xref: /openbmc/linux/kernel/sched/fair.c (revision 552b8b36)
1 /*
2  * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
3  *
4  *  Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
5  *
6  *  Interactivity improvements by Mike Galbraith
7  *  (C) 2007 Mike Galbraith <efault@gmx.de>
8  *
9  *  Various enhancements by Dmitry Adamushko.
10  *  (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
11  *
12  *  Group scheduling enhancements by Srivatsa Vaddagiri
13  *  Copyright IBM Corporation, 2007
14  *  Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
15  *
16  *  Scaled math optimizations by Thomas Gleixner
17  *  Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
18  *
19  *  Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20  *  Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
21  */
22 
23 #include <linux/latencytop.h>
24 #include <linux/sched.h>
25 #include <linux/cpumask.h>
26 #include <linux/cpuidle.h>
27 #include <linux/slab.h>
28 #include <linux/profile.h>
29 #include <linux/interrupt.h>
30 #include <linux/mempolicy.h>
31 #include <linux/migrate.h>
32 #include <linux/task_work.h>
33 
34 #include <trace/events/sched.h>
35 
36 #include "sched.h"
37 
38 /*
39  * Targeted preemption latency for CPU-bound tasks:
40  * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
41  *
42  * NOTE: this latency value is not the same as the concept of
43  * 'timeslice length' - timeslices in CFS are of variable length
44  * and have no persistent notion like in traditional, time-slice
45  * based scheduling concepts.
46  *
47  * (to see the precise effective timeslice length of your workload,
48  *  run vmstat and monitor the context-switches (cs) field)
49  */
50 unsigned int sysctl_sched_latency = 6000000ULL;
51 unsigned int normalized_sysctl_sched_latency = 6000000ULL;
52 
53 /*
54  * The initial- and re-scaling of tunables is configurable
55  * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
56  *
57  * Options are:
58  * SCHED_TUNABLESCALING_NONE - unscaled, always *1
59  * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
60  * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
61  */
62 enum sched_tunable_scaling sysctl_sched_tunable_scaling
63 	= SCHED_TUNABLESCALING_LOG;
64 
65 /*
66  * Minimal preemption granularity for CPU-bound tasks:
67  * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
68  */
69 unsigned int sysctl_sched_min_granularity = 750000ULL;
70 unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
71 
72 /*
73  * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
74  */
75 static unsigned int sched_nr_latency = 8;
76 
77 /*
78  * After fork, child runs first. If set to 0 (default) then
79  * parent will (try to) run first.
80  */
81 unsigned int sysctl_sched_child_runs_first __read_mostly;
82 
83 /*
84  * SCHED_OTHER wake-up granularity.
85  * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
86  *
87  * This option delays the preemption effects of decoupled workloads
88  * and reduces their over-scheduling. Synchronous workloads will still
89  * have immediate wakeup/sleep latencies.
90  */
91 unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
92 unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
93 
94 const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
95 
96 /*
97  * The exponential sliding  window over which load is averaged for shares
98  * distribution.
99  * (default: 10msec)
100  */
101 unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL;
102 
103 #ifdef CONFIG_CFS_BANDWIDTH
104 /*
105  * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
106  * each time a cfs_rq requests quota.
107  *
108  * Note: in the case that the slice exceeds the runtime remaining (either due
109  * to consumption or the quota being specified to be smaller than the slice)
110  * we will always only issue the remaining available time.
111  *
112  * default: 5 msec, units: microseconds
113   */
114 unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
115 #endif
116 
117 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
118 {
119 	lw->weight += inc;
120 	lw->inv_weight = 0;
121 }
122 
123 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
124 {
125 	lw->weight -= dec;
126 	lw->inv_weight = 0;
127 }
128 
129 static inline void update_load_set(struct load_weight *lw, unsigned long w)
130 {
131 	lw->weight = w;
132 	lw->inv_weight = 0;
133 }
134 
135 /*
136  * Increase the granularity value when there are more CPUs,
137  * because with more CPUs the 'effective latency' as visible
138  * to users decreases. But the relationship is not linear,
139  * so pick a second-best guess by going with the log2 of the
140  * number of CPUs.
141  *
142  * This idea comes from the SD scheduler of Con Kolivas:
143  */
144 static unsigned int get_update_sysctl_factor(void)
145 {
146 	unsigned int cpus = min_t(unsigned int, num_online_cpus(), 8);
147 	unsigned int factor;
148 
149 	switch (sysctl_sched_tunable_scaling) {
150 	case SCHED_TUNABLESCALING_NONE:
151 		factor = 1;
152 		break;
153 	case SCHED_TUNABLESCALING_LINEAR:
154 		factor = cpus;
155 		break;
156 	case SCHED_TUNABLESCALING_LOG:
157 	default:
158 		factor = 1 + ilog2(cpus);
159 		break;
160 	}
161 
162 	return factor;
163 }
164 
165 static void update_sysctl(void)
166 {
167 	unsigned int factor = get_update_sysctl_factor();
168 
169 #define SET_SYSCTL(name) \
170 	(sysctl_##name = (factor) * normalized_sysctl_##name)
171 	SET_SYSCTL(sched_min_granularity);
172 	SET_SYSCTL(sched_latency);
173 	SET_SYSCTL(sched_wakeup_granularity);
174 #undef SET_SYSCTL
175 }
176 
177 void sched_init_granularity(void)
178 {
179 	update_sysctl();
180 }
181 
182 #define WMULT_CONST	(~0U)
183 #define WMULT_SHIFT	32
184 
185 static void __update_inv_weight(struct load_weight *lw)
186 {
187 	unsigned long w;
188 
189 	if (likely(lw->inv_weight))
190 		return;
191 
192 	w = scale_load_down(lw->weight);
193 
194 	if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
195 		lw->inv_weight = 1;
196 	else if (unlikely(!w))
197 		lw->inv_weight = WMULT_CONST;
198 	else
199 		lw->inv_weight = WMULT_CONST / w;
200 }
201 
202 /*
203  * delta_exec * weight / lw.weight
204  *   OR
205  * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
206  *
207  * Either weight := NICE_0_LOAD and lw \e prio_to_wmult[], in which case
208  * we're guaranteed shift stays positive because inv_weight is guaranteed to
209  * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
210  *
211  * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
212  * weight/lw.weight <= 1, and therefore our shift will also be positive.
213  */
214 static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw)
215 {
216 	u64 fact = scale_load_down(weight);
217 	int shift = WMULT_SHIFT;
218 
219 	__update_inv_weight(lw);
220 
221 	if (unlikely(fact >> 32)) {
222 		while (fact >> 32) {
223 			fact >>= 1;
224 			shift--;
225 		}
226 	}
227 
228 	/* hint to use a 32x32->64 mul */
229 	fact = (u64)(u32)fact * lw->inv_weight;
230 
231 	while (fact >> 32) {
232 		fact >>= 1;
233 		shift--;
234 	}
235 
236 	return mul_u64_u32_shr(delta_exec, fact, shift);
237 }
238 
239 
240 const struct sched_class fair_sched_class;
241 
242 /**************************************************************
243  * CFS operations on generic schedulable entities:
244  */
245 
246 #ifdef CONFIG_FAIR_GROUP_SCHED
247 
248 /* cpu runqueue to which this cfs_rq is attached */
249 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
250 {
251 	return cfs_rq->rq;
252 }
253 
254 /* An entity is a task if it doesn't "own" a runqueue */
255 #define entity_is_task(se)	(!se->my_q)
256 
257 static inline struct task_struct *task_of(struct sched_entity *se)
258 {
259 #ifdef CONFIG_SCHED_DEBUG
260 	WARN_ON_ONCE(!entity_is_task(se));
261 #endif
262 	return container_of(se, struct task_struct, se);
263 }
264 
265 /* Walk up scheduling entities hierarchy */
266 #define for_each_sched_entity(se) \
267 		for (; se; se = se->parent)
268 
269 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
270 {
271 	return p->se.cfs_rq;
272 }
273 
274 /* runqueue on which this entity is (to be) queued */
275 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
276 {
277 	return se->cfs_rq;
278 }
279 
280 /* runqueue "owned" by this group */
281 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
282 {
283 	return grp->my_q;
284 }
285 
286 static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
287 {
288 	if (!cfs_rq->on_list) {
289 		/*
290 		 * Ensure we either appear before our parent (if already
291 		 * enqueued) or force our parent to appear after us when it is
292 		 * enqueued.  The fact that we always enqueue bottom-up
293 		 * reduces this to two cases.
294 		 */
295 		if (cfs_rq->tg->parent &&
296 		    cfs_rq->tg->parent->cfs_rq[cpu_of(rq_of(cfs_rq))]->on_list) {
297 			list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
298 				&rq_of(cfs_rq)->leaf_cfs_rq_list);
299 		} else {
300 			list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
301 				&rq_of(cfs_rq)->leaf_cfs_rq_list);
302 		}
303 
304 		cfs_rq->on_list = 1;
305 	}
306 }
307 
308 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
309 {
310 	if (cfs_rq->on_list) {
311 		list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
312 		cfs_rq->on_list = 0;
313 	}
314 }
315 
316 /* Iterate thr' all leaf cfs_rq's on a runqueue */
317 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
318 	list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
319 
320 /* Do the two (enqueued) entities belong to the same group ? */
321 static inline struct cfs_rq *
322 is_same_group(struct sched_entity *se, struct sched_entity *pse)
323 {
324 	if (se->cfs_rq == pse->cfs_rq)
325 		return se->cfs_rq;
326 
327 	return NULL;
328 }
329 
330 static inline struct sched_entity *parent_entity(struct sched_entity *se)
331 {
332 	return se->parent;
333 }
334 
335 static void
336 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
337 {
338 	int se_depth, pse_depth;
339 
340 	/*
341 	 * preemption test can be made between sibling entities who are in the
342 	 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
343 	 * both tasks until we find their ancestors who are siblings of common
344 	 * parent.
345 	 */
346 
347 	/* First walk up until both entities are at same depth */
348 	se_depth = (*se)->depth;
349 	pse_depth = (*pse)->depth;
350 
351 	while (se_depth > pse_depth) {
352 		se_depth--;
353 		*se = parent_entity(*se);
354 	}
355 
356 	while (pse_depth > se_depth) {
357 		pse_depth--;
358 		*pse = parent_entity(*pse);
359 	}
360 
361 	while (!is_same_group(*se, *pse)) {
362 		*se = parent_entity(*se);
363 		*pse = parent_entity(*pse);
364 	}
365 }
366 
367 #else	/* !CONFIG_FAIR_GROUP_SCHED */
368 
369 static inline struct task_struct *task_of(struct sched_entity *se)
370 {
371 	return container_of(se, struct task_struct, se);
372 }
373 
374 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
375 {
376 	return container_of(cfs_rq, struct rq, cfs);
377 }
378 
379 #define entity_is_task(se)	1
380 
381 #define for_each_sched_entity(se) \
382 		for (; se; se = NULL)
383 
384 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
385 {
386 	return &task_rq(p)->cfs;
387 }
388 
389 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
390 {
391 	struct task_struct *p = task_of(se);
392 	struct rq *rq = task_rq(p);
393 
394 	return &rq->cfs;
395 }
396 
397 /* runqueue "owned" by this group */
398 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
399 {
400 	return NULL;
401 }
402 
403 static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
404 {
405 }
406 
407 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
408 {
409 }
410 
411 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
412 		for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
413 
414 static inline struct sched_entity *parent_entity(struct sched_entity *se)
415 {
416 	return NULL;
417 }
418 
419 static inline void
420 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
421 {
422 }
423 
424 #endif	/* CONFIG_FAIR_GROUP_SCHED */
425 
426 static __always_inline
427 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec);
428 
429 /**************************************************************
430  * Scheduling class tree data structure manipulation methods:
431  */
432 
433 static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
434 {
435 	s64 delta = (s64)(vruntime - max_vruntime);
436 	if (delta > 0)
437 		max_vruntime = vruntime;
438 
439 	return max_vruntime;
440 }
441 
442 static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
443 {
444 	s64 delta = (s64)(vruntime - min_vruntime);
445 	if (delta < 0)
446 		min_vruntime = vruntime;
447 
448 	return min_vruntime;
449 }
450 
451 static inline int entity_before(struct sched_entity *a,
452 				struct sched_entity *b)
453 {
454 	return (s64)(a->vruntime - b->vruntime) < 0;
455 }
456 
457 static void update_min_vruntime(struct cfs_rq *cfs_rq)
458 {
459 	u64 vruntime = cfs_rq->min_vruntime;
460 
461 	if (cfs_rq->curr)
462 		vruntime = cfs_rq->curr->vruntime;
463 
464 	if (cfs_rq->rb_leftmost) {
465 		struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
466 						   struct sched_entity,
467 						   run_node);
468 
469 		if (!cfs_rq->curr)
470 			vruntime = se->vruntime;
471 		else
472 			vruntime = min_vruntime(vruntime, se->vruntime);
473 	}
474 
475 	/* ensure we never gain time by being placed backwards. */
476 	cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
477 #ifndef CONFIG_64BIT
478 	smp_wmb();
479 	cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
480 #endif
481 }
482 
483 /*
484  * Enqueue an entity into the rb-tree:
485  */
486 static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
487 {
488 	struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
489 	struct rb_node *parent = NULL;
490 	struct sched_entity *entry;
491 	int leftmost = 1;
492 
493 	/*
494 	 * Find the right place in the rbtree:
495 	 */
496 	while (*link) {
497 		parent = *link;
498 		entry = rb_entry(parent, struct sched_entity, run_node);
499 		/*
500 		 * We dont care about collisions. Nodes with
501 		 * the same key stay together.
502 		 */
503 		if (entity_before(se, entry)) {
504 			link = &parent->rb_left;
505 		} else {
506 			link = &parent->rb_right;
507 			leftmost = 0;
508 		}
509 	}
510 
511 	/*
512 	 * Maintain a cache of leftmost tree entries (it is frequently
513 	 * used):
514 	 */
515 	if (leftmost)
516 		cfs_rq->rb_leftmost = &se->run_node;
517 
518 	rb_link_node(&se->run_node, parent, link);
519 	rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
520 }
521 
522 static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
523 {
524 	if (cfs_rq->rb_leftmost == &se->run_node) {
525 		struct rb_node *next_node;
526 
527 		next_node = rb_next(&se->run_node);
528 		cfs_rq->rb_leftmost = next_node;
529 	}
530 
531 	rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
532 }
533 
534 struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
535 {
536 	struct rb_node *left = cfs_rq->rb_leftmost;
537 
538 	if (!left)
539 		return NULL;
540 
541 	return rb_entry(left, struct sched_entity, run_node);
542 }
543 
544 static struct sched_entity *__pick_next_entity(struct sched_entity *se)
545 {
546 	struct rb_node *next = rb_next(&se->run_node);
547 
548 	if (!next)
549 		return NULL;
550 
551 	return rb_entry(next, struct sched_entity, run_node);
552 }
553 
554 #ifdef CONFIG_SCHED_DEBUG
555 struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
556 {
557 	struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
558 
559 	if (!last)
560 		return NULL;
561 
562 	return rb_entry(last, struct sched_entity, run_node);
563 }
564 
565 /**************************************************************
566  * Scheduling class statistics methods:
567  */
568 
569 int sched_proc_update_handler(struct ctl_table *table, int write,
570 		void __user *buffer, size_t *lenp,
571 		loff_t *ppos)
572 {
573 	int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
574 	unsigned int factor = get_update_sysctl_factor();
575 
576 	if (ret || !write)
577 		return ret;
578 
579 	sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
580 					sysctl_sched_min_granularity);
581 
582 #define WRT_SYSCTL(name) \
583 	(normalized_sysctl_##name = sysctl_##name / (factor))
584 	WRT_SYSCTL(sched_min_granularity);
585 	WRT_SYSCTL(sched_latency);
586 	WRT_SYSCTL(sched_wakeup_granularity);
587 #undef WRT_SYSCTL
588 
589 	return 0;
590 }
591 #endif
592 
593 /*
594  * delta /= w
595  */
596 static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
597 {
598 	if (unlikely(se->load.weight != NICE_0_LOAD))
599 		delta = __calc_delta(delta, NICE_0_LOAD, &se->load);
600 
601 	return delta;
602 }
603 
604 /*
605  * The idea is to set a period in which each task runs once.
606  *
607  * When there are too many tasks (sched_nr_latency) we have to stretch
608  * this period because otherwise the slices get too small.
609  *
610  * p = (nr <= nl) ? l : l*nr/nl
611  */
612 static u64 __sched_period(unsigned long nr_running)
613 {
614 	if (unlikely(nr_running > sched_nr_latency))
615 		return nr_running * sysctl_sched_min_granularity;
616 	else
617 		return sysctl_sched_latency;
618 }
619 
620 /*
621  * We calculate the wall-time slice from the period by taking a part
622  * proportional to the weight.
623  *
624  * s = p*P[w/rw]
625  */
626 static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
627 {
628 	u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
629 
630 	for_each_sched_entity(se) {
631 		struct load_weight *load;
632 		struct load_weight lw;
633 
634 		cfs_rq = cfs_rq_of(se);
635 		load = &cfs_rq->load;
636 
637 		if (unlikely(!se->on_rq)) {
638 			lw = cfs_rq->load;
639 
640 			update_load_add(&lw, se->load.weight);
641 			load = &lw;
642 		}
643 		slice = __calc_delta(slice, se->load.weight, load);
644 	}
645 	return slice;
646 }
647 
648 /*
649  * We calculate the vruntime slice of a to-be-inserted task.
650  *
651  * vs = s/w
652  */
653 static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
654 {
655 	return calc_delta_fair(sched_slice(cfs_rq, se), se);
656 }
657 
658 #ifdef CONFIG_SMP
659 static int select_idle_sibling(struct task_struct *p, int cpu);
660 static unsigned long task_h_load(struct task_struct *p);
661 
662 /*
663  * We choose a half-life close to 1 scheduling period.
664  * Note: The tables below are dependent on this value.
665  */
666 #define LOAD_AVG_PERIOD 32
667 #define LOAD_AVG_MAX 47742 /* maximum possible load avg */
668 #define LOAD_AVG_MAX_N 345 /* number of full periods to produce LOAD_MAX_AVG */
669 
670 /* Give new sched_entity start runnable values to heavy its load in infant time */
671 void init_entity_runnable_average(struct sched_entity *se)
672 {
673 	struct sched_avg *sa = &se->avg;
674 
675 	sa->last_update_time = 0;
676 	/*
677 	 * sched_avg's period_contrib should be strictly less then 1024, so
678 	 * we give it 1023 to make sure it is almost a period (1024us), and
679 	 * will definitely be update (after enqueue).
680 	 */
681 	sa->period_contrib = 1023;
682 	sa->load_avg = scale_load_down(se->load.weight);
683 	sa->load_sum = sa->load_avg * LOAD_AVG_MAX;
684 	sa->util_avg = scale_load_down(SCHED_LOAD_SCALE);
685 	sa->util_sum = LOAD_AVG_MAX;
686 	/* when this task enqueue'ed, it will contribute to its cfs_rq's load_avg */
687 }
688 
689 static inline unsigned long cfs_rq_runnable_load_avg(struct cfs_rq *cfs_rq);
690 static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq);
691 #else
692 void init_entity_runnable_average(struct sched_entity *se)
693 {
694 }
695 #endif
696 
697 /*
698  * Update the current task's runtime statistics.
699  */
700 static void update_curr(struct cfs_rq *cfs_rq)
701 {
702 	struct sched_entity *curr = cfs_rq->curr;
703 	u64 now = rq_clock_task(rq_of(cfs_rq));
704 	u64 delta_exec;
705 
706 	if (unlikely(!curr))
707 		return;
708 
709 	delta_exec = now - curr->exec_start;
710 	if (unlikely((s64)delta_exec <= 0))
711 		return;
712 
713 	curr->exec_start = now;
714 
715 	schedstat_set(curr->statistics.exec_max,
716 		      max(delta_exec, curr->statistics.exec_max));
717 
718 	curr->sum_exec_runtime += delta_exec;
719 	schedstat_add(cfs_rq, exec_clock, delta_exec);
720 
721 	curr->vruntime += calc_delta_fair(delta_exec, curr);
722 	update_min_vruntime(cfs_rq);
723 
724 	if (entity_is_task(curr)) {
725 		struct task_struct *curtask = task_of(curr);
726 
727 		trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
728 		cpuacct_charge(curtask, delta_exec);
729 		account_group_exec_runtime(curtask, delta_exec);
730 	}
731 
732 	account_cfs_rq_runtime(cfs_rq, delta_exec);
733 }
734 
735 static void update_curr_fair(struct rq *rq)
736 {
737 	update_curr(cfs_rq_of(&rq->curr->se));
738 }
739 
740 static inline void
741 update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
742 {
743 	schedstat_set(se->statistics.wait_start, rq_clock(rq_of(cfs_rq)));
744 }
745 
746 /*
747  * Task is being enqueued - update stats:
748  */
749 static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
750 {
751 	/*
752 	 * Are we enqueueing a waiting task? (for current tasks
753 	 * a dequeue/enqueue event is a NOP)
754 	 */
755 	if (se != cfs_rq->curr)
756 		update_stats_wait_start(cfs_rq, se);
757 }
758 
759 static void
760 update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
761 {
762 	schedstat_set(se->statistics.wait_max, max(se->statistics.wait_max,
763 			rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start));
764 	schedstat_set(se->statistics.wait_count, se->statistics.wait_count + 1);
765 	schedstat_set(se->statistics.wait_sum, se->statistics.wait_sum +
766 			rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start);
767 #ifdef CONFIG_SCHEDSTATS
768 	if (entity_is_task(se)) {
769 		trace_sched_stat_wait(task_of(se),
770 			rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start);
771 	}
772 #endif
773 	schedstat_set(se->statistics.wait_start, 0);
774 }
775 
776 static inline void
777 update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
778 {
779 	/*
780 	 * Mark the end of the wait period if dequeueing a
781 	 * waiting task:
782 	 */
783 	if (se != cfs_rq->curr)
784 		update_stats_wait_end(cfs_rq, se);
785 }
786 
787 /*
788  * We are picking a new current task - update its stats:
789  */
790 static inline void
791 update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
792 {
793 	/*
794 	 * We are starting a new run period:
795 	 */
796 	se->exec_start = rq_clock_task(rq_of(cfs_rq));
797 }
798 
799 /**************************************************
800  * Scheduling class queueing methods:
801  */
802 
803 #ifdef CONFIG_NUMA_BALANCING
804 /*
805  * Approximate time to scan a full NUMA task in ms. The task scan period is
806  * calculated based on the tasks virtual memory size and
807  * numa_balancing_scan_size.
808  */
809 unsigned int sysctl_numa_balancing_scan_period_min = 1000;
810 unsigned int sysctl_numa_balancing_scan_period_max = 60000;
811 
812 /* Portion of address space to scan in MB */
813 unsigned int sysctl_numa_balancing_scan_size = 256;
814 
815 /* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
816 unsigned int sysctl_numa_balancing_scan_delay = 1000;
817 
818 static unsigned int task_nr_scan_windows(struct task_struct *p)
819 {
820 	unsigned long rss = 0;
821 	unsigned long nr_scan_pages;
822 
823 	/*
824 	 * Calculations based on RSS as non-present and empty pages are skipped
825 	 * by the PTE scanner and NUMA hinting faults should be trapped based
826 	 * on resident pages
827 	 */
828 	nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
829 	rss = get_mm_rss(p->mm);
830 	if (!rss)
831 		rss = nr_scan_pages;
832 
833 	rss = round_up(rss, nr_scan_pages);
834 	return rss / nr_scan_pages;
835 }
836 
837 /* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
838 #define MAX_SCAN_WINDOW 2560
839 
840 static unsigned int task_scan_min(struct task_struct *p)
841 {
842 	unsigned int scan_size = READ_ONCE(sysctl_numa_balancing_scan_size);
843 	unsigned int scan, floor;
844 	unsigned int windows = 1;
845 
846 	if (scan_size < MAX_SCAN_WINDOW)
847 		windows = MAX_SCAN_WINDOW / scan_size;
848 	floor = 1000 / windows;
849 
850 	scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
851 	return max_t(unsigned int, floor, scan);
852 }
853 
854 static unsigned int task_scan_max(struct task_struct *p)
855 {
856 	unsigned int smin = task_scan_min(p);
857 	unsigned int smax;
858 
859 	/* Watch for min being lower than max due to floor calculations */
860 	smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
861 	return max(smin, smax);
862 }
863 
864 static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
865 {
866 	rq->nr_numa_running += (p->numa_preferred_nid != -1);
867 	rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
868 }
869 
870 static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
871 {
872 	rq->nr_numa_running -= (p->numa_preferred_nid != -1);
873 	rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
874 }
875 
876 struct numa_group {
877 	atomic_t refcount;
878 
879 	spinlock_t lock; /* nr_tasks, tasks */
880 	int nr_tasks;
881 	pid_t gid;
882 
883 	struct rcu_head rcu;
884 	nodemask_t active_nodes;
885 	unsigned long total_faults;
886 	/*
887 	 * Faults_cpu is used to decide whether memory should move
888 	 * towards the CPU. As a consequence, these stats are weighted
889 	 * more by CPU use than by memory faults.
890 	 */
891 	unsigned long *faults_cpu;
892 	unsigned long faults[0];
893 };
894 
895 /* Shared or private faults. */
896 #define NR_NUMA_HINT_FAULT_TYPES 2
897 
898 /* Memory and CPU locality */
899 #define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2)
900 
901 /* Averaged statistics, and temporary buffers. */
902 #define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2)
903 
904 pid_t task_numa_group_id(struct task_struct *p)
905 {
906 	return p->numa_group ? p->numa_group->gid : 0;
907 }
908 
909 /*
910  * The averaged statistics, shared & private, memory & cpu,
911  * occupy the first half of the array. The second half of the
912  * array is for current counters, which are averaged into the
913  * first set by task_numa_placement.
914  */
915 static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv)
916 {
917 	return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv;
918 }
919 
920 static inline unsigned long task_faults(struct task_struct *p, int nid)
921 {
922 	if (!p->numa_faults)
923 		return 0;
924 
925 	return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] +
926 		p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)];
927 }
928 
929 static inline unsigned long group_faults(struct task_struct *p, int nid)
930 {
931 	if (!p->numa_group)
932 		return 0;
933 
934 	return p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 0)] +
935 		p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 1)];
936 }
937 
938 static inline unsigned long group_faults_cpu(struct numa_group *group, int nid)
939 {
940 	return group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 0)] +
941 		group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 1)];
942 }
943 
944 /* Handle placement on systems where not all nodes are directly connected. */
945 static unsigned long score_nearby_nodes(struct task_struct *p, int nid,
946 					int maxdist, bool task)
947 {
948 	unsigned long score = 0;
949 	int node;
950 
951 	/*
952 	 * All nodes are directly connected, and the same distance
953 	 * from each other. No need for fancy placement algorithms.
954 	 */
955 	if (sched_numa_topology_type == NUMA_DIRECT)
956 		return 0;
957 
958 	/*
959 	 * This code is called for each node, introducing N^2 complexity,
960 	 * which should be ok given the number of nodes rarely exceeds 8.
961 	 */
962 	for_each_online_node(node) {
963 		unsigned long faults;
964 		int dist = node_distance(nid, node);
965 
966 		/*
967 		 * The furthest away nodes in the system are not interesting
968 		 * for placement; nid was already counted.
969 		 */
970 		if (dist == sched_max_numa_distance || node == nid)
971 			continue;
972 
973 		/*
974 		 * On systems with a backplane NUMA topology, compare groups
975 		 * of nodes, and move tasks towards the group with the most
976 		 * memory accesses. When comparing two nodes at distance
977 		 * "hoplimit", only nodes closer by than "hoplimit" are part
978 		 * of each group. Skip other nodes.
979 		 */
980 		if (sched_numa_topology_type == NUMA_BACKPLANE &&
981 					dist > maxdist)
982 			continue;
983 
984 		/* Add up the faults from nearby nodes. */
985 		if (task)
986 			faults = task_faults(p, node);
987 		else
988 			faults = group_faults(p, node);
989 
990 		/*
991 		 * On systems with a glueless mesh NUMA topology, there are
992 		 * no fixed "groups of nodes". Instead, nodes that are not
993 		 * directly connected bounce traffic through intermediate
994 		 * nodes; a numa_group can occupy any set of nodes.
995 		 * The further away a node is, the less the faults count.
996 		 * This seems to result in good task placement.
997 		 */
998 		if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
999 			faults *= (sched_max_numa_distance - dist);
1000 			faults /= (sched_max_numa_distance - LOCAL_DISTANCE);
1001 		}
1002 
1003 		score += faults;
1004 	}
1005 
1006 	return score;
1007 }
1008 
1009 /*
1010  * These return the fraction of accesses done by a particular task, or
1011  * task group, on a particular numa node.  The group weight is given a
1012  * larger multiplier, in order to group tasks together that are almost
1013  * evenly spread out between numa nodes.
1014  */
1015 static inline unsigned long task_weight(struct task_struct *p, int nid,
1016 					int dist)
1017 {
1018 	unsigned long faults, total_faults;
1019 
1020 	if (!p->numa_faults)
1021 		return 0;
1022 
1023 	total_faults = p->total_numa_faults;
1024 
1025 	if (!total_faults)
1026 		return 0;
1027 
1028 	faults = task_faults(p, nid);
1029 	faults += score_nearby_nodes(p, nid, dist, true);
1030 
1031 	return 1000 * faults / total_faults;
1032 }
1033 
1034 static inline unsigned long group_weight(struct task_struct *p, int nid,
1035 					 int dist)
1036 {
1037 	unsigned long faults, total_faults;
1038 
1039 	if (!p->numa_group)
1040 		return 0;
1041 
1042 	total_faults = p->numa_group->total_faults;
1043 
1044 	if (!total_faults)
1045 		return 0;
1046 
1047 	faults = group_faults(p, nid);
1048 	faults += score_nearby_nodes(p, nid, dist, false);
1049 
1050 	return 1000 * faults / total_faults;
1051 }
1052 
1053 bool should_numa_migrate_memory(struct task_struct *p, struct page * page,
1054 				int src_nid, int dst_cpu)
1055 {
1056 	struct numa_group *ng = p->numa_group;
1057 	int dst_nid = cpu_to_node(dst_cpu);
1058 	int last_cpupid, this_cpupid;
1059 
1060 	this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid);
1061 
1062 	/*
1063 	 * Multi-stage node selection is used in conjunction with a periodic
1064 	 * migration fault to build a temporal task<->page relation. By using
1065 	 * a two-stage filter we remove short/unlikely relations.
1066 	 *
1067 	 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate
1068 	 * a task's usage of a particular page (n_p) per total usage of this
1069 	 * page (n_t) (in a given time-span) to a probability.
1070 	 *
1071 	 * Our periodic faults will sample this probability and getting the
1072 	 * same result twice in a row, given these samples are fully
1073 	 * independent, is then given by P(n)^2, provided our sample period
1074 	 * is sufficiently short compared to the usage pattern.
1075 	 *
1076 	 * This quadric squishes small probabilities, making it less likely we
1077 	 * act on an unlikely task<->page relation.
1078 	 */
1079 	last_cpupid = page_cpupid_xchg_last(page, this_cpupid);
1080 	if (!cpupid_pid_unset(last_cpupid) &&
1081 				cpupid_to_nid(last_cpupid) != dst_nid)
1082 		return false;
1083 
1084 	/* Always allow migrate on private faults */
1085 	if (cpupid_match_pid(p, last_cpupid))
1086 		return true;
1087 
1088 	/* A shared fault, but p->numa_group has not been set up yet. */
1089 	if (!ng)
1090 		return true;
1091 
1092 	/*
1093 	 * Do not migrate if the destination is not a node that
1094 	 * is actively used by this numa group.
1095 	 */
1096 	if (!node_isset(dst_nid, ng->active_nodes))
1097 		return false;
1098 
1099 	/*
1100 	 * Source is a node that is not actively used by this
1101 	 * numa group, while the destination is. Migrate.
1102 	 */
1103 	if (!node_isset(src_nid, ng->active_nodes))
1104 		return true;
1105 
1106 	/*
1107 	 * Both source and destination are nodes in active
1108 	 * use by this numa group. Maximize memory bandwidth
1109 	 * by migrating from more heavily used groups, to less
1110 	 * heavily used ones, spreading the load around.
1111 	 * Use a 1/4 hysteresis to avoid spurious page movement.
1112 	 */
1113 	return group_faults(p, dst_nid) < (group_faults(p, src_nid) * 3 / 4);
1114 }
1115 
1116 static unsigned long weighted_cpuload(const int cpu);
1117 static unsigned long source_load(int cpu, int type);
1118 static unsigned long target_load(int cpu, int type);
1119 static unsigned long capacity_of(int cpu);
1120 static long effective_load(struct task_group *tg, int cpu, long wl, long wg);
1121 
1122 /* Cached statistics for all CPUs within a node */
1123 struct numa_stats {
1124 	unsigned long nr_running;
1125 	unsigned long load;
1126 
1127 	/* Total compute capacity of CPUs on a node */
1128 	unsigned long compute_capacity;
1129 
1130 	/* Approximate capacity in terms of runnable tasks on a node */
1131 	unsigned long task_capacity;
1132 	int has_free_capacity;
1133 };
1134 
1135 /*
1136  * XXX borrowed from update_sg_lb_stats
1137  */
1138 static void update_numa_stats(struct numa_stats *ns, int nid)
1139 {
1140 	int smt, cpu, cpus = 0;
1141 	unsigned long capacity;
1142 
1143 	memset(ns, 0, sizeof(*ns));
1144 	for_each_cpu(cpu, cpumask_of_node(nid)) {
1145 		struct rq *rq = cpu_rq(cpu);
1146 
1147 		ns->nr_running += rq->nr_running;
1148 		ns->load += weighted_cpuload(cpu);
1149 		ns->compute_capacity += capacity_of(cpu);
1150 
1151 		cpus++;
1152 	}
1153 
1154 	/*
1155 	 * If we raced with hotplug and there are no CPUs left in our mask
1156 	 * the @ns structure is NULL'ed and task_numa_compare() will
1157 	 * not find this node attractive.
1158 	 *
1159 	 * We'll either bail at !has_free_capacity, or we'll detect a huge
1160 	 * imbalance and bail there.
1161 	 */
1162 	if (!cpus)
1163 		return;
1164 
1165 	/* smt := ceil(cpus / capacity), assumes: 1 < smt_power < 2 */
1166 	smt = DIV_ROUND_UP(SCHED_CAPACITY_SCALE * cpus, ns->compute_capacity);
1167 	capacity = cpus / smt; /* cores */
1168 
1169 	ns->task_capacity = min_t(unsigned, capacity,
1170 		DIV_ROUND_CLOSEST(ns->compute_capacity, SCHED_CAPACITY_SCALE));
1171 	ns->has_free_capacity = (ns->nr_running < ns->task_capacity);
1172 }
1173 
1174 struct task_numa_env {
1175 	struct task_struct *p;
1176 
1177 	int src_cpu, src_nid;
1178 	int dst_cpu, dst_nid;
1179 
1180 	struct numa_stats src_stats, dst_stats;
1181 
1182 	int imbalance_pct;
1183 	int dist;
1184 
1185 	struct task_struct *best_task;
1186 	long best_imp;
1187 	int best_cpu;
1188 };
1189 
1190 static void task_numa_assign(struct task_numa_env *env,
1191 			     struct task_struct *p, long imp)
1192 {
1193 	if (env->best_task)
1194 		put_task_struct(env->best_task);
1195 	if (p)
1196 		get_task_struct(p);
1197 
1198 	env->best_task = p;
1199 	env->best_imp = imp;
1200 	env->best_cpu = env->dst_cpu;
1201 }
1202 
1203 static bool load_too_imbalanced(long src_load, long dst_load,
1204 				struct task_numa_env *env)
1205 {
1206 	long imb, old_imb;
1207 	long orig_src_load, orig_dst_load;
1208 	long src_capacity, dst_capacity;
1209 
1210 	/*
1211 	 * The load is corrected for the CPU capacity available on each node.
1212 	 *
1213 	 * src_load        dst_load
1214 	 * ------------ vs ---------
1215 	 * src_capacity    dst_capacity
1216 	 */
1217 	src_capacity = env->src_stats.compute_capacity;
1218 	dst_capacity = env->dst_stats.compute_capacity;
1219 
1220 	/* We care about the slope of the imbalance, not the direction. */
1221 	if (dst_load < src_load)
1222 		swap(dst_load, src_load);
1223 
1224 	/* Is the difference below the threshold? */
1225 	imb = dst_load * src_capacity * 100 -
1226 	      src_load * dst_capacity * env->imbalance_pct;
1227 	if (imb <= 0)
1228 		return false;
1229 
1230 	/*
1231 	 * The imbalance is above the allowed threshold.
1232 	 * Compare it with the old imbalance.
1233 	 */
1234 	orig_src_load = env->src_stats.load;
1235 	orig_dst_load = env->dst_stats.load;
1236 
1237 	if (orig_dst_load < orig_src_load)
1238 		swap(orig_dst_load, orig_src_load);
1239 
1240 	old_imb = orig_dst_load * src_capacity * 100 -
1241 		  orig_src_load * dst_capacity * env->imbalance_pct;
1242 
1243 	/* Would this change make things worse? */
1244 	return (imb > old_imb);
1245 }
1246 
1247 /*
1248  * This checks if the overall compute and NUMA accesses of the system would
1249  * be improved if the source tasks was migrated to the target dst_cpu taking
1250  * into account that it might be best if task running on the dst_cpu should
1251  * be exchanged with the source task
1252  */
1253 static void task_numa_compare(struct task_numa_env *env,
1254 			      long taskimp, long groupimp)
1255 {
1256 	struct rq *src_rq = cpu_rq(env->src_cpu);
1257 	struct rq *dst_rq = cpu_rq(env->dst_cpu);
1258 	struct task_struct *cur;
1259 	long src_load, dst_load;
1260 	long load;
1261 	long imp = env->p->numa_group ? groupimp : taskimp;
1262 	long moveimp = imp;
1263 	int dist = env->dist;
1264 
1265 	rcu_read_lock();
1266 
1267 	raw_spin_lock_irq(&dst_rq->lock);
1268 	cur = dst_rq->curr;
1269 	/*
1270 	 * No need to move the exiting task, and this ensures that ->curr
1271 	 * wasn't reaped and thus get_task_struct() in task_numa_assign()
1272 	 * is safe under RCU read lock.
1273 	 * Note that rcu_read_lock() itself can't protect from the final
1274 	 * put_task_struct() after the last schedule().
1275 	 */
1276 	if ((cur->flags & PF_EXITING) || is_idle_task(cur))
1277 		cur = NULL;
1278 	raw_spin_unlock_irq(&dst_rq->lock);
1279 
1280 	/*
1281 	 * Because we have preemption enabled we can get migrated around and
1282 	 * end try selecting ourselves (current == env->p) as a swap candidate.
1283 	 */
1284 	if (cur == env->p)
1285 		goto unlock;
1286 
1287 	/*
1288 	 * "imp" is the fault differential for the source task between the
1289 	 * source and destination node. Calculate the total differential for
1290 	 * the source task and potential destination task. The more negative
1291 	 * the value is, the more rmeote accesses that would be expected to
1292 	 * be incurred if the tasks were swapped.
1293 	 */
1294 	if (cur) {
1295 		/* Skip this swap candidate if cannot move to the source cpu */
1296 		if (!cpumask_test_cpu(env->src_cpu, tsk_cpus_allowed(cur)))
1297 			goto unlock;
1298 
1299 		/*
1300 		 * If dst and source tasks are in the same NUMA group, or not
1301 		 * in any group then look only at task weights.
1302 		 */
1303 		if (cur->numa_group == env->p->numa_group) {
1304 			imp = taskimp + task_weight(cur, env->src_nid, dist) -
1305 			      task_weight(cur, env->dst_nid, dist);
1306 			/*
1307 			 * Add some hysteresis to prevent swapping the
1308 			 * tasks within a group over tiny differences.
1309 			 */
1310 			if (cur->numa_group)
1311 				imp -= imp/16;
1312 		} else {
1313 			/*
1314 			 * Compare the group weights. If a task is all by
1315 			 * itself (not part of a group), use the task weight
1316 			 * instead.
1317 			 */
1318 			if (cur->numa_group)
1319 				imp += group_weight(cur, env->src_nid, dist) -
1320 				       group_weight(cur, env->dst_nid, dist);
1321 			else
1322 				imp += task_weight(cur, env->src_nid, dist) -
1323 				       task_weight(cur, env->dst_nid, dist);
1324 		}
1325 	}
1326 
1327 	if (imp <= env->best_imp && moveimp <= env->best_imp)
1328 		goto unlock;
1329 
1330 	if (!cur) {
1331 		/* Is there capacity at our destination? */
1332 		if (env->src_stats.nr_running <= env->src_stats.task_capacity &&
1333 		    !env->dst_stats.has_free_capacity)
1334 			goto unlock;
1335 
1336 		goto balance;
1337 	}
1338 
1339 	/* Balance doesn't matter much if we're running a task per cpu */
1340 	if (imp > env->best_imp && src_rq->nr_running == 1 &&
1341 			dst_rq->nr_running == 1)
1342 		goto assign;
1343 
1344 	/*
1345 	 * In the overloaded case, try and keep the load balanced.
1346 	 */
1347 balance:
1348 	load = task_h_load(env->p);
1349 	dst_load = env->dst_stats.load + load;
1350 	src_load = env->src_stats.load - load;
1351 
1352 	if (moveimp > imp && moveimp > env->best_imp) {
1353 		/*
1354 		 * If the improvement from just moving env->p direction is
1355 		 * better than swapping tasks around, check if a move is
1356 		 * possible. Store a slightly smaller score than moveimp,
1357 		 * so an actually idle CPU will win.
1358 		 */
1359 		if (!load_too_imbalanced(src_load, dst_load, env)) {
1360 			imp = moveimp - 1;
1361 			cur = NULL;
1362 			goto assign;
1363 		}
1364 	}
1365 
1366 	if (imp <= env->best_imp)
1367 		goto unlock;
1368 
1369 	if (cur) {
1370 		load = task_h_load(cur);
1371 		dst_load -= load;
1372 		src_load += load;
1373 	}
1374 
1375 	if (load_too_imbalanced(src_load, dst_load, env))
1376 		goto unlock;
1377 
1378 	/*
1379 	 * One idle CPU per node is evaluated for a task numa move.
1380 	 * Call select_idle_sibling to maybe find a better one.
1381 	 */
1382 	if (!cur)
1383 		env->dst_cpu = select_idle_sibling(env->p, env->dst_cpu);
1384 
1385 assign:
1386 	task_numa_assign(env, cur, imp);
1387 unlock:
1388 	rcu_read_unlock();
1389 }
1390 
1391 static void task_numa_find_cpu(struct task_numa_env *env,
1392 				long taskimp, long groupimp)
1393 {
1394 	int cpu;
1395 
1396 	for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
1397 		/* Skip this CPU if the source task cannot migrate */
1398 		if (!cpumask_test_cpu(cpu, tsk_cpus_allowed(env->p)))
1399 			continue;
1400 
1401 		env->dst_cpu = cpu;
1402 		task_numa_compare(env, taskimp, groupimp);
1403 	}
1404 }
1405 
1406 /* Only move tasks to a NUMA node less busy than the current node. */
1407 static bool numa_has_capacity(struct task_numa_env *env)
1408 {
1409 	struct numa_stats *src = &env->src_stats;
1410 	struct numa_stats *dst = &env->dst_stats;
1411 
1412 	if (src->has_free_capacity && !dst->has_free_capacity)
1413 		return false;
1414 
1415 	/*
1416 	 * Only consider a task move if the source has a higher load
1417 	 * than the destination, corrected for CPU capacity on each node.
1418 	 *
1419 	 *      src->load                dst->load
1420 	 * --------------------- vs ---------------------
1421 	 * src->compute_capacity    dst->compute_capacity
1422 	 */
1423 	if (src->load * dst->compute_capacity * env->imbalance_pct >
1424 
1425 	    dst->load * src->compute_capacity * 100)
1426 		return true;
1427 
1428 	return false;
1429 }
1430 
1431 static int task_numa_migrate(struct task_struct *p)
1432 {
1433 	struct task_numa_env env = {
1434 		.p = p,
1435 
1436 		.src_cpu = task_cpu(p),
1437 		.src_nid = task_node(p),
1438 
1439 		.imbalance_pct = 112,
1440 
1441 		.best_task = NULL,
1442 		.best_imp = 0,
1443 		.best_cpu = -1
1444 	};
1445 	struct sched_domain *sd;
1446 	unsigned long taskweight, groupweight;
1447 	int nid, ret, dist;
1448 	long taskimp, groupimp;
1449 
1450 	/*
1451 	 * Pick the lowest SD_NUMA domain, as that would have the smallest
1452 	 * imbalance and would be the first to start moving tasks about.
1453 	 *
1454 	 * And we want to avoid any moving of tasks about, as that would create
1455 	 * random movement of tasks -- counter the numa conditions we're trying
1456 	 * to satisfy here.
1457 	 */
1458 	rcu_read_lock();
1459 	sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
1460 	if (sd)
1461 		env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
1462 	rcu_read_unlock();
1463 
1464 	/*
1465 	 * Cpusets can break the scheduler domain tree into smaller
1466 	 * balance domains, some of which do not cross NUMA boundaries.
1467 	 * Tasks that are "trapped" in such domains cannot be migrated
1468 	 * elsewhere, so there is no point in (re)trying.
1469 	 */
1470 	if (unlikely(!sd)) {
1471 		p->numa_preferred_nid = task_node(p);
1472 		return -EINVAL;
1473 	}
1474 
1475 	env.dst_nid = p->numa_preferred_nid;
1476 	dist = env.dist = node_distance(env.src_nid, env.dst_nid);
1477 	taskweight = task_weight(p, env.src_nid, dist);
1478 	groupweight = group_weight(p, env.src_nid, dist);
1479 	update_numa_stats(&env.src_stats, env.src_nid);
1480 	taskimp = task_weight(p, env.dst_nid, dist) - taskweight;
1481 	groupimp = group_weight(p, env.dst_nid, dist) - groupweight;
1482 	update_numa_stats(&env.dst_stats, env.dst_nid);
1483 
1484 	/* Try to find a spot on the preferred nid. */
1485 	if (numa_has_capacity(&env))
1486 		task_numa_find_cpu(&env, taskimp, groupimp);
1487 
1488 	/*
1489 	 * Look at other nodes in these cases:
1490 	 * - there is no space available on the preferred_nid
1491 	 * - the task is part of a numa_group that is interleaved across
1492 	 *   multiple NUMA nodes; in order to better consolidate the group,
1493 	 *   we need to check other locations.
1494 	 */
1495 	if (env.best_cpu == -1 || (p->numa_group &&
1496 			nodes_weight(p->numa_group->active_nodes) > 1)) {
1497 		for_each_online_node(nid) {
1498 			if (nid == env.src_nid || nid == p->numa_preferred_nid)
1499 				continue;
1500 
1501 			dist = node_distance(env.src_nid, env.dst_nid);
1502 			if (sched_numa_topology_type == NUMA_BACKPLANE &&
1503 						dist != env.dist) {
1504 				taskweight = task_weight(p, env.src_nid, dist);
1505 				groupweight = group_weight(p, env.src_nid, dist);
1506 			}
1507 
1508 			/* Only consider nodes where both task and groups benefit */
1509 			taskimp = task_weight(p, nid, dist) - taskweight;
1510 			groupimp = group_weight(p, nid, dist) - groupweight;
1511 			if (taskimp < 0 && groupimp < 0)
1512 				continue;
1513 
1514 			env.dist = dist;
1515 			env.dst_nid = nid;
1516 			update_numa_stats(&env.dst_stats, env.dst_nid);
1517 			if (numa_has_capacity(&env))
1518 				task_numa_find_cpu(&env, taskimp, groupimp);
1519 		}
1520 	}
1521 
1522 	/*
1523 	 * If the task is part of a workload that spans multiple NUMA nodes,
1524 	 * and is migrating into one of the workload's active nodes, remember
1525 	 * this node as the task's preferred numa node, so the workload can
1526 	 * settle down.
1527 	 * A task that migrated to a second choice node will be better off
1528 	 * trying for a better one later. Do not set the preferred node here.
1529 	 */
1530 	if (p->numa_group) {
1531 		if (env.best_cpu == -1)
1532 			nid = env.src_nid;
1533 		else
1534 			nid = env.dst_nid;
1535 
1536 		if (node_isset(nid, p->numa_group->active_nodes))
1537 			sched_setnuma(p, env.dst_nid);
1538 	}
1539 
1540 	/* No better CPU than the current one was found. */
1541 	if (env.best_cpu == -1)
1542 		return -EAGAIN;
1543 
1544 	/*
1545 	 * Reset the scan period if the task is being rescheduled on an
1546 	 * alternative node to recheck if the tasks is now properly placed.
1547 	 */
1548 	p->numa_scan_period = task_scan_min(p);
1549 
1550 	if (env.best_task == NULL) {
1551 		ret = migrate_task_to(p, env.best_cpu);
1552 		if (ret != 0)
1553 			trace_sched_stick_numa(p, env.src_cpu, env.best_cpu);
1554 		return ret;
1555 	}
1556 
1557 	ret = migrate_swap(p, env.best_task);
1558 	if (ret != 0)
1559 		trace_sched_stick_numa(p, env.src_cpu, task_cpu(env.best_task));
1560 	put_task_struct(env.best_task);
1561 	return ret;
1562 }
1563 
1564 /* Attempt to migrate a task to a CPU on the preferred node. */
1565 static void numa_migrate_preferred(struct task_struct *p)
1566 {
1567 	unsigned long interval = HZ;
1568 
1569 	/* This task has no NUMA fault statistics yet */
1570 	if (unlikely(p->numa_preferred_nid == -1 || !p->numa_faults))
1571 		return;
1572 
1573 	/* Periodically retry migrating the task to the preferred node */
1574 	interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16);
1575 	p->numa_migrate_retry = jiffies + interval;
1576 
1577 	/* Success if task is already running on preferred CPU */
1578 	if (task_node(p) == p->numa_preferred_nid)
1579 		return;
1580 
1581 	/* Otherwise, try migrate to a CPU on the preferred node */
1582 	task_numa_migrate(p);
1583 }
1584 
1585 /*
1586  * Find the nodes on which the workload is actively running. We do this by
1587  * tracking the nodes from which NUMA hinting faults are triggered. This can
1588  * be different from the set of nodes where the workload's memory is currently
1589  * located.
1590  *
1591  * The bitmask is used to make smarter decisions on when to do NUMA page
1592  * migrations, To prevent flip-flopping, and excessive page migrations, nodes
1593  * are added when they cause over 6/16 of the maximum number of faults, but
1594  * only removed when they drop below 3/16.
1595  */
1596 static void update_numa_active_node_mask(struct numa_group *numa_group)
1597 {
1598 	unsigned long faults, max_faults = 0;
1599 	int nid;
1600 
1601 	for_each_online_node(nid) {
1602 		faults = group_faults_cpu(numa_group, nid);
1603 		if (faults > max_faults)
1604 			max_faults = faults;
1605 	}
1606 
1607 	for_each_online_node(nid) {
1608 		faults = group_faults_cpu(numa_group, nid);
1609 		if (!node_isset(nid, numa_group->active_nodes)) {
1610 			if (faults > max_faults * 6 / 16)
1611 				node_set(nid, numa_group->active_nodes);
1612 		} else if (faults < max_faults * 3 / 16)
1613 			node_clear(nid, numa_group->active_nodes);
1614 	}
1615 }
1616 
1617 /*
1618  * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
1619  * increments. The more local the fault statistics are, the higher the scan
1620  * period will be for the next scan window. If local/(local+remote) ratio is
1621  * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS)
1622  * the scan period will decrease. Aim for 70% local accesses.
1623  */
1624 #define NUMA_PERIOD_SLOTS 10
1625 #define NUMA_PERIOD_THRESHOLD 7
1626 
1627 /*
1628  * Increase the scan period (slow down scanning) if the majority of
1629  * our memory is already on our local node, or if the majority of
1630  * the page accesses are shared with other processes.
1631  * Otherwise, decrease the scan period.
1632  */
1633 static void update_task_scan_period(struct task_struct *p,
1634 			unsigned long shared, unsigned long private)
1635 {
1636 	unsigned int period_slot;
1637 	int ratio;
1638 	int diff;
1639 
1640 	unsigned long remote = p->numa_faults_locality[0];
1641 	unsigned long local = p->numa_faults_locality[1];
1642 
1643 	/*
1644 	 * If there were no record hinting faults then either the task is
1645 	 * completely idle or all activity is areas that are not of interest
1646 	 * to automatic numa balancing. Related to that, if there were failed
1647 	 * migration then it implies we are migrating too quickly or the local
1648 	 * node is overloaded. In either case, scan slower
1649 	 */
1650 	if (local + shared == 0 || p->numa_faults_locality[2]) {
1651 		p->numa_scan_period = min(p->numa_scan_period_max,
1652 			p->numa_scan_period << 1);
1653 
1654 		p->mm->numa_next_scan = jiffies +
1655 			msecs_to_jiffies(p->numa_scan_period);
1656 
1657 		return;
1658 	}
1659 
1660 	/*
1661 	 * Prepare to scale scan period relative to the current period.
1662 	 *	 == NUMA_PERIOD_THRESHOLD scan period stays the same
1663 	 *       <  NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
1664 	 *	 >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
1665 	 */
1666 	period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
1667 	ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
1668 	if (ratio >= NUMA_PERIOD_THRESHOLD) {
1669 		int slot = ratio - NUMA_PERIOD_THRESHOLD;
1670 		if (!slot)
1671 			slot = 1;
1672 		diff = slot * period_slot;
1673 	} else {
1674 		diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;
1675 
1676 		/*
1677 		 * Scale scan rate increases based on sharing. There is an
1678 		 * inverse relationship between the degree of sharing and
1679 		 * the adjustment made to the scanning period. Broadly
1680 		 * speaking the intent is that there is little point
1681 		 * scanning faster if shared accesses dominate as it may
1682 		 * simply bounce migrations uselessly
1683 		 */
1684 		ratio = DIV_ROUND_UP(private * NUMA_PERIOD_SLOTS, (private + shared + 1));
1685 		diff = (diff * ratio) / NUMA_PERIOD_SLOTS;
1686 	}
1687 
1688 	p->numa_scan_period = clamp(p->numa_scan_period + diff,
1689 			task_scan_min(p), task_scan_max(p));
1690 	memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
1691 }
1692 
1693 /*
1694  * Get the fraction of time the task has been running since the last
1695  * NUMA placement cycle. The scheduler keeps similar statistics, but
1696  * decays those on a 32ms period, which is orders of magnitude off
1697  * from the dozens-of-seconds NUMA balancing period. Use the scheduler
1698  * stats only if the task is so new there are no NUMA statistics yet.
1699  */
1700 static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period)
1701 {
1702 	u64 runtime, delta, now;
1703 	/* Use the start of this time slice to avoid calculations. */
1704 	now = p->se.exec_start;
1705 	runtime = p->se.sum_exec_runtime;
1706 
1707 	if (p->last_task_numa_placement) {
1708 		delta = runtime - p->last_sum_exec_runtime;
1709 		*period = now - p->last_task_numa_placement;
1710 	} else {
1711 		delta = p->se.avg.load_sum / p->se.load.weight;
1712 		*period = LOAD_AVG_MAX;
1713 	}
1714 
1715 	p->last_sum_exec_runtime = runtime;
1716 	p->last_task_numa_placement = now;
1717 
1718 	return delta;
1719 }
1720 
1721 /*
1722  * Determine the preferred nid for a task in a numa_group. This needs to
1723  * be done in a way that produces consistent results with group_weight,
1724  * otherwise workloads might not converge.
1725  */
1726 static int preferred_group_nid(struct task_struct *p, int nid)
1727 {
1728 	nodemask_t nodes;
1729 	int dist;
1730 
1731 	/* Direct connections between all NUMA nodes. */
1732 	if (sched_numa_topology_type == NUMA_DIRECT)
1733 		return nid;
1734 
1735 	/*
1736 	 * On a system with glueless mesh NUMA topology, group_weight
1737 	 * scores nodes according to the number of NUMA hinting faults on
1738 	 * both the node itself, and on nearby nodes.
1739 	 */
1740 	if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
1741 		unsigned long score, max_score = 0;
1742 		int node, max_node = nid;
1743 
1744 		dist = sched_max_numa_distance;
1745 
1746 		for_each_online_node(node) {
1747 			score = group_weight(p, node, dist);
1748 			if (score > max_score) {
1749 				max_score = score;
1750 				max_node = node;
1751 			}
1752 		}
1753 		return max_node;
1754 	}
1755 
1756 	/*
1757 	 * Finding the preferred nid in a system with NUMA backplane
1758 	 * interconnect topology is more involved. The goal is to locate
1759 	 * tasks from numa_groups near each other in the system, and
1760 	 * untangle workloads from different sides of the system. This requires
1761 	 * searching down the hierarchy of node groups, recursively searching
1762 	 * inside the highest scoring group of nodes. The nodemask tricks
1763 	 * keep the complexity of the search down.
1764 	 */
1765 	nodes = node_online_map;
1766 	for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) {
1767 		unsigned long max_faults = 0;
1768 		nodemask_t max_group = NODE_MASK_NONE;
1769 		int a, b;
1770 
1771 		/* Are there nodes at this distance from each other? */
1772 		if (!find_numa_distance(dist))
1773 			continue;
1774 
1775 		for_each_node_mask(a, nodes) {
1776 			unsigned long faults = 0;
1777 			nodemask_t this_group;
1778 			nodes_clear(this_group);
1779 
1780 			/* Sum group's NUMA faults; includes a==b case. */
1781 			for_each_node_mask(b, nodes) {
1782 				if (node_distance(a, b) < dist) {
1783 					faults += group_faults(p, b);
1784 					node_set(b, this_group);
1785 					node_clear(b, nodes);
1786 				}
1787 			}
1788 
1789 			/* Remember the top group. */
1790 			if (faults > max_faults) {
1791 				max_faults = faults;
1792 				max_group = this_group;
1793 				/*
1794 				 * subtle: at the smallest distance there is
1795 				 * just one node left in each "group", the
1796 				 * winner is the preferred nid.
1797 				 */
1798 				nid = a;
1799 			}
1800 		}
1801 		/* Next round, evaluate the nodes within max_group. */
1802 		if (!max_faults)
1803 			break;
1804 		nodes = max_group;
1805 	}
1806 	return nid;
1807 }
1808 
1809 static void task_numa_placement(struct task_struct *p)
1810 {
1811 	int seq, nid, max_nid = -1, max_group_nid = -1;
1812 	unsigned long max_faults = 0, max_group_faults = 0;
1813 	unsigned long fault_types[2] = { 0, 0 };
1814 	unsigned long total_faults;
1815 	u64 runtime, period;
1816 	spinlock_t *group_lock = NULL;
1817 
1818 	/*
1819 	 * The p->mm->numa_scan_seq field gets updated without
1820 	 * exclusive access. Use READ_ONCE() here to ensure
1821 	 * that the field is read in a single access:
1822 	 */
1823 	seq = READ_ONCE(p->mm->numa_scan_seq);
1824 	if (p->numa_scan_seq == seq)
1825 		return;
1826 	p->numa_scan_seq = seq;
1827 	p->numa_scan_period_max = task_scan_max(p);
1828 
1829 	total_faults = p->numa_faults_locality[0] +
1830 		       p->numa_faults_locality[1];
1831 	runtime = numa_get_avg_runtime(p, &period);
1832 
1833 	/* If the task is part of a group prevent parallel updates to group stats */
1834 	if (p->numa_group) {
1835 		group_lock = &p->numa_group->lock;
1836 		spin_lock_irq(group_lock);
1837 	}
1838 
1839 	/* Find the node with the highest number of faults */
1840 	for_each_online_node(nid) {
1841 		/* Keep track of the offsets in numa_faults array */
1842 		int mem_idx, membuf_idx, cpu_idx, cpubuf_idx;
1843 		unsigned long faults = 0, group_faults = 0;
1844 		int priv;
1845 
1846 		for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) {
1847 			long diff, f_diff, f_weight;
1848 
1849 			mem_idx = task_faults_idx(NUMA_MEM, nid, priv);
1850 			membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv);
1851 			cpu_idx = task_faults_idx(NUMA_CPU, nid, priv);
1852 			cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv);
1853 
1854 			/* Decay existing window, copy faults since last scan */
1855 			diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2;
1856 			fault_types[priv] += p->numa_faults[membuf_idx];
1857 			p->numa_faults[membuf_idx] = 0;
1858 
1859 			/*
1860 			 * Normalize the faults_from, so all tasks in a group
1861 			 * count according to CPU use, instead of by the raw
1862 			 * number of faults. Tasks with little runtime have
1863 			 * little over-all impact on throughput, and thus their
1864 			 * faults are less important.
1865 			 */
1866 			f_weight = div64_u64(runtime << 16, period + 1);
1867 			f_weight = (f_weight * p->numa_faults[cpubuf_idx]) /
1868 				   (total_faults + 1);
1869 			f_diff = f_weight - p->numa_faults[cpu_idx] / 2;
1870 			p->numa_faults[cpubuf_idx] = 0;
1871 
1872 			p->numa_faults[mem_idx] += diff;
1873 			p->numa_faults[cpu_idx] += f_diff;
1874 			faults += p->numa_faults[mem_idx];
1875 			p->total_numa_faults += diff;
1876 			if (p->numa_group) {
1877 				/*
1878 				 * safe because we can only change our own group
1879 				 *
1880 				 * mem_idx represents the offset for a given
1881 				 * nid and priv in a specific region because it
1882 				 * is at the beginning of the numa_faults array.
1883 				 */
1884 				p->numa_group->faults[mem_idx] += diff;
1885 				p->numa_group->faults_cpu[mem_idx] += f_diff;
1886 				p->numa_group->total_faults += diff;
1887 				group_faults += p->numa_group->faults[mem_idx];
1888 			}
1889 		}
1890 
1891 		if (faults > max_faults) {
1892 			max_faults = faults;
1893 			max_nid = nid;
1894 		}
1895 
1896 		if (group_faults > max_group_faults) {
1897 			max_group_faults = group_faults;
1898 			max_group_nid = nid;
1899 		}
1900 	}
1901 
1902 	update_task_scan_period(p, fault_types[0], fault_types[1]);
1903 
1904 	if (p->numa_group) {
1905 		update_numa_active_node_mask(p->numa_group);
1906 		spin_unlock_irq(group_lock);
1907 		max_nid = preferred_group_nid(p, max_group_nid);
1908 	}
1909 
1910 	if (max_faults) {
1911 		/* Set the new preferred node */
1912 		if (max_nid != p->numa_preferred_nid)
1913 			sched_setnuma(p, max_nid);
1914 
1915 		if (task_node(p) != p->numa_preferred_nid)
1916 			numa_migrate_preferred(p);
1917 	}
1918 }
1919 
1920 static inline int get_numa_group(struct numa_group *grp)
1921 {
1922 	return atomic_inc_not_zero(&grp->refcount);
1923 }
1924 
1925 static inline void put_numa_group(struct numa_group *grp)
1926 {
1927 	if (atomic_dec_and_test(&grp->refcount))
1928 		kfree_rcu(grp, rcu);
1929 }
1930 
1931 static void task_numa_group(struct task_struct *p, int cpupid, int flags,
1932 			int *priv)
1933 {
1934 	struct numa_group *grp, *my_grp;
1935 	struct task_struct *tsk;
1936 	bool join = false;
1937 	int cpu = cpupid_to_cpu(cpupid);
1938 	int i;
1939 
1940 	if (unlikely(!p->numa_group)) {
1941 		unsigned int size = sizeof(struct numa_group) +
1942 				    4*nr_node_ids*sizeof(unsigned long);
1943 
1944 		grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
1945 		if (!grp)
1946 			return;
1947 
1948 		atomic_set(&grp->refcount, 1);
1949 		spin_lock_init(&grp->lock);
1950 		grp->gid = p->pid;
1951 		/* Second half of the array tracks nids where faults happen */
1952 		grp->faults_cpu = grp->faults + NR_NUMA_HINT_FAULT_TYPES *
1953 						nr_node_ids;
1954 
1955 		node_set(task_node(current), grp->active_nodes);
1956 
1957 		for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
1958 			grp->faults[i] = p->numa_faults[i];
1959 
1960 		grp->total_faults = p->total_numa_faults;
1961 
1962 		grp->nr_tasks++;
1963 		rcu_assign_pointer(p->numa_group, grp);
1964 	}
1965 
1966 	rcu_read_lock();
1967 	tsk = READ_ONCE(cpu_rq(cpu)->curr);
1968 
1969 	if (!cpupid_match_pid(tsk, cpupid))
1970 		goto no_join;
1971 
1972 	grp = rcu_dereference(tsk->numa_group);
1973 	if (!grp)
1974 		goto no_join;
1975 
1976 	my_grp = p->numa_group;
1977 	if (grp == my_grp)
1978 		goto no_join;
1979 
1980 	/*
1981 	 * Only join the other group if its bigger; if we're the bigger group,
1982 	 * the other task will join us.
1983 	 */
1984 	if (my_grp->nr_tasks > grp->nr_tasks)
1985 		goto no_join;
1986 
1987 	/*
1988 	 * Tie-break on the grp address.
1989 	 */
1990 	if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
1991 		goto no_join;
1992 
1993 	/* Always join threads in the same process. */
1994 	if (tsk->mm == current->mm)
1995 		join = true;
1996 
1997 	/* Simple filter to avoid false positives due to PID collisions */
1998 	if (flags & TNF_SHARED)
1999 		join = true;
2000 
2001 	/* Update priv based on whether false sharing was detected */
2002 	*priv = !join;
2003 
2004 	if (join && !get_numa_group(grp))
2005 		goto no_join;
2006 
2007 	rcu_read_unlock();
2008 
2009 	if (!join)
2010 		return;
2011 
2012 	BUG_ON(irqs_disabled());
2013 	double_lock_irq(&my_grp->lock, &grp->lock);
2014 
2015 	for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) {
2016 		my_grp->faults[i] -= p->numa_faults[i];
2017 		grp->faults[i] += p->numa_faults[i];
2018 	}
2019 	my_grp->total_faults -= p->total_numa_faults;
2020 	grp->total_faults += p->total_numa_faults;
2021 
2022 	my_grp->nr_tasks--;
2023 	grp->nr_tasks++;
2024 
2025 	spin_unlock(&my_grp->lock);
2026 	spin_unlock_irq(&grp->lock);
2027 
2028 	rcu_assign_pointer(p->numa_group, grp);
2029 
2030 	put_numa_group(my_grp);
2031 	return;
2032 
2033 no_join:
2034 	rcu_read_unlock();
2035 	return;
2036 }
2037 
2038 void task_numa_free(struct task_struct *p)
2039 {
2040 	struct numa_group *grp = p->numa_group;
2041 	void *numa_faults = p->numa_faults;
2042 	unsigned long flags;
2043 	int i;
2044 
2045 	if (grp) {
2046 		spin_lock_irqsave(&grp->lock, flags);
2047 		for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
2048 			grp->faults[i] -= p->numa_faults[i];
2049 		grp->total_faults -= p->total_numa_faults;
2050 
2051 		grp->nr_tasks--;
2052 		spin_unlock_irqrestore(&grp->lock, flags);
2053 		RCU_INIT_POINTER(p->numa_group, NULL);
2054 		put_numa_group(grp);
2055 	}
2056 
2057 	p->numa_faults = NULL;
2058 	kfree(numa_faults);
2059 }
2060 
2061 /*
2062  * Got a PROT_NONE fault for a page on @node.
2063  */
2064 void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags)
2065 {
2066 	struct task_struct *p = current;
2067 	bool migrated = flags & TNF_MIGRATED;
2068 	int cpu_node = task_node(current);
2069 	int local = !!(flags & TNF_FAULT_LOCAL);
2070 	int priv;
2071 
2072 	if (!numabalancing_enabled)
2073 		return;
2074 
2075 	/* for example, ksmd faulting in a user's mm */
2076 	if (!p->mm)
2077 		return;
2078 
2079 	/* Allocate buffer to track faults on a per-node basis */
2080 	if (unlikely(!p->numa_faults)) {
2081 		int size = sizeof(*p->numa_faults) *
2082 			   NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids;
2083 
2084 		p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN);
2085 		if (!p->numa_faults)
2086 			return;
2087 
2088 		p->total_numa_faults = 0;
2089 		memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
2090 	}
2091 
2092 	/*
2093 	 * First accesses are treated as private, otherwise consider accesses
2094 	 * to be private if the accessing pid has not changed
2095 	 */
2096 	if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
2097 		priv = 1;
2098 	} else {
2099 		priv = cpupid_match_pid(p, last_cpupid);
2100 		if (!priv && !(flags & TNF_NO_GROUP))
2101 			task_numa_group(p, last_cpupid, flags, &priv);
2102 	}
2103 
2104 	/*
2105 	 * If a workload spans multiple NUMA nodes, a shared fault that
2106 	 * occurs wholly within the set of nodes that the workload is
2107 	 * actively using should be counted as local. This allows the
2108 	 * scan rate to slow down when a workload has settled down.
2109 	 */
2110 	if (!priv && !local && p->numa_group &&
2111 			node_isset(cpu_node, p->numa_group->active_nodes) &&
2112 			node_isset(mem_node, p->numa_group->active_nodes))
2113 		local = 1;
2114 
2115 	task_numa_placement(p);
2116 
2117 	/*
2118 	 * Retry task to preferred node migration periodically, in case it
2119 	 * case it previously failed, or the scheduler moved us.
2120 	 */
2121 	if (time_after(jiffies, p->numa_migrate_retry))
2122 		numa_migrate_preferred(p);
2123 
2124 	if (migrated)
2125 		p->numa_pages_migrated += pages;
2126 	if (flags & TNF_MIGRATE_FAIL)
2127 		p->numa_faults_locality[2] += pages;
2128 
2129 	p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages;
2130 	p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages;
2131 	p->numa_faults_locality[local] += pages;
2132 }
2133 
2134 static void reset_ptenuma_scan(struct task_struct *p)
2135 {
2136 	/*
2137 	 * We only did a read acquisition of the mmap sem, so
2138 	 * p->mm->numa_scan_seq is written to without exclusive access
2139 	 * and the update is not guaranteed to be atomic. That's not
2140 	 * much of an issue though, since this is just used for
2141 	 * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not
2142 	 * expensive, to avoid any form of compiler optimizations:
2143 	 */
2144 	WRITE_ONCE(p->mm->numa_scan_seq, READ_ONCE(p->mm->numa_scan_seq) + 1);
2145 	p->mm->numa_scan_offset = 0;
2146 }
2147 
2148 /*
2149  * The expensive part of numa migration is done from task_work context.
2150  * Triggered from task_tick_numa().
2151  */
2152 void task_numa_work(struct callback_head *work)
2153 {
2154 	unsigned long migrate, next_scan, now = jiffies;
2155 	struct task_struct *p = current;
2156 	struct mm_struct *mm = p->mm;
2157 	struct vm_area_struct *vma;
2158 	unsigned long start, end;
2159 	unsigned long nr_pte_updates = 0;
2160 	long pages;
2161 
2162 	WARN_ON_ONCE(p != container_of(work, struct task_struct, numa_work));
2163 
2164 	work->next = work; /* protect against double add */
2165 	/*
2166 	 * Who cares about NUMA placement when they're dying.
2167 	 *
2168 	 * NOTE: make sure not to dereference p->mm before this check,
2169 	 * exit_task_work() happens _after_ exit_mm() so we could be called
2170 	 * without p->mm even though we still had it when we enqueued this
2171 	 * work.
2172 	 */
2173 	if (p->flags & PF_EXITING)
2174 		return;
2175 
2176 	if (!mm->numa_next_scan) {
2177 		mm->numa_next_scan = now +
2178 			msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
2179 	}
2180 
2181 	/*
2182 	 * Enforce maximal scan/migration frequency..
2183 	 */
2184 	migrate = mm->numa_next_scan;
2185 	if (time_before(now, migrate))
2186 		return;
2187 
2188 	if (p->numa_scan_period == 0) {
2189 		p->numa_scan_period_max = task_scan_max(p);
2190 		p->numa_scan_period = task_scan_min(p);
2191 	}
2192 
2193 	next_scan = now + msecs_to_jiffies(p->numa_scan_period);
2194 	if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
2195 		return;
2196 
2197 	/*
2198 	 * Delay this task enough that another task of this mm will likely win
2199 	 * the next time around.
2200 	 */
2201 	p->node_stamp += 2 * TICK_NSEC;
2202 
2203 	start = mm->numa_scan_offset;
2204 	pages = sysctl_numa_balancing_scan_size;
2205 	pages <<= 20 - PAGE_SHIFT; /* MB in pages */
2206 	if (!pages)
2207 		return;
2208 
2209 	down_read(&mm->mmap_sem);
2210 	vma = find_vma(mm, start);
2211 	if (!vma) {
2212 		reset_ptenuma_scan(p);
2213 		start = 0;
2214 		vma = mm->mmap;
2215 	}
2216 	for (; vma; vma = vma->vm_next) {
2217 		if (!vma_migratable(vma) || !vma_policy_mof(vma) ||
2218 			is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_MIXEDMAP)) {
2219 			continue;
2220 		}
2221 
2222 		/*
2223 		 * Shared library pages mapped by multiple processes are not
2224 		 * migrated as it is expected they are cache replicated. Avoid
2225 		 * hinting faults in read-only file-backed mappings or the vdso
2226 		 * as migrating the pages will be of marginal benefit.
2227 		 */
2228 		if (!vma->vm_mm ||
2229 		    (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ)))
2230 			continue;
2231 
2232 		/*
2233 		 * Skip inaccessible VMAs to avoid any confusion between
2234 		 * PROT_NONE and NUMA hinting ptes
2235 		 */
2236 		if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)))
2237 			continue;
2238 
2239 		do {
2240 			start = max(start, vma->vm_start);
2241 			end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
2242 			end = min(end, vma->vm_end);
2243 			nr_pte_updates += change_prot_numa(vma, start, end);
2244 
2245 			/*
2246 			 * Scan sysctl_numa_balancing_scan_size but ensure that
2247 			 * at least one PTE is updated so that unused virtual
2248 			 * address space is quickly skipped.
2249 			 */
2250 			if (nr_pte_updates)
2251 				pages -= (end - start) >> PAGE_SHIFT;
2252 
2253 			start = end;
2254 			if (pages <= 0)
2255 				goto out;
2256 
2257 			cond_resched();
2258 		} while (end != vma->vm_end);
2259 	}
2260 
2261 out:
2262 	/*
2263 	 * It is possible to reach the end of the VMA list but the last few
2264 	 * VMAs are not guaranteed to the vma_migratable. If they are not, we
2265 	 * would find the !migratable VMA on the next scan but not reset the
2266 	 * scanner to the start so check it now.
2267 	 */
2268 	if (vma)
2269 		mm->numa_scan_offset = start;
2270 	else
2271 		reset_ptenuma_scan(p);
2272 	up_read(&mm->mmap_sem);
2273 }
2274 
2275 /*
2276  * Drive the periodic memory faults..
2277  */
2278 void task_tick_numa(struct rq *rq, struct task_struct *curr)
2279 {
2280 	struct callback_head *work = &curr->numa_work;
2281 	u64 period, now;
2282 
2283 	/*
2284 	 * We don't care about NUMA placement if we don't have memory.
2285 	 */
2286 	if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work)
2287 		return;
2288 
2289 	/*
2290 	 * Using runtime rather than walltime has the dual advantage that
2291 	 * we (mostly) drive the selection from busy threads and that the
2292 	 * task needs to have done some actual work before we bother with
2293 	 * NUMA placement.
2294 	 */
2295 	now = curr->se.sum_exec_runtime;
2296 	period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
2297 
2298 	if (now - curr->node_stamp > period) {
2299 		if (!curr->node_stamp)
2300 			curr->numa_scan_period = task_scan_min(curr);
2301 		curr->node_stamp += period;
2302 
2303 		if (!time_before(jiffies, curr->mm->numa_next_scan)) {
2304 			init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */
2305 			task_work_add(curr, work, true);
2306 		}
2307 	}
2308 }
2309 #else
2310 static void task_tick_numa(struct rq *rq, struct task_struct *curr)
2311 {
2312 }
2313 
2314 static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
2315 {
2316 }
2317 
2318 static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
2319 {
2320 }
2321 #endif /* CONFIG_NUMA_BALANCING */
2322 
2323 static void
2324 account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2325 {
2326 	update_load_add(&cfs_rq->load, se->load.weight);
2327 	if (!parent_entity(se))
2328 		update_load_add(&rq_of(cfs_rq)->load, se->load.weight);
2329 #ifdef CONFIG_SMP
2330 	if (entity_is_task(se)) {
2331 		struct rq *rq = rq_of(cfs_rq);
2332 
2333 		account_numa_enqueue(rq, task_of(se));
2334 		list_add(&se->group_node, &rq->cfs_tasks);
2335 	}
2336 #endif
2337 	cfs_rq->nr_running++;
2338 }
2339 
2340 static void
2341 account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2342 {
2343 	update_load_sub(&cfs_rq->load, se->load.weight);
2344 	if (!parent_entity(se))
2345 		update_load_sub(&rq_of(cfs_rq)->load, se->load.weight);
2346 	if (entity_is_task(se)) {
2347 		account_numa_dequeue(rq_of(cfs_rq), task_of(se));
2348 		list_del_init(&se->group_node);
2349 	}
2350 	cfs_rq->nr_running--;
2351 }
2352 
2353 #ifdef CONFIG_FAIR_GROUP_SCHED
2354 # ifdef CONFIG_SMP
2355 static inline long calc_tg_weight(struct task_group *tg, struct cfs_rq *cfs_rq)
2356 {
2357 	long tg_weight;
2358 
2359 	/*
2360 	 * Use this CPU's real-time load instead of the last load contribution
2361 	 * as the updating of the contribution is delayed, and we will use the
2362 	 * the real-time load to calc the share. See update_tg_load_avg().
2363 	 */
2364 	tg_weight = atomic_long_read(&tg->load_avg);
2365 	tg_weight -= cfs_rq->tg_load_avg_contrib;
2366 	tg_weight += cfs_rq->load.weight;
2367 
2368 	return tg_weight;
2369 }
2370 
2371 static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
2372 {
2373 	long tg_weight, load, shares;
2374 
2375 	tg_weight = calc_tg_weight(tg, cfs_rq);
2376 	load = cfs_rq->load.weight;
2377 
2378 	shares = (tg->shares * load);
2379 	if (tg_weight)
2380 		shares /= tg_weight;
2381 
2382 	if (shares < MIN_SHARES)
2383 		shares = MIN_SHARES;
2384 	if (shares > tg->shares)
2385 		shares = tg->shares;
2386 
2387 	return shares;
2388 }
2389 # else /* CONFIG_SMP */
2390 static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
2391 {
2392 	return tg->shares;
2393 }
2394 # endif /* CONFIG_SMP */
2395 static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
2396 			    unsigned long weight)
2397 {
2398 	if (se->on_rq) {
2399 		/* commit outstanding execution time */
2400 		if (cfs_rq->curr == se)
2401 			update_curr(cfs_rq);
2402 		account_entity_dequeue(cfs_rq, se);
2403 	}
2404 
2405 	update_load_set(&se->load, weight);
2406 
2407 	if (se->on_rq)
2408 		account_entity_enqueue(cfs_rq, se);
2409 }
2410 
2411 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
2412 
2413 static void update_cfs_shares(struct cfs_rq *cfs_rq)
2414 {
2415 	struct task_group *tg;
2416 	struct sched_entity *se;
2417 	long shares;
2418 
2419 	tg = cfs_rq->tg;
2420 	se = tg->se[cpu_of(rq_of(cfs_rq))];
2421 	if (!se || throttled_hierarchy(cfs_rq))
2422 		return;
2423 #ifndef CONFIG_SMP
2424 	if (likely(se->load.weight == tg->shares))
2425 		return;
2426 #endif
2427 	shares = calc_cfs_shares(cfs_rq, tg);
2428 
2429 	reweight_entity(cfs_rq_of(se), se, shares);
2430 }
2431 #else /* CONFIG_FAIR_GROUP_SCHED */
2432 static inline void update_cfs_shares(struct cfs_rq *cfs_rq)
2433 {
2434 }
2435 #endif /* CONFIG_FAIR_GROUP_SCHED */
2436 
2437 #ifdef CONFIG_SMP
2438 /* Precomputed fixed inverse multiplies for multiplication by y^n */
2439 static const u32 runnable_avg_yN_inv[] = {
2440 	0xffffffff, 0xfa83b2da, 0xf5257d14, 0xefe4b99a, 0xeac0c6e6, 0xe5b906e6,
2441 	0xe0ccdeeb, 0xdbfbb796, 0xd744fcc9, 0xd2a81d91, 0xce248c14, 0xc9b9bd85,
2442 	0xc5672a10, 0xc12c4cc9, 0xbd08a39e, 0xb8fbaf46, 0xb504f333, 0xb123f581,
2443 	0xad583ee9, 0xa9a15ab4, 0xa5fed6a9, 0xa2704302, 0x9ef5325f, 0x9b8d39b9,
2444 	0x9837f050, 0x94f4efa8, 0x91c3d373, 0x8ea4398a, 0x8b95c1e3, 0x88980e80,
2445 	0x85aac367, 0x82cd8698,
2446 };
2447 
2448 /*
2449  * Precomputed \Sum y^k { 1<=k<=n }.  These are floor(true_value) to prevent
2450  * over-estimates when re-combining.
2451  */
2452 static const u32 runnable_avg_yN_sum[] = {
2453 	    0, 1002, 1982, 2941, 3880, 4798, 5697, 6576, 7437, 8279, 9103,
2454 	 9909,10698,11470,12226,12966,13690,14398,15091,15769,16433,17082,
2455 	17718,18340,18949,19545,20128,20698,21256,21802,22336,22859,23371,
2456 };
2457 
2458 /*
2459  * Approximate:
2460  *   val * y^n,    where y^32 ~= 0.5 (~1 scheduling period)
2461  */
2462 static __always_inline u64 decay_load(u64 val, u64 n)
2463 {
2464 	unsigned int local_n;
2465 
2466 	if (!n)
2467 		return val;
2468 	else if (unlikely(n > LOAD_AVG_PERIOD * 63))
2469 		return 0;
2470 
2471 	/* after bounds checking we can collapse to 32-bit */
2472 	local_n = n;
2473 
2474 	/*
2475 	 * As y^PERIOD = 1/2, we can combine
2476 	 *    y^n = 1/2^(n/PERIOD) * y^(n%PERIOD)
2477 	 * With a look-up table which covers y^n (n<PERIOD)
2478 	 *
2479 	 * To achieve constant time decay_load.
2480 	 */
2481 	if (unlikely(local_n >= LOAD_AVG_PERIOD)) {
2482 		val >>= local_n / LOAD_AVG_PERIOD;
2483 		local_n %= LOAD_AVG_PERIOD;
2484 	}
2485 
2486 	val = mul_u64_u32_shr(val, runnable_avg_yN_inv[local_n], 32);
2487 	return val;
2488 }
2489 
2490 /*
2491  * For updates fully spanning n periods, the contribution to runnable
2492  * average will be: \Sum 1024*y^n
2493  *
2494  * We can compute this reasonably efficiently by combining:
2495  *   y^PERIOD = 1/2 with precomputed \Sum 1024*y^n {for  n <PERIOD}
2496  */
2497 static u32 __compute_runnable_contrib(u64 n)
2498 {
2499 	u32 contrib = 0;
2500 
2501 	if (likely(n <= LOAD_AVG_PERIOD))
2502 		return runnable_avg_yN_sum[n];
2503 	else if (unlikely(n >= LOAD_AVG_MAX_N))
2504 		return LOAD_AVG_MAX;
2505 
2506 	/* Compute \Sum k^n combining precomputed values for k^i, \Sum k^j */
2507 	do {
2508 		contrib /= 2; /* y^LOAD_AVG_PERIOD = 1/2 */
2509 		contrib += runnable_avg_yN_sum[LOAD_AVG_PERIOD];
2510 
2511 		n -= LOAD_AVG_PERIOD;
2512 	} while (n > LOAD_AVG_PERIOD);
2513 
2514 	contrib = decay_load(contrib, n);
2515 	return contrib + runnable_avg_yN_sum[n];
2516 }
2517 
2518 /*
2519  * We can represent the historical contribution to runnable average as the
2520  * coefficients of a geometric series.  To do this we sub-divide our runnable
2521  * history into segments of approximately 1ms (1024us); label the segment that
2522  * occurred N-ms ago p_N, with p_0 corresponding to the current period, e.g.
2523  *
2524  * [<- 1024us ->|<- 1024us ->|<- 1024us ->| ...
2525  *      p0            p1           p2
2526  *     (now)       (~1ms ago)  (~2ms ago)
2527  *
2528  * Let u_i denote the fraction of p_i that the entity was runnable.
2529  *
2530  * We then designate the fractions u_i as our co-efficients, yielding the
2531  * following representation of historical load:
2532  *   u_0 + u_1*y + u_2*y^2 + u_3*y^3 + ...
2533  *
2534  * We choose y based on the with of a reasonably scheduling period, fixing:
2535  *   y^32 = 0.5
2536  *
2537  * This means that the contribution to load ~32ms ago (u_32) will be weighted
2538  * approximately half as much as the contribution to load within the last ms
2539  * (u_0).
2540  *
2541  * When a period "rolls over" and we have new u_0`, multiplying the previous
2542  * sum again by y is sufficient to update:
2543  *   load_avg = u_0` + y*(u_0 + u_1*y + u_2*y^2 + ... )
2544  *            = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1}]
2545  */
2546 static __always_inline int
2547 __update_load_avg(u64 now, int cpu, struct sched_avg *sa,
2548 		  unsigned long weight, int running, struct cfs_rq *cfs_rq)
2549 {
2550 	u64 delta, periods;
2551 	u32 contrib;
2552 	int delta_w, decayed = 0;
2553 	unsigned long scale_freq = arch_scale_freq_capacity(NULL, cpu);
2554 
2555 	delta = now - sa->last_update_time;
2556 	/*
2557 	 * This should only happen when time goes backwards, which it
2558 	 * unfortunately does during sched clock init when we swap over to TSC.
2559 	 */
2560 	if ((s64)delta < 0) {
2561 		sa->last_update_time = now;
2562 		return 0;
2563 	}
2564 
2565 	/*
2566 	 * Use 1024ns as the unit of measurement since it's a reasonable
2567 	 * approximation of 1us and fast to compute.
2568 	 */
2569 	delta >>= 10;
2570 	if (!delta)
2571 		return 0;
2572 	sa->last_update_time = now;
2573 
2574 	/* delta_w is the amount already accumulated against our next period */
2575 	delta_w = sa->period_contrib;
2576 	if (delta + delta_w >= 1024) {
2577 		decayed = 1;
2578 
2579 		/* how much left for next period will start over, we don't know yet */
2580 		sa->period_contrib = 0;
2581 
2582 		/*
2583 		 * Now that we know we're crossing a period boundary, figure
2584 		 * out how much from delta we need to complete the current
2585 		 * period and accrue it.
2586 		 */
2587 		delta_w = 1024 - delta_w;
2588 		if (weight) {
2589 			sa->load_sum += weight * delta_w;
2590 			if (cfs_rq)
2591 				cfs_rq->runnable_load_sum += weight * delta_w;
2592 		}
2593 		if (running)
2594 			sa->util_sum += delta_w * scale_freq >> SCHED_CAPACITY_SHIFT;
2595 
2596 		delta -= delta_w;
2597 
2598 		/* Figure out how many additional periods this update spans */
2599 		periods = delta / 1024;
2600 		delta %= 1024;
2601 
2602 		sa->load_sum = decay_load(sa->load_sum, periods + 1);
2603 		if (cfs_rq) {
2604 			cfs_rq->runnable_load_sum =
2605 				decay_load(cfs_rq->runnable_load_sum, periods + 1);
2606 		}
2607 		sa->util_sum = decay_load((u64)(sa->util_sum), periods + 1);
2608 
2609 		/* Efficiently calculate \sum (1..n_period) 1024*y^i */
2610 		contrib = __compute_runnable_contrib(periods);
2611 		if (weight) {
2612 			sa->load_sum += weight * contrib;
2613 			if (cfs_rq)
2614 				cfs_rq->runnable_load_sum += weight * contrib;
2615 		}
2616 		if (running)
2617 			sa->util_sum += contrib * scale_freq >> SCHED_CAPACITY_SHIFT;
2618 	}
2619 
2620 	/* Remainder of delta accrued against u_0` */
2621 	if (weight) {
2622 		sa->load_sum += weight * delta;
2623 		if (cfs_rq)
2624 			cfs_rq->runnable_load_sum += weight * delta;
2625 	}
2626 	if (running)
2627 		sa->util_sum += delta * scale_freq >> SCHED_CAPACITY_SHIFT;
2628 
2629 	sa->period_contrib += delta;
2630 
2631 	if (decayed) {
2632 		sa->load_avg = div_u64(sa->load_sum, LOAD_AVG_MAX);
2633 		if (cfs_rq) {
2634 			cfs_rq->runnable_load_avg =
2635 				div_u64(cfs_rq->runnable_load_sum, LOAD_AVG_MAX);
2636 		}
2637 		sa->util_avg = (sa->util_sum << SCHED_LOAD_SHIFT) / LOAD_AVG_MAX;
2638 	}
2639 
2640 	return decayed;
2641 }
2642 
2643 #ifdef CONFIG_FAIR_GROUP_SCHED
2644 /*
2645  * Updating tg's load_avg is necessary before update_cfs_share (which is done)
2646  * and effective_load (which is not done because it is too costly).
2647  */
2648 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force)
2649 {
2650 	long delta = cfs_rq->avg.load_avg - cfs_rq->tg_load_avg_contrib;
2651 
2652 	if (force || abs(delta) > cfs_rq->tg_load_avg_contrib / 64) {
2653 		atomic_long_add(delta, &cfs_rq->tg->load_avg);
2654 		cfs_rq->tg_load_avg_contrib = cfs_rq->avg.load_avg;
2655 	}
2656 }
2657 
2658 #else /* CONFIG_FAIR_GROUP_SCHED */
2659 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force) {}
2660 #endif /* CONFIG_FAIR_GROUP_SCHED */
2661 
2662 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq);
2663 
2664 /* Group cfs_rq's load_avg is used for task_h_load and update_cfs_share */
2665 static inline int update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq)
2666 {
2667 	struct sched_avg *sa = &cfs_rq->avg;
2668 	int decayed, removed = 0;
2669 
2670 	if (atomic_long_read(&cfs_rq->removed_load_avg)) {
2671 		long r = atomic_long_xchg(&cfs_rq->removed_load_avg, 0);
2672 		sa->load_avg = max_t(long, sa->load_avg - r, 0);
2673 		sa->load_sum = max_t(s64, sa->load_sum - r * LOAD_AVG_MAX, 0);
2674 		removed = 1;
2675 	}
2676 
2677 	if (atomic_long_read(&cfs_rq->removed_util_avg)) {
2678 		long r = atomic_long_xchg(&cfs_rq->removed_util_avg, 0);
2679 		sa->util_avg = max_t(long, sa->util_avg - r, 0);
2680 		sa->util_sum = max_t(s32, sa->util_sum -
2681 			((r * LOAD_AVG_MAX) >> SCHED_LOAD_SHIFT), 0);
2682 	}
2683 
2684 	decayed = __update_load_avg(now, cpu_of(rq_of(cfs_rq)), sa,
2685 		scale_load_down(cfs_rq->load.weight), cfs_rq->curr != NULL, cfs_rq);
2686 
2687 #ifndef CONFIG_64BIT
2688 	smp_wmb();
2689 	cfs_rq->load_last_update_time_copy = sa->last_update_time;
2690 #endif
2691 
2692 	return decayed || removed;
2693 }
2694 
2695 /* Update task and its cfs_rq load average */
2696 static inline void update_load_avg(struct sched_entity *se, int update_tg)
2697 {
2698 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
2699 	int cpu = cpu_of(rq_of(cfs_rq));
2700 	u64 now = cfs_rq_clock_task(cfs_rq);
2701 
2702 	/*
2703 	 * Track task load average for carrying it to new CPU after migrated, and
2704 	 * track group sched_entity load average for task_h_load calc in migration
2705 	 */
2706 	__update_load_avg(now, cpu, &se->avg,
2707 		se->on_rq * scale_load_down(se->load.weight), cfs_rq->curr == se, NULL);
2708 
2709 	if (update_cfs_rq_load_avg(now, cfs_rq) && update_tg)
2710 		update_tg_load_avg(cfs_rq, 0);
2711 }
2712 
2713 /* Add the load generated by se into cfs_rq's load average */
2714 static inline void
2715 enqueue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
2716 {
2717 	struct sched_avg *sa = &se->avg;
2718 	u64 now = cfs_rq_clock_task(cfs_rq);
2719 	int migrated = 0, decayed;
2720 
2721 	if (sa->last_update_time == 0) {
2722 		sa->last_update_time = now;
2723 		migrated = 1;
2724 	}
2725 	else {
2726 		__update_load_avg(now, cpu_of(rq_of(cfs_rq)), sa,
2727 			se->on_rq * scale_load_down(se->load.weight),
2728 			cfs_rq->curr == se, NULL);
2729 	}
2730 
2731 	decayed = update_cfs_rq_load_avg(now, cfs_rq);
2732 
2733 	cfs_rq->runnable_load_avg += sa->load_avg;
2734 	cfs_rq->runnable_load_sum += sa->load_sum;
2735 
2736 	if (migrated) {
2737 		cfs_rq->avg.load_avg += sa->load_avg;
2738 		cfs_rq->avg.load_sum += sa->load_sum;
2739 		cfs_rq->avg.util_avg += sa->util_avg;
2740 		cfs_rq->avg.util_sum += sa->util_sum;
2741 	}
2742 
2743 	if (decayed || migrated)
2744 		update_tg_load_avg(cfs_rq, 0);
2745 }
2746 
2747 /* Remove the runnable load generated by se from cfs_rq's runnable load average */
2748 static inline void
2749 dequeue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
2750 {
2751 	update_load_avg(se, 1);
2752 
2753 	cfs_rq->runnable_load_avg =
2754 		max_t(long, cfs_rq->runnable_load_avg - se->avg.load_avg, 0);
2755 	cfs_rq->runnable_load_sum =
2756 		max_t(s64, cfs_rq->runnable_load_sum - se->avg.load_sum, 0);
2757 }
2758 
2759 /*
2760  * Task first catches up with cfs_rq, and then subtract
2761  * itself from the cfs_rq (task must be off the queue now).
2762  */
2763 void remove_entity_load_avg(struct sched_entity *se)
2764 {
2765 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
2766 	u64 last_update_time;
2767 
2768 #ifndef CONFIG_64BIT
2769 	u64 last_update_time_copy;
2770 
2771 	do {
2772 		last_update_time_copy = cfs_rq->load_last_update_time_copy;
2773 		smp_rmb();
2774 		last_update_time = cfs_rq->avg.last_update_time;
2775 	} while (last_update_time != last_update_time_copy);
2776 #else
2777 	last_update_time = cfs_rq->avg.last_update_time;
2778 #endif
2779 
2780 	__update_load_avg(last_update_time, cpu_of(rq_of(cfs_rq)), &se->avg, 0, 0, NULL);
2781 	atomic_long_add(se->avg.load_avg, &cfs_rq->removed_load_avg);
2782 	atomic_long_add(se->avg.util_avg, &cfs_rq->removed_util_avg);
2783 }
2784 
2785 /*
2786  * Update the rq's load with the elapsed running time before entering
2787  * idle. if the last scheduled task is not a CFS task, idle_enter will
2788  * be the only way to update the runnable statistic.
2789  */
2790 void idle_enter_fair(struct rq *this_rq)
2791 {
2792 }
2793 
2794 /*
2795  * Update the rq's load with the elapsed idle time before a task is
2796  * scheduled. if the newly scheduled task is not a CFS task, idle_exit will
2797  * be the only way to update the runnable statistic.
2798  */
2799 void idle_exit_fair(struct rq *this_rq)
2800 {
2801 }
2802 
2803 static inline unsigned long cfs_rq_runnable_load_avg(struct cfs_rq *cfs_rq)
2804 {
2805 	return cfs_rq->runnable_load_avg;
2806 }
2807 
2808 static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq)
2809 {
2810 	return cfs_rq->avg.load_avg;
2811 }
2812 
2813 static int idle_balance(struct rq *this_rq);
2814 
2815 #else /* CONFIG_SMP */
2816 
2817 static inline void update_load_avg(struct sched_entity *se, int update_tg) {}
2818 static inline void
2819 enqueue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
2820 static inline void
2821 dequeue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
2822 static inline void remove_entity_load_avg(struct sched_entity *se) {}
2823 
2824 static inline int idle_balance(struct rq *rq)
2825 {
2826 	return 0;
2827 }
2828 
2829 #endif /* CONFIG_SMP */
2830 
2831 static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
2832 {
2833 #ifdef CONFIG_SCHEDSTATS
2834 	struct task_struct *tsk = NULL;
2835 
2836 	if (entity_is_task(se))
2837 		tsk = task_of(se);
2838 
2839 	if (se->statistics.sleep_start) {
2840 		u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.sleep_start;
2841 
2842 		if ((s64)delta < 0)
2843 			delta = 0;
2844 
2845 		if (unlikely(delta > se->statistics.sleep_max))
2846 			se->statistics.sleep_max = delta;
2847 
2848 		se->statistics.sleep_start = 0;
2849 		se->statistics.sum_sleep_runtime += delta;
2850 
2851 		if (tsk) {
2852 			account_scheduler_latency(tsk, delta >> 10, 1);
2853 			trace_sched_stat_sleep(tsk, delta);
2854 		}
2855 	}
2856 	if (se->statistics.block_start) {
2857 		u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.block_start;
2858 
2859 		if ((s64)delta < 0)
2860 			delta = 0;
2861 
2862 		if (unlikely(delta > se->statistics.block_max))
2863 			se->statistics.block_max = delta;
2864 
2865 		se->statistics.block_start = 0;
2866 		se->statistics.sum_sleep_runtime += delta;
2867 
2868 		if (tsk) {
2869 			if (tsk->in_iowait) {
2870 				se->statistics.iowait_sum += delta;
2871 				se->statistics.iowait_count++;
2872 				trace_sched_stat_iowait(tsk, delta);
2873 			}
2874 
2875 			trace_sched_stat_blocked(tsk, delta);
2876 
2877 			/*
2878 			 * Blocking time is in units of nanosecs, so shift by
2879 			 * 20 to get a milliseconds-range estimation of the
2880 			 * amount of time that the task spent sleeping:
2881 			 */
2882 			if (unlikely(prof_on == SLEEP_PROFILING)) {
2883 				profile_hits(SLEEP_PROFILING,
2884 						(void *)get_wchan(tsk),
2885 						delta >> 20);
2886 			}
2887 			account_scheduler_latency(tsk, delta >> 10, 0);
2888 		}
2889 	}
2890 #endif
2891 }
2892 
2893 static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
2894 {
2895 #ifdef CONFIG_SCHED_DEBUG
2896 	s64 d = se->vruntime - cfs_rq->min_vruntime;
2897 
2898 	if (d < 0)
2899 		d = -d;
2900 
2901 	if (d > 3*sysctl_sched_latency)
2902 		schedstat_inc(cfs_rq, nr_spread_over);
2903 #endif
2904 }
2905 
2906 static void
2907 place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
2908 {
2909 	u64 vruntime = cfs_rq->min_vruntime;
2910 
2911 	/*
2912 	 * The 'current' period is already promised to the current tasks,
2913 	 * however the extra weight of the new task will slow them down a
2914 	 * little, place the new task so that it fits in the slot that
2915 	 * stays open at the end.
2916 	 */
2917 	if (initial && sched_feat(START_DEBIT))
2918 		vruntime += sched_vslice(cfs_rq, se);
2919 
2920 	/* sleeps up to a single latency don't count. */
2921 	if (!initial) {
2922 		unsigned long thresh = sysctl_sched_latency;
2923 
2924 		/*
2925 		 * Halve their sleep time's effect, to allow
2926 		 * for a gentler effect of sleepers:
2927 		 */
2928 		if (sched_feat(GENTLE_FAIR_SLEEPERS))
2929 			thresh >>= 1;
2930 
2931 		vruntime -= thresh;
2932 	}
2933 
2934 	/* ensure we never gain time by being placed backwards. */
2935 	se->vruntime = max_vruntime(se->vruntime, vruntime);
2936 }
2937 
2938 static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
2939 
2940 static void
2941 enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
2942 {
2943 	/*
2944 	 * Update the normalized vruntime before updating min_vruntime
2945 	 * through calling update_curr().
2946 	 */
2947 	if (!(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_WAKING))
2948 		se->vruntime += cfs_rq->min_vruntime;
2949 
2950 	/*
2951 	 * Update run-time statistics of the 'current'.
2952 	 */
2953 	update_curr(cfs_rq);
2954 	enqueue_entity_load_avg(cfs_rq, se);
2955 	account_entity_enqueue(cfs_rq, se);
2956 	update_cfs_shares(cfs_rq);
2957 
2958 	if (flags & ENQUEUE_WAKEUP) {
2959 		place_entity(cfs_rq, se, 0);
2960 		enqueue_sleeper(cfs_rq, se);
2961 	}
2962 
2963 	update_stats_enqueue(cfs_rq, se);
2964 	check_spread(cfs_rq, se);
2965 	if (se != cfs_rq->curr)
2966 		__enqueue_entity(cfs_rq, se);
2967 	se->on_rq = 1;
2968 
2969 	if (cfs_rq->nr_running == 1) {
2970 		list_add_leaf_cfs_rq(cfs_rq);
2971 		check_enqueue_throttle(cfs_rq);
2972 	}
2973 }
2974 
2975 static void __clear_buddies_last(struct sched_entity *se)
2976 {
2977 	for_each_sched_entity(se) {
2978 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
2979 		if (cfs_rq->last != se)
2980 			break;
2981 
2982 		cfs_rq->last = NULL;
2983 	}
2984 }
2985 
2986 static void __clear_buddies_next(struct sched_entity *se)
2987 {
2988 	for_each_sched_entity(se) {
2989 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
2990 		if (cfs_rq->next != se)
2991 			break;
2992 
2993 		cfs_rq->next = NULL;
2994 	}
2995 }
2996 
2997 static void __clear_buddies_skip(struct sched_entity *se)
2998 {
2999 	for_each_sched_entity(se) {
3000 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
3001 		if (cfs_rq->skip != se)
3002 			break;
3003 
3004 		cfs_rq->skip = NULL;
3005 	}
3006 }
3007 
3008 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
3009 {
3010 	if (cfs_rq->last == se)
3011 		__clear_buddies_last(se);
3012 
3013 	if (cfs_rq->next == se)
3014 		__clear_buddies_next(se);
3015 
3016 	if (cfs_rq->skip == se)
3017 		__clear_buddies_skip(se);
3018 }
3019 
3020 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
3021 
3022 static void
3023 dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
3024 {
3025 	/*
3026 	 * Update run-time statistics of the 'current'.
3027 	 */
3028 	update_curr(cfs_rq);
3029 	dequeue_entity_load_avg(cfs_rq, se);
3030 
3031 	update_stats_dequeue(cfs_rq, se);
3032 	if (flags & DEQUEUE_SLEEP) {
3033 #ifdef CONFIG_SCHEDSTATS
3034 		if (entity_is_task(se)) {
3035 			struct task_struct *tsk = task_of(se);
3036 
3037 			if (tsk->state & TASK_INTERRUPTIBLE)
3038 				se->statistics.sleep_start = rq_clock(rq_of(cfs_rq));
3039 			if (tsk->state & TASK_UNINTERRUPTIBLE)
3040 				se->statistics.block_start = rq_clock(rq_of(cfs_rq));
3041 		}
3042 #endif
3043 	}
3044 
3045 	clear_buddies(cfs_rq, se);
3046 
3047 	if (se != cfs_rq->curr)
3048 		__dequeue_entity(cfs_rq, se);
3049 	se->on_rq = 0;
3050 	account_entity_dequeue(cfs_rq, se);
3051 
3052 	/*
3053 	 * Normalize the entity after updating the min_vruntime because the
3054 	 * update can refer to the ->curr item and we need to reflect this
3055 	 * movement in our normalized position.
3056 	 */
3057 	if (!(flags & DEQUEUE_SLEEP))
3058 		se->vruntime -= cfs_rq->min_vruntime;
3059 
3060 	/* return excess runtime on last dequeue */
3061 	return_cfs_rq_runtime(cfs_rq);
3062 
3063 	update_min_vruntime(cfs_rq);
3064 	update_cfs_shares(cfs_rq);
3065 }
3066 
3067 /*
3068  * Preempt the current task with a newly woken task if needed:
3069  */
3070 static void
3071 check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
3072 {
3073 	unsigned long ideal_runtime, delta_exec;
3074 	struct sched_entity *se;
3075 	s64 delta;
3076 
3077 	ideal_runtime = sched_slice(cfs_rq, curr);
3078 	delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
3079 	if (delta_exec > ideal_runtime) {
3080 		resched_curr(rq_of(cfs_rq));
3081 		/*
3082 		 * The current task ran long enough, ensure it doesn't get
3083 		 * re-elected due to buddy favours.
3084 		 */
3085 		clear_buddies(cfs_rq, curr);
3086 		return;
3087 	}
3088 
3089 	/*
3090 	 * Ensure that a task that missed wakeup preemption by a
3091 	 * narrow margin doesn't have to wait for a full slice.
3092 	 * This also mitigates buddy induced latencies under load.
3093 	 */
3094 	if (delta_exec < sysctl_sched_min_granularity)
3095 		return;
3096 
3097 	se = __pick_first_entity(cfs_rq);
3098 	delta = curr->vruntime - se->vruntime;
3099 
3100 	if (delta < 0)
3101 		return;
3102 
3103 	if (delta > ideal_runtime)
3104 		resched_curr(rq_of(cfs_rq));
3105 }
3106 
3107 static void
3108 set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
3109 {
3110 	/* 'current' is not kept within the tree. */
3111 	if (se->on_rq) {
3112 		/*
3113 		 * Any task has to be enqueued before it get to execute on
3114 		 * a CPU. So account for the time it spent waiting on the
3115 		 * runqueue.
3116 		 */
3117 		update_stats_wait_end(cfs_rq, se);
3118 		__dequeue_entity(cfs_rq, se);
3119 		update_load_avg(se, 1);
3120 	}
3121 
3122 	update_stats_curr_start(cfs_rq, se);
3123 	cfs_rq->curr = se;
3124 #ifdef CONFIG_SCHEDSTATS
3125 	/*
3126 	 * Track our maximum slice length, if the CPU's load is at
3127 	 * least twice that of our own weight (i.e. dont track it
3128 	 * when there are only lesser-weight tasks around):
3129 	 */
3130 	if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
3131 		se->statistics.slice_max = max(se->statistics.slice_max,
3132 			se->sum_exec_runtime - se->prev_sum_exec_runtime);
3133 	}
3134 #endif
3135 	se->prev_sum_exec_runtime = se->sum_exec_runtime;
3136 }
3137 
3138 static int
3139 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
3140 
3141 /*
3142  * Pick the next process, keeping these things in mind, in this order:
3143  * 1) keep things fair between processes/task groups
3144  * 2) pick the "next" process, since someone really wants that to run
3145  * 3) pick the "last" process, for cache locality
3146  * 4) do not run the "skip" process, if something else is available
3147  */
3148 static struct sched_entity *
3149 pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr)
3150 {
3151 	struct sched_entity *left = __pick_first_entity(cfs_rq);
3152 	struct sched_entity *se;
3153 
3154 	/*
3155 	 * If curr is set we have to see if its left of the leftmost entity
3156 	 * still in the tree, provided there was anything in the tree at all.
3157 	 */
3158 	if (!left || (curr && entity_before(curr, left)))
3159 		left = curr;
3160 
3161 	se = left; /* ideally we run the leftmost entity */
3162 
3163 	/*
3164 	 * Avoid running the skip buddy, if running something else can
3165 	 * be done without getting too unfair.
3166 	 */
3167 	if (cfs_rq->skip == se) {
3168 		struct sched_entity *second;
3169 
3170 		if (se == curr) {
3171 			second = __pick_first_entity(cfs_rq);
3172 		} else {
3173 			second = __pick_next_entity(se);
3174 			if (!second || (curr && entity_before(curr, second)))
3175 				second = curr;
3176 		}
3177 
3178 		if (second && wakeup_preempt_entity(second, left) < 1)
3179 			se = second;
3180 	}
3181 
3182 	/*
3183 	 * Prefer last buddy, try to return the CPU to a preempted task.
3184 	 */
3185 	if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
3186 		se = cfs_rq->last;
3187 
3188 	/*
3189 	 * Someone really wants this to run. If it's not unfair, run it.
3190 	 */
3191 	if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
3192 		se = cfs_rq->next;
3193 
3194 	clear_buddies(cfs_rq, se);
3195 
3196 	return se;
3197 }
3198 
3199 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
3200 
3201 static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
3202 {
3203 	/*
3204 	 * If still on the runqueue then deactivate_task()
3205 	 * was not called and update_curr() has to be done:
3206 	 */
3207 	if (prev->on_rq)
3208 		update_curr(cfs_rq);
3209 
3210 	/* throttle cfs_rqs exceeding runtime */
3211 	check_cfs_rq_runtime(cfs_rq);
3212 
3213 	check_spread(cfs_rq, prev);
3214 	if (prev->on_rq) {
3215 		update_stats_wait_start(cfs_rq, prev);
3216 		/* Put 'current' back into the tree. */
3217 		__enqueue_entity(cfs_rq, prev);
3218 		/* in !on_rq case, update occurred at dequeue */
3219 		update_load_avg(prev, 0);
3220 	}
3221 	cfs_rq->curr = NULL;
3222 }
3223 
3224 static void
3225 entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
3226 {
3227 	/*
3228 	 * Update run-time statistics of the 'current'.
3229 	 */
3230 	update_curr(cfs_rq);
3231 
3232 	/*
3233 	 * Ensure that runnable average is periodically updated.
3234 	 */
3235 	update_load_avg(curr, 1);
3236 	update_cfs_shares(cfs_rq);
3237 
3238 #ifdef CONFIG_SCHED_HRTICK
3239 	/*
3240 	 * queued ticks are scheduled to match the slice, so don't bother
3241 	 * validating it and just reschedule.
3242 	 */
3243 	if (queued) {
3244 		resched_curr(rq_of(cfs_rq));
3245 		return;
3246 	}
3247 	/*
3248 	 * don't let the period tick interfere with the hrtick preemption
3249 	 */
3250 	if (!sched_feat(DOUBLE_TICK) &&
3251 			hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
3252 		return;
3253 #endif
3254 
3255 	if (cfs_rq->nr_running > 1)
3256 		check_preempt_tick(cfs_rq, curr);
3257 }
3258 
3259 
3260 /**************************************************
3261  * CFS bandwidth control machinery
3262  */
3263 
3264 #ifdef CONFIG_CFS_BANDWIDTH
3265 
3266 #ifdef HAVE_JUMP_LABEL
3267 static struct static_key __cfs_bandwidth_used;
3268 
3269 static inline bool cfs_bandwidth_used(void)
3270 {
3271 	return static_key_false(&__cfs_bandwidth_used);
3272 }
3273 
3274 void cfs_bandwidth_usage_inc(void)
3275 {
3276 	static_key_slow_inc(&__cfs_bandwidth_used);
3277 }
3278 
3279 void cfs_bandwidth_usage_dec(void)
3280 {
3281 	static_key_slow_dec(&__cfs_bandwidth_used);
3282 }
3283 #else /* HAVE_JUMP_LABEL */
3284 static bool cfs_bandwidth_used(void)
3285 {
3286 	return true;
3287 }
3288 
3289 void cfs_bandwidth_usage_inc(void) {}
3290 void cfs_bandwidth_usage_dec(void) {}
3291 #endif /* HAVE_JUMP_LABEL */
3292 
3293 /*
3294  * default period for cfs group bandwidth.
3295  * default: 0.1s, units: nanoseconds
3296  */
3297 static inline u64 default_cfs_period(void)
3298 {
3299 	return 100000000ULL;
3300 }
3301 
3302 static inline u64 sched_cfs_bandwidth_slice(void)
3303 {
3304 	return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
3305 }
3306 
3307 /*
3308  * Replenish runtime according to assigned quota and update expiration time.
3309  * We use sched_clock_cpu directly instead of rq->clock to avoid adding
3310  * additional synchronization around rq->lock.
3311  *
3312  * requires cfs_b->lock
3313  */
3314 void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
3315 {
3316 	u64 now;
3317 
3318 	if (cfs_b->quota == RUNTIME_INF)
3319 		return;
3320 
3321 	now = sched_clock_cpu(smp_processor_id());
3322 	cfs_b->runtime = cfs_b->quota;
3323 	cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
3324 }
3325 
3326 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
3327 {
3328 	return &tg->cfs_bandwidth;
3329 }
3330 
3331 /* rq->task_clock normalized against any time this cfs_rq has spent throttled */
3332 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
3333 {
3334 	if (unlikely(cfs_rq->throttle_count))
3335 		return cfs_rq->throttled_clock_task;
3336 
3337 	return rq_clock_task(rq_of(cfs_rq)) - cfs_rq->throttled_clock_task_time;
3338 }
3339 
3340 /* returns 0 on failure to allocate runtime */
3341 static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3342 {
3343 	struct task_group *tg = cfs_rq->tg;
3344 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
3345 	u64 amount = 0, min_amount, expires;
3346 
3347 	/* note: this is a positive sum as runtime_remaining <= 0 */
3348 	min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;
3349 
3350 	raw_spin_lock(&cfs_b->lock);
3351 	if (cfs_b->quota == RUNTIME_INF)
3352 		amount = min_amount;
3353 	else {
3354 		start_cfs_bandwidth(cfs_b);
3355 
3356 		if (cfs_b->runtime > 0) {
3357 			amount = min(cfs_b->runtime, min_amount);
3358 			cfs_b->runtime -= amount;
3359 			cfs_b->idle = 0;
3360 		}
3361 	}
3362 	expires = cfs_b->runtime_expires;
3363 	raw_spin_unlock(&cfs_b->lock);
3364 
3365 	cfs_rq->runtime_remaining += amount;
3366 	/*
3367 	 * we may have advanced our local expiration to account for allowed
3368 	 * spread between our sched_clock and the one on which runtime was
3369 	 * issued.
3370 	 */
3371 	if ((s64)(expires - cfs_rq->runtime_expires) > 0)
3372 		cfs_rq->runtime_expires = expires;
3373 
3374 	return cfs_rq->runtime_remaining > 0;
3375 }
3376 
3377 /*
3378  * Note: This depends on the synchronization provided by sched_clock and the
3379  * fact that rq->clock snapshots this value.
3380  */
3381 static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3382 {
3383 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3384 
3385 	/* if the deadline is ahead of our clock, nothing to do */
3386 	if (likely((s64)(rq_clock(rq_of(cfs_rq)) - cfs_rq->runtime_expires) < 0))
3387 		return;
3388 
3389 	if (cfs_rq->runtime_remaining < 0)
3390 		return;
3391 
3392 	/*
3393 	 * If the local deadline has passed we have to consider the
3394 	 * possibility that our sched_clock is 'fast' and the global deadline
3395 	 * has not truly expired.
3396 	 *
3397 	 * Fortunately we can check determine whether this the case by checking
3398 	 * whether the global deadline has advanced. It is valid to compare
3399 	 * cfs_b->runtime_expires without any locks since we only care about
3400 	 * exact equality, so a partial write will still work.
3401 	 */
3402 
3403 	if (cfs_rq->runtime_expires != cfs_b->runtime_expires) {
3404 		/* extend local deadline, drift is bounded above by 2 ticks */
3405 		cfs_rq->runtime_expires += TICK_NSEC;
3406 	} else {
3407 		/* global deadline is ahead, expiration has passed */
3408 		cfs_rq->runtime_remaining = 0;
3409 	}
3410 }
3411 
3412 static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
3413 {
3414 	/* dock delta_exec before expiring quota (as it could span periods) */
3415 	cfs_rq->runtime_remaining -= delta_exec;
3416 	expire_cfs_rq_runtime(cfs_rq);
3417 
3418 	if (likely(cfs_rq->runtime_remaining > 0))
3419 		return;
3420 
3421 	/*
3422 	 * if we're unable to extend our runtime we resched so that the active
3423 	 * hierarchy can be throttled
3424 	 */
3425 	if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
3426 		resched_curr(rq_of(cfs_rq));
3427 }
3428 
3429 static __always_inline
3430 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
3431 {
3432 	if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
3433 		return;
3434 
3435 	__account_cfs_rq_runtime(cfs_rq, delta_exec);
3436 }
3437 
3438 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
3439 {
3440 	return cfs_bandwidth_used() && cfs_rq->throttled;
3441 }
3442 
3443 /* check whether cfs_rq, or any parent, is throttled */
3444 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
3445 {
3446 	return cfs_bandwidth_used() && cfs_rq->throttle_count;
3447 }
3448 
3449 /*
3450  * Ensure that neither of the group entities corresponding to src_cpu or
3451  * dest_cpu are members of a throttled hierarchy when performing group
3452  * load-balance operations.
3453  */
3454 static inline int throttled_lb_pair(struct task_group *tg,
3455 				    int src_cpu, int dest_cpu)
3456 {
3457 	struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
3458 
3459 	src_cfs_rq = tg->cfs_rq[src_cpu];
3460 	dest_cfs_rq = tg->cfs_rq[dest_cpu];
3461 
3462 	return throttled_hierarchy(src_cfs_rq) ||
3463 	       throttled_hierarchy(dest_cfs_rq);
3464 }
3465 
3466 /* updated child weight may affect parent so we have to do this bottom up */
3467 static int tg_unthrottle_up(struct task_group *tg, void *data)
3468 {
3469 	struct rq *rq = data;
3470 	struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
3471 
3472 	cfs_rq->throttle_count--;
3473 #ifdef CONFIG_SMP
3474 	if (!cfs_rq->throttle_count) {
3475 		/* adjust cfs_rq_clock_task() */
3476 		cfs_rq->throttled_clock_task_time += rq_clock_task(rq) -
3477 					     cfs_rq->throttled_clock_task;
3478 	}
3479 #endif
3480 
3481 	return 0;
3482 }
3483 
3484 static int tg_throttle_down(struct task_group *tg, void *data)
3485 {
3486 	struct rq *rq = data;
3487 	struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
3488 
3489 	/* group is entering throttled state, stop time */
3490 	if (!cfs_rq->throttle_count)
3491 		cfs_rq->throttled_clock_task = rq_clock_task(rq);
3492 	cfs_rq->throttle_count++;
3493 
3494 	return 0;
3495 }
3496 
3497 static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
3498 {
3499 	struct rq *rq = rq_of(cfs_rq);
3500 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3501 	struct sched_entity *se;
3502 	long task_delta, dequeue = 1;
3503 	bool empty;
3504 
3505 	se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
3506 
3507 	/* freeze hierarchy runnable averages while throttled */
3508 	rcu_read_lock();
3509 	walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
3510 	rcu_read_unlock();
3511 
3512 	task_delta = cfs_rq->h_nr_running;
3513 	for_each_sched_entity(se) {
3514 		struct cfs_rq *qcfs_rq = cfs_rq_of(se);
3515 		/* throttled entity or throttle-on-deactivate */
3516 		if (!se->on_rq)
3517 			break;
3518 
3519 		if (dequeue)
3520 			dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
3521 		qcfs_rq->h_nr_running -= task_delta;
3522 
3523 		if (qcfs_rq->load.weight)
3524 			dequeue = 0;
3525 	}
3526 
3527 	if (!se)
3528 		sub_nr_running(rq, task_delta);
3529 
3530 	cfs_rq->throttled = 1;
3531 	cfs_rq->throttled_clock = rq_clock(rq);
3532 	raw_spin_lock(&cfs_b->lock);
3533 	empty = list_empty(&cfs_b->throttled_cfs_rq);
3534 
3535 	/*
3536 	 * Add to the _head_ of the list, so that an already-started
3537 	 * distribute_cfs_runtime will not see us
3538 	 */
3539 	list_add_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
3540 
3541 	/*
3542 	 * If we're the first throttled task, make sure the bandwidth
3543 	 * timer is running.
3544 	 */
3545 	if (empty)
3546 		start_cfs_bandwidth(cfs_b);
3547 
3548 	raw_spin_unlock(&cfs_b->lock);
3549 }
3550 
3551 void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
3552 {
3553 	struct rq *rq = rq_of(cfs_rq);
3554 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3555 	struct sched_entity *se;
3556 	int enqueue = 1;
3557 	long task_delta;
3558 
3559 	se = cfs_rq->tg->se[cpu_of(rq)];
3560 
3561 	cfs_rq->throttled = 0;
3562 
3563 	update_rq_clock(rq);
3564 
3565 	raw_spin_lock(&cfs_b->lock);
3566 	cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
3567 	list_del_rcu(&cfs_rq->throttled_list);
3568 	raw_spin_unlock(&cfs_b->lock);
3569 
3570 	/* update hierarchical throttle state */
3571 	walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
3572 
3573 	if (!cfs_rq->load.weight)
3574 		return;
3575 
3576 	task_delta = cfs_rq->h_nr_running;
3577 	for_each_sched_entity(se) {
3578 		if (se->on_rq)
3579 			enqueue = 0;
3580 
3581 		cfs_rq = cfs_rq_of(se);
3582 		if (enqueue)
3583 			enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
3584 		cfs_rq->h_nr_running += task_delta;
3585 
3586 		if (cfs_rq_throttled(cfs_rq))
3587 			break;
3588 	}
3589 
3590 	if (!se)
3591 		add_nr_running(rq, task_delta);
3592 
3593 	/* determine whether we need to wake up potentially idle cpu */
3594 	if (rq->curr == rq->idle && rq->cfs.nr_running)
3595 		resched_curr(rq);
3596 }
3597 
3598 static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
3599 		u64 remaining, u64 expires)
3600 {
3601 	struct cfs_rq *cfs_rq;
3602 	u64 runtime;
3603 	u64 starting_runtime = remaining;
3604 
3605 	rcu_read_lock();
3606 	list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
3607 				throttled_list) {
3608 		struct rq *rq = rq_of(cfs_rq);
3609 
3610 		raw_spin_lock(&rq->lock);
3611 		if (!cfs_rq_throttled(cfs_rq))
3612 			goto next;
3613 
3614 		runtime = -cfs_rq->runtime_remaining + 1;
3615 		if (runtime > remaining)
3616 			runtime = remaining;
3617 		remaining -= runtime;
3618 
3619 		cfs_rq->runtime_remaining += runtime;
3620 		cfs_rq->runtime_expires = expires;
3621 
3622 		/* we check whether we're throttled above */
3623 		if (cfs_rq->runtime_remaining > 0)
3624 			unthrottle_cfs_rq(cfs_rq);
3625 
3626 next:
3627 		raw_spin_unlock(&rq->lock);
3628 
3629 		if (!remaining)
3630 			break;
3631 	}
3632 	rcu_read_unlock();
3633 
3634 	return starting_runtime - remaining;
3635 }
3636 
3637 /*
3638  * Responsible for refilling a task_group's bandwidth and unthrottling its
3639  * cfs_rqs as appropriate. If there has been no activity within the last
3640  * period the timer is deactivated until scheduling resumes; cfs_b->idle is
3641  * used to track this state.
3642  */
3643 static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
3644 {
3645 	u64 runtime, runtime_expires;
3646 	int throttled;
3647 
3648 	/* no need to continue the timer with no bandwidth constraint */
3649 	if (cfs_b->quota == RUNTIME_INF)
3650 		goto out_deactivate;
3651 
3652 	throttled = !list_empty(&cfs_b->throttled_cfs_rq);
3653 	cfs_b->nr_periods += overrun;
3654 
3655 	/*
3656 	 * idle depends on !throttled (for the case of a large deficit), and if
3657 	 * we're going inactive then everything else can be deferred
3658 	 */
3659 	if (cfs_b->idle && !throttled)
3660 		goto out_deactivate;
3661 
3662 	__refill_cfs_bandwidth_runtime(cfs_b);
3663 
3664 	if (!throttled) {
3665 		/* mark as potentially idle for the upcoming period */
3666 		cfs_b->idle = 1;
3667 		return 0;
3668 	}
3669 
3670 	/* account preceding periods in which throttling occurred */
3671 	cfs_b->nr_throttled += overrun;
3672 
3673 	runtime_expires = cfs_b->runtime_expires;
3674 
3675 	/*
3676 	 * This check is repeated as we are holding onto the new bandwidth while
3677 	 * we unthrottle. This can potentially race with an unthrottled group
3678 	 * trying to acquire new bandwidth from the global pool. This can result
3679 	 * in us over-using our runtime if it is all used during this loop, but
3680 	 * only by limited amounts in that extreme case.
3681 	 */
3682 	while (throttled && cfs_b->runtime > 0) {
3683 		runtime = cfs_b->runtime;
3684 		raw_spin_unlock(&cfs_b->lock);
3685 		/* we can't nest cfs_b->lock while distributing bandwidth */
3686 		runtime = distribute_cfs_runtime(cfs_b, runtime,
3687 						 runtime_expires);
3688 		raw_spin_lock(&cfs_b->lock);
3689 
3690 		throttled = !list_empty(&cfs_b->throttled_cfs_rq);
3691 
3692 		cfs_b->runtime -= min(runtime, cfs_b->runtime);
3693 	}
3694 
3695 	/*
3696 	 * While we are ensured activity in the period following an
3697 	 * unthrottle, this also covers the case in which the new bandwidth is
3698 	 * insufficient to cover the existing bandwidth deficit.  (Forcing the
3699 	 * timer to remain active while there are any throttled entities.)
3700 	 */
3701 	cfs_b->idle = 0;
3702 
3703 	return 0;
3704 
3705 out_deactivate:
3706 	return 1;
3707 }
3708 
3709 /* a cfs_rq won't donate quota below this amount */
3710 static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
3711 /* minimum remaining period time to redistribute slack quota */
3712 static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
3713 /* how long we wait to gather additional slack before distributing */
3714 static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
3715 
3716 /*
3717  * Are we near the end of the current quota period?
3718  *
3719  * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
3720  * hrtimer base being cleared by hrtimer_start. In the case of
3721  * migrate_hrtimers, base is never cleared, so we are fine.
3722  */
3723 static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
3724 {
3725 	struct hrtimer *refresh_timer = &cfs_b->period_timer;
3726 	u64 remaining;
3727 
3728 	/* if the call-back is running a quota refresh is already occurring */
3729 	if (hrtimer_callback_running(refresh_timer))
3730 		return 1;
3731 
3732 	/* is a quota refresh about to occur? */
3733 	remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
3734 	if (remaining < min_expire)
3735 		return 1;
3736 
3737 	return 0;
3738 }
3739 
3740 static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
3741 {
3742 	u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
3743 
3744 	/* if there's a quota refresh soon don't bother with slack */
3745 	if (runtime_refresh_within(cfs_b, min_left))
3746 		return;
3747 
3748 	hrtimer_start(&cfs_b->slack_timer,
3749 			ns_to_ktime(cfs_bandwidth_slack_period),
3750 			HRTIMER_MODE_REL);
3751 }
3752 
3753 /* we know any runtime found here is valid as update_curr() precedes return */
3754 static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3755 {
3756 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3757 	s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
3758 
3759 	if (slack_runtime <= 0)
3760 		return;
3761 
3762 	raw_spin_lock(&cfs_b->lock);
3763 	if (cfs_b->quota != RUNTIME_INF &&
3764 	    cfs_rq->runtime_expires == cfs_b->runtime_expires) {
3765 		cfs_b->runtime += slack_runtime;
3766 
3767 		/* we are under rq->lock, defer unthrottling using a timer */
3768 		if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
3769 		    !list_empty(&cfs_b->throttled_cfs_rq))
3770 			start_cfs_slack_bandwidth(cfs_b);
3771 	}
3772 	raw_spin_unlock(&cfs_b->lock);
3773 
3774 	/* even if it's not valid for return we don't want to try again */
3775 	cfs_rq->runtime_remaining -= slack_runtime;
3776 }
3777 
3778 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3779 {
3780 	if (!cfs_bandwidth_used())
3781 		return;
3782 
3783 	if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
3784 		return;
3785 
3786 	__return_cfs_rq_runtime(cfs_rq);
3787 }
3788 
3789 /*
3790  * This is done with a timer (instead of inline with bandwidth return) since
3791  * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
3792  */
3793 static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
3794 {
3795 	u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
3796 	u64 expires;
3797 
3798 	/* confirm we're still not at a refresh boundary */
3799 	raw_spin_lock(&cfs_b->lock);
3800 	if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
3801 		raw_spin_unlock(&cfs_b->lock);
3802 		return;
3803 	}
3804 
3805 	if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice)
3806 		runtime = cfs_b->runtime;
3807 
3808 	expires = cfs_b->runtime_expires;
3809 	raw_spin_unlock(&cfs_b->lock);
3810 
3811 	if (!runtime)
3812 		return;
3813 
3814 	runtime = distribute_cfs_runtime(cfs_b, runtime, expires);
3815 
3816 	raw_spin_lock(&cfs_b->lock);
3817 	if (expires == cfs_b->runtime_expires)
3818 		cfs_b->runtime -= min(runtime, cfs_b->runtime);
3819 	raw_spin_unlock(&cfs_b->lock);
3820 }
3821 
3822 /*
3823  * When a group wakes up we want to make sure that its quota is not already
3824  * expired/exceeded, otherwise it may be allowed to steal additional ticks of
3825  * runtime as update_curr() throttling can not not trigger until it's on-rq.
3826  */
3827 static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
3828 {
3829 	if (!cfs_bandwidth_used())
3830 		return;
3831 
3832 	/* an active group must be handled by the update_curr()->put() path */
3833 	if (!cfs_rq->runtime_enabled || cfs_rq->curr)
3834 		return;
3835 
3836 	/* ensure the group is not already throttled */
3837 	if (cfs_rq_throttled(cfs_rq))
3838 		return;
3839 
3840 	/* update runtime allocation */
3841 	account_cfs_rq_runtime(cfs_rq, 0);
3842 	if (cfs_rq->runtime_remaining <= 0)
3843 		throttle_cfs_rq(cfs_rq);
3844 }
3845 
3846 /* conditionally throttle active cfs_rq's from put_prev_entity() */
3847 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3848 {
3849 	if (!cfs_bandwidth_used())
3850 		return false;
3851 
3852 	if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
3853 		return false;
3854 
3855 	/*
3856 	 * it's possible for a throttled entity to be forced into a running
3857 	 * state (e.g. set_curr_task), in this case we're finished.
3858 	 */
3859 	if (cfs_rq_throttled(cfs_rq))
3860 		return true;
3861 
3862 	throttle_cfs_rq(cfs_rq);
3863 	return true;
3864 }
3865 
3866 static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
3867 {
3868 	struct cfs_bandwidth *cfs_b =
3869 		container_of(timer, struct cfs_bandwidth, slack_timer);
3870 
3871 	do_sched_cfs_slack_timer(cfs_b);
3872 
3873 	return HRTIMER_NORESTART;
3874 }
3875 
3876 static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
3877 {
3878 	struct cfs_bandwidth *cfs_b =
3879 		container_of(timer, struct cfs_bandwidth, period_timer);
3880 	int overrun;
3881 	int idle = 0;
3882 
3883 	raw_spin_lock(&cfs_b->lock);
3884 	for (;;) {
3885 		overrun = hrtimer_forward_now(timer, cfs_b->period);
3886 		if (!overrun)
3887 			break;
3888 
3889 		idle = do_sched_cfs_period_timer(cfs_b, overrun);
3890 	}
3891 	if (idle)
3892 		cfs_b->period_active = 0;
3893 	raw_spin_unlock(&cfs_b->lock);
3894 
3895 	return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
3896 }
3897 
3898 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
3899 {
3900 	raw_spin_lock_init(&cfs_b->lock);
3901 	cfs_b->runtime = 0;
3902 	cfs_b->quota = RUNTIME_INF;
3903 	cfs_b->period = ns_to_ktime(default_cfs_period());
3904 
3905 	INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
3906 	hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
3907 	cfs_b->period_timer.function = sched_cfs_period_timer;
3908 	hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3909 	cfs_b->slack_timer.function = sched_cfs_slack_timer;
3910 }
3911 
3912 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3913 {
3914 	cfs_rq->runtime_enabled = 0;
3915 	INIT_LIST_HEAD(&cfs_rq->throttled_list);
3916 }
3917 
3918 void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
3919 {
3920 	lockdep_assert_held(&cfs_b->lock);
3921 
3922 	if (!cfs_b->period_active) {
3923 		cfs_b->period_active = 1;
3924 		hrtimer_forward_now(&cfs_b->period_timer, cfs_b->period);
3925 		hrtimer_start_expires(&cfs_b->period_timer, HRTIMER_MODE_ABS_PINNED);
3926 	}
3927 }
3928 
3929 static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
3930 {
3931 	/* init_cfs_bandwidth() was not called */
3932 	if (!cfs_b->throttled_cfs_rq.next)
3933 		return;
3934 
3935 	hrtimer_cancel(&cfs_b->period_timer);
3936 	hrtimer_cancel(&cfs_b->slack_timer);
3937 }
3938 
3939 static void __maybe_unused update_runtime_enabled(struct rq *rq)
3940 {
3941 	struct cfs_rq *cfs_rq;
3942 
3943 	for_each_leaf_cfs_rq(rq, cfs_rq) {
3944 		struct cfs_bandwidth *cfs_b = &cfs_rq->tg->cfs_bandwidth;
3945 
3946 		raw_spin_lock(&cfs_b->lock);
3947 		cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF;
3948 		raw_spin_unlock(&cfs_b->lock);
3949 	}
3950 }
3951 
3952 static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
3953 {
3954 	struct cfs_rq *cfs_rq;
3955 
3956 	for_each_leaf_cfs_rq(rq, cfs_rq) {
3957 		if (!cfs_rq->runtime_enabled)
3958 			continue;
3959 
3960 		/*
3961 		 * clock_task is not advancing so we just need to make sure
3962 		 * there's some valid quota amount
3963 		 */
3964 		cfs_rq->runtime_remaining = 1;
3965 		/*
3966 		 * Offline rq is schedulable till cpu is completely disabled
3967 		 * in take_cpu_down(), so we prevent new cfs throttling here.
3968 		 */
3969 		cfs_rq->runtime_enabled = 0;
3970 
3971 		if (cfs_rq_throttled(cfs_rq))
3972 			unthrottle_cfs_rq(cfs_rq);
3973 	}
3974 }
3975 
3976 #else /* CONFIG_CFS_BANDWIDTH */
3977 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
3978 {
3979 	return rq_clock_task(rq_of(cfs_rq));
3980 }
3981 
3982 static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {}
3983 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; }
3984 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
3985 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
3986 
3987 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
3988 {
3989 	return 0;
3990 }
3991 
3992 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
3993 {
3994 	return 0;
3995 }
3996 
3997 static inline int throttled_lb_pair(struct task_group *tg,
3998 				    int src_cpu, int dest_cpu)
3999 {
4000 	return 0;
4001 }
4002 
4003 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
4004 
4005 #ifdef CONFIG_FAIR_GROUP_SCHED
4006 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
4007 #endif
4008 
4009 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
4010 {
4011 	return NULL;
4012 }
4013 static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
4014 static inline void update_runtime_enabled(struct rq *rq) {}
4015 static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
4016 
4017 #endif /* CONFIG_CFS_BANDWIDTH */
4018 
4019 /**************************************************
4020  * CFS operations on tasks:
4021  */
4022 
4023 #ifdef CONFIG_SCHED_HRTICK
4024 static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
4025 {
4026 	struct sched_entity *se = &p->se;
4027 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
4028 
4029 	WARN_ON(task_rq(p) != rq);
4030 
4031 	if (cfs_rq->nr_running > 1) {
4032 		u64 slice = sched_slice(cfs_rq, se);
4033 		u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
4034 		s64 delta = slice - ran;
4035 
4036 		if (delta < 0) {
4037 			if (rq->curr == p)
4038 				resched_curr(rq);
4039 			return;
4040 		}
4041 		hrtick_start(rq, delta);
4042 	}
4043 }
4044 
4045 /*
4046  * called from enqueue/dequeue and updates the hrtick when the
4047  * current task is from our class and nr_running is low enough
4048  * to matter.
4049  */
4050 static void hrtick_update(struct rq *rq)
4051 {
4052 	struct task_struct *curr = rq->curr;
4053 
4054 	if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
4055 		return;
4056 
4057 	if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
4058 		hrtick_start_fair(rq, curr);
4059 }
4060 #else /* !CONFIG_SCHED_HRTICK */
4061 static inline void
4062 hrtick_start_fair(struct rq *rq, struct task_struct *p)
4063 {
4064 }
4065 
4066 static inline void hrtick_update(struct rq *rq)
4067 {
4068 }
4069 #endif
4070 
4071 /*
4072  * The enqueue_task method is called before nr_running is
4073  * increased. Here we update the fair scheduling stats and
4074  * then put the task into the rbtree:
4075  */
4076 static void
4077 enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
4078 {
4079 	struct cfs_rq *cfs_rq;
4080 	struct sched_entity *se = &p->se;
4081 
4082 	for_each_sched_entity(se) {
4083 		if (se->on_rq)
4084 			break;
4085 		cfs_rq = cfs_rq_of(se);
4086 		enqueue_entity(cfs_rq, se, flags);
4087 
4088 		/*
4089 		 * end evaluation on encountering a throttled cfs_rq
4090 		 *
4091 		 * note: in the case of encountering a throttled cfs_rq we will
4092 		 * post the final h_nr_running increment below.
4093 		*/
4094 		if (cfs_rq_throttled(cfs_rq))
4095 			break;
4096 		cfs_rq->h_nr_running++;
4097 
4098 		flags = ENQUEUE_WAKEUP;
4099 	}
4100 
4101 	for_each_sched_entity(se) {
4102 		cfs_rq = cfs_rq_of(se);
4103 		cfs_rq->h_nr_running++;
4104 
4105 		if (cfs_rq_throttled(cfs_rq))
4106 			break;
4107 
4108 		update_load_avg(se, 1);
4109 		update_cfs_shares(cfs_rq);
4110 	}
4111 
4112 	if (!se)
4113 		add_nr_running(rq, 1);
4114 
4115 	hrtick_update(rq);
4116 }
4117 
4118 static void set_next_buddy(struct sched_entity *se);
4119 
4120 /*
4121  * The dequeue_task method is called before nr_running is
4122  * decreased. We remove the task from the rbtree and
4123  * update the fair scheduling stats:
4124  */
4125 static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
4126 {
4127 	struct cfs_rq *cfs_rq;
4128 	struct sched_entity *se = &p->se;
4129 	int task_sleep = flags & DEQUEUE_SLEEP;
4130 
4131 	for_each_sched_entity(se) {
4132 		cfs_rq = cfs_rq_of(se);
4133 		dequeue_entity(cfs_rq, se, flags);
4134 
4135 		/*
4136 		 * end evaluation on encountering a throttled cfs_rq
4137 		 *
4138 		 * note: in the case of encountering a throttled cfs_rq we will
4139 		 * post the final h_nr_running decrement below.
4140 		*/
4141 		if (cfs_rq_throttled(cfs_rq))
4142 			break;
4143 		cfs_rq->h_nr_running--;
4144 
4145 		/* Don't dequeue parent if it has other entities besides us */
4146 		if (cfs_rq->load.weight) {
4147 			/*
4148 			 * Bias pick_next to pick a task from this cfs_rq, as
4149 			 * p is sleeping when it is within its sched_slice.
4150 			 */
4151 			if (task_sleep && parent_entity(se))
4152 				set_next_buddy(parent_entity(se));
4153 
4154 			/* avoid re-evaluating load for this entity */
4155 			se = parent_entity(se);
4156 			break;
4157 		}
4158 		flags |= DEQUEUE_SLEEP;
4159 	}
4160 
4161 	for_each_sched_entity(se) {
4162 		cfs_rq = cfs_rq_of(se);
4163 		cfs_rq->h_nr_running--;
4164 
4165 		if (cfs_rq_throttled(cfs_rq))
4166 			break;
4167 
4168 		update_load_avg(se, 1);
4169 		update_cfs_shares(cfs_rq);
4170 	}
4171 
4172 	if (!se)
4173 		sub_nr_running(rq, 1);
4174 
4175 	hrtick_update(rq);
4176 }
4177 
4178 #ifdef CONFIG_SMP
4179 
4180 /*
4181  * per rq 'load' arrray crap; XXX kill this.
4182  */
4183 
4184 /*
4185  * The exact cpuload at various idx values, calculated at every tick would be
4186  * load = (2^idx - 1) / 2^idx * load + 1 / 2^idx * cur_load
4187  *
4188  * If a cpu misses updates for n-1 ticks (as it was idle) and update gets called
4189  * on nth tick when cpu may be busy, then we have:
4190  * load = ((2^idx - 1) / 2^idx)^(n-1) * load
4191  * load = (2^idx - 1) / 2^idx) * load + 1 / 2^idx * cur_load
4192  *
4193  * decay_load_missed() below does efficient calculation of
4194  * load = ((2^idx - 1) / 2^idx)^(n-1) * load
4195  * avoiding 0..n-1 loop doing load = ((2^idx - 1) / 2^idx) * load
4196  *
4197  * The calculation is approximated on a 128 point scale.
4198  * degrade_zero_ticks is the number of ticks after which load at any
4199  * particular idx is approximated to be zero.
4200  * degrade_factor is a precomputed table, a row for each load idx.
4201  * Each column corresponds to degradation factor for a power of two ticks,
4202  * based on 128 point scale.
4203  * Example:
4204  * row 2, col 3 (=12) says that the degradation at load idx 2 after
4205  * 8 ticks is 12/128 (which is an approximation of exact factor 3^8/4^8).
4206  *
4207  * With this power of 2 load factors, we can degrade the load n times
4208  * by looking at 1 bits in n and doing as many mult/shift instead of
4209  * n mult/shifts needed by the exact degradation.
4210  */
4211 #define DEGRADE_SHIFT		7
4212 static const unsigned char
4213 		degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
4214 static const unsigned char
4215 		degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
4216 					{0, 0, 0, 0, 0, 0, 0, 0},
4217 					{64, 32, 8, 0, 0, 0, 0, 0},
4218 					{96, 72, 40, 12, 1, 0, 0},
4219 					{112, 98, 75, 43, 15, 1, 0},
4220 					{120, 112, 98, 76, 45, 16, 2} };
4221 
4222 /*
4223  * Update cpu_load for any missed ticks, due to tickless idle. The backlog
4224  * would be when CPU is idle and so we just decay the old load without
4225  * adding any new load.
4226  */
4227 static unsigned long
4228 decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
4229 {
4230 	int j = 0;
4231 
4232 	if (!missed_updates)
4233 		return load;
4234 
4235 	if (missed_updates >= degrade_zero_ticks[idx])
4236 		return 0;
4237 
4238 	if (idx == 1)
4239 		return load >> missed_updates;
4240 
4241 	while (missed_updates) {
4242 		if (missed_updates % 2)
4243 			load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;
4244 
4245 		missed_updates >>= 1;
4246 		j++;
4247 	}
4248 	return load;
4249 }
4250 
4251 /*
4252  * Update rq->cpu_load[] statistics. This function is usually called every
4253  * scheduler tick (TICK_NSEC). With tickless idle this will not be called
4254  * every tick. We fix it up based on jiffies.
4255  */
4256 static void __update_cpu_load(struct rq *this_rq, unsigned long this_load,
4257 			      unsigned long pending_updates)
4258 {
4259 	int i, scale;
4260 
4261 	this_rq->nr_load_updates++;
4262 
4263 	/* Update our load: */
4264 	this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
4265 	for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
4266 		unsigned long old_load, new_load;
4267 
4268 		/* scale is effectively 1 << i now, and >> i divides by scale */
4269 
4270 		old_load = this_rq->cpu_load[i];
4271 		old_load = decay_load_missed(old_load, pending_updates - 1, i);
4272 		new_load = this_load;
4273 		/*
4274 		 * Round up the averaging division if load is increasing. This
4275 		 * prevents us from getting stuck on 9 if the load is 10, for
4276 		 * example.
4277 		 */
4278 		if (new_load > old_load)
4279 			new_load += scale - 1;
4280 
4281 		this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
4282 	}
4283 
4284 	sched_avg_update(this_rq);
4285 }
4286 
4287 /* Used instead of source_load when we know the type == 0 */
4288 static unsigned long weighted_cpuload(const int cpu)
4289 {
4290 	return cfs_rq_runnable_load_avg(&cpu_rq(cpu)->cfs);
4291 }
4292 
4293 #ifdef CONFIG_NO_HZ_COMMON
4294 /*
4295  * There is no sane way to deal with nohz on smp when using jiffies because the
4296  * cpu doing the jiffies update might drift wrt the cpu doing the jiffy reading
4297  * causing off-by-one errors in observed deltas; {0,2} instead of {1,1}.
4298  *
4299  * Therefore we cannot use the delta approach from the regular tick since that
4300  * would seriously skew the load calculation. However we'll make do for those
4301  * updates happening while idle (nohz_idle_balance) or coming out of idle
4302  * (tick_nohz_idle_exit).
4303  *
4304  * This means we might still be one tick off for nohz periods.
4305  */
4306 
4307 /*
4308  * Called from nohz_idle_balance() to update the load ratings before doing the
4309  * idle balance.
4310  */
4311 static void update_idle_cpu_load(struct rq *this_rq)
4312 {
4313 	unsigned long curr_jiffies = READ_ONCE(jiffies);
4314 	unsigned long load = weighted_cpuload(cpu_of(this_rq));
4315 	unsigned long pending_updates;
4316 
4317 	/*
4318 	 * bail if there's load or we're actually up-to-date.
4319 	 */
4320 	if (load || curr_jiffies == this_rq->last_load_update_tick)
4321 		return;
4322 
4323 	pending_updates = curr_jiffies - this_rq->last_load_update_tick;
4324 	this_rq->last_load_update_tick = curr_jiffies;
4325 
4326 	__update_cpu_load(this_rq, load, pending_updates);
4327 }
4328 
4329 /*
4330  * Called from tick_nohz_idle_exit() -- try and fix up the ticks we missed.
4331  */
4332 void update_cpu_load_nohz(void)
4333 {
4334 	struct rq *this_rq = this_rq();
4335 	unsigned long curr_jiffies = READ_ONCE(jiffies);
4336 	unsigned long pending_updates;
4337 
4338 	if (curr_jiffies == this_rq->last_load_update_tick)
4339 		return;
4340 
4341 	raw_spin_lock(&this_rq->lock);
4342 	pending_updates = curr_jiffies - this_rq->last_load_update_tick;
4343 	if (pending_updates) {
4344 		this_rq->last_load_update_tick = curr_jiffies;
4345 		/*
4346 		 * We were idle, this means load 0, the current load might be
4347 		 * !0 due to remote wakeups and the sort.
4348 		 */
4349 		__update_cpu_load(this_rq, 0, pending_updates);
4350 	}
4351 	raw_spin_unlock(&this_rq->lock);
4352 }
4353 #endif /* CONFIG_NO_HZ */
4354 
4355 /*
4356  * Called from scheduler_tick()
4357  */
4358 void update_cpu_load_active(struct rq *this_rq)
4359 {
4360 	unsigned long load = weighted_cpuload(cpu_of(this_rq));
4361 	/*
4362 	 * See the mess around update_idle_cpu_load() / update_cpu_load_nohz().
4363 	 */
4364 	this_rq->last_load_update_tick = jiffies;
4365 	__update_cpu_load(this_rq, load, 1);
4366 }
4367 
4368 /*
4369  * Return a low guess at the load of a migration-source cpu weighted
4370  * according to the scheduling class and "nice" value.
4371  *
4372  * We want to under-estimate the load of migration sources, to
4373  * balance conservatively.
4374  */
4375 static unsigned long source_load(int cpu, int type)
4376 {
4377 	struct rq *rq = cpu_rq(cpu);
4378 	unsigned long total = weighted_cpuload(cpu);
4379 
4380 	if (type == 0 || !sched_feat(LB_BIAS))
4381 		return total;
4382 
4383 	return min(rq->cpu_load[type-1], total);
4384 }
4385 
4386 /*
4387  * Return a high guess at the load of a migration-target cpu weighted
4388  * according to the scheduling class and "nice" value.
4389  */
4390 static unsigned long target_load(int cpu, int type)
4391 {
4392 	struct rq *rq = cpu_rq(cpu);
4393 	unsigned long total = weighted_cpuload(cpu);
4394 
4395 	if (type == 0 || !sched_feat(LB_BIAS))
4396 		return total;
4397 
4398 	return max(rq->cpu_load[type-1], total);
4399 }
4400 
4401 static unsigned long capacity_of(int cpu)
4402 {
4403 	return cpu_rq(cpu)->cpu_capacity;
4404 }
4405 
4406 static unsigned long capacity_orig_of(int cpu)
4407 {
4408 	return cpu_rq(cpu)->cpu_capacity_orig;
4409 }
4410 
4411 static unsigned long cpu_avg_load_per_task(int cpu)
4412 {
4413 	struct rq *rq = cpu_rq(cpu);
4414 	unsigned long nr_running = READ_ONCE(rq->cfs.h_nr_running);
4415 	unsigned long load_avg = weighted_cpuload(cpu);
4416 
4417 	if (nr_running)
4418 		return load_avg / nr_running;
4419 
4420 	return 0;
4421 }
4422 
4423 static void record_wakee(struct task_struct *p)
4424 {
4425 	/*
4426 	 * Rough decay (wiping) for cost saving, don't worry
4427 	 * about the boundary, really active task won't care
4428 	 * about the loss.
4429 	 */
4430 	if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) {
4431 		current->wakee_flips >>= 1;
4432 		current->wakee_flip_decay_ts = jiffies;
4433 	}
4434 
4435 	if (current->last_wakee != p) {
4436 		current->last_wakee = p;
4437 		current->wakee_flips++;
4438 	}
4439 }
4440 
4441 static void task_waking_fair(struct task_struct *p)
4442 {
4443 	struct sched_entity *se = &p->se;
4444 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
4445 	u64 min_vruntime;
4446 
4447 #ifndef CONFIG_64BIT
4448 	u64 min_vruntime_copy;
4449 
4450 	do {
4451 		min_vruntime_copy = cfs_rq->min_vruntime_copy;
4452 		smp_rmb();
4453 		min_vruntime = cfs_rq->min_vruntime;
4454 	} while (min_vruntime != min_vruntime_copy);
4455 #else
4456 	min_vruntime = cfs_rq->min_vruntime;
4457 #endif
4458 
4459 	se->vruntime -= min_vruntime;
4460 	record_wakee(p);
4461 }
4462 
4463 #ifdef CONFIG_FAIR_GROUP_SCHED
4464 /*
4465  * effective_load() calculates the load change as seen from the root_task_group
4466  *
4467  * Adding load to a group doesn't make a group heavier, but can cause movement
4468  * of group shares between cpus. Assuming the shares were perfectly aligned one
4469  * can calculate the shift in shares.
4470  *
4471  * Calculate the effective load difference if @wl is added (subtracted) to @tg
4472  * on this @cpu and results in a total addition (subtraction) of @wg to the
4473  * total group weight.
4474  *
4475  * Given a runqueue weight distribution (rw_i) we can compute a shares
4476  * distribution (s_i) using:
4477  *
4478  *   s_i = rw_i / \Sum rw_j						(1)
4479  *
4480  * Suppose we have 4 CPUs and our @tg is a direct child of the root group and
4481  * has 7 equal weight tasks, distributed as below (rw_i), with the resulting
4482  * shares distribution (s_i):
4483  *
4484  *   rw_i = {   2,   4,   1,   0 }
4485  *   s_i  = { 2/7, 4/7, 1/7,   0 }
4486  *
4487  * As per wake_affine() we're interested in the load of two CPUs (the CPU the
4488  * task used to run on and the CPU the waker is running on), we need to
4489  * compute the effect of waking a task on either CPU and, in case of a sync
4490  * wakeup, compute the effect of the current task going to sleep.
4491  *
4492  * So for a change of @wl to the local @cpu with an overall group weight change
4493  * of @wl we can compute the new shares distribution (s'_i) using:
4494  *
4495  *   s'_i = (rw_i + @wl) / (@wg + \Sum rw_j)				(2)
4496  *
4497  * Suppose we're interested in CPUs 0 and 1, and want to compute the load
4498  * differences in waking a task to CPU 0. The additional task changes the
4499  * weight and shares distributions like:
4500  *
4501  *   rw'_i = {   3,   4,   1,   0 }
4502  *   s'_i  = { 3/8, 4/8, 1/8,   0 }
4503  *
4504  * We can then compute the difference in effective weight by using:
4505  *
4506  *   dw_i = S * (s'_i - s_i)						(3)
4507  *
4508  * Where 'S' is the group weight as seen by its parent.
4509  *
4510  * Therefore the effective change in loads on CPU 0 would be 5/56 (3/8 - 2/7)
4511  * times the weight of the group. The effect on CPU 1 would be -4/56 (4/8 -
4512  * 4/7) times the weight of the group.
4513  */
4514 static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
4515 {
4516 	struct sched_entity *se = tg->se[cpu];
4517 
4518 	if (!tg->parent)	/* the trivial, non-cgroup case */
4519 		return wl;
4520 
4521 	for_each_sched_entity(se) {
4522 		long w, W;
4523 
4524 		tg = se->my_q->tg;
4525 
4526 		/*
4527 		 * W = @wg + \Sum rw_j
4528 		 */
4529 		W = wg + calc_tg_weight(tg, se->my_q);
4530 
4531 		/*
4532 		 * w = rw_i + @wl
4533 		 */
4534 		w = cfs_rq_load_avg(se->my_q) + wl;
4535 
4536 		/*
4537 		 * wl = S * s'_i; see (2)
4538 		 */
4539 		if (W > 0 && w < W)
4540 			wl = (w * (long)tg->shares) / W;
4541 		else
4542 			wl = tg->shares;
4543 
4544 		/*
4545 		 * Per the above, wl is the new se->load.weight value; since
4546 		 * those are clipped to [MIN_SHARES, ...) do so now. See
4547 		 * calc_cfs_shares().
4548 		 */
4549 		if (wl < MIN_SHARES)
4550 			wl = MIN_SHARES;
4551 
4552 		/*
4553 		 * wl = dw_i = S * (s'_i - s_i); see (3)
4554 		 */
4555 		wl -= se->avg.load_avg;
4556 
4557 		/*
4558 		 * Recursively apply this logic to all parent groups to compute
4559 		 * the final effective load change on the root group. Since
4560 		 * only the @tg group gets extra weight, all parent groups can
4561 		 * only redistribute existing shares. @wl is the shift in shares
4562 		 * resulting from this level per the above.
4563 		 */
4564 		wg = 0;
4565 	}
4566 
4567 	return wl;
4568 }
4569 #else
4570 
4571 static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
4572 {
4573 	return wl;
4574 }
4575 
4576 #endif
4577 
4578 /*
4579  * Detect M:N waker/wakee relationships via a switching-frequency heuristic.
4580  * A waker of many should wake a different task than the one last awakened
4581  * at a frequency roughly N times higher than one of its wakees.  In order
4582  * to determine whether we should let the load spread vs consolodating to
4583  * shared cache, we look for a minimum 'flip' frequency of llc_size in one
4584  * partner, and a factor of lls_size higher frequency in the other.  With
4585  * both conditions met, we can be relatively sure that the relationship is
4586  * non-monogamous, with partner count exceeding socket size.  Waker/wakee
4587  * being client/server, worker/dispatcher, interrupt source or whatever is
4588  * irrelevant, spread criteria is apparent partner count exceeds socket size.
4589  */
4590 static int wake_wide(struct task_struct *p)
4591 {
4592 	unsigned int master = current->wakee_flips;
4593 	unsigned int slave = p->wakee_flips;
4594 	int factor = this_cpu_read(sd_llc_size);
4595 
4596 	if (master < slave)
4597 		swap(master, slave);
4598 	if (slave < factor || master < slave * factor)
4599 		return 0;
4600 	return 1;
4601 }
4602 
4603 static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
4604 {
4605 	s64 this_load, load;
4606 	s64 this_eff_load, prev_eff_load;
4607 	int idx, this_cpu, prev_cpu;
4608 	struct task_group *tg;
4609 	unsigned long weight;
4610 	int balanced;
4611 
4612 	idx	  = sd->wake_idx;
4613 	this_cpu  = smp_processor_id();
4614 	prev_cpu  = task_cpu(p);
4615 	load	  = source_load(prev_cpu, idx);
4616 	this_load = target_load(this_cpu, idx);
4617 
4618 	/*
4619 	 * If sync wakeup then subtract the (maximum possible)
4620 	 * effect of the currently running task from the load
4621 	 * of the current CPU:
4622 	 */
4623 	if (sync) {
4624 		tg = task_group(current);
4625 		weight = current->se.avg.load_avg;
4626 
4627 		this_load += effective_load(tg, this_cpu, -weight, -weight);
4628 		load += effective_load(tg, prev_cpu, 0, -weight);
4629 	}
4630 
4631 	tg = task_group(p);
4632 	weight = p->se.avg.load_avg;
4633 
4634 	/*
4635 	 * In low-load situations, where prev_cpu is idle and this_cpu is idle
4636 	 * due to the sync cause above having dropped this_load to 0, we'll
4637 	 * always have an imbalance, but there's really nothing you can do
4638 	 * about that, so that's good too.
4639 	 *
4640 	 * Otherwise check if either cpus are near enough in load to allow this
4641 	 * task to be woken on this_cpu.
4642 	 */
4643 	this_eff_load = 100;
4644 	this_eff_load *= capacity_of(prev_cpu);
4645 
4646 	prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
4647 	prev_eff_load *= capacity_of(this_cpu);
4648 
4649 	if (this_load > 0) {
4650 		this_eff_load *= this_load +
4651 			effective_load(tg, this_cpu, weight, weight);
4652 
4653 		prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight);
4654 	}
4655 
4656 	balanced = this_eff_load <= prev_eff_load;
4657 
4658 	schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts);
4659 
4660 	if (!balanced)
4661 		return 0;
4662 
4663 	schedstat_inc(sd, ttwu_move_affine);
4664 	schedstat_inc(p, se.statistics.nr_wakeups_affine);
4665 
4666 	return 1;
4667 }
4668 
4669 /*
4670  * find_idlest_group finds and returns the least busy CPU group within the
4671  * domain.
4672  */
4673 static struct sched_group *
4674 find_idlest_group(struct sched_domain *sd, struct task_struct *p,
4675 		  int this_cpu, int sd_flag)
4676 {
4677 	struct sched_group *idlest = NULL, *group = sd->groups;
4678 	unsigned long min_load = ULONG_MAX, this_load = 0;
4679 	int load_idx = sd->forkexec_idx;
4680 	int imbalance = 100 + (sd->imbalance_pct-100)/2;
4681 
4682 	if (sd_flag & SD_BALANCE_WAKE)
4683 		load_idx = sd->wake_idx;
4684 
4685 	do {
4686 		unsigned long load, avg_load;
4687 		int local_group;
4688 		int i;
4689 
4690 		/* Skip over this group if it has no CPUs allowed */
4691 		if (!cpumask_intersects(sched_group_cpus(group),
4692 					tsk_cpus_allowed(p)))
4693 			continue;
4694 
4695 		local_group = cpumask_test_cpu(this_cpu,
4696 					       sched_group_cpus(group));
4697 
4698 		/* Tally up the load of all CPUs in the group */
4699 		avg_load = 0;
4700 
4701 		for_each_cpu(i, sched_group_cpus(group)) {
4702 			/* Bias balancing toward cpus of our domain */
4703 			if (local_group)
4704 				load = source_load(i, load_idx);
4705 			else
4706 				load = target_load(i, load_idx);
4707 
4708 			avg_load += load;
4709 		}
4710 
4711 		/* Adjust by relative CPU capacity of the group */
4712 		avg_load = (avg_load * SCHED_CAPACITY_SCALE) / group->sgc->capacity;
4713 
4714 		if (local_group) {
4715 			this_load = avg_load;
4716 		} else if (avg_load < min_load) {
4717 			min_load = avg_load;
4718 			idlest = group;
4719 		}
4720 	} while (group = group->next, group != sd->groups);
4721 
4722 	if (!idlest || 100*this_load < imbalance*min_load)
4723 		return NULL;
4724 	return idlest;
4725 }
4726 
4727 /*
4728  * find_idlest_cpu - find the idlest cpu among the cpus in group.
4729  */
4730 static int
4731 find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
4732 {
4733 	unsigned long load, min_load = ULONG_MAX;
4734 	unsigned int min_exit_latency = UINT_MAX;
4735 	u64 latest_idle_timestamp = 0;
4736 	int least_loaded_cpu = this_cpu;
4737 	int shallowest_idle_cpu = -1;
4738 	int i;
4739 
4740 	/* Traverse only the allowed CPUs */
4741 	for_each_cpu_and(i, sched_group_cpus(group), tsk_cpus_allowed(p)) {
4742 		if (idle_cpu(i)) {
4743 			struct rq *rq = cpu_rq(i);
4744 			struct cpuidle_state *idle = idle_get_state(rq);
4745 			if (idle && idle->exit_latency < min_exit_latency) {
4746 				/*
4747 				 * We give priority to a CPU whose idle state
4748 				 * has the smallest exit latency irrespective
4749 				 * of any idle timestamp.
4750 				 */
4751 				min_exit_latency = idle->exit_latency;
4752 				latest_idle_timestamp = rq->idle_stamp;
4753 				shallowest_idle_cpu = i;
4754 			} else if ((!idle || idle->exit_latency == min_exit_latency) &&
4755 				   rq->idle_stamp > latest_idle_timestamp) {
4756 				/*
4757 				 * If equal or no active idle state, then
4758 				 * the most recently idled CPU might have
4759 				 * a warmer cache.
4760 				 */
4761 				latest_idle_timestamp = rq->idle_stamp;
4762 				shallowest_idle_cpu = i;
4763 			}
4764 		} else if (shallowest_idle_cpu == -1) {
4765 			load = weighted_cpuload(i);
4766 			if (load < min_load || (load == min_load && i == this_cpu)) {
4767 				min_load = load;
4768 				least_loaded_cpu = i;
4769 			}
4770 		}
4771 	}
4772 
4773 	return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu;
4774 }
4775 
4776 /*
4777  * Try and locate an idle CPU in the sched_domain.
4778  */
4779 static int select_idle_sibling(struct task_struct *p, int target)
4780 {
4781 	struct sched_domain *sd;
4782 	struct sched_group *sg;
4783 	int i = task_cpu(p);
4784 
4785 	if (idle_cpu(target))
4786 		return target;
4787 
4788 	/*
4789 	 * If the prevous cpu is cache affine and idle, don't be stupid.
4790 	 */
4791 	if (i != target && cpus_share_cache(i, target) && idle_cpu(i))
4792 		return i;
4793 
4794 	/*
4795 	 * Otherwise, iterate the domains and find an elegible idle cpu.
4796 	 */
4797 	sd = rcu_dereference(per_cpu(sd_llc, target));
4798 	for_each_lower_domain(sd) {
4799 		sg = sd->groups;
4800 		do {
4801 			if (!cpumask_intersects(sched_group_cpus(sg),
4802 						tsk_cpus_allowed(p)))
4803 				goto next;
4804 
4805 			for_each_cpu(i, sched_group_cpus(sg)) {
4806 				if (i == target || !idle_cpu(i))
4807 					goto next;
4808 			}
4809 
4810 			target = cpumask_first_and(sched_group_cpus(sg),
4811 					tsk_cpus_allowed(p));
4812 			goto done;
4813 next:
4814 			sg = sg->next;
4815 		} while (sg != sd->groups);
4816 	}
4817 done:
4818 	return target;
4819 }
4820 /*
4821  * get_cpu_usage returns the amount of capacity of a CPU that is used by CFS
4822  * tasks. The unit of the return value must be the one of capacity so we can
4823  * compare the usage with the capacity of the CPU that is available for CFS
4824  * task (ie cpu_capacity).
4825  * cfs.avg.util_avg is the sum of running time of runnable tasks on a
4826  * CPU. It represents the amount of utilization of a CPU in the range
4827  * [0..SCHED_LOAD_SCALE].  The usage of a CPU can't be higher than the full
4828  * capacity of the CPU because it's about the running time on this CPU.
4829  * Nevertheless, cfs.avg.util_avg can be higher than SCHED_LOAD_SCALE
4830  * because of unfortunate rounding in util_avg or just
4831  * after migrating tasks until the average stabilizes with the new running
4832  * time. So we need to check that the usage stays into the range
4833  * [0..cpu_capacity_orig] and cap if necessary.
4834  * Without capping the usage, a group could be seen as overloaded (CPU0 usage
4835  * at 121% + CPU1 usage at 80%) whereas CPU1 has 20% of available capacity
4836  */
4837 static int get_cpu_usage(int cpu)
4838 {
4839 	unsigned long usage = cpu_rq(cpu)->cfs.avg.util_avg;
4840 	unsigned long capacity = capacity_orig_of(cpu);
4841 
4842 	if (usage >= SCHED_LOAD_SCALE)
4843 		return capacity;
4844 
4845 	return (usage * capacity) >> SCHED_LOAD_SHIFT;
4846 }
4847 
4848 /*
4849  * select_task_rq_fair: Select target runqueue for the waking task in domains
4850  * that have the 'sd_flag' flag set. In practice, this is SD_BALANCE_WAKE,
4851  * SD_BALANCE_FORK, or SD_BALANCE_EXEC.
4852  *
4853  * Balances load by selecting the idlest cpu in the idlest group, or under
4854  * certain conditions an idle sibling cpu if the domain has SD_WAKE_AFFINE set.
4855  *
4856  * Returns the target cpu number.
4857  *
4858  * preempt must be disabled.
4859  */
4860 static int
4861 select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_flags)
4862 {
4863 	struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
4864 	int cpu = smp_processor_id();
4865 	int new_cpu = prev_cpu;
4866 	int want_affine = 0;
4867 	int sync = wake_flags & WF_SYNC;
4868 
4869 	if (sd_flag & SD_BALANCE_WAKE)
4870 		want_affine = !wake_wide(p) && cpumask_test_cpu(cpu, tsk_cpus_allowed(p));
4871 
4872 	rcu_read_lock();
4873 	for_each_domain(cpu, tmp) {
4874 		if (!(tmp->flags & SD_LOAD_BALANCE))
4875 			break;
4876 
4877 		/*
4878 		 * If both cpu and prev_cpu are part of this domain,
4879 		 * cpu is a valid SD_WAKE_AFFINE target.
4880 		 */
4881 		if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
4882 		    cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
4883 			affine_sd = tmp;
4884 			break;
4885 		}
4886 
4887 		if (tmp->flags & sd_flag)
4888 			sd = tmp;
4889 		else if (!want_affine)
4890 			break;
4891 	}
4892 
4893 	if (affine_sd) {
4894 		sd = NULL; /* Prefer wake_affine over balance flags */
4895 		if (cpu != prev_cpu && wake_affine(affine_sd, p, sync))
4896 			new_cpu = cpu;
4897 	}
4898 
4899 	if (!sd) {
4900 		if (sd_flag & SD_BALANCE_WAKE) /* XXX always ? */
4901 			new_cpu = select_idle_sibling(p, new_cpu);
4902 
4903 	} else while (sd) {
4904 		struct sched_group *group;
4905 		int weight;
4906 
4907 		if (!(sd->flags & sd_flag)) {
4908 			sd = sd->child;
4909 			continue;
4910 		}
4911 
4912 		group = find_idlest_group(sd, p, cpu, sd_flag);
4913 		if (!group) {
4914 			sd = sd->child;
4915 			continue;
4916 		}
4917 
4918 		new_cpu = find_idlest_cpu(group, p, cpu);
4919 		if (new_cpu == -1 || new_cpu == cpu) {
4920 			/* Now try balancing at a lower domain level of cpu */
4921 			sd = sd->child;
4922 			continue;
4923 		}
4924 
4925 		/* Now try balancing at a lower domain level of new_cpu */
4926 		cpu = new_cpu;
4927 		weight = sd->span_weight;
4928 		sd = NULL;
4929 		for_each_domain(cpu, tmp) {
4930 			if (weight <= tmp->span_weight)
4931 				break;
4932 			if (tmp->flags & sd_flag)
4933 				sd = tmp;
4934 		}
4935 		/* while loop will break here if sd == NULL */
4936 	}
4937 	rcu_read_unlock();
4938 
4939 	return new_cpu;
4940 }
4941 
4942 /*
4943  * Called immediately before a task is migrated to a new cpu; task_cpu(p) and
4944  * cfs_rq_of(p) references at time of call are still valid and identify the
4945  * previous cpu.  However, the caller only guarantees p->pi_lock is held; no
4946  * other assumptions, including the state of rq->lock, should be made.
4947  */
4948 static void migrate_task_rq_fair(struct task_struct *p, int next_cpu)
4949 {
4950 	/*
4951 	 * We are supposed to update the task to "current" time, then its up to date
4952 	 * and ready to go to new CPU/cfs_rq. But we have difficulty in getting
4953 	 * what current time is, so simply throw away the out-of-date time. This
4954 	 * will result in the wakee task is less decayed, but giving the wakee more
4955 	 * load sounds not bad.
4956 	 */
4957 	remove_entity_load_avg(&p->se);
4958 
4959 	/* Tell new CPU we are migrated */
4960 	p->se.avg.last_update_time = 0;
4961 
4962 	/* We have migrated, no longer consider this task hot */
4963 	p->se.exec_start = 0;
4964 }
4965 
4966 static void task_dead_fair(struct task_struct *p)
4967 {
4968 	remove_entity_load_avg(&p->se);
4969 }
4970 #endif /* CONFIG_SMP */
4971 
4972 static unsigned long
4973 wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
4974 {
4975 	unsigned long gran = sysctl_sched_wakeup_granularity;
4976 
4977 	/*
4978 	 * Since its curr running now, convert the gran from real-time
4979 	 * to virtual-time in his units.
4980 	 *
4981 	 * By using 'se' instead of 'curr' we penalize light tasks, so
4982 	 * they get preempted easier. That is, if 'se' < 'curr' then
4983 	 * the resulting gran will be larger, therefore penalizing the
4984 	 * lighter, if otoh 'se' > 'curr' then the resulting gran will
4985 	 * be smaller, again penalizing the lighter task.
4986 	 *
4987 	 * This is especially important for buddies when the leftmost
4988 	 * task is higher priority than the buddy.
4989 	 */
4990 	return calc_delta_fair(gran, se);
4991 }
4992 
4993 /*
4994  * Should 'se' preempt 'curr'.
4995  *
4996  *             |s1
4997  *        |s2
4998  *   |s3
4999  *         g
5000  *      |<--->|c
5001  *
5002  *  w(c, s1) = -1
5003  *  w(c, s2) =  0
5004  *  w(c, s3) =  1
5005  *
5006  */
5007 static int
5008 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
5009 {
5010 	s64 gran, vdiff = curr->vruntime - se->vruntime;
5011 
5012 	if (vdiff <= 0)
5013 		return -1;
5014 
5015 	gran = wakeup_gran(curr, se);
5016 	if (vdiff > gran)
5017 		return 1;
5018 
5019 	return 0;
5020 }
5021 
5022 static void set_last_buddy(struct sched_entity *se)
5023 {
5024 	if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
5025 		return;
5026 
5027 	for_each_sched_entity(se)
5028 		cfs_rq_of(se)->last = se;
5029 }
5030 
5031 static void set_next_buddy(struct sched_entity *se)
5032 {
5033 	if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
5034 		return;
5035 
5036 	for_each_sched_entity(se)
5037 		cfs_rq_of(se)->next = se;
5038 }
5039 
5040 static void set_skip_buddy(struct sched_entity *se)
5041 {
5042 	for_each_sched_entity(se)
5043 		cfs_rq_of(se)->skip = se;
5044 }
5045 
5046 /*
5047  * Preempt the current task with a newly woken task if needed:
5048  */
5049 static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
5050 {
5051 	struct task_struct *curr = rq->curr;
5052 	struct sched_entity *se = &curr->se, *pse = &p->se;
5053 	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
5054 	int scale = cfs_rq->nr_running >= sched_nr_latency;
5055 	int next_buddy_marked = 0;
5056 
5057 	if (unlikely(se == pse))
5058 		return;
5059 
5060 	/*
5061 	 * This is possible from callers such as attach_tasks(), in which we
5062 	 * unconditionally check_prempt_curr() after an enqueue (which may have
5063 	 * lead to a throttle).  This both saves work and prevents false
5064 	 * next-buddy nomination below.
5065 	 */
5066 	if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
5067 		return;
5068 
5069 	if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
5070 		set_next_buddy(pse);
5071 		next_buddy_marked = 1;
5072 	}
5073 
5074 	/*
5075 	 * We can come here with TIF_NEED_RESCHED already set from new task
5076 	 * wake up path.
5077 	 *
5078 	 * Note: this also catches the edge-case of curr being in a throttled
5079 	 * group (e.g. via set_curr_task), since update_curr() (in the
5080 	 * enqueue of curr) will have resulted in resched being set.  This
5081 	 * prevents us from potentially nominating it as a false LAST_BUDDY
5082 	 * below.
5083 	 */
5084 	if (test_tsk_need_resched(curr))
5085 		return;
5086 
5087 	/* Idle tasks are by definition preempted by non-idle tasks. */
5088 	if (unlikely(curr->policy == SCHED_IDLE) &&
5089 	    likely(p->policy != SCHED_IDLE))
5090 		goto preempt;
5091 
5092 	/*
5093 	 * Batch and idle tasks do not preempt non-idle tasks (their preemption
5094 	 * is driven by the tick):
5095 	 */
5096 	if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
5097 		return;
5098 
5099 	find_matching_se(&se, &pse);
5100 	update_curr(cfs_rq_of(se));
5101 	BUG_ON(!pse);
5102 	if (wakeup_preempt_entity(se, pse) == 1) {
5103 		/*
5104 		 * Bias pick_next to pick the sched entity that is
5105 		 * triggering this preemption.
5106 		 */
5107 		if (!next_buddy_marked)
5108 			set_next_buddy(pse);
5109 		goto preempt;
5110 	}
5111 
5112 	return;
5113 
5114 preempt:
5115 	resched_curr(rq);
5116 	/*
5117 	 * Only set the backward buddy when the current task is still
5118 	 * on the rq. This can happen when a wakeup gets interleaved
5119 	 * with schedule on the ->pre_schedule() or idle_balance()
5120 	 * point, either of which can * drop the rq lock.
5121 	 *
5122 	 * Also, during early boot the idle thread is in the fair class,
5123 	 * for obvious reasons its a bad idea to schedule back to it.
5124 	 */
5125 	if (unlikely(!se->on_rq || curr == rq->idle))
5126 		return;
5127 
5128 	if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
5129 		set_last_buddy(se);
5130 }
5131 
5132 static struct task_struct *
5133 pick_next_task_fair(struct rq *rq, struct task_struct *prev)
5134 {
5135 	struct cfs_rq *cfs_rq = &rq->cfs;
5136 	struct sched_entity *se;
5137 	struct task_struct *p;
5138 	int new_tasks;
5139 
5140 again:
5141 #ifdef CONFIG_FAIR_GROUP_SCHED
5142 	if (!cfs_rq->nr_running)
5143 		goto idle;
5144 
5145 	if (prev->sched_class != &fair_sched_class)
5146 		goto simple;
5147 
5148 	/*
5149 	 * Because of the set_next_buddy() in dequeue_task_fair() it is rather
5150 	 * likely that a next task is from the same cgroup as the current.
5151 	 *
5152 	 * Therefore attempt to avoid putting and setting the entire cgroup
5153 	 * hierarchy, only change the part that actually changes.
5154 	 */
5155 
5156 	do {
5157 		struct sched_entity *curr = cfs_rq->curr;
5158 
5159 		/*
5160 		 * Since we got here without doing put_prev_entity() we also
5161 		 * have to consider cfs_rq->curr. If it is still a runnable
5162 		 * entity, update_curr() will update its vruntime, otherwise
5163 		 * forget we've ever seen it.
5164 		 */
5165 		if (curr) {
5166 			if (curr->on_rq)
5167 				update_curr(cfs_rq);
5168 			else
5169 				curr = NULL;
5170 
5171 			/*
5172 			 * This call to check_cfs_rq_runtime() will do the
5173 			 * throttle and dequeue its entity in the parent(s).
5174 			 * Therefore the 'simple' nr_running test will indeed
5175 			 * be correct.
5176 			 */
5177 			if (unlikely(check_cfs_rq_runtime(cfs_rq)))
5178 				goto simple;
5179 		}
5180 
5181 		se = pick_next_entity(cfs_rq, curr);
5182 		cfs_rq = group_cfs_rq(se);
5183 	} while (cfs_rq);
5184 
5185 	p = task_of(se);
5186 
5187 	/*
5188 	 * Since we haven't yet done put_prev_entity and if the selected task
5189 	 * is a different task than we started out with, try and touch the
5190 	 * least amount of cfs_rqs.
5191 	 */
5192 	if (prev != p) {
5193 		struct sched_entity *pse = &prev->se;
5194 
5195 		while (!(cfs_rq = is_same_group(se, pse))) {
5196 			int se_depth = se->depth;
5197 			int pse_depth = pse->depth;
5198 
5199 			if (se_depth <= pse_depth) {
5200 				put_prev_entity(cfs_rq_of(pse), pse);
5201 				pse = parent_entity(pse);
5202 			}
5203 			if (se_depth >= pse_depth) {
5204 				set_next_entity(cfs_rq_of(se), se);
5205 				se = parent_entity(se);
5206 			}
5207 		}
5208 
5209 		put_prev_entity(cfs_rq, pse);
5210 		set_next_entity(cfs_rq, se);
5211 	}
5212 
5213 	if (hrtick_enabled(rq))
5214 		hrtick_start_fair(rq, p);
5215 
5216 	return p;
5217 simple:
5218 	cfs_rq = &rq->cfs;
5219 #endif
5220 
5221 	if (!cfs_rq->nr_running)
5222 		goto idle;
5223 
5224 	put_prev_task(rq, prev);
5225 
5226 	do {
5227 		se = pick_next_entity(cfs_rq, NULL);
5228 		set_next_entity(cfs_rq, se);
5229 		cfs_rq = group_cfs_rq(se);
5230 	} while (cfs_rq);
5231 
5232 	p = task_of(se);
5233 
5234 	if (hrtick_enabled(rq))
5235 		hrtick_start_fair(rq, p);
5236 
5237 	return p;
5238 
5239 idle:
5240 	/*
5241 	 * This is OK, because current is on_cpu, which avoids it being picked
5242 	 * for load-balance and preemption/IRQs are still disabled avoiding
5243 	 * further scheduler activity on it and we're being very careful to
5244 	 * re-start the picking loop.
5245 	 */
5246 	lockdep_unpin_lock(&rq->lock);
5247 	new_tasks = idle_balance(rq);
5248 	lockdep_pin_lock(&rq->lock);
5249 	/*
5250 	 * Because idle_balance() releases (and re-acquires) rq->lock, it is
5251 	 * possible for any higher priority task to appear. In that case we
5252 	 * must re-start the pick_next_entity() loop.
5253 	 */
5254 	if (new_tasks < 0)
5255 		return RETRY_TASK;
5256 
5257 	if (new_tasks > 0)
5258 		goto again;
5259 
5260 	return NULL;
5261 }
5262 
5263 /*
5264  * Account for a descheduled task:
5265  */
5266 static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
5267 {
5268 	struct sched_entity *se = &prev->se;
5269 	struct cfs_rq *cfs_rq;
5270 
5271 	for_each_sched_entity(se) {
5272 		cfs_rq = cfs_rq_of(se);
5273 		put_prev_entity(cfs_rq, se);
5274 	}
5275 }
5276 
5277 /*
5278  * sched_yield() is very simple
5279  *
5280  * The magic of dealing with the ->skip buddy is in pick_next_entity.
5281  */
5282 static void yield_task_fair(struct rq *rq)
5283 {
5284 	struct task_struct *curr = rq->curr;
5285 	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
5286 	struct sched_entity *se = &curr->se;
5287 
5288 	/*
5289 	 * Are we the only task in the tree?
5290 	 */
5291 	if (unlikely(rq->nr_running == 1))
5292 		return;
5293 
5294 	clear_buddies(cfs_rq, se);
5295 
5296 	if (curr->policy != SCHED_BATCH) {
5297 		update_rq_clock(rq);
5298 		/*
5299 		 * Update run-time statistics of the 'current'.
5300 		 */
5301 		update_curr(cfs_rq);
5302 		/*
5303 		 * Tell update_rq_clock() that we've just updated,
5304 		 * so we don't do microscopic update in schedule()
5305 		 * and double the fastpath cost.
5306 		 */
5307 		rq_clock_skip_update(rq, true);
5308 	}
5309 
5310 	set_skip_buddy(se);
5311 }
5312 
5313 static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
5314 {
5315 	struct sched_entity *se = &p->se;
5316 
5317 	/* throttled hierarchies are not runnable */
5318 	if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
5319 		return false;
5320 
5321 	/* Tell the scheduler that we'd really like pse to run next. */
5322 	set_next_buddy(se);
5323 
5324 	yield_task_fair(rq);
5325 
5326 	return true;
5327 }
5328 
5329 #ifdef CONFIG_SMP
5330 /**************************************************
5331  * Fair scheduling class load-balancing methods.
5332  *
5333  * BASICS
5334  *
5335  * The purpose of load-balancing is to achieve the same basic fairness the
5336  * per-cpu scheduler provides, namely provide a proportional amount of compute
5337  * time to each task. This is expressed in the following equation:
5338  *
5339  *   W_i,n/P_i == W_j,n/P_j for all i,j                               (1)
5340  *
5341  * Where W_i,n is the n-th weight average for cpu i. The instantaneous weight
5342  * W_i,0 is defined as:
5343  *
5344  *   W_i,0 = \Sum_j w_i,j                                             (2)
5345  *
5346  * Where w_i,j is the weight of the j-th runnable task on cpu i. This weight
5347  * is derived from the nice value as per prio_to_weight[].
5348  *
5349  * The weight average is an exponential decay average of the instantaneous
5350  * weight:
5351  *
5352  *   W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0               (3)
5353  *
5354  * C_i is the compute capacity of cpu i, typically it is the
5355  * fraction of 'recent' time available for SCHED_OTHER task execution. But it
5356  * can also include other factors [XXX].
5357  *
5358  * To achieve this balance we define a measure of imbalance which follows
5359  * directly from (1):
5360  *
5361  *   imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j }    (4)
5362  *
5363  * We them move tasks around to minimize the imbalance. In the continuous
5364  * function space it is obvious this converges, in the discrete case we get
5365  * a few fun cases generally called infeasible weight scenarios.
5366  *
5367  * [XXX expand on:
5368  *     - infeasible weights;
5369  *     - local vs global optima in the discrete case. ]
5370  *
5371  *
5372  * SCHED DOMAINS
5373  *
5374  * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
5375  * for all i,j solution, we create a tree of cpus that follows the hardware
5376  * topology where each level pairs two lower groups (or better). This results
5377  * in O(log n) layers. Furthermore we reduce the number of cpus going up the
5378  * tree to only the first of the previous level and we decrease the frequency
5379  * of load-balance at each level inv. proportional to the number of cpus in
5380  * the groups.
5381  *
5382  * This yields:
5383  *
5384  *     log_2 n     1     n
5385  *   \Sum       { --- * --- * 2^i } = O(n)                            (5)
5386  *     i = 0      2^i   2^i
5387  *                               `- size of each group
5388  *         |         |     `- number of cpus doing load-balance
5389  *         |         `- freq
5390  *         `- sum over all levels
5391  *
5392  * Coupled with a limit on how many tasks we can migrate every balance pass,
5393  * this makes (5) the runtime complexity of the balancer.
5394  *
5395  * An important property here is that each CPU is still (indirectly) connected
5396  * to every other cpu in at most O(log n) steps:
5397  *
5398  * The adjacency matrix of the resulting graph is given by:
5399  *
5400  *             log_2 n
5401  *   A_i,j = \Union     (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1)  (6)
5402  *             k = 0
5403  *
5404  * And you'll find that:
5405  *
5406  *   A^(log_2 n)_i,j != 0  for all i,j                                (7)
5407  *
5408  * Showing there's indeed a path between every cpu in at most O(log n) steps.
5409  * The task movement gives a factor of O(m), giving a convergence complexity
5410  * of:
5411  *
5412  *   O(nm log n),  n := nr_cpus, m := nr_tasks                        (8)
5413  *
5414  *
5415  * WORK CONSERVING
5416  *
5417  * In order to avoid CPUs going idle while there's still work to do, new idle
5418  * balancing is more aggressive and has the newly idle cpu iterate up the domain
5419  * tree itself instead of relying on other CPUs to bring it work.
5420  *
5421  * This adds some complexity to both (5) and (8) but it reduces the total idle
5422  * time.
5423  *
5424  * [XXX more?]
5425  *
5426  *
5427  * CGROUPS
5428  *
5429  * Cgroups make a horror show out of (2), instead of a simple sum we get:
5430  *
5431  *                                s_k,i
5432  *   W_i,0 = \Sum_j \Prod_k w_k * -----                               (9)
5433  *                                 S_k
5434  *
5435  * Where
5436  *
5437  *   s_k,i = \Sum_j w_i,j,k  and  S_k = \Sum_i s_k,i                 (10)
5438  *
5439  * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on cpu i.
5440  *
5441  * The big problem is S_k, its a global sum needed to compute a local (W_i)
5442  * property.
5443  *
5444  * [XXX write more on how we solve this.. _after_ merging pjt's patches that
5445  *      rewrite all of this once again.]
5446  */
5447 
5448 static unsigned long __read_mostly max_load_balance_interval = HZ/10;
5449 
5450 enum fbq_type { regular, remote, all };
5451 
5452 #define LBF_ALL_PINNED	0x01
5453 #define LBF_NEED_BREAK	0x02
5454 #define LBF_DST_PINNED  0x04
5455 #define LBF_SOME_PINNED	0x08
5456 
5457 struct lb_env {
5458 	struct sched_domain	*sd;
5459 
5460 	struct rq		*src_rq;
5461 	int			src_cpu;
5462 
5463 	int			dst_cpu;
5464 	struct rq		*dst_rq;
5465 
5466 	struct cpumask		*dst_grpmask;
5467 	int			new_dst_cpu;
5468 	enum cpu_idle_type	idle;
5469 	long			imbalance;
5470 	/* The set of CPUs under consideration for load-balancing */
5471 	struct cpumask		*cpus;
5472 
5473 	unsigned int		flags;
5474 
5475 	unsigned int		loop;
5476 	unsigned int		loop_break;
5477 	unsigned int		loop_max;
5478 
5479 	enum fbq_type		fbq_type;
5480 	struct list_head	tasks;
5481 };
5482 
5483 /*
5484  * Is this task likely cache-hot:
5485  */
5486 static int task_hot(struct task_struct *p, struct lb_env *env)
5487 {
5488 	s64 delta;
5489 
5490 	lockdep_assert_held(&env->src_rq->lock);
5491 
5492 	if (p->sched_class != &fair_sched_class)
5493 		return 0;
5494 
5495 	if (unlikely(p->policy == SCHED_IDLE))
5496 		return 0;
5497 
5498 	/*
5499 	 * Buddy candidates are cache hot:
5500 	 */
5501 	if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running &&
5502 			(&p->se == cfs_rq_of(&p->se)->next ||
5503 			 &p->se == cfs_rq_of(&p->se)->last))
5504 		return 1;
5505 
5506 	if (sysctl_sched_migration_cost == -1)
5507 		return 1;
5508 	if (sysctl_sched_migration_cost == 0)
5509 		return 0;
5510 
5511 	delta = rq_clock_task(env->src_rq) - p->se.exec_start;
5512 
5513 	return delta < (s64)sysctl_sched_migration_cost;
5514 }
5515 
5516 #ifdef CONFIG_NUMA_BALANCING
5517 /*
5518  * Returns 1, if task migration degrades locality
5519  * Returns 0, if task migration improves locality i.e migration preferred.
5520  * Returns -1, if task migration is not affected by locality.
5521  */
5522 static int migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
5523 {
5524 	struct numa_group *numa_group = rcu_dereference(p->numa_group);
5525 	unsigned long src_faults, dst_faults;
5526 	int src_nid, dst_nid;
5527 
5528 	if (!p->numa_faults || !(env->sd->flags & SD_NUMA))
5529 		return -1;
5530 
5531 	if (!sched_feat(NUMA))
5532 		return -1;
5533 
5534 	src_nid = cpu_to_node(env->src_cpu);
5535 	dst_nid = cpu_to_node(env->dst_cpu);
5536 
5537 	if (src_nid == dst_nid)
5538 		return -1;
5539 
5540 	/* Migrating away from the preferred node is always bad. */
5541 	if (src_nid == p->numa_preferred_nid) {
5542 		if (env->src_rq->nr_running > env->src_rq->nr_preferred_running)
5543 			return 1;
5544 		else
5545 			return -1;
5546 	}
5547 
5548 	/* Encourage migration to the preferred node. */
5549 	if (dst_nid == p->numa_preferred_nid)
5550 		return 0;
5551 
5552 	if (numa_group) {
5553 		src_faults = group_faults(p, src_nid);
5554 		dst_faults = group_faults(p, dst_nid);
5555 	} else {
5556 		src_faults = task_faults(p, src_nid);
5557 		dst_faults = task_faults(p, dst_nid);
5558 	}
5559 
5560 	return dst_faults < src_faults;
5561 }
5562 
5563 #else
5564 static inline int migrate_degrades_locality(struct task_struct *p,
5565 					     struct lb_env *env)
5566 {
5567 	return -1;
5568 }
5569 #endif
5570 
5571 /*
5572  * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
5573  */
5574 static
5575 int can_migrate_task(struct task_struct *p, struct lb_env *env)
5576 {
5577 	int tsk_cache_hot;
5578 
5579 	lockdep_assert_held(&env->src_rq->lock);
5580 
5581 	/*
5582 	 * We do not migrate tasks that are:
5583 	 * 1) throttled_lb_pair, or
5584 	 * 2) cannot be migrated to this CPU due to cpus_allowed, or
5585 	 * 3) running (obviously), or
5586 	 * 4) are cache-hot on their current CPU.
5587 	 */
5588 	if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
5589 		return 0;
5590 
5591 	if (!cpumask_test_cpu(env->dst_cpu, tsk_cpus_allowed(p))) {
5592 		int cpu;
5593 
5594 		schedstat_inc(p, se.statistics.nr_failed_migrations_affine);
5595 
5596 		env->flags |= LBF_SOME_PINNED;
5597 
5598 		/*
5599 		 * Remember if this task can be migrated to any other cpu in
5600 		 * our sched_group. We may want to revisit it if we couldn't
5601 		 * meet load balance goals by pulling other tasks on src_cpu.
5602 		 *
5603 		 * Also avoid computing new_dst_cpu if we have already computed
5604 		 * one in current iteration.
5605 		 */
5606 		if (!env->dst_grpmask || (env->flags & LBF_DST_PINNED))
5607 			return 0;
5608 
5609 		/* Prevent to re-select dst_cpu via env's cpus */
5610 		for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
5611 			if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p))) {
5612 				env->flags |= LBF_DST_PINNED;
5613 				env->new_dst_cpu = cpu;
5614 				break;
5615 			}
5616 		}
5617 
5618 		return 0;
5619 	}
5620 
5621 	/* Record that we found atleast one task that could run on dst_cpu */
5622 	env->flags &= ~LBF_ALL_PINNED;
5623 
5624 	if (task_running(env->src_rq, p)) {
5625 		schedstat_inc(p, se.statistics.nr_failed_migrations_running);
5626 		return 0;
5627 	}
5628 
5629 	/*
5630 	 * Aggressive migration if:
5631 	 * 1) destination numa is preferred
5632 	 * 2) task is cache cold, or
5633 	 * 3) too many balance attempts have failed.
5634 	 */
5635 	tsk_cache_hot = migrate_degrades_locality(p, env);
5636 	if (tsk_cache_hot == -1)
5637 		tsk_cache_hot = task_hot(p, env);
5638 
5639 	if (tsk_cache_hot <= 0 ||
5640 	    env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
5641 		if (tsk_cache_hot == 1) {
5642 			schedstat_inc(env->sd, lb_hot_gained[env->idle]);
5643 			schedstat_inc(p, se.statistics.nr_forced_migrations);
5644 		}
5645 		return 1;
5646 	}
5647 
5648 	schedstat_inc(p, se.statistics.nr_failed_migrations_hot);
5649 	return 0;
5650 }
5651 
5652 /*
5653  * detach_task() -- detach the task for the migration specified in env
5654  */
5655 static void detach_task(struct task_struct *p, struct lb_env *env)
5656 {
5657 	lockdep_assert_held(&env->src_rq->lock);
5658 
5659 	deactivate_task(env->src_rq, p, 0);
5660 	p->on_rq = TASK_ON_RQ_MIGRATING;
5661 	set_task_cpu(p, env->dst_cpu);
5662 }
5663 
5664 /*
5665  * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as
5666  * part of active balancing operations within "domain".
5667  *
5668  * Returns a task if successful and NULL otherwise.
5669  */
5670 static struct task_struct *detach_one_task(struct lb_env *env)
5671 {
5672 	struct task_struct *p, *n;
5673 
5674 	lockdep_assert_held(&env->src_rq->lock);
5675 
5676 	list_for_each_entry_safe(p, n, &env->src_rq->cfs_tasks, se.group_node) {
5677 		if (!can_migrate_task(p, env))
5678 			continue;
5679 
5680 		detach_task(p, env);
5681 
5682 		/*
5683 		 * Right now, this is only the second place where
5684 		 * lb_gained[env->idle] is updated (other is detach_tasks)
5685 		 * so we can safely collect stats here rather than
5686 		 * inside detach_tasks().
5687 		 */
5688 		schedstat_inc(env->sd, lb_gained[env->idle]);
5689 		return p;
5690 	}
5691 	return NULL;
5692 }
5693 
5694 static const unsigned int sched_nr_migrate_break = 32;
5695 
5696 /*
5697  * detach_tasks() -- tries to detach up to imbalance weighted load from
5698  * busiest_rq, as part of a balancing operation within domain "sd".
5699  *
5700  * Returns number of detached tasks if successful and 0 otherwise.
5701  */
5702 static int detach_tasks(struct lb_env *env)
5703 {
5704 	struct list_head *tasks = &env->src_rq->cfs_tasks;
5705 	struct task_struct *p;
5706 	unsigned long load;
5707 	int detached = 0;
5708 
5709 	lockdep_assert_held(&env->src_rq->lock);
5710 
5711 	if (env->imbalance <= 0)
5712 		return 0;
5713 
5714 	while (!list_empty(tasks)) {
5715 		/*
5716 		 * We don't want to steal all, otherwise we may be treated likewise,
5717 		 * which could at worst lead to a livelock crash.
5718 		 */
5719 		if (env->idle != CPU_NOT_IDLE && env->src_rq->nr_running <= 1)
5720 			break;
5721 
5722 		p = list_first_entry(tasks, struct task_struct, se.group_node);
5723 
5724 		env->loop++;
5725 		/* We've more or less seen every task there is, call it quits */
5726 		if (env->loop > env->loop_max)
5727 			break;
5728 
5729 		/* take a breather every nr_migrate tasks */
5730 		if (env->loop > env->loop_break) {
5731 			env->loop_break += sched_nr_migrate_break;
5732 			env->flags |= LBF_NEED_BREAK;
5733 			break;
5734 		}
5735 
5736 		if (!can_migrate_task(p, env))
5737 			goto next;
5738 
5739 		load = task_h_load(p);
5740 
5741 		if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed)
5742 			goto next;
5743 
5744 		if ((load / 2) > env->imbalance)
5745 			goto next;
5746 
5747 		detach_task(p, env);
5748 		list_add(&p->se.group_node, &env->tasks);
5749 
5750 		detached++;
5751 		env->imbalance -= load;
5752 
5753 #ifdef CONFIG_PREEMPT
5754 		/*
5755 		 * NEWIDLE balancing is a source of latency, so preemptible
5756 		 * kernels will stop after the first task is detached to minimize
5757 		 * the critical section.
5758 		 */
5759 		if (env->idle == CPU_NEWLY_IDLE)
5760 			break;
5761 #endif
5762 
5763 		/*
5764 		 * We only want to steal up to the prescribed amount of
5765 		 * weighted load.
5766 		 */
5767 		if (env->imbalance <= 0)
5768 			break;
5769 
5770 		continue;
5771 next:
5772 		list_move_tail(&p->se.group_node, tasks);
5773 	}
5774 
5775 	/*
5776 	 * Right now, this is one of only two places we collect this stat
5777 	 * so we can safely collect detach_one_task() stats here rather
5778 	 * than inside detach_one_task().
5779 	 */
5780 	schedstat_add(env->sd, lb_gained[env->idle], detached);
5781 
5782 	return detached;
5783 }
5784 
5785 /*
5786  * attach_task() -- attach the task detached by detach_task() to its new rq.
5787  */
5788 static void attach_task(struct rq *rq, struct task_struct *p)
5789 {
5790 	lockdep_assert_held(&rq->lock);
5791 
5792 	BUG_ON(task_rq(p) != rq);
5793 	p->on_rq = TASK_ON_RQ_QUEUED;
5794 	activate_task(rq, p, 0);
5795 	check_preempt_curr(rq, p, 0);
5796 }
5797 
5798 /*
5799  * attach_one_task() -- attaches the task returned from detach_one_task() to
5800  * its new rq.
5801  */
5802 static void attach_one_task(struct rq *rq, struct task_struct *p)
5803 {
5804 	raw_spin_lock(&rq->lock);
5805 	attach_task(rq, p);
5806 	raw_spin_unlock(&rq->lock);
5807 }
5808 
5809 /*
5810  * attach_tasks() -- attaches all tasks detached by detach_tasks() to their
5811  * new rq.
5812  */
5813 static void attach_tasks(struct lb_env *env)
5814 {
5815 	struct list_head *tasks = &env->tasks;
5816 	struct task_struct *p;
5817 
5818 	raw_spin_lock(&env->dst_rq->lock);
5819 
5820 	while (!list_empty(tasks)) {
5821 		p = list_first_entry(tasks, struct task_struct, se.group_node);
5822 		list_del_init(&p->se.group_node);
5823 
5824 		attach_task(env->dst_rq, p);
5825 	}
5826 
5827 	raw_spin_unlock(&env->dst_rq->lock);
5828 }
5829 
5830 #ifdef CONFIG_FAIR_GROUP_SCHED
5831 static void update_blocked_averages(int cpu)
5832 {
5833 	struct rq *rq = cpu_rq(cpu);
5834 	struct cfs_rq *cfs_rq;
5835 	unsigned long flags;
5836 
5837 	raw_spin_lock_irqsave(&rq->lock, flags);
5838 	update_rq_clock(rq);
5839 
5840 	/*
5841 	 * Iterates the task_group tree in a bottom up fashion, see
5842 	 * list_add_leaf_cfs_rq() for details.
5843 	 */
5844 	for_each_leaf_cfs_rq(rq, cfs_rq) {
5845 		/* throttled entities do not contribute to load */
5846 		if (throttled_hierarchy(cfs_rq))
5847 			continue;
5848 
5849 		if (update_cfs_rq_load_avg(cfs_rq_clock_task(cfs_rq), cfs_rq))
5850 			update_tg_load_avg(cfs_rq, 0);
5851 	}
5852 	raw_spin_unlock_irqrestore(&rq->lock, flags);
5853 }
5854 
5855 /*
5856  * Compute the hierarchical load factor for cfs_rq and all its ascendants.
5857  * This needs to be done in a top-down fashion because the load of a child
5858  * group is a fraction of its parents load.
5859  */
5860 static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
5861 {
5862 	struct rq *rq = rq_of(cfs_rq);
5863 	struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
5864 	unsigned long now = jiffies;
5865 	unsigned long load;
5866 
5867 	if (cfs_rq->last_h_load_update == now)
5868 		return;
5869 
5870 	cfs_rq->h_load_next = NULL;
5871 	for_each_sched_entity(se) {
5872 		cfs_rq = cfs_rq_of(se);
5873 		cfs_rq->h_load_next = se;
5874 		if (cfs_rq->last_h_load_update == now)
5875 			break;
5876 	}
5877 
5878 	if (!se) {
5879 		cfs_rq->h_load = cfs_rq_load_avg(cfs_rq);
5880 		cfs_rq->last_h_load_update = now;
5881 	}
5882 
5883 	while ((se = cfs_rq->h_load_next) != NULL) {
5884 		load = cfs_rq->h_load;
5885 		load = div64_ul(load * se->avg.load_avg,
5886 			cfs_rq_load_avg(cfs_rq) + 1);
5887 		cfs_rq = group_cfs_rq(se);
5888 		cfs_rq->h_load = load;
5889 		cfs_rq->last_h_load_update = now;
5890 	}
5891 }
5892 
5893 static unsigned long task_h_load(struct task_struct *p)
5894 {
5895 	struct cfs_rq *cfs_rq = task_cfs_rq(p);
5896 
5897 	update_cfs_rq_h_load(cfs_rq);
5898 	return div64_ul(p->se.avg.load_avg * cfs_rq->h_load,
5899 			cfs_rq_load_avg(cfs_rq) + 1);
5900 }
5901 #else
5902 static inline void update_blocked_averages(int cpu)
5903 {
5904 	struct rq *rq = cpu_rq(cpu);
5905 	struct cfs_rq *cfs_rq = &rq->cfs;
5906 	unsigned long flags;
5907 
5908 	raw_spin_lock_irqsave(&rq->lock, flags);
5909 	update_rq_clock(rq);
5910 	update_cfs_rq_load_avg(cfs_rq_clock_task(cfs_rq), cfs_rq);
5911 	raw_spin_unlock_irqrestore(&rq->lock, flags);
5912 }
5913 
5914 static unsigned long task_h_load(struct task_struct *p)
5915 {
5916 	return p->se.avg.load_avg;
5917 }
5918 #endif
5919 
5920 /********** Helpers for find_busiest_group ************************/
5921 
5922 enum group_type {
5923 	group_other = 0,
5924 	group_imbalanced,
5925 	group_overloaded,
5926 };
5927 
5928 /*
5929  * sg_lb_stats - stats of a sched_group required for load_balancing
5930  */
5931 struct sg_lb_stats {
5932 	unsigned long avg_load; /*Avg load across the CPUs of the group */
5933 	unsigned long group_load; /* Total load over the CPUs of the group */
5934 	unsigned long sum_weighted_load; /* Weighted load of group's tasks */
5935 	unsigned long load_per_task;
5936 	unsigned long group_capacity;
5937 	unsigned long group_usage; /* Total usage of the group */
5938 	unsigned int sum_nr_running; /* Nr tasks running in the group */
5939 	unsigned int idle_cpus;
5940 	unsigned int group_weight;
5941 	enum group_type group_type;
5942 	int group_no_capacity;
5943 #ifdef CONFIG_NUMA_BALANCING
5944 	unsigned int nr_numa_running;
5945 	unsigned int nr_preferred_running;
5946 #endif
5947 };
5948 
5949 /*
5950  * sd_lb_stats - Structure to store the statistics of a sched_domain
5951  *		 during load balancing.
5952  */
5953 struct sd_lb_stats {
5954 	struct sched_group *busiest;	/* Busiest group in this sd */
5955 	struct sched_group *local;	/* Local group in this sd */
5956 	unsigned long total_load;	/* Total load of all groups in sd */
5957 	unsigned long total_capacity;	/* Total capacity of all groups in sd */
5958 	unsigned long avg_load;	/* Average load across all groups in sd */
5959 
5960 	struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
5961 	struct sg_lb_stats local_stat;	/* Statistics of the local group */
5962 };
5963 
5964 static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
5965 {
5966 	/*
5967 	 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
5968 	 * local_stat because update_sg_lb_stats() does a full clear/assignment.
5969 	 * We must however clear busiest_stat::avg_load because
5970 	 * update_sd_pick_busiest() reads this before assignment.
5971 	 */
5972 	*sds = (struct sd_lb_stats){
5973 		.busiest = NULL,
5974 		.local = NULL,
5975 		.total_load = 0UL,
5976 		.total_capacity = 0UL,
5977 		.busiest_stat = {
5978 			.avg_load = 0UL,
5979 			.sum_nr_running = 0,
5980 			.group_type = group_other,
5981 		},
5982 	};
5983 }
5984 
5985 /**
5986  * get_sd_load_idx - Obtain the load index for a given sched domain.
5987  * @sd: The sched_domain whose load_idx is to be obtained.
5988  * @idle: The idle status of the CPU for whose sd load_idx is obtained.
5989  *
5990  * Return: The load index.
5991  */
5992 static inline int get_sd_load_idx(struct sched_domain *sd,
5993 					enum cpu_idle_type idle)
5994 {
5995 	int load_idx;
5996 
5997 	switch (idle) {
5998 	case CPU_NOT_IDLE:
5999 		load_idx = sd->busy_idx;
6000 		break;
6001 
6002 	case CPU_NEWLY_IDLE:
6003 		load_idx = sd->newidle_idx;
6004 		break;
6005 	default:
6006 		load_idx = sd->idle_idx;
6007 		break;
6008 	}
6009 
6010 	return load_idx;
6011 }
6012 
6013 static unsigned long default_scale_cpu_capacity(struct sched_domain *sd, int cpu)
6014 {
6015 	if ((sd->flags & SD_SHARE_CPUCAPACITY) && (sd->span_weight > 1))
6016 		return sd->smt_gain / sd->span_weight;
6017 
6018 	return SCHED_CAPACITY_SCALE;
6019 }
6020 
6021 unsigned long __weak arch_scale_cpu_capacity(struct sched_domain *sd, int cpu)
6022 {
6023 	return default_scale_cpu_capacity(sd, cpu);
6024 }
6025 
6026 static unsigned long scale_rt_capacity(int cpu)
6027 {
6028 	struct rq *rq = cpu_rq(cpu);
6029 	u64 total, used, age_stamp, avg;
6030 	s64 delta;
6031 
6032 	/*
6033 	 * Since we're reading these variables without serialization make sure
6034 	 * we read them once before doing sanity checks on them.
6035 	 */
6036 	age_stamp = READ_ONCE(rq->age_stamp);
6037 	avg = READ_ONCE(rq->rt_avg);
6038 	delta = __rq_clock_broken(rq) - age_stamp;
6039 
6040 	if (unlikely(delta < 0))
6041 		delta = 0;
6042 
6043 	total = sched_avg_period() + delta;
6044 
6045 	used = div_u64(avg, total);
6046 
6047 	if (likely(used < SCHED_CAPACITY_SCALE))
6048 		return SCHED_CAPACITY_SCALE - used;
6049 
6050 	return 1;
6051 }
6052 
6053 static void update_cpu_capacity(struct sched_domain *sd, int cpu)
6054 {
6055 	unsigned long capacity = SCHED_CAPACITY_SCALE;
6056 	struct sched_group *sdg = sd->groups;
6057 
6058 	if (sched_feat(ARCH_CAPACITY))
6059 		capacity *= arch_scale_cpu_capacity(sd, cpu);
6060 	else
6061 		capacity *= default_scale_cpu_capacity(sd, cpu);
6062 
6063 	capacity >>= SCHED_CAPACITY_SHIFT;
6064 
6065 	cpu_rq(cpu)->cpu_capacity_orig = capacity;
6066 
6067 	capacity *= scale_rt_capacity(cpu);
6068 	capacity >>= SCHED_CAPACITY_SHIFT;
6069 
6070 	if (!capacity)
6071 		capacity = 1;
6072 
6073 	cpu_rq(cpu)->cpu_capacity = capacity;
6074 	sdg->sgc->capacity = capacity;
6075 }
6076 
6077 void update_group_capacity(struct sched_domain *sd, int cpu)
6078 {
6079 	struct sched_domain *child = sd->child;
6080 	struct sched_group *group, *sdg = sd->groups;
6081 	unsigned long capacity;
6082 	unsigned long interval;
6083 
6084 	interval = msecs_to_jiffies(sd->balance_interval);
6085 	interval = clamp(interval, 1UL, max_load_balance_interval);
6086 	sdg->sgc->next_update = jiffies + interval;
6087 
6088 	if (!child) {
6089 		update_cpu_capacity(sd, cpu);
6090 		return;
6091 	}
6092 
6093 	capacity = 0;
6094 
6095 	if (child->flags & SD_OVERLAP) {
6096 		/*
6097 		 * SD_OVERLAP domains cannot assume that child groups
6098 		 * span the current group.
6099 		 */
6100 
6101 		for_each_cpu(cpu, sched_group_cpus(sdg)) {
6102 			struct sched_group_capacity *sgc;
6103 			struct rq *rq = cpu_rq(cpu);
6104 
6105 			/*
6106 			 * build_sched_domains() -> init_sched_groups_capacity()
6107 			 * gets here before we've attached the domains to the
6108 			 * runqueues.
6109 			 *
6110 			 * Use capacity_of(), which is set irrespective of domains
6111 			 * in update_cpu_capacity().
6112 			 *
6113 			 * This avoids capacity from being 0 and
6114 			 * causing divide-by-zero issues on boot.
6115 			 */
6116 			if (unlikely(!rq->sd)) {
6117 				capacity += capacity_of(cpu);
6118 				continue;
6119 			}
6120 
6121 			sgc = rq->sd->groups->sgc;
6122 			capacity += sgc->capacity;
6123 		}
6124 	} else  {
6125 		/*
6126 		 * !SD_OVERLAP domains can assume that child groups
6127 		 * span the current group.
6128 		 */
6129 
6130 		group = child->groups;
6131 		do {
6132 			capacity += group->sgc->capacity;
6133 			group = group->next;
6134 		} while (group != child->groups);
6135 	}
6136 
6137 	sdg->sgc->capacity = capacity;
6138 }
6139 
6140 /*
6141  * Check whether the capacity of the rq has been noticeably reduced by side
6142  * activity. The imbalance_pct is used for the threshold.
6143  * Return true is the capacity is reduced
6144  */
6145 static inline int
6146 check_cpu_capacity(struct rq *rq, struct sched_domain *sd)
6147 {
6148 	return ((rq->cpu_capacity * sd->imbalance_pct) <
6149 				(rq->cpu_capacity_orig * 100));
6150 }
6151 
6152 /*
6153  * Group imbalance indicates (and tries to solve) the problem where balancing
6154  * groups is inadequate due to tsk_cpus_allowed() constraints.
6155  *
6156  * Imagine a situation of two groups of 4 cpus each and 4 tasks each with a
6157  * cpumask covering 1 cpu of the first group and 3 cpus of the second group.
6158  * Something like:
6159  *
6160  * 	{ 0 1 2 3 } { 4 5 6 7 }
6161  * 	        *     * * *
6162  *
6163  * If we were to balance group-wise we'd place two tasks in the first group and
6164  * two tasks in the second group. Clearly this is undesired as it will overload
6165  * cpu 3 and leave one of the cpus in the second group unused.
6166  *
6167  * The current solution to this issue is detecting the skew in the first group
6168  * by noticing the lower domain failed to reach balance and had difficulty
6169  * moving tasks due to affinity constraints.
6170  *
6171  * When this is so detected; this group becomes a candidate for busiest; see
6172  * update_sd_pick_busiest(). And calculate_imbalance() and
6173  * find_busiest_group() avoid some of the usual balance conditions to allow it
6174  * to create an effective group imbalance.
6175  *
6176  * This is a somewhat tricky proposition since the next run might not find the
6177  * group imbalance and decide the groups need to be balanced again. A most
6178  * subtle and fragile situation.
6179  */
6180 
6181 static inline int sg_imbalanced(struct sched_group *group)
6182 {
6183 	return group->sgc->imbalance;
6184 }
6185 
6186 /*
6187  * group_has_capacity returns true if the group has spare capacity that could
6188  * be used by some tasks.
6189  * We consider that a group has spare capacity if the  * number of task is
6190  * smaller than the number of CPUs or if the usage is lower than the available
6191  * capacity for CFS tasks.
6192  * For the latter, we use a threshold to stabilize the state, to take into
6193  * account the variance of the tasks' load and to return true if the available
6194  * capacity in meaningful for the load balancer.
6195  * As an example, an available capacity of 1% can appear but it doesn't make
6196  * any benefit for the load balance.
6197  */
6198 static inline bool
6199 group_has_capacity(struct lb_env *env, struct sg_lb_stats *sgs)
6200 {
6201 	if (sgs->sum_nr_running < sgs->group_weight)
6202 		return true;
6203 
6204 	if ((sgs->group_capacity * 100) >
6205 			(sgs->group_usage * env->sd->imbalance_pct))
6206 		return true;
6207 
6208 	return false;
6209 }
6210 
6211 /*
6212  *  group_is_overloaded returns true if the group has more tasks than it can
6213  *  handle.
6214  *  group_is_overloaded is not equals to !group_has_capacity because a group
6215  *  with the exact right number of tasks, has no more spare capacity but is not
6216  *  overloaded so both group_has_capacity and group_is_overloaded return
6217  *  false.
6218  */
6219 static inline bool
6220 group_is_overloaded(struct lb_env *env, struct sg_lb_stats *sgs)
6221 {
6222 	if (sgs->sum_nr_running <= sgs->group_weight)
6223 		return false;
6224 
6225 	if ((sgs->group_capacity * 100) <
6226 			(sgs->group_usage * env->sd->imbalance_pct))
6227 		return true;
6228 
6229 	return false;
6230 }
6231 
6232 static enum group_type group_classify(struct lb_env *env,
6233 		struct sched_group *group,
6234 		struct sg_lb_stats *sgs)
6235 {
6236 	if (sgs->group_no_capacity)
6237 		return group_overloaded;
6238 
6239 	if (sg_imbalanced(group))
6240 		return group_imbalanced;
6241 
6242 	return group_other;
6243 }
6244 
6245 /**
6246  * update_sg_lb_stats - Update sched_group's statistics for load balancing.
6247  * @env: The load balancing environment.
6248  * @group: sched_group whose statistics are to be updated.
6249  * @load_idx: Load index of sched_domain of this_cpu for load calc.
6250  * @local_group: Does group contain this_cpu.
6251  * @sgs: variable to hold the statistics for this group.
6252  * @overload: Indicate more than one runnable task for any CPU.
6253  */
6254 static inline void update_sg_lb_stats(struct lb_env *env,
6255 			struct sched_group *group, int load_idx,
6256 			int local_group, struct sg_lb_stats *sgs,
6257 			bool *overload)
6258 {
6259 	unsigned long load;
6260 	int i;
6261 
6262 	memset(sgs, 0, sizeof(*sgs));
6263 
6264 	for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
6265 		struct rq *rq = cpu_rq(i);
6266 
6267 		/* Bias balancing toward cpus of our domain */
6268 		if (local_group)
6269 			load = target_load(i, load_idx);
6270 		else
6271 			load = source_load(i, load_idx);
6272 
6273 		sgs->group_load += load;
6274 		sgs->group_usage += get_cpu_usage(i);
6275 		sgs->sum_nr_running += rq->cfs.h_nr_running;
6276 
6277 		if (rq->nr_running > 1)
6278 			*overload = true;
6279 
6280 #ifdef CONFIG_NUMA_BALANCING
6281 		sgs->nr_numa_running += rq->nr_numa_running;
6282 		sgs->nr_preferred_running += rq->nr_preferred_running;
6283 #endif
6284 		sgs->sum_weighted_load += weighted_cpuload(i);
6285 		if (idle_cpu(i))
6286 			sgs->idle_cpus++;
6287 	}
6288 
6289 	/* Adjust by relative CPU capacity of the group */
6290 	sgs->group_capacity = group->sgc->capacity;
6291 	sgs->avg_load = (sgs->group_load*SCHED_CAPACITY_SCALE) / sgs->group_capacity;
6292 
6293 	if (sgs->sum_nr_running)
6294 		sgs->load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
6295 
6296 	sgs->group_weight = group->group_weight;
6297 
6298 	sgs->group_no_capacity = group_is_overloaded(env, sgs);
6299 	sgs->group_type = group_classify(env, group, sgs);
6300 }
6301 
6302 /**
6303  * update_sd_pick_busiest - return 1 on busiest group
6304  * @env: The load balancing environment.
6305  * @sds: sched_domain statistics
6306  * @sg: sched_group candidate to be checked for being the busiest
6307  * @sgs: sched_group statistics
6308  *
6309  * Determine if @sg is a busier group than the previously selected
6310  * busiest group.
6311  *
6312  * Return: %true if @sg is a busier group than the previously selected
6313  * busiest group. %false otherwise.
6314  */
6315 static bool update_sd_pick_busiest(struct lb_env *env,
6316 				   struct sd_lb_stats *sds,
6317 				   struct sched_group *sg,
6318 				   struct sg_lb_stats *sgs)
6319 {
6320 	struct sg_lb_stats *busiest = &sds->busiest_stat;
6321 
6322 	if (sgs->group_type > busiest->group_type)
6323 		return true;
6324 
6325 	if (sgs->group_type < busiest->group_type)
6326 		return false;
6327 
6328 	if (sgs->avg_load <= busiest->avg_load)
6329 		return false;
6330 
6331 	/* This is the busiest node in its class. */
6332 	if (!(env->sd->flags & SD_ASYM_PACKING))
6333 		return true;
6334 
6335 	/*
6336 	 * ASYM_PACKING needs to move all the work to the lowest
6337 	 * numbered CPUs in the group, therefore mark all groups
6338 	 * higher than ourself as busy.
6339 	 */
6340 	if (sgs->sum_nr_running && env->dst_cpu < group_first_cpu(sg)) {
6341 		if (!sds->busiest)
6342 			return true;
6343 
6344 		if (group_first_cpu(sds->busiest) > group_first_cpu(sg))
6345 			return true;
6346 	}
6347 
6348 	return false;
6349 }
6350 
6351 #ifdef CONFIG_NUMA_BALANCING
6352 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
6353 {
6354 	if (sgs->sum_nr_running > sgs->nr_numa_running)
6355 		return regular;
6356 	if (sgs->sum_nr_running > sgs->nr_preferred_running)
6357 		return remote;
6358 	return all;
6359 }
6360 
6361 static inline enum fbq_type fbq_classify_rq(struct rq *rq)
6362 {
6363 	if (rq->nr_running > rq->nr_numa_running)
6364 		return regular;
6365 	if (rq->nr_running > rq->nr_preferred_running)
6366 		return remote;
6367 	return all;
6368 }
6369 #else
6370 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
6371 {
6372 	return all;
6373 }
6374 
6375 static inline enum fbq_type fbq_classify_rq(struct rq *rq)
6376 {
6377 	return regular;
6378 }
6379 #endif /* CONFIG_NUMA_BALANCING */
6380 
6381 /**
6382  * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
6383  * @env: The load balancing environment.
6384  * @sds: variable to hold the statistics for this sched_domain.
6385  */
6386 static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
6387 {
6388 	struct sched_domain *child = env->sd->child;
6389 	struct sched_group *sg = env->sd->groups;
6390 	struct sg_lb_stats tmp_sgs;
6391 	int load_idx, prefer_sibling = 0;
6392 	bool overload = false;
6393 
6394 	if (child && child->flags & SD_PREFER_SIBLING)
6395 		prefer_sibling = 1;
6396 
6397 	load_idx = get_sd_load_idx(env->sd, env->idle);
6398 
6399 	do {
6400 		struct sg_lb_stats *sgs = &tmp_sgs;
6401 		int local_group;
6402 
6403 		local_group = cpumask_test_cpu(env->dst_cpu, sched_group_cpus(sg));
6404 		if (local_group) {
6405 			sds->local = sg;
6406 			sgs = &sds->local_stat;
6407 
6408 			if (env->idle != CPU_NEWLY_IDLE ||
6409 			    time_after_eq(jiffies, sg->sgc->next_update))
6410 				update_group_capacity(env->sd, env->dst_cpu);
6411 		}
6412 
6413 		update_sg_lb_stats(env, sg, load_idx, local_group, sgs,
6414 						&overload);
6415 
6416 		if (local_group)
6417 			goto next_group;
6418 
6419 		/*
6420 		 * In case the child domain prefers tasks go to siblings
6421 		 * first, lower the sg capacity so that we'll try
6422 		 * and move all the excess tasks away. We lower the capacity
6423 		 * of a group only if the local group has the capacity to fit
6424 		 * these excess tasks. The extra check prevents the case where
6425 		 * you always pull from the heaviest group when it is already
6426 		 * under-utilized (possible with a large weight task outweighs
6427 		 * the tasks on the system).
6428 		 */
6429 		if (prefer_sibling && sds->local &&
6430 		    group_has_capacity(env, &sds->local_stat) &&
6431 		    (sgs->sum_nr_running > 1)) {
6432 			sgs->group_no_capacity = 1;
6433 			sgs->group_type = group_overloaded;
6434 		}
6435 
6436 		if (update_sd_pick_busiest(env, sds, sg, sgs)) {
6437 			sds->busiest = sg;
6438 			sds->busiest_stat = *sgs;
6439 		}
6440 
6441 next_group:
6442 		/* Now, start updating sd_lb_stats */
6443 		sds->total_load += sgs->group_load;
6444 		sds->total_capacity += sgs->group_capacity;
6445 
6446 		sg = sg->next;
6447 	} while (sg != env->sd->groups);
6448 
6449 	if (env->sd->flags & SD_NUMA)
6450 		env->fbq_type = fbq_classify_group(&sds->busiest_stat);
6451 
6452 	if (!env->sd->parent) {
6453 		/* update overload indicator if we are at root domain */
6454 		if (env->dst_rq->rd->overload != overload)
6455 			env->dst_rq->rd->overload = overload;
6456 	}
6457 
6458 }
6459 
6460 /**
6461  * check_asym_packing - Check to see if the group is packed into the
6462  *			sched doman.
6463  *
6464  * This is primarily intended to used at the sibling level.  Some
6465  * cores like POWER7 prefer to use lower numbered SMT threads.  In the
6466  * case of POWER7, it can move to lower SMT modes only when higher
6467  * threads are idle.  When in lower SMT modes, the threads will
6468  * perform better since they share less core resources.  Hence when we
6469  * have idle threads, we want them to be the higher ones.
6470  *
6471  * This packing function is run on idle threads.  It checks to see if
6472  * the busiest CPU in this domain (core in the P7 case) has a higher
6473  * CPU number than the packing function is being run on.  Here we are
6474  * assuming lower CPU number will be equivalent to lower a SMT thread
6475  * number.
6476  *
6477  * Return: 1 when packing is required and a task should be moved to
6478  * this CPU.  The amount of the imbalance is returned in *imbalance.
6479  *
6480  * @env: The load balancing environment.
6481  * @sds: Statistics of the sched_domain which is to be packed
6482  */
6483 static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds)
6484 {
6485 	int busiest_cpu;
6486 
6487 	if (!(env->sd->flags & SD_ASYM_PACKING))
6488 		return 0;
6489 
6490 	if (!sds->busiest)
6491 		return 0;
6492 
6493 	busiest_cpu = group_first_cpu(sds->busiest);
6494 	if (env->dst_cpu > busiest_cpu)
6495 		return 0;
6496 
6497 	env->imbalance = DIV_ROUND_CLOSEST(
6498 		sds->busiest_stat.avg_load * sds->busiest_stat.group_capacity,
6499 		SCHED_CAPACITY_SCALE);
6500 
6501 	return 1;
6502 }
6503 
6504 /**
6505  * fix_small_imbalance - Calculate the minor imbalance that exists
6506  *			amongst the groups of a sched_domain, during
6507  *			load balancing.
6508  * @env: The load balancing environment.
6509  * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
6510  */
6511 static inline
6512 void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
6513 {
6514 	unsigned long tmp, capa_now = 0, capa_move = 0;
6515 	unsigned int imbn = 2;
6516 	unsigned long scaled_busy_load_per_task;
6517 	struct sg_lb_stats *local, *busiest;
6518 
6519 	local = &sds->local_stat;
6520 	busiest = &sds->busiest_stat;
6521 
6522 	if (!local->sum_nr_running)
6523 		local->load_per_task = cpu_avg_load_per_task(env->dst_cpu);
6524 	else if (busiest->load_per_task > local->load_per_task)
6525 		imbn = 1;
6526 
6527 	scaled_busy_load_per_task =
6528 		(busiest->load_per_task * SCHED_CAPACITY_SCALE) /
6529 		busiest->group_capacity;
6530 
6531 	if (busiest->avg_load + scaled_busy_load_per_task >=
6532 	    local->avg_load + (scaled_busy_load_per_task * imbn)) {
6533 		env->imbalance = busiest->load_per_task;
6534 		return;
6535 	}
6536 
6537 	/*
6538 	 * OK, we don't have enough imbalance to justify moving tasks,
6539 	 * however we may be able to increase total CPU capacity used by
6540 	 * moving them.
6541 	 */
6542 
6543 	capa_now += busiest->group_capacity *
6544 			min(busiest->load_per_task, busiest->avg_load);
6545 	capa_now += local->group_capacity *
6546 			min(local->load_per_task, local->avg_load);
6547 	capa_now /= SCHED_CAPACITY_SCALE;
6548 
6549 	/* Amount of load we'd subtract */
6550 	if (busiest->avg_load > scaled_busy_load_per_task) {
6551 		capa_move += busiest->group_capacity *
6552 			    min(busiest->load_per_task,
6553 				busiest->avg_load - scaled_busy_load_per_task);
6554 	}
6555 
6556 	/* Amount of load we'd add */
6557 	if (busiest->avg_load * busiest->group_capacity <
6558 	    busiest->load_per_task * SCHED_CAPACITY_SCALE) {
6559 		tmp = (busiest->avg_load * busiest->group_capacity) /
6560 		      local->group_capacity;
6561 	} else {
6562 		tmp = (busiest->load_per_task * SCHED_CAPACITY_SCALE) /
6563 		      local->group_capacity;
6564 	}
6565 	capa_move += local->group_capacity *
6566 		    min(local->load_per_task, local->avg_load + tmp);
6567 	capa_move /= SCHED_CAPACITY_SCALE;
6568 
6569 	/* Move if we gain throughput */
6570 	if (capa_move > capa_now)
6571 		env->imbalance = busiest->load_per_task;
6572 }
6573 
6574 /**
6575  * calculate_imbalance - Calculate the amount of imbalance present within the
6576  *			 groups of a given sched_domain during load balance.
6577  * @env: load balance environment
6578  * @sds: statistics of the sched_domain whose imbalance is to be calculated.
6579  */
6580 static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
6581 {
6582 	unsigned long max_pull, load_above_capacity = ~0UL;
6583 	struct sg_lb_stats *local, *busiest;
6584 
6585 	local = &sds->local_stat;
6586 	busiest = &sds->busiest_stat;
6587 
6588 	if (busiest->group_type == group_imbalanced) {
6589 		/*
6590 		 * In the group_imb case we cannot rely on group-wide averages
6591 		 * to ensure cpu-load equilibrium, look at wider averages. XXX
6592 		 */
6593 		busiest->load_per_task =
6594 			min(busiest->load_per_task, sds->avg_load);
6595 	}
6596 
6597 	/*
6598 	 * In the presence of smp nice balancing, certain scenarios can have
6599 	 * max load less than avg load(as we skip the groups at or below
6600 	 * its cpu_capacity, while calculating max_load..)
6601 	 */
6602 	if (busiest->avg_load <= sds->avg_load ||
6603 	    local->avg_load >= sds->avg_load) {
6604 		env->imbalance = 0;
6605 		return fix_small_imbalance(env, sds);
6606 	}
6607 
6608 	/*
6609 	 * If there aren't any idle cpus, avoid creating some.
6610 	 */
6611 	if (busiest->group_type == group_overloaded &&
6612 	    local->group_type   == group_overloaded) {
6613 		load_above_capacity = busiest->sum_nr_running *
6614 					SCHED_LOAD_SCALE;
6615 		if (load_above_capacity > busiest->group_capacity)
6616 			load_above_capacity -= busiest->group_capacity;
6617 		else
6618 			load_above_capacity = ~0UL;
6619 	}
6620 
6621 	/*
6622 	 * We're trying to get all the cpus to the average_load, so we don't
6623 	 * want to push ourselves above the average load, nor do we wish to
6624 	 * reduce the max loaded cpu below the average load. At the same time,
6625 	 * we also don't want to reduce the group load below the group capacity
6626 	 * (so that we can implement power-savings policies etc). Thus we look
6627 	 * for the minimum possible imbalance.
6628 	 */
6629 	max_pull = min(busiest->avg_load - sds->avg_load, load_above_capacity);
6630 
6631 	/* How much load to actually move to equalise the imbalance */
6632 	env->imbalance = min(
6633 		max_pull * busiest->group_capacity,
6634 		(sds->avg_load - local->avg_load) * local->group_capacity
6635 	) / SCHED_CAPACITY_SCALE;
6636 
6637 	/*
6638 	 * if *imbalance is less than the average load per runnable task
6639 	 * there is no guarantee that any tasks will be moved so we'll have
6640 	 * a think about bumping its value to force at least one task to be
6641 	 * moved
6642 	 */
6643 	if (env->imbalance < busiest->load_per_task)
6644 		return fix_small_imbalance(env, sds);
6645 }
6646 
6647 /******* find_busiest_group() helpers end here *********************/
6648 
6649 /**
6650  * find_busiest_group - Returns the busiest group within the sched_domain
6651  * if there is an imbalance. If there isn't an imbalance, and
6652  * the user has opted for power-savings, it returns a group whose
6653  * CPUs can be put to idle by rebalancing those tasks elsewhere, if
6654  * such a group exists.
6655  *
6656  * Also calculates the amount of weighted load which should be moved
6657  * to restore balance.
6658  *
6659  * @env: The load balancing environment.
6660  *
6661  * Return:	- The busiest group if imbalance exists.
6662  *		- If no imbalance and user has opted for power-savings balance,
6663  *		   return the least loaded group whose CPUs can be
6664  *		   put to idle by rebalancing its tasks onto our group.
6665  */
6666 static struct sched_group *find_busiest_group(struct lb_env *env)
6667 {
6668 	struct sg_lb_stats *local, *busiest;
6669 	struct sd_lb_stats sds;
6670 
6671 	init_sd_lb_stats(&sds);
6672 
6673 	/*
6674 	 * Compute the various statistics relavent for load balancing at
6675 	 * this level.
6676 	 */
6677 	update_sd_lb_stats(env, &sds);
6678 	local = &sds.local_stat;
6679 	busiest = &sds.busiest_stat;
6680 
6681 	/* ASYM feature bypasses nice load balance check */
6682 	if ((env->idle == CPU_IDLE || env->idle == CPU_NEWLY_IDLE) &&
6683 	    check_asym_packing(env, &sds))
6684 		return sds.busiest;
6685 
6686 	/* There is no busy sibling group to pull tasks from */
6687 	if (!sds.busiest || busiest->sum_nr_running == 0)
6688 		goto out_balanced;
6689 
6690 	sds.avg_load = (SCHED_CAPACITY_SCALE * sds.total_load)
6691 						/ sds.total_capacity;
6692 
6693 	/*
6694 	 * If the busiest group is imbalanced the below checks don't
6695 	 * work because they assume all things are equal, which typically
6696 	 * isn't true due to cpus_allowed constraints and the like.
6697 	 */
6698 	if (busiest->group_type == group_imbalanced)
6699 		goto force_balance;
6700 
6701 	/* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
6702 	if (env->idle == CPU_NEWLY_IDLE && group_has_capacity(env, local) &&
6703 	    busiest->group_no_capacity)
6704 		goto force_balance;
6705 
6706 	/*
6707 	 * If the local group is busier than the selected busiest group
6708 	 * don't try and pull any tasks.
6709 	 */
6710 	if (local->avg_load >= busiest->avg_load)
6711 		goto out_balanced;
6712 
6713 	/*
6714 	 * Don't pull any tasks if this group is already above the domain
6715 	 * average load.
6716 	 */
6717 	if (local->avg_load >= sds.avg_load)
6718 		goto out_balanced;
6719 
6720 	if (env->idle == CPU_IDLE) {
6721 		/*
6722 		 * This cpu is idle. If the busiest group is not overloaded
6723 		 * and there is no imbalance between this and busiest group
6724 		 * wrt idle cpus, it is balanced. The imbalance becomes
6725 		 * significant if the diff is greater than 1 otherwise we
6726 		 * might end up to just move the imbalance on another group
6727 		 */
6728 		if ((busiest->group_type != group_overloaded) &&
6729 				(local->idle_cpus <= (busiest->idle_cpus + 1)))
6730 			goto out_balanced;
6731 	} else {
6732 		/*
6733 		 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
6734 		 * imbalance_pct to be conservative.
6735 		 */
6736 		if (100 * busiest->avg_load <=
6737 				env->sd->imbalance_pct * local->avg_load)
6738 			goto out_balanced;
6739 	}
6740 
6741 force_balance:
6742 	/* Looks like there is an imbalance. Compute it */
6743 	calculate_imbalance(env, &sds);
6744 	return sds.busiest;
6745 
6746 out_balanced:
6747 	env->imbalance = 0;
6748 	return NULL;
6749 }
6750 
6751 /*
6752  * find_busiest_queue - find the busiest runqueue among the cpus in group.
6753  */
6754 static struct rq *find_busiest_queue(struct lb_env *env,
6755 				     struct sched_group *group)
6756 {
6757 	struct rq *busiest = NULL, *rq;
6758 	unsigned long busiest_load = 0, busiest_capacity = 1;
6759 	int i;
6760 
6761 	for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
6762 		unsigned long capacity, wl;
6763 		enum fbq_type rt;
6764 
6765 		rq = cpu_rq(i);
6766 		rt = fbq_classify_rq(rq);
6767 
6768 		/*
6769 		 * We classify groups/runqueues into three groups:
6770 		 *  - regular: there are !numa tasks
6771 		 *  - remote:  there are numa tasks that run on the 'wrong' node
6772 		 *  - all:     there is no distinction
6773 		 *
6774 		 * In order to avoid migrating ideally placed numa tasks,
6775 		 * ignore those when there's better options.
6776 		 *
6777 		 * If we ignore the actual busiest queue to migrate another
6778 		 * task, the next balance pass can still reduce the busiest
6779 		 * queue by moving tasks around inside the node.
6780 		 *
6781 		 * If we cannot move enough load due to this classification
6782 		 * the next pass will adjust the group classification and
6783 		 * allow migration of more tasks.
6784 		 *
6785 		 * Both cases only affect the total convergence complexity.
6786 		 */
6787 		if (rt > env->fbq_type)
6788 			continue;
6789 
6790 		capacity = capacity_of(i);
6791 
6792 		wl = weighted_cpuload(i);
6793 
6794 		/*
6795 		 * When comparing with imbalance, use weighted_cpuload()
6796 		 * which is not scaled with the cpu capacity.
6797 		 */
6798 
6799 		if (rq->nr_running == 1 && wl > env->imbalance &&
6800 		    !check_cpu_capacity(rq, env->sd))
6801 			continue;
6802 
6803 		/*
6804 		 * For the load comparisons with the other cpu's, consider
6805 		 * the weighted_cpuload() scaled with the cpu capacity, so
6806 		 * that the load can be moved away from the cpu that is
6807 		 * potentially running at a lower capacity.
6808 		 *
6809 		 * Thus we're looking for max(wl_i / capacity_i), crosswise
6810 		 * multiplication to rid ourselves of the division works out
6811 		 * to: wl_i * capacity_j > wl_j * capacity_i;  where j is
6812 		 * our previous maximum.
6813 		 */
6814 		if (wl * busiest_capacity > busiest_load * capacity) {
6815 			busiest_load = wl;
6816 			busiest_capacity = capacity;
6817 			busiest = rq;
6818 		}
6819 	}
6820 
6821 	return busiest;
6822 }
6823 
6824 /*
6825  * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
6826  * so long as it is large enough.
6827  */
6828 #define MAX_PINNED_INTERVAL	512
6829 
6830 /* Working cpumask for load_balance and load_balance_newidle. */
6831 DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
6832 
6833 static int need_active_balance(struct lb_env *env)
6834 {
6835 	struct sched_domain *sd = env->sd;
6836 
6837 	if (env->idle == CPU_NEWLY_IDLE) {
6838 
6839 		/*
6840 		 * ASYM_PACKING needs to force migrate tasks from busy but
6841 		 * higher numbered CPUs in order to pack all tasks in the
6842 		 * lowest numbered CPUs.
6843 		 */
6844 		if ((sd->flags & SD_ASYM_PACKING) && env->src_cpu > env->dst_cpu)
6845 			return 1;
6846 	}
6847 
6848 	/*
6849 	 * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task.
6850 	 * It's worth migrating the task if the src_cpu's capacity is reduced
6851 	 * because of other sched_class or IRQs if more capacity stays
6852 	 * available on dst_cpu.
6853 	 */
6854 	if ((env->idle != CPU_NOT_IDLE) &&
6855 	    (env->src_rq->cfs.h_nr_running == 1)) {
6856 		if ((check_cpu_capacity(env->src_rq, sd)) &&
6857 		    (capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100))
6858 			return 1;
6859 	}
6860 
6861 	return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
6862 }
6863 
6864 static int active_load_balance_cpu_stop(void *data);
6865 
6866 static int should_we_balance(struct lb_env *env)
6867 {
6868 	struct sched_group *sg = env->sd->groups;
6869 	struct cpumask *sg_cpus, *sg_mask;
6870 	int cpu, balance_cpu = -1;
6871 
6872 	/*
6873 	 * In the newly idle case, we will allow all the cpu's
6874 	 * to do the newly idle load balance.
6875 	 */
6876 	if (env->idle == CPU_NEWLY_IDLE)
6877 		return 1;
6878 
6879 	sg_cpus = sched_group_cpus(sg);
6880 	sg_mask = sched_group_mask(sg);
6881 	/* Try to find first idle cpu */
6882 	for_each_cpu_and(cpu, sg_cpus, env->cpus) {
6883 		if (!cpumask_test_cpu(cpu, sg_mask) || !idle_cpu(cpu))
6884 			continue;
6885 
6886 		balance_cpu = cpu;
6887 		break;
6888 	}
6889 
6890 	if (balance_cpu == -1)
6891 		balance_cpu = group_balance_cpu(sg);
6892 
6893 	/*
6894 	 * First idle cpu or the first cpu(busiest) in this sched group
6895 	 * is eligible for doing load balancing at this and above domains.
6896 	 */
6897 	return balance_cpu == env->dst_cpu;
6898 }
6899 
6900 /*
6901  * Check this_cpu to ensure it is balanced within domain. Attempt to move
6902  * tasks if there is an imbalance.
6903  */
6904 static int load_balance(int this_cpu, struct rq *this_rq,
6905 			struct sched_domain *sd, enum cpu_idle_type idle,
6906 			int *continue_balancing)
6907 {
6908 	int ld_moved, cur_ld_moved, active_balance = 0;
6909 	struct sched_domain *sd_parent = sd->parent;
6910 	struct sched_group *group;
6911 	struct rq *busiest;
6912 	unsigned long flags;
6913 	struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask);
6914 
6915 	struct lb_env env = {
6916 		.sd		= sd,
6917 		.dst_cpu	= this_cpu,
6918 		.dst_rq		= this_rq,
6919 		.dst_grpmask    = sched_group_cpus(sd->groups),
6920 		.idle		= idle,
6921 		.loop_break	= sched_nr_migrate_break,
6922 		.cpus		= cpus,
6923 		.fbq_type	= all,
6924 		.tasks		= LIST_HEAD_INIT(env.tasks),
6925 	};
6926 
6927 	/*
6928 	 * For NEWLY_IDLE load_balancing, we don't need to consider
6929 	 * other cpus in our group
6930 	 */
6931 	if (idle == CPU_NEWLY_IDLE)
6932 		env.dst_grpmask = NULL;
6933 
6934 	cpumask_copy(cpus, cpu_active_mask);
6935 
6936 	schedstat_inc(sd, lb_count[idle]);
6937 
6938 redo:
6939 	if (!should_we_balance(&env)) {
6940 		*continue_balancing = 0;
6941 		goto out_balanced;
6942 	}
6943 
6944 	group = find_busiest_group(&env);
6945 	if (!group) {
6946 		schedstat_inc(sd, lb_nobusyg[idle]);
6947 		goto out_balanced;
6948 	}
6949 
6950 	busiest = find_busiest_queue(&env, group);
6951 	if (!busiest) {
6952 		schedstat_inc(sd, lb_nobusyq[idle]);
6953 		goto out_balanced;
6954 	}
6955 
6956 	BUG_ON(busiest == env.dst_rq);
6957 
6958 	schedstat_add(sd, lb_imbalance[idle], env.imbalance);
6959 
6960 	env.src_cpu = busiest->cpu;
6961 	env.src_rq = busiest;
6962 
6963 	ld_moved = 0;
6964 	if (busiest->nr_running > 1) {
6965 		/*
6966 		 * Attempt to move tasks. If find_busiest_group has found
6967 		 * an imbalance but busiest->nr_running <= 1, the group is
6968 		 * still unbalanced. ld_moved simply stays zero, so it is
6969 		 * correctly treated as an imbalance.
6970 		 */
6971 		env.flags |= LBF_ALL_PINNED;
6972 		env.loop_max  = min(sysctl_sched_nr_migrate, busiest->nr_running);
6973 
6974 more_balance:
6975 		raw_spin_lock_irqsave(&busiest->lock, flags);
6976 
6977 		/*
6978 		 * cur_ld_moved - load moved in current iteration
6979 		 * ld_moved     - cumulative load moved across iterations
6980 		 */
6981 		cur_ld_moved = detach_tasks(&env);
6982 
6983 		/*
6984 		 * We've detached some tasks from busiest_rq. Every
6985 		 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely
6986 		 * unlock busiest->lock, and we are able to be sure
6987 		 * that nobody can manipulate the tasks in parallel.
6988 		 * See task_rq_lock() family for the details.
6989 		 */
6990 
6991 		raw_spin_unlock(&busiest->lock);
6992 
6993 		if (cur_ld_moved) {
6994 			attach_tasks(&env);
6995 			ld_moved += cur_ld_moved;
6996 		}
6997 
6998 		local_irq_restore(flags);
6999 
7000 		if (env.flags & LBF_NEED_BREAK) {
7001 			env.flags &= ~LBF_NEED_BREAK;
7002 			goto more_balance;
7003 		}
7004 
7005 		/*
7006 		 * Revisit (affine) tasks on src_cpu that couldn't be moved to
7007 		 * us and move them to an alternate dst_cpu in our sched_group
7008 		 * where they can run. The upper limit on how many times we
7009 		 * iterate on same src_cpu is dependent on number of cpus in our
7010 		 * sched_group.
7011 		 *
7012 		 * This changes load balance semantics a bit on who can move
7013 		 * load to a given_cpu. In addition to the given_cpu itself
7014 		 * (or a ilb_cpu acting on its behalf where given_cpu is
7015 		 * nohz-idle), we now have balance_cpu in a position to move
7016 		 * load to given_cpu. In rare situations, this may cause
7017 		 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
7018 		 * _independently_ and at _same_ time to move some load to
7019 		 * given_cpu) causing exceess load to be moved to given_cpu.
7020 		 * This however should not happen so much in practice and
7021 		 * moreover subsequent load balance cycles should correct the
7022 		 * excess load moved.
7023 		 */
7024 		if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
7025 
7026 			/* Prevent to re-select dst_cpu via env's cpus */
7027 			cpumask_clear_cpu(env.dst_cpu, env.cpus);
7028 
7029 			env.dst_rq	 = cpu_rq(env.new_dst_cpu);
7030 			env.dst_cpu	 = env.new_dst_cpu;
7031 			env.flags	&= ~LBF_DST_PINNED;
7032 			env.loop	 = 0;
7033 			env.loop_break	 = sched_nr_migrate_break;
7034 
7035 			/*
7036 			 * Go back to "more_balance" rather than "redo" since we
7037 			 * need to continue with same src_cpu.
7038 			 */
7039 			goto more_balance;
7040 		}
7041 
7042 		/*
7043 		 * We failed to reach balance because of affinity.
7044 		 */
7045 		if (sd_parent) {
7046 			int *group_imbalance = &sd_parent->groups->sgc->imbalance;
7047 
7048 			if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0)
7049 				*group_imbalance = 1;
7050 		}
7051 
7052 		/* All tasks on this runqueue were pinned by CPU affinity */
7053 		if (unlikely(env.flags & LBF_ALL_PINNED)) {
7054 			cpumask_clear_cpu(cpu_of(busiest), cpus);
7055 			if (!cpumask_empty(cpus)) {
7056 				env.loop = 0;
7057 				env.loop_break = sched_nr_migrate_break;
7058 				goto redo;
7059 			}
7060 			goto out_all_pinned;
7061 		}
7062 	}
7063 
7064 	if (!ld_moved) {
7065 		schedstat_inc(sd, lb_failed[idle]);
7066 		/*
7067 		 * Increment the failure counter only on periodic balance.
7068 		 * We do not want newidle balance, which can be very
7069 		 * frequent, pollute the failure counter causing
7070 		 * excessive cache_hot migrations and active balances.
7071 		 */
7072 		if (idle != CPU_NEWLY_IDLE)
7073 			sd->nr_balance_failed++;
7074 
7075 		if (need_active_balance(&env)) {
7076 			raw_spin_lock_irqsave(&busiest->lock, flags);
7077 
7078 			/* don't kick the active_load_balance_cpu_stop,
7079 			 * if the curr task on busiest cpu can't be
7080 			 * moved to this_cpu
7081 			 */
7082 			if (!cpumask_test_cpu(this_cpu,
7083 					tsk_cpus_allowed(busiest->curr))) {
7084 				raw_spin_unlock_irqrestore(&busiest->lock,
7085 							    flags);
7086 				env.flags |= LBF_ALL_PINNED;
7087 				goto out_one_pinned;
7088 			}
7089 
7090 			/*
7091 			 * ->active_balance synchronizes accesses to
7092 			 * ->active_balance_work.  Once set, it's cleared
7093 			 * only after active load balance is finished.
7094 			 */
7095 			if (!busiest->active_balance) {
7096 				busiest->active_balance = 1;
7097 				busiest->push_cpu = this_cpu;
7098 				active_balance = 1;
7099 			}
7100 			raw_spin_unlock_irqrestore(&busiest->lock, flags);
7101 
7102 			if (active_balance) {
7103 				stop_one_cpu_nowait(cpu_of(busiest),
7104 					active_load_balance_cpu_stop, busiest,
7105 					&busiest->active_balance_work);
7106 			}
7107 
7108 			/*
7109 			 * We've kicked active balancing, reset the failure
7110 			 * counter.
7111 			 */
7112 			sd->nr_balance_failed = sd->cache_nice_tries+1;
7113 		}
7114 	} else
7115 		sd->nr_balance_failed = 0;
7116 
7117 	if (likely(!active_balance)) {
7118 		/* We were unbalanced, so reset the balancing interval */
7119 		sd->balance_interval = sd->min_interval;
7120 	} else {
7121 		/*
7122 		 * If we've begun active balancing, start to back off. This
7123 		 * case may not be covered by the all_pinned logic if there
7124 		 * is only 1 task on the busy runqueue (because we don't call
7125 		 * detach_tasks).
7126 		 */
7127 		if (sd->balance_interval < sd->max_interval)
7128 			sd->balance_interval *= 2;
7129 	}
7130 
7131 	goto out;
7132 
7133 out_balanced:
7134 	/*
7135 	 * We reach balance although we may have faced some affinity
7136 	 * constraints. Clear the imbalance flag if it was set.
7137 	 */
7138 	if (sd_parent) {
7139 		int *group_imbalance = &sd_parent->groups->sgc->imbalance;
7140 
7141 		if (*group_imbalance)
7142 			*group_imbalance = 0;
7143 	}
7144 
7145 out_all_pinned:
7146 	/*
7147 	 * We reach balance because all tasks are pinned at this level so
7148 	 * we can't migrate them. Let the imbalance flag set so parent level
7149 	 * can try to migrate them.
7150 	 */
7151 	schedstat_inc(sd, lb_balanced[idle]);
7152 
7153 	sd->nr_balance_failed = 0;
7154 
7155 out_one_pinned:
7156 	/* tune up the balancing interval */
7157 	if (((env.flags & LBF_ALL_PINNED) &&
7158 			sd->balance_interval < MAX_PINNED_INTERVAL) ||
7159 			(sd->balance_interval < sd->max_interval))
7160 		sd->balance_interval *= 2;
7161 
7162 	ld_moved = 0;
7163 out:
7164 	return ld_moved;
7165 }
7166 
7167 static inline unsigned long
7168 get_sd_balance_interval(struct sched_domain *sd, int cpu_busy)
7169 {
7170 	unsigned long interval = sd->balance_interval;
7171 
7172 	if (cpu_busy)
7173 		interval *= sd->busy_factor;
7174 
7175 	/* scale ms to jiffies */
7176 	interval = msecs_to_jiffies(interval);
7177 	interval = clamp(interval, 1UL, max_load_balance_interval);
7178 
7179 	return interval;
7180 }
7181 
7182 static inline void
7183 update_next_balance(struct sched_domain *sd, int cpu_busy, unsigned long *next_balance)
7184 {
7185 	unsigned long interval, next;
7186 
7187 	interval = get_sd_balance_interval(sd, cpu_busy);
7188 	next = sd->last_balance + interval;
7189 
7190 	if (time_after(*next_balance, next))
7191 		*next_balance = next;
7192 }
7193 
7194 /*
7195  * idle_balance is called by schedule() if this_cpu is about to become
7196  * idle. Attempts to pull tasks from other CPUs.
7197  */
7198 static int idle_balance(struct rq *this_rq)
7199 {
7200 	unsigned long next_balance = jiffies + HZ;
7201 	int this_cpu = this_rq->cpu;
7202 	struct sched_domain *sd;
7203 	int pulled_task = 0;
7204 	u64 curr_cost = 0;
7205 
7206 	idle_enter_fair(this_rq);
7207 
7208 	/*
7209 	 * We must set idle_stamp _before_ calling idle_balance(), such that we
7210 	 * measure the duration of idle_balance() as idle time.
7211 	 */
7212 	this_rq->idle_stamp = rq_clock(this_rq);
7213 
7214 	if (this_rq->avg_idle < sysctl_sched_migration_cost ||
7215 	    !this_rq->rd->overload) {
7216 		rcu_read_lock();
7217 		sd = rcu_dereference_check_sched_domain(this_rq->sd);
7218 		if (sd)
7219 			update_next_balance(sd, 0, &next_balance);
7220 		rcu_read_unlock();
7221 
7222 		goto out;
7223 	}
7224 
7225 	raw_spin_unlock(&this_rq->lock);
7226 
7227 	update_blocked_averages(this_cpu);
7228 	rcu_read_lock();
7229 	for_each_domain(this_cpu, sd) {
7230 		int continue_balancing = 1;
7231 		u64 t0, domain_cost;
7232 
7233 		if (!(sd->flags & SD_LOAD_BALANCE))
7234 			continue;
7235 
7236 		if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) {
7237 			update_next_balance(sd, 0, &next_balance);
7238 			break;
7239 		}
7240 
7241 		if (sd->flags & SD_BALANCE_NEWIDLE) {
7242 			t0 = sched_clock_cpu(this_cpu);
7243 
7244 			pulled_task = load_balance(this_cpu, this_rq,
7245 						   sd, CPU_NEWLY_IDLE,
7246 						   &continue_balancing);
7247 
7248 			domain_cost = sched_clock_cpu(this_cpu) - t0;
7249 			if (domain_cost > sd->max_newidle_lb_cost)
7250 				sd->max_newidle_lb_cost = domain_cost;
7251 
7252 			curr_cost += domain_cost;
7253 		}
7254 
7255 		update_next_balance(sd, 0, &next_balance);
7256 
7257 		/*
7258 		 * Stop searching for tasks to pull if there are
7259 		 * now runnable tasks on this rq.
7260 		 */
7261 		if (pulled_task || this_rq->nr_running > 0)
7262 			break;
7263 	}
7264 	rcu_read_unlock();
7265 
7266 	raw_spin_lock(&this_rq->lock);
7267 
7268 	if (curr_cost > this_rq->max_idle_balance_cost)
7269 		this_rq->max_idle_balance_cost = curr_cost;
7270 
7271 	/*
7272 	 * While browsing the domains, we released the rq lock, a task could
7273 	 * have been enqueued in the meantime. Since we're not going idle,
7274 	 * pretend we pulled a task.
7275 	 */
7276 	if (this_rq->cfs.h_nr_running && !pulled_task)
7277 		pulled_task = 1;
7278 
7279 out:
7280 	/* Move the next balance forward */
7281 	if (time_after(this_rq->next_balance, next_balance))
7282 		this_rq->next_balance = next_balance;
7283 
7284 	/* Is there a task of a high priority class? */
7285 	if (this_rq->nr_running != this_rq->cfs.h_nr_running)
7286 		pulled_task = -1;
7287 
7288 	if (pulled_task) {
7289 		idle_exit_fair(this_rq);
7290 		this_rq->idle_stamp = 0;
7291 	}
7292 
7293 	return pulled_task;
7294 }
7295 
7296 /*
7297  * active_load_balance_cpu_stop is run by cpu stopper. It pushes
7298  * running tasks off the busiest CPU onto idle CPUs. It requires at
7299  * least 1 task to be running on each physical CPU where possible, and
7300  * avoids physical / logical imbalances.
7301  */
7302 static int active_load_balance_cpu_stop(void *data)
7303 {
7304 	struct rq *busiest_rq = data;
7305 	int busiest_cpu = cpu_of(busiest_rq);
7306 	int target_cpu = busiest_rq->push_cpu;
7307 	struct rq *target_rq = cpu_rq(target_cpu);
7308 	struct sched_domain *sd;
7309 	struct task_struct *p = NULL;
7310 
7311 	raw_spin_lock_irq(&busiest_rq->lock);
7312 
7313 	/* make sure the requested cpu hasn't gone down in the meantime */
7314 	if (unlikely(busiest_cpu != smp_processor_id() ||
7315 		     !busiest_rq->active_balance))
7316 		goto out_unlock;
7317 
7318 	/* Is there any task to move? */
7319 	if (busiest_rq->nr_running <= 1)
7320 		goto out_unlock;
7321 
7322 	/*
7323 	 * This condition is "impossible", if it occurs
7324 	 * we need to fix it. Originally reported by
7325 	 * Bjorn Helgaas on a 128-cpu setup.
7326 	 */
7327 	BUG_ON(busiest_rq == target_rq);
7328 
7329 	/* Search for an sd spanning us and the target CPU. */
7330 	rcu_read_lock();
7331 	for_each_domain(target_cpu, sd) {
7332 		if ((sd->flags & SD_LOAD_BALANCE) &&
7333 		    cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
7334 				break;
7335 	}
7336 
7337 	if (likely(sd)) {
7338 		struct lb_env env = {
7339 			.sd		= sd,
7340 			.dst_cpu	= target_cpu,
7341 			.dst_rq		= target_rq,
7342 			.src_cpu	= busiest_rq->cpu,
7343 			.src_rq		= busiest_rq,
7344 			.idle		= CPU_IDLE,
7345 		};
7346 
7347 		schedstat_inc(sd, alb_count);
7348 
7349 		p = detach_one_task(&env);
7350 		if (p)
7351 			schedstat_inc(sd, alb_pushed);
7352 		else
7353 			schedstat_inc(sd, alb_failed);
7354 	}
7355 	rcu_read_unlock();
7356 out_unlock:
7357 	busiest_rq->active_balance = 0;
7358 	raw_spin_unlock(&busiest_rq->lock);
7359 
7360 	if (p)
7361 		attach_one_task(target_rq, p);
7362 
7363 	local_irq_enable();
7364 
7365 	return 0;
7366 }
7367 
7368 static inline int on_null_domain(struct rq *rq)
7369 {
7370 	return unlikely(!rcu_dereference_sched(rq->sd));
7371 }
7372 
7373 #ifdef CONFIG_NO_HZ_COMMON
7374 /*
7375  * idle load balancing details
7376  * - When one of the busy CPUs notice that there may be an idle rebalancing
7377  *   needed, they will kick the idle load balancer, which then does idle
7378  *   load balancing for all the idle CPUs.
7379  */
7380 static struct {
7381 	cpumask_var_t idle_cpus_mask;
7382 	atomic_t nr_cpus;
7383 	unsigned long next_balance;     /* in jiffy units */
7384 } nohz ____cacheline_aligned;
7385 
7386 static inline int find_new_ilb(void)
7387 {
7388 	int ilb = cpumask_first(nohz.idle_cpus_mask);
7389 
7390 	if (ilb < nr_cpu_ids && idle_cpu(ilb))
7391 		return ilb;
7392 
7393 	return nr_cpu_ids;
7394 }
7395 
7396 /*
7397  * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
7398  * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
7399  * CPU (if there is one).
7400  */
7401 static void nohz_balancer_kick(void)
7402 {
7403 	int ilb_cpu;
7404 
7405 	nohz.next_balance++;
7406 
7407 	ilb_cpu = find_new_ilb();
7408 
7409 	if (ilb_cpu >= nr_cpu_ids)
7410 		return;
7411 
7412 	if (test_and_set_bit(NOHZ_BALANCE_KICK, nohz_flags(ilb_cpu)))
7413 		return;
7414 	/*
7415 	 * Use smp_send_reschedule() instead of resched_cpu().
7416 	 * This way we generate a sched IPI on the target cpu which
7417 	 * is idle. And the softirq performing nohz idle load balance
7418 	 * will be run before returning from the IPI.
7419 	 */
7420 	smp_send_reschedule(ilb_cpu);
7421 	return;
7422 }
7423 
7424 static inline void nohz_balance_exit_idle(int cpu)
7425 {
7426 	if (unlikely(test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))) {
7427 		/*
7428 		 * Completely isolated CPUs don't ever set, so we must test.
7429 		 */
7430 		if (likely(cpumask_test_cpu(cpu, nohz.idle_cpus_mask))) {
7431 			cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
7432 			atomic_dec(&nohz.nr_cpus);
7433 		}
7434 		clear_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
7435 	}
7436 }
7437 
7438 static inline void set_cpu_sd_state_busy(void)
7439 {
7440 	struct sched_domain *sd;
7441 	int cpu = smp_processor_id();
7442 
7443 	rcu_read_lock();
7444 	sd = rcu_dereference(per_cpu(sd_busy, cpu));
7445 
7446 	if (!sd || !sd->nohz_idle)
7447 		goto unlock;
7448 	sd->nohz_idle = 0;
7449 
7450 	atomic_inc(&sd->groups->sgc->nr_busy_cpus);
7451 unlock:
7452 	rcu_read_unlock();
7453 }
7454 
7455 void set_cpu_sd_state_idle(void)
7456 {
7457 	struct sched_domain *sd;
7458 	int cpu = smp_processor_id();
7459 
7460 	rcu_read_lock();
7461 	sd = rcu_dereference(per_cpu(sd_busy, cpu));
7462 
7463 	if (!sd || sd->nohz_idle)
7464 		goto unlock;
7465 	sd->nohz_idle = 1;
7466 
7467 	atomic_dec(&sd->groups->sgc->nr_busy_cpus);
7468 unlock:
7469 	rcu_read_unlock();
7470 }
7471 
7472 /*
7473  * This routine will record that the cpu is going idle with tick stopped.
7474  * This info will be used in performing idle load balancing in the future.
7475  */
7476 void nohz_balance_enter_idle(int cpu)
7477 {
7478 	/*
7479 	 * If this cpu is going down, then nothing needs to be done.
7480 	 */
7481 	if (!cpu_active(cpu))
7482 		return;
7483 
7484 	if (test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))
7485 		return;
7486 
7487 	/*
7488 	 * If we're a completely isolated CPU, we don't play.
7489 	 */
7490 	if (on_null_domain(cpu_rq(cpu)))
7491 		return;
7492 
7493 	cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
7494 	atomic_inc(&nohz.nr_cpus);
7495 	set_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
7496 }
7497 
7498 static int sched_ilb_notifier(struct notifier_block *nfb,
7499 					unsigned long action, void *hcpu)
7500 {
7501 	switch (action & ~CPU_TASKS_FROZEN) {
7502 	case CPU_DYING:
7503 		nohz_balance_exit_idle(smp_processor_id());
7504 		return NOTIFY_OK;
7505 	default:
7506 		return NOTIFY_DONE;
7507 	}
7508 }
7509 #endif
7510 
7511 static DEFINE_SPINLOCK(balancing);
7512 
7513 /*
7514  * Scale the max load_balance interval with the number of CPUs in the system.
7515  * This trades load-balance latency on larger machines for less cross talk.
7516  */
7517 void update_max_interval(void)
7518 {
7519 	max_load_balance_interval = HZ*num_online_cpus()/10;
7520 }
7521 
7522 /*
7523  * It checks each scheduling domain to see if it is due to be balanced,
7524  * and initiates a balancing operation if so.
7525  *
7526  * Balancing parameters are set up in init_sched_domains.
7527  */
7528 static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle)
7529 {
7530 	int continue_balancing = 1;
7531 	int cpu = rq->cpu;
7532 	unsigned long interval;
7533 	struct sched_domain *sd;
7534 	/* Earliest time when we have to do rebalance again */
7535 	unsigned long next_balance = jiffies + 60*HZ;
7536 	int update_next_balance = 0;
7537 	int need_serialize, need_decay = 0;
7538 	u64 max_cost = 0;
7539 
7540 	update_blocked_averages(cpu);
7541 
7542 	rcu_read_lock();
7543 	for_each_domain(cpu, sd) {
7544 		/*
7545 		 * Decay the newidle max times here because this is a regular
7546 		 * visit to all the domains. Decay ~1% per second.
7547 		 */
7548 		if (time_after(jiffies, sd->next_decay_max_lb_cost)) {
7549 			sd->max_newidle_lb_cost =
7550 				(sd->max_newidle_lb_cost * 253) / 256;
7551 			sd->next_decay_max_lb_cost = jiffies + HZ;
7552 			need_decay = 1;
7553 		}
7554 		max_cost += sd->max_newidle_lb_cost;
7555 
7556 		if (!(sd->flags & SD_LOAD_BALANCE))
7557 			continue;
7558 
7559 		/*
7560 		 * Stop the load balance at this level. There is another
7561 		 * CPU in our sched group which is doing load balancing more
7562 		 * actively.
7563 		 */
7564 		if (!continue_balancing) {
7565 			if (need_decay)
7566 				continue;
7567 			break;
7568 		}
7569 
7570 		interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
7571 
7572 		need_serialize = sd->flags & SD_SERIALIZE;
7573 		if (need_serialize) {
7574 			if (!spin_trylock(&balancing))
7575 				goto out;
7576 		}
7577 
7578 		if (time_after_eq(jiffies, sd->last_balance + interval)) {
7579 			if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
7580 				/*
7581 				 * The LBF_DST_PINNED logic could have changed
7582 				 * env->dst_cpu, so we can't know our idle
7583 				 * state even if we migrated tasks. Update it.
7584 				 */
7585 				idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
7586 			}
7587 			sd->last_balance = jiffies;
7588 			interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
7589 		}
7590 		if (need_serialize)
7591 			spin_unlock(&balancing);
7592 out:
7593 		if (time_after(next_balance, sd->last_balance + interval)) {
7594 			next_balance = sd->last_balance + interval;
7595 			update_next_balance = 1;
7596 		}
7597 	}
7598 	if (need_decay) {
7599 		/*
7600 		 * Ensure the rq-wide value also decays but keep it at a
7601 		 * reasonable floor to avoid funnies with rq->avg_idle.
7602 		 */
7603 		rq->max_idle_balance_cost =
7604 			max((u64)sysctl_sched_migration_cost, max_cost);
7605 	}
7606 	rcu_read_unlock();
7607 
7608 	/*
7609 	 * next_balance will be updated only when there is a need.
7610 	 * When the cpu is attached to null domain for ex, it will not be
7611 	 * updated.
7612 	 */
7613 	if (likely(update_next_balance))
7614 		rq->next_balance = next_balance;
7615 }
7616 
7617 #ifdef CONFIG_NO_HZ_COMMON
7618 /*
7619  * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
7620  * rebalancing for all the cpus for whom scheduler ticks are stopped.
7621  */
7622 static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
7623 {
7624 	int this_cpu = this_rq->cpu;
7625 	struct rq *rq;
7626 	int balance_cpu;
7627 
7628 	if (idle != CPU_IDLE ||
7629 	    !test_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu)))
7630 		goto end;
7631 
7632 	for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
7633 		if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
7634 			continue;
7635 
7636 		/*
7637 		 * If this cpu gets work to do, stop the load balancing
7638 		 * work being done for other cpus. Next load
7639 		 * balancing owner will pick it up.
7640 		 */
7641 		if (need_resched())
7642 			break;
7643 
7644 		rq = cpu_rq(balance_cpu);
7645 
7646 		/*
7647 		 * If time for next balance is due,
7648 		 * do the balance.
7649 		 */
7650 		if (time_after_eq(jiffies, rq->next_balance)) {
7651 			raw_spin_lock_irq(&rq->lock);
7652 			update_rq_clock(rq);
7653 			update_idle_cpu_load(rq);
7654 			raw_spin_unlock_irq(&rq->lock);
7655 			rebalance_domains(rq, CPU_IDLE);
7656 		}
7657 
7658 		if (time_after(this_rq->next_balance, rq->next_balance))
7659 			this_rq->next_balance = rq->next_balance;
7660 	}
7661 	nohz.next_balance = this_rq->next_balance;
7662 end:
7663 	clear_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu));
7664 }
7665 
7666 /*
7667  * Current heuristic for kicking the idle load balancer in the presence
7668  * of an idle cpu in the system.
7669  *   - This rq has more than one task.
7670  *   - This rq has at least one CFS task and the capacity of the CPU is
7671  *     significantly reduced because of RT tasks or IRQs.
7672  *   - At parent of LLC scheduler domain level, this cpu's scheduler group has
7673  *     multiple busy cpu.
7674  *   - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler
7675  *     domain span are idle.
7676  */
7677 static inline bool nohz_kick_needed(struct rq *rq)
7678 {
7679 	unsigned long now = jiffies;
7680 	struct sched_domain *sd;
7681 	struct sched_group_capacity *sgc;
7682 	int nr_busy, cpu = rq->cpu;
7683 	bool kick = false;
7684 
7685 	if (unlikely(rq->idle_balance))
7686 		return false;
7687 
7688        /*
7689 	* We may be recently in ticked or tickless idle mode. At the first
7690 	* busy tick after returning from idle, we will update the busy stats.
7691 	*/
7692 	set_cpu_sd_state_busy();
7693 	nohz_balance_exit_idle(cpu);
7694 
7695 	/*
7696 	 * None are in tickless mode and hence no need for NOHZ idle load
7697 	 * balancing.
7698 	 */
7699 	if (likely(!atomic_read(&nohz.nr_cpus)))
7700 		return false;
7701 
7702 	if (time_before(now, nohz.next_balance))
7703 		return false;
7704 
7705 	if (rq->nr_running >= 2)
7706 		return true;
7707 
7708 	rcu_read_lock();
7709 	sd = rcu_dereference(per_cpu(sd_busy, cpu));
7710 	if (sd) {
7711 		sgc = sd->groups->sgc;
7712 		nr_busy = atomic_read(&sgc->nr_busy_cpus);
7713 
7714 		if (nr_busy > 1) {
7715 			kick = true;
7716 			goto unlock;
7717 		}
7718 
7719 	}
7720 
7721 	sd = rcu_dereference(rq->sd);
7722 	if (sd) {
7723 		if ((rq->cfs.h_nr_running >= 1) &&
7724 				check_cpu_capacity(rq, sd)) {
7725 			kick = true;
7726 			goto unlock;
7727 		}
7728 	}
7729 
7730 	sd = rcu_dereference(per_cpu(sd_asym, cpu));
7731 	if (sd && (cpumask_first_and(nohz.idle_cpus_mask,
7732 				  sched_domain_span(sd)) < cpu)) {
7733 		kick = true;
7734 		goto unlock;
7735 	}
7736 
7737 unlock:
7738 	rcu_read_unlock();
7739 	return kick;
7740 }
7741 #else
7742 static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) { }
7743 #endif
7744 
7745 /*
7746  * run_rebalance_domains is triggered when needed from the scheduler tick.
7747  * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
7748  */
7749 static void run_rebalance_domains(struct softirq_action *h)
7750 {
7751 	struct rq *this_rq = this_rq();
7752 	enum cpu_idle_type idle = this_rq->idle_balance ?
7753 						CPU_IDLE : CPU_NOT_IDLE;
7754 
7755 	/*
7756 	 * If this cpu has a pending nohz_balance_kick, then do the
7757 	 * balancing on behalf of the other idle cpus whose ticks are
7758 	 * stopped. Do nohz_idle_balance *before* rebalance_domains to
7759 	 * give the idle cpus a chance to load balance. Else we may
7760 	 * load balance only within the local sched_domain hierarchy
7761 	 * and abort nohz_idle_balance altogether if we pull some load.
7762 	 */
7763 	nohz_idle_balance(this_rq, idle);
7764 	rebalance_domains(this_rq, idle);
7765 }
7766 
7767 /*
7768  * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
7769  */
7770 void trigger_load_balance(struct rq *rq)
7771 {
7772 	/* Don't need to rebalance while attached to NULL domain */
7773 	if (unlikely(on_null_domain(rq)))
7774 		return;
7775 
7776 	if (time_after_eq(jiffies, rq->next_balance))
7777 		raise_softirq(SCHED_SOFTIRQ);
7778 #ifdef CONFIG_NO_HZ_COMMON
7779 	if (nohz_kick_needed(rq))
7780 		nohz_balancer_kick();
7781 #endif
7782 }
7783 
7784 static void rq_online_fair(struct rq *rq)
7785 {
7786 	update_sysctl();
7787 
7788 	update_runtime_enabled(rq);
7789 }
7790 
7791 static void rq_offline_fair(struct rq *rq)
7792 {
7793 	update_sysctl();
7794 
7795 	/* Ensure any throttled groups are reachable by pick_next_task */
7796 	unthrottle_offline_cfs_rqs(rq);
7797 }
7798 
7799 #endif /* CONFIG_SMP */
7800 
7801 /*
7802  * scheduler tick hitting a task of our scheduling class:
7803  */
7804 static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
7805 {
7806 	struct cfs_rq *cfs_rq;
7807 	struct sched_entity *se = &curr->se;
7808 
7809 	for_each_sched_entity(se) {
7810 		cfs_rq = cfs_rq_of(se);
7811 		entity_tick(cfs_rq, se, queued);
7812 	}
7813 
7814 	if (numabalancing_enabled)
7815 		task_tick_numa(rq, curr);
7816 }
7817 
7818 /*
7819  * called on fork with the child task as argument from the parent's context
7820  *  - child not yet on the tasklist
7821  *  - preemption disabled
7822  */
7823 static void task_fork_fair(struct task_struct *p)
7824 {
7825 	struct cfs_rq *cfs_rq;
7826 	struct sched_entity *se = &p->se, *curr;
7827 	int this_cpu = smp_processor_id();
7828 	struct rq *rq = this_rq();
7829 	unsigned long flags;
7830 
7831 	raw_spin_lock_irqsave(&rq->lock, flags);
7832 
7833 	update_rq_clock(rq);
7834 
7835 	cfs_rq = task_cfs_rq(current);
7836 	curr = cfs_rq->curr;
7837 
7838 	/*
7839 	 * Not only the cpu but also the task_group of the parent might have
7840 	 * been changed after parent->se.parent,cfs_rq were copied to
7841 	 * child->se.parent,cfs_rq. So call __set_task_cpu() to make those
7842 	 * of child point to valid ones.
7843 	 */
7844 	rcu_read_lock();
7845 	__set_task_cpu(p, this_cpu);
7846 	rcu_read_unlock();
7847 
7848 	update_curr(cfs_rq);
7849 
7850 	if (curr)
7851 		se->vruntime = curr->vruntime;
7852 	place_entity(cfs_rq, se, 1);
7853 
7854 	if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
7855 		/*
7856 		 * Upon rescheduling, sched_class::put_prev_task() will place
7857 		 * 'current' within the tree based on its new key value.
7858 		 */
7859 		swap(curr->vruntime, se->vruntime);
7860 		resched_curr(rq);
7861 	}
7862 
7863 	se->vruntime -= cfs_rq->min_vruntime;
7864 
7865 	raw_spin_unlock_irqrestore(&rq->lock, flags);
7866 }
7867 
7868 /*
7869  * Priority of the task has changed. Check to see if we preempt
7870  * the current task.
7871  */
7872 static void
7873 prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
7874 {
7875 	if (!task_on_rq_queued(p))
7876 		return;
7877 
7878 	/*
7879 	 * Reschedule if we are currently running on this runqueue and
7880 	 * our priority decreased, or if we are not currently running on
7881 	 * this runqueue and our priority is higher than the current's
7882 	 */
7883 	if (rq->curr == p) {
7884 		if (p->prio > oldprio)
7885 			resched_curr(rq);
7886 	} else
7887 		check_preempt_curr(rq, p, 0);
7888 }
7889 
7890 static void switched_from_fair(struct rq *rq, struct task_struct *p)
7891 {
7892 	struct sched_entity *se = &p->se;
7893 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
7894 
7895 	/*
7896 	 * Ensure the task's vruntime is normalized, so that when it's
7897 	 * switched back to the fair class the enqueue_entity(.flags=0) will
7898 	 * do the right thing.
7899 	 *
7900 	 * If it's queued, then the dequeue_entity(.flags=0) will already
7901 	 * have normalized the vruntime, if it's !queued, then only when
7902 	 * the task is sleeping will it still have non-normalized vruntime.
7903 	 */
7904 	if (!task_on_rq_queued(p) && p->state != TASK_RUNNING) {
7905 		/*
7906 		 * Fix up our vruntime so that the current sleep doesn't
7907 		 * cause 'unlimited' sleep bonus.
7908 		 */
7909 		place_entity(cfs_rq, se, 0);
7910 		se->vruntime -= cfs_rq->min_vruntime;
7911 	}
7912 
7913 #ifdef CONFIG_SMP
7914 	/* Catch up with the cfs_rq and remove our load when we leave */
7915 	__update_load_avg(cfs_rq->avg.last_update_time, cpu_of(rq), &se->avg,
7916 		se->on_rq * scale_load_down(se->load.weight), cfs_rq->curr == se, NULL);
7917 
7918 	cfs_rq->avg.load_avg =
7919 		max_t(long, cfs_rq->avg.load_avg - se->avg.load_avg, 0);
7920 	cfs_rq->avg.load_sum =
7921 		max_t(s64, cfs_rq->avg.load_sum - se->avg.load_sum, 0);
7922 	cfs_rq->avg.util_avg =
7923 		max_t(long, cfs_rq->avg.util_avg - se->avg.util_avg, 0);
7924 	cfs_rq->avg.util_sum =
7925 		max_t(s32, cfs_rq->avg.util_sum - se->avg.util_sum, 0);
7926 #endif
7927 }
7928 
7929 /*
7930  * We switched to the sched_fair class.
7931  */
7932 static void switched_to_fair(struct rq *rq, struct task_struct *p)
7933 {
7934 	struct sched_entity *se = &p->se;
7935 
7936 #ifdef CONFIG_FAIR_GROUP_SCHED
7937 	/*
7938 	 * Since the real-depth could have been changed (only FAIR
7939 	 * class maintain depth value), reset depth properly.
7940 	 */
7941 	se->depth = se->parent ? se->parent->depth + 1 : 0;
7942 #endif
7943 
7944 	if (!task_on_rq_queued(p)) {
7945 
7946 		/*
7947 		 * Ensure the task has a non-normalized vruntime when it is switched
7948 		 * back to the fair class with !queued, so that enqueue_entity() at
7949 		 * wake-up time will do the right thing.
7950 		 *
7951 		 * If it's queued, then the enqueue_entity(.flags=0) makes the task
7952 		 * has non-normalized vruntime, if it's !queued, then it still has
7953 		 * normalized vruntime.
7954 		 */
7955 		if (p->state != TASK_RUNNING)
7956 			se->vruntime += cfs_rq_of(se)->min_vruntime;
7957 		return;
7958 	}
7959 
7960 	/*
7961 	 * We were most likely switched from sched_rt, so
7962 	 * kick off the schedule if running, otherwise just see
7963 	 * if we can still preempt the current task.
7964 	 */
7965 	if (rq->curr == p)
7966 		resched_curr(rq);
7967 	else
7968 		check_preempt_curr(rq, p, 0);
7969 }
7970 
7971 /* Account for a task changing its policy or group.
7972  *
7973  * This routine is mostly called to set cfs_rq->curr field when a task
7974  * migrates between groups/classes.
7975  */
7976 static void set_curr_task_fair(struct rq *rq)
7977 {
7978 	struct sched_entity *se = &rq->curr->se;
7979 
7980 	for_each_sched_entity(se) {
7981 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
7982 
7983 		set_next_entity(cfs_rq, se);
7984 		/* ensure bandwidth has been allocated on our new cfs_rq */
7985 		account_cfs_rq_runtime(cfs_rq, 0);
7986 	}
7987 }
7988 
7989 void init_cfs_rq(struct cfs_rq *cfs_rq)
7990 {
7991 	cfs_rq->tasks_timeline = RB_ROOT;
7992 	cfs_rq->min_vruntime = (u64)(-(1LL << 20));
7993 #ifndef CONFIG_64BIT
7994 	cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
7995 #endif
7996 #ifdef CONFIG_SMP
7997 	atomic_long_set(&cfs_rq->removed_load_avg, 0);
7998 	atomic_long_set(&cfs_rq->removed_util_avg, 0);
7999 #endif
8000 }
8001 
8002 #ifdef CONFIG_FAIR_GROUP_SCHED
8003 static void task_move_group_fair(struct task_struct *p, int queued)
8004 {
8005 	struct sched_entity *se = &p->se;
8006 	struct cfs_rq *cfs_rq;
8007 
8008 	/*
8009 	 * If the task was not on the rq at the time of this cgroup movement
8010 	 * it must have been asleep, sleeping tasks keep their ->vruntime
8011 	 * absolute on their old rq until wakeup (needed for the fair sleeper
8012 	 * bonus in place_entity()).
8013 	 *
8014 	 * If it was on the rq, we've just 'preempted' it, which does convert
8015 	 * ->vruntime to a relative base.
8016 	 *
8017 	 * Make sure both cases convert their relative position when migrating
8018 	 * to another cgroup's rq. This does somewhat interfere with the
8019 	 * fair sleeper stuff for the first placement, but who cares.
8020 	 */
8021 	/*
8022 	 * When !queued, vruntime of the task has usually NOT been normalized.
8023 	 * But there are some cases where it has already been normalized:
8024 	 *
8025 	 * - Moving a forked child which is waiting for being woken up by
8026 	 *   wake_up_new_task().
8027 	 * - Moving a task which has been woken up by try_to_wake_up() and
8028 	 *   waiting for actually being woken up by sched_ttwu_pending().
8029 	 *
8030 	 * To prevent boost or penalty in the new cfs_rq caused by delta
8031 	 * min_vruntime between the two cfs_rqs, we skip vruntime adjustment.
8032 	 */
8033 	if (!queued && (!se->sum_exec_runtime || p->state == TASK_WAKING))
8034 		queued = 1;
8035 
8036 	if (!queued)
8037 		se->vruntime -= cfs_rq_of(se)->min_vruntime;
8038 	set_task_rq(p, task_cpu(p));
8039 	se->depth = se->parent ? se->parent->depth + 1 : 0;
8040 	if (!queued) {
8041 		cfs_rq = cfs_rq_of(se);
8042 		se->vruntime += cfs_rq->min_vruntime;
8043 
8044 #ifdef CONFIG_SMP
8045 		/* Virtually synchronize task with its new cfs_rq */
8046 		p->se.avg.last_update_time = cfs_rq->avg.last_update_time;
8047 		cfs_rq->avg.load_avg += p->se.avg.load_avg;
8048 		cfs_rq->avg.load_sum += p->se.avg.load_sum;
8049 		cfs_rq->avg.util_avg += p->se.avg.util_avg;
8050 		cfs_rq->avg.util_sum += p->se.avg.util_sum;
8051 #endif
8052 	}
8053 }
8054 
8055 void free_fair_sched_group(struct task_group *tg)
8056 {
8057 	int i;
8058 
8059 	destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
8060 
8061 	for_each_possible_cpu(i) {
8062 		if (tg->cfs_rq)
8063 			kfree(tg->cfs_rq[i]);
8064 		if (tg->se) {
8065 			if (tg->se[i])
8066 				remove_entity_load_avg(tg->se[i]);
8067 			kfree(tg->se[i]);
8068 		}
8069 	}
8070 
8071 	kfree(tg->cfs_rq);
8072 	kfree(tg->se);
8073 }
8074 
8075 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8076 {
8077 	struct cfs_rq *cfs_rq;
8078 	struct sched_entity *se;
8079 	int i;
8080 
8081 	tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
8082 	if (!tg->cfs_rq)
8083 		goto err;
8084 	tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
8085 	if (!tg->se)
8086 		goto err;
8087 
8088 	tg->shares = NICE_0_LOAD;
8089 
8090 	init_cfs_bandwidth(tg_cfs_bandwidth(tg));
8091 
8092 	for_each_possible_cpu(i) {
8093 		cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
8094 				      GFP_KERNEL, cpu_to_node(i));
8095 		if (!cfs_rq)
8096 			goto err;
8097 
8098 		se = kzalloc_node(sizeof(struct sched_entity),
8099 				  GFP_KERNEL, cpu_to_node(i));
8100 		if (!se)
8101 			goto err_free_rq;
8102 
8103 		init_cfs_rq(cfs_rq);
8104 		init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
8105 		init_entity_runnable_average(se);
8106 	}
8107 
8108 	return 1;
8109 
8110 err_free_rq:
8111 	kfree(cfs_rq);
8112 err:
8113 	return 0;
8114 }
8115 
8116 void unregister_fair_sched_group(struct task_group *tg, int cpu)
8117 {
8118 	struct rq *rq = cpu_rq(cpu);
8119 	unsigned long flags;
8120 
8121 	/*
8122 	* Only empty task groups can be destroyed; so we can speculatively
8123 	* check on_list without danger of it being re-added.
8124 	*/
8125 	if (!tg->cfs_rq[cpu]->on_list)
8126 		return;
8127 
8128 	raw_spin_lock_irqsave(&rq->lock, flags);
8129 	list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
8130 	raw_spin_unlock_irqrestore(&rq->lock, flags);
8131 }
8132 
8133 void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
8134 			struct sched_entity *se, int cpu,
8135 			struct sched_entity *parent)
8136 {
8137 	struct rq *rq = cpu_rq(cpu);
8138 
8139 	cfs_rq->tg = tg;
8140 	cfs_rq->rq = rq;
8141 	init_cfs_rq_runtime(cfs_rq);
8142 
8143 	tg->cfs_rq[cpu] = cfs_rq;
8144 	tg->se[cpu] = se;
8145 
8146 	/* se could be NULL for root_task_group */
8147 	if (!se)
8148 		return;
8149 
8150 	if (!parent) {
8151 		se->cfs_rq = &rq->cfs;
8152 		se->depth = 0;
8153 	} else {
8154 		se->cfs_rq = parent->my_q;
8155 		se->depth = parent->depth + 1;
8156 	}
8157 
8158 	se->my_q = cfs_rq;
8159 	/* guarantee group entities always have weight */
8160 	update_load_set(&se->load, NICE_0_LOAD);
8161 	se->parent = parent;
8162 }
8163 
8164 static DEFINE_MUTEX(shares_mutex);
8165 
8166 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
8167 {
8168 	int i;
8169 	unsigned long flags;
8170 
8171 	/*
8172 	 * We can't change the weight of the root cgroup.
8173 	 */
8174 	if (!tg->se[0])
8175 		return -EINVAL;
8176 
8177 	shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
8178 
8179 	mutex_lock(&shares_mutex);
8180 	if (tg->shares == shares)
8181 		goto done;
8182 
8183 	tg->shares = shares;
8184 	for_each_possible_cpu(i) {
8185 		struct rq *rq = cpu_rq(i);
8186 		struct sched_entity *se;
8187 
8188 		se = tg->se[i];
8189 		/* Propagate contribution to hierarchy */
8190 		raw_spin_lock_irqsave(&rq->lock, flags);
8191 
8192 		/* Possible calls to update_curr() need rq clock */
8193 		update_rq_clock(rq);
8194 		for_each_sched_entity(se)
8195 			update_cfs_shares(group_cfs_rq(se));
8196 		raw_spin_unlock_irqrestore(&rq->lock, flags);
8197 	}
8198 
8199 done:
8200 	mutex_unlock(&shares_mutex);
8201 	return 0;
8202 }
8203 #else /* CONFIG_FAIR_GROUP_SCHED */
8204 
8205 void free_fair_sched_group(struct task_group *tg) { }
8206 
8207 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8208 {
8209 	return 1;
8210 }
8211 
8212 void unregister_fair_sched_group(struct task_group *tg, int cpu) { }
8213 
8214 #endif /* CONFIG_FAIR_GROUP_SCHED */
8215 
8216 
8217 static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
8218 {
8219 	struct sched_entity *se = &task->se;
8220 	unsigned int rr_interval = 0;
8221 
8222 	/*
8223 	 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
8224 	 * idle runqueue:
8225 	 */
8226 	if (rq->cfs.load.weight)
8227 		rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
8228 
8229 	return rr_interval;
8230 }
8231 
8232 /*
8233  * All the scheduling class methods:
8234  */
8235 const struct sched_class fair_sched_class = {
8236 	.next			= &idle_sched_class,
8237 	.enqueue_task		= enqueue_task_fair,
8238 	.dequeue_task		= dequeue_task_fair,
8239 	.yield_task		= yield_task_fair,
8240 	.yield_to_task		= yield_to_task_fair,
8241 
8242 	.check_preempt_curr	= check_preempt_wakeup,
8243 
8244 	.pick_next_task		= pick_next_task_fair,
8245 	.put_prev_task		= put_prev_task_fair,
8246 
8247 #ifdef CONFIG_SMP
8248 	.select_task_rq		= select_task_rq_fair,
8249 	.migrate_task_rq	= migrate_task_rq_fair,
8250 
8251 	.rq_online		= rq_online_fair,
8252 	.rq_offline		= rq_offline_fair,
8253 
8254 	.task_waking		= task_waking_fair,
8255 	.task_dead		= task_dead_fair,
8256 	.set_cpus_allowed	= set_cpus_allowed_common,
8257 #endif
8258 
8259 	.set_curr_task          = set_curr_task_fair,
8260 	.task_tick		= task_tick_fair,
8261 	.task_fork		= task_fork_fair,
8262 
8263 	.prio_changed		= prio_changed_fair,
8264 	.switched_from		= switched_from_fair,
8265 	.switched_to		= switched_to_fair,
8266 
8267 	.get_rr_interval	= get_rr_interval_fair,
8268 
8269 	.update_curr		= update_curr_fair,
8270 
8271 #ifdef CONFIG_FAIR_GROUP_SCHED
8272 	.task_move_group	= task_move_group_fair,
8273 #endif
8274 };
8275 
8276 #ifdef CONFIG_SCHED_DEBUG
8277 void print_cfs_stats(struct seq_file *m, int cpu)
8278 {
8279 	struct cfs_rq *cfs_rq;
8280 
8281 	rcu_read_lock();
8282 	for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
8283 		print_cfs_rq(m, cpu, cfs_rq);
8284 	rcu_read_unlock();
8285 }
8286 
8287 #ifdef CONFIG_NUMA_BALANCING
8288 void show_numa_stats(struct task_struct *p, struct seq_file *m)
8289 {
8290 	int node;
8291 	unsigned long tsf = 0, tpf = 0, gsf = 0, gpf = 0;
8292 
8293 	for_each_online_node(node) {
8294 		if (p->numa_faults) {
8295 			tsf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 0)];
8296 			tpf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 1)];
8297 		}
8298 		if (p->numa_group) {
8299 			gsf = p->numa_group->faults[task_faults_idx(NUMA_MEM, node, 0)],
8300 			gpf = p->numa_group->faults[task_faults_idx(NUMA_MEM, node, 1)];
8301 		}
8302 		print_numa_stats(m, node, tsf, tpf, gsf, gpf);
8303 	}
8304 }
8305 #endif /* CONFIG_NUMA_BALANCING */
8306 #endif /* CONFIG_SCHED_DEBUG */
8307 
8308 __init void init_sched_fair_class(void)
8309 {
8310 #ifdef CONFIG_SMP
8311 	open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
8312 
8313 #ifdef CONFIG_NO_HZ_COMMON
8314 	nohz.next_balance = jiffies;
8315 	zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
8316 	cpu_notifier(sched_ilb_notifier, 0);
8317 #endif
8318 #endif /* SMP */
8319 
8320 }
8321