nodes rarely exceeds 8. 1256 */ 1257 for_each_online_node(node) { 1258 unsigned long faults; 1259 int dist = node_distance(nid, node); 1260 1261 /* 1262 * The furthest away nodes in the system are not interesting 1263 * for placement; nid was already counted. 1264 */ 1265 if (dist == sched_max_numa_distance || node == nid) 1266 continue; 1267 1268 /* 1269 * On systems with a backplane NUMA topology, compare groups 1270 * of nodes, and move tasks towards the group with the most 1271 * memory accesses. When comparing two nodes at distance 1272 * "hoplimit", only nodes closer by than "hoplimit" are part 1273 * of each group. Skip other nodes. 1274 */ 1275 if (sched_numa_topology_type == NUMA_BACKPLANE && 1276 dist > maxdist) 1277 continue; 1278 1279 /* Add up the faults from nearby nodes. */ 1280 if (task) 1281 faults = task_faults(p, node); 1282 else 1283 faults = group_faults(p, node); 1284 1285 /* 1286 * On systems with a glueless mesh NUMA topology, there are 1287 * no fixed "groups of nodes". Instead, nodes that are not 1288 * directly connected bounce traffic through intermediate 1289 * nodes; a numa_group can occupy any set of nodes. 1290 * The further away a node is, the less the faults count. 1291 * This seems to result in good task placement. 1292 */ 1293 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) { 1294 faults *= (sched_max_numa_distance - dist); 1295 faults /= (sched_max_numa_distance - LOCAL_DISTANCE); 1296 } 1297 1298 score += faults; 1299 } 1300 1301 return score; 1302 } 1303 1304 /* 1305 * These return the fraction of accesses done by a particular task, or 1306 * task group, on a particular numa node. The group weight is given a 1307 * larger multiplier, in order to group tasks together that are almost 1308 * evenly spread out between numa nodes. 1309 */ 1310 static inline unsigned long task_weight(struct task_struct *p, int nid, 1311 int dist) 1312 { 1313 unsigned long faults, total_faults; 1314 1315 if (!p->numa_faults) 1316 return 0; 1317 1318 total_faults = p->total_numa_faults; 1319 1320 if (!total_faults) 1321 return 0; 1322 1323 faults = task_faults(p, nid); 1324 faults += score_nearby_nodes(p, nid, dist, true); 1325 1326 return 1000 * faults / total_faults; 1327 } 1328 1329 static inline unsigned long group_weight(struct task_struct *p, int nid, 1330 int dist) 1331 { 1332 unsigned long faults, total_faults; 1333 1334 if (!p->numa_group) 1335 return 0; 1336 1337 total_faults = p->numa_group->total_faults; 1338 1339 if (!total_faults) 1340 return 0; 1341 1342 faults = group_faults(p, nid); 1343 faults += score_nearby_nodes(p, nid, dist, false); 1344 1345 return 1000 * faults / total_faults; 1346 } 1347 1348 bool should_numa_migrate_memory(struct task_struct *p, struct page * page, 1349 int src_nid, int dst_cpu) 1350 { 1351 struct numa_group *ng = p->numa_group; 1352 int dst_nid = cpu_to_node(dst_cpu); 1353 int last_cpupid, this_cpupid; 1354 1355 this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid); 1356 1357 /* 1358 * Multi-stage node selection is used in conjunction with a periodic 1359 * migration fault to build a temporal task<->page relation. By using 1360 * a two-stage filter we remove short/unlikely relations. 1361 * 1362 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate 1363 * a task's usage of a particular page (n_p) per total usage of this 1364 * page (n_t) (in a given time-span) to a probability. 1365 * 1366 * Our periodic faults will sample this probability and getting the 1367 * same result twice in a row, given these samples are fully 1368 * independent, is then given by P(n)^2, provided our sample period 1369 * is sufficiently short compared to the usage pattern. 1370 * 1371 * This quadric squishes small probabilities, making it less likely we 1372 * act on an unlikely task<->page relation. 1373 */ 1374 last_cpupid = page_cpupid_xchg_last(page, this_cpupid); 1375 if (!cpupid_pid_unset(last_cpupid) && 1376 cpupid_to_nid(last_cpupid) != dst_nid) 1377 return false; 1378 1379 /* Always allow migrate on private faults */ 1380 if (cpupid_match_pid(p, last_cpupid)) 1381 return true; 1382 1383 /* A shared fault, but p->numa_group has not been set up yet. */ 1384 if (!ng) 1385 return true; 1386 1387 /* 1388 * Destination node is much more heavily used than the source 1389 * node? Allow migration. 1390 */ 1391 if (group_faults_cpu(ng, dst_nid) > group_faults_cpu(ng, src_nid) * 1392 ACTIVE_NODE_FRACTION) 1393 return true; 1394 1395 /* 1396 * Distribute memory according to CPU & memory use on each node, 1397 * with 3/4 hysteresis to avoid unnecessary memory migrations: 1398 * 1399 * faults_cpu(dst) 3 faults_cpu(src) 1400 * --------------- * - > --------------- 1401 * faults_mem(dst) 4 faults_mem(src) 1402 */ 1403 return group_faults_cpu(ng, dst_nid) * group_faults(p, src_nid) * 3 > 1404 group_faults_cpu(ng, src_nid) * group_faults(p, dst_nid) * 4; 1405 } 1406 1407 static unsigned long weighted_cpuload(struct rq *rq); 1408 static unsigned long source_load(int cpu, int type); 1409 static unsigned long target_load(int cpu, int type); 1410 static unsigned long capacity_of(int cpu); 1411 1412 /* Cached statistics for all CPUs within a node */ 1413 struct numa_stats { 1414 unsigned long nr_running; 1415 unsigned long load; 1416 1417 /* Total compute capacity of CPUs on a node */ 1418 unsigned long compute_capacity; 1419 1420 /* Approximate capacity in terms of runnable tasks on a node */ 1421 unsigned long task_capacity; 1422 int has_free_capacity; 1423 }; 1424 1425 /* 1426 * XXX borrowed from update_sg_lb_stats 1427 */ 1428 static void update_numa_stats(struct numa_stats *ns, int nid) 1429 { 1430 int smt, cpu, cpus = 0; 1431 unsigned long capacity; 1432 1433 memset(ns, 0, sizeof(*ns)); 1434 for_each_cpu(cpu, cpumask_of_node(nid)) { 1435 struct rq *rq = cpu_rq(cpu); 1436 1437 ns->nr_running += rq->nr_running; 1438 ns->load += weighted_cpuload(rq); 1439 ns->compute_capacity += capacity_of(cpu); 1440 1441 cpus++; 1442 } 1443 1444 /* 1445 * If we raced with hotplug and there are no CPUs left in our mask 1446 * the @ns structure is NULL'ed and task_numa_compare() will 1447 * not find this node attractive. 1448 * 1449 * We'll either bail at !has_free_capacity, or we'll detect a huge 1450 * imbalance and bail there. 1451 */ 1452 if (!cpus) 1453 return; 1454 1455 /* smt := ceil(cpus / capacity), assumes: 1 < smt_power < 2 */ 1456 smt = DIV_ROUND_UP(SCHED_CAPACITY_SCALE * cpus, ns->compute_capacity); 1457 capacity = cpus / smt; /* cores */ 1458 1459 ns->task_capacity = min_t(unsigned, capacity, 1460 DIV_ROUND_CLOSEST(ns->compute_capacity, SCHED_CAPACITY_SCALE)); 1461 ns->has_free_capacity = (ns->nr_running < ns->task_capacity); 1462 } 1463 1464 struct task_numa_env { 1465 struct task_struct *p; 1466 1467 int src_cpu, src_nid; 1468 int dst_cpu, dst_nid; 1469 1470 struct numa_stats src_stats, dst_stats; 1471 1472 int imbalance_pct; 1473 int dist; 1474 1475 struct task_struct *best_task; 1476 long best_imp; 1477 int best_cpu; 1478 }; 1479 1480 static void task_numa_assign(struct task_numa_env *env, 1481 struct task_struct *p, long imp) 1482 { 1483 if (env->best_task) 1484 put_task_struct(env->best_task); 1485 if (p) 1486 get_task_struct(p); 1487 1488 env->best_task = p; 1489 env->best_imp = imp; 1490 env->best_cpu = env->dst_cpu; 1491 } 1492 1493 static bool load_too_imbalanced(long src_load, long dst_load, 1494 struct task_numa_env *env) 1495 { 1496 long imb, old_imb; 1497 long orig_src_load, orig_dst_load; 1498 long src_capacity, dst_capacity; 1499 1500 /* 1501 * The load is corrected for the CPU capacity available on each node. 1502 * 1503 * src_load dst_load 1504 * ------------ vs --------- 1505 * src_capacity dst_capacity 1506 */ 1507 src_capacity = env->src_stats.compute_capacity; 1508 dst_capacity = env->dst_stats.compute_capacity; 1509 1510 /* We care about the slope of the imbalance, not the direction. */ 1511 if (dst_load < src_load) 1512 swap(dst_load, src_load); 1513 1514 /* Is the difference below the threshold? */ 1515 imb = dst_load * src_capacity * 100 - 1516 src_load * dst_capacity * env->imbalance_pct; 1517 if (imb <= 0) 1518 return false; 1519 1520 /* 1521 * The imbalance is above the allowed threshold. 1522 * Compare it with the old imbalance. 1523 */ 1524 orig_src_load = env->src_stats.load; 1525 orig_dst_load = env->dst_stats.load; 1526 1527 if (orig_dst_load < orig_src_load) 1528 swap(orig_dst_load, orig_src_load); 1529 1530 old_imb = orig_dst_load * src_capacity * 100 - 1531 orig_src_load * dst_capacity * env->imbalance_pct; 1532 1533 /* Would this change make things worse? */ 1534 return (imb > old_imb); 1535 } 1536 1537 /* 1538 * This checks if the overall compute and NUMA accesses of the system would 1539 * be improved if the source tasks was migrated to the target dst_cpu taking 1540 * into account that it might be best if task running on the dst_cpu should 1541 * be exchanged with the source task 1542 */ 1543 static void task_numa_compare(struct task_numa_env *env, 1544 long taskimp, long groupimp) 1545 { 1546 struct rq *src_rq = cpu_rq(env->src_cpu); 1547 struct rq *dst_rq = cpu_rq(env->dst_cpu); 1548 struct task_struct *cur; 1549 long src_load, dst_load; 1550 long load; 1551 long imp = env->p->numa_group ? groupimp : taskimp; 1552 long moveimp = imp; 1553 int dist = env->dist; 1554 1555 rcu_read_lock(); 1556 cur = task_rcu_dereference(&dst_rq->curr); 1557 if (cur && ((cur->flags & PF_EXITING) || is_idle_task(cur))) 1558 cur = NULL; 1559 1560 /* 1561 * Because we have preemption enabled we can get migrated around and 1562 * end try selecting ourselves (current == env->p) as a swap candidate. 1563 */ 1564 if (cur == env->p) 1565 goto unlock; 1566 1567 /* 1568 * "imp" is the fault differential for the source task between the 1569 * source and destination node. Calculate the total differential for 1570 * the source task and potential destination task. The more negative 1571 * the value is, the more rmeote accesses that would be expected to 1572 * be incurred if the tasks were swapped. 1573 */ 1574 if (cur) { 1575 /* Skip this swap candidate if cannot move to the source CPU: */ 1576 if (!cpumask_test_cpu(env->src_cpu, &cur->cpus_allowed)) 1577 goto unlock; 1578 1579 /* 1580 * If dst and source tasks are in the same NUMA group, or not 1581 * in any group then look only at task weights. 1582 */ 1583 if (cur->numa_group == env->p->numa_group) { 1584 imp = taskimp + task_weight(cur, env->src_nid, dist) - 1585 task_weight(cur, env->dst_nid, dist); 1586 /* 1587 * Add some hysteresis to prevent swapping the 1588 * tasks within a group over tiny differences. 1589 */ 1590 if (cur->numa_group) 1591 imp -= imp/16; 1592 } else { 1593 /* 1594 * Compare the group weights. If a task is all by 1595 * itself (not part of a group), use the task weight 1596 * instead. 1597 */ 1598 if (cur->numa_group) 1599 imp += group_weight(cur, env->src_nid, dist) - 1600 group_weight(cur, env->dst_nid, dist); 1601 else 1602 imp += task_weight(cur, env->src_nid, dist) - 1603 task_weight(cur, env->dst_nid, dist); 1604 } 1605 } 1606 1607 if (imp <= env->best_imp && moveimp <= env->best_imp) 1608 goto unlock; 1609 1610 if (!cur) { 1611 /* Is there capacity at our destination? */ 1612 if (env->src_stats.nr_running <= env->src_stats.task_capacity && 1613 !env->dst_stats.has_free_capacity) 1614 goto unlock; 1615 1616 goto balance; 1617 } 1618 1619 /* Balance doesn't matter much if we're running a task per CPU: */ 1620 if (imp > env->best_imp && src_rq->nr_running == 1 && 1621 dst_rq->nr_running == 1) 1622 goto assign; 1623 1624 /* 1625 * In the overloaded case, try and keep the load balanced. 1626 */ 1627 balance: 1628 load = task_h_load(env->p); 1629 dst_load = env->dst_stats.load + load; 1630 src_load = env->src_stats.load - load; 1631 1632 if (moveimp > imp && moveimp > env->best_imp) { 1633 /* 1634 * If the improvement from just moving env->p direction is 1635 * better than swapping tasks around, check if a move is 1636 * possible. Store a slightly smaller score than moveimp, 1637 * so an actually idle CPU will win. 1638 */ 1639 if (!load_too_imbalanced(src_load, dst_load, env)) { 1640 imp = moveimp - 1; 1641 cur = NULL; 1642 goto assign; 1643 } 1644 } 1645 1646 if (imp <= env->best_imp) 1647 goto unlock; 1648 1649 if (cur) { 1650 load = task_h_load(cur); 1651 dst_load -= load; 1652 src_load += load; 1653 } 1654 1655 if (load_too_imbalanced(src_load, dst_load, env)) 1656 goto unlock; 1657 1658 /* 1659 * One idle CPU per node is evaluated for a task numa move. 1660 * Call select_idle_sibling to maybe find a better one. 1661 */ 1662 if (!cur) { 1663 /* 1664 * select_idle_siblings() uses an per-CPU cpumask that 1665 * can be used from IRQ context. 1666 */ 1667 local_irq_disable(); 1668 env->dst_cpu = select_idle_sibling(env->p, env->src_cpu, 1669 env->dst_cpu); 1670 local_irq_enable(); 1671 } 1672 1673 assign: 1674 task_numa_assign(env, cur, imp); 1675 unlock: 1676 rcu_read_unlock(); 1677 } 1678 1679 static void task_numa_find_cpu(struct task_numa_env *env, 1680 long taskimp, long groupimp) 1681 { 1682 int cpu; 1683 1684 for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) { 1685 /* Skip this CPU if the source task cannot migrate */ 1686 if (!cpumask_test_cpu(cpu, &env->p->cpus_allowed)) 1687 continue; 1688 1689 env->dst_cpu = cpu; 1690 task_numa_compare(env, taskimp, groupimp); 1691 } 1692 } 1693 1694 /* Only move tasks to a NUMA node less busy than the current node. */ 1695 static bool numa_has_capacity(struct task_numa_env *env) 1696 { 1697 struct numa_stats *src = &env->src_stats; 1698 struct numa_stats *dst = &env->dst_stats; 1699 1700 if (src->has_free_capacity && !dst->has_free_capacity) 1701 return false; 1702 1703 /* 1704 * Only consider a task move if the source has a higher load 1705 * than the destination, corrected for CPU capacity on each node. 1706 * 1707 * src->load dst->load 1708 * --------------------- vs --------------------- 1709 * src->compute_capacity dst->compute_capacity 1710 */ 1711 if (src->load * dst->compute_capacity * env->imbalance_pct > 1712 1713 dst->load * src->compute_capacity * 100) 1714 return true; 1715 1716 return false; 1717 } 1718 1719 static int task_numa_migrate(struct task_struct *p) 1720 { 1721 struct task_numa_env env = { 1722 .p = p, 1723 1724 .src_cpu = task_cpu(p), 1725 .src_nid = task_node(p), 1726 1727 .imbalance_pct = 112, 1728 1729 .best_task = NULL, 1730 .best_imp = 0, 1731 .best_cpu = -1, 1732 }; 1733 struct sched_domain *sd; 1734 unsigned long taskweight, groupweight; 1735 int nid, ret, dist; 1736 long taskimp, groupimp; 1737 1738 /* 1739 * Pick the lowest SD_NUMA domain, as that would have the smallest 1740 * imbalance and would be the first to start moving tasks about. 1741 * 1742 * And we want to avoid any moving of tasks about, as that would create 1743 * random movement of tasks -- counter the numa conditions we're trying 1744 * to satisfy here. 1745 */ 1746 rcu_read_lock(); 1747 sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu)); 1748 if (sd) 1749 env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2; 1750 rcu_read_unlock(); 1751 1752 /* 1753 * Cpusets can break the scheduler domain tree into smaller 1754 * balance domains, some of which do not cross NUMA boundaries. 1755 * Tasks that are "trapped" in such domains cannot be migrated 1756 * elsewhere, so there is no point in (re)trying. 1757 */ 1758 if (unlikely(!sd)) { 1759 p->numa_preferred_nid = task_node(p); 1760 return -EINVAL; 1761 } 1762 1763 env.dst_nid = p->numa_preferred_nid; 1764 dist = env.dist = node_distance(env.src_nid, env.dst_nid); 1765 taskweight = task_weight(p, env.src_nid, dist); 1766 groupweight = group_weight(p, env.src_nid, dist); 1767 update_numa_stats(&env.src_stats, env.src_nid); 1768 taskimp = task_weight(p, env.dst_nid, dist) - taskweight; 1769 groupimp = group_weight(p, env.dst_nid, dist) - groupweight; 1770 update_numa_stats(&env.dst_stats, env.dst_nid); 1771 1772 /* Try to find a spot on the preferred nid. */ 1773 if (numa_has_capacity(&env)) 1774 task_numa_find_cpu(&env, taskimp, groupimp); 1775 1776 /* 1777 * Look at other nodes in these cases: 1778 * - there is no space available on the preferred_nid 1779 * - the task is part of a numa_group that is interleaved across 1780 * multiple NUMA nodes; in order to better consolidate the group, 1781 * we need to check other locations. 1782 */ 1783 if (env.best_cpu == -1 || (p->numa_group && p->numa_group->active_nodes > 1)) { 1784 for_each_online_node(nid) { 1785 if (nid == env.src_nid || nid == p->numa_preferred_nid) 1786 continue; 1787 1788 dist = node_distance(env.src_nid, env.dst_nid); 1789 if (sched_numa_topology_type == NUMA_BACKPLANE && 1790 dist != env.dist) { 1791 taskweight = task_weight(p, env.src_nid, dist); 1792 groupweight = group_weight(p, env.src_nid, dist); 1793 } 1794 1795 /* Only consider nodes where both task and groups benefit */ 1796 taskimp = task_weight(p, nid, dist) - taskweight; 1797 groupimp = group_weight(p, nid, dist) - groupweight; 1798 if (taskimp < 0 && groupimp < 0) 1799 continue; 1800 1801 env.dist = dist; 1802 env.dst_nid = nid; 1803 update_numa_stats(&env.dst_stats, env.dst_nid); 1804 if (numa_has_capacity(&env)) 1805 task_numa_find_cpu(&env, taskimp, groupimp); 1806 } 1807 } 1808 1809 /* 1810 * If the task is part of a workload that spans multiple NUMA nodes, 1811 * and is migrating into one of the workload's active nodes, remember 1812 * this node as the task's preferred numa node, so the workload can 1813 * settle down. 1814 * A task that migrated to a second choice node will be better off 1815 * trying for a better one later. Do not set the preferred node here. 1816 */ 1817 if (p->numa_group) { 1818 struct numa_group *ng = p->numa_group; 1819 1820 if (env.best_cpu == -1) 1821 nid = env.src_nid; 1822 else 1823 nid = env.dst_nid; 1824 1825 if (ng->active_nodes > 1 && numa_is_active_node(env.dst_nid, ng)) 1826 sched_setnuma(p, env.dst_nid); 1827 } 1828 1829 /* No better CPU than the current one was found. */ 1830 if (env.best_cpu == -1) 1831 return -EAGAIN; 1832 1833 /* 1834 * Reset the scan period if the task is being rescheduled on an 1835 * alternative node to recheck if the tasks is now properly placed. 1836 */ 1837 p->numa_scan_period = task_scan_start(p); 1838 1839 if (env.best_task == NULL) { 1840 ret = migrate_task_to(p, env.best_cpu); 1841 if (ret != 0) 1842 trace_sched_stick_numa(p, env.src_cpu, env.best_cpu); 1843 return ret; 1844 } 1845 1846 ret = migrate_swap(p, env.best_task); 1847 if (ret != 0) 1848 trace_sched_stick_numa(p, env.src_cpu, task_cpu(env.best_task)); 1849 put_task_struct(env.best_task); 1850 return ret; 1851 } 1852 1853 /* Attempt to migrate a task to a CPU on the preferred node. */ 1854 static void numa_migrate_preferred(struct task_struct *p) 1855 { 1856 unsigned long interval = HZ; 1857 1858 /* This task has no NUMA fault statistics yet */ 1859 if (unlikely(p->numa_preferred_nid == -1 || !p->numa_faults)) 1860 return; 1861 1862 /* Periodically retry migrating the task to the preferred node */ 1863 interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16); 1864 p->numa_migrate_retry = jiffies + interval; 1865 1866 /* Success if task is already running on preferred CPU */ 1867 if (task_node(p) == p->numa_preferred_nid) 1868 return; 1869 1870 /* Otherwise, try migrate to a CPU on the preferred node */ 1871 task_numa_migrate(p); 1872 } 1873 1874 /* 1875 * Find out how many nodes on the workload is actively running on. Do this by 1876 * tracking the nodes from which NUMA hinting faults are triggered. This can 1877 * be different from the set of nodes where the workload's memory is currently 1878 * located. 1879 */ 1880 static void numa_group_count_active_nodes(struct numa_group *numa_group) 1881 { 1882 unsigned long faults, max_faults = 0; 1883 int nid, active_nodes = 0; 1884 1885 for_each_online_node(nid) { 1886 faults = group_faults_cpu(numa_group, nid); 1887 if (faults > max_faults) 1888 max_faults = faults; 1889 } 1890 1891 for_each_online_node(nid) { 1892 faults = group_faults_cpu(numa_group, nid); 1893 if (faults * ACTIVE_NODE_FRACTION > max_faults) 1894 active_nodes++; 1895 } 1896 1897 numa_group->max_faults_cpu = max_faults; 1898 numa_group->active_nodes = active_nodes; 1899 } 1900 1901 /* 1902 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS 1903 * increments. The more local the fault statistics are, the higher the scan 1904 * period will be for the next scan window. If local/(local+remote) ratio is 1905 * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS) 1906 * the scan period will decrease. Aim for 70% local accesses. 1907 */ 1908 #define NUMA_PERIOD_SLOTS 10 1909 #define NUMA_PERIOD_THRESHOLD 7 1910 1911 /* 1912 * Increase the scan period (slow down scanning) if the majority of 1913 * our memory is already on our local node, or if the majority of 1914 * the page accesses are shared with other processes. 1915 * Otherwise, decrease the scan period. 1916 */ 1917 static void update_task_scan_period(struct task_struct *p, 1918 unsigned long shared, unsigned long private) 1919 { 1920 unsigned int period_slot; 1921 int lr_ratio, ps_ratio; 1922 int diff; 1923 1924 unsigned long remote = p->numa_faults_locality[0]; 1925 unsigned long local = p->numa_faults_locality[1]; 1926 1927 /* 1928 * If there were no record hinting faults then either the task is 1929 * completely idle or all activity is areas that are not of interest 1930 * to automatic numa balancing. Related to that, if there were failed 1931 * migration then it implies we are migrating too quickly or the local 1932 * node is overloaded. In either case, scan slower 1933 */ 1934 if (local + shared == 0 || p->numa_faults_locality[2]) { 1935 p->numa_scan_period = min(p->numa_scan_period_max, 1936 p->numa_scan_period << 1); 1937 1938 p->mm->numa_next_scan = jiffies + 1939 msecs_to_jiffies(p->numa_scan_period); 1940 1941 return; 1942 } 1943 1944 /* 1945 * Prepare to scale scan period relative to the current period. 1946 * == NUMA_PERIOD_THRESHOLD scan period stays the same 1947 * < NUMA_PERIOD_THRESHOLD scan period decreases (scan faster) 1948 * >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower) 1949 */ 1950 period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS); 1951 lr_ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote); 1952 ps_ratio = (private * NUMA_PERIOD_SLOTS) / (private + shared); 1953 1954 if (ps_ratio >= NUMA_PERIOD_THRESHOLD) { 1955 /* 1956 * Most memory accesses are local. There is no need to 1957 * do fast NUMA scanning, since memory is already local. 1958 */ 1959 int slot = ps_ratio - NUMA_PERIOD_THRESHOLD; 1960 if (!slot) 1961 slot = 1; 1962 diff = slot * period_slot; 1963 } else if (lr_ratio >= NUMA_PERIOD_THRESHOLD) { 1964 /* 1965 * Most memory accesses are shared with other tasks. 1966 * There is no point in continuing fast NUMA scanning, 1967 * since other tasks may just move the memory elsewhere. 1968 */ 1969 int slot = lr_ratio - NUMA_PERIOD_THRESHOLD; 1970 if (!slot) 1971 slot = 1; 1972 diff = slot * period_slot; 1973 } else { 1974 /* 1975 * Private memory faults exceed (SLOTS-THRESHOLD)/SLOTS, 1976 * yet they are not on the local NUMA node. Speed up 1977 * NUMA scanning to get the memory moved over. 1978 */ 1979 int ratio = max(lr_ratio, ps_ratio); 1980 diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot; 1981 } 1982 1983 p->numa_scan_period = clamp(p->numa_scan_period + diff, 1984 task_scan_min(p), task_scan_max(p)); 1985 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality)); 1986 } 1987 1988 /* 1989 * Get the fraction of time the task has been running since the last 1990 * NUMA placement cycle. The scheduler keeps similar statistics, but 1991 * decays those on a 32ms period, which is orders of magnitude off 1992 * from the dozens-of-seconds NUMA balancing period. Use the scheduler 1993 * stats only if the task is so new there are no NUMA statistics yet. 1994 */ 1995 static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period) 1996 { 1997 u64 runtime, delta, now; 1998 /* Use the start of this time slice to avoid calculations. */ 1999 now = p->se.exec_start; 2000 runtime = p->se.sum_exec_runtime; 2001 2002 if (p->last_task_numa_placement) { 2003 delta = runtime - p->last_sum_exec_runtime; 2004 *period = now - p->last_task_numa_placement; 2005 } else { 2006 delta = p->se.avg.load_sum; 2007 *period = LOAD_AVG_MAX; 2008 } 2009 2010 p->last_sum_exec_runtime = runtime; 2011 p->last_task_numa_placement = now; 2012 2013 return delta; 2014 } 2015 2016 /* 2017 * Determine the preferred nid for a task in a numa_group. This needs to 2018 * be done in a way that produces consistent results with group_weight, 2019 * otherwise workloads might not converge. 2020 */ 2021 static int preferred_group_nid(struct task_struct *p, int nid) 2022 { 2023 nodemask_t nodes; 2024 int dist; 2025 2026 /* Direct connections between all NUMA nodes. */ 2027 if (sched_numa_topology_type == NUMA_DIRECT) 2028 return nid; 2029 2030 /* 2031 * On a system with glueless mesh NUMA topology, group_weight 2032 * scores nodes according to the number of NUMA hinting faults on 2033 * both the node itself, and on nearby nodes. 2034 */ 2035 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) { 2036 unsigned long score, max_score = 0; 2037 int node, max_node = nid; 2038 2039 dist = sched_max_numa_distance; 2040 2041 for_each_online_node(node) { 2042 score = group_weight(p, node, dist); 2043 if (score > max_score) { 2044 max_score = score; 2045 max_node = node; 2046 } 2047 } 2048 return max_node; 2049 } 2050 2051 /* 2052 * Finding the preferred nid in a system with NUMA backplane 2053 * interconnect topology is more involved. The goal is to locate 2054 * tasks from numa_groups near each other in the system, and 2055 * untangle workloads from different sides of the system. This requires 2056 * searching down the hierarchy of node groups, recursively searching 2057 * inside the highest scoring group of nodes. The nodemask tricks 2058 * keep the complexity of the search down. 2059 */ 2060 nodes = node_online_map; 2061 for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) { 2062 unsigned long max_faults = 0; 2063 nodemask_t max_group = NODE_MASK_NONE; 2064 int a, b; 2065 2066 /* Are there nodes at this distance from each other? */ 2067 if (!find_numa_distance(dist)) 2068 continue; 2069 2070 for_each_node_mask(a, nodes) { 2071 unsigned long faults = 0; 2072 nodemask_t this_group; 2073 nodes_clear(this_group); 2074 2075 /* Sum group's NUMA faults; includes a==b case. */ 2076 for_each_node_mask(b, nodes) { 2077 if (node_distance(a, b) < dist) { 2078 faults += group_faults(p, b); 2079 node_set(b, this_group); 2080 node_clear(b, nodes); 2081 } 2082 } 2083 2084 /* Remember the top group. */ 2085 if (faults > max_faults) { 2086 max_faults = faults; 2087 max_group = this_group; 2088 /* 2089 * subtle: at the smallest distance there is 2090 * just one node left in each "group", the 2091 * winner is the preferred nid. 2092 */ 2093 nid = a; 2094 } 2095 } 2096 /* Next round, evaluate the nodes within max_group. */ 2097 if (!max_faults) 2098 break; 2099 nodes = max_group; 2100 } 2101 return nid; 2102 } 2103 2104 static void task_numa_placement(struct task_struct *p) 2105 { 2106 int seq, nid, max_nid = -1, max_group_nid = -1; 2107 unsigned long max_faults = 0, max_group_faults = 0; 2108 unsigned long fault_types[2] = { 0, 0 }; 2109 unsigned long total_faults; 2110 u64 runtime, period; 2111 spinlock_t *group_lock = NULL; 2112 2113 /* 2114 * The p->mm->numa_scan_seq field gets updated without 2115 * exclusive access. Use READ_ONCE() here to ensure 2116 * that the field is read in a single access: 2117 */ 2118 seq = READ_ONCE(p->mm->numa_scan_seq); 2119 if (p->numa_scan_seq == seq) 2120 return; 2121 p->numa_scan_seq = seq; 2122 p->numa_scan_period_max = task_scan_max(p); 2123 2124 total_faults = p->numa_faults_locality[0] + 2125 p->numa_faults_locality[1]; 2126 runtime = numa_get_avg_runtime(p, &period); 2127 2128 /* If the task is part of a group prevent parallel updates to group stats */ 2129 if (p->numa_group) { 2130 group_lock = &p->numa_group->lock; 2131 spin_lock_irq(group_lock); 2132 } 2133 2134 /* Find the node with the highest number of faults */ 2135 for_each_online_node(nid) { 2136 /* Keep track of the offsets in numa_faults array */ 2137 int mem_idx, membuf_idx, cpu_idx, cpubuf_idx; 2138 unsigned long faults = 0, group_faults = 0; 2139 int priv; 2140 2141 for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) { 2142 long diff, f_diff, f_weight; 2143 2144 mem_idx = task_faults_idx(NUMA_MEM, nid, priv); 2145 membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv); 2146 cpu_idx = task_faults_idx(NUMA_CPU, nid, priv); 2147 cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv); 2148 2149 /* Decay existing window, copy faults since last scan */ 2150 diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2; 2151 fault_types[priv] += p->numa_faults[membuf_idx]; 2152 p->numa_faults[membuf_idx] = 0; 2153 2154 /* 2155 * Normalize the faults_from, so all tasks in a group 2156 * count according to CPU use, instead of by the raw 2157 * number of faults. Tasks with little runtime have 2158 * little over-all impact on throughput, and thus their 2159 * faults are less important. 2160 */ 2161 f_weight = div64_u64(runtime << 16, period + 1); 2162 f_weight = (f_weight * p->numa_faults[cpubuf_idx]) / 2163 (total_faults + 1); 2164 f_diff = f_weight - p->numa_faults[cpu_idx] / 2; 2165 p->numa_faults[cpubuf_idx] = 0; 2166 2167 p->numa_faults[mem_idx] += diff; 2168 p->numa_faults[cpu_idx] += f_diff; 2169 faults += p->numa_faults[mem_idx]; 2170 p->total_numa_faults += diff; 2171 if (p->numa_group) { 2172 /* 2173 * safe because we can only change our own group 2174 * 2175 * mem_idx represents the offset for a given 2176 * nid and priv in a specific region because it 2177 * is at the beginning of the numa_faults array. 2178 */ 2179 p->numa_group->faults[mem_idx] += diff; 2180 p->numa_group->faults_cpu[mem_idx] += f_diff; 2181 p->numa_group->total_faults += diff; 2182 group_faults += p->numa_group->faults[mem_idx]; 2183 } 2184 } 2185 2186 if (faults > max_faults) { 2187 max_faults = faults; 2188 max_nid = nid; 2189 } 2190 2191 if (group_faults > max_group_faults) { 2192 max_group_faults = group_faults; 2193 max_group_nid = nid; 2194 } 2195 } 2196 2197 update_task_scan_period(p, fault_types[0], fault_types[1]); 2198 2199 if (p->numa_group) { 2200 numa_group_count_active_nodes(p->numa_group); 2201 spin_unlock_irq(group_lock); 2202 max_nid = preferred_group_nid(p, max_group_nid); 2203 } 2204 2205 if (max_faults) { 2206 /* Set the new preferred node */ 2207 if (max_nid != p->numa_preferred_nid) 2208 sched_setnuma(p, max_nid); 2209 2210 if (task_node(p) != p->numa_preferred_nid) 2211 numa_migrate_preferred(p); 2212 } 2213 } 2214 2215 static inline int get_numa_group(struct numa_group *grp) 2216 { 2217 return atomic_inc_not_zero(&grp->refcount); 2218 } 2219 2220 static inline void put_numa_group(struct numa_group *grp) 2221 { 2222 if (atomic_dec_and_test(&grp->refcount)) 2223 kfree_rcu(grp, rcu); 2224 } 2225 2226 static void task_numa_group(struct task_struct *p, int cpupid, int flags, 2227 int *priv) 2228 { 2229 struct numa_group *grp, *my_grp; 2230 struct task_struct *tsk; 2231 bool join = false; 2232 int cpu = cpupid_to_cpu(cpupid); 2233 int i; 2234 2235 if (unlikely(!p->numa_group)) { 2236 unsigned int size = sizeof(struct numa_group) + 2237 4*nr_node_ids*sizeof(unsigned long); 2238 2239 grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN); 2240 if (!grp) 2241 return; 2242 2243 atomic_set(&grp->refcount, 1); 2244 grp->active_nodes = 1; 2245 grp->max_faults_cpu = 0; 2246 spin_lock_init(&grp->lock); 2247 grp->gid = p->pid; 2248 /* Second half of the array tracks nids where faults happen */ 2249 grp->faults_cpu = grp->faults + NR_NUMA_HINT_FAULT_TYPES * 2250 nr_node_ids; 2251 2252 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) 2253 grp->faults[i] = p->numa_faults[i]; 2254 2255 grp->total_faults = p->total_numa_faults; 2256 2257 grp->nr_tasks++; 2258 rcu_assign_pointer(p->numa_group, grp); 2259 } 2260 2261 rcu_read_lock(); 2262 tsk = READ_ONCE(cpu_rq(cpu)->curr); 2263 2264 if (!cpupid_match_pid(tsk, cpupid)) 2265 goto no_join; 2266 2267 grp = rcu_dereference(tsk->numa_group); 2268 if (!grp) 2269 goto no_join; 2270 2271 my_grp = p->numa_group; 2272 if (grp == my_grp) 2273 goto no_join; 2274 2275 /* 2276 * Only join the other group if its bigger; if we're the bigger group, 2277 * the other task will join us. 2278 */ 2279 if (my_grp->nr_tasks > grp->nr_tasks) 2280 goto no_join; 2281 2282 /* 2283 * Tie-break on the grp address. 2284 */ 2285 if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp) 2286 goto no_join; 2287 2288 /* Always join threads in the same process. */ 2289 if (tsk->mm == current->mm) 2290 join = true; 2291 2292 /* Simple filter to avoid false positives due to PID collisions */ 2293 if (flags & TNF_SHARED) 2294 join = true; 2295 2296 /* Update priv based on whether false sharing was detected */ 2297 *priv = !join; 2298 2299 if (join && !get_numa_group(grp)) 2300 goto no_join; 2301 2302 rcu_read_unlock(); 2303 2304 if (!join) 2305 return; 2306 2307 BUG_ON(irqs_disabled()); 2308 double_lock_irq(&my_grp->lock, &grp->lock); 2309 2310 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) { 2311 my_grp->faults[i] -= p->numa_faults[i]; 2312 grp->faults[i] += p->numa_faults[i]; 2313 } 2314 my_grp->total_faults -= p->total_numa_faults; 2315 grp->total_faults += p->total_numa_faults; 2316 2317 my_grp->nr_tasks--; 2318 grp->nr_tasks++; 2319 2320 spin_unlock(&my_grp->lock); 2321 spin_unlock_irq(&grp->lock); 2322 2323 rcu_assign_pointer(p->numa_group, grp); 2324 2325 put_numa_group(my_grp); 2326 return; 2327 2328 no_join: 2329 rcu_read_unlock(); 2330 return; 2331 } 2332 2333 void task_numa_free(struct task_struct *p) 2334 { 2335 struct numa_group *grp = p->numa_group; 2336 void *numa_faults = p->numa_faults; 2337 unsigned long flags; 2338 int i; 2339 2340 if (grp) { 2341 spin_lock_irqsave(&grp->lock, flags); 2342 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) 2343 grp->faults[i] -= p->numa_faults[i]; 2344 grp->total_faults -= p->total_numa_faults; 2345 2346 grp->nr_tasks--; 2347 spin_unlock_irqrestore(&grp->lock, flags); 2348 RCU_INIT_POINTER(p->numa_group, NULL); 2349 put_numa_group(grp); 2350 } 2351 2352 p->numa_faults = NULL; 2353 kfree(numa_faults); 2354 } 2355 2356 /* 2357 * Got a PROT_NONE fault for a page on @node. 2358 */ 2359 void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags) 2360 { 2361 struct task_struct *p = current; 2362 bool migrated = flags & TNF_MIGRATED; 2363 int cpu_node = task_node(current); 2364 int local = !!(flags & TNF_FAULT_LOCAL); 2365 struct numa_group *ng; 2366 int priv; 2367 2368 if (!static_branch_likely(&sched_numa_balancing)) 2369 return; 2370 2371 /* for example, ksmd faulting in a user's mm */ 2372 if (!p->mm) 2373 return; 2374 2375 /* Allocate buffer to track faults on a per-node basis */ 2376 if (unlikely(!p->numa_faults)) { 2377 int size = sizeof(*p->numa_faults) * 2378 NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids; 2379 2380 p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN); 2381 if (!p->numa_faults) 2382 return; 2383 2384 p->total_numa_faults = 0; 2385 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality)); 2386 } 2387 2388 /* 2389 * First accesses are treated as private, otherwise consider accesses 2390 * to be private if the accessing pid has not changed 2391 */ 2392 if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) { 2393 priv = 1; 2394 } else { 2395 priv = cpupid_match_pid(p, last_cpupid); 2396 if (!priv && !(flags & TNF_NO_GROUP)) 2397 task_numa_group(p, last_cpupid, flags, &priv); 2398 } 2399 2400 /* 2401 * If a workload spans multiple NUMA nodes, a shared fault that 2402 * occurs wholly within the set of nodes that the workload is 2403 * actively using should be counted as local. This allows the 2404 * scan rate to slow down when a workload has settled down. 2405 */ 2406 ng = p->numa_group; 2407 if (!priv && !local && ng && ng->active_nodes > 1 && 2408 numa_is_active_node(cpu_node, ng) && 2409 numa_is_active_node(mem_node, ng)) 2410 local = 1; 2411 2412 task_numa_placement(p); 2413 2414 /* 2415 * Retry task to preferred node migration periodically, in case it 2416 * case it previously failed, or the scheduler moved us. 2417 */ 2418 if (time_after(jiffies, p->numa_migrate_retry)) 2419 numa_migrate_preferred(p); 2420 2421 if (migrated) 2422 p->numa_pages_migrated += pages; 2423 if (flags & TNF_MIGRATE_FAIL) 2424 p->numa_faults_locality[2] += pages; 2425 2426 p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages; 2427 p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages; 2428 p->numa_faults_locality[local] += pages; 2429 } 2430 2431 static void reset_ptenuma_scan(struct task_struct *p) 2432 { 2433 /* 2434 * We only did a read acquisition of the mmap sem, so 2435 * p->mm->numa_scan_seq is written to without exclusive access 2436 * and the update is not guaranteed to be atomic. That's not 2437 * much of an issue though, since this is just used for 2438 * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not 2439 * expensive, to avoid any form of compiler optimizations: 2440 */ 2441 WRITE_ONCE(p->mm->numa_scan_seq, READ_ONCE(p->mm->numa_scan_seq) + 1); 2442 p->mm->numa_scan_offset = 0; 2443 } 2444 2445 /* 2446 * The expensive part of numa migration is done from task_work context. 2447 * Triggered from task_tick_numa(). 2448 */ 2449 void task_numa_work(struct callback_head *work) 2450 { 2451 unsigned long migrate, next_scan, now = jiffies; 2452 struct task_struct *p = current; 2453 struct mm_struct *mm = p->mm; 2454 u64 runtime = p->se.sum_exec_runtime; 2455 struct vm_area_struct *vma; 2456 unsigned long start, end; 2457 unsigned long nr_pte_updates = 0; 2458 long pages, virtpages; 2459 2460 SCHED_WARN_ON(p != container_of(work, struct task_struct, numa_work)); 2461 2462 work->next = work; /* protect against double add */ 2463 /* 2464 * Who cares about NUMA placement when they're dying. 2465 * 2466 * NOTE: make sure not to dereference p->mm before this check, 2467 * exit_task_work() happens _after_ exit_mm() so we could be called 2468 * without p->mm even though we still had it when we enqueued this 2469 * work. 2470 */ 2471 if (p->flags & PF_EXITING) 2472 return; 2473 2474 if (!mm->numa_next_scan) { 2475 mm->numa_next_scan = now + 2476 msecs_to_jiffies(sysctl_numa_balancing_scan_delay); 2477 } 2478 2479 /* 2480 * Enforce maximal scan/migration frequency.. 2481 */ 2482 migrate = mm->numa_next_scan; 2483 if (time_before(now, migrate)) 2484 return; 2485 2486 if (p->numa_scan_period == 0) { 2487 p->numa_scan_period_max = task_scan_max(p); 2488 p->numa_scan_period = task_scan_start(p); 2489 } 2490 2491 next_scan = now + msecs_to_jiffies(p->numa_scan_period); 2492 if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate) 2493 return; 2494 2495 /* 2496 * Delay this task enough that another task of this mm will likely win 2497 * the next time around. 2498 */ 2499 p->node_stamp += 2 * TICK_NSEC; 2500 2501 start = mm->numa_scan_offset; 2502 pages = sysctl_numa_balancing_scan_size; 2503 pages <<= 20 - PAGE_SHIFT; /* MB in pages */ 2504 virtpages = pages * 8; /* Scan up to this much virtual space */ 2505 if (!pages) 2506 return; 2507 2508 2509 if (!down_read_trylock(&mm->mmap_sem)) 2510 return; 2511 vma = find_vma(mm, start); 2512 if (!vma) { 2513 reset_ptenuma_scan(p); 2514 start = 0; 2515 vma = mm->mmap; 2516 } 2517 for (; vma; vma = vma->vm_next) { 2518 if (!vma_migratable(vma) || !vma_policy_mof(vma) || 2519 is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_MIXEDMAP)) { 2520 continue; 2521 } 2522 2523 /* 2524 * Shared library pages mapped by multiple processes are not 2525 * migrated as it is expected they are cache replicated. Avoid 2526 * hinting faults in read-only file-backed mappings or the vdso 2527 * as migrating the pages will be of marginal benefit. 2528 */ 2529 if (!vma->vm_mm || 2530 (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ))) 2531 continue; 2532 2533 /* 2534 * Skip inaccessible VMAs to avoid any confusion between 2535 * PROT_NONE and NUMA hinting ptes 2536 */ 2537 if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE))) 2538 continue; 2539 2540 do { 2541 start = max(start, vma->vm_start); 2542 end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE); 2543 end = min(end, vma->vm_end); 2544 nr_pte_updates = change_prot_numa(vma, start, end); 2545 2546 /* 2547 * Try to scan sysctl_numa_balancing_size worth of 2548 * hpages that have at least one present PTE that 2549 * is not already pte-numa. If the VMA contains 2550 * areas that are unused or already full of prot_numa 2551 * PTEs, scan up to virtpages, to skip through those 2552 * areas faster. 2553 */ 2554 if (nr_pte_updates) 2555 pages -= (end - start) >> PAGE_SHIFT; 2556 virtpages -= (end - start) >> PAGE_SHIFT; 2557 2558 start = end; 2559 if (pages <= 0 || virtpages <= 0) 2560 goto out; 2561 2562 cond_resched(); 2563 } while (end != vma->vm_end); 2564 } 2565 2566 out: 2567 /* 2568 * It is possible to reach the end of the VMA list but the last few 2569 * VMAs are not guaranteed to the vma_migratable. If they are not, we 2570 * would find the !migratable VMA on the next scan but not reset the 2571 * scanner to the start so check it now. 2572 */ 2573 if (vma) 2574 mm->numa_scan_offset = start; 2575 else 2576 reset_ptenuma_scan(p); 2577 up_read(&mm->mmap_sem); 2578 2579 /* 2580 * Make sure tasks use at least 32x as much time to run other code 2581 * than they used here, to limit NUMA PTE scanning overhead to 3% max. 2582 * Usually update_task_scan_period slows down scanning enough; on an 2583 * overloaded system we need to limit overhead on a per task basis. 2584 */ 2585 if (unlikely(p->se.sum_exec_runtime != runtime)) { 2586 u64 diff = p->se.sum_exec_runtime - runtime; 2587 p->node_stamp += 32 * diff; 2588 } 2589 } 2590 2591 /* 2592 * Drive the periodic memory faults.. 2593 */ 2594 void task_tick_numa(struct rq *rq, struct task_struct *curr) 2595 { 2596 struct callback_head *work = &curr->numa_work; 2597 u64 period, now; 2598 2599 /* 2600 * We don't care about NUMA placement if we don't have memory. 2601 */ 2602 if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work) 2603 return; 2604 2605 /* 2606 * Using runtime rather than walltime has the dual advantage that 2607 * we (mostly) drive the selection from busy threads and that the 2608 * task needs to have done some actual work before we bother with 2609 * NUMA placement. 2610 */ 2611 now = curr->se.sum_exec_runtime; 2612 period = (u64)curr->numa_scan_period * NSEC_PER_MSEC; 2613 2614 if (now > curr->node_stamp + period) { 2615 if (!curr->node_stamp) 2616 curr->numa_scan_period = task_scan_start(curr); 2617 curr->node_stamp += period; 2618 2619 if (!time_before(jiffies, curr->mm->numa_next_scan)) { 2620 init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */ 2621 task_work_add(curr, work, true); 2622 } 2623 } 2624 } 2625 2626 #else 2627 static void task_tick_numa(struct rq *rq, struct task_struct *curr) 2628 { 2629 } 2630 2631 static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p) 2632 { 2633 } 2634 2635 static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p) 2636 { 2637 } 2638 2639 #endif /* CONFIG_NUMA_BALANCING */ 2640 2641 static void 2642 account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se) 2643 { 2644 update_load_add(&cfs_rq->load, se->load.weight); 2645 if (!parent_entity(se)) 2646 update_load_add(&rq_of(cfs_rq)->load, se->load.weight); 2647 #ifdef CONFIG_SMP 2648 if (entity_is_task(se)) { 2649 struct rq *rq = rq_of(cfs_rq); 2650 2651 account_numa_enqueue(rq, task_of(se)); 2652 list_add(&se->group_node, &rq->cfs_tasks); 2653 } 2654 #endif 2655 cfs_rq->nr_running++; 2656 } 2657 2658 static void 2659 account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se) 2660 { 2661 update_load_sub(&cfs_rq->load, se->load.weight); 2662 if (!parent_entity(se)) 2663 update_load_sub(&rq_of(cfs_rq)->load, se->load.weight); 2664 #ifdef CONFIG_SMP 2665 if (entity_is_task(se)) { 2666 account_numa_dequeue(rq_of(cfs_rq), task_of(se)); 2667 list_del_init(&se->group_node); 2668 } 2669 #endif 2670 cfs_rq->nr_running--; 2671 } 2672 2673 /* 2674 * Signed add and clamp on underflow. 2675 * 2676 * Explicitly do a load-store to ensure the intermediate value never hits 2677 * memory. This allows lockless observations without ever seeing the negative 2678 * values. 2679 */ 2680 #define add_positive(_ptr, _val) do { \ 2681 typeof(_ptr) ptr = (_ptr); \ 2682 typeof(_val) val = (_val); \ 2683 typeof(*ptr) res, var = READ_ONCE(*ptr); \ 2684 \ 2685 res = var + val; \ 2686 \ 2687 if (val < 0 && res > var) \ 2688 res = 0; \ 2689 \ 2690 WRITE_ONCE(*ptr, res); \ 2691 } while (0) 2692 2693 /* 2694 * Unsigned subtract and clamp on underflow. 2695 * 2696 * Explicitly do a load-store to ensure the intermediate value never hits 2697 * memory. This allows lockless observations without ever seeing the negative 2698 * values. 2699 */ 2700 #define sub_positive(_ptr, _val) do { \ 2701 typeof(_ptr) ptr = (_ptr); \ 2702 typeof(*ptr) val = (_val); \ 2703 typeof(*ptr) res, var = READ_ONCE(*ptr); \ 2704 res = var - val; \ 2705 if (res > var) \ 2706 res = 0; \ 2707 WRITE_ONCE(*ptr, res); \ 2708 } while (0) 2709 2710 #ifdef CONFIG_SMP 2711 /* 2712 * XXX we want to get rid of these helpers and use the full load resolution. 2713 */ 2714 static inline long se_weight(struct sched_entity *se) 2715 { 2716 return scale_load_down(se->load.weight); 2717 } 2718 2719 static inline long se_runnable(struct sched_entity *se) 2720 { 2721 return scale_load_down(se->runnable_weight); 2722 } 2723 2724 static inline void 2725 enqueue_runnable_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) 2726 { 2727 cfs_rq->runnable_weight += se->runnable_weight; 2728 2729 cfs_rq->avg.runnable_load_avg += se->avg.runnable_load_avg; 2730 cfs_rq->avg.runnable_load_sum += se_runnable(se) * se->avg.runnable_load_sum; 2731 } 2732 2733 static inline void 2734 dequeue_runnable_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) 2735 { 2736 cfs_rq->runnable_weight -= se->runnable_weight; 2737 2738 sub_positive(&cfs_rq->avg.runnable_load_avg, se->avg.runnable_load_avg); 2739 sub_positive(&cfs_rq->avg.runnable_load_sum, 2740 se_runnable(se) * se->avg.runnable_load_sum); 2741 } 2742 2743 static inline void 2744 enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) 2745 { 2746 cfs_rq->avg.load_avg += se->avg.load_avg; 2747 cfs_rq->avg.load_sum += se_weight(se) * se->avg.load_sum; 2748 } 2749 2750 static inline void 2751 dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) 2752 { 2753 sub_positive(&cfs_rq->avg.load_avg, se->avg.load_avg); 2754 sub_positive(&cfs_rq->avg.load_sum, se_weight(se) * se->avg.load_sum); 2755 } 2756 #else 2757 static inline void 2758 enqueue_runnable_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { } 2759 static inline void 2760 dequeue_runnable_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { } 2761 static inline void 2762 enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { } 2763 static inline void 2764 dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { } 2765 #endif 2766 2767 static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, 2768 unsigned long weight, unsigned long runnable) 2769 { 2770 if (se->on_rq) { 2771 /* commit outstanding execution time */ 2772 if (cfs_rq->curr == se) 2773 update_curr(cfs_rq); 2774 account_entity_dequeue(cfs_rq, se); 2775 dequeue_runnable_load_avg(cfs_rq, se); 2776 } 2777 dequeue_load_avg(cfs_rq, se); 2778 2779 se->runnable_weight = runnable; 2780 update_load_set(&se->load, weight); 2781 2782 #ifdef CONFIG_SMP 2783 do { 2784 u32 divider = LOAD_AVG_MAX - 1024 + se->avg.period_contrib; 2785 2786 se->avg.load_avg = div_u64(se_weight(se) * se->avg.load_sum, divider); 2787 se->avg.runnable_load_avg = 2788 div_u64(se_runnable(se) * se->avg.runnable_load_sum, divider); 2789 } while (0); 2790 #endif 2791 2792 enqueue_load_avg(cfs_rq, se); 2793 if (se->on_rq) { 2794 account_entity_enqueue(cfs_rq, se); 2795 enqueue_runnable_load_avg(cfs_rq, se); 2796 } 2797 } 2798 2799 void reweight_task(struct task_struct *p, int prio) 2800 { 2801 struct sched_entity *se = &p->se; 2802 struct cfs_rq *cfs_rq = cfs_rq_of(se); 2803 struct load_weight *load = &se->load; 2804 unsigned long weight = scale_load(sched_prio_to_weight[prio]); 2805 2806 reweight_entity(cfs_rq, se, weight, weight); 2807 load->inv_weight = sched_prio_to_wmult[prio]; 2808 } 2809 2810 #ifdef CONFIG_FAIR_GROUP_SCHED 2811 #ifdef CONFIG_SMP 2812 /* 2813 * All this does is approximate the hierarchical proportion which includes that 2814 * global sum we all love to hate. 2815 * 2816 * That is, the weight of a group entity, is the proportional share of the 2817 * group weight based on the group runqueue weights. That is: 2818 * 2819 * tg->weight * grq->load.weight 2820 * ge->load.weight = ----------------------------- (1) 2821 * \Sum grq->load.weight 2822 * 2823 * Now, because computing that sum is prohibitively expensive to compute (been 2824 * there, done that) we approximate it with this average stuff. The average 2825 * moves slower and therefore the approximation is cheaper and more stable. 2826 * 2827 * So instead of the above, we substitute: 2828 * 2829 * grq->load.weight -> grq->avg.load_avg (2) 2830 * 2831 * which yields the following: 2832 * 2833 * tg->weight * grq->avg.load_avg 2834 * ge->load.weight = ------------------------------ (3) 2835 * tg->load_avg 2836 * 2837 * Where: tg->load_avg ~= \Sum grq->avg.load_avg 2838 * 2839 * That is shares_avg, and it is right (given the approximation (2)). 2840 * 2841 * The problem with it is that because the average is slow -- it was designed 2842 * to be exactly that of course -- this leads to transients in boundary 2843 * conditions. In specific, the case where the group was idle and we start the 2844 * one task. It takes time for our CPU's grq->avg.load_avg to build up, 2845 * yielding bad latency etc.. 2846 * 2847 * Now, in that special case (1) reduces to: 2848 * 2849 * tg->weight * grq->load.weight 2850 * ge->load.weight = ----------------------------- = tg->weight (4) 2851 * grp->load.weight 2852 * 2853 * That is, the sum collapses because all other CPUs are idle; the UP scenario. 2854 * 2855 * So what we do is modify our approximation (3) to approach (4) in the (near) 2856 * UP case, like: 2857 * 2858 * ge->load.weight = 2859 * 2860 * tg->weight * grq->load.weight 2861 * --------------------------------------------------- (5) 2862 * tg->load_avg - grq->avg.load_avg + grq->load.weight 2863 * 2864 * But because grq->load.weight can drop to 0, resulting in a divide by zero, 2865 * we need to use grq->avg.load_avg as its lower bound, which then gives: 2866 * 2867 * 2868 * tg->weight * grq->load.weight 2869 * ge->load.weight = ----------------------------- (6) 2870 * tg_load_avg' 2871 * 2872 * Where: 2873 * 2874 * tg_load_avg' = tg->load_avg - grq->avg.load_avg + 2875 * max(grq->load.weight, grq->avg.load_avg) 2876 * 2877 * And that is shares_weight and is icky. In the (near) UP case it approaches 2878 * (4) while in the normal case it approaches (3). It consistently 2879 * overestimates the ge->load.weight and therefore: 2880 * 2881 * \Sum ge->load.weight >= tg->weight 2882 * 2883 * hence icky! 2884 */ 2885 static long calc_group_shares(struct cfs_rq *cfs_rq) 2886 { 2887 long tg_weight, tg_shares, load, shares; 2888 struct task_group *tg = cfs_rq->tg; 2889 2890 tg_shares = READ_ONCE(tg->shares); 2891 2892 load = max(scale_load_down(cfs_rq->load.weight), cfs_rq->avg.load_avg); 2893 2894 tg_weight = atomic_long_read(&tg->load_avg); 2895 2896 /* Ensure tg_weight >= load */ 2897 tg_weight -= cfs_rq->tg_load_avg_contrib; 2898 tg_weight += load; 2899 2900 shares = (tg_shares * load); 2901 if (tg_weight) 2902 shares /= tg_weight; 2903 2904 /* 2905 * MIN_SHARES has to be unscaled here to support per-CPU partitioning 2906 * of a group with small tg->shares value. It is a floor value which is 2907 * assigned as a minimum load.weight to the sched_entity representing 2908 * the group on a CPU. 2909 * 2910 * E.g. on 64-bit for a group with tg->shares of scale_load(15)=15*1024 2911 * on an 8-core system with 8 tasks each runnable on one CPU shares has 2912 * to be 15*1024*1/8=1920 instead of scale_load(MIN_SHARES)=2*1024. In 2913 * case no task is runnable on a CPU MIN_SHARES=2 should be returned 2914 * instead of 0. 2915 */ 2916 return clamp_t(long, shares, MIN_SHARES, tg_shares); 2917 } 2918 2919 /* 2920 * This calculates the effective runnable weight for a group entity based on 2921 * the group entity weight calculated above. 2922 * 2923 * Because of the above approximation (2), our group entity weight is 2924 * an load_avg based ratio (3). This means that it includes blocked load and 2925 * does not represent the runnable weight. 2926 * 2927 * Approximate the group entity's runnable weight per ratio from the group 2928 * runqueue: 2929 * 2930 * grq->avg.runnable_load_avg 2931 * ge->runnable_weight = ge->load.weight * -------------------------- (7) 2932 * grq->avg.load_avg 2933 * 2934 * However, analogous to above, since the avg numbers are slow, this leads to 2935 * transients in the from-idle case. Instead we use: 2936 * 2937 * ge->runnable_weight = ge->load.weight * 2938 * 2939 * max(grq->avg.runnable_load_avg, grq->runnable_weight) 2940 * ----------------------------------------------------- (8) 2941 * max(grq->avg.load_avg, grq->load.weight) 2942 * 2943 * Where these max() serve both to use the 'instant' values to fix the slow 2944 * from-idle and avoid the /0 on to-idle, similar to (6). 2945 */ 2946 static long calc_group_runnable(struct cfs_rq *cfs_rq, long shares) 2947 { 2948 long runnable, load_avg; 2949 2950 load_avg = max(cfs_rq->avg.load_avg, 2951 scale_load_down(cfs_rq->load.weight)); 2952 2953 runnable = max(cfs_rq->avg.runnable_load_avg, 2954 scale_load_down(cfs_rq->runnable_weight)); 2955 2956 runnable *= shares; 2957 if (load_avg) 2958 runnable /= load_avg; 2959 2960 return clamp_t(long, runnable, MIN_SHARES, shares); 2961 } 2962 #endif /* CONFIG_SMP */ 2963 2964 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq); 2965 2966 /* 2967 * Recomputes the group entity based on the current state of its group 2968 * runqueue. 2969 */ 2970 static void update_cfs_group(struct sched_entity *se) 2971 { 2972 struct cfs_rq *gcfs_rq = group_cfs_rq(se); 2973 long shares, runnable; 2974 2975 if (!gcfs_rq) 2976 return; 2977 2978 if (throttled_hierarchy(gcfs_rq)) 2979 return; 2980 2981 #ifndef CONFIG_SMP 2982 runnable = shares = READ_ONCE(gcfs_rq->tg->shares); 2983 2984 if (likely(se->load.weight == shares)) 2985 return; 2986 #else 2987 shares = calc_group_shares(gcfs_rq); 2988 runnable = calc_group_runnable(gcfs_rq, shares); 2989 #endif 2990 2991 reweight_entity(cfs_rq_of(se), se, shares, runnable); 2992 } 2993 2994 #else /* CONFIG_FAIR_GROUP_SCHED */ 2995 static inline void update_cfs_group(struct sched_entity *se) 2996 { 2997 } 2998 #endif /* CONFIG_FAIR_GROUP_SCHED */ 2999 3000 static inline void cfs_rq_util_change(struct cfs_rq *cfs_rq, int flags) 3001 { 3002 struct rq *rq = rq_of(cfs_rq); 3003 3004 if (&rq->cfs == cfs_rq || (flags & SCHED_CPUFREQ_MIGRATION)) { 3005 /* 3006 * There are a few boundary cases this might miss but it should 3007 * get called often enough that that should (hopefully) not be 3008 * a real problem. 3009 * 3010 * It will not get called when we go idle, because the idle 3011 * thread is a different class (!fair), nor will the utilization 3012 * number include things like RT tasks. 3013 * 3014 * As is, the util number is not freq-invariant (we'd have to 3015 * implement arch_scale_freq_capacity() for that). 3016 * 3017 * See cpu_util(). 3018 */ 3019 cpufreq_update_util(rq, flags); 3020 } 3021 } 3022 3023 #ifdef CONFIG_SMP 3024 /* 3025 * Approximate: 3026 * val * y^n, where y^32 ~= 0.5 (~1 scheduling period) 3027 */ 3028 static u64 decay_load(u64 val, u64 n) 3029 { 3030 unsigned int local_n; 3031 3032 if (unlikely(n > LOAD_AVG_PERIOD * 63)) 3033 return 0; 3034 3035 /* after bounds checking we can collapse to 32-bit */ 3036 local_n = n; 3037 3038 /* 3039 * As y^PERIOD = 1/2, we can combine 3040 * y^n = 1/2^(n/PERIOD) * y^(n%PERIOD) 3041 * With a look-up table which covers y^n (n<PERIOD) 3042 * 3043 * To achieve constant time decay_load. 3044 */ 3045 if (unlikely(local_n >= LOAD_AVG_PERIOD)) { 3046 val >>= local_n / LOAD_AVG_PERIOD; 3047 local_n %= LOAD_AVG_PERIOD; 3048 } 3049 3050 val = mul_u64_u32_shr(val, runnable_avg_yN_inv[local_n], 32); 3051 return val; 3052 } 3053 3054 static u32 __accumulate_pelt_segments(u64 periods, u32 d1, u32 d3) 3055 { 3056 u32 c1, c2, c3 = d3; /* y^0 == 1 */ 3057 3058 /* 3059 * c1 = d1 y^p 3060 */ 3061 c1 = decay_load((u64)d1, periods); 3062 3063 /* 3064 * p-1 3065 * c2 = 1024 \Sum y^n 3066 * n=1 3067 * 3068 * inf inf 3069 * = 1024 ( \Sum y^n - \Sum y^n - y^0 ) 3070 * n=0 n=p 3071 */ 3072 c2 = LOAD_AVG_MAX - decay_load(LOAD_AVG_MAX, periods) - 1024; 3073 3074 return c1 + c2 + c3; 3075 } 3076 3077 /* 3078 * Accumulate the three separate parts of the sum; d1 the remainder 3079 * of the last (incomplete) period, d2 the span of full periods and d3 3080 * the remainder of the (incomplete) current period. 3081 * 3082 * d1 d2 d3 3083 * ^ ^ ^ 3084 * | | | 3085 * |<->|<----------------->|<--->| 3086 * ... |---x---|------| ... |------|-----x (now) 3087 * 3088 * p-1 3089 * u' = (u + d1) y^p + 1024 \Sum y^n + d3 y^0 3090 * n=1 3091 * 3092 * = u y^p + (Step 1) 3093 * 3094 * p-1 3095 * d1 y^p + 1024 \Sum y^n + d3 y^0 (Step 2) 3096 * n=1 3097 */ 3098 static __always_inline u32 3099 accumulate_sum(u64 delta, int cpu, struct sched_avg *sa, 3100 unsigned long load, unsigned long runnable, int running) 3101 { 3102 unsigned long scale_freq, scale_cpu; 3103 u32 contrib = (u32)delta; /* p == 0 -> delta < 1024 */ 3104 u64 periods; 3105 3106 scale_freq = arch_scale_freq_capacity(cpu); 3107 scale_cpu = arch_scale_cpu_capacity(NULL, cpu); 3108 3109 delta += sa->period_contrib; 3110 periods = delta / 1024; /* A period is 1024us (~1ms) */ 3111 3112 /* 3113 * Step 1: decay old *_sum if we crossed period boundaries. 3114 */ 3115 if (periods) { 3116 sa->load_sum = decay_load(sa->load_sum, periods); 3117 sa->runnable_load_sum = 3118 decay_load(sa->runnable_load_sum, periods); 3119 sa->util_sum = decay_load((u64)(sa->util_sum), periods); 3120 3121 /* 3122 * Step 2 3123 */ 3124 delta %= 1024; 3125 contrib = __accumulate_pelt_segments(periods, 3126 1024 - sa->period_contrib, delta); 3127 } 3128 sa->period_contrib = delta; 3129 3130 contrib = cap_scale(contrib, scale_freq); 3131 if (load) 3132 sa->load_sum += load * contrib; 3133 if (runnable) 3134 sa->runnable_load_sum += runnable * contrib; 3135 if (running) 3136 sa->util_sum += contrib * scale_cpu; 3137 3138 return periods; 3139 } 3140 3141 /* 3142 * We can represent the historical contribution to runnable average as the 3143 * coefficients of a geometric series. To do this we sub-divide our runnable 3144 * history into segments of approximately 1ms (1024us); label the segment that 3145 * occurred N-ms ago p_N, with p_0 corresponding to the current period, e.g. 3146 * 3147 * [<- 1024us ->|<- 1024us ->|<- 1024us ->| ... 3148 * p0 p1 p2 3149 * (now) (~1ms ago) (~2ms ago) 3150 * 3151 * Let u_i denote the fraction of p_i that the entity was runnable. 3152 * 3153 * We then designate the fractions u_i as our co-efficients, yielding the 3154 * following representation of historical load: 3155 * u_0 + u_1*y + u_2*y^2 + u_3*y^3 + ... 3156 * 3157 * We choose y based on the with of a reasonably scheduling period, fixing: 3158 * y^32 = 0.5 3159 * 3160 * This means that the contribution to load ~32ms ago (u_32) will be weighted 3161 * approximately half as much as the contribution to load within the last ms 3162 * (u_0). 3163 * 3164 * When a period "rolls over" and we have new u_0`, multiplying the previous 3165 * sum again by y is sufficient to update: 3166 * load_avg = u_0` + y*(u_0 + u_1*y + u_2*y^2 + ... ) 3167 * = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1}] 3168 */ 3169 static __always_inline int 3170 ___update_load_sum(u64 now, int cpu, struct sched_avg *sa, 3171 unsigned long load, unsigned long runnable, int running) 3172 { 3173 u64 delta; 3174 3175 delta = now - sa->last_update_time; 3176 /* 3177 * This should only happen when time goes backwards, which it 3178 * unfortunately does during sched clock init when we swap over to TSC. 3179 */ 3180 if ((s64)delta < 0) { 3181 sa->last_update_time = now; 3182 return 0; 3183 } 3184 3185 /* 3186 * Use 1024ns as the unit of measurement since it's a reasonable 3187 * approximation of 1us and fast to compute. 3188 */ 3189 delta >>= 10; 3190 if (!delta) 3191 return 0; 3192 3193 sa->last_update_time += delta << 10; 3194 3195 /* 3196 * running is a subset of runnable (weight) so running can't be set if 3197 * runnable is clear. But there are some corner cases where the current 3198 * se has been already dequeued but cfs_rq->curr still points to it. 3199 * This means that weight will be 0 but not running for a sched_entity 3200 * but also for a cfs_rq if the latter becomes idle. As an example, 3201 * this happens during idle_balance() which calls 3202 * update_blocked_averages() 3203 */ 3204 if (!load) 3205 runnable = running = 0; 3206 3207 /* 3208 * Now we know we crossed measurement unit boundaries. The *_avg 3209 * accrues by two steps: 3210 * 3211 * Step 1: accumulate *_sum since last_update_time. If we haven't 3212 * crossed period boundaries, finish. 3213 */ 3214 if (!accumulate_sum(delta, cpu, sa, load, runnable, running)) 3215 return 0; 3216 3217 return 1; 3218 } 3219 3220 static __always_inline void 3221 ___update_load_avg(struct sched_avg *sa, unsigned long load, unsigned long runnable) 3222 { 3223 u32 divider = LOAD_AVG_MAX - 1024 + sa->period_contrib; 3224 3225 /* 3226 * Step 2: update *_avg. 3227 */ 3228 sa->load_avg = div_u64(load * sa->load_sum, divider); 3229 sa->runnable_load_avg = div_u64(runnable * sa->runnable_load_sum, divider); 3230 sa->util_avg = sa->util_sum / divider; 3231 } 3232 3233 /* 3234 * When a task is dequeued, its estimated utilization should not be update if 3235 * its util_avg has not been updated at least once. 3236 * This flag is used to synchronize util_avg updates with util_est updates. 3237 * We map this information into the LSB bit of the utilization saved at 3238 * dequeue time (i.e. util_est.dequeued). 3239 */ 3240 #define UTIL_AVG_UNCHANGED 0x1 3241 3242 static inline void cfs_se_util_change(struct sched_avg *avg) 3243 { 3244 unsigned int enqueued; 3245 3246 if (!sched_feat(UTIL_EST)) 3247 return; 3248 3249 /* Avoid store if the flag has been already set */ 3250 enqueued = avg->util_est.enqueued; 3251 if (!(enqueued & UTIL_AVG_UNCHANGED)) 3252 return; 3253 3254 /* Reset flag to report util_avg has been updated */ 3255 enqueued &= ~UTIL_AVG_UNCHANGED; 3256 WRITE_ONCE(avg->util_est.enqueued, enqueued); 3257 } 3258 3259 /* 3260 * sched_entity: 3261 * 3262 * task: 3263 * se_runnable() == se_weight() 3264 * 3265 * group: [ see update_cfs_group() ] 3266 * se_weight() = tg->weight * grq->load_avg / tg->load_avg 3267 * se_runnable() = se_weight(se) * grq->runnable_load_avg / grq->load_avg 3268 * 3269 * load_sum := runnable_sum 3270 * load_avg = se_weight(se) * runnable_avg 3271 * 3272 * runnable_load_sum := runnable_sum 3273 * runnable_load_avg = se_runnable(se) * runnable_avg 3274 * 3275 * XXX collapse load_sum and runnable_load_sum 3276 * 3277 * cfq_rs: 3278 * 3279 * load_sum = \Sum se_weight(se) * se->avg.load_sum 3280 * load_avg = \Sum se->avg.load_avg 3281 * 3282 * runnable_load_sum = \Sum se_runnable(se) * se->avg.runnable_load_sum 3283 * runnable_load_avg = \Sum se->avg.runable_load_avg 3284 */ 3285 3286 static int 3287 __update_load_avg_blocked_se(u64 now, int cpu, struct sched_entity *se) 3288 { 3289 if (entity_is_task(se)) 3290 se->runnable_weight = se->load.weight; 3291 3292 if (___update_load_sum(now, cpu, &se->avg, 0, 0, 0)) { 3293 ___update_load_avg(&se->avg, se_weight(se), se_runnable(se)); 3294 return 1; 3295 } 3296 3297 return 0; 3298 } 3299 3300 static int 3301 __update_load_avg_se(u64 now, int cpu, struct cfs_rq *cfs_rq, struct sched_entity *se) 3302 { 3303 if (entity_is_task(se)) 3304 se->runnable_weight = se->load.weight; 3305 3306 if (___update_load_sum(now, cpu, &se->avg, !!se->on_rq, !!se->on_rq, 3307 cfs_rq->curr == se)) { 3308 3309 ___update_load_avg(&se->avg, se_weight(se), se_runnable(se)); 3310 cfs_se_util_change(&se->avg); 3311 return 1; 3312 } 3313 3314 return 0; 3315 } 3316 3317 static int 3318 __update_load_avg_cfs_rq(u64 now, int cpu, struct cfs_rq *cfs_rq) 3319 { 3320 if (___update_load_sum(now, cpu, &cfs_rq->avg, 3321 scale_load_down(cfs_rq->load.weight), 3322 scale_load_down(cfs_rq->runnable_weight), 3323 cfs_rq->curr != NULL)) { 3324 3325 ___update_load_avg(&cfs_rq->avg, 1, 1); 3326 return 1; 3327 } 3328 3329 return 0; 3330 } 3331 3332 #ifdef CONFIG_FAIR_GROUP_SCHED 3333 /** 3334 * update_tg_load_avg - update the tg's load avg 3335 * @cfs_rq: the cfs_rq whose avg changed 3336 * @force: update regardless of how small the difference 3337 * 3338 * This function 'ensures': tg->load_avg := \Sum tg->cfs_rq[]->avg.load. 3339 * However, because tg->load_avg is a global value there are performance 3340 * considerations. 3341 * 3342 * In order to avoid having to look at the other cfs_rq's, we use a 3343 * differential update where we store the last value we propagated. This in 3344 * turn allows skipping updates if the differential is 'small'. 3345 * 3346 * Updating tg's load_avg is necessary before update_cfs_share(). 3347 */ 3348 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force) 3349 { 3350 long delta = cfs_rq->avg.load_avg - cfs_rq->tg_load_avg_contrib; 3351 3352 /* 3353 * No need to update load_avg for root_task_group as it is not used. 3354 */ 3355 if (cfs_rq->tg == &root_task_group) 3356 return; 3357 3358 if (force || abs(delta) > cfs_rq->tg_load_avg_contrib / 64) { 3359 atomic_long_add(delta, &cfs_rq->tg->load_avg); 3360 cfs_rq->tg_load_avg_contrib = cfs_rq->avg.load_avg; 3361 } 3362 } 3363 3364 /* 3365 * Called within set_task_rq() right before setting a task's CPU. The 3366 * caller only guarantees p->pi_lock is held; no other assumptions, 3367 * including the state of rq->lock, should be made. 3368 */ 3369 void set_task_rq_fair(struct sched_entity *se, 3370 struct cfs_rq *prev, struct cfs_rq *next) 3371 { 3372 u64 p_last_update_time; 3373 u64 n_last_update_time; 3374 3375 if (!sched_feat(ATTACH_AGE_LOAD)) 3376 return; 3377 3378 /* 3379 * We are supposed to update the task to "current" time, then its up to 3380 * date and ready to go to new CPU/cfs_rq. But we have difficulty in 3381 * getting what current time is, so simply throw away the out-of-date 3382 * time. This will result in the wakee task is less decayed, but giving 3383 * the wakee more load sounds not bad. 3384 */ 3385 if (!(se->avg.last_update_time && prev)) 3386 return; 3387 3388 #ifndef CONFIG_64BIT 3389 { 3390 u64 p_last_update_time_copy; 3391 u64 n_last_update_time_copy; 3392 3393 do { 3394 p_last_update_time_copy = prev->load_last_update_time_copy; 3395 n_last_update_time_copy = next->load_last_update_time_copy; 3396 3397 smp_rmb(); 3398 3399 p_last_update_time = prev->avg.last_update_time; 3400 n_last_update_time = next->avg.last_update_time; 3401 3402 } while (p_last_update_time != p_last_update_time_copy || 3403 n_last_update_time != n_last_update_time_copy); 3404 } 3405 #else 3406 p_last_update_time = prev->avg.last_update_time; 3407 n_last_update_time = next->avg.last_update_time; 3408 #endif 3409 __update_load_avg_blocked_se(p_last_update_time, cpu_of(rq_of(prev)), se); 3410 se->avg.last_update_time = n_last_update_time; 3411 } 3412 3413 3414 /* 3415 * When on migration a sched_entity joins/leaves the PELT hierarchy, we need to 3416 * propagate its contribution. The key to this propagation is the invariant 3417 * that for each group: 3418 * 3419 * ge->avg == grq->avg (1) 3420 * 3421 * _IFF_ we look at the pure running and runnable sums. Because they 3422 * represent the very same entity, just at different points in the hierarchy. 3423 * 3424 * Per the above update_tg_cfs_util() is trivial and simply copies the running 3425 * sum over (but still wrong, because the group entity and group rq do not have 3426 * their PELT windows aligned). 3427 * 3428 * However, update_tg_cfs_runnable() is more complex. So we have: 3429 * 3430 * ge->avg.load_avg = ge->load.weight * ge->avg.runnable_avg (2) 3431 * 3432 * And since, like util, the runnable part should be directly transferable, 3433 * the following would _appear_ to be the straight forward approach: 3434 * 3435 * grq->avg.load_avg = grq->load.weight * grq->avg.runnable_avg (3) 3436 * 3437 * And per (1) we have: 3438 * 3439 * ge->avg.runnable_avg == grq->avg.runnable_avg 3440 * 3441 * Which gives: 3442 * 3443 * ge->load.weight * grq->avg.load_avg 3444 * ge->avg.load_avg = ----------------------------------- (4) 3445 * grq->load.weight 3446 * 3447 * Except that is wrong! 3448 * 3449 * Because while for entities historical weight is not important and we 3450 * really only care about our future and therefore can consider a pure 3451 * runnable sum, runqueues can NOT do this. 3452 * 3453 * We specifically want runqueues to have a load_avg that includes 3454 * historical weights. Those represent the blocked load, the load we expect 3455 * to (shortly) return to us. This only works by keeping the weights as 3456 * integral part of the sum. We therefore cannot decompose as per (3). 3457 * 3458 * Another reason this doesn't work is that runnable isn't a 0-sum entity. 3459 * Imagine a rq with 2 tasks that each are runnable 2/3 of the time. Then the 3460 * rq itself is runnable anywhere between 2/3 and 1 depending on how the 3461 * runnable section of these tasks overlap (or not). If they were to perfectly 3462 * align the rq as a whole would be runnable 2/3 of the time. If however we 3463 * always have at least 1 runnable task, the rq as a whole is always runnable. 3464 * 3465 * So we'll have to approximate.. :/ 3466 * 3467 * Given the constraint: 3468 * 3469 * ge->avg.running_sum <= ge->avg.runnable_sum <= LOAD_AVG_MAX 3470 * 3471 * We can construct a rule that adds runnable to a rq by assuming minimal 3472 * overlap. 3473 * 3474 * On removal, we'll assume each task is equally runnable; which yields: 3475 * 3476 * grq->avg.runnable_sum = grq->avg.load_sum / grq->load.weight 3477 * 3478 * XXX: only do this for the part of runnable > running ? 3479 * 3480 */ 3481 3482 static inline void 3483 update_tg_cfs_util(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq) 3484 { 3485 long delta = gcfs_rq->avg.util_avg - se->avg.util_avg; 3486 3487 /* Nothing to update */ 3488 if (!delta) 3489 return; 3490 3491 /* 3492 * The relation between sum and avg is: 3493 * 3494 * LOAD_AVG_MAX - 1024 + sa->period_contrib 3495 * 3496 * however, the PELT windows are not aligned between grq and gse. 3497 */ 3498 3499 /* Set new sched_entity's utilization */ 3500 se->avg.util_avg = gcfs_rq->avg.util_avg; 3501 se->avg.util_sum = se->avg.util_avg * LOAD_AVG_MAX; 3502 3503 /* Update parent cfs_rq utilization */ 3504 add_positive(&cfs_rq->avg.util_avg, delta); 3505 cfs_rq->avg.util_sum = cfs_rq->avg.util_avg * LOAD_AVG_MAX; 3506 } 3507 3508 static inline void 3509 update_tg_cfs_runnable(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq) 3510 { 3511 long delta_avg, running_sum, runnable_sum = gcfs_rq->prop_runnable_sum; 3512 unsigned long runnable_load_avg, load_avg; 3513 u64 runnable_load_sum, load_sum = 0; 3514 s64 delta_sum; 3515 3516 if (!runnable_sum) 3517 return; 3518 3519 gcfs_rq->prop_runnable_sum = 0; 3520 3521 if (runnable_sum >= 0) { 3522 /* 3523 * Add runnable; clip at LOAD_AVG_MAX. Reflects that until 3524 * the CPU is saturated running == runnable. 3525 */ 3526 runnable_sum += se->avg.load_sum; 3527 runnable_sum = min(runnable_sum, (long)LOAD_AVG_MAX); 3528 } else { 3529 /* 3530 * Estimate the new unweighted runnable_sum of the gcfs_rq by 3531 * assuming all tasks are equally runnable. 3532 */ 3533 if (scale_load_down(gcfs_rq->load.weight)) { 3534 load_sum = div_s64(gcfs_rq->avg.load_sum, 3535 scale_load_down(gcfs_rq->load.weight)); 3536 } 3537 3538 /* But make sure to not inflate se's runnable */ 3539 runnable_sum = min(se->avg.load_sum, load_sum); 3540 } 3541 3542 /* 3543 * runnable_sum can't be lower than running_sum 3544 * As running sum is scale with CPU capacity wehreas the runnable sum 3545 * is not we rescale running_sum 1st 3546 */ 3547 running_sum = se->avg.util_sum / 3548 arch_scale_cpu_capacity(NULL, cpu_of(rq_of(cfs_rq))); 3549 runnable_sum = max(runnable_sum, running_sum); 3550 3551 load_sum = (s64)se_weight(se) * runnable_sum; 3552 load_avg = div_s64(load_sum, LOAD_AVG_MAX); 3553 3554 delta_sum = load_sum - (s64)se_weight(se) * se->avg.load_sum; 3555 delta_avg = load_avg - se->avg.load_avg; 3556 3557 se->avg.load_sum = runnable_sum; 3558 se->avg.load_avg = load_avg; 3559 add_positive(&cfs_rq->avg.load_avg, delta_avg); 3560 add_positive(&cfs_rq->avg.load_sum, delta_sum); 3561 3562 runnable_load_sum = (s64)se_runnable(se) * runnable_sum; 3563 runnable_load_avg = div_s64(runnable_load_sum, LOAD_AVG_MAX); 3564 delta_sum = runnable_load_sum - se_weight(se) * se->avg.runnable_load_sum; 3565 delta_avg = runnable_load_avg - se->avg.runnable_load_avg; 3566 3567 se->avg.runnable_load_sum = runnable_sum; 3568 se->avg.runnable_load_avg = runnable_load_avg; 3569 3570 if (se->on_rq) { 3571 add_positive(&cfs_rq->avg.runnable_load_avg, delta_avg); 3572 add_positive(&cfs_rq->avg.runnable_load_sum, delta_sum); 3573 } 3574 } 3575 3576 static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum) 3577 { 3578 cfs_rq->propagate = 1; 3579 cfs_rq->prop_runnable_sum += runnable_sum; 3580 } 3581 3582 /* Update task and its cfs_rq load average */ 3583 static inline int propagate_entity_load_avg(struct sched_entity *se) 3584 { 3585 struct cfs_rq *cfs_rq, *gcfs_rq; 3586 3587 if (entity_is_task(se)) 3588 return 0; 3589 3590 gcfs_rq = group_cfs_rq(se); 3591 if (!gcfs_rq->propagate) 3592 return 0; 3593 3594 gcfs_rq->propagate = 0; 3595 3596 cfs_rq = cfs_rq_of(se); 3597 3598 add_tg_cfs_propagate(cfs_rq, gcfs_rq->prop_runnable_sum); 3599 3600 update_tg_cfs_util(cfs_rq, se, gcfs_rq); 3601 update_tg_cfs_runnable(cfs_rq, se, gcfs_rq); 3602 3603 return 1; 3604 } 3605 3606 /* 3607 * Check if we need to update the load and the utilization of a blocked 3608 * group_entity: 3609 */ 3610 static inline bool skip_blocked_update(struct sched_entity *se) 3611 { 3612 struct cfs_rq *gcfs_rq = group_cfs_rq(se); 3613 3614 /* 3615 * If sched_entity still have not zero load or utilization, we have to 3616 * decay it: 3617 */ 3618 if (se->avg.load_avg || se->avg.util_avg) 3619 return false; 3620 3621 /* 3622 * If there is a pending propagation, we have to update the load and 3623 * the utilization of the sched_entity: 3624 */ 3625 if (gcfs_rq->propagate) 3626 return false; 3627 3628 /* 3629 * Otherwise, the load and the utilization of the sched_entity is 3630 * already zero and there is no pending propagation, so it will be a 3631 * waste of time to try to decay it: 3632 */ 3633 return true; 3634 } 3635 3636 #else /* CONFIG_FAIR_GROUP_SCHED */ 3637 3638 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force) {} 3639 3640 static inline int propagate_entity_load_avg(struct sched_entity *se) 3641 { 3642 return 0; 3643 } 3644 3645 static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum) {} 3646 3647 #endif /* CONFIG_FAIR_GROUP_SCHED */ 3648 3649 /** 3650 * update_cfs_rq_load_avg - update the cfs_rq's load/util averages 3651 * @now: current time, as per cfs_rq_clock_task() 3652 * @cfs_rq: cfs_rq to update 3653 * 3654 * The cfs_rq avg is the direct sum of all its entities (blocked and runnable) 3655 * avg. The immediate corollary is that all (fair) tasks must be attached, see 3656 * post_init_entity_util_avg(). 3657 * 3658 * cfs_rq->avg is used for task_h_load() and update_cfs_share() for example. 3659 * 3660 * Returns true if the load decayed or we removed load. 3661 * 3662 * Since both these conditions indicate a changed cfs_rq->avg.load we should 3663 * call update_tg_load_avg() when this function returns true. 3664 */ 3665 static inline int 3666 update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq) 3667 { 3668 unsigned long removed_load = 0, removed_util = 0, removed_runnable_sum = 0; 3669 struct sched_avg *sa = &cfs_rq->avg; 3670 int decayed = 0; 3671 3672 if (cfs_rq->removed.nr) { 3673 unsigned long r; 3674 u32 divider = LOAD_AVG_MAX - 1024 + sa->period_contrib; 3675 3676 raw_spin_lock(&cfs_rq->removed.lock); 3677 swap(cfs_rq->removed.util_avg, removed_util); 3678 swap(cfs_rq->removed.load_avg, removed_load); 3679 swap(cfs_rq->removed.runnable_sum, removed_runnable_sum); 3680 cfs_rq->removed.nr = 0; 3681 raw_spin_unlock(&cfs_rq->removed.lock); 3682 3683 r = removed_load; 3684 sub_positive(&sa->load_avg, r); 3685 sub_positive(&sa->load_sum, r * divider); 3686 3687 r = removed_util; 3688 sub_positive(&sa->util_avg, r); 3689 sub_positive(&sa->util_sum, r * divider); 3690 3691 add_tg_cfs_propagate(cfs_rq, -(long)removed_runnable_sum); 3692 3693 decayed = 1; 3694 } 3695 3696 decayed |= __update_load_avg_cfs_rq(now, cpu_of(rq_of(cfs_rq)), cfs_rq); 3697 3698 #ifndef CONFIG_64BIT 3699 smp_wmb(); 3700 cfs_rq->load_last_update_time_copy = sa->last_update_time; 3701 #endif 3702 3703 if (decayed) 3704 cfs_rq_util_change(cfs_rq, 0); 3705 3706 return decayed; 3707 } 3708 3709 /** 3710 * attach_entity_load_avg - attach this entity to its cfs_rq load avg 3711 * @cfs_rq: cfs_rq to attach to 3712 * @se: sched_entity to attach 3713 * 3714 * Must call update_cfs_rq_load_avg() before this, since we rely on 3715 * cfs_rq->avg.last_update_time being current. 3716 */ 3717 static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 3718 { 3719 u32 divider = LOAD_AVG_MAX - 1024 + cfs_rq->avg.period_contrib; 3720 3721 /* 3722 * When we attach the @se to the @cfs_rq, we must align the decay 3723 * window because without that, really weird and wonderful things can 3724 * happen. 3725 * 3726 * XXX illustrate 3727 */ 3728 se->avg.last_update_time = cfs_rq->avg.last_update_time; 3729 se->avg.period_contrib = cfs_rq->avg.period_contrib; 3730 3731 /* 3732 * Hell(o) Nasty stuff.. we need to recompute _sum based on the new 3733 * period_contrib. This isn't strictly correct, but since we're 3734 * entirely outside of the PELT hierarchy, nobody cares if we truncate 3735 * _sum a little. 3736 */ 3737 se->avg.util_sum = se->avg.util_avg * divider; 3738 3739 se->avg.load_sum = divider; 3740 if (se_weight(se)) { 3741 se->avg.load_sum = 3742 div_u64(se->avg.load_avg * se->avg.load_sum, se_weight(se)); 3743 } 3744 3745 se->avg.runnable_load_sum = se->avg.load_sum; 3746 3747 enqueue_load_avg(cfs_rq, se); 3748 cfs_rq->avg.util_avg += se->avg.util_avg; 3749 cfs_rq->avg.util_sum += se->avg.util_sum; 3750 3751 add_tg_cfs_propagate(cfs_rq, se->avg.load_sum); 3752 3753 cfs_rq_util_change(cfs_rq, flags); 3754 } 3755 3756 /** 3757 * detach_entity_load_avg - detach this entity from its cfs_rq load avg 3758 * @cfs_rq: cfs_rq to detach from 3759 * @se: sched_entity to detach 3760 * 3761 * Must call update_cfs_rq_load_avg() before this, since we rely on 3762 * cfs_rq->avg.last_update_time being current. 3763 */ 3764 static void detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) 3765 { 3766 dequeue_load_avg(cfs_rq, se); 3767 sub_positive(&cfs_rq->avg.util_avg, se->avg.util_avg); 3768 sub_positive(&cfs_rq->avg.util_sum, se->avg.util_sum); 3769 3770 add_tg_cfs_propagate(cfs_rq, -se->avg.load_sum); 3771 3772 cfs_rq_util_change(cfs_rq, 0); 3773 } 3774 3775 /* 3776 * Optional action to be done while updating the load average 3777 */ 3778 #define UPDATE_TG 0x1 3779 #define SKIP_AGE_LOAD 0x2 3780 #define DO_ATTACH 0x4 3781 3782 /* Update task and its cfs_rq load average */ 3783 static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 3784 { 3785 u64 now = cfs_rq_clock_task(cfs_rq); 3786 struct rq *rq = rq_of(cfs_rq); 3787 int cpu = cpu_of(rq); 3788 int decayed; 3789 3790 /* 3791 * Track task load average for carrying it to new CPU after migrated, and 3792 * track group sched_entity load average for task_h_load calc in migration 3793 */ 3794 if (se->avg.last_update_time && !(flags & SKIP_AGE_LOAD)) 3795 __update_load_avg_se(now, cpu, cfs_rq, se); 3796 3797 decayed = update_cfs_rq_load_avg(now, cfs_rq); 3798 decayed |= propagate_entity_load_avg(se); 3799 3800 if (!se->avg.last_update_time && (flags & DO_ATTACH)) { 3801 3802 /* 3803 * DO_ATTACH means we're here from enqueue_entity(). 3804 * !last_update_time means we've passed through 3805 * migrate_task_rq_fair() indicating we migrated. 3806 * 3807 * IOW we're enqueueing a task on a new CPU. 3808 */ 3809 attach_entity_load_avg(cfs_rq, se, SCHED_CPUFREQ_MIGRATION); 3810 update_tg_load_avg(cfs_rq, 0); 3811 3812 } else if (decayed && (flags & UPDATE_TG)) 3813 update_tg_load_avg(cfs_rq, 0); 3814 } 3815 3816 #ifndef CONFIG_64BIT 3817 static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq) 3818 { 3819 u64 last_update_time_copy; 3820 u64 last_update_time; 3821 3822 do { 3823 last_update_time_copy = cfs_rq->load_last_update_time_copy; 3824 smp_rmb(); 3825 last_update_time = cfs_rq->avg.last_update_time; 3826 } while (last_update_time != last_update_time_copy); 3827 3828 return last_update_time; 3829 } 3830 #else 3831 static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq) 3832 { 3833 return cfs_rq->avg.last_update_time; 3834 } 3835 #endif 3836 3837 /* 3838 * Synchronize entity load avg of dequeued entity without locking 3839 * the previous rq. 3840 */ 3841 void sync_entity_load_avg(struct sched_entity *se) 3842 { 3843 struct cfs_rq *cfs_rq = cfs_rq_of(se); 3844 u64 last_update_time; 3845 3846 last_update_time = cfs_rq_last_update_time(cfs_rq); 3847 __update_load_avg_blocked_se(last_update_time, cpu_of(rq_of(cfs_rq)), se); 3848 } 3849 3850 /* 3851 * Task first catches up with cfs_rq, and then subtract 3852 * itself from the cfs_rq (task must be off the queue now). 3853 */ 3854 void remove_entity_load_avg(struct sched_entity *se) 3855 { 3856 struct cfs_rq *cfs_rq = cfs_rq_of(se); 3857 unsigned long flags; 3858 3859 /* 3860 * tasks cannot exit without having gone through wake_up_new_task() -> 3861 * post_init_entity_util_avg() which will have added things to the 3862 * cfs_rq, so we can remove unconditionally. 3863 * 3864 * Similarly for groups, they will have passed through 3865 * post_init_entity_util_avg() before unregister_sched_fair_group() 3866 * calls this. 3867 */ 3868 3869 sync_entity_load_avg(se); 3870 3871 raw_spin_lock_irqsave(&cfs_rq->removed.lock, flags); 3872 ++cfs_rq->removed.nr; 3873 cfs_rq->removed.util_avg += se->avg.util_avg; 3874 cfs_rq->removed.load_avg += se->avg.load_avg; 3875 cfs_rq->removed.runnable_sum += se->avg.load_sum; /* == runnable_sum */ 3876 raw_spin_unlock_irqrestore(&cfs_rq->removed.lock, flags); 3877 } 3878 3879 static inline unsigned long cfs_rq_runnable_load_avg(struct cfs_rq *cfs_rq) 3880 { 3881 return cfs_rq->avg.runnable_load_avg; 3882 } 3883 3884 static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq) 3885 { 3886 return cfs_rq->avg.load_avg; 3887 } 3888 3889 static int idle_balance(struct rq *this_rq, struct rq_flags *rf); 3890 3891 static inline unsigned long task_util(struct task_struct *p) 3892 { 3893 return READ_ONCE(p->se.avg.util_avg); 3894 } 3895 3896 static inline unsigned long _task_util_est(struct task_struct *p) 3897 { 3898 struct util_est ue = READ_ONCE(p->se.avg.util_est); 3899 3900 return max(ue.ewma, ue.enqueued); 3901 } 3902 3903 static inline unsigned long task_util_est(struct task_struct *p) 3904 { 3905 return max(task_util(p), _task_util_est(p)); 3906 } 3907 3908 static inline void util_est_enqueue(struct cfs_rq *cfs_rq, 3909 struct task_struct *p) 3910 { 3911 unsigned int enqueued; 3912 3913 if (!sched_feat(UTIL_EST)) 3914 return; 3915 3916 /* Update root cfs_rq's estimated utilization */ 3917 enqueued = cfs_rq->avg.util_est.enqueued; 3918 enqueued += (_task_util_est(p) | UTIL_AVG_UNCHANGED); 3919 WRITE_ONCE(cfs_rq->avg.util_est.enqueued, enqueued); 3920 } 3921 3922 /* 3923 * Check if a (signed) value is within a specified (unsigned) margin, 3924 * based on the observation that: 3925 * 3926 * abs(x) < y := (unsigned)(x + y - 1) < (2 * y - 1) 3927 * 3928 * NOTE: this only works when value + maring < INT_MAX. 3929 */ 3930 static inline bool within_margin(int value, int margin) 3931 { 3932 return ((unsigned int)(value + margin - 1) < (2 * margin - 1)); 3933 } 3934 3935 static void 3936 util_est_dequeue(struct cfs_rq *cfs_rq, struct task_struct *p, bool task_sleep) 3937 { 3938 long last_ewma_diff; 3939 struct util_est ue; 3940 3941 if (!sched_feat(UTIL_EST)) 3942 return; 3943 3944 /* 3945 * Update root cfs_rq's estimated utilization 3946 * 3947 * If *p is the last task then the root cfs_rq's estimated utilization 3948 * of a CPU is 0 by definition. 3949 */ 3950 ue.enqueued = 0; 3951 if (cfs_rq->nr_running) { 3952 ue.enqueued = cfs_rq->avg.util_est.enqueued; 3953 ue.enqueued -= min_t(unsigned int, ue.enqueued, 3954 (_task_util_est(p) | UTIL_AVG_UNCHANGED)); 3955 } 3956 WRITE_ONCE(cfs_rq->avg.util_est.enqueued, ue.enqueued); 3957 3958 /* 3959 * Skip update of task's estimated utilization when the task has not 3960 * yet completed an activation, e.g. being migrated. 3961 */ 3962 if (!task_sleep) 3963 return; 3964 3965 /* 3966 * If the PELT values haven't changed since enqueue time, 3967 * skip the util_est update. 3968 */ 3969 ue = p->se.avg.util_est; 3970 if (ue.enqueued & UTIL_AVG_UNCHANGED) 3971 return; 3972 3973 /* 3974 * Skip update of task's estimated utilization when its EWMA is 3975 * already ~1% close to its last activation value. 3976 */ 3977 ue.enqueued = (task_util(p) | UTIL_AVG_UNCHANGED); 3978 last_ewma_diff = ue.enqueued - ue.ewma; 3979 if (within_margin(last_ewma_diff, (SCHED_CAPACITY_SCALE / 100))) 3980 return; 3981 3982 /* 3983 * Update Task's estimated utilization 3984 * 3985 * When *p completes an activation we can consolidate another sample 3986 * of the task size. This is done by storing the current PELT value 3987 * as ue.enqueued and by using this value to update the Exponential 3988 * Weighted Moving Average (EWMA): 3989 * 3990 * ewma(t) = w * task_util(p) + (1-w) * ewma(t-1) 3991 * = w * task_util(p) + ewma(t-1) - w * ewma(t-1) 3992 * = w * (task_util(p) - ewma(t-1)) + ewma(t-1) 3993 * = w * ( last_ewma_diff ) + ewma(t-1) 3994 * = w * (last_ewma_diff + ewma(t-1) / w) 3995 * 3996 * Where 'w' is the weight of new samples, which is configured to be 3997 * 0.25, thus making w=1/4 ( >>= UTIL_EST_WEIGHT_SHIFT) 3998 */ 3999 ue.ewma <<= UTIL_EST_WEIGHT_SHIFT; 4000 ue.ewma += last_ewma_diff; 4001 ue.ewma >>= UTIL_EST_WEIGHT_SHIFT; 4002 WRITE_ONCE(p->se.avg.util_est, ue); 4003 } 4004 4005 #else /* CONFIG_SMP */ 4006 4007 static inline int 4008 update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq) 4009 { 4010 return 0; 4011 } 4012 4013 #define UPDATE_TG 0x0 4014 #define SKIP_AGE_LOAD 0x0 4015 #define DO_ATTACH 0x0 4016 4017 static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int not_used1) 4018 { 4019 cfs_rq_util_change(cfs_rq, 0); 4020 } 4021 4022 static inline void remove_entity_load_avg(struct sched_entity *se) {} 4023 4024 static inline void 4025 attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) {} 4026 static inline void 4027 detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {} 4028 4029 static inline int idle_balance(struct rq *rq, struct rq_flags *rf) 4030 { 4031 return 0; 4032 } 4033 4034 static inline void 4035 util_est_enqueue(struct cfs_rq *cfs_rq, struct task_struct *p) {} 4036 4037 static inline void 4038 util_est_dequeue(struct cfs_rq *cfs_rq, struct task_struct *p, 4039 bool task_sleep) {} 4040 4041 #endif /* CONFIG_SMP */ 4042 4043 static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se) 4044 { 4045 #ifdef CONFIG_SCHED_DEBUG 4046 s64 d = se->vruntime - cfs_rq->min_vruntime; 4047 4048 if (d < 0) 4049 d = -d; 4050 4051 if (d > 3*sysctl_sched_latency) 4052 schedstat_inc(cfs_rq->nr_spread_over); 4053 #endif 4054 } 4055 4056 static void 4057 place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial) 4058 { 4059 u64 vruntime = cfs_rq->min_vruntime; 4060 4061 /* 4062 * The 'current' period is already promised to the current tasks, 4063 * however the extra weight of the new task will slow them down a 4064 * little, place the new task so that it fits in the slot that 4065 * stays open at the end. 4066 */ 4067 if (initial && sched_feat(START_DEBIT)) 4068 vruntime += sched_vslice(cfs_rq, se); 4069 4070 /* sleeps up to a single latency don't count. */ 4071 if (!initial) { 4072 unsigned long thresh = sysctl_sched_latency; 4073 4074 /* 4075 * Halve their sleep time's effect, to allow 4076 * for a gentler effect of sleepers: 4077 */ 4078 if (sched_feat(GENTLE_FAIR_SLEEPERS)) 4079 thresh >>= 1; 4080 4081 vruntime -= thresh; 4082 } 4083 4084 /* ensure we never gain time by being placed backwards. */ 4085 se->vruntime = max_vruntime(se->vruntime, vruntime); 4086 } 4087 4088 static void check_enqueue_throttle(struct cfs_rq *cfs_rq); 4089 4090 static inline void check_schedstat_required(void) 4091 { 4092 #ifdef CONFIG_SCHEDSTATS 4093 if (schedstat_enabled()) 4094 return; 4095 4096 /* Force schedstat enabled if a dependent tracepoint is active */ 4097 if (trace_sched_stat_wait_enabled() || 4098 trace_sched_stat_sleep_enabled() || 4099 trace_sched_stat_iowait_enabled() || 4100 trace_sched_stat_blocked_enabled() || 4101 trace_sched_stat_runtime_enabled()) { 4102 printk_deferred_once("Scheduler tracepoints stat_sleep, stat_iowait, " 4103 "stat_blocked and stat_runtime require the " 4104 "kernel parameter schedstats=enable or " 4105 "kernel.sched_schedstats=1\n"); 4106 } 4107 #endif 4108 } 4109 4110 4111 /* 4112 * MIGRATION 4113 * 4114 * dequeue 4115 * update_curr() 4116 * update_min_vruntime() 4117 * vruntime -= min_vruntime 4118 * 4119 * enqueue 4120 * update_curr() 4121 * update_min_vruntime() 4122 * vruntime += min_vruntime 4123 * 4124 * this way the vruntime transition between RQs is done when both 4125 * min_vruntime are up-to-date. 4126 * 4127 * WAKEUP (remote) 4128 * 4129 * ->migrate_task_rq_fair() (p->state == TASK_WAKING) 4130 * vruntime -= min_vruntime 4131 * 4132 * enqueue 4133 * update_curr() 4134 * update_min_vruntime() 4135 * vruntime += min_vruntime 4136 * 4137 * this way we don't have the most up-to-date min_vruntime on the originating 4138 * CPU and an up-to-date min_vruntime on the destination CPU. 4139 */ 4140 4141 static void 4142 enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 4143 { 4144 bool renorm = !(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_MIGRATED); 4145 bool curr = cfs_rq->curr == se; 4146 4147 /* 4148 * If we're the current task, we must renormalise before calling 4149 * update_curr(). 4150 */ 4151 if (renorm && curr) 4152 se->vruntime += cfs_rq->min_vruntime; 4153 4154 update_curr(cfs_rq); 4155 4156 /* 4157 * Otherwise, renormalise after, such that we're placed at the current 4158 * moment in time, instead of some random moment in the past. Being 4159 * placed in the past could significantly boost this task to the 4160 * fairness detriment of existing tasks. 4161 */ 4162 if (renorm && !curr) 4163 se->vruntime += cfs_rq->min_vruntime; 4164 4165 /* 4166 * When enqueuing a sched_entity, we must: 4167 * - Update loads to have both entity and cfs_rq synced with now. 4168 * - Add its load to cfs_rq->runnable_avg 4169 * - For group_entity, update its weight to reflect the new share of 4170 * its group cfs_rq 4171 * - Add its new weight to cfs_rq->load.weight 4172 */ 4173 update_load_avg(cfs_rq, se, UPDATE_TG | DO_ATTACH); 4174 update_cfs_group(se); 4175 enqueue_runnable_load_avg(cfs_rq, se); 4176 account_entity_enqueue(cfs_rq, se); 4177 4178 if (flags & ENQUEUE_WAKEUP) 4179 place_entity(cfs_rq, se, 0); 4180 4181 check_schedstat_required(); 4182 update_stats_enqueue(cfs_rq, se, flags); 4183 check_spread(cfs_rq, se); 4184 if (!curr) 4185 __enqueue_entity(cfs_rq, se); 4186 se->on_rq = 1; 4187 4188 if (cfs_rq->nr_running == 1) { 4189 list_add_leaf_cfs_rq(cfs_rq); 4190 check_enqueue_throttle(cfs_rq); 4191 } 4192 } 4193 4194 static void __clear_buddies_last(struct sched_entity *se) 4195 { 4196 for_each_sched_entity(se) { 4197 struct cfs_rq *cfs_rq = cfs_rq_of(se); 4198 if (cfs_rq->last != se) 4199 break; 4200 4201 cfs_rq->last = NULL; 4202 } 4203 } 4204 4205 static void __clear_buddies_next(struct sched_entity *se) 4206 { 4207 for_each_sched_entity(se) { 4208 struct cfs_rq *cfs_rq = cfs_rq_of(se); 4209 if (cfs_rq->next != se) 4210 break; 4211 4212 cfs_rq->next = NULL; 4213 } 4214 } 4215 4216 static void __clear_buddies_skip(struct sched_entity *se) 4217 { 4218 for_each_sched_entity(se) { 4219 struct cfs_rq *cfs_rq = cfs_rq_of(se); 4220 if (cfs_rq->skip != se) 4221 break; 4222 4223 cfs_rq->skip = NULL; 4224 } 4225 } 4226 4227 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se) 4228 { 4229 if (cfs_rq->last == se) 4230 __clear_buddies_last(se); 4231 4232 if (cfs_rq->next == se) 4233 __clear_buddies_next(se); 4234 4235 if (cfs_rq->skip == se) 4236 __clear_buddies_skip(se); 4237 } 4238 4239 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq); 4240 4241 static void 4242 dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 4243 { 4244 /* 4245 * Update run-time statistics of the 'current'. 4246 */ 4247 update_curr(cfs_rq); 4248 4249 /* 4250 * When dequeuing a sched_entity, we must: 4251 * - Update loads to have both entity and cfs_rq synced with now. 4252 * - Substract its load from the cfs_rq->runnable_avg. 4253 * - Substract its previous weight from cfs_rq->load.weight. 4254 * - For group entity, update its weight to reflect the new share 4255 * of its group cfs_rq. 4256 */ 4257 update_load_avg(cfs_rq, se, UPDATE_TG); 4258 dequeue_runnable_load_avg(cfs_rq, se); 4259 4260 update_stats_dequeue(cfs_rq, se, flags); 4261 4262 clear_buddies(cfs_rq, se); 4263 4264 if (se != cfs_rq->curr) 4265 __dequeue_entity(cfs_rq, se); 4266 se->on_rq = 0; 4267 account_entity_dequeue(cfs_rq, se); 4268 4269 /* 4270 * Normalize after update_curr(); which will also have moved 4271 * min_vruntime if @se is the one holding it back. But before doing 4272 * update_min_vruntime() again, which will discount @se's position and 4273 * can move min_vruntime forward still more. 4274 */ 4275 if (!(flags & DEQUEUE_SLEEP)) 4276 se->vruntime -= cfs_rq->min_vruntime; 4277 4278 /* return excess runtime on last dequeue */ 4279 return_cfs_rq_runtime(cfs_rq); 4280 4281 update_cfs_group(se); 4282 4283 /* 4284 * Now advance min_vruntime if @se was the entity holding it back, 4285 * except when: DEQUEUE_SAVE && !DEQUEUE_MOVE, in this case we'll be 4286 * put back on, and if we advance min_vruntime, we'll be placed back 4287 * further than we started -- ie. we'll be penalized. 4288 */ 4289 if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) == DEQUEUE_SAVE) 4290 update_min_vruntime(cfs_rq); 4291 } 4292 4293 /* 4294 * Preempt the current task with a newly woken task if needed: 4295 */ 4296 static void 4297 check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr) 4298 { 4299 unsigned long ideal_runtime, delta_exec; 4300 struct sched_entity *se; 4301 s64 delta; 4302 4303 ideal_runtime = sched_slice(cfs_rq, curr); 4304 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime; 4305 if (delta_exec > ideal_runtime) { 4306 resched_curr(rq_of(cfs_rq)); 4307 /* 4308 * The current task ran long enough, ensure it doesn't get 4309 * re-elected due to buddy favours. 4310 */ 4311 clear_buddies(cfs_rq, curr); 4312 return; 4313 } 4314 4315 /* 4316 * Ensure that a task that missed wakeup preemption by a 4317 * narrow margin doesn't have to wait for a full slice. 4318 * This also mitigates buddy induced latencies under load. 4319 */ 4320 if (delta_exec < sysctl_sched_min_granularity) 4321 return; 4322 4323 se = __pick_first_entity(cfs_rq); 4324 delta = curr->vruntime - se->vruntime; 4325 4326 if (delta < 0) 4327 return; 4328 4329 if (delta > ideal_runtime) 4330 resched_curr(rq_of(cfs_rq)); 4331 } 4332 4333 static void 4334 set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) 4335 { 4336 /* 'current' is not kept within the tree. */ 4337 if (se->on_rq) { 4338 /* 4339 * Any task has to be enqueued before it get to execute on 4340 * a CPU. So account for the time it spent waiting on the 4341 * runqueue. 4342 */ 4343 update_stats_wait_end(cfs_rq, se); 4344 __dequeue_entity(cfs_rq, se); 4345 update_load_avg(cfs_rq, se, UPDATE_TG); 4346 } 4347 4348 update_stats_curr_start(cfs_rq, se); 4349 cfs_rq->curr = se; 4350 4351 /* 4352 * Track our maximum slice length, if the CPU's load is at 4353 * least twice that of our own weight (i.e. dont track it 4354 * when there are only lesser-weight tasks around): 4355 */ 4356 if (schedstat_enabled() && rq_of(cfs_rq)->load.weight >= 2*se->load.weight) { 4357 schedstat_set(se->statistics.slice_max, 4358 max((u64)schedstat_val(se->statistics.slice_max), 4359 se->sum_exec_runtime - se->prev_sum_exec_runtime)); 4360 } 4361 4362 se->prev_sum_exec_runtime = se->sum_exec_runtime; 4363 } 4364 4365 static int 4366 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se); 4367 4368 /* 4369 * Pick the next process, keeping these things in mind, in this order: 4370 * 1) keep things fair between processes/task groups 4371 * 2) pick the "next" process, since someone really wants that to run 4372 * 3) pick the "last" process, for cache locality 4373 * 4) do not run the "skip" process, if something else is available 4374 */ 4375 static struct sched_entity * 4376 pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr) 4377 { 4378 struct sched_entity *left = __pick_first_entity(cfs_rq); 4379 struct sched_entity *se; 4380 4381 /* 4382 * If curr is set we have to see if its left of the leftmost entity 4383 * still in the tree, provided there was anything in the tree at all. 4384 */ 4385 if (!left || (curr && entity_before(curr, left))) 4386 left = curr; 4387 4388 se = left; /* ideally we run the leftmost entity */ 4389 4390 /* 4391 * Avoid running the skip buddy, if running something else can 4392 * be done without getting too unfair. 4393 */ 4394 if (cfs_rq->skip == se) { 4395 struct sched_entity *second; 4396 4397 if (se == curr) { 4398 second = __pick_first_entity(cfs_rq); 4399 } else { 4400 second = __pick_next_entity(se); 4401 if (!second || (curr && entity_before(curr, second))) 4402 second = curr; 4403 } 4404 4405 if (second && wakeup_preempt_entity(second, left) < 1) 4406 se = second; 4407 } 4408 4409 /* 4410 * Prefer last buddy, try to return the CPU to a preempted task. 4411 */ 4412 if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1) 4413 se = cfs_rq->last; 4414 4415 /* 4416 * Someone really wants this to run. If it's not unfair, run it. 4417 */ 4418 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1) 4419 se = cfs_rq->next; 4420 4421 clear_buddies(cfs_rq, se); 4422 4423 return se; 4424 } 4425 4426 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq); 4427 4428 static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev) 4429 { 4430 /* 4431 * If still on the runqueue then deactivate_task() 4432 * was not called and update_curr() has to be done: 4433 */ 4434 if (prev->on_rq) 4435 update_curr(cfs_rq); 4436 4437 /* throttle cfs_rqs exceeding runtime */ 4438 check_cfs_rq_runtime(cfs_rq); 4439 4440 check_spread(cfs_rq, prev); 4441 4442 if (prev->on_rq) { 4443 update_stats_wait_start(cfs_rq, prev); 4444 /* Put 'current' back into the tree. */ 4445 __enqueue_entity(cfs_rq, prev); 4446 /* in !on_rq case, update occurred at dequeue */ 4447 update_load_avg(cfs_rq, prev, 0); 4448 } 4449 cfs_rq->curr = NULL; 4450 } 4451 4452 static void 4453 entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued) 4454 { 4455 /* 4456 * Update run-time statistics of the 'current'. 4457 */ 4458 update_curr(cfs_rq); 4459 4460 /* 4461 * Ensure that runnable average is periodically updated. 4462 */ 4463 update_load_avg(cfs_rq, curr, UPDATE_TG); 4464 update_cfs_group(curr); 4465 4466 #ifdef CONFIG_SCHED_HRTICK 4467 /* 4468 * queued ticks are scheduled to match the slice, so don't bother 4469 * validating it and just reschedule. 4470 */ 4471 if (queued) { 4472 resched_curr(rq_of(cfs_rq)); 4473 return; 4474 } 4475 /* 4476 * don't let the period tick interfere with the hrtick preemption 4477 */ 4478 if (!sched_feat(DOUBLE_TICK) && 4479 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer)) 4480 return; 4481 #endif 4482 4483 if (cfs_rq->nr_running > 1) 4484 check_preempt_tick(cfs_rq, curr); 4485 } 4486 4487 4488 /************************************************** 4489 * CFS bandwidth control machinery 4490 */ 4491 4492 #ifdef CONFIG_CFS_BANDWIDTH 4493 4494 #ifdef HAVE_JUMP_LABEL 4495 static struct static_key __cfs_bandwidth_used; 4496 4497 static inline bool cfs_bandwidth_used(void) 4498 { 4499 return static_key_false(&__cfs_bandwidth_used); 4500 } 4501 4502 void cfs_bandwidth_usage_inc(void) 4503 { 4504 static_key_slow_inc_cpuslocked(&__cfs_bandwidth_used); 4505 } 4506 4507 void cfs_bandwidth_usage_dec(void) 4508 { 4509 static_key_slow_dec_cpuslocked(&__cfs_bandwidth_used); 4510 } 4511 #else /* HAVE_JUMP_LABEL */ 4512 static bool cfs_bandwidth_used(void) 4513 { 4514 return true; 4515 } 4516 4517 void cfs_bandwidth_usage_inc(void) {} 4518 void cfs_bandwidth_usage_dec(void) {} 4519 #endif /* HAVE_JUMP_LABEL */ 4520 4521 /* 4522 * default period for cfs group bandwidth. 4523 * default: 0.1s, units: nanoseconds 4524 */ 4525 static inline u64 default_cfs_period(void) 4526 { 4527 return 100000000ULL; 4528 } 4529 4530 static inline u64 sched_cfs_bandwidth_slice(void) 4531 { 4532 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC; 4533 } 4534 4535 /* 4536 * Replenish runtime according to assigned quota and update expiration time. 4537 * We use sched_clock_cpu directly instead of rq->clock to avoid adding 4538 * additional synchronization around rq->lock. 4539 * 4540 * requires cfs_b->lock 4541 */ 4542 void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b) 4543 { 4544 u64 now; 4545 4546 if (cfs_b->quota == RUNTIME_INF) 4547 return; 4548 4549 now = sched_clock_cpu(smp_processor_id()); 4550 cfs_b->runtime = cfs_b->quota; 4551 cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period); 4552 } 4553 4554 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg) 4555 { 4556 return &tg->cfs_bandwidth; 4557 } 4558 4559 /* rq->task_clock normalized against any time this cfs_rq has spent throttled */ 4560 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq) 4561 { 4562 if (unlikely(cfs_rq->throttle_count)) 4563 return cfs_rq->throttled_clock_task - cfs_rq->throttled_clock_task_time; 4564 4565 return rq_clock_task(rq_of(cfs_rq)) - cfs_rq->throttled_clock_task_time; 4566 } 4567 4568 /* returns 0 on failure to allocate runtime */ 4569 static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq) 4570 { 4571 struct task_group *tg = cfs_rq->tg; 4572 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg); 4573 u64 amount = 0, min_amount, expires; 4574 4575 /* note: this is a positive sum as runtime_remaining <= 0 */ 4576 min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining; 4577 4578 raw_spin_lock(&cfs_b->lock); 4579 if (cfs_b->quota == RUNTIME_INF) 4580 amount = min_amount; 4581 else { 4582 start_cfs_bandwidth(cfs_b); 4583 4584 if (cfs_b->runtime > 0) { 4585 amount = min(cfs_b->runtime, min_amount); 4586 cfs_b->runtime -= amount; 4587 cfs_b->idle = 0; 4588 } 4589 } 4590 expires = cfs_b->runtime_expires; 4591 raw_spin_unlock(&cfs_b->lock); 4592 4593 cfs_rq->runtime_remaining += amount; 4594 /* 4595 * we may have advanced our local expiration to account for allowed 4596 * spread between our sched_clock and the one on which runtime was 4597 * issued. 4598 */ 4599 if ((s64)(expires - cfs_rq->runtime_expires) > 0) 4600 cfs_rq->runtime_expires = expires; 4601 4602 return cfs_rq->runtime_remaining > 0; 4603 } 4604 4605 /* 4606 * Note: This depends on the synchronization provided by sched_clock and the 4607 * fact that rq->clock snapshots this value. 4608 */ 4609 static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq) 4610 { 4611 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 4612 4613 /* if the deadline is ahead of our clock, nothing to do */ 4614 if (likely((s64)(rq_clock(rq_of(cfs_rq)) - cfs_rq->runtime_expires) < 0)) 4615 return; 4616 4617 if (cfs_rq->runtime_remaining < 0) 4618 return; 4619 4620 /* 4621 * If the local deadline has passed we have to consider the 4622 * possibility that our sched_clock is 'fast' and the global deadline 4623 * has not truly expired. 4624 * 4625 * Fortunately we can check determine whether this the case by checking 4626 * whether the global deadline has advanced. It is valid to compare 4627 * cfs_b->runtime_expires without any locks since we only care about 4628 * exact equality, so a partial write will still work. 4629 */ 4630 4631 if (cfs_rq->runtime_expires != cfs_b->runtime_expires) { 4632 /* extend local deadline, drift is bounded above by 2 ticks */ 4633 cfs_rq->runtime_expires += TICK_NSEC; 4634 } else { 4635 /* global deadline is ahead, expiration has passed */ 4636 cfs_rq->runtime_remaining = 0; 4637 } 4638 } 4639 4640 static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) 4641 { 4642 /* dock delta_exec before expiring quota (as it could span periods) */ 4643 cfs_rq->runtime_remaining -= delta_exec; 4644 expire_cfs_rq_runtime(cfs_rq); 4645 4646 if (likely(cfs_rq->runtime_remaining > 0)) 4647 return; 4648 4649 /* 4650 * if we're unable to extend our runtime we resched so that the active 4651 * hierarchy can be throttled 4652 */ 4653 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr)) 4654 resched_curr(rq_of(cfs_rq)); 4655 } 4656 4657 static __always_inline 4658 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) 4659 { 4660 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled) 4661 return; 4662 4663 __account_cfs_rq_runtime(cfs_rq, delta_exec); 4664 } 4665 4666 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq) 4667 { 4668 return cfs_bandwidth_used() && cfs_rq->throttled; 4669 } 4670 4671 /* check whether cfs_rq, or any parent, is throttled */ 4672 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq) 4673 { 4674 return cfs_bandwidth_used() && cfs_rq->throttle_count; 4675 } 4676 4677 /* 4678 * Ensure that neither of the group entities corresponding to src_cpu or 4679 * dest_cpu are members of a throttled hierarchy when performing group 4680 * load-balance operations. 4681 */ 4682 static inline int throttled_lb_pair(struct task_group *tg, 4683 int src_cpu, int dest_cpu) 4684 { 4685 struct cfs_rq *src_cfs_rq, *dest_cfs_rq; 4686 4687 src_cfs_rq = tg->cfs_rq[src_cpu]; 4688 dest_cfs_rq = tg->cfs_rq[dest_cpu]; 4689 4690 return throttled_hierarchy(src_cfs_rq) || 4691 throttled_hierarchy(dest_cfs_rq); 4692 } 4693 4694 /* updated child weight may affect parent so we have to do this bottom up */ 4695 static int tg_unthrottle_up(struct task_group *tg, void *data) 4696 { 4697 struct rq *rq = data; 4698 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; 4699 4700 cfs_rq->throttle_count--; 4701 if (!cfs_rq->throttle_count) { 4702 /* adjust cfs_rq_clock_task() */ 4703 cfs_rq->throttled_clock_task_time += rq_clock_task(rq) - 4704 cfs_rq->throttled_clock_task; 4705 } 4706 4707 return 0; 4708 } 4709 4710 static int tg_throttle_down(struct task_group *tg, void *data) 4711 { 4712 struct rq *rq = data; 4713 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; 4714 4715 /* group is entering throttled state, stop time */ 4716 if (!cfs_rq->throttle_count) 4717 cfs_rq->throttled_clock_task = rq_clock_task(rq); 4718 cfs_rq->throttle_count++; 4719 4720 return 0; 4721 } 4722 4723 static void throttle_cfs_rq(struct cfs_rq *cfs_rq) 4724 { 4725 struct rq *rq = rq_of(cfs_rq); 4726 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 4727 struct sched_entity *se; 4728 long task_delta, dequeue = 1; 4729 bool empty; 4730 4731 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))]; 4732 4733 /* freeze hierarchy runnable averages while throttled */ 4734 rcu_read_lock(); 4735 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq); 4736 rcu_read_unlock(); 4737 4738 task_delta = cfs_rq->h_nr_running; 4739 for_each_sched_entity(se) { 4740 struct cfs_rq *qcfs_rq = cfs_rq_of(se); 4741 /* throttled entity or throttle-on-deactivate */ 4742 if (!se->on_rq) 4743 break; 4744 4745 if (dequeue) 4746 dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP); 4747 qcfs_rq->h_nr_running -= task_delta; 4748 4749 if (qcfs_rq->load.weight) 4750 dequeue = 0; 4751 } 4752 4753 if (!se) 4754 sub_nr_running(rq, task_delta); 4755 4756 cfs_rq->throttled = 1; 4757 cfs_rq->throttled_clock = rq_clock(rq); 4758 raw_spin_lock(&cfs_b->lock); 4759 empty = list_empty(&cfs_b->throttled_cfs_rq); 4760 4761 /* 4762 * Add to the _head_ of the list, so that an already-started 4763 * distribute_cfs_runtime will not see us 4764 */ 4765 list_add_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq); 4766 4767 /* 4768 * If we're the first throttled task, make sure the bandwidth 4769 * timer is running. 4770 */ 4771 if (empty) 4772 start_cfs_bandwidth(cfs_b); 4773 4774 raw_spin_unlock(&cfs_b->lock); 4775 } 4776 4777 void unthrottle_cfs_rq(struct cfs_rq *cfs_rq) 4778 { 4779 struct rq *rq = rq_of(cfs_rq); 4780 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 4781 struct sched_entity *se; 4782 int enqueue = 1; 4783 long task_delta; 4784 4785 se = cfs_rq->tg->se[cpu_of(rq)]; 4786 4787 cfs_rq->throttled = 0; 4788 4789 update_rq_clock(rq); 4790 4791 raw_spin_lock(&cfs_b->lock); 4792 cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock; 4793 list_del_rcu(&cfs_rq->throttled_list); 4794 raw_spin_unlock(&cfs_b->lock); 4795 4796 /* update hierarchical throttle state */ 4797 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq); 4798 4799 if (!cfs_rq->load.weight) 4800 return; 4801 4802 task_delta = cfs_rq->h_nr_running; 4803 for_each_sched_entity(se) { 4804 if (se->on_rq) 4805 enqueue = 0; 4806 4807 cfs_rq = cfs_rq_of(se); 4808 if (enqueue) 4809 enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP); 4810 cfs_rq->h_nr_running += task_delta; 4811 4812 if (cfs_rq_throttled(cfs_rq)) 4813 break; 4814 } 4815 4816 if (!se) 4817 add_nr_running(rq, task_delta); 4818 4819 /* Determine whether we need to wake up potentially idle CPU: */ 4820 if (rq->curr == rq->idle && rq->cfs.nr_running) 4821 resched_curr(rq); 4822 } 4823 4824 static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b, 4825 u64 remaining, u64 expires) 4826 { 4827 struct cfs_rq *cfs_rq; 4828 u64 runtime; 4829 u64 starting_runtime = remaining; 4830 4831 rcu_read_lock(); 4832 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq, 4833 throttled_list) { 4834 struct rq *rq = rq_of(cfs_rq); 4835 struct rq_flags rf; 4836 4837 rq_lock(rq, &rf); 4838 if (!cfs_rq_throttled(cfs_rq)) 4839 goto next; 4840 4841 runtime = -cfs_rq->runtime_remaining + 1; 4842 if (runtime > remaining) 4843 runtime = remaining; 4844 remaining -= runtime; 4845 4846 cfs_rq->runtime_remaining += runtime; 4847 cfs_rq->runtime_expires = expires; 4848 4849 /* we check whether we're throttled above */ 4850 if (cfs_rq->runtime_remaining > 0) 4851 unthrottle_cfs_rq(cfs_rq); 4852 4853 next: 4854 rq_unlock(rq, &rf); 4855 4856 if (!remaining) 4857 break; 4858 } 4859 rcu_read_unlock(); 4860 4861 return starting_runtime - remaining; 4862 } 4863 4864 /* 4865 * Responsible for refilling a task_group's bandwidth and unthrottling its 4866 * cfs_rqs as appropriate. If there has been no activity within the last 4867 * period the timer is deactivated until scheduling resumes; cfs_b->idle is 4868 * used to track this state. 4869 */ 4870 static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun) 4871 { 4872 u64 runtime, runtime_expires; 4873 int throttled; 4874 4875 /* no need to continue the timer with no bandwidth constraint */ 4876 if (cfs_b->quota == RUNTIME_INF) 4877 goto out_deactivate; 4878 4879 throttled = !list_empty(&cfs_b->throttled_cfs_rq); 4880 cfs_b->nr_periods += overrun; 4881 4882 /* 4883 * idle depends on !throttled (for the case of a large deficit), and if 4884 * we're going inactive then everything else can be deferred 4885 */ 4886 if (cfs_b->idle && !throttled) 4887 goto out_deactivate; 4888 4889 __refill_cfs_bandwidth_runtime(cfs_b); 4890 4891 if (!throttled) { 4892 /* mark as potentially idle for the upcoming period */ 4893 cfs_b->idle = 1; 4894 return 0; 4895 } 4896 4897 /* account preceding periods in which throttling occurred */ 4898 cfs_b->nr_throttled += overrun; 4899 4900 runtime_expires = cfs_b->runtime_expires; 4901 4902 /* 4903 * This check is repeated as we are holding onto the new bandwidth while 4904 * we unthrottle. This can potentially race with an unthrottled group 4905 * trying to acquire new bandwidth from the global pool. This can result 4906 * in us over-using our runtime if it is all used during this loop, but 4907 * only by limited amounts in that extreme case. 4908 */ 4909 while (throttled && cfs_b->runtime > 0) { 4910 runtime = cfs_b->runtime; 4911 raw_spin_unlock(&cfs_b->lock); 4912 /* we can't nest cfs_b->lock while distributing bandwidth */ 4913 runtime = distribute_cfs_runtime(cfs_b, runtime, 4914 runtime_expires); 4915 raw_spin_lock(&cfs_b->lock); 4916 4917 throttled = !list_empty(&cfs_b->throttled_cfs_rq); 4918 4919 cfs_b->runtime -= min(runtime, cfs_b->runtime); 4920 } 4921 4922 /* 4923 * While we are ensured activity in the period following an 4924 * unthrottle, this also covers the case in which the new bandwidth is 4925 * insufficient to cover the existing bandwidth deficit. (Forcing the 4926 * timer to remain active while there are any throttled entities.) 4927 */ 4928 cfs_b->idle = 0; 4929 4930 return 0; 4931 4932 out_deactivate: 4933 return 1; 4934 } 4935 4936 /* a cfs_rq won't donate quota below this amount */ 4937 static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC; 4938 /* minimum remaining period time to redistribute slack quota */ 4939 static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC; 4940 /* how long we wait to gather additional slack before distributing */ 4941 static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC; 4942 4943 /* 4944 * Are we near the end of the current quota period? 4945 * 4946 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the 4947 * hrtimer base being cleared by hrtimer_start. In the case of 4948 * migrate_hrtimers, base is never cleared, so we are fine. 4949 */ 4950 static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire) 4951 { 4952 struct hrtimer *refresh_timer = &cfs_b->period_timer; 4953 u64 remaining; 4954 4955 /* if the call-back is running a quota refresh is already occurring */ 4956 if (hrtimer_callback_running(refresh_timer)) 4957 return 1; 4958 4959 /* is a quota refresh about to occur? */ 4960 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer)); 4961 if (remaining < min_expire) 4962 return 1; 4963 4964 return 0; 4965 } 4966 4967 static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b) 4968 { 4969 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration; 4970 4971 /* if there's a quota refresh soon don't bother with slack */ 4972 if (runtime_refresh_within(cfs_b, min_left)) 4973 return; 4974 4975 hrtimer_start(&cfs_b->slack_timer, 4976 ns_to_ktime(cfs_bandwidth_slack_period), 4977 HRTIMER_MODE_REL); 4978 } 4979 4980 /* we know any runtime found here is valid as update_curr() precedes return */ 4981 static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq) 4982 { 4983 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 4984 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime; 4985 4986 if (slack_runtime <= 0) 4987 return; 4988 4989 raw_spin_lock(&cfs_b->lock); 4990 if (cfs_b->quota != RUNTIME_INF && 4991 cfs_rq->runtime_expires == cfs_b->runtime_expires) { 4992 cfs_b->runtime += slack_runtime; 4993 4994 /* we are under rq->lock, defer unthrottling using a timer */ 4995 if (cfs_b->runtime > sched_cfs_bandwidth_slice() && 4996 !list_empty(&cfs_b->throttled_cfs_rq)) 4997 start_cfs_slack_bandwidth(cfs_b); 4998 } 4999 raw_spin_unlock(&cfs_b->lock); 5000 5001 /* even if it's not valid for return we don't want to try again */ 5002 cfs_rq->runtime_remaining -= slack_runtime; 5003 } 5004 5005 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) 5006 { 5007 if (!cfs_bandwidth_used()) 5008 return; 5009 5010 if (!cfs_rq->runtime_enabled || cfs_rq->nr_running) 5011 return; 5012 5013 __return_cfs_rq_runtime(cfs_rq); 5014 } 5015 5016 /* 5017 * This is done with a timer (instead of inline with bandwidth return) since 5018 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs. 5019 */ 5020 static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b) 5021 { 5022 u64 runtime = 0, slice = sched_cfs_bandwidth_slice(); 5023 u64 expires; 5024 5025 /* confirm we're still not at a refresh boundary */ 5026 raw_spin_lock(&cfs_b->lock); 5027 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) { 5028 raw_spin_unlock(&cfs_b->lock); 5029 return; 5030 } 5031 5032 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice) 5033 runtime = cfs_b->runtime; 5034 5035 expires = cfs_b->runtime_expires; 5036 raw_spin_unlock(&cfs_b->lock); 5037 5038 if (!runtime) 5039 return; 5040 5041 runtime = distribute_cfs_runtime(cfs_b, runtime, expires); 5042 5043 raw_spin_lock(&cfs_b->lock); 5044 if (expires == cfs_b->runtime_expires) 5045 cfs_b->runtime -= min(runtime, cfs_b->runtime); 5046 raw_spin_unlock(&cfs_b->lock); 5047 } 5048 5049 /* 5050 * When a group wakes up we want to make sure that its quota is not already 5051 * expired/exceeded, otherwise it may be allowed to steal additional ticks of 5052 * runtime as update_curr() throttling can not not trigger until it's on-rq. 5053 */ 5054 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) 5055 { 5056 if (!cfs_bandwidth_used()) 5057 return; 5058 5059 /* an active group must be handled by the update_curr()->put() path */ 5060 if (!cfs_rq->runtime_enabled || cfs_rq->curr) 5061 return; 5062 5063 /* ensure the group is not already throttled */ 5064 if (cfs_rq_throttled(cfs_rq)) 5065 return; 5066 5067 /* update runtime allocation */ 5068 account_cfs_rq_runtime(cfs_rq, 0); 5069 if (cfs_rq->runtime_remaining <= 0) 5070 throttle_cfs_rq(cfs_rq); 5071 } 5072 5073 static void sync_throttle(struct task_group *tg, int cpu) 5074 { 5075 struct cfs_rq *pcfs_rq, *cfs_rq; 5076 5077 if (!cfs_bandwidth_used()) 5078 return; 5079 5080 if (!tg->parent) 5081 return; 5082 5083 cfs_rq = tg->cfs_rq[cpu]; 5084 pcfs_rq = tg->parent->cfs_rq[cpu]; 5085 5086 cfs_rq->throttle_count = pcfs_rq->throttle_count; 5087 cfs_rq->throttled_clock_task = rq_clock_task(cpu_rq(cpu)); 5088 } 5089 5090 /* conditionally throttle active cfs_rq's from put_prev_entity() */ 5091 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) 5092 { 5093 if (!cfs_bandwidth_used()) 5094 return false; 5095 5096 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0)) 5097 return false; 5098 5099 /* 5100 * it's possible for a throttled entity to be forced into a running 5101 * state (e.g. set_curr_task), in this case we're finished. 5102 */ 5103 if (cfs_rq_throttled(cfs_rq)) 5104 return true; 5105 5106 throttle_cfs_rq(cfs_rq); 5107 return true; 5108 } 5109 5110 static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer) 5111 { 5112 struct cfs_bandwidth *cfs_b = 5113 container_of(timer, struct cfs_bandwidth, slack_timer); 5114 5115 do_sched_cfs_slack_timer(cfs_b); 5116 5117 return HRTIMER_NORESTART; 5118 } 5119 5120 static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer) 5121 { 5122 struct cfs_bandwidth *cfs_b = 5123 container_of(timer, struct cfs_bandwidth, period_timer); 5124 int overrun; 5125 int idle = 0; 5126 5127 raw_spin_lock(&cfs_b->lock); 5128 for (;;) { 5129 overrun = hrtimer_forward_now(timer, cfs_b->period); 5130 if (!overrun) 5131 break; 5132 5133 idle = do_sched_cfs_period_timer(cfs_b, overrun); 5134 } 5135 if (idle) 5136 cfs_b->period_active = 0; 5137 raw_spin_unlock(&cfs_b->lock); 5138 5139 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART; 5140 } 5141 5142 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) 5143 { 5144 raw_spin_lock_init(&cfs_b->lock); 5145 cfs_b->runtime = 0; 5146 cfs_b->quota = RUNTIME_INF; 5147 cfs_b->period = ns_to_ktime(default_cfs_period()); 5148 5149 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq); 5150 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED); 5151 cfs_b->period_timer.function = sched_cfs_period_timer; 5152 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 5153 cfs_b->slack_timer.function = sched_cfs_slack_timer; 5154 } 5155 5156 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) 5157 { 5158 cfs_rq->runtime_enabled = 0; 5159 INIT_LIST_HEAD(&cfs_rq->throttled_list); 5160 } 5161 5162 void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b) 5163 { 5164 lockdep_assert_held(&cfs_b->lock); 5165 5166 if (!cfs_b->period_active) { 5167 cfs_b->period_active = 1; 5168 hrtimer_forward_now(&cfs_b->period_timer, cfs_b->period); 5169 hrtimer_start_expires(&cfs_b->period_timer, HRTIMER_MODE_ABS_PINNED); 5170 } 5171 } 5172 5173 static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) 5174 { 5175 /* init_cfs_bandwidth() was not called */ 5176 if (!cfs_b->throttled_cfs_rq.next) 5177 return; 5178 5179 hrtimer_cancel(&cfs_b->period_timer); 5180 hrtimer_cancel(&cfs_b->slack_timer); 5181 } 5182 5183 /* 5184 * Both these CPU hotplug callbacks race against unregister_fair_sched_group() 5185 * 5186 * The race is harmless, since modifying bandwidth settings of unhooked group 5187 * bits doesn't do much. 5188 */ 5189 5190 /* cpu online calback */ 5191 static void __maybe_unused update_runtime_enabled(struct rq *rq) 5192 { 5193 struct task_group *tg; 5194 5195 lockdep_assert_held(&rq->lock); 5196 5197 rcu_read_lock(); 5198 list_for_each_entry_rcu(tg, &task_groups, list) { 5199 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 5200 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; 5201 5202 raw_spin_lock(&cfs_b->lock); 5203 cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF; 5204 raw_spin_unlock(&cfs_b->lock); 5205 } 5206 rcu_read_unlock(); 5207 } 5208 5209 /* cpu offline callback */ 5210 static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq) 5211 { 5212 struct task_group *tg; 5213 5214 lockdep_assert_held(&rq->lock); 5215 5216 rcu_read_lock(); 5217 list_for_each_entry_rcu(tg, &task_groups, list) { 5218 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; 5219 5220 if (!cfs_rq->runtime_enabled) 5221 continue; 5222 5223 /* 5224 * clock_task is not advancing so we just need to make sure 5225 * there's some valid quota amount 5226 */ 5227 cfs_rq->runtime_remaining = 1; 5228 /* 5229 * Offline rq is schedulable till CPU is completely disabled 5230 * in take_cpu_down(), so we prevent new cfs throttling here. 5231 */ 5232 cfs_rq->runtime_enabled = 0; 5233 5234 if (cfs_rq_throttled(cfs_rq)) 5235 unthrottle_cfs_rq(cfs_rq); 5236 } 5237 rcu_read_unlock(); 5238 } 5239 5240 #else /* CONFIG_CFS_BANDWIDTH */ 5241 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq) 5242 { 5243 return rq_clock_task(rq_of(cfs_rq)); 5244 } 5245 5246 static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {} 5247 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; } 5248 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {} 5249 static inline void sync_throttle(struct task_group *tg, int cpu) {} 5250 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {} 5251 5252 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq) 5253 { 5254 return 0; 5255 } 5256 5257 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq) 5258 { 5259 return 0; 5260 } 5261 5262 static inline int throttled_lb_pair(struct task_group *tg, 5263 int src_cpu, int dest_cpu) 5264 { 5265 return 0; 5266 } 5267 5268 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {} 5269 5270 #ifdef CONFIG_FAIR_GROUP_SCHED 5271 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {} 5272 #endif 5273 5274 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg) 5275 { 5276 return NULL; 5277 } 5278 static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {} 5279 static inline void update_runtime_enabled(struct rq *rq) {} 5280 static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {} 5281 5282 #endif /* CONFIG_CFS_BANDWIDTH */ 5283 5284 /************************************************** 5285 * CFS operations on tasks: 5286 */ 5287 5288 #ifdef CONFIG_SCHED_HRTICK 5289 static void hrtick_start_fair(struct rq *rq, struct task_struct *p) 5290 { 5291 struct sched_entity *se = &p->se; 5292 struct cfs_rq *cfs_rq = cfs_rq_of(se); 5293 5294 SCHED_WARN_ON(task_rq(p) != rq); 5295 5296 if (rq->cfs.h_nr_running > 1) { 5297 u64 slice = sched_slice(cfs_rq, se); 5298 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime; 5299 s64 delta = slice - ran; 5300 5301 if (delta < 0) { 5302 if (rq->curr == p) 5303 resched_curr(rq); 5304 return; 5305 } 5306 hrtick_start(rq, delta); 5307 } 5308 } 5309 5310 /* 5311 * called from enqueue/dequeue and updates the hrtick when the 5312 * current task is from our class and nr_running is low enough 5313 * to matter. 5314 */ 5315 static void hrtick_update(struct rq *rq) 5316 { 5317 struct task_struct *curr = rq->curr; 5318 5319 if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class) 5320 return; 5321 5322 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency) 5323 hrtick_start_fair(rq, curr); 5324 } 5325 #else /* !CONFIG_SCHED_HRTICK */ 5326 static inline void 5327 hrtick_start_fair(struct rq *rq, struct task_struct *p) 5328 { 5329 } 5330 5331 static inline void hrtick_update(struct rq *rq) 5332 { 5333 } 5334 #endif 5335 5336 /* 5337 * The enqueue_task method is called before nr_running is 5338 * increased. Here we update the fair scheduling stats and 5339 * then put the task into the rbtree: 5340 */ 5341 static void 5342 enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags) 5343 { 5344 struct cfs_rq *cfs_rq; 5345 struct sched_entity *se = &p->se; 5346 5347 /* 5348 * If in_iowait is set, the code below may not trigger any cpufreq 5349 * utilization updates, so do it here explicitly with the IOWAIT flag 5350 * passed. 5351 */ 5352 if (p->in_iowait) 5353 cpufreq_update_util(rq, SCHED_CPUFREQ_IOWAIT); 5354 5355 for_each_sched_entity(se) { 5356 if (se->on_rq) 5357 break; 5358 cfs_rq = cfs_rq_of(se); 5359 enqueue_entity(cfs_rq, se, flags); 5360 5361 /* 5362 * end evaluation on encountering a throttled cfs_rq 5363 * 5364 * note: in the case of encountering a throttled cfs_rq we will 5365 * post the final h_nr_running increment below. 5366 */ 5367 if (cfs_rq_throttled(cfs_rq)) 5368 break; 5369 cfs_rq->h_nr_running++; 5370 5371 flags = ENQUEUE_WAKEUP; 5372 } 5373 5374 for_each_sched_entity(se) { 5375 cfs_rq = cfs_rq_of(se); 5376 cfs_rq->h_nr_running++; 5377 5378 if (cfs_rq_throttled(cfs_rq)) 5379 break; 5380 5381 update_load_avg(cfs_rq, se, UPDATE_TG); 5382 update_cfs_group(se); 5383 } 5384 5385 if (!se) 5386 add_nr_running(rq, 1); 5387 5388 util_est_enqueue(&rq->cfs, p); 5389 hrtick_update(rq); 5390 } 5391 5392 static void set_next_buddy(struct sched_entity *se); 5393 5394 /* 5395 * The dequeue_task method is called before nr_running is 5396 * decreased. We remove the task from the rbtree and 5397 * update the fair scheduling stats: 5398 */ 5399 static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags) 5400 { 5401 struct cfs_rq *cfs_rq; 5402 struct sched_entity *se = &p->se; 5403 int task_sleep = flags & DEQUEUE_SLEEP; 5404 5405 for_each_sched_entity(se) { 5406 cfs_rq = cfs_rq_of(se); 5407 dequeue_entity(cfs_rq, se, flags); 5408 5409 /* 5410 * end evaluation on encountering a throttled cfs_rq 5411 * 5412 * note: in the case of encountering a throttled cfs_rq we will 5413 * post the final h_nr_running decrement below. 5414 */ 5415 if (cfs_rq_throttled(cfs_rq)) 5416 break; 5417 cfs_rq->h_nr_running--; 5418 5419 /* Don't dequeue parent if it has other entities besides us */ 5420 if (cfs_rq->load.weight) { 5421 /* Avoid re-evaluating load for this entity: */ 5422 se = parent_entity(se); 5423 /* 5424 * Bias pick_next to pick a task from this cfs_rq, as 5425 * p is sleeping when it is within its sched_slice. 5426 */ 5427 if (task_sleep && se && !throttled_hierarchy(cfs_rq)) 5428 set_next_buddy(se); 5429 break; 5430 } 5431 flags |= DEQUEUE_SLEEP; 5432 } 5433 5434 for_each_sched_entity(se) { 5435 cfs_rq = cfs_rq_of(se); 5436 cfs_rq->h_nr_running--; 5437 5438 if (cfs_rq_throttled(cfs_rq)) 5439 break; 5440 5441 update_load_avg(cfs_rq, se, UPDATE_TG); 5442 update_cfs_group(se); 5443 } 5444 5445 if (!se) 5446 sub_nr_running(rq, 1); 5447 5448 util_est_dequeue(&rq->cfs, p, task_sleep); 5449 hrtick_update(rq); 5450 } 5451 5452 #ifdef CONFIG_SMP 5453 5454 /* Working cpumask for: load_balance, load_balance_newidle. */ 5455 DEFINE_PER_CPU(cpumask_var_t, load_balance_mask); 5456 DEFINE_PER_CPU(cpumask_var_t, select_idle_mask); 5457 5458 #ifdef CONFIG_NO_HZ_COMMON 5459 /* 5460 * per rq 'load' arrray crap; XXX kill this. 5461 */ 5462 5463 /* 5464 * The exact cpuload calculated at every tick would be: 5465 * 5466 * load' = (1 - 1/2^i) * load + (1/2^i) * cur_load 5467 * 5468 * If a CPU misses updates for n ticks (as it was idle) and update gets 5469 * called on the n+1-th tick when CPU may be busy, then we have: 5470 * 5471 * load_n = (1 - 1/2^i)^n * load_0 5472 * load_n+1 = (1 - 1/2^i) * load_n + (1/2^i) * cur_load 5473 * 5474 * decay_load_missed() below does efficient calculation of 5475 * 5476 * load' = (1 - 1/2^i)^n * load 5477 * 5478 * Because x^(n+m) := x^n * x^m we can decompose any x^n in power-of-2 factors. 5479 * This allows us to precompute the above in said factors, thereby allowing the 5480 * reduction of an arbitrary n in O(log_2 n) steps. (See also 5481 * fixed_power_int()) 5482 * 5483 * The calculation is approximated on a 128 point scale. 5484 */ 5485 #define DEGRADE_SHIFT 7 5486 5487 static const u8 degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128}; 5488 static const u8 degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = { 5489 { 0, 0, 0, 0, 0, 0, 0, 0 }, 5490 { 64, 32, 8, 0, 0, 0, 0, 0 }, 5491 { 96, 72, 40, 12, 1, 0, 0, 0 }, 5492 { 112, 98, 75, 43, 15, 1, 0, 0 }, 5493 { 120, 112, 98, 76, 45, 16, 2, 0 } 5494 }; 5495 5496 /* 5497 * Update cpu_load for any missed ticks, due to tickless idle. The backlog 5498 * would be when CPU is idle and so we just decay the old load without 5499 * adding any new load. 5500 */ 5501 static unsigned long 5502 decay_load_missed(unsigned long load, unsigned long missed_updates, int idx) 5503 { 5504 int j = 0; 5505 5506 if (!missed_updates) 5507 return load; 5508 5509 if (missed_updates >= degrade_zero_ticks[idx]) 5510 return 0; 5511 5512 if (idx == 1) 5513 return load >> missed_updates; 5514 5515 while (missed_updates) { 5516 if (missed_updates % 2) 5517 load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT; 5518 5519 missed_updates >>= 1; 5520 j++; 5521 } 5522 return load; 5523 } 5524 5525 static struct { 5526 cpumask_var_t idle_cpus_mask; 5527 atomic_t nr_cpus; 5528 int has_blocked; /* Idle CPUS has blocked load */ 5529 unsigned long next_balance; /* in jiffy units */ 5530 unsigned long next_blocked; /* Next update of blocked load in jiffies */ 5531 } nohz ____cacheline_aligned; 5532 5533 #endif /* CONFIG_NO_HZ_COMMON */ 5534 5535 /** 5536 * __cpu_load_update - update the rq->cpu_load[] statistics 5537 * @this_rq: The rq to update statistics for 5538 * @this_load: The current load 5539 * @pending_updates: The number of missed updates 5540 * 5541 * Update rq->cpu_load[] statistics. This function is usually called every 5542 * scheduler tick (TICK_NSEC). 5543 * 5544 * This function computes a decaying average: 5545 * 5546 * load[i]' = (1 - 1/2^i) * load[i] + (1/2^i) * load 5547 * 5548 * Because of NOHZ it might not get called on every tick which gives need for 5549 * the @pending_updates argument. 5550 * 5551 * load[i]_n = (1 - 1/2^i) * load[i]_n-1 + (1/2^i) * load_n-1 5552 * = A * load[i]_n-1 + B ; A := (1 - 1/2^i), B := (1/2^i) * load 5553 * = A * (A * load[i]_n-2 + B) + B 5554 * = A * (A * (A * load[i]_n-3 + B) + B) + B 5555 * = A^3 * load[i]_n-3 + (A^2 + A + 1) * B 5556 * = A^n * load[i]_0 + (A^(n-1) + A^(n-2) + ... + 1) * B 5557 * = A^n * load[i]_0 + ((1 - A^n) / (1 - A)) * B 5558 * = (1 - 1/2^i)^n * (load[i]_0 - load) + load 5559 * 5560 * In the above we've assumed load_n := load, which is true for NOHZ_FULL as 5561 * any change in load would have resulted in the tick being turned back on. 5562 * 5563 * For regular NOHZ, this reduces to: 5564 * 5565 * load[i]_n = (1 - 1/2^i)^n * load[i]_0 5566 * 5567 * see decay_load_misses(). For NOHZ_FULL we get to subtract and add the extra 5568 * term. 5569 */ 5570 static void cpu_load_update(struct rq *this_rq, unsigned long this_load, 5571 unsigned long pending_updates) 5572 { 5573 unsigned long __maybe_unused tickless_load = this_rq->cpu_load[0]; 5574 int i, scale; 5575 5576 this_rq->nr_load_updates++; 5577 5578 /* Update our load: */ 5579 this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */ 5580 for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) { 5581 unsigned long old_load, new_load; 5582 5583 /* scale is effectively 1 << i now, and >> i divides by scale */ 5584 5585 old_load = this_rq->cpu_load[i]; 5586 #ifdef CONFIG_NO_HZ_COMMON 5587 old_load = decay_load_missed(old_load, pending_updates - 1, i); 5588 if (tickless_load) { 5589 old_load -= decay_load_missed(tickless_load, pending_updates - 1, i); 5590 /* 5591 * old_load can never be a negative value because a 5592 * decayed tickless_load cannot be greater than the 5593 * original tickless_load. 5594 */ 5595 old_load += tickless_load; 5596 } 5597 #endif 5598 new_load = this_load; 5599 /* 5600 * Round up the averaging division if load is increasing. This 5601 * prevents us from getting stuck on 9 if the load is 10, for 5602 * example. 5603 */ 5604 if (new_load > old_load) 5605 new_load += scale - 1; 5606 5607 this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i; 5608 } 5609 5610 sched_avg_update(this_rq); 5611 } 5612 5613 /* Used instead of source_load when we know the type == 0 */ 5614 static unsigned long weighted_cpuload(struct rq *rq) 5615 { 5616 return cfs_rq_runnable_load_avg(&rq->cfs); 5617 } 5618 5619 #ifdef CONFIG_NO_HZ_COMMON 5620 /* 5621 * There is no sane way to deal with nohz on smp when using jiffies because the 5622 * CPU doing the jiffies update might drift wrt the CPU doing the jiffy reading 5623 * causing off-by-one errors in observed deltas; {0,2} instead of {1,1}. 5624 * 5625 * Therefore we need to avoid the delta approach from the regular tick when 5626 * possible since that would seriously skew the load calculation. This is why we 5627 * use cpu_load_update_periodic() for CPUs out of nohz. However we'll rely on 5628 * jiffies deltas for updates happening while in nohz mode (idle ticks, idle 5629 * loop exit, nohz_idle_balance, nohz full exit...) 5630 * 5631 * This means we might still be one tick off for nohz periods. 5632 */ 5633 5634 static void cpu_load_update_nohz(struct rq *this_rq, 5635 unsigned long curr_jiffies, 5636 unsigned long load) 5637 { 5638 unsigned long pending_updates; 5639 5640 pending_updates = curr_jiffies - this_rq->last_load_update_tick; 5641 if (pending_updates) { 5642 this_rq->last_load_update_tick = curr_jiffies; 5643 /* 5644 * In the regular NOHZ case, we were idle, this means load 0. 5645 * In the NOHZ_FULL case, we were non-idle, we should consider 5646 * its weighted load. 5647 */ 5648 cpu_load_update(this_rq, load, pending_updates); 5649 } 5650 } 5651 5652 /* 5653 * Called from nohz_idle_balance() to update the load ratings before doing the 5654 * idle balance. 5655 */ 5656 static void cpu_load_update_idle(struct rq *this_rq) 5657 { 5658 /* 5659 * bail if there's load or we're actually up-to-date. 5660 */ 5661 if (weighted_cpuload(this_rq)) 5662 return; 5663 5664 cpu_load_update_nohz(this_rq, READ_ONCE(jiffies), 0); 5665 } 5666 5667 /* 5668 * Record CPU load on nohz entry so we know the tickless load to account 5669 * on nohz exit. cpu_load[0] happens then to be updated more frequently 5670 * than other cpu_load[idx] but it should be fine as cpu_load readers 5671 * shouldn't rely into synchronized cpu_load[*] updates. 5672 */ 5673 void cpu_load_update_nohz_start(void) 5674 { 5675 struct rq *this_rq = this_rq(); 5676 5677 /* 5678 * This is all lockless but should be fine. If weighted_cpuload changes 5679 * concurrently we'll exit nohz. And cpu_load write can race with 5680 * cpu_load_update_idle() but both updater would be writing the same. 5681 */ 5682 this_rq->cpu_load[0] = weighted_cpuload(this_rq); 5683 } 5684 5685 /* 5686 * Account the tickless load in the end of a nohz frame. 5687 */ 5688 void cpu_load_update_nohz_stop(void) 5689 { 5690 unsigned long curr_jiffies = READ_ONCE(jiffies); 5691 struct rq *this_rq = this_rq(); 5692 unsigned long load; 5693 struct rq_flags rf; 5694 5695 if (curr_jiffies == this_rq->last_load_update_tick) 5696 return; 5697 5698 load = weighted_cpuload(this_rq); 5699 rq_lock(this_rq, &rf); 5700 update_rq_clock(this_rq); 5701 cpu_load_update_nohz(this_rq, curr_jiffies, load); 5702 rq_unlock(this_rq, &rf); 5703 } 5704 #else /* !CONFIG_NO_HZ_COMMON */ 5705 static inline void cpu_load_update_nohz(struct rq *this_rq, 5706 unsigned long curr_jiffies, 5707 unsigned long load) { } 5708 #endif /* CONFIG_NO_HZ_COMMON */ 5709 5710 static void cpu_load_update_periodic(struct rq *this_rq, unsigned long load) 5711 { 5712 #ifdef CONFIG_NO_HZ_COMMON 5713 /* See the mess around cpu_load_update_nohz(). */ 5714 this_rq->last_load_update_tick = READ_ONCE(jiffies); 5715 #endif 5716 cpu_load_update(this_rq, load, 1); 5717 } 5718 5719 /* 5720 * Called from scheduler_tick() 5721 */ 5722 void cpu_load_update_active(struct rq *this_rq) 5723 { 5724 unsigned long load = weighted_cpuload(this_rq); 5725 5726 if (tick_nohz_tick_stopped()) 5727 cpu_load_update_nohz(this_rq, READ_ONCE(jiffies), load); 5728 else 5729 cpu_load_update_periodic(this_rq, load); 5730 } 5731 5732 /* 5733 * Return a low guess at the load of a migration-source CPU weighted 5734 * according to the scheduling class and "nice" value. 5735 * 5736 * We want to under-estimate the load of migration sources, to 5737 * balance conservatively. 5738 */ 5739 static unsigned long source_load(int cpu, int type) 5740 { 5741 struct rq *rq = cpu_rq(cpu); 5742 unsigned long total = weighted_cpuload(rq); 5743 5744 if (type == 0 || !sched_feat(LB_BIAS)) 5745 return total; 5746 5747 return min(rq->cpu_load[type-1], total); 5748 } 5749 5750 /* 5751 * Return a high guess at the load of a migration-target CPU weighted 5752 * according to the scheduling class and "nice" value. 5753 */ 5754 static unsigned long target_load(int cpu, int type) 5755 { 5756 struct rq *rq = cpu_rq(cpu); 5757 unsigned long total = weighted_cpuload(rq); 5758 5759 if (type == 0 || !sched_feat(LB_BIAS)) 5760 return total; 5761 5762 return max(rq->cpu_load[type-1], total); 5763 } 5764 5765 static unsigned long capacity_of(int cpu) 5766 { 5767 return cpu_rq(cpu)->cpu_capacity; 5768 } 5769 5770 static unsigned long capacity_orig_of(int cpu) 5771 { 5772 return cpu_rq(cpu)->cpu_capacity_orig; 5773 } 5774 5775 static unsigned long cpu_avg_load_per_task(int cpu) 5776 { 5777 struct rq *rq = cpu_rq(cpu); 5778 unsigned long nr_running = READ_ONCE(rq->cfs.h_nr_running); 5779 unsigned long load_avg = weighted_cpuload(rq); 5780 5781 if (nr_running) 5782 return load_avg / nr_running; 5783 5784 return 0; 5785 } 5786 5787 static void record_wakee(struct task_struct *p) 5788 { 5789 /* 5790 * Only decay a single time; tasks that have less then 1 wakeup per 5791 * jiffy will not have built up many flips. 5792 */ 5793 if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) { 5794 current->wakee_flips >>= 1; 5795 current->wakee_flip_decay_ts = jiffies; 5796 } 5797 5798 if (current->last_wakee != p) { 5799 current->last_wakee = p; 5800 current->wakee_flips++; 5801 } 5802 } 5803 5804 /* 5805 * Detect M:N waker/wakee relationships via a switching-frequency heuristic. 5806 * 5807 * A waker of many should wake a different task than the one last awakened 5808 * at a frequency roughly N times higher than one of its wakees. 5809 * 5810 * In order to determine whether we should let the load spread vs consolidating 5811 * to shared cache, we look for a minimum 'flip' frequency of llc_size in one 5812 * partner, and a factor of lls_size higher frequency in the other. 5813 * 5814 * With both conditions met, we can be relatively sure that the relationship is 5815 * non-monogamous, with partner count exceeding socket size. 5816 * 5817 * Waker/wakee being client/server, worker/dispatcher, interrupt source or 5818 * whatever is irrelevant, spread criteria is apparent partner count exceeds 5819 * socket size. 5820 */ 5821 static int wake_wide(struct task_struct *p) 5822 { 5823 unsigned int master = current->wakee_flips; 5824 unsigned int slave = p->wakee_flips; 5825 int factor = this_cpu_read(sd_llc_size); 5826 5827 if (master < slave) 5828 swap(master, slave); 5829 if (slave < factor || master < slave * factor) 5830 return 0; 5831 return 1; 5832 } 5833 5834 /* 5835 * The purpose of wake_affine() is to quickly determine on which CPU we can run 5836 * soonest. For the purpose of speed we only consider the waking and previous 5837 * CPU. 5838 * 5839 * wake_affine_idle() - only considers 'now', it check if the waking CPU is 5840 * cache-affine and is (or will be) idle. 5841 * 5842 * wake_affine_weight() - considers the weight to reflect the average 5843 * scheduling latency of the CPUs. This seems to work 5844 * for the overloaded case. 5845 */ 5846 static int 5847 wake_affine_idle(int this_cpu, int prev_cpu, int sync) 5848 { 5849 /* 5850 * If this_cpu is idle, it implies the wakeup is from interrupt 5851 * context. Only allow the move if cache is shared. Otherwise an 5852 * interrupt intensive workload could force all tasks onto one 5853 * node depending on the IO topology or IRQ affinity settings. 5854 * 5855 * If the prev_cpu is idle and cache affine then avoid a migration. 5856 * There is no guarantee that the cache hot data from an interrupt 5857 * is more important than cache hot data on the prev_cpu and from 5858 * a cpufreq perspective, it's better to have higher utilisation 5859 * on one CPU. 5860 */ 5861 if (idle_cpu(this_cpu) && cpus_share_cache(this_cpu, prev_cpu)) 5862 return idle_cpu(prev_cpu) ? prev_cpu : this_cpu; 5863 5864 if (sync && cpu_rq(this_cpu)->nr_running == 1) 5865 return this_cpu; 5866 5867 return nr_cpumask_bits; 5868 } 5869 5870 static int 5871 wake_affine_weight(struct sched_domain *sd, struct task_struct *p, 5872 int this_cpu, int prev_cpu, int sync) 5873 { 5874 s64 this_eff_load, prev_eff_load; 5875 unsigned long task_load; 5876 5877 this_eff_load = target_load(this_cpu, sd->wake_idx); 5878 5879 if (sync) { 5880 unsigned long current_load = task_h_load(current); 5881 5882 if (current_load > this_eff_load) 5883 return this_cpu; 5884 5885 this_eff_load -= current_load; 5886 } 5887 5888 task_load = task_h_load(p); 5889 5890 this_eff_load += task_load; 5891 if (sched_feat(WA_BIAS)) 5892 this_eff_load *= 100; 5893 this_eff_load *= capacity_of(prev_cpu); 5894 5895 prev_eff_load = source_load(prev_cpu, sd->wake_idx); 5896 prev_eff_load -= task_load; 5897 if (sched_feat(WA_BIAS)) 5898 prev_eff_load *= 100 + (sd->imbalance_pct - 100) / 2; 5899 prev_eff_load *= capacity_of(this_cpu); 5900 5901 /* 5902 * If sync, adjust the weight of prev_eff_load such that if 5903 * prev_eff == this_eff that select_idle_sibling() will consider 5904 * stacking the wakee on top of the waker if no other CPU is 5905 * idle. 5906 */ 5907 if (sync) 5908 prev_eff_load += 1; 5909 5910 return this_eff_load < prev_eff_load ? this_cpu : nr_cpumask_bits; 5911 } 5912 5913 static int wake_affine(struct sched_domain *sd, struct task_struct *p, 5914 int this_cpu, int prev_cpu, int sync) 5915 { 5916 int target = nr_cpumask_bits; 5917 5918 if (sched_feat(WA_IDLE)) 5919 target = wake_affine_idle(this_cpu, prev_cpu, sync); 5920 5921 if (sched_feat(WA_WEIGHT) && target == nr_cpumask_bits) 5922 target = wake_affine_weight(sd, p, this_cpu, prev_cpu, sync); 5923 5924 schedstat_inc(p->se.statistics.nr_wakeups_affine_attempts); 5925 if (target == nr_cpumask_bits) 5926 return prev_cpu; 5927 5928 schedstat_inc(sd->ttwu_move_affine); 5929 schedstat_inc(p->se.statistics.nr_wakeups_affine); 5930 return target; 5931 } 5932 5933 static unsigned long cpu_util_wake(int cpu, struct task_struct *p); 5934 5935 static unsigned long capacity_spare_wake(int cpu, struct task_struct *p) 5936 { 5937 return max_t(long, capacity_of(cpu) - cpu_util_wake(cpu, p), 0); 5938 } 5939 5940 /* 5941 * find_idlest_group finds and returns the least busy CPU group within the 5942 * domain. 5943 * 5944 * Assumes p is allowed on at least one CPU in sd. 5945 */ 5946 static struct sched_group * 5947 find_idlest_group(struct sched_domain *sd, struct task_struct *p, 5948 int this_cpu, int sd_flag) 5949 { 5950 struct sched_group *idlest = NULL, *group = sd->groups; 5951 struct sched_group *most_spare_sg = NULL; 5952 unsigned long min_runnable_load = ULONG_MAX; 5953 unsigned long this_runnable_load = ULONG_MAX; 5954 unsigned long min_avg_load = ULONG_MAX, this_avg_load = ULONG_MAX; 5955 unsigned long most_spare = 0, this_spare = 0; 5956 int load_idx = sd->forkexec_idx; 5957 int imbalance_scale = 100 + (sd->imbalance_pct-100)/2; 5958 unsigned long imbalance = scale_load_down(NICE_0_LOAD) * 5959 (sd->imbalance_pct-100) / 100; 5960 5961 if (sd_flag & SD_BALANCE_WAKE) 5962 load_idx = sd->wake_idx; 5963 5964 do { 5965 unsigned long load, avg_load, runnable_load; 5966 unsigned long spare_cap, max_spare_cap; 5967 int local_group; 5968 int i; 5969 5970 /* Skip over this group if it has no CPUs allowed */ 5971 if (!cpumask_intersects(sched_group_span(group), 5972 &p->cpus_allowed)) 5973 continue; 5974 5975 local_group = cpumask_test_cpu(this_cpu, 5976 sched_group_span(group)); 5977 5978 /* 5979 * Tally up the load of all CPUs in the group and find 5980 * the group containing the CPU with most spare capacity. 5981 */ 5982 avg_load = 0; 5983 runnable_load = 0; 5984 max_spare_cap = 0; 5985 5986 for_each_cpu(i, sched_group_span(group)) { 5987 /* Bias balancing toward CPUs of our domain */ 5988 if (local_group) 5989 load = source_load(i, load_idx); 5990 else 5991 load = target_load(i, load_idx); 5992 5993 runnable_load += load; 5994 5995 avg_load += cfs_rq_load_avg(&cpu_rq(i)->cfs); 5996 5997 spare_cap = capacity_spare_wake(i, p); 5998 5999 if (spare_cap > max_spare_cap) 6000 max_spare_cap = spare_cap; 6001 } 6002 6003 /* Adjust by relative CPU capacity of the group */ 6004 avg_load = (avg_load * SCHED_CAPACITY_SCALE) / 6005 group->sgc->capacity; 6006 runnable_load = (runnable_load * SCHED_CAPACITY_SCALE) / 6007 group->sgc->capacity; 6008 6009 if (local_group) { 6010 this_runnable_load = runnable_load; 6011 this_avg_load = avg_load; 6012 this_spare = max_spare_cap; 6013 } else { 6014 if (min_runnable_load > (runnable_load + imbalance)) { 6015 /* 6016 * The runnable load is significantly smaller 6017 * so we can pick this new CPU: 6018 */ 6019 min_runnable_load = runnable_load; 6020 min_avg_load = avg_load; 6021 idlest = group; 6022 } else if ((runnable_load < (min_runnable_load + imbalance)) && 6023 (100*min_avg_load > imbalance_scale*avg_load)) { 6024 /* 6025 * The runnable loads are close so take the 6026 * blocked load into account through avg_load: 6027 */ 6028 min_avg_load = avg_load; 6029 idlest = group; 6030 } 6031 6032 if (most_spare < max_spare_cap) { 6033 most_spare = max_spare_cap; 6034 most_spare_sg = group; 6035 } 6036 } 6037 } while (group = group->next, group != sd->groups); 6038 6039 /* 6040 * The cross-over point between using spare capacity or least load 6041 * is too conservative for high utilization tasks on partially 6042 * utilized systems if we require spare_capacity > task_util(p), 6043 * so we allow for some task stuffing by using 6044 * spare_capacity > task_util(p)/2. 6045 * 6046 * Spare capacity can't be used for fork because the utilization has 6047 * not been set yet, we must first select a rq to compute the initial 6048 * utilization. 6049 */ 6050 if (sd_flag & SD_BALANCE_FORK) 6051 goto skip_spare; 6052 6053 if (this_spare > task_util(p) / 2 && 6054 imbalance_scale*this_spare > 100*most_spare) 6055 return NULL; 6056 6057 if (most_spare > task_util(p) / 2) 6058 return most_spare_sg; 6059 6060 skip_spare: 6061 if (!idlest) 6062 return NULL; 6063 6064 /* 6065 * When comparing groups across NUMA domains, it's possible for the 6066 * local domain to be very lightly loaded relative to the remote 6067 * domains but "imbalance" skews the comparison making remote CPUs 6068 * look much more favourable. When considering cross-domain, add 6069 * imbalance to the runnable load on the remote node and consider 6070 * staying local. 6071 */ 6072 if ((sd->flags & SD_NUMA) && 6073 min_runnable_load + imbalance >= this_runnable_load) 6074 return NULL; 6075 6076 if (min_runnable_load > (this_runnable_load + imbalance)) 6077 return NULL; 6078 6079 if ((this_runnable_load < (min_runnable_load + imbalance)) && 6080 (100*this_avg_load < imbalance_scale*min_avg_load)) 6081 return NULL; 6082 6083 return idlest; 6084 } 6085 6086 /* 6087 * find_idlest_group_cpu - find the idlest CPU among the CPUs in the group. 6088 */ 6089 static int 6090 find_idlest_group_cpu(struct sched_group *group, struct task_struct *p, int this_cpu) 6091 { 6092 unsigned long load, min_load = ULONG_MAX; 6093 unsigned int min_exit_latency = UINT_MAX; 6094 u64 latest_idle_timestamp = 0; 6095 int least_loaded_cpu = this_cpu; 6096 int shallowest_idle_cpu = -1; 6097 int i; 6098 6099 /* Check if we have any choice: */ 6100 if (group->group_weight == 1) 6101 return cpumask_first(sched_group_span(group)); 6102 6103 /* Traverse only the allowed CPUs */ 6104 for_each_cpu_and(i, sched_group_span(group), &p->cpus_allowed) { 6105 if (idle_cpu(i)) { 6106 struct rq *rq = cpu_rq(i); 6107 struct cpuidle_state *idle = idle_get_state(rq); 6108 if (idle && idle->exit_latency < min_exit_latency) { 6109 /* 6110 * We give priority to a CPU whose idle state 6111 * has the smallest exit latency irrespective 6112 * of any idle timestamp. 6113 */ 6114 min_exit_latency = idle->exit_latency; 6115 latest_idle_timestamp = rq->idle_stamp; 6116 shallowest_idle_cpu = i; 6117 } else if ((!idle || idle->exit_latency == min_exit_latency) && 6118 rq->idle_stamp > latest_idle_timestamp) { 6119 /* 6120 * If equal or no active idle state, then 6121 * the most recently idled CPU might have 6122 * a warmer cache. 6123 */ 6124 latest_idle_timestamp = rq->idle_stamp; 6125 shallowest_idle_cpu = i; 6126 } 6127 } else if (shallowest_idle_cpu == -1) { 6128 load = weighted_cpuload(cpu_rq(i)); 6129 if (load < min_load) { 6130 min_load = load; 6131 least_loaded_cpu = i; 6132 } 6133 } 6134 } 6135 6136 return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu; 6137 } 6138 6139 static inline int find_idlest_cpu(struct sched_domain *sd, struct task_struct *p, 6140 int cpu, int prev_cpu, int sd_flag) 6141 { 6142 int new_cpu = cpu; 6143 6144 if (!cpumask_intersects(sched_domain_span(sd), &p->cpus_allowed)) 6145 return prev_cpu; 6146 6147 while (sd) { 6148 struct sched_group *group; 6149 struct sched_domain *tmp; 6150 int weight; 6151 6152 if (!(sd->flags & sd_flag)) { 6153 sd = sd->child; 6154 continue; 6155 } 6156 6157 group = find_idlest_group(sd, p, cpu, sd_flag); 6158 if (!group) { 6159 sd = sd->child; 6160 continue; 6161 } 6162 6163 new_cpu = find_idlest_group_cpu(group, p, cpu); 6164 if (new_cpu == cpu) { 6165 /* Now try balancing at a lower domain level of 'cpu': */ 6166 sd = sd->child; 6167 continue; 6168 } 6169 6170 /* Now try balancing at a lower domain level of 'new_cpu': */ 6171 cpu = new_cpu; 6172 weight = sd->span_weight; 6173 sd = NULL; 6174 for_each_domain(cpu, tmp) { 6175 if (weight <= tmp->span_weight) 6176 break; 6177 if (tmp->flags & sd_flag) 6178 sd = tmp; 6179 } 6180 } 6181 6182 return new_cpu; 6183 } 6184 6185 #ifdef CONFIG_SCHED_SMT 6186 6187 static inline void set_idle_cores(int cpu, int val) 6188 { 6189 struct sched_domain_shared *sds; 6190 6191 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu)); 6192 if (sds) 6193 WRITE_ONCE(sds->has_idle_cores, val); 6194 } 6195 6196 static inline bool test_idle_cores(int cpu, bool def) 6197 { 6198 struct sched_domain_shared *sds; 6199 6200 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu)); 6201 if (sds) 6202 return READ_ONCE(sds->has_idle_cores); 6203 6204 return def; 6205 } 6206 6207 /* 6208 * Scans the local SMT mask to see if the entire core is idle, and records this 6209 * information in sd_llc_shared->has_idle_cores. 6210 * 6211 * Since SMT siblings share all cache levels, inspecting this limited remote 6212 * state should be fairly cheap. 6213 */ 6214 void __update_idle_core(struct rq *rq) 6215 { 6216 int core = cpu_of(rq); 6217 int cpu; 6218 6219 rcu_read_lock(); 6220 if (test_idle_cores(core, true)) 6221 goto unlock; 6222 6223 for_each_cpu(cpu, cpu_smt_mask(core)) { 6224 if (cpu == core) 6225 continue; 6226 6227 if (!idle_cpu(cpu)) 6228 goto unlock; 6229 } 6230 6231 set_idle_cores(core, 1); 6232 unlock: 6233 rcu_read_unlock(); 6234 } 6235 6236 /* 6237 * Scan the entire LLC domain for idle cores; this dynamically switches off if 6238 * there are no idle cores left in the system; tracked through 6239 * sd_llc->shared->has_idle_cores and enabled through update_idle_core() above. 6240 */ 6241 static int select_idle_core(struct task_struct *p, struct sched_domain *sd, int target) 6242 { 6243 struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_idle_mask); 6244 int core, cpu; 6245 6246 if (!static_branch_likely(&sched_smt_present)) 6247 return -1; 6248 6249 if (!test_idle_cores(target, false)) 6250 return -1; 6251 6252 cpumask_and(cpus, sched_domain_span(sd), &p->cpus_allowed); 6253 6254 for_each_cpu_wrap(core, cpus, target) { 6255 bool idle = true; 6256 6257 for_each_cpu(cpu, cpu_smt_mask(core)) { 6258 cpumask_clear_cpu(cpu, cpus); 6259 if (!idle_cpu(cpu)) 6260 idle = false; 6261 } 6262 6263 if (idle) 6264 return core; 6265 } 6266 6267 /* 6268 * Failed to find an idle core; stop looking for one. 6269 */ 6270 set_idle_cores(target, 0); 6271 6272 return -1; 6273 } 6274 6275 /* 6276 * Scan the local SMT mask for idle CPUs. 6277 */ 6278 static int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target) 6279 { 6280 int cpu; 6281 6282 if (!static_branch_likely(&sched_smt_present)) 6283 return -1; 6284 6285 for_each_cpu(cpu, cpu_smt_mask(target)) { 6286 if (!cpumask_test_cpu(cpu, &p->cpus_allowed)) 6287 continue; 6288 if (idle_cpu(cpu)) 6289 return cpu; 6290 } 6291 6292 return -1; 6293 } 6294 6295 #else /* CONFIG_SCHED_SMT */ 6296 6297 static inline int select_idle_core(struct task_struct *p, struct sched_domain *sd, int target) 6298 { 6299 return -1; 6300 } 6301 6302 static inline int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target) 6303 { 6304 return -1; 6305 } 6306 6307 #endif /* CONFIG_SCHED_SMT */ 6308 6309 /* 6310 * Scan the LLC domain for idle CPUs; this is dynamically regulated by 6311 * comparing the average scan cost (tracked in sd->avg_scan_cost) against the 6312 * average idle time for this rq (as found in rq->avg_idle). 6313 */ 6314 static int select_idle_cpu(struct task_struct *p, struct sched_domain *sd, int target) 6315 { 6316 struct sched_domain *this_sd; 6317 u64 avg_cost, avg_idle; 6318 u64 time, cost; 6319 s64 delta; 6320 int cpu, nr = INT_MAX; 6321 6322 this_sd = rcu_dereference(*this_cpu_ptr(&sd_llc)); 6323 if (!this_sd) 6324 return -1; 6325 6326 /* 6327 * Due to large variance we need a large fuzz factor; hackbench in 6328 * particularly is sensitive here. 6329 */ 6330 avg_idle = this_rq()->avg_idle / 512; 6331 avg_cost = this_sd->avg_scan_cost + 1; 6332 6333 if (sched_feat(SIS_AVG_CPU) && avg_idle < avg_cost) 6334 return -1; 6335 6336 if (sched_feat(SIS_PROP)) { 6337 u64 span_avg = sd->span_weight * avg_idle; 6338 if (span_avg > 4*avg_cost) 6339 nr = div_u64(span_avg, avg_cost); 6340 else 6341 nr = 4; 6342 } 6343 6344 time = local_clock(); 6345 6346 for_each_cpu_wrap(cpu, sched_domain_span(sd), target) { 6347 if (!--nr) 6348 return -1; 6349 if (!cpumask_test_cpu(cpu, &p->cpus_allowed)) 6350 continue; 6351 if (idle_cpu(cpu)) 6352 break; 6353 } 6354 6355 time = local_clock() - time; 6356 cost = this_sd->avg_scan_cost; 6357 delta = (s64)(time - cost) / 8; 6358 this_sd->avg_scan_cost += delta; 6359 6360 return cpu; 6361 } 6362 6363 /* 6364 * Try and locate an idle core/thread in the LLC cache domain. 6365 */ 6366 static int select_idle_sibling(struct task_struct *p, int prev, int target) 6367 { 6368 struct sched_domain *sd; 6369 int i, recent_used_cpu; 6370 6371 if (idle_cpu(target)) 6372 return target; 6373 6374 /* 6375 * If the previous CPU is cache affine and idle, don't be stupid: 6376 */ 6377 if (prev != target && cpus_share_cache(prev, target) && idle_cpu(prev)) 6378 return prev; 6379 6380 /* Check a recently used CPU as a potential idle candidate: */ 6381 recent_used_cpu = p->recent_used_cpu; 6382 if (recent_used_cpu != prev && 6383 recent_used_cpu != target && 6384 cpus_share_cache(recent_used_cpu, target) && 6385 idle_cpu(recent_used_cpu) && 6386 cpumask_test_cpu(p->recent_used_cpu, &p->cpus_allowed)) { 6387 /* 6388 * Replace recent_used_cpu with prev as it is a potential 6389 * candidate for the next wake: 6390 */ 6391 p->recent_used_cpu = prev; 6392 return recent_used_cpu; 6393 } 6394 6395 sd = rcu_dereference(per_cpu(sd_llc, target)); 6396 if (!sd) 6397 return target; 6398 6399 i = select_idle_core(p, sd, target); 6400 if ((unsigned)i < nr_cpumask_bits) 6401 return i; 6402 6403 i = select_idle_cpu(p, sd, target); 6404 if ((unsigned)i < nr_cpumask_bits) 6405 return i; 6406 6407 i = select_idle_smt(p, sd, target); 6408 if ((unsigned)i < nr_cpumask_bits) 6409 return i; 6410 6411 return target; 6412 } 6413 6414 /** 6415 * Amount of capacity of a CPU that is (estimated to be) used by CFS tasks 6416 * @cpu: the CPU to get the utilization of 6417 * 6418 * The unit of the return value must be the one of capacity so we can compare 6419 * the utilization with the capacity of the CPU that is available for CFS task 6420 * (ie cpu_capacity). 6421 * 6422 * cfs_rq.avg.util_avg is the sum of running time of runnable tasks plus the 6423 * recent utilization of currently non-runnable tasks on a CPU. It represents 6424 * the amount of utilization of a CPU in the range [0..capacity_orig] where 6425 * capacity_orig is the cpu_capacity available at the highest frequency 6426 * (arch_scale_freq_capacity()). 6427 * The utilization of a CPU converges towards a sum equal to or less than the 6428 * current capacity (capacity_curr <= capacity_orig) of the CPU because it is 6429 * the running time on this CPU scaled by capacity_curr. 6430 * 6431 * The estimated utilization of a CPU is defined to be the maximum between its 6432 * cfs_rq.avg.util_avg and the sum of the estimated utilization of the tasks 6433 * currently RUNNABLE on that CPU. 6434 * This allows to properly represent the expected utilization of a CPU which 6435 * has just got a big task running since a long sleep period. At the same time 6436 * however it preserves the benefits of the "blocked utilization" in 6437 * describing the potential for other tasks waking up on the same CPU. 6438 * 6439 * Nevertheless, cfs_rq.avg.util_avg can be higher than capacity_curr or even 6440 * higher than capacity_orig because of unfortunate rounding in 6441 * cfs.avg.util_avg or just after migrating tasks and new task wakeups until 6442 * the average stabilizes with the new running time. We need to check that the 6443 * utilization stays within the range of [0..capacity_orig] and cap it if 6444 * necessary. Without utilization capping, a group could be seen as overloaded 6445 * (CPU0 utilization at 121% + CPU1 utilization at 80%) whereas CPU1 has 20% of 6446 * available capacity. We allow utilization to overshoot capacity_curr (but not 6447 * capacity_orig) as it useful for predicting the capacity required after task 6448 * migrations (scheduler-driven DVFS). 6449 * 6450 * Return: the (estimated) utilization for the specified CPU 6451 */ 6452 static inline unsigned long cpu_util(int cpu) 6453 { 6454 struct cfs_rq *cfs_rq; 6455 unsigned int util; 6456 6457 cfs_rq = &cpu_rq(cpu)->cfs; 6458 util = READ_ONCE(cfs_rq->avg.util_avg); 6459 6460 if (sched_feat(UTIL_EST)) 6461 util = max(util, READ_ONCE(cfs_rq->avg.util_est.enqueued)); 6462 6463 return min_t(unsigned long, util, capacity_orig_of(cpu)); 6464 } 6465 6466 /* 6467 * cpu_util_wake: Compute CPU utilization with any contributions from 6468 * the waking task p removed. 6469 */ 6470 static unsigned long cpu_util_wake(int cpu, struct task_struct *p) 6471 { 6472 struct cfs_rq *cfs_rq; 6473 unsigned int util; 6474 6475 /* Task has no contribution or is new */ 6476 if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time)) 6477 return cpu_util(cpu); 6478 6479 cfs_rq = &cpu_rq(cpu)->cfs; 6480 util = READ_ONCE(cfs_rq->avg.util_avg); 6481 6482 /* Discount task's blocked util from CPU's util */ 6483 util -= min_t(unsigned int, util, task_util(p)); 6484 6485 /* 6486 * Covered cases: 6487 * 6488 * a) if *p is the only task sleeping on this CPU, then: 6489 * cpu_util (== task_util) > util_est (== 0) 6490 * and thus we return: 6491 * cpu_util_wake = (cpu_util - task_util) = 0 6492 * 6493 * b) if other tasks are SLEEPING on this CPU, which is now exiting 6494 * IDLE, then: 6495 * cpu_util >= task_util 6496 * cpu_util > util_est (== 0) 6497 * and thus we discount *p's blocked utilization to return: 6498 * cpu_util_wake = (cpu_util - task_util) >= 0 6499 * 6500 * c) if other tasks are RUNNABLE on that CPU and 6501 * util_est > cpu_util 6502 * then we use util_est since it returns a more restrictive 6503 * estimation of the spare capacity on that CPU, by just 6504 * considering the expected utilization of tasks already 6505 * runnable on that CPU. 6506 * 6507 * Cases a) and b) are covered by the above code, while case c) is 6508 * covered by the following code when estimated utilization is 6509 * enabled. 6510 */ 6511 if (sched_feat(UTIL_EST)) 6512 util = max(util, READ_ONCE(cfs_rq->avg.util_est.enqueued)); 6513 6514 /* 6515 * Utilization (estimated) can exceed the CPU capacity, thus let's 6516 * clamp to the maximum CPU capacity to ensure consistency with 6517 * the cpu_util call. 6518 */ 6519 return min_t(unsigned long, util, capacity_orig_of(cpu)); 6520 } 6521 6522 /* 6523 * Disable WAKE_AFFINE in the case where task @p doesn't fit in the 6524 * capacity of either the waking CPU @cpu or the previous CPU @prev_cpu. 6525 * 6526 * In that case WAKE_AFFINE doesn't make sense and we'll let 6527 * BALANCE_WAKE sort things out. 6528 */ 6529 static int wake_cap(struct task_struct *p, int cpu, int prev_cpu) 6530 { 6531 long min_cap, max_cap; 6532 6533 min_cap = min(capacity_orig_of(prev_cpu), capacity_orig_of(cpu)); 6534 max_cap = cpu_rq(cpu)->rd->max_cpu_capacity; 6535 6536 /* Minimum capacity is close to max, no need to abort wake_affine */ 6537 if (max_cap - min_cap < max_cap >> 3) 6538 return 0; 6539 6540 /* Bring task utilization in sync with prev_cpu */ 6541 sync_entity_load_avg(&p->se); 6542 6543 return min_cap * 1024 < task_util(p) * capacity_margin; 6544 } 6545 6546 /* 6547 * select_task_rq_fair: Select target runqueue for the waking task in domains 6548 * that have the 'sd_flag' flag set. In practice, this is SD_BALANCE_WAKE, 6549 * SD_BALANCE_FORK, or SD_BALANCE_EXEC. 6550 * 6551 * Balances load by selecting the idlest CPU in the idlest group, or under 6552 * certain conditions an idle sibling CPU if the domain has SD_WAKE_AFFINE set. 6553 * 6554 * Returns the target CPU number. 6555 * 6556 * preempt must be disabled. 6557 */ 6558 static int 6559 select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_flags) 6560 { 6561 struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL; 6562 int cpu = smp_processor_id(); 6563 int new_cpu = prev_cpu; 6564 int want_affine = 0; 6565 int sync = (wake_flags & WF_SYNC) && !(current->flags & PF_EXITING); 6566 6567 if (sd_flag & SD_BALANCE_WAKE) { 6568 record_wakee(p); 6569 want_affine = !wake_wide(p) && !wake_cap(p, cpu, prev_cpu) 6570 && cpumask_test_cpu(cpu, &p->cpus_allowed); 6571 } 6572 6573 rcu_read_lock(); 6574 for_each_domain(cpu, tmp) { 6575 if (!(tmp->flags & SD_LOAD_BALANCE)) 6576 break; 6577 6578 /* 6579 * If both 'cpu' and 'prev_cpu' are part of this domain, 6580 * cpu is a valid SD_WAKE_AFFINE target. 6581 */ 6582 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) && 6583 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) { 6584 affine_sd = tmp; 6585 break; 6586 } 6587 6588 if (tmp->flags & sd_flag) 6589 sd = tmp; 6590 else if (!want_affine) 6591 break; 6592 } 6593 6594 if (affine_sd) { 6595 sd = NULL; /* Prefer wake_affine over balance flags */ 6596 if (cpu == prev_cpu) 6597 goto pick_cpu; 6598 6599 new_cpu = wake_affine(affine_sd, p, cpu, prev_cpu, sync); 6600 } 6601 6602 if (sd && !(sd_flag & SD_BALANCE_FORK)) { 6603 /* 6604 * We're going to need the task's util for capacity_spare_wake 6605 * in find_idlest_group. Sync it up to prev_cpu's 6606 * last_update_time. 6607 */ 6608 sync_entity_load_avg(&p->se); 6609 } 6610 6611 if (!sd) { 6612 pick_cpu: 6613 if (sd_flag & SD_BALANCE_WAKE) { /* XXX always ? */ 6614 new_cpu = select_idle_sibling(p, prev_cpu, new_cpu); 6615 6616 if (want_affine) 6617 current->recent_used_cpu = cpu; 6618 } 6619 } else { 6620 new_cpu = find_idlest_cpu(sd, p, cpu, prev_cpu, sd_flag); 6621 } 6622 rcu_read_unlock(); 6623 6624 return new_cpu; 6625 } 6626 6627 static void detach_entity_cfs_rq(struct sched_entity *se); 6628 6629 /* 6630 * Called immediately before a task is migrated to a new CPU; task_cpu(p) and 6631 * cfs_rq_of(p) references at time of call are still valid and identify the 6632 * previous CPU. The caller guarantees p->pi_lock or task_rq(p)->lock is held. 6633 */ 6634 static void migrate_task_rq_fair(struct task_struct *p) 6635 { 6636 /* 6637 * As blocked tasks retain absolute vruntime the migration needs to 6638 * deal with this by subtracting the old and adding the new 6639 * min_vruntime -- the latter is done by enqueue_entity() when placing 6640 * the task on the new runqueue. 6641 */ 6642 if (p->state == TASK_WAKING) { 6643 struct sched_entity *se = &p->se; 6644 struct cfs_rq *cfs_rq = cfs_rq_of(se); 6645 u64 min_vruntime; 6646 6647 #ifndef CONFIG_64BIT 6648 u64 min_vruntime_copy; 6649 6650 do { 6651 min_vruntime_copy = cfs_rq->min_vruntime_copy; 6652 smp_rmb(); 6653 min_vruntime = cfs_rq->min_vruntime; 6654 } while (min_vruntime != min_vruntime_copy); 6655 #else 6656 min_vruntime = cfs_rq->min_vruntime; 6657 #endif 6658 6659 se->vruntime -= min_vruntime; 6660 } 6661 6662 if (p->on_rq == TASK_ON_RQ_MIGRATING) { 6663 /* 6664 * In case of TASK_ON_RQ_MIGRATING we in fact hold the 'old' 6665 * rq->lock and can modify state directly. 6666 */ 6667 lockdep_assert_held(&task_rq(p)->lock); 6668 detach_entity_cfs_rq(&p->se); 6669 6670 } else { 6671 /* 6672 * We are supposed to update the task to "current" time, then 6673 * its up to date and ready to go to new CPU/cfs_rq. But we 6674 * have difficulty in getting what current time is, so simply 6675 * throw away the out-of-date time. This will result in the 6676 * wakee task is less decayed, but giving the wakee more load 6677 * sounds not bad. 6678 */ 6679 remove_entity_load_avg(&p->se); 6680 } 6681 6682 /* Tell new CPU we are migrated */ 6683 p->se.avg.last_update_time = 0; 6684 6685 /* We have migrated, no longer consider this task hot */ 6686 p->se.exec_start = 0; 6687 } 6688 6689 static void task_dead_fair(struct task_struct *p) 6690 { 6691 remove_entity_load_avg(&p->se); 6692 } 6693 #endif /* CONFIG_SMP */ 6694 6695 static unsigned long wakeup_gran(struct sched_entity *se) 6696 { 6697 unsigned long gran = sysctl_sched_wakeup_granularity; 6698 6699 /* 6700 * Since its curr running now, convert the gran from real-time 6701 * to virtual-time in his units. 6702 * 6703 * By using 'se' instead of 'curr' we penalize light tasks, so 6704 * they get preempted easier. That is, if 'se' < 'curr' then 6705 * the resulting gran will be larger, therefore penalizing the 6706 * lighter, if otoh 'se' > 'curr' then the resulting gran will 6707 * be smaller, again penalizing the lighter task. 6708 * 6709 * This is especially important for buddies when the leftmost 6710 * task is higher priority than the buddy. 6711 */ 6712 return calc_delta_fair(gran, se); 6713 } 6714 6715 /* 6716 * Should 'se' preempt 'curr'. 6717 * 6718 * |s1 6719 * |s2 6720 * |s3 6721 * g 6722 * |<--->|c 6723 * 6724 * w(c, s1) = -1 6725 * w(c, s2) = 0 6726 * w(c, s3) = 1 6727 * 6728 */ 6729 static int 6730 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se) 6731 { 6732 s64 gran, vdiff = curr->vruntime - se->vruntime; 6733 6734 if (vdiff <= 0) 6735 return -1; 6736 6737 gran = wakeup_gran(se); 6738 if (vdiff > gran) 6739 return 1; 6740 6741 return 0; 6742 } 6743 6744 static void set_last_buddy(struct sched_entity *se) 6745 { 6746 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE)) 6747 return; 6748 6749 for_each_sched_entity(se) { 6750 if (SCHED_WARN_ON(!se->on_rq)) 6751 return; 6752 cfs_rq_of(se)->last = se; 6753 } 6754 } 6755 6756 static void set_next_buddy(struct sched_entity *se) 6757 { 6758 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE)) 6759 return; 6760 6761 for_each_sched_entity(se) { 6762 if (SCHED_WARN_ON(!se->on_rq)) 6763 return; 6764 cfs_rq_of(se)->next = se; 6765 } 6766 } 6767 6768 static void set_skip_buddy(struct sched_entity *se) 6769 { 6770 for_each_sched_entity(se) 6771 cfs_rq_of(se)->skip = se; 6772 } 6773 6774 /* 6775 * Preempt the current task with a newly woken task if needed: 6776 */ 6777 static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags) 6778 { 6779 struct task_struct *curr = rq->curr; 6780 struct sched_entity *se = &curr->se, *pse = &p->se; 6781 struct cfs_rq *cfs_rq = task_cfs_rq(curr); 6782 int scale = cfs_rq->nr_running >= sched_nr_latency; 6783 int next_buddy_marked = 0; 6784 6785 if (unlikely(se == pse)) 6786 return; 6787 6788 /* 6789 * This is possible from callers such as attach_tasks(), in which we 6790 * unconditionally check_prempt_curr() after an enqueue (which may have 6791 * lead to a throttle). This both saves work and prevents false 6792 * next-buddy nomination below. 6793 */ 6794 if (unlikely(throttled_hierarchy(cfs_rq_of(pse)))) 6795 return; 6796 6797 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) { 6798 set_next_buddy(pse); 6799 next_buddy_marked = 1; 6800 } 6801 6802 /* 6803 * We can come here with TIF_NEED_RESCHED already set from new task 6804 * wake up path. 6805 * 6806 * Note: this also catches the edge-case of curr being in a throttled 6807 * group (e.g. via set_curr_task), since update_curr() (in the 6808 * enqueue of curr) will have resulted in resched being set. This 6809 * prevents us from potentially nominating it as a false LAST_BUDDY 6810 * below. 6811 */ 6812 if (test_tsk_need_resched(curr)) 6813 return; 6814 6815 /* Idle tasks are by definition preempted by non-idle tasks. */ 6816 if (unlikely(curr->policy == SCHED_IDLE) && 6817 likely(p->policy != SCHED_IDLE)) 6818 goto preempt; 6819 6820 /* 6821 * Batch and idle tasks do not preempt non-idle tasks (their preemption 6822 * is driven by the tick): 6823 */ 6824 if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION)) 6825 return; 6826 6827 find_matching_se(&se, &pse); 6828 update_curr(cfs_rq_of(se)); 6829 BUG_ON(!pse); 6830 if (wakeup_preempt_entity(se, pse) == 1) { 6831 /* 6832 * Bias pick_next to pick the sched entity that is 6833 * triggering this preemption. 6834 */ 6835 if (!next_buddy_marked) 6836 set_next_buddy(pse); 6837 goto preempt; 6838 } 6839 6840 return; 6841 6842 preempt: 6843 resched_curr(rq); 6844 /* 6845 * Only set the backward buddy when the current task is still 6846 * on the rq. This can happen when a wakeup gets interleaved 6847 * with schedule on the ->pre_schedule() or idle_balance() 6848 * point, either of which can * drop the rq lock. 6849 * 6850 * Also, during early boot the idle thread is in the fair class, 6851 * for obvious reasons its a bad idea to schedule back to it. 6852 */ 6853 if (unlikely(!se->on_rq || curr == rq->idle)) 6854 return; 6855 6856 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se)) 6857 set_last_buddy(se); 6858 } 6859 6860 static struct task_struct * 6861 pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf) 6862 { 6863 struct cfs_rq *cfs_rq = &rq->cfs; 6864 struct sched_entity *se; 6865 struct task_struct *p; 6866 int new_tasks; 6867 6868 again: 6869 if (!cfs_rq->nr_running) 6870 goto idle; 6871 6872 #ifdef CONFIG_FAIR_GROUP_SCHED 6873 if (prev->sched_class != &fair_sched_class) 6874 goto simple; 6875 6876 /* 6877 * Because of the set_next_buddy() in dequeue_task_fair() it is rather 6878 * likely that a next task is from the same cgroup as the current. 6879 * 6880 * Therefore attempt to avoid putting and setting the entire cgroup 6881 * hierarchy, only change the part that actually changes. 6882 */ 6883 6884 do { 6885 struct sched_entity *curr = cfs_rq->curr; 6886 6887 /* 6888 * Since we got here without doing put_prev_entity() we also 6889 * have to consider cfs_rq->curr. If it is still a runnable 6890 * entity, update_curr() will update its vruntime, otherwise 6891 * forget we've ever seen it. 6892 */ 6893 if (curr) { 6894 if (curr->on_rq) 6895 update_curr(cfs_rq); 6896 else 6897 curr = NULL; 6898 6899 /* 6900 * This call to check_cfs_rq_runtime() will do the 6901 * throttle and dequeue its entity in the parent(s). 6902 * Therefore the nr_running test will indeed 6903 * be correct. 6904 */ 6905 if (unlikely(check_cfs_rq_runtime(cfs_rq))) { 6906 cfs_rq = &rq->cfs; 6907 6908 if (!cfs_rq->nr_running) 6909 goto idle; 6910 6911 goto simple; 6912 } 6913 } 6914 6915 se = pick_next_entity(cfs_rq, curr); 6916 cfs_rq = group_cfs_rq(se); 6917 } while (cfs_rq); 6918 6919 p = task_of(se); 6920 6921 /* 6922 * Since we haven't yet done put_prev_entity and if the selected task 6923 * is a different task than we started out with, try and touch the 6924 * least amount of cfs_rqs. 6925 */ 6926 if (prev != p) { 6927 struct sched_entity *pse = &prev->se; 6928 6929 while (!(cfs_rq = is_same_group(se, pse))) { 6930 int se_depth = se->depth; 6931 int pse_depth = pse->depth; 6932 6933 if (se_depth <= pse_depth) { 6934 put_prev_entity(cfs_rq_of(pse), pse); 6935 pse = parent_entity(pse); 6936 } 6937 if (se_depth >= pse_depth) { 6938 set_next_entity(cfs_rq_of(se), se); 6939 se = parent_entity(se); 6940 } 6941 } 6942 6943 put_prev_entity(cfs_rq, pse); 6944 set_next_entity(cfs_rq, se); 6945 } 6946 6947 goto done; 6948 simple: 6949 #endif 6950 6951 put_prev_task(rq, prev); 6952 6953 do { 6954 se = pick_next_entity(cfs_rq, NULL); 6955 set_next_entity(cfs_rq, se); 6956 cfs_rq = group_cfs_rq(se); 6957 } while (cfs_rq); 6958 6959 p = task_of(se); 6960 6961 done: __maybe_unused; 6962 #ifdef CONFIG_SMP 6963 /* 6964 * Move the next running task to the front of 6965 * the list, so our cfs_tasks list becomes MRU 6966 * one. 6967 */ 6968 list_move(&p->se.group_node, &rq->cfs_tasks); 6969 #endif 6970 6971 if (hrtick_enabled(rq)) 6972 hrtick_start_fair(rq, p); 6973 6974 return p; 6975 6976 idle: 6977 new_tasks = idle_balance(rq, rf); 6978 6979 /* 6980 * Because idle_balance() releases (and re-acquires) rq->lock, it is 6981 * possible for any higher priority task to appear. In that case we 6982 * must re-start the pick_next_entity() loop. 6983 */ 6984 if (new_tasks < 0) 6985 return RETRY_TASK; 6986 6987 if (new_tasks > 0) 6988 goto again; 6989 6990 return NULL; 6991 } 6992 6993 /* 6994 * Account for a descheduled task: 6995 */ 6996 static void put_prev_task_fair(struct rq *rq, struct task_struct *prev) 6997 { 6998 struct sched_entity *se = &prev->se; 6999 struct cfs_rq *cfs_rq; 7000 7001 for_each_sched_entity(se) { 7002 cfs_rq = cfs_rq_of(se); 7003 put_prev_entity(cfs_rq, se); 7004 } 7005 } 7006 7007 /* 7008 * sched_yield() is very simple 7009 * 7010 * The magic of dealing with the ->skip buddy is in pick_next_entity. 7011 */ 7012 static void yield_task_fair(struct rq *rq) 7013 { 7014 struct task_struct *curr = rq->curr; 7015 struct cfs_rq *cfs_rq = task_cfs_rq(curr); 7016 struct sched_entity *se = &curr->se; 7017 7018 /* 7019 * Are we the only task in the tree? 7020 */ 7021 if (unlikely(rq->nr_running == 1)) 7022 return; 7023 7024 clear_buddies(cfs_rq, se); 7025 7026 if (curr->policy != SCHED_BATCH) { 7027 update_rq_clock(rq); 7028 /* 7029 * Update run-time statistics of the 'current'. 7030 */ 7031 update_curr(cfs_rq); 7032 /* 7033 * Tell update_rq_clock() that we've just updated, 7034 * so we don't do microscopic update in schedule() 7035 * and double the fastpath cost. 7036 */ 7037 rq_clock_skip_update(rq); 7038 } 7039 7040 set_skip_buddy(se); 7041 } 7042 7043 static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt) 7044 { 7045 struct sched_entity *se = &p->se; 7046 7047 /* throttled hierarchies are not runnable */ 7048 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se))) 7049 return false; 7050 7051 /* Tell the scheduler that we'd really like pse to run next. */ 7052 set_next_buddy(se); 7053 7054 yield_task_fair(rq); 7055 7056 return true; 7057 } 7058 7059 #ifdef CONFIG_SMP 7060 /************************************************** 7061 * Fair scheduling class load-balancing methods. 7062 * 7063 * BASICS 7064 * 7065 * The purpose of load-balancing is to achieve the same basic fairness the 7066 * per-CPU scheduler provides, namely provide a proportional amount of compute 7067 * time to each task. This is expressed in the following equation: 7068 * 7069 * W_i,n/P_i == W_j,n/P_j for all i,j (1) 7070 * 7071 * Where W_i,n is the n-th weight average for CPU i. The instantaneous weight 7072 * W_i,0 is defined as: 7073 * 7074 * W_i,0 = \Sum_j w_i,j (2) 7075 * 7076 * Where w_i,j is the weight of the j-th runnable task on CPU i. This weight 7077 * is derived from the nice value as per sched_prio_to_weight[]. 7078 * 7079 * The weight average is an exponential decay average of the instantaneous 7080 * weight: 7081 * 7082 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3) 7083 * 7084 * C_i is the compute capacity of CPU i, typically it is the 7085 * fraction of 'recent' time available for SCHED_OTHER task execution. But it 7086 * can also include other factors [XXX]. 7087 * 7088 * To achieve this balance we define a measure of imbalance which follows 7089 * directly from (1): 7090 * 7091 * imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j } (4) 7092 * 7093 * We them move tasks around to minimize the imbalance. In the continuous 7094 * function space it is obvious this converges, in the discrete case we get 7095 * a few fun cases generally called infeasible weight scenarios. 7096 * 7097 * [XXX expand on: 7098 * - infeasible weights; 7099 * - local vs global optima in the discrete case. ] 7100 * 7101 * 7102 * SCHED DOMAINS 7103 * 7104 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2) 7105 * for all i,j solution, we create a tree of CPUs that follows the hardware 7106 * topology where each level pairs two lower groups (or better). This results 7107 * in O(log n) layers. Furthermore we reduce the number of CPUs going up the 7108 * tree to only the first of the previous level and we decrease the frequency 7109 * of load-balance at each level inv. proportional to the number of CPUs in 7110 * the groups. 7111 * 7112 * This yields: 7113 * 7114 * log_2 n 1 n 7115 * \Sum { --- * --- * 2^i } = O(n) (5) 7116 * i = 0 2^i 2^i 7117 * `- size of each group 7118 * | | `- number of CPUs doing load-balance 7119 * | `- freq 7120 * `- sum over all levels 7121 * 7122 * Coupled with a limit on how many tasks we can migrate every balance pass, 7123 * this makes (5) the runtime complexity of the balancer. 7124 * 7125 * An important property here is that each CPU is still (indirectly) connected 7126 * to every other CPU in at most O(log n) steps: 7127 * 7128 * The adjacency matrix of the resulting graph is given by: 7129 * 7130 * log_2 n 7131 * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6) 7132 * k = 0 7133 * 7134 * And you'll find that: 7135 * 7136 * A^(log_2 n)_i,j != 0 for all i,j (7) 7137 * 7138 * Showing there's indeed a path between every CPU in at most O(log n) steps. 7139 * The task movement gives a factor of O(m), giving a convergence complexity 7140 * of: 7141 * 7142 * O(nm log n), n := nr_cpus, m := nr_tasks (8) 7143 * 7144 * 7145 * WORK CONSERVING 7146 * 7147 * In order to avoid CPUs going idle while there's still work to do, new idle 7148 * balancing is more aggressive and has the newly idle CPU iterate up the domain 7149 * tree itself instead of relying on other CPUs to bring it work. 7150 * 7151 * This adds some complexity to both (5) and (8) but it reduces the total idle 7152 * time. 7153 * 7154 * [XXX more?] 7155 * 7156 * 7157 * CGROUPS 7158 * 7159 * Cgroups make a horror show out of (2), instead of a simple sum we get: 7160 * 7161 * s_k,i 7162 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9) 7163 * S_k 7164 * 7165 * Where 7166 * 7167 * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10) 7168 * 7169 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on CPU i. 7170 * 7171 * The big problem is S_k, its a global sum needed to compute a local (W_i) 7172 * property. 7173 * 7174 * [XXX write more on how we solve this.. _after_ merging pjt's patches that 7175 * rewrite all of this once again.] 7176 */ 7177 7178 static unsigned long __read_mostly max_load_balance_interval = HZ/10; 7179 7180 enum fbq_type { regular, remote, all }; 7181 7182 #define LBF_ALL_PINNED 0x01 7183 #define LBF_NEED_BREAK 0x02 7184 #define LBF_DST_PINNED 0x04 7185 #define LBF_SOME_PINNED 0x08 7186 #define LBF_NOHZ_STATS 0x10 7187 #define LBF_NOHZ_AGAIN 0x20 7188 7189 struct lb_env { 7190 struct sched_domain *sd; 7191 7192 struct rq *src_rq; 7193 int src_cpu; 7194 7195 int dst_cpu; 7196 struct rq *dst_rq; 7197 7198 struct cpumask *dst_grpmask; 7199 int new_dst_cpu; 7200 enum cpu_idle_type idle; 7201 long imbalance; 7202 /* The set of CPUs under consideration for load-balancing */ 7203 struct cpumask *cpus; 7204 7205 unsigned int flags; 7206 7207 unsigned int loop; 7208 unsigned int loop_break; 7209 unsigned int loop_max; 7210 7211 enum fbq_type fbq_type; 7212 struct list_head tasks; 7213 }; 7214 7215 /* 7216 * Is this task likely cache-hot: 7217 */ 7218 static int task_hot(struct task_struct *p, struct lb_env *env) 7219 { 7220 s64 delta; 7221 7222 lockdep_assert_held(&env->src_rq->lock); 7223 7224 if (p->sched_class != &fair_sched_class) 7225 return 0; 7226 7227 if (unlikely(p->policy == SCHED_IDLE)) 7228 return 0; 7229 7230 /* 7231 * Buddy candidates are cache hot: 7232 */ 7233 if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running && 7234 (&p->se == cfs_rq_of(&p->se)->next || 7235 &p->se == cfs_rq_of(&p->se)->last)) 7236 return 1; 7237 7238 if (sysctl_sched_migration_cost == -1) 7239 return 1; 7240 if (sysctl_sched_migration_cost == 0) 7241 return 0; 7242 7243 delta = rq_clock_task(env->src_rq) - p->se.exec_start; 7244 7245 return delta < (s64)sysctl_sched_migration_cost; 7246 } 7247 7248 #ifdef CONFIG_NUMA_BALANCING 7249 /* 7250 * Returns 1, if task migration degrades locality 7251 * Returns 0, if task migration improves locality i.e migration preferred. 7252 * Returns -1, if task migration is not affected by locality. 7253 */ 7254 static int migrate_degrades_locality(struct task_struct *p, struct lb_env *env) 7255 { 7256 struct numa_group *numa_group = rcu_dereference(p->numa_group); 7257 unsigned long src_faults, dst_faults; 7258 int src_nid, dst_nid; 7259 7260 if (!static_branch_likely(&sched_numa_balancing)) 7261 return -1; 7262 7263 if (!p->numa_faults || !(env->sd->flags & SD_NUMA)) 7264 return -1; 7265 7266 src_nid = cpu_to_node(env->src_cpu); 7267 dst_nid = cpu_to_node(env->dst_cpu); 7268 7269 if (src_nid == dst_nid) 7270 return -1; 7271 7272 /* Migrating away from the preferred node is always bad. */ 7273 if (src_nid == p->numa_preferred_nid) { 7274 if (env->src_rq->nr_running > env->src_rq->nr_preferred_running) 7275 return 1; 7276 else 7277 return -1; 7278 } 7279 7280 /* Encourage migration to the preferred node. */ 7281 if (dst_nid == p->numa_preferred_nid) 7282 return 0; 7283 7284 /* Leaving a core idle is often worse than degrading locality. */ 7285 if (env->idle != CPU_NOT_IDLE) 7286 return -1; 7287 7288 if (numa_group) { 7289 src_faults = group_faults(p, src_nid); 7290 dst_faults = group_faults(p, dst_nid); 7291 } else { 7292 src_faults = task_faults(p, src_nid); 7293 dst_faults = task_faults(p, dst_nid); 7294 } 7295 7296 return dst_faults < src_faults; 7297 } 7298 7299 #else 7300 static inline int migrate_degrades_locality(struct task_struct *p, 7301 struct lb_env *env) 7302 { 7303 return -1; 7304 } 7305 #endif 7306 7307 /* 7308 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu? 7309 */ 7310 static 7311 int can_migrate_task(struct task_struct *p, struct lb_env *env) 7312 { 7313 int tsk_cache_hot; 7314 7315 lockdep_assert_held(&env->src_rq->lock); 7316 7317 /* 7318 * We do not migrate tasks that are: 7319 * 1) throttled_lb_pair, or 7320 * 2) cannot be migrated to this CPU due to cpus_allowed, or 7321 * 3) running (obviously), or 7322 * 4) are cache-hot on their current CPU. 7323 */ 7324 if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu)) 7325 return 0; 7326 7327 if (!cpumask_test_cpu(env->dst_cpu, &p->cpus_allowed)) { 7328 int cpu; 7329 7330 schedstat_inc(p->se.statistics.nr_failed_migrations_affine); 7331 7332 env->flags |= LBF_SOME_PINNED; 7333 7334 /* 7335 * Remember if this task can be migrated to any other CPU in 7336 * our sched_group. We may want to revisit it if we couldn't 7337 * meet load balance goals by pulling other tasks on src_cpu. 7338 * 7339 * Avoid computing new_dst_cpu for NEWLY_IDLE or if we have 7340 * already computed one in current iteration. 7341 */ 7342 if (env->idle == CPU_NEWLY_IDLE || (env->flags & LBF_DST_PINNED)) 7343 return 0; 7344 7345 /* Prevent to re-select dst_cpu via env's CPUs: */ 7346 for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) { 7347 if (cpumask_test_cpu(cpu, &p->cpus_allowed)) { 7348 env->flags |= LBF_DST_PINNED; 7349 env->new_dst_cpu = cpu; 7350 break; 7351 } 7352 } 7353 7354 return 0; 7355 } 7356 7357 /* Record that we found atleast one task that could run on dst_cpu */ 7358 env->flags &= ~LBF_ALL_PINNED; 7359 7360 if (task_running(env->src_rq, p)) { 7361 schedstat_inc(p->se.statistics.nr_failed_migrations_running); 7362 return 0; 7363 } 7364 7365 /* 7366 * Aggressive migration if: 7367 * 1) destination numa is preferred 7368 * 2) task is cache cold, or 7369 * 3) too many balance attempts have failed. 7370 */ 7371 tsk_cache_hot = migrate_degrades_locality(p, env); 7372 if (tsk_cache_hot == -1) 7373 tsk_cache_hot = task_hot(p, env); 7374 7375 if (tsk_cache_hot <= 0 || 7376 env->sd->nr_balance_failed > env->sd->cache_nice_tries) { 7377 if (tsk_cache_hot == 1) { 7378 schedstat_inc(env->sd->lb_hot_gained[env->idle]); 7379 schedstat_inc(p->se.statistics.nr_forced_migrations); 7380 } 7381 return 1; 7382 } 7383 7384 schedstat_inc(p->se.statistics.nr_failed_migrations_hot); 7385 return 0; 7386 } 7387 7388 /* 7389 * detach_task() -- detach the task for the migration specified in env 7390 */ 7391 static void detach_task(struct task_struct *p, struct lb_env *env) 7392 { 7393 lockdep_assert_held(&env->src_rq->lock); 7394 7395 p->on_rq = TASK_ON_RQ_MIGRATING; 7396 deactivate_task(env->src_rq, p, DEQUEUE_NOCLOCK); 7397 set_task_cpu(p, env->dst_cpu); 7398 } 7399 7400 /* 7401 * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as 7402 * part of active balancing operations within "domain". 7403 * 7404 * Returns a task if successful and NULL otherwise. 7405 */ 7406 static struct task_struct *detach_one_task(struct lb_env *env) 7407 { 7408 struct task_struct *p; 7409 7410 lockdep_assert_held(&env->src_rq->lock); 7411 7412 list_for_each_entry_reverse(p, 7413 &env->src_rq->cfs_tasks, se.group_node) { 7414 if (!can_migrate_task(p, env)) 7415 continue; 7416 7417 detach_task(p, env); 7418 7419 /* 7420 * Right now, this is only the second place where 7421 * lb_gained[env->idle] is updated (other is detach_tasks) 7422 * so we can safely collect stats here rather than 7423 * inside detach_tasks(). 7424 */ 7425 schedstat_inc(env->sd->lb_gained[env->idle]); 7426 return p; 7427 } 7428 return NULL; 7429 } 7430 7431 static const unsigned int sched_nr_migrate_break = 32; 7432 7433 /* 7434 * detach_tasks() -- tries to detach up to imbalance weighted load from 7435 * busiest_rq, as part of a balancing operation within domain "sd". 7436 * 7437 * Returns number of detached tasks if successful and 0 otherwise. 7438 */ 7439 static int detach_tasks(struct lb_env *env) 7440 { 7441 struct list_head *tasks = &env->src_rq->cfs_tasks; 7442 struct task_struct *p; 7443 unsigned long load; 7444 int detached = 0; 7445 7446 lockdep_assert_held(&env->src_rq->lock); 7447 7448 if (env->imbalance <= 0) 7449 return 0; 7450 7451 while (!list_empty(tasks)) { 7452 /* 7453 * We don't want to steal all, otherwise we may be treated likewise, 7454 * which could at worst lead to a livelock crash. 7455 */ 7456 if (env->idle != CPU_NOT_IDLE && env->src_rq->nr_running <= 1) 7457 break; 7458 7459 p = list_last_entry(tasks, struct task_struct, se.group_node); 7460 7461 env->loop++; 7462 /* We've more or less seen every task there is, call it quits */ 7463 if (env->loop > env->loop_max) 7464 break; 7465 7466 /* take a breather every nr_migrate tasks */ 7467 if (env->loop > env->loop_break) { 7468 env->loop_break += sched_nr_migrate_break; 7469 env->flags |= LBF_NEED_BREAK; 7470 break; 7471 } 7472 7473 if (!can_migrate_task(p, env)) 7474 goto next; 7475 7476 load = task_h_load(p); 7477 7478 if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed) 7479 goto next; 7480 7481 if ((load / 2) > env->imbalance) 7482 goto next; 7483 7484 detach_task(p, env); 7485 list_add(&p->se.group_node, &env->tasks); 7486 7487 detached++; 7488 env->imbalance -= load; 7489 7490 #ifdef CONFIG_PREEMPT 7491 /* 7492 * NEWIDLE balancing is a source of latency, so preemptible 7493 * kernels will stop after the first task is detached to minimize 7494 * the critical section. 7495 */ 7496 if (env->idle == CPU_NEWLY_IDLE) 7497 break; 7498 #endif 7499 7500 /* 7501 * We only want to steal up to the prescribed amount of 7502 * weighted load. 7503 */ 7504 if (env->imbalance <= 0) 7505 break; 7506 7507 continue; 7508 next: 7509 list_move(&p->se.group_node, tasks); 7510 } 7511 7512 /* 7513 * Right now, this is one of only two places we collect this stat 7514 * so we can safely collect detach_one_task() stats here rather 7515 * than inside detach_one_task(). 7516 */ 7517 schedstat_add(env->sd->lb_gained[env->idle], detached); 7518 7519 return detached; 7520 } 7521 7522 /* 7523 * attach_task() -- attach the task detached by detach_task() to its new rq. 7524 */ 7525 static void attach_task(struct rq *rq, struct task_struct *p) 7526 { 7527 lockdep_assert_held(&rq->lock); 7528 7529 BUG_ON(task_rq(p) != rq); 7530 activate_task(rq, p, ENQUEUE_NOCLOCK); 7531 p->on_rq = TASK_ON_RQ_QUEUED; 7532 check_preempt_curr(rq, p, 0); 7533 } 7534 7535 /* 7536 * attach_one_task() -- attaches the task returned from detach_one_task() to 7537 * its new rq. 7538 */ 7539 static void attach_one_task(struct rq *rq, struct task_struct *p) 7540 { 7541 struct rq_flags rf; 7542 7543 rq_lock(rq, &rf); 7544 update_rq_clock(rq); 7545 attach_task(rq, p); 7546 rq_unlock(rq, &rf); 7547 } 7548 7549 /* 7550 * attach_tasks() -- attaches all tasks detached by detach_tasks() to their 7551 * new rq. 7552 */ 7553 static void attach_tasks(struct lb_env *env) 7554 { 7555 struct list_head *tasks = &env->tasks; 7556 struct task_struct *p; 7557 struct rq_flags rf; 7558 7559 rq_lock(env->dst_rq, &rf); 7560 update_rq_clock(env->dst_rq); 7561 7562 while (!list_empty(tasks)) { 7563 p = list_first_entry(tasks, struct task_struct, se.group_node); 7564 list_del_init(&p->se.group_node); 7565 7566 attach_task(env->dst_rq, p); 7567 } 7568 7569 rq_unlock(env->dst_rq, &rf); 7570 } 7571 7572 static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq) 7573 { 7574 if (cfs_rq->avg.load_avg) 7575 return true; 7576 7577 if (cfs_rq->avg.util_avg) 7578 return true; 7579 7580 return false; 7581 } 7582 7583 #ifdef CONFIG_FAIR_GROUP_SCHED 7584 7585 static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq) 7586 { 7587 if (cfs_rq->load.weight) 7588 return false; 7589 7590 if (cfs_rq->avg.load_sum) 7591 return false; 7592 7593 if (cfs_rq->avg.util_sum) 7594 return false; 7595 7596 if (cfs_rq->avg.runnable_load_sum) 7597 return false; 7598 7599 return true; 7600 } 7601 7602 static void update_blocked_averages(int cpu) 7603 { 7604 struct rq *rq = cpu_rq(cpu); 7605 struct cfs_rq *cfs_rq, *pos; 7606 struct rq_flags rf; 7607 bool done = true; 7608 7609 rq_lock_irqsave(rq, &rf); 7610 update_rq_clock(rq); 7611 7612 /* 7613 * Iterates the task_group tree in a bottom up fashion, see 7614 * list_add_leaf_cfs_rq() for details. 7615 */ 7616 for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) { 7617 struct sched_entity *se; 7618 7619 /* throttled entities do not contribute to load */ 7620 if (throttled_hierarchy(cfs_rq)) 7621 continue; 7622 7623 if (update_cfs_rq_load_avg(cfs_rq_clock_task(cfs_rq), cfs_rq)) 7624 update_tg_load_avg(cfs_rq, 0); 7625 7626 /* Propagate pending load changes to the parent, if any: */ 7627 se = cfs_rq->tg->se[cpu]; 7628 if (se && !skip_blocked_update(se)) 7629 update_load_avg(cfs_rq_of(se), se, 0); 7630 7631 /* 7632 * There can be a lot of idle CPU cgroups. Don't let fully 7633 * decayed cfs_rqs linger on the list. 7634 */ 7635 if (cfs_rq_is_decayed(cfs_rq)) 7636 list_del_leaf_cfs_rq(cfs_rq); 7637 7638 /* Don't need periodic decay once load/util_avg are null */ 7639 if (cfs_rq_has_blocked(cfs_rq)) 7640 done = false; 7641 } 7642 7643 #ifdef CONFIG_NO_HZ_COMMON 7644 rq->last_blocked_load_update_tick = jiffies; 7645 if (done) 7646 rq->has_blocked_load = 0; 7647 #endif 7648 rq_unlock_irqrestore(rq, &rf); 7649 } 7650 7651 /* 7652 * Compute the hierarchical load factor for cfs_rq and all its ascendants. 7653 * This needs to be done in a top-down fashion because the load of a child 7654 * group is a fraction of its parents load. 7655 */ 7656 static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq) 7657 { 7658 struct rq *rq = rq_of(cfs_rq); 7659 struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)]; 7660 unsigned long now = jiffies; 7661 unsigned long load; 7662 7663 if (cfs_rq->last_h_load_update == now) 7664 return; 7665 7666 cfs_rq->h_load_next = NULL; 7667 for_each_sched_entity(se) { 7668 cfs_rq = cfs_rq_of(se); 7669 cfs_rq->h_load_next = se; 7670 if (cfs_rq->last_h_load_update == now) 7671 break; 7672 } 7673 7674 if (!se) { 7675 cfs_rq->h_load = cfs_rq_load_avg(cfs_rq); 7676 cfs_rq->last_h_load_update = now; 7677 } 7678 7679 while ((se = cfs_rq->h_load_next) != NULL) { 7680 load = cfs_rq->h_load; 7681 load = div64_ul(load * se->avg.load_avg, 7682 cfs_rq_load_avg(cfs_rq) + 1); 7683 cfs_rq = group_cfs_rq(se); 7684 cfs_rq->h_load = load; 7685 cfs_rq->last_h_load_update = now; 7686 } 7687 } 7688 7689 static unsigned long task_h_load(struct task_struct *p) 7690 { 7691 struct cfs_rq *cfs_rq = task_cfs_rq(p); 7692 7693 update_cfs_rq_h_load(cfs_rq); 7694 return div64_ul(p->se.avg.load_avg * cfs_rq->h_load, 7695 cfs_rq_load_avg(cfs_rq) + 1); 7696 } 7697 #else 7698 static inline void update_blocked_averages(int cpu) 7699 { 7700 struct rq *rq = cpu_rq(cpu); 7701 struct cfs_rq *cfs_rq = &rq->cfs; 7702 struct rq_flags rf; 7703 7704 rq_lock_irqsave(rq, &rf); 7705 update_rq_clock(rq); 7706 update_cfs_rq_load_avg(cfs_rq_clock_task(cfs_rq), cfs_rq); 7707 #ifdef CONFIG_NO_HZ_COMMON 7708 rq->last_blocked_load_update_tick = jiffies; 7709 if (!cfs_rq_has_blocked(cfs_rq)) 7710 rq->has_blocked_load = 0; 7711 #endif 7712 rq_unlock_irqrestore(rq, &rf); 7713 } 7714 7715 static unsigned long task_h_load(struct task_struct *p) 7716 { 7717 return p->se.avg.load_avg; 7718 } 7719 #endif 7720 7721 /********** Helpers for find_busiest_group ************************/ 7722 7723 enum group_type { 7724 group_other = 0, 7725 group_imbalanced, 7726 group_overloaded, 7727 }; 7728 7729 /* 7730 * sg_lb_stats - stats of a sched_group required for load_balancing 7731 */ 7732 struct sg_lb_stats { 7733 unsigned long avg_load; /*Avg load across the CPUs of the group */ 7734 unsigned long group_load; /* Total load over the CPUs of the group */ 7735 unsigned long sum_weighted_load; /* Weighted load of group's tasks */ 7736 unsigned long load_per_task; 7737 unsigned long group_capacity; 7738 unsigned long group_util; /* Total utilization of the group */ 7739 unsigned int sum_nr_running; /* Nr tasks running in the group */ 7740 unsigned int idle_cpus; 7741 unsigned int group_weight; 7742 enum group_type group_type; 7743 int group_no_capacity; 7744 #ifdef CONFIG_NUMA_BALANCING 7745 unsigned int nr_numa_running; 7746 unsigned int nr_preferred_running; 7747 #endif 7748 }; 7749 7750 /* 7751 * sd_lb_stats - Structure to store the statistics of a sched_domain 7752 * during load balancing. 7753 */ 7754 struct sd_lb_stats { 7755 struct sched_group *busiest; /* Busiest group in this sd */ 7756 struct sched_group *local; /* Local group in this sd */ 7757 unsigned long total_running; 7758 unsigned long total_load; /* Total load of all groups in sd */ 7759 unsigned long total_capacity; /* Total capacity of all groups in sd */ 7760 unsigned long avg_load; /* Average load across all groups in sd */ 7761 7762 struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */ 7763 struct sg_lb_stats local_stat; /* Statistics of the local group */ 7764 }; 7765 7766 static inline void init_sd_lb_stats(struct sd_lb_stats *sds) 7767 { 7768 /* 7769 * Skimp on the clearing to avoid duplicate work. We can avoid clearing 7770 * local_stat because update_sg_lb_stats() does a full clear/assignment. 7771 * We must however clear busiest_stat::avg_load because 7772 * update_sd_pick_busiest() reads this before assignment. 7773 */ 7774 *sds = (struct sd_lb_stats){ 7775 .busiest = NULL, 7776 .local = NULL, 7777 .total_running = 0UL, 7778 .total_load = 0UL, 7779 .total_capacity = 0UL, 7780 .busiest_stat = { 7781 .avg_load = 0UL, 7782 .sum_nr_running = 0, 7783 .group_type = group_other, 7784 }, 7785 }; 7786 } 7787 7788 /** 7789 * get_sd_load_idx - Obtain the load index for a given sched domain. 7790 * @sd: The sched_domain whose load_idx is to be obtained. 7791 * @idle: The idle status of the CPU for whose sd load_idx is obtained. 7792 * 7793 * Return: The load index. 7794 */ 7795 static inline int get_sd_load_idx(struct sched_domain *sd, 7796 enum cpu_idle_type idle) 7797 { 7798 int load_idx; 7799 7800 switch (idle) { 7801 case CPU_NOT_IDLE: 7802 load_idx = sd->busy_idx; 7803 break; 7804 7805 case CPU_NEWLY_IDLE: 7806 load_idx = sd->newidle_idx; 7807 break; 7808 default: 7809 load_idx = sd->idle_idx; 7810 break; 7811 } 7812 7813 return load_idx; 7814 } 7815 7816 static unsigned long scale_rt_capacity(int cpu) 7817 { 7818 struct rq *rq = cpu_rq(cpu); 7819 u64 total, used, age_stamp, avg; 7820 s64 delta; 7821 7822 /* 7823 * Since we're reading these variables without serialization make sure 7824 * we read them once before doing sanity checks on them. 7825 */ 7826 age_stamp = READ_ONCE(rq->age_stamp); 7827 avg = READ_ONCE(rq->rt_avg); 7828 delta = __rq_clock_broken(rq) - age_stamp; 7829 7830 if (unlikely(delta < 0)) 7831 delta = 0; 7832 7833 total = sched_avg_period() + delta; 7834 7835 used = div_u64(avg, total); 7836 7837 if (likely(used < SCHED_CAPACITY_SCALE)) 7838 return SCHED_CAPACITY_SCALE - used; 7839 7840 return 1; 7841 } 7842 7843 static void update_cpu_capacity(struct sched_domain *sd, int cpu) 7844 { 7845 unsigned long capacity = arch_scale_cpu_capacity(sd, cpu); 7846 struct sched_group *sdg = sd->groups; 7847 7848 cpu_rq(cpu)->cpu_capacity_orig = capacity; 7849 7850 capacity *= scale_rt_capacity(cpu); 7851 capacity >>= SCHED_CAPACITY_SHIFT; 7852 7853 if (!capacity) 7854 capacity = 1; 7855 7856 cpu_rq(cpu)->cpu_capacity = capacity; 7857 sdg->sgc->capacity = capacity; 7858 sdg->sgc->min_capacity = capacity; 7859 } 7860 7861 void update_group_capacity(struct sched_domain *sd, int cpu) 7862 { 7863 struct sched_domain *child = sd->child; 7864 struct sched_group *group, *sdg = sd->groups; 7865 unsigned long capacity, min_capacity; 7866 unsigned long interval; 7867 7868 interval = msecs_to_jiffies(sd->balance_interval); 7869 interval = clamp(interval, 1UL, max_load_balance_interval); 7870 sdg->sgc->next_update = jiffies + interval; 7871 7872 if (!child) { 7873 update_cpu_capacity(sd, cpu); 7874 return; 7875 } 7876 7877 capacity = 0; 7878 min_capacity = ULONG_MAX; 7879 7880 if (child->flags & SD_OVERLAP) { 7881 /* 7882 * SD_OVERLAP domains cannot assume that child groups 7883 * span the current group. 7884 */ 7885 7886 for_each_cpu(cpu, sched_group_span(sdg)) { 7887 struct sched_group_capacity *sgc; 7888 struct rq *rq = cpu_rq(cpu); 7889 7890 /* 7891 * build_sched_domains() -> init_sched_groups_capacity() 7892 * gets here before we've attached the domains to the 7893 * runqueues. 7894 * 7895 * Use capacity_of(), which is set irrespective of domains 7896 * in update_cpu_capacity(). 7897 * 7898 * This avoids capacity from being 0 and 7899 * causing divide-by-zero issues on boot. 7900 */ 7901 if (unlikely(!rq->sd)) { 7902 capacity += capacity_of(cpu); 7903 } else { 7904 sgc = rq->sd->groups->sgc; 7905 capacity += sgc->capacity; 7906 } 7907 7908 min_capacity = min(capacity, min_capacity); 7909 } 7910 } else { 7911 /* 7912 * !SD_OVERLAP domains can assume that child groups 7913 * span the current group. 7914 */ 7915 7916 group = child->groups; 7917 do { 7918 struct sched_group_capacity *sgc = group->sgc; 7919 7920 capacity += sgc->capacity; 7921 min_capacity = min(sgc->min_capacity, min_capacity); 7922 group = group->next; 7923 } while (group != child->groups); 7924 } 7925 7926 sdg->sgc->capacity = capacity; 7927 sdg->sgc->min_capacity = min_capacity; 7928 } 7929 7930 /* 7931 * Check whether the capacity of the rq has been noticeably reduced by side 7932 * activity. The imbalance_pct is used for the threshold. 7933 * Return true is the capacity is reduced 7934 */ 7935 static inline int 7936 check_cpu_capacity(struct rq *rq, struct sched_domain *sd) 7937 { 7938 return ((rq->cpu_capacity * sd->imbalance_pct) < 7939 (rq->cpu_capacity_orig * 100)); 7940 } 7941 7942 /* 7943 * Group imbalance indicates (and tries to solve) the problem where balancing 7944 * groups is inadequate due to ->cpus_allowed constraints. 7945 * 7946 * Imagine a situation of two groups of 4 CPUs each and 4 tasks each with a 7947 * cpumask covering 1 CPU of the first group and 3 CPUs of the second group. 7948 * Something like: 7949 * 7950 * { 0 1 2 3 } { 4 5 6 7 } 7951 * * * * * 7952 * 7953 * If we were to balance group-wise we'd place two tasks in the first group and 7954 * two tasks in the second group. Clearly this is undesired as it will overload 7955 * cpu 3 and leave one of the CPUs in the second group unused. 7956 * 7957 * The current solution to this issue is detecting the skew in the first group 7958 * by noticing the lower domain failed to reach balance and had difficulty 7959 * moving tasks due to affinity constraints. 7960 * 7961 * When this is so detected; this group becomes a candidate for busiest; see 7962 * update_sd_pick_busiest(). And calculate_imbalance() and 7963 * find_busiest_group() avoid some of the usual balance conditions to allow it 7964 * to create an effective group imbalance. 7965 * 7966 * This is a somewhat tricky proposition since the next run might not find the 7967 * group imbalance and decide the groups need to be balanced again. A most 7968 * subtle and fragile situation. 7969 */ 7970 7971 static inline int sg_imbalanced(struct sched_group *group) 7972 { 7973 return group->sgc->imbalance; 7974 } 7975 7976 /* 7977 * group_has_capacity returns true if the group has spare capacity that could 7978 * be used by some tasks. 7979 * We consider that a group has spare capacity if the * number of task is 7980 * smaller than the number of CPUs or if the utilization is lower than the 7981 * available capacity for CFS tasks. 7982 * For the latter, we use a threshold to stabilize the state, to take into 7983 * account the variance of the tasks' load and to return true if the available 7984 * capacity in meaningful for the load balancer. 7985 * As an example, an available capacity of 1% can appear but it doesn't make 7986 * any benefit for the load balance. 7987 */ 7988 static inline bool 7989 group_has_capacity(struct lb_env *env, struct sg_lb_stats *sgs) 7990 { 7991 if (sgs->sum_nr_running < sgs->group_weight) 7992 return true; 7993 7994 if ((sgs->group_capacity * 100) > 7995 (sgs->group_util * env->sd->imbalance_pct)) 7996 return true; 7997 7998 return false; 7999 } 8000 8001 /* 8002 * group_is_overloaded returns true if the group has more tasks than it can 8003 * handle. 8004 * group_is_overloaded is not equals to !group_has_capacity because a group 8005 * with the exact right number of tasks, has no more spare capacity but is not 8006 * overloaded so both group_has_capacity and group_is_overloaded return 8007 * false. 8008 */ 8009 static inline bool 8010 group_is_overloaded(struct lb_env *env, struct sg_lb_stats *sgs) 8011 { 8012 if (sgs->sum_nr_running <= sgs->group_weight) 8013 return false; 8014 8015 if ((sgs->group_capacity * 100) < 8016 (sgs->group_util * env->sd->imbalance_pct)) 8017 return true; 8018 8019 return false; 8020 } 8021 8022 /* 8023 * group_smaller_cpu_capacity: Returns true if sched_group sg has smaller 8024 * per-CPU capacity than sched_group ref. 8025 */ 8026 static inline bool 8027 group_smaller_cpu_capacity(struct sched_group *sg, struct sched_group *ref) 8028 { 8029 return sg->sgc->min_capacity * capacity_margin < 8030 ref->sgc->min_capacity * 1024; 8031 } 8032 8033 static inline enum 8034 group_type group_classify(struct sched_group *group, 8035 struct sg_lb_stats *sgs) 8036 { 8037 if (sgs->group_no_capacity) 8038 return group_overloaded; 8039 8040 if (sg_imbalanced(group)) 8041 return group_imbalanced; 8042 8043 return group_other; 8044 } 8045 8046 static bool update_nohz_stats(struct rq *rq, bool force) 8047 { 8048 #ifdef CONFIG_NO_HZ_COMMON 8049 unsigned int cpu = rq->cpu; 8050 8051 if (!rq->has_blocked_load) 8052 return false; 8053 8054 if (!cpumask_test_cpu(cpu, nohz.idle_cpus_mask)) 8055 return false; 8056 8057 if (!force && !time_after(jiffies, rq->last_blocked_load_update_tick)) 8058 return true; 8059 8060 update_blocked_averages(cpu); 8061 8062 return rq->has_blocked_load; 8063 #else 8064 return false; 8065 #endif 8066 } 8067 8068 /** 8069 * update_sg_lb_stats - Update sched_group's statistics for load balancing. 8070 * @env: The load balancing environment. 8071 * @group: sched_group whose statistics are to be updated. 8072 * @load_idx: Load index of sched_domain of this_cpu for load calc. 8073 * @local_group: Does group contain this_cpu. 8074 * @sgs: variable to hold the statistics for this group. 8075 * @overload: Indicate more than one runnable task for any CPU. 8076 */ 8077 static inline void update_sg_lb_stats(struct lb_env *env, 8078 struct sched_group *group, int load_idx, 8079 int local_group, struct sg_lb_stats *sgs, 8080 bool *overload) 8081 { 8082 unsigned long load; 8083 int i, nr_running; 8084 8085 memset(sgs, 0, sizeof(*sgs)); 8086 8087 for_each_cpu_and(i, sched_group_span(group), env->cpus) { 8088 struct rq *rq = cpu_rq(i); 8089 8090 if ((env->flags & LBF_NOHZ_STATS) && update_nohz_stats(rq, false)) 8091 env->flags |= LBF_NOHZ_AGAIN; 8092 8093 /* Bias balancing toward CPUs of our domain: */ 8094 if (local_group) 8095 load = target_load(i, load_idx); 8096 else 8097 load = source_load(i, load_idx); 8098 8099 sgs->group_load += load; 8100 sgs->group_util += cpu_util(i); 8101 sgs->sum_nr_running += rq->cfs.h_nr_running; 8102 8103 nr_running = rq->nr_running; 8104 if (nr_running > 1) 8105 *overload = true; 8106 8107 #ifdef CONFIG_NUMA_BALANCING 8108 sgs->nr_numa_running += rq->nr_numa_running; 8109 sgs->nr_preferred_running += rq->nr_preferred_running; 8110 #endif 8111 sgs->sum_weighted_load += weighted_cpuload(rq); 8112 /* 8113 * No need to call idle_cpu() if nr_running is not 0 8114 */ 8115 if (!nr_running && idle_cpu(i)) 8116 sgs->idle_cpus++; 8117 } 8118 8119 /* Adjust by relative CPU capacity of the group */ 8120 sgs->group_capacity = group->sgc->capacity; 8121 sgs->avg_load = (sgs->group_load*SCHED_CAPACITY_SCALE) / sgs->group_capacity; 8122 8123 if (sgs->sum_nr_running) 8124 sgs->load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running; 8125 8126 sgs->group_weight = group->group_weight; 8127 8128 sgs->group_no_capacity = group_is_overloaded(env, sgs); 8129 sgs->group_type = group_classify(group, sgs); 8130 } 8131 8132 /** 8133 * update_sd_pick_busiest - return 1 on busiest group 8134 * @env: The load balancing environment. 8135 * @sds: sched_domain statistics 8136 * @sg: sched_group candidate to be checked for being the busiest 8137 * @sgs: sched_group statistics 8138 * 8139 * Determine if @sg is a busier group than the previously selected 8140 * busiest group. 8141 * 8142 * Return: %true if @sg is a busier group than the previously selected 8143 * busiest group. %false otherwise. 8144 */ 8145 static bool update_sd_pick_busiest(struct lb_env *env, 8146 struct sd_lb_stats *sds, 8147 struct sched_group *sg, 8148 struct sg_lb_stats *sgs) 8149 { 8150 struct sg_lb_stats *busiest = &sds->busiest_stat; 8151 8152 if (sgs->group_type > busiest->group_type) 8153 return true; 8154 8155 if (sgs->group_type < busiest->group_type) 8156 return false; 8157 8158 if (sgs->avg_load <= busiest->avg_load) 8159 return false; 8160 8161 if (!(env->sd->flags & SD_ASYM_CPUCAPACITY)) 8162 goto asym_packing; 8163 8164 /* 8165 * Candidate sg has no more than one task per CPU and 8166 * has higher per-CPU capacity. Migrating tasks to less 8167 * capable CPUs may harm throughput. Maximize throughput, 8168 * power/energy consequences are not considered. 8169 */ 8170 if (sgs->sum_nr_running <= sgs->group_weight && 8171 group_smaller_cpu_capacity(sds->local, sg)) 8172 return false; 8173 8174 asym_packing: 8175 /* This is the busiest node in its class. */ 8176 if (!(env->sd->flags & SD_ASYM_PACKING)) 8177 return true; 8178 8179 /* No ASYM_PACKING if target CPU is already busy */ 8180 if (env->idle == CPU_NOT_IDLE) 8181 return true; 8182 /* 8183 * ASYM_PACKING needs to move all the work to the highest 8184 * prority CPUs in the group, therefore mark all groups 8185 * of lower priority than ourself as busy. 8186 */ 8187 if (sgs->sum_nr_running && 8188 sched_asym_prefer(env->dst_cpu, sg->asym_prefer_cpu)) { 8189 if (!sds->busiest) 8190 return true; 8191 8192 /* Prefer to move from lowest priority CPU's work */ 8193 if (sched_asym_prefer(sds->busiest->asym_prefer_cpu, 8194 sg->asym_prefer_cpu)) 8195 return true; 8196 } 8197 8198 return false; 8199 } 8200 8201 #ifdef CONFIG_NUMA_BALANCING 8202 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs) 8203 { 8204 if (sgs->sum_nr_running > sgs->nr_numa_running) 8205 return regular; 8206 if (sgs->sum_nr_running > sgs->nr_preferred_running) 8207 return remote; 8208 return all; 8209 } 8210 8211 static inline enum fbq_type fbq_classify_rq(struct rq *rq) 8212 { 8213 if (rq->nr_running > rq->nr_numa_running) 8214 return regular; 8215 if (rq->nr_running > rq->nr_preferred_running) 8216 return remote; 8217 return all; 8218 } 8219 #else 8220 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs) 8221 { 8222 return all; 8223 } 8224 8225 static inline enum fbq_type fbq_classify_rq(struct rq *rq) 8226 { 8227 return regular; 8228 } 8229 #endif /* CONFIG_NUMA_BALANCING */ 8230 8231 /** 8232 * update_sd_lb_stats - Update sched_domain's statistics for load balancing. 8233 * @env: The load balancing environment. 8234 * @sds: variable to hold the statistics for this sched_domain. 8235 */ 8236 static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds) 8237 { 8238 struct sched_domain *child = env->sd->child; 8239 struct sched_group *sg = env->sd->groups; 8240 struct sg_lb_stats *local = &sds->local_stat; 8241 struct sg_lb_stats tmp_sgs; 8242 int load_idx, prefer_sibling = 0; 8243 bool overload = false; 8244 8245 if (child && child->flags & SD_PREFER_SIBLING) 8246 prefer_sibling = 1; 8247 8248 #ifdef CONFIG_NO_HZ_COMMON 8249 if (env->idle == CPU_NEWLY_IDLE && READ_ONCE(nohz.has_blocked)) 8250 env->flags |= LBF_NOHZ_STATS; 8251 #endif 8252 8253 load_idx = get_sd_load_idx(env->sd, env->idle); 8254 8255 do { 8256 struct sg_lb_stats *sgs = &tmp_sgs; 8257 int local_group; 8258 8259 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_span(sg)); 8260 if (local_group) { 8261 sds->local = sg; 8262 sgs = local; 8263 8264 if (env->idle != CPU_NEWLY_IDLE || 8265 time_after_eq(jiffies, sg->sgc->next_update)) 8266 update_group_capacity(env->sd, env->dst_cpu); 8267 } 8268 8269 update_sg_lb_stats(env, sg, load_idx, local_group, sgs, 8270 &overload); 8271 8272 if (local_group) 8273 goto next_group; 8274 8275 /* 8276 * In case the child domain prefers tasks go to siblings 8277 * first, lower the sg capacity so that we'll try 8278 * and move all the excess tasks away. We lower the capacity 8279 * of a group only if the local group has the capacity to fit 8280 * these excess tasks. The extra check prevents the case where 8281 * you always pull from the heaviest group when it is already 8282 * under-utilized (possible with a large weight task outweighs 8283 * the tasks on the system). 8284 */ 8285 if (prefer_sibling && sds->local && 8286 group_has_capacity(env, local) && 8287 (sgs->sum_nr_running > local->sum_nr_running + 1)) { 8288 sgs->group_no_capacity = 1; 8289 sgs->group_type = group_classify(sg, sgs); 8290 } 8291 8292 if (update_sd_pick_busiest(env, sds, sg, sgs)) { 8293 sds->busiest = sg; 8294 sds->busiest_stat = *sgs; 8295 } 8296 8297 next_group: 8298 /* Now, start updating sd_lb_stats */ 8299 sds->total_running += sgs->sum_nr_running; 8300 sds->total_load += sgs->group_load; 8301 sds->total_capacity += sgs->group_capacity; 8302 8303 sg = sg->next; 8304 } while (sg != env->sd->groups); 8305 8306 #ifdef CONFIG_NO_HZ_COMMON 8307 if ((env->flags & LBF_NOHZ_AGAIN) && 8308 cpumask_subset(nohz.idle_cpus_mask, sched_domain_span(env->sd))) { 8309 8310 WRITE_ONCE(nohz.next_blocked, 8311 jiffies + msecs_to_jiffies(LOAD_AVG_PERIOD)); 8312 } 8313 #endif 8314 8315 if (env->sd->flags & SD_NUMA) 8316 env->fbq_type = fbq_classify_group(&sds->busiest_stat); 8317 8318 if (!env->sd->parent) { 8319 /* update overload indicator if we are at root domain */ 8320 if (env->dst_rq->rd->overload != overload) 8321 env->dst_rq->rd->overload = overload; 8322 } 8323 } 8324 8325 /** 8326 * check_asym_packing - Check to see if the group is packed into the 8327 * sched domain. 8328 * 8329 * This is primarily intended to used at the sibling level. Some 8330 * cores like POWER7 prefer to use lower numbered SMT threads. In the 8331 * case of POWER7, it can move to lower SMT modes only when higher 8332 * threads are idle. When in lower SMT modes, the threads will 8333 * perform better since they share less core resources. Hence when we 8334 * have idle threads, we want them to be the higher ones. 8335 * 8336 * This packing function is run on idle threads. It checks to see if 8337 * the busiest CPU in this domain (core in the P7 case) has a higher 8338 * CPU number than the packing function is being run on. Here we are 8339 * assuming lower CPU number will be equivalent to lower a SMT thread 8340 * number. 8341 * 8342 * Return: 1 when packing is required and a task should be moved to 8343 * this CPU. The amount of the imbalance is returned in env->imbalance. 8344 * 8345 * @env: The load balancing environment. 8346 * @sds: Statistics of the sched_domain which is to be packed 8347 */ 8348 static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds) 8349 { 8350 int busiest_cpu; 8351 8352 if (!(env->sd->flags & SD_ASYM_PACKING)) 8353 return 0; 8354 8355 if (env->idle == CPU_NOT_IDLE) 8356 return 0; 8357 8358 if (!sds->busiest) 8359 return 0; 8360 8361 busiest_cpu = sds->busiest->asym_prefer_cpu; 8362 if (sched_asym_prefer(busiest_cpu, env->dst_cpu)) 8363 return 0; 8364 8365 env->imbalance = DIV_ROUND_CLOSEST( 8366 sds->busiest_stat.avg_load * sds->busiest_stat.group_capacity, 8367 SCHED_CAPACITY_SCALE); 8368 8369 return 1; 8370 } 8371 8372 /** 8373 * fix_small_imbalance - Calculate the minor imbalance that exists 8374 * amongst the groups of a sched_domain, during 8375 * load balancing. 8376 * @env: The load balancing environment. 8377 * @sds: Statistics of the sched_domain whose imbalance is to be calculated. 8378 */ 8379 static inline 8380 void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds) 8381 { 8382 unsigned long tmp, capa_now = 0, capa_move = 0; 8383 unsigned int imbn = 2; 8384 unsigned long scaled_busy_load_per_task; 8385 struct sg_lb_stats *local, *busiest; 8386 8387 local = &sds->local_stat; 8388 busiest = &sds->busiest_stat; 8389 8390 if (!local->sum_nr_running) 8391 local->load_per_task = cpu_avg_load_per_task(env->dst_cpu); 8392 else if (busiest->load_per_task > local->load_per_task) 8393 imbn = 1; 8394 8395 scaled_busy_load_per_task = 8396 (busiest->load_per_task * SCHED_CAPACITY_SCALE) / 8397 busiest->group_capacity; 8398 8399 if (busiest->avg_load + scaled_busy_load_per_task >= 8400 local->avg_load + (scaled_busy_load_per_task * imbn)) { 8401 env->imbalance = busiest->load_per_task; 8402 return; 8403 } 8404 8405 /* 8406 * OK, we don't have enough imbalance to justify moving tasks, 8407 * however we may be able to increase total CPU capacity used by 8408 * moving them. 8409 */ 8410 8411 capa_now += busiest->group_capacity * 8412 min(busiest->load_per_task, busiest->avg_load); 8413 capa_now += local->group_capacity * 8414 min(local->load_per_task, local->avg_load); 8415 capa_now /= SCHED_CAPACITY_SCALE; 8416 8417 /* Amount of load we'd subtract */ 8418 if (busiest->avg_load > scaled_busy_load_per_task) { 8419 capa_move += busiest->group_capacity * 8420 min(busiest->load_per_task, 8421 busiest->avg_load - scaled_busy_load_per_task); 8422 } 8423 8424 /* Amount of load we'd add */ 8425 if (busiest->avg_load * busiest->group_capacity < 8426 busiest->load_per_task * SCHED_CAPACITY_SCALE) { 8427 tmp = (busiest->avg_load * busiest->group_capacity) / 8428 local->group_capacity; 8429 } else { 8430 tmp = (busiest->load_per_task * SCHED_CAPACITY_SCALE) / 8431 local->group_capacity; 8432 } 8433 capa_move += local->group_capacity * 8434 min(local->load_per_task, local->avg_load + tmp); 8435 capa_move /= SCHED_CAPACITY_SCALE; 8436 8437 /* Move if we gain throughput */ 8438 if (capa_move > capa_now) 8439 env->imbalance = busiest->load_per_task; 8440 } 8441 8442 /** 8443 * calculate_imbalance - Calculate the amount of imbalance present within the 8444 * groups of a given sched_domain during load balance. 8445 * @env: load balance environment 8446 * @sds: statistics of the sched_domain whose imbalance is to be calculated. 8447 */ 8448 static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds) 8449 { 8450 unsigned long max_pull, load_above_capacity = ~0UL; 8451 struct sg_lb_stats *local, *busiest; 8452 8453 local = &sds->local_stat; 8454 busiest = &sds->busiest_stat; 8455 8456 if (busiest->group_type == group_imbalanced) { 8457 /* 8458 * In the group_imb case we cannot rely on group-wide averages 8459 * to ensure CPU-load equilibrium, look at wider averages. XXX 8460 */ 8461 busiest->load_per_task = 8462 min(busiest->load_per_task, sds->avg_load); 8463 } 8464 8465 /* 8466 * Avg load of busiest sg can be less and avg load of local sg can 8467 * be greater than avg load across all sgs of sd because avg load 8468 * factors in sg capacity and sgs with smaller group_type are 8469 * skipped when updating the busiest sg: 8470 */ 8471 if (busiest->avg_load <= sds->avg_load || 8472 local->avg_load >= sds->avg_load) { 8473 env->imbalance = 0; 8474 return fix_small_imbalance(env, sds); 8475 } 8476 8477 /* 8478 * If there aren't any idle CPUs, avoid creating some. 8479 */ 8480 if (busiest->group_type == group_overloaded && 8481 local->group_type == group_overloaded) { 8482 load_above_capacity = busiest->sum_nr_running * SCHED_CAPACITY_SCALE; 8483 if (load_above_capacity > busiest->group_capacity) { 8484 load_above_capacity -= busiest->group_capacity; 8485 load_above_capacity *= scale_load_down(NICE_0_LOAD); 8486 load_above_capacity /= busiest->group_capacity; 8487 } else 8488 load_above_capacity = ~0UL; 8489 } 8490 8491 /* 8492 * We're trying to get all the CPUs to the average_load, so we don't 8493 * want to push ourselves above the average load, nor do we wish to 8494 * reduce the max loaded CPU below the average load. At the same time, 8495 * we also don't want to reduce the group load below the group 8496 * capacity. Thus we look for the minimum possible imbalance. 8497 */ 8498 max_pull = min(busiest->avg_load - sds->avg_load, load_above_capacity); 8499 8500 /* How much load to actually move to equalise the imbalance */ 8501 env->imbalance = min( 8502 max_pull * busiest->group_capacity, 8503 (sds->avg_load - local->avg_load) * local->group_capacity 8504 ) / SCHED_CAPACITY_SCALE; 8505 8506 /* 8507 * if *imbalance is less than the average load per runnable task 8508 * there is no guarantee that any tasks will be moved so we'll have 8509 * a think about bumping its value to force at least one task to be 8510 * moved 8511 */ 8512 if (env->imbalance < busiest->load_per_task) 8513 return fix_small_imbalance(env, sds); 8514 } 8515 8516 /******* find_busiest_group() helpers end here *********************/ 8517 8518 /** 8519 * find_busiest_group - Returns the busiest group within the sched_domain 8520 * if there is an imbalance. 8521 * 8522 * Also calculates the amount of weighted load which should be moved 8523 * to restore balance. 8524 * 8525 * @env: The load balancing environment. 8526 * 8527 * Return: - The busiest group if imbalance exists. 8528 */ 8529 static struct sched_group *find_busiest_group(struct lb_env *env) 8530 { 8531 struct sg_lb_stats *local, *busiest; 8532 struct sd_lb_stats sds; 8533 8534 init_sd_lb_stats(&sds); 8535 8536 /* 8537 * Compute the various statistics relavent for load balancing at 8538 * this level. 8539 */ 8540 update_sd_lb_stats(env, &sds); 8541 local = &sds.local_stat; 8542 busiest = &sds.busiest_stat; 8543 8544 /* ASYM feature bypasses nice load balance check */ 8545 if (check_asym_packing(env, &sds)) 8546 return sds.busiest; 8547 8548 /* There is no busy sibling group to pull tasks from */ 8549 if (!sds.busiest || busiest->sum_nr_running == 0) 8550 goto out_balanced; 8551 8552 /* XXX broken for overlapping NUMA groups */ 8553 sds.avg_load = (SCHED_CAPACITY_SCALE * sds.total_load) 8554 / sds.total_capacity; 8555 8556 /* 8557 * If the busiest group is imbalanced the below checks don't 8558 * work because they assume all things are equal, which typically 8559 * isn't true due to cpus_allowed constraints and the like. 8560 */ 8561 if (busiest->group_type == group_imbalanced) 8562 goto force_balance; 8563 8564 /* 8565 * When dst_cpu is idle, prevent SMP nice and/or asymmetric group 8566 * capacities from resulting in underutilization due to avg_load. 8567 */ 8568 if (env->idle != CPU_NOT_IDLE && group_has_capacity(env, local) && 8569 busiest->group_no_capacity) 8570 goto force_balance; 8571 8572 /* 8573 * If the local group is busier than the selected busiest group 8574 * don't try and pull any tasks. 8575 */ 8576 if (local->avg_load >= busiest->avg_load) 8577 goto out_balanced; 8578 8579 /* 8580 * Don't pull any tasks if this group is already above the domain 8581 * average load. 8582 */ 8583 if (local->avg_load >= sds.avg_load) 8584 goto out_balanced; 8585 8586 if (env->idle == CPU_IDLE) { 8587 /* 8588 * This CPU is idle. If the busiest group is not overloaded 8589 * and there is no imbalance between this and busiest group 8590 * wrt idle CPUs, it is balanced. The imbalance becomes 8591 * significant if the diff is greater than 1 otherwise we 8592 * might end up to just move the imbalance on another group 8593 */ 8594 if ((busiest->group_type != group_overloaded) && 8595 (local->idle_cpus <= (busiest->idle_cpus + 1))) 8596 goto out_balanced; 8597 } else { 8598 /* 8599 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use 8600 * imbalance_pct to be conservative. 8601 */ 8602 if (100 * busiest->avg_load <= 8603 env->sd->imbalance_pct * local->avg_load) 8604 goto out_balanced; 8605 } 8606 8607 force_balance: 8608 /* Looks like there is an imbalance. Compute it */ 8609 calculate_imbalance(env, &sds); 8610 return sds.busiest; 8611 8612 out_balanced: 8613 env->imbalance = 0; 8614 return NULL; 8615 } 8616 8617 /* 8618 * find_busiest_queue - find the busiest runqueue among the CPUs in the group. 8619 */ 8620 static struct rq *find_busiest_queue(struct lb_env *env, 8621 struct sched_group *group) 8622 { 8623 struct rq *busiest = NULL, *rq; 8624 unsigned long busiest_load = 0, busiest_capacity = 1; 8625 int i; 8626 8627 for_each_cpu_and(i, sched_group_span(group), env->cpus) { 8628 unsigned long capacity, wl; 8629 enum fbq_type rt; 8630 8631 rq = cpu_rq(i); 8632 rt = fbq_classify_rq(rq); 8633 8634 /* 8635 * We classify groups/runqueues into three groups: 8636 * - regular: there are !numa tasks 8637 * - remote: there are numa tasks that run on the 'wrong' node 8638 * - all: there is no distinction 8639 * 8640 * In order to avoid migrating ideally placed numa tasks, 8641 * ignore those when there's better options. 8642 * 8643 * If we ignore the actual busiest queue to migrate another 8644 * task, the next balance pass can still reduce the busiest 8645 * queue by moving tasks around inside the node. 8646 * 8647 * If we cannot move enough load due to this classification 8648 * the next pass will adjust the group classification and 8649 * allow migration of more tasks. 8650 * 8651 * Both cases only affect the total convergence complexity. 8652 */ 8653 if (rt > env->fbq_type) 8654 continue; 8655 8656 capacity = capacity_of(i); 8657 8658 wl = weighted_cpuload(rq); 8659 8660 /* 8661 * When comparing with imbalance, use weighted_cpuload() 8662 * which is not scaled with the CPU capacity. 8663 */ 8664 8665 if (rq->nr_running == 1 && wl > env->imbalance && 8666 !check_cpu_capacity(rq, env->sd)) 8667 continue; 8668 8669 /* 8670 * For the load comparisons with the other CPU's, consider 8671 * the weighted_cpuload() scaled with the CPU capacity, so 8672 * that the load can be moved away from the CPU that is 8673 * potentially running at a lower capacity. 8674 * 8675 * Thus we're looking for max(wl_i / capacity_i), crosswise 8676 * multiplication to rid ourselves of the division works out 8677 * to: wl_i * capacity_j > wl_j * capacity_i; where j is 8678 * our previous maximum. 8679 */ 8680 if (wl * busiest_capacity > busiest_load * capacity) { 8681 busiest_load = wl; 8682 busiest_capacity = capacity; 8683 busiest = rq; 8684 } 8685 } 8686 8687 return busiest; 8688 } 8689 8690 /* 8691 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but 8692 * so long as it is large enough. 8693 */ 8694 #define MAX_PINNED_INTERVAL 512 8695 8696 static int need_active_balance(struct lb_env *env) 8697 { 8698 struct sched_domain *sd = env->sd; 8699 8700 if (env->idle == CPU_NEWLY_IDLE) { 8701 8702 /* 8703 * ASYM_PACKING needs to force migrate tasks from busy but 8704 * lower priority CPUs in order to pack all tasks in the 8705 * highest priority CPUs. 8706 */ 8707 if ((sd->flags & SD_ASYM_PACKING) && 8708 sched_asym_prefer(env->dst_cpu, env->src_cpu)) 8709 return 1; 8710 } 8711 8712 /* 8713 * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task. 8714 * It's worth migrating the task if the src_cpu's capacity is reduced 8715 * because of other sched_class or IRQs if more capacity stays 8716 * available on dst_cpu. 8717 */ 8718 if ((env->idle != CPU_NOT_IDLE) && 8719 (env->src_rq->cfs.h_nr_running == 1)) { 8720 if ((check_cpu_capacity(env->src_rq, sd)) && 8721 (capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100)) 8722 return 1; 8723 } 8724 8725 return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2); 8726 } 8727 8728 static int active_load_balance_cpu_stop(void *data); 8729 8730 static int should_we_balance(struct lb_env *env) 8731 { 8732 struct sched_group *sg = env->sd->groups; 8733 int cpu, balance_cpu = -1; 8734 8735 /* 8736 * Ensure the balancing environment is consistent; can happen 8737 * when the softirq triggers 'during' hotplug. 8738 */ 8739 if (!cpumask_test_cpu(env->dst_cpu, env->cpus)) 8740 return 0; 8741 8742 /* 8743 * In the newly idle case, we will allow all the CPUs 8744 * to do the newly idle load balance. 8745 */ 8746 if (env->idle == CPU_NEWLY_IDLE) 8747 return 1; 8748 8749 /* Try to find first idle CPU */ 8750 for_each_cpu_and(cpu, group_balance_mask(sg), env->cpus) { 8751 if (!idle_cpu(cpu)) 8752 continue; 8753 8754 balance_cpu = cpu; 8755 break; 8756 } 8757 8758 if (balance_cpu == -1) 8759 balance_cpu = group_balance_cpu(sg); 8760 8761 /* 8762 * First idle CPU or the first CPU(busiest) in this sched group 8763 * is eligible for doing load balancing at this and above domains. 8764 */ 8765 return balance_cpu == env->dst_cpu; 8766 } 8767 8768 /* 8769 * Check this_cpu to ensure it is balanced within domain. Attempt to move 8770 * tasks if there is an imbalance. 8771 */ 8772 static int load_balance(int this_cpu, struct rq *this_rq, 8773 struct sched_domain *sd, enum cpu_idle_type idle, 8774 int *continue_balancing) 8775 { 8776 int ld_moved, cur_ld_moved, active_balance = 0; 8777 struct sched_domain *sd_parent = sd->parent; 8778 struct sched_group *group; 8779 struct rq *busiest; 8780 struct rq_flags rf; 8781 struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask); 8782 8783 struct lb_env env = { 8784 .sd = sd, 8785 .dst_cpu = this_cpu, 8786 .dst_rq = this_rq, 8787 .dst_grpmask = sched_group_span(sd->groups), 8788 .idle = idle, 8789 .loop_break = sched_nr_migrate_break, 8790 .cpus = cpus, 8791 .fbq_type = all, 8792 .tasks = LIST_HEAD_INIT(env.tasks), 8793 }; 8794 8795 cpumask_and(cpus, sched_domain_span(sd), cpu_active_mask); 8796 8797 schedstat_inc(sd->lb_count[idle]); 8798 8799 redo: 8800 if (!should_we_balance(&env)) { 8801 *continue_balancing = 0; 8802 goto out_balanced; 8803 } 8804 8805 group = find_busiest_group(&env); 8806 if (!group) { 8807 schedstat_inc(sd->lb_nobusyg[idle]); 8808 goto out_balanced; 8809 } 8810 8811 busiest = find_busiest_queue(&env, group); 8812 if (!busiest) { 8813 schedstat_inc(sd->lb_nobusyq[idle]); 8814 goto out_balanced; 8815 } 8816 8817 BUG_ON(busiest == env.dst_rq); 8818 8819 schedstat_add(sd->lb_imbalance[idle], env.imbalance); 8820 8821 env.src_cpu = busiest->cpu; 8822 env.src_rq = busiest; 8823 8824 ld_moved = 0; 8825 if (busiest->nr_running > 1) { 8826 /* 8827 * Attempt to move tasks. If find_busiest_group has found 8828 * an imbalance but busiest->nr_running <= 1, the group is 8829 * still unbalanced. ld_moved simply stays zero, so it is 8830 * correctly treated as an imbalance. 8831 */ 8832 env.flags |= LBF_ALL_PINNED; 8833 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running); 8834 8835 more_balance: 8836 rq_lock_irqsave(busiest, &rf); 8837 update_rq_clock(busiest); 8838 8839 /* 8840 * cur_ld_moved - load moved in current iteration 8841 * ld_moved - cumulative load moved across iterations 8842 */ 8843 cur_ld_moved = detach_tasks(&env); 8844 8845 /* 8846 * We've detached some tasks from busiest_rq. Every 8847 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely 8848 * unlock busiest->lock, and we are able to be sure 8849 * that nobody can manipulate the tasks in parallel. 8850 * See task_rq_lock() family for the details. 8851 */ 8852 8853 rq_unlock(busiest, &rf); 8854 8855 if (cur_ld_moved) { 8856 attach_tasks(&env); 8857 ld_moved += cur_ld_moved; 8858 } 8859 8860 local_irq_restore(rf.flags); 8861 8862 if (env.flags & LBF_NEED_BREAK) { 8863 env.flags &= ~LBF_NEED_BREAK; 8864 goto more_balance; 8865 } 8866 8867 /* 8868 * Revisit (affine) tasks on src_cpu that couldn't be moved to 8869 * us and move them to an alternate dst_cpu in our sched_group 8870 * where they can run. The upper limit on how many times we 8871 * iterate on same src_cpu is dependent on number of CPUs in our 8872 * sched_group. 8873 * 8874 * This changes load balance semantics a bit on who can move 8875 * load to a given_cpu. In addition to the given_cpu itself 8876 * (or a ilb_cpu acting on its behalf where given_cpu is 8877 * nohz-idle), we now have balance_cpu in a position to move 8878 * load to given_cpu. In rare situations, this may cause 8879 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding 8880 * _independently_ and at _same_ time to move some load to 8881 * given_cpu) causing exceess load to be moved to given_cpu. 8882 * This however should not happen so much in practice and 8883 * moreover subsequent load balance cycles should correct the 8884 * excess load moved. 8885 */ 8886 if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) { 8887 8888 /* Prevent to re-select dst_cpu via env's CPUs */ 8889 cpumask_clear_cpu(env.dst_cpu, env.cpus); 8890 8891 env.dst_rq = cpu_rq(env.new_dst_cpu); 8892 env.dst_cpu = env.new_dst_cpu; 8893 env.flags &= ~LBF_DST_PINNED; 8894 env.loop = 0; 8895 env.loop_break = sched_nr_migrate_break; 8896 8897 /* 8898 * Go back to "more_balance" rather than "redo" since we 8899 * need to continue with same src_cpu. 8900 */ 8901 goto more_balance; 8902 } 8903 8904 /* 8905 * We failed to reach balance because of affinity. 8906 */ 8907 if (sd_parent) { 8908 int *group_imbalance = &sd_parent->groups->sgc->imbalance; 8909 8910 if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0) 8911 *group_imbalance = 1; 8912 } 8913 8914 /* All tasks on this runqueue were pinned by CPU affinity */ 8915 if (unlikely(env.flags & LBF_ALL_PINNED)) { 8916 cpumask_clear_cpu(cpu_of(busiest), cpus); 8917 /* 8918 * Attempting to continue load balancing at the current 8919 * sched_domain level only makes sense if there are 8920 * active CPUs remaining as possible busiest CPUs to 8921 * pull load from which are not contained within the 8922 * destination group that is receiving any migrated 8923 * load. 8924 */ 8925 if (!cpumask_subset(cpus, env.dst_grpmask)) { 8926 env.loop = 0; 8927 env.loop_break = sched_nr_migrate_break; 8928 goto redo; 8929 } 8930 goto out_all_pinned; 8931 } 8932 } 8933 8934 if (!ld_moved) { 8935 schedstat_inc(sd->lb_failed[idle]); 8936 /* 8937 * Increment the failure counter only on periodic balance. 8938 * We do not want newidle balance, which can be very 8939 * frequent, pollute the failure counter causing 8940 * excessive cache_hot migrations and active balances. 8941 */ 8942 if (idle != CPU_NEWLY_IDLE) 8943 sd->nr_balance_failed++; 8944 8945 if (need_active_balance(&env)) { 8946 unsigned long flags; 8947 8948 raw_spin_lock_irqsave(&busiest->lock, flags); 8949 8950 /* 8951 * Don't kick the active_load_balance_cpu_stop, 8952 * if the curr task on busiest CPU can't be 8953 * moved to this_cpu: 8954 */ 8955 if (!cpumask_test_cpu(this_cpu, &busiest->curr->cpus_allowed)) { 8956 raw_spin_unlock_irqrestore(&busiest->lock, 8957 flags); 8958 env.flags |= LBF_ALL_PINNED; 8959 goto out_one_pinned; 8960 } 8961 8962 /* 8963 * ->active_balance synchronizes accesses to 8964 * ->active_balance_work. Once set, it's cleared 8965 * only after active load balance is finished. 8966 */ 8967 if (!busiest->active_balance) { 8968 busiest->active_balance = 1; 8969 busiest->push_cpu = this_cpu; 8970 active_balance = 1; 8971 } 8972 raw_spin_unlock_irqrestore(&busiest->lock, flags); 8973 8974 if (active_balance) { 8975 stop_one_cpu_nowait(cpu_of(busiest), 8976 active_load_balance_cpu_stop, busiest, 8977 &busiest->active_balance_work); 8978 } 8979 8980 /* We've kicked active balancing, force task migration. */ 8981 sd->nr_balance_failed = sd->cache_nice_tries+1; 8982 } 8983 } else 8984 sd->nr_balance_failed = 0; 8985 8986 if (likely(!active_balance)) { 8987 /* We were unbalanced, so reset the balancing interval */ 8988 sd->balance_interval = sd->min_interval; 8989 } else { 8990 /* 8991 * If we've begun active balancing, start to back off. This 8992 * case may not be covered by the all_pinned logic if there 8993 * is only 1 task on the busy runqueue (because we don't call 8994 * detach_tasks). 8995 */ 8996 if (sd->balance_interval < sd->max_interval) 8997 sd->balance_interval *= 2; 8998 } 8999 9000 goto out; 9001 9002 out_balanced: 9003 /* 9004 * We reach balance although we may have faced some affinity 9005 * constraints. Clear the imbalance flag if it was set. 9006 */ 9007 if (sd_parent) { 9008 int *group_imbalance = &sd_parent->groups->sgc->imbalance; 9009 9010 if (*group_imbalance) 9011 *group_imbalance = 0; 9012 } 9013 9014 out_all_pinned: 9015 /* 9016 * We reach balance because all tasks are pinned at this level so 9017 * we can't migrate them. Let the imbalance flag set so parent level 9018 * can try to migrate them. 9019 */ 9020 schedstat_inc(sd->lb_balanced[idle]); 9021 9022 sd->nr_balance_failed = 0; 9023 9024 out_one_pinned: 9025 /* tune up the balancing interval */ 9026 if (((env.flags & LBF_ALL_PINNED) && 9027 sd->balance_interval < MAX_PINNED_INTERVAL) || 9028 (sd->balance_interval < sd->max_interval)) 9029 sd->balance_interval *= 2; 9030 9031 ld_moved = 0; 9032 out: 9033 return ld_moved; 9034 } 9035 9036 static inline unsigned long 9037 get_sd_balance_interval(struct sched_domain *sd, int cpu_busy) 9038 { 9039 unsigned long interval = sd->balance_interval; 9040 9041 if (cpu_busy) 9042 interval *= sd->busy_factor; 9043 9044 /* scale ms to jiffies */ 9045 interval = msecs_to_jiffies(interval); 9046 interval = clamp(interval, 1UL, max_load_balance_interval); 9047 9048 return interval; 9049 } 9050 9051 static inline void 9052 update_next_balance(struct sched_domain *sd, unsigned long *next_balance) 9053 { 9054 unsigned long interval, next; 9055 9056 /* used by idle balance, so cpu_busy = 0 */ 9057 interval = get_sd_balance_interval(sd, 0); 9058 next = sd->last_balance + interval; 9059 9060 if (time_after(*next_balance, next)) 9061 *next_balance = next; 9062 } 9063 9064 /* 9065 * active_load_balance_cpu_stop is run by the CPU stopper. It pushes 9066 * running tasks off the busiest CPU onto idle CPUs. It requires at 9067 * least 1 task to be running on each physical CPU where possible, and 9068 * avoids physical / logical imbalances. 9069 */ 9070 static int active_load_balance_cpu_stop(void *data) 9071 { 9072 struct rq *busiest_rq = data; 9073 int busiest_cpu = cpu_of(busiest_rq); 9074 int target_cpu = busiest_rq->push_cpu; 9075 struct rq *target_rq = cpu_rq(target_cpu); 9076 struct sched_domain *sd; 9077 struct task_struct *p = NULL; 9078 struct rq_flags rf; 9079 9080 rq_lock_irq(busiest_rq, &rf); 9081 /* 9082 * Between queueing the stop-work and running it is a hole in which 9083 * CPUs can become inactive. We should not move tasks from or to 9084 * inactive CPUs. 9085 */ 9086 if (!cpu_active(busiest_cpu) || !cpu_active(target_cpu)) 9087 goto out_unlock; 9088 9089 /* Make sure the requested CPU hasn't gone down in the meantime: */ 9090 if (unlikely(busiest_cpu != smp_processor_id() || 9091 !busiest_rq->active_balance)) 9092 goto out_unlock; 9093 9094 /* Is there any task to move? */ 9095 if (busiest_rq->nr_running <= 1) 9096 goto out_unlock; 9097 9098 /* 9099 * This condition is "impossible", if it occurs 9100 * we need to fix it. Originally reported by 9101 * Bjorn Helgaas on a 128-CPU setup. 9102 */ 9103 BUG_ON(busiest_rq == target_rq); 9104 9105 /* Search for an sd spanning us and the target CPU. */ 9106 rcu_read_lock(); 9107 for_each_domain(target_cpu, sd) { 9108 if ((sd->flags & SD_LOAD_BALANCE) && 9109 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd))) 9110 break; 9111 } 9112 9113 if (likely(sd)) { 9114 struct lb_env env = { 9115 .sd = sd, 9116 .dst_cpu = target_cpu, 9117 .dst_rq = target_rq, 9118 .src_cpu = busiest_rq->cpu, 9119 .src_rq = busiest_rq, 9120 .idle = CPU_IDLE, 9121 /* 9122 * can_migrate_task() doesn't need to compute new_dst_cpu 9123 * for active balancing. Since we have CPU_IDLE, but no 9124 * @dst_grpmask we need to make that test go away with lying 9125 * about DST_PINNED. 9126 */ 9127 .flags = LBF_DST_PINNED, 9128 }; 9129 9130 schedstat_inc(sd->alb_count); 9131 update_rq_clock(busiest_rq); 9132 9133 p = detach_one_task(&env); 9134 if (p) { 9135 schedstat_inc(sd->alb_pushed); 9136 /* Active balancing done, reset the failure counter. */ 9137 sd->nr_balance_failed = 0; 9138 } else { 9139 schedstat_inc(sd->alb_failed); 9140 } 9141 } 9142 rcu_read_unlock(); 9143 out_unlock: 9144 busiest_rq->active_balance = 0; 9145 rq_unlock(busiest_rq, &rf); 9146 9147 if (p) 9148 attach_one_task(target_rq, p); 9149 9150 local_irq_enable(); 9151 9152 return 0; 9153 } 9154 9155 static DEFINE_SPINLOCK(balancing); 9156 9157 /* 9158 * Scale the max load_balance interval with the number of CPUs in the system. 9159 * This trades load-balance latency on larger machines for less cross talk. 9160 */ 9161 void update_max_interval(void) 9162 { 9163 max_load_balance_interval = HZ*num_online_cpus()/10; 9164 } 9165 9166 /* 9167 * It checks each scheduling domain to see if it is due to be balanced, 9168 * and initiates a balancing operation if so. 9169 * 9170 * Balancing parameters are set up in init_sched_domains. 9171 */ 9172 static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle) 9173 { 9174 int continue_balancing = 1; 9175 int cpu = rq->cpu; 9176 unsigned long interval; 9177 struct sched_domain *sd; 9178 /* Earliest time when we have to do rebalance again */ 9179 unsigned long next_balance = jiffies + 60*HZ; 9180 int update_next_balance = 0; 9181 int need_serialize, need_decay = 0; 9182 u64 max_cost = 0; 9183 9184 rcu_read_lock(); 9185 for_each_domain(cpu, sd) { 9186 /* 9187 * Decay the newidle max times here because this is a regular 9188 * visit to all the domains. Decay ~1% per second. 9189 */ 9190 if (time_after(jiffies, sd->next_decay_max_lb_cost)) { 9191 sd->max_newidle_lb_cost = 9192 (sd->max_newidle_lb_cost * 253) / 256; 9193 sd->next_decay_max_lb_cost = jiffies + HZ; 9194 need_decay = 1; 9195 } 9196 max_cost += sd->max_newidle_lb_cost; 9197 9198 if (!(sd->flags & SD_LOAD_BALANCE)) 9199 continue; 9200 9201 /* 9202 * Stop the load balance at this level. There is another 9203 * CPU in our sched group which is doing load balancing more 9204 * actively. 9205 */ 9206 if (!continue_balancing) { 9207 if (need_decay) 9208 continue; 9209 break; 9210 } 9211 9212 interval = get_sd_balance_interval(sd, idle != CPU_IDLE); 9213 9214 need_serialize = sd->flags & SD_SERIALIZE; 9215 if (need_serialize) { 9216 if (!spin_trylock(&balancing)) 9217 goto out; 9218 } 9219 9220 if (time_after_eq(jiffies, sd->last_balance + interval)) { 9221 if (load_balance(cpu, rq, sd, idle, &continue_balancing)) { 9222 /* 9223 * The LBF_DST_PINNED logic could have changed 9224 * env->dst_cpu, so we can't know our idle 9225 * state even if we migrated tasks. Update it. 9226 */ 9227 idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE; 9228 } 9229 sd->last_balance = jiffies; 9230 interval = get_sd_balance_interval(sd, idle != CPU_IDLE); 9231 } 9232 if (need_serialize) 9233 spin_unlock(&balancing); 9234 out: 9235 if (time_after(next_balance, sd->last_balance + interval)) { 9236 next_balance = sd->last_balance + interval; 9237 update_next_balance = 1; 9238 } 9239 } 9240 if (need_decay) { 9241 /* 9242 * Ensure the rq-wide value also decays but keep it at a 9243 * reasonable floor to avoid funnies with rq->avg_idle. 9244 */ 9245 rq->max_idle_balance_cost = 9246 max((u64)sysctl_sched_migration_cost, max_cost); 9247 } 9248 rcu_read_unlock(); 9249 9250 /* 9251 * next_balance will be updated only when there is a need. 9252 * When the cpu is attached to null domain for ex, it will not be 9253 * updated. 9254 */ 9255 if (likely(update_next_balance)) { 9256 rq->next_balance = next_balance; 9257 9258 #ifdef CONFIG_NO_HZ_COMMON 9259 /* 9260 * If this CPU has been elected to perform the nohz idle 9261 * balance. Other idle CPUs have already rebalanced with 9262 * nohz_idle_balance() and nohz.next_balance has been 9263 * updated accordingly. This CPU is now running the idle load 9264 * balance for itself and we need to update the 9265 * nohz.next_balance accordingly. 9266 */ 9267 if ((idle == CPU_IDLE) && time_after(nohz.next_balance, rq->next_balance)) 9268 nohz.next_balance = rq->next_balance; 9269 #endif 9270 } 9271 } 9272 9273 static inline int on_null_domain(struct rq *rq) 9274 { 9275 return unlikely(!rcu_dereference_sched(rq->sd)); 9276 } 9277 9278 #ifdef CONFIG_NO_HZ_COMMON 9279 /* 9280 * idle load balancing details 9281 * - When one of the busy CPUs notice that there may be an idle rebalancing 9282 * needed, they will kick the idle load balancer, which then does idle 9283 * load balancing for all the idle CPUs. 9284 */ 9285 9286 static inline int find_new_ilb(void) 9287 { 9288 int ilb = cpumask_first(nohz.idle_cpus_mask); 9289 9290 if (ilb < nr_cpu_ids && idle_cpu(ilb)) 9291 return ilb; 9292 9293 return nr_cpu_ids; 9294 } 9295 9296 /* 9297 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the 9298 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle 9299 * CPU (if there is one). 9300 */ 9301 static void kick_ilb(unsigned int flags) 9302 { 9303 int ilb_cpu; 9304 9305 nohz.next_balance++; 9306 9307 ilb_cpu = find_new_ilb(); 9308 9309 if (ilb_cpu >= nr_cpu_ids) 9310 return; 9311 9312 flags = atomic_fetch_or(flags, nohz_flags(ilb_cpu)); 9313 if (flags & NOHZ_KICK_MASK) 9314 return; 9315 9316 /* 9317 * Use smp_send_reschedule() instead of resched_cpu(). 9318 * This way we generate a sched IPI on the target CPU which 9319 * is idle. And the softirq performing nohz idle load balance 9320 * will be run before returning from the IPI. 9321 */ 9322 smp_send_reschedule(ilb_cpu); 9323 } 9324 9325 /* 9326 * Current heuristic for kicking the idle load balancer in the presence 9327 * of an idle cpu in the system. 9328 * - This rq has more than one task. 9329 * - This rq has at least one CFS task and the capacity of the CPU is 9330 * significantly reduced because of RT tasks or IRQs. 9331 * - At parent of LLC scheduler domain level, this cpu's scheduler group has 9332 * multiple busy cpu. 9333 * - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler 9334 * domain span are idle. 9335 */ 9336 static void nohz_balancer_kick(struct rq *rq) 9337 { 9338 unsigned long now = jiffies; 9339 struct sched_domain_shared *sds; 9340 struct sched_domain *sd; 9341 int nr_busy, i, cpu = rq->cpu; 9342 unsigned int flags = 0; 9343 9344 if (unlikely(rq->idle_balance)) 9345 return; 9346 9347 /* 9348 * We may be recently in ticked or tickless idle mode. At the first 9349 * busy tick after returning from idle, we will update the busy stats. 9350 */ 9351 nohz_balance_exit_idle(rq); 9352 9353 /* 9354 * None are in tickless mode and hence no need for NOHZ idle load 9355 * balancing. 9356 */ 9357 if (likely(!atomic_read(&nohz.nr_cpus))) 9358 return; 9359 9360 if (READ_ONCE(nohz.has_blocked) && 9361 time_after(now, READ_ONCE(nohz.next_blocked))) 9362 flags = NOHZ_STATS_KICK; 9363 9364 if (time_before(now, nohz.next_balance)) 9365 goto out; 9366 9367 if (rq->nr_running >= 2) { 9368 flags = NOHZ_KICK_MASK; 9369 goto out; 9370 } 9371 9372 rcu_read_lock(); 9373 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu)); 9374 if (sds) { 9375 /* 9376 * XXX: write a coherent comment on why we do this. 9377 * See also: http://lkml.kernel.org/r/20111202010832.602203411@sbsiddha-desk.sc.intel.com 9378 */ 9379 nr_busy = atomic_read(&sds->nr_busy_cpus); 9380 if (nr_busy > 1) { 9381 flags = NOHZ_KICK_MASK; 9382 goto unlock; 9383 } 9384 9385 } 9386 9387 sd = rcu_dereference(rq->sd); 9388 if (sd) { 9389 if ((rq->cfs.h_nr_running >= 1) && 9390 check_cpu_capacity(rq, sd)) { 9391 flags = NOHZ_KICK_MASK; 9392 goto unlock; 9393 } 9394 } 9395 9396 sd = rcu_dereference(per_cpu(sd_asym, cpu)); 9397 if (sd) { 9398 for_each_cpu(i, sched_domain_span(sd)) { 9399 if (i == cpu || 9400 !cpumask_test_cpu(i, nohz.idle_cpus_mask)) 9401 continue; 9402 9403 if (sched_asym_prefer(i, cpu)) { 9404 flags = NOHZ_KICK_MASK; 9405 goto unlock; 9406 } 9407 } 9408 } 9409 unlock: 9410 rcu_read_unlock(); 9411 out: 9412 if (flags) 9413 kick_ilb(flags); 9414 } 9415 9416 static void set_cpu_sd_state_busy(int cpu) 9417 { 9418 struct sched_domain *sd; 9419 9420 rcu_read_lock(); 9421 sd = rcu_dereference(per_cpu(sd_llc, cpu)); 9422 9423 if (!sd || !sd->nohz_idle) 9424 goto unlock; 9425 sd->nohz_idle = 0; 9426 9427 atomic_inc(&sd->shared->nr_busy_cpus); 9428 unlock: 9429 rcu_read_unlock(); 9430 } 9431 9432 void nohz_balance_exit_idle(struct rq *rq) 9433 { 9434 SCHED_WARN_ON(rq != this_rq()); 9435 9436 if (likely(!rq->nohz_tick_stopped)) 9437 return; 9438 9439 rq->nohz_tick_stopped = 0; 9440 cpumask_clear_cpu(rq->cpu, nohz.idle_cpus_mask); 9441 atomic_dec(&nohz.nr_cpus); 9442 9443 set_cpu_sd_state_busy(rq->cpu); 9444 } 9445 9446 static void set_cpu_sd_state_idle(int cpu) 9447 { 9448 struct sched_domain *sd; 9449 9450 rcu_read_lock(); 9451 sd = rcu_dereference(per_cpu(sd_llc, cpu)); 9452 9453 if (!sd || sd->nohz_idle) 9454 goto unlock; 9455 sd->nohz_idle = 1; 9456 9457 atomic_dec(&sd->shared->nr_busy_cpus); 9458 unlock: 9459 rcu_read_unlock(); 9460 } 9461 9462 /* 9463 * This routine will record that the CPU is going idle with tick stopped. 9464 * This info will be used in performing idle load balancing in the future. 9465 */ 9466 void nohz_balance_enter_idle(int cpu) 9467 { 9468 struct rq *rq = cpu_rq(cpu); 9469 9470 SCHED_WARN_ON(cpu != smp_processor_id()); 9471 9472 /* If this CPU is going down, then nothing needs to be done: */ 9473 if (!cpu_active(cpu)) 9474 return; 9475 9476 /* Spare idle load balancing on CPUs that don't want to be disturbed: */ 9477 if (!housekeeping_cpu(cpu, HK_FLAG_SCHED)) 9478 return; 9479 9480 /* 9481 * Can be set safely without rq->lock held 9482 * If a clear happens, it will have evaluated last additions because 9483 * rq->lock is held during the check and the clear 9484 */ 9485 rq->has_blocked_load = 1; 9486 9487 /* 9488 * The tick is still stopped but load could have been added in the 9489 * meantime. We set the nohz.has_blocked flag to trig a check of the 9490 * *_avg. The CPU is already part of nohz.idle_cpus_mask so the clear 9491 * of nohz.has_blocked can only happen after checking the new load 9492 */ 9493 if (rq->nohz_tick_stopped) 9494 goto out; 9495 9496 /* If we're a completely isolated CPU, we don't play: */ 9497 if (on_null_domain(rq)) 9498 return; 9499 9500 rq->nohz_tick_stopped = 1; 9501 9502 cpumask_set_cpu(cpu, nohz.idle_cpus_mask); 9503 atomic_inc(&nohz.nr_cpus); 9504 9505 /* 9506 * Ensures that if nohz_idle_balance() fails to observe our 9507 * @idle_cpus_mask store, it must observe the @has_blocked 9508 * store. 9509 */ 9510 smp_mb__after_atomic(); 9511 9512 set_cpu_sd_state_idle(cpu); 9513 9514 out: 9515 /* 9516 * Each time a cpu enter idle, we assume that it has blocked load and 9517 * enable the periodic update of the load of idle cpus 9518 */ 9519 WRITE_ONCE(nohz.has_blocked, 1); 9520 } 9521 9522 /* 9523 * Internal function that runs load balance for all idle cpus. The load balance 9524 * can be a simple update of blocked load or a complete load balance with 9525 * tasks movement depending of flags. 9526 * The function returns false if the loop has stopped before running 9527 * through all idle CPUs. 9528 */ 9529 static bool _nohz_idle_balance(struct rq *this_rq, unsigned int flags, 9530 enum cpu_idle_type idle) 9531 { 9532 /* Earliest time when we have to do rebalance again */ 9533 unsigned long now = jiffies; 9534 unsigned long next_balance = now + 60*HZ; 9535 bool has_blocked_load = false; 9536 int update_next_balance = 0; 9537 int this_cpu = this_rq->cpu; 9538 int balance_cpu; 9539 int ret = false; 9540 struct rq *rq; 9541 9542 SCHED_WARN_ON((flags & NOHZ_KICK_MASK) == NOHZ_BALANCE_KICK); 9543 9544 /* 9545 * We assume there will be no idle load after this update and clear 9546 * the has_blocked flag. If a cpu enters idle in the mean time, it will 9547 * set the has_blocked flag and trig another update of idle load. 9548 * Because a cpu that becomes idle, is added to idle_cpus_mask before 9549 * setting the flag, we are sure to not clear the state and not 9550 * check the load of an idle cpu. 9551 */ 9552 WRITE_ONCE(nohz.has_blocked, 0); 9553 9554 /* 9555 * Ensures that if we miss the CPU, we must see the has_blocked 9556 * store from nohz_balance_enter_idle(). 9557 */ 9558 smp_mb(); 9559 9560 for_each_cpu(balance_cpu, nohz.idle_cpus_mask) { 9561 if (balance_cpu == this_cpu || !idle_cpu(balance_cpu)) 9562 continue; 9563 9564 /* 9565 * If this CPU gets work to do, stop the load balancing 9566 * work being done for other CPUs. Next load 9567 * balancing owner will pick it up. 9568 */ 9569 if (need_resched()) { 9570 has_blocked_load = true; 9571 goto abort; 9572 } 9573 9574 rq = cpu_rq(balance_cpu); 9575 9576 has_blocked_load |= update_nohz_stats(rq, true); 9577 9578 /* 9579 * If time for next balance is due, 9580 * do the balance. 9581 */ 9582 if (time_after_eq(jiffies, rq->next_balance)) { 9583 struct rq_flags rf; 9584 9585 rq_lock_irqsave(rq, &rf); 9586 update_rq_clock(rq); 9587 cpu_load_update_idle(rq); 9588 rq_unlock_irqrestore(rq, &rf); 9589 9590 if (flags & NOHZ_BALANCE_KICK) 9591 rebalance_domains(rq, CPU_IDLE); 9592 } 9593 9594 if (time_after(next_balance, rq->next_balance)) { 9595 next_balance = rq->next_balance; 9596 update_next_balance = 1; 9597 } 9598 } 9599 9600 /* Newly idle CPU doesn't need an update */ 9601 if (idle != CPU_NEWLY_IDLE) { 9602 update_blocked_averages(this_cpu); 9603 has_blocked_load |= this_rq->has_blocked_load; 9604 } 9605 9606 if (flags & NOHZ_BALANCE_KICK) 9607 rebalance_domains(this_rq, CPU_IDLE); 9608 9609 WRITE_ONCE(nohz.next_blocked, 9610 now + msecs_to_jiffies(LOAD_AVG_PERIOD)); 9611 9612 /* The full idle balance loop has been done */ 9613 ret = true; 9614 9615 abort: 9616 /* There is still blocked load, enable periodic update */ 9617 if (has_blocked_load) 9618 WRITE_ONCE(nohz.has_blocked, 1); 9619 9620 /* 9621 * next_balance will be updated only when there is a need. 9622 * When the CPU is attached to null domain for ex, it will not be 9623 * updated. 9624 */ 9625 if (likely(update_next_balance)) 9626 nohz.next_balance = next_balance; 9627 9628 return ret; 9629 } 9630 9631 /* 9632 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the 9633 * rebalancing for all the cpus for whom scheduler ticks are stopped. 9634 */ 9635 static bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) 9636 { 9637 int this_cpu = this_rq->cpu; 9638 unsigned int flags; 9639 9640 if (!(atomic_read(nohz_flags(this_cpu)) & NOHZ_KICK_MASK)) 9641 return false; 9642 9643 if (idle != CPU_IDLE) { 9644 atomic_andnot(NOHZ_KICK_MASK, nohz_flags(this_cpu)); 9645 return false; 9646 } 9647 9648 /* 9649 * barrier, pairs with nohz_balance_enter_idle(), ensures ... 9650 */ 9651 flags = atomic_fetch_andnot(NOHZ_KICK_MASK, nohz_flags(this_cpu)); 9652 if (!(flags & NOHZ_KICK_MASK)) 9653 return false; 9654 9655 _nohz_idle_balance(this_rq, flags, idle); 9656 9657 return true; 9658 } 9659 9660 static void nohz_newidle_balance(struct rq *this_rq) 9661 { 9662 int this_cpu = this_rq->cpu; 9663 9664 /* 9665 * This CPU doesn't want to be disturbed by scheduler 9666 * housekeeping 9667 */ 9668 if (!housekeeping_cpu(this_cpu, HK_FLAG_SCHED)) 9669 return; 9670 9671 /* Will wake up very soon. No time for doing anything else*/ 9672 if (this_rq->avg_idle < sysctl_sched_migration_cost) 9673 return; 9674 9675 /* Don't need to update blocked load of idle CPUs*/ 9676 if (!READ_ONCE(nohz.has_blocked) || 9677 time_before(jiffies, READ_ONCE(nohz.next_blocked))) 9678 return; 9679 9680 raw_spin_unlock(&this_rq->lock); 9681 /* 9682 * This CPU is going to be idle and blocked load of idle CPUs 9683 * need to be updated. Run the ilb locally as it is a good 9684 * candidate for ilb instead of waking up another idle CPU. 9685 * Kick an normal ilb if we failed to do the update. 9686 */ 9687 if (!_nohz_idle_balance(this_rq, NOHZ_STATS_KICK, CPU_NEWLY_IDLE)) 9688 kick_ilb(NOHZ_STATS_KICK); 9689 raw_spin_lock(&this_rq->lock); 9690 } 9691 9692 #else /* !CONFIG_NO_HZ_COMMON */ 9693 static inline void nohz_balancer_kick(struct rq *rq) { } 9694 9695 static inline bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) 9696 { 9697 return false; 9698 } 9699 9700 static inline void nohz_newidle_balance(struct rq *this_rq) { } 9701 #endif /* CONFIG_NO_HZ_COMMON */ 9702 9703 /* 9704 * idle_balance is called by schedule() if this_cpu is about to become 9705 * idle. Attempts to pull tasks from other CPUs. 9706 */ 9707 static int idle_balance(struct rq *this_rq, struct rq_flags *rf) 9708 { 9709 unsigned long next_balance = jiffies + HZ; 9710 int this_cpu = this_rq->cpu; 9711 struct sched_domain *sd; 9712 int pulled_task = 0; 9713 u64 curr_cost = 0; 9714 9715 /* 9716 * We must set idle_stamp _before_ calling idle_balance(), such that we 9717 * measure the duration of idle_balance() as idle time. 9718 */ 9719 this_rq->idle_stamp = rq_clock(this_rq); 9720 9721 /* 9722 * Do not pull tasks towards !active CPUs... 9723 */ 9724 if (!cpu_active(this_cpu)) 9725 return 0; 9726 9727 /* 9728 * This is OK, because current is on_cpu, which avoids it being picked 9729 * for load-balance and preemption/IRQs are still disabled avoiding 9730 * further scheduler activity on it and we're being very careful to 9731 * re-start the picking loop. 9732 */ 9733 rq_unpin_lock(this_rq, rf); 9734 9735 if (this_rq->avg_idle < sysctl_sched_migration_cost || 9736 !this_rq->rd->overload) { 9737 9738 rcu_read_lock(); 9739 sd = rcu_dereference_check_sched_domain(this_rq->sd); 9740 if (sd) 9741 update_next_balance(sd, &next_balance); 9742 rcu_read_unlock(); 9743 9744 nohz_newidle_balance(this_rq); 9745 9746 goto out; 9747 } 9748 9749 raw_spin_unlock(&this_rq->lock); 9750 9751 update_blocked_averages(this_cpu); 9752 rcu_read_lock(); 9753 for_each_domain(this_cpu, sd) { 9754 int continue_balancing = 1; 9755 u64 t0, domain_cost; 9756 9757 if (!(sd->flags & SD_LOAD_BALANCE)) 9758 continue; 9759 9760 if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) { 9761 update_next_balance(sd, &next_balance); 9762 break; 9763 } 9764 9765 if (sd->flags & SD_BALANCE_NEWIDLE) { 9766 t0 = sched_clock_cpu(this_cpu); 9767 9768 pulled_task = load_balance(this_cpu, this_rq, 9769 sd, CPU_NEWLY_IDLE, 9770 &continue_balancing); 9771 9772 domain_cost = sched_clock_cpu(this_cpu) - t0; 9773 if (domain_cost > sd->max_newidle_lb_cost) 9774 sd->max_newidle_lb_cost = domain_cost; 9775 9776 curr_cost += domain_cost; 9777 } 9778 9779 update_next_balance(sd, &next_balance); 9780 9781 /* 9782 * Stop searching for tasks to pull if there are 9783 * now runnable tasks on this rq. 9784 */ 9785 if (pulled_task || this_rq->nr_running > 0) 9786 break; 9787 } 9788 rcu_read_unlock(); 9789 9790 raw_spin_lock(&this_rq->lock); 9791 9792 if (curr_cost > this_rq->max_idle_balance_cost) 9793 this_rq->max_idle_balance_cost = curr_cost; 9794 9795 out: 9796 /* 9797 * While browsing the domains, we released the rq lock, a task could 9798 * have been enqueued in the meantime. Since we're not going idle, 9799 * pretend we pulled a task. 9800 */ 9801 if (this_rq->cfs.h_nr_running && !pulled_task) 9802 pulled_task = 1; 9803 9804 /* Move the next balance forward */ 9805 if (time_after(this_rq->next_balance, next_balance)) 9806 this_rq->next_balance = next_balance; 9807 9808 /* Is there a task of a high priority class? */ 9809 if (this_rq->nr_running != this_rq->cfs.h_nr_running) 9810 pulled_task = -1; 9811 9812 if (pulled_task) 9813 this_rq->idle_stamp = 0; 9814 9815 rq_repin_lock(this_rq, rf); 9816 9817 return pulled_task; 9818 } 9819 9820 /* 9821 * run_rebalance_domains is triggered when needed from the scheduler tick. 9822 * Also triggered for nohz idle balancing (with nohz_balancing_kick set). 9823 */ 9824 static __latent_entropy void run_rebalance_domains(struct softirq_action *h) 9825 { 9826 struct rq *this_rq = this_rq(); 9827 enum cpu_idle_type idle = this_rq->idle_balance ? 9828 CPU_IDLE : CPU_NOT_IDLE; 9829 9830 /* 9831 * If this CPU has a pending nohz_balance_kick, then do the 9832 * balancing on behalf of the other idle CPUs whose ticks are 9833 * stopped. Do nohz_idle_balance *before* rebalance_domains to 9834 * give the idle CPUs a chance to load balance. Else we may 9835 * load balance only within the local sched_domain hierarchy 9836 * and abort nohz_idle_balance altogether if we pull some load. 9837 */ 9838 if (nohz_idle_balance(this_rq, idle)) 9839 return; 9840 9841 /* normal load balance */ 9842 update_blocked_averages(this_rq->cpu); 9843 rebalance_domains(this_rq, idle); 9844 } 9845 9846 /* 9847 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing. 9848 */ 9849 void trigger_load_balance(struct rq *rq) 9850 { 9851 /* Don't need to rebalance while attached to NULL domain */ 9852 if (unlikely(on_null_domain(rq))) 9853 return; 9854 9855 if (time_after_eq(jiffies, rq->next_balance)) 9856 raise_softirq(SCHED_SOFTIRQ); 9857 9858 nohz_balancer_kick(rq); 9859 } 9860 9861 static void rq_online_fair(struct rq *rq) 9862 { 9863 update_sysctl(); 9864 9865 update_runtime_enabled(rq); 9866 } 9867 9868 static void rq_offline_fair(struct rq *rq) 9869 { 9870 update_sysctl(); 9871 9872 /* Ensure any throttled groups are reachable by pick_next_task */ 9873 unthrottle_offline_cfs_rqs(rq); 9874 } 9875 9876 #endif /* CONFIG_SMP */ 9877 9878 /* 9879 * scheduler tick hitting a task of our scheduling class. 9880 * 9881 * NOTE: This function can be called remotely by the tick offload that 9882 * goes along full dynticks. Therefore no local assumption can be made 9883 * and everything must be accessed through the @rq and @curr passed in 9884 * parameters. 9885 */ 9886 static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued) 9887 { 9888 struct cfs_rq *cfs_rq; 9889 struct sched_entity *se = &curr->se; 9890 9891 for_each_sched_entity(se) { 9892 cfs_rq = cfs_rq_of(se); 9893 entity_tick(cfs_rq, se, queued); 9894 } 9895 9896 if (static_branch_unlikely(&sched_numa_balancing)) 9897 task_tick_numa(rq, curr); 9898 } 9899 9900 /* 9901 * called on fork with the child task as argument from the parent's context 9902 * - child not yet on the tasklist 9903 * - preemption disabled 9904 */ 9905 static void task_fork_fair(struct task_struct *p) 9906 { 9907 struct cfs_rq *cfs_rq; 9908 struct sched_entity *se = &p->se, *curr; 9909 struct rq *rq = this_rq(); 9910 struct rq_flags rf; 9911 9912 rq_lock(rq, &rf); 9913 update_rq_clock(rq); 9914 9915 cfs_rq = task_cfs_rq(current); 9916 curr = cfs_rq->curr; 9917 if (curr) { 9918 update_curr(cfs_rq); 9919 se->vruntime = curr->vruntime; 9920 } 9921 place_entity(cfs_rq, se, 1); 9922 9923 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) { 9924 /* 9925 * Upon rescheduling, sched_class::put_prev_task() will place 9926 * 'current' within the tree based on its new key value. 9927 */ 9928 swap(curr->vruntime, se->vruntime); 9929 resched_curr(rq); 9930 } 9931 9932 se->vruntime -= cfs_rq->min_vruntime; 9933 rq_unlock(rq, &rf); 9934 } 9935 9936 /* 9937 * Priority of the task has changed. Check to see if we preempt 9938 * the current task. 9939 */ 9940 static void 9941 prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio) 9942 { 9943 if (!task_on_rq_queued(p)) 9944 return; 9945 9946 /* 9947 * Reschedule if we are currently running on this runqueue and 9948 * our priority decreased, or if we are not currently running on 9949 * this runqueue and our priority is higher than the current's 9950 */ 9951 if (rq->curr == p) { 9952 if (p->prio > oldprio) 9953 resched_curr(rq); 9954 } else 9955 check_preempt_curr(rq, p, 0); 9956 } 9957 9958 static inline bool vruntime_normalized(struct task_struct *p) 9959 { 9960 struct sched_entity *se = &p->se; 9961 9962 /* 9963 * In both the TASK_ON_RQ_QUEUED and TASK_ON_RQ_MIGRATING cases, 9964 * the dequeue_entity(.flags=0) will already have normalized the 9965 * vruntime. 9966 */ 9967 if (p->on_rq) 9968 return true; 9969 9970 /* 9971 * When !on_rq, vruntime of the task has usually NOT been normalized. 9972 * But there are some cases where it has already been normalized: 9973 * 9974 * - A forked child which is waiting for being woken up by 9975 * wake_up_new_task(). 9976 * - A task which has been woken up by try_to_wake_up() and 9977 * waiting for actually being woken up by sched_ttwu_pending(). 9978 */ 9979 if (!se->sum_exec_runtime || p->state == TASK_WAKING) 9980 return true; 9981 9982 return false; 9983 } 9984 9985 #ifdef CONFIG_FAIR_GROUP_SCHED 9986 /* 9987 * Propagate the changes of the sched_entity across the tg tree to make it 9988 * visible to the root 9989 */ 9990 static void propagate_entity_cfs_rq(struct sched_entity *se) 9991 { 9992 struct cfs_rq *cfs_rq; 9993 9994 /* Start to propagate at parent */ 9995 se = se->parent; 9996 9997 for_each_sched_entity(se) { 9998 cfs_rq = cfs_rq_of(se); 9999 10000 if (cfs_rq_throttled(cfs_rq)) 10001 break; 10002 10003 update_load_avg(cfs_rq, se, UPDATE_TG); 10004 } 10005 } 10006 #else 10007 static void propagate_entity_cfs_rq(struct sched_entity *se) { } 10008 #endif 10009 10010 static void detach_entity_cfs_rq(struct sched_entity *se) 10011 { 10012 struct cfs_rq *cfs_rq = cfs_rq_of(se); 10013 10014 /* Catch up with the cfs_rq and remove our load when we leave */ 10015 update_load_avg(cfs_rq, se, 0); 10016 detach_entity_load_avg(cfs_rq, se); 10017 update_tg_load_avg(cfs_rq, false); 10018 propagate_entity_cfs_rq(se); 10019 } 10020 10021 static void attach_entity_cfs_rq(struct sched_entity *se) 10022 { 10023 struct cfs_rq *cfs_rq = cfs_rq_of(se); 10024 10025 #ifdef CONFIG_FAIR_GROUP_SCHED 10026 /* 10027 * Since the real-depth could have been changed (only FAIR 10028 * class maintain depth value), reset depth properly. 10029 */ 10030 se->depth = se->parent ? se->parent->depth + 1 : 0; 10031 #endif 10032 10033 /* Synchronize entity with its cfs_rq */ 10034 update_load_avg(cfs_rq, se, sched_feat(ATTACH_AGE_LOAD) ? 0 : SKIP_AGE_LOAD); 10035 attach_entity_load_avg(cfs_rq, se, 0); 10036 update_tg_load_avg(cfs_rq, false); 10037 propagate_entity_cfs_rq(se); 10038 } 10039 10040 static void detach_task_cfs_rq(struct task_struct *p) 10041 { 10042 struct sched_entity *se = &p->se; 10043 struct cfs_rq *cfs_rq = cfs_rq_of(se); 10044 10045 if (!vruntime_normalized(p)) { 10046 /* 10047 * Fix up our vruntime so that the current sleep doesn't 10048 * cause 'unlimited' sleep bonus. 10049 */ 10050 place_entity(cfs_rq, se, 0); 10051 se->vruntime -= cfs_rq->min_vruntime; 10052 } 10053 10054 detach_entity_cfs_rq(se); 10055 } 10056 10057 static void attach_task_cfs_rq(struct task_struct *p) 10058 { 10059 struct sched_entity *se = &p->se; 10060 struct cfs_rq *cfs_rq = cfs_rq_of(se); 10061 10062 attach_entity_cfs_rq(se); 10063 10064 if (!vruntime_normalized(p)) 10065 se->vruntime += cfs_rq->min_vruntime; 10066 } 10067 10068 static void switched_from_fair(struct rq *rq, struct task_struct *p) 10069 { 10070 detach_task_cfs_rq(p); 10071 } 10072 10073 static void switched_to_fair(struct rq *rq, struct task_struct *p) 10074 { 10075 attach_task_cfs_rq(p); 10076 10077 if (task_on_rq_queued(p)) { 10078 /* 10079 * We were most likely switched from sched_rt, so 10080 * kick off the schedule if running, otherwise just see 10081 * if we can still preempt the current task. 10082 */ 10083 if (rq->curr == p) 10084 resched_curr(rq); 10085 else 10086 check_preempt_curr(rq, p, 0); 10087 } 10088 } 10089 10090 /* Account for a task changing its policy or group. 10091 * 10092 * This routine is mostly called to set cfs_rq->curr field when a task 10093 * migrates between groups/classes. 10094 */ 10095 static void set_curr_task_fair(struct rq *rq) 10096 { 10097 struct sched_entity *se = &rq->curr->se; 10098 10099 for_each_sched_entity(se) { 10100 struct cfs_rq *cfs_rq = cfs_rq_of(se); 10101 10102 set_next_entity(cfs_rq, se); 10103 /* ensure bandwidth has been allocated on our new cfs_rq */ 10104 account_cfs_rq_runtime(cfs_rq, 0); 10105 } 10106 } 10107 10108 void init_cfs_rq(struct cfs_rq *cfs_rq) 10109 { 10110 cfs_rq->tasks_timeline = RB_ROOT_CACHED; 10111 cfs_rq->min_vruntime = (u64)(-(1LL << 20)); 10112 #ifndef CONFIG_64BIT 10113 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime; 10114 #endif 10115 #ifdef CONFIG_SMP 10116 raw_spin_lock_init(&cfs_rq->removed.lock); 10117 #endif 10118 } 10119 10120 #ifdef CONFIG_FAIR_GROUP_SCHED 10121 static void task_set_group_fair(struct task_struct *p) 10122 { 10123 struct sched_entity *se = &p->se; 10124 10125 set_task_rq(p, task_cpu(p)); 10126 se->depth = se->parent ? se->parent->depth + 1 : 0; 10127 } 10128 10129 static void task_move_group_fair(struct task_struct *p) 10130 { 10131 detach_task_cfs_rq(p); 10132 set_task_rq(p, task_cpu(p)); 10133 10134 #ifdef CONFIG_SMP 10135 /* Tell se's cfs_rq has been changed -- migrated */ 10136 p->se.avg.last_update_time = 0; 10137 #endif 10138 attach_task_cfs_rq(p); 10139 } 10140 10141 static void task_change_group_fair(struct task_struct *p, int type) 10142 { 10143 switch (type) { 10144 case TASK_SET_GROUP: 10145 task_set_group_fair(p); 10146 break; 10147 10148 case TASK_MOVE_GROUP: 10149 task_move_group_fair(p); 10150 break; 10151 } 10152 } 10153 10154 void free_fair_sched_group(struct task_group *tg) 10155 { 10156 int i; 10157 10158 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg)); 10159 10160 for_each_possible_cpu(i) { 10161 if (tg->cfs_rq) 10162 kfree(tg->cfs_rq[i]); 10163 if (tg->se) 10164 kfree(tg->se[i]); 10165 } 10166 10167 kfree(tg->cfs_rq); 10168 kfree(tg->se); 10169 } 10170 10171 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent) 10172 { 10173 struct sched_entity *se; 10174 struct cfs_rq *cfs_rq; 10175 int i; 10176 10177 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL); 10178 if (!tg->cfs_rq) 10179 goto err; 10180 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL); 10181 if (!tg->se) 10182 goto err; 10183 10184 tg->shares = NICE_0_LOAD; 10185 10186 init_cfs_bandwidth(tg_cfs_bandwidth(tg)); 10187 10188 for_each_possible_cpu(i) { 10189 cfs_rq = kzalloc_node(sizeof(struct cfs_rq), 10190 GFP_KERNEL, cpu_to_node(i)); 10191 if (!cfs_rq) 10192 goto err; 10193 10194 se = kzalloc_node(sizeof(struct sched_entity), 10195 GFP_KERNEL, cpu_to_node(i)); 10196 if (!se) 10197 goto err_free_rq; 10198 10199 init_cfs_rq(cfs_rq); 10200 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]); 10201 init_entity_runnable_average(se); 10202 } 10203 10204 return 1; 10205 10206 err_free_rq: 10207 kfree(cfs_rq); 10208 err: 10209 return 0; 10210 } 10211 10212 void online_fair_sched_group(struct task_group *tg) 10213 { 10214 struct sched_entity *se; 10215 struct rq *rq; 10216 int i; 10217 10218 for_each_possible_cpu(i) { 10219 rq = cpu_rq(i); 10220 se = tg->se[i]; 10221 10222 raw_spin_lock_irq(&rq->lock); 10223 update_rq_clock(rq); 10224 attach_entity_cfs_rq(se); 10225 sync_throttle(tg, i); 10226 raw_spin_unlock_irq(&rq->lock); 10227 } 10228 } 10229 10230 void unregister_fair_sched_group(struct task_group *tg) 10231 { 10232 unsigned long flags; 10233 struct rq *rq; 10234 int cpu; 10235 10236 for_each_possible_cpu(cpu) { 10237 if (tg->se[cpu]) 10238 remove_entity_load_avg(tg->se[cpu]); 10239 10240 /* 10241 * Only empty task groups can be destroyed; so we can speculatively 10242 * check on_list without danger of it being re-added. 10243 */ 10244 if (!tg->cfs_rq[cpu]->on_list) 10245 continue; 10246 10247 rq = cpu_rq(cpu); 10248 10249 raw_spin_lock_irqsave(&rq->lock, flags); 10250 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]); 10251 raw_spin_unlock_irqrestore(&rq->lock, flags); 10252 } 10253 } 10254 10255 void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq, 10256 struct sched_entity *se, int cpu, 10257 struct sched_entity *parent) 10258 { 10259 struct rq *rq = cpu_rq(cpu); 10260 10261 cfs_rq->tg = tg; 10262 cfs_rq->rq = rq; 10263 init_cfs_rq_runtime(cfs_rq); 10264 10265 tg->cfs_rq[cpu] = cfs_rq; 10266 tg->se[cpu] = se; 10267 10268 /* se could be NULL for root_task_group */ 10269 if (!se) 10270 return; 10271 10272 if (!parent) { 10273 se->cfs_rq = &rq->cfs; 10274 se->depth = 0; 10275 } else { 10276 se->cfs_rq = parent->my_q; 10277 se->depth = parent->depth + 1; 10278 } 10279 10280 se->my_q = cfs_rq; 10281 /* guarantee group entities always have weight */ 10282 update_load_set(&se->load, NICE_0_LOAD); 10283 se->parent = parent; 10284 } 10285 10286 static DEFINE_MUTEX(shares_mutex); 10287 10288 int sched_group_set_shares(struct task_group *tg, unsigned long shares) 10289 { 10290 int i; 10291 10292 /* 10293 * We can't change the weight of the root cgroup. 10294 */ 10295 if (!tg->se[0]) 10296 return -EINVAL; 10297 10298 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES)); 10299 10300 mutex_lock(&shares_mutex); 10301 if (tg->shares == shares) 10302 goto done; 10303 10304 tg->shares = shares; 10305 for_each_possible_cpu(i) { 10306 struct rq *rq = cpu_rq(i); 10307 struct sched_entity *se = tg->se[i]; 10308 struct rq_flags rf; 10309 10310 /* Propagate contribution to hierarchy */ 10311 rq_lock_irqsave(rq, &rf); 10312 update_rq_clock(rq); 10313 for_each_sched_entity(se) { 10314 update_load_avg(cfs_rq_of(se), se, UPDATE_TG); 10315 update_cfs_group(se); 10316 } 10317 rq_unlock_irqrestore(rq, &rf); 10318 } 10319 10320 done: 10321 mutex_unlock(&shares_mutex); 10322 return 0; 10323 } 10324 #else /* CONFIG_FAIR_GROUP_SCHED */ 10325 10326 void free_fair_sched_group(struct task_group *tg) { } 10327 10328 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent) 10329 { 10330 return 1; 10331 } 10332 10333 void online_fair_sched_group(struct task_group *tg) { } 10334 10335 void unregister_fair_sched_group(struct task_group *tg) { } 10336 10337 #endif /* CONFIG_FAIR_GROUP_SCHED */ 10338 10339 10340 static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task) 10341 { 10342 struct sched_entity *se = &task->se; 10343 unsigned int rr_interval = 0; 10344 10345 /* 10346 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise 10347 * idle runqueue: 10348 */ 10349 if (rq->cfs.load.weight) 10350 rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se)); 10351 10352 return rr_interval; 10353 } 10354 10355 /* 10356 * All the scheduling class methods: 10357 */ 10358 const struct sched_class fair_sched_class = { 10359 .next = &idle_sched_class, 10360 .enqueue_task = enqueue_task_fair, 10361 .dequeue_task = dequeue_task_fair, 10362 .yield_task = yield_task_fair, 10363 .yield_to_task = yield_to_task_fair, 10364 10365 .check_preempt_curr = check_preempt_wakeup, 10366 10367 .pick_next_task = pick_next_task_fair, 10368 .put_prev_task = put_prev_task_fair, 10369 10370 #ifdef CONFIG_SMP 10371 .select_task_rq = select_task_rq_fair, 10372 .migrate_task_rq = migrate_task_rq_fair, 10373 10374 .rq_online = rq_online_fair, 10375 .rq_offline = rq_offline_fair, 10376 10377 .task_dead = task_dead_fair, 10378 .set_cpus_allowed = set_cpus_allowed_common, 10379 #endif 10380 10381 .set_curr_task = set_curr_task_fair, 10382 .task_tick = task_tick_fair, 10383 .task_fork = task_fork_fair, 10384 10385 .prio_changed = prio_changed_fair, 10386 .switched_from = switched_from_fair, 10387 .switched_to = switched_to_fair, 10388 10389 .get_rr_interval = get_rr_interval_fair, 10390 10391 .update_curr = update_curr_fair, 10392 10393 #ifdef CONFIG_FAIR_GROUP_SCHED 10394 .task_change_group = task_change_group_fair, 10395 #endif 10396 }; 10397 10398 #ifdef CONFIG_SCHED_DEBUG 10399 void print_cfs_stats(struct seq_file *m, int cpu) 10400 { 10401 struct cfs_rq *cfs_rq, *pos; 10402 10403 rcu_read_lock(); 10404 for_each_leaf_cfs_rq_safe(cpu_rq(cpu), cfs_rq, pos) 10405 print_cfs_rq(m, cpu, cfs_rq); 10406 rcu_read_unlock(); 10407 } 10408 10409 #ifdef CONFIG_NUMA_BALANCING 10410 void show_numa_stats(struct task_struct *p, struct seq_file *m) 10411 { 10412 int node; 10413 unsigned long tsf = 0, tpf = 0, gsf = 0, gpf = 0; 10414 10415 for_each_online_node(node) { 10416 if (p->numa_faults) { 10417 tsf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 0)]; 10418 tpf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 1)]; 10419 } 10420 if (p->numa_group) { 10421 gsf = p->numa_group->faults[task_faults_idx(NUMA_MEM, node, 0)], 10422 gpf = p->numa_group->faults[task_faults_idx(NUMA_MEM, node, 1)]; 10423 } 10424 print_numa_stats(m, node, tsf, tpf, gsf, gpf); 10425 } 10426 } 10427 #endif /* CONFIG_NUMA_BALANCING */ 10428 #endif /* CONFIG_SCHED_DEBUG */ 10429 10430 __init void init_sched_fair_class(void) 10431 { 10432 #ifdef CONFIG_SMP 10433 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains); 10434 10435 #ifdef CONFIG_NO_HZ_COMMON 10436 nohz.next_balance = jiffies; 10437 nohz.next_blocked = jiffies; 10438 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT); 10439 #endif 10440 #endif /* SMP */ 10441 10442 } 10443