1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH) 4 * 5 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com> 6 * 7 * Interactivity improvements by Mike Galbraith 8 * (C) 2007 Mike Galbraith <efault@gmx.de> 9 * 10 * Various enhancements by Dmitry Adamushko. 11 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com> 12 * 13 * Group scheduling enhancements by Srivatsa Vaddagiri 14 * Copyright IBM Corporation, 2007 15 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com> 16 * 17 * Scaled math optimizations by Thomas Gleixner 18 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de> 19 * 20 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra 21 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra 22 */ 23 #include "sched.h" 24 25 #include <trace/events/sched.h> 26 27 /* 28 * Targeted preemption latency for CPU-bound tasks: 29 * 30 * NOTE: this latency value is not the same as the concept of 31 * 'timeslice length' - timeslices in CFS are of variable length 32 * and have no persistent notion like in traditional, time-slice 33 * based scheduling concepts. 34 * 35 * (to see the precise effective timeslice length of your workload, 36 * run vmstat and monitor the context-switches (cs) field) 37 * 38 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds) 39 */ 40 unsigned int sysctl_sched_latency = 6000000ULL; 41 unsigned int normalized_sysctl_sched_latency = 6000000ULL; 42 43 /* 44 * The initial- and re-scaling of tunables is configurable 45 * 46 * Options are: 47 * 48 * SCHED_TUNABLESCALING_NONE - unscaled, always *1 49 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus) 50 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus 51 * 52 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus)) 53 */ 54 enum sched_tunable_scaling sysctl_sched_tunable_scaling = SCHED_TUNABLESCALING_LOG; 55 56 /* 57 * Minimal preemption granularity for CPU-bound tasks: 58 * 59 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds) 60 */ 61 unsigned int sysctl_sched_min_granularity = 750000ULL; 62 unsigned int normalized_sysctl_sched_min_granularity = 750000ULL; 63 64 /* 65 * This value is kept at sysctl_sched_latency/sysctl_sched_min_granularity 66 */ 67 static unsigned int sched_nr_latency = 8; 68 69 /* 70 * After fork, child runs first. If set to 0 (default) then 71 * parent will (try to) run first. 72 */ 73 unsigned int sysctl_sched_child_runs_first __read_mostly; 74 75 /* 76 * SCHED_OTHER wake-up granularity. 77 * 78 * This option delays the preemption effects of decoupled workloads 79 * and reduces their over-scheduling. Synchronous workloads will still 80 * have immediate wakeup/sleep latencies. 81 * 82 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds) 83 */ 84 unsigned int sysctl_sched_wakeup_granularity = 1000000UL; 85 unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL; 86 87 const_debug unsigned int sysctl_sched_migration_cost = 500000UL; 88 89 #ifdef CONFIG_SMP 90 /* 91 * For asym packing, by default the lower numbered CPU has higher priority. 92 */ 93 int __weak arch_asym_cpu_priority(int cpu) 94 { 95 return -cpu; 96 } 97 #endif 98 99 #ifdef CONFIG_CFS_BANDWIDTH 100 /* 101 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool 102 * each time a cfs_rq requests quota. 103 * 104 * Note: in the case that the slice exceeds the runtime remaining (either due 105 * to consumption or the quota being specified to be smaller than the slice) 106 * we will always only issue the remaining available time. 107 * 108 * (default: 5 msec, units: microseconds) 109 */ 110 unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL; 111 #endif 112 113 /* 114 * The margin used when comparing utilization with CPU capacity: 115 * util * margin < capacity * 1024 116 * 117 * (default: ~20%) 118 */ 119 unsigned int capacity_margin = 1280; 120 121 static inline void update_load_add(struct load_weight *lw, unsigned long inc) 122 { 123 lw->weight += inc; 124 lw->inv_weight = 0; 125 } 126 127 static inline void update_load_sub(struct load_weight *lw, unsigned long dec) 128 { 129 lw->weight -= dec; 130 lw->inv_weight = 0; 131 } 132 133 static inline void update_load_set(struct load_weight *lw, unsigned long w) 134 { 135 lw->weight = w; 136 lw->inv_weight = 0; 137 } 138 139 /* 140 * Increase the granularity value when there are more CPUs, 141 * because with more CPUs the 'effective latency' as visible 142 * to users decreases. But the relationship is not linear, 143 * so pick a second-best guess by going with the log2 of the 144 * number of CPUs. 145 * 146 * This idea comes from the SD scheduler of Con Kolivas: 147 */ 148 static unsigned int get_update_sysctl_factor(void) 149 { 150 unsigned int cpus = min_t(unsigned int, num_online_cpus(), 8); 151 unsigned int factor; 152 153 switch (sysctl_sched_tunable_scaling) { 154 case SCHED_TUNABLESCALING_NONE: 155 factor = 1; 156 break; 157 case SCHED_TUNABLESCALING_LINEAR: 158 factor = cpus; 159 break; 160 case SCHED_TUNABLESCALING_LOG: 161 default: 162 factor = 1 + ilog2(cpus); 163 break; 164 } 165 166 return factor; 167 } 168 169 static void update_sysctl(void) 170 { 171 unsigned int factor = get_update_sysctl_factor(); 172 173 #define SET_SYSCTL(name) \ 174 (sysctl_##name = (factor) * normalized_sysctl_##name) 175 SET_SYSCTL(sched_min_granularity); 176 SET_SYSCTL(sched_latency); 177 SET_SYSCTL(sched_wakeup_granularity); 178 #undef SET_SYSCTL 179 } 180 181 void sched_init_granularity(void) 182 { 183 update_sysctl(); 184 } 185 186 #define WMULT_CONST (~0U) 187 #define WMULT_SHIFT 32 188 189 static void __update_inv_weight(struct load_weight *lw) 190 { 191 unsigned long w; 192 193 if (likely(lw->inv_weight)) 194 return; 195 196 w = scale_load_down(lw->weight); 197 198 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST)) 199 lw->inv_weight = 1; 200 else if (unlikely(!w)) 201 lw->inv_weight = WMULT_CONST; 202 else 203 lw->inv_weight = WMULT_CONST / w; 204 } 205 206 /* 207 * delta_exec * weight / lw.weight 208 * OR 209 * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT 210 * 211 * Either weight := NICE_0_LOAD and lw \e sched_prio_to_wmult[], in which case 212 * we're guaranteed shift stays positive because inv_weight is guaranteed to 213 * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22. 214 * 215 * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus 216 * weight/lw.weight <= 1, and therefore our shift will also be positive. 217 */ 218 static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw) 219 { 220 u64 fact = scale_load_down(weight); 221 int shift = WMULT_SHIFT; 222 223 __update_inv_weight(lw); 224 225 if (unlikely(fact >> 32)) { 226 while (fact >> 32) { 227 fact >>= 1; 228 shift--; 229 } 230 } 231 232 /* hint to use a 32x32->64 mul */ 233 fact = (u64)(u32)fact * lw->inv_weight; 234 235 while (fact >> 32) { 236 fact >>= 1; 237 shift--; 238 } 239 240 return mul_u64_u32_shr(delta_exec, fact, shift); 241 } 242 243 244 const struct sched_class fair_sched_class; 245 246 /************************************************************** 247 * CFS operations on generic schedulable entities: 248 */ 249 250 #ifdef CONFIG_FAIR_GROUP_SCHED 251 252 /* cpu runqueue to which this cfs_rq is attached */ 253 static inline struct rq *rq_of(struct cfs_rq *cfs_rq) 254 { 255 return cfs_rq->rq; 256 } 257 258 static inline struct task_struct *task_of(struct sched_entity *se) 259 { 260 SCHED_WARN_ON(!entity_is_task(se)); 261 return container_of(se, struct task_struct, se); 262 } 263 264 /* Walk up scheduling entities hierarchy */ 265 #define for_each_sched_entity(se) \ 266 for (; se; se = se->parent) 267 268 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p) 269 { 270 return p->se.cfs_rq; 271 } 272 273 /* runqueue on which this entity is (to be) queued */ 274 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se) 275 { 276 return se->cfs_rq; 277 } 278 279 /* runqueue "owned" by this group */ 280 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp) 281 { 282 return grp->my_q; 283 } 284 285 static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq) 286 { 287 if (!cfs_rq->on_list) { 288 struct rq *rq = rq_of(cfs_rq); 289 int cpu = cpu_of(rq); 290 /* 291 * Ensure we either appear before our parent (if already 292 * enqueued) or force our parent to appear after us when it is 293 * enqueued. The fact that we always enqueue bottom-up 294 * reduces this to two cases and a special case for the root 295 * cfs_rq. Furthermore, it also means that we will always reset 296 * tmp_alone_branch either when the branch is connected 297 * to a tree or when we reach the beg of the tree 298 */ 299 if (cfs_rq->tg->parent && 300 cfs_rq->tg->parent->cfs_rq[cpu]->on_list) { 301 /* 302 * If parent is already on the list, we add the child 303 * just before. Thanks to circular linked property of 304 * the list, this means to put the child at the tail 305 * of the list that starts by parent. 306 */ 307 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list, 308 &(cfs_rq->tg->parent->cfs_rq[cpu]->leaf_cfs_rq_list)); 309 /* 310 * The branch is now connected to its tree so we can 311 * reset tmp_alone_branch to the beginning of the 312 * list. 313 */ 314 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list; 315 } else if (!cfs_rq->tg->parent) { 316 /* 317 * cfs rq without parent should be put 318 * at the tail of the list. 319 */ 320 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list, 321 &rq->leaf_cfs_rq_list); 322 /* 323 * We have reach the beg of a tree so we can reset 324 * tmp_alone_branch to the beginning of the list. 325 */ 326 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list; 327 } else { 328 /* 329 * The parent has not already been added so we want to 330 * make sure that it will be put after us. 331 * tmp_alone_branch points to the beg of the branch 332 * where we will add parent. 333 */ 334 list_add_rcu(&cfs_rq->leaf_cfs_rq_list, 335 rq->tmp_alone_branch); 336 /* 337 * update tmp_alone_branch to points to the new beg 338 * of the branch 339 */ 340 rq->tmp_alone_branch = &cfs_rq->leaf_cfs_rq_list; 341 } 342 343 cfs_rq->on_list = 1; 344 } 345 } 346 347 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq) 348 { 349 if (cfs_rq->on_list) { 350 list_del_rcu(&cfs_rq->leaf_cfs_rq_list); 351 cfs_rq->on_list = 0; 352 } 353 } 354 355 /* Iterate thr' all leaf cfs_rq's on a runqueue */ 356 #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) \ 357 list_for_each_entry_safe(cfs_rq, pos, &rq->leaf_cfs_rq_list, \ 358 leaf_cfs_rq_list) 359 360 /* Do the two (enqueued) entities belong to the same group ? */ 361 static inline struct cfs_rq * 362 is_same_group(struct sched_entity *se, struct sched_entity *pse) 363 { 364 if (se->cfs_rq == pse->cfs_rq) 365 return se->cfs_rq; 366 367 return NULL; 368 } 369 370 static inline struct sched_entity *parent_entity(struct sched_entity *se) 371 { 372 return se->parent; 373 } 374 375 static void 376 find_matching_se(struct sched_entity **se, struct sched_entity **pse) 377 { 378 int se_depth, pse_depth; 379 380 /* 381 * preemption test can be made between sibling entities who are in the 382 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of 383 * both tasks until we find their ancestors who are siblings of common 384 * parent. 385 */ 386 387 /* First walk up until both entities are at same depth */ 388 se_depth = (*se)->depth; 389 pse_depth = (*pse)->depth; 390 391 while (se_depth > pse_depth) { 392 se_depth--; 393 *se = parent_entity(*se); 394 } 395 396 while (pse_depth > se_depth) { 397 pse_depth--; 398 *pse = parent_entity(*pse); 399 } 400 401 while (!is_same_group(*se, *pse)) { 402 *se = parent_entity(*se); 403 *pse = parent_entity(*pse); 404 } 405 } 406 407 #else /* !CONFIG_FAIR_GROUP_SCHED */ 408 409 static inline struct task_struct *task_of(struct sched_entity *se) 410 { 411 return container_of(se, struct task_struct, se); 412 } 413 414 static inline struct rq *rq_of(struct cfs_rq *cfs_rq) 415 { 416 return container_of(cfs_rq, struct rq, cfs); 417 } 418 419 420 #define for_each_sched_entity(se) \ 421 for (; se; se = NULL) 422 423 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p) 424 { 425 return &task_rq(p)->cfs; 426 } 427 428 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se) 429 { 430 struct task_struct *p = task_of(se); 431 struct rq *rq = task_rq(p); 432 433 return &rq->cfs; 434 } 435 436 /* runqueue "owned" by this group */ 437 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp) 438 { 439 return NULL; 440 } 441 442 static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq) 443 { 444 } 445 446 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq) 447 { 448 } 449 450 #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) \ 451 for (cfs_rq = &rq->cfs, pos = NULL; cfs_rq; cfs_rq = pos) 452 453 static inline struct sched_entity *parent_entity(struct sched_entity *se) 454 { 455 return NULL; 456 } 457 458 static inline void 459 find_matching_se(struct sched_entity **se, struct sched_entity **pse) 460 { 461 } 462 463 #endif /* CONFIG_FAIR_GROUP_SCHED */ 464 465 static __always_inline 466 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec); 467 468 /************************************************************** 469 * Scheduling class tree data structure manipulation methods: 470 */ 471 472 static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime) 473 { 474 s64 delta = (s64)(vruntime - max_vruntime); 475 if (delta > 0) 476 max_vruntime = vruntime; 477 478 return max_vruntime; 479 } 480 481 static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime) 482 { 483 s64 delta = (s64)(vruntime - min_vruntime); 484 if (delta < 0) 485 min_vruntime = vruntime; 486 487 return min_vruntime; 488 } 489 490 static inline int entity_before(struct sched_entity *a, 491 struct sched_entity *b) 492 { 493 return (s64)(a->vruntime - b->vruntime) < 0; 494 } 495 496 static void update_min_vruntime(struct cfs_rq *cfs_rq) 497 { 498 struct sched_entity *curr = cfs_rq->curr; 499 struct rb_node *leftmost = rb_first_cached(&cfs_rq->tasks_timeline); 500 501 u64 vruntime = cfs_rq->min_vruntime; 502 503 if (curr) { 504 if (curr->on_rq) 505 vruntime = curr->vruntime; 506 else 507 curr = NULL; 508 } 509 510 if (leftmost) { /* non-empty tree */ 511 struct sched_entity *se; 512 se = rb_entry(leftmost, struct sched_entity, run_node); 513 514 if (!curr) 515 vruntime = se->vruntime; 516 else 517 vruntime = min_vruntime(vruntime, se->vruntime); 518 } 519 520 /* ensure we never gain time by being placed backwards. */ 521 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime); 522 #ifndef CONFIG_64BIT 523 smp_wmb(); 524 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime; 525 #endif 526 } 527 528 /* 529 * Enqueue an entity into the rb-tree: 530 */ 531 static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) 532 { 533 struct rb_node **link = &cfs_rq->tasks_timeline.rb_root.rb_node; 534 struct rb_node *parent = NULL; 535 struct sched_entity *entry; 536 bool leftmost = true; 537 538 /* 539 * Find the right place in the rbtree: 540 */ 541 while (*link) { 542 parent = *link; 543 entry = rb_entry(parent, struct sched_entity, run_node); 544 /* 545 * We dont care about collisions. Nodes with 546 * the same key stay together. 547 */ 548 if (entity_before(se, entry)) { 549 link = &parent->rb_left; 550 } else { 551 link = &parent->rb_right; 552 leftmost = false; 553 } 554 } 555 556 rb_link_node(&se->run_node, parent, link); 557 rb_insert_color_cached(&se->run_node, 558 &cfs_rq->tasks_timeline, leftmost); 559 } 560 561 static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) 562 { 563 rb_erase_cached(&se->run_node, &cfs_rq->tasks_timeline); 564 } 565 566 struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq) 567 { 568 struct rb_node *left = rb_first_cached(&cfs_rq->tasks_timeline); 569 570 if (!left) 571 return NULL; 572 573 return rb_entry(left, struct sched_entity, run_node); 574 } 575 576 static struct sched_entity *__pick_next_entity(struct sched_entity *se) 577 { 578 struct rb_node *next = rb_next(&se->run_node); 579 580 if (!next) 581 return NULL; 582 583 return rb_entry(next, struct sched_entity, run_node); 584 } 585 586 #ifdef CONFIG_SCHED_DEBUG 587 struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq) 588 { 589 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline.rb_root); 590 591 if (!last) 592 return NULL; 593 594 return rb_entry(last, struct sched_entity, run_node); 595 } 596 597 /************************************************************** 598 * Scheduling class statistics methods: 599 */ 600 601 int sched_proc_update_handler(struct ctl_table *table, int write, 602 void __user *buffer, size_t *lenp, 603 loff_t *ppos) 604 { 605 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 606 unsigned int factor = get_update_sysctl_factor(); 607 608 if (ret || !write) 609 return ret; 610 611 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency, 612 sysctl_sched_min_granularity); 613 614 #define WRT_SYSCTL(name) \ 615 (normalized_sysctl_##name = sysctl_##name / (factor)) 616 WRT_SYSCTL(sched_min_granularity); 617 WRT_SYSCTL(sched_latency); 618 WRT_SYSCTL(sched_wakeup_granularity); 619 #undef WRT_SYSCTL 620 621 return 0; 622 } 623 #endif 624 625 /* 626 * delta /= w 627 */ 628 static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se) 629 { 630 if (unlikely(se->load.weight != NICE_0_LOAD)) 631 delta = __calc_delta(delta, NICE_0_LOAD, &se->load); 632 633 return delta; 634 } 635 636 /* 637 * The idea is to set a period in which each task runs once. 638 * 639 * When there are too many tasks (sched_nr_latency) we have to stretch 640 * this period because otherwise the slices get too small. 641 * 642 * p = (nr <= nl) ? l : l*nr/nl 643 */ 644 static u64 __sched_period(unsigned long nr_running) 645 { 646 if (unlikely(nr_running > sched_nr_latency)) 647 return nr_running * sysctl_sched_min_granularity; 648 else 649 return sysctl_sched_latency; 650 } 651 652 /* 653 * We calculate the wall-time slice from the period by taking a part 654 * proportional to the weight. 655 * 656 * s = p*P[w/rw] 657 */ 658 static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se) 659 { 660 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq); 661 662 for_each_sched_entity(se) { 663 struct load_weight *load; 664 struct load_weight lw; 665 666 cfs_rq = cfs_rq_of(se); 667 load = &cfs_rq->load; 668 669 if (unlikely(!se->on_rq)) { 670 lw = cfs_rq->load; 671 672 update_load_add(&lw, se->load.weight); 673 load = &lw; 674 } 675 slice = __calc_delta(slice, se->load.weight, load); 676 } 677 return slice; 678 } 679 680 /* 681 * We calculate the vruntime slice of a to-be-inserted task. 682 * 683 * vs = s/w 684 */ 685 static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se) 686 { 687 return calc_delta_fair(sched_slice(cfs_rq, se), se); 688 } 689 690 #ifdef CONFIG_SMP 691 #include "pelt.h" 692 #include "sched-pelt.h" 693 694 static int select_idle_sibling(struct task_struct *p, int prev_cpu, int cpu); 695 static unsigned long task_h_load(struct task_struct *p); 696 static unsigned long capacity_of(int cpu); 697 698 /* Give new sched_entity start runnable values to heavy its load in infant time */ 699 void init_entity_runnable_average(struct sched_entity *se) 700 { 701 struct sched_avg *sa = &se->avg; 702 703 memset(sa, 0, sizeof(*sa)); 704 705 /* 706 * Tasks are intialized with full load to be seen as heavy tasks until 707 * they get a chance to stabilize to their real load level. 708 * Group entities are intialized with zero load to reflect the fact that 709 * nothing has been attached to the task group yet. 710 */ 711 if (entity_is_task(se)) 712 sa->runnable_load_avg = sa->load_avg = scale_load_down(se->load.weight); 713 714 se->runnable_weight = se->load.weight; 715 716 /* when this task enqueue'ed, it will contribute to its cfs_rq's load_avg */ 717 } 718 719 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq); 720 static void attach_entity_cfs_rq(struct sched_entity *se); 721 722 /* 723 * With new tasks being created, their initial util_avgs are extrapolated 724 * based on the cfs_rq's current util_avg: 725 * 726 * util_avg = cfs_rq->util_avg / (cfs_rq->load_avg + 1) * se.load.weight 727 * 728 * However, in many cases, the above util_avg does not give a desired 729 * value. Moreover, the sum of the util_avgs may be divergent, such 730 * as when the series is a harmonic series. 731 * 732 * To solve this problem, we also cap the util_avg of successive tasks to 733 * only 1/2 of the left utilization budget: 734 * 735 * util_avg_cap = (cpu_scale - cfs_rq->avg.util_avg) / 2^n 736 * 737 * where n denotes the nth task and cpu_scale the CPU capacity. 738 * 739 * For example, for a CPU with 1024 of capacity, a simplest series from 740 * the beginning would be like: 741 * 742 * task util_avg: 512, 256, 128, 64, 32, 16, 8, ... 743 * cfs_rq util_avg: 512, 768, 896, 960, 992, 1008, 1016, ... 744 * 745 * Finally, that extrapolated util_avg is clamped to the cap (util_avg_cap) 746 * if util_avg > util_avg_cap. 747 */ 748 void post_init_entity_util_avg(struct sched_entity *se) 749 { 750 struct cfs_rq *cfs_rq = cfs_rq_of(se); 751 struct sched_avg *sa = &se->avg; 752 long cpu_scale = arch_scale_cpu_capacity(NULL, cpu_of(rq_of(cfs_rq))); 753 long cap = (long)(cpu_scale - cfs_rq->avg.util_avg) / 2; 754 755 if (cap > 0) { 756 if (cfs_rq->avg.util_avg != 0) { 757 sa->util_avg = cfs_rq->avg.util_avg * se->load.weight; 758 sa->util_avg /= (cfs_rq->avg.load_avg + 1); 759 760 if (sa->util_avg > cap) 761 sa->util_avg = cap; 762 } else { 763 sa->util_avg = cap; 764 } 765 } 766 767 if (entity_is_task(se)) { 768 struct task_struct *p = task_of(se); 769 if (p->sched_class != &fair_sched_class) { 770 /* 771 * For !fair tasks do: 772 * 773 update_cfs_rq_load_avg(now, cfs_rq); 774 attach_entity_load_avg(cfs_rq, se, 0); 775 switched_from_fair(rq, p); 776 * 777 * such that the next switched_to_fair() has the 778 * expected state. 779 */ 780 se->avg.last_update_time = cfs_rq_clock_task(cfs_rq); 781 return; 782 } 783 } 784 785 attach_entity_cfs_rq(se); 786 } 787 788 #else /* !CONFIG_SMP */ 789 void init_entity_runnable_average(struct sched_entity *se) 790 { 791 } 792 void post_init_entity_util_avg(struct sched_entity *se) 793 { 794 } 795 static void update_tg_load_avg(struct cfs_rq *cfs_rq, int force) 796 { 797 } 798 #endif /* CONFIG_SMP */ 799 800 /* 801 * Update the current task's runtime statistics. 802 */ 803 static void update_curr(struct cfs_rq *cfs_rq) 804 { 805 struct sched_entity *curr = cfs_rq->curr; 806 u64 now = rq_clock_task(rq_of(cfs_rq)); 807 u64 delta_exec; 808 809 if (unlikely(!curr)) 810 return; 811 812 delta_exec = now - curr->exec_start; 813 if (unlikely((s64)delta_exec <= 0)) 814 return; 815 816 curr->exec_start = now; 817 818 schedstat_set(curr->statistics.exec_max, 819 max(delta_exec, curr->statistics.exec_max)); 820 821 curr->sum_exec_runtime += delta_exec; 822 schedstat_add(cfs_rq->exec_clock, delta_exec); 823 824 curr->vruntime += calc_delta_fair(delta_exec, curr); 825 update_min_vruntime(cfs_rq); 826 827 if (entity_is_task(curr)) { 828 struct task_struct *curtask = task_of(curr); 829 830 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime); 831 cgroup_account_cputime(curtask, delta_exec); 832 account_group_exec_runtime(curtask, delta_exec); 833 } 834 835 account_cfs_rq_runtime(cfs_rq, delta_exec); 836 } 837 838 static void update_curr_fair(struct rq *rq) 839 { 840 update_curr(cfs_rq_of(&rq->curr->se)); 841 } 842 843 static inline void 844 update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se) 845 { 846 u64 wait_start, prev_wait_start; 847 848 if (!schedstat_enabled()) 849 return; 850 851 wait_start = rq_clock(rq_of(cfs_rq)); 852 prev_wait_start = schedstat_val(se->statistics.wait_start); 853 854 if (entity_is_task(se) && task_on_rq_migrating(task_of(se)) && 855 likely(wait_start > prev_wait_start)) 856 wait_start -= prev_wait_start; 857 858 __schedstat_set(se->statistics.wait_start, wait_start); 859 } 860 861 static inline void 862 update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se) 863 { 864 struct task_struct *p; 865 u64 delta; 866 867 if (!schedstat_enabled()) 868 return; 869 870 delta = rq_clock(rq_of(cfs_rq)) - schedstat_val(se->statistics.wait_start); 871 872 if (entity_is_task(se)) { 873 p = task_of(se); 874 if (task_on_rq_migrating(p)) { 875 /* 876 * Preserve migrating task's wait time so wait_start 877 * time stamp can be adjusted to accumulate wait time 878 * prior to migration. 879 */ 880 __schedstat_set(se->statistics.wait_start, delta); 881 return; 882 } 883 trace_sched_stat_wait(p, delta); 884 } 885 886 __schedstat_set(se->statistics.wait_max, 887 max(schedstat_val(se->statistics.wait_max), delta)); 888 __schedstat_inc(se->statistics.wait_count); 889 __schedstat_add(se->statistics.wait_sum, delta); 890 __schedstat_set(se->statistics.wait_start, 0); 891 } 892 893 static inline void 894 update_stats_enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se) 895 { 896 struct task_struct *tsk = NULL; 897 u64 sleep_start, block_start; 898 899 if (!schedstat_enabled()) 900 return; 901 902 sleep_start = schedstat_val(se->statistics.sleep_start); 903 block_start = schedstat_val(se->statistics.block_start); 904 905 if (entity_is_task(se)) 906 tsk = task_of(se); 907 908 if (sleep_start) { 909 u64 delta = rq_clock(rq_of(cfs_rq)) - sleep_start; 910 911 if ((s64)delta < 0) 912 delta = 0; 913 914 if (unlikely(delta > schedstat_val(se->statistics.sleep_max))) 915 __schedstat_set(se->statistics.sleep_max, delta); 916 917 __schedstat_set(se->statistics.sleep_start, 0); 918 __schedstat_add(se->statistics.sum_sleep_runtime, delta); 919 920 if (tsk) { 921 account_scheduler_latency(tsk, delta >> 10, 1); 922 trace_sched_stat_sleep(tsk, delta); 923 } 924 } 925 if (block_start) { 926 u64 delta = rq_clock(rq_of(cfs_rq)) - block_start; 927 928 if ((s64)delta < 0) 929 delta = 0; 930 931 if (unlikely(delta > schedstat_val(se->statistics.block_max))) 932 __schedstat_set(se->statistics.block_max, delta); 933 934 __schedstat_set(se->statistics.block_start, 0); 935 __schedstat_add(se->statistics.sum_sleep_runtime, delta); 936 937 if (tsk) { 938 if (tsk->in_iowait) { 939 __schedstat_add(se->statistics.iowait_sum, delta); 940 __schedstat_inc(se->statistics.iowait_count); 941 trace_sched_stat_iowait(tsk, delta); 942 } 943 944 trace_sched_stat_blocked(tsk, delta); 945 946 /* 947 * Blocking time is in units of nanosecs, so shift by 948 * 20 to get a milliseconds-range estimation of the 949 * amount of time that the task spent sleeping: 950 */ 951 if (unlikely(prof_on == SLEEP_PROFILING)) { 952 profile_hits(SLEEP_PROFILING, 953 (void *)get_wchan(tsk), 954 delta >> 20); 955 } 956 account_scheduler_latency(tsk, delta >> 10, 0); 957 } 958 } 959 } 960 961 /* 962 * Task is being enqueued - update stats: 963 */ 964 static inline void 965 update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 966 { 967 if (!schedstat_enabled()) 968 return; 969 970 /* 971 * Are we enqueueing a waiting task? (for current tasks 972 * a dequeue/enqueue event is a NOP) 973 */ 974 if (se != cfs_rq->curr) 975 update_stats_wait_start(cfs_rq, se); 976 977 if (flags & ENQUEUE_WAKEUP) 978 update_stats_enqueue_sleeper(cfs_rq, se); 979 } 980 981 static inline void 982 update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 983 { 984 985 if (!schedstat_enabled()) 986 return; 987 988 /* 989 * Mark the end of the wait period if dequeueing a 990 * waiting task: 991 */ 992 if (se != cfs_rq->curr) 993 update_stats_wait_end(cfs_rq, se); 994 995 if ((flags & DEQUEUE_SLEEP) && entity_is_task(se)) { 996 struct task_struct *tsk = task_of(se); 997 998 if (tsk->state & TASK_INTERRUPTIBLE) 999 __schedstat_set(se->statistics.sleep_start, 1000 rq_clock(rq_of(cfs_rq))); 1001 if (tsk->state & TASK_UNINTERRUPTIBLE) 1002 __schedstat_set(se->statistics.block_start, 1003 rq_clock(rq_of(cfs_rq))); 1004 } 1005 } 1006 1007 /* 1008 * We are picking a new current task - update its stats: 1009 */ 1010 static inline void 1011 update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se) 1012 { 1013 /* 1014 * We are starting a new run period: 1015 */ 1016 se->exec_start = rq_clock_task(rq_of(cfs_rq)); 1017 } 1018 1019 /************************************************** 1020 * Scheduling class queueing methods: 1021 */ 1022 1023 #ifdef CONFIG_NUMA_BALANCING 1024 /* 1025 * Approximate time to scan a full NUMA task in ms. The task scan period is 1026 * calculated based on the tasks virtual memory size and 1027 * numa_balancing_scan_size. 1028 */ 1029 unsigned int sysctl_numa_balancing_scan_period_min = 1000; 1030 unsigned int sysctl_numa_balancing_scan_period_max = 60000; 1031 1032 /* Portion of address space to scan in MB */ 1033 unsigned int sysctl_numa_balancing_scan_size = 256; 1034 1035 /* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */ 1036 unsigned int sysctl_numa_balancing_scan_delay = 1000; 1037 1038 struct numa_group { 1039 atomic_t refcount; 1040 1041 spinlock_t lock; /* nr_tasks, tasks */ 1042 int nr_tasks; 1043 pid_t gid; 1044 int active_nodes; 1045 1046 struct rcu_head rcu; 1047 unsigned long total_faults; 1048 unsigned long max_faults_cpu; 1049 /* 1050 * Faults_cpu is used to decide whether memory should move 1051 * towards the CPU. As a consequence, these stats are weighted 1052 * more by CPU use than by memory faults. 1053 */ 1054 unsigned long *faults_cpu; 1055 unsigned long faults[0]; 1056 }; 1057 1058 static inline unsigned long group_faults_priv(struct numa_group *ng); 1059 static inline unsigned long group_faults_shared(struct numa_group *ng); 1060 1061 static unsigned int task_nr_scan_windows(struct task_struct *p) 1062 { 1063 unsigned long rss = 0; 1064 unsigned long nr_scan_pages; 1065 1066 /* 1067 * Calculations based on RSS as non-present and empty pages are skipped 1068 * by the PTE scanner and NUMA hinting faults should be trapped based 1069 * on resident pages 1070 */ 1071 nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT); 1072 rss = get_mm_rss(p->mm); 1073 if (!rss) 1074 rss = nr_scan_pages; 1075 1076 rss = round_up(rss, nr_scan_pages); 1077 return rss / nr_scan_pages; 1078 } 1079 1080 /* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */ 1081 #define MAX_SCAN_WINDOW 2560 1082 1083 static unsigned int task_scan_min(struct task_struct *p) 1084 { 1085 unsigned int scan_size = READ_ONCE(sysctl_numa_balancing_scan_size); 1086 unsigned int scan, floor; 1087 unsigned int windows = 1; 1088 1089 if (scan_size < MAX_SCAN_WINDOW) 1090 windows = MAX_SCAN_WINDOW / scan_size; 1091 floor = 1000 / windows; 1092 1093 scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p); 1094 return max_t(unsigned int, floor, scan); 1095 } 1096 1097 static unsigned int task_scan_start(struct task_struct *p) 1098 { 1099 unsigned long smin = task_scan_min(p); 1100 unsigned long period = smin; 1101 1102 /* Scale the maximum scan period with the amount of shared memory. */ 1103 if (p->numa_group) { 1104 struct numa_group *ng = p->numa_group; 1105 unsigned long shared = group_faults_shared(ng); 1106 unsigned long private = group_faults_priv(ng); 1107 1108 period *= atomic_read(&ng->refcount); 1109 period *= shared + 1; 1110 period /= private + shared + 1; 1111 } 1112 1113 return max(smin, period); 1114 } 1115 1116 static unsigned int task_scan_max(struct task_struct *p) 1117 { 1118 unsigned long smin = task_scan_min(p); 1119 unsigned long smax; 1120 1121 /* Watch for min being lower than max due to floor calculations */ 1122 smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p); 1123 1124 /* Scale the maximum scan period with the amount of shared memory. */ 1125 if (p->numa_group) { 1126 struct numa_group *ng = p->numa_group; 1127 unsigned long shared = group_faults_shared(ng); 1128 unsigned long private = group_faults_priv(ng); 1129 unsigned long period = smax; 1130 1131 period *= atomic_read(&ng->refcount); 1132 period *= shared + 1; 1133 period /= private + shared + 1; 1134 1135 smax = max(smax, period); 1136 } 1137 1138 return max(smin, smax); 1139 } 1140 1141 void init_numa_balancing(unsigned long clone_flags, struct task_struct *p) 1142 { 1143 int mm_users = 0; 1144 struct mm_struct *mm = p->mm; 1145 1146 if (mm) { 1147 mm_users = atomic_read(&mm->mm_users); 1148 if (mm_users == 1) { 1149 mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay); 1150 mm->numa_scan_seq = 0; 1151 } 1152 } 1153 p->node_stamp = 0; 1154 p->numa_scan_seq = mm ? mm->numa_scan_seq : 0; 1155 p->numa_scan_period = sysctl_numa_balancing_scan_delay; 1156 p->numa_work.next = &p->numa_work; 1157 p->numa_faults = NULL; 1158 p->numa_group = NULL; 1159 p->last_task_numa_placement = 0; 1160 p->last_sum_exec_runtime = 0; 1161 1162 /* New address space, reset the preferred nid */ 1163 if (!(clone_flags & CLONE_VM)) { 1164 p->numa_preferred_nid = -1; 1165 return; 1166 } 1167 1168 /* 1169 * New thread, keep existing numa_preferred_nid which should be copied 1170 * already by arch_dup_task_struct but stagger when scans start. 1171 */ 1172 if (mm) { 1173 unsigned int delay; 1174 1175 delay = min_t(unsigned int, task_scan_max(current), 1176 current->numa_scan_period * mm_users * NSEC_PER_MSEC); 1177 delay += 2 * TICK_NSEC; 1178 p->node_stamp = delay; 1179 } 1180 } 1181 1182 static void account_numa_enqueue(struct rq *rq, struct task_struct *p) 1183 { 1184 rq->nr_numa_running += (p->numa_preferred_nid != -1); 1185 rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p)); 1186 } 1187 1188 static void account_numa_dequeue(struct rq *rq, struct task_struct *p) 1189 { 1190 rq->nr_numa_running -= (p->numa_preferred_nid != -1); 1191 rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p)); 1192 } 1193 1194 /* Shared or private faults. */ 1195 #define NR_NUMA_HINT_FAULT_TYPES 2 1196 1197 /* Memory and CPU locality */ 1198 #define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2) 1199 1200 /* Averaged statistics, and temporary buffers. */ 1201 #define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2) 1202 1203 pid_t task_numa_group_id(struct task_struct *p) 1204 { 1205 return p->numa_group ? p->numa_group->gid : 0; 1206 } 1207 1208 /* 1209 * The averaged statistics, shared & private, memory & CPU, 1210 * occupy the first half of the array. The second half of the 1211 * array is for current counters, which are averaged into the 1212 * first set by task_numa_placement. 1213 */ 1214 static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv) 1215 { 1216 return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv; 1217 } 1218 1219 static inline unsigned long task_faults(struct task_struct *p, int nid) 1220 { 1221 if (!p->numa_faults) 1222 return 0; 1223 1224 return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] + 1225 p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)]; 1226 } 1227 1228 static inline unsigned long group_faults(struct task_struct *p, int nid) 1229 { 1230 if (!p->numa_group) 1231 return 0; 1232 1233 return p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 0)] + 1234 p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 1)]; 1235 } 1236 1237 static inline unsigned long group_faults_cpu(struct numa_group *group, int nid) 1238 { 1239 return group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 0)] + 1240 group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 1)]; 1241 } 1242 1243 static inline unsigned long group_faults_priv(struct numa_group *ng) 1244 { 1245 unsigned long faults = 0; 1246 int node; 1247 1248 for_each_online_node(node) { 1249 faults += ng->faults[task_faults_idx(NUMA_MEM, node, 1)]; 1250 } 1251 1252 return faults; 1253 } 1254 1255 static inline unsigned long group_faults_shared(struct numa_group *ng) 1256 { 1257 unsigned long faults = 0; 1258 int node; 1259 1260 for_each_online_node(node) { 1261 faults += ng->faults[task_faults_idx(NUMA_MEM, node, 0)]; 1262 } 1263 1264 return faults; 1265 } 1266 1267 /* 1268 * A node triggering more than 1/3 as many NUMA faults as the maximum is 1269 * considered part of a numa group's pseudo-interleaving set. Migrations 1270 * between these nodes are slowed down, to allow things to settle down. 1271 */ 1272 #define ACTIVE_NODE_FRACTION 3 1273 1274 static bool numa_is_active_node(int nid, struct numa_group *ng) 1275 { 1276 return group_faults_cpu(ng, nid) * ACTIVE_NODE_FRACTION > ng->max_faults_cpu; 1277 } 1278 1279 /* Handle placement on systems where not all nodes are directly connected. */ 1280 static unsigned long score_nearby_nodes(struct task_struct *p, int nid, 1281 int maxdist, bool task) 1282 { 1283 unsigned long score = 0; 1284 int node; 1285 1286 /* 1287 * All nodes are directly connected, and the same distance 1288 * from each other. No need for fancy placement algorithms. 1289 */ 1290 if (sched_numa_topology_type == NUMA_DIRECT) 1291 return 0; 1292 1293 /* 1294 * This code is called for each node, introducing N^2 complexity, 1295 * which should be ok given the number of nodes rarely exceeds 8. 1296 */ 1297 for_each_online_node(node) { 1298 unsigned long faults; 1299 int dist = node_distance(nid, node); 1300 1301 /* 1302 * The furthest away nodes in the system are not interesting 1303 * for placement; nid was already counted. 1304 */ 1305 if (dist == sched_max_numa_distance || node == nid) 1306 continue; 1307 1308 /* 1309 * On systems with a backplane NUMA topology, compare groups 1310 * of nodes, and move tasks towards the group with the most 1311 * memory accesses. When comparing two nodes at distance 1312 * "hoplimit", only nodes closer by than "hoplimit" are part 1313 * of each group. Skip other nodes. 1314 */ 1315 if (sched_numa_topology_type == NUMA_BACKPLANE && 1316 dist >= maxdist) 1317 continue; 1318 1319 /* Add up the faults from nearby nodes. */ 1320 if (task) 1321 faults = task_faults(p, node); 1322 else 1323 faults = group_faults(p, node); 1324 1325 /* 1326 * On systems with a glueless mesh NUMA topology, there are 1327 * no fixed "groups of nodes". Instead, nodes that are not 1328 * directly connected bounce traffic through intermediate 1329 * nodes; a numa_group can occupy any set of nodes. 1330 * The further away a node is, the less the faults count. 1331 * This seems to result in good task placement. 1332 */ 1333 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) { 1334 faults *= (sched_max_numa_distance - dist); 1335 faults /= (sched_max_numa_distance - LOCAL_DISTANCE); 1336 } 1337 1338 score += faults; 1339 } 1340 1341 return score; 1342 } 1343 1344 /* 1345 * These return the fraction of accesses done by a particular task, or 1346 * task group, on a particular numa node. The group weight is given a 1347 * larger multiplier, in order to group tasks together that are almost 1348 * evenly spread out between numa nodes. 1349 */ 1350 static inline unsigned long task_weight(struct task_struct *p, int nid, 1351 int dist) 1352 { 1353 unsigned long faults, total_faults; 1354 1355 if (!p->numa_faults) 1356 return 0; 1357 1358 total_faults = p->total_numa_faults; 1359 1360 if (!total_faults) 1361 return 0; 1362 1363 faults = task_faults(p, nid); 1364 faults += score_nearby_nodes(p, nid, dist, true); 1365 1366 return 1000 * faults / total_faults; 1367 } 1368 1369 static inline unsigned long group_weight(struct task_struct *p, int nid, 1370 int dist) 1371 { 1372 unsigned long faults, total_faults; 1373 1374 if (!p->numa_group) 1375 return 0; 1376 1377 total_faults = p->numa_group->total_faults; 1378 1379 if (!total_faults) 1380 return 0; 1381 1382 faults = group_faults(p, nid); 1383 faults += score_nearby_nodes(p, nid, dist, false); 1384 1385 return 1000 * faults / total_faults; 1386 } 1387 1388 bool should_numa_migrate_memory(struct task_struct *p, struct page * page, 1389 int src_nid, int dst_cpu) 1390 { 1391 struct numa_group *ng = p->numa_group; 1392 int dst_nid = cpu_to_node(dst_cpu); 1393 int last_cpupid, this_cpupid; 1394 1395 this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid); 1396 last_cpupid = page_cpupid_xchg_last(page, this_cpupid); 1397 1398 /* 1399 * Allow first faults or private faults to migrate immediately early in 1400 * the lifetime of a task. The magic number 4 is based on waiting for 1401 * two full passes of the "multi-stage node selection" test that is 1402 * executed below. 1403 */ 1404 if ((p->numa_preferred_nid == -1 || p->numa_scan_seq <= 4) && 1405 (cpupid_pid_unset(last_cpupid) || cpupid_match_pid(p, last_cpupid))) 1406 return true; 1407 1408 /* 1409 * Multi-stage node selection is used in conjunction with a periodic 1410 * migration fault to build a temporal task<->page relation. By using 1411 * a two-stage filter we remove short/unlikely relations. 1412 * 1413 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate 1414 * a task's usage of a particular page (n_p) per total usage of this 1415 * page (n_t) (in a given time-span) to a probability. 1416 * 1417 * Our periodic faults will sample this probability and getting the 1418 * same result twice in a row, given these samples are fully 1419 * independent, is then given by P(n)^2, provided our sample period 1420 * is sufficiently short compared to the usage pattern. 1421 * 1422 * This quadric squishes small probabilities, making it less likely we 1423 * act on an unlikely task<->page relation. 1424 */ 1425 if (!cpupid_pid_unset(last_cpupid) && 1426 cpupid_to_nid(last_cpupid) != dst_nid) 1427 return false; 1428 1429 /* Always allow migrate on private faults */ 1430 if (cpupid_match_pid(p, last_cpupid)) 1431 return true; 1432 1433 /* A shared fault, but p->numa_group has not been set up yet. */ 1434 if (!ng) 1435 return true; 1436 1437 /* 1438 * Destination node is much more heavily used than the source 1439 * node? Allow migration. 1440 */ 1441 if (group_faults_cpu(ng, dst_nid) > group_faults_cpu(ng, src_nid) * 1442 ACTIVE_NODE_FRACTION) 1443 return true; 1444 1445 /* 1446 * Distribute memory according to CPU & memory use on each node, 1447 * with 3/4 hysteresis to avoid unnecessary memory migrations: 1448 * 1449 * faults_cpu(dst) 3 faults_cpu(src) 1450 * --------------- * - > --------------- 1451 * faults_mem(dst) 4 faults_mem(src) 1452 */ 1453 return group_faults_cpu(ng, dst_nid) * group_faults(p, src_nid) * 3 > 1454 group_faults_cpu(ng, src_nid) * group_faults(p, dst_nid) * 4; 1455 } 1456 1457 static unsigned long weighted_cpuload(struct rq *rq); 1458 static unsigned long source_load(int cpu, int type); 1459 static unsigned long target_load(int cpu, int type); 1460 1461 /* Cached statistics for all CPUs within a node */ 1462 struct numa_stats { 1463 unsigned long load; 1464 1465 /* Total compute capacity of CPUs on a node */ 1466 unsigned long compute_capacity; 1467 }; 1468 1469 /* 1470 * XXX borrowed from update_sg_lb_stats 1471 */ 1472 static void update_numa_stats(struct numa_stats *ns, int nid) 1473 { 1474 int cpu; 1475 1476 memset(ns, 0, sizeof(*ns)); 1477 for_each_cpu(cpu, cpumask_of_node(nid)) { 1478 struct rq *rq = cpu_rq(cpu); 1479 1480 ns->load += weighted_cpuload(rq); 1481 ns->compute_capacity += capacity_of(cpu); 1482 } 1483 1484 } 1485 1486 struct task_numa_env { 1487 struct task_struct *p; 1488 1489 int src_cpu, src_nid; 1490 int dst_cpu, dst_nid; 1491 1492 struct numa_stats src_stats, dst_stats; 1493 1494 int imbalance_pct; 1495 int dist; 1496 1497 struct task_struct *best_task; 1498 long best_imp; 1499 int best_cpu; 1500 }; 1501 1502 static void task_numa_assign(struct task_numa_env *env, 1503 struct task_struct *p, long imp) 1504 { 1505 struct rq *rq = cpu_rq(env->dst_cpu); 1506 1507 /* Bail out if run-queue part of active NUMA balance. */ 1508 if (xchg(&rq->numa_migrate_on, 1)) 1509 return; 1510 1511 /* 1512 * Clear previous best_cpu/rq numa-migrate flag, since task now 1513 * found a better CPU to move/swap. 1514 */ 1515 if (env->best_cpu != -1) { 1516 rq = cpu_rq(env->best_cpu); 1517 WRITE_ONCE(rq->numa_migrate_on, 0); 1518 } 1519 1520 if (env->best_task) 1521 put_task_struct(env->best_task); 1522 if (p) 1523 get_task_struct(p); 1524 1525 env->best_task = p; 1526 env->best_imp = imp; 1527 env->best_cpu = env->dst_cpu; 1528 } 1529 1530 static bool load_too_imbalanced(long src_load, long dst_load, 1531 struct task_numa_env *env) 1532 { 1533 long imb, old_imb; 1534 long orig_src_load, orig_dst_load; 1535 long src_capacity, dst_capacity; 1536 1537 /* 1538 * The load is corrected for the CPU capacity available on each node. 1539 * 1540 * src_load dst_load 1541 * ------------ vs --------- 1542 * src_capacity dst_capacity 1543 */ 1544 src_capacity = env->src_stats.compute_capacity; 1545 dst_capacity = env->dst_stats.compute_capacity; 1546 1547 imb = abs(dst_load * src_capacity - src_load * dst_capacity); 1548 1549 orig_src_load = env->src_stats.load; 1550 orig_dst_load = env->dst_stats.load; 1551 1552 old_imb = abs(orig_dst_load * src_capacity - orig_src_load * dst_capacity); 1553 1554 /* Would this change make things worse? */ 1555 return (imb > old_imb); 1556 } 1557 1558 /* 1559 * Maximum NUMA importance can be 1998 (2*999); 1560 * SMALLIMP @ 30 would be close to 1998/64. 1561 * Used to deter task migration. 1562 */ 1563 #define SMALLIMP 30 1564 1565 /* 1566 * This checks if the overall compute and NUMA accesses of the system would 1567 * be improved if the source tasks was migrated to the target dst_cpu taking 1568 * into account that it might be best if task running on the dst_cpu should 1569 * be exchanged with the source task 1570 */ 1571 static void task_numa_compare(struct task_numa_env *env, 1572 long taskimp, long groupimp, bool maymove) 1573 { 1574 struct rq *dst_rq = cpu_rq(env->dst_cpu); 1575 struct task_struct *cur; 1576 long src_load, dst_load; 1577 long load; 1578 long imp = env->p->numa_group ? groupimp : taskimp; 1579 long moveimp = imp; 1580 int dist = env->dist; 1581 1582 if (READ_ONCE(dst_rq->numa_migrate_on)) 1583 return; 1584 1585 rcu_read_lock(); 1586 cur = task_rcu_dereference(&dst_rq->curr); 1587 if (cur && ((cur->flags & PF_EXITING) || is_idle_task(cur))) 1588 cur = NULL; 1589 1590 /* 1591 * Because we have preemption enabled we can get migrated around and 1592 * end try selecting ourselves (current == env->p) as a swap candidate. 1593 */ 1594 if (cur == env->p) 1595 goto unlock; 1596 1597 if (!cur) { 1598 if (maymove && moveimp >= env->best_imp) 1599 goto assign; 1600 else 1601 goto unlock; 1602 } 1603 1604 /* 1605 * "imp" is the fault differential for the source task between the 1606 * source and destination node. Calculate the total differential for 1607 * the source task and potential destination task. The more negative 1608 * the value is, the more remote accesses that would be expected to 1609 * be incurred if the tasks were swapped. 1610 */ 1611 /* Skip this swap candidate if cannot move to the source cpu */ 1612 if (!cpumask_test_cpu(env->src_cpu, &cur->cpus_allowed)) 1613 goto unlock; 1614 1615 /* 1616 * If dst and source tasks are in the same NUMA group, or not 1617 * in any group then look only at task weights. 1618 */ 1619 if (cur->numa_group == env->p->numa_group) { 1620 imp = taskimp + task_weight(cur, env->src_nid, dist) - 1621 task_weight(cur, env->dst_nid, dist); 1622 /* 1623 * Add some hysteresis to prevent swapping the 1624 * tasks within a group over tiny differences. 1625 */ 1626 if (cur->numa_group) 1627 imp -= imp / 16; 1628 } else { 1629 /* 1630 * Compare the group weights. If a task is all by itself 1631 * (not part of a group), use the task weight instead. 1632 */ 1633 if (cur->numa_group && env->p->numa_group) 1634 imp += group_weight(cur, env->src_nid, dist) - 1635 group_weight(cur, env->dst_nid, dist); 1636 else 1637 imp += task_weight(cur, env->src_nid, dist) - 1638 task_weight(cur, env->dst_nid, dist); 1639 } 1640 1641 if (maymove && moveimp > imp && moveimp > env->best_imp) { 1642 imp = moveimp; 1643 cur = NULL; 1644 goto assign; 1645 } 1646 1647 /* 1648 * If the NUMA importance is less than SMALLIMP, 1649 * task migration might only result in ping pong 1650 * of tasks and also hurt performance due to cache 1651 * misses. 1652 */ 1653 if (imp < SMALLIMP || imp <= env->best_imp + SMALLIMP / 2) 1654 goto unlock; 1655 1656 /* 1657 * In the overloaded case, try and keep the load balanced. 1658 */ 1659 load = task_h_load(env->p) - task_h_load(cur); 1660 if (!load) 1661 goto assign; 1662 1663 dst_load = env->dst_stats.load + load; 1664 src_load = env->src_stats.load - load; 1665 1666 if (load_too_imbalanced(src_load, dst_load, env)) 1667 goto unlock; 1668 1669 assign: 1670 /* 1671 * One idle CPU per node is evaluated for a task numa move. 1672 * Call select_idle_sibling to maybe find a better one. 1673 */ 1674 if (!cur) { 1675 /* 1676 * select_idle_siblings() uses an per-CPU cpumask that 1677 * can be used from IRQ context. 1678 */ 1679 local_irq_disable(); 1680 env->dst_cpu = select_idle_sibling(env->p, env->src_cpu, 1681 env->dst_cpu); 1682 local_irq_enable(); 1683 } 1684 1685 task_numa_assign(env, cur, imp); 1686 unlock: 1687 rcu_read_unlock(); 1688 } 1689 1690 static void task_numa_find_cpu(struct task_numa_env *env, 1691 long taskimp, long groupimp) 1692 { 1693 long src_load, dst_load, load; 1694 bool maymove = false; 1695 int cpu; 1696 1697 load = task_h_load(env->p); 1698 dst_load = env->dst_stats.load + load; 1699 src_load = env->src_stats.load - load; 1700 1701 /* 1702 * If the improvement from just moving env->p direction is better 1703 * than swapping tasks around, check if a move is possible. 1704 */ 1705 maymove = !load_too_imbalanced(src_load, dst_load, env); 1706 1707 for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) { 1708 /* Skip this CPU if the source task cannot migrate */ 1709 if (!cpumask_test_cpu(cpu, &env->p->cpus_allowed)) 1710 continue; 1711 1712 env->dst_cpu = cpu; 1713 task_numa_compare(env, taskimp, groupimp, maymove); 1714 } 1715 } 1716 1717 static int task_numa_migrate(struct task_struct *p) 1718 { 1719 struct task_numa_env env = { 1720 .p = p, 1721 1722 .src_cpu = task_cpu(p), 1723 .src_nid = task_node(p), 1724 1725 .imbalance_pct = 112, 1726 1727 .best_task = NULL, 1728 .best_imp = 0, 1729 .best_cpu = -1, 1730 }; 1731 struct sched_domain *sd; 1732 struct rq *best_rq; 1733 unsigned long taskweight, groupweight; 1734 int nid, ret, dist; 1735 long taskimp, groupimp; 1736 1737 /* 1738 * Pick the lowest SD_NUMA domain, as that would have the smallest 1739 * imbalance and would be the first to start moving tasks about. 1740 * 1741 * And we want to avoid any moving of tasks about, as that would create 1742 * random movement of tasks -- counter the numa conditions we're trying 1743 * to satisfy here. 1744 */ 1745 rcu_read_lock(); 1746 sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu)); 1747 if (sd) 1748 env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2; 1749 rcu_read_unlock(); 1750 1751 /* 1752 * Cpusets can break the scheduler domain tree into smaller 1753 * balance domains, some of which do not cross NUMA boundaries. 1754 * Tasks that are "trapped" in such domains cannot be migrated 1755 * elsewhere, so there is no point in (re)trying. 1756 */ 1757 if (unlikely(!sd)) { 1758 sched_setnuma(p, task_node(p)); 1759 return -EINVAL; 1760 } 1761 1762 env.dst_nid = p->numa_preferred_nid; 1763 dist = env.dist = node_distance(env.src_nid, env.dst_nid); 1764 taskweight = task_weight(p, env.src_nid, dist); 1765 groupweight = group_weight(p, env.src_nid, dist); 1766 update_numa_stats(&env.src_stats, env.src_nid); 1767 taskimp = task_weight(p, env.dst_nid, dist) - taskweight; 1768 groupimp = group_weight(p, env.dst_nid, dist) - groupweight; 1769 update_numa_stats(&env.dst_stats, env.dst_nid); 1770 1771 /* Try to find a spot on the preferred nid. */ 1772 task_numa_find_cpu(&env, taskimp, groupimp); 1773 1774 /* 1775 * Look at other nodes in these cases: 1776 * - there is no space available on the preferred_nid 1777 * - the task is part of a numa_group that is interleaved across 1778 * multiple NUMA nodes; in order to better consolidate the group, 1779 * we need to check other locations. 1780 */ 1781 if (env.best_cpu == -1 || (p->numa_group && p->numa_group->active_nodes > 1)) { 1782 for_each_online_node(nid) { 1783 if (nid == env.src_nid || nid == p->numa_preferred_nid) 1784 continue; 1785 1786 dist = node_distance(env.src_nid, env.dst_nid); 1787 if (sched_numa_topology_type == NUMA_BACKPLANE && 1788 dist != env.dist) { 1789 taskweight = task_weight(p, env.src_nid, dist); 1790 groupweight = group_weight(p, env.src_nid, dist); 1791 } 1792 1793 /* Only consider nodes where both task and groups benefit */ 1794 taskimp = task_weight(p, nid, dist) - taskweight; 1795 groupimp = group_weight(p, nid, dist) - groupweight; 1796 if (taskimp < 0 && groupimp < 0) 1797 continue; 1798 1799 env.dist = dist; 1800 env.dst_nid = nid; 1801 update_numa_stats(&env.dst_stats, env.dst_nid); 1802 task_numa_find_cpu(&env, taskimp, groupimp); 1803 } 1804 } 1805 1806 /* 1807 * If the task is part of a workload that spans multiple NUMA nodes, 1808 * and is migrating into one of the workload's active nodes, remember 1809 * this node as the task's preferred numa node, so the workload can 1810 * settle down. 1811 * A task that migrated to a second choice node will be better off 1812 * trying for a better one later. Do not set the preferred node here. 1813 */ 1814 if (p->numa_group) { 1815 if (env.best_cpu == -1) 1816 nid = env.src_nid; 1817 else 1818 nid = cpu_to_node(env.best_cpu); 1819 1820 if (nid != p->numa_preferred_nid) 1821 sched_setnuma(p, nid); 1822 } 1823 1824 /* No better CPU than the current one was found. */ 1825 if (env.best_cpu == -1) 1826 return -EAGAIN; 1827 1828 best_rq = cpu_rq(env.best_cpu); 1829 if (env.best_task == NULL) { 1830 ret = migrate_task_to(p, env.best_cpu); 1831 WRITE_ONCE(best_rq->numa_migrate_on, 0); 1832 if (ret != 0) 1833 trace_sched_stick_numa(p, env.src_cpu, env.best_cpu); 1834 return ret; 1835 } 1836 1837 ret = migrate_swap(p, env.best_task, env.best_cpu, env.src_cpu); 1838 WRITE_ONCE(best_rq->numa_migrate_on, 0); 1839 1840 if (ret != 0) 1841 trace_sched_stick_numa(p, env.src_cpu, task_cpu(env.best_task)); 1842 put_task_struct(env.best_task); 1843 return ret; 1844 } 1845 1846 /* Attempt to migrate a task to a CPU on the preferred node. */ 1847 static void numa_migrate_preferred(struct task_struct *p) 1848 { 1849 unsigned long interval = HZ; 1850 1851 /* This task has no NUMA fault statistics yet */ 1852 if (unlikely(p->numa_preferred_nid == -1 || !p->numa_faults)) 1853 return; 1854 1855 /* Periodically retry migrating the task to the preferred node */ 1856 interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16); 1857 p->numa_migrate_retry = jiffies + interval; 1858 1859 /* Success if task is already running on preferred CPU */ 1860 if (task_node(p) == p->numa_preferred_nid) 1861 return; 1862 1863 /* Otherwise, try migrate to a CPU on the preferred node */ 1864 task_numa_migrate(p); 1865 } 1866 1867 /* 1868 * Find out how many nodes on the workload is actively running on. Do this by 1869 * tracking the nodes from which NUMA hinting faults are triggered. This can 1870 * be different from the set of nodes where the workload's memory is currently 1871 * located. 1872 */ 1873 static void numa_group_count_active_nodes(struct numa_group *numa_group) 1874 { 1875 unsigned long faults, max_faults = 0; 1876 int nid, active_nodes = 0; 1877 1878 for_each_online_node(nid) { 1879 faults = group_faults_cpu(numa_group, nid); 1880 if (faults > max_faults) 1881 max_faults = faults; 1882 } 1883 1884 for_each_online_node(nid) { 1885 faults = group_faults_cpu(numa_group, nid); 1886 if (faults * ACTIVE_NODE_FRACTION > max_faults) 1887 active_nodes++; 1888 } 1889 1890 numa_group->max_faults_cpu = max_faults; 1891 numa_group->active_nodes = active_nodes; 1892 } 1893 1894 /* 1895 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS 1896 * increments. The more local the fault statistics are, the higher the scan 1897 * period will be for the next scan window. If local/(local+remote) ratio is 1898 * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS) 1899 * the scan period will decrease. Aim for 70% local accesses. 1900 */ 1901 #define NUMA_PERIOD_SLOTS 10 1902 #define NUMA_PERIOD_THRESHOLD 7 1903 1904 /* 1905 * Increase the scan period (slow down scanning) if the majority of 1906 * our memory is already on our local node, or if the majority of 1907 * the page accesses are shared with other processes. 1908 * Otherwise, decrease the scan period. 1909 */ 1910 static void update_task_scan_period(struct task_struct *p, 1911 unsigned long shared, unsigned long private) 1912 { 1913 unsigned int period_slot; 1914 int lr_ratio, ps_ratio; 1915 int diff; 1916 1917 unsigned long remote = p->numa_faults_locality[0]; 1918 unsigned long local = p->numa_faults_locality[1]; 1919 1920 /* 1921 * If there were no record hinting faults then either the task is 1922 * completely idle or all activity is areas that are not of interest 1923 * to automatic numa balancing. Related to that, if there were failed 1924 * migration then it implies we are migrating too quickly or the local 1925 * node is overloaded. In either case, scan slower 1926 */ 1927 if (local + shared == 0 || p->numa_faults_locality[2]) { 1928 p->numa_scan_period = min(p->numa_scan_period_max, 1929 p->numa_scan_period << 1); 1930 1931 p->mm->numa_next_scan = jiffies + 1932 msecs_to_jiffies(p->numa_scan_period); 1933 1934 return; 1935 } 1936 1937 /* 1938 * Prepare to scale scan period relative to the current period. 1939 * == NUMA_PERIOD_THRESHOLD scan period stays the same 1940 * < NUMA_PERIOD_THRESHOLD scan period decreases (scan faster) 1941 * >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower) 1942 */ 1943 period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS); 1944 lr_ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote); 1945 ps_ratio = (private * NUMA_PERIOD_SLOTS) / (private + shared); 1946 1947 if (ps_ratio >= NUMA_PERIOD_THRESHOLD) { 1948 /* 1949 * Most memory accesses are local. There is no need to 1950 * do fast NUMA scanning, since memory is already local. 1951 */ 1952 int slot = ps_ratio - NUMA_PERIOD_THRESHOLD; 1953 if (!slot) 1954 slot = 1; 1955 diff = slot * period_slot; 1956 } else if (lr_ratio >= NUMA_PERIOD_THRESHOLD) { 1957 /* 1958 * Most memory accesses are shared with other tasks. 1959 * There is no point in continuing fast NUMA scanning, 1960 * since other tasks may just move the memory elsewhere. 1961 */ 1962 int slot = lr_ratio - NUMA_PERIOD_THRESHOLD; 1963 if (!slot) 1964 slot = 1; 1965 diff = slot * period_slot; 1966 } else { 1967 /* 1968 * Private memory faults exceed (SLOTS-THRESHOLD)/SLOTS, 1969 * yet they are not on the local NUMA node. Speed up 1970 * NUMA scanning to get the memory moved over. 1971 */ 1972 int ratio = max(lr_ratio, ps_ratio); 1973 diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot; 1974 } 1975 1976 p->numa_scan_period = clamp(p->numa_scan_period + diff, 1977 task_scan_min(p), task_scan_max(p)); 1978 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality)); 1979 } 1980 1981 /* 1982 * Get the fraction of time the task has been running since the last 1983 * NUMA placement cycle. The scheduler keeps similar statistics, but 1984 * decays those on a 32ms period, which is orders of magnitude off 1985 * from the dozens-of-seconds NUMA balancing period. Use the scheduler 1986 * stats only if the task is so new there are no NUMA statistics yet. 1987 */ 1988 static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period) 1989 { 1990 u64 runtime, delta, now; 1991 /* Use the start of this time slice to avoid calculations. */ 1992 now = p->se.exec_start; 1993 runtime = p->se.sum_exec_runtime; 1994 1995 if (p->last_task_numa_placement) { 1996 delta = runtime - p->last_sum_exec_runtime; 1997 *period = now - p->last_task_numa_placement; 1998 } else { 1999 delta = p->se.avg.load_sum; 2000 *period = LOAD_AVG_MAX; 2001 } 2002 2003 p->last_sum_exec_runtime = runtime; 2004 p->last_task_numa_placement = now; 2005 2006 return delta; 2007 } 2008 2009 /* 2010 * Determine the preferred nid for a task in a numa_group. This needs to 2011 * be done in a way that produces consistent results with group_weight, 2012 * otherwise workloads might not converge. 2013 */ 2014 static int preferred_group_nid(struct task_struct *p, int nid) 2015 { 2016 nodemask_t nodes; 2017 int dist; 2018 2019 /* Direct connections between all NUMA nodes. */ 2020 if (sched_numa_topology_type == NUMA_DIRECT) 2021 return nid; 2022 2023 /* 2024 * On a system with glueless mesh NUMA topology, group_weight 2025 * scores nodes according to the number of NUMA hinting faults on 2026 * both the node itself, and on nearby nodes. 2027 */ 2028 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) { 2029 unsigned long score, max_score = 0; 2030 int node, max_node = nid; 2031 2032 dist = sched_max_numa_distance; 2033 2034 for_each_online_node(node) { 2035 score = group_weight(p, node, dist); 2036 if (score > max_score) { 2037 max_score = score; 2038 max_node = node; 2039 } 2040 } 2041 return max_node; 2042 } 2043 2044 /* 2045 * Finding the preferred nid in a system with NUMA backplane 2046 * interconnect topology is more involved. The goal is to locate 2047 * tasks from numa_groups near each other in the system, and 2048 * untangle workloads from different sides of the system. This requires 2049 * searching down the hierarchy of node groups, recursively searching 2050 * inside the highest scoring group of nodes. The nodemask tricks 2051 * keep the complexity of the search down. 2052 */ 2053 nodes = node_online_map; 2054 for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) { 2055 unsigned long max_faults = 0; 2056 nodemask_t max_group = NODE_MASK_NONE; 2057 int a, b; 2058 2059 /* Are there nodes at this distance from each other? */ 2060 if (!find_numa_distance(dist)) 2061 continue; 2062 2063 for_each_node_mask(a, nodes) { 2064 unsigned long faults = 0; 2065 nodemask_t this_group; 2066 nodes_clear(this_group); 2067 2068 /* Sum group's NUMA faults; includes a==b case. */ 2069 for_each_node_mask(b, nodes) { 2070 if (node_distance(a, b) < dist) { 2071 faults += group_faults(p, b); 2072 node_set(b, this_group); 2073 node_clear(b, nodes); 2074 } 2075 } 2076 2077 /* Remember the top group. */ 2078 if (faults > max_faults) { 2079 max_faults = faults; 2080 max_group = this_group; 2081 /* 2082 * subtle: at the smallest distance there is 2083 * just one node left in each "group", the 2084 * winner is the preferred nid. 2085 */ 2086 nid = a; 2087 } 2088 } 2089 /* Next round, evaluate the nodes within max_group. */ 2090 if (!max_faults) 2091 break; 2092 nodes = max_group; 2093 } 2094 return nid; 2095 } 2096 2097 static void task_numa_placement(struct task_struct *p) 2098 { 2099 int seq, nid, max_nid = -1; 2100 unsigned long max_faults = 0; 2101 unsigned long fault_types[2] = { 0, 0 }; 2102 unsigned long total_faults; 2103 u64 runtime, period; 2104 spinlock_t *group_lock = NULL; 2105 2106 /* 2107 * The p->mm->numa_scan_seq field gets updated without 2108 * exclusive access. Use READ_ONCE() here to ensure 2109 * that the field is read in a single access: 2110 */ 2111 seq = READ_ONCE(p->mm->numa_scan_seq); 2112 if (p->numa_scan_seq == seq) 2113 return; 2114 p->numa_scan_seq = seq; 2115 p->numa_scan_period_max = task_scan_max(p); 2116 2117 total_faults = p->numa_faults_locality[0] + 2118 p->numa_faults_locality[1]; 2119 runtime = numa_get_avg_runtime(p, &period); 2120 2121 /* If the task is part of a group prevent parallel updates to group stats */ 2122 if (p->numa_group) { 2123 group_lock = &p->numa_group->lock; 2124 spin_lock_irq(group_lock); 2125 } 2126 2127 /* Find the node with the highest number of faults */ 2128 for_each_online_node(nid) { 2129 /* Keep track of the offsets in numa_faults array */ 2130 int mem_idx, membuf_idx, cpu_idx, cpubuf_idx; 2131 unsigned long faults = 0, group_faults = 0; 2132 int priv; 2133 2134 for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) { 2135 long diff, f_diff, f_weight; 2136 2137 mem_idx = task_faults_idx(NUMA_MEM, nid, priv); 2138 membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv); 2139 cpu_idx = task_faults_idx(NUMA_CPU, nid, priv); 2140 cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv); 2141 2142 /* Decay existing window, copy faults since last scan */ 2143 diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2; 2144 fault_types[priv] += p->numa_faults[membuf_idx]; 2145 p->numa_faults[membuf_idx] = 0; 2146 2147 /* 2148 * Normalize the faults_from, so all tasks in a group 2149 * count according to CPU use, instead of by the raw 2150 * number of faults. Tasks with little runtime have 2151 * little over-all impact on throughput, and thus their 2152 * faults are less important. 2153 */ 2154 f_weight = div64_u64(runtime << 16, period + 1); 2155 f_weight = (f_weight * p->numa_faults[cpubuf_idx]) / 2156 (total_faults + 1); 2157 f_diff = f_weight - p->numa_faults[cpu_idx] / 2; 2158 p->numa_faults[cpubuf_idx] = 0; 2159 2160 p->numa_faults[mem_idx] += diff; 2161 p->numa_faults[cpu_idx] += f_diff; 2162 faults += p->numa_faults[mem_idx]; 2163 p->total_numa_faults += diff; 2164 if (p->numa_group) { 2165 /* 2166 * safe because we can only change our own group 2167 * 2168 * mem_idx represents the offset for a given 2169 * nid and priv in a specific region because it 2170 * is at the beginning of the numa_faults array. 2171 */ 2172 p->numa_group->faults[mem_idx] += diff; 2173 p->numa_group->faults_cpu[mem_idx] += f_diff; 2174 p->numa_group->total_faults += diff; 2175 group_faults += p->numa_group->faults[mem_idx]; 2176 } 2177 } 2178 2179 if (!p->numa_group) { 2180 if (faults > max_faults) { 2181 max_faults = faults; 2182 max_nid = nid; 2183 } 2184 } else if (group_faults > max_faults) { 2185 max_faults = group_faults; 2186 max_nid = nid; 2187 } 2188 } 2189 2190 if (p->numa_group) { 2191 numa_group_count_active_nodes(p->numa_group); 2192 spin_unlock_irq(group_lock); 2193 max_nid = preferred_group_nid(p, max_nid); 2194 } 2195 2196 if (max_faults) { 2197 /* Set the new preferred node */ 2198 if (max_nid != p->numa_preferred_nid) 2199 sched_setnuma(p, max_nid); 2200 } 2201 2202 update_task_scan_period(p, fault_types[0], fault_types[1]); 2203 } 2204 2205 static inline int get_numa_group(struct numa_group *grp) 2206 { 2207 return atomic_inc_not_zero(&grp->refcount); 2208 } 2209 2210 static inline void put_numa_group(struct numa_group *grp) 2211 { 2212 if (atomic_dec_and_test(&grp->refcount)) 2213 kfree_rcu(grp, rcu); 2214 } 2215 2216 static void task_numa_group(struct task_struct *p, int cpupid, int flags, 2217 int *priv) 2218 { 2219 struct numa_group *grp, *my_grp; 2220 struct task_struct *tsk; 2221 bool join = false; 2222 int cpu = cpupid_to_cpu(cpupid); 2223 int i; 2224 2225 if (unlikely(!p->numa_group)) { 2226 unsigned int size = sizeof(struct numa_group) + 2227 4*nr_node_ids*sizeof(unsigned long); 2228 2229 grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN); 2230 if (!grp) 2231 return; 2232 2233 atomic_set(&grp->refcount, 1); 2234 grp->active_nodes = 1; 2235 grp->max_faults_cpu = 0; 2236 spin_lock_init(&grp->lock); 2237 grp->gid = p->pid; 2238 /* Second half of the array tracks nids where faults happen */ 2239 grp->faults_cpu = grp->faults + NR_NUMA_HINT_FAULT_TYPES * 2240 nr_node_ids; 2241 2242 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) 2243 grp->faults[i] = p->numa_faults[i]; 2244 2245 grp->total_faults = p->total_numa_faults; 2246 2247 grp->nr_tasks++; 2248 rcu_assign_pointer(p->numa_group, grp); 2249 } 2250 2251 rcu_read_lock(); 2252 tsk = READ_ONCE(cpu_rq(cpu)->curr); 2253 2254 if (!cpupid_match_pid(tsk, cpupid)) 2255 goto no_join; 2256 2257 grp = rcu_dereference(tsk->numa_group); 2258 if (!grp) 2259 goto no_join; 2260 2261 my_grp = p->numa_group; 2262 if (grp == my_grp) 2263 goto no_join; 2264 2265 /* 2266 * Only join the other group if its bigger; if we're the bigger group, 2267 * the other task will join us. 2268 */ 2269 if (my_grp->nr_tasks > grp->nr_tasks) 2270 goto no_join; 2271 2272 /* 2273 * Tie-break on the grp address. 2274 */ 2275 if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp) 2276 goto no_join; 2277 2278 /* Always join threads in the same process. */ 2279 if (tsk->mm == current->mm) 2280 join = true; 2281 2282 /* Simple filter to avoid false positives due to PID collisions */ 2283 if (flags & TNF_SHARED) 2284 join = true; 2285 2286 /* Update priv based on whether false sharing was detected */ 2287 *priv = !join; 2288 2289 if (join && !get_numa_group(grp)) 2290 goto no_join; 2291 2292 rcu_read_unlock(); 2293 2294 if (!join) 2295 return; 2296 2297 BUG_ON(irqs_disabled()); 2298 double_lock_irq(&my_grp->lock, &grp->lock); 2299 2300 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) { 2301 my_grp->faults[i] -= p->numa_faults[i]; 2302 grp->faults[i] += p->numa_faults[i]; 2303 } 2304 my_grp->total_faults -= p->total_numa_faults; 2305 grp->total_faults += p->total_numa_faults; 2306 2307 my_grp->nr_tasks--; 2308 grp->nr_tasks++; 2309 2310 spin_unlock(&my_grp->lock); 2311 spin_unlock_irq(&grp->lock); 2312 2313 rcu_assign_pointer(p->numa_group, grp); 2314 2315 put_numa_group(my_grp); 2316 return; 2317 2318 no_join: 2319 rcu_read_unlock(); 2320 return; 2321 } 2322 2323 void task_numa_free(struct task_struct *p) 2324 { 2325 struct numa_group *grp = p->numa_group; 2326 void *numa_faults = p->numa_faults; 2327 unsigned long flags; 2328 int i; 2329 2330 if (grp) { 2331 spin_lock_irqsave(&grp->lock, flags); 2332 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) 2333 grp->faults[i] -= p->numa_faults[i]; 2334 grp->total_faults -= p->total_numa_faults; 2335 2336 grp->nr_tasks--; 2337 spin_unlock_irqrestore(&grp->lock, flags); 2338 RCU_INIT_POINTER(p->numa_group, NULL); 2339 put_numa_group(grp); 2340 } 2341 2342 p->numa_faults = NULL; 2343 kfree(numa_faults); 2344 } 2345 2346 /* 2347 * Got a PROT_NONE fault for a page on @node. 2348 */ 2349 void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags) 2350 { 2351 struct task_struct *p = current; 2352 bool migrated = flags & TNF_MIGRATED; 2353 int cpu_node = task_node(current); 2354 int local = !!(flags & TNF_FAULT_LOCAL); 2355 struct numa_group *ng; 2356 int priv; 2357 2358 if (!static_branch_likely(&sched_numa_balancing)) 2359 return; 2360 2361 /* for example, ksmd faulting in a user's mm */ 2362 if (!p->mm) 2363 return; 2364 2365 /* Allocate buffer to track faults on a per-node basis */ 2366 if (unlikely(!p->numa_faults)) { 2367 int size = sizeof(*p->numa_faults) * 2368 NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids; 2369 2370 p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN); 2371 if (!p->numa_faults) 2372 return; 2373 2374 p->total_numa_faults = 0; 2375 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality)); 2376 } 2377 2378 /* 2379 * First accesses are treated as private, otherwise consider accesses 2380 * to be private if the accessing pid has not changed 2381 */ 2382 if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) { 2383 priv = 1; 2384 } else { 2385 priv = cpupid_match_pid(p, last_cpupid); 2386 if (!priv && !(flags & TNF_NO_GROUP)) 2387 task_numa_group(p, last_cpupid, flags, &priv); 2388 } 2389 2390 /* 2391 * If a workload spans multiple NUMA nodes, a shared fault that 2392 * occurs wholly within the set of nodes that the workload is 2393 * actively using should be counted as local. This allows the 2394 * scan rate to slow down when a workload has settled down. 2395 */ 2396 ng = p->numa_group; 2397 if (!priv && !local && ng && ng->active_nodes > 1 && 2398 numa_is_active_node(cpu_node, ng) && 2399 numa_is_active_node(mem_node, ng)) 2400 local = 1; 2401 2402 /* 2403 * Retry to migrate task to preferred node periodically, in case it 2404 * previously failed, or the scheduler moved us. 2405 */ 2406 if (time_after(jiffies, p->numa_migrate_retry)) { 2407 task_numa_placement(p); 2408 numa_migrate_preferred(p); 2409 } 2410 2411 if (migrated) 2412 p->numa_pages_migrated += pages; 2413 if (flags & TNF_MIGRATE_FAIL) 2414 p->numa_faults_locality[2] += pages; 2415 2416 p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages; 2417 p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages; 2418 p->numa_faults_locality[local] += pages; 2419 } 2420 2421 static void reset_ptenuma_scan(struct task_struct *p) 2422 { 2423 /* 2424 * We only did a read acquisition of the mmap sem, so 2425 * p->mm->numa_scan_seq is written to without exclusive access 2426 * and the update is not guaranteed to be atomic. That's not 2427 * much of an issue though, since this is just used for 2428 * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not 2429 * expensive, to avoid any form of compiler optimizations: 2430 */ 2431 WRITE_ONCE(p->mm->numa_scan_seq, READ_ONCE(p->mm->numa_scan_seq) + 1); 2432 p->mm->numa_scan_offset = 0; 2433 } 2434 2435 /* 2436 * The expensive part of numa migration is done from task_work context. 2437 * Triggered from task_tick_numa(). 2438 */ 2439 void task_numa_work(struct callback_head *work) 2440 { 2441 unsigned long migrate, next_scan, now = jiffies; 2442 struct task_struct *p = current; 2443 struct mm_struct *mm = p->mm; 2444 u64 runtime = p->se.sum_exec_runtime; 2445 struct vm_area_struct *vma; 2446 unsigned long start, end; 2447 unsigned long nr_pte_updates = 0; 2448 long pages, virtpages; 2449 2450 SCHED_WARN_ON(p != container_of(work, struct task_struct, numa_work)); 2451 2452 work->next = work; /* protect against double add */ 2453 /* 2454 * Who cares about NUMA placement when they're dying. 2455 * 2456 * NOTE: make sure not to dereference p->mm before this check, 2457 * exit_task_work() happens _after_ exit_mm() so we could be called 2458 * without p->mm even though we still had it when we enqueued this 2459 * work. 2460 */ 2461 if (p->flags & PF_EXITING) 2462 return; 2463 2464 if (!mm->numa_next_scan) { 2465 mm->numa_next_scan = now + 2466 msecs_to_jiffies(sysctl_numa_balancing_scan_delay); 2467 } 2468 2469 /* 2470 * Enforce maximal scan/migration frequency.. 2471 */ 2472 migrate = mm->numa_next_scan; 2473 if (time_before(now, migrate)) 2474 return; 2475 2476 if (p->numa_scan_period == 0) { 2477 p->numa_scan_period_max = task_scan_max(p); 2478 p->numa_scan_period = task_scan_start(p); 2479 } 2480 2481 next_scan = now + msecs_to_jiffies(p->numa_scan_period); 2482 if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate) 2483 return; 2484 2485 /* 2486 * Delay this task enough that another task of this mm will likely win 2487 * the next time around. 2488 */ 2489 p->node_stamp += 2 * TICK_NSEC; 2490 2491 start = mm->numa_scan_offset; 2492 pages = sysctl_numa_balancing_scan_size; 2493 pages <<= 20 - PAGE_SHIFT; /* MB in pages */ 2494 virtpages = pages * 8; /* Scan up to this much virtual space */ 2495 if (!pages) 2496 return; 2497 2498 2499 if (!down_read_trylock(&mm->mmap_sem)) 2500 return; 2501 vma = find_vma(mm, start); 2502 if (!vma) { 2503 reset_ptenuma_scan(p); 2504 start = 0; 2505 vma = mm->mmap; 2506 } 2507 for (; vma; vma = vma->vm_next) { 2508 if (!vma_migratable(vma) || !vma_policy_mof(vma) || 2509 is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_MIXEDMAP)) { 2510 continue; 2511 } 2512 2513 /* 2514 * Shared library pages mapped by multiple processes are not 2515 * migrated as it is expected they are cache replicated. Avoid 2516 * hinting faults in read-only file-backed mappings or the vdso 2517 * as migrating the pages will be of marginal benefit. 2518 */ 2519 if (!vma->vm_mm || 2520 (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ))) 2521 continue; 2522 2523 /* 2524 * Skip inaccessible VMAs to avoid any confusion between 2525 * PROT_NONE and NUMA hinting ptes 2526 */ 2527 if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE))) 2528 continue; 2529 2530 do { 2531 start = max(start, vma->vm_start); 2532 end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE); 2533 end = min(end, vma->vm_end); 2534 nr_pte_updates = change_prot_numa(vma, start, end); 2535 2536 /* 2537 * Try to scan sysctl_numa_balancing_size worth of 2538 * hpages that have at least one present PTE that 2539 * is not already pte-numa. If the VMA contains 2540 * areas that are unused or already full of prot_numa 2541 * PTEs, scan up to virtpages, to skip through those 2542 * areas faster. 2543 */ 2544 if (nr_pte_updates) 2545 pages -= (end - start) >> PAGE_SHIFT; 2546 virtpages -= (end - start) >> PAGE_SHIFT; 2547 2548 start = end; 2549 if (pages <= 0 || virtpages <= 0) 2550 goto out; 2551 2552 cond_resched(); 2553 } while (end != vma->vm_end); 2554 } 2555 2556 out: 2557 /* 2558 * It is possible to reach the end of the VMA list but the last few 2559 * VMAs are not guaranteed to the vma_migratable. If they are not, we 2560 * would find the !migratable VMA on the next scan but not reset the 2561 * scanner to the start so check it now. 2562 */ 2563 if (vma) 2564 mm->numa_scan_offset = start; 2565 else 2566 reset_ptenuma_scan(p); 2567 up_read(&mm->mmap_sem); 2568 2569 /* 2570 * Make sure tasks use at least 32x as much time to run other code 2571 * than they used here, to limit NUMA PTE scanning overhead to 3% max. 2572 * Usually update_task_scan_period slows down scanning enough; on an 2573 * overloaded system we need to limit overhead on a per task basis. 2574 */ 2575 if (unlikely(p->se.sum_exec_runtime != runtime)) { 2576 u64 diff = p->se.sum_exec_runtime - runtime; 2577 p->node_stamp += 32 * diff; 2578 } 2579 } 2580 2581 /* 2582 * Drive the periodic memory faults.. 2583 */ 2584 void task_tick_numa(struct rq *rq, struct task_struct *curr) 2585 { 2586 struct callback_head *work = &curr->numa_work; 2587 u64 period, now; 2588 2589 /* 2590 * We don't care about NUMA placement if we don't have memory. 2591 */ 2592 if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work) 2593 return; 2594 2595 /* 2596 * Using runtime rather than walltime has the dual advantage that 2597 * we (mostly) drive the selection from busy threads and that the 2598 * task needs to have done some actual work before we bother with 2599 * NUMA placement. 2600 */ 2601 now = curr->se.sum_exec_runtime; 2602 period = (u64)curr->numa_scan_period * NSEC_PER_MSEC; 2603 2604 if (now > curr->node_stamp + period) { 2605 if (!curr->node_stamp) 2606 curr->numa_scan_period = task_scan_start(curr); 2607 curr->node_stamp += period; 2608 2609 if (!time_before(jiffies, curr->mm->numa_next_scan)) { 2610 init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */ 2611 task_work_add(curr, work, true); 2612 } 2613 } 2614 } 2615 2616 static void update_scan_period(struct task_struct *p, int new_cpu) 2617 { 2618 int src_nid = cpu_to_node(task_cpu(p)); 2619 int dst_nid = cpu_to_node(new_cpu); 2620 2621 if (!static_branch_likely(&sched_numa_balancing)) 2622 return; 2623 2624 if (!p->mm || !p->numa_faults || (p->flags & PF_EXITING)) 2625 return; 2626 2627 if (src_nid == dst_nid) 2628 return; 2629 2630 /* 2631 * Allow resets if faults have been trapped before one scan 2632 * has completed. This is most likely due to a new task that 2633 * is pulled cross-node due to wakeups or load balancing. 2634 */ 2635 if (p->numa_scan_seq) { 2636 /* 2637 * Avoid scan adjustments if moving to the preferred 2638 * node or if the task was not previously running on 2639 * the preferred node. 2640 */ 2641 if (dst_nid == p->numa_preferred_nid || 2642 (p->numa_preferred_nid != -1 && src_nid != p->numa_preferred_nid)) 2643 return; 2644 } 2645 2646 p->numa_scan_period = task_scan_start(p); 2647 } 2648 2649 #else 2650 static void task_tick_numa(struct rq *rq, struct task_struct *curr) 2651 { 2652 } 2653 2654 static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p) 2655 { 2656 } 2657 2658 static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p) 2659 { 2660 } 2661 2662 static inline void update_scan_period(struct task_struct *p, int new_cpu) 2663 { 2664 } 2665 2666 #endif /* CONFIG_NUMA_BALANCING */ 2667 2668 static void 2669 account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se) 2670 { 2671 update_load_add(&cfs_rq->load, se->load.weight); 2672 if (!parent_entity(se)) 2673 update_load_add(&rq_of(cfs_rq)->load, se->load.weight); 2674 #ifdef CONFIG_SMP 2675 if (entity_is_task(se)) { 2676 struct rq *rq = rq_of(cfs_rq); 2677 2678 account_numa_enqueue(rq, task_of(se)); 2679 list_add(&se->group_node, &rq->cfs_tasks); 2680 } 2681 #endif 2682 cfs_rq->nr_running++; 2683 } 2684 2685 static void 2686 account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se) 2687 { 2688 update_load_sub(&cfs_rq->load, se->load.weight); 2689 if (!parent_entity(se)) 2690 update_load_sub(&rq_of(cfs_rq)->load, se->load.weight); 2691 #ifdef CONFIG_SMP 2692 if (entity_is_task(se)) { 2693 account_numa_dequeue(rq_of(cfs_rq), task_of(se)); 2694 list_del_init(&se->group_node); 2695 } 2696 #endif 2697 cfs_rq->nr_running--; 2698 } 2699 2700 /* 2701 * Signed add and clamp on underflow. 2702 * 2703 * Explicitly do a load-store to ensure the intermediate value never hits 2704 * memory. This allows lockless observations without ever seeing the negative 2705 * values. 2706 */ 2707 #define add_positive(_ptr, _val) do { \ 2708 typeof(_ptr) ptr = (_ptr); \ 2709 typeof(_val) val = (_val); \ 2710 typeof(*ptr) res, var = READ_ONCE(*ptr); \ 2711 \ 2712 res = var + val; \ 2713 \ 2714 if (val < 0 && res > var) \ 2715 res = 0; \ 2716 \ 2717 WRITE_ONCE(*ptr, res); \ 2718 } while (0) 2719 2720 /* 2721 * Unsigned subtract and clamp on underflow. 2722 * 2723 * Explicitly do a load-store to ensure the intermediate value never hits 2724 * memory. This allows lockless observations without ever seeing the negative 2725 * values. 2726 */ 2727 #define sub_positive(_ptr, _val) do { \ 2728 typeof(_ptr) ptr = (_ptr); \ 2729 typeof(*ptr) val = (_val); \ 2730 typeof(*ptr) res, var = READ_ONCE(*ptr); \ 2731 res = var - val; \ 2732 if (res > var) \ 2733 res = 0; \ 2734 WRITE_ONCE(*ptr, res); \ 2735 } while (0) 2736 2737 #ifdef CONFIG_SMP 2738 static inline void 2739 enqueue_runnable_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) 2740 { 2741 cfs_rq->runnable_weight += se->runnable_weight; 2742 2743 cfs_rq->avg.runnable_load_avg += se->avg.runnable_load_avg; 2744 cfs_rq->avg.runnable_load_sum += se_runnable(se) * se->avg.runnable_load_sum; 2745 } 2746 2747 static inline void 2748 dequeue_runnable_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) 2749 { 2750 cfs_rq->runnable_weight -= se->runnable_weight; 2751 2752 sub_positive(&cfs_rq->avg.runnable_load_avg, se->avg.runnable_load_avg); 2753 sub_positive(&cfs_rq->avg.runnable_load_sum, 2754 se_runnable(se) * se->avg.runnable_load_sum); 2755 } 2756 2757 static inline void 2758 enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) 2759 { 2760 cfs_rq->avg.load_avg += se->avg.load_avg; 2761 cfs_rq->avg.load_sum += se_weight(se) * se->avg.load_sum; 2762 } 2763 2764 static inline void 2765 dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) 2766 { 2767 sub_positive(&cfs_rq->avg.load_avg, se->avg.load_avg); 2768 sub_positive(&cfs_rq->avg.load_sum, se_weight(se) * se->avg.load_sum); 2769 } 2770 #else 2771 static inline void 2772 enqueue_runnable_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { } 2773 static inline void 2774 dequeue_runnable_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { } 2775 static inline void 2776 enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { } 2777 static inline void 2778 dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { } 2779 #endif 2780 2781 static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, 2782 unsigned long weight, unsigned long runnable) 2783 { 2784 if (se->on_rq) { 2785 /* commit outstanding execution time */ 2786 if (cfs_rq->curr == se) 2787 update_curr(cfs_rq); 2788 account_entity_dequeue(cfs_rq, se); 2789 dequeue_runnable_load_avg(cfs_rq, se); 2790 } 2791 dequeue_load_avg(cfs_rq, se); 2792 2793 se->runnable_weight = runnable; 2794 update_load_set(&se->load, weight); 2795 2796 #ifdef CONFIG_SMP 2797 do { 2798 u32 divider = LOAD_AVG_MAX - 1024 + se->avg.period_contrib; 2799 2800 se->avg.load_avg = div_u64(se_weight(se) * se->avg.load_sum, divider); 2801 se->avg.runnable_load_avg = 2802 div_u64(se_runnable(se) * se->avg.runnable_load_sum, divider); 2803 } while (0); 2804 #endif 2805 2806 enqueue_load_avg(cfs_rq, se); 2807 if (se->on_rq) { 2808 account_entity_enqueue(cfs_rq, se); 2809 enqueue_runnable_load_avg(cfs_rq, se); 2810 } 2811 } 2812 2813 void reweight_task(struct task_struct *p, int prio) 2814 { 2815 struct sched_entity *se = &p->se; 2816 struct cfs_rq *cfs_rq = cfs_rq_of(se); 2817 struct load_weight *load = &se->load; 2818 unsigned long weight = scale_load(sched_prio_to_weight[prio]); 2819 2820 reweight_entity(cfs_rq, se, weight, weight); 2821 load->inv_weight = sched_prio_to_wmult[prio]; 2822 } 2823 2824 #ifdef CONFIG_FAIR_GROUP_SCHED 2825 #ifdef CONFIG_SMP 2826 /* 2827 * All this does is approximate the hierarchical proportion which includes that 2828 * global sum we all love to hate. 2829 * 2830 * That is, the weight of a group entity, is the proportional share of the 2831 * group weight based on the group runqueue weights. That is: 2832 * 2833 * tg->weight * grq->load.weight 2834 * ge->load.weight = ----------------------------- (1) 2835 * \Sum grq->load.weight 2836 * 2837 * Now, because computing that sum is prohibitively expensive to compute (been 2838 * there, done that) we approximate it with this average stuff. The average 2839 * moves slower and therefore the approximation is cheaper and more stable. 2840 * 2841 * So instead of the above, we substitute: 2842 * 2843 * grq->load.weight -> grq->avg.load_avg (2) 2844 * 2845 * which yields the following: 2846 * 2847 * tg->weight * grq->avg.load_avg 2848 * ge->load.weight = ------------------------------ (3) 2849 * tg->load_avg 2850 * 2851 * Where: tg->load_avg ~= \Sum grq->avg.load_avg 2852 * 2853 * That is shares_avg, and it is right (given the approximation (2)). 2854 * 2855 * The problem with it is that because the average is slow -- it was designed 2856 * to be exactly that of course -- this leads to transients in boundary 2857 * conditions. In specific, the case where the group was idle and we start the 2858 * one task. It takes time for our CPU's grq->avg.load_avg to build up, 2859 * yielding bad latency etc.. 2860 * 2861 * Now, in that special case (1) reduces to: 2862 * 2863 * tg->weight * grq->load.weight 2864 * ge->load.weight = ----------------------------- = tg->weight (4) 2865 * grp->load.weight 2866 * 2867 * That is, the sum collapses because all other CPUs are idle; the UP scenario. 2868 * 2869 * So what we do is modify our approximation (3) to approach (4) in the (near) 2870 * UP case, like: 2871 * 2872 * ge->load.weight = 2873 * 2874 * tg->weight * grq->load.weight 2875 * --------------------------------------------------- (5) 2876 * tg->load_avg - grq->avg.load_avg + grq->load.weight 2877 * 2878 * But because grq->load.weight can drop to 0, resulting in a divide by zero, 2879 * we need to use grq->avg.load_avg as its lower bound, which then gives: 2880 * 2881 * 2882 * tg->weight * grq->load.weight 2883 * ge->load.weight = ----------------------------- (6) 2884 * tg_load_avg' 2885 * 2886 * Where: 2887 * 2888 * tg_load_avg' = tg->load_avg - grq->avg.load_avg + 2889 * max(grq->load.weight, grq->avg.load_avg) 2890 * 2891 * And that is shares_weight and is icky. In the (near) UP case it approaches 2892 * (4) while in the normal case it approaches (3). It consistently 2893 * overestimates the ge->load.weight and therefore: 2894 * 2895 * \Sum ge->load.weight >= tg->weight 2896 * 2897 * hence icky! 2898 */ 2899 static long calc_group_shares(struct cfs_rq *cfs_rq) 2900 { 2901 long tg_weight, tg_shares, load, shares; 2902 struct task_group *tg = cfs_rq->tg; 2903 2904 tg_shares = READ_ONCE(tg->shares); 2905 2906 load = max(scale_load_down(cfs_rq->load.weight), cfs_rq->avg.load_avg); 2907 2908 tg_weight = atomic_long_read(&tg->load_avg); 2909 2910 /* Ensure tg_weight >= load */ 2911 tg_weight -= cfs_rq->tg_load_avg_contrib; 2912 tg_weight += load; 2913 2914 shares = (tg_shares * load); 2915 if (tg_weight) 2916 shares /= tg_weight; 2917 2918 /* 2919 * MIN_SHARES has to be unscaled here to support per-CPU partitioning 2920 * of a group with small tg->shares value. It is a floor value which is 2921 * assigned as a minimum load.weight to the sched_entity representing 2922 * the group on a CPU. 2923 * 2924 * E.g. on 64-bit for a group with tg->shares of scale_load(15)=15*1024 2925 * on an 8-core system with 8 tasks each runnable on one CPU shares has 2926 * to be 15*1024*1/8=1920 instead of scale_load(MIN_SHARES)=2*1024. In 2927 * case no task is runnable on a CPU MIN_SHARES=2 should be returned 2928 * instead of 0. 2929 */ 2930 return clamp_t(long, shares, MIN_SHARES, tg_shares); 2931 } 2932 2933 /* 2934 * This calculates the effective runnable weight for a group entity based on 2935 * the group entity weight calculated above. 2936 * 2937 * Because of the above approximation (2), our group entity weight is 2938 * an load_avg based ratio (3). This means that it includes blocked load and 2939 * does not represent the runnable weight. 2940 * 2941 * Approximate the group entity's runnable weight per ratio from the group 2942 * runqueue: 2943 * 2944 * grq->avg.runnable_load_avg 2945 * ge->runnable_weight = ge->load.weight * -------------------------- (7) 2946 * grq->avg.load_avg 2947 * 2948 * However, analogous to above, since the avg numbers are slow, this leads to 2949 * transients in the from-idle case. Instead we use: 2950 * 2951 * ge->runnable_weight = ge->load.weight * 2952 * 2953 * max(grq->avg.runnable_load_avg, grq->runnable_weight) 2954 * ----------------------------------------------------- (8) 2955 * max(grq->avg.load_avg, grq->load.weight) 2956 * 2957 * Where these max() serve both to use the 'instant' values to fix the slow 2958 * from-idle and avoid the /0 on to-idle, similar to (6). 2959 */ 2960 static long calc_group_runnable(struct cfs_rq *cfs_rq, long shares) 2961 { 2962 long runnable, load_avg; 2963 2964 load_avg = max(cfs_rq->avg.load_avg, 2965 scale_load_down(cfs_rq->load.weight)); 2966 2967 runnable = max(cfs_rq->avg.runnable_load_avg, 2968 scale_load_down(cfs_rq->runnable_weight)); 2969 2970 runnable *= shares; 2971 if (load_avg) 2972 runnable /= load_avg; 2973 2974 return clamp_t(long, runnable, MIN_SHARES, shares); 2975 } 2976 #endif /* CONFIG_SMP */ 2977 2978 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq); 2979 2980 /* 2981 * Recomputes the group entity based on the current state of its group 2982 * runqueue. 2983 */ 2984 static void update_cfs_group(struct sched_entity *se) 2985 { 2986 struct cfs_rq *gcfs_rq = group_cfs_rq(se); 2987 long shares, runnable; 2988 2989 if (!gcfs_rq) 2990 return; 2991 2992 if (throttled_hierarchy(gcfs_rq)) 2993 return; 2994 2995 #ifndef CONFIG_SMP 2996 runnable = shares = READ_ONCE(gcfs_rq->tg->shares); 2997 2998 if (likely(se->load.weight == shares)) 2999 return; 3000 #else 3001 shares = calc_group_shares(gcfs_rq); 3002 runnable = calc_group_runnable(gcfs_rq, shares); 3003 #endif 3004 3005 reweight_entity(cfs_rq_of(se), se, shares, runnable); 3006 } 3007 3008 #else /* CONFIG_FAIR_GROUP_SCHED */ 3009 static inline void update_cfs_group(struct sched_entity *se) 3010 { 3011 } 3012 #endif /* CONFIG_FAIR_GROUP_SCHED */ 3013 3014 static inline void cfs_rq_util_change(struct cfs_rq *cfs_rq, int flags) 3015 { 3016 struct rq *rq = rq_of(cfs_rq); 3017 3018 if (&rq->cfs == cfs_rq || (flags & SCHED_CPUFREQ_MIGRATION)) { 3019 /* 3020 * There are a few boundary cases this might miss but it should 3021 * get called often enough that that should (hopefully) not be 3022 * a real problem. 3023 * 3024 * It will not get called when we go idle, because the idle 3025 * thread is a different class (!fair), nor will the utilization 3026 * number include things like RT tasks. 3027 * 3028 * As is, the util number is not freq-invariant (we'd have to 3029 * implement arch_scale_freq_capacity() for that). 3030 * 3031 * See cpu_util(). 3032 */ 3033 cpufreq_update_util(rq, flags); 3034 } 3035 } 3036 3037 #ifdef CONFIG_SMP 3038 #ifdef CONFIG_FAIR_GROUP_SCHED 3039 /** 3040 * update_tg_load_avg - update the tg's load avg 3041 * @cfs_rq: the cfs_rq whose avg changed 3042 * @force: update regardless of how small the difference 3043 * 3044 * This function 'ensures': tg->load_avg := \Sum tg->cfs_rq[]->avg.load. 3045 * However, because tg->load_avg is a global value there are performance 3046 * considerations. 3047 * 3048 * In order to avoid having to look at the other cfs_rq's, we use a 3049 * differential update where we store the last value we propagated. This in 3050 * turn allows skipping updates if the differential is 'small'. 3051 * 3052 * Updating tg's load_avg is necessary before update_cfs_share(). 3053 */ 3054 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force) 3055 { 3056 long delta = cfs_rq->avg.load_avg - cfs_rq->tg_load_avg_contrib; 3057 3058 /* 3059 * No need to update load_avg for root_task_group as it is not used. 3060 */ 3061 if (cfs_rq->tg == &root_task_group) 3062 return; 3063 3064 if (force || abs(delta) > cfs_rq->tg_load_avg_contrib / 64) { 3065 atomic_long_add(delta, &cfs_rq->tg->load_avg); 3066 cfs_rq->tg_load_avg_contrib = cfs_rq->avg.load_avg; 3067 } 3068 } 3069 3070 /* 3071 * Called within set_task_rq() right before setting a task's CPU. The 3072 * caller only guarantees p->pi_lock is held; no other assumptions, 3073 * including the state of rq->lock, should be made. 3074 */ 3075 void set_task_rq_fair(struct sched_entity *se, 3076 struct cfs_rq *prev, struct cfs_rq *next) 3077 { 3078 u64 p_last_update_time; 3079 u64 n_last_update_time; 3080 3081 if (!sched_feat(ATTACH_AGE_LOAD)) 3082 return; 3083 3084 /* 3085 * We are supposed to update the task to "current" time, then its up to 3086 * date and ready to go to new CPU/cfs_rq. But we have difficulty in 3087 * getting what current time is, so simply throw away the out-of-date 3088 * time. This will result in the wakee task is less decayed, but giving 3089 * the wakee more load sounds not bad. 3090 */ 3091 if (!(se->avg.last_update_time && prev)) 3092 return; 3093 3094 #ifndef CONFIG_64BIT 3095 { 3096 u64 p_last_update_time_copy; 3097 u64 n_last_update_time_copy; 3098 3099 do { 3100 p_last_update_time_copy = prev->load_last_update_time_copy; 3101 n_last_update_time_copy = next->load_last_update_time_copy; 3102 3103 smp_rmb(); 3104 3105 p_last_update_time = prev->avg.last_update_time; 3106 n_last_update_time = next->avg.last_update_time; 3107 3108 } while (p_last_update_time != p_last_update_time_copy || 3109 n_last_update_time != n_last_update_time_copy); 3110 } 3111 #else 3112 p_last_update_time = prev->avg.last_update_time; 3113 n_last_update_time = next->avg.last_update_time; 3114 #endif 3115 __update_load_avg_blocked_se(p_last_update_time, cpu_of(rq_of(prev)), se); 3116 se->avg.last_update_time = n_last_update_time; 3117 } 3118 3119 3120 /* 3121 * When on migration a sched_entity joins/leaves the PELT hierarchy, we need to 3122 * propagate its contribution. The key to this propagation is the invariant 3123 * that for each group: 3124 * 3125 * ge->avg == grq->avg (1) 3126 * 3127 * _IFF_ we look at the pure running and runnable sums. Because they 3128 * represent the very same entity, just at different points in the hierarchy. 3129 * 3130 * Per the above update_tg_cfs_util() is trivial and simply copies the running 3131 * sum over (but still wrong, because the group entity and group rq do not have 3132 * their PELT windows aligned). 3133 * 3134 * However, update_tg_cfs_runnable() is more complex. So we have: 3135 * 3136 * ge->avg.load_avg = ge->load.weight * ge->avg.runnable_avg (2) 3137 * 3138 * And since, like util, the runnable part should be directly transferable, 3139 * the following would _appear_ to be the straight forward approach: 3140 * 3141 * grq->avg.load_avg = grq->load.weight * grq->avg.runnable_avg (3) 3142 * 3143 * And per (1) we have: 3144 * 3145 * ge->avg.runnable_avg == grq->avg.runnable_avg 3146 * 3147 * Which gives: 3148 * 3149 * ge->load.weight * grq->avg.load_avg 3150 * ge->avg.load_avg = ----------------------------------- (4) 3151 * grq->load.weight 3152 * 3153 * Except that is wrong! 3154 * 3155 * Because while for entities historical weight is not important and we 3156 * really only care about our future and therefore can consider a pure 3157 * runnable sum, runqueues can NOT do this. 3158 * 3159 * We specifically want runqueues to have a load_avg that includes 3160 * historical weights. Those represent the blocked load, the load we expect 3161 * to (shortly) return to us. This only works by keeping the weights as 3162 * integral part of the sum. We therefore cannot decompose as per (3). 3163 * 3164 * Another reason this doesn't work is that runnable isn't a 0-sum entity. 3165 * Imagine a rq with 2 tasks that each are runnable 2/3 of the time. Then the 3166 * rq itself is runnable anywhere between 2/3 and 1 depending on how the 3167 * runnable section of these tasks overlap (or not). If they were to perfectly 3168 * align the rq as a whole would be runnable 2/3 of the time. If however we 3169 * always have at least 1 runnable task, the rq as a whole is always runnable. 3170 * 3171 * So we'll have to approximate.. :/ 3172 * 3173 * Given the constraint: 3174 * 3175 * ge->avg.running_sum <= ge->avg.runnable_sum <= LOAD_AVG_MAX 3176 * 3177 * We can construct a rule that adds runnable to a rq by assuming minimal 3178 * overlap. 3179 * 3180 * On removal, we'll assume each task is equally runnable; which yields: 3181 * 3182 * grq->avg.runnable_sum = grq->avg.load_sum / grq->load.weight 3183 * 3184 * XXX: only do this for the part of runnable > running ? 3185 * 3186 */ 3187 3188 static inline void 3189 update_tg_cfs_util(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq) 3190 { 3191 long delta = gcfs_rq->avg.util_avg - se->avg.util_avg; 3192 3193 /* Nothing to update */ 3194 if (!delta) 3195 return; 3196 3197 /* 3198 * The relation between sum and avg is: 3199 * 3200 * LOAD_AVG_MAX - 1024 + sa->period_contrib 3201 * 3202 * however, the PELT windows are not aligned between grq and gse. 3203 */ 3204 3205 /* Set new sched_entity's utilization */ 3206 se->avg.util_avg = gcfs_rq->avg.util_avg; 3207 se->avg.util_sum = se->avg.util_avg * LOAD_AVG_MAX; 3208 3209 /* Update parent cfs_rq utilization */ 3210 add_positive(&cfs_rq->avg.util_avg, delta); 3211 cfs_rq->avg.util_sum = cfs_rq->avg.util_avg * LOAD_AVG_MAX; 3212 } 3213 3214 static inline void 3215 update_tg_cfs_runnable(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq) 3216 { 3217 long delta_avg, running_sum, runnable_sum = gcfs_rq->prop_runnable_sum; 3218 unsigned long runnable_load_avg, load_avg; 3219 u64 runnable_load_sum, load_sum = 0; 3220 s64 delta_sum; 3221 3222 if (!runnable_sum) 3223 return; 3224 3225 gcfs_rq->prop_runnable_sum = 0; 3226 3227 if (runnable_sum >= 0) { 3228 /* 3229 * Add runnable; clip at LOAD_AVG_MAX. Reflects that until 3230 * the CPU is saturated running == runnable. 3231 */ 3232 runnable_sum += se->avg.load_sum; 3233 runnable_sum = min(runnable_sum, (long)LOAD_AVG_MAX); 3234 } else { 3235 /* 3236 * Estimate the new unweighted runnable_sum of the gcfs_rq by 3237 * assuming all tasks are equally runnable. 3238 */ 3239 if (scale_load_down(gcfs_rq->load.weight)) { 3240 load_sum = div_s64(gcfs_rq->avg.load_sum, 3241 scale_load_down(gcfs_rq->load.weight)); 3242 } 3243 3244 /* But make sure to not inflate se's runnable */ 3245 runnable_sum = min(se->avg.load_sum, load_sum); 3246 } 3247 3248 /* 3249 * runnable_sum can't be lower than running_sum 3250 * As running sum is scale with CPU capacity wehreas the runnable sum 3251 * is not we rescale running_sum 1st 3252 */ 3253 running_sum = se->avg.util_sum / 3254 arch_scale_cpu_capacity(NULL, cpu_of(rq_of(cfs_rq))); 3255 runnable_sum = max(runnable_sum, running_sum); 3256 3257 load_sum = (s64)se_weight(se) * runnable_sum; 3258 load_avg = div_s64(load_sum, LOAD_AVG_MAX); 3259 3260 delta_sum = load_sum - (s64)se_weight(se) * se->avg.load_sum; 3261 delta_avg = load_avg - se->avg.load_avg; 3262 3263 se->avg.load_sum = runnable_sum; 3264 se->avg.load_avg = load_avg; 3265 add_positive(&cfs_rq->avg.load_avg, delta_avg); 3266 add_positive(&cfs_rq->avg.load_sum, delta_sum); 3267 3268 runnable_load_sum = (s64)se_runnable(se) * runnable_sum; 3269 runnable_load_avg = div_s64(runnable_load_sum, LOAD_AVG_MAX); 3270 delta_sum = runnable_load_sum - se_weight(se) * se->avg.runnable_load_sum; 3271 delta_avg = runnable_load_avg - se->avg.runnable_load_avg; 3272 3273 se->avg.runnable_load_sum = runnable_sum; 3274 se->avg.runnable_load_avg = runnable_load_avg; 3275 3276 if (se->on_rq) { 3277 add_positive(&cfs_rq->avg.runnable_load_avg, delta_avg); 3278 add_positive(&cfs_rq->avg.runnable_load_sum, delta_sum); 3279 } 3280 } 3281 3282 static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum) 3283 { 3284 cfs_rq->propagate = 1; 3285 cfs_rq->prop_runnable_sum += runnable_sum; 3286 } 3287 3288 /* Update task and its cfs_rq load average */ 3289 static inline int propagate_entity_load_avg(struct sched_entity *se) 3290 { 3291 struct cfs_rq *cfs_rq, *gcfs_rq; 3292 3293 if (entity_is_task(se)) 3294 return 0; 3295 3296 gcfs_rq = group_cfs_rq(se); 3297 if (!gcfs_rq->propagate) 3298 return 0; 3299 3300 gcfs_rq->propagate = 0; 3301 3302 cfs_rq = cfs_rq_of(se); 3303 3304 add_tg_cfs_propagate(cfs_rq, gcfs_rq->prop_runnable_sum); 3305 3306 update_tg_cfs_util(cfs_rq, se, gcfs_rq); 3307 update_tg_cfs_runnable(cfs_rq, se, gcfs_rq); 3308 3309 return 1; 3310 } 3311 3312 /* 3313 * Check if we need to update the load and the utilization of a blocked 3314 * group_entity: 3315 */ 3316 static inline bool skip_blocked_update(struct sched_entity *se) 3317 { 3318 struct cfs_rq *gcfs_rq = group_cfs_rq(se); 3319 3320 /* 3321 * If sched_entity still have not zero load or utilization, we have to 3322 * decay it: 3323 */ 3324 if (se->avg.load_avg || se->avg.util_avg) 3325 return false; 3326 3327 /* 3328 * If there is a pending propagation, we have to update the load and 3329 * the utilization of the sched_entity: 3330 */ 3331 if (gcfs_rq->propagate) 3332 return false; 3333 3334 /* 3335 * Otherwise, the load and the utilization of the sched_entity is 3336 * already zero and there is no pending propagation, so it will be a 3337 * waste of time to try to decay it: 3338 */ 3339 return true; 3340 } 3341 3342 #else /* CONFIG_FAIR_GROUP_SCHED */ 3343 3344 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force) {} 3345 3346 static inline int propagate_entity_load_avg(struct sched_entity *se) 3347 { 3348 return 0; 3349 } 3350 3351 static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum) {} 3352 3353 #endif /* CONFIG_FAIR_GROUP_SCHED */ 3354 3355 /** 3356 * update_cfs_rq_load_avg - update the cfs_rq's load/util averages 3357 * @now: current time, as per cfs_rq_clock_task() 3358 * @cfs_rq: cfs_rq to update 3359 * 3360 * The cfs_rq avg is the direct sum of all its entities (blocked and runnable) 3361 * avg. The immediate corollary is that all (fair) tasks must be attached, see 3362 * post_init_entity_util_avg(). 3363 * 3364 * cfs_rq->avg is used for task_h_load() and update_cfs_share() for example. 3365 * 3366 * Returns true if the load decayed or we removed load. 3367 * 3368 * Since both these conditions indicate a changed cfs_rq->avg.load we should 3369 * call update_tg_load_avg() when this function returns true. 3370 */ 3371 static inline int 3372 update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq) 3373 { 3374 unsigned long removed_load = 0, removed_util = 0, removed_runnable_sum = 0; 3375 struct sched_avg *sa = &cfs_rq->avg; 3376 int decayed = 0; 3377 3378 if (cfs_rq->removed.nr) { 3379 unsigned long r; 3380 u32 divider = LOAD_AVG_MAX - 1024 + sa->period_contrib; 3381 3382 raw_spin_lock(&cfs_rq->removed.lock); 3383 swap(cfs_rq->removed.util_avg, removed_util); 3384 swap(cfs_rq->removed.load_avg, removed_load); 3385 swap(cfs_rq->removed.runnable_sum, removed_runnable_sum); 3386 cfs_rq->removed.nr = 0; 3387 raw_spin_unlock(&cfs_rq->removed.lock); 3388 3389 r = removed_load; 3390 sub_positive(&sa->load_avg, r); 3391 sub_positive(&sa->load_sum, r * divider); 3392 3393 r = removed_util; 3394 sub_positive(&sa->util_avg, r); 3395 sub_positive(&sa->util_sum, r * divider); 3396 3397 add_tg_cfs_propagate(cfs_rq, -(long)removed_runnable_sum); 3398 3399 decayed = 1; 3400 } 3401 3402 decayed |= __update_load_avg_cfs_rq(now, cpu_of(rq_of(cfs_rq)), cfs_rq); 3403 3404 #ifndef CONFIG_64BIT 3405 smp_wmb(); 3406 cfs_rq->load_last_update_time_copy = sa->last_update_time; 3407 #endif 3408 3409 if (decayed) 3410 cfs_rq_util_change(cfs_rq, 0); 3411 3412 return decayed; 3413 } 3414 3415 /** 3416 * attach_entity_load_avg - attach this entity to its cfs_rq load avg 3417 * @cfs_rq: cfs_rq to attach to 3418 * @se: sched_entity to attach 3419 * @flags: migration hints 3420 * 3421 * Must call update_cfs_rq_load_avg() before this, since we rely on 3422 * cfs_rq->avg.last_update_time being current. 3423 */ 3424 static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 3425 { 3426 u32 divider = LOAD_AVG_MAX - 1024 + cfs_rq->avg.period_contrib; 3427 3428 /* 3429 * When we attach the @se to the @cfs_rq, we must align the decay 3430 * window because without that, really weird and wonderful things can 3431 * happen. 3432 * 3433 * XXX illustrate 3434 */ 3435 se->avg.last_update_time = cfs_rq->avg.last_update_time; 3436 se->avg.period_contrib = cfs_rq->avg.period_contrib; 3437 3438 /* 3439 * Hell(o) Nasty stuff.. we need to recompute _sum based on the new 3440 * period_contrib. This isn't strictly correct, but since we're 3441 * entirely outside of the PELT hierarchy, nobody cares if we truncate 3442 * _sum a little. 3443 */ 3444 se->avg.util_sum = se->avg.util_avg * divider; 3445 3446 se->avg.load_sum = divider; 3447 if (se_weight(se)) { 3448 se->avg.load_sum = 3449 div_u64(se->avg.load_avg * se->avg.load_sum, se_weight(se)); 3450 } 3451 3452 se->avg.runnable_load_sum = se->avg.load_sum; 3453 3454 enqueue_load_avg(cfs_rq, se); 3455 cfs_rq->avg.util_avg += se->avg.util_avg; 3456 cfs_rq->avg.util_sum += se->avg.util_sum; 3457 3458 add_tg_cfs_propagate(cfs_rq, se->avg.load_sum); 3459 3460 cfs_rq_util_change(cfs_rq, flags); 3461 } 3462 3463 /** 3464 * detach_entity_load_avg - detach this entity from its cfs_rq load avg 3465 * @cfs_rq: cfs_rq to detach from 3466 * @se: sched_entity to detach 3467 * 3468 * Must call update_cfs_rq_load_avg() before this, since we rely on 3469 * cfs_rq->avg.last_update_time being current. 3470 */ 3471 static void detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) 3472 { 3473 dequeue_load_avg(cfs_rq, se); 3474 sub_positive(&cfs_rq->avg.util_avg, se->avg.util_avg); 3475 sub_positive(&cfs_rq->avg.util_sum, se->avg.util_sum); 3476 3477 add_tg_cfs_propagate(cfs_rq, -se->avg.load_sum); 3478 3479 cfs_rq_util_change(cfs_rq, 0); 3480 } 3481 3482 /* 3483 * Optional action to be done while updating the load average 3484 */ 3485 #define UPDATE_TG 0x1 3486 #define SKIP_AGE_LOAD 0x2 3487 #define DO_ATTACH 0x4 3488 3489 /* Update task and its cfs_rq load average */ 3490 static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 3491 { 3492 u64 now = cfs_rq_clock_task(cfs_rq); 3493 struct rq *rq = rq_of(cfs_rq); 3494 int cpu = cpu_of(rq); 3495 int decayed; 3496 3497 /* 3498 * Track task load average for carrying it to new CPU after migrated, and 3499 * track group sched_entity load average for task_h_load calc in migration 3500 */ 3501 if (se->avg.last_update_time && !(flags & SKIP_AGE_LOAD)) 3502 __update_load_avg_se(now, cpu, cfs_rq, se); 3503 3504 decayed = update_cfs_rq_load_avg(now, cfs_rq); 3505 decayed |= propagate_entity_load_avg(se); 3506 3507 if (!se->avg.last_update_time && (flags & DO_ATTACH)) { 3508 3509 /* 3510 * DO_ATTACH means we're here from enqueue_entity(). 3511 * !last_update_time means we've passed through 3512 * migrate_task_rq_fair() indicating we migrated. 3513 * 3514 * IOW we're enqueueing a task on a new CPU. 3515 */ 3516 attach_entity_load_avg(cfs_rq, se, SCHED_CPUFREQ_MIGRATION); 3517 update_tg_load_avg(cfs_rq, 0); 3518 3519 } else if (decayed && (flags & UPDATE_TG)) 3520 update_tg_load_avg(cfs_rq, 0); 3521 } 3522 3523 #ifndef CONFIG_64BIT 3524 static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq) 3525 { 3526 u64 last_update_time_copy; 3527 u64 last_update_time; 3528 3529 do { 3530 last_update_time_copy = cfs_rq->load_last_update_time_copy; 3531 smp_rmb(); 3532 last_update_time = cfs_rq->avg.last_update_time; 3533 } while (last_update_time != last_update_time_copy); 3534 3535 return last_update_time; 3536 } 3537 #else 3538 static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq) 3539 { 3540 return cfs_rq->avg.last_update_time; 3541 } 3542 #endif 3543 3544 /* 3545 * Synchronize entity load avg of dequeued entity without locking 3546 * the previous rq. 3547 */ 3548 void sync_entity_load_avg(struct sched_entity *se) 3549 { 3550 struct cfs_rq *cfs_rq = cfs_rq_of(se); 3551 u64 last_update_time; 3552 3553 last_update_time = cfs_rq_last_update_time(cfs_rq); 3554 __update_load_avg_blocked_se(last_update_time, cpu_of(rq_of(cfs_rq)), se); 3555 } 3556 3557 /* 3558 * Task first catches up with cfs_rq, and then subtract 3559 * itself from the cfs_rq (task must be off the queue now). 3560 */ 3561 void remove_entity_load_avg(struct sched_entity *se) 3562 { 3563 struct cfs_rq *cfs_rq = cfs_rq_of(se); 3564 unsigned long flags; 3565 3566 /* 3567 * tasks cannot exit without having gone through wake_up_new_task() -> 3568 * post_init_entity_util_avg() which will have added things to the 3569 * cfs_rq, so we can remove unconditionally. 3570 * 3571 * Similarly for groups, they will have passed through 3572 * post_init_entity_util_avg() before unregister_sched_fair_group() 3573 * calls this. 3574 */ 3575 3576 sync_entity_load_avg(se); 3577 3578 raw_spin_lock_irqsave(&cfs_rq->removed.lock, flags); 3579 ++cfs_rq->removed.nr; 3580 cfs_rq->removed.util_avg += se->avg.util_avg; 3581 cfs_rq->removed.load_avg += se->avg.load_avg; 3582 cfs_rq->removed.runnable_sum += se->avg.load_sum; /* == runnable_sum */ 3583 raw_spin_unlock_irqrestore(&cfs_rq->removed.lock, flags); 3584 } 3585 3586 static inline unsigned long cfs_rq_runnable_load_avg(struct cfs_rq *cfs_rq) 3587 { 3588 return cfs_rq->avg.runnable_load_avg; 3589 } 3590 3591 static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq) 3592 { 3593 return cfs_rq->avg.load_avg; 3594 } 3595 3596 static int idle_balance(struct rq *this_rq, struct rq_flags *rf); 3597 3598 static inline unsigned long task_util(struct task_struct *p) 3599 { 3600 return READ_ONCE(p->se.avg.util_avg); 3601 } 3602 3603 static inline unsigned long _task_util_est(struct task_struct *p) 3604 { 3605 struct util_est ue = READ_ONCE(p->se.avg.util_est); 3606 3607 return max(ue.ewma, ue.enqueued); 3608 } 3609 3610 static inline unsigned long task_util_est(struct task_struct *p) 3611 { 3612 return max(task_util(p), _task_util_est(p)); 3613 } 3614 3615 static inline void util_est_enqueue(struct cfs_rq *cfs_rq, 3616 struct task_struct *p) 3617 { 3618 unsigned int enqueued; 3619 3620 if (!sched_feat(UTIL_EST)) 3621 return; 3622 3623 /* Update root cfs_rq's estimated utilization */ 3624 enqueued = cfs_rq->avg.util_est.enqueued; 3625 enqueued += (_task_util_est(p) | UTIL_AVG_UNCHANGED); 3626 WRITE_ONCE(cfs_rq->avg.util_est.enqueued, enqueued); 3627 } 3628 3629 /* 3630 * Check if a (signed) value is within a specified (unsigned) margin, 3631 * based on the observation that: 3632 * 3633 * abs(x) < y := (unsigned)(x + y - 1) < (2 * y - 1) 3634 * 3635 * NOTE: this only works when value + maring < INT_MAX. 3636 */ 3637 static inline bool within_margin(int value, int margin) 3638 { 3639 return ((unsigned int)(value + margin - 1) < (2 * margin - 1)); 3640 } 3641 3642 static void 3643 util_est_dequeue(struct cfs_rq *cfs_rq, struct task_struct *p, bool task_sleep) 3644 { 3645 long last_ewma_diff; 3646 struct util_est ue; 3647 3648 if (!sched_feat(UTIL_EST)) 3649 return; 3650 3651 /* Update root cfs_rq's estimated utilization */ 3652 ue.enqueued = cfs_rq->avg.util_est.enqueued; 3653 ue.enqueued -= min_t(unsigned int, ue.enqueued, 3654 (_task_util_est(p) | UTIL_AVG_UNCHANGED)); 3655 WRITE_ONCE(cfs_rq->avg.util_est.enqueued, ue.enqueued); 3656 3657 /* 3658 * Skip update of task's estimated utilization when the task has not 3659 * yet completed an activation, e.g. being migrated. 3660 */ 3661 if (!task_sleep) 3662 return; 3663 3664 /* 3665 * If the PELT values haven't changed since enqueue time, 3666 * skip the util_est update. 3667 */ 3668 ue = p->se.avg.util_est; 3669 if (ue.enqueued & UTIL_AVG_UNCHANGED) 3670 return; 3671 3672 /* 3673 * Skip update of task's estimated utilization when its EWMA is 3674 * already ~1% close to its last activation value. 3675 */ 3676 ue.enqueued = (task_util(p) | UTIL_AVG_UNCHANGED); 3677 last_ewma_diff = ue.enqueued - ue.ewma; 3678 if (within_margin(last_ewma_diff, (SCHED_CAPACITY_SCALE / 100))) 3679 return; 3680 3681 /* 3682 * Update Task's estimated utilization 3683 * 3684 * When *p completes an activation we can consolidate another sample 3685 * of the task size. This is done by storing the current PELT value 3686 * as ue.enqueued and by using this value to update the Exponential 3687 * Weighted Moving Average (EWMA): 3688 * 3689 * ewma(t) = w * task_util(p) + (1-w) * ewma(t-1) 3690 * = w * task_util(p) + ewma(t-1) - w * ewma(t-1) 3691 * = w * (task_util(p) - ewma(t-1)) + ewma(t-1) 3692 * = w * ( last_ewma_diff ) + ewma(t-1) 3693 * = w * (last_ewma_diff + ewma(t-1) / w) 3694 * 3695 * Where 'w' is the weight of new samples, which is configured to be 3696 * 0.25, thus making w=1/4 ( >>= UTIL_EST_WEIGHT_SHIFT) 3697 */ 3698 ue.ewma <<= UTIL_EST_WEIGHT_SHIFT; 3699 ue.ewma += last_ewma_diff; 3700 ue.ewma >>= UTIL_EST_WEIGHT_SHIFT; 3701 WRITE_ONCE(p->se.avg.util_est, ue); 3702 } 3703 3704 static inline int task_fits_capacity(struct task_struct *p, long capacity) 3705 { 3706 return capacity * 1024 > task_util_est(p) * capacity_margin; 3707 } 3708 3709 static inline void update_misfit_status(struct task_struct *p, struct rq *rq) 3710 { 3711 if (!static_branch_unlikely(&sched_asym_cpucapacity)) 3712 return; 3713 3714 if (!p) { 3715 rq->misfit_task_load = 0; 3716 return; 3717 } 3718 3719 if (task_fits_capacity(p, capacity_of(cpu_of(rq)))) { 3720 rq->misfit_task_load = 0; 3721 return; 3722 } 3723 3724 rq->misfit_task_load = task_h_load(p); 3725 } 3726 3727 #else /* CONFIG_SMP */ 3728 3729 #define UPDATE_TG 0x0 3730 #define SKIP_AGE_LOAD 0x0 3731 #define DO_ATTACH 0x0 3732 3733 static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int not_used1) 3734 { 3735 cfs_rq_util_change(cfs_rq, 0); 3736 } 3737 3738 static inline void remove_entity_load_avg(struct sched_entity *se) {} 3739 3740 static inline void 3741 attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) {} 3742 static inline void 3743 detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {} 3744 3745 static inline int idle_balance(struct rq *rq, struct rq_flags *rf) 3746 { 3747 return 0; 3748 } 3749 3750 static inline void 3751 util_est_enqueue(struct cfs_rq *cfs_rq, struct task_struct *p) {} 3752 3753 static inline void 3754 util_est_dequeue(struct cfs_rq *cfs_rq, struct task_struct *p, 3755 bool task_sleep) {} 3756 static inline void update_misfit_status(struct task_struct *p, struct rq *rq) {} 3757 3758 #endif /* CONFIG_SMP */ 3759 3760 static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se) 3761 { 3762 #ifdef CONFIG_SCHED_DEBUG 3763 s64 d = se->vruntime - cfs_rq->min_vruntime; 3764 3765 if (d < 0) 3766 d = -d; 3767 3768 if (d > 3*sysctl_sched_latency) 3769 schedstat_inc(cfs_rq->nr_spread_over); 3770 #endif 3771 } 3772 3773 static void 3774 place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial) 3775 { 3776 u64 vruntime = cfs_rq->min_vruntime; 3777 3778 /* 3779 * The 'current' period is already promised to the current tasks, 3780 * however the extra weight of the new task will slow them down a 3781 * little, place the new task so that it fits in the slot that 3782 * stays open at the end. 3783 */ 3784 if (initial && sched_feat(START_DEBIT)) 3785 vruntime += sched_vslice(cfs_rq, se); 3786 3787 /* sleeps up to a single latency don't count. */ 3788 if (!initial) { 3789 unsigned long thresh = sysctl_sched_latency; 3790 3791 /* 3792 * Halve their sleep time's effect, to allow 3793 * for a gentler effect of sleepers: 3794 */ 3795 if (sched_feat(GENTLE_FAIR_SLEEPERS)) 3796 thresh >>= 1; 3797 3798 vruntime -= thresh; 3799 } 3800 3801 /* ensure we never gain time by being placed backwards. */ 3802 se->vruntime = max_vruntime(se->vruntime, vruntime); 3803 } 3804 3805 static void check_enqueue_throttle(struct cfs_rq *cfs_rq); 3806 3807 static inline void check_schedstat_required(void) 3808 { 3809 #ifdef CONFIG_SCHEDSTATS 3810 if (schedstat_enabled()) 3811 return; 3812 3813 /* Force schedstat enabled if a dependent tracepoint is active */ 3814 if (trace_sched_stat_wait_enabled() || 3815 trace_sched_stat_sleep_enabled() || 3816 trace_sched_stat_iowait_enabled() || 3817 trace_sched_stat_blocked_enabled() || 3818 trace_sched_stat_runtime_enabled()) { 3819 printk_deferred_once("Scheduler tracepoints stat_sleep, stat_iowait, " 3820 "stat_blocked and stat_runtime require the " 3821 "kernel parameter schedstats=enable or " 3822 "kernel.sched_schedstats=1\n"); 3823 } 3824 #endif 3825 } 3826 3827 3828 /* 3829 * MIGRATION 3830 * 3831 * dequeue 3832 * update_curr() 3833 * update_min_vruntime() 3834 * vruntime -= min_vruntime 3835 * 3836 * enqueue 3837 * update_curr() 3838 * update_min_vruntime() 3839 * vruntime += min_vruntime 3840 * 3841 * this way the vruntime transition between RQs is done when both 3842 * min_vruntime are up-to-date. 3843 * 3844 * WAKEUP (remote) 3845 * 3846 * ->migrate_task_rq_fair() (p->state == TASK_WAKING) 3847 * vruntime -= min_vruntime 3848 * 3849 * enqueue 3850 * update_curr() 3851 * update_min_vruntime() 3852 * vruntime += min_vruntime 3853 * 3854 * this way we don't have the most up-to-date min_vruntime on the originating 3855 * CPU and an up-to-date min_vruntime on the destination CPU. 3856 */ 3857 3858 static void 3859 enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 3860 { 3861 bool renorm = !(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_MIGRATED); 3862 bool curr = cfs_rq->curr == se; 3863 3864 /* 3865 * If we're the current task, we must renormalise before calling 3866 * update_curr(). 3867 */ 3868 if (renorm && curr) 3869 se->vruntime += cfs_rq->min_vruntime; 3870 3871 update_curr(cfs_rq); 3872 3873 /* 3874 * Otherwise, renormalise after, such that we're placed at the current 3875 * moment in time, instead of some random moment in the past. Being 3876 * placed in the past could significantly boost this task to the 3877 * fairness detriment of existing tasks. 3878 */ 3879 if (renorm && !curr) 3880 se->vruntime += cfs_rq->min_vruntime; 3881 3882 /* 3883 * When enqueuing a sched_entity, we must: 3884 * - Update loads to have both entity and cfs_rq synced with now. 3885 * - Add its load to cfs_rq->runnable_avg 3886 * - For group_entity, update its weight to reflect the new share of 3887 * its group cfs_rq 3888 * - Add its new weight to cfs_rq->load.weight 3889 */ 3890 update_load_avg(cfs_rq, se, UPDATE_TG | DO_ATTACH); 3891 update_cfs_group(se); 3892 enqueue_runnable_load_avg(cfs_rq, se); 3893 account_entity_enqueue(cfs_rq, se); 3894 3895 if (flags & ENQUEUE_WAKEUP) 3896 place_entity(cfs_rq, se, 0); 3897 3898 check_schedstat_required(); 3899 update_stats_enqueue(cfs_rq, se, flags); 3900 check_spread(cfs_rq, se); 3901 if (!curr) 3902 __enqueue_entity(cfs_rq, se); 3903 se->on_rq = 1; 3904 3905 if (cfs_rq->nr_running == 1) { 3906 list_add_leaf_cfs_rq(cfs_rq); 3907 check_enqueue_throttle(cfs_rq); 3908 } 3909 } 3910 3911 static void __clear_buddies_last(struct sched_entity *se) 3912 { 3913 for_each_sched_entity(se) { 3914 struct cfs_rq *cfs_rq = cfs_rq_of(se); 3915 if (cfs_rq->last != se) 3916 break; 3917 3918 cfs_rq->last = NULL; 3919 } 3920 } 3921 3922 static void __clear_buddies_next(struct sched_entity *se) 3923 { 3924 for_each_sched_entity(se) { 3925 struct cfs_rq *cfs_rq = cfs_rq_of(se); 3926 if (cfs_rq->next != se) 3927 break; 3928 3929 cfs_rq->next = NULL; 3930 } 3931 } 3932 3933 static void __clear_buddies_skip(struct sched_entity *se) 3934 { 3935 for_each_sched_entity(se) { 3936 struct cfs_rq *cfs_rq = cfs_rq_of(se); 3937 if (cfs_rq->skip != se) 3938 break; 3939 3940 cfs_rq->skip = NULL; 3941 } 3942 } 3943 3944 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se) 3945 { 3946 if (cfs_rq->last == se) 3947 __clear_buddies_last(se); 3948 3949 if (cfs_rq->next == se) 3950 __clear_buddies_next(se); 3951 3952 if (cfs_rq->skip == se) 3953 __clear_buddies_skip(se); 3954 } 3955 3956 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq); 3957 3958 static void 3959 dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 3960 { 3961 /* 3962 * Update run-time statistics of the 'current'. 3963 */ 3964 update_curr(cfs_rq); 3965 3966 /* 3967 * When dequeuing a sched_entity, we must: 3968 * - Update loads to have both entity and cfs_rq synced with now. 3969 * - Substract its load from the cfs_rq->runnable_avg. 3970 * - Substract its previous weight from cfs_rq->load.weight. 3971 * - For group entity, update its weight to reflect the new share 3972 * of its group cfs_rq. 3973 */ 3974 update_load_avg(cfs_rq, se, UPDATE_TG); 3975 dequeue_runnable_load_avg(cfs_rq, se); 3976 3977 update_stats_dequeue(cfs_rq, se, flags); 3978 3979 clear_buddies(cfs_rq, se); 3980 3981 if (se != cfs_rq->curr) 3982 __dequeue_entity(cfs_rq, se); 3983 se->on_rq = 0; 3984 account_entity_dequeue(cfs_rq, se); 3985 3986 /* 3987 * Normalize after update_curr(); which will also have moved 3988 * min_vruntime if @se is the one holding it back. But before doing 3989 * update_min_vruntime() again, which will discount @se's position and 3990 * can move min_vruntime forward still more. 3991 */ 3992 if (!(flags & DEQUEUE_SLEEP)) 3993 se->vruntime -= cfs_rq->min_vruntime; 3994 3995 /* return excess runtime on last dequeue */ 3996 return_cfs_rq_runtime(cfs_rq); 3997 3998 update_cfs_group(se); 3999 4000 /* 4001 * Now advance min_vruntime if @se was the entity holding it back, 4002 * except when: DEQUEUE_SAVE && !DEQUEUE_MOVE, in this case we'll be 4003 * put back on, and if we advance min_vruntime, we'll be placed back 4004 * further than we started -- ie. we'll be penalized. 4005 */ 4006 if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) != DEQUEUE_SAVE) 4007 update_min_vruntime(cfs_rq); 4008 } 4009 4010 /* 4011 * Preempt the current task with a newly woken task if needed: 4012 */ 4013 static void 4014 check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr) 4015 { 4016 unsigned long ideal_runtime, delta_exec; 4017 struct sched_entity *se; 4018 s64 delta; 4019 4020 ideal_runtime = sched_slice(cfs_rq, curr); 4021 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime; 4022 if (delta_exec > ideal_runtime) { 4023 resched_curr(rq_of(cfs_rq)); 4024 /* 4025 * The current task ran long enough, ensure it doesn't get 4026 * re-elected due to buddy favours. 4027 */ 4028 clear_buddies(cfs_rq, curr); 4029 return; 4030 } 4031 4032 /* 4033 * Ensure that a task that missed wakeup preemption by a 4034 * narrow margin doesn't have to wait for a full slice. 4035 * This also mitigates buddy induced latencies under load. 4036 */ 4037 if (delta_exec < sysctl_sched_min_granularity) 4038 return; 4039 4040 se = __pick_first_entity(cfs_rq); 4041 delta = curr->vruntime - se->vruntime; 4042 4043 if (delta < 0) 4044 return; 4045 4046 if (delta > ideal_runtime) 4047 resched_curr(rq_of(cfs_rq)); 4048 } 4049 4050 static void 4051 set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) 4052 { 4053 /* 'current' is not kept within the tree. */ 4054 if (se->on_rq) { 4055 /* 4056 * Any task has to be enqueued before it get to execute on 4057 * a CPU. So account for the time it spent waiting on the 4058 * runqueue. 4059 */ 4060 update_stats_wait_end(cfs_rq, se); 4061 __dequeue_entity(cfs_rq, se); 4062 update_load_avg(cfs_rq, se, UPDATE_TG); 4063 } 4064 4065 update_stats_curr_start(cfs_rq, se); 4066 cfs_rq->curr = se; 4067 4068 /* 4069 * Track our maximum slice length, if the CPU's load is at 4070 * least twice that of our own weight (i.e. dont track it 4071 * when there are only lesser-weight tasks around): 4072 */ 4073 if (schedstat_enabled() && rq_of(cfs_rq)->load.weight >= 2*se->load.weight) { 4074 schedstat_set(se->statistics.slice_max, 4075 max((u64)schedstat_val(se->statistics.slice_max), 4076 se->sum_exec_runtime - se->prev_sum_exec_runtime)); 4077 } 4078 4079 se->prev_sum_exec_runtime = se->sum_exec_runtime; 4080 } 4081 4082 static int 4083 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se); 4084 4085 /* 4086 * Pick the next process, keeping these things in mind, in this order: 4087 * 1) keep things fair between processes/task groups 4088 * 2) pick the "next" process, since someone really wants that to run 4089 * 3) pick the "last" process, for cache locality 4090 * 4) do not run the "skip" process, if something else is available 4091 */ 4092 static struct sched_entity * 4093 pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr) 4094 { 4095 struct sched_entity *left = __pick_first_entity(cfs_rq); 4096 struct sched_entity *se; 4097 4098 /* 4099 * If curr is set we have to see if its left of the leftmost entity 4100 * still in the tree, provided there was anything in the tree at all. 4101 */ 4102 if (!left || (curr && entity_before(curr, left))) 4103 left = curr; 4104 4105 se = left; /* ideally we run the leftmost entity */ 4106 4107 /* 4108 * Avoid running the skip buddy, if running something else can 4109 * be done without getting too unfair. 4110 */ 4111 if (cfs_rq->skip == se) { 4112 struct sched_entity *second; 4113 4114 if (se == curr) { 4115 second = __pick_first_entity(cfs_rq); 4116 } else { 4117 second = __pick_next_entity(se); 4118 if (!second || (curr && entity_before(curr, second))) 4119 second = curr; 4120 } 4121 4122 if (second && wakeup_preempt_entity(second, left) < 1) 4123 se = second; 4124 } 4125 4126 /* 4127 * Prefer last buddy, try to return the CPU to a preempted task. 4128 */ 4129 if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1) 4130 se = cfs_rq->last; 4131 4132 /* 4133 * Someone really wants this to run. If it's not unfair, run it. 4134 */ 4135 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1) 4136 se = cfs_rq->next; 4137 4138 clear_buddies(cfs_rq, se); 4139 4140 return se; 4141 } 4142 4143 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq); 4144 4145 static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev) 4146 { 4147 /* 4148 * If still on the runqueue then deactivate_task() 4149 * was not called and update_curr() has to be done: 4150 */ 4151 if (prev->on_rq) 4152 update_curr(cfs_rq); 4153 4154 /* throttle cfs_rqs exceeding runtime */ 4155 check_cfs_rq_runtime(cfs_rq); 4156 4157 check_spread(cfs_rq, prev); 4158 4159 if (prev->on_rq) { 4160 update_stats_wait_start(cfs_rq, prev); 4161 /* Put 'current' back into the tree. */ 4162 __enqueue_entity(cfs_rq, prev); 4163 /* in !on_rq case, update occurred at dequeue */ 4164 update_load_avg(cfs_rq, prev, 0); 4165 } 4166 cfs_rq->curr = NULL; 4167 } 4168 4169 static void 4170 entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued) 4171 { 4172 /* 4173 * Update run-time statistics of the 'current'. 4174 */ 4175 update_curr(cfs_rq); 4176 4177 /* 4178 * Ensure that runnable average is periodically updated. 4179 */ 4180 update_load_avg(cfs_rq, curr, UPDATE_TG); 4181 update_cfs_group(curr); 4182 4183 #ifdef CONFIG_SCHED_HRTICK 4184 /* 4185 * queued ticks are scheduled to match the slice, so don't bother 4186 * validating it and just reschedule. 4187 */ 4188 if (queued) { 4189 resched_curr(rq_of(cfs_rq)); 4190 return; 4191 } 4192 /* 4193 * don't let the period tick interfere with the hrtick preemption 4194 */ 4195 if (!sched_feat(DOUBLE_TICK) && 4196 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer)) 4197 return; 4198 #endif 4199 4200 if (cfs_rq->nr_running > 1) 4201 check_preempt_tick(cfs_rq, curr); 4202 } 4203 4204 4205 /************************************************** 4206 * CFS bandwidth control machinery 4207 */ 4208 4209 #ifdef CONFIG_CFS_BANDWIDTH 4210 4211 #ifdef HAVE_JUMP_LABEL 4212 static struct static_key __cfs_bandwidth_used; 4213 4214 static inline bool cfs_bandwidth_used(void) 4215 { 4216 return static_key_false(&__cfs_bandwidth_used); 4217 } 4218 4219 void cfs_bandwidth_usage_inc(void) 4220 { 4221 static_key_slow_inc_cpuslocked(&__cfs_bandwidth_used); 4222 } 4223 4224 void cfs_bandwidth_usage_dec(void) 4225 { 4226 static_key_slow_dec_cpuslocked(&__cfs_bandwidth_used); 4227 } 4228 #else /* HAVE_JUMP_LABEL */ 4229 static bool cfs_bandwidth_used(void) 4230 { 4231 return true; 4232 } 4233 4234 void cfs_bandwidth_usage_inc(void) {} 4235 void cfs_bandwidth_usage_dec(void) {} 4236 #endif /* HAVE_JUMP_LABEL */ 4237 4238 /* 4239 * default period for cfs group bandwidth. 4240 * default: 0.1s, units: nanoseconds 4241 */ 4242 static inline u64 default_cfs_period(void) 4243 { 4244 return 100000000ULL; 4245 } 4246 4247 static inline u64 sched_cfs_bandwidth_slice(void) 4248 { 4249 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC; 4250 } 4251 4252 /* 4253 * Replenish runtime according to assigned quota and update expiration time. 4254 * We use sched_clock_cpu directly instead of rq->clock to avoid adding 4255 * additional synchronization around rq->lock. 4256 * 4257 * requires cfs_b->lock 4258 */ 4259 void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b) 4260 { 4261 u64 now; 4262 4263 if (cfs_b->quota == RUNTIME_INF) 4264 return; 4265 4266 now = sched_clock_cpu(smp_processor_id()); 4267 cfs_b->runtime = cfs_b->quota; 4268 cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period); 4269 cfs_b->expires_seq++; 4270 } 4271 4272 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg) 4273 { 4274 return &tg->cfs_bandwidth; 4275 } 4276 4277 /* rq->task_clock normalized against any time this cfs_rq has spent throttled */ 4278 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq) 4279 { 4280 if (unlikely(cfs_rq->throttle_count)) 4281 return cfs_rq->throttled_clock_task - cfs_rq->throttled_clock_task_time; 4282 4283 return rq_clock_task(rq_of(cfs_rq)) - cfs_rq->throttled_clock_task_time; 4284 } 4285 4286 /* returns 0 on failure to allocate runtime */ 4287 static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq) 4288 { 4289 struct task_group *tg = cfs_rq->tg; 4290 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg); 4291 u64 amount = 0, min_amount, expires; 4292 int expires_seq; 4293 4294 /* note: this is a positive sum as runtime_remaining <= 0 */ 4295 min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining; 4296 4297 raw_spin_lock(&cfs_b->lock); 4298 if (cfs_b->quota == RUNTIME_INF) 4299 amount = min_amount; 4300 else { 4301 start_cfs_bandwidth(cfs_b); 4302 4303 if (cfs_b->runtime > 0) { 4304 amount = min(cfs_b->runtime, min_amount); 4305 cfs_b->runtime -= amount; 4306 cfs_b->idle = 0; 4307 } 4308 } 4309 expires_seq = cfs_b->expires_seq; 4310 expires = cfs_b->runtime_expires; 4311 raw_spin_unlock(&cfs_b->lock); 4312 4313 cfs_rq->runtime_remaining += amount; 4314 /* 4315 * we may have advanced our local expiration to account for allowed 4316 * spread between our sched_clock and the one on which runtime was 4317 * issued. 4318 */ 4319 if (cfs_rq->expires_seq != expires_seq) { 4320 cfs_rq->expires_seq = expires_seq; 4321 cfs_rq->runtime_expires = expires; 4322 } 4323 4324 return cfs_rq->runtime_remaining > 0; 4325 } 4326 4327 /* 4328 * Note: This depends on the synchronization provided by sched_clock and the 4329 * fact that rq->clock snapshots this value. 4330 */ 4331 static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq) 4332 { 4333 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 4334 4335 /* if the deadline is ahead of our clock, nothing to do */ 4336 if (likely((s64)(rq_clock(rq_of(cfs_rq)) - cfs_rq->runtime_expires) < 0)) 4337 return; 4338 4339 if (cfs_rq->runtime_remaining < 0) 4340 return; 4341 4342 /* 4343 * If the local deadline has passed we have to consider the 4344 * possibility that our sched_clock is 'fast' and the global deadline 4345 * has not truly expired. 4346 * 4347 * Fortunately we can check determine whether this the case by checking 4348 * whether the global deadline(cfs_b->expires_seq) has advanced. 4349 */ 4350 if (cfs_rq->expires_seq == cfs_b->expires_seq) { 4351 /* extend local deadline, drift is bounded above by 2 ticks */ 4352 cfs_rq->runtime_expires += TICK_NSEC; 4353 } else { 4354 /* global deadline is ahead, expiration has passed */ 4355 cfs_rq->runtime_remaining = 0; 4356 } 4357 } 4358 4359 static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) 4360 { 4361 /* dock delta_exec before expiring quota (as it could span periods) */ 4362 cfs_rq->runtime_remaining -= delta_exec; 4363 expire_cfs_rq_runtime(cfs_rq); 4364 4365 if (likely(cfs_rq->runtime_remaining > 0)) 4366 return; 4367 4368 /* 4369 * if we're unable to extend our runtime we resched so that the active 4370 * hierarchy can be throttled 4371 */ 4372 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr)) 4373 resched_curr(rq_of(cfs_rq)); 4374 } 4375 4376 static __always_inline 4377 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) 4378 { 4379 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled) 4380 return; 4381 4382 __account_cfs_rq_runtime(cfs_rq, delta_exec); 4383 } 4384 4385 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq) 4386 { 4387 return cfs_bandwidth_used() && cfs_rq->throttled; 4388 } 4389 4390 /* check whether cfs_rq, or any parent, is throttled */ 4391 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq) 4392 { 4393 return cfs_bandwidth_used() && cfs_rq->throttle_count; 4394 } 4395 4396 /* 4397 * Ensure that neither of the group entities corresponding to src_cpu or 4398 * dest_cpu are members of a throttled hierarchy when performing group 4399 * load-balance operations. 4400 */ 4401 static inline int throttled_lb_pair(struct task_group *tg, 4402 int src_cpu, int dest_cpu) 4403 { 4404 struct cfs_rq *src_cfs_rq, *dest_cfs_rq; 4405 4406 src_cfs_rq = tg->cfs_rq[src_cpu]; 4407 dest_cfs_rq = tg->cfs_rq[dest_cpu]; 4408 4409 return throttled_hierarchy(src_cfs_rq) || 4410 throttled_hierarchy(dest_cfs_rq); 4411 } 4412 4413 static int tg_unthrottle_up(struct task_group *tg, void *data) 4414 { 4415 struct rq *rq = data; 4416 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; 4417 4418 cfs_rq->throttle_count--; 4419 if (!cfs_rq->throttle_count) { 4420 /* adjust cfs_rq_clock_task() */ 4421 cfs_rq->throttled_clock_task_time += rq_clock_task(rq) - 4422 cfs_rq->throttled_clock_task; 4423 } 4424 4425 return 0; 4426 } 4427 4428 static int tg_throttle_down(struct task_group *tg, void *data) 4429 { 4430 struct rq *rq = data; 4431 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; 4432 4433 /* group is entering throttled state, stop time */ 4434 if (!cfs_rq->throttle_count) 4435 cfs_rq->throttled_clock_task = rq_clock_task(rq); 4436 cfs_rq->throttle_count++; 4437 4438 return 0; 4439 } 4440 4441 static void throttle_cfs_rq(struct cfs_rq *cfs_rq) 4442 { 4443 struct rq *rq = rq_of(cfs_rq); 4444 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 4445 struct sched_entity *se; 4446 long task_delta, dequeue = 1; 4447 bool empty; 4448 4449 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))]; 4450 4451 /* freeze hierarchy runnable averages while throttled */ 4452 rcu_read_lock(); 4453 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq); 4454 rcu_read_unlock(); 4455 4456 task_delta = cfs_rq->h_nr_running; 4457 for_each_sched_entity(se) { 4458 struct cfs_rq *qcfs_rq = cfs_rq_of(se); 4459 /* throttled entity or throttle-on-deactivate */ 4460 if (!se->on_rq) 4461 break; 4462 4463 if (dequeue) 4464 dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP); 4465 qcfs_rq->h_nr_running -= task_delta; 4466 4467 if (qcfs_rq->load.weight) 4468 dequeue = 0; 4469 } 4470 4471 if (!se) 4472 sub_nr_running(rq, task_delta); 4473 4474 cfs_rq->throttled = 1; 4475 cfs_rq->throttled_clock = rq_clock(rq); 4476 raw_spin_lock(&cfs_b->lock); 4477 empty = list_empty(&cfs_b->throttled_cfs_rq); 4478 4479 /* 4480 * Add to the _head_ of the list, so that an already-started 4481 * distribute_cfs_runtime will not see us. If disribute_cfs_runtime is 4482 * not running add to the tail so that later runqueues don't get starved. 4483 */ 4484 if (cfs_b->distribute_running) 4485 list_add_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq); 4486 else 4487 list_add_tail_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq); 4488 4489 /* 4490 * If we're the first throttled task, make sure the bandwidth 4491 * timer is running. 4492 */ 4493 if (empty) 4494 start_cfs_bandwidth(cfs_b); 4495 4496 raw_spin_unlock(&cfs_b->lock); 4497 } 4498 4499 void unthrottle_cfs_rq(struct cfs_rq *cfs_rq) 4500 { 4501 struct rq *rq = rq_of(cfs_rq); 4502 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 4503 struct sched_entity *se; 4504 int enqueue = 1; 4505 long task_delta; 4506 4507 se = cfs_rq->tg->se[cpu_of(rq)]; 4508 4509 cfs_rq->throttled = 0; 4510 4511 update_rq_clock(rq); 4512 4513 raw_spin_lock(&cfs_b->lock); 4514 cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock; 4515 list_del_rcu(&cfs_rq->throttled_list); 4516 raw_spin_unlock(&cfs_b->lock); 4517 4518 /* update hierarchical throttle state */ 4519 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq); 4520 4521 if (!cfs_rq->load.weight) 4522 return; 4523 4524 task_delta = cfs_rq->h_nr_running; 4525 for_each_sched_entity(se) { 4526 if (se->on_rq) 4527 enqueue = 0; 4528 4529 cfs_rq = cfs_rq_of(se); 4530 if (enqueue) 4531 enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP); 4532 cfs_rq->h_nr_running += task_delta; 4533 4534 if (cfs_rq_throttled(cfs_rq)) 4535 break; 4536 } 4537 4538 if (!se) 4539 add_nr_running(rq, task_delta); 4540 4541 /* Determine whether we need to wake up potentially idle CPU: */ 4542 if (rq->curr == rq->idle && rq->cfs.nr_running) 4543 resched_curr(rq); 4544 } 4545 4546 static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b, 4547 u64 remaining, u64 expires) 4548 { 4549 struct cfs_rq *cfs_rq; 4550 u64 runtime; 4551 u64 starting_runtime = remaining; 4552 4553 rcu_read_lock(); 4554 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq, 4555 throttled_list) { 4556 struct rq *rq = rq_of(cfs_rq); 4557 struct rq_flags rf; 4558 4559 rq_lock(rq, &rf); 4560 if (!cfs_rq_throttled(cfs_rq)) 4561 goto next; 4562 4563 runtime = -cfs_rq->runtime_remaining + 1; 4564 if (runtime > remaining) 4565 runtime = remaining; 4566 remaining -= runtime; 4567 4568 cfs_rq->runtime_remaining += runtime; 4569 cfs_rq->runtime_expires = expires; 4570 4571 /* we check whether we're throttled above */ 4572 if (cfs_rq->runtime_remaining > 0) 4573 unthrottle_cfs_rq(cfs_rq); 4574 4575 next: 4576 rq_unlock(rq, &rf); 4577 4578 if (!remaining) 4579 break; 4580 } 4581 rcu_read_unlock(); 4582 4583 return starting_runtime - remaining; 4584 } 4585 4586 /* 4587 * Responsible for refilling a task_group's bandwidth and unthrottling its 4588 * cfs_rqs as appropriate. If there has been no activity within the last 4589 * period the timer is deactivated until scheduling resumes; cfs_b->idle is 4590 * used to track this state. 4591 */ 4592 static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun) 4593 { 4594 u64 runtime, runtime_expires; 4595 int throttled; 4596 4597 /* no need to continue the timer with no bandwidth constraint */ 4598 if (cfs_b->quota == RUNTIME_INF) 4599 goto out_deactivate; 4600 4601 throttled = !list_empty(&cfs_b->throttled_cfs_rq); 4602 cfs_b->nr_periods += overrun; 4603 4604 /* 4605 * idle depends on !throttled (for the case of a large deficit), and if 4606 * we're going inactive then everything else can be deferred 4607 */ 4608 if (cfs_b->idle && !throttled) 4609 goto out_deactivate; 4610 4611 __refill_cfs_bandwidth_runtime(cfs_b); 4612 4613 if (!throttled) { 4614 /* mark as potentially idle for the upcoming period */ 4615 cfs_b->idle = 1; 4616 return 0; 4617 } 4618 4619 /* account preceding periods in which throttling occurred */ 4620 cfs_b->nr_throttled += overrun; 4621 4622 runtime_expires = cfs_b->runtime_expires; 4623 4624 /* 4625 * This check is repeated as we are holding onto the new bandwidth while 4626 * we unthrottle. This can potentially race with an unthrottled group 4627 * trying to acquire new bandwidth from the global pool. This can result 4628 * in us over-using our runtime if it is all used during this loop, but 4629 * only by limited amounts in that extreme case. 4630 */ 4631 while (throttled && cfs_b->runtime > 0 && !cfs_b->distribute_running) { 4632 runtime = cfs_b->runtime; 4633 cfs_b->distribute_running = 1; 4634 raw_spin_unlock(&cfs_b->lock); 4635 /* we can't nest cfs_b->lock while distributing bandwidth */ 4636 runtime = distribute_cfs_runtime(cfs_b, runtime, 4637 runtime_expires); 4638 raw_spin_lock(&cfs_b->lock); 4639 4640 cfs_b->distribute_running = 0; 4641 throttled = !list_empty(&cfs_b->throttled_cfs_rq); 4642 4643 cfs_b->runtime -= min(runtime, cfs_b->runtime); 4644 } 4645 4646 /* 4647 * While we are ensured activity in the period following an 4648 * unthrottle, this also covers the case in which the new bandwidth is 4649 * insufficient to cover the existing bandwidth deficit. (Forcing the 4650 * timer to remain active while there are any throttled entities.) 4651 */ 4652 cfs_b->idle = 0; 4653 4654 return 0; 4655 4656 out_deactivate: 4657 return 1; 4658 } 4659 4660 /* a cfs_rq won't donate quota below this amount */ 4661 static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC; 4662 /* minimum remaining period time to redistribute slack quota */ 4663 static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC; 4664 /* how long we wait to gather additional slack before distributing */ 4665 static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC; 4666 4667 /* 4668 * Are we near the end of the current quota period? 4669 * 4670 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the 4671 * hrtimer base being cleared by hrtimer_start. In the case of 4672 * migrate_hrtimers, base is never cleared, so we are fine. 4673 */ 4674 static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire) 4675 { 4676 struct hrtimer *refresh_timer = &cfs_b->period_timer; 4677 u64 remaining; 4678 4679 /* if the call-back is running a quota refresh is already occurring */ 4680 if (hrtimer_callback_running(refresh_timer)) 4681 return 1; 4682 4683 /* is a quota refresh about to occur? */ 4684 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer)); 4685 if (remaining < min_expire) 4686 return 1; 4687 4688 return 0; 4689 } 4690 4691 static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b) 4692 { 4693 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration; 4694 4695 /* if there's a quota refresh soon don't bother with slack */ 4696 if (runtime_refresh_within(cfs_b, min_left)) 4697 return; 4698 4699 hrtimer_start(&cfs_b->slack_timer, 4700 ns_to_ktime(cfs_bandwidth_slack_period), 4701 HRTIMER_MODE_REL); 4702 } 4703 4704 /* we know any runtime found here is valid as update_curr() precedes return */ 4705 static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq) 4706 { 4707 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 4708 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime; 4709 4710 if (slack_runtime <= 0) 4711 return; 4712 4713 raw_spin_lock(&cfs_b->lock); 4714 if (cfs_b->quota != RUNTIME_INF && 4715 cfs_rq->runtime_expires == cfs_b->runtime_expires) { 4716 cfs_b->runtime += slack_runtime; 4717 4718 /* we are under rq->lock, defer unthrottling using a timer */ 4719 if (cfs_b->runtime > sched_cfs_bandwidth_slice() && 4720 !list_empty(&cfs_b->throttled_cfs_rq)) 4721 start_cfs_slack_bandwidth(cfs_b); 4722 } 4723 raw_spin_unlock(&cfs_b->lock); 4724 4725 /* even if it's not valid for return we don't want to try again */ 4726 cfs_rq->runtime_remaining -= slack_runtime; 4727 } 4728 4729 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) 4730 { 4731 if (!cfs_bandwidth_used()) 4732 return; 4733 4734 if (!cfs_rq->runtime_enabled || cfs_rq->nr_running) 4735 return; 4736 4737 __return_cfs_rq_runtime(cfs_rq); 4738 } 4739 4740 /* 4741 * This is done with a timer (instead of inline with bandwidth return) since 4742 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs. 4743 */ 4744 static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b) 4745 { 4746 u64 runtime = 0, slice = sched_cfs_bandwidth_slice(); 4747 u64 expires; 4748 4749 /* confirm we're still not at a refresh boundary */ 4750 raw_spin_lock(&cfs_b->lock); 4751 if (cfs_b->distribute_running) { 4752 raw_spin_unlock(&cfs_b->lock); 4753 return; 4754 } 4755 4756 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) { 4757 raw_spin_unlock(&cfs_b->lock); 4758 return; 4759 } 4760 4761 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice) 4762 runtime = cfs_b->runtime; 4763 4764 expires = cfs_b->runtime_expires; 4765 if (runtime) 4766 cfs_b->distribute_running = 1; 4767 4768 raw_spin_unlock(&cfs_b->lock); 4769 4770 if (!runtime) 4771 return; 4772 4773 runtime = distribute_cfs_runtime(cfs_b, runtime, expires); 4774 4775 raw_spin_lock(&cfs_b->lock); 4776 if (expires == cfs_b->runtime_expires) 4777 cfs_b->runtime -= min(runtime, cfs_b->runtime); 4778 cfs_b->distribute_running = 0; 4779 raw_spin_unlock(&cfs_b->lock); 4780 } 4781 4782 /* 4783 * When a group wakes up we want to make sure that its quota is not already 4784 * expired/exceeded, otherwise it may be allowed to steal additional ticks of 4785 * runtime as update_curr() throttling can not not trigger until it's on-rq. 4786 */ 4787 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) 4788 { 4789 if (!cfs_bandwidth_used()) 4790 return; 4791 4792 /* an active group must be handled by the update_curr()->put() path */ 4793 if (!cfs_rq->runtime_enabled || cfs_rq->curr) 4794 return; 4795 4796 /* ensure the group is not already throttled */ 4797 if (cfs_rq_throttled(cfs_rq)) 4798 return; 4799 4800 /* update runtime allocation */ 4801 account_cfs_rq_runtime(cfs_rq, 0); 4802 if (cfs_rq->runtime_remaining <= 0) 4803 throttle_cfs_rq(cfs_rq); 4804 } 4805 4806 static void sync_throttle(struct task_group *tg, int cpu) 4807 { 4808 struct cfs_rq *pcfs_rq, *cfs_rq; 4809 4810 if (!cfs_bandwidth_used()) 4811 return; 4812 4813 if (!tg->parent) 4814 return; 4815 4816 cfs_rq = tg->cfs_rq[cpu]; 4817 pcfs_rq = tg->parent->cfs_rq[cpu]; 4818 4819 cfs_rq->throttle_count = pcfs_rq->throttle_count; 4820 cfs_rq->throttled_clock_task = rq_clock_task(cpu_rq(cpu)); 4821 } 4822 4823 /* conditionally throttle active cfs_rq's from put_prev_entity() */ 4824 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) 4825 { 4826 if (!cfs_bandwidth_used()) 4827 return false; 4828 4829 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0)) 4830 return false; 4831 4832 /* 4833 * it's possible for a throttled entity to be forced into a running 4834 * state (e.g. set_curr_task), in this case we're finished. 4835 */ 4836 if (cfs_rq_throttled(cfs_rq)) 4837 return true; 4838 4839 throttle_cfs_rq(cfs_rq); 4840 return true; 4841 } 4842 4843 static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer) 4844 { 4845 struct cfs_bandwidth *cfs_b = 4846 container_of(timer, struct cfs_bandwidth, slack_timer); 4847 4848 do_sched_cfs_slack_timer(cfs_b); 4849 4850 return HRTIMER_NORESTART; 4851 } 4852 4853 static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer) 4854 { 4855 struct cfs_bandwidth *cfs_b = 4856 container_of(timer, struct cfs_bandwidth, period_timer); 4857 int overrun; 4858 int idle = 0; 4859 4860 raw_spin_lock(&cfs_b->lock); 4861 for (;;) { 4862 overrun = hrtimer_forward_now(timer, cfs_b->period); 4863 if (!overrun) 4864 break; 4865 4866 idle = do_sched_cfs_period_timer(cfs_b, overrun); 4867 } 4868 if (idle) 4869 cfs_b->period_active = 0; 4870 raw_spin_unlock(&cfs_b->lock); 4871 4872 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART; 4873 } 4874 4875 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) 4876 { 4877 raw_spin_lock_init(&cfs_b->lock); 4878 cfs_b->runtime = 0; 4879 cfs_b->quota = RUNTIME_INF; 4880 cfs_b->period = ns_to_ktime(default_cfs_period()); 4881 4882 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq); 4883 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED); 4884 cfs_b->period_timer.function = sched_cfs_period_timer; 4885 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 4886 cfs_b->slack_timer.function = sched_cfs_slack_timer; 4887 cfs_b->distribute_running = 0; 4888 } 4889 4890 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) 4891 { 4892 cfs_rq->runtime_enabled = 0; 4893 INIT_LIST_HEAD(&cfs_rq->throttled_list); 4894 } 4895 4896 void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b) 4897 { 4898 u64 overrun; 4899 4900 lockdep_assert_held(&cfs_b->lock); 4901 4902 if (cfs_b->period_active) 4903 return; 4904 4905 cfs_b->period_active = 1; 4906 overrun = hrtimer_forward_now(&cfs_b->period_timer, cfs_b->period); 4907 cfs_b->runtime_expires += (overrun + 1) * ktime_to_ns(cfs_b->period); 4908 cfs_b->expires_seq++; 4909 hrtimer_start_expires(&cfs_b->period_timer, HRTIMER_MODE_ABS_PINNED); 4910 } 4911 4912 static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) 4913 { 4914 /* init_cfs_bandwidth() was not called */ 4915 if (!cfs_b->throttled_cfs_rq.next) 4916 return; 4917 4918 hrtimer_cancel(&cfs_b->period_timer); 4919 hrtimer_cancel(&cfs_b->slack_timer); 4920 } 4921 4922 /* 4923 * Both these CPU hotplug callbacks race against unregister_fair_sched_group() 4924 * 4925 * The race is harmless, since modifying bandwidth settings of unhooked group 4926 * bits doesn't do much. 4927 */ 4928 4929 /* cpu online calback */ 4930 static void __maybe_unused update_runtime_enabled(struct rq *rq) 4931 { 4932 struct task_group *tg; 4933 4934 lockdep_assert_held(&rq->lock); 4935 4936 rcu_read_lock(); 4937 list_for_each_entry_rcu(tg, &task_groups, list) { 4938 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 4939 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; 4940 4941 raw_spin_lock(&cfs_b->lock); 4942 cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF; 4943 raw_spin_unlock(&cfs_b->lock); 4944 } 4945 rcu_read_unlock(); 4946 } 4947 4948 /* cpu offline callback */ 4949 static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq) 4950 { 4951 struct task_group *tg; 4952 4953 lockdep_assert_held(&rq->lock); 4954 4955 rcu_read_lock(); 4956 list_for_each_entry_rcu(tg, &task_groups, list) { 4957 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; 4958 4959 if (!cfs_rq->runtime_enabled) 4960 continue; 4961 4962 /* 4963 * clock_task is not advancing so we just need to make sure 4964 * there's some valid quota amount 4965 */ 4966 cfs_rq->runtime_remaining = 1; 4967 /* 4968 * Offline rq is schedulable till CPU is completely disabled 4969 * in take_cpu_down(), so we prevent new cfs throttling here. 4970 */ 4971 cfs_rq->runtime_enabled = 0; 4972 4973 if (cfs_rq_throttled(cfs_rq)) 4974 unthrottle_cfs_rq(cfs_rq); 4975 } 4976 rcu_read_unlock(); 4977 } 4978 4979 #else /* CONFIG_CFS_BANDWIDTH */ 4980 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq) 4981 { 4982 return rq_clock_task(rq_of(cfs_rq)); 4983 } 4984 4985 static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {} 4986 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; } 4987 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {} 4988 static inline void sync_throttle(struct task_group *tg, int cpu) {} 4989 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {} 4990 4991 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq) 4992 { 4993 return 0; 4994 } 4995 4996 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq) 4997 { 4998 return 0; 4999 } 5000 5001 static inline int throttled_lb_pair(struct task_group *tg, 5002 int src_cpu, int dest_cpu) 5003 { 5004 return 0; 5005 } 5006 5007 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {} 5008 5009 #ifdef CONFIG_FAIR_GROUP_SCHED 5010 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {} 5011 #endif 5012 5013 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg) 5014 { 5015 return NULL; 5016 } 5017 static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {} 5018 static inline void update_runtime_enabled(struct rq *rq) {} 5019 static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {} 5020 5021 #endif /* CONFIG_CFS_BANDWIDTH */ 5022 5023 /************************************************** 5024 * CFS operations on tasks: 5025 */ 5026 5027 #ifdef CONFIG_SCHED_HRTICK 5028 static void hrtick_start_fair(struct rq *rq, struct task_struct *p) 5029 { 5030 struct sched_entity *se = &p->se; 5031 struct cfs_rq *cfs_rq = cfs_rq_of(se); 5032 5033 SCHED_WARN_ON(task_rq(p) != rq); 5034 5035 if (rq->cfs.h_nr_running > 1) { 5036 u64 slice = sched_slice(cfs_rq, se); 5037 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime; 5038 s64 delta = slice - ran; 5039 5040 if (delta < 0) { 5041 if (rq->curr == p) 5042 resched_curr(rq); 5043 return; 5044 } 5045 hrtick_start(rq, delta); 5046 } 5047 } 5048 5049 /* 5050 * called from enqueue/dequeue and updates the hrtick when the 5051 * current task is from our class and nr_running is low enough 5052 * to matter. 5053 */ 5054 static void hrtick_update(struct rq *rq) 5055 { 5056 struct task_struct *curr = rq->curr; 5057 5058 if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class) 5059 return; 5060 5061 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency) 5062 hrtick_start_fair(rq, curr); 5063 } 5064 #else /* !CONFIG_SCHED_HRTICK */ 5065 static inline void 5066 hrtick_start_fair(struct rq *rq, struct task_struct *p) 5067 { 5068 } 5069 5070 static inline void hrtick_update(struct rq *rq) 5071 { 5072 } 5073 #endif 5074 5075 /* 5076 * The enqueue_task method is called before nr_running is 5077 * increased. Here we update the fair scheduling stats and 5078 * then put the task into the rbtree: 5079 */ 5080 static void 5081 enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags) 5082 { 5083 struct cfs_rq *cfs_rq; 5084 struct sched_entity *se = &p->se; 5085 5086 /* 5087 * The code below (indirectly) updates schedutil which looks at 5088 * the cfs_rq utilization to select a frequency. 5089 * Let's add the task's estimated utilization to the cfs_rq's 5090 * estimated utilization, before we update schedutil. 5091 */ 5092 util_est_enqueue(&rq->cfs, p); 5093 5094 /* 5095 * If in_iowait is set, the code below may not trigger any cpufreq 5096 * utilization updates, so do it here explicitly with the IOWAIT flag 5097 * passed. 5098 */ 5099 if (p->in_iowait) 5100 cpufreq_update_util(rq, SCHED_CPUFREQ_IOWAIT); 5101 5102 for_each_sched_entity(se) { 5103 if (se->on_rq) 5104 break; 5105 cfs_rq = cfs_rq_of(se); 5106 enqueue_entity(cfs_rq, se, flags); 5107 5108 /* 5109 * end evaluation on encountering a throttled cfs_rq 5110 * 5111 * note: in the case of encountering a throttled cfs_rq we will 5112 * post the final h_nr_running increment below. 5113 */ 5114 if (cfs_rq_throttled(cfs_rq)) 5115 break; 5116 cfs_rq->h_nr_running++; 5117 5118 flags = ENQUEUE_WAKEUP; 5119 } 5120 5121 for_each_sched_entity(se) { 5122 cfs_rq = cfs_rq_of(se); 5123 cfs_rq->h_nr_running++; 5124 5125 if (cfs_rq_throttled(cfs_rq)) 5126 break; 5127 5128 update_load_avg(cfs_rq, se, UPDATE_TG); 5129 update_cfs_group(se); 5130 } 5131 5132 if (!se) 5133 add_nr_running(rq, 1); 5134 5135 hrtick_update(rq); 5136 } 5137 5138 static void set_next_buddy(struct sched_entity *se); 5139 5140 /* 5141 * The dequeue_task method is called before nr_running is 5142 * decreased. We remove the task from the rbtree and 5143 * update the fair scheduling stats: 5144 */ 5145 static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags) 5146 { 5147 struct cfs_rq *cfs_rq; 5148 struct sched_entity *se = &p->se; 5149 int task_sleep = flags & DEQUEUE_SLEEP; 5150 5151 for_each_sched_entity(se) { 5152 cfs_rq = cfs_rq_of(se); 5153 dequeue_entity(cfs_rq, se, flags); 5154 5155 /* 5156 * end evaluation on encountering a throttled cfs_rq 5157 * 5158 * note: in the case of encountering a throttled cfs_rq we will 5159 * post the final h_nr_running decrement below. 5160 */ 5161 if (cfs_rq_throttled(cfs_rq)) 5162 break; 5163 cfs_rq->h_nr_running--; 5164 5165 /* Don't dequeue parent if it has other entities besides us */ 5166 if (cfs_rq->load.weight) { 5167 /* Avoid re-evaluating load for this entity: */ 5168 se = parent_entity(se); 5169 /* 5170 * Bias pick_next to pick a task from this cfs_rq, as 5171 * p is sleeping when it is within its sched_slice. 5172 */ 5173 if (task_sleep && se && !throttled_hierarchy(cfs_rq)) 5174 set_next_buddy(se); 5175 break; 5176 } 5177 flags |= DEQUEUE_SLEEP; 5178 } 5179 5180 for_each_sched_entity(se) { 5181 cfs_rq = cfs_rq_of(se); 5182 cfs_rq->h_nr_running--; 5183 5184 if (cfs_rq_throttled(cfs_rq)) 5185 break; 5186 5187 update_load_avg(cfs_rq, se, UPDATE_TG); 5188 update_cfs_group(se); 5189 } 5190 5191 if (!se) 5192 sub_nr_running(rq, 1); 5193 5194 util_est_dequeue(&rq->cfs, p, task_sleep); 5195 hrtick_update(rq); 5196 } 5197 5198 #ifdef CONFIG_SMP 5199 5200 /* Working cpumask for: load_balance, load_balance_newidle. */ 5201 DEFINE_PER_CPU(cpumask_var_t, load_balance_mask); 5202 DEFINE_PER_CPU(cpumask_var_t, select_idle_mask); 5203 5204 #ifdef CONFIG_NO_HZ_COMMON 5205 /* 5206 * per rq 'load' arrray crap; XXX kill this. 5207 */ 5208 5209 /* 5210 * The exact cpuload calculated at every tick would be: 5211 * 5212 * load' = (1 - 1/2^i) * load + (1/2^i) * cur_load 5213 * 5214 * If a CPU misses updates for n ticks (as it was idle) and update gets 5215 * called on the n+1-th tick when CPU may be busy, then we have: 5216 * 5217 * load_n = (1 - 1/2^i)^n * load_0 5218 * load_n+1 = (1 - 1/2^i) * load_n + (1/2^i) * cur_load 5219 * 5220 * decay_load_missed() below does efficient calculation of 5221 * 5222 * load' = (1 - 1/2^i)^n * load 5223 * 5224 * Because x^(n+m) := x^n * x^m we can decompose any x^n in power-of-2 factors. 5225 * This allows us to precompute the above in said factors, thereby allowing the 5226 * reduction of an arbitrary n in O(log_2 n) steps. (See also 5227 * fixed_power_int()) 5228 * 5229 * The calculation is approximated on a 128 point scale. 5230 */ 5231 #define DEGRADE_SHIFT 7 5232 5233 static const u8 degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128}; 5234 static const u8 degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = { 5235 { 0, 0, 0, 0, 0, 0, 0, 0 }, 5236 { 64, 32, 8, 0, 0, 0, 0, 0 }, 5237 { 96, 72, 40, 12, 1, 0, 0, 0 }, 5238 { 112, 98, 75, 43, 15, 1, 0, 0 }, 5239 { 120, 112, 98, 76, 45, 16, 2, 0 } 5240 }; 5241 5242 /* 5243 * Update cpu_load for any missed ticks, due to tickless idle. The backlog 5244 * would be when CPU is idle and so we just decay the old load without 5245 * adding any new load. 5246 */ 5247 static unsigned long 5248 decay_load_missed(unsigned long load, unsigned long missed_updates, int idx) 5249 { 5250 int j = 0; 5251 5252 if (!missed_updates) 5253 return load; 5254 5255 if (missed_updates >= degrade_zero_ticks[idx]) 5256 return 0; 5257 5258 if (idx == 1) 5259 return load >> missed_updates; 5260 5261 while (missed_updates) { 5262 if (missed_updates % 2) 5263 load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT; 5264 5265 missed_updates >>= 1; 5266 j++; 5267 } 5268 return load; 5269 } 5270 5271 static struct { 5272 cpumask_var_t idle_cpus_mask; 5273 atomic_t nr_cpus; 5274 int has_blocked; /* Idle CPUS has blocked load */ 5275 unsigned long next_balance; /* in jiffy units */ 5276 unsigned long next_blocked; /* Next update of blocked load in jiffies */ 5277 } nohz ____cacheline_aligned; 5278 5279 #endif /* CONFIG_NO_HZ_COMMON */ 5280 5281 /** 5282 * __cpu_load_update - update the rq->cpu_load[] statistics 5283 * @this_rq: The rq to update statistics for 5284 * @this_load: The current load 5285 * @pending_updates: The number of missed updates 5286 * 5287 * Update rq->cpu_load[] statistics. This function is usually called every 5288 * scheduler tick (TICK_NSEC). 5289 * 5290 * This function computes a decaying average: 5291 * 5292 * load[i]' = (1 - 1/2^i) * load[i] + (1/2^i) * load 5293 * 5294 * Because of NOHZ it might not get called on every tick which gives need for 5295 * the @pending_updates argument. 5296 * 5297 * load[i]_n = (1 - 1/2^i) * load[i]_n-1 + (1/2^i) * load_n-1 5298 * = A * load[i]_n-1 + B ; A := (1 - 1/2^i), B := (1/2^i) * load 5299 * = A * (A * load[i]_n-2 + B) + B 5300 * = A * (A * (A * load[i]_n-3 + B) + B) + B 5301 * = A^3 * load[i]_n-3 + (A^2 + A + 1) * B 5302 * = A^n * load[i]_0 + (A^(n-1) + A^(n-2) + ... + 1) * B 5303 * = A^n * load[i]_0 + ((1 - A^n) / (1 - A)) * B 5304 * = (1 - 1/2^i)^n * (load[i]_0 - load) + load 5305 * 5306 * In the above we've assumed load_n := load, which is true for NOHZ_FULL as 5307 * any change in load would have resulted in the tick being turned back on. 5308 * 5309 * For regular NOHZ, this reduces to: 5310 * 5311 * load[i]_n = (1 - 1/2^i)^n * load[i]_0 5312 * 5313 * see decay_load_misses(). For NOHZ_FULL we get to subtract and add the extra 5314 * term. 5315 */ 5316 static void cpu_load_update(struct rq *this_rq, unsigned long this_load, 5317 unsigned long pending_updates) 5318 { 5319 unsigned long __maybe_unused tickless_load = this_rq->cpu_load[0]; 5320 int i, scale; 5321 5322 this_rq->nr_load_updates++; 5323 5324 /* Update our load: */ 5325 this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */ 5326 for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) { 5327 unsigned long old_load, new_load; 5328 5329 /* scale is effectively 1 << i now, and >> i divides by scale */ 5330 5331 old_load = this_rq->cpu_load[i]; 5332 #ifdef CONFIG_NO_HZ_COMMON 5333 old_load = decay_load_missed(old_load, pending_updates - 1, i); 5334 if (tickless_load) { 5335 old_load -= decay_load_missed(tickless_load, pending_updates - 1, i); 5336 /* 5337 * old_load can never be a negative value because a 5338 * decayed tickless_load cannot be greater than the 5339 * original tickless_load. 5340 */ 5341 old_load += tickless_load; 5342 } 5343 #endif 5344 new_load = this_load; 5345 /* 5346 * Round up the averaging division if load is increasing. This 5347 * prevents us from getting stuck on 9 if the load is 10, for 5348 * example. 5349 */ 5350 if (new_load > old_load) 5351 new_load += scale - 1; 5352 5353 this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i; 5354 } 5355 } 5356 5357 /* Used instead of source_load when we know the type == 0 */ 5358 static unsigned long weighted_cpuload(struct rq *rq) 5359 { 5360 return cfs_rq_runnable_load_avg(&rq->cfs); 5361 } 5362 5363 #ifdef CONFIG_NO_HZ_COMMON 5364 /* 5365 * There is no sane way to deal with nohz on smp when using jiffies because the 5366 * CPU doing the jiffies update might drift wrt the CPU doing the jiffy reading 5367 * causing off-by-one errors in observed deltas; {0,2} instead of {1,1}. 5368 * 5369 * Therefore we need to avoid the delta approach from the regular tick when 5370 * possible since that would seriously skew the load calculation. This is why we 5371 * use cpu_load_update_periodic() for CPUs out of nohz. However we'll rely on 5372 * jiffies deltas for updates happening while in nohz mode (idle ticks, idle 5373 * loop exit, nohz_idle_balance, nohz full exit...) 5374 * 5375 * This means we might still be one tick off for nohz periods. 5376 */ 5377 5378 static void cpu_load_update_nohz(struct rq *this_rq, 5379 unsigned long curr_jiffies, 5380 unsigned long load) 5381 { 5382 unsigned long pending_updates; 5383 5384 pending_updates = curr_jiffies - this_rq->last_load_update_tick; 5385 if (pending_updates) { 5386 this_rq->last_load_update_tick = curr_jiffies; 5387 /* 5388 * In the regular NOHZ case, we were idle, this means load 0. 5389 * In the NOHZ_FULL case, we were non-idle, we should consider 5390 * its weighted load. 5391 */ 5392 cpu_load_update(this_rq, load, pending_updates); 5393 } 5394 } 5395 5396 /* 5397 * Called from nohz_idle_balance() to update the load ratings before doing the 5398 * idle balance. 5399 */ 5400 static void cpu_load_update_idle(struct rq *this_rq) 5401 { 5402 /* 5403 * bail if there's load or we're actually up-to-date. 5404 */ 5405 if (weighted_cpuload(this_rq)) 5406 return; 5407 5408 cpu_load_update_nohz(this_rq, READ_ONCE(jiffies), 0); 5409 } 5410 5411 /* 5412 * Record CPU load on nohz entry so we know the tickless load to account 5413 * on nohz exit. cpu_load[0] happens then to be updated more frequently 5414 * than other cpu_load[idx] but it should be fine as cpu_load readers 5415 * shouldn't rely into synchronized cpu_load[*] updates. 5416 */ 5417 void cpu_load_update_nohz_start(void) 5418 { 5419 struct rq *this_rq = this_rq(); 5420 5421 /* 5422 * This is all lockless but should be fine. If weighted_cpuload changes 5423 * concurrently we'll exit nohz. And cpu_load write can race with 5424 * cpu_load_update_idle() but both updater would be writing the same. 5425 */ 5426 this_rq->cpu_load[0] = weighted_cpuload(this_rq); 5427 } 5428 5429 /* 5430 * Account the tickless load in the end of a nohz frame. 5431 */ 5432 void cpu_load_update_nohz_stop(void) 5433 { 5434 unsigned long curr_jiffies = READ_ONCE(jiffies); 5435 struct rq *this_rq = this_rq(); 5436 unsigned long load; 5437 struct rq_flags rf; 5438 5439 if (curr_jiffies == this_rq->last_load_update_tick) 5440 return; 5441 5442 load = weighted_cpuload(this_rq); 5443 rq_lock(this_rq, &rf); 5444 update_rq_clock(this_rq); 5445 cpu_load_update_nohz(this_rq, curr_jiffies, load); 5446 rq_unlock(this_rq, &rf); 5447 } 5448 #else /* !CONFIG_NO_HZ_COMMON */ 5449 static inline void cpu_load_update_nohz(struct rq *this_rq, 5450 unsigned long curr_jiffies, 5451 unsigned long load) { } 5452 #endif /* CONFIG_NO_HZ_COMMON */ 5453 5454 static void cpu_load_update_periodic(struct rq *this_rq, unsigned long load) 5455 { 5456 #ifdef CONFIG_NO_HZ_COMMON 5457 /* See the mess around cpu_load_update_nohz(). */ 5458 this_rq->last_load_update_tick = READ_ONCE(jiffies); 5459 #endif 5460 cpu_load_update(this_rq, load, 1); 5461 } 5462 5463 /* 5464 * Called from scheduler_tick() 5465 */ 5466 void cpu_load_update_active(struct rq *this_rq) 5467 { 5468 unsigned long load = weighted_cpuload(this_rq); 5469 5470 if (tick_nohz_tick_stopped()) 5471 cpu_load_update_nohz(this_rq, READ_ONCE(jiffies), load); 5472 else 5473 cpu_load_update_periodic(this_rq, load); 5474 } 5475 5476 /* 5477 * Return a low guess at the load of a migration-source CPU weighted 5478 * according to the scheduling class and "nice" value. 5479 * 5480 * We want to under-estimate the load of migration sources, to 5481 * balance conservatively. 5482 */ 5483 static unsigned long source_load(int cpu, int type) 5484 { 5485 struct rq *rq = cpu_rq(cpu); 5486 unsigned long total = weighted_cpuload(rq); 5487 5488 if (type == 0 || !sched_feat(LB_BIAS)) 5489 return total; 5490 5491 return min(rq->cpu_load[type-1], total); 5492 } 5493 5494 /* 5495 * Return a high guess at the load of a migration-target CPU weighted 5496 * according to the scheduling class and "nice" value. 5497 */ 5498 static unsigned long target_load(int cpu, int type) 5499 { 5500 struct rq *rq = cpu_rq(cpu); 5501 unsigned long total = weighted_cpuload(rq); 5502 5503 if (type == 0 || !sched_feat(LB_BIAS)) 5504 return total; 5505 5506 return max(rq->cpu_load[type-1], total); 5507 } 5508 5509 static unsigned long capacity_of(int cpu) 5510 { 5511 return cpu_rq(cpu)->cpu_capacity; 5512 } 5513 5514 static unsigned long capacity_orig_of(int cpu) 5515 { 5516 return cpu_rq(cpu)->cpu_capacity_orig; 5517 } 5518 5519 static unsigned long cpu_avg_load_per_task(int cpu) 5520 { 5521 struct rq *rq = cpu_rq(cpu); 5522 unsigned long nr_running = READ_ONCE(rq->cfs.h_nr_running); 5523 unsigned long load_avg = weighted_cpuload(rq); 5524 5525 if (nr_running) 5526 return load_avg / nr_running; 5527 5528 return 0; 5529 } 5530 5531 static void record_wakee(struct task_struct *p) 5532 { 5533 /* 5534 * Only decay a single time; tasks that have less then 1 wakeup per 5535 * jiffy will not have built up many flips. 5536 */ 5537 if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) { 5538 current->wakee_flips >>= 1; 5539 current->wakee_flip_decay_ts = jiffies; 5540 } 5541 5542 if (current->last_wakee != p) { 5543 current->last_wakee = p; 5544 current->wakee_flips++; 5545 } 5546 } 5547 5548 /* 5549 * Detect M:N waker/wakee relationships via a switching-frequency heuristic. 5550 * 5551 * A waker of many should wake a different task than the one last awakened 5552 * at a frequency roughly N times higher than one of its wakees. 5553 * 5554 * In order to determine whether we should let the load spread vs consolidating 5555 * to shared cache, we look for a minimum 'flip' frequency of llc_size in one 5556 * partner, and a factor of lls_size higher frequency in the other. 5557 * 5558 * With both conditions met, we can be relatively sure that the relationship is 5559 * non-monogamous, with partner count exceeding socket size. 5560 * 5561 * Waker/wakee being client/server, worker/dispatcher, interrupt source or 5562 * whatever is irrelevant, spread criteria is apparent partner count exceeds 5563 * socket size. 5564 */ 5565 static int wake_wide(struct task_struct *p) 5566 { 5567 unsigned int master = current->wakee_flips; 5568 unsigned int slave = p->wakee_flips; 5569 int factor = this_cpu_read(sd_llc_size); 5570 5571 if (master < slave) 5572 swap(master, slave); 5573 if (slave < factor || master < slave * factor) 5574 return 0; 5575 return 1; 5576 } 5577 5578 /* 5579 * The purpose of wake_affine() is to quickly determine on which CPU we can run 5580 * soonest. For the purpose of speed we only consider the waking and previous 5581 * CPU. 5582 * 5583 * wake_affine_idle() - only considers 'now', it check if the waking CPU is 5584 * cache-affine and is (or will be) idle. 5585 * 5586 * wake_affine_weight() - considers the weight to reflect the average 5587 * scheduling latency of the CPUs. This seems to work 5588 * for the overloaded case. 5589 */ 5590 static int 5591 wake_affine_idle(int this_cpu, int prev_cpu, int sync) 5592 { 5593 /* 5594 * If this_cpu is idle, it implies the wakeup is from interrupt 5595 * context. Only allow the move if cache is shared. Otherwise an 5596 * interrupt intensive workload could force all tasks onto one 5597 * node depending on the IO topology or IRQ affinity settings. 5598 * 5599 * If the prev_cpu is idle and cache affine then avoid a migration. 5600 * There is no guarantee that the cache hot data from an interrupt 5601 * is more important than cache hot data on the prev_cpu and from 5602 * a cpufreq perspective, it's better to have higher utilisation 5603 * on one CPU. 5604 */ 5605 if (available_idle_cpu(this_cpu) && cpus_share_cache(this_cpu, prev_cpu)) 5606 return available_idle_cpu(prev_cpu) ? prev_cpu : this_cpu; 5607 5608 if (sync && cpu_rq(this_cpu)->nr_running == 1) 5609 return this_cpu; 5610 5611 return nr_cpumask_bits; 5612 } 5613 5614 static int 5615 wake_affine_weight(struct sched_domain *sd, struct task_struct *p, 5616 int this_cpu, int prev_cpu, int sync) 5617 { 5618 s64 this_eff_load, prev_eff_load; 5619 unsigned long task_load; 5620 5621 this_eff_load = target_load(this_cpu, sd->wake_idx); 5622 5623 if (sync) { 5624 unsigned long current_load = task_h_load(current); 5625 5626 if (current_load > this_eff_load) 5627 return this_cpu; 5628 5629 this_eff_load -= current_load; 5630 } 5631 5632 task_load = task_h_load(p); 5633 5634 this_eff_load += task_load; 5635 if (sched_feat(WA_BIAS)) 5636 this_eff_load *= 100; 5637 this_eff_load *= capacity_of(prev_cpu); 5638 5639 prev_eff_load = source_load(prev_cpu, sd->wake_idx); 5640 prev_eff_load -= task_load; 5641 if (sched_feat(WA_BIAS)) 5642 prev_eff_load *= 100 + (sd->imbalance_pct - 100) / 2; 5643 prev_eff_load *= capacity_of(this_cpu); 5644 5645 /* 5646 * If sync, adjust the weight of prev_eff_load such that if 5647 * prev_eff == this_eff that select_idle_sibling() will consider 5648 * stacking the wakee on top of the waker if no other CPU is 5649 * idle. 5650 */ 5651 if (sync) 5652 prev_eff_load += 1; 5653 5654 return this_eff_load < prev_eff_load ? this_cpu : nr_cpumask_bits; 5655 } 5656 5657 static int wake_affine(struct sched_domain *sd, struct task_struct *p, 5658 int this_cpu, int prev_cpu, int sync) 5659 { 5660 int target = nr_cpumask_bits; 5661 5662 if (sched_feat(WA_IDLE)) 5663 target = wake_affine_idle(this_cpu, prev_cpu, sync); 5664 5665 if (sched_feat(WA_WEIGHT) && target == nr_cpumask_bits) 5666 target = wake_affine_weight(sd, p, this_cpu, prev_cpu, sync); 5667 5668 schedstat_inc(p->se.statistics.nr_wakeups_affine_attempts); 5669 if (target == nr_cpumask_bits) 5670 return prev_cpu; 5671 5672 schedstat_inc(sd->ttwu_move_affine); 5673 schedstat_inc(p->se.statistics.nr_wakeups_affine); 5674 return target; 5675 } 5676 5677 static unsigned long cpu_util_without(int cpu, struct task_struct *p); 5678 5679 static unsigned long capacity_spare_without(int cpu, struct task_struct *p) 5680 { 5681 return max_t(long, capacity_of(cpu) - cpu_util_without(cpu, p), 0); 5682 } 5683 5684 /* 5685 * find_idlest_group finds and returns the least busy CPU group within the 5686 * domain. 5687 * 5688 * Assumes p is allowed on at least one CPU in sd. 5689 */ 5690 static struct sched_group * 5691 find_idlest_group(struct sched_domain *sd, struct task_struct *p, 5692 int this_cpu, int sd_flag) 5693 { 5694 struct sched_group *idlest = NULL, *group = sd->groups; 5695 struct sched_group *most_spare_sg = NULL; 5696 unsigned long min_runnable_load = ULONG_MAX; 5697 unsigned long this_runnable_load = ULONG_MAX; 5698 unsigned long min_avg_load = ULONG_MAX, this_avg_load = ULONG_MAX; 5699 unsigned long most_spare = 0, this_spare = 0; 5700 int load_idx = sd->forkexec_idx; 5701 int imbalance_scale = 100 + (sd->imbalance_pct-100)/2; 5702 unsigned long imbalance = scale_load_down(NICE_0_LOAD) * 5703 (sd->imbalance_pct-100) / 100; 5704 5705 if (sd_flag & SD_BALANCE_WAKE) 5706 load_idx = sd->wake_idx; 5707 5708 do { 5709 unsigned long load, avg_load, runnable_load; 5710 unsigned long spare_cap, max_spare_cap; 5711 int local_group; 5712 int i; 5713 5714 /* Skip over this group if it has no CPUs allowed */ 5715 if (!cpumask_intersects(sched_group_span(group), 5716 &p->cpus_allowed)) 5717 continue; 5718 5719 local_group = cpumask_test_cpu(this_cpu, 5720 sched_group_span(group)); 5721 5722 /* 5723 * Tally up the load of all CPUs in the group and find 5724 * the group containing the CPU with most spare capacity. 5725 */ 5726 avg_load = 0; 5727 runnable_load = 0; 5728 max_spare_cap = 0; 5729 5730 for_each_cpu(i, sched_group_span(group)) { 5731 /* Bias balancing toward CPUs of our domain */ 5732 if (local_group) 5733 load = source_load(i, load_idx); 5734 else 5735 load = target_load(i, load_idx); 5736 5737 runnable_load += load; 5738 5739 avg_load += cfs_rq_load_avg(&cpu_rq(i)->cfs); 5740 5741 spare_cap = capacity_spare_without(i, p); 5742 5743 if (spare_cap > max_spare_cap) 5744 max_spare_cap = spare_cap; 5745 } 5746 5747 /* Adjust by relative CPU capacity of the group */ 5748 avg_load = (avg_load * SCHED_CAPACITY_SCALE) / 5749 group->sgc->capacity; 5750 runnable_load = (runnable_load * SCHED_CAPACITY_SCALE) / 5751 group->sgc->capacity; 5752 5753 if (local_group) { 5754 this_runnable_load = runnable_load; 5755 this_avg_load = avg_load; 5756 this_spare = max_spare_cap; 5757 } else { 5758 if (min_runnable_load > (runnable_load + imbalance)) { 5759 /* 5760 * The runnable load is significantly smaller 5761 * so we can pick this new CPU: 5762 */ 5763 min_runnable_load = runnable_load; 5764 min_avg_load = avg_load; 5765 idlest = group; 5766 } else if ((runnable_load < (min_runnable_load + imbalance)) && 5767 (100*min_avg_load > imbalance_scale*avg_load)) { 5768 /* 5769 * The runnable loads are close so take the 5770 * blocked load into account through avg_load: 5771 */ 5772 min_avg_load = avg_load; 5773 idlest = group; 5774 } 5775 5776 if (most_spare < max_spare_cap) { 5777 most_spare = max_spare_cap; 5778 most_spare_sg = group; 5779 } 5780 } 5781 } while (group = group->next, group != sd->groups); 5782 5783 /* 5784 * The cross-over point between using spare capacity or least load 5785 * is too conservative for high utilization tasks on partially 5786 * utilized systems if we require spare_capacity > task_util(p), 5787 * so we allow for some task stuffing by using 5788 * spare_capacity > task_util(p)/2. 5789 * 5790 * Spare capacity can't be used for fork because the utilization has 5791 * not been set yet, we must first select a rq to compute the initial 5792 * utilization. 5793 */ 5794 if (sd_flag & SD_BALANCE_FORK) 5795 goto skip_spare; 5796 5797 if (this_spare > task_util(p) / 2 && 5798 imbalance_scale*this_spare > 100*most_spare) 5799 return NULL; 5800 5801 if (most_spare > task_util(p) / 2) 5802 return most_spare_sg; 5803 5804 skip_spare: 5805 if (!idlest) 5806 return NULL; 5807 5808 /* 5809 * When comparing groups across NUMA domains, it's possible for the 5810 * local domain to be very lightly loaded relative to the remote 5811 * domains but "imbalance" skews the comparison making remote CPUs 5812 * look much more favourable. When considering cross-domain, add 5813 * imbalance to the runnable load on the remote node and consider 5814 * staying local. 5815 */ 5816 if ((sd->flags & SD_NUMA) && 5817 min_runnable_load + imbalance >= this_runnable_load) 5818 return NULL; 5819 5820 if (min_runnable_load > (this_runnable_load + imbalance)) 5821 return NULL; 5822 5823 if ((this_runnable_load < (min_runnable_load + imbalance)) && 5824 (100*this_avg_load < imbalance_scale*min_avg_load)) 5825 return NULL; 5826 5827 return idlest; 5828 } 5829 5830 /* 5831 * find_idlest_group_cpu - find the idlest CPU among the CPUs in the group. 5832 */ 5833 static int 5834 find_idlest_group_cpu(struct sched_group *group, struct task_struct *p, int this_cpu) 5835 { 5836 unsigned long load, min_load = ULONG_MAX; 5837 unsigned int min_exit_latency = UINT_MAX; 5838 u64 latest_idle_timestamp = 0; 5839 int least_loaded_cpu = this_cpu; 5840 int shallowest_idle_cpu = -1; 5841 int i; 5842 5843 /* Check if we have any choice: */ 5844 if (group->group_weight == 1) 5845 return cpumask_first(sched_group_span(group)); 5846 5847 /* Traverse only the allowed CPUs */ 5848 for_each_cpu_and(i, sched_group_span(group), &p->cpus_allowed) { 5849 if (available_idle_cpu(i)) { 5850 struct rq *rq = cpu_rq(i); 5851 struct cpuidle_state *idle = idle_get_state(rq); 5852 if (idle && idle->exit_latency < min_exit_latency) { 5853 /* 5854 * We give priority to a CPU whose idle state 5855 * has the smallest exit latency irrespective 5856 * of any idle timestamp. 5857 */ 5858 min_exit_latency = idle->exit_latency; 5859 latest_idle_timestamp = rq->idle_stamp; 5860 shallowest_idle_cpu = i; 5861 } else if ((!idle || idle->exit_latency == min_exit_latency) && 5862 rq->idle_stamp > latest_idle_timestamp) { 5863 /* 5864 * If equal or no active idle state, then 5865 * the most recently idled CPU might have 5866 * a warmer cache. 5867 */ 5868 latest_idle_timestamp = rq->idle_stamp; 5869 shallowest_idle_cpu = i; 5870 } 5871 } else if (shallowest_idle_cpu == -1) { 5872 load = weighted_cpuload(cpu_rq(i)); 5873 if (load < min_load) { 5874 min_load = load; 5875 least_loaded_cpu = i; 5876 } 5877 } 5878 } 5879 5880 return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu; 5881 } 5882 5883 static inline int find_idlest_cpu(struct sched_domain *sd, struct task_struct *p, 5884 int cpu, int prev_cpu, int sd_flag) 5885 { 5886 int new_cpu = cpu; 5887 5888 if (!cpumask_intersects(sched_domain_span(sd), &p->cpus_allowed)) 5889 return prev_cpu; 5890 5891 /* 5892 * We need task's util for capacity_spare_without, sync it up to 5893 * prev_cpu's last_update_time. 5894 */ 5895 if (!(sd_flag & SD_BALANCE_FORK)) 5896 sync_entity_load_avg(&p->se); 5897 5898 while (sd) { 5899 struct sched_group *group; 5900 struct sched_domain *tmp; 5901 int weight; 5902 5903 if (!(sd->flags & sd_flag)) { 5904 sd = sd->child; 5905 continue; 5906 } 5907 5908 group = find_idlest_group(sd, p, cpu, sd_flag); 5909 if (!group) { 5910 sd = sd->child; 5911 continue; 5912 } 5913 5914 new_cpu = find_idlest_group_cpu(group, p, cpu); 5915 if (new_cpu == cpu) { 5916 /* Now try balancing at a lower domain level of 'cpu': */ 5917 sd = sd->child; 5918 continue; 5919 } 5920 5921 /* Now try balancing at a lower domain level of 'new_cpu': */ 5922 cpu = new_cpu; 5923 weight = sd->span_weight; 5924 sd = NULL; 5925 for_each_domain(cpu, tmp) { 5926 if (weight <= tmp->span_weight) 5927 break; 5928 if (tmp->flags & sd_flag) 5929 sd = tmp; 5930 } 5931 } 5932 5933 return new_cpu; 5934 } 5935 5936 #ifdef CONFIG_SCHED_SMT 5937 DEFINE_STATIC_KEY_FALSE(sched_smt_present); 5938 5939 static inline void set_idle_cores(int cpu, int val) 5940 { 5941 struct sched_domain_shared *sds; 5942 5943 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu)); 5944 if (sds) 5945 WRITE_ONCE(sds->has_idle_cores, val); 5946 } 5947 5948 static inline bool test_idle_cores(int cpu, bool def) 5949 { 5950 struct sched_domain_shared *sds; 5951 5952 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu)); 5953 if (sds) 5954 return READ_ONCE(sds->has_idle_cores); 5955 5956 return def; 5957 } 5958 5959 /* 5960 * Scans the local SMT mask to see if the entire core is idle, and records this 5961 * information in sd_llc_shared->has_idle_cores. 5962 * 5963 * Since SMT siblings share all cache levels, inspecting this limited remote 5964 * state should be fairly cheap. 5965 */ 5966 void __update_idle_core(struct rq *rq) 5967 { 5968 int core = cpu_of(rq); 5969 int cpu; 5970 5971 rcu_read_lock(); 5972 if (test_idle_cores(core, true)) 5973 goto unlock; 5974 5975 for_each_cpu(cpu, cpu_smt_mask(core)) { 5976 if (cpu == core) 5977 continue; 5978 5979 if (!available_idle_cpu(cpu)) 5980 goto unlock; 5981 } 5982 5983 set_idle_cores(core, 1); 5984 unlock: 5985 rcu_read_unlock(); 5986 } 5987 5988 /* 5989 * Scan the entire LLC domain for idle cores; this dynamically switches off if 5990 * there are no idle cores left in the system; tracked through 5991 * sd_llc->shared->has_idle_cores and enabled through update_idle_core() above. 5992 */ 5993 static int select_idle_core(struct task_struct *p, struct sched_domain *sd, int target) 5994 { 5995 struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_idle_mask); 5996 int core, cpu; 5997 5998 if (!static_branch_likely(&sched_smt_present)) 5999 return -1; 6000 6001 if (!test_idle_cores(target, false)) 6002 return -1; 6003 6004 cpumask_and(cpus, sched_domain_span(sd), &p->cpus_allowed); 6005 6006 for_each_cpu_wrap(core, cpus, target) { 6007 bool idle = true; 6008 6009 for_each_cpu(cpu, cpu_smt_mask(core)) { 6010 cpumask_clear_cpu(cpu, cpus); 6011 if (!available_idle_cpu(cpu)) 6012 idle = false; 6013 } 6014 6015 if (idle) 6016 return core; 6017 } 6018 6019 /* 6020 * Failed to find an idle core; stop looking for one. 6021 */ 6022 set_idle_cores(target, 0); 6023 6024 return -1; 6025 } 6026 6027 /* 6028 * Scan the local SMT mask for idle CPUs. 6029 */ 6030 static int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target) 6031 { 6032 int cpu; 6033 6034 if (!static_branch_likely(&sched_smt_present)) 6035 return -1; 6036 6037 for_each_cpu(cpu, cpu_smt_mask(target)) { 6038 if (!cpumask_test_cpu(cpu, &p->cpus_allowed)) 6039 continue; 6040 if (available_idle_cpu(cpu)) 6041 return cpu; 6042 } 6043 6044 return -1; 6045 } 6046 6047 #else /* CONFIG_SCHED_SMT */ 6048 6049 static inline int select_idle_core(struct task_struct *p, struct sched_domain *sd, int target) 6050 { 6051 return -1; 6052 } 6053 6054 static inline int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target) 6055 { 6056 return -1; 6057 } 6058 6059 #endif /* CONFIG_SCHED_SMT */ 6060 6061 /* 6062 * Scan the LLC domain for idle CPUs; this is dynamically regulated by 6063 * comparing the average scan cost (tracked in sd->avg_scan_cost) against the 6064 * average idle time for this rq (as found in rq->avg_idle). 6065 */ 6066 static int select_idle_cpu(struct task_struct *p, struct sched_domain *sd, int target) 6067 { 6068 struct sched_domain *this_sd; 6069 u64 avg_cost, avg_idle; 6070 u64 time, cost; 6071 s64 delta; 6072 int cpu, nr = INT_MAX; 6073 6074 this_sd = rcu_dereference(*this_cpu_ptr(&sd_llc)); 6075 if (!this_sd) 6076 return -1; 6077 6078 /* 6079 * Due to large variance we need a large fuzz factor; hackbench in 6080 * particularly is sensitive here. 6081 */ 6082 avg_idle = this_rq()->avg_idle / 512; 6083 avg_cost = this_sd->avg_scan_cost + 1; 6084 6085 if (sched_feat(SIS_AVG_CPU) && avg_idle < avg_cost) 6086 return -1; 6087 6088 if (sched_feat(SIS_PROP)) { 6089 u64 span_avg = sd->span_weight * avg_idle; 6090 if (span_avg > 4*avg_cost) 6091 nr = div_u64(span_avg, avg_cost); 6092 else 6093 nr = 4; 6094 } 6095 6096 time = local_clock(); 6097 6098 for_each_cpu_wrap(cpu, sched_domain_span(sd), target) { 6099 if (!--nr) 6100 return -1; 6101 if (!cpumask_test_cpu(cpu, &p->cpus_allowed)) 6102 continue; 6103 if (available_idle_cpu(cpu)) 6104 break; 6105 } 6106 6107 time = local_clock() - time; 6108 cost = this_sd->avg_scan_cost; 6109 delta = (s64)(time - cost) / 8; 6110 this_sd->avg_scan_cost += delta; 6111 6112 return cpu; 6113 } 6114 6115 /* 6116 * Try and locate an idle core/thread in the LLC cache domain. 6117 */ 6118 static int select_idle_sibling(struct task_struct *p, int prev, int target) 6119 { 6120 struct sched_domain *sd; 6121 int i, recent_used_cpu; 6122 6123 if (available_idle_cpu(target)) 6124 return target; 6125 6126 /* 6127 * If the previous CPU is cache affine and idle, don't be stupid: 6128 */ 6129 if (prev != target && cpus_share_cache(prev, target) && available_idle_cpu(prev)) 6130 return prev; 6131 6132 /* Check a recently used CPU as a potential idle candidate: */ 6133 recent_used_cpu = p->recent_used_cpu; 6134 if (recent_used_cpu != prev && 6135 recent_used_cpu != target && 6136 cpus_share_cache(recent_used_cpu, target) && 6137 available_idle_cpu(recent_used_cpu) && 6138 cpumask_test_cpu(p->recent_used_cpu, &p->cpus_allowed)) { 6139 /* 6140 * Replace recent_used_cpu with prev as it is a potential 6141 * candidate for the next wake: 6142 */ 6143 p->recent_used_cpu = prev; 6144 return recent_used_cpu; 6145 } 6146 6147 sd = rcu_dereference(per_cpu(sd_llc, target)); 6148 if (!sd) 6149 return target; 6150 6151 i = select_idle_core(p, sd, target); 6152 if ((unsigned)i < nr_cpumask_bits) 6153 return i; 6154 6155 i = select_idle_cpu(p, sd, target); 6156 if ((unsigned)i < nr_cpumask_bits) 6157 return i; 6158 6159 i = select_idle_smt(p, sd, target); 6160 if ((unsigned)i < nr_cpumask_bits) 6161 return i; 6162 6163 return target; 6164 } 6165 6166 /** 6167 * Amount of capacity of a CPU that is (estimated to be) used by CFS tasks 6168 * @cpu: the CPU to get the utilization of 6169 * 6170 * The unit of the return value must be the one of capacity so we can compare 6171 * the utilization with the capacity of the CPU that is available for CFS task 6172 * (ie cpu_capacity). 6173 * 6174 * cfs_rq.avg.util_avg is the sum of running time of runnable tasks plus the 6175 * recent utilization of currently non-runnable tasks on a CPU. It represents 6176 * the amount of utilization of a CPU in the range [0..capacity_orig] where 6177 * capacity_orig is the cpu_capacity available at the highest frequency 6178 * (arch_scale_freq_capacity()). 6179 * The utilization of a CPU converges towards a sum equal to or less than the 6180 * current capacity (capacity_curr <= capacity_orig) of the CPU because it is 6181 * the running time on this CPU scaled by capacity_curr. 6182 * 6183 * The estimated utilization of a CPU is defined to be the maximum between its 6184 * cfs_rq.avg.util_avg and the sum of the estimated utilization of the tasks 6185 * currently RUNNABLE on that CPU. 6186 * This allows to properly represent the expected utilization of a CPU which 6187 * has just got a big task running since a long sleep period. At the same time 6188 * however it preserves the benefits of the "blocked utilization" in 6189 * describing the potential for other tasks waking up on the same CPU. 6190 * 6191 * Nevertheless, cfs_rq.avg.util_avg can be higher than capacity_curr or even 6192 * higher than capacity_orig because of unfortunate rounding in 6193 * cfs.avg.util_avg or just after migrating tasks and new task wakeups until 6194 * the average stabilizes with the new running time. We need to check that the 6195 * utilization stays within the range of [0..capacity_orig] and cap it if 6196 * necessary. Without utilization capping, a group could be seen as overloaded 6197 * (CPU0 utilization at 121% + CPU1 utilization at 80%) whereas CPU1 has 20% of 6198 * available capacity. We allow utilization to overshoot capacity_curr (but not 6199 * capacity_orig) as it useful for predicting the capacity required after task 6200 * migrations (scheduler-driven DVFS). 6201 * 6202 * Return: the (estimated) utilization for the specified CPU 6203 */ 6204 static inline unsigned long cpu_util(int cpu) 6205 { 6206 struct cfs_rq *cfs_rq; 6207 unsigned int util; 6208 6209 cfs_rq = &cpu_rq(cpu)->cfs; 6210 util = READ_ONCE(cfs_rq->avg.util_avg); 6211 6212 if (sched_feat(UTIL_EST)) 6213 util = max(util, READ_ONCE(cfs_rq->avg.util_est.enqueued)); 6214 6215 return min_t(unsigned long, util, capacity_orig_of(cpu)); 6216 } 6217 6218 /* 6219 * cpu_util_without: compute cpu utilization without any contributions from *p 6220 * @cpu: the CPU which utilization is requested 6221 * @p: the task which utilization should be discounted 6222 * 6223 * The utilization of a CPU is defined by the utilization of tasks currently 6224 * enqueued on that CPU as well as tasks which are currently sleeping after an 6225 * execution on that CPU. 6226 * 6227 * This method returns the utilization of the specified CPU by discounting the 6228 * utilization of the specified task, whenever the task is currently 6229 * contributing to the CPU utilization. 6230 */ 6231 static unsigned long cpu_util_without(int cpu, struct task_struct *p) 6232 { 6233 struct cfs_rq *cfs_rq; 6234 unsigned int util; 6235 6236 /* Task has no contribution or is new */ 6237 if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time)) 6238 return cpu_util(cpu); 6239 6240 cfs_rq = &cpu_rq(cpu)->cfs; 6241 util = READ_ONCE(cfs_rq->avg.util_avg); 6242 6243 /* Discount task's util from CPU's util */ 6244 util -= min_t(unsigned int, util, task_util(p)); 6245 6246 /* 6247 * Covered cases: 6248 * 6249 * a) if *p is the only task sleeping on this CPU, then: 6250 * cpu_util (== task_util) > util_est (== 0) 6251 * and thus we return: 6252 * cpu_util_without = (cpu_util - task_util) = 0 6253 * 6254 * b) if other tasks are SLEEPING on this CPU, which is now exiting 6255 * IDLE, then: 6256 * cpu_util >= task_util 6257 * cpu_util > util_est (== 0) 6258 * and thus we discount *p's blocked utilization to return: 6259 * cpu_util_without = (cpu_util - task_util) >= 0 6260 * 6261 * c) if other tasks are RUNNABLE on that CPU and 6262 * util_est > cpu_util 6263 * then we use util_est since it returns a more restrictive 6264 * estimation of the spare capacity on that CPU, by just 6265 * considering the expected utilization of tasks already 6266 * runnable on that CPU. 6267 * 6268 * Cases a) and b) are covered by the above code, while case c) is 6269 * covered by the following code when estimated utilization is 6270 * enabled. 6271 */ 6272 if (sched_feat(UTIL_EST)) { 6273 unsigned int estimated = 6274 READ_ONCE(cfs_rq->avg.util_est.enqueued); 6275 6276 /* 6277 * Despite the following checks we still have a small window 6278 * for a possible race, when an execl's select_task_rq_fair() 6279 * races with LB's detach_task(): 6280 * 6281 * detach_task() 6282 * p->on_rq = TASK_ON_RQ_MIGRATING; 6283 * ---------------------------------- A 6284 * deactivate_task() \ 6285 * dequeue_task() + RaceTime 6286 * util_est_dequeue() / 6287 * ---------------------------------- B 6288 * 6289 * The additional check on "current == p" it's required to 6290 * properly fix the execl regression and it helps in further 6291 * reducing the chances for the above race. 6292 */ 6293 if (unlikely(task_on_rq_queued(p) || current == p)) { 6294 estimated -= min_t(unsigned int, estimated, 6295 (_task_util_est(p) | UTIL_AVG_UNCHANGED)); 6296 } 6297 util = max(util, estimated); 6298 } 6299 6300 /* 6301 * Utilization (estimated) can exceed the CPU capacity, thus let's 6302 * clamp to the maximum CPU capacity to ensure consistency with 6303 * the cpu_util call. 6304 */ 6305 return min_t(unsigned long, util, capacity_orig_of(cpu)); 6306 } 6307 6308 /* 6309 * Disable WAKE_AFFINE in the case where task @p doesn't fit in the 6310 * capacity of either the waking CPU @cpu or the previous CPU @prev_cpu. 6311 * 6312 * In that case WAKE_AFFINE doesn't make sense and we'll let 6313 * BALANCE_WAKE sort things out. 6314 */ 6315 static int wake_cap(struct task_struct *p, int cpu, int prev_cpu) 6316 { 6317 long min_cap, max_cap; 6318 6319 if (!static_branch_unlikely(&sched_asym_cpucapacity)) 6320 return 0; 6321 6322 min_cap = min(capacity_orig_of(prev_cpu), capacity_orig_of(cpu)); 6323 max_cap = cpu_rq(cpu)->rd->max_cpu_capacity; 6324 6325 /* Minimum capacity is close to max, no need to abort wake_affine */ 6326 if (max_cap - min_cap < max_cap >> 3) 6327 return 0; 6328 6329 /* Bring task utilization in sync with prev_cpu */ 6330 sync_entity_load_avg(&p->se); 6331 6332 return !task_fits_capacity(p, min_cap); 6333 } 6334 6335 /* 6336 * select_task_rq_fair: Select target runqueue for the waking task in domains 6337 * that have the 'sd_flag' flag set. In practice, this is SD_BALANCE_WAKE, 6338 * SD_BALANCE_FORK, or SD_BALANCE_EXEC. 6339 * 6340 * Balances load by selecting the idlest CPU in the idlest group, or under 6341 * certain conditions an idle sibling CPU if the domain has SD_WAKE_AFFINE set. 6342 * 6343 * Returns the target CPU number. 6344 * 6345 * preempt must be disabled. 6346 */ 6347 static int 6348 select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_flags) 6349 { 6350 struct sched_domain *tmp, *sd = NULL; 6351 int cpu = smp_processor_id(); 6352 int new_cpu = prev_cpu; 6353 int want_affine = 0; 6354 int sync = (wake_flags & WF_SYNC) && !(current->flags & PF_EXITING); 6355 6356 if (sd_flag & SD_BALANCE_WAKE) { 6357 record_wakee(p); 6358 want_affine = !wake_wide(p) && !wake_cap(p, cpu, prev_cpu) 6359 && cpumask_test_cpu(cpu, &p->cpus_allowed); 6360 } 6361 6362 rcu_read_lock(); 6363 for_each_domain(cpu, tmp) { 6364 if (!(tmp->flags & SD_LOAD_BALANCE)) 6365 break; 6366 6367 /* 6368 * If both 'cpu' and 'prev_cpu' are part of this domain, 6369 * cpu is a valid SD_WAKE_AFFINE target. 6370 */ 6371 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) && 6372 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) { 6373 if (cpu != prev_cpu) 6374 new_cpu = wake_affine(tmp, p, cpu, prev_cpu, sync); 6375 6376 sd = NULL; /* Prefer wake_affine over balance flags */ 6377 break; 6378 } 6379 6380 if (tmp->flags & sd_flag) 6381 sd = tmp; 6382 else if (!want_affine) 6383 break; 6384 } 6385 6386 if (unlikely(sd)) { 6387 /* Slow path */ 6388 new_cpu = find_idlest_cpu(sd, p, cpu, prev_cpu, sd_flag); 6389 } else if (sd_flag & SD_BALANCE_WAKE) { /* XXX always ? */ 6390 /* Fast path */ 6391 6392 new_cpu = select_idle_sibling(p, prev_cpu, new_cpu); 6393 6394 if (want_affine) 6395 current->recent_used_cpu = cpu; 6396 } 6397 rcu_read_unlock(); 6398 6399 return new_cpu; 6400 } 6401 6402 static void detach_entity_cfs_rq(struct sched_entity *se); 6403 6404 /* 6405 * Called immediately before a task is migrated to a new CPU; task_cpu(p) and 6406 * cfs_rq_of(p) references at time of call are still valid and identify the 6407 * previous CPU. The caller guarantees p->pi_lock or task_rq(p)->lock is held. 6408 */ 6409 static void migrate_task_rq_fair(struct task_struct *p, int new_cpu) 6410 { 6411 /* 6412 * As blocked tasks retain absolute vruntime the migration needs to 6413 * deal with this by subtracting the old and adding the new 6414 * min_vruntime -- the latter is done by enqueue_entity() when placing 6415 * the task on the new runqueue. 6416 */ 6417 if (p->state == TASK_WAKING) { 6418 struct sched_entity *se = &p->se; 6419 struct cfs_rq *cfs_rq = cfs_rq_of(se); 6420 u64 min_vruntime; 6421 6422 #ifndef CONFIG_64BIT 6423 u64 min_vruntime_copy; 6424 6425 do { 6426 min_vruntime_copy = cfs_rq->min_vruntime_copy; 6427 smp_rmb(); 6428 min_vruntime = cfs_rq->min_vruntime; 6429 } while (min_vruntime != min_vruntime_copy); 6430 #else 6431 min_vruntime = cfs_rq->min_vruntime; 6432 #endif 6433 6434 se->vruntime -= min_vruntime; 6435 } 6436 6437 if (p->on_rq == TASK_ON_RQ_MIGRATING) { 6438 /* 6439 * In case of TASK_ON_RQ_MIGRATING we in fact hold the 'old' 6440 * rq->lock and can modify state directly. 6441 */ 6442 lockdep_assert_held(&task_rq(p)->lock); 6443 detach_entity_cfs_rq(&p->se); 6444 6445 } else { 6446 /* 6447 * We are supposed to update the task to "current" time, then 6448 * its up to date and ready to go to new CPU/cfs_rq. But we 6449 * have difficulty in getting what current time is, so simply 6450 * throw away the out-of-date time. This will result in the 6451 * wakee task is less decayed, but giving the wakee more load 6452 * sounds not bad. 6453 */ 6454 remove_entity_load_avg(&p->se); 6455 } 6456 6457 /* Tell new CPU we are migrated */ 6458 p->se.avg.last_update_time = 0; 6459 6460 /* We have migrated, no longer consider this task hot */ 6461 p->se.exec_start = 0; 6462 6463 update_scan_period(p, new_cpu); 6464 } 6465 6466 static void task_dead_fair(struct task_struct *p) 6467 { 6468 remove_entity_load_avg(&p->se); 6469 } 6470 #endif /* CONFIG_SMP */ 6471 6472 static unsigned long wakeup_gran(struct sched_entity *se) 6473 { 6474 unsigned long gran = sysctl_sched_wakeup_granularity; 6475 6476 /* 6477 * Since its curr running now, convert the gran from real-time 6478 * to virtual-time in his units. 6479 * 6480 * By using 'se' instead of 'curr' we penalize light tasks, so 6481 * they get preempted easier. That is, if 'se' < 'curr' then 6482 * the resulting gran will be larger, therefore penalizing the 6483 * lighter, if otoh 'se' > 'curr' then the resulting gran will 6484 * be smaller, again penalizing the lighter task. 6485 * 6486 * This is especially important for buddies when the leftmost 6487 * task is higher priority than the buddy. 6488 */ 6489 return calc_delta_fair(gran, se); 6490 } 6491 6492 /* 6493 * Should 'se' preempt 'curr'. 6494 * 6495 * |s1 6496 * |s2 6497 * |s3 6498 * g 6499 * |<--->|c 6500 * 6501 * w(c, s1) = -1 6502 * w(c, s2) = 0 6503 * w(c, s3) = 1 6504 * 6505 */ 6506 static int 6507 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se) 6508 { 6509 s64 gran, vdiff = curr->vruntime - se->vruntime; 6510 6511 if (vdiff <= 0) 6512 return -1; 6513 6514 gran = wakeup_gran(se); 6515 if (vdiff > gran) 6516 return 1; 6517 6518 return 0; 6519 } 6520 6521 static void set_last_buddy(struct sched_entity *se) 6522 { 6523 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE)) 6524 return; 6525 6526 for_each_sched_entity(se) { 6527 if (SCHED_WARN_ON(!se->on_rq)) 6528 return; 6529 cfs_rq_of(se)->last = se; 6530 } 6531 } 6532 6533 static void set_next_buddy(struct sched_entity *se) 6534 { 6535 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE)) 6536 return; 6537 6538 for_each_sched_entity(se) { 6539 if (SCHED_WARN_ON(!se->on_rq)) 6540 return; 6541 cfs_rq_of(se)->next = se; 6542 } 6543 } 6544 6545 static void set_skip_buddy(struct sched_entity *se) 6546 { 6547 for_each_sched_entity(se) 6548 cfs_rq_of(se)->skip = se; 6549 } 6550 6551 /* 6552 * Preempt the current task with a newly woken task if needed: 6553 */ 6554 static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags) 6555 { 6556 struct task_struct *curr = rq->curr; 6557 struct sched_entity *se = &curr->se, *pse = &p->se; 6558 struct cfs_rq *cfs_rq = task_cfs_rq(curr); 6559 int scale = cfs_rq->nr_running >= sched_nr_latency; 6560 int next_buddy_marked = 0; 6561 6562 if (unlikely(se == pse)) 6563 return; 6564 6565 /* 6566 * This is possible from callers such as attach_tasks(), in which we 6567 * unconditionally check_prempt_curr() after an enqueue (which may have 6568 * lead to a throttle). This both saves work and prevents false 6569 * next-buddy nomination below. 6570 */ 6571 if (unlikely(throttled_hierarchy(cfs_rq_of(pse)))) 6572 return; 6573 6574 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) { 6575 set_next_buddy(pse); 6576 next_buddy_marked = 1; 6577 } 6578 6579 /* 6580 * We can come here with TIF_NEED_RESCHED already set from new task 6581 * wake up path. 6582 * 6583 * Note: this also catches the edge-case of curr being in a throttled 6584 * group (e.g. via set_curr_task), since update_curr() (in the 6585 * enqueue of curr) will have resulted in resched being set. This 6586 * prevents us from potentially nominating it as a false LAST_BUDDY 6587 * below. 6588 */ 6589 if (test_tsk_need_resched(curr)) 6590 return; 6591 6592 /* Idle tasks are by definition preempted by non-idle tasks. */ 6593 if (unlikely(curr->policy == SCHED_IDLE) && 6594 likely(p->policy != SCHED_IDLE)) 6595 goto preempt; 6596 6597 /* 6598 * Batch and idle tasks do not preempt non-idle tasks (their preemption 6599 * is driven by the tick): 6600 */ 6601 if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION)) 6602 return; 6603 6604 find_matching_se(&se, &pse); 6605 update_curr(cfs_rq_of(se)); 6606 BUG_ON(!pse); 6607 if (wakeup_preempt_entity(se, pse) == 1) { 6608 /* 6609 * Bias pick_next to pick the sched entity that is 6610 * triggering this preemption. 6611 */ 6612 if (!next_buddy_marked) 6613 set_next_buddy(pse); 6614 goto preempt; 6615 } 6616 6617 return; 6618 6619 preempt: 6620 resched_curr(rq); 6621 /* 6622 * Only set the backward buddy when the current task is still 6623 * on the rq. This can happen when a wakeup gets interleaved 6624 * with schedule on the ->pre_schedule() or idle_balance() 6625 * point, either of which can * drop the rq lock. 6626 * 6627 * Also, during early boot the idle thread is in the fair class, 6628 * for obvious reasons its a bad idea to schedule back to it. 6629 */ 6630 if (unlikely(!se->on_rq || curr == rq->idle)) 6631 return; 6632 6633 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se)) 6634 set_last_buddy(se); 6635 } 6636 6637 static struct task_struct * 6638 pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf) 6639 { 6640 struct cfs_rq *cfs_rq = &rq->cfs; 6641 struct sched_entity *se; 6642 struct task_struct *p; 6643 int new_tasks; 6644 6645 again: 6646 if (!cfs_rq->nr_running) 6647 goto idle; 6648 6649 #ifdef CONFIG_FAIR_GROUP_SCHED 6650 if (prev->sched_class != &fair_sched_class) 6651 goto simple; 6652 6653 /* 6654 * Because of the set_next_buddy() in dequeue_task_fair() it is rather 6655 * likely that a next task is from the same cgroup as the current. 6656 * 6657 * Therefore attempt to avoid putting and setting the entire cgroup 6658 * hierarchy, only change the part that actually changes. 6659 */ 6660 6661 do { 6662 struct sched_entity *curr = cfs_rq->curr; 6663 6664 /* 6665 * Since we got here without doing put_prev_entity() we also 6666 * have to consider cfs_rq->curr. If it is still a runnable 6667 * entity, update_curr() will update its vruntime, otherwise 6668 * forget we've ever seen it. 6669 */ 6670 if (curr) { 6671 if (curr->on_rq) 6672 update_curr(cfs_rq); 6673 else 6674 curr = NULL; 6675 6676 /* 6677 * This call to check_cfs_rq_runtime() will do the 6678 * throttle and dequeue its entity in the parent(s). 6679 * Therefore the nr_running test will indeed 6680 * be correct. 6681 */ 6682 if (unlikely(check_cfs_rq_runtime(cfs_rq))) { 6683 cfs_rq = &rq->cfs; 6684 6685 if (!cfs_rq->nr_running) 6686 goto idle; 6687 6688 goto simple; 6689 } 6690 } 6691 6692 se = pick_next_entity(cfs_rq, curr); 6693 cfs_rq = group_cfs_rq(se); 6694 } while (cfs_rq); 6695 6696 p = task_of(se); 6697 6698 /* 6699 * Since we haven't yet done put_prev_entity and if the selected task 6700 * is a different task than we started out with, try and touch the 6701 * least amount of cfs_rqs. 6702 */ 6703 if (prev != p) { 6704 struct sched_entity *pse = &prev->se; 6705 6706 while (!(cfs_rq = is_same_group(se, pse))) { 6707 int se_depth = se->depth; 6708 int pse_depth = pse->depth; 6709 6710 if (se_depth <= pse_depth) { 6711 put_prev_entity(cfs_rq_of(pse), pse); 6712 pse = parent_entity(pse); 6713 } 6714 if (se_depth >= pse_depth) { 6715 set_next_entity(cfs_rq_of(se), se); 6716 se = parent_entity(se); 6717 } 6718 } 6719 6720 put_prev_entity(cfs_rq, pse); 6721 set_next_entity(cfs_rq, se); 6722 } 6723 6724 goto done; 6725 simple: 6726 #endif 6727 6728 put_prev_task(rq, prev); 6729 6730 do { 6731 se = pick_next_entity(cfs_rq, NULL); 6732 set_next_entity(cfs_rq, se); 6733 cfs_rq = group_cfs_rq(se); 6734 } while (cfs_rq); 6735 6736 p = task_of(se); 6737 6738 done: __maybe_unused; 6739 #ifdef CONFIG_SMP 6740 /* 6741 * Move the next running task to the front of 6742 * the list, so our cfs_tasks list becomes MRU 6743 * one. 6744 */ 6745 list_move(&p->se.group_node, &rq->cfs_tasks); 6746 #endif 6747 6748 if (hrtick_enabled(rq)) 6749 hrtick_start_fair(rq, p); 6750 6751 update_misfit_status(p, rq); 6752 6753 return p; 6754 6755 idle: 6756 update_misfit_status(NULL, rq); 6757 new_tasks = idle_balance(rq, rf); 6758 6759 /* 6760 * Because idle_balance() releases (and re-acquires) rq->lock, it is 6761 * possible for any higher priority task to appear. In that case we 6762 * must re-start the pick_next_entity() loop. 6763 */ 6764 if (new_tasks < 0) 6765 return RETRY_TASK; 6766 6767 if (new_tasks > 0) 6768 goto again; 6769 6770 return NULL; 6771 } 6772 6773 /* 6774 * Account for a descheduled task: 6775 */ 6776 static void put_prev_task_fair(struct rq *rq, struct task_struct *prev) 6777 { 6778 struct sched_entity *se = &prev->se; 6779 struct cfs_rq *cfs_rq; 6780 6781 for_each_sched_entity(se) { 6782 cfs_rq = cfs_rq_of(se); 6783 put_prev_entity(cfs_rq, se); 6784 } 6785 } 6786 6787 /* 6788 * sched_yield() is very simple 6789 * 6790 * The magic of dealing with the ->skip buddy is in pick_next_entity. 6791 */ 6792 static void yield_task_fair(struct rq *rq) 6793 { 6794 struct task_struct *curr = rq->curr; 6795 struct cfs_rq *cfs_rq = task_cfs_rq(curr); 6796 struct sched_entity *se = &curr->se; 6797 6798 /* 6799 * Are we the only task in the tree? 6800 */ 6801 if (unlikely(rq->nr_running == 1)) 6802 return; 6803 6804 clear_buddies(cfs_rq, se); 6805 6806 if (curr->policy != SCHED_BATCH) { 6807 update_rq_clock(rq); 6808 /* 6809 * Update run-time statistics of the 'current'. 6810 */ 6811 update_curr(cfs_rq); 6812 /* 6813 * Tell update_rq_clock() that we've just updated, 6814 * so we don't do microscopic update in schedule() 6815 * and double the fastpath cost. 6816 */ 6817 rq_clock_skip_update(rq); 6818 } 6819 6820 set_skip_buddy(se); 6821 } 6822 6823 static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt) 6824 { 6825 struct sched_entity *se = &p->se; 6826 6827 /* throttled hierarchies are not runnable */ 6828 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se))) 6829 return false; 6830 6831 /* Tell the scheduler that we'd really like pse to run next. */ 6832 set_next_buddy(se); 6833 6834 yield_task_fair(rq); 6835 6836 return true; 6837 } 6838 6839 #ifdef CONFIG_SMP 6840 /************************************************** 6841 * Fair scheduling class load-balancing methods. 6842 * 6843 * BASICS 6844 * 6845 * The purpose of load-balancing is to achieve the same basic fairness the 6846 * per-CPU scheduler provides, namely provide a proportional amount of compute 6847 * time to each task. This is expressed in the following equation: 6848 * 6849 * W_i,n/P_i == W_j,n/P_j for all i,j (1) 6850 * 6851 * Where W_i,n is the n-th weight average for CPU i. The instantaneous weight 6852 * W_i,0 is defined as: 6853 * 6854 * W_i,0 = \Sum_j w_i,j (2) 6855 * 6856 * Where w_i,j is the weight of the j-th runnable task on CPU i. This weight 6857 * is derived from the nice value as per sched_prio_to_weight[]. 6858 * 6859 * The weight average is an exponential decay average of the instantaneous 6860 * weight: 6861 * 6862 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3) 6863 * 6864 * C_i is the compute capacity of CPU i, typically it is the 6865 * fraction of 'recent' time available for SCHED_OTHER task execution. But it 6866 * can also include other factors [XXX]. 6867 * 6868 * To achieve this balance we define a measure of imbalance which follows 6869 * directly from (1): 6870 * 6871 * imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j } (4) 6872 * 6873 * We them move tasks around to minimize the imbalance. In the continuous 6874 * function space it is obvious this converges, in the discrete case we get 6875 * a few fun cases generally called infeasible weight scenarios. 6876 * 6877 * [XXX expand on: 6878 * - infeasible weights; 6879 * - local vs global optima in the discrete case. ] 6880 * 6881 * 6882 * SCHED DOMAINS 6883 * 6884 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2) 6885 * for all i,j solution, we create a tree of CPUs that follows the hardware 6886 * topology where each level pairs two lower groups (or better). This results 6887 * in O(log n) layers. Furthermore we reduce the number of CPUs going up the 6888 * tree to only the first of the previous level and we decrease the frequency 6889 * of load-balance at each level inv. proportional to the number of CPUs in 6890 * the groups. 6891 * 6892 * This yields: 6893 * 6894 * log_2 n 1 n 6895 * \Sum { --- * --- * 2^i } = O(n) (5) 6896 * i = 0 2^i 2^i 6897 * `- size of each group 6898 * | | `- number of CPUs doing load-balance 6899 * | `- freq 6900 * `- sum over all levels 6901 * 6902 * Coupled with a limit on how many tasks we can migrate every balance pass, 6903 * this makes (5) the runtime complexity of the balancer. 6904 * 6905 * An important property here is that each CPU is still (indirectly) connected 6906 * to every other CPU in at most O(log n) steps: 6907 * 6908 * The adjacency matrix of the resulting graph is given by: 6909 * 6910 * log_2 n 6911 * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6) 6912 * k = 0 6913 * 6914 * And you'll find that: 6915 * 6916 * A^(log_2 n)_i,j != 0 for all i,j (7) 6917 * 6918 * Showing there's indeed a path between every CPU in at most O(log n) steps. 6919 * The task movement gives a factor of O(m), giving a convergence complexity 6920 * of: 6921 * 6922 * O(nm log n), n := nr_cpus, m := nr_tasks (8) 6923 * 6924 * 6925 * WORK CONSERVING 6926 * 6927 * In order to avoid CPUs going idle while there's still work to do, new idle 6928 * balancing is more aggressive and has the newly idle CPU iterate up the domain 6929 * tree itself instead of relying on other CPUs to bring it work. 6930 * 6931 * This adds some complexity to both (5) and (8) but it reduces the total idle 6932 * time. 6933 * 6934 * [XXX more?] 6935 * 6936 * 6937 * CGROUPS 6938 * 6939 * Cgroups make a horror show out of (2), instead of a simple sum we get: 6940 * 6941 * s_k,i 6942 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9) 6943 * S_k 6944 * 6945 * Where 6946 * 6947 * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10) 6948 * 6949 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on CPU i. 6950 * 6951 * The big problem is S_k, its a global sum needed to compute a local (W_i) 6952 * property. 6953 * 6954 * [XXX write more on how we solve this.. _after_ merging pjt's patches that 6955 * rewrite all of this once again.] 6956 */ 6957 6958 static unsigned long __read_mostly max_load_balance_interval = HZ/10; 6959 6960 enum fbq_type { regular, remote, all }; 6961 6962 enum group_type { 6963 group_other = 0, 6964 group_misfit_task, 6965 group_imbalanced, 6966 group_overloaded, 6967 }; 6968 6969 #define LBF_ALL_PINNED 0x01 6970 #define LBF_NEED_BREAK 0x02 6971 #define LBF_DST_PINNED 0x04 6972 #define LBF_SOME_PINNED 0x08 6973 #define LBF_NOHZ_STATS 0x10 6974 #define LBF_NOHZ_AGAIN 0x20 6975 6976 struct lb_env { 6977 struct sched_domain *sd; 6978 6979 struct rq *src_rq; 6980 int src_cpu; 6981 6982 int dst_cpu; 6983 struct rq *dst_rq; 6984 6985 struct cpumask *dst_grpmask; 6986 int new_dst_cpu; 6987 enum cpu_idle_type idle; 6988 long imbalance; 6989 /* The set of CPUs under consideration for load-balancing */ 6990 struct cpumask *cpus; 6991 6992 unsigned int flags; 6993 6994 unsigned int loop; 6995 unsigned int loop_break; 6996 unsigned int loop_max; 6997 6998 enum fbq_type fbq_type; 6999 enum group_type src_grp_type; 7000 struct list_head tasks; 7001 }; 7002 7003 /* 7004 * Is this task likely cache-hot: 7005 */ 7006 static int task_hot(struct task_struct *p, struct lb_env *env) 7007 { 7008 s64 delta; 7009 7010 lockdep_assert_held(&env->src_rq->lock); 7011 7012 if (p->sched_class != &fair_sched_class) 7013 return 0; 7014 7015 if (unlikely(p->policy == SCHED_IDLE)) 7016 return 0; 7017 7018 /* 7019 * Buddy candidates are cache hot: 7020 */ 7021 if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running && 7022 (&p->se == cfs_rq_of(&p->se)->next || 7023 &p->se == cfs_rq_of(&p->se)->last)) 7024 return 1; 7025 7026 if (sysctl_sched_migration_cost == -1) 7027 return 1; 7028 if (sysctl_sched_migration_cost == 0) 7029 return 0; 7030 7031 delta = rq_clock_task(env->src_rq) - p->se.exec_start; 7032 7033 return delta < (s64)sysctl_sched_migration_cost; 7034 } 7035 7036 #ifdef CONFIG_NUMA_BALANCING 7037 /* 7038 * Returns 1, if task migration degrades locality 7039 * Returns 0, if task migration improves locality i.e migration preferred. 7040 * Returns -1, if task migration is not affected by locality. 7041 */ 7042 static int migrate_degrades_locality(struct task_struct *p, struct lb_env *env) 7043 { 7044 struct numa_group *numa_group = rcu_dereference(p->numa_group); 7045 unsigned long src_weight, dst_weight; 7046 int src_nid, dst_nid, dist; 7047 7048 if (!static_branch_likely(&sched_numa_balancing)) 7049 return -1; 7050 7051 if (!p->numa_faults || !(env->sd->flags & SD_NUMA)) 7052 return -1; 7053 7054 src_nid = cpu_to_node(env->src_cpu); 7055 dst_nid = cpu_to_node(env->dst_cpu); 7056 7057 if (src_nid == dst_nid) 7058 return -1; 7059 7060 /* Migrating away from the preferred node is always bad. */ 7061 if (src_nid == p->numa_preferred_nid) { 7062 if (env->src_rq->nr_running > env->src_rq->nr_preferred_running) 7063 return 1; 7064 else 7065 return -1; 7066 } 7067 7068 /* Encourage migration to the preferred node. */ 7069 if (dst_nid == p->numa_preferred_nid) 7070 return 0; 7071 7072 /* Leaving a core idle is often worse than degrading locality. */ 7073 if (env->idle == CPU_IDLE) 7074 return -1; 7075 7076 dist = node_distance(src_nid, dst_nid); 7077 if (numa_group) { 7078 src_weight = group_weight(p, src_nid, dist); 7079 dst_weight = group_weight(p, dst_nid, dist); 7080 } else { 7081 src_weight = task_weight(p, src_nid, dist); 7082 dst_weight = task_weight(p, dst_nid, dist); 7083 } 7084 7085 return dst_weight < src_weight; 7086 } 7087 7088 #else 7089 static inline int migrate_degrades_locality(struct task_struct *p, 7090 struct lb_env *env) 7091 { 7092 return -1; 7093 } 7094 #endif 7095 7096 /* 7097 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu? 7098 */ 7099 static 7100 int can_migrate_task(struct task_struct *p, struct lb_env *env) 7101 { 7102 int tsk_cache_hot; 7103 7104 lockdep_assert_held(&env->src_rq->lock); 7105 7106 /* 7107 * We do not migrate tasks that are: 7108 * 1) throttled_lb_pair, or 7109 * 2) cannot be migrated to this CPU due to cpus_allowed, or 7110 * 3) running (obviously), or 7111 * 4) are cache-hot on their current CPU. 7112 */ 7113 if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu)) 7114 return 0; 7115 7116 if (!cpumask_test_cpu(env->dst_cpu, &p->cpus_allowed)) { 7117 int cpu; 7118 7119 schedstat_inc(p->se.statistics.nr_failed_migrations_affine); 7120 7121 env->flags |= LBF_SOME_PINNED; 7122 7123 /* 7124 * Remember if this task can be migrated to any other CPU in 7125 * our sched_group. We may want to revisit it if we couldn't 7126 * meet load balance goals by pulling other tasks on src_cpu. 7127 * 7128 * Avoid computing new_dst_cpu for NEWLY_IDLE or if we have 7129 * already computed one in current iteration. 7130 */ 7131 if (env->idle == CPU_NEWLY_IDLE || (env->flags & LBF_DST_PINNED)) 7132 return 0; 7133 7134 /* Prevent to re-select dst_cpu via env's CPUs: */ 7135 for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) { 7136 if (cpumask_test_cpu(cpu, &p->cpus_allowed)) { 7137 env->flags |= LBF_DST_PINNED; 7138 env->new_dst_cpu = cpu; 7139 break; 7140 } 7141 } 7142 7143 return 0; 7144 } 7145 7146 /* Record that we found atleast one task that could run on dst_cpu */ 7147 env->flags &= ~LBF_ALL_PINNED; 7148 7149 if (task_running(env->src_rq, p)) { 7150 schedstat_inc(p->se.statistics.nr_failed_migrations_running); 7151 return 0; 7152 } 7153 7154 /* 7155 * Aggressive migration if: 7156 * 1) destination numa is preferred 7157 * 2) task is cache cold, or 7158 * 3) too many balance attempts have failed. 7159 */ 7160 tsk_cache_hot = migrate_degrades_locality(p, env); 7161 if (tsk_cache_hot == -1) 7162 tsk_cache_hot = task_hot(p, env); 7163 7164 if (tsk_cache_hot <= 0 || 7165 env->sd->nr_balance_failed > env->sd->cache_nice_tries) { 7166 if (tsk_cache_hot == 1) { 7167 schedstat_inc(env->sd->lb_hot_gained[env->idle]); 7168 schedstat_inc(p->se.statistics.nr_forced_migrations); 7169 } 7170 return 1; 7171 } 7172 7173 schedstat_inc(p->se.statistics.nr_failed_migrations_hot); 7174 return 0; 7175 } 7176 7177 /* 7178 * detach_task() -- detach the task for the migration specified in env 7179 */ 7180 static void detach_task(struct task_struct *p, struct lb_env *env) 7181 { 7182 lockdep_assert_held(&env->src_rq->lock); 7183 7184 p->on_rq = TASK_ON_RQ_MIGRATING; 7185 deactivate_task(env->src_rq, p, DEQUEUE_NOCLOCK); 7186 set_task_cpu(p, env->dst_cpu); 7187 } 7188 7189 /* 7190 * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as 7191 * part of active balancing operations within "domain". 7192 * 7193 * Returns a task if successful and NULL otherwise. 7194 */ 7195 static struct task_struct *detach_one_task(struct lb_env *env) 7196 { 7197 struct task_struct *p; 7198 7199 lockdep_assert_held(&env->src_rq->lock); 7200 7201 list_for_each_entry_reverse(p, 7202 &env->src_rq->cfs_tasks, se.group_node) { 7203 if (!can_migrate_task(p, env)) 7204 continue; 7205 7206 detach_task(p, env); 7207 7208 /* 7209 * Right now, this is only the second place where 7210 * lb_gained[env->idle] is updated (other is detach_tasks) 7211 * so we can safely collect stats here rather than 7212 * inside detach_tasks(). 7213 */ 7214 schedstat_inc(env->sd->lb_gained[env->idle]); 7215 return p; 7216 } 7217 return NULL; 7218 } 7219 7220 static const unsigned int sched_nr_migrate_break = 32; 7221 7222 /* 7223 * detach_tasks() -- tries to detach up to imbalance weighted load from 7224 * busiest_rq, as part of a balancing operation within domain "sd". 7225 * 7226 * Returns number of detached tasks if successful and 0 otherwise. 7227 */ 7228 static int detach_tasks(struct lb_env *env) 7229 { 7230 struct list_head *tasks = &env->src_rq->cfs_tasks; 7231 struct task_struct *p; 7232 unsigned long load; 7233 int detached = 0; 7234 7235 lockdep_assert_held(&env->src_rq->lock); 7236 7237 if (env->imbalance <= 0) 7238 return 0; 7239 7240 while (!list_empty(tasks)) { 7241 /* 7242 * We don't want to steal all, otherwise we may be treated likewise, 7243 * which could at worst lead to a livelock crash. 7244 */ 7245 if (env->idle != CPU_NOT_IDLE && env->src_rq->nr_running <= 1) 7246 break; 7247 7248 p = list_last_entry(tasks, struct task_struct, se.group_node); 7249 7250 env->loop++; 7251 /* We've more or less seen every task there is, call it quits */ 7252 if (env->loop > env->loop_max) 7253 break; 7254 7255 /* take a breather every nr_migrate tasks */ 7256 if (env->loop > env->loop_break) { 7257 env->loop_break += sched_nr_migrate_break; 7258 env->flags |= LBF_NEED_BREAK; 7259 break; 7260 } 7261 7262 if (!can_migrate_task(p, env)) 7263 goto next; 7264 7265 load = task_h_load(p); 7266 7267 if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed) 7268 goto next; 7269 7270 if ((load / 2) > env->imbalance) 7271 goto next; 7272 7273 detach_task(p, env); 7274 list_add(&p->se.group_node, &env->tasks); 7275 7276 detached++; 7277 env->imbalance -= load; 7278 7279 #ifdef CONFIG_PREEMPT 7280 /* 7281 * NEWIDLE balancing is a source of latency, so preemptible 7282 * kernels will stop after the first task is detached to minimize 7283 * the critical section. 7284 */ 7285 if (env->idle == CPU_NEWLY_IDLE) 7286 break; 7287 #endif 7288 7289 /* 7290 * We only want to steal up to the prescribed amount of 7291 * weighted load. 7292 */ 7293 if (env->imbalance <= 0) 7294 break; 7295 7296 continue; 7297 next: 7298 list_move(&p->se.group_node, tasks); 7299 } 7300 7301 /* 7302 * Right now, this is one of only two places we collect this stat 7303 * so we can safely collect detach_one_task() stats here rather 7304 * than inside detach_one_task(). 7305 */ 7306 schedstat_add(env->sd->lb_gained[env->idle], detached); 7307 7308 return detached; 7309 } 7310 7311 /* 7312 * attach_task() -- attach the task detached by detach_task() to its new rq. 7313 */ 7314 static void attach_task(struct rq *rq, struct task_struct *p) 7315 { 7316 lockdep_assert_held(&rq->lock); 7317 7318 BUG_ON(task_rq(p) != rq); 7319 activate_task(rq, p, ENQUEUE_NOCLOCK); 7320 p->on_rq = TASK_ON_RQ_QUEUED; 7321 check_preempt_curr(rq, p, 0); 7322 } 7323 7324 /* 7325 * attach_one_task() -- attaches the task returned from detach_one_task() to 7326 * its new rq. 7327 */ 7328 static void attach_one_task(struct rq *rq, struct task_struct *p) 7329 { 7330 struct rq_flags rf; 7331 7332 rq_lock(rq, &rf); 7333 update_rq_clock(rq); 7334 attach_task(rq, p); 7335 rq_unlock(rq, &rf); 7336 } 7337 7338 /* 7339 * attach_tasks() -- attaches all tasks detached by detach_tasks() to their 7340 * new rq. 7341 */ 7342 static void attach_tasks(struct lb_env *env) 7343 { 7344 struct list_head *tasks = &env->tasks; 7345 struct task_struct *p; 7346 struct rq_flags rf; 7347 7348 rq_lock(env->dst_rq, &rf); 7349 update_rq_clock(env->dst_rq); 7350 7351 while (!list_empty(tasks)) { 7352 p = list_first_entry(tasks, struct task_struct, se.group_node); 7353 list_del_init(&p->se.group_node); 7354 7355 attach_task(env->dst_rq, p); 7356 } 7357 7358 rq_unlock(env->dst_rq, &rf); 7359 } 7360 7361 static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq) 7362 { 7363 if (cfs_rq->avg.load_avg) 7364 return true; 7365 7366 if (cfs_rq->avg.util_avg) 7367 return true; 7368 7369 return false; 7370 } 7371 7372 static inline bool others_have_blocked(struct rq *rq) 7373 { 7374 if (READ_ONCE(rq->avg_rt.util_avg)) 7375 return true; 7376 7377 if (READ_ONCE(rq->avg_dl.util_avg)) 7378 return true; 7379 7380 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ 7381 if (READ_ONCE(rq->avg_irq.util_avg)) 7382 return true; 7383 #endif 7384 7385 return false; 7386 } 7387 7388 #ifdef CONFIG_FAIR_GROUP_SCHED 7389 7390 static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq) 7391 { 7392 if (cfs_rq->load.weight) 7393 return false; 7394 7395 if (cfs_rq->avg.load_sum) 7396 return false; 7397 7398 if (cfs_rq->avg.util_sum) 7399 return false; 7400 7401 if (cfs_rq->avg.runnable_load_sum) 7402 return false; 7403 7404 return true; 7405 } 7406 7407 static void update_blocked_averages(int cpu) 7408 { 7409 struct rq *rq = cpu_rq(cpu); 7410 struct cfs_rq *cfs_rq, *pos; 7411 const struct sched_class *curr_class; 7412 struct rq_flags rf; 7413 bool done = true; 7414 7415 rq_lock_irqsave(rq, &rf); 7416 update_rq_clock(rq); 7417 7418 /* 7419 * Iterates the task_group tree in a bottom up fashion, see 7420 * list_add_leaf_cfs_rq() for details. 7421 */ 7422 for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) { 7423 struct sched_entity *se; 7424 7425 /* throttled entities do not contribute to load */ 7426 if (throttled_hierarchy(cfs_rq)) 7427 continue; 7428 7429 if (update_cfs_rq_load_avg(cfs_rq_clock_task(cfs_rq), cfs_rq)) 7430 update_tg_load_avg(cfs_rq, 0); 7431 7432 /* Propagate pending load changes to the parent, if any: */ 7433 se = cfs_rq->tg->se[cpu]; 7434 if (se && !skip_blocked_update(se)) 7435 update_load_avg(cfs_rq_of(se), se, 0); 7436 7437 /* 7438 * There can be a lot of idle CPU cgroups. Don't let fully 7439 * decayed cfs_rqs linger on the list. 7440 */ 7441 if (cfs_rq_is_decayed(cfs_rq)) 7442 list_del_leaf_cfs_rq(cfs_rq); 7443 7444 /* Don't need periodic decay once load/util_avg are null */ 7445 if (cfs_rq_has_blocked(cfs_rq)) 7446 done = false; 7447 } 7448 7449 curr_class = rq->curr->sched_class; 7450 update_rt_rq_load_avg(rq_clock_task(rq), rq, curr_class == &rt_sched_class); 7451 update_dl_rq_load_avg(rq_clock_task(rq), rq, curr_class == &dl_sched_class); 7452 update_irq_load_avg(rq, 0); 7453 /* Don't need periodic decay once load/util_avg are null */ 7454 if (others_have_blocked(rq)) 7455 done = false; 7456 7457 #ifdef CONFIG_NO_HZ_COMMON 7458 rq->last_blocked_load_update_tick = jiffies; 7459 if (done) 7460 rq->has_blocked_load = 0; 7461 #endif 7462 rq_unlock_irqrestore(rq, &rf); 7463 } 7464 7465 /* 7466 * Compute the hierarchical load factor for cfs_rq and all its ascendants. 7467 * This needs to be done in a top-down fashion because the load of a child 7468 * group is a fraction of its parents load. 7469 */ 7470 static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq) 7471 { 7472 struct rq *rq = rq_of(cfs_rq); 7473 struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)]; 7474 unsigned long now = jiffies; 7475 unsigned long load; 7476 7477 if (cfs_rq->last_h_load_update == now) 7478 return; 7479 7480 cfs_rq->h_load_next = NULL; 7481 for_each_sched_entity(se) { 7482 cfs_rq = cfs_rq_of(se); 7483 cfs_rq->h_load_next = se; 7484 if (cfs_rq->last_h_load_update == now) 7485 break; 7486 } 7487 7488 if (!se) { 7489 cfs_rq->h_load = cfs_rq_load_avg(cfs_rq); 7490 cfs_rq->last_h_load_update = now; 7491 } 7492 7493 while ((se = cfs_rq->h_load_next) != NULL) { 7494 load = cfs_rq->h_load; 7495 load = div64_ul(load * se->avg.load_avg, 7496 cfs_rq_load_avg(cfs_rq) + 1); 7497 cfs_rq = group_cfs_rq(se); 7498 cfs_rq->h_load = load; 7499 cfs_rq->last_h_load_update = now; 7500 } 7501 } 7502 7503 static unsigned long task_h_load(struct task_struct *p) 7504 { 7505 struct cfs_rq *cfs_rq = task_cfs_rq(p); 7506 7507 update_cfs_rq_h_load(cfs_rq); 7508 return div64_ul(p->se.avg.load_avg * cfs_rq->h_load, 7509 cfs_rq_load_avg(cfs_rq) + 1); 7510 } 7511 #else 7512 static inline void update_blocked_averages(int cpu) 7513 { 7514 struct rq *rq = cpu_rq(cpu); 7515 struct cfs_rq *cfs_rq = &rq->cfs; 7516 const struct sched_class *curr_class; 7517 struct rq_flags rf; 7518 7519 rq_lock_irqsave(rq, &rf); 7520 update_rq_clock(rq); 7521 update_cfs_rq_load_avg(cfs_rq_clock_task(cfs_rq), cfs_rq); 7522 7523 curr_class = rq->curr->sched_class; 7524 update_rt_rq_load_avg(rq_clock_task(rq), rq, curr_class == &rt_sched_class); 7525 update_dl_rq_load_avg(rq_clock_task(rq), rq, curr_class == &dl_sched_class); 7526 update_irq_load_avg(rq, 0); 7527 #ifdef CONFIG_NO_HZ_COMMON 7528 rq->last_blocked_load_update_tick = jiffies; 7529 if (!cfs_rq_has_blocked(cfs_rq) && !others_have_blocked(rq)) 7530 rq->has_blocked_load = 0; 7531 #endif 7532 rq_unlock_irqrestore(rq, &rf); 7533 } 7534 7535 static unsigned long task_h_load(struct task_struct *p) 7536 { 7537 return p->se.avg.load_avg; 7538 } 7539 #endif 7540 7541 /********** Helpers for find_busiest_group ************************/ 7542 7543 /* 7544 * sg_lb_stats - stats of a sched_group required for load_balancing 7545 */ 7546 struct sg_lb_stats { 7547 unsigned long avg_load; /*Avg load across the CPUs of the group */ 7548 unsigned long group_load; /* Total load over the CPUs of the group */ 7549 unsigned long sum_weighted_load; /* Weighted load of group's tasks */ 7550 unsigned long load_per_task; 7551 unsigned long group_capacity; 7552 unsigned long group_util; /* Total utilization of the group */ 7553 unsigned int sum_nr_running; /* Nr tasks running in the group */ 7554 unsigned int idle_cpus; 7555 unsigned int group_weight; 7556 enum group_type group_type; 7557 int group_no_capacity; 7558 unsigned long group_misfit_task_load; /* A CPU has a task too big for its capacity */ 7559 #ifdef CONFIG_NUMA_BALANCING 7560 unsigned int nr_numa_running; 7561 unsigned int nr_preferred_running; 7562 #endif 7563 }; 7564 7565 /* 7566 * sd_lb_stats - Structure to store the statistics of a sched_domain 7567 * during load balancing. 7568 */ 7569 struct sd_lb_stats { 7570 struct sched_group *busiest; /* Busiest group in this sd */ 7571 struct sched_group *local; /* Local group in this sd */ 7572 unsigned long total_running; 7573 unsigned long total_load; /* Total load of all groups in sd */ 7574 unsigned long total_capacity; /* Total capacity of all groups in sd */ 7575 unsigned long avg_load; /* Average load across all groups in sd */ 7576 7577 struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */ 7578 struct sg_lb_stats local_stat; /* Statistics of the local group */ 7579 }; 7580 7581 static inline void init_sd_lb_stats(struct sd_lb_stats *sds) 7582 { 7583 /* 7584 * Skimp on the clearing to avoid duplicate work. We can avoid clearing 7585 * local_stat because update_sg_lb_stats() does a full clear/assignment. 7586 * We must however clear busiest_stat::avg_load because 7587 * update_sd_pick_busiest() reads this before assignment. 7588 */ 7589 *sds = (struct sd_lb_stats){ 7590 .busiest = NULL, 7591 .local = NULL, 7592 .total_running = 0UL, 7593 .total_load = 0UL, 7594 .total_capacity = 0UL, 7595 .busiest_stat = { 7596 .avg_load = 0UL, 7597 .sum_nr_running = 0, 7598 .group_type = group_other, 7599 }, 7600 }; 7601 } 7602 7603 /** 7604 * get_sd_load_idx - Obtain the load index for a given sched domain. 7605 * @sd: The sched_domain whose load_idx is to be obtained. 7606 * @idle: The idle status of the CPU for whose sd load_idx is obtained. 7607 * 7608 * Return: The load index. 7609 */ 7610 static inline int get_sd_load_idx(struct sched_domain *sd, 7611 enum cpu_idle_type idle) 7612 { 7613 int load_idx; 7614 7615 switch (idle) { 7616 case CPU_NOT_IDLE: 7617 load_idx = sd->busy_idx; 7618 break; 7619 7620 case CPU_NEWLY_IDLE: 7621 load_idx = sd->newidle_idx; 7622 break; 7623 default: 7624 load_idx = sd->idle_idx; 7625 break; 7626 } 7627 7628 return load_idx; 7629 } 7630 7631 static unsigned long scale_rt_capacity(struct sched_domain *sd, int cpu) 7632 { 7633 struct rq *rq = cpu_rq(cpu); 7634 unsigned long max = arch_scale_cpu_capacity(sd, cpu); 7635 unsigned long used, free; 7636 unsigned long irq; 7637 7638 irq = cpu_util_irq(rq); 7639 7640 if (unlikely(irq >= max)) 7641 return 1; 7642 7643 used = READ_ONCE(rq->avg_rt.util_avg); 7644 used += READ_ONCE(rq->avg_dl.util_avg); 7645 7646 if (unlikely(used >= max)) 7647 return 1; 7648 7649 free = max - used; 7650 7651 return scale_irq_capacity(free, irq, max); 7652 } 7653 7654 static void update_cpu_capacity(struct sched_domain *sd, int cpu) 7655 { 7656 unsigned long capacity = scale_rt_capacity(sd, cpu); 7657 struct sched_group *sdg = sd->groups; 7658 7659 cpu_rq(cpu)->cpu_capacity_orig = arch_scale_cpu_capacity(sd, cpu); 7660 7661 if (!capacity) 7662 capacity = 1; 7663 7664 cpu_rq(cpu)->cpu_capacity = capacity; 7665 sdg->sgc->capacity = capacity; 7666 sdg->sgc->min_capacity = capacity; 7667 sdg->sgc->max_capacity = capacity; 7668 } 7669 7670 void update_group_capacity(struct sched_domain *sd, int cpu) 7671 { 7672 struct sched_domain *child = sd->child; 7673 struct sched_group *group, *sdg = sd->groups; 7674 unsigned long capacity, min_capacity, max_capacity; 7675 unsigned long interval; 7676 7677 interval = msecs_to_jiffies(sd->balance_interval); 7678 interval = clamp(interval, 1UL, max_load_balance_interval); 7679 sdg->sgc->next_update = jiffies + interval; 7680 7681 if (!child) { 7682 update_cpu_capacity(sd, cpu); 7683 return; 7684 } 7685 7686 capacity = 0; 7687 min_capacity = ULONG_MAX; 7688 max_capacity = 0; 7689 7690 if (child->flags & SD_OVERLAP) { 7691 /* 7692 * SD_OVERLAP domains cannot assume that child groups 7693 * span the current group. 7694 */ 7695 7696 for_each_cpu(cpu, sched_group_span(sdg)) { 7697 struct sched_group_capacity *sgc; 7698 struct rq *rq = cpu_rq(cpu); 7699 7700 /* 7701 * build_sched_domains() -> init_sched_groups_capacity() 7702 * gets here before we've attached the domains to the 7703 * runqueues. 7704 * 7705 * Use capacity_of(), which is set irrespective of domains 7706 * in update_cpu_capacity(). 7707 * 7708 * This avoids capacity from being 0 and 7709 * causing divide-by-zero issues on boot. 7710 */ 7711 if (unlikely(!rq->sd)) { 7712 capacity += capacity_of(cpu); 7713 } else { 7714 sgc = rq->sd->groups->sgc; 7715 capacity += sgc->capacity; 7716 } 7717 7718 min_capacity = min(capacity, min_capacity); 7719 max_capacity = max(capacity, max_capacity); 7720 } 7721 } else { 7722 /* 7723 * !SD_OVERLAP domains can assume that child groups 7724 * span the current group. 7725 */ 7726 7727 group = child->groups; 7728 do { 7729 struct sched_group_capacity *sgc = group->sgc; 7730 7731 capacity += sgc->capacity; 7732 min_capacity = min(sgc->min_capacity, min_capacity); 7733 max_capacity = max(sgc->max_capacity, max_capacity); 7734 group = group->next; 7735 } while (group != child->groups); 7736 } 7737 7738 sdg->sgc->capacity = capacity; 7739 sdg->sgc->min_capacity = min_capacity; 7740 sdg->sgc->max_capacity = max_capacity; 7741 } 7742 7743 /* 7744 * Check whether the capacity of the rq has been noticeably reduced by side 7745 * activity. The imbalance_pct is used for the threshold. 7746 * Return true is the capacity is reduced 7747 */ 7748 static inline int 7749 check_cpu_capacity(struct rq *rq, struct sched_domain *sd) 7750 { 7751 return ((rq->cpu_capacity * sd->imbalance_pct) < 7752 (rq->cpu_capacity_orig * 100)); 7753 } 7754 7755 /* 7756 * Group imbalance indicates (and tries to solve) the problem where balancing 7757 * groups is inadequate due to ->cpus_allowed constraints. 7758 * 7759 * Imagine a situation of two groups of 4 CPUs each and 4 tasks each with a 7760 * cpumask covering 1 CPU of the first group and 3 CPUs of the second group. 7761 * Something like: 7762 * 7763 * { 0 1 2 3 } { 4 5 6 7 } 7764 * * * * * 7765 * 7766 * If we were to balance group-wise we'd place two tasks in the first group and 7767 * two tasks in the second group. Clearly this is undesired as it will overload 7768 * cpu 3 and leave one of the CPUs in the second group unused. 7769 * 7770 * The current solution to this issue is detecting the skew in the first group 7771 * by noticing the lower domain failed to reach balance and had difficulty 7772 * moving tasks due to affinity constraints. 7773 * 7774 * When this is so detected; this group becomes a candidate for busiest; see 7775 * update_sd_pick_busiest(). And calculate_imbalance() and 7776 * find_busiest_group() avoid some of the usual balance conditions to allow it 7777 * to create an effective group imbalance. 7778 * 7779 * This is a somewhat tricky proposition since the next run might not find the 7780 * group imbalance and decide the groups need to be balanced again. A most 7781 * subtle and fragile situation. 7782 */ 7783 7784 static inline int sg_imbalanced(struct sched_group *group) 7785 { 7786 return group->sgc->imbalance; 7787 } 7788 7789 /* 7790 * group_has_capacity returns true if the group has spare capacity that could 7791 * be used by some tasks. 7792 * We consider that a group has spare capacity if the * number of task is 7793 * smaller than the number of CPUs or if the utilization is lower than the 7794 * available capacity for CFS tasks. 7795 * For the latter, we use a threshold to stabilize the state, to take into 7796 * account the variance of the tasks' load and to return true if the available 7797 * capacity in meaningful for the load balancer. 7798 * As an example, an available capacity of 1% can appear but it doesn't make 7799 * any benefit for the load balance. 7800 */ 7801 static inline bool 7802 group_has_capacity(struct lb_env *env, struct sg_lb_stats *sgs) 7803 { 7804 if (sgs->sum_nr_running < sgs->group_weight) 7805 return true; 7806 7807 if ((sgs->group_capacity * 100) > 7808 (sgs->group_util * env->sd->imbalance_pct)) 7809 return true; 7810 7811 return false; 7812 } 7813 7814 /* 7815 * group_is_overloaded returns true if the group has more tasks than it can 7816 * handle. 7817 * group_is_overloaded is not equals to !group_has_capacity because a group 7818 * with the exact right number of tasks, has no more spare capacity but is not 7819 * overloaded so both group_has_capacity and group_is_overloaded return 7820 * false. 7821 */ 7822 static inline bool 7823 group_is_overloaded(struct lb_env *env, struct sg_lb_stats *sgs) 7824 { 7825 if (sgs->sum_nr_running <= sgs->group_weight) 7826 return false; 7827 7828 if ((sgs->group_capacity * 100) < 7829 (sgs->group_util * env->sd->imbalance_pct)) 7830 return true; 7831 7832 return false; 7833 } 7834 7835 /* 7836 * group_smaller_min_cpu_capacity: Returns true if sched_group sg has smaller 7837 * per-CPU capacity than sched_group ref. 7838 */ 7839 static inline bool 7840 group_smaller_min_cpu_capacity(struct sched_group *sg, struct sched_group *ref) 7841 { 7842 return sg->sgc->min_capacity * capacity_margin < 7843 ref->sgc->min_capacity * 1024; 7844 } 7845 7846 /* 7847 * group_smaller_max_cpu_capacity: Returns true if sched_group sg has smaller 7848 * per-CPU capacity_orig than sched_group ref. 7849 */ 7850 static inline bool 7851 group_smaller_max_cpu_capacity(struct sched_group *sg, struct sched_group *ref) 7852 { 7853 return sg->sgc->max_capacity * capacity_margin < 7854 ref->sgc->max_capacity * 1024; 7855 } 7856 7857 static inline enum 7858 group_type group_classify(struct sched_group *group, 7859 struct sg_lb_stats *sgs) 7860 { 7861 if (sgs->group_no_capacity) 7862 return group_overloaded; 7863 7864 if (sg_imbalanced(group)) 7865 return group_imbalanced; 7866 7867 if (sgs->group_misfit_task_load) 7868 return group_misfit_task; 7869 7870 return group_other; 7871 } 7872 7873 static bool update_nohz_stats(struct rq *rq, bool force) 7874 { 7875 #ifdef CONFIG_NO_HZ_COMMON 7876 unsigned int cpu = rq->cpu; 7877 7878 if (!rq->has_blocked_load) 7879 return false; 7880 7881 if (!cpumask_test_cpu(cpu, nohz.idle_cpus_mask)) 7882 return false; 7883 7884 if (!force && !time_after(jiffies, rq->last_blocked_load_update_tick)) 7885 return true; 7886 7887 update_blocked_averages(cpu); 7888 7889 return rq->has_blocked_load; 7890 #else 7891 return false; 7892 #endif 7893 } 7894 7895 /** 7896 * update_sg_lb_stats - Update sched_group's statistics for load balancing. 7897 * @env: The load balancing environment. 7898 * @group: sched_group whose statistics are to be updated. 7899 * @load_idx: Load index of sched_domain of this_cpu for load calc. 7900 * @local_group: Does group contain this_cpu. 7901 * @sgs: variable to hold the statistics for this group. 7902 * @overload: Indicate pullable load (e.g. >1 runnable task). 7903 */ 7904 static inline void update_sg_lb_stats(struct lb_env *env, 7905 struct sched_group *group, int load_idx, 7906 int local_group, struct sg_lb_stats *sgs, 7907 bool *overload) 7908 { 7909 unsigned long load; 7910 int i, nr_running; 7911 7912 memset(sgs, 0, sizeof(*sgs)); 7913 7914 for_each_cpu_and(i, sched_group_span(group), env->cpus) { 7915 struct rq *rq = cpu_rq(i); 7916 7917 if ((env->flags & LBF_NOHZ_STATS) && update_nohz_stats(rq, false)) 7918 env->flags |= LBF_NOHZ_AGAIN; 7919 7920 /* Bias balancing toward CPUs of our domain: */ 7921 if (local_group) 7922 load = target_load(i, load_idx); 7923 else 7924 load = source_load(i, load_idx); 7925 7926 sgs->group_load += load; 7927 sgs->group_util += cpu_util(i); 7928 sgs->sum_nr_running += rq->cfs.h_nr_running; 7929 7930 nr_running = rq->nr_running; 7931 if (nr_running > 1) 7932 *overload = true; 7933 7934 #ifdef CONFIG_NUMA_BALANCING 7935 sgs->nr_numa_running += rq->nr_numa_running; 7936 sgs->nr_preferred_running += rq->nr_preferred_running; 7937 #endif 7938 sgs->sum_weighted_load += weighted_cpuload(rq); 7939 /* 7940 * No need to call idle_cpu() if nr_running is not 0 7941 */ 7942 if (!nr_running && idle_cpu(i)) 7943 sgs->idle_cpus++; 7944 7945 if (env->sd->flags & SD_ASYM_CPUCAPACITY && 7946 sgs->group_misfit_task_load < rq->misfit_task_load) { 7947 sgs->group_misfit_task_load = rq->misfit_task_load; 7948 *overload = 1; 7949 } 7950 } 7951 7952 /* Adjust by relative CPU capacity of the group */ 7953 sgs->group_capacity = group->sgc->capacity; 7954 sgs->avg_load = (sgs->group_load*SCHED_CAPACITY_SCALE) / sgs->group_capacity; 7955 7956 if (sgs->sum_nr_running) 7957 sgs->load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running; 7958 7959 sgs->group_weight = group->group_weight; 7960 7961 sgs->group_no_capacity = group_is_overloaded(env, sgs); 7962 sgs->group_type = group_classify(group, sgs); 7963 } 7964 7965 /** 7966 * update_sd_pick_busiest - return 1 on busiest group 7967 * @env: The load balancing environment. 7968 * @sds: sched_domain statistics 7969 * @sg: sched_group candidate to be checked for being the busiest 7970 * @sgs: sched_group statistics 7971 * 7972 * Determine if @sg is a busier group than the previously selected 7973 * busiest group. 7974 * 7975 * Return: %true if @sg is a busier group than the previously selected 7976 * busiest group. %false otherwise. 7977 */ 7978 static bool update_sd_pick_busiest(struct lb_env *env, 7979 struct sd_lb_stats *sds, 7980 struct sched_group *sg, 7981 struct sg_lb_stats *sgs) 7982 { 7983 struct sg_lb_stats *busiest = &sds->busiest_stat; 7984 7985 /* 7986 * Don't try to pull misfit tasks we can't help. 7987 * We can use max_capacity here as reduction in capacity on some 7988 * CPUs in the group should either be possible to resolve 7989 * internally or be covered by avg_load imbalance (eventually). 7990 */ 7991 if (sgs->group_type == group_misfit_task && 7992 (!group_smaller_max_cpu_capacity(sg, sds->local) || 7993 !group_has_capacity(env, &sds->local_stat))) 7994 return false; 7995 7996 if (sgs->group_type > busiest->group_type) 7997 return true; 7998 7999 if (sgs->group_type < busiest->group_type) 8000 return false; 8001 8002 if (sgs->avg_load <= busiest->avg_load) 8003 return false; 8004 8005 if (!(env->sd->flags & SD_ASYM_CPUCAPACITY)) 8006 goto asym_packing; 8007 8008 /* 8009 * Candidate sg has no more than one task per CPU and 8010 * has higher per-CPU capacity. Migrating tasks to less 8011 * capable CPUs may harm throughput. Maximize throughput, 8012 * power/energy consequences are not considered. 8013 */ 8014 if (sgs->sum_nr_running <= sgs->group_weight && 8015 group_smaller_min_cpu_capacity(sds->local, sg)) 8016 return false; 8017 8018 /* 8019 * If we have more than one misfit sg go with the biggest misfit. 8020 */ 8021 if (sgs->group_type == group_misfit_task && 8022 sgs->group_misfit_task_load < busiest->group_misfit_task_load) 8023 return false; 8024 8025 asym_packing: 8026 /* This is the busiest node in its class. */ 8027 if (!(env->sd->flags & SD_ASYM_PACKING)) 8028 return true; 8029 8030 /* No ASYM_PACKING if target CPU is already busy */ 8031 if (env->idle == CPU_NOT_IDLE) 8032 return true; 8033 /* 8034 * ASYM_PACKING needs to move all the work to the highest 8035 * prority CPUs in the group, therefore mark all groups 8036 * of lower priority than ourself as busy. 8037 */ 8038 if (sgs->sum_nr_running && 8039 sched_asym_prefer(env->dst_cpu, sg->asym_prefer_cpu)) { 8040 if (!sds->busiest) 8041 return true; 8042 8043 /* Prefer to move from lowest priority CPU's work */ 8044 if (sched_asym_prefer(sds->busiest->asym_prefer_cpu, 8045 sg->asym_prefer_cpu)) 8046 return true; 8047 } 8048 8049 return false; 8050 } 8051 8052 #ifdef CONFIG_NUMA_BALANCING 8053 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs) 8054 { 8055 if (sgs->sum_nr_running > sgs->nr_numa_running) 8056 return regular; 8057 if (sgs->sum_nr_running > sgs->nr_preferred_running) 8058 return remote; 8059 return all; 8060 } 8061 8062 static inline enum fbq_type fbq_classify_rq(struct rq *rq) 8063 { 8064 if (rq->nr_running > rq->nr_numa_running) 8065 return regular; 8066 if (rq->nr_running > rq->nr_preferred_running) 8067 return remote; 8068 return all; 8069 } 8070 #else 8071 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs) 8072 { 8073 return all; 8074 } 8075 8076 static inline enum fbq_type fbq_classify_rq(struct rq *rq) 8077 { 8078 return regular; 8079 } 8080 #endif /* CONFIG_NUMA_BALANCING */ 8081 8082 /** 8083 * update_sd_lb_stats - Update sched_domain's statistics for load balancing. 8084 * @env: The load balancing environment. 8085 * @sds: variable to hold the statistics for this sched_domain. 8086 */ 8087 static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds) 8088 { 8089 struct sched_domain *child = env->sd->child; 8090 struct sched_group *sg = env->sd->groups; 8091 struct sg_lb_stats *local = &sds->local_stat; 8092 struct sg_lb_stats tmp_sgs; 8093 int load_idx; 8094 bool overload = false; 8095 bool prefer_sibling = child && child->flags & SD_PREFER_SIBLING; 8096 8097 #ifdef CONFIG_NO_HZ_COMMON 8098 if (env->idle == CPU_NEWLY_IDLE && READ_ONCE(nohz.has_blocked)) 8099 env->flags |= LBF_NOHZ_STATS; 8100 #endif 8101 8102 load_idx = get_sd_load_idx(env->sd, env->idle); 8103 8104 do { 8105 struct sg_lb_stats *sgs = &tmp_sgs; 8106 int local_group; 8107 8108 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_span(sg)); 8109 if (local_group) { 8110 sds->local = sg; 8111 sgs = local; 8112 8113 if (env->idle != CPU_NEWLY_IDLE || 8114 time_after_eq(jiffies, sg->sgc->next_update)) 8115 update_group_capacity(env->sd, env->dst_cpu); 8116 } 8117 8118 update_sg_lb_stats(env, sg, load_idx, local_group, sgs, 8119 &overload); 8120 8121 if (local_group) 8122 goto next_group; 8123 8124 /* 8125 * In case the child domain prefers tasks go to siblings 8126 * first, lower the sg capacity so that we'll try 8127 * and move all the excess tasks away. We lower the capacity 8128 * of a group only if the local group has the capacity to fit 8129 * these excess tasks. The extra check prevents the case where 8130 * you always pull from the heaviest group when it is already 8131 * under-utilized (possible with a large weight task outweighs 8132 * the tasks on the system). 8133 */ 8134 if (prefer_sibling && sds->local && 8135 group_has_capacity(env, local) && 8136 (sgs->sum_nr_running > local->sum_nr_running + 1)) { 8137 sgs->group_no_capacity = 1; 8138 sgs->group_type = group_classify(sg, sgs); 8139 } 8140 8141 if (update_sd_pick_busiest(env, sds, sg, sgs)) { 8142 sds->busiest = sg; 8143 sds->busiest_stat = *sgs; 8144 } 8145 8146 next_group: 8147 /* Now, start updating sd_lb_stats */ 8148 sds->total_running += sgs->sum_nr_running; 8149 sds->total_load += sgs->group_load; 8150 sds->total_capacity += sgs->group_capacity; 8151 8152 sg = sg->next; 8153 } while (sg != env->sd->groups); 8154 8155 #ifdef CONFIG_NO_HZ_COMMON 8156 if ((env->flags & LBF_NOHZ_AGAIN) && 8157 cpumask_subset(nohz.idle_cpus_mask, sched_domain_span(env->sd))) { 8158 8159 WRITE_ONCE(nohz.next_blocked, 8160 jiffies + msecs_to_jiffies(LOAD_AVG_PERIOD)); 8161 } 8162 #endif 8163 8164 if (env->sd->flags & SD_NUMA) 8165 env->fbq_type = fbq_classify_group(&sds->busiest_stat); 8166 8167 if (!env->sd->parent) { 8168 /* update overload indicator if we are at root domain */ 8169 if (READ_ONCE(env->dst_rq->rd->overload) != overload) 8170 WRITE_ONCE(env->dst_rq->rd->overload, overload); 8171 } 8172 } 8173 8174 /** 8175 * check_asym_packing - Check to see if the group is packed into the 8176 * sched domain. 8177 * 8178 * This is primarily intended to used at the sibling level. Some 8179 * cores like POWER7 prefer to use lower numbered SMT threads. In the 8180 * case of POWER7, it can move to lower SMT modes only when higher 8181 * threads are idle. When in lower SMT modes, the threads will 8182 * perform better since they share less core resources. Hence when we 8183 * have idle threads, we want them to be the higher ones. 8184 * 8185 * This packing function is run on idle threads. It checks to see if 8186 * the busiest CPU in this domain (core in the P7 case) has a higher 8187 * CPU number than the packing function is being run on. Here we are 8188 * assuming lower CPU number will be equivalent to lower a SMT thread 8189 * number. 8190 * 8191 * Return: 1 when packing is required and a task should be moved to 8192 * this CPU. The amount of the imbalance is returned in env->imbalance. 8193 * 8194 * @env: The load balancing environment. 8195 * @sds: Statistics of the sched_domain which is to be packed 8196 */ 8197 static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds) 8198 { 8199 int busiest_cpu; 8200 8201 if (!(env->sd->flags & SD_ASYM_PACKING)) 8202 return 0; 8203 8204 if (env->idle == CPU_NOT_IDLE) 8205 return 0; 8206 8207 if (!sds->busiest) 8208 return 0; 8209 8210 busiest_cpu = sds->busiest->asym_prefer_cpu; 8211 if (sched_asym_prefer(busiest_cpu, env->dst_cpu)) 8212 return 0; 8213 8214 env->imbalance = DIV_ROUND_CLOSEST( 8215 sds->busiest_stat.avg_load * sds->busiest_stat.group_capacity, 8216 SCHED_CAPACITY_SCALE); 8217 8218 return 1; 8219 } 8220 8221 /** 8222 * fix_small_imbalance - Calculate the minor imbalance that exists 8223 * amongst the groups of a sched_domain, during 8224 * load balancing. 8225 * @env: The load balancing environment. 8226 * @sds: Statistics of the sched_domain whose imbalance is to be calculated. 8227 */ 8228 static inline 8229 void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds) 8230 { 8231 unsigned long tmp, capa_now = 0, capa_move = 0; 8232 unsigned int imbn = 2; 8233 unsigned long scaled_busy_load_per_task; 8234 struct sg_lb_stats *local, *busiest; 8235 8236 local = &sds->local_stat; 8237 busiest = &sds->busiest_stat; 8238 8239 if (!local->sum_nr_running) 8240 local->load_per_task = cpu_avg_load_per_task(env->dst_cpu); 8241 else if (busiest->load_per_task > local->load_per_task) 8242 imbn = 1; 8243 8244 scaled_busy_load_per_task = 8245 (busiest->load_per_task * SCHED_CAPACITY_SCALE) / 8246 busiest->group_capacity; 8247 8248 if (busiest->avg_load + scaled_busy_load_per_task >= 8249 local->avg_load + (scaled_busy_load_per_task * imbn)) { 8250 env->imbalance = busiest->load_per_task; 8251 return; 8252 } 8253 8254 /* 8255 * OK, we don't have enough imbalance to justify moving tasks, 8256 * however we may be able to increase total CPU capacity used by 8257 * moving them. 8258 */ 8259 8260 capa_now += busiest->group_capacity * 8261 min(busiest->load_per_task, busiest->avg_load); 8262 capa_now += local->group_capacity * 8263 min(local->load_per_task, local->avg_load); 8264 capa_now /= SCHED_CAPACITY_SCALE; 8265 8266 /* Amount of load we'd subtract */ 8267 if (busiest->avg_load > scaled_busy_load_per_task) { 8268 capa_move += busiest->group_capacity * 8269 min(busiest->load_per_task, 8270 busiest->avg_load - scaled_busy_load_per_task); 8271 } 8272 8273 /* Amount of load we'd add */ 8274 if (busiest->avg_load * busiest->group_capacity < 8275 busiest->load_per_task * SCHED_CAPACITY_SCALE) { 8276 tmp = (busiest->avg_load * busiest->group_capacity) / 8277 local->group_capacity; 8278 } else { 8279 tmp = (busiest->load_per_task * SCHED_CAPACITY_SCALE) / 8280 local->group_capacity; 8281 } 8282 capa_move += local->group_capacity * 8283 min(local->load_per_task, local->avg_load + tmp); 8284 capa_move /= SCHED_CAPACITY_SCALE; 8285 8286 /* Move if we gain throughput */ 8287 if (capa_move > capa_now) 8288 env->imbalance = busiest->load_per_task; 8289 } 8290 8291 /** 8292 * calculate_imbalance - Calculate the amount of imbalance present within the 8293 * groups of a given sched_domain during load balance. 8294 * @env: load balance environment 8295 * @sds: statistics of the sched_domain whose imbalance is to be calculated. 8296 */ 8297 static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds) 8298 { 8299 unsigned long max_pull, load_above_capacity = ~0UL; 8300 struct sg_lb_stats *local, *busiest; 8301 8302 local = &sds->local_stat; 8303 busiest = &sds->busiest_stat; 8304 8305 if (busiest->group_type == group_imbalanced) { 8306 /* 8307 * In the group_imb case we cannot rely on group-wide averages 8308 * to ensure CPU-load equilibrium, look at wider averages. XXX 8309 */ 8310 busiest->load_per_task = 8311 min(busiest->load_per_task, sds->avg_load); 8312 } 8313 8314 /* 8315 * Avg load of busiest sg can be less and avg load of local sg can 8316 * be greater than avg load across all sgs of sd because avg load 8317 * factors in sg capacity and sgs with smaller group_type are 8318 * skipped when updating the busiest sg: 8319 */ 8320 if (busiest->group_type != group_misfit_task && 8321 (busiest->avg_load <= sds->avg_load || 8322 local->avg_load >= sds->avg_load)) { 8323 env->imbalance = 0; 8324 return fix_small_imbalance(env, sds); 8325 } 8326 8327 /* 8328 * If there aren't any idle CPUs, avoid creating some. 8329 */ 8330 if (busiest->group_type == group_overloaded && 8331 local->group_type == group_overloaded) { 8332 load_above_capacity = busiest->sum_nr_running * SCHED_CAPACITY_SCALE; 8333 if (load_above_capacity > busiest->group_capacity) { 8334 load_above_capacity -= busiest->group_capacity; 8335 load_above_capacity *= scale_load_down(NICE_0_LOAD); 8336 load_above_capacity /= busiest->group_capacity; 8337 } else 8338 load_above_capacity = ~0UL; 8339 } 8340 8341 /* 8342 * We're trying to get all the CPUs to the average_load, so we don't 8343 * want to push ourselves above the average load, nor do we wish to 8344 * reduce the max loaded CPU below the average load. At the same time, 8345 * we also don't want to reduce the group load below the group 8346 * capacity. Thus we look for the minimum possible imbalance. 8347 */ 8348 max_pull = min(busiest->avg_load - sds->avg_load, load_above_capacity); 8349 8350 /* How much load to actually move to equalise the imbalance */ 8351 env->imbalance = min( 8352 max_pull * busiest->group_capacity, 8353 (sds->avg_load - local->avg_load) * local->group_capacity 8354 ) / SCHED_CAPACITY_SCALE; 8355 8356 /* Boost imbalance to allow misfit task to be balanced. */ 8357 if (busiest->group_type == group_misfit_task) { 8358 env->imbalance = max_t(long, env->imbalance, 8359 busiest->group_misfit_task_load); 8360 } 8361 8362 /* 8363 * if *imbalance is less than the average load per runnable task 8364 * there is no guarantee that any tasks will be moved so we'll have 8365 * a think about bumping its value to force at least one task to be 8366 * moved 8367 */ 8368 if (env->imbalance < busiest->load_per_task) 8369 return fix_small_imbalance(env, sds); 8370 } 8371 8372 /******* find_busiest_group() helpers end here *********************/ 8373 8374 /** 8375 * find_busiest_group - Returns the busiest group within the sched_domain 8376 * if there is an imbalance. 8377 * 8378 * Also calculates the amount of weighted load which should be moved 8379 * to restore balance. 8380 * 8381 * @env: The load balancing environment. 8382 * 8383 * Return: - The busiest group if imbalance exists. 8384 */ 8385 static struct sched_group *find_busiest_group(struct lb_env *env) 8386 { 8387 struct sg_lb_stats *local, *busiest; 8388 struct sd_lb_stats sds; 8389 8390 init_sd_lb_stats(&sds); 8391 8392 /* 8393 * Compute the various statistics relavent for load balancing at 8394 * this level. 8395 */ 8396 update_sd_lb_stats(env, &sds); 8397 local = &sds.local_stat; 8398 busiest = &sds.busiest_stat; 8399 8400 /* ASYM feature bypasses nice load balance check */ 8401 if (check_asym_packing(env, &sds)) 8402 return sds.busiest; 8403 8404 /* There is no busy sibling group to pull tasks from */ 8405 if (!sds.busiest || busiest->sum_nr_running == 0) 8406 goto out_balanced; 8407 8408 /* XXX broken for overlapping NUMA groups */ 8409 sds.avg_load = (SCHED_CAPACITY_SCALE * sds.total_load) 8410 / sds.total_capacity; 8411 8412 /* 8413 * If the busiest group is imbalanced the below checks don't 8414 * work because they assume all things are equal, which typically 8415 * isn't true due to cpus_allowed constraints and the like. 8416 */ 8417 if (busiest->group_type == group_imbalanced) 8418 goto force_balance; 8419 8420 /* 8421 * When dst_cpu is idle, prevent SMP nice and/or asymmetric group 8422 * capacities from resulting in underutilization due to avg_load. 8423 */ 8424 if (env->idle != CPU_NOT_IDLE && group_has_capacity(env, local) && 8425 busiest->group_no_capacity) 8426 goto force_balance; 8427 8428 /* Misfit tasks should be dealt with regardless of the avg load */ 8429 if (busiest->group_type == group_misfit_task) 8430 goto force_balance; 8431 8432 /* 8433 * If the local group is busier than the selected busiest group 8434 * don't try and pull any tasks. 8435 */ 8436 if (local->avg_load >= busiest->avg_load) 8437 goto out_balanced; 8438 8439 /* 8440 * Don't pull any tasks if this group is already above the domain 8441 * average load. 8442 */ 8443 if (local->avg_load >= sds.avg_load) 8444 goto out_balanced; 8445 8446 if (env->idle == CPU_IDLE) { 8447 /* 8448 * This CPU is idle. If the busiest group is not overloaded 8449 * and there is no imbalance between this and busiest group 8450 * wrt idle CPUs, it is balanced. The imbalance becomes 8451 * significant if the diff is greater than 1 otherwise we 8452 * might end up to just move the imbalance on another group 8453 */ 8454 if ((busiest->group_type != group_overloaded) && 8455 (local->idle_cpus <= (busiest->idle_cpus + 1))) 8456 goto out_balanced; 8457 } else { 8458 /* 8459 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use 8460 * imbalance_pct to be conservative. 8461 */ 8462 if (100 * busiest->avg_load <= 8463 env->sd->imbalance_pct * local->avg_load) 8464 goto out_balanced; 8465 } 8466 8467 force_balance: 8468 /* Looks like there is an imbalance. Compute it */ 8469 env->src_grp_type = busiest->group_type; 8470 calculate_imbalance(env, &sds); 8471 return env->imbalance ? sds.busiest : NULL; 8472 8473 out_balanced: 8474 env->imbalance = 0; 8475 return NULL; 8476 } 8477 8478 /* 8479 * find_busiest_queue - find the busiest runqueue among the CPUs in the group. 8480 */ 8481 static struct rq *find_busiest_queue(struct lb_env *env, 8482 struct sched_group *group) 8483 { 8484 struct rq *busiest = NULL, *rq; 8485 unsigned long busiest_load = 0, busiest_capacity = 1; 8486 int i; 8487 8488 for_each_cpu_and(i, sched_group_span(group), env->cpus) { 8489 unsigned long capacity, wl; 8490 enum fbq_type rt; 8491 8492 rq = cpu_rq(i); 8493 rt = fbq_classify_rq(rq); 8494 8495 /* 8496 * We classify groups/runqueues into three groups: 8497 * - regular: there are !numa tasks 8498 * - remote: there are numa tasks that run on the 'wrong' node 8499 * - all: there is no distinction 8500 * 8501 * In order to avoid migrating ideally placed numa tasks, 8502 * ignore those when there's better options. 8503 * 8504 * If we ignore the actual busiest queue to migrate another 8505 * task, the next balance pass can still reduce the busiest 8506 * queue by moving tasks around inside the node. 8507 * 8508 * If we cannot move enough load due to this classification 8509 * the next pass will adjust the group classification and 8510 * allow migration of more tasks. 8511 * 8512 * Both cases only affect the total convergence complexity. 8513 */ 8514 if (rt > env->fbq_type) 8515 continue; 8516 8517 /* 8518 * For ASYM_CPUCAPACITY domains with misfit tasks we simply 8519 * seek the "biggest" misfit task. 8520 */ 8521 if (env->src_grp_type == group_misfit_task) { 8522 if (rq->misfit_task_load > busiest_load) { 8523 busiest_load = rq->misfit_task_load; 8524 busiest = rq; 8525 } 8526 8527 continue; 8528 } 8529 8530 capacity = capacity_of(i); 8531 8532 /* 8533 * For ASYM_CPUCAPACITY domains, don't pick a CPU that could 8534 * eventually lead to active_balancing high->low capacity. 8535 * Higher per-CPU capacity is considered better than balancing 8536 * average load. 8537 */ 8538 if (env->sd->flags & SD_ASYM_CPUCAPACITY && 8539 capacity_of(env->dst_cpu) < capacity && 8540 rq->nr_running == 1) 8541 continue; 8542 8543 wl = weighted_cpuload(rq); 8544 8545 /* 8546 * When comparing with imbalance, use weighted_cpuload() 8547 * which is not scaled with the CPU capacity. 8548 */ 8549 8550 if (rq->nr_running == 1 && wl > env->imbalance && 8551 !check_cpu_capacity(rq, env->sd)) 8552 continue; 8553 8554 /* 8555 * For the load comparisons with the other CPU's, consider 8556 * the weighted_cpuload() scaled with the CPU capacity, so 8557 * that the load can be moved away from the CPU that is 8558 * potentially running at a lower capacity. 8559 * 8560 * Thus we're looking for max(wl_i / capacity_i), crosswise 8561 * multiplication to rid ourselves of the division works out 8562 * to: wl_i * capacity_j > wl_j * capacity_i; where j is 8563 * our previous maximum. 8564 */ 8565 if (wl * busiest_capacity > busiest_load * capacity) { 8566 busiest_load = wl; 8567 busiest_capacity = capacity; 8568 busiest = rq; 8569 } 8570 } 8571 8572 return busiest; 8573 } 8574 8575 /* 8576 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but 8577 * so long as it is large enough. 8578 */ 8579 #define MAX_PINNED_INTERVAL 512 8580 8581 static int need_active_balance(struct lb_env *env) 8582 { 8583 struct sched_domain *sd = env->sd; 8584 8585 if (env->idle == CPU_NEWLY_IDLE) { 8586 8587 /* 8588 * ASYM_PACKING needs to force migrate tasks from busy but 8589 * lower priority CPUs in order to pack all tasks in the 8590 * highest priority CPUs. 8591 */ 8592 if ((sd->flags & SD_ASYM_PACKING) && 8593 sched_asym_prefer(env->dst_cpu, env->src_cpu)) 8594 return 1; 8595 } 8596 8597 /* 8598 * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task. 8599 * It's worth migrating the task if the src_cpu's capacity is reduced 8600 * because of other sched_class or IRQs if more capacity stays 8601 * available on dst_cpu. 8602 */ 8603 if ((env->idle != CPU_NOT_IDLE) && 8604 (env->src_rq->cfs.h_nr_running == 1)) { 8605 if ((check_cpu_capacity(env->src_rq, sd)) && 8606 (capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100)) 8607 return 1; 8608 } 8609 8610 if (env->src_grp_type == group_misfit_task) 8611 return 1; 8612 8613 return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2); 8614 } 8615 8616 static int active_load_balance_cpu_stop(void *data); 8617 8618 static int should_we_balance(struct lb_env *env) 8619 { 8620 struct sched_group *sg = env->sd->groups; 8621 int cpu, balance_cpu = -1; 8622 8623 /* 8624 * Ensure the balancing environment is consistent; can happen 8625 * when the softirq triggers 'during' hotplug. 8626 */ 8627 if (!cpumask_test_cpu(env->dst_cpu, env->cpus)) 8628 return 0; 8629 8630 /* 8631 * In the newly idle case, we will allow all the CPUs 8632 * to do the newly idle load balance. 8633 */ 8634 if (env->idle == CPU_NEWLY_IDLE) 8635 return 1; 8636 8637 /* Try to find first idle CPU */ 8638 for_each_cpu_and(cpu, group_balance_mask(sg), env->cpus) { 8639 if (!idle_cpu(cpu)) 8640 continue; 8641 8642 balance_cpu = cpu; 8643 break; 8644 } 8645 8646 if (balance_cpu == -1) 8647 balance_cpu = group_balance_cpu(sg); 8648 8649 /* 8650 * First idle CPU or the first CPU(busiest) in this sched group 8651 * is eligible for doing load balancing at this and above domains. 8652 */ 8653 return balance_cpu == env->dst_cpu; 8654 } 8655 8656 /* 8657 * Check this_cpu to ensure it is balanced within domain. Attempt to move 8658 * tasks if there is an imbalance. 8659 */ 8660 static int load_balance(int this_cpu, struct rq *this_rq, 8661 struct sched_domain *sd, enum cpu_idle_type idle, 8662 int *continue_balancing) 8663 { 8664 int ld_moved, cur_ld_moved, active_balance = 0; 8665 struct sched_domain *sd_parent = sd->parent; 8666 struct sched_group *group; 8667 struct rq *busiest; 8668 struct rq_flags rf; 8669 struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask); 8670 8671 struct lb_env env = { 8672 .sd = sd, 8673 .dst_cpu = this_cpu, 8674 .dst_rq = this_rq, 8675 .dst_grpmask = sched_group_span(sd->groups), 8676 .idle = idle, 8677 .loop_break = sched_nr_migrate_break, 8678 .cpus = cpus, 8679 .fbq_type = all, 8680 .tasks = LIST_HEAD_INIT(env.tasks), 8681 }; 8682 8683 cpumask_and(cpus, sched_domain_span(sd), cpu_active_mask); 8684 8685 schedstat_inc(sd->lb_count[idle]); 8686 8687 redo: 8688 if (!should_we_balance(&env)) { 8689 *continue_balancing = 0; 8690 goto out_balanced; 8691 } 8692 8693 group = find_busiest_group(&env); 8694 if (!group) { 8695 schedstat_inc(sd->lb_nobusyg[idle]); 8696 goto out_balanced; 8697 } 8698 8699 busiest = find_busiest_queue(&env, group); 8700 if (!busiest) { 8701 schedstat_inc(sd->lb_nobusyq[idle]); 8702 goto out_balanced; 8703 } 8704 8705 BUG_ON(busiest == env.dst_rq); 8706 8707 schedstat_add(sd->lb_imbalance[idle], env.imbalance); 8708 8709 env.src_cpu = busiest->cpu; 8710 env.src_rq = busiest; 8711 8712 ld_moved = 0; 8713 if (busiest->nr_running > 1) { 8714 /* 8715 * Attempt to move tasks. If find_busiest_group has found 8716 * an imbalance but busiest->nr_running <= 1, the group is 8717 * still unbalanced. ld_moved simply stays zero, so it is 8718 * correctly treated as an imbalance. 8719 */ 8720 env.flags |= LBF_ALL_PINNED; 8721 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running); 8722 8723 more_balance: 8724 rq_lock_irqsave(busiest, &rf); 8725 update_rq_clock(busiest); 8726 8727 /* 8728 * cur_ld_moved - load moved in current iteration 8729 * ld_moved - cumulative load moved across iterations 8730 */ 8731 cur_ld_moved = detach_tasks(&env); 8732 8733 /* 8734 * We've detached some tasks from busiest_rq. Every 8735 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely 8736 * unlock busiest->lock, and we are able to be sure 8737 * that nobody can manipulate the tasks in parallel. 8738 * See task_rq_lock() family for the details. 8739 */ 8740 8741 rq_unlock(busiest, &rf); 8742 8743 if (cur_ld_moved) { 8744 attach_tasks(&env); 8745 ld_moved += cur_ld_moved; 8746 } 8747 8748 local_irq_restore(rf.flags); 8749 8750 if (env.flags & LBF_NEED_BREAK) { 8751 env.flags &= ~LBF_NEED_BREAK; 8752 goto more_balance; 8753 } 8754 8755 /* 8756 * Revisit (affine) tasks on src_cpu that couldn't be moved to 8757 * us and move them to an alternate dst_cpu in our sched_group 8758 * where they can run. The upper limit on how many times we 8759 * iterate on same src_cpu is dependent on number of CPUs in our 8760 * sched_group. 8761 * 8762 * This changes load balance semantics a bit on who can move 8763 * load to a given_cpu. In addition to the given_cpu itself 8764 * (or a ilb_cpu acting on its behalf where given_cpu is 8765 * nohz-idle), we now have balance_cpu in a position to move 8766 * load to given_cpu. In rare situations, this may cause 8767 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding 8768 * _independently_ and at _same_ time to move some load to 8769 * given_cpu) causing exceess load to be moved to given_cpu. 8770 * This however should not happen so much in practice and 8771 * moreover subsequent load balance cycles should correct the 8772 * excess load moved. 8773 */ 8774 if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) { 8775 8776 /* Prevent to re-select dst_cpu via env's CPUs */ 8777 cpumask_clear_cpu(env.dst_cpu, env.cpus); 8778 8779 env.dst_rq = cpu_rq(env.new_dst_cpu); 8780 env.dst_cpu = env.new_dst_cpu; 8781 env.flags &= ~LBF_DST_PINNED; 8782 env.loop = 0; 8783 env.loop_break = sched_nr_migrate_break; 8784 8785 /* 8786 * Go back to "more_balance" rather than "redo" since we 8787 * need to continue with same src_cpu. 8788 */ 8789 goto more_balance; 8790 } 8791 8792 /* 8793 * We failed to reach balance because of affinity. 8794 */ 8795 if (sd_parent) { 8796 int *group_imbalance = &sd_parent->groups->sgc->imbalance; 8797 8798 if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0) 8799 *group_imbalance = 1; 8800 } 8801 8802 /* All tasks on this runqueue were pinned by CPU affinity */ 8803 if (unlikely(env.flags & LBF_ALL_PINNED)) { 8804 cpumask_clear_cpu(cpu_of(busiest), cpus); 8805 /* 8806 * Attempting to continue load balancing at the current 8807 * sched_domain level only makes sense if there are 8808 * active CPUs remaining as possible busiest CPUs to 8809 * pull load from which are not contained within the 8810 * destination group that is receiving any migrated 8811 * load. 8812 */ 8813 if (!cpumask_subset(cpus, env.dst_grpmask)) { 8814 env.loop = 0; 8815 env.loop_break = sched_nr_migrate_break; 8816 goto redo; 8817 } 8818 goto out_all_pinned; 8819 } 8820 } 8821 8822 if (!ld_moved) { 8823 schedstat_inc(sd->lb_failed[idle]); 8824 /* 8825 * Increment the failure counter only on periodic balance. 8826 * We do not want newidle balance, which can be very 8827 * frequent, pollute the failure counter causing 8828 * excessive cache_hot migrations and active balances. 8829 */ 8830 if (idle != CPU_NEWLY_IDLE) 8831 sd->nr_balance_failed++; 8832 8833 if (need_active_balance(&env)) { 8834 unsigned long flags; 8835 8836 raw_spin_lock_irqsave(&busiest->lock, flags); 8837 8838 /* 8839 * Don't kick the active_load_balance_cpu_stop, 8840 * if the curr task on busiest CPU can't be 8841 * moved to this_cpu: 8842 */ 8843 if (!cpumask_test_cpu(this_cpu, &busiest->curr->cpus_allowed)) { 8844 raw_spin_unlock_irqrestore(&busiest->lock, 8845 flags); 8846 env.flags |= LBF_ALL_PINNED; 8847 goto out_one_pinned; 8848 } 8849 8850 /* 8851 * ->active_balance synchronizes accesses to 8852 * ->active_balance_work. Once set, it's cleared 8853 * only after active load balance is finished. 8854 */ 8855 if (!busiest->active_balance) { 8856 busiest->active_balance = 1; 8857 busiest->push_cpu = this_cpu; 8858 active_balance = 1; 8859 } 8860 raw_spin_unlock_irqrestore(&busiest->lock, flags); 8861 8862 if (active_balance) { 8863 stop_one_cpu_nowait(cpu_of(busiest), 8864 active_load_balance_cpu_stop, busiest, 8865 &busiest->active_balance_work); 8866 } 8867 8868 /* We've kicked active balancing, force task migration. */ 8869 sd->nr_balance_failed = sd->cache_nice_tries+1; 8870 } 8871 } else 8872 sd->nr_balance_failed = 0; 8873 8874 if (likely(!active_balance)) { 8875 /* We were unbalanced, so reset the balancing interval */ 8876 sd->balance_interval = sd->min_interval; 8877 } else { 8878 /* 8879 * If we've begun active balancing, start to back off. This 8880 * case may not be covered by the all_pinned logic if there 8881 * is only 1 task on the busy runqueue (because we don't call 8882 * detach_tasks). 8883 */ 8884 if (sd->balance_interval < sd->max_interval) 8885 sd->balance_interval *= 2; 8886 } 8887 8888 goto out; 8889 8890 out_balanced: 8891 /* 8892 * We reach balance although we may have faced some affinity 8893 * constraints. Clear the imbalance flag if it was set. 8894 */ 8895 if (sd_parent) { 8896 int *group_imbalance = &sd_parent->groups->sgc->imbalance; 8897 8898 if (*group_imbalance) 8899 *group_imbalance = 0; 8900 } 8901 8902 out_all_pinned: 8903 /* 8904 * We reach balance because all tasks are pinned at this level so 8905 * we can't migrate them. Let the imbalance flag set so parent level 8906 * can try to migrate them. 8907 */ 8908 schedstat_inc(sd->lb_balanced[idle]); 8909 8910 sd->nr_balance_failed = 0; 8911 8912 out_one_pinned: 8913 /* tune up the balancing interval */ 8914 if (((env.flags & LBF_ALL_PINNED) && 8915 sd->balance_interval < MAX_PINNED_INTERVAL) || 8916 (sd->balance_interval < sd->max_interval)) 8917 sd->balance_interval *= 2; 8918 8919 ld_moved = 0; 8920 out: 8921 return ld_moved; 8922 } 8923 8924 static inline unsigned long 8925 get_sd_balance_interval(struct sched_domain *sd, int cpu_busy) 8926 { 8927 unsigned long interval = sd->balance_interval; 8928 8929 if (cpu_busy) 8930 interval *= sd->busy_factor; 8931 8932 /* scale ms to jiffies */ 8933 interval = msecs_to_jiffies(interval); 8934 interval = clamp(interval, 1UL, max_load_balance_interval); 8935 8936 return interval; 8937 } 8938 8939 static inline void 8940 update_next_balance(struct sched_domain *sd, unsigned long *next_balance) 8941 { 8942 unsigned long interval, next; 8943 8944 /* used by idle balance, so cpu_busy = 0 */ 8945 interval = get_sd_balance_interval(sd, 0); 8946 next = sd->last_balance + interval; 8947 8948 if (time_after(*next_balance, next)) 8949 *next_balance = next; 8950 } 8951 8952 /* 8953 * active_load_balance_cpu_stop is run by the CPU stopper. It pushes 8954 * running tasks off the busiest CPU onto idle CPUs. It requires at 8955 * least 1 task to be running on each physical CPU where possible, and 8956 * avoids physical / logical imbalances. 8957 */ 8958 static int active_load_balance_cpu_stop(void *data) 8959 { 8960 struct rq *busiest_rq = data; 8961 int busiest_cpu = cpu_of(busiest_rq); 8962 int target_cpu = busiest_rq->push_cpu; 8963 struct rq *target_rq = cpu_rq(target_cpu); 8964 struct sched_domain *sd; 8965 struct task_struct *p = NULL; 8966 struct rq_flags rf; 8967 8968 rq_lock_irq(busiest_rq, &rf); 8969 /* 8970 * Between queueing the stop-work and running it is a hole in which 8971 * CPUs can become inactive. We should not move tasks from or to 8972 * inactive CPUs. 8973 */ 8974 if (!cpu_active(busiest_cpu) || !cpu_active(target_cpu)) 8975 goto out_unlock; 8976 8977 /* Make sure the requested CPU hasn't gone down in the meantime: */ 8978 if (unlikely(busiest_cpu != smp_processor_id() || 8979 !busiest_rq->active_balance)) 8980 goto out_unlock; 8981 8982 /* Is there any task to move? */ 8983 if (busiest_rq->nr_running <= 1) 8984 goto out_unlock; 8985 8986 /* 8987 * This condition is "impossible", if it occurs 8988 * we need to fix it. Originally reported by 8989 * Bjorn Helgaas on a 128-CPU setup. 8990 */ 8991 BUG_ON(busiest_rq == target_rq); 8992 8993 /* Search for an sd spanning us and the target CPU. */ 8994 rcu_read_lock(); 8995 for_each_domain(target_cpu, sd) { 8996 if ((sd->flags & SD_LOAD_BALANCE) && 8997 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd))) 8998 break; 8999 } 9000 9001 if (likely(sd)) { 9002 struct lb_env env = { 9003 .sd = sd, 9004 .dst_cpu = target_cpu, 9005 .dst_rq = target_rq, 9006 .src_cpu = busiest_rq->cpu, 9007 .src_rq = busiest_rq, 9008 .idle = CPU_IDLE, 9009 /* 9010 * can_migrate_task() doesn't need to compute new_dst_cpu 9011 * for active balancing. Since we have CPU_IDLE, but no 9012 * @dst_grpmask we need to make that test go away with lying 9013 * about DST_PINNED. 9014 */ 9015 .flags = LBF_DST_PINNED, 9016 }; 9017 9018 schedstat_inc(sd->alb_count); 9019 update_rq_clock(busiest_rq); 9020 9021 p = detach_one_task(&env); 9022 if (p) { 9023 schedstat_inc(sd->alb_pushed); 9024 /* Active balancing done, reset the failure counter. */ 9025 sd->nr_balance_failed = 0; 9026 } else { 9027 schedstat_inc(sd->alb_failed); 9028 } 9029 } 9030 rcu_read_unlock(); 9031 out_unlock: 9032 busiest_rq->active_balance = 0; 9033 rq_unlock(busiest_rq, &rf); 9034 9035 if (p) 9036 attach_one_task(target_rq, p); 9037 9038 local_irq_enable(); 9039 9040 return 0; 9041 } 9042 9043 static DEFINE_SPINLOCK(balancing); 9044 9045 /* 9046 * Scale the max load_balance interval with the number of CPUs in the system. 9047 * This trades load-balance latency on larger machines for less cross talk. 9048 */ 9049 void update_max_interval(void) 9050 { 9051 max_load_balance_interval = HZ*num_online_cpus()/10; 9052 } 9053 9054 /* 9055 * It checks each scheduling domain to see if it is due to be balanced, 9056 * and initiates a balancing operation if so. 9057 * 9058 * Balancing parameters are set up in init_sched_domains. 9059 */ 9060 static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle) 9061 { 9062 int continue_balancing = 1; 9063 int cpu = rq->cpu; 9064 unsigned long interval; 9065 struct sched_domain *sd; 9066 /* Earliest time when we have to do rebalance again */ 9067 unsigned long next_balance = jiffies + 60*HZ; 9068 int update_next_balance = 0; 9069 int need_serialize, need_decay = 0; 9070 u64 max_cost = 0; 9071 9072 rcu_read_lock(); 9073 for_each_domain(cpu, sd) { 9074 /* 9075 * Decay the newidle max times here because this is a regular 9076 * visit to all the domains. Decay ~1% per second. 9077 */ 9078 if (time_after(jiffies, sd->next_decay_max_lb_cost)) { 9079 sd->max_newidle_lb_cost = 9080 (sd->max_newidle_lb_cost * 253) / 256; 9081 sd->next_decay_max_lb_cost = jiffies + HZ; 9082 need_decay = 1; 9083 } 9084 max_cost += sd->max_newidle_lb_cost; 9085 9086 if (!(sd->flags & SD_LOAD_BALANCE)) 9087 continue; 9088 9089 /* 9090 * Stop the load balance at this level. There is another 9091 * CPU in our sched group which is doing load balancing more 9092 * actively. 9093 */ 9094 if (!continue_balancing) { 9095 if (need_decay) 9096 continue; 9097 break; 9098 } 9099 9100 interval = get_sd_balance_interval(sd, idle != CPU_IDLE); 9101 9102 need_serialize = sd->flags & SD_SERIALIZE; 9103 if (need_serialize) { 9104 if (!spin_trylock(&balancing)) 9105 goto out; 9106 } 9107 9108 if (time_after_eq(jiffies, sd->last_balance + interval)) { 9109 if (load_balance(cpu, rq, sd, idle, &continue_balancing)) { 9110 /* 9111 * The LBF_DST_PINNED logic could have changed 9112 * env->dst_cpu, so we can't know our idle 9113 * state even if we migrated tasks. Update it. 9114 */ 9115 idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE; 9116 } 9117 sd->last_balance = jiffies; 9118 interval = get_sd_balance_interval(sd, idle != CPU_IDLE); 9119 } 9120 if (need_serialize) 9121 spin_unlock(&balancing); 9122 out: 9123 if (time_after(next_balance, sd->last_balance + interval)) { 9124 next_balance = sd->last_balance + interval; 9125 update_next_balance = 1; 9126 } 9127 } 9128 if (need_decay) { 9129 /* 9130 * Ensure the rq-wide value also decays but keep it at a 9131 * reasonable floor to avoid funnies with rq->avg_idle. 9132 */ 9133 rq->max_idle_balance_cost = 9134 max((u64)sysctl_sched_migration_cost, max_cost); 9135 } 9136 rcu_read_unlock(); 9137 9138 /* 9139 * next_balance will be updated only when there is a need. 9140 * When the cpu is attached to null domain for ex, it will not be 9141 * updated. 9142 */ 9143 if (likely(update_next_balance)) { 9144 rq->next_balance = next_balance; 9145 9146 #ifdef CONFIG_NO_HZ_COMMON 9147 /* 9148 * If this CPU has been elected to perform the nohz idle 9149 * balance. Other idle CPUs have already rebalanced with 9150 * nohz_idle_balance() and nohz.next_balance has been 9151 * updated accordingly. This CPU is now running the idle load 9152 * balance for itself and we need to update the 9153 * nohz.next_balance accordingly. 9154 */ 9155 if ((idle == CPU_IDLE) && time_after(nohz.next_balance, rq->next_balance)) 9156 nohz.next_balance = rq->next_balance; 9157 #endif 9158 } 9159 } 9160 9161 static inline int on_null_domain(struct rq *rq) 9162 { 9163 return unlikely(!rcu_dereference_sched(rq->sd)); 9164 } 9165 9166 #ifdef CONFIG_NO_HZ_COMMON 9167 /* 9168 * idle load balancing details 9169 * - When one of the busy CPUs notice that there may be an idle rebalancing 9170 * needed, they will kick the idle load balancer, which then does idle 9171 * load balancing for all the idle CPUs. 9172 */ 9173 9174 static inline int find_new_ilb(void) 9175 { 9176 int ilb = cpumask_first(nohz.idle_cpus_mask); 9177 9178 if (ilb < nr_cpu_ids && idle_cpu(ilb)) 9179 return ilb; 9180 9181 return nr_cpu_ids; 9182 } 9183 9184 /* 9185 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the 9186 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle 9187 * CPU (if there is one). 9188 */ 9189 static void kick_ilb(unsigned int flags) 9190 { 9191 int ilb_cpu; 9192 9193 nohz.next_balance++; 9194 9195 ilb_cpu = find_new_ilb(); 9196 9197 if (ilb_cpu >= nr_cpu_ids) 9198 return; 9199 9200 flags = atomic_fetch_or(flags, nohz_flags(ilb_cpu)); 9201 if (flags & NOHZ_KICK_MASK) 9202 return; 9203 9204 /* 9205 * Use smp_send_reschedule() instead of resched_cpu(). 9206 * This way we generate a sched IPI on the target CPU which 9207 * is idle. And the softirq performing nohz idle load balance 9208 * will be run before returning from the IPI. 9209 */ 9210 smp_send_reschedule(ilb_cpu); 9211 } 9212 9213 /* 9214 * Current heuristic for kicking the idle load balancer in the presence 9215 * of an idle cpu in the system. 9216 * - This rq has more than one task. 9217 * - This rq has at least one CFS task and the capacity of the CPU is 9218 * significantly reduced because of RT tasks or IRQs. 9219 * - At parent of LLC scheduler domain level, this cpu's scheduler group has 9220 * multiple busy cpu. 9221 * - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler 9222 * domain span are idle. 9223 */ 9224 static void nohz_balancer_kick(struct rq *rq) 9225 { 9226 unsigned long now = jiffies; 9227 struct sched_domain_shared *sds; 9228 struct sched_domain *sd; 9229 int nr_busy, i, cpu = rq->cpu; 9230 unsigned int flags = 0; 9231 9232 if (unlikely(rq->idle_balance)) 9233 return; 9234 9235 /* 9236 * We may be recently in ticked or tickless idle mode. At the first 9237 * busy tick after returning from idle, we will update the busy stats. 9238 */ 9239 nohz_balance_exit_idle(rq); 9240 9241 /* 9242 * None are in tickless mode and hence no need for NOHZ idle load 9243 * balancing. 9244 */ 9245 if (likely(!atomic_read(&nohz.nr_cpus))) 9246 return; 9247 9248 if (READ_ONCE(nohz.has_blocked) && 9249 time_after(now, READ_ONCE(nohz.next_blocked))) 9250 flags = NOHZ_STATS_KICK; 9251 9252 if (time_before(now, nohz.next_balance)) 9253 goto out; 9254 9255 if (rq->nr_running >= 2 || rq->misfit_task_load) { 9256 flags = NOHZ_KICK_MASK; 9257 goto out; 9258 } 9259 9260 rcu_read_lock(); 9261 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu)); 9262 if (sds) { 9263 /* 9264 * XXX: write a coherent comment on why we do this. 9265 * See also: http://lkml.kernel.org/r/20111202010832.602203411@sbsiddha-desk.sc.intel.com 9266 */ 9267 nr_busy = atomic_read(&sds->nr_busy_cpus); 9268 if (nr_busy > 1) { 9269 flags = NOHZ_KICK_MASK; 9270 goto unlock; 9271 } 9272 9273 } 9274 9275 sd = rcu_dereference(rq->sd); 9276 if (sd) { 9277 if ((rq->cfs.h_nr_running >= 1) && 9278 check_cpu_capacity(rq, sd)) { 9279 flags = NOHZ_KICK_MASK; 9280 goto unlock; 9281 } 9282 } 9283 9284 sd = rcu_dereference(per_cpu(sd_asym, cpu)); 9285 if (sd) { 9286 for_each_cpu(i, sched_domain_span(sd)) { 9287 if (i == cpu || 9288 !cpumask_test_cpu(i, nohz.idle_cpus_mask)) 9289 continue; 9290 9291 if (sched_asym_prefer(i, cpu)) { 9292 flags = NOHZ_KICK_MASK; 9293 goto unlock; 9294 } 9295 } 9296 } 9297 unlock: 9298 rcu_read_unlock(); 9299 out: 9300 if (flags) 9301 kick_ilb(flags); 9302 } 9303 9304 static void set_cpu_sd_state_busy(int cpu) 9305 { 9306 struct sched_domain *sd; 9307 9308 rcu_read_lock(); 9309 sd = rcu_dereference(per_cpu(sd_llc, cpu)); 9310 9311 if (!sd || !sd->nohz_idle) 9312 goto unlock; 9313 sd->nohz_idle = 0; 9314 9315 atomic_inc(&sd->shared->nr_busy_cpus); 9316 unlock: 9317 rcu_read_unlock(); 9318 } 9319 9320 void nohz_balance_exit_idle(struct rq *rq) 9321 { 9322 SCHED_WARN_ON(rq != this_rq()); 9323 9324 if (likely(!rq->nohz_tick_stopped)) 9325 return; 9326 9327 rq->nohz_tick_stopped = 0; 9328 cpumask_clear_cpu(rq->cpu, nohz.idle_cpus_mask); 9329 atomic_dec(&nohz.nr_cpus); 9330 9331 set_cpu_sd_state_busy(rq->cpu); 9332 } 9333 9334 static void set_cpu_sd_state_idle(int cpu) 9335 { 9336 struct sched_domain *sd; 9337 9338 rcu_read_lock(); 9339 sd = rcu_dereference(per_cpu(sd_llc, cpu)); 9340 9341 if (!sd || sd->nohz_idle) 9342 goto unlock; 9343 sd->nohz_idle = 1; 9344 9345 atomic_dec(&sd->shared->nr_busy_cpus); 9346 unlock: 9347 rcu_read_unlock(); 9348 } 9349 9350 /* 9351 * This routine will record that the CPU is going idle with tick stopped. 9352 * This info will be used in performing idle load balancing in the future. 9353 */ 9354 void nohz_balance_enter_idle(int cpu) 9355 { 9356 struct rq *rq = cpu_rq(cpu); 9357 9358 SCHED_WARN_ON(cpu != smp_processor_id()); 9359 9360 /* If this CPU is going down, then nothing needs to be done: */ 9361 if (!cpu_active(cpu)) 9362 return; 9363 9364 /* Spare idle load balancing on CPUs that don't want to be disturbed: */ 9365 if (!housekeeping_cpu(cpu, HK_FLAG_SCHED)) 9366 return; 9367 9368 /* 9369 * Can be set safely without rq->lock held 9370 * If a clear happens, it will have evaluated last additions because 9371 * rq->lock is held during the check and the clear 9372 */ 9373 rq->has_blocked_load = 1; 9374 9375 /* 9376 * The tick is still stopped but load could have been added in the 9377 * meantime. We set the nohz.has_blocked flag to trig a check of the 9378 * *_avg. The CPU is already part of nohz.idle_cpus_mask so the clear 9379 * of nohz.has_blocked can only happen after checking the new load 9380 */ 9381 if (rq->nohz_tick_stopped) 9382 goto out; 9383 9384 /* If we're a completely isolated CPU, we don't play: */ 9385 if (on_null_domain(rq)) 9386 return; 9387 9388 rq->nohz_tick_stopped = 1; 9389 9390 cpumask_set_cpu(cpu, nohz.idle_cpus_mask); 9391 atomic_inc(&nohz.nr_cpus); 9392 9393 /* 9394 * Ensures that if nohz_idle_balance() fails to observe our 9395 * @idle_cpus_mask store, it must observe the @has_blocked 9396 * store. 9397 */ 9398 smp_mb__after_atomic(); 9399 9400 set_cpu_sd_state_idle(cpu); 9401 9402 out: 9403 /* 9404 * Each time a cpu enter idle, we assume that it has blocked load and 9405 * enable the periodic update of the load of idle cpus 9406 */ 9407 WRITE_ONCE(nohz.has_blocked, 1); 9408 } 9409 9410 /* 9411 * Internal function that runs load balance for all idle cpus. The load balance 9412 * can be a simple update of blocked load or a complete load balance with 9413 * tasks movement depending of flags. 9414 * The function returns false if the loop has stopped before running 9415 * through all idle CPUs. 9416 */ 9417 static bool _nohz_idle_balance(struct rq *this_rq, unsigned int flags, 9418 enum cpu_idle_type idle) 9419 { 9420 /* Earliest time when we have to do rebalance again */ 9421 unsigned long now = jiffies; 9422 unsigned long next_balance = now + 60*HZ; 9423 bool has_blocked_load = false; 9424 int update_next_balance = 0; 9425 int this_cpu = this_rq->cpu; 9426 int balance_cpu; 9427 int ret = false; 9428 struct rq *rq; 9429 9430 SCHED_WARN_ON((flags & NOHZ_KICK_MASK) == NOHZ_BALANCE_KICK); 9431 9432 /* 9433 * We assume there will be no idle load after this update and clear 9434 * the has_blocked flag. If a cpu enters idle in the mean time, it will 9435 * set the has_blocked flag and trig another update of idle load. 9436 * Because a cpu that becomes idle, is added to idle_cpus_mask before 9437 * setting the flag, we are sure to not clear the state and not 9438 * check the load of an idle cpu. 9439 */ 9440 WRITE_ONCE(nohz.has_blocked, 0); 9441 9442 /* 9443 * Ensures that if we miss the CPU, we must see the has_blocked 9444 * store from nohz_balance_enter_idle(). 9445 */ 9446 smp_mb(); 9447 9448 for_each_cpu(balance_cpu, nohz.idle_cpus_mask) { 9449 if (balance_cpu == this_cpu || !idle_cpu(balance_cpu)) 9450 continue; 9451 9452 /* 9453 * If this CPU gets work to do, stop the load balancing 9454 * work being done for other CPUs. Next load 9455 * balancing owner will pick it up. 9456 */ 9457 if (need_resched()) { 9458 has_blocked_load = true; 9459 goto abort; 9460 } 9461 9462 rq = cpu_rq(balance_cpu); 9463 9464 has_blocked_load |= update_nohz_stats(rq, true); 9465 9466 /* 9467 * If time for next balance is due, 9468 * do the balance. 9469 */ 9470 if (time_after_eq(jiffies, rq->next_balance)) { 9471 struct rq_flags rf; 9472 9473 rq_lock_irqsave(rq, &rf); 9474 update_rq_clock(rq); 9475 cpu_load_update_idle(rq); 9476 rq_unlock_irqrestore(rq, &rf); 9477 9478 if (flags & NOHZ_BALANCE_KICK) 9479 rebalance_domains(rq, CPU_IDLE); 9480 } 9481 9482 if (time_after(next_balance, rq->next_balance)) { 9483 next_balance = rq->next_balance; 9484 update_next_balance = 1; 9485 } 9486 } 9487 9488 /* Newly idle CPU doesn't need an update */ 9489 if (idle != CPU_NEWLY_IDLE) { 9490 update_blocked_averages(this_cpu); 9491 has_blocked_load |= this_rq->has_blocked_load; 9492 } 9493 9494 if (flags & NOHZ_BALANCE_KICK) 9495 rebalance_domains(this_rq, CPU_IDLE); 9496 9497 WRITE_ONCE(nohz.next_blocked, 9498 now + msecs_to_jiffies(LOAD_AVG_PERIOD)); 9499 9500 /* The full idle balance loop has been done */ 9501 ret = true; 9502 9503 abort: 9504 /* There is still blocked load, enable periodic update */ 9505 if (has_blocked_load) 9506 WRITE_ONCE(nohz.has_blocked, 1); 9507 9508 /* 9509 * next_balance will be updated only when there is a need. 9510 * When the CPU is attached to null domain for ex, it will not be 9511 * updated. 9512 */ 9513 if (likely(update_next_balance)) 9514 nohz.next_balance = next_balance; 9515 9516 return ret; 9517 } 9518 9519 /* 9520 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the 9521 * rebalancing for all the cpus for whom scheduler ticks are stopped. 9522 */ 9523 static bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) 9524 { 9525 int this_cpu = this_rq->cpu; 9526 unsigned int flags; 9527 9528 if (!(atomic_read(nohz_flags(this_cpu)) & NOHZ_KICK_MASK)) 9529 return false; 9530 9531 if (idle != CPU_IDLE) { 9532 atomic_andnot(NOHZ_KICK_MASK, nohz_flags(this_cpu)); 9533 return false; 9534 } 9535 9536 /* 9537 * barrier, pairs with nohz_balance_enter_idle(), ensures ... 9538 */ 9539 flags = atomic_fetch_andnot(NOHZ_KICK_MASK, nohz_flags(this_cpu)); 9540 if (!(flags & NOHZ_KICK_MASK)) 9541 return false; 9542 9543 _nohz_idle_balance(this_rq, flags, idle); 9544 9545 return true; 9546 } 9547 9548 static void nohz_newidle_balance(struct rq *this_rq) 9549 { 9550 int this_cpu = this_rq->cpu; 9551 9552 /* 9553 * This CPU doesn't want to be disturbed by scheduler 9554 * housekeeping 9555 */ 9556 if (!housekeeping_cpu(this_cpu, HK_FLAG_SCHED)) 9557 return; 9558 9559 /* Will wake up very soon. No time for doing anything else*/ 9560 if (this_rq->avg_idle < sysctl_sched_migration_cost) 9561 return; 9562 9563 /* Don't need to update blocked load of idle CPUs*/ 9564 if (!READ_ONCE(nohz.has_blocked) || 9565 time_before(jiffies, READ_ONCE(nohz.next_blocked))) 9566 return; 9567 9568 raw_spin_unlock(&this_rq->lock); 9569 /* 9570 * This CPU is going to be idle and blocked load of idle CPUs 9571 * need to be updated. Run the ilb locally as it is a good 9572 * candidate for ilb instead of waking up another idle CPU. 9573 * Kick an normal ilb if we failed to do the update. 9574 */ 9575 if (!_nohz_idle_balance(this_rq, NOHZ_STATS_KICK, CPU_NEWLY_IDLE)) 9576 kick_ilb(NOHZ_STATS_KICK); 9577 raw_spin_lock(&this_rq->lock); 9578 } 9579 9580 #else /* !CONFIG_NO_HZ_COMMON */ 9581 static inline void nohz_balancer_kick(struct rq *rq) { } 9582 9583 static inline bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) 9584 { 9585 return false; 9586 } 9587 9588 static inline void nohz_newidle_balance(struct rq *this_rq) { } 9589 #endif /* CONFIG_NO_HZ_COMMON */ 9590 9591 /* 9592 * idle_balance is called by schedule() if this_cpu is about to become 9593 * idle. Attempts to pull tasks from other CPUs. 9594 */ 9595 static int idle_balance(struct rq *this_rq, struct rq_flags *rf) 9596 { 9597 unsigned long next_balance = jiffies + HZ; 9598 int this_cpu = this_rq->cpu; 9599 struct sched_domain *sd; 9600 int pulled_task = 0; 9601 u64 curr_cost = 0; 9602 9603 /* 9604 * We must set idle_stamp _before_ calling idle_balance(), such that we 9605 * measure the duration of idle_balance() as idle time. 9606 */ 9607 this_rq->idle_stamp = rq_clock(this_rq); 9608 9609 /* 9610 * Do not pull tasks towards !active CPUs... 9611 */ 9612 if (!cpu_active(this_cpu)) 9613 return 0; 9614 9615 /* 9616 * This is OK, because current is on_cpu, which avoids it being picked 9617 * for load-balance and preemption/IRQs are still disabled avoiding 9618 * further scheduler activity on it and we're being very careful to 9619 * re-start the picking loop. 9620 */ 9621 rq_unpin_lock(this_rq, rf); 9622 9623 if (this_rq->avg_idle < sysctl_sched_migration_cost || 9624 !READ_ONCE(this_rq->rd->overload)) { 9625 9626 rcu_read_lock(); 9627 sd = rcu_dereference_check_sched_domain(this_rq->sd); 9628 if (sd) 9629 update_next_balance(sd, &next_balance); 9630 rcu_read_unlock(); 9631 9632 nohz_newidle_balance(this_rq); 9633 9634 goto out; 9635 } 9636 9637 raw_spin_unlock(&this_rq->lock); 9638 9639 update_blocked_averages(this_cpu); 9640 rcu_read_lock(); 9641 for_each_domain(this_cpu, sd) { 9642 int continue_balancing = 1; 9643 u64 t0, domain_cost; 9644 9645 if (!(sd->flags & SD_LOAD_BALANCE)) 9646 continue; 9647 9648 if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) { 9649 update_next_balance(sd, &next_balance); 9650 break; 9651 } 9652 9653 if (sd->flags & SD_BALANCE_NEWIDLE) { 9654 t0 = sched_clock_cpu(this_cpu); 9655 9656 pulled_task = load_balance(this_cpu, this_rq, 9657 sd, CPU_NEWLY_IDLE, 9658 &continue_balancing); 9659 9660 domain_cost = sched_clock_cpu(this_cpu) - t0; 9661 if (domain_cost > sd->max_newidle_lb_cost) 9662 sd->max_newidle_lb_cost = domain_cost; 9663 9664 curr_cost += domain_cost; 9665 } 9666 9667 update_next_balance(sd, &next_balance); 9668 9669 /* 9670 * Stop searching for tasks to pull if there are 9671 * now runnable tasks on this rq. 9672 */ 9673 if (pulled_task || this_rq->nr_running > 0) 9674 break; 9675 } 9676 rcu_read_unlock(); 9677 9678 raw_spin_lock(&this_rq->lock); 9679 9680 if (curr_cost > this_rq->max_idle_balance_cost) 9681 this_rq->max_idle_balance_cost = curr_cost; 9682 9683 out: 9684 /* 9685 * While browsing the domains, we released the rq lock, a task could 9686 * have been enqueued in the meantime. Since we're not going idle, 9687 * pretend we pulled a task. 9688 */ 9689 if (this_rq->cfs.h_nr_running && !pulled_task) 9690 pulled_task = 1; 9691 9692 /* Move the next balance forward */ 9693 if (time_after(this_rq->next_balance, next_balance)) 9694 this_rq->next_balance = next_balance; 9695 9696 /* Is there a task of a high priority class? */ 9697 if (this_rq->nr_running != this_rq->cfs.h_nr_running) 9698 pulled_task = -1; 9699 9700 if (pulled_task) 9701 this_rq->idle_stamp = 0; 9702 9703 rq_repin_lock(this_rq, rf); 9704 9705 return pulled_task; 9706 } 9707 9708 /* 9709 * run_rebalance_domains is triggered when needed from the scheduler tick. 9710 * Also triggered for nohz idle balancing (with nohz_balancing_kick set). 9711 */ 9712 static __latent_entropy void run_rebalance_domains(struct softirq_action *h) 9713 { 9714 struct rq *this_rq = this_rq(); 9715 enum cpu_idle_type idle = this_rq->idle_balance ? 9716 CPU_IDLE : CPU_NOT_IDLE; 9717 9718 /* 9719 * If this CPU has a pending nohz_balance_kick, then do the 9720 * balancing on behalf of the other idle CPUs whose ticks are 9721 * stopped. Do nohz_idle_balance *before* rebalance_domains to 9722 * give the idle CPUs a chance to load balance. Else we may 9723 * load balance only within the local sched_domain hierarchy 9724 * and abort nohz_idle_balance altogether if we pull some load. 9725 */ 9726 if (nohz_idle_balance(this_rq, idle)) 9727 return; 9728 9729 /* normal load balance */ 9730 update_blocked_averages(this_rq->cpu); 9731 rebalance_domains(this_rq, idle); 9732 } 9733 9734 /* 9735 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing. 9736 */ 9737 void trigger_load_balance(struct rq *rq) 9738 { 9739 /* Don't need to rebalance while attached to NULL domain */ 9740 if (unlikely(on_null_domain(rq))) 9741 return; 9742 9743 if (time_after_eq(jiffies, rq->next_balance)) 9744 raise_softirq(SCHED_SOFTIRQ); 9745 9746 nohz_balancer_kick(rq); 9747 } 9748 9749 static void rq_online_fair(struct rq *rq) 9750 { 9751 update_sysctl(); 9752 9753 update_runtime_enabled(rq); 9754 } 9755 9756 static void rq_offline_fair(struct rq *rq) 9757 { 9758 update_sysctl(); 9759 9760 /* Ensure any throttled groups are reachable by pick_next_task */ 9761 unthrottle_offline_cfs_rqs(rq); 9762 } 9763 9764 #endif /* CONFIG_SMP */ 9765 9766 /* 9767 * scheduler tick hitting a task of our scheduling class. 9768 * 9769 * NOTE: This function can be called remotely by the tick offload that 9770 * goes along full dynticks. Therefore no local assumption can be made 9771 * and everything must be accessed through the @rq and @curr passed in 9772 * parameters. 9773 */ 9774 static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued) 9775 { 9776 struct cfs_rq *cfs_rq; 9777 struct sched_entity *se = &curr->se; 9778 9779 for_each_sched_entity(se) { 9780 cfs_rq = cfs_rq_of(se); 9781 entity_tick(cfs_rq, se, queued); 9782 } 9783 9784 if (static_branch_unlikely(&sched_numa_balancing)) 9785 task_tick_numa(rq, curr); 9786 9787 update_misfit_status(curr, rq); 9788 } 9789 9790 /* 9791 * called on fork with the child task as argument from the parent's context 9792 * - child not yet on the tasklist 9793 * - preemption disabled 9794 */ 9795 static void task_fork_fair(struct task_struct *p) 9796 { 9797 struct cfs_rq *cfs_rq; 9798 struct sched_entity *se = &p->se, *curr; 9799 struct rq *rq = this_rq(); 9800 struct rq_flags rf; 9801 9802 rq_lock(rq, &rf); 9803 update_rq_clock(rq); 9804 9805 cfs_rq = task_cfs_rq(current); 9806 curr = cfs_rq->curr; 9807 if (curr) { 9808 update_curr(cfs_rq); 9809 se->vruntime = curr->vruntime; 9810 } 9811 place_entity(cfs_rq, se, 1); 9812 9813 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) { 9814 /* 9815 * Upon rescheduling, sched_class::put_prev_task() will place 9816 * 'current' within the tree based on its new key value. 9817 */ 9818 swap(curr->vruntime, se->vruntime); 9819 resched_curr(rq); 9820 } 9821 9822 se->vruntime -= cfs_rq->min_vruntime; 9823 rq_unlock(rq, &rf); 9824 } 9825 9826 /* 9827 * Priority of the task has changed. Check to see if we preempt 9828 * the current task. 9829 */ 9830 static void 9831 prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio) 9832 { 9833 if (!task_on_rq_queued(p)) 9834 return; 9835 9836 /* 9837 * Reschedule if we are currently running on this runqueue and 9838 * our priority decreased, or if we are not currently running on 9839 * this runqueue and our priority is higher than the current's 9840 */ 9841 if (rq->curr == p) { 9842 if (p->prio > oldprio) 9843 resched_curr(rq); 9844 } else 9845 check_preempt_curr(rq, p, 0); 9846 } 9847 9848 static inline bool vruntime_normalized(struct task_struct *p) 9849 { 9850 struct sched_entity *se = &p->se; 9851 9852 /* 9853 * In both the TASK_ON_RQ_QUEUED and TASK_ON_RQ_MIGRATING cases, 9854 * the dequeue_entity(.flags=0) will already have normalized the 9855 * vruntime. 9856 */ 9857 if (p->on_rq) 9858 return true; 9859 9860 /* 9861 * When !on_rq, vruntime of the task has usually NOT been normalized. 9862 * But there are some cases where it has already been normalized: 9863 * 9864 * - A forked child which is waiting for being woken up by 9865 * wake_up_new_task(). 9866 * - A task which has been woken up by try_to_wake_up() and 9867 * waiting for actually being woken up by sched_ttwu_pending(). 9868 */ 9869 if (!se->sum_exec_runtime || 9870 (p->state == TASK_WAKING && p->sched_remote_wakeup)) 9871 return true; 9872 9873 return false; 9874 } 9875 9876 #ifdef CONFIG_FAIR_GROUP_SCHED 9877 /* 9878 * Propagate the changes of the sched_entity across the tg tree to make it 9879 * visible to the root 9880 */ 9881 static void propagate_entity_cfs_rq(struct sched_entity *se) 9882 { 9883 struct cfs_rq *cfs_rq; 9884 9885 /* Start to propagate at parent */ 9886 se = se->parent; 9887 9888 for_each_sched_entity(se) { 9889 cfs_rq = cfs_rq_of(se); 9890 9891 if (cfs_rq_throttled(cfs_rq)) 9892 break; 9893 9894 update_load_avg(cfs_rq, se, UPDATE_TG); 9895 } 9896 } 9897 #else 9898 static void propagate_entity_cfs_rq(struct sched_entity *se) { } 9899 #endif 9900 9901 static void detach_entity_cfs_rq(struct sched_entity *se) 9902 { 9903 struct cfs_rq *cfs_rq = cfs_rq_of(se); 9904 9905 /* Catch up with the cfs_rq and remove our load when we leave */ 9906 update_load_avg(cfs_rq, se, 0); 9907 detach_entity_load_avg(cfs_rq, se); 9908 update_tg_load_avg(cfs_rq, false); 9909 propagate_entity_cfs_rq(se); 9910 } 9911 9912 static void attach_entity_cfs_rq(struct sched_entity *se) 9913 { 9914 struct cfs_rq *cfs_rq = cfs_rq_of(se); 9915 9916 #ifdef CONFIG_FAIR_GROUP_SCHED 9917 /* 9918 * Since the real-depth could have been changed (only FAIR 9919 * class maintain depth value), reset depth properly. 9920 */ 9921 se->depth = se->parent ? se->parent->depth + 1 : 0; 9922 #endif 9923 9924 /* Synchronize entity with its cfs_rq */ 9925 update_load_avg(cfs_rq, se, sched_feat(ATTACH_AGE_LOAD) ? 0 : SKIP_AGE_LOAD); 9926 attach_entity_load_avg(cfs_rq, se, 0); 9927 update_tg_load_avg(cfs_rq, false); 9928 propagate_entity_cfs_rq(se); 9929 } 9930 9931 static void detach_task_cfs_rq(struct task_struct *p) 9932 { 9933 struct sched_entity *se = &p->se; 9934 struct cfs_rq *cfs_rq = cfs_rq_of(se); 9935 9936 if (!vruntime_normalized(p)) { 9937 /* 9938 * Fix up our vruntime so that the current sleep doesn't 9939 * cause 'unlimited' sleep bonus. 9940 */ 9941 place_entity(cfs_rq, se, 0); 9942 se->vruntime -= cfs_rq->min_vruntime; 9943 } 9944 9945 detach_entity_cfs_rq(se); 9946 } 9947 9948 static void attach_task_cfs_rq(struct task_struct *p) 9949 { 9950 struct sched_entity *se = &p->se; 9951 struct cfs_rq *cfs_rq = cfs_rq_of(se); 9952 9953 attach_entity_cfs_rq(se); 9954 9955 if (!vruntime_normalized(p)) 9956 se->vruntime += cfs_rq->min_vruntime; 9957 } 9958 9959 static void switched_from_fair(struct rq *rq, struct task_struct *p) 9960 { 9961 detach_task_cfs_rq(p); 9962 } 9963 9964 static void switched_to_fair(struct rq *rq, struct task_struct *p) 9965 { 9966 attach_task_cfs_rq(p); 9967 9968 if (task_on_rq_queued(p)) { 9969 /* 9970 * We were most likely switched from sched_rt, so 9971 * kick off the schedule if running, otherwise just see 9972 * if we can still preempt the current task. 9973 */ 9974 if (rq->curr == p) 9975 resched_curr(rq); 9976 else 9977 check_preempt_curr(rq, p, 0); 9978 } 9979 } 9980 9981 /* Account for a task changing its policy or group. 9982 * 9983 * This routine is mostly called to set cfs_rq->curr field when a task 9984 * migrates between groups/classes. 9985 */ 9986 static void set_curr_task_fair(struct rq *rq) 9987 { 9988 struct sched_entity *se = &rq->curr->se; 9989 9990 for_each_sched_entity(se) { 9991 struct cfs_rq *cfs_rq = cfs_rq_of(se); 9992 9993 set_next_entity(cfs_rq, se); 9994 /* ensure bandwidth has been allocated on our new cfs_rq */ 9995 account_cfs_rq_runtime(cfs_rq, 0); 9996 } 9997 } 9998 9999 void init_cfs_rq(struct cfs_rq *cfs_rq) 10000 { 10001 cfs_rq->tasks_timeline = RB_ROOT_CACHED; 10002 cfs_rq->min_vruntime = (u64)(-(1LL << 20)); 10003 #ifndef CONFIG_64BIT 10004 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime; 10005 #endif 10006 #ifdef CONFIG_SMP 10007 raw_spin_lock_init(&cfs_rq->removed.lock); 10008 #endif 10009 } 10010 10011 #ifdef CONFIG_FAIR_GROUP_SCHED 10012 static void task_set_group_fair(struct task_struct *p) 10013 { 10014 struct sched_entity *se = &p->se; 10015 10016 set_task_rq(p, task_cpu(p)); 10017 se->depth = se->parent ? se->parent->depth + 1 : 0; 10018 } 10019 10020 static void task_move_group_fair(struct task_struct *p) 10021 { 10022 detach_task_cfs_rq(p); 10023 set_task_rq(p, task_cpu(p)); 10024 10025 #ifdef CONFIG_SMP 10026 /* Tell se's cfs_rq has been changed -- migrated */ 10027 p->se.avg.last_update_time = 0; 10028 #endif 10029 attach_task_cfs_rq(p); 10030 } 10031 10032 static void task_change_group_fair(struct task_struct *p, int type) 10033 { 10034 switch (type) { 10035 case TASK_SET_GROUP: 10036 task_set_group_fair(p); 10037 break; 10038 10039 case TASK_MOVE_GROUP: 10040 task_move_group_fair(p); 10041 break; 10042 } 10043 } 10044 10045 void free_fair_sched_group(struct task_group *tg) 10046 { 10047 int i; 10048 10049 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg)); 10050 10051 for_each_possible_cpu(i) { 10052 if (tg->cfs_rq) 10053 kfree(tg->cfs_rq[i]); 10054 if (tg->se) 10055 kfree(tg->se[i]); 10056 } 10057 10058 kfree(tg->cfs_rq); 10059 kfree(tg->se); 10060 } 10061 10062 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent) 10063 { 10064 struct sched_entity *se; 10065 struct cfs_rq *cfs_rq; 10066 int i; 10067 10068 tg->cfs_rq = kcalloc(nr_cpu_ids, sizeof(cfs_rq), GFP_KERNEL); 10069 if (!tg->cfs_rq) 10070 goto err; 10071 tg->se = kcalloc(nr_cpu_ids, sizeof(se), GFP_KERNEL); 10072 if (!tg->se) 10073 goto err; 10074 10075 tg->shares = NICE_0_LOAD; 10076 10077 init_cfs_bandwidth(tg_cfs_bandwidth(tg)); 10078 10079 for_each_possible_cpu(i) { 10080 cfs_rq = kzalloc_node(sizeof(struct cfs_rq), 10081 GFP_KERNEL, cpu_to_node(i)); 10082 if (!cfs_rq) 10083 goto err; 10084 10085 se = kzalloc_node(sizeof(struct sched_entity), 10086 GFP_KERNEL, cpu_to_node(i)); 10087 if (!se) 10088 goto err_free_rq; 10089 10090 init_cfs_rq(cfs_rq); 10091 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]); 10092 init_entity_runnable_average(se); 10093 } 10094 10095 return 1; 10096 10097 err_free_rq: 10098 kfree(cfs_rq); 10099 err: 10100 return 0; 10101 } 10102 10103 void online_fair_sched_group(struct task_group *tg) 10104 { 10105 struct sched_entity *se; 10106 struct rq *rq; 10107 int i; 10108 10109 for_each_possible_cpu(i) { 10110 rq = cpu_rq(i); 10111 se = tg->se[i]; 10112 10113 raw_spin_lock_irq(&rq->lock); 10114 update_rq_clock(rq); 10115 attach_entity_cfs_rq(se); 10116 sync_throttle(tg, i); 10117 raw_spin_unlock_irq(&rq->lock); 10118 } 10119 } 10120 10121 void unregister_fair_sched_group(struct task_group *tg) 10122 { 10123 unsigned long flags; 10124 struct rq *rq; 10125 int cpu; 10126 10127 for_each_possible_cpu(cpu) { 10128 if (tg->se[cpu]) 10129 remove_entity_load_avg(tg->se[cpu]); 10130 10131 /* 10132 * Only empty task groups can be destroyed; so we can speculatively 10133 * check on_list without danger of it being re-added. 10134 */ 10135 if (!tg->cfs_rq[cpu]->on_list) 10136 continue; 10137 10138 rq = cpu_rq(cpu); 10139 10140 raw_spin_lock_irqsave(&rq->lock, flags); 10141 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]); 10142 raw_spin_unlock_irqrestore(&rq->lock, flags); 10143 } 10144 } 10145 10146 void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq, 10147 struct sched_entity *se, int cpu, 10148 struct sched_entity *parent) 10149 { 10150 struct rq *rq = cpu_rq(cpu); 10151 10152 cfs_rq->tg = tg; 10153 cfs_rq->rq = rq; 10154 init_cfs_rq_runtime(cfs_rq); 10155 10156 tg->cfs_rq[cpu] = cfs_rq; 10157 tg->se[cpu] = se; 10158 10159 /* se could be NULL for root_task_group */ 10160 if (!se) 10161 return; 10162 10163 if (!parent) { 10164 se->cfs_rq = &rq->cfs; 10165 se->depth = 0; 10166 } else { 10167 se->cfs_rq = parent->my_q; 10168 se->depth = parent->depth + 1; 10169 } 10170 10171 se->my_q = cfs_rq; 10172 /* guarantee group entities always have weight */ 10173 update_load_set(&se->load, NICE_0_LOAD); 10174 se->parent = parent; 10175 } 10176 10177 static DEFINE_MUTEX(shares_mutex); 10178 10179 int sched_group_set_shares(struct task_group *tg, unsigned long shares) 10180 { 10181 int i; 10182 10183 /* 10184 * We can't change the weight of the root cgroup. 10185 */ 10186 if (!tg->se[0]) 10187 return -EINVAL; 10188 10189 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES)); 10190 10191 mutex_lock(&shares_mutex); 10192 if (tg->shares == shares) 10193 goto done; 10194 10195 tg->shares = shares; 10196 for_each_possible_cpu(i) { 10197 struct rq *rq = cpu_rq(i); 10198 struct sched_entity *se = tg->se[i]; 10199 struct rq_flags rf; 10200 10201 /* Propagate contribution to hierarchy */ 10202 rq_lock_irqsave(rq, &rf); 10203 update_rq_clock(rq); 10204 for_each_sched_entity(se) { 10205 update_load_avg(cfs_rq_of(se), se, UPDATE_TG); 10206 update_cfs_group(se); 10207 } 10208 rq_unlock_irqrestore(rq, &rf); 10209 } 10210 10211 done: 10212 mutex_unlock(&shares_mutex); 10213 return 0; 10214 } 10215 #else /* CONFIG_FAIR_GROUP_SCHED */ 10216 10217 void free_fair_sched_group(struct task_group *tg) { } 10218 10219 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent) 10220 { 10221 return 1; 10222 } 10223 10224 void online_fair_sched_group(struct task_group *tg) { } 10225 10226 void unregister_fair_sched_group(struct task_group *tg) { } 10227 10228 #endif /* CONFIG_FAIR_GROUP_SCHED */ 10229 10230 10231 static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task) 10232 { 10233 struct sched_entity *se = &task->se; 10234 unsigned int rr_interval = 0; 10235 10236 /* 10237 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise 10238 * idle runqueue: 10239 */ 10240 if (rq->cfs.load.weight) 10241 rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se)); 10242 10243 return rr_interval; 10244 } 10245 10246 /* 10247 * All the scheduling class methods: 10248 */ 10249 const struct sched_class fair_sched_class = { 10250 .next = &idle_sched_class, 10251 .enqueue_task = enqueue_task_fair, 10252 .dequeue_task = dequeue_task_fair, 10253 .yield_task = yield_task_fair, 10254 .yield_to_task = yield_to_task_fair, 10255 10256 .check_preempt_curr = check_preempt_wakeup, 10257 10258 .pick_next_task = pick_next_task_fair, 10259 .put_prev_task = put_prev_task_fair, 10260 10261 #ifdef CONFIG_SMP 10262 .select_task_rq = select_task_rq_fair, 10263 .migrate_task_rq = migrate_task_rq_fair, 10264 10265 .rq_online = rq_online_fair, 10266 .rq_offline = rq_offline_fair, 10267 10268 .task_dead = task_dead_fair, 10269 .set_cpus_allowed = set_cpus_allowed_common, 10270 #endif 10271 10272 .set_curr_task = set_curr_task_fair, 10273 .task_tick = task_tick_fair, 10274 .task_fork = task_fork_fair, 10275 10276 .prio_changed = prio_changed_fair, 10277 .switched_from = switched_from_fair, 10278 .switched_to = switched_to_fair, 10279 10280 .get_rr_interval = get_rr_interval_fair, 10281 10282 .update_curr = update_curr_fair, 10283 10284 #ifdef CONFIG_FAIR_GROUP_SCHED 10285 .task_change_group = task_change_group_fair, 10286 #endif 10287 }; 10288 10289 #ifdef CONFIG_SCHED_DEBUG 10290 void print_cfs_stats(struct seq_file *m, int cpu) 10291 { 10292 struct cfs_rq *cfs_rq, *pos; 10293 10294 rcu_read_lock(); 10295 for_each_leaf_cfs_rq_safe(cpu_rq(cpu), cfs_rq, pos) 10296 print_cfs_rq(m, cpu, cfs_rq); 10297 rcu_read_unlock(); 10298 } 10299 10300 #ifdef CONFIG_NUMA_BALANCING 10301 void show_numa_stats(struct task_struct *p, struct seq_file *m) 10302 { 10303 int node; 10304 unsigned long tsf = 0, tpf = 0, gsf = 0, gpf = 0; 10305 10306 for_each_online_node(node) { 10307 if (p->numa_faults) { 10308 tsf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 0)]; 10309 tpf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 1)]; 10310 } 10311 if (p->numa_group) { 10312 gsf = p->numa_group->faults[task_faults_idx(NUMA_MEM, node, 0)], 10313 gpf = p->numa_group->faults[task_faults_idx(NUMA_MEM, node, 1)]; 10314 } 10315 print_numa_stats(m, node, tsf, tpf, gsf, gpf); 10316 } 10317 } 10318 #endif /* CONFIG_NUMA_BALANCING */ 10319 #endif /* CONFIG_SCHED_DEBUG */ 10320 10321 __init void init_sched_fair_class(void) 10322 { 10323 #ifdef CONFIG_SMP 10324 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains); 10325 10326 #ifdef CONFIG_NO_HZ_COMMON 10327 nohz.next_balance = jiffies; 10328 nohz.next_blocked = jiffies; 10329 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT); 10330 #endif 10331 #endif /* SMP */ 10332 10333 } 10334