xref: /openbmc/linux/kernel/sched/fair.c (revision 56d06fa2)
1 /*
2  * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
3  *
4  *  Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
5  *
6  *  Interactivity improvements by Mike Galbraith
7  *  (C) 2007 Mike Galbraith <efault@gmx.de>
8  *
9  *  Various enhancements by Dmitry Adamushko.
10  *  (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
11  *
12  *  Group scheduling enhancements by Srivatsa Vaddagiri
13  *  Copyright IBM Corporation, 2007
14  *  Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
15  *
16  *  Scaled math optimizations by Thomas Gleixner
17  *  Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
18  *
19  *  Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20  *  Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
21  */
22 
23 #include <linux/sched.h>
24 #include <linux/latencytop.h>
25 #include <linux/cpumask.h>
26 #include <linux/cpuidle.h>
27 #include <linux/slab.h>
28 #include <linux/profile.h>
29 #include <linux/interrupt.h>
30 #include <linux/mempolicy.h>
31 #include <linux/migrate.h>
32 #include <linux/task_work.h>
33 
34 #include <trace/events/sched.h>
35 
36 #include "sched.h"
37 
38 /*
39  * Targeted preemption latency for CPU-bound tasks:
40  * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
41  *
42  * NOTE: this latency value is not the same as the concept of
43  * 'timeslice length' - timeslices in CFS are of variable length
44  * and have no persistent notion like in traditional, time-slice
45  * based scheduling concepts.
46  *
47  * (to see the precise effective timeslice length of your workload,
48  *  run vmstat and monitor the context-switches (cs) field)
49  */
50 unsigned int sysctl_sched_latency = 6000000ULL;
51 unsigned int normalized_sysctl_sched_latency = 6000000ULL;
52 
53 /*
54  * The initial- and re-scaling of tunables is configurable
55  * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
56  *
57  * Options are:
58  * SCHED_TUNABLESCALING_NONE - unscaled, always *1
59  * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
60  * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
61  */
62 enum sched_tunable_scaling sysctl_sched_tunable_scaling
63 	= SCHED_TUNABLESCALING_LOG;
64 
65 /*
66  * Minimal preemption granularity for CPU-bound tasks:
67  * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
68  */
69 unsigned int sysctl_sched_min_granularity = 750000ULL;
70 unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
71 
72 /*
73  * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
74  */
75 static unsigned int sched_nr_latency = 8;
76 
77 /*
78  * After fork, child runs first. If set to 0 (default) then
79  * parent will (try to) run first.
80  */
81 unsigned int sysctl_sched_child_runs_first __read_mostly;
82 
83 /*
84  * SCHED_OTHER wake-up granularity.
85  * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
86  *
87  * This option delays the preemption effects of decoupled workloads
88  * and reduces their over-scheduling. Synchronous workloads will still
89  * have immediate wakeup/sleep latencies.
90  */
91 unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
92 unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
93 
94 const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
95 
96 /*
97  * The exponential sliding  window over which load is averaged for shares
98  * distribution.
99  * (default: 10msec)
100  */
101 unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL;
102 
103 #ifdef CONFIG_CFS_BANDWIDTH
104 /*
105  * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
106  * each time a cfs_rq requests quota.
107  *
108  * Note: in the case that the slice exceeds the runtime remaining (either due
109  * to consumption or the quota being specified to be smaller than the slice)
110  * we will always only issue the remaining available time.
111  *
112  * default: 5 msec, units: microseconds
113   */
114 unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
115 #endif
116 
117 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
118 {
119 	lw->weight += inc;
120 	lw->inv_weight = 0;
121 }
122 
123 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
124 {
125 	lw->weight -= dec;
126 	lw->inv_weight = 0;
127 }
128 
129 static inline void update_load_set(struct load_weight *lw, unsigned long w)
130 {
131 	lw->weight = w;
132 	lw->inv_weight = 0;
133 }
134 
135 /*
136  * Increase the granularity value when there are more CPUs,
137  * because with more CPUs the 'effective latency' as visible
138  * to users decreases. But the relationship is not linear,
139  * so pick a second-best guess by going with the log2 of the
140  * number of CPUs.
141  *
142  * This idea comes from the SD scheduler of Con Kolivas:
143  */
144 static unsigned int get_update_sysctl_factor(void)
145 {
146 	unsigned int cpus = min_t(unsigned int, num_online_cpus(), 8);
147 	unsigned int factor;
148 
149 	switch (sysctl_sched_tunable_scaling) {
150 	case SCHED_TUNABLESCALING_NONE:
151 		factor = 1;
152 		break;
153 	case SCHED_TUNABLESCALING_LINEAR:
154 		factor = cpus;
155 		break;
156 	case SCHED_TUNABLESCALING_LOG:
157 	default:
158 		factor = 1 + ilog2(cpus);
159 		break;
160 	}
161 
162 	return factor;
163 }
164 
165 static void update_sysctl(void)
166 {
167 	unsigned int factor = get_update_sysctl_factor();
168 
169 #define SET_SYSCTL(name) \
170 	(sysctl_##name = (factor) * normalized_sysctl_##name)
171 	SET_SYSCTL(sched_min_granularity);
172 	SET_SYSCTL(sched_latency);
173 	SET_SYSCTL(sched_wakeup_granularity);
174 #undef SET_SYSCTL
175 }
176 
177 void sched_init_granularity(void)
178 {
179 	update_sysctl();
180 }
181 
182 #define WMULT_CONST	(~0U)
183 #define WMULT_SHIFT	32
184 
185 static void __update_inv_weight(struct load_weight *lw)
186 {
187 	unsigned long w;
188 
189 	if (likely(lw->inv_weight))
190 		return;
191 
192 	w = scale_load_down(lw->weight);
193 
194 	if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
195 		lw->inv_weight = 1;
196 	else if (unlikely(!w))
197 		lw->inv_weight = WMULT_CONST;
198 	else
199 		lw->inv_weight = WMULT_CONST / w;
200 }
201 
202 /*
203  * delta_exec * weight / lw.weight
204  *   OR
205  * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
206  *
207  * Either weight := NICE_0_LOAD and lw \e prio_to_wmult[], in which case
208  * we're guaranteed shift stays positive because inv_weight is guaranteed to
209  * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
210  *
211  * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
212  * weight/lw.weight <= 1, and therefore our shift will also be positive.
213  */
214 static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw)
215 {
216 	u64 fact = scale_load_down(weight);
217 	int shift = WMULT_SHIFT;
218 
219 	__update_inv_weight(lw);
220 
221 	if (unlikely(fact >> 32)) {
222 		while (fact >> 32) {
223 			fact >>= 1;
224 			shift--;
225 		}
226 	}
227 
228 	/* hint to use a 32x32->64 mul */
229 	fact = (u64)(u32)fact * lw->inv_weight;
230 
231 	while (fact >> 32) {
232 		fact >>= 1;
233 		shift--;
234 	}
235 
236 	return mul_u64_u32_shr(delta_exec, fact, shift);
237 }
238 
239 
240 const struct sched_class fair_sched_class;
241 
242 /**************************************************************
243  * CFS operations on generic schedulable entities:
244  */
245 
246 #ifdef CONFIG_FAIR_GROUP_SCHED
247 
248 /* cpu runqueue to which this cfs_rq is attached */
249 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
250 {
251 	return cfs_rq->rq;
252 }
253 
254 /* An entity is a task if it doesn't "own" a runqueue */
255 #define entity_is_task(se)	(!se->my_q)
256 
257 static inline struct task_struct *task_of(struct sched_entity *se)
258 {
259 #ifdef CONFIG_SCHED_DEBUG
260 	WARN_ON_ONCE(!entity_is_task(se));
261 #endif
262 	return container_of(se, struct task_struct, se);
263 }
264 
265 /* Walk up scheduling entities hierarchy */
266 #define for_each_sched_entity(se) \
267 		for (; se; se = se->parent)
268 
269 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
270 {
271 	return p->se.cfs_rq;
272 }
273 
274 /* runqueue on which this entity is (to be) queued */
275 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
276 {
277 	return se->cfs_rq;
278 }
279 
280 /* runqueue "owned" by this group */
281 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
282 {
283 	return grp->my_q;
284 }
285 
286 static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
287 {
288 	if (!cfs_rq->on_list) {
289 		/*
290 		 * Ensure we either appear before our parent (if already
291 		 * enqueued) or force our parent to appear after us when it is
292 		 * enqueued.  The fact that we always enqueue bottom-up
293 		 * reduces this to two cases.
294 		 */
295 		if (cfs_rq->tg->parent &&
296 		    cfs_rq->tg->parent->cfs_rq[cpu_of(rq_of(cfs_rq))]->on_list) {
297 			list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
298 				&rq_of(cfs_rq)->leaf_cfs_rq_list);
299 		} else {
300 			list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
301 				&rq_of(cfs_rq)->leaf_cfs_rq_list);
302 		}
303 
304 		cfs_rq->on_list = 1;
305 	}
306 }
307 
308 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
309 {
310 	if (cfs_rq->on_list) {
311 		list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
312 		cfs_rq->on_list = 0;
313 	}
314 }
315 
316 /* Iterate thr' all leaf cfs_rq's on a runqueue */
317 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
318 	list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
319 
320 /* Do the two (enqueued) entities belong to the same group ? */
321 static inline struct cfs_rq *
322 is_same_group(struct sched_entity *se, struct sched_entity *pse)
323 {
324 	if (se->cfs_rq == pse->cfs_rq)
325 		return se->cfs_rq;
326 
327 	return NULL;
328 }
329 
330 static inline struct sched_entity *parent_entity(struct sched_entity *se)
331 {
332 	return se->parent;
333 }
334 
335 static void
336 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
337 {
338 	int se_depth, pse_depth;
339 
340 	/*
341 	 * preemption test can be made between sibling entities who are in the
342 	 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
343 	 * both tasks until we find their ancestors who are siblings of common
344 	 * parent.
345 	 */
346 
347 	/* First walk up until both entities are at same depth */
348 	se_depth = (*se)->depth;
349 	pse_depth = (*pse)->depth;
350 
351 	while (se_depth > pse_depth) {
352 		se_depth--;
353 		*se = parent_entity(*se);
354 	}
355 
356 	while (pse_depth > se_depth) {
357 		pse_depth--;
358 		*pse = parent_entity(*pse);
359 	}
360 
361 	while (!is_same_group(*se, *pse)) {
362 		*se = parent_entity(*se);
363 		*pse = parent_entity(*pse);
364 	}
365 }
366 
367 #else	/* !CONFIG_FAIR_GROUP_SCHED */
368 
369 static inline struct task_struct *task_of(struct sched_entity *se)
370 {
371 	return container_of(se, struct task_struct, se);
372 }
373 
374 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
375 {
376 	return container_of(cfs_rq, struct rq, cfs);
377 }
378 
379 #define entity_is_task(se)	1
380 
381 #define for_each_sched_entity(se) \
382 		for (; se; se = NULL)
383 
384 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
385 {
386 	return &task_rq(p)->cfs;
387 }
388 
389 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
390 {
391 	struct task_struct *p = task_of(se);
392 	struct rq *rq = task_rq(p);
393 
394 	return &rq->cfs;
395 }
396 
397 /* runqueue "owned" by this group */
398 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
399 {
400 	return NULL;
401 }
402 
403 static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
404 {
405 }
406 
407 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
408 {
409 }
410 
411 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
412 		for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
413 
414 static inline struct sched_entity *parent_entity(struct sched_entity *se)
415 {
416 	return NULL;
417 }
418 
419 static inline void
420 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
421 {
422 }
423 
424 #endif	/* CONFIG_FAIR_GROUP_SCHED */
425 
426 static __always_inline
427 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec);
428 
429 /**************************************************************
430  * Scheduling class tree data structure manipulation methods:
431  */
432 
433 static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
434 {
435 	s64 delta = (s64)(vruntime - max_vruntime);
436 	if (delta > 0)
437 		max_vruntime = vruntime;
438 
439 	return max_vruntime;
440 }
441 
442 static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
443 {
444 	s64 delta = (s64)(vruntime - min_vruntime);
445 	if (delta < 0)
446 		min_vruntime = vruntime;
447 
448 	return min_vruntime;
449 }
450 
451 static inline int entity_before(struct sched_entity *a,
452 				struct sched_entity *b)
453 {
454 	return (s64)(a->vruntime - b->vruntime) < 0;
455 }
456 
457 static void update_min_vruntime(struct cfs_rq *cfs_rq)
458 {
459 	u64 vruntime = cfs_rq->min_vruntime;
460 
461 	if (cfs_rq->curr)
462 		vruntime = cfs_rq->curr->vruntime;
463 
464 	if (cfs_rq->rb_leftmost) {
465 		struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
466 						   struct sched_entity,
467 						   run_node);
468 
469 		if (!cfs_rq->curr)
470 			vruntime = se->vruntime;
471 		else
472 			vruntime = min_vruntime(vruntime, se->vruntime);
473 	}
474 
475 	/* ensure we never gain time by being placed backwards. */
476 	cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
477 #ifndef CONFIG_64BIT
478 	smp_wmb();
479 	cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
480 #endif
481 }
482 
483 /*
484  * Enqueue an entity into the rb-tree:
485  */
486 static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
487 {
488 	struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
489 	struct rb_node *parent = NULL;
490 	struct sched_entity *entry;
491 	int leftmost = 1;
492 
493 	/*
494 	 * Find the right place in the rbtree:
495 	 */
496 	while (*link) {
497 		parent = *link;
498 		entry = rb_entry(parent, struct sched_entity, run_node);
499 		/*
500 		 * We dont care about collisions. Nodes with
501 		 * the same key stay together.
502 		 */
503 		if (entity_before(se, entry)) {
504 			link = &parent->rb_left;
505 		} else {
506 			link = &parent->rb_right;
507 			leftmost = 0;
508 		}
509 	}
510 
511 	/*
512 	 * Maintain a cache of leftmost tree entries (it is frequently
513 	 * used):
514 	 */
515 	if (leftmost)
516 		cfs_rq->rb_leftmost = &se->run_node;
517 
518 	rb_link_node(&se->run_node, parent, link);
519 	rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
520 }
521 
522 static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
523 {
524 	if (cfs_rq->rb_leftmost == &se->run_node) {
525 		struct rb_node *next_node;
526 
527 		next_node = rb_next(&se->run_node);
528 		cfs_rq->rb_leftmost = next_node;
529 	}
530 
531 	rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
532 }
533 
534 struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
535 {
536 	struct rb_node *left = cfs_rq->rb_leftmost;
537 
538 	if (!left)
539 		return NULL;
540 
541 	return rb_entry(left, struct sched_entity, run_node);
542 }
543 
544 static struct sched_entity *__pick_next_entity(struct sched_entity *se)
545 {
546 	struct rb_node *next = rb_next(&se->run_node);
547 
548 	if (!next)
549 		return NULL;
550 
551 	return rb_entry(next, struct sched_entity, run_node);
552 }
553 
554 #ifdef CONFIG_SCHED_DEBUG
555 struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
556 {
557 	struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
558 
559 	if (!last)
560 		return NULL;
561 
562 	return rb_entry(last, struct sched_entity, run_node);
563 }
564 
565 /**************************************************************
566  * Scheduling class statistics methods:
567  */
568 
569 int sched_proc_update_handler(struct ctl_table *table, int write,
570 		void __user *buffer, size_t *lenp,
571 		loff_t *ppos)
572 {
573 	int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
574 	unsigned int factor = get_update_sysctl_factor();
575 
576 	if (ret || !write)
577 		return ret;
578 
579 	sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
580 					sysctl_sched_min_granularity);
581 
582 #define WRT_SYSCTL(name) \
583 	(normalized_sysctl_##name = sysctl_##name / (factor))
584 	WRT_SYSCTL(sched_min_granularity);
585 	WRT_SYSCTL(sched_latency);
586 	WRT_SYSCTL(sched_wakeup_granularity);
587 #undef WRT_SYSCTL
588 
589 	return 0;
590 }
591 #endif
592 
593 /*
594  * delta /= w
595  */
596 static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
597 {
598 	if (unlikely(se->load.weight != NICE_0_LOAD))
599 		delta = __calc_delta(delta, NICE_0_LOAD, &se->load);
600 
601 	return delta;
602 }
603 
604 /*
605  * The idea is to set a period in which each task runs once.
606  *
607  * When there are too many tasks (sched_nr_latency) we have to stretch
608  * this period because otherwise the slices get too small.
609  *
610  * p = (nr <= nl) ? l : l*nr/nl
611  */
612 static u64 __sched_period(unsigned long nr_running)
613 {
614 	if (unlikely(nr_running > sched_nr_latency))
615 		return nr_running * sysctl_sched_min_granularity;
616 	else
617 		return sysctl_sched_latency;
618 }
619 
620 /*
621  * We calculate the wall-time slice from the period by taking a part
622  * proportional to the weight.
623  *
624  * s = p*P[w/rw]
625  */
626 static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
627 {
628 	u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
629 
630 	for_each_sched_entity(se) {
631 		struct load_weight *load;
632 		struct load_weight lw;
633 
634 		cfs_rq = cfs_rq_of(se);
635 		load = &cfs_rq->load;
636 
637 		if (unlikely(!se->on_rq)) {
638 			lw = cfs_rq->load;
639 
640 			update_load_add(&lw, se->load.weight);
641 			load = &lw;
642 		}
643 		slice = __calc_delta(slice, se->load.weight, load);
644 	}
645 	return slice;
646 }
647 
648 /*
649  * We calculate the vruntime slice of a to-be-inserted task.
650  *
651  * vs = s/w
652  */
653 static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
654 {
655 	return calc_delta_fair(sched_slice(cfs_rq, se), se);
656 }
657 
658 #ifdef CONFIG_SMP
659 static int select_idle_sibling(struct task_struct *p, int cpu);
660 static unsigned long task_h_load(struct task_struct *p);
661 
662 /*
663  * We choose a half-life close to 1 scheduling period.
664  * Note: The tables runnable_avg_yN_inv and runnable_avg_yN_sum are
665  * dependent on this value.
666  */
667 #define LOAD_AVG_PERIOD 32
668 #define LOAD_AVG_MAX 47742 /* maximum possible load avg */
669 #define LOAD_AVG_MAX_N 345 /* number of full periods to produce LOAD_AVG_MAX */
670 
671 /* Give new sched_entity start runnable values to heavy its load in infant time */
672 void init_entity_runnable_average(struct sched_entity *se)
673 {
674 	struct sched_avg *sa = &se->avg;
675 
676 	sa->last_update_time = 0;
677 	/*
678 	 * sched_avg's period_contrib should be strictly less then 1024, so
679 	 * we give it 1023 to make sure it is almost a period (1024us), and
680 	 * will definitely be update (after enqueue).
681 	 */
682 	sa->period_contrib = 1023;
683 	sa->load_avg = scale_load_down(se->load.weight);
684 	sa->load_sum = sa->load_avg * LOAD_AVG_MAX;
685 	sa->util_avg = scale_load_down(SCHED_LOAD_SCALE);
686 	sa->util_sum = sa->util_avg * LOAD_AVG_MAX;
687 	/* when this task enqueue'ed, it will contribute to its cfs_rq's load_avg */
688 }
689 
690 static inline unsigned long cfs_rq_runnable_load_avg(struct cfs_rq *cfs_rq);
691 static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq);
692 #else
693 void init_entity_runnable_average(struct sched_entity *se)
694 {
695 }
696 #endif
697 
698 /*
699  * Update the current task's runtime statistics.
700  */
701 static void update_curr(struct cfs_rq *cfs_rq)
702 {
703 	struct sched_entity *curr = cfs_rq->curr;
704 	u64 now = rq_clock_task(rq_of(cfs_rq));
705 	u64 delta_exec;
706 
707 	if (unlikely(!curr))
708 		return;
709 
710 	delta_exec = now - curr->exec_start;
711 	if (unlikely((s64)delta_exec <= 0))
712 		return;
713 
714 	curr->exec_start = now;
715 
716 	schedstat_set(curr->statistics.exec_max,
717 		      max(delta_exec, curr->statistics.exec_max));
718 
719 	curr->sum_exec_runtime += delta_exec;
720 	schedstat_add(cfs_rq, exec_clock, delta_exec);
721 
722 	curr->vruntime += calc_delta_fair(delta_exec, curr);
723 	update_min_vruntime(cfs_rq);
724 
725 	if (entity_is_task(curr)) {
726 		struct task_struct *curtask = task_of(curr);
727 
728 		trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
729 		cpuacct_charge(curtask, delta_exec);
730 		account_group_exec_runtime(curtask, delta_exec);
731 	}
732 
733 	account_cfs_rq_runtime(cfs_rq, delta_exec);
734 }
735 
736 static void update_curr_fair(struct rq *rq)
737 {
738 	update_curr(cfs_rq_of(&rq->curr->se));
739 }
740 
741 #ifdef CONFIG_SCHEDSTATS
742 static inline void
743 update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
744 {
745 	u64 wait_start = rq_clock(rq_of(cfs_rq));
746 
747 	if (entity_is_task(se) && task_on_rq_migrating(task_of(se)) &&
748 	    likely(wait_start > se->statistics.wait_start))
749 		wait_start -= se->statistics.wait_start;
750 
751 	se->statistics.wait_start = wait_start;
752 }
753 
754 static void
755 update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
756 {
757 	struct task_struct *p;
758 	u64 delta;
759 
760 	delta = rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start;
761 
762 	if (entity_is_task(se)) {
763 		p = task_of(se);
764 		if (task_on_rq_migrating(p)) {
765 			/*
766 			 * Preserve migrating task's wait time so wait_start
767 			 * time stamp can be adjusted to accumulate wait time
768 			 * prior to migration.
769 			 */
770 			se->statistics.wait_start = delta;
771 			return;
772 		}
773 		trace_sched_stat_wait(p, delta);
774 	}
775 
776 	se->statistics.wait_max = max(se->statistics.wait_max, delta);
777 	se->statistics.wait_count++;
778 	se->statistics.wait_sum += delta;
779 	se->statistics.wait_start = 0;
780 }
781 
782 /*
783  * Task is being enqueued - update stats:
784  */
785 static inline void
786 update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
787 {
788 	/*
789 	 * Are we enqueueing a waiting task? (for current tasks
790 	 * a dequeue/enqueue event is a NOP)
791 	 */
792 	if (se != cfs_rq->curr)
793 		update_stats_wait_start(cfs_rq, se);
794 }
795 
796 static inline void
797 update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
798 {
799 	/*
800 	 * Mark the end of the wait period if dequeueing a
801 	 * waiting task:
802 	 */
803 	if (se != cfs_rq->curr)
804 		update_stats_wait_end(cfs_rq, se);
805 
806 	if (flags & DEQUEUE_SLEEP) {
807 		if (entity_is_task(se)) {
808 			struct task_struct *tsk = task_of(se);
809 
810 			if (tsk->state & TASK_INTERRUPTIBLE)
811 				se->statistics.sleep_start = rq_clock(rq_of(cfs_rq));
812 			if (tsk->state & TASK_UNINTERRUPTIBLE)
813 				se->statistics.block_start = rq_clock(rq_of(cfs_rq));
814 		}
815 	}
816 
817 }
818 #else
819 static inline void
820 update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
821 {
822 }
823 
824 static inline void
825 update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
826 {
827 }
828 
829 static inline void
830 update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
831 {
832 }
833 
834 static inline void
835 update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
836 {
837 }
838 #endif
839 
840 /*
841  * We are picking a new current task - update its stats:
842  */
843 static inline void
844 update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
845 {
846 	/*
847 	 * We are starting a new run period:
848 	 */
849 	se->exec_start = rq_clock_task(rq_of(cfs_rq));
850 }
851 
852 /**************************************************
853  * Scheduling class queueing methods:
854  */
855 
856 #ifdef CONFIG_NUMA_BALANCING
857 /*
858  * Approximate time to scan a full NUMA task in ms. The task scan period is
859  * calculated based on the tasks virtual memory size and
860  * numa_balancing_scan_size.
861  */
862 unsigned int sysctl_numa_balancing_scan_period_min = 1000;
863 unsigned int sysctl_numa_balancing_scan_period_max = 60000;
864 
865 /* Portion of address space to scan in MB */
866 unsigned int sysctl_numa_balancing_scan_size = 256;
867 
868 /* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
869 unsigned int sysctl_numa_balancing_scan_delay = 1000;
870 
871 static unsigned int task_nr_scan_windows(struct task_struct *p)
872 {
873 	unsigned long rss = 0;
874 	unsigned long nr_scan_pages;
875 
876 	/*
877 	 * Calculations based on RSS as non-present and empty pages are skipped
878 	 * by the PTE scanner and NUMA hinting faults should be trapped based
879 	 * on resident pages
880 	 */
881 	nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
882 	rss = get_mm_rss(p->mm);
883 	if (!rss)
884 		rss = nr_scan_pages;
885 
886 	rss = round_up(rss, nr_scan_pages);
887 	return rss / nr_scan_pages;
888 }
889 
890 /* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
891 #define MAX_SCAN_WINDOW 2560
892 
893 static unsigned int task_scan_min(struct task_struct *p)
894 {
895 	unsigned int scan_size = READ_ONCE(sysctl_numa_balancing_scan_size);
896 	unsigned int scan, floor;
897 	unsigned int windows = 1;
898 
899 	if (scan_size < MAX_SCAN_WINDOW)
900 		windows = MAX_SCAN_WINDOW / scan_size;
901 	floor = 1000 / windows;
902 
903 	scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
904 	return max_t(unsigned int, floor, scan);
905 }
906 
907 static unsigned int task_scan_max(struct task_struct *p)
908 {
909 	unsigned int smin = task_scan_min(p);
910 	unsigned int smax;
911 
912 	/* Watch for min being lower than max due to floor calculations */
913 	smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
914 	return max(smin, smax);
915 }
916 
917 static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
918 {
919 	rq->nr_numa_running += (p->numa_preferred_nid != -1);
920 	rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
921 }
922 
923 static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
924 {
925 	rq->nr_numa_running -= (p->numa_preferred_nid != -1);
926 	rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
927 }
928 
929 struct numa_group {
930 	atomic_t refcount;
931 
932 	spinlock_t lock; /* nr_tasks, tasks */
933 	int nr_tasks;
934 	pid_t gid;
935 	int active_nodes;
936 
937 	struct rcu_head rcu;
938 	unsigned long total_faults;
939 	unsigned long max_faults_cpu;
940 	/*
941 	 * Faults_cpu is used to decide whether memory should move
942 	 * towards the CPU. As a consequence, these stats are weighted
943 	 * more by CPU use than by memory faults.
944 	 */
945 	unsigned long *faults_cpu;
946 	unsigned long faults[0];
947 };
948 
949 /* Shared or private faults. */
950 #define NR_NUMA_HINT_FAULT_TYPES 2
951 
952 /* Memory and CPU locality */
953 #define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2)
954 
955 /* Averaged statistics, and temporary buffers. */
956 #define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2)
957 
958 pid_t task_numa_group_id(struct task_struct *p)
959 {
960 	return p->numa_group ? p->numa_group->gid : 0;
961 }
962 
963 /*
964  * The averaged statistics, shared & private, memory & cpu,
965  * occupy the first half of the array. The second half of the
966  * array is for current counters, which are averaged into the
967  * first set by task_numa_placement.
968  */
969 static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv)
970 {
971 	return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv;
972 }
973 
974 static inline unsigned long task_faults(struct task_struct *p, int nid)
975 {
976 	if (!p->numa_faults)
977 		return 0;
978 
979 	return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] +
980 		p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)];
981 }
982 
983 static inline unsigned long group_faults(struct task_struct *p, int nid)
984 {
985 	if (!p->numa_group)
986 		return 0;
987 
988 	return p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 0)] +
989 		p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 1)];
990 }
991 
992 static inline unsigned long group_faults_cpu(struct numa_group *group, int nid)
993 {
994 	return group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 0)] +
995 		group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 1)];
996 }
997 
998 /*
999  * A node triggering more than 1/3 as many NUMA faults as the maximum is
1000  * considered part of a numa group's pseudo-interleaving set. Migrations
1001  * between these nodes are slowed down, to allow things to settle down.
1002  */
1003 #define ACTIVE_NODE_FRACTION 3
1004 
1005 static bool numa_is_active_node(int nid, struct numa_group *ng)
1006 {
1007 	return group_faults_cpu(ng, nid) * ACTIVE_NODE_FRACTION > ng->max_faults_cpu;
1008 }
1009 
1010 /* Handle placement on systems where not all nodes are directly connected. */
1011 static unsigned long score_nearby_nodes(struct task_struct *p, int nid,
1012 					int maxdist, bool task)
1013 {
1014 	unsigned long score = 0;
1015 	int node;
1016 
1017 	/*
1018 	 * All nodes are directly connected, and the same distance
1019 	 * from each other. No need for fancy placement algorithms.
1020 	 */
1021 	if (sched_numa_topology_type == NUMA_DIRECT)
1022 		return 0;
1023 
1024 	/*
1025 	 * This code is called for each node, introducing N^2 complexity,
1026 	 * which should be ok given the number of nodes rarely exceeds 8.
1027 	 */
1028 	for_each_online_node(node) {
1029 		unsigned long faults;
1030 		int dist = node_distance(nid, node);
1031 
1032 		/*
1033 		 * The furthest away nodes in the system are not interesting
1034 		 * for placement; nid was already counted.
1035 		 */
1036 		if (dist == sched_max_numa_distance || node == nid)
1037 			continue;
1038 
1039 		/*
1040 		 * On systems with a backplane NUMA topology, compare groups
1041 		 * of nodes, and move tasks towards the group with the most
1042 		 * memory accesses. When comparing two nodes at distance
1043 		 * "hoplimit", only nodes closer by than "hoplimit" are part
1044 		 * of each group. Skip other nodes.
1045 		 */
1046 		if (sched_numa_topology_type == NUMA_BACKPLANE &&
1047 					dist > maxdist)
1048 			continue;
1049 
1050 		/* Add up the faults from nearby nodes. */
1051 		if (task)
1052 			faults = task_faults(p, node);
1053 		else
1054 			faults = group_faults(p, node);
1055 
1056 		/*
1057 		 * On systems with a glueless mesh NUMA topology, there are
1058 		 * no fixed "groups of nodes". Instead, nodes that are not
1059 		 * directly connected bounce traffic through intermediate
1060 		 * nodes; a numa_group can occupy any set of nodes.
1061 		 * The further away a node is, the less the faults count.
1062 		 * This seems to result in good task placement.
1063 		 */
1064 		if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
1065 			faults *= (sched_max_numa_distance - dist);
1066 			faults /= (sched_max_numa_distance - LOCAL_DISTANCE);
1067 		}
1068 
1069 		score += faults;
1070 	}
1071 
1072 	return score;
1073 }
1074 
1075 /*
1076  * These return the fraction of accesses done by a particular task, or
1077  * task group, on a particular numa node.  The group weight is given a
1078  * larger multiplier, in order to group tasks together that are almost
1079  * evenly spread out between numa nodes.
1080  */
1081 static inline unsigned long task_weight(struct task_struct *p, int nid,
1082 					int dist)
1083 {
1084 	unsigned long faults, total_faults;
1085 
1086 	if (!p->numa_faults)
1087 		return 0;
1088 
1089 	total_faults = p->total_numa_faults;
1090 
1091 	if (!total_faults)
1092 		return 0;
1093 
1094 	faults = task_faults(p, nid);
1095 	faults += score_nearby_nodes(p, nid, dist, true);
1096 
1097 	return 1000 * faults / total_faults;
1098 }
1099 
1100 static inline unsigned long group_weight(struct task_struct *p, int nid,
1101 					 int dist)
1102 {
1103 	unsigned long faults, total_faults;
1104 
1105 	if (!p->numa_group)
1106 		return 0;
1107 
1108 	total_faults = p->numa_group->total_faults;
1109 
1110 	if (!total_faults)
1111 		return 0;
1112 
1113 	faults = group_faults(p, nid);
1114 	faults += score_nearby_nodes(p, nid, dist, false);
1115 
1116 	return 1000 * faults / total_faults;
1117 }
1118 
1119 bool should_numa_migrate_memory(struct task_struct *p, struct page * page,
1120 				int src_nid, int dst_cpu)
1121 {
1122 	struct numa_group *ng = p->numa_group;
1123 	int dst_nid = cpu_to_node(dst_cpu);
1124 	int last_cpupid, this_cpupid;
1125 
1126 	this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid);
1127 
1128 	/*
1129 	 * Multi-stage node selection is used in conjunction with a periodic
1130 	 * migration fault to build a temporal task<->page relation. By using
1131 	 * a two-stage filter we remove short/unlikely relations.
1132 	 *
1133 	 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate
1134 	 * a task's usage of a particular page (n_p) per total usage of this
1135 	 * page (n_t) (in a given time-span) to a probability.
1136 	 *
1137 	 * Our periodic faults will sample this probability and getting the
1138 	 * same result twice in a row, given these samples are fully
1139 	 * independent, is then given by P(n)^2, provided our sample period
1140 	 * is sufficiently short compared to the usage pattern.
1141 	 *
1142 	 * This quadric squishes small probabilities, making it less likely we
1143 	 * act on an unlikely task<->page relation.
1144 	 */
1145 	last_cpupid = page_cpupid_xchg_last(page, this_cpupid);
1146 	if (!cpupid_pid_unset(last_cpupid) &&
1147 				cpupid_to_nid(last_cpupid) != dst_nid)
1148 		return false;
1149 
1150 	/* Always allow migrate on private faults */
1151 	if (cpupid_match_pid(p, last_cpupid))
1152 		return true;
1153 
1154 	/* A shared fault, but p->numa_group has not been set up yet. */
1155 	if (!ng)
1156 		return true;
1157 
1158 	/*
1159 	 * Destination node is much more heavily used than the source
1160 	 * node? Allow migration.
1161 	 */
1162 	if (group_faults_cpu(ng, dst_nid) > group_faults_cpu(ng, src_nid) *
1163 					ACTIVE_NODE_FRACTION)
1164 		return true;
1165 
1166 	/*
1167 	 * Distribute memory according to CPU & memory use on each node,
1168 	 * with 3/4 hysteresis to avoid unnecessary memory migrations:
1169 	 *
1170 	 * faults_cpu(dst)   3   faults_cpu(src)
1171 	 * --------------- * - > ---------------
1172 	 * faults_mem(dst)   4   faults_mem(src)
1173 	 */
1174 	return group_faults_cpu(ng, dst_nid) * group_faults(p, src_nid) * 3 >
1175 	       group_faults_cpu(ng, src_nid) * group_faults(p, dst_nid) * 4;
1176 }
1177 
1178 static unsigned long weighted_cpuload(const int cpu);
1179 static unsigned long source_load(int cpu, int type);
1180 static unsigned long target_load(int cpu, int type);
1181 static unsigned long capacity_of(int cpu);
1182 static long effective_load(struct task_group *tg, int cpu, long wl, long wg);
1183 
1184 /* Cached statistics for all CPUs within a node */
1185 struct numa_stats {
1186 	unsigned long nr_running;
1187 	unsigned long load;
1188 
1189 	/* Total compute capacity of CPUs on a node */
1190 	unsigned long compute_capacity;
1191 
1192 	/* Approximate capacity in terms of runnable tasks on a node */
1193 	unsigned long task_capacity;
1194 	int has_free_capacity;
1195 };
1196 
1197 /*
1198  * XXX borrowed from update_sg_lb_stats
1199  */
1200 static void update_numa_stats(struct numa_stats *ns, int nid)
1201 {
1202 	int smt, cpu, cpus = 0;
1203 	unsigned long capacity;
1204 
1205 	memset(ns, 0, sizeof(*ns));
1206 	for_each_cpu(cpu, cpumask_of_node(nid)) {
1207 		struct rq *rq = cpu_rq(cpu);
1208 
1209 		ns->nr_running += rq->nr_running;
1210 		ns->load += weighted_cpuload(cpu);
1211 		ns->compute_capacity += capacity_of(cpu);
1212 
1213 		cpus++;
1214 	}
1215 
1216 	/*
1217 	 * If we raced with hotplug and there are no CPUs left in our mask
1218 	 * the @ns structure is NULL'ed and task_numa_compare() will
1219 	 * not find this node attractive.
1220 	 *
1221 	 * We'll either bail at !has_free_capacity, or we'll detect a huge
1222 	 * imbalance and bail there.
1223 	 */
1224 	if (!cpus)
1225 		return;
1226 
1227 	/* smt := ceil(cpus / capacity), assumes: 1 < smt_power < 2 */
1228 	smt = DIV_ROUND_UP(SCHED_CAPACITY_SCALE * cpus, ns->compute_capacity);
1229 	capacity = cpus / smt; /* cores */
1230 
1231 	ns->task_capacity = min_t(unsigned, capacity,
1232 		DIV_ROUND_CLOSEST(ns->compute_capacity, SCHED_CAPACITY_SCALE));
1233 	ns->has_free_capacity = (ns->nr_running < ns->task_capacity);
1234 }
1235 
1236 struct task_numa_env {
1237 	struct task_struct *p;
1238 
1239 	int src_cpu, src_nid;
1240 	int dst_cpu, dst_nid;
1241 
1242 	struct numa_stats src_stats, dst_stats;
1243 
1244 	int imbalance_pct;
1245 	int dist;
1246 
1247 	struct task_struct *best_task;
1248 	long best_imp;
1249 	int best_cpu;
1250 };
1251 
1252 static void task_numa_assign(struct task_numa_env *env,
1253 			     struct task_struct *p, long imp)
1254 {
1255 	if (env->best_task)
1256 		put_task_struct(env->best_task);
1257 
1258 	env->best_task = p;
1259 	env->best_imp = imp;
1260 	env->best_cpu = env->dst_cpu;
1261 }
1262 
1263 static bool load_too_imbalanced(long src_load, long dst_load,
1264 				struct task_numa_env *env)
1265 {
1266 	long imb, old_imb;
1267 	long orig_src_load, orig_dst_load;
1268 	long src_capacity, dst_capacity;
1269 
1270 	/*
1271 	 * The load is corrected for the CPU capacity available on each node.
1272 	 *
1273 	 * src_load        dst_load
1274 	 * ------------ vs ---------
1275 	 * src_capacity    dst_capacity
1276 	 */
1277 	src_capacity = env->src_stats.compute_capacity;
1278 	dst_capacity = env->dst_stats.compute_capacity;
1279 
1280 	/* We care about the slope of the imbalance, not the direction. */
1281 	if (dst_load < src_load)
1282 		swap(dst_load, src_load);
1283 
1284 	/* Is the difference below the threshold? */
1285 	imb = dst_load * src_capacity * 100 -
1286 	      src_load * dst_capacity * env->imbalance_pct;
1287 	if (imb <= 0)
1288 		return false;
1289 
1290 	/*
1291 	 * The imbalance is above the allowed threshold.
1292 	 * Compare it with the old imbalance.
1293 	 */
1294 	orig_src_load = env->src_stats.load;
1295 	orig_dst_load = env->dst_stats.load;
1296 
1297 	if (orig_dst_load < orig_src_load)
1298 		swap(orig_dst_load, orig_src_load);
1299 
1300 	old_imb = orig_dst_load * src_capacity * 100 -
1301 		  orig_src_load * dst_capacity * env->imbalance_pct;
1302 
1303 	/* Would this change make things worse? */
1304 	return (imb > old_imb);
1305 }
1306 
1307 /*
1308  * This checks if the overall compute and NUMA accesses of the system would
1309  * be improved if the source tasks was migrated to the target dst_cpu taking
1310  * into account that it might be best if task running on the dst_cpu should
1311  * be exchanged with the source task
1312  */
1313 static void task_numa_compare(struct task_numa_env *env,
1314 			      long taskimp, long groupimp)
1315 {
1316 	struct rq *src_rq = cpu_rq(env->src_cpu);
1317 	struct rq *dst_rq = cpu_rq(env->dst_cpu);
1318 	struct task_struct *cur;
1319 	long src_load, dst_load;
1320 	long load;
1321 	long imp = env->p->numa_group ? groupimp : taskimp;
1322 	long moveimp = imp;
1323 	int dist = env->dist;
1324 	bool assigned = false;
1325 
1326 	rcu_read_lock();
1327 
1328 	raw_spin_lock_irq(&dst_rq->lock);
1329 	cur = dst_rq->curr;
1330 	/*
1331 	 * No need to move the exiting task or idle task.
1332 	 */
1333 	if ((cur->flags & PF_EXITING) || is_idle_task(cur))
1334 		cur = NULL;
1335 	else {
1336 		/*
1337 		 * The task_struct must be protected here to protect the
1338 		 * p->numa_faults access in the task_weight since the
1339 		 * numa_faults could already be freed in the following path:
1340 		 * finish_task_switch()
1341 		 *     --> put_task_struct()
1342 		 *         --> __put_task_struct()
1343 		 *             --> task_numa_free()
1344 		 */
1345 		get_task_struct(cur);
1346 	}
1347 
1348 	raw_spin_unlock_irq(&dst_rq->lock);
1349 
1350 	/*
1351 	 * Because we have preemption enabled we can get migrated around and
1352 	 * end try selecting ourselves (current == env->p) as a swap candidate.
1353 	 */
1354 	if (cur == env->p)
1355 		goto unlock;
1356 
1357 	/*
1358 	 * "imp" is the fault differential for the source task between the
1359 	 * source and destination node. Calculate the total differential for
1360 	 * the source task and potential destination task. The more negative
1361 	 * the value is, the more rmeote accesses that would be expected to
1362 	 * be incurred if the tasks were swapped.
1363 	 */
1364 	if (cur) {
1365 		/* Skip this swap candidate if cannot move to the source cpu */
1366 		if (!cpumask_test_cpu(env->src_cpu, tsk_cpus_allowed(cur)))
1367 			goto unlock;
1368 
1369 		/*
1370 		 * If dst and source tasks are in the same NUMA group, or not
1371 		 * in any group then look only at task weights.
1372 		 */
1373 		if (cur->numa_group == env->p->numa_group) {
1374 			imp = taskimp + task_weight(cur, env->src_nid, dist) -
1375 			      task_weight(cur, env->dst_nid, dist);
1376 			/*
1377 			 * Add some hysteresis to prevent swapping the
1378 			 * tasks within a group over tiny differences.
1379 			 */
1380 			if (cur->numa_group)
1381 				imp -= imp/16;
1382 		} else {
1383 			/*
1384 			 * Compare the group weights. If a task is all by
1385 			 * itself (not part of a group), use the task weight
1386 			 * instead.
1387 			 */
1388 			if (cur->numa_group)
1389 				imp += group_weight(cur, env->src_nid, dist) -
1390 				       group_weight(cur, env->dst_nid, dist);
1391 			else
1392 				imp += task_weight(cur, env->src_nid, dist) -
1393 				       task_weight(cur, env->dst_nid, dist);
1394 		}
1395 	}
1396 
1397 	if (imp <= env->best_imp && moveimp <= env->best_imp)
1398 		goto unlock;
1399 
1400 	if (!cur) {
1401 		/* Is there capacity at our destination? */
1402 		if (env->src_stats.nr_running <= env->src_stats.task_capacity &&
1403 		    !env->dst_stats.has_free_capacity)
1404 			goto unlock;
1405 
1406 		goto balance;
1407 	}
1408 
1409 	/* Balance doesn't matter much if we're running a task per cpu */
1410 	if (imp > env->best_imp && src_rq->nr_running == 1 &&
1411 			dst_rq->nr_running == 1)
1412 		goto assign;
1413 
1414 	/*
1415 	 * In the overloaded case, try and keep the load balanced.
1416 	 */
1417 balance:
1418 	load = task_h_load(env->p);
1419 	dst_load = env->dst_stats.load + load;
1420 	src_load = env->src_stats.load - load;
1421 
1422 	if (moveimp > imp && moveimp > env->best_imp) {
1423 		/*
1424 		 * If the improvement from just moving env->p direction is
1425 		 * better than swapping tasks around, check if a move is
1426 		 * possible. Store a slightly smaller score than moveimp,
1427 		 * so an actually idle CPU will win.
1428 		 */
1429 		if (!load_too_imbalanced(src_load, dst_load, env)) {
1430 			imp = moveimp - 1;
1431 			put_task_struct(cur);
1432 			cur = NULL;
1433 			goto assign;
1434 		}
1435 	}
1436 
1437 	if (imp <= env->best_imp)
1438 		goto unlock;
1439 
1440 	if (cur) {
1441 		load = task_h_load(cur);
1442 		dst_load -= load;
1443 		src_load += load;
1444 	}
1445 
1446 	if (load_too_imbalanced(src_load, dst_load, env))
1447 		goto unlock;
1448 
1449 	/*
1450 	 * One idle CPU per node is evaluated for a task numa move.
1451 	 * Call select_idle_sibling to maybe find a better one.
1452 	 */
1453 	if (!cur)
1454 		env->dst_cpu = select_idle_sibling(env->p, env->dst_cpu);
1455 
1456 assign:
1457 	assigned = true;
1458 	task_numa_assign(env, cur, imp);
1459 unlock:
1460 	rcu_read_unlock();
1461 	/*
1462 	 * The dst_rq->curr isn't assigned. The protection for task_struct is
1463 	 * finished.
1464 	 */
1465 	if (cur && !assigned)
1466 		put_task_struct(cur);
1467 }
1468 
1469 static void task_numa_find_cpu(struct task_numa_env *env,
1470 				long taskimp, long groupimp)
1471 {
1472 	int cpu;
1473 
1474 	for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
1475 		/* Skip this CPU if the source task cannot migrate */
1476 		if (!cpumask_test_cpu(cpu, tsk_cpus_allowed(env->p)))
1477 			continue;
1478 
1479 		env->dst_cpu = cpu;
1480 		task_numa_compare(env, taskimp, groupimp);
1481 	}
1482 }
1483 
1484 /* Only move tasks to a NUMA node less busy than the current node. */
1485 static bool numa_has_capacity(struct task_numa_env *env)
1486 {
1487 	struct numa_stats *src = &env->src_stats;
1488 	struct numa_stats *dst = &env->dst_stats;
1489 
1490 	if (src->has_free_capacity && !dst->has_free_capacity)
1491 		return false;
1492 
1493 	/*
1494 	 * Only consider a task move if the source has a higher load
1495 	 * than the destination, corrected for CPU capacity on each node.
1496 	 *
1497 	 *      src->load                dst->load
1498 	 * --------------------- vs ---------------------
1499 	 * src->compute_capacity    dst->compute_capacity
1500 	 */
1501 	if (src->load * dst->compute_capacity * env->imbalance_pct >
1502 
1503 	    dst->load * src->compute_capacity * 100)
1504 		return true;
1505 
1506 	return false;
1507 }
1508 
1509 static int task_numa_migrate(struct task_struct *p)
1510 {
1511 	struct task_numa_env env = {
1512 		.p = p,
1513 
1514 		.src_cpu = task_cpu(p),
1515 		.src_nid = task_node(p),
1516 
1517 		.imbalance_pct = 112,
1518 
1519 		.best_task = NULL,
1520 		.best_imp = 0,
1521 		.best_cpu = -1,
1522 	};
1523 	struct sched_domain *sd;
1524 	unsigned long taskweight, groupweight;
1525 	int nid, ret, dist;
1526 	long taskimp, groupimp;
1527 
1528 	/*
1529 	 * Pick the lowest SD_NUMA domain, as that would have the smallest
1530 	 * imbalance and would be the first to start moving tasks about.
1531 	 *
1532 	 * And we want to avoid any moving of tasks about, as that would create
1533 	 * random movement of tasks -- counter the numa conditions we're trying
1534 	 * to satisfy here.
1535 	 */
1536 	rcu_read_lock();
1537 	sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
1538 	if (sd)
1539 		env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
1540 	rcu_read_unlock();
1541 
1542 	/*
1543 	 * Cpusets can break the scheduler domain tree into smaller
1544 	 * balance domains, some of which do not cross NUMA boundaries.
1545 	 * Tasks that are "trapped" in such domains cannot be migrated
1546 	 * elsewhere, so there is no point in (re)trying.
1547 	 */
1548 	if (unlikely(!sd)) {
1549 		p->numa_preferred_nid = task_node(p);
1550 		return -EINVAL;
1551 	}
1552 
1553 	env.dst_nid = p->numa_preferred_nid;
1554 	dist = env.dist = node_distance(env.src_nid, env.dst_nid);
1555 	taskweight = task_weight(p, env.src_nid, dist);
1556 	groupweight = group_weight(p, env.src_nid, dist);
1557 	update_numa_stats(&env.src_stats, env.src_nid);
1558 	taskimp = task_weight(p, env.dst_nid, dist) - taskweight;
1559 	groupimp = group_weight(p, env.dst_nid, dist) - groupweight;
1560 	update_numa_stats(&env.dst_stats, env.dst_nid);
1561 
1562 	/* Try to find a spot on the preferred nid. */
1563 	if (numa_has_capacity(&env))
1564 		task_numa_find_cpu(&env, taskimp, groupimp);
1565 
1566 	/*
1567 	 * Look at other nodes in these cases:
1568 	 * - there is no space available on the preferred_nid
1569 	 * - the task is part of a numa_group that is interleaved across
1570 	 *   multiple NUMA nodes; in order to better consolidate the group,
1571 	 *   we need to check other locations.
1572 	 */
1573 	if (env.best_cpu == -1 || (p->numa_group && p->numa_group->active_nodes > 1)) {
1574 		for_each_online_node(nid) {
1575 			if (nid == env.src_nid || nid == p->numa_preferred_nid)
1576 				continue;
1577 
1578 			dist = node_distance(env.src_nid, env.dst_nid);
1579 			if (sched_numa_topology_type == NUMA_BACKPLANE &&
1580 						dist != env.dist) {
1581 				taskweight = task_weight(p, env.src_nid, dist);
1582 				groupweight = group_weight(p, env.src_nid, dist);
1583 			}
1584 
1585 			/* Only consider nodes where both task and groups benefit */
1586 			taskimp = task_weight(p, nid, dist) - taskweight;
1587 			groupimp = group_weight(p, nid, dist) - groupweight;
1588 			if (taskimp < 0 && groupimp < 0)
1589 				continue;
1590 
1591 			env.dist = dist;
1592 			env.dst_nid = nid;
1593 			update_numa_stats(&env.dst_stats, env.dst_nid);
1594 			if (numa_has_capacity(&env))
1595 				task_numa_find_cpu(&env, taskimp, groupimp);
1596 		}
1597 	}
1598 
1599 	/*
1600 	 * If the task is part of a workload that spans multiple NUMA nodes,
1601 	 * and is migrating into one of the workload's active nodes, remember
1602 	 * this node as the task's preferred numa node, so the workload can
1603 	 * settle down.
1604 	 * A task that migrated to a second choice node will be better off
1605 	 * trying for a better one later. Do not set the preferred node here.
1606 	 */
1607 	if (p->numa_group) {
1608 		struct numa_group *ng = p->numa_group;
1609 
1610 		if (env.best_cpu == -1)
1611 			nid = env.src_nid;
1612 		else
1613 			nid = env.dst_nid;
1614 
1615 		if (ng->active_nodes > 1 && numa_is_active_node(env.dst_nid, ng))
1616 			sched_setnuma(p, env.dst_nid);
1617 	}
1618 
1619 	/* No better CPU than the current one was found. */
1620 	if (env.best_cpu == -1)
1621 		return -EAGAIN;
1622 
1623 	/*
1624 	 * Reset the scan period if the task is being rescheduled on an
1625 	 * alternative node to recheck if the tasks is now properly placed.
1626 	 */
1627 	p->numa_scan_period = task_scan_min(p);
1628 
1629 	if (env.best_task == NULL) {
1630 		ret = migrate_task_to(p, env.best_cpu);
1631 		if (ret != 0)
1632 			trace_sched_stick_numa(p, env.src_cpu, env.best_cpu);
1633 		return ret;
1634 	}
1635 
1636 	ret = migrate_swap(p, env.best_task);
1637 	if (ret != 0)
1638 		trace_sched_stick_numa(p, env.src_cpu, task_cpu(env.best_task));
1639 	put_task_struct(env.best_task);
1640 	return ret;
1641 }
1642 
1643 /* Attempt to migrate a task to a CPU on the preferred node. */
1644 static void numa_migrate_preferred(struct task_struct *p)
1645 {
1646 	unsigned long interval = HZ;
1647 
1648 	/* This task has no NUMA fault statistics yet */
1649 	if (unlikely(p->numa_preferred_nid == -1 || !p->numa_faults))
1650 		return;
1651 
1652 	/* Periodically retry migrating the task to the preferred node */
1653 	interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16);
1654 	p->numa_migrate_retry = jiffies + interval;
1655 
1656 	/* Success if task is already running on preferred CPU */
1657 	if (task_node(p) == p->numa_preferred_nid)
1658 		return;
1659 
1660 	/* Otherwise, try migrate to a CPU on the preferred node */
1661 	task_numa_migrate(p);
1662 }
1663 
1664 /*
1665  * Find out how many nodes on the workload is actively running on. Do this by
1666  * tracking the nodes from which NUMA hinting faults are triggered. This can
1667  * be different from the set of nodes where the workload's memory is currently
1668  * located.
1669  */
1670 static void numa_group_count_active_nodes(struct numa_group *numa_group)
1671 {
1672 	unsigned long faults, max_faults = 0;
1673 	int nid, active_nodes = 0;
1674 
1675 	for_each_online_node(nid) {
1676 		faults = group_faults_cpu(numa_group, nid);
1677 		if (faults > max_faults)
1678 			max_faults = faults;
1679 	}
1680 
1681 	for_each_online_node(nid) {
1682 		faults = group_faults_cpu(numa_group, nid);
1683 		if (faults * ACTIVE_NODE_FRACTION > max_faults)
1684 			active_nodes++;
1685 	}
1686 
1687 	numa_group->max_faults_cpu = max_faults;
1688 	numa_group->active_nodes = active_nodes;
1689 }
1690 
1691 /*
1692  * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
1693  * increments. The more local the fault statistics are, the higher the scan
1694  * period will be for the next scan window. If local/(local+remote) ratio is
1695  * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS)
1696  * the scan period will decrease. Aim for 70% local accesses.
1697  */
1698 #define NUMA_PERIOD_SLOTS 10
1699 #define NUMA_PERIOD_THRESHOLD 7
1700 
1701 /*
1702  * Increase the scan period (slow down scanning) if the majority of
1703  * our memory is already on our local node, or if the majority of
1704  * the page accesses are shared with other processes.
1705  * Otherwise, decrease the scan period.
1706  */
1707 static void update_task_scan_period(struct task_struct *p,
1708 			unsigned long shared, unsigned long private)
1709 {
1710 	unsigned int period_slot;
1711 	int ratio;
1712 	int diff;
1713 
1714 	unsigned long remote = p->numa_faults_locality[0];
1715 	unsigned long local = p->numa_faults_locality[1];
1716 
1717 	/*
1718 	 * If there were no record hinting faults then either the task is
1719 	 * completely idle or all activity is areas that are not of interest
1720 	 * to automatic numa balancing. Related to that, if there were failed
1721 	 * migration then it implies we are migrating too quickly or the local
1722 	 * node is overloaded. In either case, scan slower
1723 	 */
1724 	if (local + shared == 0 || p->numa_faults_locality[2]) {
1725 		p->numa_scan_period = min(p->numa_scan_period_max,
1726 			p->numa_scan_period << 1);
1727 
1728 		p->mm->numa_next_scan = jiffies +
1729 			msecs_to_jiffies(p->numa_scan_period);
1730 
1731 		return;
1732 	}
1733 
1734 	/*
1735 	 * Prepare to scale scan period relative to the current period.
1736 	 *	 == NUMA_PERIOD_THRESHOLD scan period stays the same
1737 	 *       <  NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
1738 	 *	 >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
1739 	 */
1740 	period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
1741 	ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
1742 	if (ratio >= NUMA_PERIOD_THRESHOLD) {
1743 		int slot = ratio - NUMA_PERIOD_THRESHOLD;
1744 		if (!slot)
1745 			slot = 1;
1746 		diff = slot * period_slot;
1747 	} else {
1748 		diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;
1749 
1750 		/*
1751 		 * Scale scan rate increases based on sharing. There is an
1752 		 * inverse relationship between the degree of sharing and
1753 		 * the adjustment made to the scanning period. Broadly
1754 		 * speaking the intent is that there is little point
1755 		 * scanning faster if shared accesses dominate as it may
1756 		 * simply bounce migrations uselessly
1757 		 */
1758 		ratio = DIV_ROUND_UP(private * NUMA_PERIOD_SLOTS, (private + shared + 1));
1759 		diff = (diff * ratio) / NUMA_PERIOD_SLOTS;
1760 	}
1761 
1762 	p->numa_scan_period = clamp(p->numa_scan_period + diff,
1763 			task_scan_min(p), task_scan_max(p));
1764 	memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
1765 }
1766 
1767 /*
1768  * Get the fraction of time the task has been running since the last
1769  * NUMA placement cycle. The scheduler keeps similar statistics, but
1770  * decays those on a 32ms period, which is orders of magnitude off
1771  * from the dozens-of-seconds NUMA balancing period. Use the scheduler
1772  * stats only if the task is so new there are no NUMA statistics yet.
1773  */
1774 static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period)
1775 {
1776 	u64 runtime, delta, now;
1777 	/* Use the start of this time slice to avoid calculations. */
1778 	now = p->se.exec_start;
1779 	runtime = p->se.sum_exec_runtime;
1780 
1781 	if (p->last_task_numa_placement) {
1782 		delta = runtime - p->last_sum_exec_runtime;
1783 		*period = now - p->last_task_numa_placement;
1784 	} else {
1785 		delta = p->se.avg.load_sum / p->se.load.weight;
1786 		*period = LOAD_AVG_MAX;
1787 	}
1788 
1789 	p->last_sum_exec_runtime = runtime;
1790 	p->last_task_numa_placement = now;
1791 
1792 	return delta;
1793 }
1794 
1795 /*
1796  * Determine the preferred nid for a task in a numa_group. This needs to
1797  * be done in a way that produces consistent results with group_weight,
1798  * otherwise workloads might not converge.
1799  */
1800 static int preferred_group_nid(struct task_struct *p, int nid)
1801 {
1802 	nodemask_t nodes;
1803 	int dist;
1804 
1805 	/* Direct connections between all NUMA nodes. */
1806 	if (sched_numa_topology_type == NUMA_DIRECT)
1807 		return nid;
1808 
1809 	/*
1810 	 * On a system with glueless mesh NUMA topology, group_weight
1811 	 * scores nodes according to the number of NUMA hinting faults on
1812 	 * both the node itself, and on nearby nodes.
1813 	 */
1814 	if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
1815 		unsigned long score, max_score = 0;
1816 		int node, max_node = nid;
1817 
1818 		dist = sched_max_numa_distance;
1819 
1820 		for_each_online_node(node) {
1821 			score = group_weight(p, node, dist);
1822 			if (score > max_score) {
1823 				max_score = score;
1824 				max_node = node;
1825 			}
1826 		}
1827 		return max_node;
1828 	}
1829 
1830 	/*
1831 	 * Finding the preferred nid in a system with NUMA backplane
1832 	 * interconnect topology is more involved. The goal is to locate
1833 	 * tasks from numa_groups near each other in the system, and
1834 	 * untangle workloads from different sides of the system. This requires
1835 	 * searching down the hierarchy of node groups, recursively searching
1836 	 * inside the highest scoring group of nodes. The nodemask tricks
1837 	 * keep the complexity of the search down.
1838 	 */
1839 	nodes = node_online_map;
1840 	for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) {
1841 		unsigned long max_faults = 0;
1842 		nodemask_t max_group = NODE_MASK_NONE;
1843 		int a, b;
1844 
1845 		/* Are there nodes at this distance from each other? */
1846 		if (!find_numa_distance(dist))
1847 			continue;
1848 
1849 		for_each_node_mask(a, nodes) {
1850 			unsigned long faults = 0;
1851 			nodemask_t this_group;
1852 			nodes_clear(this_group);
1853 
1854 			/* Sum group's NUMA faults; includes a==b case. */
1855 			for_each_node_mask(b, nodes) {
1856 				if (node_distance(a, b) < dist) {
1857 					faults += group_faults(p, b);
1858 					node_set(b, this_group);
1859 					node_clear(b, nodes);
1860 				}
1861 			}
1862 
1863 			/* Remember the top group. */
1864 			if (faults > max_faults) {
1865 				max_faults = faults;
1866 				max_group = this_group;
1867 				/*
1868 				 * subtle: at the smallest distance there is
1869 				 * just one node left in each "group", the
1870 				 * winner is the preferred nid.
1871 				 */
1872 				nid = a;
1873 			}
1874 		}
1875 		/* Next round, evaluate the nodes within max_group. */
1876 		if (!max_faults)
1877 			break;
1878 		nodes = max_group;
1879 	}
1880 	return nid;
1881 }
1882 
1883 static void task_numa_placement(struct task_struct *p)
1884 {
1885 	int seq, nid, max_nid = -1, max_group_nid = -1;
1886 	unsigned long max_faults = 0, max_group_faults = 0;
1887 	unsigned long fault_types[2] = { 0, 0 };
1888 	unsigned long total_faults;
1889 	u64 runtime, period;
1890 	spinlock_t *group_lock = NULL;
1891 
1892 	/*
1893 	 * The p->mm->numa_scan_seq field gets updated without
1894 	 * exclusive access. Use READ_ONCE() here to ensure
1895 	 * that the field is read in a single access:
1896 	 */
1897 	seq = READ_ONCE(p->mm->numa_scan_seq);
1898 	if (p->numa_scan_seq == seq)
1899 		return;
1900 	p->numa_scan_seq = seq;
1901 	p->numa_scan_period_max = task_scan_max(p);
1902 
1903 	total_faults = p->numa_faults_locality[0] +
1904 		       p->numa_faults_locality[1];
1905 	runtime = numa_get_avg_runtime(p, &period);
1906 
1907 	/* If the task is part of a group prevent parallel updates to group stats */
1908 	if (p->numa_group) {
1909 		group_lock = &p->numa_group->lock;
1910 		spin_lock_irq(group_lock);
1911 	}
1912 
1913 	/* Find the node with the highest number of faults */
1914 	for_each_online_node(nid) {
1915 		/* Keep track of the offsets in numa_faults array */
1916 		int mem_idx, membuf_idx, cpu_idx, cpubuf_idx;
1917 		unsigned long faults = 0, group_faults = 0;
1918 		int priv;
1919 
1920 		for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) {
1921 			long diff, f_diff, f_weight;
1922 
1923 			mem_idx = task_faults_idx(NUMA_MEM, nid, priv);
1924 			membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv);
1925 			cpu_idx = task_faults_idx(NUMA_CPU, nid, priv);
1926 			cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv);
1927 
1928 			/* Decay existing window, copy faults since last scan */
1929 			diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2;
1930 			fault_types[priv] += p->numa_faults[membuf_idx];
1931 			p->numa_faults[membuf_idx] = 0;
1932 
1933 			/*
1934 			 * Normalize the faults_from, so all tasks in a group
1935 			 * count according to CPU use, instead of by the raw
1936 			 * number of faults. Tasks with little runtime have
1937 			 * little over-all impact on throughput, and thus their
1938 			 * faults are less important.
1939 			 */
1940 			f_weight = div64_u64(runtime << 16, period + 1);
1941 			f_weight = (f_weight * p->numa_faults[cpubuf_idx]) /
1942 				   (total_faults + 1);
1943 			f_diff = f_weight - p->numa_faults[cpu_idx] / 2;
1944 			p->numa_faults[cpubuf_idx] = 0;
1945 
1946 			p->numa_faults[mem_idx] += diff;
1947 			p->numa_faults[cpu_idx] += f_diff;
1948 			faults += p->numa_faults[mem_idx];
1949 			p->total_numa_faults += diff;
1950 			if (p->numa_group) {
1951 				/*
1952 				 * safe because we can only change our own group
1953 				 *
1954 				 * mem_idx represents the offset for a given
1955 				 * nid and priv in a specific region because it
1956 				 * is at the beginning of the numa_faults array.
1957 				 */
1958 				p->numa_group->faults[mem_idx] += diff;
1959 				p->numa_group->faults_cpu[mem_idx] += f_diff;
1960 				p->numa_group->total_faults += diff;
1961 				group_faults += p->numa_group->faults[mem_idx];
1962 			}
1963 		}
1964 
1965 		if (faults > max_faults) {
1966 			max_faults = faults;
1967 			max_nid = nid;
1968 		}
1969 
1970 		if (group_faults > max_group_faults) {
1971 			max_group_faults = group_faults;
1972 			max_group_nid = nid;
1973 		}
1974 	}
1975 
1976 	update_task_scan_period(p, fault_types[0], fault_types[1]);
1977 
1978 	if (p->numa_group) {
1979 		numa_group_count_active_nodes(p->numa_group);
1980 		spin_unlock_irq(group_lock);
1981 		max_nid = preferred_group_nid(p, max_group_nid);
1982 	}
1983 
1984 	if (max_faults) {
1985 		/* Set the new preferred node */
1986 		if (max_nid != p->numa_preferred_nid)
1987 			sched_setnuma(p, max_nid);
1988 
1989 		if (task_node(p) != p->numa_preferred_nid)
1990 			numa_migrate_preferred(p);
1991 	}
1992 }
1993 
1994 static inline int get_numa_group(struct numa_group *grp)
1995 {
1996 	return atomic_inc_not_zero(&grp->refcount);
1997 }
1998 
1999 static inline void put_numa_group(struct numa_group *grp)
2000 {
2001 	if (atomic_dec_and_test(&grp->refcount))
2002 		kfree_rcu(grp, rcu);
2003 }
2004 
2005 static void task_numa_group(struct task_struct *p, int cpupid, int flags,
2006 			int *priv)
2007 {
2008 	struct numa_group *grp, *my_grp;
2009 	struct task_struct *tsk;
2010 	bool join = false;
2011 	int cpu = cpupid_to_cpu(cpupid);
2012 	int i;
2013 
2014 	if (unlikely(!p->numa_group)) {
2015 		unsigned int size = sizeof(struct numa_group) +
2016 				    4*nr_node_ids*sizeof(unsigned long);
2017 
2018 		grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
2019 		if (!grp)
2020 			return;
2021 
2022 		atomic_set(&grp->refcount, 1);
2023 		grp->active_nodes = 1;
2024 		grp->max_faults_cpu = 0;
2025 		spin_lock_init(&grp->lock);
2026 		grp->gid = p->pid;
2027 		/* Second half of the array tracks nids where faults happen */
2028 		grp->faults_cpu = grp->faults + NR_NUMA_HINT_FAULT_TYPES *
2029 						nr_node_ids;
2030 
2031 		for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
2032 			grp->faults[i] = p->numa_faults[i];
2033 
2034 		grp->total_faults = p->total_numa_faults;
2035 
2036 		grp->nr_tasks++;
2037 		rcu_assign_pointer(p->numa_group, grp);
2038 	}
2039 
2040 	rcu_read_lock();
2041 	tsk = READ_ONCE(cpu_rq(cpu)->curr);
2042 
2043 	if (!cpupid_match_pid(tsk, cpupid))
2044 		goto no_join;
2045 
2046 	grp = rcu_dereference(tsk->numa_group);
2047 	if (!grp)
2048 		goto no_join;
2049 
2050 	my_grp = p->numa_group;
2051 	if (grp == my_grp)
2052 		goto no_join;
2053 
2054 	/*
2055 	 * Only join the other group if its bigger; if we're the bigger group,
2056 	 * the other task will join us.
2057 	 */
2058 	if (my_grp->nr_tasks > grp->nr_tasks)
2059 		goto no_join;
2060 
2061 	/*
2062 	 * Tie-break on the grp address.
2063 	 */
2064 	if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
2065 		goto no_join;
2066 
2067 	/* Always join threads in the same process. */
2068 	if (tsk->mm == current->mm)
2069 		join = true;
2070 
2071 	/* Simple filter to avoid false positives due to PID collisions */
2072 	if (flags & TNF_SHARED)
2073 		join = true;
2074 
2075 	/* Update priv based on whether false sharing was detected */
2076 	*priv = !join;
2077 
2078 	if (join && !get_numa_group(grp))
2079 		goto no_join;
2080 
2081 	rcu_read_unlock();
2082 
2083 	if (!join)
2084 		return;
2085 
2086 	BUG_ON(irqs_disabled());
2087 	double_lock_irq(&my_grp->lock, &grp->lock);
2088 
2089 	for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) {
2090 		my_grp->faults[i] -= p->numa_faults[i];
2091 		grp->faults[i] += p->numa_faults[i];
2092 	}
2093 	my_grp->total_faults -= p->total_numa_faults;
2094 	grp->total_faults += p->total_numa_faults;
2095 
2096 	my_grp->nr_tasks--;
2097 	grp->nr_tasks++;
2098 
2099 	spin_unlock(&my_grp->lock);
2100 	spin_unlock_irq(&grp->lock);
2101 
2102 	rcu_assign_pointer(p->numa_group, grp);
2103 
2104 	put_numa_group(my_grp);
2105 	return;
2106 
2107 no_join:
2108 	rcu_read_unlock();
2109 	return;
2110 }
2111 
2112 void task_numa_free(struct task_struct *p)
2113 {
2114 	struct numa_group *grp = p->numa_group;
2115 	void *numa_faults = p->numa_faults;
2116 	unsigned long flags;
2117 	int i;
2118 
2119 	if (grp) {
2120 		spin_lock_irqsave(&grp->lock, flags);
2121 		for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
2122 			grp->faults[i] -= p->numa_faults[i];
2123 		grp->total_faults -= p->total_numa_faults;
2124 
2125 		grp->nr_tasks--;
2126 		spin_unlock_irqrestore(&grp->lock, flags);
2127 		RCU_INIT_POINTER(p->numa_group, NULL);
2128 		put_numa_group(grp);
2129 	}
2130 
2131 	p->numa_faults = NULL;
2132 	kfree(numa_faults);
2133 }
2134 
2135 /*
2136  * Got a PROT_NONE fault for a page on @node.
2137  */
2138 void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags)
2139 {
2140 	struct task_struct *p = current;
2141 	bool migrated = flags & TNF_MIGRATED;
2142 	int cpu_node = task_node(current);
2143 	int local = !!(flags & TNF_FAULT_LOCAL);
2144 	struct numa_group *ng;
2145 	int priv;
2146 
2147 	if (!static_branch_likely(&sched_numa_balancing))
2148 		return;
2149 
2150 	/* for example, ksmd faulting in a user's mm */
2151 	if (!p->mm)
2152 		return;
2153 
2154 	/* Allocate buffer to track faults on a per-node basis */
2155 	if (unlikely(!p->numa_faults)) {
2156 		int size = sizeof(*p->numa_faults) *
2157 			   NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids;
2158 
2159 		p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN);
2160 		if (!p->numa_faults)
2161 			return;
2162 
2163 		p->total_numa_faults = 0;
2164 		memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
2165 	}
2166 
2167 	/*
2168 	 * First accesses are treated as private, otherwise consider accesses
2169 	 * to be private if the accessing pid has not changed
2170 	 */
2171 	if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
2172 		priv = 1;
2173 	} else {
2174 		priv = cpupid_match_pid(p, last_cpupid);
2175 		if (!priv && !(flags & TNF_NO_GROUP))
2176 			task_numa_group(p, last_cpupid, flags, &priv);
2177 	}
2178 
2179 	/*
2180 	 * If a workload spans multiple NUMA nodes, a shared fault that
2181 	 * occurs wholly within the set of nodes that the workload is
2182 	 * actively using should be counted as local. This allows the
2183 	 * scan rate to slow down when a workload has settled down.
2184 	 */
2185 	ng = p->numa_group;
2186 	if (!priv && !local && ng && ng->active_nodes > 1 &&
2187 				numa_is_active_node(cpu_node, ng) &&
2188 				numa_is_active_node(mem_node, ng))
2189 		local = 1;
2190 
2191 	task_numa_placement(p);
2192 
2193 	/*
2194 	 * Retry task to preferred node migration periodically, in case it
2195 	 * case it previously failed, or the scheduler moved us.
2196 	 */
2197 	if (time_after(jiffies, p->numa_migrate_retry))
2198 		numa_migrate_preferred(p);
2199 
2200 	if (migrated)
2201 		p->numa_pages_migrated += pages;
2202 	if (flags & TNF_MIGRATE_FAIL)
2203 		p->numa_faults_locality[2] += pages;
2204 
2205 	p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages;
2206 	p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages;
2207 	p->numa_faults_locality[local] += pages;
2208 }
2209 
2210 static void reset_ptenuma_scan(struct task_struct *p)
2211 {
2212 	/*
2213 	 * We only did a read acquisition of the mmap sem, so
2214 	 * p->mm->numa_scan_seq is written to without exclusive access
2215 	 * and the update is not guaranteed to be atomic. That's not
2216 	 * much of an issue though, since this is just used for
2217 	 * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not
2218 	 * expensive, to avoid any form of compiler optimizations:
2219 	 */
2220 	WRITE_ONCE(p->mm->numa_scan_seq, READ_ONCE(p->mm->numa_scan_seq) + 1);
2221 	p->mm->numa_scan_offset = 0;
2222 }
2223 
2224 /*
2225  * The expensive part of numa migration is done from task_work context.
2226  * Triggered from task_tick_numa().
2227  */
2228 void task_numa_work(struct callback_head *work)
2229 {
2230 	unsigned long migrate, next_scan, now = jiffies;
2231 	struct task_struct *p = current;
2232 	struct mm_struct *mm = p->mm;
2233 	u64 runtime = p->se.sum_exec_runtime;
2234 	struct vm_area_struct *vma;
2235 	unsigned long start, end;
2236 	unsigned long nr_pte_updates = 0;
2237 	long pages, virtpages;
2238 
2239 	WARN_ON_ONCE(p != container_of(work, struct task_struct, numa_work));
2240 
2241 	work->next = work; /* protect against double add */
2242 	/*
2243 	 * Who cares about NUMA placement when they're dying.
2244 	 *
2245 	 * NOTE: make sure not to dereference p->mm before this check,
2246 	 * exit_task_work() happens _after_ exit_mm() so we could be called
2247 	 * without p->mm even though we still had it when we enqueued this
2248 	 * work.
2249 	 */
2250 	if (p->flags & PF_EXITING)
2251 		return;
2252 
2253 	if (!mm->numa_next_scan) {
2254 		mm->numa_next_scan = now +
2255 			msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
2256 	}
2257 
2258 	/*
2259 	 * Enforce maximal scan/migration frequency..
2260 	 */
2261 	migrate = mm->numa_next_scan;
2262 	if (time_before(now, migrate))
2263 		return;
2264 
2265 	if (p->numa_scan_period == 0) {
2266 		p->numa_scan_period_max = task_scan_max(p);
2267 		p->numa_scan_period = task_scan_min(p);
2268 	}
2269 
2270 	next_scan = now + msecs_to_jiffies(p->numa_scan_period);
2271 	if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
2272 		return;
2273 
2274 	/*
2275 	 * Delay this task enough that another task of this mm will likely win
2276 	 * the next time around.
2277 	 */
2278 	p->node_stamp += 2 * TICK_NSEC;
2279 
2280 	start = mm->numa_scan_offset;
2281 	pages = sysctl_numa_balancing_scan_size;
2282 	pages <<= 20 - PAGE_SHIFT; /* MB in pages */
2283 	virtpages = pages * 8;	   /* Scan up to this much virtual space */
2284 	if (!pages)
2285 		return;
2286 
2287 
2288 	down_read(&mm->mmap_sem);
2289 	vma = find_vma(mm, start);
2290 	if (!vma) {
2291 		reset_ptenuma_scan(p);
2292 		start = 0;
2293 		vma = mm->mmap;
2294 	}
2295 	for (; vma; vma = vma->vm_next) {
2296 		if (!vma_migratable(vma) || !vma_policy_mof(vma) ||
2297 			is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_MIXEDMAP)) {
2298 			continue;
2299 		}
2300 
2301 		/*
2302 		 * Shared library pages mapped by multiple processes are not
2303 		 * migrated as it is expected they are cache replicated. Avoid
2304 		 * hinting faults in read-only file-backed mappings or the vdso
2305 		 * as migrating the pages will be of marginal benefit.
2306 		 */
2307 		if (!vma->vm_mm ||
2308 		    (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ)))
2309 			continue;
2310 
2311 		/*
2312 		 * Skip inaccessible VMAs to avoid any confusion between
2313 		 * PROT_NONE and NUMA hinting ptes
2314 		 */
2315 		if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)))
2316 			continue;
2317 
2318 		do {
2319 			start = max(start, vma->vm_start);
2320 			end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
2321 			end = min(end, vma->vm_end);
2322 			nr_pte_updates = change_prot_numa(vma, start, end);
2323 
2324 			/*
2325 			 * Try to scan sysctl_numa_balancing_size worth of
2326 			 * hpages that have at least one present PTE that
2327 			 * is not already pte-numa. If the VMA contains
2328 			 * areas that are unused or already full of prot_numa
2329 			 * PTEs, scan up to virtpages, to skip through those
2330 			 * areas faster.
2331 			 */
2332 			if (nr_pte_updates)
2333 				pages -= (end - start) >> PAGE_SHIFT;
2334 			virtpages -= (end - start) >> PAGE_SHIFT;
2335 
2336 			start = end;
2337 			if (pages <= 0 || virtpages <= 0)
2338 				goto out;
2339 
2340 			cond_resched();
2341 		} while (end != vma->vm_end);
2342 	}
2343 
2344 out:
2345 	/*
2346 	 * It is possible to reach the end of the VMA list but the last few
2347 	 * VMAs are not guaranteed to the vma_migratable. If they are not, we
2348 	 * would find the !migratable VMA on the next scan but not reset the
2349 	 * scanner to the start so check it now.
2350 	 */
2351 	if (vma)
2352 		mm->numa_scan_offset = start;
2353 	else
2354 		reset_ptenuma_scan(p);
2355 	up_read(&mm->mmap_sem);
2356 
2357 	/*
2358 	 * Make sure tasks use at least 32x as much time to run other code
2359 	 * than they used here, to limit NUMA PTE scanning overhead to 3% max.
2360 	 * Usually update_task_scan_period slows down scanning enough; on an
2361 	 * overloaded system we need to limit overhead on a per task basis.
2362 	 */
2363 	if (unlikely(p->se.sum_exec_runtime != runtime)) {
2364 		u64 diff = p->se.sum_exec_runtime - runtime;
2365 		p->node_stamp += 32 * diff;
2366 	}
2367 }
2368 
2369 /*
2370  * Drive the periodic memory faults..
2371  */
2372 void task_tick_numa(struct rq *rq, struct task_struct *curr)
2373 {
2374 	struct callback_head *work = &curr->numa_work;
2375 	u64 period, now;
2376 
2377 	/*
2378 	 * We don't care about NUMA placement if we don't have memory.
2379 	 */
2380 	if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work)
2381 		return;
2382 
2383 	/*
2384 	 * Using runtime rather than walltime has the dual advantage that
2385 	 * we (mostly) drive the selection from busy threads and that the
2386 	 * task needs to have done some actual work before we bother with
2387 	 * NUMA placement.
2388 	 */
2389 	now = curr->se.sum_exec_runtime;
2390 	period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
2391 
2392 	if (now > curr->node_stamp + period) {
2393 		if (!curr->node_stamp)
2394 			curr->numa_scan_period = task_scan_min(curr);
2395 		curr->node_stamp += period;
2396 
2397 		if (!time_before(jiffies, curr->mm->numa_next_scan)) {
2398 			init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */
2399 			task_work_add(curr, work, true);
2400 		}
2401 	}
2402 }
2403 #else
2404 static void task_tick_numa(struct rq *rq, struct task_struct *curr)
2405 {
2406 }
2407 
2408 static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
2409 {
2410 }
2411 
2412 static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
2413 {
2414 }
2415 #endif /* CONFIG_NUMA_BALANCING */
2416 
2417 static void
2418 account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2419 {
2420 	update_load_add(&cfs_rq->load, se->load.weight);
2421 	if (!parent_entity(se))
2422 		update_load_add(&rq_of(cfs_rq)->load, se->load.weight);
2423 #ifdef CONFIG_SMP
2424 	if (entity_is_task(se)) {
2425 		struct rq *rq = rq_of(cfs_rq);
2426 
2427 		account_numa_enqueue(rq, task_of(se));
2428 		list_add(&se->group_node, &rq->cfs_tasks);
2429 	}
2430 #endif
2431 	cfs_rq->nr_running++;
2432 }
2433 
2434 static void
2435 account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2436 {
2437 	update_load_sub(&cfs_rq->load, se->load.weight);
2438 	if (!parent_entity(se))
2439 		update_load_sub(&rq_of(cfs_rq)->load, se->load.weight);
2440 	if (entity_is_task(se)) {
2441 		account_numa_dequeue(rq_of(cfs_rq), task_of(se));
2442 		list_del_init(&se->group_node);
2443 	}
2444 	cfs_rq->nr_running--;
2445 }
2446 
2447 #ifdef CONFIG_FAIR_GROUP_SCHED
2448 # ifdef CONFIG_SMP
2449 static inline long calc_tg_weight(struct task_group *tg, struct cfs_rq *cfs_rq)
2450 {
2451 	long tg_weight;
2452 
2453 	/*
2454 	 * Use this CPU's real-time load instead of the last load contribution
2455 	 * as the updating of the contribution is delayed, and we will use the
2456 	 * the real-time load to calc the share. See update_tg_load_avg().
2457 	 */
2458 	tg_weight = atomic_long_read(&tg->load_avg);
2459 	tg_weight -= cfs_rq->tg_load_avg_contrib;
2460 	tg_weight += cfs_rq->load.weight;
2461 
2462 	return tg_weight;
2463 }
2464 
2465 static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
2466 {
2467 	long tg_weight, load, shares;
2468 
2469 	tg_weight = calc_tg_weight(tg, cfs_rq);
2470 	load = cfs_rq->load.weight;
2471 
2472 	shares = (tg->shares * load);
2473 	if (tg_weight)
2474 		shares /= tg_weight;
2475 
2476 	if (shares < MIN_SHARES)
2477 		shares = MIN_SHARES;
2478 	if (shares > tg->shares)
2479 		shares = tg->shares;
2480 
2481 	return shares;
2482 }
2483 # else /* CONFIG_SMP */
2484 static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
2485 {
2486 	return tg->shares;
2487 }
2488 # endif /* CONFIG_SMP */
2489 static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
2490 			    unsigned long weight)
2491 {
2492 	if (se->on_rq) {
2493 		/* commit outstanding execution time */
2494 		if (cfs_rq->curr == se)
2495 			update_curr(cfs_rq);
2496 		account_entity_dequeue(cfs_rq, se);
2497 	}
2498 
2499 	update_load_set(&se->load, weight);
2500 
2501 	if (se->on_rq)
2502 		account_entity_enqueue(cfs_rq, se);
2503 }
2504 
2505 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
2506 
2507 static void update_cfs_shares(struct cfs_rq *cfs_rq)
2508 {
2509 	struct task_group *tg;
2510 	struct sched_entity *se;
2511 	long shares;
2512 
2513 	tg = cfs_rq->tg;
2514 	se = tg->se[cpu_of(rq_of(cfs_rq))];
2515 	if (!se || throttled_hierarchy(cfs_rq))
2516 		return;
2517 #ifndef CONFIG_SMP
2518 	if (likely(se->load.weight == tg->shares))
2519 		return;
2520 #endif
2521 	shares = calc_cfs_shares(cfs_rq, tg);
2522 
2523 	reweight_entity(cfs_rq_of(se), se, shares);
2524 }
2525 #else /* CONFIG_FAIR_GROUP_SCHED */
2526 static inline void update_cfs_shares(struct cfs_rq *cfs_rq)
2527 {
2528 }
2529 #endif /* CONFIG_FAIR_GROUP_SCHED */
2530 
2531 #ifdef CONFIG_SMP
2532 /* Precomputed fixed inverse multiplies for multiplication by y^n */
2533 static const u32 runnable_avg_yN_inv[] = {
2534 	0xffffffff, 0xfa83b2da, 0xf5257d14, 0xefe4b99a, 0xeac0c6e6, 0xe5b906e6,
2535 	0xe0ccdeeb, 0xdbfbb796, 0xd744fcc9, 0xd2a81d91, 0xce248c14, 0xc9b9bd85,
2536 	0xc5672a10, 0xc12c4cc9, 0xbd08a39e, 0xb8fbaf46, 0xb504f333, 0xb123f581,
2537 	0xad583ee9, 0xa9a15ab4, 0xa5fed6a9, 0xa2704302, 0x9ef5325f, 0x9b8d39b9,
2538 	0x9837f050, 0x94f4efa8, 0x91c3d373, 0x8ea4398a, 0x8b95c1e3, 0x88980e80,
2539 	0x85aac367, 0x82cd8698,
2540 };
2541 
2542 /*
2543  * Precomputed \Sum y^k { 1<=k<=n }.  These are floor(true_value) to prevent
2544  * over-estimates when re-combining.
2545  */
2546 static const u32 runnable_avg_yN_sum[] = {
2547 	    0, 1002, 1982, 2941, 3880, 4798, 5697, 6576, 7437, 8279, 9103,
2548 	 9909,10698,11470,12226,12966,13690,14398,15091,15769,16433,17082,
2549 	17718,18340,18949,19545,20128,20698,21256,21802,22336,22859,23371,
2550 };
2551 
2552 /*
2553  * Approximate:
2554  *   val * y^n,    where y^32 ~= 0.5 (~1 scheduling period)
2555  */
2556 static __always_inline u64 decay_load(u64 val, u64 n)
2557 {
2558 	unsigned int local_n;
2559 
2560 	if (!n)
2561 		return val;
2562 	else if (unlikely(n > LOAD_AVG_PERIOD * 63))
2563 		return 0;
2564 
2565 	/* after bounds checking we can collapse to 32-bit */
2566 	local_n = n;
2567 
2568 	/*
2569 	 * As y^PERIOD = 1/2, we can combine
2570 	 *    y^n = 1/2^(n/PERIOD) * y^(n%PERIOD)
2571 	 * With a look-up table which covers y^n (n<PERIOD)
2572 	 *
2573 	 * To achieve constant time decay_load.
2574 	 */
2575 	if (unlikely(local_n >= LOAD_AVG_PERIOD)) {
2576 		val >>= local_n / LOAD_AVG_PERIOD;
2577 		local_n %= LOAD_AVG_PERIOD;
2578 	}
2579 
2580 	val = mul_u64_u32_shr(val, runnable_avg_yN_inv[local_n], 32);
2581 	return val;
2582 }
2583 
2584 /*
2585  * For updates fully spanning n periods, the contribution to runnable
2586  * average will be: \Sum 1024*y^n
2587  *
2588  * We can compute this reasonably efficiently by combining:
2589  *   y^PERIOD = 1/2 with precomputed \Sum 1024*y^n {for  n <PERIOD}
2590  */
2591 static u32 __compute_runnable_contrib(u64 n)
2592 {
2593 	u32 contrib = 0;
2594 
2595 	if (likely(n <= LOAD_AVG_PERIOD))
2596 		return runnable_avg_yN_sum[n];
2597 	else if (unlikely(n >= LOAD_AVG_MAX_N))
2598 		return LOAD_AVG_MAX;
2599 
2600 	/* Compute \Sum k^n combining precomputed values for k^i, \Sum k^j */
2601 	do {
2602 		contrib /= 2; /* y^LOAD_AVG_PERIOD = 1/2 */
2603 		contrib += runnable_avg_yN_sum[LOAD_AVG_PERIOD];
2604 
2605 		n -= LOAD_AVG_PERIOD;
2606 	} while (n > LOAD_AVG_PERIOD);
2607 
2608 	contrib = decay_load(contrib, n);
2609 	return contrib + runnable_avg_yN_sum[n];
2610 }
2611 
2612 #if (SCHED_LOAD_SHIFT - SCHED_LOAD_RESOLUTION) != 10 || SCHED_CAPACITY_SHIFT != 10
2613 #error "load tracking assumes 2^10 as unit"
2614 #endif
2615 
2616 #define cap_scale(v, s) ((v)*(s) >> SCHED_CAPACITY_SHIFT)
2617 
2618 /*
2619  * We can represent the historical contribution to runnable average as the
2620  * coefficients of a geometric series.  To do this we sub-divide our runnable
2621  * history into segments of approximately 1ms (1024us); label the segment that
2622  * occurred N-ms ago p_N, with p_0 corresponding to the current period, e.g.
2623  *
2624  * [<- 1024us ->|<- 1024us ->|<- 1024us ->| ...
2625  *      p0            p1           p2
2626  *     (now)       (~1ms ago)  (~2ms ago)
2627  *
2628  * Let u_i denote the fraction of p_i that the entity was runnable.
2629  *
2630  * We then designate the fractions u_i as our co-efficients, yielding the
2631  * following representation of historical load:
2632  *   u_0 + u_1*y + u_2*y^2 + u_3*y^3 + ...
2633  *
2634  * We choose y based on the with of a reasonably scheduling period, fixing:
2635  *   y^32 = 0.5
2636  *
2637  * This means that the contribution to load ~32ms ago (u_32) will be weighted
2638  * approximately half as much as the contribution to load within the last ms
2639  * (u_0).
2640  *
2641  * When a period "rolls over" and we have new u_0`, multiplying the previous
2642  * sum again by y is sufficient to update:
2643  *   load_avg = u_0` + y*(u_0 + u_1*y + u_2*y^2 + ... )
2644  *            = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1}]
2645  */
2646 static __always_inline int
2647 __update_load_avg(u64 now, int cpu, struct sched_avg *sa,
2648 		  unsigned long weight, int running, struct cfs_rq *cfs_rq)
2649 {
2650 	u64 delta, scaled_delta, periods;
2651 	u32 contrib;
2652 	unsigned int delta_w, scaled_delta_w, decayed = 0;
2653 	unsigned long scale_freq, scale_cpu;
2654 
2655 	delta = now - sa->last_update_time;
2656 	/*
2657 	 * This should only happen when time goes backwards, which it
2658 	 * unfortunately does during sched clock init when we swap over to TSC.
2659 	 */
2660 	if ((s64)delta < 0) {
2661 		sa->last_update_time = now;
2662 		return 0;
2663 	}
2664 
2665 	/*
2666 	 * Use 1024ns as the unit of measurement since it's a reasonable
2667 	 * approximation of 1us and fast to compute.
2668 	 */
2669 	delta >>= 10;
2670 	if (!delta)
2671 		return 0;
2672 	sa->last_update_time = now;
2673 
2674 	scale_freq = arch_scale_freq_capacity(NULL, cpu);
2675 	scale_cpu = arch_scale_cpu_capacity(NULL, cpu);
2676 
2677 	/* delta_w is the amount already accumulated against our next period */
2678 	delta_w = sa->period_contrib;
2679 	if (delta + delta_w >= 1024) {
2680 		decayed = 1;
2681 
2682 		/* how much left for next period will start over, we don't know yet */
2683 		sa->period_contrib = 0;
2684 
2685 		/*
2686 		 * Now that we know we're crossing a period boundary, figure
2687 		 * out how much from delta we need to complete the current
2688 		 * period and accrue it.
2689 		 */
2690 		delta_w = 1024 - delta_w;
2691 		scaled_delta_w = cap_scale(delta_w, scale_freq);
2692 		if (weight) {
2693 			sa->load_sum += weight * scaled_delta_w;
2694 			if (cfs_rq) {
2695 				cfs_rq->runnable_load_sum +=
2696 						weight * scaled_delta_w;
2697 			}
2698 		}
2699 		if (running)
2700 			sa->util_sum += scaled_delta_w * scale_cpu;
2701 
2702 		delta -= delta_w;
2703 
2704 		/* Figure out how many additional periods this update spans */
2705 		periods = delta / 1024;
2706 		delta %= 1024;
2707 
2708 		sa->load_sum = decay_load(sa->load_sum, periods + 1);
2709 		if (cfs_rq) {
2710 			cfs_rq->runnable_load_sum =
2711 				decay_load(cfs_rq->runnable_load_sum, periods + 1);
2712 		}
2713 		sa->util_sum = decay_load((u64)(sa->util_sum), periods + 1);
2714 
2715 		/* Efficiently calculate \sum (1..n_period) 1024*y^i */
2716 		contrib = __compute_runnable_contrib(periods);
2717 		contrib = cap_scale(contrib, scale_freq);
2718 		if (weight) {
2719 			sa->load_sum += weight * contrib;
2720 			if (cfs_rq)
2721 				cfs_rq->runnable_load_sum += weight * contrib;
2722 		}
2723 		if (running)
2724 			sa->util_sum += contrib * scale_cpu;
2725 	}
2726 
2727 	/* Remainder of delta accrued against u_0` */
2728 	scaled_delta = cap_scale(delta, scale_freq);
2729 	if (weight) {
2730 		sa->load_sum += weight * scaled_delta;
2731 		if (cfs_rq)
2732 			cfs_rq->runnable_load_sum += weight * scaled_delta;
2733 	}
2734 	if (running)
2735 		sa->util_sum += scaled_delta * scale_cpu;
2736 
2737 	sa->period_contrib += delta;
2738 
2739 	if (decayed) {
2740 		sa->load_avg = div_u64(sa->load_sum, LOAD_AVG_MAX);
2741 		if (cfs_rq) {
2742 			cfs_rq->runnable_load_avg =
2743 				div_u64(cfs_rq->runnable_load_sum, LOAD_AVG_MAX);
2744 		}
2745 		sa->util_avg = sa->util_sum / LOAD_AVG_MAX;
2746 	}
2747 
2748 	return decayed;
2749 }
2750 
2751 #ifdef CONFIG_FAIR_GROUP_SCHED
2752 /*
2753  * Updating tg's load_avg is necessary before update_cfs_share (which is done)
2754  * and effective_load (which is not done because it is too costly).
2755  */
2756 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force)
2757 {
2758 	long delta = cfs_rq->avg.load_avg - cfs_rq->tg_load_avg_contrib;
2759 
2760 	/*
2761 	 * No need to update load_avg for root_task_group as it is not used.
2762 	 */
2763 	if (cfs_rq->tg == &root_task_group)
2764 		return;
2765 
2766 	if (force || abs(delta) > cfs_rq->tg_load_avg_contrib / 64) {
2767 		atomic_long_add(delta, &cfs_rq->tg->load_avg);
2768 		cfs_rq->tg_load_avg_contrib = cfs_rq->avg.load_avg;
2769 	}
2770 }
2771 
2772 /*
2773  * Called within set_task_rq() right before setting a task's cpu. The
2774  * caller only guarantees p->pi_lock is held; no other assumptions,
2775  * including the state of rq->lock, should be made.
2776  */
2777 void set_task_rq_fair(struct sched_entity *se,
2778 		      struct cfs_rq *prev, struct cfs_rq *next)
2779 {
2780 	if (!sched_feat(ATTACH_AGE_LOAD))
2781 		return;
2782 
2783 	/*
2784 	 * We are supposed to update the task to "current" time, then its up to
2785 	 * date and ready to go to new CPU/cfs_rq. But we have difficulty in
2786 	 * getting what current time is, so simply throw away the out-of-date
2787 	 * time. This will result in the wakee task is less decayed, but giving
2788 	 * the wakee more load sounds not bad.
2789 	 */
2790 	if (se->avg.last_update_time && prev) {
2791 		u64 p_last_update_time;
2792 		u64 n_last_update_time;
2793 
2794 #ifndef CONFIG_64BIT
2795 		u64 p_last_update_time_copy;
2796 		u64 n_last_update_time_copy;
2797 
2798 		do {
2799 			p_last_update_time_copy = prev->load_last_update_time_copy;
2800 			n_last_update_time_copy = next->load_last_update_time_copy;
2801 
2802 			smp_rmb();
2803 
2804 			p_last_update_time = prev->avg.last_update_time;
2805 			n_last_update_time = next->avg.last_update_time;
2806 
2807 		} while (p_last_update_time != p_last_update_time_copy ||
2808 			 n_last_update_time != n_last_update_time_copy);
2809 #else
2810 		p_last_update_time = prev->avg.last_update_time;
2811 		n_last_update_time = next->avg.last_update_time;
2812 #endif
2813 		__update_load_avg(p_last_update_time, cpu_of(rq_of(prev)),
2814 				  &se->avg, 0, 0, NULL);
2815 		se->avg.last_update_time = n_last_update_time;
2816 	}
2817 }
2818 #else /* CONFIG_FAIR_GROUP_SCHED */
2819 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force) {}
2820 #endif /* CONFIG_FAIR_GROUP_SCHED */
2821 
2822 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq);
2823 
2824 /* Group cfs_rq's load_avg is used for task_h_load and update_cfs_share */
2825 static inline int update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq)
2826 {
2827 	struct sched_avg *sa = &cfs_rq->avg;
2828 	int decayed, removed = 0;
2829 
2830 	if (atomic_long_read(&cfs_rq->removed_load_avg)) {
2831 		s64 r = atomic_long_xchg(&cfs_rq->removed_load_avg, 0);
2832 		sa->load_avg = max_t(long, sa->load_avg - r, 0);
2833 		sa->load_sum = max_t(s64, sa->load_sum - r * LOAD_AVG_MAX, 0);
2834 		removed = 1;
2835 	}
2836 
2837 	if (atomic_long_read(&cfs_rq->removed_util_avg)) {
2838 		long r = atomic_long_xchg(&cfs_rq->removed_util_avg, 0);
2839 		sa->util_avg = max_t(long, sa->util_avg - r, 0);
2840 		sa->util_sum = max_t(s32, sa->util_sum - r * LOAD_AVG_MAX, 0);
2841 	}
2842 
2843 	decayed = __update_load_avg(now, cpu_of(rq_of(cfs_rq)), sa,
2844 		scale_load_down(cfs_rq->load.weight), cfs_rq->curr != NULL, cfs_rq);
2845 
2846 #ifndef CONFIG_64BIT
2847 	smp_wmb();
2848 	cfs_rq->load_last_update_time_copy = sa->last_update_time;
2849 #endif
2850 
2851 	return decayed || removed;
2852 }
2853 
2854 /* Update task and its cfs_rq load average */
2855 static inline void update_load_avg(struct sched_entity *se, int update_tg)
2856 {
2857 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
2858 	u64 now = cfs_rq_clock_task(cfs_rq);
2859 	struct rq *rq = rq_of(cfs_rq);
2860 	int cpu = cpu_of(rq);
2861 
2862 	/*
2863 	 * Track task load average for carrying it to new CPU after migrated, and
2864 	 * track group sched_entity load average for task_h_load calc in migration
2865 	 */
2866 	__update_load_avg(now, cpu, &se->avg,
2867 			  se->on_rq * scale_load_down(se->load.weight),
2868 			  cfs_rq->curr == se, NULL);
2869 
2870 	if (update_cfs_rq_load_avg(now, cfs_rq) && update_tg)
2871 		update_tg_load_avg(cfs_rq, 0);
2872 
2873 	if (cpu == smp_processor_id() && &rq->cfs == cfs_rq) {
2874 		unsigned long max = rq->cpu_capacity_orig;
2875 
2876 		/*
2877 		 * There are a few boundary cases this might miss but it should
2878 		 * get called often enough that that should (hopefully) not be
2879 		 * a real problem -- added to that it only calls on the local
2880 		 * CPU, so if we enqueue remotely we'll miss an update, but
2881 		 * the next tick/schedule should update.
2882 		 *
2883 		 * It will not get called when we go idle, because the idle
2884 		 * thread is a different class (!fair), nor will the utilization
2885 		 * number include things like RT tasks.
2886 		 *
2887 		 * As is, the util number is not freq-invariant (we'd have to
2888 		 * implement arch_scale_freq_capacity() for that).
2889 		 *
2890 		 * See cpu_util().
2891 		 */
2892 		cpufreq_update_util(rq_clock(rq),
2893 				    min(cfs_rq->avg.util_avg, max), max);
2894 	}
2895 }
2896 
2897 static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
2898 {
2899 	if (!sched_feat(ATTACH_AGE_LOAD))
2900 		goto skip_aging;
2901 
2902 	/*
2903 	 * If we got migrated (either between CPUs or between cgroups) we'll
2904 	 * have aged the average right before clearing @last_update_time.
2905 	 */
2906 	if (se->avg.last_update_time) {
2907 		__update_load_avg(cfs_rq->avg.last_update_time, cpu_of(rq_of(cfs_rq)),
2908 				  &se->avg, 0, 0, NULL);
2909 
2910 		/*
2911 		 * XXX: we could have just aged the entire load away if we've been
2912 		 * absent from the fair class for too long.
2913 		 */
2914 	}
2915 
2916 skip_aging:
2917 	se->avg.last_update_time = cfs_rq->avg.last_update_time;
2918 	cfs_rq->avg.load_avg += se->avg.load_avg;
2919 	cfs_rq->avg.load_sum += se->avg.load_sum;
2920 	cfs_rq->avg.util_avg += se->avg.util_avg;
2921 	cfs_rq->avg.util_sum += se->avg.util_sum;
2922 }
2923 
2924 static void detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
2925 {
2926 	__update_load_avg(cfs_rq->avg.last_update_time, cpu_of(rq_of(cfs_rq)),
2927 			  &se->avg, se->on_rq * scale_load_down(se->load.weight),
2928 			  cfs_rq->curr == se, NULL);
2929 
2930 	cfs_rq->avg.load_avg = max_t(long, cfs_rq->avg.load_avg - se->avg.load_avg, 0);
2931 	cfs_rq->avg.load_sum = max_t(s64,  cfs_rq->avg.load_sum - se->avg.load_sum, 0);
2932 	cfs_rq->avg.util_avg = max_t(long, cfs_rq->avg.util_avg - se->avg.util_avg, 0);
2933 	cfs_rq->avg.util_sum = max_t(s32,  cfs_rq->avg.util_sum - se->avg.util_sum, 0);
2934 }
2935 
2936 /* Add the load generated by se into cfs_rq's load average */
2937 static inline void
2938 enqueue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
2939 {
2940 	struct sched_avg *sa = &se->avg;
2941 	u64 now = cfs_rq_clock_task(cfs_rq);
2942 	int migrated, decayed;
2943 
2944 	migrated = !sa->last_update_time;
2945 	if (!migrated) {
2946 		__update_load_avg(now, cpu_of(rq_of(cfs_rq)), sa,
2947 			se->on_rq * scale_load_down(se->load.weight),
2948 			cfs_rq->curr == se, NULL);
2949 	}
2950 
2951 	decayed = update_cfs_rq_load_avg(now, cfs_rq);
2952 
2953 	cfs_rq->runnable_load_avg += sa->load_avg;
2954 	cfs_rq->runnable_load_sum += sa->load_sum;
2955 
2956 	if (migrated)
2957 		attach_entity_load_avg(cfs_rq, se);
2958 
2959 	if (decayed || migrated)
2960 		update_tg_load_avg(cfs_rq, 0);
2961 }
2962 
2963 /* Remove the runnable load generated by se from cfs_rq's runnable load average */
2964 static inline void
2965 dequeue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
2966 {
2967 	update_load_avg(se, 1);
2968 
2969 	cfs_rq->runnable_load_avg =
2970 		max_t(long, cfs_rq->runnable_load_avg - se->avg.load_avg, 0);
2971 	cfs_rq->runnable_load_sum =
2972 		max_t(s64,  cfs_rq->runnable_load_sum - se->avg.load_sum, 0);
2973 }
2974 
2975 #ifndef CONFIG_64BIT
2976 static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
2977 {
2978 	u64 last_update_time_copy;
2979 	u64 last_update_time;
2980 
2981 	do {
2982 		last_update_time_copy = cfs_rq->load_last_update_time_copy;
2983 		smp_rmb();
2984 		last_update_time = cfs_rq->avg.last_update_time;
2985 	} while (last_update_time != last_update_time_copy);
2986 
2987 	return last_update_time;
2988 }
2989 #else
2990 static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
2991 {
2992 	return cfs_rq->avg.last_update_time;
2993 }
2994 #endif
2995 
2996 /*
2997  * Task first catches up with cfs_rq, and then subtract
2998  * itself from the cfs_rq (task must be off the queue now).
2999  */
3000 void remove_entity_load_avg(struct sched_entity *se)
3001 {
3002 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
3003 	u64 last_update_time;
3004 
3005 	/*
3006 	 * Newly created task or never used group entity should not be removed
3007 	 * from its (source) cfs_rq
3008 	 */
3009 	if (se->avg.last_update_time == 0)
3010 		return;
3011 
3012 	last_update_time = cfs_rq_last_update_time(cfs_rq);
3013 
3014 	__update_load_avg(last_update_time, cpu_of(rq_of(cfs_rq)), &se->avg, 0, 0, NULL);
3015 	atomic_long_add(se->avg.load_avg, &cfs_rq->removed_load_avg);
3016 	atomic_long_add(se->avg.util_avg, &cfs_rq->removed_util_avg);
3017 }
3018 
3019 static inline unsigned long cfs_rq_runnable_load_avg(struct cfs_rq *cfs_rq)
3020 {
3021 	return cfs_rq->runnable_load_avg;
3022 }
3023 
3024 static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq)
3025 {
3026 	return cfs_rq->avg.load_avg;
3027 }
3028 
3029 static int idle_balance(struct rq *this_rq);
3030 
3031 #else /* CONFIG_SMP */
3032 
3033 static inline void update_load_avg(struct sched_entity *se, int update_tg) {}
3034 static inline void
3035 enqueue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
3036 static inline void
3037 dequeue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
3038 static inline void remove_entity_load_avg(struct sched_entity *se) {}
3039 
3040 static inline void
3041 attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
3042 static inline void
3043 detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
3044 
3045 static inline int idle_balance(struct rq *rq)
3046 {
3047 	return 0;
3048 }
3049 
3050 #endif /* CONFIG_SMP */
3051 
3052 static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
3053 {
3054 #ifdef CONFIG_SCHEDSTATS
3055 	struct task_struct *tsk = NULL;
3056 
3057 	if (entity_is_task(se))
3058 		tsk = task_of(se);
3059 
3060 	if (se->statistics.sleep_start) {
3061 		u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.sleep_start;
3062 
3063 		if ((s64)delta < 0)
3064 			delta = 0;
3065 
3066 		if (unlikely(delta > se->statistics.sleep_max))
3067 			se->statistics.sleep_max = delta;
3068 
3069 		se->statistics.sleep_start = 0;
3070 		se->statistics.sum_sleep_runtime += delta;
3071 
3072 		if (tsk) {
3073 			account_scheduler_latency(tsk, delta >> 10, 1);
3074 			trace_sched_stat_sleep(tsk, delta);
3075 		}
3076 	}
3077 	if (se->statistics.block_start) {
3078 		u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.block_start;
3079 
3080 		if ((s64)delta < 0)
3081 			delta = 0;
3082 
3083 		if (unlikely(delta > se->statistics.block_max))
3084 			se->statistics.block_max = delta;
3085 
3086 		se->statistics.block_start = 0;
3087 		se->statistics.sum_sleep_runtime += delta;
3088 
3089 		if (tsk) {
3090 			if (tsk->in_iowait) {
3091 				se->statistics.iowait_sum += delta;
3092 				se->statistics.iowait_count++;
3093 				trace_sched_stat_iowait(tsk, delta);
3094 			}
3095 
3096 			trace_sched_stat_blocked(tsk, delta);
3097 
3098 			/*
3099 			 * Blocking time is in units of nanosecs, so shift by
3100 			 * 20 to get a milliseconds-range estimation of the
3101 			 * amount of time that the task spent sleeping:
3102 			 */
3103 			if (unlikely(prof_on == SLEEP_PROFILING)) {
3104 				profile_hits(SLEEP_PROFILING,
3105 						(void *)get_wchan(tsk),
3106 						delta >> 20);
3107 			}
3108 			account_scheduler_latency(tsk, delta >> 10, 0);
3109 		}
3110 	}
3111 #endif
3112 }
3113 
3114 static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
3115 {
3116 #ifdef CONFIG_SCHED_DEBUG
3117 	s64 d = se->vruntime - cfs_rq->min_vruntime;
3118 
3119 	if (d < 0)
3120 		d = -d;
3121 
3122 	if (d > 3*sysctl_sched_latency)
3123 		schedstat_inc(cfs_rq, nr_spread_over);
3124 #endif
3125 }
3126 
3127 static void
3128 place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
3129 {
3130 	u64 vruntime = cfs_rq->min_vruntime;
3131 
3132 	/*
3133 	 * The 'current' period is already promised to the current tasks,
3134 	 * however the extra weight of the new task will slow them down a
3135 	 * little, place the new task so that it fits in the slot that
3136 	 * stays open at the end.
3137 	 */
3138 	if (initial && sched_feat(START_DEBIT))
3139 		vruntime += sched_vslice(cfs_rq, se);
3140 
3141 	/* sleeps up to a single latency don't count. */
3142 	if (!initial) {
3143 		unsigned long thresh = sysctl_sched_latency;
3144 
3145 		/*
3146 		 * Halve their sleep time's effect, to allow
3147 		 * for a gentler effect of sleepers:
3148 		 */
3149 		if (sched_feat(GENTLE_FAIR_SLEEPERS))
3150 			thresh >>= 1;
3151 
3152 		vruntime -= thresh;
3153 	}
3154 
3155 	/* ensure we never gain time by being placed backwards. */
3156 	se->vruntime = max_vruntime(se->vruntime, vruntime);
3157 }
3158 
3159 static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
3160 
3161 static inline void check_schedstat_required(void)
3162 {
3163 #ifdef CONFIG_SCHEDSTATS
3164 	if (schedstat_enabled())
3165 		return;
3166 
3167 	/* Force schedstat enabled if a dependent tracepoint is active */
3168 	if (trace_sched_stat_wait_enabled()    ||
3169 			trace_sched_stat_sleep_enabled()   ||
3170 			trace_sched_stat_iowait_enabled()  ||
3171 			trace_sched_stat_blocked_enabled() ||
3172 			trace_sched_stat_runtime_enabled())  {
3173 		pr_warn_once("Scheduler tracepoints stat_sleep, stat_iowait, "
3174 			     "stat_blocked and stat_runtime require the "
3175 			     "kernel parameter schedstats=enabled or "
3176 			     "kernel.sched_schedstats=1\n");
3177 	}
3178 #endif
3179 }
3180 
3181 static void
3182 enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
3183 {
3184 	bool renorm = !(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_WAKING);
3185 	bool curr = cfs_rq->curr == se;
3186 
3187 	/*
3188 	 * If we're the current task, we must renormalise before calling
3189 	 * update_curr().
3190 	 */
3191 	if (renorm && curr)
3192 		se->vruntime += cfs_rq->min_vruntime;
3193 
3194 	update_curr(cfs_rq);
3195 
3196 	/*
3197 	 * Otherwise, renormalise after, such that we're placed at the current
3198 	 * moment in time, instead of some random moment in the past.
3199 	 */
3200 	if (renorm && !curr)
3201 		se->vruntime += cfs_rq->min_vruntime;
3202 
3203 	enqueue_entity_load_avg(cfs_rq, se);
3204 	account_entity_enqueue(cfs_rq, se);
3205 	update_cfs_shares(cfs_rq);
3206 
3207 	if (flags & ENQUEUE_WAKEUP) {
3208 		place_entity(cfs_rq, se, 0);
3209 		if (schedstat_enabled())
3210 			enqueue_sleeper(cfs_rq, se);
3211 	}
3212 
3213 	check_schedstat_required();
3214 	if (schedstat_enabled()) {
3215 		update_stats_enqueue(cfs_rq, se);
3216 		check_spread(cfs_rq, se);
3217 	}
3218 	if (!curr)
3219 		__enqueue_entity(cfs_rq, se);
3220 	se->on_rq = 1;
3221 
3222 	if (cfs_rq->nr_running == 1) {
3223 		list_add_leaf_cfs_rq(cfs_rq);
3224 		check_enqueue_throttle(cfs_rq);
3225 	}
3226 }
3227 
3228 static void __clear_buddies_last(struct sched_entity *se)
3229 {
3230 	for_each_sched_entity(se) {
3231 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
3232 		if (cfs_rq->last != se)
3233 			break;
3234 
3235 		cfs_rq->last = NULL;
3236 	}
3237 }
3238 
3239 static void __clear_buddies_next(struct sched_entity *se)
3240 {
3241 	for_each_sched_entity(se) {
3242 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
3243 		if (cfs_rq->next != se)
3244 			break;
3245 
3246 		cfs_rq->next = NULL;
3247 	}
3248 }
3249 
3250 static void __clear_buddies_skip(struct sched_entity *se)
3251 {
3252 	for_each_sched_entity(se) {
3253 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
3254 		if (cfs_rq->skip != se)
3255 			break;
3256 
3257 		cfs_rq->skip = NULL;
3258 	}
3259 }
3260 
3261 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
3262 {
3263 	if (cfs_rq->last == se)
3264 		__clear_buddies_last(se);
3265 
3266 	if (cfs_rq->next == se)
3267 		__clear_buddies_next(se);
3268 
3269 	if (cfs_rq->skip == se)
3270 		__clear_buddies_skip(se);
3271 }
3272 
3273 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
3274 
3275 static void
3276 dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
3277 {
3278 	/*
3279 	 * Update run-time statistics of the 'current'.
3280 	 */
3281 	update_curr(cfs_rq);
3282 	dequeue_entity_load_avg(cfs_rq, se);
3283 
3284 	if (schedstat_enabled())
3285 		update_stats_dequeue(cfs_rq, se, flags);
3286 
3287 	clear_buddies(cfs_rq, se);
3288 
3289 	if (se != cfs_rq->curr)
3290 		__dequeue_entity(cfs_rq, se);
3291 	se->on_rq = 0;
3292 	account_entity_dequeue(cfs_rq, se);
3293 
3294 	/*
3295 	 * Normalize the entity after updating the min_vruntime because the
3296 	 * update can refer to the ->curr item and we need to reflect this
3297 	 * movement in our normalized position.
3298 	 */
3299 	if (!(flags & DEQUEUE_SLEEP))
3300 		se->vruntime -= cfs_rq->min_vruntime;
3301 
3302 	/* return excess runtime on last dequeue */
3303 	return_cfs_rq_runtime(cfs_rq);
3304 
3305 	update_min_vruntime(cfs_rq);
3306 	update_cfs_shares(cfs_rq);
3307 }
3308 
3309 /*
3310  * Preempt the current task with a newly woken task if needed:
3311  */
3312 static void
3313 check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
3314 {
3315 	unsigned long ideal_runtime, delta_exec;
3316 	struct sched_entity *se;
3317 	s64 delta;
3318 
3319 	ideal_runtime = sched_slice(cfs_rq, curr);
3320 	delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
3321 	if (delta_exec > ideal_runtime) {
3322 		resched_curr(rq_of(cfs_rq));
3323 		/*
3324 		 * The current task ran long enough, ensure it doesn't get
3325 		 * re-elected due to buddy favours.
3326 		 */
3327 		clear_buddies(cfs_rq, curr);
3328 		return;
3329 	}
3330 
3331 	/*
3332 	 * Ensure that a task that missed wakeup preemption by a
3333 	 * narrow margin doesn't have to wait for a full slice.
3334 	 * This also mitigates buddy induced latencies under load.
3335 	 */
3336 	if (delta_exec < sysctl_sched_min_granularity)
3337 		return;
3338 
3339 	se = __pick_first_entity(cfs_rq);
3340 	delta = curr->vruntime - se->vruntime;
3341 
3342 	if (delta < 0)
3343 		return;
3344 
3345 	if (delta > ideal_runtime)
3346 		resched_curr(rq_of(cfs_rq));
3347 }
3348 
3349 static void
3350 set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
3351 {
3352 	/* 'current' is not kept within the tree. */
3353 	if (se->on_rq) {
3354 		/*
3355 		 * Any task has to be enqueued before it get to execute on
3356 		 * a CPU. So account for the time it spent waiting on the
3357 		 * runqueue.
3358 		 */
3359 		if (schedstat_enabled())
3360 			update_stats_wait_end(cfs_rq, se);
3361 		__dequeue_entity(cfs_rq, se);
3362 		update_load_avg(se, 1);
3363 	}
3364 
3365 	update_stats_curr_start(cfs_rq, se);
3366 	cfs_rq->curr = se;
3367 #ifdef CONFIG_SCHEDSTATS
3368 	/*
3369 	 * Track our maximum slice length, if the CPU's load is at
3370 	 * least twice that of our own weight (i.e. dont track it
3371 	 * when there are only lesser-weight tasks around):
3372 	 */
3373 	if (schedstat_enabled() && rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
3374 		se->statistics.slice_max = max(se->statistics.slice_max,
3375 			se->sum_exec_runtime - se->prev_sum_exec_runtime);
3376 	}
3377 #endif
3378 	se->prev_sum_exec_runtime = se->sum_exec_runtime;
3379 }
3380 
3381 static int
3382 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
3383 
3384 /*
3385  * Pick the next process, keeping these things in mind, in this order:
3386  * 1) keep things fair between processes/task groups
3387  * 2) pick the "next" process, since someone really wants that to run
3388  * 3) pick the "last" process, for cache locality
3389  * 4) do not run the "skip" process, if something else is available
3390  */
3391 static struct sched_entity *
3392 pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr)
3393 {
3394 	struct sched_entity *left = __pick_first_entity(cfs_rq);
3395 	struct sched_entity *se;
3396 
3397 	/*
3398 	 * If curr is set we have to see if its left of the leftmost entity
3399 	 * still in the tree, provided there was anything in the tree at all.
3400 	 */
3401 	if (!left || (curr && entity_before(curr, left)))
3402 		left = curr;
3403 
3404 	se = left; /* ideally we run the leftmost entity */
3405 
3406 	/*
3407 	 * Avoid running the skip buddy, if running something else can
3408 	 * be done without getting too unfair.
3409 	 */
3410 	if (cfs_rq->skip == se) {
3411 		struct sched_entity *second;
3412 
3413 		if (se == curr) {
3414 			second = __pick_first_entity(cfs_rq);
3415 		} else {
3416 			second = __pick_next_entity(se);
3417 			if (!second || (curr && entity_before(curr, second)))
3418 				second = curr;
3419 		}
3420 
3421 		if (second && wakeup_preempt_entity(second, left) < 1)
3422 			se = second;
3423 	}
3424 
3425 	/*
3426 	 * Prefer last buddy, try to return the CPU to a preempted task.
3427 	 */
3428 	if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
3429 		se = cfs_rq->last;
3430 
3431 	/*
3432 	 * Someone really wants this to run. If it's not unfair, run it.
3433 	 */
3434 	if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
3435 		se = cfs_rq->next;
3436 
3437 	clear_buddies(cfs_rq, se);
3438 
3439 	return se;
3440 }
3441 
3442 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
3443 
3444 static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
3445 {
3446 	/*
3447 	 * If still on the runqueue then deactivate_task()
3448 	 * was not called and update_curr() has to be done:
3449 	 */
3450 	if (prev->on_rq)
3451 		update_curr(cfs_rq);
3452 
3453 	/* throttle cfs_rqs exceeding runtime */
3454 	check_cfs_rq_runtime(cfs_rq);
3455 
3456 	if (schedstat_enabled()) {
3457 		check_spread(cfs_rq, prev);
3458 		if (prev->on_rq)
3459 			update_stats_wait_start(cfs_rq, prev);
3460 	}
3461 
3462 	if (prev->on_rq) {
3463 		/* Put 'current' back into the tree. */
3464 		__enqueue_entity(cfs_rq, prev);
3465 		/* in !on_rq case, update occurred at dequeue */
3466 		update_load_avg(prev, 0);
3467 	}
3468 	cfs_rq->curr = NULL;
3469 }
3470 
3471 static void
3472 entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
3473 {
3474 	/*
3475 	 * Update run-time statistics of the 'current'.
3476 	 */
3477 	update_curr(cfs_rq);
3478 
3479 	/*
3480 	 * Ensure that runnable average is periodically updated.
3481 	 */
3482 	update_load_avg(curr, 1);
3483 	update_cfs_shares(cfs_rq);
3484 
3485 #ifdef CONFIG_SCHED_HRTICK
3486 	/*
3487 	 * queued ticks are scheduled to match the slice, so don't bother
3488 	 * validating it and just reschedule.
3489 	 */
3490 	if (queued) {
3491 		resched_curr(rq_of(cfs_rq));
3492 		return;
3493 	}
3494 	/*
3495 	 * don't let the period tick interfere with the hrtick preemption
3496 	 */
3497 	if (!sched_feat(DOUBLE_TICK) &&
3498 			hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
3499 		return;
3500 #endif
3501 
3502 	if (cfs_rq->nr_running > 1)
3503 		check_preempt_tick(cfs_rq, curr);
3504 }
3505 
3506 
3507 /**************************************************
3508  * CFS bandwidth control machinery
3509  */
3510 
3511 #ifdef CONFIG_CFS_BANDWIDTH
3512 
3513 #ifdef HAVE_JUMP_LABEL
3514 static struct static_key __cfs_bandwidth_used;
3515 
3516 static inline bool cfs_bandwidth_used(void)
3517 {
3518 	return static_key_false(&__cfs_bandwidth_used);
3519 }
3520 
3521 void cfs_bandwidth_usage_inc(void)
3522 {
3523 	static_key_slow_inc(&__cfs_bandwidth_used);
3524 }
3525 
3526 void cfs_bandwidth_usage_dec(void)
3527 {
3528 	static_key_slow_dec(&__cfs_bandwidth_used);
3529 }
3530 #else /* HAVE_JUMP_LABEL */
3531 static bool cfs_bandwidth_used(void)
3532 {
3533 	return true;
3534 }
3535 
3536 void cfs_bandwidth_usage_inc(void) {}
3537 void cfs_bandwidth_usage_dec(void) {}
3538 #endif /* HAVE_JUMP_LABEL */
3539 
3540 /*
3541  * default period for cfs group bandwidth.
3542  * default: 0.1s, units: nanoseconds
3543  */
3544 static inline u64 default_cfs_period(void)
3545 {
3546 	return 100000000ULL;
3547 }
3548 
3549 static inline u64 sched_cfs_bandwidth_slice(void)
3550 {
3551 	return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
3552 }
3553 
3554 /*
3555  * Replenish runtime according to assigned quota and update expiration time.
3556  * We use sched_clock_cpu directly instead of rq->clock to avoid adding
3557  * additional synchronization around rq->lock.
3558  *
3559  * requires cfs_b->lock
3560  */
3561 void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
3562 {
3563 	u64 now;
3564 
3565 	if (cfs_b->quota == RUNTIME_INF)
3566 		return;
3567 
3568 	now = sched_clock_cpu(smp_processor_id());
3569 	cfs_b->runtime = cfs_b->quota;
3570 	cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
3571 }
3572 
3573 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
3574 {
3575 	return &tg->cfs_bandwidth;
3576 }
3577 
3578 /* rq->task_clock normalized against any time this cfs_rq has spent throttled */
3579 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
3580 {
3581 	if (unlikely(cfs_rq->throttle_count))
3582 		return cfs_rq->throttled_clock_task;
3583 
3584 	return rq_clock_task(rq_of(cfs_rq)) - cfs_rq->throttled_clock_task_time;
3585 }
3586 
3587 /* returns 0 on failure to allocate runtime */
3588 static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3589 {
3590 	struct task_group *tg = cfs_rq->tg;
3591 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
3592 	u64 amount = 0, min_amount, expires;
3593 
3594 	/* note: this is a positive sum as runtime_remaining <= 0 */
3595 	min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;
3596 
3597 	raw_spin_lock(&cfs_b->lock);
3598 	if (cfs_b->quota == RUNTIME_INF)
3599 		amount = min_amount;
3600 	else {
3601 		start_cfs_bandwidth(cfs_b);
3602 
3603 		if (cfs_b->runtime > 0) {
3604 			amount = min(cfs_b->runtime, min_amount);
3605 			cfs_b->runtime -= amount;
3606 			cfs_b->idle = 0;
3607 		}
3608 	}
3609 	expires = cfs_b->runtime_expires;
3610 	raw_spin_unlock(&cfs_b->lock);
3611 
3612 	cfs_rq->runtime_remaining += amount;
3613 	/*
3614 	 * we may have advanced our local expiration to account for allowed
3615 	 * spread between our sched_clock and the one on which runtime was
3616 	 * issued.
3617 	 */
3618 	if ((s64)(expires - cfs_rq->runtime_expires) > 0)
3619 		cfs_rq->runtime_expires = expires;
3620 
3621 	return cfs_rq->runtime_remaining > 0;
3622 }
3623 
3624 /*
3625  * Note: This depends on the synchronization provided by sched_clock and the
3626  * fact that rq->clock snapshots this value.
3627  */
3628 static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3629 {
3630 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3631 
3632 	/* if the deadline is ahead of our clock, nothing to do */
3633 	if (likely((s64)(rq_clock(rq_of(cfs_rq)) - cfs_rq->runtime_expires) < 0))
3634 		return;
3635 
3636 	if (cfs_rq->runtime_remaining < 0)
3637 		return;
3638 
3639 	/*
3640 	 * If the local deadline has passed we have to consider the
3641 	 * possibility that our sched_clock is 'fast' and the global deadline
3642 	 * has not truly expired.
3643 	 *
3644 	 * Fortunately we can check determine whether this the case by checking
3645 	 * whether the global deadline has advanced. It is valid to compare
3646 	 * cfs_b->runtime_expires without any locks since we only care about
3647 	 * exact equality, so a partial write will still work.
3648 	 */
3649 
3650 	if (cfs_rq->runtime_expires != cfs_b->runtime_expires) {
3651 		/* extend local deadline, drift is bounded above by 2 ticks */
3652 		cfs_rq->runtime_expires += TICK_NSEC;
3653 	} else {
3654 		/* global deadline is ahead, expiration has passed */
3655 		cfs_rq->runtime_remaining = 0;
3656 	}
3657 }
3658 
3659 static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
3660 {
3661 	/* dock delta_exec before expiring quota (as it could span periods) */
3662 	cfs_rq->runtime_remaining -= delta_exec;
3663 	expire_cfs_rq_runtime(cfs_rq);
3664 
3665 	if (likely(cfs_rq->runtime_remaining > 0))
3666 		return;
3667 
3668 	/*
3669 	 * if we're unable to extend our runtime we resched so that the active
3670 	 * hierarchy can be throttled
3671 	 */
3672 	if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
3673 		resched_curr(rq_of(cfs_rq));
3674 }
3675 
3676 static __always_inline
3677 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
3678 {
3679 	if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
3680 		return;
3681 
3682 	__account_cfs_rq_runtime(cfs_rq, delta_exec);
3683 }
3684 
3685 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
3686 {
3687 	return cfs_bandwidth_used() && cfs_rq->throttled;
3688 }
3689 
3690 /* check whether cfs_rq, or any parent, is throttled */
3691 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
3692 {
3693 	return cfs_bandwidth_used() && cfs_rq->throttle_count;
3694 }
3695 
3696 /*
3697  * Ensure that neither of the group entities corresponding to src_cpu or
3698  * dest_cpu are members of a throttled hierarchy when performing group
3699  * load-balance operations.
3700  */
3701 static inline int throttled_lb_pair(struct task_group *tg,
3702 				    int src_cpu, int dest_cpu)
3703 {
3704 	struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
3705 
3706 	src_cfs_rq = tg->cfs_rq[src_cpu];
3707 	dest_cfs_rq = tg->cfs_rq[dest_cpu];
3708 
3709 	return throttled_hierarchy(src_cfs_rq) ||
3710 	       throttled_hierarchy(dest_cfs_rq);
3711 }
3712 
3713 /* updated child weight may affect parent so we have to do this bottom up */
3714 static int tg_unthrottle_up(struct task_group *tg, void *data)
3715 {
3716 	struct rq *rq = data;
3717 	struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
3718 
3719 	cfs_rq->throttle_count--;
3720 #ifdef CONFIG_SMP
3721 	if (!cfs_rq->throttle_count) {
3722 		/* adjust cfs_rq_clock_task() */
3723 		cfs_rq->throttled_clock_task_time += rq_clock_task(rq) -
3724 					     cfs_rq->throttled_clock_task;
3725 	}
3726 #endif
3727 
3728 	return 0;
3729 }
3730 
3731 static int tg_throttle_down(struct task_group *tg, void *data)
3732 {
3733 	struct rq *rq = data;
3734 	struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
3735 
3736 	/* group is entering throttled state, stop time */
3737 	if (!cfs_rq->throttle_count)
3738 		cfs_rq->throttled_clock_task = rq_clock_task(rq);
3739 	cfs_rq->throttle_count++;
3740 
3741 	return 0;
3742 }
3743 
3744 static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
3745 {
3746 	struct rq *rq = rq_of(cfs_rq);
3747 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3748 	struct sched_entity *se;
3749 	long task_delta, dequeue = 1;
3750 	bool empty;
3751 
3752 	se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
3753 
3754 	/* freeze hierarchy runnable averages while throttled */
3755 	rcu_read_lock();
3756 	walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
3757 	rcu_read_unlock();
3758 
3759 	task_delta = cfs_rq->h_nr_running;
3760 	for_each_sched_entity(se) {
3761 		struct cfs_rq *qcfs_rq = cfs_rq_of(se);
3762 		/* throttled entity or throttle-on-deactivate */
3763 		if (!se->on_rq)
3764 			break;
3765 
3766 		if (dequeue)
3767 			dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
3768 		qcfs_rq->h_nr_running -= task_delta;
3769 
3770 		if (qcfs_rq->load.weight)
3771 			dequeue = 0;
3772 	}
3773 
3774 	if (!se)
3775 		sub_nr_running(rq, task_delta);
3776 
3777 	cfs_rq->throttled = 1;
3778 	cfs_rq->throttled_clock = rq_clock(rq);
3779 	raw_spin_lock(&cfs_b->lock);
3780 	empty = list_empty(&cfs_b->throttled_cfs_rq);
3781 
3782 	/*
3783 	 * Add to the _head_ of the list, so that an already-started
3784 	 * distribute_cfs_runtime will not see us
3785 	 */
3786 	list_add_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
3787 
3788 	/*
3789 	 * If we're the first throttled task, make sure the bandwidth
3790 	 * timer is running.
3791 	 */
3792 	if (empty)
3793 		start_cfs_bandwidth(cfs_b);
3794 
3795 	raw_spin_unlock(&cfs_b->lock);
3796 }
3797 
3798 void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
3799 {
3800 	struct rq *rq = rq_of(cfs_rq);
3801 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3802 	struct sched_entity *se;
3803 	int enqueue = 1;
3804 	long task_delta;
3805 
3806 	se = cfs_rq->tg->se[cpu_of(rq)];
3807 
3808 	cfs_rq->throttled = 0;
3809 
3810 	update_rq_clock(rq);
3811 
3812 	raw_spin_lock(&cfs_b->lock);
3813 	cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
3814 	list_del_rcu(&cfs_rq->throttled_list);
3815 	raw_spin_unlock(&cfs_b->lock);
3816 
3817 	/* update hierarchical throttle state */
3818 	walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
3819 
3820 	if (!cfs_rq->load.weight)
3821 		return;
3822 
3823 	task_delta = cfs_rq->h_nr_running;
3824 	for_each_sched_entity(se) {
3825 		if (se->on_rq)
3826 			enqueue = 0;
3827 
3828 		cfs_rq = cfs_rq_of(se);
3829 		if (enqueue)
3830 			enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
3831 		cfs_rq->h_nr_running += task_delta;
3832 
3833 		if (cfs_rq_throttled(cfs_rq))
3834 			break;
3835 	}
3836 
3837 	if (!se)
3838 		add_nr_running(rq, task_delta);
3839 
3840 	/* determine whether we need to wake up potentially idle cpu */
3841 	if (rq->curr == rq->idle && rq->cfs.nr_running)
3842 		resched_curr(rq);
3843 }
3844 
3845 static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
3846 		u64 remaining, u64 expires)
3847 {
3848 	struct cfs_rq *cfs_rq;
3849 	u64 runtime;
3850 	u64 starting_runtime = remaining;
3851 
3852 	rcu_read_lock();
3853 	list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
3854 				throttled_list) {
3855 		struct rq *rq = rq_of(cfs_rq);
3856 
3857 		raw_spin_lock(&rq->lock);
3858 		if (!cfs_rq_throttled(cfs_rq))
3859 			goto next;
3860 
3861 		runtime = -cfs_rq->runtime_remaining + 1;
3862 		if (runtime > remaining)
3863 			runtime = remaining;
3864 		remaining -= runtime;
3865 
3866 		cfs_rq->runtime_remaining += runtime;
3867 		cfs_rq->runtime_expires = expires;
3868 
3869 		/* we check whether we're throttled above */
3870 		if (cfs_rq->runtime_remaining > 0)
3871 			unthrottle_cfs_rq(cfs_rq);
3872 
3873 next:
3874 		raw_spin_unlock(&rq->lock);
3875 
3876 		if (!remaining)
3877 			break;
3878 	}
3879 	rcu_read_unlock();
3880 
3881 	return starting_runtime - remaining;
3882 }
3883 
3884 /*
3885  * Responsible for refilling a task_group's bandwidth and unthrottling its
3886  * cfs_rqs as appropriate. If there has been no activity within the last
3887  * period the timer is deactivated until scheduling resumes; cfs_b->idle is
3888  * used to track this state.
3889  */
3890 static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
3891 {
3892 	u64 runtime, runtime_expires;
3893 	int throttled;
3894 
3895 	/* no need to continue the timer with no bandwidth constraint */
3896 	if (cfs_b->quota == RUNTIME_INF)
3897 		goto out_deactivate;
3898 
3899 	throttled = !list_empty(&cfs_b->throttled_cfs_rq);
3900 	cfs_b->nr_periods += overrun;
3901 
3902 	/*
3903 	 * idle depends on !throttled (for the case of a large deficit), and if
3904 	 * we're going inactive then everything else can be deferred
3905 	 */
3906 	if (cfs_b->idle && !throttled)
3907 		goto out_deactivate;
3908 
3909 	__refill_cfs_bandwidth_runtime(cfs_b);
3910 
3911 	if (!throttled) {
3912 		/* mark as potentially idle for the upcoming period */
3913 		cfs_b->idle = 1;
3914 		return 0;
3915 	}
3916 
3917 	/* account preceding periods in which throttling occurred */
3918 	cfs_b->nr_throttled += overrun;
3919 
3920 	runtime_expires = cfs_b->runtime_expires;
3921 
3922 	/*
3923 	 * This check is repeated as we are holding onto the new bandwidth while
3924 	 * we unthrottle. This can potentially race with an unthrottled group
3925 	 * trying to acquire new bandwidth from the global pool. This can result
3926 	 * in us over-using our runtime if it is all used during this loop, but
3927 	 * only by limited amounts in that extreme case.
3928 	 */
3929 	while (throttled && cfs_b->runtime > 0) {
3930 		runtime = cfs_b->runtime;
3931 		raw_spin_unlock(&cfs_b->lock);
3932 		/* we can't nest cfs_b->lock while distributing bandwidth */
3933 		runtime = distribute_cfs_runtime(cfs_b, runtime,
3934 						 runtime_expires);
3935 		raw_spin_lock(&cfs_b->lock);
3936 
3937 		throttled = !list_empty(&cfs_b->throttled_cfs_rq);
3938 
3939 		cfs_b->runtime -= min(runtime, cfs_b->runtime);
3940 	}
3941 
3942 	/*
3943 	 * While we are ensured activity in the period following an
3944 	 * unthrottle, this also covers the case in which the new bandwidth is
3945 	 * insufficient to cover the existing bandwidth deficit.  (Forcing the
3946 	 * timer to remain active while there are any throttled entities.)
3947 	 */
3948 	cfs_b->idle = 0;
3949 
3950 	return 0;
3951 
3952 out_deactivate:
3953 	return 1;
3954 }
3955 
3956 /* a cfs_rq won't donate quota below this amount */
3957 static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
3958 /* minimum remaining period time to redistribute slack quota */
3959 static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
3960 /* how long we wait to gather additional slack before distributing */
3961 static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
3962 
3963 /*
3964  * Are we near the end of the current quota period?
3965  *
3966  * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
3967  * hrtimer base being cleared by hrtimer_start. In the case of
3968  * migrate_hrtimers, base is never cleared, so we are fine.
3969  */
3970 static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
3971 {
3972 	struct hrtimer *refresh_timer = &cfs_b->period_timer;
3973 	u64 remaining;
3974 
3975 	/* if the call-back is running a quota refresh is already occurring */
3976 	if (hrtimer_callback_running(refresh_timer))
3977 		return 1;
3978 
3979 	/* is a quota refresh about to occur? */
3980 	remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
3981 	if (remaining < min_expire)
3982 		return 1;
3983 
3984 	return 0;
3985 }
3986 
3987 static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
3988 {
3989 	u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
3990 
3991 	/* if there's a quota refresh soon don't bother with slack */
3992 	if (runtime_refresh_within(cfs_b, min_left))
3993 		return;
3994 
3995 	hrtimer_start(&cfs_b->slack_timer,
3996 			ns_to_ktime(cfs_bandwidth_slack_period),
3997 			HRTIMER_MODE_REL);
3998 }
3999 
4000 /* we know any runtime found here is valid as update_curr() precedes return */
4001 static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4002 {
4003 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4004 	s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
4005 
4006 	if (slack_runtime <= 0)
4007 		return;
4008 
4009 	raw_spin_lock(&cfs_b->lock);
4010 	if (cfs_b->quota != RUNTIME_INF &&
4011 	    cfs_rq->runtime_expires == cfs_b->runtime_expires) {
4012 		cfs_b->runtime += slack_runtime;
4013 
4014 		/* we are under rq->lock, defer unthrottling using a timer */
4015 		if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
4016 		    !list_empty(&cfs_b->throttled_cfs_rq))
4017 			start_cfs_slack_bandwidth(cfs_b);
4018 	}
4019 	raw_spin_unlock(&cfs_b->lock);
4020 
4021 	/* even if it's not valid for return we don't want to try again */
4022 	cfs_rq->runtime_remaining -= slack_runtime;
4023 }
4024 
4025 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4026 {
4027 	if (!cfs_bandwidth_used())
4028 		return;
4029 
4030 	if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
4031 		return;
4032 
4033 	__return_cfs_rq_runtime(cfs_rq);
4034 }
4035 
4036 /*
4037  * This is done with a timer (instead of inline with bandwidth return) since
4038  * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
4039  */
4040 static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
4041 {
4042 	u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
4043 	u64 expires;
4044 
4045 	/* confirm we're still not at a refresh boundary */
4046 	raw_spin_lock(&cfs_b->lock);
4047 	if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
4048 		raw_spin_unlock(&cfs_b->lock);
4049 		return;
4050 	}
4051 
4052 	if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice)
4053 		runtime = cfs_b->runtime;
4054 
4055 	expires = cfs_b->runtime_expires;
4056 	raw_spin_unlock(&cfs_b->lock);
4057 
4058 	if (!runtime)
4059 		return;
4060 
4061 	runtime = distribute_cfs_runtime(cfs_b, runtime, expires);
4062 
4063 	raw_spin_lock(&cfs_b->lock);
4064 	if (expires == cfs_b->runtime_expires)
4065 		cfs_b->runtime -= min(runtime, cfs_b->runtime);
4066 	raw_spin_unlock(&cfs_b->lock);
4067 }
4068 
4069 /*
4070  * When a group wakes up we want to make sure that its quota is not already
4071  * expired/exceeded, otherwise it may be allowed to steal additional ticks of
4072  * runtime as update_curr() throttling can not not trigger until it's on-rq.
4073  */
4074 static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
4075 {
4076 	if (!cfs_bandwidth_used())
4077 		return;
4078 
4079 	/* an active group must be handled by the update_curr()->put() path */
4080 	if (!cfs_rq->runtime_enabled || cfs_rq->curr)
4081 		return;
4082 
4083 	/* ensure the group is not already throttled */
4084 	if (cfs_rq_throttled(cfs_rq))
4085 		return;
4086 
4087 	/* update runtime allocation */
4088 	account_cfs_rq_runtime(cfs_rq, 0);
4089 	if (cfs_rq->runtime_remaining <= 0)
4090 		throttle_cfs_rq(cfs_rq);
4091 }
4092 
4093 /* conditionally throttle active cfs_rq's from put_prev_entity() */
4094 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4095 {
4096 	if (!cfs_bandwidth_used())
4097 		return false;
4098 
4099 	if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
4100 		return false;
4101 
4102 	/*
4103 	 * it's possible for a throttled entity to be forced into a running
4104 	 * state (e.g. set_curr_task), in this case we're finished.
4105 	 */
4106 	if (cfs_rq_throttled(cfs_rq))
4107 		return true;
4108 
4109 	throttle_cfs_rq(cfs_rq);
4110 	return true;
4111 }
4112 
4113 static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
4114 {
4115 	struct cfs_bandwidth *cfs_b =
4116 		container_of(timer, struct cfs_bandwidth, slack_timer);
4117 
4118 	do_sched_cfs_slack_timer(cfs_b);
4119 
4120 	return HRTIMER_NORESTART;
4121 }
4122 
4123 static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
4124 {
4125 	struct cfs_bandwidth *cfs_b =
4126 		container_of(timer, struct cfs_bandwidth, period_timer);
4127 	int overrun;
4128 	int idle = 0;
4129 
4130 	raw_spin_lock(&cfs_b->lock);
4131 	for (;;) {
4132 		overrun = hrtimer_forward_now(timer, cfs_b->period);
4133 		if (!overrun)
4134 			break;
4135 
4136 		idle = do_sched_cfs_period_timer(cfs_b, overrun);
4137 	}
4138 	if (idle)
4139 		cfs_b->period_active = 0;
4140 	raw_spin_unlock(&cfs_b->lock);
4141 
4142 	return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
4143 }
4144 
4145 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
4146 {
4147 	raw_spin_lock_init(&cfs_b->lock);
4148 	cfs_b->runtime = 0;
4149 	cfs_b->quota = RUNTIME_INF;
4150 	cfs_b->period = ns_to_ktime(default_cfs_period());
4151 
4152 	INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
4153 	hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
4154 	cfs_b->period_timer.function = sched_cfs_period_timer;
4155 	hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
4156 	cfs_b->slack_timer.function = sched_cfs_slack_timer;
4157 }
4158 
4159 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4160 {
4161 	cfs_rq->runtime_enabled = 0;
4162 	INIT_LIST_HEAD(&cfs_rq->throttled_list);
4163 }
4164 
4165 void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
4166 {
4167 	lockdep_assert_held(&cfs_b->lock);
4168 
4169 	if (!cfs_b->period_active) {
4170 		cfs_b->period_active = 1;
4171 		hrtimer_forward_now(&cfs_b->period_timer, cfs_b->period);
4172 		hrtimer_start_expires(&cfs_b->period_timer, HRTIMER_MODE_ABS_PINNED);
4173 	}
4174 }
4175 
4176 static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
4177 {
4178 	/* init_cfs_bandwidth() was not called */
4179 	if (!cfs_b->throttled_cfs_rq.next)
4180 		return;
4181 
4182 	hrtimer_cancel(&cfs_b->period_timer);
4183 	hrtimer_cancel(&cfs_b->slack_timer);
4184 }
4185 
4186 static void __maybe_unused update_runtime_enabled(struct rq *rq)
4187 {
4188 	struct cfs_rq *cfs_rq;
4189 
4190 	for_each_leaf_cfs_rq(rq, cfs_rq) {
4191 		struct cfs_bandwidth *cfs_b = &cfs_rq->tg->cfs_bandwidth;
4192 
4193 		raw_spin_lock(&cfs_b->lock);
4194 		cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF;
4195 		raw_spin_unlock(&cfs_b->lock);
4196 	}
4197 }
4198 
4199 static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
4200 {
4201 	struct cfs_rq *cfs_rq;
4202 
4203 	for_each_leaf_cfs_rq(rq, cfs_rq) {
4204 		if (!cfs_rq->runtime_enabled)
4205 			continue;
4206 
4207 		/*
4208 		 * clock_task is not advancing so we just need to make sure
4209 		 * there's some valid quota amount
4210 		 */
4211 		cfs_rq->runtime_remaining = 1;
4212 		/*
4213 		 * Offline rq is schedulable till cpu is completely disabled
4214 		 * in take_cpu_down(), so we prevent new cfs throttling here.
4215 		 */
4216 		cfs_rq->runtime_enabled = 0;
4217 
4218 		if (cfs_rq_throttled(cfs_rq))
4219 			unthrottle_cfs_rq(cfs_rq);
4220 	}
4221 }
4222 
4223 #else /* CONFIG_CFS_BANDWIDTH */
4224 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
4225 {
4226 	return rq_clock_task(rq_of(cfs_rq));
4227 }
4228 
4229 static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {}
4230 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; }
4231 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
4232 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
4233 
4234 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
4235 {
4236 	return 0;
4237 }
4238 
4239 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
4240 {
4241 	return 0;
4242 }
4243 
4244 static inline int throttled_lb_pair(struct task_group *tg,
4245 				    int src_cpu, int dest_cpu)
4246 {
4247 	return 0;
4248 }
4249 
4250 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
4251 
4252 #ifdef CONFIG_FAIR_GROUP_SCHED
4253 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
4254 #endif
4255 
4256 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
4257 {
4258 	return NULL;
4259 }
4260 static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
4261 static inline void update_runtime_enabled(struct rq *rq) {}
4262 static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
4263 
4264 #endif /* CONFIG_CFS_BANDWIDTH */
4265 
4266 /**************************************************
4267  * CFS operations on tasks:
4268  */
4269 
4270 #ifdef CONFIG_SCHED_HRTICK
4271 static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
4272 {
4273 	struct sched_entity *se = &p->se;
4274 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
4275 
4276 	WARN_ON(task_rq(p) != rq);
4277 
4278 	if (cfs_rq->nr_running > 1) {
4279 		u64 slice = sched_slice(cfs_rq, se);
4280 		u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
4281 		s64 delta = slice - ran;
4282 
4283 		if (delta < 0) {
4284 			if (rq->curr == p)
4285 				resched_curr(rq);
4286 			return;
4287 		}
4288 		hrtick_start(rq, delta);
4289 	}
4290 }
4291 
4292 /*
4293  * called from enqueue/dequeue and updates the hrtick when the
4294  * current task is from our class and nr_running is low enough
4295  * to matter.
4296  */
4297 static void hrtick_update(struct rq *rq)
4298 {
4299 	struct task_struct *curr = rq->curr;
4300 
4301 	if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
4302 		return;
4303 
4304 	if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
4305 		hrtick_start_fair(rq, curr);
4306 }
4307 #else /* !CONFIG_SCHED_HRTICK */
4308 static inline void
4309 hrtick_start_fair(struct rq *rq, struct task_struct *p)
4310 {
4311 }
4312 
4313 static inline void hrtick_update(struct rq *rq)
4314 {
4315 }
4316 #endif
4317 
4318 /*
4319  * The enqueue_task method is called before nr_running is
4320  * increased. Here we update the fair scheduling stats and
4321  * then put the task into the rbtree:
4322  */
4323 static void
4324 enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
4325 {
4326 	struct cfs_rq *cfs_rq;
4327 	struct sched_entity *se = &p->se;
4328 
4329 	for_each_sched_entity(se) {
4330 		if (se->on_rq)
4331 			break;
4332 		cfs_rq = cfs_rq_of(se);
4333 		enqueue_entity(cfs_rq, se, flags);
4334 
4335 		/*
4336 		 * end evaluation on encountering a throttled cfs_rq
4337 		 *
4338 		 * note: in the case of encountering a throttled cfs_rq we will
4339 		 * post the final h_nr_running increment below.
4340 		*/
4341 		if (cfs_rq_throttled(cfs_rq))
4342 			break;
4343 		cfs_rq->h_nr_running++;
4344 
4345 		flags = ENQUEUE_WAKEUP;
4346 	}
4347 
4348 	for_each_sched_entity(se) {
4349 		cfs_rq = cfs_rq_of(se);
4350 		cfs_rq->h_nr_running++;
4351 
4352 		if (cfs_rq_throttled(cfs_rq))
4353 			break;
4354 
4355 		update_load_avg(se, 1);
4356 		update_cfs_shares(cfs_rq);
4357 	}
4358 
4359 	if (!se)
4360 		add_nr_running(rq, 1);
4361 
4362 	hrtick_update(rq);
4363 }
4364 
4365 static void set_next_buddy(struct sched_entity *se);
4366 
4367 /*
4368  * The dequeue_task method is called before nr_running is
4369  * decreased. We remove the task from the rbtree and
4370  * update the fair scheduling stats:
4371  */
4372 static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
4373 {
4374 	struct cfs_rq *cfs_rq;
4375 	struct sched_entity *se = &p->se;
4376 	int task_sleep = flags & DEQUEUE_SLEEP;
4377 
4378 	for_each_sched_entity(se) {
4379 		cfs_rq = cfs_rq_of(se);
4380 		dequeue_entity(cfs_rq, se, flags);
4381 
4382 		/*
4383 		 * end evaluation on encountering a throttled cfs_rq
4384 		 *
4385 		 * note: in the case of encountering a throttled cfs_rq we will
4386 		 * post the final h_nr_running decrement below.
4387 		*/
4388 		if (cfs_rq_throttled(cfs_rq))
4389 			break;
4390 		cfs_rq->h_nr_running--;
4391 
4392 		/* Don't dequeue parent if it has other entities besides us */
4393 		if (cfs_rq->load.weight) {
4394 			/*
4395 			 * Bias pick_next to pick a task from this cfs_rq, as
4396 			 * p is sleeping when it is within its sched_slice.
4397 			 */
4398 			if (task_sleep && parent_entity(se))
4399 				set_next_buddy(parent_entity(se));
4400 
4401 			/* avoid re-evaluating load for this entity */
4402 			se = parent_entity(se);
4403 			break;
4404 		}
4405 		flags |= DEQUEUE_SLEEP;
4406 	}
4407 
4408 	for_each_sched_entity(se) {
4409 		cfs_rq = cfs_rq_of(se);
4410 		cfs_rq->h_nr_running--;
4411 
4412 		if (cfs_rq_throttled(cfs_rq))
4413 			break;
4414 
4415 		update_load_avg(se, 1);
4416 		update_cfs_shares(cfs_rq);
4417 	}
4418 
4419 	if (!se)
4420 		sub_nr_running(rq, 1);
4421 
4422 	hrtick_update(rq);
4423 }
4424 
4425 #ifdef CONFIG_SMP
4426 
4427 /*
4428  * per rq 'load' arrray crap; XXX kill this.
4429  */
4430 
4431 /*
4432  * The exact cpuload calculated at every tick would be:
4433  *
4434  *   load' = (1 - 1/2^i) * load + (1/2^i) * cur_load
4435  *
4436  * If a cpu misses updates for n ticks (as it was idle) and update gets
4437  * called on the n+1-th tick when cpu may be busy, then we have:
4438  *
4439  *   load_n   = (1 - 1/2^i)^n * load_0
4440  *   load_n+1 = (1 - 1/2^i)   * load_n + (1/2^i) * cur_load
4441  *
4442  * decay_load_missed() below does efficient calculation of
4443  *
4444  *   load' = (1 - 1/2^i)^n * load
4445  *
4446  * Because x^(n+m) := x^n * x^m we can decompose any x^n in power-of-2 factors.
4447  * This allows us to precompute the above in said factors, thereby allowing the
4448  * reduction of an arbitrary n in O(log_2 n) steps. (See also
4449  * fixed_power_int())
4450  *
4451  * The calculation is approximated on a 128 point scale.
4452  */
4453 #define DEGRADE_SHIFT		7
4454 
4455 static const u8 degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
4456 static const u8 degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
4457 	{   0,   0,  0,  0,  0,  0, 0, 0 },
4458 	{  64,  32,  8,  0,  0,  0, 0, 0 },
4459 	{  96,  72, 40, 12,  1,  0, 0, 0 },
4460 	{ 112,  98, 75, 43, 15,  1, 0, 0 },
4461 	{ 120, 112, 98, 76, 45, 16, 2, 0 }
4462 };
4463 
4464 /*
4465  * Update cpu_load for any missed ticks, due to tickless idle. The backlog
4466  * would be when CPU is idle and so we just decay the old load without
4467  * adding any new load.
4468  */
4469 static unsigned long
4470 decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
4471 {
4472 	int j = 0;
4473 
4474 	if (!missed_updates)
4475 		return load;
4476 
4477 	if (missed_updates >= degrade_zero_ticks[idx])
4478 		return 0;
4479 
4480 	if (idx == 1)
4481 		return load >> missed_updates;
4482 
4483 	while (missed_updates) {
4484 		if (missed_updates % 2)
4485 			load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;
4486 
4487 		missed_updates >>= 1;
4488 		j++;
4489 	}
4490 	return load;
4491 }
4492 
4493 /**
4494  * __update_cpu_load - update the rq->cpu_load[] statistics
4495  * @this_rq: The rq to update statistics for
4496  * @this_load: The current load
4497  * @pending_updates: The number of missed updates
4498  * @active: !0 for NOHZ_FULL
4499  *
4500  * Update rq->cpu_load[] statistics. This function is usually called every
4501  * scheduler tick (TICK_NSEC).
4502  *
4503  * This function computes a decaying average:
4504  *
4505  *   load[i]' = (1 - 1/2^i) * load[i] + (1/2^i) * load
4506  *
4507  * Because of NOHZ it might not get called on every tick which gives need for
4508  * the @pending_updates argument.
4509  *
4510  *   load[i]_n = (1 - 1/2^i) * load[i]_n-1 + (1/2^i) * load_n-1
4511  *             = A * load[i]_n-1 + B ; A := (1 - 1/2^i), B := (1/2^i) * load
4512  *             = A * (A * load[i]_n-2 + B) + B
4513  *             = A * (A * (A * load[i]_n-3 + B) + B) + B
4514  *             = A^3 * load[i]_n-3 + (A^2 + A + 1) * B
4515  *             = A^n * load[i]_0 + (A^(n-1) + A^(n-2) + ... + 1) * B
4516  *             = A^n * load[i]_0 + ((1 - A^n) / (1 - A)) * B
4517  *             = (1 - 1/2^i)^n * (load[i]_0 - load) + load
4518  *
4519  * In the above we've assumed load_n := load, which is true for NOHZ_FULL as
4520  * any change in load would have resulted in the tick being turned back on.
4521  *
4522  * For regular NOHZ, this reduces to:
4523  *
4524  *   load[i]_n = (1 - 1/2^i)^n * load[i]_0
4525  *
4526  * see decay_load_misses(). For NOHZ_FULL we get to subtract and add the extra
4527  * term. See the @active paramter.
4528  */
4529 static void __update_cpu_load(struct rq *this_rq, unsigned long this_load,
4530 			      unsigned long pending_updates, int active)
4531 {
4532 	unsigned long tickless_load = active ? this_rq->cpu_load[0] : 0;
4533 	int i, scale;
4534 
4535 	this_rq->nr_load_updates++;
4536 
4537 	/* Update our load: */
4538 	this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
4539 	for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
4540 		unsigned long old_load, new_load;
4541 
4542 		/* scale is effectively 1 << i now, and >> i divides by scale */
4543 
4544 		old_load = this_rq->cpu_load[i];
4545 		old_load = decay_load_missed(old_load, pending_updates - 1, i);
4546 		if (tickless_load) {
4547 			old_load -= decay_load_missed(tickless_load, pending_updates - 1, i);
4548 			/*
4549 			 * old_load can never be a negative value because a
4550 			 * decayed tickless_load cannot be greater than the
4551 			 * original tickless_load.
4552 			 */
4553 			old_load += tickless_load;
4554 		}
4555 		new_load = this_load;
4556 		/*
4557 		 * Round up the averaging division if load is increasing. This
4558 		 * prevents us from getting stuck on 9 if the load is 10, for
4559 		 * example.
4560 		 */
4561 		if (new_load > old_load)
4562 			new_load += scale - 1;
4563 
4564 		this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
4565 	}
4566 
4567 	sched_avg_update(this_rq);
4568 }
4569 
4570 /* Used instead of source_load when we know the type == 0 */
4571 static unsigned long weighted_cpuload(const int cpu)
4572 {
4573 	return cfs_rq_runnable_load_avg(&cpu_rq(cpu)->cfs);
4574 }
4575 
4576 #ifdef CONFIG_NO_HZ_COMMON
4577 static void __update_cpu_load_nohz(struct rq *this_rq,
4578 				   unsigned long curr_jiffies,
4579 				   unsigned long load,
4580 				   int active)
4581 {
4582 	unsigned long pending_updates;
4583 
4584 	pending_updates = curr_jiffies - this_rq->last_load_update_tick;
4585 	if (pending_updates) {
4586 		this_rq->last_load_update_tick = curr_jiffies;
4587 		/*
4588 		 * In the regular NOHZ case, we were idle, this means load 0.
4589 		 * In the NOHZ_FULL case, we were non-idle, we should consider
4590 		 * its weighted load.
4591 		 */
4592 		__update_cpu_load(this_rq, load, pending_updates, active);
4593 	}
4594 }
4595 
4596 /*
4597  * There is no sane way to deal with nohz on smp when using jiffies because the
4598  * cpu doing the jiffies update might drift wrt the cpu doing the jiffy reading
4599  * causing off-by-one errors in observed deltas; {0,2} instead of {1,1}.
4600  *
4601  * Therefore we cannot use the delta approach from the regular tick since that
4602  * would seriously skew the load calculation. However we'll make do for those
4603  * updates happening while idle (nohz_idle_balance) or coming out of idle
4604  * (tick_nohz_idle_exit).
4605  *
4606  * This means we might still be one tick off for nohz periods.
4607  */
4608 
4609 /*
4610  * Called from nohz_idle_balance() to update the load ratings before doing the
4611  * idle balance.
4612  */
4613 static void update_cpu_load_idle(struct rq *this_rq)
4614 {
4615 	/*
4616 	 * bail if there's load or we're actually up-to-date.
4617 	 */
4618 	if (weighted_cpuload(cpu_of(this_rq)))
4619 		return;
4620 
4621 	__update_cpu_load_nohz(this_rq, READ_ONCE(jiffies), 0, 0);
4622 }
4623 
4624 /*
4625  * Called from tick_nohz_idle_exit() -- try and fix up the ticks we missed.
4626  */
4627 void update_cpu_load_nohz(int active)
4628 {
4629 	struct rq *this_rq = this_rq();
4630 	unsigned long curr_jiffies = READ_ONCE(jiffies);
4631 	unsigned long load = active ? weighted_cpuload(cpu_of(this_rq)) : 0;
4632 
4633 	if (curr_jiffies == this_rq->last_load_update_tick)
4634 		return;
4635 
4636 	raw_spin_lock(&this_rq->lock);
4637 	__update_cpu_load_nohz(this_rq, curr_jiffies, load, active);
4638 	raw_spin_unlock(&this_rq->lock);
4639 }
4640 #endif /* CONFIG_NO_HZ */
4641 
4642 /*
4643  * Called from scheduler_tick()
4644  */
4645 void update_cpu_load_active(struct rq *this_rq)
4646 {
4647 	unsigned long load = weighted_cpuload(cpu_of(this_rq));
4648 	/*
4649 	 * See the mess around update_cpu_load_idle() / update_cpu_load_nohz().
4650 	 */
4651 	this_rq->last_load_update_tick = jiffies;
4652 	__update_cpu_load(this_rq, load, 1, 1);
4653 }
4654 
4655 /*
4656  * Return a low guess at the load of a migration-source cpu weighted
4657  * according to the scheduling class and "nice" value.
4658  *
4659  * We want to under-estimate the load of migration sources, to
4660  * balance conservatively.
4661  */
4662 static unsigned long source_load(int cpu, int type)
4663 {
4664 	struct rq *rq = cpu_rq(cpu);
4665 	unsigned long total = weighted_cpuload(cpu);
4666 
4667 	if (type == 0 || !sched_feat(LB_BIAS))
4668 		return total;
4669 
4670 	return min(rq->cpu_load[type-1], total);
4671 }
4672 
4673 /*
4674  * Return a high guess at the load of a migration-target cpu weighted
4675  * according to the scheduling class and "nice" value.
4676  */
4677 static unsigned long target_load(int cpu, int type)
4678 {
4679 	struct rq *rq = cpu_rq(cpu);
4680 	unsigned long total = weighted_cpuload(cpu);
4681 
4682 	if (type == 0 || !sched_feat(LB_BIAS))
4683 		return total;
4684 
4685 	return max(rq->cpu_load[type-1], total);
4686 }
4687 
4688 static unsigned long capacity_of(int cpu)
4689 {
4690 	return cpu_rq(cpu)->cpu_capacity;
4691 }
4692 
4693 static unsigned long capacity_orig_of(int cpu)
4694 {
4695 	return cpu_rq(cpu)->cpu_capacity_orig;
4696 }
4697 
4698 static unsigned long cpu_avg_load_per_task(int cpu)
4699 {
4700 	struct rq *rq = cpu_rq(cpu);
4701 	unsigned long nr_running = READ_ONCE(rq->cfs.h_nr_running);
4702 	unsigned long load_avg = weighted_cpuload(cpu);
4703 
4704 	if (nr_running)
4705 		return load_avg / nr_running;
4706 
4707 	return 0;
4708 }
4709 
4710 static void record_wakee(struct task_struct *p)
4711 {
4712 	/*
4713 	 * Rough decay (wiping) for cost saving, don't worry
4714 	 * about the boundary, really active task won't care
4715 	 * about the loss.
4716 	 */
4717 	if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) {
4718 		current->wakee_flips >>= 1;
4719 		current->wakee_flip_decay_ts = jiffies;
4720 	}
4721 
4722 	if (current->last_wakee != p) {
4723 		current->last_wakee = p;
4724 		current->wakee_flips++;
4725 	}
4726 }
4727 
4728 static void task_waking_fair(struct task_struct *p)
4729 {
4730 	struct sched_entity *se = &p->se;
4731 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
4732 	u64 min_vruntime;
4733 
4734 #ifndef CONFIG_64BIT
4735 	u64 min_vruntime_copy;
4736 
4737 	do {
4738 		min_vruntime_copy = cfs_rq->min_vruntime_copy;
4739 		smp_rmb();
4740 		min_vruntime = cfs_rq->min_vruntime;
4741 	} while (min_vruntime != min_vruntime_copy);
4742 #else
4743 	min_vruntime = cfs_rq->min_vruntime;
4744 #endif
4745 
4746 	se->vruntime -= min_vruntime;
4747 	record_wakee(p);
4748 }
4749 
4750 #ifdef CONFIG_FAIR_GROUP_SCHED
4751 /*
4752  * effective_load() calculates the load change as seen from the root_task_group
4753  *
4754  * Adding load to a group doesn't make a group heavier, but can cause movement
4755  * of group shares between cpus. Assuming the shares were perfectly aligned one
4756  * can calculate the shift in shares.
4757  *
4758  * Calculate the effective load difference if @wl is added (subtracted) to @tg
4759  * on this @cpu and results in a total addition (subtraction) of @wg to the
4760  * total group weight.
4761  *
4762  * Given a runqueue weight distribution (rw_i) we can compute a shares
4763  * distribution (s_i) using:
4764  *
4765  *   s_i = rw_i / \Sum rw_j						(1)
4766  *
4767  * Suppose we have 4 CPUs and our @tg is a direct child of the root group and
4768  * has 7 equal weight tasks, distributed as below (rw_i), with the resulting
4769  * shares distribution (s_i):
4770  *
4771  *   rw_i = {   2,   4,   1,   0 }
4772  *   s_i  = { 2/7, 4/7, 1/7,   0 }
4773  *
4774  * As per wake_affine() we're interested in the load of two CPUs (the CPU the
4775  * task used to run on and the CPU the waker is running on), we need to
4776  * compute the effect of waking a task on either CPU and, in case of a sync
4777  * wakeup, compute the effect of the current task going to sleep.
4778  *
4779  * So for a change of @wl to the local @cpu with an overall group weight change
4780  * of @wl we can compute the new shares distribution (s'_i) using:
4781  *
4782  *   s'_i = (rw_i + @wl) / (@wg + \Sum rw_j)				(2)
4783  *
4784  * Suppose we're interested in CPUs 0 and 1, and want to compute the load
4785  * differences in waking a task to CPU 0. The additional task changes the
4786  * weight and shares distributions like:
4787  *
4788  *   rw'_i = {   3,   4,   1,   0 }
4789  *   s'_i  = { 3/8, 4/8, 1/8,   0 }
4790  *
4791  * We can then compute the difference in effective weight by using:
4792  *
4793  *   dw_i = S * (s'_i - s_i)						(3)
4794  *
4795  * Where 'S' is the group weight as seen by its parent.
4796  *
4797  * Therefore the effective change in loads on CPU 0 would be 5/56 (3/8 - 2/7)
4798  * times the weight of the group. The effect on CPU 1 would be -4/56 (4/8 -
4799  * 4/7) times the weight of the group.
4800  */
4801 static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
4802 {
4803 	struct sched_entity *se = tg->se[cpu];
4804 
4805 	if (!tg->parent)	/* the trivial, non-cgroup case */
4806 		return wl;
4807 
4808 	for_each_sched_entity(se) {
4809 		long w, W;
4810 
4811 		tg = se->my_q->tg;
4812 
4813 		/*
4814 		 * W = @wg + \Sum rw_j
4815 		 */
4816 		W = wg + calc_tg_weight(tg, se->my_q);
4817 
4818 		/*
4819 		 * w = rw_i + @wl
4820 		 */
4821 		w = cfs_rq_load_avg(se->my_q) + wl;
4822 
4823 		/*
4824 		 * wl = S * s'_i; see (2)
4825 		 */
4826 		if (W > 0 && w < W)
4827 			wl = (w * (long)tg->shares) / W;
4828 		else
4829 			wl = tg->shares;
4830 
4831 		/*
4832 		 * Per the above, wl is the new se->load.weight value; since
4833 		 * those are clipped to [MIN_SHARES, ...) do so now. See
4834 		 * calc_cfs_shares().
4835 		 */
4836 		if (wl < MIN_SHARES)
4837 			wl = MIN_SHARES;
4838 
4839 		/*
4840 		 * wl = dw_i = S * (s'_i - s_i); see (3)
4841 		 */
4842 		wl -= se->avg.load_avg;
4843 
4844 		/*
4845 		 * Recursively apply this logic to all parent groups to compute
4846 		 * the final effective load change on the root group. Since
4847 		 * only the @tg group gets extra weight, all parent groups can
4848 		 * only redistribute existing shares. @wl is the shift in shares
4849 		 * resulting from this level per the above.
4850 		 */
4851 		wg = 0;
4852 	}
4853 
4854 	return wl;
4855 }
4856 #else
4857 
4858 static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
4859 {
4860 	return wl;
4861 }
4862 
4863 #endif
4864 
4865 /*
4866  * Detect M:N waker/wakee relationships via a switching-frequency heuristic.
4867  * A waker of many should wake a different task than the one last awakened
4868  * at a frequency roughly N times higher than one of its wakees.  In order
4869  * to determine whether we should let the load spread vs consolodating to
4870  * shared cache, we look for a minimum 'flip' frequency of llc_size in one
4871  * partner, and a factor of lls_size higher frequency in the other.  With
4872  * both conditions met, we can be relatively sure that the relationship is
4873  * non-monogamous, with partner count exceeding socket size.  Waker/wakee
4874  * being client/server, worker/dispatcher, interrupt source or whatever is
4875  * irrelevant, spread criteria is apparent partner count exceeds socket size.
4876  */
4877 static int wake_wide(struct task_struct *p)
4878 {
4879 	unsigned int master = current->wakee_flips;
4880 	unsigned int slave = p->wakee_flips;
4881 	int factor = this_cpu_read(sd_llc_size);
4882 
4883 	if (master < slave)
4884 		swap(master, slave);
4885 	if (slave < factor || master < slave * factor)
4886 		return 0;
4887 	return 1;
4888 }
4889 
4890 static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
4891 {
4892 	s64 this_load, load;
4893 	s64 this_eff_load, prev_eff_load;
4894 	int idx, this_cpu, prev_cpu;
4895 	struct task_group *tg;
4896 	unsigned long weight;
4897 	int balanced;
4898 
4899 	idx	  = sd->wake_idx;
4900 	this_cpu  = smp_processor_id();
4901 	prev_cpu  = task_cpu(p);
4902 	load	  = source_load(prev_cpu, idx);
4903 	this_load = target_load(this_cpu, idx);
4904 
4905 	/*
4906 	 * If sync wakeup then subtract the (maximum possible)
4907 	 * effect of the currently running task from the load
4908 	 * of the current CPU:
4909 	 */
4910 	if (sync) {
4911 		tg = task_group(current);
4912 		weight = current->se.avg.load_avg;
4913 
4914 		this_load += effective_load(tg, this_cpu, -weight, -weight);
4915 		load += effective_load(tg, prev_cpu, 0, -weight);
4916 	}
4917 
4918 	tg = task_group(p);
4919 	weight = p->se.avg.load_avg;
4920 
4921 	/*
4922 	 * In low-load situations, where prev_cpu is idle and this_cpu is idle
4923 	 * due to the sync cause above having dropped this_load to 0, we'll
4924 	 * always have an imbalance, but there's really nothing you can do
4925 	 * about that, so that's good too.
4926 	 *
4927 	 * Otherwise check if either cpus are near enough in load to allow this
4928 	 * task to be woken on this_cpu.
4929 	 */
4930 	this_eff_load = 100;
4931 	this_eff_load *= capacity_of(prev_cpu);
4932 
4933 	prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
4934 	prev_eff_load *= capacity_of(this_cpu);
4935 
4936 	if (this_load > 0) {
4937 		this_eff_load *= this_load +
4938 			effective_load(tg, this_cpu, weight, weight);
4939 
4940 		prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight);
4941 	}
4942 
4943 	balanced = this_eff_load <= prev_eff_load;
4944 
4945 	schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts);
4946 
4947 	if (!balanced)
4948 		return 0;
4949 
4950 	schedstat_inc(sd, ttwu_move_affine);
4951 	schedstat_inc(p, se.statistics.nr_wakeups_affine);
4952 
4953 	return 1;
4954 }
4955 
4956 /*
4957  * find_idlest_group finds and returns the least busy CPU group within the
4958  * domain.
4959  */
4960 static struct sched_group *
4961 find_idlest_group(struct sched_domain *sd, struct task_struct *p,
4962 		  int this_cpu, int sd_flag)
4963 {
4964 	struct sched_group *idlest = NULL, *group = sd->groups;
4965 	unsigned long min_load = ULONG_MAX, this_load = 0;
4966 	int load_idx = sd->forkexec_idx;
4967 	int imbalance = 100 + (sd->imbalance_pct-100)/2;
4968 
4969 	if (sd_flag & SD_BALANCE_WAKE)
4970 		load_idx = sd->wake_idx;
4971 
4972 	do {
4973 		unsigned long load, avg_load;
4974 		int local_group;
4975 		int i;
4976 
4977 		/* Skip over this group if it has no CPUs allowed */
4978 		if (!cpumask_intersects(sched_group_cpus(group),
4979 					tsk_cpus_allowed(p)))
4980 			continue;
4981 
4982 		local_group = cpumask_test_cpu(this_cpu,
4983 					       sched_group_cpus(group));
4984 
4985 		/* Tally up the load of all CPUs in the group */
4986 		avg_load = 0;
4987 
4988 		for_each_cpu(i, sched_group_cpus(group)) {
4989 			/* Bias balancing toward cpus of our domain */
4990 			if (local_group)
4991 				load = source_load(i, load_idx);
4992 			else
4993 				load = target_load(i, load_idx);
4994 
4995 			avg_load += load;
4996 		}
4997 
4998 		/* Adjust by relative CPU capacity of the group */
4999 		avg_load = (avg_load * SCHED_CAPACITY_SCALE) / group->sgc->capacity;
5000 
5001 		if (local_group) {
5002 			this_load = avg_load;
5003 		} else if (avg_load < min_load) {
5004 			min_load = avg_load;
5005 			idlest = group;
5006 		}
5007 	} while (group = group->next, group != sd->groups);
5008 
5009 	if (!idlest || 100*this_load < imbalance*min_load)
5010 		return NULL;
5011 	return idlest;
5012 }
5013 
5014 /*
5015  * find_idlest_cpu - find the idlest cpu among the cpus in group.
5016  */
5017 static int
5018 find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
5019 {
5020 	unsigned long load, min_load = ULONG_MAX;
5021 	unsigned int min_exit_latency = UINT_MAX;
5022 	u64 latest_idle_timestamp = 0;
5023 	int least_loaded_cpu = this_cpu;
5024 	int shallowest_idle_cpu = -1;
5025 	int i;
5026 
5027 	/* Traverse only the allowed CPUs */
5028 	for_each_cpu_and(i, sched_group_cpus(group), tsk_cpus_allowed(p)) {
5029 		if (idle_cpu(i)) {
5030 			struct rq *rq = cpu_rq(i);
5031 			struct cpuidle_state *idle = idle_get_state(rq);
5032 			if (idle && idle->exit_latency < min_exit_latency) {
5033 				/*
5034 				 * We give priority to a CPU whose idle state
5035 				 * has the smallest exit latency irrespective
5036 				 * of any idle timestamp.
5037 				 */
5038 				min_exit_latency = idle->exit_latency;
5039 				latest_idle_timestamp = rq->idle_stamp;
5040 				shallowest_idle_cpu = i;
5041 			} else if ((!idle || idle->exit_latency == min_exit_latency) &&
5042 				   rq->idle_stamp > latest_idle_timestamp) {
5043 				/*
5044 				 * If equal or no active idle state, then
5045 				 * the most recently idled CPU might have
5046 				 * a warmer cache.
5047 				 */
5048 				latest_idle_timestamp = rq->idle_stamp;
5049 				shallowest_idle_cpu = i;
5050 			}
5051 		} else if (shallowest_idle_cpu == -1) {
5052 			load = weighted_cpuload(i);
5053 			if (load < min_load || (load == min_load && i == this_cpu)) {
5054 				min_load = load;
5055 				least_loaded_cpu = i;
5056 			}
5057 		}
5058 	}
5059 
5060 	return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu;
5061 }
5062 
5063 /*
5064  * Try and locate an idle CPU in the sched_domain.
5065  */
5066 static int select_idle_sibling(struct task_struct *p, int target)
5067 {
5068 	struct sched_domain *sd;
5069 	struct sched_group *sg;
5070 	int i = task_cpu(p);
5071 
5072 	if (idle_cpu(target))
5073 		return target;
5074 
5075 	/*
5076 	 * If the prevous cpu is cache affine and idle, don't be stupid.
5077 	 */
5078 	if (i != target && cpus_share_cache(i, target) && idle_cpu(i))
5079 		return i;
5080 
5081 	/*
5082 	 * Otherwise, iterate the domains and find an eligible idle cpu.
5083 	 *
5084 	 * A completely idle sched group at higher domains is more
5085 	 * desirable than an idle group at a lower level, because lower
5086 	 * domains have smaller groups and usually share hardware
5087 	 * resources which causes tasks to contend on them, e.g. x86
5088 	 * hyperthread siblings in the lowest domain (SMT) can contend
5089 	 * on the shared cpu pipeline.
5090 	 *
5091 	 * However, while we prefer idle groups at higher domains
5092 	 * finding an idle cpu at the lowest domain is still better than
5093 	 * returning 'target', which we've already established, isn't
5094 	 * idle.
5095 	 */
5096 	sd = rcu_dereference(per_cpu(sd_llc, target));
5097 	for_each_lower_domain(sd) {
5098 		sg = sd->groups;
5099 		do {
5100 			if (!cpumask_intersects(sched_group_cpus(sg),
5101 						tsk_cpus_allowed(p)))
5102 				goto next;
5103 
5104 			/* Ensure the entire group is idle */
5105 			for_each_cpu(i, sched_group_cpus(sg)) {
5106 				if (i == target || !idle_cpu(i))
5107 					goto next;
5108 			}
5109 
5110 			/*
5111 			 * It doesn't matter which cpu we pick, the
5112 			 * whole group is idle.
5113 			 */
5114 			target = cpumask_first_and(sched_group_cpus(sg),
5115 					tsk_cpus_allowed(p));
5116 			goto done;
5117 next:
5118 			sg = sg->next;
5119 		} while (sg != sd->groups);
5120 	}
5121 done:
5122 	return target;
5123 }
5124 
5125 /*
5126  * cpu_util returns the amount of capacity of a CPU that is used by CFS
5127  * tasks. The unit of the return value must be the one of capacity so we can
5128  * compare the utilization with the capacity of the CPU that is available for
5129  * CFS task (ie cpu_capacity).
5130  *
5131  * cfs_rq.avg.util_avg is the sum of running time of runnable tasks plus the
5132  * recent utilization of currently non-runnable tasks on a CPU. It represents
5133  * the amount of utilization of a CPU in the range [0..capacity_orig] where
5134  * capacity_orig is the cpu_capacity available at the highest frequency
5135  * (arch_scale_freq_capacity()).
5136  * The utilization of a CPU converges towards a sum equal to or less than the
5137  * current capacity (capacity_curr <= capacity_orig) of the CPU because it is
5138  * the running time on this CPU scaled by capacity_curr.
5139  *
5140  * Nevertheless, cfs_rq.avg.util_avg can be higher than capacity_curr or even
5141  * higher than capacity_orig because of unfortunate rounding in
5142  * cfs.avg.util_avg or just after migrating tasks and new task wakeups until
5143  * the average stabilizes with the new running time. We need to check that the
5144  * utilization stays within the range of [0..capacity_orig] and cap it if
5145  * necessary. Without utilization capping, a group could be seen as overloaded
5146  * (CPU0 utilization at 121% + CPU1 utilization at 80%) whereas CPU1 has 20% of
5147  * available capacity. We allow utilization to overshoot capacity_curr (but not
5148  * capacity_orig) as it useful for predicting the capacity required after task
5149  * migrations (scheduler-driven DVFS).
5150  */
5151 static int cpu_util(int cpu)
5152 {
5153 	unsigned long util = cpu_rq(cpu)->cfs.avg.util_avg;
5154 	unsigned long capacity = capacity_orig_of(cpu);
5155 
5156 	return (util >= capacity) ? capacity : util;
5157 }
5158 
5159 /*
5160  * select_task_rq_fair: Select target runqueue for the waking task in domains
5161  * that have the 'sd_flag' flag set. In practice, this is SD_BALANCE_WAKE,
5162  * SD_BALANCE_FORK, or SD_BALANCE_EXEC.
5163  *
5164  * Balances load by selecting the idlest cpu in the idlest group, or under
5165  * certain conditions an idle sibling cpu if the domain has SD_WAKE_AFFINE set.
5166  *
5167  * Returns the target cpu number.
5168  *
5169  * preempt must be disabled.
5170  */
5171 static int
5172 select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_flags)
5173 {
5174 	struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
5175 	int cpu = smp_processor_id();
5176 	int new_cpu = prev_cpu;
5177 	int want_affine = 0;
5178 	int sync = wake_flags & WF_SYNC;
5179 
5180 	if (sd_flag & SD_BALANCE_WAKE)
5181 		want_affine = !wake_wide(p) && cpumask_test_cpu(cpu, tsk_cpus_allowed(p));
5182 
5183 	rcu_read_lock();
5184 	for_each_domain(cpu, tmp) {
5185 		if (!(tmp->flags & SD_LOAD_BALANCE))
5186 			break;
5187 
5188 		/*
5189 		 * If both cpu and prev_cpu are part of this domain,
5190 		 * cpu is a valid SD_WAKE_AFFINE target.
5191 		 */
5192 		if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
5193 		    cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
5194 			affine_sd = tmp;
5195 			break;
5196 		}
5197 
5198 		if (tmp->flags & sd_flag)
5199 			sd = tmp;
5200 		else if (!want_affine)
5201 			break;
5202 	}
5203 
5204 	if (affine_sd) {
5205 		sd = NULL; /* Prefer wake_affine over balance flags */
5206 		if (cpu != prev_cpu && wake_affine(affine_sd, p, sync))
5207 			new_cpu = cpu;
5208 	}
5209 
5210 	if (!sd) {
5211 		if (sd_flag & SD_BALANCE_WAKE) /* XXX always ? */
5212 			new_cpu = select_idle_sibling(p, new_cpu);
5213 
5214 	} else while (sd) {
5215 		struct sched_group *group;
5216 		int weight;
5217 
5218 		if (!(sd->flags & sd_flag)) {
5219 			sd = sd->child;
5220 			continue;
5221 		}
5222 
5223 		group = find_idlest_group(sd, p, cpu, sd_flag);
5224 		if (!group) {
5225 			sd = sd->child;
5226 			continue;
5227 		}
5228 
5229 		new_cpu = find_idlest_cpu(group, p, cpu);
5230 		if (new_cpu == -1 || new_cpu == cpu) {
5231 			/* Now try balancing at a lower domain level of cpu */
5232 			sd = sd->child;
5233 			continue;
5234 		}
5235 
5236 		/* Now try balancing at a lower domain level of new_cpu */
5237 		cpu = new_cpu;
5238 		weight = sd->span_weight;
5239 		sd = NULL;
5240 		for_each_domain(cpu, tmp) {
5241 			if (weight <= tmp->span_weight)
5242 				break;
5243 			if (tmp->flags & sd_flag)
5244 				sd = tmp;
5245 		}
5246 		/* while loop will break here if sd == NULL */
5247 	}
5248 	rcu_read_unlock();
5249 
5250 	return new_cpu;
5251 }
5252 
5253 /*
5254  * Called immediately before a task is migrated to a new cpu; task_cpu(p) and
5255  * cfs_rq_of(p) references at time of call are still valid and identify the
5256  * previous cpu. The caller guarantees p->pi_lock or task_rq(p)->lock is held.
5257  */
5258 static void migrate_task_rq_fair(struct task_struct *p)
5259 {
5260 	/*
5261 	 * We are supposed to update the task to "current" time, then its up to date
5262 	 * and ready to go to new CPU/cfs_rq. But we have difficulty in getting
5263 	 * what current time is, so simply throw away the out-of-date time. This
5264 	 * will result in the wakee task is less decayed, but giving the wakee more
5265 	 * load sounds not bad.
5266 	 */
5267 	remove_entity_load_avg(&p->se);
5268 
5269 	/* Tell new CPU we are migrated */
5270 	p->se.avg.last_update_time = 0;
5271 
5272 	/* We have migrated, no longer consider this task hot */
5273 	p->se.exec_start = 0;
5274 }
5275 
5276 static void task_dead_fair(struct task_struct *p)
5277 {
5278 	remove_entity_load_avg(&p->se);
5279 }
5280 #endif /* CONFIG_SMP */
5281 
5282 static unsigned long
5283 wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
5284 {
5285 	unsigned long gran = sysctl_sched_wakeup_granularity;
5286 
5287 	/*
5288 	 * Since its curr running now, convert the gran from real-time
5289 	 * to virtual-time in his units.
5290 	 *
5291 	 * By using 'se' instead of 'curr' we penalize light tasks, so
5292 	 * they get preempted easier. That is, if 'se' < 'curr' then
5293 	 * the resulting gran will be larger, therefore penalizing the
5294 	 * lighter, if otoh 'se' > 'curr' then the resulting gran will
5295 	 * be smaller, again penalizing the lighter task.
5296 	 *
5297 	 * This is especially important for buddies when the leftmost
5298 	 * task is higher priority than the buddy.
5299 	 */
5300 	return calc_delta_fair(gran, se);
5301 }
5302 
5303 /*
5304  * Should 'se' preempt 'curr'.
5305  *
5306  *             |s1
5307  *        |s2
5308  *   |s3
5309  *         g
5310  *      |<--->|c
5311  *
5312  *  w(c, s1) = -1
5313  *  w(c, s2) =  0
5314  *  w(c, s3) =  1
5315  *
5316  */
5317 static int
5318 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
5319 {
5320 	s64 gran, vdiff = curr->vruntime - se->vruntime;
5321 
5322 	if (vdiff <= 0)
5323 		return -1;
5324 
5325 	gran = wakeup_gran(curr, se);
5326 	if (vdiff > gran)
5327 		return 1;
5328 
5329 	return 0;
5330 }
5331 
5332 static void set_last_buddy(struct sched_entity *se)
5333 {
5334 	if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
5335 		return;
5336 
5337 	for_each_sched_entity(se)
5338 		cfs_rq_of(se)->last = se;
5339 }
5340 
5341 static void set_next_buddy(struct sched_entity *se)
5342 {
5343 	if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
5344 		return;
5345 
5346 	for_each_sched_entity(se)
5347 		cfs_rq_of(se)->next = se;
5348 }
5349 
5350 static void set_skip_buddy(struct sched_entity *se)
5351 {
5352 	for_each_sched_entity(se)
5353 		cfs_rq_of(se)->skip = se;
5354 }
5355 
5356 /*
5357  * Preempt the current task with a newly woken task if needed:
5358  */
5359 static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
5360 {
5361 	struct task_struct *curr = rq->curr;
5362 	struct sched_entity *se = &curr->se, *pse = &p->se;
5363 	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
5364 	int scale = cfs_rq->nr_running >= sched_nr_latency;
5365 	int next_buddy_marked = 0;
5366 
5367 	if (unlikely(se == pse))
5368 		return;
5369 
5370 	/*
5371 	 * This is possible from callers such as attach_tasks(), in which we
5372 	 * unconditionally check_prempt_curr() after an enqueue (which may have
5373 	 * lead to a throttle).  This both saves work and prevents false
5374 	 * next-buddy nomination below.
5375 	 */
5376 	if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
5377 		return;
5378 
5379 	if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
5380 		set_next_buddy(pse);
5381 		next_buddy_marked = 1;
5382 	}
5383 
5384 	/*
5385 	 * We can come here with TIF_NEED_RESCHED already set from new task
5386 	 * wake up path.
5387 	 *
5388 	 * Note: this also catches the edge-case of curr being in a throttled
5389 	 * group (e.g. via set_curr_task), since update_curr() (in the
5390 	 * enqueue of curr) will have resulted in resched being set.  This
5391 	 * prevents us from potentially nominating it as a false LAST_BUDDY
5392 	 * below.
5393 	 */
5394 	if (test_tsk_need_resched(curr))
5395 		return;
5396 
5397 	/* Idle tasks are by definition preempted by non-idle tasks. */
5398 	if (unlikely(curr->policy == SCHED_IDLE) &&
5399 	    likely(p->policy != SCHED_IDLE))
5400 		goto preempt;
5401 
5402 	/*
5403 	 * Batch and idle tasks do not preempt non-idle tasks (their preemption
5404 	 * is driven by the tick):
5405 	 */
5406 	if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
5407 		return;
5408 
5409 	find_matching_se(&se, &pse);
5410 	update_curr(cfs_rq_of(se));
5411 	BUG_ON(!pse);
5412 	if (wakeup_preempt_entity(se, pse) == 1) {
5413 		/*
5414 		 * Bias pick_next to pick the sched entity that is
5415 		 * triggering this preemption.
5416 		 */
5417 		if (!next_buddy_marked)
5418 			set_next_buddy(pse);
5419 		goto preempt;
5420 	}
5421 
5422 	return;
5423 
5424 preempt:
5425 	resched_curr(rq);
5426 	/*
5427 	 * Only set the backward buddy when the current task is still
5428 	 * on the rq. This can happen when a wakeup gets interleaved
5429 	 * with schedule on the ->pre_schedule() or idle_balance()
5430 	 * point, either of which can * drop the rq lock.
5431 	 *
5432 	 * Also, during early boot the idle thread is in the fair class,
5433 	 * for obvious reasons its a bad idea to schedule back to it.
5434 	 */
5435 	if (unlikely(!se->on_rq || curr == rq->idle))
5436 		return;
5437 
5438 	if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
5439 		set_last_buddy(se);
5440 }
5441 
5442 static struct task_struct *
5443 pick_next_task_fair(struct rq *rq, struct task_struct *prev)
5444 {
5445 	struct cfs_rq *cfs_rq = &rq->cfs;
5446 	struct sched_entity *se;
5447 	struct task_struct *p;
5448 	int new_tasks;
5449 
5450 again:
5451 #ifdef CONFIG_FAIR_GROUP_SCHED
5452 	if (!cfs_rq->nr_running)
5453 		goto idle;
5454 
5455 	if (prev->sched_class != &fair_sched_class)
5456 		goto simple;
5457 
5458 	/*
5459 	 * Because of the set_next_buddy() in dequeue_task_fair() it is rather
5460 	 * likely that a next task is from the same cgroup as the current.
5461 	 *
5462 	 * Therefore attempt to avoid putting and setting the entire cgroup
5463 	 * hierarchy, only change the part that actually changes.
5464 	 */
5465 
5466 	do {
5467 		struct sched_entity *curr = cfs_rq->curr;
5468 
5469 		/*
5470 		 * Since we got here without doing put_prev_entity() we also
5471 		 * have to consider cfs_rq->curr. If it is still a runnable
5472 		 * entity, update_curr() will update its vruntime, otherwise
5473 		 * forget we've ever seen it.
5474 		 */
5475 		if (curr) {
5476 			if (curr->on_rq)
5477 				update_curr(cfs_rq);
5478 			else
5479 				curr = NULL;
5480 
5481 			/*
5482 			 * This call to check_cfs_rq_runtime() will do the
5483 			 * throttle and dequeue its entity in the parent(s).
5484 			 * Therefore the 'simple' nr_running test will indeed
5485 			 * be correct.
5486 			 */
5487 			if (unlikely(check_cfs_rq_runtime(cfs_rq)))
5488 				goto simple;
5489 		}
5490 
5491 		se = pick_next_entity(cfs_rq, curr);
5492 		cfs_rq = group_cfs_rq(se);
5493 	} while (cfs_rq);
5494 
5495 	p = task_of(se);
5496 
5497 	/*
5498 	 * Since we haven't yet done put_prev_entity and if the selected task
5499 	 * is a different task than we started out with, try and touch the
5500 	 * least amount of cfs_rqs.
5501 	 */
5502 	if (prev != p) {
5503 		struct sched_entity *pse = &prev->se;
5504 
5505 		while (!(cfs_rq = is_same_group(se, pse))) {
5506 			int se_depth = se->depth;
5507 			int pse_depth = pse->depth;
5508 
5509 			if (se_depth <= pse_depth) {
5510 				put_prev_entity(cfs_rq_of(pse), pse);
5511 				pse = parent_entity(pse);
5512 			}
5513 			if (se_depth >= pse_depth) {
5514 				set_next_entity(cfs_rq_of(se), se);
5515 				se = parent_entity(se);
5516 			}
5517 		}
5518 
5519 		put_prev_entity(cfs_rq, pse);
5520 		set_next_entity(cfs_rq, se);
5521 	}
5522 
5523 	if (hrtick_enabled(rq))
5524 		hrtick_start_fair(rq, p);
5525 
5526 	return p;
5527 simple:
5528 	cfs_rq = &rq->cfs;
5529 #endif
5530 
5531 	if (!cfs_rq->nr_running)
5532 		goto idle;
5533 
5534 	put_prev_task(rq, prev);
5535 
5536 	do {
5537 		se = pick_next_entity(cfs_rq, NULL);
5538 		set_next_entity(cfs_rq, se);
5539 		cfs_rq = group_cfs_rq(se);
5540 	} while (cfs_rq);
5541 
5542 	p = task_of(se);
5543 
5544 	if (hrtick_enabled(rq))
5545 		hrtick_start_fair(rq, p);
5546 
5547 	return p;
5548 
5549 idle:
5550 	/*
5551 	 * This is OK, because current is on_cpu, which avoids it being picked
5552 	 * for load-balance and preemption/IRQs are still disabled avoiding
5553 	 * further scheduler activity on it and we're being very careful to
5554 	 * re-start the picking loop.
5555 	 */
5556 	lockdep_unpin_lock(&rq->lock);
5557 	new_tasks = idle_balance(rq);
5558 	lockdep_pin_lock(&rq->lock);
5559 	/*
5560 	 * Because idle_balance() releases (and re-acquires) rq->lock, it is
5561 	 * possible for any higher priority task to appear. In that case we
5562 	 * must re-start the pick_next_entity() loop.
5563 	 */
5564 	if (new_tasks < 0)
5565 		return RETRY_TASK;
5566 
5567 	if (new_tasks > 0)
5568 		goto again;
5569 
5570 	return NULL;
5571 }
5572 
5573 /*
5574  * Account for a descheduled task:
5575  */
5576 static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
5577 {
5578 	struct sched_entity *se = &prev->se;
5579 	struct cfs_rq *cfs_rq;
5580 
5581 	for_each_sched_entity(se) {
5582 		cfs_rq = cfs_rq_of(se);
5583 		put_prev_entity(cfs_rq, se);
5584 	}
5585 }
5586 
5587 /*
5588  * sched_yield() is very simple
5589  *
5590  * The magic of dealing with the ->skip buddy is in pick_next_entity.
5591  */
5592 static void yield_task_fair(struct rq *rq)
5593 {
5594 	struct task_struct *curr = rq->curr;
5595 	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
5596 	struct sched_entity *se = &curr->se;
5597 
5598 	/*
5599 	 * Are we the only task in the tree?
5600 	 */
5601 	if (unlikely(rq->nr_running == 1))
5602 		return;
5603 
5604 	clear_buddies(cfs_rq, se);
5605 
5606 	if (curr->policy != SCHED_BATCH) {
5607 		update_rq_clock(rq);
5608 		/*
5609 		 * Update run-time statistics of the 'current'.
5610 		 */
5611 		update_curr(cfs_rq);
5612 		/*
5613 		 * Tell update_rq_clock() that we've just updated,
5614 		 * so we don't do microscopic update in schedule()
5615 		 * and double the fastpath cost.
5616 		 */
5617 		rq_clock_skip_update(rq, true);
5618 	}
5619 
5620 	set_skip_buddy(se);
5621 }
5622 
5623 static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
5624 {
5625 	struct sched_entity *se = &p->se;
5626 
5627 	/* throttled hierarchies are not runnable */
5628 	if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
5629 		return false;
5630 
5631 	/* Tell the scheduler that we'd really like pse to run next. */
5632 	set_next_buddy(se);
5633 
5634 	yield_task_fair(rq);
5635 
5636 	return true;
5637 }
5638 
5639 #ifdef CONFIG_SMP
5640 /**************************************************
5641  * Fair scheduling class load-balancing methods.
5642  *
5643  * BASICS
5644  *
5645  * The purpose of load-balancing is to achieve the same basic fairness the
5646  * per-cpu scheduler provides, namely provide a proportional amount of compute
5647  * time to each task. This is expressed in the following equation:
5648  *
5649  *   W_i,n/P_i == W_j,n/P_j for all i,j                               (1)
5650  *
5651  * Where W_i,n is the n-th weight average for cpu i. The instantaneous weight
5652  * W_i,0 is defined as:
5653  *
5654  *   W_i,0 = \Sum_j w_i,j                                             (2)
5655  *
5656  * Where w_i,j is the weight of the j-th runnable task on cpu i. This weight
5657  * is derived from the nice value as per prio_to_weight[].
5658  *
5659  * The weight average is an exponential decay average of the instantaneous
5660  * weight:
5661  *
5662  *   W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0               (3)
5663  *
5664  * C_i is the compute capacity of cpu i, typically it is the
5665  * fraction of 'recent' time available for SCHED_OTHER task execution. But it
5666  * can also include other factors [XXX].
5667  *
5668  * To achieve this balance we define a measure of imbalance which follows
5669  * directly from (1):
5670  *
5671  *   imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j }    (4)
5672  *
5673  * We them move tasks around to minimize the imbalance. In the continuous
5674  * function space it is obvious this converges, in the discrete case we get
5675  * a few fun cases generally called infeasible weight scenarios.
5676  *
5677  * [XXX expand on:
5678  *     - infeasible weights;
5679  *     - local vs global optima in the discrete case. ]
5680  *
5681  *
5682  * SCHED DOMAINS
5683  *
5684  * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
5685  * for all i,j solution, we create a tree of cpus that follows the hardware
5686  * topology where each level pairs two lower groups (or better). This results
5687  * in O(log n) layers. Furthermore we reduce the number of cpus going up the
5688  * tree to only the first of the previous level and we decrease the frequency
5689  * of load-balance at each level inv. proportional to the number of cpus in
5690  * the groups.
5691  *
5692  * This yields:
5693  *
5694  *     log_2 n     1     n
5695  *   \Sum       { --- * --- * 2^i } = O(n)                            (5)
5696  *     i = 0      2^i   2^i
5697  *                               `- size of each group
5698  *         |         |     `- number of cpus doing load-balance
5699  *         |         `- freq
5700  *         `- sum over all levels
5701  *
5702  * Coupled with a limit on how many tasks we can migrate every balance pass,
5703  * this makes (5) the runtime complexity of the balancer.
5704  *
5705  * An important property here is that each CPU is still (indirectly) connected
5706  * to every other cpu in at most O(log n) steps:
5707  *
5708  * The adjacency matrix of the resulting graph is given by:
5709  *
5710  *             log_2 n
5711  *   A_i,j = \Union     (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1)  (6)
5712  *             k = 0
5713  *
5714  * And you'll find that:
5715  *
5716  *   A^(log_2 n)_i,j != 0  for all i,j                                (7)
5717  *
5718  * Showing there's indeed a path between every cpu in at most O(log n) steps.
5719  * The task movement gives a factor of O(m), giving a convergence complexity
5720  * of:
5721  *
5722  *   O(nm log n),  n := nr_cpus, m := nr_tasks                        (8)
5723  *
5724  *
5725  * WORK CONSERVING
5726  *
5727  * In order to avoid CPUs going idle while there's still work to do, new idle
5728  * balancing is more aggressive and has the newly idle cpu iterate up the domain
5729  * tree itself instead of relying on other CPUs to bring it work.
5730  *
5731  * This adds some complexity to both (5) and (8) but it reduces the total idle
5732  * time.
5733  *
5734  * [XXX more?]
5735  *
5736  *
5737  * CGROUPS
5738  *
5739  * Cgroups make a horror show out of (2), instead of a simple sum we get:
5740  *
5741  *                                s_k,i
5742  *   W_i,0 = \Sum_j \Prod_k w_k * -----                               (9)
5743  *                                 S_k
5744  *
5745  * Where
5746  *
5747  *   s_k,i = \Sum_j w_i,j,k  and  S_k = \Sum_i s_k,i                 (10)
5748  *
5749  * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on cpu i.
5750  *
5751  * The big problem is S_k, its a global sum needed to compute a local (W_i)
5752  * property.
5753  *
5754  * [XXX write more on how we solve this.. _after_ merging pjt's patches that
5755  *      rewrite all of this once again.]
5756  */
5757 
5758 static unsigned long __read_mostly max_load_balance_interval = HZ/10;
5759 
5760 enum fbq_type { regular, remote, all };
5761 
5762 #define LBF_ALL_PINNED	0x01
5763 #define LBF_NEED_BREAK	0x02
5764 #define LBF_DST_PINNED  0x04
5765 #define LBF_SOME_PINNED	0x08
5766 
5767 struct lb_env {
5768 	struct sched_domain	*sd;
5769 
5770 	struct rq		*src_rq;
5771 	int			src_cpu;
5772 
5773 	int			dst_cpu;
5774 	struct rq		*dst_rq;
5775 
5776 	struct cpumask		*dst_grpmask;
5777 	int			new_dst_cpu;
5778 	enum cpu_idle_type	idle;
5779 	long			imbalance;
5780 	/* The set of CPUs under consideration for load-balancing */
5781 	struct cpumask		*cpus;
5782 
5783 	unsigned int		flags;
5784 
5785 	unsigned int		loop;
5786 	unsigned int		loop_break;
5787 	unsigned int		loop_max;
5788 
5789 	enum fbq_type		fbq_type;
5790 	struct list_head	tasks;
5791 };
5792 
5793 /*
5794  * Is this task likely cache-hot:
5795  */
5796 static int task_hot(struct task_struct *p, struct lb_env *env)
5797 {
5798 	s64 delta;
5799 
5800 	lockdep_assert_held(&env->src_rq->lock);
5801 
5802 	if (p->sched_class != &fair_sched_class)
5803 		return 0;
5804 
5805 	if (unlikely(p->policy == SCHED_IDLE))
5806 		return 0;
5807 
5808 	/*
5809 	 * Buddy candidates are cache hot:
5810 	 */
5811 	if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running &&
5812 			(&p->se == cfs_rq_of(&p->se)->next ||
5813 			 &p->se == cfs_rq_of(&p->se)->last))
5814 		return 1;
5815 
5816 	if (sysctl_sched_migration_cost == -1)
5817 		return 1;
5818 	if (sysctl_sched_migration_cost == 0)
5819 		return 0;
5820 
5821 	delta = rq_clock_task(env->src_rq) - p->se.exec_start;
5822 
5823 	return delta < (s64)sysctl_sched_migration_cost;
5824 }
5825 
5826 #ifdef CONFIG_NUMA_BALANCING
5827 /*
5828  * Returns 1, if task migration degrades locality
5829  * Returns 0, if task migration improves locality i.e migration preferred.
5830  * Returns -1, if task migration is not affected by locality.
5831  */
5832 static int migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
5833 {
5834 	struct numa_group *numa_group = rcu_dereference(p->numa_group);
5835 	unsigned long src_faults, dst_faults;
5836 	int src_nid, dst_nid;
5837 
5838 	if (!static_branch_likely(&sched_numa_balancing))
5839 		return -1;
5840 
5841 	if (!p->numa_faults || !(env->sd->flags & SD_NUMA))
5842 		return -1;
5843 
5844 	src_nid = cpu_to_node(env->src_cpu);
5845 	dst_nid = cpu_to_node(env->dst_cpu);
5846 
5847 	if (src_nid == dst_nid)
5848 		return -1;
5849 
5850 	/* Migrating away from the preferred node is always bad. */
5851 	if (src_nid == p->numa_preferred_nid) {
5852 		if (env->src_rq->nr_running > env->src_rq->nr_preferred_running)
5853 			return 1;
5854 		else
5855 			return -1;
5856 	}
5857 
5858 	/* Encourage migration to the preferred node. */
5859 	if (dst_nid == p->numa_preferred_nid)
5860 		return 0;
5861 
5862 	if (numa_group) {
5863 		src_faults = group_faults(p, src_nid);
5864 		dst_faults = group_faults(p, dst_nid);
5865 	} else {
5866 		src_faults = task_faults(p, src_nid);
5867 		dst_faults = task_faults(p, dst_nid);
5868 	}
5869 
5870 	return dst_faults < src_faults;
5871 }
5872 
5873 #else
5874 static inline int migrate_degrades_locality(struct task_struct *p,
5875 					     struct lb_env *env)
5876 {
5877 	return -1;
5878 }
5879 #endif
5880 
5881 /*
5882  * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
5883  */
5884 static
5885 int can_migrate_task(struct task_struct *p, struct lb_env *env)
5886 {
5887 	int tsk_cache_hot;
5888 
5889 	lockdep_assert_held(&env->src_rq->lock);
5890 
5891 	/*
5892 	 * We do not migrate tasks that are:
5893 	 * 1) throttled_lb_pair, or
5894 	 * 2) cannot be migrated to this CPU due to cpus_allowed, or
5895 	 * 3) running (obviously), or
5896 	 * 4) are cache-hot on their current CPU.
5897 	 */
5898 	if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
5899 		return 0;
5900 
5901 	if (!cpumask_test_cpu(env->dst_cpu, tsk_cpus_allowed(p))) {
5902 		int cpu;
5903 
5904 		schedstat_inc(p, se.statistics.nr_failed_migrations_affine);
5905 
5906 		env->flags |= LBF_SOME_PINNED;
5907 
5908 		/*
5909 		 * Remember if this task can be migrated to any other cpu in
5910 		 * our sched_group. We may want to revisit it if we couldn't
5911 		 * meet load balance goals by pulling other tasks on src_cpu.
5912 		 *
5913 		 * Also avoid computing new_dst_cpu if we have already computed
5914 		 * one in current iteration.
5915 		 */
5916 		if (!env->dst_grpmask || (env->flags & LBF_DST_PINNED))
5917 			return 0;
5918 
5919 		/* Prevent to re-select dst_cpu via env's cpus */
5920 		for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
5921 			if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p))) {
5922 				env->flags |= LBF_DST_PINNED;
5923 				env->new_dst_cpu = cpu;
5924 				break;
5925 			}
5926 		}
5927 
5928 		return 0;
5929 	}
5930 
5931 	/* Record that we found atleast one task that could run on dst_cpu */
5932 	env->flags &= ~LBF_ALL_PINNED;
5933 
5934 	if (task_running(env->src_rq, p)) {
5935 		schedstat_inc(p, se.statistics.nr_failed_migrations_running);
5936 		return 0;
5937 	}
5938 
5939 	/*
5940 	 * Aggressive migration if:
5941 	 * 1) destination numa is preferred
5942 	 * 2) task is cache cold, or
5943 	 * 3) too many balance attempts have failed.
5944 	 */
5945 	tsk_cache_hot = migrate_degrades_locality(p, env);
5946 	if (tsk_cache_hot == -1)
5947 		tsk_cache_hot = task_hot(p, env);
5948 
5949 	if (tsk_cache_hot <= 0 ||
5950 	    env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
5951 		if (tsk_cache_hot == 1) {
5952 			schedstat_inc(env->sd, lb_hot_gained[env->idle]);
5953 			schedstat_inc(p, se.statistics.nr_forced_migrations);
5954 		}
5955 		return 1;
5956 	}
5957 
5958 	schedstat_inc(p, se.statistics.nr_failed_migrations_hot);
5959 	return 0;
5960 }
5961 
5962 /*
5963  * detach_task() -- detach the task for the migration specified in env
5964  */
5965 static void detach_task(struct task_struct *p, struct lb_env *env)
5966 {
5967 	lockdep_assert_held(&env->src_rq->lock);
5968 
5969 	p->on_rq = TASK_ON_RQ_MIGRATING;
5970 	deactivate_task(env->src_rq, p, 0);
5971 	set_task_cpu(p, env->dst_cpu);
5972 }
5973 
5974 /*
5975  * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as
5976  * part of active balancing operations within "domain".
5977  *
5978  * Returns a task if successful and NULL otherwise.
5979  */
5980 static struct task_struct *detach_one_task(struct lb_env *env)
5981 {
5982 	struct task_struct *p, *n;
5983 
5984 	lockdep_assert_held(&env->src_rq->lock);
5985 
5986 	list_for_each_entry_safe(p, n, &env->src_rq->cfs_tasks, se.group_node) {
5987 		if (!can_migrate_task(p, env))
5988 			continue;
5989 
5990 		detach_task(p, env);
5991 
5992 		/*
5993 		 * Right now, this is only the second place where
5994 		 * lb_gained[env->idle] is updated (other is detach_tasks)
5995 		 * so we can safely collect stats here rather than
5996 		 * inside detach_tasks().
5997 		 */
5998 		schedstat_inc(env->sd, lb_gained[env->idle]);
5999 		return p;
6000 	}
6001 	return NULL;
6002 }
6003 
6004 static const unsigned int sched_nr_migrate_break = 32;
6005 
6006 /*
6007  * detach_tasks() -- tries to detach up to imbalance weighted load from
6008  * busiest_rq, as part of a balancing operation within domain "sd".
6009  *
6010  * Returns number of detached tasks if successful and 0 otherwise.
6011  */
6012 static int detach_tasks(struct lb_env *env)
6013 {
6014 	struct list_head *tasks = &env->src_rq->cfs_tasks;
6015 	struct task_struct *p;
6016 	unsigned long load;
6017 	int detached = 0;
6018 
6019 	lockdep_assert_held(&env->src_rq->lock);
6020 
6021 	if (env->imbalance <= 0)
6022 		return 0;
6023 
6024 	while (!list_empty(tasks)) {
6025 		/*
6026 		 * We don't want to steal all, otherwise we may be treated likewise,
6027 		 * which could at worst lead to a livelock crash.
6028 		 */
6029 		if (env->idle != CPU_NOT_IDLE && env->src_rq->nr_running <= 1)
6030 			break;
6031 
6032 		p = list_first_entry(tasks, struct task_struct, se.group_node);
6033 
6034 		env->loop++;
6035 		/* We've more or less seen every task there is, call it quits */
6036 		if (env->loop > env->loop_max)
6037 			break;
6038 
6039 		/* take a breather every nr_migrate tasks */
6040 		if (env->loop > env->loop_break) {
6041 			env->loop_break += sched_nr_migrate_break;
6042 			env->flags |= LBF_NEED_BREAK;
6043 			break;
6044 		}
6045 
6046 		if (!can_migrate_task(p, env))
6047 			goto next;
6048 
6049 		load = task_h_load(p);
6050 
6051 		if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed)
6052 			goto next;
6053 
6054 		if ((load / 2) > env->imbalance)
6055 			goto next;
6056 
6057 		detach_task(p, env);
6058 		list_add(&p->se.group_node, &env->tasks);
6059 
6060 		detached++;
6061 		env->imbalance -= load;
6062 
6063 #ifdef CONFIG_PREEMPT
6064 		/*
6065 		 * NEWIDLE balancing is a source of latency, so preemptible
6066 		 * kernels will stop after the first task is detached to minimize
6067 		 * the critical section.
6068 		 */
6069 		if (env->idle == CPU_NEWLY_IDLE)
6070 			break;
6071 #endif
6072 
6073 		/*
6074 		 * We only want to steal up to the prescribed amount of
6075 		 * weighted load.
6076 		 */
6077 		if (env->imbalance <= 0)
6078 			break;
6079 
6080 		continue;
6081 next:
6082 		list_move_tail(&p->se.group_node, tasks);
6083 	}
6084 
6085 	/*
6086 	 * Right now, this is one of only two places we collect this stat
6087 	 * so we can safely collect detach_one_task() stats here rather
6088 	 * than inside detach_one_task().
6089 	 */
6090 	schedstat_add(env->sd, lb_gained[env->idle], detached);
6091 
6092 	return detached;
6093 }
6094 
6095 /*
6096  * attach_task() -- attach the task detached by detach_task() to its new rq.
6097  */
6098 static void attach_task(struct rq *rq, struct task_struct *p)
6099 {
6100 	lockdep_assert_held(&rq->lock);
6101 
6102 	BUG_ON(task_rq(p) != rq);
6103 	activate_task(rq, p, 0);
6104 	p->on_rq = TASK_ON_RQ_QUEUED;
6105 	check_preempt_curr(rq, p, 0);
6106 }
6107 
6108 /*
6109  * attach_one_task() -- attaches the task returned from detach_one_task() to
6110  * its new rq.
6111  */
6112 static void attach_one_task(struct rq *rq, struct task_struct *p)
6113 {
6114 	raw_spin_lock(&rq->lock);
6115 	attach_task(rq, p);
6116 	raw_spin_unlock(&rq->lock);
6117 }
6118 
6119 /*
6120  * attach_tasks() -- attaches all tasks detached by detach_tasks() to their
6121  * new rq.
6122  */
6123 static void attach_tasks(struct lb_env *env)
6124 {
6125 	struct list_head *tasks = &env->tasks;
6126 	struct task_struct *p;
6127 
6128 	raw_spin_lock(&env->dst_rq->lock);
6129 
6130 	while (!list_empty(tasks)) {
6131 		p = list_first_entry(tasks, struct task_struct, se.group_node);
6132 		list_del_init(&p->se.group_node);
6133 
6134 		attach_task(env->dst_rq, p);
6135 	}
6136 
6137 	raw_spin_unlock(&env->dst_rq->lock);
6138 }
6139 
6140 #ifdef CONFIG_FAIR_GROUP_SCHED
6141 static void update_blocked_averages(int cpu)
6142 {
6143 	struct rq *rq = cpu_rq(cpu);
6144 	struct cfs_rq *cfs_rq;
6145 	unsigned long flags;
6146 
6147 	raw_spin_lock_irqsave(&rq->lock, flags);
6148 	update_rq_clock(rq);
6149 
6150 	/*
6151 	 * Iterates the task_group tree in a bottom up fashion, see
6152 	 * list_add_leaf_cfs_rq() for details.
6153 	 */
6154 	for_each_leaf_cfs_rq(rq, cfs_rq) {
6155 		/* throttled entities do not contribute to load */
6156 		if (throttled_hierarchy(cfs_rq))
6157 			continue;
6158 
6159 		if (update_cfs_rq_load_avg(cfs_rq_clock_task(cfs_rq), cfs_rq))
6160 			update_tg_load_avg(cfs_rq, 0);
6161 	}
6162 	raw_spin_unlock_irqrestore(&rq->lock, flags);
6163 }
6164 
6165 /*
6166  * Compute the hierarchical load factor for cfs_rq and all its ascendants.
6167  * This needs to be done in a top-down fashion because the load of a child
6168  * group is a fraction of its parents load.
6169  */
6170 static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
6171 {
6172 	struct rq *rq = rq_of(cfs_rq);
6173 	struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
6174 	unsigned long now = jiffies;
6175 	unsigned long load;
6176 
6177 	if (cfs_rq->last_h_load_update == now)
6178 		return;
6179 
6180 	cfs_rq->h_load_next = NULL;
6181 	for_each_sched_entity(se) {
6182 		cfs_rq = cfs_rq_of(se);
6183 		cfs_rq->h_load_next = se;
6184 		if (cfs_rq->last_h_load_update == now)
6185 			break;
6186 	}
6187 
6188 	if (!se) {
6189 		cfs_rq->h_load = cfs_rq_load_avg(cfs_rq);
6190 		cfs_rq->last_h_load_update = now;
6191 	}
6192 
6193 	while ((se = cfs_rq->h_load_next) != NULL) {
6194 		load = cfs_rq->h_load;
6195 		load = div64_ul(load * se->avg.load_avg,
6196 			cfs_rq_load_avg(cfs_rq) + 1);
6197 		cfs_rq = group_cfs_rq(se);
6198 		cfs_rq->h_load = load;
6199 		cfs_rq->last_h_load_update = now;
6200 	}
6201 }
6202 
6203 static unsigned long task_h_load(struct task_struct *p)
6204 {
6205 	struct cfs_rq *cfs_rq = task_cfs_rq(p);
6206 
6207 	update_cfs_rq_h_load(cfs_rq);
6208 	return div64_ul(p->se.avg.load_avg * cfs_rq->h_load,
6209 			cfs_rq_load_avg(cfs_rq) + 1);
6210 }
6211 #else
6212 static inline void update_blocked_averages(int cpu)
6213 {
6214 	struct rq *rq = cpu_rq(cpu);
6215 	struct cfs_rq *cfs_rq = &rq->cfs;
6216 	unsigned long flags;
6217 
6218 	raw_spin_lock_irqsave(&rq->lock, flags);
6219 	update_rq_clock(rq);
6220 	update_cfs_rq_load_avg(cfs_rq_clock_task(cfs_rq), cfs_rq);
6221 	raw_spin_unlock_irqrestore(&rq->lock, flags);
6222 }
6223 
6224 static unsigned long task_h_load(struct task_struct *p)
6225 {
6226 	return p->se.avg.load_avg;
6227 }
6228 #endif
6229 
6230 /********** Helpers for find_busiest_group ************************/
6231 
6232 enum group_type {
6233 	group_other = 0,
6234 	group_imbalanced,
6235 	group_overloaded,
6236 };
6237 
6238 /*
6239  * sg_lb_stats - stats of a sched_group required for load_balancing
6240  */
6241 struct sg_lb_stats {
6242 	unsigned long avg_load; /*Avg load across the CPUs of the group */
6243 	unsigned long group_load; /* Total load over the CPUs of the group */
6244 	unsigned long sum_weighted_load; /* Weighted load of group's tasks */
6245 	unsigned long load_per_task;
6246 	unsigned long group_capacity;
6247 	unsigned long group_util; /* Total utilization of the group */
6248 	unsigned int sum_nr_running; /* Nr tasks running in the group */
6249 	unsigned int idle_cpus;
6250 	unsigned int group_weight;
6251 	enum group_type group_type;
6252 	int group_no_capacity;
6253 #ifdef CONFIG_NUMA_BALANCING
6254 	unsigned int nr_numa_running;
6255 	unsigned int nr_preferred_running;
6256 #endif
6257 };
6258 
6259 /*
6260  * sd_lb_stats - Structure to store the statistics of a sched_domain
6261  *		 during load balancing.
6262  */
6263 struct sd_lb_stats {
6264 	struct sched_group *busiest;	/* Busiest group in this sd */
6265 	struct sched_group *local;	/* Local group in this sd */
6266 	unsigned long total_load;	/* Total load of all groups in sd */
6267 	unsigned long total_capacity;	/* Total capacity of all groups in sd */
6268 	unsigned long avg_load;	/* Average load across all groups in sd */
6269 
6270 	struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
6271 	struct sg_lb_stats local_stat;	/* Statistics of the local group */
6272 };
6273 
6274 static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
6275 {
6276 	/*
6277 	 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
6278 	 * local_stat because update_sg_lb_stats() does a full clear/assignment.
6279 	 * We must however clear busiest_stat::avg_load because
6280 	 * update_sd_pick_busiest() reads this before assignment.
6281 	 */
6282 	*sds = (struct sd_lb_stats){
6283 		.busiest = NULL,
6284 		.local = NULL,
6285 		.total_load = 0UL,
6286 		.total_capacity = 0UL,
6287 		.busiest_stat = {
6288 			.avg_load = 0UL,
6289 			.sum_nr_running = 0,
6290 			.group_type = group_other,
6291 		},
6292 	};
6293 }
6294 
6295 /**
6296  * get_sd_load_idx - Obtain the load index for a given sched domain.
6297  * @sd: The sched_domain whose load_idx is to be obtained.
6298  * @idle: The idle status of the CPU for whose sd load_idx is obtained.
6299  *
6300  * Return: The load index.
6301  */
6302 static inline int get_sd_load_idx(struct sched_domain *sd,
6303 					enum cpu_idle_type idle)
6304 {
6305 	int load_idx;
6306 
6307 	switch (idle) {
6308 	case CPU_NOT_IDLE:
6309 		load_idx = sd->busy_idx;
6310 		break;
6311 
6312 	case CPU_NEWLY_IDLE:
6313 		load_idx = sd->newidle_idx;
6314 		break;
6315 	default:
6316 		load_idx = sd->idle_idx;
6317 		break;
6318 	}
6319 
6320 	return load_idx;
6321 }
6322 
6323 static unsigned long scale_rt_capacity(int cpu)
6324 {
6325 	struct rq *rq = cpu_rq(cpu);
6326 	u64 total, used, age_stamp, avg;
6327 	s64 delta;
6328 
6329 	/*
6330 	 * Since we're reading these variables without serialization make sure
6331 	 * we read them once before doing sanity checks on them.
6332 	 */
6333 	age_stamp = READ_ONCE(rq->age_stamp);
6334 	avg = READ_ONCE(rq->rt_avg);
6335 	delta = __rq_clock_broken(rq) - age_stamp;
6336 
6337 	if (unlikely(delta < 0))
6338 		delta = 0;
6339 
6340 	total = sched_avg_period() + delta;
6341 
6342 	used = div_u64(avg, total);
6343 
6344 	if (likely(used < SCHED_CAPACITY_SCALE))
6345 		return SCHED_CAPACITY_SCALE - used;
6346 
6347 	return 1;
6348 }
6349 
6350 static void update_cpu_capacity(struct sched_domain *sd, int cpu)
6351 {
6352 	unsigned long capacity = arch_scale_cpu_capacity(sd, cpu);
6353 	struct sched_group *sdg = sd->groups;
6354 
6355 	cpu_rq(cpu)->cpu_capacity_orig = capacity;
6356 
6357 	capacity *= scale_rt_capacity(cpu);
6358 	capacity >>= SCHED_CAPACITY_SHIFT;
6359 
6360 	if (!capacity)
6361 		capacity = 1;
6362 
6363 	cpu_rq(cpu)->cpu_capacity = capacity;
6364 	sdg->sgc->capacity = capacity;
6365 }
6366 
6367 void update_group_capacity(struct sched_domain *sd, int cpu)
6368 {
6369 	struct sched_domain *child = sd->child;
6370 	struct sched_group *group, *sdg = sd->groups;
6371 	unsigned long capacity;
6372 	unsigned long interval;
6373 
6374 	interval = msecs_to_jiffies(sd->balance_interval);
6375 	interval = clamp(interval, 1UL, max_load_balance_interval);
6376 	sdg->sgc->next_update = jiffies + interval;
6377 
6378 	if (!child) {
6379 		update_cpu_capacity(sd, cpu);
6380 		return;
6381 	}
6382 
6383 	capacity = 0;
6384 
6385 	if (child->flags & SD_OVERLAP) {
6386 		/*
6387 		 * SD_OVERLAP domains cannot assume that child groups
6388 		 * span the current group.
6389 		 */
6390 
6391 		for_each_cpu(cpu, sched_group_cpus(sdg)) {
6392 			struct sched_group_capacity *sgc;
6393 			struct rq *rq = cpu_rq(cpu);
6394 
6395 			/*
6396 			 * build_sched_domains() -> init_sched_groups_capacity()
6397 			 * gets here before we've attached the domains to the
6398 			 * runqueues.
6399 			 *
6400 			 * Use capacity_of(), which is set irrespective of domains
6401 			 * in update_cpu_capacity().
6402 			 *
6403 			 * This avoids capacity from being 0 and
6404 			 * causing divide-by-zero issues on boot.
6405 			 */
6406 			if (unlikely(!rq->sd)) {
6407 				capacity += capacity_of(cpu);
6408 				continue;
6409 			}
6410 
6411 			sgc = rq->sd->groups->sgc;
6412 			capacity += sgc->capacity;
6413 		}
6414 	} else  {
6415 		/*
6416 		 * !SD_OVERLAP domains can assume that child groups
6417 		 * span the current group.
6418 		 */
6419 
6420 		group = child->groups;
6421 		do {
6422 			capacity += group->sgc->capacity;
6423 			group = group->next;
6424 		} while (group != child->groups);
6425 	}
6426 
6427 	sdg->sgc->capacity = capacity;
6428 }
6429 
6430 /*
6431  * Check whether the capacity of the rq has been noticeably reduced by side
6432  * activity. The imbalance_pct is used for the threshold.
6433  * Return true is the capacity is reduced
6434  */
6435 static inline int
6436 check_cpu_capacity(struct rq *rq, struct sched_domain *sd)
6437 {
6438 	return ((rq->cpu_capacity * sd->imbalance_pct) <
6439 				(rq->cpu_capacity_orig * 100));
6440 }
6441 
6442 /*
6443  * Group imbalance indicates (and tries to solve) the problem where balancing
6444  * groups is inadequate due to tsk_cpus_allowed() constraints.
6445  *
6446  * Imagine a situation of two groups of 4 cpus each and 4 tasks each with a
6447  * cpumask covering 1 cpu of the first group and 3 cpus of the second group.
6448  * Something like:
6449  *
6450  * 	{ 0 1 2 3 } { 4 5 6 7 }
6451  * 	        *     * * *
6452  *
6453  * If we were to balance group-wise we'd place two tasks in the first group and
6454  * two tasks in the second group. Clearly this is undesired as it will overload
6455  * cpu 3 and leave one of the cpus in the second group unused.
6456  *
6457  * The current solution to this issue is detecting the skew in the first group
6458  * by noticing the lower domain failed to reach balance and had difficulty
6459  * moving tasks due to affinity constraints.
6460  *
6461  * When this is so detected; this group becomes a candidate for busiest; see
6462  * update_sd_pick_busiest(). And calculate_imbalance() and
6463  * find_busiest_group() avoid some of the usual balance conditions to allow it
6464  * to create an effective group imbalance.
6465  *
6466  * This is a somewhat tricky proposition since the next run might not find the
6467  * group imbalance and decide the groups need to be balanced again. A most
6468  * subtle and fragile situation.
6469  */
6470 
6471 static inline int sg_imbalanced(struct sched_group *group)
6472 {
6473 	return group->sgc->imbalance;
6474 }
6475 
6476 /*
6477  * group_has_capacity returns true if the group has spare capacity that could
6478  * be used by some tasks.
6479  * We consider that a group has spare capacity if the  * number of task is
6480  * smaller than the number of CPUs or if the utilization is lower than the
6481  * available capacity for CFS tasks.
6482  * For the latter, we use a threshold to stabilize the state, to take into
6483  * account the variance of the tasks' load and to return true if the available
6484  * capacity in meaningful for the load balancer.
6485  * As an example, an available capacity of 1% can appear but it doesn't make
6486  * any benefit for the load balance.
6487  */
6488 static inline bool
6489 group_has_capacity(struct lb_env *env, struct sg_lb_stats *sgs)
6490 {
6491 	if (sgs->sum_nr_running < sgs->group_weight)
6492 		return true;
6493 
6494 	if ((sgs->group_capacity * 100) >
6495 			(sgs->group_util * env->sd->imbalance_pct))
6496 		return true;
6497 
6498 	return false;
6499 }
6500 
6501 /*
6502  *  group_is_overloaded returns true if the group has more tasks than it can
6503  *  handle.
6504  *  group_is_overloaded is not equals to !group_has_capacity because a group
6505  *  with the exact right number of tasks, has no more spare capacity but is not
6506  *  overloaded so both group_has_capacity and group_is_overloaded return
6507  *  false.
6508  */
6509 static inline bool
6510 group_is_overloaded(struct lb_env *env, struct sg_lb_stats *sgs)
6511 {
6512 	if (sgs->sum_nr_running <= sgs->group_weight)
6513 		return false;
6514 
6515 	if ((sgs->group_capacity * 100) <
6516 			(sgs->group_util * env->sd->imbalance_pct))
6517 		return true;
6518 
6519 	return false;
6520 }
6521 
6522 static inline enum
6523 group_type group_classify(struct sched_group *group,
6524 			  struct sg_lb_stats *sgs)
6525 {
6526 	if (sgs->group_no_capacity)
6527 		return group_overloaded;
6528 
6529 	if (sg_imbalanced(group))
6530 		return group_imbalanced;
6531 
6532 	return group_other;
6533 }
6534 
6535 /**
6536  * update_sg_lb_stats - Update sched_group's statistics for load balancing.
6537  * @env: The load balancing environment.
6538  * @group: sched_group whose statistics are to be updated.
6539  * @load_idx: Load index of sched_domain of this_cpu for load calc.
6540  * @local_group: Does group contain this_cpu.
6541  * @sgs: variable to hold the statistics for this group.
6542  * @overload: Indicate more than one runnable task for any CPU.
6543  */
6544 static inline void update_sg_lb_stats(struct lb_env *env,
6545 			struct sched_group *group, int load_idx,
6546 			int local_group, struct sg_lb_stats *sgs,
6547 			bool *overload)
6548 {
6549 	unsigned long load;
6550 	int i, nr_running;
6551 
6552 	memset(sgs, 0, sizeof(*sgs));
6553 
6554 	for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
6555 		struct rq *rq = cpu_rq(i);
6556 
6557 		/* Bias balancing toward cpus of our domain */
6558 		if (local_group)
6559 			load = target_load(i, load_idx);
6560 		else
6561 			load = source_load(i, load_idx);
6562 
6563 		sgs->group_load += load;
6564 		sgs->group_util += cpu_util(i);
6565 		sgs->sum_nr_running += rq->cfs.h_nr_running;
6566 
6567 		nr_running = rq->nr_running;
6568 		if (nr_running > 1)
6569 			*overload = true;
6570 
6571 #ifdef CONFIG_NUMA_BALANCING
6572 		sgs->nr_numa_running += rq->nr_numa_running;
6573 		sgs->nr_preferred_running += rq->nr_preferred_running;
6574 #endif
6575 		sgs->sum_weighted_load += weighted_cpuload(i);
6576 		/*
6577 		 * No need to call idle_cpu() if nr_running is not 0
6578 		 */
6579 		if (!nr_running && idle_cpu(i))
6580 			sgs->idle_cpus++;
6581 	}
6582 
6583 	/* Adjust by relative CPU capacity of the group */
6584 	sgs->group_capacity = group->sgc->capacity;
6585 	sgs->avg_load = (sgs->group_load*SCHED_CAPACITY_SCALE) / sgs->group_capacity;
6586 
6587 	if (sgs->sum_nr_running)
6588 		sgs->load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
6589 
6590 	sgs->group_weight = group->group_weight;
6591 
6592 	sgs->group_no_capacity = group_is_overloaded(env, sgs);
6593 	sgs->group_type = group_classify(group, sgs);
6594 }
6595 
6596 /**
6597  * update_sd_pick_busiest - return 1 on busiest group
6598  * @env: The load balancing environment.
6599  * @sds: sched_domain statistics
6600  * @sg: sched_group candidate to be checked for being the busiest
6601  * @sgs: sched_group statistics
6602  *
6603  * Determine if @sg is a busier group than the previously selected
6604  * busiest group.
6605  *
6606  * Return: %true if @sg is a busier group than the previously selected
6607  * busiest group. %false otherwise.
6608  */
6609 static bool update_sd_pick_busiest(struct lb_env *env,
6610 				   struct sd_lb_stats *sds,
6611 				   struct sched_group *sg,
6612 				   struct sg_lb_stats *sgs)
6613 {
6614 	struct sg_lb_stats *busiest = &sds->busiest_stat;
6615 
6616 	if (sgs->group_type > busiest->group_type)
6617 		return true;
6618 
6619 	if (sgs->group_type < busiest->group_type)
6620 		return false;
6621 
6622 	if (sgs->avg_load <= busiest->avg_load)
6623 		return false;
6624 
6625 	/* This is the busiest node in its class. */
6626 	if (!(env->sd->flags & SD_ASYM_PACKING))
6627 		return true;
6628 
6629 	/*
6630 	 * ASYM_PACKING needs to move all the work to the lowest
6631 	 * numbered CPUs in the group, therefore mark all groups
6632 	 * higher than ourself as busy.
6633 	 */
6634 	if (sgs->sum_nr_running && env->dst_cpu < group_first_cpu(sg)) {
6635 		if (!sds->busiest)
6636 			return true;
6637 
6638 		if (group_first_cpu(sds->busiest) > group_first_cpu(sg))
6639 			return true;
6640 	}
6641 
6642 	return false;
6643 }
6644 
6645 #ifdef CONFIG_NUMA_BALANCING
6646 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
6647 {
6648 	if (sgs->sum_nr_running > sgs->nr_numa_running)
6649 		return regular;
6650 	if (sgs->sum_nr_running > sgs->nr_preferred_running)
6651 		return remote;
6652 	return all;
6653 }
6654 
6655 static inline enum fbq_type fbq_classify_rq(struct rq *rq)
6656 {
6657 	if (rq->nr_running > rq->nr_numa_running)
6658 		return regular;
6659 	if (rq->nr_running > rq->nr_preferred_running)
6660 		return remote;
6661 	return all;
6662 }
6663 #else
6664 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
6665 {
6666 	return all;
6667 }
6668 
6669 static inline enum fbq_type fbq_classify_rq(struct rq *rq)
6670 {
6671 	return regular;
6672 }
6673 #endif /* CONFIG_NUMA_BALANCING */
6674 
6675 /**
6676  * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
6677  * @env: The load balancing environment.
6678  * @sds: variable to hold the statistics for this sched_domain.
6679  */
6680 static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
6681 {
6682 	struct sched_domain *child = env->sd->child;
6683 	struct sched_group *sg = env->sd->groups;
6684 	struct sg_lb_stats tmp_sgs;
6685 	int load_idx, prefer_sibling = 0;
6686 	bool overload = false;
6687 
6688 	if (child && child->flags & SD_PREFER_SIBLING)
6689 		prefer_sibling = 1;
6690 
6691 	load_idx = get_sd_load_idx(env->sd, env->idle);
6692 
6693 	do {
6694 		struct sg_lb_stats *sgs = &tmp_sgs;
6695 		int local_group;
6696 
6697 		local_group = cpumask_test_cpu(env->dst_cpu, sched_group_cpus(sg));
6698 		if (local_group) {
6699 			sds->local = sg;
6700 			sgs = &sds->local_stat;
6701 
6702 			if (env->idle != CPU_NEWLY_IDLE ||
6703 			    time_after_eq(jiffies, sg->sgc->next_update))
6704 				update_group_capacity(env->sd, env->dst_cpu);
6705 		}
6706 
6707 		update_sg_lb_stats(env, sg, load_idx, local_group, sgs,
6708 						&overload);
6709 
6710 		if (local_group)
6711 			goto next_group;
6712 
6713 		/*
6714 		 * In case the child domain prefers tasks go to siblings
6715 		 * first, lower the sg capacity so that we'll try
6716 		 * and move all the excess tasks away. We lower the capacity
6717 		 * of a group only if the local group has the capacity to fit
6718 		 * these excess tasks. The extra check prevents the case where
6719 		 * you always pull from the heaviest group when it is already
6720 		 * under-utilized (possible with a large weight task outweighs
6721 		 * the tasks on the system).
6722 		 */
6723 		if (prefer_sibling && sds->local &&
6724 		    group_has_capacity(env, &sds->local_stat) &&
6725 		    (sgs->sum_nr_running > 1)) {
6726 			sgs->group_no_capacity = 1;
6727 			sgs->group_type = group_classify(sg, sgs);
6728 		}
6729 
6730 		if (update_sd_pick_busiest(env, sds, sg, sgs)) {
6731 			sds->busiest = sg;
6732 			sds->busiest_stat = *sgs;
6733 		}
6734 
6735 next_group:
6736 		/* Now, start updating sd_lb_stats */
6737 		sds->total_load += sgs->group_load;
6738 		sds->total_capacity += sgs->group_capacity;
6739 
6740 		sg = sg->next;
6741 	} while (sg != env->sd->groups);
6742 
6743 	if (env->sd->flags & SD_NUMA)
6744 		env->fbq_type = fbq_classify_group(&sds->busiest_stat);
6745 
6746 	if (!env->sd->parent) {
6747 		/* update overload indicator if we are at root domain */
6748 		if (env->dst_rq->rd->overload != overload)
6749 			env->dst_rq->rd->overload = overload;
6750 	}
6751 
6752 }
6753 
6754 /**
6755  * check_asym_packing - Check to see if the group is packed into the
6756  *			sched doman.
6757  *
6758  * This is primarily intended to used at the sibling level.  Some
6759  * cores like POWER7 prefer to use lower numbered SMT threads.  In the
6760  * case of POWER7, it can move to lower SMT modes only when higher
6761  * threads are idle.  When in lower SMT modes, the threads will
6762  * perform better since they share less core resources.  Hence when we
6763  * have idle threads, we want them to be the higher ones.
6764  *
6765  * This packing function is run on idle threads.  It checks to see if
6766  * the busiest CPU in this domain (core in the P7 case) has a higher
6767  * CPU number than the packing function is being run on.  Here we are
6768  * assuming lower CPU number will be equivalent to lower a SMT thread
6769  * number.
6770  *
6771  * Return: 1 when packing is required and a task should be moved to
6772  * this CPU.  The amount of the imbalance is returned in *imbalance.
6773  *
6774  * @env: The load balancing environment.
6775  * @sds: Statistics of the sched_domain which is to be packed
6776  */
6777 static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds)
6778 {
6779 	int busiest_cpu;
6780 
6781 	if (!(env->sd->flags & SD_ASYM_PACKING))
6782 		return 0;
6783 
6784 	if (!sds->busiest)
6785 		return 0;
6786 
6787 	busiest_cpu = group_first_cpu(sds->busiest);
6788 	if (env->dst_cpu > busiest_cpu)
6789 		return 0;
6790 
6791 	env->imbalance = DIV_ROUND_CLOSEST(
6792 		sds->busiest_stat.avg_load * sds->busiest_stat.group_capacity,
6793 		SCHED_CAPACITY_SCALE);
6794 
6795 	return 1;
6796 }
6797 
6798 /**
6799  * fix_small_imbalance - Calculate the minor imbalance that exists
6800  *			amongst the groups of a sched_domain, during
6801  *			load balancing.
6802  * @env: The load balancing environment.
6803  * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
6804  */
6805 static inline
6806 void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
6807 {
6808 	unsigned long tmp, capa_now = 0, capa_move = 0;
6809 	unsigned int imbn = 2;
6810 	unsigned long scaled_busy_load_per_task;
6811 	struct sg_lb_stats *local, *busiest;
6812 
6813 	local = &sds->local_stat;
6814 	busiest = &sds->busiest_stat;
6815 
6816 	if (!local->sum_nr_running)
6817 		local->load_per_task = cpu_avg_load_per_task(env->dst_cpu);
6818 	else if (busiest->load_per_task > local->load_per_task)
6819 		imbn = 1;
6820 
6821 	scaled_busy_load_per_task =
6822 		(busiest->load_per_task * SCHED_CAPACITY_SCALE) /
6823 		busiest->group_capacity;
6824 
6825 	if (busiest->avg_load + scaled_busy_load_per_task >=
6826 	    local->avg_load + (scaled_busy_load_per_task * imbn)) {
6827 		env->imbalance = busiest->load_per_task;
6828 		return;
6829 	}
6830 
6831 	/*
6832 	 * OK, we don't have enough imbalance to justify moving tasks,
6833 	 * however we may be able to increase total CPU capacity used by
6834 	 * moving them.
6835 	 */
6836 
6837 	capa_now += busiest->group_capacity *
6838 			min(busiest->load_per_task, busiest->avg_load);
6839 	capa_now += local->group_capacity *
6840 			min(local->load_per_task, local->avg_load);
6841 	capa_now /= SCHED_CAPACITY_SCALE;
6842 
6843 	/* Amount of load we'd subtract */
6844 	if (busiest->avg_load > scaled_busy_load_per_task) {
6845 		capa_move += busiest->group_capacity *
6846 			    min(busiest->load_per_task,
6847 				busiest->avg_load - scaled_busy_load_per_task);
6848 	}
6849 
6850 	/* Amount of load we'd add */
6851 	if (busiest->avg_load * busiest->group_capacity <
6852 	    busiest->load_per_task * SCHED_CAPACITY_SCALE) {
6853 		tmp = (busiest->avg_load * busiest->group_capacity) /
6854 		      local->group_capacity;
6855 	} else {
6856 		tmp = (busiest->load_per_task * SCHED_CAPACITY_SCALE) /
6857 		      local->group_capacity;
6858 	}
6859 	capa_move += local->group_capacity *
6860 		    min(local->load_per_task, local->avg_load + tmp);
6861 	capa_move /= SCHED_CAPACITY_SCALE;
6862 
6863 	/* Move if we gain throughput */
6864 	if (capa_move > capa_now)
6865 		env->imbalance = busiest->load_per_task;
6866 }
6867 
6868 /**
6869  * calculate_imbalance - Calculate the amount of imbalance present within the
6870  *			 groups of a given sched_domain during load balance.
6871  * @env: load balance environment
6872  * @sds: statistics of the sched_domain whose imbalance is to be calculated.
6873  */
6874 static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
6875 {
6876 	unsigned long max_pull, load_above_capacity = ~0UL;
6877 	struct sg_lb_stats *local, *busiest;
6878 
6879 	local = &sds->local_stat;
6880 	busiest = &sds->busiest_stat;
6881 
6882 	if (busiest->group_type == group_imbalanced) {
6883 		/*
6884 		 * In the group_imb case we cannot rely on group-wide averages
6885 		 * to ensure cpu-load equilibrium, look at wider averages. XXX
6886 		 */
6887 		busiest->load_per_task =
6888 			min(busiest->load_per_task, sds->avg_load);
6889 	}
6890 
6891 	/*
6892 	 * In the presence of smp nice balancing, certain scenarios can have
6893 	 * max load less than avg load(as we skip the groups at or below
6894 	 * its cpu_capacity, while calculating max_load..)
6895 	 */
6896 	if (busiest->avg_load <= sds->avg_load ||
6897 	    local->avg_load >= sds->avg_load) {
6898 		env->imbalance = 0;
6899 		return fix_small_imbalance(env, sds);
6900 	}
6901 
6902 	/*
6903 	 * If there aren't any idle cpus, avoid creating some.
6904 	 */
6905 	if (busiest->group_type == group_overloaded &&
6906 	    local->group_type   == group_overloaded) {
6907 		load_above_capacity = busiest->sum_nr_running *
6908 					SCHED_LOAD_SCALE;
6909 		if (load_above_capacity > busiest->group_capacity)
6910 			load_above_capacity -= busiest->group_capacity;
6911 		else
6912 			load_above_capacity = ~0UL;
6913 	}
6914 
6915 	/*
6916 	 * We're trying to get all the cpus to the average_load, so we don't
6917 	 * want to push ourselves above the average load, nor do we wish to
6918 	 * reduce the max loaded cpu below the average load. At the same time,
6919 	 * we also don't want to reduce the group load below the group capacity
6920 	 * (so that we can implement power-savings policies etc). Thus we look
6921 	 * for the minimum possible imbalance.
6922 	 */
6923 	max_pull = min(busiest->avg_load - sds->avg_load, load_above_capacity);
6924 
6925 	/* How much load to actually move to equalise the imbalance */
6926 	env->imbalance = min(
6927 		max_pull * busiest->group_capacity,
6928 		(sds->avg_load - local->avg_load) * local->group_capacity
6929 	) / SCHED_CAPACITY_SCALE;
6930 
6931 	/*
6932 	 * if *imbalance is less than the average load per runnable task
6933 	 * there is no guarantee that any tasks will be moved so we'll have
6934 	 * a think about bumping its value to force at least one task to be
6935 	 * moved
6936 	 */
6937 	if (env->imbalance < busiest->load_per_task)
6938 		return fix_small_imbalance(env, sds);
6939 }
6940 
6941 /******* find_busiest_group() helpers end here *********************/
6942 
6943 /**
6944  * find_busiest_group - Returns the busiest group within the sched_domain
6945  * if there is an imbalance. If there isn't an imbalance, and
6946  * the user has opted for power-savings, it returns a group whose
6947  * CPUs can be put to idle by rebalancing those tasks elsewhere, if
6948  * such a group exists.
6949  *
6950  * Also calculates the amount of weighted load which should be moved
6951  * to restore balance.
6952  *
6953  * @env: The load balancing environment.
6954  *
6955  * Return:	- The busiest group if imbalance exists.
6956  *		- If no imbalance and user has opted for power-savings balance,
6957  *		   return the least loaded group whose CPUs can be
6958  *		   put to idle by rebalancing its tasks onto our group.
6959  */
6960 static struct sched_group *find_busiest_group(struct lb_env *env)
6961 {
6962 	struct sg_lb_stats *local, *busiest;
6963 	struct sd_lb_stats sds;
6964 
6965 	init_sd_lb_stats(&sds);
6966 
6967 	/*
6968 	 * Compute the various statistics relavent for load balancing at
6969 	 * this level.
6970 	 */
6971 	update_sd_lb_stats(env, &sds);
6972 	local = &sds.local_stat;
6973 	busiest = &sds.busiest_stat;
6974 
6975 	/* ASYM feature bypasses nice load balance check */
6976 	if ((env->idle == CPU_IDLE || env->idle == CPU_NEWLY_IDLE) &&
6977 	    check_asym_packing(env, &sds))
6978 		return sds.busiest;
6979 
6980 	/* There is no busy sibling group to pull tasks from */
6981 	if (!sds.busiest || busiest->sum_nr_running == 0)
6982 		goto out_balanced;
6983 
6984 	sds.avg_load = (SCHED_CAPACITY_SCALE * sds.total_load)
6985 						/ sds.total_capacity;
6986 
6987 	/*
6988 	 * If the busiest group is imbalanced the below checks don't
6989 	 * work because they assume all things are equal, which typically
6990 	 * isn't true due to cpus_allowed constraints and the like.
6991 	 */
6992 	if (busiest->group_type == group_imbalanced)
6993 		goto force_balance;
6994 
6995 	/* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
6996 	if (env->idle == CPU_NEWLY_IDLE && group_has_capacity(env, local) &&
6997 	    busiest->group_no_capacity)
6998 		goto force_balance;
6999 
7000 	/*
7001 	 * If the local group is busier than the selected busiest group
7002 	 * don't try and pull any tasks.
7003 	 */
7004 	if (local->avg_load >= busiest->avg_load)
7005 		goto out_balanced;
7006 
7007 	/*
7008 	 * Don't pull any tasks if this group is already above the domain
7009 	 * average load.
7010 	 */
7011 	if (local->avg_load >= sds.avg_load)
7012 		goto out_balanced;
7013 
7014 	if (env->idle == CPU_IDLE) {
7015 		/*
7016 		 * This cpu is idle. If the busiest group is not overloaded
7017 		 * and there is no imbalance between this and busiest group
7018 		 * wrt idle cpus, it is balanced. The imbalance becomes
7019 		 * significant if the diff is greater than 1 otherwise we
7020 		 * might end up to just move the imbalance on another group
7021 		 */
7022 		if ((busiest->group_type != group_overloaded) &&
7023 				(local->idle_cpus <= (busiest->idle_cpus + 1)))
7024 			goto out_balanced;
7025 	} else {
7026 		/*
7027 		 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
7028 		 * imbalance_pct to be conservative.
7029 		 */
7030 		if (100 * busiest->avg_load <=
7031 				env->sd->imbalance_pct * local->avg_load)
7032 			goto out_balanced;
7033 	}
7034 
7035 force_balance:
7036 	/* Looks like there is an imbalance. Compute it */
7037 	calculate_imbalance(env, &sds);
7038 	return sds.busiest;
7039 
7040 out_balanced:
7041 	env->imbalance = 0;
7042 	return NULL;
7043 }
7044 
7045 /*
7046  * find_busiest_queue - find the busiest runqueue among the cpus in group.
7047  */
7048 static struct rq *find_busiest_queue(struct lb_env *env,
7049 				     struct sched_group *group)
7050 {
7051 	struct rq *busiest = NULL, *rq;
7052 	unsigned long busiest_load = 0, busiest_capacity = 1;
7053 	int i;
7054 
7055 	for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
7056 		unsigned long capacity, wl;
7057 		enum fbq_type rt;
7058 
7059 		rq = cpu_rq(i);
7060 		rt = fbq_classify_rq(rq);
7061 
7062 		/*
7063 		 * We classify groups/runqueues into three groups:
7064 		 *  - regular: there are !numa tasks
7065 		 *  - remote:  there are numa tasks that run on the 'wrong' node
7066 		 *  - all:     there is no distinction
7067 		 *
7068 		 * In order to avoid migrating ideally placed numa tasks,
7069 		 * ignore those when there's better options.
7070 		 *
7071 		 * If we ignore the actual busiest queue to migrate another
7072 		 * task, the next balance pass can still reduce the busiest
7073 		 * queue by moving tasks around inside the node.
7074 		 *
7075 		 * If we cannot move enough load due to this classification
7076 		 * the next pass will adjust the group classification and
7077 		 * allow migration of more tasks.
7078 		 *
7079 		 * Both cases only affect the total convergence complexity.
7080 		 */
7081 		if (rt > env->fbq_type)
7082 			continue;
7083 
7084 		capacity = capacity_of(i);
7085 
7086 		wl = weighted_cpuload(i);
7087 
7088 		/*
7089 		 * When comparing with imbalance, use weighted_cpuload()
7090 		 * which is not scaled with the cpu capacity.
7091 		 */
7092 
7093 		if (rq->nr_running == 1 && wl > env->imbalance &&
7094 		    !check_cpu_capacity(rq, env->sd))
7095 			continue;
7096 
7097 		/*
7098 		 * For the load comparisons with the other cpu's, consider
7099 		 * the weighted_cpuload() scaled with the cpu capacity, so
7100 		 * that the load can be moved away from the cpu that is
7101 		 * potentially running at a lower capacity.
7102 		 *
7103 		 * Thus we're looking for max(wl_i / capacity_i), crosswise
7104 		 * multiplication to rid ourselves of the division works out
7105 		 * to: wl_i * capacity_j > wl_j * capacity_i;  where j is
7106 		 * our previous maximum.
7107 		 */
7108 		if (wl * busiest_capacity > busiest_load * capacity) {
7109 			busiest_load = wl;
7110 			busiest_capacity = capacity;
7111 			busiest = rq;
7112 		}
7113 	}
7114 
7115 	return busiest;
7116 }
7117 
7118 /*
7119  * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
7120  * so long as it is large enough.
7121  */
7122 #define MAX_PINNED_INTERVAL	512
7123 
7124 /* Working cpumask for load_balance and load_balance_newidle. */
7125 DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
7126 
7127 static int need_active_balance(struct lb_env *env)
7128 {
7129 	struct sched_domain *sd = env->sd;
7130 
7131 	if (env->idle == CPU_NEWLY_IDLE) {
7132 
7133 		/*
7134 		 * ASYM_PACKING needs to force migrate tasks from busy but
7135 		 * higher numbered CPUs in order to pack all tasks in the
7136 		 * lowest numbered CPUs.
7137 		 */
7138 		if ((sd->flags & SD_ASYM_PACKING) && env->src_cpu > env->dst_cpu)
7139 			return 1;
7140 	}
7141 
7142 	/*
7143 	 * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task.
7144 	 * It's worth migrating the task if the src_cpu's capacity is reduced
7145 	 * because of other sched_class or IRQs if more capacity stays
7146 	 * available on dst_cpu.
7147 	 */
7148 	if ((env->idle != CPU_NOT_IDLE) &&
7149 	    (env->src_rq->cfs.h_nr_running == 1)) {
7150 		if ((check_cpu_capacity(env->src_rq, sd)) &&
7151 		    (capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100))
7152 			return 1;
7153 	}
7154 
7155 	return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
7156 }
7157 
7158 static int active_load_balance_cpu_stop(void *data);
7159 
7160 static int should_we_balance(struct lb_env *env)
7161 {
7162 	struct sched_group *sg = env->sd->groups;
7163 	struct cpumask *sg_cpus, *sg_mask;
7164 	int cpu, balance_cpu = -1;
7165 
7166 	/*
7167 	 * In the newly idle case, we will allow all the cpu's
7168 	 * to do the newly idle load balance.
7169 	 */
7170 	if (env->idle == CPU_NEWLY_IDLE)
7171 		return 1;
7172 
7173 	sg_cpus = sched_group_cpus(sg);
7174 	sg_mask = sched_group_mask(sg);
7175 	/* Try to find first idle cpu */
7176 	for_each_cpu_and(cpu, sg_cpus, env->cpus) {
7177 		if (!cpumask_test_cpu(cpu, sg_mask) || !idle_cpu(cpu))
7178 			continue;
7179 
7180 		balance_cpu = cpu;
7181 		break;
7182 	}
7183 
7184 	if (balance_cpu == -1)
7185 		balance_cpu = group_balance_cpu(sg);
7186 
7187 	/*
7188 	 * First idle cpu or the first cpu(busiest) in this sched group
7189 	 * is eligible for doing load balancing at this and above domains.
7190 	 */
7191 	return balance_cpu == env->dst_cpu;
7192 }
7193 
7194 /*
7195  * Check this_cpu to ensure it is balanced within domain. Attempt to move
7196  * tasks if there is an imbalance.
7197  */
7198 static int load_balance(int this_cpu, struct rq *this_rq,
7199 			struct sched_domain *sd, enum cpu_idle_type idle,
7200 			int *continue_balancing)
7201 {
7202 	int ld_moved, cur_ld_moved, active_balance = 0;
7203 	struct sched_domain *sd_parent = sd->parent;
7204 	struct sched_group *group;
7205 	struct rq *busiest;
7206 	unsigned long flags;
7207 	struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask);
7208 
7209 	struct lb_env env = {
7210 		.sd		= sd,
7211 		.dst_cpu	= this_cpu,
7212 		.dst_rq		= this_rq,
7213 		.dst_grpmask    = sched_group_cpus(sd->groups),
7214 		.idle		= idle,
7215 		.loop_break	= sched_nr_migrate_break,
7216 		.cpus		= cpus,
7217 		.fbq_type	= all,
7218 		.tasks		= LIST_HEAD_INIT(env.tasks),
7219 	};
7220 
7221 	/*
7222 	 * For NEWLY_IDLE load_balancing, we don't need to consider
7223 	 * other cpus in our group
7224 	 */
7225 	if (idle == CPU_NEWLY_IDLE)
7226 		env.dst_grpmask = NULL;
7227 
7228 	cpumask_copy(cpus, cpu_active_mask);
7229 
7230 	schedstat_inc(sd, lb_count[idle]);
7231 
7232 redo:
7233 	if (!should_we_balance(&env)) {
7234 		*continue_balancing = 0;
7235 		goto out_balanced;
7236 	}
7237 
7238 	group = find_busiest_group(&env);
7239 	if (!group) {
7240 		schedstat_inc(sd, lb_nobusyg[idle]);
7241 		goto out_balanced;
7242 	}
7243 
7244 	busiest = find_busiest_queue(&env, group);
7245 	if (!busiest) {
7246 		schedstat_inc(sd, lb_nobusyq[idle]);
7247 		goto out_balanced;
7248 	}
7249 
7250 	BUG_ON(busiest == env.dst_rq);
7251 
7252 	schedstat_add(sd, lb_imbalance[idle], env.imbalance);
7253 
7254 	env.src_cpu = busiest->cpu;
7255 	env.src_rq = busiest;
7256 
7257 	ld_moved = 0;
7258 	if (busiest->nr_running > 1) {
7259 		/*
7260 		 * Attempt to move tasks. If find_busiest_group has found
7261 		 * an imbalance but busiest->nr_running <= 1, the group is
7262 		 * still unbalanced. ld_moved simply stays zero, so it is
7263 		 * correctly treated as an imbalance.
7264 		 */
7265 		env.flags |= LBF_ALL_PINNED;
7266 		env.loop_max  = min(sysctl_sched_nr_migrate, busiest->nr_running);
7267 
7268 more_balance:
7269 		raw_spin_lock_irqsave(&busiest->lock, flags);
7270 
7271 		/*
7272 		 * cur_ld_moved - load moved in current iteration
7273 		 * ld_moved     - cumulative load moved across iterations
7274 		 */
7275 		cur_ld_moved = detach_tasks(&env);
7276 
7277 		/*
7278 		 * We've detached some tasks from busiest_rq. Every
7279 		 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely
7280 		 * unlock busiest->lock, and we are able to be sure
7281 		 * that nobody can manipulate the tasks in parallel.
7282 		 * See task_rq_lock() family for the details.
7283 		 */
7284 
7285 		raw_spin_unlock(&busiest->lock);
7286 
7287 		if (cur_ld_moved) {
7288 			attach_tasks(&env);
7289 			ld_moved += cur_ld_moved;
7290 		}
7291 
7292 		local_irq_restore(flags);
7293 
7294 		if (env.flags & LBF_NEED_BREAK) {
7295 			env.flags &= ~LBF_NEED_BREAK;
7296 			goto more_balance;
7297 		}
7298 
7299 		/*
7300 		 * Revisit (affine) tasks on src_cpu that couldn't be moved to
7301 		 * us and move them to an alternate dst_cpu in our sched_group
7302 		 * where they can run. The upper limit on how many times we
7303 		 * iterate on same src_cpu is dependent on number of cpus in our
7304 		 * sched_group.
7305 		 *
7306 		 * This changes load balance semantics a bit on who can move
7307 		 * load to a given_cpu. In addition to the given_cpu itself
7308 		 * (or a ilb_cpu acting on its behalf where given_cpu is
7309 		 * nohz-idle), we now have balance_cpu in a position to move
7310 		 * load to given_cpu. In rare situations, this may cause
7311 		 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
7312 		 * _independently_ and at _same_ time to move some load to
7313 		 * given_cpu) causing exceess load to be moved to given_cpu.
7314 		 * This however should not happen so much in practice and
7315 		 * moreover subsequent load balance cycles should correct the
7316 		 * excess load moved.
7317 		 */
7318 		if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
7319 
7320 			/* Prevent to re-select dst_cpu via env's cpus */
7321 			cpumask_clear_cpu(env.dst_cpu, env.cpus);
7322 
7323 			env.dst_rq	 = cpu_rq(env.new_dst_cpu);
7324 			env.dst_cpu	 = env.new_dst_cpu;
7325 			env.flags	&= ~LBF_DST_PINNED;
7326 			env.loop	 = 0;
7327 			env.loop_break	 = sched_nr_migrate_break;
7328 
7329 			/*
7330 			 * Go back to "more_balance" rather than "redo" since we
7331 			 * need to continue with same src_cpu.
7332 			 */
7333 			goto more_balance;
7334 		}
7335 
7336 		/*
7337 		 * We failed to reach balance because of affinity.
7338 		 */
7339 		if (sd_parent) {
7340 			int *group_imbalance = &sd_parent->groups->sgc->imbalance;
7341 
7342 			if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0)
7343 				*group_imbalance = 1;
7344 		}
7345 
7346 		/* All tasks on this runqueue were pinned by CPU affinity */
7347 		if (unlikely(env.flags & LBF_ALL_PINNED)) {
7348 			cpumask_clear_cpu(cpu_of(busiest), cpus);
7349 			if (!cpumask_empty(cpus)) {
7350 				env.loop = 0;
7351 				env.loop_break = sched_nr_migrate_break;
7352 				goto redo;
7353 			}
7354 			goto out_all_pinned;
7355 		}
7356 	}
7357 
7358 	if (!ld_moved) {
7359 		schedstat_inc(sd, lb_failed[idle]);
7360 		/*
7361 		 * Increment the failure counter only on periodic balance.
7362 		 * We do not want newidle balance, which can be very
7363 		 * frequent, pollute the failure counter causing
7364 		 * excessive cache_hot migrations and active balances.
7365 		 */
7366 		if (idle != CPU_NEWLY_IDLE)
7367 			sd->nr_balance_failed++;
7368 
7369 		if (need_active_balance(&env)) {
7370 			raw_spin_lock_irqsave(&busiest->lock, flags);
7371 
7372 			/* don't kick the active_load_balance_cpu_stop,
7373 			 * if the curr task on busiest cpu can't be
7374 			 * moved to this_cpu
7375 			 */
7376 			if (!cpumask_test_cpu(this_cpu,
7377 					tsk_cpus_allowed(busiest->curr))) {
7378 				raw_spin_unlock_irqrestore(&busiest->lock,
7379 							    flags);
7380 				env.flags |= LBF_ALL_PINNED;
7381 				goto out_one_pinned;
7382 			}
7383 
7384 			/*
7385 			 * ->active_balance synchronizes accesses to
7386 			 * ->active_balance_work.  Once set, it's cleared
7387 			 * only after active load balance is finished.
7388 			 */
7389 			if (!busiest->active_balance) {
7390 				busiest->active_balance = 1;
7391 				busiest->push_cpu = this_cpu;
7392 				active_balance = 1;
7393 			}
7394 			raw_spin_unlock_irqrestore(&busiest->lock, flags);
7395 
7396 			if (active_balance) {
7397 				stop_one_cpu_nowait(cpu_of(busiest),
7398 					active_load_balance_cpu_stop, busiest,
7399 					&busiest->active_balance_work);
7400 			}
7401 
7402 			/*
7403 			 * We've kicked active balancing, reset the failure
7404 			 * counter.
7405 			 */
7406 			sd->nr_balance_failed = sd->cache_nice_tries+1;
7407 		}
7408 	} else
7409 		sd->nr_balance_failed = 0;
7410 
7411 	if (likely(!active_balance)) {
7412 		/* We were unbalanced, so reset the balancing interval */
7413 		sd->balance_interval = sd->min_interval;
7414 	} else {
7415 		/*
7416 		 * If we've begun active balancing, start to back off. This
7417 		 * case may not be covered by the all_pinned logic if there
7418 		 * is only 1 task on the busy runqueue (because we don't call
7419 		 * detach_tasks).
7420 		 */
7421 		if (sd->balance_interval < sd->max_interval)
7422 			sd->balance_interval *= 2;
7423 	}
7424 
7425 	goto out;
7426 
7427 out_balanced:
7428 	/*
7429 	 * We reach balance although we may have faced some affinity
7430 	 * constraints. Clear the imbalance flag if it was set.
7431 	 */
7432 	if (sd_parent) {
7433 		int *group_imbalance = &sd_parent->groups->sgc->imbalance;
7434 
7435 		if (*group_imbalance)
7436 			*group_imbalance = 0;
7437 	}
7438 
7439 out_all_pinned:
7440 	/*
7441 	 * We reach balance because all tasks are pinned at this level so
7442 	 * we can't migrate them. Let the imbalance flag set so parent level
7443 	 * can try to migrate them.
7444 	 */
7445 	schedstat_inc(sd, lb_balanced[idle]);
7446 
7447 	sd->nr_balance_failed = 0;
7448 
7449 out_one_pinned:
7450 	/* tune up the balancing interval */
7451 	if (((env.flags & LBF_ALL_PINNED) &&
7452 			sd->balance_interval < MAX_PINNED_INTERVAL) ||
7453 			(sd->balance_interval < sd->max_interval))
7454 		sd->balance_interval *= 2;
7455 
7456 	ld_moved = 0;
7457 out:
7458 	return ld_moved;
7459 }
7460 
7461 static inline unsigned long
7462 get_sd_balance_interval(struct sched_domain *sd, int cpu_busy)
7463 {
7464 	unsigned long interval = sd->balance_interval;
7465 
7466 	if (cpu_busy)
7467 		interval *= sd->busy_factor;
7468 
7469 	/* scale ms to jiffies */
7470 	interval = msecs_to_jiffies(interval);
7471 	interval = clamp(interval, 1UL, max_load_balance_interval);
7472 
7473 	return interval;
7474 }
7475 
7476 static inline void
7477 update_next_balance(struct sched_domain *sd, int cpu_busy, unsigned long *next_balance)
7478 {
7479 	unsigned long interval, next;
7480 
7481 	interval = get_sd_balance_interval(sd, cpu_busy);
7482 	next = sd->last_balance + interval;
7483 
7484 	if (time_after(*next_balance, next))
7485 		*next_balance = next;
7486 }
7487 
7488 /*
7489  * idle_balance is called by schedule() if this_cpu is about to become
7490  * idle. Attempts to pull tasks from other CPUs.
7491  */
7492 static int idle_balance(struct rq *this_rq)
7493 {
7494 	unsigned long next_balance = jiffies + HZ;
7495 	int this_cpu = this_rq->cpu;
7496 	struct sched_domain *sd;
7497 	int pulled_task = 0;
7498 	u64 curr_cost = 0;
7499 
7500 	/*
7501 	 * We must set idle_stamp _before_ calling idle_balance(), such that we
7502 	 * measure the duration of idle_balance() as idle time.
7503 	 */
7504 	this_rq->idle_stamp = rq_clock(this_rq);
7505 
7506 	if (this_rq->avg_idle < sysctl_sched_migration_cost ||
7507 	    !this_rq->rd->overload) {
7508 		rcu_read_lock();
7509 		sd = rcu_dereference_check_sched_domain(this_rq->sd);
7510 		if (sd)
7511 			update_next_balance(sd, 0, &next_balance);
7512 		rcu_read_unlock();
7513 
7514 		goto out;
7515 	}
7516 
7517 	raw_spin_unlock(&this_rq->lock);
7518 
7519 	update_blocked_averages(this_cpu);
7520 	rcu_read_lock();
7521 	for_each_domain(this_cpu, sd) {
7522 		int continue_balancing = 1;
7523 		u64 t0, domain_cost;
7524 
7525 		if (!(sd->flags & SD_LOAD_BALANCE))
7526 			continue;
7527 
7528 		if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) {
7529 			update_next_balance(sd, 0, &next_balance);
7530 			break;
7531 		}
7532 
7533 		if (sd->flags & SD_BALANCE_NEWIDLE) {
7534 			t0 = sched_clock_cpu(this_cpu);
7535 
7536 			pulled_task = load_balance(this_cpu, this_rq,
7537 						   sd, CPU_NEWLY_IDLE,
7538 						   &continue_balancing);
7539 
7540 			domain_cost = sched_clock_cpu(this_cpu) - t0;
7541 			if (domain_cost > sd->max_newidle_lb_cost)
7542 				sd->max_newidle_lb_cost = domain_cost;
7543 
7544 			curr_cost += domain_cost;
7545 		}
7546 
7547 		update_next_balance(sd, 0, &next_balance);
7548 
7549 		/*
7550 		 * Stop searching for tasks to pull if there are
7551 		 * now runnable tasks on this rq.
7552 		 */
7553 		if (pulled_task || this_rq->nr_running > 0)
7554 			break;
7555 	}
7556 	rcu_read_unlock();
7557 
7558 	raw_spin_lock(&this_rq->lock);
7559 
7560 	if (curr_cost > this_rq->max_idle_balance_cost)
7561 		this_rq->max_idle_balance_cost = curr_cost;
7562 
7563 	/*
7564 	 * While browsing the domains, we released the rq lock, a task could
7565 	 * have been enqueued in the meantime. Since we're not going idle,
7566 	 * pretend we pulled a task.
7567 	 */
7568 	if (this_rq->cfs.h_nr_running && !pulled_task)
7569 		pulled_task = 1;
7570 
7571 out:
7572 	/* Move the next balance forward */
7573 	if (time_after(this_rq->next_balance, next_balance))
7574 		this_rq->next_balance = next_balance;
7575 
7576 	/* Is there a task of a high priority class? */
7577 	if (this_rq->nr_running != this_rq->cfs.h_nr_running)
7578 		pulled_task = -1;
7579 
7580 	if (pulled_task)
7581 		this_rq->idle_stamp = 0;
7582 
7583 	return pulled_task;
7584 }
7585 
7586 /*
7587  * active_load_balance_cpu_stop is run by cpu stopper. It pushes
7588  * running tasks off the busiest CPU onto idle CPUs. It requires at
7589  * least 1 task to be running on each physical CPU where possible, and
7590  * avoids physical / logical imbalances.
7591  */
7592 static int active_load_balance_cpu_stop(void *data)
7593 {
7594 	struct rq *busiest_rq = data;
7595 	int busiest_cpu = cpu_of(busiest_rq);
7596 	int target_cpu = busiest_rq->push_cpu;
7597 	struct rq *target_rq = cpu_rq(target_cpu);
7598 	struct sched_domain *sd;
7599 	struct task_struct *p = NULL;
7600 
7601 	raw_spin_lock_irq(&busiest_rq->lock);
7602 
7603 	/* make sure the requested cpu hasn't gone down in the meantime */
7604 	if (unlikely(busiest_cpu != smp_processor_id() ||
7605 		     !busiest_rq->active_balance))
7606 		goto out_unlock;
7607 
7608 	/* Is there any task to move? */
7609 	if (busiest_rq->nr_running <= 1)
7610 		goto out_unlock;
7611 
7612 	/*
7613 	 * This condition is "impossible", if it occurs
7614 	 * we need to fix it. Originally reported by
7615 	 * Bjorn Helgaas on a 128-cpu setup.
7616 	 */
7617 	BUG_ON(busiest_rq == target_rq);
7618 
7619 	/* Search for an sd spanning us and the target CPU. */
7620 	rcu_read_lock();
7621 	for_each_domain(target_cpu, sd) {
7622 		if ((sd->flags & SD_LOAD_BALANCE) &&
7623 		    cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
7624 				break;
7625 	}
7626 
7627 	if (likely(sd)) {
7628 		struct lb_env env = {
7629 			.sd		= sd,
7630 			.dst_cpu	= target_cpu,
7631 			.dst_rq		= target_rq,
7632 			.src_cpu	= busiest_rq->cpu,
7633 			.src_rq		= busiest_rq,
7634 			.idle		= CPU_IDLE,
7635 		};
7636 
7637 		schedstat_inc(sd, alb_count);
7638 
7639 		p = detach_one_task(&env);
7640 		if (p)
7641 			schedstat_inc(sd, alb_pushed);
7642 		else
7643 			schedstat_inc(sd, alb_failed);
7644 	}
7645 	rcu_read_unlock();
7646 out_unlock:
7647 	busiest_rq->active_balance = 0;
7648 	raw_spin_unlock(&busiest_rq->lock);
7649 
7650 	if (p)
7651 		attach_one_task(target_rq, p);
7652 
7653 	local_irq_enable();
7654 
7655 	return 0;
7656 }
7657 
7658 static inline int on_null_domain(struct rq *rq)
7659 {
7660 	return unlikely(!rcu_dereference_sched(rq->sd));
7661 }
7662 
7663 #ifdef CONFIG_NO_HZ_COMMON
7664 /*
7665  * idle load balancing details
7666  * - When one of the busy CPUs notice that there may be an idle rebalancing
7667  *   needed, they will kick the idle load balancer, which then does idle
7668  *   load balancing for all the idle CPUs.
7669  */
7670 static struct {
7671 	cpumask_var_t idle_cpus_mask;
7672 	atomic_t nr_cpus;
7673 	unsigned long next_balance;     /* in jiffy units */
7674 } nohz ____cacheline_aligned;
7675 
7676 static inline int find_new_ilb(void)
7677 {
7678 	int ilb = cpumask_first(nohz.idle_cpus_mask);
7679 
7680 	if (ilb < nr_cpu_ids && idle_cpu(ilb))
7681 		return ilb;
7682 
7683 	return nr_cpu_ids;
7684 }
7685 
7686 /*
7687  * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
7688  * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
7689  * CPU (if there is one).
7690  */
7691 static void nohz_balancer_kick(void)
7692 {
7693 	int ilb_cpu;
7694 
7695 	nohz.next_balance++;
7696 
7697 	ilb_cpu = find_new_ilb();
7698 
7699 	if (ilb_cpu >= nr_cpu_ids)
7700 		return;
7701 
7702 	if (test_and_set_bit(NOHZ_BALANCE_KICK, nohz_flags(ilb_cpu)))
7703 		return;
7704 	/*
7705 	 * Use smp_send_reschedule() instead of resched_cpu().
7706 	 * This way we generate a sched IPI on the target cpu which
7707 	 * is idle. And the softirq performing nohz idle load balance
7708 	 * will be run before returning from the IPI.
7709 	 */
7710 	smp_send_reschedule(ilb_cpu);
7711 	return;
7712 }
7713 
7714 static inline void nohz_balance_exit_idle(int cpu)
7715 {
7716 	if (unlikely(test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))) {
7717 		/*
7718 		 * Completely isolated CPUs don't ever set, so we must test.
7719 		 */
7720 		if (likely(cpumask_test_cpu(cpu, nohz.idle_cpus_mask))) {
7721 			cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
7722 			atomic_dec(&nohz.nr_cpus);
7723 		}
7724 		clear_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
7725 	}
7726 }
7727 
7728 static inline void set_cpu_sd_state_busy(void)
7729 {
7730 	struct sched_domain *sd;
7731 	int cpu = smp_processor_id();
7732 
7733 	rcu_read_lock();
7734 	sd = rcu_dereference(per_cpu(sd_busy, cpu));
7735 
7736 	if (!sd || !sd->nohz_idle)
7737 		goto unlock;
7738 	sd->nohz_idle = 0;
7739 
7740 	atomic_inc(&sd->groups->sgc->nr_busy_cpus);
7741 unlock:
7742 	rcu_read_unlock();
7743 }
7744 
7745 void set_cpu_sd_state_idle(void)
7746 {
7747 	struct sched_domain *sd;
7748 	int cpu = smp_processor_id();
7749 
7750 	rcu_read_lock();
7751 	sd = rcu_dereference(per_cpu(sd_busy, cpu));
7752 
7753 	if (!sd || sd->nohz_idle)
7754 		goto unlock;
7755 	sd->nohz_idle = 1;
7756 
7757 	atomic_dec(&sd->groups->sgc->nr_busy_cpus);
7758 unlock:
7759 	rcu_read_unlock();
7760 }
7761 
7762 /*
7763  * This routine will record that the cpu is going idle with tick stopped.
7764  * This info will be used in performing idle load balancing in the future.
7765  */
7766 void nohz_balance_enter_idle(int cpu)
7767 {
7768 	/*
7769 	 * If this cpu is going down, then nothing needs to be done.
7770 	 */
7771 	if (!cpu_active(cpu))
7772 		return;
7773 
7774 	if (test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))
7775 		return;
7776 
7777 	/*
7778 	 * If we're a completely isolated CPU, we don't play.
7779 	 */
7780 	if (on_null_domain(cpu_rq(cpu)))
7781 		return;
7782 
7783 	cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
7784 	atomic_inc(&nohz.nr_cpus);
7785 	set_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
7786 }
7787 
7788 static int sched_ilb_notifier(struct notifier_block *nfb,
7789 					unsigned long action, void *hcpu)
7790 {
7791 	switch (action & ~CPU_TASKS_FROZEN) {
7792 	case CPU_DYING:
7793 		nohz_balance_exit_idle(smp_processor_id());
7794 		return NOTIFY_OK;
7795 	default:
7796 		return NOTIFY_DONE;
7797 	}
7798 }
7799 #endif
7800 
7801 static DEFINE_SPINLOCK(balancing);
7802 
7803 /*
7804  * Scale the max load_balance interval with the number of CPUs in the system.
7805  * This trades load-balance latency on larger machines for less cross talk.
7806  */
7807 void update_max_interval(void)
7808 {
7809 	max_load_balance_interval = HZ*num_online_cpus()/10;
7810 }
7811 
7812 /*
7813  * It checks each scheduling domain to see if it is due to be balanced,
7814  * and initiates a balancing operation if so.
7815  *
7816  * Balancing parameters are set up in init_sched_domains.
7817  */
7818 static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle)
7819 {
7820 	int continue_balancing = 1;
7821 	int cpu = rq->cpu;
7822 	unsigned long interval;
7823 	struct sched_domain *sd;
7824 	/* Earliest time when we have to do rebalance again */
7825 	unsigned long next_balance = jiffies + 60*HZ;
7826 	int update_next_balance = 0;
7827 	int need_serialize, need_decay = 0;
7828 	u64 max_cost = 0;
7829 
7830 	update_blocked_averages(cpu);
7831 
7832 	rcu_read_lock();
7833 	for_each_domain(cpu, sd) {
7834 		/*
7835 		 * Decay the newidle max times here because this is a regular
7836 		 * visit to all the domains. Decay ~1% per second.
7837 		 */
7838 		if (time_after(jiffies, sd->next_decay_max_lb_cost)) {
7839 			sd->max_newidle_lb_cost =
7840 				(sd->max_newidle_lb_cost * 253) / 256;
7841 			sd->next_decay_max_lb_cost = jiffies + HZ;
7842 			need_decay = 1;
7843 		}
7844 		max_cost += sd->max_newidle_lb_cost;
7845 
7846 		if (!(sd->flags & SD_LOAD_BALANCE))
7847 			continue;
7848 
7849 		/*
7850 		 * Stop the load balance at this level. There is another
7851 		 * CPU in our sched group which is doing load balancing more
7852 		 * actively.
7853 		 */
7854 		if (!continue_balancing) {
7855 			if (need_decay)
7856 				continue;
7857 			break;
7858 		}
7859 
7860 		interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
7861 
7862 		need_serialize = sd->flags & SD_SERIALIZE;
7863 		if (need_serialize) {
7864 			if (!spin_trylock(&balancing))
7865 				goto out;
7866 		}
7867 
7868 		if (time_after_eq(jiffies, sd->last_balance + interval)) {
7869 			if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
7870 				/*
7871 				 * The LBF_DST_PINNED logic could have changed
7872 				 * env->dst_cpu, so we can't know our idle
7873 				 * state even if we migrated tasks. Update it.
7874 				 */
7875 				idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
7876 			}
7877 			sd->last_balance = jiffies;
7878 			interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
7879 		}
7880 		if (need_serialize)
7881 			spin_unlock(&balancing);
7882 out:
7883 		if (time_after(next_balance, sd->last_balance + interval)) {
7884 			next_balance = sd->last_balance + interval;
7885 			update_next_balance = 1;
7886 		}
7887 	}
7888 	if (need_decay) {
7889 		/*
7890 		 * Ensure the rq-wide value also decays but keep it at a
7891 		 * reasonable floor to avoid funnies with rq->avg_idle.
7892 		 */
7893 		rq->max_idle_balance_cost =
7894 			max((u64)sysctl_sched_migration_cost, max_cost);
7895 	}
7896 	rcu_read_unlock();
7897 
7898 	/*
7899 	 * next_balance will be updated only when there is a need.
7900 	 * When the cpu is attached to null domain for ex, it will not be
7901 	 * updated.
7902 	 */
7903 	if (likely(update_next_balance)) {
7904 		rq->next_balance = next_balance;
7905 
7906 #ifdef CONFIG_NO_HZ_COMMON
7907 		/*
7908 		 * If this CPU has been elected to perform the nohz idle
7909 		 * balance. Other idle CPUs have already rebalanced with
7910 		 * nohz_idle_balance() and nohz.next_balance has been
7911 		 * updated accordingly. This CPU is now running the idle load
7912 		 * balance for itself and we need to update the
7913 		 * nohz.next_balance accordingly.
7914 		 */
7915 		if ((idle == CPU_IDLE) && time_after(nohz.next_balance, rq->next_balance))
7916 			nohz.next_balance = rq->next_balance;
7917 #endif
7918 	}
7919 }
7920 
7921 #ifdef CONFIG_NO_HZ_COMMON
7922 /*
7923  * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
7924  * rebalancing for all the cpus for whom scheduler ticks are stopped.
7925  */
7926 static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
7927 {
7928 	int this_cpu = this_rq->cpu;
7929 	struct rq *rq;
7930 	int balance_cpu;
7931 	/* Earliest time when we have to do rebalance again */
7932 	unsigned long next_balance = jiffies + 60*HZ;
7933 	int update_next_balance = 0;
7934 
7935 	if (idle != CPU_IDLE ||
7936 	    !test_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu)))
7937 		goto end;
7938 
7939 	for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
7940 		if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
7941 			continue;
7942 
7943 		/*
7944 		 * If this cpu gets work to do, stop the load balancing
7945 		 * work being done for other cpus. Next load
7946 		 * balancing owner will pick it up.
7947 		 */
7948 		if (need_resched())
7949 			break;
7950 
7951 		rq = cpu_rq(balance_cpu);
7952 
7953 		/*
7954 		 * If time for next balance is due,
7955 		 * do the balance.
7956 		 */
7957 		if (time_after_eq(jiffies, rq->next_balance)) {
7958 			raw_spin_lock_irq(&rq->lock);
7959 			update_rq_clock(rq);
7960 			update_cpu_load_idle(rq);
7961 			raw_spin_unlock_irq(&rq->lock);
7962 			rebalance_domains(rq, CPU_IDLE);
7963 		}
7964 
7965 		if (time_after(next_balance, rq->next_balance)) {
7966 			next_balance = rq->next_balance;
7967 			update_next_balance = 1;
7968 		}
7969 	}
7970 
7971 	/*
7972 	 * next_balance will be updated only when there is a need.
7973 	 * When the CPU is attached to null domain for ex, it will not be
7974 	 * updated.
7975 	 */
7976 	if (likely(update_next_balance))
7977 		nohz.next_balance = next_balance;
7978 end:
7979 	clear_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu));
7980 }
7981 
7982 /*
7983  * Current heuristic for kicking the idle load balancer in the presence
7984  * of an idle cpu in the system.
7985  *   - This rq has more than one task.
7986  *   - This rq has at least one CFS task and the capacity of the CPU is
7987  *     significantly reduced because of RT tasks or IRQs.
7988  *   - At parent of LLC scheduler domain level, this cpu's scheduler group has
7989  *     multiple busy cpu.
7990  *   - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler
7991  *     domain span are idle.
7992  */
7993 static inline bool nohz_kick_needed(struct rq *rq)
7994 {
7995 	unsigned long now = jiffies;
7996 	struct sched_domain *sd;
7997 	struct sched_group_capacity *sgc;
7998 	int nr_busy, cpu = rq->cpu;
7999 	bool kick = false;
8000 
8001 	if (unlikely(rq->idle_balance))
8002 		return false;
8003 
8004        /*
8005 	* We may be recently in ticked or tickless idle mode. At the first
8006 	* busy tick after returning from idle, we will update the busy stats.
8007 	*/
8008 	set_cpu_sd_state_busy();
8009 	nohz_balance_exit_idle(cpu);
8010 
8011 	/*
8012 	 * None are in tickless mode and hence no need for NOHZ idle load
8013 	 * balancing.
8014 	 */
8015 	if (likely(!atomic_read(&nohz.nr_cpus)))
8016 		return false;
8017 
8018 	if (time_before(now, nohz.next_balance))
8019 		return false;
8020 
8021 	if (rq->nr_running >= 2)
8022 		return true;
8023 
8024 	rcu_read_lock();
8025 	sd = rcu_dereference(per_cpu(sd_busy, cpu));
8026 	if (sd) {
8027 		sgc = sd->groups->sgc;
8028 		nr_busy = atomic_read(&sgc->nr_busy_cpus);
8029 
8030 		if (nr_busy > 1) {
8031 			kick = true;
8032 			goto unlock;
8033 		}
8034 
8035 	}
8036 
8037 	sd = rcu_dereference(rq->sd);
8038 	if (sd) {
8039 		if ((rq->cfs.h_nr_running >= 1) &&
8040 				check_cpu_capacity(rq, sd)) {
8041 			kick = true;
8042 			goto unlock;
8043 		}
8044 	}
8045 
8046 	sd = rcu_dereference(per_cpu(sd_asym, cpu));
8047 	if (sd && (cpumask_first_and(nohz.idle_cpus_mask,
8048 				  sched_domain_span(sd)) < cpu)) {
8049 		kick = true;
8050 		goto unlock;
8051 	}
8052 
8053 unlock:
8054 	rcu_read_unlock();
8055 	return kick;
8056 }
8057 #else
8058 static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) { }
8059 #endif
8060 
8061 /*
8062  * run_rebalance_domains is triggered when needed from the scheduler tick.
8063  * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
8064  */
8065 static void run_rebalance_domains(struct softirq_action *h)
8066 {
8067 	struct rq *this_rq = this_rq();
8068 	enum cpu_idle_type idle = this_rq->idle_balance ?
8069 						CPU_IDLE : CPU_NOT_IDLE;
8070 
8071 	/*
8072 	 * If this cpu has a pending nohz_balance_kick, then do the
8073 	 * balancing on behalf of the other idle cpus whose ticks are
8074 	 * stopped. Do nohz_idle_balance *before* rebalance_domains to
8075 	 * give the idle cpus a chance to load balance. Else we may
8076 	 * load balance only within the local sched_domain hierarchy
8077 	 * and abort nohz_idle_balance altogether if we pull some load.
8078 	 */
8079 	nohz_idle_balance(this_rq, idle);
8080 	rebalance_domains(this_rq, idle);
8081 }
8082 
8083 /*
8084  * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
8085  */
8086 void trigger_load_balance(struct rq *rq)
8087 {
8088 	/* Don't need to rebalance while attached to NULL domain */
8089 	if (unlikely(on_null_domain(rq)))
8090 		return;
8091 
8092 	if (time_after_eq(jiffies, rq->next_balance))
8093 		raise_softirq(SCHED_SOFTIRQ);
8094 #ifdef CONFIG_NO_HZ_COMMON
8095 	if (nohz_kick_needed(rq))
8096 		nohz_balancer_kick();
8097 #endif
8098 }
8099 
8100 static void rq_online_fair(struct rq *rq)
8101 {
8102 	update_sysctl();
8103 
8104 	update_runtime_enabled(rq);
8105 }
8106 
8107 static void rq_offline_fair(struct rq *rq)
8108 {
8109 	update_sysctl();
8110 
8111 	/* Ensure any throttled groups are reachable by pick_next_task */
8112 	unthrottle_offline_cfs_rqs(rq);
8113 }
8114 
8115 #endif /* CONFIG_SMP */
8116 
8117 /*
8118  * scheduler tick hitting a task of our scheduling class:
8119  */
8120 static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
8121 {
8122 	struct cfs_rq *cfs_rq;
8123 	struct sched_entity *se = &curr->se;
8124 
8125 	for_each_sched_entity(se) {
8126 		cfs_rq = cfs_rq_of(se);
8127 		entity_tick(cfs_rq, se, queued);
8128 	}
8129 
8130 	if (static_branch_unlikely(&sched_numa_balancing))
8131 		task_tick_numa(rq, curr);
8132 }
8133 
8134 /*
8135  * called on fork with the child task as argument from the parent's context
8136  *  - child not yet on the tasklist
8137  *  - preemption disabled
8138  */
8139 static void task_fork_fair(struct task_struct *p)
8140 {
8141 	struct cfs_rq *cfs_rq;
8142 	struct sched_entity *se = &p->se, *curr;
8143 	int this_cpu = smp_processor_id();
8144 	struct rq *rq = this_rq();
8145 	unsigned long flags;
8146 
8147 	raw_spin_lock_irqsave(&rq->lock, flags);
8148 
8149 	update_rq_clock(rq);
8150 
8151 	cfs_rq = task_cfs_rq(current);
8152 	curr = cfs_rq->curr;
8153 
8154 	/*
8155 	 * Not only the cpu but also the task_group of the parent might have
8156 	 * been changed after parent->se.parent,cfs_rq were copied to
8157 	 * child->se.parent,cfs_rq. So call __set_task_cpu() to make those
8158 	 * of child point to valid ones.
8159 	 */
8160 	rcu_read_lock();
8161 	__set_task_cpu(p, this_cpu);
8162 	rcu_read_unlock();
8163 
8164 	update_curr(cfs_rq);
8165 
8166 	if (curr)
8167 		se->vruntime = curr->vruntime;
8168 	place_entity(cfs_rq, se, 1);
8169 
8170 	if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
8171 		/*
8172 		 * Upon rescheduling, sched_class::put_prev_task() will place
8173 		 * 'current' within the tree based on its new key value.
8174 		 */
8175 		swap(curr->vruntime, se->vruntime);
8176 		resched_curr(rq);
8177 	}
8178 
8179 	se->vruntime -= cfs_rq->min_vruntime;
8180 
8181 	raw_spin_unlock_irqrestore(&rq->lock, flags);
8182 }
8183 
8184 /*
8185  * Priority of the task has changed. Check to see if we preempt
8186  * the current task.
8187  */
8188 static void
8189 prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
8190 {
8191 	if (!task_on_rq_queued(p))
8192 		return;
8193 
8194 	/*
8195 	 * Reschedule if we are currently running on this runqueue and
8196 	 * our priority decreased, or if we are not currently running on
8197 	 * this runqueue and our priority is higher than the current's
8198 	 */
8199 	if (rq->curr == p) {
8200 		if (p->prio > oldprio)
8201 			resched_curr(rq);
8202 	} else
8203 		check_preempt_curr(rq, p, 0);
8204 }
8205 
8206 static inline bool vruntime_normalized(struct task_struct *p)
8207 {
8208 	struct sched_entity *se = &p->se;
8209 
8210 	/*
8211 	 * In both the TASK_ON_RQ_QUEUED and TASK_ON_RQ_MIGRATING cases,
8212 	 * the dequeue_entity(.flags=0) will already have normalized the
8213 	 * vruntime.
8214 	 */
8215 	if (p->on_rq)
8216 		return true;
8217 
8218 	/*
8219 	 * When !on_rq, vruntime of the task has usually NOT been normalized.
8220 	 * But there are some cases where it has already been normalized:
8221 	 *
8222 	 * - A forked child which is waiting for being woken up by
8223 	 *   wake_up_new_task().
8224 	 * - A task which has been woken up by try_to_wake_up() and
8225 	 *   waiting for actually being woken up by sched_ttwu_pending().
8226 	 */
8227 	if (!se->sum_exec_runtime || p->state == TASK_WAKING)
8228 		return true;
8229 
8230 	return false;
8231 }
8232 
8233 static void detach_task_cfs_rq(struct task_struct *p)
8234 {
8235 	struct sched_entity *se = &p->se;
8236 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
8237 
8238 	if (!vruntime_normalized(p)) {
8239 		/*
8240 		 * Fix up our vruntime so that the current sleep doesn't
8241 		 * cause 'unlimited' sleep bonus.
8242 		 */
8243 		place_entity(cfs_rq, se, 0);
8244 		se->vruntime -= cfs_rq->min_vruntime;
8245 	}
8246 
8247 	/* Catch up with the cfs_rq and remove our load when we leave */
8248 	detach_entity_load_avg(cfs_rq, se);
8249 }
8250 
8251 static void attach_task_cfs_rq(struct task_struct *p)
8252 {
8253 	struct sched_entity *se = &p->se;
8254 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
8255 
8256 #ifdef CONFIG_FAIR_GROUP_SCHED
8257 	/*
8258 	 * Since the real-depth could have been changed (only FAIR
8259 	 * class maintain depth value), reset depth properly.
8260 	 */
8261 	se->depth = se->parent ? se->parent->depth + 1 : 0;
8262 #endif
8263 
8264 	/* Synchronize task with its cfs_rq */
8265 	attach_entity_load_avg(cfs_rq, se);
8266 
8267 	if (!vruntime_normalized(p))
8268 		se->vruntime += cfs_rq->min_vruntime;
8269 }
8270 
8271 static void switched_from_fair(struct rq *rq, struct task_struct *p)
8272 {
8273 	detach_task_cfs_rq(p);
8274 }
8275 
8276 static void switched_to_fair(struct rq *rq, struct task_struct *p)
8277 {
8278 	attach_task_cfs_rq(p);
8279 
8280 	if (task_on_rq_queued(p)) {
8281 		/*
8282 		 * We were most likely switched from sched_rt, so
8283 		 * kick off the schedule if running, otherwise just see
8284 		 * if we can still preempt the current task.
8285 		 */
8286 		if (rq->curr == p)
8287 			resched_curr(rq);
8288 		else
8289 			check_preempt_curr(rq, p, 0);
8290 	}
8291 }
8292 
8293 /* Account for a task changing its policy or group.
8294  *
8295  * This routine is mostly called to set cfs_rq->curr field when a task
8296  * migrates between groups/classes.
8297  */
8298 static void set_curr_task_fair(struct rq *rq)
8299 {
8300 	struct sched_entity *se = &rq->curr->se;
8301 
8302 	for_each_sched_entity(se) {
8303 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
8304 
8305 		set_next_entity(cfs_rq, se);
8306 		/* ensure bandwidth has been allocated on our new cfs_rq */
8307 		account_cfs_rq_runtime(cfs_rq, 0);
8308 	}
8309 }
8310 
8311 void init_cfs_rq(struct cfs_rq *cfs_rq)
8312 {
8313 	cfs_rq->tasks_timeline = RB_ROOT;
8314 	cfs_rq->min_vruntime = (u64)(-(1LL << 20));
8315 #ifndef CONFIG_64BIT
8316 	cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
8317 #endif
8318 #ifdef CONFIG_SMP
8319 	atomic_long_set(&cfs_rq->removed_load_avg, 0);
8320 	atomic_long_set(&cfs_rq->removed_util_avg, 0);
8321 #endif
8322 }
8323 
8324 #ifdef CONFIG_FAIR_GROUP_SCHED
8325 static void task_move_group_fair(struct task_struct *p)
8326 {
8327 	detach_task_cfs_rq(p);
8328 	set_task_rq(p, task_cpu(p));
8329 
8330 #ifdef CONFIG_SMP
8331 	/* Tell se's cfs_rq has been changed -- migrated */
8332 	p->se.avg.last_update_time = 0;
8333 #endif
8334 	attach_task_cfs_rq(p);
8335 }
8336 
8337 void free_fair_sched_group(struct task_group *tg)
8338 {
8339 	int i;
8340 
8341 	destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
8342 
8343 	for_each_possible_cpu(i) {
8344 		if (tg->cfs_rq)
8345 			kfree(tg->cfs_rq[i]);
8346 		if (tg->se)
8347 			kfree(tg->se[i]);
8348 	}
8349 
8350 	kfree(tg->cfs_rq);
8351 	kfree(tg->se);
8352 }
8353 
8354 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8355 {
8356 	struct cfs_rq *cfs_rq;
8357 	struct sched_entity *se;
8358 	int i;
8359 
8360 	tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
8361 	if (!tg->cfs_rq)
8362 		goto err;
8363 	tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
8364 	if (!tg->se)
8365 		goto err;
8366 
8367 	tg->shares = NICE_0_LOAD;
8368 
8369 	init_cfs_bandwidth(tg_cfs_bandwidth(tg));
8370 
8371 	for_each_possible_cpu(i) {
8372 		cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
8373 				      GFP_KERNEL, cpu_to_node(i));
8374 		if (!cfs_rq)
8375 			goto err;
8376 
8377 		se = kzalloc_node(sizeof(struct sched_entity),
8378 				  GFP_KERNEL, cpu_to_node(i));
8379 		if (!se)
8380 			goto err_free_rq;
8381 
8382 		init_cfs_rq(cfs_rq);
8383 		init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
8384 		init_entity_runnable_average(se);
8385 	}
8386 
8387 	return 1;
8388 
8389 err_free_rq:
8390 	kfree(cfs_rq);
8391 err:
8392 	return 0;
8393 }
8394 
8395 void unregister_fair_sched_group(struct task_group *tg)
8396 {
8397 	unsigned long flags;
8398 	struct rq *rq;
8399 	int cpu;
8400 
8401 	for_each_possible_cpu(cpu) {
8402 		if (tg->se[cpu])
8403 			remove_entity_load_avg(tg->se[cpu]);
8404 
8405 		/*
8406 		 * Only empty task groups can be destroyed; so we can speculatively
8407 		 * check on_list without danger of it being re-added.
8408 		 */
8409 		if (!tg->cfs_rq[cpu]->on_list)
8410 			continue;
8411 
8412 		rq = cpu_rq(cpu);
8413 
8414 		raw_spin_lock_irqsave(&rq->lock, flags);
8415 		list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
8416 		raw_spin_unlock_irqrestore(&rq->lock, flags);
8417 	}
8418 }
8419 
8420 void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
8421 			struct sched_entity *se, int cpu,
8422 			struct sched_entity *parent)
8423 {
8424 	struct rq *rq = cpu_rq(cpu);
8425 
8426 	cfs_rq->tg = tg;
8427 	cfs_rq->rq = rq;
8428 	init_cfs_rq_runtime(cfs_rq);
8429 
8430 	tg->cfs_rq[cpu] = cfs_rq;
8431 	tg->se[cpu] = se;
8432 
8433 	/* se could be NULL for root_task_group */
8434 	if (!se)
8435 		return;
8436 
8437 	if (!parent) {
8438 		se->cfs_rq = &rq->cfs;
8439 		se->depth = 0;
8440 	} else {
8441 		se->cfs_rq = parent->my_q;
8442 		se->depth = parent->depth + 1;
8443 	}
8444 
8445 	se->my_q = cfs_rq;
8446 	/* guarantee group entities always have weight */
8447 	update_load_set(&se->load, NICE_0_LOAD);
8448 	se->parent = parent;
8449 }
8450 
8451 static DEFINE_MUTEX(shares_mutex);
8452 
8453 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
8454 {
8455 	int i;
8456 	unsigned long flags;
8457 
8458 	/*
8459 	 * We can't change the weight of the root cgroup.
8460 	 */
8461 	if (!tg->se[0])
8462 		return -EINVAL;
8463 
8464 	shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
8465 
8466 	mutex_lock(&shares_mutex);
8467 	if (tg->shares == shares)
8468 		goto done;
8469 
8470 	tg->shares = shares;
8471 	for_each_possible_cpu(i) {
8472 		struct rq *rq = cpu_rq(i);
8473 		struct sched_entity *se;
8474 
8475 		se = tg->se[i];
8476 		/* Propagate contribution to hierarchy */
8477 		raw_spin_lock_irqsave(&rq->lock, flags);
8478 
8479 		/* Possible calls to update_curr() need rq clock */
8480 		update_rq_clock(rq);
8481 		for_each_sched_entity(se)
8482 			update_cfs_shares(group_cfs_rq(se));
8483 		raw_spin_unlock_irqrestore(&rq->lock, flags);
8484 	}
8485 
8486 done:
8487 	mutex_unlock(&shares_mutex);
8488 	return 0;
8489 }
8490 #else /* CONFIG_FAIR_GROUP_SCHED */
8491 
8492 void free_fair_sched_group(struct task_group *tg) { }
8493 
8494 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8495 {
8496 	return 1;
8497 }
8498 
8499 void unregister_fair_sched_group(struct task_group *tg) { }
8500 
8501 #endif /* CONFIG_FAIR_GROUP_SCHED */
8502 
8503 
8504 static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
8505 {
8506 	struct sched_entity *se = &task->se;
8507 	unsigned int rr_interval = 0;
8508 
8509 	/*
8510 	 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
8511 	 * idle runqueue:
8512 	 */
8513 	if (rq->cfs.load.weight)
8514 		rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
8515 
8516 	return rr_interval;
8517 }
8518 
8519 /*
8520  * All the scheduling class methods:
8521  */
8522 const struct sched_class fair_sched_class = {
8523 	.next			= &idle_sched_class,
8524 	.enqueue_task		= enqueue_task_fair,
8525 	.dequeue_task		= dequeue_task_fair,
8526 	.yield_task		= yield_task_fair,
8527 	.yield_to_task		= yield_to_task_fair,
8528 
8529 	.check_preempt_curr	= check_preempt_wakeup,
8530 
8531 	.pick_next_task		= pick_next_task_fair,
8532 	.put_prev_task		= put_prev_task_fair,
8533 
8534 #ifdef CONFIG_SMP
8535 	.select_task_rq		= select_task_rq_fair,
8536 	.migrate_task_rq	= migrate_task_rq_fair,
8537 
8538 	.rq_online		= rq_online_fair,
8539 	.rq_offline		= rq_offline_fair,
8540 
8541 	.task_waking		= task_waking_fair,
8542 	.task_dead		= task_dead_fair,
8543 	.set_cpus_allowed	= set_cpus_allowed_common,
8544 #endif
8545 
8546 	.set_curr_task          = set_curr_task_fair,
8547 	.task_tick		= task_tick_fair,
8548 	.task_fork		= task_fork_fair,
8549 
8550 	.prio_changed		= prio_changed_fair,
8551 	.switched_from		= switched_from_fair,
8552 	.switched_to		= switched_to_fair,
8553 
8554 	.get_rr_interval	= get_rr_interval_fair,
8555 
8556 	.update_curr		= update_curr_fair,
8557 
8558 #ifdef CONFIG_FAIR_GROUP_SCHED
8559 	.task_move_group	= task_move_group_fair,
8560 #endif
8561 };
8562 
8563 #ifdef CONFIG_SCHED_DEBUG
8564 void print_cfs_stats(struct seq_file *m, int cpu)
8565 {
8566 	struct cfs_rq *cfs_rq;
8567 
8568 	rcu_read_lock();
8569 	for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
8570 		print_cfs_rq(m, cpu, cfs_rq);
8571 	rcu_read_unlock();
8572 }
8573 
8574 #ifdef CONFIG_NUMA_BALANCING
8575 void show_numa_stats(struct task_struct *p, struct seq_file *m)
8576 {
8577 	int node;
8578 	unsigned long tsf = 0, tpf = 0, gsf = 0, gpf = 0;
8579 
8580 	for_each_online_node(node) {
8581 		if (p->numa_faults) {
8582 			tsf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 0)];
8583 			tpf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 1)];
8584 		}
8585 		if (p->numa_group) {
8586 			gsf = p->numa_group->faults[task_faults_idx(NUMA_MEM, node, 0)],
8587 			gpf = p->numa_group->faults[task_faults_idx(NUMA_MEM, node, 1)];
8588 		}
8589 		print_numa_stats(m, node, tsf, tpf, gsf, gpf);
8590 	}
8591 }
8592 #endif /* CONFIG_NUMA_BALANCING */
8593 #endif /* CONFIG_SCHED_DEBUG */
8594 
8595 __init void init_sched_fair_class(void)
8596 {
8597 #ifdef CONFIG_SMP
8598 	open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
8599 
8600 #ifdef CONFIG_NO_HZ_COMMON
8601 	nohz.next_balance = jiffies;
8602 	zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
8603 	cpu_notifier(sched_ilb_notifier, 0);
8604 #endif
8605 #endif /* SMP */
8606 
8607 }
8608