1 /* 2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH) 3 * 4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com> 5 * 6 * Interactivity improvements by Mike Galbraith 7 * (C) 2007 Mike Galbraith <efault@gmx.de> 8 * 9 * Various enhancements by Dmitry Adamushko. 10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com> 11 * 12 * Group scheduling enhancements by Srivatsa Vaddagiri 13 * Copyright IBM Corporation, 2007 14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com> 15 * 16 * Scaled math optimizations by Thomas Gleixner 17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de> 18 * 19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra 20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com> 21 */ 22 23 #include <linux/latencytop.h> 24 #include <linux/sched.h> 25 #include <linux/cpumask.h> 26 #include <linux/slab.h> 27 #include <linux/profile.h> 28 #include <linux/interrupt.h> 29 #include <linux/mempolicy.h> 30 #include <linux/migrate.h> 31 #include <linux/task_work.h> 32 33 #include <trace/events/sched.h> 34 35 #include "sched.h" 36 37 /* 38 * Targeted preemption latency for CPU-bound tasks: 39 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds) 40 * 41 * NOTE: this latency value is not the same as the concept of 42 * 'timeslice length' - timeslices in CFS are of variable length 43 * and have no persistent notion like in traditional, time-slice 44 * based scheduling concepts. 45 * 46 * (to see the precise effective timeslice length of your workload, 47 * run vmstat and monitor the context-switches (cs) field) 48 */ 49 unsigned int sysctl_sched_latency = 6000000ULL; 50 unsigned int normalized_sysctl_sched_latency = 6000000ULL; 51 52 /* 53 * The initial- and re-scaling of tunables is configurable 54 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus)) 55 * 56 * Options are: 57 * SCHED_TUNABLESCALING_NONE - unscaled, always *1 58 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus) 59 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus 60 */ 61 enum sched_tunable_scaling sysctl_sched_tunable_scaling 62 = SCHED_TUNABLESCALING_LOG; 63 64 /* 65 * Minimal preemption granularity for CPU-bound tasks: 66 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds) 67 */ 68 unsigned int sysctl_sched_min_granularity = 750000ULL; 69 unsigned int normalized_sysctl_sched_min_granularity = 750000ULL; 70 71 /* 72 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity 73 */ 74 static unsigned int sched_nr_latency = 8; 75 76 /* 77 * After fork, child runs first. If set to 0 (default) then 78 * parent will (try to) run first. 79 */ 80 unsigned int sysctl_sched_child_runs_first __read_mostly; 81 82 /* 83 * SCHED_OTHER wake-up granularity. 84 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds) 85 * 86 * This option delays the preemption effects of decoupled workloads 87 * and reduces their over-scheduling. Synchronous workloads will still 88 * have immediate wakeup/sleep latencies. 89 */ 90 unsigned int sysctl_sched_wakeup_granularity = 1000000UL; 91 unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL; 92 93 const_debug unsigned int sysctl_sched_migration_cost = 500000UL; 94 95 /* 96 * The exponential sliding window over which load is averaged for shares 97 * distribution. 98 * (default: 10msec) 99 */ 100 unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL; 101 102 #ifdef CONFIG_CFS_BANDWIDTH 103 /* 104 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool 105 * each time a cfs_rq requests quota. 106 * 107 * Note: in the case that the slice exceeds the runtime remaining (either due 108 * to consumption or the quota being specified to be smaller than the slice) 109 * we will always only issue the remaining available time. 110 * 111 * default: 5 msec, units: microseconds 112 */ 113 unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL; 114 #endif 115 116 static inline void update_load_add(struct load_weight *lw, unsigned long inc) 117 { 118 lw->weight += inc; 119 lw->inv_weight = 0; 120 } 121 122 static inline void update_load_sub(struct load_weight *lw, unsigned long dec) 123 { 124 lw->weight -= dec; 125 lw->inv_weight = 0; 126 } 127 128 static inline void update_load_set(struct load_weight *lw, unsigned long w) 129 { 130 lw->weight = w; 131 lw->inv_weight = 0; 132 } 133 134 /* 135 * Increase the granularity value when there are more CPUs, 136 * because with more CPUs the 'effective latency' as visible 137 * to users decreases. But the relationship is not linear, 138 * so pick a second-best guess by going with the log2 of the 139 * number of CPUs. 140 * 141 * This idea comes from the SD scheduler of Con Kolivas: 142 */ 143 static int get_update_sysctl_factor(void) 144 { 145 unsigned int cpus = min_t(int, num_online_cpus(), 8); 146 unsigned int factor; 147 148 switch (sysctl_sched_tunable_scaling) { 149 case SCHED_TUNABLESCALING_NONE: 150 factor = 1; 151 break; 152 case SCHED_TUNABLESCALING_LINEAR: 153 factor = cpus; 154 break; 155 case SCHED_TUNABLESCALING_LOG: 156 default: 157 factor = 1 + ilog2(cpus); 158 break; 159 } 160 161 return factor; 162 } 163 164 static void update_sysctl(void) 165 { 166 unsigned int factor = get_update_sysctl_factor(); 167 168 #define SET_SYSCTL(name) \ 169 (sysctl_##name = (factor) * normalized_sysctl_##name) 170 SET_SYSCTL(sched_min_granularity); 171 SET_SYSCTL(sched_latency); 172 SET_SYSCTL(sched_wakeup_granularity); 173 #undef SET_SYSCTL 174 } 175 176 void sched_init_granularity(void) 177 { 178 update_sysctl(); 179 } 180 181 #define WMULT_CONST (~0U) 182 #define WMULT_SHIFT 32 183 184 static void __update_inv_weight(struct load_weight *lw) 185 { 186 unsigned long w; 187 188 if (likely(lw->inv_weight)) 189 return; 190 191 w = scale_load_down(lw->weight); 192 193 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST)) 194 lw->inv_weight = 1; 195 else if (unlikely(!w)) 196 lw->inv_weight = WMULT_CONST; 197 else 198 lw->inv_weight = WMULT_CONST / w; 199 } 200 201 /* 202 * delta_exec * weight / lw.weight 203 * OR 204 * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT 205 * 206 * Either weight := NICE_0_LOAD and lw \e prio_to_wmult[], in which case 207 * we're guaranteed shift stays positive because inv_weight is guaranteed to 208 * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22. 209 * 210 * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus 211 * weight/lw.weight <= 1, and therefore our shift will also be positive. 212 */ 213 static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw) 214 { 215 u64 fact = scale_load_down(weight); 216 int shift = WMULT_SHIFT; 217 218 __update_inv_weight(lw); 219 220 if (unlikely(fact >> 32)) { 221 while (fact >> 32) { 222 fact >>= 1; 223 shift--; 224 } 225 } 226 227 /* hint to use a 32x32->64 mul */ 228 fact = (u64)(u32)fact * lw->inv_weight; 229 230 while (fact >> 32) { 231 fact >>= 1; 232 shift--; 233 } 234 235 return mul_u64_u32_shr(delta_exec, fact, shift); 236 } 237 238 239 const struct sched_class fair_sched_class; 240 241 /************************************************************** 242 * CFS operations on generic schedulable entities: 243 */ 244 245 #ifdef CONFIG_FAIR_GROUP_SCHED 246 247 /* cpu runqueue to which this cfs_rq is attached */ 248 static inline struct rq *rq_of(struct cfs_rq *cfs_rq) 249 { 250 return cfs_rq->rq; 251 } 252 253 /* An entity is a task if it doesn't "own" a runqueue */ 254 #define entity_is_task(se) (!se->my_q) 255 256 static inline struct task_struct *task_of(struct sched_entity *se) 257 { 258 #ifdef CONFIG_SCHED_DEBUG 259 WARN_ON_ONCE(!entity_is_task(se)); 260 #endif 261 return container_of(se, struct task_struct, se); 262 } 263 264 /* Walk up scheduling entities hierarchy */ 265 #define for_each_sched_entity(se) \ 266 for (; se; se = se->parent) 267 268 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p) 269 { 270 return p->se.cfs_rq; 271 } 272 273 /* runqueue on which this entity is (to be) queued */ 274 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se) 275 { 276 return se->cfs_rq; 277 } 278 279 /* runqueue "owned" by this group */ 280 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp) 281 { 282 return grp->my_q; 283 } 284 285 static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq, 286 int force_update); 287 288 static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq) 289 { 290 if (!cfs_rq->on_list) { 291 /* 292 * Ensure we either appear before our parent (if already 293 * enqueued) or force our parent to appear after us when it is 294 * enqueued. The fact that we always enqueue bottom-up 295 * reduces this to two cases. 296 */ 297 if (cfs_rq->tg->parent && 298 cfs_rq->tg->parent->cfs_rq[cpu_of(rq_of(cfs_rq))]->on_list) { 299 list_add_rcu(&cfs_rq->leaf_cfs_rq_list, 300 &rq_of(cfs_rq)->leaf_cfs_rq_list); 301 } else { 302 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list, 303 &rq_of(cfs_rq)->leaf_cfs_rq_list); 304 } 305 306 cfs_rq->on_list = 1; 307 /* We should have no load, but we need to update last_decay. */ 308 update_cfs_rq_blocked_load(cfs_rq, 0); 309 } 310 } 311 312 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq) 313 { 314 if (cfs_rq->on_list) { 315 list_del_rcu(&cfs_rq->leaf_cfs_rq_list); 316 cfs_rq->on_list = 0; 317 } 318 } 319 320 /* Iterate thr' all leaf cfs_rq's on a runqueue */ 321 #define for_each_leaf_cfs_rq(rq, cfs_rq) \ 322 list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list) 323 324 /* Do the two (enqueued) entities belong to the same group ? */ 325 static inline struct cfs_rq * 326 is_same_group(struct sched_entity *se, struct sched_entity *pse) 327 { 328 if (se->cfs_rq == pse->cfs_rq) 329 return se->cfs_rq; 330 331 return NULL; 332 } 333 334 static inline struct sched_entity *parent_entity(struct sched_entity *se) 335 { 336 return se->parent; 337 } 338 339 static void 340 find_matching_se(struct sched_entity **se, struct sched_entity **pse) 341 { 342 int se_depth, pse_depth; 343 344 /* 345 * preemption test can be made between sibling entities who are in the 346 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of 347 * both tasks until we find their ancestors who are siblings of common 348 * parent. 349 */ 350 351 /* First walk up until both entities are at same depth */ 352 se_depth = (*se)->depth; 353 pse_depth = (*pse)->depth; 354 355 while (se_depth > pse_depth) { 356 se_depth--; 357 *se = parent_entity(*se); 358 } 359 360 while (pse_depth > se_depth) { 361 pse_depth--; 362 *pse = parent_entity(*pse); 363 } 364 365 while (!is_same_group(*se, *pse)) { 366 *se = parent_entity(*se); 367 *pse = parent_entity(*pse); 368 } 369 } 370 371 #else /* !CONFIG_FAIR_GROUP_SCHED */ 372 373 static inline struct task_struct *task_of(struct sched_entity *se) 374 { 375 return container_of(se, struct task_struct, se); 376 } 377 378 static inline struct rq *rq_of(struct cfs_rq *cfs_rq) 379 { 380 return container_of(cfs_rq, struct rq, cfs); 381 } 382 383 #define entity_is_task(se) 1 384 385 #define for_each_sched_entity(se) \ 386 for (; se; se = NULL) 387 388 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p) 389 { 390 return &task_rq(p)->cfs; 391 } 392 393 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se) 394 { 395 struct task_struct *p = task_of(se); 396 struct rq *rq = task_rq(p); 397 398 return &rq->cfs; 399 } 400 401 /* runqueue "owned" by this group */ 402 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp) 403 { 404 return NULL; 405 } 406 407 static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq) 408 { 409 } 410 411 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq) 412 { 413 } 414 415 #define for_each_leaf_cfs_rq(rq, cfs_rq) \ 416 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL) 417 418 static inline struct sched_entity *parent_entity(struct sched_entity *se) 419 { 420 return NULL; 421 } 422 423 static inline void 424 find_matching_se(struct sched_entity **se, struct sched_entity **pse) 425 { 426 } 427 428 #endif /* CONFIG_FAIR_GROUP_SCHED */ 429 430 static __always_inline 431 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec); 432 433 /************************************************************** 434 * Scheduling class tree data structure manipulation methods: 435 */ 436 437 static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime) 438 { 439 s64 delta = (s64)(vruntime - max_vruntime); 440 if (delta > 0) 441 max_vruntime = vruntime; 442 443 return max_vruntime; 444 } 445 446 static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime) 447 { 448 s64 delta = (s64)(vruntime - min_vruntime); 449 if (delta < 0) 450 min_vruntime = vruntime; 451 452 return min_vruntime; 453 } 454 455 static inline int entity_before(struct sched_entity *a, 456 struct sched_entity *b) 457 { 458 return (s64)(a->vruntime - b->vruntime) < 0; 459 } 460 461 static void update_min_vruntime(struct cfs_rq *cfs_rq) 462 { 463 u64 vruntime = cfs_rq->min_vruntime; 464 465 if (cfs_rq->curr) 466 vruntime = cfs_rq->curr->vruntime; 467 468 if (cfs_rq->rb_leftmost) { 469 struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost, 470 struct sched_entity, 471 run_node); 472 473 if (!cfs_rq->curr) 474 vruntime = se->vruntime; 475 else 476 vruntime = min_vruntime(vruntime, se->vruntime); 477 } 478 479 /* ensure we never gain time by being placed backwards. */ 480 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime); 481 #ifndef CONFIG_64BIT 482 smp_wmb(); 483 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime; 484 #endif 485 } 486 487 /* 488 * Enqueue an entity into the rb-tree: 489 */ 490 static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) 491 { 492 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node; 493 struct rb_node *parent = NULL; 494 struct sched_entity *entry; 495 int leftmost = 1; 496 497 /* 498 * Find the right place in the rbtree: 499 */ 500 while (*link) { 501 parent = *link; 502 entry = rb_entry(parent, struct sched_entity, run_node); 503 /* 504 * We dont care about collisions. Nodes with 505 * the same key stay together. 506 */ 507 if (entity_before(se, entry)) { 508 link = &parent->rb_left; 509 } else { 510 link = &parent->rb_right; 511 leftmost = 0; 512 } 513 } 514 515 /* 516 * Maintain a cache of leftmost tree entries (it is frequently 517 * used): 518 */ 519 if (leftmost) 520 cfs_rq->rb_leftmost = &se->run_node; 521 522 rb_link_node(&se->run_node, parent, link); 523 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline); 524 } 525 526 static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) 527 { 528 if (cfs_rq->rb_leftmost == &se->run_node) { 529 struct rb_node *next_node; 530 531 next_node = rb_next(&se->run_node); 532 cfs_rq->rb_leftmost = next_node; 533 } 534 535 rb_erase(&se->run_node, &cfs_rq->tasks_timeline); 536 } 537 538 struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq) 539 { 540 struct rb_node *left = cfs_rq->rb_leftmost; 541 542 if (!left) 543 return NULL; 544 545 return rb_entry(left, struct sched_entity, run_node); 546 } 547 548 static struct sched_entity *__pick_next_entity(struct sched_entity *se) 549 { 550 struct rb_node *next = rb_next(&se->run_node); 551 552 if (!next) 553 return NULL; 554 555 return rb_entry(next, struct sched_entity, run_node); 556 } 557 558 #ifdef CONFIG_SCHED_DEBUG 559 struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq) 560 { 561 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline); 562 563 if (!last) 564 return NULL; 565 566 return rb_entry(last, struct sched_entity, run_node); 567 } 568 569 /************************************************************** 570 * Scheduling class statistics methods: 571 */ 572 573 int sched_proc_update_handler(struct ctl_table *table, int write, 574 void __user *buffer, size_t *lenp, 575 loff_t *ppos) 576 { 577 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 578 int factor = get_update_sysctl_factor(); 579 580 if (ret || !write) 581 return ret; 582 583 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency, 584 sysctl_sched_min_granularity); 585 586 #define WRT_SYSCTL(name) \ 587 (normalized_sysctl_##name = sysctl_##name / (factor)) 588 WRT_SYSCTL(sched_min_granularity); 589 WRT_SYSCTL(sched_latency); 590 WRT_SYSCTL(sched_wakeup_granularity); 591 #undef WRT_SYSCTL 592 593 return 0; 594 } 595 #endif 596 597 /* 598 * delta /= w 599 */ 600 static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se) 601 { 602 if (unlikely(se->load.weight != NICE_0_LOAD)) 603 delta = __calc_delta(delta, NICE_0_LOAD, &se->load); 604 605 return delta; 606 } 607 608 /* 609 * The idea is to set a period in which each task runs once. 610 * 611 * When there are too many tasks (sched_nr_latency) we have to stretch 612 * this period because otherwise the slices get too small. 613 * 614 * p = (nr <= nl) ? l : l*nr/nl 615 */ 616 static u64 __sched_period(unsigned long nr_running) 617 { 618 u64 period = sysctl_sched_latency; 619 unsigned long nr_latency = sched_nr_latency; 620 621 if (unlikely(nr_running > nr_latency)) { 622 period = sysctl_sched_min_granularity; 623 period *= nr_running; 624 } 625 626 return period; 627 } 628 629 /* 630 * We calculate the wall-time slice from the period by taking a part 631 * proportional to the weight. 632 * 633 * s = p*P[w/rw] 634 */ 635 static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se) 636 { 637 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq); 638 639 for_each_sched_entity(se) { 640 struct load_weight *load; 641 struct load_weight lw; 642 643 cfs_rq = cfs_rq_of(se); 644 load = &cfs_rq->load; 645 646 if (unlikely(!se->on_rq)) { 647 lw = cfs_rq->load; 648 649 update_load_add(&lw, se->load.weight); 650 load = &lw; 651 } 652 slice = __calc_delta(slice, se->load.weight, load); 653 } 654 return slice; 655 } 656 657 /* 658 * We calculate the vruntime slice of a to-be-inserted task. 659 * 660 * vs = s/w 661 */ 662 static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se) 663 { 664 return calc_delta_fair(sched_slice(cfs_rq, se), se); 665 } 666 667 #ifdef CONFIG_SMP 668 static unsigned long task_h_load(struct task_struct *p); 669 670 static inline void __update_task_entity_contrib(struct sched_entity *se); 671 672 /* Give new task start runnable values to heavy its load in infant time */ 673 void init_task_runnable_average(struct task_struct *p) 674 { 675 u32 slice; 676 677 p->se.avg.decay_count = 0; 678 slice = sched_slice(task_cfs_rq(p), &p->se) >> 10; 679 p->se.avg.runnable_avg_sum = slice; 680 p->se.avg.runnable_avg_period = slice; 681 __update_task_entity_contrib(&p->se); 682 } 683 #else 684 void init_task_runnable_average(struct task_struct *p) 685 { 686 } 687 #endif 688 689 /* 690 * Update the current task's runtime statistics. 691 */ 692 static void update_curr(struct cfs_rq *cfs_rq) 693 { 694 struct sched_entity *curr = cfs_rq->curr; 695 u64 now = rq_clock_task(rq_of(cfs_rq)); 696 u64 delta_exec; 697 698 if (unlikely(!curr)) 699 return; 700 701 delta_exec = now - curr->exec_start; 702 if (unlikely((s64)delta_exec <= 0)) 703 return; 704 705 curr->exec_start = now; 706 707 schedstat_set(curr->statistics.exec_max, 708 max(delta_exec, curr->statistics.exec_max)); 709 710 curr->sum_exec_runtime += delta_exec; 711 schedstat_add(cfs_rq, exec_clock, delta_exec); 712 713 curr->vruntime += calc_delta_fair(delta_exec, curr); 714 update_min_vruntime(cfs_rq); 715 716 if (entity_is_task(curr)) { 717 struct task_struct *curtask = task_of(curr); 718 719 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime); 720 cpuacct_charge(curtask, delta_exec); 721 account_group_exec_runtime(curtask, delta_exec); 722 } 723 724 account_cfs_rq_runtime(cfs_rq, delta_exec); 725 } 726 727 static inline void 728 update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se) 729 { 730 schedstat_set(se->statistics.wait_start, rq_clock(rq_of(cfs_rq))); 731 } 732 733 /* 734 * Task is being enqueued - update stats: 735 */ 736 static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se) 737 { 738 /* 739 * Are we enqueueing a waiting task? (for current tasks 740 * a dequeue/enqueue event is a NOP) 741 */ 742 if (se != cfs_rq->curr) 743 update_stats_wait_start(cfs_rq, se); 744 } 745 746 static void 747 update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se) 748 { 749 schedstat_set(se->statistics.wait_max, max(se->statistics.wait_max, 750 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start)); 751 schedstat_set(se->statistics.wait_count, se->statistics.wait_count + 1); 752 schedstat_set(se->statistics.wait_sum, se->statistics.wait_sum + 753 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start); 754 #ifdef CONFIG_SCHEDSTATS 755 if (entity_is_task(se)) { 756 trace_sched_stat_wait(task_of(se), 757 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start); 758 } 759 #endif 760 schedstat_set(se->statistics.wait_start, 0); 761 } 762 763 static inline void 764 update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se) 765 { 766 /* 767 * Mark the end of the wait period if dequeueing a 768 * waiting task: 769 */ 770 if (se != cfs_rq->curr) 771 update_stats_wait_end(cfs_rq, se); 772 } 773 774 /* 775 * We are picking a new current task - update its stats: 776 */ 777 static inline void 778 update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se) 779 { 780 /* 781 * We are starting a new run period: 782 */ 783 se->exec_start = rq_clock_task(rq_of(cfs_rq)); 784 } 785 786 /************************************************** 787 * Scheduling class queueing methods: 788 */ 789 790 #ifdef CONFIG_NUMA_BALANCING 791 /* 792 * Approximate time to scan a full NUMA task in ms. The task scan period is 793 * calculated based on the tasks virtual memory size and 794 * numa_balancing_scan_size. 795 */ 796 unsigned int sysctl_numa_balancing_scan_period_min = 1000; 797 unsigned int sysctl_numa_balancing_scan_period_max = 60000; 798 799 /* Portion of address space to scan in MB */ 800 unsigned int sysctl_numa_balancing_scan_size = 256; 801 802 /* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */ 803 unsigned int sysctl_numa_balancing_scan_delay = 1000; 804 805 static unsigned int task_nr_scan_windows(struct task_struct *p) 806 { 807 unsigned long rss = 0; 808 unsigned long nr_scan_pages; 809 810 /* 811 * Calculations based on RSS as non-present and empty pages are skipped 812 * by the PTE scanner and NUMA hinting faults should be trapped based 813 * on resident pages 814 */ 815 nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT); 816 rss = get_mm_rss(p->mm); 817 if (!rss) 818 rss = nr_scan_pages; 819 820 rss = round_up(rss, nr_scan_pages); 821 return rss / nr_scan_pages; 822 } 823 824 /* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */ 825 #define MAX_SCAN_WINDOW 2560 826 827 static unsigned int task_scan_min(struct task_struct *p) 828 { 829 unsigned int scan, floor; 830 unsigned int windows = 1; 831 832 if (sysctl_numa_balancing_scan_size < MAX_SCAN_WINDOW) 833 windows = MAX_SCAN_WINDOW / sysctl_numa_balancing_scan_size; 834 floor = 1000 / windows; 835 836 scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p); 837 return max_t(unsigned int, floor, scan); 838 } 839 840 static unsigned int task_scan_max(struct task_struct *p) 841 { 842 unsigned int smin = task_scan_min(p); 843 unsigned int smax; 844 845 /* Watch for min being lower than max due to floor calculations */ 846 smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p); 847 return max(smin, smax); 848 } 849 850 static void account_numa_enqueue(struct rq *rq, struct task_struct *p) 851 { 852 rq->nr_numa_running += (p->numa_preferred_nid != -1); 853 rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p)); 854 } 855 856 static void account_numa_dequeue(struct rq *rq, struct task_struct *p) 857 { 858 rq->nr_numa_running -= (p->numa_preferred_nid != -1); 859 rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p)); 860 } 861 862 struct numa_group { 863 atomic_t refcount; 864 865 spinlock_t lock; /* nr_tasks, tasks */ 866 int nr_tasks; 867 pid_t gid; 868 struct list_head task_list; 869 870 struct rcu_head rcu; 871 nodemask_t active_nodes; 872 unsigned long total_faults; 873 /* 874 * Faults_cpu is used to decide whether memory should move 875 * towards the CPU. As a consequence, these stats are weighted 876 * more by CPU use than by memory faults. 877 */ 878 unsigned long *faults_cpu; 879 unsigned long faults[0]; 880 }; 881 882 /* Shared or private faults. */ 883 #define NR_NUMA_HINT_FAULT_TYPES 2 884 885 /* Memory and CPU locality */ 886 #define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2) 887 888 /* Averaged statistics, and temporary buffers. */ 889 #define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2) 890 891 pid_t task_numa_group_id(struct task_struct *p) 892 { 893 return p->numa_group ? p->numa_group->gid : 0; 894 } 895 896 static inline int task_faults_idx(int nid, int priv) 897 { 898 return NR_NUMA_HINT_FAULT_TYPES * nid + priv; 899 } 900 901 static inline unsigned long task_faults(struct task_struct *p, int nid) 902 { 903 if (!p->numa_faults_memory) 904 return 0; 905 906 return p->numa_faults_memory[task_faults_idx(nid, 0)] + 907 p->numa_faults_memory[task_faults_idx(nid, 1)]; 908 } 909 910 static inline unsigned long group_faults(struct task_struct *p, int nid) 911 { 912 if (!p->numa_group) 913 return 0; 914 915 return p->numa_group->faults[task_faults_idx(nid, 0)] + 916 p->numa_group->faults[task_faults_idx(nid, 1)]; 917 } 918 919 static inline unsigned long group_faults_cpu(struct numa_group *group, int nid) 920 { 921 return group->faults_cpu[task_faults_idx(nid, 0)] + 922 group->faults_cpu[task_faults_idx(nid, 1)]; 923 } 924 925 /* 926 * These return the fraction of accesses done by a particular task, or 927 * task group, on a particular numa node. The group weight is given a 928 * larger multiplier, in order to group tasks together that are almost 929 * evenly spread out between numa nodes. 930 */ 931 static inline unsigned long task_weight(struct task_struct *p, int nid) 932 { 933 unsigned long total_faults; 934 935 if (!p->numa_faults_memory) 936 return 0; 937 938 total_faults = p->total_numa_faults; 939 940 if (!total_faults) 941 return 0; 942 943 return 1000 * task_faults(p, nid) / total_faults; 944 } 945 946 static inline unsigned long group_weight(struct task_struct *p, int nid) 947 { 948 if (!p->numa_group || !p->numa_group->total_faults) 949 return 0; 950 951 return 1000 * group_faults(p, nid) / p->numa_group->total_faults; 952 } 953 954 bool should_numa_migrate_memory(struct task_struct *p, struct page * page, 955 int src_nid, int dst_cpu) 956 { 957 struct numa_group *ng = p->numa_group; 958 int dst_nid = cpu_to_node(dst_cpu); 959 int last_cpupid, this_cpupid; 960 961 this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid); 962 963 /* 964 * Multi-stage node selection is used in conjunction with a periodic 965 * migration fault to build a temporal task<->page relation. By using 966 * a two-stage filter we remove short/unlikely relations. 967 * 968 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate 969 * a task's usage of a particular page (n_p) per total usage of this 970 * page (n_t) (in a given time-span) to a probability. 971 * 972 * Our periodic faults will sample this probability and getting the 973 * same result twice in a row, given these samples are fully 974 * independent, is then given by P(n)^2, provided our sample period 975 * is sufficiently short compared to the usage pattern. 976 * 977 * This quadric squishes small probabilities, making it less likely we 978 * act on an unlikely task<->page relation. 979 */ 980 last_cpupid = page_cpupid_xchg_last(page, this_cpupid); 981 if (!cpupid_pid_unset(last_cpupid) && 982 cpupid_to_nid(last_cpupid) != dst_nid) 983 return false; 984 985 /* Always allow migrate on private faults */ 986 if (cpupid_match_pid(p, last_cpupid)) 987 return true; 988 989 /* A shared fault, but p->numa_group has not been set up yet. */ 990 if (!ng) 991 return true; 992 993 /* 994 * Do not migrate if the destination is not a node that 995 * is actively used by this numa group. 996 */ 997 if (!node_isset(dst_nid, ng->active_nodes)) 998 return false; 999 1000 /* 1001 * Source is a node that is not actively used by this 1002 * numa group, while the destination is. Migrate. 1003 */ 1004 if (!node_isset(src_nid, ng->active_nodes)) 1005 return true; 1006 1007 /* 1008 * Both source and destination are nodes in active 1009 * use by this numa group. Maximize memory bandwidth 1010 * by migrating from more heavily used groups, to less 1011 * heavily used ones, spreading the load around. 1012 * Use a 1/4 hysteresis to avoid spurious page movement. 1013 */ 1014 return group_faults(p, dst_nid) < (group_faults(p, src_nid) * 3 / 4); 1015 } 1016 1017 static unsigned long weighted_cpuload(const int cpu); 1018 static unsigned long source_load(int cpu, int type); 1019 static unsigned long target_load(int cpu, int type); 1020 static unsigned long capacity_of(int cpu); 1021 static long effective_load(struct task_group *tg, int cpu, long wl, long wg); 1022 1023 /* Cached statistics for all CPUs within a node */ 1024 struct numa_stats { 1025 unsigned long nr_running; 1026 unsigned long load; 1027 1028 /* Total compute capacity of CPUs on a node */ 1029 unsigned long compute_capacity; 1030 1031 /* Approximate capacity in terms of runnable tasks on a node */ 1032 unsigned long task_capacity; 1033 int has_free_capacity; 1034 }; 1035 1036 /* 1037 * XXX borrowed from update_sg_lb_stats 1038 */ 1039 static void update_numa_stats(struct numa_stats *ns, int nid) 1040 { 1041 int cpu, cpus = 0; 1042 1043 memset(ns, 0, sizeof(*ns)); 1044 for_each_cpu(cpu, cpumask_of_node(nid)) { 1045 struct rq *rq = cpu_rq(cpu); 1046 1047 ns->nr_running += rq->nr_running; 1048 ns->load += weighted_cpuload(cpu); 1049 ns->compute_capacity += capacity_of(cpu); 1050 1051 cpus++; 1052 } 1053 1054 /* 1055 * If we raced with hotplug and there are no CPUs left in our mask 1056 * the @ns structure is NULL'ed and task_numa_compare() will 1057 * not find this node attractive. 1058 * 1059 * We'll either bail at !has_free_capacity, or we'll detect a huge 1060 * imbalance and bail there. 1061 */ 1062 if (!cpus) 1063 return; 1064 1065 ns->task_capacity = 1066 DIV_ROUND_CLOSEST(ns->compute_capacity, SCHED_CAPACITY_SCALE); 1067 ns->has_free_capacity = (ns->nr_running < ns->task_capacity); 1068 } 1069 1070 struct task_numa_env { 1071 struct task_struct *p; 1072 1073 int src_cpu, src_nid; 1074 int dst_cpu, dst_nid; 1075 1076 struct numa_stats src_stats, dst_stats; 1077 1078 int imbalance_pct; 1079 1080 struct task_struct *best_task; 1081 long best_imp; 1082 int best_cpu; 1083 }; 1084 1085 static void task_numa_assign(struct task_numa_env *env, 1086 struct task_struct *p, long imp) 1087 { 1088 if (env->best_task) 1089 put_task_struct(env->best_task); 1090 if (p) 1091 get_task_struct(p); 1092 1093 env->best_task = p; 1094 env->best_imp = imp; 1095 env->best_cpu = env->dst_cpu; 1096 } 1097 1098 static bool load_too_imbalanced(long src_load, long dst_load, 1099 struct task_numa_env *env) 1100 { 1101 long imb, old_imb; 1102 long orig_src_load, orig_dst_load; 1103 long src_capacity, dst_capacity; 1104 1105 /* 1106 * The load is corrected for the CPU capacity available on each node. 1107 * 1108 * src_load dst_load 1109 * ------------ vs --------- 1110 * src_capacity dst_capacity 1111 */ 1112 src_capacity = env->src_stats.compute_capacity; 1113 dst_capacity = env->dst_stats.compute_capacity; 1114 1115 /* We care about the slope of the imbalance, not the direction. */ 1116 if (dst_load < src_load) 1117 swap(dst_load, src_load); 1118 1119 /* Is the difference below the threshold? */ 1120 imb = dst_load * src_capacity * 100 - 1121 src_load * dst_capacity * env->imbalance_pct; 1122 if (imb <= 0) 1123 return false; 1124 1125 /* 1126 * The imbalance is above the allowed threshold. 1127 * Compare it with the old imbalance. 1128 */ 1129 orig_src_load = env->src_stats.load; 1130 orig_dst_load = env->dst_stats.load; 1131 1132 if (orig_dst_load < orig_src_load) 1133 swap(orig_dst_load, orig_src_load); 1134 1135 old_imb = orig_dst_load * src_capacity * 100 - 1136 orig_src_load * dst_capacity * env->imbalance_pct; 1137 1138 /* Would this change make things worse? */ 1139 return (imb > old_imb); 1140 } 1141 1142 /* 1143 * This checks if the overall compute and NUMA accesses of the system would 1144 * be improved if the source tasks was migrated to the target dst_cpu taking 1145 * into account that it might be best if task running on the dst_cpu should 1146 * be exchanged with the source task 1147 */ 1148 static void task_numa_compare(struct task_numa_env *env, 1149 long taskimp, long groupimp) 1150 { 1151 struct rq *src_rq = cpu_rq(env->src_cpu); 1152 struct rq *dst_rq = cpu_rq(env->dst_cpu); 1153 struct task_struct *cur; 1154 long src_load, dst_load; 1155 long load; 1156 long imp = env->p->numa_group ? groupimp : taskimp; 1157 long moveimp = imp; 1158 1159 rcu_read_lock(); 1160 cur = ACCESS_ONCE(dst_rq->curr); 1161 if (cur->pid == 0) /* idle */ 1162 cur = NULL; 1163 1164 /* 1165 * "imp" is the fault differential for the source task between the 1166 * source and destination node. Calculate the total differential for 1167 * the source task and potential destination task. The more negative 1168 * the value is, the more rmeote accesses that would be expected to 1169 * be incurred if the tasks were swapped. 1170 */ 1171 if (cur) { 1172 /* Skip this swap candidate if cannot move to the source cpu */ 1173 if (!cpumask_test_cpu(env->src_cpu, tsk_cpus_allowed(cur))) 1174 goto unlock; 1175 1176 /* 1177 * If dst and source tasks are in the same NUMA group, or not 1178 * in any group then look only at task weights. 1179 */ 1180 if (cur->numa_group == env->p->numa_group) { 1181 imp = taskimp + task_weight(cur, env->src_nid) - 1182 task_weight(cur, env->dst_nid); 1183 /* 1184 * Add some hysteresis to prevent swapping the 1185 * tasks within a group over tiny differences. 1186 */ 1187 if (cur->numa_group) 1188 imp -= imp/16; 1189 } else { 1190 /* 1191 * Compare the group weights. If a task is all by 1192 * itself (not part of a group), use the task weight 1193 * instead. 1194 */ 1195 if (cur->numa_group) 1196 imp += group_weight(cur, env->src_nid) - 1197 group_weight(cur, env->dst_nid); 1198 else 1199 imp += task_weight(cur, env->src_nid) - 1200 task_weight(cur, env->dst_nid); 1201 } 1202 } 1203 1204 if (imp <= env->best_imp && moveimp <= env->best_imp) 1205 goto unlock; 1206 1207 if (!cur) { 1208 /* Is there capacity at our destination? */ 1209 if (env->src_stats.has_free_capacity && 1210 !env->dst_stats.has_free_capacity) 1211 goto unlock; 1212 1213 goto balance; 1214 } 1215 1216 /* Balance doesn't matter much if we're running a task per cpu */ 1217 if (imp > env->best_imp && src_rq->nr_running == 1 && 1218 dst_rq->nr_running == 1) 1219 goto assign; 1220 1221 /* 1222 * In the overloaded case, try and keep the load balanced. 1223 */ 1224 balance: 1225 load = task_h_load(env->p); 1226 dst_load = env->dst_stats.load + load; 1227 src_load = env->src_stats.load - load; 1228 1229 if (moveimp > imp && moveimp > env->best_imp) { 1230 /* 1231 * If the improvement from just moving env->p direction is 1232 * better than swapping tasks around, check if a move is 1233 * possible. Store a slightly smaller score than moveimp, 1234 * so an actually idle CPU will win. 1235 */ 1236 if (!load_too_imbalanced(src_load, dst_load, env)) { 1237 imp = moveimp - 1; 1238 cur = NULL; 1239 goto assign; 1240 } 1241 } 1242 1243 if (imp <= env->best_imp) 1244 goto unlock; 1245 1246 if (cur) { 1247 load = task_h_load(cur); 1248 dst_load -= load; 1249 src_load += load; 1250 } 1251 1252 if (load_too_imbalanced(src_load, dst_load, env)) 1253 goto unlock; 1254 1255 assign: 1256 task_numa_assign(env, cur, imp); 1257 unlock: 1258 rcu_read_unlock(); 1259 } 1260 1261 static void task_numa_find_cpu(struct task_numa_env *env, 1262 long taskimp, long groupimp) 1263 { 1264 int cpu; 1265 1266 for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) { 1267 /* Skip this CPU if the source task cannot migrate */ 1268 if (!cpumask_test_cpu(cpu, tsk_cpus_allowed(env->p))) 1269 continue; 1270 1271 env->dst_cpu = cpu; 1272 task_numa_compare(env, taskimp, groupimp); 1273 } 1274 } 1275 1276 static int task_numa_migrate(struct task_struct *p) 1277 { 1278 struct task_numa_env env = { 1279 .p = p, 1280 1281 .src_cpu = task_cpu(p), 1282 .src_nid = task_node(p), 1283 1284 .imbalance_pct = 112, 1285 1286 .best_task = NULL, 1287 .best_imp = 0, 1288 .best_cpu = -1 1289 }; 1290 struct sched_domain *sd; 1291 unsigned long taskweight, groupweight; 1292 int nid, ret; 1293 long taskimp, groupimp; 1294 1295 /* 1296 * Pick the lowest SD_NUMA domain, as that would have the smallest 1297 * imbalance and would be the first to start moving tasks about. 1298 * 1299 * And we want to avoid any moving of tasks about, as that would create 1300 * random movement of tasks -- counter the numa conditions we're trying 1301 * to satisfy here. 1302 */ 1303 rcu_read_lock(); 1304 sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu)); 1305 if (sd) 1306 env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2; 1307 rcu_read_unlock(); 1308 1309 /* 1310 * Cpusets can break the scheduler domain tree into smaller 1311 * balance domains, some of which do not cross NUMA boundaries. 1312 * Tasks that are "trapped" in such domains cannot be migrated 1313 * elsewhere, so there is no point in (re)trying. 1314 */ 1315 if (unlikely(!sd)) { 1316 p->numa_preferred_nid = task_node(p); 1317 return -EINVAL; 1318 } 1319 1320 taskweight = task_weight(p, env.src_nid); 1321 groupweight = group_weight(p, env.src_nid); 1322 update_numa_stats(&env.src_stats, env.src_nid); 1323 env.dst_nid = p->numa_preferred_nid; 1324 taskimp = task_weight(p, env.dst_nid) - taskweight; 1325 groupimp = group_weight(p, env.dst_nid) - groupweight; 1326 update_numa_stats(&env.dst_stats, env.dst_nid); 1327 1328 /* Try to find a spot on the preferred nid. */ 1329 task_numa_find_cpu(&env, taskimp, groupimp); 1330 1331 /* No space available on the preferred nid. Look elsewhere. */ 1332 if (env.best_cpu == -1) { 1333 for_each_online_node(nid) { 1334 if (nid == env.src_nid || nid == p->numa_preferred_nid) 1335 continue; 1336 1337 /* Only consider nodes where both task and groups benefit */ 1338 taskimp = task_weight(p, nid) - taskweight; 1339 groupimp = group_weight(p, nid) - groupweight; 1340 if (taskimp < 0 && groupimp < 0) 1341 continue; 1342 1343 env.dst_nid = nid; 1344 update_numa_stats(&env.dst_stats, env.dst_nid); 1345 task_numa_find_cpu(&env, taskimp, groupimp); 1346 } 1347 } 1348 1349 /* 1350 * If the task is part of a workload that spans multiple NUMA nodes, 1351 * and is migrating into one of the workload's active nodes, remember 1352 * this node as the task's preferred numa node, so the workload can 1353 * settle down. 1354 * A task that migrated to a second choice node will be better off 1355 * trying for a better one later. Do not set the preferred node here. 1356 */ 1357 if (p->numa_group) { 1358 if (env.best_cpu == -1) 1359 nid = env.src_nid; 1360 else 1361 nid = env.dst_nid; 1362 1363 if (node_isset(nid, p->numa_group->active_nodes)) 1364 sched_setnuma(p, env.dst_nid); 1365 } 1366 1367 /* No better CPU than the current one was found. */ 1368 if (env.best_cpu == -1) 1369 return -EAGAIN; 1370 1371 /* 1372 * Reset the scan period if the task is being rescheduled on an 1373 * alternative node to recheck if the tasks is now properly placed. 1374 */ 1375 p->numa_scan_period = task_scan_min(p); 1376 1377 if (env.best_task == NULL) { 1378 ret = migrate_task_to(p, env.best_cpu); 1379 if (ret != 0) 1380 trace_sched_stick_numa(p, env.src_cpu, env.best_cpu); 1381 return ret; 1382 } 1383 1384 ret = migrate_swap(p, env.best_task); 1385 if (ret != 0) 1386 trace_sched_stick_numa(p, env.src_cpu, task_cpu(env.best_task)); 1387 put_task_struct(env.best_task); 1388 return ret; 1389 } 1390 1391 /* Attempt to migrate a task to a CPU on the preferred node. */ 1392 static void numa_migrate_preferred(struct task_struct *p) 1393 { 1394 unsigned long interval = HZ; 1395 1396 /* This task has no NUMA fault statistics yet */ 1397 if (unlikely(p->numa_preferred_nid == -1 || !p->numa_faults_memory)) 1398 return; 1399 1400 /* Periodically retry migrating the task to the preferred node */ 1401 interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16); 1402 p->numa_migrate_retry = jiffies + interval; 1403 1404 /* Success if task is already running on preferred CPU */ 1405 if (task_node(p) == p->numa_preferred_nid) 1406 return; 1407 1408 /* Otherwise, try migrate to a CPU on the preferred node */ 1409 task_numa_migrate(p); 1410 } 1411 1412 /* 1413 * Find the nodes on which the workload is actively running. We do this by 1414 * tracking the nodes from which NUMA hinting faults are triggered. This can 1415 * be different from the set of nodes where the workload's memory is currently 1416 * located. 1417 * 1418 * The bitmask is used to make smarter decisions on when to do NUMA page 1419 * migrations, To prevent flip-flopping, and excessive page migrations, nodes 1420 * are added when they cause over 6/16 of the maximum number of faults, but 1421 * only removed when they drop below 3/16. 1422 */ 1423 static void update_numa_active_node_mask(struct numa_group *numa_group) 1424 { 1425 unsigned long faults, max_faults = 0; 1426 int nid; 1427 1428 for_each_online_node(nid) { 1429 faults = group_faults_cpu(numa_group, nid); 1430 if (faults > max_faults) 1431 max_faults = faults; 1432 } 1433 1434 for_each_online_node(nid) { 1435 faults = group_faults_cpu(numa_group, nid); 1436 if (!node_isset(nid, numa_group->active_nodes)) { 1437 if (faults > max_faults * 6 / 16) 1438 node_set(nid, numa_group->active_nodes); 1439 } else if (faults < max_faults * 3 / 16) 1440 node_clear(nid, numa_group->active_nodes); 1441 } 1442 } 1443 1444 /* 1445 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS 1446 * increments. The more local the fault statistics are, the higher the scan 1447 * period will be for the next scan window. If local/(local+remote) ratio is 1448 * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS) 1449 * the scan period will decrease. Aim for 70% local accesses. 1450 */ 1451 #define NUMA_PERIOD_SLOTS 10 1452 #define NUMA_PERIOD_THRESHOLD 7 1453 1454 /* 1455 * Increase the scan period (slow down scanning) if the majority of 1456 * our memory is already on our local node, or if the majority of 1457 * the page accesses are shared with other processes. 1458 * Otherwise, decrease the scan period. 1459 */ 1460 static void update_task_scan_period(struct task_struct *p, 1461 unsigned long shared, unsigned long private) 1462 { 1463 unsigned int period_slot; 1464 int ratio; 1465 int diff; 1466 1467 unsigned long remote = p->numa_faults_locality[0]; 1468 unsigned long local = p->numa_faults_locality[1]; 1469 1470 /* 1471 * If there were no record hinting faults then either the task is 1472 * completely idle or all activity is areas that are not of interest 1473 * to automatic numa balancing. Scan slower 1474 */ 1475 if (local + shared == 0) { 1476 p->numa_scan_period = min(p->numa_scan_period_max, 1477 p->numa_scan_period << 1); 1478 1479 p->mm->numa_next_scan = jiffies + 1480 msecs_to_jiffies(p->numa_scan_period); 1481 1482 return; 1483 } 1484 1485 /* 1486 * Prepare to scale scan period relative to the current period. 1487 * == NUMA_PERIOD_THRESHOLD scan period stays the same 1488 * < NUMA_PERIOD_THRESHOLD scan period decreases (scan faster) 1489 * >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower) 1490 */ 1491 period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS); 1492 ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote); 1493 if (ratio >= NUMA_PERIOD_THRESHOLD) { 1494 int slot = ratio - NUMA_PERIOD_THRESHOLD; 1495 if (!slot) 1496 slot = 1; 1497 diff = slot * period_slot; 1498 } else { 1499 diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot; 1500 1501 /* 1502 * Scale scan rate increases based on sharing. There is an 1503 * inverse relationship between the degree of sharing and 1504 * the adjustment made to the scanning period. Broadly 1505 * speaking the intent is that there is little point 1506 * scanning faster if shared accesses dominate as it may 1507 * simply bounce migrations uselessly 1508 */ 1509 ratio = DIV_ROUND_UP(private * NUMA_PERIOD_SLOTS, (private + shared)); 1510 diff = (diff * ratio) / NUMA_PERIOD_SLOTS; 1511 } 1512 1513 p->numa_scan_period = clamp(p->numa_scan_period + diff, 1514 task_scan_min(p), task_scan_max(p)); 1515 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality)); 1516 } 1517 1518 /* 1519 * Get the fraction of time the task has been running since the last 1520 * NUMA placement cycle. The scheduler keeps similar statistics, but 1521 * decays those on a 32ms period, which is orders of magnitude off 1522 * from the dozens-of-seconds NUMA balancing period. Use the scheduler 1523 * stats only if the task is so new there are no NUMA statistics yet. 1524 */ 1525 static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period) 1526 { 1527 u64 runtime, delta, now; 1528 /* Use the start of this time slice to avoid calculations. */ 1529 now = p->se.exec_start; 1530 runtime = p->se.sum_exec_runtime; 1531 1532 if (p->last_task_numa_placement) { 1533 delta = runtime - p->last_sum_exec_runtime; 1534 *period = now - p->last_task_numa_placement; 1535 } else { 1536 delta = p->se.avg.runnable_avg_sum; 1537 *period = p->se.avg.runnable_avg_period; 1538 } 1539 1540 p->last_sum_exec_runtime = runtime; 1541 p->last_task_numa_placement = now; 1542 1543 return delta; 1544 } 1545 1546 static void task_numa_placement(struct task_struct *p) 1547 { 1548 int seq, nid, max_nid = -1, max_group_nid = -1; 1549 unsigned long max_faults = 0, max_group_faults = 0; 1550 unsigned long fault_types[2] = { 0, 0 }; 1551 unsigned long total_faults; 1552 u64 runtime, period; 1553 spinlock_t *group_lock = NULL; 1554 1555 seq = ACCESS_ONCE(p->mm->numa_scan_seq); 1556 if (p->numa_scan_seq == seq) 1557 return; 1558 p->numa_scan_seq = seq; 1559 p->numa_scan_period_max = task_scan_max(p); 1560 1561 total_faults = p->numa_faults_locality[0] + 1562 p->numa_faults_locality[1]; 1563 runtime = numa_get_avg_runtime(p, &period); 1564 1565 /* If the task is part of a group prevent parallel updates to group stats */ 1566 if (p->numa_group) { 1567 group_lock = &p->numa_group->lock; 1568 spin_lock_irq(group_lock); 1569 } 1570 1571 /* Find the node with the highest number of faults */ 1572 for_each_online_node(nid) { 1573 unsigned long faults = 0, group_faults = 0; 1574 int priv, i; 1575 1576 for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) { 1577 long diff, f_diff, f_weight; 1578 1579 i = task_faults_idx(nid, priv); 1580 1581 /* Decay existing window, copy faults since last scan */ 1582 diff = p->numa_faults_buffer_memory[i] - p->numa_faults_memory[i] / 2; 1583 fault_types[priv] += p->numa_faults_buffer_memory[i]; 1584 p->numa_faults_buffer_memory[i] = 0; 1585 1586 /* 1587 * Normalize the faults_from, so all tasks in a group 1588 * count according to CPU use, instead of by the raw 1589 * number of faults. Tasks with little runtime have 1590 * little over-all impact on throughput, and thus their 1591 * faults are less important. 1592 */ 1593 f_weight = div64_u64(runtime << 16, period + 1); 1594 f_weight = (f_weight * p->numa_faults_buffer_cpu[i]) / 1595 (total_faults + 1); 1596 f_diff = f_weight - p->numa_faults_cpu[i] / 2; 1597 p->numa_faults_buffer_cpu[i] = 0; 1598 1599 p->numa_faults_memory[i] += diff; 1600 p->numa_faults_cpu[i] += f_diff; 1601 faults += p->numa_faults_memory[i]; 1602 p->total_numa_faults += diff; 1603 if (p->numa_group) { 1604 /* safe because we can only change our own group */ 1605 p->numa_group->faults[i] += diff; 1606 p->numa_group->faults_cpu[i] += f_diff; 1607 p->numa_group->total_faults += diff; 1608 group_faults += p->numa_group->faults[i]; 1609 } 1610 } 1611 1612 if (faults > max_faults) { 1613 max_faults = faults; 1614 max_nid = nid; 1615 } 1616 1617 if (group_faults > max_group_faults) { 1618 max_group_faults = group_faults; 1619 max_group_nid = nid; 1620 } 1621 } 1622 1623 update_task_scan_period(p, fault_types[0], fault_types[1]); 1624 1625 if (p->numa_group) { 1626 update_numa_active_node_mask(p->numa_group); 1627 spin_unlock_irq(group_lock); 1628 max_nid = max_group_nid; 1629 } 1630 1631 if (max_faults) { 1632 /* Set the new preferred node */ 1633 if (max_nid != p->numa_preferred_nid) 1634 sched_setnuma(p, max_nid); 1635 1636 if (task_node(p) != p->numa_preferred_nid) 1637 numa_migrate_preferred(p); 1638 } 1639 } 1640 1641 static inline int get_numa_group(struct numa_group *grp) 1642 { 1643 return atomic_inc_not_zero(&grp->refcount); 1644 } 1645 1646 static inline void put_numa_group(struct numa_group *grp) 1647 { 1648 if (atomic_dec_and_test(&grp->refcount)) 1649 kfree_rcu(grp, rcu); 1650 } 1651 1652 static void task_numa_group(struct task_struct *p, int cpupid, int flags, 1653 int *priv) 1654 { 1655 struct numa_group *grp, *my_grp; 1656 struct task_struct *tsk; 1657 bool join = false; 1658 int cpu = cpupid_to_cpu(cpupid); 1659 int i; 1660 1661 if (unlikely(!p->numa_group)) { 1662 unsigned int size = sizeof(struct numa_group) + 1663 4*nr_node_ids*sizeof(unsigned long); 1664 1665 grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN); 1666 if (!grp) 1667 return; 1668 1669 atomic_set(&grp->refcount, 1); 1670 spin_lock_init(&grp->lock); 1671 INIT_LIST_HEAD(&grp->task_list); 1672 grp->gid = p->pid; 1673 /* Second half of the array tracks nids where faults happen */ 1674 grp->faults_cpu = grp->faults + NR_NUMA_HINT_FAULT_TYPES * 1675 nr_node_ids; 1676 1677 node_set(task_node(current), grp->active_nodes); 1678 1679 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) 1680 grp->faults[i] = p->numa_faults_memory[i]; 1681 1682 grp->total_faults = p->total_numa_faults; 1683 1684 list_add(&p->numa_entry, &grp->task_list); 1685 grp->nr_tasks++; 1686 rcu_assign_pointer(p->numa_group, grp); 1687 } 1688 1689 rcu_read_lock(); 1690 tsk = ACCESS_ONCE(cpu_rq(cpu)->curr); 1691 1692 if (!cpupid_match_pid(tsk, cpupid)) 1693 goto no_join; 1694 1695 grp = rcu_dereference(tsk->numa_group); 1696 if (!grp) 1697 goto no_join; 1698 1699 my_grp = p->numa_group; 1700 if (grp == my_grp) 1701 goto no_join; 1702 1703 /* 1704 * Only join the other group if its bigger; if we're the bigger group, 1705 * the other task will join us. 1706 */ 1707 if (my_grp->nr_tasks > grp->nr_tasks) 1708 goto no_join; 1709 1710 /* 1711 * Tie-break on the grp address. 1712 */ 1713 if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp) 1714 goto no_join; 1715 1716 /* Always join threads in the same process. */ 1717 if (tsk->mm == current->mm) 1718 join = true; 1719 1720 /* Simple filter to avoid false positives due to PID collisions */ 1721 if (flags & TNF_SHARED) 1722 join = true; 1723 1724 /* Update priv based on whether false sharing was detected */ 1725 *priv = !join; 1726 1727 if (join && !get_numa_group(grp)) 1728 goto no_join; 1729 1730 rcu_read_unlock(); 1731 1732 if (!join) 1733 return; 1734 1735 BUG_ON(irqs_disabled()); 1736 double_lock_irq(&my_grp->lock, &grp->lock); 1737 1738 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) { 1739 my_grp->faults[i] -= p->numa_faults_memory[i]; 1740 grp->faults[i] += p->numa_faults_memory[i]; 1741 } 1742 my_grp->total_faults -= p->total_numa_faults; 1743 grp->total_faults += p->total_numa_faults; 1744 1745 list_move(&p->numa_entry, &grp->task_list); 1746 my_grp->nr_tasks--; 1747 grp->nr_tasks++; 1748 1749 spin_unlock(&my_grp->lock); 1750 spin_unlock_irq(&grp->lock); 1751 1752 rcu_assign_pointer(p->numa_group, grp); 1753 1754 put_numa_group(my_grp); 1755 return; 1756 1757 no_join: 1758 rcu_read_unlock(); 1759 return; 1760 } 1761 1762 void task_numa_free(struct task_struct *p) 1763 { 1764 struct numa_group *grp = p->numa_group; 1765 void *numa_faults = p->numa_faults_memory; 1766 unsigned long flags; 1767 int i; 1768 1769 if (grp) { 1770 spin_lock_irqsave(&grp->lock, flags); 1771 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) 1772 grp->faults[i] -= p->numa_faults_memory[i]; 1773 grp->total_faults -= p->total_numa_faults; 1774 1775 list_del(&p->numa_entry); 1776 grp->nr_tasks--; 1777 spin_unlock_irqrestore(&grp->lock, flags); 1778 rcu_assign_pointer(p->numa_group, NULL); 1779 put_numa_group(grp); 1780 } 1781 1782 p->numa_faults_memory = NULL; 1783 p->numa_faults_buffer_memory = NULL; 1784 p->numa_faults_cpu= NULL; 1785 p->numa_faults_buffer_cpu = NULL; 1786 kfree(numa_faults); 1787 } 1788 1789 /* 1790 * Got a PROT_NONE fault for a page on @node. 1791 */ 1792 void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags) 1793 { 1794 struct task_struct *p = current; 1795 bool migrated = flags & TNF_MIGRATED; 1796 int cpu_node = task_node(current); 1797 int local = !!(flags & TNF_FAULT_LOCAL); 1798 int priv; 1799 1800 if (!numabalancing_enabled) 1801 return; 1802 1803 /* for example, ksmd faulting in a user's mm */ 1804 if (!p->mm) 1805 return; 1806 1807 /* Do not worry about placement if exiting */ 1808 if (p->state == TASK_DEAD) 1809 return; 1810 1811 /* Allocate buffer to track faults on a per-node basis */ 1812 if (unlikely(!p->numa_faults_memory)) { 1813 int size = sizeof(*p->numa_faults_memory) * 1814 NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids; 1815 1816 p->numa_faults_memory = kzalloc(size, GFP_KERNEL|__GFP_NOWARN); 1817 if (!p->numa_faults_memory) 1818 return; 1819 1820 BUG_ON(p->numa_faults_buffer_memory); 1821 /* 1822 * The averaged statistics, shared & private, memory & cpu, 1823 * occupy the first half of the array. The second half of the 1824 * array is for current counters, which are averaged into the 1825 * first set by task_numa_placement. 1826 */ 1827 p->numa_faults_cpu = p->numa_faults_memory + (2 * nr_node_ids); 1828 p->numa_faults_buffer_memory = p->numa_faults_memory + (4 * nr_node_ids); 1829 p->numa_faults_buffer_cpu = p->numa_faults_memory + (6 * nr_node_ids); 1830 p->total_numa_faults = 0; 1831 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality)); 1832 } 1833 1834 /* 1835 * First accesses are treated as private, otherwise consider accesses 1836 * to be private if the accessing pid has not changed 1837 */ 1838 if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) { 1839 priv = 1; 1840 } else { 1841 priv = cpupid_match_pid(p, last_cpupid); 1842 if (!priv && !(flags & TNF_NO_GROUP)) 1843 task_numa_group(p, last_cpupid, flags, &priv); 1844 } 1845 1846 /* 1847 * If a workload spans multiple NUMA nodes, a shared fault that 1848 * occurs wholly within the set of nodes that the workload is 1849 * actively using should be counted as local. This allows the 1850 * scan rate to slow down when a workload has settled down. 1851 */ 1852 if (!priv && !local && p->numa_group && 1853 node_isset(cpu_node, p->numa_group->active_nodes) && 1854 node_isset(mem_node, p->numa_group->active_nodes)) 1855 local = 1; 1856 1857 task_numa_placement(p); 1858 1859 /* 1860 * Retry task to preferred node migration periodically, in case it 1861 * case it previously failed, or the scheduler moved us. 1862 */ 1863 if (time_after(jiffies, p->numa_migrate_retry)) 1864 numa_migrate_preferred(p); 1865 1866 if (migrated) 1867 p->numa_pages_migrated += pages; 1868 1869 p->numa_faults_buffer_memory[task_faults_idx(mem_node, priv)] += pages; 1870 p->numa_faults_buffer_cpu[task_faults_idx(cpu_node, priv)] += pages; 1871 p->numa_faults_locality[local] += pages; 1872 } 1873 1874 static void reset_ptenuma_scan(struct task_struct *p) 1875 { 1876 ACCESS_ONCE(p->mm->numa_scan_seq)++; 1877 p->mm->numa_scan_offset = 0; 1878 } 1879 1880 /* 1881 * The expensive part of numa migration is done from task_work context. 1882 * Triggered from task_tick_numa(). 1883 */ 1884 void task_numa_work(struct callback_head *work) 1885 { 1886 unsigned long migrate, next_scan, now = jiffies; 1887 struct task_struct *p = current; 1888 struct mm_struct *mm = p->mm; 1889 struct vm_area_struct *vma; 1890 unsigned long start, end; 1891 unsigned long nr_pte_updates = 0; 1892 long pages; 1893 1894 WARN_ON_ONCE(p != container_of(work, struct task_struct, numa_work)); 1895 1896 work->next = work; /* protect against double add */ 1897 /* 1898 * Who cares about NUMA placement when they're dying. 1899 * 1900 * NOTE: make sure not to dereference p->mm before this check, 1901 * exit_task_work() happens _after_ exit_mm() so we could be called 1902 * without p->mm even though we still had it when we enqueued this 1903 * work. 1904 */ 1905 if (p->flags & PF_EXITING) 1906 return; 1907 1908 if (!mm->numa_next_scan) { 1909 mm->numa_next_scan = now + 1910 msecs_to_jiffies(sysctl_numa_balancing_scan_delay); 1911 } 1912 1913 /* 1914 * Enforce maximal scan/migration frequency.. 1915 */ 1916 migrate = mm->numa_next_scan; 1917 if (time_before(now, migrate)) 1918 return; 1919 1920 if (p->numa_scan_period == 0) { 1921 p->numa_scan_period_max = task_scan_max(p); 1922 p->numa_scan_period = task_scan_min(p); 1923 } 1924 1925 next_scan = now + msecs_to_jiffies(p->numa_scan_period); 1926 if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate) 1927 return; 1928 1929 /* 1930 * Delay this task enough that another task of this mm will likely win 1931 * the next time around. 1932 */ 1933 p->node_stamp += 2 * TICK_NSEC; 1934 1935 start = mm->numa_scan_offset; 1936 pages = sysctl_numa_balancing_scan_size; 1937 pages <<= 20 - PAGE_SHIFT; /* MB in pages */ 1938 if (!pages) 1939 return; 1940 1941 down_read(&mm->mmap_sem); 1942 vma = find_vma(mm, start); 1943 if (!vma) { 1944 reset_ptenuma_scan(p); 1945 start = 0; 1946 vma = mm->mmap; 1947 } 1948 for (; vma; vma = vma->vm_next) { 1949 if (!vma_migratable(vma) || !vma_policy_mof(p, vma)) 1950 continue; 1951 1952 /* 1953 * Shared library pages mapped by multiple processes are not 1954 * migrated as it is expected they are cache replicated. Avoid 1955 * hinting faults in read-only file-backed mappings or the vdso 1956 * as migrating the pages will be of marginal benefit. 1957 */ 1958 if (!vma->vm_mm || 1959 (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ))) 1960 continue; 1961 1962 /* 1963 * Skip inaccessible VMAs to avoid any confusion between 1964 * PROT_NONE and NUMA hinting ptes 1965 */ 1966 if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE))) 1967 continue; 1968 1969 do { 1970 start = max(start, vma->vm_start); 1971 end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE); 1972 end = min(end, vma->vm_end); 1973 nr_pte_updates += change_prot_numa(vma, start, end); 1974 1975 /* 1976 * Scan sysctl_numa_balancing_scan_size but ensure that 1977 * at least one PTE is updated so that unused virtual 1978 * address space is quickly skipped. 1979 */ 1980 if (nr_pte_updates) 1981 pages -= (end - start) >> PAGE_SHIFT; 1982 1983 start = end; 1984 if (pages <= 0) 1985 goto out; 1986 1987 cond_resched(); 1988 } while (end != vma->vm_end); 1989 } 1990 1991 out: 1992 /* 1993 * It is possible to reach the end of the VMA list but the last few 1994 * VMAs are not guaranteed to the vma_migratable. If they are not, we 1995 * would find the !migratable VMA on the next scan but not reset the 1996 * scanner to the start so check it now. 1997 */ 1998 if (vma) 1999 mm->numa_scan_offset = start; 2000 else 2001 reset_ptenuma_scan(p); 2002 up_read(&mm->mmap_sem); 2003 } 2004 2005 /* 2006 * Drive the periodic memory faults.. 2007 */ 2008 void task_tick_numa(struct rq *rq, struct task_struct *curr) 2009 { 2010 struct callback_head *work = &curr->numa_work; 2011 u64 period, now; 2012 2013 /* 2014 * We don't care about NUMA placement if we don't have memory. 2015 */ 2016 if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work) 2017 return; 2018 2019 /* 2020 * Using runtime rather than walltime has the dual advantage that 2021 * we (mostly) drive the selection from busy threads and that the 2022 * task needs to have done some actual work before we bother with 2023 * NUMA placement. 2024 */ 2025 now = curr->se.sum_exec_runtime; 2026 period = (u64)curr->numa_scan_period * NSEC_PER_MSEC; 2027 2028 if (now - curr->node_stamp > period) { 2029 if (!curr->node_stamp) 2030 curr->numa_scan_period = task_scan_min(curr); 2031 curr->node_stamp += period; 2032 2033 if (!time_before(jiffies, curr->mm->numa_next_scan)) { 2034 init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */ 2035 task_work_add(curr, work, true); 2036 } 2037 } 2038 } 2039 #else 2040 static void task_tick_numa(struct rq *rq, struct task_struct *curr) 2041 { 2042 } 2043 2044 static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p) 2045 { 2046 } 2047 2048 static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p) 2049 { 2050 } 2051 #endif /* CONFIG_NUMA_BALANCING */ 2052 2053 static void 2054 account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se) 2055 { 2056 update_load_add(&cfs_rq->load, se->load.weight); 2057 if (!parent_entity(se)) 2058 update_load_add(&rq_of(cfs_rq)->load, se->load.weight); 2059 #ifdef CONFIG_SMP 2060 if (entity_is_task(se)) { 2061 struct rq *rq = rq_of(cfs_rq); 2062 2063 account_numa_enqueue(rq, task_of(se)); 2064 list_add(&se->group_node, &rq->cfs_tasks); 2065 } 2066 #endif 2067 cfs_rq->nr_running++; 2068 } 2069 2070 static void 2071 account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se) 2072 { 2073 update_load_sub(&cfs_rq->load, se->load.weight); 2074 if (!parent_entity(se)) 2075 update_load_sub(&rq_of(cfs_rq)->load, se->load.weight); 2076 if (entity_is_task(se)) { 2077 account_numa_dequeue(rq_of(cfs_rq), task_of(se)); 2078 list_del_init(&se->group_node); 2079 } 2080 cfs_rq->nr_running--; 2081 } 2082 2083 #ifdef CONFIG_FAIR_GROUP_SCHED 2084 # ifdef CONFIG_SMP 2085 static inline long calc_tg_weight(struct task_group *tg, struct cfs_rq *cfs_rq) 2086 { 2087 long tg_weight; 2088 2089 /* 2090 * Use this CPU's actual weight instead of the last load_contribution 2091 * to gain a more accurate current total weight. See 2092 * update_cfs_rq_load_contribution(). 2093 */ 2094 tg_weight = atomic_long_read(&tg->load_avg); 2095 tg_weight -= cfs_rq->tg_load_contrib; 2096 tg_weight += cfs_rq->load.weight; 2097 2098 return tg_weight; 2099 } 2100 2101 static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg) 2102 { 2103 long tg_weight, load, shares; 2104 2105 tg_weight = calc_tg_weight(tg, cfs_rq); 2106 load = cfs_rq->load.weight; 2107 2108 shares = (tg->shares * load); 2109 if (tg_weight) 2110 shares /= tg_weight; 2111 2112 if (shares < MIN_SHARES) 2113 shares = MIN_SHARES; 2114 if (shares > tg->shares) 2115 shares = tg->shares; 2116 2117 return shares; 2118 } 2119 # else /* CONFIG_SMP */ 2120 static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg) 2121 { 2122 return tg->shares; 2123 } 2124 # endif /* CONFIG_SMP */ 2125 static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, 2126 unsigned long weight) 2127 { 2128 if (se->on_rq) { 2129 /* commit outstanding execution time */ 2130 if (cfs_rq->curr == se) 2131 update_curr(cfs_rq); 2132 account_entity_dequeue(cfs_rq, se); 2133 } 2134 2135 update_load_set(&se->load, weight); 2136 2137 if (se->on_rq) 2138 account_entity_enqueue(cfs_rq, se); 2139 } 2140 2141 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq); 2142 2143 static void update_cfs_shares(struct cfs_rq *cfs_rq) 2144 { 2145 struct task_group *tg; 2146 struct sched_entity *se; 2147 long shares; 2148 2149 tg = cfs_rq->tg; 2150 se = tg->se[cpu_of(rq_of(cfs_rq))]; 2151 if (!se || throttled_hierarchy(cfs_rq)) 2152 return; 2153 #ifndef CONFIG_SMP 2154 if (likely(se->load.weight == tg->shares)) 2155 return; 2156 #endif 2157 shares = calc_cfs_shares(cfs_rq, tg); 2158 2159 reweight_entity(cfs_rq_of(se), se, shares); 2160 } 2161 #else /* CONFIG_FAIR_GROUP_SCHED */ 2162 static inline void update_cfs_shares(struct cfs_rq *cfs_rq) 2163 { 2164 } 2165 #endif /* CONFIG_FAIR_GROUP_SCHED */ 2166 2167 #ifdef CONFIG_SMP 2168 /* 2169 * We choose a half-life close to 1 scheduling period. 2170 * Note: The tables below are dependent on this value. 2171 */ 2172 #define LOAD_AVG_PERIOD 32 2173 #define LOAD_AVG_MAX 47742 /* maximum possible load avg */ 2174 #define LOAD_AVG_MAX_N 345 /* number of full periods to produce LOAD_MAX_AVG */ 2175 2176 /* Precomputed fixed inverse multiplies for multiplication by y^n */ 2177 static const u32 runnable_avg_yN_inv[] = { 2178 0xffffffff, 0xfa83b2da, 0xf5257d14, 0xefe4b99a, 0xeac0c6e6, 0xe5b906e6, 2179 0xe0ccdeeb, 0xdbfbb796, 0xd744fcc9, 0xd2a81d91, 0xce248c14, 0xc9b9bd85, 2180 0xc5672a10, 0xc12c4cc9, 0xbd08a39e, 0xb8fbaf46, 0xb504f333, 0xb123f581, 2181 0xad583ee9, 0xa9a15ab4, 0xa5fed6a9, 0xa2704302, 0x9ef5325f, 0x9b8d39b9, 2182 0x9837f050, 0x94f4efa8, 0x91c3d373, 0x8ea4398a, 0x8b95c1e3, 0x88980e80, 2183 0x85aac367, 0x82cd8698, 2184 }; 2185 2186 /* 2187 * Precomputed \Sum y^k { 1<=k<=n }. These are floor(true_value) to prevent 2188 * over-estimates when re-combining. 2189 */ 2190 static const u32 runnable_avg_yN_sum[] = { 2191 0, 1002, 1982, 2941, 3880, 4798, 5697, 6576, 7437, 8279, 9103, 2192 9909,10698,11470,12226,12966,13690,14398,15091,15769,16433,17082, 2193 17718,18340,18949,19545,20128,20698,21256,21802,22336,22859,23371, 2194 }; 2195 2196 /* 2197 * Approximate: 2198 * val * y^n, where y^32 ~= 0.5 (~1 scheduling period) 2199 */ 2200 static __always_inline u64 decay_load(u64 val, u64 n) 2201 { 2202 unsigned int local_n; 2203 2204 if (!n) 2205 return val; 2206 else if (unlikely(n > LOAD_AVG_PERIOD * 63)) 2207 return 0; 2208 2209 /* after bounds checking we can collapse to 32-bit */ 2210 local_n = n; 2211 2212 /* 2213 * As y^PERIOD = 1/2, we can combine 2214 * y^n = 1/2^(n/PERIOD) * k^(n%PERIOD) 2215 * With a look-up table which covers k^n (n<PERIOD) 2216 * 2217 * To achieve constant time decay_load. 2218 */ 2219 if (unlikely(local_n >= LOAD_AVG_PERIOD)) { 2220 val >>= local_n / LOAD_AVG_PERIOD; 2221 local_n %= LOAD_AVG_PERIOD; 2222 } 2223 2224 val *= runnable_avg_yN_inv[local_n]; 2225 /* We don't use SRR here since we always want to round down. */ 2226 return val >> 32; 2227 } 2228 2229 /* 2230 * For updates fully spanning n periods, the contribution to runnable 2231 * average will be: \Sum 1024*y^n 2232 * 2233 * We can compute this reasonably efficiently by combining: 2234 * y^PERIOD = 1/2 with precomputed \Sum 1024*y^n {for n <PERIOD} 2235 */ 2236 static u32 __compute_runnable_contrib(u64 n) 2237 { 2238 u32 contrib = 0; 2239 2240 if (likely(n <= LOAD_AVG_PERIOD)) 2241 return runnable_avg_yN_sum[n]; 2242 else if (unlikely(n >= LOAD_AVG_MAX_N)) 2243 return LOAD_AVG_MAX; 2244 2245 /* Compute \Sum k^n combining precomputed values for k^i, \Sum k^j */ 2246 do { 2247 contrib /= 2; /* y^LOAD_AVG_PERIOD = 1/2 */ 2248 contrib += runnable_avg_yN_sum[LOAD_AVG_PERIOD]; 2249 2250 n -= LOAD_AVG_PERIOD; 2251 } while (n > LOAD_AVG_PERIOD); 2252 2253 contrib = decay_load(contrib, n); 2254 return contrib + runnable_avg_yN_sum[n]; 2255 } 2256 2257 /* 2258 * We can represent the historical contribution to runnable average as the 2259 * coefficients of a geometric series. To do this we sub-divide our runnable 2260 * history into segments of approximately 1ms (1024us); label the segment that 2261 * occurred N-ms ago p_N, with p_0 corresponding to the current period, e.g. 2262 * 2263 * [<- 1024us ->|<- 1024us ->|<- 1024us ->| ... 2264 * p0 p1 p2 2265 * (now) (~1ms ago) (~2ms ago) 2266 * 2267 * Let u_i denote the fraction of p_i that the entity was runnable. 2268 * 2269 * We then designate the fractions u_i as our co-efficients, yielding the 2270 * following representation of historical load: 2271 * u_0 + u_1*y + u_2*y^2 + u_3*y^3 + ... 2272 * 2273 * We choose y based on the with of a reasonably scheduling period, fixing: 2274 * y^32 = 0.5 2275 * 2276 * This means that the contribution to load ~32ms ago (u_32) will be weighted 2277 * approximately half as much as the contribution to load within the last ms 2278 * (u_0). 2279 * 2280 * When a period "rolls over" and we have new u_0`, multiplying the previous 2281 * sum again by y is sufficient to update: 2282 * load_avg = u_0` + y*(u_0 + u_1*y + u_2*y^2 + ... ) 2283 * = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1}] 2284 */ 2285 static __always_inline int __update_entity_runnable_avg(u64 now, 2286 struct sched_avg *sa, 2287 int runnable) 2288 { 2289 u64 delta, periods; 2290 u32 runnable_contrib; 2291 int delta_w, decayed = 0; 2292 2293 delta = now - sa->last_runnable_update; 2294 /* 2295 * This should only happen when time goes backwards, which it 2296 * unfortunately does during sched clock init when we swap over to TSC. 2297 */ 2298 if ((s64)delta < 0) { 2299 sa->last_runnable_update = now; 2300 return 0; 2301 } 2302 2303 /* 2304 * Use 1024ns as the unit of measurement since it's a reasonable 2305 * approximation of 1us and fast to compute. 2306 */ 2307 delta >>= 10; 2308 if (!delta) 2309 return 0; 2310 sa->last_runnable_update = now; 2311 2312 /* delta_w is the amount already accumulated against our next period */ 2313 delta_w = sa->runnable_avg_period % 1024; 2314 if (delta + delta_w >= 1024) { 2315 /* period roll-over */ 2316 decayed = 1; 2317 2318 /* 2319 * Now that we know we're crossing a period boundary, figure 2320 * out how much from delta we need to complete the current 2321 * period and accrue it. 2322 */ 2323 delta_w = 1024 - delta_w; 2324 if (runnable) 2325 sa->runnable_avg_sum += delta_w; 2326 sa->runnable_avg_period += delta_w; 2327 2328 delta -= delta_w; 2329 2330 /* Figure out how many additional periods this update spans */ 2331 periods = delta / 1024; 2332 delta %= 1024; 2333 2334 sa->runnable_avg_sum = decay_load(sa->runnable_avg_sum, 2335 periods + 1); 2336 sa->runnable_avg_period = decay_load(sa->runnable_avg_period, 2337 periods + 1); 2338 2339 /* Efficiently calculate \sum (1..n_period) 1024*y^i */ 2340 runnable_contrib = __compute_runnable_contrib(periods); 2341 if (runnable) 2342 sa->runnable_avg_sum += runnable_contrib; 2343 sa->runnable_avg_period += runnable_contrib; 2344 } 2345 2346 /* Remainder of delta accrued against u_0` */ 2347 if (runnable) 2348 sa->runnable_avg_sum += delta; 2349 sa->runnable_avg_period += delta; 2350 2351 return decayed; 2352 } 2353 2354 /* Synchronize an entity's decay with its parenting cfs_rq.*/ 2355 static inline u64 __synchronize_entity_decay(struct sched_entity *se) 2356 { 2357 struct cfs_rq *cfs_rq = cfs_rq_of(se); 2358 u64 decays = atomic64_read(&cfs_rq->decay_counter); 2359 2360 decays -= se->avg.decay_count; 2361 if (!decays) 2362 return 0; 2363 2364 se->avg.load_avg_contrib = decay_load(se->avg.load_avg_contrib, decays); 2365 se->avg.decay_count = 0; 2366 2367 return decays; 2368 } 2369 2370 #ifdef CONFIG_FAIR_GROUP_SCHED 2371 static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq, 2372 int force_update) 2373 { 2374 struct task_group *tg = cfs_rq->tg; 2375 long tg_contrib; 2376 2377 tg_contrib = cfs_rq->runnable_load_avg + cfs_rq->blocked_load_avg; 2378 tg_contrib -= cfs_rq->tg_load_contrib; 2379 2380 if (force_update || abs(tg_contrib) > cfs_rq->tg_load_contrib / 8) { 2381 atomic_long_add(tg_contrib, &tg->load_avg); 2382 cfs_rq->tg_load_contrib += tg_contrib; 2383 } 2384 } 2385 2386 /* 2387 * Aggregate cfs_rq runnable averages into an equivalent task_group 2388 * representation for computing load contributions. 2389 */ 2390 static inline void __update_tg_runnable_avg(struct sched_avg *sa, 2391 struct cfs_rq *cfs_rq) 2392 { 2393 struct task_group *tg = cfs_rq->tg; 2394 long contrib; 2395 2396 /* The fraction of a cpu used by this cfs_rq */ 2397 contrib = div_u64((u64)sa->runnable_avg_sum << NICE_0_SHIFT, 2398 sa->runnable_avg_period + 1); 2399 contrib -= cfs_rq->tg_runnable_contrib; 2400 2401 if (abs(contrib) > cfs_rq->tg_runnable_contrib / 64) { 2402 atomic_add(contrib, &tg->runnable_avg); 2403 cfs_rq->tg_runnable_contrib += contrib; 2404 } 2405 } 2406 2407 static inline void __update_group_entity_contrib(struct sched_entity *se) 2408 { 2409 struct cfs_rq *cfs_rq = group_cfs_rq(se); 2410 struct task_group *tg = cfs_rq->tg; 2411 int runnable_avg; 2412 2413 u64 contrib; 2414 2415 contrib = cfs_rq->tg_load_contrib * tg->shares; 2416 se->avg.load_avg_contrib = div_u64(contrib, 2417 atomic_long_read(&tg->load_avg) + 1); 2418 2419 /* 2420 * For group entities we need to compute a correction term in the case 2421 * that they are consuming <1 cpu so that we would contribute the same 2422 * load as a task of equal weight. 2423 * 2424 * Explicitly co-ordinating this measurement would be expensive, but 2425 * fortunately the sum of each cpus contribution forms a usable 2426 * lower-bound on the true value. 2427 * 2428 * Consider the aggregate of 2 contributions. Either they are disjoint 2429 * (and the sum represents true value) or they are disjoint and we are 2430 * understating by the aggregate of their overlap. 2431 * 2432 * Extending this to N cpus, for a given overlap, the maximum amount we 2433 * understand is then n_i(n_i+1)/2 * w_i where n_i is the number of 2434 * cpus that overlap for this interval and w_i is the interval width. 2435 * 2436 * On a small machine; the first term is well-bounded which bounds the 2437 * total error since w_i is a subset of the period. Whereas on a 2438 * larger machine, while this first term can be larger, if w_i is the 2439 * of consequential size guaranteed to see n_i*w_i quickly converge to 2440 * our upper bound of 1-cpu. 2441 */ 2442 runnable_avg = atomic_read(&tg->runnable_avg); 2443 if (runnable_avg < NICE_0_LOAD) { 2444 se->avg.load_avg_contrib *= runnable_avg; 2445 se->avg.load_avg_contrib >>= NICE_0_SHIFT; 2446 } 2447 } 2448 2449 static inline void update_rq_runnable_avg(struct rq *rq, int runnable) 2450 { 2451 __update_entity_runnable_avg(rq_clock_task(rq), &rq->avg, runnable); 2452 __update_tg_runnable_avg(&rq->avg, &rq->cfs); 2453 } 2454 #else /* CONFIG_FAIR_GROUP_SCHED */ 2455 static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq, 2456 int force_update) {} 2457 static inline void __update_tg_runnable_avg(struct sched_avg *sa, 2458 struct cfs_rq *cfs_rq) {} 2459 static inline void __update_group_entity_contrib(struct sched_entity *se) {} 2460 static inline void update_rq_runnable_avg(struct rq *rq, int runnable) {} 2461 #endif /* CONFIG_FAIR_GROUP_SCHED */ 2462 2463 static inline void __update_task_entity_contrib(struct sched_entity *se) 2464 { 2465 u32 contrib; 2466 2467 /* avoid overflowing a 32-bit type w/ SCHED_LOAD_SCALE */ 2468 contrib = se->avg.runnable_avg_sum * scale_load_down(se->load.weight); 2469 contrib /= (se->avg.runnable_avg_period + 1); 2470 se->avg.load_avg_contrib = scale_load(contrib); 2471 } 2472 2473 /* Compute the current contribution to load_avg by se, return any delta */ 2474 static long __update_entity_load_avg_contrib(struct sched_entity *se) 2475 { 2476 long old_contrib = se->avg.load_avg_contrib; 2477 2478 if (entity_is_task(se)) { 2479 __update_task_entity_contrib(se); 2480 } else { 2481 __update_tg_runnable_avg(&se->avg, group_cfs_rq(se)); 2482 __update_group_entity_contrib(se); 2483 } 2484 2485 return se->avg.load_avg_contrib - old_contrib; 2486 } 2487 2488 static inline void subtract_blocked_load_contrib(struct cfs_rq *cfs_rq, 2489 long load_contrib) 2490 { 2491 if (likely(load_contrib < cfs_rq->blocked_load_avg)) 2492 cfs_rq->blocked_load_avg -= load_contrib; 2493 else 2494 cfs_rq->blocked_load_avg = 0; 2495 } 2496 2497 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq); 2498 2499 /* Update a sched_entity's runnable average */ 2500 static inline void update_entity_load_avg(struct sched_entity *se, 2501 int update_cfs_rq) 2502 { 2503 struct cfs_rq *cfs_rq = cfs_rq_of(se); 2504 long contrib_delta; 2505 u64 now; 2506 2507 /* 2508 * For a group entity we need to use their owned cfs_rq_clock_task() in 2509 * case they are the parent of a throttled hierarchy. 2510 */ 2511 if (entity_is_task(se)) 2512 now = cfs_rq_clock_task(cfs_rq); 2513 else 2514 now = cfs_rq_clock_task(group_cfs_rq(se)); 2515 2516 if (!__update_entity_runnable_avg(now, &se->avg, se->on_rq)) 2517 return; 2518 2519 contrib_delta = __update_entity_load_avg_contrib(se); 2520 2521 if (!update_cfs_rq) 2522 return; 2523 2524 if (se->on_rq) 2525 cfs_rq->runnable_load_avg += contrib_delta; 2526 else 2527 subtract_blocked_load_contrib(cfs_rq, -contrib_delta); 2528 } 2529 2530 /* 2531 * Decay the load contributed by all blocked children and account this so that 2532 * their contribution may appropriately discounted when they wake up. 2533 */ 2534 static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq, int force_update) 2535 { 2536 u64 now = cfs_rq_clock_task(cfs_rq) >> 20; 2537 u64 decays; 2538 2539 decays = now - cfs_rq->last_decay; 2540 if (!decays && !force_update) 2541 return; 2542 2543 if (atomic_long_read(&cfs_rq->removed_load)) { 2544 unsigned long removed_load; 2545 removed_load = atomic_long_xchg(&cfs_rq->removed_load, 0); 2546 subtract_blocked_load_contrib(cfs_rq, removed_load); 2547 } 2548 2549 if (decays) { 2550 cfs_rq->blocked_load_avg = decay_load(cfs_rq->blocked_load_avg, 2551 decays); 2552 atomic64_add(decays, &cfs_rq->decay_counter); 2553 cfs_rq->last_decay = now; 2554 } 2555 2556 __update_cfs_rq_tg_load_contrib(cfs_rq, force_update); 2557 } 2558 2559 /* Add the load generated by se into cfs_rq's child load-average */ 2560 static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq, 2561 struct sched_entity *se, 2562 int wakeup) 2563 { 2564 /* 2565 * We track migrations using entity decay_count <= 0, on a wake-up 2566 * migration we use a negative decay count to track the remote decays 2567 * accumulated while sleeping. 2568 * 2569 * Newly forked tasks are enqueued with se->avg.decay_count == 0, they 2570 * are seen by enqueue_entity_load_avg() as a migration with an already 2571 * constructed load_avg_contrib. 2572 */ 2573 if (unlikely(se->avg.decay_count <= 0)) { 2574 se->avg.last_runnable_update = rq_clock_task(rq_of(cfs_rq)); 2575 if (se->avg.decay_count) { 2576 /* 2577 * In a wake-up migration we have to approximate the 2578 * time sleeping. This is because we can't synchronize 2579 * clock_task between the two cpus, and it is not 2580 * guaranteed to be read-safe. Instead, we can 2581 * approximate this using our carried decays, which are 2582 * explicitly atomically readable. 2583 */ 2584 se->avg.last_runnable_update -= (-se->avg.decay_count) 2585 << 20; 2586 update_entity_load_avg(se, 0); 2587 /* Indicate that we're now synchronized and on-rq */ 2588 se->avg.decay_count = 0; 2589 } 2590 wakeup = 0; 2591 } else { 2592 __synchronize_entity_decay(se); 2593 } 2594 2595 /* migrated tasks did not contribute to our blocked load */ 2596 if (wakeup) { 2597 subtract_blocked_load_contrib(cfs_rq, se->avg.load_avg_contrib); 2598 update_entity_load_avg(se, 0); 2599 } 2600 2601 cfs_rq->runnable_load_avg += se->avg.load_avg_contrib; 2602 /* we force update consideration on load-balancer moves */ 2603 update_cfs_rq_blocked_load(cfs_rq, !wakeup); 2604 } 2605 2606 /* 2607 * Remove se's load from this cfs_rq child load-average, if the entity is 2608 * transitioning to a blocked state we track its projected decay using 2609 * blocked_load_avg. 2610 */ 2611 static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq, 2612 struct sched_entity *se, 2613 int sleep) 2614 { 2615 update_entity_load_avg(se, 1); 2616 /* we force update consideration on load-balancer moves */ 2617 update_cfs_rq_blocked_load(cfs_rq, !sleep); 2618 2619 cfs_rq->runnable_load_avg -= se->avg.load_avg_contrib; 2620 if (sleep) { 2621 cfs_rq->blocked_load_avg += se->avg.load_avg_contrib; 2622 se->avg.decay_count = atomic64_read(&cfs_rq->decay_counter); 2623 } /* migrations, e.g. sleep=0 leave decay_count == 0 */ 2624 } 2625 2626 /* 2627 * Update the rq's load with the elapsed running time before entering 2628 * idle. if the last scheduled task is not a CFS task, idle_enter will 2629 * be the only way to update the runnable statistic. 2630 */ 2631 void idle_enter_fair(struct rq *this_rq) 2632 { 2633 update_rq_runnable_avg(this_rq, 1); 2634 } 2635 2636 /* 2637 * Update the rq's load with the elapsed idle time before a task is 2638 * scheduled. if the newly scheduled task is not a CFS task, idle_exit will 2639 * be the only way to update the runnable statistic. 2640 */ 2641 void idle_exit_fair(struct rq *this_rq) 2642 { 2643 update_rq_runnable_avg(this_rq, 0); 2644 } 2645 2646 static int idle_balance(struct rq *this_rq); 2647 2648 #else /* CONFIG_SMP */ 2649 2650 static inline void update_entity_load_avg(struct sched_entity *se, 2651 int update_cfs_rq) {} 2652 static inline void update_rq_runnable_avg(struct rq *rq, int runnable) {} 2653 static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq, 2654 struct sched_entity *se, 2655 int wakeup) {} 2656 static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq, 2657 struct sched_entity *se, 2658 int sleep) {} 2659 static inline void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq, 2660 int force_update) {} 2661 2662 static inline int idle_balance(struct rq *rq) 2663 { 2664 return 0; 2665 } 2666 2667 #endif /* CONFIG_SMP */ 2668 2669 static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se) 2670 { 2671 #ifdef CONFIG_SCHEDSTATS 2672 struct task_struct *tsk = NULL; 2673 2674 if (entity_is_task(se)) 2675 tsk = task_of(se); 2676 2677 if (se->statistics.sleep_start) { 2678 u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.sleep_start; 2679 2680 if ((s64)delta < 0) 2681 delta = 0; 2682 2683 if (unlikely(delta > se->statistics.sleep_max)) 2684 se->statistics.sleep_max = delta; 2685 2686 se->statistics.sleep_start = 0; 2687 se->statistics.sum_sleep_runtime += delta; 2688 2689 if (tsk) { 2690 account_scheduler_latency(tsk, delta >> 10, 1); 2691 trace_sched_stat_sleep(tsk, delta); 2692 } 2693 } 2694 if (se->statistics.block_start) { 2695 u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.block_start; 2696 2697 if ((s64)delta < 0) 2698 delta = 0; 2699 2700 if (unlikely(delta > se->statistics.block_max)) 2701 se->statistics.block_max = delta; 2702 2703 se->statistics.block_start = 0; 2704 se->statistics.sum_sleep_runtime += delta; 2705 2706 if (tsk) { 2707 if (tsk->in_iowait) { 2708 se->statistics.iowait_sum += delta; 2709 se->statistics.iowait_count++; 2710 trace_sched_stat_iowait(tsk, delta); 2711 } 2712 2713 trace_sched_stat_blocked(tsk, delta); 2714 2715 /* 2716 * Blocking time is in units of nanosecs, so shift by 2717 * 20 to get a milliseconds-range estimation of the 2718 * amount of time that the task spent sleeping: 2719 */ 2720 if (unlikely(prof_on == SLEEP_PROFILING)) { 2721 profile_hits(SLEEP_PROFILING, 2722 (void *)get_wchan(tsk), 2723 delta >> 20); 2724 } 2725 account_scheduler_latency(tsk, delta >> 10, 0); 2726 } 2727 } 2728 #endif 2729 } 2730 2731 static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se) 2732 { 2733 #ifdef CONFIG_SCHED_DEBUG 2734 s64 d = se->vruntime - cfs_rq->min_vruntime; 2735 2736 if (d < 0) 2737 d = -d; 2738 2739 if (d > 3*sysctl_sched_latency) 2740 schedstat_inc(cfs_rq, nr_spread_over); 2741 #endif 2742 } 2743 2744 static void 2745 place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial) 2746 { 2747 u64 vruntime = cfs_rq->min_vruntime; 2748 2749 /* 2750 * The 'current' period is already promised to the current tasks, 2751 * however the extra weight of the new task will slow them down a 2752 * little, place the new task so that it fits in the slot that 2753 * stays open at the end. 2754 */ 2755 if (initial && sched_feat(START_DEBIT)) 2756 vruntime += sched_vslice(cfs_rq, se); 2757 2758 /* sleeps up to a single latency don't count. */ 2759 if (!initial) { 2760 unsigned long thresh = sysctl_sched_latency; 2761 2762 /* 2763 * Halve their sleep time's effect, to allow 2764 * for a gentler effect of sleepers: 2765 */ 2766 if (sched_feat(GENTLE_FAIR_SLEEPERS)) 2767 thresh >>= 1; 2768 2769 vruntime -= thresh; 2770 } 2771 2772 /* ensure we never gain time by being placed backwards. */ 2773 se->vruntime = max_vruntime(se->vruntime, vruntime); 2774 } 2775 2776 static void check_enqueue_throttle(struct cfs_rq *cfs_rq); 2777 2778 static void 2779 enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 2780 { 2781 /* 2782 * Update the normalized vruntime before updating min_vruntime 2783 * through calling update_curr(). 2784 */ 2785 if (!(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_WAKING)) 2786 se->vruntime += cfs_rq->min_vruntime; 2787 2788 /* 2789 * Update run-time statistics of the 'current'. 2790 */ 2791 update_curr(cfs_rq); 2792 enqueue_entity_load_avg(cfs_rq, se, flags & ENQUEUE_WAKEUP); 2793 account_entity_enqueue(cfs_rq, se); 2794 update_cfs_shares(cfs_rq); 2795 2796 if (flags & ENQUEUE_WAKEUP) { 2797 place_entity(cfs_rq, se, 0); 2798 enqueue_sleeper(cfs_rq, se); 2799 } 2800 2801 update_stats_enqueue(cfs_rq, se); 2802 check_spread(cfs_rq, se); 2803 if (se != cfs_rq->curr) 2804 __enqueue_entity(cfs_rq, se); 2805 se->on_rq = 1; 2806 2807 if (cfs_rq->nr_running == 1) { 2808 list_add_leaf_cfs_rq(cfs_rq); 2809 check_enqueue_throttle(cfs_rq); 2810 } 2811 } 2812 2813 static void __clear_buddies_last(struct sched_entity *se) 2814 { 2815 for_each_sched_entity(se) { 2816 struct cfs_rq *cfs_rq = cfs_rq_of(se); 2817 if (cfs_rq->last != se) 2818 break; 2819 2820 cfs_rq->last = NULL; 2821 } 2822 } 2823 2824 static void __clear_buddies_next(struct sched_entity *se) 2825 { 2826 for_each_sched_entity(se) { 2827 struct cfs_rq *cfs_rq = cfs_rq_of(se); 2828 if (cfs_rq->next != se) 2829 break; 2830 2831 cfs_rq->next = NULL; 2832 } 2833 } 2834 2835 static void __clear_buddies_skip(struct sched_entity *se) 2836 { 2837 for_each_sched_entity(se) { 2838 struct cfs_rq *cfs_rq = cfs_rq_of(se); 2839 if (cfs_rq->skip != se) 2840 break; 2841 2842 cfs_rq->skip = NULL; 2843 } 2844 } 2845 2846 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se) 2847 { 2848 if (cfs_rq->last == se) 2849 __clear_buddies_last(se); 2850 2851 if (cfs_rq->next == se) 2852 __clear_buddies_next(se); 2853 2854 if (cfs_rq->skip == se) 2855 __clear_buddies_skip(se); 2856 } 2857 2858 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq); 2859 2860 static void 2861 dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 2862 { 2863 /* 2864 * Update run-time statistics of the 'current'. 2865 */ 2866 update_curr(cfs_rq); 2867 dequeue_entity_load_avg(cfs_rq, se, flags & DEQUEUE_SLEEP); 2868 2869 update_stats_dequeue(cfs_rq, se); 2870 if (flags & DEQUEUE_SLEEP) { 2871 #ifdef CONFIG_SCHEDSTATS 2872 if (entity_is_task(se)) { 2873 struct task_struct *tsk = task_of(se); 2874 2875 if (tsk->state & TASK_INTERRUPTIBLE) 2876 se->statistics.sleep_start = rq_clock(rq_of(cfs_rq)); 2877 if (tsk->state & TASK_UNINTERRUPTIBLE) 2878 se->statistics.block_start = rq_clock(rq_of(cfs_rq)); 2879 } 2880 #endif 2881 } 2882 2883 clear_buddies(cfs_rq, se); 2884 2885 if (se != cfs_rq->curr) 2886 __dequeue_entity(cfs_rq, se); 2887 se->on_rq = 0; 2888 account_entity_dequeue(cfs_rq, se); 2889 2890 /* 2891 * Normalize the entity after updating the min_vruntime because the 2892 * update can refer to the ->curr item and we need to reflect this 2893 * movement in our normalized position. 2894 */ 2895 if (!(flags & DEQUEUE_SLEEP)) 2896 se->vruntime -= cfs_rq->min_vruntime; 2897 2898 /* return excess runtime on last dequeue */ 2899 return_cfs_rq_runtime(cfs_rq); 2900 2901 update_min_vruntime(cfs_rq); 2902 update_cfs_shares(cfs_rq); 2903 } 2904 2905 /* 2906 * Preempt the current task with a newly woken task if needed: 2907 */ 2908 static void 2909 check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr) 2910 { 2911 unsigned long ideal_runtime, delta_exec; 2912 struct sched_entity *se; 2913 s64 delta; 2914 2915 ideal_runtime = sched_slice(cfs_rq, curr); 2916 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime; 2917 if (delta_exec > ideal_runtime) { 2918 resched_curr(rq_of(cfs_rq)); 2919 /* 2920 * The current task ran long enough, ensure it doesn't get 2921 * re-elected due to buddy favours. 2922 */ 2923 clear_buddies(cfs_rq, curr); 2924 return; 2925 } 2926 2927 /* 2928 * Ensure that a task that missed wakeup preemption by a 2929 * narrow margin doesn't have to wait for a full slice. 2930 * This also mitigates buddy induced latencies under load. 2931 */ 2932 if (delta_exec < sysctl_sched_min_granularity) 2933 return; 2934 2935 se = __pick_first_entity(cfs_rq); 2936 delta = curr->vruntime - se->vruntime; 2937 2938 if (delta < 0) 2939 return; 2940 2941 if (delta > ideal_runtime) 2942 resched_curr(rq_of(cfs_rq)); 2943 } 2944 2945 static void 2946 set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) 2947 { 2948 /* 'current' is not kept within the tree. */ 2949 if (se->on_rq) { 2950 /* 2951 * Any task has to be enqueued before it get to execute on 2952 * a CPU. So account for the time it spent waiting on the 2953 * runqueue. 2954 */ 2955 update_stats_wait_end(cfs_rq, se); 2956 __dequeue_entity(cfs_rq, se); 2957 } 2958 2959 update_stats_curr_start(cfs_rq, se); 2960 cfs_rq->curr = se; 2961 #ifdef CONFIG_SCHEDSTATS 2962 /* 2963 * Track our maximum slice length, if the CPU's load is at 2964 * least twice that of our own weight (i.e. dont track it 2965 * when there are only lesser-weight tasks around): 2966 */ 2967 if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) { 2968 se->statistics.slice_max = max(se->statistics.slice_max, 2969 se->sum_exec_runtime - se->prev_sum_exec_runtime); 2970 } 2971 #endif 2972 se->prev_sum_exec_runtime = se->sum_exec_runtime; 2973 } 2974 2975 static int 2976 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se); 2977 2978 /* 2979 * Pick the next process, keeping these things in mind, in this order: 2980 * 1) keep things fair between processes/task groups 2981 * 2) pick the "next" process, since someone really wants that to run 2982 * 3) pick the "last" process, for cache locality 2983 * 4) do not run the "skip" process, if something else is available 2984 */ 2985 static struct sched_entity * 2986 pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr) 2987 { 2988 struct sched_entity *left = __pick_first_entity(cfs_rq); 2989 struct sched_entity *se; 2990 2991 /* 2992 * If curr is set we have to see if its left of the leftmost entity 2993 * still in the tree, provided there was anything in the tree at all. 2994 */ 2995 if (!left || (curr && entity_before(curr, left))) 2996 left = curr; 2997 2998 se = left; /* ideally we run the leftmost entity */ 2999 3000 /* 3001 * Avoid running the skip buddy, if running something else can 3002 * be done without getting too unfair. 3003 */ 3004 if (cfs_rq->skip == se) { 3005 struct sched_entity *second; 3006 3007 if (se == curr) { 3008 second = __pick_first_entity(cfs_rq); 3009 } else { 3010 second = __pick_next_entity(se); 3011 if (!second || (curr && entity_before(curr, second))) 3012 second = curr; 3013 } 3014 3015 if (second && wakeup_preempt_entity(second, left) < 1) 3016 se = second; 3017 } 3018 3019 /* 3020 * Prefer last buddy, try to return the CPU to a preempted task. 3021 */ 3022 if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1) 3023 se = cfs_rq->last; 3024 3025 /* 3026 * Someone really wants this to run. If it's not unfair, run it. 3027 */ 3028 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1) 3029 se = cfs_rq->next; 3030 3031 clear_buddies(cfs_rq, se); 3032 3033 return se; 3034 } 3035 3036 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq); 3037 3038 static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev) 3039 { 3040 /* 3041 * If still on the runqueue then deactivate_task() 3042 * was not called and update_curr() has to be done: 3043 */ 3044 if (prev->on_rq) 3045 update_curr(cfs_rq); 3046 3047 /* throttle cfs_rqs exceeding runtime */ 3048 check_cfs_rq_runtime(cfs_rq); 3049 3050 check_spread(cfs_rq, prev); 3051 if (prev->on_rq) { 3052 update_stats_wait_start(cfs_rq, prev); 3053 /* Put 'current' back into the tree. */ 3054 __enqueue_entity(cfs_rq, prev); 3055 /* in !on_rq case, update occurred at dequeue */ 3056 update_entity_load_avg(prev, 1); 3057 } 3058 cfs_rq->curr = NULL; 3059 } 3060 3061 static void 3062 entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued) 3063 { 3064 /* 3065 * Update run-time statistics of the 'current'. 3066 */ 3067 update_curr(cfs_rq); 3068 3069 /* 3070 * Ensure that runnable average is periodically updated. 3071 */ 3072 update_entity_load_avg(curr, 1); 3073 update_cfs_rq_blocked_load(cfs_rq, 1); 3074 update_cfs_shares(cfs_rq); 3075 3076 #ifdef CONFIG_SCHED_HRTICK 3077 /* 3078 * queued ticks are scheduled to match the slice, so don't bother 3079 * validating it and just reschedule. 3080 */ 3081 if (queued) { 3082 resched_curr(rq_of(cfs_rq)); 3083 return; 3084 } 3085 /* 3086 * don't let the period tick interfere with the hrtick preemption 3087 */ 3088 if (!sched_feat(DOUBLE_TICK) && 3089 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer)) 3090 return; 3091 #endif 3092 3093 if (cfs_rq->nr_running > 1) 3094 check_preempt_tick(cfs_rq, curr); 3095 } 3096 3097 3098 /************************************************** 3099 * CFS bandwidth control machinery 3100 */ 3101 3102 #ifdef CONFIG_CFS_BANDWIDTH 3103 3104 #ifdef HAVE_JUMP_LABEL 3105 static struct static_key __cfs_bandwidth_used; 3106 3107 static inline bool cfs_bandwidth_used(void) 3108 { 3109 return static_key_false(&__cfs_bandwidth_used); 3110 } 3111 3112 void cfs_bandwidth_usage_inc(void) 3113 { 3114 static_key_slow_inc(&__cfs_bandwidth_used); 3115 } 3116 3117 void cfs_bandwidth_usage_dec(void) 3118 { 3119 static_key_slow_dec(&__cfs_bandwidth_used); 3120 } 3121 #else /* HAVE_JUMP_LABEL */ 3122 static bool cfs_bandwidth_used(void) 3123 { 3124 return true; 3125 } 3126 3127 void cfs_bandwidth_usage_inc(void) {} 3128 void cfs_bandwidth_usage_dec(void) {} 3129 #endif /* HAVE_JUMP_LABEL */ 3130 3131 /* 3132 * default period for cfs group bandwidth. 3133 * default: 0.1s, units: nanoseconds 3134 */ 3135 static inline u64 default_cfs_period(void) 3136 { 3137 return 100000000ULL; 3138 } 3139 3140 static inline u64 sched_cfs_bandwidth_slice(void) 3141 { 3142 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC; 3143 } 3144 3145 /* 3146 * Replenish runtime according to assigned quota and update expiration time. 3147 * We use sched_clock_cpu directly instead of rq->clock to avoid adding 3148 * additional synchronization around rq->lock. 3149 * 3150 * requires cfs_b->lock 3151 */ 3152 void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b) 3153 { 3154 u64 now; 3155 3156 if (cfs_b->quota == RUNTIME_INF) 3157 return; 3158 3159 now = sched_clock_cpu(smp_processor_id()); 3160 cfs_b->runtime = cfs_b->quota; 3161 cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period); 3162 } 3163 3164 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg) 3165 { 3166 return &tg->cfs_bandwidth; 3167 } 3168 3169 /* rq->task_clock normalized against any time this cfs_rq has spent throttled */ 3170 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq) 3171 { 3172 if (unlikely(cfs_rq->throttle_count)) 3173 return cfs_rq->throttled_clock_task; 3174 3175 return rq_clock_task(rq_of(cfs_rq)) - cfs_rq->throttled_clock_task_time; 3176 } 3177 3178 /* returns 0 on failure to allocate runtime */ 3179 static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq) 3180 { 3181 struct task_group *tg = cfs_rq->tg; 3182 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg); 3183 u64 amount = 0, min_amount, expires; 3184 3185 /* note: this is a positive sum as runtime_remaining <= 0 */ 3186 min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining; 3187 3188 raw_spin_lock(&cfs_b->lock); 3189 if (cfs_b->quota == RUNTIME_INF) 3190 amount = min_amount; 3191 else { 3192 /* 3193 * If the bandwidth pool has become inactive, then at least one 3194 * period must have elapsed since the last consumption. 3195 * Refresh the global state and ensure bandwidth timer becomes 3196 * active. 3197 */ 3198 if (!cfs_b->timer_active) { 3199 __refill_cfs_bandwidth_runtime(cfs_b); 3200 __start_cfs_bandwidth(cfs_b, false); 3201 } 3202 3203 if (cfs_b->runtime > 0) { 3204 amount = min(cfs_b->runtime, min_amount); 3205 cfs_b->runtime -= amount; 3206 cfs_b->idle = 0; 3207 } 3208 } 3209 expires = cfs_b->runtime_expires; 3210 raw_spin_unlock(&cfs_b->lock); 3211 3212 cfs_rq->runtime_remaining += amount; 3213 /* 3214 * we may have advanced our local expiration to account for allowed 3215 * spread between our sched_clock and the one on which runtime was 3216 * issued. 3217 */ 3218 if ((s64)(expires - cfs_rq->runtime_expires) > 0) 3219 cfs_rq->runtime_expires = expires; 3220 3221 return cfs_rq->runtime_remaining > 0; 3222 } 3223 3224 /* 3225 * Note: This depends on the synchronization provided by sched_clock and the 3226 * fact that rq->clock snapshots this value. 3227 */ 3228 static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq) 3229 { 3230 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 3231 3232 /* if the deadline is ahead of our clock, nothing to do */ 3233 if (likely((s64)(rq_clock(rq_of(cfs_rq)) - cfs_rq->runtime_expires) < 0)) 3234 return; 3235 3236 if (cfs_rq->runtime_remaining < 0) 3237 return; 3238 3239 /* 3240 * If the local deadline has passed we have to consider the 3241 * possibility that our sched_clock is 'fast' and the global deadline 3242 * has not truly expired. 3243 * 3244 * Fortunately we can check determine whether this the case by checking 3245 * whether the global deadline has advanced. It is valid to compare 3246 * cfs_b->runtime_expires without any locks since we only care about 3247 * exact equality, so a partial write will still work. 3248 */ 3249 3250 if (cfs_rq->runtime_expires != cfs_b->runtime_expires) { 3251 /* extend local deadline, drift is bounded above by 2 ticks */ 3252 cfs_rq->runtime_expires += TICK_NSEC; 3253 } else { 3254 /* global deadline is ahead, expiration has passed */ 3255 cfs_rq->runtime_remaining = 0; 3256 } 3257 } 3258 3259 static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) 3260 { 3261 /* dock delta_exec before expiring quota (as it could span periods) */ 3262 cfs_rq->runtime_remaining -= delta_exec; 3263 expire_cfs_rq_runtime(cfs_rq); 3264 3265 if (likely(cfs_rq->runtime_remaining > 0)) 3266 return; 3267 3268 /* 3269 * if we're unable to extend our runtime we resched so that the active 3270 * hierarchy can be throttled 3271 */ 3272 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr)) 3273 resched_curr(rq_of(cfs_rq)); 3274 } 3275 3276 static __always_inline 3277 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) 3278 { 3279 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled) 3280 return; 3281 3282 __account_cfs_rq_runtime(cfs_rq, delta_exec); 3283 } 3284 3285 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq) 3286 { 3287 return cfs_bandwidth_used() && cfs_rq->throttled; 3288 } 3289 3290 /* check whether cfs_rq, or any parent, is throttled */ 3291 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq) 3292 { 3293 return cfs_bandwidth_used() && cfs_rq->throttle_count; 3294 } 3295 3296 /* 3297 * Ensure that neither of the group entities corresponding to src_cpu or 3298 * dest_cpu are members of a throttled hierarchy when performing group 3299 * load-balance operations. 3300 */ 3301 static inline int throttled_lb_pair(struct task_group *tg, 3302 int src_cpu, int dest_cpu) 3303 { 3304 struct cfs_rq *src_cfs_rq, *dest_cfs_rq; 3305 3306 src_cfs_rq = tg->cfs_rq[src_cpu]; 3307 dest_cfs_rq = tg->cfs_rq[dest_cpu]; 3308 3309 return throttled_hierarchy(src_cfs_rq) || 3310 throttled_hierarchy(dest_cfs_rq); 3311 } 3312 3313 /* updated child weight may affect parent so we have to do this bottom up */ 3314 static int tg_unthrottle_up(struct task_group *tg, void *data) 3315 { 3316 struct rq *rq = data; 3317 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; 3318 3319 cfs_rq->throttle_count--; 3320 #ifdef CONFIG_SMP 3321 if (!cfs_rq->throttle_count) { 3322 /* adjust cfs_rq_clock_task() */ 3323 cfs_rq->throttled_clock_task_time += rq_clock_task(rq) - 3324 cfs_rq->throttled_clock_task; 3325 } 3326 #endif 3327 3328 return 0; 3329 } 3330 3331 static int tg_throttle_down(struct task_group *tg, void *data) 3332 { 3333 struct rq *rq = data; 3334 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; 3335 3336 /* group is entering throttled state, stop time */ 3337 if (!cfs_rq->throttle_count) 3338 cfs_rq->throttled_clock_task = rq_clock_task(rq); 3339 cfs_rq->throttle_count++; 3340 3341 return 0; 3342 } 3343 3344 static void throttle_cfs_rq(struct cfs_rq *cfs_rq) 3345 { 3346 struct rq *rq = rq_of(cfs_rq); 3347 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 3348 struct sched_entity *se; 3349 long task_delta, dequeue = 1; 3350 3351 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))]; 3352 3353 /* freeze hierarchy runnable averages while throttled */ 3354 rcu_read_lock(); 3355 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq); 3356 rcu_read_unlock(); 3357 3358 task_delta = cfs_rq->h_nr_running; 3359 for_each_sched_entity(se) { 3360 struct cfs_rq *qcfs_rq = cfs_rq_of(se); 3361 /* throttled entity or throttle-on-deactivate */ 3362 if (!se->on_rq) 3363 break; 3364 3365 if (dequeue) 3366 dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP); 3367 qcfs_rq->h_nr_running -= task_delta; 3368 3369 if (qcfs_rq->load.weight) 3370 dequeue = 0; 3371 } 3372 3373 if (!se) 3374 sub_nr_running(rq, task_delta); 3375 3376 cfs_rq->throttled = 1; 3377 cfs_rq->throttled_clock = rq_clock(rq); 3378 raw_spin_lock(&cfs_b->lock); 3379 /* 3380 * Add to the _head_ of the list, so that an already-started 3381 * distribute_cfs_runtime will not see us 3382 */ 3383 list_add_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq); 3384 if (!cfs_b->timer_active) 3385 __start_cfs_bandwidth(cfs_b, false); 3386 raw_spin_unlock(&cfs_b->lock); 3387 } 3388 3389 void unthrottle_cfs_rq(struct cfs_rq *cfs_rq) 3390 { 3391 struct rq *rq = rq_of(cfs_rq); 3392 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 3393 struct sched_entity *se; 3394 int enqueue = 1; 3395 long task_delta; 3396 3397 se = cfs_rq->tg->se[cpu_of(rq)]; 3398 3399 cfs_rq->throttled = 0; 3400 3401 update_rq_clock(rq); 3402 3403 raw_spin_lock(&cfs_b->lock); 3404 cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock; 3405 list_del_rcu(&cfs_rq->throttled_list); 3406 raw_spin_unlock(&cfs_b->lock); 3407 3408 /* update hierarchical throttle state */ 3409 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq); 3410 3411 if (!cfs_rq->load.weight) 3412 return; 3413 3414 task_delta = cfs_rq->h_nr_running; 3415 for_each_sched_entity(se) { 3416 if (se->on_rq) 3417 enqueue = 0; 3418 3419 cfs_rq = cfs_rq_of(se); 3420 if (enqueue) 3421 enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP); 3422 cfs_rq->h_nr_running += task_delta; 3423 3424 if (cfs_rq_throttled(cfs_rq)) 3425 break; 3426 } 3427 3428 if (!se) 3429 add_nr_running(rq, task_delta); 3430 3431 /* determine whether we need to wake up potentially idle cpu */ 3432 if (rq->curr == rq->idle && rq->cfs.nr_running) 3433 resched_curr(rq); 3434 } 3435 3436 static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b, 3437 u64 remaining, u64 expires) 3438 { 3439 struct cfs_rq *cfs_rq; 3440 u64 runtime; 3441 u64 starting_runtime = remaining; 3442 3443 rcu_read_lock(); 3444 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq, 3445 throttled_list) { 3446 struct rq *rq = rq_of(cfs_rq); 3447 3448 raw_spin_lock(&rq->lock); 3449 if (!cfs_rq_throttled(cfs_rq)) 3450 goto next; 3451 3452 runtime = -cfs_rq->runtime_remaining + 1; 3453 if (runtime > remaining) 3454 runtime = remaining; 3455 remaining -= runtime; 3456 3457 cfs_rq->runtime_remaining += runtime; 3458 cfs_rq->runtime_expires = expires; 3459 3460 /* we check whether we're throttled above */ 3461 if (cfs_rq->runtime_remaining > 0) 3462 unthrottle_cfs_rq(cfs_rq); 3463 3464 next: 3465 raw_spin_unlock(&rq->lock); 3466 3467 if (!remaining) 3468 break; 3469 } 3470 rcu_read_unlock(); 3471 3472 return starting_runtime - remaining; 3473 } 3474 3475 /* 3476 * Responsible for refilling a task_group's bandwidth and unthrottling its 3477 * cfs_rqs as appropriate. If there has been no activity within the last 3478 * period the timer is deactivated until scheduling resumes; cfs_b->idle is 3479 * used to track this state. 3480 */ 3481 static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun) 3482 { 3483 u64 runtime, runtime_expires; 3484 int throttled; 3485 3486 /* no need to continue the timer with no bandwidth constraint */ 3487 if (cfs_b->quota == RUNTIME_INF) 3488 goto out_deactivate; 3489 3490 throttled = !list_empty(&cfs_b->throttled_cfs_rq); 3491 cfs_b->nr_periods += overrun; 3492 3493 /* 3494 * idle depends on !throttled (for the case of a large deficit), and if 3495 * we're going inactive then everything else can be deferred 3496 */ 3497 if (cfs_b->idle && !throttled) 3498 goto out_deactivate; 3499 3500 /* 3501 * if we have relooped after returning idle once, we need to update our 3502 * status as actually running, so that other cpus doing 3503 * __start_cfs_bandwidth will stop trying to cancel us. 3504 */ 3505 cfs_b->timer_active = 1; 3506 3507 __refill_cfs_bandwidth_runtime(cfs_b); 3508 3509 if (!throttled) { 3510 /* mark as potentially idle for the upcoming period */ 3511 cfs_b->idle = 1; 3512 return 0; 3513 } 3514 3515 /* account preceding periods in which throttling occurred */ 3516 cfs_b->nr_throttled += overrun; 3517 3518 runtime_expires = cfs_b->runtime_expires; 3519 3520 /* 3521 * This check is repeated as we are holding onto the new bandwidth while 3522 * we unthrottle. This can potentially race with an unthrottled group 3523 * trying to acquire new bandwidth from the global pool. This can result 3524 * in us over-using our runtime if it is all used during this loop, but 3525 * only by limited amounts in that extreme case. 3526 */ 3527 while (throttled && cfs_b->runtime > 0) { 3528 runtime = cfs_b->runtime; 3529 raw_spin_unlock(&cfs_b->lock); 3530 /* we can't nest cfs_b->lock while distributing bandwidth */ 3531 runtime = distribute_cfs_runtime(cfs_b, runtime, 3532 runtime_expires); 3533 raw_spin_lock(&cfs_b->lock); 3534 3535 throttled = !list_empty(&cfs_b->throttled_cfs_rq); 3536 3537 cfs_b->runtime -= min(runtime, cfs_b->runtime); 3538 } 3539 3540 /* 3541 * While we are ensured activity in the period following an 3542 * unthrottle, this also covers the case in which the new bandwidth is 3543 * insufficient to cover the existing bandwidth deficit. (Forcing the 3544 * timer to remain active while there are any throttled entities.) 3545 */ 3546 cfs_b->idle = 0; 3547 3548 return 0; 3549 3550 out_deactivate: 3551 cfs_b->timer_active = 0; 3552 return 1; 3553 } 3554 3555 /* a cfs_rq won't donate quota below this amount */ 3556 static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC; 3557 /* minimum remaining period time to redistribute slack quota */ 3558 static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC; 3559 /* how long we wait to gather additional slack before distributing */ 3560 static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC; 3561 3562 /* 3563 * Are we near the end of the current quota period? 3564 * 3565 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the 3566 * hrtimer base being cleared by __hrtimer_start_range_ns. In the case of 3567 * migrate_hrtimers, base is never cleared, so we are fine. 3568 */ 3569 static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire) 3570 { 3571 struct hrtimer *refresh_timer = &cfs_b->period_timer; 3572 u64 remaining; 3573 3574 /* if the call-back is running a quota refresh is already occurring */ 3575 if (hrtimer_callback_running(refresh_timer)) 3576 return 1; 3577 3578 /* is a quota refresh about to occur? */ 3579 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer)); 3580 if (remaining < min_expire) 3581 return 1; 3582 3583 return 0; 3584 } 3585 3586 static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b) 3587 { 3588 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration; 3589 3590 /* if there's a quota refresh soon don't bother with slack */ 3591 if (runtime_refresh_within(cfs_b, min_left)) 3592 return; 3593 3594 start_bandwidth_timer(&cfs_b->slack_timer, 3595 ns_to_ktime(cfs_bandwidth_slack_period)); 3596 } 3597 3598 /* we know any runtime found here is valid as update_curr() precedes return */ 3599 static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq) 3600 { 3601 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 3602 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime; 3603 3604 if (slack_runtime <= 0) 3605 return; 3606 3607 raw_spin_lock(&cfs_b->lock); 3608 if (cfs_b->quota != RUNTIME_INF && 3609 cfs_rq->runtime_expires == cfs_b->runtime_expires) { 3610 cfs_b->runtime += slack_runtime; 3611 3612 /* we are under rq->lock, defer unthrottling using a timer */ 3613 if (cfs_b->runtime > sched_cfs_bandwidth_slice() && 3614 !list_empty(&cfs_b->throttled_cfs_rq)) 3615 start_cfs_slack_bandwidth(cfs_b); 3616 } 3617 raw_spin_unlock(&cfs_b->lock); 3618 3619 /* even if it's not valid for return we don't want to try again */ 3620 cfs_rq->runtime_remaining -= slack_runtime; 3621 } 3622 3623 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) 3624 { 3625 if (!cfs_bandwidth_used()) 3626 return; 3627 3628 if (!cfs_rq->runtime_enabled || cfs_rq->nr_running) 3629 return; 3630 3631 __return_cfs_rq_runtime(cfs_rq); 3632 } 3633 3634 /* 3635 * This is done with a timer (instead of inline with bandwidth return) since 3636 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs. 3637 */ 3638 static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b) 3639 { 3640 u64 runtime = 0, slice = sched_cfs_bandwidth_slice(); 3641 u64 expires; 3642 3643 /* confirm we're still not at a refresh boundary */ 3644 raw_spin_lock(&cfs_b->lock); 3645 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) { 3646 raw_spin_unlock(&cfs_b->lock); 3647 return; 3648 } 3649 3650 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice) 3651 runtime = cfs_b->runtime; 3652 3653 expires = cfs_b->runtime_expires; 3654 raw_spin_unlock(&cfs_b->lock); 3655 3656 if (!runtime) 3657 return; 3658 3659 runtime = distribute_cfs_runtime(cfs_b, runtime, expires); 3660 3661 raw_spin_lock(&cfs_b->lock); 3662 if (expires == cfs_b->runtime_expires) 3663 cfs_b->runtime -= min(runtime, cfs_b->runtime); 3664 raw_spin_unlock(&cfs_b->lock); 3665 } 3666 3667 /* 3668 * When a group wakes up we want to make sure that its quota is not already 3669 * expired/exceeded, otherwise it may be allowed to steal additional ticks of 3670 * runtime as update_curr() throttling can not not trigger until it's on-rq. 3671 */ 3672 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) 3673 { 3674 if (!cfs_bandwidth_used()) 3675 return; 3676 3677 /* an active group must be handled by the update_curr()->put() path */ 3678 if (!cfs_rq->runtime_enabled || cfs_rq->curr) 3679 return; 3680 3681 /* ensure the group is not already throttled */ 3682 if (cfs_rq_throttled(cfs_rq)) 3683 return; 3684 3685 /* update runtime allocation */ 3686 account_cfs_rq_runtime(cfs_rq, 0); 3687 if (cfs_rq->runtime_remaining <= 0) 3688 throttle_cfs_rq(cfs_rq); 3689 } 3690 3691 /* conditionally throttle active cfs_rq's from put_prev_entity() */ 3692 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) 3693 { 3694 if (!cfs_bandwidth_used()) 3695 return false; 3696 3697 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0)) 3698 return false; 3699 3700 /* 3701 * it's possible for a throttled entity to be forced into a running 3702 * state (e.g. set_curr_task), in this case we're finished. 3703 */ 3704 if (cfs_rq_throttled(cfs_rq)) 3705 return true; 3706 3707 throttle_cfs_rq(cfs_rq); 3708 return true; 3709 } 3710 3711 static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer) 3712 { 3713 struct cfs_bandwidth *cfs_b = 3714 container_of(timer, struct cfs_bandwidth, slack_timer); 3715 do_sched_cfs_slack_timer(cfs_b); 3716 3717 return HRTIMER_NORESTART; 3718 } 3719 3720 static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer) 3721 { 3722 struct cfs_bandwidth *cfs_b = 3723 container_of(timer, struct cfs_bandwidth, period_timer); 3724 ktime_t now; 3725 int overrun; 3726 int idle = 0; 3727 3728 raw_spin_lock(&cfs_b->lock); 3729 for (;;) { 3730 now = hrtimer_cb_get_time(timer); 3731 overrun = hrtimer_forward(timer, now, cfs_b->period); 3732 3733 if (!overrun) 3734 break; 3735 3736 idle = do_sched_cfs_period_timer(cfs_b, overrun); 3737 } 3738 raw_spin_unlock(&cfs_b->lock); 3739 3740 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART; 3741 } 3742 3743 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) 3744 { 3745 raw_spin_lock_init(&cfs_b->lock); 3746 cfs_b->runtime = 0; 3747 cfs_b->quota = RUNTIME_INF; 3748 cfs_b->period = ns_to_ktime(default_cfs_period()); 3749 3750 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq); 3751 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 3752 cfs_b->period_timer.function = sched_cfs_period_timer; 3753 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 3754 cfs_b->slack_timer.function = sched_cfs_slack_timer; 3755 } 3756 3757 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) 3758 { 3759 cfs_rq->runtime_enabled = 0; 3760 INIT_LIST_HEAD(&cfs_rq->throttled_list); 3761 } 3762 3763 /* requires cfs_b->lock, may release to reprogram timer */ 3764 void __start_cfs_bandwidth(struct cfs_bandwidth *cfs_b, bool force) 3765 { 3766 /* 3767 * The timer may be active because we're trying to set a new bandwidth 3768 * period or because we're racing with the tear-down path 3769 * (timer_active==0 becomes visible before the hrtimer call-back 3770 * terminates). In either case we ensure that it's re-programmed 3771 */ 3772 while (unlikely(hrtimer_active(&cfs_b->period_timer)) && 3773 hrtimer_try_to_cancel(&cfs_b->period_timer) < 0) { 3774 /* bounce the lock to allow do_sched_cfs_period_timer to run */ 3775 raw_spin_unlock(&cfs_b->lock); 3776 cpu_relax(); 3777 raw_spin_lock(&cfs_b->lock); 3778 /* if someone else restarted the timer then we're done */ 3779 if (!force && cfs_b->timer_active) 3780 return; 3781 } 3782 3783 cfs_b->timer_active = 1; 3784 start_bandwidth_timer(&cfs_b->period_timer, cfs_b->period); 3785 } 3786 3787 static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) 3788 { 3789 hrtimer_cancel(&cfs_b->period_timer); 3790 hrtimer_cancel(&cfs_b->slack_timer); 3791 } 3792 3793 static void __maybe_unused update_runtime_enabled(struct rq *rq) 3794 { 3795 struct cfs_rq *cfs_rq; 3796 3797 for_each_leaf_cfs_rq(rq, cfs_rq) { 3798 struct cfs_bandwidth *cfs_b = &cfs_rq->tg->cfs_bandwidth; 3799 3800 raw_spin_lock(&cfs_b->lock); 3801 cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF; 3802 raw_spin_unlock(&cfs_b->lock); 3803 } 3804 } 3805 3806 static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq) 3807 { 3808 struct cfs_rq *cfs_rq; 3809 3810 for_each_leaf_cfs_rq(rq, cfs_rq) { 3811 if (!cfs_rq->runtime_enabled) 3812 continue; 3813 3814 /* 3815 * clock_task is not advancing so we just need to make sure 3816 * there's some valid quota amount 3817 */ 3818 cfs_rq->runtime_remaining = 1; 3819 /* 3820 * Offline rq is schedulable till cpu is completely disabled 3821 * in take_cpu_down(), so we prevent new cfs throttling here. 3822 */ 3823 cfs_rq->runtime_enabled = 0; 3824 3825 if (cfs_rq_throttled(cfs_rq)) 3826 unthrottle_cfs_rq(cfs_rq); 3827 } 3828 } 3829 3830 #else /* CONFIG_CFS_BANDWIDTH */ 3831 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq) 3832 { 3833 return rq_clock_task(rq_of(cfs_rq)); 3834 } 3835 3836 static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {} 3837 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; } 3838 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {} 3839 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {} 3840 3841 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq) 3842 { 3843 return 0; 3844 } 3845 3846 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq) 3847 { 3848 return 0; 3849 } 3850 3851 static inline int throttled_lb_pair(struct task_group *tg, 3852 int src_cpu, int dest_cpu) 3853 { 3854 return 0; 3855 } 3856 3857 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {} 3858 3859 #ifdef CONFIG_FAIR_GROUP_SCHED 3860 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {} 3861 #endif 3862 3863 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg) 3864 { 3865 return NULL; 3866 } 3867 static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {} 3868 static inline void update_runtime_enabled(struct rq *rq) {} 3869 static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {} 3870 3871 #endif /* CONFIG_CFS_BANDWIDTH */ 3872 3873 /************************************************** 3874 * CFS operations on tasks: 3875 */ 3876 3877 #ifdef CONFIG_SCHED_HRTICK 3878 static void hrtick_start_fair(struct rq *rq, struct task_struct *p) 3879 { 3880 struct sched_entity *se = &p->se; 3881 struct cfs_rq *cfs_rq = cfs_rq_of(se); 3882 3883 WARN_ON(task_rq(p) != rq); 3884 3885 if (cfs_rq->nr_running > 1) { 3886 u64 slice = sched_slice(cfs_rq, se); 3887 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime; 3888 s64 delta = slice - ran; 3889 3890 if (delta < 0) { 3891 if (rq->curr == p) 3892 resched_curr(rq); 3893 return; 3894 } 3895 3896 /* 3897 * Don't schedule slices shorter than 10000ns, that just 3898 * doesn't make sense. Rely on vruntime for fairness. 3899 */ 3900 if (rq->curr != p) 3901 delta = max_t(s64, 10000LL, delta); 3902 3903 hrtick_start(rq, delta); 3904 } 3905 } 3906 3907 /* 3908 * called from enqueue/dequeue and updates the hrtick when the 3909 * current task is from our class and nr_running is low enough 3910 * to matter. 3911 */ 3912 static void hrtick_update(struct rq *rq) 3913 { 3914 struct task_struct *curr = rq->curr; 3915 3916 if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class) 3917 return; 3918 3919 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency) 3920 hrtick_start_fair(rq, curr); 3921 } 3922 #else /* !CONFIG_SCHED_HRTICK */ 3923 static inline void 3924 hrtick_start_fair(struct rq *rq, struct task_struct *p) 3925 { 3926 } 3927 3928 static inline void hrtick_update(struct rq *rq) 3929 { 3930 } 3931 #endif 3932 3933 /* 3934 * The enqueue_task method is called before nr_running is 3935 * increased. Here we update the fair scheduling stats and 3936 * then put the task into the rbtree: 3937 */ 3938 static void 3939 enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags) 3940 { 3941 struct cfs_rq *cfs_rq; 3942 struct sched_entity *se = &p->se; 3943 3944 for_each_sched_entity(se) { 3945 if (se->on_rq) 3946 break; 3947 cfs_rq = cfs_rq_of(se); 3948 enqueue_entity(cfs_rq, se, flags); 3949 3950 /* 3951 * end evaluation on encountering a throttled cfs_rq 3952 * 3953 * note: in the case of encountering a throttled cfs_rq we will 3954 * post the final h_nr_running increment below. 3955 */ 3956 if (cfs_rq_throttled(cfs_rq)) 3957 break; 3958 cfs_rq->h_nr_running++; 3959 3960 flags = ENQUEUE_WAKEUP; 3961 } 3962 3963 for_each_sched_entity(se) { 3964 cfs_rq = cfs_rq_of(se); 3965 cfs_rq->h_nr_running++; 3966 3967 if (cfs_rq_throttled(cfs_rq)) 3968 break; 3969 3970 update_cfs_shares(cfs_rq); 3971 update_entity_load_avg(se, 1); 3972 } 3973 3974 if (!se) { 3975 update_rq_runnable_avg(rq, rq->nr_running); 3976 add_nr_running(rq, 1); 3977 } 3978 hrtick_update(rq); 3979 } 3980 3981 static void set_next_buddy(struct sched_entity *se); 3982 3983 /* 3984 * The dequeue_task method is called before nr_running is 3985 * decreased. We remove the task from the rbtree and 3986 * update the fair scheduling stats: 3987 */ 3988 static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags) 3989 { 3990 struct cfs_rq *cfs_rq; 3991 struct sched_entity *se = &p->se; 3992 int task_sleep = flags & DEQUEUE_SLEEP; 3993 3994 for_each_sched_entity(se) { 3995 cfs_rq = cfs_rq_of(se); 3996 dequeue_entity(cfs_rq, se, flags); 3997 3998 /* 3999 * end evaluation on encountering a throttled cfs_rq 4000 * 4001 * note: in the case of encountering a throttled cfs_rq we will 4002 * post the final h_nr_running decrement below. 4003 */ 4004 if (cfs_rq_throttled(cfs_rq)) 4005 break; 4006 cfs_rq->h_nr_running--; 4007 4008 /* Don't dequeue parent if it has other entities besides us */ 4009 if (cfs_rq->load.weight) { 4010 /* 4011 * Bias pick_next to pick a task from this cfs_rq, as 4012 * p is sleeping when it is within its sched_slice. 4013 */ 4014 if (task_sleep && parent_entity(se)) 4015 set_next_buddy(parent_entity(se)); 4016 4017 /* avoid re-evaluating load for this entity */ 4018 se = parent_entity(se); 4019 break; 4020 } 4021 flags |= DEQUEUE_SLEEP; 4022 } 4023 4024 for_each_sched_entity(se) { 4025 cfs_rq = cfs_rq_of(se); 4026 cfs_rq->h_nr_running--; 4027 4028 if (cfs_rq_throttled(cfs_rq)) 4029 break; 4030 4031 update_cfs_shares(cfs_rq); 4032 update_entity_load_avg(se, 1); 4033 } 4034 4035 if (!se) { 4036 sub_nr_running(rq, 1); 4037 update_rq_runnable_avg(rq, 1); 4038 } 4039 hrtick_update(rq); 4040 } 4041 4042 #ifdef CONFIG_SMP 4043 /* Used instead of source_load when we know the type == 0 */ 4044 static unsigned long weighted_cpuload(const int cpu) 4045 { 4046 return cpu_rq(cpu)->cfs.runnable_load_avg; 4047 } 4048 4049 /* 4050 * Return a low guess at the load of a migration-source cpu weighted 4051 * according to the scheduling class and "nice" value. 4052 * 4053 * We want to under-estimate the load of migration sources, to 4054 * balance conservatively. 4055 */ 4056 static unsigned long source_load(int cpu, int type) 4057 { 4058 struct rq *rq = cpu_rq(cpu); 4059 unsigned long total = weighted_cpuload(cpu); 4060 4061 if (type == 0 || !sched_feat(LB_BIAS)) 4062 return total; 4063 4064 return min(rq->cpu_load[type-1], total); 4065 } 4066 4067 /* 4068 * Return a high guess at the load of a migration-target cpu weighted 4069 * according to the scheduling class and "nice" value. 4070 */ 4071 static unsigned long target_load(int cpu, int type) 4072 { 4073 struct rq *rq = cpu_rq(cpu); 4074 unsigned long total = weighted_cpuload(cpu); 4075 4076 if (type == 0 || !sched_feat(LB_BIAS)) 4077 return total; 4078 4079 return max(rq->cpu_load[type-1], total); 4080 } 4081 4082 static unsigned long capacity_of(int cpu) 4083 { 4084 return cpu_rq(cpu)->cpu_capacity; 4085 } 4086 4087 static unsigned long cpu_avg_load_per_task(int cpu) 4088 { 4089 struct rq *rq = cpu_rq(cpu); 4090 unsigned long nr_running = ACCESS_ONCE(rq->nr_running); 4091 unsigned long load_avg = rq->cfs.runnable_load_avg; 4092 4093 if (nr_running) 4094 return load_avg / nr_running; 4095 4096 return 0; 4097 } 4098 4099 static void record_wakee(struct task_struct *p) 4100 { 4101 /* 4102 * Rough decay (wiping) for cost saving, don't worry 4103 * about the boundary, really active task won't care 4104 * about the loss. 4105 */ 4106 if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) { 4107 current->wakee_flips >>= 1; 4108 current->wakee_flip_decay_ts = jiffies; 4109 } 4110 4111 if (current->last_wakee != p) { 4112 current->last_wakee = p; 4113 current->wakee_flips++; 4114 } 4115 } 4116 4117 static void task_waking_fair(struct task_struct *p) 4118 { 4119 struct sched_entity *se = &p->se; 4120 struct cfs_rq *cfs_rq = cfs_rq_of(se); 4121 u64 min_vruntime; 4122 4123 #ifndef CONFIG_64BIT 4124 u64 min_vruntime_copy; 4125 4126 do { 4127 min_vruntime_copy = cfs_rq->min_vruntime_copy; 4128 smp_rmb(); 4129 min_vruntime = cfs_rq->min_vruntime; 4130 } while (min_vruntime != min_vruntime_copy); 4131 #else 4132 min_vruntime = cfs_rq->min_vruntime; 4133 #endif 4134 4135 se->vruntime -= min_vruntime; 4136 record_wakee(p); 4137 } 4138 4139 #ifdef CONFIG_FAIR_GROUP_SCHED 4140 /* 4141 * effective_load() calculates the load change as seen from the root_task_group 4142 * 4143 * Adding load to a group doesn't make a group heavier, but can cause movement 4144 * of group shares between cpus. Assuming the shares were perfectly aligned one 4145 * can calculate the shift in shares. 4146 * 4147 * Calculate the effective load difference if @wl is added (subtracted) to @tg 4148 * on this @cpu and results in a total addition (subtraction) of @wg to the 4149 * total group weight. 4150 * 4151 * Given a runqueue weight distribution (rw_i) we can compute a shares 4152 * distribution (s_i) using: 4153 * 4154 * s_i = rw_i / \Sum rw_j (1) 4155 * 4156 * Suppose we have 4 CPUs and our @tg is a direct child of the root group and 4157 * has 7 equal weight tasks, distributed as below (rw_i), with the resulting 4158 * shares distribution (s_i): 4159 * 4160 * rw_i = { 2, 4, 1, 0 } 4161 * s_i = { 2/7, 4/7, 1/7, 0 } 4162 * 4163 * As per wake_affine() we're interested in the load of two CPUs (the CPU the 4164 * task used to run on and the CPU the waker is running on), we need to 4165 * compute the effect of waking a task on either CPU and, in case of a sync 4166 * wakeup, compute the effect of the current task going to sleep. 4167 * 4168 * So for a change of @wl to the local @cpu with an overall group weight change 4169 * of @wl we can compute the new shares distribution (s'_i) using: 4170 * 4171 * s'_i = (rw_i + @wl) / (@wg + \Sum rw_j) (2) 4172 * 4173 * Suppose we're interested in CPUs 0 and 1, and want to compute the load 4174 * differences in waking a task to CPU 0. The additional task changes the 4175 * weight and shares distributions like: 4176 * 4177 * rw'_i = { 3, 4, 1, 0 } 4178 * s'_i = { 3/8, 4/8, 1/8, 0 } 4179 * 4180 * We can then compute the difference in effective weight by using: 4181 * 4182 * dw_i = S * (s'_i - s_i) (3) 4183 * 4184 * Where 'S' is the group weight as seen by its parent. 4185 * 4186 * Therefore the effective change in loads on CPU 0 would be 5/56 (3/8 - 2/7) 4187 * times the weight of the group. The effect on CPU 1 would be -4/56 (4/8 - 4188 * 4/7) times the weight of the group. 4189 */ 4190 static long effective_load(struct task_group *tg, int cpu, long wl, long wg) 4191 { 4192 struct sched_entity *se = tg->se[cpu]; 4193 4194 if (!tg->parent) /* the trivial, non-cgroup case */ 4195 return wl; 4196 4197 for_each_sched_entity(se) { 4198 long w, W; 4199 4200 tg = se->my_q->tg; 4201 4202 /* 4203 * W = @wg + \Sum rw_j 4204 */ 4205 W = wg + calc_tg_weight(tg, se->my_q); 4206 4207 /* 4208 * w = rw_i + @wl 4209 */ 4210 w = se->my_q->load.weight + wl; 4211 4212 /* 4213 * wl = S * s'_i; see (2) 4214 */ 4215 if (W > 0 && w < W) 4216 wl = (w * tg->shares) / W; 4217 else 4218 wl = tg->shares; 4219 4220 /* 4221 * Per the above, wl is the new se->load.weight value; since 4222 * those are clipped to [MIN_SHARES, ...) do so now. See 4223 * calc_cfs_shares(). 4224 */ 4225 if (wl < MIN_SHARES) 4226 wl = MIN_SHARES; 4227 4228 /* 4229 * wl = dw_i = S * (s'_i - s_i); see (3) 4230 */ 4231 wl -= se->load.weight; 4232 4233 /* 4234 * Recursively apply this logic to all parent groups to compute 4235 * the final effective load change on the root group. Since 4236 * only the @tg group gets extra weight, all parent groups can 4237 * only redistribute existing shares. @wl is the shift in shares 4238 * resulting from this level per the above. 4239 */ 4240 wg = 0; 4241 } 4242 4243 return wl; 4244 } 4245 #else 4246 4247 static long effective_load(struct task_group *tg, int cpu, long wl, long wg) 4248 { 4249 return wl; 4250 } 4251 4252 #endif 4253 4254 static int wake_wide(struct task_struct *p) 4255 { 4256 int factor = this_cpu_read(sd_llc_size); 4257 4258 /* 4259 * Yeah, it's the switching-frequency, could means many wakee or 4260 * rapidly switch, use factor here will just help to automatically 4261 * adjust the loose-degree, so bigger node will lead to more pull. 4262 */ 4263 if (p->wakee_flips > factor) { 4264 /* 4265 * wakee is somewhat hot, it needs certain amount of cpu 4266 * resource, so if waker is far more hot, prefer to leave 4267 * it alone. 4268 */ 4269 if (current->wakee_flips > (factor * p->wakee_flips)) 4270 return 1; 4271 } 4272 4273 return 0; 4274 } 4275 4276 static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync) 4277 { 4278 s64 this_load, load; 4279 int idx, this_cpu, prev_cpu; 4280 unsigned long tl_per_task; 4281 struct task_group *tg; 4282 unsigned long weight; 4283 int balanced; 4284 4285 /* 4286 * If we wake multiple tasks be careful to not bounce 4287 * ourselves around too much. 4288 */ 4289 if (wake_wide(p)) 4290 return 0; 4291 4292 idx = sd->wake_idx; 4293 this_cpu = smp_processor_id(); 4294 prev_cpu = task_cpu(p); 4295 load = source_load(prev_cpu, idx); 4296 this_load = target_load(this_cpu, idx); 4297 4298 /* 4299 * If sync wakeup then subtract the (maximum possible) 4300 * effect of the currently running task from the load 4301 * of the current CPU: 4302 */ 4303 if (sync) { 4304 tg = task_group(current); 4305 weight = current->se.load.weight; 4306 4307 this_load += effective_load(tg, this_cpu, -weight, -weight); 4308 load += effective_load(tg, prev_cpu, 0, -weight); 4309 } 4310 4311 tg = task_group(p); 4312 weight = p->se.load.weight; 4313 4314 /* 4315 * In low-load situations, where prev_cpu is idle and this_cpu is idle 4316 * due to the sync cause above having dropped this_load to 0, we'll 4317 * always have an imbalance, but there's really nothing you can do 4318 * about that, so that's good too. 4319 * 4320 * Otherwise check if either cpus are near enough in load to allow this 4321 * task to be woken on this_cpu. 4322 */ 4323 if (this_load > 0) { 4324 s64 this_eff_load, prev_eff_load; 4325 4326 this_eff_load = 100; 4327 this_eff_load *= capacity_of(prev_cpu); 4328 this_eff_load *= this_load + 4329 effective_load(tg, this_cpu, weight, weight); 4330 4331 prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2; 4332 prev_eff_load *= capacity_of(this_cpu); 4333 prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight); 4334 4335 balanced = this_eff_load <= prev_eff_load; 4336 } else 4337 balanced = true; 4338 4339 /* 4340 * If the currently running task will sleep within 4341 * a reasonable amount of time then attract this newly 4342 * woken task: 4343 */ 4344 if (sync && balanced) 4345 return 1; 4346 4347 schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts); 4348 tl_per_task = cpu_avg_load_per_task(this_cpu); 4349 4350 if (balanced || 4351 (this_load <= load && 4352 this_load + target_load(prev_cpu, idx) <= tl_per_task)) { 4353 /* 4354 * This domain has SD_WAKE_AFFINE and 4355 * p is cache cold in this domain, and 4356 * there is no bad imbalance. 4357 */ 4358 schedstat_inc(sd, ttwu_move_affine); 4359 schedstat_inc(p, se.statistics.nr_wakeups_affine); 4360 4361 return 1; 4362 } 4363 return 0; 4364 } 4365 4366 /* 4367 * find_idlest_group finds and returns the least busy CPU group within the 4368 * domain. 4369 */ 4370 static struct sched_group * 4371 find_idlest_group(struct sched_domain *sd, struct task_struct *p, 4372 int this_cpu, int sd_flag) 4373 { 4374 struct sched_group *idlest = NULL, *group = sd->groups; 4375 unsigned long min_load = ULONG_MAX, this_load = 0; 4376 int load_idx = sd->forkexec_idx; 4377 int imbalance = 100 + (sd->imbalance_pct-100)/2; 4378 4379 if (sd_flag & SD_BALANCE_WAKE) 4380 load_idx = sd->wake_idx; 4381 4382 do { 4383 unsigned long load, avg_load; 4384 int local_group; 4385 int i; 4386 4387 /* Skip over this group if it has no CPUs allowed */ 4388 if (!cpumask_intersects(sched_group_cpus(group), 4389 tsk_cpus_allowed(p))) 4390 continue; 4391 4392 local_group = cpumask_test_cpu(this_cpu, 4393 sched_group_cpus(group)); 4394 4395 /* Tally up the load of all CPUs in the group */ 4396 avg_load = 0; 4397 4398 for_each_cpu(i, sched_group_cpus(group)) { 4399 /* Bias balancing toward cpus of our domain */ 4400 if (local_group) 4401 load = source_load(i, load_idx); 4402 else 4403 load = target_load(i, load_idx); 4404 4405 avg_load += load; 4406 } 4407 4408 /* Adjust by relative CPU capacity of the group */ 4409 avg_load = (avg_load * SCHED_CAPACITY_SCALE) / group->sgc->capacity; 4410 4411 if (local_group) { 4412 this_load = avg_load; 4413 } else if (avg_load < min_load) { 4414 min_load = avg_load; 4415 idlest = group; 4416 } 4417 } while (group = group->next, group != sd->groups); 4418 4419 if (!idlest || 100*this_load < imbalance*min_load) 4420 return NULL; 4421 return idlest; 4422 } 4423 4424 /* 4425 * find_idlest_cpu - find the idlest cpu among the cpus in group. 4426 */ 4427 static int 4428 find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu) 4429 { 4430 unsigned long load, min_load = ULONG_MAX; 4431 int idlest = -1; 4432 int i; 4433 4434 /* Traverse only the allowed CPUs */ 4435 for_each_cpu_and(i, sched_group_cpus(group), tsk_cpus_allowed(p)) { 4436 load = weighted_cpuload(i); 4437 4438 if (load < min_load || (load == min_load && i == this_cpu)) { 4439 min_load = load; 4440 idlest = i; 4441 } 4442 } 4443 4444 return idlest; 4445 } 4446 4447 /* 4448 * Try and locate an idle CPU in the sched_domain. 4449 */ 4450 static int select_idle_sibling(struct task_struct *p, int target) 4451 { 4452 struct sched_domain *sd; 4453 struct sched_group *sg; 4454 int i = task_cpu(p); 4455 4456 if (idle_cpu(target)) 4457 return target; 4458 4459 /* 4460 * If the prevous cpu is cache affine and idle, don't be stupid. 4461 */ 4462 if (i != target && cpus_share_cache(i, target) && idle_cpu(i)) 4463 return i; 4464 4465 /* 4466 * Otherwise, iterate the domains and find an elegible idle cpu. 4467 */ 4468 sd = rcu_dereference(per_cpu(sd_llc, target)); 4469 for_each_lower_domain(sd) { 4470 sg = sd->groups; 4471 do { 4472 if (!cpumask_intersects(sched_group_cpus(sg), 4473 tsk_cpus_allowed(p))) 4474 goto next; 4475 4476 for_each_cpu(i, sched_group_cpus(sg)) { 4477 if (i == target || !idle_cpu(i)) 4478 goto next; 4479 } 4480 4481 target = cpumask_first_and(sched_group_cpus(sg), 4482 tsk_cpus_allowed(p)); 4483 goto done; 4484 next: 4485 sg = sg->next; 4486 } while (sg != sd->groups); 4487 } 4488 done: 4489 return target; 4490 } 4491 4492 /* 4493 * select_task_rq_fair: Select target runqueue for the waking task in domains 4494 * that have the 'sd_flag' flag set. In practice, this is SD_BALANCE_WAKE, 4495 * SD_BALANCE_FORK, or SD_BALANCE_EXEC. 4496 * 4497 * Balances load by selecting the idlest cpu in the idlest group, or under 4498 * certain conditions an idle sibling cpu if the domain has SD_WAKE_AFFINE set. 4499 * 4500 * Returns the target cpu number. 4501 * 4502 * preempt must be disabled. 4503 */ 4504 static int 4505 select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_flags) 4506 { 4507 struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL; 4508 int cpu = smp_processor_id(); 4509 int new_cpu = cpu; 4510 int want_affine = 0; 4511 int sync = wake_flags & WF_SYNC; 4512 4513 if (p->nr_cpus_allowed == 1) 4514 return prev_cpu; 4515 4516 if (sd_flag & SD_BALANCE_WAKE) { 4517 if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p))) 4518 want_affine = 1; 4519 new_cpu = prev_cpu; 4520 } 4521 4522 rcu_read_lock(); 4523 for_each_domain(cpu, tmp) { 4524 if (!(tmp->flags & SD_LOAD_BALANCE)) 4525 continue; 4526 4527 /* 4528 * If both cpu and prev_cpu are part of this domain, 4529 * cpu is a valid SD_WAKE_AFFINE target. 4530 */ 4531 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) && 4532 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) { 4533 affine_sd = tmp; 4534 break; 4535 } 4536 4537 if (tmp->flags & sd_flag) 4538 sd = tmp; 4539 } 4540 4541 if (affine_sd && cpu != prev_cpu && wake_affine(affine_sd, p, sync)) 4542 prev_cpu = cpu; 4543 4544 if (sd_flag & SD_BALANCE_WAKE) { 4545 new_cpu = select_idle_sibling(p, prev_cpu); 4546 goto unlock; 4547 } 4548 4549 while (sd) { 4550 struct sched_group *group; 4551 int weight; 4552 4553 if (!(sd->flags & sd_flag)) { 4554 sd = sd->child; 4555 continue; 4556 } 4557 4558 group = find_idlest_group(sd, p, cpu, sd_flag); 4559 if (!group) { 4560 sd = sd->child; 4561 continue; 4562 } 4563 4564 new_cpu = find_idlest_cpu(group, p, cpu); 4565 if (new_cpu == -1 || new_cpu == cpu) { 4566 /* Now try balancing at a lower domain level of cpu */ 4567 sd = sd->child; 4568 continue; 4569 } 4570 4571 /* Now try balancing at a lower domain level of new_cpu */ 4572 cpu = new_cpu; 4573 weight = sd->span_weight; 4574 sd = NULL; 4575 for_each_domain(cpu, tmp) { 4576 if (weight <= tmp->span_weight) 4577 break; 4578 if (tmp->flags & sd_flag) 4579 sd = tmp; 4580 } 4581 /* while loop will break here if sd == NULL */ 4582 } 4583 unlock: 4584 rcu_read_unlock(); 4585 4586 return new_cpu; 4587 } 4588 4589 /* 4590 * Called immediately before a task is migrated to a new cpu; task_cpu(p) and 4591 * cfs_rq_of(p) references at time of call are still valid and identify the 4592 * previous cpu. However, the caller only guarantees p->pi_lock is held; no 4593 * other assumptions, including the state of rq->lock, should be made. 4594 */ 4595 static void 4596 migrate_task_rq_fair(struct task_struct *p, int next_cpu) 4597 { 4598 struct sched_entity *se = &p->se; 4599 struct cfs_rq *cfs_rq = cfs_rq_of(se); 4600 4601 /* 4602 * Load tracking: accumulate removed load so that it can be processed 4603 * when we next update owning cfs_rq under rq->lock. Tasks contribute 4604 * to blocked load iff they have a positive decay-count. It can never 4605 * be negative here since on-rq tasks have decay-count == 0. 4606 */ 4607 if (se->avg.decay_count) { 4608 se->avg.decay_count = -__synchronize_entity_decay(se); 4609 atomic_long_add(se->avg.load_avg_contrib, 4610 &cfs_rq->removed_load); 4611 } 4612 4613 /* We have migrated, no longer consider this task hot */ 4614 se->exec_start = 0; 4615 } 4616 #endif /* CONFIG_SMP */ 4617 4618 static unsigned long 4619 wakeup_gran(struct sched_entity *curr, struct sched_entity *se) 4620 { 4621 unsigned long gran = sysctl_sched_wakeup_granularity; 4622 4623 /* 4624 * Since its curr running now, convert the gran from real-time 4625 * to virtual-time in his units. 4626 * 4627 * By using 'se' instead of 'curr' we penalize light tasks, so 4628 * they get preempted easier. That is, if 'se' < 'curr' then 4629 * the resulting gran will be larger, therefore penalizing the 4630 * lighter, if otoh 'se' > 'curr' then the resulting gran will 4631 * be smaller, again penalizing the lighter task. 4632 * 4633 * This is especially important for buddies when the leftmost 4634 * task is higher priority than the buddy. 4635 */ 4636 return calc_delta_fair(gran, se); 4637 } 4638 4639 /* 4640 * Should 'se' preempt 'curr'. 4641 * 4642 * |s1 4643 * |s2 4644 * |s3 4645 * g 4646 * |<--->|c 4647 * 4648 * w(c, s1) = -1 4649 * w(c, s2) = 0 4650 * w(c, s3) = 1 4651 * 4652 */ 4653 static int 4654 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se) 4655 { 4656 s64 gran, vdiff = curr->vruntime - se->vruntime; 4657 4658 if (vdiff <= 0) 4659 return -1; 4660 4661 gran = wakeup_gran(curr, se); 4662 if (vdiff > gran) 4663 return 1; 4664 4665 return 0; 4666 } 4667 4668 static void set_last_buddy(struct sched_entity *se) 4669 { 4670 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE)) 4671 return; 4672 4673 for_each_sched_entity(se) 4674 cfs_rq_of(se)->last = se; 4675 } 4676 4677 static void set_next_buddy(struct sched_entity *se) 4678 { 4679 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE)) 4680 return; 4681 4682 for_each_sched_entity(se) 4683 cfs_rq_of(se)->next = se; 4684 } 4685 4686 static void set_skip_buddy(struct sched_entity *se) 4687 { 4688 for_each_sched_entity(se) 4689 cfs_rq_of(se)->skip = se; 4690 } 4691 4692 /* 4693 * Preempt the current task with a newly woken task if needed: 4694 */ 4695 static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags) 4696 { 4697 struct task_struct *curr = rq->curr; 4698 struct sched_entity *se = &curr->se, *pse = &p->se; 4699 struct cfs_rq *cfs_rq = task_cfs_rq(curr); 4700 int scale = cfs_rq->nr_running >= sched_nr_latency; 4701 int next_buddy_marked = 0; 4702 4703 if (unlikely(se == pse)) 4704 return; 4705 4706 /* 4707 * This is possible from callers such as move_task(), in which we 4708 * unconditionally check_prempt_curr() after an enqueue (which may have 4709 * lead to a throttle). This both saves work and prevents false 4710 * next-buddy nomination below. 4711 */ 4712 if (unlikely(throttled_hierarchy(cfs_rq_of(pse)))) 4713 return; 4714 4715 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) { 4716 set_next_buddy(pse); 4717 next_buddy_marked = 1; 4718 } 4719 4720 /* 4721 * We can come here with TIF_NEED_RESCHED already set from new task 4722 * wake up path. 4723 * 4724 * Note: this also catches the edge-case of curr being in a throttled 4725 * group (e.g. via set_curr_task), since update_curr() (in the 4726 * enqueue of curr) will have resulted in resched being set. This 4727 * prevents us from potentially nominating it as a false LAST_BUDDY 4728 * below. 4729 */ 4730 if (test_tsk_need_resched(curr)) 4731 return; 4732 4733 /* Idle tasks are by definition preempted by non-idle tasks. */ 4734 if (unlikely(curr->policy == SCHED_IDLE) && 4735 likely(p->policy != SCHED_IDLE)) 4736 goto preempt; 4737 4738 /* 4739 * Batch and idle tasks do not preempt non-idle tasks (their preemption 4740 * is driven by the tick): 4741 */ 4742 if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION)) 4743 return; 4744 4745 find_matching_se(&se, &pse); 4746 update_curr(cfs_rq_of(se)); 4747 BUG_ON(!pse); 4748 if (wakeup_preempt_entity(se, pse) == 1) { 4749 /* 4750 * Bias pick_next to pick the sched entity that is 4751 * triggering this preemption. 4752 */ 4753 if (!next_buddy_marked) 4754 set_next_buddy(pse); 4755 goto preempt; 4756 } 4757 4758 return; 4759 4760 preempt: 4761 resched_curr(rq); 4762 /* 4763 * Only set the backward buddy when the current task is still 4764 * on the rq. This can happen when a wakeup gets interleaved 4765 * with schedule on the ->pre_schedule() or idle_balance() 4766 * point, either of which can * drop the rq lock. 4767 * 4768 * Also, during early boot the idle thread is in the fair class, 4769 * for obvious reasons its a bad idea to schedule back to it. 4770 */ 4771 if (unlikely(!se->on_rq || curr == rq->idle)) 4772 return; 4773 4774 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se)) 4775 set_last_buddy(se); 4776 } 4777 4778 static struct task_struct * 4779 pick_next_task_fair(struct rq *rq, struct task_struct *prev) 4780 { 4781 struct cfs_rq *cfs_rq = &rq->cfs; 4782 struct sched_entity *se; 4783 struct task_struct *p; 4784 int new_tasks; 4785 4786 again: 4787 #ifdef CONFIG_FAIR_GROUP_SCHED 4788 if (!cfs_rq->nr_running) 4789 goto idle; 4790 4791 if (prev->sched_class != &fair_sched_class) 4792 goto simple; 4793 4794 /* 4795 * Because of the set_next_buddy() in dequeue_task_fair() it is rather 4796 * likely that a next task is from the same cgroup as the current. 4797 * 4798 * Therefore attempt to avoid putting and setting the entire cgroup 4799 * hierarchy, only change the part that actually changes. 4800 */ 4801 4802 do { 4803 struct sched_entity *curr = cfs_rq->curr; 4804 4805 /* 4806 * Since we got here without doing put_prev_entity() we also 4807 * have to consider cfs_rq->curr. If it is still a runnable 4808 * entity, update_curr() will update its vruntime, otherwise 4809 * forget we've ever seen it. 4810 */ 4811 if (curr && curr->on_rq) 4812 update_curr(cfs_rq); 4813 else 4814 curr = NULL; 4815 4816 /* 4817 * This call to check_cfs_rq_runtime() will do the throttle and 4818 * dequeue its entity in the parent(s). Therefore the 'simple' 4819 * nr_running test will indeed be correct. 4820 */ 4821 if (unlikely(check_cfs_rq_runtime(cfs_rq))) 4822 goto simple; 4823 4824 se = pick_next_entity(cfs_rq, curr); 4825 cfs_rq = group_cfs_rq(se); 4826 } while (cfs_rq); 4827 4828 p = task_of(se); 4829 4830 /* 4831 * Since we haven't yet done put_prev_entity and if the selected task 4832 * is a different task than we started out with, try and touch the 4833 * least amount of cfs_rqs. 4834 */ 4835 if (prev != p) { 4836 struct sched_entity *pse = &prev->se; 4837 4838 while (!(cfs_rq = is_same_group(se, pse))) { 4839 int se_depth = se->depth; 4840 int pse_depth = pse->depth; 4841 4842 if (se_depth <= pse_depth) { 4843 put_prev_entity(cfs_rq_of(pse), pse); 4844 pse = parent_entity(pse); 4845 } 4846 if (se_depth >= pse_depth) { 4847 set_next_entity(cfs_rq_of(se), se); 4848 se = parent_entity(se); 4849 } 4850 } 4851 4852 put_prev_entity(cfs_rq, pse); 4853 set_next_entity(cfs_rq, se); 4854 } 4855 4856 if (hrtick_enabled(rq)) 4857 hrtick_start_fair(rq, p); 4858 4859 return p; 4860 simple: 4861 cfs_rq = &rq->cfs; 4862 #endif 4863 4864 if (!cfs_rq->nr_running) 4865 goto idle; 4866 4867 put_prev_task(rq, prev); 4868 4869 do { 4870 se = pick_next_entity(cfs_rq, NULL); 4871 set_next_entity(cfs_rq, se); 4872 cfs_rq = group_cfs_rq(se); 4873 } while (cfs_rq); 4874 4875 p = task_of(se); 4876 4877 if (hrtick_enabled(rq)) 4878 hrtick_start_fair(rq, p); 4879 4880 return p; 4881 4882 idle: 4883 new_tasks = idle_balance(rq); 4884 /* 4885 * Because idle_balance() releases (and re-acquires) rq->lock, it is 4886 * possible for any higher priority task to appear. In that case we 4887 * must re-start the pick_next_entity() loop. 4888 */ 4889 if (new_tasks < 0) 4890 return RETRY_TASK; 4891 4892 if (new_tasks > 0) 4893 goto again; 4894 4895 return NULL; 4896 } 4897 4898 /* 4899 * Account for a descheduled task: 4900 */ 4901 static void put_prev_task_fair(struct rq *rq, struct task_struct *prev) 4902 { 4903 struct sched_entity *se = &prev->se; 4904 struct cfs_rq *cfs_rq; 4905 4906 for_each_sched_entity(se) { 4907 cfs_rq = cfs_rq_of(se); 4908 put_prev_entity(cfs_rq, se); 4909 } 4910 } 4911 4912 /* 4913 * sched_yield() is very simple 4914 * 4915 * The magic of dealing with the ->skip buddy is in pick_next_entity. 4916 */ 4917 static void yield_task_fair(struct rq *rq) 4918 { 4919 struct task_struct *curr = rq->curr; 4920 struct cfs_rq *cfs_rq = task_cfs_rq(curr); 4921 struct sched_entity *se = &curr->se; 4922 4923 /* 4924 * Are we the only task in the tree? 4925 */ 4926 if (unlikely(rq->nr_running == 1)) 4927 return; 4928 4929 clear_buddies(cfs_rq, se); 4930 4931 if (curr->policy != SCHED_BATCH) { 4932 update_rq_clock(rq); 4933 /* 4934 * Update run-time statistics of the 'current'. 4935 */ 4936 update_curr(cfs_rq); 4937 /* 4938 * Tell update_rq_clock() that we've just updated, 4939 * so we don't do microscopic update in schedule() 4940 * and double the fastpath cost. 4941 */ 4942 rq->skip_clock_update = 1; 4943 } 4944 4945 set_skip_buddy(se); 4946 } 4947 4948 static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt) 4949 { 4950 struct sched_entity *se = &p->se; 4951 4952 /* throttled hierarchies are not runnable */ 4953 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se))) 4954 return false; 4955 4956 /* Tell the scheduler that we'd really like pse to run next. */ 4957 set_next_buddy(se); 4958 4959 yield_task_fair(rq); 4960 4961 return true; 4962 } 4963 4964 #ifdef CONFIG_SMP 4965 /************************************************** 4966 * Fair scheduling class load-balancing methods. 4967 * 4968 * BASICS 4969 * 4970 * The purpose of load-balancing is to achieve the same basic fairness the 4971 * per-cpu scheduler provides, namely provide a proportional amount of compute 4972 * time to each task. This is expressed in the following equation: 4973 * 4974 * W_i,n/P_i == W_j,n/P_j for all i,j (1) 4975 * 4976 * Where W_i,n is the n-th weight average for cpu i. The instantaneous weight 4977 * W_i,0 is defined as: 4978 * 4979 * W_i,0 = \Sum_j w_i,j (2) 4980 * 4981 * Where w_i,j is the weight of the j-th runnable task on cpu i. This weight 4982 * is derived from the nice value as per prio_to_weight[]. 4983 * 4984 * The weight average is an exponential decay average of the instantaneous 4985 * weight: 4986 * 4987 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3) 4988 * 4989 * C_i is the compute capacity of cpu i, typically it is the 4990 * fraction of 'recent' time available for SCHED_OTHER task execution. But it 4991 * can also include other factors [XXX]. 4992 * 4993 * To achieve this balance we define a measure of imbalance which follows 4994 * directly from (1): 4995 * 4996 * imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j } (4) 4997 * 4998 * We them move tasks around to minimize the imbalance. In the continuous 4999 * function space it is obvious this converges, in the discrete case we get 5000 * a few fun cases generally called infeasible weight scenarios. 5001 * 5002 * [XXX expand on: 5003 * - infeasible weights; 5004 * - local vs global optima in the discrete case. ] 5005 * 5006 * 5007 * SCHED DOMAINS 5008 * 5009 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2) 5010 * for all i,j solution, we create a tree of cpus that follows the hardware 5011 * topology where each level pairs two lower groups (or better). This results 5012 * in O(log n) layers. Furthermore we reduce the number of cpus going up the 5013 * tree to only the first of the previous level and we decrease the frequency 5014 * of load-balance at each level inv. proportional to the number of cpus in 5015 * the groups. 5016 * 5017 * This yields: 5018 * 5019 * log_2 n 1 n 5020 * \Sum { --- * --- * 2^i } = O(n) (5) 5021 * i = 0 2^i 2^i 5022 * `- size of each group 5023 * | | `- number of cpus doing load-balance 5024 * | `- freq 5025 * `- sum over all levels 5026 * 5027 * Coupled with a limit on how many tasks we can migrate every balance pass, 5028 * this makes (5) the runtime complexity of the balancer. 5029 * 5030 * An important property here is that each CPU is still (indirectly) connected 5031 * to every other cpu in at most O(log n) steps: 5032 * 5033 * The adjacency matrix of the resulting graph is given by: 5034 * 5035 * log_2 n 5036 * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6) 5037 * k = 0 5038 * 5039 * And you'll find that: 5040 * 5041 * A^(log_2 n)_i,j != 0 for all i,j (7) 5042 * 5043 * Showing there's indeed a path between every cpu in at most O(log n) steps. 5044 * The task movement gives a factor of O(m), giving a convergence complexity 5045 * of: 5046 * 5047 * O(nm log n), n := nr_cpus, m := nr_tasks (8) 5048 * 5049 * 5050 * WORK CONSERVING 5051 * 5052 * In order to avoid CPUs going idle while there's still work to do, new idle 5053 * balancing is more aggressive and has the newly idle cpu iterate up the domain 5054 * tree itself instead of relying on other CPUs to bring it work. 5055 * 5056 * This adds some complexity to both (5) and (8) but it reduces the total idle 5057 * time. 5058 * 5059 * [XXX more?] 5060 * 5061 * 5062 * CGROUPS 5063 * 5064 * Cgroups make a horror show out of (2), instead of a simple sum we get: 5065 * 5066 * s_k,i 5067 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9) 5068 * S_k 5069 * 5070 * Where 5071 * 5072 * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10) 5073 * 5074 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on cpu i. 5075 * 5076 * The big problem is S_k, its a global sum needed to compute a local (W_i) 5077 * property. 5078 * 5079 * [XXX write more on how we solve this.. _after_ merging pjt's patches that 5080 * rewrite all of this once again.] 5081 */ 5082 5083 static unsigned long __read_mostly max_load_balance_interval = HZ/10; 5084 5085 enum fbq_type { regular, remote, all }; 5086 5087 #define LBF_ALL_PINNED 0x01 5088 #define LBF_NEED_BREAK 0x02 5089 #define LBF_DST_PINNED 0x04 5090 #define LBF_SOME_PINNED 0x08 5091 5092 struct lb_env { 5093 struct sched_domain *sd; 5094 5095 struct rq *src_rq; 5096 int src_cpu; 5097 5098 int dst_cpu; 5099 struct rq *dst_rq; 5100 5101 struct cpumask *dst_grpmask; 5102 int new_dst_cpu; 5103 enum cpu_idle_type idle; 5104 long imbalance; 5105 /* The set of CPUs under consideration for load-balancing */ 5106 struct cpumask *cpus; 5107 5108 unsigned int flags; 5109 5110 unsigned int loop; 5111 unsigned int loop_break; 5112 unsigned int loop_max; 5113 5114 enum fbq_type fbq_type; 5115 }; 5116 5117 /* 5118 * move_task - move a task from one runqueue to another runqueue. 5119 * Both runqueues must be locked. 5120 */ 5121 static void move_task(struct task_struct *p, struct lb_env *env) 5122 { 5123 deactivate_task(env->src_rq, p, 0); 5124 set_task_cpu(p, env->dst_cpu); 5125 activate_task(env->dst_rq, p, 0); 5126 check_preempt_curr(env->dst_rq, p, 0); 5127 } 5128 5129 /* 5130 * Is this task likely cache-hot: 5131 */ 5132 static int task_hot(struct task_struct *p, struct lb_env *env) 5133 { 5134 s64 delta; 5135 5136 if (p->sched_class != &fair_sched_class) 5137 return 0; 5138 5139 if (unlikely(p->policy == SCHED_IDLE)) 5140 return 0; 5141 5142 /* 5143 * Buddy candidates are cache hot: 5144 */ 5145 if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running && 5146 (&p->se == cfs_rq_of(&p->se)->next || 5147 &p->se == cfs_rq_of(&p->se)->last)) 5148 return 1; 5149 5150 if (sysctl_sched_migration_cost == -1) 5151 return 1; 5152 if (sysctl_sched_migration_cost == 0) 5153 return 0; 5154 5155 delta = rq_clock_task(env->src_rq) - p->se.exec_start; 5156 5157 return delta < (s64)sysctl_sched_migration_cost; 5158 } 5159 5160 #ifdef CONFIG_NUMA_BALANCING 5161 /* Returns true if the destination node has incurred more faults */ 5162 static bool migrate_improves_locality(struct task_struct *p, struct lb_env *env) 5163 { 5164 struct numa_group *numa_group = rcu_dereference(p->numa_group); 5165 int src_nid, dst_nid; 5166 5167 if (!sched_feat(NUMA_FAVOUR_HIGHER) || !p->numa_faults_memory || 5168 !(env->sd->flags & SD_NUMA)) { 5169 return false; 5170 } 5171 5172 src_nid = cpu_to_node(env->src_cpu); 5173 dst_nid = cpu_to_node(env->dst_cpu); 5174 5175 if (src_nid == dst_nid) 5176 return false; 5177 5178 if (numa_group) { 5179 /* Task is already in the group's interleave set. */ 5180 if (node_isset(src_nid, numa_group->active_nodes)) 5181 return false; 5182 5183 /* Task is moving into the group's interleave set. */ 5184 if (node_isset(dst_nid, numa_group->active_nodes)) 5185 return true; 5186 5187 return group_faults(p, dst_nid) > group_faults(p, src_nid); 5188 } 5189 5190 /* Encourage migration to the preferred node. */ 5191 if (dst_nid == p->numa_preferred_nid) 5192 return true; 5193 5194 return task_faults(p, dst_nid) > task_faults(p, src_nid); 5195 } 5196 5197 5198 static bool migrate_degrades_locality(struct task_struct *p, struct lb_env *env) 5199 { 5200 struct numa_group *numa_group = rcu_dereference(p->numa_group); 5201 int src_nid, dst_nid; 5202 5203 if (!sched_feat(NUMA) || !sched_feat(NUMA_RESIST_LOWER)) 5204 return false; 5205 5206 if (!p->numa_faults_memory || !(env->sd->flags & SD_NUMA)) 5207 return false; 5208 5209 src_nid = cpu_to_node(env->src_cpu); 5210 dst_nid = cpu_to_node(env->dst_cpu); 5211 5212 if (src_nid == dst_nid) 5213 return false; 5214 5215 if (numa_group) { 5216 /* Task is moving within/into the group's interleave set. */ 5217 if (node_isset(dst_nid, numa_group->active_nodes)) 5218 return false; 5219 5220 /* Task is moving out of the group's interleave set. */ 5221 if (node_isset(src_nid, numa_group->active_nodes)) 5222 return true; 5223 5224 return group_faults(p, dst_nid) < group_faults(p, src_nid); 5225 } 5226 5227 /* Migrating away from the preferred node is always bad. */ 5228 if (src_nid == p->numa_preferred_nid) 5229 return true; 5230 5231 return task_faults(p, dst_nid) < task_faults(p, src_nid); 5232 } 5233 5234 #else 5235 static inline bool migrate_improves_locality(struct task_struct *p, 5236 struct lb_env *env) 5237 { 5238 return false; 5239 } 5240 5241 static inline bool migrate_degrades_locality(struct task_struct *p, 5242 struct lb_env *env) 5243 { 5244 return false; 5245 } 5246 #endif 5247 5248 /* 5249 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu? 5250 */ 5251 static 5252 int can_migrate_task(struct task_struct *p, struct lb_env *env) 5253 { 5254 int tsk_cache_hot = 0; 5255 /* 5256 * We do not migrate tasks that are: 5257 * 1) throttled_lb_pair, or 5258 * 2) cannot be migrated to this CPU due to cpus_allowed, or 5259 * 3) running (obviously), or 5260 * 4) are cache-hot on their current CPU. 5261 */ 5262 if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu)) 5263 return 0; 5264 5265 if (!cpumask_test_cpu(env->dst_cpu, tsk_cpus_allowed(p))) { 5266 int cpu; 5267 5268 schedstat_inc(p, se.statistics.nr_failed_migrations_affine); 5269 5270 env->flags |= LBF_SOME_PINNED; 5271 5272 /* 5273 * Remember if this task can be migrated to any other cpu in 5274 * our sched_group. We may want to revisit it if we couldn't 5275 * meet load balance goals by pulling other tasks on src_cpu. 5276 * 5277 * Also avoid computing new_dst_cpu if we have already computed 5278 * one in current iteration. 5279 */ 5280 if (!env->dst_grpmask || (env->flags & LBF_DST_PINNED)) 5281 return 0; 5282 5283 /* Prevent to re-select dst_cpu via env's cpus */ 5284 for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) { 5285 if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p))) { 5286 env->flags |= LBF_DST_PINNED; 5287 env->new_dst_cpu = cpu; 5288 break; 5289 } 5290 } 5291 5292 return 0; 5293 } 5294 5295 /* Record that we found atleast one task that could run on dst_cpu */ 5296 env->flags &= ~LBF_ALL_PINNED; 5297 5298 if (task_running(env->src_rq, p)) { 5299 schedstat_inc(p, se.statistics.nr_failed_migrations_running); 5300 return 0; 5301 } 5302 5303 /* 5304 * Aggressive migration if: 5305 * 1) destination numa is preferred 5306 * 2) task is cache cold, or 5307 * 3) too many balance attempts have failed. 5308 */ 5309 tsk_cache_hot = task_hot(p, env); 5310 if (!tsk_cache_hot) 5311 tsk_cache_hot = migrate_degrades_locality(p, env); 5312 5313 if (migrate_improves_locality(p, env)) { 5314 #ifdef CONFIG_SCHEDSTATS 5315 if (tsk_cache_hot) { 5316 schedstat_inc(env->sd, lb_hot_gained[env->idle]); 5317 schedstat_inc(p, se.statistics.nr_forced_migrations); 5318 } 5319 #endif 5320 return 1; 5321 } 5322 5323 if (!tsk_cache_hot || 5324 env->sd->nr_balance_failed > env->sd->cache_nice_tries) { 5325 5326 if (tsk_cache_hot) { 5327 schedstat_inc(env->sd, lb_hot_gained[env->idle]); 5328 schedstat_inc(p, se.statistics.nr_forced_migrations); 5329 } 5330 5331 return 1; 5332 } 5333 5334 schedstat_inc(p, se.statistics.nr_failed_migrations_hot); 5335 return 0; 5336 } 5337 5338 /* 5339 * move_one_task tries to move exactly one task from busiest to this_rq, as 5340 * part of active balancing operations within "domain". 5341 * Returns 1 if successful and 0 otherwise. 5342 * 5343 * Called with both runqueues locked. 5344 */ 5345 static int move_one_task(struct lb_env *env) 5346 { 5347 struct task_struct *p, *n; 5348 5349 list_for_each_entry_safe(p, n, &env->src_rq->cfs_tasks, se.group_node) { 5350 if (!can_migrate_task(p, env)) 5351 continue; 5352 5353 move_task(p, env); 5354 /* 5355 * Right now, this is only the second place move_task() 5356 * is called, so we can safely collect move_task() 5357 * stats here rather than inside move_task(). 5358 */ 5359 schedstat_inc(env->sd, lb_gained[env->idle]); 5360 return 1; 5361 } 5362 return 0; 5363 } 5364 5365 static const unsigned int sched_nr_migrate_break = 32; 5366 5367 /* 5368 * move_tasks tries to move up to imbalance weighted load from busiest to 5369 * this_rq, as part of a balancing operation within domain "sd". 5370 * Returns 1 if successful and 0 otherwise. 5371 * 5372 * Called with both runqueues locked. 5373 */ 5374 static int move_tasks(struct lb_env *env) 5375 { 5376 struct list_head *tasks = &env->src_rq->cfs_tasks; 5377 struct task_struct *p; 5378 unsigned long load; 5379 int pulled = 0; 5380 5381 if (env->imbalance <= 0) 5382 return 0; 5383 5384 while (!list_empty(tasks)) { 5385 p = list_first_entry(tasks, struct task_struct, se.group_node); 5386 5387 env->loop++; 5388 /* We've more or less seen every task there is, call it quits */ 5389 if (env->loop > env->loop_max) 5390 break; 5391 5392 /* take a breather every nr_migrate tasks */ 5393 if (env->loop > env->loop_break) { 5394 env->loop_break += sched_nr_migrate_break; 5395 env->flags |= LBF_NEED_BREAK; 5396 break; 5397 } 5398 5399 if (!can_migrate_task(p, env)) 5400 goto next; 5401 5402 load = task_h_load(p); 5403 5404 if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed) 5405 goto next; 5406 5407 if ((load / 2) > env->imbalance) 5408 goto next; 5409 5410 move_task(p, env); 5411 pulled++; 5412 env->imbalance -= load; 5413 5414 #ifdef CONFIG_PREEMPT 5415 /* 5416 * NEWIDLE balancing is a source of latency, so preemptible 5417 * kernels will stop after the first task is pulled to minimize 5418 * the critical section. 5419 */ 5420 if (env->idle == CPU_NEWLY_IDLE) 5421 break; 5422 #endif 5423 5424 /* 5425 * We only want to steal up to the prescribed amount of 5426 * weighted load. 5427 */ 5428 if (env->imbalance <= 0) 5429 break; 5430 5431 continue; 5432 next: 5433 list_move_tail(&p->se.group_node, tasks); 5434 } 5435 5436 /* 5437 * Right now, this is one of only two places move_task() is called, 5438 * so we can safely collect move_task() stats here rather than 5439 * inside move_task(). 5440 */ 5441 schedstat_add(env->sd, lb_gained[env->idle], pulled); 5442 5443 return pulled; 5444 } 5445 5446 #ifdef CONFIG_FAIR_GROUP_SCHED 5447 /* 5448 * update tg->load_weight by folding this cpu's load_avg 5449 */ 5450 static void __update_blocked_averages_cpu(struct task_group *tg, int cpu) 5451 { 5452 struct sched_entity *se = tg->se[cpu]; 5453 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu]; 5454 5455 /* throttled entities do not contribute to load */ 5456 if (throttled_hierarchy(cfs_rq)) 5457 return; 5458 5459 update_cfs_rq_blocked_load(cfs_rq, 1); 5460 5461 if (se) { 5462 update_entity_load_avg(se, 1); 5463 /* 5464 * We pivot on our runnable average having decayed to zero for 5465 * list removal. This generally implies that all our children 5466 * have also been removed (modulo rounding error or bandwidth 5467 * control); however, such cases are rare and we can fix these 5468 * at enqueue. 5469 * 5470 * TODO: fix up out-of-order children on enqueue. 5471 */ 5472 if (!se->avg.runnable_avg_sum && !cfs_rq->nr_running) 5473 list_del_leaf_cfs_rq(cfs_rq); 5474 } else { 5475 struct rq *rq = rq_of(cfs_rq); 5476 update_rq_runnable_avg(rq, rq->nr_running); 5477 } 5478 } 5479 5480 static void update_blocked_averages(int cpu) 5481 { 5482 struct rq *rq = cpu_rq(cpu); 5483 struct cfs_rq *cfs_rq; 5484 unsigned long flags; 5485 5486 raw_spin_lock_irqsave(&rq->lock, flags); 5487 update_rq_clock(rq); 5488 /* 5489 * Iterates the task_group tree in a bottom up fashion, see 5490 * list_add_leaf_cfs_rq() for details. 5491 */ 5492 for_each_leaf_cfs_rq(rq, cfs_rq) { 5493 /* 5494 * Note: We may want to consider periodically releasing 5495 * rq->lock about these updates so that creating many task 5496 * groups does not result in continually extending hold time. 5497 */ 5498 __update_blocked_averages_cpu(cfs_rq->tg, rq->cpu); 5499 } 5500 5501 raw_spin_unlock_irqrestore(&rq->lock, flags); 5502 } 5503 5504 /* 5505 * Compute the hierarchical load factor for cfs_rq and all its ascendants. 5506 * This needs to be done in a top-down fashion because the load of a child 5507 * group is a fraction of its parents load. 5508 */ 5509 static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq) 5510 { 5511 struct rq *rq = rq_of(cfs_rq); 5512 struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)]; 5513 unsigned long now = jiffies; 5514 unsigned long load; 5515 5516 if (cfs_rq->last_h_load_update == now) 5517 return; 5518 5519 cfs_rq->h_load_next = NULL; 5520 for_each_sched_entity(se) { 5521 cfs_rq = cfs_rq_of(se); 5522 cfs_rq->h_load_next = se; 5523 if (cfs_rq->last_h_load_update == now) 5524 break; 5525 } 5526 5527 if (!se) { 5528 cfs_rq->h_load = cfs_rq->runnable_load_avg; 5529 cfs_rq->last_h_load_update = now; 5530 } 5531 5532 while ((se = cfs_rq->h_load_next) != NULL) { 5533 load = cfs_rq->h_load; 5534 load = div64_ul(load * se->avg.load_avg_contrib, 5535 cfs_rq->runnable_load_avg + 1); 5536 cfs_rq = group_cfs_rq(se); 5537 cfs_rq->h_load = load; 5538 cfs_rq->last_h_load_update = now; 5539 } 5540 } 5541 5542 static unsigned long task_h_load(struct task_struct *p) 5543 { 5544 struct cfs_rq *cfs_rq = task_cfs_rq(p); 5545 5546 update_cfs_rq_h_load(cfs_rq); 5547 return div64_ul(p->se.avg.load_avg_contrib * cfs_rq->h_load, 5548 cfs_rq->runnable_load_avg + 1); 5549 } 5550 #else 5551 static inline void update_blocked_averages(int cpu) 5552 { 5553 } 5554 5555 static unsigned long task_h_load(struct task_struct *p) 5556 { 5557 return p->se.avg.load_avg_contrib; 5558 } 5559 #endif 5560 5561 /********** Helpers for find_busiest_group ************************/ 5562 /* 5563 * sg_lb_stats - stats of a sched_group required for load_balancing 5564 */ 5565 struct sg_lb_stats { 5566 unsigned long avg_load; /*Avg load across the CPUs of the group */ 5567 unsigned long group_load; /* Total load over the CPUs of the group */ 5568 unsigned long sum_weighted_load; /* Weighted load of group's tasks */ 5569 unsigned long load_per_task; 5570 unsigned long group_capacity; 5571 unsigned int sum_nr_running; /* Nr tasks running in the group */ 5572 unsigned int group_capacity_factor; 5573 unsigned int idle_cpus; 5574 unsigned int group_weight; 5575 int group_imb; /* Is there an imbalance in the group ? */ 5576 int group_has_free_capacity; 5577 #ifdef CONFIG_NUMA_BALANCING 5578 unsigned int nr_numa_running; 5579 unsigned int nr_preferred_running; 5580 #endif 5581 }; 5582 5583 /* 5584 * sd_lb_stats - Structure to store the statistics of a sched_domain 5585 * during load balancing. 5586 */ 5587 struct sd_lb_stats { 5588 struct sched_group *busiest; /* Busiest group in this sd */ 5589 struct sched_group *local; /* Local group in this sd */ 5590 unsigned long total_load; /* Total load of all groups in sd */ 5591 unsigned long total_capacity; /* Total capacity of all groups in sd */ 5592 unsigned long avg_load; /* Average load across all groups in sd */ 5593 5594 struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */ 5595 struct sg_lb_stats local_stat; /* Statistics of the local group */ 5596 }; 5597 5598 static inline void init_sd_lb_stats(struct sd_lb_stats *sds) 5599 { 5600 /* 5601 * Skimp on the clearing to avoid duplicate work. We can avoid clearing 5602 * local_stat because update_sg_lb_stats() does a full clear/assignment. 5603 * We must however clear busiest_stat::avg_load because 5604 * update_sd_pick_busiest() reads this before assignment. 5605 */ 5606 *sds = (struct sd_lb_stats){ 5607 .busiest = NULL, 5608 .local = NULL, 5609 .total_load = 0UL, 5610 .total_capacity = 0UL, 5611 .busiest_stat = { 5612 .avg_load = 0UL, 5613 }, 5614 }; 5615 } 5616 5617 /** 5618 * get_sd_load_idx - Obtain the load index for a given sched domain. 5619 * @sd: The sched_domain whose load_idx is to be obtained. 5620 * @idle: The idle status of the CPU for whose sd load_idx is obtained. 5621 * 5622 * Return: The load index. 5623 */ 5624 static inline int get_sd_load_idx(struct sched_domain *sd, 5625 enum cpu_idle_type idle) 5626 { 5627 int load_idx; 5628 5629 switch (idle) { 5630 case CPU_NOT_IDLE: 5631 load_idx = sd->busy_idx; 5632 break; 5633 5634 case CPU_NEWLY_IDLE: 5635 load_idx = sd->newidle_idx; 5636 break; 5637 default: 5638 load_idx = sd->idle_idx; 5639 break; 5640 } 5641 5642 return load_idx; 5643 } 5644 5645 static unsigned long default_scale_capacity(struct sched_domain *sd, int cpu) 5646 { 5647 return SCHED_CAPACITY_SCALE; 5648 } 5649 5650 unsigned long __weak arch_scale_freq_capacity(struct sched_domain *sd, int cpu) 5651 { 5652 return default_scale_capacity(sd, cpu); 5653 } 5654 5655 static unsigned long default_scale_smt_capacity(struct sched_domain *sd, int cpu) 5656 { 5657 unsigned long weight = sd->span_weight; 5658 unsigned long smt_gain = sd->smt_gain; 5659 5660 smt_gain /= weight; 5661 5662 return smt_gain; 5663 } 5664 5665 unsigned long __weak arch_scale_smt_capacity(struct sched_domain *sd, int cpu) 5666 { 5667 return default_scale_smt_capacity(sd, cpu); 5668 } 5669 5670 static unsigned long scale_rt_capacity(int cpu) 5671 { 5672 struct rq *rq = cpu_rq(cpu); 5673 u64 total, available, age_stamp, avg; 5674 s64 delta; 5675 5676 /* 5677 * Since we're reading these variables without serialization make sure 5678 * we read them once before doing sanity checks on them. 5679 */ 5680 age_stamp = ACCESS_ONCE(rq->age_stamp); 5681 avg = ACCESS_ONCE(rq->rt_avg); 5682 5683 delta = rq_clock(rq) - age_stamp; 5684 if (unlikely(delta < 0)) 5685 delta = 0; 5686 5687 total = sched_avg_period() + delta; 5688 5689 if (unlikely(total < avg)) { 5690 /* Ensures that capacity won't end up being negative */ 5691 available = 0; 5692 } else { 5693 available = total - avg; 5694 } 5695 5696 if (unlikely((s64)total < SCHED_CAPACITY_SCALE)) 5697 total = SCHED_CAPACITY_SCALE; 5698 5699 total >>= SCHED_CAPACITY_SHIFT; 5700 5701 return div_u64(available, total); 5702 } 5703 5704 static void update_cpu_capacity(struct sched_domain *sd, int cpu) 5705 { 5706 unsigned long weight = sd->span_weight; 5707 unsigned long capacity = SCHED_CAPACITY_SCALE; 5708 struct sched_group *sdg = sd->groups; 5709 5710 if ((sd->flags & SD_SHARE_CPUCAPACITY) && weight > 1) { 5711 if (sched_feat(ARCH_CAPACITY)) 5712 capacity *= arch_scale_smt_capacity(sd, cpu); 5713 else 5714 capacity *= default_scale_smt_capacity(sd, cpu); 5715 5716 capacity >>= SCHED_CAPACITY_SHIFT; 5717 } 5718 5719 sdg->sgc->capacity_orig = capacity; 5720 5721 if (sched_feat(ARCH_CAPACITY)) 5722 capacity *= arch_scale_freq_capacity(sd, cpu); 5723 else 5724 capacity *= default_scale_capacity(sd, cpu); 5725 5726 capacity >>= SCHED_CAPACITY_SHIFT; 5727 5728 capacity *= scale_rt_capacity(cpu); 5729 capacity >>= SCHED_CAPACITY_SHIFT; 5730 5731 if (!capacity) 5732 capacity = 1; 5733 5734 cpu_rq(cpu)->cpu_capacity = capacity; 5735 sdg->sgc->capacity = capacity; 5736 } 5737 5738 void update_group_capacity(struct sched_domain *sd, int cpu) 5739 { 5740 struct sched_domain *child = sd->child; 5741 struct sched_group *group, *sdg = sd->groups; 5742 unsigned long capacity, capacity_orig; 5743 unsigned long interval; 5744 5745 interval = msecs_to_jiffies(sd->balance_interval); 5746 interval = clamp(interval, 1UL, max_load_balance_interval); 5747 sdg->sgc->next_update = jiffies + interval; 5748 5749 if (!child) { 5750 update_cpu_capacity(sd, cpu); 5751 return; 5752 } 5753 5754 capacity_orig = capacity = 0; 5755 5756 if (child->flags & SD_OVERLAP) { 5757 /* 5758 * SD_OVERLAP domains cannot assume that child groups 5759 * span the current group. 5760 */ 5761 5762 for_each_cpu(cpu, sched_group_cpus(sdg)) { 5763 struct sched_group_capacity *sgc; 5764 struct rq *rq = cpu_rq(cpu); 5765 5766 /* 5767 * build_sched_domains() -> init_sched_groups_capacity() 5768 * gets here before we've attached the domains to the 5769 * runqueues. 5770 * 5771 * Use capacity_of(), which is set irrespective of domains 5772 * in update_cpu_capacity(). 5773 * 5774 * This avoids capacity/capacity_orig from being 0 and 5775 * causing divide-by-zero issues on boot. 5776 * 5777 * Runtime updates will correct capacity_orig. 5778 */ 5779 if (unlikely(!rq->sd)) { 5780 capacity_orig += capacity_of(cpu); 5781 capacity += capacity_of(cpu); 5782 continue; 5783 } 5784 5785 sgc = rq->sd->groups->sgc; 5786 capacity_orig += sgc->capacity_orig; 5787 capacity += sgc->capacity; 5788 } 5789 } else { 5790 /* 5791 * !SD_OVERLAP domains can assume that child groups 5792 * span the current group. 5793 */ 5794 5795 group = child->groups; 5796 do { 5797 capacity_orig += group->sgc->capacity_orig; 5798 capacity += group->sgc->capacity; 5799 group = group->next; 5800 } while (group != child->groups); 5801 } 5802 5803 sdg->sgc->capacity_orig = capacity_orig; 5804 sdg->sgc->capacity = capacity; 5805 } 5806 5807 /* 5808 * Try and fix up capacity for tiny siblings, this is needed when 5809 * things like SD_ASYM_PACKING need f_b_g to select another sibling 5810 * which on its own isn't powerful enough. 5811 * 5812 * See update_sd_pick_busiest() and check_asym_packing(). 5813 */ 5814 static inline int 5815 fix_small_capacity(struct sched_domain *sd, struct sched_group *group) 5816 { 5817 /* 5818 * Only siblings can have significantly less than SCHED_CAPACITY_SCALE 5819 */ 5820 if (!(sd->flags & SD_SHARE_CPUCAPACITY)) 5821 return 0; 5822 5823 /* 5824 * If ~90% of the cpu_capacity is still there, we're good. 5825 */ 5826 if (group->sgc->capacity * 32 > group->sgc->capacity_orig * 29) 5827 return 1; 5828 5829 return 0; 5830 } 5831 5832 /* 5833 * Group imbalance indicates (and tries to solve) the problem where balancing 5834 * groups is inadequate due to tsk_cpus_allowed() constraints. 5835 * 5836 * Imagine a situation of two groups of 4 cpus each and 4 tasks each with a 5837 * cpumask covering 1 cpu of the first group and 3 cpus of the second group. 5838 * Something like: 5839 * 5840 * { 0 1 2 3 } { 4 5 6 7 } 5841 * * * * * 5842 * 5843 * If we were to balance group-wise we'd place two tasks in the first group and 5844 * two tasks in the second group. Clearly this is undesired as it will overload 5845 * cpu 3 and leave one of the cpus in the second group unused. 5846 * 5847 * The current solution to this issue is detecting the skew in the first group 5848 * by noticing the lower domain failed to reach balance and had difficulty 5849 * moving tasks due to affinity constraints. 5850 * 5851 * When this is so detected; this group becomes a candidate for busiest; see 5852 * update_sd_pick_busiest(). And calculate_imbalance() and 5853 * find_busiest_group() avoid some of the usual balance conditions to allow it 5854 * to create an effective group imbalance. 5855 * 5856 * This is a somewhat tricky proposition since the next run might not find the 5857 * group imbalance and decide the groups need to be balanced again. A most 5858 * subtle and fragile situation. 5859 */ 5860 5861 static inline int sg_imbalanced(struct sched_group *group) 5862 { 5863 return group->sgc->imbalance; 5864 } 5865 5866 /* 5867 * Compute the group capacity factor. 5868 * 5869 * Avoid the issue where N*frac(smt_capacity) >= 1 creates 'phantom' cores by 5870 * first dividing out the smt factor and computing the actual number of cores 5871 * and limit unit capacity with that. 5872 */ 5873 static inline int sg_capacity_factor(struct lb_env *env, struct sched_group *group) 5874 { 5875 unsigned int capacity_factor, smt, cpus; 5876 unsigned int capacity, capacity_orig; 5877 5878 capacity = group->sgc->capacity; 5879 capacity_orig = group->sgc->capacity_orig; 5880 cpus = group->group_weight; 5881 5882 /* smt := ceil(cpus / capacity), assumes: 1 < smt_capacity < 2 */ 5883 smt = DIV_ROUND_UP(SCHED_CAPACITY_SCALE * cpus, capacity_orig); 5884 capacity_factor = cpus / smt; /* cores */ 5885 5886 capacity_factor = min_t(unsigned, 5887 capacity_factor, DIV_ROUND_CLOSEST(capacity, SCHED_CAPACITY_SCALE)); 5888 if (!capacity_factor) 5889 capacity_factor = fix_small_capacity(env->sd, group); 5890 5891 return capacity_factor; 5892 } 5893 5894 /** 5895 * update_sg_lb_stats - Update sched_group's statistics for load balancing. 5896 * @env: The load balancing environment. 5897 * @group: sched_group whose statistics are to be updated. 5898 * @load_idx: Load index of sched_domain of this_cpu for load calc. 5899 * @local_group: Does group contain this_cpu. 5900 * @sgs: variable to hold the statistics for this group. 5901 * @overload: Indicate more than one runnable task for any CPU. 5902 */ 5903 static inline void update_sg_lb_stats(struct lb_env *env, 5904 struct sched_group *group, int load_idx, 5905 int local_group, struct sg_lb_stats *sgs, 5906 bool *overload) 5907 { 5908 unsigned long load; 5909 int i; 5910 5911 memset(sgs, 0, sizeof(*sgs)); 5912 5913 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) { 5914 struct rq *rq = cpu_rq(i); 5915 5916 /* Bias balancing toward cpus of our domain */ 5917 if (local_group) 5918 load = target_load(i, load_idx); 5919 else 5920 load = source_load(i, load_idx); 5921 5922 sgs->group_load += load; 5923 sgs->sum_nr_running += rq->nr_running; 5924 5925 if (rq->nr_running > 1) 5926 *overload = true; 5927 5928 #ifdef CONFIG_NUMA_BALANCING 5929 sgs->nr_numa_running += rq->nr_numa_running; 5930 sgs->nr_preferred_running += rq->nr_preferred_running; 5931 #endif 5932 sgs->sum_weighted_load += weighted_cpuload(i); 5933 if (idle_cpu(i)) 5934 sgs->idle_cpus++; 5935 } 5936 5937 /* Adjust by relative CPU capacity of the group */ 5938 sgs->group_capacity = group->sgc->capacity; 5939 sgs->avg_load = (sgs->group_load*SCHED_CAPACITY_SCALE) / sgs->group_capacity; 5940 5941 if (sgs->sum_nr_running) 5942 sgs->load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running; 5943 5944 sgs->group_weight = group->group_weight; 5945 5946 sgs->group_imb = sg_imbalanced(group); 5947 sgs->group_capacity_factor = sg_capacity_factor(env, group); 5948 5949 if (sgs->group_capacity_factor > sgs->sum_nr_running) 5950 sgs->group_has_free_capacity = 1; 5951 } 5952 5953 /** 5954 * update_sd_pick_busiest - return 1 on busiest group 5955 * @env: The load balancing environment. 5956 * @sds: sched_domain statistics 5957 * @sg: sched_group candidate to be checked for being the busiest 5958 * @sgs: sched_group statistics 5959 * 5960 * Determine if @sg is a busier group than the previously selected 5961 * busiest group. 5962 * 5963 * Return: %true if @sg is a busier group than the previously selected 5964 * busiest group. %false otherwise. 5965 */ 5966 static bool update_sd_pick_busiest(struct lb_env *env, 5967 struct sd_lb_stats *sds, 5968 struct sched_group *sg, 5969 struct sg_lb_stats *sgs) 5970 { 5971 if (sgs->avg_load <= sds->busiest_stat.avg_load) 5972 return false; 5973 5974 if (sgs->sum_nr_running > sgs->group_capacity_factor) 5975 return true; 5976 5977 if (sgs->group_imb) 5978 return true; 5979 5980 /* 5981 * ASYM_PACKING needs to move all the work to the lowest 5982 * numbered CPUs in the group, therefore mark all groups 5983 * higher than ourself as busy. 5984 */ 5985 if ((env->sd->flags & SD_ASYM_PACKING) && sgs->sum_nr_running && 5986 env->dst_cpu < group_first_cpu(sg)) { 5987 if (!sds->busiest) 5988 return true; 5989 5990 if (group_first_cpu(sds->busiest) > group_first_cpu(sg)) 5991 return true; 5992 } 5993 5994 return false; 5995 } 5996 5997 #ifdef CONFIG_NUMA_BALANCING 5998 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs) 5999 { 6000 if (sgs->sum_nr_running > sgs->nr_numa_running) 6001 return regular; 6002 if (sgs->sum_nr_running > sgs->nr_preferred_running) 6003 return remote; 6004 return all; 6005 } 6006 6007 static inline enum fbq_type fbq_classify_rq(struct rq *rq) 6008 { 6009 if (rq->nr_running > rq->nr_numa_running) 6010 return regular; 6011 if (rq->nr_running > rq->nr_preferred_running) 6012 return remote; 6013 return all; 6014 } 6015 #else 6016 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs) 6017 { 6018 return all; 6019 } 6020 6021 static inline enum fbq_type fbq_classify_rq(struct rq *rq) 6022 { 6023 return regular; 6024 } 6025 #endif /* CONFIG_NUMA_BALANCING */ 6026 6027 /** 6028 * update_sd_lb_stats - Update sched_domain's statistics for load balancing. 6029 * @env: The load balancing environment. 6030 * @sds: variable to hold the statistics for this sched_domain. 6031 */ 6032 static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds) 6033 { 6034 struct sched_domain *child = env->sd->child; 6035 struct sched_group *sg = env->sd->groups; 6036 struct sg_lb_stats tmp_sgs; 6037 int load_idx, prefer_sibling = 0; 6038 bool overload = false; 6039 6040 if (child && child->flags & SD_PREFER_SIBLING) 6041 prefer_sibling = 1; 6042 6043 load_idx = get_sd_load_idx(env->sd, env->idle); 6044 6045 do { 6046 struct sg_lb_stats *sgs = &tmp_sgs; 6047 int local_group; 6048 6049 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_cpus(sg)); 6050 if (local_group) { 6051 sds->local = sg; 6052 sgs = &sds->local_stat; 6053 6054 if (env->idle != CPU_NEWLY_IDLE || 6055 time_after_eq(jiffies, sg->sgc->next_update)) 6056 update_group_capacity(env->sd, env->dst_cpu); 6057 } 6058 6059 update_sg_lb_stats(env, sg, load_idx, local_group, sgs, 6060 &overload); 6061 6062 if (local_group) 6063 goto next_group; 6064 6065 /* 6066 * In case the child domain prefers tasks go to siblings 6067 * first, lower the sg capacity factor to one so that we'll try 6068 * and move all the excess tasks away. We lower the capacity 6069 * of a group only if the local group has the capacity to fit 6070 * these excess tasks, i.e. nr_running < group_capacity_factor. The 6071 * extra check prevents the case where you always pull from the 6072 * heaviest group when it is already under-utilized (possible 6073 * with a large weight task outweighs the tasks on the system). 6074 */ 6075 if (prefer_sibling && sds->local && 6076 sds->local_stat.group_has_free_capacity) 6077 sgs->group_capacity_factor = min(sgs->group_capacity_factor, 1U); 6078 6079 if (update_sd_pick_busiest(env, sds, sg, sgs)) { 6080 sds->busiest = sg; 6081 sds->busiest_stat = *sgs; 6082 } 6083 6084 next_group: 6085 /* Now, start updating sd_lb_stats */ 6086 sds->total_load += sgs->group_load; 6087 sds->total_capacity += sgs->group_capacity; 6088 6089 sg = sg->next; 6090 } while (sg != env->sd->groups); 6091 6092 if (env->sd->flags & SD_NUMA) 6093 env->fbq_type = fbq_classify_group(&sds->busiest_stat); 6094 6095 if (!env->sd->parent) { 6096 /* update overload indicator if we are at root domain */ 6097 if (env->dst_rq->rd->overload != overload) 6098 env->dst_rq->rd->overload = overload; 6099 } 6100 6101 } 6102 6103 /** 6104 * check_asym_packing - Check to see if the group is packed into the 6105 * sched doman. 6106 * 6107 * This is primarily intended to used at the sibling level. Some 6108 * cores like POWER7 prefer to use lower numbered SMT threads. In the 6109 * case of POWER7, it can move to lower SMT modes only when higher 6110 * threads are idle. When in lower SMT modes, the threads will 6111 * perform better since they share less core resources. Hence when we 6112 * have idle threads, we want them to be the higher ones. 6113 * 6114 * This packing function is run on idle threads. It checks to see if 6115 * the busiest CPU in this domain (core in the P7 case) has a higher 6116 * CPU number than the packing function is being run on. Here we are 6117 * assuming lower CPU number will be equivalent to lower a SMT thread 6118 * number. 6119 * 6120 * Return: 1 when packing is required and a task should be moved to 6121 * this CPU. The amount of the imbalance is returned in *imbalance. 6122 * 6123 * @env: The load balancing environment. 6124 * @sds: Statistics of the sched_domain which is to be packed 6125 */ 6126 static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds) 6127 { 6128 int busiest_cpu; 6129 6130 if (!(env->sd->flags & SD_ASYM_PACKING)) 6131 return 0; 6132 6133 if (!sds->busiest) 6134 return 0; 6135 6136 busiest_cpu = group_first_cpu(sds->busiest); 6137 if (env->dst_cpu > busiest_cpu) 6138 return 0; 6139 6140 env->imbalance = DIV_ROUND_CLOSEST( 6141 sds->busiest_stat.avg_load * sds->busiest_stat.group_capacity, 6142 SCHED_CAPACITY_SCALE); 6143 6144 return 1; 6145 } 6146 6147 /** 6148 * fix_small_imbalance - Calculate the minor imbalance that exists 6149 * amongst the groups of a sched_domain, during 6150 * load balancing. 6151 * @env: The load balancing environment. 6152 * @sds: Statistics of the sched_domain whose imbalance is to be calculated. 6153 */ 6154 static inline 6155 void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds) 6156 { 6157 unsigned long tmp, capa_now = 0, capa_move = 0; 6158 unsigned int imbn = 2; 6159 unsigned long scaled_busy_load_per_task; 6160 struct sg_lb_stats *local, *busiest; 6161 6162 local = &sds->local_stat; 6163 busiest = &sds->busiest_stat; 6164 6165 if (!local->sum_nr_running) 6166 local->load_per_task = cpu_avg_load_per_task(env->dst_cpu); 6167 else if (busiest->load_per_task > local->load_per_task) 6168 imbn = 1; 6169 6170 scaled_busy_load_per_task = 6171 (busiest->load_per_task * SCHED_CAPACITY_SCALE) / 6172 busiest->group_capacity; 6173 6174 if (busiest->avg_load + scaled_busy_load_per_task >= 6175 local->avg_load + (scaled_busy_load_per_task * imbn)) { 6176 env->imbalance = busiest->load_per_task; 6177 return; 6178 } 6179 6180 /* 6181 * OK, we don't have enough imbalance to justify moving tasks, 6182 * however we may be able to increase total CPU capacity used by 6183 * moving them. 6184 */ 6185 6186 capa_now += busiest->group_capacity * 6187 min(busiest->load_per_task, busiest->avg_load); 6188 capa_now += local->group_capacity * 6189 min(local->load_per_task, local->avg_load); 6190 capa_now /= SCHED_CAPACITY_SCALE; 6191 6192 /* Amount of load we'd subtract */ 6193 if (busiest->avg_load > scaled_busy_load_per_task) { 6194 capa_move += busiest->group_capacity * 6195 min(busiest->load_per_task, 6196 busiest->avg_load - scaled_busy_load_per_task); 6197 } 6198 6199 /* Amount of load we'd add */ 6200 if (busiest->avg_load * busiest->group_capacity < 6201 busiest->load_per_task * SCHED_CAPACITY_SCALE) { 6202 tmp = (busiest->avg_load * busiest->group_capacity) / 6203 local->group_capacity; 6204 } else { 6205 tmp = (busiest->load_per_task * SCHED_CAPACITY_SCALE) / 6206 local->group_capacity; 6207 } 6208 capa_move += local->group_capacity * 6209 min(local->load_per_task, local->avg_load + tmp); 6210 capa_move /= SCHED_CAPACITY_SCALE; 6211 6212 /* Move if we gain throughput */ 6213 if (capa_move > capa_now) 6214 env->imbalance = busiest->load_per_task; 6215 } 6216 6217 /** 6218 * calculate_imbalance - Calculate the amount of imbalance present within the 6219 * groups of a given sched_domain during load balance. 6220 * @env: load balance environment 6221 * @sds: statistics of the sched_domain whose imbalance is to be calculated. 6222 */ 6223 static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds) 6224 { 6225 unsigned long max_pull, load_above_capacity = ~0UL; 6226 struct sg_lb_stats *local, *busiest; 6227 6228 local = &sds->local_stat; 6229 busiest = &sds->busiest_stat; 6230 6231 if (busiest->group_imb) { 6232 /* 6233 * In the group_imb case we cannot rely on group-wide averages 6234 * to ensure cpu-load equilibrium, look at wider averages. XXX 6235 */ 6236 busiest->load_per_task = 6237 min(busiest->load_per_task, sds->avg_load); 6238 } 6239 6240 /* 6241 * In the presence of smp nice balancing, certain scenarios can have 6242 * max load less than avg load(as we skip the groups at or below 6243 * its cpu_capacity, while calculating max_load..) 6244 */ 6245 if (busiest->avg_load <= sds->avg_load || 6246 local->avg_load >= sds->avg_load) { 6247 env->imbalance = 0; 6248 return fix_small_imbalance(env, sds); 6249 } 6250 6251 if (!busiest->group_imb) { 6252 /* 6253 * Don't want to pull so many tasks that a group would go idle. 6254 * Except of course for the group_imb case, since then we might 6255 * have to drop below capacity to reach cpu-load equilibrium. 6256 */ 6257 load_above_capacity = 6258 (busiest->sum_nr_running - busiest->group_capacity_factor); 6259 6260 load_above_capacity *= (SCHED_LOAD_SCALE * SCHED_CAPACITY_SCALE); 6261 load_above_capacity /= busiest->group_capacity; 6262 } 6263 6264 /* 6265 * We're trying to get all the cpus to the average_load, so we don't 6266 * want to push ourselves above the average load, nor do we wish to 6267 * reduce the max loaded cpu below the average load. At the same time, 6268 * we also don't want to reduce the group load below the group capacity 6269 * (so that we can implement power-savings policies etc). Thus we look 6270 * for the minimum possible imbalance. 6271 */ 6272 max_pull = min(busiest->avg_load - sds->avg_load, load_above_capacity); 6273 6274 /* How much load to actually move to equalise the imbalance */ 6275 env->imbalance = min( 6276 max_pull * busiest->group_capacity, 6277 (sds->avg_load - local->avg_load) * local->group_capacity 6278 ) / SCHED_CAPACITY_SCALE; 6279 6280 /* 6281 * if *imbalance is less than the average load per runnable task 6282 * there is no guarantee that any tasks will be moved so we'll have 6283 * a think about bumping its value to force at least one task to be 6284 * moved 6285 */ 6286 if (env->imbalance < busiest->load_per_task) 6287 return fix_small_imbalance(env, sds); 6288 } 6289 6290 /******* find_busiest_group() helpers end here *********************/ 6291 6292 /** 6293 * find_busiest_group - Returns the busiest group within the sched_domain 6294 * if there is an imbalance. If there isn't an imbalance, and 6295 * the user has opted for power-savings, it returns a group whose 6296 * CPUs can be put to idle by rebalancing those tasks elsewhere, if 6297 * such a group exists. 6298 * 6299 * Also calculates the amount of weighted load which should be moved 6300 * to restore balance. 6301 * 6302 * @env: The load balancing environment. 6303 * 6304 * Return: - The busiest group if imbalance exists. 6305 * - If no imbalance and user has opted for power-savings balance, 6306 * return the least loaded group whose CPUs can be 6307 * put to idle by rebalancing its tasks onto our group. 6308 */ 6309 static struct sched_group *find_busiest_group(struct lb_env *env) 6310 { 6311 struct sg_lb_stats *local, *busiest; 6312 struct sd_lb_stats sds; 6313 6314 init_sd_lb_stats(&sds); 6315 6316 /* 6317 * Compute the various statistics relavent for load balancing at 6318 * this level. 6319 */ 6320 update_sd_lb_stats(env, &sds); 6321 local = &sds.local_stat; 6322 busiest = &sds.busiest_stat; 6323 6324 if ((env->idle == CPU_IDLE || env->idle == CPU_NEWLY_IDLE) && 6325 check_asym_packing(env, &sds)) 6326 return sds.busiest; 6327 6328 /* There is no busy sibling group to pull tasks from */ 6329 if (!sds.busiest || busiest->sum_nr_running == 0) 6330 goto out_balanced; 6331 6332 sds.avg_load = (SCHED_CAPACITY_SCALE * sds.total_load) 6333 / sds.total_capacity; 6334 6335 /* 6336 * If the busiest group is imbalanced the below checks don't 6337 * work because they assume all things are equal, which typically 6338 * isn't true due to cpus_allowed constraints and the like. 6339 */ 6340 if (busiest->group_imb) 6341 goto force_balance; 6342 6343 /* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */ 6344 if (env->idle == CPU_NEWLY_IDLE && local->group_has_free_capacity && 6345 !busiest->group_has_free_capacity) 6346 goto force_balance; 6347 6348 /* 6349 * If the local group is more busy than the selected busiest group 6350 * don't try and pull any tasks. 6351 */ 6352 if (local->avg_load >= busiest->avg_load) 6353 goto out_balanced; 6354 6355 /* 6356 * Don't pull any tasks if this group is already above the domain 6357 * average load. 6358 */ 6359 if (local->avg_load >= sds.avg_load) 6360 goto out_balanced; 6361 6362 if (env->idle == CPU_IDLE) { 6363 /* 6364 * This cpu is idle. If the busiest group load doesn't 6365 * have more tasks than the number of available cpu's and 6366 * there is no imbalance between this and busiest group 6367 * wrt to idle cpu's, it is balanced. 6368 */ 6369 if ((local->idle_cpus < busiest->idle_cpus) && 6370 busiest->sum_nr_running <= busiest->group_weight) 6371 goto out_balanced; 6372 } else { 6373 /* 6374 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use 6375 * imbalance_pct to be conservative. 6376 */ 6377 if (100 * busiest->avg_load <= 6378 env->sd->imbalance_pct * local->avg_load) 6379 goto out_balanced; 6380 } 6381 6382 force_balance: 6383 /* Looks like there is an imbalance. Compute it */ 6384 calculate_imbalance(env, &sds); 6385 return sds.busiest; 6386 6387 out_balanced: 6388 env->imbalance = 0; 6389 return NULL; 6390 } 6391 6392 /* 6393 * find_busiest_queue - find the busiest runqueue among the cpus in group. 6394 */ 6395 static struct rq *find_busiest_queue(struct lb_env *env, 6396 struct sched_group *group) 6397 { 6398 struct rq *busiest = NULL, *rq; 6399 unsigned long busiest_load = 0, busiest_capacity = 1; 6400 int i; 6401 6402 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) { 6403 unsigned long capacity, capacity_factor, wl; 6404 enum fbq_type rt; 6405 6406 rq = cpu_rq(i); 6407 rt = fbq_classify_rq(rq); 6408 6409 /* 6410 * We classify groups/runqueues into three groups: 6411 * - regular: there are !numa tasks 6412 * - remote: there are numa tasks that run on the 'wrong' node 6413 * - all: there is no distinction 6414 * 6415 * In order to avoid migrating ideally placed numa tasks, 6416 * ignore those when there's better options. 6417 * 6418 * If we ignore the actual busiest queue to migrate another 6419 * task, the next balance pass can still reduce the busiest 6420 * queue by moving tasks around inside the node. 6421 * 6422 * If we cannot move enough load due to this classification 6423 * the next pass will adjust the group classification and 6424 * allow migration of more tasks. 6425 * 6426 * Both cases only affect the total convergence complexity. 6427 */ 6428 if (rt > env->fbq_type) 6429 continue; 6430 6431 capacity = capacity_of(i); 6432 capacity_factor = DIV_ROUND_CLOSEST(capacity, SCHED_CAPACITY_SCALE); 6433 if (!capacity_factor) 6434 capacity_factor = fix_small_capacity(env->sd, group); 6435 6436 wl = weighted_cpuload(i); 6437 6438 /* 6439 * When comparing with imbalance, use weighted_cpuload() 6440 * which is not scaled with the cpu capacity. 6441 */ 6442 if (capacity_factor && rq->nr_running == 1 && wl > env->imbalance) 6443 continue; 6444 6445 /* 6446 * For the load comparisons with the other cpu's, consider 6447 * the weighted_cpuload() scaled with the cpu capacity, so 6448 * that the load can be moved away from the cpu that is 6449 * potentially running at a lower capacity. 6450 * 6451 * Thus we're looking for max(wl_i / capacity_i), crosswise 6452 * multiplication to rid ourselves of the division works out 6453 * to: wl_i * capacity_j > wl_j * capacity_i; where j is 6454 * our previous maximum. 6455 */ 6456 if (wl * busiest_capacity > busiest_load * capacity) { 6457 busiest_load = wl; 6458 busiest_capacity = capacity; 6459 busiest = rq; 6460 } 6461 } 6462 6463 return busiest; 6464 } 6465 6466 /* 6467 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but 6468 * so long as it is large enough. 6469 */ 6470 #define MAX_PINNED_INTERVAL 512 6471 6472 /* Working cpumask for load_balance and load_balance_newidle. */ 6473 DEFINE_PER_CPU(cpumask_var_t, load_balance_mask); 6474 6475 static int need_active_balance(struct lb_env *env) 6476 { 6477 struct sched_domain *sd = env->sd; 6478 6479 if (env->idle == CPU_NEWLY_IDLE) { 6480 6481 /* 6482 * ASYM_PACKING needs to force migrate tasks from busy but 6483 * higher numbered CPUs in order to pack all tasks in the 6484 * lowest numbered CPUs. 6485 */ 6486 if ((sd->flags & SD_ASYM_PACKING) && env->src_cpu > env->dst_cpu) 6487 return 1; 6488 } 6489 6490 return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2); 6491 } 6492 6493 static int active_load_balance_cpu_stop(void *data); 6494 6495 static int should_we_balance(struct lb_env *env) 6496 { 6497 struct sched_group *sg = env->sd->groups; 6498 struct cpumask *sg_cpus, *sg_mask; 6499 int cpu, balance_cpu = -1; 6500 6501 /* 6502 * In the newly idle case, we will allow all the cpu's 6503 * to do the newly idle load balance. 6504 */ 6505 if (env->idle == CPU_NEWLY_IDLE) 6506 return 1; 6507 6508 sg_cpus = sched_group_cpus(sg); 6509 sg_mask = sched_group_mask(sg); 6510 /* Try to find first idle cpu */ 6511 for_each_cpu_and(cpu, sg_cpus, env->cpus) { 6512 if (!cpumask_test_cpu(cpu, sg_mask) || !idle_cpu(cpu)) 6513 continue; 6514 6515 balance_cpu = cpu; 6516 break; 6517 } 6518 6519 if (balance_cpu == -1) 6520 balance_cpu = group_balance_cpu(sg); 6521 6522 /* 6523 * First idle cpu or the first cpu(busiest) in this sched group 6524 * is eligible for doing load balancing at this and above domains. 6525 */ 6526 return balance_cpu == env->dst_cpu; 6527 } 6528 6529 /* 6530 * Check this_cpu to ensure it is balanced within domain. Attempt to move 6531 * tasks if there is an imbalance. 6532 */ 6533 static int load_balance(int this_cpu, struct rq *this_rq, 6534 struct sched_domain *sd, enum cpu_idle_type idle, 6535 int *continue_balancing) 6536 { 6537 int ld_moved, cur_ld_moved, active_balance = 0; 6538 struct sched_domain *sd_parent = sd->parent; 6539 struct sched_group *group; 6540 struct rq *busiest; 6541 unsigned long flags; 6542 struct cpumask *cpus = __get_cpu_var(load_balance_mask); 6543 6544 struct lb_env env = { 6545 .sd = sd, 6546 .dst_cpu = this_cpu, 6547 .dst_rq = this_rq, 6548 .dst_grpmask = sched_group_cpus(sd->groups), 6549 .idle = idle, 6550 .loop_break = sched_nr_migrate_break, 6551 .cpus = cpus, 6552 .fbq_type = all, 6553 }; 6554 6555 /* 6556 * For NEWLY_IDLE load_balancing, we don't need to consider 6557 * other cpus in our group 6558 */ 6559 if (idle == CPU_NEWLY_IDLE) 6560 env.dst_grpmask = NULL; 6561 6562 cpumask_copy(cpus, cpu_active_mask); 6563 6564 schedstat_inc(sd, lb_count[idle]); 6565 6566 redo: 6567 if (!should_we_balance(&env)) { 6568 *continue_balancing = 0; 6569 goto out_balanced; 6570 } 6571 6572 group = find_busiest_group(&env); 6573 if (!group) { 6574 schedstat_inc(sd, lb_nobusyg[idle]); 6575 goto out_balanced; 6576 } 6577 6578 busiest = find_busiest_queue(&env, group); 6579 if (!busiest) { 6580 schedstat_inc(sd, lb_nobusyq[idle]); 6581 goto out_balanced; 6582 } 6583 6584 BUG_ON(busiest == env.dst_rq); 6585 6586 schedstat_add(sd, lb_imbalance[idle], env.imbalance); 6587 6588 ld_moved = 0; 6589 if (busiest->nr_running > 1) { 6590 /* 6591 * Attempt to move tasks. If find_busiest_group has found 6592 * an imbalance but busiest->nr_running <= 1, the group is 6593 * still unbalanced. ld_moved simply stays zero, so it is 6594 * correctly treated as an imbalance. 6595 */ 6596 env.flags |= LBF_ALL_PINNED; 6597 env.src_cpu = busiest->cpu; 6598 env.src_rq = busiest; 6599 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running); 6600 6601 more_balance: 6602 local_irq_save(flags); 6603 double_rq_lock(env.dst_rq, busiest); 6604 6605 /* 6606 * cur_ld_moved - load moved in current iteration 6607 * ld_moved - cumulative load moved across iterations 6608 */ 6609 cur_ld_moved = move_tasks(&env); 6610 ld_moved += cur_ld_moved; 6611 double_rq_unlock(env.dst_rq, busiest); 6612 local_irq_restore(flags); 6613 6614 /* 6615 * some other cpu did the load balance for us. 6616 */ 6617 if (cur_ld_moved && env.dst_cpu != smp_processor_id()) 6618 resched_cpu(env.dst_cpu); 6619 6620 if (env.flags & LBF_NEED_BREAK) { 6621 env.flags &= ~LBF_NEED_BREAK; 6622 goto more_balance; 6623 } 6624 6625 /* 6626 * Revisit (affine) tasks on src_cpu that couldn't be moved to 6627 * us and move them to an alternate dst_cpu in our sched_group 6628 * where they can run. The upper limit on how many times we 6629 * iterate on same src_cpu is dependent on number of cpus in our 6630 * sched_group. 6631 * 6632 * This changes load balance semantics a bit on who can move 6633 * load to a given_cpu. In addition to the given_cpu itself 6634 * (or a ilb_cpu acting on its behalf where given_cpu is 6635 * nohz-idle), we now have balance_cpu in a position to move 6636 * load to given_cpu. In rare situations, this may cause 6637 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding 6638 * _independently_ and at _same_ time to move some load to 6639 * given_cpu) causing exceess load to be moved to given_cpu. 6640 * This however should not happen so much in practice and 6641 * moreover subsequent load balance cycles should correct the 6642 * excess load moved. 6643 */ 6644 if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) { 6645 6646 /* Prevent to re-select dst_cpu via env's cpus */ 6647 cpumask_clear_cpu(env.dst_cpu, env.cpus); 6648 6649 env.dst_rq = cpu_rq(env.new_dst_cpu); 6650 env.dst_cpu = env.new_dst_cpu; 6651 env.flags &= ~LBF_DST_PINNED; 6652 env.loop = 0; 6653 env.loop_break = sched_nr_migrate_break; 6654 6655 /* 6656 * Go back to "more_balance" rather than "redo" since we 6657 * need to continue with same src_cpu. 6658 */ 6659 goto more_balance; 6660 } 6661 6662 /* 6663 * We failed to reach balance because of affinity. 6664 */ 6665 if (sd_parent) { 6666 int *group_imbalance = &sd_parent->groups->sgc->imbalance; 6667 6668 if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0) { 6669 *group_imbalance = 1; 6670 } else if (*group_imbalance) 6671 *group_imbalance = 0; 6672 } 6673 6674 /* All tasks on this runqueue were pinned by CPU affinity */ 6675 if (unlikely(env.flags & LBF_ALL_PINNED)) { 6676 cpumask_clear_cpu(cpu_of(busiest), cpus); 6677 if (!cpumask_empty(cpus)) { 6678 env.loop = 0; 6679 env.loop_break = sched_nr_migrate_break; 6680 goto redo; 6681 } 6682 goto out_balanced; 6683 } 6684 } 6685 6686 if (!ld_moved) { 6687 schedstat_inc(sd, lb_failed[idle]); 6688 /* 6689 * Increment the failure counter only on periodic balance. 6690 * We do not want newidle balance, which can be very 6691 * frequent, pollute the failure counter causing 6692 * excessive cache_hot migrations and active balances. 6693 */ 6694 if (idle != CPU_NEWLY_IDLE) 6695 sd->nr_balance_failed++; 6696 6697 if (need_active_balance(&env)) { 6698 raw_spin_lock_irqsave(&busiest->lock, flags); 6699 6700 /* don't kick the active_load_balance_cpu_stop, 6701 * if the curr task on busiest cpu can't be 6702 * moved to this_cpu 6703 */ 6704 if (!cpumask_test_cpu(this_cpu, 6705 tsk_cpus_allowed(busiest->curr))) { 6706 raw_spin_unlock_irqrestore(&busiest->lock, 6707 flags); 6708 env.flags |= LBF_ALL_PINNED; 6709 goto out_one_pinned; 6710 } 6711 6712 /* 6713 * ->active_balance synchronizes accesses to 6714 * ->active_balance_work. Once set, it's cleared 6715 * only after active load balance is finished. 6716 */ 6717 if (!busiest->active_balance) { 6718 busiest->active_balance = 1; 6719 busiest->push_cpu = this_cpu; 6720 active_balance = 1; 6721 } 6722 raw_spin_unlock_irqrestore(&busiest->lock, flags); 6723 6724 if (active_balance) { 6725 stop_one_cpu_nowait(cpu_of(busiest), 6726 active_load_balance_cpu_stop, busiest, 6727 &busiest->active_balance_work); 6728 } 6729 6730 /* 6731 * We've kicked active balancing, reset the failure 6732 * counter. 6733 */ 6734 sd->nr_balance_failed = sd->cache_nice_tries+1; 6735 } 6736 } else 6737 sd->nr_balance_failed = 0; 6738 6739 if (likely(!active_balance)) { 6740 /* We were unbalanced, so reset the balancing interval */ 6741 sd->balance_interval = sd->min_interval; 6742 } else { 6743 /* 6744 * If we've begun active balancing, start to back off. This 6745 * case may not be covered by the all_pinned logic if there 6746 * is only 1 task on the busy runqueue (because we don't call 6747 * move_tasks). 6748 */ 6749 if (sd->balance_interval < sd->max_interval) 6750 sd->balance_interval *= 2; 6751 } 6752 6753 goto out; 6754 6755 out_balanced: 6756 schedstat_inc(sd, lb_balanced[idle]); 6757 6758 sd->nr_balance_failed = 0; 6759 6760 out_one_pinned: 6761 /* tune up the balancing interval */ 6762 if (((env.flags & LBF_ALL_PINNED) && 6763 sd->balance_interval < MAX_PINNED_INTERVAL) || 6764 (sd->balance_interval < sd->max_interval)) 6765 sd->balance_interval *= 2; 6766 6767 ld_moved = 0; 6768 out: 6769 return ld_moved; 6770 } 6771 6772 static inline unsigned long 6773 get_sd_balance_interval(struct sched_domain *sd, int cpu_busy) 6774 { 6775 unsigned long interval = sd->balance_interval; 6776 6777 if (cpu_busy) 6778 interval *= sd->busy_factor; 6779 6780 /* scale ms to jiffies */ 6781 interval = msecs_to_jiffies(interval); 6782 interval = clamp(interval, 1UL, max_load_balance_interval); 6783 6784 return interval; 6785 } 6786 6787 static inline void 6788 update_next_balance(struct sched_domain *sd, int cpu_busy, unsigned long *next_balance) 6789 { 6790 unsigned long interval, next; 6791 6792 interval = get_sd_balance_interval(sd, cpu_busy); 6793 next = sd->last_balance + interval; 6794 6795 if (time_after(*next_balance, next)) 6796 *next_balance = next; 6797 } 6798 6799 /* 6800 * idle_balance is called by schedule() if this_cpu is about to become 6801 * idle. Attempts to pull tasks from other CPUs. 6802 */ 6803 static int idle_balance(struct rq *this_rq) 6804 { 6805 unsigned long next_balance = jiffies + HZ; 6806 int this_cpu = this_rq->cpu; 6807 struct sched_domain *sd; 6808 int pulled_task = 0; 6809 u64 curr_cost = 0; 6810 6811 idle_enter_fair(this_rq); 6812 6813 /* 6814 * We must set idle_stamp _before_ calling idle_balance(), such that we 6815 * measure the duration of idle_balance() as idle time. 6816 */ 6817 this_rq->idle_stamp = rq_clock(this_rq); 6818 6819 if (this_rq->avg_idle < sysctl_sched_migration_cost || 6820 !this_rq->rd->overload) { 6821 rcu_read_lock(); 6822 sd = rcu_dereference_check_sched_domain(this_rq->sd); 6823 if (sd) 6824 update_next_balance(sd, 0, &next_balance); 6825 rcu_read_unlock(); 6826 6827 goto out; 6828 } 6829 6830 /* 6831 * Drop the rq->lock, but keep IRQ/preempt disabled. 6832 */ 6833 raw_spin_unlock(&this_rq->lock); 6834 6835 update_blocked_averages(this_cpu); 6836 rcu_read_lock(); 6837 for_each_domain(this_cpu, sd) { 6838 int continue_balancing = 1; 6839 u64 t0, domain_cost; 6840 6841 if (!(sd->flags & SD_LOAD_BALANCE)) 6842 continue; 6843 6844 if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) { 6845 update_next_balance(sd, 0, &next_balance); 6846 break; 6847 } 6848 6849 if (sd->flags & SD_BALANCE_NEWIDLE) { 6850 t0 = sched_clock_cpu(this_cpu); 6851 6852 pulled_task = load_balance(this_cpu, this_rq, 6853 sd, CPU_NEWLY_IDLE, 6854 &continue_balancing); 6855 6856 domain_cost = sched_clock_cpu(this_cpu) - t0; 6857 if (domain_cost > sd->max_newidle_lb_cost) 6858 sd->max_newidle_lb_cost = domain_cost; 6859 6860 curr_cost += domain_cost; 6861 } 6862 6863 update_next_balance(sd, 0, &next_balance); 6864 6865 /* 6866 * Stop searching for tasks to pull if there are 6867 * now runnable tasks on this rq. 6868 */ 6869 if (pulled_task || this_rq->nr_running > 0) 6870 break; 6871 } 6872 rcu_read_unlock(); 6873 6874 raw_spin_lock(&this_rq->lock); 6875 6876 if (curr_cost > this_rq->max_idle_balance_cost) 6877 this_rq->max_idle_balance_cost = curr_cost; 6878 6879 /* 6880 * While browsing the domains, we released the rq lock, a task could 6881 * have been enqueued in the meantime. Since we're not going idle, 6882 * pretend we pulled a task. 6883 */ 6884 if (this_rq->cfs.h_nr_running && !pulled_task) 6885 pulled_task = 1; 6886 6887 out: 6888 /* Move the next balance forward */ 6889 if (time_after(this_rq->next_balance, next_balance)) 6890 this_rq->next_balance = next_balance; 6891 6892 /* Is there a task of a high priority class? */ 6893 if (this_rq->nr_running != this_rq->cfs.h_nr_running) 6894 pulled_task = -1; 6895 6896 if (pulled_task) { 6897 idle_exit_fair(this_rq); 6898 this_rq->idle_stamp = 0; 6899 } 6900 6901 return pulled_task; 6902 } 6903 6904 /* 6905 * active_load_balance_cpu_stop is run by cpu stopper. It pushes 6906 * running tasks off the busiest CPU onto idle CPUs. It requires at 6907 * least 1 task to be running on each physical CPU where possible, and 6908 * avoids physical / logical imbalances. 6909 */ 6910 static int active_load_balance_cpu_stop(void *data) 6911 { 6912 struct rq *busiest_rq = data; 6913 int busiest_cpu = cpu_of(busiest_rq); 6914 int target_cpu = busiest_rq->push_cpu; 6915 struct rq *target_rq = cpu_rq(target_cpu); 6916 struct sched_domain *sd; 6917 6918 raw_spin_lock_irq(&busiest_rq->lock); 6919 6920 /* make sure the requested cpu hasn't gone down in the meantime */ 6921 if (unlikely(busiest_cpu != smp_processor_id() || 6922 !busiest_rq->active_balance)) 6923 goto out_unlock; 6924 6925 /* Is there any task to move? */ 6926 if (busiest_rq->nr_running <= 1) 6927 goto out_unlock; 6928 6929 /* 6930 * This condition is "impossible", if it occurs 6931 * we need to fix it. Originally reported by 6932 * Bjorn Helgaas on a 128-cpu setup. 6933 */ 6934 BUG_ON(busiest_rq == target_rq); 6935 6936 /* move a task from busiest_rq to target_rq */ 6937 double_lock_balance(busiest_rq, target_rq); 6938 6939 /* Search for an sd spanning us and the target CPU. */ 6940 rcu_read_lock(); 6941 for_each_domain(target_cpu, sd) { 6942 if ((sd->flags & SD_LOAD_BALANCE) && 6943 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd))) 6944 break; 6945 } 6946 6947 if (likely(sd)) { 6948 struct lb_env env = { 6949 .sd = sd, 6950 .dst_cpu = target_cpu, 6951 .dst_rq = target_rq, 6952 .src_cpu = busiest_rq->cpu, 6953 .src_rq = busiest_rq, 6954 .idle = CPU_IDLE, 6955 }; 6956 6957 schedstat_inc(sd, alb_count); 6958 6959 if (move_one_task(&env)) 6960 schedstat_inc(sd, alb_pushed); 6961 else 6962 schedstat_inc(sd, alb_failed); 6963 } 6964 rcu_read_unlock(); 6965 double_unlock_balance(busiest_rq, target_rq); 6966 out_unlock: 6967 busiest_rq->active_balance = 0; 6968 raw_spin_unlock_irq(&busiest_rq->lock); 6969 return 0; 6970 } 6971 6972 static inline int on_null_domain(struct rq *rq) 6973 { 6974 return unlikely(!rcu_dereference_sched(rq->sd)); 6975 } 6976 6977 #ifdef CONFIG_NO_HZ_COMMON 6978 /* 6979 * idle load balancing details 6980 * - When one of the busy CPUs notice that there may be an idle rebalancing 6981 * needed, they will kick the idle load balancer, which then does idle 6982 * load balancing for all the idle CPUs. 6983 */ 6984 static struct { 6985 cpumask_var_t idle_cpus_mask; 6986 atomic_t nr_cpus; 6987 unsigned long next_balance; /* in jiffy units */ 6988 } nohz ____cacheline_aligned; 6989 6990 static inline int find_new_ilb(void) 6991 { 6992 int ilb = cpumask_first(nohz.idle_cpus_mask); 6993 6994 if (ilb < nr_cpu_ids && idle_cpu(ilb)) 6995 return ilb; 6996 6997 return nr_cpu_ids; 6998 } 6999 7000 /* 7001 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the 7002 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle 7003 * CPU (if there is one). 7004 */ 7005 static void nohz_balancer_kick(void) 7006 { 7007 int ilb_cpu; 7008 7009 nohz.next_balance++; 7010 7011 ilb_cpu = find_new_ilb(); 7012 7013 if (ilb_cpu >= nr_cpu_ids) 7014 return; 7015 7016 if (test_and_set_bit(NOHZ_BALANCE_KICK, nohz_flags(ilb_cpu))) 7017 return; 7018 /* 7019 * Use smp_send_reschedule() instead of resched_cpu(). 7020 * This way we generate a sched IPI on the target cpu which 7021 * is idle. And the softirq performing nohz idle load balance 7022 * will be run before returning from the IPI. 7023 */ 7024 smp_send_reschedule(ilb_cpu); 7025 return; 7026 } 7027 7028 static inline void nohz_balance_exit_idle(int cpu) 7029 { 7030 if (unlikely(test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))) { 7031 /* 7032 * Completely isolated CPUs don't ever set, so we must test. 7033 */ 7034 if (likely(cpumask_test_cpu(cpu, nohz.idle_cpus_mask))) { 7035 cpumask_clear_cpu(cpu, nohz.idle_cpus_mask); 7036 atomic_dec(&nohz.nr_cpus); 7037 } 7038 clear_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)); 7039 } 7040 } 7041 7042 static inline void set_cpu_sd_state_busy(void) 7043 { 7044 struct sched_domain *sd; 7045 int cpu = smp_processor_id(); 7046 7047 rcu_read_lock(); 7048 sd = rcu_dereference(per_cpu(sd_busy, cpu)); 7049 7050 if (!sd || !sd->nohz_idle) 7051 goto unlock; 7052 sd->nohz_idle = 0; 7053 7054 atomic_inc(&sd->groups->sgc->nr_busy_cpus); 7055 unlock: 7056 rcu_read_unlock(); 7057 } 7058 7059 void set_cpu_sd_state_idle(void) 7060 { 7061 struct sched_domain *sd; 7062 int cpu = smp_processor_id(); 7063 7064 rcu_read_lock(); 7065 sd = rcu_dereference(per_cpu(sd_busy, cpu)); 7066 7067 if (!sd || sd->nohz_idle) 7068 goto unlock; 7069 sd->nohz_idle = 1; 7070 7071 atomic_dec(&sd->groups->sgc->nr_busy_cpus); 7072 unlock: 7073 rcu_read_unlock(); 7074 } 7075 7076 /* 7077 * This routine will record that the cpu is going idle with tick stopped. 7078 * This info will be used in performing idle load balancing in the future. 7079 */ 7080 void nohz_balance_enter_idle(int cpu) 7081 { 7082 /* 7083 * If this cpu is going down, then nothing needs to be done. 7084 */ 7085 if (!cpu_active(cpu)) 7086 return; 7087 7088 if (test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu))) 7089 return; 7090 7091 /* 7092 * If we're a completely isolated CPU, we don't play. 7093 */ 7094 if (on_null_domain(cpu_rq(cpu))) 7095 return; 7096 7097 cpumask_set_cpu(cpu, nohz.idle_cpus_mask); 7098 atomic_inc(&nohz.nr_cpus); 7099 set_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)); 7100 } 7101 7102 static int sched_ilb_notifier(struct notifier_block *nfb, 7103 unsigned long action, void *hcpu) 7104 { 7105 switch (action & ~CPU_TASKS_FROZEN) { 7106 case CPU_DYING: 7107 nohz_balance_exit_idle(smp_processor_id()); 7108 return NOTIFY_OK; 7109 default: 7110 return NOTIFY_DONE; 7111 } 7112 } 7113 #endif 7114 7115 static DEFINE_SPINLOCK(balancing); 7116 7117 /* 7118 * Scale the max load_balance interval with the number of CPUs in the system. 7119 * This trades load-balance latency on larger machines for less cross talk. 7120 */ 7121 void update_max_interval(void) 7122 { 7123 max_load_balance_interval = HZ*num_online_cpus()/10; 7124 } 7125 7126 /* 7127 * It checks each scheduling domain to see if it is due to be balanced, 7128 * and initiates a balancing operation if so. 7129 * 7130 * Balancing parameters are set up in init_sched_domains. 7131 */ 7132 static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle) 7133 { 7134 int continue_balancing = 1; 7135 int cpu = rq->cpu; 7136 unsigned long interval; 7137 struct sched_domain *sd; 7138 /* Earliest time when we have to do rebalance again */ 7139 unsigned long next_balance = jiffies + 60*HZ; 7140 int update_next_balance = 0; 7141 int need_serialize, need_decay = 0; 7142 u64 max_cost = 0; 7143 7144 update_blocked_averages(cpu); 7145 7146 rcu_read_lock(); 7147 for_each_domain(cpu, sd) { 7148 /* 7149 * Decay the newidle max times here because this is a regular 7150 * visit to all the domains. Decay ~1% per second. 7151 */ 7152 if (time_after(jiffies, sd->next_decay_max_lb_cost)) { 7153 sd->max_newidle_lb_cost = 7154 (sd->max_newidle_lb_cost * 253) / 256; 7155 sd->next_decay_max_lb_cost = jiffies + HZ; 7156 need_decay = 1; 7157 } 7158 max_cost += sd->max_newidle_lb_cost; 7159 7160 if (!(sd->flags & SD_LOAD_BALANCE)) 7161 continue; 7162 7163 /* 7164 * Stop the load balance at this level. There is another 7165 * CPU in our sched group which is doing load balancing more 7166 * actively. 7167 */ 7168 if (!continue_balancing) { 7169 if (need_decay) 7170 continue; 7171 break; 7172 } 7173 7174 interval = get_sd_balance_interval(sd, idle != CPU_IDLE); 7175 7176 need_serialize = sd->flags & SD_SERIALIZE; 7177 if (need_serialize) { 7178 if (!spin_trylock(&balancing)) 7179 goto out; 7180 } 7181 7182 if (time_after_eq(jiffies, sd->last_balance + interval)) { 7183 if (load_balance(cpu, rq, sd, idle, &continue_balancing)) { 7184 /* 7185 * The LBF_DST_PINNED logic could have changed 7186 * env->dst_cpu, so we can't know our idle 7187 * state even if we migrated tasks. Update it. 7188 */ 7189 idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE; 7190 } 7191 sd->last_balance = jiffies; 7192 interval = get_sd_balance_interval(sd, idle != CPU_IDLE); 7193 } 7194 if (need_serialize) 7195 spin_unlock(&balancing); 7196 out: 7197 if (time_after(next_balance, sd->last_balance + interval)) { 7198 next_balance = sd->last_balance + interval; 7199 update_next_balance = 1; 7200 } 7201 } 7202 if (need_decay) { 7203 /* 7204 * Ensure the rq-wide value also decays but keep it at a 7205 * reasonable floor to avoid funnies with rq->avg_idle. 7206 */ 7207 rq->max_idle_balance_cost = 7208 max((u64)sysctl_sched_migration_cost, max_cost); 7209 } 7210 rcu_read_unlock(); 7211 7212 /* 7213 * next_balance will be updated only when there is a need. 7214 * When the cpu is attached to null domain for ex, it will not be 7215 * updated. 7216 */ 7217 if (likely(update_next_balance)) 7218 rq->next_balance = next_balance; 7219 } 7220 7221 #ifdef CONFIG_NO_HZ_COMMON 7222 /* 7223 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the 7224 * rebalancing for all the cpus for whom scheduler ticks are stopped. 7225 */ 7226 static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) 7227 { 7228 int this_cpu = this_rq->cpu; 7229 struct rq *rq; 7230 int balance_cpu; 7231 7232 if (idle != CPU_IDLE || 7233 !test_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu))) 7234 goto end; 7235 7236 for_each_cpu(balance_cpu, nohz.idle_cpus_mask) { 7237 if (balance_cpu == this_cpu || !idle_cpu(balance_cpu)) 7238 continue; 7239 7240 /* 7241 * If this cpu gets work to do, stop the load balancing 7242 * work being done for other cpus. Next load 7243 * balancing owner will pick it up. 7244 */ 7245 if (need_resched()) 7246 break; 7247 7248 rq = cpu_rq(balance_cpu); 7249 7250 /* 7251 * If time for next balance is due, 7252 * do the balance. 7253 */ 7254 if (time_after_eq(jiffies, rq->next_balance)) { 7255 raw_spin_lock_irq(&rq->lock); 7256 update_rq_clock(rq); 7257 update_idle_cpu_load(rq); 7258 raw_spin_unlock_irq(&rq->lock); 7259 rebalance_domains(rq, CPU_IDLE); 7260 } 7261 7262 if (time_after(this_rq->next_balance, rq->next_balance)) 7263 this_rq->next_balance = rq->next_balance; 7264 } 7265 nohz.next_balance = this_rq->next_balance; 7266 end: 7267 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu)); 7268 } 7269 7270 /* 7271 * Current heuristic for kicking the idle load balancer in the presence 7272 * of an idle cpu is the system. 7273 * - This rq has more than one task. 7274 * - At any scheduler domain level, this cpu's scheduler group has multiple 7275 * busy cpu's exceeding the group's capacity. 7276 * - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler 7277 * domain span are idle. 7278 */ 7279 static inline int nohz_kick_needed(struct rq *rq) 7280 { 7281 unsigned long now = jiffies; 7282 struct sched_domain *sd; 7283 struct sched_group_capacity *sgc; 7284 int nr_busy, cpu = rq->cpu; 7285 7286 if (unlikely(rq->idle_balance)) 7287 return 0; 7288 7289 /* 7290 * We may be recently in ticked or tickless idle mode. At the first 7291 * busy tick after returning from idle, we will update the busy stats. 7292 */ 7293 set_cpu_sd_state_busy(); 7294 nohz_balance_exit_idle(cpu); 7295 7296 /* 7297 * None are in tickless mode and hence no need for NOHZ idle load 7298 * balancing. 7299 */ 7300 if (likely(!atomic_read(&nohz.nr_cpus))) 7301 return 0; 7302 7303 if (time_before(now, nohz.next_balance)) 7304 return 0; 7305 7306 if (rq->nr_running >= 2) 7307 goto need_kick; 7308 7309 rcu_read_lock(); 7310 sd = rcu_dereference(per_cpu(sd_busy, cpu)); 7311 7312 if (sd) { 7313 sgc = sd->groups->sgc; 7314 nr_busy = atomic_read(&sgc->nr_busy_cpus); 7315 7316 if (nr_busy > 1) 7317 goto need_kick_unlock; 7318 } 7319 7320 sd = rcu_dereference(per_cpu(sd_asym, cpu)); 7321 7322 if (sd && (cpumask_first_and(nohz.idle_cpus_mask, 7323 sched_domain_span(sd)) < cpu)) 7324 goto need_kick_unlock; 7325 7326 rcu_read_unlock(); 7327 return 0; 7328 7329 need_kick_unlock: 7330 rcu_read_unlock(); 7331 need_kick: 7332 return 1; 7333 } 7334 #else 7335 static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) { } 7336 #endif 7337 7338 /* 7339 * run_rebalance_domains is triggered when needed from the scheduler tick. 7340 * Also triggered for nohz idle balancing (with nohz_balancing_kick set). 7341 */ 7342 static void run_rebalance_domains(struct softirq_action *h) 7343 { 7344 struct rq *this_rq = this_rq(); 7345 enum cpu_idle_type idle = this_rq->idle_balance ? 7346 CPU_IDLE : CPU_NOT_IDLE; 7347 7348 rebalance_domains(this_rq, idle); 7349 7350 /* 7351 * If this cpu has a pending nohz_balance_kick, then do the 7352 * balancing on behalf of the other idle cpus whose ticks are 7353 * stopped. 7354 */ 7355 nohz_idle_balance(this_rq, idle); 7356 } 7357 7358 /* 7359 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing. 7360 */ 7361 void trigger_load_balance(struct rq *rq) 7362 { 7363 /* Don't need to rebalance while attached to NULL domain */ 7364 if (unlikely(on_null_domain(rq))) 7365 return; 7366 7367 if (time_after_eq(jiffies, rq->next_balance)) 7368 raise_softirq(SCHED_SOFTIRQ); 7369 #ifdef CONFIG_NO_HZ_COMMON 7370 if (nohz_kick_needed(rq)) 7371 nohz_balancer_kick(); 7372 #endif 7373 } 7374 7375 static void rq_online_fair(struct rq *rq) 7376 { 7377 update_sysctl(); 7378 7379 update_runtime_enabled(rq); 7380 } 7381 7382 static void rq_offline_fair(struct rq *rq) 7383 { 7384 update_sysctl(); 7385 7386 /* Ensure any throttled groups are reachable by pick_next_task */ 7387 unthrottle_offline_cfs_rqs(rq); 7388 } 7389 7390 #endif /* CONFIG_SMP */ 7391 7392 /* 7393 * scheduler tick hitting a task of our scheduling class: 7394 */ 7395 static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued) 7396 { 7397 struct cfs_rq *cfs_rq; 7398 struct sched_entity *se = &curr->se; 7399 7400 for_each_sched_entity(se) { 7401 cfs_rq = cfs_rq_of(se); 7402 entity_tick(cfs_rq, se, queued); 7403 } 7404 7405 if (numabalancing_enabled) 7406 task_tick_numa(rq, curr); 7407 7408 update_rq_runnable_avg(rq, 1); 7409 } 7410 7411 /* 7412 * called on fork with the child task as argument from the parent's context 7413 * - child not yet on the tasklist 7414 * - preemption disabled 7415 */ 7416 static void task_fork_fair(struct task_struct *p) 7417 { 7418 struct cfs_rq *cfs_rq; 7419 struct sched_entity *se = &p->se, *curr; 7420 int this_cpu = smp_processor_id(); 7421 struct rq *rq = this_rq(); 7422 unsigned long flags; 7423 7424 raw_spin_lock_irqsave(&rq->lock, flags); 7425 7426 update_rq_clock(rq); 7427 7428 cfs_rq = task_cfs_rq(current); 7429 curr = cfs_rq->curr; 7430 7431 /* 7432 * Not only the cpu but also the task_group of the parent might have 7433 * been changed after parent->se.parent,cfs_rq were copied to 7434 * child->se.parent,cfs_rq. So call __set_task_cpu() to make those 7435 * of child point to valid ones. 7436 */ 7437 rcu_read_lock(); 7438 __set_task_cpu(p, this_cpu); 7439 rcu_read_unlock(); 7440 7441 update_curr(cfs_rq); 7442 7443 if (curr) 7444 se->vruntime = curr->vruntime; 7445 place_entity(cfs_rq, se, 1); 7446 7447 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) { 7448 /* 7449 * Upon rescheduling, sched_class::put_prev_task() will place 7450 * 'current' within the tree based on its new key value. 7451 */ 7452 swap(curr->vruntime, se->vruntime); 7453 resched_curr(rq); 7454 } 7455 7456 se->vruntime -= cfs_rq->min_vruntime; 7457 7458 raw_spin_unlock_irqrestore(&rq->lock, flags); 7459 } 7460 7461 /* 7462 * Priority of the task has changed. Check to see if we preempt 7463 * the current task. 7464 */ 7465 static void 7466 prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio) 7467 { 7468 if (!p->se.on_rq) 7469 return; 7470 7471 /* 7472 * Reschedule if we are currently running on this runqueue and 7473 * our priority decreased, or if we are not currently running on 7474 * this runqueue and our priority is higher than the current's 7475 */ 7476 if (rq->curr == p) { 7477 if (p->prio > oldprio) 7478 resched_curr(rq); 7479 } else 7480 check_preempt_curr(rq, p, 0); 7481 } 7482 7483 static void switched_from_fair(struct rq *rq, struct task_struct *p) 7484 { 7485 struct sched_entity *se = &p->se; 7486 struct cfs_rq *cfs_rq = cfs_rq_of(se); 7487 7488 /* 7489 * Ensure the task's vruntime is normalized, so that when it's 7490 * switched back to the fair class the enqueue_entity(.flags=0) will 7491 * do the right thing. 7492 * 7493 * If it's on_rq, then the dequeue_entity(.flags=0) will already 7494 * have normalized the vruntime, if it's !on_rq, then only when 7495 * the task is sleeping will it still have non-normalized vruntime. 7496 */ 7497 if (!p->on_rq && p->state != TASK_RUNNING) { 7498 /* 7499 * Fix up our vruntime so that the current sleep doesn't 7500 * cause 'unlimited' sleep bonus. 7501 */ 7502 place_entity(cfs_rq, se, 0); 7503 se->vruntime -= cfs_rq->min_vruntime; 7504 } 7505 7506 #ifdef CONFIG_SMP 7507 /* 7508 * Remove our load from contribution when we leave sched_fair 7509 * and ensure we don't carry in an old decay_count if we 7510 * switch back. 7511 */ 7512 if (se->avg.decay_count) { 7513 __synchronize_entity_decay(se); 7514 subtract_blocked_load_contrib(cfs_rq, se->avg.load_avg_contrib); 7515 } 7516 #endif 7517 } 7518 7519 /* 7520 * We switched to the sched_fair class. 7521 */ 7522 static void switched_to_fair(struct rq *rq, struct task_struct *p) 7523 { 7524 struct sched_entity *se = &p->se; 7525 #ifdef CONFIG_FAIR_GROUP_SCHED 7526 /* 7527 * Since the real-depth could have been changed (only FAIR 7528 * class maintain depth value), reset depth properly. 7529 */ 7530 se->depth = se->parent ? se->parent->depth + 1 : 0; 7531 #endif 7532 if (!se->on_rq) 7533 return; 7534 7535 /* 7536 * We were most likely switched from sched_rt, so 7537 * kick off the schedule if running, otherwise just see 7538 * if we can still preempt the current task. 7539 */ 7540 if (rq->curr == p) 7541 resched_curr(rq); 7542 else 7543 check_preempt_curr(rq, p, 0); 7544 } 7545 7546 /* Account for a task changing its policy or group. 7547 * 7548 * This routine is mostly called to set cfs_rq->curr field when a task 7549 * migrates between groups/classes. 7550 */ 7551 static void set_curr_task_fair(struct rq *rq) 7552 { 7553 struct sched_entity *se = &rq->curr->se; 7554 7555 for_each_sched_entity(se) { 7556 struct cfs_rq *cfs_rq = cfs_rq_of(se); 7557 7558 set_next_entity(cfs_rq, se); 7559 /* ensure bandwidth has been allocated on our new cfs_rq */ 7560 account_cfs_rq_runtime(cfs_rq, 0); 7561 } 7562 } 7563 7564 void init_cfs_rq(struct cfs_rq *cfs_rq) 7565 { 7566 cfs_rq->tasks_timeline = RB_ROOT; 7567 cfs_rq->min_vruntime = (u64)(-(1LL << 20)); 7568 #ifndef CONFIG_64BIT 7569 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime; 7570 #endif 7571 #ifdef CONFIG_SMP 7572 atomic64_set(&cfs_rq->decay_counter, 1); 7573 atomic_long_set(&cfs_rq->removed_load, 0); 7574 #endif 7575 } 7576 7577 #ifdef CONFIG_FAIR_GROUP_SCHED 7578 static void task_move_group_fair(struct task_struct *p, int on_rq) 7579 { 7580 struct sched_entity *se = &p->se; 7581 struct cfs_rq *cfs_rq; 7582 7583 /* 7584 * If the task was not on the rq at the time of this cgroup movement 7585 * it must have been asleep, sleeping tasks keep their ->vruntime 7586 * absolute on their old rq until wakeup (needed for the fair sleeper 7587 * bonus in place_entity()). 7588 * 7589 * If it was on the rq, we've just 'preempted' it, which does convert 7590 * ->vruntime to a relative base. 7591 * 7592 * Make sure both cases convert their relative position when migrating 7593 * to another cgroup's rq. This does somewhat interfere with the 7594 * fair sleeper stuff for the first placement, but who cares. 7595 */ 7596 /* 7597 * When !on_rq, vruntime of the task has usually NOT been normalized. 7598 * But there are some cases where it has already been normalized: 7599 * 7600 * - Moving a forked child which is waiting for being woken up by 7601 * wake_up_new_task(). 7602 * - Moving a task which has been woken up by try_to_wake_up() and 7603 * waiting for actually being woken up by sched_ttwu_pending(). 7604 * 7605 * To prevent boost or penalty in the new cfs_rq caused by delta 7606 * min_vruntime between the two cfs_rqs, we skip vruntime adjustment. 7607 */ 7608 if (!on_rq && (!se->sum_exec_runtime || p->state == TASK_WAKING)) 7609 on_rq = 1; 7610 7611 if (!on_rq) 7612 se->vruntime -= cfs_rq_of(se)->min_vruntime; 7613 set_task_rq(p, task_cpu(p)); 7614 se->depth = se->parent ? se->parent->depth + 1 : 0; 7615 if (!on_rq) { 7616 cfs_rq = cfs_rq_of(se); 7617 se->vruntime += cfs_rq->min_vruntime; 7618 #ifdef CONFIG_SMP 7619 /* 7620 * migrate_task_rq_fair() will have removed our previous 7621 * contribution, but we must synchronize for ongoing future 7622 * decay. 7623 */ 7624 se->avg.decay_count = atomic64_read(&cfs_rq->decay_counter); 7625 cfs_rq->blocked_load_avg += se->avg.load_avg_contrib; 7626 #endif 7627 } 7628 } 7629 7630 void free_fair_sched_group(struct task_group *tg) 7631 { 7632 int i; 7633 7634 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg)); 7635 7636 for_each_possible_cpu(i) { 7637 if (tg->cfs_rq) 7638 kfree(tg->cfs_rq[i]); 7639 if (tg->se) 7640 kfree(tg->se[i]); 7641 } 7642 7643 kfree(tg->cfs_rq); 7644 kfree(tg->se); 7645 } 7646 7647 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent) 7648 { 7649 struct cfs_rq *cfs_rq; 7650 struct sched_entity *se; 7651 int i; 7652 7653 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL); 7654 if (!tg->cfs_rq) 7655 goto err; 7656 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL); 7657 if (!tg->se) 7658 goto err; 7659 7660 tg->shares = NICE_0_LOAD; 7661 7662 init_cfs_bandwidth(tg_cfs_bandwidth(tg)); 7663 7664 for_each_possible_cpu(i) { 7665 cfs_rq = kzalloc_node(sizeof(struct cfs_rq), 7666 GFP_KERNEL, cpu_to_node(i)); 7667 if (!cfs_rq) 7668 goto err; 7669 7670 se = kzalloc_node(sizeof(struct sched_entity), 7671 GFP_KERNEL, cpu_to_node(i)); 7672 if (!se) 7673 goto err_free_rq; 7674 7675 init_cfs_rq(cfs_rq); 7676 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]); 7677 } 7678 7679 return 1; 7680 7681 err_free_rq: 7682 kfree(cfs_rq); 7683 err: 7684 return 0; 7685 } 7686 7687 void unregister_fair_sched_group(struct task_group *tg, int cpu) 7688 { 7689 struct rq *rq = cpu_rq(cpu); 7690 unsigned long flags; 7691 7692 /* 7693 * Only empty task groups can be destroyed; so we can speculatively 7694 * check on_list without danger of it being re-added. 7695 */ 7696 if (!tg->cfs_rq[cpu]->on_list) 7697 return; 7698 7699 raw_spin_lock_irqsave(&rq->lock, flags); 7700 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]); 7701 raw_spin_unlock_irqrestore(&rq->lock, flags); 7702 } 7703 7704 void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq, 7705 struct sched_entity *se, int cpu, 7706 struct sched_entity *parent) 7707 { 7708 struct rq *rq = cpu_rq(cpu); 7709 7710 cfs_rq->tg = tg; 7711 cfs_rq->rq = rq; 7712 init_cfs_rq_runtime(cfs_rq); 7713 7714 tg->cfs_rq[cpu] = cfs_rq; 7715 tg->se[cpu] = se; 7716 7717 /* se could be NULL for root_task_group */ 7718 if (!se) 7719 return; 7720 7721 if (!parent) { 7722 se->cfs_rq = &rq->cfs; 7723 se->depth = 0; 7724 } else { 7725 se->cfs_rq = parent->my_q; 7726 se->depth = parent->depth + 1; 7727 } 7728 7729 se->my_q = cfs_rq; 7730 /* guarantee group entities always have weight */ 7731 update_load_set(&se->load, NICE_0_LOAD); 7732 se->parent = parent; 7733 } 7734 7735 static DEFINE_MUTEX(shares_mutex); 7736 7737 int sched_group_set_shares(struct task_group *tg, unsigned long shares) 7738 { 7739 int i; 7740 unsigned long flags; 7741 7742 /* 7743 * We can't change the weight of the root cgroup. 7744 */ 7745 if (!tg->se[0]) 7746 return -EINVAL; 7747 7748 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES)); 7749 7750 mutex_lock(&shares_mutex); 7751 if (tg->shares == shares) 7752 goto done; 7753 7754 tg->shares = shares; 7755 for_each_possible_cpu(i) { 7756 struct rq *rq = cpu_rq(i); 7757 struct sched_entity *se; 7758 7759 se = tg->se[i]; 7760 /* Propagate contribution to hierarchy */ 7761 raw_spin_lock_irqsave(&rq->lock, flags); 7762 7763 /* Possible calls to update_curr() need rq clock */ 7764 update_rq_clock(rq); 7765 for_each_sched_entity(se) 7766 update_cfs_shares(group_cfs_rq(se)); 7767 raw_spin_unlock_irqrestore(&rq->lock, flags); 7768 } 7769 7770 done: 7771 mutex_unlock(&shares_mutex); 7772 return 0; 7773 } 7774 #else /* CONFIG_FAIR_GROUP_SCHED */ 7775 7776 void free_fair_sched_group(struct task_group *tg) { } 7777 7778 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent) 7779 { 7780 return 1; 7781 } 7782 7783 void unregister_fair_sched_group(struct task_group *tg, int cpu) { } 7784 7785 #endif /* CONFIG_FAIR_GROUP_SCHED */ 7786 7787 7788 static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task) 7789 { 7790 struct sched_entity *se = &task->se; 7791 unsigned int rr_interval = 0; 7792 7793 /* 7794 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise 7795 * idle runqueue: 7796 */ 7797 if (rq->cfs.load.weight) 7798 rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se)); 7799 7800 return rr_interval; 7801 } 7802 7803 /* 7804 * All the scheduling class methods: 7805 */ 7806 const struct sched_class fair_sched_class = { 7807 .next = &idle_sched_class, 7808 .enqueue_task = enqueue_task_fair, 7809 .dequeue_task = dequeue_task_fair, 7810 .yield_task = yield_task_fair, 7811 .yield_to_task = yield_to_task_fair, 7812 7813 .check_preempt_curr = check_preempt_wakeup, 7814 7815 .pick_next_task = pick_next_task_fair, 7816 .put_prev_task = put_prev_task_fair, 7817 7818 #ifdef CONFIG_SMP 7819 .select_task_rq = select_task_rq_fair, 7820 .migrate_task_rq = migrate_task_rq_fair, 7821 7822 .rq_online = rq_online_fair, 7823 .rq_offline = rq_offline_fair, 7824 7825 .task_waking = task_waking_fair, 7826 #endif 7827 7828 .set_curr_task = set_curr_task_fair, 7829 .task_tick = task_tick_fair, 7830 .task_fork = task_fork_fair, 7831 7832 .prio_changed = prio_changed_fair, 7833 .switched_from = switched_from_fair, 7834 .switched_to = switched_to_fair, 7835 7836 .get_rr_interval = get_rr_interval_fair, 7837 7838 #ifdef CONFIG_FAIR_GROUP_SCHED 7839 .task_move_group = task_move_group_fair, 7840 #endif 7841 }; 7842 7843 #ifdef CONFIG_SCHED_DEBUG 7844 void print_cfs_stats(struct seq_file *m, int cpu) 7845 { 7846 struct cfs_rq *cfs_rq; 7847 7848 rcu_read_lock(); 7849 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq) 7850 print_cfs_rq(m, cpu, cfs_rq); 7851 rcu_read_unlock(); 7852 } 7853 #endif 7854 7855 __init void init_sched_fair_class(void) 7856 { 7857 #ifdef CONFIG_SMP 7858 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains); 7859 7860 #ifdef CONFIG_NO_HZ_COMMON 7861 nohz.next_balance = jiffies; 7862 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT); 7863 cpu_notifier(sched_ilb_notifier, 0); 7864 #endif 7865 #endif /* SMP */ 7866 7867 } 7868