1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH) 4 * 5 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com> 6 * 7 * Interactivity improvements by Mike Galbraith 8 * (C) 2007 Mike Galbraith <efault@gmx.de> 9 * 10 * Various enhancements by Dmitry Adamushko. 11 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com> 12 * 13 * Group scheduling enhancements by Srivatsa Vaddagiri 14 * Copyright IBM Corporation, 2007 15 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com> 16 * 17 * Scaled math optimizations by Thomas Gleixner 18 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de> 19 * 20 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra 21 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra 22 */ 23 #include "sched.h" 24 25 #include <trace/events/sched.h> 26 27 /* 28 * Targeted preemption latency for CPU-bound tasks: 29 * 30 * NOTE: this latency value is not the same as the concept of 31 * 'timeslice length' - timeslices in CFS are of variable length 32 * and have no persistent notion like in traditional, time-slice 33 * based scheduling concepts. 34 * 35 * (to see the precise effective timeslice length of your workload, 36 * run vmstat and monitor the context-switches (cs) field) 37 * 38 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds) 39 */ 40 unsigned int sysctl_sched_latency = 6000000ULL; 41 static unsigned int normalized_sysctl_sched_latency = 6000000ULL; 42 43 /* 44 * The initial- and re-scaling of tunables is configurable 45 * 46 * Options are: 47 * 48 * SCHED_TUNABLESCALING_NONE - unscaled, always *1 49 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus) 50 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus 51 * 52 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus)) 53 */ 54 enum sched_tunable_scaling sysctl_sched_tunable_scaling = SCHED_TUNABLESCALING_LOG; 55 56 /* 57 * Minimal preemption granularity for CPU-bound tasks: 58 * 59 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds) 60 */ 61 unsigned int sysctl_sched_min_granularity = 750000ULL; 62 static unsigned int normalized_sysctl_sched_min_granularity = 750000ULL; 63 64 /* 65 * This value is kept at sysctl_sched_latency/sysctl_sched_min_granularity 66 */ 67 static unsigned int sched_nr_latency = 8; 68 69 /* 70 * After fork, child runs first. If set to 0 (default) then 71 * parent will (try to) run first. 72 */ 73 unsigned int sysctl_sched_child_runs_first __read_mostly; 74 75 /* 76 * SCHED_OTHER wake-up granularity. 77 * 78 * This option delays the preemption effects of decoupled workloads 79 * and reduces their over-scheduling. Synchronous workloads will still 80 * have immediate wakeup/sleep latencies. 81 * 82 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds) 83 */ 84 unsigned int sysctl_sched_wakeup_granularity = 1000000UL; 85 static unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL; 86 87 const_debug unsigned int sysctl_sched_migration_cost = 500000UL; 88 89 #ifdef CONFIG_SMP 90 /* 91 * For asym packing, by default the lower numbered CPU has higher priority. 92 */ 93 int __weak arch_asym_cpu_priority(int cpu) 94 { 95 return -cpu; 96 } 97 98 /* 99 * The margin used when comparing utilization with CPU capacity: 100 * util * margin < capacity * 1024 101 * 102 * (default: ~20%) 103 */ 104 static unsigned int capacity_margin = 1280; 105 #endif 106 107 #ifdef CONFIG_CFS_BANDWIDTH 108 /* 109 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool 110 * each time a cfs_rq requests quota. 111 * 112 * Note: in the case that the slice exceeds the runtime remaining (either due 113 * to consumption or the quota being specified to be smaller than the slice) 114 * we will always only issue the remaining available time. 115 * 116 * (default: 5 msec, units: microseconds) 117 */ 118 unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL; 119 #endif 120 121 static inline void update_load_add(struct load_weight *lw, unsigned long inc) 122 { 123 lw->weight += inc; 124 lw->inv_weight = 0; 125 } 126 127 static inline void update_load_sub(struct load_weight *lw, unsigned long dec) 128 { 129 lw->weight -= dec; 130 lw->inv_weight = 0; 131 } 132 133 static inline void update_load_set(struct load_weight *lw, unsigned long w) 134 { 135 lw->weight = w; 136 lw->inv_weight = 0; 137 } 138 139 /* 140 * Increase the granularity value when there are more CPUs, 141 * because with more CPUs the 'effective latency' as visible 142 * to users decreases. But the relationship is not linear, 143 * so pick a second-best guess by going with the log2 of the 144 * number of CPUs. 145 * 146 * This idea comes from the SD scheduler of Con Kolivas: 147 */ 148 static unsigned int get_update_sysctl_factor(void) 149 { 150 unsigned int cpus = min_t(unsigned int, num_online_cpus(), 8); 151 unsigned int factor; 152 153 switch (sysctl_sched_tunable_scaling) { 154 case SCHED_TUNABLESCALING_NONE: 155 factor = 1; 156 break; 157 case SCHED_TUNABLESCALING_LINEAR: 158 factor = cpus; 159 break; 160 case SCHED_TUNABLESCALING_LOG: 161 default: 162 factor = 1 + ilog2(cpus); 163 break; 164 } 165 166 return factor; 167 } 168 169 static void update_sysctl(void) 170 { 171 unsigned int factor = get_update_sysctl_factor(); 172 173 #define SET_SYSCTL(name) \ 174 (sysctl_##name = (factor) * normalized_sysctl_##name) 175 SET_SYSCTL(sched_min_granularity); 176 SET_SYSCTL(sched_latency); 177 SET_SYSCTL(sched_wakeup_granularity); 178 #undef SET_SYSCTL 179 } 180 181 void sched_init_granularity(void) 182 { 183 update_sysctl(); 184 } 185 186 #define WMULT_CONST (~0U) 187 #define WMULT_SHIFT 32 188 189 static void __update_inv_weight(struct load_weight *lw) 190 { 191 unsigned long w; 192 193 if (likely(lw->inv_weight)) 194 return; 195 196 w = scale_load_down(lw->weight); 197 198 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST)) 199 lw->inv_weight = 1; 200 else if (unlikely(!w)) 201 lw->inv_weight = WMULT_CONST; 202 else 203 lw->inv_weight = WMULT_CONST / w; 204 } 205 206 /* 207 * delta_exec * weight / lw.weight 208 * OR 209 * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT 210 * 211 * Either weight := NICE_0_LOAD and lw \e sched_prio_to_wmult[], in which case 212 * we're guaranteed shift stays positive because inv_weight is guaranteed to 213 * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22. 214 * 215 * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus 216 * weight/lw.weight <= 1, and therefore our shift will also be positive. 217 */ 218 static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw) 219 { 220 u64 fact = scale_load_down(weight); 221 int shift = WMULT_SHIFT; 222 223 __update_inv_weight(lw); 224 225 if (unlikely(fact >> 32)) { 226 while (fact >> 32) { 227 fact >>= 1; 228 shift--; 229 } 230 } 231 232 /* hint to use a 32x32->64 mul */ 233 fact = (u64)(u32)fact * lw->inv_weight; 234 235 while (fact >> 32) { 236 fact >>= 1; 237 shift--; 238 } 239 240 return mul_u64_u32_shr(delta_exec, fact, shift); 241 } 242 243 244 const struct sched_class fair_sched_class; 245 246 /************************************************************** 247 * CFS operations on generic schedulable entities: 248 */ 249 250 #ifdef CONFIG_FAIR_GROUP_SCHED 251 static inline struct task_struct *task_of(struct sched_entity *se) 252 { 253 SCHED_WARN_ON(!entity_is_task(se)); 254 return container_of(se, struct task_struct, se); 255 } 256 257 /* Walk up scheduling entities hierarchy */ 258 #define for_each_sched_entity(se) \ 259 for (; se; se = se->parent) 260 261 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p) 262 { 263 return p->se.cfs_rq; 264 } 265 266 /* runqueue on which this entity is (to be) queued */ 267 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se) 268 { 269 return se->cfs_rq; 270 } 271 272 /* runqueue "owned" by this group */ 273 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp) 274 { 275 return grp->my_q; 276 } 277 278 static inline void cfs_rq_tg_path(struct cfs_rq *cfs_rq, char *path, int len) 279 { 280 if (!path) 281 return; 282 283 if (cfs_rq && task_group_is_autogroup(cfs_rq->tg)) 284 autogroup_path(cfs_rq->tg, path, len); 285 else if (cfs_rq && cfs_rq->tg->css.cgroup) 286 cgroup_path(cfs_rq->tg->css.cgroup, path, len); 287 else 288 strlcpy(path, "(null)", len); 289 } 290 291 static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq) 292 { 293 struct rq *rq = rq_of(cfs_rq); 294 int cpu = cpu_of(rq); 295 296 if (cfs_rq->on_list) 297 return rq->tmp_alone_branch == &rq->leaf_cfs_rq_list; 298 299 cfs_rq->on_list = 1; 300 301 /* 302 * Ensure we either appear before our parent (if already 303 * enqueued) or force our parent to appear after us when it is 304 * enqueued. The fact that we always enqueue bottom-up 305 * reduces this to two cases and a special case for the root 306 * cfs_rq. Furthermore, it also means that we will always reset 307 * tmp_alone_branch either when the branch is connected 308 * to a tree or when we reach the top of the tree 309 */ 310 if (cfs_rq->tg->parent && 311 cfs_rq->tg->parent->cfs_rq[cpu]->on_list) { 312 /* 313 * If parent is already on the list, we add the child 314 * just before. Thanks to circular linked property of 315 * the list, this means to put the child at the tail 316 * of the list that starts by parent. 317 */ 318 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list, 319 &(cfs_rq->tg->parent->cfs_rq[cpu]->leaf_cfs_rq_list)); 320 /* 321 * The branch is now connected to its tree so we can 322 * reset tmp_alone_branch to the beginning of the 323 * list. 324 */ 325 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list; 326 return true; 327 } 328 329 if (!cfs_rq->tg->parent) { 330 /* 331 * cfs rq without parent should be put 332 * at the tail of the list. 333 */ 334 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list, 335 &rq->leaf_cfs_rq_list); 336 /* 337 * We have reach the top of a tree so we can reset 338 * tmp_alone_branch to the beginning of the list. 339 */ 340 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list; 341 return true; 342 } 343 344 /* 345 * The parent has not already been added so we want to 346 * make sure that it will be put after us. 347 * tmp_alone_branch points to the begin of the branch 348 * where we will add parent. 349 */ 350 list_add_rcu(&cfs_rq->leaf_cfs_rq_list, rq->tmp_alone_branch); 351 /* 352 * update tmp_alone_branch to points to the new begin 353 * of the branch 354 */ 355 rq->tmp_alone_branch = &cfs_rq->leaf_cfs_rq_list; 356 return false; 357 } 358 359 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq) 360 { 361 if (cfs_rq->on_list) { 362 struct rq *rq = rq_of(cfs_rq); 363 364 /* 365 * With cfs_rq being unthrottled/throttled during an enqueue, 366 * it can happen the tmp_alone_branch points the a leaf that 367 * we finally want to del. In this case, tmp_alone_branch moves 368 * to the prev element but it will point to rq->leaf_cfs_rq_list 369 * at the end of the enqueue. 370 */ 371 if (rq->tmp_alone_branch == &cfs_rq->leaf_cfs_rq_list) 372 rq->tmp_alone_branch = cfs_rq->leaf_cfs_rq_list.prev; 373 374 list_del_rcu(&cfs_rq->leaf_cfs_rq_list); 375 cfs_rq->on_list = 0; 376 } 377 } 378 379 static inline void assert_list_leaf_cfs_rq(struct rq *rq) 380 { 381 SCHED_WARN_ON(rq->tmp_alone_branch != &rq->leaf_cfs_rq_list); 382 } 383 384 /* Iterate thr' all leaf cfs_rq's on a runqueue */ 385 #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) \ 386 list_for_each_entry_safe(cfs_rq, pos, &rq->leaf_cfs_rq_list, \ 387 leaf_cfs_rq_list) 388 389 /* Do the two (enqueued) entities belong to the same group ? */ 390 static inline struct cfs_rq * 391 is_same_group(struct sched_entity *se, struct sched_entity *pse) 392 { 393 if (se->cfs_rq == pse->cfs_rq) 394 return se->cfs_rq; 395 396 return NULL; 397 } 398 399 static inline struct sched_entity *parent_entity(struct sched_entity *se) 400 { 401 return se->parent; 402 } 403 404 static void 405 find_matching_se(struct sched_entity **se, struct sched_entity **pse) 406 { 407 int se_depth, pse_depth; 408 409 /* 410 * preemption test can be made between sibling entities who are in the 411 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of 412 * both tasks until we find their ancestors who are siblings of common 413 * parent. 414 */ 415 416 /* First walk up until both entities are at same depth */ 417 se_depth = (*se)->depth; 418 pse_depth = (*pse)->depth; 419 420 while (se_depth > pse_depth) { 421 se_depth--; 422 *se = parent_entity(*se); 423 } 424 425 while (pse_depth > se_depth) { 426 pse_depth--; 427 *pse = parent_entity(*pse); 428 } 429 430 while (!is_same_group(*se, *pse)) { 431 *se = parent_entity(*se); 432 *pse = parent_entity(*pse); 433 } 434 } 435 436 #else /* !CONFIG_FAIR_GROUP_SCHED */ 437 438 static inline struct task_struct *task_of(struct sched_entity *se) 439 { 440 return container_of(se, struct task_struct, se); 441 } 442 443 #define for_each_sched_entity(se) \ 444 for (; se; se = NULL) 445 446 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p) 447 { 448 return &task_rq(p)->cfs; 449 } 450 451 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se) 452 { 453 struct task_struct *p = task_of(se); 454 struct rq *rq = task_rq(p); 455 456 return &rq->cfs; 457 } 458 459 /* runqueue "owned" by this group */ 460 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp) 461 { 462 return NULL; 463 } 464 465 static inline void cfs_rq_tg_path(struct cfs_rq *cfs_rq, char *path, int len) 466 { 467 if (path) 468 strlcpy(path, "(null)", len); 469 } 470 471 static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq) 472 { 473 return true; 474 } 475 476 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq) 477 { 478 } 479 480 static inline void assert_list_leaf_cfs_rq(struct rq *rq) 481 { 482 } 483 484 #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) \ 485 for (cfs_rq = &rq->cfs, pos = NULL; cfs_rq; cfs_rq = pos) 486 487 static inline struct sched_entity *parent_entity(struct sched_entity *se) 488 { 489 return NULL; 490 } 491 492 static inline void 493 find_matching_se(struct sched_entity **se, struct sched_entity **pse) 494 { 495 } 496 497 #endif /* CONFIG_FAIR_GROUP_SCHED */ 498 499 static __always_inline 500 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec); 501 502 /************************************************************** 503 * Scheduling class tree data structure manipulation methods: 504 */ 505 506 static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime) 507 { 508 s64 delta = (s64)(vruntime - max_vruntime); 509 if (delta > 0) 510 max_vruntime = vruntime; 511 512 return max_vruntime; 513 } 514 515 static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime) 516 { 517 s64 delta = (s64)(vruntime - min_vruntime); 518 if (delta < 0) 519 min_vruntime = vruntime; 520 521 return min_vruntime; 522 } 523 524 static inline int entity_before(struct sched_entity *a, 525 struct sched_entity *b) 526 { 527 return (s64)(a->vruntime - b->vruntime) < 0; 528 } 529 530 static void update_min_vruntime(struct cfs_rq *cfs_rq) 531 { 532 struct sched_entity *curr = cfs_rq->curr; 533 struct rb_node *leftmost = rb_first_cached(&cfs_rq->tasks_timeline); 534 535 u64 vruntime = cfs_rq->min_vruntime; 536 537 if (curr) { 538 if (curr->on_rq) 539 vruntime = curr->vruntime; 540 else 541 curr = NULL; 542 } 543 544 if (leftmost) { /* non-empty tree */ 545 struct sched_entity *se; 546 se = rb_entry(leftmost, struct sched_entity, run_node); 547 548 if (!curr) 549 vruntime = se->vruntime; 550 else 551 vruntime = min_vruntime(vruntime, se->vruntime); 552 } 553 554 /* ensure we never gain time by being placed backwards. */ 555 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime); 556 #ifndef CONFIG_64BIT 557 smp_wmb(); 558 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime; 559 #endif 560 } 561 562 /* 563 * Enqueue an entity into the rb-tree: 564 */ 565 static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) 566 { 567 struct rb_node **link = &cfs_rq->tasks_timeline.rb_root.rb_node; 568 struct rb_node *parent = NULL; 569 struct sched_entity *entry; 570 bool leftmost = true; 571 572 /* 573 * Find the right place in the rbtree: 574 */ 575 while (*link) { 576 parent = *link; 577 entry = rb_entry(parent, struct sched_entity, run_node); 578 /* 579 * We dont care about collisions. Nodes with 580 * the same key stay together. 581 */ 582 if (entity_before(se, entry)) { 583 link = &parent->rb_left; 584 } else { 585 link = &parent->rb_right; 586 leftmost = false; 587 } 588 } 589 590 rb_link_node(&se->run_node, parent, link); 591 rb_insert_color_cached(&se->run_node, 592 &cfs_rq->tasks_timeline, leftmost); 593 } 594 595 static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) 596 { 597 rb_erase_cached(&se->run_node, &cfs_rq->tasks_timeline); 598 } 599 600 struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq) 601 { 602 struct rb_node *left = rb_first_cached(&cfs_rq->tasks_timeline); 603 604 if (!left) 605 return NULL; 606 607 return rb_entry(left, struct sched_entity, run_node); 608 } 609 610 static struct sched_entity *__pick_next_entity(struct sched_entity *se) 611 { 612 struct rb_node *next = rb_next(&se->run_node); 613 614 if (!next) 615 return NULL; 616 617 return rb_entry(next, struct sched_entity, run_node); 618 } 619 620 #ifdef CONFIG_SCHED_DEBUG 621 struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq) 622 { 623 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline.rb_root); 624 625 if (!last) 626 return NULL; 627 628 return rb_entry(last, struct sched_entity, run_node); 629 } 630 631 /************************************************************** 632 * Scheduling class statistics methods: 633 */ 634 635 int sched_proc_update_handler(struct ctl_table *table, int write, 636 void __user *buffer, size_t *lenp, 637 loff_t *ppos) 638 { 639 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 640 unsigned int factor = get_update_sysctl_factor(); 641 642 if (ret || !write) 643 return ret; 644 645 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency, 646 sysctl_sched_min_granularity); 647 648 #define WRT_SYSCTL(name) \ 649 (normalized_sysctl_##name = sysctl_##name / (factor)) 650 WRT_SYSCTL(sched_min_granularity); 651 WRT_SYSCTL(sched_latency); 652 WRT_SYSCTL(sched_wakeup_granularity); 653 #undef WRT_SYSCTL 654 655 return 0; 656 } 657 #endif 658 659 /* 660 * delta /= w 661 */ 662 static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se) 663 { 664 if (unlikely(se->load.weight != NICE_0_LOAD)) 665 delta = __calc_delta(delta, NICE_0_LOAD, &se->load); 666 667 return delta; 668 } 669 670 /* 671 * The idea is to set a period in which each task runs once. 672 * 673 * When there are too many tasks (sched_nr_latency) we have to stretch 674 * this period because otherwise the slices get too small. 675 * 676 * p = (nr <= nl) ? l : l*nr/nl 677 */ 678 static u64 __sched_period(unsigned long nr_running) 679 { 680 if (unlikely(nr_running > sched_nr_latency)) 681 return nr_running * sysctl_sched_min_granularity; 682 else 683 return sysctl_sched_latency; 684 } 685 686 /* 687 * We calculate the wall-time slice from the period by taking a part 688 * proportional to the weight. 689 * 690 * s = p*P[w/rw] 691 */ 692 static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se) 693 { 694 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq); 695 696 for_each_sched_entity(se) { 697 struct load_weight *load; 698 struct load_weight lw; 699 700 cfs_rq = cfs_rq_of(se); 701 load = &cfs_rq->load; 702 703 if (unlikely(!se->on_rq)) { 704 lw = cfs_rq->load; 705 706 update_load_add(&lw, se->load.weight); 707 load = &lw; 708 } 709 slice = __calc_delta(slice, se->load.weight, load); 710 } 711 return slice; 712 } 713 714 /* 715 * We calculate the vruntime slice of a to-be-inserted task. 716 * 717 * vs = s/w 718 */ 719 static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se) 720 { 721 return calc_delta_fair(sched_slice(cfs_rq, se), se); 722 } 723 724 #include "pelt.h" 725 #ifdef CONFIG_SMP 726 727 static int select_idle_sibling(struct task_struct *p, int prev_cpu, int cpu); 728 static unsigned long task_h_load(struct task_struct *p); 729 static unsigned long capacity_of(int cpu); 730 731 /* Give new sched_entity start runnable values to heavy its load in infant time */ 732 void init_entity_runnable_average(struct sched_entity *se) 733 { 734 struct sched_avg *sa = &se->avg; 735 736 memset(sa, 0, sizeof(*sa)); 737 738 /* 739 * Tasks are initialized with full load to be seen as heavy tasks until 740 * they get a chance to stabilize to their real load level. 741 * Group entities are initialized with zero load to reflect the fact that 742 * nothing has been attached to the task group yet. 743 */ 744 if (entity_is_task(se)) 745 sa->runnable_load_avg = sa->load_avg = scale_load_down(se->load.weight); 746 747 se->runnable_weight = se->load.weight; 748 749 /* when this task enqueue'ed, it will contribute to its cfs_rq's load_avg */ 750 } 751 752 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq); 753 static void attach_entity_cfs_rq(struct sched_entity *se); 754 755 /* 756 * With new tasks being created, their initial util_avgs are extrapolated 757 * based on the cfs_rq's current util_avg: 758 * 759 * util_avg = cfs_rq->util_avg / (cfs_rq->load_avg + 1) * se.load.weight 760 * 761 * However, in many cases, the above util_avg does not give a desired 762 * value. Moreover, the sum of the util_avgs may be divergent, such 763 * as when the series is a harmonic series. 764 * 765 * To solve this problem, we also cap the util_avg of successive tasks to 766 * only 1/2 of the left utilization budget: 767 * 768 * util_avg_cap = (cpu_scale - cfs_rq->avg.util_avg) / 2^n 769 * 770 * where n denotes the nth task and cpu_scale the CPU capacity. 771 * 772 * For example, for a CPU with 1024 of capacity, a simplest series from 773 * the beginning would be like: 774 * 775 * task util_avg: 512, 256, 128, 64, 32, 16, 8, ... 776 * cfs_rq util_avg: 512, 768, 896, 960, 992, 1008, 1016, ... 777 * 778 * Finally, that extrapolated util_avg is clamped to the cap (util_avg_cap) 779 * if util_avg > util_avg_cap. 780 */ 781 void post_init_entity_util_avg(struct task_struct *p) 782 { 783 struct sched_entity *se = &p->se; 784 struct cfs_rq *cfs_rq = cfs_rq_of(se); 785 struct sched_avg *sa = &se->avg; 786 long cpu_scale = arch_scale_cpu_capacity(cpu_of(rq_of(cfs_rq))); 787 long cap = (long)(cpu_scale - cfs_rq->avg.util_avg) / 2; 788 789 if (cap > 0) { 790 if (cfs_rq->avg.util_avg != 0) { 791 sa->util_avg = cfs_rq->avg.util_avg * se->load.weight; 792 sa->util_avg /= (cfs_rq->avg.load_avg + 1); 793 794 if (sa->util_avg > cap) 795 sa->util_avg = cap; 796 } else { 797 sa->util_avg = cap; 798 } 799 } 800 801 if (p->sched_class != &fair_sched_class) { 802 /* 803 * For !fair tasks do: 804 * 805 update_cfs_rq_load_avg(now, cfs_rq); 806 attach_entity_load_avg(cfs_rq, se, 0); 807 switched_from_fair(rq, p); 808 * 809 * such that the next switched_to_fair() has the 810 * expected state. 811 */ 812 se->avg.last_update_time = cfs_rq_clock_pelt(cfs_rq); 813 return; 814 } 815 816 attach_entity_cfs_rq(se); 817 } 818 819 #else /* !CONFIG_SMP */ 820 void init_entity_runnable_average(struct sched_entity *se) 821 { 822 } 823 void post_init_entity_util_avg(struct task_struct *p) 824 { 825 } 826 static void update_tg_load_avg(struct cfs_rq *cfs_rq, int force) 827 { 828 } 829 #endif /* CONFIG_SMP */ 830 831 /* 832 * Update the current task's runtime statistics. 833 */ 834 static void update_curr(struct cfs_rq *cfs_rq) 835 { 836 struct sched_entity *curr = cfs_rq->curr; 837 u64 now = rq_clock_task(rq_of(cfs_rq)); 838 u64 delta_exec; 839 840 if (unlikely(!curr)) 841 return; 842 843 delta_exec = now - curr->exec_start; 844 if (unlikely((s64)delta_exec <= 0)) 845 return; 846 847 curr->exec_start = now; 848 849 schedstat_set(curr->statistics.exec_max, 850 max(delta_exec, curr->statistics.exec_max)); 851 852 curr->sum_exec_runtime += delta_exec; 853 schedstat_add(cfs_rq->exec_clock, delta_exec); 854 855 curr->vruntime += calc_delta_fair(delta_exec, curr); 856 update_min_vruntime(cfs_rq); 857 858 if (entity_is_task(curr)) { 859 struct task_struct *curtask = task_of(curr); 860 861 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime); 862 cgroup_account_cputime(curtask, delta_exec); 863 account_group_exec_runtime(curtask, delta_exec); 864 } 865 866 account_cfs_rq_runtime(cfs_rq, delta_exec); 867 } 868 869 static void update_curr_fair(struct rq *rq) 870 { 871 update_curr(cfs_rq_of(&rq->curr->se)); 872 } 873 874 static inline void 875 update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se) 876 { 877 u64 wait_start, prev_wait_start; 878 879 if (!schedstat_enabled()) 880 return; 881 882 wait_start = rq_clock(rq_of(cfs_rq)); 883 prev_wait_start = schedstat_val(se->statistics.wait_start); 884 885 if (entity_is_task(se) && task_on_rq_migrating(task_of(se)) && 886 likely(wait_start > prev_wait_start)) 887 wait_start -= prev_wait_start; 888 889 __schedstat_set(se->statistics.wait_start, wait_start); 890 } 891 892 static inline void 893 update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se) 894 { 895 struct task_struct *p; 896 u64 delta; 897 898 if (!schedstat_enabled()) 899 return; 900 901 delta = rq_clock(rq_of(cfs_rq)) - schedstat_val(se->statistics.wait_start); 902 903 if (entity_is_task(se)) { 904 p = task_of(se); 905 if (task_on_rq_migrating(p)) { 906 /* 907 * Preserve migrating task's wait time so wait_start 908 * time stamp can be adjusted to accumulate wait time 909 * prior to migration. 910 */ 911 __schedstat_set(se->statistics.wait_start, delta); 912 return; 913 } 914 trace_sched_stat_wait(p, delta); 915 } 916 917 __schedstat_set(se->statistics.wait_max, 918 max(schedstat_val(se->statistics.wait_max), delta)); 919 __schedstat_inc(se->statistics.wait_count); 920 __schedstat_add(se->statistics.wait_sum, delta); 921 __schedstat_set(se->statistics.wait_start, 0); 922 } 923 924 static inline void 925 update_stats_enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se) 926 { 927 struct task_struct *tsk = NULL; 928 u64 sleep_start, block_start; 929 930 if (!schedstat_enabled()) 931 return; 932 933 sleep_start = schedstat_val(se->statistics.sleep_start); 934 block_start = schedstat_val(se->statistics.block_start); 935 936 if (entity_is_task(se)) 937 tsk = task_of(se); 938 939 if (sleep_start) { 940 u64 delta = rq_clock(rq_of(cfs_rq)) - sleep_start; 941 942 if ((s64)delta < 0) 943 delta = 0; 944 945 if (unlikely(delta > schedstat_val(se->statistics.sleep_max))) 946 __schedstat_set(se->statistics.sleep_max, delta); 947 948 __schedstat_set(se->statistics.sleep_start, 0); 949 __schedstat_add(se->statistics.sum_sleep_runtime, delta); 950 951 if (tsk) { 952 account_scheduler_latency(tsk, delta >> 10, 1); 953 trace_sched_stat_sleep(tsk, delta); 954 } 955 } 956 if (block_start) { 957 u64 delta = rq_clock(rq_of(cfs_rq)) - block_start; 958 959 if ((s64)delta < 0) 960 delta = 0; 961 962 if (unlikely(delta > schedstat_val(se->statistics.block_max))) 963 __schedstat_set(se->statistics.block_max, delta); 964 965 __schedstat_set(se->statistics.block_start, 0); 966 __schedstat_add(se->statistics.sum_sleep_runtime, delta); 967 968 if (tsk) { 969 if (tsk->in_iowait) { 970 __schedstat_add(se->statistics.iowait_sum, delta); 971 __schedstat_inc(se->statistics.iowait_count); 972 trace_sched_stat_iowait(tsk, delta); 973 } 974 975 trace_sched_stat_blocked(tsk, delta); 976 977 /* 978 * Blocking time is in units of nanosecs, so shift by 979 * 20 to get a milliseconds-range estimation of the 980 * amount of time that the task spent sleeping: 981 */ 982 if (unlikely(prof_on == SLEEP_PROFILING)) { 983 profile_hits(SLEEP_PROFILING, 984 (void *)get_wchan(tsk), 985 delta >> 20); 986 } 987 account_scheduler_latency(tsk, delta >> 10, 0); 988 } 989 } 990 } 991 992 /* 993 * Task is being enqueued - update stats: 994 */ 995 static inline void 996 update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 997 { 998 if (!schedstat_enabled()) 999 return; 1000 1001 /* 1002 * Are we enqueueing a waiting task? (for current tasks 1003 * a dequeue/enqueue event is a NOP) 1004 */ 1005 if (se != cfs_rq->curr) 1006 update_stats_wait_start(cfs_rq, se); 1007 1008 if (flags & ENQUEUE_WAKEUP) 1009 update_stats_enqueue_sleeper(cfs_rq, se); 1010 } 1011 1012 static inline void 1013 update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 1014 { 1015 1016 if (!schedstat_enabled()) 1017 return; 1018 1019 /* 1020 * Mark the end of the wait period if dequeueing a 1021 * waiting task: 1022 */ 1023 if (se != cfs_rq->curr) 1024 update_stats_wait_end(cfs_rq, se); 1025 1026 if ((flags & DEQUEUE_SLEEP) && entity_is_task(se)) { 1027 struct task_struct *tsk = task_of(se); 1028 1029 if (tsk->state & TASK_INTERRUPTIBLE) 1030 __schedstat_set(se->statistics.sleep_start, 1031 rq_clock(rq_of(cfs_rq))); 1032 if (tsk->state & TASK_UNINTERRUPTIBLE) 1033 __schedstat_set(se->statistics.block_start, 1034 rq_clock(rq_of(cfs_rq))); 1035 } 1036 } 1037 1038 /* 1039 * We are picking a new current task - update its stats: 1040 */ 1041 static inline void 1042 update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se) 1043 { 1044 /* 1045 * We are starting a new run period: 1046 */ 1047 se->exec_start = rq_clock_task(rq_of(cfs_rq)); 1048 } 1049 1050 /************************************************** 1051 * Scheduling class queueing methods: 1052 */ 1053 1054 #ifdef CONFIG_NUMA_BALANCING 1055 /* 1056 * Approximate time to scan a full NUMA task in ms. The task scan period is 1057 * calculated based on the tasks virtual memory size and 1058 * numa_balancing_scan_size. 1059 */ 1060 unsigned int sysctl_numa_balancing_scan_period_min = 1000; 1061 unsigned int sysctl_numa_balancing_scan_period_max = 60000; 1062 1063 /* Portion of address space to scan in MB */ 1064 unsigned int sysctl_numa_balancing_scan_size = 256; 1065 1066 /* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */ 1067 unsigned int sysctl_numa_balancing_scan_delay = 1000; 1068 1069 struct numa_group { 1070 refcount_t refcount; 1071 1072 spinlock_t lock; /* nr_tasks, tasks */ 1073 int nr_tasks; 1074 pid_t gid; 1075 int active_nodes; 1076 1077 struct rcu_head rcu; 1078 unsigned long total_faults; 1079 unsigned long max_faults_cpu; 1080 /* 1081 * Faults_cpu is used to decide whether memory should move 1082 * towards the CPU. As a consequence, these stats are weighted 1083 * more by CPU use than by memory faults. 1084 */ 1085 unsigned long *faults_cpu; 1086 unsigned long faults[0]; 1087 }; 1088 1089 /* 1090 * For functions that can be called in multiple contexts that permit reading 1091 * ->numa_group (see struct task_struct for locking rules). 1092 */ 1093 static struct numa_group *deref_task_numa_group(struct task_struct *p) 1094 { 1095 return rcu_dereference_check(p->numa_group, p == current || 1096 (lockdep_is_held(&task_rq(p)->lock) && !READ_ONCE(p->on_cpu))); 1097 } 1098 1099 static struct numa_group *deref_curr_numa_group(struct task_struct *p) 1100 { 1101 return rcu_dereference_protected(p->numa_group, p == current); 1102 } 1103 1104 static inline unsigned long group_faults_priv(struct numa_group *ng); 1105 static inline unsigned long group_faults_shared(struct numa_group *ng); 1106 1107 static unsigned int task_nr_scan_windows(struct task_struct *p) 1108 { 1109 unsigned long rss = 0; 1110 unsigned long nr_scan_pages; 1111 1112 /* 1113 * Calculations based on RSS as non-present and empty pages are skipped 1114 * by the PTE scanner and NUMA hinting faults should be trapped based 1115 * on resident pages 1116 */ 1117 nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT); 1118 rss = get_mm_rss(p->mm); 1119 if (!rss) 1120 rss = nr_scan_pages; 1121 1122 rss = round_up(rss, nr_scan_pages); 1123 return rss / nr_scan_pages; 1124 } 1125 1126 /* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */ 1127 #define MAX_SCAN_WINDOW 2560 1128 1129 static unsigned int task_scan_min(struct task_struct *p) 1130 { 1131 unsigned int scan_size = READ_ONCE(sysctl_numa_balancing_scan_size); 1132 unsigned int scan, floor; 1133 unsigned int windows = 1; 1134 1135 if (scan_size < MAX_SCAN_WINDOW) 1136 windows = MAX_SCAN_WINDOW / scan_size; 1137 floor = 1000 / windows; 1138 1139 scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p); 1140 return max_t(unsigned int, floor, scan); 1141 } 1142 1143 static unsigned int task_scan_start(struct task_struct *p) 1144 { 1145 unsigned long smin = task_scan_min(p); 1146 unsigned long period = smin; 1147 struct numa_group *ng; 1148 1149 /* Scale the maximum scan period with the amount of shared memory. */ 1150 rcu_read_lock(); 1151 ng = rcu_dereference(p->numa_group); 1152 if (ng) { 1153 unsigned long shared = group_faults_shared(ng); 1154 unsigned long private = group_faults_priv(ng); 1155 1156 period *= refcount_read(&ng->refcount); 1157 period *= shared + 1; 1158 period /= private + shared + 1; 1159 } 1160 rcu_read_unlock(); 1161 1162 return max(smin, period); 1163 } 1164 1165 static unsigned int task_scan_max(struct task_struct *p) 1166 { 1167 unsigned long smin = task_scan_min(p); 1168 unsigned long smax; 1169 struct numa_group *ng; 1170 1171 /* Watch for min being lower than max due to floor calculations */ 1172 smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p); 1173 1174 /* Scale the maximum scan period with the amount of shared memory. */ 1175 ng = deref_curr_numa_group(p); 1176 if (ng) { 1177 unsigned long shared = group_faults_shared(ng); 1178 unsigned long private = group_faults_priv(ng); 1179 unsigned long period = smax; 1180 1181 period *= refcount_read(&ng->refcount); 1182 period *= shared + 1; 1183 period /= private + shared + 1; 1184 1185 smax = max(smax, period); 1186 } 1187 1188 return max(smin, smax); 1189 } 1190 1191 void init_numa_balancing(unsigned long clone_flags, struct task_struct *p) 1192 { 1193 int mm_users = 0; 1194 struct mm_struct *mm = p->mm; 1195 1196 if (mm) { 1197 mm_users = atomic_read(&mm->mm_users); 1198 if (mm_users == 1) { 1199 mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay); 1200 mm->numa_scan_seq = 0; 1201 } 1202 } 1203 p->node_stamp = 0; 1204 p->numa_scan_seq = mm ? mm->numa_scan_seq : 0; 1205 p->numa_scan_period = sysctl_numa_balancing_scan_delay; 1206 p->numa_work.next = &p->numa_work; 1207 p->numa_faults = NULL; 1208 RCU_INIT_POINTER(p->numa_group, NULL); 1209 p->last_task_numa_placement = 0; 1210 p->last_sum_exec_runtime = 0; 1211 1212 /* New address space, reset the preferred nid */ 1213 if (!(clone_flags & CLONE_VM)) { 1214 p->numa_preferred_nid = NUMA_NO_NODE; 1215 return; 1216 } 1217 1218 /* 1219 * New thread, keep existing numa_preferred_nid which should be copied 1220 * already by arch_dup_task_struct but stagger when scans start. 1221 */ 1222 if (mm) { 1223 unsigned int delay; 1224 1225 delay = min_t(unsigned int, task_scan_max(current), 1226 current->numa_scan_period * mm_users * NSEC_PER_MSEC); 1227 delay += 2 * TICK_NSEC; 1228 p->node_stamp = delay; 1229 } 1230 } 1231 1232 static void account_numa_enqueue(struct rq *rq, struct task_struct *p) 1233 { 1234 rq->nr_numa_running += (p->numa_preferred_nid != NUMA_NO_NODE); 1235 rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p)); 1236 } 1237 1238 static void account_numa_dequeue(struct rq *rq, struct task_struct *p) 1239 { 1240 rq->nr_numa_running -= (p->numa_preferred_nid != NUMA_NO_NODE); 1241 rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p)); 1242 } 1243 1244 /* Shared or private faults. */ 1245 #define NR_NUMA_HINT_FAULT_TYPES 2 1246 1247 /* Memory and CPU locality */ 1248 #define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2) 1249 1250 /* Averaged statistics, and temporary buffers. */ 1251 #define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2) 1252 1253 pid_t task_numa_group_id(struct task_struct *p) 1254 { 1255 struct numa_group *ng; 1256 pid_t gid = 0; 1257 1258 rcu_read_lock(); 1259 ng = rcu_dereference(p->numa_group); 1260 if (ng) 1261 gid = ng->gid; 1262 rcu_read_unlock(); 1263 1264 return gid; 1265 } 1266 1267 /* 1268 * The averaged statistics, shared & private, memory & CPU, 1269 * occupy the first half of the array. The second half of the 1270 * array is for current counters, which are averaged into the 1271 * first set by task_numa_placement. 1272 */ 1273 static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv) 1274 { 1275 return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv; 1276 } 1277 1278 static inline unsigned long task_faults(struct task_struct *p, int nid) 1279 { 1280 if (!p->numa_faults) 1281 return 0; 1282 1283 return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] + 1284 p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)]; 1285 } 1286 1287 static inline unsigned long group_faults(struct task_struct *p, int nid) 1288 { 1289 struct numa_group *ng = deref_task_numa_group(p); 1290 1291 if (!ng) 1292 return 0; 1293 1294 return ng->faults[task_faults_idx(NUMA_MEM, nid, 0)] + 1295 ng->faults[task_faults_idx(NUMA_MEM, nid, 1)]; 1296 } 1297 1298 static inline unsigned long group_faults_cpu(struct numa_group *group, int nid) 1299 { 1300 return group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 0)] + 1301 group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 1)]; 1302 } 1303 1304 static inline unsigned long group_faults_priv(struct numa_group *ng) 1305 { 1306 unsigned long faults = 0; 1307 int node; 1308 1309 for_each_online_node(node) { 1310 faults += ng->faults[task_faults_idx(NUMA_MEM, node, 1)]; 1311 } 1312 1313 return faults; 1314 } 1315 1316 static inline unsigned long group_faults_shared(struct numa_group *ng) 1317 { 1318 unsigned long faults = 0; 1319 int node; 1320 1321 for_each_online_node(node) { 1322 faults += ng->faults[task_faults_idx(NUMA_MEM, node, 0)]; 1323 } 1324 1325 return faults; 1326 } 1327 1328 /* 1329 * A node triggering more than 1/3 as many NUMA faults as the maximum is 1330 * considered part of a numa group's pseudo-interleaving set. Migrations 1331 * between these nodes are slowed down, to allow things to settle down. 1332 */ 1333 #define ACTIVE_NODE_FRACTION 3 1334 1335 static bool numa_is_active_node(int nid, struct numa_group *ng) 1336 { 1337 return group_faults_cpu(ng, nid) * ACTIVE_NODE_FRACTION > ng->max_faults_cpu; 1338 } 1339 1340 /* Handle placement on systems where not all nodes are directly connected. */ 1341 static unsigned long score_nearby_nodes(struct task_struct *p, int nid, 1342 int maxdist, bool task) 1343 { 1344 unsigned long score = 0; 1345 int node; 1346 1347 /* 1348 * All nodes are directly connected, and the same distance 1349 * from each other. No need for fancy placement algorithms. 1350 */ 1351 if (sched_numa_topology_type == NUMA_DIRECT) 1352 return 0; 1353 1354 /* 1355 * This code is called for each node, introducing N^2 complexity, 1356 * which should be ok given the number of nodes rarely exceeds 8. 1357 */ 1358 for_each_online_node(node) { 1359 unsigned long faults; 1360 int dist = node_distance(nid, node); 1361 1362 /* 1363 * The furthest away nodes in the system are not interesting 1364 * for placement; nid was already counted. 1365 */ 1366 if (dist == sched_max_numa_distance || node == nid) 1367 continue; 1368 1369 /* 1370 * On systems with a backplane NUMA topology, compare groups 1371 * of nodes, and move tasks towards the group with the most 1372 * memory accesses. When comparing two nodes at distance 1373 * "hoplimit", only nodes closer by than "hoplimit" are part 1374 * of each group. Skip other nodes. 1375 */ 1376 if (sched_numa_topology_type == NUMA_BACKPLANE && 1377 dist >= maxdist) 1378 continue; 1379 1380 /* Add up the faults from nearby nodes. */ 1381 if (task) 1382 faults = task_faults(p, node); 1383 else 1384 faults = group_faults(p, node); 1385 1386 /* 1387 * On systems with a glueless mesh NUMA topology, there are 1388 * no fixed "groups of nodes". Instead, nodes that are not 1389 * directly connected bounce traffic through intermediate 1390 * nodes; a numa_group can occupy any set of nodes. 1391 * The further away a node is, the less the faults count. 1392 * This seems to result in good task placement. 1393 */ 1394 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) { 1395 faults *= (sched_max_numa_distance - dist); 1396 faults /= (sched_max_numa_distance - LOCAL_DISTANCE); 1397 } 1398 1399 score += faults; 1400 } 1401 1402 return score; 1403 } 1404 1405 /* 1406 * These return the fraction of accesses done by a particular task, or 1407 * task group, on a particular numa node. The group weight is given a 1408 * larger multiplier, in order to group tasks together that are almost 1409 * evenly spread out between numa nodes. 1410 */ 1411 static inline unsigned long task_weight(struct task_struct *p, int nid, 1412 int dist) 1413 { 1414 unsigned long faults, total_faults; 1415 1416 if (!p->numa_faults) 1417 return 0; 1418 1419 total_faults = p->total_numa_faults; 1420 1421 if (!total_faults) 1422 return 0; 1423 1424 faults = task_faults(p, nid); 1425 faults += score_nearby_nodes(p, nid, dist, true); 1426 1427 return 1000 * faults / total_faults; 1428 } 1429 1430 static inline unsigned long group_weight(struct task_struct *p, int nid, 1431 int dist) 1432 { 1433 struct numa_group *ng = deref_task_numa_group(p); 1434 unsigned long faults, total_faults; 1435 1436 if (!ng) 1437 return 0; 1438 1439 total_faults = ng->total_faults; 1440 1441 if (!total_faults) 1442 return 0; 1443 1444 faults = group_faults(p, nid); 1445 faults += score_nearby_nodes(p, nid, dist, false); 1446 1447 return 1000 * faults / total_faults; 1448 } 1449 1450 bool should_numa_migrate_memory(struct task_struct *p, struct page * page, 1451 int src_nid, int dst_cpu) 1452 { 1453 struct numa_group *ng = deref_curr_numa_group(p); 1454 int dst_nid = cpu_to_node(dst_cpu); 1455 int last_cpupid, this_cpupid; 1456 1457 this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid); 1458 last_cpupid = page_cpupid_xchg_last(page, this_cpupid); 1459 1460 /* 1461 * Allow first faults or private faults to migrate immediately early in 1462 * the lifetime of a task. The magic number 4 is based on waiting for 1463 * two full passes of the "multi-stage node selection" test that is 1464 * executed below. 1465 */ 1466 if ((p->numa_preferred_nid == NUMA_NO_NODE || p->numa_scan_seq <= 4) && 1467 (cpupid_pid_unset(last_cpupid) || cpupid_match_pid(p, last_cpupid))) 1468 return true; 1469 1470 /* 1471 * Multi-stage node selection is used in conjunction with a periodic 1472 * migration fault to build a temporal task<->page relation. By using 1473 * a two-stage filter we remove short/unlikely relations. 1474 * 1475 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate 1476 * a task's usage of a particular page (n_p) per total usage of this 1477 * page (n_t) (in a given time-span) to a probability. 1478 * 1479 * Our periodic faults will sample this probability and getting the 1480 * same result twice in a row, given these samples are fully 1481 * independent, is then given by P(n)^2, provided our sample period 1482 * is sufficiently short compared to the usage pattern. 1483 * 1484 * This quadric squishes small probabilities, making it less likely we 1485 * act on an unlikely task<->page relation. 1486 */ 1487 if (!cpupid_pid_unset(last_cpupid) && 1488 cpupid_to_nid(last_cpupid) != dst_nid) 1489 return false; 1490 1491 /* Always allow migrate on private faults */ 1492 if (cpupid_match_pid(p, last_cpupid)) 1493 return true; 1494 1495 /* A shared fault, but p->numa_group has not been set up yet. */ 1496 if (!ng) 1497 return true; 1498 1499 /* 1500 * Destination node is much more heavily used than the source 1501 * node? Allow migration. 1502 */ 1503 if (group_faults_cpu(ng, dst_nid) > group_faults_cpu(ng, src_nid) * 1504 ACTIVE_NODE_FRACTION) 1505 return true; 1506 1507 /* 1508 * Distribute memory according to CPU & memory use on each node, 1509 * with 3/4 hysteresis to avoid unnecessary memory migrations: 1510 * 1511 * faults_cpu(dst) 3 faults_cpu(src) 1512 * --------------- * - > --------------- 1513 * faults_mem(dst) 4 faults_mem(src) 1514 */ 1515 return group_faults_cpu(ng, dst_nid) * group_faults(p, src_nid) * 3 > 1516 group_faults_cpu(ng, src_nid) * group_faults(p, dst_nid) * 4; 1517 } 1518 1519 static unsigned long cpu_runnable_load(struct rq *rq); 1520 1521 /* Cached statistics for all CPUs within a node */ 1522 struct numa_stats { 1523 unsigned long load; 1524 1525 /* Total compute capacity of CPUs on a node */ 1526 unsigned long compute_capacity; 1527 }; 1528 1529 /* 1530 * XXX borrowed from update_sg_lb_stats 1531 */ 1532 static void update_numa_stats(struct numa_stats *ns, int nid) 1533 { 1534 int cpu; 1535 1536 memset(ns, 0, sizeof(*ns)); 1537 for_each_cpu(cpu, cpumask_of_node(nid)) { 1538 struct rq *rq = cpu_rq(cpu); 1539 1540 ns->load += cpu_runnable_load(rq); 1541 ns->compute_capacity += capacity_of(cpu); 1542 } 1543 1544 } 1545 1546 struct task_numa_env { 1547 struct task_struct *p; 1548 1549 int src_cpu, src_nid; 1550 int dst_cpu, dst_nid; 1551 1552 struct numa_stats src_stats, dst_stats; 1553 1554 int imbalance_pct; 1555 int dist; 1556 1557 struct task_struct *best_task; 1558 long best_imp; 1559 int best_cpu; 1560 }; 1561 1562 static void task_numa_assign(struct task_numa_env *env, 1563 struct task_struct *p, long imp) 1564 { 1565 struct rq *rq = cpu_rq(env->dst_cpu); 1566 1567 /* Bail out if run-queue part of active NUMA balance. */ 1568 if (xchg(&rq->numa_migrate_on, 1)) 1569 return; 1570 1571 /* 1572 * Clear previous best_cpu/rq numa-migrate flag, since task now 1573 * found a better CPU to move/swap. 1574 */ 1575 if (env->best_cpu != -1) { 1576 rq = cpu_rq(env->best_cpu); 1577 WRITE_ONCE(rq->numa_migrate_on, 0); 1578 } 1579 1580 if (env->best_task) 1581 put_task_struct(env->best_task); 1582 if (p) 1583 get_task_struct(p); 1584 1585 env->best_task = p; 1586 env->best_imp = imp; 1587 env->best_cpu = env->dst_cpu; 1588 } 1589 1590 static bool load_too_imbalanced(long src_load, long dst_load, 1591 struct task_numa_env *env) 1592 { 1593 long imb, old_imb; 1594 long orig_src_load, orig_dst_load; 1595 long src_capacity, dst_capacity; 1596 1597 /* 1598 * The load is corrected for the CPU capacity available on each node. 1599 * 1600 * src_load dst_load 1601 * ------------ vs --------- 1602 * src_capacity dst_capacity 1603 */ 1604 src_capacity = env->src_stats.compute_capacity; 1605 dst_capacity = env->dst_stats.compute_capacity; 1606 1607 imb = abs(dst_load * src_capacity - src_load * dst_capacity); 1608 1609 orig_src_load = env->src_stats.load; 1610 orig_dst_load = env->dst_stats.load; 1611 1612 old_imb = abs(orig_dst_load * src_capacity - orig_src_load * dst_capacity); 1613 1614 /* Would this change make things worse? */ 1615 return (imb > old_imb); 1616 } 1617 1618 /* 1619 * Maximum NUMA importance can be 1998 (2*999); 1620 * SMALLIMP @ 30 would be close to 1998/64. 1621 * Used to deter task migration. 1622 */ 1623 #define SMALLIMP 30 1624 1625 /* 1626 * This checks if the overall compute and NUMA accesses of the system would 1627 * be improved if the source tasks was migrated to the target dst_cpu taking 1628 * into account that it might be best if task running on the dst_cpu should 1629 * be exchanged with the source task 1630 */ 1631 static void task_numa_compare(struct task_numa_env *env, 1632 long taskimp, long groupimp, bool maymove) 1633 { 1634 struct numa_group *cur_ng, *p_ng = deref_curr_numa_group(env->p); 1635 struct rq *dst_rq = cpu_rq(env->dst_cpu); 1636 long imp = p_ng ? groupimp : taskimp; 1637 struct task_struct *cur; 1638 long src_load, dst_load; 1639 int dist = env->dist; 1640 long moveimp = imp; 1641 long load; 1642 1643 if (READ_ONCE(dst_rq->numa_migrate_on)) 1644 return; 1645 1646 rcu_read_lock(); 1647 cur = task_rcu_dereference(&dst_rq->curr); 1648 if (cur && ((cur->flags & PF_EXITING) || is_idle_task(cur))) 1649 cur = NULL; 1650 1651 /* 1652 * Because we have preemption enabled we can get migrated around and 1653 * end try selecting ourselves (current == env->p) as a swap candidate. 1654 */ 1655 if (cur == env->p) 1656 goto unlock; 1657 1658 if (!cur) { 1659 if (maymove && moveimp >= env->best_imp) 1660 goto assign; 1661 else 1662 goto unlock; 1663 } 1664 1665 /* 1666 * "imp" is the fault differential for the source task between the 1667 * source and destination node. Calculate the total differential for 1668 * the source task and potential destination task. The more negative 1669 * the value is, the more remote accesses that would be expected to 1670 * be incurred if the tasks were swapped. 1671 */ 1672 /* Skip this swap candidate if cannot move to the source cpu */ 1673 if (!cpumask_test_cpu(env->src_cpu, cur->cpus_ptr)) 1674 goto unlock; 1675 1676 /* 1677 * If dst and source tasks are in the same NUMA group, or not 1678 * in any group then look only at task weights. 1679 */ 1680 cur_ng = rcu_dereference(cur->numa_group); 1681 if (cur_ng == p_ng) { 1682 imp = taskimp + task_weight(cur, env->src_nid, dist) - 1683 task_weight(cur, env->dst_nid, dist); 1684 /* 1685 * Add some hysteresis to prevent swapping the 1686 * tasks within a group over tiny differences. 1687 */ 1688 if (cur_ng) 1689 imp -= imp / 16; 1690 } else { 1691 /* 1692 * Compare the group weights. If a task is all by itself 1693 * (not part of a group), use the task weight instead. 1694 */ 1695 if (cur_ng && p_ng) 1696 imp += group_weight(cur, env->src_nid, dist) - 1697 group_weight(cur, env->dst_nid, dist); 1698 else 1699 imp += task_weight(cur, env->src_nid, dist) - 1700 task_weight(cur, env->dst_nid, dist); 1701 } 1702 1703 if (maymove && moveimp > imp && moveimp > env->best_imp) { 1704 imp = moveimp; 1705 cur = NULL; 1706 goto assign; 1707 } 1708 1709 /* 1710 * If the NUMA importance is less than SMALLIMP, 1711 * task migration might only result in ping pong 1712 * of tasks and also hurt performance due to cache 1713 * misses. 1714 */ 1715 if (imp < SMALLIMP || imp <= env->best_imp + SMALLIMP / 2) 1716 goto unlock; 1717 1718 /* 1719 * In the overloaded case, try and keep the load balanced. 1720 */ 1721 load = task_h_load(env->p) - task_h_load(cur); 1722 if (!load) 1723 goto assign; 1724 1725 dst_load = env->dst_stats.load + load; 1726 src_load = env->src_stats.load - load; 1727 1728 if (load_too_imbalanced(src_load, dst_load, env)) 1729 goto unlock; 1730 1731 assign: 1732 /* 1733 * One idle CPU per node is evaluated for a task numa move. 1734 * Call select_idle_sibling to maybe find a better one. 1735 */ 1736 if (!cur) { 1737 /* 1738 * select_idle_siblings() uses an per-CPU cpumask that 1739 * can be used from IRQ context. 1740 */ 1741 local_irq_disable(); 1742 env->dst_cpu = select_idle_sibling(env->p, env->src_cpu, 1743 env->dst_cpu); 1744 local_irq_enable(); 1745 } 1746 1747 task_numa_assign(env, cur, imp); 1748 unlock: 1749 rcu_read_unlock(); 1750 } 1751 1752 static void task_numa_find_cpu(struct task_numa_env *env, 1753 long taskimp, long groupimp) 1754 { 1755 long src_load, dst_load, load; 1756 bool maymove = false; 1757 int cpu; 1758 1759 load = task_h_load(env->p); 1760 dst_load = env->dst_stats.load + load; 1761 src_load = env->src_stats.load - load; 1762 1763 /* 1764 * If the improvement from just moving env->p direction is better 1765 * than swapping tasks around, check if a move is possible. 1766 */ 1767 maymove = !load_too_imbalanced(src_load, dst_load, env); 1768 1769 for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) { 1770 /* Skip this CPU if the source task cannot migrate */ 1771 if (!cpumask_test_cpu(cpu, env->p->cpus_ptr)) 1772 continue; 1773 1774 env->dst_cpu = cpu; 1775 task_numa_compare(env, taskimp, groupimp, maymove); 1776 } 1777 } 1778 1779 static int task_numa_migrate(struct task_struct *p) 1780 { 1781 struct task_numa_env env = { 1782 .p = p, 1783 1784 .src_cpu = task_cpu(p), 1785 .src_nid = task_node(p), 1786 1787 .imbalance_pct = 112, 1788 1789 .best_task = NULL, 1790 .best_imp = 0, 1791 .best_cpu = -1, 1792 }; 1793 unsigned long taskweight, groupweight; 1794 struct sched_domain *sd; 1795 long taskimp, groupimp; 1796 struct numa_group *ng; 1797 struct rq *best_rq; 1798 int nid, ret, dist; 1799 1800 /* 1801 * Pick the lowest SD_NUMA domain, as that would have the smallest 1802 * imbalance and would be the first to start moving tasks about. 1803 * 1804 * And we want to avoid any moving of tasks about, as that would create 1805 * random movement of tasks -- counter the numa conditions we're trying 1806 * to satisfy here. 1807 */ 1808 rcu_read_lock(); 1809 sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu)); 1810 if (sd) 1811 env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2; 1812 rcu_read_unlock(); 1813 1814 /* 1815 * Cpusets can break the scheduler domain tree into smaller 1816 * balance domains, some of which do not cross NUMA boundaries. 1817 * Tasks that are "trapped" in such domains cannot be migrated 1818 * elsewhere, so there is no point in (re)trying. 1819 */ 1820 if (unlikely(!sd)) { 1821 sched_setnuma(p, task_node(p)); 1822 return -EINVAL; 1823 } 1824 1825 env.dst_nid = p->numa_preferred_nid; 1826 dist = env.dist = node_distance(env.src_nid, env.dst_nid); 1827 taskweight = task_weight(p, env.src_nid, dist); 1828 groupweight = group_weight(p, env.src_nid, dist); 1829 update_numa_stats(&env.src_stats, env.src_nid); 1830 taskimp = task_weight(p, env.dst_nid, dist) - taskweight; 1831 groupimp = group_weight(p, env.dst_nid, dist) - groupweight; 1832 update_numa_stats(&env.dst_stats, env.dst_nid); 1833 1834 /* Try to find a spot on the preferred nid. */ 1835 task_numa_find_cpu(&env, taskimp, groupimp); 1836 1837 /* 1838 * Look at other nodes in these cases: 1839 * - there is no space available on the preferred_nid 1840 * - the task is part of a numa_group that is interleaved across 1841 * multiple NUMA nodes; in order to better consolidate the group, 1842 * we need to check other locations. 1843 */ 1844 ng = deref_curr_numa_group(p); 1845 if (env.best_cpu == -1 || (ng && ng->active_nodes > 1)) { 1846 for_each_online_node(nid) { 1847 if (nid == env.src_nid || nid == p->numa_preferred_nid) 1848 continue; 1849 1850 dist = node_distance(env.src_nid, env.dst_nid); 1851 if (sched_numa_topology_type == NUMA_BACKPLANE && 1852 dist != env.dist) { 1853 taskweight = task_weight(p, env.src_nid, dist); 1854 groupweight = group_weight(p, env.src_nid, dist); 1855 } 1856 1857 /* Only consider nodes where both task and groups benefit */ 1858 taskimp = task_weight(p, nid, dist) - taskweight; 1859 groupimp = group_weight(p, nid, dist) - groupweight; 1860 if (taskimp < 0 && groupimp < 0) 1861 continue; 1862 1863 env.dist = dist; 1864 env.dst_nid = nid; 1865 update_numa_stats(&env.dst_stats, env.dst_nid); 1866 task_numa_find_cpu(&env, taskimp, groupimp); 1867 } 1868 } 1869 1870 /* 1871 * If the task is part of a workload that spans multiple NUMA nodes, 1872 * and is migrating into one of the workload's active nodes, remember 1873 * this node as the task's preferred numa node, so the workload can 1874 * settle down. 1875 * A task that migrated to a second choice node will be better off 1876 * trying for a better one later. Do not set the preferred node here. 1877 */ 1878 if (ng) { 1879 if (env.best_cpu == -1) 1880 nid = env.src_nid; 1881 else 1882 nid = cpu_to_node(env.best_cpu); 1883 1884 if (nid != p->numa_preferred_nid) 1885 sched_setnuma(p, nid); 1886 } 1887 1888 /* No better CPU than the current one was found. */ 1889 if (env.best_cpu == -1) 1890 return -EAGAIN; 1891 1892 best_rq = cpu_rq(env.best_cpu); 1893 if (env.best_task == NULL) { 1894 ret = migrate_task_to(p, env.best_cpu); 1895 WRITE_ONCE(best_rq->numa_migrate_on, 0); 1896 if (ret != 0) 1897 trace_sched_stick_numa(p, env.src_cpu, env.best_cpu); 1898 return ret; 1899 } 1900 1901 ret = migrate_swap(p, env.best_task, env.best_cpu, env.src_cpu); 1902 WRITE_ONCE(best_rq->numa_migrate_on, 0); 1903 1904 if (ret != 0) 1905 trace_sched_stick_numa(p, env.src_cpu, task_cpu(env.best_task)); 1906 put_task_struct(env.best_task); 1907 return ret; 1908 } 1909 1910 /* Attempt to migrate a task to a CPU on the preferred node. */ 1911 static void numa_migrate_preferred(struct task_struct *p) 1912 { 1913 unsigned long interval = HZ; 1914 1915 /* This task has no NUMA fault statistics yet */ 1916 if (unlikely(p->numa_preferred_nid == NUMA_NO_NODE || !p->numa_faults)) 1917 return; 1918 1919 /* Periodically retry migrating the task to the preferred node */ 1920 interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16); 1921 p->numa_migrate_retry = jiffies + interval; 1922 1923 /* Success if task is already running on preferred CPU */ 1924 if (task_node(p) == p->numa_preferred_nid) 1925 return; 1926 1927 /* Otherwise, try migrate to a CPU on the preferred node */ 1928 task_numa_migrate(p); 1929 } 1930 1931 /* 1932 * Find out how many nodes on the workload is actively running on. Do this by 1933 * tracking the nodes from which NUMA hinting faults are triggered. This can 1934 * be different from the set of nodes where the workload's memory is currently 1935 * located. 1936 */ 1937 static void numa_group_count_active_nodes(struct numa_group *numa_group) 1938 { 1939 unsigned long faults, max_faults = 0; 1940 int nid, active_nodes = 0; 1941 1942 for_each_online_node(nid) { 1943 faults = group_faults_cpu(numa_group, nid); 1944 if (faults > max_faults) 1945 max_faults = faults; 1946 } 1947 1948 for_each_online_node(nid) { 1949 faults = group_faults_cpu(numa_group, nid); 1950 if (faults * ACTIVE_NODE_FRACTION > max_faults) 1951 active_nodes++; 1952 } 1953 1954 numa_group->max_faults_cpu = max_faults; 1955 numa_group->active_nodes = active_nodes; 1956 } 1957 1958 /* 1959 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS 1960 * increments. The more local the fault statistics are, the higher the scan 1961 * period will be for the next scan window. If local/(local+remote) ratio is 1962 * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS) 1963 * the scan period will decrease. Aim for 70% local accesses. 1964 */ 1965 #define NUMA_PERIOD_SLOTS 10 1966 #define NUMA_PERIOD_THRESHOLD 7 1967 1968 /* 1969 * Increase the scan period (slow down scanning) if the majority of 1970 * our memory is already on our local node, or if the majority of 1971 * the page accesses are shared with other processes. 1972 * Otherwise, decrease the scan period. 1973 */ 1974 static void update_task_scan_period(struct task_struct *p, 1975 unsigned long shared, unsigned long private) 1976 { 1977 unsigned int period_slot; 1978 int lr_ratio, ps_ratio; 1979 int diff; 1980 1981 unsigned long remote = p->numa_faults_locality[0]; 1982 unsigned long local = p->numa_faults_locality[1]; 1983 1984 /* 1985 * If there were no record hinting faults then either the task is 1986 * completely idle or all activity is areas that are not of interest 1987 * to automatic numa balancing. Related to that, if there were failed 1988 * migration then it implies we are migrating too quickly or the local 1989 * node is overloaded. In either case, scan slower 1990 */ 1991 if (local + shared == 0 || p->numa_faults_locality[2]) { 1992 p->numa_scan_period = min(p->numa_scan_period_max, 1993 p->numa_scan_period << 1); 1994 1995 p->mm->numa_next_scan = jiffies + 1996 msecs_to_jiffies(p->numa_scan_period); 1997 1998 return; 1999 } 2000 2001 /* 2002 * Prepare to scale scan period relative to the current period. 2003 * == NUMA_PERIOD_THRESHOLD scan period stays the same 2004 * < NUMA_PERIOD_THRESHOLD scan period decreases (scan faster) 2005 * >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower) 2006 */ 2007 period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS); 2008 lr_ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote); 2009 ps_ratio = (private * NUMA_PERIOD_SLOTS) / (private + shared); 2010 2011 if (ps_ratio >= NUMA_PERIOD_THRESHOLD) { 2012 /* 2013 * Most memory accesses are local. There is no need to 2014 * do fast NUMA scanning, since memory is already local. 2015 */ 2016 int slot = ps_ratio - NUMA_PERIOD_THRESHOLD; 2017 if (!slot) 2018 slot = 1; 2019 diff = slot * period_slot; 2020 } else if (lr_ratio >= NUMA_PERIOD_THRESHOLD) { 2021 /* 2022 * Most memory accesses are shared with other tasks. 2023 * There is no point in continuing fast NUMA scanning, 2024 * since other tasks may just move the memory elsewhere. 2025 */ 2026 int slot = lr_ratio - NUMA_PERIOD_THRESHOLD; 2027 if (!slot) 2028 slot = 1; 2029 diff = slot * period_slot; 2030 } else { 2031 /* 2032 * Private memory faults exceed (SLOTS-THRESHOLD)/SLOTS, 2033 * yet they are not on the local NUMA node. Speed up 2034 * NUMA scanning to get the memory moved over. 2035 */ 2036 int ratio = max(lr_ratio, ps_ratio); 2037 diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot; 2038 } 2039 2040 p->numa_scan_period = clamp(p->numa_scan_period + diff, 2041 task_scan_min(p), task_scan_max(p)); 2042 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality)); 2043 } 2044 2045 /* 2046 * Get the fraction of time the task has been running since the last 2047 * NUMA placement cycle. The scheduler keeps similar statistics, but 2048 * decays those on a 32ms period, which is orders of magnitude off 2049 * from the dozens-of-seconds NUMA balancing period. Use the scheduler 2050 * stats only if the task is so new there are no NUMA statistics yet. 2051 */ 2052 static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period) 2053 { 2054 u64 runtime, delta, now; 2055 /* Use the start of this time slice to avoid calculations. */ 2056 now = p->se.exec_start; 2057 runtime = p->se.sum_exec_runtime; 2058 2059 if (p->last_task_numa_placement) { 2060 delta = runtime - p->last_sum_exec_runtime; 2061 *period = now - p->last_task_numa_placement; 2062 2063 /* Avoid time going backwards, prevent potential divide error: */ 2064 if (unlikely((s64)*period < 0)) 2065 *period = 0; 2066 } else { 2067 delta = p->se.avg.load_sum; 2068 *period = LOAD_AVG_MAX; 2069 } 2070 2071 p->last_sum_exec_runtime = runtime; 2072 p->last_task_numa_placement = now; 2073 2074 return delta; 2075 } 2076 2077 /* 2078 * Determine the preferred nid for a task in a numa_group. This needs to 2079 * be done in a way that produces consistent results with group_weight, 2080 * otherwise workloads might not converge. 2081 */ 2082 static int preferred_group_nid(struct task_struct *p, int nid) 2083 { 2084 nodemask_t nodes; 2085 int dist; 2086 2087 /* Direct connections between all NUMA nodes. */ 2088 if (sched_numa_topology_type == NUMA_DIRECT) 2089 return nid; 2090 2091 /* 2092 * On a system with glueless mesh NUMA topology, group_weight 2093 * scores nodes according to the number of NUMA hinting faults on 2094 * both the node itself, and on nearby nodes. 2095 */ 2096 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) { 2097 unsigned long score, max_score = 0; 2098 int node, max_node = nid; 2099 2100 dist = sched_max_numa_distance; 2101 2102 for_each_online_node(node) { 2103 score = group_weight(p, node, dist); 2104 if (score > max_score) { 2105 max_score = score; 2106 max_node = node; 2107 } 2108 } 2109 return max_node; 2110 } 2111 2112 /* 2113 * Finding the preferred nid in a system with NUMA backplane 2114 * interconnect topology is more involved. The goal is to locate 2115 * tasks from numa_groups near each other in the system, and 2116 * untangle workloads from different sides of the system. This requires 2117 * searching down the hierarchy of node groups, recursively searching 2118 * inside the highest scoring group of nodes. The nodemask tricks 2119 * keep the complexity of the search down. 2120 */ 2121 nodes = node_online_map; 2122 for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) { 2123 unsigned long max_faults = 0; 2124 nodemask_t max_group = NODE_MASK_NONE; 2125 int a, b; 2126 2127 /* Are there nodes at this distance from each other? */ 2128 if (!find_numa_distance(dist)) 2129 continue; 2130 2131 for_each_node_mask(a, nodes) { 2132 unsigned long faults = 0; 2133 nodemask_t this_group; 2134 nodes_clear(this_group); 2135 2136 /* Sum group's NUMA faults; includes a==b case. */ 2137 for_each_node_mask(b, nodes) { 2138 if (node_distance(a, b) < dist) { 2139 faults += group_faults(p, b); 2140 node_set(b, this_group); 2141 node_clear(b, nodes); 2142 } 2143 } 2144 2145 /* Remember the top group. */ 2146 if (faults > max_faults) { 2147 max_faults = faults; 2148 max_group = this_group; 2149 /* 2150 * subtle: at the smallest distance there is 2151 * just one node left in each "group", the 2152 * winner is the preferred nid. 2153 */ 2154 nid = a; 2155 } 2156 } 2157 /* Next round, evaluate the nodes within max_group. */ 2158 if (!max_faults) 2159 break; 2160 nodes = max_group; 2161 } 2162 return nid; 2163 } 2164 2165 static void task_numa_placement(struct task_struct *p) 2166 { 2167 int seq, nid, max_nid = NUMA_NO_NODE; 2168 unsigned long max_faults = 0; 2169 unsigned long fault_types[2] = { 0, 0 }; 2170 unsigned long total_faults; 2171 u64 runtime, period; 2172 spinlock_t *group_lock = NULL; 2173 struct numa_group *ng; 2174 2175 /* 2176 * The p->mm->numa_scan_seq field gets updated without 2177 * exclusive access. Use READ_ONCE() here to ensure 2178 * that the field is read in a single access: 2179 */ 2180 seq = READ_ONCE(p->mm->numa_scan_seq); 2181 if (p->numa_scan_seq == seq) 2182 return; 2183 p->numa_scan_seq = seq; 2184 p->numa_scan_period_max = task_scan_max(p); 2185 2186 total_faults = p->numa_faults_locality[0] + 2187 p->numa_faults_locality[1]; 2188 runtime = numa_get_avg_runtime(p, &period); 2189 2190 /* If the task is part of a group prevent parallel updates to group stats */ 2191 ng = deref_curr_numa_group(p); 2192 if (ng) { 2193 group_lock = &ng->lock; 2194 spin_lock_irq(group_lock); 2195 } 2196 2197 /* Find the node with the highest number of faults */ 2198 for_each_online_node(nid) { 2199 /* Keep track of the offsets in numa_faults array */ 2200 int mem_idx, membuf_idx, cpu_idx, cpubuf_idx; 2201 unsigned long faults = 0, group_faults = 0; 2202 int priv; 2203 2204 for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) { 2205 long diff, f_diff, f_weight; 2206 2207 mem_idx = task_faults_idx(NUMA_MEM, nid, priv); 2208 membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv); 2209 cpu_idx = task_faults_idx(NUMA_CPU, nid, priv); 2210 cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv); 2211 2212 /* Decay existing window, copy faults since last scan */ 2213 diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2; 2214 fault_types[priv] += p->numa_faults[membuf_idx]; 2215 p->numa_faults[membuf_idx] = 0; 2216 2217 /* 2218 * Normalize the faults_from, so all tasks in a group 2219 * count according to CPU use, instead of by the raw 2220 * number of faults. Tasks with little runtime have 2221 * little over-all impact on throughput, and thus their 2222 * faults are less important. 2223 */ 2224 f_weight = div64_u64(runtime << 16, period + 1); 2225 f_weight = (f_weight * p->numa_faults[cpubuf_idx]) / 2226 (total_faults + 1); 2227 f_diff = f_weight - p->numa_faults[cpu_idx] / 2; 2228 p->numa_faults[cpubuf_idx] = 0; 2229 2230 p->numa_faults[mem_idx] += diff; 2231 p->numa_faults[cpu_idx] += f_diff; 2232 faults += p->numa_faults[mem_idx]; 2233 p->total_numa_faults += diff; 2234 if (ng) { 2235 /* 2236 * safe because we can only change our own group 2237 * 2238 * mem_idx represents the offset for a given 2239 * nid and priv in a specific region because it 2240 * is at the beginning of the numa_faults array. 2241 */ 2242 ng->faults[mem_idx] += diff; 2243 ng->faults_cpu[mem_idx] += f_diff; 2244 ng->total_faults += diff; 2245 group_faults += ng->faults[mem_idx]; 2246 } 2247 } 2248 2249 if (!ng) { 2250 if (faults > max_faults) { 2251 max_faults = faults; 2252 max_nid = nid; 2253 } 2254 } else if (group_faults > max_faults) { 2255 max_faults = group_faults; 2256 max_nid = nid; 2257 } 2258 } 2259 2260 if (ng) { 2261 numa_group_count_active_nodes(ng); 2262 spin_unlock_irq(group_lock); 2263 max_nid = preferred_group_nid(p, max_nid); 2264 } 2265 2266 if (max_faults) { 2267 /* Set the new preferred node */ 2268 if (max_nid != p->numa_preferred_nid) 2269 sched_setnuma(p, max_nid); 2270 } 2271 2272 update_task_scan_period(p, fault_types[0], fault_types[1]); 2273 } 2274 2275 static inline int get_numa_group(struct numa_group *grp) 2276 { 2277 return refcount_inc_not_zero(&grp->refcount); 2278 } 2279 2280 static inline void put_numa_group(struct numa_group *grp) 2281 { 2282 if (refcount_dec_and_test(&grp->refcount)) 2283 kfree_rcu(grp, rcu); 2284 } 2285 2286 static void task_numa_group(struct task_struct *p, int cpupid, int flags, 2287 int *priv) 2288 { 2289 struct numa_group *grp, *my_grp; 2290 struct task_struct *tsk; 2291 bool join = false; 2292 int cpu = cpupid_to_cpu(cpupid); 2293 int i; 2294 2295 if (unlikely(!deref_curr_numa_group(p))) { 2296 unsigned int size = sizeof(struct numa_group) + 2297 4*nr_node_ids*sizeof(unsigned long); 2298 2299 grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN); 2300 if (!grp) 2301 return; 2302 2303 refcount_set(&grp->refcount, 1); 2304 grp->active_nodes = 1; 2305 grp->max_faults_cpu = 0; 2306 spin_lock_init(&grp->lock); 2307 grp->gid = p->pid; 2308 /* Second half of the array tracks nids where faults happen */ 2309 grp->faults_cpu = grp->faults + NR_NUMA_HINT_FAULT_TYPES * 2310 nr_node_ids; 2311 2312 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) 2313 grp->faults[i] = p->numa_faults[i]; 2314 2315 grp->total_faults = p->total_numa_faults; 2316 2317 grp->nr_tasks++; 2318 rcu_assign_pointer(p->numa_group, grp); 2319 } 2320 2321 rcu_read_lock(); 2322 tsk = READ_ONCE(cpu_rq(cpu)->curr); 2323 2324 if (!cpupid_match_pid(tsk, cpupid)) 2325 goto no_join; 2326 2327 grp = rcu_dereference(tsk->numa_group); 2328 if (!grp) 2329 goto no_join; 2330 2331 my_grp = deref_curr_numa_group(p); 2332 if (grp == my_grp) 2333 goto no_join; 2334 2335 /* 2336 * Only join the other group if its bigger; if we're the bigger group, 2337 * the other task will join us. 2338 */ 2339 if (my_grp->nr_tasks > grp->nr_tasks) 2340 goto no_join; 2341 2342 /* 2343 * Tie-break on the grp address. 2344 */ 2345 if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp) 2346 goto no_join; 2347 2348 /* Always join threads in the same process. */ 2349 if (tsk->mm == current->mm) 2350 join = true; 2351 2352 /* Simple filter to avoid false positives due to PID collisions */ 2353 if (flags & TNF_SHARED) 2354 join = true; 2355 2356 /* Update priv based on whether false sharing was detected */ 2357 *priv = !join; 2358 2359 if (join && !get_numa_group(grp)) 2360 goto no_join; 2361 2362 rcu_read_unlock(); 2363 2364 if (!join) 2365 return; 2366 2367 BUG_ON(irqs_disabled()); 2368 double_lock_irq(&my_grp->lock, &grp->lock); 2369 2370 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) { 2371 my_grp->faults[i] -= p->numa_faults[i]; 2372 grp->faults[i] += p->numa_faults[i]; 2373 } 2374 my_grp->total_faults -= p->total_numa_faults; 2375 grp->total_faults += p->total_numa_faults; 2376 2377 my_grp->nr_tasks--; 2378 grp->nr_tasks++; 2379 2380 spin_unlock(&my_grp->lock); 2381 spin_unlock_irq(&grp->lock); 2382 2383 rcu_assign_pointer(p->numa_group, grp); 2384 2385 put_numa_group(my_grp); 2386 return; 2387 2388 no_join: 2389 rcu_read_unlock(); 2390 return; 2391 } 2392 2393 /* 2394 * Get rid of NUMA staticstics associated with a task (either current or dead). 2395 * If @final is set, the task is dead and has reached refcount zero, so we can 2396 * safely free all relevant data structures. Otherwise, there might be 2397 * concurrent reads from places like load balancing and procfs, and we should 2398 * reset the data back to default state without freeing ->numa_faults. 2399 */ 2400 void task_numa_free(struct task_struct *p, bool final) 2401 { 2402 /* safe: p either is current or is being freed by current */ 2403 struct numa_group *grp = rcu_dereference_raw(p->numa_group); 2404 unsigned long *numa_faults = p->numa_faults; 2405 unsigned long flags; 2406 int i; 2407 2408 if (!numa_faults) 2409 return; 2410 2411 if (grp) { 2412 spin_lock_irqsave(&grp->lock, flags); 2413 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) 2414 grp->faults[i] -= p->numa_faults[i]; 2415 grp->total_faults -= p->total_numa_faults; 2416 2417 grp->nr_tasks--; 2418 spin_unlock_irqrestore(&grp->lock, flags); 2419 RCU_INIT_POINTER(p->numa_group, NULL); 2420 put_numa_group(grp); 2421 } 2422 2423 if (final) { 2424 p->numa_faults = NULL; 2425 kfree(numa_faults); 2426 } else { 2427 p->total_numa_faults = 0; 2428 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) 2429 numa_faults[i] = 0; 2430 } 2431 } 2432 2433 /* 2434 * Got a PROT_NONE fault for a page on @node. 2435 */ 2436 void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags) 2437 { 2438 struct task_struct *p = current; 2439 bool migrated = flags & TNF_MIGRATED; 2440 int cpu_node = task_node(current); 2441 int local = !!(flags & TNF_FAULT_LOCAL); 2442 struct numa_group *ng; 2443 int priv; 2444 2445 if (!static_branch_likely(&sched_numa_balancing)) 2446 return; 2447 2448 /* for example, ksmd faulting in a user's mm */ 2449 if (!p->mm) 2450 return; 2451 2452 /* Allocate buffer to track faults on a per-node basis */ 2453 if (unlikely(!p->numa_faults)) { 2454 int size = sizeof(*p->numa_faults) * 2455 NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids; 2456 2457 p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN); 2458 if (!p->numa_faults) 2459 return; 2460 2461 p->total_numa_faults = 0; 2462 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality)); 2463 } 2464 2465 /* 2466 * First accesses are treated as private, otherwise consider accesses 2467 * to be private if the accessing pid has not changed 2468 */ 2469 if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) { 2470 priv = 1; 2471 } else { 2472 priv = cpupid_match_pid(p, last_cpupid); 2473 if (!priv && !(flags & TNF_NO_GROUP)) 2474 task_numa_group(p, last_cpupid, flags, &priv); 2475 } 2476 2477 /* 2478 * If a workload spans multiple NUMA nodes, a shared fault that 2479 * occurs wholly within the set of nodes that the workload is 2480 * actively using should be counted as local. This allows the 2481 * scan rate to slow down when a workload has settled down. 2482 */ 2483 ng = deref_curr_numa_group(p); 2484 if (!priv && !local && ng && ng->active_nodes > 1 && 2485 numa_is_active_node(cpu_node, ng) && 2486 numa_is_active_node(mem_node, ng)) 2487 local = 1; 2488 2489 /* 2490 * Retry to migrate task to preferred node periodically, in case it 2491 * previously failed, or the scheduler moved us. 2492 */ 2493 if (time_after(jiffies, p->numa_migrate_retry)) { 2494 task_numa_placement(p); 2495 numa_migrate_preferred(p); 2496 } 2497 2498 if (migrated) 2499 p->numa_pages_migrated += pages; 2500 if (flags & TNF_MIGRATE_FAIL) 2501 p->numa_faults_locality[2] += pages; 2502 2503 p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages; 2504 p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages; 2505 p->numa_faults_locality[local] += pages; 2506 } 2507 2508 static void reset_ptenuma_scan(struct task_struct *p) 2509 { 2510 /* 2511 * We only did a read acquisition of the mmap sem, so 2512 * p->mm->numa_scan_seq is written to without exclusive access 2513 * and the update is not guaranteed to be atomic. That's not 2514 * much of an issue though, since this is just used for 2515 * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not 2516 * expensive, to avoid any form of compiler optimizations: 2517 */ 2518 WRITE_ONCE(p->mm->numa_scan_seq, READ_ONCE(p->mm->numa_scan_seq) + 1); 2519 p->mm->numa_scan_offset = 0; 2520 } 2521 2522 /* 2523 * The expensive part of numa migration is done from task_work context. 2524 * Triggered from task_tick_numa(). 2525 */ 2526 void task_numa_work(struct callback_head *work) 2527 { 2528 unsigned long migrate, next_scan, now = jiffies; 2529 struct task_struct *p = current; 2530 struct mm_struct *mm = p->mm; 2531 u64 runtime = p->se.sum_exec_runtime; 2532 struct vm_area_struct *vma; 2533 unsigned long start, end; 2534 unsigned long nr_pte_updates = 0; 2535 long pages, virtpages; 2536 2537 SCHED_WARN_ON(p != container_of(work, struct task_struct, numa_work)); 2538 2539 work->next = work; /* protect against double add */ 2540 /* 2541 * Who cares about NUMA placement when they're dying. 2542 * 2543 * NOTE: make sure not to dereference p->mm before this check, 2544 * exit_task_work() happens _after_ exit_mm() so we could be called 2545 * without p->mm even though we still had it when we enqueued this 2546 * work. 2547 */ 2548 if (p->flags & PF_EXITING) 2549 return; 2550 2551 if (!mm->numa_next_scan) { 2552 mm->numa_next_scan = now + 2553 msecs_to_jiffies(sysctl_numa_balancing_scan_delay); 2554 } 2555 2556 /* 2557 * Enforce maximal scan/migration frequency.. 2558 */ 2559 migrate = mm->numa_next_scan; 2560 if (time_before(now, migrate)) 2561 return; 2562 2563 if (p->numa_scan_period == 0) { 2564 p->numa_scan_period_max = task_scan_max(p); 2565 p->numa_scan_period = task_scan_start(p); 2566 } 2567 2568 next_scan = now + msecs_to_jiffies(p->numa_scan_period); 2569 if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate) 2570 return; 2571 2572 /* 2573 * Delay this task enough that another task of this mm will likely win 2574 * the next time around. 2575 */ 2576 p->node_stamp += 2 * TICK_NSEC; 2577 2578 start = mm->numa_scan_offset; 2579 pages = sysctl_numa_balancing_scan_size; 2580 pages <<= 20 - PAGE_SHIFT; /* MB in pages */ 2581 virtpages = pages * 8; /* Scan up to this much virtual space */ 2582 if (!pages) 2583 return; 2584 2585 2586 if (!down_read_trylock(&mm->mmap_sem)) 2587 return; 2588 vma = find_vma(mm, start); 2589 if (!vma) { 2590 reset_ptenuma_scan(p); 2591 start = 0; 2592 vma = mm->mmap; 2593 } 2594 for (; vma; vma = vma->vm_next) { 2595 if (!vma_migratable(vma) || !vma_policy_mof(vma) || 2596 is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_MIXEDMAP)) { 2597 continue; 2598 } 2599 2600 /* 2601 * Shared library pages mapped by multiple processes are not 2602 * migrated as it is expected they are cache replicated. Avoid 2603 * hinting faults in read-only file-backed mappings or the vdso 2604 * as migrating the pages will be of marginal benefit. 2605 */ 2606 if (!vma->vm_mm || 2607 (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ))) 2608 continue; 2609 2610 /* 2611 * Skip inaccessible VMAs to avoid any confusion between 2612 * PROT_NONE and NUMA hinting ptes 2613 */ 2614 if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE))) 2615 continue; 2616 2617 do { 2618 start = max(start, vma->vm_start); 2619 end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE); 2620 end = min(end, vma->vm_end); 2621 nr_pte_updates = change_prot_numa(vma, start, end); 2622 2623 /* 2624 * Try to scan sysctl_numa_balancing_size worth of 2625 * hpages that have at least one present PTE that 2626 * is not already pte-numa. If the VMA contains 2627 * areas that are unused or already full of prot_numa 2628 * PTEs, scan up to virtpages, to skip through those 2629 * areas faster. 2630 */ 2631 if (nr_pte_updates) 2632 pages -= (end - start) >> PAGE_SHIFT; 2633 virtpages -= (end - start) >> PAGE_SHIFT; 2634 2635 start = end; 2636 if (pages <= 0 || virtpages <= 0) 2637 goto out; 2638 2639 cond_resched(); 2640 } while (end != vma->vm_end); 2641 } 2642 2643 out: 2644 /* 2645 * It is possible to reach the end of the VMA list but the last few 2646 * VMAs are not guaranteed to the vma_migratable. If they are not, we 2647 * would find the !migratable VMA on the next scan but not reset the 2648 * scanner to the start so check it now. 2649 */ 2650 if (vma) 2651 mm->numa_scan_offset = start; 2652 else 2653 reset_ptenuma_scan(p); 2654 up_read(&mm->mmap_sem); 2655 2656 /* 2657 * Make sure tasks use at least 32x as much time to run other code 2658 * than they used here, to limit NUMA PTE scanning overhead to 3% max. 2659 * Usually update_task_scan_period slows down scanning enough; on an 2660 * overloaded system we need to limit overhead on a per task basis. 2661 */ 2662 if (unlikely(p->se.sum_exec_runtime != runtime)) { 2663 u64 diff = p->se.sum_exec_runtime - runtime; 2664 p->node_stamp += 32 * diff; 2665 } 2666 } 2667 2668 /* 2669 * Drive the periodic memory faults.. 2670 */ 2671 static void task_tick_numa(struct rq *rq, struct task_struct *curr) 2672 { 2673 struct callback_head *work = &curr->numa_work; 2674 u64 period, now; 2675 2676 /* 2677 * We don't care about NUMA placement if we don't have memory. 2678 */ 2679 if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work) 2680 return; 2681 2682 /* 2683 * Using runtime rather than walltime has the dual advantage that 2684 * we (mostly) drive the selection from busy threads and that the 2685 * task needs to have done some actual work before we bother with 2686 * NUMA placement. 2687 */ 2688 now = curr->se.sum_exec_runtime; 2689 period = (u64)curr->numa_scan_period * NSEC_PER_MSEC; 2690 2691 if (now > curr->node_stamp + period) { 2692 if (!curr->node_stamp) 2693 curr->numa_scan_period = task_scan_start(curr); 2694 curr->node_stamp += period; 2695 2696 if (!time_before(jiffies, curr->mm->numa_next_scan)) { 2697 init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */ 2698 task_work_add(curr, work, true); 2699 } 2700 } 2701 } 2702 2703 static void update_scan_period(struct task_struct *p, int new_cpu) 2704 { 2705 int src_nid = cpu_to_node(task_cpu(p)); 2706 int dst_nid = cpu_to_node(new_cpu); 2707 2708 if (!static_branch_likely(&sched_numa_balancing)) 2709 return; 2710 2711 if (!p->mm || !p->numa_faults || (p->flags & PF_EXITING)) 2712 return; 2713 2714 if (src_nid == dst_nid) 2715 return; 2716 2717 /* 2718 * Allow resets if faults have been trapped before one scan 2719 * has completed. This is most likely due to a new task that 2720 * is pulled cross-node due to wakeups or load balancing. 2721 */ 2722 if (p->numa_scan_seq) { 2723 /* 2724 * Avoid scan adjustments if moving to the preferred 2725 * node or if the task was not previously running on 2726 * the preferred node. 2727 */ 2728 if (dst_nid == p->numa_preferred_nid || 2729 (p->numa_preferred_nid != NUMA_NO_NODE && 2730 src_nid != p->numa_preferred_nid)) 2731 return; 2732 } 2733 2734 p->numa_scan_period = task_scan_start(p); 2735 } 2736 2737 #else 2738 static void task_tick_numa(struct rq *rq, struct task_struct *curr) 2739 { 2740 } 2741 2742 static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p) 2743 { 2744 } 2745 2746 static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p) 2747 { 2748 } 2749 2750 static inline void update_scan_period(struct task_struct *p, int new_cpu) 2751 { 2752 } 2753 2754 #endif /* CONFIG_NUMA_BALANCING */ 2755 2756 static void 2757 account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se) 2758 { 2759 update_load_add(&cfs_rq->load, se->load.weight); 2760 #ifdef CONFIG_SMP 2761 if (entity_is_task(se)) { 2762 struct rq *rq = rq_of(cfs_rq); 2763 2764 account_numa_enqueue(rq, task_of(se)); 2765 list_add(&se->group_node, &rq->cfs_tasks); 2766 } 2767 #endif 2768 cfs_rq->nr_running++; 2769 } 2770 2771 static void 2772 account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se) 2773 { 2774 update_load_sub(&cfs_rq->load, se->load.weight); 2775 #ifdef CONFIG_SMP 2776 if (entity_is_task(se)) { 2777 account_numa_dequeue(rq_of(cfs_rq), task_of(se)); 2778 list_del_init(&se->group_node); 2779 } 2780 #endif 2781 cfs_rq->nr_running--; 2782 } 2783 2784 /* 2785 * Signed add and clamp on underflow. 2786 * 2787 * Explicitly do a load-store to ensure the intermediate value never hits 2788 * memory. This allows lockless observations without ever seeing the negative 2789 * values. 2790 */ 2791 #define add_positive(_ptr, _val) do { \ 2792 typeof(_ptr) ptr = (_ptr); \ 2793 typeof(_val) val = (_val); \ 2794 typeof(*ptr) res, var = READ_ONCE(*ptr); \ 2795 \ 2796 res = var + val; \ 2797 \ 2798 if (val < 0 && res > var) \ 2799 res = 0; \ 2800 \ 2801 WRITE_ONCE(*ptr, res); \ 2802 } while (0) 2803 2804 /* 2805 * Unsigned subtract and clamp on underflow. 2806 * 2807 * Explicitly do a load-store to ensure the intermediate value never hits 2808 * memory. This allows lockless observations without ever seeing the negative 2809 * values. 2810 */ 2811 #define sub_positive(_ptr, _val) do { \ 2812 typeof(_ptr) ptr = (_ptr); \ 2813 typeof(*ptr) val = (_val); \ 2814 typeof(*ptr) res, var = READ_ONCE(*ptr); \ 2815 res = var - val; \ 2816 if (res > var) \ 2817 res = 0; \ 2818 WRITE_ONCE(*ptr, res); \ 2819 } while (0) 2820 2821 /* 2822 * Remove and clamp on negative, from a local variable. 2823 * 2824 * A variant of sub_positive(), which does not use explicit load-store 2825 * and is thus optimized for local variable updates. 2826 */ 2827 #define lsub_positive(_ptr, _val) do { \ 2828 typeof(_ptr) ptr = (_ptr); \ 2829 *ptr -= min_t(typeof(*ptr), *ptr, _val); \ 2830 } while (0) 2831 2832 #ifdef CONFIG_SMP 2833 static inline void 2834 enqueue_runnable_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) 2835 { 2836 cfs_rq->runnable_weight += se->runnable_weight; 2837 2838 cfs_rq->avg.runnable_load_avg += se->avg.runnable_load_avg; 2839 cfs_rq->avg.runnable_load_sum += se_runnable(se) * se->avg.runnable_load_sum; 2840 } 2841 2842 static inline void 2843 dequeue_runnable_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) 2844 { 2845 cfs_rq->runnable_weight -= se->runnable_weight; 2846 2847 sub_positive(&cfs_rq->avg.runnable_load_avg, se->avg.runnable_load_avg); 2848 sub_positive(&cfs_rq->avg.runnable_load_sum, 2849 se_runnable(se) * se->avg.runnable_load_sum); 2850 } 2851 2852 static inline void 2853 enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) 2854 { 2855 cfs_rq->avg.load_avg += se->avg.load_avg; 2856 cfs_rq->avg.load_sum += se_weight(se) * se->avg.load_sum; 2857 } 2858 2859 static inline void 2860 dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) 2861 { 2862 sub_positive(&cfs_rq->avg.load_avg, se->avg.load_avg); 2863 sub_positive(&cfs_rq->avg.load_sum, se_weight(se) * se->avg.load_sum); 2864 } 2865 #else 2866 static inline void 2867 enqueue_runnable_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { } 2868 static inline void 2869 dequeue_runnable_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { } 2870 static inline void 2871 enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { } 2872 static inline void 2873 dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { } 2874 #endif 2875 2876 static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, 2877 unsigned long weight, unsigned long runnable) 2878 { 2879 if (se->on_rq) { 2880 /* commit outstanding execution time */ 2881 if (cfs_rq->curr == se) 2882 update_curr(cfs_rq); 2883 account_entity_dequeue(cfs_rq, se); 2884 dequeue_runnable_load_avg(cfs_rq, se); 2885 } 2886 dequeue_load_avg(cfs_rq, se); 2887 2888 se->runnable_weight = runnable; 2889 update_load_set(&se->load, weight); 2890 2891 #ifdef CONFIG_SMP 2892 do { 2893 u32 divider = LOAD_AVG_MAX - 1024 + se->avg.period_contrib; 2894 2895 se->avg.load_avg = div_u64(se_weight(se) * se->avg.load_sum, divider); 2896 se->avg.runnable_load_avg = 2897 div_u64(se_runnable(se) * se->avg.runnable_load_sum, divider); 2898 } while (0); 2899 #endif 2900 2901 enqueue_load_avg(cfs_rq, se); 2902 if (se->on_rq) { 2903 account_entity_enqueue(cfs_rq, se); 2904 enqueue_runnable_load_avg(cfs_rq, se); 2905 } 2906 } 2907 2908 void reweight_task(struct task_struct *p, int prio) 2909 { 2910 struct sched_entity *se = &p->se; 2911 struct cfs_rq *cfs_rq = cfs_rq_of(se); 2912 struct load_weight *load = &se->load; 2913 unsigned long weight = scale_load(sched_prio_to_weight[prio]); 2914 2915 reweight_entity(cfs_rq, se, weight, weight); 2916 load->inv_weight = sched_prio_to_wmult[prio]; 2917 } 2918 2919 #ifdef CONFIG_FAIR_GROUP_SCHED 2920 #ifdef CONFIG_SMP 2921 /* 2922 * All this does is approximate the hierarchical proportion which includes that 2923 * global sum we all love to hate. 2924 * 2925 * That is, the weight of a group entity, is the proportional share of the 2926 * group weight based on the group runqueue weights. That is: 2927 * 2928 * tg->weight * grq->load.weight 2929 * ge->load.weight = ----------------------------- (1) 2930 * \Sum grq->load.weight 2931 * 2932 * Now, because computing that sum is prohibitively expensive to compute (been 2933 * there, done that) we approximate it with this average stuff. The average 2934 * moves slower and therefore the approximation is cheaper and more stable. 2935 * 2936 * So instead of the above, we substitute: 2937 * 2938 * grq->load.weight -> grq->avg.load_avg (2) 2939 * 2940 * which yields the following: 2941 * 2942 * tg->weight * grq->avg.load_avg 2943 * ge->load.weight = ------------------------------ (3) 2944 * tg->load_avg 2945 * 2946 * Where: tg->load_avg ~= \Sum grq->avg.load_avg 2947 * 2948 * That is shares_avg, and it is right (given the approximation (2)). 2949 * 2950 * The problem with it is that because the average is slow -- it was designed 2951 * to be exactly that of course -- this leads to transients in boundary 2952 * conditions. In specific, the case where the group was idle and we start the 2953 * one task. It takes time for our CPU's grq->avg.load_avg to build up, 2954 * yielding bad latency etc.. 2955 * 2956 * Now, in that special case (1) reduces to: 2957 * 2958 * tg->weight * grq->load.weight 2959 * ge->load.weight = ----------------------------- = tg->weight (4) 2960 * grp->load.weight 2961 * 2962 * That is, the sum collapses because all other CPUs are idle; the UP scenario. 2963 * 2964 * So what we do is modify our approximation (3) to approach (4) in the (near) 2965 * UP case, like: 2966 * 2967 * ge->load.weight = 2968 * 2969 * tg->weight * grq->load.weight 2970 * --------------------------------------------------- (5) 2971 * tg->load_avg - grq->avg.load_avg + grq->load.weight 2972 * 2973 * But because grq->load.weight can drop to 0, resulting in a divide by zero, 2974 * we need to use grq->avg.load_avg as its lower bound, which then gives: 2975 * 2976 * 2977 * tg->weight * grq->load.weight 2978 * ge->load.weight = ----------------------------- (6) 2979 * tg_load_avg' 2980 * 2981 * Where: 2982 * 2983 * tg_load_avg' = tg->load_avg - grq->avg.load_avg + 2984 * max(grq->load.weight, grq->avg.load_avg) 2985 * 2986 * And that is shares_weight and is icky. In the (near) UP case it approaches 2987 * (4) while in the normal case it approaches (3). It consistently 2988 * overestimates the ge->load.weight and therefore: 2989 * 2990 * \Sum ge->load.weight >= tg->weight 2991 * 2992 * hence icky! 2993 */ 2994 static long calc_group_shares(struct cfs_rq *cfs_rq) 2995 { 2996 long tg_weight, tg_shares, load, shares; 2997 struct task_group *tg = cfs_rq->tg; 2998 2999 tg_shares = READ_ONCE(tg->shares); 3000 3001 load = max(scale_load_down(cfs_rq->load.weight), cfs_rq->avg.load_avg); 3002 3003 tg_weight = atomic_long_read(&tg->load_avg); 3004 3005 /* Ensure tg_weight >= load */ 3006 tg_weight -= cfs_rq->tg_load_avg_contrib; 3007 tg_weight += load; 3008 3009 shares = (tg_shares * load); 3010 if (tg_weight) 3011 shares /= tg_weight; 3012 3013 /* 3014 * MIN_SHARES has to be unscaled here to support per-CPU partitioning 3015 * of a group with small tg->shares value. It is a floor value which is 3016 * assigned as a minimum load.weight to the sched_entity representing 3017 * the group on a CPU. 3018 * 3019 * E.g. on 64-bit for a group with tg->shares of scale_load(15)=15*1024 3020 * on an 8-core system with 8 tasks each runnable on one CPU shares has 3021 * to be 15*1024*1/8=1920 instead of scale_load(MIN_SHARES)=2*1024. In 3022 * case no task is runnable on a CPU MIN_SHARES=2 should be returned 3023 * instead of 0. 3024 */ 3025 return clamp_t(long, shares, MIN_SHARES, tg_shares); 3026 } 3027 3028 /* 3029 * This calculates the effective runnable weight for a group entity based on 3030 * the group entity weight calculated above. 3031 * 3032 * Because of the above approximation (2), our group entity weight is 3033 * an load_avg based ratio (3). This means that it includes blocked load and 3034 * does not represent the runnable weight. 3035 * 3036 * Approximate the group entity's runnable weight per ratio from the group 3037 * runqueue: 3038 * 3039 * grq->avg.runnable_load_avg 3040 * ge->runnable_weight = ge->load.weight * -------------------------- (7) 3041 * grq->avg.load_avg 3042 * 3043 * However, analogous to above, since the avg numbers are slow, this leads to 3044 * transients in the from-idle case. Instead we use: 3045 * 3046 * ge->runnable_weight = ge->load.weight * 3047 * 3048 * max(grq->avg.runnable_load_avg, grq->runnable_weight) 3049 * ----------------------------------------------------- (8) 3050 * max(grq->avg.load_avg, grq->load.weight) 3051 * 3052 * Where these max() serve both to use the 'instant' values to fix the slow 3053 * from-idle and avoid the /0 on to-idle, similar to (6). 3054 */ 3055 static long calc_group_runnable(struct cfs_rq *cfs_rq, long shares) 3056 { 3057 long runnable, load_avg; 3058 3059 load_avg = max(cfs_rq->avg.load_avg, 3060 scale_load_down(cfs_rq->load.weight)); 3061 3062 runnable = max(cfs_rq->avg.runnable_load_avg, 3063 scale_load_down(cfs_rq->runnable_weight)); 3064 3065 runnable *= shares; 3066 if (load_avg) 3067 runnable /= load_avg; 3068 3069 return clamp_t(long, runnable, MIN_SHARES, shares); 3070 } 3071 #endif /* CONFIG_SMP */ 3072 3073 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq); 3074 3075 /* 3076 * Recomputes the group entity based on the current state of its group 3077 * runqueue. 3078 */ 3079 static void update_cfs_group(struct sched_entity *se) 3080 { 3081 struct cfs_rq *gcfs_rq = group_cfs_rq(se); 3082 long shares, runnable; 3083 3084 if (!gcfs_rq) 3085 return; 3086 3087 if (throttled_hierarchy(gcfs_rq)) 3088 return; 3089 3090 #ifndef CONFIG_SMP 3091 runnable = shares = READ_ONCE(gcfs_rq->tg->shares); 3092 3093 if (likely(se->load.weight == shares)) 3094 return; 3095 #else 3096 shares = calc_group_shares(gcfs_rq); 3097 runnable = calc_group_runnable(gcfs_rq, shares); 3098 #endif 3099 3100 reweight_entity(cfs_rq_of(se), se, shares, runnable); 3101 } 3102 3103 #else /* CONFIG_FAIR_GROUP_SCHED */ 3104 static inline void update_cfs_group(struct sched_entity *se) 3105 { 3106 } 3107 #endif /* CONFIG_FAIR_GROUP_SCHED */ 3108 3109 static inline void cfs_rq_util_change(struct cfs_rq *cfs_rq, int flags) 3110 { 3111 struct rq *rq = rq_of(cfs_rq); 3112 3113 if (&rq->cfs == cfs_rq || (flags & SCHED_CPUFREQ_MIGRATION)) { 3114 /* 3115 * There are a few boundary cases this might miss but it should 3116 * get called often enough that that should (hopefully) not be 3117 * a real problem. 3118 * 3119 * It will not get called when we go idle, because the idle 3120 * thread is a different class (!fair), nor will the utilization 3121 * number include things like RT tasks. 3122 * 3123 * As is, the util number is not freq-invariant (we'd have to 3124 * implement arch_scale_freq_capacity() for that). 3125 * 3126 * See cpu_util(). 3127 */ 3128 cpufreq_update_util(rq, flags); 3129 } 3130 } 3131 3132 #ifdef CONFIG_SMP 3133 #ifdef CONFIG_FAIR_GROUP_SCHED 3134 /** 3135 * update_tg_load_avg - update the tg's load avg 3136 * @cfs_rq: the cfs_rq whose avg changed 3137 * @force: update regardless of how small the difference 3138 * 3139 * This function 'ensures': tg->load_avg := \Sum tg->cfs_rq[]->avg.load. 3140 * However, because tg->load_avg is a global value there are performance 3141 * considerations. 3142 * 3143 * In order to avoid having to look at the other cfs_rq's, we use a 3144 * differential update where we store the last value we propagated. This in 3145 * turn allows skipping updates if the differential is 'small'. 3146 * 3147 * Updating tg's load_avg is necessary before update_cfs_share(). 3148 */ 3149 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force) 3150 { 3151 long delta = cfs_rq->avg.load_avg - cfs_rq->tg_load_avg_contrib; 3152 3153 /* 3154 * No need to update load_avg for root_task_group as it is not used. 3155 */ 3156 if (cfs_rq->tg == &root_task_group) 3157 return; 3158 3159 if (force || abs(delta) > cfs_rq->tg_load_avg_contrib / 64) { 3160 atomic_long_add(delta, &cfs_rq->tg->load_avg); 3161 cfs_rq->tg_load_avg_contrib = cfs_rq->avg.load_avg; 3162 } 3163 } 3164 3165 /* 3166 * Called within set_task_rq() right before setting a task's CPU. The 3167 * caller only guarantees p->pi_lock is held; no other assumptions, 3168 * including the state of rq->lock, should be made. 3169 */ 3170 void set_task_rq_fair(struct sched_entity *se, 3171 struct cfs_rq *prev, struct cfs_rq *next) 3172 { 3173 u64 p_last_update_time; 3174 u64 n_last_update_time; 3175 3176 if (!sched_feat(ATTACH_AGE_LOAD)) 3177 return; 3178 3179 /* 3180 * We are supposed to update the task to "current" time, then its up to 3181 * date and ready to go to new CPU/cfs_rq. But we have difficulty in 3182 * getting what current time is, so simply throw away the out-of-date 3183 * time. This will result in the wakee task is less decayed, but giving 3184 * the wakee more load sounds not bad. 3185 */ 3186 if (!(se->avg.last_update_time && prev)) 3187 return; 3188 3189 #ifndef CONFIG_64BIT 3190 { 3191 u64 p_last_update_time_copy; 3192 u64 n_last_update_time_copy; 3193 3194 do { 3195 p_last_update_time_copy = prev->load_last_update_time_copy; 3196 n_last_update_time_copy = next->load_last_update_time_copy; 3197 3198 smp_rmb(); 3199 3200 p_last_update_time = prev->avg.last_update_time; 3201 n_last_update_time = next->avg.last_update_time; 3202 3203 } while (p_last_update_time != p_last_update_time_copy || 3204 n_last_update_time != n_last_update_time_copy); 3205 } 3206 #else 3207 p_last_update_time = prev->avg.last_update_time; 3208 n_last_update_time = next->avg.last_update_time; 3209 #endif 3210 __update_load_avg_blocked_se(p_last_update_time, se); 3211 se->avg.last_update_time = n_last_update_time; 3212 } 3213 3214 3215 /* 3216 * When on migration a sched_entity joins/leaves the PELT hierarchy, we need to 3217 * propagate its contribution. The key to this propagation is the invariant 3218 * that for each group: 3219 * 3220 * ge->avg == grq->avg (1) 3221 * 3222 * _IFF_ we look at the pure running and runnable sums. Because they 3223 * represent the very same entity, just at different points in the hierarchy. 3224 * 3225 * Per the above update_tg_cfs_util() is trivial and simply copies the running 3226 * sum over (but still wrong, because the group entity and group rq do not have 3227 * their PELT windows aligned). 3228 * 3229 * However, update_tg_cfs_runnable() is more complex. So we have: 3230 * 3231 * ge->avg.load_avg = ge->load.weight * ge->avg.runnable_avg (2) 3232 * 3233 * And since, like util, the runnable part should be directly transferable, 3234 * the following would _appear_ to be the straight forward approach: 3235 * 3236 * grq->avg.load_avg = grq->load.weight * grq->avg.runnable_avg (3) 3237 * 3238 * And per (1) we have: 3239 * 3240 * ge->avg.runnable_avg == grq->avg.runnable_avg 3241 * 3242 * Which gives: 3243 * 3244 * ge->load.weight * grq->avg.load_avg 3245 * ge->avg.load_avg = ----------------------------------- (4) 3246 * grq->load.weight 3247 * 3248 * Except that is wrong! 3249 * 3250 * Because while for entities historical weight is not important and we 3251 * really only care about our future and therefore can consider a pure 3252 * runnable sum, runqueues can NOT do this. 3253 * 3254 * We specifically want runqueues to have a load_avg that includes 3255 * historical weights. Those represent the blocked load, the load we expect 3256 * to (shortly) return to us. This only works by keeping the weights as 3257 * integral part of the sum. We therefore cannot decompose as per (3). 3258 * 3259 * Another reason this doesn't work is that runnable isn't a 0-sum entity. 3260 * Imagine a rq with 2 tasks that each are runnable 2/3 of the time. Then the 3261 * rq itself is runnable anywhere between 2/3 and 1 depending on how the 3262 * runnable section of these tasks overlap (or not). If they were to perfectly 3263 * align the rq as a whole would be runnable 2/3 of the time. If however we 3264 * always have at least 1 runnable task, the rq as a whole is always runnable. 3265 * 3266 * So we'll have to approximate.. :/ 3267 * 3268 * Given the constraint: 3269 * 3270 * ge->avg.running_sum <= ge->avg.runnable_sum <= LOAD_AVG_MAX 3271 * 3272 * We can construct a rule that adds runnable to a rq by assuming minimal 3273 * overlap. 3274 * 3275 * On removal, we'll assume each task is equally runnable; which yields: 3276 * 3277 * grq->avg.runnable_sum = grq->avg.load_sum / grq->load.weight 3278 * 3279 * XXX: only do this for the part of runnable > running ? 3280 * 3281 */ 3282 3283 static inline void 3284 update_tg_cfs_util(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq) 3285 { 3286 long delta = gcfs_rq->avg.util_avg - se->avg.util_avg; 3287 3288 /* Nothing to update */ 3289 if (!delta) 3290 return; 3291 3292 /* 3293 * The relation between sum and avg is: 3294 * 3295 * LOAD_AVG_MAX - 1024 + sa->period_contrib 3296 * 3297 * however, the PELT windows are not aligned between grq and gse. 3298 */ 3299 3300 /* Set new sched_entity's utilization */ 3301 se->avg.util_avg = gcfs_rq->avg.util_avg; 3302 se->avg.util_sum = se->avg.util_avg * LOAD_AVG_MAX; 3303 3304 /* Update parent cfs_rq utilization */ 3305 add_positive(&cfs_rq->avg.util_avg, delta); 3306 cfs_rq->avg.util_sum = cfs_rq->avg.util_avg * LOAD_AVG_MAX; 3307 } 3308 3309 static inline void 3310 update_tg_cfs_runnable(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq) 3311 { 3312 long delta_avg, running_sum, runnable_sum = gcfs_rq->prop_runnable_sum; 3313 unsigned long runnable_load_avg, load_avg; 3314 u64 runnable_load_sum, load_sum = 0; 3315 s64 delta_sum; 3316 3317 if (!runnable_sum) 3318 return; 3319 3320 gcfs_rq->prop_runnable_sum = 0; 3321 3322 if (runnable_sum >= 0) { 3323 /* 3324 * Add runnable; clip at LOAD_AVG_MAX. Reflects that until 3325 * the CPU is saturated running == runnable. 3326 */ 3327 runnable_sum += se->avg.load_sum; 3328 runnable_sum = min(runnable_sum, (long)LOAD_AVG_MAX); 3329 } else { 3330 /* 3331 * Estimate the new unweighted runnable_sum of the gcfs_rq by 3332 * assuming all tasks are equally runnable. 3333 */ 3334 if (scale_load_down(gcfs_rq->load.weight)) { 3335 load_sum = div_s64(gcfs_rq->avg.load_sum, 3336 scale_load_down(gcfs_rq->load.weight)); 3337 } 3338 3339 /* But make sure to not inflate se's runnable */ 3340 runnable_sum = min(se->avg.load_sum, load_sum); 3341 } 3342 3343 /* 3344 * runnable_sum can't be lower than running_sum 3345 * Rescale running sum to be in the same range as runnable sum 3346 * running_sum is in [0 : LOAD_AVG_MAX << SCHED_CAPACITY_SHIFT] 3347 * runnable_sum is in [0 : LOAD_AVG_MAX] 3348 */ 3349 running_sum = se->avg.util_sum >> SCHED_CAPACITY_SHIFT; 3350 runnable_sum = max(runnable_sum, running_sum); 3351 3352 load_sum = (s64)se_weight(se) * runnable_sum; 3353 load_avg = div_s64(load_sum, LOAD_AVG_MAX); 3354 3355 delta_sum = load_sum - (s64)se_weight(se) * se->avg.load_sum; 3356 delta_avg = load_avg - se->avg.load_avg; 3357 3358 se->avg.load_sum = runnable_sum; 3359 se->avg.load_avg = load_avg; 3360 add_positive(&cfs_rq->avg.load_avg, delta_avg); 3361 add_positive(&cfs_rq->avg.load_sum, delta_sum); 3362 3363 runnable_load_sum = (s64)se_runnable(se) * runnable_sum; 3364 runnable_load_avg = div_s64(runnable_load_sum, LOAD_AVG_MAX); 3365 delta_sum = runnable_load_sum - se_weight(se) * se->avg.runnable_load_sum; 3366 delta_avg = runnable_load_avg - se->avg.runnable_load_avg; 3367 3368 se->avg.runnable_load_sum = runnable_sum; 3369 se->avg.runnable_load_avg = runnable_load_avg; 3370 3371 if (se->on_rq) { 3372 add_positive(&cfs_rq->avg.runnable_load_avg, delta_avg); 3373 add_positive(&cfs_rq->avg.runnable_load_sum, delta_sum); 3374 } 3375 } 3376 3377 static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum) 3378 { 3379 cfs_rq->propagate = 1; 3380 cfs_rq->prop_runnable_sum += runnable_sum; 3381 } 3382 3383 /* Update task and its cfs_rq load average */ 3384 static inline int propagate_entity_load_avg(struct sched_entity *se) 3385 { 3386 struct cfs_rq *cfs_rq, *gcfs_rq; 3387 3388 if (entity_is_task(se)) 3389 return 0; 3390 3391 gcfs_rq = group_cfs_rq(se); 3392 if (!gcfs_rq->propagate) 3393 return 0; 3394 3395 gcfs_rq->propagate = 0; 3396 3397 cfs_rq = cfs_rq_of(se); 3398 3399 add_tg_cfs_propagate(cfs_rq, gcfs_rq->prop_runnable_sum); 3400 3401 update_tg_cfs_util(cfs_rq, se, gcfs_rq); 3402 update_tg_cfs_runnable(cfs_rq, se, gcfs_rq); 3403 3404 trace_pelt_cfs_tp(cfs_rq); 3405 trace_pelt_se_tp(se); 3406 3407 return 1; 3408 } 3409 3410 /* 3411 * Check if we need to update the load and the utilization of a blocked 3412 * group_entity: 3413 */ 3414 static inline bool skip_blocked_update(struct sched_entity *se) 3415 { 3416 struct cfs_rq *gcfs_rq = group_cfs_rq(se); 3417 3418 /* 3419 * If sched_entity still have not zero load or utilization, we have to 3420 * decay it: 3421 */ 3422 if (se->avg.load_avg || se->avg.util_avg) 3423 return false; 3424 3425 /* 3426 * If there is a pending propagation, we have to update the load and 3427 * the utilization of the sched_entity: 3428 */ 3429 if (gcfs_rq->propagate) 3430 return false; 3431 3432 /* 3433 * Otherwise, the load and the utilization of the sched_entity is 3434 * already zero and there is no pending propagation, so it will be a 3435 * waste of time to try to decay it: 3436 */ 3437 return true; 3438 } 3439 3440 #else /* CONFIG_FAIR_GROUP_SCHED */ 3441 3442 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force) {} 3443 3444 static inline int propagate_entity_load_avg(struct sched_entity *se) 3445 { 3446 return 0; 3447 } 3448 3449 static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum) {} 3450 3451 #endif /* CONFIG_FAIR_GROUP_SCHED */ 3452 3453 /** 3454 * update_cfs_rq_load_avg - update the cfs_rq's load/util averages 3455 * @now: current time, as per cfs_rq_clock_pelt() 3456 * @cfs_rq: cfs_rq to update 3457 * 3458 * The cfs_rq avg is the direct sum of all its entities (blocked and runnable) 3459 * avg. The immediate corollary is that all (fair) tasks must be attached, see 3460 * post_init_entity_util_avg(). 3461 * 3462 * cfs_rq->avg is used for task_h_load() and update_cfs_share() for example. 3463 * 3464 * Returns true if the load decayed or we removed load. 3465 * 3466 * Since both these conditions indicate a changed cfs_rq->avg.load we should 3467 * call update_tg_load_avg() when this function returns true. 3468 */ 3469 static inline int 3470 update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq) 3471 { 3472 unsigned long removed_load = 0, removed_util = 0, removed_runnable_sum = 0; 3473 struct sched_avg *sa = &cfs_rq->avg; 3474 int decayed = 0; 3475 3476 if (cfs_rq->removed.nr) { 3477 unsigned long r; 3478 u32 divider = LOAD_AVG_MAX - 1024 + sa->period_contrib; 3479 3480 raw_spin_lock(&cfs_rq->removed.lock); 3481 swap(cfs_rq->removed.util_avg, removed_util); 3482 swap(cfs_rq->removed.load_avg, removed_load); 3483 swap(cfs_rq->removed.runnable_sum, removed_runnable_sum); 3484 cfs_rq->removed.nr = 0; 3485 raw_spin_unlock(&cfs_rq->removed.lock); 3486 3487 r = removed_load; 3488 sub_positive(&sa->load_avg, r); 3489 sub_positive(&sa->load_sum, r * divider); 3490 3491 r = removed_util; 3492 sub_positive(&sa->util_avg, r); 3493 sub_positive(&sa->util_sum, r * divider); 3494 3495 add_tg_cfs_propagate(cfs_rq, -(long)removed_runnable_sum); 3496 3497 decayed = 1; 3498 } 3499 3500 decayed |= __update_load_avg_cfs_rq(now, cfs_rq); 3501 3502 #ifndef CONFIG_64BIT 3503 smp_wmb(); 3504 cfs_rq->load_last_update_time_copy = sa->last_update_time; 3505 #endif 3506 3507 if (decayed) 3508 cfs_rq_util_change(cfs_rq, 0); 3509 3510 return decayed; 3511 } 3512 3513 /** 3514 * attach_entity_load_avg - attach this entity to its cfs_rq load avg 3515 * @cfs_rq: cfs_rq to attach to 3516 * @se: sched_entity to attach 3517 * @flags: migration hints 3518 * 3519 * Must call update_cfs_rq_load_avg() before this, since we rely on 3520 * cfs_rq->avg.last_update_time being current. 3521 */ 3522 static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 3523 { 3524 u32 divider = LOAD_AVG_MAX - 1024 + cfs_rq->avg.period_contrib; 3525 3526 /* 3527 * When we attach the @se to the @cfs_rq, we must align the decay 3528 * window because without that, really weird and wonderful things can 3529 * happen. 3530 * 3531 * XXX illustrate 3532 */ 3533 se->avg.last_update_time = cfs_rq->avg.last_update_time; 3534 se->avg.period_contrib = cfs_rq->avg.period_contrib; 3535 3536 /* 3537 * Hell(o) Nasty stuff.. we need to recompute _sum based on the new 3538 * period_contrib. This isn't strictly correct, but since we're 3539 * entirely outside of the PELT hierarchy, nobody cares if we truncate 3540 * _sum a little. 3541 */ 3542 se->avg.util_sum = se->avg.util_avg * divider; 3543 3544 se->avg.load_sum = divider; 3545 if (se_weight(se)) { 3546 se->avg.load_sum = 3547 div_u64(se->avg.load_avg * se->avg.load_sum, se_weight(se)); 3548 } 3549 3550 se->avg.runnable_load_sum = se->avg.load_sum; 3551 3552 enqueue_load_avg(cfs_rq, se); 3553 cfs_rq->avg.util_avg += se->avg.util_avg; 3554 cfs_rq->avg.util_sum += se->avg.util_sum; 3555 3556 add_tg_cfs_propagate(cfs_rq, se->avg.load_sum); 3557 3558 cfs_rq_util_change(cfs_rq, flags); 3559 3560 trace_pelt_cfs_tp(cfs_rq); 3561 } 3562 3563 /** 3564 * detach_entity_load_avg - detach this entity from its cfs_rq load avg 3565 * @cfs_rq: cfs_rq to detach from 3566 * @se: sched_entity to detach 3567 * 3568 * Must call update_cfs_rq_load_avg() before this, since we rely on 3569 * cfs_rq->avg.last_update_time being current. 3570 */ 3571 static void detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) 3572 { 3573 dequeue_load_avg(cfs_rq, se); 3574 sub_positive(&cfs_rq->avg.util_avg, se->avg.util_avg); 3575 sub_positive(&cfs_rq->avg.util_sum, se->avg.util_sum); 3576 3577 add_tg_cfs_propagate(cfs_rq, -se->avg.load_sum); 3578 3579 cfs_rq_util_change(cfs_rq, 0); 3580 3581 trace_pelt_cfs_tp(cfs_rq); 3582 } 3583 3584 /* 3585 * Optional action to be done while updating the load average 3586 */ 3587 #define UPDATE_TG 0x1 3588 #define SKIP_AGE_LOAD 0x2 3589 #define DO_ATTACH 0x4 3590 3591 /* Update task and its cfs_rq load average */ 3592 static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 3593 { 3594 u64 now = cfs_rq_clock_pelt(cfs_rq); 3595 int decayed; 3596 3597 /* 3598 * Track task load average for carrying it to new CPU after migrated, and 3599 * track group sched_entity load average for task_h_load calc in migration 3600 */ 3601 if (se->avg.last_update_time && !(flags & SKIP_AGE_LOAD)) 3602 __update_load_avg_se(now, cfs_rq, se); 3603 3604 decayed = update_cfs_rq_load_avg(now, cfs_rq); 3605 decayed |= propagate_entity_load_avg(se); 3606 3607 if (!se->avg.last_update_time && (flags & DO_ATTACH)) { 3608 3609 /* 3610 * DO_ATTACH means we're here from enqueue_entity(). 3611 * !last_update_time means we've passed through 3612 * migrate_task_rq_fair() indicating we migrated. 3613 * 3614 * IOW we're enqueueing a task on a new CPU. 3615 */ 3616 attach_entity_load_avg(cfs_rq, se, SCHED_CPUFREQ_MIGRATION); 3617 update_tg_load_avg(cfs_rq, 0); 3618 3619 } else if (decayed && (flags & UPDATE_TG)) 3620 update_tg_load_avg(cfs_rq, 0); 3621 } 3622 3623 #ifndef CONFIG_64BIT 3624 static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq) 3625 { 3626 u64 last_update_time_copy; 3627 u64 last_update_time; 3628 3629 do { 3630 last_update_time_copy = cfs_rq->load_last_update_time_copy; 3631 smp_rmb(); 3632 last_update_time = cfs_rq->avg.last_update_time; 3633 } while (last_update_time != last_update_time_copy); 3634 3635 return last_update_time; 3636 } 3637 #else 3638 static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq) 3639 { 3640 return cfs_rq->avg.last_update_time; 3641 } 3642 #endif 3643 3644 /* 3645 * Synchronize entity load avg of dequeued entity without locking 3646 * the previous rq. 3647 */ 3648 static void sync_entity_load_avg(struct sched_entity *se) 3649 { 3650 struct cfs_rq *cfs_rq = cfs_rq_of(se); 3651 u64 last_update_time; 3652 3653 last_update_time = cfs_rq_last_update_time(cfs_rq); 3654 __update_load_avg_blocked_se(last_update_time, se); 3655 } 3656 3657 /* 3658 * Task first catches up with cfs_rq, and then subtract 3659 * itself from the cfs_rq (task must be off the queue now). 3660 */ 3661 static void remove_entity_load_avg(struct sched_entity *se) 3662 { 3663 struct cfs_rq *cfs_rq = cfs_rq_of(se); 3664 unsigned long flags; 3665 3666 /* 3667 * tasks cannot exit without having gone through wake_up_new_task() -> 3668 * post_init_entity_util_avg() which will have added things to the 3669 * cfs_rq, so we can remove unconditionally. 3670 */ 3671 3672 sync_entity_load_avg(se); 3673 3674 raw_spin_lock_irqsave(&cfs_rq->removed.lock, flags); 3675 ++cfs_rq->removed.nr; 3676 cfs_rq->removed.util_avg += se->avg.util_avg; 3677 cfs_rq->removed.load_avg += se->avg.load_avg; 3678 cfs_rq->removed.runnable_sum += se->avg.load_sum; /* == runnable_sum */ 3679 raw_spin_unlock_irqrestore(&cfs_rq->removed.lock, flags); 3680 } 3681 3682 static inline unsigned long cfs_rq_runnable_load_avg(struct cfs_rq *cfs_rq) 3683 { 3684 return cfs_rq->avg.runnable_load_avg; 3685 } 3686 3687 static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq) 3688 { 3689 return cfs_rq->avg.load_avg; 3690 } 3691 3692 static int idle_balance(struct rq *this_rq, struct rq_flags *rf); 3693 3694 static inline unsigned long task_util(struct task_struct *p) 3695 { 3696 return READ_ONCE(p->se.avg.util_avg); 3697 } 3698 3699 static inline unsigned long _task_util_est(struct task_struct *p) 3700 { 3701 struct util_est ue = READ_ONCE(p->se.avg.util_est); 3702 3703 return (max(ue.ewma, ue.enqueued) | UTIL_AVG_UNCHANGED); 3704 } 3705 3706 static inline unsigned long task_util_est(struct task_struct *p) 3707 { 3708 return max(task_util(p), _task_util_est(p)); 3709 } 3710 3711 static inline void util_est_enqueue(struct cfs_rq *cfs_rq, 3712 struct task_struct *p) 3713 { 3714 unsigned int enqueued; 3715 3716 if (!sched_feat(UTIL_EST)) 3717 return; 3718 3719 /* Update root cfs_rq's estimated utilization */ 3720 enqueued = cfs_rq->avg.util_est.enqueued; 3721 enqueued += _task_util_est(p); 3722 WRITE_ONCE(cfs_rq->avg.util_est.enqueued, enqueued); 3723 } 3724 3725 /* 3726 * Check if a (signed) value is within a specified (unsigned) margin, 3727 * based on the observation that: 3728 * 3729 * abs(x) < y := (unsigned)(x + y - 1) < (2 * y - 1) 3730 * 3731 * NOTE: this only works when value + maring < INT_MAX. 3732 */ 3733 static inline bool within_margin(int value, int margin) 3734 { 3735 return ((unsigned int)(value + margin - 1) < (2 * margin - 1)); 3736 } 3737 3738 static void 3739 util_est_dequeue(struct cfs_rq *cfs_rq, struct task_struct *p, bool task_sleep) 3740 { 3741 long last_ewma_diff; 3742 struct util_est ue; 3743 int cpu; 3744 3745 if (!sched_feat(UTIL_EST)) 3746 return; 3747 3748 /* Update root cfs_rq's estimated utilization */ 3749 ue.enqueued = cfs_rq->avg.util_est.enqueued; 3750 ue.enqueued -= min_t(unsigned int, ue.enqueued, _task_util_est(p)); 3751 WRITE_ONCE(cfs_rq->avg.util_est.enqueued, ue.enqueued); 3752 3753 /* 3754 * Skip update of task's estimated utilization when the task has not 3755 * yet completed an activation, e.g. being migrated. 3756 */ 3757 if (!task_sleep) 3758 return; 3759 3760 /* 3761 * If the PELT values haven't changed since enqueue time, 3762 * skip the util_est update. 3763 */ 3764 ue = p->se.avg.util_est; 3765 if (ue.enqueued & UTIL_AVG_UNCHANGED) 3766 return; 3767 3768 /* 3769 * Skip update of task's estimated utilization when its EWMA is 3770 * already ~1% close to its last activation value. 3771 */ 3772 ue.enqueued = (task_util(p) | UTIL_AVG_UNCHANGED); 3773 last_ewma_diff = ue.enqueued - ue.ewma; 3774 if (within_margin(last_ewma_diff, (SCHED_CAPACITY_SCALE / 100))) 3775 return; 3776 3777 /* 3778 * To avoid overestimation of actual task utilization, skip updates if 3779 * we cannot grant there is idle time in this CPU. 3780 */ 3781 cpu = cpu_of(rq_of(cfs_rq)); 3782 if (task_util(p) > capacity_orig_of(cpu)) 3783 return; 3784 3785 /* 3786 * Update Task's estimated utilization 3787 * 3788 * When *p completes an activation we can consolidate another sample 3789 * of the task size. This is done by storing the current PELT value 3790 * as ue.enqueued and by using this value to update the Exponential 3791 * Weighted Moving Average (EWMA): 3792 * 3793 * ewma(t) = w * task_util(p) + (1-w) * ewma(t-1) 3794 * = w * task_util(p) + ewma(t-1) - w * ewma(t-1) 3795 * = w * (task_util(p) - ewma(t-1)) + ewma(t-1) 3796 * = w * ( last_ewma_diff ) + ewma(t-1) 3797 * = w * (last_ewma_diff + ewma(t-1) / w) 3798 * 3799 * Where 'w' is the weight of new samples, which is configured to be 3800 * 0.25, thus making w=1/4 ( >>= UTIL_EST_WEIGHT_SHIFT) 3801 */ 3802 ue.ewma <<= UTIL_EST_WEIGHT_SHIFT; 3803 ue.ewma += last_ewma_diff; 3804 ue.ewma >>= UTIL_EST_WEIGHT_SHIFT; 3805 WRITE_ONCE(p->se.avg.util_est, ue); 3806 } 3807 3808 static inline int task_fits_capacity(struct task_struct *p, long capacity) 3809 { 3810 return capacity * 1024 > task_util_est(p) * capacity_margin; 3811 } 3812 3813 static inline void update_misfit_status(struct task_struct *p, struct rq *rq) 3814 { 3815 if (!static_branch_unlikely(&sched_asym_cpucapacity)) 3816 return; 3817 3818 if (!p) { 3819 rq->misfit_task_load = 0; 3820 return; 3821 } 3822 3823 if (task_fits_capacity(p, capacity_of(cpu_of(rq)))) { 3824 rq->misfit_task_load = 0; 3825 return; 3826 } 3827 3828 rq->misfit_task_load = task_h_load(p); 3829 } 3830 3831 #else /* CONFIG_SMP */ 3832 3833 #define UPDATE_TG 0x0 3834 #define SKIP_AGE_LOAD 0x0 3835 #define DO_ATTACH 0x0 3836 3837 static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int not_used1) 3838 { 3839 cfs_rq_util_change(cfs_rq, 0); 3840 } 3841 3842 static inline void remove_entity_load_avg(struct sched_entity *se) {} 3843 3844 static inline void 3845 attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) {} 3846 static inline void 3847 detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {} 3848 3849 static inline int idle_balance(struct rq *rq, struct rq_flags *rf) 3850 { 3851 return 0; 3852 } 3853 3854 static inline void 3855 util_est_enqueue(struct cfs_rq *cfs_rq, struct task_struct *p) {} 3856 3857 static inline void 3858 util_est_dequeue(struct cfs_rq *cfs_rq, struct task_struct *p, 3859 bool task_sleep) {} 3860 static inline void update_misfit_status(struct task_struct *p, struct rq *rq) {} 3861 3862 #endif /* CONFIG_SMP */ 3863 3864 static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se) 3865 { 3866 #ifdef CONFIG_SCHED_DEBUG 3867 s64 d = se->vruntime - cfs_rq->min_vruntime; 3868 3869 if (d < 0) 3870 d = -d; 3871 3872 if (d > 3*sysctl_sched_latency) 3873 schedstat_inc(cfs_rq->nr_spread_over); 3874 #endif 3875 } 3876 3877 static void 3878 place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial) 3879 { 3880 u64 vruntime = cfs_rq->min_vruntime; 3881 3882 /* 3883 * The 'current' period is already promised to the current tasks, 3884 * however the extra weight of the new task will slow them down a 3885 * little, place the new task so that it fits in the slot that 3886 * stays open at the end. 3887 */ 3888 if (initial && sched_feat(START_DEBIT)) 3889 vruntime += sched_vslice(cfs_rq, se); 3890 3891 /* sleeps up to a single latency don't count. */ 3892 if (!initial) { 3893 unsigned long thresh = sysctl_sched_latency; 3894 3895 /* 3896 * Halve their sleep time's effect, to allow 3897 * for a gentler effect of sleepers: 3898 */ 3899 if (sched_feat(GENTLE_FAIR_SLEEPERS)) 3900 thresh >>= 1; 3901 3902 vruntime -= thresh; 3903 } 3904 3905 /* ensure we never gain time by being placed backwards. */ 3906 se->vruntime = max_vruntime(se->vruntime, vruntime); 3907 } 3908 3909 static void check_enqueue_throttle(struct cfs_rq *cfs_rq); 3910 3911 static inline void check_schedstat_required(void) 3912 { 3913 #ifdef CONFIG_SCHEDSTATS 3914 if (schedstat_enabled()) 3915 return; 3916 3917 /* Force schedstat enabled if a dependent tracepoint is active */ 3918 if (trace_sched_stat_wait_enabled() || 3919 trace_sched_stat_sleep_enabled() || 3920 trace_sched_stat_iowait_enabled() || 3921 trace_sched_stat_blocked_enabled() || 3922 trace_sched_stat_runtime_enabled()) { 3923 printk_deferred_once("Scheduler tracepoints stat_sleep, stat_iowait, " 3924 "stat_blocked and stat_runtime require the " 3925 "kernel parameter schedstats=enable or " 3926 "kernel.sched_schedstats=1\n"); 3927 } 3928 #endif 3929 } 3930 3931 3932 /* 3933 * MIGRATION 3934 * 3935 * dequeue 3936 * update_curr() 3937 * update_min_vruntime() 3938 * vruntime -= min_vruntime 3939 * 3940 * enqueue 3941 * update_curr() 3942 * update_min_vruntime() 3943 * vruntime += min_vruntime 3944 * 3945 * this way the vruntime transition between RQs is done when both 3946 * min_vruntime are up-to-date. 3947 * 3948 * WAKEUP (remote) 3949 * 3950 * ->migrate_task_rq_fair() (p->state == TASK_WAKING) 3951 * vruntime -= min_vruntime 3952 * 3953 * enqueue 3954 * update_curr() 3955 * update_min_vruntime() 3956 * vruntime += min_vruntime 3957 * 3958 * this way we don't have the most up-to-date min_vruntime on the originating 3959 * CPU and an up-to-date min_vruntime on the destination CPU. 3960 */ 3961 3962 static void 3963 enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 3964 { 3965 bool renorm = !(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_MIGRATED); 3966 bool curr = cfs_rq->curr == se; 3967 3968 /* 3969 * If we're the current task, we must renormalise before calling 3970 * update_curr(). 3971 */ 3972 if (renorm && curr) 3973 se->vruntime += cfs_rq->min_vruntime; 3974 3975 update_curr(cfs_rq); 3976 3977 /* 3978 * Otherwise, renormalise after, such that we're placed at the current 3979 * moment in time, instead of some random moment in the past. Being 3980 * placed in the past could significantly boost this task to the 3981 * fairness detriment of existing tasks. 3982 */ 3983 if (renorm && !curr) 3984 se->vruntime += cfs_rq->min_vruntime; 3985 3986 /* 3987 * When enqueuing a sched_entity, we must: 3988 * - Update loads to have both entity and cfs_rq synced with now. 3989 * - Add its load to cfs_rq->runnable_avg 3990 * - For group_entity, update its weight to reflect the new share of 3991 * its group cfs_rq 3992 * - Add its new weight to cfs_rq->load.weight 3993 */ 3994 update_load_avg(cfs_rq, se, UPDATE_TG | DO_ATTACH); 3995 update_cfs_group(se); 3996 enqueue_runnable_load_avg(cfs_rq, se); 3997 account_entity_enqueue(cfs_rq, se); 3998 3999 if (flags & ENQUEUE_WAKEUP) 4000 place_entity(cfs_rq, se, 0); 4001 4002 check_schedstat_required(); 4003 update_stats_enqueue(cfs_rq, se, flags); 4004 check_spread(cfs_rq, se); 4005 if (!curr) 4006 __enqueue_entity(cfs_rq, se); 4007 se->on_rq = 1; 4008 4009 if (cfs_rq->nr_running == 1) { 4010 list_add_leaf_cfs_rq(cfs_rq); 4011 check_enqueue_throttle(cfs_rq); 4012 } 4013 } 4014 4015 static void __clear_buddies_last(struct sched_entity *se) 4016 { 4017 for_each_sched_entity(se) { 4018 struct cfs_rq *cfs_rq = cfs_rq_of(se); 4019 if (cfs_rq->last != se) 4020 break; 4021 4022 cfs_rq->last = NULL; 4023 } 4024 } 4025 4026 static void __clear_buddies_next(struct sched_entity *se) 4027 { 4028 for_each_sched_entity(se) { 4029 struct cfs_rq *cfs_rq = cfs_rq_of(se); 4030 if (cfs_rq->next != se) 4031 break; 4032 4033 cfs_rq->next = NULL; 4034 } 4035 } 4036 4037 static void __clear_buddies_skip(struct sched_entity *se) 4038 { 4039 for_each_sched_entity(se) { 4040 struct cfs_rq *cfs_rq = cfs_rq_of(se); 4041 if (cfs_rq->skip != se) 4042 break; 4043 4044 cfs_rq->skip = NULL; 4045 } 4046 } 4047 4048 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se) 4049 { 4050 if (cfs_rq->last == se) 4051 __clear_buddies_last(se); 4052 4053 if (cfs_rq->next == se) 4054 __clear_buddies_next(se); 4055 4056 if (cfs_rq->skip == se) 4057 __clear_buddies_skip(se); 4058 } 4059 4060 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq); 4061 4062 static void 4063 dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 4064 { 4065 /* 4066 * Update run-time statistics of the 'current'. 4067 */ 4068 update_curr(cfs_rq); 4069 4070 /* 4071 * When dequeuing a sched_entity, we must: 4072 * - Update loads to have both entity and cfs_rq synced with now. 4073 * - Subtract its load from the cfs_rq->runnable_avg. 4074 * - Subtract its previous weight from cfs_rq->load.weight. 4075 * - For group entity, update its weight to reflect the new share 4076 * of its group cfs_rq. 4077 */ 4078 update_load_avg(cfs_rq, se, UPDATE_TG); 4079 dequeue_runnable_load_avg(cfs_rq, se); 4080 4081 update_stats_dequeue(cfs_rq, se, flags); 4082 4083 clear_buddies(cfs_rq, se); 4084 4085 if (se != cfs_rq->curr) 4086 __dequeue_entity(cfs_rq, se); 4087 se->on_rq = 0; 4088 account_entity_dequeue(cfs_rq, se); 4089 4090 /* 4091 * Normalize after update_curr(); which will also have moved 4092 * min_vruntime if @se is the one holding it back. But before doing 4093 * update_min_vruntime() again, which will discount @se's position and 4094 * can move min_vruntime forward still more. 4095 */ 4096 if (!(flags & DEQUEUE_SLEEP)) 4097 se->vruntime -= cfs_rq->min_vruntime; 4098 4099 /* return excess runtime on last dequeue */ 4100 return_cfs_rq_runtime(cfs_rq); 4101 4102 update_cfs_group(se); 4103 4104 /* 4105 * Now advance min_vruntime if @se was the entity holding it back, 4106 * except when: DEQUEUE_SAVE && !DEQUEUE_MOVE, in this case we'll be 4107 * put back on, and if we advance min_vruntime, we'll be placed back 4108 * further than we started -- ie. we'll be penalized. 4109 */ 4110 if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) != DEQUEUE_SAVE) 4111 update_min_vruntime(cfs_rq); 4112 } 4113 4114 /* 4115 * Preempt the current task with a newly woken task if needed: 4116 */ 4117 static void 4118 check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr) 4119 { 4120 unsigned long ideal_runtime, delta_exec; 4121 struct sched_entity *se; 4122 s64 delta; 4123 4124 ideal_runtime = sched_slice(cfs_rq, curr); 4125 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime; 4126 if (delta_exec > ideal_runtime) { 4127 resched_curr(rq_of(cfs_rq)); 4128 /* 4129 * The current task ran long enough, ensure it doesn't get 4130 * re-elected due to buddy favours. 4131 */ 4132 clear_buddies(cfs_rq, curr); 4133 return; 4134 } 4135 4136 /* 4137 * Ensure that a task that missed wakeup preemption by a 4138 * narrow margin doesn't have to wait for a full slice. 4139 * This also mitigates buddy induced latencies under load. 4140 */ 4141 if (delta_exec < sysctl_sched_min_granularity) 4142 return; 4143 4144 se = __pick_first_entity(cfs_rq); 4145 delta = curr->vruntime - se->vruntime; 4146 4147 if (delta < 0) 4148 return; 4149 4150 if (delta > ideal_runtime) 4151 resched_curr(rq_of(cfs_rq)); 4152 } 4153 4154 static void 4155 set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) 4156 { 4157 /* 'current' is not kept within the tree. */ 4158 if (se->on_rq) { 4159 /* 4160 * Any task has to be enqueued before it get to execute on 4161 * a CPU. So account for the time it spent waiting on the 4162 * runqueue. 4163 */ 4164 update_stats_wait_end(cfs_rq, se); 4165 __dequeue_entity(cfs_rq, se); 4166 update_load_avg(cfs_rq, se, UPDATE_TG); 4167 } 4168 4169 update_stats_curr_start(cfs_rq, se); 4170 cfs_rq->curr = se; 4171 4172 /* 4173 * Track our maximum slice length, if the CPU's load is at 4174 * least twice that of our own weight (i.e. dont track it 4175 * when there are only lesser-weight tasks around): 4176 */ 4177 if (schedstat_enabled() && 4178 rq_of(cfs_rq)->cfs.load.weight >= 2*se->load.weight) { 4179 schedstat_set(se->statistics.slice_max, 4180 max((u64)schedstat_val(se->statistics.slice_max), 4181 se->sum_exec_runtime - se->prev_sum_exec_runtime)); 4182 } 4183 4184 se->prev_sum_exec_runtime = se->sum_exec_runtime; 4185 } 4186 4187 static int 4188 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se); 4189 4190 /* 4191 * Pick the next process, keeping these things in mind, in this order: 4192 * 1) keep things fair between processes/task groups 4193 * 2) pick the "next" process, since someone really wants that to run 4194 * 3) pick the "last" process, for cache locality 4195 * 4) do not run the "skip" process, if something else is available 4196 */ 4197 static struct sched_entity * 4198 pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr) 4199 { 4200 struct sched_entity *left = __pick_first_entity(cfs_rq); 4201 struct sched_entity *se; 4202 4203 /* 4204 * If curr is set we have to see if its left of the leftmost entity 4205 * still in the tree, provided there was anything in the tree at all. 4206 */ 4207 if (!left || (curr && entity_before(curr, left))) 4208 left = curr; 4209 4210 se = left; /* ideally we run the leftmost entity */ 4211 4212 /* 4213 * Avoid running the skip buddy, if running something else can 4214 * be done without getting too unfair. 4215 */ 4216 if (cfs_rq->skip == se) { 4217 struct sched_entity *second; 4218 4219 if (se == curr) { 4220 second = __pick_first_entity(cfs_rq); 4221 } else { 4222 second = __pick_next_entity(se); 4223 if (!second || (curr && entity_before(curr, second))) 4224 second = curr; 4225 } 4226 4227 if (second && wakeup_preempt_entity(second, left) < 1) 4228 se = second; 4229 } 4230 4231 /* 4232 * Prefer last buddy, try to return the CPU to a preempted task. 4233 */ 4234 if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1) 4235 se = cfs_rq->last; 4236 4237 /* 4238 * Someone really wants this to run. If it's not unfair, run it. 4239 */ 4240 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1) 4241 se = cfs_rq->next; 4242 4243 clear_buddies(cfs_rq, se); 4244 4245 return se; 4246 } 4247 4248 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq); 4249 4250 static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev) 4251 { 4252 /* 4253 * If still on the runqueue then deactivate_task() 4254 * was not called and update_curr() has to be done: 4255 */ 4256 if (prev->on_rq) 4257 update_curr(cfs_rq); 4258 4259 /* throttle cfs_rqs exceeding runtime */ 4260 check_cfs_rq_runtime(cfs_rq); 4261 4262 check_spread(cfs_rq, prev); 4263 4264 if (prev->on_rq) { 4265 update_stats_wait_start(cfs_rq, prev); 4266 /* Put 'current' back into the tree. */ 4267 __enqueue_entity(cfs_rq, prev); 4268 /* in !on_rq case, update occurred at dequeue */ 4269 update_load_avg(cfs_rq, prev, 0); 4270 } 4271 cfs_rq->curr = NULL; 4272 } 4273 4274 static void 4275 entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued) 4276 { 4277 /* 4278 * Update run-time statistics of the 'current'. 4279 */ 4280 update_curr(cfs_rq); 4281 4282 /* 4283 * Ensure that runnable average is periodically updated. 4284 */ 4285 update_load_avg(cfs_rq, curr, UPDATE_TG); 4286 update_cfs_group(curr); 4287 4288 #ifdef CONFIG_SCHED_HRTICK 4289 /* 4290 * queued ticks are scheduled to match the slice, so don't bother 4291 * validating it and just reschedule. 4292 */ 4293 if (queued) { 4294 resched_curr(rq_of(cfs_rq)); 4295 return; 4296 } 4297 /* 4298 * don't let the period tick interfere with the hrtick preemption 4299 */ 4300 if (!sched_feat(DOUBLE_TICK) && 4301 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer)) 4302 return; 4303 #endif 4304 4305 if (cfs_rq->nr_running > 1) 4306 check_preempt_tick(cfs_rq, curr); 4307 } 4308 4309 4310 /************************************************** 4311 * CFS bandwidth control machinery 4312 */ 4313 4314 #ifdef CONFIG_CFS_BANDWIDTH 4315 4316 #ifdef CONFIG_JUMP_LABEL 4317 static struct static_key __cfs_bandwidth_used; 4318 4319 static inline bool cfs_bandwidth_used(void) 4320 { 4321 return static_key_false(&__cfs_bandwidth_used); 4322 } 4323 4324 void cfs_bandwidth_usage_inc(void) 4325 { 4326 static_key_slow_inc_cpuslocked(&__cfs_bandwidth_used); 4327 } 4328 4329 void cfs_bandwidth_usage_dec(void) 4330 { 4331 static_key_slow_dec_cpuslocked(&__cfs_bandwidth_used); 4332 } 4333 #else /* CONFIG_JUMP_LABEL */ 4334 static bool cfs_bandwidth_used(void) 4335 { 4336 return true; 4337 } 4338 4339 void cfs_bandwidth_usage_inc(void) {} 4340 void cfs_bandwidth_usage_dec(void) {} 4341 #endif /* CONFIG_JUMP_LABEL */ 4342 4343 /* 4344 * default period for cfs group bandwidth. 4345 * default: 0.1s, units: nanoseconds 4346 */ 4347 static inline u64 default_cfs_period(void) 4348 { 4349 return 100000000ULL; 4350 } 4351 4352 static inline u64 sched_cfs_bandwidth_slice(void) 4353 { 4354 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC; 4355 } 4356 4357 /* 4358 * Replenish runtime according to assigned quota and update expiration time. 4359 * We use sched_clock_cpu directly instead of rq->clock to avoid adding 4360 * additional synchronization around rq->lock. 4361 * 4362 * requires cfs_b->lock 4363 */ 4364 void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b) 4365 { 4366 u64 now; 4367 4368 if (cfs_b->quota == RUNTIME_INF) 4369 return; 4370 4371 now = sched_clock_cpu(smp_processor_id()); 4372 cfs_b->runtime = cfs_b->quota; 4373 cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period); 4374 cfs_b->expires_seq++; 4375 } 4376 4377 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg) 4378 { 4379 return &tg->cfs_bandwidth; 4380 } 4381 4382 /* rq->task_clock normalized against any time this cfs_rq has spent throttled */ 4383 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq) 4384 { 4385 if (unlikely(cfs_rq->throttle_count)) 4386 return cfs_rq->throttled_clock_task - cfs_rq->throttled_clock_task_time; 4387 4388 return rq_clock_task(rq_of(cfs_rq)) - cfs_rq->throttled_clock_task_time; 4389 } 4390 4391 /* returns 0 on failure to allocate runtime */ 4392 static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq) 4393 { 4394 struct task_group *tg = cfs_rq->tg; 4395 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg); 4396 u64 amount = 0, min_amount, expires; 4397 int expires_seq; 4398 4399 /* note: this is a positive sum as runtime_remaining <= 0 */ 4400 min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining; 4401 4402 raw_spin_lock(&cfs_b->lock); 4403 if (cfs_b->quota == RUNTIME_INF) 4404 amount = min_amount; 4405 else { 4406 start_cfs_bandwidth(cfs_b); 4407 4408 if (cfs_b->runtime > 0) { 4409 amount = min(cfs_b->runtime, min_amount); 4410 cfs_b->runtime -= amount; 4411 cfs_b->idle = 0; 4412 } 4413 } 4414 expires_seq = cfs_b->expires_seq; 4415 expires = cfs_b->runtime_expires; 4416 raw_spin_unlock(&cfs_b->lock); 4417 4418 cfs_rq->runtime_remaining += amount; 4419 /* 4420 * we may have advanced our local expiration to account for allowed 4421 * spread between our sched_clock and the one on which runtime was 4422 * issued. 4423 */ 4424 if (cfs_rq->expires_seq != expires_seq) { 4425 cfs_rq->expires_seq = expires_seq; 4426 cfs_rq->runtime_expires = expires; 4427 } 4428 4429 return cfs_rq->runtime_remaining > 0; 4430 } 4431 4432 /* 4433 * Note: This depends on the synchronization provided by sched_clock and the 4434 * fact that rq->clock snapshots this value. 4435 */ 4436 static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq) 4437 { 4438 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 4439 4440 /* if the deadline is ahead of our clock, nothing to do */ 4441 if (likely((s64)(rq_clock(rq_of(cfs_rq)) - cfs_rq->runtime_expires) < 0)) 4442 return; 4443 4444 if (cfs_rq->runtime_remaining < 0) 4445 return; 4446 4447 /* 4448 * If the local deadline has passed we have to consider the 4449 * possibility that our sched_clock is 'fast' and the global deadline 4450 * has not truly expired. 4451 * 4452 * Fortunately we can check determine whether this the case by checking 4453 * whether the global deadline(cfs_b->expires_seq) has advanced. 4454 */ 4455 if (cfs_rq->expires_seq == cfs_b->expires_seq) { 4456 /* extend local deadline, drift is bounded above by 2 ticks */ 4457 cfs_rq->runtime_expires += TICK_NSEC; 4458 } else { 4459 /* global deadline is ahead, expiration has passed */ 4460 cfs_rq->runtime_remaining = 0; 4461 } 4462 } 4463 4464 static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) 4465 { 4466 /* dock delta_exec before expiring quota (as it could span periods) */ 4467 cfs_rq->runtime_remaining -= delta_exec; 4468 expire_cfs_rq_runtime(cfs_rq); 4469 4470 if (likely(cfs_rq->runtime_remaining > 0)) 4471 return; 4472 4473 /* 4474 * if we're unable to extend our runtime we resched so that the active 4475 * hierarchy can be throttled 4476 */ 4477 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr)) 4478 resched_curr(rq_of(cfs_rq)); 4479 } 4480 4481 static __always_inline 4482 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) 4483 { 4484 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled) 4485 return; 4486 4487 __account_cfs_rq_runtime(cfs_rq, delta_exec); 4488 } 4489 4490 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq) 4491 { 4492 return cfs_bandwidth_used() && cfs_rq->throttled; 4493 } 4494 4495 /* check whether cfs_rq, or any parent, is throttled */ 4496 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq) 4497 { 4498 return cfs_bandwidth_used() && cfs_rq->throttle_count; 4499 } 4500 4501 /* 4502 * Ensure that neither of the group entities corresponding to src_cpu or 4503 * dest_cpu are members of a throttled hierarchy when performing group 4504 * load-balance operations. 4505 */ 4506 static inline int throttled_lb_pair(struct task_group *tg, 4507 int src_cpu, int dest_cpu) 4508 { 4509 struct cfs_rq *src_cfs_rq, *dest_cfs_rq; 4510 4511 src_cfs_rq = tg->cfs_rq[src_cpu]; 4512 dest_cfs_rq = tg->cfs_rq[dest_cpu]; 4513 4514 return throttled_hierarchy(src_cfs_rq) || 4515 throttled_hierarchy(dest_cfs_rq); 4516 } 4517 4518 static int tg_unthrottle_up(struct task_group *tg, void *data) 4519 { 4520 struct rq *rq = data; 4521 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; 4522 4523 cfs_rq->throttle_count--; 4524 if (!cfs_rq->throttle_count) { 4525 /* adjust cfs_rq_clock_task() */ 4526 cfs_rq->throttled_clock_task_time += rq_clock_task(rq) - 4527 cfs_rq->throttled_clock_task; 4528 4529 /* Add cfs_rq with already running entity in the list */ 4530 if (cfs_rq->nr_running >= 1) 4531 list_add_leaf_cfs_rq(cfs_rq); 4532 } 4533 4534 return 0; 4535 } 4536 4537 static int tg_throttle_down(struct task_group *tg, void *data) 4538 { 4539 struct rq *rq = data; 4540 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; 4541 4542 /* group is entering throttled state, stop time */ 4543 if (!cfs_rq->throttle_count) { 4544 cfs_rq->throttled_clock_task = rq_clock_task(rq); 4545 list_del_leaf_cfs_rq(cfs_rq); 4546 } 4547 cfs_rq->throttle_count++; 4548 4549 return 0; 4550 } 4551 4552 static void throttle_cfs_rq(struct cfs_rq *cfs_rq) 4553 { 4554 struct rq *rq = rq_of(cfs_rq); 4555 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 4556 struct sched_entity *se; 4557 long task_delta, dequeue = 1; 4558 bool empty; 4559 4560 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))]; 4561 4562 /* freeze hierarchy runnable averages while throttled */ 4563 rcu_read_lock(); 4564 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq); 4565 rcu_read_unlock(); 4566 4567 task_delta = cfs_rq->h_nr_running; 4568 for_each_sched_entity(se) { 4569 struct cfs_rq *qcfs_rq = cfs_rq_of(se); 4570 /* throttled entity or throttle-on-deactivate */ 4571 if (!se->on_rq) 4572 break; 4573 4574 if (dequeue) 4575 dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP); 4576 qcfs_rq->h_nr_running -= task_delta; 4577 4578 if (qcfs_rq->load.weight) 4579 dequeue = 0; 4580 } 4581 4582 if (!se) 4583 sub_nr_running(rq, task_delta); 4584 4585 cfs_rq->throttled = 1; 4586 cfs_rq->throttled_clock = rq_clock(rq); 4587 raw_spin_lock(&cfs_b->lock); 4588 empty = list_empty(&cfs_b->throttled_cfs_rq); 4589 4590 /* 4591 * Add to the _head_ of the list, so that an already-started 4592 * distribute_cfs_runtime will not see us. If disribute_cfs_runtime is 4593 * not running add to the tail so that later runqueues don't get starved. 4594 */ 4595 if (cfs_b->distribute_running) 4596 list_add_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq); 4597 else 4598 list_add_tail_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq); 4599 4600 /* 4601 * If we're the first throttled task, make sure the bandwidth 4602 * timer is running. 4603 */ 4604 if (empty) 4605 start_cfs_bandwidth(cfs_b); 4606 4607 raw_spin_unlock(&cfs_b->lock); 4608 } 4609 4610 void unthrottle_cfs_rq(struct cfs_rq *cfs_rq) 4611 { 4612 struct rq *rq = rq_of(cfs_rq); 4613 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 4614 struct sched_entity *se; 4615 int enqueue = 1; 4616 long task_delta; 4617 4618 se = cfs_rq->tg->se[cpu_of(rq)]; 4619 4620 cfs_rq->throttled = 0; 4621 4622 update_rq_clock(rq); 4623 4624 raw_spin_lock(&cfs_b->lock); 4625 cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock; 4626 list_del_rcu(&cfs_rq->throttled_list); 4627 raw_spin_unlock(&cfs_b->lock); 4628 4629 /* update hierarchical throttle state */ 4630 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq); 4631 4632 if (!cfs_rq->load.weight) 4633 return; 4634 4635 task_delta = cfs_rq->h_nr_running; 4636 for_each_sched_entity(se) { 4637 if (se->on_rq) 4638 enqueue = 0; 4639 4640 cfs_rq = cfs_rq_of(se); 4641 if (enqueue) 4642 enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP); 4643 cfs_rq->h_nr_running += task_delta; 4644 4645 if (cfs_rq_throttled(cfs_rq)) 4646 break; 4647 } 4648 4649 assert_list_leaf_cfs_rq(rq); 4650 4651 if (!se) 4652 add_nr_running(rq, task_delta); 4653 4654 /* Determine whether we need to wake up potentially idle CPU: */ 4655 if (rq->curr == rq->idle && rq->cfs.nr_running) 4656 resched_curr(rq); 4657 } 4658 4659 static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b, 4660 u64 remaining, u64 expires) 4661 { 4662 struct cfs_rq *cfs_rq; 4663 u64 runtime; 4664 u64 starting_runtime = remaining; 4665 4666 rcu_read_lock(); 4667 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq, 4668 throttled_list) { 4669 struct rq *rq = rq_of(cfs_rq); 4670 struct rq_flags rf; 4671 4672 rq_lock_irqsave(rq, &rf); 4673 if (!cfs_rq_throttled(cfs_rq)) 4674 goto next; 4675 4676 runtime = -cfs_rq->runtime_remaining + 1; 4677 if (runtime > remaining) 4678 runtime = remaining; 4679 remaining -= runtime; 4680 4681 cfs_rq->runtime_remaining += runtime; 4682 cfs_rq->runtime_expires = expires; 4683 4684 /* we check whether we're throttled above */ 4685 if (cfs_rq->runtime_remaining > 0) 4686 unthrottle_cfs_rq(cfs_rq); 4687 4688 next: 4689 rq_unlock_irqrestore(rq, &rf); 4690 4691 if (!remaining) 4692 break; 4693 } 4694 rcu_read_unlock(); 4695 4696 return starting_runtime - remaining; 4697 } 4698 4699 /* 4700 * Responsible for refilling a task_group's bandwidth and unthrottling its 4701 * cfs_rqs as appropriate. If there has been no activity within the last 4702 * period the timer is deactivated until scheduling resumes; cfs_b->idle is 4703 * used to track this state. 4704 */ 4705 static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun, unsigned long flags) 4706 { 4707 u64 runtime, runtime_expires; 4708 int throttled; 4709 4710 /* no need to continue the timer with no bandwidth constraint */ 4711 if (cfs_b->quota == RUNTIME_INF) 4712 goto out_deactivate; 4713 4714 throttled = !list_empty(&cfs_b->throttled_cfs_rq); 4715 cfs_b->nr_periods += overrun; 4716 4717 /* 4718 * idle depends on !throttled (for the case of a large deficit), and if 4719 * we're going inactive then everything else can be deferred 4720 */ 4721 if (cfs_b->idle && !throttled) 4722 goto out_deactivate; 4723 4724 __refill_cfs_bandwidth_runtime(cfs_b); 4725 4726 if (!throttled) { 4727 /* mark as potentially idle for the upcoming period */ 4728 cfs_b->idle = 1; 4729 return 0; 4730 } 4731 4732 /* account preceding periods in which throttling occurred */ 4733 cfs_b->nr_throttled += overrun; 4734 4735 runtime_expires = cfs_b->runtime_expires; 4736 4737 /* 4738 * This check is repeated as we are holding onto the new bandwidth while 4739 * we unthrottle. This can potentially race with an unthrottled group 4740 * trying to acquire new bandwidth from the global pool. This can result 4741 * in us over-using our runtime if it is all used during this loop, but 4742 * only by limited amounts in that extreme case. 4743 */ 4744 while (throttled && cfs_b->runtime > 0 && !cfs_b->distribute_running) { 4745 runtime = cfs_b->runtime; 4746 cfs_b->distribute_running = 1; 4747 raw_spin_unlock_irqrestore(&cfs_b->lock, flags); 4748 /* we can't nest cfs_b->lock while distributing bandwidth */ 4749 runtime = distribute_cfs_runtime(cfs_b, runtime, 4750 runtime_expires); 4751 raw_spin_lock_irqsave(&cfs_b->lock, flags); 4752 4753 cfs_b->distribute_running = 0; 4754 throttled = !list_empty(&cfs_b->throttled_cfs_rq); 4755 4756 lsub_positive(&cfs_b->runtime, runtime); 4757 } 4758 4759 /* 4760 * While we are ensured activity in the period following an 4761 * unthrottle, this also covers the case in which the new bandwidth is 4762 * insufficient to cover the existing bandwidth deficit. (Forcing the 4763 * timer to remain active while there are any throttled entities.) 4764 */ 4765 cfs_b->idle = 0; 4766 4767 return 0; 4768 4769 out_deactivate: 4770 return 1; 4771 } 4772 4773 /* a cfs_rq won't donate quota below this amount */ 4774 static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC; 4775 /* minimum remaining period time to redistribute slack quota */ 4776 static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC; 4777 /* how long we wait to gather additional slack before distributing */ 4778 static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC; 4779 4780 /* 4781 * Are we near the end of the current quota period? 4782 * 4783 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the 4784 * hrtimer base being cleared by hrtimer_start. In the case of 4785 * migrate_hrtimers, base is never cleared, so we are fine. 4786 */ 4787 static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire) 4788 { 4789 struct hrtimer *refresh_timer = &cfs_b->period_timer; 4790 u64 remaining; 4791 4792 /* if the call-back is running a quota refresh is already occurring */ 4793 if (hrtimer_callback_running(refresh_timer)) 4794 return 1; 4795 4796 /* is a quota refresh about to occur? */ 4797 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer)); 4798 if (remaining < min_expire) 4799 return 1; 4800 4801 return 0; 4802 } 4803 4804 static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b) 4805 { 4806 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration; 4807 4808 /* if there's a quota refresh soon don't bother with slack */ 4809 if (runtime_refresh_within(cfs_b, min_left)) 4810 return; 4811 4812 /* don't push forwards an existing deferred unthrottle */ 4813 if (cfs_b->slack_started) 4814 return; 4815 cfs_b->slack_started = true; 4816 4817 hrtimer_start(&cfs_b->slack_timer, 4818 ns_to_ktime(cfs_bandwidth_slack_period), 4819 HRTIMER_MODE_REL); 4820 } 4821 4822 /* we know any runtime found here is valid as update_curr() precedes return */ 4823 static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq) 4824 { 4825 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 4826 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime; 4827 4828 if (slack_runtime <= 0) 4829 return; 4830 4831 raw_spin_lock(&cfs_b->lock); 4832 if (cfs_b->quota != RUNTIME_INF && 4833 cfs_rq->runtime_expires == cfs_b->runtime_expires) { 4834 cfs_b->runtime += slack_runtime; 4835 4836 /* we are under rq->lock, defer unthrottling using a timer */ 4837 if (cfs_b->runtime > sched_cfs_bandwidth_slice() && 4838 !list_empty(&cfs_b->throttled_cfs_rq)) 4839 start_cfs_slack_bandwidth(cfs_b); 4840 } 4841 raw_spin_unlock(&cfs_b->lock); 4842 4843 /* even if it's not valid for return we don't want to try again */ 4844 cfs_rq->runtime_remaining -= slack_runtime; 4845 } 4846 4847 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) 4848 { 4849 if (!cfs_bandwidth_used()) 4850 return; 4851 4852 if (!cfs_rq->runtime_enabled || cfs_rq->nr_running) 4853 return; 4854 4855 __return_cfs_rq_runtime(cfs_rq); 4856 } 4857 4858 /* 4859 * This is done with a timer (instead of inline with bandwidth return) since 4860 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs. 4861 */ 4862 static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b) 4863 { 4864 u64 runtime = 0, slice = sched_cfs_bandwidth_slice(); 4865 unsigned long flags; 4866 u64 expires; 4867 4868 /* confirm we're still not at a refresh boundary */ 4869 raw_spin_lock_irqsave(&cfs_b->lock, flags); 4870 cfs_b->slack_started = false; 4871 if (cfs_b->distribute_running) { 4872 raw_spin_unlock_irqrestore(&cfs_b->lock, flags); 4873 return; 4874 } 4875 4876 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) { 4877 raw_spin_unlock_irqrestore(&cfs_b->lock, flags); 4878 return; 4879 } 4880 4881 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice) 4882 runtime = cfs_b->runtime; 4883 4884 expires = cfs_b->runtime_expires; 4885 if (runtime) 4886 cfs_b->distribute_running = 1; 4887 4888 raw_spin_unlock_irqrestore(&cfs_b->lock, flags); 4889 4890 if (!runtime) 4891 return; 4892 4893 runtime = distribute_cfs_runtime(cfs_b, runtime, expires); 4894 4895 raw_spin_lock_irqsave(&cfs_b->lock, flags); 4896 if (expires == cfs_b->runtime_expires) 4897 lsub_positive(&cfs_b->runtime, runtime); 4898 cfs_b->distribute_running = 0; 4899 raw_spin_unlock_irqrestore(&cfs_b->lock, flags); 4900 } 4901 4902 /* 4903 * When a group wakes up we want to make sure that its quota is not already 4904 * expired/exceeded, otherwise it may be allowed to steal additional ticks of 4905 * runtime as update_curr() throttling can not not trigger until it's on-rq. 4906 */ 4907 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) 4908 { 4909 if (!cfs_bandwidth_used()) 4910 return; 4911 4912 /* an active group must be handled by the update_curr()->put() path */ 4913 if (!cfs_rq->runtime_enabled || cfs_rq->curr) 4914 return; 4915 4916 /* ensure the group is not already throttled */ 4917 if (cfs_rq_throttled(cfs_rq)) 4918 return; 4919 4920 /* update runtime allocation */ 4921 account_cfs_rq_runtime(cfs_rq, 0); 4922 if (cfs_rq->runtime_remaining <= 0) 4923 throttle_cfs_rq(cfs_rq); 4924 } 4925 4926 static void sync_throttle(struct task_group *tg, int cpu) 4927 { 4928 struct cfs_rq *pcfs_rq, *cfs_rq; 4929 4930 if (!cfs_bandwidth_used()) 4931 return; 4932 4933 if (!tg->parent) 4934 return; 4935 4936 cfs_rq = tg->cfs_rq[cpu]; 4937 pcfs_rq = tg->parent->cfs_rq[cpu]; 4938 4939 cfs_rq->throttle_count = pcfs_rq->throttle_count; 4940 cfs_rq->throttled_clock_task = rq_clock_task(cpu_rq(cpu)); 4941 } 4942 4943 /* conditionally throttle active cfs_rq's from put_prev_entity() */ 4944 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) 4945 { 4946 if (!cfs_bandwidth_used()) 4947 return false; 4948 4949 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0)) 4950 return false; 4951 4952 /* 4953 * it's possible for a throttled entity to be forced into a running 4954 * state (e.g. set_curr_task), in this case we're finished. 4955 */ 4956 if (cfs_rq_throttled(cfs_rq)) 4957 return true; 4958 4959 throttle_cfs_rq(cfs_rq); 4960 return true; 4961 } 4962 4963 static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer) 4964 { 4965 struct cfs_bandwidth *cfs_b = 4966 container_of(timer, struct cfs_bandwidth, slack_timer); 4967 4968 do_sched_cfs_slack_timer(cfs_b); 4969 4970 return HRTIMER_NORESTART; 4971 } 4972 4973 extern const u64 max_cfs_quota_period; 4974 4975 static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer) 4976 { 4977 struct cfs_bandwidth *cfs_b = 4978 container_of(timer, struct cfs_bandwidth, period_timer); 4979 unsigned long flags; 4980 int overrun; 4981 int idle = 0; 4982 int count = 0; 4983 4984 raw_spin_lock_irqsave(&cfs_b->lock, flags); 4985 for (;;) { 4986 overrun = hrtimer_forward_now(timer, cfs_b->period); 4987 if (!overrun) 4988 break; 4989 4990 if (++count > 3) { 4991 u64 new, old = ktime_to_ns(cfs_b->period); 4992 4993 new = (old * 147) / 128; /* ~115% */ 4994 new = min(new, max_cfs_quota_period); 4995 4996 cfs_b->period = ns_to_ktime(new); 4997 4998 /* since max is 1s, this is limited to 1e9^2, which fits in u64 */ 4999 cfs_b->quota *= new; 5000 cfs_b->quota = div64_u64(cfs_b->quota, old); 5001 5002 pr_warn_ratelimited( 5003 "cfs_period_timer[cpu%d]: period too short, scaling up (new cfs_period_us %lld, cfs_quota_us = %lld)\n", 5004 smp_processor_id(), 5005 div_u64(new, NSEC_PER_USEC), 5006 div_u64(cfs_b->quota, NSEC_PER_USEC)); 5007 5008 /* reset count so we don't come right back in here */ 5009 count = 0; 5010 } 5011 5012 idle = do_sched_cfs_period_timer(cfs_b, overrun, flags); 5013 } 5014 if (idle) 5015 cfs_b->period_active = 0; 5016 raw_spin_unlock_irqrestore(&cfs_b->lock, flags); 5017 5018 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART; 5019 } 5020 5021 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) 5022 { 5023 raw_spin_lock_init(&cfs_b->lock); 5024 cfs_b->runtime = 0; 5025 cfs_b->quota = RUNTIME_INF; 5026 cfs_b->period = ns_to_ktime(default_cfs_period()); 5027 5028 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq); 5029 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED); 5030 cfs_b->period_timer.function = sched_cfs_period_timer; 5031 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 5032 cfs_b->slack_timer.function = sched_cfs_slack_timer; 5033 cfs_b->distribute_running = 0; 5034 cfs_b->slack_started = false; 5035 } 5036 5037 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) 5038 { 5039 cfs_rq->runtime_enabled = 0; 5040 INIT_LIST_HEAD(&cfs_rq->throttled_list); 5041 } 5042 5043 void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b) 5044 { 5045 u64 overrun; 5046 5047 lockdep_assert_held(&cfs_b->lock); 5048 5049 if (cfs_b->period_active) 5050 return; 5051 5052 cfs_b->period_active = 1; 5053 overrun = hrtimer_forward_now(&cfs_b->period_timer, cfs_b->period); 5054 cfs_b->runtime_expires += (overrun + 1) * ktime_to_ns(cfs_b->period); 5055 cfs_b->expires_seq++; 5056 hrtimer_start_expires(&cfs_b->period_timer, HRTIMER_MODE_ABS_PINNED); 5057 } 5058 5059 static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) 5060 { 5061 /* init_cfs_bandwidth() was not called */ 5062 if (!cfs_b->throttled_cfs_rq.next) 5063 return; 5064 5065 hrtimer_cancel(&cfs_b->period_timer); 5066 hrtimer_cancel(&cfs_b->slack_timer); 5067 } 5068 5069 /* 5070 * Both these CPU hotplug callbacks race against unregister_fair_sched_group() 5071 * 5072 * The race is harmless, since modifying bandwidth settings of unhooked group 5073 * bits doesn't do much. 5074 */ 5075 5076 /* cpu online calback */ 5077 static void __maybe_unused update_runtime_enabled(struct rq *rq) 5078 { 5079 struct task_group *tg; 5080 5081 lockdep_assert_held(&rq->lock); 5082 5083 rcu_read_lock(); 5084 list_for_each_entry_rcu(tg, &task_groups, list) { 5085 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 5086 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; 5087 5088 raw_spin_lock(&cfs_b->lock); 5089 cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF; 5090 raw_spin_unlock(&cfs_b->lock); 5091 } 5092 rcu_read_unlock(); 5093 } 5094 5095 /* cpu offline callback */ 5096 static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq) 5097 { 5098 struct task_group *tg; 5099 5100 lockdep_assert_held(&rq->lock); 5101 5102 rcu_read_lock(); 5103 list_for_each_entry_rcu(tg, &task_groups, list) { 5104 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; 5105 5106 if (!cfs_rq->runtime_enabled) 5107 continue; 5108 5109 /* 5110 * clock_task is not advancing so we just need to make sure 5111 * there's some valid quota amount 5112 */ 5113 cfs_rq->runtime_remaining = 1; 5114 /* 5115 * Offline rq is schedulable till CPU is completely disabled 5116 * in take_cpu_down(), so we prevent new cfs throttling here. 5117 */ 5118 cfs_rq->runtime_enabled = 0; 5119 5120 if (cfs_rq_throttled(cfs_rq)) 5121 unthrottle_cfs_rq(cfs_rq); 5122 } 5123 rcu_read_unlock(); 5124 } 5125 5126 #else /* CONFIG_CFS_BANDWIDTH */ 5127 5128 static inline bool cfs_bandwidth_used(void) 5129 { 5130 return false; 5131 } 5132 5133 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq) 5134 { 5135 return rq_clock_task(rq_of(cfs_rq)); 5136 } 5137 5138 static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {} 5139 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; } 5140 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {} 5141 static inline void sync_throttle(struct task_group *tg, int cpu) {} 5142 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {} 5143 5144 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq) 5145 { 5146 return 0; 5147 } 5148 5149 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq) 5150 { 5151 return 0; 5152 } 5153 5154 static inline int throttled_lb_pair(struct task_group *tg, 5155 int src_cpu, int dest_cpu) 5156 { 5157 return 0; 5158 } 5159 5160 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {} 5161 5162 #ifdef CONFIG_FAIR_GROUP_SCHED 5163 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {} 5164 #endif 5165 5166 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg) 5167 { 5168 return NULL; 5169 } 5170 static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {} 5171 static inline void update_runtime_enabled(struct rq *rq) {} 5172 static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {} 5173 5174 #endif /* CONFIG_CFS_BANDWIDTH */ 5175 5176 /************************************************** 5177 * CFS operations on tasks: 5178 */ 5179 5180 #ifdef CONFIG_SCHED_HRTICK 5181 static void hrtick_start_fair(struct rq *rq, struct task_struct *p) 5182 { 5183 struct sched_entity *se = &p->se; 5184 struct cfs_rq *cfs_rq = cfs_rq_of(se); 5185 5186 SCHED_WARN_ON(task_rq(p) != rq); 5187 5188 if (rq->cfs.h_nr_running > 1) { 5189 u64 slice = sched_slice(cfs_rq, se); 5190 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime; 5191 s64 delta = slice - ran; 5192 5193 if (delta < 0) { 5194 if (rq->curr == p) 5195 resched_curr(rq); 5196 return; 5197 } 5198 hrtick_start(rq, delta); 5199 } 5200 } 5201 5202 /* 5203 * called from enqueue/dequeue and updates the hrtick when the 5204 * current task is from our class and nr_running is low enough 5205 * to matter. 5206 */ 5207 static void hrtick_update(struct rq *rq) 5208 { 5209 struct task_struct *curr = rq->curr; 5210 5211 if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class) 5212 return; 5213 5214 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency) 5215 hrtick_start_fair(rq, curr); 5216 } 5217 #else /* !CONFIG_SCHED_HRTICK */ 5218 static inline void 5219 hrtick_start_fair(struct rq *rq, struct task_struct *p) 5220 { 5221 } 5222 5223 static inline void hrtick_update(struct rq *rq) 5224 { 5225 } 5226 #endif 5227 5228 #ifdef CONFIG_SMP 5229 static inline unsigned long cpu_util(int cpu); 5230 5231 static inline bool cpu_overutilized(int cpu) 5232 { 5233 return (capacity_of(cpu) * 1024) < (cpu_util(cpu) * capacity_margin); 5234 } 5235 5236 static inline void update_overutilized_status(struct rq *rq) 5237 { 5238 if (!READ_ONCE(rq->rd->overutilized) && cpu_overutilized(rq->cpu)) { 5239 WRITE_ONCE(rq->rd->overutilized, SG_OVERUTILIZED); 5240 trace_sched_overutilized_tp(rq->rd, SG_OVERUTILIZED); 5241 } 5242 } 5243 #else 5244 static inline void update_overutilized_status(struct rq *rq) { } 5245 #endif 5246 5247 /* 5248 * The enqueue_task method is called before nr_running is 5249 * increased. Here we update the fair scheduling stats and 5250 * then put the task into the rbtree: 5251 */ 5252 static void 5253 enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags) 5254 { 5255 struct cfs_rq *cfs_rq; 5256 struct sched_entity *se = &p->se; 5257 5258 /* 5259 * The code below (indirectly) updates schedutil which looks at 5260 * the cfs_rq utilization to select a frequency. 5261 * Let's add the task's estimated utilization to the cfs_rq's 5262 * estimated utilization, before we update schedutil. 5263 */ 5264 util_est_enqueue(&rq->cfs, p); 5265 5266 /* 5267 * If in_iowait is set, the code below may not trigger any cpufreq 5268 * utilization updates, so do it here explicitly with the IOWAIT flag 5269 * passed. 5270 */ 5271 if (p->in_iowait) 5272 cpufreq_update_util(rq, SCHED_CPUFREQ_IOWAIT); 5273 5274 for_each_sched_entity(se) { 5275 if (se->on_rq) 5276 break; 5277 cfs_rq = cfs_rq_of(se); 5278 enqueue_entity(cfs_rq, se, flags); 5279 5280 /* 5281 * end evaluation on encountering a throttled cfs_rq 5282 * 5283 * note: in the case of encountering a throttled cfs_rq we will 5284 * post the final h_nr_running increment below. 5285 */ 5286 if (cfs_rq_throttled(cfs_rq)) 5287 break; 5288 cfs_rq->h_nr_running++; 5289 5290 flags = ENQUEUE_WAKEUP; 5291 } 5292 5293 for_each_sched_entity(se) { 5294 cfs_rq = cfs_rq_of(se); 5295 cfs_rq->h_nr_running++; 5296 5297 if (cfs_rq_throttled(cfs_rq)) 5298 break; 5299 5300 update_load_avg(cfs_rq, se, UPDATE_TG); 5301 update_cfs_group(se); 5302 } 5303 5304 if (!se) { 5305 add_nr_running(rq, 1); 5306 /* 5307 * Since new tasks are assigned an initial util_avg equal to 5308 * half of the spare capacity of their CPU, tiny tasks have the 5309 * ability to cross the overutilized threshold, which will 5310 * result in the load balancer ruining all the task placement 5311 * done by EAS. As a way to mitigate that effect, do not account 5312 * for the first enqueue operation of new tasks during the 5313 * overutilized flag detection. 5314 * 5315 * A better way of solving this problem would be to wait for 5316 * the PELT signals of tasks to converge before taking them 5317 * into account, but that is not straightforward to implement, 5318 * and the following generally works well enough in practice. 5319 */ 5320 if (flags & ENQUEUE_WAKEUP) 5321 update_overutilized_status(rq); 5322 5323 } 5324 5325 if (cfs_bandwidth_used()) { 5326 /* 5327 * When bandwidth control is enabled; the cfs_rq_throttled() 5328 * breaks in the above iteration can result in incomplete 5329 * leaf list maintenance, resulting in triggering the assertion 5330 * below. 5331 */ 5332 for_each_sched_entity(se) { 5333 cfs_rq = cfs_rq_of(se); 5334 5335 if (list_add_leaf_cfs_rq(cfs_rq)) 5336 break; 5337 } 5338 } 5339 5340 assert_list_leaf_cfs_rq(rq); 5341 5342 hrtick_update(rq); 5343 } 5344 5345 static void set_next_buddy(struct sched_entity *se); 5346 5347 /* 5348 * The dequeue_task method is called before nr_running is 5349 * decreased. We remove the task from the rbtree and 5350 * update the fair scheduling stats: 5351 */ 5352 static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags) 5353 { 5354 struct cfs_rq *cfs_rq; 5355 struct sched_entity *se = &p->se; 5356 int task_sleep = flags & DEQUEUE_SLEEP; 5357 5358 for_each_sched_entity(se) { 5359 cfs_rq = cfs_rq_of(se); 5360 dequeue_entity(cfs_rq, se, flags); 5361 5362 /* 5363 * end evaluation on encountering a throttled cfs_rq 5364 * 5365 * note: in the case of encountering a throttled cfs_rq we will 5366 * post the final h_nr_running decrement below. 5367 */ 5368 if (cfs_rq_throttled(cfs_rq)) 5369 break; 5370 cfs_rq->h_nr_running--; 5371 5372 /* Don't dequeue parent if it has other entities besides us */ 5373 if (cfs_rq->load.weight) { 5374 /* Avoid re-evaluating load for this entity: */ 5375 se = parent_entity(se); 5376 /* 5377 * Bias pick_next to pick a task from this cfs_rq, as 5378 * p is sleeping when it is within its sched_slice. 5379 */ 5380 if (task_sleep && se && !throttled_hierarchy(cfs_rq)) 5381 set_next_buddy(se); 5382 break; 5383 } 5384 flags |= DEQUEUE_SLEEP; 5385 } 5386 5387 for_each_sched_entity(se) { 5388 cfs_rq = cfs_rq_of(se); 5389 cfs_rq->h_nr_running--; 5390 5391 if (cfs_rq_throttled(cfs_rq)) 5392 break; 5393 5394 update_load_avg(cfs_rq, se, UPDATE_TG); 5395 update_cfs_group(se); 5396 } 5397 5398 if (!se) 5399 sub_nr_running(rq, 1); 5400 5401 util_est_dequeue(&rq->cfs, p, task_sleep); 5402 hrtick_update(rq); 5403 } 5404 5405 #ifdef CONFIG_SMP 5406 5407 /* Working cpumask for: load_balance, load_balance_newidle. */ 5408 DEFINE_PER_CPU(cpumask_var_t, load_balance_mask); 5409 DEFINE_PER_CPU(cpumask_var_t, select_idle_mask); 5410 5411 #ifdef CONFIG_NO_HZ_COMMON 5412 5413 static struct { 5414 cpumask_var_t idle_cpus_mask; 5415 atomic_t nr_cpus; 5416 int has_blocked; /* Idle CPUS has blocked load */ 5417 unsigned long next_balance; /* in jiffy units */ 5418 unsigned long next_blocked; /* Next update of blocked load in jiffies */ 5419 } nohz ____cacheline_aligned; 5420 5421 #endif /* CONFIG_NO_HZ_COMMON */ 5422 5423 static unsigned long cpu_runnable_load(struct rq *rq) 5424 { 5425 return cfs_rq_runnable_load_avg(&rq->cfs); 5426 } 5427 5428 static unsigned long capacity_of(int cpu) 5429 { 5430 return cpu_rq(cpu)->cpu_capacity; 5431 } 5432 5433 static unsigned long cpu_avg_load_per_task(int cpu) 5434 { 5435 struct rq *rq = cpu_rq(cpu); 5436 unsigned long nr_running = READ_ONCE(rq->cfs.h_nr_running); 5437 unsigned long load_avg = cpu_runnable_load(rq); 5438 5439 if (nr_running) 5440 return load_avg / nr_running; 5441 5442 return 0; 5443 } 5444 5445 static void record_wakee(struct task_struct *p) 5446 { 5447 /* 5448 * Only decay a single time; tasks that have less then 1 wakeup per 5449 * jiffy will not have built up many flips. 5450 */ 5451 if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) { 5452 current->wakee_flips >>= 1; 5453 current->wakee_flip_decay_ts = jiffies; 5454 } 5455 5456 if (current->last_wakee != p) { 5457 current->last_wakee = p; 5458 current->wakee_flips++; 5459 } 5460 } 5461 5462 /* 5463 * Detect M:N waker/wakee relationships via a switching-frequency heuristic. 5464 * 5465 * A waker of many should wake a different task than the one last awakened 5466 * at a frequency roughly N times higher than one of its wakees. 5467 * 5468 * In order to determine whether we should let the load spread vs consolidating 5469 * to shared cache, we look for a minimum 'flip' frequency of llc_size in one 5470 * partner, and a factor of lls_size higher frequency in the other. 5471 * 5472 * With both conditions met, we can be relatively sure that the relationship is 5473 * non-monogamous, with partner count exceeding socket size. 5474 * 5475 * Waker/wakee being client/server, worker/dispatcher, interrupt source or 5476 * whatever is irrelevant, spread criteria is apparent partner count exceeds 5477 * socket size. 5478 */ 5479 static int wake_wide(struct task_struct *p) 5480 { 5481 unsigned int master = current->wakee_flips; 5482 unsigned int slave = p->wakee_flips; 5483 int factor = this_cpu_read(sd_llc_size); 5484 5485 if (master < slave) 5486 swap(master, slave); 5487 if (slave < factor || master < slave * factor) 5488 return 0; 5489 return 1; 5490 } 5491 5492 /* 5493 * The purpose of wake_affine() is to quickly determine on which CPU we can run 5494 * soonest. For the purpose of speed we only consider the waking and previous 5495 * CPU. 5496 * 5497 * wake_affine_idle() - only considers 'now', it check if the waking CPU is 5498 * cache-affine and is (or will be) idle. 5499 * 5500 * wake_affine_weight() - considers the weight to reflect the average 5501 * scheduling latency of the CPUs. This seems to work 5502 * for the overloaded case. 5503 */ 5504 static int 5505 wake_affine_idle(int this_cpu, int prev_cpu, int sync) 5506 { 5507 /* 5508 * If this_cpu is idle, it implies the wakeup is from interrupt 5509 * context. Only allow the move if cache is shared. Otherwise an 5510 * interrupt intensive workload could force all tasks onto one 5511 * node depending on the IO topology or IRQ affinity settings. 5512 * 5513 * If the prev_cpu is idle and cache affine then avoid a migration. 5514 * There is no guarantee that the cache hot data from an interrupt 5515 * is more important than cache hot data on the prev_cpu and from 5516 * a cpufreq perspective, it's better to have higher utilisation 5517 * on one CPU. 5518 */ 5519 if (available_idle_cpu(this_cpu) && cpus_share_cache(this_cpu, prev_cpu)) 5520 return available_idle_cpu(prev_cpu) ? prev_cpu : this_cpu; 5521 5522 if (sync && cpu_rq(this_cpu)->nr_running == 1) 5523 return this_cpu; 5524 5525 return nr_cpumask_bits; 5526 } 5527 5528 static int 5529 wake_affine_weight(struct sched_domain *sd, struct task_struct *p, 5530 int this_cpu, int prev_cpu, int sync) 5531 { 5532 s64 this_eff_load, prev_eff_load; 5533 unsigned long task_load; 5534 5535 this_eff_load = cpu_runnable_load(cpu_rq(this_cpu)); 5536 5537 if (sync) { 5538 unsigned long current_load = task_h_load(current); 5539 5540 if (current_load > this_eff_load) 5541 return this_cpu; 5542 5543 this_eff_load -= current_load; 5544 } 5545 5546 task_load = task_h_load(p); 5547 5548 this_eff_load += task_load; 5549 if (sched_feat(WA_BIAS)) 5550 this_eff_load *= 100; 5551 this_eff_load *= capacity_of(prev_cpu); 5552 5553 prev_eff_load = cpu_runnable_load(cpu_rq(prev_cpu)); 5554 prev_eff_load -= task_load; 5555 if (sched_feat(WA_BIAS)) 5556 prev_eff_load *= 100 + (sd->imbalance_pct - 100) / 2; 5557 prev_eff_load *= capacity_of(this_cpu); 5558 5559 /* 5560 * If sync, adjust the weight of prev_eff_load such that if 5561 * prev_eff == this_eff that select_idle_sibling() will consider 5562 * stacking the wakee on top of the waker if no other CPU is 5563 * idle. 5564 */ 5565 if (sync) 5566 prev_eff_load += 1; 5567 5568 return this_eff_load < prev_eff_load ? this_cpu : nr_cpumask_bits; 5569 } 5570 5571 static int wake_affine(struct sched_domain *sd, struct task_struct *p, 5572 int this_cpu, int prev_cpu, int sync) 5573 { 5574 int target = nr_cpumask_bits; 5575 5576 if (sched_feat(WA_IDLE)) 5577 target = wake_affine_idle(this_cpu, prev_cpu, sync); 5578 5579 if (sched_feat(WA_WEIGHT) && target == nr_cpumask_bits) 5580 target = wake_affine_weight(sd, p, this_cpu, prev_cpu, sync); 5581 5582 schedstat_inc(p->se.statistics.nr_wakeups_affine_attempts); 5583 if (target == nr_cpumask_bits) 5584 return prev_cpu; 5585 5586 schedstat_inc(sd->ttwu_move_affine); 5587 schedstat_inc(p->se.statistics.nr_wakeups_affine); 5588 return target; 5589 } 5590 5591 static unsigned long cpu_util_without(int cpu, struct task_struct *p); 5592 5593 static unsigned long capacity_spare_without(int cpu, struct task_struct *p) 5594 { 5595 return max_t(long, capacity_of(cpu) - cpu_util_without(cpu, p), 0); 5596 } 5597 5598 /* 5599 * find_idlest_group finds and returns the least busy CPU group within the 5600 * domain. 5601 * 5602 * Assumes p is allowed on at least one CPU in sd. 5603 */ 5604 static struct sched_group * 5605 find_idlest_group(struct sched_domain *sd, struct task_struct *p, 5606 int this_cpu, int sd_flag) 5607 { 5608 struct sched_group *idlest = NULL, *group = sd->groups; 5609 struct sched_group *most_spare_sg = NULL; 5610 unsigned long min_runnable_load = ULONG_MAX; 5611 unsigned long this_runnable_load = ULONG_MAX; 5612 unsigned long min_avg_load = ULONG_MAX, this_avg_load = ULONG_MAX; 5613 unsigned long most_spare = 0, this_spare = 0; 5614 int imbalance_scale = 100 + (sd->imbalance_pct-100)/2; 5615 unsigned long imbalance = scale_load_down(NICE_0_LOAD) * 5616 (sd->imbalance_pct-100) / 100; 5617 5618 do { 5619 unsigned long load, avg_load, runnable_load; 5620 unsigned long spare_cap, max_spare_cap; 5621 int local_group; 5622 int i; 5623 5624 /* Skip over this group if it has no CPUs allowed */ 5625 if (!cpumask_intersects(sched_group_span(group), 5626 p->cpus_ptr)) 5627 continue; 5628 5629 local_group = cpumask_test_cpu(this_cpu, 5630 sched_group_span(group)); 5631 5632 /* 5633 * Tally up the load of all CPUs in the group and find 5634 * the group containing the CPU with most spare capacity. 5635 */ 5636 avg_load = 0; 5637 runnable_load = 0; 5638 max_spare_cap = 0; 5639 5640 for_each_cpu(i, sched_group_span(group)) { 5641 load = cpu_runnable_load(cpu_rq(i)); 5642 runnable_load += load; 5643 5644 avg_load += cfs_rq_load_avg(&cpu_rq(i)->cfs); 5645 5646 spare_cap = capacity_spare_without(i, p); 5647 5648 if (spare_cap > max_spare_cap) 5649 max_spare_cap = spare_cap; 5650 } 5651 5652 /* Adjust by relative CPU capacity of the group */ 5653 avg_load = (avg_load * SCHED_CAPACITY_SCALE) / 5654 group->sgc->capacity; 5655 runnable_load = (runnable_load * SCHED_CAPACITY_SCALE) / 5656 group->sgc->capacity; 5657 5658 if (local_group) { 5659 this_runnable_load = runnable_load; 5660 this_avg_load = avg_load; 5661 this_spare = max_spare_cap; 5662 } else { 5663 if (min_runnable_load > (runnable_load + imbalance)) { 5664 /* 5665 * The runnable load is significantly smaller 5666 * so we can pick this new CPU: 5667 */ 5668 min_runnable_load = runnable_load; 5669 min_avg_load = avg_load; 5670 idlest = group; 5671 } else if ((runnable_load < (min_runnable_load + imbalance)) && 5672 (100*min_avg_load > imbalance_scale*avg_load)) { 5673 /* 5674 * The runnable loads are close so take the 5675 * blocked load into account through avg_load: 5676 */ 5677 min_avg_load = avg_load; 5678 idlest = group; 5679 } 5680 5681 if (most_spare < max_spare_cap) { 5682 most_spare = max_spare_cap; 5683 most_spare_sg = group; 5684 } 5685 } 5686 } while (group = group->next, group != sd->groups); 5687 5688 /* 5689 * The cross-over point between using spare capacity or least load 5690 * is too conservative for high utilization tasks on partially 5691 * utilized systems if we require spare_capacity > task_util(p), 5692 * so we allow for some task stuffing by using 5693 * spare_capacity > task_util(p)/2. 5694 * 5695 * Spare capacity can't be used for fork because the utilization has 5696 * not been set yet, we must first select a rq to compute the initial 5697 * utilization. 5698 */ 5699 if (sd_flag & SD_BALANCE_FORK) 5700 goto skip_spare; 5701 5702 if (this_spare > task_util(p) / 2 && 5703 imbalance_scale*this_spare > 100*most_spare) 5704 return NULL; 5705 5706 if (most_spare > task_util(p) / 2) 5707 return most_spare_sg; 5708 5709 skip_spare: 5710 if (!idlest) 5711 return NULL; 5712 5713 /* 5714 * When comparing groups across NUMA domains, it's possible for the 5715 * local domain to be very lightly loaded relative to the remote 5716 * domains but "imbalance" skews the comparison making remote CPUs 5717 * look much more favourable. When considering cross-domain, add 5718 * imbalance to the runnable load on the remote node and consider 5719 * staying local. 5720 */ 5721 if ((sd->flags & SD_NUMA) && 5722 min_runnable_load + imbalance >= this_runnable_load) 5723 return NULL; 5724 5725 if (min_runnable_load > (this_runnable_load + imbalance)) 5726 return NULL; 5727 5728 if ((this_runnable_load < (min_runnable_load + imbalance)) && 5729 (100*this_avg_load < imbalance_scale*min_avg_load)) 5730 return NULL; 5731 5732 return idlest; 5733 } 5734 5735 /* 5736 * find_idlest_group_cpu - find the idlest CPU among the CPUs in the group. 5737 */ 5738 static int 5739 find_idlest_group_cpu(struct sched_group *group, struct task_struct *p, int this_cpu) 5740 { 5741 unsigned long load, min_load = ULONG_MAX; 5742 unsigned int min_exit_latency = UINT_MAX; 5743 u64 latest_idle_timestamp = 0; 5744 int least_loaded_cpu = this_cpu; 5745 int shallowest_idle_cpu = -1; 5746 int i; 5747 5748 /* Check if we have any choice: */ 5749 if (group->group_weight == 1) 5750 return cpumask_first(sched_group_span(group)); 5751 5752 /* Traverse only the allowed CPUs */ 5753 for_each_cpu_and(i, sched_group_span(group), p->cpus_ptr) { 5754 if (available_idle_cpu(i)) { 5755 struct rq *rq = cpu_rq(i); 5756 struct cpuidle_state *idle = idle_get_state(rq); 5757 if (idle && idle->exit_latency < min_exit_latency) { 5758 /* 5759 * We give priority to a CPU whose idle state 5760 * has the smallest exit latency irrespective 5761 * of any idle timestamp. 5762 */ 5763 min_exit_latency = idle->exit_latency; 5764 latest_idle_timestamp = rq->idle_stamp; 5765 shallowest_idle_cpu = i; 5766 } else if ((!idle || idle->exit_latency == min_exit_latency) && 5767 rq->idle_stamp > latest_idle_timestamp) { 5768 /* 5769 * If equal or no active idle state, then 5770 * the most recently idled CPU might have 5771 * a warmer cache. 5772 */ 5773 latest_idle_timestamp = rq->idle_stamp; 5774 shallowest_idle_cpu = i; 5775 } 5776 } else if (shallowest_idle_cpu == -1) { 5777 load = cpu_runnable_load(cpu_rq(i)); 5778 if (load < min_load) { 5779 min_load = load; 5780 least_loaded_cpu = i; 5781 } 5782 } 5783 } 5784 5785 return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu; 5786 } 5787 5788 static inline int find_idlest_cpu(struct sched_domain *sd, struct task_struct *p, 5789 int cpu, int prev_cpu, int sd_flag) 5790 { 5791 int new_cpu = cpu; 5792 5793 if (!cpumask_intersects(sched_domain_span(sd), p->cpus_ptr)) 5794 return prev_cpu; 5795 5796 /* 5797 * We need task's util for capacity_spare_without, sync it up to 5798 * prev_cpu's last_update_time. 5799 */ 5800 if (!(sd_flag & SD_BALANCE_FORK)) 5801 sync_entity_load_avg(&p->se); 5802 5803 while (sd) { 5804 struct sched_group *group; 5805 struct sched_domain *tmp; 5806 int weight; 5807 5808 if (!(sd->flags & sd_flag)) { 5809 sd = sd->child; 5810 continue; 5811 } 5812 5813 group = find_idlest_group(sd, p, cpu, sd_flag); 5814 if (!group) { 5815 sd = sd->child; 5816 continue; 5817 } 5818 5819 new_cpu = find_idlest_group_cpu(group, p, cpu); 5820 if (new_cpu == cpu) { 5821 /* Now try balancing at a lower domain level of 'cpu': */ 5822 sd = sd->child; 5823 continue; 5824 } 5825 5826 /* Now try balancing at a lower domain level of 'new_cpu': */ 5827 cpu = new_cpu; 5828 weight = sd->span_weight; 5829 sd = NULL; 5830 for_each_domain(cpu, tmp) { 5831 if (weight <= tmp->span_weight) 5832 break; 5833 if (tmp->flags & sd_flag) 5834 sd = tmp; 5835 } 5836 } 5837 5838 return new_cpu; 5839 } 5840 5841 #ifdef CONFIG_SCHED_SMT 5842 DEFINE_STATIC_KEY_FALSE(sched_smt_present); 5843 EXPORT_SYMBOL_GPL(sched_smt_present); 5844 5845 static inline void set_idle_cores(int cpu, int val) 5846 { 5847 struct sched_domain_shared *sds; 5848 5849 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu)); 5850 if (sds) 5851 WRITE_ONCE(sds->has_idle_cores, val); 5852 } 5853 5854 static inline bool test_idle_cores(int cpu, bool def) 5855 { 5856 struct sched_domain_shared *sds; 5857 5858 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu)); 5859 if (sds) 5860 return READ_ONCE(sds->has_idle_cores); 5861 5862 return def; 5863 } 5864 5865 /* 5866 * Scans the local SMT mask to see if the entire core is idle, and records this 5867 * information in sd_llc_shared->has_idle_cores. 5868 * 5869 * Since SMT siblings share all cache levels, inspecting this limited remote 5870 * state should be fairly cheap. 5871 */ 5872 void __update_idle_core(struct rq *rq) 5873 { 5874 int core = cpu_of(rq); 5875 int cpu; 5876 5877 rcu_read_lock(); 5878 if (test_idle_cores(core, true)) 5879 goto unlock; 5880 5881 for_each_cpu(cpu, cpu_smt_mask(core)) { 5882 if (cpu == core) 5883 continue; 5884 5885 if (!available_idle_cpu(cpu)) 5886 goto unlock; 5887 } 5888 5889 set_idle_cores(core, 1); 5890 unlock: 5891 rcu_read_unlock(); 5892 } 5893 5894 /* 5895 * Scan the entire LLC domain for idle cores; this dynamically switches off if 5896 * there are no idle cores left in the system; tracked through 5897 * sd_llc->shared->has_idle_cores and enabled through update_idle_core() above. 5898 */ 5899 static int select_idle_core(struct task_struct *p, struct sched_domain *sd, int target) 5900 { 5901 struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_idle_mask); 5902 int core, cpu; 5903 5904 if (!static_branch_likely(&sched_smt_present)) 5905 return -1; 5906 5907 if (!test_idle_cores(target, false)) 5908 return -1; 5909 5910 cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr); 5911 5912 for_each_cpu_wrap(core, cpus, target) { 5913 bool idle = true; 5914 5915 for_each_cpu(cpu, cpu_smt_mask(core)) { 5916 __cpumask_clear_cpu(cpu, cpus); 5917 if (!available_idle_cpu(cpu)) 5918 idle = false; 5919 } 5920 5921 if (idle) 5922 return core; 5923 } 5924 5925 /* 5926 * Failed to find an idle core; stop looking for one. 5927 */ 5928 set_idle_cores(target, 0); 5929 5930 return -1; 5931 } 5932 5933 /* 5934 * Scan the local SMT mask for idle CPUs. 5935 */ 5936 static int select_idle_smt(struct task_struct *p, int target) 5937 { 5938 int cpu; 5939 5940 if (!static_branch_likely(&sched_smt_present)) 5941 return -1; 5942 5943 for_each_cpu(cpu, cpu_smt_mask(target)) { 5944 if (!cpumask_test_cpu(cpu, p->cpus_ptr)) 5945 continue; 5946 if (available_idle_cpu(cpu)) 5947 return cpu; 5948 } 5949 5950 return -1; 5951 } 5952 5953 #else /* CONFIG_SCHED_SMT */ 5954 5955 static inline int select_idle_core(struct task_struct *p, struct sched_domain *sd, int target) 5956 { 5957 return -1; 5958 } 5959 5960 static inline int select_idle_smt(struct task_struct *p, int target) 5961 { 5962 return -1; 5963 } 5964 5965 #endif /* CONFIG_SCHED_SMT */ 5966 5967 /* 5968 * Scan the LLC domain for idle CPUs; this is dynamically regulated by 5969 * comparing the average scan cost (tracked in sd->avg_scan_cost) against the 5970 * average idle time for this rq (as found in rq->avg_idle). 5971 */ 5972 static int select_idle_cpu(struct task_struct *p, struct sched_domain *sd, int target) 5973 { 5974 struct sched_domain *this_sd; 5975 u64 avg_cost, avg_idle; 5976 u64 time, cost; 5977 s64 delta; 5978 int cpu, nr = INT_MAX; 5979 int this = smp_processor_id(); 5980 5981 this_sd = rcu_dereference(*this_cpu_ptr(&sd_llc)); 5982 if (!this_sd) 5983 return -1; 5984 5985 /* 5986 * Due to large variance we need a large fuzz factor; hackbench in 5987 * particularly is sensitive here. 5988 */ 5989 avg_idle = this_rq()->avg_idle / 512; 5990 avg_cost = this_sd->avg_scan_cost + 1; 5991 5992 if (sched_feat(SIS_AVG_CPU) && avg_idle < avg_cost) 5993 return -1; 5994 5995 if (sched_feat(SIS_PROP)) { 5996 u64 span_avg = sd->span_weight * avg_idle; 5997 if (span_avg > 4*avg_cost) 5998 nr = div_u64(span_avg, avg_cost); 5999 else 6000 nr = 4; 6001 } 6002 6003 time = cpu_clock(this); 6004 6005 for_each_cpu_wrap(cpu, sched_domain_span(sd), target) { 6006 if (!--nr) 6007 return -1; 6008 if (!cpumask_test_cpu(cpu, p->cpus_ptr)) 6009 continue; 6010 if (available_idle_cpu(cpu)) 6011 break; 6012 } 6013 6014 time = cpu_clock(this) - time; 6015 cost = this_sd->avg_scan_cost; 6016 delta = (s64)(time - cost) / 8; 6017 this_sd->avg_scan_cost += delta; 6018 6019 return cpu; 6020 } 6021 6022 /* 6023 * Try and locate an idle core/thread in the LLC cache domain. 6024 */ 6025 static int select_idle_sibling(struct task_struct *p, int prev, int target) 6026 { 6027 struct sched_domain *sd; 6028 int i, recent_used_cpu; 6029 6030 if (available_idle_cpu(target)) 6031 return target; 6032 6033 /* 6034 * If the previous CPU is cache affine and idle, don't be stupid: 6035 */ 6036 if (prev != target && cpus_share_cache(prev, target) && available_idle_cpu(prev)) 6037 return prev; 6038 6039 /* Check a recently used CPU as a potential idle candidate: */ 6040 recent_used_cpu = p->recent_used_cpu; 6041 if (recent_used_cpu != prev && 6042 recent_used_cpu != target && 6043 cpus_share_cache(recent_used_cpu, target) && 6044 available_idle_cpu(recent_used_cpu) && 6045 cpumask_test_cpu(p->recent_used_cpu, p->cpus_ptr)) { 6046 /* 6047 * Replace recent_used_cpu with prev as it is a potential 6048 * candidate for the next wake: 6049 */ 6050 p->recent_used_cpu = prev; 6051 return recent_used_cpu; 6052 } 6053 6054 sd = rcu_dereference(per_cpu(sd_llc, target)); 6055 if (!sd) 6056 return target; 6057 6058 i = select_idle_core(p, sd, target); 6059 if ((unsigned)i < nr_cpumask_bits) 6060 return i; 6061 6062 i = select_idle_cpu(p, sd, target); 6063 if ((unsigned)i < nr_cpumask_bits) 6064 return i; 6065 6066 i = select_idle_smt(p, target); 6067 if ((unsigned)i < nr_cpumask_bits) 6068 return i; 6069 6070 return target; 6071 } 6072 6073 /** 6074 * Amount of capacity of a CPU that is (estimated to be) used by CFS tasks 6075 * @cpu: the CPU to get the utilization of 6076 * 6077 * The unit of the return value must be the one of capacity so we can compare 6078 * the utilization with the capacity of the CPU that is available for CFS task 6079 * (ie cpu_capacity). 6080 * 6081 * cfs_rq.avg.util_avg is the sum of running time of runnable tasks plus the 6082 * recent utilization of currently non-runnable tasks on a CPU. It represents 6083 * the amount of utilization of a CPU in the range [0..capacity_orig] where 6084 * capacity_orig is the cpu_capacity available at the highest frequency 6085 * (arch_scale_freq_capacity()). 6086 * The utilization of a CPU converges towards a sum equal to or less than the 6087 * current capacity (capacity_curr <= capacity_orig) of the CPU because it is 6088 * the running time on this CPU scaled by capacity_curr. 6089 * 6090 * The estimated utilization of a CPU is defined to be the maximum between its 6091 * cfs_rq.avg.util_avg and the sum of the estimated utilization of the tasks 6092 * currently RUNNABLE on that CPU. 6093 * This allows to properly represent the expected utilization of a CPU which 6094 * has just got a big task running since a long sleep period. At the same time 6095 * however it preserves the benefits of the "blocked utilization" in 6096 * describing the potential for other tasks waking up on the same CPU. 6097 * 6098 * Nevertheless, cfs_rq.avg.util_avg can be higher than capacity_curr or even 6099 * higher than capacity_orig because of unfortunate rounding in 6100 * cfs.avg.util_avg or just after migrating tasks and new task wakeups until 6101 * the average stabilizes with the new running time. We need to check that the 6102 * utilization stays within the range of [0..capacity_orig] and cap it if 6103 * necessary. Without utilization capping, a group could be seen as overloaded 6104 * (CPU0 utilization at 121% + CPU1 utilization at 80%) whereas CPU1 has 20% of 6105 * available capacity. We allow utilization to overshoot capacity_curr (but not 6106 * capacity_orig) as it useful for predicting the capacity required after task 6107 * migrations (scheduler-driven DVFS). 6108 * 6109 * Return: the (estimated) utilization for the specified CPU 6110 */ 6111 static inline unsigned long cpu_util(int cpu) 6112 { 6113 struct cfs_rq *cfs_rq; 6114 unsigned int util; 6115 6116 cfs_rq = &cpu_rq(cpu)->cfs; 6117 util = READ_ONCE(cfs_rq->avg.util_avg); 6118 6119 if (sched_feat(UTIL_EST)) 6120 util = max(util, READ_ONCE(cfs_rq->avg.util_est.enqueued)); 6121 6122 return min_t(unsigned long, util, capacity_orig_of(cpu)); 6123 } 6124 6125 /* 6126 * cpu_util_without: compute cpu utilization without any contributions from *p 6127 * @cpu: the CPU which utilization is requested 6128 * @p: the task which utilization should be discounted 6129 * 6130 * The utilization of a CPU is defined by the utilization of tasks currently 6131 * enqueued on that CPU as well as tasks which are currently sleeping after an 6132 * execution on that CPU. 6133 * 6134 * This method returns the utilization of the specified CPU by discounting the 6135 * utilization of the specified task, whenever the task is currently 6136 * contributing to the CPU utilization. 6137 */ 6138 static unsigned long cpu_util_without(int cpu, struct task_struct *p) 6139 { 6140 struct cfs_rq *cfs_rq; 6141 unsigned int util; 6142 6143 /* Task has no contribution or is new */ 6144 if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time)) 6145 return cpu_util(cpu); 6146 6147 cfs_rq = &cpu_rq(cpu)->cfs; 6148 util = READ_ONCE(cfs_rq->avg.util_avg); 6149 6150 /* Discount task's util from CPU's util */ 6151 lsub_positive(&util, task_util(p)); 6152 6153 /* 6154 * Covered cases: 6155 * 6156 * a) if *p is the only task sleeping on this CPU, then: 6157 * cpu_util (== task_util) > util_est (== 0) 6158 * and thus we return: 6159 * cpu_util_without = (cpu_util - task_util) = 0 6160 * 6161 * b) if other tasks are SLEEPING on this CPU, which is now exiting 6162 * IDLE, then: 6163 * cpu_util >= task_util 6164 * cpu_util > util_est (== 0) 6165 * and thus we discount *p's blocked utilization to return: 6166 * cpu_util_without = (cpu_util - task_util) >= 0 6167 * 6168 * c) if other tasks are RUNNABLE on that CPU and 6169 * util_est > cpu_util 6170 * then we use util_est since it returns a more restrictive 6171 * estimation of the spare capacity on that CPU, by just 6172 * considering the expected utilization of tasks already 6173 * runnable on that CPU. 6174 * 6175 * Cases a) and b) are covered by the above code, while case c) is 6176 * covered by the following code when estimated utilization is 6177 * enabled. 6178 */ 6179 if (sched_feat(UTIL_EST)) { 6180 unsigned int estimated = 6181 READ_ONCE(cfs_rq->avg.util_est.enqueued); 6182 6183 /* 6184 * Despite the following checks we still have a small window 6185 * for a possible race, when an execl's select_task_rq_fair() 6186 * races with LB's detach_task(): 6187 * 6188 * detach_task() 6189 * p->on_rq = TASK_ON_RQ_MIGRATING; 6190 * ---------------------------------- A 6191 * deactivate_task() \ 6192 * dequeue_task() + RaceTime 6193 * util_est_dequeue() / 6194 * ---------------------------------- B 6195 * 6196 * The additional check on "current == p" it's required to 6197 * properly fix the execl regression and it helps in further 6198 * reducing the chances for the above race. 6199 */ 6200 if (unlikely(task_on_rq_queued(p) || current == p)) 6201 lsub_positive(&estimated, _task_util_est(p)); 6202 6203 util = max(util, estimated); 6204 } 6205 6206 /* 6207 * Utilization (estimated) can exceed the CPU capacity, thus let's 6208 * clamp to the maximum CPU capacity to ensure consistency with 6209 * the cpu_util call. 6210 */ 6211 return min_t(unsigned long, util, capacity_orig_of(cpu)); 6212 } 6213 6214 /* 6215 * Disable WAKE_AFFINE in the case where task @p doesn't fit in the 6216 * capacity of either the waking CPU @cpu or the previous CPU @prev_cpu. 6217 * 6218 * In that case WAKE_AFFINE doesn't make sense and we'll let 6219 * BALANCE_WAKE sort things out. 6220 */ 6221 static int wake_cap(struct task_struct *p, int cpu, int prev_cpu) 6222 { 6223 long min_cap, max_cap; 6224 6225 if (!static_branch_unlikely(&sched_asym_cpucapacity)) 6226 return 0; 6227 6228 min_cap = min(capacity_orig_of(prev_cpu), capacity_orig_of(cpu)); 6229 max_cap = cpu_rq(cpu)->rd->max_cpu_capacity; 6230 6231 /* Minimum capacity is close to max, no need to abort wake_affine */ 6232 if (max_cap - min_cap < max_cap >> 3) 6233 return 0; 6234 6235 /* Bring task utilization in sync with prev_cpu */ 6236 sync_entity_load_avg(&p->se); 6237 6238 return !task_fits_capacity(p, min_cap); 6239 } 6240 6241 /* 6242 * Predicts what cpu_util(@cpu) would return if @p was migrated (and enqueued) 6243 * to @dst_cpu. 6244 */ 6245 static unsigned long cpu_util_next(int cpu, struct task_struct *p, int dst_cpu) 6246 { 6247 struct cfs_rq *cfs_rq = &cpu_rq(cpu)->cfs; 6248 unsigned long util_est, util = READ_ONCE(cfs_rq->avg.util_avg); 6249 6250 /* 6251 * If @p migrates from @cpu to another, remove its contribution. Or, 6252 * if @p migrates from another CPU to @cpu, add its contribution. In 6253 * the other cases, @cpu is not impacted by the migration, so the 6254 * util_avg should already be correct. 6255 */ 6256 if (task_cpu(p) == cpu && dst_cpu != cpu) 6257 sub_positive(&util, task_util(p)); 6258 else if (task_cpu(p) != cpu && dst_cpu == cpu) 6259 util += task_util(p); 6260 6261 if (sched_feat(UTIL_EST)) { 6262 util_est = READ_ONCE(cfs_rq->avg.util_est.enqueued); 6263 6264 /* 6265 * During wake-up, the task isn't enqueued yet and doesn't 6266 * appear in the cfs_rq->avg.util_est.enqueued of any rq, 6267 * so just add it (if needed) to "simulate" what will be 6268 * cpu_util() after the task has been enqueued. 6269 */ 6270 if (dst_cpu == cpu) 6271 util_est += _task_util_est(p); 6272 6273 util = max(util, util_est); 6274 } 6275 6276 return min(util, capacity_orig_of(cpu)); 6277 } 6278 6279 /* 6280 * compute_energy(): Estimates the energy that would be consumed if @p was 6281 * migrated to @dst_cpu. compute_energy() predicts what will be the utilization 6282 * landscape of the * CPUs after the task migration, and uses the Energy Model 6283 * to compute what would be the energy if we decided to actually migrate that 6284 * task. 6285 */ 6286 static long 6287 compute_energy(struct task_struct *p, int dst_cpu, struct perf_domain *pd) 6288 { 6289 unsigned int max_util, util_cfs, cpu_util, cpu_cap; 6290 unsigned long sum_util, energy = 0; 6291 struct task_struct *tsk; 6292 int cpu; 6293 6294 for (; pd; pd = pd->next) { 6295 struct cpumask *pd_mask = perf_domain_span(pd); 6296 6297 /* 6298 * The energy model mandates all the CPUs of a performance 6299 * domain have the same capacity. 6300 */ 6301 cpu_cap = arch_scale_cpu_capacity(cpumask_first(pd_mask)); 6302 max_util = sum_util = 0; 6303 6304 /* 6305 * The capacity state of CPUs of the current rd can be driven by 6306 * CPUs of another rd if they belong to the same performance 6307 * domain. So, account for the utilization of these CPUs too 6308 * by masking pd with cpu_online_mask instead of the rd span. 6309 * 6310 * If an entire performance domain is outside of the current rd, 6311 * it will not appear in its pd list and will not be accounted 6312 * by compute_energy(). 6313 */ 6314 for_each_cpu_and(cpu, pd_mask, cpu_online_mask) { 6315 util_cfs = cpu_util_next(cpu, p, dst_cpu); 6316 6317 /* 6318 * Busy time computation: utilization clamping is not 6319 * required since the ratio (sum_util / cpu_capacity) 6320 * is already enough to scale the EM reported power 6321 * consumption at the (eventually clamped) cpu_capacity. 6322 */ 6323 sum_util += schedutil_cpu_util(cpu, util_cfs, cpu_cap, 6324 ENERGY_UTIL, NULL); 6325 6326 /* 6327 * Performance domain frequency: utilization clamping 6328 * must be considered since it affects the selection 6329 * of the performance domain frequency. 6330 * NOTE: in case RT tasks are running, by default the 6331 * FREQUENCY_UTIL's utilization can be max OPP. 6332 */ 6333 tsk = cpu == dst_cpu ? p : NULL; 6334 cpu_util = schedutil_cpu_util(cpu, util_cfs, cpu_cap, 6335 FREQUENCY_UTIL, tsk); 6336 max_util = max(max_util, cpu_util); 6337 } 6338 6339 energy += em_pd_energy(pd->em_pd, max_util, sum_util); 6340 } 6341 6342 return energy; 6343 } 6344 6345 /* 6346 * find_energy_efficient_cpu(): Find most energy-efficient target CPU for the 6347 * waking task. find_energy_efficient_cpu() looks for the CPU with maximum 6348 * spare capacity in each performance domain and uses it as a potential 6349 * candidate to execute the task. Then, it uses the Energy Model to figure 6350 * out which of the CPU candidates is the most energy-efficient. 6351 * 6352 * The rationale for this heuristic is as follows. In a performance domain, 6353 * all the most energy efficient CPU candidates (according to the Energy 6354 * Model) are those for which we'll request a low frequency. When there are 6355 * several CPUs for which the frequency request will be the same, we don't 6356 * have enough data to break the tie between them, because the Energy Model 6357 * only includes active power costs. With this model, if we assume that 6358 * frequency requests follow utilization (e.g. using schedutil), the CPU with 6359 * the maximum spare capacity in a performance domain is guaranteed to be among 6360 * the best candidates of the performance domain. 6361 * 6362 * In practice, it could be preferable from an energy standpoint to pack 6363 * small tasks on a CPU in order to let other CPUs go in deeper idle states, 6364 * but that could also hurt our chances to go cluster idle, and we have no 6365 * ways to tell with the current Energy Model if this is actually a good 6366 * idea or not. So, find_energy_efficient_cpu() basically favors 6367 * cluster-packing, and spreading inside a cluster. That should at least be 6368 * a good thing for latency, and this is consistent with the idea that most 6369 * of the energy savings of EAS come from the asymmetry of the system, and 6370 * not so much from breaking the tie between identical CPUs. That's also the 6371 * reason why EAS is enabled in the topology code only for systems where 6372 * SD_ASYM_CPUCAPACITY is set. 6373 * 6374 * NOTE: Forkees are not accepted in the energy-aware wake-up path because 6375 * they don't have any useful utilization data yet and it's not possible to 6376 * forecast their impact on energy consumption. Consequently, they will be 6377 * placed by find_idlest_cpu() on the least loaded CPU, which might turn out 6378 * to be energy-inefficient in some use-cases. The alternative would be to 6379 * bias new tasks towards specific types of CPUs first, or to try to infer 6380 * their util_avg from the parent task, but those heuristics could hurt 6381 * other use-cases too. So, until someone finds a better way to solve this, 6382 * let's keep things simple by re-using the existing slow path. 6383 */ 6384 6385 static int find_energy_efficient_cpu(struct task_struct *p, int prev_cpu) 6386 { 6387 unsigned long prev_energy = ULONG_MAX, best_energy = ULONG_MAX; 6388 struct root_domain *rd = cpu_rq(smp_processor_id())->rd; 6389 int cpu, best_energy_cpu = prev_cpu; 6390 struct perf_domain *head, *pd; 6391 unsigned long cpu_cap, util; 6392 struct sched_domain *sd; 6393 6394 rcu_read_lock(); 6395 pd = rcu_dereference(rd->pd); 6396 if (!pd || READ_ONCE(rd->overutilized)) 6397 goto fail; 6398 head = pd; 6399 6400 /* 6401 * Energy-aware wake-up happens on the lowest sched_domain starting 6402 * from sd_asym_cpucapacity spanning over this_cpu and prev_cpu. 6403 */ 6404 sd = rcu_dereference(*this_cpu_ptr(&sd_asym_cpucapacity)); 6405 while (sd && !cpumask_test_cpu(prev_cpu, sched_domain_span(sd))) 6406 sd = sd->parent; 6407 if (!sd) 6408 goto fail; 6409 6410 sync_entity_load_avg(&p->se); 6411 if (!task_util_est(p)) 6412 goto unlock; 6413 6414 for (; pd; pd = pd->next) { 6415 unsigned long cur_energy, spare_cap, max_spare_cap = 0; 6416 int max_spare_cap_cpu = -1; 6417 6418 for_each_cpu_and(cpu, perf_domain_span(pd), sched_domain_span(sd)) { 6419 if (!cpumask_test_cpu(cpu, p->cpus_ptr)) 6420 continue; 6421 6422 /* Skip CPUs that will be overutilized. */ 6423 util = cpu_util_next(cpu, p, cpu); 6424 cpu_cap = capacity_of(cpu); 6425 if (cpu_cap * 1024 < util * capacity_margin) 6426 continue; 6427 6428 /* Always use prev_cpu as a candidate. */ 6429 if (cpu == prev_cpu) { 6430 prev_energy = compute_energy(p, prev_cpu, head); 6431 best_energy = min(best_energy, prev_energy); 6432 continue; 6433 } 6434 6435 /* 6436 * Find the CPU with the maximum spare capacity in 6437 * the performance domain 6438 */ 6439 spare_cap = cpu_cap - util; 6440 if (spare_cap > max_spare_cap) { 6441 max_spare_cap = spare_cap; 6442 max_spare_cap_cpu = cpu; 6443 } 6444 } 6445 6446 /* Evaluate the energy impact of using this CPU. */ 6447 if (max_spare_cap_cpu >= 0) { 6448 cur_energy = compute_energy(p, max_spare_cap_cpu, head); 6449 if (cur_energy < best_energy) { 6450 best_energy = cur_energy; 6451 best_energy_cpu = max_spare_cap_cpu; 6452 } 6453 } 6454 } 6455 unlock: 6456 rcu_read_unlock(); 6457 6458 /* 6459 * Pick the best CPU if prev_cpu cannot be used, or if it saves at 6460 * least 6% of the energy used by prev_cpu. 6461 */ 6462 if (prev_energy == ULONG_MAX) 6463 return best_energy_cpu; 6464 6465 if ((prev_energy - best_energy) > (prev_energy >> 4)) 6466 return best_energy_cpu; 6467 6468 return prev_cpu; 6469 6470 fail: 6471 rcu_read_unlock(); 6472 6473 return -1; 6474 } 6475 6476 /* 6477 * select_task_rq_fair: Select target runqueue for the waking task in domains 6478 * that have the 'sd_flag' flag set. In practice, this is SD_BALANCE_WAKE, 6479 * SD_BALANCE_FORK, or SD_BALANCE_EXEC. 6480 * 6481 * Balances load by selecting the idlest CPU in the idlest group, or under 6482 * certain conditions an idle sibling CPU if the domain has SD_WAKE_AFFINE set. 6483 * 6484 * Returns the target CPU number. 6485 * 6486 * preempt must be disabled. 6487 */ 6488 static int 6489 select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_flags) 6490 { 6491 struct sched_domain *tmp, *sd = NULL; 6492 int cpu = smp_processor_id(); 6493 int new_cpu = prev_cpu; 6494 int want_affine = 0; 6495 int sync = (wake_flags & WF_SYNC) && !(current->flags & PF_EXITING); 6496 6497 if (sd_flag & SD_BALANCE_WAKE) { 6498 record_wakee(p); 6499 6500 if (sched_energy_enabled()) { 6501 new_cpu = find_energy_efficient_cpu(p, prev_cpu); 6502 if (new_cpu >= 0) 6503 return new_cpu; 6504 new_cpu = prev_cpu; 6505 } 6506 6507 want_affine = !wake_wide(p) && !wake_cap(p, cpu, prev_cpu) && 6508 cpumask_test_cpu(cpu, p->cpus_ptr); 6509 } 6510 6511 rcu_read_lock(); 6512 for_each_domain(cpu, tmp) { 6513 if (!(tmp->flags & SD_LOAD_BALANCE)) 6514 break; 6515 6516 /* 6517 * If both 'cpu' and 'prev_cpu' are part of this domain, 6518 * cpu is a valid SD_WAKE_AFFINE target. 6519 */ 6520 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) && 6521 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) { 6522 if (cpu != prev_cpu) 6523 new_cpu = wake_affine(tmp, p, cpu, prev_cpu, sync); 6524 6525 sd = NULL; /* Prefer wake_affine over balance flags */ 6526 break; 6527 } 6528 6529 if (tmp->flags & sd_flag) 6530 sd = tmp; 6531 else if (!want_affine) 6532 break; 6533 } 6534 6535 if (unlikely(sd)) { 6536 /* Slow path */ 6537 new_cpu = find_idlest_cpu(sd, p, cpu, prev_cpu, sd_flag); 6538 } else if (sd_flag & SD_BALANCE_WAKE) { /* XXX always ? */ 6539 /* Fast path */ 6540 6541 new_cpu = select_idle_sibling(p, prev_cpu, new_cpu); 6542 6543 if (want_affine) 6544 current->recent_used_cpu = cpu; 6545 } 6546 rcu_read_unlock(); 6547 6548 return new_cpu; 6549 } 6550 6551 static void detach_entity_cfs_rq(struct sched_entity *se); 6552 6553 /* 6554 * Called immediately before a task is migrated to a new CPU; task_cpu(p) and 6555 * cfs_rq_of(p) references at time of call are still valid and identify the 6556 * previous CPU. The caller guarantees p->pi_lock or task_rq(p)->lock is held. 6557 */ 6558 static void migrate_task_rq_fair(struct task_struct *p, int new_cpu) 6559 { 6560 /* 6561 * As blocked tasks retain absolute vruntime the migration needs to 6562 * deal with this by subtracting the old and adding the new 6563 * min_vruntime -- the latter is done by enqueue_entity() when placing 6564 * the task on the new runqueue. 6565 */ 6566 if (p->state == TASK_WAKING) { 6567 struct sched_entity *se = &p->se; 6568 struct cfs_rq *cfs_rq = cfs_rq_of(se); 6569 u64 min_vruntime; 6570 6571 #ifndef CONFIG_64BIT 6572 u64 min_vruntime_copy; 6573 6574 do { 6575 min_vruntime_copy = cfs_rq->min_vruntime_copy; 6576 smp_rmb(); 6577 min_vruntime = cfs_rq->min_vruntime; 6578 } while (min_vruntime != min_vruntime_copy); 6579 #else 6580 min_vruntime = cfs_rq->min_vruntime; 6581 #endif 6582 6583 se->vruntime -= min_vruntime; 6584 } 6585 6586 if (p->on_rq == TASK_ON_RQ_MIGRATING) { 6587 /* 6588 * In case of TASK_ON_RQ_MIGRATING we in fact hold the 'old' 6589 * rq->lock and can modify state directly. 6590 */ 6591 lockdep_assert_held(&task_rq(p)->lock); 6592 detach_entity_cfs_rq(&p->se); 6593 6594 } else { 6595 /* 6596 * We are supposed to update the task to "current" time, then 6597 * its up to date and ready to go to new CPU/cfs_rq. But we 6598 * have difficulty in getting what current time is, so simply 6599 * throw away the out-of-date time. This will result in the 6600 * wakee task is less decayed, but giving the wakee more load 6601 * sounds not bad. 6602 */ 6603 remove_entity_load_avg(&p->se); 6604 } 6605 6606 /* Tell new CPU we are migrated */ 6607 p->se.avg.last_update_time = 0; 6608 6609 /* We have migrated, no longer consider this task hot */ 6610 p->se.exec_start = 0; 6611 6612 update_scan_period(p, new_cpu); 6613 } 6614 6615 static void task_dead_fair(struct task_struct *p) 6616 { 6617 remove_entity_load_avg(&p->se); 6618 } 6619 #endif /* CONFIG_SMP */ 6620 6621 static unsigned long wakeup_gran(struct sched_entity *se) 6622 { 6623 unsigned long gran = sysctl_sched_wakeup_granularity; 6624 6625 /* 6626 * Since its curr running now, convert the gran from real-time 6627 * to virtual-time in his units. 6628 * 6629 * By using 'se' instead of 'curr' we penalize light tasks, so 6630 * they get preempted easier. That is, if 'se' < 'curr' then 6631 * the resulting gran will be larger, therefore penalizing the 6632 * lighter, if otoh 'se' > 'curr' then the resulting gran will 6633 * be smaller, again penalizing the lighter task. 6634 * 6635 * This is especially important for buddies when the leftmost 6636 * task is higher priority than the buddy. 6637 */ 6638 return calc_delta_fair(gran, se); 6639 } 6640 6641 /* 6642 * Should 'se' preempt 'curr'. 6643 * 6644 * |s1 6645 * |s2 6646 * |s3 6647 * g 6648 * |<--->|c 6649 * 6650 * w(c, s1) = -1 6651 * w(c, s2) = 0 6652 * w(c, s3) = 1 6653 * 6654 */ 6655 static int 6656 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se) 6657 { 6658 s64 gran, vdiff = curr->vruntime - se->vruntime; 6659 6660 if (vdiff <= 0) 6661 return -1; 6662 6663 gran = wakeup_gran(se); 6664 if (vdiff > gran) 6665 return 1; 6666 6667 return 0; 6668 } 6669 6670 static void set_last_buddy(struct sched_entity *se) 6671 { 6672 if (entity_is_task(se) && unlikely(task_has_idle_policy(task_of(se)))) 6673 return; 6674 6675 for_each_sched_entity(se) { 6676 if (SCHED_WARN_ON(!se->on_rq)) 6677 return; 6678 cfs_rq_of(se)->last = se; 6679 } 6680 } 6681 6682 static void set_next_buddy(struct sched_entity *se) 6683 { 6684 if (entity_is_task(se) && unlikely(task_has_idle_policy(task_of(se)))) 6685 return; 6686 6687 for_each_sched_entity(se) { 6688 if (SCHED_WARN_ON(!se->on_rq)) 6689 return; 6690 cfs_rq_of(se)->next = se; 6691 } 6692 } 6693 6694 static void set_skip_buddy(struct sched_entity *se) 6695 { 6696 for_each_sched_entity(se) 6697 cfs_rq_of(se)->skip = se; 6698 } 6699 6700 /* 6701 * Preempt the current task with a newly woken task if needed: 6702 */ 6703 static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags) 6704 { 6705 struct task_struct *curr = rq->curr; 6706 struct sched_entity *se = &curr->se, *pse = &p->se; 6707 struct cfs_rq *cfs_rq = task_cfs_rq(curr); 6708 int scale = cfs_rq->nr_running >= sched_nr_latency; 6709 int next_buddy_marked = 0; 6710 6711 if (unlikely(se == pse)) 6712 return; 6713 6714 /* 6715 * This is possible from callers such as attach_tasks(), in which we 6716 * unconditionally check_prempt_curr() after an enqueue (which may have 6717 * lead to a throttle). This both saves work and prevents false 6718 * next-buddy nomination below. 6719 */ 6720 if (unlikely(throttled_hierarchy(cfs_rq_of(pse)))) 6721 return; 6722 6723 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) { 6724 set_next_buddy(pse); 6725 next_buddy_marked = 1; 6726 } 6727 6728 /* 6729 * We can come here with TIF_NEED_RESCHED already set from new task 6730 * wake up path. 6731 * 6732 * Note: this also catches the edge-case of curr being in a throttled 6733 * group (e.g. via set_curr_task), since update_curr() (in the 6734 * enqueue of curr) will have resulted in resched being set. This 6735 * prevents us from potentially nominating it as a false LAST_BUDDY 6736 * below. 6737 */ 6738 if (test_tsk_need_resched(curr)) 6739 return; 6740 6741 /* Idle tasks are by definition preempted by non-idle tasks. */ 6742 if (unlikely(task_has_idle_policy(curr)) && 6743 likely(!task_has_idle_policy(p))) 6744 goto preempt; 6745 6746 /* 6747 * Batch and idle tasks do not preempt non-idle tasks (their preemption 6748 * is driven by the tick): 6749 */ 6750 if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION)) 6751 return; 6752 6753 find_matching_se(&se, &pse); 6754 update_curr(cfs_rq_of(se)); 6755 BUG_ON(!pse); 6756 if (wakeup_preempt_entity(se, pse) == 1) { 6757 /* 6758 * Bias pick_next to pick the sched entity that is 6759 * triggering this preemption. 6760 */ 6761 if (!next_buddy_marked) 6762 set_next_buddy(pse); 6763 goto preempt; 6764 } 6765 6766 return; 6767 6768 preempt: 6769 resched_curr(rq); 6770 /* 6771 * Only set the backward buddy when the current task is still 6772 * on the rq. This can happen when a wakeup gets interleaved 6773 * with schedule on the ->pre_schedule() or idle_balance() 6774 * point, either of which can * drop the rq lock. 6775 * 6776 * Also, during early boot the idle thread is in the fair class, 6777 * for obvious reasons its a bad idea to schedule back to it. 6778 */ 6779 if (unlikely(!se->on_rq || curr == rq->idle)) 6780 return; 6781 6782 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se)) 6783 set_last_buddy(se); 6784 } 6785 6786 static struct task_struct * 6787 pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf) 6788 { 6789 struct cfs_rq *cfs_rq = &rq->cfs; 6790 struct sched_entity *se; 6791 struct task_struct *p; 6792 int new_tasks; 6793 6794 again: 6795 if (!cfs_rq->nr_running) 6796 goto idle; 6797 6798 #ifdef CONFIG_FAIR_GROUP_SCHED 6799 if (prev->sched_class != &fair_sched_class) 6800 goto simple; 6801 6802 /* 6803 * Because of the set_next_buddy() in dequeue_task_fair() it is rather 6804 * likely that a next task is from the same cgroup as the current. 6805 * 6806 * Therefore attempt to avoid putting and setting the entire cgroup 6807 * hierarchy, only change the part that actually changes. 6808 */ 6809 6810 do { 6811 struct sched_entity *curr = cfs_rq->curr; 6812 6813 /* 6814 * Since we got here without doing put_prev_entity() we also 6815 * have to consider cfs_rq->curr. If it is still a runnable 6816 * entity, update_curr() will update its vruntime, otherwise 6817 * forget we've ever seen it. 6818 */ 6819 if (curr) { 6820 if (curr->on_rq) 6821 update_curr(cfs_rq); 6822 else 6823 curr = NULL; 6824 6825 /* 6826 * This call to check_cfs_rq_runtime() will do the 6827 * throttle and dequeue its entity in the parent(s). 6828 * Therefore the nr_running test will indeed 6829 * be correct. 6830 */ 6831 if (unlikely(check_cfs_rq_runtime(cfs_rq))) { 6832 cfs_rq = &rq->cfs; 6833 6834 if (!cfs_rq->nr_running) 6835 goto idle; 6836 6837 goto simple; 6838 } 6839 } 6840 6841 se = pick_next_entity(cfs_rq, curr); 6842 cfs_rq = group_cfs_rq(se); 6843 } while (cfs_rq); 6844 6845 p = task_of(se); 6846 6847 /* 6848 * Since we haven't yet done put_prev_entity and if the selected task 6849 * is a different task than we started out with, try and touch the 6850 * least amount of cfs_rqs. 6851 */ 6852 if (prev != p) { 6853 struct sched_entity *pse = &prev->se; 6854 6855 while (!(cfs_rq = is_same_group(se, pse))) { 6856 int se_depth = se->depth; 6857 int pse_depth = pse->depth; 6858 6859 if (se_depth <= pse_depth) { 6860 put_prev_entity(cfs_rq_of(pse), pse); 6861 pse = parent_entity(pse); 6862 } 6863 if (se_depth >= pse_depth) { 6864 set_next_entity(cfs_rq_of(se), se); 6865 se = parent_entity(se); 6866 } 6867 } 6868 6869 put_prev_entity(cfs_rq, pse); 6870 set_next_entity(cfs_rq, se); 6871 } 6872 6873 goto done; 6874 simple: 6875 #endif 6876 6877 put_prev_task(rq, prev); 6878 6879 do { 6880 se = pick_next_entity(cfs_rq, NULL); 6881 set_next_entity(cfs_rq, se); 6882 cfs_rq = group_cfs_rq(se); 6883 } while (cfs_rq); 6884 6885 p = task_of(se); 6886 6887 done: __maybe_unused; 6888 #ifdef CONFIG_SMP 6889 /* 6890 * Move the next running task to the front of 6891 * the list, so our cfs_tasks list becomes MRU 6892 * one. 6893 */ 6894 list_move(&p->se.group_node, &rq->cfs_tasks); 6895 #endif 6896 6897 if (hrtick_enabled(rq)) 6898 hrtick_start_fair(rq, p); 6899 6900 update_misfit_status(p, rq); 6901 6902 return p; 6903 6904 idle: 6905 update_misfit_status(NULL, rq); 6906 new_tasks = idle_balance(rq, rf); 6907 6908 /* 6909 * Because idle_balance() releases (and re-acquires) rq->lock, it is 6910 * possible for any higher priority task to appear. In that case we 6911 * must re-start the pick_next_entity() loop. 6912 */ 6913 if (new_tasks < 0) 6914 return RETRY_TASK; 6915 6916 if (new_tasks > 0) 6917 goto again; 6918 6919 /* 6920 * rq is about to be idle, check if we need to update the 6921 * lost_idle_time of clock_pelt 6922 */ 6923 update_idle_rq_clock_pelt(rq); 6924 6925 return NULL; 6926 } 6927 6928 /* 6929 * Account for a descheduled task: 6930 */ 6931 static void put_prev_task_fair(struct rq *rq, struct task_struct *prev) 6932 { 6933 struct sched_entity *se = &prev->se; 6934 struct cfs_rq *cfs_rq; 6935 6936 for_each_sched_entity(se) { 6937 cfs_rq = cfs_rq_of(se); 6938 put_prev_entity(cfs_rq, se); 6939 } 6940 } 6941 6942 /* 6943 * sched_yield() is very simple 6944 * 6945 * The magic of dealing with the ->skip buddy is in pick_next_entity. 6946 */ 6947 static void yield_task_fair(struct rq *rq) 6948 { 6949 struct task_struct *curr = rq->curr; 6950 struct cfs_rq *cfs_rq = task_cfs_rq(curr); 6951 struct sched_entity *se = &curr->se; 6952 6953 /* 6954 * Are we the only task in the tree? 6955 */ 6956 if (unlikely(rq->nr_running == 1)) 6957 return; 6958 6959 clear_buddies(cfs_rq, se); 6960 6961 if (curr->policy != SCHED_BATCH) { 6962 update_rq_clock(rq); 6963 /* 6964 * Update run-time statistics of the 'current'. 6965 */ 6966 update_curr(cfs_rq); 6967 /* 6968 * Tell update_rq_clock() that we've just updated, 6969 * so we don't do microscopic update in schedule() 6970 * and double the fastpath cost. 6971 */ 6972 rq_clock_skip_update(rq); 6973 } 6974 6975 set_skip_buddy(se); 6976 } 6977 6978 static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt) 6979 { 6980 struct sched_entity *se = &p->se; 6981 6982 /* throttled hierarchies are not runnable */ 6983 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se))) 6984 return false; 6985 6986 /* Tell the scheduler that we'd really like pse to run next. */ 6987 set_next_buddy(se); 6988 6989 yield_task_fair(rq); 6990 6991 return true; 6992 } 6993 6994 #ifdef CONFIG_SMP 6995 /************************************************** 6996 * Fair scheduling class load-balancing methods. 6997 * 6998 * BASICS 6999 * 7000 * The purpose of load-balancing is to achieve the same basic fairness the 7001 * per-CPU scheduler provides, namely provide a proportional amount of compute 7002 * time to each task. This is expressed in the following equation: 7003 * 7004 * W_i,n/P_i == W_j,n/P_j for all i,j (1) 7005 * 7006 * Where W_i,n is the n-th weight average for CPU i. The instantaneous weight 7007 * W_i,0 is defined as: 7008 * 7009 * W_i,0 = \Sum_j w_i,j (2) 7010 * 7011 * Where w_i,j is the weight of the j-th runnable task on CPU i. This weight 7012 * is derived from the nice value as per sched_prio_to_weight[]. 7013 * 7014 * The weight average is an exponential decay average of the instantaneous 7015 * weight: 7016 * 7017 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3) 7018 * 7019 * C_i is the compute capacity of CPU i, typically it is the 7020 * fraction of 'recent' time available for SCHED_OTHER task execution. But it 7021 * can also include other factors [XXX]. 7022 * 7023 * To achieve this balance we define a measure of imbalance which follows 7024 * directly from (1): 7025 * 7026 * imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j } (4) 7027 * 7028 * We them move tasks around to minimize the imbalance. In the continuous 7029 * function space it is obvious this converges, in the discrete case we get 7030 * a few fun cases generally called infeasible weight scenarios. 7031 * 7032 * [XXX expand on: 7033 * - infeasible weights; 7034 * - local vs global optima in the discrete case. ] 7035 * 7036 * 7037 * SCHED DOMAINS 7038 * 7039 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2) 7040 * for all i,j solution, we create a tree of CPUs that follows the hardware 7041 * topology where each level pairs two lower groups (or better). This results 7042 * in O(log n) layers. Furthermore we reduce the number of CPUs going up the 7043 * tree to only the first of the previous level and we decrease the frequency 7044 * of load-balance at each level inv. proportional to the number of CPUs in 7045 * the groups. 7046 * 7047 * This yields: 7048 * 7049 * log_2 n 1 n 7050 * \Sum { --- * --- * 2^i } = O(n) (5) 7051 * i = 0 2^i 2^i 7052 * `- size of each group 7053 * | | `- number of CPUs doing load-balance 7054 * | `- freq 7055 * `- sum over all levels 7056 * 7057 * Coupled with a limit on how many tasks we can migrate every balance pass, 7058 * this makes (5) the runtime complexity of the balancer. 7059 * 7060 * An important property here is that each CPU is still (indirectly) connected 7061 * to every other CPU in at most O(log n) steps: 7062 * 7063 * The adjacency matrix of the resulting graph is given by: 7064 * 7065 * log_2 n 7066 * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6) 7067 * k = 0 7068 * 7069 * And you'll find that: 7070 * 7071 * A^(log_2 n)_i,j != 0 for all i,j (7) 7072 * 7073 * Showing there's indeed a path between every CPU in at most O(log n) steps. 7074 * The task movement gives a factor of O(m), giving a convergence complexity 7075 * of: 7076 * 7077 * O(nm log n), n := nr_cpus, m := nr_tasks (8) 7078 * 7079 * 7080 * WORK CONSERVING 7081 * 7082 * In order to avoid CPUs going idle while there's still work to do, new idle 7083 * balancing is more aggressive and has the newly idle CPU iterate up the domain 7084 * tree itself instead of relying on other CPUs to bring it work. 7085 * 7086 * This adds some complexity to both (5) and (8) but it reduces the total idle 7087 * time. 7088 * 7089 * [XXX more?] 7090 * 7091 * 7092 * CGROUPS 7093 * 7094 * Cgroups make a horror show out of (2), instead of a simple sum we get: 7095 * 7096 * s_k,i 7097 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9) 7098 * S_k 7099 * 7100 * Where 7101 * 7102 * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10) 7103 * 7104 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on CPU i. 7105 * 7106 * The big problem is S_k, its a global sum needed to compute a local (W_i) 7107 * property. 7108 * 7109 * [XXX write more on how we solve this.. _after_ merging pjt's patches that 7110 * rewrite all of this once again.] 7111 */ 7112 7113 static unsigned long __read_mostly max_load_balance_interval = HZ/10; 7114 7115 enum fbq_type { regular, remote, all }; 7116 7117 enum group_type { 7118 group_other = 0, 7119 group_misfit_task, 7120 group_imbalanced, 7121 group_overloaded, 7122 }; 7123 7124 #define LBF_ALL_PINNED 0x01 7125 #define LBF_NEED_BREAK 0x02 7126 #define LBF_DST_PINNED 0x04 7127 #define LBF_SOME_PINNED 0x08 7128 #define LBF_NOHZ_STATS 0x10 7129 #define LBF_NOHZ_AGAIN 0x20 7130 7131 struct lb_env { 7132 struct sched_domain *sd; 7133 7134 struct rq *src_rq; 7135 int src_cpu; 7136 7137 int dst_cpu; 7138 struct rq *dst_rq; 7139 7140 struct cpumask *dst_grpmask; 7141 int new_dst_cpu; 7142 enum cpu_idle_type idle; 7143 long imbalance; 7144 /* The set of CPUs under consideration for load-balancing */ 7145 struct cpumask *cpus; 7146 7147 unsigned int flags; 7148 7149 unsigned int loop; 7150 unsigned int loop_break; 7151 unsigned int loop_max; 7152 7153 enum fbq_type fbq_type; 7154 enum group_type src_grp_type; 7155 struct list_head tasks; 7156 }; 7157 7158 /* 7159 * Is this task likely cache-hot: 7160 */ 7161 static int task_hot(struct task_struct *p, struct lb_env *env) 7162 { 7163 s64 delta; 7164 7165 lockdep_assert_held(&env->src_rq->lock); 7166 7167 if (p->sched_class != &fair_sched_class) 7168 return 0; 7169 7170 if (unlikely(task_has_idle_policy(p))) 7171 return 0; 7172 7173 /* 7174 * Buddy candidates are cache hot: 7175 */ 7176 if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running && 7177 (&p->se == cfs_rq_of(&p->se)->next || 7178 &p->se == cfs_rq_of(&p->se)->last)) 7179 return 1; 7180 7181 if (sysctl_sched_migration_cost == -1) 7182 return 1; 7183 if (sysctl_sched_migration_cost == 0) 7184 return 0; 7185 7186 delta = rq_clock_task(env->src_rq) - p->se.exec_start; 7187 7188 return delta < (s64)sysctl_sched_migration_cost; 7189 } 7190 7191 #ifdef CONFIG_NUMA_BALANCING 7192 /* 7193 * Returns 1, if task migration degrades locality 7194 * Returns 0, if task migration improves locality i.e migration preferred. 7195 * Returns -1, if task migration is not affected by locality. 7196 */ 7197 static int migrate_degrades_locality(struct task_struct *p, struct lb_env *env) 7198 { 7199 struct numa_group *numa_group = rcu_dereference(p->numa_group); 7200 unsigned long src_weight, dst_weight; 7201 int src_nid, dst_nid, dist; 7202 7203 if (!static_branch_likely(&sched_numa_balancing)) 7204 return -1; 7205 7206 if (!p->numa_faults || !(env->sd->flags & SD_NUMA)) 7207 return -1; 7208 7209 src_nid = cpu_to_node(env->src_cpu); 7210 dst_nid = cpu_to_node(env->dst_cpu); 7211 7212 if (src_nid == dst_nid) 7213 return -1; 7214 7215 /* Migrating away from the preferred node is always bad. */ 7216 if (src_nid == p->numa_preferred_nid) { 7217 if (env->src_rq->nr_running > env->src_rq->nr_preferred_running) 7218 return 1; 7219 else 7220 return -1; 7221 } 7222 7223 /* Encourage migration to the preferred node. */ 7224 if (dst_nid == p->numa_preferred_nid) 7225 return 0; 7226 7227 /* Leaving a core idle is often worse than degrading locality. */ 7228 if (env->idle == CPU_IDLE) 7229 return -1; 7230 7231 dist = node_distance(src_nid, dst_nid); 7232 if (numa_group) { 7233 src_weight = group_weight(p, src_nid, dist); 7234 dst_weight = group_weight(p, dst_nid, dist); 7235 } else { 7236 src_weight = task_weight(p, src_nid, dist); 7237 dst_weight = task_weight(p, dst_nid, dist); 7238 } 7239 7240 return dst_weight < src_weight; 7241 } 7242 7243 #else 7244 static inline int migrate_degrades_locality(struct task_struct *p, 7245 struct lb_env *env) 7246 { 7247 return -1; 7248 } 7249 #endif 7250 7251 /* 7252 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu? 7253 */ 7254 static 7255 int can_migrate_task(struct task_struct *p, struct lb_env *env) 7256 { 7257 int tsk_cache_hot; 7258 7259 lockdep_assert_held(&env->src_rq->lock); 7260 7261 /* 7262 * We do not migrate tasks that are: 7263 * 1) throttled_lb_pair, or 7264 * 2) cannot be migrated to this CPU due to cpus_ptr, or 7265 * 3) running (obviously), or 7266 * 4) are cache-hot on their current CPU. 7267 */ 7268 if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu)) 7269 return 0; 7270 7271 if (!cpumask_test_cpu(env->dst_cpu, p->cpus_ptr)) { 7272 int cpu; 7273 7274 schedstat_inc(p->se.statistics.nr_failed_migrations_affine); 7275 7276 env->flags |= LBF_SOME_PINNED; 7277 7278 /* 7279 * Remember if this task can be migrated to any other CPU in 7280 * our sched_group. We may want to revisit it if we couldn't 7281 * meet load balance goals by pulling other tasks on src_cpu. 7282 * 7283 * Avoid computing new_dst_cpu for NEWLY_IDLE or if we have 7284 * already computed one in current iteration. 7285 */ 7286 if (env->idle == CPU_NEWLY_IDLE || (env->flags & LBF_DST_PINNED)) 7287 return 0; 7288 7289 /* Prevent to re-select dst_cpu via env's CPUs: */ 7290 for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) { 7291 if (cpumask_test_cpu(cpu, p->cpus_ptr)) { 7292 env->flags |= LBF_DST_PINNED; 7293 env->new_dst_cpu = cpu; 7294 break; 7295 } 7296 } 7297 7298 return 0; 7299 } 7300 7301 /* Record that we found atleast one task that could run on dst_cpu */ 7302 env->flags &= ~LBF_ALL_PINNED; 7303 7304 if (task_running(env->src_rq, p)) { 7305 schedstat_inc(p->se.statistics.nr_failed_migrations_running); 7306 return 0; 7307 } 7308 7309 /* 7310 * Aggressive migration if: 7311 * 1) destination numa is preferred 7312 * 2) task is cache cold, or 7313 * 3) too many balance attempts have failed. 7314 */ 7315 tsk_cache_hot = migrate_degrades_locality(p, env); 7316 if (tsk_cache_hot == -1) 7317 tsk_cache_hot = task_hot(p, env); 7318 7319 if (tsk_cache_hot <= 0 || 7320 env->sd->nr_balance_failed > env->sd->cache_nice_tries) { 7321 if (tsk_cache_hot == 1) { 7322 schedstat_inc(env->sd->lb_hot_gained[env->idle]); 7323 schedstat_inc(p->se.statistics.nr_forced_migrations); 7324 } 7325 return 1; 7326 } 7327 7328 schedstat_inc(p->se.statistics.nr_failed_migrations_hot); 7329 return 0; 7330 } 7331 7332 /* 7333 * detach_task() -- detach the task for the migration specified in env 7334 */ 7335 static void detach_task(struct task_struct *p, struct lb_env *env) 7336 { 7337 lockdep_assert_held(&env->src_rq->lock); 7338 7339 deactivate_task(env->src_rq, p, DEQUEUE_NOCLOCK); 7340 set_task_cpu(p, env->dst_cpu); 7341 } 7342 7343 /* 7344 * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as 7345 * part of active balancing operations within "domain". 7346 * 7347 * Returns a task if successful and NULL otherwise. 7348 */ 7349 static struct task_struct *detach_one_task(struct lb_env *env) 7350 { 7351 struct task_struct *p; 7352 7353 lockdep_assert_held(&env->src_rq->lock); 7354 7355 list_for_each_entry_reverse(p, 7356 &env->src_rq->cfs_tasks, se.group_node) { 7357 if (!can_migrate_task(p, env)) 7358 continue; 7359 7360 detach_task(p, env); 7361 7362 /* 7363 * Right now, this is only the second place where 7364 * lb_gained[env->idle] is updated (other is detach_tasks) 7365 * so we can safely collect stats here rather than 7366 * inside detach_tasks(). 7367 */ 7368 schedstat_inc(env->sd->lb_gained[env->idle]); 7369 return p; 7370 } 7371 return NULL; 7372 } 7373 7374 static const unsigned int sched_nr_migrate_break = 32; 7375 7376 /* 7377 * detach_tasks() -- tries to detach up to imbalance runnable load from 7378 * busiest_rq, as part of a balancing operation within domain "sd". 7379 * 7380 * Returns number of detached tasks if successful and 0 otherwise. 7381 */ 7382 static int detach_tasks(struct lb_env *env) 7383 { 7384 struct list_head *tasks = &env->src_rq->cfs_tasks; 7385 struct task_struct *p; 7386 unsigned long load; 7387 int detached = 0; 7388 7389 lockdep_assert_held(&env->src_rq->lock); 7390 7391 if (env->imbalance <= 0) 7392 return 0; 7393 7394 while (!list_empty(tasks)) { 7395 /* 7396 * We don't want to steal all, otherwise we may be treated likewise, 7397 * which could at worst lead to a livelock crash. 7398 */ 7399 if (env->idle != CPU_NOT_IDLE && env->src_rq->nr_running <= 1) 7400 break; 7401 7402 p = list_last_entry(tasks, struct task_struct, se.group_node); 7403 7404 env->loop++; 7405 /* We've more or less seen every task there is, call it quits */ 7406 if (env->loop > env->loop_max) 7407 break; 7408 7409 /* take a breather every nr_migrate tasks */ 7410 if (env->loop > env->loop_break) { 7411 env->loop_break += sched_nr_migrate_break; 7412 env->flags |= LBF_NEED_BREAK; 7413 break; 7414 } 7415 7416 if (!can_migrate_task(p, env)) 7417 goto next; 7418 7419 load = task_h_load(p); 7420 7421 if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed) 7422 goto next; 7423 7424 if ((load / 2) > env->imbalance) 7425 goto next; 7426 7427 detach_task(p, env); 7428 list_add(&p->se.group_node, &env->tasks); 7429 7430 detached++; 7431 env->imbalance -= load; 7432 7433 #ifdef CONFIG_PREEMPT 7434 /* 7435 * NEWIDLE balancing is a source of latency, so preemptible 7436 * kernels will stop after the first task is detached to minimize 7437 * the critical section. 7438 */ 7439 if (env->idle == CPU_NEWLY_IDLE) 7440 break; 7441 #endif 7442 7443 /* 7444 * We only want to steal up to the prescribed amount of 7445 * runnable load. 7446 */ 7447 if (env->imbalance <= 0) 7448 break; 7449 7450 continue; 7451 next: 7452 list_move(&p->se.group_node, tasks); 7453 } 7454 7455 /* 7456 * Right now, this is one of only two places we collect this stat 7457 * so we can safely collect detach_one_task() stats here rather 7458 * than inside detach_one_task(). 7459 */ 7460 schedstat_add(env->sd->lb_gained[env->idle], detached); 7461 7462 return detached; 7463 } 7464 7465 /* 7466 * attach_task() -- attach the task detached by detach_task() to its new rq. 7467 */ 7468 static void attach_task(struct rq *rq, struct task_struct *p) 7469 { 7470 lockdep_assert_held(&rq->lock); 7471 7472 BUG_ON(task_rq(p) != rq); 7473 activate_task(rq, p, ENQUEUE_NOCLOCK); 7474 check_preempt_curr(rq, p, 0); 7475 } 7476 7477 /* 7478 * attach_one_task() -- attaches the task returned from detach_one_task() to 7479 * its new rq. 7480 */ 7481 static void attach_one_task(struct rq *rq, struct task_struct *p) 7482 { 7483 struct rq_flags rf; 7484 7485 rq_lock(rq, &rf); 7486 update_rq_clock(rq); 7487 attach_task(rq, p); 7488 rq_unlock(rq, &rf); 7489 } 7490 7491 /* 7492 * attach_tasks() -- attaches all tasks detached by detach_tasks() to their 7493 * new rq. 7494 */ 7495 static void attach_tasks(struct lb_env *env) 7496 { 7497 struct list_head *tasks = &env->tasks; 7498 struct task_struct *p; 7499 struct rq_flags rf; 7500 7501 rq_lock(env->dst_rq, &rf); 7502 update_rq_clock(env->dst_rq); 7503 7504 while (!list_empty(tasks)) { 7505 p = list_first_entry(tasks, struct task_struct, se.group_node); 7506 list_del_init(&p->se.group_node); 7507 7508 attach_task(env->dst_rq, p); 7509 } 7510 7511 rq_unlock(env->dst_rq, &rf); 7512 } 7513 7514 #ifdef CONFIG_NO_HZ_COMMON 7515 static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq) 7516 { 7517 if (cfs_rq->avg.load_avg) 7518 return true; 7519 7520 if (cfs_rq->avg.util_avg) 7521 return true; 7522 7523 return false; 7524 } 7525 7526 static inline bool others_have_blocked(struct rq *rq) 7527 { 7528 if (READ_ONCE(rq->avg_rt.util_avg)) 7529 return true; 7530 7531 if (READ_ONCE(rq->avg_dl.util_avg)) 7532 return true; 7533 7534 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ 7535 if (READ_ONCE(rq->avg_irq.util_avg)) 7536 return true; 7537 #endif 7538 7539 return false; 7540 } 7541 7542 static inline void update_blocked_load_status(struct rq *rq, bool has_blocked) 7543 { 7544 rq->last_blocked_load_update_tick = jiffies; 7545 7546 if (!has_blocked) 7547 rq->has_blocked_load = 0; 7548 } 7549 #else 7550 static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq) { return false; } 7551 static inline bool others_have_blocked(struct rq *rq) { return false; } 7552 static inline void update_blocked_load_status(struct rq *rq, bool has_blocked) {} 7553 #endif 7554 7555 #ifdef CONFIG_FAIR_GROUP_SCHED 7556 7557 static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq) 7558 { 7559 if (cfs_rq->load.weight) 7560 return false; 7561 7562 if (cfs_rq->avg.load_sum) 7563 return false; 7564 7565 if (cfs_rq->avg.util_sum) 7566 return false; 7567 7568 if (cfs_rq->avg.runnable_load_sum) 7569 return false; 7570 7571 return true; 7572 } 7573 7574 static void update_blocked_averages(int cpu) 7575 { 7576 struct rq *rq = cpu_rq(cpu); 7577 struct cfs_rq *cfs_rq, *pos; 7578 const struct sched_class *curr_class; 7579 struct rq_flags rf; 7580 bool done = true; 7581 7582 rq_lock_irqsave(rq, &rf); 7583 update_rq_clock(rq); 7584 7585 /* 7586 * Iterates the task_group tree in a bottom up fashion, see 7587 * list_add_leaf_cfs_rq() for details. 7588 */ 7589 for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) { 7590 struct sched_entity *se; 7591 7592 if (update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq)) 7593 update_tg_load_avg(cfs_rq, 0); 7594 7595 /* Propagate pending load changes to the parent, if any: */ 7596 se = cfs_rq->tg->se[cpu]; 7597 if (se && !skip_blocked_update(se)) 7598 update_load_avg(cfs_rq_of(se), se, 0); 7599 7600 /* 7601 * There can be a lot of idle CPU cgroups. Don't let fully 7602 * decayed cfs_rqs linger on the list. 7603 */ 7604 if (cfs_rq_is_decayed(cfs_rq)) 7605 list_del_leaf_cfs_rq(cfs_rq); 7606 7607 /* Don't need periodic decay once load/util_avg are null */ 7608 if (cfs_rq_has_blocked(cfs_rq)) 7609 done = false; 7610 } 7611 7612 curr_class = rq->curr->sched_class; 7613 update_rt_rq_load_avg(rq_clock_pelt(rq), rq, curr_class == &rt_sched_class); 7614 update_dl_rq_load_avg(rq_clock_pelt(rq), rq, curr_class == &dl_sched_class); 7615 update_irq_load_avg(rq, 0); 7616 /* Don't need periodic decay once load/util_avg are null */ 7617 if (others_have_blocked(rq)) 7618 done = false; 7619 7620 update_blocked_load_status(rq, !done); 7621 rq_unlock_irqrestore(rq, &rf); 7622 } 7623 7624 /* 7625 * Compute the hierarchical load factor for cfs_rq and all its ascendants. 7626 * This needs to be done in a top-down fashion because the load of a child 7627 * group is a fraction of its parents load. 7628 */ 7629 static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq) 7630 { 7631 struct rq *rq = rq_of(cfs_rq); 7632 struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)]; 7633 unsigned long now = jiffies; 7634 unsigned long load; 7635 7636 if (cfs_rq->last_h_load_update == now) 7637 return; 7638 7639 WRITE_ONCE(cfs_rq->h_load_next, NULL); 7640 for_each_sched_entity(se) { 7641 cfs_rq = cfs_rq_of(se); 7642 WRITE_ONCE(cfs_rq->h_load_next, se); 7643 if (cfs_rq->last_h_load_update == now) 7644 break; 7645 } 7646 7647 if (!se) { 7648 cfs_rq->h_load = cfs_rq_load_avg(cfs_rq); 7649 cfs_rq->last_h_load_update = now; 7650 } 7651 7652 while ((se = READ_ONCE(cfs_rq->h_load_next)) != NULL) { 7653 load = cfs_rq->h_load; 7654 load = div64_ul(load * se->avg.load_avg, 7655 cfs_rq_load_avg(cfs_rq) + 1); 7656 cfs_rq = group_cfs_rq(se); 7657 cfs_rq->h_load = load; 7658 cfs_rq->last_h_load_update = now; 7659 } 7660 } 7661 7662 static unsigned long task_h_load(struct task_struct *p) 7663 { 7664 struct cfs_rq *cfs_rq = task_cfs_rq(p); 7665 7666 update_cfs_rq_h_load(cfs_rq); 7667 return div64_ul(p->se.avg.load_avg * cfs_rq->h_load, 7668 cfs_rq_load_avg(cfs_rq) + 1); 7669 } 7670 #else 7671 static inline void update_blocked_averages(int cpu) 7672 { 7673 struct rq *rq = cpu_rq(cpu); 7674 struct cfs_rq *cfs_rq = &rq->cfs; 7675 const struct sched_class *curr_class; 7676 struct rq_flags rf; 7677 7678 rq_lock_irqsave(rq, &rf); 7679 update_rq_clock(rq); 7680 update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq); 7681 7682 curr_class = rq->curr->sched_class; 7683 update_rt_rq_load_avg(rq_clock_pelt(rq), rq, curr_class == &rt_sched_class); 7684 update_dl_rq_load_avg(rq_clock_pelt(rq), rq, curr_class == &dl_sched_class); 7685 update_irq_load_avg(rq, 0); 7686 update_blocked_load_status(rq, cfs_rq_has_blocked(cfs_rq) || others_have_blocked(rq)); 7687 rq_unlock_irqrestore(rq, &rf); 7688 } 7689 7690 static unsigned long task_h_load(struct task_struct *p) 7691 { 7692 return p->se.avg.load_avg; 7693 } 7694 #endif 7695 7696 /********** Helpers for find_busiest_group ************************/ 7697 7698 /* 7699 * sg_lb_stats - stats of a sched_group required for load_balancing 7700 */ 7701 struct sg_lb_stats { 7702 unsigned long avg_load; /*Avg load across the CPUs of the group */ 7703 unsigned long group_load; /* Total load over the CPUs of the group */ 7704 unsigned long load_per_task; 7705 unsigned long group_capacity; 7706 unsigned long group_util; /* Total utilization of the group */ 7707 unsigned int sum_nr_running; /* Nr tasks running in the group */ 7708 unsigned int idle_cpus; 7709 unsigned int group_weight; 7710 enum group_type group_type; 7711 int group_no_capacity; 7712 unsigned long group_misfit_task_load; /* A CPU has a task too big for its capacity */ 7713 #ifdef CONFIG_NUMA_BALANCING 7714 unsigned int nr_numa_running; 7715 unsigned int nr_preferred_running; 7716 #endif 7717 }; 7718 7719 /* 7720 * sd_lb_stats - Structure to store the statistics of a sched_domain 7721 * during load balancing. 7722 */ 7723 struct sd_lb_stats { 7724 struct sched_group *busiest; /* Busiest group in this sd */ 7725 struct sched_group *local; /* Local group in this sd */ 7726 unsigned long total_running; 7727 unsigned long total_load; /* Total load of all groups in sd */ 7728 unsigned long total_capacity; /* Total capacity of all groups in sd */ 7729 unsigned long avg_load; /* Average load across all groups in sd */ 7730 7731 struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */ 7732 struct sg_lb_stats local_stat; /* Statistics of the local group */ 7733 }; 7734 7735 static inline void init_sd_lb_stats(struct sd_lb_stats *sds) 7736 { 7737 /* 7738 * Skimp on the clearing to avoid duplicate work. We can avoid clearing 7739 * local_stat because update_sg_lb_stats() does a full clear/assignment. 7740 * We must however clear busiest_stat::avg_load because 7741 * update_sd_pick_busiest() reads this before assignment. 7742 */ 7743 *sds = (struct sd_lb_stats){ 7744 .busiest = NULL, 7745 .local = NULL, 7746 .total_running = 0UL, 7747 .total_load = 0UL, 7748 .total_capacity = 0UL, 7749 .busiest_stat = { 7750 .avg_load = 0UL, 7751 .sum_nr_running = 0, 7752 .group_type = group_other, 7753 }, 7754 }; 7755 } 7756 7757 static unsigned long scale_rt_capacity(struct sched_domain *sd, int cpu) 7758 { 7759 struct rq *rq = cpu_rq(cpu); 7760 unsigned long max = arch_scale_cpu_capacity(cpu); 7761 unsigned long used, free; 7762 unsigned long irq; 7763 7764 irq = cpu_util_irq(rq); 7765 7766 if (unlikely(irq >= max)) 7767 return 1; 7768 7769 used = READ_ONCE(rq->avg_rt.util_avg); 7770 used += READ_ONCE(rq->avg_dl.util_avg); 7771 7772 if (unlikely(used >= max)) 7773 return 1; 7774 7775 free = max - used; 7776 7777 return scale_irq_capacity(free, irq, max); 7778 } 7779 7780 static void update_cpu_capacity(struct sched_domain *sd, int cpu) 7781 { 7782 unsigned long capacity = scale_rt_capacity(sd, cpu); 7783 struct sched_group *sdg = sd->groups; 7784 7785 cpu_rq(cpu)->cpu_capacity_orig = arch_scale_cpu_capacity(cpu); 7786 7787 if (!capacity) 7788 capacity = 1; 7789 7790 cpu_rq(cpu)->cpu_capacity = capacity; 7791 sdg->sgc->capacity = capacity; 7792 sdg->sgc->min_capacity = capacity; 7793 sdg->sgc->max_capacity = capacity; 7794 } 7795 7796 void update_group_capacity(struct sched_domain *sd, int cpu) 7797 { 7798 struct sched_domain *child = sd->child; 7799 struct sched_group *group, *sdg = sd->groups; 7800 unsigned long capacity, min_capacity, max_capacity; 7801 unsigned long interval; 7802 7803 interval = msecs_to_jiffies(sd->balance_interval); 7804 interval = clamp(interval, 1UL, max_load_balance_interval); 7805 sdg->sgc->next_update = jiffies + interval; 7806 7807 if (!child) { 7808 update_cpu_capacity(sd, cpu); 7809 return; 7810 } 7811 7812 capacity = 0; 7813 min_capacity = ULONG_MAX; 7814 max_capacity = 0; 7815 7816 if (child->flags & SD_OVERLAP) { 7817 /* 7818 * SD_OVERLAP domains cannot assume that child groups 7819 * span the current group. 7820 */ 7821 7822 for_each_cpu(cpu, sched_group_span(sdg)) { 7823 struct sched_group_capacity *sgc; 7824 struct rq *rq = cpu_rq(cpu); 7825 7826 /* 7827 * build_sched_domains() -> init_sched_groups_capacity() 7828 * gets here before we've attached the domains to the 7829 * runqueues. 7830 * 7831 * Use capacity_of(), which is set irrespective of domains 7832 * in update_cpu_capacity(). 7833 * 7834 * This avoids capacity from being 0 and 7835 * causing divide-by-zero issues on boot. 7836 */ 7837 if (unlikely(!rq->sd)) { 7838 capacity += capacity_of(cpu); 7839 } else { 7840 sgc = rq->sd->groups->sgc; 7841 capacity += sgc->capacity; 7842 } 7843 7844 min_capacity = min(capacity, min_capacity); 7845 max_capacity = max(capacity, max_capacity); 7846 } 7847 } else { 7848 /* 7849 * !SD_OVERLAP domains can assume that child groups 7850 * span the current group. 7851 */ 7852 7853 group = child->groups; 7854 do { 7855 struct sched_group_capacity *sgc = group->sgc; 7856 7857 capacity += sgc->capacity; 7858 min_capacity = min(sgc->min_capacity, min_capacity); 7859 max_capacity = max(sgc->max_capacity, max_capacity); 7860 group = group->next; 7861 } while (group != child->groups); 7862 } 7863 7864 sdg->sgc->capacity = capacity; 7865 sdg->sgc->min_capacity = min_capacity; 7866 sdg->sgc->max_capacity = max_capacity; 7867 } 7868 7869 /* 7870 * Check whether the capacity of the rq has been noticeably reduced by side 7871 * activity. The imbalance_pct is used for the threshold. 7872 * Return true is the capacity is reduced 7873 */ 7874 static inline int 7875 check_cpu_capacity(struct rq *rq, struct sched_domain *sd) 7876 { 7877 return ((rq->cpu_capacity * sd->imbalance_pct) < 7878 (rq->cpu_capacity_orig * 100)); 7879 } 7880 7881 /* 7882 * Check whether a rq has a misfit task and if it looks like we can actually 7883 * help that task: we can migrate the task to a CPU of higher capacity, or 7884 * the task's current CPU is heavily pressured. 7885 */ 7886 static inline int check_misfit_status(struct rq *rq, struct sched_domain *sd) 7887 { 7888 return rq->misfit_task_load && 7889 (rq->cpu_capacity_orig < rq->rd->max_cpu_capacity || 7890 check_cpu_capacity(rq, sd)); 7891 } 7892 7893 /* 7894 * Group imbalance indicates (and tries to solve) the problem where balancing 7895 * groups is inadequate due to ->cpus_ptr constraints. 7896 * 7897 * Imagine a situation of two groups of 4 CPUs each and 4 tasks each with a 7898 * cpumask covering 1 CPU of the first group and 3 CPUs of the second group. 7899 * Something like: 7900 * 7901 * { 0 1 2 3 } { 4 5 6 7 } 7902 * * * * * 7903 * 7904 * If we were to balance group-wise we'd place two tasks in the first group and 7905 * two tasks in the second group. Clearly this is undesired as it will overload 7906 * cpu 3 and leave one of the CPUs in the second group unused. 7907 * 7908 * The current solution to this issue is detecting the skew in the first group 7909 * by noticing the lower domain failed to reach balance and had difficulty 7910 * moving tasks due to affinity constraints. 7911 * 7912 * When this is so detected; this group becomes a candidate for busiest; see 7913 * update_sd_pick_busiest(). And calculate_imbalance() and 7914 * find_busiest_group() avoid some of the usual balance conditions to allow it 7915 * to create an effective group imbalance. 7916 * 7917 * This is a somewhat tricky proposition since the next run might not find the 7918 * group imbalance and decide the groups need to be balanced again. A most 7919 * subtle and fragile situation. 7920 */ 7921 7922 static inline int sg_imbalanced(struct sched_group *group) 7923 { 7924 return group->sgc->imbalance; 7925 } 7926 7927 /* 7928 * group_has_capacity returns true if the group has spare capacity that could 7929 * be used by some tasks. 7930 * We consider that a group has spare capacity if the * number of task is 7931 * smaller than the number of CPUs or if the utilization is lower than the 7932 * available capacity for CFS tasks. 7933 * For the latter, we use a threshold to stabilize the state, to take into 7934 * account the variance of the tasks' load and to return true if the available 7935 * capacity in meaningful for the load balancer. 7936 * As an example, an available capacity of 1% can appear but it doesn't make 7937 * any benefit for the load balance. 7938 */ 7939 static inline bool 7940 group_has_capacity(struct lb_env *env, struct sg_lb_stats *sgs) 7941 { 7942 if (sgs->sum_nr_running < sgs->group_weight) 7943 return true; 7944 7945 if ((sgs->group_capacity * 100) > 7946 (sgs->group_util * env->sd->imbalance_pct)) 7947 return true; 7948 7949 return false; 7950 } 7951 7952 /* 7953 * group_is_overloaded returns true if the group has more tasks than it can 7954 * handle. 7955 * group_is_overloaded is not equals to !group_has_capacity because a group 7956 * with the exact right number of tasks, has no more spare capacity but is not 7957 * overloaded so both group_has_capacity and group_is_overloaded return 7958 * false. 7959 */ 7960 static inline bool 7961 group_is_overloaded(struct lb_env *env, struct sg_lb_stats *sgs) 7962 { 7963 if (sgs->sum_nr_running <= sgs->group_weight) 7964 return false; 7965 7966 if ((sgs->group_capacity * 100) < 7967 (sgs->group_util * env->sd->imbalance_pct)) 7968 return true; 7969 7970 return false; 7971 } 7972 7973 /* 7974 * group_smaller_min_cpu_capacity: Returns true if sched_group sg has smaller 7975 * per-CPU capacity than sched_group ref. 7976 */ 7977 static inline bool 7978 group_smaller_min_cpu_capacity(struct sched_group *sg, struct sched_group *ref) 7979 { 7980 return sg->sgc->min_capacity * capacity_margin < 7981 ref->sgc->min_capacity * 1024; 7982 } 7983 7984 /* 7985 * group_smaller_max_cpu_capacity: Returns true if sched_group sg has smaller 7986 * per-CPU capacity_orig than sched_group ref. 7987 */ 7988 static inline bool 7989 group_smaller_max_cpu_capacity(struct sched_group *sg, struct sched_group *ref) 7990 { 7991 return sg->sgc->max_capacity * capacity_margin < 7992 ref->sgc->max_capacity * 1024; 7993 } 7994 7995 static inline enum 7996 group_type group_classify(struct sched_group *group, 7997 struct sg_lb_stats *sgs) 7998 { 7999 if (sgs->group_no_capacity) 8000 return group_overloaded; 8001 8002 if (sg_imbalanced(group)) 8003 return group_imbalanced; 8004 8005 if (sgs->group_misfit_task_load) 8006 return group_misfit_task; 8007 8008 return group_other; 8009 } 8010 8011 static bool update_nohz_stats(struct rq *rq, bool force) 8012 { 8013 #ifdef CONFIG_NO_HZ_COMMON 8014 unsigned int cpu = rq->cpu; 8015 8016 if (!rq->has_blocked_load) 8017 return false; 8018 8019 if (!cpumask_test_cpu(cpu, nohz.idle_cpus_mask)) 8020 return false; 8021 8022 if (!force && !time_after(jiffies, rq->last_blocked_load_update_tick)) 8023 return true; 8024 8025 update_blocked_averages(cpu); 8026 8027 return rq->has_blocked_load; 8028 #else 8029 return false; 8030 #endif 8031 } 8032 8033 /** 8034 * update_sg_lb_stats - Update sched_group's statistics for load balancing. 8035 * @env: The load balancing environment. 8036 * @group: sched_group whose statistics are to be updated. 8037 * @sgs: variable to hold the statistics for this group. 8038 * @sg_status: Holds flag indicating the status of the sched_group 8039 */ 8040 static inline void update_sg_lb_stats(struct lb_env *env, 8041 struct sched_group *group, 8042 struct sg_lb_stats *sgs, 8043 int *sg_status) 8044 { 8045 int i, nr_running; 8046 8047 memset(sgs, 0, sizeof(*sgs)); 8048 8049 for_each_cpu_and(i, sched_group_span(group), env->cpus) { 8050 struct rq *rq = cpu_rq(i); 8051 8052 if ((env->flags & LBF_NOHZ_STATS) && update_nohz_stats(rq, false)) 8053 env->flags |= LBF_NOHZ_AGAIN; 8054 8055 sgs->group_load += cpu_runnable_load(rq); 8056 sgs->group_util += cpu_util(i); 8057 sgs->sum_nr_running += rq->cfs.h_nr_running; 8058 8059 nr_running = rq->nr_running; 8060 if (nr_running > 1) 8061 *sg_status |= SG_OVERLOAD; 8062 8063 if (cpu_overutilized(i)) 8064 *sg_status |= SG_OVERUTILIZED; 8065 8066 #ifdef CONFIG_NUMA_BALANCING 8067 sgs->nr_numa_running += rq->nr_numa_running; 8068 sgs->nr_preferred_running += rq->nr_preferred_running; 8069 #endif 8070 /* 8071 * No need to call idle_cpu() if nr_running is not 0 8072 */ 8073 if (!nr_running && idle_cpu(i)) 8074 sgs->idle_cpus++; 8075 8076 if (env->sd->flags & SD_ASYM_CPUCAPACITY && 8077 sgs->group_misfit_task_load < rq->misfit_task_load) { 8078 sgs->group_misfit_task_load = rq->misfit_task_load; 8079 *sg_status |= SG_OVERLOAD; 8080 } 8081 } 8082 8083 /* Adjust by relative CPU capacity of the group */ 8084 sgs->group_capacity = group->sgc->capacity; 8085 sgs->avg_load = (sgs->group_load*SCHED_CAPACITY_SCALE) / sgs->group_capacity; 8086 8087 if (sgs->sum_nr_running) 8088 sgs->load_per_task = sgs->group_load / sgs->sum_nr_running; 8089 8090 sgs->group_weight = group->group_weight; 8091 8092 sgs->group_no_capacity = group_is_overloaded(env, sgs); 8093 sgs->group_type = group_classify(group, sgs); 8094 } 8095 8096 /** 8097 * update_sd_pick_busiest - return 1 on busiest group 8098 * @env: The load balancing environment. 8099 * @sds: sched_domain statistics 8100 * @sg: sched_group candidate to be checked for being the busiest 8101 * @sgs: sched_group statistics 8102 * 8103 * Determine if @sg is a busier group than the previously selected 8104 * busiest group. 8105 * 8106 * Return: %true if @sg is a busier group than the previously selected 8107 * busiest group. %false otherwise. 8108 */ 8109 static bool update_sd_pick_busiest(struct lb_env *env, 8110 struct sd_lb_stats *sds, 8111 struct sched_group *sg, 8112 struct sg_lb_stats *sgs) 8113 { 8114 struct sg_lb_stats *busiest = &sds->busiest_stat; 8115 8116 /* 8117 * Don't try to pull misfit tasks we can't help. 8118 * We can use max_capacity here as reduction in capacity on some 8119 * CPUs in the group should either be possible to resolve 8120 * internally or be covered by avg_load imbalance (eventually). 8121 */ 8122 if (sgs->group_type == group_misfit_task && 8123 (!group_smaller_max_cpu_capacity(sg, sds->local) || 8124 !group_has_capacity(env, &sds->local_stat))) 8125 return false; 8126 8127 if (sgs->group_type > busiest->group_type) 8128 return true; 8129 8130 if (sgs->group_type < busiest->group_type) 8131 return false; 8132 8133 if (sgs->avg_load <= busiest->avg_load) 8134 return false; 8135 8136 if (!(env->sd->flags & SD_ASYM_CPUCAPACITY)) 8137 goto asym_packing; 8138 8139 /* 8140 * Candidate sg has no more than one task per CPU and 8141 * has higher per-CPU capacity. Migrating tasks to less 8142 * capable CPUs may harm throughput. Maximize throughput, 8143 * power/energy consequences are not considered. 8144 */ 8145 if (sgs->sum_nr_running <= sgs->group_weight && 8146 group_smaller_min_cpu_capacity(sds->local, sg)) 8147 return false; 8148 8149 /* 8150 * If we have more than one misfit sg go with the biggest misfit. 8151 */ 8152 if (sgs->group_type == group_misfit_task && 8153 sgs->group_misfit_task_load < busiest->group_misfit_task_load) 8154 return false; 8155 8156 asym_packing: 8157 /* This is the busiest node in its class. */ 8158 if (!(env->sd->flags & SD_ASYM_PACKING)) 8159 return true; 8160 8161 /* No ASYM_PACKING if target CPU is already busy */ 8162 if (env->idle == CPU_NOT_IDLE) 8163 return true; 8164 /* 8165 * ASYM_PACKING needs to move all the work to the highest 8166 * prority CPUs in the group, therefore mark all groups 8167 * of lower priority than ourself as busy. 8168 */ 8169 if (sgs->sum_nr_running && 8170 sched_asym_prefer(env->dst_cpu, sg->asym_prefer_cpu)) { 8171 if (!sds->busiest) 8172 return true; 8173 8174 /* Prefer to move from lowest priority CPU's work */ 8175 if (sched_asym_prefer(sds->busiest->asym_prefer_cpu, 8176 sg->asym_prefer_cpu)) 8177 return true; 8178 } 8179 8180 return false; 8181 } 8182 8183 #ifdef CONFIG_NUMA_BALANCING 8184 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs) 8185 { 8186 if (sgs->sum_nr_running > sgs->nr_numa_running) 8187 return regular; 8188 if (sgs->sum_nr_running > sgs->nr_preferred_running) 8189 return remote; 8190 return all; 8191 } 8192 8193 static inline enum fbq_type fbq_classify_rq(struct rq *rq) 8194 { 8195 if (rq->nr_running > rq->nr_numa_running) 8196 return regular; 8197 if (rq->nr_running > rq->nr_preferred_running) 8198 return remote; 8199 return all; 8200 } 8201 #else 8202 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs) 8203 { 8204 return all; 8205 } 8206 8207 static inline enum fbq_type fbq_classify_rq(struct rq *rq) 8208 { 8209 return regular; 8210 } 8211 #endif /* CONFIG_NUMA_BALANCING */ 8212 8213 /** 8214 * update_sd_lb_stats - Update sched_domain's statistics for load balancing. 8215 * @env: The load balancing environment. 8216 * @sds: variable to hold the statistics for this sched_domain. 8217 */ 8218 static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds) 8219 { 8220 struct sched_domain *child = env->sd->child; 8221 struct sched_group *sg = env->sd->groups; 8222 struct sg_lb_stats *local = &sds->local_stat; 8223 struct sg_lb_stats tmp_sgs; 8224 bool prefer_sibling = child && child->flags & SD_PREFER_SIBLING; 8225 int sg_status = 0; 8226 8227 #ifdef CONFIG_NO_HZ_COMMON 8228 if (env->idle == CPU_NEWLY_IDLE && READ_ONCE(nohz.has_blocked)) 8229 env->flags |= LBF_NOHZ_STATS; 8230 #endif 8231 8232 do { 8233 struct sg_lb_stats *sgs = &tmp_sgs; 8234 int local_group; 8235 8236 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_span(sg)); 8237 if (local_group) { 8238 sds->local = sg; 8239 sgs = local; 8240 8241 if (env->idle != CPU_NEWLY_IDLE || 8242 time_after_eq(jiffies, sg->sgc->next_update)) 8243 update_group_capacity(env->sd, env->dst_cpu); 8244 } 8245 8246 update_sg_lb_stats(env, sg, sgs, &sg_status); 8247 8248 if (local_group) 8249 goto next_group; 8250 8251 /* 8252 * In case the child domain prefers tasks go to siblings 8253 * first, lower the sg capacity so that we'll try 8254 * and move all the excess tasks away. We lower the capacity 8255 * of a group only if the local group has the capacity to fit 8256 * these excess tasks. The extra check prevents the case where 8257 * you always pull from the heaviest group when it is already 8258 * under-utilized (possible with a large weight task outweighs 8259 * the tasks on the system). 8260 */ 8261 if (prefer_sibling && sds->local && 8262 group_has_capacity(env, local) && 8263 (sgs->sum_nr_running > local->sum_nr_running + 1)) { 8264 sgs->group_no_capacity = 1; 8265 sgs->group_type = group_classify(sg, sgs); 8266 } 8267 8268 if (update_sd_pick_busiest(env, sds, sg, sgs)) { 8269 sds->busiest = sg; 8270 sds->busiest_stat = *sgs; 8271 } 8272 8273 next_group: 8274 /* Now, start updating sd_lb_stats */ 8275 sds->total_running += sgs->sum_nr_running; 8276 sds->total_load += sgs->group_load; 8277 sds->total_capacity += sgs->group_capacity; 8278 8279 sg = sg->next; 8280 } while (sg != env->sd->groups); 8281 8282 #ifdef CONFIG_NO_HZ_COMMON 8283 if ((env->flags & LBF_NOHZ_AGAIN) && 8284 cpumask_subset(nohz.idle_cpus_mask, sched_domain_span(env->sd))) { 8285 8286 WRITE_ONCE(nohz.next_blocked, 8287 jiffies + msecs_to_jiffies(LOAD_AVG_PERIOD)); 8288 } 8289 #endif 8290 8291 if (env->sd->flags & SD_NUMA) 8292 env->fbq_type = fbq_classify_group(&sds->busiest_stat); 8293 8294 if (!env->sd->parent) { 8295 struct root_domain *rd = env->dst_rq->rd; 8296 8297 /* update overload indicator if we are at root domain */ 8298 WRITE_ONCE(rd->overload, sg_status & SG_OVERLOAD); 8299 8300 /* Update over-utilization (tipping point, U >= 0) indicator */ 8301 WRITE_ONCE(rd->overutilized, sg_status & SG_OVERUTILIZED); 8302 trace_sched_overutilized_tp(rd, sg_status & SG_OVERUTILIZED); 8303 } else if (sg_status & SG_OVERUTILIZED) { 8304 struct root_domain *rd = env->dst_rq->rd; 8305 8306 WRITE_ONCE(rd->overutilized, SG_OVERUTILIZED); 8307 trace_sched_overutilized_tp(rd, SG_OVERUTILIZED); 8308 } 8309 } 8310 8311 /** 8312 * check_asym_packing - Check to see if the group is packed into the 8313 * sched domain. 8314 * 8315 * This is primarily intended to used at the sibling level. Some 8316 * cores like POWER7 prefer to use lower numbered SMT threads. In the 8317 * case of POWER7, it can move to lower SMT modes only when higher 8318 * threads are idle. When in lower SMT modes, the threads will 8319 * perform better since they share less core resources. Hence when we 8320 * have idle threads, we want them to be the higher ones. 8321 * 8322 * This packing function is run on idle threads. It checks to see if 8323 * the busiest CPU in this domain (core in the P7 case) has a higher 8324 * CPU number than the packing function is being run on. Here we are 8325 * assuming lower CPU number will be equivalent to lower a SMT thread 8326 * number. 8327 * 8328 * Return: 1 when packing is required and a task should be moved to 8329 * this CPU. The amount of the imbalance is returned in env->imbalance. 8330 * 8331 * @env: The load balancing environment. 8332 * @sds: Statistics of the sched_domain which is to be packed 8333 */ 8334 static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds) 8335 { 8336 int busiest_cpu; 8337 8338 if (!(env->sd->flags & SD_ASYM_PACKING)) 8339 return 0; 8340 8341 if (env->idle == CPU_NOT_IDLE) 8342 return 0; 8343 8344 if (!sds->busiest) 8345 return 0; 8346 8347 busiest_cpu = sds->busiest->asym_prefer_cpu; 8348 if (sched_asym_prefer(busiest_cpu, env->dst_cpu)) 8349 return 0; 8350 8351 env->imbalance = sds->busiest_stat.group_load; 8352 8353 return 1; 8354 } 8355 8356 /** 8357 * fix_small_imbalance - Calculate the minor imbalance that exists 8358 * amongst the groups of a sched_domain, during 8359 * load balancing. 8360 * @env: The load balancing environment. 8361 * @sds: Statistics of the sched_domain whose imbalance is to be calculated. 8362 */ 8363 static inline 8364 void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds) 8365 { 8366 unsigned long tmp, capa_now = 0, capa_move = 0; 8367 unsigned int imbn = 2; 8368 unsigned long scaled_busy_load_per_task; 8369 struct sg_lb_stats *local, *busiest; 8370 8371 local = &sds->local_stat; 8372 busiest = &sds->busiest_stat; 8373 8374 if (!local->sum_nr_running) 8375 local->load_per_task = cpu_avg_load_per_task(env->dst_cpu); 8376 else if (busiest->load_per_task > local->load_per_task) 8377 imbn = 1; 8378 8379 scaled_busy_load_per_task = 8380 (busiest->load_per_task * SCHED_CAPACITY_SCALE) / 8381 busiest->group_capacity; 8382 8383 if (busiest->avg_load + scaled_busy_load_per_task >= 8384 local->avg_load + (scaled_busy_load_per_task * imbn)) { 8385 env->imbalance = busiest->load_per_task; 8386 return; 8387 } 8388 8389 /* 8390 * OK, we don't have enough imbalance to justify moving tasks, 8391 * however we may be able to increase total CPU capacity used by 8392 * moving them. 8393 */ 8394 8395 capa_now += busiest->group_capacity * 8396 min(busiest->load_per_task, busiest->avg_load); 8397 capa_now += local->group_capacity * 8398 min(local->load_per_task, local->avg_load); 8399 capa_now /= SCHED_CAPACITY_SCALE; 8400 8401 /* Amount of load we'd subtract */ 8402 if (busiest->avg_load > scaled_busy_load_per_task) { 8403 capa_move += busiest->group_capacity * 8404 min(busiest->load_per_task, 8405 busiest->avg_load - scaled_busy_load_per_task); 8406 } 8407 8408 /* Amount of load we'd add */ 8409 if (busiest->avg_load * busiest->group_capacity < 8410 busiest->load_per_task * SCHED_CAPACITY_SCALE) { 8411 tmp = (busiest->avg_load * busiest->group_capacity) / 8412 local->group_capacity; 8413 } else { 8414 tmp = (busiest->load_per_task * SCHED_CAPACITY_SCALE) / 8415 local->group_capacity; 8416 } 8417 capa_move += local->group_capacity * 8418 min(local->load_per_task, local->avg_load + tmp); 8419 capa_move /= SCHED_CAPACITY_SCALE; 8420 8421 /* Move if we gain throughput */ 8422 if (capa_move > capa_now) 8423 env->imbalance = busiest->load_per_task; 8424 } 8425 8426 /** 8427 * calculate_imbalance - Calculate the amount of imbalance present within the 8428 * groups of a given sched_domain during load balance. 8429 * @env: load balance environment 8430 * @sds: statistics of the sched_domain whose imbalance is to be calculated. 8431 */ 8432 static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds) 8433 { 8434 unsigned long max_pull, load_above_capacity = ~0UL; 8435 struct sg_lb_stats *local, *busiest; 8436 8437 local = &sds->local_stat; 8438 busiest = &sds->busiest_stat; 8439 8440 if (busiest->group_type == group_imbalanced) { 8441 /* 8442 * In the group_imb case we cannot rely on group-wide averages 8443 * to ensure CPU-load equilibrium, look at wider averages. XXX 8444 */ 8445 busiest->load_per_task = 8446 min(busiest->load_per_task, sds->avg_load); 8447 } 8448 8449 /* 8450 * Avg load of busiest sg can be less and avg load of local sg can 8451 * be greater than avg load across all sgs of sd because avg load 8452 * factors in sg capacity and sgs with smaller group_type are 8453 * skipped when updating the busiest sg: 8454 */ 8455 if (busiest->group_type != group_misfit_task && 8456 (busiest->avg_load <= sds->avg_load || 8457 local->avg_load >= sds->avg_load)) { 8458 env->imbalance = 0; 8459 return fix_small_imbalance(env, sds); 8460 } 8461 8462 /* 8463 * If there aren't any idle CPUs, avoid creating some. 8464 */ 8465 if (busiest->group_type == group_overloaded && 8466 local->group_type == group_overloaded) { 8467 load_above_capacity = busiest->sum_nr_running * SCHED_CAPACITY_SCALE; 8468 if (load_above_capacity > busiest->group_capacity) { 8469 load_above_capacity -= busiest->group_capacity; 8470 load_above_capacity *= scale_load_down(NICE_0_LOAD); 8471 load_above_capacity /= busiest->group_capacity; 8472 } else 8473 load_above_capacity = ~0UL; 8474 } 8475 8476 /* 8477 * We're trying to get all the CPUs to the average_load, so we don't 8478 * want to push ourselves above the average load, nor do we wish to 8479 * reduce the max loaded CPU below the average load. At the same time, 8480 * we also don't want to reduce the group load below the group 8481 * capacity. Thus we look for the minimum possible imbalance. 8482 */ 8483 max_pull = min(busiest->avg_load - sds->avg_load, load_above_capacity); 8484 8485 /* How much load to actually move to equalise the imbalance */ 8486 env->imbalance = min( 8487 max_pull * busiest->group_capacity, 8488 (sds->avg_load - local->avg_load) * local->group_capacity 8489 ) / SCHED_CAPACITY_SCALE; 8490 8491 /* Boost imbalance to allow misfit task to be balanced. */ 8492 if (busiest->group_type == group_misfit_task) { 8493 env->imbalance = max_t(long, env->imbalance, 8494 busiest->group_misfit_task_load); 8495 } 8496 8497 /* 8498 * if *imbalance is less than the average load per runnable task 8499 * there is no guarantee that any tasks will be moved so we'll have 8500 * a think about bumping its value to force at least one task to be 8501 * moved 8502 */ 8503 if (env->imbalance < busiest->load_per_task) 8504 return fix_small_imbalance(env, sds); 8505 } 8506 8507 /******* find_busiest_group() helpers end here *********************/ 8508 8509 /** 8510 * find_busiest_group - Returns the busiest group within the sched_domain 8511 * if there is an imbalance. 8512 * 8513 * Also calculates the amount of runnable load which should be moved 8514 * to restore balance. 8515 * 8516 * @env: The load balancing environment. 8517 * 8518 * Return: - The busiest group if imbalance exists. 8519 */ 8520 static struct sched_group *find_busiest_group(struct lb_env *env) 8521 { 8522 struct sg_lb_stats *local, *busiest; 8523 struct sd_lb_stats sds; 8524 8525 init_sd_lb_stats(&sds); 8526 8527 /* 8528 * Compute the various statistics relavent for load balancing at 8529 * this level. 8530 */ 8531 update_sd_lb_stats(env, &sds); 8532 8533 if (sched_energy_enabled()) { 8534 struct root_domain *rd = env->dst_rq->rd; 8535 8536 if (rcu_dereference(rd->pd) && !READ_ONCE(rd->overutilized)) 8537 goto out_balanced; 8538 } 8539 8540 local = &sds.local_stat; 8541 busiest = &sds.busiest_stat; 8542 8543 /* ASYM feature bypasses nice load balance check */ 8544 if (check_asym_packing(env, &sds)) 8545 return sds.busiest; 8546 8547 /* There is no busy sibling group to pull tasks from */ 8548 if (!sds.busiest || busiest->sum_nr_running == 0) 8549 goto out_balanced; 8550 8551 /* XXX broken for overlapping NUMA groups */ 8552 sds.avg_load = (SCHED_CAPACITY_SCALE * sds.total_load) 8553 / sds.total_capacity; 8554 8555 /* 8556 * If the busiest group is imbalanced the below checks don't 8557 * work because they assume all things are equal, which typically 8558 * isn't true due to cpus_ptr constraints and the like. 8559 */ 8560 if (busiest->group_type == group_imbalanced) 8561 goto force_balance; 8562 8563 /* 8564 * When dst_cpu is idle, prevent SMP nice and/or asymmetric group 8565 * capacities from resulting in underutilization due to avg_load. 8566 */ 8567 if (env->idle != CPU_NOT_IDLE && group_has_capacity(env, local) && 8568 busiest->group_no_capacity) 8569 goto force_balance; 8570 8571 /* Misfit tasks should be dealt with regardless of the avg load */ 8572 if (busiest->group_type == group_misfit_task) 8573 goto force_balance; 8574 8575 /* 8576 * If the local group is busier than the selected busiest group 8577 * don't try and pull any tasks. 8578 */ 8579 if (local->avg_load >= busiest->avg_load) 8580 goto out_balanced; 8581 8582 /* 8583 * Don't pull any tasks if this group is already above the domain 8584 * average load. 8585 */ 8586 if (local->avg_load >= sds.avg_load) 8587 goto out_balanced; 8588 8589 if (env->idle == CPU_IDLE) { 8590 /* 8591 * This CPU is idle. If the busiest group is not overloaded 8592 * and there is no imbalance between this and busiest group 8593 * wrt idle CPUs, it is balanced. The imbalance becomes 8594 * significant if the diff is greater than 1 otherwise we 8595 * might end up to just move the imbalance on another group 8596 */ 8597 if ((busiest->group_type != group_overloaded) && 8598 (local->idle_cpus <= (busiest->idle_cpus + 1))) 8599 goto out_balanced; 8600 } else { 8601 /* 8602 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use 8603 * imbalance_pct to be conservative. 8604 */ 8605 if (100 * busiest->avg_load <= 8606 env->sd->imbalance_pct * local->avg_load) 8607 goto out_balanced; 8608 } 8609 8610 force_balance: 8611 /* Looks like there is an imbalance. Compute it */ 8612 env->src_grp_type = busiest->group_type; 8613 calculate_imbalance(env, &sds); 8614 return env->imbalance ? sds.busiest : NULL; 8615 8616 out_balanced: 8617 env->imbalance = 0; 8618 return NULL; 8619 } 8620 8621 /* 8622 * find_busiest_queue - find the busiest runqueue among the CPUs in the group. 8623 */ 8624 static struct rq *find_busiest_queue(struct lb_env *env, 8625 struct sched_group *group) 8626 { 8627 struct rq *busiest = NULL, *rq; 8628 unsigned long busiest_load = 0, busiest_capacity = 1; 8629 int i; 8630 8631 for_each_cpu_and(i, sched_group_span(group), env->cpus) { 8632 unsigned long capacity, load; 8633 enum fbq_type rt; 8634 8635 rq = cpu_rq(i); 8636 rt = fbq_classify_rq(rq); 8637 8638 /* 8639 * We classify groups/runqueues into three groups: 8640 * - regular: there are !numa tasks 8641 * - remote: there are numa tasks that run on the 'wrong' node 8642 * - all: there is no distinction 8643 * 8644 * In order to avoid migrating ideally placed numa tasks, 8645 * ignore those when there's better options. 8646 * 8647 * If we ignore the actual busiest queue to migrate another 8648 * task, the next balance pass can still reduce the busiest 8649 * queue by moving tasks around inside the node. 8650 * 8651 * If we cannot move enough load due to this classification 8652 * the next pass will adjust the group classification and 8653 * allow migration of more tasks. 8654 * 8655 * Both cases only affect the total convergence complexity. 8656 */ 8657 if (rt > env->fbq_type) 8658 continue; 8659 8660 /* 8661 * For ASYM_CPUCAPACITY domains with misfit tasks we simply 8662 * seek the "biggest" misfit task. 8663 */ 8664 if (env->src_grp_type == group_misfit_task) { 8665 if (rq->misfit_task_load > busiest_load) { 8666 busiest_load = rq->misfit_task_load; 8667 busiest = rq; 8668 } 8669 8670 continue; 8671 } 8672 8673 capacity = capacity_of(i); 8674 8675 /* 8676 * For ASYM_CPUCAPACITY domains, don't pick a CPU that could 8677 * eventually lead to active_balancing high->low capacity. 8678 * Higher per-CPU capacity is considered better than balancing 8679 * average load. 8680 */ 8681 if (env->sd->flags & SD_ASYM_CPUCAPACITY && 8682 capacity_of(env->dst_cpu) < capacity && 8683 rq->nr_running == 1) 8684 continue; 8685 8686 load = cpu_runnable_load(rq); 8687 8688 /* 8689 * When comparing with imbalance, use cpu_runnable_load() 8690 * which is not scaled with the CPU capacity. 8691 */ 8692 8693 if (rq->nr_running == 1 && load > env->imbalance && 8694 !check_cpu_capacity(rq, env->sd)) 8695 continue; 8696 8697 /* 8698 * For the load comparisons with the other CPU's, consider 8699 * the cpu_runnable_load() scaled with the CPU capacity, so 8700 * that the load can be moved away from the CPU that is 8701 * potentially running at a lower capacity. 8702 * 8703 * Thus we're looking for max(load_i / capacity_i), crosswise 8704 * multiplication to rid ourselves of the division works out 8705 * to: load_i * capacity_j > load_j * capacity_i; where j is 8706 * our previous maximum. 8707 */ 8708 if (load * busiest_capacity > busiest_load * capacity) { 8709 busiest_load = load; 8710 busiest_capacity = capacity; 8711 busiest = rq; 8712 } 8713 } 8714 8715 return busiest; 8716 } 8717 8718 /* 8719 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but 8720 * so long as it is large enough. 8721 */ 8722 #define MAX_PINNED_INTERVAL 512 8723 8724 static inline bool 8725 asym_active_balance(struct lb_env *env) 8726 { 8727 /* 8728 * ASYM_PACKING needs to force migrate tasks from busy but 8729 * lower priority CPUs in order to pack all tasks in the 8730 * highest priority CPUs. 8731 */ 8732 return env->idle != CPU_NOT_IDLE && (env->sd->flags & SD_ASYM_PACKING) && 8733 sched_asym_prefer(env->dst_cpu, env->src_cpu); 8734 } 8735 8736 static inline bool 8737 voluntary_active_balance(struct lb_env *env) 8738 { 8739 struct sched_domain *sd = env->sd; 8740 8741 if (asym_active_balance(env)) 8742 return 1; 8743 8744 /* 8745 * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task. 8746 * It's worth migrating the task if the src_cpu's capacity is reduced 8747 * because of other sched_class or IRQs if more capacity stays 8748 * available on dst_cpu. 8749 */ 8750 if ((env->idle != CPU_NOT_IDLE) && 8751 (env->src_rq->cfs.h_nr_running == 1)) { 8752 if ((check_cpu_capacity(env->src_rq, sd)) && 8753 (capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100)) 8754 return 1; 8755 } 8756 8757 if (env->src_grp_type == group_misfit_task) 8758 return 1; 8759 8760 return 0; 8761 } 8762 8763 static int need_active_balance(struct lb_env *env) 8764 { 8765 struct sched_domain *sd = env->sd; 8766 8767 if (voluntary_active_balance(env)) 8768 return 1; 8769 8770 return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2); 8771 } 8772 8773 static int active_load_balance_cpu_stop(void *data); 8774 8775 static int should_we_balance(struct lb_env *env) 8776 { 8777 struct sched_group *sg = env->sd->groups; 8778 int cpu, balance_cpu = -1; 8779 8780 /* 8781 * Ensure the balancing environment is consistent; can happen 8782 * when the softirq triggers 'during' hotplug. 8783 */ 8784 if (!cpumask_test_cpu(env->dst_cpu, env->cpus)) 8785 return 0; 8786 8787 /* 8788 * In the newly idle case, we will allow all the CPUs 8789 * to do the newly idle load balance. 8790 */ 8791 if (env->idle == CPU_NEWLY_IDLE) 8792 return 1; 8793 8794 /* Try to find first idle CPU */ 8795 for_each_cpu_and(cpu, group_balance_mask(sg), env->cpus) { 8796 if (!idle_cpu(cpu)) 8797 continue; 8798 8799 balance_cpu = cpu; 8800 break; 8801 } 8802 8803 if (balance_cpu == -1) 8804 balance_cpu = group_balance_cpu(sg); 8805 8806 /* 8807 * First idle CPU or the first CPU(busiest) in this sched group 8808 * is eligible for doing load balancing at this and above domains. 8809 */ 8810 return balance_cpu == env->dst_cpu; 8811 } 8812 8813 /* 8814 * Check this_cpu to ensure it is balanced within domain. Attempt to move 8815 * tasks if there is an imbalance. 8816 */ 8817 static int load_balance(int this_cpu, struct rq *this_rq, 8818 struct sched_domain *sd, enum cpu_idle_type idle, 8819 int *continue_balancing) 8820 { 8821 int ld_moved, cur_ld_moved, active_balance = 0; 8822 struct sched_domain *sd_parent = sd->parent; 8823 struct sched_group *group; 8824 struct rq *busiest; 8825 struct rq_flags rf; 8826 struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask); 8827 8828 struct lb_env env = { 8829 .sd = sd, 8830 .dst_cpu = this_cpu, 8831 .dst_rq = this_rq, 8832 .dst_grpmask = sched_group_span(sd->groups), 8833 .idle = idle, 8834 .loop_break = sched_nr_migrate_break, 8835 .cpus = cpus, 8836 .fbq_type = all, 8837 .tasks = LIST_HEAD_INIT(env.tasks), 8838 }; 8839 8840 cpumask_and(cpus, sched_domain_span(sd), cpu_active_mask); 8841 8842 schedstat_inc(sd->lb_count[idle]); 8843 8844 redo: 8845 if (!should_we_balance(&env)) { 8846 *continue_balancing = 0; 8847 goto out_balanced; 8848 } 8849 8850 group = find_busiest_group(&env); 8851 if (!group) { 8852 schedstat_inc(sd->lb_nobusyg[idle]); 8853 goto out_balanced; 8854 } 8855 8856 busiest = find_busiest_queue(&env, group); 8857 if (!busiest) { 8858 schedstat_inc(sd->lb_nobusyq[idle]); 8859 goto out_balanced; 8860 } 8861 8862 BUG_ON(busiest == env.dst_rq); 8863 8864 schedstat_add(sd->lb_imbalance[idle], env.imbalance); 8865 8866 env.src_cpu = busiest->cpu; 8867 env.src_rq = busiest; 8868 8869 ld_moved = 0; 8870 if (busiest->nr_running > 1) { 8871 /* 8872 * Attempt to move tasks. If find_busiest_group has found 8873 * an imbalance but busiest->nr_running <= 1, the group is 8874 * still unbalanced. ld_moved simply stays zero, so it is 8875 * correctly treated as an imbalance. 8876 */ 8877 env.flags |= LBF_ALL_PINNED; 8878 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running); 8879 8880 more_balance: 8881 rq_lock_irqsave(busiest, &rf); 8882 update_rq_clock(busiest); 8883 8884 /* 8885 * cur_ld_moved - load moved in current iteration 8886 * ld_moved - cumulative load moved across iterations 8887 */ 8888 cur_ld_moved = detach_tasks(&env); 8889 8890 /* 8891 * We've detached some tasks from busiest_rq. Every 8892 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely 8893 * unlock busiest->lock, and we are able to be sure 8894 * that nobody can manipulate the tasks in parallel. 8895 * See task_rq_lock() family for the details. 8896 */ 8897 8898 rq_unlock(busiest, &rf); 8899 8900 if (cur_ld_moved) { 8901 attach_tasks(&env); 8902 ld_moved += cur_ld_moved; 8903 } 8904 8905 local_irq_restore(rf.flags); 8906 8907 if (env.flags & LBF_NEED_BREAK) { 8908 env.flags &= ~LBF_NEED_BREAK; 8909 goto more_balance; 8910 } 8911 8912 /* 8913 * Revisit (affine) tasks on src_cpu that couldn't be moved to 8914 * us and move them to an alternate dst_cpu in our sched_group 8915 * where they can run. The upper limit on how many times we 8916 * iterate on same src_cpu is dependent on number of CPUs in our 8917 * sched_group. 8918 * 8919 * This changes load balance semantics a bit on who can move 8920 * load to a given_cpu. In addition to the given_cpu itself 8921 * (or a ilb_cpu acting on its behalf where given_cpu is 8922 * nohz-idle), we now have balance_cpu in a position to move 8923 * load to given_cpu. In rare situations, this may cause 8924 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding 8925 * _independently_ and at _same_ time to move some load to 8926 * given_cpu) causing exceess load to be moved to given_cpu. 8927 * This however should not happen so much in practice and 8928 * moreover subsequent load balance cycles should correct the 8929 * excess load moved. 8930 */ 8931 if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) { 8932 8933 /* Prevent to re-select dst_cpu via env's CPUs */ 8934 __cpumask_clear_cpu(env.dst_cpu, env.cpus); 8935 8936 env.dst_rq = cpu_rq(env.new_dst_cpu); 8937 env.dst_cpu = env.new_dst_cpu; 8938 env.flags &= ~LBF_DST_PINNED; 8939 env.loop = 0; 8940 env.loop_break = sched_nr_migrate_break; 8941 8942 /* 8943 * Go back to "more_balance" rather than "redo" since we 8944 * need to continue with same src_cpu. 8945 */ 8946 goto more_balance; 8947 } 8948 8949 /* 8950 * We failed to reach balance because of affinity. 8951 */ 8952 if (sd_parent) { 8953 int *group_imbalance = &sd_parent->groups->sgc->imbalance; 8954 8955 if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0) 8956 *group_imbalance = 1; 8957 } 8958 8959 /* All tasks on this runqueue were pinned by CPU affinity */ 8960 if (unlikely(env.flags & LBF_ALL_PINNED)) { 8961 __cpumask_clear_cpu(cpu_of(busiest), cpus); 8962 /* 8963 * Attempting to continue load balancing at the current 8964 * sched_domain level only makes sense if there are 8965 * active CPUs remaining as possible busiest CPUs to 8966 * pull load from which are not contained within the 8967 * destination group that is receiving any migrated 8968 * load. 8969 */ 8970 if (!cpumask_subset(cpus, env.dst_grpmask)) { 8971 env.loop = 0; 8972 env.loop_break = sched_nr_migrate_break; 8973 goto redo; 8974 } 8975 goto out_all_pinned; 8976 } 8977 } 8978 8979 if (!ld_moved) { 8980 schedstat_inc(sd->lb_failed[idle]); 8981 /* 8982 * Increment the failure counter only on periodic balance. 8983 * We do not want newidle balance, which can be very 8984 * frequent, pollute the failure counter causing 8985 * excessive cache_hot migrations and active balances. 8986 */ 8987 if (idle != CPU_NEWLY_IDLE) 8988 sd->nr_balance_failed++; 8989 8990 if (need_active_balance(&env)) { 8991 unsigned long flags; 8992 8993 raw_spin_lock_irqsave(&busiest->lock, flags); 8994 8995 /* 8996 * Don't kick the active_load_balance_cpu_stop, 8997 * if the curr task on busiest CPU can't be 8998 * moved to this_cpu: 8999 */ 9000 if (!cpumask_test_cpu(this_cpu, busiest->curr->cpus_ptr)) { 9001 raw_spin_unlock_irqrestore(&busiest->lock, 9002 flags); 9003 env.flags |= LBF_ALL_PINNED; 9004 goto out_one_pinned; 9005 } 9006 9007 /* 9008 * ->active_balance synchronizes accesses to 9009 * ->active_balance_work. Once set, it's cleared 9010 * only after active load balance is finished. 9011 */ 9012 if (!busiest->active_balance) { 9013 busiest->active_balance = 1; 9014 busiest->push_cpu = this_cpu; 9015 active_balance = 1; 9016 } 9017 raw_spin_unlock_irqrestore(&busiest->lock, flags); 9018 9019 if (active_balance) { 9020 stop_one_cpu_nowait(cpu_of(busiest), 9021 active_load_balance_cpu_stop, busiest, 9022 &busiest->active_balance_work); 9023 } 9024 9025 /* We've kicked active balancing, force task migration. */ 9026 sd->nr_balance_failed = sd->cache_nice_tries+1; 9027 } 9028 } else 9029 sd->nr_balance_failed = 0; 9030 9031 if (likely(!active_balance) || voluntary_active_balance(&env)) { 9032 /* We were unbalanced, so reset the balancing interval */ 9033 sd->balance_interval = sd->min_interval; 9034 } else { 9035 /* 9036 * If we've begun active balancing, start to back off. This 9037 * case may not be covered by the all_pinned logic if there 9038 * is only 1 task on the busy runqueue (because we don't call 9039 * detach_tasks). 9040 */ 9041 if (sd->balance_interval < sd->max_interval) 9042 sd->balance_interval *= 2; 9043 } 9044 9045 goto out; 9046 9047 out_balanced: 9048 /* 9049 * We reach balance although we may have faced some affinity 9050 * constraints. Clear the imbalance flag if it was set. 9051 */ 9052 if (sd_parent) { 9053 int *group_imbalance = &sd_parent->groups->sgc->imbalance; 9054 9055 if (*group_imbalance) 9056 *group_imbalance = 0; 9057 } 9058 9059 out_all_pinned: 9060 /* 9061 * We reach balance because all tasks are pinned at this level so 9062 * we can't migrate them. Let the imbalance flag set so parent level 9063 * can try to migrate them. 9064 */ 9065 schedstat_inc(sd->lb_balanced[idle]); 9066 9067 sd->nr_balance_failed = 0; 9068 9069 out_one_pinned: 9070 ld_moved = 0; 9071 9072 /* 9073 * idle_balance() disregards balance intervals, so we could repeatedly 9074 * reach this code, which would lead to balance_interval skyrocketting 9075 * in a short amount of time. Skip the balance_interval increase logic 9076 * to avoid that. 9077 */ 9078 if (env.idle == CPU_NEWLY_IDLE) 9079 goto out; 9080 9081 /* tune up the balancing interval */ 9082 if ((env.flags & LBF_ALL_PINNED && 9083 sd->balance_interval < MAX_PINNED_INTERVAL) || 9084 sd->balance_interval < sd->max_interval) 9085 sd->balance_interval *= 2; 9086 out: 9087 return ld_moved; 9088 } 9089 9090 static inline unsigned long 9091 get_sd_balance_interval(struct sched_domain *sd, int cpu_busy) 9092 { 9093 unsigned long interval = sd->balance_interval; 9094 9095 if (cpu_busy) 9096 interval *= sd->busy_factor; 9097 9098 /* scale ms to jiffies */ 9099 interval = msecs_to_jiffies(interval); 9100 interval = clamp(interval, 1UL, max_load_balance_interval); 9101 9102 return interval; 9103 } 9104 9105 static inline void 9106 update_next_balance(struct sched_domain *sd, unsigned long *next_balance) 9107 { 9108 unsigned long interval, next; 9109 9110 /* used by idle balance, so cpu_busy = 0 */ 9111 interval = get_sd_balance_interval(sd, 0); 9112 next = sd->last_balance + interval; 9113 9114 if (time_after(*next_balance, next)) 9115 *next_balance = next; 9116 } 9117 9118 /* 9119 * active_load_balance_cpu_stop is run by the CPU stopper. It pushes 9120 * running tasks off the busiest CPU onto idle CPUs. It requires at 9121 * least 1 task to be running on each physical CPU where possible, and 9122 * avoids physical / logical imbalances. 9123 */ 9124 static int active_load_balance_cpu_stop(void *data) 9125 { 9126 struct rq *busiest_rq = data; 9127 int busiest_cpu = cpu_of(busiest_rq); 9128 int target_cpu = busiest_rq->push_cpu; 9129 struct rq *target_rq = cpu_rq(target_cpu); 9130 struct sched_domain *sd; 9131 struct task_struct *p = NULL; 9132 struct rq_flags rf; 9133 9134 rq_lock_irq(busiest_rq, &rf); 9135 /* 9136 * Between queueing the stop-work and running it is a hole in which 9137 * CPUs can become inactive. We should not move tasks from or to 9138 * inactive CPUs. 9139 */ 9140 if (!cpu_active(busiest_cpu) || !cpu_active(target_cpu)) 9141 goto out_unlock; 9142 9143 /* Make sure the requested CPU hasn't gone down in the meantime: */ 9144 if (unlikely(busiest_cpu != smp_processor_id() || 9145 !busiest_rq->active_balance)) 9146 goto out_unlock; 9147 9148 /* Is there any task to move? */ 9149 if (busiest_rq->nr_running <= 1) 9150 goto out_unlock; 9151 9152 /* 9153 * This condition is "impossible", if it occurs 9154 * we need to fix it. Originally reported by 9155 * Bjorn Helgaas on a 128-CPU setup. 9156 */ 9157 BUG_ON(busiest_rq == target_rq); 9158 9159 /* Search for an sd spanning us and the target CPU. */ 9160 rcu_read_lock(); 9161 for_each_domain(target_cpu, sd) { 9162 if ((sd->flags & SD_LOAD_BALANCE) && 9163 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd))) 9164 break; 9165 } 9166 9167 if (likely(sd)) { 9168 struct lb_env env = { 9169 .sd = sd, 9170 .dst_cpu = target_cpu, 9171 .dst_rq = target_rq, 9172 .src_cpu = busiest_rq->cpu, 9173 .src_rq = busiest_rq, 9174 .idle = CPU_IDLE, 9175 /* 9176 * can_migrate_task() doesn't need to compute new_dst_cpu 9177 * for active balancing. Since we have CPU_IDLE, but no 9178 * @dst_grpmask we need to make that test go away with lying 9179 * about DST_PINNED. 9180 */ 9181 .flags = LBF_DST_PINNED, 9182 }; 9183 9184 schedstat_inc(sd->alb_count); 9185 update_rq_clock(busiest_rq); 9186 9187 p = detach_one_task(&env); 9188 if (p) { 9189 schedstat_inc(sd->alb_pushed); 9190 /* Active balancing done, reset the failure counter. */ 9191 sd->nr_balance_failed = 0; 9192 } else { 9193 schedstat_inc(sd->alb_failed); 9194 } 9195 } 9196 rcu_read_unlock(); 9197 out_unlock: 9198 busiest_rq->active_balance = 0; 9199 rq_unlock(busiest_rq, &rf); 9200 9201 if (p) 9202 attach_one_task(target_rq, p); 9203 9204 local_irq_enable(); 9205 9206 return 0; 9207 } 9208 9209 static DEFINE_SPINLOCK(balancing); 9210 9211 /* 9212 * Scale the max load_balance interval with the number of CPUs in the system. 9213 * This trades load-balance latency on larger machines for less cross talk. 9214 */ 9215 void update_max_interval(void) 9216 { 9217 max_load_balance_interval = HZ*num_online_cpus()/10; 9218 } 9219 9220 /* 9221 * It checks each scheduling domain to see if it is due to be balanced, 9222 * and initiates a balancing operation if so. 9223 * 9224 * Balancing parameters are set up in init_sched_domains. 9225 */ 9226 static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle) 9227 { 9228 int continue_balancing = 1; 9229 int cpu = rq->cpu; 9230 unsigned long interval; 9231 struct sched_domain *sd; 9232 /* Earliest time when we have to do rebalance again */ 9233 unsigned long next_balance = jiffies + 60*HZ; 9234 int update_next_balance = 0; 9235 int need_serialize, need_decay = 0; 9236 u64 max_cost = 0; 9237 9238 rcu_read_lock(); 9239 for_each_domain(cpu, sd) { 9240 /* 9241 * Decay the newidle max times here because this is a regular 9242 * visit to all the domains. Decay ~1% per second. 9243 */ 9244 if (time_after(jiffies, sd->next_decay_max_lb_cost)) { 9245 sd->max_newidle_lb_cost = 9246 (sd->max_newidle_lb_cost * 253) / 256; 9247 sd->next_decay_max_lb_cost = jiffies + HZ; 9248 need_decay = 1; 9249 } 9250 max_cost += sd->max_newidle_lb_cost; 9251 9252 if (!(sd->flags & SD_LOAD_BALANCE)) 9253 continue; 9254 9255 /* 9256 * Stop the load balance at this level. There is another 9257 * CPU in our sched group which is doing load balancing more 9258 * actively. 9259 */ 9260 if (!continue_balancing) { 9261 if (need_decay) 9262 continue; 9263 break; 9264 } 9265 9266 interval = get_sd_balance_interval(sd, idle != CPU_IDLE); 9267 9268 need_serialize = sd->flags & SD_SERIALIZE; 9269 if (need_serialize) { 9270 if (!spin_trylock(&balancing)) 9271 goto out; 9272 } 9273 9274 if (time_after_eq(jiffies, sd->last_balance + interval)) { 9275 if (load_balance(cpu, rq, sd, idle, &continue_balancing)) { 9276 /* 9277 * The LBF_DST_PINNED logic could have changed 9278 * env->dst_cpu, so we can't know our idle 9279 * state even if we migrated tasks. Update it. 9280 */ 9281 idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE; 9282 } 9283 sd->last_balance = jiffies; 9284 interval = get_sd_balance_interval(sd, idle != CPU_IDLE); 9285 } 9286 if (need_serialize) 9287 spin_unlock(&balancing); 9288 out: 9289 if (time_after(next_balance, sd->last_balance + interval)) { 9290 next_balance = sd->last_balance + interval; 9291 update_next_balance = 1; 9292 } 9293 } 9294 if (need_decay) { 9295 /* 9296 * Ensure the rq-wide value also decays but keep it at a 9297 * reasonable floor to avoid funnies with rq->avg_idle. 9298 */ 9299 rq->max_idle_balance_cost = 9300 max((u64)sysctl_sched_migration_cost, max_cost); 9301 } 9302 rcu_read_unlock(); 9303 9304 /* 9305 * next_balance will be updated only when there is a need. 9306 * When the cpu is attached to null domain for ex, it will not be 9307 * updated. 9308 */ 9309 if (likely(update_next_balance)) { 9310 rq->next_balance = next_balance; 9311 9312 #ifdef CONFIG_NO_HZ_COMMON 9313 /* 9314 * If this CPU has been elected to perform the nohz idle 9315 * balance. Other idle CPUs have already rebalanced with 9316 * nohz_idle_balance() and nohz.next_balance has been 9317 * updated accordingly. This CPU is now running the idle load 9318 * balance for itself and we need to update the 9319 * nohz.next_balance accordingly. 9320 */ 9321 if ((idle == CPU_IDLE) && time_after(nohz.next_balance, rq->next_balance)) 9322 nohz.next_balance = rq->next_balance; 9323 #endif 9324 } 9325 } 9326 9327 static inline int on_null_domain(struct rq *rq) 9328 { 9329 return unlikely(!rcu_dereference_sched(rq->sd)); 9330 } 9331 9332 #ifdef CONFIG_NO_HZ_COMMON 9333 /* 9334 * idle load balancing details 9335 * - When one of the busy CPUs notice that there may be an idle rebalancing 9336 * needed, they will kick the idle load balancer, which then does idle 9337 * load balancing for all the idle CPUs. 9338 * - HK_FLAG_MISC CPUs are used for this task, because HK_FLAG_SCHED not set 9339 * anywhere yet. 9340 */ 9341 9342 static inline int find_new_ilb(void) 9343 { 9344 int ilb; 9345 9346 for_each_cpu_and(ilb, nohz.idle_cpus_mask, 9347 housekeeping_cpumask(HK_FLAG_MISC)) { 9348 if (idle_cpu(ilb)) 9349 return ilb; 9350 } 9351 9352 return nr_cpu_ids; 9353 } 9354 9355 /* 9356 * Kick a CPU to do the nohz balancing, if it is time for it. We pick any 9357 * idle CPU in the HK_FLAG_MISC housekeeping set (if there is one). 9358 */ 9359 static void kick_ilb(unsigned int flags) 9360 { 9361 int ilb_cpu; 9362 9363 nohz.next_balance++; 9364 9365 ilb_cpu = find_new_ilb(); 9366 9367 if (ilb_cpu >= nr_cpu_ids) 9368 return; 9369 9370 flags = atomic_fetch_or(flags, nohz_flags(ilb_cpu)); 9371 if (flags & NOHZ_KICK_MASK) 9372 return; 9373 9374 /* 9375 * Use smp_send_reschedule() instead of resched_cpu(). 9376 * This way we generate a sched IPI on the target CPU which 9377 * is idle. And the softirq performing nohz idle load balance 9378 * will be run before returning from the IPI. 9379 */ 9380 smp_send_reschedule(ilb_cpu); 9381 } 9382 9383 /* 9384 * Current decision point for kicking the idle load balancer in the presence 9385 * of idle CPUs in the system. 9386 */ 9387 static void nohz_balancer_kick(struct rq *rq) 9388 { 9389 unsigned long now = jiffies; 9390 struct sched_domain_shared *sds; 9391 struct sched_domain *sd; 9392 int nr_busy, i, cpu = rq->cpu; 9393 unsigned int flags = 0; 9394 9395 if (unlikely(rq->idle_balance)) 9396 return; 9397 9398 /* 9399 * We may be recently in ticked or tickless idle mode. At the first 9400 * busy tick after returning from idle, we will update the busy stats. 9401 */ 9402 nohz_balance_exit_idle(rq); 9403 9404 /* 9405 * None are in tickless mode and hence no need for NOHZ idle load 9406 * balancing. 9407 */ 9408 if (likely(!atomic_read(&nohz.nr_cpus))) 9409 return; 9410 9411 if (READ_ONCE(nohz.has_blocked) && 9412 time_after(now, READ_ONCE(nohz.next_blocked))) 9413 flags = NOHZ_STATS_KICK; 9414 9415 if (time_before(now, nohz.next_balance)) 9416 goto out; 9417 9418 if (rq->nr_running >= 2) { 9419 flags = NOHZ_KICK_MASK; 9420 goto out; 9421 } 9422 9423 rcu_read_lock(); 9424 9425 sd = rcu_dereference(rq->sd); 9426 if (sd) { 9427 /* 9428 * If there's a CFS task and the current CPU has reduced 9429 * capacity; kick the ILB to see if there's a better CPU to run 9430 * on. 9431 */ 9432 if (rq->cfs.h_nr_running >= 1 && check_cpu_capacity(rq, sd)) { 9433 flags = NOHZ_KICK_MASK; 9434 goto unlock; 9435 } 9436 } 9437 9438 sd = rcu_dereference(per_cpu(sd_asym_packing, cpu)); 9439 if (sd) { 9440 /* 9441 * When ASYM_PACKING; see if there's a more preferred CPU 9442 * currently idle; in which case, kick the ILB to move tasks 9443 * around. 9444 */ 9445 for_each_cpu_and(i, sched_domain_span(sd), nohz.idle_cpus_mask) { 9446 if (sched_asym_prefer(i, cpu)) { 9447 flags = NOHZ_KICK_MASK; 9448 goto unlock; 9449 } 9450 } 9451 } 9452 9453 sd = rcu_dereference(per_cpu(sd_asym_cpucapacity, cpu)); 9454 if (sd) { 9455 /* 9456 * When ASYM_CPUCAPACITY; see if there's a higher capacity CPU 9457 * to run the misfit task on. 9458 */ 9459 if (check_misfit_status(rq, sd)) { 9460 flags = NOHZ_KICK_MASK; 9461 goto unlock; 9462 } 9463 9464 /* 9465 * For asymmetric systems, we do not want to nicely balance 9466 * cache use, instead we want to embrace asymmetry and only 9467 * ensure tasks have enough CPU capacity. 9468 * 9469 * Skip the LLC logic because it's not relevant in that case. 9470 */ 9471 goto unlock; 9472 } 9473 9474 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu)); 9475 if (sds) { 9476 /* 9477 * If there is an imbalance between LLC domains (IOW we could 9478 * increase the overall cache use), we need some less-loaded LLC 9479 * domain to pull some load. Likewise, we may need to spread 9480 * load within the current LLC domain (e.g. packed SMT cores but 9481 * other CPUs are idle). We can't really know from here how busy 9482 * the others are - so just get a nohz balance going if it looks 9483 * like this LLC domain has tasks we could move. 9484 */ 9485 nr_busy = atomic_read(&sds->nr_busy_cpus); 9486 if (nr_busy > 1) { 9487 flags = NOHZ_KICK_MASK; 9488 goto unlock; 9489 } 9490 } 9491 unlock: 9492 rcu_read_unlock(); 9493 out: 9494 if (flags) 9495 kick_ilb(flags); 9496 } 9497 9498 static void set_cpu_sd_state_busy(int cpu) 9499 { 9500 struct sched_domain *sd; 9501 9502 rcu_read_lock(); 9503 sd = rcu_dereference(per_cpu(sd_llc, cpu)); 9504 9505 if (!sd || !sd->nohz_idle) 9506 goto unlock; 9507 sd->nohz_idle = 0; 9508 9509 atomic_inc(&sd->shared->nr_busy_cpus); 9510 unlock: 9511 rcu_read_unlock(); 9512 } 9513 9514 void nohz_balance_exit_idle(struct rq *rq) 9515 { 9516 SCHED_WARN_ON(rq != this_rq()); 9517 9518 if (likely(!rq->nohz_tick_stopped)) 9519 return; 9520 9521 rq->nohz_tick_stopped = 0; 9522 cpumask_clear_cpu(rq->cpu, nohz.idle_cpus_mask); 9523 atomic_dec(&nohz.nr_cpus); 9524 9525 set_cpu_sd_state_busy(rq->cpu); 9526 } 9527 9528 static void set_cpu_sd_state_idle(int cpu) 9529 { 9530 struct sched_domain *sd; 9531 9532 rcu_read_lock(); 9533 sd = rcu_dereference(per_cpu(sd_llc, cpu)); 9534 9535 if (!sd || sd->nohz_idle) 9536 goto unlock; 9537 sd->nohz_idle = 1; 9538 9539 atomic_dec(&sd->shared->nr_busy_cpus); 9540 unlock: 9541 rcu_read_unlock(); 9542 } 9543 9544 /* 9545 * This routine will record that the CPU is going idle with tick stopped. 9546 * This info will be used in performing idle load balancing in the future. 9547 */ 9548 void nohz_balance_enter_idle(int cpu) 9549 { 9550 struct rq *rq = cpu_rq(cpu); 9551 9552 SCHED_WARN_ON(cpu != smp_processor_id()); 9553 9554 /* If this CPU is going down, then nothing needs to be done: */ 9555 if (!cpu_active(cpu)) 9556 return; 9557 9558 /* Spare idle load balancing on CPUs that don't want to be disturbed: */ 9559 if (!housekeeping_cpu(cpu, HK_FLAG_SCHED)) 9560 return; 9561 9562 /* 9563 * Can be set safely without rq->lock held 9564 * If a clear happens, it will have evaluated last additions because 9565 * rq->lock is held during the check and the clear 9566 */ 9567 rq->has_blocked_load = 1; 9568 9569 /* 9570 * The tick is still stopped but load could have been added in the 9571 * meantime. We set the nohz.has_blocked flag to trig a check of the 9572 * *_avg. The CPU is already part of nohz.idle_cpus_mask so the clear 9573 * of nohz.has_blocked can only happen after checking the new load 9574 */ 9575 if (rq->nohz_tick_stopped) 9576 goto out; 9577 9578 /* If we're a completely isolated CPU, we don't play: */ 9579 if (on_null_domain(rq)) 9580 return; 9581 9582 rq->nohz_tick_stopped = 1; 9583 9584 cpumask_set_cpu(cpu, nohz.idle_cpus_mask); 9585 atomic_inc(&nohz.nr_cpus); 9586 9587 /* 9588 * Ensures that if nohz_idle_balance() fails to observe our 9589 * @idle_cpus_mask store, it must observe the @has_blocked 9590 * store. 9591 */ 9592 smp_mb__after_atomic(); 9593 9594 set_cpu_sd_state_idle(cpu); 9595 9596 out: 9597 /* 9598 * Each time a cpu enter idle, we assume that it has blocked load and 9599 * enable the periodic update of the load of idle cpus 9600 */ 9601 WRITE_ONCE(nohz.has_blocked, 1); 9602 } 9603 9604 /* 9605 * Internal function that runs load balance for all idle cpus. The load balance 9606 * can be a simple update of blocked load or a complete load balance with 9607 * tasks movement depending of flags. 9608 * The function returns false if the loop has stopped before running 9609 * through all idle CPUs. 9610 */ 9611 static bool _nohz_idle_balance(struct rq *this_rq, unsigned int flags, 9612 enum cpu_idle_type idle) 9613 { 9614 /* Earliest time when we have to do rebalance again */ 9615 unsigned long now = jiffies; 9616 unsigned long next_balance = now + 60*HZ; 9617 bool has_blocked_load = false; 9618 int update_next_balance = 0; 9619 int this_cpu = this_rq->cpu; 9620 int balance_cpu; 9621 int ret = false; 9622 struct rq *rq; 9623 9624 SCHED_WARN_ON((flags & NOHZ_KICK_MASK) == NOHZ_BALANCE_KICK); 9625 9626 /* 9627 * We assume there will be no idle load after this update and clear 9628 * the has_blocked flag. If a cpu enters idle in the mean time, it will 9629 * set the has_blocked flag and trig another update of idle load. 9630 * Because a cpu that becomes idle, is added to idle_cpus_mask before 9631 * setting the flag, we are sure to not clear the state and not 9632 * check the load of an idle cpu. 9633 */ 9634 WRITE_ONCE(nohz.has_blocked, 0); 9635 9636 /* 9637 * Ensures that if we miss the CPU, we must see the has_blocked 9638 * store from nohz_balance_enter_idle(). 9639 */ 9640 smp_mb(); 9641 9642 for_each_cpu(balance_cpu, nohz.idle_cpus_mask) { 9643 if (balance_cpu == this_cpu || !idle_cpu(balance_cpu)) 9644 continue; 9645 9646 /* 9647 * If this CPU gets work to do, stop the load balancing 9648 * work being done for other CPUs. Next load 9649 * balancing owner will pick it up. 9650 */ 9651 if (need_resched()) { 9652 has_blocked_load = true; 9653 goto abort; 9654 } 9655 9656 rq = cpu_rq(balance_cpu); 9657 9658 has_blocked_load |= update_nohz_stats(rq, true); 9659 9660 /* 9661 * If time for next balance is due, 9662 * do the balance. 9663 */ 9664 if (time_after_eq(jiffies, rq->next_balance)) { 9665 struct rq_flags rf; 9666 9667 rq_lock_irqsave(rq, &rf); 9668 update_rq_clock(rq); 9669 rq_unlock_irqrestore(rq, &rf); 9670 9671 if (flags & NOHZ_BALANCE_KICK) 9672 rebalance_domains(rq, CPU_IDLE); 9673 } 9674 9675 if (time_after(next_balance, rq->next_balance)) { 9676 next_balance = rq->next_balance; 9677 update_next_balance = 1; 9678 } 9679 } 9680 9681 /* Newly idle CPU doesn't need an update */ 9682 if (idle != CPU_NEWLY_IDLE) { 9683 update_blocked_averages(this_cpu); 9684 has_blocked_load |= this_rq->has_blocked_load; 9685 } 9686 9687 if (flags & NOHZ_BALANCE_KICK) 9688 rebalance_domains(this_rq, CPU_IDLE); 9689 9690 WRITE_ONCE(nohz.next_blocked, 9691 now + msecs_to_jiffies(LOAD_AVG_PERIOD)); 9692 9693 /* The full idle balance loop has been done */ 9694 ret = true; 9695 9696 abort: 9697 /* There is still blocked load, enable periodic update */ 9698 if (has_blocked_load) 9699 WRITE_ONCE(nohz.has_blocked, 1); 9700 9701 /* 9702 * next_balance will be updated only when there is a need. 9703 * When the CPU is attached to null domain for ex, it will not be 9704 * updated. 9705 */ 9706 if (likely(update_next_balance)) 9707 nohz.next_balance = next_balance; 9708 9709 return ret; 9710 } 9711 9712 /* 9713 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the 9714 * rebalancing for all the cpus for whom scheduler ticks are stopped. 9715 */ 9716 static bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) 9717 { 9718 int this_cpu = this_rq->cpu; 9719 unsigned int flags; 9720 9721 if (!(atomic_read(nohz_flags(this_cpu)) & NOHZ_KICK_MASK)) 9722 return false; 9723 9724 if (idle != CPU_IDLE) { 9725 atomic_andnot(NOHZ_KICK_MASK, nohz_flags(this_cpu)); 9726 return false; 9727 } 9728 9729 /* could be _relaxed() */ 9730 flags = atomic_fetch_andnot(NOHZ_KICK_MASK, nohz_flags(this_cpu)); 9731 if (!(flags & NOHZ_KICK_MASK)) 9732 return false; 9733 9734 _nohz_idle_balance(this_rq, flags, idle); 9735 9736 return true; 9737 } 9738 9739 static void nohz_newidle_balance(struct rq *this_rq) 9740 { 9741 int this_cpu = this_rq->cpu; 9742 9743 /* 9744 * This CPU doesn't want to be disturbed by scheduler 9745 * housekeeping 9746 */ 9747 if (!housekeeping_cpu(this_cpu, HK_FLAG_SCHED)) 9748 return; 9749 9750 /* Will wake up very soon. No time for doing anything else*/ 9751 if (this_rq->avg_idle < sysctl_sched_migration_cost) 9752 return; 9753 9754 /* Don't need to update blocked load of idle CPUs*/ 9755 if (!READ_ONCE(nohz.has_blocked) || 9756 time_before(jiffies, READ_ONCE(nohz.next_blocked))) 9757 return; 9758 9759 raw_spin_unlock(&this_rq->lock); 9760 /* 9761 * This CPU is going to be idle and blocked load of idle CPUs 9762 * need to be updated. Run the ilb locally as it is a good 9763 * candidate for ilb instead of waking up another idle CPU. 9764 * Kick an normal ilb if we failed to do the update. 9765 */ 9766 if (!_nohz_idle_balance(this_rq, NOHZ_STATS_KICK, CPU_NEWLY_IDLE)) 9767 kick_ilb(NOHZ_STATS_KICK); 9768 raw_spin_lock(&this_rq->lock); 9769 } 9770 9771 #else /* !CONFIG_NO_HZ_COMMON */ 9772 static inline void nohz_balancer_kick(struct rq *rq) { } 9773 9774 static inline bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) 9775 { 9776 return false; 9777 } 9778 9779 static inline void nohz_newidle_balance(struct rq *this_rq) { } 9780 #endif /* CONFIG_NO_HZ_COMMON */ 9781 9782 /* 9783 * idle_balance is called by schedule() if this_cpu is about to become 9784 * idle. Attempts to pull tasks from other CPUs. 9785 */ 9786 static int idle_balance(struct rq *this_rq, struct rq_flags *rf) 9787 { 9788 unsigned long next_balance = jiffies + HZ; 9789 int this_cpu = this_rq->cpu; 9790 struct sched_domain *sd; 9791 int pulled_task = 0; 9792 u64 curr_cost = 0; 9793 9794 /* 9795 * We must set idle_stamp _before_ calling idle_balance(), such that we 9796 * measure the duration of idle_balance() as idle time. 9797 */ 9798 this_rq->idle_stamp = rq_clock(this_rq); 9799 9800 /* 9801 * Do not pull tasks towards !active CPUs... 9802 */ 9803 if (!cpu_active(this_cpu)) 9804 return 0; 9805 9806 /* 9807 * This is OK, because current is on_cpu, which avoids it being picked 9808 * for load-balance and preemption/IRQs are still disabled avoiding 9809 * further scheduler activity on it and we're being very careful to 9810 * re-start the picking loop. 9811 */ 9812 rq_unpin_lock(this_rq, rf); 9813 9814 if (this_rq->avg_idle < sysctl_sched_migration_cost || 9815 !READ_ONCE(this_rq->rd->overload)) { 9816 9817 rcu_read_lock(); 9818 sd = rcu_dereference_check_sched_domain(this_rq->sd); 9819 if (sd) 9820 update_next_balance(sd, &next_balance); 9821 rcu_read_unlock(); 9822 9823 nohz_newidle_balance(this_rq); 9824 9825 goto out; 9826 } 9827 9828 raw_spin_unlock(&this_rq->lock); 9829 9830 update_blocked_averages(this_cpu); 9831 rcu_read_lock(); 9832 for_each_domain(this_cpu, sd) { 9833 int continue_balancing = 1; 9834 u64 t0, domain_cost; 9835 9836 if (!(sd->flags & SD_LOAD_BALANCE)) 9837 continue; 9838 9839 if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) { 9840 update_next_balance(sd, &next_balance); 9841 break; 9842 } 9843 9844 if (sd->flags & SD_BALANCE_NEWIDLE) { 9845 t0 = sched_clock_cpu(this_cpu); 9846 9847 pulled_task = load_balance(this_cpu, this_rq, 9848 sd, CPU_NEWLY_IDLE, 9849 &continue_balancing); 9850 9851 domain_cost = sched_clock_cpu(this_cpu) - t0; 9852 if (domain_cost > sd->max_newidle_lb_cost) 9853 sd->max_newidle_lb_cost = domain_cost; 9854 9855 curr_cost += domain_cost; 9856 } 9857 9858 update_next_balance(sd, &next_balance); 9859 9860 /* 9861 * Stop searching for tasks to pull if there are 9862 * now runnable tasks on this rq. 9863 */ 9864 if (pulled_task || this_rq->nr_running > 0) 9865 break; 9866 } 9867 rcu_read_unlock(); 9868 9869 raw_spin_lock(&this_rq->lock); 9870 9871 if (curr_cost > this_rq->max_idle_balance_cost) 9872 this_rq->max_idle_balance_cost = curr_cost; 9873 9874 out: 9875 /* 9876 * While browsing the domains, we released the rq lock, a task could 9877 * have been enqueued in the meantime. Since we're not going idle, 9878 * pretend we pulled a task. 9879 */ 9880 if (this_rq->cfs.h_nr_running && !pulled_task) 9881 pulled_task = 1; 9882 9883 /* Move the next balance forward */ 9884 if (time_after(this_rq->next_balance, next_balance)) 9885 this_rq->next_balance = next_balance; 9886 9887 /* Is there a task of a high priority class? */ 9888 if (this_rq->nr_running != this_rq->cfs.h_nr_running) 9889 pulled_task = -1; 9890 9891 if (pulled_task) 9892 this_rq->idle_stamp = 0; 9893 9894 rq_repin_lock(this_rq, rf); 9895 9896 return pulled_task; 9897 } 9898 9899 /* 9900 * run_rebalance_domains is triggered when needed from the scheduler tick. 9901 * Also triggered for nohz idle balancing (with nohz_balancing_kick set). 9902 */ 9903 static __latent_entropy void run_rebalance_domains(struct softirq_action *h) 9904 { 9905 struct rq *this_rq = this_rq(); 9906 enum cpu_idle_type idle = this_rq->idle_balance ? 9907 CPU_IDLE : CPU_NOT_IDLE; 9908 9909 /* 9910 * If this CPU has a pending nohz_balance_kick, then do the 9911 * balancing on behalf of the other idle CPUs whose ticks are 9912 * stopped. Do nohz_idle_balance *before* rebalance_domains to 9913 * give the idle CPUs a chance to load balance. Else we may 9914 * load balance only within the local sched_domain hierarchy 9915 * and abort nohz_idle_balance altogether if we pull some load. 9916 */ 9917 if (nohz_idle_balance(this_rq, idle)) 9918 return; 9919 9920 /* normal load balance */ 9921 update_blocked_averages(this_rq->cpu); 9922 rebalance_domains(this_rq, idle); 9923 } 9924 9925 /* 9926 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing. 9927 */ 9928 void trigger_load_balance(struct rq *rq) 9929 { 9930 /* Don't need to rebalance while attached to NULL domain */ 9931 if (unlikely(on_null_domain(rq))) 9932 return; 9933 9934 if (time_after_eq(jiffies, rq->next_balance)) 9935 raise_softirq(SCHED_SOFTIRQ); 9936 9937 nohz_balancer_kick(rq); 9938 } 9939 9940 static void rq_online_fair(struct rq *rq) 9941 { 9942 update_sysctl(); 9943 9944 update_runtime_enabled(rq); 9945 } 9946 9947 static void rq_offline_fair(struct rq *rq) 9948 { 9949 update_sysctl(); 9950 9951 /* Ensure any throttled groups are reachable by pick_next_task */ 9952 unthrottle_offline_cfs_rqs(rq); 9953 } 9954 9955 #endif /* CONFIG_SMP */ 9956 9957 /* 9958 * scheduler tick hitting a task of our scheduling class. 9959 * 9960 * NOTE: This function can be called remotely by the tick offload that 9961 * goes along full dynticks. Therefore no local assumption can be made 9962 * and everything must be accessed through the @rq and @curr passed in 9963 * parameters. 9964 */ 9965 static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued) 9966 { 9967 struct cfs_rq *cfs_rq; 9968 struct sched_entity *se = &curr->se; 9969 9970 for_each_sched_entity(se) { 9971 cfs_rq = cfs_rq_of(se); 9972 entity_tick(cfs_rq, se, queued); 9973 } 9974 9975 if (static_branch_unlikely(&sched_numa_balancing)) 9976 task_tick_numa(rq, curr); 9977 9978 update_misfit_status(curr, rq); 9979 update_overutilized_status(task_rq(curr)); 9980 } 9981 9982 /* 9983 * called on fork with the child task as argument from the parent's context 9984 * - child not yet on the tasklist 9985 * - preemption disabled 9986 */ 9987 static void task_fork_fair(struct task_struct *p) 9988 { 9989 struct cfs_rq *cfs_rq; 9990 struct sched_entity *se = &p->se, *curr; 9991 struct rq *rq = this_rq(); 9992 struct rq_flags rf; 9993 9994 rq_lock(rq, &rf); 9995 update_rq_clock(rq); 9996 9997 cfs_rq = task_cfs_rq(current); 9998 curr = cfs_rq->curr; 9999 if (curr) { 10000 update_curr(cfs_rq); 10001 se->vruntime = curr->vruntime; 10002 } 10003 place_entity(cfs_rq, se, 1); 10004 10005 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) { 10006 /* 10007 * Upon rescheduling, sched_class::put_prev_task() will place 10008 * 'current' within the tree based on its new key value. 10009 */ 10010 swap(curr->vruntime, se->vruntime); 10011 resched_curr(rq); 10012 } 10013 10014 se->vruntime -= cfs_rq->min_vruntime; 10015 rq_unlock(rq, &rf); 10016 } 10017 10018 /* 10019 * Priority of the task has changed. Check to see if we preempt 10020 * the current task. 10021 */ 10022 static void 10023 prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio) 10024 { 10025 if (!task_on_rq_queued(p)) 10026 return; 10027 10028 /* 10029 * Reschedule if we are currently running on this runqueue and 10030 * our priority decreased, or if we are not currently running on 10031 * this runqueue and our priority is higher than the current's 10032 */ 10033 if (rq->curr == p) { 10034 if (p->prio > oldprio) 10035 resched_curr(rq); 10036 } else 10037 check_preempt_curr(rq, p, 0); 10038 } 10039 10040 static inline bool vruntime_normalized(struct task_struct *p) 10041 { 10042 struct sched_entity *se = &p->se; 10043 10044 /* 10045 * In both the TASK_ON_RQ_QUEUED and TASK_ON_RQ_MIGRATING cases, 10046 * the dequeue_entity(.flags=0) will already have normalized the 10047 * vruntime. 10048 */ 10049 if (p->on_rq) 10050 return true; 10051 10052 /* 10053 * When !on_rq, vruntime of the task has usually NOT been normalized. 10054 * But there are some cases where it has already been normalized: 10055 * 10056 * - A forked child which is waiting for being woken up by 10057 * wake_up_new_task(). 10058 * - A task which has been woken up by try_to_wake_up() and 10059 * waiting for actually being woken up by sched_ttwu_pending(). 10060 */ 10061 if (!se->sum_exec_runtime || 10062 (p->state == TASK_WAKING && p->sched_remote_wakeup)) 10063 return true; 10064 10065 return false; 10066 } 10067 10068 #ifdef CONFIG_FAIR_GROUP_SCHED 10069 /* 10070 * Propagate the changes of the sched_entity across the tg tree to make it 10071 * visible to the root 10072 */ 10073 static void propagate_entity_cfs_rq(struct sched_entity *se) 10074 { 10075 struct cfs_rq *cfs_rq; 10076 10077 /* Start to propagate at parent */ 10078 se = se->parent; 10079 10080 for_each_sched_entity(se) { 10081 cfs_rq = cfs_rq_of(se); 10082 10083 if (cfs_rq_throttled(cfs_rq)) 10084 break; 10085 10086 update_load_avg(cfs_rq, se, UPDATE_TG); 10087 } 10088 } 10089 #else 10090 static void propagate_entity_cfs_rq(struct sched_entity *se) { } 10091 #endif 10092 10093 static void detach_entity_cfs_rq(struct sched_entity *se) 10094 { 10095 struct cfs_rq *cfs_rq = cfs_rq_of(se); 10096 10097 /* Catch up with the cfs_rq and remove our load when we leave */ 10098 update_load_avg(cfs_rq, se, 0); 10099 detach_entity_load_avg(cfs_rq, se); 10100 update_tg_load_avg(cfs_rq, false); 10101 propagate_entity_cfs_rq(se); 10102 } 10103 10104 static void attach_entity_cfs_rq(struct sched_entity *se) 10105 { 10106 struct cfs_rq *cfs_rq = cfs_rq_of(se); 10107 10108 #ifdef CONFIG_FAIR_GROUP_SCHED 10109 /* 10110 * Since the real-depth could have been changed (only FAIR 10111 * class maintain depth value), reset depth properly. 10112 */ 10113 se->depth = se->parent ? se->parent->depth + 1 : 0; 10114 #endif 10115 10116 /* Synchronize entity with its cfs_rq */ 10117 update_load_avg(cfs_rq, se, sched_feat(ATTACH_AGE_LOAD) ? 0 : SKIP_AGE_LOAD); 10118 attach_entity_load_avg(cfs_rq, se, 0); 10119 update_tg_load_avg(cfs_rq, false); 10120 propagate_entity_cfs_rq(se); 10121 } 10122 10123 static void detach_task_cfs_rq(struct task_struct *p) 10124 { 10125 struct sched_entity *se = &p->se; 10126 struct cfs_rq *cfs_rq = cfs_rq_of(se); 10127 10128 if (!vruntime_normalized(p)) { 10129 /* 10130 * Fix up our vruntime so that the current sleep doesn't 10131 * cause 'unlimited' sleep bonus. 10132 */ 10133 place_entity(cfs_rq, se, 0); 10134 se->vruntime -= cfs_rq->min_vruntime; 10135 } 10136 10137 detach_entity_cfs_rq(se); 10138 } 10139 10140 static void attach_task_cfs_rq(struct task_struct *p) 10141 { 10142 struct sched_entity *se = &p->se; 10143 struct cfs_rq *cfs_rq = cfs_rq_of(se); 10144 10145 attach_entity_cfs_rq(se); 10146 10147 if (!vruntime_normalized(p)) 10148 se->vruntime += cfs_rq->min_vruntime; 10149 } 10150 10151 static void switched_from_fair(struct rq *rq, struct task_struct *p) 10152 { 10153 detach_task_cfs_rq(p); 10154 } 10155 10156 static void switched_to_fair(struct rq *rq, struct task_struct *p) 10157 { 10158 attach_task_cfs_rq(p); 10159 10160 if (task_on_rq_queued(p)) { 10161 /* 10162 * We were most likely switched from sched_rt, so 10163 * kick off the schedule if running, otherwise just see 10164 * if we can still preempt the current task. 10165 */ 10166 if (rq->curr == p) 10167 resched_curr(rq); 10168 else 10169 check_preempt_curr(rq, p, 0); 10170 } 10171 } 10172 10173 /* Account for a task changing its policy or group. 10174 * 10175 * This routine is mostly called to set cfs_rq->curr field when a task 10176 * migrates between groups/classes. 10177 */ 10178 static void set_curr_task_fair(struct rq *rq) 10179 { 10180 struct sched_entity *se = &rq->curr->se; 10181 10182 for_each_sched_entity(se) { 10183 struct cfs_rq *cfs_rq = cfs_rq_of(se); 10184 10185 set_next_entity(cfs_rq, se); 10186 /* ensure bandwidth has been allocated on our new cfs_rq */ 10187 account_cfs_rq_runtime(cfs_rq, 0); 10188 } 10189 } 10190 10191 void init_cfs_rq(struct cfs_rq *cfs_rq) 10192 { 10193 cfs_rq->tasks_timeline = RB_ROOT_CACHED; 10194 cfs_rq->min_vruntime = (u64)(-(1LL << 20)); 10195 #ifndef CONFIG_64BIT 10196 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime; 10197 #endif 10198 #ifdef CONFIG_SMP 10199 raw_spin_lock_init(&cfs_rq->removed.lock); 10200 #endif 10201 } 10202 10203 #ifdef CONFIG_FAIR_GROUP_SCHED 10204 static void task_set_group_fair(struct task_struct *p) 10205 { 10206 struct sched_entity *se = &p->se; 10207 10208 set_task_rq(p, task_cpu(p)); 10209 se->depth = se->parent ? se->parent->depth + 1 : 0; 10210 } 10211 10212 static void task_move_group_fair(struct task_struct *p) 10213 { 10214 detach_task_cfs_rq(p); 10215 set_task_rq(p, task_cpu(p)); 10216 10217 #ifdef CONFIG_SMP 10218 /* Tell se's cfs_rq has been changed -- migrated */ 10219 p->se.avg.last_update_time = 0; 10220 #endif 10221 attach_task_cfs_rq(p); 10222 } 10223 10224 static void task_change_group_fair(struct task_struct *p, int type) 10225 { 10226 switch (type) { 10227 case TASK_SET_GROUP: 10228 task_set_group_fair(p); 10229 break; 10230 10231 case TASK_MOVE_GROUP: 10232 task_move_group_fair(p); 10233 break; 10234 } 10235 } 10236 10237 void free_fair_sched_group(struct task_group *tg) 10238 { 10239 int i; 10240 10241 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg)); 10242 10243 for_each_possible_cpu(i) { 10244 if (tg->cfs_rq) 10245 kfree(tg->cfs_rq[i]); 10246 if (tg->se) 10247 kfree(tg->se[i]); 10248 } 10249 10250 kfree(tg->cfs_rq); 10251 kfree(tg->se); 10252 } 10253 10254 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent) 10255 { 10256 struct sched_entity *se; 10257 struct cfs_rq *cfs_rq; 10258 int i; 10259 10260 tg->cfs_rq = kcalloc(nr_cpu_ids, sizeof(cfs_rq), GFP_KERNEL); 10261 if (!tg->cfs_rq) 10262 goto err; 10263 tg->se = kcalloc(nr_cpu_ids, sizeof(se), GFP_KERNEL); 10264 if (!tg->se) 10265 goto err; 10266 10267 tg->shares = NICE_0_LOAD; 10268 10269 init_cfs_bandwidth(tg_cfs_bandwidth(tg)); 10270 10271 for_each_possible_cpu(i) { 10272 cfs_rq = kzalloc_node(sizeof(struct cfs_rq), 10273 GFP_KERNEL, cpu_to_node(i)); 10274 if (!cfs_rq) 10275 goto err; 10276 10277 se = kzalloc_node(sizeof(struct sched_entity), 10278 GFP_KERNEL, cpu_to_node(i)); 10279 if (!se) 10280 goto err_free_rq; 10281 10282 init_cfs_rq(cfs_rq); 10283 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]); 10284 init_entity_runnable_average(se); 10285 } 10286 10287 return 1; 10288 10289 err_free_rq: 10290 kfree(cfs_rq); 10291 err: 10292 return 0; 10293 } 10294 10295 void online_fair_sched_group(struct task_group *tg) 10296 { 10297 struct sched_entity *se; 10298 struct rq *rq; 10299 int i; 10300 10301 for_each_possible_cpu(i) { 10302 rq = cpu_rq(i); 10303 se = tg->se[i]; 10304 10305 raw_spin_lock_irq(&rq->lock); 10306 update_rq_clock(rq); 10307 attach_entity_cfs_rq(se); 10308 sync_throttle(tg, i); 10309 raw_spin_unlock_irq(&rq->lock); 10310 } 10311 } 10312 10313 void unregister_fair_sched_group(struct task_group *tg) 10314 { 10315 unsigned long flags; 10316 struct rq *rq; 10317 int cpu; 10318 10319 for_each_possible_cpu(cpu) { 10320 if (tg->se[cpu]) 10321 remove_entity_load_avg(tg->se[cpu]); 10322 10323 /* 10324 * Only empty task groups can be destroyed; so we can speculatively 10325 * check on_list without danger of it being re-added. 10326 */ 10327 if (!tg->cfs_rq[cpu]->on_list) 10328 continue; 10329 10330 rq = cpu_rq(cpu); 10331 10332 raw_spin_lock_irqsave(&rq->lock, flags); 10333 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]); 10334 raw_spin_unlock_irqrestore(&rq->lock, flags); 10335 } 10336 } 10337 10338 void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq, 10339 struct sched_entity *se, int cpu, 10340 struct sched_entity *parent) 10341 { 10342 struct rq *rq = cpu_rq(cpu); 10343 10344 cfs_rq->tg = tg; 10345 cfs_rq->rq = rq; 10346 init_cfs_rq_runtime(cfs_rq); 10347 10348 tg->cfs_rq[cpu] = cfs_rq; 10349 tg->se[cpu] = se; 10350 10351 /* se could be NULL for root_task_group */ 10352 if (!se) 10353 return; 10354 10355 if (!parent) { 10356 se->cfs_rq = &rq->cfs; 10357 se->depth = 0; 10358 } else { 10359 se->cfs_rq = parent->my_q; 10360 se->depth = parent->depth + 1; 10361 } 10362 10363 se->my_q = cfs_rq; 10364 /* guarantee group entities always have weight */ 10365 update_load_set(&se->load, NICE_0_LOAD); 10366 se->parent = parent; 10367 } 10368 10369 static DEFINE_MUTEX(shares_mutex); 10370 10371 int sched_group_set_shares(struct task_group *tg, unsigned long shares) 10372 { 10373 int i; 10374 10375 /* 10376 * We can't change the weight of the root cgroup. 10377 */ 10378 if (!tg->se[0]) 10379 return -EINVAL; 10380 10381 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES)); 10382 10383 mutex_lock(&shares_mutex); 10384 if (tg->shares == shares) 10385 goto done; 10386 10387 tg->shares = shares; 10388 for_each_possible_cpu(i) { 10389 struct rq *rq = cpu_rq(i); 10390 struct sched_entity *se = tg->se[i]; 10391 struct rq_flags rf; 10392 10393 /* Propagate contribution to hierarchy */ 10394 rq_lock_irqsave(rq, &rf); 10395 update_rq_clock(rq); 10396 for_each_sched_entity(se) { 10397 update_load_avg(cfs_rq_of(se), se, UPDATE_TG); 10398 update_cfs_group(se); 10399 } 10400 rq_unlock_irqrestore(rq, &rf); 10401 } 10402 10403 done: 10404 mutex_unlock(&shares_mutex); 10405 return 0; 10406 } 10407 #else /* CONFIG_FAIR_GROUP_SCHED */ 10408 10409 void free_fair_sched_group(struct task_group *tg) { } 10410 10411 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent) 10412 { 10413 return 1; 10414 } 10415 10416 void online_fair_sched_group(struct task_group *tg) { } 10417 10418 void unregister_fair_sched_group(struct task_group *tg) { } 10419 10420 #endif /* CONFIG_FAIR_GROUP_SCHED */ 10421 10422 10423 static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task) 10424 { 10425 struct sched_entity *se = &task->se; 10426 unsigned int rr_interval = 0; 10427 10428 /* 10429 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise 10430 * idle runqueue: 10431 */ 10432 if (rq->cfs.load.weight) 10433 rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se)); 10434 10435 return rr_interval; 10436 } 10437 10438 /* 10439 * All the scheduling class methods: 10440 */ 10441 const struct sched_class fair_sched_class = { 10442 .next = &idle_sched_class, 10443 .enqueue_task = enqueue_task_fair, 10444 .dequeue_task = dequeue_task_fair, 10445 .yield_task = yield_task_fair, 10446 .yield_to_task = yield_to_task_fair, 10447 10448 .check_preempt_curr = check_preempt_wakeup, 10449 10450 .pick_next_task = pick_next_task_fair, 10451 .put_prev_task = put_prev_task_fair, 10452 10453 #ifdef CONFIG_SMP 10454 .select_task_rq = select_task_rq_fair, 10455 .migrate_task_rq = migrate_task_rq_fair, 10456 10457 .rq_online = rq_online_fair, 10458 .rq_offline = rq_offline_fair, 10459 10460 .task_dead = task_dead_fair, 10461 .set_cpus_allowed = set_cpus_allowed_common, 10462 #endif 10463 10464 .set_curr_task = set_curr_task_fair, 10465 .task_tick = task_tick_fair, 10466 .task_fork = task_fork_fair, 10467 10468 .prio_changed = prio_changed_fair, 10469 .switched_from = switched_from_fair, 10470 .switched_to = switched_to_fair, 10471 10472 .get_rr_interval = get_rr_interval_fair, 10473 10474 .update_curr = update_curr_fair, 10475 10476 #ifdef CONFIG_FAIR_GROUP_SCHED 10477 .task_change_group = task_change_group_fair, 10478 #endif 10479 10480 #ifdef CONFIG_UCLAMP_TASK 10481 .uclamp_enabled = 1, 10482 #endif 10483 }; 10484 10485 #ifdef CONFIG_SCHED_DEBUG 10486 void print_cfs_stats(struct seq_file *m, int cpu) 10487 { 10488 struct cfs_rq *cfs_rq, *pos; 10489 10490 rcu_read_lock(); 10491 for_each_leaf_cfs_rq_safe(cpu_rq(cpu), cfs_rq, pos) 10492 print_cfs_rq(m, cpu, cfs_rq); 10493 rcu_read_unlock(); 10494 } 10495 10496 #ifdef CONFIG_NUMA_BALANCING 10497 void show_numa_stats(struct task_struct *p, struct seq_file *m) 10498 { 10499 int node; 10500 unsigned long tsf = 0, tpf = 0, gsf = 0, gpf = 0; 10501 struct numa_group *ng; 10502 10503 rcu_read_lock(); 10504 ng = rcu_dereference(p->numa_group); 10505 for_each_online_node(node) { 10506 if (p->numa_faults) { 10507 tsf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 0)]; 10508 tpf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 1)]; 10509 } 10510 if (ng) { 10511 gsf = ng->faults[task_faults_idx(NUMA_MEM, node, 0)], 10512 gpf = ng->faults[task_faults_idx(NUMA_MEM, node, 1)]; 10513 } 10514 print_numa_stats(m, node, tsf, tpf, gsf, gpf); 10515 } 10516 rcu_read_unlock(); 10517 } 10518 #endif /* CONFIG_NUMA_BALANCING */ 10519 #endif /* CONFIG_SCHED_DEBUG */ 10520 10521 __init void init_sched_fair_class(void) 10522 { 10523 #ifdef CONFIG_SMP 10524 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains); 10525 10526 #ifdef CONFIG_NO_HZ_COMMON 10527 nohz.next_balance = jiffies; 10528 nohz.next_blocked = jiffies; 10529 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT); 10530 #endif 10531 #endif /* SMP */ 10532 10533 } 10534 10535 /* 10536 * Helper functions to facilitate extracting info from tracepoints. 10537 */ 10538 10539 const struct sched_avg *sched_trace_cfs_rq_avg(struct cfs_rq *cfs_rq) 10540 { 10541 #ifdef CONFIG_SMP 10542 return cfs_rq ? &cfs_rq->avg : NULL; 10543 #else 10544 return NULL; 10545 #endif 10546 } 10547 EXPORT_SYMBOL_GPL(sched_trace_cfs_rq_avg); 10548 10549 char *sched_trace_cfs_rq_path(struct cfs_rq *cfs_rq, char *str, int len) 10550 { 10551 if (!cfs_rq) { 10552 if (str) 10553 strlcpy(str, "(null)", len); 10554 else 10555 return NULL; 10556 } 10557 10558 cfs_rq_tg_path(cfs_rq, str, len); 10559 return str; 10560 } 10561 EXPORT_SYMBOL_GPL(sched_trace_cfs_rq_path); 10562 10563 int sched_trace_cfs_rq_cpu(struct cfs_rq *cfs_rq) 10564 { 10565 return cfs_rq ? cpu_of(rq_of(cfs_rq)) : -1; 10566 } 10567 EXPORT_SYMBOL_GPL(sched_trace_cfs_rq_cpu); 10568 10569 const struct sched_avg *sched_trace_rq_avg_rt(struct rq *rq) 10570 { 10571 #ifdef CONFIG_SMP 10572 return rq ? &rq->avg_rt : NULL; 10573 #else 10574 return NULL; 10575 #endif 10576 } 10577 EXPORT_SYMBOL_GPL(sched_trace_rq_avg_rt); 10578 10579 const struct sched_avg *sched_trace_rq_avg_dl(struct rq *rq) 10580 { 10581 #ifdef CONFIG_SMP 10582 return rq ? &rq->avg_dl : NULL; 10583 #else 10584 return NULL; 10585 #endif 10586 } 10587 EXPORT_SYMBOL_GPL(sched_trace_rq_avg_dl); 10588 10589 const struct sched_avg *sched_trace_rq_avg_irq(struct rq *rq) 10590 { 10591 #if defined(CONFIG_SMP) && defined(CONFIG_HAVE_SCHED_AVG_IRQ) 10592 return rq ? &rq->avg_irq : NULL; 10593 #else 10594 return NULL; 10595 #endif 10596 } 10597 EXPORT_SYMBOL_GPL(sched_trace_rq_avg_irq); 10598 10599 int sched_trace_rq_cpu(struct rq *rq) 10600 { 10601 return rq ? cpu_of(rq) : -1; 10602 } 10603 EXPORT_SYMBOL_GPL(sched_trace_rq_cpu); 10604 10605 const struct cpumask *sched_trace_rd_span(struct root_domain *rd) 10606 { 10607 #ifdef CONFIG_SMP 10608 return rd ? rd->span : NULL; 10609 #else 10610 return NULL; 10611 #endif 10612 } 10613 EXPORT_SYMBOL_GPL(sched_trace_rd_span); 10614